

MITSUBISHI Numerical Protection Relay *MELPRO*[™]-D Series

Mitsubishi ELectric corporation's PROtection relay for Distribution.

Relays suitable for advanced network systems and strongly support power distribution automation.

Safety section

This Safety section should be read before starting any work on the relay. Be sure to read the instruction manuals and other related documents prior to commencing any work on the relay in order to maintain them in a safe condition. Be sure to be familiar with the knowledge, safety information and all caution items of the product prior to use.

CAUTION Caution means that failure to un-observe safety information, incorrect use, or improper use may endanger personnel and equipment and cause personnel injury or physical damage.

Items as classified to the caution may become to occur more sever results according to the circumstance. Therefore, all items described in the safety section are important and to be respected without fail.

CAUTION

1. Items concerning transportation

(1) Be sure the equipment to be kept in normal direction

(2) Avoid the bumps, shock, and vibration, otherwise the product performance /life might be unfavorably affected.

- 2. Items concerning storage
 - (1) Environment shall be as below, otherwise the product performance/life might be unfavorably affected.
 - Ambient temperature: $-20^{\circ}C \sim +60^{\circ}C$ (with no condensation nor freezing)
 - -Relative humidity: 30~80% average of a day
 - -Altitude: Less than 2000m

Sc

-Avoid applying unusual shock, vibration or leaning or magnetic field Not expose to harmful smoke, gas, salty air, water, vapor, dust, powder, explosive material or wind, rain.

- 3. Items concerning mounting/wiring work (1) Mounting and wiring work should be done correctly. Otherwise, damage, burning or erroneous operation might occur.
 - (2) Screw terminal should be tightened secured. Otherwise, damage and burning might occur.
 (3) Please refer to the following about the screw tightening torgue.

Applications	Screw size	Guideline value of torque	Specified tolerance
Screw terminal	M3.5	1.10N·m(11.2kgf·cm)	0.932~1.27N·m(9.5~12.9kgf·cm)
crew for relay unit fixing	M5.0	3.24N·m(33kgf·cm)	2.75~3.63N·m(28~37kgf·cm)

- (4) Grounding should be done correctly in case it is required. Otherwise, electric shock, damage, burning or erroneous operation might occur.
- (5) Wiring should be done without mistake especially observing the correct polarity. Otherwise, damage, burning or erroneous operation might occur.
- (6) Wiring should be done without mistake especially observing the phase ordering. Otherwise, damage, or erroneous operation might occur.
- (7) Auxiliary power source, measuring transformer and power source which have enough capacity for correct operation of product should be used. Otherwise, an erroneous operation might occur.
- (8) Be sure to restore the front cover, terminal cover, protection cover, etc to the original position, which have been removed during the mounting/ wiring work. Otherwise, electrical shock might occur at the time of checking.
- (9) Connection should be done correctly using designated and right connectors. Otherwise, damage or burning might occur.
- (10) Fully insert the sub unit into the case until you can hear a click while pressing the handles located on both sides of the sub unit front face. Otherwise, incomplete inserting the sub unit might only establish a poor contact with the terminals located on the back side of unit, which might cause erroneous operation or heating.

4. Concerning equipment operation and settings

- (1) Operational condition should be as below. Otherwise, the product performance/life might be unfavorably affected. -Deviation of auxiliary power: within +10%~-15% of rated voltage

 - -Deviation of frequency: within $\pm 5\%$ of rated frequency -Ambient temperature: -10% +55% (with no condensation nor freezing) -Relative humidity: 30 80% average of a day
- -Altitude: Less than 2000m
- -Avoid to be exposed to unusual shock, vibration, leaning or magnetic field
- -Not expose to harmful smoke, gas, salty air, water, vapor, dust, powder, explosive material, wind or rain.
- (2) Qualified personnel may work on or operate this product, otherwise, the product performance/life might be unfavorably affected and/or burning or erroneous operation might occur.
- (3) Be sure to read and understand the instruction manuals and other related documents prior to commencing operation and maintenance work on the product. Otherwise, electrical shock, injury, damage, or erroneous operation might occur.
- (4) While energizing product, be sure not to remove any unit or parts without permissible one. Otherwise, damage, or erroneous operation might occur.
- (5) While energizing product, be sure to make short circuit of current transformer secondary circuits before setting change or drawing out the sub unit. Otherwise, secondary circuit of live current transformer might be opened and damage or burning might occur due to the high level voltage. (6) While energizing product, be sure to open trip lock terminal before setting change or drawing out the internal unit of product. Otherwise,
- erroneous operation might occur. (7) Be sure to use the product within rated voltage and current. Otherwise, damage or erroneous operation might occur.
- (8) While energizing product, be sure not to clean up the product. Only wiping a stain on the front cover of product with a damp waste might be allowable. (Be sure to wring hardly the water out of the waste.)

5. Items concerning maintenance and checking

- (1) Be sure that only qualified personnel might work on or operate this product. Otherwise, electrical shock, injury, damage, or erroneous operation might occur.
- (2) Be sure to read and understand the instruction manuals and other related documents prior to commencing operation and maintenance work on the product. Otherwise, electrical shock, injury, damage, or erroneous operation might occur. (3) In case of replacing the parts, be sure to use the ones of same type, rating and specifications, etc. If impossible to use above parts, be sure to
- contact the sales office or distributor nearest you. Otherwise, damage or burning might occur.
- (4) Testing shall be done with the following conditions.
- -Ambient temperature: 20℃±10℃
- -Relative humidity: Less than 90%
- -Magnetic field: Less than 80A/m
- -Atmospheric pressure: 86~106×103 Pa
- -Installation angle: Normal direction ±2°
- -Deviation of frequency: within ±1% of nominal frequency
- -Wave form (in case of AC): Distortion factor less than 2% (Distortion factor=100%×effective value of harmonics/effective value of fundamental) -Ripple (in case of DC): Ripple factor less than 3% (Ripple factor=100%×(max-min)/average of DC)
- -Deviation of auxiliary power: within ±2% of nominal voltage
- -Be sure not to inject the voltage or current beyond the overload immunity. Otherwise, damage or burning might occur.
- -Be careful not to touch the energized parts. Otherwise, the electric shock might occur.

6. Items concerning modification and/or repair work

Be sure to ask any modification and/or repair work for product to the sales office or distributor nearest you.

- Unless otherwise, any incidents occurred with modification or repair works (including software) done by any other entity than MITSUBIHI ELECTRIC CORPORATION shall be out of scope on warranty covered by MITSUBISHI ELECTRIC CORPORATION.
- 7. Items concerning disposal
- Particular regulations within the country of operation shall be applied to the disposal.

Request when placing order

Thank you very much for your usual selecting the MITSUBISHI ELECTRIC CORPORATION products.

When ordering our products described in this catalogue, please read and agree the followings before ordering as long as any special condition are not nominated in the offer document, contract document, catalogue other than this.

1. Guarantee period

The guarantee period of this product should be one year after delivery, unless otherwise specified by both parties.

2. Scope of guarantee

When any fault or defect is detected during the period of guarantee and such fault or defect is proved to be caused apparently at the responsibility of MITSUBISHI ELECTRIC CORPORATION, the defective unit concerned will be repaired or replaced by a substitute with free of charge. However, the fee for our engineer dispatching to site has to be covered by the user. Also, site retesting or trial operation caused along with replacing the defect units should be out of scope of our responsibilities. It is to be acknowledged that the following faults and defects should be out of this guarantee.

- (1) When the faults or defects are resulted from the use of the equipment at the range exceeding the condition/environment requirements stated in the catalogue and manual.
- (2) When the faults or defects are resulted from the reason concerning without our products.
- (a) When the faults or defects are resulted from the modification or repair carried out by any other entity than MITSUBISHI ELECTRIC CORPORATION.(4) When the faults or defects are resulted from a phenomenon which can not be predicted with the science and technology put into practical use at the time of purchase or contract.
- (5) In case of integrating our products into your equipment, when damages can be hedged by the proper function or structure in the possession of your equipment which should be completed according to the concept of the defact standard of industry.
- (6) In case of that the faults or defects are resulted from un-proper application being out of instruction of MITSUBISHI ELECTRIC CORPORATION.
- (7) In case that the faults or defects are resulted from force majeure such a fire or abnormal voltage and as an act of God such as natural calamity or disaster. 3. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, MITSUBISHI ELECTRIC CORPORATION shall not be liable for compensation of damages caused by any cause found not be the responsibility of MITSUBISHI ELECTRIC CORPORATION, loss in opportunity, lost profits incurred to the user by failures of MITSUBISHI ELECTRIC CORPORATION products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than MITSUBISHI ELECTRIC CORPORATION products and other tasks.

4. Applications of products

- (1) The user is requested to confirm the standards, the regulations and the restrictions which should be applied, in case of utilizing products described in this catalogue and another one in combination. Also, the user is requested to confirm the suitability of our products to your applied system or equipment or apparatus by yourself. MITSUBISHI ELECTRIC CORPORATION shall not be liable for any suitability of our products to your utilization.(2) This MITSUBISHI ELECTRIC CORPORATION products described in the catalogue have been designed and manufactured for application in general
- industries, etc. Thus, application in which the life or an asset could be affected, such as medical system for life-sustaining, in nuclear power plants, power plants (Power generation, transmission and distribution), aerospace, and transportation devices (automobile, train, ship, etc) shall be excluded. In addition to above, application in which the life or an asset could be affected by potentially chemical contamination or electrical interference and also in which the circumstances and condition are not mentioned in this catalogue shall be excluded. Note even if the user wants to use for these applications with user's responsibility, the user to be requested to approve the specification of MITSUBISHI ELECTRIC CORPORATION products and to contact to the technical section of MITSUBISHI ELECTRIC CORPORATION prior to such applications. If the user applies MITSUBISHI ELECTRIC CORPORATION products to such applications without any contact to our technical section, MITSUBISHI ELECTRIC CORPORATION shall not be liable for any items and not be insured, independently from mentioned in this clause.
- (3) In using MITSUBISHI ELECTRIC CORPORATION product, the working conditions shall be that the application will not lead to a major accident even if any problem or fault occur, and that backup or duplicate system built in externally which should be decided depend on the importance of facility, are recommended.
- (4) The application examples given in this catalogue are reference only and you are requested to confirm function and precaution for equipment and apparatus and then, use our products.
- (5) The user is requested to understand and to respect completely all warning and caution items so that unexpected damages of the user or the third party arising out of un-correct application of our products would not be resulted.

- 5. Onerous repair term after discontinuation of product (1) MITSUBISHI ELECTRIC CORPORATION shall accept onerous product repairs for 7(seven) years after production is terminated. (However, please consider the replacement for the products being in operation during 15 years from ex-work.) (2) Product supply (including repair parts) is not available after production is discontinued.

6. Changes in product specification

The specification given in the catalogue, manuals or technical documents are subject to change without prior to notice.

7. Scope of service

The technical service fee such as engineer dispatching fee is excluded in the price of our products. Please contact to our agents if you have such a requirement.

ŀ	-1	C	N	'	t	0) (O	r	C	le	9	r	

Please check the specifications and be ready with the following information when placing order.

	Items to be informed	Sample of ordering In case of COC4-A01D1	Remarks					
ation	Type name	COC4-A01D1	Refer to the specifications for detail.					
Fundamental specification	Frequency	50Hz	Specify 50Hz or 60Hz.					
Ital sp	Ratings	Phase current 5A, Zero phase current 1A	Refer to the specifications for detail.					
lamer	Auxiliary power supply voltage	AC/DC100~220V	Refer to the Common Technical data for detail.					
Fund	Languages	English language	Specify English or Japanese.					
specification	Communication function	Communication card for CC-Link	The communication feature may be installed later through subsequent purchase of the communication card. When communication feature is ordered at the same time with relay itself, type CC-COM2 communication card will be supplied. However, in case of subsequent purchase of the communication card, please include the information in your ordering which are the type of relay and presence or absence of connector for connector, type of communication card is CC-COM2. In case of absence of connector, type of communication card is CC-COM2.					
Optional	Parts Case		When ordering, please specify the type of case D1 or D2 and uses of case (for testin purpose or not). Please note that CT circuits shorten mechanism is not equipped the dedicated case of testing purpose.					
		Cover	Please specify the type of case D1 or D2.					
		Terminal block (with cover)	Please specify the type of relay and terminal block arrangement(from the left side of the back A,B,C,E). Please note ordering only cover is not accepted.					

Please note that other specification than described in this catalogue is not applicable for manufacturing.

Relays suitable for advanced communication network systems contribute to build the automated power distribution.

To improve the reliability of distribution system is quite essential for the stable operation of all facilities installed in the factories and buildings. In order to realize high reliable distribution system, more functional protection relay as the core for the protection and control systems is essentially required. Through passing the age of the electric mechanical type relay and the transistor type relay, today, the main stream of protection relay has been moved to the numerical type. The numerical type protection relay MELPRO-D series have been developed based on the combination of the plenty know how gained through numerical relay history in several ten years and the latest electronics technology, and make possible to respond to the recent age needs for more functionality protection relay system.

High accuracy & High speed processing

Adopt the highest performance CPU placed front end of the digital age

The high speed digital computation realizes the high accuracy operating characteristics never before possible. The operating characteristics are configured by the software, so that little deterioration and the stabilized operation can be realized.

High degree of reliability

Adopting self-diagnosis function for countermeasures against problem may arise.

The self-diagnosis function which monitors continuously the input, built-in power source and CPU is equipped. In the failures occurring of the relay, they can be detected immediately by the self-diagnosis function. Furthermore, dual output circuit makes possible to prevent the occurrence of misoperation due to the hardware failures.

Superior resistance to attack by tough environment

Adopt the structure to be resistant to the disturbances such as the electric surge and noise, the harmonics, the radio noise from the cellular phone, the temperature and the humidity.

Self-diagnosis function

Suitable for advanced communication network system

Fully possible to access from the central control system

The communication network system enables the data acquisition such as measurement value, operation status and setting value as well as the remote operation such as the setting changes from the central control system. Thereby, efficient operation and maintenance can be realized.

Local operation and monitoring for Site maintenance (Direct PC)

By connecting PC with relay via the RS232C port located on the relay panel, local operation and monitoring are enabled as same as the remote operation and monitoring. Thereby, the maintenance work at site is strongly supported.

*Special HMI software (option) is needed for local operation and monitoring.

*Please refer to the specification table for each type of relay to confirm the capable of communication port and cards.

CPU SI/O Master

I/F

PLC

Communication network facilities with flexibility and extensibility.

Dual output circuits

In consideration of future communication network system variations and compatibility, communication features are installed in the relay using a replaceable card. Thereby, it is plenty flexible and extensible.

Δ

Mitsubishi Numerical type protection relay $MELPRO^{TM}$ -D series

Programmable output contacts complying with requirements on the flexibility

The operating output contacts can be set by combing the outputs of the protection relay element using "OR" logic, thereby simplifying sequence design.

Also, it is possible to reduce the cost of switchboard as reducing wiring works.

[Schematic image of programmable output (Example: type COC4-A01)]

Substantial measuring function

Substantial metering function

Possible to measure the steady state of the relay input values (Current, Voltage, Power, Frequency, Power factor, Zero phase current and Zero phase voltage), thereby possible to support the energy management. Remark: Please note that measuring item is depended on the type of relay.

Refer to the specification table of each relay type for the detail on this regards.

Data save in the event of system fault

In the event of system fault, input effective value and wave form data have been measured and stored at the time when one of the protection elements operates to issue an output signal. Data for up to five phenomena can be stored and displayed. Therefore, analyze of phenomena becomes easy.

Upper Fig. : Image of waveform down loaded by the Direct PC HMI software

Replacement of existing relay

The dimension of the panel cutting is the same as the prior existing one. Replacing from the existing one to this new type is quite easy.

The dimension of the panel cutting is the same as the prior MULTICAP series. Replacing from the existing one to this new type is possible easily without using adaptor. Also, as this relay has a high degree of compatibility with the existing relay, the design change of the existing system is minimized. (Except for some types of relay)

Easy maintenance

Adopting draw-out unit mechanism enables easy maintenance and checking works

The draw-out unit mechanisms with automatic CT shorting is adopted, so that relay unit can be draw out without removing any parts or wirings. Thereby, it is possible to improve maintenance ease.

contents

Safety section 2	CDG Series EARTH FAULT DIRECTIONAL RELAY \cdots 24
Request when placing order	CAC Series BIASED DIFFERENTIAL
How to order	RELAY FOR TRANSFORMER PROTECTION
Features of MELPRO-D series 4	CMP Series MOTOR PROTECTION RELAY ···· 35
Type of MELPRO-D series	CPP Series SYSTEM LINKAGE PROTECTION RELAY \cdots 42
(listing of implemented elements)	CGP1 Series GENERATOR PROTECTION RELAY ···· 47
Selection of type of relay (example)7	CGP2 Series GENERATOR PROTECTION RELAY \cdots 53
Common Technical Data	MELPRO-D Series Dimensions 59
COC Series OVER-CURRENT RELAY	Suggestion from Mitsubishi Electric … 60 (for improving reliability of system)
CBV, CUB Series VOLTAGE RELAY 20	CONTROL and OPERATION
CFP Series FEEDER PROTECTION RELAY 24	Display/Setting Operation

ω	
U	
Δ	
Û	
_	
Q	
\bigcirc	
42	
U	
1	
Π	
mplemented element	
E	
6	
U	
D	
Ē	
5	
<u>0</u>	
O	
Ŏ	
eri	
Ο	
ŭ	
CU	
T	
Ĩ	
Щ	
ELPRO-D	
\leq	
Ч=	
O	
(1)	
W	
E E	
\sim	

								etection								.28)				r EVT)	r EVT)							
								CT x 3 phases current \cdot With 2nd harmonic current detection					Æ	Ê		Biased differential relay for (2 windings) transformer protection (P.28)	Æ			For extra high voltage interconnection (For EVT)	For extra high voltage interconnection (For EVT)	Ê						
								and harmon					CT × 2 phases current (For EVT)	CT × 2 phases current (For EVT)		ner prote	CT × 2 phases current (For EVT)			terconne	terconne	CT × 2 phases current (For EVT)		(0 2 0)	(00.1)			
	current	current	current	current	current	current	current	nt • With 2	age	age	age	age	current	current		ansform	current	current	current	oltage in	oltage in	current	current		IECTION			
Remarks	CT × 1 phase current	CT × 1 phase current	CT×2 phases current	CT×3 phases current	CT×3 phases current	CT×3 phases current	CT×3 phases current	ases curre	VT × 3 line voltage	VT × 1 line voltage	VT × 3 line voltage	VT × 3 line voltage	phases	phases	0	dings) tı	phases	CT×3 phases current	CT × 3 phases current	a high vo	a high vo	phases	CT×3 phases current		ator pro	(O-D30		
Re	CT×1	CT×1	CT×2	CT×3	CT×3	CT×3	CT×3	CT×3 ph	VT×31	VT×11	VT×31	VT×31	CT×2	CT×2	Earth fault directional relay (P.24)	or (2 win	CT×2	CT×3	CT×3	For extra	For extra	CT×2	CT×3			Biased differential relay for(3 windings) transformer protection MELPRO-D30		
									1				relay		onal rela	relay fo		diay		relay for	/stem	ו relay		0 - rolow	leiay ic	former protection		
				nt relay						lay			Feeder protection relay		t directio	ferential	Motor protoction rolow			Interconnection protection relay for	Ine dispersed generation system (P.42)	Generator protection relay			Ierenna	or(3 windings) trans		
				Overcurrent relay	(6.9)					Voltage relay	(P.20)		eder pr	(P.24)	arth faul	ased dif		(D 25)	100.7	erconnection	e uisperseu ((P.42)	enerator p	(P.47)	1000	aseu ull	d differential relay f		
				Ó						ž			щ		Ш	Bi	Ň	ž	-	1 E E		ŭ			ő	Biase		
40																								0				
87G																								0	0			
84																						⊝	⊝					
df/dt																					0							
I 91L																				0	3							_
- 95H																				0	0	0	0					
67S 67P 95L																				0	0	0	0					
67S 67P																				0	3 3	0	0					
																	0	0	0		•						 	
47 6												0																
46																	0	0	0			0	\circ					
37																	0	3	0									
49																	0	0	0									
87T																3										3		
64										\bigcirc	3									0	0	0						
59									0	▣		0								⊝	(I)	⊝	▣					
27									0	▣	3	3								0	3	0	0					
67G													0	0	0		0					0						
50/51 506/516		⊝				0	0	0										0	0				0					
50/5	Ð		0	0	0	୭	୭	0					0	0			0	3	୭			0	0					
Series Type 50/51 306/516 67 59 64 87 49 37 46 47 66	COC1-A01D1	COC1-A02D1	COC2-A01D1	COC3-A01D1	COC3-A03D1	COC4-A01D1	COC4-A02D1	COC4-A03D1	CBV2-A01D1	CBV3-A01D1	CBV4-A01D1	CUB1-A01D1	CFP1-A01D1	CFP1-A02D1	CDG1-A01D1	CAC1-A01D2	CMP1-A01D1/2	CMP1-A02D1	CMP2-A02D2	CPP1-A01D2	CPP1-A11D2	CGP1-A01D2	CGP1-A03D2	CGP2-A01D2	CGP2-A02D2	CAC2-A31D2		
	coc1	coc1	COC2	coca	coca	COC4	COC4	COC4	CBV2	CBV3	CBV4	CUB1	CFP1-	CFP1-	CDG1	CAC1	CMP1	CMP1	CMP2	CPP1	CPP1	CGP1	CGP1	CGP2	CGP2	CAC2		
Series											Σ	шш	م د	0 -	۵											*1		

 This type of relay belong to CD30 series. The operation method and appearance of D30 series are different from D series. Please refer to the instruction manual for their details.
 2 OThe number written in the circle indicates detecting phase number.

Type of MELPRO-D series and implemented elements for each type are shown as below Table.

ŕ

Selection of relay type (example)

Network	Device number	WELP	MELPRO ^{m-D}
	27	1 ¢ CBV2-A01D1 3 ¢ CBV2-A01D1	3-A01D1 2-A01D1
Incoming of	50/51	3 ¢ COC3-A01D1/COC3-A03D1	
extra high voltage	51G	1 ¢ COC1-A02D1	
	50/51	3 ¢ COC3-A01D1/COC3-A03D1	
	51G	1 ¢ COC1-A02D1	COC4-AU3D1
	27	1 ¢ CBV2-A01D1	2-A01D1
	59	2 ¢ CBV3-A01D1	3-A01D1
	87T	CAC1-A01D2	A01D2
	50/51	3 ¢ COC3-A01D1/COC3-A03D1	
Extra high voltage	51G	1 ¢ COC1-A02D1	0004-90101
(secondary of	50/51	3 ¢ COC3-A01D1/COC3-A03D1	
transformer)	51G	1 ¢ COC1-A02D1	COC4-AUIDI
	50/51	COC3-A01D1/COC3-A03D1	(COC3-A03D1
	27		
	59	CBV3-A01D1	A01D1
	64		
	50/51	COC2-A01D1	
	67G	CFP1-A01D1	A01D1
	27		
High voltage	59	CBV3-A01D1	A01D1
(secondary of	64		
transformer)	50 51 51G		
	37 46 49 66	CMP1-A02D1/CMP2-A02D2	CMP2-A02D2
	50 51 67G 37 46 49 66	CMP1-A01D1/	CMP1-A01D1/CMP1-A01D2
Remark 1: It is advis	sable to adopt the dua	Remark 1: It is advisable to adopt the dual system or 2 out of 3 systems in order to improve the reliability of the important facilities.	ove the reliability of the important facilities.

Remark 2: In case of not available an uninterruptible power source, please use AC/DC converter type B-T1 manufactured by MITSUBISHI ELECTRIC CORPORATION or commercially available uninterruptible power source (UPS) instead of using AC auxiliary power source such as derived from VT secondary circuit because of no guarantee against power interruption during system faults.

- : Current Transformer : Earthed type voltage Transformer
- CB : Circuit Breaker CT : Current Transformer EVT : Earthed type voltage Transfor M : Motor NGR : Neutral Grounded Resister SC : Static Condenser TR : Transformer VT : Voltage Transformer

Common Technical Data

П	EM		DESCRIPTION	CONDITION	STANDARD
	Ambient operating temperature	−10℃ t	o +55℃		IEC60255-6
Environment	Ambient storage and transport temperature	-25℃ t	o +70°C		IEC60255-6
	Damp heat	+40°C,9	95%RH, 4days		IEC60068-2-78
	Auxiliary power supply	100,110,1	125, 220VDC 20,220VAC ble to any voltage above)		IEC60255-6
Ratings	Operative range of auxiliary power supply	(Tempor AC: -15 (Tempor	5% to +10% Farily -20% to +30%) 5% to +10% Farily -15% to +15%)		IEC60255-6
	Frequency	50 or 60	Hz		IEC60255-6
VT CT		Specified	l per relay type		
Burden UT CT		Specified	l per relay type		
Thermal	VT	1.15VN,	3hours		IEC60255-6
withstand	ithstand CT		econd		115000200-0
	For trip	Make	110V DC: 15A, 0.5s 220V DC: 10A, 0.5s	(L/R = 0)	IEC60255-0-20
		Break	110V DC: 0.3A 220V DC: 0.15A	(L/R≦40ms)	IEC60255-0-20
Contact capacity		Break	500VA 60W	$(\cos \phi = 0.4)$ (L/R = 0.007s)	IEC60255-0-20
	For signalling and alarm	Max. current	5A		IEC60255-0-20
			380VAC/125VDC		IEC60255-0-20
Circuit of 60V or below		500VAC	, 1min.	1) Between each circuit and the exposed conductive parts, the terminals of each independent circuit being connected together	
Dielectric test	Circuit of more than 60V and 500V or below	2000VA	C, 1min.	 2) Between independent circuits, the terminals of each independent circuit being connected together 	IEC60255-5
Open contact Impulse voltage test			C, 1min. μs/50μs	 Between open contact poles 1) Between each circuit and the exposed conductive parts, the terminals of each independent circuit being connected together 2) Between independent circuits, the terminals of each independent circuit being connected together 	IEC60255-5
High-frequency disturbance	Common mode		eak, 1MHz with 200Ω mpedance for 2second	Between independent circuits, and between independent circuit and earth	IEC60255-22-1
test	Differential mode	-	eak, 1MHz with 200Ω mpedance for 2second	Across terminals of the same circuit	
Electrostatic discharge te	st	8kV 15kV		Contact discharge Air discharge	IEC60255-22-2 class 4
Radiated electromagnetic disturbance test Fast transient disturbance		38 to 871 420 to 47 2.0kV, 51			IEC60255-22-3 class 3 IEC60255-22-4
Vibration test		Refer to			IEC60255-21-1 class 1
Shock response		Refer to	class 2		IEC60255-21-2 class 2
Shock withstand		Refer to	class 1		IEC60255-21-2 class 1
Bump		Refer to	class 1		IEC60255-21-2 class 1
Enclosure protection		IP51			IEC60529

VN: Rated voltage IN: Rated current

COC Series OVER-CURRENT RELAY

Type, rating and specification

	Тур	be name	COC1-A02D1	COC1-A01D1	COC2-A01D1	COC3-A01D1				
	Phase c	urrent	1A	5A	5A	5A				
Rating	Zero-pha	ase current	-	-	-	-				
	Frequen	су		50Hz	or 60Hz					
Protecti	ve eleme	nt	51/50(1	phase)	51/50(2 phases)	51/50(3 phases)				
		Operation current	LOCK-0.1~0.8A(0.05A step)		LOCK-1~12A(0.1A step)					
	Time	Operation time multiplier		0.25-0.5~	50(0.5 step)					
	Time-	Operation time	Normal i	nverse time-delayed(3 kinds	s), Very inverse time-delayed(2 kinds),				
	delayed	characteristics	Extremely inverse time-d	elayed(3 kinds), Long inver	se time-delayed (3 kinds), Defi	nite time-delayed(1 kind)				
		Reset time characteristics	Norma	Normal inverse time-delayed (1 kind), Definite time-delayed (2 kinds)						
Setting	Instantaneous	Operation current	LOCK-1~8A(0.1A step)		LOCK-2~80A(1A step)					
	matantaneoua	Operation time		INST-0.1~(0.5s(0.1s step)					
	Output of	contact configuration	Refer to the external		reset for all contacts(Default	setting at ex-works)				
	Operatio	on indicator LED hold		All LED self-hold (Defa	ault setting at ex-works)					
	CT prim	anv			60-200-250-300-400-500-600-750-					
			1500-2000-2500-3000-4000-5000-6000-7500-8000[A]							
	Real tim	e measurement	Phase current	nt × 1 phase	Phase current $\times 2$ phases	Phase current \times 3 phases				
	Max.record		Phase current	nt × 1 phase	Phase current $\times 2$ phases	Phase current \times 3 phases				
		cord (operation value)	Phase current × 1 phase Phase current × 2 phases Phase current × 3 phases							
Display	Fault rec	cord (operation item)	Record and indicate the operated elements							
Display	Flanse	of time-delayed timer	$0{\sim}10$ (The value 0 indicates the status of input current reaching the setting value or more and							
	Liapool		the value $1\sim10$ indicate the elapse time up to operating of the time delayed element.							
	Self-dias	znosis	Normal result: On the RUN LED(green) · Status indication item No.400=No display.							
			Abnormal result: Off the RUN LED Status indication item No.400=Display defects code							
Forced	operatior		Each output contact							
Commur	nication ⊢	Direct communication port	Standa		e for Direct communication: o	option)				
		Remote communication port			LINK or MODBUS)					
			Phase current circuit: Less							
Burden	(at rating)			5W, at AC100V=Approx. 7VA	, at DC220V=Approx. 6W,				
			at AC220V=Approx. 12VA (In case of installing communication card, add 2 VA.)							
Mass			Net weight of relay unit: A							
Sample	of externa	al connection diagram	Fig.1-5~7	Fig.1-3~5	Fig.1-8	Fig.1-9				
					on the 1A rating product.Als	o, the rated current 1A				
Remarks	s		product can be made base							
	-			-	ntaneous element of 0.2A pro	duct and 1A product are				
			calculated by performing a	a multiplication 1/5 of abov	ve mentioned value.					

	Тур	e name	COC3-A03D1	COC4-A01D1	COC4-A02D1	COC4-A03D1			
	Phase cu		5A	5A	5A	5A			
Rating	Zero-pha	se current	-	1A	5A	1A			
	Frequenc				or 60Hz				
Protecti	ve elemer		51/50(3 phases)		(3 phases), 51G/50G(Zero-j	phase)			
		Operation current	LOCK-0.5~8A(0.1A step)		LOCK-1~12A(0.1A step)				
		Operation time multiplier		0.25-0.5~5	0(0.5 step)				
	Phase fault	Operation time	Normal in), Very inverse time-delayed	1(2 kinds)			
	time-delayed	characteristics			se time-delayed (3 kinds), De				
		Reset time characteristics			nd), Definite time-delayed				
	Phase fault	Operation current	11011114		DA(1A step)	2 mild)			
	instantaneous	Operation time		INST-0.1~0.					
		Operation current	-			LOCK-0.1~0.8A (0.05A step)			
		Operation time multiplier	_	LOCK 0.1 0.011 (0.0011 Step)	0.25-0.5~50(0.5 step)	LOCK 0.1 0.011(0.0011 Step)			
Setting	Earth fault			Normal invorse time de	layed (3 kinds), Very invers	so time delayed (2 kinds)			
ootting	time-delayed	Operation time	-		lelayed (3 kinds) , Very niver,				
	tino dolayou	characteristics			Definite time-delayed (1 kin				
		Reset time characteristics			e-delayed (1 kind), Definite t	, , ,			
	Earth fault	Operation current	_	LOCK-1~8A(0.1A step)	LOCK-2~80A(1A step)	LOCK-1~8A (0.1A step)			
		Operation time	_	LOCK I ON (0.171 Step)	INST-0.1~0.5s(0.1s step)	LOCK I ON (0.111 Step)			
		onic blocking			11031 0.1 0.08 (0.18 Step)	10~25%(5% step)			
		n indicator LED hold	Pofor to the ovternal	connection diagram/Auto	reset for all contacts(Defaul				
		ontact configuration	Refer to the external		ult setting at ex-works)	it setting at ex-works/			
		y (Phase current)	1*-5-10-12-12 5-15-20-25-20-/			0-800-1000-1200-1250-			
		y (Zero-phase current)	1**-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250- 1500-2000-2500-3000-4000-5000-6000-7500-8000[A]						
		y (Zero-priase current)	1300 2000 2300 3000 4000 3	000 0000 7300 0000[11]	ositive phase rating . Applied	Phase current × 3 phases,			
	Roal time	e measurement	Phase aurrent X 2 phases	Phase surrent × 2 phase	an Zara phase surrent				
	near time	measurement	Phase current × 3 phases Phase current × 3 phases, Zero-phase current Zero-phase current Percentage 2nd harmonic current con						
	Max.reco	rd	Phase current × 3 phases Phase current × 3 phases, Zero-phase current						
		ord (operation value)	Phase current \times 3 phases						
Display		ord (operation item)	Phase current × 3 phases Phase current × 3 phases, Zero-phase current Record and indicate the operated elements						
	T aut 160		Record and indicate the operated elements $0 \sim 10$ (The value 0 indicates the status of input current reaching the setting value or more and						
	Elapse o	f time-delayed timer	$0\sim10$ (The value 0 indicates the status of input current reaching the setting value or more and the value $1\sim10$ indicate the clarge time up to operating of the time delayed element						
			the value 1~10 indicate the elapse time up to operating of the time delayed element. Normal result: On the RUN LED(green) ·Status indication item No.400=No display.						
	Self-diag	nosis			indication item No.400=Disp				
Forced	operation		Abilorina result		out contact				
Torceu		Direct communication port	Not applicable	-	t(PC software for Direct co	mmunication: option)			
Commur	nication ⊢	Remote communication port	Not applicable	Standard equipment	Option (For CC-LINK)				
			Not applicable Option (For CC-LINK) Phase current circuit: Less than 0.5VA/phase, Zero phase circuit: Less than 0.5VA						
Burden	(at rating)		Phase current circuit: Less than 0.5V A/phase, Zero phase circuit: Less than 0.5V A Auxiliary power supply circuit: at DC100V=Approx. 5W, at AC100V=Approx. 7VA, at DC220V=Approx. 6W,						
Duruen	(at rating)		at AC220V=Approx. 12VA (In case of installing communication card, add 2 VA.)						
Mass			Net weight of relay unit: Approx. 2.3kg, Including case: Approx. 3.0kg						
	of externa	I connection diagram							
Sample	or externa		Fig.1-9 Fig.1-10~13 Fig.1-10~12, 14 Fig.1-10~13 The rated current 1A product can be made based on the 5A rating product.						
					taneous element of 1A proc	fuct is calculated by			
Remark	c		-	n $1/5$ of above mentioned v		act to curculated by			
nemark	3				(1A step)" for phase fault in	stantaneous element of			
			type COC4-A02D1 is also a		(111 SICP) IOI PHASE IAUR III				
			type COC4-A02D1 IS also a	avanable.					

Characteristics

It	tems	Condition	Guaranteed performance
	Phase fault time- delayed element		 Setting 1.0~2.0A for 5A rating product Setting 0.2~0.4A for 1A rating product Setting value ±10% For setting of other range Setting value ±5%
	Phase fault instantaneous element	(Common condition) *1	Setting value ±10%
Operation	Earth fault time- delayed element		 Setting 0.1~0.2A for 5A rating product Setting 0.02~0.04A for 1A rating product Setting value ±10% For setting of other range Setting value ±5%
current	Earth fault instantaneous element		Setting value ±10%
	2f/1f blocking (COC4-A03D1)	In case of half-wave rectified current superposing I_{DC} =Setting tap value×80[%] $\frac{I_{f2}}{I_{f1}} = \frac{\frac{2}{3} I_{DC}}{\sqrt{2} I_{AC} + \frac{\pi}{2} I_{DC}} \times 100$	·I _{AC} =254~330[%] (Setting value:10%)
		In case of harmonic current superposing method	 ·10% Setting value Setting value ±15% ·15~25% Setting value Setting value ±10%
	Phase fault time- delayed element		 Setting 1.0~2.0A for 5A rating product Setting 0.2~0.4A for 1A rating product Operation value×90% or more For setting of other range Operation value×95% or more
	Phase fault instantaneous element		Operation value×95% or more
Reset value	Earth fault time- delayed element	(Common condition) ×1	 Setting 0.1~0.2A for 5A rating product Setting 0.02~0.04A for 1A rating product Operation value×90% or more For setting of other range Operation value×95% or more
	Earth fault instantaneous element		Operation value×95% or more
	2f/1f blocking (COC4-A03D1)		Operation value×85% or more
	Phase fault time- delayed element	Operation setting value:Minimum, Operation time multiplier:10 Input :0→Operation setting value×300% or more	Refer to fig.1-1.2 Timing accuracy for I≥3×Current setting value, ±3.5% of reference at actual pick up
Operation time	Phase fault instantaneous element	Operation setting value:Minimum Input :0→200% of setting value	Setting value ±25ms In case of INST setting 40ms or less (except COC4-A03D1) 50ms or less (COC4-A03D1)
Operation time	Earth fault time delayed element	Operation setting value:Minimum, Operation time multiplier:10 Input :0→Operation setting value×300% or more	Refer to fig.1-1.2 Timing accuracy for I≥3×Current setting valve, ±3.5% of reference at actual pick up
	Earth fault instantaneous element	Operation setting value:Minimum Input :0→200% of setting value	Setting value ±25ms In case of INST setting 40ms or less (except COC4-A03D1) 50ms or less (COC4-A03D1)
Reset time	All elements	300% of setting value→0A	Refer to table 1-1
Overshoot characteristic	Phase fault time delayed element	Time-delayed operation value: Minimum Operation time multiplier:10 Operation characteristic:All characteristics Input current :0A→Setting value×1000%	No-operation limit time/Operation time=90% or more
	Earth fault time-delayed element	Same as the above	Same as the above

coc

Precaution for application

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx, 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact"opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power

Precaution for using

- When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.

Precaution for safety

Please refer to page2 and 3 regarding the safty information and request when placing order.

of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.

8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.

- 9. The residual connection of 3 phases CT is needed for the earth fault current elements of COC4-A01, A02, A03D1 types.
- 10. It is possible to use the COC3 and COC4 as the phase over current protection provided with two phases. However, residual connection of 2 phases can not be applied to the earth fault over current element of COC3 and COC4 types. The residual connection of 3 phases only can be applied to the earth fault over current element. In case of only two phase CTs being available for phase over current protection, ZCT or one more CT is needed for earth fault over current element.
- The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.

Operation time and Reset time characteristics

The time-delayed element have 12 kinds of operation characteristics as shown on Fig.1-1 and Fig.1-2, and 3 kinds of reset time characteristics as shown on table 1-1.

Fig.1-1 Operation time characteristics(1)

Fig.1-2 Operation time characteristics (2)

Table 1-1 Reset time characteristic

Input : Setting value $\times 300\% \rightarrow 0$

	Output contact	Reset of operation timer inside relay
0 1 : Definite time delayed. (200ms)	$2 \ 0 \ 0 \ m \ s \ \pm \ 2 \ 5 \ m \ s$	immediately
1 1 : Inverse time delayed.	$2\ 0\ 0\ m\ s\ \pm\ 2\ 5\ m\ s$	Approx.8 s (M=10)
2 1 : Definite time delayed. (50ms)	5 0 m s or less	immediately

Inverse time-delayed characteristic for reset

Following the principle of resetting an electromagnetic mechanical type induction disc, the inverse time-delayed characteristic given by the equation below is used for computing the reset time of the internal operation timer, although the output contact will be reset after a definite period of time (0.2 s). The inverse time-delayed characteristic may be useful for detecting an intermittent overload, which typically occurs in starting a motor.

$$tr = \frac{8}{1 - I^2} \times \frac{M}{10}$$
 (s)

Fig.1-3 COC1-A01D1 (Phase fault protection)

Fig.1-4 COC1-A01D1 (Solidly grounded neutral system, Earth fault protection)

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

COC

Fig.1-5 COC1-A01D1、COC1-A02D1 (Earth fault protection)

Fig.1-6 COC1-A02D1 (Earth fault protection)

Fig.1-7 COC1-A02D1 (Earth fault protection)

Fig.1-8 COC2-A01D1 (Phase fault protection)

Fig.1-9 COC3-A01D1、COC3-A03D1 (Phase fault protection)

Fig.1-10 COC4-A01D1、COC4-A02D1、COC4-A03D1

Fig.1-11 COC4-A01D1、COC4-A02D1、COC4-A03D1

Fig.1-12 COC4-A01D1、COC4-A02D1、COC4-A03D1

Fig.1-13 COC4-A01D1、COC4-A03D1

Fig.1-14 COC4-A02D1

CBV, CUB Series VOLTAGE RELAY

Type, rating and specification

	Ty	pe name	CBV2-A01D1	CBV3-A01D1	CBV4-A01D1	CUB1-A01D1
	Voltage	•	57~120V	57~120V	57~120V	57~120V
- F	Zero-phase voltage		-	110V/190V	110V/190V	-
	Frequency		50Hz or 60Hz			
I	<u> </u>		27(3 phases),	27(1 phase), 59(1 phase),	27(3 phases),	27(3 phases),
Protectiv	ve eleme	ent	59(3 phases)	64(Zero-phase)	64(Zero-phase)×2	59(3 phases), 47
	Under	Operation voltage		LOCK-10~11	-	
	voltage	Operation time		INST-0.1~10		
-	Over	Operation voltage	LOCK-60~155V(1V step) -		LOCK-60~155V(1V step)	
	voltage	Operation time	INST-0.1~1	0s(0.1s step)	-	INST-0.1~10s(0.1s step)
	Earth fault	Operation voltage	-	LOCK-5~60	V(1V step)	-
	over voltage	Operation time	-	INST-0.1~10		-
-	Reverse	Changeover Lock/Use		-		LOCK - USE
	phase	Operation time		-		0.1~10s(0.1s step)
Setting	Open	Operation voltage		-		LOCK - 10~50V(1V step)
	phase	Operation time		-		0.1~10s(0.1s step)
-	Output	contact configuration	Refer to the external	connection diagram/Auto r	eset for all contacts(Defaul	t setting at ex-works)
	Operati	on indicator LED hold	All LED self-hold(Default setting at ex-works)			
	VT primary		100~999V(1V step),1000~9990V(10V step),10.0k~99.9kV(0.1kV step),100k~300kV(1kV step)			
	VT secondary		$100/\sqrt{3}\cdot110/\sqrt{3}\cdot115/\sqrt{3}\cdot120/\sqrt{3}\cdot100\cdot110\cdot115\cdot120V$			
	EVT primary		100~999V(1V step),1000~9990V(10V step),			
			-	10.0k~99.9kV(0.1kV step)),100k~300kV(1kV step)	
	EVT tertiary		-	100-110-115-120-100√3-110√3-115√3-120√3V		-
	Pool tin	ne measurement	Line velte as V2	Line voltage,	Line voltage×3,	Line voltage×3
	near tin	le measurement	Line voltage×3	Zero-phase voltage	Zero-phase voltage	Line voitage~5
	Max.rec	ord	Line voltage×3	Line voltage,	Line voltage×3,	Line voltage×3
	Wax.rec	Joru		Zero-phase voltage	Zero-phase voltage	Line voitage~5
Display	Foult ro	cord (operation value)	Line voltage×3	Line voltage,	Line voltage×3,	Line voltage×3,
	i auti ie		Line voitage×5	Zero-phase voltage	Zero-phase voltage	Negative sequence voltage
	Fault re	cord (operation item)		Record and indicate the	*	
	Self-dia	gnosis	Normal result	:On the RUN LED (green)	Status indication item No.4	00=No display.
		510010	Abnormal result:Off the RUN LED·Status indication item No.400=Display defects code			
Forced	operatio	n		Each outp		1
Commun	vication	Direct communication port		t(PC software for Direct comm		Not applicable
Connun		Remote communication port	- 1	tion (For CC-LINK or MODBU		Not applicable
				l VA, Zero-phase voltage cir		
Burden	(at rating	g)		ircuit:at DC100V=Approx. 5		
				at AC220V=Approx. 12VA	-	unication card, add 2 VA.)
Mass				pprox. 2.3kg, Including case		1
Sample	of extern	al connection diagram	Fig.2-1	Fig.2-2	Fig.2-3	Fig.2-4

CBV CUB

Characteristics

Items		Condition	Guaranteed performance	
	Under voltage element			
	Over voltage element	(Common condition) *1	Setting value±5%	
	Earth fault over voltage element			
Operation value	Reverse phase element	Impress 3 phases negative sequence voltage	Operates from about 1V or more	
		Impress 3 phases negative sequence voltage	Setting value±5%	
	Open phase element	However, in case of applying single phase power source, impress the voltage of setting value× $\sqrt{3}$	However, minimum permissible error is 1V	
	Under voltage element		Operation value×105% or less	
	Over voltage element			
Reset value	Earth fault over voltage element	(Common condition) *1	Operation value×95% or more	
	Reverse phase element		Reset from about 1V or more	
	Open phase element		Operation value×95% or more	
	Under voltage element	Rated voltage→setting value×70%	·Setting INST 40ms or less	
	Over voltage element	0V→setting value×120%	(50ms only for Over voltage element)	
		5	•Setting 0.4s or less:setting value=25ms	
Operation time	Earth fault over voltage element	0V→setting value×150%	•Setting 0.5s or more setting value ±5%	
operation time	Reverse phase element	ase element $0V \rightarrow 3$ phases negative sequence voltage	•Setting 0.4s or less:setting value±25ms	
		ov opinases negative sequence voltage	•Setting 0.5s or more:setting value±5%	
	Open phase element	Do it by single phase power source	•Setting 0.4s or less:setting value=25ms	
	open phase clement	$0V \rightarrow \text{setting value} \times \sqrt{3} \times 120\%$	•Setting 0.5s or more setting value ±5%	
	Under voltage element	Setting value×70%→Rated voltage	·60ms or less(CBV2, 3, 4-A01D1)	
	Over voltage element	Setting value×120%→0V	·200ms±25ms(CUB1-A01D1)	
Reset time	Earth fault over voltage element	Setting value×150%→0V	200113-20115(CODI 1101D1)	
neset time	Reverse phase element	3 phases negative sequence voltage \rightarrow 0V		
	Open phase element	Do it by single phase power source. Setting value× $\sqrt{3}$ ×120% \rightarrow 0V	200ms±25ms	

₩1 Common condition:(1) Rating Frequency (2) Ambient temperature:20°C (3) Auxiliary power supply: Rating voltage

Please refer to the instruction manual regarding the details on this specification. ₩2

Precaution for application

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the accurate duration of power supply for a second seco that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized (" break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to

Precaution for using

- 1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position) 2. To set as [LOCK] position means to set the element out of use.
- The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.

Precaution for safety

Please refer to page2 and 3 regarding the safty information and request when placing order.

output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability. 8. Effects of external surge

- Some type of surge with a certain condition may inversely affect the
- Make a wiring between EVT "a" terminal and "A-06" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the connection between "f" terminal of EVT and earth terminal. 9
- The EVT tertiary voltage ratio should be set as output nominal voltage between terminal "a" and "f" of EVT. Example: 190/3⇒190V, 110/3⇒110V
 The UV test function will be used for single phase test for under voltage element. (UV test LED (yellow color) will turn on during selecting UV TEST). UV TEST should be set as OFF in the apprendition. operational condition.

Sample of external connection diagram

Fig.2-1 CBV2-A01D1 (Input line voltage)

Fig.2-2 CBV3-A01D1

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

22

Fig.2-3 CBV4-A01D1

Fig.2-4 CUB1-A01D1

CFP Series FEEDER PROTECTION RELAY CDG Series EARTH FAULT DIRECTIONAL RELAY

Type, rating and specification

	Туре	name	CFP1-A01D1	CFP1-A02D1	CDG1-A01D1
ŀ	Phase cur		5A	5A	-
Rating	Zero-phas		2A	2A	1A
	Zero-phas	e voltage	110/190V	110/190V	100~208V
	Frequency			50Hz or 60Hz	
	ive eleme		51/50(2 phases), 67G	51/50(2 phases), 67G	67G
Combi instrun	nent	Zero-phase current	Commercially available ZCT (Confor		-
transfo	ormer	Zero-phase voltage	Commercially available EVT		Commercially available EVT(Conformity with JEC1201
		Operation current	LOCK-1~12A		-
	Time-	Operation time multiplier	0.25-0.5~50	-	-
	delayed	Operation time	Normal inverse time-delayed (3 kinds),		
		characteristics	Extremely inverse tim		-
		Depart time, above stavistics	Long inverse time-delayed (3 kinds		
-		Reset time characteristics	Normal inverse time-delayed (1 kin		-
	Instantaneous	Operation current	LOCK-2~80	*	-
-		Operation time 10 operation current	INST-0.1~0.5	*	-
		V0 operation voltage	1~10mA(ZCT secondary current) (0.5mA step) LOCK-5~60V(EVT		0.05~1.0A (0.05A step) LOCK-5~60V (1S step)
		Operation time	INST-0.1~10s		0.1~10s (0.1s step)
		operation time	Lead 0~90		Lead 0~30°(5°step)
				(Leau 0~30 (3 step)
			Vo		, V ₀
	Earth fault		I ₀ Lead - Maximum	—► Lag	¹⁰ Maximum sensitive angle
	directional	Maximum	sensitive angle		Schsitive angle
		sensitive angle			
0		Scholine angle	Operation area		Operation area
Setting				Non-operation area	11111111111111111111111111111111111111
					15°
	Output contact configuration		Refer to the external connection	n diagram/Auto reset for all contact	ts(Default setting at ex-works)
	Operation indicator LED hold			ED self-hold (Default setting at ex-we	
	CT primary (Phase current)		1**-5-10-12-12.5-15-20-25-30-40-50-60-7		
			1250-1500-2000-2500-3000-4000-5000-		
					100~999V(1V step),
			100~999V(1V step),1000~9990V(10V step),		1000~9990V(10V step).
	EVT prima		10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step)		1000 3330V (10V Step),
		ary	10.0k~99.9kV(0.1kV step)	, 100k~300kV(1kV step)	$10.0k \sim 99.9kV(0.1kV \text{ step}),$
		ary	$10.0k \sim 99.9kV(0.1kV \text{ step})$, 100k~300kV(1kV step)	
-		- 			10.0k~99.9kV(0.1kV step),
-	EVT tertia	- 	10.0k~99.9kV (0.1kV step) 100-110-115-120-100√3-1		10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step)
-		- 		110√3-115√3-120√3V	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3
-	ZCT error	ry correction on/off	100-110-115-120-100√3-1	- 110√3-115√3-120√3V -ON	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3
-	ZCT error	ry	100-110-115-120-100√3-1 OFF-		10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3
-	ZCT error ZCT error	ry correction on/off	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is	-ON within range of 200/ transforming ratio 200/15mA can be corrected.	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V
-	ZCT error ZCT error	ry correction on/off adjustment measurement	100-110-115-120-100√ 3-1 OFF- When the actual measured transforming ratio is v 1.5~4.1mA, the deviation from the ZCT nominal	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas
-	ZCT error ZCT error Real time Max.record	ry correction on/off adjustment measurement	100-110-115-120-100√ 3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Zero-	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase
-	ZCT error ZCT error Real time Max.record Fault reco	ry correction on/off adjustment measurement d	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase Phase current×2, Zero-phase current, Ze Reco	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/1.5mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated eleme	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase
- Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco	ry correction on/off adjustment measurement d rd (operation value) rd (operation item)	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Zero-phase Phase current×2, Zero-phase current, Zero-phase Phase current×2, Zero-phase current, Zero-phase Phase current×2, Zero-phase current, Ze	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco	ry correction on/off adjustment measurement d rd (operation value)	100-110-115-120-100√3-1 OFF When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Recc 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.)	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase nts
Display -	ZCT error ZCT error Real time Max.record Fault reco Fault reco Elapse of	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Recc 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the R	ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated elemen urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication in	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase rts - tem No.400=No display.
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Recc 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the R	ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication in CUN LED · Status indication item No.	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas nts - tem No.400=No display.
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up t Normal result:On the RI Abnormal result:Off the R	ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication in CUN LED · Status indication item No. Each output contact	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase nts - tem No.400=No display. 400=Display defects code
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation ication	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is v 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up t Normal result:On the RI Abnormal result:Off the R Standard equipment (PC software for	I10√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage. Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication in tun LED · Status indication item No. Each output contact for Direct communication:Option)	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase nts - tem No.400=No display. 400=Display defects code Not applicable
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation ication	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze O~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up t Normal result:On the RU Abnormal result:Off the R Standard equipment (PC software for Option (For CC-LI)	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage. Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication item No. Each output contact for Direct communication:Option) NK or MODBUS)	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase nts - tem No.400=No display. 400=Display defects code Not applicable Not applicable
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation ication	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is v 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze O~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up t Normal result:On the RU Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIM Phase current circuit:Less than 0.5V	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication item No. Each output contact for Direct communication:Option.) NK or MODBUS) A, Zero-phase current circuit:Less this	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas nts - tem No.400=No display. 400=Display defects code Not applicable Not applicable
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation Dire Rem	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is v 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze O~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the RU Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIN Phase current circuit:Less than 0.5V/ Zero-phase voltage circuit:Less than 0.5V/	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication in 2UN LED · Status indication item No. Each output contact for Direct communication:Option.) NK or MODBUS) A, Zero-phase current circuit:Less tha 0.15VA,	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phase tem No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω,
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation ication	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the RU Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIR Phase current circuit:Less than 0.5V/ Zero-phase voltage circuit:Less than 0.5V/	 110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication if 20N LED·Status indication item No. Each output contact for Direct communication:Option.) NK or MODBUS) A, Zero-phase current circuit:Less the 0.15VA, C100V=Approx. 5W, at AC100V=Approx. 	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase tem No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω, prox. 7VA, at DC220V=Approx. 6W,
Display -	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation Dire Rem	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the R Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIN Phase current circuit:Less than 0.5V Zero-phase voltage circuit:Less than 0.5V Zero-phase voltage circuit:Less than 0.5V Auxiliary power supply circuit:at DC at AC220V=Approx. 12VA (In case of	 110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) ·Status indication in RUN LED·Status indication item No. Each output contact for Direct communication:Option) NK or MODBUS) A, Zero-phase current circuit:Less the 0.15VA, C100V=Approx. 5W, at AC100V=App of installing communication card, add 	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase tem No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω, prox. 7VA, at DC220V=Approx. 6W,
Display Forced of Communi	ZCT error ZCT error Real time Max.recor Fault reco Fault reco Elapse of Self-diagn operation Dire Rem	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the RU Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIR Phase current circuit:Less than 0.5V/ Zero-phase voltage circuit:Less than 0.5V/	 110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) ·Status indication in RUN LED·Status indication item No. Each output contact for Direct communication:Option) NK or MODBUS) A, Zero-phase current circuit:Less the 0.15VA, C100V=Approx. 5W, at AC100V=App of installing communication card, add 	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas tem No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω, prox. 7VA, at DC220V=Approx. 6W, 2 VA.)
Display Forced of Communi Burden of Mass	ZCT error ZCT error Real time Max.record Fault reco Fault reco fa	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port	100-110-115-120-100√3-1 OFF When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the RI Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIN Phase current circuit:Less than 0.5Vz Zero-phase voltage circuit:Less than 0.5Vz	 110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) • Status indication in CUN LED • Status indication item No. Each output contact for Direct communication:Option) NK or MODBUS) A, Zero-phase current circuit:Less the 0.15VA, C100V=Approx. 5W, at AC100V=App of installing communication card, add kg, Including case:Approx. 3.0kg 3-1 	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas tem No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω, prox. 7VA, at DC220V=Approx. 6W,
Display Forced of Communi Burden of Mass	ZCT error ZCT error Real time Max.record Fault reco Fault reco fa	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port note communication port	100-110-115-120-100√3-1 OFF- When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze O~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the RI Abnormal result:Off the R Option (For CC-LIN Phase current circuit:Less than 0.5Vz Zero-phase voltage circuit:Less than Auxiliary power supply circuit:at DC at AC220V=Approx. 12VA (In case o Net weight of relay unit:Approx. 2.3 Fig. The rated current 1 A product can be made	 110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) • Status indication in RUN LED • Status indication item No. Each output contact for Direct communication:Option) NK or MODBUS) A, Zero-phase current circuit:Less the 0.15VA, C100V=Approx. 5W, at AC100V=App of installing communication card, add kg, Including case:Approx. 3.0kg 3-1 based on the 5A rating product. 	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas Zero phase current, Zero phase voltage, Phas ents tem No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω, prox. 7VA, at DC220V=Approx. 6W, 2 VA.)
Display Forced of Communi Burden of Mass	ZCT error ZCT error Real time Max.record Fault reco Fault reco Elapse of Self-diagn operation ication Dire Rem (at rating) of external	ry correction on/off adjustment measurement d rd (operation value) rd (operation item) time-delayed timer osis ct communication port note communication port	100-110-115-120-100√3-1 OFF When the actual measured transforming ratio is 1.5~4.1mA, the deviation from the ZCT nominal Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze Phase current×2, Zero-phase current, Ze 0~10(The value 0 indicates the status of input c the value 1~10 indicate the elapse time up Normal result:On the RI Abnormal result:Off the R Standard equipment (PC software f Option (For CC-LIN Phase current circuit:Less than 0.5Vz Zero-phase voltage circuit:Less than 0.5Vz	110√3-115√3-120√3V ON within range of 200/ transforming ratio 200/15mA can be corrected. ero-phase voltage, Characteristic angle current, Zero-phase voltage ero-phase voltage, Characteristic angle ord and indicate the operated element urrent reaching the setting value or more and to operating of the time delayed element.) UN LED (green) · Status indication in <u>RUN LED · Status indication item No.</u> Each output contact for Direct communication:Option.) NK or MODBUS) A, Zero-phase current circuit:Less the 0.15VA, 2100V=Approx. 5W, at AC100V=App of installing communication card, add kg, Including case:Approx. 3.0kg 3-1 based on the 5A rating product. ad instantaneous element of	10.0k~99.9kV(0.1kV step), 100k~300kV(1kV step) 100-110-115-120-100√3 -100√3-115√3-120√3V - Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase Zero phase current, Zero phase voltage, Phase term No.400=No display. 400=Display defects code Not applicable Not applicable an 10Ω, prox. 7VA, at DC220V=Approx. 6W, 2 VA.)

*Please refer to the instruction manual regarding the details on this specification.

Characteristics

Items		ns	Condition	Guaranteed performance
	Phase delay	e fault time- ed element ult instantaneous element	(Common condition) *	•Setting 1.0~2.0A for 5A rating product:Setting value ±10% Setting 0.2~0.4A for 1A rating product:Setting value ±10% •For setting of other range:Setting value ±5% Setting value ±10%
		Zero-phase current (CFP1-A01/A02D1)	Setting: Zero phase voltage=minimum Input: Zero phase voltage=Rating voltage×30%, Phase=Maximum sensitive angle	 Setting 1.0 or 1.5mA: Setting value±10% For setting of other range:Setting value ±5%
Operation value	t Il elemeni	Zero-phase current (CDG1-A01D1)	Input: Zero phase voltage=rating voltage Phase: Maximum sensitive angle	Setting 0.05A: Setting value ±10% For setting other range: Setting value ±5%
	Earth fault directional element	Zero-phase voltage (CFP1-A01/A02D1)	Setting: Zero phase current=minimum Input: Zero phase voltage=Setting valve×1000%, Phase=Maximum sensitive angle	Setting value ±5%
		Zero-phase voltage (CDG1-A01D1)	Input: Setting value×200% Phase: Maximum sensitive angle	Setting value ±5%
	Phase fault time- delayed element		(Common condition) ※	 Setting 1.0~2.0A for 5A rating product: Operation value×90% or more Setting 0.2~0.4A for 1A rating product: Operation value×90% or more For setting of other range: Operation value×95% or more
	Phase fai	ult instantaneous element		Operation value×95% or more
Reset value	Earth fault directional element	Zero-phase current (CFP1-A01/A02D1)	Setting: Zero phase voltage=minimum Input: Zero phase voltage=Rating voltage×30%, Phase=Maximum sensitive angle	Operation value×90% or more
		Zero-phase current (CDG1-A01D1)	Input: Zero phase voltage=rating voltage Phase: Maximum sensitive angle	Setting 0.05A: Operation value×90% or more For setting other range: Operation value×95% or more
		Zero-phase voltage (CFP1-A01/A02D1)	Setting: Zero phase current=minimum Input: Zero phase voltage=Setting valve×1000%, Phase=Maximum sensitive angle	Operation value×90% or more
		Zero-phase voltage (CDG1-A01D1)	Input: Setting value×200% Phase: Maximum sensitive angle	Operation value×95% or more
	Phase fault time- delayed element		Operation setting value: Minimum Operation time multiplier: 10 Input:0→Operation setting value×300,500,1000%	Refer to fig.1-1.2 Timing accuracy for I≥3×Current setting value, ±3.5% of reference at actual pick up
	Phase fault instantaneous element		Operation setting value:Minimum value Input:0→200% of setting value	Setting value±25ms In case of INST setting 40ms or less
Operation time	Earth fault directional element (CFP1-A01/A02D1)		Setting: Zero phase current, voltage=minimum Input: Zero phase current=0→Setting value×1000%, Zero phase voltage=0→Rating voltage×30% Phase=Maximum sensitive angle	 ·INST Setting 80ms or less ·0.1~0.4s Setting: Setting value±25ms ·0.5~1.0s Setting: Setting value±5%
	Earth fault Directional element (CDG1-A01D1)		Input: Zero phase current and voltage to be changed quickly at the same time. Zero phase current: 0A→Setting value×300% Zero phase voltage: 0V→Rating voltage Phase: Maximum sensitive angle	0.1~0.4s setting: Setting value±25ms 0.5s or more setting: Setting value±5%
		ult time-delayed element ult instantaneous element	300% of setting value→0A	Refer to COC series table 1-1
Reset time		fault ional element 1-A01/A02D1)	Setting: Zero phase current, voltage=minimum Input: Zero phase current=Setting value×1000%→0, Zero phase voltage=Rating voltage×30%→0 Phase=Maximum sensitive angle	200ms±25ms
	Earth fault Directional element (CDG1-A01D1)		Input: Zero phase current and voltage to be changed quickly at the same time. Zero phase current: Setting value×300%→0A Zero phase voltage: Rating voltage→0V Phase: Maximum sensitive angle	200ms±25ms

17. Type CDG1 is applicable for earth fault directional relay in the resistance grounded neutral system. Refer to the Fig 3-2 and Fig. 3-3 on the combination with the Overcurrent relay.
**Common condition:(1)Rating Frequency (2) Ambient temperature:20°C (3) Auxiliary power supply:Rating voltage

CFP CDG

Characteristics

	Items	Condition	Guaranteed performance
		Time-delayed operation value: Minimum	
Overshoot	Phase fault time-	Operation time multiplier: 10	No operation limit time (Operation time=00% or more
characteristic	delayed element	Operation characteristic: All characteristics	No-operation limit time/Operation time=90% or more
		Input current:0A→Setting value×1000%	
	Earth fault	Setting: Zero phase current, voltage=minimum	
	directional element	Input: Zero phase current=Setting value×1000%,	Maximum sensitive angle±5°
Phase	(CFP1-A01/A02D1)	Zero phase voltage=Rating voltage×30%	
characteristic	Earth fault	Operation time: Minimum	
	Directional element	Input: Zero phase current=Setting value×1000%	Setting value±5°
	(CDG1-A01D1)	Zero phase voltage=30V	

17. Type CDG1 is applicable for earth fault directional relay in the resistance grounded neutral system. Refer to the Fig 3-2 and Fig. 3-3 on the combination with the Overcurrent relay.
**Common condition:(1)Rating Frequency (2) Ambient temperature:20°C (3) Auxiliary power supply:Rating voltage

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized (" break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

6. CC-Link communication circuit

Please include the communication card into your purchasing order in

Precaution for using

- 1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.
- The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
- 4. The EVT tertiary voltage ratio should be set as output nominal voltage between terminal "a" and "f" of EVT. Example: 190/3⇒190V, 110/3⇒110V

Precaution for safety

Please refer to page2 and 3 regarding the safty information and request when placing order.

case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d: Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

- 7. Improvement of reliability of protection system
- For the important facilities, multiplex system such as dual should be provided to improve reliability.
- 8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.

- 9. Make a wiring between EVT "a" terminal and "A-06" terminal of relay and EVT "f" terminal and "A-05" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the connection between "f" terminal of EVT and earth terminal.
- 10. The test terminal "kt" and "lt" of ZCT should be no wiring in the operational condition of relay as the test terminal may be allowed to use only for the artificial fault current injection test. (Relay will not operate with these terminals short-circuited.)
- 11. To prevent the influence from noise or surge, a shielded 2 cores (size is $0.75 \sim 1 \text{mm}^2$) cable should be used for the connection between ZCT or EVT and relay, and shield wire should be connected to the earth terminal of the relay or the earth terminal located inside of the switchboard. (Grounding resistance should be less than 100 ohm). Further more, the go and return burden of the cable should be less than 5 ohms which is almost equal to 100m distance in case of core size 0.75mm².
- 12. The power cable should be applied for the primary conductor of ZCT. The earth of shield wire of cables should be done according to the regulation.
- 13. The wiring between ZCT, EVT and relay should be according to the connection diagram of each relay with a precaution on the polarity.
- 14. A commercially available ZCT conformity with JEC1201 (type BZ in case of MITSUBISHI ELECTRIC CORPORATION) may be applicable for the type CFP1-A01D1 and CFP1-A02D1.
- 15. No wiring to the terminal concerning to the elements without use for protection is acceptable. Also, regarding the setting of protection elements without use, to set the LOCK position is recommended. Please note that the setting LOCK of 67G element means the loss of all function of 67G which includes the 51G element, 64 element and fault direction element.
- 16. Only one number of ZCT can be connected to one number of the type CFP1. Correct operation of the relay can not be guaranteed against two or more numbers of ZCT to connect to one number of the type CFP1.
- 5. The UV test function will be used for single phase test for under voltage element. (UV test LED (yellow color) will turn on during selecting UV TEST). UV TEST should be set as OFF in the operational condition.
- 6. The function of the ZCT error correction installed in the relay is applied for the purpose of correcting ZCT transformation error, so that improving the composite characteristics is achieved. The ZCT error correction range is 200mA/1.5mA~4.1mA(±0~+2.6mA) for the nominal transformation ratio 200mA/1.5mA specified with JEC-1201.

Sample of external connection diagram

Fig.3-2 CDG1-A01D1

Fig.3-3 CDG1-A01D1

CAC Series BIASED DIFFERENTIAL RELAY FOR TRANSFORMER PROTECTION

Type, rating and specification

	Type name	CAC1-A01D2	
Rating	Phase current	5A(Allowable continuous current: 8.7A)	
naung	Frequency	50Hz or 60Hz	
Protective element		87T for 2 windings transformer (3 phases)	
	Tr primary side CT matching tap IT1	2.2~12.5A (0.1A step)	
	Tr secondary side CT matching tap IT2	2.2~12.5A (0.1A step)	
	Operation Current	IT×(LOCK-20-30-40%)	
Setting	Bias	20-30-40%	
Setting	2nd harmonic blocking	10~25% (5% step)	
	Differential overcurrent multiplier	$I_{T} \times 5 \sim 12$ times (1time step)	
	Output contact configuration	Refer to the external connection diagram/Auto reset for all contacts(Default setting at ex-works)	
	Operation indicator LED hold	All LED self-hold (Default setting at ex-works)	
	Real time measurement	Restraining current, Differential current, Percentage of 2nd harmonic current content	
	Max.record	Restraining current, Differential current	
Display	Fault record (operation value)	Restraining current, Differential current, Percentage of 2nd harmonic current content	
Display	Fault record (operation item)	Record and indicate the operated elements.	
	Self-diagnosis	Normal result:On the RUN LED(green) · Status indication item No.400=No display.	
	Sell-diagnosis	Abnormal result:Off the RUN LED Status indication item No.400=Display defects code	
Forced op	peration	Each output contact	
Communicat	Direct communication port	Standard equipment (PC software for Direct communication:Option)	
Communica	Remote communication port	Option (For CC-LINK or MODBUS)	
		Phase current circuit:Less than 0.5VA/phase	
Burden (a	at rating)	Auxiliary power supply circuit:at DC100V=Approx. 7W, at AC100V=Approx. 25VA, at DC220V=Approx. 9W,	
		at AC220V=Approx. 30VA (In case of installing communication card, add 2 VA.)	
Mass		Net weight of relay unit:Approx. 3.8kg, Including case:Approx. 5.0kg	
Sample of	f external connection diagram	Fig.4-1~5	
Remarks		Possible to make 1A rating. The value of matching tap of tronsformer primary side and secondary side for $1A$ rating product is calculated by performing a multiplications $1/5$ of above mentioned value.	

Characteristics

	Items	Condition	Guaranteed performance	
Operation	Biased differential element	Iop=IT×Operation current(%)	Within Iop±5%	
current Differential overcurrent element Iop=IT×Differential overcurrent		Iop=IT×Differential overcurrent	Within 10p=576	
Reset	Biased differential element	Iop=IT×Operation current(%)	OE0/ an annual fragmenting annual	
value	Differential overcurrent element	Iop=IT×Differential overcurrent	95% or more of operations current	
Operation	Biased differential element	0[A]→Iop×300%	50ms or less	
time	Differential overcurrent element	0[A]→Iop×300%	40ms or less	
Reset	Biased differential element	Iop×300%→0[A]	within 200±25ms	
time	Differential overcurrent element	Iop×300%→0[A]	within 200±25ins	
		Matching tap IT1 = IT2 = IT		
		At minimum matching tap setting I_1 I_2	τ=20% setting: 15~25% τ=30% setting: 25~35% τ=40% setting: 35~45%	
Biased diffe	erential characteristic	$I_2 = I_T \times 200\%$		
		$Bias = \frac{CI}{Whichever is greater} CI Tr CI$		
		Internal fault side ↑ I⊥	Both lead and lag operation phase angle between I1 and I2 are shown below table.	
		Matching tap $I_{T1} = I_{T2} = I_T$	Nominal bias ratio θ	
Phase chara	acteristic	At minimum matching tap setting	20[%] 168.5±5°	
		$ I_1 = I_2 = I_T \times 200\%$	30[%] 162.7±5°	
		7 ↓1₂ L Through fault side	40[%] 156.9±5°	
		Matching tap $I_{T1} = I_{T2} = I_T$		
		At minimum matching tap setting	IAC=254~330[%] (setting:10%)	
		$\begin{bmatrix} \text{Icc}=80\% \text{ of setting value} \\ \left(\begin{array}{c} \text{Icc}=\text{Half wave rectifier current} \\ \text{Iac}=\text{Sine wave current} \\ \end{bmatrix} \begin{bmatrix} \underline{If^2} \\ \overline{If^4} \end{bmatrix} = \frac{2}{\sqrt{2} \text{ Iac} + \frac{\pi}{2} \text{ Ibc}} \times 100 \end{bmatrix}$	$I_{AC} = 137 \sim 188[\%]$ (setting:15%)	
2nd harmon	ic blocking	\int Inc=Half wave rectifier current $\int \frac{\mathrm{In}^2}{\mathrm{In}^2} = \frac{3}{3} \frac{\mathrm{In}^2}{\mathrm{In}^2} \times 100$	$I_{AC}=81 \sim 110[\%]$ (setting: 20%)	
characterist	•	$\begin{bmatrix} I_{\text{Id}} & \text{Matrix} & \text{Id} & $	$I_{AC}=47 \sim 77[\%]$ (setting:25%)	
		Percentage of 2nd harmonic current content		
		*		
		In case of the method of harmonic superposing,	2nd harmonic blocking ratio: Setting value ±10%	
		If1 is equal to 300% of the matching tap value.		

*Please refer to the instruction manual regarding the details on this specification.

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card

Precaution for using

- When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.
- 3. The setting item of "DIF test (515)" should be set "ON" when carry

Please refer to page2 and 3 regarding the safty information and request when placing order.

necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.

8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.

- The external wiring should be done according to Connection diagram. There is some possibility to detect differential current in case of wrong wiring.
- 10. The wiring of CT circuit is depended on the connection of the transformer winding (ydl, ydl1, dy1, dy11, etc). Therefore, special attention on this regard is requested.
- 11. Regarding the CT sircuits on the transformer primary side, the incoming wiring should be connected to lower number of terminals and the outgoing wiring of them should be connected to higher number of terminals. Also, regarding the CT circuits on the transformer secondary side, the incoming wiring should be connected to higher number of terminals and outgoing wiring of them should be connected to lower number of terminals.
- 12. When the differential current check (defect code 0017) is detected, careful checking of wiring connection and setting value are requested as there are some possibilities to have some mistake of the wiring or improper setting of matching tap.
- 13. At the time of site testing or commissioning, please confirm if external wiring of CT circuits is correct or not by using the CT polarity check function(item number 906) of relay.
- 14. If the 2nd harmonic blocking elements (the digit number 7 to 9) are set to "ON" for a contact arrangement, the contact will make when the 2nd harmonic blocking element operate. Therefore, set them to "OFF" for the trip contact arrangement to prevent from incorrect operation. (Example of ON setting: The CB of primary side of transformer is closed and then, trip contact will make by the operation of the 2nd harmonic blocking element. Finally, CB will be tripped.) Please note that in the default setting at the time of ex-work, the 2nd harmonic blocking elements are not set to "ON" for contact arrangement on the trip circuit.
- 15. Another relays and load such as OCR or Aux-CT should not be connected in the same CT secondary circuits of differential relay for the primary and secondary of transformer because differential current will be caused due to the unbalance of the burden between both circuits.

out characteristic test. Because this relay has continuously monitoring function of differential current, so that the monitoring abnormality (0017) will occur when current applied on. The DIF test LED (yellow) will become on when setting. And do not forget to set the DIF test (515) "OFF" after finishing the characteristic test.

31

Sample of external connection diagram

Fig.4-1 CAC1-A01D2[Transformer \triangle - \triangle (Dd0)]

Fig.4-2 CAC1-A01D2[Transformer Y-(Yd1)]

Fig.4-3 CAC1-A01D2[Transformer Y- \triangle (Yd11)]

Fig.4-4 CAC1-A01D2[Transformer \triangle -Y(Dy1)]

Fig.4-5 CAC1-A01D2(Transformer \triangle -Y(Dy11))

CMP Series MOTOR PROTECTION RELAY

Type, rating and specification

Type name		name	CMP1-A01D1	CMP1-A01D2	
	Phase curr			Ā	
	Zero-phase			2A	
	Zero-phase	voltage	100~	-208V	
80				DC110V (Permissible variable range $77 \sim 143$ V) or	
Rating	Dhoto oqual			DC24V(Permissible variable range DC19.2V~31.2V)	
ш	(D2 type o	er input voltage	-	Input voltage 24V is applicable only for the case that auxiliary power supply voltage is 24V.	
		liy/		In any other cases, only DC110V is applicable as for photo	
				coupler input voltage.	
	Frequency		50Hz or 60Hz		
	Protective element			6, 37(2 phases), 66, 67G	
inst	Combined Zero-phase current			ormity with JEC-1201 200/1.5mA)	
trar	nsformer	Zero-phase voltage		C (Conformity with JEC-1201)	
	Overcurrent	I current (IM) Operation current		00A(1A step)	
	instantaneous	Operation time		0s(0.1s step)	
		Operation current		~300% (10% step)	
		Operation time (Koct)	4-5-6-8-10-12-16-20-24-32-40-4	8-64-80-96-112-128-160-200-240	
	Overcurrent	Operation time	K_{oct} (K _{oct} :Operation time setting)		
	time-delayed	Operation time characteristics	$T_{oct}{=}3{\times} \ \frac{K_{oct}}{I}{=}s \left(\begin{matrix} K_{oct}{}^{*}Operation \ time \ setting \\ I{:}Phase \ current(unit: multiple \ to \ IM) \end{matrix} \right)$		
		equation	The selected K _{oct} valve is equal to the operating time of t	ime-delayed element in case of I=3.	
	Negative	Operation current		imes(0.5 times step)	
	sequence	Operation time		0.1s step)	
	ero.canont	Operation current		~125% (5% step)	
		Operation time (K _{TH})		-80-96-112-128-160-200-240	
			Operation time characteristics for HOT	Operation time setting K:Negative-sequence heat multiplying factor	
			$(T_2 + T_2 T_2) = (T_2 + T_2 T_2)$	sitive sequence current of present input (unit: multiple to IM)	
		Operation time	$I_1^2 + K \cdot I_2^2 - I$ I I2:Net	egative sequence current of present input(unit: multiple to IM)	
	Overload	characteristics		ositive sequence current before overload (unit: multiple to IM)	
	Oventiad	equation	×	egative sequence current before overload (unit: multiple to IM)	
			 Operation time for COLD characteristics, in the above equatio Selected value of K_{TH}, when input is provided so as to meet the 	n, becomes equal to case conditioned as follows : $(I_{P1}^2+K \cdot I_{P2}^2)=0$	
ъл			becomes equal to the time (sec) that will be taken until operation		
Setting		Negative-sequence heat	1~10	(1 step)	
s		multiplying factor(K)		-	
		Changeover characteristic		1(HOT)	
	Undercurrent	Operation current Operation time		0A(0.1A step) (1s step)	
	Limit the	Number of start-up		-5(1 step)	
	number of	Start-up time	2~120s	(1s step)	
	start-up times	Countdown rate	$2\sim 250 s/h (0.5 s/h step)$		
		lo Operation current		ry current) (0.5mA step)	
	Earth fault directional	Vo Operation voltage Operation time		0V(1V step) 0c(0 to step)	
	anootionai	Maximum sensitive angle	<u>INST-0.1~10s(0.1s step)</u> Lead 0°~90°(5°step)		
	Output conta	ct configuration	Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)		
		dicator LED hold		ult setting at ex-works)	
	CT primary	Phase current)	1**-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-2		
	J. princily (indee ourient)	1500-2000-2500-3000-4000-5000-6000-7500-8000[A] ** App		
	EVT prima	У		000~9990V (10V step), b),100k~300kV (1kV step)	
	EVT tertiar	V		-110√3-115√3-120√3V	
		orrection on/off		F-ON	
	ZCT error a	diustment	When the actual measured transforming	g ratio is within range of 200/1.5~4.1mA,	
		-		sforming ratio 200/1.5mA can be corrected.	
		neasurement		tage, Characteristic angle, Negative sequence current	
ay	Max.record	operation value)		e current, Zero-phase voltage tage, Characteristic angle, Negative sequence current	
Display		operation value)		the operated elements.	
				Status indication item No.400=No display.	
	Self-diagno	SIS	Abnormal result:Off the RUN LED · Status	indication item No.400=Display defects code	
Fo	rced operat			put contact	
Comr	munication	communication port		e for Direct communication:Option)	
	Remot	e communication port		INK or MODBUS)	
Bu	rden (at rati	ng)	Phase current circuit:Less than 0.5VA, Zero-phase current circu Auxiliary power supply circuit:at DC100V=Approx. 4W, at ACI		
Ju	at idli		at AC220V=Approx. 15VA (In case of installing communication		
			Net weight of relay unit:Approx. 2.1kg(D1 type), Includin		
Ма	155		Net weight of relay unit Approx. 3.1kg(D2 type), Includin	g case:Approx. 4.3kg(D2 type)	
Sam	ple of external of	connection diagram		.5-1,2	
-	an a she		The rated current 1A product can be made based on the		
Remarks			on 1A product is calculated by performing a multiplication available for CMP1-A01D2, CMP1-A02D2 and not available		

 $\$ Please refer to the instruction manual regarding the details on this specification.

CMP

Type name		name	CMP1-A02D1	CMP2-A02D2
	Phase curr	ent	5A	
	Zero-phase current		5A	
Rating	Photo coupler input voltage (D2 type only)		- In In In	C110V (Permissible variable range 77 \sim 143V) or C24V(Permissible variable range DC19.2V \sim 31.2V) uput voltage 24V is applicable only for the case that auxiliary ower supply voltage is 24V. a any other cases, only DC110V is applicable as for photo
	Frequency		coupler input voltage. 50Hz or 60Hz	
Pro	otective element		50/51 (3 phases), 49, 46, 37 (3 phases), 66, 51G	
	Motor rated current (IM)		2~5A(0.1A step)	
·	Overcurrent Operation current		LOCK-10~100A	
	instantaneous Operation time		INST-0.1~1.0s(-
		Operation current	LOCK-IM×130~300% (10% step)	
		Operation time (Koct)	4-5-6-8-10-12-16-20-24-32-40-48-64-80-96-112-128-160-200-240	
	Overcurrent time-delayed (1)	Operation time characteristics equation	haracteristics 1 (IPhase current (unit: multiple to IM))	
	Overcurrent	Operation ourrant	-	·
	time-delayed (2)	Operation current Operation time		LOCK-IM×115~450%(5% step) 0.5~5.0s(0.5s step)
	Negative	Operation current		
	sequence	Operation time	LOCK-IM×0.5~8 times (0.5 times step) 0.1~10s (0.1s step)	
	Operation current		LOCK-IM×105~12	-
		Operation time(K _{TH})	8-12-16-20-24-32-40-48-64-80-96-112-128-160-200-240	
Setting	Overload	Operation time characteristics equation	$T_{TH} = 8.49 \times K_{TH} \times \log_{e} - \frac{(I_{1}^{2} + K \cdot I_{2}^{2}) - (I_{P1}^{2} + K \cdot I_{P2}^{2})}{(I_{1}^{2} + K \cdot I_{2}^{2}) - 1} s $ $I_{1} Positiv$ $I_{2} Negati$ $I_{P1} Positiv$ $I_{P1} Positiv$	
		Negative-sequence heat multiplying factor(K)	1~10(1 step)	
		Changeover characteristic	0(COLD) 1	
	Undercurrent Operation current			
	Operation time		1~600s(1s step) LOCK-1~5(1 step)	
	Limit the Number of start-up number of Start-up time		$\frac{100 \text{ K}^2 \sim 5(1 \text{ step})}{2 \sim 120 \text{ s(1s step)}}$	
	start-up times Countdown rate		2~250s/h (0.5s/h step)	
	Earth fault	Operation current	LOCK-0.05~2.50A (0.05A step)	
	overcurrent Operation time		INST-0.1~10s (0.1s step)	
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)	
	Operation indicator LED hold			
	CT primary (Phase current)		1#-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-2	250-300-400-500-600-750-800-1000-1200-1250-
			1500-2000-2500-3000-4000-5000-6000-7500-8000[A] #Applicable only 1 A product	
	CT primary (Zero-phase current)		Same as phase current	
	Real time measurement		Phase current×3, Zero-phase current, Negative sequence current	
٦ ک	Max.record		Phase current×3, Zero-phase current	
Display	Fault record (operation value)		Phase current×3, Zero-phase current, Negative sequence current	
	Fault record	(operation item)	Record and indicate the	
	Self-diagnosis		Normal result:On the RUN LED(green) Status indication item No.400=No display. Abnormal result:Off the RUN LED Status indication item No.400=Display defects code	
	prced operation		Each output contact	
Direct operation Communication Direct communication port Remote communication port Burden (at rating) Mass			Standard equipment (PC software for Direct communication:Option)	
			Option (For CC-LINK or MODBUS)	
			Phase current circuitLess than 0.5VA, Zero-phase current circuitLess than 10Ω, Zero-phase voltage circuitLess than 0.15VA Auxiliary power supply circuitat DC100V=Approx. 4W, at AC100V=Approx. 8VA, at DC220V=Approx. 5W, at AC220V=Approx. 15VA (In case of installing communication card, add 2 VA.)	
			Net weight of relay unit:Approx. 2.1kg(D1 type), Including case:Approx. 2.8kg(D1 type),	
			Net weight of relay unit:Approx. 3.1kg(D2 type), Including ca	
Sample of external connection diagram		connection diagram	Fig.5-3	Fig.5-4
Remarks			The rated current 1A product can be made based on the 5A rating product. The setting value of current elements on 1A product is calculated by performing a multiplication 1/5 of above mentioned value. The DI input facility is available for CMP1-A01D2, CMP2-A02D2 and not available for type CMP1-A01D1 and CMP1-A02D1.	

 $\ensuremath{\mathbbmath{\mathbb{R}}}$ Please refer to the instruction manual regarding the details on this specification.

Characteristics

	Item	15	Condition	Guaranteed performance	
	1	ad element	Positive sequence current		ĺ
		t time-delayed element (1)		-	Í
		t time-delayed element (2)			ĺ
	Overcurrent instantaneous element		(Common condition) *1		Í
	Under current element				ĺ
	Negative se	quence overcurrent element	Negative sequence current		Í
Operation			Setting: Zero phase voltage=minimum		ĺ
value	mer	Zero-phase	Input: Zero phase voltage=Rating voltage×30%,	Setting value ±5%	Í
	Earth fault directional element (CMP1-A01)	current	Phase=Maximum sensitive angle		ĺ
	fau onal 1-A		Setting: Zero phase current=minimum		Í
	MP Scti	Zero-phase	Input: Zero phase current=Setting value×1000%,		Í
	Gina	voltage	Phase=Maximum sensitive angle		
		It overcurrent element	(Common condition) *1		СМР
	Overloa	ad element			Civii
	Overcurrent	t time-delayed element (1)			
	Overcurrent	t time-delayed element (2)	(Common condition) *1	Operation value×95% or more	Í
	Overcurren	it instantaneous element			
		quence overcurrent element			
	ant	Zero-phase	Setting: Zero phase voltage=minimum		Í
Reset	eme	current	Input: Zero phase voltage=Rating voltage×30%,		Í
value	ult A01	·	Phase=Maximum sensitive angle	Operation value×90% or more	Í
	P1-	그 노 Zero-phase	Setting: Zero phase current=minimum		Í
	Earth fault directional element (CMP1-A01)	voltage	Input: Zero phase current=Setting value×1000%,		Í
			Phase=Maximum sensitive angle		1
	Earth fault overcurrent element (CMP1-A02)		(Common condition) % 1	Operation value×95% or more	ĺ
	Under current element			Operation value×105% or less	ĺ
	Earth fault directional element		Setting: Zero phase current=minimum		ĺ
Phase			Input: Zero phase current=Setting value×1000%,	Setting value ±5°	Í
	(CMP1	-A01)	Zero phase voltage=Rating voltage×30%		
	Overload element		Setting:Operation time setting(KTH)=8	Input 150%:Error against normal ±17% or less	ĺ
			Input: Positive sequence current=0A→ 150% and 300% of motor rated current	Input 300%:Error against normal ±12% or less	ĺ
				Input 300%:Error against normal ±12% or less	
	Overcurrent time-		Setting:Operation time setting (Koct)=4 Input: Phase current=0A→	Input 500% Error against normal $\pm 12\%$ or less Input 500% Error against normal $\pm 7\%$ or less	
	delayed	d element (1)	300%,500% and 1000% of motor rated current (IM)	Input 1000%:Error against normal ±7% or less	
	Overcu	Irrent time-	Setting: minimum		
		d element (2)	Input: Phase current=0A→300%	Setting value ±5°	
	0		Satting minimum	·In case of INST setting:40ms or less	
	Overcu instanta	irrent aneous element	Setting: minimum Input:0→setting value×200%	$\cdot 0.1 \sim 0.4$ s setting:Setting value ±25ms	
Operation	motante	inout thement		$\cdot 0.5 \sim 1.0$ s setting:Setting value ±5%	
time	Under	current element	Setting: maximum	Setting value ±5%	
			Input:Setting value×300%→IM×12%	-	
	_	ve sequence	Setting: minimum	$\cdot 0.1 \sim 0.4$ s setting Setting value ±25ms	
	overcur	rrent element	Input:Negative sequence current=0→Setting value×200%	· · · · · · · · · · · · · · · · · · ·	
	Earth fa	ault	Setting: Zero phase current=minimum Input: Zero phase current=0→Setting value×1000%	Setting Inst 0.1~0.4s 0.5~10s	
	directio	onal element	Zero phase voltage=0→Rating voltage×30%	Input Inst 0.1 × 0.48 0.5 × 105 130% 80ms or less Setting value±40ms Setting value±10%	
	(CMP1	-A01)	Phase=Maximum sensitive angle	400% 80ms or less Setting value=10%	
	Earth fa	ault		·In case of INST setting:40ms or less	
		rrent element	Setting: minimum	$0.1 \sim 0.4$ s setting: Setting value ±25ms	
	(CMP1		Input: Zero phase current=0⇒Setting value×200%	$\cdot 0.5 \sim 10s$ setting Setting value $\pm 5\%$	
			u		

*1 Common condition:(1)Rating Frequency (2)Ambient temperature:20°C (3)Auxiliary power supply: Rating voltage

		Items	Condition	Guaranteed performance	
				HOT characteristic (300% input is applied for 5	
		Overload element	Setting:Operation time setting(KTH)=8	minutes or more and then input is turned to zero.)	
		Overload element	Input: Positive sequence current=Setting value×300%→0A	149.2s±15%	
				COLD characteristic: 200±25ms	
		Overcurrent time-delayed element (1)	Setting: minimum		
		Overcurrent time-delayed element (2)	Input: Setting value×300%→0A		
		Overcurrent instantaneous element	input. Setting Value~300% FOA		
	Reset	Under current element	Setting: maximum		
	time	Under current element	Input: IM×12%→Setting value×200%		
		Negative sequence	Setting: minimum		
		overcurrent element	Input: Negative sequence current=Setting value×300%→0A	200±25ms	
		Earth fault directional element (CMP1-A01)	Setting: Zero-phase current, voltage=minimum		
			Input: Zero-phase current=Setting value×1000%→0A		
>			Zero-phase voltage=Rating voltage×30%→0V		
			Phase=Maximum sensitive angle		
		Earth fault overcurrent element (CMP1-A02)	Setting: minimum		
			Input: Zero-phase current Setting value×300 %→0A		
			Setting: Number of start-up times=1,		
	Restriction	Limit of the number of	Start-up time=2s	1s±5%	
	start time	start-up times element	Countdown rate of start-up time counter=2s/h	15-570	
			Input: A-phase current=0A→IM×300%		
			Setting: Number of start-up times=1,		
	Restriction	Limit of the number of	Start-up time=2s	$14.4s^{+10\%}_{0\%}$	
	end time	start-up times element	Countdown rate of start-up time counter=250s/h	14.15 0%	
			Input: A-phase current=0A→IM×300%(for 2s)→0A		

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

Precaution for using

- 1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.
- The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
- 4. The EVT tertiary voltage ratio should be set as output nominal

Please refer to page2 and 3 regarding the safty information and request when placing order.

6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d: Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.

8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.

- 9. It is possible to input the equipment fault signal and the operation signal (under voltage, etc.) of external protection relay etc to the DI(1) and DI(2). These input signals can initiate the related operation output signals.
- 10. Make a wiring between EVT "a" terminal and "A-06" ("A-16" for CMP1-A01D2) terminal of relay and EVT "f" terminal and "A-05" ("A-15" for CMP1-A01D2) terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the wiring between "f terminal of EVT and earth terminal. Any other wiring than above will not realize the correct detection on the earth fault directional.
- 11. A commercially available ZCT conformity with JEC1201 (type BZ in case of MITSUBISHI ELECTRIC CORPORATION) may be applicable for the type CMP1-A01D1/2.
- 12. Only one number of ZCT can be connected to one number of the type CMP1-A01D1/D2. Correct operation of the relay can not be guaranteed against two or more numbers of ZCT to connect to one number of the type CMP1-A01D1/2.
- 13. It is possible to use the CMP1-A02 type as the phase over current protection provided with two phases. However, residual connection of 2 phases can not be applied to the earth fault over current element. The residual connection of 3 phases only can be applied to the earth fault over current element. In case of only two phase CTs being available for phase over current protection, ZCT or one more CT is needed for earth fault over current element. Also, the negative sequence over current element is not operated properly by the CT circuits provided with two phases. Therefore, in this case, please make a setting of negative sequence of over current element to LOCK position.
- 14. The DI input of CMP1-A01D2 and CMP2-A02D2 has a polarity. Therefore, please pay attention to polarity as DI input can not be detected properly due to the wrong connection of DI circuit.

voltage between terminal "a" and "f" of EVT. Example: 190/3 \Rightarrow 190V, 110/3 \Rightarrow 110V

5. The function of the ZCT error correction installed in the relay(CMP1-A01D1/D2 type only, item No. 904,905) is applied for the purpose of correcting ZCT transformation error, so that improving the composite characteristics is achieved. The ZCT error correction range is 200mA/1.5mA~4.1mA(±0~+2.6mA) for the nominal transformation ratio 200mA/1.5mA specified with JEC-1201.

CMP

Sample of external connection diagram

Fig.5-1 CMP1-A01D1

Fig.5-2 CMP1-A01D2

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

CMP

Fig.5-3 CMP1-A02D1

CMP2-A02D2 Fig.5-4

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

CPP Series SYSTEM LINKAGE PROTECTION RELAY

Type, rating and specification

	Туре	e name	CPP1-A01D2	CPP1-A11D2		
	Phase current		5.			
F	Voltage		57~120V			
	Zero-phase voltage		100~208V			
Rating	Photo co	upler input	DC110V (Permissible variable range 77~143V) or DC24V (Permissible variable range DC19.2V~31.2V)			
		02 type only)	Input voltage 24V is applicable only for the ca	se that auxiliary power supply voltage is 24V.		
	Voltago (E		In any other cases, only DC110V is applied			
	Frequenc	зy	50Hz o			
	ive elemer		64,59,27 (3phases),67S (3phases),95L,95H,67P (3phase			
Combined instr	ument transformer	Zero-phase voltage	Commercially available EVT	(Conformity with JEC-1201)		
	Earth fault	Operation voltage	LOCK-5~60	V(1V step)		
	over voltage			0.05-0.1~15s(0.1s step)		
		Operation time		· • • ·		
	Over voltage	Operation voltage	LOCK-110~1	-		
		Operation time	0.05-0.1~15	*		
	Under voltage	Operation voltage	LOCK-20~11	-		
	vollage	Operation time	0.05-0.1~15			
		L element operation value	LOCK-Rated current (5			
	Phase fault	L element operation time	0.05-0.1~15s	-		
	directional	H element operation value	LOCK-Rated current (5/			
		H element operation time UV element for DS operation value	0.05-0.1~15: NO USE-20~1			
	Linder		[Rated frequency:50Hz]LOCK-49.5~45Hz(0.1Hz step),			
	Under frequency	Operation value Operation time				
		Operation time Operation value	LOCK-Rated current (5A)×0.2~30%			
	Reverse power	Operation time	0.05-0.1~15e			
	Over	Operation value	[Rated frequency:50Hz]LOCK-50.5~55Hz(0.1Hz step),			
Setting	frequency	Operation time				
	noquonoy	Operation value	0.05-0.1~15s(0.1s step) LOCK-Rated current(5A)×1~30%(1% step)			
	Under	Operation time	0.05-0.1~15s(0.1s step)			
	power	Open circuit detecting function lock	OFF-ON(Set ON in case of open	*		
	Lock at uni	nterconnected condition	0~10s(0.1s step)			
				LOCK-0.025~2Hz/s		
	Islanding detection	Operation value	-	(0.025Hz/s step)		
	(df/dt)	Operation time	-	0.2~1s(0.1s step)		
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts(Default setting at ex-works)			
	Operation	n indicator LED hold	All LED self-hold (Default setting at ex-works)			
	CT prima	n	5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-	200-250-300-400-500-600-750-800-1000-1200-1250-1500		
		ı y	2000-2500-3000-4000-5000-6000-7500-8000[A]			
	VT prima	ry	100~999V(1V step),1000~9990V(10V step),10.0k~99.9kV(0.1kV step),100k~300kV(1kV step)			
	VT secor	ndary	100/√3-110/√3-115/√3-120/√3-100-110-115-120V			
	EVT prim	arv	100~999V(1V step),10	A		
			10.0k~99.9kV(0.1kV step			
	EVT terti		100-110-115-120-100√3-			
		measurement	Phase current×3, voltage, Zero-phase voltage, Activ			
	Max.reco		Phase current×3, voltage, Zero-phase			
Display		ord (operation value)	Phase current×3, voltage, Zero-phase voltage, Active power, Reverse power, Power factor, Frequency			
	Fault rec	ord(operation item)	Record and indicate th			
	Self-diag	nosis	Normal result:On the RUN LED(green) · Status indica			
			Abnormal result:Off the RUN LED · Status indication in			
rorced (operation	ot communication next	Each outp			
Communi	cation ——	ct communication port	Standard equipment (PC software	•		
	Rem	ote communication port	Option (For CC-LI Phase current circuit: loss than 0.5VA voltage circuit:			
			Phase current circuit:Less than 0.5VA, voltage circuit: Zero-phase voltage circuit:Less than 1.5VA	Less mail LUV A,		
Burden	(at rating)			V at $\Lambda C100V = \Lambda DDrox 12V\Lambda$ at $DC220V = \Lambda DDrox 6W$		
			Auxiliary power supply circuit:at DC100V=Approx. 6W			
Maga			at AC220V=Approx. 14VA (In case of installing comm Net weight of relay unit:Approx.35kg, Including case:			
Mass	of overal	connection diagram	Net weight of relay unit:Approx.3.5kg, including case:			
		connection diagram				
Remarks			The island detection facility is available for CPP1-A11	D2 and not available for type CPP1-A01D2		

*Please refer to the instruction manual regarding the details on this specification.

	Items	Condition	Guaranteed performance
	Earth fault over		
	voltage element	(Common condition) *1	
	Over voltage element		
	Under voltage element		
		Input voltage: Rated voltage	Setting value ±5%
	Phase fault directional element	Phase of current: Maximum sensitive angle	
	(L,H element)	(Set UV element for the NO USE position)	
	Phase fault directional element		
.	(U,V element)	(Common condition) *1	
Operation - value	Under frequency element	Input voltage: Rated voltage	Setting value ±0.05Hz
value		input voltage. Rated voltage	·For 0.2~0.5% setting: Setting value=1.5mA
	Reverse power	Input voltage: Rated voltage	· For $0.6 \sim 0.9\%$ setting: Setting value=1.0mT
	element	Phase of current: Maximum sensitive angle	
-	Over frequency element	Input voltage: Poted voltage	•For another setting: Setting value±5% Setting value ±0.05Hz
-		Input voltage: Rated voltage	Setting value ±0.05Hz
	Under power	Input voltage: Rated voltage	Setting value ±5%
-	element	Phase of current: Maximum sensitive angle	-
	Islanding detection	Input voltage: Rated voltage	[Value for full operation]
	element	Change frequency quickly from rated frequency	Setting value: ±0.0125Hz/s
	(CPP1-A11D2)	In case of operation time setting is 1s, frequency should be swept.	Secting value. =0.0120112/ 5
	Earth fault over		operation value×95% or more
	voltage element	(C 1'.') ¥1	operation value~95% or more
	Over voltage element	(Common condition) *1	operation value×95% or more
	Under voltage element		operation value×105% or less
	Phase fault directional element	Input voltage: Rated voltage	*
	(L,H element)	Phase of current: Maximum sensitive angle (Set UV element for the NO USE position)	operation value×95% or more
-	Phase fault directional element		
	(U,V element)	(Common condition) *1	operation value×105% or less
Reset value			Difference between operation value and reset value i
	Under frequency element	Input voltage: Rated voltage	-
	element		±0.05Hz or less
	Reverse power	Input voltage: Rated voltage	•For 0.2~0.5% setting: Operation value×80% or more
	element	Phase of current: Maximum sensitive angle	•For 0.6~0.9% setting: Operation value×93% or more
			•For another setting: Operation value×95% or more
	Over frequency	Input voltage: Rated voltage	Difference between operation value and reset value is
-	element		±0.05Hz or less
	Under power	Input voltage: Rated voltage	operation value×105% or less
	element	Phase of current: Maximum sensitive angle	
	Earth fault over voltage element	Operation setting value: Minimum	
		Input: 0→Operation setting value×150%	
	Over voltage clamost	Operation setting value: Minimum	
	Over voltage element	Input: 0→Operation setting value×120%	
		Operation setting value: 100V	
	Under voltage element	Input: rated voltage→operation setting value×70%	
		Operation setting value: minimum, UV setting for DS: NO USE	
	Phase fault	Input voltage: Rated voltage	
	directional element	Input voltage. Rated voltage Input current: 0→setting value×200%	
	(L,H element)		
-		Phase of current: Maximum sensitive angle	
Operation	Lindon from the	Operation setting value: Minimum	
time	Under frequency	Input voltage: Rated voltage	
	element	Frequency: Rated frequency→	Setting value ±20ms or ±5% whichever is greater
		setting value-1Hz with moving down rate df/dt=5Hz/s	
		Operation setting value: Minimum	
	Reverse power	Input voltage: Rated voltage	
	element	Input current: 0→setting value×200%	
		Phase of current: Maximum sensitive angle	
		Operation setting value: Minimum	
	Over frequency element	Input voltage: Rated voltage	
		Frequency: Rated frequency→	
		setting value+1Hz with moving up rate df/dt=5Hz/s	
		Operation setting value: Maximum	
-			
-	Under		
-	Under power	Input voltage: Rated voltage	
	Under power element		

%1 Common condition:(1)Rating Frequency (2)Ambient temperature:20°C (3)Auxiliary power supply: Rating voltage

	Items	Condition	Guaranteed performance
		Operation setting value: Minimum	
Operation time	Islanding detection	Input voltage: Rated voltage	
	element (CPP1-A11D2)	Frequency:Rated frequency→	Setting value: ±40ms
		Rated frequency+setting value×(±500%)	
		Change abruptly at the same phase.	
	e of lock function at cted condition	DI input voltage: Rated voltage→0	Setting value ±50ms or ±5% whichever is greater
un-interconne		Measuring the time between contact open status→close status.	
	Earth fault over voltage element	Operation setting value: Minimum	
		Input: Operation setting value×150%→0 Operation setting value: Minimum	-
	Over voltage element	Input: Operation setting value $\times 120\% \rightarrow 0$	
		Operation setting value: 100V	
	Under voltage element	Input: operation setting value×70%→rated voltage	
		Operation setting value: minimum, UV setting for DS: NO USE	
	Phase fault	Input voltage: Rated voltage	
	directional element	Input voltage. Nated voltage Input current: setting value×200 \rightarrow 0	
	(L,H element)	Phase of current: Maximum sensitive angle	
		Operation setting value: Minimum	-
	Under frequency	Input voltage: Rated voltage	
Reset time	element	Frequency: setting value+1Hz→	200ms±20ms
		Rated frequency with moving up rate df/dt=5Hz/s	
		Operation setting value: Minimum	
	Reverse power	Input voltage: Rated voltage	
	element	Input current: setting value×200%→0	
		Phase of current: Maximum sensitive angle	
		Operation setting value: Minimum	
	Over frequency	Input voltage: Rated voltage	
	element	Frequency: setting value -1 Hz \rightarrow	
		Rated frequency with moving down rate df/dt=5Hz/s	
	Under-power element	Operation setting value: Maximum	
		Input voltage: Rated voltage	
		Input current: 0→setting value×300%	
		Phase of current: Maximum sensitive angle	
Output contact	Islanding detection		
latching time	element	(Common condition) *1	
	(CPP1-A11D2)		
	Phase fault directional element (L,H element)		I V
			► 55°±5°
		Input voltage: Rated voltage	2058 1 58
		Input current: setting value×200%	Operation side
		USE UV setting for DS: NO USE	
			35°
			V
Phase	Reverse power	Input voltage: Rated voltage	I
characteristic	element	Input current: setting value×200%	7
			Operation side
			Maximum sensitive angle=0° ±5
			V
			ĺ ľ∧
		Input voltage: Poted voltage	
	Under power element	Input voltage: Rated voltage Input current: setting value×200%	Operation side
	ciement	input current, setting value^20076	Operation side
		1	
			I ∠ Maximum sensitive angle=180° ±

*1 Common condition: (1) Rating Frequency (2) Ambient temperature: 20°C (3) Auxiliary power supply: Rating voltage

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized (" break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after

Precaution for using

- When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.
- 3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
- 4. The EVT tertiary voltage ratio should be set as output nominal voltage between terminal "a" and "f" of EVT. Example: 190/3⇒190V, 110/3⇒110V
- 5. The UV test function (item No. 533) will be used for single phase test for under voltage element. (UV test LED will turn on during selecting

Please refer to page2 and 3 regarding the safty information and request when placing order.

auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.

8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.

- 9. Lock at un-interconnected condition (Terminal number "E-01", "E-03") Operation of each element (DS, RP, UF, OF, UP and df/dt) are locked for the determined time after interconnection (set by the timer element of un-interconnected condition) in order to prevent unnecessary operations due to the power fluctuation. The lock condition will be released in the determined time.
- 10. The DI input of un-interconnected condition (Terminal number "E-01", "E-03") has a polarity. Therefore, please pay attention to polarity as the DI input can not be detected properly due to the wrong connection of DI circuit.
- 11. Make a wiring between EVT "a" terminal and "A-12" terminal of relay and EVT "f" terminal and "A-11" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the wiring between "f" terminal of EVT and earth terminal.

 $\rm UV$ TEST). UV TEST should be set as OFF in the operational condition.

- 6. The DS test function (item No. 546) will be used for single phase test for the phase fault directional element. (DS test LED will turn on during selecting DS TEST). DS TEST should be set as OFF in the operational condition.
- 7. The 67P and 91L elements detect 3 phases active power($\sqrt{3}$ EIcos θ). 100% of 3 phases power equal to that when nominal voltage (110V) and nominal current (5A) are impressed.
- 8. The 95L and 95H elements are locked in case of input voltage being less than 35V for failsafe purpose.

CPP

Sample of external connection diagram

Fig.6-1 CPP1-A01D2, CPP1-A11D2

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

CPP

CGP1 Series GENERATOR PROTECTION RELAY

Type, rating and specification

		name	CGP1-A01D2	CGP1-A03D2			
Phase current			5A	NT 7			
Line voltage			57~120	DV			
Dating	Zero-phase voltage		100~208V				
Rating			DC110V (Permissible variable range 77~143V) or DC2				
	Photo coupler input voltage		Input voltage 24V is applicable only for the case that auxiliary power supply voltage is 24V.				
	F		In any other cases, only DC110V is applical				
Proto ot	Frequency		50/51 (2-harres) 46 84 50 27 (2-harres) 051 0511 67D (2-harres) 67C 64				
				0/51(3phases),46,84,59,27(3phases),95L,95H,67P(3phases),510			
ransform	d instrument	Zero phase current Zero-phase voltage	Commercially available ZCT (Conformity with JEC-1201 200/15mA) Commercially available EVT (Conformity with JEC-1201)	-			
ansionn	1	or rating current	12011110000000000000000000000000000000	(stop)			
		Operation current	LOCK-IG×100~120				
		Operation time multiplier	0.25-0.5~10 (
	Overcurrent		$\begin{array}{ c c c c } & \text{NI} & \\ & \text{(Normal inverse time-delayed)} & t = & \frac{0.14}{1^{0.02} - 1} \times & \frac{M}{10} (& \\ \hline \end{array}$	s) t:Operation time(s)			
	time-delayed	Operation time	EI $t = \frac{150}{50} \times \frac{M}{50}$	I:Multiple of input current against setting			
		characteristics					
			$\begin{array}{c} DT\\ (Definite time-delayed) \end{array} t=2 \times \frac{M}{10}(s)$	M:Operation time multiplier (times)			
			(Definite time-delayed) $10^{(3)}$				
	Overcurrent	Operation current	LOCK-IG×100%~120	00% (50% step)			
	instantaneous	Operation time	INST-0.1~0.5s	(0.1s step)			
		Operation current	LOCK-IG×5%~30	%(1% step)			
	Unbalance	Operation time multiplier	5~50 (1 s	step)			
	current 1	Operation time	M () t:Operation time(s)				
		characteristics	2	ative sequence current against Ig			
		0	M:Operation time multi				
	Unbalance current 2	Operation current	LOCK-IG×5%~30				
		Operation time Operation	1-10s(0.1s	-			
	Voltage detecting	Operation time	LOCK-80~110V				
		Operation	0.5~10s(0.1s step)				
	Over voltage	Operation time	LOCK-110~155V(1V step)				
	-	Operation		0.1~10s(0.1s step) LOCK-20~110V(1V step)			
	Under voltage	Operation time	0.1~10s(0.1				
	Under	Operation					
	frequency	Operation time	[Rating:50Hz]LOCK-49.5Hz~45Hz(0.1Hz step), [Rating:60Hz]LOCK-59.5~55Hz(0.1Hz) 0.1~10s(0.1s step)				
	Over	Operation	0.1~10s(0.1s step) [Rating:50Hz]LOCK-50.5Hz~55Hz(0.1Hz step), [Rating:60Hz]LOCK-60.5~65Hz(0.1Hz)				
Setting	frequency	Operation time	0.1~10s(0.1s step)				
	Reverse	Operation	LOCK-IG×0.5-1~30% (1% step)				
	power	Operation time	$0.1 \sim 20 \mathrm{s}(0.1)$				
		Operation current(I ₀)	1~10mA(ZCT secondary)(0.5mA step)	-			
	Earth fault	Operation (V ₀)	LOCK-5~60V(1V step)	-			
	directional	Operation time	INST-0.1~10s (0.1s step)	-			
		Maximum sensitive angle	Lead 0°~90° (5° step)	-			
	Earth fault	Operation	LOCK-5~60V(1V step)	-			
	over voltage	Operation time	0.1~20s (0.1s step)	-			
	Earth fault	Operation	-	LOCK-0.1~2.0A (0.1A step)			
		Operation time	-	INST-0.1~0.5s (0.1s step)			
		ntact configuration indicator LED hold	Refer to the external connection diagram/Auto rese				
	Operation		All LED self-hold (Default 5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-20				
	CT primar	/	5-10-12-12.5-15-20-25-30-40-50-00-75-80-100-120-125-150-20 1500-2000-2500-3000-4000-5000-6000-7500-8000[A]	0-250-300-400-500-600-750-800-1000-1200-1250-			
	VT primar	/	100~999V(1V step),1000~9990V(10V step),10.0k~99.	$kV(0.1kV \text{ step}), 100k \sim 300kV(1kV \text{ step})$			
	VT second		$100/\sqrt{3}\cdot110/\sqrt{3}\cdot115/\sqrt{3}\cdot120/\sqrt{3}\cdot100\cdot110\cdot115\cdot120V}$	(SIR, Step/YIOOR JOORY (IRV Step/			
			100~999V(1V step),1000~9990V(10V step),				
	EVT prima	iry	10.0k~99.9kV(1kV step),100k~300kV(1kV step)	-			
			100-110-115-120-100√3-110√3-				
	EVT tertia	ry	115√3-120√3V	-			
	ZCT error	correction on/off	OFF-ON	-			
			When the actual measured transforming ratio is within				
	ZCT error	adjustment	range of $200/1.5 \sim 4.1 \text{mA}$, the deviation from the ZCT	-			
			nominal transforming ratio 200/1.5mA can be corrected.				
		measurement	Phase current×3, voltage, Zero-phase voltage#, Active				
	Max.record		Phase current×3, voltage, Zero-phase voltage#, Active power, Reverse power				
Display		rd (operation value)	Phase current×3, voltage, Zero-phase voltage#, Active power, Reverse power, Power factor, Frequency				
	Fault reco	rd (operation item)	Record and indicate the operated elements. Normal result:On the RUN LED(green) ·Status indication item No.400=No display.				
Self-diagnosis							
orcod	operation		Abnormal result:Off the RUN LED·Status ind				
orced	operation Dire	ct communication port	Each output Standard equipment(PC software for				
Commun	ication —	ote communication port	Standard equipment (PC software for Option (For CC-LINF				
	Herr	ote communication port	Phase current circuit:Less than 0.5VA, Voltage circuit:Less t				
			Phase current circuit:Less than 0.5VA, Voltage circuit:Less t Zero-phase voltage circuit:Less than 0.15VA (A01 type)	нан 1.0¥ А,			
Burden	(at rating)		Zero-phase voltage circuit:Less than 0.15 VA (A01 type) Zero-phase current circuit: Less than 10Ω (A01 type)				
Burden (at rating)				AC100V=Approx 12VA at DC220V=Approx 6W			
			Auxiliary power supply circuitat DC100V=Approx. 6W, at AC100V=Approx. 12VA, at DC220V=Approx. 6W, at AC220V=Approx. 14VA (In case of installing communication card, add 2 VA.)				
lass			Net weight of relay unit:Approx. 3.5kg, Including case:A				

**Please refer to the instruction manual regarding the details on this specification. # Not applicable for CGP1-A03D2

	Items		Condition	Guaranteed performance	
	Overcurrent time-delayed element	(Common c	ondition) % 1	Setting value ±5%	
	Overcurrent instantaneous element			Setting value ±10%	
	Unbalance current element 1 Unbalance current element 2	Negative se	quence current		
	Voltage detecting element			Setting value ±5%	
	Over voltage element	(Common c	ondition) %1	Setting value ±5%	
	Under voltage element				
	Under frequency element	Input voltag	e: Rated voltage		
	Over frequency element	Input voltag	e: Rated voltage	Setting value ±0.05Hz	
Operation	Reverse power	Input voltag	e: Rated voltage	·0.5, 1 \sim 3% setting: Setting value \pm 5mA	
value	element	Phase of cu	rrent: Maximum sensitive angle	\cdot For another setting: setting value ±5%	
		Zero phase	Setting: Zero phase voltage: minimum	·1.0 and 1.5mA setting: setting value±10%	
	Earth fault	current	Input: Zero phase voltage=rated voltage×30%	·For another setting: setting value $\pm 5\%$	
	directional element		Phase: maximum sensitive angle Setting: Zero phase current: minimum		
	(CGP1-A01D2)	Zero phase	Input: Zero phase current=setting value×1000%	Setting value ±5%	
		voltage	Phase: maximum sensitive angle	Setting value ±5%	
	Earth fault overcurrent		i nase, maximum sensitive angle		
	(CGP1-A03D2)	(Common c	ondition) **1	Setting value ±5%	
	Earth fault over voltage element	(0)			
	(CGP1-A01D2)	(Common c	ondition) **1	Setting value ±5%	
	Overcurrent time-delayed element	(Common -	ondition) %1		
	Overcurrent instantaneous element	(Common c	01101001/ ※1		
	Unbalance current element 1	Negative se	quence current	Setting value×95% or more	
	Unbalance current element 2	inegative se	quenee current	Secting value	
	Voltage detecting element				
	Over voltage element	(Common condition) *1			
	Under voltage element	T (1)		Setting value×105% or less	
	Under frequency element Over frequency element		ge: Rated voltage	Difference between operation value and reset value ±0.05Hz or less	
	Reverse power	Input voltage: Rated voltage Input voltage: Rated voltage		$0.5, 1\sim3\%$ setting: operation value×80% or more	
Reset value	element		rrent: Maximum sensitive angle	·For another setting: setting value×95% or more	
			Setting: Zero phase voltage: minimum	Tor another setting, setting value 50% or more	
	Earth fault directional element (CGP1-A01D2)	Zero phase	Input: Zero phase voltage=rated voltage×30%		
		current	Phase: maximum sensitive angle		
		7	Setting: Zero phase current: minimum	Operation value×90% or more	
		Zero phase voltage	Input: Zero phase current=setting value×1000%		
		voltage	Phase: maximum sensitive angle		
	Earth fault overcurrent	(Common c	ondition) ×1	Setting value×95% or more	
	(CGP1-A03D2)	(0011111011 0			
	Earth fault over voltage element	(Common c	ondition) *1	Setting value×95% or more	
	(CGP1-A01D2)	Onenting	- + + i 1	•NI,EI Input: 300%: nominal value±12% or less	
		Operation setting value: minimum Operation time multiplier: 10		Input: 500%: nominal value $\pm 12\%$ of less	
		-	tting value×300.500.1000%	Input: 1000%: nominal value=12% of less	
			inverse time delayed $= 0.14 \times M_{(a)}$	·DT Nominal value±5% or less	
	Overcurrent	characterist	ics) $1 - \frac{1}{1002 - 1} \times \frac{10}{10}$ (S)		
	time-delayed	EI (Extrem	ely inverse $t = \frac{150}{100} \times \frac{M}{M}(s)$		
	element	-			
		DT (Definit characterist	e time-delayed $t=2 \times \frac{M}{10}(s)$		
		t: operation			
		*	f input current against operation value		
		(Ig×100~			
		M: Operatio	n time multiplier(times)		
Operation	Overcurrent		etting value: minimum	Setting value±25ms or less and at the time of INST	
time	instantaneous element	Input: 0→20	0% of setting value	setting: 40ms or less	
		Operation s	etting value: minimum	Input: 300%: nominal value±20% or less	
		Operation ti	me multiplier: 10	Input: 500%: nominal value±15% or less	
	Unbalance current	Input: 0→30	,50,100% of Generator rated current Ig	Input: 1000%: nominal value±10% or less	
	element 1		t: operation time(s)		
		$t = \frac{M}{I_2^2}(s)$	I2: Multiple of input negative sequence		
		$I_2^ I_2^2$ (S)			
			M: Operation time multiplier(times)		
	Unbalance current	Setting: min	imum		
	element 2	Input: negat	ve sequence current=0→setting value×200%	Setting value ±5% or less	
	Voltage detecting element	Operation s	etting value: minimum		
	Over voltage element	Input: 0→or	eration setting value×120%		
	over voltage clement				
	Under voltage element		etting value: 100V	0.1~0.5s setting: setting value±25ms or less For 0.6~10s setting: Within setting value±5%	

 $\$1 \quad \text{Common condition:} (1) \\ \text{Rating Frequency} \quad (2) \\ \text{Ambient temperature:} \\ 20 \\ \degree \\ \degree \\ C \quad (3) \\ \text{Auxiliary power supply: Rating voltage} \\ \end{cases}$

	Items	Condition	Guaranteed performance
		Operation setting value: minimum	
	Under frequency element	Input voltage: Rated voltage	
		Frequency: Rated frequency→setting value-1Hz with	
		moving down rate df/dt=5Hz/s	
		Operation setting value: maximum	
	Over frequency	Input voltage: Rated voltage	0.1~0.5s setting: setting value±25ms or less
	element	Frequency: Rated frequency \rightarrow setting value+1Hz with	For $0.6 \sim 10$ s setting: Within setting value $\pm 5\%$
		moving up rate df/dt=5Hz/s	
		Operation setting value: minimum	
Operation	Reverse power		
time	element	Input voltage: Rated voltage	
		Input current: 0→setting value×200%	
		Phase of current: Maximum sensitive angle	
	Earth fault	Setting: Zero phase current, voltage=minimum	Setting Inst 0.1~0.4s 0.5~10s
	directional element	Input: Zero phase current=0→setting value×1000%	Input
	(CGP1-A01D2)	Zero phase voltage=0→rated voltage×30%	130% 80ms or less Setting value±40ms Setting value±109
		Phase: maximum sensitive angle	400% 80ms or less Setting value±20ms Setting value±5%
	Earth fault overcurrent element	Operation setting value: minimum	Within setting value +25mg
	(CGP1-A03D2)	Input: Zero phase current=0→setting value×1000%	Within setting value ±25ms
	Earth fault over voltage element	Operation setting value: minimum	0.1~0.5s setting: setting value±25ms or less
	(CGP1-A01D2)	Input: Operation setting value×150%	For $0.6 \sim 10$ s setting: Within setting value $\pm 5\%$
	Overcurrent time-delayed element	Operation setting value: minimum	
	Overcurrent instantaneous element	Input: Operation setting value: $300\% \rightarrow 0$	
	Unbalance current element 1	Setting: minimum	4
	Unbalance current element 2	Input: negative sequence current=setting value \times 300% \rightarrow 0A	
			-
	Voltage detecting element	Operation setting value: minimum	
	Over voltage element	Input: Operation setting value×120%→0	-
	Under voltage	Operation setting value: 100V	
	element	Input: Operation setting value×70%→rated voltage	4
		Operation setting value: minimum	
	Under frequency	Input voltage: Rated voltage	
	element	Frequency: Setting value−1Hz→rated frequency with	
		moving up rate ,df/dt=5Hz/s	
		Operation setting value: maximum	
Reset time	Over frequency	Input voltage: Rated voltage	200ms±25ms
neset time	element	Frequency: Setting value+1Hz→rated frequency with	2001113-201115
		moving down rate ,df/dt=5Hz/s	
		Operation setting value: minimum	
	Reverse power	Input voltage: Rated voltage	
	element	Input voltage. Rated voltage Input current: setting value× $200\% \rightarrow 0$	
	oloniont		
		Phase of current: Maximum sensitive angle	4
	Earth fault	Setting: Zero phase current, voltage=minimum	
	directional element	Input: Zero phase current=setting value×1000%→0	
	(CGP1-A01D2)	Zero phase voltage=rated voltage $\times 30\% \rightarrow 0$	
		Phase: maximum sensitive angle	-
	Earth fault overcurrent element	Operation setting value: minimum	
	(CGP1-A03D2)	Input: Zero phase current=setting value×1000%→0	
	Earth fault over voltage element	Operation setting value: minimum	
	(CGP1-A01D2)	Input: operation setting value×150%→0	
	Reverse power	Input voltage: Rated voltage	
	element	Current input: setting value×200%	Maximum sensitive angle=0°±5°
Phase		Setting: Zero phase current, voltage=minimum	
characteristic	Earth fault directional element		Manimum annihing an de 15°
	(CGP1-A01D2)	Input: Zero phase current=setting value×1000%	Maximum sensitive angle±5°
	(GGFTAUTDZ)	Zero phase voltage=rated voltage×30%	
		Settings: Time-delayed operation value=minimum,	
	Overcurrent	operation time multiplier=10,	
Overslave	time-delayed element	operation characteristic=all characteristics	
Overshoot characteristic		Current input: 0A →setting value×1000%	No-operation limit time/operation time=90% or more
characteristic			
	Unbalance current	Settings: Time-delayed operation value=minimum,	
	element 1	operation time multiplier=10	
		Current input: 0A →setting value×1000%	

Precaution for application

1. Guarantee against interruption of AC power supply

- When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
- 2. Inrush current of power supply
- Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Inrush current Ip
Approx. 20A
Approx. 55A
Approx. 25A
Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

Precaution for using

- 1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.
- 3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
- 4. The EVT tertiary voltage ratio should be set as output nominal voltage between terminal "a" and "f" of EVT. Example: 190/3⇒190V, 110/3⇒110V
- 5. The function of the ZCT error correction installed in the relay (CGP1-A01D2 type only, item No. 906,907) is applied for the purpose of correcting ZCT transformation error, so that improving the composite

Precaution for safety

Please refer to page2 and 3 regarding the safty information and request when placing order.

- 7. Improvement of reliability of protection system
- For the important facilities, multiplex system such as dual should be provided to improve reliability.
- 8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.

- 9. Make a wiring between EVT "a" terminal and "A-10" terminal of relay and EVT "f" terminal and "A-09" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the wiring between "f" terminal of EVT and earth terminal. Any other wiring than above will not realize the correct detection on the earth fault directional.
- 10. Lock function by external control input
- Two DI circuits are installed for the interlock by external control signals, and a relay element can be locked by DI input. Moreover, the relay element locked at the time of DI input arising can be set up to each DI circuit.
- 11. A commercially available ZCT conformity with JEC1201 (type BZ in case of MITSUBISHI ELECTRIC CORPORATION) may be applicable for the type CGP1-A01D2.
- 12. Only one number of ZCT can be connected to one number of the type CGP1-A01D2. Correct operation of the relay can not be guaranteed against two or more numbers of ZCT to connect to one number of the type CGP1-A01D2.
- 13. It is possible to use the type CGP1-A03 as the phase over current protection provided with two phases. However, residual connection of 2 phases can not be applied to the earth fault over current element. The residual connection of 3 phases only can be applied to the earth fault over current element. In case of only two phase CTs being available for phase over current protection, ZCT or one more CT is needed for earth fault over current element. Also. The unbalance current elements are not operated properly by the CT circuits provide with two phases. Therefore, please make a setting of unbalance current elements as LOCK position.
- 14. The DI input for interlock (Terminal number "E-01", "E-03" and "E-02", "E-04") has a polarity. Therefore, please pay attention to polarity as the input signals can not be detected properly due to the wrong connection of DI circuit.
- 15. According to the connection diagram, ZCT terminal "K" is assigned as utility side and terminal "L" is assigned as load (generator) side. However, it is possible to assign the ZCT terminal "K" as load (generator) side and the ZCT terminal "L" as utility side. In this case, make a wiring between ZCT secondary terminal "k" and relay terminal "A-16" and between ZCT terminal "I" and relay terminal "A-15". Regarding a CT connection, make wiring as R phase current flows into the terminal "A-18" of relay and T phase current flows into the terminal "A-22" of relay in case of normal operation. Please note allow marks indicated in the connection diagram shows the direction of current in case of faults occurrence in the generator.
- 16. To prevent the influence from noise or surge, a shielded 2 cores (size is $0.75 \sim 1 \text{mm2}$) cable should be used for the connection between ZCT or ZVT and relay and shield wire should be connected to the earth terminal of the relay or the earth terminal located inside of the switchboard. Further more, the go and return burden of the cable should be less than 5 ohms which is almost equal to 100m distance in case of 0.75mm2.

characteristics is achieved. The ZCT error correction range is $200\text{mA}/1.5\text{mA} \sim 4.1\text{mA}(\pm0 \sim +2.6\text{mA})$ for the nominal transformation ratio 200mA/1.5mA specified with JEC-1201.

- 6. The UV test function (item No. 533) will be used for single phase test for under voltage element. (UV test LED will turn on during selecting UV TEST). UV TEST should be set as OFF in the operational condition.
- 7. The 67P element detect 3 phases active power($\sqrt{3}$ EIcos θ). 100% of 3 phases power equal to that when nominal voltage (110V) and nominal current (5A) are impressed.
- 8. The 95L and 95H elements are locked in case of input voltage being less than 35V for failsafe purpose.

Sample of external connection diagram

*3 - Indicates the direction of current flowing into the generator side during generator failure occurrence.

----- Indicates the direction of current being output from the generator side when the system is healthy.

Fig.7-1 CGP1-A01D2

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

Fig.7-2 CGP1-A03D2

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

CGP2 Series GENERATOR PROTECTION RELAY

Type, rating and specification

Type name		name	CGP2-A01D2	CGP2-A02D2	
	Phase cur	rrent	5	А	
Detine	Line voltage		100~120V		
			DC110V (Permissible variable range 77~143V) or DC24V (Permissible variable range DC19.2V~31.2V)		
Rating	Photo cou	pler input voltage	Input voltage 24V is applicable only for the case that auxiliary power supply voltage is 24V.		
			In any other cases, only DC110V is appli	cable as for photo coupler input voltage.	
	Frequency	y	50Hz c	or 60Hz	
Protecti	ive elemen	t	87G(3phases),40	87G(3phases)	
	Discod	Minimum operation current	LOCK-0.4~1.0	OA(0.2A step)	
	Biased differential	Bias	10-20% (5% step)		
	unicientia	Operation time	INST (60ms or less)	-0.1~0.5s(0.1s step)	
	Loss of	Impedance ZF	LOCK-5.0~50.0Ω(0.5Ω step)	-	
	excitation	Impedance ZB	0.4~4.0Ω(0.04Ω step)	-	
	Chontation	Operation time	0.2~10s(0.1s step)	-	
Setting	DI lock tir	ne	0.1~5.0s	0.1s step)	
Setting	Output co	ntact configuration	Refer to the external connection diagram/Auto n	reset for all contacts (Default setting at ex-works)	
	Operation	indicator LED hold	All LED self-hold (Default setting at ex-works)		
	CT primor		5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250-		
	CT primar	у	1500-2000-2500-3000-4000-5000-6000-7500-8000[A]		
	VT primary		100~999V(1V step),1000~9990V(10V step),10.0k~		
			99.9kV(0.1kV step),100k~300kV(1kV step)	_	
	VT secondary		$100/\sqrt{3}-110/\sqrt{3}-115/\sqrt{3}-120/\sqrt{3}-100-110-115-120V}$	-	
	Real time	measurement	Phase current×3, Differential curre	ent, Line voltage, Phase, Frequency	
	Max.record		Phase current×3, Differential current, Line voltage		
Display	Fault record (operation value)		Phase current×3, Differential current, Line voltage, Phase		
Display	Fault record (operation item)		Record and indicate t	he operated elements.	
	Self-diagn	nosis	Normal result:On the RUN LED (green) ·Status indication item No.400=No display.		
	Sen-ulagi	10313	Abnormal result:Off the RUN LED · Status indication it	tem No.400=Display defects code	
Forced	operation		Each outp	out contact	
Commun	ication Dire	ct communication port	Standard equipment(PC software	for Direct communication:Option)	
Connan	Rem	note communication port	Option (For CC-LI	(NK or MODBUS)	
			Phase current circuit:Less than 0.5VA,	Phase current circuit:Less than 0.5VA,	
			Voltage circuit:Less than 1.0VA,	Auxiliary power supply circuit:	
			Auxiliary power supply circuit:	at DC100V=Approx. 6W,	
Burden	(at rating)		at DC100V=Approx. 6W,	at AC100V=Approx. 12VA,	
Duruen	(arranig)		at AC100V=Approx. 12VA,	at DC220V=Approx. 6W,	
			at DC220V=Approx. 6W,	at AC220V=Approx. 14VA	
			at AC220V=Approx. 14VA	(In case of installing communication card, add 2 VA.)	
			(In case of installing communication card, add 2 VA.)		
Mass			Net weight of relay unit:Approx. 3	3.5kg, Including case:Approx. 4.5kg	
Sample	of external	connection diagram	Fig.8-1	Fig.8-2, 3	

	Items	Condition	Guaranteed performance		
Operation value	Biased differential	Setting: Minimum operation value,			
	characteristic	Bias and operation time for all elements = minimum	Setting value ±5%		
	Minimum operation	Input: One terminal feeding for neutral side or load side	Setting value ±3/6		
	current	(called "one terminal feeding" in afterward)			
	Loss of excitation element		C 1		
	ZF operation value	Setting: All settings operation time = minimum	Setting value ±5%		
	Loss of excitation element	Input: Current=rated current1×2 constantly (10A) (Ia=5A, Ib=5A, Ia-Ib=10A)			
	ZB operation value	Current phase: lag 270° against voltage	Setting value ±5%		
Reset value	Loss of excitation element	*When measuring operation values, if voltage reaches 110V	105% or less of operation value		
	ZF reset value	or more with the 2×rated current being constant,			
	Loss of excitation element	measurement is realized by reducing the current with			
	ZB reset value	voltage being constant at 110V.	95% or more of operation value		
	Biased differential	Setting: Minimum operation value,			
	characteristic	Bias and operation time for all elements = minimum	95% or more of operation value		
	Reset value	Input: One terminal feeding			
	nesel value	Setting: Minimum operation current=minimum,	At INST setting: 60ms or less		
	Biased differential characteristic	Bias=minimum, all operation time settings			
			At 0.1~0.5s setting: setting value ±20ms		
Operation		Input: One terminal feeding condition 0(A) →minimum operation current×300%.			
time		Setting: ZF,ZB=minimum, all operation time settings			
	Loss of excitation	Input: Current= $0(A) \rightarrow$ rated current1×2 constantly(10A),	In case of setting value 0.2s~0.4s, setting value±20.		
	element	Voltage=110V \rightarrow 40(V)	In case of setting value 0.5s or more, setting value±5		
		Current phase: lag 270° against voltage			
	Biased differential characteristic	Setting: Minimum operation current=minimum,			
		Bias=minimum, all operation time settings	200ms±20ms		
Reset time		Input: One terminal feeding condition,			
		minimum operation current $\times 300\% \rightarrow 0(A)$.			
	Loss of excitation element	Setting: ZF,ZB=minimum, all operation time settings			
		Input: Current=rated current1×2 constantly $(10A) \rightarrow 0(A)$,	200ms±20ms		
		$Voltage=40V \rightarrow 110(V)$			
		Current phase: lag 270° against voltage			
H.					
		Setting: Minimum operation value, Bias and operation time for	Bias setting I1 Bias		
Biased differential characteristic		all elements	$\begin{array}{ c c c c c }\hline 10\% & 11A \\ \hline 15\% & 11.5A \\ \hline 12=10(A)\pm5\% \\ \hline \end{array}$		
Bias charact	eristic	Input: Fixed I1 according to right side table and vary I2	$\frac{13\%}{20\%}$ $\frac{11.5A}{12A}$ $\frac{12-10(A)\pm 5\%}{12A}$		
		Input: Fixed I1 to 30A and vary I2	I2:15A±10%		
		Setting: Minimum operation current = minimum,			
Phase	Biased differential characteristic	Bias and operation time for all elements = minimum	Bias10%:174.3±5° Bias15%:171.4±5°		
		Input: Fixed I1 and I2 to 10A and vary the phase between			
		I1 and I2, measure operating angle.	Bias20%:168.5±5°		
		Setting: ZF, ZB=minimum, operation time=minimum			
characteristic	Loss of excitation element	Input current=rated current×2 constantly(10A) (IA=5A,IB=5A, IA-IB=10A)	In the inputting theoretic operation value,		
		The characteristics control points: 2 points (lag 240° and 300° against voltage.)	theoretic phase angle value±5% and theoretic operation value±5% at the characteristic control point.		
		*For the method of seeking the operation theoretic value,			
		refer to the instruction manual.			
Loss of excitation element ZF V-I characteristic		Setting: Minimum operation time for all elements	Setting value ±5%		
Loss of excitation element ZB		Input current=0.8A~40A (No operation below 0.8A)	Setting value ±5%		
V-I character		Current=lag 270°against voltage			
and of evoltation of	lement, 51 stopper operation value	Common condition	0.8A±5%		

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.

2. Inrush current of power supply

Since inrush current (about 2ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55A
AC100V	Approx. 25A
AC220V	Approx. 65A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.

4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50ms. If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.

5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

- 6. CC-Link communication circuit
- Please include the communication card into your purchasing order in

Precaution for using

- When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
- 2. To set as [LOCK] position means to set the element out of use.

Precaution for safety

Please refer to page2 and 3 regarding the safty information and request when placing order.

case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a.~d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00.

- 7. Improvement of reliability of protection system
- For the important facilities, multiplex system such as dual should be provided to improve reliability.
- 8. Effects of external surge
- Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
- 9. The external wiring should be done according to the connection diagram of each relay. If a wrong wiring would be made, there are some possibilities that causing of the differential current and improper operation of loss of excitation element.
- 10. Lock function by external control input

Two DI circuits are installed for the interlock by external control signals, and a relay element can be locked by DI input. Moreover, the relay element locked at the time of DI input arising can be set up to each DI circuit.

- 11. In case of application of the loss of excitation element only, wiring should be made for the VT circuit Vab, CT circuits Ia (terminal number "A17"- "A18"). Ib (terminal number "A19"-"A20") and not necessary to make a wiring for other terminals.
- 12. The DI input for interlock (Terminal number "E-01", "E-03" and "E-02", "E-04") has a polarity. Therefore, please pay attention to polarity as the input signals can not be detected properly due to the wrong connection of DI circuit.

- 13. The differential current, caused by the flow-through current (due to inrush current of transformer or faults current) of CT which has different saturated characteristics for each other and are located in the neural point and load side of generator, will become cause of miss-operation of the relay. To prevent from such an incorrect operation, it is recommended to apply the CT in which accuracy limit factor is more than 20 and accuracy is 1P class or 1PS class.
- 14. Despite of no faults in the excitation circuit, the calculated impedance in the relay will be closed to the operation area and the loss of excitation element will operate due to unbalance of 3 phases PT circuit voltage (caused by a broken wire for example) or unbalance of burden for each phase. To prevent from such incorrect operation, it is recommended to apply the voltage balance relay.
- 15. When the differential current check is detected (contact X4 is in operation and differential check LED is in lit condition), careful checking of external wiring is requested as there are a possibility to have some mistake of the wiring.
- 3. When current input for the loss of excitation element is derived from the generator neutral point side, the phase current measuring does not indicate outgoing current but incoming current.

Sample of external connection diagram

Fig.8-1 CGP2-A01D2

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

Fig.8-2 CGP2-A01D2 (Apply only 40 element)

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

57

Fig.8-3 CGP2-A02D2

The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

MELPRO-D Series Dimensions

CPS1

Suggestion From Mitsubishi Electric (for improving reliability of system)

As a way to improve the realiability of Protection system, MITSUBISHI ELECTRIC also provides customers the following products.

Reduntant fault detection system

2 out of 3 method…The method that the power system faults are detected by at least 2 relays among 3-relay set.

In this way, the power system faults can be detected when 2 relays operate, even if the other relay is in failure. (refer to the following concept diagram)

We provide a compact unit integrating 3 relays in one case.

Control and Operation

Explanation of Front panel

No.	Designation		Symbol	Description	
1		Setting/Cancel		SETTING/CANCEL	Pressing this switch will start the procedure for setting, forced operation or option. When this switch is pressed again instead of the <u>SET.END/TRIP</u> switch, data that has been programmed will be all cleared to terminate the selected procedure.The SETTING/CANCEL indicator LED is lit during the procedure.
2	switches	Select/Set		SELECT/SET	This switch is used to select an item number and program item data during setting, forced operation or option procedure. When data is programmed to be ready for replacing the currently used setting, the SET.END/TRIP LED will blink.
3	Operational key sv	Setting End/Trip		SET.END/TRIP	When the SET.END/TRIP switch is pressed with its LED blinking during setting, forced operation or option procedure, the current setting will be replaced by data given by programming. The new setting will be thus enabled.
(4)	ation	UP select		UP	These switches are used for selecting data elements. Pressing these switches for a while will allow fast forward.
5	Opera	DOWN select		DOWN	With the cover operating button, you can use the switches without removing the cover.
6		Indication/Indicatio	n End	IND./IND.END	Pressing this switch will start or end the display of settings and measurements. With the cover operating button, you can use the switches without removing the cover.
7		Reset		RESET	Pressing this switch will reset output contacts after the relay operated and extinguish the operation indicator LEDs. With the cover operating button, you can use the switches without removing the cover.
8		Item No.	Green	_	A number allocated to the selected setting, forced operation or option item is indicated here.
9		Item Data	Red	_	Data that corresponds to the item number selected is displayed here. For the indication of individual letters, see the instruction manual specifically prepared for each model.
10	îDs	RUN	Green	-	Indicate the result of the auto self-check. The lamp will be lit for normal conditions while off for abnormal conditions.
(1)	Indicator LEDs	Communication	Green	_	 Indicate the operational status of the communication card. With a communication card installed: the lamp will be lit for normal conditions, blinking during communication and off for abnormal conditions. With a communication card not installed: the lamp will be off.
(12)		Unit	Yellow	-	Indicate the unit used for the item data.
(13)]	Phase	Yellow	-	Indicate the phase that corresponds to the item data.
(14)		Setting/Cancel	Yellow	-	This lamp will be lit during setting, forced operation or option procedure.
(15)		Setting End/Trip	Yellow	_	This lamp will blink when new data is programmed to be ready for replacing the current setting.
(16)		Operation	Red	-	Indicate the applicable operation elements and phases of the relay.
(17)	Direct communication port -			_	This port is used for connecting PC and relay with the dedicated cable (option). The measuring values, operating conditions and setting changes can be done by PC with the dedicated software (option).

MITSUBISHI Numerical Protection Relay *MELPRO*[™]-D Series

TO PREVENT IT FROM THE RISK OF DAMAGE AND MAL FUNCTION, BE SURE TO READ OPERATING AND MAINTENANCE (SERVICING) INSTRUCTIONS BEFORE USING. HEAD OFFICE : 7-3 MARUNOUCHI 2-CHOME, CHIYODA-KU TOKYO, 100-8310, JAPAN

> We are waiting your technical contacts by FAX. ATTN. Protective relay technical service FAX NO. JAPAN +81-78-682-8051

"MELPRO" is a trademark of the Mitsubishi Electric Corporation. This printed matter has been published June 2015. Please note that specifications are subject to change without notice.

Published Jun.2015