Changes for the Better

MITSUBISHI Numerical Protection Relay MELPRO ${ }^{\text {Tw }}$-D Series

Safety section

This Safety section should be read before starting any work on the relay. Be sure to read the instruction manuals and other related documents prior to commencing any work on the relay in order to maintain them in a safe condition. Be sure to be familiar with the knowledge, safety information and all caution items of the product prior to use.

CAUTION Caution means that failure to un-observe safety information, incorrect use, or improper use may endanger personnel and equipment and cause personnel injury or physical damage.
Items as classified to the caution may become to occur more sever results according to the circumstance. Therefore, all items described in the safety section are important and to be respected without fail.

CAUTION

1. Items concerning transportation
(1) Be sure the equipment to be kept in normal direction
(2) Avoid the bumps, shock, and vibration, otherwise the product performance /life might be unfavorably affected.
2. Items concerning storage
(1) Environment shall be as below, otherwise the product performance/life might be unfavorably affected.
-Ambient temperature: $-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$ (with no condensation nor freezing)
Relative humidity: $30 \sim 80 \%$ average of a day
-Altitude: Less than 2000 m
-Avoid applying unusual shock, vibration or leaning or magnetic field
-Not expose to harmful smoke, gas, salty air, water, vapor, dust, powder, explosive material or wind, rain.
3. Items concerning mounting/wiring work
(1) Mounting and wiring work should be done correctly. Otherwise, damage, burning or erroneous operation might occur.
(2) Screw terminal should be tightened securely. Otherwise, damage and burning might occur.
(3) Please refer to the following about the screw tightening torgue.

Applications	Screw size	Guideline value of torque	Specified tolerance
Screw terminal	M3.5	$1.10 \mathrm{~N} \cdot \mathrm{~m}(11.2 \mathrm{kgf} \cdot \mathrm{cm})$	$0.932 \sim 1.27 \mathrm{~N} \cdot \mathrm{~m}(9.5 \sim 12.9 \mathrm{kgf} \cdot \mathrm{cm})$
Screw for relay unit fixing	M5.0	$3.24 \mathrm{~N} \cdot \mathrm{~m}(33 \mathrm{~kg} \cdot \cdot \mathrm{~cm})$	$2.75 \sim 3.63 \mathrm{~N} \cdot \mathrm{~m}(28 \sim 37 \mathrm{~kg} \cdot \mathrm{~cm})$

(4) Grounding should be done correctly in case it is required. Otherwise, electric shock, damage, burning or erroneous operation might occur
(5) Wiring should be done without mistake especially observing the correct polarity. Otherwise, damage, burning or erroneous operation might occur.
(6) Wiring should be done without mistake especially observing the phase ordering. Otherwise, damage, or erroneous operation might occur.
(7) Auxiliary power source, measuring transformer and power source which have enough capacity for correct operation of product should be used. Otherwise, an erroneous operation might occur.
(8) Be sure to restore the front cover, terminal cover, protection cover, etc to the original position, which have been removed during the mounting/ wiring work. Otherwise, electrical shock might occur at the time of checking.
(9) Connection should be done correctly using designated and right connectors. Otherwise, damage or burning might occur
(10) Fully insert the sub unit into the case until you can hear a click while pressing the handles located on both sides of the sub unit front face. Otherwise, incomplete inserting the sub unit might only establish a poor contact with the terminals located on the back side of unit, which might cause erroneous operation or heating
4. Concerning equipment operation and settings
(1) Operational condition should be as below. Otherwise, the product performance/life might be unfavorably affected.
-Deviation of auxiliary power: within $+10 \% \sim-15 \%$ of rated voltage
-Deviation of frequency: within $\pm 5 \%$ of rated frequency
-Ambient temperature: $-10^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$ (with no condensation nor freezing)
-Relative humidity: $30 \sim 80 \%$ average of a day
-Altitude: Less than 2000 m
-Avoid to be exposed to unusual shock, vibration, leaning or magnetic field
-Not expose to harmful smoke, gas, salty air, water, vapor, dust, powder, explosive material, wind or rain.
(2) Qualified personnel may work on or operate this product, otherwise, the product performance/life might be unfavorably affected and/or burning or erroneous operation might occur.
(3) Be sure to read and understand the instruction manuals and other related documents prior to commencing operation and maintenance work on the product. Otherwise, electrical shock, injury, damage, or erroneous operation might occur.
(4) While energizing product, be sure not to remove any unit or parts without permissible one. Otherwise, damage, or erroneous operation might occur.
(5) While energizing product, be sure to make short circuit of current transformer secondary circuits before setting change or drawing out the sub unit. Otherwise, secondary circuit of live current transformer might be opened and damage or burning might occur due to the high level voltage.
(6) While energizing product, be sure to open trip lock terminal before setting change or drawing out the internal unit of product. Otherwise, erroneous operation might occur.
(7) Be sure to use the product within rated voltage and current. Otherwise, damage or erroneous operation might occur.
(8) While energizing product, be sure not to clean up the product. Only wiping a stain on the front cover of product with a damp waste might be allowable. (Be sure to wring hardly the water out of the waste.)
5. Items concerning maintenance and checking
(1) Be sure that only qualified personnel might work on or operate this product. Otherwise, electrical shock, injury, damage, or erroneous operation might occur
(2) Be sure to read and understand the instruction manuals and other related documents prior to commencing operation and maintenance work on the product. Otherwise, electrical shock, injury, damage, or erroneous operation might occur
(3) In case of replacing the parts, be sure to use the ones of same type, rating and specifications, etc. If impossible to use above parts, be sure to contact the sales office or distributor nearest you. Otherwise, damage or burning might occur.
(4) Testing shall be done with the following conditions.
-Ambient temperature: $20^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
-Relative humidity: Less than 90%
-Magnetic field: Less than 80A/m
-Atmospheric pressure: $86 \sim 106 \times 10^{3} \mathrm{~Pa}$
-Installation angle: Normal direction $\pm 2^{\circ}$
-Deviation of frequency: within $\pm 1 \%$ of nominal frequency
-Wave form (in case of AC): Distortion factor less than 2% (Distortion factor $=100 \% \times$ effective value of harmonics/effective value of fundamental) -Ripple (in case of DC): Ripple factor less than 3% (Ripple factor $=100 \% \times(\max -\mathrm{min}) /$ average of DC)
-Deviation of auxiliary power: within $\pm 2 \%$ of nominal voltage
-Be sure not to inject the voltage or current beyond the overload immunity. Otherwise, damage or burning might occur.
-Be careful not to touch the energized parts. Otherwise, the electric shock might occur.
6. Items concerning modification and/or repair work

Be sure to ask any modification and/or repair work for product to the sales office or distributor nearest you.
Unless otherwise, any incidents occurred with modification or repair works (including software) done by any other entity than MITSUBIHI
ELECTRIC CORPORATION shall be out of scope on warranty covered by MITSUBISHI ELECTRIC CORPORATION.

7. Items concerning disposal

Particular regulations within the country of operation shall be applied to the disposal.

Request when placing order

Thank you very much for your usual selecting the MITSUBISHI ELECTRIC CORPORATION products.
When ordering our products described in this catalogue, please read and agree the followings before ordering as long as any special condition are not nominated in the offer document, contract document, catalogue other than this.

1. Guarantee period

The guarantee period of this product should be one year after delivery, unless otherwise specified by both parties.
2. Scope of guarantee

When any fault or defect is detected during the period of guarantee and such fault or defect is proved to be caused apparently at the responsibility of MITSUBISHI ELECTRIC CORPORATION, the defective unit concerned will be repaired or replaced by a substitute with free of charge. However, the fee for our engineer dispatching to site has to be covered by the user. Also, site retesting or trial operation caused along with replacing the defect units should be out of scope of our responsibilities. It is to be acknowledged that the following faults and defects should be out of this guarantee.
(1) When the faults or defects are resulted from the use of the equipment at the range exceeding the condition/environment requirements stated in the catalogue and manual.
(2) When the faults or defects are resulted from the reason concerning without our products.
(3) When the faults or defects are resulted from the modification or repair carried out by any other entity than MITSUBISHI ELECTRIC CORPORATION.
(4) When the faults or defects are resulted from a phenomenon which can not be predicted with the science and technology put into practical use at the time of purchase or contract.
(5) In case of integrating our products into your equipment, when damages can be hedged by the proper function or structure in the possession of your equipment which should be completed according to the concept of the defact standard of industry.
(6) In case of that the faults or defects are resulted from un-proper application being out of instruction of MITSUBISHI ELECTRIC CORPORATION.
(7) In case that the faults or defects are resulted from force majeure such a fire or abnormal voltage and as an act of God such as natural calamity or disaster.
3. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, MITSUBISHI ELECTRIC CORPORATION shall not be liable for compensation of damages caused by any cause found not be the responsibility of MITSUBISHI ELECTRIC CORPORATION, loss in opportunity, lost profits incurred to the user by failures of MITSUBISHI ELECTRIC CORPORATION products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than MITSUBISHI ELECTRIC CORPORATION products and other tasks.

4. Applications of products

(1) The user is requested to confirm the standards, the regulations and the restrictions which should be applied, in case of utilizing products described in this catalogue and another one in combination. Also, the user is requested to confirm the suitability of our products to your applied system or equipment or apparatus by yourself. MITSUBISHI ELECTRIC CORPORATION shall not be liable for any suitability of our products to your utilization.
(2) This MITSUBISHI ELECTRIC CORPORATION products described in the catalogue have been designed and manufactured for application in general industries, etc. Thus, application in which the life or an asset could be affected, such as medical system for life-sustaining, in nuclear power plants, power plants (Power generation, transmission and distribution), aerospace, and transportation devices (automobile, train, ship, etc) shall be excluded. In addition to above, application in which the life or an asset could be affected by potentially chemical contamination or electrical interference and also in which the circumstances and condition are not mentioned in this catalogue shall be excluded. Note even if the user wants to use for these applications with user's responsibility, the user to be requested to approve the specification of MITSUBISHI ELECTRIC CORPORATION products and to contact to the technical section of MITSUBISHI ELECTRIC CORPORATION prior to such applications. If the user applies MITSUBISHI ELECTRIC CORPORATION products to such applications without any contact to our technical section, MITSUBISHI ELECTRIC CORPORATION shall not be liable for any items and not be insured, independently from mentioned in this clause.
(3) In using MITSUBISHI ELECTRIC CORPORATION product, the working conditions shall be that the application will not lead to a major accident even if any problem or fault occur, and that backup or duplicate system built in externally which should be decided depend on the importance of facility, are recommended.
(4) The application examples given in this catalogue are reference only and you are requested to confirm function and precaution for equipment and apparatus and then, use our products.
(5) The user is requested to understand and to respect completely all warning and caution items so that unexpected damages of the user or the third party arising out of un-correct application of our products would not be resulted.
5. Onerous repair term after discontinuation of product
(1) MITSUBISHI ELECTRIC CORPORATION shall accept onerous product repairs for 7(seven) years after production is terminated. (However, please consider the replacement for the products being in operation during 15 years from ex-work.)
(2) Product supply (including repair parts) is not available after production is discontinued.
6. Changes in product specification

The specification given in the catalogue, manuals or technical documents are subject to change without prior to notice.
7. Scope of service

The technical service fee such as engineer dispatching fee is excluded in the price of our products. Please contact to our agents if you have such a requirement.

How to order

Please check the specifications and be ready with the following information when placing order.

	Items to be informed	Sample of ordering In case of COC4-A01D1	Remarks
	Type name	COC4-A01D1	Refer to the specifications for detail.
	Frequency	50 Hz	Specify 50 Hz or 60 Hz .
	Ratings	Phase current 5A, Zero phase current 1A	Refer to the specifications for detail.
	Auxiliary power supply volage	AC/DC100~220V	Refer to the Common Technical data for detail.
	Languages	English language	Specify English or Japanese.
	Communication function	Communication card for CC-Link	The communication feature may be installed later through subsequent purchase of the communication card. When communication feature is ordered at the same time with relay itself, type CC-COM2 communication card will be supplied. However, in case of subsequent purchase of the communication card, please include the information in your ordering which are the type of relay and presence or absence of connector for connecting PC located at the lower left corner of the relay front panel. In case of presence of connector, type of communication card is CC-COM2. In case of absence of connector, type of communication card is CC-COM.
	Parts	Case	When ordering, please specify the type of case D1 or D2 and uses of case (for testing purpose or not). Please note that CT circuits shorten mechanism is not equipped in the dedicated case of testing purpose.
		Cover	Please specify the type of case D1 or D2.
		Terminal block (with cover)	Please specify the type of relay and terminal block arrangement(from the left side of the back A,B,C,E). Please note ordering only cover is not accepted.

Please note that other specification than described in this catalogue is not applicable for manufacturing.

Relays suitable for advanced communication network systems contribute to build the automated power distribution.

To improve the reliability of distribution system is quite essential for the stable operation of all facilities installed in the factories and buildings. In order to realize high reliable distribution system, more functional protection relay as the core for the protection and control systems is essentially required. Through passing the age of the electric mechanical type relay and the transistor type relay, today, the main stream of protection relay has been moved to the numerical type. The numerical type protection relay MELPRO-D series have been developed based on the combination of the plenty know how gained through numerical relay history in several ten years and the latest electronics technology, and make possible to respond to the recent age needs for more functionality protection relay system.

High accuracy \& High speed processing

Adopt the highest performance CPU placed front end of the digital age

The high speed digital computation realizes the high accuracy operating characteristics never before possible. The operating characteristics are configured by the software, so that little deterioration and the stabilized operation can be realized.
Digital computation

High degree of reliability

Adopting self-diagnosis function for countermeasures against problem may arise.

The self-diagnosis function which monitors continuously the input, built-in power source and CPU is equipped. In the failures occurring of the relay, they can be detected immediately by the self-diagnosis function. Furthermore, dual output circuit makes possible to prevent the occurrence of misoperation due to the hardware failures.

Superior resistance to attack by tough environment
Adopt the structure to be resistant to the disturbances such as the electric surge and noise, the harmonics, the radio noise from the cellular phone, the temperature and the humidity.

Self-diagnosis function

Always protect the electrical network and at the same time,
detect the defects of relay and indicated them on the LED.

Suitable for advanced communication network system

Fully possible to access from the central control system

The communication network system enables the data acquisition such as measurement value, operation status and setting value as well as the remote operation such as the setting changes from the central control system. Thereby, efficient operation and maintenance can be realized.

Local operation and monitoring for Site maintenance (Direct PC)

By connecting PC with relay via the RS232C port located on the relay panel, local operation and monitoring are enabled as same as the remote operation and monitoring. Thereby, the maintenance work at site is strongly supported.
※Special HMI software (option) is needed for local operation and monitoring.
※Please refer to the specification table for each type of relay to confirm the capable of communication port

Communication network facilities with flexibility and extensibility.
In consideration of future communication network system variations and compatibility, communication features are installed in the relay using a replaceable card. Thereby, it is plenty flexible and extensible.

Mitsubishi Numerical type protection reley $M E L P R O^{\text {TM }}$-D series

Programmable output contacts complying with requirements on the flexibility

The operating output contacts can be set by combing the outputs of the protection relay element using "OR" logic, thereby simplifying sequence design.
Also, it is possible to reduce the cost of switchboard as reducing wiring works.

【Schematic image of programmable output (Example: type COC4-A01)】

Substantial measuring function

Substantial metering function

Possible to measure the steady state of the relay input values (Current, Voltage, Power, Frequency, Power factor, Zero phase current and Zero phase voltage), thereby possible to support the energy management. Remark: Please note that measuring item is depended on the type of relay.

Refer to the specification table of each relay type for the detail on this regards.

Data save in the event of system fault

In the event of system fault, input effective value and wave form data have been measured and stored at the time when one of the protection elements operates to issue an output signal. Data for up to five phenomena can be stored and displayed. Therefore, analyze of phenomena becomes easy.

Upper Fig. : Image of waveform down loaded by the Direct PC HMI software

Replacement of existing relay

The dimension of the panel cutting is the same as the prior existing one. Replacing from the existing one to this new type is quite easy.

The dimension of the panel cutting is the same as the prior MULTICAP series. Replacing from the existing one to this new type is possible easily without using adaptor. Also, as this relay has a high degree of compatibility with the existing relay, the design change of the existing system is minimized. (Except for some types of relay)

Easy maintenance

Adopting draw-out unit mechanism enables easy maintenance and checking works

The draw-out unit mechanisms with automatic CT shorting is adopted, so that relay unit can be draw out without removing any parts or wirings. Thereby, it is possible to improve maintenance ease.
contents
Safety section 2 CDG Series EARTH FAULT DIRECTIONAL RELAY 24
Request when placing order 3
How to order 3
Features of MELPRO-D series 4
Type of MELPRO-D series 6
(listing of implemented elements)
Selection of type of relay (example) 7
Common Technical Data 8 MELPRO-D Series Dimensions 59
Suggestion from Mitsubishi Electric 60
COC Series OVER-CURRENT RELAY 9
CBV, CUB Series VOLTAGE RELAY 20 24
CONTROL and OPERATION 61
CFP Series FEEDER PROTECTION RELAY.
Display/Setting Operation 62
Type of ME[HPRO-D series (Ifistine of implemented elements)

Series	Type	50/51	500/516	67G	27	59	64	877	49	37	46	47	66	67 S	67P	95L	95H	91L	df/dt	84	87G	40		Remarks
$\begin{aligned} & \text { M } \\ & E \\ & E \\ & \mathrm{P} \\ & \mathrm{R} \\ & \mathrm{O} \\ & \dot{D} \end{aligned}$	COC1-A01D1	(1)																					Overcurrent relay(P.9)	CT $\times 1$ phase current
	COC1-A02D1		(1)																					CT $\times 1$ phase current
	COC2-A01D1	(2)																						CT $\times 2$ phases current
	COC3-A01D1	(3)																						CT $\times 3$ phases current
	COC3-A03D1	(3)																						CT $\times 3$ phases current
	COC4-A01D1	(3)	\bigcirc																					CT $\times 3$ phases current
	COC4-A02D1	(3)	\bigcirc																					CT $\times 3$ phases current
	COC4-A03D1	(3)	\bigcirc																					CT $\times 3$ phases current - With 2nd harmonic current detection
	CBV2-A01D1				(3)	(3)																	Voltage relay (P.20)	VT $\times 3$ line voltage
	CBV3-A01D1				(1)	(1)	\bigcirc																	VT $\times 1$ line voltage
	CBV4-A01D1				(3)		(2)																	$\mathrm{VT} \times 3$ line voltage
	CUB1-A01D1				(3)	(3)						\bigcirc												VT $\times 3$ line voltage
	CFP1-A01D1	(2)		\bigcirc																			Feeder protection relay(P.24)	CT $\times 2$ phases current (For EVT)
	CFP1-A02D1	(2)		\bigcirc																				CT $\times 2$ phases current (For EVT)
	CDG1-A01D1			\bigcirc																			Earth fault directional relay (P.24)	
	CAC1-A01D2							(3)															Biased differential relay for (2 windings) transformer protection (P.28)	
	CMP1-A01D1/2	(2)		\bigcirc					\bigcirc	(2)	\bigcirc		\bigcirc										Motor protection relay(P.35)	CT $\times 2$ phases current (For EVT)
	CMP1-A02D1	(3)	\bigcirc						\bigcirc	(3)	\bigcirc		\bigcirc											CT $\times 3$ phases current
	CMP2-A02D2	(3)	\bigcirc						\bigcirc	(3)	\bigcirc		\bigcirc											CT $\times 3$ phases current
	CPP1-A01D2				(3)	(1)	\bigcirc							(3)	(3)	\bigcirc	\bigcirc	(3)					Interconnection protection relay for the dispersed generation system(P.42)	For extra high voltage interconnection (For EVT)
	CPP1-A11D2				(3)	(1)	\bigcirc							(3)	(3)	\bigcirc	\bigcirc	(3)	\bigcirc					For extra high voltage interconnection (For EVT)
	CGP1-A01D2	(2)		\bigcirc	(3)	(1)	\bigcirc				\bigcirc				(3)	\bigcirc	\bigcirc			(1)			Generator protection relay (P.47)	CT $\times 2$ phases current (For EVT)
	CGP1-A03D2	(3)	\bigcirc		(3)	(1)					\bigcirc				(3)	\bigcirc	\bigcirc			(1)				CT $\times 3$ phases current
	CGP2-A01D2																				(3)	\bigcirc	Biased differential relay for Generator protection (P.53)	
	CGP2-A02D2																				(3)			
※1	CAC2-A31D2							(3)																MELPRO-D30

※1 This type of relay belong to CD30 series. The operation method and appearance of D30 series are different from D series.
Please refer to the instruction manual for their details.
$※ 2$ OThe number written in the circle indicates detecting phase number.

Network	Device number	MELPRO ${ }^{\text {m"-- }}$		
Incoming of extra high voltage	27	$\begin{aligned} & 1 \phi \mathrm{CBV} 3-\mathrm{AO} 1 \mathrm{D} 1 \\ & 3 \phi \mathrm{CBV}-\mathrm{AO} 1 \mathrm{D} 1 \end{aligned}$		
	50/51	3ϕ COC3-A01D1/COC3-A03D1	COC4-A01D1 COC4-A02D1 COC4-A03D1	
	51G	1ϕ COC1-A02D1 3 \varnothing COC3-A01D1/COC3-A03D1		
	50/51			
	51G	1ϕ COC1-A02D1		
Extra high voltage(secondary oftransformer)	27	1ϕ CBV2-A01D1$2 \phi$ CBV3-A01D1		
	59			
	877	CAC1-A01D2		
	50/51	3ϕ COC3-A01D1/COC3-A03D1	COC4-A01D1	
	51 G	1ϕ COC1-A02D1		
	50/51	3ϕ COC3-A01D1/COC3-A03D1	COC4-A01D1	
	51G	1ϕ COC1-A02D1		
	50/51	COC3-A01D1/COC3-A03D1		
	27	CBV3-A01D1		
	59			
	64			
High voltage (secondary of transformer)	50/51	COC2-A01D1		
	67G	CFP1-A01D1		
	27	CBV3-A01D1		
	59			
	64			
	$\begin{array}{r} 5051 \quad 51 \mathrm{G} \\ 37464966 \\ \hline \end{array}$	CMP1-A02D1/CMP2-A02D2		
	$\begin{array}{r} 505167 \mathrm{G} \\ 37 \quad 4649 \quad 66 \end{array}$	CMP1-A01D1/CMP1-A01D2		
Remark 1: It is advisable to adopt the dual system or 2 out of 3 systems in order to improve the reliability of the important facilities. Remark 2: In case of not available an uninterruptible power source, please use AC/DC converter type B-T1 manufactured by MITSUBISHI ELECTRIC CORPORATION or commercially available uninterruptible power source (UPS) instead of using AC auxiliary power source such as derived from VT secondary circuit because of no guarantee against power interruption during system faults.				

Abbreviation

$\begin{array}{ll}\text { CB } & \text { : Circuit Breaker } \\ \text { CT } & \text { Current Transfo }\end{array}$
EVT : Earthed type voltage Transformer
NGR : Neutral Grounded Resister
SC : Static Condenser
VT : Voltage Transformer

Common Technical Data

ITEM			DESCRIPTION	CONDITION	STANDARD
Environment	Ambient operating temperature	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$			IEC60255-6
	Ambient storage and transport temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			IEC60255-6
	Damp heat	$+40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 4$ days			IEC60068-2-78
Ratings	Auxiliary power supply	$\begin{aligned} & 100,110,125,220 \mathrm{VDC} \\ & \text { 100,110,120,220VAC } \\ & \text { (Applicable to any voltage above) } \end{aligned}$			IEC60255-6
	Operative range of auxiliary power supply	$\begin{aligned} & \text { DC: }-15 \% \text { to }+10 \% \\ & \text { (Temporarily }-20 \% \text { to }+30 \% \text {) } \\ & \text { AC: }-15 \% \text { to }+10 \% \\ & \text { (Temporarily }-15 \% \text { to }+15 \% \text {) } \end{aligned}$			IEC60255-6
	Frequency	50 or 60 Hz			IEC60255-6
	VT	Specified per relay type			
	CT				
Burden	Auxiliary power supply	Specified per relay type			
	VT				
	CT				
Thermal withstand	VT	$1.15 \mathrm{VN}, 3 \mathrm{hours}$			IEC60255-6
	CT	40IN, 1second			
Contact capacity	For trip	Make	110V DC: 15A, 0.5s 220V DC: 10A, 0.5s	$(\mathrm{L} / \mathrm{R}=0)$	IEC60255-0-20
		Break	110V DC: 0.3A 220V DC: 0.15A	(L/R§40ms)	IEC60255-0-20
	For signalling and alarm	Break	$\begin{aligned} & \hline 500 \mathrm{VA} \\ & 60 \mathrm{~W} \end{aligned}$	$\begin{aligned} & (\cos \varphi=0.4) \\ & (\mathrm{L} / \mathrm{R}=0.007 \mathrm{~s}) \end{aligned}$	IEC60255-0-20
		Max. current	5A		IEC60255-0-20
		Max. voltage	$380 \mathrm{VAC} / 125 \mathrm{VDC}$		IEC60255-0-20
Dielectric test	Circuit of 60 V or below	$500 \mathrm{VAC}, 1 \mathrm{~min}$.		1) Between each circuit and the exposed conductive parts, the terminals of each independent circuit being connected together 2) Between independent circuits, the terminals of each independent circuit being connected together	IEC60255-5
	Circuit of more than 60 V and 500 V or below	$2000 \mathrm{VAC}, 1 \mathrm{~min}$.			
	Open contact	1000VAC, 1min.		Between open contact poles	
Impulse voltage test		$5 \mathrm{kV}, 1.2 \mu \mathrm{~s} / 50 \mu \mathrm{~s}$		1) Between each circuit and the exposed conductive parts, the terminals of each independent circuit being connected together 2) Between independent circuits, the terminals of each independent circuit being connected together	IEC60255-5
High-frequency disturbance test	Common mode	2.5 kV peak, 1 MHz with 200Ω source impedance for 2 second		Between independent circuits, and between independent circuit and earth	IEC60255-22-1 class 3
	Differential mode	1.0 kV peak, 1 MHz with 200Ω source impedance for 2 second		Across terminals of the same circuit	
Electrostatic discharge test		8kV		Contact discharge	IEC60255-22-2 class 4
		15 kV		Air discharge	
Radiated electromagnetic field disturbance test		38 to $87 \mathrm{MHz} \quad 146$ to 174 MHz420 to 470 MHz			IEC60255-22-3 class 3
Fast transient disturbance test		2.0 kV , $5 \mathrm{~ns} / 50 \mathrm{~ns}$, 1 min .			IEC60255-22-4
Vibration test		Refer to class 1			$\begin{aligned} & \text { IEC60255-21-1 } \\ & \text { class } 1 \end{aligned}$
Shock response		Refer to class 2			IEC60255-21-2 class 2
Shock withstand		Refer to class 1			$\begin{aligned} & \text { IEC60255-21-2 } \\ & \text { class } 1 \end{aligned}$
Bump		Refer to class 1			$\begin{aligned} & \text { IEC60255-21-2 } \\ & \text { class } 1 \end{aligned}$
Enclosure protection		IP51			IEC60529

[^0]
COC Series OVER-CURRENT RELAY

Type, rating and specification

Type name			COC1-A02D1	COC1-A01D1	COC2-A01D1	COC3-A01D1
Rating	Phase current		1A	5A	5A	5A
	Zero-phase current				-	-
	Frequency		50 Hz or 60 Hz			
Protective element			51/50(1 phase)		51/50(2 phases)	51/50 (3 phases)
Setting	Timedelayed	Operation current	LOCK-0.1~0.8A (0.05A step) LOCK-1~12A (0.1A step)			
		Operation time multiplier	$0.25-0.5 \sim 50(0.5 \mathrm{step})$			
		Operation time characteristics	Normal inverse time-delayed (3 kinds), Very inverse time-delayed (2 kinds), Extremely inverse time-delayed (3 kinds). Long inverse time-delayed (3 kinds). Definite time-delayed (1 kind)			
		Reset time characteristics	Normal inverse time-delayed (1 kind), Definite time-delayed (2 kinds)			
	antane	Operation current	LOCK-1~8A (0.1A step)		LOCK-2~80A (1A step)	
		Operation time	INST-0.1 $\sim 0.5 \mathrm{~s}$ (0.1 s step)			
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)			
	Operation indicator LED hold		All LED self-hold (Default setting at ex-works)			
	CT primary		$1 *-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250-$ $1500-2000-2500-3000-4000-5000-6000-7500-8000[\mathrm{~A}]$ ※Positive phase rating : Applicable 1 A rating product only			
Display	Real time measurement		Phase current $\times 1$ phase		Phase current $\times 2$ phases	Phase current $\times 3$ phases
	Max.record		Phase current $\times 1$ phase		Phase current $\times 2$ phases	Phase current $\times 3$ phases
	Fault record (operation value)		Phase current $\times 1$ phase		Phase current $\times 2$ phases	Phase current $\times 3$ phases
	Fault record (operation item)		Record and indicate the operated elements			
	Elapse of time-delayed timer		$0 \sim 10$ (The value 0 indicates the status of input current reaching the setting value or more and the value $1 \sim 10$ indicate the elapse time up to operating of the time delayed element.			
	Self-diagnosis		Normal result: On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result: Off the RUN LED•Status indication item No.400=Display defects code			
Forced operation			Each output contact			
Communication		Direct communication port	Standard equipment (PC software for Direct communication: option)			
		Remote communication port	Option(For CC-LINK or MODBUS)			
Burden (at rating)			Phase current circuit: Less than $0.5 \mathrm{VA} /$ phase Auxiliary power supply circuit: at $\mathrm{DC} 100 \mathrm{~V}=$ Approx. 5 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 7 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 6 W , at AC220V=Approx. 12 VA (In case of installing communication card, add 2 VA .)			
Mass			Net weight of relay unit: Approx. 2.3kg, Including case: Approx. 3.0kg			
Sample of external connection diagram			Fig.1-5~7	Fig.1-3~5	Fig.1-8	Fig.1-9
Remarks			The rated current 0.2 A product can be made based on the 1 A rating product.Also, the rated current 1 A product can be made based on the 5A rating product. The setting value of time delayed element and instantaneous element of 0.2 A product and 1 A product are calculated by performing a multiplication $1 / 5$ of above mentioned value.			

Type name			COC3-A03D1	COC4-A01D1	COC4-A02D1	COC4-A03D1
Rating	Phase current		5A	5A	5A	5A
	Zero-phase current			1A	5A	1A
	Frequency		50 Hz or 60 Hz			
Protective element			51/50 (3 phases)	51/50 (3 phases), 51G/50G (Zero-phase)		
Setting	Phase fault time-delayed	Operation current	LOCK-0.5 $\sim 8 \mathrm{~A}$ (0.1A step)	LOCK-1~12A (0.1A step)		
		Operation time multiplier	0.25-0.5~50 (0.5 step)			
		Operation time characteristics	Normal inverse time-delayed (3 kinds), Very inverse time-delayed(2 kinds), Extremely inverse time-delayed (3 kinds), Long inverse time-delayed (3 kinds), Definite time-delayed (1 kind)			
		Reset time characteristics	Normal inverse time-delayed (1 kind), Definite time-delayed (2 kinds)			
	Phase fault instantaneous	Operation current	LOCK-2~80A (1A step)			
		Operation time	INST-0.1~0.5s (0.1s step)			
	Earth fault time-delayed	Operation current		LOCK-0.1 $\sim 0.8 \mathrm{~A}$ (0.05A step)	LOCK-0.5~8A (0.1A step)	LOCK-0.1~0.8A (0.05A step)
		Operation time multiplier		0.25-0.5~50 (0.5 step)		
		Operation time characteristics		Normal inverse time-delayed (3 kinds) , Very inverse time-delayed (2 kinds), Extremely inverse time-delayed (3 kinds), Long inverse time-delayed (3 kinds), Definite time-delayed (1 kind)		
		Reset time characteristics	-	Normal inverse time-delayed (1 kind), Definite time-delayed (2 kinds)		
	Earth fault instantaneous	Operation current		LOCK-1~8A (0.1A step)	LOCK-2~80A (1A step)	LOCK-1~8A (0.1A step)
		Operation time		INST-0.1~0.5s (0.1s step)		
	2nd harmonic blocking					10~25\% (5\% step)
	Operation indicator LED hold		Refer to the external connection diagram/Auto reset for all contacts(Default setting at ex-works)			
	Output contact configuration		All LED self-hold (Default setting at ex-works)			
	CT primary (Phase current)		$1 *-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250-$ $1500-2000-2500-3000-4000-5000-6000-7500-8000[\mathrm{~A}] \quad$ ※Positive phase rating : Applicable 1 A rating product only			
	CT prima	ry (Zero-phase current)				
Display	Real time measurement		Phase current $\times 3$ phases	Phase current $\times 3$ phases, Zero-phase current		Phase current $\times 3$ phases, Zero-phase current Percentage of 2nd harmonic current content
	Max.record		Phase current $\times 3$ phases	Phase current $\times 3$ phases, Zero-phase current		
	Fault record (operation value)		Phase current $\times 3$ phases	Phase current $\times 3$ phases, Zero-phase current		
	Fault record (operation item)		Record and indicate the operated elements			
	Elapse of time-delayed timer		$0 \sim 10$ (The value 0 indicates the status of input current reaching the setting value or more and the value $1 \sim 10$ indicate the elapse time up to operating of the time delayed element.			
	Self-diagnosis		Normal result: On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result: Off the RUN LED•Status indication item No.400=Display defects code			
Forced operation			Each output contact			
Communication		Direct communication port	Not applicable	dard equipment (PC software for Direct communication: option		
		Remote communication port	Not applicable	Option(For CC-LINK)		
Burden (at rating)			Phase current circuit: Less than $0.5 \mathrm{VA} /$ phase, Zero phase circuit: Less than 0.5 VA Auxiliary power supply circuit: at $\mathrm{DC} 100 \mathrm{~V}=$ Approx. 5 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 7 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 6 W , at $\mathrm{AC} 220 \mathrm{~V}=$ Approx. 12 VA (In case of installing communication card, add 2 VA.)			
Mass			Net weight of relay unit: Approx. 2.3 kg , Including case: Approx. 3.0 kg			
Sample of external connection diagram			Fig.1-9	Fig.1-10~13	Fig.1-10~12, 14	Fig.1-10~13
Remarks			The rated current 1 A product can be made based on the 5 A rating product. The setting value of time delayed element and instantaneous element of 1 A product is calculated by performing a multiplication $1 / 5$ of above mentioned value. The operation current setting range "LOCK-2~130A (1A step)" for phase fault instantaneous element of type COC4-A02D1 is also available.			

[^1]Characteristics

Items		Condition	Guaranteed performance
Operation current	Phase fault timedelayed element	(Common condition) ※1	\cdot Setting $1.0 \sim 2.0 \mathrm{~A}$ for 5 A rating product Setting $0.2 \sim 0.4 \mathrm{~A}$ for 1 A rating product Setting value $\pm 10 \%$ -For setting of other range Setting value $\pm 5 \%$
	Phase faut instantanous element		Setting value $\pm 10 \%$
	Earth fault timedelayed element		\cdot Setting $0.1 \sim 0.2 \mathrm{~A}$ for 5 A rating product Setting $0.02 \sim 0.04 \mathrm{~A}$ for 1 A rating product Setting value $\pm 10 \%$ -For setting of other range Setting value $\pm 5 \%$
	Eart fault instantaneous element		Setting value $\pm 10 \%$
	2f/1f blocking (COC4-A03D1)	In case of half-wave rectified current superposing $\mathrm{I}_{\mathrm{DC}}=$ Setting tap value $\times 80[\%]$ $\frac{\mathrm{I}_{\mathrm{f} 2}}{\mathrm{I}_{\mathrm{f} 1}}=\frac{\frac{2}{3} \mathrm{I}_{\mathrm{DC}}}{\sqrt{2} \mathrm{I}_{\mathrm{AC}}+\frac{\pi}{2} \mathrm{I}_{\mathrm{DC}}} \times 100$	$\begin{aligned} & \cdot \mathrm{I}_{\mathrm{AC}}=254 \sim 330[\%] \\ & (\text { Setting value:10\%) } \end{aligned}$
		In case of harmonic current superposing method	$\cdot 10 \%$ Setting value Setting value $\pm 15 \%$ $\cdot 15 \sim 25 \%$ Setting value Setting value $\pm 10 \%$
Reset value	Phase fault timedelayed element	(Common condition) ※1	\cdot Setting $1.0 \sim 2.0 \mathrm{~A}$ for 5 A rating product Setting $0.2 \sim 0.4 \mathrm{~A}$ for 1 A rating product Operation value $\times 90 \%$ or more -For setting of other range Operation value $\times 95 \%$ or more
			Operation value $\times 95 \%$ or more
	Phase fault instantaneous element Earth fault timedelayed element		-Setting $0.1 \sim 0.2 \mathrm{~A}$ for 5 A rating product Setting $0.02 \sim 0.04 \mathrm{~A}$ for 1 A rating product Operation value $\times 90 \%$ or more -For setting of other range Operation value $\times 95 \%$ or more
	Eath faut instartaneous element		Operation value 95% or more
	2//19 blocking (COC4-A0301)		Operation value $\times 85 \%$ or more
Operation time	Phase fault timedelayed element	Operation setting value:Minimum, Operation time multiplier:10 Input : $0 \rightarrow$ Operation setting value $\times 300 \%$ or more	Refer to fig.1-1.2 Timing accuracy for $I \geqq 3 \times$ Current setting value, $\pm 3.5 \%$ of reference at actual pick up
	Phase fault instantaneous element	Operation setting value:Minimum Input : $0 \rightarrow 200 \%$ of setting value	Setting value $\pm 25 \mathrm{~ms}$ In case of INST setting 40 ms or less (except COC4-A03D1) 50 ms or less (COC4-A03D1)
	Earth fault time delayed element	Operation setting value:Minimum, Operation time multiplier:10 Input : $0 \rightarrow$ Operation setting value $\times 300 \%$ or more	Refer to fig.1-1. 2 Timing accuracy for $I \geqq 3 \times$ Current setting valve, $\pm 3.5 \%$ of reference at actual pick up
	Earth fault instantaneous element	Operation setting value:Minimum Input : $0 \rightarrow 200 \%$ of setting value	Setting value $\pm 25 \mathrm{~ms}$ In case of INST setting 40 ms or less (except COC4-A03D1) 50 ms or less (COC4-A03D1)
Reset time	All elements	300% of setting value $\rightarrow 0 \mathrm{~A}$	Refer to table 1-1
Overshoot characteristic	Phase fault time delayed element	Time-delayed operation value: Minimum Operation time multiplier:10 Operation characteristic:All characteristics Input current :0A \rightarrow Setting value $\times 1000 \%$	No-operation limit time/Operation time $=90 \%$ or more
	Earth faut tine-deajededement	Same as the above	Same as the above

Precaution for application

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20 A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power
of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d :Serial number, e:Date of stamp on the checking seal (The above mentioned items $\mathrm{a} . \sim \mathrm{d}$. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. The residual connection of 3 phases CT is needed for the earth fault current elements of COC4-A01, A02, A03D1 types.
10. It is possible to use the COC 3 and COC 4 as the phase over current protection provided with two phases. However, residual connection of 2 phases can not be applied to the earth fault over current element of COC 3 and COC4 types. The residual connection of 3 phases only can be applied to the earth fault over current element. In case of only two phase CTs being available for phase over current protection, ZCT or one more CT is needed for earth fault over current element.

Precaution for using ////

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.

Precaution for safety ///

Please refer to page 2 and 3 regarding the safty information and request when placing order.
3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.

Operation time and Reset time characteristics

The time-delayed element have 12 kinds of operation characteristics as shown on Fig.1-1 and Fig.1-2, and 3 kinds of reset time characteristics as shown on table 1-1.

Fig.1-1 Operation time characteristics(1)

No1 : Normal inverse timededayed characteristic
$\mathrm{t}=\frac{0.14}{\mathrm{I}^{0.02}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$
Viol: Very inverse time-delayed characterisic
$\mathrm{t}=\frac{13.5}{\mathrm{I}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$
Eiol : Extremely inverse time-delayed characteristic $\mathrm{t}=\frac{80}{\mathrm{I}^{2}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$

Lio1: Long inverse ime.delayed characteristic
$\mathrm{t}=\frac{54}{\mathrm{I}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$
LiO2: Long inverse time-delayed characteristic
$\mathrm{t}=\frac{80}{\mathrm{I}} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$
DTO1: Definite time-dedayed characterisic
$\mathrm{t}=2 \times \frac{\mathrm{M}}{10}(\mathrm{~s})$

t : Operation time

I : Current
(Multiple of input current against setting value)
M : Operation time multiplier

Table 1-1 Reset time characteristic
Input : Setting value $\times 300 \% \rightarrow 0$

	Output contact	Reset of operation timer inside relay
01 : Definite time delayed. $(200 \mathrm{~ms})$	$200 \mathrm{~m} \mathrm{~s} \pm 25 \mathrm{~m} \mathrm{~s}$	immediately
11 : Inverse time delayed.	$200 \mathrm{~m} \mathrm{~s} \pm 25 \mathrm{~m} \mathrm{~s}$	Approx. $8 \mathrm{~s} \quad(\mathrm{M}=10)$
21 : Definite time delayed. $(50 \mathrm{~ms})$	50 m s or less	immediately

■ Inverse time-delayed characteristic for reset

Following the principle of resetting an electromagnetic mechanical type induction disc, the inverse time-delayed characteristic given by the equation below is used for computing the reset time of the internal operation timer, although the output contact will be reset after a definite period of time (0.2 s). The inverse time-delayed characteristic may be useful for detecting an intermittent overload, which typically occurs in starting a motor.
$\operatorname{tr}=\frac{8}{1-I^{2}} \times \frac{M}{10}(\mathrm{~s})$

Fig.1-3 COC1-A01D1 (Phase fault protection)

Fig.1-4 COC1-A01D1 (Solidly grounded neutral system, Earth fault protection)

Fig.1-5 COC1-A01D1, COC1-A02D1 (Earth fault protection)

Fig.1-6 COC1-A02D1 (Earth fault protection)

Fig.1-7 COC1-A02D1 (Earth fault protection)

Fig.1-8 COC2-A01D1 (Phase fault protection)

※The serial communication facility is not available for type COC3-A03D1.
Fig.1-9 COC3-A01D1, COC3-A03D1 (Phase fault protection)

Fig.1-10 COC4-A01D1, COC4-A02D1, COC4-A03D1
The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

Fig.1-11 COC4-A01D1, COC4-A02D1, COC4-A03D1

Fig.1-12 COC4-A01D1, COC4-A02D1, COC4-A03D1
The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT, VT and safety devices such as fuse, etc.

Fig.1-13 COC4-A01D1, COC4-A03D1

Fig.1-14 COC4-A02D1

CBV, CUB Series VOLTAGE RELAY

Type, rating and specification

Type name			CBV2-A01D1	CBV3-A01D1	CBV4-A01D1	CUB1-A01D1
Rating	Voltage		57~120V	57~120V	57~120V	57~120V
	Zero-phase voltage		-	$110 \mathrm{~V} / 190 \mathrm{~V}$	$110 \mathrm{~V} / 190 \mathrm{~V}$	-
	Frequency		50 Hz or 60 Hz			
Protective element			27 (3 phases), 59(3 phases)	27(1 phase), 59(1 phase), 64 (Zero-phase)	$\begin{gathered} 27(3 \text { phases }), \\ 64(\text { Zero-phase }) \times 2 \end{gathered}$	$\begin{aligned} & \text { 27(3 phases), } \\ & 59 \text { (3 phases), } 47 \end{aligned}$
Setting	Under voltage	Operation voltage	LOCK-10~110V (1V step)			
		Operation time	INST-0.1~10s (0.1s step)			
	Over voltage	Operation voltage	LOCK-60~155V (1V step)		-	LOCK-60~155V (1V step)
		Operation time	INST-0.1~10s (0.1s step)		-	INST-0.1~10s (0.1s step)
	Earth fault over voltage	Operation voltage	-	LOCK-5~60V (1V step)		-
		Operation time		INST-0.1~10s (0.1s step)		-
	Reverse phase	Changeover Lock/Use				LOCK - USE
		Operation time				$0.1 \sim 10 \mathrm{~s}$ (0.1 s step)
	Open phase	Operation voltage				LOCK - 10~50V (1V step)
		Operation time	-			$0.1 \sim 10 \mathrm{~s}$ (0.1 s step)
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)			
	Operation indicator LED hold		All LED self-hold (Default setting at ex-works)			
	VT primary		$100 \sim 999 \mathrm{~V}$ (1V step), 1000 $\sim 9990 \mathrm{~V}$ (10 V step), 10.0k $\sim 99.9 \mathrm{kV}$ (0.1 kV step), 100k $\sim 300 \mathrm{kV}$ (1 kV step)			
	VT secondary					
	EVT primary		-	$100 \sim 999 \mathrm{~V}$ (1V step),1000~9990V (10V step), $10.0 \mathrm{k} \sim 99.9 \mathrm{kV}$ (0.1 kV step), $100 \mathrm{k} \sim 300 \mathrm{kV}$ (1 kV step)		-
	EVT tertiary		-	100-110-115-120-100 $\sqrt{3}-110 \sqrt{3-115 \sqrt{3}-120 \sqrt{3 V}}$		-
Display	Real time measurement		Line voltage $\times 3$	Line voltage, Zero-phase voltage	Line voltage $\times 3$, Zero-phase voltage	Line voltage $\times 3$
	Max.record		Line voltage $\times 3$	Line voltage, Zero-phase voltage	Line voltage $\times 3$, Zero-phase voltage	Line voltage $\times 3$
	Fault record (operation value)		Line voltage $\times 3$	Line voltage, Zero-phase voltage	Line voltage $\times 3$, Zero-phase voltage	Line voltage $\times 3$, Negative sequence voltage
	Fault record (operation item)		Record and indicate the operated elements.			
	Self-diagnosis		Normal result:On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result:Off the RUN LED•Status indication item No.400=Display defects code			
Forced operation			Each output contact			
Communication		Direct communication port	Standard equipment(PC software for Direct communication: Option)			Not applicable
		Remote communication port	Option(For CC-LINK or MODBUS)			Not applicable
Burden (at rating)			Voltage circuit:Less than 1 VA, Zero-phase voltage circuit:Less than 0.15 VA Auxiliary power supply circuit:at $\mathrm{DC100V}=$ Approx. 5 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 7 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 6 W , at $\mathrm{AC} 220 \mathrm{~V}=$ Approx. 12 VA (In case of installing communication card, add 2 VA .)			
Mass			Net weight of relay unit:Approx. 2.3 kg , Including case:Approx. 3.0 kg			
Sample of external connection diagram			Fig.2-1	Fig.2-2	Fig.2-3	Fig.2-4

Characteristics

Items		Condition	Guaranteed performance
Operation value	Under voltage element	(Common condition) ※1	Setting value $\pm 5 \%$
	Over voltage element		
	Earth fault over voltage element		
	Reverse phase element	Impress 3 phases negative sequence voltage	Operates from about 1V or more
	Open phase element	Impress 3 phases negative sequence voltage However, in case of applying single phase power source, impress the voltage of setting value $\times \sqrt{3}$	Setting value $\pm 5 \%$ However, minimum permissible error is 1 V
Reset value	Under voltage element	(Common condition) ※1	Operation value $\times 105 \%$ or less
	Over voltage element		Operation value $\times 95 \%$ or more
	Earth fault over voltage element		
	Reverse phase element		Reset from about 1V or more
	Open phase element		Operation value $\times 95 \%$ or more
Operation time	Under voltage element	Rated voltage \rightarrow setting value $\times 70 \%$	- Setting INST 40ms or less (50 ms only for Over voltage element) -Setting 0.4 s or less:setting value $\pm 25 \mathrm{~ms}$ - Setting 0.5 s or more:setting value $\pm 5 \%$
	Over voltage element	$0 \mathrm{~V} \rightarrow$ setting value $\times 120 \%$	
	Earth fault over voltage element	$0 \mathrm{~V} \rightarrow$ setting value $\times 150 \%$	
	Reverse phase element	$0 \mathrm{~V} \rightarrow 3$ phases negative sequence voltage	\cdot Setting 0.4 s or less:setting value $\pm 25 \mathrm{~ms}$ - Setting 0.5 s or more:setting value $\pm 5 \%$
	Open phase element	Do it by single phase power source $0 \mathrm{~V} \rightarrow$ setting value $\times \sqrt{3} \times 120 \%$	\cdot Setting 0.4 s or less:setting value $\pm 25 \mathrm{~ms}$ -Setting 0.5 s or more:setting value $\pm 5 \%$
Reset time	Under voltage element	Setting value $\times 70 \% \rightarrow$ Rated voltage	$\cdot 60 \mathrm{~ms}$ or less (CBV2, 3, 4-A01D1) $\cdot 200 \mathrm{~ms} \pm 25 \mathrm{~ms}$ (CUB1-A01D1)
	Over voltage element	Setting value $\times 120 \% \rightarrow 0 \mathrm{~V}$	
	Earth fault over voltage element	Setting value $\times 150 \% \rightarrow 0 \mathrm{~V}$	
	Reverse phase element	3 phases negative sequence voltage $\rightarrow 0 \mathrm{~V}$	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$
	Open phase element	Do it by single phase power source. Setting value $\times \sqrt{3} \times 120 \% \rightarrow 0 \mathrm{~V}$	

※2 Please refer to the instruction manual regarding the details on this specification.

Precaution for application

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-Tl AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-Tl AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized (" break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to

Precaution for using $/ / / /$

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.
3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis, output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
4. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a. \sim d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. Make a wiring between EVT "a" terminal and "A-06" terminal of relay and EVT " f " terminal and "A-05" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the connection between " f " terminal of EVT and earth terminal.
4. The EVT tertiary voltage , ratio "should be set as output nominal voltage between terminal " a " and " f " of EVT.
Example: $190 / 3 \Rightarrow 190 \mathrm{~V}, 110 / 3 \Rightarrow 110 \mathrm{~V}$
5. The UV test function will be used for single phase test for under voltage element. (UV test LED (yellow color) will turn on during selecting UV TEST). UV TEST should be set as OFF in the operational condition.

Precaution for safety ////

Please refer to page 2 and 3 regarding the safty information and request when placing order.

Sample of external connection diagram

Fig.2-1 CBV2-A01D1 (Input line voltage)

※A resistance is necessary for the isolated neutral system.
Fig.2-2 CBV3-A01D1

Fig.2-3 CBV4-A01D1

Fig.2-4 CUB1-A01D1

CFP Series FEEDER PROTECTION RELAY CDG Series EARTH FAULT DIRECTIONAL RELAY

Type, rating and specification

Type name			CFP1-A01D1	CFP1-A02D1	CDG1-A01D1
Rating	Phase current		5A	5A	-
	Zero-phase current		2A	2A	1A
	Zero-phase voltage		110/190V	110/190V	100~208V
	Frequency		50 Hz or 60 Hz		
Protective element			51/50 (2 phases), 67G	51/50(2 phases), 67 G	67G
Combined instrument transformer		Zero-phase current	Commercially available ZCT (Conformity with JEC-1201 200/1.5mA)		
		Zero-phase voltage	Commercially available EVT (Conformity with JEC-1201)		Commercially available EVT(Conformity with JEC1201)
Setting	Timedelayed	Operation current	LOCK-1~12A (0.1A step)		-
		Operation time multiplier	0.25-0.5~50 (0.5 step)		
		Operation time characteristics	Normal inverse time-delayed (3 kinds), Very inverse time-delayed (2 kinds), Extremely inverse time-delayed (3 kinds), Long inverse time-delayed(3 kinds), Definite time-delayed (1 kind)		-
		Reset time characteristics	Normal inverse time-delayed (1 kind), Definite time-delayed (2 kind)		
	Instantaneous	Operation current	LOCK-2~80A (1A step)		-
		Operation time	INST-0.1~0.5s (0.1s step)		-
	Earth fault directional	10 operation current	$1 \sim 10 \mathrm{~mA}$ (ZCT secondary current) (0.5mA step)	$\mathrm{mA}(\mathrm{ZCT}$ secondary current) (5mA step)	$0.05 \sim 1.0 \mathrm{~A}$ (0.05A step)
		V0 operation voltage	LOCK-5~60V (EVT tertiary) (1V step)		LOCK-5~60V (1S step)
		Operation time	INST-0.1~10s (0.1s step)		$0.1 \sim 10$ s (0.1 s step)
		Maximum sensitive angle			Lead $0 \sim 30^{\circ}\left(5^{\circ}\right.$ step)
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)		
	Operation indicator LED hold		All LED self-hold (Default setting at ex-works)		
	CT primary (Phase current)		1 \%-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250-1500-2000-2500-3000-4000-5000-6000-7500-8000[A] ※Applicable 1 A rating product only.		
	EVT primary		$\begin{gathered} 100 \sim 999 \mathrm{~V}(1 \mathrm{~V} \text { step }), 1000 \sim 9990 \mathrm{~V}(10 \mathrm{~V} \text { step }), \\ 10.0 \mathrm{k} \sim 99.9 \mathrm{kV}(0.1 \mathrm{kV} \text { step }), 100 \mathrm{k} \sim 300 \mathrm{kV}(1 \mathrm{kV} \text { step }) \end{gathered}$		$\begin{aligned} & 100 \sim 999 \mathrm{~V} \text { (1V step), } \\ & 1000 \sim 9990 \mathrm{~V}(10 \mathrm{~V} \text { step }), \\ & 10.0 \mathrm{k} \sim 99.9 \mathrm{kV}(0.1 \mathrm{kV} \text { step }), \\ & 100 \mathrm{k} \sim 300 \mathrm{kV}(1 \mathrm{kV} \text { step }) \end{aligned}$
	EVT tertiary				$\begin{aligned} & 100-110-115-120-100 \sqrt{3} \\ & -100 \sqrt{ } 3-115 \sqrt{3}-120 \sqrt{ } 3 V \end{aligned}$
	ZCT error correction on/off				
	ZCT error adjustment		When the actual measured transforming ratio is within range of 200/ $1.5 \sim 4.1 \mathrm{~mA}$, the deviation from the ZCT nominal transforming ratio $200 / 1.5 \mathrm{~mA}$ can be corrected.		-
Display	Real time measurement		Phase current $\times 2$, Zero-phase current, Zero-phase voltage, Characteristic angle		Zero phase current, Zero phase voltage, Phase
	Max.record		Phase current $\times 2$, Zero-phas	nt, Zero-phase voltage	Zero phase current, Zero phase voltage
	Fault record (operation value)		Phase current $\times 2$, Zero-phase current,	ase voltage, Characteristic angle	Zero phase current, Zero phase voltage, Phase
	Fault record (operation item)		Record and indicate the operated elements		
	Elapse of time-delayed timer		$0 \sim 10$ (The value 0 indicates the status of input the value $1 \sim 10$ indicate the elapse time	reaching the setting value or more and ting of the time delayed element.)	-
	Self-diagnosis		Normal result:On the RUN LED (green) • Status indication item No.400=No display. Abnormal result:Off the RUN LED•Status indication item No.400=Display defects code		
Forced operation			Each output contact		
Communication D R		Direct communication port	Standard equipment(PC software for Direct communication:Option)		Not applicable
		ote communication port	Option (For CC-L	MODBUS)	Not applicable
Burden (at rating)			Phase current circuit:Less than 0.5 VA , Zero-phase current circuit:Less than 10Ω, Zero-phase voltage circuit:Less than 0.15 VA , Auxiliary power supply circuit:at $\mathrm{DC100V}=$ Approx. 5 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 7 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 6 W , at $\mathrm{AC} 220 \mathrm{~V}=$ Approx. 12 VA (In case of installing communication card, add 2 VA .)		
Mass			Net weight of relay unit:Approx. 2.3kg, Including case:Approx. 3.0kg		
Sample of external connection diagram					Fig.3-2,3-3
Remarks			The rated current 1 A product can be made based on the 5 A rating product. The setting value of time delayed element and instantaneous element of 1A product is calculated by performing a multiplication $1 / 5$ of above mentioned value.		-

Characteristics ///

Items			Condition	Guaranteed performance
Operation value	Phase fault timedelayed element		(Common condition) ※	Setting $1.0 \sim 2.0 \mathrm{~A}$ for 5 A rating product:Setting value $\pm 10 \%$ Setting $0.2 \sim 0.4 \mathrm{~A}$ for 1 A rating product:Setting value $\pm 10 \%$ -For setting of other range:Setting value $\pm 5 \%$
	Phase fault instantaneous element			Setting value $\pm 10 \%$
		Zero-phase current (CFP1-A01/A02D1)	Setting: Zero phase voltage=minimum Input: Zero phase voltage $=$ Rating voltage $\times 30 \%$, Phase=Maximum sensitive angle	-Setting 1.0 or 1.5 mA : Setting value $\pm 10 \%$ -For setting of other range:Setting value $\pm 5 \%$
		Zero-phase current (CDG1-A01D1)	Input: Zero phase voltage=rating voltage Phase: Maximum sensitive angle	Setting 0.05A: Setting value $\pm 10 \%$ For setting other range: Setting value $\pm 5 \%$
		Zero-phase voltage (CFP1-A01/A02D1)	Setting: Zero phase current=minimum Input: Zero phase voltage=Setting valve $\times 1000 \%$, Phase=Maximum sensitive angle	Setting value $\pm 5 \%$
		Zero-phase voltage (CDG1-A01D1)	Input: Setting value $\times 200 \%$ Phase: Maximum sensitive angle	Setting value $\pm 5 \%$
Reset value	Phase fault timedelayed element		(Common condition) ※	-Setting $1.0 \sim 2.0 \mathrm{~A}$ for 5 A rating product: Operation value $\times 90 \%$ or more Setting $0.2 \sim 0.4 \mathrm{~A}$ for 1 A rating product: Operation value $\times 90 \%$ or more -For setting of other range: Operation value $\times 95 \%$ or more
	Phase fa	aut instantaneous element		Operation value $\times 95 \%$ or more
		Zero-phase current (CFP1-A01/A02D1)	Setting: Zero phase voltage=minimum Input: Zero phase voltage $=$ Rating voltage $\times 30 \%$, Phase=Maximum sensitive angle	Operation value $\times 90 \%$ or more
		Zero-phase current (CDG1-A01D1)	Input: Zero phase voltage=rating voltage Phase: Maximum sensitive angle	Setting 0.05 A : Operation value $\times 90 \%$ or more For setting other range: Operation value $\times 95 \%$ or more
		Zero-phase voltage \qquad	Setting: Zero phase current=minimum Input: Zero phase voltage $=$ Setting valve $\times 1000 \%$, Phase=Maximum sensitive angle	Operation value $\times 90 \%$ or more
		Zero-phase voltage (CDG1-A01D1)	Input: Setting value $\times 200 \%$ Phase: Maximum sensitive angle	Operation value $\times 95 \%$ or more
Operation time	Phase fault timedelayed element		Operation setting value: Minimum Operation time multiplier: 10 Input: $0 \rightarrow$ Operation setting value $\times 300,500,1000 \%$	Refer to fig.1-1.2 Timing accuracy for $\mathrm{I} \geqq 3 \times$ Current setting value, $\pm 3.5 \%$ of reference at actual pick up
	Phase fault instantaneous element		Operation setting value:Minimum value Input: $0 \rightarrow 200 \%$ of setting value	Setting value $\pm 25 \mathrm{~ms}$ In case of INST setting 40 ms or less
	Earth fault directional element (CFP1-A01/A02D1)		Setting: Zero phase current, voltage=minimum Input: Zero phase current $=0 \rightarrow$ Setting value $\times 1000 \%$, Zero phase voltage $=0 \rightarrow$ Rating voltage $\times 30 \%$ Phase=Maximum sensitive angle	-INST Setting 80 ms or less $\cdot 0.1 \sim 0.4 \mathrm{~s}$ Setting: Setting value $\pm 25 \mathrm{~ms}$ $\cdot 0.5 \sim 1.0$ s Setting: Setting value $\pm 5 \%$
	Earth fault Directional element (CDG1-A01D1)		Input: Zero phase current and voltage to be changed quickly at the same time. Zero phase current: $0 \mathrm{~A} \rightarrow$ Setting value $\times 300 \%$ Zero phase voltage: $0 \mathrm{~V} \rightarrow$ Rating voltage Phase: Maximum sensitive angle	$0.1 \sim 0.4 \mathrm{~s}$ setting: Setting value $\pm 25 \mathrm{~ms}$ 0.5 s or more setting: Setting value $\pm 5 \%$
Reset time	Phase fail	alt time-delayed element	300% of setting value $\rightarrow 0 \mathrm{~A}$	Refer to COC series table 1-1
	Phase fa	aut instantaneous element		Refer to COC series table 1-1
	Earth fault directional element (CFP1-A01/A02D1)		$\begin{aligned} & \text { Setting: Zero phase current, voltage }=\text { minimum } \\ & \text { Input: Zero phase current }=\text { Setting value } \times 1000 \% \rightarrow 0 \text {, } \\ & \text { Zero phase voltage }=\text { Rating voltage } \times 30 \% \rightarrow 0 \\ & \text { Phase }=\text { Maximum sensitive angle } \\ & \hline \end{aligned}$	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$
	Earth fault Directional element (CDG1-A01D1)		Input: Zero phase current and voltage to be changed quickly at the same time. Zero phase current: Setting value $\times 300 \% \rightarrow 0 \mathrm{~A}$ Zero phase voltage: Rating voltage $\rightarrow 0 \mathrm{~V}$ Phase: Maximum sensitive angle	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$

[^2]
Characteristics ///

Items		Condition	Guaranteed performance
Overshoot characteristic	Phase fault time- delayed element	Time-delayed operation value: Minimum Operation time multiplier: 10 Operation characteristic: All characteristics Input current:0A \rightarrow Setting value $\times 1000 \%$	No-operation limit time/Operation time $=90 \%$ or more
	Earth fault Phase characteristic (CFP1-A01 element	Setting: Zero phase current, voltage $=$ minimum Input: Zero phase current=Setting value $\times 1000 \%$, Zero phase voltage $=$ Rating voltage $\times 30 \%$	Maximum sensitive angle $\pm 5^{\circ}$
	Earth fault Directional element (CDG1-A01D1)	Operation time: Minimum Input: Zero phase current $=$ Setting value $\times 1000 \%$ Zero phase voltage $=30 \mathrm{~V}$	Setting value $\pm 5^{\circ}$

[^3]
Precaution for application ///

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20 A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized (" break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in
case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d: Serial number, e:Date of stamp on the checking seal (The above mentioned items a. \sim d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. Make a wiring between EVT "a" terminal and "A-06" terminal of relay and EVT " f " terminal and "A- 05 " terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the connection between " f " terminal of EVT and earth terminal.
10. The test terminal " $k t$ " and " lt " of ZCT should be no wiring in the operational condition of relay as the test terminal may be allowed to use only for the artificial fault current injection test. (Relay will not operate with these terminals short-circuited.)
11. To prevent the influence from noise or surge, a shielded 2 cores (size is $0.75 \sim 1 \mathrm{~mm}^{2}$) cable should be used for the connection between ZCT or EVT and relay, and shield wire should be connected to the earth terminal of the relay or the earth terminal located inside of the switchboard. (Grounding resistance should be less than 100 ohm). Further more, the go and return burden of the cable should be less than 5 ohms which is almost equal to 100 m distance in case of core size $0.75 \mathrm{~mm}^{2}$.
12. The power cable should be applied for the primary conductor of ZCT. The earth of shield wire of cables should be done according to the regulation.
13. The wiring between ZCT, EVT and relay should be according to the connection diagram of each relay with a precaution on the polarity.
14. A commercially available ZCT conformity with JEC1201 (type BZ in case of MITSUBISHI ELECTRIC CORPORATION) may be applicable for the type CFP1-A01D1 and CFP1-A02D1.
15. No wiring to the terminal concerning to the elements without use for protection is acceptable. Also, regarding the setting of protection elements without use, to set the LOCK position is recommended. Please note that the setting LOCK of 67 G element means the loss of all function of 67 G which includes the 51 G element, 64 element and fault direction element.
16. Only one number of ZCT can be connected to one number of the type CFP1. Correct operation of the relay can not be guaranteed against two or more numbers of ZCT to connect to one number of the type CFP1.

Precaution for using ////

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.
3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
4. The EVT tertiary voltage ratio should be set as output nominal voltage between terminal "a" and "f" of EVT. Example: $190 / 3 \Rightarrow 190$ V, $110 / 3 \Rightarrow 110 \mathrm{~V}$

Precaution for safety ///

Please refer to page 2 and 3 regarding the safty information and request when placing order.
5. The UV test function will be used for single phase test for under voltage element. (UV test LED (yellow color) will turn on during selecting UV TEST). UV TEST should be set as OFF in the operational condition.
6. The function of the ZCT error correction installed in the relay is applied for the purpose of correcting ZCT transformation error, so that improving the composite characteristics is achieved. The ZCT error correction range is $200 \mathrm{~mA} / 1.5 \mathrm{~mA} \sim 4.1 \mathrm{~mA}(\pm 0 \sim+2.6 \mathrm{~mA})$ for the nominal transformation ratio $200 \mathrm{~mA} / 1.5 \mathrm{~mA}$ specified with JEC-1201.

Sample of external connection diagram

※A resistance is necessary for the isolated neutral system.
Fig.3-1 CFP1-A01D1, CFP1-A02D1

Fig.3-2 CDG1-A01D1

Fig.3-3 CDG1-A01D1

CAC Series BIASED D|FFERENTIAL RELAY FOR TRANSFORMER PROTECTION

Type, rating and specification $/ / / /$

Type name			CAC1-A01D2
Rating	Phase current		5A (Allowable continuous current: 8.7A)
	Frequency		50 Hz or 60 Hz
Protective element			87 T for 2 windings transformer (3 phases)
Setting	Tr primary side CT matching tap ITı		$2.2 \sim 12.5 \mathrm{~A}$ (0.1A step)
	Tr secondary side CT matching tap IT2		$2.2 \sim 12.5 \mathrm{~A}$ (0.1A step)
	Operation Current		It \times (LOCK-20-30-40\%)
	Bias		20-30-40\%
	2nd harmonic blocking		10~25\% (5\% step)
	Differential overcurrent multiplier		It $\times 5 \sim 12$ times (1time step)
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)
	Operation indicator LED hold		All LED self-hold (Default setting at ex-works)
Display	Real time measurement		Restraining current, Differential current, Percentage of 2nd harmonic current content
	Max.record		Restraining current, Differential current
	Fault record (operation value)		Restraining current, Differential current, Percentage of 2nd harmonic current content
	Fault record (operation item)		Record and indicate the operated elements.
	Self-diagnosis		Normal result:On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result:Off the RUN LED•Status indication item No.400=Display defects code
Forced operation			Each output contact
Communication		Direct communication port	Standard equipment(PC software for Direct communication:Option)
		Remote communication port	Option(For CC-LINK or MODBUS)
Burden (at rating)			Phase current circuit:Less than $0.5 \mathrm{VA} /$ phase Auxiliary power supply circuit:at $\mathrm{DC100V}=$ Approx. 7 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 25 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 9 W , at $\mathrm{AC} 220 \mathrm{~V}=$ Approx. 30 VA (In case of installing communication card, add 2 VA .)
Mass			Net weight of relay unit:Approx. 3.8 kg , Including case:Approx. 5.0 kg
Sample of external connection diagram			Fig.4-1~5
Remarks			Possible to make 1A rating. The value of matching tap of tronsformer primary side and secondary side for 1 A rating product is calculated by performing a multiplications $1 / 5$ of above mentioned value.

Characteristics $/ / /$

Items		Condition	Guaranteed performance		
Operation current	Biased differential element	Iop $=\mathrm{I}$ ¢ \times Operation current(\%)	Within Iop $\pm 5 \%$		
	Differential overcurrent element	Iop $=$ IT \times Differential overcurrent			
Reset value	Biased differential element	Iop $=$ IT \times Operation current (\%)	95\% or more of operations current		
	Differential overcurrent element	Iop $=$ IT \times Differential overcurrent			
Operation time	Biased differential element	$0[\mathrm{~A}] \rightarrow \mathrm{Iop} \times 300 \%$	50 ms or less		
	Differential overcurrent element	$0[\mathrm{~A}] \rightarrow \mathrm{Iop} \times 300 \%$	40 ms or less		
Reset time	Biased differential element	Iop $\times 300 \% \rightarrow 0[\mathrm{~A}]$	within $200 \pm 25 \mathrm{~ms}$		
	Differential overcurrent element	Iop $\times 300 \% \rightarrow 0[\mathrm{~A}]$			
Biased differential characteristic		Matching tap $\mathrm{I}_{\mathrm{T} 1}=\mathrm{I}_{\mathrm{T} 2}=\mathrm{I}_{\mathrm{T}}$ 	$\begin{aligned} & \tau=20 \% \text { setting: } 15 \sim 25 \% \\ & \tau=30 \% \text { setting: } 25 \sim 35 \% \\ & \tau=40 \% \text { setting: } 35 \sim 45 \% \end{aligned}$		
Phase characteristic		Matching tap $\mathrm{I}_{\mathrm{T} 1}=\mathrm{I}_{\mathrm{T} 2}=\mathrm{I} \mathrm{T}$ At minimum matching tap setting $\left\|\mathrm{I}_{1}\right\|=\left\|\mathrm{I}_{2}\right\|=\mathrm{I}_{\mathrm{T}} \times 200 \%$	Both lead and lag operation phase angle between I_{1} and I_{2} are shown below table.		
		Nominal bias ratio	θ		
		20[\%]	$168.5 \pm 5^{\circ}$		
		30[\%]	$162.7 \pm 5^{\circ}$		
		40[\%]	$156.9 \pm 5^{\circ}$		
2nd harmonic blocking characteristic			Matching tap $\mathrm{I}_{\mathrm{T} 1}=\mathrm{I}_{\mathrm{T} 2}=\mathrm{I}_{\mathrm{T}}$ At minimum matching tap setting $\left.\begin{array}{l} \text { Idc }=80 \% \text { of setting value } \\ \left(\begin{array}{l} \text { Idc }=\text { Half wave rectifier current } \\ \text { Inc=Sine wave current } \end{array}\right. \end{array}\right)\left(\frac{\frac{2}{3} \mathrm{IDC}}{\mathrm{If}^{2}} \mathrm{If}^{\mathrm{l}}=\frac{\sqrt{2} \mathrm{IAC}^{2}+\frac{\pi}{2} \mathrm{IDC}}{100}\right)$ Percentage of 2nd harmonic current content	$\begin{aligned} & \mathrm{I}_{\mathrm{AC}}=254 \sim 330[\%] \quad \text { (setting:10\%) } \\ & \mathrm{I}_{\mathrm{AC}}=137 \sim 188[\%] \quad \text { (setting:15\%) } \\ & \mathrm{I}_{\mathrm{AC}}=81 \sim 119[\%] \text { (setting:20\%) } \\ & \mathrm{I}_{\mathrm{AC}}=47 \sim 77[\%] \quad \text { setting:25\%) } \end{aligned}$	
		In case of the method of harmonic superposing, If1 is equal to 300% of the matching tap value.	2nd harmonic blocking ratio: Setting value $\pm 10 \%$		

[^4]
Precaution for application ///

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20 A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card
necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a. $\sim \mathrm{d}$. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. The external wiring should be done according to Connection diagram. There is some possibility to detect differential current in case of wrong wiring.
10. The wiring of CT circuit is depended on the connection of the transformer winding (ydl, ydll, dyl, dyll, etc). Therefore, special attention on this regard is requested.
11. Regarding the CT sircuits on the transformer primary side, the incoming wiring should be connected to lower number of terminals and the outgoing wiring of them should be connected to higher number of terminals. Also, regarding the CT circuits on the transformer secondary side, the incoming wiring should be connected to higher number of terminals and outgoing wiring of them should be connected to lower number of terminals.
12. When the differential current check (defect code 0017) is detected, careful checking of wiring connection and setting value are requested as there are some possibilities to have some mistake of the wiring or improper setting of matching tap.
13. At the time of site testing or commissioning, please confirm if external wiring of CT circuits is correct or not by using the CT polarity check function(item number 906) of relay.
14. If the 2 nd harmonic blocking elements (the digit number 7 to 9) are set to "ON" for a contact arrangement, the contact will make when the 2nd harmonic blocking element operate. Therefore, set them to "OFF" for the trip contact arrangement to prevent from incorrect operation. (Example of ON setting: The CB of primary side of transformer is closed and then, trip contact will make by the operation of the 2nd harmonic blocking element. Finally, CB will be tripped.) Please note that in the default setting at the time of ex-work, the 2nd harmonic blocking elements are not set to "ON" for contact arrangement on the trip circuit.
15. Another relays and load such as OCR or Aux-CT should not be connected in the same CT secondary circuits of differential relay for the primary and secondary of transformer because differential current will be caused due to the unbalance of the burden between both circuits.

Precaution for using ////

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.
3. The setting item of "DIF test (515)" should be set "ON" when carry
out characteristic test. Because this relay has continuously monitoring function of differential current, so that the monitoring abnormality (0017) will occur when current applied on. The DIF test LED (yellow) will become on when setting. And do not forget to set the DIF test (515) "OFF" after finishing the characteristic test.

Precaution for safety ///

Please refer to page2 and 3 regarding the safty information and request when placing order.

Sample of external connection diagram

Fig.4-1 CAC1-A01D2 [Transformer $\triangle-\triangle($ Dd0 $)$ \}

Fig.4-2 CAC1-A01D2[Transformer $\mathrm{Y}-\triangle(\mathrm{Yd} 1)$]
The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

Fig.4-3 CAC1-A01D2[Transformer $Y-\triangle(Y d 11)$]

Fig.4-4 CAC1-A01D2[Transformer $\triangle-Y(D y 1)$]
The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

Fig.4-5 CAC1-A01D2[Transformer $\triangle-Y($ Dy11)]

CMP Series MOTOR PROTECTION RELAY

Type, rating and specification $/ / / /$

Type name			CMP1-A01D1	CMP1-A01D2
Phase current			5A	
Zero-phase current			2A	
$\begin{aligned} & \text { io } \\ & \stackrel{0}{=} \\ & \underset{\sim}{\pi} \end{aligned}$	Zero-phase	voltage	$100 \sim 208 \mathrm{~V}$	
	Photo coupler input voltage (D2 type only)			DC110V (Permissible variable range $77 \sim 143 \mathrm{~V}$) or DC24V(Permissible variable range $\mathrm{DC} 19.2 \mathrm{~V} \sim 31.2 \mathrm{~V}$)
				Input voltage 24 V is applicable only for the case that auxiliary power supply voltage is 24 V . In any other cases, only DC 110 V is applicable as for photo coupler input voltage.
	Frequency		50 Hz or 60 Hz	
Protective element			50/51(2 phases), 49, 46, 37 (2 phases), 66,67G	
Combined instrument transformer		Zero-phase current	Commercially available ZCT (Conformity with JEC-1201 200/1.5mA)	
		Zero-phase voltage	Commercially available EVT (Conformity with JEC-1201)	
Motor rated current (IM)			2~5A (0.1A step)	
Overcurrent instantaneous		Operation current	LOCK-10~100A (1A step)	
		Operation time	INST-0.1~1.0s (0.1s step)	
Overcurrent time-delayed		Operation current	LOCK-IM $\times 130 \sim 300 \%$ (10% step)	
		Operation time (Koct)	4-5-6-8-10-12-16-20-24-32-40-48-64-80-96-112-128-160-200-240	
		Operation time characteristics equation	$\mathrm{T}_{\mathrm{oct}}=3 \times \frac{\mathrm{K}_{\text {oct }}}{\mathrm{I}} \mathrm{~S} \quad\left[\begin{array}{l} \mathrm{K}_{\text {oct }} \text { Operation time setting } \\ \mathrm{I}: \text { Phase current (unit: multiple to } \mathrm{IM} \text {) } \end{array}\right)$ The selected $\mathrm{K}_{\text {oct }}$ valve is equal to the operating time of time-delayed element in case of $\mathrm{I}=3$.	
Negative sequence overcurrent		Operation current	LOCK-IM $\times 0.5 \sim 8$ times (0.5 times step)	
		Operation time	$0.1 \sim 10 \mathrm{~s}(0.1 \mathrm{~s}$ step)	
	Overload	Operation current	LOCK-IM $\times 105 \sim 125 \%$ (5% step)	
		Operation time $\left(\mathrm{K}_{\text {TH }}\right)$	8-12-16-20-24-32-40-48-64-80-96-112-128-160-200-240	
		Operation time characteristics equation	- Operation time for COLD characteristics, in the above equation - Selected value of K_{TH}, when input is provided so as to meet the becomes equal to the time (sec) that will be taken until operatio	peration time setting K:Negative-sequence heat multiplying factor itive sequence current of present input (unit: multiple to IM) ative sequence current of present input(unit: multiple to IM) sitive sequence current before overload (unit: multiple to IM) gative sequence current before overload (unit: multiple to IM) becomes equal to case conditioned as follows : $\left(\mathrm{I}_{\mathrm{P} 1}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{\mathrm{P} 2}{ }^{2}\right)=0$ conditions of $\mathrm{I}_{1}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{2}{ }^{2}=3^{2}$ and $\mathrm{I}_{\mathrm{P}}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{\mathrm{P} 2}{ }^{2}=0$, n.
		Negative-sequence heat multiplying factor(K)	$1 \sim 10$ (1 step)	
		Changeover characteristic	0 (COLD) 1 (HOT)	
	Undercurrent	Operation current	LOCK-1.0~4.0A (0.1A step)	
		Operation time	$1 \sim 600 \mathrm{~s}$ (1 s step)	
	Limit the number of start-up times	Number of start-up	LOCK-1~5 (1 step)	
		Start-up time	$2 \sim 120 \mathrm{~s}$ (1s step)	
		Countdown rate	$2 \sim 250 \mathrm{~s} / \mathrm{h}(0.5 \mathrm{~s} / \mathrm{h}$ step)	
	Earth fault directional	10 Operation current	$1 \sim 10 \mathrm{~mA}$ (ZCT secondary current) (0.5 mA step)	
		Vo Operation voltage	LOCK-5~60V (1V step)	
		Operation time	INST-0.1~10s ($0.1 \mathrm{~s} \mathrm{step} \mathrm{)}$	
		Maximum sensitive angle	Lead $0^{\circ} \sim 90^{\circ}\left(5^{\circ}\right.$ step)	
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)	
	Operation indicator LED hold		All LED self-hold (Default setting at ex-works)	
	CT primary (Phase current)		$\begin{aligned} & 1 *-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250- \\ & 1500-2000-2500-3000-4000-5000-6000-7500-8000[\mathrm{~A}] \quad \text { ※Applicable only } 1 \mathrm{~A} \end{aligned}$	
	EVT primary		$100 \sim 999 \mathrm{~V}$ (1V step), 1000~9990V (10V step), $10.0 \mathrm{k} \sim 99.9 \mathrm{kV}$ (0.1 kV step), $100 \mathrm{k} \sim 300 \mathrm{kV}$ (1 kV step)	
	EVT tertiary			
	ZCT error correction on/off		OFF-ON	
	ZCT error adjustment		When the actual measured transforming ratio is within range of $200 / 1.5 \sim 4.1 \mathrm{~mA}$, the deviation from the ZCT nominal transforming ratio $200 / 1.5 \mathrm{~mA}$ can be corrected.	
-	Real time measurement		Phase current $\times 2$, Zero-phase current, Zero-phase voltage, Characteristic angle, Negative sequence current	
	Max.record		Phase current $\times 2$, Zero-phase current, Zero-phase voltage	
	Fault record (operation value)		Phase current $\times 2$, Zero-phase current, Zero-phase voltage, Characteristic angle, Negative sequence current	
	Fault record (operation item)		Record and indicate the operated elements.	
	Self-diagnosis		Normal result:On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result:Off the RUN LED•Status indication item No.400=Display defects code	
Forced operation			Each output contact	
Communication		communication port	Standard equipment(PC software for Direct communication:Option)	
		communication port	Option(For CC-LINK or MODBUS)	
Burden (at rating)			Phase current circuit:Less than 0.5 VA , Zero-phase current circuit:Less than 10Ω, Zero-phase voltage circuit:Less than 0.15 VA Auxiliary power supply circuit:at $\mathrm{DC} 100 \mathrm{~V}=$ Approx. 4 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 8 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 5 W , at $\mathrm{AC} 220 \mathrm{~V}=$ Approx. 15 VA (In case of installing communication card, add 2 VA .)	
Mass			Net weight of relay unit:Approx. 2.1 kg (D1 type), Including case:Approx. 2.8kg (D1 type), Net weight of relay unit:Approx. 3.1 kg (D2 type), Including case:Approx. 4.3 kg (D2 type)	
Sample of external connection diagram			Fig.5-1,2	
Remarks			The rated current 1 A product can be made based on the 5 A rating product. The setting value of current elements on 1A product is calculated by performing a multiplication $1 / 5$ of above mentioned value. The DI input facility is available for CMP1-A01D2, CMP1-A02D2 and not available for type CMP1-A01D1 and CMP2-A01D1.	

Type name			CMP1-A02D1	CMP2-A02D2
Phase current			5A	
Zero-phase current			5A	
$\begin{aligned} & \text { io } \\ & \stackrel{0}{=} \\ & \underset{\sim}{0} \end{aligned}$	Photo coupler input voltage (D2 type only)			DC110V (Permissible variable range $77 \sim 143 \mathrm{~V}$) or DC24V(Permissible variable range $\mathrm{DC} 19.2 \mathrm{~V} \sim 31.2 \mathrm{~V}$)
				Input voltage 24 V is applicable only for the case that auxiliary power supply voltage is 24 V . In any other cases, only DC 110 V is applicable as for photo coupler input voltage.
	Frequency		50 Hz or 60 Hz	
Protective element			50/51 (3 phases), 49, 46, 37(3 phases), 66, 51G	
Motor rated current (IM)			2~5A (0.1A step)	
Overcurrent instantaneous		Operation current	LOCK-10~100A (1A step)	
		Operation time	INST-0.1~1.0s (0.1s step)	
	Overcurrent time-delayed (1)	Operation current	LOCK-IM $\times 130 \sim 300 \%$ (10% step)	
		Operation time (Koct)	4-5-6-8-10-12-16-20-24-32-40-48-64-80-96-112-128-160-200-240	
		Operation time characteristics equation	$\mathrm{T}_{\text {oct }}=3 \times \frac{\mathrm{K}_{\text {oct }}}{\mathrm{I}} \mathrm{~S} \quad\left[\begin{array}{l} \mathrm{K}_{\text {oct }} \text { Operation time setting } \\ \mathrm{I}: \text { Phase current (unit: multiple to IM) } \end{array}\right)$ The selected $\mathrm{K}_{\text {oct }}$ valve is equal to the operating time of time-delayed element in case of $\mathrm{I}=3$.	
Overcurrent time-delayed (2)		Operation current		LOCK-IM $\times 115 \sim 450 \%$ (5% step)
		Operation time		$0.5 \sim 5.0 \mathrm{~s}(0.5 \mathrm{~s} \mathrm{step})$
Negative sequence overcurrent		Operation current	LOCK-IM $\times 0.5 \sim 8$ times (0.5 times step)	
		Operation time	$0.1 \sim 10 \mathrm{~s}(0.1 \mathrm{~s}$ step)	
	Overload	Operation current	LOCK-IM $\times 105 \sim 125 \%$ (5% step)	
		Operation time $\left(\mathrm{K}_{\text {TH }}\right)$	8-12-16-20-24-32-40-48-64-80-96-112-128-160-200-240	
		Operation time characteristics equation	$\begin{aligned} & \text { Operation time characteristics for HOT } \\ & \mathrm{T}_{\mathrm{TH}}=8.49 \times \mathrm{K}_{\mathrm{TH}} \times \log _{\mathrm{e}} \frac{\left(\mathrm{I}_{1}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{2}{ }^{2}\right)-\left(\mathrm{I}_{\mathrm{P}}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{\mathrm{P} 2}{ }^{2}\right)}{\left(\mathrm{I}_{1}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{2}{ }^{2}\right)-1} \mathrm{~s} \end{aligned}\left\{\begin{array}{l} \mathrm{K}_{\mathrm{TH}}: \text { Operation time setting } \mathrm{K}: \text { Negative-sequence heat multiplying factor } \\ \left.\mathrm{I}_{1}: \text { Positive sequence current of present input (unit: multiple to } \mathrm{IM}\right) \\ \left.\mathrm{I}_{2}: \text { Negative sequence current of present input (unit: multiple to } \mathrm{IM}\right) \\ \left.\mathrm{I}_{\mathrm{P} 1} \text { Positive sequence current before overload (unit: multiple to } \mathrm{IM}\right) \\ \left.\mathrm{I}_{\mathrm{P} 2}: \text { Negative sequence current before overload (unit: multiple to } \mathrm{IM}\right) \end{array}\right.$ - Operation time for COLD characteristics, in the above equation, becomes equal to case conditioned as $\left(\mathrm{I}_{\mathrm{P}_{1}}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{\mathrm{P}_{2}}{ }^{2}\right)=0$ \cdot Selected value of K_{TH}, when input is provided so as to meet the conditions of $\mathrm{I}_{1}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{2}{ }^{2}=3^{2}$ and $\mathrm{I}_{\mathrm{Pl}}{ }^{2}+\mathrm{K} \cdot \mathrm{I}_{\mathrm{P}}{ }^{2}=0$, becomes equal to the time (sec) that will be taken until operation.	
		Negative-sequence heat mutiplying factor(K)	$1 \sim 10$ (1 step)	
		Changeover characterisic	0 (COLD) 1 (HOT)	
	Undercurrent	Operation current	LOCK-1.0~4.0A (0.1A step)	
		Operation time	1~600s (1s step)	
	Limit the number of start-up times	Number of start-up	LOCK-1~5 (1 step)	
		Start-up time	$2 \sim 120 \mathrm{~s}$ (1s step)	
		Countdown rate	$2 \sim 250 \mathrm{~s} / \mathrm{h}$ (0.5s/h step)	
	Earth fault overcurrent	Operation current	LOCK-0.05~2.50A (0.05A step)	
		Operation time	INST-0.1~10s (0.1s step)	
	Output contact configuration		Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)	
	Operation indicator LED hold		All LED self-hold (Default setting at ex-works)	
	CT primary (Phase current)		$\begin{aligned} & 1^{\#-5}-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250- \\ & 1500-2000-2500-3000-4000-5000-6000-7500-8000[A] \text { \#Applicable only } 1 \text { A product } \end{aligned}$	
	CT primary (Zero-phase current)		Same as phase current	
Real time measurement			Phase current $\times 3$, Zero-phase current, Negative sequence current	
-	Max.record		Phase current $\times 3$, Zero-phase current	
	Fault record (operation value)		Phase current $\times 3$, Zero-phase current, Negative sequence current	
	Fault record (operation item)		Record and indicate the operated elements.	
	Self-diagnosis		Normal result:On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result:Off the RUN LED•Status indication item No.400=Display defects code	
Forced operation			Each output contact	
Communication Di Re		communication port	Standard equipment(PC software for Direct communication:Option)	
		e communication port	Option(For CC-LINK or MODBUS)	
Burden (at rating)			Phase current circuit:Less than 0.5 VA , Zero-phase current circuit:Less than 10Ω, Zero-phase voltage circuit:Less than 0.15 VA Auxiliary power supply circuit:at $\mathrm{DC} 100 \mathrm{~V}=$ Approx. 4 W , at $\mathrm{AC} 100 \mathrm{~V}=$ Approx. 8 VA , at $\mathrm{DC} 220 \mathrm{~V}=$ Approx. 5 W , at $\mathrm{AC} 220 \mathrm{~V}=$ Approx. 15 VA (In case of installing communication card, add 2 VA .)	
Mass			Net weight of relay unit:Approx. 2.1 kg (D1 type), Including case:Approx. 2.8 kg (D1 type), Net weight of relay unit:Approx. 3.1 kg (D2 type), Including case:Approx. 4.3 kg (D2 type)	
Sample of external connection diagram			Fig.5-3 Fig.5-4	
Remarks			The rated current 1A product can be made based on the 5 A rating product. The setting value of current elements on 1A product is calculated by performing a multiplication $1 / 5$ of above mentioned value. The DI input facility is available for CMP1-A01D2, CMP2-A02D2 and not available for type CMP1-A01D1 and CMP1-A02D1.	

※Please refer to the instruction manual regarding the details on this specification.

Characteristics ////

Items			Condition	Guaranteed performance			
Operation value	Overload element		Positive sequence current	Setting value $\pm 5 \%$			
	Overcurrent time-delayed element (1)		(Common condition) ※1				
	Overcurrent time-delayed element (2)						
	Overcurrent instantaneous element						
	Under current element						
	Negative sequence overcurrent element		Negative sequence current				
		Zero-phase current	Setting: Zero phase voltage=minimum Input: Zero phase voltage $=$ Rating voltage $\times 30 \%$, Phase=Maximum sensitive angle				
		Zero-phase voltage	Setting: Zero phase current=minimum Input: Zero phase current=Setting value $\times 1000 \%$, Phase=Maximum sensitive angle				
	Earth fault overcurrent element (CMP1-A02)		(Common condition) ※1				
Reset value	Overload element		(Common condition) $\begin{aligned} & 1\end{aligned}$	Operation value $\times 95 \%$ or more			
	Overcurrent time-delayed element (1)						
	Overcurrent time-delayed element (2)						
	Overcurrent instantaneous element Negative sequence overcurrent element						
		Zero-phase current	Setting: Zero phase voltage=minimum Input: Zero phase voltage $=$ Rating voltage $\times 30 \%$, Phase=Maximum sensitive angle				
		Zero-phase voltage	Setting: Zero phase current=minimum Input: Zero phase current=Setting value $\times 1000 \%$, Phase=Maximum sensitive angle	Operation val	e $\times 90 \%$ or moreser		
	Earth fault overcurrent element (CMP1-A02)		(Common condition) $\ldots 1$	Operation value $\times 95 \%$ or more			
	Under current element			Operation value $\times 105 \%$ or less			
Phase	Earth fault directional element (CMP1-A01)		Setting: Zero phase current=minimum Input: Zero phase current $=$ Setting value $\times 1000 \%$, Zero phase voltage $=$ Rating voltage $\times 30 \%$	Setting value $\pm 5^{\circ}$			
Operation time	Overload element		Setting:Operation time setting $\left(\mathrm{K}_{\mathrm{TH}}\right)=8$ Input: Positive sequence current $=0 \mathrm{~A} \rightarrow$ 150% and 300% of motor rated current	Input 150% : Error against normal $\pm 17 \%$ or less Input 300% :Error against normal $\pm 12 \%$ or less			
	Overcurrent timedelayed element (1)		Setting:Operation time setting (Koct) $=4$ Input: Phase current $=0 \mathrm{~A} \rightarrow$ $300 \%, 500 \%$ and 1000% of motor rated current (IM)	Input 300% :Error against normal $\pm 12 \%$ or less Input 500% :Error against normal $\pm 7 \%$ or less Input 1000% Error against normal $\pm 7 \%$ or less			
	Overcurrent timedelayed element (2)		Setting: minimum Input: Phase current $=0 \mathrm{~A} \rightarrow 300 \%$	Setting value $\pm 5^{\circ}$			
	Overcurrent instantaneous element		Setting: minimum Input: $0 \rightarrow$ setting value $\times 200 \%$	-In case of INST setting:40ms or less $\cdot 0.1 \sim 0.4 \mathrm{~s}$ setting:Setting value $\pm 25 \mathrm{~ms}$ $\cdot 0.5 \sim 1.0$ s setting:Setting value $\pm 5 \%$			
	Under current element		Setting: maximum Input:Setting value $\times 300 \% \rightarrow \mathrm{IM} \times 12 \%$	Setting value $\pm 5 \%$			
	Negative sequence overcurrent element		Setting: minimum Input:Negative sequence current $=0 \rightarrow$ Setting value $\times 200 \%$	$\cdot 0.1 \sim 0.4$ s setting:Setting value $\pm 25 \mathrm{~ms}$ $\cdot 0.5 \sim 1.0$ s setting:Setting value $\pm 5 \%$			
	Earth fault directional element (CMP1-A01)		Setting: Zero phase current=minimum Input: Zero phase current $=0 \rightarrow$ Setting value $\times 1000 \%$	Snput	Inst	$0.1 \sim 0.4 \mathrm{~s}$	$0.5 \sim 10 \mathrm{~s}$
			Zero phase voltage $=0 \rightarrow$ Rating voltage $\times 30 \%$	130\%	80 ms or less	Setting value $\pm 40 \mathrm{~ms}$	Setting value $\pm 10 \%$
			Phase=Maximum sensitive angle	400\%	80 ms or less	Setting value $\pm 2 \mathrm{~ms}$	Setting value $\pm 5 \%$
	Earth fault overcurrent element (CMP1-A02)		Setting: minimum Input: Zero phase current $=0 \Rightarrow$ Setting value $\times 200 \%$	-In case of INST setting:40ms or less $\cdot 0.1 \sim 0.4 \mathrm{~s}$ setting:Setting value $\pm 25 \mathrm{~ms}$ $\cdot 0.5 \sim 10$ s setting:Setting value $\pm 5 \%$			

※1 Common condition:(1)Rating Frequency (2)Ambient temperature: $20^{\circ} \mathrm{C} \quad$ (3) Auxiliary power supply: Rating voltage

Precaution for application ///

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20 A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).

Preceution for using $/ / /$

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.
3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
4. The EVT tertiary voltage ratio should be set as output nominal
5. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d: Serial number, e:Date of stamp on the checking seal (The above mentioned items a. \sim d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. It is possible to input the equipment fault signal and the operation signal (under voltage, etc.) of external protection relay etc to the $\mathrm{DI}(1)$ and $\mathrm{DI}(2)$. These input signals can initiate the related operation output signals.
10. Make a wiring between EVT "a" terminal and "A-06" ("A-16" for CMP1-A01D2) terminal of relay and EVT " f " terminal and "A-05" ("A-15" for CMP1-A01D2) terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the wiring between " f terminal of EVT and earth terminal. Any other wiring than above will not realize the correct detection on the earth fault directional.
11. A commercially available ZCT conformity with JEC1201 (type BZ in case of MITSUBISHI ELECTRIC CORPORATION) may be applicable for the type CMP1-A01D1/2.
12. Only one number of ZCT can be connected to one number of the type CMP1-A01D1/D2. Correct operation of the relay can not be guaranteed against two or more numbers of ZCT to connect to one number of the type CMP1-A01D1/2.
13. It is possible to use the CMP1-A02 type as the phase over current protection provided with two phases. However, residual connection of 2 phases can not be applied to the earth fault over current element. The residual connection of 3 phases only can be applied to the earth fault over current element. In case of only two phase CTs being available for phase over current protection, ZCT or one more CT is needed for earth fault over current element. Also. the negative sequence over current element is not operated properly by the CT circuits provided with two phases. Therefore, in this case, please make a setting of negative sequence of over current element to LOCK position.
14. The DI input of CMP1-A01D2 and CMP2-A02D2 has a polarity. Therefore, please pay attention to polarity as DI input can not be detected properly due to the wrong connection of DI circuit.
voltage between terminal "a" and "f" of EVT. Example: $190 / 3 \Rightarrow 190 \mathrm{~V}$, $110 / 3 \Rightarrow 110 \mathrm{~V}$
5. The function of the ZCT error correction installed in the relay(CMP1-A01D1/D2 type only, item No. 904,905) is applied for the purpose of correcting ZCT transformation error, so that improving the composite characteristics is achieved. The ZCT error correction range is $200 \mathrm{~mA} / 1.5 \mathrm{~mA} \sim 4.1 \mathrm{~mA}(\pm 0 \sim+2.6 \mathrm{~mA})$ for the nominal transformation ratio $200 \mathrm{~mA} / 1.5 \mathrm{~mA}$ specified with JEC-1201.

Precaution for safety ////

Please refer to page2 and 3 regarding the safty information and request when placing order.

Sample of external connection diagram

※1 A resistance is necessary for the isolated neutral system.
Fig.5-1 CMP1-A01D1

Fig.5-2 CMP1-A01D2

Fig.5-3 CMP1-A02D1

Fig.5-4 CMP2-A02D2

CPP Series SYSTEM LINKAGE PROTECTION RELAY

Type, rating and specification $/ / / /$

Characteristics ////

Items		Condition	Guaranteed performance
Operation value	Earth fault over voltage element	(Common condition) ※1	Setting value $\pm 5 \%$
	Over voltage element		
	Under voltage element		
	Phase fault directional element (L,H element)	Input voltage: Rated voltage Phase of current: Maximum sensitive angle (Set UV element for the NO USE position)	
	Phase fault directional element (U,V element)	(Common condition) ※1	
	Under frequency element	Input voltage: Rated voltage	Setting value $\pm 0.05 \mathrm{~Hz}$
	Reverse power element	Input voltage: Rated voltage Phase of current: Maximum sensitive angle	\cdot For $0.2 \sim 0.5 \%$ setting: Setting value $\pm 1.5 \mathrm{~mA}$ \cdot For $0.6 \sim 0.9 \%$ setting: Setting value $\pm 7 \%$ -For another setting: Setting value $\pm 5 \%$
	Over frequency element	Input voltage: Rated voltage	Setting value $\pm 0.05 \mathrm{~Hz}$
	Under power element	Input voltage: Rated voltage Phase of current: Maximum sensitive angle	Setting value $\pm 5 \%$
	Islanding detection element (CPP1-A11D2)	Input voltage: Rated voltage Change frequency quickly from rated frequency In case of operation time setting is 1 s , frequency should be swept.	[Value for full operation] Setting value: $\pm 0.0125 \mathrm{~Hz} / \mathrm{s}$
Reset value	Earth fault over voltage element	(Common condition) ※1	operation value $\times 95 \%$ or more
	Over voltage element		operation value $\times 95 \%$ or more
	Under voltage element		operation value $\times 105 \%$ or less
	Phase fault directional element (L,H element)	Input voltage: Rated voltage Phase of current: Maximum sensitive angle (Set UV element for the NO USE position)	operation value $\times 95 \%$ or more
	Phase fault directional element (U,V element)	(Common condition) ※1	operation value $\times 105 \%$ or less
	Under frequency element	Input voltage: Rated voltage	Difference between operation value and reset value is $\pm 0.05 \mathrm{~Hz}$ or less
	Reverse power element	Input voltage: Rated voltage Phase of current: Maximum sensitive angle	\cdot For $0.2 \sim 0.5 \%$ setting: Operation value $\times 80 \%$ or more \cdot For $0.6 \sim 0.9 \%$ setting: Operation value $\times 93 \%$ or more -For another setting: Operation value $\times 95 \%$ or more
	Over frequency element	Input voltage: Rated voltage	Difference between operation value and reset value is $\pm 0.05 \mathrm{~Hz}$ or less
	Under power element	Input voltage: Rated voltage Phase of current: Maximum sensitive angle	operation value $\times 105 \%$ or less
Operation time	Earth fault over voltage element	Operation setting value: Minimum Input: $0 \rightarrow$ Operation setting value $\times 150 \%$	Setting value $\pm 20 \mathrm{~ms}$ or $\pm 5 \%$ whichever is greater
	Over voltage element	Operation setting value: Minimum Input: $0 \rightarrow$ Operation setting value $\times 120 \%$	
	Under voltage element	Operation setting value: 100 V Input: rated voltage \rightarrow operation setting value $\times 70 \%$	
	Phase fault directional element (L,H element)	Operation setting value: minimum, UV setting for DS: NO USE Input voltage: Rated voltage Input current: $0 \rightarrow$ setting value $\times 200 \%$ Phase of current: Maximum sensitive angle	
	Under frequency element	Operation setting value: Minimum Input voltage: Rated voltage Frequency: Rated frequency \rightarrow setting value -1 Hz with moving down rate $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$	
	Reverse power element	Operation setting value: Minimum Input voltage: Rated voltage Input current: $0 \rightarrow$ setting value $\times 200 \%$ Phase of current: Maximum sensitive angle	
	Over frequency element	Operation setting value: Minimum Input voltage: Rated voltage Frequency: Rated frequency \rightarrow setting value +1 Hz with moving up rate $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$	
	Under power element	Operation setting value: Maximum Input voltage: Rated voltage Input current: setting value $\times 200 \% \rightarrow 0$ Phase of current: Maximum sensitive angle	

Items		Condition	Guaranteed performance
Operation time	Islanding detection element (CPP1-A11D2)	Operation setting value: Minimum Input voltage: Rated voltage Frequency:Rated frequency \rightarrow Rated frequency + setting value $\times(\pm 500 \%)$ Change abruptly at the same phase.	Setting value: $\pm 40 \mathrm{~ms}$
Lock reset time of lock function at un-interconnected condition		DI input voltage: Rated voltage $\rightarrow 0$ Measuring the time between contact open status \rightarrow close status.	Setting value $\pm 50 \mathrm{~ms}$ or $\pm 5 \%$ whichever is greater
Reset time	Earth fault over voltage element	Operation setting value: Minimum Input: Operation setting value $\times 150 \% \rightarrow 0$	$200 \mathrm{~ms} \pm 20 \mathrm{~ms}$
	Over voltage element	Operation setting value: Minimum Input: Operation setting value $\times 120 \% \rightarrow 0$	
	Under voltage element	Operation setting value: 100 V Input: operation setting value $\times 70 \% \rightarrow$ rated voltage	
	Phase fault directional element (L,H element)	Operation setting value: minimum, UV setting for DS: NO USE Input voltage: Rated voltage Input current: setting value $\times 200 \% \rightarrow 0$ Phase of current: Maximum sensitive angle	
	Under frequency element	Operation setting value: Minimum Input voltage: Rated voltage Frequency: setting value $+1 \mathrm{~Hz} \rightarrow$ Rated frequency with moving up rate $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$	
	Reverse power element	Operation setting value: Minimum Input voltage: Rated voltage Input current: setting value $\times 200 \% \rightarrow 0$ Phase of current: Maximum sensitive angle	
	Over frequency element	Operation setting value: Minimum Input voltage: Rated voltage Frequency: setting value $-1 \mathrm{~Hz} \rightarrow$ Rated frequency with moving down rate $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$	
	Under-power element	Operation setting value: Maximum Input voltage: Rated voltage Input current: $0 \rightarrow$ setting value $\times 300 \%$ Phase of current: Maximum sensitive angle	
Output contact latching time	Islanding detection element (CPP1-A11D2)	(Common condition) ※1	
Phase characteristic	Phase fault directional element (L,H element)	Input voltage: Rated voltage Input current: setting value $\times 200 \%$ USE UV setting for DS: NO USE	
	Reverse power element	Input voltage: Rated voltage Input current: setting value $\times 200 \%$	
	Under power element	Input voltage: Rated voltage Input current: setting value $\times 200 \%$	

※1 Common condition:(1)Rating Frequency (2) Ambient temperature: $20^{\circ} \mathrm{C}$ (3) Auxiliary power supply: Rating voltage

Precaution for application ///

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized (" break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after
auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a. \sim d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. Lock at un-interconnected condition (Terminal number "E-01", "E-03") Operation of each element (DS, RP, UF, OF, UP and df/dt) are locked for the determined time after interconnection (set by the timer element of un-interconnected condition) in order to prevent unnecessary operations due to the power fluctuation. The lock condition will be released in the determined time.
10. The DI input of un-interconnected condition (Terminal number "E-01", "E-03") has a polarity. Therefore, please pay attention to polarity as the DI input can not be detected properly due to the wrong connection of DI circuit.
11. Make a wiring between EVT "a" terminal and "A-12" terminal of relay and EVT " f " terminal and "A-11" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the wiring
between " f " terminal of EVT and earth terminal.

UV TEST). UV TEST should be set as OFF in the operational condition.
6. The DS test function (item No. 546) will be used for single phase test for the phase fault directional element. (DS test LED will turn on during selecting DS TEST). DS TEST should be set as OFF in the operational condition.
7. The 67P and 91L elements detect 3 phases active power($\sqrt{3 E I c o s} \theta)$. 100% of 3 phases power equal to that when nominal voltage (110 V) and nominal current (5 A) are impressed.
8. The 95 L and 95 H elements are locked in case of input voltage being less than 35 V for failsafe purpose.

Precaution for using ////

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.
3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
4. The EVT tertiary voltage ratio should be set as output nominal voltage between terminal "a" and "f" of EVT. Example: 190/3 $\Rightarrow 190 \mathrm{~V}$, $110 / 3 \Rightarrow 110 \mathrm{~V}$
5. The UV test function (item No. 533) will be used for single phase test for under voltage element. (UV test LED will turn on during selecting

Precaution for safety ////

Please refer to page 2 and 3 regarding the safty information and request when placing order.

Sample of external connection diagram

※1 The island detection facility is not available for CPP1-A01D2
$※ 2$ The output contact device number for CPP1-A01D2 is the number inside the parentheses
※3 A resistance is necessary for the isolated neutral system.
※4 The application voltage for terminal E-01, E-03 is 24 V in case that the supplied auxiliary power voltage is 24 V .
Fig.6-1 CPP1-A01D2, CPP1-A11D2

CGP1 Series GENERATOR PROTECTION RELAY

Type, rating and specification $/ / / /$

Sample of external connection diagram

※Please refer to the instruction manual regarding the details on this specification.
\# Not applicable for CGP1-A03D2

Characteristics ////

Items		Condition			Guaranteed performance
Operation value	Overcurrent time-delayed element	(Common condition) ※1			Setting value $\pm 5 \%$ Setting value $\pm 10 \%$
	Overcurrent instantaneous element				
	Unbalance current element 1	Negative sequence current			Setting value $\pm 5 \%$
	Unbalance current element 2				
	Voltage detecting element	(Common condition) ※1			
	Over voltage element				
	Under voltage element				
	Under frequency element	Input voltage: Rated voltage			Setting value $\pm 0.05 \mathrm{~Hz}$
	Over frequency element	Input voltage: Rated voltage			
	Reverse power element	Input voltage: Rated voltage Phase of current: Maximum sensitive angle			$\cdot 0.5,1 \sim 3 \%$ setting: Setting value $\pm 5 \mathrm{~mA}$ - For another setting: setting value $\pm 5 \%$
	Earth fault directional element (CGP1-A01D2)	Zero phase current	Setting: Zero phase voltage: minimum Input: Zero phase voltage=rated voltage $\times 30 \%$ Phase: maximum sensitive angle		$\cdot 1.0$ and 1.5 mA setting: setting value $\pm 10 \%$ - For another setting: setting value $\pm 5 \%$
		Zero phase voltage	Setting: Zero phase curr Input: Zero phase curren Phase: maximum sensitiv	ent: minimum nt=setting value $\times 1000 \%$ ve angle	Setting value $\pm 5 \%$
	Earth fault overcurrent (CGP1-A03D2)	(Common condition) ※1			Setting value $\pm 5 \%$
	Earth fault over voltage element (CGP1-A01D2)	(Common condition) ※1			Setting value $\pm 5 \%$
Reset value	Overcurrent time-delayed element	(Common condition) ※1			Setting value $\times 95 \%$ or more
	Overcurrent instantaneous element				
	Unbalance current element 1	Negative sequence current			
	Unbalance current element 2				
	Voltage detecting element	(Common condition) ※1			
	Over voltage element				
	Under voltage element				Setting value $\times 105 \%$ or less
	Under frequency element	Input voltage: Rated voltage			Difference between operation value and reset value is $\pm 0.05 \mathrm{~Hz}$ or less
	Over frequency element	Input voltage: Rated voltage			
	Reverse power element	Input voltage: Rated voltage Phase of current: Maximum sensitive angle			$\cdot 0.5,1 \sim 3 \%$ setting: operation value $\times 80 \%$ or more \cdot For another setting: setting value $\times 95 \%$ or more
	Earth fault directional element (CGP1-A01D2)	Zero phase current	Setting: Zero phase volta Input: Zero phase voltage Phase: maximum sensitiv	age: minimum ge $=$ rated voltage $\times 30 \%$ ve angle	Operation value $\times 90 \%$ or more
		Zero phase voltage	Setting: Zero phase curre Input: Zero phase curren Phase: maximum sensitiv	rent: minimum $n t=$ setting value $\times 1000 \%$ ve angle	
	Earth fault overcurrent (CGP1-A03D2)	(Common co	ondition) ※1		Setting value $\times 95 \%$ or more
	Earth fault over voltage element (CGP1-A01D2)	(Common co	ondition) ※1		Setting value $\times 95 \%$ or more
Operation time	Overcurrent time-delayed element	Operation setting value: minimum Operation time multiplier: 10 Input: $0 \rightarrow$ setting value $\times 300.500 .1000 \%$			$\begin{aligned} & \text { - NI,EI Input: } 300 \% \text { : nominal value } \pm 12 \% \text { or less } \\ & \text { Input: } 500 \% \text { : nominal value } \pm 12 \% \text { or less } \\ & \text { Input: } 1000 \% \text { : nominal value } \pm 7 \% \text { or less } \\ & \text {-DT Nominal value } \pm 5 \% \text { or less } \end{aligned}$
		$\begin{array}{l}\text { NI (Normal inverse time delayed } \\ \text { characteristics) }\end{array}$ $\mathrm{t}=\frac{0.14}{\mathrm{I}^{0.02}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$			
		EI (Extremely inverse time-delayed characteristic) $\mathrm{t}=\frac{150}{\mathrm{I}^{2}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$ D			
		DT (Definite time-delayed characteristic)		$\mathrm{t}=2 \times \frac{\mathrm{M}}{10}(\mathrm{~s})$	
		t: operation time(s) I: Multiple of input current against operation value ($\mathrm{Ig} \times 100 \sim 120 \%$) M: Operation time multiplier (times)			
	Overcurrent instantaneous element	Operation setting value: minimum Input: $0 \rightarrow 200 \%$ of setting value			Setting value $\pm 25 \mathrm{~ms}$ or less and at the time of INST setting: 40 ms or less
	Unbalance current element 1	Operation setting value: minimum Operation time multiplier: 10 Input: $0 \rightarrow 30,50,100 \%$ of Generator rated current Ig			Input: 300% : nominal value $\pm 20 \%$ or less Input: 500% : nominal value $\pm 15 \%$ or less Input: 1000% : nominal value $\pm 10 \%$ or less
		$\mathrm{t}=\frac{\mathrm{M}}{\mathrm{I}_{2}^{2}}(\mathrm{~s}) \quad$$\mathrm{t}:$ operation time(s) I2: Multiple of input negative sequence current against Ig M: Operation time multiplier (times)			
	Unbalance current element 2	Setting: minimum Input: negative sequence current $=0 \rightarrow$ setting value $\times 200 \%$			Setting value $\pm 5 \%$ or less
	Voltage detecting element	Operation setting value: minimum Input: $0 \rightarrow$ operation setting value $\times 120 \%$			
	Over voltage element				$0.1 \sim 0.5$ s setting: setting value $\pm 25 \mathrm{~ms}$ or less For $0.6 \sim 10$ s setting: Within setting value $\pm 5 \%$
	Under voltage element	Operation setting value: 100 V Input: rated voltage \rightarrow operation setting value $\times 70 \%$			

[^5]| Items | | Condition | Guaranteed performance | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation time | Under frequency element | Operation setting value: minimum
 Input voltage: Rated voltage
 Frequency: Rated frequency \rightarrow setting value -1 Hz with moving down rate $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$
 Operation setting value: maximum
 Input voltage: Rated voltage
 Frequency: Rated frequency \rightarrow setting value +1 Hz with moving up rate $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$ | $0.1 \sim 0.5 \mathrm{~s}$ setting: setting value $\pm 25 \mathrm{~ms}$ or less For $0.6 \sim 10$ s setting: Within setting value $\pm 5 \%$ | | | |
| | Over frequency element | | | | | |
| | Reverse power element | Operation setting value: minimum
 Input voltage: Rated voltage
 Input current: $0 \rightarrow$ setting value $\times 200 \%$
 Phase of current: Maximum sensitive angle | | | | |
| | Earth fault directional element (CGP1-A01D2) | Setting: Zero phase current, voltage $=$ minimum Input: Zero phase current $=0 \rightarrow$ setting value $\times 1000 \%$ Zero phase voltage $=0 \rightarrow$ rated voltage $\times 30 \%$
 Phase: maximum sensitive angle | Input Setting | Inst | $0.1 \sim 0.4 \mathrm{~s}$ | 0.5~10s |
| | | | 130\% | 80 ms or less S | Setting value $\pm 40 \mathrm{~ms}$ | Setting value $\pm 10 \%$ |
| | | | 400\% | 80 ms or less S | Setting value $\pm 20 \mathrm{~ms}$ | Setting value 50% |
| | Earth fault overcurrent element (CGP1-A03D2) | Operation setting value: minimum Input: Zero phase current $=0 \rightarrow$ setting value $\times 1000 \%$ | Within setting value $\pm 25 \mathrm{~ms}$ | | | |
| | Earth fault over voltage element (CGP1-A01D2) | Operation setting value: minimum Input: Operation setting value $\times 150 \%$ | $0.1 \sim 0.5$ s setting: setting value $\pm 25 \mathrm{~ms}$ or less For $0.6 \sim 10$ s setting: Within setting value $\pm 5 \%$ | | | |
| Reset time | Overcurrent time-delayed element | Operation setting value: minimum
 Input: Operation setting value $\times 300 \% \rightarrow 0$ | For $0.6 \sim 10$ s setting: Within setting value $\pm 5 \%$ | | | |
| | Overcurrent instantaneous element | | | | | |
| | Unbalance current element 1 | Setting: minimum | | | | |
| | Unbalance current element 2 | Input: negative sequence current=setting value $\times 300 \% \rightarrow 0 \mathrm{~A}$ | | | | |
| | Voltage detecting element | Operation setting value: minimum | | | | |
| | Over voltage element | Input: Operation setting value $\times 120 \% \rightarrow 0$ | | | | |
| | Under voltage element | Operation setting value: 100 V
 Input: Operation setting value $\times 70 \% \rightarrow$ rated voltage | | | | |
| | Under frequency element | Operation setting value: minimum
 Input voltage: Rated voltage
 Frequency: Setting value $-1 \mathrm{~Hz} \rightarrow$ rated frequency with moving up rate, $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$ | | | | |
| | Over frequency element | Operation setting value: maximum
 Input voltage: Rated voltage
 Frequency: Setting value $+1 \mathrm{~Hz} \rightarrow$ rated frequency with moving down rate , $\mathrm{df} / \mathrm{dt}=5 \mathrm{~Hz} / \mathrm{s}$ | $200 \mathrm{~ms} \pm 25 \mathrm{~ms}$ | | | |
| | Reverse power element | Operation setting value: minimum
 Input voltage: Rated voltage
 Input current: setting value $\times 200 \% \rightarrow 0$
 Phase of current: Maximum sensitive angle | | | | |
| | Earth fault directional element (CGP1-A01D2) | Setting: Zero phase current, voltage $=$ minimum
 Input: Zero phase current $=$ setting value $\times 1000 \% \rightarrow 0$
 Zero phase voltage $=$ rated voltage $\times 30 \% \rightarrow 0$
 Phase: maximum sensitive angle | | | | |
| | Earth fault overcurrent element (CGP1-A03D2) | Operation setting value: minimum
 Input: Zero phase current $=$ setting value $\times 1000 \% \rightarrow 0$ | | | | |
| | Earth fault over voltage element (CGP1-A01D2) | Operation setting value: minimum
 Input: operation setting value $\times 150 \% \rightarrow 0$ | | | | |
| | Reverse power element | Input voltage: Rated voltage
 Current input: setting value $\times 200 \%$ | Maximum sen | nsitive angle $=0$ | $0^{\circ} \pm 5^{\circ}$ | |
| Phase characteristic | Earth fault directional element (CGP1-A01D2) | Setting: Zero phase current, voltage=minimum Input: Zero phase current=setting value $\times 1000 \%$ Zero phase voltage $=$ rated voltage $\times 30 \%$ | Maximum sen | nsitive angle ± 5 | | |
| Overshoot characteristic | Overcurrent time-delayed element | Settings: Time-delayed operation value=minimum, operation time multiplier $=10$, operation characteristic $=$ all characteristics Current input: 0A \rightarrow setting value $\times 1000 \%$ | No-operation | limit time/oper | ration time $=9$ | 90\% or more |
| | Unbalance current element 1 | Settings: Time-delayed operation value=minimum, operation time multiplier $=10$
 Current input: $0 \mathrm{~A} \rightarrow$ setting value $\times 1000 \%$ | | | | |

Precaution for application ///

1. Guarantee against interruption of AC power supply

When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2 . Inrush current of power supply
Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20 A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series.
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a. \sim d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. Make a wiring between EVT "a" terminal and "A-10" terminal of relay and EVT " f " terminal and "A-09" terminal of relay. Also, the grounding of EVT tertiary circuit has to be configured by the wiring between " f " terminal of EVT and earth terminal. Any other wiring than above will not realize the correct detection on the earth fault directional.
10. Lock function by external control input

Two DI circuits are installed for the interlock by external control signals, and a relay element can be locked by DI input. Moreover, the relay element locked at the time of DI input arising can be set up to each DI circuit.
11. A commercially available ZCT conformity with JEC1201 (type BZ in case of MITSUBISHI ELECTRIC CORPORATION) may be applicable for the type CGP1-A01D2.
12. Only one number of ZCT can be connected to one number of the type CGP1-A01D2. Correct operation of the relay can not be guaranteed against two or more numbers of ZCT to connect to one number of the type CGP1-A01D2.
13. It is possible to use the type CGP1-A03 as the phase over current protection provided with two phases. However, residual connection of 2 phases can not be applied to the earth fault over current element. The residual connection of 3 phases only can be applied to the earth fault over current element. In case of only two phase CTs being available for phase over current protection, ZCT or one more CT is needed for earth fault over current element. Also. The unbalance current elements are not operated properly by the CT circuits provide with two phases. Therefore, please make a setting of unbalance current elements as LOCK position.
14. The DI input for interlock (Terminal number "E-01", "E-03" and "E-02","E-04") has a polarity. Therefore, please pay attention to polarity as the input signals can not be detected properly due to the wrong connection of DI circuit.
15. According to the connection diagram, ZCT terminal " K " is assigned as utility side and terminal "L" is assigned as load (generator) side.
However, it is possible to assign the ZCT terminal "K" as load (generator) side and the ZCT terminal "L" as utility side. In this case, make a wiring between ZCT secondary terminal " k " and relay terminal "A-16" and between ZCT terminal " 1 " and relay terminal "A-15". Regarding a CT connection, make wiring as R phase current flows into the terminal "A-18" of relay and T phase current flows into the terminal "A-22" of relay in case of normal operation. Please note allow marks indicated in the connection diagram shows the direction of current in case of faults occurrence in the generator.
16. To prevent the influence from noise or surge, a shielded 2 cores (size is $0.75 \sim 1 \mathrm{~mm} 2$) cable should be used for the connection between ZCT or ZVT and relay and shield wire should be connected to the earth terminal of the relay or the earth terminal located inside of the switchboard. Further more, the go and return burden of the cable should be less than 5 ohms which is almost equal to 100 m distance in case of 0.75 mm 2 .

Precaution for using ///

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.
3. The setting of measuring transformer ratio is applied only for the measuring indication converted to the primary side, and is not applied for protection element.
4. The EVT tertiary voltage ratio should be set as output nominal voltage between terminal " a " and " f " of EVT. Example: $190 / 3 \Rightarrow 190 \mathrm{~V}$, $110 / 3 \Rightarrow 110 \mathrm{~V}$
5. The function of the ZCT error correction installed in the relay (CGP1-A01D2 type only, item No. 906,907) is applied for the purpose of correcting ZCT transformation error, so that improving the composite

Precaution for safety $/ / /$

Please refer to page 2 and 3 regarding the safty information and request when placing order.
characteristics is achieved. The ZCT error correction range is $200 \mathrm{~mA} / 1.5 \mathrm{~mA} \sim 4.1 \mathrm{~mA}(\pm 0 \sim+2.6 \mathrm{~mA})$ for the nominal transformation ratio $200 \mathrm{~mA} / 1.5 \mathrm{~mA}$ specified with JEC-1201.
6. The UV test function (item No. 533) will be used for single phase test for under voltage element. (UV test LED will turn on during selecting UV TEST). UV TEST should be set as OFF in the operational condition.
7. The 67 P element detect 3 phases active power($\sqrt{3 E I} \cos \theta) .100 \%$ of 3 phases power equal to that when nominal voltage (110V) and nominal current (5 A) are impressed.
8. The 95 L and 95 H elements are locked in case of input voltage being less than 35 V for failsafe purpose.

Sample of external connection diagram

Fig.7-1 CGP1-A01D2
The connection diagram shows concepts of the wiring only. Therefore, please note that there will have some difference between the connection diagram and actual installation status of CT,VT and safety devices such as fuse, etc.

Fig.7-2 CGP1-A03D2

CGP2 Series GENERATOR PROTECTION RELAY

Type, rating and specification $/ / / /$

Type name				CGP2-A01D2	CGP2-A02D2
Rating	Phase current			5A	
	Line voltage			$100 \sim 120 \mathrm{~V}$	
	Photo coupler input voltage			DC110V (Permissible variable range $77 \sim 143 \mathrm{~V}$) or DC24V (Permissible variable range $\mathrm{DC} 19.2 \mathrm{~V} \sim 31.2 \mathrm{~V}$)	
				Input voltage 24 V is applicable only for the case that auxiliary power supply voltage is 24 V . In any other cases, only $\mathrm{DC110V}$ is applicable as for photo coupler input voltage.	
	Frequency			50 Hz or 60 Hz	
Protective element				87G (3phases) , 40	87G (3phases)
Setting	Biased differential		Minimum operation current	LOCK-0.4~1.0A (0.2A step)	
			Bias	10-20\% (5\% step)	
			Operation time	INST (60 ms or less) $-0.1 \sim 0.5 \mathrm{~s}$ (0.1 s step)	
	Loss of excitation		Impedance ZF	LOCK-5.0 050.0Ω ($0.5 \Omega \mathrm{step}$)	
			Impedance ZB	$0.4 \sim 4.0 \Omega$ (0.04 ${ }^{\text {step }}$)	-
			Operation time	$0.2 \sim 10 \mathrm{~s}(0.1 \mathrm{~s}$ step)	-
	DI lock time			$0.1 \sim 5.0 \mathrm{~s}$ (0.1 s step)	
	Output contact configuration			Refer to the external connection diagram/Auto reset for all contacts (Default setting at ex-works)	
	Operation indicator LED hold			All LED self-hold (Default setting at ex-works)	
	CT primary			$\begin{aligned} & 5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250- \\ & 1500-2000-2500-3000-4000-5000-6000-7500-8000[\mathrm{~A}] \end{aligned}$	
	VT primary			$\begin{aligned} & 100 \sim 999 \mathrm{~V}(1 \mathrm{~V} \text { step }), ~ 1000 \sim 9990 \mathrm{~V}(10 \mathrm{~V} \text { step }), ~ 10.0 \mathrm{k} \sim \\ & 99.9 \mathrm{kV}(0.1 \mathrm{kV} \text { step }), ~ 100 \mathrm{k} \sim 300 \mathrm{kV}(1 \mathrm{kV} \text { step }) \end{aligned}$	-
	VT secondary				-
Display	Real time measurement			Phase current $\times 3$, Differential current, Line voltage, Phase, Frequency	
	Max.record			Phase current $\times 3$, Differential current, Line voltage	
	Fault record (operation value)			Phase current $\times 3$, Differential current, Line voltage, Phase	
	Fault record (operation item)			Record and indicate the operated elements.	
	Self-diagnosis			Normal result:On the RUN LED (green) • Status indication item No. $400=$ No display. Abnormal result:Off the RUN LED•Status indication item No.400=Display defects code	
Forced operation				Each output contact	
Communication		Direct communication port		Standard equipment(PC software for Direct communication:Option)	
			ote communication port	Option(For CC-LINK or MODBUS)	
Burden (at rating)				Phase current circuit:Less than 0.5 VA, Phase current circuit:Less than 0.5 VA, Voltage circuit:Less than 1.0 VA, Auxiliary power supply circuit: Auxiliary power supply circuit: at DC100V=Approx. 6 W, at DC100V = Approx. 6 W, at AC100V=Approx. 12 VA, at AC100V=Approx. 12 VA, at DC220V=Approx. 6 W, at DC220V=Approx. 6 W, at AC220V=Approx. 14 VA at AC220V $=$ Approx. 14 VA (In case of installing communication card, add $2 \mathrm{VA}$. (In case of installing communication card, add $2 \mathrm{VA}$. .)	
Mass				Net weight of relay unit:Approx. 3.5 kg , Including case:Approx. 4.5 kg	
Sample of external connection diagram				Fig.8-1	Fig.8-2, 3

Characteristics ///

Precaution for application ///

1. Guarantee against interruption of AC power supply When an uninterruptible AC power source is not available in your system for the auxiliary power supply, use the type B-T1 AC/DC converter or commercially available uninterruptible power supply (UPS: MITSUBISHI ELECTRIC CORPORATION FW-A series or FW-V series). In addition, possible duration of the power supply type B-T1 AC/DC converter is confirmed as about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required duration of power supply after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply. When power supply back up for the circuit breaker is required, it is necessary to prepare the power supply independent from the type B-T1 AC/DC converter.
2. Inrush current of power supply

Since inrush current (about 2 ms duration) as below may flow into the relay when the power supply is turned on, please make a consideration on this regard for selection of power circuit breaker.

Input voltage	Inrush current Ip
DC110V	Approx. 20A
DC220V	Approx. 55 A
AC100V	Approx. 25 A
AC220V	Approx. 65 A

3. Trip circuit

Only the dedicated contacts can be used for the circuit breaker trip circuit. Please keep in mind that the contacts for signaling can not be used for the trip circuit. (If used, the contact may burn). Also, connect the pallet contact (52a) of the circuit breaker to the trip coil circuit in series
4. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay is energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to output abnormal result even after the built-in power failures. Therefore, the "break contact" is still closed in the aftermath of the power applying and will be opened after 50 ms . If the auxiliary power of the relay and the self-diagnosis output contact feed from a same power source, the "break contact" will be closed temporarily after auxiliary power supply is turned on. In this case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delay timer.
5. Grounding circuit

Be sure to make a wiring to the earth terminal located on the back of the relay according to the Class D earth wiring method (Grounding resistance should be less than 100 ohm).
6. CC-Link communication circuit

Please include the communication card into your purchasing order in
case of the application of the communication facility as the card necessary for communication (CC-Link) is option. In case of retrofit existing relay with communication card, please inform the followings of existing relay. a:Type, b:Style number, c:Manufacturing year, d:Serial number, e:Date of stamp on the checking seal (The above mentioned items a. \sim d. are indicated on the bottom right of front face of the relay and item e. is indicated on the upper of back side of the relay.) The version number of CC-Link is 1.00 .
7. Improvement of reliability of protection system

For the important facilities, multiplex system such as dual should be provided to improve reliability.
8. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install surge absorbers.
9. The external wiring should be done according to the connection diagram of each relay. If a wrong wiring would be made, there are some possibilities that causing of the differential current and improper operation of loss of excitation element.
10. Lock function by external control input

Two DI circuits are installed for the interlock by external control signals, and a relay element can be locked by DI input. Moreover, the relay element locked at the time of DI input arising can be set up to each DI circuit.
11. In case of application of the loss of excitation element only, wiring should be made for the VT circuit Vab, CT circuits Ia (terminal number "A17"- "A18"), Ib (terminal number "A19"-"A20") and not necessary to make a wiring for other terminals.
12. The DI input for interlock (Terminal number "E-01", "E-03" and "E-02","E-04") has a polarity. Therefore, please pay attention to polarity as the input signals can not be detected properly due to the wrong connection of DI circuit
13. The differential current, caused by the flow-through current (due to inrush current of transformer or faults current) of CT which has different saturated characteristics for each other and are located in the neural point and load side of generator, will become cause of miss-operation of the relay. To prevent from such an incorrect operation, it is recommended to apply the CT in which accuracy limit factor is more than 20 and accuracy is 1P class or 1PS class.
14. Despite of no faults in the excitation circuit, the calculated impedance in the relay will be closed to the operation area and the loss of excitation element will operate due to unbalance of 3 phases PT circuit voltage (caused by a broken wire for example) or unbalance of burden for each phase. To prevent from such incorrect operation, it is recommended to apply the voltage balance relay.
15. When the differential current check is detected (contact X 4 is in operation and differential check LED is in lit condition), careful checking of external wiring is requested as there are a possibility to have some mistake of the wiring.

Precaution for using ////

1. When the product is shipped from the factory, each setting value is "LOCK" (for element with LOCK position) or "minimum setting value" (for element without LOCK position)
2. To set as [LOCK] position means to set the element out of use.

Precaution for safety ///

Please refer to page 2 and 3 regarding the safty information and request when placing order.
3. When current input for the loss of excitation element is derived from the generator neutral point side, the phase current measuring does not indicate outgoing current but incoming current.

Sample of external connection diagram

※1 The application voltage for terminal E-01, E-03 and terminal E-02, E-04 is 24 V in case that the supplied auxiliary power voltage is 24 V .
Fig.8-1 CGP2-A01D2

※1 The application voltage for terminal E-01, E-03 and terminal E-02, E-04 is 24 V in case that the supplied auxiliary power voltage is 24 V .
Fig.8-2 CGP2-A01D2 (Apply only 40 element)

※1 The application voltage for terminal E-01, E-03 and terminal E-02, E-04 is 24 V in case that the supplied auxiliary power voltage is 24 V .
Fig.8-3 CGP2-A02D2

MELPRO-D Series Dimensions

Case type	A	B	C
D 1	151	114	130
D 2	251	214	230
2 out of 3 relay case	351	314	330

Suggestion From Mitsubishi Electric (for improving reliability of system)

As a way to improve the realiability of Protection system, MITSUBISHI ELECTRIC also provides customers the following products.

Reduntant fault detection system

2 out of 3 method \cdots The method that the power system faults are detected by at least 2 relays among 3-relay set.
In this way, the power system faults can be detected when 2 relays operate, even if the other relay is in failure. (refer to the following concept diagram)
[COFIGURATION CONCEPT】

We provide a compact unit integrating 3 relays in one case.

Control and Operation

Explanation of Front panel

No.	Designation			Symbol	Description
(1)		Setting/Cancel		SETTING/CANCEL	Pressing this switch will start the procedure for setting, forced operation or option. When this switch is pressed again instead of the SET.END/TRIP switch, data that has been programmed will be all cleared to terminate the selected procedure.The SETTING/CANCEL indicator LED is lit during the procedure.
(2)		Select/Set		SELECT/SET	This switch is used to select an item number and program item data during setting, forced operation or option procedure. When data is programmed to be ready for replacing the currently used setting, the SET.END/TRIP LED will blink.
(3)		Setting End/Trip		SET.END/TRIP	When the SET.END/TRIP switch is pressed with its LED blinking during setting, forced operation or option procedure, the current setting will be replaced by data given by programming. The new setting will be thus enabled.
(4)		UP select		UP	These switches are used for selecting data elements. Pressing these switches for a while will allow fast forward. With the cover operating button, you can use the switches without removing the cover.
(5)		DOWN select		DOWN	
(6)		Indication/Indication End		IND./IND.END	Pressing this switch will start or end the display of settings and measurements. With the cover operating button, you can use the switches without removing the cover.
(7)		Reset		RESET	Pressing this switch will reset output contacts after the relay operated and extinguish the operation indicator LEDs. With the cover operating button, you can use the switches without removing the cover.
(8)		Item No.	Green	-	A number allocated to the selected setting, forced operation or option item is indicated here.
(9)		Item Data	Red	-	Data that corresponds to the item number selected is displayed here. For the indication of individual letters, see the instruction manual specifically prepared for each model.
(1)		RUN	Green	-	Indicate the result of the auto self-check. The lamp will be lit for normal conditions while off for abnormal conditions.
(11)		Communication	Green	-	Indicate the operational status of the communication card. -With a communication card installed: the lamp will be lit for normal conditions, blinking during communication and off for abnormal conditions. -With a communication card not installed: the lamp will be off.
(12)		Unit	Yellow	-	Indicate the unit used for the item data.
(13)		Phase	Yellow	-	Indicate the phase that corresponds to the item data.
(14)		Setting/Cancel	Yellow	-	This lamp will be lit during setting, forced operation or option procedure.
(15)		Setting End/Trip	Yellow	-	This lamp will blink when new data is programmed to be ready for replacing the current setting.
(16)		Operation	Red	-	Indicate the applicable operation elements and phases of the relay.
(17)	Dire	t communication po		-	This port is used for connecting PC and relay with the dedicated cable (option). The measuring values, operating conditions and setting changes can be done by PC with the dedicated software (option).

 UP $\rightarrow \underset{\substack{\text { (to display the } \\ \text { last number of } \\ \text { beginning group) }}}{\text { DOWN }}$
 Admit setting value
Select setting value

Select

品
TTEM No. $\frac{\text { TTEM DATA }}{1\|\|\|\|\|\|\|\|\|\|\|}$
Select ITEM No. by UP or DOWN.
SETMMg $\cap \sqrt{U P \quad}$
Please repeat the same operation in case of two or more items setting
(The above is applicable only for the same group classified with the same number of top digit.)

MITSUBISHI Numerical Protection Relay MELPRO $\boldsymbol{O}^{\text {™ }}$ - Series

[^0]: VN: Rated voltage
 IN: Rated current

[^1]: ※Please refer to the instruction manual regarding the details on this specification.

[^2]: 17. Type CDG1 is applicable for earth fault directional relay in the resistance grounded neutral system. Refer to the Fig 3-2 and Fig. 3-3 on the combination with the Overcurrent relay.
 ※Common condition:(1)Rating Frequency (2) Ambient temperature: $20^{\circ} \mathrm{C}$ (3) Auxiliary power supply:Rating voltage
[^3]: 17. Type CDG1 is applicable for earth fault directional relay in the resistance grounded neutral system.

 Refer to the Fig 3-2 and Fig. 3-3 on the combination with the Overcurrent relay.
 ※Common condition:(1)Rating Frequency (2) Ambient temperature: $20^{\circ} \mathrm{C}$ (3) Auxiliary power supply:Rating voltage

[^4]: ※Please refer to the instruction manual regarding the details on this specification.

[^5]: ※1 Common condition:(1)Rating Frequency (2) Ambient temperature: $20^{\circ} \mathrm{C}$ (3) Auxiliary power supply: Rating voltage

