MITSUBISHI
 ELECTRIC

Changes for the Better

Transition from MELSERVO-J2-Super/

J2M Series to J4 Series Handbook

Complete Support for Upgrading Your
MELSERVO-J2S/J2M to MELSERVO-J4

- SAFETY INSTRUCTIONS

Please read the instructions carefully before using the equipment.

To ensure correct usage of the equipment, make sure to read through this Replacement Manual, the Instruction Manual, the Installation Guide, and the Appended Documents carefully before attempting to install, operate, maintain, or inspect the equipment. Do not use the equipment until you have a full knowledge of the equipment, safety information and instructions.
In this Replacement Manual, the safety instruction levels are classified under "WARNING" and "CAUTION".

^. WARNING

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.

Note that the $\$$ CAUTION level may lead to a serious consequence according to conditions.
Please follow the instructions of both levels because they are important to personnel safety.
What must not be done and what must be done are indicated by the following diagrammatic symbols.

Indicates prohibition (what must not be done). For example, "No Fire" is indicated by

Indicates obligation (what must be done). For example, grounding is indicated by

In this Replacement Manual, instructions of a lower level than the above, such as those that do not cause physical damage or instructions for other functions, are classified under "POINT".
After reading this Instruction Manual, keep it accessible to the operator.

1. To prevent electric shock, note the following

WARNING

-Before wiring or inspection, turn off the power and wait for 15 minutes or more (when 30 kW or more is used, 20 minutes or more) until the charge lamp turns off. Then, confirm that the voltage between $\mathrm{P}+(\mathrm{P})$ and $\mathrm{N}-(\mathrm{N})$ (when 30 kW or more is used, $\mathrm{L}+$ and $\mathrm{L}-$) is safe with a voltage tester and others. Otherwise, an electric shock may occur. In addition, when confirming whether the charge lamp is off or not, always confirm it from the front of the servo amplifier.

- Ground the servo amplifier and servo motor securely.
- Any person who is involved in wiring and inspection should be fully competent to do the work.

Do not attempt to wire the servo amplifier and servo motor until they have been installed. Doing so may cause an electric shock.
-Do not operate switches with wet hands. Otherwise, it may cause an electric shock.
OThe cables should not be damaged, stressed, loaded, or pinched. Otherwise, it may cause an electric shock.
During power-on or operation, do not open the front cover of the servo amplifier. Otherwise, it may cause an electric shock.

Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area are exposed and you may get an electric shock.

- Except for wiring and periodic inspection, do not remove the front cover of the servo amplifier even if the power is off. The servo amplifier is charged and you may get an electric shock.
- To prevent electric shock, always connect the protective earth (PE) terminal ($(\underset{\sigma}{ }$ marked) of the servo amplifier to the protective earth (PE) of the cabinet.
- To avoid an electric shock, insulate the connections of the power supply terminals.

2. To prevent fire, note the following

CAUTION

- Install the servo amplifier, servo motor, and regenerative resistor on incombustible material. Installing them directly or close to combustibles will lead to a fire.
- Be sure to connect a magnetic contactor between the power supply and the main circuit power supply (L1/L2/L3) of the servo amplifier, in order to configure a circuit that shuts off the power supply by the magnetic contactor. If the magnetic contactor is not connected, a continuous flow of a large current may cause smoke or a fire when the servo amplifier malfunctions.
-When using the regenerative resistor, switch power off with the alarm signal. Not doing so may cause smoke and fire when a regenerative transistor malfunctions or the like may overheat the regenerative resistor.
-Provide adequate protection to prevent screws and other conductive matter, oil and other combustible matter from entering the servo amplifier and servo motor.
- Always connect one no-fuse breaker or one fuse for each servo amplifier between the power supply and the main circuit power supply (L1/L2/L3) of the servo amplifier (including the converter unit) in order to configure a power supply shut-off on the side of the servo amplifier's power supply. If a no-fuse breaker or fuse is not connected, continuous flow of a large current may cause smoke and fire when the servo amplifier malfunctions.

3. Injury prevention

CAUTION

Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a burst, damage, etc. may occur.

- The cables must be connected to the correct terminals. Otherwise, a burst, damage, etc. may occur.
- Ensure that the polarity (+/-) is correct. Otherwise, a burst, damage, etc. may occur.
- The servo amplifier heat sink, regenerative resistor, servo motor, etc. may be hot while power is on or for some time after power-off. Take safety measures, e.g. provide covers, to avoid accidentally touching the parts (cables, etc.) by hand.
During operation, never touch the rotor of the servo motor. Otherwise, it may cause injury.

4. Additional instructions

The following instructions should also be fully noted. Incorrect handling may cause a malfunction, injury, electric shock, fire, etc.

(1) Transportation/installation

\ CAUTION

Transport the products correctly according to their mass.

- Stacking in excess of the specified number of product packages is not allowed.
- Do not hold the front cover when transporting the servo amplifier. Otherwise, it may drop.

Onstall the servo amplifier and the servo motor in a load-bearing place in accordance with the Instruction Manual.
-Do not get on or put heavy load on the equipment.

- The equipment must be installed in the specified direction.
- Secure the prescribed distance between the servo amplifier and the inner surface of the cabinet or other devices.
-Do not install or operate the servo amplifier and servo motor which have been damaged or have any parts missing.
-Do not block the intake and exhaust areas of the servo amplifier. Otherwise, it may cause a malfunction.
- Do not drop or strike the servo amplifier and servo motor. Isolate them from all impact loads.
-When you keep or use the equipment, please fulfill the following environment.

Item		
Ambient temperature	Operation	Environment
	Operation	Storage
${ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (non-freezing)		
Ambience		Indoors (no direct sunlight) and free from corrosive gas, flammable gas, oil mist, dust, and dirt
Altitude		$-20{ }^{\circ} \mathrm{C}$ to $65{ }^{\circ} \mathrm{C}$ (non-freezing)
Vibration resistance		$90 \% \mathrm{RH}$ or less (non-condensing)

- Contact your local sales if the product has been stored for an extended period of time.
- When handling the servo amplifier, be careful about the edged parts such as corners of the servo amplifier.
- The servo amplifier must be installed in a metal cabinet.
-When fumigants that contain halogen materials, such as fluorine, chlorine, bromine, and iodine, are used for disinfecting and protecting wooden packaging from insects, they cause a malfunction when entering our products. Please take necessary precautions to ensure that remaining materials from fumigant do not enter our products, or treat packaging with methods other than fumigation, such as heat treatment. Additionally, disinfect and protect wood from insects before packing the products.
(2) Wiring

CAUTION

-Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.
Do not install a power capacitor, surge killer, or radio noise filter (optional FR-BIF) on the output side of the servo amplifier.

- Because installation of these items may cause the servo motor to malfunction, connect the wires to the correct phase terminals (U/V/W) of the servo amplifier and servo motor power supply.
- Directly connect the servo amplifier power output (U/V/W) to the servo motor power input (U/V/W). Do not let a magnetic contactor, etc. intervene. Otherwise, it may cause a malfunction.

- The connection diagrams in this Instruction Manual are shown for sink interfaces, unless stated otherwise.
- The surge absorbing diode installed to the DC relay for control output should be fitted in the specified direction. Otherwise, the emergency stop and other protective circuits may not operate.

-When the cable is not tightened enough to the terminal block, the cable or terminal block may generate heat because of the poor contact. Be sure to tighten the cable with specified torque.
- To avoid a malfunction, do not connect the $\mathrm{U}, \mathrm{V}, \mathrm{W}$, and CN2 phase terminals of the servo amplifier to the servo motor of an incorrect axis.
- Configure a circuit to turn off EM2 or EM1 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.

(3) Trial run/adjustment

CAUTION

Before operation, check the parameter settings. Improper settings may cause some machines to operate unexpectedly.

- Never perform extreme adjustment or changes to the parameters; otherwise, the operation may become unstable.
OKeep away from moving parts in a servo-on state.
(4) Usage

CAUTION

Provide an external emergency stop circuit to ensure that operation can be stopped and power switched off immediately.
-Do not disassemble, repair, or modify the equipment.

CAUTION

Before resetting an alarm, make sure that the run signal of the servo amplifier is off in order to prevent a sudden restart. Otherwise, it may cause an accident.

- The effect of electromagnetic interference must be reduced by using a noise filter or by other means.

Electromagnetic interference may be given to the electronic equipment used near the servo amplifier.
-Burning or disassembling a servo amplifier may generate toxic gases. Do not burn or break it.
-Use the servo amplifier with the specified servo motor.

- The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used for ordinary braking.
- For such reasons as service life and mechanical structure (e.g. where a ball screw and the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side.

(5) Corrective actions

CAUTION

- Ensure safety by confirming the power off, etc. before performing corrective actions. Otherwise, it may cause an accident.
-When it is assumed that a hazardous condition may occur due to a power failure or product malfunction, use a servo motor with an electromagnetic brake or external brake to prevent the condition.
- Configure an electromagnetic brake circuit so that it is activated by an external EMG stop switch.

When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.
-Provide an adequate protection to prevent unexpected restart after an instantaneous power failure.

(6) Maintenance, inspection and parts replacement

CAUTION

Make sure that the emergency stop circuit operates properly such that an operation can be stopped immediately and a power is shut off by the emergency stop switch.
Olt is recommended that the servo amplifier be replaced every 10 years when it is used in general environment.
When using a servo amplifier whose power has not been turned on for a long time, contact your local sales office.

(7) General precautions

To illustrate details, the equipment in the diagrams of this Replacement Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with Instruction Manual.

- Disposal of Waste -

When disposing of this product, the following two laws are applicable, and it is necessary to consider each law. In addition, because the following laws are effective only in Japan, local laws have priority outside Japan (overseas). We ask that the local laws be displayed on the final products or that a notice be issued as necessary.

1. Requirements of the Act on the Promotion of Effective Utilization of Resources (Commonly known as: the Law for Promotion of Effective Utilization of Resources Promotion Law)
(1) Please recycle this product whenever possible when it becomes unnecessary.
(2) It is recommended that this product be divided as necessary and sold to appropriate purchasers, as recycled resources are usually divided into iron, electrical parts, and so on, which are then sold to scrap processors.

2. Requirements of the Act on Waste Disposal \& Cleaning (Commonly known as: The Waste Disposal Treatment Cleaning Act)

(1) It is recommended to decrease waste through the sale of recyclables or through any other means as shown in the preceding Paragraph 1.
(2) In case the unnecessary products cannot be sold and require disposal, such item falls under Industrial waste in the above act.
(3) It is required that industrial waste be properly dealt with, including manifest management, by commissioning the disposal to an industrial waste disposal contractor licensed under the act.
(4) Please dispose of batteries (primary batteries) used in servo amplifiers according to local regulations.

Measures against servo amplifier harmonics

This servo amplifier applies to "Harmonics control guidelines for customers receiving high voltage or special high voltage power" (published by current Ministry of Economy, Trade and Industry). Consumers subject to this guideline must check if a harmonic suppression measure is necessary, and measures must be enforced when the limit level is exceeded.

!

EEP-ROM life

The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000 . If the total number of the following operations exceeds 100,000 , the servo amplifier may malfunction when the EEP-ROM reaches the end of its useful life.

- Write to the EEP-ROM due to parameter setting changes
- Write to the EEP-ROM due to device changes
- Home position setting condition in the absolute position detection system

STO function of the servo amplifier

Refer to the applicable "Servo Amplifier Instruction Manual" when using the STO function of the servo amplifier.

Dealing with overseas standards

Refer to the following relevant manuals concerning dealing with overseas standards.

«About the manual»

This Replacement Manual and the following Instruction Manuals are necessary when using this servo for the first time. Ensure to prepare them to use the servo safely.

Relevant manuals

Manual name	Manual number
MELSERVO-J4 Series Instructions and Cautions for Safe Use of AC Servos (Packed with the servo amplifier)	IB(NA)0300175
MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting Edition)	SH(NA)030108
MELSERVO Servo Motor Instruction Manual (Vol. 3) (Note 1)	SH(NA)030099
MELSERVO Linear Servo Motor Instruction Manual (Note 2)	SH(NA)030095
MELSERVO Direct Drive Motor Instruction Manual (Note 3)	SH(NA)030097
MELSERVO Linear Encoder Instruction Manual (Note 2, 4)	SH(NA)030096
EMC Installation Guidelines	IB(NA)67303

Note 1. It is necessary for using a rotary servo motor.
2. It is necessary for using a linear servo motor.
3. It is necessary for using a direct drive motor.
4. It is necessary for using a fully closed loop system.
«Cables used for wiring»
The wiring cables mentioned in this Replacement Manual are selected based on an ambient temperature of $40^{\circ} \mathrm{C}$.

«U.S. customary units»

U.S. customary units are not shown in this manual. Convert the values if necessary according to the following table.

Quantity	SI (metric) unit	U.S. customary unit
Mass	$1[\mathrm{~kg}]$	$2.2046[\mathrm{lb}]$
Length	$1[\mathrm{~mm}]$	$0.03937[\mathrm{inch}]$
Torque	$1[\mathrm{~N} \cdot \mathrm{~m}]$	$141.6[\mathrm{oz} \cdot \mathrm{inch}]$
Moment of inertia	$1\left[\left(\times 10^{-4} \mathrm{~kg}^{\circ} \cdot \mathrm{m}^{2}\right)\right]$	$5.4675\left[\mathrm{oz} \cdot \mathrm{inch}^{2}\right]$
Load (thrust load/axial load)	$1[\mathrm{~N}]$	$0.2248[\mathrm{lbf}]$
Temperature	$\mathrm{N}\left[{ }^{\circ} \mathrm{C}\right] \times 9 / 5+32$	$\mathrm{~N}\left[{ }^{\circ} \mathrm{F}\right]$

«Display»

The following abbreviations are used for the model names of the servo amplifiers in this Replacement Manual.
[J2S-A]: MR-J2S-_A_
[J2S-B]: MR-J2S-_B_
[J2S-CP]: MR-J2S-_CP_
[J2S-CL]: MR-J2S_-CL_
[J2M-A]: MR-J2M-_A
[J2M-B]: MR-J2M-_B
[J4-A]: MR-J4-_A_
[J4-B]: MR-J4-_B_
Parameter No._ _: [Pr. _ _]

CONTENTS

1-1 to 1-141. SUMMARY OF MR-J2S/MR-J2M REPLACEMENT 1-2
2. MAJOR REPLACEMENT TARGET MODEL 1-2
2.1 Servo Amplifier Replacement Target Model 1-2
2.2 Servo Motor Replacement Target Model 1-2
3. FLOW OF REPLACEMENT 1-3
3.1 Summary 1-3
3.2 Flow of Review on Replacement 1-3
3.3 Review on Replacement. 1-7
3.3.1 Checking the system prior to replacement 1-7
3.3.2 Determination of base replacement model 1-8
3.3.3 Mounting compatibility check 1-12
3.3.4 Detailed review on replacement model 1-12
3.3.5 Peripheral equipment check 1-12
3.3.6 Startup procedure check 1-12
4. RELATED MATERIALS 1-12
4.1 Catalog 1-12
4.2 Instruction Manual 1-12
4.3 Replacement Manual 1-13
4.4 Renewal Tool 1-13
4.5 Replacement Tool for Replacing MR-J2S series with MR-J4 series 1-13
4.6 MITSUBISHI ELECTRIC FA Global Website 1-13
Part 2: Review on Replacement of MR-J2S-_A with MR-J4- A 2-1 to 2-46
5. SUMMARY 2-2
6. CASE STUDY ON REPLACEMENT OF MR-J2S-_A 2-2
2.1 Review on Replacement Method 2-2
2.2 Replacement Method 2-2
7. DIFFERENCES BETWEEN MR-J2S-_A_AND MR-J4-_A 2-4
3.1 Function Comparison Table. 2-4
3.2 Function List 2-5
3.3 Comparison of Standard Connection Diagrams 2-6
3.4 List of Corresponding Connectors and Terminal Blocks 2-8
3.5 Comparison of Peripheral Equipment. 2-13
3.6 Comparison of Parameters 2-14
3.6.1 Setting requisite parameters upon replacement 2-14
3.6.2 Parameter comparison list 2-16
3.6.3 Comparison of parameter details. 2-19
3.7 Important Points for Replacement (Command Pulse Logic Settings) 2-45
Part 3: Review on Replacement of MR-J2S-_B_with MR-J4-_B 3-1 to 3-32
8. SUMMARY 3-2
9. CASE STUDY ON REPLACEMENT OF MR-J2S-_B 3-3
2.1 Review on Replacement Method 3-3
2.2 Replacement Method 3-4
10. DIFFERENCES BETWEEN MR-J2S-_B_AND MR-J4-_B 3-7
3.1 Function Comparison Table 3-7
3.2 Function List 3-7
3.3 Comparison of Networks 3-8
3.3.1 Comparison of servo system network specifications 3-8
3.4 Comparison of Standard Connection Diagrams 3-10
3.5 List of Corresponding Connectors and Terminal Blocks 3-11
3.6 Comparison of Peripheral Equipment 3-14
3.7 Comparison of Parameters 3-15
3.7.1 Setting requisite parameters upon replacement 3-16
3.7.2 Parameter comparison list 3-17
3.7.3 Comparison of parameter details 3-19
3.8 Important Points for Replacement 3-31
Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ 4-1 to 4-52
11. SUMMARY 4-2
12. CASE STUDY ON REPLACEMENT OF MR-J2S-_CP_/CL 4-2
2.1 Consideration of Replacement Method 4-2
2.2 Replacement Method. 4-2
13. DIFFERENCES 4-4
3.1 Function Comparison Table. 4-4
3.2 Function List 4-7
3.3 Comparison of Standard Connection Diagrams 4-9
3.4 List of Corresponding Connectors and Terminal Blocks 4-11
3.5 Comparison of Peripheral Equipment 4-14
3.6 Comparison of Parameters 4-15
3.6.1 Setting requisite parameters upon replacement 4-15
3.6.2 Parameter comparison list 4-17
3.6.3 Comparison of parameter details. 4-20
3.7 Comparison of Communication Commands 4-40
Part 5: Review on Replacement of MR-J2S-30 kW or Higher Capacity Models with MR-J4-DU 5-1 to 5-58
14. FUNCTIONS AND CONFIGURATION 5-2
1.1 Differences Between MR-J2S-30 kW or Higher Capacity Models and MR-J4-DU_ 5-2
1.2 Combination of Converter Unit, Drive Unit, and Servo Motor 5-3
1.3 Configuration with Peripheral Equipment 5-4
1.4 Installation 5-6
1.5 Magnetic Contactor Control Connector (CNP1) [Exclusively for MR-J4-DU] 5-8
15. SIGNALS AND WIRING 5-10
2.1 Comparison of Standard Connection Diagrams 5-10
2.2 Power-on Sequence 5-15
2.3 List of Corresponding Connectors and Terminal Blocks 5-20
16. PARAMETERS 5-25
3.1 Comparison of Parameters 5-25
17. CHARACTERISTICS 5-30
4.1 Capacity of Power Source Facility and Generation Loss 5-30
4.2 Inrush Current When Turning On the Main Circuit/Control Circuit Power Supply 5-31
18. OPTIONS AND PERIPHERAL EQUIPMENT 5-32
5.1 Comparison Table of Cable Option Combinations 5-32
5.1.1 MR-J3CDL05M (0.5 m) Protection Coordination Cable 5-32
5.2 Wire Selection Example 5-33
5.2.1 MR-J2S-series power supply wire size 5-34
5.2.2 MR-J4-series, power supply wire size 5-35
5.3 Selection of No-Fuse Breakers, Fuses, and Magnetic Contactors (example) 5-37
5.3.1 MR-J2S-series, no-fuse breakers and magnetic contactors (recommended) 5-37
5.3.2 MR-J4-series, no-fuse breakers, fuses, and magnetic contactors (recommended) 5-37
5.4 FR-BU2-(H) Brake Unit 5-39
5.4.1 Selection 5-39
5.4.2 Parameter setting of brake units 5-40
5.4.3 Connection example 5-40
5.4.4 Dimensions 5-56
5.5 Comparison of Peripheral Equipment 5-57
Part 6: Review on Replacement of MR-J2M with MR-J46-1 to 6-20
19. SUMMARY 6-2
20. CASE STUDY ON REPLACEMENT OF MR-J2M. 6-2
2.1 Replacement Method 6-2
2.2 Equipment Configuration 6-2
21. DIFFERENCES BETWEEN MR-J2M-A AND MR-J4-_A 6-3
3.1 Function Comparison Table. 6-3
3.1.1 General 6-3
3.2 Comparison of Standard Connection Diagrams 6-4
3.3 List of Corresponding Connectors and Terminal Blocks 6-5
3.4 Comparison of Peripheral Equipment 6-8
3.5 Comparison of Parameters 6-8
3.5.1 Parameter comparison list 6-8
22. DIFFERENCES BETWEEN MR-J2M-B AND MR-J4-_B 6-11
4.1 Review on Replacement Method 6-11
4.2 Replacement Method. 6-12
4.3 Function Comparison Table. 6-13
4.4 Comparison of Standard Connection Diagrams 6-14
4.5 List of Corresponding Connectors and Terminal Blocks 6-15
4.6 Comparison of Peripheral Equipment 6-16
4.7 Comparison of Parameters 6-17
4.7.1 Parameter comparison list 6-17
Part 7: Common Reference Material 7-1 to 7-102
23. SPECIFICATION DIFFERENCES 7-2
1.1 Detailed Specification/Function Differences 7-2
1.2 Servo amplifier 7-6
1.2.1 Main circuit terminal block 7-6
1.2.2 Comparison of encoder signals (CN2). 7-9
1.2.3 Dynamic brake: coasting distance 7-10
1.2.4 Forced stop deceleration function selection 7-16
1.2.5 24 V DC power supply for interface: built-in \Rightarrow outside supply requisite 7-17
1.2.6 Servo setup software: Setup software (SETUP161E) \Rightarrow MR Configurator2 7-18
1.2.7 Communication I / F: RS-232C \Rightarrow USB 7-18
1.2.8 Servo amplifier initializing time 7-19
1.2.9 The pulse width of the encoder Z-Phase pulse 7-21
24. SERVO AMPLIFIER DIMENSIONS/ATTACHMENT DIFFERENCES 7-22
2.1 MR-J2S \Rightarrow MR-J4 Comparison Table of Servo Amplifier Dimensions/ Installation Differences 7-22
2.1.1 General-purpose interface/SSCNET interface 200 V class (22 kW or less) 7-22
2.1.2 General-purpose interface/SSCNET interface 100 V class (0.4 kW or less) 7-22
2.1.3 Built-in positioning function/program supported 200 V class (7 kW or less) 7-23
2.1.4 Built-in positioning function/program supported 100 V class (0.4 kW or less) 7-23
2.1.5 General-purpose interface drive unit/SSCNET interface drive unit 200 V class (30 kW or more) 7-27
2.1.6 General-purpose interface/SSCNET interface 400 V class (22 kW or less) 7-29
2.1.7 General-purpose interface drive unit/SSCNET interface drive unit 400 V class (30 kW or more) 7-32
2.2 MR-J2M-_ \Rightarrow MR-J4-_ Comparison Table of Servo Amplifier Dimensions/ Installation Differences 7-35
2.3 MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_Parameter Diversion Procedure 7-39
2.3.1 Operation procedure of parameter conversion 7-39
2.3.2 MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ parameter diversion procedure 7-40
2.3.3 Parameter reading from the servo amplifier MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ 7-41
2.3.4 Converting the parameters of MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ and writing them to the MR-J4-_A_(-RJ) servo amplifier 7-43
2.3.5 Conversion rules 7-47
2.4 MR-J2S-_B_Parameter Diversion Procedure 7-82
2.4.1 Changing QD75M to QD77MS/LD77MS 7-83
2.4.2 Changing the motion controller A series/Q17nCPU to Q17nDSCPU/Q170MSCPU(-S1). 7-86
2.4.3 Conversion rules (MR-J2S-_B_=> MR-J4-_B_) 7-88
25. COMMON POINTS TO NOTE 7-94
3.1 Points to Note When Replacing a Battery 7-94
3.1.1 Servo amplifier battery mounting method 7-95
3.1.2 Disassembly method 7-96
3.1.3 Replacement procedure of MR-BAT6V1SET built-in battery 7-96
26. HC-_FS /HA-_FS MOTOR DRIVE 7-97
4.1 Parameter setting 7-97
4.2 Corresponding Software Version 7-98
4.2.1 Method for checking the software version 7-101
4.3 Overload protection characteristics
(Important Points for Combining the drive unit MR-J4-DU55K_4 and HA-LFS motor) 7-102
Part 8: Review on Replacement of Motor8-1 to 8-68
27. SERVO MOTOR REPLACEMENT 8-2
1.1 Servo Motor Substitute Model and Compatibility 8-2
28. COMPARISON OF SERVO MOTOR SPECIFICATIONS 8-12
2.1 Comparison of Servo Motor Mounting Dimensions 8-12
2.2 Detailed Comparison of Servo Motor Mounting Dimensions. 8-16
2.3 Comparison of Mounting Dimensions for Geared Servo Motors 8-18
2.4 Comparison of Geared Servo Motors 8-24
2.4.1 Comparison of actual reduction ratios for geared servo motors 8-24
2.4.2 Comparison of reducer efficiency of geared servo motors 8-24
2.5 Comparison of Moment of Inertia 8-25
2.6 Comparison of Servo Motor Connector Specifications 8-36
2.7 Comparison of Servo Motor Torque Characteristics 8-53
Part 9: Review on Replacement of Optional Peripheral Equipment 9-1 to 9-52
29. COMPARISON TABLE OF REGENERATIVE OPTION COMBINATIONS 9-2
1.1 Regenerative Options (200 V/100 V). 9-3
1.1.1 Combination and regenerative power for the MR-J2S series 9-3
1.1.2 Combination and regenerative power for the MR-J2M series 9-3
1.1.3 Combination and regenerative power for MR-J4 series (replacement model) 9-4
1.2 External Form Comparison 9-5
1.3 Regenerative Options (400 V class) 9-6
1.3.1 Combination and regenerative power for the MR-J2S series 9-6
1.3.2 Combination and regenerative power for MR-J4 series (replacement model) 9-7
1.4 External Form Comparison 9-8
30. COMPARISON TABLE OF DYNAMIC BRAKE OPTION COMBINATIONS 9-10
2.1 External Form Comparison 9-11
31. COMPARISON TABLE OF CABLE OPTION COMBINATIONS 9-12
32. POWER SUPPLY WIRE SIZE 9-13
4.1 Selection of Power Supply Wire Size (Example) 9-13
4.1.1 MR-J2S-series power supply wire size 9-13
4.1.2 MR-J4-series power supply wire size 9-15
4.2 Selection Example of Crimp Terminals 9-18
4.2.1 MR-J2S-series crimp terminal 9-18
4.2.2 MR-J4-series crimp terminal 9-19
4.3 Selection of Molded-Case Circuit Breaker, Fuse, and Magnetic Contactor (Example) 9-20
4.3.1 MR-J2S series, molded-case circuit breakers, fuses, and magnetic contactors 9-20
4.3.2 MR-J4 series, molded-case circuit breakers, fuses, and magnetic contactors (recommended) 9-21
33. BATTERY 9-23
5.1 MR-J2S-Series Battery 9-23
5.1.1 Battery replacement procedure 9-23
5.2 MR-J2M-Series Battery Unit 9-23
5.3 MR-J4-Series Battery 9-24
5.3.1 Battery replacement procedure 9-24
5.3.2 When using the MR-BAT6V1SET battery 9-25
5.3.3 When using MR-BAT6V1BJ battery for junction battery cable 9-26
5.3.4 When using MR-BT6VCASE battery case 9-27
34. EMC FILTER 9-28
6.1 MR-J2S-Series EMC Filter (200 V/100 V class). 9-28
6.1.1 Dimensions 9-28
6.2 MR-J2S-Series EMC Filter (400 V class) 9-30
6.2.1 Dimensions 9-30
6.3 MR-J4-Series EMC Filter (Recommended) (200 V class) 9-32
6.3.1 Connection example 9-32
6.3.2 Dimensions 9-33
6.4 MR-J4-Series EMC Filter (Recommended) (400 V class) 9-35
6.4.1 Combination with the servo amplifier 9-35
6.4.2 Connection example 9-35
6.4.3 Dimensions 9-35
35. POWER FACTOR IMPROVING AC REACTOR/POWER FACTOR IMPROVING DC REACTOR 9-37
7.1 MR-J2S-Series Power Factor Improving AC Reactor (200 V/100 V class) 9-37
7.2 MR-J2S-Series Power Factor Improving DC Reactor (200 V class) 9-38
7.3 MR-J2S-Series Power Factor Improving AC Reactor (400 V class) 9-39
7.4 MR-J2S-Series Power Factor Improving DC Reactor (400 V class) 9-40
7.5 MR-J4-Series Power Factor Improving DC Reactor (200 V class) 9-41
7.6 MR-J4-Series Power Factor Improving AC Reactor (200 V/100 V class) 9-43
7.7 MR-J4-Series Power Factor Improving DC Reactor (400 V class) 9-45
7.8 MR-J4-Series Power Factor Improving AC Reactor (400 V class) 9-47
36. SETUP SOFTWARE 9-49
8.1 MR-J2S Series Setup Software 9-49
8.1.1 Specifications 9-49
8.2 MR-J4-Series MR Configurator2 9-49
8.2.1 Specifications 9-49
8.3 System Requirements 9-50
8.3.1 Components 9-50
8.3.2 Connection with servo amplifier 9-51
8.3.3 Points to note for use of the USB communication function 9-51
Part 10: Startup Procedure Manual 10-1 to 10-2
37. STARTUP 10-2
1.1 Switching power on for the first time 10-2
1.1.1 Startup procedure 10-2
Appendix 1 Summary of MR-J4_B -RJ020 + MR-J4-T20 Appendix 1-1 to Appendix 1-74
38. SUMMARY Appendix 1-2
1.1 Features Appendix 1-2
1.1.1 Servo amplifier connectable to SSCNET compatible controller Appendix 1-2
1.1.2 SSCNET conversion unit "MR-J4-T20" Appendix 1-3
39. DIFFERENCES BETWEEN MR-J2S-_B_AND MR-J4-_B_-RJ020 Appendix 1-4
2.1 Function Comparison Table. Appendix 1-4
40. SYSTEM CONFIGURATION Appendix 1-6
41. I/O SIGNAL CONNECTION EXAMPLE Appendix 1-7
42. PARAMETERS Appendix 1-9
43. RS-232C COMMUNICATION CABLE Appendix 1-9
44. LIST OF SERVO MOTOR COMBINATIONS AND SOFTWARE VERSIONS Appendix 1-11
45. LIST OF COMBINATIONS AND SOFTWARE VERSIONS FOR SERVO SYSTEM CONTROLLERS Appendix 1-15
46. SAFETY PRECAUTIONS Appendix 1-17
9.1 Replacing MR-J2S-_B_Servo Amplifier with MR-J4-_B_-RJ020 Servo Amplifier. Appendix 1-17
9.2 Differences with the MR-J2S Series Appendix 1-20
47. ALARM Appendix 1-29
10.1 Alarm/Warning List. Appendix 1-29
48. DIMENSIONS Appendix 1-30
11.1 Comparison of Dimensions Appendix 1-30
11.2 Dimensions Appendix 1-31
11.2.1 Servo amplifier Appendix 1-31
11.2.2 Dimensions (MR-J4-T20) Appendix 1-32
11.2.3 Dimensions (MR-J4-_B_-RJ020 + MR-J4-T20) Appendix 1-33
49. MODE SWITCHING METHOD Appendix 1-41
12.1 Mode Switching Method from J2S Compatibility Mode to J4 Mode Appendix 1-41
12.2 Mode Switching Method from J4 Mode to J2S Compatibility Mode Appendix 1-42
50. OPTIONS AND PERIPHERAL EQUIPMENT Appendix 1-43
13.1 Encoder Cable Combination Appendix 1-43
13.2 Encoder Cable List. Appendix 1-44
13.3 Details on encoder cable Appendix 1-45
13.4 Large Capacity Servo Cable Connector Set Appendix 1-53
13.4.1 Cable connector set combination Appendix 1-53
13.4.2 MR-J3CDL05M (0.5 m) Protection Coordination Cable Appendix 1-54
13.5 Regenerative Options Appendix 1-55
13.5.1 Combination and regenerative power Appendix 1-55
13.5.2 Regenerative option selection Appendix 1-59
13.5.3 Parameter setting Appendix 1-61
13.5.4 Connecting regenerative options Appendix 1-62
13.6 External Dynamic Brake Appendix 1-67
51. SETTING PARAMETERS ADDED ON MR-J4-_B_-RJ020 SERVO AMPLIFIER Appendix 1-68
14.1 Combination of Motion Controller and Peripheral Software Appendix 1-68
14.2 Parameter Setting Procedure Appendix 1-68
14.2.1 For MELSOFT MT Works2 Appendix 1-68
14.2.2 For MT Developer (software version 00W or later). Appendix 1-71
14.2.3 For MT Developer (software version OOV or earlier) or SW3RNC-GSV . Appendix 1-73
Appendix 2 Introduction to Renewal ToolAppendix 2-1 to Appendix 2-110
52. SUMMARY Appendix 2-2
1.1 Compatible Models Appendix 2-2
1.2 Features Appendix 2-2
1.2.1 MR-J2S-_A_renewal tool/MR-J2S-_CP_renewal tool Appendix 2-3
1.2.2 MR-J2S_-B_renewal tool Appendix 2-4
1.3 Renewal Tool Product Names. Appendix 2-12
1.4 Renewal Tool Configuration Appendix 2-14
53. RENEWAL TOOL PRODUCT LIST Appendix 2-16
54. BASIC CONFIGURATION Appendix 2-18
3.1 Important Points to Note When Replacing Appendix 2-18
3.2 Selection of Products Appendix 2-19
3.2.1 Replacement selection flow Appendix 2-19
55. REPLACMENT COMBINATION LIST Appendix 2-21
4.1 General-Purpose Interface Replacement Combination List (100 V/200 V Class). Appendix 2-21
4.2 SSCNET Interface Replacement Combination List (100 V/200 V Class) Appendix 2-33
4.3 Built-in Positioning Function Replacement Combination List Appendix 2-45
4.4 General-Purpose Interface Replacement Combination List (400 V Class) Appendix 2-57
4.5 SSCNET Interface Replacement Combination List (400 V Class) Appendix 2-61
56. RENEWAL TOOL CONNECTION DIAGRAM Appendix 2-66
5.1 SC-J2SJ4(CP)KT02K to 3K. Appendix 2-66
5.2 SC-J2S(CP)J4KT5K Appendix 2-68
5.3 SC-J2S(CP)J4KT7K Appendix 2-70
5.4 SC-J2SJ4KT15K, 22K Appendix 2-72
5.5 SC-J2SBJ4KT02K to 3K. Appendix 2-74
5.6 SC-J2SBJ4KT5K Appendix 2-76
5.7 SC-J2SBJ4KT7K Appendix 2-78
5.8 SC-J2SBJ4KT15K, 22K Appendix 2-80
57. SPECIFICATIONS Appendix 2-82
6.1 Standard Specifications Appendix 2-82
6.2 Terminal Block Specifications Appendix 2-82
6.3 Recommended 24 V DC Power Supply Specifications for Interface. Appendix 2-83
58. PARAMETER SETTING Appendix 2-84
7.1 List of General-Purpose Interface Setting Requisite Parameters. Appendix 2-84
7.2 List of SSCNET Interface Setting Requisite Parameters Appendix 2-87
7.3 List of Built-in Positioning Function Setting Requisite Parameters. Appendix 2-87
59. DIMENSIONS Appendix 2-90
8.1 Renewal Kit Appendix 2-90
8.2 Conversion Cable Appendix 2-107
8.2.1 Conversion cable on the servo amplifier side Appendix 2-107
8.2.2 Power supply conversion cable on the motor side Appendix 2-109
8.2.3 Encoder conversion cable on the motor side Appendix 2-110
8.2.4 Conversion cable for the cooling fan on the motor side Appendix 2-110

Part 1 Summary of MR-J2S/ MR-J2M Replacement

This document describes the review items for replacing MR-J2S with MR-J4 and MR-J2M with MR-J4. Some equipment may require review on items not described in this document. Please review those items after viewing the Instruction Manual and the catalogs.

Part 1: Summary of MR-J2S/MR-J2M Replacement

1. SUMMARY OF MR-J2S/MR-J2M REPLACEMENT

In this document, the flow when replacing a system using the MELSERVO "MR-J2S/MR-J2M series" with the "MRJ4 series" is explained.
After deciding the replacement strategy (simultaneous replacement, partial replacement of servo amplifier/servo motor/controller), please proceed with replacement by referring to the corresponding parts of this manual and the manual for each model.

2. MAJOR REPLACEMENT TARGET MODEL

2.1 Servo Amplifier Replacement Target Model

Series	Servo amplifier model
MR-J2S Series	MR-J2S-_A__
	MR-J2S-_B_-
	MR-J2S-_CP_-
	MR-J2S_-_CL_
MR-J2M	MR-J2M-P8A+
	MR-J2M-_DU
	MR-J2M-P8B+
	MR-J2M-_DU

Series	Servo amplifier model
MR-J4 Series	MR-J4-_A_
	MR-J4-_B_-
	MR-J4-_A_-RJ
	MR-J4-_A_

2.2 Servo Motor Replacement Target Model

		Series	Servo motor model
Small capacity	Low inertia	$\begin{gathered} \text { HC-_FS } \\ \text { Series } \end{gathered}$	HC-KFS_
	Ultra-low inertia		HC-MFS
	Flat		HC-UFS
Medium capacity	medium inertia		HC-SFS_
	Low inertia		HC-LFS_
	Ultra-low inertia		HC-RFS_
	Flat		HC-UFS
Large capacity	Low inertia	HA-_FS Series	HA-LFS_

Series	Servo motor model
HG Series	HG-KR_
	HG-MR_
	HG-KR
	HG-SR_
	HG-JR_
	HG-RR_
	HG-UR_
	HG-JR_

Note. For details, refer to "Part 8: Review on Replacement of Motor".

POINT

-This document uses the terms "MR-J2S-compatible motor" and "MR-J2compatible motor" to distinguish the following motors.
MR-J2S-compatible motor: HC-_FS motor (series), HA-_FS motor (series) MR-J2-compatible motor: HC-_F motor (series), HA__F motor (series)

3. FLOW OF REPLACEMENT

3.1 Summary

This section describes the flow of replacement when replacing a system using the MR-J2S/MR-J2M series with a system using the MR-J4 series.

3.2 Flow of Review on Replacement

Checking the system prior to replacement	- . . Check the components of the system prior to replacement. : Refer to "3.3.1 Checking the system prior to replacement" in this document.
$\sqrt{\square}$	
Determination of base replacement model	- . Determine the base replacement model for the servo amplifier/servo motor model used for the system prior to replacement. : Refer to "3.3.2 Determination of base replacement model" in this document.
$\sqrt{7}$	
Detailed specifications/functions difference check	. . . Determine the base replacement model and check the impact according to the "specification/function" of the replacement model. : Refer to "Part 7: Common Reference Material" in this document.
\cdots	
Mounting compatibility check	. . . Check the compatibility and the attachment differences in the "Mounting compatibility" items in the list of base replacement models. : Refer to "Part 7: Common Reference Material, 2. SERVO AMPLIFIER DIMENSIONS / INSTALLATION DIFFERENCES", and "Part 8: Replacement of Motor" in this document.
\checkmark	
Detailed review on replacement model	. . . Determine the replacement strategy and perform detailed designing. : Refer to "Part 2: Review on Replacement of MR-J2S_-A_ with MR-J4-_A_", "Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B_" "Part 4: Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_RJ"- "Part 5: Review on Replacement of MR-J2 $\overline{\mathrm{S}}-30 \mathrm{~kW}$ or Higher Capacity Models with MR-J4-DU_" "Part 6: Review on Replacement of MR-J2M with MR-J4" and "Part 8: Review on Replacement of Motor" in this document.
\checkmark	
Peripheral equipment check	. . . Check the peripheral equipment that comes with the replacement. : Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment" in this document.
\square	
Startup procedure check	- . . Check the startup procedure. : Refer to "Part 10: Startup Procedure Manual" in this document.

The following displays the review items when replacing MR-J2S series with MR-J4 series using MR-J2S-60A as an example case.

Changes from MR-J2S series to MR-J4 series

POINT

-The following table summarizes the changes from MR-J2S series to MR-J4 series.
For details, refer to the reference document/items.

Changes	Check items	Impact	Reference document/items
Servo amplifier	Connector	Connector shape, pin arrangement, signal abbreviation, and location are different.	Part 2, Section 3.4 Part 3, Section 3.5 Part 6, Section 3.3
			Terminal block shape, location, and method of drawing out wires are different.

Changes	Check items	Impact	Reference document/items
Options and peripheral equipment	Regenerative option	Some regenerative options cannot be used for MR-J4.	Part 9, Chapter 1
	Setup software (SETUP161E)	Setup software (SETUP161E) cannot be used for MR-J4. Use MR Configurator2.	Part 9, Chapter 8
	Battery	Use MR-BAT6V1SET for MR-J4.	Part 7, Chapter 3 Part 9, Chapter 5
	Encoder cable	Replace the encoder cable because the shape of the CN2 connector is different. (Note 1)	Part 7, Section 1.2.2 Part 9, Chapter 3
	Wire	An HIV wire is recommended for MR-J4. Therefore, when HIV wires are not used for those already laid, use the renewal tool.	Part 9, Chapter 4
	Dynamic brakes	Some dynamic brakes cannot be used for MR-J4.	Part 9, Chapter 2
	EMC filter	The recommended EMC filter is different.	Part 9, Chapter 6
	Panel through attachment	The panel through attachment cannot be used for MR-J4.	Part 7, Chapter 2
Servo motor	Mounting compatibility	Some models have no mounting compatibility.	Part 8, Section 1.1
	Oil seal	Although HC-SFS, HC-UFS and HA-LFS series have an oil seal, substitute models do not come with an oil seal. Use models having an oil seal when necessary.	Part 8, Section 1.1
	Dimensions	The total length may differ depending on models.	Part 8, Section 2.1 Part 8, Section 2.2 Part 8, Section 2.3
	Reducer	The HG motor has no G2-type reducer for high precision applications. The reducer efficiency differs between G2-type and G7-type. In addition, the actual reduction ratio of HC-KFS and HC-MFS series G1 types may differ from that of HG-KR series G1 types depending on models.	Part 8, Section 2.3 Part 8, Section 2.4
	Moment of inertia	The moment of inertia of the HC-_FS/HA-_FS motor may differ from that of the HG motor depending on models. (Note 2)	Part 8, Section 2.5
	Load to motor inertia ratio	The range of the load to motor inertia ratio for the servo motor may differ between the HC-_FS/HA__FS motor and the HG motor depending on models.	Part 8, Section 2.5
	Connector	The power connector, encoder connector, and electromagnetic brake connector may differ from one another in shape.	Part 8, Section 2.6
	Torque characteristics	The torque characteristics of the HC-_FS/HA-_FS motor may differ from those of the HG motor.	Part 8, Section 2.7
	Rated speed/maximum speed	The Rated speed/maximum speed of the HC_-_FS/HA-_FS motor may differ from those of the HG motor.	Servo Motor Instruction Manual (Vol. 3)
	Thermal sensor	For HG-JR $1000 \mathrm{r} / \mathrm{min}$ series of 15 kW or more and HG-JR $1500 \mathrm{r} / \mathrm{min}$ series of 22 kW or more, the thermal sensor is replaced with a thermistor. For HG-JR $1000 \mathrm{r} / \mathrm{min}$ series of 12 kW or less and HG-JR 1500 r/min series of 15 kW or less, the thermal sensor is removed.	Servo Motor Instruction Manual (Vol. 3)
	Encoder resolution	The encoder resolution differs as follows. HC-_FS/HA-_FS motor: 131,072 pulses/rev HG motor: 4,194,304 pulses/rev	Servo Motor Instruction Manual (Vol. 3)
Controller (SSCNET interface only)		The SSCNET positioning module and motion controller need to be replaced with the SSCNET III/H positioning module and motion controller. When using an existing controller, refer to "[Appendix 1] MR-J4-_B_-RJ020+MR-J4-T20".	Replacement Manual for replacing the A17nSHCPUN/A173UHCP U series with the Q series

Note 1. Use the renewal tool if using an existing encoder cable (including options).
(Refer to "[Appendix 2] Introduction to Renewal Tool".)
For HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series of 15 kW or more, HA-LFS $1500 \mathrm{r} / \mathrm{min}$ series of 22 kW or more, and HA-LFS $2000 \mathrm{r} / \mathrm{min}$ series of 30 kW or more, their substitute models have different thermal wiring from them. A new encoder cable is required when using the substitutes.
2. This may change the motor inertia, making it necessary to adjust the servo gain.

3.3 Review on Replacement

3.3.1 Checking the system prior to replacement

Check the components of the system prior to replacement.

Category	Controller model	Servo amplifier model
Positioning module	QD75P(D)	$\begin{aligned} & \text { MR-J2S-_A_- } \\ & \text { MR-J2M-_A_ } \end{aligned}$
	A1SD75P(D)	
Controller from another company	Controller from another company	$\begin{aligned} & \text { MR-J2S-_A } \\ & \text { MR-J2M-_A } \end{aligned}$
No controller connected	No controller	$\begin{aligned} & \text { MR-J2S-_A_ } \\ & \text { MR-J2M-_A } \end{aligned}$
SSCNET Positioning module	QD75M	$\begin{aligned} & \text { MR-J2S_-_B_- } \\ & \text { MR-J2M_-_B } \end{aligned}$
	A1SD75M	
SSCNET Motion controller	Q17_CPUN	$\begin{aligned} & \text { MR-J2S_-_B_ } \\ & \text { MR-J2M-_B } \end{aligned}$
	A17_SHCPU	
	A273UHCPU	
Built-in positioning function		MR-J2S-_CP_
Built-in program operation function		MR-J2S-_CL_

"Reference items" in this document	Remarks
(1) MR-J2S series "Part 2: Review on Replacement of MR-J2S_-_A_w with MR-J4_-_A_" (2) MR-J2M series "Part 6: Review on Replacement of MR-J2M with MR-J4"	Positioning control
	Speed, torque limit
(1) MR-J2S series "Part 3: Review on Replacement of MR-J2S-_B_with MR-J4-_B_" (2) MR-J2M series "Part 6: Review on Replacement of MR-J2M with MR-J4"	
(1) MR-J2S series	
"Part 4: Replacement of MR-J2S-	
CP/CL_ with MR-J4-_A_"	

3.3.2 Determination of base replacement model

(1) Models for replacement between MR-J2S series and MR-J4 series

The models for replacement of both the servo amplifier and servo motor as a set are shown.

Series	Model	Replacement model (example)	Mounting compatibility (O: Compatible)	Note
200 V AC General-purpose interface	MR-J2S-10A	MR-J4-10A	\bigcirc	Refer to "Part 7: Common Reference Material".
	MR-J2S-20A	MR-J4-20A	\bigcirc	
	MR-J2S-40A	MR-J4-40A	\bigcirc	
	MR-J2S-60A	MR-J4-60A	\bigcirc	
	MR-J2S-70A	MR-J4-70A	\bigcirc	
	MR-J2S-100A	MR-J4-100A	\bigcirc	
	MR-J2S-200A	MR-J4-200A	(Note 1)	
	MR-J2S-350A	MR-J4-350A	(Note 1)	
	MR-J2S-500A	MR-J4-500A	(Note 1)	
	MR-J2S-700A	MR-J4-700A	(Note 1)	
	MR-J2S-11KA	MR-J4-11KA	(Note 1)	
	MR-J2S-15KA	MR-J4-15KA	(Note 1)	
	MR-J2S-22KA	MR-J4-22KA	(Note 1)	
	$\begin{aligned} & \text { MR-J2S-30KA } \\ & \text { +MR-HP30KA } \end{aligned}$	MR-J4-DU30KA +MR-CR55K	(Note 2)	
	$\begin{aligned} & \text { MR-J2S-37KA } \\ & \text { +MR-HP30KA } \end{aligned}$	$\begin{gathered} \text { MR-J4-DU37KA } \\ + \text { MR-CR55K } \end{gathered}$	(Note 2)	
200 V AC SSCNET interface	MR-J2S-10B	MR-J4-10B	\bigcirc	
	MR-J2S-20B	MR-J4-20B	\bigcirc	
	MR-J2S-40B	MR-J4-40B	\bigcirc	
	MR-J2S-60B	MR-J4-60B	\bigcirc	
	MR-J2S-70B	MR-J4-70B	\bigcirc	
	MR-J2S-100B	MR-J4-100B	\bigcirc	
	MR-J2S-200B	MR-J4-200B	(Note 1)	
	MR-J2S-350B	MR-J4-350B	(Note 1)	
	MR-J2S-500B	MR-J4-500B	(Note 1)	
	MR-J2S-700B	MR-J4-700B	(Note 1)	
	MR-J2S-11KB	MR-J4-11KB	(Note 1)	
	MR-J2S-15KB	MR-J4-15KB	(Note 1)	
	MR-J2S-22KB	MR-J4-22KB	(Note 1)	
	$\begin{aligned} & \text { MR-J2S-30KB } \\ & \text { +MR-HP30KA } \end{aligned}$	$\begin{aligned} & \text { MR-J4-DU30KB } \\ & \text { +MR-CR55K } \end{aligned}$	(Note 2)	
	$\begin{aligned} & \text { MR-J2S-37KB } \\ & \text { +MR-HP30KA } \end{aligned}$	$\begin{aligned} & \text { MR-J4-DU37KB } \\ & + \text { MR-CR55K } \end{aligned}$	(Note 2)	

Note 1. These replacement models do not have compatibility in mounting. Use the mounting plate holes of Renewal Tool manufactured by Mitsubishi Electric System \& Service Co., Ltd. The servo amplifier capacity may vary depending on the servo motor to be replaced. Refer to Part 8 Section 1.1.
2. These replacement models do not have compatibility in mounting. Use the mounting plate holes of the mounting plate manufactured by Mitsubishi Electric System \& Service Co., Ltd. The servo amplifier capacity may vary depending on the servo motor to be replaced. Refer to Part 8 Section 1.1.

Part 1: Summary of MR-J2S/MR-J2M Replacement

Series	Model	Replacement model (example)	Mounting compatibility (O: Compatible)	Note
400 V AC General-purpose interface	MR-J2S-60A4	MR-J4-60A4	(Note)	Refer to "Part 7: Common Reference Material".
	MR-J2S-100A4	MR-J4-100A4	(Note)	
	MR-J2S-200A4	MR-J4-200A4	(Note)	
	MR-J2S-350A4	MR-J4-350A4	(Note)	
	MR-J2S-500A4	MR-J4-500A4	\bigcirc	
	MR-J2S-700A4	MR-J4-700A4	(Note)	
	MR-J2S-11KA4	MR-J4-11KA4	(Note)	
	MR-J2S-15KA4	MR-J4-15KA4	(Note)	
	MR-J2S-22KA4	MR-J4-22KA4	(Note)	
	MR-J2S-30KA4 +MR-HP55KA4	$\begin{gathered} \text { MR-J4-DU30KA4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	$\begin{aligned} & \text { MR-J2S-37KA4 } \\ & + \text { MR-HP55KA4 } \end{aligned}$	$\begin{gathered} \text { MR-J4-DU37KA4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	$\begin{aligned} & \text { MR-J2S-45KA4 } \\ & + \text { MR-HP55KA4 } \end{aligned}$	$\begin{gathered} \text { MR-J4-DU45KA4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	MR-J2S-55KA4 +MR-HP55KA4	$\begin{gathered} \text { MR-J4-DU55KA4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	MR-J2S-60B4	MR-J4-60B4	(Note)	
	MR-J2S-100B4	MR-J4-100B4	(Note)	
	MR-J2S-200B4	MR-J4-200B4	(Note)	
	MR-J2S-350B4	MR-J4-350B4	(Note)	
	MR-J2S-500B4	MR-J4-500B4	\bigcirc	
	MR-J2S-700B4	MR-J4-700B4	(Note)	
	MR-J2S-11KB4	MR-J4-11KB4	(Note)	
	MR-J2S-15KB4	MR-J4-15KB4	(Note)	
SSCNET	MR-J2S-22KB4	MR-J4-22KB4	(Note)	
interface	$\begin{aligned} & \text { MR-J2S-30KB4 } \\ & + \text { MR-HP55KA4 } \end{aligned}$	$\begin{gathered} \text { MR-J4-DU30KB4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	MR-J2S-37KB4 + MR-HP55KA4	$\begin{gathered} \text { MR-J4-DU37KB4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	$\begin{aligned} & \text { MR-J2S-45KB4 } \\ & + \text { MR-HP55KA4 } \end{aligned}$	$\begin{gathered} \text { MR-J4-DU45KB4 } \\ \text { +MR-CR55K4 } \end{gathered}$	(Note)	
	MR-J2S-55KB4 +MR-HP55KA4	MR-J4-DU55KB4 +MR-CR55K4	(Note)	
\qquad	MR-J2S-10A1	MR-J4-10A1	\bigcirc	
	MR-J2S-20A1	MR-J4-20A1	\bigcirc	
	MR-J2S-40A1	MR-J4-40A1	\bigcirc	
100 V AC SSCNET interface	MR-J2S-10B1	MR-J4-10B1	\bigcirc	
	MR-J2S-20B1	MR-J4-20B1	\bigcirc	
	MR-J2S-40B1	MR-J4-40B1	\bigcirc	

Note. These replacement models do not have compatibility in mounting. Use the mounting plate holes of the mounting plate manufactured by Mitsubishi Electric System \& Service Co., Ltd. The servo amplifier capacity may vary depending on the servo motor to be replaced. Refer to Part 8 Section 1.1.

Part 1: Summary of MR-J2S/MR-J2M Replacement

Series	Model	Replacement model (example)	Mounting compatibility (O: Compatible)	Note
$200 \mathrm{~V} \mathrm{AC}$ Built-in positioning function	MR-J2S-10CP	MR-J4-10A-RJ (Note 3)	\bigcirc	Refer to "Part 7: Common Reference Material".
	MR-J2S-20CP	MR-J4-20A-RJ (Note 3)	\bigcirc	
	MR-J2S-40CP	MR-J4-40A-RJ (Note 3)	\bigcirc	
	MR-J2S-60CP	MR-J4-60A-RJ (Note 3)	\bigcirc	
	MR-J2S-70CP	MR-J4-70A-RJ (Note 3)	\bigcirc	
	MR-J2S-100CP	MR-J4-100A-RJ (Note 3)	\bigcirc	
	MR-J2S-200CP	MR-J4-200A-RJ (Note 3)	(Note 1)	
	MR-J2S-350CP	MR-J4-350A-RJ (Note 3)	(Note 1)	
	MR-J2S-500CP	MR-J4-500A-RJ (Note 3)	(Note 1)	
	MR-J2S-700CP	MR-J4-700A-RJ (Note 3)	(Note 1)	
$100 \mathrm{~V} \mathrm{AC}$ Built-in positioning function	MR-J2S-10CP1	MR-J4-10A1-RJ (Note 3)	\bigcirc	
	MR-J2S-20CP1	MR-J4-20A1-RJ (Note 3)	\bigcirc	
	MR-J2S-40CP1	MR-J4-40A1-RJ (Note 3)	\bigcirc	
$200 \mathrm{~V} \mathrm{AC}$ Built-in program operation function	MR-J2S-10CL	MR-J4-10A-RJ (Note 3)	\bigcirc	
	MR-J2S-20CL	MR-J4-20A-RJ (Note 3)	\bigcirc	
	MR-J2S-40CL	MR-J4-40A-RJ (Note 3)	\bigcirc	
	MR-J2S-60CL	MR-J4-60A-RJ (Note 3)	\bigcirc	
	MR-J2S-70CL	MR-J4-70A-RJ (Note 3)	\bigcirc	
	MR-J2S-100CL	MR-J4-100A-RJ (Note 3)	\bigcirc	
	MR-J2S-200CL	MR-J4-200A-RJ (Note 3)	(Note 2)	
	MR-J2S-350CL	MR-J4-350A-RJ (Note 3)	(Note 2)	
	MR-J2S-500CL	MR-J4-500A-RJ (Note 3)	(Note 2)	
	MR-J2S-700CL	MR-J4-700A-RJ (Note 3)	(Note 2)	
100 V AC Built-in program operation function	MR-J2S-10CL1	MR-J4-10A1-RJ (Note 3)	\bigcirc	
	MR-J2S-20CL1	MR-J4-20A1-RJ (Note 3)	\bigcirc	
	MR-J2S-40CL1	MR-J4-40A1-RJ (Note 3)	\bigcirc	

Note 1. These replacement models do not have compatibility in mounting. Use the mounting plate holes of Renewal Tool manufactured by Mitsubishi Electric System \& Service Co., Ltd. The servo amplifier capacity may vary depending on the servo motor to be replaced. Refer to Part 8 Section 1.1.
2. These replacement models do not have compatibility in mounting. Use the mounting plate holes of the mounting plate manufactured by Mitsubishi Electric System \& Service Co., Ltd. The servo amplifier capacity may vary depending on the servo motor to be replaced. Refer to Part 8 Section 1.1.
3. Software version B3 or later.
(2) Models for replacement between MR-J2M series and MR-J4 series

The models for replacement of both the servo amplifier and servo motor as a set are shown.

Series	Model			Replacement model (example)	Mounting compatibility (O: Compatible)	Note
	Base unit	Interface unit	Drive Unit			
$\begin{aligned} & 200 \text { V AC } \\ & \text { General-purpose } \\ & \text { interface } \end{aligned}$	MR-J2M-BU_	MR-J2M-P8A	MR-J2M-10DU	MR-J4-10A	(Note)	Refer to "Part 7: Common Reference Material".
			MR-J2M-20DU	MR-J4-20A	(Note)	
			MR-J2M-40DU	MR-J4-40A	(Note)	
			MR-J2M-70DU	MR-J4-70A	(Note)	
200 V AC SSCNET interface	MR-J2M-BU_	MR-J2M-P8B	MR-J2M-10DU	MR-J4-10B	(Note)	
			MR-J2M-20DU	MR-J4-20B	(Note)	
			MR-J2M-40DU	MR-J4-40B	(Note)	
			MR-J2M-70DU	MR-J4-70B	(Note)	

Note. Refer to "Part 7: Common Reference Material" for the mounting hole dimensions.
(3) Servo amplifier and servo motor combination for the MR-J4 series

Refer to "Part 8: Review on Replacement of Motor" when replacing the servo motor with the one that has already been installed.
(Refer to "[Appendix 2] Introduction to Renewal Tool" if using an existing cable and servo motor.)
(a) $100 \mathrm{~V} / 200 \mathrm{~V}$ class

Servo amplifier	Rotary servo motor					
	HG-KR	HG-MR	HG-SR	HG-UR	HG-RR	HG-JR
MR-J4-10_(1)	$\begin{gathered} 053 \\ 13 \end{gathered}$	$\begin{gathered} 053 \\ 13 \end{gathered}$				
MR-J4-20_(1)	23	23	-	-	-	-
MR-J4-40_(1)	43	43	-		-	-
MR-J4-60_			$\begin{aligned} & 51 \\ & 52 \\ & \hline \end{aligned}$			53
MR-J4-70	73	73	-	72	-	73
MR-J4-100_			$\begin{gathered} \hline 81 \\ 102 \\ \hline \end{gathered}$			103
MR-J4-200_			$\begin{aligned} & 121,201 \\ & 152,202 \end{aligned}$	152	$\begin{aligned} & 103 \\ & 153 \end{aligned}$	$\begin{aligned} & 153 \\ & 203 \end{aligned}$
MR-J4-350_			$\begin{aligned} & 301 \\ & 352 \\ & \hline \end{aligned}$	202	203	353
MR-J4-500_			$\begin{aligned} & 421 \\ & 502 \\ & \hline \end{aligned}$	$\begin{aligned} & 352 \\ & 502 \\ & \hline \end{aligned}$	$\begin{aligned} & 353 \\ & 503 \\ & \hline \end{aligned}$	503
MR-J4-700_			702			703
MR-J4-11K_						$\begin{gathered} 903 \\ 11 \mathrm{~K} 1 \mathrm{M} \end{gathered}$
MR-J4-15K_			,			15K1M
MR-J4-22K_						22K1M
MR-J4-DU30K_						$\begin{gathered} \hline 30 \mathrm{~K} 1 \\ 30 \mathrm{~K} 1 \mathrm{M} \end{gathered}$
MR-J4-DU37K_						$\begin{gathered} \hline 37 \mathrm{~K} 1 \\ 37 \mathrm{~K} 1 \mathrm{M} \end{gathered}$

(b) 400 V class

Servo amplifier	Rotary servo motor	
	HG-SR	HG-JR
MR-J4-60_4	524	534
MR-J4-100_4	1024	734, 1034
MR-J4-200_4	1524, 2024	1534, 2034
MR-J4-350_4	3524	3534
MR-J4-500_4	5024	5034
MR-J4-700_4	7024	7034
MR-J4-11K_4		9034, 11K1M4
MR-J4-15K_4		15K1M4
MR-J4-22K_4		22K1M4
MR-J4-DU30K_4		$\begin{gathered} \hline \text { 30K14 } \\ \text { 30K1M4 } \end{gathered}$
MR-J4-DU37K_4		$\begin{gathered} \hline \text { 37K14 } \\ 37 \mathrm{~K} 1 \mathrm{M} 4 \end{gathered}$
MR-J4-DU45K_4		45K1M4
MR-J4-DU55K_4		55K1M4

3.3.3 Mounting compatibility check

Refer to "Part 7: Common Reference Material" and "Part 8: Review on Replacement of Motor".

3.3.4 Detailed review on replacement model

Refer to "Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_", "Part 3: Review on Replacement of MR-J2S-_B_with MR-J4-_B_",
"Part 4: Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_RJ", "Part 5: Replacement of MR-J2S-_DU_ with MR-J4-_DU_", and "Part 6: Review on Replacement of MR-J2M with MR-J4".

3.3.5 Peripheral equipment check

Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment" in this document.

3.3.6 Startup procedure check

Refer to "Part 10: Startup Procedure Manual" in this document.

4. RELATED MATERIALS

4.1 Catalog

(1) Mitsubishi Electric General-Purpose AC Servo MELSERVO-J4
(2) Motion Controller Q17nDSCPU/Q170MSCPU Simple Motion Module QD77MS/QD77GF
4.2 Instruction Manual
(1) MELSERVO-J4 Series MR-J4-_A(-RJ)/MR-J4-_A4(-RJ)/MR-J4-_A1(-RJ) Servo Amplifier Instruction Manual
(2) MELSERVO-J4 Series MR-J4-_B(-RJ)/MR-J4-_B4(-RJ)/MR-J4-_B1(-RJ) Servo Amplifier Instruction Manual
(3) HG-MR/HG-KR/HG-SR/HG-JR/HG-RR/HG-UR Servo Motor Instruction Manual (Vol.3)
(4) Conversion Unit for SSCNET of MR-J2S-B Compatible AC Servo MR-J4-_B-RJ020/MR-J4-_B4-RJ020/MR-J4-_B1-RJ020/MR-J4-T20 Servo Amplifier Instruction Manual
(5) MELSERVO-J4 Series MR-J4-_A(-RJ)/MR-J4-_A4(-RJ)/MR-J4-_A1(-RJ) Servo Amplifier Instruction Manual(POSITIONING MODE)
(6) MR-J4-DU-_(-RJ)/MR-J4-DU-_4(-RJ) Drive Unit MR-CR55K(4) Converter Unit Instruction Manual
(7) MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting Edition)
(8) Instructions and Cautions for Drive of HC/HA Series Servo Motor with MR-J4-_B_-RJ020 Servo Amplifier

4.3 Replacement Manual

(1) Replacement Manual for replacing the A17nSHCPUN/A173UHCPU series with the Q series

4.4 Renewal Tool

(1) MR-J2S-_A_renewal tool
(2) MR-J2S-_B_renewal tool

4.5 Replacement Tool for Replacing MR-J2S series with MR-J4 series

This tool is a reference for replacing the in-use MR-J2S series with the MR-J4 series.
When an in-use rotary servo motor or servo amplifier is selected, a corresponding MR-J4 series product can be selected.
Note: For details, contact your local sales office.

4.6 MITSUBISHI ELECTRIC FA Global Website

http://www.mitsubishielectric.com/fa/

Servo motor series model, servo amplifier model, regenerative option, encoder motor power supply, and electromagnetic brake selection

MEMO

\qquad

Part 2
 Review on Replacement of MR-J2S-_A_ with
 MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A _ with MR-J4-_A

1. SUMMARY

This section describes the changes to be made when a system using MR-J2S-_A_ is replaced with a system using MR-J4-_A_.

2. CASE STUDY ON REPLACEMENT OF MR-J2S-_A

2.1 Review on Replacement Method

POINT

An HG motor cannot be driven by MR-J2S-_A_. When a servo motor is replaced with an HG motor, servo amplifier also needs to be replaced with MR-J4-_A_ simultaneously.

(1) Simultaneous replacement with MR-J4-_A_ and an HG motor Although heavier burdens including a longer construction period need to be borne, once replaced the system can be operated for a long period of time. (Refer to Section 2.2 (1).)
(2) Separate repair of a servo amplifier is available. (Note) Existing wiring can be used by using the renewal tool. (Refer to Section 2.2 (2).)

Note. Separate repair means replacement.

2.2 Replacement Method

(1) Simultaneous replacement with MR-J4-_A_ and an HG motor

The currently used connectors or cables need to be replaced. The parameters of the existing system can be transferred with the parameter converter function of MR Configurator2. (Refer to "Part 7: Common Reference Material".)
[Existing system]

MR-J2S-_A_

HC-_FS/HA-_FS
motor
[System after simultaneous replacement]

(2) Separate repair of servo amplifier/servo motor

POINT

-An HG motor cannot be driven by MR-J2S-_A_. When a servo motor is replaced with an HG motor, servo amplifier also needs to be replaced with MR-J4-_A_ simultaneously.
OWhen an "HC__FS/HA-_FS motor" shown below is used, "simultaneous replacement with MR-J4-_A_ and an HG motor" is recommended. When an HG motor is adopted, the capacity of the servo amplifier needs to be changed. (Consider replacement, referring to "torque characteristics" described in "Part 8: Replacement of Motor".)

Existing device models		Replacement models for simultaneous replacement (example)	
Servo motor	Servo amplifier	Servo motor	Servo amplifier
HC-LFS52	MR-J2S-60A	HG-JR73	MR-J4-70A
HC-LFS102	MR-J2S-100A	HG-JR153	MR-J4-200A
HC-LFS152	MR-J2S-200A	HG-JR353	MR-J4-350A
HA-LFS15K2(4)(B)	MR-J2S-15KA(4)	HG-JR11K1M(4)(B)	MR-J4-11KA(4)
HA-LFS22K2(4)(B)	MR-J2S-22KA(4)	HG-JR15K1M(4)(B)	MR-J4-15KA(4)
HA-LFS30K2(4)	MR-J2S-30KA(4)	HG-JR22K1M(4)	MR-J4-22KA(4)
HA-LFS37K2(4)	MR-J2S-37KA(4)	HG-JR30K1M(4)	MR-J4-DU30KA(4)
HA-LFS45K24	MR-J2S-45KA4	HG-JR37K1M4	MR-J4-DU37KA4
HA-LFS55K24	MR-J2S-55KA4	HG-JR45K1M4	MR-J4-DU45KA4
HC-KFS46	MR-J2S-70A	HG-KR43	MR-J4-40A
HC-KFS410	MR-J2S-70A	HG-KR43	MR-J4-40A
HC-RFS103(B)G2 1/_	MR-J2S-200A	HG-SR102(B)G7 1/_	MR-J4-100A
HC-RFS203(B)G2 1/_	MR-J2S-350A	HG-SR202(B)G7 1/_	MR-J4-200A
HC-RFS353(B)G2 1/_	MR-J2S-500A	HG-SR352(B)G7 1/_	MR-J4-350A
HC-RFS103(B)G5 1/_	MR-J2S-200A	HG-SR102(B)G5 1/_	MR-J4-100A
HC-RFS203(B)G5 1/_	MR-J2S-350A	HG-SR202(B)G5 1/_	MR-J4-200A
HC-RFS353(B)G5 1/_	MR-J2S-500A	HG-SR352(B)G5 1/_	MR-J4-350A
HC-RFS103(B)G7 1/_	MR-J2S-200A	HG-SR102(B)G7 1/_	MR-J4-100A
HC-RFS203(B)G7 1/_	MR-J2S-350A	HG-SR202(B)G7 1/_	MR-J4-200A
HC-RFS353(B)G7 1/_	MR-J2S-500A	HG-SR352(B)G7 1/_	MR-J4-350A

After replacement, an HC/HA motor can be driven by MR-J4-_A_. Refer to "Part 7: Common Reference Material" for target motors.
When an HC-_FS/HA__FS motor is driven by MR-J4-_A_, it is necessary to set [Pr. PC22]. Refer to Part 7 Section 4.
Use the renewal tool when replacing a servo amplifier with MR-J4-_A_ without replacing the currently used servo motor and existing cables. (Refer to "[Appendix 2] Introduction to Renewal Tool".) The parameters of the existing system can be transferred with the parameter converter function of MR Configurator2. (Refer to "Part 7: Common Reference Material".)
[Existing system]

[System after servo amplifier has been repaired]

3. DIFFERENCES BETWEEN MR-J2S-_A_AND MR-J4-_A_

3.1 Function Comparison Table

Item	MR-J2S-_A_series	MR-J4-_A	Compatibility	Reference material/items
Control mode	Position control mode (pulse command) Speed control mode (analog command) Torque control mode (analog command)	\leftarrow	\bigcirc	
Maximum input pulses	Open-collector pulse: 200 kpulses/s Differential pulse : 500 kpulses/s Command pulse: Sink	Open-collector pulse: 200 kpulses/s Differential pulse: 4 Mpulses/s Command pulse: Sink	Note 1	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.6.1 (1)
The number of DIO points (excluding EM1)	DI: 8 points, DO: 6 points	DI: 9 points, DO: 6 points	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 5.2.4 [Pr. PD03] to [Pr. PD28]
Encoder pulse output	ABZ-phase (differential line driver) Z-phase (open collector)	\leftarrow	Note 2	MR-J4-_A_Servo Amplifier Instruction Manual, Section 5.2.1 [Pr. PA15]
DIO interface	Input: Sink/source Output: Sink	Input: Sink/source Output: Sink/source	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.9
Analog input/output	(Input) 2ch 10-bit torque, 14 -bit speed or equivalent (Output) 10-bit or equivalent $\times 2$ ch	\leftarrow	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.6
Number of internal speed commands	7	\leftarrow	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.6.2 (1) (b)
Parameter setting method	Push button Setup software (SETUP161E)	Push button MR Configurator2	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 4
Button	4 buttons	\leftarrow	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 4
LED display	7-segment 5-digit	\leftarrow	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 4
Communication function	RS-422/RS-232C	RS-422/USB	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 14
Command pulse logic setting	Forward/reverse rotation pulse train Signed pulse train A-phase/B-phase pulse train	\leftarrow	\bigcirc	Part 2, Section 3.7
Interface 24 V DC power supply	Installed.	Not installed.	\times	Part 7, Section 1.2.5
Initializing time	1 to 2 s	2.5 to 3.5 s	\times	Part 7, Section 1.2.8
Z-phase pulse width	At low speed: About 6 ms (Note 3) At high speed: About $440 \mu \mathrm{~s}$	At low speed: About 6 ms (Note 3) At high speed: About $440 \mu \mathrm{~s}$	\times	Part 7, Section 1.2.9

Note 1. Depending on the servo motor being used, "Electronic gear" needs to be set
2. The parameters need to be set due to output pulse settings.
3. This is the pulse width when the motor rotates at $10 \mathrm{r} / \mathrm{min}$. The pulse width changes depending on rotational frequency.

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

3.2 Function List

function		MR-J2S-_A	MR-J4-_A	Reference document/items
Encoder resolution		131072 pulses/rev	4194304 pulses/rev	MR-J4-_A_Servo Amplifier Instruction Manual, Section 1.3
Absolute position detection system		O [Pr. 1]	O [Pr. PA03]	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 12
Gain switching function		O [Pr. 65]	O [Pr. PB26]	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.2
Advanced vibration suppression control II		\times	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.1.5
Adaptive vibration suppression control		O [Pr. 60]	\times (Note)	
Adaptive filter II		\times	O [Pr. PB01]	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.1.2
Low-pass filter		O [Pr. 60]	O [Pr. PB23]	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.1.4
Machine analyzer function		\bigcirc	\bigcirc	
Machine simulation		\bigcirc	\times	
Gain search function		\bigcirc	O (One-touch tuning)	MR-J4-_A_Servo Amplifier Instruction Manual, Section 6.2
Robust filter		\times	O [Pr. PE41]	
Slight vibration suppression control		O [Pr. 20]	O [Pr. PB24]	
Auto tuning		O [Pr. 2]	O [Pr. PB08]	MR-J4-_A_Servo Amplifier Instruction Manual, Section 6.3
Brake unit		\bigcirc	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.3
Power regenerative converter		\bigcirc	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.4
Regenerative option		O [Pr. 0]	O [Pr. PA02]	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.2
Torque limit		O [Pr. 28, 76]	$\begin{aligned} & \text { O [Pr. PA11], [Pr. PA12], } \\ & \text { [Pr. PC35] } \end{aligned}$	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.6.1 (5)
Alarm history clear		O [Pr. 16]	O [Pr. PC18]	
Output signal selection (device settings)		O [Pr. 49] (WNG, BWNG, and alarm code output only)	O [Pr. PD23] to [Pr. PD28]	
Output signal (DO) forced output		\bigcirc	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 4.5.8
Test operation mode	JOG operation	\bigcirc	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Section 4.5.9
	Positioning operation	O Requires the setup software (SETUP161E).	O Requires the MR Configurator2.	
	Motor-less operation	\bigcirc	O [Pr. PC60]	
	Machine analyzer operation	Requires the setup software (SETUP161E).	O Requires the MR Configurator2.	
Analog monitor output		O [Pr. 17]	O [Pr. PC14], [Pr. PC15]	MR-J4-_A_Servo Amplifier Instruction Manual Appendix 8
Setup software		Setup software (SETUP161E) is available for free.	MR Configurator2	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.7
Linear servo system		\times	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 15
Direct drive servo system		\times	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 16
Fully closed loop system		\times	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 17
STO function		\times	\bigcirc	MR-J4-_A_Servo Amplifier Instruction Manual, Chapter 13

Note. This function is provided by advanced vibration suppression control II.

3.3 Comparison of Standard Connection Diagrams

(1) Position control mode

(2) Speed control mode

(3) Torque control mode

MR-J2S-_A	MR-J4-_A
For 11 kW to 22 kW , the connector for the analog monitor is CN4. (Refer to Section 3.4 (2) (c).)	

3.4 List of Corresponding Connectors and Terminal Blocks

(1) Connector comparison table

An example of connections with the peripheral equipment is shown below. For details on signals, refer to each servo amplifier instruction manual.

(2) List of connector and terminal block correspondence

	MR-J2S-_A			MR-J4-_A		Note
(1)	I/O signal connector		[CN1A]	I/O signal connector	[CN1]	Prepare a new cable.
(2)	I/O signal connector		[CN1B]			
(3)	Encoder connector		[CN2]	Encoder connector	[CN2]	Must switch to encoder cable (option) or prepare a new cable.
(4)	Communication connector [CN3]	PC connection		USB communicatio	[CN5]	Switch to USB cable (option).
		Analog monitor		Analog monitor con	[CN6]	Switch to monitor cable (option).
(5)	Main circuit terminal block [TE1]	Input power supply		Main circuit powe	[CNP1]	Switch to the power connector (enclosed with the amplifier).
		Servo motor power supply		Servo motor power	[CNP3]	
(6)	Control circuit terminal block [TE2]			Control circuit pow	[CNP2]	
(7)	Battery connector		[CON1]	Battery connector	[CN4]	Prepare a new battery.

When not using the STO function in MR-J4-_A_, attach the short-circuit connector supplied with the servo amplifier to CN8 (STO input signal connector).
The configuration of the main circuit terminal block differs depending on the capacity. Refer to "Part 7:
Common Reference Material".
(3) Comparison of signals
(a) CN1A/CN1B

1) Position control mode

Note. Signal abbreviations in parentheses are for MR-J4-_A_.

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A
2) Speed control mode

Note. Signal abbreviations in parentheses are for MR-J4-_A_.

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A
3) Torque control mode

Note. Signal abbreviations in parentheses are for MR-J4-_A_.
(b) CN 3

1) For 7 kW or less

MR-J2S-_A		Signal abbreviation (Note)	MR-J4-_A_	
Connector pin assignment	Connector pin No.		Connector pin No.	Connector pin assignment
CN3	CN3-3 CN3-4 CN3-14 CN3-13	LG MO 1 MO 2 LG	CN6-1 CN6-2 CN6-3	
	CN3-1	LG	CN3-1	CN3
	CN3-5	RDP	CN3-3	8
	CN3-9	SDP	CN3-5	$\begin{array}{\|c\|} \hline 7 \\ \hline L G \\ \hline \end{array}$
	CN3-11	LG	CN3-7	6 RDN
	CN3-15	RDN	CN3-6	$\begin{array}{\|c\|} \hline 5 \\ \hline \text { SDP } \\ \hline \end{array}$
	CN3-19	SDN	CN3-4	$\begin{array}{\|c\|} \hline 4 \\ \hline \text { SDN } \\ \hline \end{array}$
	CN3-20	P5 (P5D)	CN3-2	$\begin{array}{\|c\|} \hline 3 \\ \hline \text { RDP } \\ \hline \end{array}$
	CN3-2	RXD	-	$\begin{array}{\|c\|} \hline 2 \\ \hline P 5 D \\ \hline \end{array}$
	CN3-10	TRE	-	1 LG
	CN3-12	TXD	-	

Note. Signal abbreviations in parentheses are for MR-J4-_A_.
2) For 11 kW to 22 kW

Note. Signal abbreviations in parentheses are for MR-J4-_A_.
(c) CN4 (11 kW to 22 kW only)

MR-J2S-_A_		Signal symbol	MR-J4-_A_	
Connector pin assignment	Connector pin No.		Connector pin No.	Connector pin assignment
CN4	CN4-1	MO1	CN6-3	
$\left.\begin{array}{\|c\|cc\|}\hline \square \\ \square \\ \square\end{array}\right] \quad$1 M01 2 M02	CN4-2	MO2	CN6-2	\square
\square - 4 LG	CN4-4	LG	CN6-1	1 LG

3.5 Comparison of Peripheral Equipment

POINT
ORefer to "Part 9: Replacement of Optional Peripheral Equipment".

3.6 Comparison of Parameters

Onever perform extreme adjustments and changes to the parameters, otherwise the operation may become unstable.
If fixed values are written in the digits of a parameter, do not change these values.
Do not change parameters for manufacturer setting.
Do not enter any setting value other than those specified for each parameter.

POINT

-For the parameter converter function, refer to "Part 7: Common Reference Material".
-To enable a parameter whose abbreviation is preceded by *, turn the power OFF and then ON after setting the parameter.

- For details about parameter settings for replacement, refer to the MR-J4-_A_ Servo Amplifier Instruction Manual.
- With MR-J4-_A_, the deceleration to a stop function is enabled by factory settings. To disable the deceleration to a stop function, set [Pr. PA04] to "0 \qquad

3.6.1 Setting requisite parameters upon replacement

The parameters shown in this section are a minimum number of parameters that need to be set for simultaneous replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set.
(1) Parameters common to position control mode, speed control mode, and torque control mode

Parameter number	Name	Initial value	Setting value	Description
PA04	Function selection A-1	2000 h	000 Oh	Forced stop deceleration function selection To configure the same settings as for MR-J2S__A_, select "Forced stop deceleration function disabled (EM1)".
PA09	Auto tuning response	16	8	Auto tuning response setting Refer to "3.6.3 Comparison of parameter details" for the setting value of this parameter upon replacement. It is necessary to make gain adjustment again when replacing. For details about gain adjustment, refer to "MR-J2S-_A_ [Pr. 2] (MR-J4-_A_ [Pr. PA09])" in Section 3.6.3.
PA15	Encoder output pulse	4000	128 (Note)	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier.
PC19	Encoder output pulse selection	000 Oh	0 _ 1_h (Note)	Encoder output pulse selection Used to set the encoder pulses output by the servo amplifier. The setting value at left is according to the dividing ratio setting.
PD30	Function selection D-1	000 Oh	1 _ _ ${ }^{\text {h }}$	This is used to select enabled or disabled for the thermistor of the servo motor. When using (HA-LFS series) servo motors that have thermal terminals and not connecting thermal signals to the MR-J4 servo amplifier, set this parameter to "1 \qquad h (Disabled)". The overheat protection of a servo motor is not enabled. Configure a protective circuit.

Note. The example value shown is for when the output pulse setting of an existing HC-KFS motor (encoder resolution: 131072 pulses/rev) is "Dividing ratio: $1 / 4$ ".

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_
(2) Position control mode

Parameter number	Name	Initial value	Setting value	Description
PA01	Operation mode	100 0h	___ Oh	Select the servo amplifier control mode. Select the position control mode.
PA06	Electronic gear numerator (Commanded pulse multiplication numerator)	1	$\begin{gathered} 256 \\ (\text { Note }) \end{gathered}$	When using an electronic gear, it is necessary to change the setting value. For simultaneous replacement, set a value by calculating as
PA07	Electronic gear denominator (Commanded pulse multiplication denominator)	1	$\begin{gathered} 1 \\ \text { (Note) } \end{gathered}$	follows: $\frac{\mathrm{CMX}}{\mathrm{CDV}}=\frac{\begin{array}{l} \text { Replacement servo motor } \\ \text { Encoder resolution } \\ \text { Encoder motor for MR-J2S } \end{array}}{\substack{\text { Encolution }}} \cdot \frac{\text { Former CMX }}{\text { Former CDV }}=\frac{4194304}{131072} \cdot \frac{1}{8}=\frac{256}{1}$ When a geared servo motor is replaced, the actual reduction ratio may differ before and after the replacement. If the ratio differs after the replacement, set the values considering the actual reduction ratio.
PA13	Command pulse input form	010 Oh	\sim^{x} _ $^{\text {h }}$	Command input pulse train filter selection Selecting the proper filter enables noise immunity enhancement. Make sure to select a filter so as not to cause a position mismatch. For details, refer to "MR-J4-_A_ [Pr. PA13]" in Section 3.6.3. In addition, it is necessary to adjust the command pulse logic to the positioning module. An incorrect logic setting causes the servo motor to not rotate. Make sure to configure the settings. Refer to "3.7 Important Points for Replacement (Command Pulse Logic Settings)".

Note. The example value shown is for when the electronic gear ratio of an existing servo amplifier is set as "8/1".
(3) Speed control mode

Parameter number	Name	Initial value	Setting value	Description
PA01	Operation mode	1000 h	---2 h	Select the servo amplifier control mode. Select the speed control mode.
PC12	Analog speed command - Maximum speed	0	3000	Analog speed command - Maximum speed The setting value at left is for when the HC-SFS53 motor is replaced with the HG-SR52 motor.

(4) Torque control mode

Parameter number	Name	Initial value	Setting value	Description
PA01	Operation mode	1000 h	---4 h	Select the servo amplifier control mode. Select the torque control mode.
PC12	Analog speed limit - Maximum speed	0	3000	Analog speed limit - Maximum speed The setting value at left is for when the HC-SFS53 motor is replaced with the HG-SR52 motor.
PC13	Analog torque command - Maximum output	100.0	100.0	Analog torque command - Maximum output Set the same value as for the MR-J2S-_A_servo amplifier.

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

3.6.2 Parameter comparison list

POINT
 - Manufacturer setting parameters are not described here.

MR-J2S-_A_ parameters						MR-J4-_A_ parameters					
No.	Abbreviaion	Parameter name		Initial value	Customer setting value	No.	Abbreviaion	Parameter name	Initial value	Customer setting value	
0	*STY	Control mode, Regenerative option selection	Control mode	0000h		PA01	*STY	Operation mode	1000h		
			Regenerative option			PA02	*REG	Regenerative option	0000h		
1	*OP1	Function selection 1	Input filter	0002h		PD29	*DIF	Input filter setting	0004h		
			Electromagnetic brake interlock selection			PD24	*DO2	Output device selection 2 (electromagnetic brake interlock)	000Ch		
			Dynamic brake interlock selection (11 kW or more)			PD23	*DO1	Output device selection 1	0004h		
						PD25	*DO3	Output device selection 3	0004h		
						PD26	*D04	Output device selection 4	0007h		
						PD28	*DO6	Output device selection 6	0002h		
			Absolute position detection system selection			PA03	*ABS	Absolute position detection system selection	0000h		
	ATU	Auto tuning	Mode setting Response level setting			PA08	ATU	Auto tuning mode (Note)	0001h		
2						PA09	RSP	Auto tuning response (Note)	16		
3	CMX	Electronic gear numerator (command pulse multiplication numerator)		1		PA06	CMX	Electronic gear numerator (command pulse multiplication numerator)	1		
					PA21	*AOP3	Electronic gear selection	0001h			
4	CDV	Electronic gear denominator (command pulse multiplication denominator)			1		PA07	CDV	Electronic gear denominator (command pulse multiplication denominator)	1	
						PA21	*AOP3	Electronic gear selection	0001h		
5	INP	In-position range		100		PA10	INP	In-position range	100		
6	PG1	Position loop gain 1		$\begin{array}{\|c\|} \hline 7 \mathrm{~kW} \text { or less: } \\ 35 \\ 11 \mathrm{~kW} \text { or } \\ \text { more: } 19 \end{array}$		PB07	PG1	Model loop gain (Note)	15.0		
7	PST	Position command ac constant (position sm	ration/deceleration time ing)	3		PB03	PST	Position command acceleration/deceleration time constant (position smoothing)	0		
8	SC1	Internal speed command 1		100		PC05	SC1	Internal speed command 1	100		
		Internal speed limit 1						Internal speed limit 1			
9	SC2	Internal speed comm		500		PC06	SC2	Internal speed command 2	500		
		Internal speed limit 2						Internal speed limit 2			
10	SC3	Internal speed command 3		1000		PC07	SC3	Internal speed command 3	1000		
		Internal speed limit 3						Internal speed limit 3			
11	STA	Acceleration time con		0		PC01	STA	Acceleration time constant	0		
12	STB	Deceleration time con		0		PC02	STB	Deceleration time constant	0		
13	STC	S-pattern acceleration	celeration time constant	0		PC03	STC	S-pattern acceleration/deceleration time constant	0		
14	TQC	Torque command tim	nstant	0		PC04	TQC	Torque command time constant	0		
15	*SNO	Station number settin		0		PC20	*SNO	Station number setting	0		
16	*BPS	Serial communication function selection - Alarm history clear		0000h		PC18	*BPS	Alarm history clear	0000h		
					PC21	*SOP	RS-422 communication function selection (RS-232C is not supported.)	0000h			
17	MOD	Analog monitor output			0100h		PC14	MOD1	Analog monitor 1 output	0000h	
						PC15	MOD2	Analog monitor 2 output	0001h		
18	*DMD	Status display selectio		0000h		PC36	*DMD	Status display selection	0000h		
19	*BLK	Parameter writing inh		0000h		PA19	*BLK	Parameter writing inhibit	00AAh		
20	*OP2	Function selection 2	Restart after instantaneous power failure selection	0000h			\}	No corresponding parameter	Σ		
			Servo-lock upon stopselection			PC23	*COP2	Servo-lock selection at speed control stop	0000h		
			Slight vibration suppression control			PB24	*MVS	Slight vibration suppression control selection	0000h		
21	*OP3	Function selection 3 (mand pulse selection)	0000h		PA13	*PLSS	Command pulse input form	0100h		
22	*OP4	Function selection 4	LSP, LSN stop selection	0000h		PD30	*DOP1	Function selection D-1 (LSP, LSN stop selection)	0000h		
			VC, VLA voltage averaging			PC23	*COP2	Function selection C-2 (VC, VLA voltage averaging)	0000h		
23	FFC	Feed forward gain		0		PB04	FFC	Feed forward gain (Note)	0		

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A_ parameters						MR-J4-_A_ parameters					
No.	Abbreviaion	Parameter name		Initial value	Customer setting value	No.	Abbreviaion	Parameter name	Initial value	Customer setting value	
24	ZSP	Zero speed		50		PC17	ZSP	Zero speed	50		
25	VCM	Analog speed command - Maximum speed		0		PC12	VCM	Analog speed command - Maximum speed	0		
		Analog speed limit maximum speed						Analog speed limit - Maximum speed			
26	TLC	Analog torque command maximum output		100		PC13	TLC	Analog torque command maximum output	100.0		
27	*ENR	Encoder output pulses		4000		PA15	*ENR	Encoder output pulses	4000		
					PC19	*ENRS	Encoder output pulse selection	0000h			
28	TL1	Internal torque limit 1			100		PA11	TLP	Forward rotation torque limit	100.0	
						PA12	TLN	Reverse rotation torque limit	100.0		
	VCO	Analog speed command offset		Differs depending on servo amplifier		PC37	VCO	Analog speed command offset	Differs depending on servo amplifier		
		Analog speed limit offset									
30	TLO	Analog torque command offset		0		PC38	TPO	Analog torque command offset	0		
		Analog torque limit offset						Analog torque limit offset			
31	MO1	Analog monitor 1 offset		0		PC39	MO1	Analog monitor 1 offset	0		
32	MO2	Analog monitor 2 offset		0		PC40	MO2	Analog monitor 2 offset	0		
33	MBR	Electromagnetic brake sequence output		100		PC16	MBR	Electromagnetic brake sequence output	0		
34	GD2	Load to motor inertia ratio		70		PB06	GD2	Load to motor inertia ratio	7.00		
35	PG2	Position loop gain 2		$\begin{gathered} 7 \mathrm{~kW} \text { or less: } \\ 35 \\ 11 \mathrm{~kW} \text { or } \\ \text { more: } 19 \end{gathered}$		PB08	PG2	Position loop gain (Note)	37.0		
36	VG1	Speed loop gain 1		$\begin{array}{\|l\|} \hline 7 \mathrm{~kW} \text { or less: } \\ 1777 \\ 11 \mathrm{~kW} \text { or } \\ \text { more: } 96 \end{array}$				No corresponding parameter			
37	VG2	Speed loop gain 2		$\begin{array}{\|c\|} \hline 7 \mathrm{~kW} \text { or less: } \\ 817 \\ 11 \mathrm{~kW} \text { or } \\ \text { more: } 455 \end{array}$		PB09	VG2	Speed loop gain (Note)	823		
38	VIC	Speed integral compensation		48		PB10	VIC	Speed integral compensation (Note)	33.7		
39	VDC	Speed differential compensation		980		PB11	VDC	Speed differential compensation (Note)	980		
41	*DIA	Input signal automatic ON selection		0000h		PD01	*DIA1	Input signal automatic on selection 1	0000h		
42	*DI1	Input signal selection 1 (LOP assignment)	Pin CN1B-5	0003h		PD03	*D11L	Input device selection 1L	0202h		
			Pin			PD04	*DI1H	Input device selection 1H	0002h		
			Pin CN1B-14			PD11	*DI5L	Input device selection 5L	0303h		
			Pin ${ }^{\text {N/b-14 }}$			PD12	*DI5H	Input device selection 5H	0003h		
						PD13	*DI6L	Input device selection 6L	2006h		
						PD14	*DI6H	Input device selection 6H	0020h		
			Pin CN1B-7			PD05	*DI2L	Input device selection 2L	2100h		
			Pin CNib-7			PD06	*DI2H	Input device selection 2H	0021h		
			Pin CN1B-8			PD07	*DI3L	Input device selection 3L	0704h		
			Pin CNIB-8			PD08	*DI3H	Input device selection 3H	0007h		
			CN1B-9			PD09	*D14L	Input device selection 4L	0805h		
			Pin CNib-9			PD10	*DI4H	Input device selection 4H	0008h		
		CR selection				PD32	*DOP3	CR selection	0000h		
43	*D12	Input signal selection 2 (CN1B-5)		0111h		PD03	*D11L	Input device selection 1L	0202h		
					PD04	*D11H	Input device selection 1H	0002h			
44	*D13	Input signal selection 3 (CN1B-14)			0222h		PD11	*DI5L	Input device selection 5L	0303h	
						PD12	*DI5H	Input device selection 5H	0003h		
45	*DI4	Input signal selection 4 (CN1A-8)		0665h		PD13	*DI6L	Input device selection 6L	2006h		
					PD14	*DI6H	Input device selection 6H	0020h			
46	*D15	Input signal selection 5 (CN1B-7)			0770h		PD05	*DI2L	Input device selection 2L	2100h	
						PD06	*DI2H	Input device selection 2H	0021h		
47	*D16	Input signal selection 6 (CN1B-8)		0883h		PD07	*DI3L	Input device selection 3L	0704h		
					PD08	*DI3H	Input device selection 3H	0007h			

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A_ parameters						MR-J4-_A_parameters					
No.	Abbreviation	Parameter name		Initial value	Customer setting value	No.	Abbreviation	Parameter name	Initial value	Customer setting value	
48	*DI7	Input signal selection 7 (CN1B-9)		0994h		PD09	*DI4L	Input device selection 4L	0805h		
					PD10	*DI4H	Input device selection 4H	0008h			
49	*DO1	Output signal selection 1	Alarm code		0000h		PD34	DOP5	Function selection D-5	0000h	
		WNG (warning) output setting	Pin CN1A-19			PD28	*DO6	Output device selection 6	0002h		
			Pin CN1B-18				\checkmark	No corresponding parameter			
			Pin CN1A-18			PD25	*DO3	Output device selection 3	0004h		
			Pin CN1B-19			PD24	*DO2	Output device selection 2	000Ch		
			Pin CN1B-6			PD26	*DO4	Output device selection 4	0007h		
		BWNG (battery warning) output setting	Pin CN1A-19			PD28	*DO6	Output device selection 6	0002h		
			Pin CN1B-18				,	No corresponding parameter	-		
			Pin CN1A-18			PD25	*DO3	Output device selection 3	0004h		
			Pin CN1B-19			PD24	*DO2	Output device selection 2	000Ch		
			Pin CN1B-6			PD26	*DO4	Output device selection 4	0007h		
51	*OP6	Function selection 6	Operation selection at Reset ON	0000h		PD30	*DOP1	Function selection D-1	0000h		
53	*OP8	Function selection 8		0000h				No corresponding parameter			
54	*OP9	Function selection 9	Servo motor rotation direction selection	0000h		PA14	*POL	Servo motor rotation direction selection	0		
			Encoder pulse phase, setting selection			PC19	*ENRS	Encoder output pulse selection	0000h		
55	*OPA	Function selection A	Position command acceleration/ deceleration time constant control selection	0000h		PB25	*BOP1	Function selection B-1	0000h		
56	SIC	Serial communication time	-out selection	0				No corresponding parameter			
58	NH1	Machine resonance suppression filter 1	Notch frequency selection	0000h		PB01	FILT	Adaptive tuning mode (adaptive filter II)	0000h		
						PB13	NH1	Machine resonance suppression filter 1	4500		
			Notch depth selection			PB14	NHQ1	Notch shape selection 1	0000h		
59	NH2	Machine resonance suppression filter 2	Notch frequency selection	0000h		PB15	NH2	Machine resonance suppression filter 2	4500		
			Notch depth			PB16	NHQ2	Notch shape selection 2	0000h		
60	LPF	Low-pass filter/ Adaptive vibration suppression control	ion	0000h		PB18	LPF	Low-pass filter setting	3141		
						PB23	VFBF	Low-pass filter selection	0000h		
			Adaptive vibration suppression control level selection			PB01	FILT	Adaptive tuning mode (adaptive filter II)	0000h		
61	GD2B	Load to motor inertia ratio 2		70		PB29	GD2B	Gain switching load to motor inertia ratio (Note)	7.00		
62	PG2B	Position loop gain 2 changing ratio		100		PB30	PG2B	Position loop gain after gain switching (Note)	0.0		
63	VG2B	Speed loop gain 2 changing ratio		100		PB31	VG2B	Speed loop gain after gain switching (Note)	0		
64	VICB	Speed integral compensation changing ratio		100		PB32	VICB	Speed integral compensation after gain switching (Note)	0.0		
65	*CDP	Gain switching selection		0000h		PB26	*CDP	Gain switching function	0000h		
66	CDS	Gain switching condition		10		PB27	CDL	Gain switching condition	10		
67	CDT	Gain switching time constant		1		PB28	CDT	Gain switching time constant	1		
69	CMX2	Command pulse multiplication numerator 2		1		PC32	CMX2	Command input pulse multiplication numerator 2	1		
70	CMX3	Command pulse multiplic	ation numerator 3	1		PC33	CMX3	Command input pulse multiplication numerator 3	1		
71	CMX4	Command pulse multiplic	ation numerator 4	1		PC34	CMX4	Command input pulse multiplication numerator 4	1		
72	SC4	Internal speed command 4		200		PC08	SC4	Internal speed command 4	200		
		Internal speed limit 4						Internal speed limit 4			
73	SC5	Internal speed command 5		300		PC09	SC5	Internal speed command 5	300		
		Internal speed limit 5						Internal speed limit 5			
74	SC6	Internal speed command 6		500		PC10	SC6	Internal speed command 6	500		
		Internal speed limit 6						Internal speed limit 6			
75	SC7	Internal speed command 7		800		PC11	SC7	Internal speed command 7	800		
		Internal speed limit 7						Internal speed limit 7			
76	TL2	Internal torque limit 2		100		PC35	TL2	Internal torque limit 2	100.0		

Note. Parameters related to gain adjustment are different from those for the MR-J2S-_A_ servo amplifier. For gain adjustment, refer to MR-J4_A_Servo Amplifier Instruction Manual.

3.6.3 Comparison of parameter details

POINT

The symbols in the control mode column mean the following control modes:
P: Position control mode
S: Speed control mode
T: Torque control mode

MR-J2S-_A_			MR-J4-_A				Control mode
No.	Name and function	Initial value	No.	Name and function		Initial value	
0	Control mode and regenerative option selection Used to select a control mode and a regenerative option. 00 : •The regenerative option is not used by the servo amplifier at 7 kW or less (built-in regenerative resistor is used). - The supplied regenerative resistor or regenerative option is used in the servo amplifier at 11 kW or more.	0000h	PA01	Operation mode Select a control mode. Refer to the comparison tab method. Control mode setting co	elow for the setting parison table	1000h	$\begin{aligned} & P \\ & S \\ & T \end{aligned}$
	01: FR-RC, FR-BU2, FR-CV 02: MR-RB032 03: MR-RB12 04: MR-RB32 05: MR-RB30 06: MR-RB50 (Cooling fan is required.) 08: MR-RB31 09: MR-RB51 (Cooling fan is required.) 0 E : When increasing the capabilities by using a cooling fan to cool the supplied regeneration resistor with the servo amplifier of 11 kW to 22 kW MR-RB65, 66, and 67 are regenerative options with GRZG400-2 Ω, GRZG400-1 Ω, and GRZG400-0.8 Ω in the case, respectively. When using any of these regenerative options, configure the same parameter setting as when using GRZG400-2 Ω, GRZG400-1 Ω, and GRZG400$0.8 \Omega$. (Use a supplied regenerative resistor or regenerative option on a servo amplifier of 11 kW or more.). POINT - An incorrect setting may cause the regenerative option to burn out. - When a regenerative option that is not available to use on a servo amplifier is selected, a parameter error (AL. 37) occurs.		PA02	Regenerative options Used to select the regenera Refer to the comparison tab method. Regenerative option settin	option. elow for the setting omparison table	0000h	

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
1	Function selection 1 Select a value for the input filter, pin CN1B-19 function, and absolute position detection system.	0002h	PD29	Input filter setting If an external input signal causes chattering due to noise, etc., the input filter is used to suppress it. Refer to the comparison table below for the setting method. Input filter setting comparison table	0004h	$\begin{aligned} & \text { P } \\ & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$
	CN1B-pin 18's function selection 0: ALM (Alarm) 1: DB (Dynamic brake interlock) Make the DB effective when using the external dynamic brake at 11 kW or more. Absolute position detection system selection 0: Used in incremental system 1: Used in absolute position detection system		PD24	Output device selection 2 (electromagnetic brake interlock selection) Any output device can be assigned to the CN1-23 pin. Refer to the comparison table below for the setting method. Output device setting comparison table	000Ch	
			$\begin{aligned} & \text { PD23 } \\ & \text { PD25 } \\ & \text { PD26 } \\ & \text { PD28 } \end{aligned}$	Device selection Set "__ 06 " as necessary and assign DB (dynamic brake interlock) to a specific pin on the CN1 connector. The settings differ when the renewal tool is used. For the settings, refer to "[Appendix 2] Introduction to Renewal Tool".	$\begin{aligned} & 0004 \mathrm{~h} \\ & 0004 \mathrm{~h} \\ & 0007 \mathrm{~h} \\ & 0002 \mathrm{~h} \end{aligned}$	
			PA03	Absolute position detection system selection When using the absolute position detection system, set " \qquad 1".	0000h	

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

MR-J2S-_A_			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
5	In-position range Used to set the range where INP (positioning completion) is output by the command pulse unit before an electronic gear is calculated. For example, when wanting to set $100 \mu \mathrm{~m}$ in a state of direct connection to the ball screw, a lead wire length of 10 mm , a feedback pulse number of 131072 pulses/rev, and electronic gear numerator (CMX) / electronic gear denominator (CDV) $=16384 / 125$ (unit setting of $10 \mu \mathrm{~m}$ per pulse), set " 10 ", as shown in the equation below. $\frac{100[\mu \mathrm{~m}] \times 10^{-6}}{10[\mathrm{~mm}] \times 10^{-3}} \times 131072[\text { pulse } / \mathrm{rev}] \times \frac{125}{16384} \doteqdot 10$	100	PA10	In-position range Used to set an in-position range per command pulse unit. Set the same value as for MR-J2S-_A_.	100	P
6	Position loop gain 1 Used to set the gain of the position loop. Increase the gain to improve track ability in response to the position command. When auto tuning mode 1 or 2 is selected, the auto tuning result is automatically used.	7 kW or less: 35 11 kW or more: 19	PB07	Model loop gain Used to set the response gain till the set position. If the setting value is increased, traceability for position command is improved. However, if the setting value is too large, it tends to generate vibration and noise. This parameter can be set either automatically or manually depending on the [Pr. PA08] setting.	15.0	P
7	Position command acceleration/deceleration time constant (Position smoothing) This is used to set the constant of a primary delay to the position command. The control method can be selected from Primary delay and Linear acceleration/deceleration in [Pr. 55]. The setting range of Linear acceleration/deceleration is 0 to 10 ms . When setting a value of 10 ms or more, the setting value is recognized as 10 ms . POINT When Linear acceleration/deceleration is selected, do not select Control switching ([Pr. 0]) and Restart after instantaneous power failure ([Pr. 20]). Selecting them will cause the servo motor to make a sudden stop at the time of position control switching or at restart. (Example) When a command is given from a synchronizing encoder, synchronous operation will start smoothly even if it starts during line operation.	3	PB03	Position command acceleration/deceleration time constant (Position smoothing) This is used to set the constant of a primary delay to the position command. Set the same value as for MR-J2S-_A_.	0	P

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A_			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
8	Internal speed command 1 This is used to set speed 1 of internal speed commands. Internal speed limit 1 This is used to set speed 1 of internal speed limits.	100	PC05	Internal speed command 1 This is used to set speed 1 of internal speed commands. Set the same value as for MR-J2S-_A.	100	S
				Internal speed limit 1 This is used to set speed 1 of internal speed limits. Set the same value as for MR-J2S-_A.		T
9	Internal speed command 2 This is used to set speed 2 of internal speed commands.	500	PC06	Internal speed command 2 This is used to set speed 2 of internal speed commands. Set the same value as for MR-J2S-_A.	500	S
	Internal speed limit 2 This is used to set speed 2 of internal speed limits.			Internal speed limit 2 This is used to set speed 2 of internal speed limits. Set the same value as for MR-J2S-_A_.		T
10	Internal speed command 3 This is used to set speed 3 of internal speed commands.	1000	PC07	Internal speed command 3 This is used to set speed 3 of internal speed commands. Set the same value as for MR-J2S-_A_.	1000	S
	Internal speed limit 3 This is used to set speed 3 of internal speed limits.			Internal speed limit 3 This is used to set speed 3 of internal speed limits. Set the same value as for MR-J2S-_A.		T
11	Speed acceleration time constant Used to set the acceleration time required to reach the rated speed from $0 \mathrm{r} / \mathrm{min}$ in response to an analog speed command and internal speed commands 1 to 7 . For example, for a servo motor with a rated speed of $3000 \mathrm{r} / \mathrm{min}$, set $3000(3 \mathrm{~s})$ to increase the speed from 0 to $1000 \mathrm{r} / \mathrm{min}$ in 1 s .	0	PC01	Speed acceleration time constant Used to set the acceleration time required to reach the rated speed from $0 \mathrm{r} / \mathrm{min}$ in response to VC (analog speed command) and internal speed commands 1 to 7 ([Pr. PC05] to [Pr. PC11]). Set the same value as for MR-J2S-_A_.	0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$
12	Speed deceleration time constant Used to set the deceleration time required to reach 0 r/min from the rated speed in response to an analog speed command and internal speed commands 1 to 7 .	0	PC02	Speed deceleration time constant Used to set the deceleration time required to reach 0 $\mathrm{r} / \mathrm{min}$ from the rated speed in response to VC (analog speed command) and internal speed commands 1 to 7 ([Pr. PC05] to [Pr. PC11]). Set the same value as for MR-J2S-_A_.	0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
13	S-pattern acceleration/deceleration time constant This is used to smooth start/stop of the servo motor. Set the time of the arc part for S-pattern acceleration/deceleration. STA: Acceleration time constant ([Pr. 11]) STB: Deceleration time constant ([Pr. 12]) STC: S-pattern acceleration/deceleration time constant ([Pr. 13]) If STA (acceleration time constant) or STB (deceleration time constant) is set to be longer, an error may occur in the time of the arc part for the S-pattern acceleration/deceleration time constant setting. The upper limit value of the actual arc part time is limited by $\frac{2000000}{\text { STA }}$ for acceleration or by $\frac{2000000}{\text { STB }}$ for deceleration. (Example) When STA, STB, and STC are set to 20000, 5000 , and 200, respectively, the actual arc part time is as follows. At time of acceleration: $100[\mathrm{~ms}]\left(\begin{array}{l}\text { Because of } \frac{2000000}{20000}=100[\mathrm{~ms}]< \\ 200[\mathrm{~ms}], \text { it is limited to } 100[\mathrm{~ms}] .\end{array}\right\}$ $\begin{aligned} & \text { At time of } \\ & \text { acceleration: } 200[\mathrm{~ms}]\end{aligned} \left\lvert\, \begin{aligned} & \text { Because of } \frac{2000000}{5000}=400[\mathrm{~ms}] \\ & 200[\mathrm{~ms}], \text { it becomes 200[ms] as } \\ & \text { designed. }\end{aligned}\right.$	0	PC03	S-pattern acceleration/deceleration time constant This is used to smooth start/stop of the servo motor. Set the time of the arc part for S-pattern acceleration/deceleration. Set the same value as for MR-J2S-_A_.	0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$
14	Torque command time constant This is used to set the constant of a primary delay to the torque command. TQC: Torque command time constant	0	PC04	Torque command time constant This is used to set the constant of a primary delay to the torque command. Set the same value as for MR-J2S-_A_.	0	T
15	Station number setting Specifies the station No. of serial communication. Always set one station to one axis of the servo amplifier. Setting one station number to two or more stations will disable a normal communication.	0	PC20	Station number setting Used to set the station No. of the servo amplifier. Setting range: 0 to 31	0	$\begin{aligned} & P \\ & S \\ & T \end{aligned}$

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Note 1. "Maximum speed" and " Maximum torque" differ depending on the servo motor. Therefore, after the existing motor has been replaced with an HG motor, the output voltage for "Maximum speed" or " Maximum torque" may differ.
2. Units used for MR-J2S_-A_ are different from those for MR-J4-_A_. Note that the input range of existing equipment needs to be adjusted.
3. Set "0008" or "0009". When setting the value, note that the input range of existing equipment needs to be adjusted.

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Table: The setting values of [Pr. PA19] and the accessible parameters

PA19	Permissions	PA	PB	PC	PD	PE	PF	PL
Other than the below	Read	\bigcirc						
	Write	\bigcirc		5				
000Ah	Read	Only 19						
	Write	Only 19						
000Bh	Read	\bigcirc	\bigcirc	\bigcirc				
	Write	\bigcirc	\bigcirc	\bigcirc	-			
000Ch	Read	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
	Write	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
00AAh(initial value)	Read	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Write	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
00ABh	Read	\bigcirc						
	Write	\bigcirc						
100Bh	Read	\bigcirc						
	Write	Only 19	-					
100Ch	Read	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
	Write	Only 19	\bigcirc	\bigcirc	\bigcirc			
10AAh	Read	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Write	Only 19						
10ABh	Read	\bigcirc						
	Write	Only 19						

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A_			MR-J4-_A_			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
29	Analog speed command offset Used to set the offset voltage of VC (Analog speed command). For example, if switching on ST1 (forward rotation start) with 0 V applied to VC causes CCW rotation, set a negative value. When VC automatic offset is used, the automatically offset value is set to this parameter. The initial value is provided before shipment by the VC automatic offset function on condition that the voltage between VC and LG is 0 V . Setting range: -999 to 999 mV	Differs depending on the servo amplifier.	PC37	Analog speed command offset Used to set the offset voltage of VC (Analog speed command). The initial value is provided before shipment by the VC automatic offset function on condition that the voltage between VC and LG is 0 V . For example, when the motor rotates by switching on ST1 (forward rotation start) with 0 V applied to VC, set an offset voltage. Setting range: -9999 to 9999 mV	Differs defending on the servo amplifier.	S
	Analog speed limit offset Used to set the offset voltage of VLA (Analog speed limit). For example, if switching on RS1 (forward rotation selection) with 0 V applied to VLA causes CCW rotation, set a negative value. When VC automatic offset is used, the automatically offset value is set to this parameter. The initial value is provided before shipment by the VC automatic offset function on condition that the voltage between VLA and LG is 0 V . Setting range: -999 to 999 mV			Analog speed limit offset Used to set the offset voltage of VLA (Analog speed limit). The initial value is provided before shipment by the VC automatic offset function on condition that the voltage between VC and LG is 0 V . When the motor rotates by switching on RS1 (Forward rotation selection) with 0 V applied to VLA, set an offset voltage. Setting range: -9999 to 9999 mV		T
30	Analog torque command offset Used to set the offset voltage of TC (Analog torque command). Setting range: -999 to 999 mV	0	PC38	Analog torque command offset Used to set the offset voltage of TC (Analog torque command). Setting range: -9999 to 9999 mV	0	T
	Analog torque limit offset Used to set the offset voltage of TLA (Analog torque limit). Setting range: -999 to 999 mV			Analog torque limit offset Used to set the offset voltage of TLA (Analog torque limit). Setting range: -9999 to 9999 mV		S
31	Analog monitor 1 offset Used to set the offset voltage of Analog monitor 1 (MO1). Setting range: -999 to 999 mV	0	PC39	Analog monitor 1 offset Used to set the offset voltage of MO1 (Analog monitor 1). Setting range: -9999 to 9999 mV	0	$\begin{aligned} & P \\ & S \\ & T \end{aligned}$
32	Analog monitor 2 offset Used to set the offset voltage of Analog monitor 2 (MO2). Setting range: -999 to 999 mV	0	PC40	Analog monitor 2 offset Used to set the offset voltage of MO2 (Analog monitor 2). Setting range: -9999 to 9999 mV	0	$\begin{aligned} & P \\ & S \\ & T \end{aligned}$
33	Electromagnetic brake sequence output Used to set the delay time (Tb) between MBR (Electromagnetic brake interlock) OFF and base circuit shut-off. Setting range: 0 to 1000 ms	100	PC16	Electromagnetic brake sequence output Used to set the delay time (Tb) between MBR (Electromagnetic brake interlock) OFF and base circuit shut-off. Setting range: 0 to 1000 ms Set the same value as for MR-J2S-_A_.	0	P
34	Load to motor inertia ratio Used to set the motor inertia ratio to the servo motor shaft inertia moment. When auto tuning mode 1 or interpolation mode is selected, the result of auto tuning is automatically used. In this case, the value varies between 0 and 1000. Setting range: 0 to 3000 ; Unit: $\times 0.1$	70	PB06	Load to motor inertia ratio When auto tuning mode 1 is selected, the auto tuning result is automatically used. Setting range: 0.00 to 300.00 ; Unit: $x 1.0$ Note that the setting unit is different from that for MR-J2S-_A_. When setting a value manually, set a value 0.1 x the MR-J2S-_A_setting value.	7.00	$\begin{aligned} & P \\ & S \end{aligned}$

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

MR-J2S-_A_			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
35	Position loop gain 2 Used to set the gain of the position loop. Set this parameter to increase the position response to level load disturbance. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 or 2 , manual mode 1 , and interpolation mode are selected, the auto tuning result is automatically used.	7 kW or less: 35 11 kW or more: 19	PB08	Position loop gain Used to set the gain of the position loop. When auto tuning mode 1 is selected, the auto tuning result is automatically used.	37.0	P
36	Speed loop gain 1 Normally, it is unnecessary to change this parameter. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 or 2 and manual mode 1 are selected, the auto tuning result is automatically used.	7 kW or less: 177 11 kW or more: 96		No corresponding parameter This parameter is automatically set by the servo amplifier.		$\begin{aligned} & P \\ & S \end{aligned}$
37	Speed loop gain 2 Set this parameter when vibration occurs on machines of low rigidity or large backlash. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 or 2 and interpolation mode are selected, the auto tuning result is automatically used.	7 kW or less: 817 11 kW or more: 455	PB09	Speed loop gain Used to set the gain of the speed loop. When auto tuning mode 1 is selected, the auto tuning result is automatically used.	823	$\begin{aligned} & P \\ & S \end{aligned}$
38	Speed integral compensation. Used to set the integral time constant of the speed loop. Decreasing the setting value will increase the response level, but vibration and noise are generated more easily. When auto tuning mode 1 or 2 and interpolation mode are selected, the auto tuning result is automatically used.	48	PB10	Speed integral compensation Used to set the integral time constant of the speed loop. When auto tuning mode 1 is selected, the auto tuning result is automatically used.	33.7	$\begin{aligned} & P \\ & S \end{aligned}$
39	Speed differential compensation Used to set the differential compensation. To enable the setting value, turn on PC (proportional control). Setting range: 0 to 1000	980	PB11	Speed differential compensation Used to set the differential compensation. To enable the setting value, turn on PC (proportional control). Setting range: 0 to 1000 Set the same value as for MR-J2S-_A_.	980	$\begin{aligned} & P \\ & S \end{aligned}$

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

Input signal selection 1 setting comparison table

MR-J2S-_A_	
No.42	Target pin
00000	CN1B-5
00001	CN1B-14
00002	CN1A-8
00003	CN1B-7
00004	CN1B-8
00005	CN1B-9
00010	CN1B-5
00011	CN1B-14
00012	CN1A-8
00013	CN1B-7
00014	CN1B-8
00015	CN1B-9

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
45	Input signal selection 4 (CN1A-8) Any input signal can be assigned to pin CN1A-8. Signals that can be assigned and the method of assigning them are the same as for input signal selection 2 ([Pr. 43]). When LOP (control switching) is assigned to pin CN1A-8 by [Pr. 42], this parameter cannot be used.	0665h	PD13	Input device selection 6L Any input device can be assigned to pin CN1-41. (Position control mode and speed control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	2006h	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{~T} \end{aligned}$
			PD14	Input device selection 6H Any input device can be assigned to pin CN1-41. (Torque control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	0020h	
46	Input signal selection 5 (CN1B-7) Any input signal can be assigned to pin CN1B-7. Signals that can be assigned and the method of assigning them are the same as for input signal selection 2 ([Pr. 43]). When LOP (control switching) is assigned to pin CN1B-7 by [Pr. 42], this parameter cannot be used.	0770h	PD05	Input device selection 2L Any input device can be assigned to pin CN1-16. (Position control mode and speed control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	2100h	$\begin{gathered} \mathrm{P} \\ \mathrm{~S} \\ \mathrm{~T} \end{gathered}$
			PD06	Input device selection 2H Any input device can be assigned to pin CN1-16. (Torque control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04] .	0021h	
47	Input signal selection 6 (CN1B-8) Any input signal can be assigned to pin CN1B-8. Signals that can be assigned and the method of assigning them are the same as for input signal selection 2 ([Pr. 43]). When LOP (control switching) is assigned to pin CN1B-8 by [Pr. 42], this parameter cannot be used. When "Use absolute position detection system" is selected in [Pr. 1], pin CN1B-8 becomes ABSM (ABS transfer mode).	0883h	PD07	Input device selection 3L Any input device can be assigned to pin CN1-17. (Position control mode and speed control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	0704h	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{~T} \end{aligned}$
			PD08	Input device selection 3H Any input device can be assigned to pin CN1-17. (Torque control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	0007h	
48	Input signal selection 7 (CN1B-9) Any input signal can be assigned to pin CN1B-9. Signals that can be assigned and the method of assigning them are the same as for input signal selection 2 ([Pr. 43]). When LOP (control switching) is assigned to pin CN1B-9 by [Pr. 42], this parameter cannot be used. When "Use absolute position detection system" is selected in [Pr. 1], pin CN1B-9 becomes ABSR (ABS request).	0994h	PD09	Input device selection 4L Any input device can be assigned to pin CN1-18. (Position control mode and speed control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	0805h	PST
			PD10	Input device selection 4H Any input device can be assigned to pin CN1-18. (Torque control mode) Devices that can be assigned and the method of assigning them are the same as shown in [Pr. PD03] and [Pr. PD04].	0008h	

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A					MR-J4-_A					Control mode
No.	Name and function			Initial value	No.	Name and function			Initial value	
54	Setting value	on 9 he command pulse ro pulse direction, and e Changes in servo m direction Changes the serv direction relative Servo motor ro	tation direction, ncoder pulse output otor rotation o motor rotation to the input pulse tation direction	0000h	PA14	Select se input pul Set the s	 me value as for MR-J	ction relative to the 2S-_A.	0	P
	Setting value 0 A pha B pha 1 A pha B pha	When forward rotation pulse is input CCW CW Changes in encoder Change the position output A-phase and encoder. Servo motor rotation CCW ase Encoder output puls (Refer to parameter 0 : Output pulse sp 1: Division ratio s	When reverse rotation pulse is inputCWCCWpulse output phaseons of the pulsend B-phase of theChenChase se setting selection No. 27) pecification etting		PC19	Set the	utput pulse selection Encoder output selection me value as for MR-J	coder pulse output positions of the A-phase and he encoder. pulse setting 2S-_A.	0000h	P
55	Function selectio Used to select th command accel 7]).	on he control method of the eration/deceleration ti - Position command acceleration/decele constant control 0 : Primary delay 1: Linear acceler	the position me constant ([Pr. ration time ration/deceleration	0000h	PB25	Function selection B-1 Used to select the position command acceleration/deceleration filter type. When you select "Linear acceleration/deceleration", do not switch the control mode. When the control mode is switched, the servo motor stops suddenly. Set the same value as for MR-J2S-_A_.			0000h	P
56	Serial communication time-out selection Used to set the time-out time of the communication protocol in units of [s]. When " 0 " is set, Time-out check is not carried out.			0		No corresponding parameter Note: MR-J4-_A_ Time-out check is carried out.				

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
59	Machine resonance suppression filter 2 Used to set the machine resonance suppression filter.	0000h	PB16	Used to set the shape of the machine resonance suppression filter 2. Refer to the comparison table below for the setting method. Setting comparison table for machine resonance suppression filter 2 Note 1. Set the notch depth according to MR-J2S_A_. Set the notch width to " $0: \alpha=2$ ". 2. Set a value while referring to [Pr. PB15].	0000h	
			PB15	Machine resonance suppression filter 1 Used to set the notch frequency of machine resonance suppression filter 1. When "Enabled (\qquad 1)" in "Machine resonance suppression filter 2 selection" of [Pr. PB16] is selected, this parameter is enabled. Setting range: 10 to 4500 Set a value according to the setting of MR-J2S-_A_.	4500	

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
62	Position loop gain 2 changing ratio Used to set the changing ratio for position loop gain 2 when the gain switching is enabled. This parameter is enabled when auto tuning is disabled. Setting range: 10 to 200	100	PB30	Gain switching position loop gain When a value smaller than $1.0 \mathrm{rad} / \mathrm{s}$ is set, the value will be the same as the setting value of [Pr. PB08]. This parameter is enabled only when "Manual mode (___3)" is selected in "Gain adjustment mode selection" of [Pr. PA08]. Setting range: 0.0 to 2000.0 Because the setting unit is different from that for MR-J2S-_A_, calculate the setting value using the equation below and set it. $\text { [Pr. PB30] = [Pr. PB08] } \times \text { MR-J2S-_A_ [Pr. 62]/100 }$	0.0	P
63	Speed loop gain 2 changing ratio Used to set the changing ratio for speed loop gain 2 when the gain switching is enabled. This parameter is enabled when auto tuning is disabled. Setting range: 10 to 200	100	PB31	Gain switching speed loop gain When a value smaller than $20 \mathrm{rad} / \mathrm{s}$ is set, the value will be the same as the setting value of [Pr. PB09]. This parameter is enabled only when "Manual mode (_ _ _ 3)" is selected in "Gain adjustment mode selection" of [Pr. PA08]. Setting range: 0 to 65535 Because the setting unit is different from that for MR-J2S-_A_, calculate the setting value using the equation below and set it. $[$ Pr. PB31] $=[$ Pr. PB09] \times MR-J2S-_A_ [Pr. 63]/100	0	$\begin{aligned} & P \\ & S \end{aligned}$
64	Speed integral compensation changing ratio Used to set the changing ratio for speed integral compensation when the gain switching is enabled. This parameter is enabled when auto tuning is disabled. Setting range: 50 to 1000	100	PB32	Gain switching speed integral compensation When a value smaller than 0.1 ms set, the value will be the same as the setting value of [Pr. PB10]. This parameter is enabled only when "Manual mode (_ _ _ 3)" is selected in "Gain adjustment mode selection" of [Pr. PA08]. Setting range: 0.0 to 5000.0 Because the setting unit is different from that for MR-J2S-_A_, calculate the setting value using the equation below and set it. $[\text { Pr. PB32] }=[\text { Pr. PB10 }] \times \text { MR-J2S-_A_ [Pr. 64]/100 }$	0.0	$\begin{aligned} & P \\ & S \end{aligned}$
65	Gain switching selection Select the gain switching condition. Gain switching selection Gain will be changed under the following conditions based on the setting value of parameters No. 61 to No. 64 . 0 : Disabled 1: Gain switching (CDP) is ON 2: The appointed frequency is equal to or more than the setting value of parameter No. 66. 3: The droop pulse is equal to or more than the setting value of parameter No. 66. 4: The servo motor speed is equal to or more than the setting value of parameter No. 66.	0000h	PB26	Gain switching function Select the gain switching condition. Refer to the comparison table below for the setting method. Gain switching selection comparison table	0000h	$\begin{aligned} & P \\ & S \end{aligned}$

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A_

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
66	Gain switching condition Used to set the values for the gain switching conditions (command frequency, droop pulses, and servo motor speed) selected in [Pr. 65]. The set value unit differs depending on the switching condition item. Setting range: 0 to 9999	10	PB27	Gain switching condition Used to set the values for the gain switching conditions (command frequency, droop pulses, and servo motor speed) selected in [Pr. PB26]. The set value unit differs depending on the switching condition item. Setting range: 0 to 9999 Set the same value as for MR-J2S-_A_.	10	$\begin{aligned} & P \\ & S \end{aligned}$
67	Gain switching time constant Used to set the time constant at which the gains will switch in response to the conditions set in [Pr. 65] and [Pr. 66]. Setting range: 0 to 100	1	PB28	Gain switching time constant Used to set the time constant at which the gains will switch in response to the conditions set in [Pr. PB26] and [Pr. PB27]. Setting range: 0 to 100 Set the same value as for MR-J2S-_A_.	1	$\begin{aligned} & P \\ & S \end{aligned}$
69	Command pulse multiplication numerator 2 Used to set a multiplier for the command pulse. When "0" is set as the setting value, the resolution of the connected motor is set automatically. Setting range: 0 to 65535 When using this parameter, enable the CM1 and CM2 signals in [Pr. 43] to [Pr. 48].	1	PC32	Commanded pulse multiplication numerators 2 to 4 To enable the parameter, select "Electronic gear (0 \qquad)" or "J3A electronic gear setting value compatibility mode (2 \qquad)" in "Electronic gear selection" in [Pr. PA21]. Setting range: 0 to 16777215 When using this parameter, enable the CM1 and	1	P
70	Command pulse multiplication numerator 3 Used to set a multiplier for the command pulse. When " 0 " is set as the setting value, the resolution of the connected motor is set automatically. Setting range: 0 to 65535 When using this parameter, enable the CM1 and CM2 signals in [Pr. 43] to [Pr. 48].	1	PC33	CM2 signals in [Pr. PD03] to [Pr. PD22]. Set as follows. (1) For primary replacement Set the same value as the setting value for MR-J2S-_A. (2) For secondary/simultaneous replacement Set a value 32 x the MR-J2S-_A_setting value.	1	P
71	Command pulse multiplication numerator 4 Used to set a multiplier for the command pulse. When " 0 " is set as the setting value, the resolution of the connected motor is set automatically. Setting range: 0 to 65535 When using this parameter, enable the CM1 and CM2 signals in [Pr. 43] to [Pr. 48].	1	PC34		1	P
72	Internal speed command 4 Used to set speed 4 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].	200	PC08	Internal speed command 4 This is used to set speed 4 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.	200	S
	Internal speed limit 4 Used to set speed 4 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].			Internal speed limit 4 This is used to set speed 4 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.		T

Part 2: Review on Replacement of MR-J2S-_A_ with MR-J4-_A

MR-J2S-_A			MR-J4-_A			Control mode
No.	Name and function	Initial value	No.	Name and function	Initial value	
73	Internal speed command 5 Used to set speed 5 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].	300	PC09	Internal speed command 5 This is used to set speed 5 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.	300	S
	Internal speed limit 5 Used to set speed 5 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].			Internal speed limit 5 This is used to set speed 5 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.		T
74	Internal speed command 6 Used to set speed 6 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].	500	PC10	Internal speed command 6 This is used to set speed 6 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.	500	S
	Internal speed limit 6 Used to set speed 6 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].			Internal speed limit 6 This is used to set speed 6 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.		T
75	Internal speed command 7 Used to set speed 7 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].	800	PC11	Internal speed command 7 This is used to set speed 7 of internal speed commands. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.	800	S
	Internal speed limit 7 Used to set speed 7 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. 43] to [Pr. 48].			Internal speed limit 7 This is used to set speed 7 of internal speed limits. When using this parameter, enable the SP3 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.		T
76	Internal torque limit 2 Set the parameter assuming that the maximum torque is 100 [\%]. The parameter is for limiting the torque of the servo motor. When " 0 " is set, no torque is generated. When using this parameter, enable the TL1 signal in [Pr. 43] to [Pr. 48].	100	PC35	Internal torque limit 2 Used to set the parameter assuming that the maximum torque is 100.0%. The parameter is for limiting the torque of the servo motor. However, when " 0.0 " is set, no torque is generated. Setting range: 0.0 to 100.0 When using this parameter, enable the TL1 signal in [Pr. PD03] to [Pr. PD22]. Set the same value as for MR-J2S-_A_.	100.0	P S T

3.7 Important Points for Replacement (Command Pulse Logic Settings)

When carrying out positioning in the forward and reserve rotation pulse train setting for the MR-J4-_A_ servo amplifier, it is necessary to adjust the command pulse logic of the positioning module to that of the servo amplifier. Set as follows. This adjustment is unnecessary for a pulse train + symbol and an A-phase/B-phase pulse train.

| Even though the command pulse logic of the existing MR-J2S-_A_servo amplifier |
| :--- | :--- | :--- | :--- | :--- | :--- |
| is not the same as its positioning module, the servo motor will rotate, but in the |
| MR-J4-_A_servo amplifier, when the logics are not set correctly, the servo motor |
| will not rotate normally. Make sure to check the information below to set the |
| logics. Even when another company's controller is used, check the logic setting. |

(1) For A-series positioning modules

Signal type	Command pulse logic setting (Note 1)	
	A-series positioning module Basic parameter 1 setting	MR-J4-_A_servo amplifier [Pr. PA13] setting
Open-collector type	Positive logic	Positive logic $\left(__0 _\mathrm{h}\right)$
Differential line driver type	Positive logic (Note 2)	Negative logic $\left(__{_} 1 _\mathrm{h}\right)$

Note 1. When a pulse train + symbol and an A-phase/B-phase pulse train are used, it is unnecessary to adjust the logics.
2. For A-series and Q-series positioning modules, this logic points to the N -side waveform. Therefore, reverse the command pulse logic of the servo amplifier.
(2) For Q-series positioning modules

Signal type	Command pulse logic setting (Note 1)	
	Q-series positioning module [Pr. 23] setting	MR-J4-_A_servo amplifier [Pr. PA13] setting
Open-collector type	Positive logic	Positive logic $\left(__0 _\mathrm{h}\right)$
	Negative logic	Negative logic $\left(__1 _\mathrm{h}\right)$
Differential line driver type	Positive logic (Note 2)	Negative logic $\left(__1 _\mathrm{h}\right)$
	Negative logic (Note 2)	Positive logic $\left(__0 _\mathrm{h}\right)$

Note 1. When a pulse train + symbol and an A-phase/B-phase pulse train are used, it is unnecessary to adjust the logics.
2. For A-series and Q-series positioning modules, this logic points to the N -side waveform. Therefore, reverse the command pulse logic of the servo amplifier.
(3) For F-series positioning modules

Signal type	Command pulse logic setting	
	F-series positioning module (fixed)	MR-J4-_A_servo amplifier [Pr. PA13] setting
Open-collector type	Negative logic	Negative logic $\left(__{_} 1 _\right.$h $)$

[Reference] Pr. PA13, Command input pulse train form

Setting value		Pulse train form	Forward rotation (positive direction) command	Reverse rotation (negative direction) command
_- 10h		Forward rotation pulse train (positive direction pulse train) Reverse rotation pulse train (negative direction pulse train)		
_- 11h		Signed pulse train	$\mathrm{PP} \downarrow \square \square \square \square \square \square \square \square \square$	
_ _ 12h		A-phase pulse train B-phase pulse train		
_- 00h	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Forward rotation pulse train (positive direction pulse train) Reverse rotation pulse train (negative direction pulse train)		
_- 01h		Signed pulse train		L
_- 02h		A-phase pulse train B-phase pulse train		

Part 3

Review on Replacement of

MR-J2S-_B_ with MR-J4-_B_

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

1. SUMMARY

This document describes the changes that are applied to when replacing a system using the MR-J2S-_B_ with a system using the MR-J4-_B_.

Versions of A-series motion controller OS that support MR-J2S-_B_

Controller setting	OS model	OS version
A171SHCPU(N)	SW0SRX-SV13G	AF and later versions
	SW0SRX-SV22F	
	SW0SRX-SV43F	T and later versions
	SW3RN-SV13D	G and later versions
	SW3RN-SV22C	
	SW0SRX-SV13D	AF and later versions
	SW0SRX-SV22C	
	SW0SRX-SV43C	T and later versions
G173UHCPU(-S1)	SW3RN-SV13B	
	SW3RN-SV22A later versions	
	SW2SRX-SV13B	AF and later versions
	SW2SRX-SV22A	
	SW2SRX-SV43A	T and later versions
A273UHCPU	SW2SRX-SV13V	AF and later versions
	SW2SRX-SV22U	
	SW2SRX-SV43U	T and later versions
G and later versions		
	SW3RN-SV13X	
	SW3RN-SV22W	

2. CASE STUDY ON REPLACEMENT OF MR-J2S-_B_

2.1 Review on Replacement Method

For details about (3) and (4), refer to "[Appendix 1] Summary of MR-J4-_B_-RJ020 + MR-J4-T20".
Note 1. Although heavier burdens including a longer construction period need to be borne, once replaced the system can be operated for a long period of time.
2. When designing a new system, apply simultaneous replacement at (1).
3. Separate repair means replacement.
4. When the servo motor is replaced with an HG motor, simultaneous replacement with MR-J4-_B_and an HG motor is necessary.

2.2 Replacement Method

This section shows replacements using a QDS motion controller and an SSCNETIII/H-compatible standalone motion controller as examples.
For replacements using modules other than the above, refer to the following manuals.

- Transition from A17nSHCPUN/A173UHCPU Series to Q Series Handbook
(1) For simultaneous replacement

(2) For replacement of a controller and a servo amplifier

Although the HC/HA motor can continue to be used without any changes made (Note 1 and 2), the encoder resolution of the servo motor will be 17 bits.

Note 1. Consider simultaneous replacement of devices when designing a new system.
2. Please contact your local sales office for the target servo motor and servo amplifier.

POINT
OIf the existing system is any of the combinations in the following table, it is recommended to replace both the servo amplifier and servo motor with an MR-J4-_B_ and HG motor at the same time. When an HG motor is adopted, the capacity of the servo amplifier needs to be changed. (Consider replacement, referring to "torque characteristics" described in "Part 8: Replacement of Motor".)

Existing device models		Replacement models for simultaneous replacement (example)	
Servo motor	Servo amplifier	Servo motor	Servo amplifier
HC-LFS52	MR-J2S-60B	HG-JR73	MR-J4-70B
HC-LFS102	MR-J2S-100B	HG-JR153	MR-J4-200B
HC-LFS152	MR-J2S-200B	HG-JR353	MR-J4-350B
HA-LFS15K2(4)(B)	MR-J2S-15KB(4)	HG-JR11K1M(4)(B)	MR-J4-11KB(4)
HA-LFS22K2(4)(B)	MR-J2S-22KB(4)	HG-JR15K1M(4)(B)	MR-J4-15KB(4)
HA-LFS30K2(4)	MR-J2S-30KB(4)	HG-JR22K1M(4)	MR-J4-22KB(4)
HA-LFS37K2(4)	MR-J2S-37KB(4)	HG-JR30K1M(4)	MR-J4-DU30KB(4)
HA-LFS45K24	MR-J2S-45KB4	HG-JR37K1M4	MR-J4-DU37KB4
HA-LFS55K24	MR-J2S-55KB4	HG-JR45K1M4	MR-J4-DU45KB4
HC-KFS46	MR-J2S-70B	HG-KR43	MR-J4-40B
HC-KFS410	MR-J2S-70B	HG-KR43	MR-J4-40B
HC-RFS103 (B) G2 1/_	MR-J2S-200B	HG-SR102 (B) G7 1/_	MR-J4-100B
HC-RFS203 (B) G2 1/_	MR-J2S-350B	HG-SR202 (B) G7 1/_	MR-J4-200B
HC-RFS353 (B) G2 1/_	MR-J2S-500B	HG-SR352 (B) G7 1/_	MR-J4-350B
HC-RFS103 (B) G5 1/_	MR-J2S-200B	HG-SR102 (B) G5 1/_	MR-J4-100B
HC-RFS203 (B) G5 1/_	MR-J2S-350B	HG-SR202 (B) G5 1/_	MR-J4-200B
HC-RFS353 (B) G5 1/_	MR-J2S-500B	HG-SR352 (B) G5 1/_	MR-J4-350B
HC-RFS103 (B) G7 1/_	MR-J2S-200B	HG-SR102 (B) G7 1/_	MR-J4-100B
HC-RFS203 (B) G7 1/_	MR-J2S-350B	HG-SR202 (B) G7 1/_	MR-J4-200B
HC-RFS353 (B) G7 1/_	MR-J2S-500B	HG-SR352 (B) G7 1/_	MR-J4-350B

(3) Gradual replacement of MR-J2S-_B_ with MR-J4-_B_

Refer to "[Appendix 1] Summary of MR-J4-_B_-RJ020 + MR-J4-T20".

1: Current system
2: Only one axis replaced (Note1)

MR-J4-_B_-RJ020

+ SSCNET \bar{T} conversion unit MR-J4-T20

3: Replacement of a servo amplifier 4: Replacement of a controller and a motor for all axes (Note 1)

QnUD + QDS motion controller + Q3_DB

MR-J4-T20
removed

Note 1. MR-J4-_B_-RJ020 equipped with the SSCNET conversion unit operates as MR-J2S-_B_.
2. It is necessary to change MR-J4__B_-RJ020 from J2S mode to J4 mode. Remove MR-J4-T20. Refer to "[Appendix 1] Summary of MR-J4-_B_-RJ020 + MR-J4-T20".
(4) For separate repair

POINT
-MR-J2S-_B_cannot drive an HG motor. When the servo motor is replaced with an HG motor, simultaneous replacement with MR-J4-_B_ and an HG motor is necessary.

- When a servo amplifier other than MR-J2S-B series and MR-J2M-B series is used with a controller, the MR-J4-B-RJ020 SSCNET conversion unit cannot be used.

Refer to "[Appendix 1] Summary of MR-J4-_B_-RJ020 + MR-J4-T20".

Note. Separate repair means replacement.

3. DIFFERENCES BETWEEN MR-J2S-_B_AND MR-J4-_B_

3.1 Function Comparison Table

Item	MR-J2S-_B	MR-J4-_B	Compatibility	Reference material/items
Control mode	- Position control mode - Speed control mode	- Position control mode - Speed control mode - Torque control mode	O	MR-J4-_B_servo amplifier Instruction Manual
Network	SSCNET compatible	SSCNET III/H compatible	\bigcirc	MR-J4-_B_ servo amplifier Instruction Manual
Servo motor (Encoder resolution)	HC-_FS series (17-bit ABS) HA-_FS series (17-bit ABS)	HG series (22-bit ABS)	\bigcirc	MR-J4-_B_servo amplifier Instruction Manual
The number of DIO points (excluding EM1)	DI: 0 points, DO: 2 points	DI: 3 points, DO: 3 points	O	MR-J4-_B_ servo amplifier Instruction Manual, Section 5.2.4
Encoder pulse output	ABZ-phase (differential)	\leftarrow	\bigcirc	MR-J4-_B_ servo amplifier Instruction Manual, Section 5.2.1
DIO interface	Input: Sink/source Output: Sink	Input: Sink/source Output: Sink/source	O	MR-J4-_B_servo amplifier Instruction Manual, Section 3.8
Analog input/output	$\begin{aligned} & \text { (Output) 10-bit or equivalent × } \\ & \text { 2ch } \end{aligned}$	\leftarrow	O	MR-J4-_B_servo amplifier Instruction Manual Appendix
LED display	7-segment 2-digit	7-segment 3-digit	\bigcirc	MR-J4-_B_servo amplifier Instruction Manual, Section 4.3
Interface 24 V DC power supply	Installed.	Not installed.	\times	Part 7 Section 1.2.5
Network terminal connector	MR-A-TM is needed.	No terminal connector is needed.	\times	-

3.2 Function List

function		MR-J2S- B	MR-J4- B	Reference material/items
Absolute position detection system		O [Pr. 1]	O [Pr. PA03]	MR-J4-_B_Servo Amplifier Instruction Manual, Chapter 12
Gain switching function		O [Pr. 49]	O [Pr. PB26]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 7.2
Advanced vibration suppression control II		\times	O [Pr. PB02]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 7.1.5
Adaptive filter		O (Adaptive vibration suppression control) [Pr. 25]	O (Adaptive filter II) [Pr. PB01]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 7.1.2
Low-pass filter		O [Pr. 25]	O [Pr. PB23]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 7.1.4
Machine analyzer function		O (Note 1)	O (Note 2)	-
Gain search function		O (Note 1)	O (One-touch tuning)	MR-J4-_B_Servo Amplifier Instruction Manual, Section 6.2
Robust filter		\times	O [Pr. PE41]	-
Slight vibration suppression control		O [Pr. 24]	O [Pr. PB24]	-
Auto tuning		O [Pr. 8]	O [Pr. PA08]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 6.3
Regenerative option		O [Pr. 2]	O [Pr. PA02]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 11.2
Torque limit		O [Pr. 10], [Pr. 11]	\bigcirc	-
Forced stop (EM1) automatic ON		O [Pr. 23]	O [Pr. PA04]	-
Alarm history clear		\bigcirc	O [Pr. PC21]	-
Output signal selection (device settings)		\times	$\begin{gathered} \mathrm{O} \text { [Pr. PD07] to } \\ \text { [Pr. PD09] } \\ \hline \end{gathered}$	-
Output signal (DO) forced output		O (Note 1)	O (Note 2)	MR-J4-_B_Servo Amplifier Instruction Manual, Section 4.5.1 (1)
Test operation mode	Motor-less operation	O [Pr. 24]	O [Pr. PC05]	MR-J4-_B_Servo Amplifier Instruction Manual, Section 4.5
	Other than the above	O (Note 1)	O (Note 2)	
Analog monitor output		O [Pr. 22]	$\begin{array}{r} \mathrm{O} \text { [Pr. PC09] }, \\ \text { [Pr. PC10] } \end{array}$	MR-J4-_B_Servo Amplifier Instruction Manual Appendix

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

function	MR-J2S_-_B_-	MR-J4-_B__	Reference material/items
Setup software	Setup software (SETUP161E)	MR Configurator2	MR-J4-_B_Servo Amplifier Instruction Manual, Section 11.7
Linear servo system	\times	O	MR-J4-_B_Servo Amplifier Instruction Manual, Chapter 14
Direct drive servo system	\times	O	MR-J4-_B_Servo Amplifier Instruction Manual, Chapter 15
Fully closed loop system	\times	O	MR-J4-_B_Servo Amplifier Instruction Manual, Chapter 16
STO function	\times	O	MR-J4-_B_Servo Amplifier Instruction Manual, Chapter 13

Note 1. Setup software (SETUP161E) is necessary for this function.
2. MR Configurator2 is necessary for this function.

3.3 Comparison of Networks

MR-J4-_B_ servo amplifier is connected to controllers, including a servo system controller, on the high-speed synchronous network SSCNET III/H. The servo amplifier directly receives a command from a controller to drive a servo motor.
SSCNET III/H allows higher-speed communication of 150 Mbps for both upstream and downstream traffic to be achieved with high noise resistance enabled by adoption of the SSCNET III optical cables. Large amounts of data are exchanged in real-time between the controller and the servo amplifier. Servo monitor information is stored in the upper information system and is used for control.

3.3.1 Comparison of servo system network specifications

Item	MR-J2S series	MR-J4 series (Note 1)	
	SSCNET	SSCNET III	SSCNET III/H
Communication media	Metal cable	Optical fiber cable	
Communication speed	5.6 Mbps	50Mbps	150Mbps
Transmission distance	Overall length: 30 m	[Standard cord inside cabinet/standard cable outside cabinet] Maximum distance between stations: 20 m Maximum overall distance: 320 m ($20 \mathrm{~m} \times 16$ axes)	
		[Long distance cable] Maximum distance between stations: 50 m Maximum overall distance: 800 m ($50 \mathrm{~m} \times 16$ axes)	[Long distance cable] Maximum distance between stations: 100 m Maximum overall distance: 1600 m ($100 \mathrm{~m} \times 16$ axes)

Note 1. When SSCNET III/H communication is used to receive a command sent for the first time from the controller in the factory setting, the operation mode is fixed to" J 4 mode". To return to the factory setting or to select an arbitrary mode, change the setting with the application "MR-J4(W)-B Change mode" or "MR Mode Change".
The application "MR-J4(W)-B Change mode" or "MR Mode Change" are available with MR Configurator2 Version 1.12N and later. When a version older than 1.12 N is used, download an update version from the MITSUBISHI ELECTRIC FA Global Website.
(1) Explanation of SSCNET III/H cable models

The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.

Cable model	Cable length (m)											Flex life	Application/remark
	0.15	0.3	0.5	1	3	5	10	20	30	40	50		
MR-J3BUS_M	015	03	05	1	3							Standard	Using standard cord inside cabinet
MR-J3BUS_M-A						5	10	20				Standard	Using standard cable outside cabinet
$\begin{gathered} \text { MR-J3BUS_M-B } \\ (\text { Note }) \end{gathered}$									30	40	50	High flex life	Using long distance cable

Note. For cable of 30 m or shorter, contact your local sales office.
Contact Mitsubishi Electric System \& Service about ultra-high flex-life cables and long distance cables longer than 50 m .
(2) SSCNET III/H cable specifications

		Description			
SSCNET III/H cable model		MR-J3BUS_M		MR-J3BUS_M-A	MR-J3BUS_M-B
SSCNET III/H cable length		0.15 m	0.3 m to 3 m	5 m to 20 m	30 m to 50 m
Optical cable (cord)	Minimum bend radius	25 mm		Enforced covering cable: 50 mm Cord: 25 mm	Enforced covering cable: 50 mm Cord: 30 mm
	Tension strength	70 N	140 N	420 N (Enforced covering cable)	980 N (Enforced covering cable)
	Temperature range for use (Note)	$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$			$-20^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
	Atmosphere	Indoors (not exposed to direct sunlight), no solvent or oil.			
	Appearance [mm]				

Note. This temperature range for use is the value for optical cable (cord) only. Temperature condition for the connector is the same as that for servo amplifier.
3.4 Comparison of Standard Connection Diagrams

MR-J2S-_B	MR-J4-_B
MR-J2S-700B or models with less capacity	
MR-J2S-11KB or models with more capacity	

3.5 List of Corresponding Connectors and Terminal Blocks

(1) Comparison of connectors

An example of connections with the peripheral equipment is shown below. Refer to the respective Instruction Manuals for details on the signals.

(2) List of connector and terminal block correspondence

Note 1. When not using the STO function in MR-J4-_B_, attach a short-circuit connector supplied with a servo amplifier onto CN8 (STO input signal connector).
2. These connectors are only for MR-J2S-11KB or models with more capacity.
3. The configuration of the main circuit terminal block differs depending on capacity.

Refer to "Part 7: Common Reference Material".
(3) Comparison of signals

Note 1. Signals unique to MR-J4-_B_ are in parentheses.
2. The factory setting for MR-J4-_B_is EM2.
3. Set with [Pr. PD07] to [PD09] for use.

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Note 1. Signals unique to MR-J4-_B_ are in parentheses.
2. The factory setting for MR-J4-_B_is EM2.
3. Set with [Pr. PD07] to [Pr. PD09] for use.

Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment".

3.7 Comparison of Parameters

- Never perform extreme adjustments and changes to the parameters, otherwise the operation may become unstable.
- If fixed values are written in the digits of a parameter, do not change these values.

Do not change parameters for manufacturer setting.
Do not enter any setting value other than those specified for each parameter.

POINT

-For the parameter converter function, refer to "Part 7: Common Reference Material".

- The parameter whose symbol is preceded by * is enabled with the following conditions:
*: After setting the parameter, cycle the power or reset the controller.
**: After setting the parameter, cycle the power.
-For details about parameter settings for replacement, refer to the MR-J4-_B_(-
RJ) Servo Amplifier Instruction Manual to set parameters.

POINT
With MR-J4-_B_, the deceleration to a stop function is enabled in the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0 \qquad - In cases of 11 kW or more, the dynamic brake interlock (DB) needs to be assigned to a device in [Pr. PD07] to [Pr. PD09].

3.7.1 Setting requisite parameters upon replacement

The parameters shown in this section are a minimum number of parameters that need to be set for simultaneous replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set.

Parameter number	Name	Precautions
PA02	Regenerative option selection	The setting must be changed according to option model.
PA04	Function selection A-1 Servo forced stop selection	Forced stop deceleration function selection To configure the same settings as for MR-J2S-_B_, select "Forced stop deceleration function disabled (with EM1 used)".
PA08	Gain adjustment mode selection	The setting value needs to be changed according to the auto tuning mode.
PA09	Auto tuning response	Auto tuning response setting Refer to "3.7.3 Comparison of parameter details" for the setting value of this parameter upon replacement. It is necessary to make gain adjustment again when replacing. For details on how to make gain adjustments, refer to Chapter 6 of the MR-J4-_B_Servo Amplifier Instruction Manual. The setting value needs be changed based on the standard machine resonance frequency.
PA10	In-position range	The setting needs to be changed depending on the servo motor.
PA15	Encoder output pulse	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier.
PA19	Parameter writing inhibit	Change the setting value as necessary.
PB06	Load to motor inertia ratio	The unit system is different. (0.1-fold $\rightarrow 0.01$-fold) Pay attention to setting value.
PB07	Model loop gain	The unit system is different. (rad/s $\rightarrow 0.1 \mathrm{rad} / \mathrm{s}$)
PB08	Position loop gain	The unit system is different. (rad/s $\rightarrow 0.1 \mathrm{rad} / \mathrm{s}$)
PB10	Speed integral compensation	The unit system is different. ($\mathrm{ms} \rightarrow 0.1 \mathrm{~ms}$)
PB13	Machine resonance suppression filter 1	
PB14	Notch shape selection 1	Change the setting value according to the frequency and depth.
PB15	Machine resonance suppression filter 2	
PB16	Notch shape selection 2	
PB29	Load to motor inertia ratio after gain switching	The unit system is different. (0.1-fold $\rightarrow 0.01$-fold) Pay attention to setting value.
PB30	Position loop gain after gain switching	It is necessary to convert the ratio to a value to change the setting value.
PB31	Speed loop gain after gain switching	It is necessary to convert the ratio to a value to change the setting value.
PB32	Speed integral compensation after gain switching	It is necessary to convert the ratio to a value to change the setting value.
PC01	Error excessive alarm level	
PC06	Function selection C-3 Error excessive alarm level unit selection	MR-J2S-_B_: 0.025 rev. unit; MR-J4-_B_: 1/0.1/0.01/0.001 rev. unit selectable
PC09	Analog monitor 1 output	The setting value must be changed according to monitor output data.
PC10	Analog monitor 2 output	
PC11	Analog monitor 1 offset	Depends on hardware. It is necessary to change the setting value.
PC12	Analog monitor 2 offset	Depends on hardware. It is necessary to change the setting value.
PD12	Function selection D-1	This is used to select enabled or disabled for the thermistor of the servo motor. : When using (HA-LFS series) servo motors that have thermal terminals and not connecting thermal signals to the MR-J4 servo amplifier, set this parameter to "1 \qquad h (Disabled)". The overheat protection of a servo motor is not enabled. Configure a protective circuit.

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

3.7.2 Parameter comparison list

MR-J2S-_B_parameters						MR-J4-_B_ parameters				
No.	Abbreviation	Parameter name		Initial value	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Customer } \\ \text { setting } \\ \text { value } \end{array} \\ \hline \end{array}$	No.	Abbreviation	Parameter name	Initial value	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Customer } \\ \text { setting } \\ \text { value } \end{array} \\ \hline \end{array}$
1	*AMS	Amplifier setting Absolute position detection system selection		0000		PA03	*ABS	Absolute position detection system selection	0000h	
2	*REG	Regenerative resistor	Regenerative option selection	0000		PA02	**REG	Regenerative options selection	0000h	
			External dynamic brake selection			,		Substituted with [Pr. PD07] to [Pr. PD09]		
3		Automatically set from the servo system controller		0080				No corresponding parameter (no need to set)		
4		Automatically set from the servo system controller		0000				No corresponding parameter (no need to set)		
5		Automatically set from the servo system controller		1				No corresponding parameter (no need to set)		
6	*FBP	: Number of feedback pulses		0				No corresponding parameter		
7	*POL	Rotation Direction Selection		0		PA14	*POL	Rotation Direction Selection	0	
8	ATU	Auto tuning gain adjustment mode selection		0001		PA08	ATU	Gain adjustment mode selection	0001h	
9	RSP	Servo response		7 kW or less: 0005 11 kW or more: 0002		PA09	RSP	Auto Tuning Response	16	
10	TLP	Forward rotation torque limit		300			-	No corresponding parameter		
11	TLN	Reverse rotation torque limit		300			S^{2}	No corresponding parameter		
12	GD2	Load to motor inertia ratio		7.0		PB06	GD2	Load to motor inertia ratio	7.00	
13	PG1	Position loop gain 1		7 kW or less: 35 11 kW or more: 19		PB07	PG1	Model loop gain	15.0	
14	VG1	Speed loop gain 1		7 kW or less: 177 11 kW or more: 96				No corresponding parameter (no need to set)		
15	PG2	Position loop gain 2		7 kW or less: 35 11 kW or more: 19		PB08	PG2	Position loop gain	37.0	
16	VG2	Speed loop gain 2		7 kW or less: 817 11 kW or more: 455		PB09	VG2	Speed loop gain	823	
17	VIC	Speed integral compensation		7 kW or less: 48 11 kW or more: 91		PB10	VIC	Speed integral compensation	33.7	
18	NCH	Machine resonance suppression filter 1	Notch frequency selection	0000		PB13	NH1	Machine resonance suppression filter 1	4500	
			Notch depth selection			PB14	NHQ1	Notch shape selection 1	0000h	
19	FFC	Feed Forward Gain		0		PB04	FFC	Feed Forward Gain	0	
20	INP	In-position Range		100		PA10	INP	In-position Range	1600	

Part 3: Review on Replacement of MR-J2S_-B_ with MR-J4-_B

MR-J2S-_B_parameters						MR-J4-_B_ parameters					
No.	Abbreviation	Parameter name		Initial value	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Customer } \\ \text { setting } \\ \text { value } \end{array} \\ \hline \end{array}$	No.	Abbreviation	Parameter name	Initial value	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Customer } \\ \text { setting } \\ \text { value } \end{array} \\ \hline \end{array}$	
21	MBR	Electromagnetic Brake Sequence Output		0		PC02	MBR	Electromagnetic Brake Sequence Output	0		
22	MOD	Analog monitor output	Analog monitor 1 output selection	0001		PC09	MOD1	Analog monitor 1 output	0000h		
			Analog monitor 2 output selection			PC10	MOD2	Analog monitor 2 output	0001h		
23	*OP1	Option function 1 Servo forced stop selection		0000		PA04	*AOP1	Function selection A-1 Servo forced stop selection	2000h		
24	*OP2	Option function 2	Slight vibration suppression control selection	0000		PB24	*MVS	Slight vibration suppression control selection	0000h		
			Motor-less operation selection			PC05	**COP2	Function selection C-2 Motor-less operation selection	0000h		
25	LPF	Low-pass filter/adaptive vibration suppression control	Low-pass filter selection	0000		PB23	VFBF	Low-pass Filter Selection	0000h		
			Adaptive vibration suppression control selection Adaptive vibration suppression control level selection					No corresponding parameter (The machine resonance filter can be automatically set with [Pr. PB01].)			
27	MO1	Analog monitor 1 offset		0		PC11	MO1	Analog monitor 1 offset	0		
28	MO2	Analog monitor 2 offset		0		PC12	MO2	Analog monitor 2 offset	0		
30	ZSP	Zero Speed		50		PC07	ZSP	Zero Speed	50		
	ERZ	Error excessive alarm level		80		PC01	ERZ	Error excessive alarm level	0		
31					PC06	*COP3	Function selection C-3 Error excessive alarm level unit selection	0000h			
32	OP5	Option function 5 PI-PID control switching selection			0000		PB24	*MVS	PI-PID switching control selection	0000h	
33	*OP6	Option function 6	Serial communication baud rate selection	0000				No corresponding parameter			
			Serial communication response delay time					No corresponding parameter			
			Encoder output pulse setting selection			PC03	*ENRS	Encoder output pulse setting selection	0000h		
34	VPI	PI-PID switching position droop		0							
36	VDC	Speed Differential Compensation		980		PB11	VDC	Speed Differential Compensation	980		
38	*ENR	Encoder output pulse		4000		PA15	*ENR	Encoder output pulse	4000		
40	*BLK	Parameter Writing Inhibit		0000		PA19	*BLK	Parameter Writing Inhibit	00ABh		
49	*CDP	Gain Changing Selection		0000		PB26	*CDP	Gain Changing Selection	0000h		
50	CDS	Gain Switching Condition		10		PB27	CDL	Gain Switching Condition	10		
51	CDT	Gain Switching Time Constant		1		PB28	CDT	Gain Switching Time Constant	1		
52	GD2B	Load to motor inertia ratio 2		7.0		PB29	GD2B	Load to motor inertia ratio after gain switching	7.00		
53	PG2B	Position loop gain 2 changing ratio		100		PB30	PG2B	Position loop gain after gain switching	0.0		
54	VG2B	Speed loop gain 2 changing ratio		100		PB31	VG2B	Speed loop gain after gain switching	0		
55	VICB	Speed integral compensation changing ratio		100		PB32	VICB	Speed integral compensation after gain switching	0.0		
60	*OPC	Option function C Encoder pulse output phase changing		0000		PC03	*ENRS	Encoder output pulse phase selection	0000h		
61	NH2	Machine resonance suppression filter 2	Notch frequency selection	0000		PB15	NH2	Machine resonance suppression filter 2	4500		
			Notch depth selection			PB16	NHQ2	Notch shape selection 2	0000h		

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B
3.7.3 Comparison of parameter details

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{MR-J2S-_B} \& \multicolumn{3}{|c|}{MR-J4-_B} \\
\hline No. \& Name and function \& Initial value \& No. \& Name and function \& Initial value \\
\hline 1 \& \begin{tabular}{l}
Amplifier setting \\
Used to select absolute position detection system. \\
Absolute position detection system selection \\
0 : Disabled (used in incremental system) \\
1: Enabled (Used in absolute position detection system)
\end{tabular} \& 0000 \& PA03 \& \begin{tabular}{l}
Absolute position detection system \\
This parameter is set when using the absolute position detection system. This parameter cannot be used in the speed control mode and torque control mode.
\end{tabular} \& 0000h \\
\hline 2 \& \multirow[t]{2}{*}{\begin{tabular}{l}
Regenerative resistor \\
Used to select the regenerative option to be used. \\
Regenerative \\
Regenerative option selection \\
00 : - The regenerative option is not used by the servo amplifier at 7 kW or less (built-in regenerative resistor is used). MR-J2S-10B cannot be used as it does not have a built-in regenerative resistor. \\
- The supplied regenerative resistor or regenerative option is used in the servo amplifier at 11 kW or more. \\
01: FR-RC, FR-BU2, FR-CV \\
05: MR-RB32 \\
08: MR-RB30 \\
09: MR-RB50 (Cooling fan is required.) \\
0B: MR-RB31 \\
0C: MR-RB51 (Cooling fan is required.) \\
0 E : When increasing the capabilities by using a cooling fan to cool the supplied regeneration resistor with the servo amplifier of 11 kW to 22 kW \\
10: MR-RB032 \\
11: MR-RB12 \\
External dynamic break selection \\
0 : Disabled \\
1: Enabled \\
Select "1" when using the external dynamic brake with MR-J2S-11KB or models with more capacity.
\end{tabular}} \& 0000 \& PA02 \& \begin{tabular}{l}
Regenerative options \\
Used to select the regenerative option. \\
An incorrect setting may cause the regenerative option to burn out. \\
When a regenerative option that is not compatible with a servo amplifier is selected, a parameter error (AL. 37) occurs.
\end{tabular} \& 0000h \\
\hline \& \& \& \[
\begin{aligned}
\& \text { PD07 } \\
\& \text { to } \\
\& \text { PD09 }
\end{aligned}
\] \& \begin{tabular}{l}
Output device selection 1 to 3 \\
You can assign any output device to pins CN3-13, CN3-9, and CN3-15. \\
Selectable I/O device \\
Note: When using the external dynamic brake for MR-J4B_11 kW or models with more capacity, make sure to change the settings.
\end{tabular} \& PD07
\(\vdots\)
0005 h

PD08
\vdots
$0004 h$

PD09
\vdots
$0003 h$

\hline
\end{tabular}

Part 3: Review on Replacement of MR-J2S_-B_ with MR-J4-_B

MR-J2S-_B			MR-J4-_B				
No.	Name and function	Initial value	No.	Name and function			Initial value
6	Number of feedback pulses Set the number of pulses per revolution according to controller side command. Information on the servo motor such as number of feedback pulses, current location, droop pulses, and position within one-revolution can be obtained by the value converted to the number of feedback pulses for the corresponding setting value.	0		No corresponding parameter			
7	Rotation direction selection 0 : Forward rotation (CCW) with the increase of the positioning address. 1: Reverse rotation (CW) with the increase of the positioning address. Forward rotation (CCW)	0	PA14	Rotation di Select the Servo mot	rection selection command input pulse rotation direction is Forward rotation (CCW)	otation direction. ation direction Positioning address decrease follows: Reverse rotation (CW)	0

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S_-B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

MR-J2S-_B			MR-J4-_B			
No.	Name and function	Initial value	No.	Name and function		Initial value
12	Load to motor inertia ratio (Load inertia ratio) Used to set the load inertia (moment of inertia) ratio to the servo motor shaft inertia moment. When auto tuning mode 1 or interpolation mode is selected, the result of auto tuning is automatically used.	7.0	PB06	Load to motor inertia ratio Used to set load to motor inertia ratio. This parameter can be set either automatically or manually depending on the [Pr. PA08] setting. Refer to the following table for details. When this parameter is set automatically, the value varies between 0.00 and 100.00 .		7.00
13	Position loop gain 1. Used to set the gain of the position loop. Increase the gain to improve track ability in response to the position command. When auto tuning mode 1 or 2 is selected, the auto tuning result is automatically used.	7 kW or less: 35 11 kW or more: 19	PB07	Model loop gain Used to set the response gain till the set position. If the setting value is increased, traceability for position command is improved. However, if the setting value is too large, it tends to vibrate or oscillate. This parameter can be set either automatically or manually depending on the [Pr. PA08] setting. Refer to the following table for details.		15.0
14	Speed Loop Gain Normally, it is unnecessary to change this parameter. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 or 2 and manual mode 1 are selected, the auto tuning result is automatically used.	7 kW or less: 177 11 kW or more: 96		No corresponding parameter		$\bar{\square}$
15	Position loop gain 2. Used to set the gain of the position loop. Set this parameter to increase the position response to level load disturbance. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 or 2 , manual mode 1 , and interpolation mode are selected, the auto tuning result is automatically used.	7 kW or less: 35 11 kW or more: 19	PB08	Position loop gain Used to set the gain of the position Set this parameter to increase th level load disturbance. Higher setting increases the resp disturbance, but if the setting val and noise are more likely to occ This parameter can be set either manually depending on the [Pr.P following table for details.	loop. osition response to se for load is too large, vibration tomatically or 8] setting. Refer to the	37.0
16	Speed loop gain 2. Set this parameter when vibration occurs on machines of low rigidity or large backlash. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning mode 1 or 2 and interpolation mode are selected, the auto tuning result is automatically used.	7 kW or less: 817 11 kW or more: 455	PB09	Speed loop gain Used to set the gain of the speed Set this parameter when vibratio low rigidity or large backlash. Hi response level, but if the setting vibration and noise are more like This parameter can be set either manually depending on the [Pr.PA PB08] table for details.	op. ccurs on machines of r setting increases the ue is too large, o occur. tomatically or 8] setting. Refer to [Pr.	823
17	Speed integral compensation Set the time constant for integral compensation. When auto tuning mode 1 or 2 and interpolation mode are selected, the auto tuning result is automatically used.	7 kW or less: 48 11 kW or more: 91	PB10	Speed integral compensation Used to set the integral time con Decreasing the setting value will level, but vibration and noise are This parameter can be set either manually depending on the [Pr.P PB08] table for details.	nt of the speed loop. rease the response re likely to occur. tomatically or 8] setting. Refer to [Pr.	33.7

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S_-B_ with MR-J4-_B

MR-J2S-_B			MR-J4-_B				
No.	Name and function	Initial value	No.	Name and function			Initial value
25	Low-pass filter/adaptive vibration suppression control Used to select the low-pass filter/adaptive vibration suppression control.	0000h	PB23	Low-pass Used to s No corres (Machine with PB0	s filter selection select the shaft resonance suppression Explanation Shaft resonance suppression filter selection 0: Automatic 1: Manual setting 2: Disabled When "Enabled (_ _ _ 1)" in "Machine resonance suppression filter 4 selection" of [Pr. PB49] is selected, shaft resonance suppression filter cannot be used. sponding parameter resonance filters can be automatically 1.)	Initial value 0 h djusted	0000h
27	Analog monitor 1 offset Used to set the offset voltage of Analog monitor 1 (MO1) output.	0	PC11	Analog m Used to s	monitor 1 offset set the offset voltage of MO1 (Analog	tor 1).	0
28	Analog monitor 2 offset Used to set the offset voltage of Analog monitor 2 (MO2).	0	PC12	Analog m Used to s	monitor 2 offset set the offset voltage of MO2 (Analog	or 2).	0
30	Zero speed Used to set the output range of zero speed signal (ZSP).	50	PC07	Zero speed Used to s detection) ZSP (Zero [r/min] or	ed set the output range of ZSP (Zero spee). ro speed detection) has the hysteresis 20 [mm / s]		50
31	Error excessive alarm level Used to set the range where the excess droop pulse alarm is generated. Note: The setting unit for servo amplifier of software version B 1 or later is 0.025 rev . Note: The setting unit for servo amplifier before software version B1 is 0.1 rev.	80	PC01	Error exc Set error The setting it become be clamped	cessive alarm level excessive alarm level. ing unit for rotary servo motor is "rev". I es 3 rev . The setting value exceeding 2 ed at 200 rev .	0 " is set, 0 rev will	0
			PC06	Function Used to s level to be used in th	selection C-3 select the setting unit for error excessiv be set in [Pr. PC01]. This parameter can he speed control mode and torque cont	alarm ot be I mode. Initial value Oh Oh Oh 0h	0000h

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S_-B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B

3.8 Important Points for Replacement
(1) When the intermediate connection axis network is OFF, the network of the subsequent axis is not connected
Even if alarm has occurred, do not switch off the control circuit power supply. When the control circuit power supply has been switched off, optical module does not operate, and optical transmission of SSCNET III/H communication is interrupted. Therefore, the next axis servo amplifier displays "AA" at the indicator and turns into base circuit shut-off. The servo motor stops with starting dynamic brake.

Part 3: Review on Replacement of MR-J2S__B_with MR-J4-_B

MEMO

\qquad

Part 4
 Review on Replacement of
 MR-J2S-_CP_/CL
 with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

1. SUMMARY

This section describes the changes to be made when a system using MR-J2S-_CP_/CL_ is replaced with a system using MR-J4-_A_-RJ.

2. CASE STUDY ON REPLACEMENT OF MR-J2S-_CP_/CL_

2.1 Consideration of Replacement Method

POINT	
OMR-J2S-_CP_/CL_ cannot drive an HG motor. When a servo motor is replaced	
with an HG motor, servo amplifier also needs to be replaced with MR-J4-_A_-RJ	
+ HG simultaneously.	

(1) Simultaneous replacement with MR-J4-_A_-RJ and an HG motor
Although heavier burdens including a longer construction period need to be borne, once replaced the system can be operated for a long period of time. (Refer to Section 2.2 (1).)

Note 1. Separate repair means replacement.
2. No "renewal tool" is available for MR-J2S_-_CL_

2.2 Replacement Method

(1) Simultaneous replacement with MR-J4-_A_RJ and an HG motor The currently used connectors or cables need to be replaced. The parameters of the existing system can be transferred with the parameter converter function of MR Configurator2. (Refer to "Part 7: Common Reference Material".)
[Existing system]

MR-J2S-_CP_/CL_

HC-_FS
/HA-_FS motor
[System after simultaneous replacement]

(2) Separate repair of servo amplifier/servo motor

POINT			
-MR-J2S-_CP_/CL_ cannot drive an HG motor. When a servo motor is replaced with an HG motor, servo amplifier also needs to be replaced with MR-J4-_A_RJ + HG simultaneously. - If the existing system is any of the combinations in the following table, it is recommended to replace both the servo amplifier and servo motor with an MR-J4-_A_-RJ and HG motor at the same time. When an HG motor is adopted, the capacity of the servo amplifier needs to be changed. (Consider replacement, referring to "torque characteristics" described in "Part 8: Replacement of Motor".)			
Existing device models		Replacement models for simultaneous replacement (example)	
Servo motor	Servo amplifier	Servo motor	Servo amplifier
HC-LFS52	MR-J2S-60CP/CL	HG-JR73	MR-J4-70A-RJ
HC-LFS102	MR-J2S-100CP/CL	HG-JR153	MR-J4-200A-RJ
HC-LFS152	MR-J2S-200CP/CL	HG-JR353	MR-J4-350A-RJ
HC-KFS46	MR-J2S-70CP/CL	HG-KR43	MR-J4-40A-RJ
HC-KFS410	MR-J2S-70CP/CL	HG-KR43	MR-J4-40A-RJ
HC-RFS103(B)G2 11_	MR-J2S-200CP/CL	HG-SR102(B)G7 1/-	MR-J4-100A-RJ
HC-RFS203(B)G2 11-	MR-J2S-350CP/CL	HG-SR202(B)G7 1]_	MR-J4-200A-RJ
HC-RFS353(B)G2 11_	MR-J2S-500CP/CL	HG-SR352(B)G7 1]-	MR-J4-350A-RJ
HC-RFS103(B)G5 1/_	MR-J2S-200CP/CL	HG-SR102(B)G5 1/-	MR-J4-100A-RJ
HC-RFS203(B)G5 1/_	MR-J2S-350CP/CL	HG-SR202(B)G5 1/-	MR-J4-200A-RJ
HC-RFS353(B)G5 1/_	MR-J2S-500CP/CL	HG-SR352(B)G5 1/-	MR-J4-350A-RJ
HC-RFS 103(B)G7 1/-	MR-J2S-200CP/CL	HG-SR102(B)G7 1/-	MR-J4-100A-RJ
HC-RFS203(B)G7 11-	MR-J2S-350CP/CL	HG-SR202(B)G7 1/-	MR-J4-200A-RJ
HC-RFS353(B)G7 1/_	MR-J2S-500CP/CL	HG-SR352(B)G7 1/_	MR-J4-350A-RJ

After replacement, an HC-_FS /HA-_FS motor can be driven by MR-J4-_A_-RJ. Refer to "Part 7: Common Reference Material" for target motors.
Use the renewal tool when replacing a servo amplifier with MR-J4-_A_-RJ without replacing the currently used servo motor and existing cables. (Refer to "[Appendix 2] Introduction to Renewal Tool".) The parameters of the existing system can be transferred with the parameter converter function of MR Configurator2. (Refer to "Part 7: Common Reference Material".)

3. DIFFERENCES

3.1 Function Comparison Table

POINT

Functions with difference are shown with shading.
(1) Comparison between MR-J2S-_CP_/CL_ and MR-J4-_A_-RJ

Item		MR-J2S-_CP_/CL_ series (7 kW or less, $100 \mathrm{~V} / 200 \mathrm{~V}$ class)	MR-J4-_A_-RJ series (7 kW or less, $100 \mathrm{~V} / 200 \mathrm{~V}$ class)
1	Capacity range	(100 V class) 0.1 kW to 0.4 kW (200 V class) 0.1 kW to 7 kW	(100 V class) 0.1 kW to 0.4 kW (200 V class) 0.1 kW to 7 kW
2	Internal regenerative resistor	Built-in (0.2 kW to 7 kW)	Built-in (0.2 kW to 7 kW)
3	Dynamic brake	Built-in (0.1 kW to 7 kW)	Built-in (0.1 kW to 7 kW) Coasting distance may be different.
4	Control circuit power	```(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase 200 V AC to 230 V AC```	```(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase 200 V AC to 240 V AC```
5	Main circuit power	```(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase \(230 \mathrm{~V} \mathrm{AC/3-phase} 200 \mathrm{~V}\) AC to 230 V AC (to 750 W) 3-phase 200 V AC to \(230 \mathrm{VAC}(1 \mathrm{~kW}\) to 7 kW)```	(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase/3-phase 200 V AC to 240 V AC (to 750 W) 3-phase 200 V AC to 240 V AC (1 kW to 7 kW)
6	24 V DC power	Built-in	External supply required
7	Auto Tuning	Real-time auto tuning: 15 steps	Real-time auto tuning: 40 steps One-touch tuning
8	Control mode	(CP) Built-in positioning function (CL) Built-in program operation function	(CP) Built-in positioning function Built-in program operation function Position control mode (pulse command) Speed control mode (analog command) Torque control mode (analog command)
9	Manual pulse generator maximum input pulse	Open collector 200 kpulses/s	Open collector $200 \mathrm{kpulses} / \mathrm{s}$
10	The number of DIO points (excluding EM1)	DI: 8 points, DO: 5 points, DI/DO combination: 1 point	DI: 11 points, DO: 8 points
11	Encoder pulse output	ABZ-phase (differential line driver) Z-phase (open-collector)	ABZ-phase (differential line driver) Z-phase (open-collector)
12	DIO interface	Input: Sink/source Output: Sink	Input: Sink/source Output: Sink/source
13	Analog input/output	(Input) 2ch 10-bit torque limit, 10-bit override (Output) 10-bit or equivalent $\times 2 \mathrm{ch}$	(Input) 2 ch 10-bit torque limit, 10-bit override or equivalent (Output) 10-bit or equivalent $\times 2 \mathrm{ch}$
14	The number of internal speed commands	7 points	7 points
15	Parameter setting method	Setup software (SETUP161E) Push-button	MR Configurator2 Push-button parameter unit
16	Setup software communication	RS-232C	USB
17	Servo motor (Encoder resolution)	$\begin{aligned} & \text { HC-_FS series (17-bit ABS) } \\ & \text { HA_-FS series (17-bit ABS) } \end{aligned}$	HG series (22-bit ABS)
18	Motor maximum torque	HC-KFS 300\%	HG-KR 350\%(models with a gear: 300\%)
		HC-MFS 300\%	HG-MR 300\%
		HC-SFS 300\%	HG-SR 300\%
		HA-LFS 250\%, 300\%	HG-JR 300\%
19	button	Four buttons	Four buttons
20	LED display	7-segment 5-digit	7-segment 5-digit
21	Advanced vibration suppression control	Unprovided	Provided
22	Adaptive filter	Provided (Adaptive vibration suppression control)	Provided (Adaptive filter II with improved functions)
23	Notch filter	Provided (2 pcs.)	Provided (5 pcs.)
24	Tough drive	Unprovided	Provided
25	Drive recorder	Unprovided	Provided
26	Forced stop	EM1 (DB stop)	EM1 (DB stop)/EM2 (deceleration stop) optional
27	Point table No.	(CP) up to 31	up to 255
28	Program No.	(CL) up to 16 programs (120 steps)	up to 256 programs (640 steps)
29	Position data unit	mm	mm/degree/inch/pulse
30	Program language Command	TIM(Dwell)Unit $\times 10 \mathrm{~ms}$	TIM(Dwell)Unit ms

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(2) Positioning function comparison

Item		Model		
		MR-J2S-_CP	MR-J2S-_CL	MR-J4-_A_-RJ
Command method	Point table	up to 31		up to 255
	Program end		up to 16 programs (120 steps)	up to 256 programs (640 steps)
	RS-422 communication (Sequential change method)	\bigcirc	\bigcirc	\bigcirc
	feed length	$\begin{aligned} & -999999 \text { to } \\ & +999999 \times \\ & 10^{\text {STM }}[\mu \mathrm{m}] \end{aligned}$	$\begin{aligned} & -999999 \text { to } \\ & +999999 \times \\ & 10^{\text {STM }}[\mu \mathrm{m}] \end{aligned}$	$\begin{gathered} -999999 \text { to } \\ +999999 \times \\ 10^{\text {STM }}[\mu \mathrm{m}] \\ (\text { Note } 2) \end{gathered}$
	Command method	Signed absolute value command, incremental value command	Signed absolute value command, incremental value command	Signed absolute value command, incremental value command
	Position data unit	mm	mm	$\mathrm{mm} /$ degree /inch/pulse
Automatic operation	Standalone positioning operation	\bigcirc	\bigcirc	\bigcirc
	Continuous positioning operation	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	JOG operation	\bigcirc	\bigcirc	\bigcirc
	Manual pulse generator operation	(Multiplication input supported, multiplication parameter supported)	(Multiplication input supported, multiplication parameter supported)	O (Multiplication input supported, multiplication parameter supported)
	Dog type	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Count type	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Data set type	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Stopper type	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Home position ignorance (servo-on position as home position)	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Dog type rear end reference	\bigcirc	\bigcirc	$\begin{gathered} \mathrm{O} \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Count type front end reference	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Dog cradle type	\bigcirc	\bigcirc	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Dog type last Z-phase reference	\bigcirc	\times	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Dog type rear end reference	\bigcirc	\times	$\begin{gathered} \mathrm{O} \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Dogless Z-phase reference	\bigcirc	\times	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Stopper type Z-phase reference	\times	\times	$\begin{gathered} \bigcirc \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Fast home position return	\bigcirc	\times	○ (CP only)
7-segment LED status display	Point table No.	\bigcirc		\bigcirc
	Program No.		\bigcirc	\bigcirc
	Step No.		\bigcirc	\bigcirc

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Item		Type		
		MR-J2S-_CP_	MR-J2S-_CL_	MR-J4-_A_-RJ
	Absolute position detection	\bigcirc	\bigcirc	\bigcirc
	Backlash compensation	\bigcirc	\bigcirc	\bigcirc
	Overtravel prevention with external limit switch	0	0	\bigcirc
	Software stroke limit	\bigcirc	\bigcirc	\bigcirc
	Override with analog input	\bigcirc	\bigcirc	$\begin{gathered} \mathrm{O} \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Teaching function	O	\times	\bigcirc
	General purpose register		\bigcirc 4 (RAM) 4 (EEPROM)	O 4 (RAM) 4 (EEPROM)
	Roll feed display	\times	\times	\bigcirc
	Temporary stop/restart	\bigcirc	\bigcirc	$\begin{gathered} \mathrm{O} \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$
	Mark detection function (Current position latch function)	\times	\times	$\begin{gathered} \mathrm{O} \\ (\mathrm{CP} / \mathrm{CL}) \end{gathered}$

Note 1. The symbols in the type field of this table are as follows:
CP : Point table method, CL : Program method
O: Supported, \times : Not supported, \: No function
2. Units can be switched using parameters.

3.2 Function List

(1) Function List

function	Description	Control mode (Note)	
		C	C
Positioning mode (Point table method)	Select the predefined 255 point tables, and operate them according to the setting values. Use external input signals or communication functions to select point tables.	\bigcirc	\times
Positioning mode (Program method)	Select one from the predefined 256 programs, and operate it according to the program content. Use external input signals or communication functions to select programs.	\times	\bigcirc
Roll feed display function	Set the status display of commanded position and current position at the start to "0", and perform positioning for the defined travel distance.	O	\bigcirc
Mark detection function (Current position latch function)	Mark detection signal is turned on, the current position is latched. Latched data can be read using a communication command.	\bigcirc	\bigcirc
Manual home position return	Dog type, count type, data set type, stopper type, home position ignorance, dog type rear end reference, count type front end reference, dog cradle type, dog type last Z-phase reference, Dogless Z-phase reference	\bigcirc	\bigcirc
High-resolution encoder	A high-resolution encoder capable of 4194304 pulses/rev is used as the encoder for the rotary servo motor compatible with the MELSERVO-J4 series.	\bigcirc	\bigcirc
Absolute position detection system	By setting the home position once, it will be unnecessary to return to the home position each time the power is turned on.	\bigcirc	\bigcirc
Gain Switching Function	Gain can be switched during rotation and when stopped, and also when using the input device during the operation.	\bigcirc	\bigcirc
Advanced vibration suppression control II	This function controls residual vibration or vibration at the end of the arm.	\bigcirc	\bigcirc
Shaft resonance suppression filter	When a load is put on the servo motor shaft, a high-frequency machine vibration may be generated due to resonance caused by shaft torsion while the servo motor is being driven. The shaft resonance suppression filter is the filter that controls this vibration.	\bigcirc	\bigcirc
Adaptive filter II	With this function, the servo amplifier detects machine resonance and sets filter properties automatically, and then controls the vibration of the machine system.	\bigcirc	\bigcirc
Low-pass filter	When a servo system response is raised, it suppresses the high-frequency resonance generated.	\bigcirc	\bigcirc
Machine analyzer function	The frequency properties of the machine system are analyzed by only connecting the servo amplifier and the personal computer where MR Configurator2 is installed. MR Configurator2 is necessary for this function.	\bigcirc	\bigcirc
Robust filter	If it is not possible to raise the response because the load to motor inertia ratio is high due to the roll feed shaft, etc., the disturbance response can be improved.	\bigcirc	\bigcirc
Slight Vibration Suppression Control	A vibration of ± 1 pulse is suppressed when the servo motor stops.	\bigcirc	\bigcirc
Electronic gear	Position command can be set to 1/864-33935 times.	\bigcirc	\bigcirc
Auto Tuning	Automatically adjusts the optimum servo gain even if the load applied on the servo motor shaft changes.	\bigcirc	\bigcirc
Brake unit	Used when there is insufficient regenerative ability in the regenerative option. 5 kW or higher servo amplifier can be used.	\bigcirc	\bigcirc
Power regeneration converter	Used when there is insufficient regenerative ability in the regenerative option. 5 kW or higher servo amplifier can be used.	\bigcirc	\bigcirc
Regenerative options	Used when the generated regenerative power is high and there is insufficient regenerative ability in the internal regenerative resistor of servo amplifier.	\bigcirc	\bigcirc
Alarm History Clear	Deletes the alarm history.	\bigcirc	\bigcirc
Input signal selection (device settings)	Input devices such as ST1 (forward rotation start), ST2 (reverse rotation start), and SON (servo-on) can be assigned to a specific CN1 connector pin.	\bigcirc	\bigcirc
Output signal selection (device settings)	Output devices such as MBR (electromagnetic brake interlock) can be assigned to a specific CN1 connector pin.	O	\bigcirc
Output signal (DO) forced output	Output signals can be turned on/off forcibly regardless of the status of the servo. Use for output signal wiring checks, etc.	\bigcirc	\bigcirc
Command pulse selection	Phase A/phase B pulse train	\bigcirc	\bigcirc
Torque limit	The servo motor torque can be limited.	\bigcirc	\bigcirc
Status display	The servo status is displayed on the 5-digit, 7-segment LED indicator.	\bigcirc	\bigcirc

function	Description	Control mode (Note)	
		C	C
External I/O signal display	The on/off statuses of external I/O signals are displayed on the display.	\bigcirc	\bigcirc
VC automatic offset	If the motor does not stop even when the VC (analog speed command) or VLA (analog speed limit) is 0 V , the voltage is automatically offset to stop it.	\bigcirc	\bigcirc
Alarm code output	When an alarm occurs, an alarm number is output in 3-bit code.	\bigcirc	\bigcirc
Test operation mode	Jog operation, positioning operation, motor-less operation, DO forced output, and program operation. When performing positioning operation, program operation, and single-step feed, MR Configurator2 is required.	\bigcirc	\bigcirc
Analog monitor output	The voltage is output in real time for the servo status.	\bigcirc	\bigcirc
MR Configurator2	Parameter setting, test operation, monitoring, etc., can be performed using a personal computer.	\bigcirc	\bigcirc
Linear servo system	Linear servo motor and linear encoder can be used to construct the linear servo system.	\bigcirc	\bigcirc
Direct drive Servo system	Direct drive servo system that drives direct drive motors can be constructed.	\bigcirc	\bigcirc
Fully closed loop system	Load side encoder can be used to construct the fully closed loop system.	\bigcirc	\bigcirc
One-touch tuning	Gain adjustment of the servo amplifier is possible only by operation of the push button or by one click of the button on MR Configurator2.	\bigcirc	\bigcirc
SEMI-F47 function	By complying with the SEMI-F47 standard, even when an instantaneous power failure occurs during the operation, the electrical energy charged in the capacitor can be used to avoid the occurrence of [AL. 10 Undervoltage]	\bigcirc	\bigcirc
Tough drive function	It is usually possible to continue operation so that the device does not stop even when alarm is about to occur. There are two types of tough drive functions, vibration tough drive and instantaneous power failure tough drive.	\bigcirc	\bigcirc
Drive recorder function	By always monitoring the servo status, this function allows fixed time recording of status transitions before and after an alarm occurs. The recorded data can be checked by clicking the wave-form display button on the drive recorder screen of MR Configurator2. However, in the following statuses, the drive recorder will not operate. 1. When the MR Configurator2 graph function is in use. 2. When the machine analyzer function is in use. 3. When [Pr. PF21] is set to "-1".	\bigcirc	\bigcirc
STO function	The STO functions are available as IEC/EN 61800-5-2 safety functions. A device safety system can be easily constructed.	\bigcirc	\bigcirc
Servo amplifier life diagnosis function	The accumulated energization time and the number of times the burst relay is turned on and off can be checked. This acts as a measure of time if servo amplifier parts such as capacitor and relay need to be replaced according to their life expectancies before malfunctioning. MR Configurator2 is necessary for this function.	\bigcirc	\bigcirc
Power monitoring function	The power running power and regenerative power are calculated from data in the servo amplifier, including speed and current. Power consumption, etc., can be displayed in MR Configurator2.	\bigcirc	\bigcirc
Machine diagnosis function	Faulty machine parts such as ball screws and bearings can be detected by presuming friction and vibration elements of the device actuator from data in the servo amplifier. MR Configurator2 is necessary for this function.	\bigcirc	\bigcirc
Limit switch	Forward rotation stroke end (LSP) and reverse rotation stroke end (LSN) can be used to limit the travel distance of servo motor.	\bigcirc	\bigcirc
S-pattern acceleration/deceleration	Smooth acceleration/deceleration is possible. Set the S-pattern acceleration/deceleration time constants in [Pr. PC03]. Compared with linear acceleration/deceleration time, the acceleration/deceleration time will be longer by the magnitude of S-pattern acceleration/deceleration time constant regardless of commanded speed.	\bigcirc	\bigcirc
Software limit	A parameter can be used to limit the travel distance based on addresses. Use a parameter to set a function equivalent to the limit switch.	\bigcirc	\bigcirc
Analog override	Limit the servo motor speed with analog input. The setting speed can be changed within the range of 0 to 200%.	\bigcirc	\bigcirc
Teaching function	After moving to the target location by JOG operation or manual pulse generator operation, the position data can be retrieved by turning on the teach (TCH) or "set" key on the controller.	\bigcirc	\times

Note. CP: positioning mode (point table method), CL: positioning mode (program method)

3.3 Comparison of Standard Connection Diagrams

(1) Point table method (MR-J2S-_CP_)

POINT
Allocate the following output devices to pin CN1-22, pin CN1-23, and pin CN125 with [Pr. PD23], [Pr. PD24] and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
(2) Program method (MR-J2S-_CL_)

POINT

Allocate the following output devices to pin CN1-22, pin CN1-23, and pin CN125 with [Pr. PD23], [Pr. PD24] and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

3.4 List of Corresponding Connectors and Terminal Blocks

(1) Connector comparison table

An example of connections with the peripheral equipment is shown below. For details on signals, refer to each servo amplifier instruction manual.

(2) List of connector and terminal block correspondence

	MR-J2S-_CP_/CL	
(1)	I/O signal connector	[CN1A]
(2)	I/O signal connector	[CN1B]
(3)	Encoder connector	[CN2]
(4)	Communication connector [CN3]	PC connection (Note 1)
		Analog monitor
(5)	Main circuit terminal block [TE1]	Input power supply
		Servo motor power supply
(6)	Control circuit terminal block	[TE2]
(7)	Battery connector	[CON1]

MR-J4-_A_-RJ	Precautions
I/O signal connector [CN1]	Prepare a new cable.
Encoder connector [CN2]	Must switch to encoder cable (option) or prepare a new cable.
USB communication connector [CN5]	Must switch to USB cable (option). (Note)
Analog monitor connector [CN6]	Must switch to monitor cable (option).
Main circuit power connector [CNP1]	Must switch to the power connector
Servo motor power connector [CNP3]	(
Control circuit power connector [CNP2]	
Battery connector [CN4]	Prepare a new battery.

Note. When using the multi-dropped communication, connect to "CN3" in "MR-J4-_A_-RJ".

When not using the STO function in MR-J4-_A_-RJ, attach the short-circuit connector supplied with the servo amplifier to CN8 (STO input signal connector).
The configuration of the main circuit terminal block differs depending on the capacity. Refer to "Part 7: Common Reference Material".

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(3) Comparison of signals
(a) CN1A/CN1B

1) Point table method (MR-J2S-_CP_)

Note 1. Signal abbreviations in () are for MR-J4-_A_-RJ.
2. When using this signal, enable PP and NP in [Pr. PD44] and [Pr. PD46].
3. When using this signal, enable ZP in [Pr. PD24].
2) Program method (MR-J2S-_CL_)

Note 1. Signal abbreviations in () are for MR-J4-_A_-RJ.
2. When using this signal, enable $P P$ and NP in [Pr. PD44] and [Pr. PD46].
3. When using this signal, enable OUT1, ZP, and PED in [Pr. PD23], [Pr. PD24], and [Pr. PD26].
4. When using this signal, enable the SON, RES, PI1 and PI2 in [Pr. PD04], [Pr. PD06], [Pr. PD08], and [Pr. PD10].
(b) CN3 (MR-J2S-_CP_/CL_)

Note. Signal abbreviations in parentheses are for MR-J4-_A_-RJ.

3.5 Comparison of Peripheral Equipment

```
POINT
ORefer to "Part 9: Review on Replacement of Optional Peripheral Equipment".
```


3.6 Comparison of Parameters

| ONever perform extreme adjustments and changes to the parameters, otherwise |
| :--- | :--- |
| the operation may become unstable. |

POINT

-For the parameter converter function, refer to "Part 7: Common Reference Material".

- To enable a parameter whose abbreviation is preceded by *, turn the power OFF and then ON after setting the parameter.
- For details about parameter settings for replacement, refer to the MR-J4-_A_-RJ Servo Amplifier Instruction Manual (POSITIONING MODE).
-With MR-J4-_A_-RJ, the deceleration to a stop function is enabled by the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0 _ _ _". - Wiring of the CN1-42 pin is required for the MR-J4-_A_-RJ regardless of the setting value of [Pr. PA04: Forced stop deceleration function selection]. Refer to "3.3 List of Corresponding Connectors and Terminal Blocks" for details regarding wiring.

3.6.1 Setting requisite parameters upon replacement

The parameters shown in this section are a minimum number of parameters that need to be set for replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set.
(1) Common when replacing MR-J2S-_CP_/MR-J2S-_CL_
(a) Simultaneous replacement with MR-J4-_A_-RJ and an HG motor

Parameter number	Name	Initial value	Setting value	Description
PA04	Function selection A-1	2000 h	0000 h	Forced stop deceleration function selection To configure the same settings as for MR-J2S-_CP_/MR-J2S_CL_, select "Forced stop deceleration function disabled (EM1)".
PA06	Electronic gear numerator (Commanded pulse multiplication numerator)	1	$\begin{gathered} 8 \\ \text { (Note) } \end{gathered}$	When using an electronic gear, it is necessary to change the setting value. Set the electronic gear ratio of an existing servo amplifier when simultaneously replacing with MR-J4-_A_-RJ and an HG motor. When a geared servo motor is replaced, the actual reduction ratio may differ before and after the replacement. If the ratio differs after the replacement, set the values considering the actual reduction ratio.
PA07	Electronic gear denominator (Commanded pulse multiplication denominator)	1	$\begin{gathered} 1 \\ \text { (Note) } \end{gathered}$	
PA21	Function selection A-3	000 1h	3001 h	Electronic gear selection Select "J2S electronic gear setting value compatibility mode" to continue using the electronic gear ratio set in MR-J2S- _CP_IMR-J2S-_CL_.
PA09	Auto tuning response	16	8	Auto tuning response setting Enter this setting value for replacement, referring to "3.6.3 Comparison of parameter details". It is necessary to make gain adjustment again when replacing. For details about gain adjustment, refer to "MR-J2S-_CP_ [Pr. 3] (MR-J4- A [Pr. PA09])" in Section 3.6.3.

[^0](b) When continuing to use the HC___FS/HA__FS motor:

Parameter number	Name	Initial value	Setting value	Description
PA04	Function selection A-1	200 0h	000 0h	Forced stop deceleration function selection To configure the same settings as for MR-J2S-_CP_/MR-J2S_CL_, select "Forced stop deceleration function disabled (EM1)".
PA06	Electronic gear numerator (Commanded pulse multiplication numerator)	1	$\begin{gathered} 8 \\ \text { (Note) } \end{gathered}$	When using an electronic gear, it is necessary to change the setting value. Set the electronic gear ratio of an existing servo amplifier.
PA07	Electronic gear denominator (Commanded pulse multiplication denominator)	1	$\begin{gathered} 1 \\ \text { (Note) } \end{gathered}$	When a geared servo motor is replaced, the actual reduction ratio may differ before and after the replacement. If the ratio differs after the replacement, set the values considering the actual reduction ratio.
PA21	Function selection A-3	000 hh	000 1h	Electronic gear selection Use with the initial value as is.
PA09	Auto tuning response	16	8	Auto tuning response setting Enter this setting value for replacement, referring to "3.6.3 Comparison of parameter details". It is necessary to make gain adjustment again when replacing. For details about gain adjustment, refer to "MR-J2S-_CP_ [Pr. 3] (MR-J4-_A_ [Pr. PA09])" in Section 3.6.3.
PD30	Function selection D-1	000 Oh	1___h	This is used to select enabled or disabled for the thermistor of the servo motor. : When using (HA-LFS series) servo motors that have thermal terminals and not connecting thermal signals to the MR-J4 servo amplifier, set this parameter to "1 \qquad h (Disabled)". The overheat protection of a servo motor is not enabled. Configure a protective circuit.

Note. The example value shown is for when the electronic gear ratio of an existing servo amplifier is set as " $8 / 1$ ".
(2) When replacing MR-J2S-_CP_

Parameter number	Initial value	Setting value	Description	
PA01	Operation mode	1000 h	---6 h	Select the servo amplifier control mode. Select the positioning mode (point table method).

(3) When replacing MR-J2S-_CL_

Parameter number	Initial value	Setting value	Description	
PA01	Operation mode	1000 h	---7 h	Select the servo amplifier control mode. Select the positioning mode (program method).

3.6.2 Parameter comparison list

POINT

- Manufacturer setting parameters are not described here.

The parameters with [CP] can be used only for MR-J2S-_CP_, while the parameters with [CL] can be used only for MR-J2S-_CL_. The parameters without [CP] or [CL] are the parameters that can be used for both MR-J2S-_CP_ and MR-J2S-_CL_.

Note. Parameters related to gain adjustment are different from those for the MR-J2S-_CP_servo amplifier. For details on how to make gain adjustments, refer to the MR-J4-_A_-RJ Servo Amplifier Instruction Manual (POSITIONING MODE).

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Parameters for MR-J2S-_CP_or MR-J2S-_CL_					MR-J4-_A_-RJ parameters				
No.	Abbreviation	Parameter name	Initial value	Customer setting value	No.	Abbreviation	Parameter name	Initial value	$\begin{gathered} \text { Customer } \\ \text { setting } \\ \text { value } \end{gathered}$
23	SIC	Serial communication time-out selection	0		PF04	SIC	RS-422 communication time-out selection	0	
24	FFC	Feed forward gain	0		PB04	FFC	Feed forward gain (Note)	0	
25	VCO	Override offset	0		PC37	VCO	Analog override offset	0	
26	TLO	Torque limit offset	0		PC38	TPO	Analog torque limit offset	0	
27	*ENR	Encoder output pulse	4000		PA15	*ENR	Encoder output pulses (Refer to also PC19.)	4000	
28	TL1	Internal torque limit 1	100		PA11	TLP	Forward rotation torque limit	100.0	
					PA12	TLN	Reverse rotation torque limit	100.0	
29	TL2	Internal torque limit 2	100		PC35	TL2	Internal torque limit 2	100.0	
30	*BKC	Backlash compensation	0		PT14	*BKC	Backlash compensation	0	
31	MO1	Analog monitor 1 offset	0		PC39	MO1	Analog monitor 1 offset	0	
32	MO2	Analog monitor 2 offset	0		PC40	MO2	Analog monitor 2 offset	0	
33	MBR	Electromagnetic brake sequence output	100		PC16	MBR	Electromagnetic brake sequence output	0	
34	GD2	Load to motor inertia ratio	70		PB06	GD2	Load to motor inertia ratio (Note)	7.00	
35	PG2	Position loop gain 2	35		PB08	PG2	Position loop gain (Note)	37.0	
36	VG1	Speed loop gain 1	177			${ }^{\text {che }}$	No corresponding parameter		
37	VG2	Speed loop gain 2	817		PB09	VG2	Speed loop gain (Note)	823	
38	VIC	Speed integral compensation	48		PB10	VIC	Speed integral compensation (Note)	33.7	
39	VDC	Speed differential compensation	980		PB11	VDC	Speed differential compensation (Note)	980	
42	*ZPS	Home position return position data	0		PT08	*ZPS	Home position return position data	0	
43	DCT	Travel distance after proximity dog	1000		PT09	DCT	Travel distance after proximity dog	1000	
44	ZTM	Stopper type home position return - Stopper time	100		PT10	ZTM	Stopper type home position return Stopper time	100	
45	ZTT	Stopper type home position return torque limit value	15		PT11	ZTT	Stopper type home position return torque limit value	15.0	
46	*LMP	Software limit +	0		PT15	LMPL	Software limit +	0	
47					PT16	LMPH			
48	*LMN	Software limit -	0		PT17	LMNL	Software limit -	0	
49					PT18	LMNH			
50	*LPP	Position range output address +	0		PT19	*LPPL	Position range output address +	0	
51					PT20	*LPPH			
52	*LNP	Position range output address -	0		PT21	*LNPL	Position range output address -	0	
53					PT22	*LNPH			

Note. Parameters related to gain adjustment are different from those for the MR-J2S-_CP_servo amplifier. For details on how to make gain adjustments, refer to the MR-J4-_A_-RJ Servo Amplifier Instruction Manual (POSITIONING MODE).

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Parameters for MR-J2S-_CP_ or MR-J2S_-_CL_						MR-J4-_A_-RJ parameters					
No.	Abbreviation	Parameter name		Initial value	Customer setting value	No.	Abbreviation	Parameter name		Initial value	Customer setting value
55	*OP6	Function selection 6 (Handle the base circuit when RES (Reset) is enabled)		0000h		PD30	*DOP1	Function selection D-1 (Select the base circuit status when RES (Reset) is ON.		0000h	
57	*OP8	Function selection 8	Protocol checksum selection	0000h		PF01	*FOP1	Function selection F-1	Protocol checksum selection	0000h	
			Protocol station No. selection						Protocol station No. selection		
58	*OP9	Function selection 9	Encoder pulse output phase changing	0000h		PC19	*ENRS	Encoder output pulses selection	Encoder output pulse phase selection	0000h	
			Encoder pulse setting selection						Encoder output pulse setting selection		
59	*OPA	Function selection A	Torque limit rotation direction	0000h		PD33	*DOP4	Function selection D-4 (Torque limit enabled rotation direction)		0000h	
			Alarm code output			PD34	*DOP5	Function selection D-5 (Alarm code output)		0000h	
61	NH1	Machine resonance suppression filter 1	Notch frequency selection	0000h		PB01	FILT	Adaptive tuning mode (adaptive filter II)		0000h	
						PB13	NH1	Machine resonance suppression filter 1		4500	
			Notch depth			PB14	NHQ1	Notch shape selection 1		0000h	
62	NH2	Machine resonance suppression filter 2	Notch frequency selection	0000h		PB15	NH2	Machine resonance suppression filter 2		4500	
			Notch depth			PB16	NHQ2	Notch shape selection 2		0000h	
63	LPF	Low-pass filter Adaptive vibration suppression control		0000h		PB18	LPF	Low-pass filter setting		3141	
			w-pass filter selection			PB23	VFBF	Low-pass filter selection		0000h	
			Adaptive vibration suppression control level selection			PB01	FILT	Adaptive tuning mode (adaptive filter II)		0000h	
64	GD2B	Load to motor inertia ratio 2		70		PB29	GD2B	Gain switching load to motor inertia ratio (Note)		7.00	
65	PG2B	Position loop gain 2 changing ratio		100		PB30	PG2B	Position loop gain after gain switching (Note)		0.0	
66	VG2B	Speed loop gain 2 changing ratio		100		PB31	VG2B	Speed loop gain after gain switching (Note)		0	
67	VICB	Speed integral compensation changing ratio		100		PB32	VICB	Speed integral compensation after gain switching (Note)		0.0	
68	*CDP	Gain switching selection		0000h		PB26	*CDP	Gain switching function		0000h	
69	CDS	Gain Switching Condition		10		PB27	CDL	Gain switching condition		10	
70	CDT	Gain switching time constant		1		PB28	CDT	Gain switching time constant		1	
74	OUT1	[CL] OUT1 output time setting		0		PT23	OUT1	OUT1 output setting time		0	
75	OUT2	[CL] OUT2 output time setting		0		PT24	OUT2	OUT2 output setting time		0	
76	OUT3	[CL] OUT3 output time setting		0		PT25	OUT3	OUT3 output setting time		0	
77	*SYC1	[CL] program input polarity selection 1		0000h		PT29	*TOP3	Function selection T-3	PI1 (Program input 1) polarity selection	0000h	
					PI1 (Program input 2) polarity selection						
					PI1 (Program input 3) polarity selection						

Note. Parameters related to gain adjustment are different from those for the MR-J2S-_CP_servo amplifier. For details on how to make gain adjustments, refer to the MR-J4-_A_-RJ Servo Amplifier Instruction Manual (POSITIONING MODE).

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

3.6.3 Comparison of parameter details

POINT

Backslash (\backslash) in initial value fields indicate that the function is not supported.

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_ or MR-J2S-_CL_				MR-J4-_A_-RJ				
No.	Name and function	Initial value		No.	Name and function			Initial value
		CP	CL					
1	Feeding function selection Select the feed length multiplication and manual pulse generator multiplication.	0000h	0000h	PA14	Servo motor rotation direction is as follows:			0
	erased if the servo-on is turned off or switched to the forced stop state. If this parameter is set to " 1 ", the home position will not be erased even if the servo-on is turned off or switched to the forced stop state. In this case, the operation can be resumed by turning the servo-on (SON) or canceling the forced stop (EMG).			PT03	Feeding fuSetting digit $--^{x}$ $--^{x}-$ 	unction selection	[STM]	0000h
				PT02	Function Setting digit $-_^{x}$	selection T-1 Fun Follow-up of the servo forced stop 2 (EM2) O value command metho system. 0: Disabled (Home po when servo-on or E 1: Enabled (Home pos even when servo-on or when an alarm th resetting is generat be resumed.)		0000h
2	Function selection 1 Used to select the input filter and absolute position detection system.	0002h	0002h	PD29	Input filter If an exte noise, etc Refer to th method.	setting nal input signal cau , the input filter is e comparison table put filter setting com	shattering due to d to suppress it. elow for the setting	0004h
				PA03	Absolute When usi system,	position detection gin the absolute po t "__-1".	n detection	0000h

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Note 1. Units used for MR-J2S__CP_ or MR-J2S__CL_ are different from those for MR-J4-_A_-RJ. Note that the input range of existing equipment needs to be adjusted.
2. Set "0008" or "0009". When setting the value, note that the input range of existing equipment needs to be adjusted.
3. "Maximum speed" and " Maximum torque" differ depending on the servo motor. Therefore, after the existing servo motor has been replaced with an HG motor, the output voltage for "Maximum speed" or " Maximum torque" may differ.

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_or MR-J2S-_CL				MR-J4-_A - RJ		
No.	Name and function	Initial value		No.	Name and function	Initial value
		CP	CL			
19	Parameter writing inhibit Used to select the reference range and writing range of parameters.	0000h	0000h	PA19	Parameter writing inhibit Used to select the reference range and writing range of parameters. In the positioning mode, set [Pr. PA19] to "0 0 A $\mathrm{B} "$ in order to read or write the positioning control parameter ([Pr. PT__]). (It is possible to read or write "0 0 AB " : PA to PF, PL, Po, PT.)	00AAh
20	Function selection 2 Used to select the slight vibration suppression control. Slight vibration suppression control selection 0 : Disabled 1: Enabled	0000h	0000h	PB24	Slight vibration suppression control Used to select the slight vibration suppression control. 0: Disabled 1: Enabled To enable the slight vibration suppression control, select "Manual mode (_ _ 3)" under "Gain adjustment mode selection" in [Pr. PA08]. Slight vibration suppression control cannot be used in the speed control mode. Set the same value as for MR-J2S_-CP_.	0000h
22	Function selection 4 Used to select a stop method when LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end) are turned off. Stop method when forward rotation stroke end (LSP)/reverse rotation stroke end (LSN) are turned off. 0 : Sudden stop 1: Soft stop	0000h	0000h	PD30	Function selection D-1 Stop method when LSP(forward rotation stroke end)/LSN(reverse rotation stroke end) are turned off. 0 : Sudden stop 1: Soft stop Set the same value as for MR-J2S-_CP_.	0000h
23	Serial communication time-out selection Used to select the time-out time of the communication protocol.	0	0	PF04	RS-422 communication time-out selection (Supported version: A3 version or later) Used to select the time-out time of the communication protocol.	$\begin{gathered} 0 \\ {[\mathrm{~s}]} \end{gathered}$
24	Feed forward gain Set the feed forward gain. When the setting is 100%, the droop pulses during operation at constant speed are nearly zero. However, sudden acceleration/deceleration will increase the overshoot. As a standard, when setting the feed forward gain as 100%, set 1 s or more as the acceleration/deceleration time constant up to the rated speed.	0	0	PB04	Feed forward gain Set the feed forward gain. Set the same value as for MR-J2S-_CP_.	0
25	Override offset Used to set the offset voltage for the analog override. Setting range: -999 to 999	0	0	PC37	Analog override offset Set the offset voltage of the VC (Override input). Automatic setting is made by the VC automatic offset. Setting range: -9999 to 9999	0
26	Torque limit offset Used to set the offset voltage of analog torque limit. Setting range: -999 to 999	0	0	PC38	Analog torque limit offset Used to set the offset voltage of TLA (Analog torque limit). Setting range: -9999 to 9999	0

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_ or MR-J2S-_CL				MR-J4-_A_-RJ					
No.	Name and function	Initial value		No.	Name and function				Initial value
		CP	CL						
27	Encoder output pulses Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier. Set the value 4 times greater than the A-phase and B-phase pulses. [Pr. 58] can be used to choose the output pulse setting or output dividing ratio setting. The number of A-phase and B-phase pulses actually output is $1 / 4$ times greater than the preset number of pulses. The maximum output frequency is 1.3 Mpulse/s (after multiplication by 4). Use this parameter within this range. - For output pulse designation Set [Pr. 58] to "0 \qquad " (initial value). Set the number of pulses per servo motor revolution. Output pulse = setting value [pulse/rev]. For instance, when " 5600 " is set, the actual output Aand B-phase pulses are as follows. $\text { Phase A/phase B output ulse }=\frac{5600}{4}=1400 \text { [pulse] }$ - For output division ratio setting Set [Pr. 58] to "1 \qquad ". The number of pulses per servo motor revolution is divided by the set value. $\text { Output pulse }=\frac{\begin{array}{c} \text { Resolution per servo } \\ \text { motor revolution } \end{array}}{\text { Setting value }}[\text { pulse/rev }]$ For instance, when " 8 " is set, the actual output A- and B-phase pulses are as follows. $\begin{aligned} & \text { Phase A/phase B } \\ & \text { output pulse } \end{aligned}=\frac{131072}{8} \cdot \frac{1}{4}=4096[\text { pulse/rev] }$	4000	4000	PA15	Encoder Used to s phase) ou Refer to th setting m Encoder (1) For prim Note 1.N 2.S (2) For se Note 1. N 2. F X	tput pulse the encoder p ut by the servo comparison t hod. tput pulse settin ary replaceme J2S setting va the same valu -RJ [Pr. PA15] ondary/simulta J2S setting va dividing ratio e MR-J2S-_C -J4-_A_-RJ [P	ulses (A amplifier able belo ing comp nt ue. as for neous rep lue. ettings, setting PA15]	hase and B- for the rison table S in MR-J4- t a value 32 value for	4000
				PC19	Encoder output pulse selection Refer to the comparison table above for the setting method.				0000h
28	Internal torque limit 1 Limit the servo motor torque assuming that the maximum torque is 100%. When " 0 " is set, no torque is generated. Setting range: 0 to 100	100	100	PA11	Forward rotation torque limit You can limit the torque generated by the servo motor. Set the same value as for MR-J2S_-CP_.				100.0
				PA12	Reverse rotation torque limit You can limit the torque generated by the servo motor. Set the same value as for MR-J2S-_CP_.				100.0
29	Internal torque limit 2 Limit the servo motor torque assuming that the maximum torque is 100%. When " 0 " is set, no torque is generated. Enabled by turning on the internal torque limit selection (TL2). Setting range: 0 to 100	100	100	PC35	Internal torque limit 2 Used to set the parameter assuming that the maximum torque is 100.0%. Set for limiting the torque of the servo motor. However, when " 0.0 " is set, no torque is generated. Turning on TL1 (Internal torque limit selection) will enable the lower torque limit between the Internal torque limit 1 or 2. Setting range: 0.0 to 100.0				100.0

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_or MR-J2S-_CL				MR-J4-_A_-RJ		
No.	Name and function	Initial value		No.	Name and function	Initial value
		CP	CL			
30	Backlash compensation Set the backlash compensation that is compensated when the command direction is reversed. Compensate the number of backlash pulses reverselydirected against the home position return direction. In the absolute position detection system, compensation is performed reversely against the operating direction taken at power-on. : Depending on the software version of servo amplifier, the setting range varies as follows: A4 version or later: 0 to 1600 A3 version or earlier: 0 to 1000 A1 version or later: 0 to 1600 A0 version: 0 to 1000	0	0	PT14	Backlash compensation Set the backlash compensation that is compensated when the command direction is reversed. Compensate the number of backlash pulses reversely-directed against the home position return direction. In the case of home position ignorance (servo-on position as home position), compensate the number of backlash pulses reversely-directed against the initial rotation after turning on the SON (servo-on) to establish the home position. Setting range: 0 to 65535	0
31	Analog monitor 1 offset Used to set the offset voltage of Analog monitor 1 (MO1). Setting range: -999 to 999 mV	0	0	PC39	Analog monitor 1 offset Used to set the offset voltage of MO1 (Analog monitor 1). Setting range: -9999 to 9999 mV	0
32	Analog monitor 2 offset Used to set the offset voltage of Analog monitor 2 (MO2). Setting range: -999 to 999 mV	0	0	PC40	Analog monitor 2 offset Used to set the offset voltage of MO2 (Analog monitor 2). Setting range: -9999 to 9999 mV	0
33	Electromagnetic brake sequence output Used to set the delay time (Tb) between MBR (Electromagnetic brake interlock) OFF and base circuit shut-off. Setting range: 0 to 1000 ms	100	100	PC16	Electromagnetic brake sequence output Used to set the delay time (Tb) between MBR (Electromagnetic brake interlock) OFF and base circuit shut-off. Setting range: 0 to 1000 ms Set the same value as for MR-J2S_-CP_.	0
34	Load to motor inertia ratio Used to set the motor inertia ratio to the servo motor shaft inertia moment. When auto tuning is selected, the auto tuning result is automatically used. Setting range: 0 to 1000; Unit: x1.0	70	70	PB06	Load to motor inertia ratio When auto tuning mode 1 is selected, the auto tuning result is automatically used. Setting range: 0.00 to 300.00 ; Unit: $x 1.0$ Note that the setting unit is different from that for MR-J2S-_CP_. When setting a value manually, set a value 0.1 x the MR-J2S-_CP_ setting value.	7.00
35	Position loop gain 2 Used to set the gain of the position loop. Set this parameter to increase the position response to level load disturbance. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning is selected, the auto tuning result is automatically used.	35	35	PB08	Position loop gain Used to set the gain of the position loop. When auto tuning mode 1 is selected, the auto tuning result is automatically used.	37.0
36	Speed loop gain 1 Normally, it is unnecessary to change this parameter. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning is selected, the auto tuning result is automatically used.	177	177		No corresponding parameter This parameter is automatically set by the servo amplifier.	
37	Speed loop gain 2 Set this parameter when vibration occurs on machines of low rigidity or large backlash. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning is selected, the auto tuning result is automatically used.	817	817	PB09	Speed loop gain Used to set the gain of the speed loop. When auto tuning mode 1 is selected, the auto tuning result is automatically used.	823

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_ or MR-J2S-_CL				MR-J4-_A_-RJ		
No.	Name and function	Initial value		No.	Name and function	Initial value
		CP	CL			
42	Home position return position data Set the current position of the time when the home position return is completed. Setting range: -32768 to 32767	0	0	PT08	Home position return position data Set the current position of the time when the home position return is completed. Note that the home position return position data is changed if the following parameters are changed. Perform the home position return again. - "Position data unit" of [Pr. PT01] - "Feed length multiplication (STM)" of [Pr. PT03] - "Home position return types" of [Pr. PT04] Setting range: - 32768 to 32767	0
43	Travel distance after proximity dog Set the "travel distance after proximity dog" when the count type returns to the home position. Setting range: 0 to 65535	1000	1000	PT09	Travel distance after proximity dog When the count type, dog type rear end reference, count type front end reference and dog type front end reference return to the home position, set the "travel distance after proximity dog". Setting range: 0 to 65535	1000
44	Stopper type home position return - Stopper time When the stopper type returns to the home position, after pressing against the stopper, set the time between when the parameter No. 45 (ZTT) reaches the torque limit and the time when setting the home position. Setting range: 5 to 1000	100	100	PT10	Stopper type home position return - Stopper time When the stopper type returns to the home position, after pressing against the stopper, set the time between when the [Pr. PT11 Stopper type home position return torque limit value] reaches the torque limit and the time when setting the home position. Setting the value between " 0 " and "4" will result in the same value as the one with " 5 " set. Setting range: 0 to 1000	100
45	Stopper type home position return torque limit value Set the torque limit value of the time when the stopper type returns to the home position by a ratio [\%] to the maximum torque. Setting range: 1 to 100	15	15	PT11	Stopper type home position return torque limit value Set the torque limit value of the time when the stopper type returns to the home position by a ratio [\%] to the maximum torque. Setting " 0.0 " will result in the same value as the one with "1.0" set. Setting range: 0:0 to 100.0	15.0

Part 4：Review on Replacement of MR－J2S－＿CP＿／CL＿with MR－J4－＿A＿－RJ

MR－J2S－＿CP＿or MR－J2S－＿CL				MR－J4－＿A＿－RJ		
No．	Name and function	Initial value		No．	Name and function	Initial value
		CP	CL			
46	Software limit＋ Set the address increasing side of the software stroke limit．Setting the same value as the one for the＂software limit－＂will disable the software limit． Use the same code for［Pr．46］and［Pr．47］．Otherwise，a parameter error occurs． Address： \square \square \square Setting range：－999999 to 999999	0	0	PT15	Software limit＋ Set the address increasing side of the software stroke limit． One set consists of an upper level and lower level． Address： \qquad Upper 3 digits Lower 3 digits \qquad ［Pr．PT15］ ［Pr．PT16］ The stop method follows the＂stop method selection at the software limit detection＂of［Pr． PD30］．The initial value is＂Sudden stop（Home position erased）＂． Setting the same value as the one for the ＂software limit－＂will disable the software limit． Use the same code for［Pr．PT15］and［Pr． PT16］．If a different code is set，it will be recognized as a negative code data． Setting range：－999999 to 999999	0
47				PT16		
48	Software limit－ Set the address decreasing side of the software stroke limit．Setting the same value as the one for the＂software limit＋＂will disable the software limit． Use the same code for［Pr．48］and［Pr．49］．Otherwise，a parameter error occurs． Address： \square \square Upper Lower $3 \text { digits } 3 \text { digits }$ Parameter No． 49 Parameter No． 48 Setting range：－999999 to 999999	0	0	PT17	Software limit－ Set the address decreasing side of the software stroke limit． One set consists of an upper level and lower level． Address： \qquad Upper 3 digits Lower 3 digits ［Pr．PT17］ ［Pr．PT18］ The stop method follows the＂stop method selection at the software limit detection＂of［Pr． PD30］．The initial value is＂Sudden stop（Home position erased）＂． Setting the same value as the one for the ＂software limit＋＂will disable the software limit． Use the same code for［Pr．PT17］and［Pr． PT18］．If a different code is set，it will be recognized as a negative code data． Setting range：－999999 to 999999	0
49				PT18		
50	Position range output address＋ Set the address increasing side of the position range output address． Use the same code for［Pr．50］and［Pr．51］．Otherwise，a parameter error occurs． Set the range where the position range（POT）is turned on between［Pr．50］and［Pr．53］． Address： \square $3 \text { digits } 3 \text { digits }$ Parameter No． 51 Parameter No． 50 Setting range：－999999 to 999999	0	0	PT19	Position range output address＋ Set the address increasing side of the position range output address． One set consists of an upper level and lower level．Set the range where the POT（Position range）is turned on between［Pr．PT19］and［Pr． PT22］． Address： Use the same code for［Pr．PT19］and［Pr． PT20］．［AL． 37 parameter error］occurs when a different code is set． To change the setting，make sure to set the lower 3 digit data first before setting the upper 3 digit data． Setting range：－999999 to 999999	0
51				PT20		

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_ or MR-J2S-_CL				MR-J4-_A_-RJ		
	Name and function	Initial value		No.	Name and function	Initial value
No.		CP	CL			
52	Position range output address - Set the address decreasing side of the position range output address. Use the same code for [Pr.52] and [Pr. 53]. Otherwise, a parameter error occurs. Address: 3 digits 3 digits Parameter No. 53 Parameter No. 52 Setting range: -999999 to 999999	0	0	PT21	Position range output address - Set the address decreasing side of the position range output address. One set consists of an upper level and lower level. Set the range where the POT (Position range) is turned on between [Pr. PT19] and [Pr. PT22]. Address: \qquad Upper 3 digits Lower 3 digits Use the same code for [Pr. PT21] and [Pr. PT22]. [AL. 37 parameter error] occurs when a different code is set. To change the setting, make sure to set the lower 3 digit data first before setting the upper 3 digit data. Setting range: -999999 to 999999	0
53				PT22		
55	Function selection 6 Select the handling method for the base circuit when RES (Reset) is enabled.	0000h	0000h	PD30	Function selection D-1 Used to select the base circuit status when RES (Reset) is ON. Set the same value as for MR-J2S-_CP_.	0000h
57	Function selection 8 Used to select the serial communication protocol.	0000h	0000h	PF01	Used to select the protocol of function selection F-1 serial communication. (Supported version: A3 version or later)	0000h
58	Function selection 9 Used to select the encoder output pulse direction and encoder pulse output setting.	0000h	0000h	PC19	Encoder output pulse selection Set the same value as for MR-J2S-_CP_.	0000h

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_ or MR-J2S-_CL				MR-J4-_A_-RJ		
No.	Name and function	Initial value		No.	Name and function	Initial value
		CP	CL			
63	Low-pass filter/adaptive vibration suppression control Select the low-pass filter/adaptive vibration suppression control.	0000h	0000h	PB23	Low-pass filter selection Set "0000 (automatic setting)".	0000h
	1: Disabled When available is selected, the filter in the zone expressed by the following formula is automatically set. For 1 kW or less $\frac{\text { VG2 setting value } \times 10}{2 \pi \times(1+G D 2 \text { setting value } \times} \quad[\mathrm{Hz}]$ For 2 kW or more $\frac{\mathrm{VG} 2 \text { setting value } \times 5}{2 \pi \times(1+G D 2 \text { setting value } \times} \quad[\mathrm{Hz}]$ Adaptive vibration suppression control selection Selecting "Enabled" or "Retained" for the adaptive vibration suppression control will disable the machine			PB18	Low-pass filter setting One of the following statuses is applied, depending on how [Pr. PB23] is set. Nothing needs to be set due to automatic setting.	3141
	resonance suppression filter 1 (Parameter No.61). 0 : Disabled 1: Available Usually, machine resonance frequency is detected, and a filter corresponding to the resonance is generated to control machine vibration. 2: Maintenance Stops detection of machine resonance while keeping the characteristics of the filter generated until that moment. Adaptive vibration suppression control level selection Used to set the machine resonance detection sensitivity. 0 : Normal 1: High sensitive			PB01	Adaptive tuning mode (adaptive filter II) Refer to MR-J2S-_CP_[Pr. 61].	0000h

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

MR-J2S-_CP_ or MR-J2S-_CL				MR-J4-_A_-RJ			
No.	Name and function	Initial value		No.	Name and function		Initial value
		CP	CL				
64	Load to motor inertia ratio 2 Used to set the load to motor inertia ratio when gain switching is enabled. Setting range: 0 to 3000 ; Unit: $x 0.1$	70	70	PB29	Load to motor inertia ratio Used to set the load to m switching is enabled. This parameter is enabled (_ _ _ 3)" is selected in "G selection" of [Pr. PA08]. Setting range: 0.00 to 300 Note that the setting unit J2S-_CP_. When setting a value, set _CP_setting value.	fter gain switching or inertia ratio when gain only when "Manual mode in adjustment mode 00; Unit: x1.0 different from that for MR- value $0.1 \times$ the MR-J2S-	7.00
65	Position loop gain 2 changing ratio Used to set the changing ratio for position loop gain 2 when the gain switching is enabled. This parameter is enabled when auto tuning is disabled. Setting range: 10 to 200	100	100	PB30	Position loop gain after gain When a value smaller tha will be the same as the se This parameter is enabled (_ _ _ 3)" is selected in "G selection" of [Pr. PA08]. Setting range: 0.0 to 2000 Because the setting unit is J2S-_CP_, calculate the se equation below and set it. [Pr. PB30] = [Pr. PB08] \times	switching $1.0 \mathrm{rad} / \mathrm{s}$ is set, the value ing value of [Pr. PB08]. only when "Manual mode in adjustment mode different from that for MRtting value using the RR-J2S-_CP_[Pr. 65]/100	0.0
66	Speed loop gain 2 changing ratio Used to set the changing ratio for speed loop gain 2 when the gain switching is enabled. This parameter is enabled when auto tuning is disabled. Setting range: 10 to 200	100	100	PB31	Speed loop gain after gain When a value smaller tha will be the same as the se This parameter is enabled (_ _ _ 3)" is selected in "G selection" of [Pr. PA08]. Setting range: 0 to 65535 Because the setting unit is J2S-_CP_, calculate the equation below and set it. [Pr. PB31] $=$ [Pr. PB09] \times	switching $20 \mathrm{rad} / \mathrm{s}$ is set, the value ing value of [Pr. PB09]. only when "Manual mode in adjustment mode different from that for MRtting value using the R-J2S-_CP_[Pr. 66]/100	0
67	Speed integral compensation changing ratio Used to set the changing ratio for speed integral compensation when the gain switching is enabled. This parameter is enabled when auto tuning is disabled. Setting range: 50 to 1000	100	100	PB32	Speed integral compensa When a value smaller tha be the same as the setting This parameter is enabled (___3)" is selected in "G selection" of [Pr. PA08]. Setting range: 0.0 to 500 Because the setting unit is J2S-_CP_, calculate the s equation below and set it. [Pr. PB32] $=[$ Pr. PB10] \times	after gain switching 0.1 ms is set, the value will value of [Pr. PB10]. only when "Manual mode in adjustment mode 0 different from that for MRtting value using the R-J2S-CP_[Pr. 67]/100	0.0
68	Gain switching selection Select the gain switching condition. Gain switching selection Gain will be changed under the following conditions based on the setting value of parameters No. 64 to No67. 0 : Disabled 1: Gain switching (CDP) is ON. 2: The appointed frequency is more than the setting value of parameter No. 69. 3: The droop pulse is more than the setting value of parameter No. 69. 4: The servo motor speed is more than the setting value of parameter No. 69.	0000h	0000h	PB26	Gain switching function Select the gain switching Refer to the comparison t method. Gain switching selection	ondition. be below for the setting comparison table	0000h

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ

3.7 Comparison of Communication Commands

[Communication command comparison between MR-J2S-_CP_ series and MR-J4-_A_-RJ series] Table 4.1 compares the read commands between the MR-J2S__CP_series and MR-J4-_A_-RJ series ([Pr. PT01]: when setting "2 _ _ "), and table 4.2 compares the write commands. The functions added in the MR-J4-A-RJ series are not included here. For details, refer to "MR-J4-_A_-RJ/MR-J4-03A6-RJ Servo Amplifier Instruction Manual (Positioning Mode (SH(NA)030143))".

POINT

O[Pr. PT01]: MR Configurator2 cannot be used when the parameter is set to "2 ".
Even if a command or data No. is the same between different model servo amplifiers, its description may differ.
Ounctions with difference are shown with shading.
[Table 4.1] Compares the read commands between MR-J2S-_CP_ and MR-J4-_A_-RJ ([Pr. PT01]: when setting "2 _ _ _").
(1) Status Display (command [0] [1])

Command	Data No.	Description	Displayed items		Frame length
			MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2__"	
[0] [1]	[8] [0]	Data value of status display and processed information	Current position	Current position	12
	[8] [1]		Command position:	Command position:	
	[8] [2]		Command remaining distance	Command remaining distance	
	[8] [3]		Point table No.	Point table No.	
	[8] [4]		Cumulative Feedback Pulses	Cumulative Feedback Pulses	
	[8] [5]		Servo motor speed	Servo motor speed	
	[8] [6]		Droop pulses	Droop pulses	
	[8] [7]		Override	Override	
	[8] [8]		Torque limit voltage	Torque limit voltage	
	[8] [9]		Regenerative load ratio	Regenerative load ratio	
	[8] [A]		Effective load ratio	Effective load ratio	
	[8] [B]		Peak load ratio	Peak load ratio	
	[8] [C]		Instantaneous torque	Instantaneous torque	
	[8] [D]		Within one-revolution position	Within one-revolution position	
	[8] [E]		ABS counter	ABS counter	
	[8] [F]		Load to inertia moment ratio	Load to inertia moment ratio	
	[9] [0]		Bus voltage	Bus voltage	

(2) Parameter (command [0] [5])

Command	Data No.	Description		Frame length
		MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad	
[0] [5]	$\begin{gathered} {[0][0]} \\ \text { to } \\ {[5][\mathrm{A}]} \end{gathered}$	Current values of each parameter The data number converted from hexadecimal to decimal corresponds to the parameter No.	Current values of each parameter Read the current parameter in the parameter group specified by the command [8][5] + data No. [0][0]. Thus, make sure to specify the parameter group by the command [8][5] + data No. [0][0] before reading the current value. The data number converted from hexadecimal to decimal corresponds to the parameter No.	8

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(3) External I/O signal (command [1] [2])

Command	Data No.	Description		Frame length
		MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2	
[1] [2]	[0] [0]	Input Device Status	Input Device Status	8
	[4] [0]	External Input Pin Status	External Input Pin Status	
	[6] [0]	Input device status turned on by the communication	Input device status turned on by the communication	
	[8] [0]	Output Device Status	Output Device Status	
	[C] [0]	External Output Pin Status	External Output Pin Status	

(4) Current alarm (command [0] [2])

Command	Data No.	Description		Frame length
		MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad	
[0] [2]	[0] [0]	Alarm No. of alarm currently generated	Alarm No. of alarm currently generated	4

(5) Status display at alarm occurrence (command [3] [5])

Command	Data No.	Description	Displayed items		Frame length
			MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad	
[3] [5]	[8] [0]	Data value of status display and processed information when an alarm occurs	Current position	Current position	12
	[8] [1]		Command position	Command position	
	[8] [2]		Command remaining distance	Command remaining distance	
	[8] [3]		Point table No.	Point table No.	
	[8] [4]		Cumulative Feedback Pulses	Cumulative Feedback Pulses	
	[8] [5]		Servo motor speed	Servo motor speed	
	[8] [6]		Droop pulses	Droop pulses	
	[8] [7]		Override	Override	
	[8] [8]		Torque limit voltage	Torque limit voltage	
	[8] [9]		Regenerative load ratio	Regenerative load ratio	
	[8] [A]		Effective load ratio	Effective load ratio	
	[8] [B]		Peak load ratio	Peak load ratio	
	[8] [C]		Instantaneous torque	Instantaneous torque	
	[8] [D]		Within one-revolution position	Within one-revolution position	
	[8] [E]		ABS counter	ABS counter	
	[8] [F]		Load to inertia moment ratio	Load to inertia moment ratio	
	[9] [0]		Bus voltage	Bus voltage	

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(6) Point table (command [4] [0]/[5] [0]/[5] [4]/[5] [8]/[6] [0]/[6] [4])

Command	Data No.	Description		Frame length
		MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad	
[4] [0]	[0] [1] to [1] [F] (Note)	Reading the position data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	Reading the position data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	8
[5] [0]	[0] [1] to [1] [F] (Note)	Reading the speed data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	Reading the speed data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	
[5] [4]	[0] [1] to [1] [F] (Note)	Reading the acceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	Reading the acceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	
[5] [8]	[0] [1] to [1] [F] (Note)	Reading the deceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	Reading the deceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	
[6] [0]	[0] [1] to [1] [F] (Note)	Reading the dwell for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	Reading the dwell for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	
[6] [4]	[0] [1] to [1] [F] (Note)	Reading the sub function for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	Reading the sub function for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	

Note. MR-J4-_A_-RJ will be in the range between [0] [1] and [F] [F].
(7) Group setting (command [1] [F])

Command	Data No.	Description 		MR-J2S__CP_

(8) Software version (command [0] [2])

Command	Data No.	Description		Frame length
		MR-J2S-_CP_	MR-J4-_A_-RJ [Pr. PT01]: when setting "2	
[0] [2]	[7] [0]	Software version	Software version	16

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
[Table 4.2] Compares the write commands between MR-J2S-_CP_ and MR-J4-_A_-RJ ([Pr. PT01]: when setting "2 _ _ _").
(1) Status Display (command [8] [1])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad "		Frame length
		Description	Setting range	Description	Setting range	
[8] [1]	[0] [0]	Erasing the status display data	1EA5	Erasing the status display data	1EA5	4

(2) Parameter (command [8] [4])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad		Frame length
		Description	Setting range	Description	Setting range	
[8] [4]	$[0][0]$ to [5] [A] (Note)	Writing each parameter The data number converted from hexadecimal to decimal corresponds to the parameter No.	Varies with the parameter.	Writing each parameter Write the parameter in the parameter group specified by the command [85] + data No. [00]. Thus, make sure to specify the parameter group by the command [85] + data No. [00] before writing the value. The data number converted from hexadecimal to decimal corresponds to the parameter No.	Varies with the parameter.	8

Note. MR-J4-_A_-RJ will be in the range between $[0][1]$ and $[F][F]$.
(3) External I/O signal (command [9] [2])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad "		Frame length
		Description	Setting range	Description	Setting range	
[9] [2]	[6] [0]	Communication input device signal	```Refer to "MR-J2S- CP Servo Amplifier Instruction Manual" Section 15.12.5.```	Communication input device signal	Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" Section 10.2.2.	8

(4) Alarm history (command [8] [2])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2		Frame length
		Description	Setting range	Description	Setting range	
[8] [2]	[2] [0]	Alarm History Clearing	1EA5	Alarm History Clearing	1EA5	4

(5) Current alarm (command [8] [2])

Command	Data No.	MR-J2S__CP_		MR-J4-_A_-RJ 		[Pr. PT01]: when setting "2___"

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(6) Point table (command [C] [0]/[C] [6]/[C] [7]/[C] [8]/[C] [A]/[C] [B])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ[Pr. PT01]: when setting "2		Frame length
		Description	Setting range	Description	Setting range	
[C] [0]	[0] [1] to [1] [F] (Note)	Writing the position data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	-999999 to 999999	Writing the position data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	-999999 to 999999	8
[C] [6]	[0] [1] to [1] [F] (Note)	Writing the speed data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to Permissible speed	Writing the speed data for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to Permissible speed	8
[C][7]	[0] [1] to [1] [F] (Note)	Writing the acceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 20000	Writing the acceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 20000	8
[C] [8]	[0] [1] to [1] [F] (Note)	Writing the deceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 20000	Writing the deceleration time constant for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 20000	8
[C] [A]	[0] [1] to [1] [F] (Note)	Writing the dwell for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 20000	Writing the dwell for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 20000	8
[C] [B]	[0] [1] to [1] [F] (Note)	Writing the sub function for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0, 1	Writing the sub function for each point table The data number converted from hexadecimal to decimal corresponds to the point table No.	0 to 3, 8 to 11	8

Note. MR-J4-_A_-RJ will be in the range between $[0][1]$ and $[F][F]$.

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(7) I/O device inhibition (command [9] [0])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2 ___-"		Frame length
		Description	Setting range	Description	Setting range	
[9] [0]	[0] [0]	Turn off the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input regardless of the external ON/OFF state.	1EA5	Turn off the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input regardless of the external ON/OFF state.	1EA5	4
	[0] [3]	Disable all the output devices (DO). (Inhibit output)	1EA5	Disable all the output devices (DO). (Inhibit output)	1EA5	
	[1] [0]	Cancel the inhibition of the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input.	1EA5	Cancel the inhibition of the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input.	1EA5	
	[1] [3]	Cancel the inhibition of output devices.	1EA5	Cancel the inhibition of output devices.	1EA5	

(8) Operation mode selection (command $[8][B]$)

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad		Frame length
		Description	Setting range	Description	Setting range	
[8] [B]	[0] [0]	Operation mode switching 0000: Test Operation Mode Cancellation 0001: JOG operation 0002: Positioning operation 0003: Motor-less operation 0004: Output signal (DO) forced output	Refer to the left column.		Refer to the left column.	4

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(9) Data for test operation mode (command [9] [2]/[A] [0])

Command	Data No.	MR-J2S-_CP_		MR-J4-_A_-RJ [Pr. PT01]: when setting "2 \qquad		Frame length
		Description	Setting range	Description	Setting range	
[9] [2]	[0] [0]	Input Signal During Test Operation	Refer to "MR-J2S_CP Servo Amplifier Instruction Manual" Section 15.12.7.	Input Signal During Test Operation	Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" Section 14.5.7.	8
	[A$][0]$	Signal Pin Forced Output	Refer to "MR-J2S_CP Servo Amplifier Instruction Manual" Section 15.12.9.	Signal Pin Forced Output	Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" Section 14.5.9.	8
[A] [0]	[1] [0]	Write the speed in the test operation mode (JOG operation/positioning operation).	0000-7FFF	Write the speed in the test operation mode (JOG operation/positioning operation).	0000-7FFF	4
	[1] [1]	Write the acceleration/deceleration time constants in the test operation mode (JOG operation/positioning operation).	00000000 to 7FFFFFFF	Write the acceleration/deceleration time constants in the test operation mode (JOG operation/positioning operation).	00000000 to 7FFFFFFF	8
	[1] [2]	Cancel the acceleration/deceleration time constants in the test operation mode (JOG operation/positioning operation).	1EA5			4
	[1] [3]	Write the pulse travel distance in the test operation mode (positioning operation).	80000000 to 7FFFFFFF	Refer to Data No. [2] [0] and [2] [1].		8
	[1] [5]	Temporary stop command for the test operation mode (positioning operation).	1EA5	Refer to Data No. [4] [1].		4
	[2] [0]			Set the travel distance in the test operation mode (positioning operation).	00000000 to 7FFFFFFF	8
	[2] [1]			Select the positioning direction of the test operation (positioning operation).	0000 to 0001	4
	[4] [0]			The start command for the test operation (positioning operation).	1EA5	4
	[4] [1]			Use to stop the test drive (positioning operation) temporarily. Symbols "_" below indicate blanks. STOP: Temporary stop GO \qquad : Restarting the remaining distance CLR_: Clearing the remaining distance	$\begin{aligned} & \text { STOP } \\ & \text { GO_- } \\ & \text { CLR_ } \end{aligned}$	4

(10) Group setting (command [9] [F])

Command	Data No.	MR-J2S__CP_		MR-J4-_A_-RJ		[Pr. PT01]: when setting "2____"

[Communication command comparison between MR-J2S-_CL _ series and MR-J4-_A_-RJ series]
Table 4.3 compares the read commands between the MR-J2S__CL_series and MR-J4-_A_-RJ series ([Pr. PT01]: when setting " 3 _ _ _"), and table 4.4 compares the write commands. The functions added in the MR-J4-_A_-RJ series are not included here. For details, refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual (SH(NA)030143))".

POINT	
$\begin{gathered} \text { OPr. PTO } \\ \text { _-". } \end{gathered}$	MR Configurator2 cannot be used when the parameter is set to " 3

[Table 4.3] Compares the read commands between MR-J2S-_CL_and MR-J4-_A_-RJ ([Pr. PT01]: when setting "3 _ _ _").
(1) Status Display (command [0] [1])

Command	Data No.	Description	Displayed items		Frame length
			MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad	
[0] [1]	[8] [0]	Data value of status display and processed information	Current position	Current position	12
	[8] [1]		Command position	Command position	
	[8] [2]		Command remaining distance	Command remaining distance	
	[8] [3]		Program No.	Program No.	
	[8] [4]		Step No.	Step No.	
	[8] [5]		Cumulative Feedback Pulses	Cumulative Feedback Pulses	
	[8] [6]		Servo motor speed	Servo motor speed	
	[8] [7]		Droop pulses	Droop pulses	
	[8] [8]		Override	Override	
	[8] [9]		Torque limit voltage	Torque limit voltage	
	[8] [A]		Regenerative load ratio	Regenerative load ratio	
	[8] [B]		Effective load ratio	Effective load ratio	
	[8] [C]		Peak load ratio	Peak load ratio	
	[8] [D]		Instantaneous torque	Instantaneous torque	
	[8] [E]		Within one-revolution position	Within one-revolution position	
	[8] [F]		ABS counter	ABS counter	
	[9] [0]		Load to inertia moment ratio	Load to inertia moment ratio	
	[9] [1]		Bus voltage	Bus voltage	

(2) Parameter (command [0] [5])

Command	Data No.	Description		Frame length
		MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad	
[0] [5]	$\begin{gathered} {[0][0]} \\ \text { to } \\ {[5][\mathrm{A}]} \end{gathered}$	Current values of each parameter The data number converted from hexadecimal to decimal corresponds to the parameter No.	Current values of each parameter Read the current parameter in the parameter group specified by the command [8] [5] + data No. [0] [0]. Thus, make sure to specify the parameter group by the command [8] [5] + data No. [0][0] before reading the current value. The data number converted from hexadecimal to decimal corresponds to the parameter No.	8

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(3) External I/O signal (command [1] [2])

Command	Data No.	Description		Frame length
		MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3__"	
[1] [2]	[0] [0]	Input Device Status	Input Device Status	8
	[4] [0]	External Input Pin Status	External Input Pin Status	
	[6] [0]	Input device status turned on by the communication	Input device status turned on by the communication	
	[8] [0]	Output Device Status	Output Device Status	
	[C] [0]	External Output Pin Status	External Output Pin Status	

(4) Current alarm (command [0] [2]/ [3] [5])

Command	Data No.	Description		Frame length
		MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3 ___"	
[0] [2]	[0] [0]	Alarm No. of alarm currently generated	Alarm No. of alarm currently generated	4

Command	Data No.	Description	Displayed items		Frame length
			MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad	
[3] [5]	[8] [0]	Data value of status display and processed information when an alarm occurs	Current position	Current position	12
	[8] [1]		Command position	Command position	
	[8] [2]		Command remaining distance	Command remaining distance	
	[8] [3]		Program No.	Program No.	
	[8] [4]		Step No.	Step No.	
	[8] [5]		Cumulative Feedback Pulses	Cumulative Feedback Pulses	
	[8] [6]		Servo motor speed	Servo motor speed	
	[8] [7]		Droop pulses	Droop pulses	
	[8] [8]		Override	Override	
	[8] [9]		Torque limit voltage	Torque limit voltage	
	[8] [A]		Regenerative load ratio	Regenerative load ratio	
	[8] [B]		Effective load ratio	Effective load ratio	
	[8] [C]		Peak load ratio	Peak load ratio	
	[8] [D]		Instantaneous torque	Instantaneous torque	
	[8] [E]		Within one-revolution position	Within one-revolution position	
	[8] [F]		ABS counter	ABS counter	
	[9] [0]		Load to inertia moment ratio	Load to inertia moment ratio	
	[9] [1]		Bus voltage	Bus voltage	

(5) Group setting (command [1] [F])

Command	Data No.	Description		Frame length
		MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad	
[1] [F]	[0] [0]	Reading the group setting value.	Reading the group setting value.	4

(6) Software version (command [0] [2])

Command	Data No.	Description		Frame length
		MR-J2S-_CL_	MR-J4-_A_-RJ [Pr. PT01]: when setting "3__"	
[0] [2]	[7] [0]	Software version	Software version	16

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
[Table 4.4] Compares the write commands between MR-J2S-_CL_and MR-J4-_A_-RJ ([Pr. PT01]: when setting "3 _ _ _").
(1) Status Display (command [8] [1])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad 11		Frame length
		Description	Setting range	Description	Setting range	
[8] [1]	[0] [0]	Erasing the status display data	1EA5	Erasing the status display data	1EA5	4

(2) Parameter (command [8] [4])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad		Frame length
		Description	Setting range	Description	Setting range	
[8] [4]	$\begin{gathered} {[0][0]} \\ \text { to } \\ {[5][A]} \\ \text { (Note) } \end{gathered}$	Writing each parameter The data number converted from hexadecimal to decimal corresponds to the parameter No.	Varies with the parameter.	Writing each parameter Write the parameter in the parameter group specified by the command [85] + data No. [00]. Thus, make sure to specify the parameter group by the command [85] + data No. [00] before writing the value. The data number converted from hexadecimal to decimal corresponds to the parameter No.	Varies with the parameter.	8

Note. MR-J4-_A_-RJ will be in the range between $[0][1]$ and $[F][F]$.
(3) External I/O signal (command [9] [2])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad		Frame length
		Description	Setting range	Description	Setting range	
[9] [2]	[6] [0]	Communication input device signal	Refer to "MR-J2S_CL Servo Amplifier Instruction Manual" Section 15.12.5.	Communication input device signal	Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" Section 10.2.2.	8

(4) Alarm history (command [8] [2])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ[Pr. PT01]: when setting "3___"		Frame length
		Description	Setting range	Description	Setting range	
[8] [2]	[2] [0]	Alarm History Clearing	1EA5	Alarm History Clearing	1EA5	4

(5) Current alarm (command [8] [2])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ [Pr. PT01]: when setting "3 \qquad 11		Frame length
		Description	Setting range	Description	Setting range	
[8] [2]	[0] [0]	Clearing alarms	1EA5	Clearing alarms	1EA5	4

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(6) I/O device inhibition (command [9] [0])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ[Pr. PT01]: when setting "3___"		Frame length
		Description	Setting range	Description	Setting range	
[9] [0]	[0] [0]	Turn off the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input regardless of the external ON/OFF state.	1EA5	Turn off the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input regardless of the external ON/OFF state.	1EA5	4
	[0] [3]	Disable all the output devices (DO). (Inhibit output)	1EA5	Disable all the output devices (DO). (Inhibit output)	1EA5	
	[1] [0]	Cancel the inhibition of the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input.	1EA5	Cancel the inhibition of the input devices (except EMG, LSP and LSN), external analog input signal, and pulse train input.	1EA5	
	[1] [3]	Cancel the inhibition of output devices.	1EA5	Cancel the inhibition of output devices.	1EA5	

(7) Operation mode selection (command [8] [B])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ[Pr. PT01]: when setting "3___"		Frame length
		Description	Setting range	Description	Setting range	
[8] [B]	[0] [0]	Operation mode switching 0000: Test Operation Mode Cancellation 0001: JOG operation 0002: Positioning operation 0003: Motor-less operation Output signal (DO) forced output	Refer to the left column.	Operation mode switching 0000: Normal mode (When not in the test operation mode) 0001: JOG operation 0002: Positioning operation mode DO forced output operation mode	Refer to the left column.	4

Part 4: Review on Replacement of MR-J2S-_CP_/CL_ with MR-J4-_A_-RJ
(8) Data for test operation mode (command [9] [2]/ [A] [0])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ[Pr. PT01]: when setting "3__"		Frame length
		Description	Setting range	Description	Setting range	
[9] [2]	[0] [0]	Input Signal During Test Operation	Refer to "MR-J2S- -CL Servo Amplifier Instruction Manual" Section 15.12.7.	Input Signal During Test Operation	Refer to "MR-J4- A_(-RJ) Servo Amplifier Instruction Manual" Section 14.5.7.	8
	[A] [0]	Signal Pin Forced Output	```Refer to "MR-J2S- CL Servo Amplifier Instruction Manual" Section 15.12.9.```	Signal Pin Forced Output	Refer to "MR-J4-A_(-RJ) Servo Amplifier Instruction Manual" Section 14.5.9.	8
[A] [0]	[1] [0]	Write the speed in the test operation mode (JOG operation/positioning operation).	0000 to 7FFF	Write the speed in the test operation mode (JOG operation/positioning operation).	0000 to 7FFF	4
	[1] [1]	Write the acceleration/deceleration time constants in the test operation mode (JOG operation/positioning operation).	00000000 to 7FFFFFFF	Write the acceleration/deceleration time constants in the test operation mode (JOG operation/positioning operation).	00000000 to 7FFFFFFF	8
	[1] [2]	Cancel the acceleration/deceleration time constants in the test operation mode (JOG operation/positioning operation).	1EA5			4
	[1] [3]	Write the pulse travel distance in the test operation mode (positioning operation).	$\begin{aligned} & 80000000 \text { to } \\ & \text { 7FFFFFFF } \end{aligned}$	Refer to Data No. [2] [0] and [2] [1].	$>$	8
	[1] [5]	Temporary stop command for the test operation mode (positioning operation).	1EA5	Refer to Data No. [4] [1].		4
	[2][0]			Set the travel distance in the test operation mode (positioning operation).	$00000000 \text { to }$ 7FFFFFFF	8
	[2][1]			Select the positioning direction of the test operation (positioning operation).	0000 to 0001	4
	[4][0]			The start command for the test operation (positioning operation).	1EA5	4
	[4][1]			Use to stop the test drive (positioning operation) temporarily. Symbols " " below indicate blanks. STOP: Temporary stop GO__: Restarting the remaining distance CLR_: Clearing the remaining distance	$\begin{aligned} & \hline \text { STOP } \\ & \text { GO_ } \\ & \text { CLR_ } \end{aligned}$	4

(9) Group setting (command [9] [F])

Command	Data No.	MR-J2S-_CL_		MR-J4-_A_-RJ[Pr. PT01]: when setting "3__"		Frame length
		Description	Setting range	Description	Setting range	
[9] [F]	[0] [0]	Set groups	a to f	Set groups	a to f	4

MEMO

\qquad

Part 5

Review on Replacement of

MR-J2S-30 kW or Higher

Capacity Models with MR-J4-DU_MR-J4-_DU_

Part 5: Review on Replacement of MR-J2S-30 kW or Higher Capacity Models with MR-J4-DU

1. FUNCTIONS AND CONFIGURATION

1.1 Differences Between MR-J2S-30 kW or Higher Capacity Models and MR-J4-DU_

Item	MR-J2S-30 kW or more series	MR-J4-DU_series	Compatibility	Reference material/items
Converter unit	200 V class: MR-HP30KA (When using a servo amplifier of 37 kW , make sure that the power running output is 30 kW or less.) 400 V class: MR-HP55KA4	200 V class: MR-CR55K 400 V class: MR-CR55K4	\times	1.2 Combination of a Converter Unit, Drive Unit, and Servo Motor
Installation	Installed in cabinet (Using an outside mounting attachment enables to attach a heat sink outside the cabinet.)	A heat sink is attached outside the cabinet.	\times	1.4 Installation
Magnetic contactor control Connector	Not available	Available (Enabled by default. This is the initial value of [Pr. PA02], a converter unit parameter.)	-	1.5 Magnetic Contactor Control Connector (CNP1) [Exclusively for MR-J4-DU_]
Unit Power consumption display	Not available	Available (Use converter unit parameters [Pr. PA08] and [Pr. PA15] to set this value.)	-	3 PARAMETERS
SEMI-F47 function selection	Not available	Available (Use converter unit parameter [Pr. PA17] and [Pr. PA18], and drive unit parameter [Pr. PA20] and [Pr. PF25] to set this value.)	-	3 PARAMETERS

1.2 Combination of Converter Unit, Drive Unit, and Servo Motor

(1) MR-J2S series
(a) 200 V class

Converter unit	Servo motor			
		HA-LFS		
		$1000 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	$2000 \mathrm{r} / \mathrm{min}$
MR-HP30KA	MR-J2S-30KA/B	30 K 1	30 K 1 M	30 K 2
	MR-J2S-37KA/B	37 K 1 (Note)	37 K 1 M (Note)	$37 \mathrm{K2}$ (Note)

Note. Make sure that the power running effective torque is 75% or less of 37 kW . Use a DC reactor (MR-DCL37K).
(b) 400 V class

Converter unit	Servo motor			
			HA-LFS	$1500 \mathrm{r} / \mathrm{min}$
		$1000 \mathrm{r} / \mathrm{min}$	30 K 1 M 4	$2000 \mathrm{r} / \mathrm{min}$
MR-HP55KA4	MR-J2S-30KA4/B4	$25 \mathrm{~K} 14,30 \mathrm{~K} 14$	37 K 1 M 4	30 K 24
	MR-J2S-37KA4/B4	37 K 14	45 K 1 M 4	37 K 24
	MR-J2S-45KA4/B4		50 K 1 M 4	45 K 24
	MR-J2S-55KA4/B4		55 K 24	

(2) MR-J4 series
(a) 200 V class

Converter unit	Servo motor		
		HG-JR_	
		$1000 \mathrm{r} / \mathrm{min}$ series	$1500 \mathrm{r} / \mathrm{min}$ series
MR-CR55K	MR-J4-DU30K_	30 K 1	30 K 1 M
	MR-J4-DU37K_	37 K 1	37 K 1 M

(b) 400 V class

Converter unit	Servo motor		
		HG-JR__	
		$1000 \mathrm{r} / \mathrm{min}$ series	$1500 \mathrm{r} / \mathrm{min}$ series
MR-CR55K4	MR-J4-DU30K_4	30 K 14	30 K 1 M 4
	MR-J4-DU37K_4	37 K 14	37 K 1 M 4
	MR-J4-DU45K_4		45 K 1 M 4
	MR-J4-DU55K_4	$55 K 1 M 4$	

1.3 Configuration with Peripheral Equipment

(1) MR-J2S series

Note 1. P and N conductor bars to connect a converter unit and servo amplifier are standard accessories
2. This system requires a converter unit.
3. Use an MR-J2HBUS_M_SSCNET cable as the protection coordination cable.
(2) MR-J4-DU_

This diagram shows MR-J4-DU30KB4 and MR-J4-DU37KB4. The way to interface MR-J4-DU_ is the same as MR-J4-_. Refer to each servo amplifier instruction manual.

Note 1. L+ and L-conductors to connect the converter unit and drive unit are standard accessories. The converter unit and drive unit are installed more closely together than they are shown in this diagram.
2. For the power supply specifications, refer to Part 7 "Common Reference Material".
3. For the power supply specifications of the cooling fan, refer to the Servo Motor Instruction Manual (Vol. 3).
4. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
5. Install an overcurrent protection device (molded-case circuit breaker, fuse, or others) to protect the branch circuit. (Refer to section 5.3.)
6. The converter unit and the drive unit can be connected to the control circuit power supply (L11/L21) by daisy chain. Refer to section 5.2 for the wire size and the selection of the overcurrent protection device.

1.4 Installation

Mounting direction and distance

Onstall the converter unit and servo amplifier accurately and vertically on a perpendicular wall. Otherwise a malfunction may be caused.
Secure the prescribed distance between the converter unit/servo amplifier and the inner surface of the cabinet or other devices. Otherwise a malfunction may be caused.
When using equipment that generates heat, such as regenerative options, set up with sufficient consideration of heat generation so that there is no effect on the converter unit/servo amplifier.
(1) MR-J2S series
(a) For single installations

(b) Mounting dimensions

(2) MR-J4-DU_
(a) Installation

POINT

Make sure to install a drive unit on the right of a converter unit as shown in the diagram.

(b) Mounting hole dimensions

1.5 Magnetic Contactor Control Connector (CNP1) [Exclusively for MR-J4-DU]

Connect a magnetic contactor wiring connector to the converter unit. CNP1-1 and L11 are always in conduction. Leaving the connector disconnected can cause an electric shock.

POINT

The J2S series comes with no magnetic contactor control connector.

Enabling the magnetic contactor output shuts off the main circuit power supply automatically when the drive unit activates an alarm.
Setting converter unit parameter [Pr. PA02] to "_ _ 1" (the initial value) enables the magnetic contactor output.

(1) When the magnetic contactor drive output is enabled Connecting the magnetic contactor control connector (CNP1) to the coil of a magnetic contactor enables the control of the magnetic contactor.

CNP1 connection internal diagram

Note 1. Use a step-down transformer when the converter unit and drive unit are 400 V class and the coil voltage of the magnetic contactor is 200 V class.
2. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. If instantaneous power failure or any other problem lowers the voltage of L11 or L21, the magnetic contactor turns off.

When the drive unit sends the converter unit a start up command, the converter unit shorts CNP1-2 and L21, powering the control circuit of the magnetic contactor. This turns on the magnetic contactor and powers up the main circuit of the converter unit.
In the following cases, the converter unit releases CNP1-2 and L21 and powers down the main circuit automatically.
(a) When the converter unit activates an alarm.
(b) When the drive unit activates an alarm.
(c) When the forced stop of the converter (EM1) unit is turned off.
(d) When the drive unit outputs [AL. 95 STO warning].
(2) When the magnetic contactor drive output is disabled

Activating an alarm of the converter unit or drive unit does not shut off the main circuit power supply. Configure the circuit so that an alarm can be detected and the main circuit power supply can be shut off.

2. SIGNALS AND WIRING

2.1 Comparison of Standard Connection Diagrams

! WARNING Insulate the connections of the power supply terminals. Failure to do so may

Abstract

Always connect a magnetic contactor between the main circuit power supply and L1/L2/L3 of the converter unit in order to configure a power supply shut-off on the power supply side of the converter unit. If a magnetic contactor is not connected, continuous flow of a large current may cause a fire when the converter unit or servo amplifier malfunctions. Generate a fault signal and shut off the power supply. Not doing so may cause a fire when a regenerative transistor malfunctions or the like may overheat the regenerative resistor. To avoid a malfunction of the servo motor, connect the wires to the correct phase terminals (U/V/W) of the drive unit and the servo motor. Do not connect the servo motor directly to the 3-phase 200 V power supply or the 3-phase 400 V power supply. Otherwise a malfunction may be caused. Do not switch the motor power cables while currents are applied to the motor. Doing so may cause an abnormal operation or a malfunction.

POINT
When using an external dynamic brake, refer to the Servo Amplifier Instruction Manual.
(1) General-purpose interface 200 V class

Note 1. This is a configuration for MR-RB137. Use three MR-RB137s in a set, which provides permissible regenerative power of 3900 W .
2. When using a power factor improving DC reactor, remove the short-circuit bar between P1 and P2.
3. Use an MR-J2HBUS_M_SSCNET cable as a protection coordination cable.
4. Use an external dynamic brake to this servo amplifier. Without an external dynamic brake, the servo motor keeps running in a free run state at an emergency stop, leading to an accident. Take as many safety measures as possible in the system.

Note 1. This is for MR-RB137. For the MR-RB137, three units are used as one set (permissible regenerative power: 3900 W).
2. P1 and P2 are connected by default. When using the power factor improving DC reactor, connect P1 and P2 after removing the short bar across them.
3. Connect the magnetic contactor wiring connector to CNP1 of the converter unit. If the connector is not connected, an electric shock may occur.
4. For specifications of the cooling fan power supply, refer to "Servo Motor Instruction Manual (Vol. 3)".
5. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. The bus voltage decreases depending on the main circuit voltage and operation pattern, which may cause the forced stop deceleration to shift to the dynamic brake deceleration. When dynamic brake deceleration is not required, slow the time to turn off the magnetic contactor.
6. To prevent an unexpected restart of the drive unit, configure a circuit to turn off EM2 in the drive unit when the main circuit power is turned off.
7. Use an external dynamic brake to this drive unit. Without an external dynamic brake, activation of an alarm which does not cause deceleration to a stop keeps the servo motor running in a free run state at an emergency stop, and may lead to an accident. Take as many safety measures as possible. For alarms which do not cause deceleration to a stop and wiring of the external dynamic brake, refer to "MR-CV_/MR-CR55K_MR-J4-DU_(-RJ) Instruction Manual".
8. For the encoder cable, use of the option cable is recommended. For selecting cables, refer to "Servo Motor Instruction Manual (Vol. 3)".
9. This diagram shows sink I/O interface. For source I/O interface, refer to "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual".
10. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to section 5.3.)
11. When not using the STO function, attach the short-circuit connector supplied with the drive unit.
12. Do not connect the servo motor of a wrong axis to $\mathrm{U}, \mathrm{V}, \mathrm{W}$, or CN 2 of the drive unit. Otherwise, a malfunction may occur.
13. For connecting servo motor power wires, refer to "Servo Motor Instruction Manual (Vol. 3)".
14. The external dynamic brake cannot be used for compliance with SEMI-F47 standard. Do not assign DB. Failure to do so will cause the drive unit to become servo-off when an instantaneous power failure occurs.。
15. The converter unit and the drive unit can be connected to the control circuit power supply (L11/L21) by daisy chain. Refer to section 5.2 for the wire size and the selection of the overcurrent protection device.
(2) SSCNET interface 200 V class

Note 1. This is a configuration for MR-RB137. Use three MR-RB137s in a set, which provides permissible regenerative power of 3900 W .
2. When using a power factor improving DC reactor, remove the short-circuit bar between P1 and P2.
3. Shut off the power supply by using an external sequence when a servo alarm occurs.
4. Use an MR-J2HBUS_M_SSCNET cable as a protection coordination cable.
5. Use an external dynamic brake to this servo amplifier. Without an external dynamic brake, the servo motor keeps running in a free run state at an emergency stop, leading to an accident. Take as many safety measures as possible.

When magnetic contactor drive output is disabled

Note 1. This is for MR-RB137. For the MR-RB137, three units are used as one set (permissible regenerative power: 3900 W).
2. P1 and P2 are connected by default. When using the power factor improving DC reactor, connect P1 and P2 after removing the short bar across them.
3. Connect the magnetic contactor wiring connector to CNP1 of the converter unit. If the connector is not connected, an electric shock may occur.
4. For specifications of the cooling fan power supply, refer to "Servo Motor Instruction Manual (Vol. 3)".
5. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. The bus voltage decreases depending on the main circuit voltage and operation pattern, which may cause the forced stop deceleration to shift to the dynamic brake deceleration. When dynamic brake deceleration is not required, slow the time to turn off the magnetic contactor.
6. To prevent an unexpected restart of the drive unit, configure a circuit to turn off EM2 in the drive unit when the main circuit power is turned off.
7. Use an external dynamic brake to this drive unit. Without an external dynamic brake, activation of an alarm which does not cause deceleration to a stop keeps the servo motor running in a free run state at an emergency stop, and may lead to an accident. Take as many safety measures as possible. For alarms which do not cause deceleration to a stop and wiring of the external dynamic brake, refer to "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual".
8. For the encoder cable, use of the option cable is recommended. For selecting cables, refer to "Servo Motor Instruction Manual (Vol. 3)".
9. This diagram shows sink I/O interface. For source I/O interface, refer to "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual".
10. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to section 5.3.)
11. When not using the STO function, attach the short-circuit connector supplied with the drive unit.
12. Do not connect the servo motor of a wrong axis to $\mathrm{U}, \mathrm{V}, \mathrm{W}$, or CN 2 of the drive unit. Otherwise, a malfunction may occur.
13. For connecting servo motor power wires, refer to "Servo Motor Instruction Manual (Vol. 3)".
14. The external dynamic brake cannot be used for compliance with SEMI-F47 standard. Do not assign DB. Failure to do so will cause the drive unit to become servo-off when an instantaneous power failure occurs.
15. The converter unit and the drive unit can be connected to the control circuit power supply (L11/L21) by daisy chain. Refer to section 5.2 for the wire size and the selection of the overcurrent protection device.
(3) General-purpose interface 400 V class

Note 1. This is for MR-RB13V-4. For the MR-RB13V-4, three units are used as one set (permissible regenerative power: 3900 W).
2. P1 and P2 are connected by default. When using the power factor improving DC reactor, connect P1 and P2 after removing the short bar across them. Refer to section 8.6 for details.
3. A step-down transformer is required when the coil voltage of the magnetic contactor is 200 V class.
4. Connect the magnetic contactor wiring connector to CNP1 of the converter unit. If the connector is not connected, an electric shock may occur. 5. For specifications of the cooling fan power supply, refer to "Servo Motor Instruction Manual (Vol. 3)".
6. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. The bus voltage decreases depending on the main circuit voltage and operation pattern, which may cause the forced stop deceleration to shift to the dynamic brake deceleration. When dynamic brake deceleration is not required, slow the time to turn off the magnetic contactor.
7. To prevent an unexpected restart of the drive unit, configure a circuit to turn off EM2 in the drive unit when the main circuit power is turned off.
8. Use an external dynamic brake for the drive unit. Failure to do so will cause an accident because the servo motor does not stop immediately but coasts at an alarm occurrence for which the servo motor does not decelerate to stop. Ensure the safety in the entire equipment. For alarms for which the servo motor does not decelerate to stop, refer to chapter 6. For wiring of the external dynamic brake, refer to "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual".
9. For the encoder cable, use of the option cable is recommended. For selecting cables, refer to "Servo Motor Instruction Manual (Vol. 3)".
10. This diagram shows sink I/O interface. For source I/O interface, refer to section "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual".
11. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to section 5.3.)
12. When not using the STO function, attach the short-circuit connector supplied with the drive unit.
13. Do not connect the servo motor of a wrong axis to U, V, W, or $C N 2$ of the drive unit. Otherwise, a malfunction may occur.
14. For connecting servo motor power wires, refer to "Servo Motor Instruction Manual (Vol. 3)".
15. For the MR-J4-DU30K_4(-RJ) and MR-J4-DU37K_4(-RJ), the terminal block is TE2.
16. The external dynamic brake cannot be used for compliance with SEMI-F47 standard. Do not assign DB. Failure to do so will cause the drive unit to become servo-off when an instantaneous power failure occurs.
17. The converter unit and the drive unit can be connected to the control circuit power supply (L11/L21) by daisy chain. Refer to section 5.2 for the wire size and the selection of the overcurrent protection device.
(4) SSCNET interface 400 V class

2.2 Power-on Sequence

(1) MR-J2S-30 kW or more
(a) Power-on sequence

1) For the power supply wiring, make sure to use a magnetic contactor in the main circuit power supply as shown in Section 2.1.
Configure so that the magnetic contactor is turned off at the same time as an alarm is generated in the external sequence.
2) Turn on the control circuit power supply L11/L21 at the same time as or before turning on the main circuit power supply.
If the main circuit power supply is not turned on, a warning is displayed on the display. However, the warning disappears and operation returns to normal when the main circuit power supply is turned on.
3) The servo amplifier can receive SON (servo-on) signals approximately 1 s after the main circuit power supply is turned on. Therefore, if SON (servo-on) is turned on at the same time as the 3-phase power supply, the base circuit will be turned on after approximately 1 s . After approximately 20 ms , RD (Ready) is turned on and operation becomes available.
(2) MR-J4-DU_A_
(a) Power-on procedure
4) For the power supply wiring, make sure to use a magnetic contactor (L1/L2/L3) in the main circuit power supply as shown in Section 2.1.
Configure so that the magnetic contactor is turned off at the same time as an alarm is generated in the external sequence.
5) When the magnetic contactor drive output of the converter unit is enabled, turn on simultaneously the control circuit power supply (L11/L12) of the converter unit and that of the drive unit. The main circuit power supply is turned on automatically after the converter unit and drive unit start up. When an external sequence controls the magnetic contactor, turn on the control circuit power supply (L11/L12) of the converter unit and that of the drive unit at the same time as or before turning on the main circuit power supply. If the main circuit power supply is not turned on, a warning is displayed on the drive unit display. However, the warning disappears and operation returns to normal when the main circuit power supply is turned on.
(b) Timing chart

Note 1. When setting up an electromagnetic brake at customer's side, make up a sequence which will operate the electromagnetic brake as follow using MBR (Electromagnetic brake interlock).
ON: Electromagnetic brake is not activated.
OFF: Electromagnetic brake is activated.
2. Give a position command after the external electromagnetic brake is released.
3. This is in position control mode.
4. In [Pr. PC16 Electromagnetic brake sequence output], set a delay time (Tb) from MBR (Electromagnetic brake interlock) off to base circuit shut-off at a servo-off.
(3) MR-J4-DU_B_
(a) Power-on procedure

1) For the power supply wiring, make sure to use a magnetic contactor (L1/L2/L3) in the main circuit power supply as shown in Section 2.1.
Configure the circuit so that the magnetic contactor is turned off at the same time as an alarm is generated in the external sequence.
2) Turn on the control circuit power supply (L11/L12) of the converter unit and that of the drive unit at the same time as or before turning on the main circuit power supply. If the main circuit power supply is not turned on, a warning is displayed on the drive unit display. However, the warning disappears and operation returns to normal when the main circuit power supply is turned on.
(b) Timing chart
3) If the magnetic contactor driving output is enabled and the ready-on is on, turning SON off does not shut off the main circuit power supply.

Note 1. When setting up an electromagnetic brake at customer's side, make up a sequence which will operate the electromagnetic brake as follow using MBR (Electromagnetic brake interlock).
ON: Electromagnetic brake is not activated.
OFF: Electromagnetic brake is activated.
2. Give a position command after the external electromagnetic brake is released.
3. This is in position control mode.
4. In [Pr. PC02 Electromagnetic brake sequence output], set a delay time (Tb) from MBR (Electromagnetic brake interlock) off to base circuit shut-off at a servo-off.
2) When the magnetic contactor driving output is enabled and the ready-on is turned off Turning off the ready-on switches off the magnetic contactor of the convertor unit and shuts off the main circuit power supply.

Servo motor speed

Drive unit control circuit power supply

Converter unit control circuit power supply

Main circuit power supply

Base circuit

MBR
(Electromagnetic brake interlock)
Servo-on command
(from servo system controller)

Position command (Note 3)

Note 1. When setting up an electromagnetic brake at customer's side, make up a sequence which will operate the electromagnetic brake as follow using MBR (Electromagnetic brake interlock).
ON: Electromagnetic brake is not activated.
OFF: Electromagnetic brake is activated.
2. Give a position command after the external electromagnetic brake is released.
3. This is in position control mode.
3) When the magnetic contactor driving output is off

When an alarm occurs, turn off the magnetic contactor by using the external sequence and shut off the main circuit power supply.

Note 1. When setting up an electromagnetic brake at customer's side, make up a sequence which will operate the electromagnetic brake as follow using MBR (Electromagnetic brake interlock).
ON: Electromagnetic brake is not activated.
OFF: Electromagnetic brake is activated.
2. Give a position command after the external electromagnetic brake is released.
3. This is in position control mode.
4. In [Pr. PC02 Electromagnetic brake sequence output], set a delay time (Tb) from MBR (Electromagnetic brake interlock) off to base circuit shut-off at a servo-off.
5. The base circuit remains ready-on status at servo-off. When the status is ready-off, the base circuit and the servo-on command turn off at the same time. $(\mathrm{Tb}=0)$

2.3 List of Corresponding Connectors and Terminal Blocks

(1) Converter unit
(a) Connector comparison table

For the details of signals, refer to each servo amplifier instruction manual.

MR-HP30K, MR-HP55KA4			MR-CR55K, MR-CR55K4		
	- (5) TE2-1 -(5) TE2-2 -(2) CN 1 - CN3 Leave this open. - CN6 Leave this open. -(1) CN5 Connect to CN5A of the amplifier. -(4) TE3 -(3) TE1-1 (3) TE1-2			- CN6 Leave this op - (1) CN40 Connect drive uni - CN3 Leave this op (5) TE2-2 - (4) TE3	CN40A of the
CN1	Connector pin No. CN1-1 CN1-2 CN1-3 CN1-4 CN1-5 CN1-6 CN1-7 CN1-8 CN1-9 CN1-10 CN1-11 CN1-12 CN1-13 CN1-14	Signal symbol - - SE - SG - - ALM - - - VDD COM	CN1 CNP1	Connector pin No. CN1-1 CN1-2 CN1-3 CN1-4 CN1-5 CN1-6 CN1-7 CN1-8 CN1-9 Connector pin No. CNP1-1 CNP1-2	Signal symbol DICOM ALM - - DOCOM DICOM EM1 WNG DOCOMSignal symbol MC1 MC2

(b) List of Corresponding Connectors and Terminal Blocks

Note. The configuration of the main circuit terminal block differs depending on the capacity. Refer to "Part 7: Common Reference Material".
(2) Drive unit (General-purpose interface)
(a) Connector comparison table

For the details of signals, refer to each servo amplifier instruction manual.

MR-J2S-_KA	MR-J4-DU_A_

(b) List of Corresponding Connectors and Terminal Blocks

-	MR-J2S-_A	MR-J4-DU_A	Note
(1)	I/O signal connector [CN1A]		
(2)	I/O signal connector [CN1B]		
(3)	Encoder connector [CN2]	Encoder connector [CN2]	Must switch to encoder cable (option) or prepare a new cable.
(4)	Communication connector [CN3]	USB communication connector [CN5]	Switch to USB cable (option).
(5)	Analog monitor [CN4]	Analog monitor connector [CN6]	Switch to monitor cable (option).
(6)	PN terminal block [TE2-1] [TE2-2]	L+/L- terminal [TE2-1]	
(7)	Servo motor power supply terminal block [TE1]	Servo motor power output terminal [TE1]	Note
(8)	Control circuit terminal block [TE3]	Control circuit terminal L11/L21 [TE3]	
(9)	Battery connector [CON1]	Battery connector [CN4]	Prepare a new battery.
(10)	Converter unit connectors $\quad[\mathrm{CN5A}]$	Protection coordination connector [CN40A]	Must switch to a protection coordination cable (option) or prepare a new cable.
(11)	Terminal connector connector [CN5B]		

Note. The configuration of the main circuit terminal block differs depending on the capacity. Refer to "Part 7: Common Reference Material".

When not using the STO function in MR-J4-_A_, attach the short-circuit connector supplied with the servo amplifier to CN8 (STO input signal connector).
(c) Comparison of signals

1) $\mathrm{CN} 1 \mathrm{~A} / \mathrm{CN} 1 \mathrm{~B}$

Refer to Section 3.4 of "Part 2: Replacement of MR-J2S-_A_ with MR-J4-_A_".
2) CN 3

MR-J2S-_A		Signal abbreviation (Note)	MR-J4-_A_	
Connector pin assignment	Connector pin No.		Connector pin No.	Connector pin assignment
CN3	CN3-1	LG	CN3-1	CN3
	CN3-5	RDP	CN3-3	8
	CN3-9	SDP	CN3-5	7
	CN3-11	LG	CN3-7	6
	CN3-15	RDN	CN3-6	5
	CN3-19	SDN	CN3-4	4
	CN3-20	P5(P5D)	CN3-2	3
	CN3-2	RXD	-	2
	CN3-10	TRE	-	1
	CN3-12	TXD	-	

Note. Signal abbreviations in parentheses are for MR-J4-_A_.
3) CN 4

(3) Drive unit (SSCNET interface)
(a) Connector comparison table

For the details of signals, refer to each servo amplifier instruction manual.

(b) List of Corresponding Connectors and Terminal Blocks

	MR-J2S_-_B_	
(1)	SSCNET cable connector	[CN1A]
(2)	SSCNET cable connector	[CN1B]
(3)	Encoder connector	[CN2]
(4)	Communication connector	[CN3]
(5)	Analog monitor	[CN4]
(6)	I/O signal connector	[CON2]
(7)	PN terminal block	[TE2-1] [TE2-2]
(8)	Servo motor power supply terminal block	
[TE1]		
(9)	Control circuit terminal block	[TE3]
(10)	Battery connector	[CON1]
(11)	Converter unit connectors	[CN5A]
(12)	Terminal connector connector	

MR-J4-DU_B	Note
SSCNET III cable connector [CN1A]	Prepare a new cable.
SSCNET III cable connector [CN1B]	
Encoder connector [CN2]	Must switch to encoder cable (option) or prepare a new cable.
USB communication connector [CN5]	Switch to USB cable (option).
I/O signal connector [CN3]	Prepare a new cable.
L+/L- terminal [TE2-1]	Note
Servo motor power output terminal [TE1]	
Control circuit terminal L11/L21 [TE3]	
Battery connector [CN4]	Prepare a new battery.
Protection coordination connector [CN40A]	Must switch to a protection coordination cable (option) or prepare a new cable.
	-

Note The configuration of the main circuit terminal block differs depending on the capacity. Refer to "Part 7: Common Reference Material".

When not using the STO function in MR-J4-_B_, mount the short-circuit connector supplied with the servo amplifier to CN8 (STO input signal connector).
(c) Comparison of signals

Note 1. The factory setting for MR-J4-_B_ is EM2.
2. Set with [Pr. PD07] to [Pr. PD09] for use.
3. Signals unique to MR-J4-_B_are in parentheses.

3. PARAMETERS

3.1 Comparison of Parameters

N Never perform extreme adjustments and changes to the parameters, otherwise
the operation may become unstable.
If fixed values are written in the digits of a parameter, do not change these values.
Do not change parameters for manufacturer setting.
Do not enter any setting value other than those specified for each parameter.

POINT
-For the parameter converter function, refer to "Part 7: Common Reference Material".

- To enable a parameter whose abbreviation is preceded by *, turn the power OFF and then ON after setting the parameter.
-For details about parameter settings for replacement, refer to the MR-J4-
A/MR-J4-_B_Servo Amplifier Instruction Manual.
With the drive unit, the deceleration to a stop function is enabled in the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0 _".
(1) Converter unit
(a) Parameter comparison list

POINT

- Manufacturer setting parameters are not described here.

MR-HP30K,MR-HP55KA4					MR-CR55K,MR-CR55K4				
No.	Abbreviation	Parameter name	Initial value	$\begin{aligned} & \text { Customer } \\ & \text { setting } \\ & \text { value } \end{aligned}$	No.	Abbreviation	Parameter name	Initial value	$\begin{gathered} \text { Customer } \\ \text { setting } \\ \text { value } \end{gathered}$
0	*STY	Control mode and regenerative option selection	0000h		PA01	*REG	Regenerative options	0000h	
\searrow					PA02	*MCC	Magnetic contactor drive output selection	0001h	
4	*DMD	Status display selection	0000h		PA08	*DMD	Status display selection	0000h	
					PA15	AOP3	Function selection A-3	0000h	
5	*ACL	Alarm history clear	0000h		PA09	*BPS	Alarm history clear	0000h	
					PA12	*DIF	Input filter setting	0002h	
					PA17	*AOP5	Function selection A-5	0001h	
				$>$	PA18	CVAT	Voltage sag detection time for SEMI-F47	200	

(b) Comparison of parameter details

Note. Set [Pr. PA17 SEMI-F47 function selection] and [Pr. PA18 SEMI-F47 function Voltage sag detection wait] of the converter unit according to [Pr. PA20 SEMI-F47 function selection] and [Pr. PF25 SEMI-F47 function Voltage sag detection wait] of a drive unit.
(2) Drive unit

POINT

Manufacturer setting parameters are not described here.
(a) General-purpose interface 200 V class

Here are described settings of drive unit specific parameters. Settings of the other parameters are
the same as MR-J4-_A_. Refer to Chapter 5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

MR-J2S_A			MR-J4_A		
No.	Name and function	Initial value	No.	Name and function	Initial value
0	Control mode and regenerative option selection Refer to the MR-J2S-_A_ servo amplifier Instruction Manual. Make sure to select regenerative option selection " 0 ".	0000h	PA02	Regenerative options Select a regenerative option. For a drive unit, select a regenerative option by configuring the converter unit. Select "__ 00 " or "_ 0 1", otherwise [AL. 37 Parameter error] will occur. 00: Use no regenerative option, or use a regenerative option by configuring the converter unit.	0000h

(b) SSCNET interface 200 V class

POINT

Connecting to a servo system controller results in servo parameters of the controller written to the corresponding parameters of the drive unit.
-Some servo system controller models, drive unit software versions, and MR Configurator2 software versions limit setting of some parameters or setting values of the parameters. For details, refer to servo system controller user's manuals.

Here are described settings of drive unit specific parameters. Settings of the other parameters are the same as MR-J4-_B_. Refer to Chapter 5 of "MR-J4-_B_(-RJ) Servo Amplifier Instruction Manual".

(c) General-purpose interface 400 V class

Here are described settings of drive unit specific parameters. Settings of the other parameters are the same as MR-J4-_A_. Refer to Chapter 5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

Note 1. "Maximum speed" and " Maximum torque" differ depending on the servo motor. Therefore, after the existing motor has been replaced with an HG motor, the output voltage for "Maximum speed" or " Maximum torque" may differ.
2. Units used for MR-J2S__A_ are different from those for MR-J4-_A_. Note that the input range of existing equipment needs to be adjusted.
3. Set "0008" or "0009". When setting the value, note that the input range of existing equipment needs to be adjusted.
(d) SSCNET interface 400 V class

POINT
Connecting to a servo system controller writes servo parameters of the controller into the corresponding parameters of the drive unit.
There are some servo system controller models, drive unit software versions, or MR Configurator2 software versions which limit setting of some parameters or setting values of the parameters. For details, refer to servo system controller user's manuals.

Here are described settings of drive unit specific parameters. Settings of the other parameters are the same as MR-J4-_B_. Refer to Chapter 5 of "MR-J4-_B_(-RJ) Servo Amplifier Instruction Manual".

4. CHARACTERISTICS

4.1 Capacity of Power Source Facility and Generation Loss

(1) Calorific values of converter units and drive units

Table 5.1 and Table 5.2 shows heat losses at rated load and power supply capacity for a set of a converter unit and drive unit. When a servo motor runs at a speed less than its rated speed, its power supply capacity becomes less than a value in the table while its calorific value remains the same. Since the servo motor requires 2 times to 2.5 times greater instantaneous power for acceleration, use the power supply which ensures that the voltage lies within the permissible voltage fluctuation at the main circuit power supply terminals (L1/L2/L3) of the converter unit. The power supply equipment capacity changes with the power supply impedance.
The actually generated heat falls within the ranges at rated output and at servo-off according to the frequencies of use during operation. When designing an enclosed cabinet, use the values in the table, considering the worst operating conditions. The calorific values in Table 5.1 and Table 5.2 do not include those at regeneration.
(a) MR-J2S series

Table 5.1 Power supply capacities and calorific values per axis at rated output for MR-J2S series

Servo amplifier	Converter unit	Power supply capacity [kVA]		The calorific value of a servo amplifier [W] (Note)		Required heat dissipation area [m^{2}]
		Power factor improving DC reactor not used	Power factor improving DC reactor used	At rated output	At zero torque	
MR-J2S-30KA/B	MR-HP30KA	48	40	$\begin{gathered} 1650 \\ (1100+550) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (30+30) \\ \hline \end{gathered}$	24.1
MR-J2S-37KA/B		59	49	$\begin{gathered} 1850 \\ (1300+550) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (30+30) \\ \hline \end{gathered}$	30.6
MR-J2S-30KA4/B4	MR-HP55KA4	48	40	$\begin{gathered} 1290 \\ (1010+280) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (30+30) \\ \hline \end{gathered}$	24.1
MR-J2S-37KA4/B4		59	49	$\begin{gathered} 1650 \\ (1310+342) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (30+30) \\ \hline \end{gathered}$	30.6
MR-J2S-45KA4/B4		71	59	$\begin{gathered} 1810 \\ (1370+440) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (30+30) \\ \hline \end{gathered}$	33.5
MR-J2S-55KA4/B4		87	72	$\begin{gathered} 2190 \\ (1690+500) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (30+30) \\ \hline \end{gathered}$	40.5

Note. A term on the left in () is for a servo amplifier and one on the right is for a converter unit.
(b) MR-J4-DU_

Table 5.2 Power supply capacities and calorific values at rated output for power regeneration converter unit

Converter unit	Drive unit	Servo motor	Power supply capacity [kVA]		The calorific value of a drive unit [W] (Note)			Required heat dissipation area $\left[\mathrm{m}^{2}\right]$
			Power factor improving DC reactor not used	Power factor improving DC reactor used	At rated output	At rated output [Internal heat generation at external cooling]	Servo off	
MR-CR55K	MR-J4-DU30K_	HG-JR30K1 HG-JR30K1M	48	40	$1350(900$ + 450)	470	$\begin{gathered} 60 \\ (30+30) \end{gathered}$	31.0
	MR-J4-DU37K_	HG-JR37K1 HG-JR37K1M	59	49	$1550(1000+550)$	550		36.6
MR-CR55K4	MR-J4-DU30K_4	$\begin{array}{\|l\|} \hline \text { HG-JR30K14 } \\ \text { HG-JR30K1M4 } \end{array}$	48	40	1070 (790 + 280)	390		25.8
	MR-J4-DU37K_4	HG-JR37K14 HG-JR37K1M4	59	49	$1252(910$ + 342$)$	470		30.8
	MR-J4-DU45K_4	HG-JR45K1M4	71	59	1580 (1110 + 470)	550		42.4
	MR-J4-DU55K_4	HG-JR55K1M4	87	72	1940 (1440 + 500)	650		43.0

[^1]
4.2 Inrush Current When Turning On the Main Circuit/Control Circuit Power Supply

POINT
Inrush current values are changeable depending on the frequency of turning on/off the power supplies and ambient temperature.

An inrush current flow in the units at power-on. Use a molded-case circuit breaker and a magnetic contactor to protect the units from the inrush current. (Refer to Section 5.3)
When using a circuit protector, it is recommended that you use an inertia delay type which will not be tripped by the inrush current.
When the converter unit and drive unit are connected by daisy chain, the total inrush current of the both units flows in.

1) MR-J2S series inrush current when turning on the main circuit/control circuit power supply The table below shows inrush currents (references) when the maximum permissible voltage (200 V AC class: $253 \mathrm{~V} \mathrm{AC}$,400 V AC class: 528 V AC) is applied. The power supply capacity is 2500 kVA and the wiring length is 1 m .

Converter unit	Servo amplifier	Inrush current ($\mathrm{A}_{0-\mathrm{p}}$)	
		Main circuit power supply ($\left.\mathrm{L}_{1} / \mathrm{L}_{2} / \mathrm{L}_{3}\right)$	Control circuit power supply ($\mathrm{L}_{11} / \mathrm{L}_{21}$)
MR-HP30KA	MR-J2S-30K_	$270 \mathrm{~A}$ (Attenuates to approximately 20 A in 160 ms)	7 A (Attenuates to approximately 0 A in 200 ms)
	MR-J2S-37K_		
MR-HP55KA4	MR-J2S-30K_4	554 A (Attenuates to approximately 20 A in 80 ms)	$15 \mathrm{~A}$ (Attenuates to approximately 0 A in 150 ms)
	MR-J2S-37K_4	555 A (Attenuates to approximately 20 A in 100 ms)	
	MR-J2S-45K_4	$556 \mathrm{~A}$ (Attenuates to approximately 20 A in 100 ms)	
	MR-J2S-55K_4		

2) MR-J4 series inrush current when turning on the main circuit/control circuit power supply The table below shows inrush currents (references) when the maximum permissible voltage (200 V AC class: 240 V AC, 400 V AC class: 480 V AC) is applied. The power supply capacity is 2500 kVA and the wiring length is 1 m .

Converter unit	Servo amplifier	Inrush current ($\mathrm{A}_{0-\mathrm{P}}$)	
		Main circuit power supply ($\mathrm{L}_{1} / \mathrm{L}_{2} / \mathrm{L}_{3}$)	Control circuit power supply ($\mathrm{L}_{11} / \mathrm{L}_{21}$)
MR-CR55K	MR-J4-DU30K_	$154 \text { A }$ (Attenuates to approximately 20 A in 150 ms)	$31 \text { A }$ (Attenuates to approximately 2 A in 60 ms)
	MR-J4-DU37K_		
MR-CR55K4	MR-J4-DU30K_4	305 A (Attenuates to approximately 20 A in 70 ms)	$27 \mathrm{~A}$ (Attenuates to approximately 2 A in 45 ms)
	MR-J4-DU37K_4		
	MR-J4-DU45K_4		
	MR-J4-DU55K_4		

5. OPTIONS AND PERIPHERAL EQUIPMENT

5.1 Comparison Table of Cable Option Combinations

Cable option combinations

Application	MR-J2S series	MR-J4 series	Note
Protection coordination cable	MR-J2HBUS_M	MR-J3CDL05M	Connector shape will be changed. Cable must be changed.
Connector set	MR-J2CNS	MR-J2CN1-A	Connector shape will be changed. Cable must be changed.
Magnetic contactor wiring connector		Note	Prepare a new cable.
Digital I/O connector	MR-HP4CN1	Note	Connector shape will be changed. Cable must be changed.
Terminal connector	MR-A-TM		

Note. Packed with a converter unit

5.1.1 MR-J3CDL05M (0.5 m) Protection Coordination Cable

When fabricating a protection coordination cable, do wiring correctly. Failure to do so may result in the servo motor working unexpectedly.

This is a cable to connect a converter unit and drive unit.
(1) Internal wiring diagram

(2) Fabrication of a protection coordination cable

Fabricate a cable according to the internal wiring diagram of the section (1) using an MR-J2CN1-A connector set and recommended wires shown below.

Model	Length [m]	$\begin{gathered} \text { Core } \\ \text { size } \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	Number of cores	Characteristics of a core				Recommended wire type
				Configuration [wires/mm]	Conductor resistance [Ω / km]	insulator outer diameter insulator OD d [mm] (Note 1)		
MR-J3CDL05M	0.5	0.08	$\begin{gathered} 20 \\ \text { (10 pairs) } \end{gathered}$	7/0.127	$\begin{gathered} 222 \\ \text { or less } \end{gathered}$	0.38	6.1	UL 20276 AWG\#28 10 pair (cream)

Note 1. d is as shown below.

2. This is the standard outside diameter. Although no tolerance is described, the diameter can be up to 10% larger than shown in the table.

5.2 Wire Selection Example

POINT

For wiring to comply with the IEC/EN/UL/CSA standard, refer to "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual". To comply with other standards, use wires compliant with each standard.
Selection conditions of wire size is as follows.
Wiring condition: In-air, one-row wiring
Wiring length: 30 m or lower (MR-J2S series)
50 m or lower (MR-J4 series)

POINT
If using the existing cables, refer to "[Appendix 2] Introduction to Renewal Tool".

5.2.1 MR-J2S-series power supply wire size

The following diagram shows the wires used for wiring. Use the wires or equivalent given in this section.

In this case, the power supply wire used is a 600 V plastic one and the wiring distance is 30 m or less. When the wiring distance exceeds 30 m , select another wire size in consideration of the voltage drop. The alphabet letters (a, b, c) on the table correspond to crimp terminals used when wiring a servo amplifier. The method of wiring a servo motor differs depending on the type and capacity of the servo motor. To comply with the UL/cUL (CSA) standard, use UL-approved copper wires rated at $60{ }^{\circ} \mathrm{C}$ or higher for wiring.

Wire size selection example 1 (IV wire)
Recommended wire

Converter unit	Drive unit	Wire [mm²]					
		$\begin{gathered} 1) \\ L_{1} / L_{2} / L_{3} / \oplus \end{gathered}$	$\begin{gathered} \text { 2) } \\ \mathrm{L}_{11} / \mathrm{L}_{21} \end{gathered}$	3) $U / V / W$ P1/P2/ $\xlongequal{-}$	$\begin{gathered} \text { 4) } \\ \text { P/C } \end{gathered}$	$\begin{gathered} \text { 5) } \\ \text { OHS1/OHS2 } \end{gathered}$	6) BU/BV/BW
MR-HP30KA	MR-J2S-30KA/B	50 (AWG1/0)	2 (AWG14)	60 (AWG2/0)	5.5 (AWG10)	1.25 (AWG16)	1.25 (AWG16)
	MR-J2S-37KA/B	60 (AWG2/0)		80 (AWG3/0)			
MR-HP55KA4	MR-J2S-30KA4/B4	22 (AWG4)		30 (AWG2)			
	MR-J2S-37KA4/B4	30 (AWG2)		38 (AWG2)			
	MR-J2S-45KA4/B4	38 (AWG2)		50 (AWG1/0)			
	MR-J2S-55KA4/B4	50 (AWG1/0)		60 (AWG2/0)			

5.2.2 MR-J4-series, power supply wire size

The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.

(1) Example of selecting the wire sizes

For the power supply wire, use a 600 V grade heat-resistant polyvinyl chloride insulated wire (HIV wire).
The table below shows selection examples of power supply wire sizes.

Wire size selection example (HIV wire)
Recommended wire

Converter unit (Note 2)	Drive unit (Note 2)	Wire [mm²] (Note1, 3)			
		$\begin{gathered} \text { 1) } \\ \mathrm{L} 1 / \mathrm{L} 2 / \mathrm{L} 3 /(\mathrm{O} \end{gathered}$	$\begin{gathered} \text { 2) } \\ \text { L11/L21 } \end{gathered}$	$\begin{gathered} \text { 3) } \\ \mathrm{P} 2 / \mathrm{C} \end{gathered}$	$4)$ U/V/W P1/P2/ $(=)$
MR-CR55K	MR-J4-DU30K_	38 (AWG2): c	$1.25 \text { to } 2$ (AWG 16 to 14): g (Note 4)	5.5 (AWG10): a	60 (AWG2/0): d
	MR-J4-DU37K_	60 (AWG2/0): d			60 (AWG2/0): d
MR-CR55K4	MR-J4-DU30K_4	22 (AWG4): e			22 (AWG4): e
	MR-J4-DU37K_4	22 (AWG4): e			38 (AWG 2): f
	MR-J4-DU45K_4	38 (AWG2): c			38 (AWG2): c
	MR-J4-DU55K_4	38 (AWG2): c			38 (AWG2): c

Note 1. Alphabets in the table indicate crimping tools. For crimp terminals and applicable tools, refer to (2) of this section.
2. To connect these wires to a terminal block, make sure to use the screws that come with the terminal block.
3. Selected based on the servo motor with the largest rated current of all the servo motors available.
4. To comply with the IEC/EN/UL/CSA standard, use a wire of $2 \mathrm{~mm}^{2}$.
(2) Selection example of crimp terminals

The table below shows selection examples of crimp terminals for a terminal block of a drive unit or converter unit when the wires described in (1) of this section are used.

Symbol	Drive unit/converter unit side crimp terminal				
	Crimp terminal (Note 2)	Applicable tool			Manufacturer
		Body	Head	Dice	
a	FVD5.5-10	YNT-1210S	${ }^{\text {r }}$		JST
b	FVD22-10	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{aligned} & \mathrm{DH}-123 \\ & \mathrm{DH}-113 \end{aligned}$	
$\begin{gathered} c \\ (\text { Note 1) } \end{gathered}$	R38-10	YPT-60-21	-	TD-124	
		$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YET-60-1		
$\begin{gathered} d \\ (\text { Note 1) } \end{gathered}$	R60-10	YPT-60-21	-	$\begin{aligned} & \text { TD-125 } \\ & \text { TD-113 } \end{aligned}$	
		$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YET-60-1		
e	FVD22-8	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{aligned} & \mathrm{DH}-123 \\ & \mathrm{DH}-113 \end{aligned}$	
		YPT-60-21	-		
(Note 1)	R38-8	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YET-60-1	TD-112	
g	FVD2-4	YNT-1614	-		

Note 1. Cover the crimped portion with an insulating tape.
2. Installation of a crimp terminal may be impossible depending on the size, so make sure to use the recommended crimp terminal or one equivalent to it.

5.3 Selection of No-Fuse Breakers, Fuses, and Magnetic Contactors (example)

5.3.1 MR-J2S-series, no-fuse breakers and magnetic contactors (recommended)

Always use one molded-case circuit breaker/one magnetic contactor with one servo amplifier.

Servo amplifier	Converter unit	Molded-case circuit breaker			Magnetic contactor
		Current		Voltage AC	
		Power factor improving DC reactor not used	Power factor improving DC reactor used		
MR-J2S-30KA/B	MR-HP30KA	400 A frame 250 A	225 A frame 225 A	240 V	S-N150
MR-J2S-37KA/B		400 A frame 300 A	400 A frame 300 A		S-N180
MR-J2S-30KA4/B4	MR-HP55KA4	225 A frame 150 A	225 A frame 125 A	$\begin{aligned} & 600 \mathrm{Y} / \\ & 347 \mathrm{~V} \end{aligned}$	S-N95
MR-J2S-37KA4/B4		225 A frame 175 A	225 A frame 150 A		S-N125
MR-J2S-45KA4/B4		225 A frame 225 A	225 A frame 175 A		S-N150
MR-J2S-55KA4/B4		400 A frame 250 A	225 A frame 225 A		S-N180

5.3.2 MR-J4-series, no-fuse breakers, fuses, and magnetic contactors (recommended)
(1) For main circuit power supply

Always use one molded-case circuit breaker and one magnetic contactor with one converter unit. When using a fuse instead of the molded-case circuit breaker, use the one having the specifications given in this section.

Converter unit	Drive unit	Molded-case circuit breaker (Note 1)			Fuse			Magnetic contactor (Note 2)
		Frame, rated current		Voltage AC [V]	Class	Current [A]	Voltage AC [V]	
		Power factor improving DC reactor not used	Power factor improving DC reactor used					
MR-CR55K	MR-J4-DU30K_	225 A frame 175 A	225 A frame 150 A	240	T	300	300	S-N150
	MR-J4-DU37K_	225 A frame 225 A	225 A frame 175 A			400		S-N180
MR-CR55K4	MR-J4-DU30K_4	100 A frame 100 A	100 A frame 80 A	480		175	600	S-N65
	MR-J4-DU37K_4	125 A frame 125 A	100 A frame 100 A			200		S-N80
	MR-J4-DU45K_4	225 A frame 150 A	125 A frame 125 A			300		S-N95
	MR-J4-DU55K_4	225 A frame 175 A	225 A frame 150 A			300		S-N150

Note 1. To comply with the IEC/EN/UL/CSA standard, refer to App. 2.
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less.
(2) For control circuit power supply

When the wiring for the control circuit power supply (L11, L21) is thinner than that for the main circuit power supply (L1, L2, L3), install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit.
(a) Converter unit

Converter unit	Molded-case circuit breaker (Note)		Fuse (Class T)		Fuse (Class K5)	
	Frame, rated current	Voltage AC [V]	Current [A]	Voltage AC [V]	Current [A]	Voltage AC [V]
MR-CR55K	30 A frame 5 A	240	1	300	1	250
MR-CR55K4	30 A frame 5 A	480	1	600	1	600

Note. To make a converter unit comply with the IEC/EN/UL/CSA standard, refer to App. 2.
(b) Drive unit

Drive unit	Molded-case circuit breaker (Note)		Fuse (Class T)		Fuse (Class K5)	
	Frame, rated current	Voltage AC [V]	Current [A]	Voltage AC [V]	Current [A]	Voltage AC [V]
MR-J4-DU30K_	30 A frame 5 A	240	1	300	1	250
MR-J4-DU37K_						
MR-J4-DU30K_4	30 A frame 5 A	480	1	600	1	600
MR-J4-DU37K_4						
MR-J4-DU45K_4						
MR-J4-DU55K_4						

Note. To make a drive unit comply with the IEC/EN/UL/CSA standard, refer to App. 2.

5.4 FR-BU2-(H) Brake Unit

POINT
In torque control mode, EM2 signals of a drive unit are the same as its EM1 signals.
OUse a 200 V class brake unit and resistor unit for a 200 V class converter unit as well as a 400 V class brake unit and resistor unit for a 400 V class converter unit. Do not use different voltage class units together.
Do not install a brake unit or resistor unit horizontally or obliquely, otherwise their heat dissipation effect will deteriorate. Make sure to install them vertically. - The temperature of resistor unit case rises up to $100^{\circ} \mathrm{C}$ or more. Make sure that any wires or flammables do not come in contact with the case.
-Use a brake unit in ambient temperature of -10 to $50^{\circ} \mathrm{C}$. Note that the ambient temperature for brake units is different from that for converter units (0 to $55^{\circ} \mathrm{C}$).

- Configure the circuit in such a way that when a malfunction occurs, the power supply is shut off by using an alarm output from a brake unit or resistor unit.
Use a brake unit in combination with other units as described in Section 5.4.1.
A brake unit and a regenerative option (regenerative resistors) cannot be used together.
When using a brake unit, set parameters as described in the table below.

Parameter	Setting value
[Pr. PA01] of converter units	$-_00$ (initial value)
[Pr. PA02] of drive units	$\ldots-01$

Connect a brake unit to the buses of a converter unit (between $L+$ and $L-$ of TE2-1). Brake units regenerate larger power than MR-RB regenerative options. Brake units are used when there is insufficient regenerative ability in regenerative options.
When using a brake unit, make sure to refer to the "FR-BU2 Instruction Manual".

5.4.1 Selection

Use a converter unit, a brake unit, and a resistor unit in the combination described in the table below.

Brake unit		Resistor unit	Number of connected units	Permissible continuous power $[\mathrm{kW}]$	Resultant resistance $[\Omega]$	Converter unit
200 V class	FR-BU2-55K	FR-BR-55K	2 (in parallel)	7.82	1	
	MT-BR5-55K	2 (in parallel)	11.0	1		
400 V class	FR-BU2-H55K	FR-BR-H55K	2 (in parallel)	7.82	4	MR-CR55K4
	FR-BU2-H75K	MT-BR5-H75K	2 (in parallel)	15.0	3.25	

5.4.2 Parameter setting of brake units

Normally, it is unnecessary to change the FR-BU2-(H) parameters. The table below shows permission for changing each parameter.

Parameter		Permission	Remarks
Number	Name		
0	Brake mode switching		
1	Monitor display data selection	Available	Refer to the "FR-BU2 installation guide".
2	Input terminal function selection 1	NO	Do not change the setting.
3	Input terminal function selection 2		
77	Parameter write selection		
78	Cumulative energization time carrying-over times		
CLr	Parameter clear		
ECL	Alarm history clear		
C1	For manufacturer setting		

5.4.3 Connection example

POINT

Connecting the PR terminal of a brake unit to the $L+$ terminal of a converter unit will cause a malfunction to the brake unit. Make sure to connect the PR terminal of a brake unit to that of a resistor unit.
(1) Use of the FR-BR-(H) resistor unit

POINT
When connecting two brake units in parallel, use FR-BU2-(H) for both.
Otherwise an alarm or malfunction may occur.

- Make sure to connect the master and slave terminals (MSG, SD) of one brake unit to the master and the slave of the other respectively.
Do not connect as shown below.

Connecting multiple brake units together to $\mathrm{L}+$ and L -.

Connecting multiple brake units by daisy chain.
(a) When the magnetic contactor drive output is enabled

Note 1. For the power supply specifications, refer to Part 7 "Common Reference Material".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. P1 and P2 are connected in factory. When using the power factor improving DC reactor, remove the short-circuit bar across P1 and P2 before connecting the reactor. For details, refer to Chapter 7 in Part 9.
4. Make sure that the connection destinations of the $\mathrm{P} /+$ terminal and $\mathrm{N} /-$ terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
5. For 400 V class, use a step-down transformer.
6. Contact rating: 1b normally closed contact, 5 A at $110 \mathrm{~V} \mathrm{AC} / 3 \mathrm{~A}$ at 220 V AC

Normal: TH1 and TH2 are connected. Abnormal: TH1 and TH2 are disconnected.
7. Contact rating: 230 V AC_0.3 A/30 V DC_0.3 A

Normal: B and C are connected/A and C are disconnected. Abnormal: B and C are disconnected/ A and C are connected.
8. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to Section 5.3 in Part 5.)
9. Do not connect multiple wires directly to L+ and L- terminals of TE2-1 of a converter unit.
10. Make sure to connect between BUE and SD. (Wired in factory.)
11. Make sure that the connection destinations of MSG terminal and SD terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
12. Connect $L+$ and L - terminals of TE2-1 of a converter unit to terminal blocks by using wires described in (4) of this section.
13. In order to prevent unexpected restarting of the drive unit, configure the circuit so that EM2 is also turned off when the main circuit power supply is turned off.
14. This wiring diagram is for MR-J4-DU B . The way to interface MR-J4-DU is the same as MR-J4-. Refer to each servo amplifier instruction manual.
(b) When the magnetic contactor drive output is disabled

Note 1. For the power supply specifications, refer to Part 7 "Common Reference Material".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. P1 and P2 are connected in factory. When using the power factor improving DC reactor, remove the short-circuit bar across P1 and P2 before connecting the reactor. For details, refer to Chapter 7 in Part 9.
4. Make sure that the connection destinations of the $\mathrm{P} /+$ terminal and $\mathrm{N} /-$ terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
5. For 400 V class, use a step-down transformer.
6. Contact rating: 1b normally closed contact, 5 A at $110 \mathrm{~V} \mathrm{AC/3} 3$ at 220 V AC

Normal: TH1 and TH2 are connected. Abnormal: TH1 and TH2 are disconnected.
7. Contact rating: 230 V AC_0.3 A/30 V DC_0.3 A

Normal: B and C are connected/A and C are disconnected. Abnormal: B and C are disconnected/ A and C are connected.
8. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to Section 5.3 in Part 5.)
9. Do not connect multiple wires directly to L+ and L- terminals of TE2-1 of a converter unit.
10. Make sure to connect between BUE and SD. (Wired in factory.)
11. Make sure that the connection destinations of MSG terminal and SD terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
12. Connect $L+$ and L - terminals of TE2-1 of a converter unit to terminal blocks by using wires described in (4) of this section.
13. In order to prevent unexpected restarting of the drive unit, configure the circuit so that EM2 is also turned off when the main circuit power supply is turned off.
14. This wiring diagram is for MR-J4-DU B . The way to interface MR-J4-DU is the same as MR-J4-. Refer to each servo amplifier instruction manual.
(2) Use of the MT-BR5-(H) resistor unit
(a) When connecting one converter unit to one brake unit

1) When the magnetic contactor drive output is enabled

Note 1. For the power supply specifications, refer to Part 7 "Common Reference Material".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. P1 and P2 are connected in factory. When using the power factor improving DC reactor, remove the short-circuit bar across P1 and P2 before connecting the reactor. For details, refer to Chapter 7 in Part 9.
4. Make sure that the connection destinations of the $\mathrm{P} /+$ terminal and $\mathrm{N} /-$ terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
5. For 400 V class, use a step-down transformer.
6. Contact rating: 1a normally open contact, 5 A at $110 \mathrm{~V} \mathrm{AC/} 3 \mathrm{~A}$ at 220 V AC

Normal: TH1 and TH2 are disconnected. Abnormal: TH1 and TH2 are connected.
7. Contact rating: 230 V AC_0.3 A/30 V DC_0.3 A

Normal: B and C are connected/A and C are disconnected. Abnormal: B and C are disconnected/A and C are connected.
8. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to Section 5.3 in Part 5.)
9. Do not connect multiple wires directly to L+ and L- terminals of TE2-1 of a converter unit.
10. Make sure to connect between BUE and SD. (Wired in factory.)
11. In order to prevent unexpected restarting of the drive unit, configure the circuit so that EM2 is also turned off when the main circuit power supply is turned off.
12. This wiring diagram is for MR-J4-DU_B_. The way to interface MR-J4-DU_ is the same as MR-J4-_. Refer to each servo amplifier instruction manual.
2) When the magnetic contactor drive output is disabled

Note 1. For the power supply specifications, refer to Part 7 "Common Reference Material".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. P1 and P2 are connected in factory. When using the power factor improving DC reactor, remove the short-circuit bar across P1 and P2 before connecting the reactor. For details, refer to Chapter 7 in Part 9.
4. Make sure that the connection destinations of the $\mathrm{P} /+$ terminal and $\mathrm{N} /-$ terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
5. For 400 V class, use a step-down transformer.
6. Contact rating: 1a normally open contact, 5 A at $110 \mathrm{~V} \mathrm{AC} / 3 \mathrm{~A}$ at 220 V AC

Normal: TH1 and TH2 are disconnected. Abnormal: TH1 and TH2 are connected.
7. Contact rating: 230 V AC_0.3 A/30 V DC_0.3 A

Normal: B and C are connected/A and C are disconnected. Abnormal: B and C are disconnected/A and C are connected.
8. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to Section 5.3 in Part 5.)
9. Do not connect multiple wires directly to L+ and L- terminals of TE2-1 of a converter unit.
10. Make sure to connect between BUE and SD. (Wired in factory.)
11. In order to prevent unexpected restarting of the drive unit, configure the circuit so that EM2 is also turned off when the main circuit power supply is turned off.
12. This wiring diagram is for MR-J4-DU_B_. The way to interface MR-J4-DU_ is the same as MR-J4-_. Refer to each servo amplifier instruction manual.
(b) When connecting one converter unit to two brake units

POINT

When connecting two brake units in parallel, use FR-BU2-(H) for both.
Otherwise an alarm or malfunction may occur.
Make sure to connect the master and slave terminals (MSG, SD) of one brake unit to those of the other respectively.
Do not connect as shown below.

Connecting multiple brake units together to L+ and L-.

Connecting multiple brake units by daisy chain.

1) When the magnetic contactor drive output is enabled

Note 1. For the power supply specifications, refer to Part 7 "Common Reference Material".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. P1 and P2 are connected in factory. When using the power factor improving DC reactor, remove the short-circuit bar across P1 and P2 before connecting the reactor. For details, refer to Chapter 7 in Part 9.
4. Make sure that the connection destinations of the $\mathrm{P} /+$ terminal and $\mathrm{N} /-$ terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
5. For 400 V class, use a step-down transformer.
6. Contact rating: 1a normally open contact, 5 A at 110 V AC/3 A at 220 V AC

Normal: TH1 and TH2 are disconnected. Abnormal: TH1 and TH2 are connected.
7. Contact rating: 230 V AC_0.3 A/30 V DC_0.3 A

Normal: B and C are connected/A and C are disconnected. Abnormal: B and C are disconnected/A and C are connected.
8. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to Section 5.3 in Part 5.)
9. Do not connect multiple wires directly to L+ and L- terminals of TE2-1 of a converter unit.
10. Make sure to connect between BUE and SD. (Wired in factory.)
11. Make sure that the connection destinations of MSG terminal and SD terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
12. Connect $L+$ and L - terminals of a converter unit to terminal blocks by using wires described in (4) of this section.
13. In order to prevent unexpected restarting of the drive unit, configure the circuit so that EM2 is also turned off when the main circuit power supply is turned off.
14. This wiring diagram is for MR-J4-DU_B_. The way to interface MR-J4-DU_ is the same as MR-J4-_. Refer to each servo amplifier instruction manual.
2) When the magnetic contactor drive output is disabled

Note 1. For the power supply specifications, refer to Part 7 "Common Reference Material".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less. Bus voltage decreases according to the voltage and operation pattern of the main circuit, and there may be a shift in dynamic brake deceleration during forced stop deceleration. If dynamic brake deceleration is not desired, delay the time to turn off the electromagnetic contactor.
3. P1 and P2 are connected in factory. When using the power factor improving DC reactor, remove the short-circuit bar across P1 and P2 before connecting the reactor. For details, refer to Chapter 7 in Part 9.
4. Make sure that the connection destinations of the $\mathrm{P} /+$ terminal and $\mathrm{N} /-$ terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
5. For 400 V class, use a step-down transformer.
6. Contact rating: 1a normally open contact, 5 A at $110 \mathrm{~V} \mathrm{AC/} 3 \mathrm{~A}$ at 220 V AC

Normal: TH1 and TH2 are disconnected. Abnormal: TH1 and TH2 are connected.
7. Contact rating: 230 V AC_0.3 A/30 V DC_0.3 A

Normal: B and C are connected/A and C are disconnected. Abnormal: B and C are disconnected/A and C are connected.
8. Install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit. (Refer to Section 5.3 in Part 5.)
9. Do not connect multiple wires directly to L+ and L- terminals of TE2-1 of a converter unit.
10. Make sure to connect between BUE and SD. (Wired in factory.)
11. Make sure that the connection destinations of MSG terminal and SD terminal of a brake unit are correct. Otherwise a malfunction will occur to a converter unit or brake unit.
12. Connect $L+$ and L - terminals of a converter unit to terminal blocks by using wires described in (4) of this section.
13. In order to prevent unexpected restarting of the drive unit, configure the circuit so that EM2 is also turned off when the main circuit power supply is turned off.
14. This wiring diagram is for MR-J4-DU_B_. The way to interface MR-J4-DU_ is the same as MR-J4-_. Refer to each servo amplifier instruction manual.
(3) Wiring precautions

Use as short wires as possible between a converter unit and brake unit and between a resistor unit and a brake unit. If using a wire of 5 m or longer, be sure to use a twist wire (with 5 or more twists in 1 m). Make sure that a wire is 10 m or shorter even when it is a twisted wire. If a wire of 5 m or longer is not a twisted wire, or if a wire is a twisted wire and longer than 10 m , a malfunction may occur to a brake unit.

(4) Wires
(a) Wires for brake units

HIV wire (600 V grade heat-resistant polyvinyl chloride insulated wire) is recommended for use in brake units.

1) Main circuit terminals

2) Control circuit terminal

POINT

Fix a screw tightly otherwise the wire may come off or a malfunction may occur. Fixing a screw too tightly can damage the screw or brake unit, resulting in a short circuit or malfunction.

Terminal block

Do wiring with the stripped cable twisted to prevent it from becoming loose. Do not solder it.
Screw size: M3
Tightening torque: $0.5 \mathrm{~N} \cdot \mathrm{~m}$ to $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Cable gauge: $0.3 \mathrm{~mm}^{2}$ to $0.75 \mathrm{~mm}^{2}$
Driver: Small-size slotted screw driver
(Blade thickness: $0.4 \mathrm{~mm} /$ Blade width: 2.5 mm)
(b) Wires between a converter unit and terminal blocks when two brake units are used.

Brake unit		Cable gauge	
		AWG	
200 V class	FR-BU2-55K	38	2
400 V class	FR-BU2-H55K	14	6
	FR-BU2-H75K	38	2

(5) Crimp terminals for $L+$ and L - terminals of TE2-1 of a converter unit.
(a) Recommended crimp terminals

POINT

- Installation of a crimp terminal may be impossible depending on the size, so make sure to use the recommended crimp terminal or one equivalent to it.

Converter unit		Brake unit	Connectable units	Crimp terminal (manufacturer)	$\begin{gathered} \text { Applicable } \\ \text { tool } \\ \text { (Note 1) } \\ \hline \end{gathered}$
200 V class	MR-CR55K	FR-BU2-55K	2	```38-S6 (JST) (Note 2) R38-6S (NICHIFU) (Note 2)```	a
400 V class	MR-CR55K4	FR-BU2-H55K	2	FVD14-6 (JST)	b
		FR-BU2-H75K	2	$\begin{aligned} & 38-\text { S6 } \\ & \text { (JST) (Note 2) } \\ & \text { R38-6S (NICHIFU) (Note 2) } \end{aligned}$	a

Note 1. Symbols in the "Applicable tool" column indicate applicable tools described in (b) of this section (5).
2. Coat the crimping part with an insulation tube.
(b) Applicable tool

Symbol	Converter unit side crimp terminal				
	Crimp terminal	Applicable tool			Manufacturer
		Body	Head	Dice	
a	38-S6	YPT-60-21		$\begin{aligned} & \text { TD-124 } \\ & \text { TD-112 } \end{aligned}$	JST
		$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YET-60-1		
	R38-6S	NOP60 NOM60			NICHIFU
b	FDV14-6	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{aligned} & \mathrm{DH}-112 \\ & \mathrm{DH}-122 \end{aligned}$	JST

5.4.4 Dimensions

(1) FR-BU2-(H) brake unit

FR-BU2-55K/FR-BU2-H55K/FR-BU2-H75K
[Unit: mm]

(2) FR-BR-(H) resistor unit

Note. Air vents are provided on both right and left sides and the top of the body. The bottom of the body is open.

Resistor unit		W	W1	H	$H 1$	$H 2$	$H 3$	D	$D 1$	C	Approx. mass $[\mathrm{kg}]$
200 V class	FR-BR-55K	480	410	700	620	40	670	450	3.2	12	70
400 V class	FR-BR-H55K	480	410	700	620	20	670	450	3.2	12	70

(3) MT-BR5-(H) resistor unit

5.5 Comparison of Peripheral Equipment

POINT
Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment".

MEMO

\qquad

Part 6 Review on Replacement of

 MR-J2M with MR-J4
Part 6: Review on Replacement of MR-J2M with MR-J4

1. SUMMARY

This document describes the changes that are applied to when replacing a system using the MR-J2M series with a system using the MR-J4 series. The functions and performance of the MR-J4 series are greatly improved from the MR-J2M series. Mounting dimensions of the both series are significantly different. For the details of the differences, refer to the descriptions in this document.

2. CASE STUDY ON REPLACEMENT OF MR-J2M

2.1 Replacement Method

(1) Simultaneous replacement with MR-J4-_A_ and an HG motor The currently used connectors or cables need to be replaced. The existing cables cannot be used as they are.
[Existing system]

[When replacing only the servo amplifiers]

[System after simultaneous replacement]

2.2 Equipment Configuration

The models for replacement of both the servo amplifier and servo motor as a set are shown.

Series	Model			Replacement model (example)	Mounting compatibility (O: Compatible)
	Base unit	Interface unit	Drive Unit		
200 V AC General-purpose interface	MR-J2M-BU_	MR-J2M-P8A	MR-J2M-10DU	MR-J4-10A	Note
			MR-J2M-20DU	MR-J4-20A	Note
			MR-J2M-40DU	MR-J4-40A	Note
			MR-J2M-70DU	MR-J4-70A	Note
$200 \text { V AC }$ SSCNET interface	MR-J2M-BU_	MR-J2M-P8B	MR-J2M-10DU	MR-J4-10B	Note
			MR-J2M-20DU	MR-J4-20B	Note
			MR-J2M-40DU	MR-J4-40B	Note
			MR-J2M-70DU	MR-J4-70B	Note

[^2]
3. DIFFERENCES BETWEEN MR-J2M-A AND MR-J4-_A_

3.1 Function Comparison Table

3.1.1 General

	Item	MR-J2M series	MR-J4 series	Reference document/items
1	Regenerative resistor	External option	Built-in (200 W or more)	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.2
2	Dynamic brake	Built-in	Built-in (Coasting distance is different.)	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.3
3	Control circuit power	1-phase 200 V AC to 230 V AC	1-phase 200 V AC to 240 V AC	MR-J4-_A_Servo Amplifier Instruction Manual, Section 1.3
4	Main circuit power	1-phase/3-phase 200 V AC to 230 V AC 3-phase 200 V AC to 230 V AC	1-phase/3-phase 200 V AC to 240 V AC 3-phase 200 V AC to 240 V AC	MR-J4-_A_Servo Amplifier Instruction Manual, Section 1.3
5	24 V DC power supply	External supply required	External supply required	MR-J4-_A Servo Amplifier Instruction Manual, Section 3.5.4
6	Auto Tuning	Real-time auto tuning: 15 steps	Real-time auto tuning: 40 steps Advanced gain search (available in the future) One-touch tuning	MR-J4-_A_Servo Amplifier Instruction Manual, Section 6.3
7	Control mode	- Position control mode (pulse command)	- Position control mode (pulse command) - Speed control mode (analog command) - Torque control mode (analog command)	MR-J4-_A_Servo Amplifier Instruction Manual
8	Maximum input pulses	Differential pulse 500 kpulses/s Command pulse: Sink	Differential pulse 4 Mpulses/s Command pulse: Sink/Source	MR-J4-_A_Servo Amplifier Instruction Manual
9	The number of DIO points (excluding EM1)	DI: 5 points $\times 8$ axes, DO: 2 points $\times 8$ axes * When an extension I/O unit is used, DI: 32 points; DO: 8 points added	DI: 9 points, DO: 6 points	MR-J4-_A_Servo Amplifier Instruction Manual
10	DIO interface	Input: Sink Output: Sink	Input: Sink/source Output: Sink/source	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.2
11	Analog input/output	(Input) Unprovided (Output) 10-bit or equivalent $\times 3 \mathrm{ch}$	(Input) 2 ch Torque: 10-bit; Speed: 14-bit or equivalent (Output) 10-bit or equivalent $\times 2$ ch	MR-J4-_A_Servo Amplifier Instruction Manual, Section 3.5
12	Number of internal speed commands (Generalpurpose interface)	0 points	7 points	MR-J4-_A_Servo Amplifier Instruction Manual
13	Parameter setting method	Setup software (SETUP161E)	MR Configurator2 Push-button (General-purpose interface)	MR-J4-_A_Servo Amplifier Instruction Manual, Section 6.1.2
14	Setup software communication	RS-232C	USB	MR-J4-_A_Servo Amplifier Instruction Manual, Section 11.7.3
15	Servo motor (Encoder resolution)	HC-_FS series (17-bit ABS)	HG series (22-bit ABS)	MR-J4-_A_Servo Amplifier Instruction Manual
16	Motor maximum torque	HC-KFS 300\% HC-MFS 300\%	HG-KR 350\% (models with a gear: 300\%) HG-MR 300\%	MR-J4-_A_Servo Amplifier Instruction Manual
17	LED display	7-segment 5-digit	7-segment 5-digit	MR-J4-_A_Servo Amplifier Instruction Manual
18	Advanced vibration suppression control II	Unprovided	Provided	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.1.4
19	Adaptive filter	Provided (I)	Provided (II with improved functions)	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.1.2
20	Notch filter	Provided ($\times 2$)	Provided ($\times 5$)	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.1.6
21	Tough drive	Unprovided	Provided	MR-J4-_A_Servo Amplifier Instruction Manual, Section 7.3
22	Drive recorder	Unprovided	Provided	MR-J4-_A_Servo Amplifier Instruction Manual
23	Forced stop	EM1 (DB stop)	EM1 (DB stop)/EM2 (deceleration stop) optional	MR-J4-_A_Servo Amplifier Instruction Manual

3.2 Comparison of Standard Connection Diagrams

3.3 List of Corresponding Connectors and Terminal Blocks

(1) Connector comparison table

An example of connections with the peripheral equipment is shown below. Refer to the respective Installation Guides and Instruction Manuals for details on signals.

(2) List of corresponding connectors

	MR-J2M-A	
(1)	I/O signal connector	
(2)	I/O signal connector	
(3)	Encoder connector	
(4)	Communication connector [CN3]	PC connection
		Analog monitor
(5)	Main circuit power connector	
	Regenerative option connector	
(6)	Servo motor power connector	
(7)	Control circuit power connector [CNP1B]	
(8)	Battery connector	
(9)	Extended I/O unit	onnector [CN4A] [CN4B]

MR-J4-_A	Note
I/O signal connector [CN1]	Prepare a new cable.
Encoder connector [CN2]	Must switch to encoder cable (option) or prepare a new cable.
USB communication connector [CN5]	Switch to USB cable (option).
Analog monitor connector [CN6]	Switch to monitor cable (option).
Main circuit power connector [CNP1]	Switch to the power connector (enclosed with the amplifier).
Servo motor power connector [CNP3]	
Control circuit power connector [CNP2]	
Battery connector [CN4]	Prepare a new battery.
I/O signal connector [CN1]	Prepare a new cable.

Note. When not using the STO function, attach a short-circuit connector supplied with a servo amplifier onto CN8 (STO input signal connector).
(3) Comparison of signals

3.4 Comparison of Peripheral Equipment

POINT

Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment".

3.5 Comparison of Parameters

The correspondence of the MR-J2M series and MR-J4 series parameter numbers is shown below. Refer to the respective Instruction Manuals for detailed specifications of each parameter.

3.5.1 Parameter comparison list

POINT

- Parameters for manufacturer setting are not described here.

OWith MR-J4-_A_, the deceleration to a stop function is enabled in the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0 _ _ _" Refer to the respective Instruction Manuals for detailed specifications of each parameter.
(1) Interface unit MR-J2M-P8A

MR-J2M-A(Interface unit MR-J2M-P8A)		MR-J4-_A_		Note
No.	Name	No.	Name	
0	Serial communication function selection	PC21	RS-422 communication function selection	MR-J4-A supports only RS-422. When the personal computer is RS-232C, use the RS-422/RS-232C conversion cable DSV-CABV (manufactured by Diatrend).
	Alarm history clear	PC18	Alarm history clear	
1	Regenerative option selection	PA02	Regenerative options	The setting must be changed according to option model.
2	Serial communication protocol checksum selection			The MR-J4-_A_initial setting is "Provided". Separate consultation is required for other settings.
3	Analog monitor 1 output	PC14	Analog monitor 1 output	The setting value must be changed according to monitor output data.
4	Analog monitor 2 output	PC15	Analog monitor 2 output	
5	Analog monitor 3 output			
6	Analog monitor output 1 offset	PC39	Analog monitor 1 offset	Depends on the hardware. The setting values must be changed.
7	Analog monitor output 2 offset	PC40	Analog monitor 2 offset	
8	Analog monitor output 3 offset			
9	Input signal filter	PD29	Input filter setting	Some of the settings cannot be set.
10	Interface unit serial communication station number selection	PC20	Station number setting	
11	1st slot serial communication station number selection	PC20	Station number setting	
12	2nd slot serial communication station number selection	PC20	Station number setting	
13	3rd slot serial communication station number selection	PC20	Station number setting	
14	4th slot serial communication station number selection	PC20	Station number setting	
15	5th slot serial communication station number selection	PC20	Station number setting	
16	6th slot serial communication station number selection	PC20	Station number setting	
17	7th slot serial communication station number selection	PC20	Station number setting	
18	8th slot serial communication station number selection	PC20	Station number setting	
19	IFU parameter writing inhibit	PA19	Parameter writing inhibit	Change the setting value as necessary.
20	Serial communication time-out selection			The initial setting for MR-J4-_A_ is "No time-out check". Separate consultation is required for other settings.

Part 6: Review on Replacement of MR-J2M with MR-J4
(2) Drive unit MR-J2M-_DU

$\begin{gathered} \text { MR-J2M-A } \\ \text { (Drive unit MR-J2M-_DU) } \end{gathered}$		MR-J4-_A_		Note
No.	Name	No.	Name	
1	Absolute position detection system	PA03	Absolute position detection system	
2	Auto Tuning	PA09	Auto tuning response	The setting value must be changed based on machine resonance frequency.
		PA08	Auto tuning mode	The setting value needs to be changed according to the auto tuning mode. Some of the settings cannot be set. <Gain adjustment mode correspondence table>
				MR-J2M-A \quad MR-J4-_A
				Interpolation mode 12 gain adjustment mode 1
				Auto tuning mode 1
				Auto tuning mode 2 Auto tuning mode 2
				Manual mode 1
				Manual mode 2 Manual mode
3	Electronic gear numerator	PA06	Electronic gear numerator	The setting value must be changed according to resolution and detection capability.
4	Electronic gear denominator	PA07	Electronic gear denominator	
5	In-position range	PA10	In-position range	Set it per command input pulse before electronic gear conversion for both MR-J2M-A and MR-J4-_A_.
6	Position loop gain 1.	PB07	Model loop gain	The unit system is different. ($\mathrm{rad} / \mathrm{s} \rightarrow 0.1 \mathrm{rad} / \mathrm{s}$)
7	Position command acceleration/deceleration time constant	PB03	Position command acceleration/deceleration time constant	
16	Alarm history clear	PC18	Alarm history clear	
19	DRU parameter writing inhibit	PA19	Parameter writing inhibit	Change the setting value as necessary.
20	Slight vibration suppression control	PB24	Slight vibration suppression control	
	Encoder cable communication method selection	PC22	Encoder cable communication method selection	
21	Function selection 3 (command pulse selection)	PA13	Command pulse input form	
22	Stop method selection when LSP/LSN is valid	PD30	Stop method selection when LSP/LSN is valid	
23	Feed forward gain	PB04	Feed forward gain	
24	Zero speed	PC17	Zero speed	
27	Encoder output pulses	PA15	Encoder output pulse	Max. output frequency is different.
28	Internal torque limit 1	PA11	Forward rotation torque limit	
		PA12	Reverse rotation torque limit	
33	Electromagnetic brake sequence output	PC16	Electromagnetic brake sequence output	
34	Load to motor inertia ratio	PB06	Load to motor inertia ratio	The unit system is different. $\text { (0.1-fold } \rightarrow 0.01 \text {-fold) }$ Pay attention to the setting value.
35	Position loop gain 2.	PB08	Position loop gain	
36	Speed loop gain 1.	-		No corresponding parameter (Setting not required)
37	Speed loop gain 2.	PB09	Speed loop gain	
38	Speed integral compensation.	PB10	Speed integral compensation	The unit system is different. ($\mathrm{ms} \rightarrow 0.1 \mathrm{~ms}$)
39	Speed differential compensation	PB11	Speed differential compensation	
42	Input signal selection 1	PD32	Clear (CR) selection	
51	Operating method selection for RES (Reset) shorting	PD30	Base circuit status selection for RES on	

Part 6: Review on Replacement of MR-J2M with MR-J4

MR-J2M-A (Drive unit MR-J2M-_DU)		MR-J4-_A		Note
No.	Name	No.	Name	
	Rotation direction selection	PA14	Rotation direction selection	
54	Encoder output pulse phase selection Encoder output pulse setting selection	PC19	Encoder output pulse phase selection Encoder output pulse setting selection	
55	Position command acceleration/deceleration time constant control	PB25	Position acceleration/deceleration filter type selection	
58	Machine resonance suppression filter 1	$\begin{aligned} & \text { PB13 } \\ & \text { PB14 } \end{aligned}$	Machine resonance suppression filter 1 Notch shape selection 1	Change the setting value according to the frequency and depth.
59	Machine resonance suppression filter 2	$\begin{aligned} & \text { PB15 } \\ & \text { PB16 } \end{aligned}$	Machine resonance suppression filter 2 Notch shape selection 2	Change the setting value according to the frequency and depth.
60	Low-pass filter/adaptive vibration suppression control			No corresponding parameter (Machine resonance filters can be automatically adjusted with PB01.)
61	Load to motor inertia ratio 2	PB29	Load to motor inertia ratio after gain switching	The unit system is different. $\text { (0.1-fold } \rightarrow 0.01 \text {-fold) }$ Pay attention to the setting value.
62	Position loop gain 2 changing ratio	PB30	Position loop gain after gain switching	
63	Speed loop gain 2 changing ratio	PB31	Speed loop gain after gain switching	It is necessary to convert the ratio to a value to change the setting value.
64	Speed integral compensation changing ratio	PB32	Speed integral compensation after gain switching	
65	Gain switching selection	PB26	Gain switching selection	
66	Gain switching condition	PB27	Gain switching condition	
67	Gain switching time constant	PB28	Gain switching time constant	
69	Command pulse multiplication numerator 2	PC32	Command input pulse multiplication numerator 2	
70	Command pulse multiplication numerator 3	PC33	Command input pulse multiplication numerator 3	
71	Command pulse multiplication numerator 4	PC34	Command input pulse multiplication numerator 4	
76	Internal torque limit 2	PC35	Internal torque limit 2	The unit system is different. (\% $\rightarrow 0.1 \%$)

4. DIFFERENCES BETWEEN MR-J2M-B AND MR-J4-_B_
```
POINT
Before replacement, note that the dimensions, peripheral circuits, and optional
peripheral devices for the MR-J2M servo amplifier are different from those for
    the MR-J4 servo amplifier.
O"QDS motion controller" refers to the following model.
    Q172DSCPU/Q173DSCPU
O"Stand-alone motion controller" refers to the following model.
    Q170MSCPU(-S1)
```

4.1 Review on Replacement Method

For details about (3), refer to "[Appendix 1] Summary of MR-J4-_B_-RJ020 + MR-J4-T20".

4.2 Replacement Method

(1) For simultaneous replacement

| QDS motion controller + MR-J4-_B_+ HG motor | Stand-alone motion controller + MR-J4-_B_+ HG motor |
| :---: | :---: | :---: |
| QnUD(E)(H)CPU + QDS motion controller + Q3_DB | SSCNET III/H-compatible stand-alone motion controller: |
| Q170MSCPU(-S1) | |

(2) For replacement of only a controller and a servo amplifier

QDS motion controller + MR-J4-_B_+	Stand-alone motion controller + MR-J4-_B $+\mathrm{HC}-\mathrm{FS}$ motor
QnUD(E)(H)CPU + QDS motion controller + Q3_DB Advantage: Higher-speed motion control and excellent expandability achieve a shorter cycle time without any changes made to the HC-_FS motor.	SSCNET III/H-compatible stand-alone motion controller: Q170MSCPU(-S1) Advantage: High performance equivalent to that of a QDS motion controller can be achieved at a lower cost without any changes made to the HC-_FS motor.

(3) Gradual replacement of MR-J2M-B with MR-J4-_B

Refer to "[Appendix 1] Summary of MR-J4-_B_-RJ020 + MR-J4-T20".

+ SSCNET conversion unit MR-J4-T20

MR-J4-_B_-RJ020 equipped with the SSCNET conversion unit operates as MR-J2S-_B_.

4.3 Function Comparison Table

(1) General

Same as 3.1.1
(2) Comparison of networks
<Comparison of servo system network specifications>

Item	MR-J2M series		MR-J4 series (Note)	
	SSCNET		SSCNET III	SSCNET III/H
Communication media	Metal cable		Optical fiber cable	
Communication speed	5.6 Mbps		50Mbps	150Mbps
		\rightarrow	[Standard cord inside cabinet/standard cable outside cabinet] Maximum distance between stations: 20 m Maximum overall distance: 320 m ($20 \mathrm{~m} \times 16$ axes)	
Transmission distance	Overall length: 30 m		[Long distance cable] Maximum distance between stations: 50 m Maximum overall distance: 800 m ($50 \mathrm{~m} \times 16$ axes)	[Long distance cable] Maximum distance between stations: 100 m Maximum overall distance: 1600 m (100 m x 16 axes)

Note. If the first controller communication is connected using SSCNET III/H in the factory setting, the operation mode will be fixed to " J 4 mode". If the communication is connected using SSCNET III, the mode will be fixed to "J3 compatibility mode". To return to the factory setting or to select an arbitrary mode, change the setting with the application "MR-J4(W)-B Change mode" or "MR Mode Change".
The application "MR-J4(W)-B Change mode" or "MR Mode Change" are available with MR Configurator2 Version 1.12 N and later. When a version older than 1.12 N is used, download an update version from the MITSUBISHI ELECTRIC FA Global Website.

4.4 Comparison of Standard Connection Diagrams

MR-J2M-B	MR-J4-_B

4.5 List of Corresponding Connectors and Terminal Blocks

(1) Connector comparison table

An example of connections with the peripheral equipment is shown below. Refer to the respective Installation Guides and Instruction Manuals for details on signals.

(2) List of corresponding connectors

	MR-J2M-B		
(1)	Bus cable connector		[CN1A]
(2)	Bus cable-connecting connector		[CN1B]
(3)	Encoder connector		[CN2]
(4)	Communication connector [CN3]	PC connection	
		Analog monitor	
(5)	Main circuit power connector		[CNP3]
	Regenerative option connector		[CNP1A]
(6)	Servo motor power connector		[CNP2]
(7)	Control circuit power connector		[CNP1B]
(8)	Battery connector		[CON5]
(9)	Extension I/O unit	connectors	[CN4B]

MR-J4-_B		Note
SSCNET III cable connector	[CN1A]	Switch to SSCNET III cable (option).
SSCNET III cable connector	[CN1B]	Switch to SSCNET III cable (option).
Encoder connector	[CN2]	Must switch to encoder cable (option) or prepare a new cable.
USB communication connector	[CN5]	Switch to USB cable (option).
I/O signal connector	[CN3]	Prepare a new cable.
Main circuit power connector	[CNP1]	S
Servo motor power connector	[CNP3]	(enclosed with the amplifier).
Control circuit power connector	[CNP2]	
Battery connector	[CN4]	Prepare a new battery.
I/O signal connector	[CN3]	Prepare a new cable.

Note. When not using the STO function, attach a short-circuit connector supplied with a servo amplifier onto CN8 (STO input signal connector).
(3) Comparison of signals

* The following table shows the output device pins and parameters for assigning R-J4-_B_devices.

Connector pin No.	Parameter	Initial assignment device	I/O division
CN3-13	[Pr. PD07]	MBR	
CN3-15	[Pr. PD09]	ALM	
CN3-9	[Pr. PD08]	INP	

4.6 Comparison of Peripheral Equipment

POINT

Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment".

4.7 Comparison of Parameters

The correspondence of the MR-J2M series and MR-J4 series parameter numbers is shown below. Refer to the respective Instruction Manuals for detailed specifications of each parameter.

4.7.1 Parameter comparison list

POINT

- Parameters for manufacturer setting are not described here.

OWith MR-J4-_B_, the deceleration to a stop function is enabled in the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0___". OFor details, refer to "Part 3: Review on Replacement of MR-J2S-_B_ with MR-J4-_B_".
(1) Interface unit MR-J2M-P8A

MR-J2M-B(Interface unit MR-J2M-P8B)		MR-J4-_B_		Note
No.	Name	No.	Name	
0	Serial communication function selection			No serial communication function.
	Alarm history clear	PC21	Alarm history clear	
1	Serial communication time-out selection			No serial communication function.
2	Serial communication protocol checksum selection			No serial communication function.
3	Analog monitor 1 output	PC09	Analog monitor 1 output	The setting value must be changed according to monitor output data.
4	Analog monitor 2 output	PC10	Analog monitor 2 output	
5	Analog monitor 3 output			
6	Analog monitor output 1 offset	PC11	Analog monitor 1 offset	Depends on hardware. Change the setting value.
7	Analog monitor output 2 offset	PC12	Analog monitor 2 offset	
8	Analog monitor output 3 offset			
9	SSCNET type selection (SSCNET communication cycle)			MR-J4-_B_ is compatible with SSCNET III/H only. The communication cycle depends on the specifications of the controller and the number of connected axes.
	Electromagnetic brake interlock (MBR) axis No. selection			Assigned to CN3.13
10	Test operation selection			The test operation can be set with the control axis setting switch (SW2).
11	1st slot serial communication station number selection	>		The axis No. can be set with the selection rotary switch (SW1).
12	2nd slot serial communication station number selection	$>$		
13	3rd slot serial communication station number selection			
14	4th slot serial communication station number selection			
15	5th slot serial communication station number selection			
16	6th slot serial communication station number selection			
17	7th slot serial communication station number selection	\checkmark		
18	8th slot serial communication station number selection		-	
19	IFU parameter writing inhibit	PA19	Parameter writing inhibit	Change the setting value as necessary.

(2) Drive unit MR-J2M-_DU

	MR-J2M-B (Drive unit MR-J2M-_DU)	MR-J4-_B_		Note	
No.	Name	No.	Name		
1	Absolute position detection selection	PA03	Absolute position detection system selection		
2	Regenerative resistor	PA02	Regenerative option selection	The setting must model.	ged according to option
$\begin{gathered} \hline 3 \\ \text { to } \\ 5 \end{gathered}$	Automatically set from the servo system controller			No corresponding	(er (Setting not required)
6	Feedback pulse number			No corresponding	eter
7	Rotation direction selection	PA14	Rotation direction selection		
8	Auto Tuning	PA08	Auto tuning mode	The setting value needs to be changed according to the auto tuning mode. Some of the settings cannot be set. Gain adjustment mode correspondence table	
				MR-J2M-B	MR-J4-_B
				Interpolation mode	2 gain adjustment mode 1
				Auto tuning mode 1	Auto tuning mode 1
				Auto tuning mode 2	Auto tuning mode 2
				Manual mode 1	
				Manual mode 2	Manual mode
9	Servo response	PA09	Auto tuning response	The setting value must be changed based on machine resonance frequency.	
10	Forward rotation torque limit			No corresponding parameter	
11	Reverse rotation torque limit				
12	Ratio of load inertia to servo motor inertia (load inertia ratio)	PB06	Load to motor inertia ratio	The unit system is different. (0.1-fold $\rightarrow 0.01$-fold) Pay attention to setting value.	
13	Position loop gain 1.	PB07	Model loop gain	The unit system is different. (rad/s $\rightarrow 0.1 \mathrm{rad} / \mathrm{s}$)	
14	Speed loop gain 1.			No corresponding parameter (Setting not required)	
15	Position loop gain 2.	PB08	Position loop gain	The unit system is different. (rad/s $\rightarrow 0.1 \mathrm{rad} / \mathrm{s}$)	
16	Speed loop gain 2.	PB09	Speed loop gain		
17	Speed integral compensation.	PB10	Speed integral compensation	The unit system is different. ($\mathrm{ms} \rightarrow 0.1 \mathrm{~ms}$)	
18	Machine resonance suppression filter 1	$\begin{aligned} & \text { PB13 } \\ & \text { PB14 } \end{aligned}$	Machine resonance suppression filter 1 Notch shape selection 1	Change the setting value according to the frequency and depth.	
19	Feed forward gain	PB04	Feed forward gain		
20	In-position range	PA10	In-position range	Pay attention to the unit system. MR-J2M-B: Set by the feedback pulse unit. MR-J4- B_ Set per command pulse.	
21	Electromagnetic brake sequence output	PC02	Electromagnetic brake sequence output		
22	For manufacturer setting	\bigcirc			
23	Encoder cable selection	PC04	Encoder communication method selection		
	Servo forced stop	PA04	Servo forced stop selection		
24	Motor-less operation selection	PC05	Motor-less operation selection		
	Slight vibration suppression control selection	PB24	Slight vibration suppression control		
	Low-pass filter selection	PB23	Low-pass filter selection		
25	Adaptive vibration suppression control selection Adaptive vibration suppression control level selection			No corresponding parameter (Machine resonance filters can be automatically adjusted with PB01.)	
30	Zero speed	PC07	Zero speed		
31	Error excessive alarm level	PC01	Error excessive alarm level	J2MB: 0.025 rev. unit J4B: 1/0.1/0.01/0.001 rev. unit selectable	
		PC06	Error excessive alarm level unit selection		
32	PI-PID switching control selection	PB24	PI-PID switching control selection	Switching with PI-PID switching position droop is not possible.	
33	Encoder output pulse setting selection	PA15	Encoder output pulse	Max. output frequency is different.	

MR-J2M-B (Drive unit MR-J2M-_DU)		MR-J4__B_		Note	
No.	Name	No.	Name		
34	Pl-PID switching position droop				No corresponding parameter
36	Speed differential compensation	PB11	Speed differential compensation		
38	Encoder output pulses	PA15	Encoder output pulse	Max. output frequency is different.	
40	DRU parameter writing inhibit	PA19	Parameter writing inhibit	Change the setting value as necessary.	

MEMO

\qquad

Part 7

Common Reference Material

Part 7: Common Reference Material

1. SPECIFICATION DIFFERENCES

1.1 Detailed Specification/Function Differences

(1) Comparison of MR-J2S series and MR-J4 series (General-purpose interface/SSCNET interface)

	Item	MR-J2S-_A_/MR-J2S-_B	MR-J4-_A_/MR-J4-_B
1	Capacity range	(100 V class) 0.1 kW to 0.4 kW $(200 \mathrm{~V}$ class) 0.1 kW to 37 kW (400 V class) 0.6 kW to 55 kW	(100 V class) 0.1 kW to 0.4 kW $(200 \mathrm{~V}$ class) 0.1 kW to 37 kW (400 V class) 0.6 kW to 55 kW
2	Regenerative resistor	Built-in (0.2 kW to 7 kW) External (11 kW to 22 kW)	Built-in (0.2 kW to 7 kW) External (11 kW to 22 kW)
3	Dynamic brake	Built-in (0.1 kW to 7 kW) External (11 kW to 55 kW)	Built-in (0.1 kW to 7 kW) External (11 kW to 55 kW) Coasting distance is different.
4	Control circuit power	(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase 200 V AC to 230 V AC (400 V class) 24 V DC (up to 7 kW) 1-phase 380 V AC to 480 V AC (11 kW to 55 kW)	(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase 200 V AC to 240 V AC (400 V class) 1-phase 380 V AC to 480 V AC
5	Main circuit power	```(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase 230 V AC 3-phase 200 V AC to 230 V AC (up to 750 W) 3-phase 200 V AC to 230 V AC (1 kW to 37 kW) (400 V class) 3-phase 380 V AC to 480 V AC```	```(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase/3-phase 200 V AC to 240 V AC (up to 750 W) 3-phase 200 V AC to 240 V AC (1 kW to 37 kW) (400 V class) 3-phase 380 V AC to 480 V AC```
6	24 V DC power	Built-in	External supply required
7	Auto tuning	Real-time auto tuning: 15 steps	Real-time auto tuning: 40 steps One-touch tuning
8	Control mode	General-purpose interface - Position control mode (pulse command) - Speed control mode (analog command/Internal speed command) - Torque control mode (analog command) SSCNET interface - Position control mode - Speed control mode	General-purpose interface - Position control mode (pulse command) - Speed control mode (analog command/Internal speed command) - Torque control mode (analog command) SSCNET III /H interface - Position control mode - Speed control mode - Torque control mode
9	Maximum input pulses	Differential receiver: 500 kpulse/s Open-collector 200 kpulse/s Command pulse: Sink	Differential receiver: 4 Mpulse/s Open-collector 200 kpulse/s Command pulse: Sink
10	The number of DIO points (excluding EM1)	General-purpose interface DI: 8 points, DO: 6 points SSCNET interface DI: 0 points; DO:2 points	General-purpose interface DI: 9 points, DO: 6 points SSCNET III / H interface DI: 3 points; DO: 3 points
11	Encoder pulse output	ABZ-phase (differential line driver), Z-phase (open-collector)	ABZ-phase (differential line driver), Z-phase (open-collector)
12	DIO interface	Input: Sink/source Output: Sink	Input: Sink/source Output: Sink/source
13	Analog input/output	General-purpose interface (Input) 2 ch Torque: 10-bit; Speed: 14-bit or equivalent (Output) 10-bit or equivalent $\times 2$ ch SSCNET interface (Output) 10-bit or equivalent $\times 2$ ch	General-purpose interface (Input) 2 ch Torque: 10-bit; Speed: 14-bit or equivalent (Output) 10-bit or equivalent $\times 2$ ch SSCNET III / H interface (Output) 10-bit or equivalent $\times 2$ ch
14	Number of internal speed commands (General-purpose interface)	7 points	7 points
15	Parameter setting method	Setup software (SETUP161E) Push-button (MR-J2S-_A_)	MR Configurator2 Push-button (MR-J4-_A_)
16	Setup software communication function	RS-232C	USB

Part 7: Common Reference Material

Item		MR-J2S-_A_/MR-J2S-_B	MR-J4-_A_/MR-J4-_B
17	Servo motor (Encoder resolution)	HC-_FS series (17-bit ABS) HA-_FS series (17-bit ABS)	HG series (22-bit ABS)
18	Motor maximum torque	HC-KFS 300\%	HG-KR 350\% (with a gear reducer: 300\%)
		HC-MFS 300\%	HG-MR 300\%
		HC-SFS 300\%	HG-SR 300\%
		HA-LFS 250\%,300\%	HG-JR 300\%
		HC-RFS 250\%	HG-RR 250\%
		HC-UFS 300\%	HG-UR 300\%
19	Button (General-purpose interface)	4 buttons	4 buttons
20	LED display	General-purpose interface: 7-segment 5digit SSCNET interface: 7-segment 2-digit	General-purpose interface: 7-segment 5-digit SSCNET interface: 7-segment 3-digit
21	Advanced vibration suppression control II	Unprovided	Provided
22	Adaptive filter	Provided (Adaptive vibration suppression control)	Provided (Adaptive filter II with improved functions)
23	Notch filter	Provided (2 pcs.)	Provided (5 pcs.)
24	Tough drive	Unprovided	Provided
25	Drive recorder	Unprovided	Provided
26	Forced stop	EM1 (DB stop)	EM1 (DB stop)/EM2 (deceleration stop) optional
Note \quad Functions with		ifference are shown with shading.	

(2) Comparison of MR-J2S series and MR-J4 series (Built-in positioning function/program supported)

Item		MR-J2S-_CP_/ MR-J2S-_CL (7 kW or less, $100 \mathrm{~V} / 200 \mathrm{~V}$ class)	MR-J4-- A - -RJ (7 kW or less, $10 \overline{\mathrm{~V} / 200 \mathrm{~V} \text { class) }}$
1	Capacity range	(100 V class) 0.1 kW to 0.4 kW (200 V class) 0.1 kW to 7 kW	(100 V class) 0.1 kW to 0.4 kW (200 V class) 0.1 kW to 7 kW
2	Internal regenerative resistor	Built-in (0.2 kW to 7 kW)	Built-in (0.2 kW to 7 kW)
3	Dynamic brake	Built-in (0.1 kW to 7 kW)	Built-in (0.1 kW to 7 kW) Coasting distance may be different. (Note)
4	Control circuit power	(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase 200 V AC to 230 V AC	(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase 200 V AC to 240 V AC
5	Main circuit power	```(100 V Class) 1-phase 100 V AC to 120 V AC (200 V Class) 1-phase 230 V AC/3-phase 200 V AC to 230 V AC (to 750 W) 3-phase 200 V AC to 230 V AC (1 kW to 7 kW)```	$\begin{aligned} & \text { (100 V Class) } \\ & \text { 1-phase } 100 \mathrm{~V} \mathrm{AC} \text { to } 120 \mathrm{~V} \mathrm{AC} \\ & \text { (200 V Class) } \\ & \text { 1-phase /3-phase } 200 \mathrm{~V} \mathrm{AC} \text { to } \mathbf{2 4 0} \mathrm{V} \mathrm{AC} \text { (to } \\ & 750 \mathrm{~W} \text {) } \\ & \text { 3-phase } 200 \mathrm{~V} \text { AC to } \mathbf{2 4 0} \text { V AC }(1 \mathrm{~W} \text { to } 7 \mathrm{~kW}) \end{aligned}$
6	24 V DC power	Built-in	External supply required
7	Auto tuning	Real-time auto tuning: 15 steps	Real-time auto tuning: 40 steps One-touch tuning
8	Control mode	(MR-J2S-_CP_) Built-in positioning function (MR-J2S-_CL_) Built-in program operation function	Built-in positioning function Built-in program operation function Position control mode (pulse command) Speed control mode (analog command) Torque control mode (analog command)
9	Manual pulse generator maximum input pulse	Open collector 200 kpulses/s	Open collector 200 kpulses/s
10	The number of DIO points (excluding EM1)	DI: 8 points, DO: 5 points, DI/DO combination: 1 point	DI: 11 points, DO: 8 points
11	Encoder pulse output	ABZ-phase (differential line driver), Z-phase (open-collector)	ABZ-phase (differential line driver), Z-phase (open-collector)
12	DIO interface	Input: Sink/source Output: Sink	Input: Sink/source Output: Sink/source
13	Analog input/output	(Input) 2 ch 10-bit torque limit, 10-bit override (Output) 10-bit or equivalent x 2 ch	(Input) 2 ch 10-bit torque limit, 10-bit override or equivalent (Output) 10-bit or equivalent $\times 2$ ch
14	The number of internal speed commands	7 points	7 points
15	Parameter setting method	Setup software (SETUP161E) Push-button	MR Configurator2 Push-button parameter unit
16	Setup software communication	RS-232C	USB
17	Servo motor (Encoder resolution)	$\begin{aligned} & \text { HC_FS series (17-bit ABS) } \\ & \text { HA_FS series (17-bit ABS) } \end{aligned}$	HG series (22-bit ABS)
18	Motor maximum torque	HC-KFS 300\%	HG-KR 350\% (with a gear reducer: 300\%)
		HC-MFS 300\%	HG-MR 300\%
		HC-SFS 300\%	HG-SR 300\%
		HA-LFS 250\%, 300\%	HG-JR 300\%
		HC-RFS 250\%	HG-RR 250\%
		HC-UFS 300\%	HG-UR 300\%
19	Button	4 buttons	4 buttons
20	LED display	7-segment 5-digit	7-segment 5-digit
21	Advanced vibration suppression control	Unprovided	Provided
22	Adaptive filter	Provided (Adaptive vibration suppression control)	Provided (Adaptive filter II with improved functions)
23	Notch filter	Provided (2 pcs.)	Provided (5 pcs.)
24	Tough drive	Unprovided	Provided
25	Drive recorder	Unprovided	Provided
26	Forced stop	EM1 (DB stop)	EM1 (DB stop)/EM2 (deceleration stop) optional
27	Point table No.	(MR-J2S-_CP_) up to 31	up to 255
28	Program No.	(MR-J2S-_CL_) up to 16 programs (120 steps)	up to 256 programs (640 steps)
29	Position data unit	mm	mm/degree/inch/pulse
Note \quad Functions with d		ference are shown with shading.	

Note. For the coasting distance, refer to "1.2.3 Dynamic brake: coasting distance".
(3) Comparison of MR-J2M series and MR-J4 series (General-purpose interface / SSCNET interface)

Item		MR-J2M-A/ MR-J2M-B	MR-J4-_A_/ MR-J4-_B
1	Capacity range (to $0.75 \mathrm{~kW} / 200 \mathrm{~V}$)	0.1 to 0.75 kW / 200 V	0.1 to 0.75 kW / 200 V
2	Regenerative resistor	External option	Built-in (200 W or more)
3	Dynamic brake	Built-in	Built-in (Coasting distance is different.)
4	Control circuit power	1-phase 200 V AC to 230 V AC	1-phase 200 V AC to 240 V AC
5	Main circuit power	1-phase/3-phase 200 V AC to 230 V AC 3-phase 200 V AC to 230 V AC	1-phase/3-phase 200 V AC to 240 V AC 3-phase 200 V AC to 240 V AC
6	24 V DC power	External supply required	External supply required
7	Auto tuning	Real-time auto tuning:15 steps	Real-time auto tuning: 40 steps One-touch tuning
8	Control mode	General-purpose interface - Position control mode (pulse command) SSCNET interface - Position control mode	General-purpose interface - Position control mode (pulse command) - Speed control mode (analog command) - Torque control mode (analog command) SSCNET III/H-interface - Position control mode - Speed control mode - Torque control mode
9	Maximum input pulses	Differential pulse 500 kpulses/s Open-collector 200 kpulses/s Command pulse: Sink	Differential pulse 4 Mpulses/s Open-collector 200 kpulses/s Command pulse: Sink
10	The number of DIO points (excluding EM1)	General-purpose interface DI: 5 points $\times 8$ axes; DO: 2 points $\times 8$ axes SSCNET interface DI: 0 points; DO:0 points * When an extension I/O unit is used, DI: 32 points; DO: 8 points are added.	General-purpose interface DI: 9 points, DO: 6 points SSCNET III / H interface DI: 3 points; DO: 3 points
11	Encoder pulse output	ABZ-phase (differential line driver) General-purpose interface Z-phase (open collector)	ABZ-phase (differential line driver) General-purpose interface Z-phase (open collector)
12	DIO interface	Input: Sink Output: Sink	Input: Sink/source Output: Sink/source
13	Analog input/output	General-purpose interface (Input) Unprovided (Output) 10-bit or equivalent $\times 3$ ch SSCNET interface (Output) 10-bit or equivalent $\times 3$ ch	General-purpose interface (Input) 2 ch Torque: 10-bit; Speed: 14-bit or equivalent (Output) 10-bit or equivalent $\times 2$ ch SSCNET III / H interface (Output) 10-bit or equivalent $\times 2$ ch
14	The number of internal speed commands	(MR-J2M-A) 0 points	(MR-J4-_A_) 7 points
15	Parameter setting method	MR Configurator (SETUP161E) Push-button	MR Configurator2 Push-button (MR-J4-_A_)
16	Setup software communication function	RS-232C	USB
17	Servo motor (Encoder resolution)	HC_FS series (17-bit ABS)	HG series (22-bit ABS)
18	Motor maximum torque	$\begin{aligned} & \text { HC-KFS 300\% } \\ & \text { HC-MFS 300\% } \\ & \text { HC-UFS 300\% } \end{aligned}$	HG-KR 350\% (with a gear reducer: 300\%) HG-MR 300\% HG-UR 300\%
19	Button	(MR-J2M-A) 4 buttons	(MR-J4-_A_) 4 buttons
20	LED display	(MR-J2M-A) 7-segment 5-digit (MR-J2M-B) 7-segment 5-digit	(MR-J4-_A_) 7-segment 5-digit (MR-J4-_B_) 7-segment 3-digit
21	Advanced vibration suppression control II	Unprovided	Provided
22	Adaptive filter	Provided (1)	Provided (II function upgrading)
23	Notch filter	Provided (2 pcs.)	Provided (5 pcs.)
24	Tough drive	Unprovided	Provided
25	Drive recorder	Unprovided	Provided
26	Forced stop	EM1 (DB stop)	Select EM1 (DB stop) or EM2 (deceleration to a stop)
Note \quad Functions		fference are shown with shading.	

1．2 Servo amplifier

If using the existing cables and servo motor，refer to＂［Appendix 2］Introduction to Renewal Tool＂．

1．2．1 Main circuit terminal block

Series	Main circuit terminal block	Series	Main circuit terminal block
$\begin{gathered} \text { MR-J2S-10_ } \\ \text { to } \\ \text { MR-J2S-60_ } \end{gathered}$	TEI －For 3－phase 200 V AC to 230 V AC or 1－phase 230 V AC	$\begin{aligned} & \text { MR-J4-10_(-RJ) } \\ & \text { to } \\ & \text { MR-J4-60_(-RJ) } \end{aligned}$	
$\begin{aligned} & \text { MR-J2S-70_, } \\ & \text { MR-J2S-100_ } \end{aligned}$	L_{1} $\mathrm{~L}_{2}$ $\mathrm{~L}_{3}$ U V W Terminal screw：M4 Tightening torque： $1.2[\mathrm{~N} \cdot \mathrm{~m}]$ PE terminal Terminal screw：M4 Tightening torque： $1.2[\mathrm{~N} \cdot \mathrm{~m}]$	$\begin{aligned} & \text { MR-J4-70_(-RJ), } \\ & \text { MR-J4-100_(-RJ) } \end{aligned}$	
$\begin{aligned} & \text { MR-J2S-200_, } \\ & \text { MR-J2S-350_ } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200_(-RJ), } \\ & \text { MR-J4-350_(-RJ) } \end{aligned}$	 PE Tightening torque： $1.2[\mathrm{~N} \cdot \mathrm{~m}]$
MR－J2S－500		MR－J4－500＿（－RJ）	
MR－J2S－700＿		MR－J4－700＿（－RJ）	TE3 $\mathrm{N}-\mathrm{P} 3 \mid \mathrm{P} 4$ PE（⿴囗大（）TE3 Screw size：M4 Tightening torque： $1.2[\mathrm{~N} \cdot \mathrm{~m}]$ TE1 Screw size：M4 Tightening torque： $1.2[\mathrm{~N} \cdot \mathrm{~m}]$ TE2 Screw size：M3．5 Tightening torque： $0.8[\mathrm{~N} \cdot \mathrm{~m}]$ PE Screw size：M4 Tightening torque： $1.2[\mathrm{~N} \cdot \mathrm{~m}]$

Part 7: Common Reference Material

Series	Main circuit terminal block	Series	Main circuit terminal block	
$\begin{aligned} & \text { MR-J2S-11K_, } \\ & \text { MR-J2S-15K_ } \end{aligned}$		$\begin{aligned} & \text { MR-J4-11K_(-RJ), } \\ & \text { MR-J4-15K_(-RJ) } \end{aligned}$		
MR-J2S-22K_		MR-J4-22K_(-RJ)	```TE1-1 L1 L2 LL3 U U V W TE1-2 P3\|P4P+C\\N- PE (-)	= TE2 प41-21 TE1-1 Screw size: M8 Tightening torque: 6.0 [N`m TE1-2 Screw size: M8 Tightening torque: 6.0 [N*m TE2 Screw size: M4 Tightening torque: 1.2 [N}\cdot\textrm{m PE Screw size: M8 Tightening torque: 6.0 [N```
$\begin{aligned} & \text { MR-J2S-30K_, } \\ & \text { MR-J2S-37K_ } \end{aligned}$		MR-J4-DU30K_, MR-J4-DU37K_		
$\begin{gathered} \text { MR-J2S-60_4 } \\ \text { to } \\ \text { MR-J2S-200_4 } \end{gathered}$	CNP1 CNP2	$\begin{gathered} \text { MR-J4-60_4(-RJ) } \\ \text { to } \\ \text { MR-J4-200_4(-RJ) } \end{gathered}$		
MR-J2S-350_4		MR-J4-350_4(-RJ)		

Part 7：Common Reference Material

Series	Main circuit terminal block	Series	Main circuit terminal block
MR－J2S－500＿4		MR－J4－500＿4（－RJ）	
MR－J2S－700＿4		MR－J4－700＿4（－RJ）	
$\begin{aligned} & \text { MR-J2S-11K_4, } \\ & \text { MR-J2S-15K_4 } \end{aligned}$		$\begin{aligned} & \text { MR-J4-11K_4(-RJ), } \\ & \text { MR-J4-15K_4(-RJ) } \end{aligned}$	
MR－J2S－22K＿4		MR－J4－22K＿4（－RJ）	
$\begin{aligned} & \text { MR-J2S-30K_4, } \\ & \text { MR-J2S-37K_4 } \end{aligned}$		MR－J4－DU30K＿4， MR－J4－DU37K＿4	
$\begin{aligned} & \text { MR-J2S-45K_4, } \\ & \text { MR-J2S-55K_4 } \end{aligned}$		MR－J4－DU45K＿4， MR－J4－DU55K＿4	

Part 7: Common Reference Material

Series	Main circuit terminal block	Series	Main circuit terminal block
MR-HP30KA, MR-HP55KA4		MR-CR55K, MR-CR55K4	
$\begin{aligned} & \text { MR-J2S-10_1 } \\ & \text { to } \\ & \text { MR-J2S-40_1 } \end{aligned}$		$\begin{aligned} & \text { MR-J4-10_1(-RJ) } \\ & \text { to } \\ & \text { MR-J4-40_1(-RJ) } \end{aligned}$	\square Screw size: M4 Tightening torque: $1.2[\mathrm{~N} \cdot \mathrm{~m}]$

1.2.2 Comparison of encoder signals (CN2)

Note

1. Signal abbreviations in parentheses are for MR-J4 series.
2. For the HC-_FS /HA_-FS motor, THM1 and THM2 are not used.
1.2.3 Dynamic brake: coasting distance
(1) Dynamic brake time constant

Series	Dynamic brake time constant	Series	Dynamic brake time constant
HC-KFS		HG-KR	
HC-MFS		HG-MR	
HC-UFS 2000 r/min		HG-UR	
HC-UFS 3000 r/min		HG-KR	
HC-SFS 1000 r/min		$\begin{aligned} & \text { HG-SR } \\ & 1000 \text { r/min } \end{aligned}$	

Part 7: Common Reference Material

Series	Dynamic brake time constant	Series	Dynamic brake time constant
HC-SFS 2000 r/min		$\begin{gathered} \text { HG-SR } \\ 2000 \mathrm{r} / \mathrm{min} \end{gathered}$	
HC-SFS 3000 r/min		$\begin{gathered} \text { HG-SR } \\ 2000 \mathrm{r} / \mathrm{min} \end{gathered}$	
$\begin{gathered} \text { HC-SFS } \\ 400 \mathrm{~V} \end{gathered}$		$\begin{gathered} \text { HG-SR } \\ 400 \mathrm{~V} \end{gathered}$	
HC-LFS		$\begin{gathered} \text { HG-JR } \\ 3000 \mathrm{r} / \mathrm{min} \end{gathered}$	
HC-RFS		HG-RR	

Part 7: Common Reference Material

Series	Dynamic brake time constant	Series	Dynamic brake time constant
$\begin{gathered} \text { HA-LFS } \\ 200 \mathrm{~V} \\ 2000 \mathrm{r} / \mathrm{min} \end{gathered}$		$\begin{gathered} \text { HG-JR } \\ 200 \mathrm{~V} \\ 1500 \mathrm{r} / \mathrm{min} \\ 3000 \mathrm{r} / \mathrm{min} \end{gathered}$	 HG-JR, HA-JR1500 r/min series HG-JR, HA-JR3000 r/min series
$\begin{gathered} \text { HA-LFS } \\ 400 \mathrm{~V} \\ 1500 \mathrm{r} / \mathrm{min} \end{gathered}$		$\begin{gathered} \text { HG-JR } \\ 400 \mathrm{~V} \\ 1500 \mathrm{r} / \mathrm{min} \end{gathered}$	
$\begin{gathered} \text { HA-LFS } \\ 400 \mathrm{~V} \\ 2000 \mathrm{r} / \mathrm{min} \end{gathered}$		$\begin{gathered} \text { HG-JR } \\ 400 \mathrm{~V} \\ 3000 \mathrm{r} / \mathrm{min} \end{gathered}$	

Part 7: Common Reference Material

Series	Dynamic brake time constant	Series	Dynamic brake time constant
HA-LFS 200 V Large capacity 2000 r/min		$\begin{gathered} \text { HG-JR } \\ 200 \text { V } \\ \text { Large } \\ \text { capacity } \end{gathered}$	
HA-LFS 400 V Large capacity 2000 r/min		$\begin{gathered} \text { HG-JR } \\ 400 \mathrm{~V} \\ \text { Large } \\ \text { capacity } \end{gathered}$	

(2) Calculation of coasting distance

The figure shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated. Use equation 7.1 to calculate an approximate coasting distance to a stop. The dynamic brake time constant t varies with the servo motor and machine operation speeds. (Refer to (1) of this section.) A working part generally has a friction force. Therefore, actual coasting distance will be shorter than a maximum coasting distance calculated with the following equation.

Dynamic Brake Operation Diagram

$L_{\text {max }}=\frac{\mathrm{V}_{0}}{60} \mathrm{x}\left\{\mathrm{t}_{\mathrm{e}}+\tau\left(1+\frac{\mathrm{J}_{\mathrm{L}}}{\mathrm{J}_{\mathrm{M}}}\right)\right\}$
$L_{\max }$: Maximum coasting distance ... [mm]
V_{0} : Machine's fast feed speed [$\mathrm{mm} / \mathrm{min}$]
J_{M} : Moment of inertia of the servo motor ... $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
$J_{\mathrm{L}} \quad$: Load moment of inertia converted into equivalent value on servo motor shaft $\ldots \ldots \ldots \ldots .\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
T : Dynamic brake time constant ...[s]
te : Delay time of control section..[s]
For 7 kW or lower servo, there is internal relay delay time of about 10 ms . For 11 kW to 55 kW servo, there is delay caused by magnetic contactor built into the external dynamic brake (about 50 ms) and delay caused by the external relay.
(3) Electronic dynamic brake

The electronic dynamic brake operates in the initial state for HG series servo motors with a 500 W or smaller capacity.
The time constant "ד" for the electronic dynamic brake will be shorter than that for normal dynamic brake. Therefore, coasting distance will be shorter than in normal dynamic brake.

Series	Servo motor
HG-KR	HG-KR053, HG-KR13, HG-KR23, HG-KR43
HG-MR	HG-MR053, HG-MR13, HG-MR23, HG-MR43
HG-SR	HG-SR51, HG-SR52

Parameter settings (for MR-J4-_A_series)

Parameter settings (for MR-J4-_B_series)

Note. When the electronic dynamic brake is released during operation, the servo system cannot be switched on until [Pr. PF12] operating time is over.

1.2.4 Forced stop deceleration function selection

(1) Parameter setting (for MR-J4-_A_series)

POINT

With MR-J4-_A_, the deceleration to a stop function is enabled by the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0 \qquad

Number	Abbreviation	Name and function					Initial value [unit]	Setting range
PA04	$\begin{gathered} \text { *AO } \\ \text { P1 } \end{gathered}$	Function selection A-1 This is used to select the forced stop input and forced stop deceleration function.					Refer to Name and function column.	
		Setting digit Explanation Initial value						
		--		For manufacturer setting		Oh		
		--x				Oh		
		${ }^{x}$				Oh		
		x	$\begin{aligned} & \hline \text { Force } \\ & \text { 0: Fc } \\ & \text { 2: Fo } \\ & \text { Refer } \\ & \hline \end{aligned}$	stop deceleration functio ced stop deceleration func ced stop deceleration func to the following table for de	ection disabled (EM1) enabled (EM2) \qquad	2 h		
		Setting	EM2/EM1	Decel	on method			
		value	selection	EM2 or EM1 is off	Alarm occurred			
		$0^{\text {_ _ - }}$	EM1	MBR (Electromagnetic brake interlock) turns off without the forced stop deceleration.	MBR (Electromagnetic brake interlock) turns off without the forced stop deceleration.			
		2_-_	EM2	MBR (Electromagnetic brake interlock) turns off after the forced stop deceleration.	MBR (Electromagnetic brake interlock) turns off after the forced stop deceleration.			

(2) Parameter setting (for MR-J4-_B_series)

POINT

With MR-J4-_B_, the deceleration to a stop function is enabled in the factory setting. To disable the deceleration to a stop function, set [Pr. PA04] to "0

1.2.5 24 V DC power supply for interface: built-in \Rightarrow outside supply requisite

These are the recommended specifications for a 24 V DC power source for interface that is required for renewal.
Select according to the following specifications.

Item	MR-J2S series	MR-J2M series	MR-J4 series
For interface 24 V DC power supply	Servo amplifier Internal power supply	External supply $24 \text { V DC } \pm 10 \%$ Power capacity: 300 mA or more	External supply required $24 \text { V DC } \pm 10 \%$
	External supply $24 \text { V DC } \pm 10 \%$ Power capacity: 80 mA or more		Power capacity MR-J4-_A_: 500 mA or more MR-J4-_B_: 300 mA or more

1.2.6 Servo setup software: Setup software (SETUP161E) \Rightarrow MR Configurator2

Item	MR-J2S series		
Servo setup software	Setup software (SETUP161E) Model: MRZJW3-SETUP161E	\rightarrow	MR-J4 series
:---			
MR Configurator2 Model: SW1DNC-MRC2-E			

(1) MR Configurator2 (SW1DNC-MRC2-E) specification

Item	
Project	Create/read/save/delete project, system setting, and print
Parameter	Parameter setting, amplifier axis name setting, parameter converter (Note 1)
Positioning data (Note 2)	Point table, program, indirect addressing
Monitor	Display all, I/O monitor, graph, and ABS data display
Diagnostics	Alarm display, alarm onset data display, drive recorder, display of the reason for no rotation, system configuration, life diagnosis, machine diagnosis.
Test operation	Jog operation, positioning operation, motor-less operation, DO forced output, and program operation, test operation event information, single-step feed (Note 2)
Adjustment	One-touch tuning, tuning, and machine analyzer
Others	Servo assistant, parameter setting range update, help display, connection to MITSUBISHI ELECTRIC FA Global Website

Note 1. This function is available only in standard control mode.
2. SW1DNC-MRC2-E supports only MR-J4-_A_-RJ.
(2) System configuration

For servo setup software components, refer to the Instruction Manual.

1.2.7 Communication I / F: RS-232C \Rightarrow USB

For connection with PC-AT compatible personal computer

Item	MR-J2S series		
Communication cable	RS-232C communication MR-CPCATCBL3M Cable length: 3 m	$\quad \rightarrow$	MR-J4 series
:---			
USB communication MR-J3USBCBL3M Cable length: 3 m			

1.2.8 Servo amplifier initializing time

This section explains the initializing time of the servo amplifier (the time taken between power-on and servoon reception). The initializing time is 2 s at maximum for the MR-J2S- A servo amplifier, but 3.5 s at maximum for the MR-J4- A servo amplifier. Note the initializing time difference upon replacement.
<Points to note upon replacement>
(1) When using the electromagnetic brake to prevent a drop in a vertical lift application or the like with an external timer to adjust the brake release time, the lift may drop due to a longer servo-lock time.
Adjust the brake release time as necessary or use MBR (electromagnetic brake interlock signal).
(2) A longer servo-on time at power-on may cause a delay in the servo motor starting time after powerup. Please take note.
(1) MR-J2S-_A_ series servo amplifier

The initializing time is 1 to 2 s .

(2) MR-J2M-P8A series servo amplifier

The initializing time is 3 s .

(3) MR-J2S-_B_ series servo amplifier

The initializing time is 3 to 4 s .

(4) MR-J2M-P8B series servo amplifier

The initializing time is 4 s .

(5) MR-J4-_A_/ MR-J4-_B_ series servo amplifier The initializing time is 2.5 to 3.5 s .

1.2.9 The pulse width of the encoder Z-Phase pulse

Note that the pulse width and start-up timing of the encoder Z-phase pulse signal (OP) output from the servo amplifier are different between the MR-J2S / MR-J2M series and the MR-J4 series.
<Precautions>

* Always reset the home position upon replacement.
<Servo amplifier replacement>

	MR-J2S/MR-J2M series	MR-J4 series
At low speed Lower than approximately 130 r/min	128/131,072 pulses	128/131,072 pulses
At high speed Approximately 130 $\mathrm{r} / \mathrm{min}$ or higher	Approximately 440μ s fixed	Approximately 440μ s fixed

Note 1. This is the pulse width when the servo motor rotates at $10 \mathrm{r} / \mathrm{min}$. The time for the pulse width varies depending on the number of the servo motor revolutions.
2. Pulse width $=128 \times\left(60 /(\right.$ servo motor speed $\times 131072) \times 10^{6}[\mu \mathrm{~s}]$
<Simultaneous replacement>

At low speed Lower than approximately 130 r/min		HG-KR, MR, SR motor
At high speed Approximately 130 r/min or higher		

Note 1. This is the pulse width when the servo motor rotates at $10 \mathrm{r} / \mathrm{min}$. The time for the pulse width varies depending on the number of the servo motor revolutions.
2. Pulse width $=4096 \times\left(60 /(\right.$ servo motor speed $\times 4194304) \times 10^{6}[\mu \mathrm{~s}]$

2. SERVO AMPLIFIER DIMENSIONS/ATTACHMENT DIFFERENCES

2.1 MR-J2S \Rightarrow MR-J4 Comparison Table of Servo Amplifier Dimensions/Installation Differences

2.1.1 General-purpose interface/SSCNET interface 200 V class (22 kW or less)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J4 series are the same or smaller than the MR-J2S series basically. The depth is larger for the 400 W and 600 W capacities. The replacements for 1 kW or less capacity types are possible using the same mounting holes. The number of mounting screws is different for the 2 kW and 3.5 kW capacities, and the mounting screw distance is different for the 5 kW to 22 kW capacities. The screw sizes are different for the 11 kW and 15 kW capacities. (Refer to the comparison of dimensions.)

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Note 1. The depth will increase.
2. The number of mounting screws will be changed.

- Dimensions with differences are shown with shading.

2.1.2 General-purpose interface/SSCNET interface 100 V class (0.4 kW or less)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J4 series are the same or smaller than the MR-J2S series basically. The depth is larger for the 400 W and 600 W capacities. The mounting dimensions are interchangeable.

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model MR-J2S series	Model MR-J4 series	Height		Wi		Depth		Mounting screw pitch	
		MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4
MR-J2S-10_1	MR-J4-10_1	168	168	50	40	135	135	156 (Vertical) (2 screws)	156 (Vertical) (2 screws)
MR-J2S-20_1	MR-J4-20_1								
MR-J2S-40_1	MR-J4-40_1			70			$\begin{gathered} 170 \\ (\text { Note }) \\ \hline \end{gathered}$		

Note. The depth will increase.

- Dimensions with differences are shown with shading.

2.1.3 Built-in positioning function/program supported 200 V class (7 kW or less)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J4 series are the same or smaller than the MR-J2S series basically. The depth is larger for the 400 W and 600 W capacities. The replacements for 1 kW or less capacity types are possible using the same mounting holes. The number of mounting screws is different for the 2 kW and 3.5 kW capacities, and the mounting screw distance is different for the 5 kW to 7 kW capacities.

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model	Model MR-J4 series	Height		Width		Depth		Mounting screw pitch	
MR-J2S series		MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4
MR-J2S-10	MR-J4-10A-RJ	168	168	50	40	135	135	156 (Vertical) (2 screws)	156 (Vertical) (2 screws)
MR-J2S-20	MR-J4-20A-RJ								
MR-J2S-40	MR-J4-40A-RJ			70			170		
MR-J2S-60_	MR-J4-60A-RJ						(Note 1)		
MR-J2S-70_	MR-J4-70A-RJ				60	190	185	156 (Vertical)/ 42 (Horizontal) (3 screws)	156 (Vertical)/ 42 (Horizontal) (3 screws)
MR-J2S-100_	MR-J4-100A-RJ								
MR-J2S-200_	MR-J4-200A-RJ			90	90	195	195	156 (Vertical)/ 78 (Horizontal) (4 screws)	156 (Vertical)/ 78 (Horizontal)
MR-J2S-350_	MR-J4-350A-RJ								(3 screws) (Note 2)
MR-J2S-500_	MR-J4-500A-RJ	250	250	130	105	200	200	235 (Vertical)/ 118 (Horizontal) (4 screws)	235 (Vertical)/ 93 (Horizontal) (4 screws)
MR-J2S-700_	MR-J4-700A-RJ	350	300	180	172			335 (Vertical)/ 160 (Horizontal) (4 screws)	285 (Vertical)/ 160 (Horizontal) (4 screws)

Note 1. The depth will increase.
2. The number of mounting screws will be changed.

- Dimensions with differences are shown with shading.

2.1.4 Built-in positioning function/program supported 100 V class (0.4 kW or less)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J3 series are the same or smaller than the MR-J2S series. The depth is larger for the 400 W capacity. The mounting dimensions are interchangeable.

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model	Model MR-J4 series	Height		Width		Depth		Mounting screw pitch	
MR-J2S series		MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4
MR-J2S-10_1	MR-J4-10A1-RJ	168	168	50	40	135	135	156 (Vertical)	156 (Vertical)
MR-J2S-20_1	MR-J4-20A1-RJ							(2 screws)	(2 screws)
MR-J2S-40_1	MR-J4-40A1-RJ			70			$\begin{gathered} 170 \\ \text { (Note) } \end{gathered}$		

Note. The depth will increase.

- Dimensions with differences are shown with shading.

Part 7: Common Reference Material

Comparison of $200 \mathrm{~V} / 100 \mathrm{~V}$ class dimensions

Part 7: Common Reference Material

Part 7: Common Reference Material

Part 7: Common Reference Material

2.1.5 General-purpose interface drive unit/SSCNET interface drive unit 200 V class (30 kW or more)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J4 series are the same or smaller than the MR-J2S series basically. The depth will increase when a heat sink is placed in a cabinet. For the mounting dimensions, the mounting screw pitch and screw sizes will be changed. (Refer to the comparison of dimensions.)

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model MR-J2S series	Model MR-J4 series	Height		Width		Depth		Mounting screw pitch	
		MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4
MR-J2S-30K_	MR-J4-DU30K_	500	380	450	300	300	$\begin{gathered} \hline 200 \\ (328) \\ \text { (Note) } \end{gathered}$	480 (Vertical)/	360 (Vertical)! 260 (Horizontal) (4 screws)
MR-J2S-37K_	MR-J4-DU37K_							360 (Horizontal) (4 screws)	
MR-HP30KA	MR-CR55K			200	300			480 (Vertical)/ 110 (Horizontal) (4 screws)	

Note. The values in the parentheses are applied to when a heat sink is placed in a cabinet. Pay attention to the depth.

- Dimensions with differences are shown with shading.

2.1.6 General-purpose interface/SSCNET interface 400 V class (22 kW or less)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J3 series are the same or smaller than the MR-J2S series. The 5 kW capacity types are interchangeable. Please note the following when replacing: The number of mounting screws is different for the 600 W to 2 kW capacities, and the mounting screw distance is different for the 3.5 kW and 7 kW to 22 kW capacities. The screw sizes are different for the 11 kW and 15 kW capacities. (Refer to the comparison of dimensions.)

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model MR-J2S series	Model MR-J4 series	Height		Width		Depth		Mounting screw pitch	
		MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4
MR-J2S-60_4	MR-J4-60_4 MR-J4-100_4	168	168	90	60	195	195	156 (Vertical)/ 78 (Horizontal) (4 screws)	```156 (Vertical)/ 42 (Horizontal) (3 screws) (Note)```
MR-J2S-200_4	MR-J4-200_4				90				156 (Vertical)/ 78 (Horizontal) (3 screws) (Note)
MR-J2S-350_4	MR-J4-350_4	250	250	130	105	200	200	235 (Vertical)/ 118 (Horizontal) (4 screws)	235 (Vertical)/ 93 (Horizontal) (4 screws)
MR-J2S-500_4	MR-J4-500_4				130				235 (Vertical)/118 (Horizontal) (4 screws)
MR-J2S-700_4	MR-J4-700_4	350	300	180	172			335 (Vertical)/ 160 (Horizontal) (4 screws)	285 (Vertical)/ 160 (Horizontal) (4 screws)
MR-J2S-11K_4 MR-J2S-15K_4	MR-J4-11K_4 MR-J4-15K_4	400	400	260	220	260	260	376 (Vertical)/ 236 (Horizontal) (4 screws)	380 (Vertical)/ 196 (Horizontal) (4 screws)
MR-J2S-22K_4	MR-J4-22K_4			350	260			376 (Vertical)/ 326 (Horizontal) (4 screws)	376 (Vertical)/ 236 (Horizontal) (4 screws)

Note. The number of mounting screws will be changed.

- Dimensions with differences are shown with shading.

Part 7: Common Reference Material

Comparison of 400 V class dimensions

MR-J2S series dimensions	MR-J4 series dimensions
MR-J2S-60_4, MR-J2S-100_4Servo amplifier Mass [kg] MR-J2S-60A4/B4 2.1 MR-J2S-100A4/B4 2.2	MR-J4-60_4, MR-J4-100_4
MR-J2S-200_4Servo amplifier Mass [kg] MR-J2S-60A4/B4 2.1 MR-J2S-100A4/B4 2.2 MR-J2S-200A4/B4	MR-J4-200_4
MR-J2S-350_4	MR-J4-350_4
Servo amplifier Mass kg$]$ MR-J2S-350A4/B4 5 MR-J2S-500A4/B4	

Part 7: Common Reference Material

2.1.7 General-purpose interface drive unit/SSCNET interface drive unit 400 V class (30 kW or more)

The following table shows comparison of the MR-J2S series and MR-J4 series dimensions. The height and width of the MR-J4 series are the same or smaller than the MR-J2S series basically. The depth will increase when a heat sink is placed in a cabinet. For the mounting dimensions, the mounting screw pitch and screw sizes will be changed. (Refer to the comparison of dimensions.)

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model	Model							Mountin	crew pitch
MR-J2S series	MR-J4 series	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4	MR-J2S	MR-J4
MR-J2S-30K_4	MR-J4-DU30K_4	500	380	380	240	300	$\begin{gathered} 200 \\ (328) \\ \text { (Note) } \end{gathered}$	480 (Vertical)/ 290 (Horizontal) (4 screws)	$\begin{gathered} 360 \text { (Vertical)! } \\ 120 \text { (Horizontal) } \end{gathered}$
MR-J2S-37K_4	MR-J4-DU37K_4			450				480 (Vertical)/	(4 screws)
MR-J2S-45K_4	MR-J4-DU45K_4				300			360 (Horizontal)	
MR-J2S-55K_4	MR-J4-DU55K_4							(4 screws)	360 (Vertical)/
MR-HP55KA4	MR-CR55K4			200				480 (Vertical)/ 110 (Horizontal) (4 screws)	260 (Horizontal) (4 screws)

[^3]- Dimensions with differences are shown with shading.

Part 7: Common Reference Material

Part 7: Common Reference Material

2.2 MR-J2M-_ \Rightarrow MR-J4-_ Comparison Table of Servo Amplifier Dimensions/Installation Differences

The following table shows comparison of the MR-J2M series and MR-J4 series dimensions. The width of the MR-J4 series is the same or smaller than the MR-J2M series. The depth is larger for the 400 W and 750 W capacities. Note that the height is larger for all the capacities. Mounting dimensions of the both series are significantly different. Please take note.

Comparison of dimensions (comparison between the same capacity types) Unit: mm

Model MR-J2M series	Model MR-J4 series	Height		Width		Depth		Mounting screw pitch	
		MR-J2M	MR-J4	MR-J2M	MR-J4	MR-J2M	MR-J4	MR-J2M	MR-J4
$\begin{aligned} & \text { MR-J2M-BU4 + } \\ & \text { MR-J2M-P8A + } \\ & \text { MR-J2M-_DU } \end{aligned}$	$\begin{aligned} & \hline \text { MR-J4-10, 20A } \\ & \times 4 \text { units } \end{aligned}$	140	$\begin{gathered} 168 \\ \text { (Note) } \end{gathered}$	230	$\begin{gathered} 40 \times 4 \\ =160 \end{gathered}$	158	135	86 (Vertical)/ 218 (Horizontal) (4 screws)	$\begin{aligned} & \hline 156 \text { (Vertical) } \\ & (2 \text { screws) } \times 4 \end{aligned}$
	$\begin{array}{\|l\|} \hline \text { MR-J4-40A } \\ \times 4 \text { units } \\ \hline \end{array}$						$\begin{gathered} 170 \\ \text { (Note) } \\ \hline \end{gathered}$		
	$\begin{array}{\|l} \hline \text { MR-J4-70A } \\ \times 2 \text { units } \end{array}$				$\begin{aligned} & 60 \times 2 \\ & =120 \end{aligned}$		$\begin{gathered} 185 \\ \text { (Note) } \end{gathered}$		Height 156/ width 42 (3 screws) $\times 2$
$\begin{aligned} & \text { MR-J2M-BU6 + } \\ & \text { MR-J2M-P8A + } \\ & \text { MR-J2M-_DU } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MR-J4-10, 20A } \\ \times 6 \text { units } \\ \hline \end{array}$	140	$\begin{gathered} 168 \\ \text { (Note) } \end{gathered}$	290	$\begin{aligned} & 40 \times 6 \\ & =240 \end{aligned}$	158	135	86 (Vertical)/ 278 (Horizontal) (4 screws)	156 (Vertical)$(2$ screws) $\times 6$
	$\begin{aligned} & \hline \text { MR-J4-40A } \\ & \times 6 \text { units } \\ & \hline \end{aligned}$						$\begin{gathered} 170 \\ \text { (Note) } \end{gathered}$		
	$\begin{aligned} & \hline \text { MR-J4-70A } \\ & \times 3 \text { units } \end{aligned}$				$\begin{aligned} & 60 \times 3 \\ & =180 \end{aligned}$		$\begin{gathered} 185 \\ \text { (Note) } \end{gathered}$		Height 156/ width 42 (3 screws) $\times 3$
$\begin{aligned} & \text { MR-J2M-BU8 + } \\ & \text { MR-J2M-P8A + } \\ & \text { MR-J2M-_DU } \end{aligned}$	$\begin{aligned} & \text { MR-J4-10, 20A } \\ & \times 8 \text { units } \end{aligned}$	140	$\begin{gathered} 168 \\ \text { (Note) } \end{gathered}$	350	$\begin{aligned} & 40 \times 8 \\ & =320 \end{aligned}$	158	135	86 (Vertical)/ 338 (Horizontal) (4 screws)	$\begin{array}{\|l} \hline 156 \text { (Vertical) } \\ (2 \text { screws) } \times 8 \end{array}$
	$\begin{aligned} & \hline \text { MR-J4-40A } \\ & \times 8 \text { units } \end{aligned}$						$\begin{gathered} 170 \\ \text { (Note) } \end{gathered}$		
	$\begin{aligned} & \hline \text { MR-J4-70A } \\ & \times 4 \text { units } \end{aligned}$				60×4 $=240$		$\begin{gathered} 185 \\ \text { (Note) } \end{gathered}$		Height 156/ width 42 (3 screws) $\times 4$

Note. The width will increase.

Dimensions with differences are shown with shading.

Comparison between the MR-J2M and the MR-J4 series

Series	Dimensions
MR-J2M-BU4 + MR-J2M-P8A + MR-J2M-_DU MR-J2M-BU4 + MR-J2M-P8B + MR-J2M-_DU	
When four MR-J4-10_units are closely mounted	* When mounting the servo amplifiers closely, leave a clearance of 1 mm between the adjacent servo amplifiers in consideration of mounting tolerances. In this case, operate at the ambient temperatures $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$.

Part 7: Common Reference Material

Part 7: Common Reference Material

2.3 MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_Parameter Diversion Procedure

2.3.1 Operation procedure of parameter conversion

The parameter converter function of MR Configurator2 allows the servo parameters of MR-J2S-_A_/MR-J2S-_CP_/MR-J2S_-CL_ to be changed to the servo parameters of MR-J4-_A_(-RJ).
(Conversion of MR-J2S-_A_: version 1.12N or more; conversion of MR-J2S-_CP_/CL_: version 1.25B or more)

2.3.2 MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ parameter diversion procedure

- Parameter reading from the servo amplifier MR-J2S-_A_/ MR-J2S-_CP_/ MR-J2S-_CL_

- Converting the parameters of MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ and writing them to the MR-J4-_A_(-RJ) servo amplifier

Part 7: Common Reference Material

2.3.3 Parameter reading from the servo amplifier MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_
(1) Start the setup software (MRZJW3-SETUP161E).

(2) Set the system settings.

Click [System] in the menu to display the system settings dialog box.
Set the Model Selection, Baud Rate Selection, Comm Port Selection, Capacity selection, and Station number selection.

(3) Read the servo parameters.

Click [Parameters] in the menu to display the parameter list screen.
Connect the MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ servo amplifier to a personal computer and click the [Read All] button.

Change the setting value of [Pr. PA19 Parameter writing inhibit] to "000E" and click the [Write] button. Then turn off/on the power of the servo amplifier.
Click the [Read All] button again to extend the display range of parameter numbers and display the parameters in the list of parameters.

After reading the parameters is completed, Select [File] - [Save] to save the parameter file. (The work with the setup software (MRZJW3-SETUP161E) is finished.)
2.3.4 Converting the parameters of MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ and writing them to the MR-J4-_A_(-RJ) servo amplifier
(1) Start MR Configurator2 (SW1DNC-MRC2-E).

(2) Create a new project.

Select [Project] - [New] from the menu to display the New Project dialog box. Select "MR-J4-A(-RJ)" for Model.

(3) Change MR-J2S-_A_/MR-J2S-_CP_/MR-J2S_-CL_ parameters to MR-J4-_A_(-RJ) parameters. Select [Parameter] - [Parameter Converter] from the menu to display the parameter converter screen.
Then click the [Open file] button and specify the user file that was saved with the setup software (MRZJW3-SETUP161E) with the operation in (3) of Section 2.3.3.

Designate the source model, since the Model Selection window appears when a user file is designated.

Click [Update Project].

(4) Write the changed parameters to the MR-J4-_A_(-RJ) servo amplifier.

Select [Parameter] - [Parameter Setting] from the menu to display the parameter setting screen. Connect the MR-J4-_A_(-RJ) servo amplifier to a personal computer and click the [Single Axis Write] button. The parameter values will be written to the MR-J4-_A_(-RJ) servo amplifier.

Note: The servo gain is not perfectly equal.
Refer to the MR Configurator2 (SW1DNC-MRC2-E) help for details.

POINT
The conversion rules in this section give due consideration to compatibility. However, the servo parameter system of MR-J2S-_A_/ MR-J2S-_CP_/MR-J2S_CL_ and that of MR-J4-_A_ are so different that the rules may not sufficiently apply to cases of special operation (including special specifications). Change the settings as necessary in such cases.
OThe value of [Pr. PA19 Parameter writing inhibit] after parameter conversion is the initial value.

- MR-J4-_A_: [Pr. PA19] = "00AAh"
-When using analog monitor output, perform an operation check because MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ and MR-J4-_A_ have different output voltage specifications for droop pulses.
- MR-J4-_A_: [Pr. PC14]/[Pr. PC15]
- Various offset parameters cannot be converted. Change the settings as necessary.
- MR-J4-_A_: [Pr. PC37] to [Pr. PC40]

OWhen the renewal tool is not used, set the conversion of I/O signal assignment with the parameter converter function to "Disabled". Change the settings or wiring as necessary because the parameters related to I/O signal assignment are not converted.
When the renewal tool is used, set the conversion of I/O signal assignment with the parameter converter function to "Enabled". According to the control signal connection of the renewal tool, the parameters related to I/O signal assignment are converted. (For details, refer to section 2.3 .5 (1).)

- MR-J4-_A_: [Pr. PD03] to [Pr. PD28]

The following parameters of MR-J4-_A_ are compatible with the servo amplifier's software version A3 or later. The software version can be checked in the system configuration.

- MR-J4-_A_: [Pr. PC21 RS-422 communication function selection]

OThe conversion rules apply only to the common parameters of MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ and MR-J4-_A_(-RJ).
Additional parameters of MR-J4-_A_(-RJ) are set to the initial values of MR-J4-_A_(-RJ).
The parameter conversion rules are intended for the replacement of "HC_FS/HA__FS motors" with "HG motors". When using "HC__FS/HA__FS motors" without being replaced, check and change the "electronic gear setting" and "pulse output". (Refer to (5) in Section 2.3.5 and 4. HC-_FS/HA-_FS MOTOR DRIVE.)
(1) Conversion with the renewal tool

POINT

I/O signal assignment can be converted with MR Configurator2 of version 1.53F or later.
I/O signal assignment cannot be converted with the parameter converter function because the renewal tool is not available for MR-J2S-_CL_.

When MR-J2S series servo amplifiers are replaced with MR-J4 series servo amplifiers using the renewal tool, the parameters related to I/O signal assignment can be converted according to the control signal connection of the renewal tool when the conversion of I/O signal assignment with the parameter converter function is set to "Enabled".
However, the following restrictions may be applied depending on the model of servo amplifiers to be replaced.

1) Restrictions for MR-J2S-_A

When the following function is used, you cannot use the renewal tool because there is no compatibility of signal connections of the renewal tool. Set the conversion of I/O signal assignment with the parameter converter function to "Disabled". Refer to Part 2 Section 3.3 "Comparison of Standard Connection Diagrams" and consider laying new cables or changing the parameter setting.
a) Alarm code output setting: [Pr. 49]
2) Restrictions for MR-J2S_-_CP_

When the following function is used, you cannot use the renewal tool because there is no compatibility of signal connections of the renewal tool. Set the conversion of I/O signal assignment with the parameter converter function to "Disabled". Refer to Part 4 Section 3.3 "Comparison of Standard Connection Diagrams" and consider laying new cables or changing the parameter setting.
a) Alarm code output setting: [Pr. 59]
b) CN1A-19 pin setting (on the device assignment setting of the setup software (SETUP161E))

Part 7: Common Reference Material
(2) Parameters that need to be checked after parameter conversion

Parameter number	Name	Initial value	Setting value	Description
PA04	Function selection A-1	2000h	$0_{\sim} \ldots$ h	Forced stop deceleration function selection To configure the same settings as those for MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_, select "Forced stop deceleration function disabled (EM1)".
PA09	Auto tuning response	-	-	Auto tuning response setting Adjust the gain value again after the replacement.
PA11	Forward rotation torque limit	100.0	-	If using a servo motor different from the one that had been used before servo amplifier replacement, review the setting value of this servo parameter as necessary because the servo motor specifications are also different. The settings do not need to be changed if the servo motor is not replaced.
PA12	Reverse rotation torque limit	100.0	-	
PA15	Encoder output pulse	-	-	When the encoder output pulse setting is a dividing ratio setting, this must be adjusted to match the number of pulses per servo motor rotation. The parameter converter function converts MR-J2S-_A_/MR-J2S-_CP_/MR-J2S-_CL_ to 131072 [pulses] and MR-J4-_A_(-RJ) to 4194304 [pulses]. Restore this to the value of the model of the target servo amplifier to be replaced in the case of servo amplifier replacement.
PC14	Analog monitor 1 output	-	-	Not converted by the parameter converter function.
PC15	Analog monitor 2 output	-	-	Set the value as required.
PC35	Internal torque limit 2	100.0	-	If using a servo motor different from the one that had been used before servo amplifier replacement, review the setting value of this servo parameter as necessary because the servo motor specifications are also different. The settings do not need to be changed if the servo motor is not replaced.
PC37	Analog speed command offset/ Analog speed limit offset	-	-	Not converted by the parameter converter function. Set the value as required.
PC38	Analog torque command offset/ Analog torque limit offset	-	-	Set the value as required.
PC39	Analog monitor 1 offset	-	-	Set the value as required.
PC40	Analog monitor 2 offset	-	-	Set the value as required.
PD01	Input signal automatic on selection 1	-	$1 _$_ ${ }^{\text {h }}$	EM2 (Forced stop 2)/EM1 (Forced stop 1) input signal automatic on Set this item only when converting the parameters of MR-J2S-_CP_/MR-J2S-_CL_. This setting is not required for conversion from MRJ2S_A_.
$\begin{aligned} & \text { PD03 to } \\ & \text { PD28 } \end{aligned}$	I/O device selection	-	-	Not converted by the parameter converter function. For MR-J2S-_A_/MR-J2S-_CP_, this parameter can be converted according to the control signal connection of the renewal tool when conversion of I/O signal assignment is enabled. However, only MR Configurator2 of version 1.53F or later is available.
PD34	Function selection D-5	-	-	Alarm code output This parameter is not converted by the parameter converter function. Set the value as required.

Note 1. For items that have no setting values listed in the table, refer to "Part 2: Review on Replacement of MR-J2S-_A_with MR-J4_A_" and "Part 4: Review on Replacement of MR-J2S__CP_/MR-J2S-_CL_ with MR-J4-_A_-RJ".
(3) Parameter that needs be set when the MR-J2S-_CP_is replaced with the MR-J4-_A_-RJ

The following parameter needs to be set after the MR-J2S-_CP_is replaced with the MR-J4-_A_-RJ.

Parameter number	Name	Initial value	Setting value	Description
PA01	Operation mode	1000 h	---6 h	Select the servo amplifier control mode. Select the positioning mode (point table method). When MR Configurator2 of version 1.51D or later is used, this parameter will be converted by the parameter converter function. Thus, this setting is not required.

(4) Parameter that needs be set when the MR-J2S-_CL_ is replaced with the MR-J4-_A_-RJ

The following parameter needs to be set after the MR-J2S-_CL_ is replaced with the MR-J4-_A_-RJ.

Parameter number	Name	Initial value	Setting value	Description
PA01	Operation mode	1000 h	---7 h	Select the servo amplifier control mode. Select the positioning mode (program method). When MR Configurator2 of version 1.51D or later is used, this parameter will be converted by the parameter converter function. Thus, this setting is not required.

(5) Parameters that need to be set when the HC/HA series servo motor is used without being replaced

1) When the model of a servo amplifier after replacement is MR-J4-_A_

Parameter number	Name	Initial value	Setting value	Description
PA05	Number of command input pulses per revolution	-	-	Number of command input pulses per revolution Use the initial value only after replacement of MR-J2S_A_. This setting is not required after replacement of MR-J2S_CP_/MR- J2S__CL_.
PA06	Electronic gear numerator	Electronic gear denominator	-	-
PA07	When an electronic gear is used, the setting value needs to be changed. Set the electronic gear setting value of the existing servo amplifier. When a geared servo motor is replaced, the actual reduction ratio may differ before and after the replacement. If the ratio differs after the replacement, set the values considering the actual reduction ratio.			
PA09	Auto tuning response	-	-	Auto tuning response setting Adjust the gain value again after the replacement.
PA15	Encoder output pulses	-	-	When the output dividing ratio setting has been selected, use the value of an existing servo amplifier.
PA21	Function selection A-3	-	-	Electronic gear selection Use the initial value.
PC22	Function selection C-1 Encoder setting selection	-	$-1--$	Select "1: MR-J2S compatible encoder setting".

(6) Conversion rules (MR-J2S-_A_ => MR-J4-_A_)

The following table shows the parameter conversion rules from MR-J2S-_A_ to MR-J4-_A_.
Parameters not specified in the following table will be set to their initial values.

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
0	Control mode and regenerative option selection	Hex	_-_X	PA01	Hex	-_- X	The setting value will be maintained.
			XX_-	PA02	Hex	_-XX	$00 _$_ will be changed to \square 01 \qquad will be changed to \square 02 \qquad will be changed to \qquad 03 \qquad will be changed to _ 03 04 \qquad will be changed to \qquad 05 \qquad will be changed to \qquad 05. 06 \qquad will be changed to \qquad 06. 08 \qquad will be changed to \qquad 08. 09 \qquad will be changed to \qquad OE \qquad will be changed to \square FA. 82 \qquad will be changed to \qquad 82. 83 \qquad will be changed to \qquad 83. 84 \qquad will be changed to \qquad 84. 85 \qquad will be changed to \qquad 85. 87 \qquad will be changed to \qquad 81. Otherwise, __ 00 will be set.
1	Function selection 1	Hex	X_--	PA03	Hex	-_- X	
			X ${ }_{\text {- }}$	PD27	Hex	_-XX	_0_ _ will be changed to _ _03. -1 \qquad will be changed to \qquad 06. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			_ ${ }^{\text {_ }}$	PD24	Hex	_-XX	_ _0_ will be changed to _ _0C. (ZSP) - - 1 1_ will be changed to \qquad 05. (MBR) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			---X	PD29	Hex	--_X	

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

Hex: hexadecimal parameter; Dec: decimal parameter

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A_			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
41	Input signal automatic ON selection	Hex	-_- X	PD01	Hex	$z_{-_} X$	- - - 0 will be changed to \qquad \qquad 1 will be changed to \qquad 4. Otherwise, the initial value will be set.
			- XX	PD01	Hex	- X_-	
42	Input signal selection 1	Hex	_- X_	PD32	Hex	X	
			- - X	PD03	Hex	XXXX	(1) Only when the setting value of No. 0 is \qquad 1, \qquad 3 , or \qquad 5 , this parameter will be converted as follows: (LOP signal) (1-1) When the setting value of No. 42 is \qquad 0 (CN1B-5) PD03: 2323 PD04: _ _ 23 (CN1-15 pin setting) (1-2) When the setting value of No. 42 is \qquad 1 (CN1B-14) PD11: 2323 PD12: _ _ 23 (CN1-19 pin setting) (1-3) When the setting value of No. 42 is \qquad 2 (CN1A-8) PD13: 2323 PD14: _ _ 23 (CN1-41 pin setting) (1-4) When the setting value of No. 42 is 3 \qquad (CN1B-7) PD05: 2323 PD06: _ _ 23 (CN1-16 pin setting) (1-5) When the setting value of No. 42 is \qquad 4 (CN1B-8) PD07: 2323 PD08: _ _ 23 (CN1-17 pin setting) (1-6) When the setting value of No. 42 is 5 \qquad (CN1B-9) PD09: 2323 PD10: _ _ 23 (CN1-18 pin setting) When conversion of I/O signal assignment is enabled, these parameters will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
				PD04	Hex	_ _ XX	
				PD11	Hex	XXXX	
				PD12	Hex	_ _ XX	
				PD13	Hex	XXXX	
				PD14	Hex	_ _ XX	
				PD05	Hex	XXXX	
				PD06	Hex	_ _ XX	
				PD07	Hex	XXXX	
				PD08	Hex	_- XX	
				PD09	Hex	XXXX	
				PD10	Hex	_- XX	

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S--A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
44	Input signal selection 3	Hex	_ \times	PD11	Hex	__XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 1, this parameter will be converted. The setting value will be converted as shown in Table 1 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 1 (as input) in (6) in 2.3 .5 will be converted to \qquad 03. (RES) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			X			XX_	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or ___ 4 or when the value of No. 42 is other than \qquad 1 , this parameter will be converted. The setting value will be converted as shown in Table 2 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 2 (as input) in Section 2.3.5 (6) will be converted to 03_ . (RES) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
		Hex	_ ${ }_{\text {- }}$	PD12	Hex	__ XX	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or ___ 4 or when the value of No. 42 is other than \qquad 1, this parameter will be converted. The setting value will be converted as shown in Table 3 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 3 (as input) in (6) in 2.3 .5 will be converted to __03. (RES) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I / O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S--A_				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
45	Input signal selection 4	Hex	_X	PD13	Hex	__ XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 2 , this parameter will be converted. The setting value will be converted as shown in Table 1 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 1 (as input) in Section 2.3.5 (6) will be converted to \qquad 06. (CR) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			X_			XX_-	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or \qquad 4 or when the value of No. 42 is other than \qquad 2 , this parameter will be converted. The setting value will be converted as shown in Table 2 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 2 (as input) in Section 2.3.5 (6) will be converted to 20__. (SP1) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
		Hex	X		Hex	XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 2 , this parameter will be converted. The setting value will be converted as shown in Table 3 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 3 (as input) in Section 2.3.5 (6) will be converted to __20. (SP1) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
46	Input signal selection 5	Hex	_-X	PD05	Hex	_- XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 3 , this parameter will be converted. The setting value will be converted as shown in Table 1 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 1 (as input) in Section 2.3 .5 (6) will be converted to _ 00. (No assignment function) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			X_			XX _-	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 3 , this parameter will be converted. The setting value will be converted as shown in Table 2 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 2 (as input) in Section 2.3.5 (6) will be converted to 21_ _ (SP2) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
		Hex	X_-	PD06	Hex	_ XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 3 , this parameter will be converted. The setting value will be converted as shown in Table 3 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 3 (as input) in Section 2.3.5 (6) will be converted to _ 21. (SP2) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
47	Input signal selection	Hex	---X	PD07	Hex	- - XX	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or ___ 4 or when the value of No. 42 is other than \qquad 4, this parameter will be converted. The setting value will be converted as shown in Table 1 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 1 (as input) in Section 2.3.5 (6) will be converted to __04. (PC) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			- ${ }_{\text {- }}$			XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 4, this parameter will be converted. The setting value will be converted as shown in Table 2 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 2 (as input) in Section 2.3.5 (6) will be converted to 07__. (ST1) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
		Hex	X_-	PD08	Hex	_ XX	When the setting value of No. 0 is \qquad 0 , \qquad 2, or \qquad 4 or when the value of No. 42 is other than \qquad 4, this parameter will be converted. The setting value will be converted as shown in Table 3 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 3 (as input) in Section 2.3.5 (6) will be converted to _ _07. (RS2) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
48	Input signal selection 7		__X			__XX	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or ___ 4 or when the value of No. 42 is other than \qquad 5 , this parameter will be converted. The setting value will be converted as shown in Table 1 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 1 (as input) in Section 2.3 .5 (6) will be converted to _ _05. (TL) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			X_			XX_	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or ${ }_{\text {_ }} 4$ or when the value of No. 42 is other than \qquad 5 , this parameter will be converted. The setting value will be converted as shown in Table 2 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 2 (as input) in Section 2.3.5 (6) will be converted to 08__. (ST2) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
		Hex	_ ${ }_{\text {_ }}$	PD10	Hex	XX	When the setting value of No. 0 is \qquad 0 , \qquad 2 , or ___ 4 or when the value of No. 42 is other than \qquad 5 , this parameter will be converted. The setting value will be converted as shown in Table 3 (as input) in Section 2.3.5 (6). However, a setting value other than those in Table 3 (as input) in Section 2.3 .5 (6) will be converted to \qquad 08. (RS1) When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I / O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A_				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
49	Output signal selection 1	Hex	_ ${ }_{\text {- }}$	PD28	Hex	_ _ XX	BWNG (battery warning) signal assignment will be converted. (1) When the setting value of No. 49 is _ 1 \qquad (CN1A-19), the setting value of PD28 will be converted to \qquad 09 (CN1-49 pin setting). (2) Only when the setting value of No. 1 is _ 0_{-} _ (CN1B-18 is the initial value ALM), this parameter will be converted. When the setting value of No. 49 is _ 2 \qquad (CN1B-18), the setting value of PD27 will be converted to \qquad 09. (3) When the setting value of No. 49 is _ 3 \qquad (CN1A-18), the setting value of PD23 will be converted to \qquad 09 (CN1-22 pin setting). (4) Only when the setting value of No. 1 is \qquad 0 _ (CN1B-19 is the initial value ZSP), this parameter will be converted. When the setting value of No. 49 is _ 4 \qquad (CN1B-19), the setting value of PD24 will be converted to \qquad 09 (CN1-23 pin setting). (5) When the setting value of No. 49 is _ 5 \qquad (CN1B-6), the setting value of PD26 will be converted to \qquad 09 (CN1-25 pin setting). Otherwise, the initial value will be set. When conversion of I/O signal assignment is enabled, these parameters will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53F or later.
				PD23	Hex	_ _ XX	
				PD24	Hex	__XX	
				PD27	Hex	_ _ XX	
				PD26	Hex	_ _ XX	
		Hex	${ }_{--} \mathrm{X}_{-}$				WNG (warning) signal assignment will be converted. (1) When the setting value of No. 49 is \qquad 1 (CN1A-19), the setting value of PD28 will be converted to \qquad 08 (CN1-49 pin setting). (2) Only when the setting value of No. 1 is _ 0_{-} _ (CN1B-18 is the initial value ALM), this parameter will be converted. When the setting value of No. 49 is \qquad 2 (CN1B-18), the setting value of PD27 will be converted to \qquad 08. (3) When the setting value of No. 49 is \qquad 3 (CN1A-18), the setting value of PD23 will be converted to \qquad 08 (CN1-22 pin setting). (4) Only when the setting value of No. 1 is \qquad 0 _ (CN1B-19 is the initial value ZSP), this parameter will be converted. When the setting value of No. 49 is \qquad 4 (CN1B-19), the setting value of PD24 will be converted to \qquad 08 (CN1-23 pin setting). (5) When the setting value of No. 49 is \qquad 5 (CN1B-6), the setting value of PD26 will be converted to \qquad 08 (CN1-25 pin setting). Otherwise, the initial value will be set. When conversion of I/O signal assignment is enabled, these parameters will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53F or later.
				PD28	Hex	_ _ XX	
				PD23	Hex	__XX	
				PD24	Hex	_ _ XX	
				PD27	Hex	_- XX	
				PD26	Hex	_ _ XX	
		Hex	_-_X	-	-	-	The setting value will not be maintained. (Alarm code output setting)

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
51	Function selection 6	Hex	_ ${ }_{\text {_ }}$	PD30	Hex	_-X	The setting value will be maintained.
54	Function selection 9	Hex	-_- X	PA14	Dec	-	The hexadecimal number is converted to decimal.
			XX	PC19	Hex	_-XX	The setting value will be maintained.
55	Function selection A	Hex	X	PB25	Hex	_- ${ }_{\text {- }}$	The setting value will be maintained.
58	Machine resonance suppression filter 1	Hex	_ _ XX	PB01	Hex	-_- X	$\begin{aligned} & \hline-\quad 00 \text { will be changed to }-_-0 . \\ & \text { Otherwise, ___ } 2 \text { will be set. } \\ & \hline \end{aligned}$
			_- XX	PB13	Dec	-	_ _ 00 will be changed to 4500 . _ _ 01 will be changed to 4500 . _ _ 02 will be changed to 2250 . _ _ 03 will be changed to 1500 . _ _ 04 will be changed to 1125 . _ _ 05 will be changed to 900 . _ _ 06 will be changed to 750 . _ _ 07 will be changed to 643 . _ _ 08 will be changed to 563 . _ _ 09 will be changed to 500 . _ _ OA will be changed to 450. _ _ OB will be changed to 409. _ _ OC will be changed to 375 . _ _ OD will be changed to 346 . _ _ OE will be changed to 321 . _ _ OF will be changed to 300 . _ _ 10 will be changed to 281 . _ _ 11 will be changed to 265 . _ _ 12 will be changed to 250 . _ _ 13 will be changed to 237 . - - 1 14 will be changed to 225 . _ _ 15 will be changed to 214 . \qquad 16 will be changed to 205 . \qquad 17 will be changed to 196. \qquad 18 will be changed to 188. \qquad 19 will be changed to 180. \qquad 1A will be changed to 173 . \qquad 1 B will be changed to 167. \qquad 1C will be changed to 160. \qquad 1D will be changed to 155. \qquad 1E will be changed to 150 . 1 F will be changed to 145 .
			X	PB14	Hex	_ X	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
59	Machine resonance suppression filter 2	Hex	_- XX	PB15	Dec	-	__ 00 will be changed to 4500 . _ _ 01 will be changed to 4500 . _ _ 02 will be changed to 2250 . _ _ 03 will be changed to 1500 . _ _ 04 will be changed to 1125 . _ _ 05 will be changed to 900 . _ _ 06 will be changed to 750 . _ _ 07 will be changed to 643 . _ _ 08 will be changed to 563 . _ _ 09 will be changed to 500 . _ _ OA will be changed to 450 . _ _ OB will be changed to 409. _ _ OC will be changed to 375 . _ _ 0D will be changed to 346 . _ _ 0E will be changed to 321 . _ _ OF will be changed to 300 . _ _ 10 will be changed to 281 . _ _ 11 will be changed to 265 . _ _ 12 will be changed to 250 . _ _ 13 will be changed to 237 . _ _ 14 will be changed to 225 . _ _ 15 will be changed to 214 . _ _ 16 will be changed to 205 . _ - 17 will be changed to 196. _ _ 18 will be changed to 188 . _ _ 19 will be changed to 180. _ 1 A will be changed to 173 . _ _ 1B will be changed to 167. _ _ 1C will be changed to 160. _ - 1D will be changed to 155 . _ _ 1E will be changed to 150 . 1 F will be changed to 145 .
				PB16	Hex	-_X	- - 00 will be changed to _-- 0 . Otherwise, $\quad 1$ will be set.
			X	PB16	Hex	X_	The setting value will be maintained.
60	Low-pass filter/adaptive vibration suppression control	Hex	${ }_{--} \mathrm{X}_{-}$	PB18	Dec	-	_ - ${ }^{1}$ _ will be changed to 18000 . Otherwise, the initial value will be set.
				PB23	Hex	X_	The setting value will be maintained.
61	Load to motor inertia ratio 2	Dec	-	PB29	Dec	-	One decimal place will be added.
35	Position loop gain 2	Dec	-	PB30	Dec	-	The value will be $($ No. 35$) \times($ No. 62 $) \div 100$. One decimal place will be added.
62	Position loop gain 2 change ratio	Dec	-				
37	Speed loop gain 2	Dec	-	PB31	Dec	-	The value will be (No.37) \times (No.63) $\div 100$.
63	Speed loop gain 2 change ratio	Dec	-				
38	Speed integral compensation	Dec	-	PB32	Dec	-	One decimal place will be added to (No. 38) × (No. 64) $\div 100$. The above value will be clamped at 5000.0.
64	Speed integral compensation change ratio	Dec	-				
65	Gain switching selection	Hex	X	PB26	Hex	-_X	The setting value will be maintained.
66	Gain switching condition	Dec	-	PB27	Dec	-	The setting value will be maintained.
67	Gain switching time constant	Dec	-	PB28	Dec	-	The setting value will be maintained.
69	Command pulse multiplication numerator 2	Dec	-	PC32	Dec	-	0 will be changed to 4194304 . Otherwise, the setting value will be maintained.
70	Command pulse multiplication numerator 3	Dec	-	PC33	Dec	-	0 will be changed to 4194304. Otherwise, the setting value will be maintained.
71	Command pulse multiplication numerator 4	Dec	-	PC34	Dec	-	0 will be changed to 4194304 . Otherwise, the setting value will be maintained.
72	Internal speed command 4/internal speed limit 4	Dec	-	PC08	Dec	-	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_A				MR-J4-_A			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
73	Internal speed command 5/internal speed limit 5	Dec	-	PC09	Dec	-	The setting value will be maintained.
74	Internal speed command 6/internal speed limit 6	Dec	-	PC10	Dec	-	The setting value will be maintained.
75	Internal speed command 7/internal speed limit 7	Dec	-	PC11	Dec	-	The setting value will be maintained.
76	Internal torque limit 2	Dec	-	PC35	Dec	-	One decimal place will be added.

Hex: hexadecimal parameter; Dec: decimal parameter

Table 1 Input conversion rules (for the least significant digit)

Table 2 Input conversion rules (for the second digit from the least significant digit)

Table 3 Input conversion rules (for the second digit from the most significant digit)

2_ _ will be changed 3_ _ will be changed 4_ _ will be change 6_ _ will be change 7_ _ will be changed 8_ _ will be change 9__ will be changed A \qquad will be changed \qquad will be change E__ will be change	

(7) Conversion rules (MR-J2S-_CP_ => MR-J4-_A_-RJ)

The following table shows the parameter conversion rules from MR-J2S-_CP_ to MR-J4-_A_-RJ. Parameters not specified in the following table will be set to their initial values.

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
			- X{-}	PT01	Hex	--_X	_- ${ }^{2}$ _ will be changed to \qquad 0. Otherwise, the setting value will be maintained.
0	Command method and regenerative option selection	Hex	XX_-	PA02	Hex	__ XX	```00 _ _ will be changed to _ _ 00 . 01_ _ will be changed to _- 01 02_ _ will be changed to _ - 02. 03__ will be changed to _ - 03 04__ will be changed to _ - 04. 05``` \qquad ```will be changed to \(\square\) 06``` \qquad ```will be changed to \(\square\) 06. 08``` \qquad ```will be changed to``` \qquad ```08. 09``` \qquad ```will be changed to``` \qquad ```09. Otherwise,``` \qquad ```00 will be set.```
1	Feeding function selection	Hex	_ _ - ${ }^{\text {X }}$	PA14	Dec	-	The hexadecimal number is converted to decimal.
			X	PT03	Hex	---X	The setting value will be maintained.
			${ }_{-} X_{-}$		Hex	${ }_{--} X_{-}$	The setting value will be maintained.
			$X_{\text {- }}{ }^{-}$	PT02	Hex	- $-\frac{x}{}$	The setting value will be maintained.
2	Function selection 1	Hex	-_- X	PD29	Hex	_-- X	The setting value will be maintained.
				PA03	Hex	_-_X	The setting value will be maintained.
3	Auto tuning	Hex	--- X	PA09	Dec	-	_ _ _ 1 will be changed to 8 . \square 2 will be changed to 11 . \square 3 will be changed to 13 . \qquad 4 will be changed to 14 . \qquad 5 will be changed to 16 . \qquad 6 will be changed to 18 . \qquad 7 will be changed to 19 . \qquad 8 will be changed to 21 . \qquad 9 will be changed to 23 . \qquad A will be changed to 25 . \qquad B will be changed to 27 . \qquad C will be changed to 28 . \qquad D will be changed to 30 . \qquad E will be changed to 32 . \qquad F will be changed to 34 . To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
			_ $\mathrm{X}_{\text {- }}$	PA08	Hex	__X	- 4 \qquad will be changed to \qquad 3. Otherwise, the setting value will be maintained.
4	Electronic gear numerator	Dec	-	PA06	Dec	-	(1) When the setting value of No. 4 is _ 0 131072 will be set. (2) When the setting value of No. 4 is other than 0 the setting value will be maintained. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
5	Electronic gear denominator	Dec	-	PA07	Dec	-	The setting value will be maintained. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
6	In-position range	Dec	-	PA10	Dec	-	The setting value will be maintained.
7	Position loop gain 1	Dec	-	PB07	Dec	-	The setting value will be multiplied by $2 / 3$ and one decimal place will be added.
8	Home position return type	Hex	--_X	PT04	Hex	_--X	The setting value will be maintained.
			${ }_{--} \mathrm{X}_{-}$		Hex	${ }_{--} X_{-}$	The setting value will be maintained.
			_ ${ }_{\text {- }}$	PT29	Hex	_-_X	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
9	Home position return speed	Dec	-	PT05	Dec	-	The setting value will be maintained.
10	Creep speed	Dec	-	PT06	Dec	-	The setting value will be maintained.
11	Home position shift distance	Dec	-	PT07	Dec	-	The setting value will be maintained.
12	Rough match output range	Dec	-	PT12	Dec	-	The setting value will be maintained.
13	JOG speed	Dec	-	PT13	Dec	-	The setting value will be maintained.
14	S-pattern acceleration/deceleration time constant	Dec	-	PC03	Dec	-	The setting value will be maintained.
15	Station number setting	Dec	-	PC20	Dec	-	The setting value will be maintained.
16	Serial communication function selection - Alarm history clear	Hex	-_- X	PC21	Hex	${ }_{--} \mathrm{X}_{-}$	4 will be changed to \qquad Otherwise, the setting value will be maintained.
			X_	PC18	Hex	_-_X	The setting value will be maintained.
			$\mathrm{X}_{\text {_- }}$	PC21	Hex	${ }_{-} \mathrm{X}_{-}$	The setting value will be maintained.
17	Analog monitor output	Hex	-_- X	PC14	Hex	-_- X	_ _ - 5 will be changed to \qquad _ _ _ 9 will be changed to \qquad \qquad A will be changed to \qquad 9. \qquad B will be changed to \qquad D. Otherwise, the setting value will be maintained.
			${ }_{-} \mathrm{X}_{-}$	PC15	Hex	-_- X	
18	Status display selection	Hex	_ _ XX	PC36	Hex	_ _ XX	_ _ 00 will be changed to \qquad _ _ 01 will be changed to \qquad _ _ 02 will be changed to \qquad \qquad 03 will be changed to \qquad 24. \qquad 04 will be changed to \qquad 00. \qquad 05 will be changed to \qquad 01. \qquad 06 will be changed to \qquad 02. \qquad 07 will be changed to \qquad 27. \qquad 08 will be changed to \qquad 06. \qquad 09 will be changed to \qquad 07. \qquad 0 A will be changed to \qquad 08. \qquad 0 B will be changed to \qquad 09. \qquad 0 C will be changed to \qquad 0 A. \qquad 0 D will be changed to \qquad 0 B. \qquad 0 E will be changed to \qquad 0 C. \qquad 0 F will be changed to \qquad 0 D . \qquad 10 will be changed to \qquad 0 E. \qquad 11 will be changed to \qquad 0 F.
20	Function selection 2	Hex	X_{--}	PB24	Hex	_-_X	The setting value will be maintained.
22	Function selection 4	Hex	--- X	PD30	Hex	-	The setting value will be maintained.
24	Feed forward gain	Dec	-	PB04	Dec	-	The setting value will be maintained.
27	Encoder output pulses	Dec	-				(1) When the setting value of No. 58 is 1
58	Function selection 9	Hex	X_{---}	PA15	Dec	-	32 times the setting value of No. 27 will be set. (2) When the setting value of No. 58 is other than 1 the setting value of No. 27 will be maintained. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
28	Internal torque limit 1	Dec	-	PA11	Dec	-	One decimal place will be added.
			-	PA12	Dec	-	One decimal place will be added.
29	Internal torque limit 2	Dec	-	PC35	Dec	-	One decimal place will be added.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
30	Backlash compensation	Dec	-	PT14	Dec	-	A value obtained by multiplying the setting value by 32 will be set. The above value will be clamped at 65535 . To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
33	Electromagnetic brake sequence output	Dec	-	PC16	Dec	-	The setting value will be maintained.
34	Load to motor inertia ratio	Dec	-	PB06	Dec	-	One decimal place will be added.
35	Position loop gain 2	Dec	-	PB08	Dec	-	One decimal place will be added.
37	Speed loop gain 2	Dec	-	PB09	Dec	-	The setting value will be maintained.
38	Speed integral compensation	Dec	-	PB10	Dec	-	One decimal place will be added.
39	Speed differential compensation	Dec	-	PB11	Dec	-	The setting value will be maintained.
42	Home position return position data	Dec	-	PT08	Dec	-	The setting value will be maintained.
43	Travel distance after proximity dog	Dec	-	PT09	Dec	-	The setting value will be maintained.
44	Stopper type home position return stopper time	Dec	-	PT10	Dec	-	The setting value will be maintained.
45	Stopper type home position return torque limit value	Dec	-	PT11	Dec	-	The setting value will be maintained.
46	Software limit +	Dec	-	PT16	Dec	-	The setting value will be maintained.
47	Software limit +	Dec	-	PT15	Dec	-	The setting value will be maintained.
48	Software limit -	Dec	-	PT18	Dec	-	The setting value will be maintained.
49	Software limit -	Dec	-	PT17	Dec	-	The setting value will be maintained.
50	Position range output address +	Dec	-	PT20	Dec	-	The setting value will be maintained.
51	Position range output address +	Dec	-	PT19	Dec	-	The setting value will be maintained.
52	Position range output address -	Dec	-	PT22	Dec	-	The setting value will be maintained.
53	Position range output address -	Dec	-	PT21	Dec	-	The setting value will be maintained.
55	Function selection 6	Hex	${ }_{-} \mathrm{X}_{-}$	PD30	Hex	${ }_{--} \mathrm{X}_{-}$	The setting value will be maintained.
58	Function selection 9	Hex	X_{-}	PC19	Hex	$=--x$	The setting value will be maintained.
			X_{--}	PC19	Hex	${ }_{-} X_{-}$	The setting value will be maintained.
59	Function selection A	Hex	${ }_{-} \mathrm{X}_{-}$	PD33	Hex	_ X_{--}	The setting value will be maintained.
			X _--	-	-	-	The setting value will not be maintained. (Alarm code output setting)

Part 7: Common Reference Material

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
61	Machine resonance suppression filter 1	Hex	__XX	PB01	Hex	_-_X	$\begin{aligned} & --00 \text { will be changed to } _-_0 . \\ & \text { Otherwise, } \quad \text { _ } 2 \text { will be set. } \end{aligned}$
			__ XX	PB13	Dec	-	
			X_{-}	PB14	Hex	X	The setting value will be maintained

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
62	Machine resonance suppression filter 2	Hex	_- XX	PB15	Dec	-	
			XX	PB16	Hex	_ \times	$\begin{aligned} & -\quad 00 \text { will be changed to ___ } 0 . \\ & \text { Otherwise, ___ } 1 \text { will be set. } \end{aligned}$
			$\mathrm{X}_{\text {_- }}$		Hex	X_	The setting value will be maintained.
63	Low-pass filter/adaptive vibration suppression control	Hex	X	PB18	Dec	-	1 _ will be changed to 18000 .
			X	PB23	Hex	_- X_{-}	The setting value will be maintained.
64	Load to motor inertia ratio 2	Dec	-	PB29	Dec	-	One decimal place will be added.
35	Position loop gain 2	Dec	-	PB30	Dec	-	One decimal place will be added to (No. 35) \times (No. 65) $\div 100$.
65	Position loop gain 2 change ratio	Dec	-				
37	Speed loop gain 2	Dec	-	PB31	Dec	-	The value will be (No.37) $\times($ No. 66) $\div 100$.
66	Speed loop gain 2 change ratio	Dec	-				
38	Speed integral compensation	Dec	-	PB32	Dec	-	One decimal place will be added to (No. 38) \times (No. 67) $\div 100$. The above value will be clamped at 5000.0.
67	Speed integral compensation change ratio	Dec	-				
68	Gain switching selection	Hex	X	PB26	Hex	X	The setting value will be maintained.
69	Gain switching condition	Dec	-	PB27	Dec	-	The setting value will be maintained.
70	Gain switching time constant	Dec	-	PB28	Dec	-	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
79	For manufacturer setting	Hex	_ _ XX	PD22	Hex	XX _-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to 2B __. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			-_XX	PD12	Hex	XX ${ }_{\text {_ }}$	However, a setting value other than those in Table 1 will be converted to 38 \qquad When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
80	For manufacturer setting	Hex	XX_-	PD06	Hex	XX _-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to 20 _ . When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
81	For manufacturer setting	Hex	_-XX	PD08	Hex	XX _-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to 07 \qquad When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			XX ${ }_{\text {_- }}$	PD10	Hex	XX _-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to 08 _ . When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
82	For manufacturer setting	Hex	_ _ XX	PD14	Hex	XX _-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to $39 \ldots$. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			XX ${ }_{\text {- }}$	PD04	Hex	XX_-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to $02 \ldots$. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
83	For manufacturer setting	Hex	_- XX	PD18	Hex	XX_-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to 0 A \qquad When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			XX ${ }_{\text {- }}$	PD20	Hex	XX _-	The setting value will be converted as shown in Table 1 (as input). However, a setting value other than those in Table 1 will be converted to $0 \mathrm{~B} _$_. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
84	For manufacturer setting	Hex	-_- X	PD01	Hex	X_{---}	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			--- X			--- X	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			${ }_{--} \mathrm{X}_{-}$			${ }_{-} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			${ }_{--}{ }^{\text {X }}$			${ }_{-} \mathrm{X}_{--}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			${ }_{-} \mathrm{X}_{\text {- }}$	PD41	Hex	_-_X	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			${ }_{-} \mathrm{X}_{-}$	PD42	Hex	- ${ }^{\text {_ }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			${ }_{-} \mathrm{X}_{-}$			${ }_{-}{ }^{\text {_ }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			X_{--}			_ ${ }^{\text {_ }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			X_{--}			- ${ }^{\text {_ }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			X_{--}	PD41	Hex	${ }_{--} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			X_{---}	PD01	Hex	${ }_{--}{ }^{\text {P }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
85	For manufacturer setting	Hex	-_X			${ }_{--} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
86	For manufacturer setting	Hex	_- XX	PD24	Hex	_ _ XX	The setting value will be converted as shown in Table 2 (as output). However, a setting value other than those in Table 2 will be converted to _ _0C. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CP_				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
87	For manufacturer setting	Hex	_ _ XX	PD23	Hex	__XX	The setting value will be converted as shown in Table 2 (as output). However, a setting value other than those in Table 2 will be converted to \qquad 04. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			XX _	PD26	Hex	__ XX	The setting value will be converted as shown in Table 2 (as output). However, a setting value other than those in Table 2 will be converted to _ _07. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
88	For manufacturer setting	Hex	_ _ XX	PD27	Hex	_ _ XX	The setting value will be converted as shown in Table 2 (as output). However, a setting value other than those in Table 2 will be converted to _ _03. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
			XX ${ }_{\text {- }}$	PD28	Hex	-_XX	The setting value will be converted as shown in Table 2 (as output). However, a setting value other than those in Table 2 will be converted to _ _ 02. When conversion of I/O signal assignment is enabled, this parameter will be converted according to the control signal connection of the renewal tool. When conversion of I/O signal assignment is not enabled, the initial value will be used. This parameter can be used with MR Configurator2 of software version 1.53 F or later.
-	-	-	-	PA21	Hex	X_{--}	3 \qquad will be set. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
-	-	-	-	PA01	Hex	_-_X	\qquad 6 will be set. (Point table method)
					Hex	X	_ _ 0 _ will be set. (Standard control mode)
					Hex	${ }_{-} X^{\prime}$	_ 0 _ _ will be set.
					Hex	X	1 ___ will be set.

Hex: hexadecimal parameter; Dec: decimal parameter

Table 1 Input conversion rules (MR-J2S-_CP_ \rightarrow MR-J4-_A_-RJ)

$$
X X \rightarrow X X_{--} \text {or } X X_{--} \rightarrow X^{X} X_{--}
$$

00 will not be changed.
01 will be changed to $0 C$.
02 will not be changed.
03 will not be changed.
04 will be changed to 0 A .
05 will be changed to 0 B .
06 will be changed to 07 .
07 will be changed to 08 .
08 will be changed to 20 .
09 will be changed to 2B.
0 A will be changed to 38 .
0 B will be changed to 39 .
$0 C$ will be changed to 3 A .
$O D$ will be changed to $3 B$.
OE will be changed to 26 .
0 F will be changed to 05 .
10 will be changed to 09 .
11 will be changed to 04 .
12 will be changed to 27 .
13 will be changed to 24 .
14 will be changed to 25 .
15 will be changed to 3 C .
17 will be changed to 0 D .
18 will be changed to 23 .

Table 2 Output conversion rules (MR-J2S-_CP_ \rightarrow MR-J4-_A_-RJ)

00 will not be changed.
01 will be changed to 02 .
02 will be changed to 03 .
03 will be changed to 04 .
04 will be changed to 23 .
05 will be changed to 24 .
06 will be changed to 05 .
07 will be changed to 06 .
08 will be changed to 25 .
09 will be changed to 08 .
OA will be changed to 09 .
0 B will be changed to 07 .
0 C will be changed to 26 .
OD will be changed to 27 .
0 E will be changed to 38 .
OF will be changed to 39 .
10 will be changed to 3 A
11 will be changed to 3 B .
12 will be changed to $3 C$.
(8) Conversion rules (MR-J2S-_CL_ => MR-J4-_A_-RJ)

The following table shows the parameter conversion rules from MR-J2S-_CL_ to MR-J4-_A_-RJ.
Parameters not specified in the following table will be set to their initial values.

MR-J2S-_CL				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
0	Command method and regenerative option selection	Hex	-_- X	PT02	Hex	$\mathrm{X}_{\text {- }}$	The setting value will be maintained.
			${ }_{--}{ }^{\text {X }}$	PT01	Hex	_-_X	_ _ 2 will be changed to \qquad 0. Otherwise, the setting value will be maintained.
			XX_-	PA02	Hex	__XX	```00 _ will be changed to _ _ 00 . 01_ _ will be changed to 01 02_ _ will be changed to _ 02 03_ _ will be changed to - 03 04_ _ will be changed to _ _ 04 05``` \qquad ```will be changed to``` \qquad ```0. 06``` \qquad ```will be changed to``` \qquad ```06. 08``` \qquad ```will be changed to``` \qquad ```08. 09``` \qquad ```will be changed to``` \qquad ```Otherwise,``` \qquad ```00 will be set.```
1	Feeding function selection	Hex	_-_X	PA14	Dec	-	The hexadecimal number is converted to decimal.
			X	PT03	Hex	X	The setting value will be maintained.
			X_{--}		Hex	${ }_{--} X_{-}$	The setting value will be maintained.
			$X_{\text {- }}{ }^{-}$	PT02	Hex	--- X	The setting value will be maintained.
2	Function selection 1	Hex	_-_X	PD29	Hex	_-- X	The setting value will be maintained.
				PA03	Hex	_-_X	The setting value will be maintained.
3	Auto tuning	Hex	--- X	PA09	Dec	-	_ _ _ 1 will be changed to 8 . _ _ _ 2 will be changed to 11 . _ _ _ 3 will be changed to 13 . _ _ _ 4 will be changed to 14 . _ _ _ 5 will be changed to 16 . _ _ _ 6 will be changed to 18 . _ _ _ 7 will be changed to 19 . _ _ - 8 will be changed to 21 . \qquad 9 will be changed to 23 . \qquad A will be changed to 25 . \qquad B will be changed to 27 . \qquad C will be changed to 28 . \qquad D will be changed to 30 . \qquad E will be changed to 32 . \qquad F will be changed to 34 . To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
			_ X_{-}	PA08	Hex	-_X	_ 4_ _ will be changed to ___ 3 . Otherwise, the setting value will be maintained.
4	Electronic gear numerator	Dec	-	PA06	Dec	-	(1) When the setting value of No. 4 is _ 0 131072 will be set. (2) When the setting value of No. 4 is other than 0 the setting value will be maintained. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
5	Electronic gear denominator	Dec	-	PA07	Dec	-	The setting value will be maintained. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
6	Position end output	Dec	-	PA10	Dec	-	The setting value will be maintained.
7	Position loop gain 1	Dec	-	PB07	Dec	-	The setting value will be multiplied by $2 / 3$ and one decimal place will be added.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CL				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
8	Home position return type	Hex	_-_X	PT04	Hex	- ${ }^{\text {- }}$ X	The setting value will be maintained.
			${ }_{-} \mathrm{X}_{-}$		Hex	$\sim_{-} \mathrm{X}_{-}$	The setting value will be maintained.
			$\mathrm{X}_{\text {_- }}$	PT29	Hex	_-_X	The setting value will be maintained.
9	Home position return speed	Dec	-	PT05	Dec	-	The setting value will be maintained.
10	Creep speed	Dec	-	PT06	Dec	-	The setting value will be maintained.
11	Home position shift distance	Dec	-	PT07	Dec	-	The setting value will be maintained.
12	For manufacturer setting	Dec	-	PT12	Dec	-	The setting value will be maintained.
13	JOG speed	Dec	-	PT13	Dec	-	The setting value will be maintained.
14	S-pattern acceleration/deceleration time constant	Dec	-	PC03	Dec	-	The setting value will be maintained.
15	Station number setting	Dec	-	PC20	Dec	-	The setting value will be maintained.
16	Serial communication function selection - Alarm history clear	Hex	__X	PC21	Hex	${ }_{--} \mathrm{X}_{-}$	\qquad 4 will be changed to __ 0 . Otherwise, the setting value will be maintained.
			_ ${ }_{\text {- }}$	PC18	Hex	_-_X	The setting value will be maintained.
			$\mathrm{X}_{\text {- }}$ (PC21	Hex	$\mathrm{X}_{\text {_- }}$	The setting value will be maintained.
17	Analog monitor output	Hex	--- X	PC14	Hex	--_X	_ _ _ 5 will be changed to \qquad ___ 9 will be changed to \qquad 8. \qquad A will be changed to \qquad 9. \qquad B will be changed to \qquad D. Otherwise, the setting value will be maintained.
			${ }_{-} \mathrm{X}_{--}$	PC15	Hex	--_X	-5_ \qquad will be changed to \qquad - 9 \qquad will be changed to \qquad 8. _A \qquad will be changed to \qquad - B \qquad will be changed to \qquad D. Otherwise, the setting value will be maintained.
18	Status display selection	Hex	_- XX	PC36	Hex	_ _ XX	_ _ 00 will be changed to \square _ _ 01 will be changed to \qquad _ _ 02 will be changed to \qquad \qquad 03 will be changed to \qquad - - 04 will be changed to \qquad 25. \qquad 05 will be changed to \qquad 00. \qquad 06 will be changed to \qquad 01. \qquad 07 will be changed to \qquad 02. \qquad 08 will be changed to \qquad 27. \qquad 09 will be changed to \qquad 06. \qquad 0 A will be changed to \qquad 07. \qquad 0 B will be changed to \qquad 08. \qquad 0 C will be changed to \qquad 09. \qquad 0 D will be changed to \qquad 0 A. \qquad 0 E will be changed to \qquad 0 B. \qquad 0 F will be changed to \qquad 0 C. \qquad 10 will be changed to \qquad 0 D. \qquad 11 will be changed to \qquad 0 E. 12 will be changed to \qquad 0 F.
20	Function selection 2	Hex	_ X_{-}	PB24	Hex	---X	The setting value will be maintained.
22	Function selection 4	Hex	--_X	PD30	Hex	_-_X	The setting value will be maintained.
24	Feed forward gain	Dec	-	PB04	Dec	-	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CL				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
27	Encoder output pulses	Dec	-	PA15	Dec	-	(1) When the setting value of No. 58 is 1 32 times the setting value of No. 27 will be set. (2) When the setting value of No. 58 is other than 1 the setting value of No. 27 will be maintained. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
58	Function selection 9	Hex	X_{-}-				
28	Internal torque limit 1	Dec	-	PA11	Dec	-	One decimal place will be added.
			-	PA12	Dec	-	One decimal place will be added.
29	Internal torque limit 2	Dec	-	PC35	Dec	-	One decimal place will be added.
30	Backlash compensation	Dec	-	PT14	Dec	-	A value obtained by multiplying the setting value by 32 will be set. The above value will be clamped at 65535 . To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
33	Electromagnetic brake sequence output	Dec	-	PC16	Dec	-	The setting value will be maintained.
34	Load to motor inertia ratio	Dec	-	PB06	Dec	-	One decimal place will be added.
35	Position loop gain 2	Dec	-	PB08	Dec	-	One decimal place will be added.
37	Speed loop gain 2	Dec	-	PB09	Dec	-	The setting value will be maintained.
38	Speed integral compensation	Dec	-	PB10	Dec	-	One decimal place will be added.
39	Speed differential compensation	Dec	-	PB11	Dec	-	The setting value will be maintained.
40	JOG operation acceleration/deceleration time constant	Dec	-	PC01	Dec	-	The setting value will be maintained.
				PC02	Dec	-	The setting value will be maintained.
41	Home position return acceleration/deceleration time constant	Dec	-	PC30	Dec	-	The setting value will be maintained.
				PC31	Dec	-	The setting value will be maintained.
42	Home position return position data	Dec	-	PT08	Dec	-	The setting value will be maintained.
43	Travel distance after proximity dog	Dec	-	PT09	Dec	-	The setting value will be maintained.
44	Stopper type home position return stopper time	Dec	-	PT10	Dec	-	The setting value will be maintained.
45	Stopper type home position return torque limit value	Dec	-	PT11	Dec	-	One decimal place will be added.
46	Software limit +	Dec	-	PT16	Dec	-	The setting value will be maintained.
47	Software limit +	Dec	-	PT15	Dec	-	The setting value will be maintained.
48	Software limit -	Dec	-	PT18	Dec	-	The setting value will be maintained.
49	Software limit -	Dec	-	PT17	Dec	-	The setting value will be maintained.
50	Position range output address +	Dec	-	PT20	Dec	-	The setting value will be maintained.
51	Position range output address +	Dec	-	PT19	Dec	-	The setting value will be maintained.
52	Position range output address -	Dec	-	PT22	Dec	-	The setting value will be maintained.
53	Position range output address -	Dec	-	PT21	Dec	-	The setting value will be maintained.
55	Function selection 6	Hex	X_-	PD30	Hex	X_	The setting value will be maintained.
58	Function selection 9	Hex	${ }_{-} \mathrm{X}_{-}$	PC19	Hex	- -X	The setting value will be maintained.
			$X_{\text {- }} \mathrm{X}^{-}$	PC19	Hex	$-_{--} \mathrm{X}_{-}$	The setting value will be maintained.
59	Function selection A	Hex	${ }_{-} \mathrm{X}_{-}$	PD33	Hex	${ }_{-} \mathrm{X}_{-}$	The setting value will be maintained.
			$\mathrm{X}_{\text {- - }}$	-	-	-	The setting value will not be maintained. (Alarm code output setting)

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CL				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
61	Machine resonance suppression filter 1	Hex	__XX	PB01	Hex	_-_X	$\begin{aligned} & --00 \text { will be changed to } _-_0 . \\ & \text { Otherwise, } \quad \text { _ } 2 \text { will be set. } \end{aligned}$
			__ XX	PB13	Dec	-	
			X_{-}	PB14	Hex	X	The setting value will be maintained

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CL				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
62	Machine resonance suppression filter 2	Hex	__ XX	PB15	Dec	-	_ _ 00 will be changed to 4500 . _ _ 01 will be changed to 4500 . _ _ 02 will be changed to 2250 . _ _ 03 will be changed to 1500 . _ _ 04 will be changed to 1125 . _ _ 05 will be changed to 900 . _ - 06 will be changed to 750 . _ - 07 will be changed to 643 . _ _ 08 will be changed to 563 . _ _ 09 will be changed to 500 . _ _ 0 A will be changed to 450. _ _ 0 B will be changed to 409. __ 0 C will be changed to 375 . _ _ 0 D will be changed to 346 . _ _ 0 E will be changed to 321 . _ _ 0 F will be changed to 300 . _ _ 10 will be changed to 281 . _ _ 11 will be changed to 265 . _- 12 will be changed to 250 . _ - 13 will be changed to 237 . _ - 14 will be changed to 225 . _ - 15 will be changed to 214 . _ _ 16 will be changed to 205 . _- 17 will be changed to 196 . _- 18 will be changed to 188 . _ _ 19 will be changed to 180 . \qquad 1 A will be changed to 173. \qquad 1 B will be changed to 167 . \qquad 1 C will be changed to 160 . \qquad 1 D will be changed to 155. \qquad 1 E will be changed to 150. \qquad 1 F will be changed to 145 .
			_ XX	PB16	Hex	-_X	_ _ 00 will be changed to \qquad 0. Otherwise, \qquad 1 will be set.
			X		Hex	X_	The setting value will be maintained.
63	Low-pass filter/adaptive vibration suppression control	Hex	_- $X_{\text {_ }}$	PB18	Dec	-	_- 1 _ will be changed to 18000 .
			_ X_{-}	PB23	Hex	${ }_{--} \mathrm{X}_{-}$	The setting value will be maintained.
64	Load to motor inertia ratio 2	Dec	-	PB29	Dec	-	One decimal place will be added.
35	Position loop gain 2	Dec	-	PB30	Dec	-	One decimal place will be added to (No. 35) \times (No. 65) $\div 100$.
65	Position loop gain 2 change ratio	Dec	-				
37	Speed loop gain 2	Dec	-	PB31	Dec	-	The value will be (No. 37) $\times($ No. 66) $\div 100$.
66	Speed loop gain 2 change ratio	Dec	-				
38	Speed integral compensation	Dec	-	PB32	Dec	-	One decimal place will be added to (No. 38) \times (No. 67) $\div 100$. The above value will be clamped at 5000.0.
67	Speed integral compensation change ratio	Dec	-				
68	Gain switching selection	Hex	_X	PB26	Hex	_-X	The setting value will be maintained.
69	Gain switching condition	Dec	-	PB27	Dec	-	The setting value will be maintained.
70	Gain switching time constant	Dec	-	PB28	Dec	-	The setting value will be maintained.
74	OUT1 output time setting	Dec	-	PT23	Dec	-	A value obtained by multiplying the setting value by 10 will be set.
75	OUT2 output time setting	Dec	-	PT24	Dec	-	A value obtained by multiplying the setting value by 10 will be set.
76	OUT3 output time setting	Dec	-	PT25	Dec	-	A value obtained by multiplying the setting value by 10 will be set.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_CL				MR-J4-_A_-RJ			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
77	Program input polarity selection 1	Hex	_ ${ }^{\text {_ }}$	PT29	Hex	${ }_{--} \mathrm{X}_{-}$	The setting value will be maintained.
84	For manufacturer setting	Hex	-_- X	PD01	Hex	$\mathrm{X}_{\text {_- }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			-_X			-_- X	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			${ }_{--} \mathrm{X}_{-}$			${ }_{-} \mathrm{X}_{--}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			- ${ }_{-}$			${ }_{-} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			_ ${ }^{\text {_ }}$	PD41	Hex	-_- X	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			X ${ }_{\text {- }}$	PD42	Hex	${ }_{-} \mathrm{X}_{--}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			_ ${ }_{\text {_ }}$			${ }_{-} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			$X_{\text {_- }}$			${ }_{-} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			$X_{\text {- - }}$	PD41	Hex	${ }_{-} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			$\mathrm{X}_{\text {- - }}$			${ }_{--}{ }^{\text {X }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
			$X_{\text {_- }}$	PD01	Hex	${ }_{--}{ }^{\text {X }}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
85	For manufacturer setting	Hex	-_X			${ }_{--} \mathrm{X}_{-}$	The setting value will be converted to the manufacturer setting value. Do not change the setting value.
-	-	-	-	PA21	Hex	X_{--}	3 \qquad will be set. To use the HC/HA series servo motors without being replaced, refer to (5) in Section 2.3.5.
-		-	-	PA01	Hex	_-_X	___ 7 will be set. (Program method)
					Hex	${ }_{--} X_{-}$	_- 0 _ will be set. (Standard control mode)
					Hex	${ }_{-} X_{--}$	_ 0^{\prime} _ will be set.
					Hex	X_{-}	1 ___ will be set.

Hex: hexadecimal parameter; Dec: decimal parameter

2.4 MR-J2S-_B_Parameter Diversion Procedure

The parameter converter functions of GX Works2 and MT Developer2 convert the servo parameters of MR-J2S_-B_ to those of MR-J4-_B_ when the controller is changed.
(GX Works2: 1.84 N or later, MT Developer2: 1.41T or later)
(Target model)

- Positioning module QD75M to Simple Motion module QD77MS/LD77MS
- Motion controller A series/Q17nCPUN to Q17nDSCPU/Q170MSCPU(-S1)

2.4.1 Changing QD75M to QD77MS/LD77MS

(1) Start GX Works2 and create a project.
(2) Right-click [Intelligent Function Module] in the Navigation window and select [New Module] to add the simple motion module QD77MS/LD77MS.

(3) Double-click [Simple Motion Module Setting] of the added simple motion module to start the simple motion module setting tool.
(4) Read the GX Configurator-QP data.

Click [Project] - [Import GX Configurator-QP Data] from the menu. A dialog box for reading the GX Configurator-QP data is displayed. Specify and read the QD75MH data.

When using QD75 data made on GX Works2, save the QD75 data as GX Configurator-QP data on GX Works2 and perform the above operation.

Part 7: Common Reference Material

(5) Specify the target module.

Specify the model and the head XY address of the target module, then click the [OK] button.

Part 7: Common Reference Material

(6) Execute servo parameter conversion.

Select the target servo amplifier setting and click the [OK] button.
The servo parameters are converted as follows depending on the target servo amplifier setting.
When "SSCNET III / H" is selected, MR-J2S_-B_is converted to MR-J4-_B_.
When "SSCNET III" is selected, MR-J2S-_B_is converted to MR-J3-_B_.

2.4.2 Changing the motion controller A series/Q17nCPU to Q17nDSCPU/Q170MSCPU(-S1)
(1) Start MT Developer2.

(2) Select the source project.

Click [Project] - [Divert File] - [Diversion of Other Format Project] from the menu to display the Diversion of Other Format Project dialog box. Click the [Browse] button to select the source project.
To divert an MT Developer2 project, click [Project] - [Divert File] - [Utilize MT Developer file format Project] from the menu.

(3) Execute file diversion.

Select the CPU type, OS type, and Operation method in the CPU/OS selection, and click the [Diversion] button.

(4) Execute servo parameter conversion.

Select the target servo amplifier setting and click the [OK] button.
The servo parameters are converted as follows depending on the target servo amplifier setting.
When "SSCNET III / H" is selected, MR-J2S_-B_is converted to MR-J4-_B_.
When "SSCNET III" is selected, MR-J2S-_B_is converted to MR-J3-_B_.

2.4.3 Conversion rules (MR-J2S-_B_ => MR-J4-_B_)

POINT

The conversion rules in the above table give due consideration to compatibility. However, the servo parameter system of MR-J2S_-B_ and that of MR-J4-_B_ are so different that the rules may not sufficiently apply to cases of special operation (including special specifications). Change the settings as necessary in such cases.

- [Pr. PA19 Parameter writing inhibit] after parameter conversion is the initial value.
-MR-J4-_B_: [Pr. PA19] = "00ABh"
When using analog monitor output, perform an operation check because MR-J2S_-B_ and MR-J4-_B_ have different output voltage specifications for droop pulses.
- MR-J4-_B_: [Pr. PC09]/[Pr. PC10]

Output signal assignments will be initialized. Change the settings as necessary.

- MR-J4-_B_ : [Pr. PD07] to [Pr. PD09]
- Various offset parameters cannot be converted. Change the settings as necessary.
- MR-J4-_B_: [Pr. PC11], [Pr. PC12]

The conversion rules apply only to the common parameters of MR-J2S-_B_and MR-J4-_B_.
Additional parameters of MR-J4-_B_ are set to the initial values of MR-J4-_B_.
The setting value of the error excessive alarm level is 2 . Change the settings as necessary.

- MR-J4-_B_: [Pr. PC01 Error excessive alarm level]

The parameter conversion rules are intended for the replacement of "HC_FS/HA__FS motors" with "HG motors". When using "HC-_FS/HA-_FS motors" without being replaced, check and change the "electronic gear setting" and "pulse output".(Refer to (2) in Section 2.4.3 and 4. HC_-FS/HA_-FS MOTOR DRIVE.)
(1) Parameters that need to be checked after parameter conversion

Parameter number	Name	Initial value	Setting value	Description
PA04	Function selection A-1	2000h	$0 __$h	Forced stop deceleration function selection To configure the same settings as those for MR-J2S-_B_, select "Forced stop deceleration function disabled (EM1)".
PA09	Auto tuning response	-	-	Auto tuning response setting Adjust the gain value again after the replacement.
PA15	Encoder output pulse	-	-	When the encoder output pulse setting is a dividing ratio setting, this must be adjusted to match the number of pulses per servo motor rotation. As the parameter converter function converts the setting value into 131072 [pulses] for the MR-J2S-_B_ and 4194304 [pulses] for the MR-J4-_B_, restore the setting value to the value for the MR-J2S-_B_ when replacing the servo amplifier.
PA11	Analog monitor 1 offset	-	-	Set the value as required.
PA12	Analog monitor 2 offset	-	-	Set the value as required.
$\begin{aligned} & \text { PD07 to } \\ & \text { PD09 } \end{aligned}$	I/O device selection	-	-	This parameter is not converted by the parameter converter function. Set the parameters as required.

[^4](2) Parameters that need to be set when the $\mathrm{HC} / \mathrm{HA}$ series servo motor is used without being replaced 1) When the model of a servo amplifier after replacement is MR-J4-_B_

Parameter number	Name	Initial value	Setting value	Description
PA09	Auto tuning response	-	-	Auto tuning response setting Adjust the gain value again after the replacement.
PA10	In-position range	-	-	Use the value of an existing servo amplifier.
PA15	Encoder output pulses	-	-	When the output dividing ratio setting has been selected, use the value of an existing servo amplifier.
PC04	Function selection C-1 Encoder setting selection	-	$-1--$	Set 1: MR-J2S compatible encoder setting.

(3) Conversion rules (MR-J2S-_B_- => MR-J4-_B_)

The following table shows the servo parameter conversion rules from MR-J2S-_B_ (standard) to MR-J4_B_standard.
Servo parameters not specified in the following table will be set to the initial values.

MR-J2S-_B				MR-J4-_B			Conversion rules
No.	Name	Type	Target	No.	Type	Target	
1	Amplifier setting	Hex	_-_X	PA03	Hex	_-_X	The setting value will be maintained.
2	Regenerative resistor	Hex	_ _ XX	PA02	Hex	_ _ XX	_ _ 00 will be changed to \qquad 00. _ _ 01 will be changed to \qquad 01. _ _ 05 will be changed to \qquad 04. _ _ 08 will be changed to \qquad 05. _ _ 09 will be changed to \qquad 06. _ _ OB will be changed to \qquad 08. _ _OC will be changed to \qquad 09. _ _ OE will be changed to \qquad FA. \qquad 10 will be changed to \qquad 02. _ _ 11 will be changed to \qquad 03. \qquad 82 will not be changed. \qquad 83 will not be changed. \qquad 84 will not be changed. \qquad 85 will not be changed. \qquad 87 will be changed to \qquad 81. Otherwise, \qquad 00 will be set.
7	Rotation direction setting	Dec	-	PA14	Dec	-	The setting value will be maintained.
8	Auto tuning	Hex	_ - X	PA08	Hex	-_-X	$\begin{aligned} & \hline---3 \text { will be changed to }---\frac{3 .}{} 3 \text { will be changed to }---2 . \\ & ---\frac{4}{} \text { will be changed to }{ }_{---} 3 . \end{aligned}$ Otherwise, the setting value will be maintained.
9	Servo response setting	Hex	- X	PA09	Dec	-	_ _ _ 1 will be changed to 8 . _ _ _ 2 will be changed to 11 . _ _ _ 3 will be changed to 13 . _ _ _ 4 will be changed to 14 . _ _ _ 5 will be changed to 16 . _ _ _ 6 will be changed to 18 . _ _ _ 7 will be changed to 19 . _ _ _ 8 will be changed to 21 . _ _ _ 9 will be changed to 23 . \qquad A will be changed to 25 . \qquad B will be changed to 27 . \qquad C will be changed to 28 . \qquad D will be changed to 30 . \qquad E will be changed to 32 . \qquad F will be changed to 34 . To use the HC/HA series servo motors without being replaced, refer to (2) in Section 2.4.3.
12	Load to motor inertia ratio	Dec	-	PB06	Dec	-	One decimal place will be added.
13	Position loop gain 1	Dec	-	PB07	Dec	-	The setting value will be multiplied by $2 / 3$ and one decimal place will be added.
15	Position loop gain 2	Dec	-	PB08	Dec	-	One decimal place will be added.
16	Speed loop gain 2	Dec	-	PB09	Dec	-	The setting value will be maintained.
17	Speed integral compensation.	Dec	-	PB10	Dec	-	One decimal place will be added.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_B				MR-J4-_B			Conversion rules
No.	Name	Type	Target	No.	Type	Target	
18	Machine resonance suppression filter 1 (Notch filter)	Hex	_ _ XX	PB01	Hex	__X	_ _ 00 will be changed to \qquad Otherwise, \qquad 2 will be set.
			_ _ XX	PB13	Dec	-	_ _ 00 will be changed to 4500 . _ _ 01 will be changed to 4500 . _ _ 02 will be changed to 2250 . _ _ 03 will be changed to 1500 . _ _ 04 will be changed to 1125 . _ _ 05 will be changed to 900 . _ _ 06 will be changed to 750 . _ _ 07 will be changed to 643 . _ _ 08 will be changed to 563 . _ _ 09 will be changed to 500 . __ 0 A will be changed to 450 . _ _ OB will be changed to 409. _ _ OC will be changed to 375 . _ _ OD will be changed to 346 . _ _ OE will be changed to 321 . _ _ 0F will be changed to 300 . \qquad 10 will be changed to 281 . \qquad 11 will be changed to 265 . \qquad 12 will be changed to 250 . \qquad 13 will be changed to 237 . \qquad 14 will be changed to 225 . \qquad 15 will be changed to 214 . \qquad 16 will be changed to 205 . \qquad 17 will be changed to 196. \qquad 18 will be changed to 188. \qquad 19 will be changed to 180 . \qquad 1A will be changed to 173. \qquad 1 B will be changed to 167 . \qquad 1C will be changed to 160. \qquad 1D will be changed to 155 . \qquad 1E will be changed to 150 . \qquad 1 F will be changed to 145 .
			_ X_{-}	PB14	Hex	_- X_	The setting value will be maintained.
19	Feed forward gain	Dec	-	PB04	Dec	-	The setting value will be maintained.
20	In-position range	Dec	-	PA10	Dec	-	When the setting value of No. 6 is 0 , the setting value of No. 20 will be multiplied by 16. When the setting value of No. 6 is 1 , the setting value of No. 20 will be multiplied by 32 . When the setting value of No. 6 is 6 , the setting value of No. 20 will be multiplied by 8 . When the setting value of No. 6 is 7 or 255 , the setting value of No. 20 will be doubled. When the above value is 4095 or smaller, the value will be multiplied by 16. When the above value is 4096 or larger, 65535 will be set. To use the HC/HA series servo motors without being replaced, refer to (2) in Section 2.4.3.
21	Electromagnetic brake sequence output	Dec	-	PC02	Dec	-	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

MR-J2S-_B				MR-J4-_B			Conversion rules
No.	Name	Type	Target	No.	Type	Target	
22	Analog monitor output	Hex	_ X -	PC09	Hex	_ X	_ 9 _ _ will be changed to _ _ _ 8 _A _ _ will be changed to \qquad _B \qquad will be changed to \qquad D. Otherwise, the setting value will be maintained.
			-_- X	PC10	Hex	-_X	__ _ 9 will be changed to \qquad \qquad A will be changed to \qquad 9. \qquad B will be changed to \qquad D. Otherwise, the setting value will be maintained.
23	Optional function 1 (Servo forced stop selection)	Hex	--_X	PA04	Hex	_ X_-	The setting value will be maintained.
24	Optional function 2 (Slight vibration suppression control selection) (Motor-less operation selection)	Hex	--X_	PB24	Hex	_-_X	The setting value will be maintained.
			_ X_-	PC05	Hex	_-_ X	The setting value will be maintained.
25	Low-pass filter/adaptive vibration suppression control	Hex	-_X_	PB18	Dec	-	_ _ 1 _ will be changed to 18000 . Otherwise, the initial value will be set
			X_	PB23	Hex	X_	The setting value will be maintained.
30	Zero speed	Dec	-	PC07	Dec	-	The setting value will be maintained.
31	Error excessive alarm level	Dec	-	PC01	Dec	-	The value will be (No. 31) $\div 40$. When the setting value is 1 or smaller, 1 will be set.
32	Optional function 5 (PI-PID control switching selection)	Hex	__X	PB24	Hex	_- X_	\qquad 0 will be changed to \qquad 0 . \qquad 1 will be changed to \qquad - - 2 will be changed to \qquad Otherwise, the initial value will be set
33	Optional function 6 (Encoder pulse output setting selection)	Hex	_ X -	PC03	Hex	_- X	The setting value will be maintained.
36	Speed differential compensation	Dec	-	PB11	Dec	-	The setting value will be maintained.
33	Optional function 6 (Encoder pulse output setting selection)	Hex	_ X -	PA15	Dec	-	(1) When the setting value of No. 33 is _ 1_{1} _ 32 times the setting value of No. 38 will be set. (2) When the setting value of No. 33 is other than _ $1_{\text {_ }}$ The setting value of No. 38 will be maintained. To use the HC/HA series servo motors without being replaced, refer to (2) in Section 2.4.3.
38	Encoder output pulses	Dec	-				
49	Gain switching selection	Hex	-_- X	PB26	Hex	-_-X	The setting value will be maintained.
50	Gain switching condition	Dec	-	PB27	Dec	-	The setting value will be maintained.
51	Gain switching time constant	Dec	-	PB28	Dec	-	The setting value will be maintained.
52	Load to motor inertia ratio 2	Dec	-	PB29	Dec	-	One decimal place will be added.
15	Position loop gain 2	Dec	-	PB30	Dec	-	The value will be (No. 15) $\times($ No. 53) $\div 100$. One decimal place will be added.
53	Position loop gain 2 changing ratio	Dec	-				
16	Speed loop gain 2	Dec	-	PB31	Dec	-	The value will be (No.16) $\times($ No. 54) $\div 100$.
54	Speed loop gain 2 changing ratio	Dec	-				
17	Speed integral compensation.	Dec	-	PB32	Dec	-	One decimal place will be added to (No. 17) \times (No. 55) $\div 100$. When the setting value is 5000.0 or larger, 5000.0 will be set.
55	Speed integral compensation gain 2 change ratio	Dec	-				
60	Option function C	Hex	_ ${ }^{-}$	PC03	Hex	_-_X	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

Part 7: Common Reference Material

MR-J2S-_B				MR-J4-_B			Conversion rule
No.	Name	Type	Target	No.	Type	Target	
61	Machine resonance suppression filter 2	Hex	__XX	PB15	Dec	-	
			XX	PB16	Hex	X	_- 00 will be changed to _-_ 0 .
							Otherwise, __ _ 1 will be set.
			X_-	PB16	Hex	_- X_	The setting value will be maintained.

Hex: hexadecimal parameter; Dec: decimal parameter

3. COMMON POINTS TO NOTE

3.1 Points to Note When Replacing a Battery

POINT

The MR-BAT and A6BAT battery for MR-J2S and the MR-J2M-BT battery unit for MR-J2M cannot be used due to different battery voltage specifications.

- The battery replacement procedures for MR-J2S/J2M and for MR-J4 are different.
(The HC/HA motor has a super capacitor condenser.) When replacing the battery for MR-J4, observe the following points and procedures.

Before replacing a battery, turn off the main circuit power and wait for 15 minutes or longer until the charge lamp turns off. Then, check the voltage between P+ and N - with a voltage tester or others. Otherwise, an electric shock may occur. In addition, when confirming whether the charge lamp is off or not, always confirm it from the front of the servo amplifier.

The internal circuits of the servo amplifier may be damaged by static electricity.
Always take the following precautions.
\triangle CAUTION

- Ground human body and work bench.
- Do not touch the conductive areas, such as connector pins and electrical parts, directly by hand.
\square
POINT
- Replacing battery with the control circuit power off will erase the absolute position data.
Verify that the battery for replacement is within its service life.

POINT

- Replace the old battery with only the control circuit power supply turned on. Replacing battery with the control circuit power on will not erase the absolute position data.
3.1.1 Servo amplifier battery mounting method

POINT

For the servo amplifier with a battery holder on the bottom, it is not possible to wire for the earth with the battery installed. Insert the battery after executing the earth wiring of the servo amplifier.

MR-J4-350_ or less

- -

MR-J4-500_ or more

3.1.3 Replacement procedure of MR-BAT6V1SET built-in battery

When the MR-BAT6V1SET reaches the end of its life, replace the MR-BAT6V1 battery in the MR-
BAT6V1SET.

1) While pressing the locking part, open the cover.
2) Replace the battery with a new MR-BAT6V1.

3) Press the cover until it is fixed with the projection of the locking part to close the cover.

4. HC-_FS /HA-_FS MOTOR DRIVE

4.1 Parameter setting

(1) MR-J4-_A

When driving the HC-_FS /HA__FS series servo motor with MR-J4-_A_, configure [Pr. PC22] at "_ 1 _ _" and select the encoder setting compatible with MR-J2S. If there is an error in the setting, [AL.16: Encoder initial communication error 1] or [AL.20: Encoder normal communication error 1] occurs.

No./symbol/name	Setting digit	Function	Initial value [unit]
$\begin{aligned} & \hline \text { PC22 } \\ & \text { **COP1 } \\ & \text { Function } \\ & \text { selection C-1 } \end{aligned}$	-_x	For manufacturer setting	Oh
	$-_{-} x^{\prime}$		Oh
	${ }_{-1} x_{--}$	Encoder setting selection 0: MR-J4 compatible encoder setting 1: MR-J2S compatible encoder setting If there is an error in the setting, [AL.16: Encoder initial communication error 1] or [AL.20: Encoder normal communication error 1] occurs.	Oh
	$\mathrm{X}_{\text {- - - }}$	Encoder cable communication method selection 0: Two-wire type 1: Four-wire type If there is an error in the setting, [AL.16: Encoder initial communication error 1] or [AL.20: Encoder normal communication error 1] occurs.	Oh

(2) MR-J4-_B_

When driving the HC/HA series servo motor with MR-J4-_B_, configure [Pr. PC04] at "_1 _ _" and select a compatible encoder setting with MR-J2S. If there is an error in the setting, [AL.16: Encoder initial communication error 1] or [AL.20: Encoder normal communication error 1] occurs.

No./symbol/name	Setting digit	Function	Initial value [unit]
$\begin{array}{\|l} \hline \text { PCO4 } \\ \text { **COP1 } \\ \text { Function } \\ \text { selection C-1 } \end{array}$	-_x	For manufacturer setting	Oh
	${ }_{--} \mathrm{X}_{\text {_ }}$		Oh
	${ }^{\mathrm{X}}$--	Encoder setting selection 0 : MR-J4 compatible encoder setting 1: MR-J2S compatible encoder setting If there is an error in the setting, [AL.16: Encoder initial communication error 1] or [AL.20: Encoder normal communication error 1] occurs.	Oh
	$\mathrm{x}_{\text {_ }--}$	Encoder cable communication method selection 0: Two-wire type 1: Four-wire type If there is an error in the setting, [AL.16: Encoder initial communication error 1] or [AL.20: Encoder normal communication error 1] occurs.	Oh

POINT

OWhen using HC/HA series servo motors without being replaced, check and change the "electronic gear setting" and "pulse output".
For MR-J4-_A_, refer to Section 2.3.5 (5). For MR-J4-_B_, refer to Section 2.4.3 (2).
ORefer to "Appendix 1. 13 OPTIONS AND PERIPHERAL EQUIPMENT" for "connected cables" when using the HC/HA series servo motors without replacing.
OWhen driving the HC-_FS/HA_-FS series servo motors with the MR-J4-_A_/MR-J4_B_, use regenerative options that are to be used for the MR-J4 series servo amplifiers.
For details regarding combinations of servo amplifiers and regenerative options, refer to "1. COMPARISON TABLE OF REGENERATIVE OPTION COMBINATIONS" of "Part 9: Review on Replacement of Optional Peripheral Equipment".

Part 7: Common Reference Material

4.2 Corresponding Software Version

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Servo amplifier model	Standard software corresponding version (Note)	
			General-purpose interface	SSCNET interface
HC-KFS series	HC-KFS053	MR-J4-10_(-RJ)	A8 or later	
	HC-KFS13	MR-J4-10_(-RJ)	A4 or later	A8 or later
	HC-KFS23	MR-J4-20_(-RJ)	A4 or later	A8 or later
	HC-KFS43	MR-J4-40_(-RJ)	A4 or later	A8 or later
	HC-KFS73	MR-J4-70_(-RJ)	A4 or later	A8 or later
HC-KFS	HC-KFS46	MR-J4-70_(-RJ)	A6 or later	
high-speed rotation series	HC-KFS410	MR-J4-70_(-RJ)	A6 or later	
HC-MFS series	HC-MFS053	MR-J4-10_(-RJ)	A4 or later	A8 or later
	HC-MFS13	MR-J4-10_(-RJ)	A4 or later	A8 or later
	HC-MFS23	MR-J4-20_(-RJ)	A4 or later	A8 or later
	HC-MFS43	MR-J4-40_(-RJ)	A4 or later	A8 or later
	HC-MFS73	MR-J4-70_(-RJ)	A4 or later	A8 or later
HC-LFS series	HC-LFS52	MR-J4-60_(-RJ)	A8 or later	
	HC-LFS102	MR-J4-100_(-RJ)	A8 or later	
	HC-LFS152	MR-J4-200_(-RJ)	A8 or later	
	HC-LFS202	MR-J4-350_(-RJ)	A8 or later	
	HC-LFS302	MR-J4-500_(-RJ)	A8 or later	
HC-SFS 1000 r/min series	HC-SFS81	MR-J4-100_(-RJ)	A8 or later	
	HC-SFS121	MR-J4-200_(-RJ)	A8 or later	
	HC-SFS201	MR-J4-200_(-RJ)	A8 or later	
	HC-SFS301	MR-J4-350_(-RJ)	A8 or later	
HC-SFS 2000 r/min series	HC-SFS52	MR-J4-60_(-RJ)	A4 or later	A8 or later
	HC-SFS102	MR-J4-100_(-RJ)	A4 or later	A8 or later
	HC-SFS152	MR-J4-200_(-RJ)	A4 or later	A8 or later
	HC-SFS202	MR-J4-200_(-RJ)	A4 or later	A8 or later
	HC-SFS352	MR-J4-350_(-RJ)	A4 or later	A8 or later
	HC-SFS502	MR-J4-500_(-RJ)	A8 or later	
	HC-SFS702	MR-J4-700_(-RJ)	A8 or later	
	HC-SFS524	MR-J4-60_4(-RJ)	A8 or later	
	HC-SFS1024	MR-J4-100_4(-RJ)	A8 or later	
	HC-SFS1524	MR-J4-200_4(-RJ)	A8 or later	
	HC-SFS2024	MR-J4-200_4(-RJ)	A8 or later	
	HC-SFS3524	MR-J4-350_4(-RJ)	A8 or later	
	HC-SFS5024	MR-J4-500_4(-RJ)	A8 or later	
	HC-SFS7024	MR-J4-700_4(-RJ)	A8 or later	

Note. Only J4 mode is supported. J3 compatibility mode is not supported.

Part 7: Common Reference Material

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Servo amplifier model	Standard software corresponding version (Note)	
			General-purpose interface	SSCNET interface
HC-SFS 3000 r/min series	HC-SFS53	MR-J4-60_(-RJ)	A8 or later	
	HC-SFS103	MR-J4-100_(-RJ)	A8 or later	
	HC-SFS153	MR-J4-200_(-RJ)	A8 or later	
	HC-SFS203	MR-J4-200_(-RJ)	A8 or later	
	HC-SFS353	MR-J4-350_(-RJ)	A8 or later	
HC-RFS series	HC-RFS103	MR-J4-200_(-RJ)	A8 or later	
	HC-RFS153	MR-J4-200_(-RJ)	A8 or later	
	HC-RFS203	MR-J4-350_(-RJ)	A8 or later	
	HC-RFS353	MR-J4-500_(-RJ)	B0 or later	
	HC-RFS503	MR-J4-500_(-RJ)	A8 or later	
HA-LFS 1000 r/min series	HA-LFS601	MR-J4-700_(-RJ)	D5 or later	
	HA-LFS801	MR-J4-11K_(-RJ)	Not compatible	
	HA-LFS12K1	MR-J4-11K_(-RJ)	Not compatible	
	HA-LFS15K1	MR-J4-15K_(-RJ)	Not compatible	
	HA-LFS20K1	MR-J4-22K_(-RJ)	Not compatible	
	HA-LFS25K1	MR-J4-22K_(-RJ)	Not compatible	
	HA-LFS6014	MR-J4-700_4(-RJ)	Not compatible	
	HA-LFS8014	MR-J4-11K_4(-RJ)	D5 or later	
	HA-LFS12K14	MR-J4-11K_4(-RJ)	Not compatible	
	HA-LFS15K14	MR-J4-15K_4(-RJ)	Not compatible	
	HA-LFS20K14	MR-J4-22K_4(-RJ)	Not compatible	
HA-LFS 1500 r/min series	HA-LFS701M	MR-J4-700_(-RJ)	Not compatible	
	HA-LFS11K1M	MR-J4-11K_(-RJ)	D5 or later	
	HA-LFS15K1M	MR-J4-15K_(-RJ)	Not compatible	
	HA-LFS22K1M	MR-J4-22K_(-RJ)	Not compatible	
	HA-LFS701M4	MR-J4-700_4(-RJ)	B4 or later	
	HA-LFS11K1M4	MR-J4-11K_4(-RJ)	Not compatible	
	HA-LFS15K1M4	MR-J4-15K_4(-RJ)	B4 or later	
	HA-LFS22K1M4	MR-J4-22K_4(-RJ)	D5 or later	
HA-LFS 2000 r/min series	HA-LFS502	MR-J4-500_(-RJ)	A8 or later	
	HA-LFS702	MR-J4-700_(-RJ)	A8 or later	
	HA-LFS11K2	MR-J4-11K_(-RJ)	B0 or later	
	HA-LFS15K2	MR-J4-15K_(-RJ)	B0 or later	
	HA-LFS22K2	MR-J4-22K_(-RJ)	B0 or later	
	HA-LFS11K24	MR-J4-11K_4(-RJ)	B8 or later	
	HA-LFS15K24	MR-J4-15K_4(-RJ)	B4 or later	
	HA-LFS22K24	MR-J4-22K_4(-RJ)	B8 or later	
HC-UFS 2000 r/min series	HC-UFS72	MR-J4-70_(-RJ)	B0 or later	
	HC-UFS152	MR-J4-200_(-RJ)	B0 or later	
	HC-UFS202	MR-J4-350_(-RJ)	B0 or later	
	HC-UFS352	MR-J4-500_(-RJ)	B0 or later	
	HC-UFS502	MR-J4-500_(-RJ)	B0 or later	
HC-UFS 3000 r/min series	HC-UFS13	MR-J4-10_(-RJ)	A8 or later	
	HC-UFS23	MR-J4-20_(-RJ)	A8 or later	
	HC-UFS43	MR-J4-40_(-RJ)	A8 or later	
	HC-UFS73	MR-J4-70_(-RJ)	A8 or later	

Note. Only J4 mode is supported. J3 compatibility mode is not supported.

Part 7: Common Reference Material

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Converter unit model	Servo amplifier model	Standard software Supported version (Note)	
				Generalpurpose interface	SSCNET interface
HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series	HA-LFS30K1	MR-CR55K	MR-J4-DU30K_(-RJ)	Not compatible	
	HA-LFS37K1		MR-J4-DU37K_(-RJ)	Not	patible
	HA-LFS25K14	MR-CR55K4	MR-J4-DU30K_4(-RJ)	Not compatible	
	HA-LFS30K14		MR-J4-DU30K_4(-RJ)	Not compatible	
	HA-LFS37K14		MR-J4-DU37K_4(-RJ)	Not compatible	
HA-LFS $1500 \mathrm{r} / \mathrm{min}$ series	HA-LFS30K1M	MR-CR55K	MR-J4-DU30K_(-RJ)	Not compatible	
	HA-LFS37K1M		MR-J4-DU37K_(-RJ)	Not compatible	
	HA-LFS30K1M4	MR-CR55K4	MR-J4-DU30K_4(-RJ)	D5 or later	
	HA-LFS37K1M4		MR-J4-DU37K_4(-RJ)	Not compatible	
	HA-LFS45K1M4		MR-J4-DU45K_4(-RJ)	B4 or later	
	HA-LFS50K1M4		MR-J4-DU55K_4(-RJ)	D4 or later	
HA-LFS 2000 r/min series	HA-LFS30K2	MR-CR55K	MR-J4-DU30K_(-RJ)	B8 or later	
	HA-LFS37K2		MR-J4-DU37K_(-RJ)	B8 or later	
	HA-LFS30K24	MR-CR55K4	MR-J4-DU30K_4(-RJ)	B8 or later	
	HA-LFS37K24		MR-J4-DU37K_4(-RJ)	B8 or later	
	HA-LFS45K24		MR-J4-DU45K_4(-RJ)	B8 or later	
	HA-LFS55K24		MR-J4-DU55K_4(-RJ)	B9 or later	

Note Only J4 mode is supported. J3 compatibility mode is not supported.

Part 7: Common Reference Material

4.2.1 Method for checking the software version

Start MR Configurator2 (SW1DNC-MRC2-E).
Click [Diagnosis] - [System Configuration] from the menu to display the servo amplifier software version number.

Servo amplifier software version number: $\frac{\text { BCD-OOOOOOO }}{\downarrow} \frac{\mathrm{OO}}{\downarrow}$
Software version number software version

4.3 Overload protection characteristics (Important Points for Combining the drive unit MR-J4-DU55K_4 and HA-LFS motor)

When using the drive unit MR-J4-DU55K_4 in combination with the HA-LFS motor, the overload protection characteristics are as shown in the diagram.
For MR-J2S-55K_4, please check your operation pattern, since the overload protection curve (broken line) of the overload ratio over 200% at the servo-lock is added.

Note 1. When the servo motor is stopped (servo-lock state) or is operating at a low speed of $30 \mathrm{r} / \mathrm{min}$ or less, and an operation generating a torque of 100% or more of the rated torque is carried out at an abnormally high frequency, there is a possibility that the servo amplifier may malfunction even though it is within the electronic thermal protection.
2. The overload ratio over 100% indicates the rated output of a converter unit. For the rated output, refer to section 1.2.1 of "MR-CV_/MR-CR55K_/MR-J4-DU_(-RJ) Instruction Manual".

Part 8 Review on Replacement
 of Motor

Part 8: Review on Replacement of Motor

1. SERVO MOTOR REPLACEMENT

1.1 Servo Motor Substitute Model and Compatibility

$$
\begin{aligned}
& \text { POINT } \\
& \text { Fompatibility here means the mounting compatibility. } \\
& \text { specifications, moment of inertia, connector specifications, and torque } \\
& \text { characteristics, refer to "2 COMPARISON OF SERVO MOTOR } \\
& \text { SPECIFICATIONS". }
\end{aligned}
$$

(1) HC-KFS motor

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Small capacity, low inertia HC-KFS series Standard/With brake (B): With brake	HC-KFS053(B)	HG-KR053(B)	\bigcirc	- The torque characteristics of do not correspond to the range up to the high-speed rotation. For further details, refer to "2.7 Comparison of Servo Motor Torque Characteristics". - The capacity of the corresponding servo amplifier will be different if a model marked with \diamond is replaced. The corresponding servo amplifier for HG-KR43 is MR-J4-40_.
	HC-KFS13(B)	HG-KR13(B)		
	HC-KFS23(B)	HG-KR23(B)		
	HC-KFS43(B)	HG-KR43(B)		
	HC-KFS73(B)	HG-KR73(B)		
	HC-KFS46 \diamond	HG-KR43		
	HC-KFS410 \diamond	HG-KR43		
Small capacity, low inertia HC-KFS series with general reducer (G1) (B): With brake	HC-KFS053(B)G1 1/5	HG-KR053(B)G1 1/5	\bigcirc	- Because the reduction gears of models marked with are different from the actual reduction ratio, it is required that an electronic gear be set up. Refer to "2.4 Comparison of actual reduction ratios for geared servo motors" for the details.
	HC-KFS053(B)G1 1/12	HG-KR053(B)G1 1/12		
	HC-KFS053(B)G1 1/20	HG-KR053(B)G1 1/20		
	HC-KFS13(B)G1 1/5	HG-KR13(B)G1 1/5		
	HC-KFS13(B)G1 1/12	HG-KR13(B)G1 1/12		
	HC-KFS13(B)G1 1/20	HG-KR13(B)G1 1/20		
	HC-KFS23(B)G1 1/5	HG-KR23(B)G1 1/5		
	HC-KFS23(B)G1 1/12	HG-KR23(B)G1 1/12		
	HC-KFS23(B)G1 1/20	HG-KR23(B)G1 1/20		
	HC-KFS43(B)G1 1/5	HG-KR43(B)G1 1/5		
	HC-KFS43(B)G1 1/12	HG-KR43(B)G1 1/12		
	HC-KFS43(B)G1 1/20	HG-KR43(B)G1 1/20		
	HC-KFS73(B)G1 1/5	HG-KR73(B)G1 1/5		
	HC-KFS73(B)G1 1/12	HG-KR73(B)G1 1/12		
	HC-KFS73(B)G1 1/20	HG-KR73(B)G1 1/20		
Small capacity, low inertia HC-KFS series with high precision reducer (G2) (B): With brake	HC-KFS053(B)G2 1/5	HG-KR053(B)G7 1/5	(Note 1)	- The reducer efficiency differs. For further details, refer to "2.4.2 Comparison of actual reduction ratios for geared servo motors".
	HC-KFS053(B)G2 1/9	HG-KR053(B)G7 1/9		
	HC-KFS053(B)G2 1/20	HG-KR053(B)G7 1/21		
	HC-KFS053(B)G2 1/29	HG-KR053(B)G7 1/33		
	HC-KFS13(B)G2 1/5	HG-KR13(B)G7 1/5		
	HC-KFS13(B)G2 1/9	HG-KR13(B)G7 1/11		
	HC-KFS13(B)G2 1/20	HG-KR13(B)G7 1/21		
	HC-KFS13(B)G2 1/29	HG-KR13(B)G7 1/33		
	HC-KFS23(B)G2 1/5	HG-KR23(B)G7 1/5		
	HC-KFS23(B)G2 1/9	HG-KR23(B)G7 1/11		
	HC-KFS23(B)G2 1/20	HG-KR23(B)G7 1/21		
	HC-KFS23(B)G2 1/29	HG-KR23(B)G7 1/33		
	HC-KFS43(B)G2 1/5	HG-KR43(B)G7 1/5		
	HC-KFS43(B)G2 1/9	HG-KR43(B)G7 1/11		
	HC-KFS43(B)G2 1/20	HG-KR43(B)G7 1/21		
	HC-KFS43(B)G2 1/29	HG-KR43(B)G7 1/33		
	HC-KFS73(B)G2 1/5	HG-KR73(B)G7 1/5		
	HC-KFS73(B)G2 1/9	HG-KR73(B)G7 1/11		
	HC-KFS73(B)G2 1/20	HG-KR73(B)G7 1/21		
	HC-KFS73(B)G2 1/29	HG-KR73(B)G7 1/33		

Note 1. For mounting dimensions, refer to "2.3 Comparison of Mounting Dimensions for Geared Servo Motors".
2. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.

Part 8: Review on Replacement of Motor

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Small capacity, low inertia HC-KFS series with high precision reducer Flange output type (G5) (B): With brake	HC-KFS053(B)G5 1/5	HG-KR053(B)G5 1/5	\bigcirc	
	HC-KFS053(B)G5 1/11	HG-KR053(B)G5 1/11		
	HC-KFS053(B)G5 1/21	HG-KR053(B)G5 1/21		
	HC-KFS053(B)G5 1/33	HG-KR053(B)G5 1/33		
	HC-KFS053(B)G5 1/45	HG-KR053(B)G5 1/45		
	HC-KFS13(B)G5 1/5	HG-KR13(B)G5 1/5		
	HC-KFS13(B)G5 1/11	HG-KR13(B)G5 1/11		
	HC-KFS13(B)G5 1/21	HG-KR13(B)G5 1/21		
	HC-KFS13(B)G5 1/33	HG-KR13(B)G5 1/33		
	HC-KFS13(B)G5 1/45	HG-KR13(B)G5 1/45		
	HC-KFS23(B)G5 1/5	HG-KR23(B)G5 1/5		
	HC-KFS23(B)G5 1/11	HG-KR23(B)G5 1/11		
	HC-KFS23(B)G5 1/21	HG-KR23(B)G5 1/21		
	HC-KFS23(B)G5 1/33	HG-KR23(B)G5 1/33		
	HC-KFS23(B)G5 1/45	HG-KR23(B)G5 1/45		
	HC-KFS43(B)G5 1/5	HG-KR43(B)G5 1/5		
	HC-KFS43(B)G5 1/11	HG-KR43(B)G5 1/11		
	HC-KFS43(B)G5 1/21	HG-KR43(B)G5 1/21		
	HC-KFS43(B)G5 1/33	HG-KR43(B)G5 1/33		
	HC-KFS43(B)G5 1/45	HG-KR43(B)G5 1/45		
	HC-KFS73(B)G5 1/5	HG-KR73(B)G5 1/5		
	HC-KFS73(B)G5 1/11	HG-KR73(B)G5 1/11		
	HC-KFS73(B)G5 1/21	HG-KR73(B)G5 1/21		
	HC-KFS73(B)G5 1/33	HG-KR73(B)G5 1/33		
	HC-KFS73(B)G5 1/45	HG-KR73(B)G5 1/45		
Small capacity, low inertia HC-KFS series with high precision reducer Shaft output type (G7) (B): With brake	HC-KFS053(B)G7 1/5	HG-KR053(B)G7 1/5	\bigcirc	
	HC-KFS053(B)G7 1/11	HG-KR053(B)G7 1/11		
	HC-KFS053(B)G7 1/21	HG-KR053(B)G7 1/21		
	HC-KFS053(B)G7 1/33	HG-KR053(B)G7 1/33		
	HC-KFS053(B)G7 1/45	HG-KR053(B)G7 1/45		
	HC-KFS13(B)G7 1/5	HG-KR13(B)G7 1/5		
	HC-KFS13(B)G7 1/11	HG-KR13(B)G7 1/11		
	HC-KFS13(B)G7 1/21	HG-KR13(B)G7 1/21		
	HC-KFS13(B)G7 1/33	HG-KR13(B)G7 1/33		
	HC-KFS13(B)G7 1/45	HG-KR13(B)G7 1/45		
	HC-KFS23(B)G7 1/5	HG-KR23(B)G7 1/5		
	HC-KFS23(B)G7 1/11	HG-KR23(B)G7 1/11		
	HC-KFS23(B)G7 1/21	HG-KR23(B)G7 1/21		
	HC-KFS23(B)G7 1/33	HG-KR23(B)G7 1/33		
	HC-KFS23(B)G7 1/45	HG-KR23(B)G7 1/45		
	HC-KFS43(B)G7 1/5	HG-KR43(B)G7 1/5		
	HC-KFS43(B)G7 1/11	HG-KR43(B)G7 1/11		
	HC-KFS43(B)G7 1/21	HG-KR43(B)G7 1/21		
	HC-KFS43(B)G7 1/33	HG-KR43(B)G7 1/33		
	HC-KFS43(B)G7 1/45	HG-KR43(B)G7 1/45		
	HC-KFS73(B)G7 1/5	HG-KR73(B)G7 1/5		
	HC-KFS73(B)G7 1/11	HG-KR73(B)G7 1/11		
	HC-KFS73(B)G7 1/21	HG-KR73(B)G7 1/21		
	HC-KFS73(B)G7 1/33	HG-KR73(B)G7 1/33		
	HC-KFS73(B)G7 1/45	HG-KR73(B)G7 1/45		

Note. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.

Part 8: Review on Replacement of Motor
(2) HC-MFS motor

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Small capacity, ultra-low inertia HC-MFS series Standard/With brake (B): With brake	HC-MFS053(B)	HG-MR053(B)	\bigcirc	
	HC-MFS13(B)	HG-MR13(B)		
	HC-MFS23(B)	HG-MR23(B)		
	HC-MFS43(B)	HG-MR43(B)		
	HC-MFS73(B)	HG-MR73(B)		
Small capacity, ultra-low inertia HC-MFS series with general reducer (G1) (B): With brake	HC-MFS053(B)G1 1/5	HG-KR053(B)G1 1/5	\bigcirc	- The HG-MR series does not support the geared model. The geared model is supported with the HGKR series. - Because the reduction gears of models marked with are different from the actual reduction ratio, it is required that an electronic gear be set up. Refer to "2.4 Comparison of actual reduction ratios for geared servo motors" for the details.
	HC-MFS053(B)G1 1/12	HG-KR053(B)G1 1/12		
	HC-MFS053(B)G1 1/20	HG-KR053(B)G1 1/20		
	HC-MFS13(B)G1 1/5	HG-KR13(B)G1 1/5		
	HC-MFS13(B)G1 1/12	HG-KR13(B)G1 1/12		
	HC-MFS13(B)G1 1/20	HG-KR13(B)G1 1/20		
	HC-MFS23(B)G1 1/5	HG-KR23(B)G1 1/5		
	HC-MFS23(B)G1 1/12	HG-KR23(B)G1 1/12		
	HC-MFS23(B)G1 1/20	HG-KR23(B)G1 1/20		
	HC-MFS43(B)G1 1/5	HG-KR43(B)G1 1/5		
	HC-MFS43(B)G1 1/12	HG-KR43(B)G1 1/12		
	HC-MFS43(B)G1 1/20	HG-KR43(B)G1 1/20		
	HC-MFS73(B)G1 1/5	HG-KR73(B)G1 1/5		
	HC-MFS73(B)G1 1/12	HG-KR73(B)G1 1/12		
	HC-MFS73(B)G1 1/20	HG-KR73(B)G1 1/20		
Small capacity, ultra-low inertia HC-MFS series with high precision reducer (G2) (B): With brake	HC-MFS053(B)G2 1/5	HG-KR053(B)G7 1/5	(Note 1)	- The HG-MR series does not support the geared model. The geared model is supported with the HGKR series. - The reducer efficiency differs. For further details, refer to "2.4.2 Comparison of actual reduction ratios for geared servo motors".
	HC-MFS053(B)G2 1/9	HG-KR053(B)G7 1/9		
	HC-MFS053(B)G2 1/20	HG-KR053(B)G7 1/21		
	HC-MFS053(B)G2 1/29	HG-KR053(B)G7 1/33		
	HC-MFS13(B)G2 1/5	HG-KR13(B)G7 1/5		
	HC-MFS13(B)G2 1/9	HG-KR13(B)G7 1/11		
	HC-MFS13(B)G2 1/20	HG-KR13(B)G7 1/21		
	HC-MFS13(B)G2 1/29	HG-KR13(B)G7 1/33		
	HC-MFS23(B)G2 1/5	HG-KR23(B)G7 1/5		
	HC-MFS23(B)G2 1/9	HG-KR23(B)G7 1/11		
	HC-MFS23(B)G2 1/20	HG-KR23(B)G7 1/21		
	HC-MFS23(B)G2 1/29	HG-KR23(B)G7 1/33		
	HC-MFS43(B)G2 1/5	HG-KR43(B)G7 1/5		
	HC-MFS43(B)G2 1/9	HG-KR43(B)G7 1/11		
	HC-MFS43(B)G2 1/20	HG-KR43(B)G7 1/21		
	HC-MFS43(B)G2 1/29	HG-KR43(B)G7 1/33		
	HC-MFS73(B)G2 1/5	HG-KR73(B)G7 1/5		
	HC-MFS73(B)G2 1/9	HG-KR73(B)G7 1/11		
	HC-MFS73(B)G2 1/20	HG-KR73(B)G7 1/21		
	HC-MFS73(B)G2 1/29	HG-KR73(B)G7 1/33		

Note 1. For mounting dimensions, refer to "2.3 Comparison of Mounting Dimensions for Geared Servo Motors".
2. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Small capacity, ultra-low inertia HC-MFS series with high precision reducer Flange output type (G5)	HC-MFS053(B)G5 1/5	HG-KR053(B)G5 1/5	\bigcirc	- The HG-MR series does not support the geared model. The geared model is supported with the HGKR series.
	HC-MFS053(B)G5 1/11	HG-KR053(B)G5 1/11		
	HC-MFS053(B)G5 1/21	HG-KR053(B)G5 1/21		
	HC-MFS053(B)G5 1/33	HG-KR053(B)G5 1/33		
	HC-MFS053(B)G5 1/45	HG-KR053(B)G5 1/45		
	HC-MFS13(B)G5 1/5	HG-KR13(B)G5 1/5		
	HC-MFS13(B)G5 1/11	HG-KR13(B)G5 1/11		
	HC-MFS13(B)G5 1/21	HG-KR13(B)G5 1/21		
	HC-MFS13(B)G5 1/33	HG-KR13(B)G5 1/33		
	HC-MFS13(B)G5 1/45	HG-KR13(B)G5 1/45		
	HC-MFS23(B)G5 1/5	HG-KR23(B)G5 1/5		
	HC-MFS23(B)G5 1/11	HG-KR23(B)G5 1/11		
	HC-MFS23(B)G5 1/21	HG-KR23(B)G5 1/21		
	HC-MFS23(B)G5 1/33	HG-KR23(B)G5 1/33		
	HC-MFS23(B)G5 1/45	HG-KR23(B)G5 1/45		
	HC-MFS43(B)G5 1/5	HG-KR43(B)G5 1/5		
	HC-MFS43(B)G5 1/11	HG-KR43(B)G5 1/11		
	HC-MFS43(B)G5 1/21	HG-KR43(B)G5 1/21		
	HC-MFS43(B)G5 1/33	HG-KR43(B)G5 1/33		
	HC-MFS43(B)G5 1/45	HG-KR43(B)G5 1/45		
	HC-MFS73(B)G5 1/5	HG-KR73(B)G5 1/5		
	HC-MFS73(B)G5 1/11	HG-KR73(B)G5 1/11		
	HC-MFS73(B)G5 1/21	HG-KR73(B)G5 1/21		
	HC-MFS73(B)G5 1/33	HG-KR73(B)G5 1/33		
	HC-MFS73(B)G5 1/45	HG-KR73(B)G5 1/45		
Small capacity, ultra-low inertia HC-MFS series with high precision reducer Shaft output type (G7) (B): With brake	HC-MFS053(B)G7 1/5	HG-KR053(B)G7 1/5	\bigcirc	- The HG-MR series does not support the geared model. The geared model is supported with the HGKR series.
	HC-MFS053(B)G7 1/11	HG-KR053(B)G7 1/11		
	HC-MFS053(B)G7 1/21	HG-KR053(B)G7 1/21		
	HC-MFS053(B)G7 1/33	HG-KR053(B)G7 1/33		
	HC-MFS053(B)G7 1/45	HG-KR053(B)G7 1/45		
	HC-MFS13(B)G7 1/5	HG-KR13(B)G7 1/5		
	HC-MFS13(B)G7 1/11	HG-KR13(B)G7 1/11		
	HC-MFS13(B)G7 1/21	HG-KR13(B)G7 1/21		
	HC-MFS13(B)G7 1/33	HG-KR13(B)G7 1/33		
	HC-MFS13(B)G7 1/45	HG-KR13(B)G7 1/45		
	HC-MFS23(B)G7 1/5	HG-KR23(B)G7 1/5		
	HC-MFS23(B)G7 1/11	HG-KR23(B)G7 1/11		
	HC-MFS23(B)G7 1/21	HG-KR23(B)G7 1/21		
	HC-MFS23(B)G7 1/33	HG-KR23(B)G7 1/33		
	HC-MFS23(B)G7 1/45	HG-KR23(B)G7 1/45		
	HC-MFS43(B)G7 1/5	HG-KR43(B)G7 1/5		
	HC-MFS43(B)G7 1/11	HG-KR43(B)G7 1/11		
	HC-MFS43(B)G7 1/21	HG-KR43(B)G7 1/21		
	HC-MFS43(B)G7 1/33	HG-KR43(B)G7 1/33		
	HC-MFS43(B)G7 1/45	HG-KR43(B)G7 1/45		
	HC-MFS73(B)G7 1/5	HG-KR73(B)G7 1/5		
	HC-MFS73(B)G7 1/11	HG-KR73(B)G7 1/11		
	HC-MFS73(B)G7 1/21	HG-KR73(B)G7 1/21		
	HC-MFS73(B)G7 1/33	HG-KR73(B)G7 1/33		
	HC-MFS73(B)G7 1/45	HG-KR73(B)G7 1/45		

Note 1. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.
(3) HC-SFS motor

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Medium capacity, medium inertia HC-SFS series Standard/With brake (4): 400 V specifications (B): With brake	HC-SFS81(B)	HG-SR81(B)	\bigcirc	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side. - The HG-SR servo motor does not have an oil seal. Use HG-SR_J when an oil seal is required.
	HC-SFS121(B)	HG-SR121(B)		
	HC-SFS201(B)	HG-SR201(B)		
	HC-SFS301(B)	HG-SR301(B)		
	HC-SFS52(4)(B)	HG-SR52(4)(B)		
	HC-SFS102(4)(B)	HG-SR102(4)(B)		
	HC-SFS152(4)(B)	HG-SR152(4)(B)		
	HC-SFS202(4)(B)	HG-SR202(4)(B)		
	HC-SFS352(4)(B)	HG-SR352(4)(B)		
	HC-SFS502(4)(B)	HG-SR502(4)(B)		
	HC-SFS702(4)(B)	HG-SR702(4)(B)		
	HC-SFS53(B)	HG-SR52(B)		
	HC-SFS103(B)	HG-SR102(B)		
	HC-SFS153(B)	HG-SR152(B)		
	HC-SFS203(B)	HG-SR202(B)		
	HC-SFS353(B)	HG-SR352(B)		
Medium capacity, medium inertia HC-SFS series with general reducer	HC-SFS52(4)(B)G1(H) 1/6	HG-SR52(4)(B)G1(H) 1/6	\bigcirc	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side.
	HC-SFS52(4)(B)G1(H) 1/11	HG-SR52(4)(B)G1(H) 1/11		
	HC-SFS52(4)(B)G1(H) 1/17	HG-SR52(4)(B)G1(H) 1/17		
	HC-SFS52(4)(B)G1(H) 1/29	HG-SR52(4)(B)G1(H) 1/29		
	HC-SFS52(4)(B)G1(H) 1/35	HG-SR52(4)(B)G1(H) 1/35		
	HC-SFS52(4)(B)G1(H) 1/43	HG-SR52(4)(B)G1(H) 1/43		
	HC-SFS52(4)(B)G1(H) 1/59	HG-SR52(4)(B)G1(H) 1/59		
	HC-SFS102(4)(B)G1(H) 1/6	HG-SR102(4)(B)G1(H) 1/6		
	HC-SFS102(4)(B)G1(H) 1/11	HG-SR102(4)(B)G1(H) 1/11		
	HC-SFS102(4)(B)G1(H) 1/17	HG-SR102(4)(B)G1(H) 1/17		
	HC-SFS102(4)(B)G1(H) 1/29	HG-SR102(4)(B)G1(H) 1/29		
	HC-SFS102(4)(B)G1(H) 1/35	HG-SR102(4)(B)G1(H) 1/35		
	HC-SFS102(4)(B)G1(H) 1/43	HG-SR102(4)(B)G1(H) 1/43		
	HC-SFS102(4)(B)G1(H) 1/59	HG-SR102(4)(B)G1(H) 1/59		
	HC-SFS152(4)(B)G1(H) 1/6	HG-SR152(4)(B)G1(H) 1/6		
	HC-SFS152(4)(B)G1(H) 1/11	HG-SR152(4)(B)G1(H) 1/11		
(4): 400 V specifications (B): With brake G1: Flange-mounting G1H: Foot-mounting	HC-SFS152(4)(B)G1(H) 1/17	HG-SR152(4)(B)G1(H) 1/17		
	HC-SFS152(4)(B)G1(H) 1/29	HG-SR152(4)(B)G1(H) 1/29		
	HC-SFS152(4)(B)G1(H) 1/35	HG-SR152(4)(B)G1(H) 1/35		
	HC-SFS152(4)(B)G1(H) 1/43	HG-SR152(4)(B)G1(H) 1/43		
	HC-SFS152(4)(B)G1(H) 1/59	HG-SR152(4)(B)G1(H) 1/59		
	HC-SFS202(4)(B)G1(H) 1/6	HG-SR202(4)(B)G1(H) 1/6		
	HC-SFS202(4)(B)G1(H) 1/11	HG-SR202(4)(B)G1(H) 1/11		
	HC-SFS202(4)(B)G1(H) 1/17	HG-SR202(4)(B)G1(H) 1/17		
	HC-SFS202(4)(B)G1(H) 1/29	HG-SR202(4)(B)G1(H) 1/29		
	HC-SFS202(4)(B)G1(H) 1/35	HG-SR202(4)(B)G1(H) 1/35		
	HC-SFS202(4)(B)G1(H) 1/43	HG-SR202(4)(B)G1(H) 1/43		
	HC-SFS202(4)(B)G1(H) 1/59	HG-SR202(4)(B)G1(H) 1/59		
	HC-SFS352(4)(B)G1(H) 1/6	HG-SR352(4)(B)G1(H) 1/6		
	HC-SFS352(4)(B)G1(H) 1/11	HG-SR352(4)(B)G1(H) 1/11		
	HC-SFS352(4)(B)G1(H) 1/17	HG-SR352(4)(B)G1(H) 1/17		
	HC-SFS352(4)(B)G1(H) 1/29	HG-SR352(4)(B)G1(H) 1/29		
	HC-SFS352(4)(B)G1(H) 1/35	HG-SR352(4)(B)G1(H) 1/35		

Note 1. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Medium capacity, medium inertia HC-SFS series with general reducer	HC-SFS352(4)(B)G1(H) 1/43	HG-SR352(4)(B)G1(H) 1/43	\bigcirc	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side.
	HC-SFS352(4)(B)G1(H) 1/59	HG-SR352(4)(B)G1(H) 1/59		
	HC-SFS502(4)(B)G1(H) 1/11	HG-SR502(4)(B)G1(H) 1/11		
	HC-SFS502(4)(B)G1(H) 1/17	HG-SR502(4)(B)G1(H) 1/17		
	HC-SFS502(4)(B)G1(H) 1/29	HG-SR502(4)(B)G1(H) 1/29		
(4): 400 V specifications (B): With brake G1: Flange-mounting G1H: Foot-mounting	HC-SFS502(4)(B)G1(H) 1/35	HG-SR502(4)(B)G1(H) 1/35		
	HC-SFS502(4)(B)G1(H) 1/43	HG-SR502(4)(B)G1(H) 1/43		
	HC-SFS702(4)(B)G1(H) 1/11	HG-SR702(4)(B)G1(H) 1/11		
	HC-SFS702(4)(B)G1(H) 1/17	HG-SR702(4)(B)G1(H) 1/17		
	HC-SFS702(4)(B)G1(H) 1/29	HG-SR702(4)(B)G1(H) 1/29		
	HC-SFS702(4)(B)G1(H) 1/35	HG-SR702(4)(B)G1(H) 1/35		
	HC-SFS702(4)(B)G1(H) 1/43	HG-SR702(4)(B)G1(H) 1/43		
Medium capacity, medium inertia HC-SFS series with high precision reducer (G2)	HC-SFS52(4)(B)G2 1/5	HG-SR52(4)(B)G7 1/5	(Note 1)	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side. - The reducer efficiency differs. For further details, refer to "2.4.2 Comparison of actual reduction ratios for geared servo motors".
	HC-SFS52(4)(B)G2 1/9	HG-SR52(4)(B)G7 1/11		
	HC-SFS52(4)(B)G2 1/20	HG-SR52(4)(B)G7 1/21		
	HC-SFS52(4)(B)G2 1/29	HG-SR52(4)(B)G7 1/33		
	HC-SFS52(4)(B)G2 1/45	HG-SR52(4)(B)G7 1/45		
	HC-SFS102(4)(B)G2 1/5	HG-SR102(4)(B)G7 1/5		
	HC-SFS102(4)(B)G2 1/9	HG-SR102(4)(B)G7 1/11		
	HC-SFS102(4)(B)G2 1/20	HG-SR102(4)(B)G7 1/21		
	HC-SFS102(4)(B)G2 1/29	HG-SR102(4)(B)G7 1/33		
	HC-SFS102(4)(B)G2 1/45	HG-SR102(4)(B)G7 1/45		
	HC-SFS152(4)(B)G2 1/5	HG-SR152(4)(B)G7 1/5		
	HC-SFS152(4)(B)G2 1/9	HG-SR152(4)(B)G7 1/11		
	HC-SFS152(4)(B)G2 1/20	HG-SR152(4)(B)G7 1/21		
	HC-SFS152(4)(B)G2 1/29	HG-SR152(4)(B)G7 1/33		
(4): 400 V specifications (B): With brake	HC-SFS152(4)(B)G2 1/45	HG-SR152(4)(B)G7 1/45		
	HC-SFS202(4)(B)G2 1/5	HG-SR202(4)(B)G7 1/5		
	HC-SFS202(4)(B)G2 1/9	HG-SR202(4)(B)G7 1/11		
	HC-SFS202(4)(B)G2 1/20	HG-SR202(4)(B)G7 1/21		
	HC-SFS202(4)(B)G2 1/29	HG-SR202(4)(B)G7 1/33		
	HC-SFS202(4)(B)G2 1/45	HG-SR202(4)(B)G7 1/45		
	HC-SFS352(4)(B)G2 1/5	HG-SR352(4)(B)G7 1/5		
	HC-SFS352(4)(B)G2 1/9	HG-SR352(4)(B)G7 1/11		
	HC-SFS352(4)(B)G2 1/20	HG-SR352(4)(B)G7 1/21		
	HC-SFS502(4)(B)G2 1/5	HG-SR502(4)(B)G7 1/5		
	HC-SFS502(4)(B)G2 1/9	HG-SR502(4)(B)G7 1/11		
	HC-SFS702(4)(B)G2 1/5	HG-SR702(4)(B)G7 1/5		
Medium capacity, medium inertia HC-SFS series with high precision reducer Flange output type (G5)	HC-SFS52(4)(B)G5 1/5	HG-SR52(4)(B)G5 1/5	\bigcirc	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side.
	HC-SFS52(4)(B)G5 1/11	HG-SR52(4)(B)G5 1/11		
	HC-SFS52(4)(B)G5 1/21	HG-SR52(4)(B)G5 1/21		
	HC-SFS52(4)(B)G5 1/33	HG-SR52(4)(B)G5 1/33		
	HC-SFS52(4)(B)G5 1/45	HG-SR52(4)(B)G5 1/45		
$\text { (4): } 400 \text { V }$ specifications (B): With brake	HC-SFS102(4)(B)G5 1/5	HG-SR102(4)(B)G5 1/5		
	HC-SFS102(4)(B)G5 1/11	HG-SR102(4)(B)G5 1/11		

Note 1. For mounting dimensions, refer to "2.3 Comparison of Mounting Dimensions for Geared Servo Motors".
2. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Medium capacity, medium inertia HC-SFS series with high precision reducer Flange output type (G5) (4): 400 V specifications (B): With brake	HC-SFS102(4)(B)G5 1/21	HG-SR102(4)(B)G5 1/21	\bigcirc	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side.
	HC-SFS102(4)(B)G5 1/33	HG-SR102(4)(B)G5 1/33		
	HC-SFS102(4)(B)G5 1/45	HG-SR102(4)(B)G5 1/45		
	HC-SFS152(4)(B)G5 1/5	HG-SR152(4)(B)G5 1/5		
	HC-SFS152(4)(B)G5 1/11	HG-SR152(4)(B)G5 1/11		
	HC-SFS152(4)(B)G5 1/21	HG-SR152(4)(B)G5 1/21		
	HC-SFS152(4)(B)G5 1/33	HG-SR152(4)(B)G5 1/33		
	HC-SFS152(4)(B)G5 1/45	HG-SR152(4)(B)G5 1/45		
	HC-SFS202(4)(B)G5 1/5	HG-SR202(4)(B)G5 1/5		
	HC-SFS202(4)(B)G5 1/11	HG-SR202(4)(B)G5 1/11		
	HC-SFS202(4)(B)G5 1/21	HG-SR202(4)(B)G5 1/21		
	HC-SFS202(4)(B)G5 1/33	HG-SR202(4)(B)G5 1/33		
	HC-SFS202(4)(B)G5 1/45	HG-SR202(4)(B)G5 1/45		
	HC-SFS352(4)(B)G5 1/5	HG-SR352(4)(B)G5 1/5		
	HC-SFS352(4)(B)G5 1/11	HG-SR352(4)(B)G5 1/11		
	HC-SFS352(4)(B)G5 1/21	HG-SR352(4)(B)G5 1/21		
	HC-SFS502(4)(B)G5 1/5	HG-SR502(4)(B)G5 1/5		
	HC-SFS502(4)(B)G5 1/11	HG-SR502(4)(B)G5 1/11		
	HC-SFS702(4)(B)G5 1/5	HG-SR702(4)(B)G5 1/5		
Medium capacity, medium inertia HC-SFS series with high precision reducer Shaft output type (G7) (4): 400 V specifications (B): With brake	HC-SFS52(4)(B)G7 1/5	HG-SR52(4)(B)G7 1/5	\bigcirc	- The total length of the motor will be shorter, so confirm that the motor connector does not interfere with the device side.
	HC-SFS52(4)(B)G7 1/11	HG-SR52(4)(B)G7 1/11		
	HC-SFS52(4)(B)G7 1/21	HG-SR52(4)(B)G7 1/21		
	HC-SFS52(4)(B)G7 1/33	HG-SR52(4)(B)G7 1/33		
	HC-SFS52(4)(B)G7 1/45	HG-SR52(4)(B)G7 1/45		
	HC-SFS102(4)(B)G7 1/5	HG-SR102(4)(B)G7 1/5		
	HC-SFS102(4)(B)G7 1/11	HG-SR102(4)(B)G7 1/11		
	HC-SFS102(4)(B)G7 1/21	HG-SR102(4)(B)G7 1/21		
	HC-SFS102(4)(B)G7 1/33	HG-SR102(4)(B)G7 1/33		
	HC-SFS102(4)(B)G7 1/45	HG-SR102(4)(B)G7 1/45		
	HC-SFS152(4)(B)G7 1/5	HG-SR152(4)(B)G7 1/5		
	HC-SFS152(4)(B)G7 1/11	HG-SR152(4)(B)G7 1/11		
	HC-SFS152(4)(B)G7 1/21	HG-SR152(4)(B)G7 1/21		
	HC-SFS152(4)(B)G7 1/33	HG-SR152(4)(B)G7 1/33		
	HC-SFS152(4)(B)G7 1/45	HG-SR152(4)(B)G7 1/45		
	HC-SFS202(4)(B)G7 1/5	HG-SR202(4)(B)G7 1/5		
	HC-SFS202(4)(B)G7 1/11	HG-SR202(4)(B)G7 1/11		
	HC-SFS202(4)(B)G7 1/21	HG-SR202(4)(B)G7 1/21		
	HC-SFS202(4)(B)G7 1/33	HG-SR202(4)(B)G7 1/33		
	HC-SFS202(4)(B)G7 1/45	HG-SR202(4)(B)G7 1/45		
	HC-SFS352(4)(B)G7 1/5	HG-SR352(4)(B)G7 1/5		
	HC-SFS352(4)(B)G7 1/11	HG-SR352(4)(B)G7 1/11		
	HC-SFS352(4)(B)G7 1/21	HG-SR352(4)(B)G7 1/21		
	HC-SFS502(4)(B)G7 1/5	HG-SR502(4)(B)G7 1/5		
	HC-SFS502(4)(B)G7 1/11	HG-SR502(4)(B)G7 1/11		
	HC-SFS702(4)(B)G7 1/5	HG-SR702(4)(B)G7 1/5		

Note. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.
(4) HC-RFS/-LFS/-UFS motor

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Medium capacity, ultra-low inertia HC-RFS series (B): With brake	HC-RFS103(B)	HG-RR103(B)	\bigcirc	
	HC-RFS153(B)	HG-RR153(B)		
	HC-RFS203(B)	HG-RR203(B)		
	HC-RFS353(B)	HG-RR353(B)		
	HC-RFS503(B)	HG-RR503(B)		
Medium capacity, ultra-low inertia HC-RFS series with high precision reducer (G2) (B): With brake	HC-RFS103(B)G2 1/5 \downarrow	HG-SR102(B)G7 1/5	(Note 1)	- The HG-RR series does not support the geared model. The geared model is supported with the HGSR series. - Check the output torque because the reduction ratio of models marked with is greatly different. - The capacity of the corresponding servo amplifier will be different if a model marked with \diamond is replaced. The corresponding servo amplifier for HG-SR102 is MR-J4-100_, for HGSR202 is MR-J4-200_, and for HG-SR352 is MR-J4-350_. - The reducer efficiency differs. For further details, refer to "2.4.2 Comparison of actual reduction ratios for geared servo motors".
	HC-RFS103(B)G2 1/9 \downarrow	HG-SR102(B)G7 1/11		
	HC-RFS103(B)G2 1/20 \downarrow	HG-SR102(B)G7 1/21		
	HC-RFS103(B)G2 1/29 \downarrow	HG-SR102(B)G7 1/33		
	HC-RFS103(B)G2 1/45 \diamond	HG-SR102(B)G7 1/45		
	HC-RFS153(B)G2 1/5	HG-SR152(B)G7 1/5		
	HC-RFS153(B)G2 1/9	HG-SR152(B)G7 1/11		
	HC-RFS153(B)G2 1/20	HG-SR152(B)G7 1/21		
	HC-RFS153(B)G2 1/29	HG-SR152(B)G7 1/33		
	HC-RFS153(B)G2 1/45	HG-SR152(B)G7 1/45		
	HC-RFS203(B)G2 1/5 ১	HG-SR202(B)G7 1/5		
	HC-RFS203(B)G2 1/9 \downarrow	HG-SR202(B)G7 1/11		
	HC-RFS203(B)G2 1/20 \downarrow	HG-SR202(B)G7 1/21		
	HC-RFS203(B)G2 1/29 \downarrow	HG-SR202(B)G7 1/33		
	HC-RFS203(B)G2 1/45 \diamond	HG-SR202(B)G7 1/45		
	HC-RFS353(B)G2 1/5	HG-SR352(B)G7 1/5		
	HC-RFS353(B)G2 1/9	HG-SR352(B)G7 1/11		
	HC-RFS353(B)G2 1/20 \downarrow	HG-SR352(B)G7 1/21		
	HC-RFS353(B)G2 1/29 \downarrow	HG-SR352(B)G7 1/21		
	HC-RFS503(B)G2 1/5	HG-SR502(B)G7 1/5		
	HC-RFS503(B)G2 1/9	HG-SR502(B)G7 1/11		
	HC-RFS503(B)G2 1/20	HG-SR502(B)G7 1/11		
Medium capacity, ultra-low inertia HC-RFS series with high precision reducer Flange output type (G5) (B): With brake	HC-RFS103(B)G5 1/5	HG-SR102(B)G5 1/5	(Note 1)	- The HG-RR series does not support the geared model. The geared model is supported with the HGSR series. - Check the output torque because the reduction ratio of models marked with is greatly different. - The capacity of the corresponding servo amplifier will be different if a model marked with \diamond is replaced. The corresponding servo amplifier for HG-SR102 is MR-J4-100_, for HGSR202 is MR-J4-200_, and for HG-SR352 is MR-J4-350_.
	HC-RFS103(B)G5 1/11 \downarrow	HG-SR102(B)G5 1/11		
	HC-RFS103(B)G5 1/21 \diamond	HG-SR102(B)G5 1/21		
	HC-RFS103(B)G5 1/33 \downarrow	HG-SR102(B)G5 1/33		
	HC-RFS103(B)G5 1/45 \downarrow	HG-SR102(B)G5 1/45		
	HC-RFS153(B)G5 1/5	HG-SR152(B)G5 1/5		
	HC-RFS153(B)G5 1/11	HG-SR152(B)G5 1/11		
	HC-RFS153(B)G5 1/21	HG-SR152(B)G5 1/21		
	HC-RFS153(B)G5 1/33	HG-SR152(B)G5 1/33		
	HC-RFS153(B)G5 1/45	HG-SR152(B)G5 1/45		
	HC-RFS203(B)G5 1/5 ১	HG-SR202(B)G5 1/5		
	HC-RFS203(B)G5 1/11 \downarrow	HG-SR202(B)G5 1/11		
	HC-RFS203(B)G5 1/21 \downarrow	HG-SR202(B)G5 1/21		
	HC-RFS203(B)G5 1/33 \diamond	HG-SR202(B)G5 1/33		
	HC-RFS203(B)G5 1/45	HG-SR202(B)G5 1/45		
	HC-RFS353(B)G5 1/5	HG-SR352(B)G5 1/5		
	HC-RFS353(B)G5 1/11 \downarrow	HG-SR352(B)G5 1/11		
	HC-RFS353(B)G5 1/21 \downarrow	HG-SR352(B)G5 1/21		
	HC-RFS353(B)G5 1/33 \diamond	HG-SR352(B)G5 1/21		
	HC-RFS503(B)G5 1/5	HG-SR502(B)G5 1/5		
	HC-RFS503(B)G5 1/11	HG-SR502(B)G5 1/11		
	HC-RFS503(B)G5 1/21	HG-SR502(B)G5 1/11		

Note 1. For mounting dimensions, refer to "2.3 Comparison of Mounting Dimensions for Geared Servo Motors".
2. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Medium capacity, ultra-low inertia HC-RFS series with high precision reducer Shaft output type (G7) (B): With brake	HC-RFS103(B)G7 1/5 Љ	HG-SR102(B)G7 1/5	(Note 1)	- The HG-RR series does not support the geared model. The geared model is supported with the HGSR series. - Check the output torque because the reduction ratio of models marked with is greatly different. - The capacity of the corresponding servo amplifier will be different if a model marked with \diamond is replaced. The corresponding servo amplifier for HG-SR102 is MR-J4-100_, for HGSR202 is MR-J4-200_, and for HG-SR352 is MR-J4-350_.
	HC-RFS103(B)G7 1/11 \downarrow	HG-SR102(B)G7 1/11		
	HC-RFS103(B)G7 1/21 \downarrow	HG-SR102(B)G7 1/21		
	HC-RFS103(B)G7 1/33 \downarrow	HG-SR102(B)G7 1/33		
	HC-RFS103(B)G7 1/45	HG-SR102(B)G7 1/45		
	HC-RFS153(B)G7 1/5	HG-SR152(B)G7 1/5		
	HC-RFS153(B)G7 1/11	HG-SR152(B)G7 1/11		
	HC-RFS153(B)G7 1/21	HG-SR152(B)G7 1/21		
	HC-RFS153(B)G7 1/33	HG-SR152(B)G7 1/33		
	HC-RFS153(B)G7 1/45	HG-SR152(B)G7 1/45		
	HC-RFS203(B)G7 1/5	HG-SR202(B)G7 1/5		
	HC-RFS203(B)G7 1/11	HG-SR202(B)G7 1/11		
	HC-RFS203(B)G7 1/21 \downarrow	HG-SR202(B)G7 1/21		
	HC-RFS203(B)G7 1/33	HG-SR202(B)G7 1/33		
	HC-RFS203(B)G7 1/45	HG-SR202(B)G7 1/45		
	HC-RFS353(B)G7 1/5	HG-SR352(B)G7 1/5		
	HC-RFS353(B)G7 1/11	HG-SR352(B)G7 1/11		
	HC-RFS353(B)G7 1/21 \diamond	HG-SR352(B)G7 1/21		
	HC-RFS353(B)G7 1/33 \downarrow	HG-SR352(B)G7 1/21		
	HC-RFS503(B)G7 1/5	HG-SR502(B)G7 1/5		
	HC-RFS503(B)G7 1/11	HG-SR502(B)G7 1/11		
	HC-RFS503(B)G7 1/21	HG-SR502(B)G7 1/11		
Medium capacity, low inertia HC-LFS series (B): With brake	HC-LFS52(B) \diamond	HG-JR73(B)	(Note 1)	- The capacity of the corresponding servo amplifier will be different if a model marked with \diamond is replaced. The correspondence servo amplifier for HG-JR73 is MR-J4-70_, for HG-JR153 is MR-J4-200_, and for HG-JR353 is MR-J4350 .
	HC-LFS102(B) \diamond	HG-JR153(B)		
	HC-LFS152(B) \diamond			
	HC-LFS202(B)	HG-JR353(B)		
	HC-LFS302(B)	HG-JR503(B)		
Small capacity, flat type HC-UFS series (B): With brake	HC-UFS13(B)	HG-KR13(B)	(Note 1)	- The HG-KR servo motor does not have an oil seal. Use HG-KR_J when an oil seal is required.
	HC-UFS23(B)	HG-KR23(B)		
	HC-UFS43(B)	HG-KR43(B)		
	HC-UFS73(B)	HG-KR73(B)		
Medium capacity, flat type HC-UFS series (B): With brake	HC-UFS72(B)	HG-UR72(B)	\bigcirc	
	HC-UFS152(B)	HG-UR152(B)		
	HC-UFS202(B)	HG-UR202(B)		
	HC-UFS352(B)	HG-UR352(B)		
	HC-UFS502(B)	HG-UR502(B)		

Note 1. For mounting dimensions, refer to ailed Comparison of Servo Motor Mounting Dimensions" and "2.3 Comparison of Mounting Dimensions for Geared Servo Motors".
2. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.
(5) HA-LFS motor

Series	Model	Example of replacement model	Compatibility (O: Compatible)	Note
Large capacity, low inertia HA-LFS 1000 $\mathrm{r} / \mathrm{min}$ series (4): 400 V specifications (B): With brake	HA-LFS601(4)(B)	HG-JR601(4)(B)	(Note 1)	
	HA-LFS801(4)(B)	HG-JR801(4)(B)		
	HA-LFS12K1(4)(B)	HG-JR12K1(4)(B)		
	HA-LFS15K1(4)	HG-JR15K1(4)		
	HA-LFS20K1(4)	HG-JR20K1(4)		
	HA-LFS25K1(4)	HG-JR25K1(4)		
	HA-LFS30K1(4)	HG-JR30K1(4)		
	HA-LFS37K1(4)	HG-JR37K1(4)		
	HA-LFS601(4)(B)	HG-JR601(4)R(B)-S	\bigcirc	- Only flanges and shaft ends have compatibility in mounting. - Please contact your local sales office regarding the servo motor model and its delivery, since it is developed upon receipt of order.
	HA-LFS801(4)(B)	HG-JR801(4)R(B)-S		
	HA-LFS12K1(4)(B)	HG-JR12K1(4)R(B)-S		
	HA-LFS15K1(4)	HG-JR15K1(4)R-S		
	HA-LFS20K1(4)	HG-JR20K1(4)R-S		
	HA-LFS25K1(4)	HG-JR25K1(4)R-S		
	HA-LFS30K1(4)	HG-JR30K1(4)R-S		
	HA-LFS37K1 (4)	HG-JR37K1(4)R-S		
Large capacity, low inertia HA-LFS 1500 $\mathrm{r} / \mathrm{min}$ series (4): 400 V specifications (B): With brake	HA-LFS701M(4)(B)	HG-JR701M(4)(B)	(Note 1)	
	HA-LFS11K1M(4)(B)	HG-JR11K1M(4)(B)		
	HA-LFS15K1M(4)(B)	HG-JR15K1M(4)(B)		
	HA-LFS22K1M(4)	HG-JR22K1M(4)		
	HA-LFS30K1M(4)	HG-JR30K1M(4)		
	HA-LFS37K1M(4)	HG-JR37K1M(4)		
	HA-LFS45K1M4	HG-JR45K1M4		
	HA-LFS50K1M4	HG-JR55K1M4		
	HA-LFS701M(4)(B)	HG-JR701M(4)R(B)-S	\bigcirc	- Only flanges and shaft ends have compatibility in mounting. - Please contact your local sales office regarding the servo motor model and its delivery, since it is developed upon receipt of order.
	HA-LFS11K1M(4)(B)	HG-JR11K1M(4)R(B)-S_($\square 250$)		
	HA-LFS15K1M(4)(B)	HG-JR15K1M(4)R(B)-S		
	HA-LFS22K1M(4)	HG-JR22K1M(4)R-S		
	HA-LFS30K1M(4)	HG-JR30K1M(4)R-S		
	HA-LFS37K1M(4)	HG-JR37K1M(4)R-S		
	HA-LFS45K1M4	HG-JR45K1M4R-S		
	HA-LFS50K1M4	HG-JR55K1M4R-S		
Large capacity, low inertia HA-LFS series 2000 r/min series (4): 400 V specifications (B): With brake	HA-LFS502	HG-SR502	(Note 1)	- The HG-SR servo motor does not have an oil seal. Use HG-SR_J when an oil seal is required. - The capacity of the corresponding servo amplifier will be different if a model marked with \diamond is replaced.
	HA-LFS702	HG-SR702		
	HA-LFS11K2(4)(B)			
	HA-LFS15K2(4)(B) \diamond	HG-JR11K1M(4)(B)		
	HA-LFS22K2(4)(B) \diamond	HG-JR15K1M(4)(B)		
	HA-LFS30K2(4) \diamond	HG-JR22K1M(4)		
	HA-LFS37K2(4) \diamond	HG-JR30K1M(4)		
	HA-LFS45K24 \diamond	HG-JR37K1M4		
	HA-LFS55K24 \diamond	HG-JR45K1M4		
	HA-LFS502	HG-SR502R-S_	\bigcirc	- Only flanges and shaft ends have compatibility in mounting. - Please contact your local sales office regarding the servo motor model and its delivery, since it is developed upon receipt of order. - For the replacement from the \diamond model, the capacity of compatible servo amplifier is different.
	HA-LFS702	HG-SR702R-S_		
	HA-LFS11K2(4)(B)	HG-JR11K1M(4)R(B)-S_($\square 200$)		
	HA-LFS15K2(4)(B) \diamond	HG-JR11K1M(4)R(B)-S_($\square 250$)		
	HA-LFS22K2(4)(B) \diamond	HG-JR15K1M(4)R(B)-S_		
	HA-LFS30K2(4) \diamond	HG-JR22K1M(4)R-S_		
	HA-LFS37K2(4) \diamond	HG-JR30K1M(4)R-S_		
	HA-LFS45K24 \diamond	HG-JR37K1M4R-S_		
	HA-LFS55K24 \diamond	HG-JR45K1M4R-S		

Note 1. Refer to "2.2 Detailed comparison of servo motor mounting dimensions" for mounting dimensions.
2. The power supply and encoder connector will be changed. For further details, refer to "2.6 Comparison of Servo Motor Connector Specifications".
For replacement using the existing wiring, use a renewal tool.
3. For HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series of 15 kW or more, HA-LFS $1500 \mathrm{r} / \mathrm{min}$ series of 22 kW or more, and HA-LFS $2000 \mathrm{r} / \mathrm{min}$ series of 30 kW or more, their substitute models have different thermal wiring from them. A new encoder cable is required when using the substitutes.
4. The HG-JR series does not support foot-mounting.

2. COMPARISON OF SERVO MOTOR SPECIFICATIONS

2.1 Comparison of Servo Motor Mounting Dimensions

Target product			Replacement product			Note
Model	L	LD	Model	L	LD	
HC-KFS053(B)	81.5(109.5)	40	HG-KR053(B)	66.4(107)	40	(\diamond part: Note 2)
HC-MFS053(B)			HG-MR053(B) \diamond	66.4(107)		
HC-KFS13(B)	96.5(124.5)		HG-KR13(B)			
HC-MFS13(B)			HG-MR13(B) \diamond	82.4(123)		
HC-KFS23(B) HC-MFS23(B)	99.5(131.5)	60	$\begin{aligned} & \hline \text { HG-KR23(B) } \\ & \text { HG-MR23(B) } \end{aligned}$	76.6(113.4)	60	(Note 2)
$\begin{array}{\|l} \hline \text { HC-KFS43(B) } \\ \text { HC-MFS43(B) } \\ \hline \end{array}$	124.5(156.5)		$\begin{aligned} & \hline \text { HG-KR43(B) } \\ & \text { HG-MR43(B) } \\ & \hline \end{aligned}$	98.3(135.1)		
$\begin{aligned} & \hline \text { HC-KFS73(B) } \\ & \text { HC-MFS73(B) } \end{aligned}$	142(177.5)	80	HG-KR73(B) HG-MR73(B)	112(152.3)	80	
HC-KFS46	134	60	HG-KR43	98.3	60	
HC-KFS410						
HC-SFS81(B)	170(203)	130	HG-SR81(B)	146.5(181)	130	
HC-SFS121(B)	145(193)	176	HG-SR121(B)	138.5(188)	176	
HC-SFS201(B)	187(235)		HG-SR201(B)	162.5(212)		
HC-SFS301(B)	208(256)		HG-SR301(B)	178.5(228)		
HC-SFS52(B) HC-SFS524(B) HC-SFS53(B)	120(153)	130	$\begin{aligned} & \text { HG-SR52(B) } \\ & \text { HG-SR524(B) } \end{aligned}$	118.5(153)	130	
HC-SFS102(B) HC-SFS1024(B) HC-SFS103(B)	145(178)		HG-SR102(B) HG-SR1024(B)	132.5(167)		
HC-SFS152(B) HC-SFS1524(B) HC-SFS153(B)	170(203)		$\begin{aligned} & \text { HG-SR152(B) } \\ & \text { HG-SR1524(B) } \end{aligned}$	146.5(181)		
HC-SFS202(B) HC-SFS2024(B) HC-SFS203(B)	145(193)	176	HG-SR202(B) HG-SR2024(B)	138.5(188)	176	
HC-SFS352(B) HC-SFS3524(B) HC-SFS353(B)	187(235)		HG-SR352(B) HG-SR3524(B)	162.5(212)		
HC-SFS502(B) HC-SFS5024(B)	208(256)		$\begin{array}{\|l\|} \hline \text { HG-SR502(B) } \\ \text { HG-SR5024(B) } \end{array}$	178.5(228)		
$\begin{aligned} & \hline \text { HC-SFS702(B) } \\ & \text { HC-SFS7024(B) } \end{aligned}$	292(340)		$\begin{aligned} & \hline \text { HG-SR702(B) } \\ & \text { HG-SR7024(B) } \end{aligned}$	218.5(268)		
HC-RFS103(B)	147(185)	100	HG-RR103(B)	145.5(183)	100	
HC-RFS153(B)	172(210)		HG-RR153(B)	170.5(208)		
HC-RFS203(B)	197(235)		HG-RR203(B)	195.5(233)		
HC-RFS353(B)	217(254)	130	HG-RR353(B)	215.5(252)	130	
HC-RFS503(B)	274(311)		HG-RR503(B)	272.5(309)		

Note 1. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]
2. Some mounting dimensions have differences. Refer to "2.2 Detailed Comparison of Servo Motor Mounting Dimensions" for detailed dimensions.

Target product			Replacement product			Note
Model	L	LD	Model	L	LD	
HC-LFS52(B)	145.5(178.5)	130	HG-JR73(B)	145.5(191)	90	(Note 2)
HC-LFS102(B)	165.5(198.5)		HG-JR153(B)	199.5(245)		
HC-LFS152(B)	193(226)		HG-JR353(B)	213(251.5)	130	
HC-LFS202(B)	200(248)	176	HG-JR353(B)	213(251.5)		
HC-LFS302(B)	250(298)		HG-JR503(B)	267(305.5)		
HC-UFS13(B)	70(100)	60	HG-KR13(B)	82.4(123)	40	(Note 2)
HC-UFS23(B)	77(111)	80	HG-KR23(B)	76.6(113.4)	60	
HC-UFS43(B)	92(126)		HG-KR43(B)	98.3(135.1)		
HC-UFS73(B)	85(111)	123	HG-KR73(B)	112(152.3)	80	
HC-UFS72(B)	110.5(144)	176	HG-UR72(B)	109(142.5)	176	
HC-UFS152(B)	120(153.5)		HG-UR152(B)	118.5(152)		
HC-UFS202(B)	118(161)	220	HG-UR202(B)	116.5(159.5)	220	
HC-UFS352(B)	142(185)		HG-UR352(B)	140.5(183.5)		
HC-UFS502(B)	166(209)		HG-UR502(B)	164.5(207.5)		
$\begin{aligned} & \text { HA-LFS601(B) } \\ & \text { HA-LFS6014(B) } \end{aligned}$	480(550)	200	$\begin{array}{\|l\|} \hline \text { HG-JR601(B) } \\ \text { HG-JR6014(B) } \\ \hline \end{array}$	299.5(372)	220	(Note 2)
			$\begin{array}{\|l} \hline \text { HG-JR601R(B)-S } \\ \text { HG-JR6014R(B)-S } \\ \hline \end{array}$	399(472)	200	
HA-LFS801(B) HA-LFS8014(B)	495(610)	250	$\begin{array}{\|l\|} \hline \text { HG-JR801(B) } \\ \text { HG-JR8014(B) } \\ \hline \end{array}$	339.5(412)	220	(Note 2)
			$\begin{array}{\|l\|} \hline \text { HG-JR801R(B)-S } \\ \text { HG-JR8014R(B)-S } \end{array}$	354(427)	250	
HA-LFS12K1(B) HA-LFS12K14(B)	555(670)		$\begin{array}{\|l\|} \hline \text { HG-JR12K1(B) } \\ \text { HG-JR12K14(B) } \\ \hline \end{array}$	439.5(512)	220	(Note 2)
			$\begin{array}{\|l\|} \hline \text { HG-JR12K1R(B)-S_- } \\ \text { HG-JR12K14R(B)-S } \\ \hline \end{array}$	454(527)	250	
HA-LFS15K1 HA-LFS15K14	605	280	HG-JR15K1 HG-JR15K14	476	250	(Note 2)
			HG-JR15K1R-S HG-JR15K14R-S	493	280	
HA-LFS20K1 HA-LFS20K14	650		$\begin{aligned} & \hline \text { HG-JR20K1 } \\ & \text { HG-JR20K14 } \end{aligned}$	538	250	(Note 2)
			$\begin{array}{\|l\|} \hline \text { HG-JR20K1R-S_- } \\ \text { HG-JR20K14R-S_ } \\ \hline \end{array}$	555	280	
$\begin{aligned} & \text { HA-LFS25K1 } \\ & \text { HA-LFS25K14 } \end{aligned}$	640	350	$\begin{aligned} & \hline \text { HG-JR25K1 } \\ & \text { HG-JR25K14 } \end{aligned}$	600	250	(Note 2)
			$\begin{array}{\|l\|} \hline \text { HG-JR25K1R-S_- } \\ \text { HG-JR25K14R-S } \\ \hline \end{array}$	617	350	
HA-LFS30K1 HA-LFS30K14	685		$\begin{aligned} & \hline \text { HG-JR30K1 } \\ & \text { HG-JR30K14 } \end{aligned}$	600	280	(Note 2)
			HG-JR30K1R-S_ HG-JR30K14R-S	610	350	
$\begin{aligned} & \text { HA-LFS37K1 } \\ & \text { HA-LFS37K14 } \end{aligned}$	785		$\begin{aligned} & \hline \text { HG-JR37K1 } \\ & \text { HG-JR37K14 } \end{aligned}$	664	280	(Note 2)
			$\begin{aligned} & \text { HG-JR37K1R-S_- } \\ & \text { HG-JR37K14R-S } \end{aligned}$	674	350	

Note 1. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]
2. Without mounting compatibility. Refer to "2.2 Detailed Comparison of Servo Motor Mounting Dimensions" for detailed dimensions.

Target product			Replacement product			Note
Model	L	LD	Model	L	LD	
HA-LFS701M(B) HA-LFS701M4(B)	480(550)	200	$\begin{aligned} & \hline \text { HG-JR701M(B) } \\ & \text { HG-JR701M4(B) } \end{aligned}$	299.5(372)	220	(Note 2)
			HG-JR701MR(B)-S_ HG-JR701M4R(B)-S	399(472)	200	
HA-LFS11K1M(B) HA-LFS11K1M4(B)	495(610)	250	HG-JR11K1M(B) HG-JR11K1M4(B)	339.5(412)	220	(Note 2)
			$\begin{aligned} & \text { HG-JR11K1MR(B)-S_(} \square 250) \\ & \text { HG-JR11K1M4R(B)-S_(} \square 250) \end{aligned}$	354(427)	250	
HA-LFS15K1M(B) HA-LFS15K1M4(B)	555(670)		$\begin{aligned} & \text { HG-JR15K1M(B) } \\ & \text { HG-JR15K1M4(B) } \end{aligned}$	439.5(512)	220	(Note 2)
			$\begin{aligned} & \text { HG-JR15K1MR(B)-S_- } \\ & \text { HG-JR15K1M4R(B)-S } \end{aligned}$	454(526.5)	250	
HA-LFS22K1M HA-LFS22K1M4	605	280	$\begin{aligned} & \text { HG-JR22K1M } \\ & \text { HG-JR22K1M4 } \end{aligned}$	476	250	(Note 2)
			HG-JR22K1MR-S HG-JR22K1M4R-S	493	280	
HA-LFS30K1M	660		HG-JR30K1M	538	250	(Note 2)
			HG-JR30K1MR-S_	555	280	
HA-LFS30K1M4	650		HG-JR30K1M4	538	250	(Note 2)
			HG-JR30K1M4R-S	555	280	
HA-LFS37K1M HA-LFS37K1M4	640	350	$\begin{aligned} & \text { HG-JR37K1M } \\ & \text { HG-JR37K1M4 } \end{aligned}$	600	250	(Note 2)
			HG-JR37K1MR-S HG-JR37K1M4R-S	617	350	
HA-LFS45K1M4	685		HG-JR45K1M4	600	280	(Note 2)
			HG-JR45K1M4R-S_	610	350	
HA-LFS50K1M4	785		HG-JR55K1M4	664	280	(Note 2)
			HG-JR55K1M4R-S_	674	350	

Note 1. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]
2. Without mounting compatibility. Refer to "2.2 Detailed Comparison of Servo Motor Mounting Dimensions" for detailed dimensions.

Target product			Replacement product			Note
Model	L	LD	Model	L	LD	
HA-LFS502	300	200	HG-SR502	178.5	176	(Note 2)
			HG-SR502R-S	207	200	
HA-LFS702	342		HG-SR702	218.5	176	(Note 2)
			HG-SR702R-S	247	200	
HA-LFS11K2(B) HA-LFS11K24(B)	480(550)		HG-JR11K1M(B) HG-JR11K1M4(B)	339.5(412)	220	(Note 2)
			$\begin{aligned} & \text { HG-JR11K1MR(B)-S_(} \square 200) \\ & \text { HG-JR11K1M4R(B)-S_(} \square 200) \end{aligned}$	439(512)	200	
HA-LFS15K2(B) HA-LFS15K24(B)	495(610)	250	$\begin{aligned} & \text { HG-JR11K1M(B) } \\ & \text { HG-JR11K1M4(B) } \end{aligned}$	339.5(412)	220	(Note 2)
			$\begin{aligned} & \text { HG-JR11K1MR(B)-S_(} \square 250) \\ & \text { HG-JR11K1M4R(B)-S_(} \square 250) \end{aligned}$	354(427)	250	
HA-LFS22K2(B) HA-LFS22K24(B)	555(670)		HG-JR15K1M(B) HG-JR15K1M4(B)	439.5(512)	220	(Note 2)
			HG-JR15K1MR(B)-S_ HG-JR15K1M4R(B)-S	454(526.5)	250	
HA-LFS30K2	615	280	HG-JR22K1M	476	250	(Note 2)
			HG-JR22K1MR-S	493	280	
HA-LFS30K24	605		HG-JR22K1M4	476	250	(Note 2)
			HG-JR22K1M4R-S_	493	280	
HA-LFS37K2	660		HG-JR30K1M	538	250	(Note 2)
			HG-JR30K1MR-S	555	280	
HA-LFS37K24	650		HG-JR30K1M4	538	250	(Note 2)
			HG-JR30K1M4R-S	555	280	
HA-LFS45K24	640	350	HG-JR37K1M4	600	250	(Note 2)
			HG-JR37K1M4R-S_	617	350	
HA-LFS55K24	685		HG-JR45K1M4	600	280	(Note 2)
			HG-JR45K1M4R-S	610	350	

Note 1. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]
2. Without mounting compatibility. Refer to "2.2 Detailed Comparison of Servo Motor Mounting Dimensions" for detailed dimensions.

2.2 Detailed Comparison of Servo Motor Mounting Dimensions

Target product							Replacement product						
Model	LA	LB	LR	Q	S	Z	Model	LA	LB	LR	Q	S	Z
HC-MFS053(B)	46	30	25	22.5	8	2-4.5	HG-MR053(B)	46	30	25	21.5	8	2-4.5
HC-MFS13(B)	46	30	25	22.5	8	2-4.5	HG-MR13(B)	46	30	25	21.5	8	2-4.5
$\begin{aligned} & \text { HC-KFS23(B) } \\ & \text { HC-MFS23(B) } \end{aligned}$	70	50	30	27	14	5.8	$\begin{array}{\|l} \text { HG-KR23(B) } \\ \text { HG-MR23(B) } \\ \hline \end{array}$	70	50	30	26	14	5.8
$\begin{aligned} & \text { HC-KFS43(B) } \\ & \text { HC-MFS43(B) } \end{aligned}$	70	50	30	27	14	5.8	$\begin{array}{\|l} \hline \text { HG-KR43(B) } \\ \text { HG-MR43(B) } \\ \hline \end{array}$	70	50	30	26	14	5.8
$\begin{aligned} & \mathrm{HC}-\mathrm{KFS} 73(\mathrm{~B}) \\ & \mathrm{HC}-\mathrm{MFS} 73(\mathrm{~B}) \\ & \hline \end{aligned}$	90	70	40	37	19	6.6	$\begin{aligned} & \text { HG-KR73(B) } \\ & \text { HG-MR73(B) } \end{aligned}$	90	70	40	36	19	6.6
HC-KFS46	70	50	30	27	14	5.8		70	50	30	0	14	
HC-KFS410	70	50	30	27	14	5.8	HG-KR43	70	50	30	26	14	5.8
HC-LFS52(B)	145	110	55	50	24	9	HG-JR73(B)	100	80	40	30	16	6.6
HC-LFS102(B)	145	110	55	50	24	9	HG-JR153(B)	100	80	40	30	16	6.6
HC-LFS152(B)	145	110	55	50	24	9	HG-JR353(B)	145	110	55	50	28	9
HC-LFS202(B)	200	114.3	79	75	35	13.5	HG-JR353(B)	145	110	55	50	28	9
HC-LFS302(B)	200	114.3	79	75	35	13.5	HG-JR503(B)	145	110	55	50	28	9
HC-UFS13(B)	70	50	25	19	8	5.8	HG-KR13(B)	46	30	25	21.5	8	2-4.5
HC-UFS23(B)	90	70	30	23.5	14	6.6	HG-KR23(B)	70	50	30	26	14	5.8
HC-UFS43(B)	90	70	30	23.5	14	6.6	HG-KR43(B)	70	50	30	26	14	5.8
HC-UFS73(B)	145	110	40	32.5	19	9	HG-KR73(B)	90	70	40	36	19	6.6
$\begin{array}{\|l\|} \hline \text { HA-LFS601(B) } \\ \text { HA-LFS6014(B) } \\ \hline \end{array}$	215	180	85	80	42	14.5	$\begin{aligned} & \text { HG-JR601(B) } \\ & \text { HG-JR6014(B) } \end{aligned}$	235	200	85	79	42	13.5
$\begin{array}{\|l\|} \hline \text { HA-LFS801(B) } \\ \text { HA-LFS8014(B) } \\ \hline \end{array}$	265	230	110	100	55	14.5	$\begin{aligned} & \text { HG-JR801(B) } \\ & \text { HG-JR8014(B) } \end{aligned}$	235	200	116	110	55	13.5
$\begin{aligned} & \hline \text { HA-LFS12K1 }(\mathrm{B}) \\ & \text { HA-LFS12K14(B) } \\ & \hline \end{aligned}$	265	230	110	100	55	14.5	$\begin{aligned} & \text { HG-JR12K1(B) } \\ & \text { HG-JR12K14(B) } \end{aligned}$	235	200	116	110	55	13.5
HA-LFS15K1 HA-LFS15K14	300	250	140	140	60	19	HG-JR15K1 HG-JR15K14	265	230	140	130	65	24
$\begin{aligned} & \hline \text { HA-LFS20K1 } \\ & \text { HA-LFS20K14 } \end{aligned}$	300	250	140	140	60	19	$\begin{array}{\|l\|l} \hline \text { HG-JR20K1 } \\ \text { HG-JR20K14 } \end{array}$	265	230	140	130	65	24
$\begin{aligned} & \hline \text { HA-LFS25K1 } \\ & \text { HA-LFS25K14 } \end{aligned}$	350	300	140	140	65	19	$\begin{aligned} & \text { HG-JR25K1 } \\ & \text { HG-JR25K14 } \end{aligned}$	265	230	140	130	65	24
HA-LFS30K1 HA-LFS30K14	350	300	140	140	65	19	HG-JR30K1 HG-JR30K14	300	250	140	140	80	24
$\begin{aligned} & \hline \text { HA-LFS37K1 } \\ & \text { HA-LFS37K14 } \end{aligned}$	350	300	170	170	80	19	$\begin{array}{\|l} \text { HG-JR37K1 } \\ \text { HG-JR37K14 } \end{array}$	300	250	140	140	80	24

Note 1. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]
2. Dimensions with differences are shown with shading
3. The HG-JR series does not support foot-mounting.

Target product							Replacement product						
Model	LA	LB	LR	Q	S	Z	Model	LA	LB	LR	Q	S	Z
HA-LFS701M(B) HA-LFS701M4(B)	215	180	85	80	42	14.5	HG-JR701M(B) HG-JR701M4(B)	235	200	85	79	42	13.5
$\begin{array}{\|l\|} \hline \text { HA-LFS11K1M(B) } \\ \text { HA-LFS11K1M4(B) } \\ \hline \end{array}$	265	230	110	100	55	14.5	HG-JR11K1M(B) HG-JR11K1M4(B)	235	200	116	110	55	13.5
$\begin{aligned} & \text { HA-LFS15K1M(B) } \\ & \text { HA-LFS15K1M4(B) } \end{aligned}$	265	230	110	100	55	14.5	HG-JR15K1M(B) HG-JR15K1M4(B)	235	200	116	110	55	13.5
$\begin{aligned} & \hline \text { HA-LFS22K1M } \\ & \text { HA-LFS22K1M4 } \end{aligned}$	300	250	140	140	60	19	$\begin{aligned} & \text { HG-JR22K1M } \\ & \text { HG-JR22K1M4 } \end{aligned}$	265	230	140	130	65	24
$\begin{array}{\|l\|} \hline \text { HA-LFS30K1M } \\ \text { HA-LFS30K1M4 } \\ \hline \end{array}$	300	250	140	140	60	19	$\begin{aligned} & \text { HG-JR30K1M } \\ & \text { HG-JR30K1M4 } \end{aligned}$	265	230	140	130	65	24
$\begin{array}{\|l\|} \hline \text { HA-LFS37K1M } \\ \text { HA-LFS37K1M4 } \\ \hline \end{array}$	350	300	140	140	65	19	$\begin{aligned} & \text { HG-JR37K1M } \\ & \text { HG-JR37K1M4 } \end{aligned}$	265	230	140	130	65	24
HA-LFS45K1M4	350	300	140	140	65	19	HG-JR45K1M4	300	250	140	140	80	24
HA-LFS50K1M4	350	300	170	170	80	19	HG-JR55K1M4	300	250	140	140	80	24
HA-LFS502	215	180	85	80	42	14.5	HG-SR502	200	114.3	79	75	35	13.5
HA-LFS702	215	180	85	80	42	14.5	HG-SR702	200	114.3	79	75	35	13.5
HA-LFS11K2(B) HA-LFS11K24(B)	215	180	85	80	42	14.5	HG-JR11K1M(B) HG-JR11K1M4(B)	235	200	116	110	55	13.5
HA-LFS15K2(B) HA-LFS15K24(B)	265	230	110	100	55	14.5	HG-JR11K1M(B) HG-JR11K1M4(B)	235	200	116	110	55	13.5
$\begin{aligned} & \hline \text { HA-LFS22K2(B) } \\ & \text { HA-LFS22K24(B) } \\ & \hline \end{aligned}$	265	230	110	100	55	14.5	HG-JR15K1M(B) HG-JR15K1M4(B)	235	200	116	110	55	13.5
$\begin{aligned} & \hline \text { HA-LFS30K2 } \\ & \text { HA-LFS30K24 } \end{aligned}$	300	250	140	140	60	19	$\begin{aligned} & \text { HG-JR22K1M } \\ & \text { HG-JR22K1M4 } \end{aligned}$	265	230	140	130	65	24
$\begin{aligned} & \hline \text { HA-LFS37K2 } \\ & \text { HA-LFS37K24 } \end{aligned}$	300	250	140	140	60	19	HG-JR30K1M HG-JR30K1M4	265	230	140	130	65	24
HA-LFS45K24	350	300	140	140	65	19	HG-JR37K1M4	265	230	140	130	65	24
HA-LFS55K24	350	300	140	140	65	19	HG-JR45K1M4	300	250	140	140	80	24

Note 1. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]
2. Dimensions with differences are shown with shading.
3. The HG-JR series does not support foot-mounting.

2.3 Comparison of Mounting Dimensions for Geared Servo Motors

For high precision applications: HC-KFS, HC-MFS_G2 to HG-KR_G7

	HC-KFS and HC-MFS series (G2)									HG-KR series (G7)								
(W)	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z
50	1/5	$\begin{gathered} 130 \\ (158) \end{gathered}$	55	25	16	80	65	70	6.6	1/5	$\begin{gathered} \hline 105.9 \\ (146.5) \\ \hline \end{gathered}$	42	20	10	46	40	40	3.4
											$\begin{aligned} & 130.4 \\ & (171) \end{aligned}$	58	28	16	70	56	60	5.5
	1/9	$\begin{gathered} \hline 146 \\ (174) \end{gathered}$	55	25	16	80	65	70	6.6	1/9	$\begin{gathered} 105.9 \\ (146.5) \end{gathered}$	42	20	10	46	40	40	3.4
	1/20	$\begin{array}{r} 146 \\ (174) \\ \hline \end{array}$	55	25	16	80	65	70	6.6	1/21	$\begin{aligned} & 130.4 \\ & (171) \\ & \hline \end{aligned}$	58	28	16	70	56	60	5.5
	1/29	$\begin{gathered} 146 \\ (174) \end{gathered}$	55	25	16	80	65	70	6.6	1/33	$\begin{aligned} & 130.4 \\ & (171) \end{aligned}$	58	28	16	70	56	60	5.5
100	1/5	$\begin{gathered} 145 \\ (173) \end{gathered}$	55	25	16	80	65	70	6.6	1/5	$\begin{gathered} 121.9 \\ (162.5) \\ \hline \end{gathered}$	42	20	10	46	40	40	3.4
											$\begin{aligned} & 146.4 \\ & (187) \end{aligned}$	58	28	16	70	56	60	5.5
	1/9	$\begin{gathered} 161 \\ (189) \\ \hline \end{gathered}$	55	25	16	80	65	70	6.6	1/11	$\begin{aligned} & 146.4 \\ & (187) \end{aligned}$	58	28	16	70	56	60	5.5
	1/20	$\begin{gathered} 167 \\ (195) \\ \hline \end{gathered}$	75	35	20	100	80	85	6.6	1/21	$\begin{aligned} & \hline 146.4 \\ & (187) \\ & \hline \end{aligned}$	58	28	16	70	56	60	5.5
	1/29	$\begin{gathered} 167 \\ (195) \\ \hline \end{gathered}$	75	35	20	100	80	85	6.6	1/33	$\begin{gathered} 148.9 \\ (189.5) \\ \hline \end{gathered}$	80	42	25	105	85	90	9
200	1/5	$\begin{gathered} 157 \\ (189) \\ \hline \end{gathered}$	55	25	16	80	65	70	6.6	1/5	$\begin{gathered} \hline 140.6 \\ (177.4) \\ \hline \end{gathered}$	58	28	16	70	56	60	5.5
	1/9	$\begin{gathered} 175 \\ (207) \\ \hline \end{gathered}$	75	35	20	100	80	85	6.6	1/11	$\begin{gathered} \hline 140.6 \\ (177.4) \\ \hline \end{gathered}$	58	28	16	70	56	60	5.5
	1/20	$\begin{gathered} 180 \\ (212) \\ \hline \end{gathered}$	85	40	25	115	95	100	9	1/21	$\begin{gathered} \hline 147.6 \\ (184.4) \\ \hline \end{gathered}$	80	42	25	105	85	90	9
	1/29	$\begin{gathered} 180 \\ (212) \\ \hline \end{gathered}$	85	40	25	115	95	100	9	1/33	$\begin{gathered} 147.6 \\ (184.4) \\ \hline \end{gathered}$	80	42	25	105	85	90	9
400	1/5	$\begin{gathered} 184 \\ (216) \end{gathered}$	75	35	20	100	80	85	6.6	1/5	$\begin{gathered} 162.3 \\ (199.1) \end{gathered}$	58	28	16	70	56	60	5.5
	1/9	$\begin{gathered} 205 \\ (237) \\ \hline \end{gathered}$	85	40	25	115	95	100	9	1/11	$\begin{gathered} 169.3 \\ (206.1) \end{gathered}$	80	42	25	105	85	90	9
	1/20	$\begin{gathered} 211 \\ (243) \\ \hline \end{gathered}$	100	50	32	135	110	115	11	1/21	$\begin{gathered} 169.3 \\ (206.1) \\ \hline \end{gathered}$	80	42	25	105	85	90	9
	1/29	$\begin{gathered} 211 \\ (243) \\ \hline \end{gathered}$	100	50	32	135	110	115	11	1/33	$\begin{gathered} \hline 181.3 \\ (218.1) \end{gathered}$	133	82	40	135	115	120	11
750	1/5	$\begin{gathered} 212 \\ (247.5) \end{gathered}$	85	40	25	115	95	100	9	1/5	$\begin{gathered} 190 \\ (230.3) \\ \hline \end{gathered}$	80	42	25	105	85	90	9
	1/9	$\begin{gathered} 240 \\ (275.5) \end{gathered}$	100	50	32	135	110	115	11	1/11	$\begin{gathered} 190 \\ (230.3) \end{gathered}$	80	42	25	105	85	90	9
	1/20	$\begin{gathered} 248 \\ (283.5) \end{gathered}$	115	60	40	150	125	130	14	1/21	$\begin{gathered} 200 \\ (240.3) \end{gathered}$	133	82	40	135	115	120	11
	1/29	$\begin{gathered} 248 \\ (283.5) \end{gathered}$	115	60	40	150	125	130	14	1/33	$\begin{gathered} 200 \\ (240.3) \end{gathered}$	133	82	40	135	115	120	11

Note. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]

For high precision applications: HC-SFS_G2 to HG-SR_G7 0.5 kW to 1.5 kW

HC-SFS_G2 front view

Front view A

	HC-SFS series (G2)										HG-SR series (G7)								
(kW)	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z	Front view	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z
0.5	1/5	$\begin{gathered} 276 \\ (309) \\ \hline \end{gathered}$	100	55	35	160	130	140	12	B	1/5	$\begin{aligned} & 213.5 \\ & (248) \\ & \hline \end{aligned}$	80	42	25	105	85	90	9
	1/9	$\begin{gathered} \hline 288 \\ (321) \\ \hline \end{gathered}$	100	55	35	160	130	140	12	B	1/11	$\begin{aligned} & 213.5 \\ & (248) \\ & \hline \end{aligned}$	80	42	25	105	85	90	9
	1/20	$\begin{gathered} 309 \\ (342) \\ \hline \end{gathered}$	100	55	35	160	130	140	12	B	1/21	$\begin{aligned} & 225.5 \\ & (260) \end{aligned}$	133	82	40	135	115	120	11
	1/29	$\begin{gathered} 337 \\ (370) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/33	$\begin{aligned} & 225.5 \\ & (260) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
	1/45	$\begin{gathered} \hline 343 \\ (376) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/45	$\begin{aligned} & 225.5 \\ & (260) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
1.0	1/5	$\begin{gathered} 301 \\ (334) \end{gathered}$	100	55	35	160	130	140	12	B	1/5	$\begin{aligned} & 227.5 \\ & (262) \end{aligned}$	80	42	25	105	85	90	9
	1/9	$\begin{gathered} 313 \\ (346) \\ \hline \end{gathered}$	100	55	35	160	130	140	12	B	1/11	$\begin{aligned} & 239.5 \\ & (274) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
	1/20	$\begin{gathered} 362 \\ (395) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/21	$\begin{aligned} & 239.5 \\ & (274) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
	1/29	$\begin{gathered} \hline 362 \\ (395) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/33	$\begin{aligned} & 255.5 \\ & (290) \end{aligned}$	156	82	50	190	165	170	14
	1/45	$\begin{gathered} 389 \\ (422) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/45	$\begin{aligned} & 255.5 \\ & (290) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
1.5	1/5	$\begin{gathered} \hline 326 \\ (359) \\ \hline \end{gathered}$	100	55	35	160	130	140	12	B	1/5	$\begin{aligned} & 241.5 \\ & (276) \\ & \hline \end{aligned}$	80	42	25	105	85	90	9
	1/9	$\begin{gathered} 379 \\ (412) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/11	$\begin{aligned} & 253.5 \\ & (288) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
	1/20	$\begin{gathered} 387 \\ (420) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/21	$\begin{aligned} & 269.5 \\ & (304) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
	1/29	$\begin{gathered} \hline 411 \\ (444) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/33	$\begin{aligned} & 269.5 \\ & (304) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
	1/45	$\begin{gathered} \hline 414 \\ (447) \end{gathered}$	160	90	60	280	240	310	14	A	1/45	$\begin{aligned} & 269.5 \\ & (304) \end{aligned}$	156	82	50	190	165	170	14

Note. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]

For high precision applications: HC-SFS_G2 to HG-SR_G7 2.0 kW to 7.0 kW

Output (kW)	HC-SFS series (G2)										HG-SR series (G7)								
	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z	Front view	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z
2.0	1/5	$\begin{gathered} 348 \\ (396) \end{gathered}$	140	75	50	220	190	245	12	A	1/5	$\begin{aligned} & 267.5 \\ & (317) \end{aligned}$	133	82	40	135	115	120	11
	1/9	$\begin{gathered} 375 \\ (423) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/11	$\begin{aligned} & 267.5 \\ & (317) \end{aligned}$	133	82	40	135	115	120	11
	1/20	$\begin{gathered} 407 \\ (455) \end{gathered}$	160	90	60	280	240	310	14	A	1/21	$\begin{aligned} & 287.5 \\ & (337) \end{aligned}$	156	82	50	190	165	170	14
	1/29	$\begin{gathered} 407 \\ (455) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/33	$\begin{aligned} & 287.5 \\ & (337) \end{aligned}$	156	82	50	190	165	170	14
	1/45	$\begin{gathered} \hline 410 \\ (458) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/45	$\begin{aligned} & 287.5 \\ & (337) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
3.5	1/5	$\begin{gathered} \hline 410 \\ (458) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/5	$\begin{aligned} & 291.5 \\ & (341) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
	1/9	$\begin{gathered} 442 \\ (490) \end{gathered}$	160	90	60	280	240	310	14	A	1/11	$\begin{aligned} & 311.5 \\ & (361) \end{aligned}$	156	82	50	190	165	170	14
	1/20	$\begin{gathered} 449 \\ (497) \end{gathered}$	160	90	60	280	240	310	14	A	1/21	$\begin{aligned} & 311.5 \\ & (361) \end{aligned}$	156	82	50	190	165	170	14
5.0	1/5	$\begin{gathered} 431 \\ (479) \end{gathered}$	160	90	60	280	240	310	14	A	1/5	$\begin{aligned} & 327.5 \\ & (377) \end{aligned}$	156	82	50	190	165	170	14
	1/9	$\begin{gathered} 463 \\ (511) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/11	$\begin{aligned} & 327.5 \\ & (377) \end{aligned}$	156	82	50	190	165	170	14
7.0	1/5	$\begin{gathered} 515 \\ (563) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/5	$\begin{aligned} & 367.5 \\ & (417) \end{aligned}$	156	82	50	190	165	170	14

Note. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]

For high precision applications: HC-RFS_G2 to HG-SR_G7

	HC-RFS series (G2)										HG-SR series (G7)								
(kW)	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z	Front view	Reduction ratio	L	LR	Q	S	LA	LB	LD	Z
1.0	1/5	$\begin{gathered} 301 \\ (339) \end{gathered}$	100	55	35	160	130	140	12	B	1/5	$\begin{aligned} & 227.5 \\ & (262) \end{aligned}$	80	42	25	105	85	90	9
	1/9	$\begin{gathered} 313 \\ (351) \end{gathered}$	100	55	35	160	130	140	12	B	1/11	$\begin{aligned} & 239.5 \\ & (274) \end{aligned}$	133	82	40	135	115	120	11
	1/20	$\begin{gathered} \hline 354 \\ (392) \end{gathered}$	140	75	50	220	190	245	12	A	1/21	$\begin{aligned} & 239.5 \\ & (274) \end{aligned}$	133	82	40	135	115	120	11
	1/29	$\begin{gathered} 354 \\ (392) \end{gathered}$	140	75	50	220	190	245	12	A	1/33	$\begin{aligned} & 255.5 \\ & (290) \end{aligned}$	156	82	50	190	165	170	14
	1/45	$\begin{gathered} \hline 364 \\ (402) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/45	$\begin{aligned} & 255.5 \\ & (290) \end{aligned}$	156	82	50	190	165	170	14
1.5	1/5	$\begin{gathered} 326 \\ (364) \end{gathered}$	100	55	35	160	130	140	12	B	1/5	$\begin{aligned} & 241.5 \\ & (276) \end{aligned}$	80	42	25	105	85	90	9
	1/9	$\begin{gathered} 375 \\ (413) \end{gathered}$	140	75	50	220	190	245	12	A	1/11	$\begin{aligned} & 253.5 \\ & (288) \end{aligned}$	133	82	40	135	115	120	11
	1/20	$\begin{gathered} 379 \\ (417) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/21	$\begin{aligned} & 269.5 \\ & (304) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
	1/29	$\begin{gathered} \hline 379 \\ (417) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/33	$\begin{aligned} & 269.5 \\ & (304) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
	1/45	$\begin{gathered} \hline 410 \\ (448) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/45	$\begin{aligned} & 269.5 \\ & (304) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
2.0	1/5	$\begin{gathered} 351 \\ (389) \end{gathered}$	100	55	35	160	130	140	12	B	1/5	$\begin{aligned} & 267.5 \\ & (317) \end{aligned}$	133	82	40	135	115	120	11
	1/9	$\begin{gathered} \hline 400 \\ (438) \end{gathered}$	140	75	50	220	190	245	12	A	1/11	$\begin{aligned} & 267.5 \\ & (317) \end{aligned}$	133	82	40	135	115	120	11
	1/20	$\begin{gathered} 404 \\ (442) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/21	$\begin{aligned} & 287.5 \\ & (337) \end{aligned}$	156	82	50	190	165	170	14
	1/29	$\begin{gathered} 425 \\ (463) \end{gathered}$	160	90	60	280	240	310	14	A	1/33	$\begin{aligned} & 287.5 \\ & (337) \end{aligned}$	156	82	50	190	165	170	14
	1/45	$\begin{gathered} 435 \\ (473) \end{gathered}$	160	90	60	280	240	310	14	A	1/45	$\begin{aligned} & 287.5 \\ & (337) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
3.5	1/5	$\begin{gathered} \hline 418 \\ (455) \\ \hline \end{gathered}$	140	75	50	220	190	245	12	A	1/5	$\begin{aligned} & 291.5 \\ & (341) \\ & \hline \end{aligned}$	133	82	40	135	115	120	11
	1/9	$\begin{gathered} \hline 470 \\ (507) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/11	$\begin{aligned} & \hline 311.5 \\ & (361) \\ & \hline \end{aligned}$	156	82	50	190	165	170	14
	1/20	$\begin{gathered} 470 \\ (507) \end{gathered}$	160	90	60	280	240	310	14	A	1/21	$\begin{aligned} & 311.5 \\ & (361) \end{aligned}$	156	82	50	190	165	170	14
	1/29	$\begin{gathered} \hline 470 \\ (507) \\ \hline \end{gathered}$	160	90	60	280	240	310	14	A	1/21	$\begin{aligned} & 311.5 \\ & (361) \end{aligned}$	156	82	50	190	165	170	14
5.0	1/5	$\begin{gathered} 495 \\ (532) \end{gathered}$	160	90	60	280	240	310	14	A	1/5	$\begin{aligned} & 327.5 \\ & (377) \end{aligned}$	156	82	50	190	165	170	14
	1/9	$\begin{gathered} 527 \\ (564) \end{gathered}$	160	90	60	280	240	310	14	A	1/11	$\begin{aligned} & 327.5 \\ & (377) \end{aligned}$	156	82	50	190	165	170	14
	1/20	$\begin{gathered} 527 \\ (564) \end{gathered}$	160	90	60	280	240	310	14	A	1/11	$\begin{aligned} & 327.5 \\ & (377) \end{aligned}$	156	82	50	190	165	170	14

Note. As for the dimensions not listed here, refer to the catalog or Instruction Manual. (): With brake
[Unit: mm]

For high precision applications: HC-RFS_G5 to HG-SR_G5

For high precision applications: HC-RFS_G7 to HG-SR_G7

2.4 Comparison of Geared Servo Motors

POINT

Geared servo motors are not included in the HG-MR, HG-RR series.

2.4.1 Comparison of actual reduction ratios for geared servo motors

Because the actual reduction ratio for some models is different when replacing HC-KFS or MFS_G1 with HG-KR_G1, it is required that an electronic gear be set up.

For general industrial machines: HC-KFS, HC-MFS_G1 \rightarrow HG-KR_G1

Output (W)	Reduction ratio	Actual reduction ratio	
		HG-KR series (G1)	
50	$1 / 5$	$9 / 44$	$9 / 44$
	$1 / 12$	$49 / 576$	$49 / 576$
	$1 / 20$	$25 / 484$	$25 / 484$
	$1 / 5$	$9 / 44$	$9 / 44$
	$1 / 12$	$49 / 576$	$49 / 576$
	$1 / 20$	$25 / 484$	$25 / 484$
200	$1 / 5$	$19 / 96$	$19 / 96$
	$1 / 12$	$25 / 288$	$961 / 11664$
	$1 / 20$	$253 / 5000$	$513 / 9984$
300	$1 / 5$	$19 / 96$	$19 / 96$
	$1 / 12$	$25 / 288$	$961 / 11664$
	$1 / 20$	$253 / 5000$	$7 / 135$
750	$1 / 5$	$1 / 5$	$1 / 5$
	$1 / 12$	$525 / 6048$	$7 / 87$
	$1 / 20$	$625 / 12544$	$625 / 12544$

Note. Actual reduction ratios with differences are shown with shading.

2.4.2 Comparison of reducer efficiency of geared servo motors

The gear reducer efficiency is different when HC-KFS or HC-MFS_G2 is replaced with HG-KR_G7, or HCSFS or HC-RFS_G2 is replaced with HG-SR_G7.

Model	Reducer efficiency (Note)	Substitute model	Reducer efficiency (Note)
HC-KFS_G2 HC-MFS_G2	60 to 80\%	HG-KR_G7	```50 W (reducer model 14A): 12% (reduction ratio 1/5), 22 to 34% (reduction ratio 1/11 to 1/45) 50 W (reducer model 11B)/100 W/400 W/750 W: 48 to 84%```
$\begin{array}{\|l} \hline \text { HC-SFS_G2 } \\ \hline \text { HC-RFS_G2 } \\ \hline \end{array}$	80 to 90%	HG-SR_G7	77 to 92\%

Note. The reducer efficiency differs depending on the reduction ratio. Also, it changes depending on the operating conditions such as the output torque, speed and rotation, temperature, etc. The numerical value in the table is a typical value in the rated torque, rated speed and rotation and typical temperature, and not a guaranteed value.

2.5 Comparison of Moment of Inertia

(1) HC-KFS motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \hline \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio
Small capacity, low inertia HC-KFS series (B): With brake	HC-KFS053(B)	0.053(0.056)	15 times or less	HG-KR053(B)	0.0450(0.0472)	17 times or less
	HC-KFS13(B)	0.084(0.087)		HG-KR13(B)	0.0777(0.0837)	
	HC-KFS23(B)	0.260(0.310)	24 times or less	HG-KR23(B)	0.221(0.243)	26 times or less
	HC-KFS43(B)	0.460(0.510)	22 times or less	HG-KR43(B)	0.371(0.393)	25 times or less
	HC-KFS73(B)	1.51(1.635)	15 times or less	HG-KR73(B)	1.26(1.37)	17 times or less
	HC-KFS46	0.64		HG-KR43	0.371	25 times or less
	HC-KFS410	0.47				
Small capacity, low inertia HC-KFS series with general reducer (G1) (B): With brake	HC-KFS053(B)G1 1/5	0.090(0.093)	5 times or less	HG-KR053(B)G1 1/5	0.0820(0.0840)	5 times or less
	HC-KFS053(B)G1 1/12	0.112(0.115)		HG-KR053(B)G1 1/12	0.104(0.106)	
	HC-KFS053(B)G1 1/20	0.094(0.097)		HG-KR053(B)G1 1/20	0.0860(0.0880)	
	HC-KFS13(B)G1 1/5	0.121(0.124)		HG-KR13(B)G1 1/5	0.115(0.121)	
	HC-KFS13(B)G1 1/12	0.143(0.146)		HG-KR13(B)G1 1/12	0.137(0.143)	
	HC-KFS13(B)G1 1/20	0.125(0.128)		HG-KR13(B)G1 1/20	0.119(0.125)	
	HC-KFS23(B)G1 1/5	0.420(0.470)	7 times or less	HG-KR23(B)G1 1/5	0.375(0.397)	7 times or less
	HC-KFS23(B)G1 1/12	0.470(0.520)		HG-KR23(B)G1 1/12	0.418(0.440)	
	HC-KFS23(B)G1 1/20	0.440(0.490)		HG-KR23(B)G1 1/20	0.391(0.413)	
	HC-KFS43(B)G1 1/5	0.610(0.660)		HG-KR43(B)G1 1/5	0.525(0.547)	
	HC-KFS43(B)G1 1/12	0.660(0.710)		HG-KR43(B)G1 1/12	0.568(0.590)	
	HC-KFS43(B)G1 1/20	0.970(1.02)		HG-KR43(B)G1 1/20	0.881(0.903)	
	HC-KFS73(B)G1 1/5	1.930(2.055)	5 times or less	HG-KR73(B)G1 1/5	1.68(1.79)	5 times or less
	HC-KFS73(B)G1 1/12	2.596(2.721)		HG-KR73(B)G1 1/12	2.35(2.46)	
	HC-KFS73(B)G1 1/20	2.660(2.785)		HG-KR73(B)G1 1/20	2.41(2.52)	
Small capacity, low inertia HC-KFS series with high precision reducer (G2) (B): With brake			5 times or less	HG-KR053(B)G7 1/5 ($\square 40$)	0.0512(0.0534)	10 times or less
	HC-KFS053(B)G2 1/5	0.101(0.104)		HG-KR053(B)G7 1/5 ($\square 60$)	0.119(0.121)	
	HC-KFS053(B)G2 1/9	0.095(0.098)		HG-KR053(B)G7 1/9	0.0492(0.0514)	
	HC-KFS053(B)G2 1/20	0.104(0.107)		HG-KR053(B)G7 1/21	0.0960(0.0980)	
	HC-KFS053(B)G2 1/29	0.092(0.095)		HG-KR053(B)G7 1/33	0.0900(0.0920)	
	HC-KFS13(B)G2 1/5	0.132(0.135)		HG-KR13(B)G7 1/5 ($\square 40$)	0.0839(0.0899)	
				HG-KR13(B)G7 1/5 (■60)	0.152(0.158)	
	HC-KFS13(B)G2 1/9	0.126(0.129)		HG-KR13(B)G7 1/11	0.139(0.145)	
	HC-KFS13(B)G2 1/20	0.176(0.179)		HG-KR13(B)G7 1/21	0.129(0.135)	
	HC-KFS13(B)G2 1/29	0.150(0.153)		HG-KR13(B)G7 1/33	0.141(0.147)	
	HC-KFS23(B)G2 1/5	0.360(0.410)	7 times or less	HG-KR23(B)G7 1/5	0.428(0.450)	14 times or less
	HC-KFS23(B)G2 1/9	0.380(0.430)		HG-KR23(B)G7 1/11	0.424(0.446)	
	HC-KFS23(B)G2 1/20	0.530(0.580)		HG-KR23(B)G7 1/21	0.721(0.743)	
	HC-KFS23(B)G2 1/29	0.450(0.500)		HG-KR23(B)G7 1/33	0.674(0.696)	
	HC-KFS43(B)G2 1/5	0.610(0.660)		HG-KR43(B)G7 1/5	0.578(0.600)	
	HC-KFS43(B)G2 1/9	0.640(0.690)		HG-KR43(B)G7 1/11	0.955(0.977)	
	HC-KFS43(B)G2 1/20	0.740(0.790)		HG-KR43(B)G7 1/21	0.871(0.893)	
	HC-KFS43(B)G2 1/29	0.660(0.710)		HG-KR43(B)G7 1/33	0.927(0.949)	
	HC-KFS73(B)G2 1/5	1.883(2.008)	5 times or less	HG-KR73(B)G7 1/5	1.95(2.06)	10 times or less
	HC-KFS73(B)G2 1/9	1.890(2.015)		HG-KR73(B)G7 1/11	1.83(1.94)	
	HC-KFS73(B)G2 1/20	1.926(2.051)		HG-KR73(B)G7 1/21	2.03(2.14)	
	HC-KFS73(B)G2 1/29	1.820(1.945)		HG-KR73(B)G7 1/33	1.80(1.91)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio is exceeded, please ask the sales contact.

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	Moment of inertia J $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	Load inertia moment ratio
Small capacity, low inertia HC-KFS series with high precision reducer Flange output type (G5) (B): With brake	HC-KFS053(B)G5 1/5	0.121(0.124)	10 times or less	HG-KR053(B)G5 1/5	0.113(0.115)	10 times or less
	HC-KFS053(B)G5 1/11	0.113(0.116)		HG-KR053(B)G5 1/11	0.105(0.107)	
	HC-KFS053(B)G5 1/21	0.104(0.107)		HG-KR053(B)G5 1/21	0.0960(0.0980)	
	HC-KFS053(B)G5 1/33	0.098(0.101)		HG-KR053(B)G5 1/33	0.0900(0.0920)	
	HC-KFS053(B)G5 1/45	0.098(0.101)		HG-KR053(B)G5 1/45	0.0900(0.0920)	
	HC-KFS13(B)G5 1/5	0.152(0.155)		HG-KR13(B)G5 1/5	0.146(0.152)	
	HC-KFS13(B)G5 1/11	0.144(0.147)		HG-KR13(B)G5 1/11	0.138(0.144)	
	HC-KFS13(B)G5 1/21	0.135(0.138)		HG-KR13(B)G5 1/21	0.129(0.135)	
	HC-KFS13(B)G5 1/33	0.146(0.149)		HG-KR13(B)G5 1/33	0.140(0.146)	
	HC-KFS13(B)G5 1/45	0.145(0.148)		HG-KR13(B)G5 1/45	0.139(0.145)	
	HC-KFS23(B)G5 1/5	0.461(0.511)	14 times or less	HG-KR23(B)G5 1/5	0.422(0.444)	14 times or less
	HC-KFS23(B)G5 1/11	0.463(0.513)		HG-KR23(B)G5 1/11	0.424(0.446)	
	HC-KFS23(B)G5 1/21	0.758(0.808)		HG-KR23(B)G5 1/21	0.719(0.741)	
	HC-KFS23(B)G5 1/33	0.712(0.762)		HG-KR23(B)G5 1/33	0.673(0.695)	
	HC-KFS23(B)G5 1/45	0.711(0.761)		HG-KR23(B)G5 1/45	0.672(0.694)	
	HC-KFS43(B)G5 1/5	0.661(0.711)		HG-KR43(B)G5 1/5	0.572(0.594)	
	HC-KFS43(B)G5 1/11	1.04(1.09)		HG-KR43(B)G5 1/11	0.947(0.969)	
	HC-KFS43(B)G5 1/21	0.960(1.01)		HG-KR43(B)G5 1/21	0.869(0.891)	
	HC-KFS43(B)G5 1/33	1.01(1.06)		HG-KR43(B)G5 1/33	0.921(0.943)	
	HC-KFS43(B)G5 1/45	1.00(1.05)		HG-KR43(B)G5 1/45	0.915(0.937)	
	HC-KFS73(B)G5 1/5	2.16(2.28)	10 times or less	HG-KR73(B)G5 1/5	1.91(2.02)	10 times or less
	HC-KFS73(B)G5 1/11	2.07(2.19)		HG-KR73(B)G5 1/11	1.82(1.93)	
	HC-KFS73(B)G5 1/21	2.26(2.39)		HG-KR73(B)G5 1/21	2.01(2.12)	
	HC-KFS73(B)G5 1/33	2.04(2.17)		HG-KR73(B)G5 1/33	1.79(1.90)	
	HC-KFS73(B)G5 1/45	2.04(2.16)		HG-KR73(B)G5 1/45	1.79(1.90)	
Small capacity, low inertia HC-KFS series with high precision reducer Shaft output type (G7) (B): With brake	HC-KFS053(B)G7 1/5	0.127(0.130)	10 times or less	HG-KR053(B)G7 1/5	0.119(0.121)	10 times or less
	HC-KFS053(B)G7 1/11	0.114(0.117)		HG-KR053(B)G7 1/11	0.106(0.108)	
	HC-KFS053(B)G7 1/21	0.104(0.107)		HG-KR053(B)G7 1/21	0.0960(0.0980)	
	HC-KFS053(B)G7 1/33	0.098(0.101)		HG-KR053(B)G7 1/33	0.0900(0.0920)	
	HC-KFS053(B)G7 1/45	0.098(0.101)		HG-KR053(B)G7 1/45	0.0900(0.0920)	
	HC-KFS13(B)G7 1/5	0.158(0.161)		HG-KR13(B)G7 1/5	0.152(0.158)	
	HC-KFS13(B)G7 1/11	0.145(0.148)		HG-KR13(B)G7 1/11	0.139(0.145)	
	HC-KFS13(B)G7 1/21	0.135(0.138)		HG-KR13(B)G7 1/21	0.129(0.135)	
	HC-KFS13(B)G7 1/33	0.147(0.150)		HG-KR13(B)G7 1/33	$0.141(0.147)$	
	HC-KFS13(B)G7 1/45	0.145(0.148)		HG-KR13(B)G7 1/45	0.139(0.145)	
	HC-KFS23(B)G7 1/5	0.467(0.517)	14 times or less	HG-KR23(B)G7 1/5	0.428(0.450)	14 times or less
	HC-KFS23(B)G7 1/11	0.463(0.513)		HG-KR23(B)G7 1/11	0.424(0.446)	
	HC-KFS23(B)G7 1/21	0.760(0.810)		HG-KR23(B)G7 1/21	0.721(0.743)	
	HC-KFS23(B)G7 1/33	0.713(0.763)		HG-KR23(B)G7 1/33	0.674(0.696)	
	HC-KFS23(B)G7 1/45	0.711(0.761)		HG-KR23(B)G7 1/45	0.672(0.694)	
	HC-KFS43(B)G7 1/5	0.667(0.717)		HG-KR43(B)G7 1/5	0.578(0.600)	
	HC-KFS43(B)G7 1/11	1.04(1.09)		HG-KR43(B)G7 1/11	0.955(0.977)	
	HC-KFS43(B)G7 1/21	0.960(1.01)		HG-KR43(B)G7 1/21	0.871(0.893)	
	HC-KFS43(B)G7 1/33	1.02(1.07)		HG-KR43(B)G7 1/33	0.927(0.949)	
	HC-KFS43(B)G7 1/45	1.01(1.06)		HG-KR43(B)G7 1/45	0.918(0.940)	
	HC-KFS73(B)G7 1/5	2.20(2.32)	10 times or less	HG-KR73(B)G7 1/5	1.95(2.06)	10 times or less
	HC-KFS73(B)G7 1/11	2.08(2.20)		HG-KR73(B)G7 1/11	1.83(1.94)	
	HC-KFS73(B)G7 1/21	2.28(2.40)		HG-KR73(B)G7 1/21	2.03(2.14)	
	HC-KFS73(B)G7 1/33	2.05(2.17)		HG-KR73(B)G7 1/33	1.80(1.91)	
	HC-KFS73(B)G7 1/45	2.04(2.17)		HG-KR73(B)G7 1/45	1.79(1.90)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor
(2) HC-MFS motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \quad \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio
Small capacity,ultra-low inertiaHC-MFS series(B): With brake	HC-MFS053(B)	0.019(0.022)	30 times or less	HG-MR053(B)	0.0162(0.0224)	35 times or less
	HC-MFS13(B)	0.03(0.032)		HG-MR13(B)	0.0300(0.0362)	32 times or less
	HC-MFS23(B)	0.088(0.136)		HG-MR23(B)	0.0865(0.109)	
	HC-MFS43(B)	0.143(0.191)		HG-MR43(B)	0.142(0.164)	
	HC-MFS73(B)	0.6(0.725)		HG-MR73(B)	0.586(0.694)	
Small capacity, ultra-low inertia HC-MFS series with general reducer (G1) (B): With brake	HC-MFS053(B)G1 1/5	0.055(0.058)	25 times or less	HG-KR053(B)G1 1/5	0.0820(0.0840)	5 times or less
	HC-MFS053(B)G1 1/12	0.077(0.080)		HG-KR053(B)G1 1/12	0.104(0.106)	
	HC-MFS053(B)G1 1/20	0.059(0.062)		HG-KR053(B)G1 1/20	0.0860(0.0880)	
	HC-MFS13(B)G1 1/5	0.067(0.069)		HG-KR13(B)G1 1/5	0.115(0.121)	
	HC-MFS13(B)G1 1/12	0.089(0.091)		HG-KR13(B)G1 1/12	0.137(0.143)	
	HC-MFS13(B)G1 1/20	0.071(0.073)		HG-KR13(B)G1 1/20	0.119(0.125)	
	HC-MFS23(B)G1 1/5	0.249(0.289)		HG-KR23(B)G1 1/5	0.375(0.397)	7 times or less
	HC-MFS23(B)G1 1/12	0.293(0.333)		HG-KR23(B)G1 1/12	0.418(0.440)	
	HC-MFS23(B)G1 1/20	0.266(0.306)		HG-KR23(B)G1 1/20	0.391(0.413)	
	HC-MFS43(B)G1 1/5	0.296(0.344)		HG-KR43(B)G1 1/5	0.525(0.547)	
	HC-MFS43(B)G1 1/12	0.339(0.388)		HG-KR43(B)G1 1/12	0.568(0.590)	
	HC-MFS43(B)G1 1/20	0.653(0.700)		HG-KR43(B)G1 1/20	0.881(0.903)	
	HC-MFS73(B)G1 1/5	1.02(1.145)		HG-KR73(B)G1 1/5	1.68(1.79)	5 times or less
	HC-MFS73(B)G1 1/12	1.686(1.811)		HG-KR73(B)G1 1/12	2.35(2.46)	
	HC-MFS73(B)G1 1/20	1.75(1.875)		HG-KR73(B)G1 1/20	2.41(2.52)	
Small capacity, ultra-low inertia HC-MFS series with high precision reducer (G2) (B): With brake			25 times or less	HG-KR053(B)G7 1/5 ($\square 40$)	0.0512(0.0534)	10 times or less
	HC-MFS053(B)G2 1/5	0.067(0.070)		HG-KR053(B)G7 1/5 ($\square 60$)	0.119(0.121)	
	HC-MFS053(B)G2 1/9	0.060(0.063)		HG-KR053(B)G7 1/9	0.0492(0.0514)	
	HC-MFS053(B)G2 1/20	0.069(0.072)		HG-KR053(B)G7 1/21	0.0960(0.0980)	
	HC-MFS053(B)G2 1/29	0.057(0.060)		HG-KR053(B)G7 1/33	0.0900(0.0920)	
	HC-MFS13(B)G2 1/5	0.078(0.080)		HG-KR13(B)G7 1/5 ($\square 40$)	0.0839(0.0899)	
				HG-KR13(B)G7 1/5 (■60)	0.152(0.158)	
	HC-MFS13(B)G2 1/9	0.072(0.074)		HG-KR13(B)G7 1/11	0.139(0.145)	
	HC-MFS13(B)G2 1/20	0.122(0.124)		HG-KR13(B)G7 1/21	0.129(0.135)	
	HC-MFS13(B)G2 1/29	0.096(0.098)		HG-KR13(B)G7 1/33	0.141(0.147)	
	HC-MFS23(B)G2 1/5	0.191(0.239)		HG-KR23(B)G7 1/5	0.428(0.450)	14 times or less
	HC-MFS23(B)G2 1/9	0.208(0.256)		HG-KR23(B)G7 1/11	0.424(0.446)	
	HC-MFS23(B)G2 1/20	0.357(0.405)		HG-KR23(B)G7 1/21	0.721(0.743)	
	HC-MFS23(B)G2 1/29	0.276(0.324)		HG-KR23(B)G7 1/33	0.674(0.696)	
	HC-MFS43(B)G2 1/5	0.295(0.344)		HG-KR43(B)G7 1/5	0.578(0.600)	
	HC-MFS43(B)G2 1/9	0.323(0.372)		HG-KR43(B)G7 1/11	0.955(0.977)	
	HC-MFS43(B)G2 1/20	0.426(0.475)		HG-KR43(B)G7 1/21	0.871(0.893)	
	HC-MFS43(B)G2 1/29	0.338(0.386)		HG-KR43(B)G7 1/33	0.927(0.949)	
	HC-MFS73(B)G2 1/5	0.973(1.098)		HG-KR73(B)G7 1/5	1.95(2.06)	10 times or less
	HC-MFS73(B)G2 1/9	0.980(1.105)		HG-KR73(B)G7 1/11	1.83(1.94)	
	HC-MFS73(B)G2 1/20	1.016(1.141)		HG-KR73(B)G7 1/21	2.03(2.14)	
	HC-MFS73(B)G2 1/29	0.910(1.035)		HG-KR73(B)G7 1/33	1.80(1.91)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2.. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	Moment of inertia J $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	Load inertia moment ratio
Small capacity, ultra-low inertia HC-MFS series with high precision reducer Flange output type (G5) (B): With brake	HC-MFS053(B)G5 1/5	0.087(0.090)	25 times or less	HG-KR053(B)G5 1/5	0.113(0.115)	10 times or less
	HC-MFS053(B)G5 1/11	0.079(0.082)		HG-KR053(B)G5 1/11	0.105(0.107)	
	HC-MFS053(B)G5 1/21	0.070(0.073)		HG-KR053(B)G5 1/21	0.0960(0.0980)	
	HC-MFS053(B)G5 1/33	0.064(0.067)		HG-KR053(B)G5 1/33	0.0900(0.0920)	
	HC-MFS053(B)G5 1/45	0.064(0.067)		HG-KR053(B)G5 1/45	0.0900(0.0920)	
	HC-MFS13(B)G5 1/5	0.098(0.100)		HG-KR13(B)G5 1/5	0.146(0.152)	
	HC-MFS13(B)G5 1/11	0.090(0.092)		HG-KR13(B)G5 1/11	0.138(0.144)	
	HC-MFS13(B)G5 1/21	0.081(0.083)		HG-KR13(B)G5 1/21	0.129(0.135)	
	HC-MFS13(B)G5 1/33	0.092(0.094)		HG-KR13(B)G5 1/33	0.140(0.146)	
	HC-MFS13(B)G5 1/45	0.091(0.093)		HG-KR13(B)G5 1/45	0.139(0.145)	
	HC-MFS23(B)G5 1/5	0.289(0.337)		HG-KR23(B)G5 1/5	0.422(0.444)	14 times or less
	HC-MFS23(B)G5 1/11	0.291(0.339)		HG-KR23(B)G5 1/11	0.424(0.446)	
	HC-MFS23(B)G5 1/21	0.586(0.634)		HG-KR23(B)G5 1/21	0.719(0.741)	
	HC-MFS23(B)G5 1/33	0.540(0.588)		HG-KR23(B)G5 1/33	0.673(0.695)	
	HC-MFS23(B)G5 1/45	0.539(0.587)		HG-KR23(B)G5 1/45	0.672(0.694)	
	HC-MFS43(B)G5 1/5	0.344(0.392)		HG-KR43(B)G5 1/5	0.572(0.594)	
	HC-MFS43(B)G5 1/11	0.719(0.767)		HG-KR43(B)G5 1/11	0.947(0.969)	
	HC-MFS43(B)G5 1/21	0.641(0.689)		HG-KR43(B)G5 1/21	0.869(0.891)	
	HC-MFS43(B)G5 1/33	0.693(0.741)		HG-KR43(B)G5 1/33	0.921(0.943)	
	HC-MFS43(B)G5 1/45	0.687(0.735)		HG-KR43(B)G5 1/45	0.915(0.937)	
	HC-MFS73(B)G5 1/5	1.25(1.37)		HG-KR73(B)G5 1/5	1.91(2.02)	10 times or less
	HC-MFS73(B)G5 1/11	1.16(1.28)		HG-KR73(B)G5 1/11	1.82(1.93)	
	HC-MFS73(B)G5 1/21	1.35(1.48)		HG-KR73(B)G5 1/21	2.01(2.12)	
	HC-MFS73(B)G5 1/33	1.13(1.26)		HG-KR73(B)G5 1/33	1.79(1.90)	
	HC-MFS73(B)G5 1/45	1.13(1.25)		HG-KR73(B)G5 1/45	1.79(1.90)	
Small capacity, ultra-low inertia HC-MFS series with high precision reducer Shaft output type (G7) (B): With brake	HC-MFS053(B)G7 1/5	0.093(0.096)	25 times or less	HG-KR053(B)G7 1/5	0.119(0.121)	10 times or less
	HC-MFS053(B)G7 1/11	0.080(0.083)		HG-KR053(B)G7 1/11	0.106(0.108)	
	HC-MFS053(B)G7 1/21	0.070(0.073)		HG-KR053(B)G7 1/21	0.0960(0.0980)	
	HC-MFS053(B)G7 1/33	0.064(0.067)		HG-KR053(B)G7 1/33	0.0900(0.0920)	
	HC-MFS053(B)G7 1/45	0.064(0.067)		HG-KR053(B)G7 1/45	0.0900(0.0920)	
	HC-MFS13(B)G7 1/5	0.104(0.106)		HG-KR13(B)G7 1/5	0.152(0.158)	
	HC-MFS13(B)G7 1/11	0.091(0.093)		HG-KR13(B)G7 1/11	0.139(0.145)	
	HC-MFS13(B)G7 1/21	0.081(0.083)		HG-KR13(B)G7 1/21	0.129(0.135)	
	HC-MFS13(B)G7 1/33	0.093(0.095)		HG-KR13(B)G7 1/33	0.141(0.147)	
	HC-MFS13(B)G7 1/45	0.091(0.093)		HG-KR13(B)G7 1/45	0.139(0.145)	
	HC-MFS23(B)G7 1/5	0.295(0.343)		HG-KR23(B)G7 1/5	0.428(0.450)	14 times or less
	HC-MFS23(B)G7 1/11	0.291(0.339)		HG-KR23(B)G7 1/11	$0.424(0.446)$	
	HC-MFS23(B)G7 1/21	0.588(0.636)		HG-KR23(B)G7 1/21	0.721(0.743)	
	HC-MFS23(B)G7 1/33	0.541(0.589)		HG-KR23(B)G7 1/33	0.674(0.696)	
	HC-MFS23(B)G7 1/45	0.539(0.587)		HG-KR23(B)G7 1/45	0.672(0.694)	
	HC-MFS43(B)G7 1/5	0.350(0.398)		HG-KR43(B)G7 1/5	0.578(0.600)	
	HC-MFS43(B)G7 1/11	0.727(0.775)		HG-KR43(B)G7 1/11	0.955(0.977)	
	HC-MFS43(B)G7 1/21	0.643(0.691)		HG-KR43(B)G7 1/21	0.871(0.893)	
	HC-MFS43(B)G7 1/33	0.699(0.747)		HG-KR43(B)G7 1/33	0.927(0.949)	
	HC-MFS43(B)G7 1/45	0.690(0.738)		HG-KR43(B)G7 1/45	0.918(0.940)	
	HC-MFS73(B)G7 1/5	1.29(1.41)		HG-KR73(B)G7 1/5	1.95(2.06)	10 times or less
	HC-MFS73(B)G7 1/11	1.17(1.29)		HG-KR73(B)G7 1/11	1.83(1.94)	
	HC-MFS73(B)G7 1/21	1.37(1.49)		HG-KR73(B)G7 1/21	2.03(2.14)	
	HC-MFS73(B)G7 1/33	1.14(1.26)		HG-KR73(B)G7 1/33	1.80(1.91)	
	HC-MFS73(B)G7 1/45	1.13(1.26)		HG-KR73(B)G7 1/45	1.79(1.90)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor
(3) HC-SFS motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio
Medium capacity, medium inertia HC-SFS series (B): With brake	HC-SFS81(B)	20.0(22.0)	15 times or less	HG-SR81(B)	16.0(18.2)	17 times or less
	HC-SFS121(B)	42.5(52.5)		HG-SR121(B)	46.8(56.5)	15 times or less
	HC-SFS201(B)	82.0(92.0)		HG-SR201(B)	78.6(88.2)	
	HC-SFS301(B)	101(111)		HG-SR301(B)	99.7(109)	
	HC-SFS52(B),53(B) HC-SFS524(B)	6.6(8.6)		HG-SR52(B) HG-SR524(B)	7.26(9.48)	
	$\begin{array}{\|l\|} \hline \text { HC-SFS102(B), 103(B) } \\ \text { HC-SFS1024(B) } \\ \hline \end{array}$	13.7(15.7)		HG-SR102(B) HG-SR1024(B)	11.6(13.8)	17 times
	$\begin{aligned} & \text { HC-SFS152(B),153(B) } \\ & \text { HC-SFS1524(B) } \end{aligned}$	20.0(22.0)		$\begin{aligned} & \text { HG-SR152(B) } \\ & \text { HG-SR1524(B) } \end{aligned}$	16.0(18.2)	or less
	$\begin{array}{\|l\|} \hline \text { HC-SFS202(B),203(B) } \\ \text { HC-SFS2024(B) } \\ \hline \end{array}$	42.5(52.5)		$\begin{array}{\|l\|} \hline \text { HG-SR202(B) } \\ \text { HG-SR2024(B) } \\ \hline \end{array}$	46.8(56.5)	
	$\begin{array}{\|l} \hline \text { HC-SFS352(B),353(B) } \\ \text { HC-SFS3524(B) } \\ \hline \end{array}$	82.0(92.0)		$\begin{array}{\|l\|} \hline \text { HG-SR352(B) } \\ \text { HG-SR3524(B) } \\ \hline \end{array}$	78.6(88.2)	15 times
	HC-SFS502(B) HC-SFS5024(B)	101(111)		HG-SR502(B) HG-SR5024(B)	99.7(109)	or less
	$\begin{array}{\|l\|} \hline \text { HC-SFS702(B) } \\ \text { HC-SFS7024(B) } \end{array}$	160(170)		$\begin{array}{\|l\|} \hline \text { HG-SR702(B) } \\ \text { HG-SR7024(B) } \\ \hline \end{array}$	151(161)	
Medium capacity, medium inertia HC-SFS series with general reducer	HC-SFS52(4)(B)G1(H) 1/6	7.33(9.03)	4 times or less	HG-SR52(4)(B)G1(H) 1/6	8.08(10.3)	4 times or less
	HC-SFS52(4)(B)G1(H) 1/11	6.95(8.65)		HG-SR52(4)(B)G1(H) 1/11	7.65(9.85)	
	HC-SFS52(4)(B)G1(H) 1/17	6.85(8.55)		HG-SR52(4)(B)G1(H) 1/17	7.53(9.73)	
	HC-SFS52(4)(B)G1(H) 1/29	6.78(8.48)		HG-SR52(4)(B)G1(H) 1/29	7.47(9.67)	
	HC-SFS52(4)(B)G1(H) 1/35	7.5(9.2)		HG-SR52(4)(B)G1(H) 1/35	8.26(10.5)	
	HC-SFS52(4)(B)G1(H) 1/43	7.45(9.15)		HG-SR52(4)(B)G1(H) 1/43	8.22(10.4)	
	HC-SFS52(4)(B)G1(H) 1/59	7.43(9.13)		HG-SR52(4)(B)G1(H) 1/59	8.18(10.4)	
	HC-SFS102(4)(B)G1(H) 1/6	16.8(18.5)		HG-SR102(4)(B)G1(H) 1/6	14.8(17.0)	
	HC-SFS102(4)(B)G1(H) 1/11	15.3(17.0)		HG-SR102(4)(B)G1(H) 1/11	13.3(15.5)	
	HC-SFS102(4)(B)G1(H) 1/17	14.9(16.6)		HG-SR102(4)(B)G1(H) 1/17	12.9(15.1)	
	HC-SFS102(4)(B)G1(H) 1/29	14.6(16.3)		HG-SR102(4)(B)G1(H) 1/29	12.6(14.8)	
	HC-SFS102(4)(B)G1(H) 1/35	14.6(16.3)		HG-SR102(4)(B)G1(H) 1/35	12.6(14.8)	
	HC-SFS102(4)(B)G1(H) 1/43	15.7(17.4)		HG-SR102(4)(B)G1(H) 1/43	13.8(16.0)	
	HC-SFS102(4)(B)G1(H) 1/59	19.5(21.2)		HG-SR102(4)(B)G1(H) 1/59	19.1(21.3)	
	HC-SFS152(4)(B)G1(H) 1/6	23.1(24.8)		HG-SR152(4)(B)G1(H) 1/6	19.2(21.4)	
(4): 400 V specifications (B): With brake	HC-SFS152(4)(B)G1(H) 1/11	21.5(23.2)		HG-SR152(4)(B)G1(H) 1/11	17.7(19.9)	
	HC-SFS152(4)(B)G1(H) 1/17	21.2(22.9)		HG-SR152(4)(B)G1(H) 1/17	17.3(19.5)	
	HC-SFS152(4)(B)G1(H) 1/29	22.1(23.8)		HG-SR152(4)(B)G1(H) 1/29	18.4(20.6)	
	HC-SFS152(4)(B)G1(H) 1/35	22.0(23.7)		HG-SR152(4)(B)G1(H) 1/35	18.3(20.5)	
G1: Flangemounting G1H: Footmounting	HC-SFS152(4)(B)G1(H) 1/43	25.8(27.5)		HG-SR152(4)(B)G1(H) 1/43	23.6(25.8)	
	HC-SFS152(4)(B)G1(H) 1/59	25.7(27.4)		HG-SR152(4)(B)G1(H) 1/59	23.5(25.7)	
	HC-SFS202(4)(B)G1(H) 1/6	45.6(55.6)		HG-SR202(4)(B)G1(H) 1/6	50.0(59.4)	
	HC-SFS202(4)(B)G1(H) 1/11	44.1(54.1)		HG-SR202(4)(B)G1(H) 1/11	48.4(57.8)	
	HC-SFS202(4)(B)G1(H) 1/17	43.7(53.7)		HG-SR202(4)(B)G1(H) 1/17	48.1(57.5)	
	HC-SFS202(4)(B)G1(H) 1/29	48.9(58.9)		HG-SR202(4)(B)G1(H) 1/29	54.8(64.2)	
	HC-SFS202(4)(B)G1(H) 1/35	48.6(58.6)		HG-SR202(4)(B)G1(H) 1/35	54.5(63.9)	
	HC-SFS202(4)(B)G1(H) 1/43	48.4(58.4)		HG-SR202(4)(B)G1(H) 1/43	54.3(63.7)	
	HC-SFS202(4)(B)G1(H) 1/59	48.3(58.3)		HG-SR202(4)(B)G1(H) 1/59	54.2(63.6)	
	HC-SFS352(4)(B)G1(H) 1/6	90.1(100.1)		HG-SR352(4)(B)G1(H) 1/6	87.1(96.5)	
	HC-SFS352(4)(B)G1(H) 1/11	86.2(96.2)		HG-SR352(4)(B)G1(H) 1/11	82.8(92.2)	
	HC-SFS352(4)(B)G1(H) 1/17	85.0(95.0)		HG-SR352(4)(B)G1(H) 1/17	81.5(90.9)	
	HC-SFS352(4)(B)G1(H) 1/29	88.4(98.4)		HG-SR352(4)(B)G1(H) 1/29	86.6(96.0)	
	HC-SFS352(4)(B)G1(H) 1/35	88.1(98.1)		HG-SR352(4)(B)G1(H) 1/35	86.3(95.7)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2.. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \hline \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio
Medium capacity, medium inertia HC-SFS series with general reducer	HC-SFS352(4)(B)G1(H) 1/43	106.5(116.5)	4 times or less	HG-SR352(4)(B)G1(H) 1/43	105(114)	4 times or less
	HC-SFS352(4)(B)G1(H) 1/59	105.9(115.9)		HG-SR352(4)(B)G1(H) 1/59	104(113)	
	HC-SFS502(4)(B)G1(H) 1/11	113.4(123.4)		HG-SR502(4)(B)G1(H) 1/11	114(123)	
	HC-SFS502(4)(B)G1(H) 1/17	109.4(119.4)		HG-SR502(4)(B)G1(H) 1/17	110(119)	
	HC-SFS502(4)(B)G1(H) 1/29	138.5(148.5)		HG-SR502(4)(B)G1(H) 1/29	141(150)	
(4): 400 V specifications (B): With brake	HC-SFS502(4)(B)G1(H) 1/35	138.0(148.0)		HG-SR502(4)(B)G1(H) 1/35	140(150)	
	HC-SFS502(4)(B)G1(H) 1/43	137.0(147.0)		HG-SR502(4)(B)G1(H) 1/43	139(149)	
	HC-SFS702(4)(B)G1(H) 1/11	198.8(208.8)		HG-SR702(4)(B)G1(H) 1/11	190(199)	
	HC-SFS702(4)(B)G1(H) 1/17	190.0(200.0)		HG-SR702(4)(B)G1(H) 1/17	182(192)	
G1: Flangemounting G1H: Footmounting	HC-SFS702(4)(B)G1(H) 1/29	197.5(207.5)		HG-SR702(4)(B)G1(H) 1/29	192(202)	
	HC-SFS702(4)(B)G1(H) 1/35	197.0(207.0)		HG-SR702(4)(B)G1(H) 1/35	192(201)	
	HC-SFS702(4)(B)G1(H) 1/43	256.8(266.8)		HG-SR702(4)(B)G1(H) 1/43	267(277)	
Medium capacity, medium inertia HC-SFS series with high precision reducer (G2)	HC-SFS52(4)(B)G2 1/5	7.9(9.6)	5 times or less	HG-SR52(4)(B)G7 1/5	7.95(10.2)	10 times or less
	HC-SFS52(4)(B)G2 1/9	7.55(9.25)		HG-SR52(4)(B)G7 1/11	7.82(10.0)	
	HC-SFS52(4)(B)G2 1/20	8.03(9.73)		HG-SR52(4)(B)G7 1/21	10.2(12.4)	
	HC-SFS52(4)(B)G2 1/29	9.4(11.1)		HG-SR52(4)(B)G7 1/33	9.96(12.2)	
	HC-SFS52(4)(B)G2 1/45	8.43(10.1)		HG-SR52(4)(B)G7 1/45	9.96(12.2)	
	HC-SFS102(4)(B)G2 1/5	15.0(16.7)		HG-SR102(4)(B)G7 1/5	12.3(14.5)	
	HC-SFS102(4)(B)G2 1/9	14.6(16.3)		HG-SR102(4)(B)G7 1/11	15.0(17.2)	
	HC-SFS102(4)(B)G2 1/20	18.4(20.1)		HG-SR102(4)(B)G7 1/21	14.5(16.7)	
	HC-SFS102(4)(B)G2 1/29	16.5(18.2)		HG-SR102(4)(B)G7 1/33	16.3(18.5)	
	HC-SFS102(4)(B)G2 1/45	20.3(22.0)		HG-SR102(4)(B)G7 1/45	16.3(18.5)	
	HC-SFS152(4)(B)G2 1/5	21.2(22.9)		HG-SR152(4)(B)G7 1/5	16.7(18.9)	
	HC-SFS152(4)(B)G2 1/9	24.7(26.4)		HG-SR152(4)(B)G7 1/11	19.4(21.6)	
	HC-SFS152(4)(B)G2 1/20	24.6(26.3)		HG-SR152(4)(B)G7 1/21	21.7(23.9)	
	HC-SFS152(4)(B)G2 1/29	30.3(32.0)		HG-SR152(4)(B)G7 1/33	20.7(22.9)	
(4): 400 V specifications (B): With brake	HC-SFS152(4)(B)G2 1/45	26.5(28.2)		HG-SR152(4)(B)G7 1/45	20.7(22.9)	
	HC-SFS202(4)(B)G2 1/5	49.6(59.6)		HG-SR202(4)(B)G7 1/5	51.7(61.4)	
	HC-SFS202(4)(B)G2 1/9	47.2(57.2)		HG-SR202(4)(B)G7 1/11	51.3(61.0)	
	HC-SFS202(4)(B)G2 1/20	59.6(69.6)		HG-SR202(4)(B)G7 1/21	53.3(63.0)	
	HC-SFS202(4)(B)G2 1/29	52.8(62.8)		HG-SR202(4)(B)G7 1/33	52.2(61.9)	
	HC-SFS202(4)(B)G2 1/45	49.1(59.1)		HG-SR202(4)(B)G7 1/45	52.2(61.9)	
	HC-SFS352(4)(B)G2 1/5	99.4(109.4)		HG-SR352(4)(B)G7 1/5	83.5(93.1)	
	HC-SFS352(4)(B)G2 1/9	91.5(101.5)		HG-SR352(4)(B)G7 1/11	87.0(96.6)	
	HC-SFS352(4)(B)G2 1/20	99.1(109.1)		HG-SR352(4)(B)G7 1/21	85.1(94.7)	
	HC-SFS502(4)(B)G2 1/5	118.4(128.4)		HG-SR502(4)(B)G7 1/5	111(121)	
	HC-SFS502(4)(B)G2 1/9	110.5(120.5)		HG-SR502(4)(B)G7 1/11	108(117)	
	HC-SFS702(4)(B)G2 1/5	177.4(187.4)		HG-SR702(4)(B)G7 1/5	163(173)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Series	Target product			Replacement product		
	Model	$\begin{gathered} \hline \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \hline \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio
Medium capacity, medium inertia HC-SFS series with high precision reducer Flange output type (G5) (4): 400 V specifications (B): With brake	HC-SFS52(4)(B)G5 1/5	7.25(9.25)	10 times or less	HG-SR52(4)(B)G5 1/5	7.91(10.1)	10 times or less
	HC-SFS52(4)(B)G5 1/11	7.16(9.16)		HG-SR52(4)(B)G5 1/11	7.82(10.0)	
	HC-SFS52(4)(B)G5 1/21	9.50(11.5)		HG-SR52(4)(B)G5 1/21	10.2(12.4)	
	HC-SFS52(4)(B)G5 1/33	9.30(11.3)		HG-SR52(4)(B)G5 1/33	9.96(12.2)	
	HC-SFS52(4)(B)G5 1/45	9.30(11.3)		HG-SR52(4)(B)G5 1/45	9.96(12.2)	
	HC-SFS102(4)(B)G5 1/5	14.4(16.4)		HG-SR102(4)(B)G5 1/5	12.3(14.5)	
	HC-SFS102(4)(B)G5 1/11	17.0(19.0)		HG-SR102(4)(B)G5 1/11	14.9(17.1)	
	HC-SFS102(4)(B)G5 1/21	16.6(18.6)		HG-SR102(4)(B)G5 1/21	14.5(16.7)	
	HC-SFS102(4)(B)G5 1/33	18.4(20.4)		HG-SR102(4)(B)G5 1/33	16.3(18.5)	
	HC-SFS102(4)(B)G5 1/45	18.3(20.3)		HG-SR102(4)(B)G5 1/45	16.2(18.4)	
	HC-SFS152(4)(B)G5 1/5	20.7(22.7)		HG-SR152(4)(B)G5 1/5	16.7(18.9)	
	HC-SFS152(4)(B)G5 1/11	23.3(25.3)		HG-SR152(4)(B)G5 1/11	19.3(21.5)	
	HC-SFS152(4)(B)G5 1/21	25.7(27.7)		HG-SR152(4)(B)G5 1/21	21.7(23.9)	
	HC-SFS152(4)(B)G5 1/33	24.7(26.7)		HG-SR152(4)(B)G5 1/33	20.7(22.9)	
	HC-SFS152(4)(B)G5 1/45	24.6(26.6)		HG-SR152(4)(B)G5 1/45	20.6(22.8)	
	HC-SFS202(4)(B)G5 1/5	47.1(57.1)		HG-SR202(4)(B)G5 1/5	51.4(61.1)	
	HC-SFS202(4)(B)G5 1/11	46.9(56.9)		HG-SR202(4)(B)G5 1/11	51.2(60.9)	
	HC-SFS202(4)(B)G5 1/21	48.9(58.9)		HG-SR202(4)(B)G5 1/21	53.2(62.9)	
	HC-SFS202(4)(B)G5 1/33	47.9(57.9)		HG-SR202(4)(B)G5 1/33	52.2(61.9)	
	HC-SFS202(4)(B)G5 1/45	47.9(57.9)		HG-SR202(4)(B)G5 1/45	52.2(61.9)	
	HC-SFS352(4)(B)G5 1/5	86.6(96.6)		HG-SR352(4)(B)G5 1/5	83.2(92.8)	
	HC-SFS352(4)(B)G5 1/11	90.1(100)		HG-SR352(4)(B)G5 1/11	86.7(96.3)	
	HC-SFS352(4)(B)G5 1/21	88.4(98.4)		HG-SR352(4)(B)G5 1/21	85.0(94.6)	
	HC-SFS502(4)(B)G5 1/5	111(121)		HG-SR502(4)(B)G5 1/5	110(119)	
	HC-SFS502(4)(B)G5 1/11	109(119)		HG-SR502(4)(B)G5 1/11	108(117)	
	HC-SFS702(4)(B)G5 1/5	170(180)		HG-SR702(4)(B)G5 1/5	161(171)	
Medium capacity, medium inertia HC-SFS series with high precision reducer Shaft output type (G7) (4): 400 V specifications (B): With brake	HC-SFS52(4)(B)G7 1/5	7.29(9.29)	10 times or less	HG-SR52(4)(B)G7 1/5	7.95(10.2)	10 times or less
	HC-SFS52(4)(B)G7 1/11	7.16(9.16)		HG-SR52(4)(B)G7 1/11	7.82(10.0)	
	HC-SFS52(4)(B)G7 1/21	9.50(11.5)		HG-SR52(4)(B)G7 1/21	10.2(12.4)	
	HC-SFS52(4)(B)G7 1/33	9.30(11.3)		HG-SR52(4)(B)G7 1/33	9.96(12.2)	
	HC-SFS52(4)(B)G7 1/45	9.30(11.3)		HG-SR52(4)(B)G7 1/45	9.96(12.2)	
	HC-SFS102(4)(B)G7 1/5	14.4(16.4)		HG-SR102(4)(B)G7 1/5	12.3(14.5)	
	HC-SFS102(4)(B)G7 1/11	17.1(19.1)		HG-SR102(4)(B)G7 1/11	15.0(17.2)	
	HC-SFS102(4)(B)G7 1/21	16.6(18.6)		HG-SR102(4)(B)G7 1/21	14.5(16.7)	
	HC-SFS102(4)(B)G7 1/33	18.4(20.4)		HG-SR102(4)(B)G7 1/33	16.3(18.5)	
	HC-SFS102(4)(B)G7 1/45	18.4(20.4)		HG-SR102(4)(B)G7 1/45	16.3(18.5)	
	HC-SFS152(4)(B)G7 1/5	20.7(22.7)		HG-SR152(4)(B)G7 1/5	16.7(18.9)	
	HC-SFS152(4)(B)G7 1/11	23.4(25.4)		HG-SR152(4)(B)G7 1/11	19.4(21.6)	
	HC-SFS152(4)(B)G7 1/21	25.7(27.7)		HG-SR152(4)(B)G7 1/21	21.7(23.9)	
	HC-SFS152(4)(B)G7 1/33	24.7(26.7)		HG-SR152(4)(B)G7 1/33	20.7(22.9)	
	HC-SFS152(4)(B)G7 1/45	24.7(26.7)		HG-SR152(4)(B)G7 1/45	20.7(22.9)	
	HC-SFS202(4)(B)G7 1/5	47.4(57.4)		HG-SR202(4)(B)G7 1/5	51.7(61.4)	
	HC-SFS202(4)(B)G7 1/11	47.0(57.0)		HG-SR202(4)(B)G7 1/11	51.3(61.0)	
	HC-SFS202(4)(B)G7 1/21	49.0(59.0)		HG-SR202(4)(B)G7 1/21	53.3(63.0)	
	HC-SFS202(4)(B)G7 1/33	47.9(57.9)		HG-SR202(4)(B)G7 1/33	52.2(61.9)	
	HC-SFS202(4)(B)G7 1/45	47.9(57.9)		HG-SR202(4)(B)G7 1/45	52.2(61.9)	
	HC-SFS352(4)(B)G7 1/5	86.9(96.9)		HG-SR352(4)(B)G7 1/5	83.5(93.1)	
	HC-SFS352(4)(B)G7 1/11	90.4(100)		HG-SR352(4)(B)G7 1/11	87.0(96.6)	
	HC-SFS352(4)(B)G7 1/21	88.5(98.5)		HG-SR352(4)(B)G7 1/21	85.1(94.7)	
	HC-SFS502(4)(B)G7 1/5	113(123)		HG-SR502(4)(B)G7 1/5	111(121)	
	HC-SFS502(4)(B)G7 1/11	109(119)		HG-SR502(4)(B)G7 1/11	108(117)	
	HC-SFS702(4)(B)G7 1/5	172(182)		HG-SR702(4)(B)G7 1/5	163(173)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor
(4) HC-RFS motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio
Medium capacity, ultra-low inertia HC-RFS series (B): With brake	HC-RFS103(B)	1.5(1.85)	5 times or less	HG-RR103(B)	1.50(1.85)	5 times or less
	HC-RFS153(B)	1.9(2.25)		HG-RR153(B)	1.90(2.25)	
	HC-RFS203(B)	2.3(2.65)		HG-RR203(B)	2.30(2.65)	
	HC-RFS353(B)	8.6(11.8)		HG-RR353(B)	8.30(11.8)	
	HC-RFS503(B)	12.0(15.5)		HG-RR503(B)	12.0(15.5)	
Medium capacity, ultra-low inertia HC-RFS series with high precision reducer (G2) (B): With brake	HC-RFS103(B)G2 1/5	4.95(5.3)	5 times or less	HG-SR102(B)G7 1/5	12.3(14.5)	10 times or less
	HC-RFS103(B)G2 1/9	4.6(4.95)		HG-SR102(B)G7 1/11	15.0(17.2)	
	HC-RFS103(B)G2 1/20	8.35(8.7)		HG-SR102(B)G7 1/21	14.5(16.7)	
	HC-RFS103(B)G2 1/29	6.45(6.8)		HG-SR102(B)G7 1/33	16.3(18.5)	
	HC-RFS103(B)G2 1/45	5.48(5.83)		HG-SR102(B)G7 1/45	16.3(18.5)	
	HC-RFS153(B)G2 1/5	5.35(5.7)		HG-SR152(B)G7 1/5	16.7(18.9)	
	HC-RFS153(B)G2 1/9	6.68(7.03)		HG-SR152(B)G7 1/11	19.4(21.6)	
	HC-RFS153(B)G2 1/20	8.75(9.1)		HG-SR152(B)G7 1/21	21.7(23.9)	
	HC-RFS153(B)G2 1/29	6.85(7.2)		HG-SR152(B)G7 1/33	20.7(22.9)	
	HC-RFS153(B)G2 1/45	8.55(8.9)		HG-SR152(B)G7 1/45	20.7(22.9)	
	HC-RFS203(B)G2 1/5	5.75(6.1)		HG-SR202(B)G7 1/5	51.7(61.4)	
	HC-RFS203(B)G2 1/9	7.08(7.43)		HG-SR202(B)G7 1/11	51.3(61.0)	
	HC-RFS203(B)G2 1/20	9.15(9.5)		HG-SR202(B)G7 1/21	53.3(63.0)	
	HC-RFS203(B)G2 1/29	12.7(13.1)		HG-SR202(B)G7 1/33	52.2(61.9)	
	HC-RFS203(B)G2 1/45	8.95(9.3)		HG-SR202(B)G7 1/45	52.2(61.9)	
	HC-RFS353(B)G2 1/5	18.8(20.8)		HG-SR352(B)G7 1/5	83.5(93.1)	
	HC-RFS353(B)G2 1/9	21.1(23.1)		HG-SR352(B)G7 1/11	87.0(96.6)	
	HC-RFS353(B)G2 1/20	28.8(30.8)		HG-SR352(B)G7 1/21	85.1(94.7)	
	HC-RFS353(B)G2 1/29	22.0(24.0)				
	HC-RFS503(B)G2 1/5	32.4(34.4)		HG-SR502(B)G7 1/5	111(121)	
	HC-RFS503(B)G2 1/9	24.5(26.5)				
	HC-RFS503(B)G2 1/20	32.2(34.2)		HG-SR502(B)G7 1/11	108(117)	
Medium capacity, ultra-low inertia HC-RFS series with high precision reducer Flange output type (G5) (B): With brake	HC-RFS103(B)G5 1/5	2.33(2.68)	5 times or less	HG-SR102(B)G5 1/5	12.3(14.5)	10 times or less
	HC-RFS103(B)G5 1/11	2.25(2.60)		HG-SR102(B)G5 1/11	14.9(17.1)	
	HC-RFS103(B)G5 1/21	4.40(4.75)		HG-SR102(B)G5 1/21	14.5(16.7)	
	HC-RFS103(B)G5 1/33	4.20(4.55)		HG-SR102(B)G5 1/33	16.3(18.5)	
	HC-RFS103(B)G5 1/45	6.10(6.45)		HG-SR102(B)G5 1/45	16.2(18.4)	
	HC-RFS153(B)G5 1/5	2.73(3.08)		HG-SR152(B)G5 1/5	16.7(18.9)	
	HC-RFS153(B)G5 1/11	5.20(5.55)		HG-SR152(B)G5 1/11	19.3(21.5)	
	HC-RFS153(B)G5 1/21	4.80(5.15)		HG-SR152(B)G5 1/21	21.7(23.9)	
	HC-RFS153(B)G5 1/33	6.60(6.95)		HG-SR152(B)G5 1/33	20.7(22.9)	
	HC-RFS153(B)G5 1/45	6.50(6.85)		HG-SR152(B)G5 1/45	20.6(22.8)	
	HC-RFS203(B)G5 1/5	3.13(3.48)		HG-SR202(B)G5 1/5	51.4(61.1)	
	HC-RFS203(B)G5 1/11	5.60(5.95)		HG-SR202(B)G5 1/11	51.2(60.9)	
	HC-RFS203(B)G5 1/21	8.00(8.35)		HG-SR202(B)G5 1/21	53.2(62.9)	
	HC-RFS203(B)G5 1/33	7.00(7.35)		HG-SR202(B)G5 1/33	52.2(61.9)	
	HC-RFS203(B)G5 1/45	6.90(7.25)		HG-SR202(B)G5 1/45	52.2(61.9)	
	HC-RFS353(B)G5 1/5	13.5(16.7)		HG-SR352(B)G5 1/5	83.2(92.8)	
	HC-RFS353(B)G5 1/11	13.3(16.5)		HG-SR352(B)G5 1/11	86.7(96.3)	
	HC-RFS353(B)G5 1/21	15.3(18.5)		HG-SR352(B)G5 1/21	85.0(94.6)	
	HC-RFS353(B)G5 1/33	14.4(17.6)		HG-SR352(B)G5 1/21	85.0(94.6)	
	HC-RFS503(B)G5 1/5	16.9(20.4)		HG-SR502(B)G5 1/5	110(119)	
	HC-RFS503(B)G5 1/11	20.5(24.0)		HG-SR502(B)G5 1/11	108(117)	
	HC-RFS503(B)G5 1/21	18.7(22.2)				

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load inertia moment ratio
Medium capacity, ultra-low inertia HC-RFS series with high precision reducer Shaft output type (G7) (B): With brake	HC-RFS103(B)G7 1/5	2.37(2.72)	5 times or less	HG-SR102(B)G7 1/5	12.3(14.5)	10 times or less
	HC-RFS103(B)G7 1/11	2.25(2.60)		HG-SR102(B)G7 1/11	15.0(17.2)	
	HC-RFS103(B)G7 1/21	4.40(4.75)		HG-SR102(B)G7 1/21	14.5(16.7)	
	HC-RFS103(B)G7 1/33	4.20(4.55)		HG-SR102(B)G7 1/33	16.3(18.5)	
	HC-RFS103(B)G7 1/45	6.20(6.55)		HG-SR102(B)G7 1/45	16.3(18.5)	
	HC-RFS153(B)G7 1/5	2.77(3.12)		HG-SR152(B)G7 1/5	16.7(18.9)	
	HC-RFS153(B)G7 1/11	5.30(5.65)		HG-SR152(B)G7 1/11	19.4(21.6)	
	HC-RFS153(B)G7 1/21	4.80(5.15)		HG-SR152(B)G7 1/21	21.7(23.9)	
	HC-RFS153(B)G7 1/33	6.60(6.95)		HG-SR152(B)G7 1/33	20.7(22.9)	
	HC-RFS153(B)G7 1/45	6.60(6.95)		HG-SR152(B)G7 1/45	20.7(22.9)	
	HC-RFS203(B)G7 1/5	3.17(3.52)		HG-SR202(B)G7 1/5	51.7(61.4)	
	HC-RFS203(B)G7 1/11	5.70(6.05)		HG-SR202(B)G7 1/11	51.3(61.0)	
	HC-RFS203(B)G7 1/21	8.00(8.35)		HG-SR202(B)G7 1/21	53.3(63.0)	
	HC-RFS203(B)G7 1/33	7.00(7.35)		HG-SR202(B)G7 1/33	52.2(61.9)	
	HC-RFS203(B)G7 1/45	7.00(7.35)		HG-SR202(B)G7 1/45	52.2(61.9)	
	HC-RFS353(B)G7 1/5	13.8(17.0)		HG-SR352(B)G7 1/5	83.5(93.1)	
	HC-RFS353(B)G7 1/11	13.4(16.6)		HG-SR352(B)G7 1/11	87.0(96.6)	
	HC-RFS353(B)G7 1/21	15.4(18.6)		HG-SR352(B)G7 1/21	85.1(94.7)	
	HC-RFS353(B)G7 1/33	14.4(17.6)		HG-SR352(B)G7 1/21	85.1(94.7)	
	HC-RFS503(B)G7 1/5	17.2(20.7)		HG-SR502(B)G7 1/5	111(121)	
	HC-RFS503(B)G7 1/11	20.7(24.2)		HG-SR502(B)G7 1/11	108(117)	
	HC-RFS503(B)G7 1/21	18.8(22.3)				

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.
(5) HC-LFS/-UFS motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times \quad 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio
Medium capacity, low inertia HC-LFS series (B): With brake	HC-LFS52(B)	3.2(5.2)	10 times or less	HG-JR73(B)	2.09(2.59)	10 times or less
	HC-LFS102(B)	4.6(6.6)		HG-JR153(B)	3.79(4.29)	
	HC-LFS152(B)	6.4(8.4)		HG-JR353(B)	13.2(15.4)	
	HC-LFS202(B)	22(32)				
	HC-LFS302(B)	36(46)		HG-JR503(B)	19.0(21.2)	
Small capacity, flat type HC-UFS series (B): With brake	HC-UFS13(B)	0.066(0.074)	15 times or less	HG-KR13(B)	0.0777(0.0837)	17 times or less
	HC-UFS23(B)	0.241(0.323)		HG-KR23(B)	0.221(0.243)	26 times or less
	HC-UFS43(B)	0.365(0.447)		HG-KR43(B)	0.371(0.393)	25 times or less
	HC-UFS73(B)	5.90(6.10)		HG-KR73(B)	1.26(1.37)	17 times or less
Medium capacity, flat type HC-UFS series	HC-UFS72(B)	10.4(12.4)		HG-UR72(B)	10.4(12.5)	15 times or less
	HC-UFS152(B)	22.1(24.1)		HG-UR152(B)	22.1(24.2)	
	HC-UFS202(B)	38.2(46.8)		HG-UR202(B)	38.2(46.8)	
	HC-UFS352(B)	76.5(85.1)		HG-UR352(B)	76.5(85.1)	
(B): With brake	HC-UFS502(B)	115(123.6)		HG-UR502(B)	115(124)	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor
(6) HA-LFS motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia } \mathrm{J} \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Load inertia moment ratio
Large capacity, low inertia HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series (B): With brake	$\begin{array}{\|l\|} \hline \text { HA-LFS601(B) } \\ \text { HA-LFS6014(B) } \\ \hline \end{array}$	105(113)	10 times or less	$\begin{aligned} & \text { HG-JR601(B) } \\ & \text { HG-JR6014(B) } \end{aligned}$	176(196)	10 times or less
	$\begin{aligned} & \text { HA-LFS801(B) } \\ & \text { HA-LFS8014(B) } \end{aligned}$	220(293)		HG-JR801(B) HG-JR8014(B)	220(240)	
	HA-LFS12K1 ${ }^{(B)}$ HA-LFS12K14(B)	295(369)		$\begin{aligned} & \text { HG-JR12K1(B) } \\ & \text { HG-JR12K14(B) } \end{aligned}$	315(336)	
	HA-LFS15K1 HA-LFS15K14	550		HG-JR15K1 HG-JR15K14	489	
	HA-LFS2OK1 HA-LFS20K14	650		HG-JR20K1 HG-JR20K14	627	
	HA-LFS25K1 HA-LFS25K14	1080		HG-JR25K1 HG-JR25K14	764	
	HA-LFS30K1 HA-LFS30K14	1310		HG-JR30K1 HG-JR30K14	1377	
	HA-LFS37K1 HA-LFS37K14	1870		HG-JR37K1 HG-JR37K14	1637	
Large capacity, low inertia HA-LFS $1500 \mathrm{r} / \mathrm{min}$ series (B): With brake	HA-LFS701M(B) HA-LFS701M4(B)	105(113)		HG-JR701M(B) HG-JR701M4(B)	176(196)	
	HA-LFS11K1M(B) HA-LFS11K1M4(B)	220(293)		HG-JR11K1M(B) HG-JR11K1M4(B)	220(240)	
	HA-LFS15K1M(B) HA-LFS15K1M4(B)	295(369)		HG-JR15K1M(B) HG-JR15K1M4(B)	315(336)	
	$\begin{aligned} & \text { HA-LFS22K1M } \\ & \text { HA-LFS22K1M4 } \end{aligned}$	550		HG-JR22K1M HG-JR22K1M4	489	
	HA-LFS30K1M HA-LFS30K1M4	650		HG-JR30K1M HG-JR30K1M4	627	
	HA-LFS37K1M HA-LFS37K1M4	1080		HG-JR37K1M HG-JR37K1M4	764	
	HA-LFS45K1M4	1310		HG-JR45K1M4	1377	
	HA-LFS50K1M4	1870		HG-JR55K1M4	1637	
Large capacity, low inertia HA-LFS 2000 r/min series (B): With brake	HA-LFS502	74.0		HG-SR502	99.7	15 times or less
	HA-LFS702	94.2		HG-SR702	151	
	HA-LFS11K2(B) HA-LFS11K24(B)	105(113)		HG-JR11K1M(B) HG-JR11K1M4(B)	220(240)	10 times or less
	HA-LFS15K2(B) HA-LFS15K24(B)	220(293)				
	$\begin{aligned} & \text { HA-LFS22K2(B) } \\ & \text { HA-LFS22K24(B) } \end{aligned}$	295(369)		HG-JR15K1M(B) HG-JR15K1M4(B)	315(336)	
	HA-LFS30K2 HA-LFS30K24	550		HG-JR22K1M HG-JR22K1M4	489	
	HA-LFS37K2 HA-LFS37K24	650		HG-JR30K1M HG-JR30K1M4	627	
	HA-LFS 45 K 24	1080		HG-JR37K1M4	764	
	HA-LFS55K24	1310		HG-JR45K1M4	1377	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load inertia moment ratio with brake is exceeded, please ask the sales contact.

Part 8: Review on Replacement of Motor

Series	Target product			Replacement product		
	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load moment inertia ratio	Model	$\begin{gathered} \text { Moment of } \\ \text { inertia J } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \hline \end{gathered}$	Load moment inertia ratio
Large capacity, low inertia HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series (B): With brake	$\begin{aligned} & \text { HA-LFS601(B) } \\ & \text { HA-LFS6014(B) } \end{aligned}$	105(113)	10 times or less	$\begin{aligned} & \text { HG-JR601R(B)-S_- } \\ & \text { HG-JR6014R(B) -S_ } \end{aligned}$	198(218)	10 times or less
	HA-LFS801(B) HA-LFS8014(B)	220(293)		HG-JR801R(B)-S_ HG-JR8014R(B)-S	228(248)	
	HA-LFS12K1 (B) HA-LFS12K14(B)	295(369)		HG-JR12K1R(B)-S_ HG-JR12K14R(B)-S	323(344)	
	HA-LFS15K1 HA-LFS15K14	550		HG-JR15K1R-S HG-JR15K14R-S	487	
	HA-LFS20K1 HA-LFS20K14	650		HG-JR20K1R-S HG-JR20K14R-S	625	
	HA-LFS25K1 HA-LFS25K14	1080		HG-JR25K1R-S HG-JR25K14R-S	767	
	HA-LFS30K1 HA-LFS30K14	1310		HG-JR30K1R-S HG-JR30K14R-S	1356	
	HA-LFS37K1 HA-LFS37K14	1870		HG-JR37K1R-S HG-JR37K14R-S	1650	
Large capacity, low inertia HA-LFS $1500 \mathrm{r} / \mathrm{min}$ series (B): With brake	HA-LFS701M(B) HA-LFS701M4(B)	105(113)		$\begin{aligned} & \text { HG-JR701MR(B)-S_ } \\ & \text { HG-JR701M4R(B)-S } \end{aligned}$	198(218)	
	HA-LFS11K1M(B) HA-LFS11K1M4(B)	220(293)		$\begin{aligned} & \text { HG-JR11K1MR(B)-S_(} \square 250) \\ & \text { HG-JR11K1M4R(B)-S_(} \square 250) \end{aligned}$	228(248)	
	HA-LFS15K1M(B) HA-LFS15K1M4(B)	295(369)		HG-JR15K1MR(B)-S_ HG-JR15K1M4R(B)-S	323(344)	
	$\begin{aligned} & \text { HA-LFS22K1M } \\ & \text { HA-LFS22K1M4 } \end{aligned}$	550		HG-JR22K1MR-S HG-JR22K1M4R-S	487	
	HA-LFS30K1M HA-LFS30K1M4	650		HG-JR30K1MR-S_ HG-JR30K1M4R-S	625	
	HA-LFS37K1M HA-LFS37K1M4	1080		HG-JR37K1MR-S_ HG-JR37K1M4R-S	767	
	HA-LFS45K1M4	1310		HG-JR45K1M4R-S_	1356	
	HA-LFS50K1M4	1870		HG-JR55K1M4R-S	1651	
Large capacity, low inertia HA-LFS $2000 \mathrm{r} / \mathrm{min}$ series (B): With brake	HA-LFS502	74.0		HG-SR502R-S_	104	15 times or less
	HA-LFS702	94.2		HG-SR702R-S_	155	
	HA-LFS11K2(B) HA-LFS11K24(B)	105(113)		$\begin{aligned} & \text { HG-JR11K1MR(B)-S_(} \square 200) \\ & \text { HG-JR11K1M4R(B)-S_(} \square 200) \end{aligned}$	236(256)	10 times or less
	HA-LFS15K2(B) HA-LFS15K24(B)	220(293)		$\begin{aligned} & \hline \text { HG-JR11K1MR(B)-S_(} \square 250) \\ & \text { HG-JR11K1M4R(B)-S_(} \square 250) \end{aligned}$	228(248)	
	$\begin{aligned} & \text { HA-LFS22K2(B) } \\ & \text { HA-LFS22K24(B) } \end{aligned}$	295(369)		HG-JR15K1MR(B)-S_ HG-JR15K1M4R(B)-S_	323(344)	
	HA-LFS30K2 HA-LFS30K24	550		HG-JR22K1MR-S_ HG-JR22K1M4R-S	487	
	HA-LFS37K2 HA-LFS37K24	650		HG-JR30K1MR-S_ HG-JR30K1M4R-S	625	
	HA-LFS 45 K 24	1080		HG-JR37K1M4R-S	767	
	HA-LFS55K24	1310		HG-JR45K1M4R-S	1356	

Note 1. As for the motor specifications not listed here, refer to the catalog or Instruction Manual.
(): With brake
2. If the load moment inertia ratio with brake is exceeded, please ask the sales contact.

2.6 Comparison of Servo Motor Connector Specifications

(1) HC-KFS/-MFS/-UFS motor

Part 8: Review on Replacement of Motor
(2) HC-SFS motor

Motor appearance	MR-J2S series (HC-SFS) Target models: HC-SFS81(B) HC-SFS52(4)(B) to HC-SFS152(4)(B) HC-SFS53(B) to HC-SFS153(B)	MR-J4 series (HG-SR) Target models: HG-SR81(B) HG-SR52(4)(B) to HG-SR152(4)(B)
Power connector		
Encoder connector		
Electromagnetic brake connector (Power connector)		Electromagnetic brake connector Pin assignment

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HC-SFS) Target models: HC-SFS121(B) to HC-SFS301(B) HC-SFS202(4)(B) to HC-SFS702(4)(B) HC-SFS203(B), HC-SFS353(B)	MR-J4 series (HG-SR) Target models: HG-SR121(B) to HG-SR301(B) HG-SR202(4)(B) to HG-SR702(4)(B)
Power connector		
Encoder connector		
Electromagnetic brake connector	Electromagnetic brake connector Pin assignment	Electromagnetic brake connector Pin assignment

(3) HC-RFS motor

Motor appearance	MR-J2S series (HC-RFS) Target models: HC-RFS103(B), RFS153(B),RFS203(B)	MR-J4 series (HG-RR) Target model: HG-RR103(B), RR153(B), RR203(B)
Power connector		
Encoder connector		
Electromagnetic brake connector (Power connector)		

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HC-RFS) Target models: HC-RFS353(B), RFS503(B)	MR-J4 series (HG-RR) Target models: HG-RR353(B), RR503(B)
Power connector		
Encoder connector		
Electromagnetic brake connector (Power connector)		

(4) HC-LFS motor

Motor appearance	MR-J2S series (HC-LFS) Target models: HC-LFS52(B), LFS102(B)	MR-J4 series (HG-JR) Target models: HG-JR73(B), JR153(B)
Power connector		
Encoder connector		
Electromagnetic brake connector (Power connector)		Electromagnetic brake connector Pin assignment

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HC-LFS) Target models: HC-LFS152(B)	MR-J4 series (HG-JR) Target models: HG-JR353(B)
Power connector		Power connector Pin assignment
Encoder connector		
Electromagnetic brake connector (Power connector)		Electromagnetic brake connector Pin assignment

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HC-LFS) Target models: HC-LFS202(B), LFS302(B)	MR-J4 series (HG-JR) Target models: HG-JR353(B), JR503(B)
Power connector		Power connector Pin assignment
Encoder connector		
Electromagnetic brake connector		Electromagnetic brake connector Pin assignment

(5) HC-UFS motor

Motor appearance	MR-J2S series (HC-UFS) Target models: HC-UFS72(B), UFS152(B)	MR-J4 series (HG-UR) Target model: HG-UR72(B), UR152(B)
Power connector		
Encoder connector		
Electromagnetic brake connector (Power connector)		

Part 8: Review on Replacement of Motor
Motor appearance
(6) HA-LFS motor
Motor appearance

Part 8: Review on Replacement of Motor
Motor appearance

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HA-LFS) Target models: HA-LFS601(4)(B), LFS701M(4)(B) HA-LFS11K2(4)(B) Power supply terminal block	MR-J4 series (HG-JR) Target models: HG-JR601(4)(B), JR701M(4)(B) HG-JR11K1M(4)(B)
Power connector (Enlarged view of terminal box)		
Encoder connector		
Electromagnetic brake connector	Electromagnetic brake connector Pin assignment	

Part 8: Review on Replacement of Motor

Motor appea		
Power connector (Enlarged view of terminal box)		
Encoder connector		
Electromagnetic brake connector	Electromagnetic brake connector Pin assignment	

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HA-LFS) Target models: HA-LFS15K1(4), LFS20K1(4) HA-LFS22K1M(4), LFS30K1M4 HA-LFS30K24, LFS37K24 Power supply terminal block	
Power connector (Enlarged view of terminal box)		
Encoder connector		
Cooling fan connector		

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HA-LFS) Target models: HA-LFS30K1M HA-LFS30K2, LFS37K2	
Power connector (Enlarged view of terminal box)		
Encoder connector		
Cooling fan connector		

Part 8: Review on Replacement of Motor

Motor appearance	MR-J2S series (HA-LFS) Target models: HA-LFS25K1(4), LFS30K1(4), LFS37K1 (4) HA-LFS37K1M(4), LFS45K1M4,LFS50K1M4 HA-LFS45K24,LFS55K24 Power supply terminal block	
Power connector (Enlarged view of terminal box)		
Encoder connector		
Cooling fan connector		

2.7 Comparison of Servo Motor Torque Characteristics

Comparison of torque characteristics between the HG-KR and HC-KFS series (一: HG-KR, ---: HC-KFS)

- HC-KFS series, 200 V class

Note 1. The above torque characteristics are for 3 -phase 200 V AC and 1 -phase 230 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.

Comparison of torque characteristics between the HG-KR and HC-KFS series (一: HG-KR, ---: HC-KFS)

- HC-KFS series, 100 V class

Note 1. The above torque characteristics are for 1-phase 100 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.

- Comparison of torque characteristics between the HG-MR and HC-MFS series (一: HG-MR, ---: HC-MFS)
- HC-MFS series, 200 V class

Note 1. The above torque characteristics are for 3-phase 200 VAC and 1-phase 230 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.

- HC-MFS series, 100 V class

Note 1. The above torque characteristics are for 1-phase 100 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.

- Comparison of torque characteristics between the HG-SR and HC-SFS series (一: HG-SR, ---: HC-SFS)
- HC-SFS 1000 r/min, 2000 r/min series, 200 V class

Note 1. The above torque characteristics are for 3-phase 200 V AC.
2. As for 1-phase 230 VAC , refer to the catalog or Instruction Manual.
3. Please contact your local sales office if the compatibility of torque characteristics is required.

Comparison of torque characteristics between the HG-SR and HC-SFS series (一: HG-SR, ---: HC-SFS)

- HC-SFS 3000 r/min series, 200 V class

Note 1. The above torque characteristics are for 3-phase 200 V AC.
2. As for 1-phase 230 VAC , refer to the catalog or Instruction Manual.
\rightarrow Comparison of torque characteristics between the HG-SR and HC-SFS series (一: HG-SR, ---: HC-SFS)

- HC-SFS: 2000 r/min series, 400 V class

Note 1. The above torque characteristics are for 3-phase 400 V AC.
2. As for 3-phase 380 V AC, refer to the catalog or Instruction Manual.
3. Please contact your local sales office if the compatibility of torque characteristics is required.

- Comparison of torque characteristics between the HG-RR and HC-RFS series (一: HG-SR, -- : HC-RFS)

Note. The above torque characteristics are for 3-phase 200 V AC.
Comparison of torque characteristics between the HG-JR and HC-LFS series (一: HG-JR, $--:$: HC-LFS)

Note 1. The above torque characteristics are for 3-phase 200 V AC.
2. As for 1-phase 230 V AC , contact your local sales office.
3. Please contact your local sales office if the compatibility of torque characteristics is required.

Comparison of torque characteristics between the HG-KR and HC-UFS series (一: HG-KR, ---:HC-UFS)

Note. The above torque characteristics are for 3-phase 200 V AC and 1-phase 230 V AC.

Note 1. The above torque characteristics are for 1-phase 100 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.

Comparison of torque characteristics between the HG-UR and HC-UFS series (- : HG-UR, $--:$:HC-UFS)

Note 1. The above torque characteristics are for 3-phase 200 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.

POINT

When servo motors are replaced with HG-JR_R_-S_ motors (compatible product), the torque characteristics differ.
Please contact your local sales office.
\rightarrow Comparison of torque characteristics between the HG-JR and HA-LFS series (一: HG-JR, ---: HA-LFS)

- HA-LFS: 1000 r/min series, 200 V class

Note. The above torque characteristics are for 3-phase 200 V AC.
\rightarrow Comparison of torque characteristics between the HG-JR and HA-LFS series (一: HG-JR, --- : HA-LFS)

- HA-LFS: 1000 r/min series, 400 V class

Note 1. The above torque characteristics are for 3-phase 400 V AC.
2. As for 3 -phase 380 V AC , refer to the catalog or Instruction Manual.
3. Please contact your local sales office if the compatibility of torque characteristics is required.

Comparison of torque characteristics between the HG-JR and HA-LFS series (一: HG-JR, ---: HA-LFS)

- HA-LFS: 1500 r/min series, 200 V class

Note 1. The above torque characteristics are for 3-phase 200 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.
\rightarrow Comparison of torque characteristics between the HG-JR and HA-LFS series (一: HG-JR, --- : HA-LFS)

- HA-LFS: 1500 r/min series, 400 V class

Note 1. The above torque characteristics are for 3-phase 400 V AC.
2. As for 3 -phase 380 V AC, refer to the catalog or Instruction Manual.
3. Please contact your local sales office if the compatibility of torque characteristics is required.

Comparison of torque characteristics between the HG-JR, SR and HA-LFS series (一: HG-JR/SR, ---: HA-LFS)

- HA-LFS: 2000 r/min series, 200 V class

Note 1. The above torque characteristics are for 3-phase 200 V AC.
2. Please contact your local sales office if the compatibility of torque characteristics is required.
\rightarrow Comparison of torque characteristics between the HG-JR and HA-LFS series (一: HG-JR, --- : HA-LFS)

- HA-LFS: 2000 r/min series, 400 V class

Note 1. The above torque characteristics are for 3-phase 400 V AC.
2. As for 3-phase 380 V AC, refer to the catalog or Instruction Manual.
3. Please contact your local sales office if the compatibility of torque characteristics is required.

MEMO

\qquad

Part 9 Review on Replacement

of Optional Peripheral

Equipment

Part 9: Review on Replacement of Optional Peripheral Equipment

1. COMPARISON TABLE OF REGENERATIVE OPTION COMBINATIONS

POINT

The MR-J4 series provides the new regenerative options shown in the table below.
When an MR-J2S series regenerative resistor is used as it is with a servo motor combined, an alarm may occur. Be sure to use the regenerative resistor in the combination specified for the MR-J4 series.
-Do not use regenerative options newly provided by the MR-J4 series with the MR-J2S series because use of them causes an amplifier malfunction.

List of new regenerative options

Model	Regenerative option MR-RB		Accessory regenerative resistor
MR-J4-350_(-RJ)	3 N	5 N	
MR-J4-500_(-RJ)	31	51	
MR-J4-11K_(-RJ)	$5 R$		GRZG400-0.8 $\times 4$
MR-J4-15K_(-RJ)	9 F	GRZG400-0.6 $\times 5$	
MR-J4-22K_(-RJ)	9 T		GRZG400-0.5 $\times 5$
MR-J4-60_4(-RJ)	$1 \mathrm{H}-4$	$3 \mathrm{M}-4$	
MR-J4-100_4(-RJ)	$1 \mathrm{H}-4$	$5 \mathrm{G}-4$	
MR-J4-200_4(-RJ)	$3 \mathrm{G}-4$	$54-4$	
MR-J4-500_4(-RJ)	$34-4$	$5 \mathrm{U}-4$	
MR-J4-700_4(-RJ)	$3 \mathrm{U}-4$		GRZG400-2.5 $\times 4$
MR-J4-11K_4(-RJ)	$5 \mathrm{~K}-4$		GRZG400-2 $\times 5$
MR-J4-15K_4(-RJ)	$6 \mathrm{~K}-4$		

1.1 Regenerative Options ($200 \mathrm{~V} / 100 \mathrm{~V}$)

1.1.1 Combination and regenerative power for the MR-J2S series

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB								
		$\begin{gathered} 032 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 12 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 30 \\ {[13 \Omega]} \end{gathered}$	$\begin{gathered} 3 \mathrm{~N} \\ {[9 \Omega]} \end{gathered}$	$\begin{gathered} 31 \\ {[6.7 \Omega]} \end{gathered}$	$\begin{gathered} 32 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} \hline \text { (Note 1) } \\ 50 \\ {[13 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (Note 1) } \\ 5 \mathrm{~N} \\ {[9 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Note 1) } \\ 51 \\ {[6.7 \Omega]} \end{gathered}$
MR-J2S-10_(1)	-	30								
MR-J2S-20_(1)	10	30	100							
MR-J2S-40_(1)	10	30	100							
MR-J2S-60_	10	30	100							
MR-J2S-70	20	30	100				300			
MR-J2S-100	20	30	100				300			
MR-J2S-200	100	-	-	300				500		
MR-J2S-350	100			300				500		
MR-J2S-500_	130			300				500		
MR-J2S-700	170					300				500
MR-J2S-11K_	-									
MR-J2S-15K_	-									
MR-J2S-22K_	S^{2}									
MR-J2S-30K_										
MR-J2S-37K_	T			-			${ }^{2}$	-		

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) Standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB							
			$\begin{array}{\|c} \hline \text { (Note 2) } \\ 5 R \\ {[3.2 \Omega]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { (Note 2) } \\ 65 \\ {[8 \Omega]} \\ \hline \end{array}$	$\begin{gathered} \hline \text { (Note 2) } \\ 66 \\ {[5 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 67 \\ {[4 \Omega]} \\ \hline \end{gathered}$	(Note 2) 9F [3 Ω]	$\begin{array}{\|c} \hline \text { (Note } 2 \text {) } \\ 9 \mathrm{~T} \\ {[2.5 \Omega]} \\ \hline \end{array}$	$\begin{gathered} 139 \\ {[1.3 \Omega]} \end{gathered}$	(Note 3) 137 [1.3 Ω]
MR-J2S-10_(1)	${ }^{\sim}$									
MR-J2S-20_(1)	10									
MR-J2S-40_(1)	10									
MR-J2S-60_	10									
MR-J2S-70	20									
MR-J2S-100	20									
MR-J2S-200	100									
MR-J2S-350	100									
MR-J2S-500	130									
MR-J2S-700	170									
MR-J2S-11K_		$\begin{gathered} \text { GRZG400-2 } \times 4 \\ 500(800) \\ \hline \end{gathered}$		$\begin{gathered} \hline 500 \\ (800) \\ \hline \end{gathered}$						
MR-J2S-15K_		$\begin{gathered} \text { GRZG400-1 } \Omega \times 5 \\ 850(1300) \\ \hline \end{gathered}$			$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$					
MR-J2S-22K		$\begin{gathered} \text { GRZG400-0.8 } \times 5 \\ 850(1300) \\ \hline \hline \end{gathered}$				$\begin{gathered} 850 \\ (1300) \\ \hline \end{gathered}$				
MR-J2S-30K_									1300	3900
MR-J2S-37K									1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. The value of MR-RB137 is a resultant resistance of three units
4. Changed items are shown with shading.
1.1.2 Combination and regenerative power for the MR-J2M series

List of regenerative options

Servo amplifier model	Regenerative power [W]					
	Built-in regenerative resistor	MR-RB032 $[40 \Omega]$	MR-RB14 $[26 \Omega]$	MR-RB34 $[26 \Omega]$	MR-RB54 $[26 \Omega]$	
			30	100	300	500
MR-J2M-BU6						
MR-J2M-BU8						

1.1.3 Combination and regenerative power for MR-J4 series (replacement model)

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB								
		$\begin{gathered} 032 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 12 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 30 \\ {[13 \Omega]} \end{gathered}$	$\begin{gathered} 3 \mathrm{~N} \\ {[9 \Omega]} \end{gathered}$	$\begin{gathered} 31 \\ {[6.7 \Omega]} \end{gathered}$	$\begin{gathered} 32 \\ {[40 \Omega]} \end{gathered}$	(Note 1) 50 [13 Ω]	$\begin{gathered} \text { (Note 1) } \\ 5 \mathrm{~N} \\ {[9 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \text { (Note 1) } \\ 51 \\ {[6.7 \Omega]} \end{gathered}$
MR-J4-10_(1)(-RJ)		30								
MR-J4-20_(1)(-RJ)	10	30	100							
MR-J4-40_(1)(-RJ)	10	30	100							
MR-J4-60_(-RJ)	10	30	100							
MR-J4-70_(-RJ)	20	30	100				300			
MR-J4-100_(-RJ)	20	30	100				300			
MR-J4-200_(-RJ)	100			300				500		
MR-J4-350_(-RJ)	100				300				500	
MR-J4-500_(-RJ)	130					300				500
MR-J4-700_(-RJ)	170					300				500
MR-J4-11K_(-RJ)										
MR-J4-15K_(-RJ)										
MR-J4-22K_(-RJ)	-									
MR-J4-DU30K_										
MR-J4-DU37K_										

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) Standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB							
			$\begin{gathered} \hline \text { (Note 2) } \\ 5 R \\ {[3.2 \Omega]} \\ \hline \end{gathered}$	(Note 2) 65 [8 Ω]	$\begin{gathered} \hline \text { (Note } 2) \\ 66 \\ {[5 \Omega]} \\ \hline \end{gathered}$	(Note 2) 67 [4Ω]	(Note 2) 9F [3 Ω]	$\begin{gathered} \hline \text { (Note 2) } \\ 9 \mathrm{~T} \\ {[2.5 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} 139 \\ {[1.3 \Omega]} \end{gathered}$	$\begin{gathered} (\text { Note } 5) \\ 137 \\ {[1.3 \Omega]} \end{gathered}$
MR-J4-10_(1)(-RJ)										
MR-J4-20_(1)(-RJ)	10									
MR-J4-40_(1)(-RJ)	10									
MR-J4-60_(-RJ)	10									
MR-J4-70_(-RJ)	20									
MR-J4-100_(-RJ)	20									
MR-J4-200_(-RJ)	100									
MR-J4-350_(-RJ)	100									
MR-J4-500_(-RJ)	130									
MR-J4-700_(-RJ)	170									
MR-J4-11K_(-RJ)		$\begin{gathered} \text { GRZG400-0.8 } \times 4 \\ 500(800) \\ \hline \end{gathered}$	$\begin{gathered} 500 \\ (800) \\ \hline \end{gathered}$							
MR-J4-15K_(-RJ)		$\begin{gathered} \text { GRZG400-0.6 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$					$\begin{gathered} 850 \\ (1300) \\ \hline \end{gathered}$			
MR-J4-22K_(-RJ)		$\begin{gathered} \text { GRZG400-0.5 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$						$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-DU30K_									1300	3900
MR-J4-DU37K_									1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. When using a combination with an MR-J4 servo amplifier other than the standard one, contact your local sales office.
4. A shaded cell in the list shows a combination changed from "MR-J2S series".

5 . The value of MR-RB137 is a resultant resistance of three units connected.

Parameter settings (PA02 for MR-J4) may be required depending on the regenerative option model. Refer to the Instruction Manual for details.
1.2 External Form Comparison

	MR-J2S	MR-J4
350 500	MR-RB30	MR-RB31/MR-RB3N
350_	MR-RB50 Screw for mounting cooling fan (2-M3 screw) Positioned on opposite side	MR-RB51/MR-RB5N Screw for mounting cooling fan (2-M3 screw) Positioned on opposite side
$\begin{aligned} & 11 \mathrm{~K}- \\ & 15 \mathrm{~K}_{-} \\ & 22 \mathrm{~K} \\ & 30 \mathrm{~K}_{-} \\ & 37 \mathrm{~K}_{-} \end{aligned}$	MR-RB65/MR-RB66/MR-RB67/MR-RB139/MR-RB137 2- $\phi 10$ mounting hole	MR-RB5R/MR-RB9F/MR-RB9T/MR-RB139/MR-RB137 2- $\phi 10$ mounting hole

1.3 Regenerative Options (400 V class)

1.3.1 Combination and regenerative power for the MR-J2S series

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB										
		$\begin{gathered} 1 \mathrm{H}-4 \\ {[82 \Omega]} \end{gathered}$	$\begin{gathered} 1 \mathrm{~L}-4 \\ {[270 \Omega]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 3 \mathrm{M}-4 \\ {[120 \mathrm{~S}]} \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 3 \mathrm{H}-4 \\ {[80 \Omega]} \end{array}$	$\begin{gathered} \hline \text { (Note 1) } \\ 3 \mathrm{G}-4 \\ {[47 \Omega]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 34-4 \\ {[26 \Omega]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 3 \mathrm{U}-4 \\ {[22 \Omega]} \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 5 \mathrm{H}-4 \\ {[80 \Omega]} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Note 1) } \\ 5 \mathrm{G}-4 \\ {[47 \Omega]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Note 1) } \\ 54-4 \\ {[26 \Omega]} \\ \hline \end{array}$	Note 1) $5 \mathrm{U}-4$ $[22 \Omega]$
MR-J2S-60_4	30		100									
MR-J2S-100_4	100			300								
MR-J2S-200_4	100				300				500			
MR-J2S-350_4	100					300				500		
MR-J2S-500_4	130					300				500		
MR-J2S-700_4	170						300				500	
MR-J2S-11K_4												
MR-J2S-15K_4												
MR-J2S-22K_4												
MR-J2S-30K_4												
MR-J2S-37K_4												
MR-J2S-45K_4												
MR-J2S-55K_4												

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) Standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB					
			$\begin{gathered} \text { (Note 2) } \\ 5 \mathrm{~K}-4 \\ {[10 \Omega]} \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 6 \mathrm{~B}-4 \\ {[20 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 60-4 \\ {[12.5 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \text { (Note 2) } \\ 6 \mathrm{~K}-4 \\ {[10 \Omega]} \end{gathered}$	$\begin{aligned} & 136-4 \\ & {[5 \Omega]} \end{aligned}$	$\begin{gathered} \text { (Note 3) } \\ 138-4 \\ {[5 \Omega]} \end{gathered}$
MR-J2S-60_4	30							
MR-J2S-100_4	100							
MR-J2S-200_4	100							
MR-J2S-350_4	100							
MR-J2S-500_4	130							
MR-J2S-700_4	170							
MR-J2S-11K_4		$\begin{gathered} \hline \text { GRZG400-5 } \times 4 \\ 500(800) \\ \hline \end{gathered}$		$\begin{gathered} 500 \\ (800) \\ \hline \end{gathered}$				
MR-J2S-15K_4		$\begin{gathered} \hline \text { GRZG400-2.5 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$			$\begin{gathered} 850 \\ (1300) \\ \hline \end{gathered}$			
MR-J2S-22K_4		$\begin{gathered} \text { GRZG400-2 } 2 \times 5 \\ 850(1300) \\ \hline \end{gathered}$				$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J2S-30K_4							1300	3900
MR-J2S-37K_4							1300	3900
MR-J2S-45K_4							1300	3900
MR-J2S-55K_4	,						1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. The value of MR-RB138-4 is a resultant resistance of three units.
4. Changed items are shown with shading. Changed items are shown with shading.

1.3.2 Combination and regenerative power for MR-J4 series (replacement model)

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB										
		$\begin{gathered} 1 \mathrm{H}-4 \\ {[82 \Omega]} \end{gathered}$	$\begin{gathered} 1 \mathrm{~L}-4 \\ {[270 \Omega]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 3 M-4 \\ {[120 \Omega]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Note 1) } \\ 3 \mathrm{H}-4 \\ {[80 \Omega]} \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 3 G-4 \\ {[47 \Omega]} \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 34-4 \\ {[26 \Omega]} \end{array}$	$\begin{array}{\|c\|} \hline \text { Note 1) } \\ 3 \mathrm{U}-4 \\ {[22 \Omega]} \end{array}$	$\begin{gathered} \left(\begin{array}{c} \text { Note } 1) \\ 5 \mathrm{H}-4 \\ {[80 \Omega]} \end{array}\right. \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Note 1) } \\ 5 \mathrm{G}-4 \\ {[47 \Omega]} \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 54-4 \\ {[26 \Omega]} \end{array}$	$\begin{array}{\|c} \hline \text { Note 1) } \\ 5 \mathrm{U}-4 \\ {[22 \Omega]} \end{array}$
MR-J4-60_4(-RJ)	15	100		300								
MR-J4-100_4(-RJ)	15	100		300								
MR-J4-200_4(-RJ)	100					300				500		
MR-J4-350_4(-RJ)	100					300				500		
MR-J4-500_4(-RJ)	130						300				500	
MR-J4-700_4(-RJ)	170							300				500
MR-J4-11K_4(-RJ)												
MR-J4-15K_4(-RJ)												
MR-J4-22K_4(-RJ)												
MR-J4-DU30K_4												
MR-J4-DU37K_4												
MR-J4-DU45K_4												
MR-J4-DU55K_4												

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) Standard accessories [External]	Permissible regenerative power of regenerative option [W]					MR-RB
			$\begin{gathered} \text { (Note 2) } \\ 5 \mathrm{~K}-4 \\ {[10 \Omega]} \end{gathered}$	$\begin{gathered} \text { (Note 2) } \\ 6 \mathrm{~B}-4 \\ {[20 \Omega]} \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 60-4 \\ {[12.5 \Omega]} \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 6 \mathrm{~K}-4 \\ {[10 \Omega]} \end{gathered}$	$\begin{aligned} & 137-4 \\ & {[4 \Omega]} \end{aligned}$	$\begin{gathered} \hline \text { (Note 4) } \\ 13 \mathrm{~V}-4 \\ {[4 \Omega]} \\ \hline \end{gathered}$
MR-J4-60_4(-RJ)	15							
MR-J4-100_4(-RJ)	15							
MR-J4-200_4(-RJ)	100							
MR-J4-350_4(-RJ)	100							
MR-J4-500_4(-RJ)	130							
MR-J4-700_4(-RJ)	170							
MR-J4-11K_4(-RJ)		$\begin{gathered} \text { GRZG400-2.5 } \times 4 \\ 500(800) \\ \hline \end{gathered}$	$\begin{gathered} 500 \\ (800) \\ \hline \end{gathered}$					
MR-J4-15K_4(-RJ)		$\begin{gathered} \text { GRZG400-2 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$				$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-22K_4(-RJ)		$\begin{gathered} \text { GRZG400-2 } \times 5 \times 5 \\ 850(1300) \\ \hline \end{gathered}$				$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-DU30K_4							1300	3900
MR-J4-DU37K_4							1300	3900
MR-J4-DU45K_4	-						1300	3900
MR-J4-DU55K_4							1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.

- Changed items are shown with shading.
- Parameter settings (PA02 for MR-J4) may be required depending on the regenerative option model. Refer to the Instruction Manual for details.

3. When using a combination with an MR-J4 servo amplifier other than the standard one, contact your local sales office.
4. The value of MR-RB13V-4 is a resultant resistance of three units connected in parallel.

1.4 External Form Comparison

	MR-J2S	MR-J4
$\begin{gathered} \hline 60 _4 \\ 100 _4 \end{gathered}$		MR-RB1H-4
		MR-RB3M-4
$\begin{gathered} 60 _4 \\ 200 _4 \\ 500 _4 \\ 700 _4 \end{gathered}$	MR-RB3H-4/MR-RB3G-4/MR-RB34-4	MR-RB3G-4/MR-RB34-4/MR-RB3U-4 Screw for mounting cooling fan (2-M4 screw)

	MR-J2S	MR-J4
$200 _4$ $500 _4$ $700 _4$	MR-RB5H-4/MR-RB5G-4/MR-RB54-4 Screw for mounting cooling fan (2-M3 screw) Positioned on opposite side	MR-RB5G-4/MR-RB54-4/MR-RB5U-4 Screw for mounting cooling fan (2-M3 screw) Positioned on opposite side
$\begin{aligned} & \hline 11 \mathrm{~K} _4 \\ & 15 \mathrm{~K} _4 \\ & 30 \mathrm{~K} _4 \\ & 37 \mathrm{~K} _4 \\ & 45 \mathrm{~K} _4 \\ & 55 \mathrm{~K} _4 \end{aligned}$	MR-RB6B-4/MR-RB60-4 MR-RB136-4/MR-RB138-4 2- $\phi 6$ mounting hole	$\begin{gathered} \text { MR-RB5K-4/MR-RB6K-4 } \\ \text { MR-RB137-4/MR-RB13V-4 } \end{gathered}$ 2- $\phi 6$ mounting hole

2. COMPARISON TABLE OF DYNAMIC BRAKE OPTION COMBINATIONS

POINT

When an MR-J4-22K servo amplifier and an HG-JR22K1M servo motor are combined, the coasting distance will be longer. Therefore, use a dynamic brake option, DBU-22K-R1.

Dynamic brake option combination

Model	Applicable servo amplifier	
DBU-11K	MR-J2S-11K__	MR-J4-11K__
DBU-15K	MR-J2S-15K_	MR-J4-15K_
DBU-22K	MR-J2S-22K (Note)	
DBU-22K-R1	MR-J2S-30K_	MR-J4-22K__
MBU-37K	MR-J2S-37K_	
DBU-37K-R1	MR-J2S-11K_4	MR-J4-DU30K_
DBU-11K-4	MR-J2S-15K_4	MR-J4-DU37K_-
DBU-22K-4	MR-J2S-22K_4	MR-J4-11K_4
DBU-55K-4	MR-J2S-37K_4	MR-J4-15K_4
	MR-J2S-45K_4	MR-J4-22K_4
	MR-J2S-55K_4	

Changed items are shown with shading.
Note. DBU-22K can be used when MR-J4-22K_ is combined with an HA-LFS22K1M servo motor.
2.1 External Form Comparison

Dynamic brakes	A	B	C	D	E	F	G	Mass $[\mathrm{kg}]$
DBU-22K	250	238	150	25	6	235	228	6
DBU-22K-R1	250	238	150	25	6	235	228	6

3. COMPARISON TABLE OF CABLE OPTION COMBINATIONS

Cable option combinations

Note. Manufactured by JST

4. POWER SUPPLY WIRE SIZE

POINT

When using the existing cables, refer to "[Appendix 2] Introduction to Renewal Tool".

4.1 Selection of Power Supply Wire Size (Example)

4.1.1 MR-J2S-series power supply wire size

The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.

6) Cooling fan lead

In this case, the power supply wire used is a 600 V plastic one and the wiring distance is 30 m or less. When the wiring distance exceeds 30 m , select another wire size in consideration of the voltage drop. The alphabet letters (a, b, c) on the table correspond to crimp terminals used when wiring a servo amplifier. The method of wiring a servo motor differs depending on the type and capacity of the servo motor. To comply with the UL/cUL (CSA) standard, use UL-approved copper wires rated at $60^{\circ} \mathrm{C}$ or higher for wiring.

Wire size selection example 1 (IV wire)
Recommended wire

Servo amplifier	Power supply wire [mm^{2}] (Note 1)					
	1) L1/L2/L3/ $($	2) L11/L21	3) U/V/W/P1/P/ $\left(\frac{\square}{\text { (}}\right.$	4) P/C	5) B1/B2	6) BU/BV/BW
MR-J2S-10_(1)	2 (AWG14): a	1.25(AWG16)	1.25 (AWG16): a	2 (AWG14): a	1.25 (AWG16)	
MR-J2S-20_(1)						
MR-J2S-40_(1)						
MR-J2S-60						
MR-J2S-70						
MR-J2S-100			2 (AWG14): a			
MR-J2S-200	3.5 (AWG12): b		3.5 (AWG12): b			
MR-J2S-350	5.5 (AWG10): b		(Note 2) 5.5 (AWG10): b			
MR-J2S-500			5.5 (AWG10): b			
MR-J2S-700_	8 (AWG8): c		8 (AWG8): c	3.5 (AWG12): b		
MR-J2S-11K_	14 (AWG6): d		22 (AWG4): e	5.5 (AWG10): b		2 (AWG14)
MR-J2S-15K_	22 (AWG4): e		30 (AWG2): f			
MR-J2S-22K	50 (AWG1/0): g		60 (AWG2/0): g			

Note 1. For details on crimp terminals and applicable tools, refer to section 4.2 .1 (1) of this document.
2. When an HC-RFS203 servo motor is used, the value will be $3.5 \mathrm{~mm}^{2}$.

Recommended wire

Servo amplifier	Power supply wire [mm²] (Note 1)					
	1) $\mathrm{L} 1 / \mathrm{L} 2 / \mathrm{L} 3 /\left({ }^{(}\right)$	2) L11/L21	3) U/V/W/P1/P/ \oplus (Note 2)	4) P/C	5) B1/B2	6) BU/BV/BW
MR-J2S-60_4	2(AWG14)	1.25(AWG16)	1.25(AWG16)	2 (AWG14): a	1.25 (AWG16)	
MR-J2S-100_4						
MR-J2S-200_4			2(AWG14)			
MR-J2S-350_4	3.5 (AWG12): b		3.5 (AWG12): b			
MR-J2S-500_4	5.5 (AWG10): b		5.5 (AWG10): b			
MR-J2S-700_4			5.5 (AWVG). b			
MR-J2S-11K_4	8 (AWG8): c		8 (AWG8): c	3.5 (AWG12): b	2 (AWG14)	2 (AWG14)
MR-J2S-15K_4	14 (AWG6): d		22 (AWG4) : e	5.5 (AWG10): b		
MR-J2S-22K_4			22 (AWG4). e	5.5 (AWG10). b		

[^5]
4.1.2 MR-J4-series power supply wire size

POINT

To comply with the IEC/EN/UL/CSA standard, use the wires shown in the instruction manuals of the servo amplifier in use for wiring. To comply with other standards, use a wire that is complied with each standard.

- Selection conditions of wire size are as follows.

Construction condition: Single wire set in midair
Wire length: 30 m or less

The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.

Example of selecting the wire sizes
For the power supply wire, use a 600 V grade heat-resistant polyvinyl chloride insulated wire (HIV wire). The table below shows selection examples of power supply wire sizes.

Wire size selection example (HIV wire)
Recommended wire

Servo amplifier	Power supply wire [mm²] (Note 1)			
	1) L1/L2/L3/ $\left(\frac{)}{-}\right.$	2) L11/L21	3) $\mathrm{P}+/ \mathrm{C}$	4) $\mathrm{U} / \mathrm{V} / \mathrm{W} /\left(\frac{1}{-}\right.$ (Note 3)
MR-J4-10_(1) (-RJ)	2 (AWG 14)	1.25 to 2 (AWG 16 to 14) (Note 4)	2 (AWG 14)	AWG 18 to 14 (Note 4)
MR-J4-20_(1) (-RJ)				
MR-J4-40_(1) (-RJ)				
MR-J4-60_(-RJ)				
MR-J4-70_(-RJ)				
MR-J4-100_(-RJ)				
MR-J4-200_(-RJ)				AWG 16 to 10
MR-J4-350_(-RJ)	3.5 (AWG 12)			
MR-J4-500_(-RJ) (Note 2)	5.5 (AWG 10): a	1.25 (AWG 16): a 2 (AWG 14): d (Note 4)	2 (AWG 14): c	2 (AWG 14): c 3.5 (AWG 12): a 5.5 (AWG 10): a
MR-J4-700_(-RJ) (Note 2)	8 (AWG 8): b			2 (AWG 14): c 3.5 (AWG 12): a 5.5 (AWG 10): a 8 (AWG 8): b
$\begin{aligned} & \text { MR-J4-11K_(-RJ) } \\ & \text { (Note 2) } \end{aligned}$	14 (AWG 6): f	$\begin{aligned} & 1.25 \text { (AWG 16): c } \\ & 2 \text { (AWG 14): c } \end{aligned}$	3.5 (AWG 12): g	$\begin{array}{\|l} \hline 14 \text { (AWG 6): } \mathrm{f} \\ \text { (Note 5) } \\ 5.5 \text { (AWG 10): } \mathrm{g} \\ 8 \text { (AWG 8): } \mathrm{k} \\ \hline \end{array}$
$\begin{array}{\|l} \text { MR-J4-15K_(-RJ) } \\ \text { (Note 2) } \end{array}$	22 (AWG 4): h		5.5 (AWG 10): g	22 (AWG 4): h (Note 5) 8 (AWG 8): k
$\begin{aligned} & \text { MR-J4-22K_(-RJ) } \\ & \text { (Note 2) } \end{aligned}$	38 (AWG 2): i		5.5 (AWG 10): j	38 (AWG 2): i

Note 1. Alphabets in the table indicate crimping tools. For crimp terminals and applicable tools, refer to section 4.2 .2 (1) of this document.
2. To connect these models to a terminal block, make sure to use the screws that come with the terminal block.
3. This wire size is applicable to the servo amplifier connector and terminal block. For wires connecting to the servo motor, refer to each servo amplifier instruction manual.
4. To comply with the UL/CSA standard, use a wire of $2 \mathrm{~mm}^{2}$.
5. This is for connection to a natural cooling linear servo motor.

Wire size selection example (HIV wire)
Recommended wire

Servo amplifier	Power supply wire [mm²] (Note 1)			
	1) L1/L2/L3/ $\left(\begin{array}{l}\text { (}\end{array}\right.$	2) L11/L21	3) $\mathrm{P}+/ \mathrm{C}$	4) $U / V / W / \oplus$ (Note 3)
$\begin{array}{\|l\|} \hline \text { MR-J4-60_4(-RJ)/ } \\ \text { MR-J4-100_4(-RJ) } \\ \hline \end{array}$	2 (AWG 14)	1.25 to 2 (AWG 16 to 14) (Note 4)	2 (AWG 14)	AWG 16 to 14
MR-J4-200_4(-RJ)				
MR-J4-350_4(-RJ)				
MR-J4-500_4(-RJ) (Note 2)	2 (AWG 14): b	$\begin{aligned} & \text { 1.25 (AWG 16): a } \\ & 2 \text { (AWG 14): c } \\ & \text { (Note 4) } \end{aligned}$	2 (AWG 14): b	3.5 (AWG 12): a
MR-J4-700_4(-RJ) (Note 2)	3.5 (AWG 12): a			5.5 (AWG 10): a
MR-J4-11K_4(-RJ) (Note 2)	5.5 (AWG 10): d	$\begin{aligned} & 1.25 \text { (AWG 16): b } \\ & 2 \text { (AWG 14): b } \\ & \text { (Note 4) } \end{aligned}$	2 (AWG 14): f	8 (AWG 8): g
MR-J4-15K_4(-RJ) (Note 2)	8 (AWG 8): g		3.5 (AWG 12): d	
MR-J4-22K_4(-RJ) (Note 2)	14 (AWG 6): i		3.5 (AWG 12): e	$\begin{aligned} & \text { 5.5 (AWG 10): e } \\ & \text { (Note 5) } \\ & 8 \text { (AWG 8): h (Note 6) } \\ & 14 \text { (AWG 6): i } \\ & \hline \end{aligned}$

Note 1. Alphabets in the table indicate crimping tools. For crimp terminals and applicable tools, refer to section 4.2 .2 (2) of this document.
2. To connect these models to a terminal block, make sure to use the screws that come with the terminal block.
3. This wire size is applicable to the servo amplifier connector and terminal block. For wires connecting to the servo motor, refer to each servo amplifier instruction manual.
4. To comply with the UL/CSA standard, use a wire of $2 \mathrm{~mm}^{2}$.
5. This is for connection to a natural cooling linear servo motor.
6. This is for connection to a liquid-cooling linear servo motor.

4.2 Selection Example of Crimp Terminals

4.2.1 MR-J2S-series crimp terminal
(1) Selection example of crimp terminals ($100 \mathrm{~V} / 200 \mathrm{~V}$ class)

Recommended crimp terminals

Symbol	Servo amplifier-side crimp terminals				
	Crimp terminal	Applicable tool			Manufacturer
		Body	Head	Dice	
a	32959	47387	-	${ }^{\text {r }}$	Tyco electronics
b	FDV5.5-4	YNT-1210S	-		JST
C	FVD8-5	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{aligned} & \hline \text { DH-111 } \\ & \text { DH-121 } \end{aligned}$	
d	FVD14-6	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{aligned} & \hline \text { DH-112 } \\ & \text { DH-122 } \end{aligned}$	
e	FVD22-6	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{array}{\|l\|} \hline \text { DH-113 } \\ \text { DH-123 } \\ \hline \end{array}$	
$\begin{gathered} f \\ (\text { Note 1, 2) } \end{gathered}$	38-S6	YPT-60-21		$\begin{array}{\|l\|} \hline \text { TD-124 } \\ \text { TD-112 } \\ \hline \end{array}$	
		$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YET-60-1	$\begin{aligned} & \hline \text { TD-124 } \\ & \text { TD-112 } \end{aligned}$	
	R38-6S	NOP60 NOM60			NICHIFU
g	R60-8 (Note 1)	YDT-60-21		$\begin{array}{\|l\|} \hline \text { TD-125 } \\ \text { TD-113 } \end{array}$	JST
		$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YET-60-1	$\begin{aligned} & \text { TD-125 } \\ & \text { TD-113 } \end{aligned}$	

Note 1. Cover the crimped portion with an insulating tape.
2. Always use recommended crimping terminals or equivalent since some crimping terminals cannot be installed depending on the size.
(2) Selection example of crimp terminals (400 V class)

Recommended crimp terminals

Symbol	Servo amplifier-side crimp terminals				
	Crimp terminal	Applicable tool			Manufacturer
		Body	Head	Dice	
a	32959	47387	-		Tyco electronics
b	32968	59239	-	-	
C	FVD8-5	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{array}{\|l\|} \hline \text { DH-111 } \\ \text { DH-121 } \end{array}$	JST
d	FVD14-6	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{array}{\|l\|} \mathrm{DH}-112 \\ \mathrm{DH}-122 \end{array}$	
e	FVD22-6	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{array}{\|l\|} \hline \text { DH-113 } \\ \text { DH-123 } \end{array}$	

4.2.2 MR-J4-series crimp terminal

(1) Selection example of crimp terminals ($200 \mathrm{~V} / 100 \mathrm{~V}$ class)

The table below shows selection examples of a crimp terminal for a servo amplifier terminal block.
Recommended crimp terminals

Symbol	Servo amplifier-side crimp terminals				
	(Note 2) Crimp terminal	Applicable tool			Manufacturer
		Body	Head	Dice	
a	FVD5.5-4	YNT-1210S			JST
$\begin{gathered} \hline b \\ \text { (Note 1) } \end{gathered}$	8-4NS	YHT-8S			
c	FVD2-4	YNT-1614			
d	FVD2-M3			-	
e	FVD1.25-M3	YNT-2216			
f	FVD14-6	YF-1	YNE-38	$\begin{array}{\|l\|} \hline \mathrm{DH}-122 \\ \mathrm{DH}-112 \\ \hline \end{array}$	
g	FVD5.5-6	YNT-1210S			
h	FVD22-6	YF-1	YNE-38	$\begin{array}{\|l\|} \hline \mathrm{DH}-123 \\ \mathrm{DH}-113 \end{array}$	
i	FVD38-8	YF-1	YNE-38	$\begin{array}{\|l\|} \hline \mathrm{DH}-124 \\ \mathrm{DH}-114 \\ \hline \end{array}$	
j	FVD5.5-8	YNT-1210S	-	-	
k	FVD8-6	$\begin{aligned} & \mathrm{YF}-1 \\ & \mathrm{E}-4 \end{aligned}$	YNE-38	$\begin{array}{\|l\|} \hline \mathrm{DH}-121 \\ \mathrm{DH}-111 \end{array}$	

Note 1. Cover the crimped portion with an insulating tape.
2. Installation of a crimp terminal may be impossible depending on the size, so make sure to use the recommended crimp terminal or one equivalent to it.
(2) Selection example of crimp terminals (400 V class)

The table below shows selection examples of a crimp terminal for a servo amplifier terminal block.
Recommended crimp terminals

Symbol	Servo amplifier-side crimp terminals				Manufacturer
	Crimp terminal (Note)	Applicable tool			
		Body	Head	Dice	
a	FVD5.5-4	YNT-1210S	-		JST
b	FVD2-4	YNT-1614	-		
c	FVD2-M3				
d	FVD5.5-6	YNT-1210S			
e	FVD5.5-8	YNT-1210S			
f	FVD2-6	YNT-1614			
g	FVD8-6	YF-1	YNE-38	DH-121	
h	FVD8-8			DH-111	
i	FVD14-8			$\begin{aligned} & \mathrm{DH}-122 \\ & \mathrm{DH}-112 \end{aligned}$	

Note. Installation of a crimp terminal may be impossible depending on the size, so make sure to use the recommended crimp terminal or one equivalent to it.

4.3 Selection of Molded-Case Circuit Breaker, Fuse, and Magnetic Contactor (Example)

4.3.1 MR-J2S series, molded-case circuit breakers, fuses, and magnetic contactors

Select a molded-case circuit breaker with a short shut-off time to prevent smoking
and fire from the servo amplifier.
Always use one molded-case circuit breaker and one magnetic contactor with one
servo amplifier.

When using a fuse instead of the molded-case circuit breaker, use the one having the specifications given in this section.

Molded-case circuit breakers, fuses, and magnetic contactors

Servo amplifier	Molded-case Circuit breakers (Note)	Fuses			Magnetic contactor
		Class	Current [A]	Voltage [V]	
MR-J2S-10_(1)	30 A frame 5 A	K5	10	AC 250	S-N10
MR-J2S-20	30 A frame 5 A		10		
MR-J2S-40_/20_(1)	30 A frame 10 A		15		
MR-J2S-60_/40_(1)	30 A frame 15 A		20		
MR-J2S-70					
MR-J2S-100			25		
MR-J2S-200	30 A frame 20 A		40		S-N18
MR-J2S-350	30 A frame 30 A		70		S-N20
MR-J2S-500	50 A frame 50 A		125		S-N35
MR-J2S-700	100 A frame 75 A		150		S-N50
MR-J2S-11K_	100 A frame 100 A		200		S-N65
MR-J2S-15K_	225 A frame 125 A		250		S-N95
MR-J2S-22K_	225 A frame 175 A		350		S-N125
MR-J2S-60_4	30 A frame 5 A				S-N10
MR-J2S-100_4	30 A frame 10 A				
MR-J2S-200_4	30 A frame 15 A				
MR-J2S-350_4	30 A frame 20 A				S-N18
MR-J2S-500_4	30 A frame 30 A				S-N18
MR-J2S-700_4	50 A frame 40 A				S-N20
MR-J2S-11K_4	60 A frame 60 A		S		S-N25
MR-J2S-15K_4	100 A frame 75 A				S-N35
MR-J2S-22K_4	225 A frame 125 A				S-N65

Note. Use a molded-case circuit breaker with operating characteristics equivalent or higher than our multipurpose product.
4.3.2 MR-J4 series, molded-case circuit breakers, fuses, and magnetic contactors (recommended)
(1) For main circuit power supply

A CAUTION | Select a molded-case circuit breaker with a short shut-off time to prevent smoking |
| :--- |
| and fire from the servo amplifier. |
| Always use one molded-case circuit breaker and one magnetic contactor with one |
| servo amplifier. |

When using a fuse instead of the molded-case circuit breaker, use the one having the specifications given in this section.

Molded-case circuit breakers, fuses, and magnetic contactors

Servo amplifier	Molded-case circuit breaker (Note 1)		Fuse			Magnetic contactor (Note 2)
	Frame, rated current	Voltage AC [V]	Class	Current [A]	Voltage AC [V]	
MR-J4-10_(-RJ)	30 A frame 5 A	240	T	10	300	$\begin{aligned} & \text { S-N10 } \\ & \text { S-T10 } \end{aligned}$
MR-J4-20_(-RJ)	30 A frame 5 A			10		
MR-J4-40_(-RJ)	30 A frame 10 A			15		
MR-J4-60_(-RJ)	30 A frame 15 A			20		
MR-J4-70_(-RJ)						
MR-J4-100_(-RJ)						
MR-J4-200_(-RJ)	30 A frame 20 A			40		$\begin{gathered} \text { S-N20 (Note 3) } \\ \text { S-T21 } \end{gathered}$
MR-J4-350_(-RJ)	30 A frame 30 A			70		$\begin{aligned} & \text { S-N20 } \\ & \text { S-T21 } \end{aligned}$
MR-J4-500_(-RJ)	50 A frame 50 A			125		S-N35
MR-J4-700_(-RJ)	100 A frame 75 A			150		S-N50
MR-J4-11K_(-RJ)	100 A frame 100 A			200		
MR-J4-15K_(-RJ)	125 A frame 125 A			250		S-N65
MR-J4-22K_(-RJ)	225 A frame 175 A			350		S-N95
MR-J4-10_1(-RJ)	30 A frame 5 A			10		$\begin{aligned} & \text { S-N10 } \\ & \text { S-T10 } \end{aligned}$
MR-J4-20_1(-RJ)	30 A frame 10 A			15		
MR-J4-40_1(-RJ)	30 A frame 15 A			20		

Note 1. In order for the servo amplifier to comply with the UL/CSA standard, refer to the applicable "Servo Amplifier Instruction Manual".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less.
3. S-N18 can be used when auxiliary contact is not required.

Servo amplifier	Molded-case circuit breaker (Note 1, 3)		Fuses			Magnetic contactor (Note 2)
	Frame, rated current	Voltage AC [V]	Class	Current [A]	Voltage AC [V]	
MR-J4-60_4(-RJ)	30 A frame 5 A	480	T	10	600	$\begin{aligned} & \text { S-N10 } \\ & \text { S-T10 } \end{aligned}$
MR-J4-100_4(-RJ)	30 A frame 10 A			15		
MR-J4-200_4(-RJ)	30 A frame 15 A			25		
MR-J4-350_4(-RJ)	30 A frame 20 A			35		S-N18
MR-J4-500_4(-RJ)	30 A frame 20 A			50		S-T21
MR-J4-700_4(-RJ)	30 A frame 30 A			65		$\begin{aligned} & \text { S-N20 } \\ & \text { S-T21 } \end{aligned}$
MR-J4-11K_4(-RJ)	50 A frame 50 A			100		S-N25
MR-J4-15K_4(-RJ)	60 A frame 60 A			150		S-N35
MR-J4-22K_4(-RJ)	100 A frame 100 A			175		S-N50

Note 1. In order for the servo amplifier to comply with the UL/CSA standard, refer to the applicable "Servo Amplifier Instruction Manual".
2. Use a magnetic contactor with an operation delay time (interval between current being applied to the coil until closure of contacts) of 80 ms or less.
3. Use a molded-case circuit breaker with operating characteristics equivalent or higher than our multi-purpose product.
(2) For control circuit power supply

When the wiring for the control circuit power supply (L11, L21) is thinner than that for the main circuit power supply (L1, L2, L3), install an overcurrent protection device (molded-case circuit breaker or fuse) to protect the branch circuit.

Molded-case circuit breaker, fuse

Servo amplifier	Molded-case circuit breaker (Note)		Fuse (Class T)		Fuse (Class K5)	
	Frame, rated current	Voltage AC [V]	Current [A]	Voltage AC [V]	Current [A]	Voltage AC [V]
MR-J4-10_(-RJ)	30 A frame 5 A	240	1	300	1	250
MR-J4-20_(-RJ)						
MR-J4-40_(-RJ)						
MR-J4-60_(-RJ)						
MR-J4-70_(-RJ)						
MR-J4-100_(-RJ)						
MR-J4-200_(-RJ)						
MR-J4-350_(-RJ)						
MR-J4-500_(-RJ)						
MR-J4-700_(-RJ)						
MR-J4-11K_ (-RJ)						
MR-J4-15K_(-RJ)						
MR-J4-22K_(-RJ)						
MR-J4-60_4(-RJ)	30 A frame 5 A	480	1	600	1	600
MR-J4-100_4(-RJ)						
MR-J4-200_4(-RJ)						
MR-J4-350_4(-RJ)						
MR-J4-500_4(-RJ)						
MR-J4-700_4(-RJ)						
MR-J4-11K_4(-RJ)						
MR-J4-15K_4(-RJ)						
MR-J4-22K_4(-RJ)						
MR-J4-10_1(-RJ)	30 A frame 5 A	240	1	300	1	250
MR-J4-20_1(-RJ)						
MR-J4-40_1(-RJ)						

Note. In order for the servo amplifier to comply with the UL/CSA standard, refer to the Servo Amplifier Instruction Manual.

5. BATTERY

POINT

MR-BAT and A6BAT batteries for MR-J2S, or the MR-J2M-BT battery unit for MR-J2M, cannot be used because their battery voltage specifications are different from those of the MR-J4 series.
5.1 MR-J2S-Series Battery

5.1.1 Battery replacement procedure

Model: MR-BAT or A6BAT

Before mounting a battery, turn off the power and wait 15 min or longer until the charge lamp turns off, then check the voltage between P and N with a voltage
WARNING tester, etc., otherwise an electric shock may occur. In addition, when confirming whether the charge lamp is off or not, always check from the front of the servo amplifier.

POINT

The internal circuits of the servo amplifier may be damaged by static electricity.
Always take the following precautions.

- Ground human body and work bench.
- Do not touch the conductive areas, such as connector pins and electrical parts, directly by hand.

5.2 MR-J2M-Series Battery Unit

Type: MR-J2M-BT

130

5.3 MR-J4-Series Battery

5.3.1 Battery replacement procedure

Model: MR-BAT6V1SET, MR-BAT6V1BJ, MR-BT6VCASE

Before replacing a battery, turn off the main circuit power and wait for 15 minutes
or longer (when 30 kW or more is used, 20 minutes or more) until the charge lamp
turns off. Then, check the voltage between P+ and N - with a voltage tester or
others. Otherwise, an electric shock may occur. In addition, when confirming
whether the charge lamp is off or not, always confirm it from the front of the servo
amplifier.

The internal circuits of the servo amplifier may be damaged by static electricity. Always take the following precautions. - Ground your body and the work bench. - Do not touch the conductive areas, such as connector pins and electrical parts, directly by hand. The built-in battery for the MR-BAT6V1BJ battery for junction battery cable cannot be replaced. Therefore, do not disassemble the MR-BAT6V1BJ battery for junction battery cable. Doing so may cause a malfunction.

POINT
When using the BAT6V1SET battery and the MR-BT6VCASE battery case are used
Replacing a battery with the control circuit power supply turned off will erase the absolute position data.
When using the MR-BAT6V1BJ battery for junction battery cable In order to prevent the absolute position data from being erased, replace the MR-BAT6V1BJ battery for junction battery cable according to the procedure described in the Instruction Manual.
Verify that the battery for replacement is within its service life.

Replace the old battery with only the control circuit power supply turned on. Replacing a battery with the control circuit power supply turned on will cause [AL.9F. 1 low battery] but will not erase the absolute position data.
Refer to the Instruction Manual for the procedure for mounting the battery on the servo amplifier.

POINT
-Refer to the Instruction Manual for battery transportation and the new EU Directive on batteries.

POINT

- Three types of batteries are used to construct the absolute position detection system: MR-BAT6V1SET battery, MR-BAT6V1BJ battery for junction battery cable, and MR-BT6VCASE battery case. The use of the MR-BAT6V1BJ battery for junction battery cable has the following characteristics distinctive from other batteries.
- The encoder cable can be removed from the servo amplifier.
- A battery can be replaced with the control circuit power supply turned off.

Olf the encoder lost the absolute position data, always perform home position setting before operation. The encoder will lose the absolute position data in the following cases. In addition, the absolute position data may be erased if the battery is used outside of the specification.
When using the MR-BAT6V1SET battery and the MR-BT6VCASE battery case

- Encoder cable is removed.
- A battery is replaced with the control circuit power supply turned off.

When using the MR-BAT6V1BJ battery for junction battery cable

- The connector and the cable are removed between the servo motor and the battery.
- A battery is replaced in a procedure different from the procedure described in the Instruction Manual.
- A single MR-BT6VCASE battery case can retain the absolute position data of up to eight axes of servo motors.
5.3.2 When using the MR-BAT6V1SET battery
(a) Battery connection

Connect according to the following figure.

(b) Battery manufacture year and month

The manufacture date of an MR-BAT6V1 battery installed in MR-BAT6V1SET is written on the name plate attached to the MR-BAT6V1 battery.

MODEL MR-BAT6V1 2CR17335A WK17

6V $1650 \mathrm{mAh} \quad$ Mantáatured
Hitachi Maxell,Ltd.

5.3.3 When using MR-BAT6V1BJ battery for junction battery cable

(a) Battery connection

Connect according to the following figure in combination with the MR-BT6VCBL03M junction battery cable.

(b) Battery manufacture year and month

The manufacture year and month are described in the manufacturer's (SERIAL) number marked on the rating name plate. The second digit of the manufacturer's number indicates the first digit of the Christian Era and the third digit indicates the manufacture month (X for October, Y for November, and Z for December). For example, November 2013 is indicated as "SERIAL:_3Y \qquad ".

Black: Connector for branch cable

5.3.4 When using MR-BT6VCASE battery case

(a) Battery connection

A single MR-BT6VCASE battery case can retain the absolute position data of up to eight axes of servo motors. The maximum number of axes includes the number of axes of servo motors. Refer to the following table for the connectible number of axes of servo motors.

Servo motor	Number of axes								
Rotary servo motor	0	1	2	3	4	5	6	7	8

The battery case accommodates five connected batteries. The battery case contains no batteries. Batteries need to be prepared separately.
(b) Battery manufacture year and month

The manufacture year and month of an MR-BAT6V1 to be housed in the MR-BT6VCASE battery case is written on the name plate attached to the MR-BAT6V1 battery.

MODEL MR-BAT6V1 2CR17335A WK17

6V 1650mAh

Hitachi Maxell,Ltd.

6. EMC FILTER

POINT

Recommended EMC filters for the MR-J2S series are different from those for the MR-J4 series.

6.1 MR-J2S-Series EMC Filter (200 V/100 V class)

It is recommended that one of the following filters be used to comply with the EN EMC Directive. Some EMC filters have large in leakage current.

Combination with the servo amplifier

Servo amplifier	Recommended filter		Mass [kg]
$\begin{array}{l}\text { MR-J2S-10_ to MR-J2S-100_ } \\ \text { MR-J2S-10_1 to MR-J2S-40_1 }\end{array}$	SF1252		

Note. Soshin Electric. A surge protector is separately required to use any of these EMC filters.
(Refer to EMC Installation Guidelines.)

Note1. With 1-phase 230 V AC, connect the power supply to L1 and L2, and leave L3 open.

$$
\text { L3 is not provided for 1-phase } 100 \mathrm{~V} \text { AC to } 120 \mathrm{~V} \mathrm{AC} \text {. }
$$

2. When the power supply has an earth wire, connect it to this terminal.

6.1.1 Dimensions

HF3040A-TM/HF3050A-TM/HF3060A-TMA

Model	Dimensions [mm]											
	A	B	C	D	E	F	G	H	J	K	L	M
HF3040A-TM	260	210	85	155	140	125	44	140	70	R3.25 length 8	M5	M4
HF3050A-TM	290	240	100	190	175	160	44	170	100		M6	M4
HF3060A-TMA	290	240	100	190	175	160	44	230	160		M6	M4

HF3080A-TMA/HF3100A-TMA

Model	Dimensions [mm]											
	A	B	C	D	E	F	G	H	J	K	L	M
HF3080A-TMA	405	350	100	220	200	180	56	210	135	$\begin{gathered} \mathrm{R} 4.25 \\ \text { length } 12 \end{gathered}$	M8	M6
HF3100A-TMA												

HF3200A-TMA
[Unit: mm]

6.2 MR-J2S-Series EMC Filter (400 V class)

It is recommended that one of the following filters be used to comply with the EN EMC Directive. Some EMC filters have large in leakage current.

Combination with the servo amplifier

Servo amplifier	Recommended filter		Mass [kg]
	Model (Note 1)	Leakage current [mA] (Note 2)	
MR-J2S-60_4 to MR-J2S-200_4	TF3005C-TX	5.5	6
MR-J2S-350_4 to MR-J2S-700_4	TF3020C-TX		
MR-J2S-11K_4	TF3030C-TX		7.5
MR-J2S-15K_4	TF3040C-TX		12.5
MR-J2S-22K_4	TF3060C-TX		
MR-J2S-30K_4~ MR-J2S-55K_4	TF3150C-TX	5.5	31

Note 1. Soshin Electric
2. When one phase opens with the 3-phase neutral-point (N) grounded power supply, the value will be 350 mA .

6.2.1 Dimensions

[Unit: mm]

Model	Dimensions [mm]											
	A	B	C	D	E	F	G	H	J	K	L	M
TF3005C-TX	332	308	290	100	155	140	125	170	(160)	150	(67.5)	R3.25 length 8 (For M6)
TF3020C-TX												
TF3030C-TX												

[Unit: mm]

Model	Dimensions [mm]											
	A	B	C	D	E	F	G	H	J	K	L	M
TF3040C-TX	438	412	390	100	175	160	145	200	(190)	180	(91.5)	R3.25 length 8 (For M6)
TF3060C-TX												

TF3150C-TX
[Unit: mm]
8-R 4.25 Length: 12

6.3 MR-J4-Series EMC Filter (Recommended) (200 V class)

It is recommended that one of the following filters be used to comply with EN EMC directive.
Some EMC filters have large in leakage current.
Table. Combination with the servo amplifier

Servo amplifier	Recommended filter (Soshin Electric)				Mass [kg]
	Model	Rated current [A]	Rated voltage [V AC]	Leakage current [mA]	
MR-J4-10_(-RJ) to MR-J4-100_(-RJ)	$\begin{aligned} & \text { HF3010A-UN } \\ & \text { (Note) } \\ & \hline \end{aligned}$	10	250	5	3.5
MR-J4-200_(-RJ)/MR-J4-350_(-RJ)	HF3030A-UN (Note)	30			5.5
MR-J4-500_(-RJ)/MR-J4-700_(-RJ)	$\begin{array}{\|l\|} \hline \text { HF3040A-UN } \\ \text { (Note) } \end{array}$	40		6.5	6
$\begin{array}{\|l} \hline \text { MR-J4-11K_(-RJ)/MR-J4-15K_(-RJ)/ } \\ \text { MR-J4-22K_(-RJ) } \\ \hline \end{array}$	HF3100A-UN (Note)	100			12
MR-J4-DU30K_MR-J4-DU37K_	$\begin{array}{\|l} \hline \text { HF3200A-UN } \\ \text { (Note) } \\ \hline \end{array}$	200	250	9	18
MR-J4-10_1(-RJ) to MR-J4-40_1(-RJ)	$\begin{aligned} & \text { HF3010A-UN } \\ & \text { (Note) } \\ & \hline \end{aligned}$	10	250	5	3.5

Note. A surge protector is separately required to use any of these EMC filters.

6.3.1 Connection example

Note 1. For 1-phase 200 V AC to 240 V AC , connect the power supply to L1 and L3. Leave L2 open. L2 is not provided for 1-phase 100 V AC to 120 V AC.
2. The example is when a surge protector is connected.

6.3.2 Dimensions

HF3010A-UN
[Unit: mm]

HF3030A-UN/HF-3040A-UN
[Unit: mm]

Model	Dimensions [mm]											
	A	B	C	D	E	F	G	H	J	K	L	M
$\begin{array}{\|l\|} \hline \text { HF3030A-UN } \\ \hline \text { HF3040A-UN } \end{array}$	260	210	85	155	140	125	44	140	70	R3.25 $\text { length } 8$	M5	M4

HF3200A-UN

6.4 MR-J4-Series EMC Filter (Recommended) (400 V class)

It is recommended that one of the following filters be used to comply with EN EMC directive. Some EMC filters have large in leakage current.
6.4.1 Combination with the servo amplifier

Servo amplifier	Recommended filter (Soshin Electric)				Mass [kg]
	Model	Rated current [A]	Rated voltage [V AC]	Leakage current [mA]	
MR-J4-60_4(-RJ)/MR-J4-100_4(-RJ)	TF3005C-TX	5	500	5.5	6
MR-J4-200_4(-RJ) to MR-J4-700_4(-RJ)	TF3020C-TX	20			
MR-J4-11K_4(-RJ)	TF3030C-TX	30			7.5
MR-J4-15K_4(-RJ)	TF3040C-TX	40			12.5
MR-J4-22K_4(-RJ)	TF3060C-TX	60			
MR-J4-DU30K_4 to MR-J4-DU55K_4	TF3150C-TX	150	500	5.5	31

6.4.2 Connection example

6.4.3 Dimensions

TF3005C-TX/TF3020C-TX/TF3030C-TX

TF3040C-TX/TF3060C-TX
[Unit: mm]

Model	Dimensions [mm]											
	A	B	C	D	E	F	G	H	J	K	L	M
TF3040C-TX	438	412	390	100	175	160	145	200	(190)	180	(91.5)	R3.25
TF3060C-TX												length 8 (For M6)

TF3150C-TX
[Unit: mm]
8-R 4.25 Length: 12

7. POWER FACTOR IMPROVING AC REACTOR/POWER FACTOR IMPROVING DC REACTOR

7.1 MR-J2S-Series Power Factor Improving AC Reactor (200 V/100 V class)

The input power factor is improved to about 90%. For use with a 1-phase power supply, it may be slightly lower than 90%.

Note. For 1-phase 230 V AC, connect the power supply to L1/L2. Leave L3 open.

Servo amplifier	Power factor improving reactor	Dimensions [mm]						Mounting screw Size	Terminal screw Size	Mass [kg]
		W	W1	H	D	D1	C			
MR-J2S-10_(1)	FR-BAL-0.4K	135	120	115	59	$45_{-2.5}^{0}$	7.5	M4	M3.5	2.0
MR-J2S-20										
MR-J2S-40	FR-BAL-0.75K	135	120	115	69	$57_{-2.5}^{0}$	7.5	M4	M3.5	2.8
MR-J2S-20_1										
MR-J2S-60_	FR-BAL-1.5K	160	145	140	71	$55_{-2.5}^{0}$	7.5	M4	M3.5	3.7
MR-J2S-70										
MR-J2S-40_1										
MR-J2S-100_	FR-BAL-2.2K	160	145	140	91	$75_{-2.5}^{0}$	7.5	M4	M3.5	5.6
MR-J2S-200_	FR-BAL-3.7K	220	200	192	90	$70_{-2.5}^{0}$	10	M5	M4	8.5
MR-J2S-350_	FR-BAL-7.5K	220	200	194	120	$100{ }_{-2.5}^{0}$	10	M5	M5	14.5
MR-J2S-500_	FR-BAL-11K	280	255	220	135	$100{ }_{-2.5}^{0}$	12.5	M6	M6	19
MR-J2S-700_	FR-BAL-15K	295	270	275	133	$110_{-2.5}^{0}$	12.5	M6	M6	27
MR-J2S-11K_										
MR-J2S-15K_	FR-BAL-22K	290	240	301	199	170 ± 5	25	M8	M8	35
MR-J2S-22K_	FR-BAL-30K	290	240	301	219	190 ± 5	25	M8	M8	43

7.2 MR-J2S-Series Power Factor Improving DC Reactor (200 V class)

The input power factor is improved to about 95%.

Note

1. Since the terminal cover is supplied, attach it after connecting a wire.
2. When using a power factor improving DC reactor, remove the short-circuit bar between P_{1} and P

Servo amplifier	Power factor improving DC reactor	Dimensions [mm]									Mounting screw Size	Mass [kg]	Electric wire [mm^{2}]
		A	B	C	D	E	F	L	G	H			
MR-J2S-11K	FR-BEL-15K	170	93	170	2.3	155	6	14	M8	56	M5	3.8	22(AWG4)
MR-J2S-15K	FR-BEL-22K	185	119	182	2.6	165	7	15	M8	70	M6	5.4	30(AWG2)
MR-J2S-22K	FR-BEL-30K	185	119	201	2.6	165	7	15	M8	70	M6	6.7	60(AWG1/0)

Servo amplifier	Power factor improving DC reactor	Mounting screw Size					Mass $[\mathrm{kg}]$	
	MR-DCL30K	135	255	215	80	232		9.5
MR-J2S-37K_	MR-DCL37K	135	255	215	80	232	M 12	9.5

7.3 MR-J2S-Series Power Factor Improving AC Reactor (400 V class)

The input power factor is improved to about 90%.

Servo amplifier	Power factor improving reactor	Dimensions [mm]						Mounting screw Size	Terminal screw Size	Mass [kg]
		W	W1	H	D	D1	C			
MR-J2S-60_4	FR-BAL-H1.5K	160	145	140	87	$70{ }_{-2.5}^{0}$	7.5	M4	M3.5	5.3
MR-J2S-100_4	FR-BAL-H2.2K	160	145	140	91	$75{ }_{-2.5}^{0}$	7.5	M4	M3.5	5.9
MR-J2S-200_4	FR-BAL-H3.7K	220	200	190	90	$70{ }_{-2.5}^{0}$	10	M5	M3.5	8.5
MR-J2S-350_4	FR-BAL-H7.5K	220	200	192	120	100 ± 5	10	M5	M4	14
MR-J2S-500_4	FR-BAL-H11K	280	255	226	130	100 ± 5	12.5	M6	M5	18.5
MR-J2S-700_4	FR-BAL-H15K	295	270	244	130	110 ± 5	12.5	M6	M5	27
MR-J2S-11K_4	FR-BAL-H15K	295	270	244	130	110 ± 5	12.5	M6	M5	27
MR-J2S-15K_4	FR-BAL-H22K	290	240	269	199	170 ± 5	25	M8	M8	Approx. 35
MR-J2S-22K_4	FR-BAL-H30K	290	240	290	219	190 ± 5	25	M8	M8	Approx. 43

7.4 MR-J2S-Series Power Factor Improving DC Reactor (400 V class)

The input power factor is improved to about 95%.

Note 1. Since the terminal cover is supplied, attach it after connecting a wire.
2. When using a power factor improving $D C$ reactor, remove the short-circuit bar between P_{1} and P.

Servo amplifier	Power factor improving DC reactor	Dimensions [mm]									Mounting screw Size	Mass [kg]	Electric wire [mm²]
		A	B	C	D	E	F	L	G	H			
MR-J2S-11K_4	FR-BEL-H15K	170	93	160	2.3	155	6	14	M6	56	M5	3.7	8(AWG8)
MR-J2S-15K_4	FR-BEL-H22K	185	119	171	2.6	165	7	15	M6	70	M6	5.0	
MR-J2S-22K_4	FR-BEL-H30K	185	119	189	2.6	165	7	15	M6	70	M6	6.7	

SERVO AMPLIFIER	Power factor improving DC reactor	Mounting screw Size					Mass $[\mathrm{kg}]$	
	MR-DCL30K-4	135	205	200	75	175		6.5
MR-J2S-37K_4	MR-DCL37K-4	135	225	200	80	197	M8	7
MR-J2S-45K_4	MR-DCL45K-4	135	240	200	80	212	M8	7.5
MR-J2S-55K_4	MR-DCL55K-4	135	260	215	80	232	M8	9.5

7.5 MR-J4-Series Power Factor Improving DC Reactor (200 V class)

The following shows the advantages of using power factor improving DC reactor.

- It improves the power factor by increasing the form factor of the servo amplifier's input current.
- It decreases the power supply capacity.
- The input power factor is improved to about 85%.
- As compared to the power factor improving AC reactor (FR-HAL), it decreases the loss.

When using the power factor improving DC reactor to the servo amplifier, remove the short bar across P3 and P4. If it remains connected, the effect of the power factor improving DC reactor is not produced.
When used, the power factor improving DC reactor generates heat. To release heat, therefore, leave a 10 cm or more clearance at each of the top and bottom, and a 5 cm or more clearance on each side.

Fig. 9.1

Fig. 9.2

Fig. 9.3
Note 1. Use this for grounding.
2. When using the power factor improving DC reactor, remove the short bar across P3 and P4.

Part 9: Review on Replacement of Optional Peripheral Equipment

Servo amplifier	Power factor improving DC reactor	Dimensions	Dimensions [mm]								Terminal size	Mass [kg]	Electric wire [mm^{2}] (Note 2)
			W	W1	H	$\begin{gathered} \text { D } \\ \text { (Note 1) } \end{gathered}$	D1	D2	D3	d			
$\begin{aligned} & \text { MR-J4-10_(-RJ) } \\ & \text { MR-J4-20_(-RJ) } \end{aligned}$	FR-HEL-0.4K	Fig. 9.1	70	60	71	61		21		M4	M4	0.4	2 (AWG 14)
MR-J4-40_(-RJ)	FR-HEL-0.75K		85	74	81	61		21		M4	M4	0.5	
$\begin{aligned} & \text { MR-J4-60_(-RJ) } \\ & \text { MR-J4-70_(-RJ) } \end{aligned}$	FR-HEL-1.5K		85	74	81	70		30		M4	M4	0.8	
MR-J4-100_(-RJ)	FR-HEL-2.2K		85	74	81	70		30		M4	M4	0.9	
MR-J4-200_(-RJ)	FR-HEL-3.7K	Fig. 9.2	77	55	92	82	66	57	37	M4	M4	1.5	
MR-J4-350_(-RJ)	FR-HEL-7.5K		86	60	113	98	81	72	43	M4	M5	2.5	3.5 (AWG 12)
MR-J4-500_(-RJ)	FR-HEL-11K		105	64	133	112	92	79	47	M6	M6	3.3	5.5 (AWG 10)
MR-J4-700_(-RJ)	FR-HEL-15K		105	64	133	115	97	84	48.5	M6	M6	4.1	8 (AWG 8)
MR-J4-11K_(-RJ)	FR-HEL-15K		105	64	133	115	97	84	48.5	M6	M6	4.1	14 (AWG 6)
MR-J4-15K_(-RJ)	FR-HEL-22K		105	64	93	175	117	104	$\begin{gathered} 115 \\ (\text { Note } 1) \\ \hline \end{gathered}$	M6	M10	5.6	22 (AWG 4)
MR-J4-22K_(-RJ)	FR-HEL-30K	Fig. 9.3	114	72	100	200	125	101	$\begin{gathered} 135 \\ (\text { Note } 1) \end{gathered}$	M6	M10	7.8	38 (AWG 2)

Note 1. These are maximum dimensions. The dimension varies depending on the input/output lines.
2. Selection conditions of wire size are as follows.

Electric wire type: 600 V grade heat-resistant polyvinyl chloride insulated wire (HIV wire)
Wiring condition: In-air, one-row wiring

Servo amplifier	Power factor improving DC reactor	Mounting screw Size						Mass $[\mathrm{kg}]$
	MR-DCL30K	135	255	215	80	232	M 12	9.5
MR-J4-DU37K_	MR-DCL37K	135	255	215	80	232	M 12	9.5

7.6 MR-J4-Series Power Factor Improving AC Reactor (200 V/100 V class)

The following shows the advantages of using power factor improving AC reactor.

- It improves the power factor by increasing the form factor of the servo amplifier's input current.
- It decreases the power supply capacity.
- The input power factor is improved to about 80%.

When using power factor improving reactors for two servo amplifiers or more, make sure to connect a power factor improving reactor to each servo amplifier. If using only one power factor improving reactor, enough improvement effect of phase factor cannot be obtained unless all servo amplifiers are operated.

Fig. 9.4

Note 1. Use this for grounding.
2. $W \pm 2$ is applicable for FR-HAL-0.4K to FR-HAL-1.5K.

Figure 9.5
Note. For 1-phase 200 V AC to 240 V AC , connect the power supply to L1 and L3. Leave L2 open.

Fig. 9.6
Note. Use this for grounding.
Note. Use this for grounding.

Part 9: Review on Replacement of Optional Peripheral Equipment

Servo amplifier	Power factor improving DC reactor	Dimensions	Dimensions [mm]							Terminal size	Mass [kg]
			W	W1	H	$\begin{gathered} \hline \text { D } \\ \text { (Note 1) } \end{gathered}$	D1	D2	d		
$\begin{aligned} & \hline \text { MR-J4-10_(-RJ) } \\ & \text { MR-J4-20_(-RJ) } \end{aligned}$	FR-HAL-0.4K	Fig. 9.4	104	84	99	72	51	40	M5	M4	0.6
$\begin{array}{\|l} \text { MR-J4-40_(-RJ) } \\ \text { MR-J4-10_1(-RJ) } \\ \hline \end{array}$	FR-HAL-0.75K		104	84	99	74	56	44	M5	M4	0.8
$\begin{aligned} & \text { MR-J4-60_(-RJ) } \\ & \text { MR-J4-70_(-RJ) } \\ & \text { MR-J4-20_1(-RJ) } \\ & \hline \end{aligned}$	FR-HAL-1.5K		104	84	99	77	61	50	M5	M4	1.1
MR-J4-100_(-RJ) (3-phase power supply input) MR-J4-40_1(-RJ)	FR-HAL-2.2K		$\begin{gathered} 115 \\ (\text { Note }) \end{gathered}$	40	115	77	71	57	M6	M4	1.5
MR-J4-100_(-RJ) (1-phase power supply input) MR-J4-200_(-RJ) (3-phase power supply input)	FR-HAL-3.7K		$\begin{gathered} 115 \\ (\text { Note }) \end{gathered}$	40	115	83	81	67	M6	M4	2.2
MR-J4-200_(-RJ) (1-phase power supply input)	FR-HAL-5.5K		$\begin{gathered} \hline 115 \\ \text { (Note) } \end{gathered}$	40	115	83	81	67	M6	M4	2.3
MR-J4-350_(-RJ)	FR-HAL-7.5K	Fig. 9.5	130	50	135	100	98	86	M6	M5	4.2
MR-J4-500_(-RJ)	FR-HAL-11K		160	75	164	111	109	92	M6	M6	5.2
MR-J4-700_(-RJ)	FR-HAL-15K		160	75	167	126	124	107	M6	M6	7.0
MR-J4-11K_(-RJ)	FR-HAL-15K		160	75	167	126	124	107	M6	M6	7.0
MR-J4-15K_(-RJ)	FR-HAL-22K		$\begin{gathered} \hline 185 \\ (\text { Note }) \\ \hline \end{gathered}$	75	150	158	100	87	M6	M8	9.0
MR-J4-22K_(-RJ)	FR-HAL-30K	Fig. 9.6	$\begin{gathered} \hline 185 \\ \text { (note) } \\ \hline \end{gathered}$	75	150	168	100	87	M6	M10	9.7

Note. These are maximum dimensions. The dimension varies depending on the input/output lines.

7.7 MR-J4-Series Power Factor Improving DC Reactor (400 V class)

The following shows the advantages of using power factor improving DC reactor.

- It improves the power factor by increasing the form factor of the servo amplifier's input current.
- It decreases the power supply capacity.
- The input power factor is improved to about 85%.
- As compared to the power factor improving AC reactor (FR-HAL-H), it decreases the loss.

When using the power factor improving DC reactor to the servo amplifier, remove the short bar across P3 and P 4 . If it remains connected, the effect of the power factor improving DC reactor is not produced. When used, the power factor improving DC reactor generates heat. To release heat, therefore, leave a 10 cm or more clearance at each of the top and bottom, and a 5 cm or more clearance on each side.

Fig. 9.7

Fig. 9.8

Fig. 9.9

1. Use this for grounding.
2. When using the power factor improving DC reactor, remove the short bar across P3 and P4.

Part 9: Review on Replacement of Optional Peripheral Equipment

Servo amplifier	Power factor improving DC reactor	Dimensions	Dimensions [mm]								Terminal size	Mass [kg]	Electric wire [mm^{2}] (Note)
			W	W1	H	D	D1	D2	D3	d			
MR-J4-60_4(-RJ)	FR-HEL-H1.5K	Fig. 9.7	66	50	100	80	74	54	37	M4	M3.5	1.0	2 (AWG 14)
MR-J4-100_4(-RJ)	FR-HEL-H2.2K		76	50	110	80	74	54	37	M4	M3.5	1.3	2 (AWG 14)
MR-J4-200_4(-RJ)	FR-HEL-H3.7K	Fig. 9.8	86	55	120	95	89	69	45	M4	M4	2.3	2 (AWG 14)
MR-J4-350_4(-RJ)	FR-HEL-H7.5K		96	60	128	105	100	80	50	M5	M4	3.5	2 (AWG 14)
MR-J4-500_4(-RJ)	FR-HEL-H11K		105	75	137	110	105	85	53	M5	M5	4.5	3.5 (AWG 12)
MR-J4-700_4(-RJ)	FR-HEL-H15K	Fig. 9.9	105	75	152	125	115	95	62	M5	M6	5.0	5.5 (AWG 10)
MR-J4-11K_4(-RJ)													8 (AWG 8)
MR-J4-15K_4(-RJ)	FR-HEL-H22K		133	90	178	120	95	75	53	M5	M6	6.0	8 (AWG 8)
MR-J4-22K_4(-RJ)	FR-HEL-H3OK		133	90	178	120	100	80	56	M5	M6	6.5	14 (AWG 6)

Note. Selection conditions of wire size are as follows.
Electric wire type: 600 V grade heat-resistant polyvinyl chloride insulated wire (HIV wire)
Wiring condition: In-air, one-row wiring

Servo amplifier	Power factor improving DC reactor	Dimensions [mm]					Mounting screw Size	$\begin{gathered} \text { Mass } \\ {[\mathrm{kg}]} \end{gathered}$
		W	D	H	W1	X		
MR-J4-DU30K_4	MR-DCL30K-4	135	205	200	75	175	M8	6.5
MR-J4-DU37K_4	MR-DCL37K-4	135	225	200	80	197	M8	7
MR-J4-DU45K_4	MR-DCL45K-4	135	240	200	80	212	M8	7.5
MR-J4-DU55K_4	MR-DCL55K-4	135	260	215	80	232	M8	9.5

7.8 MR-J4-Series Power Factor Improving AC Reactor (400 V class)

The following shows the advantages of using power factor improving AC reactor.

- It improves the power factor by increasing the form factor of the servo amplifier's input current.
- It decreases the power supply capacity.
- The input power factor is improved to about 80%.

When using power factor improving reactors for two servo amplifiers or more, make sure to connect a power factor improving reactor to each servo amplifier. If using only one power factor improving reactor, enough improvement effect of phase factor cannot be obtained unless all servo amplifiers are operated.

Fig. 9.10

Fig. 9.11

Fig. 9.12

Note. Use this for grounding.

Servo amplifier	Power factor improving DC reactor	Dimensions	Dimensions [mm]							Terminal size	Mass [kg]
			W	W1	H	D (Note)	D1	D2	d		
MR-J4-60_4(-RJ)	FR-HAL-H1.5K	Fig. 9.10	135	120	115	59	59.6	45	M4	M3.5	1.5
MR-J4-100_4(-RJ)	FR-HAL-H2.2K		135	120	115	59	59.6	45	M4	M3.5	1.5
MR-J4-200_4(-RJ)	FR-HAL-H3.7K		135	120	115	69	70.6	57	M4	M3.5	2.5
MR-J4-350_4(-RJ)	FR-HAL-H7.5K	Fig. 9.11	160	145	142	91	91	75	M4	M4	5.0
MR-J4-500_4(-RJ)	FR-HAL-H11K		160	145	146	91	91	75	M4	M5	6.0
$\begin{array}{\|l} \hline \text { MR-J4-700_4(-RJ) } \\ \text { MR-J4-11K_4(-RJ) } \end{array}$	FR-HAL-H15K		220	200	195	105	90	70	M5	M5	9.0
MR-J4-15K_4(-RJ)	FR-HAL-H22K	Fig. 9.12	220	200	215	170	90	70	M5	M8	9.5
MR-J4-22K_4(-RJ)	FR-HAL-H3OK		220	200	215	170	96	75	M5	M8	11

Note. These are maximum dimensions. The dimension varies depending on the input/output lines.

8. SETUP SOFTWARE

8.1 MR-J2S Series Setup Software

Setup software (MRZJW3-SETUP161E) uses the communication function of the servo amplifier to change parameter setting values, display graphs, and perform test operations, etc., on the personal computer.

8.1.1 Specifications

Item	Description
Communication signal	RS-232C
Baud rate [bps]	$57600 / 38400 / 19200 / 9600$
Monitor	Display all, high-speed display, graph display (Minimum resolution changes with the processing speed of the personal computer.)
Alarm	Display, history, amplifier data
Diagnosis	DI/DO display, display of the reason for no rotation, power ON cumulative display, software No. display, motor information display, tuning data display, ABS data display, VC automatic offset display, axis name setting
Parameter	Parameter list, turning, change list, detailed information
Test operation	JOG operation, positioning operation, motor-less operation, DO forced output, and program operation
Advanced function	Machine analyzer gain search, machine simulation
File operation	Data read, save, print
Others	Automatic operation, station number setting, help display

8.2 MR-J4-Series MR Configurator2

POINT

OMR-J4-_A_-RJ servo amplifiers are supported with software version 1.19 V or later.

MR Configurator2 (SW1DNC-MRC2-E) uses the communication function of the servo amplifier to perform parameter setting changes, graph display, test operation, etc. on a personal computer.

8.2.1 Specifications

Item	
Project	Create/read/save/delete project, system setting, and print
Parameter	Parameter setting, amplifier axis name setting, parameter converter (Note 1)
Positioning data (Note 2)	Point table, program, indirect addressing
Monitor	Display all, I/O monitor, graph, and ABS data display
Diagnostics	Alarm display, alarm onset data display, drive recorder, display of the reason for no rotation, system configuration, life diagnosis, machine diagnosis
Test operation	JOG operation, positioning operation, motor-less operation, DO forced output, and program operation, Test operation event information, single-step feed (Note 2)
Adjustment	One-touch tuning, tuning, and machine analyzer
Others	Servo assistant, parameter setting range update, help display, connection to MITSUBISHI ELECTRIC FA Global Website

Note 1. This function is available only in standard control mode.
2. This function is available only for MR-J4-_A_-RJ.

8.3 System Requirements

8.3.1 Components

To use this software, the following components are required in addition to the servo amplifier and servo motor.

Equipment		(Note 1) Description
Personal computer (Note 2, 3, 4, 5, 7)	OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Home Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$ Education Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8.1 Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8.1 Pro, Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8.1 Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Starter Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Professional Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise Operating System
	CPU	Desktop personal computer: Intel ${ }^{\circledR}$ Celeron ${ }^{\circledR}$ processor, 2.8 GHz or more recommended Notebook personal computer: Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR} \mathrm{M}$ processor, 1.7 GHz or more recommended
	Memory	1GB or more recommended (For 32-bit edition) 2GB or more recommended (For 64-bit edition)
	Hard Disk	1.5 GB or more of free space
	Communication interface	USB port (Note 6).
Browser	Windows ${ }^{\circledR}$ Internet Explorer ${ }^{\circledR} 4.0$ or later (Note 1)	
Display	One whose resolution is 1024×768 or more and that can provide a high color (16 bit) display. Connectable with the above personal computer.	
Keyboard	Connectable with the above personal computer.	
Mouse	Connectable with the above personal computers.	
Printer	Connectable with the above personal computer.	
USB cable	MR-J3USBCBL3M	

Note 1. Microsoft, Windows and Internet Explorer are registered trademarks or trademarks of Microsoft Corporation in the United States and other countries.
Celeron, Pentium is the registered trademarks of Intel Corporation.
2. When Windows ${ }^{\circledR} 7$ or later is used, NET Framework 3.5 (including .NET2.0 and 3.0) must be enabled.
3. When the following functions are used, this product may not operate correctly. Windows Program Compatibility mode

- Windows ${ }^{\circledR}$ Program Compatibility mode - Fast User Switching
- Remote Desktop
- Windows XP Mode
- Windows touch or touch • Modern UI
- Client Hyper-V • Tablet mode
- Virtual desktop

4. In the following cases, the display of this product may not operate correctly.

- The size of the text or other items on the screen is set to other than the prescribed value (96DPI, 100\%. 9pt, etc.).
- Resolution of the screen is changed during operation.
- The screen is set as multi display.

5. When using this software with Windows $® 7$ or later, log in as "Standard user" or "Administrator".
6. 64-bit Windows is not supported.
8.3.2 Connection with servo amplifier

8.3.3 Points to note for use of the USB communication function

To prevent an electric shock or malfunction of the servo amplifier, follow the instructions below.
(1) Connection of the power supply of a personal computer

Connect the power supply of a personal computer following the procedure below.
(a) When using a personal computer with AC power

1) When using a personal computer whose power plug has three pins or a grounding wire, use a grounded outlet or ground the grounding wire.
2) When using a personal computer whose power plug has two pins and no grounding wire, connect the personal computer to the servo amplifier following the procedure below.
a) Remove the power plug of the personal computer from the AC outlet.
b) Verify that the power plug has been removed from the AC outlet, and then connect the servo amplifier to other devices.
c) Insert the power plug of the personal computer into the AC outlet.
(b) When using a battery-driven personal computer, use the computer as is.
(2) Connection to other devices by use of the servo amplifier communication function When the servo amplifier becomes charged due to connection to the personal computer and the charged servo amplifier is connected to other devices, the servo amplifier or the connected devices may be damaged. Connect the servo amplifier to other devices following the procedure below.
(a) Turn off the power of the devices connected to the servo amplifier.
(b) Turn off the power of the servo amplifier connected to the personal computer, and then verify that the charge lamp is not lit.
(c) Connect the servo amplifier to the devices.
(d) Turn on the servo amplifier and the devices connected to it.

MEMO

\qquad

Part 10
 Startup Procedure Manual

Part 10: Startup Procedure Manual

1. STARTUP

OBefore starting operation, check the parameters. Improper settings may cause
some machines to operate unexpectedly.
The servo amplifier heat sink, regenerative resistor, servo motor, etc., may be hot
while power is on or for some time after power-off. Take safety measures,
example, provide covers to avoid accidentally touching the parts (cables, etc.) by
hand. Otherwise, it may cause a burn injury and parts damaged.
During operation, never touch the rotor of the servo motor. Otherwise, it may
cause injury.

1.1 Switching power on for the first time

When switching power on for the first time, follow this section to make a startup.

1.1.1 Startup procedure

... Confirm the parameter settings of the currently used MR-J2S servo amplifier with the display or with the setup software and record them.
.. Visually verify that the wires are correctly connected to the servo amplifier and the servo motor.
... Check the surrounding environment of the servo amplifier and servo motor.
... Set the parameters as necessary, such as the used control mode and regenerative option selection. (Refer to this Replacement Manual.)
.. For the test operation, with the servo motor disconnected from the machine and operated at the speed as low as possible, check whether the servo motor rotates correctly.
... For the test operation with the servo motor disconnected from the machine and operated at the speed as low as possible, give commands to the servo amplifier and check whether the servo motor rotates correctly.

After connecting the servo motor to the machine, check the motions of the machine by sending operation commands from a higher-level command-issuing device.

Make gain adjustment to optimize the machine motions.

Perform a home position return as necessary when in position control mode.

Stop giving commands and stop operation. In addition, check the conditions when the servo motor operation stops.

Note 1. For details about the settings for each servo amplifier and its test operation, refer to the applicable Servo Amplifier Instruction Manual.
If the gain of the existing servo amplifier is extremely high, there may be slight differences in characteristics upon primary replacement. Make sure to set the gain again.
2. When turning on the power supply, also turn on the 24 V DC power supply for the external interface. Otherwise, AL. E6.1 occurs.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

1. SUMMARY

This [Appendix 1] describes the "MR-J4-_B_-RJ020" servo amplifier that supports the SSCNET conversion unit for MR-J2S-_B_ and "MR-J4-T20" SSCNET conversion unit for MR-J2S-_B_.

Ensure to use the MR-J4-T20 with the MR-J4-_B_-RJ020.
Combining MR-J4-_B_-RJ020 with MR-J4-T20 makes it possible to connect MR-J4-_B_-RJ020 with SSCNET for MR-J2S-_B_

The MR-J4-_B_-RJ020 servo amplifier is equipped with "J2S compatible mode (factory default)" and "J4 mode" as the operation mode. "J2S compatible mode" is the operation mode compatible with the conventional features of the MR-J2S-B series.

When using in the J4 mode, refer to "[Appendix 1] 12 MODE SWITCHING METHOD".

1.1 Features

1.1.1 Servo amplifier connectable to SSCNET compatible controller

Parameter that need to be checked for if a change is required

Parameter number	Name	Initial value	Setting value	Description
Pr. 25	Adaptive vibration suppression control	0000 h	0000h	The MR-J4-_B_-RJ020 servo amplifier with software version A9 or later is compatible with adaptive vibration suppression control. For details, refer to "9.2 (8) Adaptive vibration suppression control function" in this section.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

1.1.2 SSCNET conversion unit "MR-J4-T20"

- Connect the conversion unit to connector CN9 on the side of MR-J4-_B_-RJ020.
- The mounting method for guide pins, etc., is the same as that for optional MR-J3 units such as MR-J3D01.
- Two SSCNET connectors are provided on the SSCNET conversion unit.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

2. DIFFERENCES BETWEEN MR-J2S-_B_AND MR-J4-_B_-RJ020

2.1 Function Comparison Table

Item		MR-J2S-_B	$\begin{gathered} \text { MR-J4-_B_-RJO20 } \\ \text { MR-J4-T20 } \end{gathered}$	Remarks
System	Standard	\bigcirc	\bigcirc	
	Full.	Special specification	\bigcirc	
	Lin.	Special specification	\times	
	DDM	\times	\times	
Supported network		SSCNET	SSCNET	
Supported motors		MR-J2S catalog motor MR-J2S optional motor	HG motor (Operates as 17 bits) HC-KFS motor HC-MFS motor HC-LFS motor HC-SFS motor HC-RFS motor HC-UFS motor HA-LFS motor	For details, refer to "[Appendix 1] Chapter 7" of this document.
I/O power supply		Internal 24 V	External 24 V	An external power supply (24 V 100 mA) is required for DIO.
Battery		MR-BAT / A6BAT	MR-BAT6V1SET	
Serial communication		Half pitch 20 pins	miniD-Sub	Using conversion cable. MR-J4T20CH00
MR-J2S control function	Auto Tuning	\bigcirc	\bigcirc	Gain compatibility
	Model applicable control	\bigcirc	\bigcirc	
	Machine resonance suppression filter	\bigcirc	\bigcirc	
	Machine analyzer function	\bigcirc	\bigcirc	
	Machine simulation	\bigcirc	\times (Note 1)	
	Gain search function	\bigcirc	\times (Note 1)	
	Adaptive vibration suppression control	\bigcirc	O (Note 1, 2)	For details, refer to "9.2 (8) Adaptive vibration suppression control function" in this section.

Note 1. This is available for the MR-J4-_B_-RJ020 servo amplifiers with software version A9 or later.
2. Enabling the adaptive vibration suppression control of [Pr. 25] of a servo amplifier with software version A8 or earlier will cause [AL. 37 Parameter error].
Manually set [Pr. 18] Machine resonance suppression filter 1.

POINT

OThe MR-J4-_B_-RJ020 servo amplifier with software version A9 or later is compatible with adaptive vibration suppression control. Set [Pr. 25] of the MR-J4-_B_-RJ020 servo amplifier with software version A8 or earlier, to "00 \qquad " (Adaptive vibration suppression control disabled). When using adaptive vibration suppression control with the MR-J2S_-B_ servo amplifier, manually set [Pr. 18] Machine resonance suppression filter 1 using the machine analyzer function of MR Configurator.
Setting [Pr. 25] to "1__ ", "_ 1 _ _", or "_ 2 _ _" for the MR-J4-_B_-RJ020 servo amplifier with software version A8 or earlier will cause [AL. 37 Parameter error]. Setting [Pr. 25] to "1__ " or "_ 2^{2} _-" for the MR-J4-_B_-RJ020 servo amplifier with software version A9 or later will cause [AL. 37 Parameter error]. The fully closed loop system is enabled only in J2S compatibility mode.
The fully closed loop system function can be used for servo amplifiers or drive units with the following software versions.

- A4 or later for 7 kW or less
- A6 or later for 11 kW or more

On the fully closed loop system, the following cable can be used for the servo motor encoder:

- Two-wire type for software version A4 or later
- Two-wire and four-wire types for software version A6 or later

3. SYSTEM CONFIGURATION

Note 1. While the SSCNET connector CN10A and CN10B use the same D-sub connector as MR-J2S-_B_, the RS-232C connector uses a mini D-sub connector. Therefore, the MR-J4T20CH00 junction cable is used to connect to a conventional cable (MRCPCATCBL3M).
2. DIO (DI: one point; DO: one point; ABZ output; Monitor output) uses CN3 of MR-J4. RS-232C is connected using CN30 of MR-J4-T20.
3. Use MR-J3CH00 or SC-J2SJ4ENC03M (manufactured by Mitsubishi Electric System \& Service Co., Ltd.).
4. The application "MR-J4(W)-B Change mode" or "MR Mode Change" through USB communication function of the servo amplifier is necessary for using the MR-J4-_B_-RJ020 in J4/J3 convertible mode. It is not necessary when using MR-J4-_B_-RJ020 in J2S compatible mode.
The application "MR-J4(W)-B Change mode" or "MR Mode Change" are available with MR Configurator2 Version 1.27D and later.
5. When a servo amplifier other than MR-J2S-_B_series, MR-J2M-B series and MR-J2-03B5 is used with a controller, the MR-J4-_B_-RJ020 + MR-J4-T20 SSCNET conversion unit cannot be used.

POINT
For large capacity of 30 kW or more, the position of PN terminal is different, so also change the converter unit when replacing MR-J2S-_B_.

4. I/O SIGNAL CONNECTION EXAMPLE

POINT

The forced stop switch is not required for the servo system controllers A171SH, A172SH, A173UH, and A273UH. Set [Pr. 23] to " \qquad 1h (Disabled)" for these models.

Note 1. To prevent electric shock, always connect the protective earth (PE) ($(-)^{-}$terminal (marked) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Do not mistake the diode direction. If connected the other way round, the servo amplifier will malfunction and no signal will be output. Also, the protection circuits of EM1 (forced stop), etc., may not operate.
3. If the controller does not have the emergency stop function, make sure to install the forced stop switch (contact B).
4. At the time of operation, make sure to turn on EM1 (forced stop). (Normally closed contact)
5. Use the MRZJW3-SETUP161E.
6. The SSCNET cable varies according to the controller or servo amplifier that is connected in front and back. Use the following table as a guide for choosing the SSCNET cable. When a servo amplifier other than MR-J2S-_B_series, MR-J2M-B series and MR-J2-03B5 is used with a controller, the MR-J4-_B_-RJ020 + MR-J4-T20 SSCNET conversion unit cannot be used.

		MR-J4-_B_-RJ020 + MR-J4-T20
QD75M		MR-J2HBUS_M
A1SD75M		MR-J2HBUS_M-A
Motion Controller	Q172CPU(N)	Q172J2BCBL_M(-B)
	Q173CPU(N)	Q173J2B_CBL_M
	A171SHCPU (N), A172SHCPU (N), A173UHCPU, A273UHCPU	MR-J2HBUS_M-A
MR-J2S-_B_/MR-J2-03B5 MR-J4- B -RJ020 + MR-J4-T20		MR-J2HBUS_M

7. The second and subsequent connections of servo amplifier are omitted.
8. Up to 8 axes ($\mathrm{n}=1$ to 8) can be connected.
9. The CN1 and the CN1B cannot be used in J2S compatible mode. Make sure to cap the CN1A and the CN1B connectors.
10. Supply $24 \mathrm{~V} D C \pm 10 \%$ from an external power supply for the interface. Capacity of these power supplies should be 100 mA in total. For convenience, the power supply of $24 \mathrm{~V} D C$ for input signals and output signals are stated separately, it can be configured by one.
11. A signal with the same name is connected inside the servo amplifier.
12. In order to prevent unexpected restarting of the servo amplifier, configure the circuit so that EM1 is also turned off when the main circuit power supply is turned off.
13. The STO functions cannot be used in J2S compatible mode. Make sure to install the short-circuit connector supplied with the servo amplifier.
14. Make sure to install the terminal connector (MR-A-TM) on the CN10B of the final servo amplifier.
15. Use the SSCNET cable with the total extension of 30 m or less. It is recommended to use cable clamps and data line filters (3 to 4 connected in series) near the connector pullout of the controller to enhance noise immunity.
16. When using the external dynamic brake with the servo amplifier of 11 kW or more, enable DB (Dynamic brake interlock) by setting [Pr.2] to "_1_ _".

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

5. PARAMETERS

POINT

The servo amplifier is recognized as MR-J2S by the controller.
However, for some parameters, changes to the program or the parameters are required as necessary.

The parameters shown in this chapter are a minimum number of parameters that need to be set for replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set.
For details of the parameters, refer to the "Conversion Unit for SSCNET of MR-J2S-_B_Compatible AC Servo MR-J4-_B_-RJ020/MR-J4-DU_B_-RJ020/MR-CR55K_/MR-J4-T20 SERVO AMPLIFIER INSTRUCTION MANUAL".
(1) When using adaptive vibration suppression control

Refer to "9.2 (8) Adaptive vibration suppression control function" in this section.
(2) Changing the load to motor inertia ratio

Refer to "9.2 (7) Changing the load to motor inertia ratio" in this section.

6. RS-232C COMMUNICATION CABLE

This section indicates the cable connecting the MR-J4-T20 and a personal computer through RS-232C communication. The RS-232C communication cable consists of the following two cables.

Cable model	Cable length	Product name
MR-J4T20CH00	0.2 m	Junction cable for RS-232C
MR-CPCATCBL3M	3 m	Personal computer communication cable (RS-232C cable)

(1) Connection of MR-J4-T20 to a personal computer

(2) MR-J4T20CH00
(a) Cable specifications

Cable model	1) MR-J4-T20 side connector	2) Junction connector
MR-J4T20CH00	Connector: HDR-E14MG1+ Connector case: HDR-E14LPA5 (Honda Tsushin Kogyo) View seen from wiring side. (Note) Note. Do not connect anything to the pins shown as \square	Connector: 10220-0200EL Connector case: 10320-E2W0-008 (3M) View seen from wiring side. (Note) Note. Do not connect anything to the pins shown as \qquad

7. LIST OF SERVO MOTOR COMBINATIONS AND SOFTWARE VERSIONS

(1) HC-_FS series/HA-_FS series

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Servo amplifier model	Servo amplifier software version (Note)	
			J4 mode	J2S compatibility mode
HC-KFS series	HC-KFS053	MR-J4-10B-RJ020	A0 or later	A0 or later
		MR-J4-10B1-RJ020	A2 or later	A2 or later
	HC-KFS13	MR-J4-10B-RJ020	A0 or later	A0 or later
		MR-J4-10B1-RJ020	A2 or later	A2 or later
	HC-KFS23	MR-J4-20B-RJ020	A0 or later	A0 or later
		MR-J4-20B1-RJ020	A2 or later	A2 or later
	HC-KFS43	MR-J4-40B-RJ020	A0 or later	A0 or later
		MR-J4-40B1-RJ020	A2 or later	A2 or later
	HC-KFS73	MR-J4-70B-RJ020	A0 or later	A0 or later
HC-KFS high-speed rotation series	HC-KFS46	MR-J4-70B-RJ020	A0 or later	A0 or later
	HC-KFS410	MR-J4-70B-RJ020	A0 or later	A0 or later
HC-MFS series	HC-MFS053	MR-J4-10B-RJ020	A0 or later	A0 or later
		MR-J4-10B1-RJ020	A2 or later	A2 or later
	HC-MFS13	MR-J4-10B-RJ020	A0 or later	A0 or later
		MR-J4-10B1-RJ020	A2 or later	A2 or later
	HC-MFS23	MR-J4-20B-RJ020	A0 or later	A0 or later
		MR-J4-20B1-RJ020	A2 or later	A2 or later
	HC-MFS43	MR-J4-40B-RJ020	A0 or later	A0 or later
		MR-J4-40B1-RJ020	A2 or later	A2 or later
	HC-MFS73	MR-J4-70B-RJ020	A0 or later	A0 or later
HC-LFS series	HC-LFS52	MR-J4-60B-RJ020	A0 or later	A0 or later
	HC-LFS102	MR-J4-100B-RJ020	A0 or later	A0 or later
	HC-LFS152	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-LFS202	MR-J4-350B-RJ020	A0 or later	A0 or later
	HC-LFS302	MR-J4-500B-RJ020	A0 or later	A0 or later
HC-SFS 1000 r/min series	HC-SFS81	MR-J4-100B-RJ020	A0 or later	A0 or later
	HC-SFS121	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-SFS201	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-SFS301	MR-J4-350B-RJ020	A0 or later	A0 or later
HC-SFS 2000r/min series	HC-SFS52	MR-J4-60B-RJ020	A0 or later	A0 or later
	HC-SFS102	MR-J4-100B-RJ020	A0 or later	A0 or later
	HC-SFS152	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-SFS202	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-SFS352	MR-J4-350B-RJ020	A0 or later	A0 or later
	HC-SFS502	MR-J4-500B-RJ020	A0 or later	A0 or later
	HC-SFS702	MR-J4-700B-RJ020	A0 or later	A0 or later
	HC-SFS524	MR-J4-60B4-RJ020	A0 or later	A0 or later
	HC-SFS1024	MR-J4-100B4-RJ020	A0 or later	A0 or later
	HC-SFS1524	MR-J4-200B4-RJ020	A0 or later	A0 or later
	HC-SFS2024	MR-J4-200B4-RJ020	A0 or later	A0 or later
	HC-SFS3524	MR-J4-350B4-RJ020	A0 or later	A0 or later
	HC-SFS5024	MR-J4-500B4-RJ020	A0 or later	A0 or later
	HC-SFS7024	MR-J4-700B4-RJ020	A0 or later	A0 or later
HC-SFS 3000 r/min series	HC-SFS53	MR-J4-60B-RJ020	A0 or later	A0 or later
	HC-SFS103	MR-J4-100B-RJ020	A0 or later	A0 or later
	HC-SFS153	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-SFS203	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-SFS353	MR-J4-350B-RJ020	A0 or later	A0 or later

Note. These servo motors support J4 mode/J2S compatibility mode. J3 compatibility mode is not supported.

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Servo amplifier model	Servo amplifier software version (Note)	
			J4 mode	J2S compatibility mode
HC-RFS series	HC-RFS103	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-RFS153	MR-J4-200B-RJ020	A0 or later	A0 or later
	HC-RFS203	MR-J4-350B-RJ020	A0 or later	A0 or later
	HC-RFS353	MR-J4-500B-RJ020	A1 or later	A1 or later
	HC-RFS503	MR-J4-500B-RJ020	A0 or later	A0 or later
HA-LFS 1000 r/min series	HA-LFS601	MR-J4-700B-RJ020	B5 or later	B2 or later
	HA-LFS801	MR-J4-11KB-RJ020	Not compatible	Not compatible
	HA-LFS12K1	MR-J4-11KB-RJ020	B5 or later	B4 or later
	HA-LFS15K1	MR-J4-15KB-RJ020	B5 or later	B4 or later
	HA-LFS20K1	MR-J4-22KB-RJ020	Not compatible	Not compatible
	HA-LFS25K1	MR-J4-22KB-RJ020	B5 or later	B4 or later
	HA-LFS6014	MR-J4-700B4-RJ020	Not compatible	Not compatible
	HA-LFS8014	MR-J4-11KB4-RJ020	B5 or later	B0 or later
	HA-LFS12K14	MR-J4-11KB4-RJ020	Not compatible	Not compatible
	HA-LFS15K14	MR-J4-15KB4-RJ020	Not compatible	Not compatible
	HA-LFS20K14	MR-J4-22KB4-RJ020	Not compatible	Not compatible
HA-LFS 1500 r/min series	HA-LFS701M	MR-J4-700B-RJ020	Not compatible	Not compatible
	HA-LFS11K1M	MR-J4-11KB-RJ020	B5 or later	A9 or later
	HA-LFS15K1M	MR-J4-15KB-RJ020	B5 or later	B4 or later
	HA-LFS22K1M	MR-J4-22KB-RJ020	B5 or later	B4 or later
	HA-LFS701M4	MR-J4-700B4-RJ020	Not compatible	Not compatible
	HA-LFS11K1M4	MR-J4-11KB4-RJ020	B5 or later	B3 or later
	HA-LFS15K1M4	MR-J4-15KB4-RJ020	B5 or later	B2 or later
	HA-LFS22K1M4	MR-J4-22KB4-RJ020	B5 or later	B2 or later
HA-LFS 2000 r/min series	HA-LFS502	MR-J4-500B-RJ020	A0 or later	A0 or later
	HA-LFS702	MR-J4-700B-RJ020	A0 or later	A0 or later
	HA-LFS11K2	MR-J4-11KB-RJ020	A1 or later	A1 or later
	HA-LFS15K2	MR-J4-15KB-RJ020	A1 or later	A1 or later
	HA-LFS22K2	MR-J4-22KB-RJ020	A1 or later	A1 or later
	HA-LFS11K24	MR-J4-11KB4-RJ020	A5 or later	A5 or later
	HA-LFS15K24	MR-J4-15KB4-RJ020	A5 or later	A5 or later
	HA-LFS22K24	MR-J4-22KB4-RJ020	A5 or later	A5 or later
HC-UFS 2000 r/min series	HC-UFS72	MR-J4-70B-RJ020	A1 or later	A1 or later
	HC-UFS152	MR-J4-200B-RJ020	A1 or later	A1 or later
	HC-UFS202	MR-J4-350B-RJ020	A1 or later	A1 or later
	HC-UFS352	MR-J4-500B-RJ020	A1 or later	A1 or later
	HC-UFS502	MR-J4-500B-RJ020	A1 or later	A1 or later
HC-UFS 3000 r/min series	HC-UFS13	MR-J4-10B-RJ020	A0 or later	A0 or later
	HC-UFS23	MR-J4-20B-RJ020	A0 or later	A0 or later
	HC-UFS43	MR-J4-40B-RJ020	A0 or later	A0 or later
	HC-UFS73	MR-J4-70B-RJ020	A0 or later	A0 or later

Note. These servo motors support J4 mode/J2S compatibility mode. J3 compatibility mode is not supported.
[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Converter unit model	Servo amplifier model	Servo amplifier software version (Note)	
				J4 mode	J2S compatibility mode
HA-LFS 1000 r/min series	HA-LFS30K1	MR-CR55K	MR-J4-DU30KB-RJ020	Not compatible	Not compatible
	HA-LFS37K1		MR-J4-DU37KB-RJ020	Not compatible	Not compatible
	HA-LFS25K14	MR-CR55K4	MR-J4-DU30KB4-RJ020	Not compatible	Not compatible
	HA-LFS30K14		MR-J4-DU30KB4-RJ020	Not compatible	Not compatible
	HA-LFS37K14		MR-J4-DU37KB4-RJ020	Not compatible	Not compatible
HA-LFS 1500 r/min series	HA-LFS30K1M	MR-CR55K	MR-J4-DU30KB-RJ020	Not compatible	Not compatible
	HA-LFS37K1M		MR-J4-DU37KB-RJ020	Not compatible	Not compatible
	HA-LFS30K1M4	MR-CR55K4	MR-J4-DU30KB4-RJ020	B5 or later	B0 or later
	HA-LFS37K1M4		MR-J4-DU37KB4-RJ020	Not compatible	Not compatible
	HA-LFS45K1M4		MR-J4-DU45KB4-RJ020	A4 or later	A4 or later
	HA-LFS50K1M4		MR-J4-DU55KB4-RJ020	Not compatible	Not compatible
HA-LFS 2000 r/min series	HA-LFS30K2	MR-CR55K	MR-J4-DU30KB-RJ020	A4 or later	A4 or later
	HA-LFS37K2		MR-J4-DU37KB-RJ020	A4 or later	A4 or later
	HA-LFS30K24	MR-CR55K4	MR-J4-DU30KB4-RJ020	A4 or later	A4 or later
	HA-LFS37K24		MR-J4-DU37KB4-RJ020	A4 or later	A4 or later
	HA-LFS45K24		MR-J4-DU45KB4-RJ020	A4 or later	A4 or later
	HA-LFS55K24		MR-J4-DU55KB4-RJ020	A4 or later	A4 or later

Note. These servo motors support J4 mode/J2S compatibility mode. J3 compatibility mode is not supported.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(2) List of servo motor combinations and S/W versions for HC-_F series servo motor

POINT

Servo motors of this series can be driven only in the "J2S compatibility mode". When the "MR-J4-T20" unit is removed and servo amplifiers are used in the "J4 mode", servo motors of this series need to be replaced.

Servo motor series name	Servo motor model (Including models with gear reducers/brakes)	Servo amplifier model	Optional unit model	Servo amplifier software version (Note)		
				J4 mode	J2S compatibility mode	
HC-MF 3000 r/min series	HC-MF053	MR-J4-10B-RJ020	MR-J4-T20	Not compatible	A6 or later	
	HC-MF13			Not compatible	A6 or later	
	HC-MF23	MR-J4-20B-RJ020		Not compatible	A6 or later	
	HC-MF43	MR-J4-40B-RJ020		Not compatible	A6 or later	
	HC-MF73	MR-J4-70B-RJ020		Not compatible	A6 or later	
HC-SF 1000 r/min series	HC-SF81	MR-J4-100B-RJ020		Not compatible	A6 or later	
	HC-SF121	MR-J4-200B-RJ020		Not compatible	A6 or later	
	HC-SF201			Not compatible	A6 or later	
	HC-SF301	MR-J4-350B-RJ020		Not compatible	A6 or later	
HC-SF 2000 r/min series	HC-SF52	MR-J4-60B-RJ020		Not compatible	A6 or later	
	HC-SF102	MR-J4-100B-RJ020		Not compatible	A6 or later	
	HC-SF152	MR-J4-200B-RJ020		Not compatible	A6 or later	
	HC-SF202			Not compatible	A6 or later	
	HC-SF352	MR-J4-350B-RJ020		Not compatible	A6 or later	
HC-SF 3000 r/min series	HC-SF53	MR-J4-60B-RJ020		Not compatible	A6 or later	
	HC-SF103	MR-J4-100B-RJ020		Not compatible	A6 or later	
	HC-SF153	MR-J4-200B-RJ020		Not compatible	A6 or later	
	HC-SF203			Not compatible	A6 or later	
	HC-SF353	MR-J4-350B-RJ020		Not compatible	A6 or later	
HC-KF series				Not compatible	Not compatible	
HA-FF series						
HC-RF series						
HC-UF $2000 \mathrm{r} / \mathrm{min}$ series						
HC-UF $3000 \mathrm{r} / \mathrm{min}$ series						

Note. When a servo amplifier other than MR-J2S_-B_ series, MR-J2M-B series, or MR-J2-03B5 is used with a controller, the MR-J4-
B-RJ020 + MR-J4-T20 SSCNET conversion unit cannot be used.

8. LIST OF COMBINATIONS AND SOFTWARE VERSIONS FOR SERVO SYSTEM CONTROLLERS

The table 8.1 lists servo system controllers that can be used in combination with MR-J4-_B_-RJ020 + MR-J4-T20.

Table 8.1 List of applicable servo system controllers

Model	Servo system controller model	Compatible network	Servo amplifier software version
Motion controller	Q172CPU(N)(-T)	SSCNET	A0 or later (Note 3)
	Q173CPU(N)(-T)		
	A171SHCPU(N) (Note 1)		A0 or later
	A172SHCPU(N) (Note 1)		
	A173UHCPU(-S1) (Note 1)		
	A273UHCPU(-S3) (Note 1)		
Positioning module	QD75M		
	A1SD75M (Note 2)		
	AD75M (Note 2)		A2 or later
	AD778M/AD774M		Not compatible
	A1SD778M/A1SD774M		
Position board			
	MR-MC10	SSCNET II	A2 or later
	MR-MC30		
Interface board	MR-MCF30		
	MR-MCF10		A6 or later

Note 1. For versions of the OS that supports MR-J4-_B_-RJ020, refer to table 8.2.
2. [Pr. 100 servo series] of the controller has no setting value corresponding to the MR-J2S-B or the selection of "MRJ2S__B_" is Not compatible in the GX Configurator-AP screen. Set "MR-J2-_B_" for [Pr. 100 servo series].
3. SV54 is compatible with the servo amplifier's software version A2 or later.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

Table 8.2 Versions of motion controller OS that support MR-J4-_B_-RJ020

Controller model	OS model	OS version
Q172CPU(N)(-T)	SW6RN-SV13QD	First edition or later
	SW6RN-SV22QC	
	SW5RN-SV43QC	
	SW5RN-SV54QD	
Q173CPU(N)(-T)	SW6RN-SV13QB	
	SW6RN-SV22QA	
	SW5RN-SV43QA	
	SW5RN-SV54QB	
A171SHCPU(N)	SW0SRX-SV13G	AF or later
	SW0SRX-SV22F	
	SW0SRX-SV43F	T or later
A172SHCPU(N)	SW3RN-SV13D	r
	SW3RN-SV22C	
	SW0SRX-SV13D	AF or later
	SW0SRX-SV22C	
	SW0SRX-SV43C	T or later
A173UHCPU(-S1)	SW3RN-SV13B	G or later
	SW3RN-SV22A	
	SW2SRX-SV13B	AF or later
	SW2SRX-SV22A	
	SW2SRX-SV43A	T or later
A273UHCPU	SW2SRX-SV13V	AF or later
	SW2SRX-SV22U	
	SW2SRX-SV43U	T or later
A273UHCPU-S3	SW3RN-SV13X	G or later
	SW3RN-SV22W	

Table 8.3 Peripheral software versions of motion controllers that support MR-J4-B-RJ020

Peripheral software model		Peripheral software version
Windows edition	SW6RNC-GSV	First edition or later
	SW3RNC-GSV	G or later
DOS edition	SW2SRX-GSV13P	AD or later
	SW2SRX-GSV22P	
	SW2SRX-GSV43P	T or later

9. SAFETY PRECAUTIONS

9.1 Replacing MR-J2S-_B_Servo Amplifier with MR-J4-_B_-RJ020 Servo Amplifier

Note the following when replacing the MR-J2S-_B_ servo amplifier with the MR-J4-_B_-RJ020 servo amplifier.
(1) The capacity of mounting holes differs. For compatibility of mounting holes, refer to "[Appendix 1] 11.1 Comparison of Dimensions".
(2) The dimensions of the MR-J4-_B_-RJ020 servo amplifier combined with MR-J4-T20 may be larger than the MR-J2S-_B_ servo amplifier. Refer to "[Appendix 1] 11.1 Comparison of Dimensions".
(3) The wire size may differ from that of the MR-J2S_-B_ servo amplifier. Refer to "Part 9: Review on Replacement of Optional Peripheral Equipment 4. Wire Size".
(4) If the HG series servo motor is used in J2S compatible mode, the encoder resolution per rotation of the servo motor is not 4194304 pulses/rev (22 bit) but becomes 131072 pulses/rev (17 bit).
(5) When using the HG series servo motor at the maximum torque, set the torque limit to 500% on the servo system controller. When setting the maximum torque in test operation mode, change the setting of [Pr. 10 Forward rotation torque limit] and [Pr. 10 Reverse torque limit] to 500 \%.
(6) Operation without motor through the setup software (SETUP161E) cannot be used. When operating motor, set [Pr. 24] to "_ 1 _ _".
(7) When using [Pr. 13 Position control gain 1] of the MR-J4-_B_-RJ020 servo amplifier and the MR-J2S_B_ servo amplifier together in interpolation mode, etc., check the droop pulses of each shaft and readjust the gain as necessary.
(8) The MR-J4-_B_-RJ020 servo amplifier with software version A9 or later is compatible with adaptive vibration suppression control. Set [Pr. 25] of the MR-J4-_B_-RJ020 servo amplifier with software version A8 or earlier, to " 00 _ _" (Adaptive vibration suppression control disabled). When using adaptive vibration suppression control with the MR-J2S_-B_ servo amplifier, manually set [Pr. 18] Machine resonance suppression filter 1 using the machine analyzer function of MR Configurator. Setting [Pr. 25] to "1__ ", "_ 1 __", or "_2 _ " for the MR-J4-_B_-RJ020 servo amplifier with software version A8 or earlier will cause [AL. 37 Parameter error]. Setting [Pr. 25] to "1___" or "_2 _ _" for the MR-J4-_B_-RJ020 servo amplifier with software version A9 or later will cause [AL. 37 Parameter error].
(9) The connector for SSCNET cable connection cannot supply power to the encoder. When using with the absolute position sensor detection system, make sure to connect the battery to the CN4 connector of the MR-J4-_B_-RJ020 servo amplifier.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(10) In this [Appendix 1], it only describes the encoder cable and the regenerative option for connecting the HC-_FS series and the HA__FS series servo motors to the MR-J4-_B_-RJ020 servo amplifier. For details of the options for the servo amplifier, refer to Chapter 11 of the "MR-J4-_B_-RJ020 MR-J4-T20 Servo Amplifier Instruction Manual". For options for the HC__FS series and the HA__FS series servo motors, refer to "MR-J2S-_B Servo Amplifier Instruction Manual (SH(NA)030007)" and "MELSERVO Servo Motor Instruction Manual (SH(NA)3181)".

POINT

When using servo motors of the HA_FS and the HC_FS series together, "regeneration option" and "external dynamic brake unit" can be used with the products used in MR-J2S-_B_.
To change to the HG series servo motor, change "regeneration option" and "external dynamic brake unit" after referring to the instruction manual for MR-J4_B_.
OFor 1-phase 200 V AC to 240 V AC , connect the power supply to L1 and L3. The connection destination is different from that of the MR-J2S series servo amplifier. When replacing the MR-J2S with the MR-J4, make sure that the connection destination is correct.
When using (HA-LFS series) servo motors that have thermal terminals and not connecting thermal signals to the MR-J4 servo amplifier, set [Pr. 58] to " \qquad 1h (Disabled)".
The overheat protection of a servo motor is not enabled. Configure a protective circuit.

OThe initializing time (the time taken from power-on to reception of servo-on) after power-on of the MR-J2S-_B_ servo amplifier and MR-J4-_B_-RJ020 servo amplifier becomes as follows.

- MR-J2S-_B_: (up to 3 s)
- MR-J4-_B_-RJ020: (up to 4 s)

Therefore, note the following when replacing the MR-J2S-_B_ servo amplifier with the MR-J4-_B_-RJ020 servo amplifier.

- When using the electromagnetic brake to prevent a drop in a vertical lift application or the like with an external timer to adjust the brake release time, the lift may drop due to a longer servo-lock time. Adjust the brake release time as necessary or use MBR (electromagnetic brake interlock).
- The time taken from power-on to operation of the servo motor may become longer.
The signal arrays of the connectors for CN3 differ between the MR-J4-_B_-RJ020 and the MR-J2S-_B_. Refer to the table below.

CN3 connector Pin number	Abbreviation		Note when replacing from the MR-J2S-_B_
	MR-J2S-_B	MR-J4-_B_-RJ020	
2	RXD		For manufacturer setting. Do not connect anything to these. Connect the RXD to the CN30 connector (13 pin) of the MR-J4T20.
3	SG	DOCOM	An external 24 V DC power supply is required for the interface. Change the wiring as necessary.
5	COM	DICOM	
10	VDD	DICOM	
12	TXD		For manufacturer setting. Do not connect anything to these. Connect the TXD to the CN30 connector (14 pin) of the MR-J4-T20.

The electronic dynamic brake operates in the initial state for the HG series servo motors with a 600 W or smaller capacity. The time constant " τ " for the electronic dynamic brake will be shorter than that for normal dynamic brake. Therefore, coasting distance will be shorter than in normal dynamic brake. To set the electronic dynamic brake, refer to [Pr. 39] and [Pr. 56].

POINT
When the power is turned on, voltage, analog monitor output voltage and output
signal may become unstable.

9.2 Differences with the MR-J2S Series

(1) Differences with the MR-J2S Series

	Item	MR-J2S series	MR-J4-_B_-RJ020 + MR-J4-T20 series
1	Dynamic brake	Built-in (0.1 kW to 7 kW) External (11 kW to 55 kW)	Built-in (0.1 kW to 7 kW) External (11 kW to 55 kW) Coasting distance is different.
2	Control circuit power	(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase 200 V AC to 230 V AC (400 V class) 24 V DC (up to 7 kW) 1-phase 380 V AC to 480 V AC (11 kW to 55 kW)	$\begin{aligned} & \text { (100 V class) } \\ & \text { 1-phase } 100 \mathrm{~V} \text { AC to } 120 \mathrm{~V} \mathrm{AC} \\ & \text { (200 V class) } \\ & \text { 1-phase } 200 \mathrm{~V} \text { AC to } 240 \mathrm{~V} \mathrm{AC} \\ & \text { (400 V class) } \\ & \text { 1-phase } 380 \mathrm{~V} \mathrm{AC} \mathrm{to} 480 \mathrm{~V} \mathrm{AC} \end{aligned}$
3	Main circuit power	```(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase 230 V 3-phase 200 V AC to 230 V AC (up to 750 W) 3-phase 200 V AC to 230 V AC (1 kW to 37 kW) (400 V class) 3-phase 380 V AC to 480 V AC```	```(100 V class) 1-phase 100 V AC to 120 V AC (200 V class) 1-phase/3-phase 200 V AC to 240 V AC (to 750 W) 3-phase 200 V AC to 240 V AC (1 kW to 37 kW) (400 V class) 3-phase 380 V AC to 480 V AC```
4	24 V DC power	Built-in	External supply required
5	Auto Tuning	Real-time auto tuning: 15 steps	Real-time auto tuning: 40 steps One-touch tuning
6	Control mode	SSCNET interface - Position control mode - Speed control mode	SSCNET III/H interface - Position control mode • Speed control mode - Torque control mode
7	The number of DIO points (excluding EM1)	SSCNET interface DI: 0 points; DO:2 points	SSCNETIII/H interface DI: 3 points; DO: 3 points
8	DIO interface	Input: Sink/source Output: Sink	Input: Sink/source Output: Sink/source
9	Analog input/output	SSCNET interface (Output) 10-bit or equivalent $\times 2$ ch	SSCNETIII/H interface (Output) 10-bit or equivalent $\times 2$ ch
10	Parameter setting method	Setup software (SETUP161E)	Setup software (SETUP161E)
11	Setup software communication function	RS-232C	RS-232C (CN30 connector)
12	Servo motor (Encoder resolution)	HC-_FS series (17-bit ABS) HA-_FS series (17-bit ABS)	HG series (17-bit ABS)
13	Motor maximum torque	HC-KFS 300\%	HG-KR 350\% (gear reducer: 300\%)
		HC-MFS 300\%	HG-MR 300\%
		HC-SFS 300\%	HG-SR 300\%
		HA-LFS 250\%,300\%	HG-JR 300\%
		HC-RFS 250\%	HG-RR 250\%
		HC-UFS 300\%	HG-UR 300\%
14	LED display	(MR-J2S-_B_) 7-segment 2-digit	(MR-J4-_B_) 7-segment 3-digit
15	Notch filter	Specified	Specified
16	Tough drive	Unprovided	Unprovided
17	Drive recorder	Unprovided	Unprovided
18	Forced stop	EM1 (DB stop)	Select EM1 (DB stop)/EM2 (deceleration to a stop)
Note \quad Functions with d		fference are shown with shading.	

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(2) Startup in the absolute position detection system
[AL. 25 Absolute position erased] occurs when switching the power on for the first time, but that is not a malfunction. When an alarm occurs, the alarm can be canceled by shutting off the power after leaving the power on for a few minutes with the alarm being issued. If power is switched on with the servo motor operated at the speed of $500 \mathrm{r} / \mathrm{min}$ or higher, position mismatch may occur due to external force. Power must therefore be switched on when the servo motor is stopped.

POINT

- There are two kinds of batteries to use when configuring absolute position detection system: one is the MR-BAT6V1SET battery and the other is the MRBAT6V1BJ battery for battery extension cable. When using the MR-BAT6V1BJ battery for battery extension cable, it has the following features compared to the MR-BAT6V1SET battery.
- The encoder cable can be removed from the servo amplifier.
- The battery can be replaced with the control circuit power supply turned off.

OWhen the encoder loses the absolute position data, make sure to operate after setting the home position. The encoder loses the absolute position data in the following cases. It may also lose the absolute position data when the battery is used outside the specified range. When the MR-BAT6V1SET battery is used

- Removed the encoder cable.
- Replaced the battery with the control circuit power switched off. When the battery for the MR-BAT6V1BJ battery extension cable is used
- Removed the connector and the cable between the servo motor and the battery.
OThe battery for the MR-BAT6V1BJ battery extension cable only supports the HG series servo motor.
The connector for the SSCNET cable connection cannot supply power to the encoder. When using with the absolute position sensor detection system, make sure to connect the battery to the CN4 connector of the servo amplifier.
(3) MR-BAT6V1SET battery specifications

Refer to the following table for items that differ from when using an HG series servo motor.

Item	Description
Maximum speed at power failure [r/min]	500
Battery backup time	Approximately $10,000 \mathrm{~h}$
	(equipment power supply: off; ambient temperature: $20^{\circ} \mathrm{C}$)

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(4) Confirmation of absolute position detection

POINT
-When using the setup software (SETUP161E) with the MR-J4-_B_-RJ020 servo amplifier, select "Setup" - "System settings" and set the "Model selection" to "MR-J2S-_B_".

The absolute position data can be confirmed from the setup software (SETUP161E).
Select "Diagnosis" - "Display ABS data" and open the absolute position data display screen.

(5) Connection of battery

Connect the battery as shown in the following diagram.

(6) Gain adjustment

When using [Pr. 13 Position control gain 1] of the MR-J4-_B_-RJ020 servo amplifier and the MR-J2S-_B_ servo amplifier together in interpolation mode, etc., check the accumulated pulses of each axis and readjust the gain as necessary.
(7) Changing the load to motor inertia ratio

> POINT

OThe software version A6 or later supports the "load to motor inertia ratio" function.
OWhen the "load to motor inertia ratio" function is enabled, always check the setting value of [Pr. 35].
If a proper value has not been set in [Pr. 35], the servo motor may operate unexpectedly.

When the moment of inertia of a servo motor is changed due to replacement of the MR-J2S series servo motor (HC_-FS/HA__FS series) with the MR-J4 series servo motor (HG series), the load to motor inertia ratio needs to be changed to a proper value.
Change the load to motor inertia ratio with one of the following methods 1) and 2). Check that operation can be performed normally after the setting with one of the methods. If a problem such as vibration occurs, manually set the load to motor inertia ratio 3).

1) Setting by auto tuning

After replacing servo motors, perform auto tuning in the mode in which the load to motor inertia ratio is estimated by setting [Pr. 8 Auto tuning]. For details, refer to Section 6.2 "Auto tuning" of "Conversion Unit for SSCNET of MR-J2S-B Compatible AC Servo MR-J4-_B_-RJ020/MR-J4-DU_B_-RJ020/MR-CR55K_/MR-J4-T20 SERVO AMPLIFIER INSTRUCTION MANUAL". When using the gain switching function, change [Pr. 52 Load to motor inertia ratio 2] as necessary.
2) Setting with the parameter for the load to motor inertia ratio (software version A6 or later) When auto tuning is not performed or only the load to motor inertia ratio is changed, the load to motor inertia ratio can be changed by setting the parameter for the load to motor inertia ratio. To set the load to motor inertia ratio, set "_ ${ }^{\prime} 1$ " in [Pr. 59 Option function B] and set the ratio calculated by dividing the moment of inertia of the servo motor before replacement by the moment of inertia of the servo motor after replacement in [Pr. 35 Load to motor inertia ratio] in percentage.

Example) When a HC-KFS053 motor is replaced with a HG-KR053 motor, set "_ _ 1 " in [Pr. 59 Option function B] and 118 in [Pr. 35 Load to motor inertia ratio].

$$
\begin{aligned}
\operatorname{Pr} .35 & =\frac{\text { Moment of inertia before replacemen } t}{\text { Moment of inertia after replacemen } \mathrm{t}} \times 100[\%] \\
& =\frac{\text { Moment of inertia for HC }- \text { KFS053 }}{\text { Moment of inertia for HG }- \text { KR053 }} \times 100 \\
& =\frac{0.053 \times 10^{-4}}{0.0450 \times 10^{-4}} \times 100=118
\end{aligned}
$$

* The load to motor inertia ratio function is enabled when the value of [Pr. 8 Auto tuning] is 2,3 , or 4 . The load to motor inertia ratio function is disabled when the value of [Pr. 8 Auto tuning] is 0 or 1 . In this case, the ratio is not applied.
* For the moment of inertia of a servo motor, refer to the instruction manual of the servo motor used or Section 2.5 "Comparison of Moment of Inertia" in Part 8.
* The load to motor inertia ratio function changes the internal value of the load to motor inertia ratio using the ratio calculated by dividing the moment of inertia of the servo motor before replacement by the moment of inertia of the servo motor after replacement. The characteristics of the servo motor after replacement may not be the same as those of the servo motor before replacement only by changing the load to motor inertia ratio. If a problem occurs, manually set the load to motor inertia ratio 3).
* This function is not supported by geared servo motor.
* After GD2 ([Pr. 12]) is estimated by auto tuning, disable the load to motor inertia ratio function by setting [Pr. 59 Option function B] to "_ _ 0" and [Pr. 35 Load to motor inertia ratio] to 0.

No.	Symbol	Name and function	Initial value [Unit]	Setting range
35	TTT	Load to motor inertia ratio (load inertia ratio) Set the percentage of the load to the motor inertia ratio to the servo motor inertia moment (load inertia ratio). This setting can be enabled or disabled with [Pr. 59] (OPB). Setting [Pr. 59] (OPB) to " \quad _ 1 " enables this setting. When [Pr. 35] is "0 [\%]", the parameter for the load to motor inertia ratio is not enabled regardless of the setting of [Pr. 59].	$\begin{gathered} \hline 0 \\ {[\%]} \end{gathered}$	$\begin{gathered} 0 \text { to } \\ 65535 \end{gathered}$
59	*OPB	Option function B: Select a setting of the load to motor inertia ratio (load inertia ratio). Ratio selection for the load to motor inertia ratio (load inertia ratio) 0: Disabled The ratio setting of [Pr. 35] (TTT) is disabled. 1: Enabled The ratio setting of [Pr. 35] (TTT) is enabled. * Before enabling this function, check the setting value of [Pr. 35]. If a proper value has not been set in [Pr. 35], the motor may operate unexpectedly.	0000	$\begin{gathered} \text { 0000h } \\ \text { to } \\ 1111 \mathrm{~h} \end{gathered}$

3) Manual setting

If a problem occurs with the above 1) or 2), disable the load to motor inertia ratio function and manually adjust the gain value. For how to manually adjust the gain value, refer to section 6.3 "Manual mode 1" of "Conversion Unit for SSCNET of MR-J2S-B Compatible AC Servo MR-J4-_B_-RJ020/MR-J4-DU_B_-RJ020/MR-CR55K_/MR-J4-T20 SERVO AMPLIFIER INSTRUCTION MANUAL".
(8) Adaptive vibration suppression control function

POINT

The adaptive vibration suppression control function is supported by servo amplifier with software version A9 or later. (Enabling the adaptive vibration suppression control of [Pr. 25] of a servo amplifiers with software version A8 or earlier will cause [AL. 37 Parameter error].)
For the items not described in this Replacement Manual, refer to "MELSERVO-J4 series MR-J4-_B_-RJ020 Servo Amplifier Instruction Manual".

- The characteristics of the adaptive vibration suppression control differ from those for MR-J2S-_B_.
OWhen this function is used, [Pr. 61] "Machine resonance suppression filter 2" cannot be used.

Adaptive vibration suppression control is a function in which the servo amplifier detects mechanical resonance and sets filter characteristics automatically to suppress mechanical vibration.
Adaptive filter II (adaptive tuning) which is equivalent to that of MR-J4-_B_ is available for MR-J4-_B_RJ020 as the adaptive vibration suppression control function.
(a) Configuration of adaptive vibration suppression control function

Adaptive vibration suppression control consists of the following two functions.

- Adaptive filter II
- Vibration tough drive

At the initial setting, the adaptive filter II operates automatically and the machine resonance suppression filter is automatically estimated. After that, the vibration tough drive function measures the machine resonance variation and resets the setting value of the machine resonance suppression filter.
When the machine vibration does not stop after the vibration tough drive function resets the filter, readjust the setting with the adaptive filter II.
(b) Adaptive filter II

POINT

The machine resonance frequency which adaptive filter II (adaptive tuning) can respond to is about 100 Hz to 2.25 kHz . As for the resonance frequency out of the range, set manually.
OWhen adaptive tuning is executed, vibration sound increases as an excitation signal is forcibly applied for several seconds.

- When adaptive tuning is executed, machine resonance is detected for a maximum of 10 s and a filter is generated. After filter generation, the adaptive tuning mode automatically shifts to the manual setting.
Adaptive tuning generates the optimum filter with the currently set control gains.
-Adaptive vibration suppression control may provide no effect on a mechanical system which has complex resonance characteristics.
- This adaptive filter II (adaptive tuning mode) is different from the function of MR-J2S-_B_ and equivalent to that of MR-J4-_B_. Tuning accuracy can be set only in standard mode.

1) Operation

Adaptive filter II (adaptive tuning) is a function in which the servo amplifier detects machine resonance for a predetermined period of time and sets the filter characteristics automatically to suppress mechanical system vibration. Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious of the resonance frequency of a mechanical system.

When machine resonance is large and frequency is low

When machine resonance is small and frequency is high
(c) Vibration tough drive function

POINT

Resetting the machine resonance frequency by the vibration tough drive function is performed constantly. However, the number of write times to the EEP-ROM is limited to once per hour.
The vibration tough drive function does not detect a vibration of 100 Hz or less.
When the machine resonance does not stop after the vibration tough drive function resets the machine resonance frequency, perform the adaptive tuning again.

This function prevents vibration by resetting a filter instantaneously when machine resonance occurs due to varied vibration frequency caused by equipment aging.
The vibration tough drive function operates when a detected machine resonance frequency is within $\pm 30 \%$ for the machine resonance frequency estimated by the adaptive filter II function.
(d) Parameter

POINT

As the initial value, "Adaptive vibration suppression control selection" is set to "Disabled (_ 0 _ _)" in [Pr. 25].
OWhen "Adaptive vibration suppression control selection" is set to "Enabled (_1__)" in [Pr. 25] during servo-off, the adaptive filter II is executed after servo-on.
-When "Adaptive vibration suppression control selection" is set to "Enabled (_1_ _)" in [Pr. 25], the machine resonance frequency is reset by the vibration tough drive function. When the machine resonance does not stop after the resetting, execute the adaptive filter II again.

- Before replacing a servo amplifier which uses this function with other equipment, set "Adaptive vibration suppression control selection" to "Disabled (_ $0 _$_ $)$" in [Pr. 25] and clear the filter properties of the adaptive filter II.

The following shows the related parameters of the adaptive vibration suppression control function of MR-J4-_B_-RJ020.
For others, refer to "MELSERVO-J4 series MR-J4-_B_-RJ020 MR-J4-T20 Servo Amplifier Instruction Manual".

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

10. Alarm

10.1 Alarm/Warning List

When an error occurs during operation, an alarm or a warning is displayed. When an alarm or a warning occurs, take the proper action as described in the "MR-J4-_B_RJ020/MR-J4-T20 Servo Amplifier Instruction Manual".
After removing the cause of the alarm, the alarm can be canceled using any of the methods marked with \bigcirc in the alarm reset column in the table below. (The shaded parts indicate the differences.)

	Number	Name	Stop method (Note 6)	Reset alarm		
				Power-off to power-on	Reset an error	Reset the CPU
$\begin{aligned} & \frac{E}{\frac{E}{U}} \\ & \frac{\pi}{\mathbb{T}} \end{aligned}$	10	Undervoltage	EDB	\bigcirc	\bigcirc	\bigcirc
	12. (Note 5)	Memory error 1	DB	0	O	O
	13	Clock error	DB	\bigcirc	-	-
	15	Memory error 2	DB	\bigcirc	-	T
	16	Encoder error 1	DB	\bigcirc	-	
	17	Board error	DB	\bigcirc	T	
	19.	Memory error 3	DB	\bigcirc	-	
	1A	Motor combination error	DB	\bigcirc	-	
	20	Encoder error 2	EDB	\bigcirc	-	
	24	Main circuit error	DB	\bigcirc	0	0
	25	Loss of absolute position	DB	O (Note 2)		
	30	Regenerative error	DB	O (Note 1)	O (Note 1)	O (Note 1)
	31	Overspeed	EDB	\bigcirc	\bigcirc	\bigcirc
	32	Overcurrent	DB	\bigcirc	O (Note 4)	O (Note 4)
	33	Overvoltage	EDB	\bigcirc	\bigcirc	\bigcirc
	34	CRC error	EDB	\bigcirc	0	\bigcirc
	35	Command frequency error	EDB	\bigcirc	\bigcirc	\bigcirc
	36	Transfer error	EDB	\bigcirc	0	\bigcirc
	37	Parameter error	DB	\bigcirc		O (Note 4)
	3E. 2	Mode change error	DB	0	(10,	O (Note 3)
	45	Main circuit element overheat	EDB	O (Note 1)	O(Note 1, 4)	O (Note 1, 4)
	46	Servo motor overheat	DB	O (Note 1)	O (Note 1)	O (Note 1)
	50	Overload 1	EDB	O (Note 1)	O (Note 1)	O (Note 1)
	51	Overload 2	DB	O (Note 1)	O (Note 1)	O (Note 1)
	52	Error excessive	EDB	\bigcirc	\bigcirc	\bigcirc
	8E	Serial communication error	EDB	0	0	0
	888	Watchdog	DB	\bigcirc	-	
	92	Battery disconnection warning	$\underline{\square}$	Warnings are automatically canceled when the cause is removed.		
	96	Home position setting error warning	-			
	9F	Battery warning	-			
	E0	Excessive regeneration alarm	-			
	E1	Overload alarm	-			
	E3	Absolute position counter alarm	-			
	E4	Parameter alarm				
	E6	Servo forced stop warning	EDB (Note 7)			
	E7	Controller emergency stop warning	EDB			
	E9	Main circuit off warning	DB			
	EE	SSCNET error warning	-			

Note 1. After the cause of the alarm is removed, leave it to cool for about 30 minutes.
2. To confirm connection to the servo system controller, the alarm may not be reset if the power is not turned on twice or more.
3. It is only reset when mode is set correctly.
4. Alarm factors may not be removed depending on the cause of the alarm.
5. Numerical figures after a decimal point may not be displayed.
6. There are two stop methods of DB and EDB.

DB: Stop with a dynamic brake
EDB: Stop with an electronic dynamic brake (Only available for the specific servo motor)
Refer to the following table for specific servo motors. The stop method other than the specific servo motor is DB.

Series	Servo motor
HG-KR	HG-KR053/HG-KR13/HG-KR23/HG-KR43
HG-MR	HG-MR053/HG-MR13/HG-MR23/HG-MR43
HG-SR	HG-SR51/HG-SR52

7. When STO1 or STO2 is turned off (the CN8 short-circuit connector is disconnected), the stop method is DB.

Display	Name	Description	Cause	Action
3E.2	Mode change error	The operating mode setting does not match the actual operating mode.	Switched on with the MR-J4-T20 removed.	1. Connect the MR-J4-T20 and restart the servo amplifier. 2. With the application of "MR-J4(W)-B Change mode" supplied with the MR Configurator2, change to "J2S Compatibility Mode".

11. DIMENSIONS

11.1 Comparison of Dimensions

The following table shows the combined dimensions of the servo amplifier and options.
(1) shows the amount of increased unit width compared with MR-J2S-_B_. For the sections of the table showing "None", the unit's width is smaller compared with MR-J2S. No interference occurs as the installation intervals for all units do not exceed 10 mm .
(2) shows permissible installation intervals for units whose width increases. Even when using the conversion unit, it is recommended to keep the interval between the units 10 mm or more.

Dimensions
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Unit } \\ \text { MR-J4_-_RJ020 }\end{array} & \begin{array}{c}\text { MR-J4-_B_-RJ020 } \\ \text { MR-J4-T20 } \\ \text { combined dimensions } \\ \text { width } \times \text { height } \times \text { length }\end{array} & \begin{array}{c}\text { MR-J2S__B_ }\end{array} & \begin{array}{c}\text { (2) } \\ \text { width } \times \text { height } \times \text { length } \\ \text { Unit width } \\ \text { increase }\end{array} & \begin{array}{c}\text { Permissible } \\ \text { installation } \\ \text { interval } \\ \text { (Note 1) }\end{array} & \begin{array}{c}\text { Mounting } \\ \text { hole }\end{array} \\ \text { Compatibility } \\ \text { (Note 3) }\end{array}\right\}$

Note 1. These are the installation intervals on the right side. All backslash areas are 10 mm or more, as in MR-J4.
2. Though the unit itself is wider than MR-J2S, it poses no problem because it fits within the 10 mm installation interval.
3. " Δ " indicates that the mounting holes are different.
4. Replacement of large capacity of 30 kW or more requires change of the converter unit.

For comparison of dimensions, refer to "1.4 Installation" in "Part 5: Review on Replacement of MR-J2S-30 kW or more with MR-J4-_DU_".

11.2 Dimensions

These are external views when $100 \mathrm{~W}, 3.5 \mathrm{~kW}$, and 5 kW servo amplifiers are combined with MR-J4-T20. The views from the bottom show the increases in width from that of the MR-J4 standard model. (For dimensions when the servo amplifier in different capacities is combined with the MR-J4-T20, refer to "[Appendix 1] 11.2.3 Dimensions (MR-J4-_B_-RJ020 + MR-J4-T20)".
11.2.1 Servo amplifier MR-J4-10B-RJ020 MR-J4-T20

Fig. 1. Dimensions
Appendix 1-31

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

11.2.2 Dimensions (MR-J4-T20)

The dimensions of MR-J4-T20 are shown below.

Fig. 2. Dimensions (MR-J4-T20)
11.2.3 Dimensions (MR-J4-_B_-RJ020 + MR-J4-T20)

Comparison of 200 V class / 100 V class dimensions

Comparison of 400 V class dimensions

MR-J2S series dimensions	MR-J4-_B_-RJ020 series + MR-J4-T20 dimensions
MR-J2S-500B4	MR-J4-500B4-RJ020
MR-J2S-700B4	MR-J4-700B4-RJ020
MR-J2S-11KB4, MR-J2S-15KB4	MR-J4-11KB4-RJ020, MR-J4-15KB4-RJ020

12. MODE SWITCHING METHOD

POINT

There are function limits for the MRJ4-_B servo amplifier when using the MRJ4-_B_-RJ020 servo amplifier in J4 mode. Regarding other functions, they are the same as for the MRJ4-_B servo amplifier.

Function		Availability	
		MR-J4-_B_-RJ020	
CN2L connector	None	Yes (Not compatible)	
Linear servo system	Compatible	Not compatible	
Direct drive servo system	Compatible	Not compatible	
Fully closed loop system	Compatible	Not compatible	

12.1 Mode Switching Method from J2S Compatibility Mode to J4 Mode
(1) Turn on the servo amplifier with the MR-J4-T20 removed.
(2) Run the application of "MR-J4(W)-B Change mode" or "MR Mode Change" and verify that "J2S Compatibility Mode" is not displayed in "Compatibility Mode". If displayed, try again from (1) of this section.
(3) Select "Change the mode" and then choose "J4 mode". Do not choose any control mode other than "Standard control mode" for the "Operation Mode".

(4) Click the "Write (W)" button.
(5) By cycling the power supply of the servo amplifier, the mode will switch to J4 mode.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

12.2 Mode Switching Method from J4 Mode to J2S Compatibility Mode
(1) Turn on the servo amplifier with MR-J4-T20 mounted.
(2) Run the application of "MR-J4(W)-B Change mode" or "MR Mode Change" and verify that "J2S Compatibility mode" is displayed in "Compatibility Mode". If not, try again from (1) of this section.
(3) Select "Switch mode" and then choose "J2S compatibility mode". Only standard control mode can be selected for the operation mode.

(4) Click the "Write" button.
(5) By cycling the power supply of the servo amplifier, the mode will switch to J2S compatibility mode.

> POINT
-For the details of the parameters, refer to "MR-J4-_B_-RJ020 Servo Amplifier Instruction Manual (SH(NA)030125)".

13. OPTIONS AND PERIPHERAL EQUIPMENT

Before connecting options or peripheral equipment, turn off the power and wait for
15 minutes or more until the charge lamp turns off. Then, confirm that the voltage
between P+ and N- is safe with a voltage tester and others. Otherwise, an electric
shock may occur. In addition, when confirming whether the charge lamp is off or
not, always check from the front of the servo amplifier.

CAUTION

Do not use peripheral equipment or options other than those specified in this document as a malfunction and fire could result.

This chapter only describes the encode cable and regenerative option for connecting the HC-_FS series and the HA-_FS series servo motor to the MR-J4-_B_-RJ020 servo amplifier. For details of the options for the servo amplifier, refer to Chapter 11 of the "MR-J4-_B_-RJ020 MR-J4-T20 Servo Amplifier Instruction Manual". For options for the HC-_FS series and the HA-_FS series servo motors, refer to "MR-J2S-_B Servo Amplifier Instruction Manual (SH(NA)030007)" and "MELSERVO Servo Motor Instruction Manual (SH(NA)3181)".

POINT

Protection grades shown on the cable and the connector indicate dust and waterproof level when the connector and the cable are installed on the servo motor. If protection grades of the cable, the connector and the servo motor are different, all the protection grades are dependent on the lower grades.

For the cable and the connector used for this servo, purchase options described in this section.

13.1 Encoder Cable Combination

13.2 Encoder Cable List

No.	Product name	Model	Description	Application
1)	Encoder cable	MR-EKCBL_M-L Cable length: 20, 30 m	For details, refer to section 13.3 (1).	IP20
2)	Encoder cable	MR-EKCBL_M-H Cable length: $20,30,40,50 \mathrm{~m}$		IP20 Long bending life
3)	Encoder cable	$\begin{aligned} & \text { MR-J3CH00 } \\ & \text { Cable length: } \\ & 0.2 \mathrm{~m} \end{aligned}$	For details, refer to section 13.3 (2).	IP20
4)	Encoder cable	MR-JCCBL_M-L Cable length: $2,5,10,20,30 \mathrm{~m}$	Connector: 10120-3000PE Housing: 1-172161-9 Shell kit: 10320-52F0-008 Connector pin: 170359-1 (3M or equivalent) (Tyco electronics or equivalent) Cable clamp: MTI-0002 (TOA ELECTRIC INDUSTRIAL CO., LTD.)	IP20
5)	Encoder cable	MR-JCCBL_M-H Cable length: 2, 5, 10, 20, 30, 40, 50 m		IP20 Long bending life
6)	Encoder cable	MR-ESCBL_M-L Cable length: $2,5,10,20,30 \mathrm{~m}$	For details, refer to section 13.3 (3).	IP20
7)	Encoder cable	$\begin{aligned} & \text { MR-ESCBL_M-H } \\ & \text { Cable length: } \\ & 2,5,10,20,30,40,50 \mathrm{~m} \end{aligned}$		IP20 Long bending life
8)	Encoder cable	$\begin{aligned} & \text { MR-JHSCBL_M-L } \\ & \text { Cable length: } \\ & 2,5,10,20,30 \mathrm{~m} \\ & \hline \end{aligned}$	Connector: 10120-3000PE Plug: D/MS3106B20-29S Shell kit: 10320-52F0-008 Cable clamp: D/MS3057-12A (3M or equivalent) (DDK Ltd.)	IP20
9)	Encoder cable	$\begin{array}{\|l\|} \hline \text { MR-JHSCBL_M-H } \\ \text { Cable length: } \\ 2,5,10,20,30,40,50 \mathrm{~m} \\ \hline \end{array}$		IP20 Long bending life
10)	Encoder cable	MR-ENCBL_M-H Cable length: $2,5,10,20,30,40,50 \mathrm{~m}$	Connector: 10120-3000PE Plug: D/MS3106A20-29S(D190) Shell kit:10320-52F0-008 Cable clamp: CE3057-12A-3-D (3M or equivalent) Back shell: CE02-20BS-S-D 	IP65 Long bending life

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

13.3 Details on encoder cable

POINT
To wire the connector on the CN2 side, securely connect the external conductor of the shield cable to the grand plate and install it to the connector shell.

The following encoder cables are a four wire system.
MR-EKCBL30M-L
MR-EKCBL30M-H
MR-EKCBL40M-H
MR-EKCBL50M-H
MR-ESCBL30M-L
MR-ESCBL30M-H
MR-ESCBL40M-H
MR-ESCBL50M-H
When using these encoder cables, set [Pr. 23] to "_ 1 _ _" and select "four wires system".
Incorrect setting will cause [AL. 16 Encoder Error 1].
(1) MR-EKCBL_M-_

These cables are encoder cables for the HC-KFS, HC-MFS and HC-UFS $3000 \mathrm{r} / \mathrm{min}$ servo motors.
The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.

Cable model	Cable length				Protection degree	Bending life	Application
	20 m	30 m	40 m	50 m			
MR-EKCBL_M-L	20	$\begin{array}{\|c\|} \hline \text { (Note } \\ 30 \\ \hline \end{array}$			IP20	Standard	For the HC-KFS, HC-MFS and HC-UFS 3000 r/min servo motors
MR-EKCBL_M-H	20	$\begin{gathered} \hline \text { (Note) } \\ 30 \\ \hline \end{gathered}$	(Note) 40	(Note) 50	IP20	Long bending life	

Note. Four wire system cable

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(a) Servo amplifier/servo motor connection

Cable model	1) CN2 connector	2) Encoder connector
MR-EKCBL_M-L		Housing: 1-172161-9 Connector pin: 170359-1 Crimping tool: 91529-1 (Tyco electronics or equivalent) Cable clamp: MTI-0002 (TOA ELECTRIC INDUSTRIAL CO., LTD.)
MR-EKCBL_M-H	Note Do not connect anything to the pins shown as \qquad Especially 10 pin is for manufacturer adjustment. Connection to other pins will cause the servo amplifier to operate abnormally.	View seen from wiring side.

(b) Cable internal wiring diagram

MR-EKCBL20M-L

MR-EKCBL20M-H

MR-EKCBL30M-L

MR-EKCBL30M-H
MR-EKCBL40M-H MR-EKCBL50M-H

Note. When using the absolute position detection system, make sure to connect. When using the incremental system, it is not necessary to wire.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(2) MR-J3CH00 (or SC-J2SJ4ENC03M (manufactured by Mitsubishi Electric System \& Service Co., Ltd.) The servo amplifier and the servo motor cannot be connect only using this cable. Use it with following encoder cable.
MR-JCCBL_M-L
MR-JCCBL_M-H
MR-JHSCBL_M-L
MR-JHSCBL_M-H
MR-ENCBL_M-H

Cable model	Cable length	Protection degree	Bending life	Application
MR-J3CH00			For the HC-KFS, HC-MFS series and HC-UFS 3000 r/min servo motors Use with the MR-JCCBL_M-L/H.	
	0.2 m	IP20	Standard	For the HC-SFS, HC-RFS, HC- LFS, HA-LFS series and HC-UFS 2000 r/min servo motors Use with the MR-JHCBL_M-L/H or MR-ENCBL_M-H.

(a) Servo amplifier/servo motor connection

Cable model	1) CN2 connector	2) Relay connector
MR-J3CH00	Receptacle: $36210-0100 \mathrm{PL}$ Connector set: 54599-1019 Shell kit: $36310-3200-008$ (Molex) (3M)	Connector: 10220-0200EL Shell kit: 10320-E2W0-008
	View seen from wiring side. (Note) View seen from wiring side. (Note) Note. Do not connect anything to the pins shown as \square Especially 10 pin is for manufacturer adjustment. Connection to other pins will cause the servo amplifier to operate abnormally.	 View seen from wiring side. (Note) Note. Do not connect anything to the pins shown as \qquad

(b) Cable internal wiring diagram

Note. When using the absolute position detection system, make sure to connect. When using the incremental system, it is not necessary to wire.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(3) MR-ESCBL_M-

These cables are encoder cables for the HC-SFS, HC-RFS, HC-LFS, HA-LFS series and the $2000 \mathrm{r} / \mathrm{min}$ servo motors. The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.

Cable model	Cable length							Protection degree	Bending life	Application
	2 m	5 m	10 m	20 m	30 m	40 m	50 m			
MR-ESCBL_M-L	2	5	10	20	(Note) 30	-		IP20	Standard	For the HC-SFS, HC-RFS, HC-LFS, HALFS series and HC-UFS 2000 r/min servo motors
MR-ESCBL_M-H	2	5	10	20	(Note) 30	(Note) 40	(Note) 50	IP20	Long bending life	

Note. Four wire cable
(a) Servo amplifier/servo motor connection

(b) Cable internal wiring diagram

MR-ESCBL2M-H
MR-ESCBL5M-H
MR-ESCBL10M-H
MR-ESCBL30M-L

Note. When using the absolute position detection system, make sure to connect. When using the incremental system, it is not necessary to wire.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

13.4 Large Capacity Servo Cable Connector Set

13.4.1 Cable connector set combination

When using the MR-J4-DU_B_-RJ020, cables and connector sets other than those shown below are the same as the MR-J4-_(-RJ). Refer to Section 11.1 in "MR-J4-_B_(-RJ) Servo Amplifier Instruction Manual".

No.	Product name	Model	Description	Application
1)	Protection coordination cable	MR-J3CDL05M (Refer to Section 13.4.2.)	Connector: 10120-3000PE Connector: PCR-S20FS+ Shell kit: 10320-52F0-008 Case: PCR-LS20LA1 (3M or equivalent) (HONDA TSUSHIN KOGYO CO., LTD.)	
2)	Connector set	$\begin{array}{\|l\|} \hline \text { MR-J2CN1-A } \\ \text { (Refer to } \\ \text { section 13.4.2.) } \end{array}$	Connector: 10120-3000PE Connector: PCR-S20FS+ Shell kit: 10320-52F0-008 Shell kit: PCR-LS20LA1 (3M or equivalent) (HONDA TSUSHIN KOGYO CO., LTD.)	
3)	Electromagnetic contactor wiring connector		Connector on the converter unit (Phoenix Contact) Socket: GFKC 2,5/ 2-STF-7,62	Supplied with the converter
4)	Digital input/output connector		Connector on the converter unit (DDK Ltd.) Connector: 17JE23090-02(D8A)K11-CG	

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

13.4.2 MR-J3CDL05M (0.5 m) Protection Coordination Cable

\triangle Note

When manufacturing a protection coordination cable, be careful not to wire improperly. Otherwise, it may cause unexpected motion.

This cable is intended to connect the converter unit and the drive unit.
(1) Internal wiring diagram

13.5 Regenerative Options

\triangle Note

Regenerative options and servo amplifier must not be set in combination other than the specified combination.
Doing so could cause a fire.

13.5.1 Combination and regenerative power

(1) $200 / 100 \mathrm{~V}$ class
(a) When using the HA-_FS/HC-_FS motors (J2S compatibility mode)

List of regenerative options

	Built-in	Permissible regenerative power of regenerative option [W] MR-RB								
Servo amplifier model	regenerative resistor [W]	$\begin{gathered} 032 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 12 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 30 \\ {[13 \Omega]} \end{gathered}$	$\begin{gathered} 3 \mathrm{~N} \\ {[9 \Omega]} \end{gathered}$	$\begin{gathered} 31 \\ {[6.7 \Omega]} \end{gathered}$	$\begin{gathered} 32 \\ {[40 \Omega]} \end{gathered}$	(Note 1) 50 [13 Ω]	(Note 1) 5N [9 Ω]	(Note 1) 51 [6.7 Ω]
MR-J4-10B(1)-RJ020	${ }^{-}$	30								
MR-J4-20B(1)-RJ020	10	30	100							
MR-J4-40B(1)-RJ020	10	30	100							
MR-J4-60B-RJ020	10	30	100							
MR-J4-70B-RJ020	20	30	100				300			
MR-J4-100B-RJ020	20	30	100				300			
MR-J4-200B-RJ020	100	-		300				500		
MR-J4-350B-RJ020	100			300				500		
MR-J4-500B-RJ020	130			300				500		
MR-J4-700B-RJ020	170					300				500
MR-J4-11KB-RJ020	-									
MR-J4-15KB-RJ020	S	-								
MR-J4-22KB-RJ020	-									
MR-J4-DU30KB-RJ020	\bigcirc									
MR-J4-DU37KB-RJ020										

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) MR-J2S standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB							
			(Note 2) [3.2 Ω]	(Note 2) 65 [8 Ω]	(Note 2) 66 [5 Ω]	(Note 2) 67 [4 Ω]	(Note 2) 9F [3 Ω]	(Note 2) 9T [2.5 Ω]	$\begin{gathered} 139 \\ {[1.3 \Omega]} \end{gathered}$	(Note 3) 137 [1.3 Ω]
MR-J4-10B(1)-RJ020	${ }^{-}$									
MR-J4-20B(1)-RJ020	10									
MR-J4-40B(1)-RJ020	10									
MR-J4-60B-RJ020	10									
MR-J4-70B-RJ020	20									
MR-J4-100B-RJ020	20									
MR-J4-200B-RJ020	100									
MR-J4-350B-RJ020	100									
MR-J4-500B-RJ020	130									
MR-J4-700B-RJ020	170									
MR-J4-11KB-RJ020		$\begin{gathered} \text { GRZG400-2 } 2 \times 4 \\ 500(800) \\ \hline \end{gathered}$		$\begin{gathered} \hline 500 \\ (800) \\ \hline \end{gathered}$						
MR-J4-15KB-RJ020		$\begin{gathered} \hline \text { GRZG400-1 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$			$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$					
MR-J4-22KB-RJ020		$\begin{gathered} \text { GRZG400-0.8 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$				$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$				
MR-J4-DU30KB-RJ020									1300	3900
MR-J4-DU37KB-RJ020									1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. The value of MR-RB137 is the combined resistance of three units.
(b) When using the HG motor or the HA-_FS/HC-_FS motors (J4 mode)

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB								
		$\begin{gathered} 032 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 12 \\ {[40 \Omega]} \end{gathered}$	$\begin{gathered} 30 \\ {[13 \Omega]} \end{gathered}$	$\begin{gathered} 3 \mathrm{~N} \\ {[9 \Omega]} \end{gathered}$	$\begin{gathered} 31 \\ {[6.7 \Omega]} \end{gathered}$	$\begin{gathered} 32 \\ {[40 \Omega]} \end{gathered}$	(Note 1) 50 [13 Ω]	(Note 1) 5 N [9 Ω]	(Note 1) 51 [6.7 Ω]
MR-J4-10B(1)-RJ020	${ }^{-}$	30								
MR-J4-20B(1)-RJ020	10	30	100							
MR-J4-40B(1)-RJ020	10	30	100							
MR-J4-60B-RJ020	10	30	100							
MR-J4-70B-RJ020	20	30	100				300			
MR-J4-100B-RJ020	20	30	100				300			
MR-J4-200B-RJ020	100			300				500		
MR-J4-350B-RJ020	100				300				500	
MR-J4-500B-RJ020	130					300				500
MR-J4-700B-RJ020	170					300				500
MR-J4-11KB-RJ020										
MR-J4-15KB-RJ020										
MR-J4-22KB-RJ020										
MR-J4-DU30KB-RJ020										
MR-J4-DU37KB-RJ020										

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) Standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB							
			$\begin{gathered} \text { (Note 2) } \\ 5 R \\ {[3.2 \Omega]} \end{gathered}$	$\begin{gathered} (\text { Note 2) } \\ 65 \\ {[8 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} (\text { Note 2) } \\ 66 \\ {[5 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} (\text { Note } 2) \\ 67 \\ {[4 \Omega]} \\ \hline \end{gathered}$	(Note 2) 9F [3Ω]	$\begin{gathered} \text { (Note 2) } \\ 9 \mathrm{~T} \\ {[2.5 \Omega]} \end{gathered}$	$\begin{gathered} 139 \\ {[1.3 \Omega]} \end{gathered}$	$\begin{gathered} (\text { Note 5) } \\ 137 \\ {[1.3 \Omega]} \end{gathered}$
MR-J4-10B(1)-RJ020										
MR-J4-20B(1)-RJ020	10									
MR-J4-40B(1)-RJ020	10									
MR-J4-60B-RJ020	10									
MR-J4-70B-RJ020	20									
MR-J4-100B-RJ020	20									
MR-J4-200B-RJ020	100									
MR-J4-350B-RJ020	100									
MR-J4-500B-RJ020	130									
MR-J4-700B-RJ020	170									
MR-J4-11KB-RJ020		$\begin{gathered} \text { GRZG400-0.8 } \times 4 \\ 500(800) \\ \hline \end{gathered}$	$\begin{gathered} 500 \\ (800) \\ \hline \end{gathered}$							
MR-J4-15KB-RJ020		$\begin{gathered} \text { GRZG400-0.6 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$					$\begin{gathered} 850 \\ (1300) \\ \hline \end{gathered}$			
MR-J4-22KB-RJ020		$\begin{gathered} \hline \text { GRZG400-0.5 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$						$\begin{gathered} 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-DU30KB-RJ020									1300	3900
MR-J4-DU37KB-RJ020									1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. When using a combination with an MR-J4 servo amplifier other than the standard one, contact your local sales office.
4. A backslash cell in the list shows a combination changed from "MR-J2S series".
5. The value of MR-RB137 is the combined resistance of three units connected in parallel.

Parameter settings (PA02 for MR-J4) may be required depending on the regenerative option model. For details, refer to "MR-J4-_B_-RJ020/MR-J4-DU_B_-RJ020/MR-CR55K_/MR-J4-T20 Servo Amplifier Instruction Manual".
(2) 400 V class
(a) When using the HA-_FS/HC-_FS motors (J2S compatibility mode)

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB										
		$\begin{gathered} 1 \mathrm{H}-4 \\ {[82 \Omega]} \end{gathered}$	$\begin{gathered} 1 \mathrm{~L}-4 \\ {[270 \Omega]} \end{gathered}$	(Note 1) 3M-4 $[120 \Omega$]	(Note 1) 3H-4 [80Ω]	(Note 1) 3G-4 [47 Ω]	(Note 1) 34-4 [26 Ω]	(Note 1) 3U-4 [22 Ω]	(Note 1) 5H-4 [80Ω]	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ 5 \mathrm{G}-4 \\ {[47 \Omega]} \\ \hline \end{array}$	(Note 1) 54-4 [26 Ω]	(Note 1) 5U-4 [22 Ω]
MR-J4-60B4-RJ020	15 (Note 4)	100	100	300								
MR-J4-100B4-RJ020	15 (Note 4)	100		300								
MR-J4-200B4-RJ020	100				300				500			
MR-J4-350B4-RJ020	100					300				500		
MR-J4-500B4-RJ020	130					300				500		
MR-J4-700B4-RJ020	170						300				500	
MR-J4-11KB4-RJ020												
MR-J4-15KB4-RJ020												
MR-J4-22KB4-RJ020												
MR-J4-DU30KB4-RJ020												
MR-J4-DU37KB4-RJ020												
MR-J4-DU45KB4-RJ020												
MR-J4-DU55KB4-RJ020												

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) MR-J2S standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB					
			$\begin{gathered} \hline \text { (Note 2) } \\ 5 \mathrm{~K}-4 \\ {[10 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 6 B-4 \\ {[20 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 60-4 \\ {[12.5 \Omega]} \end{gathered}$	$\begin{gathered} \hline \text { (Note 2) } \\ 6 \mathrm{~K}-4 \\ {[10 \Omega]} \\ \hline \end{gathered}$	$\begin{gathered} 136-4 \\ {[5 \Omega]} \end{gathered}$	$\begin{gathered} \hline \text { (Note 3) } \\ 138-4 \\ {[5 \Omega]} \\ \hline \end{gathered}$
MR-J4-60B4-RJ020	15 (Note 4)							
MR-J4-100B4-RJ020	15 (Note 4)							
MR-J4-200B4-RJ020	100							
MR-J4-350B4-RJ020	100							
MR-J4-500B4-RJ020	130							
MR-J4-700B4-RJ020	170							
MR-J4-11KB4-RJ020		$\begin{gathered} \text { GRZG400-5 } \times 4 \\ 500(800) \end{gathered}$		$\begin{gathered} 500 \\ (800) \end{gathered}$				
MR-J4-15KB4-RJ020		$\begin{gathered} \text { GRZG400-2.5 } \times 5 \\ 850(1300) \\ \hline \end{gathered}$			$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$			
MR-J4-22KB4-RJ020		$\begin{gathered} \hline \text { GRZG400-2 } 2 \Omega \times 5 \\ 850(1300) \\ \hline \end{gathered}$				$\begin{gathered} 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-DU30KB4-RJ020							1300	3900
MR-J4-DU37KB4-RJ020							1300	3900
MR-J4-DU45KB4-RJ020							1300	3900
MR-J4-DU55KB4-RJ020							1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. The value of MR-RB138-4 is the combined resistance of three units.
4. The capacity of the built-in regenerative resistor is small for the MR-J2S servo amplifier. Consider based on regenerative load ratio.
(b) When using the HG motor or the HA-_FS/HC-_FS motors (J4 mode)

List of regenerative options

Servo amplifier model	Built-in regenerative resistor [W]	Permissible regenerative power of regenerative option [W] MR-RB										
		$\begin{gathered} 1 \mathrm{H}-4 \\ {[82 \Omega]} \end{gathered}$	$\begin{gathered} 1 \mathrm{~L}-4 \\ {[270 \Omega]} \end{gathered}$	(Note 1) 3M-4 [120 Ω]	(Note 1) 3H-4 [80 Ω]	(Note 1) 3G-4 [47 Ω]	(Note 1) 34-4 [26 Ω]	(Note 1) 3U-4 [22 Ω]	(Note 1) 5H-4 [80 Ω]	(Note 1) 5G-4 [47 Ω]	(Note 1) 54-4 [26 Ω]	(Note 1) 5U-4 [22 Ω]
MR-J4-60B4-RJ020	15 (Note 5)	100		300								
MR-J4-100B4-RJ020	15 (Note 5)	100		300								
MR-J4-200B4-RJ020	100					300				500		
MR-J4-350B4-RJ020	100					300				500		
MR-J4-500B4-RJ020	130						300				500	
MR-J4-700B4-RJ020	170							500				500
MR-J4-11KB4-RJ020												
MR-J4-15KB4-RJ020												
MR-J4-22KB4-RJ020												
MR-J4-DU30KB4-RJ020												
MR-J4-DU37KB4-RJ020												
MR-J4-DU45KB4-RJ020												
MR-J4-DU55KB4-RJ020												

Servo amplifier model	Built-in regenerative resistor [W]	(Note 2) Standard accessories [External]	Permissible regenerative power of regenerative option [W] MR-RB					
			(Note 2) 5K-4 [10 Ω]	(Note 2) 6B-4 [20 Ω]	(Note 2) 60-4 [12.5 Ω]	(Note 2) 6K-4 [10 Ω]	$\begin{aligned} & 137-4 \\ & {[4 \Omega]} \end{aligned}$	(Note 4) 13V-4 [4Ω]
MR-J4-60B4-RJ020	15 (Note 5)							
MR-J4-100B4-RJ020	15 (Note 5)							
MR-J4-200B4-RJ020	100							
MR-J4-350B4-RJ020	100							
MR-J4-500B4-RJ020	130							
MR-J4-700B4-RJ020	170							
MR-J4-11KB4-RJ020		$\begin{gathered} \hline \text { GRZG400-2.5 } \times 4 \\ 500(800) \end{gathered}$	$\begin{gathered} \hline 500 \\ (800) \\ \hline \end{gathered}$					
MR-J4-15KB4-RJ020		$\begin{gathered} \hline \text { GRZG400-2 } 2 \times 5 \\ 850(1300) \\ \hline \end{gathered}$				$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-22KB4-RJ020		$\begin{gathered} \hline \text { GRZG400-2 } 2 \Omega \times 5 \\ 850(1300) \\ \hline \hline \end{gathered}$				$\begin{gathered} \hline 850 \\ (1300) \\ \hline \end{gathered}$		
MR-J4-DU30KB4-RJ020							1300	3900
MR-J4-DU37KB4-RJ020	,					-	1300	3900
MR-J4-DU45KB4-RJ020	\bigcirc		-				1300	3900
MR-J4-DU55KB4-RJ020							1300	3900

Note 1. Always install a cooling fan.
2. The values in the parentheses are applied to when a cooling fan is installed.
3. When using a combination with an MR-J4 servo amplifier other than the standard one, contact your local sales office.
4. The value of MR-RB13V-4 is a resultant resistance of three units connected.
5. The capacity of the built-in regenerative resistor is small for the MR-J2S servo amplifier. Consider based on regenerative load ratio.
6. Changed items are shown with shading.
7. Parameter settings (PA02 for MR-J4) may be required depending on the regenerative option model. For details, refer to "MR-J4-_B_-RJ020 Servo Amplifier Instruction Manual (SH(NA)030125)".

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

13.5.2 Regenerative option selection

Select by the following method when regeneration is continuously generated on the vertical axis or when a regenerative option is selected in detail.
(1) Calculation of regenerative energy

Formula to calculate torque and energy during operation

Regenerative power	Torque T [N•m] imposed on servo motor	Energy E [J]
1)	$\mathrm{T}_{1}=\frac{\left(\mathrm{J}_{\mathrm{L}} / \eta+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{V}}{9.55 \cdot 10^{4}} \cdot \frac{1}{\mathrm{t}_{\mathrm{psa} 1}}+\mathrm{T}_{\mathrm{u}}+\mathrm{T}_{\mathrm{F}}$	$\mathrm{E}_{1}=\frac{0.1047}{2} \cdot \mathrm{~V} \cdot \mathrm{~T}_{1} \cdot \mathrm{t}_{\mathrm{psa} 1}$
2)	$\mathrm{T}_{2}=\mathrm{T}_{\mathrm{U}}+\mathrm{T}_{\mathrm{F}}$	$\mathrm{E}_{2}=0.1047 \cdot \mathrm{~V} \cdot \mathrm{~T}_{2} \cdot \mathrm{t}_{1}$
3)	$T_{3}=\frac{-\left(J_{L} \cdot \eta+J_{M}\right) \cdot V}{9.55 \cdot 10^{4}} \cdot \frac{1}{t_{\text {psa2 }}}+T_{U}+T_{F}$	$\mathrm{E}_{3}=\frac{0.1047}{2} \cdot \mathrm{~V} \cdot \mathrm{~T}_{3} \cdot \mathrm{t}_{\mathrm{psa} 2}$
4), 8)	$\mathrm{T}_{4}, \mathrm{~T}_{8}=\mathrm{T}_{\mathrm{u}}$	$\mathrm{E}_{4}, \quad \mathrm{E}_{8} \geqq 0$ (no regeneration)
5)	$\mathrm{T}_{5}=\frac{\left(\mathrm{J}_{L} / \eta+J_{M}\right) \cdot \mathrm{V}}{9.55 \cdot 10^{4}} \cdot \frac{1}{\mathrm{t}_{\text {psd2 }}}-\mathrm{T}_{U}+\mathrm{T}_{F}$	$\mathrm{E}_{5}=\frac{0.1047}{2} \cdot \mathrm{~V} \cdot \mathrm{~T}_{5} \cdot \mathrm{t}_{\mathrm{psd} 2}$
6)	$\mathrm{T}_{6}=-\mathrm{T}_{U}+\mathrm{T}_{\mathrm{F}}$	$\mathrm{E}_{6}=0.1047 \cdot \mathrm{~V} \cdot \mathrm{~T}_{6} \cdot \mathrm{t}_{3}$
7)	$\mathrm{T}_{7}=\frac{-\left(\mathrm{J}_{\mathrm{L}} \cdot \eta+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{V}}{9.55 \cdot 10^{4}} \cdot \frac{1}{\mathrm{t}_{\mathrm{psd} 2}}-\mathrm{T}_{\mathrm{U}}+\mathrm{T}_{\mathrm{F}}$	$E_{7}=\frac{0.1047}{2} \cdot V \cdot T_{7} \cdot t_{\mathrm{psd} 2}$

Determine the absolute value (Es) of the total sum of negative energy from the calculation results 1) to 8).

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(2) Loss of the servo motor and the servo amplifier during regeneration The efficiency of the servo motor and the servo amplifier during regeneration is shown below.

Servo amplifier	Motor inverse efficiency [\%]	C charge [J]
MR-J4-10B-RJ020	55	9
MR-J4-20B-RJ020	70	9
MR-J4-40B-RJ020	85	11
MR-J4-60B-RJ020	85	11
MR-J4-70B-RJ020	80	18
MR-J4-100B-RJ020	80	18
MR-J4-200B-RJ020	85	36
MR-J4-350B-RJ020	85	40
MR-J4-500B-RJ020	90	45
MR-J4-700B-RJ020	90	70
MR-J4-11KB-RJ020	90	120
MR-J4-15KB-RJ020	90	170
MR-J4-22KB-RJ020	90	250

Servo amplifier	Motor inverse efficiency [\%]	C charge [J]
MR-J4-60B4-RJ020	85	12
MR-J4-100B4-RJ020	80	12
MR-J4-200B4-RJ020	85	25
MR-J4-350B4-RJ020	85	43
MR-J4-500B4-RJ020	90	45
MR-J4-700B4-RJ020	90	70
MR-J4-11KB4-RJ020	90	120
MR-J4-15KB4-RJ020	90	170
MR-J4-22KB4-RJ020	90	250
MR-J4-10B1-RJ020	55	4
MR-J4-20B1-RJ020	75	4
MR-J4-40B1-RJ020	85	10

Converter unit	Drive unit	Motor inverse efficiency [\%]	C charge [J]
	MR-J4-DU30KB-RJ020	90	450
	MR-J4-DU37KB-RJ020	90	450
MR-CR55K-4	MR-J4-DU30KB4-RJ020	90	450
	MR-J4-DU37KB4-RJ020	90	450
	MR-J4-DU45KB4-RJ020	90	450
	MR-J4-DU55KB4-RJ020	90	450

Inverse efficiency (η): Efficiency including part of the servo motor and the servo amplifier when generating the rated (regenerative) torque at the rated rotation speed. Provide a greater allowance by about 10% as the efficiency varies depending on the rotation speed or generating torque.
C charge (Ec): Energy which charges the electrolytic capacitor within the servo amplifier.

Energy consumed by the regenerative option can be calculated from the value of the total of regenerative energy multiplied by inverse efficiency from which C charge is subtracted.
$E R[J]=\eta \cdot E s-E c$

For energy consumption of regenerative option, select the desired option by calculating based on one operating cycle fh [s].
$P R[W]=E R / t f$

13.5.3 Parameter setting

[Setting for 22 kW or less]
Set [Pr. 2] adjusting to the regenerative option to be used.

$$
\begin{array}{|l|l|l}
\hline \text { LPr. 2] } & \\
\hline
\end{array}
$$

[Setting for 30 kW or more]

POINT
Regenerative options cannot be connected to the drive unit. [Pr. PA02] in the drive unit must be set to "__ 00 " (do not use regenerative options) or "__01". Setting other than the above will cause [AL. 37 Parameter error].

Set [Pr. PA01] for the converter unit, adjusting to the regenerative option to be used.

Regenerative option selection
00: Not used 12: MR-RB138-4 (3 units)
01: MR-RB139 13: MR-RB137-4
02: MR-RB137 (3 units) 14: MR-RB13V-4 (3 units)
11: MR-RB136-4

13.5.4 Connecting regenerative options

POINT
When using MR-RB50, MR-RB51, MR-RB3M-4, MR-RB3G-4, MR-RB5G-4, MR-RB34-4, MR-RB54-4, MR-RB3H-4 and MR-RB5H-4, cooling using the cooling fan is required. You should provide the cooling fan.
Refer to Chapter 7 of this document for wire sizes used for wiring.

Regenerative options may be heated to $100^{\circ} \mathrm{C}$ or more above the ambient temperature. Carefully determine the position of the radiation, installation position, wiring path, etc. Use flame-retardant wire for wiring or apply flame retardant treatment by avoiding contact between the wires and the regenerative option. Be sure to use twisted wires when connecting to the servo amplifier and keep the wiring distance to no longer than 5 m .
(1) MR-J4-500B-RJ020 or less / MR-J4-350B4-RJ020 or less

Be sure to remove wiring between $P+$ and D and then install the regenerative option between $P+$ and C. The G3 and the G4 terminals are thermal sensors. Abnormal overheating of the regenerative option causes the contact between G3 and G4 to open.

Note 1. When using MR-RB50, MR-RB3M-4, MR-RB3G-4, MRRB5G-4, MR-RB3H-4 and MR-RB5H-4, perform forced cooling using the cooling fan ($1.0 \mathrm{~m}^{3} / \mathrm{min}$ or more, 92 mm square).
2. Provide forced cooling for MR-RB30, MR-RB31 and MR-RB32 using the cooling fan ($1.0 \mathrm{~m}^{3} / \mathrm{min}$ or more, 92 mm square) when the ambient temperature of the regenerative option is $55^{\circ} \mathrm{C}$ and regenerative load ratio exceeds 60%. When the ambient temperature is at or below $35^{\circ} \mathrm{C}$, the cooling fan is not required. (In the figure below, it is necessary to cool with the cooling fan required when the ambient temperature and load ratio are within the shaded area.)

3. Configure sequence of shutting off the electromagnetic contactor when abnormal heating is caused.
Specifications for contact between G3 and G4:
Maximum voltage: 120 V AC/DC
Maximum current: $0.5 \mathrm{~A} / 4.8 \mathrm{~V}$ DC
Maximum capacity: 2.4 VA

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(2) MR-J4-700B-RJ020/MR-J4-500B4-RJ020/MR-J4-700B4-RJ020

Remove the wiring (between $\mathrm{P}+$ and C) for the regenerative resistor built into the servo amplifier and install the regenerative option between $\mathrm{P}+$ and C . The G 3 and the G 4 terminals are thermal sensors. Abnormal overheating of the regenerative option causes the contact between G3 and G4 to open.

Note 1. When using MR-RB51, MR-RB34-4, MR-RB54-4, MR-RB3G-4 and MR-RB5G-4, perform forced cooling using the cooling fan ($1.0 \mathrm{~m}^{3} / \mathrm{min}$ or more, 92 mm square).
2. Configure sequence of shutting off the electromagnetic contactor when abnormal heating is caused.
Specifications for contacts between G3 and G4
Maximum voltage: 120 V AC/DC
Maximum current: $0.5 \mathrm{~A} / 4.8 \mathrm{~V}$ DC
Maximum capacity: 2.4 VA

When you use the regenerative option, remove the wiring (between $\mathrm{P}+$ and C) for the regenerative resistor built into the servo amplifier, place back to back as shown in the diagram below and secure to the frame using the supplied screw.

Built-in regenerative resistor
Screw for securing lead terminal
(3) MR-J4-11KB-RJ020 to MR-J4-22KB-RJ020 and MR-J4-11KB4-RJ020 to MR-J4-22KB4-RJ020 (when the regenerative resistor that comes standard with the servo amplifier is used.)

Since the regenerative resistor that comes with the servo amplifier of 11 kW to 22 kW has no protective cover, be careful of the following items.

- The surface of the part is a resistor and it becomes very hot. Touching it could cause burns.
- The capacitor of the servo amplifier is charged for a while even after power is disconnected. Touching it may cause electric shock.

When you use regenerative resistors that come standard with the servo amplifier, be sure to connect the specified number (4 or 5 pcs.) in series. Parallel connection or use of regenerative resistors less than the specified number could failure of the servo amplifier and/or burnout of regenerative resistors. When regenerative resistors are installed side-by-side, keep a distance of 70 mm or more between resistors. Cooling the resistors with cooling fans ($1.0 \mathrm{~m}^{3} / \mathrm{min}$ or more, 92 mm square $\times 2$ pcs.) enhances regenerative power. In this case, set [Pr. 2] to "_- 0 E".

Note. The number of series connections varies depending on the type of resistors. Thermal sensors are not built into the supplied regenerative resistors. In the case of a failure of the regenerative circuit, the possible cause is abnormal overheating of resistors. Therefore, you should install thermal sensors near resistors and install the protection circuit that shuts off the main circuit power in the case of abnormal overheating. The detection level of the thermal sensor varies depending on the method used for installing resistors. Install thermal sensors in optimal locations according to your design standard or use regenerative options with built-in thermal sensors (MR-RB5E, MR-RB5R, MR-RB9P, MR-RB9F, MR-RB9T, MR-RB5K-4, MR-RB6B-4, MR-RB60-4 or MR-RB6K-4) .

Servo amplifier	Regenerative resistor	Regenerative power [W]		Resistance value [Ω]	Number
		During normal use	During cooling		
MR-J4-11KB-RJ020	GRZG400-0.8	500	800	3.2	4
MR-J4-15KB-RJ020	GRZG400-0.6	850	1300	3	5
MR-J4-22KB-RJ020	GRZG400-0.5			2.5	
MR-J4-11KB4-RJ020	GRZG400-2.5	500	800	10	4
MR-J4-15KB4-RJ020 MR-J4-22KB4-RJ020	GRZG400-2	850	1300	10	5

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(4) MR-J4-11KB-RZ020 to MR-J4-22KB-RZ020 and MR-J4-11KB4-RZ020 to MR-J4-22KB4-RZO20 (when regenerative options are used.)
MR-J4-11KB-RZ020 to MR-J4-22KB-RZ020 and MR-J4-11KB4-RZ020 to MR-J4-22KB4-RZ020 do not come with regenerative resistors. When you use these servo amplifiers, be sure to use MR-RB5E, MRRB5R, MR-RB9P, MR-RB9F, MR-RB9T, MR-RB5K-4, MR-RB6B-4, MR-RB60-4 or MR-RB6K-4. Cooling with a cooling fan enhances regenerative power. The G3 and the G4 terminals are thermal sensors. Abnormal overheating of the regenerative option causes the contact between G3 and G4 to open.

When the thermal sensor is activated, configure to shut off the main circuit power.

Note. Specifications for contacts between G3 and G4
Maximum voltage: 120 V AC/DC
Maximum current: 0.5 A/4.8 V DC
Maximum capacity: 2.4 VA

Servo amplifier	Regenerative options	Resistance value [Ω]	Regenerative power [W]	
			Without cooling fan	With cooling fan
MR-J4-11KB-RZ020	MR-RB5E	6	500	800
	MR-RB5R	3.2		
MR-J4-15KB-RZ020	MR-RB9P	4.5	850	1300
	MR-RB9F	3		
MR-J4-22KB-RZ020	MR-RB9T	2.5	850	1300
MR-J4-11KB4-RZ020	MR-RB5K-4	10	500	800
	MR-RB6B-4	20		
MR-J4-15KB4-RZ020	MR-RB60-4	12.5	850	1300
	MR-RB6K-4	10		

When you use a cooling fan, install it in the mounting hole at the bottom of the regenerative option.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(5) MR-CR55K_(when regenerative options are used)

Make sure to supply power (shown in the following table) to the cooling fan.
Table: Appendix 1 Cooling Fan

Item	200 V class	400 V class
Model	MR-RB137/MR-RB139	MR-RB137-4/MR-RB13V-4
Voltage/Frequency	1-phase 198 V AC to $242 \mathrm{~V} \mathrm{AC,50}$ $\mathrm{~Hz} / 60 \mathrm{~Hz}$	1-phase 380 V AC to 480 V AC,50 $\mathrm{Hz} / 60 \mathrm{~Hz}$
Consumed power $[\mathrm{W}]$	$20(50 \mathrm{~Hz}) / 18(60 \mathrm{~Hz})$	$20(50 \mathrm{~Hz}) / 18(60 \mathrm{~Hz})$

Regenerative options may be heated to $100^{\circ} \mathrm{C}$ or more above the ambient temperature. Carefully determine the position of the radiation, installation position, wiring path, etc. Use flame-retardant wire for wiring or apply flame retardant treatment by avoiding contact between the wires and the regenerative option. The G3 and the G4 terminals are thermal protectors. Abnormal overheating of the regenerative option causes the contact between G3 and G4 to open.
Be sure to use twisted wires when connecting to the converter unit and keep the wiring distance to no longer than 5 m .

1) $M R-R B 139 / M R-R B 137-4$

Note 1. When using the power factor improving DC reactor, remove the short bar across P1 and P2.
2. Specifications for contacts between G3 and G4

Maximum voltage: 120 V AC/DC
Maximum current: 0.5 A/4.8 V DC
Maximum capacity 2.4 VA
3. For the power specifications for the cooling fan, refer to the table in Appendix 1.
4. For MR-RB137-4, "R1" becomes "R400" and "S1" becomes "S400".
2) MR-RB137/MR-RB13V-4

POINT

For MR-RB137 and MR-RB13V-4, three units are required for each converter unit. For MR-RB137 and MR-RB13V-4, purchase three units.

Note 1. When using the power factor improving DC reactor, remove the short bar across P1 and P2.
2. Specifications for contact between G3 and G4

Maximum voltage: 120 V AC/DC
Maximum current: 0.5 A/4.8 V DC
Maximum capacity: 2.4 VA
3. For the power specifications for the cooling fan, refer to the table in Appendix 1.
4. For MR-RB13V-4, "R1" becomes "R400" and "S1" becomes "S400".

13.6 External Dynamic Brake

The list of external dynamic brakes with a large capacity of 30 kW or more (combination) is shown below.

Name	Compatible				
	MR-J4-B		MR-J2S-B	MR-J4-B-RJ020	
	HG motor Drive	HA__FS/HC__FS motor Drive	HA__FS/HC__FS motor Drive	HG motor Drive	HA__FS/HC__FS motor Drive
DBU-37K	Not compatible	Compatible	Compatible	Not compatible	Compatible
DBU-37K-R1	Compatible	Not compatible	Not compatible	Compatible	Not compatible
DBU-55K-4	Not compatible	Compatible	Compatible	Not compatible	Compatible
DBU-55K-4-R5	Compatible	Not compatible	Not compatible	Compatible	Not compatible

For details, refer to "Part 5: Review on Replacement of MR-J2S-30kW or More with MR-J4-DU_".

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

14. SETTING PARAMETERS ADDED ON MR-J4-_B_-RJ020 SERVO AMPLIFIER

This section explains the procedure for setting parameters added on the MR-J4-_B_-RJ020 servo amplifier from the motion controller (in J2S Compatibility Mode).
14.1 Combination of Motion Controller and Peripheral Software

Series	Motion controller model	Motion controller peripheral software
Q series	Q172CPU(N) Q173CPU(N)	MELSOFT MT Works2 (SW1DNC-MTW2-E) MT Developer (SW6RNC-GSVE)
A series	A171SHCPU(N) A172SHCPU(N) A173UHCPU A273UHCPU	SW3RNC-GSVE

14.2 Parameter Setting Procedure

14.2.1 For MELSOFT MT Works2

(1) Display the "Servo parameter" window.

\% MELSOFT Series MT Developer2 ...tingslAdministratorMy DocumentslQ173-SV22.mtw - [Servo Parameter]						可 x
! Project Edit Eind/Replace View check;Convert online Debug Iools Window Help 					$-5 \times$	
Project $\square \square$ Q173-5V22 (5V22)						
	Select 烏 Servo Parameter \square Select servo parameterrinverter parameter/stepping parameter. Amplifier Write Amplifier Write OFF \square					
	Item Basic Parameter Amplifier Setting Regenerative Brake Resistor	Axis1	Axis2	Axis3	Axis4	\wedge
		Set the basic parameter of the servo parameters.				
		MR-J25-108(4)-ABS	MR-J25-10B(4)- ABS	MR-J25-10B(4)-ABS	MR-J2S-108(4)- ABS	
		No Use	No Use	No Use	No Use	
	- Dynamic Brake	Nothing	Nothing	Nothing	Nothing	
	Motor Type	Automatic	Automatic	Automatic	Automatic	
	- Motor Capacity	-	-	-	-	
	Motor Speed	-		-	-	
	Feedback Pulse	-		-	-	
	Rotation Direction	$0:$ Forward(CCW)	0:Forward(CCW)	0:Forward(CCW)	0:Forward(CCW)	
	Automatic Tuning	Select the automatic tuning function.				
	- Automatic Tuning	-		-		
	Gain Adjustment	1:Automatic Tuning Mode 1				
	- Servo Response Setting	$5{ }^{5}$		5	Mode	
	- Adjustment Parameter	Set the adjustment parameter of the servo parameters.				
	Load Inertia Ratio	7.0 [to motor]	7.0 [to motor]	$7.0[$ to motor]	7.0[to motor]	
	Position Loop Gain 1	$35[\mathrm{rad} / \mathrm{s}]$	35[rad/s]	35[rad/s]	35[rad/s]	
	Speed Loop Gain 1	177[rad/s]	177[rad/s]	177[rad/s]	177[rad/s]	
	Position Loop Gain 2	35[rad/s]	35[rad/s]	35[rad/s]	35[rad/s]	
	Speed Loop Gain 2	817[rad/s]	817[rad/s]	817[rad/s]	817[rad/s]	
	- Speed Integral	20[ms]	20[ms]	20[ms]	$20[m s]$	\underline{v}
			Q173 5V22	Host Station No. 2		

（2）Double－click the setting field＂1 to 75＂under special parameters＂Parameter No．＂and display the＂Servo special parameter setting＂dialog．

\％MELSOFT Series MT Developer2 ．．．ttings MdministratorMy DocumentsiQ173－SV22．mtw－［Servo Parameter］						$\square \times$
！Project Edit Eind／Replace View Gheck／Convert Online Debug Iools Window Help 						
Project $\quad 4 \times$ Servo Parameter x 居						
Servo Program	Item Motor Lock Operation Slight Vibra．Supres． E．M．Brake Interlock Out．Timing Machine	Axis1	Axis2	Axis3	Axis4	\wedge
		0：Invalid	0：Invalid	0：Invalid	0：Invalid	
		0：Invalid	0：Invalid	$0:$ Invalid	0 ：Invalid	
				－		
		Select the frequency matching the resonance frequency of mechanical system．				
	Reso．Supres．Filter 1 Notch Depth Notch Frequency	0：－40［dB］	0：－40［dB］	0：－40［dB］	0：－40［dB］	
		0：Invalid	0：Invalid	0 ：Invalid	0 ：Invalid	
	－Analog Monitor Output	0：Motor Speed（ \pm ）	$0: M 0$ or Speed（ \pm ）	0：Motor Speed（ \pm ）	0：Motor Speed（ \pm ）	
	－Analog Monitor Output	1：Torque（ \pm ）	1：Torque（ \pm ）	1：Torque（ \pm ）	1：Torque（ \pm ）	
	－${ }_{\square}^{\text {LPF－Adaptive }}$	Select LPF－Adaptive Vibra．Supres．Ctrl．				
	Low－pass Filter	O：Valid	0：Valid	0：Valid	0：Valid	
	－Adaptive	0：Invalid	0：Invalid	0：Invalid	0：Invalid	
	－Adaptive $\begin{aligned} & \text { Vibra．Supres．Ctrr．Sensi．}\end{aligned}$	$0:$ Normal	0：Normal	0：Normal		0：Norma Double－cli
	\dagger Expansion Parameter ＋Maintenance Parameter －Special Parameter Parameter No．	Set the expansi Set the mainten Set the servosp	rameter of the se parameter of the parameters＿of th	parameters． o parameters． wonameters Il		
		1 to 75	1 to 75	1 to 75	1 to 75	
			Q173	Host Station No． 2		

（3）Change the parameter setting value．
After changing the setting value of the applicable parameter，click＂OK＂so that the setting value is reflected．

Examples of changes of parameter setting values are shown below．
（a）Change of［Pr． 2 regenerative resistor］（hexadecimal parameter）
To change the setting value to＂0020＂，enter＂0020＂as it is．
（b）Change of［Pr． 12 load inertia moment ratio relative to the servo motor（load inertia ratio）（decimal parameter）
To change the setting value to＂ 7.0 ＂，enter＂ 0046 ＂which is the value resulted from converting＂ 70 ＂to the hexadecimal number．
（c）Change of［Pr． 39 Electronic dynamic brake operating time］（decimal parameter）
To change the setting value to＂10000＂，enter＂2710＂which is the value resulted from converting ＂10000＂to the hexadecimal number．

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(4) Write the changed parameter in communication. Clicking "Execute" will run a write.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

14.2.2 For MT Developer (software version 00W or later)

(1) Display the "Servo data setting" window.

(2) Double-click the setting field "1 to 75" under special parameters "Parameter No." in the "Servo parameter" tab and display the "Servo special parameter setting" dialog.

F Servo Data Setting - GSV22P - MT Developer						
Eile Data Setting Option Commurication Update Help						
Inverter Parameter				Stepping Parameter		
Fixed Param., HPR Data, JOG Ope.Data				Servo Param.		
Double-clicking the set value shitits to the setting screen.						
Maintenance		1.xxis		24xis	34xis	Δ
	Load Inertia Ratio 2[To Motor]	7.0		7.0	7.0	
	Pos. Loop Gain 2 Change Ratio[\%]	100		100	100	
	Sp. Loop Gain 2 Change Ratio[\%]	100		100	100	
	Speed Integral Comp. Chg. ratio[\%]	100		100	100	
	Optional Function C					
	Encoder Output Pulse Direction	A.Phase, 90° Forward, CCW		A.Phase, 90° Forward, CCW	A.Phase, 90° Forward, CCW	
	Machine Reso.Supres.Filter 2					
	Notch Depth[dB]	- 40		-40	. 40	
	Notch Frequency [H_{2}]	Invalid		Invalid	Invalid	
Option	Clamp Speed[//min]	1000		1000	1000	
ACF Param.	Control System	.		.	.	
	Encoder Type Setting	.		.	.	
	CMD Output Offset[mV]			.		
	Monitor Output Offsel[mV]	.		.		
	Fwd.Rotation CMD Offsel[mV]	-			$=$	
	$\frac{\text { Rev.Rotation CMD Oifset[mV] }}{\text { Parameter } \mathrm{No}}$ -	1 to 75				
Special Parameter	Parameter No.			1 to 75	1 to 75	
- \square					$\stackrel{\rightharpoonup}{-}$	
		USB	GSV22P CPU:	Q173 Project: C:	Documen...1Q173-SV22	-

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(3) Change the parameter setting value.

After changing the setting value of the applicable parameter, click "OK" so that the setting value is reflected.

EServo Special Parameter Setting			$\square \square$	
Axis No.: 1Axis [MRJ2S-B(4)]				
Param. No.	Value(H)	Name	Abbrev.	\triangle
1	0001	Amplifier Setting	AMS	
2	0000	Resistance	REG	
3	0080	Motor Type	MTY	
4	0000	Motor Capacity	MCA	
5	0001	Motor Speed	MTR	
6	00FF	Feedback Pulse	FBP	
7	0000	Rotation Direction Setting	POL	
8	0001	Auto Tuning	ATU	
9	0005	SV Response Setting	RSP	
10	012C	Forward Rotation Torque Limit Value	TLP	
11	012C	Reverse Rotation Torque Limit Value	TLN	
12	0046	Load Inertia Ratio	GD2	
13	0023	Position Ctrl.Gain 1 (Model Position Gain)	PG1	
14	0081	Speed Ctrl.Gain 1(Model Speed Gain)	VG1	

Examples of changes of parameter setting values are shown below.
(a) Change of [Pr. 2 regenerative resistor] (hexadecimal parameter)

To change the setting value to "0020", enter "0020" as it is.
(b) Change of [Pr. 12 load inertia moment ratio relative to the servo motor (load inertia ratio) (decimal parameter)
To change the setting value to " 7.0 ", enter " 0046 " which is the value resulted from converting " 70 " to the hexadecimal number.
(c) Change of [Pr. 39 Electronic dynamic brake operating time] (decimal parameter)

To change the setting value to "10000", enter " 2710 " which is the value resulted from converting "10000" to the hexadecimal number.
(4) Write the changed parameter in communication. Clicking "Write" will run a write.

14.2.3 For MT Developer (software version OOV or earlier) or SW3RNC-GSV

POINT

Perform the steps during communication with the servo controller and the servo amplifier.
(1) Setting procedure
(a) Display the monitor screen.

Set the monitor to a stooped state of monitor using the positioning monitor.

(a) With the monitor screen displayed, use the shortcut keys
"Ctrl" + "Shift" + "Alt" + "O" on the keyboard to display the "Servo special parameter setting" dialog.

[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20

(3) Change the parameter setting value.

After changing the setting value of the applicable parameter, click "OK" to write the setting value to the motion controller and the servo amplifier.

Examples of changes of parameter setting values are shown below.
(a) Change of [Pr. 2 regenerative resistor] (hexadecimal parameter)

To change the setting value to "0020", enter "0020" as it is.
(b) Change of [Pr. 12 load inertia moment ratio relative to the servo motor (load inertia ratio) (decimal parameter)
To change the setting value to " 7.0 ", enter " 0046 " which is the value resulted from converting " 70 " to the hexadecimal number.
(c) Change of [Pr. 39 Electronic dynamic brake operating time] (decimal parameter)

To change the setting value to "10000", enter " 2710 " which is the value resulted from converting "10000" to the hexadecimal number.
(4) Since the parameter values changed in (3) are not reflected in the project, read the servo parameters in communication and save them to the project.

[Appendix 2] Introduction to Renewal Tool

Mitsubishi Electric System \& Service Co., Ltd. provides the related services. For details, please refer to the following address.

Mitsubishi Electric System \& Service Co., Ltd.

www.melsc.co.jp/business/
OVERSEAS SERVICE SUPPORT SECTION
Email: osb.webmaster@melsc.jp

[Appendix 2] Introduction to Renewal Tool

POINT

For details and the latest version of the tool and compatible models, check the website of Mitsubishi Electric System \& Service Co., Ltd.

1. SUMMARY

The MR-J2S renewal tool is a tool to replace the presently used MR-J2S servo amplifier with the MR-J4 servo amplifier. The company is prepared to provide a renewal kit compatible with the existing mounting dimensions and terminal block cables, and a conversion cable compatible with the existing cables.

1.1 Compatible Models

Type	Former model
General-purpose interface	MR-J2S-_A
	MR-J2S-_A1
SSCNET interface	MR-J2S-_B
	MR-J2S-_B1
	MR-J2S-_B4
Built-in positioning function	MR-J2S-_CP
	MR-J2S-_CP1

\rightarrow| Replacement |
| :---: |
| MR-J4-_A |
| MR-J4-_A1 |
| MR-J4-_A4 |
| MR-J4-_B-RJ020 + MR-J4-T20 |
| MR-J4-_B1-RJ020 + MR-J4-T20 |
| MR-J4-_B4-RJ020 + MR-J4-T20 |
| MR-J4-_A-RJ |
| MR-J4-_A1-RJ |

1.2 Features

- It is possible to operate the exiting MR-J2S servo motor with the MR-J4 servo amplifier.
- Wiring work can be shortened because the existing cables can be connected as they are. (except for some models)
- The renewal kit can be mounted using the existing mounting holes.
- The existing space can be effectively used by adopting the sliding mechanism for the renewal kit. (For some models)
- By utilizing the renewal tool, it is possible to replace by proceeding in stages from primary replacement to secondary replacement.
Primary replacement: Replace the servo amplifier only.
Secondary replacement: Replace the servo motor after replacement of the servo amplifier.
Simultaneous replacement: Replace the servo amplifier and the servo motor simultaneously.
* It is not possible to replace the servo motor only.
* A separate 24 V DC power supply (current capacity: 80 mA or more) for the interface is required when the internal 24 V DC power supply for the interface is used for the MR-J2S servo amplifier. Must be provided by the customer. (Not included with the renewal tool.)

[Appendix 2] Introduction to Renewal Tool

1.2.1 MR-J2S-_A_renewal tool/MR-J2S-_CP_renewal tool
[Before replacement]

MR-J2S servo amplifier and Servo motor for MR-J2S

[After replacement]
<Primary replacement> When replacing the servo amplifier only

<Secondary replacement>
When replacing the servo motor after replacing the servo amplifier
<Simultaneous replacement> When replacing the servo amplifier and the servo motor simultaneously

Servo motor for MR-J4

[Appendix 2] Introduction to Renewal Tool

1.2.2 MR-J2S-_B_renewal tool
[Before replacement]

MR-J2S servo amplifier and Servo motor for MR-J2S

Servo motor for MR-J4
(1) Common items
*When the renewal tool is used.

	Item	MR-J2S series	MR-J4 series	When the renewal tool is used	Compatibility (*)	Remarks
	Dynamic brakes	Built-in (0.1 kW to 7 kW) External (11 kW to 55 kW)	Built-in (0.1 kW to 7 kW) External (11 kW to 55 kW) * Coasting distance is different.		Δ	(Note 2)
	Regenerative resistor	Built-in (0.2 kW to 7 kW) External (11 kW to 22 kW)	Built-in (0.2 kW to 7 kW) External (11 kW to 22 kW)		Δ	(Note 3)
	control circuit power supply	$\begin{aligned} & 24 \mathrm{~V} \mathrm{DC} \pm 15 \% \\ & \text { 1-phase } 100 \mathrm{~V} \mathrm{AC} \text { to } 120 \mathrm{~V} \mathrm{AC} \\ & \text { 1-phase } 200 \mathrm{~V} \mathrm{AC} \text { to } 230 \mathrm{~V} \mathrm{AC} \\ & \text { 1-phase } 380 \mathrm{~V} \mathrm{AC} \text { to } 480 \mathrm{~V} \mathrm{AC} \end{aligned}$	1-phase 100 V AC to 120 V AC 1-phase 200 V AC to 240 V AC 1-phase 380 V AC to 480 V AC		Δ	(Note 18)
	Main circuit power supply	1-phase 100 V AC to 120 V AC 1-phase/3-phase 200 V AC to 230 V AC 1-phase/3-phase 380 V AC to 480 V AC	1-phase 100 V AC to 120 V AC 1-phase/3-phase 200 V AC to 240 V AC 1-phase/3-phase 380 V AC to 480 V AC		O	
	Interface 24 V DC power supply	Built-in	External supply required	External supply required	\times	(Note 4)
	Control circuit power/regenerative resistor terminal connection method	For 200 V: 0.1 kW to 1 kW : Plug-in type connector 2 kW or more: Terminal block For 400 V : 0.6 kW to 2 kW : Plug-in type connector 3.5 kW or more: Terminal block	For 200 V: 0.1 kW to 3.5 kW : Plug-in type connector 5 kW or more: Terminal block For 400 V : 0.6 kW to 3.5 kW : Plug-in type connector 5 kW or more: Terminal block	For 200 V: With terminal block conversion	\triangle	(Note 19)
	Main circuit power supply terminal connection method	For 200 V : Terminal block For 400 V : 0.6 kW to 2 kW : Plug-in type connector 3.5 kW or more: Terminal block	For 200 V: 0.1 kW to 3.5 kW : Plug-in type connector 5 kW or more: Terminal block For $400 \mathrm{~V}: 0.6 \mathrm{~kW}$ to 3.5 kW : Plug-in type connector 5 kW or more: Terminal block	For 200 V : With terminal block conversion (other than of 5 kW)	Δ	(Note 19)
	Auto tuning	Real-time auto tuning: 15 steps	Real-time auto tuning: 40 steps One-touch tuning	$>$	\bigcirc	
	Advanced vibration suppression control II	Unprovided	Provided		O	
	Adaptive filter	Provided (I)	Provided (II: with improved function)		\bigcirc	
	Notch filter	Provided (2 pcs.)	Provided (5 pcs.)		\bigcirc	
	Tough drive function	Unprovided	Provided		\bigcirc	
	Drive recorder function	Unprovided	Provided		O	
	Restart after instantaneous power failure	Supported	None		\times	(Note 5)
	Cooling method	Natural cooling (0.1 kW to 1 kW) Force cooling (2 kW to 22 kW)	Natural cooling (0.1 kW to 0.6 kW) Force cooling (0.7 kW to 22 kW)		\bigcirc	(Note 6)
	Heatsink Outside mounting attachment	MR-JACN_(11 kW to 22 kW) MR-ACN_ (30 kW to 55 kW)	$\begin{aligned} & \hline \text { MR-J4ACN_(11 kW, } 15 \mathrm{~kW}) \\ & \text { MR-J3ACN (22 kW) } \\ & 30 \mathrm{~kW} \text { to } 55 \mathrm{~kW}: \text { Unprovided } \\ & \hline \end{aligned}$		\times	(Note 21)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible
Refer to Appendix page 2-10 for important points to note.
(2) General-purpose interface
*When the renewal tool is used.

	Item		MR-J2S series	MR-J4 series	When the renewal tool is used	Compatibility (*)	Remarks
	Capacity range	0.1 kW to $0.4 \mathrm{~kW}(100 \mathrm{~V})$ 0.1 kW to $37 \mathrm{~kW}(200 \mathrm{~V})$ 0.6 kW to $55 \mathrm{~kW}(400 \mathrm{~V})$		0.1 kW to $0.4 \mathrm{~kW}(100 \mathrm{~V})$ 0.1 kW to $37 \mathrm{~kW}(200 \mathrm{~V})$ 0.6 kW to $55 \mathrm{~kW}(400 \mathrm{~V})$	0.1 kW to 0.4 kW (100 V) 0.1 kW to 37 kW (200 V) 0.6 kW to 55 kW (400 V)	\bigcirc	(Note 1)
	Control mode	- Position control mode (pulse command) - Speed control mode (analog command) - Torque control mode (analog command)		- Position control mode (pulse command) - Speed control mode (analog command) - Torque control mode (analog command)		\bigcirc	
	Control signal/ Encoder signal/ Monitor signal Connector	7 kW or less	Control signal (CN1A, CN1B) 2 pcs Encoder signal (CN2), 1 unit Monitor signal (CN3), 1 unit	Control signal (CN1), 1 unit Encoder signal (CN2), 1 unit Monitor signal (CN6), 1 unit *Different connector shape	With conversion cable Compatible	\bigcirc	
		11 kW to 55 kW	Control signal (CN1A, CN1B) 2 pcs Encoder signal (CN2), 1 pcs. Communication connector (CN3) 1 pcs. Monitor signal (CN4), 1 pcs.			Δ	(Note 20)
	Maximum input pulse	Differential pulse 500 kpulses/s Open-collector 200 kpulses/s Command pulse: Sink		Differential pulse 4 Mpulses/s Open-collector 200 kpulses/s Command pulse: Sink		\bigcirc	
	Command pulse logic setting	Forward/reverse rotation pulse train Signed pulse train A-phase/B-phase pulse train		Forward/reverse rotation pulse train Signed pulse train A-phase/B-phase pulse train		O	(Note 7)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible
Refer to Appendix page 2-10 for important points to note.

Continued from previous page
*When the renewal tool is used.

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible Refer to Appendix page 2-10 for important points to note.
(3) SSCNET interface
*When the renewal tool is used.

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible
Refer to Appendix page 2-10 for important points to note.
(4) Built-in positioning function
*When the renewal tool is used.

	Item	MR-J2S series	MR-J4 series	When the renewal tool is used	Compatibility (*)	Remarks
	Capacity range	0.1 kW to $0.4 \mathrm{~kW}(100 \mathrm{~V})$ 0.1 kW to $7 \mathrm{~kW}(200 \mathrm{~V})$	0.1 kW to $0.4 \mathrm{~kW}(100 \mathrm{~V})$ 0.1 kW to $7 \mathrm{~kW}(200 \mathrm{~V})$	$\begin{aligned} & 0.1 \mathrm{~kW} \text { to } 0.4 \\ & \mathrm{~kW}(100 \mathrm{~V}) \\ & 0.1 \text { to } 7 \mathrm{~kW} \\ & (200 \mathrm{~V}) \\ & \hline \end{aligned}$	O	(Note 1)
	Control mode	- Built-in positioning function	- Built-in positioning function - Position control mode (pulse command) - Speed control mode (analog command) - Torque control mode (analog command)		O	
	Control signal/ Encoder signal/ Monitor signal Connector	Control signal (CN1A, CN1B), 2 unit Encoder signal (CN2), 1 unit Monitor signal (CN3), 1 unit	Control signal (CN1), 1 unit Encoder signal (CN2), 1 unit Monitor signal (CN6), 1 unit *Different connector shape	With conversion cable Compatible	O	
	Manual pulse generator Maximum input pulse	Open collector $200 \mathrm{kpulses} / \mathrm{s}$	Open collector $200 \mathrm{kpulses} / \mathrm{s}$		O	
	DI signal	8 points	11 points		\bigcirc	
		SON reception time After power-up, 2 s at maximum	SON reception time After power-up, 5 s at maximum		Δ	(Note 8)
		Forced stop: EM1 (DB stop)	Forced stop: EM1 (DB stop)/Possible to select EM2 (deceleration stop)		\triangle	(Note 9)
	DO signal	5 points	8 points		\bigcirc	
		ALM: After power-up, the output is on in 1 s at most	ALM: ALM: After power-up, the output is on in 5 s at most		Δ	(Note 10)
		Alarm code output ACDO (Pin CN1A-19), 1st digit ACD1 (Pin CN1A-18), 2nd digit ACD2 (Pin CN1B-19) 3rd digit	Alarm code output ACDO (Pin CN1-24), 1st digit ACD1 (Pin CN1-23), 2nd digit ACD2 (Pin CN1-22), 3rd digit	Unsupported	\times	(Note 11)
	DI/DO combination	1 points	0 points	Unsupported	\times	(Note 22)
	DIO interface	Input: Sink/source Output: Sink	Input/Output: Sink/source		\bigcirc	
	Number of internal speed commands	7 points	7 points		O	
	Encoder pulse output	ABZ-phase (differential line driver) Z-phase (open-collector)	ABZ-phase (differential line driver) Z-phase (open-collector)		O	(Note 12)
	Parameter setting method	Setup software (SETUP161E) Communication method: RS-232C Push-button	MR Configurator2 Communication method: USB Push-button		Δ	(Note 13)
	RS-422/232C communication function	RS-422/232 serial communication function	RS-422 serial communication function	Unsupported	\times	(Note 14)
	Point table	up to 31	up to 255		O	
	Absolute speed encoder system	Set by [Pr. 2]	Set by [Pr. PA03]		O	
	Analog monitor input	Input: 2 ch; 10-bit torque; 10-bit override or equivalent	Input: 2 ch; 10-bit torque; 10-bit override or equivalent		O	
	Analog monitor output	2 ch (0 to $\pm 10 \mathrm{~V}$); 10-bit resolution or equivalent [Monitor signal] - Servo motor speed ($\pm 8 \mathrm{~V} /$ max. speed) - Torque ($\pm 8 \mathrm{~V} / \mathrm{max}$. torque) - Current command ($\pm 8 \mathrm{~V} /$ max. current command) - Speed command ($\pm 8 \mathrm{~V} /$ max. speed) - Droop pulses ($\pm 10 \mathrm{~V} / 128$ pulses) - Droop pulses ($\pm 10 \mathrm{~V} / 2048$ pulses) - Droop pulses (± 10 V/8192 pulses) - Droop pulses ($\pm 10 \mathrm{~V} / 32768$ pulses) - Droop pulses ($\pm 10 \mathrm{~V} / 131072$ pulses) - Bus voltage (+8 V/400 V)	2 ch (0 to $\pm 10 \mathrm{~V}$); 10-bit resolution or equivalent [Monitor signal] - Servo motor speed ($\pm 8 \mathrm{~V} /$ max. speed) - Torque ($\pm 8 \mathrm{~V} / m a x$. torque) - Current command ($\pm 8 \mathrm{~V} /$ max. current command) - Speed command ($\pm 8 \mathrm{~V} /$ max. speed) - Droop pulses ($\pm 10 \mathrm{~V} / 100$ pulses) - Droop pulses (± 10 V/1000 pulses) - Droop pulses ($\pm 10 \mathrm{~V} / 10000$ pulses) - Droop pulses ($\pm 10 \mathrm{~V} / 100000$ pulses) - Bus voltage ($+8 \mathrm{~V} / 400 \mathrm{~V}$)		Δ	(Note 15) (Note 16)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible
Refer to Appendix page 2-10 for important points to note.

<Precautions>

Note 1. The renewal tool is compatible with the following capacity:

- General-purpose interface/SSCNET interface: 0.1 kW to $0.4 \mathrm{~kW}(100 \mathrm{~V}), 0.1 \mathrm{~kW}$ to $37 \mathrm{~kW}(200 \mathrm{~V})$, and 0.6 kW to 55 kW (400 V)
- Built-in positioning: 0.1 kW to $0.4 \mathrm{~kW}(100 \mathrm{~V})$ and 0.1 kW to $7 \mathrm{~kW}(200 \mathrm{~V})$

2. Note that the coasting distance is different between the MR-J2S servo amplifier and the MR-J4 servo amplifier.

When DB assignment function is used for a servo amplifier of 11 kW or more, set the parameter as follows. For general-purpose interfaces, set [Pr. PD27] as "0006". For SSCNET interfaces, set [Pr. PD08] as "0006".
3. When replacing, some models cannot use the existing regenerative option. Provide regenerative options as necessary by reselecting the capacity, including calculating the regenerative ability again. Refer to Chapter 7.
4. A separate 24 V DC power supply (current capacity: 80 mA or more) for the interface is required when the internal 24 V DC power supply for the interface is used for the MR-J2S servo amplifier. Must be provided by the customer. (Not included with the renewal tool.)
5. There is no restart function in the MR-J4 servo amplifier during momentary power interruption. When replacing, if undervoltage (AL 10.1 or AL 10.2) is generated by instantaneous power failure, reset the alarm (turn off the power once) and restart.
6. Please note that if the renewal kit is used, it is necessary to remove the renewal kit when replacing the servo amplifier cooling fan.
7. When replacing, it is necessary to adjust the command pulse train logic setting between the positioning module and the servo amplifier. For details, refer to Part 2 Section 3.7.
8. This is the time between power-on and servo-on reception. Due to different reception times, sometimes review of the external sequence is necessary upon replacement.
9. When replacing to the MR-J2S servo amplifier, it is necessary to set the parameters to EM1 (DB stop) (at the time of shipment of the MR-J4 servo, the parameter is set to EM2 (deceleration stop)). For details about parameter settings, refer to Part 2 for general-purpose interfaces, Part 3 for SSCNET interfaces, and Part 4 for built-in positioning.
For built-in positioning, it is not able to change the assignment of the forced stop signal (CN1-42 pin) by the parameter in the MR-J4 servo amplifier. When the assignment of the EMG signal in the existing MR-J2S servo amplifier has been changed, the existing wiring change becomes necessary.
10. This is the time until alarm signal output. Due to different reception times, sometimes review of the external sequence is necessary upon replacement. Refer to Part 7 for details.
11. Note that the renewal tool is not compatible with alarm code output.
12. Upon replacement, it is necessary to set the parameter for the encoder output pulses.

For details about parameter settings, refer to Part 2 for general-purpose interfaces, Part 3 for SSCNET interfaces, and Part 4 for built-in positioning.
13. When replacing, a separate communication cable (USB cable: MR-J3USBCBL3M) is required to connect between the servo amplifier and the personal computer.
14. The renewal tool is not compatible with RS-422/232C serial communication functions.
15. Please note that the command pulse frequency and the droop pulse output unit are different.
16. Due to differences in servo motor maximum speed, for secondary and simultaneous replacement the output value of the monitor (servo motor speed) is different from that of the existing servo amplifier.
Note that it is required to change the program when using monitor output with existing equipment.
17. In order to connect between the SSCNET conversion unit (model: MR-J4-T20) and the personal computer, both the existing communication cable (model: MR-CPCATCBL3M) and the junction cable for RS-232C (model: MR-J4T20CH00) are required.
18. Please note that the control circuit power supply of the 400 V servo amplifier (7 kW or less) between MR-J2S and MR-J4 are different.
19. Not included with the renewal tool for 400 V . Please note that it is required to be laid again when the terminal size etc. are different.
20. When replacing a converter unit, a new cable for CN 1 is required to be laid.
21. A renewal kit and mounting attachment are not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.
22. The renewal tool is not compatible with the $\mathrm{DI} / \mathrm{DO}$ combination function.
(5) Encoder
*When the renewal tool is used.

Item		MR-J2S series	MR-J4 series	When the renewal tool is used	Compatibility (*)	Remarks
$\begin{aligned} & \text { ఫ̀ } \\ & \text { O} \\ & \text { U } \\ & \text { ש } \end{aligned}$	Connector	1 pcs.	1 pc , different connector shape	With conversion cable	\bigcirc	
	Communication method	Serial communication	Serial communication		\bigcirc	
	Resolution	131072 pulses/rev	4194304 pulses/rev		\triangle	(Note)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible
Note. Similar operation is possible using parameter settings. For details about parameter settings, refer to Part 2 for general-purpose interfaces, Part 3 for SSCNET interfaces, and Part 4 for built-in positioning. For the MR-J4-_B-RJ020 servo amplifier, if the HG series servo motor is used, the encoder resolution per rotation of the servo motor is not 4194304 pulses/rev but becomes 131072 pulses/rev.
(6) Servo motor
*When the renewal tool is used.

	Item	MR-J2S series	MR-J4 series	When the renewal tool is used	$\begin{array}{\|c} \hline \text { Compatibility } \\ \left({ }^{*}\right) \end{array}$	Remarks
$\begin{aligned} & \grave{0} \\ & \stackrel{0}{0} \\ & \stackrel{1}{0} \\ & 0.0 \\ & 0 \end{aligned}$	Connector (power supply/brake)	HC-KFS	HG-KR (different connector shape)	With conversion cable	\bigcirc	-
		HC-MFS	HG-MR (different connector shape)		\bigcirc	
		HC-SFS	HG-SR (different connector shape)		\triangle	(Note 1)
		HC-RFS	HG-RR		\bigcirc	$\xrightarrow{ }$
		HC-LFS	HG-JR (different connector shape)		\triangle	(Note 1)
		HC-UFS(B) 2000 r/min	HG-UR		\bigcirc	-
		HC-UFS(B) $3000 \mathrm{r} / \mathrm{min}$	HG-KR (different connector shape)		\bigcirc	-
		HA-LFS (7 kW or less)	HG-SR (different connector shape)		\bigcirc	
		HA-LFS (11 kW or more)	HG-JR (different connector shape)		\triangle	(Note 2) (Note 3) (Note 4)

Note 1. Laying a new electromagnetic brake cable is required when performing a secondary replacement or simultaneous replacement of a motor with brake.
2. If the HA-LFS motor is replaced with the HG-JR motor, it is necessary to change the crimp terminal of the existing power supply cable. Refer to Part 8 for details.
3. If the existing motor is replaced with the HG-JR11K1M motor or JR15K1M motor, the replacement motor will not have a cooling fan and thermal terminal block. Because the existing wiring becomes unnecessary, insulate the cables as needed.
4. Laying a new encoder cable is required when performing a replacement of a following motor. Contact a Mitsubishi Electric System \& Service Co., Ltd. if a new cable required.

- HG-JR22K1M(4)
- HG-JR30K1M(4)
-HG-JR15K1(4)
- HG-JR37K1M(4)
- HG-JR45K1M4
-HG-JR55K1M4
- HG-JR20K1(4)
- HG-JR25K1(4)
- HG-JR30K1(4)
- HG-JR37K1(4)

1.3 Renewal Tool Product Names

(1) For general-purpose interface and built-in positioning

Note 2. The monitor conversion cable compatible with a servo amplifier capacity of 11 kW to 55 kW has a different shape.
Note 3. There is no conversion terminal block in the following model:

- SC-J2S(CP)J4KT5K, 7K
-SC-J2SJ4BS01 to 09
(2) For SSCNET interface
(Example) Primary replacement (SC-J2SBJ4KT02K)

Note 2. The control signal conversion cable compatible with a servo amplifier capacity of 11 kW to 55 kW has a different shape.
Note 3. There is no conversion terminal block in the following model:

- SC-J2S(CP)J4KT5K, 7K
- SC-J2SJ4BS01 to 09

[Appendix 2] Introduction to Renewal Tool

1.4 Renewal Tool Configuration

(1) For general-purpose interface and built-in positioning

1) Primary replacement:

When replacing the servo amplifier only

2) Secondary replacement: When replacing the servo motor after replacing the servo amplifier Simultaneous replacement: When replacing the servo amplifier and the servo motor simultaneously

Servo motor for MR-J4
(2) For SSCNET interface

1) Primary replacement:

When replacing the servo amplifier only

2) Secondary replacement: When replacing the servo motor after replacing the servo amplifier Simultaneous replacement: When replacing the servo amplifier and the servo motor simultaneously

2. RENEWAL TOOL PRODUCT LIST

(1) For general-purpose interface

No.	Product name	Model	Application	Replacement method
1	Renewal kit	SC-J2SJ4KT02K	MR-J4-_A_servo amplifier capacity: For $100 \mathrm{~W}, 200 \mathrm{~W}$	Used for primary replacement and simultaneous replacement.
2		SC-J2SJ4KT06K	MR-J4-_A_servo amplifier capacity: For $400 \mathrm{~W}, 600 \mathrm{~W}$	
3		SC-J2SJ4KT1K	MR-J4-_A servo amplifier capacity: For $700 \mathrm{~W}, 1 \mathrm{~kW}$	
4		SC-J2SJ4KT3K	MR-J4-_A servo amplifier capacity: For $2 \mathrm{~kW}, 3.5 \mathrm{~kW}$	
5		SC-J2SJ4KT5K	MR-J4-_A servo amplifier capacity: For 5 kW	
6		SC-J2SJ4KT7K	MR-J4-_A servo amplifier capacity: For 7 kW	
7		SC-J2SJ4KT15K	MR-J4-_A servo amplifier capacity: For $11 \mathrm{~kW}, 15 \mathrm{~kW}$	
8		SC-J2SJ4KT22K	MR-J4-_A servo amplifier capacity: For 22 kW	
9	Servo amplifier side conversion cable set	SC-J2SJ4CSET-01 (for 7 kW or less)	Control signal conversion cable (SC-J2SJ4CTC03M)	
			Encoder conversion cable (SC-J2SJ4ENC03M)	
			Monitor conversion cable (SC-J2SJ4MOC03M)	
			24 V DC connector cable (SC-J2SJ4CTPWC5M)	
10		SC-J2SJ4CSET-02 (for 11 kW or more)	Control signal conversion cable (SC-J2SJ4CTC03M)	
			Encoder conversion cable (SC-J2SJ4ENC03M)	
			Monitor conversion cable (SC-J2SJ4MO2C03M)	
			24 V DC connector cable (SC-J2SJ4CTPWC5M)	

(2) For SSCNET interface

No.	Product name	Model	Application	Replacement method
1	Renewal kit	SC-J2SBJ4KT02K	MR-J4-_B_-RJ020 servo amplifier capacity: For 100 W, 200 W	Used for primary replacement and simultaneous replacement.
2		SC-J2SBJ4KT06K	MR-J4-_B_-RJ020 servo amplifier capacity: For $400 \mathrm{~W}, 600 \mathrm{~W}$	
3		SC-J2SBJ4KT1K	MR-J4-_B-RJ020 amplifier capacity: For $700 \mathrm{~W}, 1 \mathrm{~kW}$	
4		SC-J2SBJ4KT3K	MR-J4-_B-RJ020 servo amplifier capacity: For $2 \mathrm{~kW}, 3.5 \mathrm{~kW}$	
5		SC-J2SBJ4KT5K	MR-J4-_B-RJ020 servo amplifier capacity: For 5 kW	
6		SC-J2SBJ4KT7K	MR-J4-_B-RJ020 servo amplifier capacity: For 7 kW	
7		SC-J2SBJ4KT15K	MR-J4-_B-RJ020 servo amplifier capacity: For $11 \mathrm{~kW}, 15 \mathrm{~kW}$	
8		SC-J2SBJ4KT22K	MR-J4-_B-RJ020 servo amplifier capacity: For 22 kW	
9	Servo amplifier side conversion cable set	SC-J2SBJ4CSET-01 (for 7 kW or less)	Control signal conversion cable (SC-J2SBJ4CT1C03M)	
			Encoder conversion cable (SC-J2SJ4ENC03M)	
			24 V DC connector cable (SC-J2SJ4CTPWC5M)	
10		SC-J2SBJ4CSET-02 (for 11 kW or more)	Control signal conversion cable (SC-J2SBJ4CT2C03M)	
			Encoder conversion cable (SC-J2SJ4ENC03M)	
			24 V DC connector cable (SC-J2SJ4CTPWC5M)	

(3) For built-in positioning

No.	Product name	Model	Application	Replacement method
1	Renewal kit	SC-J2SCPJ4KT02K	MR-J4-_A_-RJ servo amplifier capacity: For 100 W, 200 W	Used for primary replacement and simultaneous replacement.
2		SC-J2SCPJ4KT06K	MR-J4-_A_-RJ servo amplifier capacity: For $400 \mathrm{~W}, 600 \mathrm{~W}$	
3		SC-J2SCPJ4KT1K	MR-J4-_A-RJ servo amplifier capacity: For $700 \mathrm{~W}, 1 \mathrm{~kW}$	
4		SC-J2SCPJ4KT3K	MR-J4-_A-RJ servo amplifier capacity: For $2 \mathrm{~kW}, 3.5 \mathrm{~kW}$	
5		SC-J2SCPJ4KT5K	MR-J4-_A-RJ servo amplifier capacity: For 5 kW	
6		SC-J2SCPJ4KT7K	MR-J4-_A-RJ servo amplifier capacity: For 7 kW	
7	Servo amplifier side conversion cable set	SC-J2SCPJ4CSET-01	Control signal conversion cable (SC-J2SCPJ4CTC03M)	
			Encoder conversion cable (SC-J2SJ4ENC03M)	
			Monitor conversion cable (SC-J2SJ4MOC03M)	
			24 V DC connector cable (SC-J2SJ4CTPWC5M)	

(4) Common (Motor side conversion cable)

No.	Product name	Model	Application	Replacement method
1	Power supply conversion Cable	SC-J2SJ4PW1C03M-A1	For HC-KFS, HC-MFS \rightarrow HG-KR, HG-MR, Load side	Used for secondary replacement and simultaneous replacement.
2		SC-J2SJ4PW1C03M-A2	For HC-KFS, HC-MFS \rightarrow HG-KR, HG-MR, Opposite to load side	
3		SC-J2SJ4PWBK1C03M-A1	For HC-KFS, HC-MFS \rightarrow HG-KR, HG-MR, Load side (With brake)	
4		SC-J2SJ4PWBK1C03M-A2	For HC-KFS, HC-MFS \rightarrow HG-KR, HG-MR, Opposite to load side (With brake)	
5		SC-SAJ3PW2KC1M-S2	For HC-SFS \rightarrow HG-SR	
6		SC-HAJ3PW1C1M	For HC-SFS \rightarrow HG	
7		SC-J2SJ4PW2C1M	For HC-RFS203 with reducer \rightarrow HG-SR202 with reducer	
8		SC-J2SJ4PW3C1M-■	For HA-LFS11K1M/15K1M \rightarrow HG-JR11K1M/15K1M	
9	Encoder	SC-HAJ3ENM1C03M-A1	For HC-KFS, HC-MFS \rightarrow HG-KR, HG-MR, Load side	
10	Conversion	SC-HAJ3ENM1C03M-A2	For HC-KFS, HC-MFS \rightarrow HG-KR, HG-MR, Opposite to load side	
11	cable	SC-HAJ3ENM3C1M	For HC-SFS \rightarrow HG-SR	
12	Brake conversion Cable	SC-BKC1CBLDM-L	For HC-SFS \rightarrow HG-SR	
13	Cooling fan Conversion cable	SC-J2SJ4FAN1C1M	For HA-LFS \rightarrow HG-JR	

(5) Mounting attachment (Note 1, 2, 3)

No.	Product name	Model	Application	Replacement method
1	Mounting attachment	SC-J2SJ4BS01	MR-J4-_A servo amplifier capacity: For $700 \mathrm{~W}, 1 \mathrm{~kW}$ MR-J4-_B-RJ020 servo amplifier capacity: For $700 \mathrm{~W}, 1 \mathrm{~kW}$	Used for primary replacement and simultaneous replacement.
2		SC-J2SJ4BS02	MR-J4-_A4 servo amplifier capacity: For $600 \mathrm{~W}, 1 \mathrm{~kW}$ MR-J4- B4- RJ020 servo amplifier capacity: For 600 W, 1 kW	
3		SC-J2SJ4BS03	MR-J4-_A servo amplifier capacity: For $2 \mathrm{~kW}, 3.5 \mathrm{~kW}$ MR-J4-_B4-RJ020 servo amplifier capacity: For $2 \mathrm{~kW}, 3.5 \mathrm{~kW}$	
4			MR-J4-_A4 servo amplifier capacity: For 2 kW MR-J4-_B4-RJ020 servo amplifier capacity: For 2 kW	
5		SC-J2SJ4BS04	MR-J4-_A servo amplifier capacity: For 5 kW MR-J4-_B-RJ020 servo amplifier capacity: For 5 kW	
6			MR-J4-_A4 servo amplifier For 3.5 kW MR-J4-_B4-RJ020 servo amplifier For 3.5 kW	
7		SC-J2SJ4BS05	MR-J4-_A servo amplifier capacity: For 7 kW MR-J4-_B-RJ020 servo amplifier capacity: For 7 kW	
8			MR-J4-_A4 servo amplifier capacity: For 7 kW MR-J4-_B4-RJ020 servo amplifier capacity: For 7 kW	
9		SC-J2SJ4BS06	MR-J4-_A servo amplifier capacity: For $11 \mathrm{~kW}, 15 \mathrm{~kW}$ MR-J4- B-RJ020 servo amplifier capacity: For $11 \mathrm{~kW}, 15 \mathrm{~kW}$	
10			MR-J4-_A4 servo amplifier capacity: For $11 \mathrm{~kW}, 15 \mathrm{~kW}$ MR-J4-_B4-RJ020 servo amplifier capacity: For $11 \mathrm{~kW}, 15 \mathrm{~kW}$	
11		SC-J2SJ4BS07	MR-J4-_A servo amplifier capacity: For 22 kW MR-J4-_B-RJ020 servo amplifier capacity: For 22 kW	
12			MR-J4-_A4 servo amplifier capacity: For 22 kW MR-J4-_B4-RJ020 servo amplifier capacity: For 22 kW	
13		SC-J2SJ4BS08	MR-J4-_A4 servo amplifier capacity: For 30 kW MR-J4-_B4-RJ020 servo amplifier capacity: For 30 kW	
14		SC-J2SJ4BS09	MR-J4-_A servo amplifier capacity: For $30 \mathrm{~kW}, 37 \mathrm{~kW}$ MR-J4-_B-RJ020 servo amplifier capacity: For $30 \mathrm{~kW}, 37 \mathrm{~kW}$	
15			MR-J4-_A4 servo amplifier capacity: For $37 \mathrm{~kW}, 45 \mathrm{~kW}, 55 \mathrm{~kW}$ MR-J4-_B4-RJ020 servo amplifier capacity: For 37 kW, 45 kW, 55 kW	

Note 1. When replacing a servo amplifier of 400 V class, a mounting attachment compatible with its servo amplifier capacity is required to be purchased. Even when replacing a servo amplifier of $200 \mathrm{~V} / 100 \mathrm{~V}$ class, if a conversion terminal block is not required, a mounting attachment also is available.
2. A conversion cable on the servo amplifier side is not supplied with the mounting attachment and required to be purchased separately.
3. Since the MR-J2S-500_4 servo amplifier and the MR-J4-500_4 servo amplifier have mounting compatibility, no mounting attachment is supplied with them.

3. BASIC CONFIGURATION

[Before replacement]

Note. MR-J4 series servo amplifier and servo motor are required to be purchased separately.

3.1 Important Points to Note When Replacing

(1) Please note that replacement may not be possible when multiple units are set in a line due to the clearance between the servo amplifiers, the model, and the number of units. (Refer to Chapter 8 of this Appendix regarding the dimensions)
(2) Depending on the condition of the existing setup, sometimes noise reduction techniques are necessary when replacing.
(3) When using the existing cables, please consider the remaining life of the cables. If deterioration is significant, replacing with a new cable is recommended.
(4) Because the conversion cable does not have a long bending life, fix the cable when using.
(5) Contact us if using an encoder cable longer than 50 m with long distance wiring. (For secondary and simultaneous replacement) Contact us when replacing with an HG-KR or MR motor if the existing encoder cable is longer than 30 m .
(6) No oil seal is attached to the standard type MR-J4 servo motor. Take care when selecting if the existing MR-J2S servo motor has an attached oil seal. Contact a sales representative if a servo motor with an oil seal is required.
(7) Depending on machine conditions (inertia, load, etc.), there is a possibility of insufficient servo amplifier capacity after replacement. Carefully consider the capacity in relation to the replacement.
(8) Although use of dynamic brake resistance standardly equipped to the replacement MR-J4 servo amplifier is possible, take care because the coasting distance differs depending on the characteristics of the dynamic brake. In addition, do not use dynamic braking at high frequencies.
(9) Check Part 9 of this document for important points to note when using optional or peripheral equipment.
(10) Contact a sales representative if the existing MR-J2S servo amplifier or servo motor is a special product.
(11) Although the servo motor model of the MR-J2S-series servo motor may not be displayed properly with MR Configurator2, this is normal. Do not use the MR Configurator2 advanced functions (machine analyzer, gain search, machine simulation, etc.) because they do not work accurately.

[Appendix 2] Introduction to Renewal Tool

3.2 Selection of Products

3.2.1 Replacement selection flow

| Because some existing HC-KFS46, HC-KFS410, HC-RFS, HC-LFS and HA-LFS |
| :--- | :--- |
| series servo motors differ in primary replacement servo amplifiers and |
| secondary/simultaneous replacement servo amplifiers, the selection method may |
| differ from the following flow. |

(1) Replacement selection flow
(For existing servo motors other than HC-KFS46, HC-KFS410, HC-RFS, HC-LFS and HA-LFS series)

1) Primary replacement menu

Check the combination of the existing models.

Select the primary replacement model servo amplifier from column 2 of the replacement combination list in Section 4.1 to 4.5.

Select the renewal kit from column 3 of the replacement combination list in Section 4.1 to 4.5 .
2) Secondary replacement menu

Check the combination of the existing servo motor model or of the existing models.

Select the secondary replacement models from column 2 and 4 of the replacement combination list in Section 4.1 to 4.5.

Select the renewal kit from column 3 and the motor side conversion cable from column 5 of the replacement combination list in Section 4.1 to 4.5.
3) Simultaneous replacement menu

Check the combination of the existing models.

Select the simultaneous replacement models from column 2 and 4 of the replacement combination list in Section 4.1 to 4.5.

Select the renewal kit from column 3 and the motor side conversion cable from column 5 of the replacement combination list in Section 4.1 to 4.5 .

[Appendix 2] Introduction to Renewal Tool

(2) Replacement selection flow
(For existing HC-KFS46, HC-KFS410, HC-RFS, HC-LFS and HA-LFS series servo motors)

1) Primary replacement menu

Check the combination of the existing models. replacement combination list in Section 4.1 to 4.5.

Select the renewal kit from column 3 of the replacement combination list in Section 4.1 to 4.5 .
2) Secondary replacement menu

Check the combination of the existing servo motor model or of the existing models.

Select the secondary replacement models from column 4 and 5 of the replacement combination list in Section 4.1 to 4.5 .

Select the renewal kit from column 6 and the motor side conversion cable from column 7 of the replacement combination list in Section 4.1 to 4.5 .
3) Simultaneous replacement menu

```
Check the combination of the existing models.
```


Select the simultaneous replacement models from column 4 and 5 of the replacement combination list in Section 4.1 to 4.5.

Select the renewal kit from column 6 and the motor side conversion cable from column 7 of the replacement combination list in Section 4.1 to 4.5 .

4. REPLACMENT COMBINATION LIST

4.1 General-Purpose Interface Replacement Combination List (100 V/200 V Class)

(1) Existing HC-KFS motor series (standard/with brake, G1, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)			(5)	
Existing model(Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)	Motor side conversion cable model			
					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series, standard/with brake] (B) represents models with brake)								
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 10A(1) } \\ \hline \end{array}$	HC-KFS053(B)	MR-J4-10A(1)	SC-J2SJ4KT02K	HG-KR053(B)		Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-KFS 13(B)			HG-KR13(B)				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 20 \mathrm{~A}(1) \\ \hline \end{array}$	HC-KFS23(B)	MR-J4-20A(1)		HG-KR23(B)				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 40 \mathrm{~A}(1) \\ & \hline \end{aligned}$	HC-KFS43(B)	MR-J4-40A(1)	SC-J2SJ4KT06K	HG-KR43(B)				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 70A } \\ \hline \end{array}$	HC-KFS73(B)	MR-J4-70A	SC-J2SJ4KT1K	HG-KR73(B)				
[Small capacity/low inertia HC-KFS series with general reducer (G1)] (B) represents models with brake)								
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 10A(1) } \end{array}$	HC-KFS053(B)G1 1/5	MR-J4-10A(1)	SC-J2SJ4KT02K	HG-KR053(B)G1 1/5		Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-KFS053(B)G1 1/12			HG-KR053(B)G1 1/12				
	HC-KFS053(B)G1 1/20			HG-KR053(B)G1 1/20				
	HC-KFS13(B)G1 1/5			HG-KR13(B)G1 1/5				
	HC-KFS 13 (B)G1 1/12			HG-KR13(B)G1 1/12				
	HC-KFS13(B)G1 1/20			HG-KR13(B)G1 1/20				
$\begin{array}{\|l\|} \text { MR-J2S- } \\ \text { 20A(1) } \end{array}$	HC-KFS23(B)G1 1/5	MR-J4-20A(1)		HG-KR23(B)G1 1/5				
	HC-KFS23(B)G1 1/12			$\begin{aligned} & \text { HG-KR23(B)G1 1/12 } \\ & \text { (Note 2) } \end{aligned}$				
	HC-KFS23(B)G1 1/20			$\begin{aligned} & \text { HG-KR23(B)G1 1/20 } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40A(1) } \end{aligned}$	HC-KFS43(B)G1 1/5	MR-J4-40A(1)	SC-J2SJ4KT06K	HG-KR43(B)G1 1/5				
	HC-KFS43(B)G1 1/12			HG-KR43(B)G1 1/12 (Note 2) HG-KR43				
	HC-KFS43(B)G1 1/20			$\begin{aligned} & \text { HG-KR43(B)G1 1/20 } \\ & \text { (Note 2) } \end{aligned}$				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 70 \mathrm{~A} \end{array}$	HC-KFS73(B)G1 1/5	MR-J4-70A	SC-J2SJ4KT1K	HG-KR73(B)G1 1/5				
	HC-KFS73(B)G1 1/12			$\begin{array}{\|l} \hline \text { HG-KR73(B)G1 1/12 } \\ \text { (Note 2) } \end{array}$				
	HC-KFS73(B)G1 1/20			HG-KR73(B)G1 1/20				
[Small capacity/low inertia HC-KFS series with high-precision reducer (G2)] (B) represents models with brake)								
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 10A(1) } \end{array}$	HC-KFS053(B)G2 1/5	MR-J4-10A(1)	SC-J2SJ4KT02K	HG-KR053(B)G7 1/5	(Note 3) (Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-KFS053(B)G2 1/9			HG-KR053(B)G7 1/11				
	HC-KFS053(B)G2 1/20			HG-KR053(B)G7 1/21				
	HC-KFS053(B)G2 1/29			HG-KR053(B)G7 1/33				
	HC-KFS13(B)G2 1/5			HG-KR13(B)G7 1/5				
	HC-KFS13(B)G2 1/9			HG-KR13(B)G7 1/11				
	HC-KFS13(B)G2 1/20			HG-KR13(B)G7 1/21				
	HC-KFS13(B)G2 1/29			HG-KR13(B)G7 1/33				
$\begin{array}{\|l\|} \text { MR-J2S- } \\ 20 A(1) \end{array}$	HC-KFS23(B)G2 1/5	MR-J4-20A(1)		HG-KR23(B)G7 1/5				
	HC-KFS23(B)G2 1/9			HG-KR23(B)G7 1/11				
	HC-KFS23(B)G2 1/20			HG-KR23(B)G7 1/21				
	HC-KFS23(B)G2 1/29			HG-KR23(B)G7 1/33				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 40A(1) } \end{array}$	HC-KFS43(B)G2 1/5	MR-J4-40A(1)	SC-J2SJ4KT06K	HG-KR43(B)G7 1/5				
	HC-KFS43(B)G2 1/9			HG-KR43(B)G7 1/11				
	HC-KFS43(B)G2 1/20			HG-KR43(B)G7 1/21				
	HC-KFS43(B)G2 1/29			HG-KR43(B)G7 1/33				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 70 \mathrm{~A} \end{array}$	HC-KFS73(B)G2 1/5	MR-J4-70A	SC-J2SJ4KT1K	HG-KR73(B)G7 1/5				
	HC-KFS73(B)G2 1/9			HG-KR73(B)G7 1/11				
	HC-KFS73(B)G2 1/20			HG-KR73(B)G7 1/21				
	HC-KFS73(B)G2 1/29			HG-KR73(B)G7 1/33				

Refer to Appendix page 2-65 for important points to note.
(2) Existing HC-KFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
		Servo				Motor s	de conversion cable model	
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)	Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series with high-precision reducer, flange output type (G5)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10A(1) } \end{aligned}$	HC-KFS053(B)G5 1/5	MR-J4-10A(1)	SC-J2SJ4KT02K	HG-KR053(B)G5 1/5	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-KFS053(B)G5 1/11			HG-KR053(B)G5 1/11				
	HC-KFS053(B)G5 1/21			HG-KR053(B)G5 1/21				
	HC-KFS053(B)G5 1/33			HG-KR053(B)G5 1/33				
	HC-KFS053(B)G5 1/45			HG-KR053(B)G5 1/45				
	HC-KFS13(B)G5 1/5			HG-KR13(B)G5 1/5				
	HC-KFS13(B)G5 1/11			HG-KR13(B)G5 1/11				
	HC-KFS13(B)G5 1/21			HG-KR13(B)G5 1/21				
	HC-KFS13(B)G5 1/33			HG-KR13(B)G5 1/33				
	HC-KFS13(B)G5 1/45			HG-KR13(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20A(1) } \end{aligned}$	HC-KFS23(B)G5 1/5	MR-J4-20A(1)		HG-KR23(B)G5 1/5				
	HC-KFS23(B)G5 1/11			HG-KR23(B)G5 1/11				
	HC-KFS23(B)G5 1/21			HG-KR23(B)G5 1/21				
	HC-KFS23(B)G5 1/33			HG-KR23(B)G5 1/33				
	HC-KFS23(B)G5 1/45			HG-KR23(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40A(1) } \end{aligned}$	HC-KFS43(B)G5 1/5	MR-J4-40A(1)	SC-J2SJ4KT06K	HG-KR43(B)G5 1/5				
	HC-KFS43(B)G5 1/11			HG-KR43(B)G5 1/11				
	HC-KFS43(B)G5 1/21			HG-KR43(B)G5 1/21				
	HC-KFS43(B)G5 1/33			HG-KR43(B)G5 1/33				
	HC-KFS43(B)G5 1/45			HG-KR43(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70A } \end{aligned}$	HC-KFS73(B)G5 1/5	MR-J4-70A	SC-J2SJ4KT1K	HG-KR73(B)G5 1/5				
	HC-KFS73(B)G5 1/11			HG-KR73(B)G5 1/11				
	HC-KFS73(B)G5 1/21			HG-KR73(B)G5 1/21				
	HC-KFS73(B)G5 1/33			HG-KR73(B)G5 1/33				
	HC-KFS73(B)G5 1/45			HG-KR73(B)G5 1/45				
[Small cap	pacity/low inertia HC-KFS	series with high	ecision reducer,	aft output type (G7)] ((B) r	epresen	odels with brake)		
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 10A(1) } \end{array}$	HC-KFS053(B)G7 1/5	MR-J4-10A(1)	SC-J2SJ4KT02K	HG-KR053(B)G7 1/5	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note } 4) \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-KFS053(B)G7 1/11			HG-KR053(B)G7 1/11				
	HC-KFS053(B)G7 1/21			HG-KR053(B)G7 1/21				
	HC-KFS053(B)G7 1/33			HG-KR053(B)G7 1/33				
	HC-KFS053(B)G7 1/45			HG-KR053(B)G7 1/45				
	HC-KFS13(B)G7 1/5			HG-KR13(B)G7 1/5				
	HC-KFS13(B)G7 1/11			HG-KR13(B)G7 1/11				
	HC-KFS13(B)G7 1/21			HG-KR13(B)G7 1/21				
	HC-KFS13(B)G7 1/33			HG-KR13(B)G7 1/33				
	HC-KFS13(B)G7 1/45			HG-KR13(B)G7 1/45				
$\begin{array}{\|l\|} \text { MR-J2S- } \\ \text { 20A(1) } \end{array}$	HC-KFS23(B)G7 1/5	MR-J4-20A(1)		HG-KR23(B)G7 1/5				
	HC-KFS23(B)G7 1/11			HG-KR23(B)G7 1/11				
	HC-KFS23(B)G7 1/21			HG-KR23(B)G7 1/21				
	HC-KFS23(B)G7 1/33			HG-KR23(B)G7 1/33				
	HC-KFS23(B)G7 1/45			HG-KR23(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40A(1) } \end{aligned}$	HC-KFS43(B)G7 1/5	MR-J4-40A(1)	SC-J2SJ4KT06K	HG-KR43(B)G7 1/5				
	HC-KFS43(B)G7 1/11			HG-KR43(B)G7 1/11				
	HC-KFS43(B)G7 1/21			HG-KR43(B)G7 1/21				
	HC-KFS43(B)G7 1/33			HG-KR43(B)G7 1/33				
	HC-KFS43(B)G7 1/45			HG-KR43(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{~A} \end{aligned}$	HC-KFS73(B)G7 1/5	MR-J4-70A	SC-J2SJ4KT1K	HG-KR73(B)G7 1/5				
	HC-KFS73(B)G7 1/11			HG-KR73(B)G7 1/11				
	HC-KFS73(B)G7 1/21			HG-KR73(B)G7 1/21				
	HC-KFS73(B)G7 1/33			HG-KR73(B)G7 1/33				
	HC-KFS73(B)G7 1/45			HG-KR73(B)G7 1/45				

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(3) Existing HC-KFS46, KFS410 motor

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)	
Existing model (Note 13)		Primary replacement model (Note 5)		Secondary replacement/simultaneous replacement models						
		Servo						Motor side conversion cable model		
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	Servo amplifier model (Note 1)	Servo motor model (Note 1)	Compatibility	Renewalkit model	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series, standard/with brake] ((B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{~A} \end{aligned}$	HC-KFS46 HC-KFS410	MR-J4-70A (Note 10)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	MR-J4-40A (Note 10)	HG-KR43	\triangle (Note 4) (Note 15)	(Note 11)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversio n cable.

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(4) Existing HC-MFS motor series (standard/with brake, G1, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1) Existing model (Note 13)				(4)			(5)	
		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor s	onversion cable m	
					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

[Small capacity/ultra-low inertia HC-MFS series, standard/with brake] (B) represents models with brake)							
MR-J2S-	HC-MFS053(B)	MR-J4-10A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT02K } \end{aligned}$	HG-MR053(B)	\bigcirc	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-
10A(1)	HC-MFS13(B)			HG-MR13(B)			
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 20A(1) } \\ & \hline \end{aligned}$	HC-MFS23(B)	MR-J4-20A(1)		HG-MR23(B)			
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 40 \mathrm{~A}(1) \\ & \hline \end{aligned}$	HC-MFS43(B)	MR-J4-40A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \\ & \hline \end{aligned}$	HG-MR43(B)			
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 70 \mathrm{~A} \\ & \hline \end{aligned}$	HC-MFS73(B)	MR-J4-70A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT1K } \\ & \hline \end{aligned}$	HG-MR73(B)			

Built in to power supply conversion cable.
cer (G1)] ((B) represents models with brake)

[Small capacity/ultra-low inertia HC-MFS series with general reducer (G1)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10A(1) } \end{aligned}$	HC-MFS053(B)G1 1/5	MR-J4-10A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT02K } \end{aligned}$	HG-KR053(B)G1 1/5	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note } 4) \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-MFS053(B)G1 } \\ & 1 / 12 \end{aligned}$			HG-KR053(B)G1 1/12				
	$\begin{aligned} & \text { HC-MFS053(B)G1 } \\ & 1 / 20 \\ & \hline \end{aligned}$			HG-KR053(B)G1 1/20				
	HC-MFS13(B)G1 1/5			HG-KR13(B)G1 1/5				
	HC-MFS13(B)G1 1/12			HG-KR13(B)G1 1/12				
	HC-MFS13(B)G1 1/20			HG-KR13(B)G1 1/20				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20A(1) } \end{aligned}$	HC-MFS23(B)G1 1/5	MR-J4-20A(1)		HG-KR23(B)G1 1/5				
	HC-MFS23(B)G1 1/12			$\begin{aligned} & \text { HG-KR23(B)G1 1/12 } \\ & \text { (Note 2) } \end{aligned}$				
	HC-MFS23(B)G1 1/20			$\begin{aligned} & \text { HG-KR23(B)G1 1/20 } \\ & \text { (Note 2) } \end{aligned}$				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{~A}(1) \end{aligned}$	HC-MFS43(B)G1 1/5	MR-J4-40A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-KR43(B)G1 1/5				
	HC-MFS43(B)G1 1/12			$\begin{aligned} & \text { HG-KR43(B)G1 1/12 } \\ & \text { (Note 2) } \end{aligned}$				
	HC-MFS43(B)G1 1/20			HG-KR43(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{~A} \end{aligned}$	HC-MFS73(B)G1 1/5	MR-J4-70A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-KR73(B)G1 1/5				
	HC-MFS73(B)G1 1/12			$\begin{aligned} & \text { HG-KR73(B)G1 1/12 } \\ & \text { (Note 2) } \end{aligned}$				
	HC-MFS73(B)G1 1/20			HG-KR73(B)G1 1/20				
[Small capacity/ultra-low inertia HC-MFS series with high-precision reducer (G2)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10A(1) } \end{aligned}$	HC-MFS053(B)G2 1/5	MR-J4-10A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	(Note 3) (Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFS053(B)G2 1/9			HG-KR053(B)G7 1/11				
	$\begin{array}{\|l} \hline \text { HC-MFS053(B)G2 } \\ 1 / 20 \\ \hline \end{array}$			HG-KR053(B)G7 1/21				
	$\begin{aligned} & \text { HC-MFS053(B)G2 } \\ & 1 / 29 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/33				
	HC-MFS13(B)G2 1/5			HG-KR13(B)G7 1/5				
	HC-MFS13(B)G2 1/9			HG-KR13(B)G7 1/11				
	HC-MFS13(B)G2 1/20			HG-KR13(B)G7 1/21				
	HC-MFS13(B)G2 1/29			HG-KR13(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20A(1) } \end{aligned}$	HC-MFS23(B)G2 1/5	MR-J4-20A(1)		HG-KR23(B)G7 1/5				
	HC-MFS23(B)G2 1/9			HG-KR23(B)G7 1/11				
	HC-MFS23(B)G2 1/20			HG-KR23(B)G7 1/21				
	HC-MFS23(B)G2 1/29			HG-KR23(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{~A}(1) \end{aligned}$	HC-MFS43(B)G2 1/5	MR-J4-40A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-MFS43(B)G2 1/9			HG-KR43(B)G7 1/11				
	HC-MFS43(B)G2 1/20			HG-KR43(B)G7 1/21				
	HC-MFS43(B)G2 1/29			HG-KR43(B)G7 1/33				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 70 \mathrm{~A} \end{array}$	HC-MFS73(B)G2 1/5	MR-J4-70A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-MFS73(B)G2 1/9			HG-KR73(B)G7 1/11				
	HC-MFS73(B)G2 1/20			HG-KR73(B)G7 1/21				
	HC-MFS73(B)G2 1/29			HG-KR73(B)G7 1/33				

Refer to Appendix page 2-65 for important points to note.
(5) Existing HC-MFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2) (3) Primary/secondary/simultaneous replacement models (Note 5,14$)$		(4)		(5)		
$\begin{aligned} & \text { Existing model } \\ & \text { (Note 13) } \end{aligned}$				Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

[Small capacity/ultra-low inertia HC-MFS series with high-precision reducer, flange output type (G5)] ((B) represents models with brake)

$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10A(1) } \end{aligned}$	HC-MFS053(B)G5 1/5	MR-J4-10A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT02K } \end{aligned}$	HG-KR053(B)G5 1/5	$(\text { Note } 4)$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-MFS053(B)G5 } \\ & 1 / 11 \\ & \hline \end{aligned}$			HG-KR053(B)G5 1/11				
	$\begin{aligned} & \text { HC-MFS053(B)G5 } \\ & 1 / 21 \end{aligned}$			HG-KR053(B)G5 1/21				
	$\begin{aligned} & \text { HC-MFS053(B)G5 } \\ & 1 / 33 \\ & \hline \end{aligned}$			HG-KR053(B)G5 1/33				
	$\begin{array}{\|l} \hline \text { HC-MFS053(B)G5 } \\ 1 / 45 \\ \hline \end{array}$			HG-KR053(B)G5 1/45				
	HC-MFS13(B)G5 1/5			HG-KR13(B)G5 1/5				
	HC-MFS13(B)G5 1/11			HG-KR13(B)G5 1/11				
	HC-MFS13(B)G5 1/21			HG-KR13(B)G5 1/21				
	HC-MFS13(B)G5 1/33			HG-KR13(B)G5 1/33				
	HC-MFS13(B)G5 1/45			HG-KR13(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20A(1) } \end{aligned}$	HC-MFS23(B)G5 1/5	MR-J4-20A(1)		HG-KR23(B)G5 1/5				
	HC-MFS23(B)G5 1/11			HG-KR23(B)G5 1/11				
	HC-MFS23(B)G5 1/21			HG-KR23(B)G5 1/21				
	HC-MFS23(B)G5 1/33			HG-KR23(B)G5 1/33				
	HC-MFS23(B)G5 1/45			HG-KR23(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40A(1) } \end{aligned}$	HC-MFS43(B)G5 1/5	MR-J4-40A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-KR43(B)G5 1/5				
	HC-MFS43(B)G5 1/11			HG-KR43(B)G5 1/11				
	HC-MFS43(B)G5 1/21			HG-KR43(B)G5 1/21				
	HC-MFS43(B)G5 1/33			HG-KR43(B)G5 1/33				
	HC-MFS43(B)G5 1/45			HG-KR43(B)G5 1/45				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 70 \mathrm{~A} \end{array}$	HC-MFS73(B)G5 1/5	MR-J4-70A	SC- J2SJ4KT1K	HG-KR73(B)G5 1/5				
	HC-MFS73(B)G5 1/11			HG-KR73(B)G5 1/11				
	HC-MFS73(B)G5 1/21			HG-KR73(B)G5 1/21				
	HC-MFS73(B)G5 1/33			HG-KR73(B)G5 1/33				
	HC-MFS73(B)G5 1/45			HG-KR73(B)G5 1/45				

[Small capacity/low inertia HC-MFS series with high-precision reducer, shaft output type (G7)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10A(1) } \end{aligned}$	HC-MFS053(B)G7 1/5	MR-J4-10A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	(Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-MFS053(B)G7 } \\ & 1 / 11 \end{aligned}$			HG-KR053(B)G7 1/11				
	$\begin{aligned} & \text { HC-MFS053(B)G7 } \\ & 1 / 21 \end{aligned}$			HG-KR053(B)G7 1/21				
	$\begin{aligned} & \hline \text { HC-MFS053(B)G7 } \\ & 1 / 33 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/33				
	$\begin{aligned} & \hline \text { HC-MFS053(B)G7 } \\ & 1 / 45 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/45				
	HC-MFS13(B)G7 1/5			HG-KR13(B)G7 1/5				
	HC-MFS13(B)G7 1/11			HG-KR13(B)G7 1/11				
	HC-MFS13(B)G7 1/21			HG-KR13(B)G7 1/21				
	HC-MFS13(B)G7 1/33			HG-KR13(B)G7 1/33				
	HC-MFS13(B)G7 1/45			HG-KR13(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20A(1) } \end{aligned}$	HC-MFS23(B)G7 1/5	MR-J4-20A(1)		HG-KR23(B)G7 1/5				
	HC-MFS23(B)G7 1/11			HG-KR23(B)G7 1/11				
	HC-MFS23(B)G7 1/21			HG-KR23(B)G7 1/21				
	HC-MFS23(B)G7 1/33			HG-KR23(B)G7 1/33				
	HC-MFS23(B)G7 1/45			HG-KR23(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40A(1) } \end{aligned}$	HC-MFS43(B)G7 1/5	MR-J4-40A(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-MFS43(B)G7 1/11			HG-KR43(B)G7 1/11				
	HC-MFS43(B)G7 1/21			HG-KR43(B)G7 1/21				
	HC-MFS43(B)G7 1/33			HG-KR43(B)G7 1/33				
	HC-MFS43(B)G7 1/45			HG-KR43(B)G7 1/45				
$\begin{array}{\|l\|} \text { MR-J2S- } \\ 70 \mathrm{~A} \end{array}$	HC-MFS73(B)G7 1/5	MR-J4-70A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-MFS73(B)G7 1/11			HG-KR73(B)G7 1/11				
	HC-MFS73(B)G7 1/21			HG-KR73(B)G7 1/21				
	HC-MFS73(B)G7 1/33			$\begin{array}{\|l\|} \hline \text { HG-KR73(B)G7 1/33 } \\ \hline \text { HG-KR73(B)G7 1/45 } \end{array}$				

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(6) Existing HC-SFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
	Servo motor model	Servo	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model		amplifier model (Note 1, 12)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/medium inertia HC-SFS series, standard/with brake] ((B) represents models with brake)								
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 60A } \\ \hline \end{array}$	HC-SFS52(B)	MR-J4-60A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-SR52(B)	(Note 6)	SC-SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS53(B)							
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 100A } \end{array}$	HC-SFS81(B)	MR-J4-100A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-SR81(B)				
	HC-SFS102(B)			HG-SR102(B)				
	HC-SFS103(B)			HG-SR102(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A } \end{aligned}$	HC-SFS121(B)	MR-J4-200A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT3K } \end{aligned}$	HG-SR121(B)		SC-HAJ3PW1C1M		
	HC-SFS152(B)			HG-SR152(B)		SC- SAJ3PW2KC1M-S2		
	HC-SFS153(B)							
	HC-SFS201(B)			HG-SR201(B)		SC-HAJ3PW1C1M		
	HC-SFS202(B)			HG-SR202(B)				
	HC-SFS203(B)							
$\begin{array}{\|l} \text { MR-J2S- } \\ \text { 350A } \end{array}$	HC-SFS301(B)	MR-J4-350A		HG-SR301(B)				
	HC-SFS352(B)			HG-SR352(B)				
	HC-SFS353(B)							
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 500 \mathrm{~A} \\ \hline \end{array}$	HC-SFS502(B)	MR-J4-500A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$	HG-SR502(B)				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 700A } \\ \hline \end{array}$	HC-SFS702(B)	MR-J4-700A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT7K } \end{aligned}$	HG-SR702(B)		Existing cable can be used.		
[Medium capacity/medium inertia HC-SFS series with high-precision reducer (G2)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & 60 \mathrm{~A} \end{aligned}$	HC-SFS52(B)G2 1/5	MR-J4-60A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-SR52(B)G7 1/5	(Note 3) (Note 6)	SC-SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	
	HC-SFS52(B)G2 1/9			HG-SR52(B)G7 1/11				
	HC-SFS52(B)G2 1/20			HG-SR52(B)G7 1/21				
	HC-SFS52(B)G2 1/29			HG-SR52(B)G7 1/33				
	HC-SFS52(B)G2 1/45			HG-SR52(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A } \end{aligned}$	HC-SFS102(B)G2 1/5	MR-J4-100A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-SR102(B)G7 1/5				
	HC-SFS102(B)G2 1/9			HG-SR102(B)G7 1/11				
	HC-SFS102(B)G2 1/20			HG-SR102(B)G7 1/21				
	HC-SFS102(B)G2 1/29			HG-SR102(B)G7 1/33				
	HC-SFS102(B)G2 1/45			HG-SR102(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A } \end{aligned}$	HC-SFS152(B)G2 1/5	MR-J4-200A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT3K } \end{aligned}$	HG-SR152(B)G7 1/5				
	HC-SFS152(B)G2 1/9			HG-SR152(B)G7 1/11				
	HC-SFS152(B)G2 1/20			HG-SR152(B)G7 1/21				
	HC-SFS152(B)G2 1/29			HG-SR152(B)G7 1/33				(Note 7)
	HC-SFS152(B)G2 1/45			HG-SR152(B)G7 1/45				
	HC-SFS202(B)G2 1/5			HG-SR202(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS202(B)G2 1/9			HG-SR202(B)G7 1/11				
	HC-SFS202(B)G2 1/20			HG-SR202(B)G7 1/21				
	HC-SFS202(B)G2 1/29			HG-SR202(B)G7 1/33				
	HC-SFS202(B)G2 1/45			HG-SR202(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A } \end{aligned}$	HC-SFS352(B)G2 1/5	MR-J4-350A		HG-SR352(B)G7 1/5				
	HC-SFS352(B)G2 1/9			HG-SR352(B)G7 1/11				
	HC-SFS352(B)G2 1/20			HG-SR352(B)G7 1/21				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 500 \mathrm{~A} \\ \hline \end{array}$	HC-SFS502(B)G2 1/5	MR-J4-500A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$	HG-SR502(B)G7 1/5				
	HC-SFS502(B)G2 1/9			HG-SR502(B)G7 1/11				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 700A } \\ \hline \end{array}$	HC-SFS702(B)G2 1/5	MR-J4-700A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT7K } \end{aligned}$	HG-SR702(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(7) Existing HC-SFS motor series (G1 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2) (3)		(4)		(5)		
Existing model(Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo		Servo					ide conversion cab	
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)	Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

[Medium capacity/medium inertia HC-SFS series with general reducer (G1)] ((B) represents models with brake, (H) represents foot-mounting)

Refer to Appendix page 2-65 for important points to note.
(8) Existing HC-SFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable mod		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

$\begin{aligned} & \text { MR-J2S- } \\ & 60 \mathrm{~A} \end{aligned}$	HC-SFS52(B)G5 1/5	MR-J4-60A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-SR52(B)G5 1/5	(Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS52(B)G5 1/11			HG-SR52(B)G5 1/11				
	HC-SFS52(B)G5 1/21			HG-SR52(B)G5 1/21				
	HC-SFS52(B)G5 1/33			HG-SR52(B)G5 1/33				
	HC-SFS52(B)G5 1/45			HG-SR52(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A } \end{aligned}$	HC-SFS102(B)G5 1/5	MR-J4-100A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-SR102(B)G5 1/5				
	HC-SFS102(B)G5 1/11			HG-SR102(B)G5 1/11				
	HC-SFS102(B)G5 1/21			HG-SR102(B)G5 1/21				
	HC-SFS102(B)G5 1/33			HG-SR102(B)G5 1/33				
	HC-SFS102(B)G5 1/45			HG-SR102(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 200 \mathrm{~A} \end{aligned}$	HC-SFS152(B)G5 1/5	MR-J4-200A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT3K } \end{aligned}$	HG-SR152(B)G5 1/5				
	HC-SFS152(B)G5 1/11			HG-SR152(B)G5 1/11				
	HC-SFS152(B)G5 1/21			HG-SR152(B)G5 1/21				
	HC-SFS152(B)G5 1/33			HG-SR152(B)G5 1/33				
	HC-SFS152(B)G5 1/45			HG-SR152(B)G5 1/45				
	HC-SFS202(B)G5 1/5			HG-SR202(B)G5 1/5		SC-HAJ3PW1C1M		
	HC-SFS202(B)G5 1/11			HG-SR202(B)G5 1/11				
	HC-SFS202(B)G5 1/21			HG-SR202(B)G5 1/21				
	HC-SFS202(B)G5 1/33			HG-SR202(B)G5 1/33				
	HC-SFS202(B)G5 1/45			HG-SR202(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A } \end{aligned}$	HC-SFS352(B)G5 1/5	MR-J4-350A		HG-SR352(B)G5 1/5				
	HC-SFS352(B)G5 1/11			HG-SR352(B)G5 1/11				
	HC-SFS352(B)G5 1/21			HG-SR352(B)G5 1/21				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 500 \mathrm{~A} \\ & \hline \end{aligned}$	HC-SFS502(B)G5 1/5	MR-J4-500A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$	HG-SR502(B)G5 1/5				
	HC-SFS502(B)G5 1/11			HG-SR502(B)G5 1/11				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 700A } \\ & \hline \end{aligned}$	HC-SFS702(B)G5 1/5	MR-J4-700A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT7K } \end{aligned}$	HG-SR702(B)G5 1/5		Existing cable can be used.		

$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60A } \end{aligned}$	HC-SFS52(B)G7 1/5	MR-J4-60A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT06K } \end{aligned}$	HG-SR52(B)G7 1/5	$\underset{(\text { Note 6) }}{\Delta}$	SC-SAJ3PW2KC1MS2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS52(B)G7 1/11			HG-SR52(B)G7 1/11				
	HC-SFS52(B)G7 1/21			HG-SR52(B)G7 1/21				
	HC-SFS52(B)G7 1/33			HG-SR52(B)G7 1/33				
	HC-SFS52(B)G7 1/45			HG-SR52(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A } \end{aligned}$	HC-SFS102(B)G7 1/5	MR-J4-100A	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT1K } \end{aligned}$	HG-SR102(B)G7 1/5				
	HC-SFS102(B)G7 1/11			HG-SR102(B)G7 1/11				
	HC-SFS102(B)G7 1/21			HG-SR102(B)G7 1/21				
	HC-SFS102(B)G7 1/33			HG-SR102(B)G7 1/33				
	HC-SFS102(B)G7 1/45			HG-SR102(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A } \end{aligned}$	HC-SFS152(B)G7 1/5	MR-J4-200A	J2SJ4KT3K	HG-SR152(B)G7 1/5				
	HC-SFS152(B)G7 1/11			HG-SR152(B)G7 1/11				
	HC-SFS152(B)G7 1/21			HG-SR152(B)G7 1/21				
	HC-SFS152(B)G7 1/33			HG-SR152(B)G7 1/33				
	HC-SFS152(B)G7 1/45			HG-SR152(B)G7 1/45				
	HC-SFS202(B)G7 1/5			HG-SR202(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS202(B)G7 1/11			HG-SR202(B)G7 1/11				
	HC-SFS202(B)G7 1/21			HG-SR202(B)G7 1/21				
	HC-SFS202(B)G7 1/33			HG-SR202(B)G7 1/33				
	HC-SFS202(B)G7 1/45			HG-SR202(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 350 \mathrm{~A} \end{aligned}$	HC-SFS352(B)G7 1/5	MR-J4-350A		HG-SR352(B)G7 1/5				
	HC-SFS352(B)G7 1/11			HG-SR352(B)G7 1/11				
	HC-SFS352(B)G7 1/21			HG-SR352(B)G7 1/21				
MR-J2S-	HC-SFS502(B)G7 1/5	MR-J4-500A	SC-	HG-SR502(B)G7 1/5				
500A	HC-SFS502(B)G7 1/11	MR-J4-500A	J2SJ4KT5K	HG-SR502(B)G7 1/11				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 700A } \\ & \hline \end{aligned}$	HC-SFS702(B)G7 1/5	MR-J4-700A	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4KT7K } \\ \hline \end{array}$	HG-SR702(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(9) Existing HC-RFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)	(5)		(6)		(7)	
$\begin{gathered} \text { Existing model } \\ \text { (Note 13) } \end{gathered}$		Primary replacement model (Note 5)		Secondary replacement/simultaneous replacement models						
		Servo		Servo	Servo motor model (Note 1)		Renewal kit model	Motor side conversion cable		
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	amplifier model (Note 1		Compatibility		Power supply conversion cable	Encoder conversion cable	$\begin{gathered} \text { Brake } \\ \text { conversion } \\ \text { cable } \end{gathered}$
[Medium capacity/ultra-low inertia HC-RFS series, standard/with brake] (B) represents models with brake)										
MR-J2S200A	HC-RFS 103 (B)	MR-J4-200A	SCJ2SJ4KT3K	MR-J4-200A	HG-RR103(B)	0	SC- J2SJ4KT3K	Existing cable can be used.	scHAJ3ENM3C1M	Existing cable can be used.
	HC-RFS153(B)				HG-RR153(B)					
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 350 \mathrm{~A} \end{aligned}$	HC-RFS203(B)	MR-J4-350A		MR-J4-350A	HG-RR203(B)					
$\begin{aligned} & \text { MR-J2S- } \\ & 500 \mathrm{~A} \end{aligned}$	HC-RFS353(B)	MR-J4-500A	SC- J2SJ4KT5K	MR-J4-500A	HG-RR353(B)		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$			
	HC-RFS503(B)				HG-RR503(B)					
[Medium capacity/ultra-low inertia HC-RFS series with high-precision reducer (G2)] (B) represents models with brake)										
MR-J2S-200A	HC-RFS103(B)G2 1/5	MR-J4-200A (Note 10)	SCJ2SJ4KT3K	MR-J4-100A (Note 10)	HG-SR102(B)G7 1/5	$\begin{gathered} x \\ \text { (Note 3) } \\ \text { (Note 4) } \end{gathered}$	(Note 11)	SC- SAJ3PW2KC1M -S2	SC- HAJ3ENM3C1M	(Note 7)
	HC-RFS103(B)G2 1/9				HG-SR102(B)G7 1/11					
	HC-RFS103(B)G2 1/20				HG-SR102(B)G7 1/21					
	HC-RFS103(B)G2 1/29				HG-SR102(B)G7 1/33					
	HC-RFS103(B)G2 1/45				HG-SR102(B)G7 1/45					
	HC-RFS153(B)G2 1/5	MR-J4-200A		MR-J4-200A	HG-SR152(B)G7 1/5		SCJ2SJ4KT3K			
	HC-RFS153(B)G2 1/9				HG-SR152(B)G7 1/11					
	HC-RFS153(B)G2 1/20				HG-SR152(B)G7 1/21					
	HC-RFS153(B)G2 1/29 HC-RFS153(B)G2 1/45				HG-SR152(B)G7 1/33 HG-SR152(B)G7 1/45					
$\begin{aligned} & \text { MR-J2S- } \\ & 350 \mathrm{~A} \end{aligned}$	HC-RFS203(B)G2 1/5	MR-J4-350A (Note 10)		$\begin{aligned} & \text { MR-J4-200A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR202(B)G7 1/5			Sc- J2SJ4PW2C1M		
	HC-RFS203(B)G2 1/9				HG-SR202(B)G7 1/11					
	HC-RFS203(B)G2 1/20				HG-SR202(B)G7 1/21					
	HC-RFS203(B)G2 1/29				HG-SR202(B)G7 1/33 HG-SR202(B)G7 1/45					
MR-J2S-$500 \mathrm{~A}$	HC-RFS353(B)G2 1/5	MR-J4-500A (Note 10)	SCJ2SJ4KT5K	$\begin{aligned} & \text { MR-J4-350A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR352(B)G7 1/5		(Note 11)	SCHAJ3PW1C1M		
	HC-RFS353(B)G2 1/9				HG-SR352(B)G7 1/11					
	HC-RFS353(B)G2 1/20				HG-SR352(B)G7 1/21					
	HC-RFS503(B)G2 1/5	MR-J4-500A		MR-J4-500A	HG-SR502(B)G7 1/5		SCJ2SJ4KT5K			
	HC-RFS503(B)G2 119				HG-SR502(B)G7 1/11					
	HC-RFS503(B)G2 1/20									

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(10) Existing HC-RFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)		(4)	(5)		(6)		(7)	
Existing model(Note 13)		Primary replacement model (Note 5)		Secondary replacement/simultaneous replacement models						
		Servo		Servo	Servo motor model (Note 1) \square		Renewal kit model	Motor side conversion cable		
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	amplifier model (Note 1)			Power supply conversion cable	Encoder conversion cable	Brake conversion cable	

$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A } \end{aligned}$	HC-RFS103(B)G5 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text { (Note 10) } \end{aligned}$	SCJ2SJ4KT3K	$\begin{aligned} & \text { MR-J4-100A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR102(B)G5 1/5	(Note 3) (Note 4)	(Note 11)	SC- SAJ3PW2KC1M- S2	SCHAJ3ENM3C1M	(Note 7)
	HC-RFS 103(B)G5 1/11				HG-SR102(B)G5 1/11					
	HC-RFS 103(B)G5 1/21				HG-SR102(B)G5 1/21					
	HC-RFS1033(B)65 1/33				HG-SR102(B)G5 1/33					
	HC-RFS 103(B)G5 1/45				HG-SR102(B)G5 1/45					
	HC-RFS153(B)G5 1/5	MR-J4-200A		MR-J4-200A	HG-SR152(B)G5 1/5		SCJ2SJ4KT3K			
	HC-RFS153(B) $651 / 111$				HG-SR152(B)G5 1/11					
	HC-RFS153(B) $651 / 21$				HG-SR152(B)G5 1/21					
	HC-RFS153(B)G5 1/33 HC-RES153(B)G5 145				HG-SR152(B)G5 1/33					
	HC-RFS153(B)65 1/45				HG-SR152(B)G5 1/45					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A } \end{aligned}$	HC-RFS203(B)G5 1/5	$\begin{aligned} & \text { MR-J4-350A } \\ & \text { (Note 10) } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200A } \\ & \text { (Note 10) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { HG-SR202(B)G5 1/5 } \\ \hline \text { HG-SR202(B)G5 1/111 } \end{array}$			SC- J2SJ4PW2C1M		
	HC-RFS203(B)G5 1/21				HG-SR202(B)G5 1/21					
	HC-RFS203(B)G5 1/33				HG-SR202(B)G5 1/33					
	HC-RFS203(B)G5 1/45				HG-SR202(B)G5 1/45					
MR-J2S-500A	HC-RFS353(B)C5 1/5	MR-J4-500A (Note 10)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-350A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR352(B)G5 1/5		(Note 11)	SC- HAJ3PW1C1M		
	HC-RFS353(B) $651 / 111$				HG-SR352(B)G5 1/11					
	HC-RFS353(B)G5 1/21 HC-RFS353(B)G5 1/33				HG-SR352(B)G5 1/21					
	HC-RFS503(B)65 $1 / 5$	MR-J4-500A		MR-J4-500A	HG-SR502(B)G5 1/5		SCJ2SJ4KT5K			
	HC-RFS503(B)G5 1/11 HC-RFS503(B)G5 1/21				HG-SR502(B)G5 1/11					
[Medium capacity/ultra-low inertia HC-RFS series with high-precision reducer, flange output type (G7)] ((B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A } \end{aligned}$	HC-RFS 103(B)G7 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text { (Note 10) } \end{aligned}$	SCJ2SJ4KT3K	$\begin{aligned} & \text { MR-J4-100A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR102(B) G7 1/5		(Note 11)	SC- SAJ3PW2KC1M- S2	SCHAJ3ENM3C1M	(Note 7)
	HC-RFS 103(B)G7 1/11				HG-SR102(B)G7 1/11					
	HC-RFS 103(B)G7 1/21				HG-SR102(B)G7 1/21					
	HC-RFS103(B)G77 1/33				HG-SR102(B)G7 1/33					
	HC-RFSS103(B)G7 1/45				HG-SR102(B)G7 1/45					
	HC-RFS153(B)G7 1/5	MR-J4-200A		MR-J4-200A	HG-SR152(B)G7 1/5		SCJ2SJ4KT3K			
	HC-RFS153(B)G7 1/11				HG-SR152(B)G7 1/11					
	HC-RFS 153 (B) $671 / 21$				HG-SR152(B)G7 1/21					
	HC-RFS153(B)G7 1/33				HG-SR152(B)G7 1/33					
	HC-RFS153(B)G7 1/45				HG-SR152(B)G7 1/45					
MR-J2S- 350A		MR-J4-350A (Note 10)		$\begin{aligned} & \text { MR-J4-200A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR202(B)G7 1/5			SCJ2SJ4PW2C1M		
	HC-RFS203(B)G7 1121				HG-SRR202(B)G7 1/21					
	HC-RFS203(B)G7 1/33				HG-SR202(B)G7 1/33					
	HC-RFS203(B)G7 1/45				HG-SR202(B)G7 1/45					
MR-J2S-$500 \mathrm{~A}$	HC-RFS353(B)G7 1/5	$\begin{aligned} & \text { MR-J4-500A } \\ & \text { (Note 10) } \end{aligned}$	SCJ2SJ4KT5K	$\begin{aligned} & \text { MR-J4-350A } \\ & \text { (Note 10) } \end{aligned}$	HG-SR352(B)G7 1/5		(Note 11)	SCHAJ3PW1C1M		
	HC-RFS353(B)G7 1/11				HG-SR352(B)G7 1/11					
	\|le-RS353(B)G7 1/21				HG-SR352(B)G7 1/21					
	HC-RFS5033(B)G7 1/5	MR-J4-500A		MR-J4-500A	HG-SR502(B)G7 1/5					
	HC-RFS503(B)G7 1/11				HG-SR502(B)G7 1/11		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$			
	HC-RFS503(B)G7 1/21									

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(11) Existing HC-UFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo				Servo motor			conversion cable	
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	model (Note 1)	Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

[Medium capacity/flat type HC-UFS series, standard/with brake] ((B) represents models with brake)

MR-J2S-70A	HC-UFS72(B)	MR-J4-70A	SC-J2SJ4KT1K	HG-UR72(B)	\bigcirc	Existing cable can be used.	SC-HAJ3ENM3C1M	Existing cable can be used.
MR-J2S-200A	HC-UFS152(B)	MR-J4-200A	SC-J2SJ4KT3K	HG-UR152(B)				
MR-J2S-350A	HC-UFS202(B)	MR-J4-350A		HG-UR202(B)				
MR-J2S-500A	HC-UFS352(B)	MR-J4-500A	SC-J2SJ4KT5K	$\begin{aligned} & \hline \text { HG-UR352(B) } \\ & \hline \text { HG-UR502(B) } \end{aligned}$				

Small capacity/flat type HC-UFS series, standard/with brake] ((B) represents models with brake)

$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 10A(1) } \\ \hline \end{array}$	HC-UFS13(B)	MR-J4-10A(1)		HG-KR13(B)	(Note 3)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20A(1) } \\ & \hline \end{aligned}$	HC-UFS23(B)	MR-J4-20A(1)	SC-J2SJ4KT02K	HG-KR23(B)				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 40A(1) } \\ & \hline \end{aligned}$	HC-UFS43(B)	MR-J4-40A(1)	SC-J2SJ4KT06K	HG-KR43(B)				
MR-J2S-70A	HC-UFS73(B)	MR-J4-70A	SC-J2SJ4KT1K	HG-KR73(B)				

Refer to Appendix page 2-65 for important points to note.
(12) Existing HC-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)	
Existing model(Note 13)		Primary replacement model (Note 5)		Secondary replacement/simultaneous replacement models						
		Servo	Renewal kit model	Servo amplifier model (Note 1)	Servo motor model (Note 1)		Motor side conversion cable model			
Servo amplifier model	Servo motor model	amplifier model (Note 1, 12)				Compatibility	Renewal kit model	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/low inertia HC-LFS series, standard/with brake] ((B) represents models with brake)										
MR-J2S-60A	HC-LFS52(B)	$\begin{aligned} & \text { MR-J4-60A } \\ & \text { (Note 10) } \end{aligned}$	SC-J2SJ4KT06K	$\begin{array}{\|l} \hline \text { MR-J4-70A } \\ \text { (Note 10) } \end{array}$	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR73(B) } \\ & \hline \end{aligned}$		(Note 11)	SC- SA J3PW2KC1M		
MR-J2S-100A	HC-LFS102(B)	$\begin{aligned} & \hline \text { MR-J4-100A } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	SC-J2SJ4KT1K	$\begin{aligned} & \hline \text { MR-J4-200A } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR153(B) } \\ & \hline \end{aligned}$		(Note 11)	S2		
MR-J2S-200A	HC-LFS152(B)	$\begin{aligned} & \hline \text { MR-J4-200A } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	SC-J2SJ4KT3K	$\begin{aligned} & \hline \text { MR-J4-350A } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	HG-	(Note 3)	SCJ2S.J4KT3K	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4PW2C1M } \end{aligned}$	HAJ3ENM3C1M	(Note 7)
MR-J2S-350A	HC-LFS202(B)	MR-J4-350A		MR-J4-350A						
MR-J2S-500A	HC-LFS302(B)	MR-J4-500A	SC-J2SJ4KT5K	MR-J4-500A	$\begin{array}{\|l} \hline \text { HG- } \\ \text { JR503(B) } \end{array}$		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$	HAJ3PW1C1M		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(13) Existing HA-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)		
Existing model(Note 13)		Primary replacement model(Note 5)		Secondary replacement/simultaneous replacement models							
	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo amplifier model (Note 1)	Servo motor model (Note 1)	Compatibility	Renewal kit model	Motor side conversion cable model			
Servo amplifier model								Power supply conversion Cable	Encoder Conversion cable	Brake/Conversion cable for the cooling fan	
[Medium/large capacity/low inertia HA-LFS 1000 r/min series, standard/with brake] ((B) represents models with brake)											
MR-J2S-700A	HA-LFS601(B)	(Note 16)		MR-J4-700A	$\begin{gathered} \text { HG-JR601(B) } \\ (\text { Note 4) } \end{gathered}$	(Note 3)	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT7K } \end{aligned}$	SC-J2SJ4PW3C1M-■	Existing cable can be used.	- Existing brake cable can be used. - Cooling fan cable (Note 9)	
MR-J2S-11KA	HA-LFS801(B)			MR-J4-11KA	HG-JR801(B) (Note 4)		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT15K } \end{aligned}$				
	HA- LFS12K1(B)			HG-JR12K1 (B) (Note 4)							
MR-J2S-15KA	HA-LFS15K1			MR-J4-15KA	HG-JR15K1						
MR-J2S-22KA	HA-LFS20K1			MR-J4-22KA	HG-JR20K1						
MR-J2S-22KA	HA-LFS25K1			MR-J4-22KA	HG-JR25K1		J2SJ4KT22K			conversion	
MR-J2S-30KA	HA-LFS30K1			$\begin{gathered} \hline \text { MR-J4-DU30KA } \\ \text { (Note 20) } \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { HG-JR30K1 } \\ \text { (Note 4) } \\ \hline \end{array}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS09 } \end{aligned}$	(Note 8)	(Note 17)	$\begin{aligned} & \text { cable } \\ & \text { SC-J2SJ4FAN1C1M } \end{aligned}$	
MR-J2S-37KA	HA-LFS37K1			$\begin{gathered} \hline \text { MR-J4-DU37KA } \\ \text { (Note 20) } \end{gathered}$	HG-JR37K1		(Note 18)				
[Medium/large c	acity/low inert	HA-LFS 1500 r	min series,		ard/with brake]) represents	odels w	brake)			
MR-J2S-700A	HA- LFS701M(B)			MR-J4-700A	HG- JR701M(B) (Note 4)		$\begin{array}{\|l\|} \text { SC- } \\ \text { J2SJ4KT7K } \end{array}$		Existing	- Existing brake cable can be	
MR-J2S-11KA	$\begin{array}{\|l\|} \hline \text { HA- } \\ \text { LFS11K1M(B) } \\ \hline \end{array}$			MR-J4-11KA	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR11K1M(B) } \end{aligned}$			SC-J2SJ4PW3C1M-■	cable can be		
MR-J2S-15KA	$\begin{aligned} & \text { HA- } \\ & \text { LFS15K1M(B) } \end{aligned}$	(Note	16)	MR-J4-15KA	HGJR15K1M(B) (Note 4)	(Note 3)	J2SJ4KT15K		used.	cable (Note 9)	
MR-J2S-22KA	$\begin{array}{\|l\|} \hline \text { HA- } \\ \text { LFS22K1M } \\ \hline \end{array}$			MR-J4-22KA	HG-JR22K1M		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT22K } \end{aligned}$			- Cooling fan	
MR-J2S-30KA	$\begin{array}{\|l\|} \hline \text { HA- } \\ \text { LFS30K1M } \\ \hline \end{array}$			MR-J4-DU30KA (Note 20)	HG-JR30K1M		SC-	(Note 8)	(Note 17)	conversion cable	
MR-J2S-37KA	$\begin{aligned} & \hline \text { HA- } \\ & \text { LFS37K1M } \\ & \hline \end{aligned}$			$\begin{gathered} \hline \text { MR-J4-DU37KA } \\ (\text { Note 20) } \\ \hline \end{gathered}$	HG-JR37K1M		(Note 18)			SC-J2SJ4FAN1C1M	
[Medium/large c	pacity/low inertia	HA-LFS 2000	r/min series, st	ard/with brake]) represents	dels	brake)				
MR-J2S-500A	HA-LFS502	MR-J4-500A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT5K } \end{aligned}$	MR-J4-500A	HG-SR502		$\begin{array}{\|l} \hline \text { SC- } \\ \text { J2SJ4KT5K } \end{array}$	SC-HAJ3PW1C1M	SC-		
MR-J2S-700A	HA-LFS702	MR-J4-700A	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT7K } \end{aligned}$	MR-J4-700A	HG-SR702		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4KT7K } \\ \hline \end{array}$	Existing cable can be used.	$\begin{aligned} & \text { HAJ3E } \\ & \text { 3C1M } \end{aligned}$		
MR-J2S-11KA	$\begin{aligned} & \text { HA- } \\ & \text { LFS11K2(B) } \end{aligned}$	MR-J4-11KA	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4KT15K } \end{aligned}$	MR-J4-11KA	HGJR11K1M(B) (Note 4)		SCJ2SJ4KT15K		Existing	- Existing brake cable can be used.	
MR-J2S-15KA	$\begin{array}{\|l\|} \hline \text { HA- } \\ \text { LFS15K2(B) } \\ \hline \end{array}$	$\begin{gathered} \text { MR-J4-15KA } \\ \text { (Note 10) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT15K } \end{aligned}$	$\begin{array}{r} \text { MR-J4-11KA } \\ \text { (Note 10) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR11K1M(B) } \end{aligned}$	(Note 3)		SC-J2SJ4PW3C1M-■	can be used.	- Cooling fan	
MR-J2S-22KA	$\begin{array}{\|l\|} \hline \text { HA- } \\ \text { LFS22K2(B) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { MR-J4-22KA } \\ \text { (Note 10) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4KT22K } \end{aligned}$	MR-J4-15KA (Note 10)	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR15K1M(B) } \end{aligned}$					cable (Note 9)	
MR-J2S-30KA	HA-LFS30K2	$\begin{gathered} \hline \text { MR-J4-DU30KA } \\ \text { (Note 10, 20) } \\ \hline \end{gathered}$	SC-	$\begin{array}{r} \text { MR-J4-22KA } \\ \text { (Note 10) } \\ \hline \end{array}$	HG-JR22K1M		(Note 11)			- Cooling fan conversion	
MR-J2S-37KA	HA-LFS37K2	MR-J4-DU37KA (Note 10, 20)	$\begin{array}{r} \text { J2SJ4BS09 } \\ \text { (Note 18) } \end{array}$	MR-J4-DU30KA (Note 10, 20)	HG-JR30K1M		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS09 } \\ & \text { (Note 18) } \\ & \hline \end{aligned}$	(Note 8)	(Note 17)	cable SC-J2SJ4FAN1C1M	

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

4.2 SSCNET Interface Replacement Combination List (100 V/200 V Class)

(1) Existing HC-KFS motor series (standard/with brake, G1, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)		(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	SSSCNET	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series, standard/with brake] ((B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-KFS053(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-KR053(B)	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS13(B)				HG-KR13(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-KFS23(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$			HG-KR23(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-KFS43(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJO20 } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT06K } \end{array}$	HG-KR43(B)				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ \text { 70B } \\ \hline \end{array}$	HC-KFS73(B)	$\begin{aligned} & \hline \text { MR-J4-70B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT1K } \end{array}$	HG-KR73(B)				
[Small capacity/low inertia HC-KFS series with general reducer (G1)] (B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-KFS053(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-KR053(B)G1 1/5	$-\begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}$	Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS053(B)G1 1/12				HG-KR053(B)G1 1/12				
	HC-KFS053(B)G1 1/20				HG-KR053(B)G1 1/20				
	HC-KFS13(B)G1 1/5				HG-KR13(B)G1 1/5				
	HC-KFS13(B)G1 1/12				HG-KR13(B)G1 1/12				
	HC-KFS13(B)G1 1/20				HG-KR13(B)G1 1/20				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-KFS23(B)G1 1/5				HG-KR23(B)G1 1/5				
	HC-KFS23(B)G1 1/12				HG-KR23(B)G1 1/12 (Note 2)				
	HC-KFS23(B)G1 1/20				HG-KR23(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-KFS43(B)G1 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)G1 1/5				
	HC-KFS43(B)G1 1/12				HG-KR43(B)G1 1/12 (Note 2)				
	HC-KFS43(B)G1 1/20				HG-KR43(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{~B} \end{aligned}$	HC-KFS73(B)G1 1/5	$\begin{aligned} & \text { MR-J4-70B- } \\ & \text { RJ020 } \end{aligned}$		SC- J2SBJ4KT1K	HG-KR73(B)G1 1/5				
	HC-KFS73(B)G1 1/12				HG-KR73(B)G1 1/12 (Note 2)				
	HC-KFS73(B)G1 1/20				HG-KR73(B)G1 1/20				
[Small capacity/low inertia HC-KFS series with high-precision reducer (G2)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-KFS053(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	(Note 3) (Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS053(B)G2 1/9				HG-KR053(B)G7 1/11				
	HC-KFS053(B)G2 1/20				HG-KR053(B)G7 1/21				
	HC-KFS053(B)G2 1/29				HG-KR053(B)G7 1/33				
	HC-KFS13(B)G2 1/5				HG-KR13(B)G7 1/5				
	HC-KFS13(B)G2 1/9				HG-KR13(B)G7 1/11				
	HC-KFS13(B)G2 1/20				HG-KR13(B)G7 1/21				
	HC-KFS13(B)G2 1/29				HG-KR13(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-KFS23(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJ020 } \end{aligned}$			HG-KR23(B)G7 1/5				
	HC-KFS23(B)G2 1/9				HG-KR23(B)G7 1/11				
	HC-KFS23(B)G2 1/20				HG-KR23(B)G7 1/21				
	HC-KFS23(B)G2 1/29				HG-KR23(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-KFS43(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-KFS43(B)G2 1/9				HG-KR43(B)G7 1/11				
	HC-KFS43(B)G2 1/20				HG-KR43(B)G7 1/21				
	HC-KFS43(B)G2 1/29				HG-KR43(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70B } \end{aligned}$	HC-KFS73(B)G2 1/5	$\begin{aligned} & \text { MR-J4-70B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-KFS73(B)G2 1/9				HG-KR73(B)G7 1/11				
	HC-KFS73(B)G2 1/20				HG-KR73(B)G7 1/21				
	HC-KFS73(B)G2 1/29				HG-KR73(B)G7 1/33				

Refer to Appendix page 2-65 for important points to note.
(2) Existing HC-KFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)		(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	SSSCNET	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series with high-precision reducer, flange output type (G5)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-KFS053(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	SC- J2SBJ4KT02K	HG-KR053(B)G5 1/5	$\begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS053(B)G5 1/11				HG-KR053(B)G5 1/11				
	HC-KFS053(B)G5 1/21				HG-KR053(B)G5 1/21				
	HC-KFS053(B)G5 1/33				HG-KR053(B)G5 1/33				
	HC-KFS053(B)G5 1/45				HG-KR053(B)G5 1/45				
	HC-KFS13(B)G5 1/5				HG-KR13(B)G5 1/5				
	HC-KFS13(B)G5 1/11				HG-KR13(B)G5 1/11				
	HC-KFS13(B)G5 1/21				HG-KR13(B)G5 1/21				
	HC-KFS13(B)G5 1/33				HG-KR13(B)G5 1/33				
	HC-KFS13(B)G5 1/45				HG-KR13(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-KFS23(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJ020 } \end{aligned}$			HG-KR23(B)G5 1/5				
	HC-KFS23(B)G5 1/11				HG-KR23(B)G5 1/11				
	HC-KFS23(B)G5 1/21				HG-KR23(B)G5 1/21				
	HC-KFS23(B)G5 1/33				HG-KR23(B)G5 1/33				
	HC-KFS23(B)G5 1/45				HG-KR23(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-KFS43(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)G5 1/5				
	HC-KFS43(B)G5 1/11				HG-KR43(B)G5 1/11				
	HC-KFS43(B)G5 1/21				HG-KR43(B)G5 1/21				
	HC-KFS43(B)G5 1/33				HG-KR43(B)G5 1/33				
	HC-KFS43(B)G5 1/45				HG-KR43(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 B \end{aligned}$	HC-KFS73(B)G5 1/5	$\begin{aligned} & \text { MR-J4-70B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-KR73(B)G5 1/5				
	HC-KFS73(B)G5 1/11				HG-KR73(B)G5 1/11				
	HC-KFS73(B)G5 1/21				HG-KR73(B)G5 1/21				
	HC-KFS73(B)G5 1/33				HG-KR73(B)G5 1/33				
	HC-KFS73(B)G5 1/45				HG-KR73(B)G5 1/45				
[Small capacity/low inertia HC-KFS series with high-precision reducer, shaft output type (G7)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-KFS053(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \end{aligned}$	N	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT02K } \end{array}$	HG-KR053(B)G7 1/5	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS053(B)G7 1/11				HG-KR053(B)G7 1/11				
	HC-KFS053(B)G7 1/21				HG-KR053(B)G7 1/21				
	HC-KFS053(B)G7 1/33				HG-KR053(B)G7 1/33				
	HC-KFS053(B)G7 1/45				HG-KR053(B)G7 1/45				
	HC-KFS13(B)G7 1/5				HG-KR13(B)G7 1/5				
	HC-KFS13(B)G7 1/11				HG-KR13(B)G7 1/11				
	HC-KFS13(B)G7 1/21				HG-KR13(B)G7 1/21				
	HC-KFS13(B)G7 1/33				HG-KR13(B)G7 1/33				
	HC-KFS13(B)G7 1/45				HG-KR13(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-KFS23(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJO20 } \end{aligned}$			HG-KR23(B)G7 1/5				
	HC-KFS23(B)G7 1/11				HG-KR23(B)G7 1/11				
	HC-KFS23(B)G7 1/21				HG-KR23(B)G7 1/21				
	HC-KFS23(B)G7 1/33				HG-KR23(B)G7 1/33				
	HC-KFS23(B)G7 1/45				HG-KR23(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-KFS43(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-KFS43(B)G7 1/11				HG-KR43(B)G7 1/11				
	HC-KFS43(B)G7 1/21				HG-KR43(B)G7 1/21				
	HC-KFS43(B)G7 1/33				HG-KR43(B)G7 1/33				
	HC-KFS43(B)G7 1/45				HG-KR43(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 B \end{aligned}$	HC-KFS73(B)G7 1/5	$\begin{aligned} & \text { MR-J4-70B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-KFS73(B)G7 1/11				HG-KR73(B)G7 1/11				
	HC-KFS73(B)G7 1/21				HG-KR73(B)G7 1/21				
	HC-KFS73(B)G7 1/33				HG-KR73(B)G7 1/33				
	HC-KFS73(B)G7 1/45				HG-KR73(B)G7 1/45				

Refer to Appendix page 2-65 for important points to note.
(3) Existing HC-KFS46, KFS410 motor

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)		(3)	(4)		(5)		(6)	(7)		
Existing model(Note 13)		Primary replacement model (Note 5)			Secondary replacement/simultaneous replacement models							
		Servo	SSCNET		Servo	SSCNET	Servo			Motor side co	nversion cable model	
amplifier model	motor model	amplifier model (Note 1, 12)	conversion unit model (Note 1)	Renewal kit model	amplifier model (Note 1)	conversion unit model (Note 1)	motor model (Note 1)	Compatibility	Renewal kit model	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small cap	city/low	ertia HC-KFS	series, sta	ard/with brake] ((B) repre	ents mode	with brake					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70B } \end{aligned}$	$\begin{array}{\|l} \mathrm{HC}- \\ \text { KFS46 } \end{array}$	MR-J4- 70B- RJ020 (Note 10)	$\begin{aligned} & \text { MR-J4- } \\ & \text { T20 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}\right.$	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40B- } \\ & \text { RJO20 } \\ & \text { (Note 10) } \end{aligned}$	MR-J4-T20	HGKR43	Δ (Note 4) (Note 15)	(Note 11)	Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversio n cable.

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(4) Existing HC-MFS motor series (standard/with brake, G1, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)		2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	SSCNET	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/ultra-low inertia HC-MFS series, standard/with brake] (B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-MFS053(B)	$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 10B(1)- } \\ \text { RJ020 } \\ \hline \end{array}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-MR053(B)	\bigcirc	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFS13(B)				HG-MR13(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-MFS23(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$			HG-MR23(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-MFS43(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-MR43(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70B } \end{aligned}$	HC-MFS73(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 70B- } \\ & \text { RJO20 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-MR73(B)				
[Small capacity/ultra-low inertia HC-MFS series with general reducer (G1)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-MFS053(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-KR053(B)G1 1/5	Δ (Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFS053(B)G1 1/12				HG-KR053(B)G1 1/12				
	HC-MFS053(B)G1 1/20				HG-KR053(B)G1 1/20				
	HC-MFS13(B)G1 1/5				HG-KR13(B)G1 1/5				
	HC-MFS13(B)G1 1/12				HG-KR13(B)G1 1/12				
	HC-MFS13(B)G1 1/20				HG-KR13(B)G1 1/20				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-MFS23(B)G1 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJ020 } \end{aligned}$			HG-KR23(B)G1 1/5				
	HC-MFS23(B)G1 1/12				HG-KR23(B)G1 1/12 (Note 2)				
	HC-MFS23(B)G1 1/20				HG-KR23(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-MFS43(B)G1 1/5	MR-J4- 40B(1)RJ020		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)G1 1/5				
	HC-MFS43(B)G1 1/12				HG-KR43(B)G1 1/12 (Note 2)				
	HC-MFS43(B)G1 1/20				HG-KR43(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70B } \end{aligned}$	HC-MFS73(B)G1 1/5	$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 70B-RJ020 } \end{array}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-KR73(B)G1 1/5				
	HC-MFS73(B)G1 1/12				HG-KR73(B)G1 1/12 (Note 2)				
	HC-MFS73(B)G1 1/20				HG-KR73(B)G1 1/20				
[Small capacity/ultra-low inertia HC-MFS series with high-precision reducer (G2)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-MFS053(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	(Note 3) (Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFS053(B)G2 1/9				HG-KR053(B)G7 1/11				
	HC-MFS053(B)G2 1/20				HG-KR053(B)G7 1/21				
	HC-MFS053(B)G2 1/29				HG-KR053(B)G7 1/33				
	HC-MFS13(B)G2 1/5				HG-KR13(B)G7 1/5				
	HC-MFS13(B)G2 1/9				HG-KR13(B)G7 1/11				
	HC-MFS13(B)G2 1/20				HG-KR13(B)G7 1/21				
	HC-MFS13(B)G2 1/29				HG-KR13(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-MFS23(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20B(1)- } \\ & \text { RJ020 } \end{aligned}$			HG-KR23(B)G7 1/5				
	HC-MFS23(B)G2 1/9				HG-KR23(B)G7 1/11				
	HC-MFS23(B)G2 1/20				HG-KR23(B)G7 1/21 HG-KR23(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-MFS43(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40B(1)- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-MFS43(B)G2 1/9				HG-KR43(B)G7 1/11				
	HC-MFS43(B)G2 1/20				HG-KR43(B)G7 1/21				
	HC-MFS43(B)G2 1/29				HG-KR43(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 B \end{aligned}$	HC-MFS73(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 70B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT1K } \end{array}$	HG-KR73(B)G7 1/5				
	HC-MFS73(B)G2 1/9				HG-KR73(B)G7 1/11				
	HC-MFS73(B)G2 1/20				HG-KR73(B)G7 1/21				
	HC-MFS73(B)G2 1/29				HG-KR73(B)G7 1/33				

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(5) Existing HC-MFS motor series (G5, G7 reducer)

	(1)		2)	(3)	(4)			(5)	
$\begin{aligned} & \text { Existing model } \\ & \text { (Note 13) } \end{aligned}$		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servoamplifiermodel(Note 1, 12)	SSCNET	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/ultra-low inertia HC-MFS series with high-precision reducer, flange output type (G5)] (($^{\text {() represents models with brake) }}$									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC-MFS053(B)G5 1/5	MR-J4-10B(1)RJO20	MR-J4-T20	SC-J2SBJ4KT02K	HG-KR053(B)G5 1/5		Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	Sc- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFSO53(B)G5 1/11				HG-KR053(B)G5 1/11				
	HC-MFSO53(B)G5 1/21				HG-KR053(B)G5 1/21				
	HC-MFS053(B)G5 1/33				HG-KR053(B)G5 1/33				
	HC-MFS053(B)G5 1/45				HG-KR053(B)G5 1/45				
	HC-MFS13(B)G5 1/5				HG-KR13(B)G5 1/5				
	HC-MFS ${ }^{\text {a }}$ (B)G5 1/11				HG-KR13(B)G5 1/11				
	HC-MFS13(B)G5 1/21				HG-KR13(B)G5 1/21				
	HC-MFS 13(B)G5 1/33				HG-KR13(B)G5 1/33				
	HC-MFS13(B)G5 1/45				HG-KR13(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-MFS23(B)G5 1/5	MR-J4-20B(1)RJO20			HG-KR23(B)G5 1/5				
	HC-MFS23(B)G5 1/11				HG-KR23(B)G5 1/11				
	HC-MFS23(B)G5 1/21				HG-KR23(B)G5 1/21 HG-KR23(B)G5 1/33				
	HC-MFS23(B)G5 1/45				HG-KR23(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-MFS43(B)G5 1/5	MR-J4-40B(1)RJ020		sc- J2SBJ4KT06K	HG-KR43(B)65 1/5				
	HC-MFS $43(\mathrm{~B}) \mathrm{G5} 1 / 11$				HG-KR43(B)G5 1/11				
	HC-MFS43(B)G5 1/21				HG-KR43(B)G5 1/21				
	HC-MFS43(B)G5 1/33				HG-KR43(B)G5 1/33				
	HC-MFS43(B)G5 1/45				HG-KR43(B)G5 1/45				
MR-J2S-70B	HC-MFS73(B)G5 1/5	MR-J4-70BRJO20		SC- J2SBJ4KT1K	HG-KR73(B)G5 1/5				
	HC-MFS $73(\mathrm{~B}) \mathrm{G} 51 / 11$				HG-KR73(B)G5 1/11				
	HC-MFS73(B)G5 1/21				HG-KR73(B)G5 1/21				
	HC-MFS73(B)G5 1/33				HG-KR73(B)G5 1/33				
	HC-MFS73(B)G5 1/45				HG-KR73(B)G5 1/45				
[Small capacity/ultra-low inertia HC-MFS series with high-precision reducer, shaft output type (G7)] ((B) represents models with brake)									
MR-J2S10B(1)	HC-MFS053(B)G7 1/5	MR-J4-10B(1)RJO20	MR-J4-T20	SCJ2SBJ4KT02K	HG-KR053(B)G7 1/5	$\left\{\begin{array}{c} \Delta \\ (\text { Note 4) } \end{array}\right.$	Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M	sc-HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFS053(B)G7 1/11				HG-KR053(B)G7 1/11				
	HC-MFSO53(B)G7 1/21				HG-KR053(B)G7 1/21				
	HC-MFSO53(B)G7 1/33				HG-KR053(B)G7 1/33				
	HC-MFSO53(B)G7 1/45				HG-KR053(B)G7 1/45				
	HC-MFS13(B) G7 1/5				HG-KR13(B)G7 1/5				
	HC-MFS13(B)G7 1/11				HG-KR13(B)G7 1/11				
	HC-MFS 13(B)G7 1/21				HG-KR13(B)G7 1/21				
	HC-MFS13(B)G7 1/33				HG-KR13(B)G7 1/33				
	HC-MFS13(B)G7 1/45				HG-KR13(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC-MFS23(B)G7 1/5	MR-J4-20B(1)RJO20			HG-KR23(B)G7 1/5				
	HC-MFS23(B)G7 1/11 HC-MFS23(B)G7 1/21				HG-KR23(B)G7 1/11 HG-K23(B)G7 1/21				
	HC-MFS23(B)G7 1/33				HG-KR23(B)G7 1/33				
	HC-MFS23(B)G7 1/45				HG-KR23(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC-MFS43(B)G7 1/5	MR-J4-40B(1)RJO20		SCJ2SBJ4KT06K	HG-KR43(B)G7 1/5				
	HC-MFS 43 (B) ${ }^{\text {a }}$ 1/11				HG-KR43(B)G7 1/11				
	HC-MFS 43 (B)G7 1/21				HG-KR43(B)G7 1/21				
	HC-MFS43(B)G7 1/33				HG-KR43(B)G7 1/33				
	HC-MFS43(B)G7 1/45				HG-KR43(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{~B} \end{aligned}$	HC-MFS73(B)G7 1/5	MR-J4-70BRJ020		SC- J2SBJ4KT1K	HG-KR73(B)G7 1/5				
	HC-MFS $73(\mathrm{~B}) \mathrm{G7} 1 / 11$				HG-KR73(B)G7 1/11				
	HC-MFS73(B)G7 1/21				HG-KR73(B)G7 1/21				
	HC-MFS73(B)G7 1/33				HG-KR73(B)G7 1/33				
	HC-MFS73(B)G7 1/45				HG-KR73(B)G7 1/45				

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(6) Existing HC-SFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)		(2)	(3)	(4)			(5)		
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models					
Servo amplifier model	Servo motor model	Servoamplifiermodel(Note 1, 12)		Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model			
			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable	
[Medium capacity/medium inertia HC-SFS series, standard/with brake] ((B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60B } \\ & \hline \end{aligned}$	HC-SFS52(B)	$\begin{aligned} & \text { MR-J4-60B- } \\ & \text { RJ020 } \end{aligned}$	SC- J2SBJ4KT06K		HG-SR52(B)	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 6) } \end{gathered}\right.$	SC- SAJ3PW2KC1M-S2	SC- HAJ3ENM3C1M	(Note 7)	
	HC-SFS53(B)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100B } \end{aligned}$	HC-SFS81(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 100B- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-SR81(B)					
	HC-SFS103(B)				HG-SR102(B)					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200B } \end{aligned}$	HC-SFS121(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 200B- } \\ & \text { RJ020 } \end{aligned}$		SC- J2SBJ4KT3K	HG-SR121(B)		SC-HAJ3PW1C1M			
	HC-SFS152(B)				HG-SR152(B)		SC- SAJ3PW2KC1M-S2			
	HC-SFS201(B)				HG-SR201(B)		SC-HAJ3PW1C1M			
	HC-SFS202(B)				HG-SR202(B)					
	HC-SFS203(B)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350B } \end{aligned}$	HC-SFS301(B)	MR-J4-350BRJ020			HG-SR301(B)					
	HC-SFS352(B)				HG-SR352(B)					
	HC-SFS353(B)									
$\begin{aligned} & \text { MR-J2S- } \\ & 500 \mathrm{~B} \end{aligned}$	HC-SFS502(B)	MR-J4-500B- RJ020		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	HG-SR502(B)					
$\begin{array}{\|l} \text { MR-J2S- } \\ \text { 700B } \end{array}$	HC-SFS702(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 700B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT7K } \end{aligned}$	HG-SR702(B)		Existing cable can be used.			
[Medium capacity/medium inertia HC-SFS series with high-precision reducer (G2)] ((B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60B } \end{aligned}$	HC-SFS52(B)G2 1/5	$\begin{aligned} & \text { MR-J4-60B- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-SR52(B)G7 1/5	(Note 3) (Note 6)	SC- SAJ3PW2KC1M-S2	SCHAJ3ENM3C1M		
	HC-SFS52(B)G2 1/9				HG-SR52(B)G7 1/11					
	HC-SFS52(B)G2 1/20				HG-SR52(B)G7 1/21					
	HC-SFS52(B)G2 1/29				HG-SR52(B)G7 1/33					
	HC-SFS52(B)G2 1/45				HG-SR52(B)G7 1/45					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100B } \end{aligned}$	HC-SFS102(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 100B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-SR102(B)G7 1/5					
	HC-SFS102(B)G2 1/9				HG-SR102(B)G7 1/11					
	HC-SFS102(B)G2 1/20				HG-SR102(B)G7 1/21					
	HC-SFS102(B)G2 1/29				HG-SR102(B)G7 1/33					
	HC-SFS102(B)G2 1/45				HG-SR102(B)G7 1/45					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200B } \end{aligned}$	HC-SFS152(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 200B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT3K } \end{aligned}$	HG-SR152(B)G7 1/5					
	HC-SFS152(B)G2 1/9				HG-SR152(B)G7 1/11					
	HC-SFS152(B)G2 1/20				HG-SR152(B)G7 1/21					
	HC-SFS152(B)G2 1/29				HG-SR152(B)G7 1/33					
	HC-SFS152(B)G2 1/45				HG-SR152(B)G7 1/45				(Note 7)	
	HC-SFS202(B)G2 1/5				HG-SR202(B)G7 1/5		SC-HAJ3PW1C1M			
	HC-SFS202(B)G2 1/9				HG-SR202(B)G7 1/11					
	HC-SFS202(B)G2 1/20				HG-SR202(B)G7 1/21					
	HC-SFS202(B)G2 1/29				HG-SR202(B)G7 1/33					
	HC-SFS202(B)G2 1/45				HG-SR202(B)G7 1/45					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350B } \end{aligned}$	HC-SFS352(B)G2 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 350B- } \\ & \text { RJ020 } \end{aligned}$			HG-SR352(B)G7 1/5					
	HC-SFS352(B)G2 1/9				HG-SR352(B)G7 1/11					
	HC-SFS352(B)G2 1/20				HG-SR352(B)G7 1/21					
$\begin{aligned} & \text { MR-J2S- } \\ & 500 \mathrm{~B} \end{aligned}$	HC-SFS502(B)G2 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 500B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	HG-SR502(B)G7 1/5					
	HC-SFS502(B)G2 1/9				HG-SR502(B)G7 1/11					
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 700B } \end{aligned}$	HC-SFS702(B)G2 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 700B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT7K } \end{aligned}$	HG-SR702(B)G7 1/5		Existing cable can be used.			

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(7) Existing HC-SFS motor series (G1 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Refer to Appendix page 2-65 for important points to note.
(8) Existing HC-SFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(9) Existing HC-RFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)		(3)	(4)	4)	(5)		(6)		(7)	
Existing model (Note 13)		Primary replacement model (Note 5)			Secondary replacement/simultaneous replacement models							
			SSCNET			SSCNET	Servo motor model (Note 1)		Renewal kit model	Motor side conversion cable		
amplifier model	Servo motor model	amplifier model (Note 1, 12)	conversion unit model (Note 1)	Renewal kit model	amplifier model (Note 1)	conversion unit model (Note 1)		Compatibility		Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/ultra-low inertia HC-RFS series, standard/with brake] (B) represents models with brake)												
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200B } \end{aligned}$	HC-RFS103(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 200B- } \\ & \text { RJ020 } \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT3K } \end{aligned}$	$\begin{aligned} & \text { MR-J4- } \\ & \text { 200B- } \\ & \text { RJ020 } \end{aligned}$	$\begin{aligned} & \text { MR-J4- } \\ & \text { T20 } \end{aligned}$	HG-RR103(B)	\bigcirc	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT } \\ & 3 \mathrm{~K} \end{aligned}$	Existing cable can be used.	SCHAJ3ENM3C1M	Existing cable can be used.
	HC-RFS153(B)						HG-RR153(B)					
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ \text { 350B } \\ \hline \end{array}$	HC-RFS203(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 350B- } \\ & \text { RJ020 } \end{aligned}$			$\begin{aligned} & \hline \text { MR-J4- } \\ & 350 \mathrm{~B}- \\ & \text { RJO20 } \end{aligned}$		HG-RR203(B)					
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 500B } \end{aligned}$	HC-RFS353(B)	MR-J4-500BRJ020		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	MR-J4-500B- RJ020		HG-RR353(B)		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT } \\ & 5 \mathrm{~K} \end{aligned}$			
	HC-RFS503(B)						HG-RR503(B)					
[Medium capacity/ultra-low inertia HC-RFS series with high-precision reducer (G2)] ((B) represents models with brake)												
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200B } \end{aligned}$	HC-RFS103(B)G2 1/5	MR-J4- 200B- RJ020 (Note 10)	MR-J4-T20	SCJ2SBJ4KT3K	$\begin{aligned} & \text { MR-J4- } \\ & \text { 100B- } \\ & \text { RJ020 } \\ & \text { (Note 10) } \end{aligned}$	$\begin{aligned} & \text { MR-J4- } \\ & \text { T20 } \end{aligned}$	HG-SR102(B)G7 1/5		(Note 11)	SC-SAJ3PW2KC1M-S2	SCHAJ3ENM3C1M	(Note 7)
	HC-RFS103(B)G2 1/9						HG-SR102(B)G7 1/11					
	HC-RFS103(B)G2 1/20						HG-SR102(B)G7 1/21					
	HC-RFS103(B)G2 1/29						HG-SR102(B)G7 1/33					
	HC-RFS103(B)G2 1/45						HG-SR102(B)G7 1/45					
	HC-RFS153(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 200B- } \\ & \text { RJ020 } \end{aligned}$					HG-SR152(B)G7 1/5		SCJ2SBJUKT3K			
	HC-RFS153(B)G2 1/9				MR-J4-		HG-SR152(B)G7 1/11					
	HC-RFS153(B)G2 1/20				200B-		HG-SR152(B)G7 1/21					
	HC-RFS153(B)G2 1/29				RJ020		HG-SR152(B)G7 1/33					
	HC-RFS153(B)G2 1/45						HG-SR152(B)G7 1/45					
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 350B } \end{aligned}$	HC-RFS203(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 350B- } \\ & \text { RJ020 } \\ & \text { (Note 10) } \end{aligned}$			$\begin{array}{\|l\|} \text { MR-J4- } \\ \text { 200B- } \\ \text { RJ020 } \\ \text { (Note 10) } \end{array}$		HG-SR202(B)G7 1/5			SC-J2SJ4PW2C1M		
	HC-RFS203(B)G2 1/9						HG-SR202(B)G7 1/11					
	HC-RFS203(B)G2 1/20						HG-SR202(B)G7 1/21					
	HC-RFS203(B)G2 1/29						HG-SR202(B)G7 1/33					
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 500B } \end{aligned}$	HC-RFS353(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 500B- } \\ & \text { RJO20 } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	MR-J4-		HG-SR352(B)G7 1/5		(Note 11)	SC-HAJ3PW1C1M		
	HC-RFS353(B)G2 1/9				350B-		HG-SR352(B)G7 1/11					
	HC-RFS353(B)G2 1/20				RJO20		HG-SR352(B)G7 1/21					
	HC-RFS353(B)G2 1/29				(Note 10)		HG-SR352(B)G7 1/21					
	HC-RFS503(B)G2 1/5	MR-J4-			MR-J4-		HG-SR502(B)G7 1/5					
	HC-RFS503(B)G2 1/9 HC-RFS503(B)G2 1/20	$\begin{aligned} & \text { 500B- } \\ & \text { RJO20 } \end{aligned}$			$\begin{aligned} & \text { 500B- } \\ & \text { RJO20 } \end{aligned}$		HG-SR502(B)G7 1/11		J2SBJ4KT5K			

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(10) Existing HC-RFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Refer to Appendix page 2-65 for important points to note.
(11) Existing HC-UFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)		(3)	(4)		(5)		
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	SSCNET conversion unit model (Note 1)	Renewal kit model	Servo motor model (Note 1)	Motor side conversion cable model			
						Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/flat type HC-UFS series, standard/with brake] (B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70B } \end{aligned}$	$\begin{aligned} & \text { HC- } \\ & \text { UFS72(B) } \end{aligned}$	$\begin{aligned} & \text { MR-J4-70B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HGUR72(B)	\bigcirc	Existing cable can be used.	SC-HAJ3ENM3C1M	Existing cable can be used.
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200B } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HC- } \\ & \text { UFS152(B) } \end{aligned}$	$\begin{aligned} & \hline \text { MR-J4-200B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT3K } \end{aligned}$	$\begin{aligned} & \text { HG- } \\ & \text { UR152(B) } \end{aligned}$				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350B } \end{aligned}$	$\begin{aligned} & \text { HC- } \\ & \text { UFS202(B) } \end{aligned}$	$\begin{aligned} & \text { MR-J4-350B- } \\ & \text { R.JO20 } \end{aligned}$			HGUR202(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 500B } \end{aligned}$	$\begin{aligned} & \text { HC- } \\ & \text { UFS352(B) } \end{aligned}$	$\begin{aligned} & \text { MR-J4-500B- } \\ & \text { RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	$\begin{aligned} & \text { HG- } \\ & \text { UR352(B) } \\ & \hline \end{aligned}$				
	$\begin{aligned} & \text { HC- } \\ & \text { UFS502(B) } \end{aligned}$				HGUR502(B)				
Small capacity/flat type HC-UFS series, standard/with brake] (B) represents models with brake)									
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10B(1) } \end{aligned}$	HC- UFS13(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 10B(1)- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT02K } \end{aligned}$	HG-KR13(B))	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20B(1) } \end{aligned}$	HC- UFS23(B)				HG-KR23(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40B(1) } \end{aligned}$	HC- UFS43(B)	MR-J4-40B(1)RJO20		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	HG-KR43(B)				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 70B } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HC- } \\ & \text { UFS73(B) } \end{aligned}$	$\begin{aligned} & \hline \text { MR-J4-70B- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SBJ4KT1K } \end{aligned}$	HG-KR73(B)				

Refer to Appendix page 2-65 for important points to note.
(12) Existing HC-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)		(3)	(4)		(5)		(6)	(7)		
Existing model(Note 13)		Primary replacement model(Note 5)			Secondary replacement/simultaneous replacement models							
		Servo	SSCNET		Servo	SSCNET	Servomotormodel(Note 1)		Motor side conversion cable model			
amplifier model	motor model	amplifier model (Note 1, 12)	conversion unit model (Note 1)	Renewal kit model	amplifier model (Note 1)	conversion unit model (Note 1)		Compatibility	Renewal kit model	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/low inertia HC-LFS series, standard/with brake] ((B) represents models with brake)												
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 60B } \\ & \hline \end{aligned}$	HC- LFS52(B)	$\begin{aligned} & \text { MR-J4-60B- } \\ & \text { RJ020 } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	MR-J4-T20	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT06K } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 70B-RJ020 } \\ \text { (Note 10) } \\ \hline \end{array}$	MR-J4-T20	HG- JR73(B)	$\left\|\begin{array}{c} x \\ (\text { Note } 3) \end{array}\right\|$		SC-		
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 100B } \end{aligned}$	HC- LFS102(B)	$\begin{aligned} & \text { MR-J4-100B } \\ & \text {-RJ020 } \\ & \text { (Note 10) } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT1K } \end{array}$	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 200B- } \\ & \text { RJ020 } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$		HGJR153(B)		(Note 11)	SAJ3PW2KC1MS2		
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200B } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { HC- } \\ \text { LFS152(B) } \end{array}$	$\begin{aligned} & \text { MR-J4-200B } \\ & \text {-RJ020 } \\ & \text { (Note 10) } \end{aligned}$		SC-	$\begin{aligned} & \text { MR-J4- } \\ & \text { 350B- } \\ & \text { RJO20 } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$		HG-		SC-	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4PW2C1M } \end{aligned}$	SC-HAJ3ENM3C1M	(Note 7)
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 350B } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { HC- } \\ \text { LFS202(B) } \end{array}$	$\begin{aligned} & \text { MR-J4-350B } \\ & \text {-RJ020 } \end{aligned}$			MR-J4-350BRJO20					SC-		
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 500B } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { HC- } \\ \text { LFS302(B) } \end{array}$	$\begin{aligned} & \text { MR-J4-500B } \\ & \text {-RJ020 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	MR-J4-500BRJ020		$\begin{aligned} & \text { HG- } \\ & \text { JR503(B) } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	HAJ3PW1C1M		

Refer to Appendix page 2-65 for important points to note.
(13) Existing HA-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Existing model (Note 13)		(2)	2)	(3)	(4)	(4)	(5)		(6)		(7)		
		Primary replacement model (Note 5)			Secondary replacement/simultaneous replacement models								
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	SSCNET conversion unit model (Note 1)	Renewal kit model	Servo amplifier model (Note 1)	SSCNET conversion unit model (Note 1)	$\begin{aligned} & \text { Servo motor } \\ & \text { model } \\ & \text { (Note 1) } \end{aligned} \quad \text { Compatibility }$		Renewal kit model	Motor side conversion cable model			
									Power supply conversion Cable	Encoder Conversion cable	Brake/Conversion cable for the cooling fan		
[Medium/large capacity/low inertia HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series, standard/with brake] (B) represents models with brake)													
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 700B } \\ & \hline \end{aligned}$	HALFS601(B)	(Note 16)			$\begin{aligned} & \text { MR-J4- } \\ & \text { 700B-RJ020 } \end{aligned}$	MR-J4-T20	HGJR601(B) (Note 4)	$-\begin{gathered} \times \\ (\text { Note 3) } \end{gathered}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT7K } \end{aligned}$	SC- J2SJ4PW3C1M-	Existing cable can be used	- Existing brake cable can be used. - Cooling fan cable (Note 9)
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 11KB } \end{aligned}$	HA- LFS801(B)				MR-J4- 11KB-RJ020		HGJR801(B) (Note 4		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT15K } \end{aligned}$				
	$\begin{aligned} & \text { HA- } \\ & \text { LFS12K1(B) } \end{aligned}$				HGJR12K1 (B) (Note 4)								
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 15 \mathrm{~KB} \\ & \hline \end{aligned}$	HA-LFS15K1				$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 15KB-RJ020 } \end{array}$		HG-JR15K1						
MR-	HA-LFS20K1				MR-J4-		HG-JR20K1						
$\begin{aligned} & \mathrm{J} 2 \mathrm{~S}- \\ & \text { 22KB } \\ & \hline \end{aligned}$	HA-LFS25K1				22KB-RJ020		HG-JR25K1		J2SBJ4KT22K			- Cooling fan	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 30KB } \end{aligned}$	HA-LFS30K1				$\begin{gathered} \hline \text { MR-J4- } \\ \text { DU30KB- } \\ \text { RJ020 } \\ \text { (Note 20) } \\ \hline \end{gathered}$		$\begin{aligned} & \text { HG-JR30K1 } \\ & \text { (Note 4) } \end{aligned}$		SC-J2SJ4BS09	(Note 8)	(Note 17)	conversion cable SCJ2SJ4FAN1C1M	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 37KB } \end{aligned}$	HA-LFS37K1				$\begin{aligned} & \text { MR-J4- } \\ & \text { DU37KB- } \\ & \text { RJ020 } \\ & \text { (Note 20) } \\ & \hline \end{aligned}$		HG-JR37K1		(Note 18)				
[Mediu	m/large cap	ty/low inert	HA-LFS 150	$0 \mathrm{r} / \mathrm{min}$ ser		standard/w	brake] ((B)	represent	odels	h brake)			
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 700 \mathrm{~B} \\ & \hline \end{aligned}$	HALFS701M(B)				$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 700B-RJ020 } \end{array}$		$\begin{aligned} & \text { HG- } \\ & \text { JR701M(B) } \\ & \text { (Note 4) } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT7K } \end{aligned}$			- Existing brake	
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ 11 \mathrm{~KB} \\ \hline \end{array}$	$\begin{aligned} & \text { HA- } \\ & \text { LFS11K1M(B) } \end{aligned}$				$\begin{aligned} & \text { MR-J4- } \\ & \text { 11KB-RJ020 } \end{aligned}$		HG- JR11K1M(B)			SC- J2SJ4PW3C1M-	Existing cable can be used	cable can be used.	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 15KB } \end{aligned}$	$\begin{aligned} & \text { HA- } \\ & \text { LFS15K1M(B) } \end{aligned}$				$\begin{aligned} & \text { MR-J4- } \\ & \text { 15KB-RJ020 } \end{aligned}$		HGJR15K1M (B) (Note 4)		J2SBJ4KT15K			fan cable (Note 9)	
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ 22 \mathrm{~KB} \\ \hline \end{array}$	$\begin{aligned} & \text { HA- } \\ & \text { LFS22K1M } \end{aligned}$		(Note 16)		$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 22KB-RJ020 } \end{array}$	MR-J4-T20	HGJR22K1M	$\left\|\begin{array}{c} x \\ (\text { Note 3) } \end{array}\right\|$	$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT22K } \end{aligned}$				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 30KB } \end{aligned}$	$\begin{aligned} & \text { HA- } \\ & \text { LFS30K1M } \end{aligned}$				$\begin{gathered} \hline \text { MR-J4- } \\ \text { DU30KB- } \\ \text { RJ020 } \\ \text { (Note 20) } \\ \hline \end{gathered}$		HG- JR30K1M		SC-J2SJ4BS09	(Note 8)	(Note 17)	fan conversion cable SC-	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 37 \mathrm{~KB} \end{aligned}$	HA- LFS37K1M				$\begin{aligned} & \text { MR-J4- } \\ & \text { DU37KB- } \\ & \text { RJ020 } \\ & \text { (Note 20) } \\ & \hline \end{aligned}$		HG- JR37K1M		(Note 18)			J2SJ4FAN1C1M	
[Mediu	m/large capa	city/low inertia	HA-LFS 200	$0 \mathrm{r} / \mathrm{min}$ serie	, standard/wit	brake] ((B)) represents	odels	ith brake)				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 500B } \end{aligned}$	HA-LFS502	$\begin{aligned} & \text { MR-J4- } \\ & \text { 500B-RJ020 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT5 } \\ \text { K } \\ \hline \end{array}$	$\begin{aligned} & \text { MR-J4- } \\ & \text { 500B-RJ020 } \end{aligned}$		HG-SR502		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT5K } \end{aligned}$	SC-HAJ3PW1C1M	SC-		
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 700 \mathrm{~B} \end{aligned}$	HA-LFS702	$\begin{aligned} & \text { MR-J4- } \\ & \text { 700B-RJ020 } \end{aligned}$		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SBJ4KT7 } \\ & \mathrm{K} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4- } \\ & \text { 700B-RJ020 } \end{aligned}$		HG-SR702		$\begin{aligned} & \text { SC- } \\ & \text { J2SBJ4KT7K } \end{aligned}$	Existing cable can be used	HAJ3ENM3C1M		
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 11 \mathrm{~KB} \end{aligned}$	HALFS11K2(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 11KB-RJ020 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT1 } \\ 5 \mathrm{~K} \\ \hline \end{array}$	$\begin{aligned} & \text { MR-J4- } \\ & \text { 11KB-RJ020 } \end{aligned}$		HG- JR11K1M(B) (Note 4)		SC-			- Existing brake	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 15KB } \end{aligned}$	HALFS15K2(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 15KB-RJ020 } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	MR-J4-T20	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SBJ4KT1 } \\ & 5 \mathrm{~K} \\ & \hline \end{aligned}$	MR-J4- 11KB-RJ020 (Note 10) MR	MR-J4-T20	HG- JR11K1M(B)	(Note 3)	J2SBJ4KT15K	SC- J2SJ4PW3C1M-	Existing cable can be used	cable can be used.	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 22 \mathrm{~KB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HA- } \\ & \text { LFS22K2(B) } \end{aligned}$	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 22KB-RJ020 } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SBJ4KT2 } \\ 2 \mathrm{~K} \\ \hline \end{array}$	MR-J4- 15KB-RJ020 (Note 10)		$\begin{aligned} & \text { HG- } \\ & \text { JR15K1M(B) } \end{aligned}$	(Note 3)				- Cooling fan cable (Note 9)	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 30KB } \end{aligned}$	HA-LFS30K2	$\begin{array}{c\|} \hline \text { MR-J4- } \\ \text { DU30KB- } \\ \text { RJ020 } \\ \text { (Note 10, 20) } \\ \hline \end{array}$		SCJ2SJ4BS09	$\begin{aligned} & \text { MR-J4- } \\ & \text { 22KB-RJ020 } \\ & \text { (Note 10) } \end{aligned}$		HGJR22K1M		(Note 11)	(Note 8)	(Note 17)	- Cooling fan conversion	
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 37KB } \end{aligned}$	HA-LFS37K2	$\begin{array}{c\|} \hline \text { MR-J4- } \\ \text { DU37KB- } \\ \text { RJ020 } \\ \text { (Note 10, 20) } \end{array}$		(Note 18)	$\begin{array}{c\|} \hline \text { MR-J4- } \\ \text { DU30KB- } \\ \text { RJ020 } \\ \text { (Note 10, 20) } \end{array}$		HG- JR30K1M		$\begin{gathered} \text { SC-J2SJ4BS09 } \\ \text { (Note 18) } \end{gathered}$	(Note 8)	(Note 17)		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

4.3 Built-in Positioning Function Replacement Combination List

(1) Existing HC-KFS motor series (standard/with brake, G1, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
		amplifier model (Note 1, 12)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series, standard/with brake] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & 10 \mathrm{CP}(1) \end{aligned}$	HC-KFS053(B)	$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 10A(1)-RJ } \\ \hline \end{array}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-KR053(B)	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS13(B)			HG-KR13(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \\ & \hline \end{aligned}$	HC-KFS23(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \\ & \hline \end{aligned}$	HC-KFS43(B)	$\begin{aligned} & \text { MR-J4- } \\ & 40 \mathrm{~A}(1)-\mathrm{RJ} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SC-J2SCP } \\ \text { J4KT06K } \\ \hline \end{array}$	HG-KR43(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{CP} \\ & \hline \end{aligned}$	HC-KFS73(B)	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT1K } \\ & \hline \end{aligned}$	HG-KR73(B)				
[Small capacity/low inertia HC-KFS series with general reducer (G1)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-KFS053(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10A(1)-RJ } \end{aligned}$	SC-J2SCPJ4KT02K	HG-KR053(B)G1 1/5	$f\left(\begin{array}{c} \Delta \\ (\text { Note 4) } \end{array}\right.$	Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-KFS053(B)G1 } \\ & 1 / 12 \end{aligned}$			HG-KR053(B)G1 1/12				
	$\begin{array}{\|l\|} \hline \text { HC-KFS053(B)G1 } \\ 1 / 20 \\ \hline \end{array}$			HG-KR053(B)G1 1/20				
	HC-KFS13(B)G1 1/5			HG-KR13(B)G1 1/5				
	HC-KFS13(B)G1 1/12			HG-KR13(B)G1 1/12				
	HC-KFS13(B)G1 1/20			HG-KR13(B)G1 1/20				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-KFS23(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)G1 1/5				
	HC-KFS23(B)G1 1/12			HG-KR23(B)G1 1/12 (Note 2) HG-KR23(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \end{aligned}$	HC-KFS43(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G1 1/5				
	HC-KFS43(B)G1 1/12			HG-KR43(B)G1 1/12 (Note 2)				
	HC-KFS43(B)G1 1/20			HG-KR43(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70A } \end{aligned}$	HC-KFS73(B)G1 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G1 1/5				
	HC-KFS73(B)G1 1/12			HG-KR73(B)G1 1/12 (Note 2)				
	HC-KFS73(B)G1 1/20			HG-KR73(B)G1 1/20				
[Small capacity/low inertia HC-KFS series with high-precision reducer (G2)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-KFS053(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	(Note 3) (Note 4)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-KFS053(B)G2 1/9			HG-KR053(B)G7 1/11				
	$\begin{aligned} & \hline \text { HC-KFS053(B)G2 } \\ & 1 / 20 \end{aligned}$			HG-KR053(B)G7 1/21				
	$\begin{aligned} & \text { HC-KFS053(B)G2 } \\ & 1 / 29 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/33				
	HC-KFS13(B)G2 1/5			HG-KR13(B)G7 1/5				
	HC-KFS13(B)G2 1/9			HG-KR13(B)G7 1/11				
	HC-KFS13(B)G2 1/20			HG-KR13(B)G7 1/21				
	HC-KFS13(B)G2 1/29			HG-KR13(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-KFS23(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)G7 1/5				
	HC-KFS23(B)G2 1/9			HG-KR23(B)G7 1/11				
	HC-KFS23(B)G2 1/20			HG-KR23(B)G7 1/21				
	HC-KFS23(B)G2 1/29			HG-KR23(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \end{aligned}$	HC-KFS43(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-KFS43(B)G2 1/9			HG-KR43(B)G7 1/11				
	HC-KFS43(B)G2 1/20			HG-KR43(B)G7 1/21				
	HC-KFS43(B)G2 1/29			HG-KR43(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{CP} \end{aligned}$	HC-KFS73(B)G2 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-KFS73(B)G2 1/9			HG-KR73(B)G7 1/11				
	HC-KFS73(B)G2 1/20			HG-KR73(B)G7 1/21				
	HC-KFS73(B)G2 1/29			HG-KR73(B)G7 1/33				

Refer to Appendix page 2-65 for important points to note.
(2) Existing HC-KFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
		amplifier model (Note 1, 12)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series with high-precision reducer, flange output type (G5)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-KFS053(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-KR053(B)G5 1/5	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC- J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	$\begin{aligned} & \hline \text { HC-KFS053(B)G5 } \\ & 1 / 11 \end{aligned}$			HG-KR053(B)G5 1/11				
	$\begin{aligned} & \text { HC-KFS053(B)G5 } \\ & 1 / 21 \end{aligned}$			HG-KR053(B)G5 1/21				
	$\begin{aligned} & \text { HC-KFS053(B)G5 } \\ & 1 / 33 \end{aligned}$			HG-KR053(B)G5 1/33				
	$\begin{aligned} & \text { HC-KFS053(B)G5 } \\ & 1 / 45 \\ & \hline \end{aligned}$			HG-KR053(B)G5 1/45				
	HC-KFS13(B)G5 1/5			HG-KR13(B)G5 1/5				
	HC-KFS13(B)G5 1/11			HG-KR13(B)G5 1/11				
	HC-KFS13(B)G5 1/21			HG-KR13(B)G5 1/21				
	HC-KFS13(B)G5 1/33			HG-KR13(B)G5 1/33				
	HC-KFS13(B)G5 1/45			HG-KR13(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-KFS23(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)G5 1/5				
	HC-KFS23(B)G5 1/11			HG-KR23(B)G5 1/11				
	HC-KFS23(B)G5 1/21			HG-KR23(B)G5 1/21				
	HC-KFS23(B)G5 1/33			HG-KR23(B)G5 1/33				
	HC-KFS23(B)G5 1/45			HG-KR23(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \end{aligned}$	HC-KFS43(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G5 1/5				
	HC-KFS43(B)G5 1/11			HG-KR43(B)G5 1/11				
	HC-KFS43(B)G5 1/21			HG-KR43(B)G5 1/21				
	HC-KFS43(B)G5 1/33			HG-KR43(B)G5 1/33				
	HC-KFS43(B)G5 1/45			HG-KR43(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{CP} \end{aligned}$	HC-KFS73(B)G5 1/5	$\begin{aligned} & \text { MR-J4-70A- } \\ & \text { RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G5 1/5				
	HC-KFS73(B)G5 1/11			HG-KR73(B)G5 1/11				
	HC-KFS73(B)G5 1/21			HG-KR73(B)G5 1/21				
	HC-KFS73(B)G5 1/33			HG-KR73(B)G5 1/33				
	HC-KFS73(B)G5 1/45			HG-KR73(B)G5 1/45				
[Small cap	city/low inertia HC-KFS	series with h	recision reducer	haft output type (G7)] ((B)	represen	models with brake)		
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-KFS053(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	$\left\lvert\, \begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}\right.$	Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-KFS053(B)G7 } \\ & 1 / 11 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/11				
	$\begin{aligned} & \text { HC-KFS053(B)G7 } \\ & 1 / 21 \end{aligned}$			HG-KR053(B)G7 1/21				
	$\begin{aligned} & \text { HC-KFS053(B)G7 } \\ & 1 / 33 \end{aligned}$			HG-KR053(B)G7 1/33				
	$\begin{array}{\|l\|} \hline \text { HC-KFS053(B)G7 } \\ 1 / 45 \\ \hline \end{array}$			HG-KR053(B)G7 1/45				
	HC-KFS13(B)G7 1/5			HG-KR13(B)G7 1/5				
	HC-KFS13(B)G7 1/11			HG-KR13(B)G7 1/11				
	HC-KFS13(B)G7 1/21			HG-KR13(B)G7 1/21				
	HC-KFS13(B)G7 1/33			HG-KR13(B)G7 1/33				
	HC-KFS13(B)G7 1/45			HG-KR13(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-KFS23(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)G7 1/5				
	HC-KFS23(B)G7 1/11			HG-KR23(B)G7 1/11				
	HC-KFS23(B)G7 1/21			HG-KR23(B)G7 1/21				
	HC-KFS23(B)G7 1/33			HG-KR23(B)G7 1/33				
	HC-KFS23(B)G7 1/45			HG-KR23(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \end{aligned}$	HC-KFS43(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-KFS43(B)G7 1/11			HG-KR43(B)G7 1/11				
	HC-KFS43(B)G7 1/21			HG-KR43(B)G7 1/21				
	HC-KFS43(B)G7 1/33			HG-KR43(B)G7 1/33				
	HC-KFS43(B)G7 1/45			HG-KR43(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{CP} \end{aligned}$	HC-KFS73(B)G7 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-KFS73(B)G7 1/11			HG-KR73(B)G7 1/11				
	HC-KFS73(B)G7 1/21			HG-KR73(B)G7 1/21				
	HC-KFS73(B)G7 1/33			HG-KR73(B)G7 1/33				
	HC-KFS73(B)G7 1/45			HG-KR73(B)G7 1/45				

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(3) Existing HC-KFS46, KFS410 motor

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)	
$\begin{aligned} & \hline \text { Existing model } \\ & \text { (Note 13) } \\ & \hline \end{aligned}$		Primary replacement model(Note 5)		Secondary replacement/simultaneous replacement models						
				Servo amplifier	Servo motor			Motor side c	nversion cable model	
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	model (Note 1)	model (Note 1)	Compatibility	$\begin{gathered} \text { Renewal kit } \\ \text { model } \end{gathered}$	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/low inertia HC-KFS series, standard/with brake] ((B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70CP } \end{aligned}$	HC-KFS46 HC-KFS410	MR-J4-70A -RJ (Note 10)	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-40A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	HG-KR43	$\begin{array}{\|c} \Delta \\ \text { (Note 4) } \\ \text { (Note 15) } \end{array}$	(Note 11)	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(4) Existing HC-MFS motor series (standard/with brake, G1, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model		Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
		amplifier model (Note 1, 12)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Small capacity/ultra-low inertia HC-MFS series, standard/with brake] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & 10 \mathrm{CP}(1) \end{aligned}$	HC-MFS053(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 10A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-MR053(B)	\bigcirc	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-MFS13(B)			HG-MR13(B)				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 20 \mathrm{CP}(1) \\ & \hline \end{aligned}$	HC-MFS23(B)	$\begin{array}{\|l} \hline \text { MR-J4- } \\ \text { 20A(1)-RJ } \\ \hline \end{array}$		HG-MR23(B)				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \\ & \hline \end{aligned}$	HC-MFS43(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 40A(1)-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \\ & \hline \end{aligned}$	HG-MR43(B)				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 70CP } \\ & \hline \end{aligned}$	HC-MFS73(B)	$\begin{array}{\|l\|} \hline \text { MR-J4-70A } \\ \text {-RJ } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT1K } \\ & \hline \end{aligned}$	HG-MR73(B)				
[Small capacity/ultra-low inertia HC-MFS series with general reducer (G1)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-MFS053(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 10A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-KR053(B)G1 1/5	$f\left(\begin{array}{c} \Delta \\ (\text { Note 4) } \end{array}\right.$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-MFS053(B)G1 } \\ & 1 / 12 \end{aligned}$			HG-KR053(B)G1 1/12				
	$\begin{array}{\|l} \hline \text { HC-MFS053(B)G1 } \\ \text { 1/20 } \\ \hline \end{array}$			HG-KR053(B)G1 1/20				
	HC-MFS13(B)G1 1/5			HG-KR13(B)G1 1/5				
	HC-MFS13(B)G1 1/12			HG-KR13(B)G1 1/12				
	HC-MFS13(B)G1 1/20			HG-KR13(B)G1 1/20				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-MFS23(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)G1 1/5				
	HC-MFS23(B)G1 1/12			HG-KR23(B)G1 1/12 (Note 2)				
	HC-MFS23(B)G1 1/20			HG-KR23(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \end{aligned}$	HC-MFS43(B)G1 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40A(1)-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G1 1/5				
	HC-MFS43(B)G1 1/12			HG-KR43(B)G1 1/12 (Note 2)				
	HC-MFS43(B)G1 1/20			HG-KR43(B)G1 1/20 (Note 2)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70CP } \end{aligned}$	HC-MFS73(B)G1 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G1 1/5				
	HC-MFS73(B)G1 1/12			HG-KR73(B)G1 1/12 (Note 2)				
	HC-MFS73(B)G1 1/20			HG-KR73(B)G1 1/20				
[Small capacity/ultra-low inertia HC-MFS series with high-precision reducer (G2)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-MFS053(B)G2 1/5	$\begin{aligned} & \text { MR-J4-10A(1) } \\ & -R J \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT02K } \end{aligned}$	HG-KR053(B)G7 1/5	\times(Note 3)(Note 4)	Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	SC-HAJ3ENM1C03M-■	Built in to power supply conversion cable.
	HC-MFS053(B)G2 1/9			HG-KR053(B)G7 1/11				
	$\begin{aligned} & \text { HC-MFS053(B)G2 } \\ & 1 / 20 \end{aligned}$			HG-KR053(B)G7 1/21				
	$\begin{aligned} & \text { HC-MFS053(B)G2 } \\ & 1 / 29 \end{aligned}$			HG-KR053(B)G7 1/33				
	HC-MFS13(B)G2 1/5			HG-KR13(B)G7 1/5				
	HC-MFS13(B)G2 1/9			HG-KR13(B)G7 1/11				
	HC-MFS13(B)G2 1/20			HG-KR13(B)G7 1/21				
	HC-MFS13(B)G2 1/29			HG-KR13(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-MFS23(B)G2 1/5	$\begin{aligned} & \text { MR-J4-20A(1) } \\ & \text {-RJ } \end{aligned}$		HG-KR23(B)G7 1/5				
	HC-MFS23(B)G2 1/9			HG-KR23(B)G7 1/11				
	HC-MFS23(B)G2 1/20			HG-KR23(B)G7 1/21				
	HC-MFS23(B)G2 1/29			HG-KR23(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40CP(1) } \end{aligned}$	HC-MFS43(B)G2 1/5	$\begin{aligned} & \text { MR-J4-40A(1) } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-MFS43(B)G2 1/9			HG-KR43(B)G7 1/11				
	HC-MFS43(B)G2 1/20			HG-KR43(B)G7 1/21				
	HC-MFS43(B)G2 1/29			HG-KR43(B)G7 1/33				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70CP } \end{aligned}$	HC-MFS73(B)G2 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-MFS73(B)G2 1/9			HG-KR73(B)G7 1/11				
	HC-MFS73(B)G2 1/20			HG-KR73(B)G7 1/21				
	HC-MFS73(B)G2 1/29			HG-KR73(B)G7 1/33				

Refer to Appendix page 2-65 for important points to note.
(5) Existing HC-MFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)				(4)			(5)	
Existing model(Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
		Servo				Motor side conversion cable mod		
amplifier model	Servo motor model	amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)	Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-MFS053(B)G5 1/5	$\begin{aligned} & \text { MR-J4-10A(1) } \\ & \text {-RJ } \end{aligned}$	$\begin{array}{\|l\|} \text { SC-J2SCP } \\ \text { J4KT02K } \end{array}$	HG	$\begin{gathered} \Delta \\ (\text { Note 4) } \end{gathered}$		SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	HC-MFS053(B)G5							
	1/11			HG-KR053(B)G5 1/11				
	HC-MFS053(B)G5 1/21			HG-KR053(B)G5 1/21				
	$\begin{array}{\|l\|} \hline \text { HC-MFS053(B)G5 } \\ 1 / 33 \end{array}$			HG-KR053(B)G5 1/33				
	$\begin{aligned} & \text { HC-MFS053(B)G5 } \\ & 1 / 45 \end{aligned}$			HG-KR053(B)G5 1/45				
	HC-MFS13(B)G5 1/5			HG-KR13(B)G5 1/5				
	HC-MFS13(B)G5 1/11			HG-KR13(B)G5 1/11				
	HC-MFS13(B)G5 1/21			HG-KR13(B)G5 1/21				
	HC-MFS13(B)G5 1/33			HG-KR13(B)G5 1/33				
	HC-MFS13(B)G5 1/45			HG-KR13(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 20CP(1) } \end{aligned}$	HC-MFS23(B)G5 1/5	$\begin{aligned} & \text { MR-J4-20A(1) } \\ & \text {-RJ } \end{aligned}$		HG-KR23(B)G5 1/5				
	HC-MFS23(B)G5 1/11			HG-KR23(B)G5 1/11				
	HC-MFS23(B)G5 1/21			HG-KR23(B)G5 1/21				
	HC-MFS23(B)G5 1/33			HG-KR23(B)G5 1/33				
	HC-MFS23(B)G5 1/45			HG-KR23(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40CP(1) } \end{aligned}$	HC-MFS43(B)G5 1/5	$\begin{aligned} & \text { MR-J4-40A(1) } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G5 1/5				
	HC-MFS43(B)G5 1/11			HG-KR43(B)G5 1/11				
	HC-MFS43(B)G5 1/21			HG-KR43(B)G5 1/21				
	HC-MFS43(B)G5 1/33			HG-KR43(B)G5 1/33				
	HC-MFS43(B)G5 1/45			HG-KR43(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70CP } \end{aligned}$	HC-MFS73(B)G5 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G5 1/5				
	HC-MFS73(B)G5 1/11			HG-KR73(B)G5 1/11				
	HC-MFS73(B)G5 1/21			HG-KR73(B)G5 1/21				
	HC-MFS73(B)G5 1/33			HG-KR73(B)G5 1/33				
	HC-MFS73(B)G5 1/45			HG-KR73(B)G5 1/45				
[Small capacity/low inertia HC-MFS series with high-precision reducer, shaft output type (G7)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 10CP(1) } \end{aligned}$	HC-MFS053(B)G7 1/5	$\begin{aligned} & \text { MR-J4-10A(1) } \\ & \text {-RJ } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SC-J2SCP } \\ \text { J4KT02K } \end{array}$	HG-KR053(B)G7 1/5	$\underset{(\text { Note 4) }}{\Delta}$	Without brake: SC-J2SJ4PW1C03M- With brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
	$\begin{aligned} & \text { HC-MFS053(B)G7 } \\ & 1 / 11 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/11				
	$\begin{aligned} & \text { HC-MFS053(B)G7 } \\ & 1 / 21 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/21				
	$\begin{aligned} & \hline \text { HC-MFS053(B)G7 } \\ & 1 / 33 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/33				
	$\begin{aligned} & \text { HC-MFS053(B)G7 } \\ & 1 / 45 \\ & \hline \end{aligned}$			HG-KR053(B)G7 1/45				
	HC-MFS13(B)G7 1/5			HG-KR13(B)G7 1/5				
	HC-MFS13(B)G7 1/11			HG-KR13(B)G7 1/11				
	HC-MFS13(B)G7 1/21			HG-KR13(B)G7 1/21				
	HC-MFS13(B)G7 1/33			HG-KR13(B)G7 1/33				
	HC-MFS13(B)G7 1/45			HG-KR13(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 20 C P(1) \end{aligned}$	HC-MFS23(B)G7 1/5	$\begin{aligned} & \text { MR-J4-20A(1) } \\ & \text {-RJ } \end{aligned}$		HG-KR23(B)G7 1/5				
	HC-MFS23(B)G7 1/11			HG-KR23(B)G7 1/11				
	HC-MFS23(B)G7 1/21			HG-KR23(B)G7 1/21				
	HC-MFS23(B)G7 1/33			HG-KR23(B)G7 1/33				
	HC-MFS23(B)G7 1/45			HG-KR23(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 40CP(1) } \end{aligned}$	HC-MFS43(B)G7 1/5	$\begin{aligned} & \text { MR-J4-40A(1) } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-KR43(B)G7 1/5				
	HC-MFS43(B)G7 1/11			HG-KR43(B)G7 1/11				
	HC-MFS43(B)G7 1/21			HG-KR43(B)G7 1/21				
	HC-MFS43(B)G7 1/33			HG-KR43(B)G7 1/33				
	HC-MFS43(B)G7 1/45			HG-KR43(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70CP } \end{aligned}$	HC-MFS73(B)G7 1/5	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-KR73(B)G7 1/5				
	HC-MFS73(B)G7 1/11			HG-KR73(B)G7 1/11				
	HC-MFS73(B)G7 1/21			HG-KR73(B)G7 1/21				
	HC-MFS73(B)G7 1/33			HG-KR73(B)G7 1/33				
	HC-MFS73(B)G7 1/45			HG-KR73(B)G7 1/45				

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(6) Existing HC-SFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2) (3) Primary/secondary/simultaneous replacement models (Note 5,14$)$		(4)			(5)	
Existing model(Note 13)				Secondary replacement/simultaneous replacement models				
	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

[Medium capacity/medium inertia HC-SFS series, standard/with brake] ((B) represents models with brake)							
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 60 \mathrm{CP} \\ & \hline \end{aligned}$	HC-SFS52(B)	$\begin{array}{\|l} \hline \text { MR-J4-60A } \\ -R J \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT06K } \\ & \hline \end{aligned}$	HG-SR52(B)	$\begin{gathered} \Delta \\ (\text { Note 6) } \end{gathered}$	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M
	HC-SFS53(B)						
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100CP } \end{aligned}$	HC-SFS81(B)	$\begin{aligned} & \text { MR-J4-100A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-SR81(B)			
	HC-SFS102(B)			HG-SR102(B)			
	HC-SFS103(B)			HG-SR102(B)			
$\begin{aligned} & \text { MR-J2S- } \\ & 200 \mathrm{CP} \end{aligned}$	HC-SFS121(B)	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT3K } \end{aligned}$	HG-SR121(B)		SC-HAJ3PW1C1M	
	HC-SFS152(B)			HG-SR152(B)		SC-	
	HC-SFS153(B)			HG-SR152(B)		SAJ3PW2KC1M-S2	
	HC-SFS201(B)			HG-SR201(B)		SC-HAJ3PW1C1M	
	HC-SFS202(B)			HG-SR202(B)			
	HC-SFS203(B)			HG-SR202(B)			
$\begin{aligned} & \text { MR-J2S- } \\ & 350 C P \end{aligned}$	HC-SFS301(B)	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \end{aligned}$		HG-SR301(B)			
	HC-SFS352(B)			HG-SR352(B)			
	HC-SFS353(B)			HG-SR352(B)			
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 500 \mathrm{CP} \\ \hline \end{array}$	HC-SFS502(B)	$\begin{aligned} & \hline \text { MR-J4-500A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT5K } \end{aligned}$	HG-SR502(B)			
$\begin{array}{\|l} \hline \text { MR-J2S- } \\ 700 \mathrm{CP} \\ \hline \end{array}$	HC-SFS702(B)	$\begin{aligned} & \hline \text { MR-J4-700A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT7K } \\ & \hline \end{aligned}$	HG-SR702(B)		Existing cable can be used.	

$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60CP } \end{aligned}$	HC-SFS52(B)G2 1/5	$\begin{aligned} & \text { MR-J4-60A } \\ & -R J \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-SR52(B)G7 1/5	(Note 3) (Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS52(B)G2 1/9			HG-SR52(B)G7 1/11				
	HC-SFS52(B)G2 1/20			HG-SR52(B)G7 1/21				
	HC-SFS52(B)G2 1/29			HG-SR52(B)G7 1/33				
	HC-SFS52(B)G2 1/45			HG-SR52(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100CP } \end{aligned}$	HC-SFS102(B)G2 1/5	$\begin{aligned} & \text { MR-J4-100A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-SR102(B)G7 1/5				
	HC-SFS102(B)G2 1/9			HG-SR102(B)G7 1/11				
	HC-SFS102(B)G2 1/20			HG-SR102(B)G7 1/21				
	HC-SFS102(B)G2 1/29			HG-SR102(B)G7 1/33				
	HC-SFS102(B)G2 1/45			HG-SR102(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200CP } \end{aligned}$	HC-SFS152(B)G2 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SC } \\ & \text { J4KT3K } \end{aligned}$	HG-SR152(B)G7 1/5				
	HC-SFS152(B)G2 1/9			HG-SR152(B)G7 1/11				
	HC-SFS152(B)G2 1/20			HG-SR152(B)G7 1/21				
	HC-SFS152(B)G2 1/29			HG-SR152(B)G7 1/33				
	HC-SFS152(B)G2 1/45			HG-SR152(B)G7 1/45				
	HC-SFS202(B)G2 1/5			HG-SR202(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS202(B)G2 1/9			HG-SR202(B)G7 1/11				
	HC-SFS202(B)G2 1/20			HG-SR202(B)G7 1/21				
	HC-SFS202(B)G2 1/29			HG-SR202(B)G7 1/33				
	HC-SFS202(B)G2 1/45			HG-SR202(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350CP } \end{aligned}$	HC-SFS352(B)G2 1/5	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \end{aligned}$		HG-SR352(B)G7 1/5				
	HC-SFS352(B)G2 1/9			HG-SR352(B)G7 1/11				
	HC-SFS352(B)G2 1/20			HG-SR352(B)G7 1/21				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 500 \mathrm{CP} \end{aligned}$	HC-SFS502(B)G2 1/5	MR-J4-500A	SC-J2SCP	HG-SR502(B)G7 1/5				
	HC-SFS502(B)G2 1/9	-RJ	J4KT5K	HG-SR502(B)G7 1/11				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 700 \mathrm{CP} \\ & \hline \end{aligned}$	HC-SFS702(B)G2 1/5	$\begin{aligned} & \hline \text { MR-J4-700A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT7K } \\ & \hline \end{aligned}$	HG-SR702(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(7) Existing HC-SFS motor series (G1 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

Refer to Appendix page 2-65 for important points to note.
(8) Existing HC-SFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

$\begin{aligned} & \text { MR-J2S- } \\ & 60 \mathrm{CP} \end{aligned}$	HC-SFS52(B)G5 1/5	$\begin{aligned} & \text { MR-J4-60A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-SR52(B)G5 1/5	(Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS52(B)G5 1/11			HG-SR52(B)G5 1/11				
	HC-SFS52(B)G5 1/21			HG-SR52(B)G5 1/21				
	HC-SFS52(B)G5 1/33			HG-SR52(B)G5 1/33				
	HC-SFS52(B)G5 1/45			HG-SR52(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100CP } \end{aligned}$	HC-SFS102(B)G5 1/5	$\begin{aligned} & \text { MR-J4-100A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-SR102(B)G5 1/5				
	HC-SFS102(B)G5 1/11			HG-SR102(B)G5 1/11				
	HC-SFS102(B)G5 1/21			HG-SR102(B)G5 1/21				
	HC-SFS102(B)G5 1/33			HG-SR102(B)G5 1/33				
	HC-SFS102(B)G5 1/45			HG-SR102(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 200 \mathrm{CP} \end{aligned}$	HC-SFS152(B)G5 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT3K } \end{aligned}$	HG-SR152(B)G5 1/5				
	HC-SFS152(B)G5 1/11			HG-SR152(B)G5 1/11				
	HC-SFS152(B)G5 1/21			HG-SR152(B)G5 1/21				
	HC-SFS152(B)G5 1/33			HG-SR152(B)G5 1/33				
	HC-SFS152(B)G5 1/45			HG-SR152(B)G5 1/45				
	HC-SFS202(B)G5 1/5			HG-SR202(B)G5 1/5		SC-HAJ3PW1C1M		
	HC-SFS202(B)G5 1/11			HG-SR202(B)G5 1/11				
	HC-SFS202(B)G5 1/21			HG-SR202(B)G5 1/21				
	HC-SFS202(B)G5 1/33			HG-SR202(B)G5 1/33				
	HC-SFS202(B)G5 1/45			HG-SR202(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 350 \mathrm{CP} \end{aligned}$	HC-SFS352(B)G5 1/5	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \end{aligned}$		HG-SR352(B)G5 1/5				
	HC-SFS352(B)G5 1/11			HG-SR352(B)G5 1/11				
	HC-SFS352(B)G5 1/21			HG-SR352(B)G5 1/21				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 500 \mathrm{CP} \\ & \hline \end{aligned}$	HC-SFS502(B)G5 1/5	$\begin{aligned} & \hline \text { MR-J4-500A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT5K } \\ & \hline \end{aligned}$	HG-SR502(B)G5 1/5				
	HC-SFS502(B)G5 1/11			HG-SR502(B)G5 1/11				
$\begin{array}{\|l} \hline \text { MR-J2S- } \\ 700 \mathrm{CP} \\ \hline \end{array}$	HC-SFS702(B)G5 1/5	$\begin{aligned} & \hline \text { MR-J4-700A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT7K } \\ & \hline \end{aligned}$	HG-SR702(B)G5 1/5		Existing cable can be used.		
[Medium capacity/medium inertia HC-SFS series with high-precision reducer, shaft output type (G7)] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & 60 \mathrm{CP} \end{aligned}$	HC-SFS52(B)G7 1/5	$\begin{aligned} & \text { MR-J4-60A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	HG-SR52(B)G7 1/5	(Note 6)	SC-SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS52(B)G7 1/11			HG-SR52(B)G7 1/11				
	HC-SFS52(B)G7 1/21			HG-SR52(B)G7 1/21				
	HC-SFS52(B)G7 1/33			HG-SR52(B)G7 1/33				
	HC-SFS52(B)G7 1/45			HG-SR52(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100CP } \end{aligned}$	HC-SFS102(B)G7 1/5	$\begin{aligned} & \text { MR-J4-100A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	HG-SR102(B)G7 1/5				
	HC-SFS102(B)G7 1/11			HG-SR102(B)G7 1/11				
	HC-SFS102(B)G7 1/21			HG-SR102(B)G7 1/21				
	HC-SFS102(B)G7 1/33			HG-SR102(B)G7 1/33				
	HC-SFS102(B)G7 1/45			HG-SR102(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 200 \mathrm{CP} \end{aligned}$	HC-SFS152(B)G7 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT3K } \end{aligned}$	HG-SR152(B)G7 1/5				
	HC-SFS152(B)G7 1/11			HG-SR152(B)G7 1/11				
	HC-SFS152(B)G7 1/21			HG-SR152(B)G7 1/21				
	HC-SFS152(B)G7 1/33			HG-SR152(B)G7 1/33				
	HC-SFS152(B)G7 1/45			HG-SR152(B)G7 1/45				
	HC-SFS202(B)G7 1/5			HG-SR202(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS202(B)G7 1/11			HG-SR202(B)G7 1/11				
	HC-SFS202(B)G7 1/21			HG-SR202(B)G7 1/21				
	HC-SFS202(B)G7 1/33			HG-SR202(B)G7 1/33				
	HC-SFS202(B)G7 1/45			HG-SR202(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & 350 \mathrm{CP} \end{aligned}$	HC-SFS352(B)G7 1/5	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \end{aligned}$		HG-SR352(B)G7 1/5				
	HC-SFS352(B)G7 1/11			HG-SR352(B)G7 1/11				
	HC-SFS352(B)G7 1/21			HG-SR352(B)G7 1/21				
$\begin{array}{\|l\|} \hline \text { MR-J2S- } \\ 500 \mathrm{CP} \\ \hline \end{array}$	HC-SFS502(B)G7 1/5	$\begin{aligned} & \hline \text { MR-J4-500A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT5K } \\ & \hline \end{aligned}$	HG-SR502(B)G7 1/5				
	HC-SFS502(B)G7 1/11			HG-SR502(B)G7 1/11				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 700 \mathrm{CP} \\ & \hline \end{aligned}$	HC-SFS702(B)G7 1/5	$\begin{array}{\|l\|} \hline \text { MR-J4-700A } \\ \text {-RJ } \end{array}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT7K } \\ & \hline \end{aligned}$	HG-SR702(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(9) Existing HC-RFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)	
Existing model(Note 13)		Primary replacement model(Note 5)		Secondary replacement/simultaneous replacement models						
								Motor	side conversion cab	
amplifier model	Servo motor model	model (Note 1, 12)	Renewal kit model	model (Note 1)	model (Note 1)	Compatibility	Renewal kit model	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/ultra-low inertia HC-RFS series, standard/with brake] (B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & 200 \mathrm{CP} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { HC- } \\ \text { RFS103(B) } \\ \hline \end{array}$	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	SC-J2SCP J4KT3K	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	HG-RR103(B)	\bigcirc	$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT3 } \\ & \text { K } \end{aligned}$	Existing cable can be used.	SC- HAJ3ENM3C1M	Existing cable can be used.
	$\begin{aligned} & \hline \text { HC- } \\ & \text { RFS153(B) } \\ & \hline \end{aligned}$				HG-RR153(B)					
$\begin{aligned} & \text { MR-J2S- } \\ & 350 \mathrm{CP} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HC- } \\ & \text { RFS203(B) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { MR-J4-350A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	HG-RR203(B)					
$\begin{aligned} & \text { MR-J2S- } \\ & 500 \mathrm{CP} \end{aligned}$	$\begin{aligned} & \hline \text { HC- } \\ & \text { RFS353(B) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT5K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	HG-RR353(B)		$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT5 } \\ & \text { K } \end{aligned}$			
	$\begin{aligned} & \hline \text { HC- } \\ & \text { RFS503(B) } \\ & \hline \end{aligned}$				HG-RR503(B)					
[Medium capacity/ultra-low inertia HC-RFS series with high-precision reducer (G2)] ((B) represents models with brake)										
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200CP } \end{aligned}$	$\begin{aligned} & \text { HC-RFS103(B)G2 } \\ & 1 / 5 \\ & \hline \end{aligned}$	MR-J4-200A -RJ (Note 10)	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT3K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-100A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	$\begin{aligned} & \text { HG-SR102(B)G7 } \\ & 1 / 5 \\ & \hline \end{aligned}$	\times (Note 3) (Note 4)	(Note 11)	SC- SAJ3PW2KC1M- S2	SC- HAJ3ENM3C1M	(Note 7)
	$\begin{aligned} & \text { HC-RFS103(B)G2 } \\ & \text { 1/9 } \end{aligned}$				$\begin{aligned} & \text { HG-SR102(B)G7 } \\ & 1 / 11 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS103(B)G2 } \\ & \text { 1/20 } \\ & \hline \end{aligned}$				$\begin{array}{\|l\|} \hline \text { HG-SR102(B)G7 } \\ 1 / 21 \\ \hline \end{array}$					
	$\begin{aligned} & \text { HC-RFS103(B)G2 } \\ & 1 / 29 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR102(B)G7 } \\ & 1 / 33 \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS103(B)G2 } \\ & 1 / 45 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR102(B)G7 } \\ & 1 / 45 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS153(B)G2 } \\ & 1 / 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \text { HG-SR152(B)G7 } \\ & 1 / 5 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT } \\ & 3 \mathrm{~K} \end{aligned}$			
	$\begin{aligned} & \text { HC-RFS153(B)G2 } \\ & \text { 1/9 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR152(B)G7 } \\ & 1 / 11 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \text { HC-RFS153(B)G2 } \\ & \text { 1/20 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR152(B)G7 } \\ & 1 / 21 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS153(B)G2 } \\ & 1 / 29 \\ & \hline \end{aligned}$				$\begin{array}{\|l\|} \hline \text { HG-SR152(B)G7 } \\ 1 / 33 \\ \hline \end{array}$					
	$\begin{aligned} & \hline \text { HC-RFS153(B)G2 } \\ & \text { 1/45 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR152(B)G7 } \\ & 1 / 45 \\ & \hline \end{aligned}$					
$\begin{aligned} & \text { MR-J2S- } \\ & 350 \mathrm{CP} \end{aligned}$	$\begin{aligned} & \text { HC-RFS203(B)G2 } \\ & \text { 1/5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	$\begin{aligned} & \hline \text { HG-SR202(B)G7 } \\ & 1 / 5 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS203(B)G2 } \\ & 1 / 9 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR202(B)G7 } \\ & 1 / 11 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \text { HC-RFS203(B)G2 } \\ & \text { 1/20 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR202(B)G7 } \\ & 1 / 21 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4PW2C1M } \end{aligned}$		
	$\begin{aligned} & \text { HC-RFS203(B)G2 } \\ & 1 / 29 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR202(B)G7 } \\ & 1 / 33 \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS203(B)G2 } \\ & \text { 1/45 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { HG-SR202(B)G7 } \\ & 1 / 45 \\ & \hline \end{aligned}$					
$\begin{aligned} & \text { MR-J2S- } \\ & 500 \mathrm{CP} \end{aligned}$	$\begin{aligned} & \text { HC-RFS353(B)G2 } \\ & 1 / 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT5K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	$\begin{aligned} & \text { HG-SR352(B)G7 } \\ & 1 / 5 \end{aligned}$		(Note 11)	SC- HAJ3PW1C1M		
	$\begin{aligned} & \text { HC-RFS353(B)G2 } \\ & \text { 1/9 } \\ & \hline \end{aligned}$				$\begin{aligned} & \hline \text { HG-SR352(B)G7 } \\ & 1 / 11 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \hline \text { HC-RFS353(B)G2 } \\ & \text { 1/20 } \\ & \hline \end{aligned}$				HG-SR352(B)G7					
	$\begin{aligned} & \hline \text { HC-RFS353(B)G2 } \\ & 1 / 29 \\ & \hline \end{aligned}$				$1 / 21$					
	$\begin{aligned} & \text { HC-RFS503(B)G2 } \\ & 1 / 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$		$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { HG-SR502(B)G7 } \\ & 1 / 5 \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT5 } \\ & \text { K } \end{aligned}$			
	$\begin{aligned} & \text { HC-RFS503(B)G2 } \\ & \text { 1/9 } \end{aligned}$				HG-SR502(B)G7					
	$\begin{aligned} & \hline \text { HC-RFS503(B)G2 } \\ & \text { 1/20 } \end{aligned}$				1/11					

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(10) Existing HC-RFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)	(2)	(3)	(4)	(5)		(6)		(7)	
Existing model(Note 13)		Primary replacement model(Note 5)		Secondary replacement/simultaneous replacement models						
							Renewal kit model	Motor side conversion cable		
amplifier model	Servo motor model	model (Note 1, 12)	Renewal kit model	model (Note 1)	model (Note 1)	Compatibility		Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/ultra-low inertia HC-RFS series with high-precision reducer, flange output type (G5)] (B) represents models with brake)										
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200CP } \end{aligned}$	HC-RFS103(B)G5 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	SC-J2SCP J4KT3K	$\begin{aligned} & \text { MR-J4-100A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	HG-SR102(B)G5 1/5	\times (Note 3) (Note 4)	(Note 11)	SC-SAJ3PW2KC1M-S2	SC- HAJ3ENM3C1M	(Note 7)
	HC-RFS103(B)G5 1/11				HG-SR102(B)G5 1/11					
	HC-RFS103(B)G5 1/21				HG-SR102(B)G5 1/21					
	HC-RFS103(B)G5 1/33				HG-SR102(B)G5 1/33					
	HC-RFS103(B)G5 1/45				HG-SR102(B)G5 1/45					
	HC-RFS153(B)G5 1/5	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	HG-SR152(B)G5 1/5		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SCPJ4KT3K } \end{array}$			
	HC-RFS153(B)G5 1/11				HG-SR152(B)G5 1/11					
	HC-RFS153(B)G5 1/21				HG-SR152(B)G5 1/21					
	HC-RFS153(B)G5 1/33				HG-SR152(B)G5 1/33					
	HC-RFS153(B)G5 1/45				HG-SR152(B)G5 1/45					
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 350 \mathrm{CP} \end{aligned}$	HC-RFS203(B)G5 1/5	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	HG-SR202(B)G5 1/5			SC- J2SJ4PW2C1M		
	HC-RFS203(B)G5 1/11				HG-SR202(B)G5 1/11					
	HC-RFS203(B)G5 1/21				HG-SR202(B)G5 1/21					
	HC-RFS203(B)G5 1/33				HG-SR202(B)G5 1/33					
	HC-RFS203(B)G5 1/45				HG-SR202(B)G5 1/45					
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 500 \mathrm{CP} \end{aligned}$	HC-RFS353(B)G5 1/5	MR-J4-500A -RJ (Note 10)	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT5K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	HG-SR352(B)G5 1/5		(Note 11)	SC-HAJ3PW1C1M		
	HC-RFS353(B)G5 1/11				HG-SR352(B)G5 1/11					
	HC-RFS353(B)G5 1/21				HG-SR352(B)G5 1/21					
	HC-RFS353(B)G5 1/33									
	HC-RFS503(B)G5 1/5	MR-J4-500A -RJ		$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	HG-SR502(B)G5 1/5		$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT5K } \end{aligned}$			
	HC-RFS503(B)G5 1/21				HG-SR502(B)G5 1/11					
[Medium capacity/ultra-low inertia HC-RFS series with high-precision reducer, flange output type (G7)] ((B) represents models with brake)										
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200CP } \end{aligned}$	HC-RFS103(B)G7 1/5	MR-J4-200A -RJ (Note 10)		MR-J4-100A-RJ(Note 10)	HG-SR102(B)G7 1/5	(Note 3) (Note 4)	(Note 11)	SC-SAJ3PW2KC1M-S2	SC- HAJ3ENM3C1M	(Note 7)
	HC-RFS103(B)G7 1/11				HG-SR102(B)G7 1/11					
	HC-RFS103(B)G7 1/21				HG-SR102(B)G7 1/21					
	HC-RFS103(B)G7 1/33				HG-SR102(B)G7 1/33					
	HC-RFS103(B)G7 1/45				HG-SR102(B)G7 1/45					
	HC-RFS153(B)G7 1/5				HG-SR152(B)G7 1/5		$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT3K } \end{aligned}$			
	HC-RFS153(B)G7 1/11				HG-SR152(B)G7 1/11					
	HC-RFS153(B)G7 1/21	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	J4KT3K	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \end{aligned}$	HG-SR152(B)G7 1/21					
	HC-RFS153(B)G7 1/33				HG-SR152(B)G7 1/33					
	HC-RFS153(B)G7 1/45				HG-SR152(B)G7 1/45					
MR-J2S350CP	HC-RFS203(B)G7 1/5	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$		$\begin{aligned} & \text { MR-J4-200A } \\ & -R J \\ & \text { (Note 10) } \end{aligned}$	HG-SR202(B)G7 1/5			SC-J2SJ4PW2C1M		
	HC-RFS203(B)G7 1/11				HG-SR202(B)G7 1/11					
	HC-RFS203(B)G7 1/21				HG-SR202(B)G7 1/21					
	HC-RFS203(B)G7 1/33				HG-SR202(B)G7 1/33					
	HC-RFS203(B)G7 1/45				HG-SR202(B)G7 1/45					
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 500 \mathrm{CP} \end{aligned}$	HC-RFS353(B)G7 1/5	MR-J4-500A -RJ (Note 10)	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT5K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \\ & \text { (Note 10) } \end{aligned}$	HG-SR352(B)G7 1/5		(Note 11)	SC-HAJ3PW1C1M		
	HC-RFS353(B)G7 1/11				HG-SR352(B)G7 1/11					
	HC-RFS353(B)G7 1/21				HG-SR352(B)G7 1/21					
	HC-RFS503(B)G7 1/5	MR-J4-500A -RJ		$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	HG-SR502(B)G7 1/5		$\begin{aligned} & \text { SC- } \\ & \text { J2SCPJ4KT5K } \end{aligned}$			
	HC-RFS503(B)G7 1/11 HC-RFS503(B)G7 1/21				HG-SR502(B)G7 1/11					

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(11) Existing HC-UFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)				(4)		(5)		
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	$\begin{aligned} & \hline \text { Servo motor } \\ & \text { model } \\ & \text { (Note 1) } \\ & \hline \end{aligned}$	Motor side conversion cable model			
					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/flat type HC-UFS series, standard/with brake] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & 70 \mathrm{CP} \end{aligned}$	HC-UFS72(B)	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT1K } \\ & \hline \end{aligned}$	HG-UR72(B)				
MR-J2S-200CP	HC-UFS152(B)	$\begin{aligned} & \hline \text { MR-J4-200A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	SC-J2SCP	HG-UR152(B)	O	Existing cable	S	Existing cable can be
MR-J2S-350CP	HC-UFS202(B)	$\begin{aligned} & \hline \text { MR-J4-350A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	J4KT3K	HG-UR202(B)	O	can be used.	SC-HAJ3ENM3CTM	used.
MR-J2S-500CP	HC-UFS352(B)	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT5K } \end{aligned}$	HG-UR352(B)				
	HC-UFS502(B)			HG-UR502(B)				
Small capacity/flat type HC-UFS series, standard/with brake] ((B) represents models with brake)								
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 10 \mathrm{CP}(1) \\ & \hline \end{aligned}$	HC-UFS13(B)	$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ \text { 10A(1)-RJ } \\ \hline \end{array}$	SC-J2SCPJ4KT02K	HG-KR13(B)		Without brake: SC-J2SJ4PW1C03MWith brake: SC-J2SJ4PWBK1C03M-	SC- HAJ3ENM1C03M-	Built in to power supply conversion cable.
$\begin{aligned} & \hline \text { MR-J2S- } \\ & 20 \mathrm{CP}(1) \\ & \hline \end{aligned}$	HC-UFS23(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 20A(1)-RJ } \end{aligned}$		HG-KR23(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & 40 \mathrm{CP}(1) \\ & \hline \end{aligned}$	HC-UFS43(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 40A(1)-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT06K } \\ & \hline \end{aligned}$	HG-KR43(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 70CP } \\ & \hline \end{aligned}$	HC-UFS73(B)	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT1K } \\ & \hline \end{aligned}$	HG-KR73(B)				

Refer to Appendix page 2-65 for important points to note.
(12) Existing HC-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)	
Existing model(Note 13)		Primary replacement model (Note 5)		Secondary replacement/simultaneous replacement models						
			Renewal kit model		$\begin{gathered} \text { Servo motor } \\ \text { model } \\ \text { (Note 1) } \end{gathered}$		Motor side conversion cable model			
Servo amplifier model	Servo motor model	model (Note 1, 12)		model (Note 1)		Compatibility	Renewal kit model	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/low inertia HC-LFS series, standard/with brake] ((B) represents models with brake)										
MR-J2S-60CP	HC-LFS52(B)	$\begin{aligned} & \text { MR-J4-60A } \\ & \text {-RJ } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT06K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-70A } \\ & \text {-RJ } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	HG-JR73(B)	(Note 3)	(Note 11)	SC- SAJ3PW2KC1M-S2	SCHAJ3ENM3C1M	(Note 7)
MR-J2S-100CP	HC-LFS102(B)	$\begin{aligned} & \hline \text { MR-J4-100A } \\ & \text {-RJ } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT1K } \end{aligned}$	$\begin{aligned} & \text { MR-J4-200A } \\ & \text {-RJ } \\ & \text { (Note 10) } \\ & \hline \end{aligned}$	HG-JR153(B)					
MR-J2S-200CP	HC-LFS152(B)	MR-J4-200A -RJ (Note 10)	$\begin{aligned} & \text { SC-J2SCP } \\ & \text { J4KT3K } \end{aligned}$	MR-J4-350A -RJ (Note 10)	HG-JR353(B)		SCJ2SCPJ4KT3K	SC-J2SJ4PW2C1M		
MR-J2S-350CP	HC-LFS202(B)	$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \end{aligned}$		$\begin{aligned} & \text { MR-J4-350A } \\ & \text {-RJ } \end{aligned}$				SC-HAJ3PW1C1M		
MR-J2S-500CP	HC-LFS302(B)	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	$\begin{aligned} & \hline \text { SC-J2SCP } \\ & \text { J4KT5K } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MR-J4-500A } \\ & \text {-RJ } \end{aligned}$	HG-JR503(B)		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SCPJ4KT5K } \end{aligned}$			

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(13) Existing HA-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

4.4 General-Purpose Interface Replacement Combination List (400 V Class)

(1) Existing HC-SFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo amplifier model	Servo motor model	Servo	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
		amplifier model (Note 1, 12)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/medium inertia HC-SFS series, standard/with brake] ((B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60A4 } \end{aligned}$	HC-SFS524(B)	MR-J4-60A4	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS02 } \\ & \quad \text { (Note 18) } \end{aligned}$	HG-SR524(B)	$\begin{gathered} \Delta \\ (\text { Note 6) } \end{gathered}$	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A4 } \end{aligned}$	HC-SFS1024(B)	MR-J4-100A4		HG-SR1024(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A4 } \end{aligned}$	HC-SFS1524(B)	MR-J4-200A4	SCJ2SJ4BS03 (Note 18)	HG-SR1524(B)				
	HC-SFS2024(B)			HG-SR2024(B)		SC-HAJ3PW1C1M		
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A4 } \end{aligned}$	HC-SFS3524(B)	MR-J4-350A4	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS04 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR3524(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 500A4 } \\ & \hline \end{aligned}$	HC-SFS5024(B)	MR-J4-500A4	(Note 19)	HG-SR5024(B)				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 700A4 } \end{aligned}$	HC-SFS7024(B)	MR-J4-700A4	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS05 } \\ & \text { (Note 18) } \\ & \hline \end{aligned}$	HG-SR7024(B)		Existing cable can be used.		
[Medium capacity/medium inertia HC-SFS series with high-precision reducer (G2)] (B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60A4 } \end{aligned}$	HC-SFS524(B)G2 1/5	MR-J4-60A4	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS02 } \\ & \quad \text { (Note 18) } \end{aligned}$	HG-SR524(B)G7 1/5	\times (Note 3) (Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS524(B)G2 1/9			HG-SR524(B)G7 1/11				
	HC-SFS524(B)G2 1/20			HG-SR524(B)G7 1/21				
	HC-SFS524(B)G2 1/29			HG-SR524(B)G7 1/33				
	HC-SFS524(B)G2 1/45			HG-SR524(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A4 } \end{aligned}$	HC-SFS1024(B)G2 1/5	MR-J4-100A4		HG-SR1024(B)G7 1/5				
	HC-SFS1024(B)G2 1/9			HG-SR1024(B)G7 1/11				
	HC-SFS1024(B)G2 1/20			HG-SR1024(B)G7 1/21				
	HC-SFS1024(B)G2 1/29			HG-SR1024(B)G7 1/33				
	HC-SFS1024(B)G2 1/45			HG-SR1024(B)G7 1/45				
	HC-SFS1524(B)G2 1/5			HG-SR1524(B)G7 1/5				
	HC-SFS1524(B)G2 1/9			HG-SR1524(B)G7 1/11				
	HC-SFS1524(B)G2 1/20			HG-SR1524(B)G7 1/21				
	HC-SFS1524(B)G2 1/29			HG-SR1524(B)G7 1/33				
MR-J2S-	HC-SFS1524(B)G2 1/45	MR-J4-200A4	J2SJ4BS03	HG-SR1524(B)G7 1/45				
200A4	HC-SFS2024(B)G2 1/5	MR-J4-200A4	(Note 18)	HG-SR2024(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS2024(B)G2 1/9			HG-SR2024(B)G7 1/11				
	HC-SFS2024(B)G2 1/20			HG-SR2024(B)G7 1/21				
	HC-SFS2024(B)G2 1/29			HG-SR2024(B)G7 1/33				
	HC-SFS2024(B)G2 1/45			HG-SR2024(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A4 } \end{aligned}$	HC-SFS3524(B)G2 1/5	MR-J4-350A4	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BSO4 } \\ \text { (Note 18) } \\ \hline \end{array}$	HG-SR3524(B)G7 1/5				
	HC-SFS3524(B)G2 1/9			HG-SR3524(B)G7 1/11				
	HC-SFS3524(B)G2 1/20			HG-SR3524(B)G7 1/21				
$\begin{array}{\|l} \hline \text { MR-J2S- } \\ \text { 500A4 } \\ \hline \end{array}$	HC-SFS5024(B)G2 1/5	MR-J4-500A4	(Note 19)	HG-SR5024(B)G7 1/5				
	HC-SFS5024(B)G2 1/9			HG-SR5024(B)G7 1/11				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 700A4 } \end{aligned}$	HC-SFS7024(B)G2 1/5	MR-J4-700A4	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS05 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR7024(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(2) Existing HC-SFS motor series (G1 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

Refer to Appendix page 2-65 for important points to note.
(3) Existing HC-SFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)			(5)	
Existing model (Note 13)		Primary/secondary/simultaneous replacement models (Note 5, 14)		Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model					Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable

$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60A4 } \end{aligned}$	HC-SFS524(B)G5 1/5	MR-J4-60A4	SCJ2SJ4BS02 (Note 18)	HG-SR524(B)G5 1/5	(Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS524(B)G5 1/11			HG-SR524(B)G5 1/11				
	HC-SFS524(B)G5 1/21			HG-SR524(B)G5 1/21				
	HC-SFS524(B)G5 1/33			HG-SR524(B)G5 1/33				
	HC-SFS524(B)G5 1/45			HG-SR524(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A4 } \end{aligned}$	HC-SFS1024(B)G5 1/5	MR-J4-100A4		HG-SR1024(B)G5 1/5				
	HC-SFS1024(B)G5 1/11			HG-SR1024(B)G5 1/11				
	HC-SFS1024(B)G5 1/21			HG-SR1024(B)G5 1/21				
	HC-SFS1024(B)G5 1/33			HG-SR1024(B)G5 1/33				
	HC-SFS1024(B)G5 1/45			HG-SR1024(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A4 } \end{aligned}$	HC-SFS1524(B)G5 1/5	MR-J4-200A4	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS03 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR1524(B)G5 1/5				
	HC-SFS1524(B)G5 1/11			HG-SR1524(B)G5 1/11				
	HC-SFS1524(B)G5 1/21			HG-SR1524(B)G5 1/21				
	HC-SFS1524(B)G5 1/33			HG-SR1524(B)G5 1/33				
	HC-SFS1524(B)G5 1/45			HG-SR1524(B)G5 1/45				
	HC-SFS2024(B)G5 1/5			HG-SR2024(B)G5 1/5		SC-HAJ3PW1C1M		
	HC-SFS2024(B)G5 1/11			HG-SR2024(B)G5 1/11				
	HC-SFS2024(B)G5 1/21			HG-SR2024(B)G5 1/21				
	HC-SFS2024(B)G5 1/33			HG-SR2024(B)G5 1/33				
	HC-SFS2024(B)G5 1/45			HG-SR2024(B)G5 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A4 } \end{aligned}$	HC-SFS3524(B)G5 1/5	MR-J4-350A4	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS04 } \\ & \text { (Note 18) } \\ & \hline \end{aligned}$	HG-SR3524(B)G5 1/5				
	HC-SFS3524(B)G5 1/11			HG-SR3524(B)G5 1/11				
	HC-SFS3524(B)G5 1/21			HG-SR3524(B)G5 1/21				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 500A4 } \\ & \hline \end{aligned}$	HC-SFS5024(B)G5 1/5	MR-J4-500A4	(Note 19)	HG-SR5024(B)G5 1/5				
	HC-SFS5024(B)G5 1/11			HG-SR5024(B)G5 1/11				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 700A4 } \end{aligned}$	HC-SFS7024(B)G5 1/5	MR-J4-700A4	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS05 } \\ \text { (Note 18) } \end{array}$	HG-SR7024(B)G5 1/5		Existing cable can be used.		
[Medium capacity/medium inertia HC-SFS series with high-precision reducer, shaft output type (G7)] (B) represents models with brake)								
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 60A4 } \end{aligned}$	HC-SFS524(B)G7 1/5	MR-J4-60A4	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS02 } \\ & \quad \text { (Note 18) } \end{aligned}$	HG-SR524(B)G7 1/5	(Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS524(B)G7 1/11			HG-SR524(B)G7 1/11				
	HC-SFS524(B)G7 1/21			HG-SR524(B)G7 1/21				
	HC-SFS524(B)G7 1/33			HG-SR524(B)G7 1/33				
	HC-SFS524(B)G7 1/45			HG-SR524(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 100A4 } \end{aligned}$	HC-SFS1024(B)G7 1/5	MR-J4-100A4		HG-SR1024(B)G7 1/5				
	HC-SFS1024(B)G7 1/11			HG-SR1024(B)G7 1/11				
	HC-SFS1024(B)G7 1/21			HG-SR1024(B)G7 1/21				
	HC-SFS1024(B)G7 1/33			HG-SR1024(B)G7 1/33				
	HC-SFS1024(B)G7 1/45			HG-SR1024(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 200A4 } \end{aligned}$	HC-SFS1524(B)G7 1/5	MR-J4-200A4	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS03 } \\ & \quad \text { (Note 18) } \end{aligned}$	HG-SR1524(B)G7 1/5				
	HC-SFS1524(B)G7 1/11			HG-SR1524(B)G7 1/11				
	HC-SFS1524(B)G7 1/21			HG-SR1524(B)G7 1/21				
	HC-SFS1524(B)G7 1/33			HG-SR1524(B)G7 1/33				
	HC-SFS1524(B)G7 1/45			HG-SR1524(B)G7 1/45				
	HC-SFS2024(B)G7 1/5			HG-SR2024(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS2024(B)G7 1/11			HG-SR2024(B)G7 1/11				
	HC-SFS2024(B)G7 1/21			HG-SR2024(B)G7 1/21				
	HC-SFS2024(B)G7 1/33			HG-SR2024(B)G7 1/33				
	HC-SFS2024(B)G7 1/45			HG-SR2024(B)G7 1/45				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 350A4 } \end{aligned}$	HC-SFS3524(B)G7 1/5	MR-J4-350A4	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS04 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR3524(B)G7 1/5				
	HC-SFS3524(B)G7 1/11			HG-SR3524(B)G7 1/11				
	HC-SFS3524(B)G7 1/21			HG-SR3524(B)G7 1/21				
$\begin{aligned} & \hline \text { MR-J2S- } \\ & \text { 500A4 } \\ & \hline \end{aligned}$	HC-SFS5024(B)G7 1/5	MR-J4-500A4	(Note 19)	HG-SR5024(B)G7 1/5				
	HC-SFS5024(B)G7 1/11			HG-SR5024(B)G7 1/11				
$\begin{aligned} & \text { MR-J2S- } \\ & \text { 700A4 } \end{aligned}$	HC-SFS7024(B)G7 1/5	MR-J4-700A4	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS05 } \\ \text { (Note 18) } \end{array}$	HG-SR7024(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.
(4) Existing HA-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

(1)		(2)	(3)	(4)	(5)		(6)		(7)		
Existing model(Note 13)		Primary replacement model(Note 5)		Secondary replacement/simultaneous replacement models							
			Renewal kit model	Servo amplifier model (Note 1)	Servo motor model (Note 1)	Compatibility	Renewal kit model	Motor side conversion cable model			
Servo amplifier model	Servo motor model	model (Note 1, 12)						Power supply conversion Cable	Encoder Conversion cable	Brake/Conversion cable for the cooling fan	
[Medium/large capacity/low inertia HA-LFS $1000 \mathrm{r} / \mathrm{min}$ series, standard/with brake] ((B) represents models with brake)											
MR-J2S-700A4	$\begin{aligned} & \text { HA- } \\ & \text { LFS6014(B) } \end{aligned}$	(Note 16)		MR-J4-700A4	$\begin{aligned} & \text { HG-JR6014(B) } \\ & \text { (Note 4) } \end{aligned}$	(Note 3)	$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS05 } \\ & \text { (Note 18) } \\ & \hline \end{aligned}$	SC- J2SJ4PW3C1M	Existing cable can be used.	- Existing brake cable can be used. - Cooling fan cable (Note 9)	
MR-J2S-11KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS8014(B) } \\ & \hline \end{aligned}$			MR-J4-11KA4	$\begin{array}{\|c\|} \hline \text { HG-JR8014(B) } \\ \text { (Note 4) } \\ \hline \end{array}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS06 } \\ & \text { (Note 18) } \end{aligned}$				
	$\begin{aligned} & \text { HA- } \\ & \text { LFS12K14(B) } \end{aligned}$			$\begin{array}{\|l\|} \hline \text { HG- } \\ \text { JR12K14(B) } \\ \text { (Note 4) } \\ \hline \end{array}$							
MR-J2S-15KA4	$\begin{aligned} & \hline \text { HA- } \\ & \text { LFS15K14 } \end{aligned}$			MR-J4-15KA4	HG-JR15K14			(Note 8)	(Note 17)	- Cooling fan conversion cable SCJ2SJ4FAN1C1M	
MR-J2S-22KA4	HA- LFS20K14			MR-J4-22KA4	HG-JR20K14		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS07 } \\ \text { (Note 18) } \\ \hline \end{array}$				
MR-J2S-30KA4	$\begin{aligned} & \hline \text { HA- } \\ & \text { LFS25K14 } \end{aligned}$			HG-JR25K14	(Note 11)						
	$\begin{aligned} & \text { HA- } \\ & \text { LFS30K14 } \end{aligned}$			$\begin{aligned} & \hline \text { MR- } \\ & \text { J4-DU30KA4 } \\ & \text { (Note 21) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { HG-JR30K14 } \\ \text { (Note 4) } \end{gathered}$		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS08 } \\ & \text { (Note 18) } \\ & \hline \end{aligned}$				
MR-J2S-37KA4	HA- LFS37K14			$\begin{aligned} & \hline \text { MR- } \\ & \text { J4-DU37KA4 } \\ & \text { (Note 21) } \\ & \hline \end{aligned}$	HG-JR37K14		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { SC- } \\ \text { J2SJ4BS09 } \\ \text { (Note 18) } \end{array} \\ \hline \end{array}$				
[Medium/large c	pacity/low ine	HA-LFS 1500	in series, s		dard/with brake]	B) represents m	dels w	th brake)			
MR-J2S-700A4	$\begin{aligned} & \text { HA- } \\ & \text { LFS701M4(B) } \end{aligned}$	(Note 16)		MR-J4-700A4	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR701M4(B) } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	(Note 3)	$$	SCJ2SJ4PW3C1M	Existing cable can be used.	- Existing brake cable can be used. - Cooling fan cable (Note 9)	
MR-J2S-11KA4	$\begin{aligned} & \hline \text { HA- } \\ & \text { LFS11K1M4(B) } \\ & \hline \end{aligned}$			MR-J4-11KA4	$\begin{aligned} & \text { HG- } \\ & \text { JR11K1M4(B) } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS06 } \\ & \text { (Note 18) } \end{aligned}$				
MR-J2S-15KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS15K1M4(B) } \end{aligned}$			MR-J4-15KA4	\qquad						
MR-J2S-22KA4	HA- LFS22K1M4			MR-J4-22KA4	HGJR22K1M4		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS07 } \\ \text { (Note 18) } \\ \hline \end{array}$	(Note 8)	(Note 17)	- Cooling fan conversion cable SCJ2SJ4FAN1C1M	
MR-J2S-30KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS30K1M4 } \end{aligned}$			MR- J4-DU30KA4 (Note 21)	$\begin{aligned} & \text { HG- } \\ & \text { JR30K1M4 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS08 } \\ \text { (Note 18) } \\ \hline \end{array}$				
MR-J2S-37KA4	HA- LFS37K1M4			$\begin{aligned} & \hline \text { MR- } \\ & \text { J4-DU37KA4 } \\ & \text { (Note 21) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HG- } \\ & \text { JR37K1M4 } \end{aligned}$		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS09 } \\ & \text { (Note 18) } \end{aligned}$				
MR-J2S-45KA4	HALFS45K1M4			MR- J4-DU45KA4 (Note 21)	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR45K1M4 } \\ & \quad(\text { Note 4) } \\ & \hline \end{aligned}$						
MR-J2S-55KA4	HA- LFS50K1M4			$\begin{aligned} & \hline \text { MR- } \\ & \text { J4-DU55KA4 } \\ & \text { (Note 21) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HG- } \\ & \text { JR55K1M4 } \end{aligned}$						
[Medium/large capacity/low inertia HA-LFS $2000 \mathrm{r} / \mathrm{min}$ series, standard/with brake] ((B) represents models with brake)											
MR-J2S-11KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS11K24(B) } \end{aligned}$	MR-J4-11KA4	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS06 } \\ \text { (Note 18) } \\ \hline \end{array}$	MR-J4-11KA4	$\begin{array}{\|l\|} \hline \text { HG- } \\ \text { JR11K1M4(B) } \\ \text { (Note 4) } \\ \hline \end{array}$	(Note 3)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS06 } \\ & \text { (Note 18) } \end{aligned}$	SCJ2SJ4PW3C1M	Existing cable can be used.	- Existing brake cable can be used. - Cooling fan cable (Note 9)	
MR-J2S-15KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS15K24(B) } \end{aligned}$	MR-J4-15KA4 (Note 10)	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS06 } \\ \text { (Note 18) } \\ \hline \end{array}$	MR-J4-11KA4 (Note 10)	$\begin{aligned} & \text { HG- } \\ & \text { JR11K1M4(B) } \end{aligned}$						
MR-J2S-22KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS22K24(B) } \end{aligned}$	MR-J4-22KA4 (Note 10)	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS07 } \\ \text { (Note 18) } \\ \hline \end{array}$	MR-J4-15KA4 (Note 10)	$\begin{aligned} & \text { HG- } \\ & \text { JR15K1M4(B) } \end{aligned}$		(Note 11)				
MR-J2S-30KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS30K24 } \end{aligned}$	$\begin{aligned} & \hline \text { MR- } \\ & \text { J4-DU30KA4 } \\ & \text { (Note 10, 21) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS08 } \\ \text { (Note 18) } \\ \hline \end{array}$	MR-J4-22KA4 (Note 10)	$\begin{aligned} & \text { HG- } \\ & \text { JR22K1M4 } \end{aligned}$			(Note 8)	(Note 17)	- Cooling fan conversion cable SCJ2SJ4FAN1C1M	
MR-J2S-37KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS37K24 } \end{aligned}$	MR- J4-DU37KA4 (Note 10, 21)	SCJ2SJ4BS09 (Note 18)	MR- J4-DU30KA4 (Note 10, 21)	HGJR30K1M4		SCJ2SJ4BS09 (Note 18)				
MR-J2S-45KA4	$\begin{aligned} & \text { HA- } \\ & \text { LFS45K24 } \end{aligned}$	MR- J4-DU45KA4 (Note 10, 21)		$\begin{aligned} & \hline \text { MR- } \\ & \text { J4-DU37KA4 } \\ & \text { (Note 10, 21) } \\ & \hline \end{aligned}$	HGJR37K1M4						
MR-J2S-55KA4	HA- LFS55K24	MR- J4-DU55KA4 (Note 10, 21)		MR- J4-DU45KA4 (Note 10, 21)	$\begin{aligned} & \hline \text { HG- } \\ & \text { JR45K1M4 } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$						

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

4.5 SSCNET Interface Replacement Combination List (400 V Class)

(1) Existing HC-SFS motor series (standard/with brake, G2 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)		(2)	(3)	(4)			(5)	
$\begin{aligned} & \text { Existing model } \\ & \text { (Note 13) } \end{aligned}$		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servoamplifiermodel(Note 1, 12)	SSCNET	Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/medium inertia HC-SFS series, standard/with brake] (B) represents models with brake)									
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 60B4 } \end{aligned}$	HC-SFS524(B)	MR-J4-60B4RJ020	MR-J4-T20	SC- J2SJ4BS02 (Note 18)	HG-SR524(B)	$\underset{(\text { Note 6 })}{\Delta}$	SC-SAJ3PW2KC1M-S2	SCHAJ3ENM3C1M	(Note 7)
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ \text { 100B4 } \\ \hline \end{array}$	HC-SFS1024(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 100B4- } \end{aligned}$ RJO20			HG-SR1024(B)				
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ \text { 200B4 } \end{array}$	HC-SFS1524(B)	$\begin{aligned} & \text { MR-J4- } \\ & 200 \mathrm{B4}- \\ & \text { RJO20 } \end{aligned}$		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS03 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR1524(B)				
	HC-SFS2024(B)				HG-SR2024(B)		SC-HAJ3PW1C1M		
$\begin{aligned} & \hline \text { MR- } \\ & \text { J2S- } \\ & \text { 350B4 } \end{aligned}$	HC-SFS3524(B)	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 350B4- } \\ & \text { RJ020 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { SC- } \\ \text { J2SJ4BS04 } \\ (\text { Note 18) } \\ \hline \end{array}$	HG-SR3524(B)				
MR-J2S500B4	HC-SFS5024(B)	MR-J4-500B4RJO20		(Note 19)	HG-SR5024(B)				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 700 \mathrm{~B} 4 \end{aligned}$	HC-SFS7024(B)	$\begin{aligned} & \text { MR-J4- } \\ & \text { 700B4- } \\ & \text { RJO20 } \end{aligned}$		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { SC- } \\ \text { J2SJ4BS05 } \\ \text { (Note 18) } \end{array} \\ \hline \end{array}$	HG-SR7024(B)		Existing cable can be used.		
[Medium capacity/medium inertia HC-SFS series with high-precision reducer (G2)] (B) represents models with brake)									
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & 60 B 4 \end{aligned}$	HC-SFS524(B)G2 1/5	MR-J4-60B4RJ020		SCJ2SJ4BS02 (Note 18)	HG-SR524(B)G7 1/5		SC-SAJ3PW2KC1M-S2	SC- HAJ3ENM3C1M	(Note 7)
	HC-SFS524(B)G2 1/9				HG-SR524(B)G7 1/11				
	HC-SFS524(B)G2 1/20				HG-SR524(B)G7 1/21				
	HC-SFS524(B)G2 1/29				HG-SR524(B)G7 1/33				
	HC-SFS524(B)G2 1/45				HG-SR524(B)G7 1/45				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \end{aligned}$100B4	HC-SFS1024(B)G2 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 100B4- } \\ & \text { RJJ20 } \end{aligned}$			HG-SR1024(B)G7 1/5				
	HC-SFS1024(B)G2 1/9				HG-SR1024(B)G7 1/11				
	HC-SFS1024(B)G2 1/20				HG-SR1024(B)G7 1/21				
	HC-SFS1024(B)G2 1/29				HG-SR1024(B)G7 1/33				
	HC-SFS1024(B)G2 1/45				HG-SR1024(B)G7 1/45				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200B4 } \end{aligned}$	HC-SFS1524(B)G2 1/5	MR-J4-200B4RJ020		SC- J2SJ4BS03 (Note 18)	HG-SR1524(B)G7 1/5				
	HC-SFS 1524(B)G2 1/9				HG-SR1524(B)G7 1/11				
	HC-SFS1524(B)G2 1/20				HG-SR1524(B)G7 1/21				
	HC-SFS1524(B)G2 1/29				HG-SR1524(B)G7 1/33				
	HC-SFS1524(B)G2 1/45				HG-SR1524(B)G7 $11 / 5$		SC-HAJ3PW1C1M		
	HC-SFS2024(B)G2 1/9				HG-SR2024(B)G7 1/11				
	HC-SFS2024(B)G2 1/20				HG-SR2024(B)G7 1/21				
	HC-SFS2024(B)G2 1/29				HG-SR2024(B)G7 1/33				
	HC-SFS2024(B)G2 1/45				HG-SR2024(B)G7 1/45				
MR-	HC-SFS3524(B)G2 1/5	MR-J4-		SC-	HG-SR3524(B)G7 1/5				
J2S-	HC-SFS3524(B)G2 1/9	350B4-		J2SJ4BS04	HG-SR3524(B)G7 1/111				
350B4	HC-SFS3524(B)G2 1/20	RJ020		(Note 18)	HG-SR3524(B)G7 1/21				
$\begin{aligned} & \hline \text { MR- } \\ & \text { J2S- } \\ & 500 \mathrm{~B} 4 \\ & \hline \end{aligned}$	HC-SFS5024(B)G2 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 500B4- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		(Note 19)	HG-SR5024(B)G7 1/5				
	HC-SFS5024(B)G2 1/9				HG-SR5024(B)G7 1/11				
$\begin{aligned} & \hline \text { MR- } \\ & \text { J2S- } \\ & 700 \mathrm{~B} 4 \end{aligned}$	HC-SFS7024(B)G2 1/5	$\begin{array}{\|l\|} \hline \text { MR-J4- } \\ 700 \mathrm{~B} 4- \\ \text { RJ020 } \end{array}$		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { SC- } \\ \text { J2SJ4BS05 } \\ \text { (Note 18) } \\ \hline \end{array} \\ \hline \end{array}$	HG-SR7024(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(2) Existing HC-SFS motor series (G1 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Refer to Appendix page 2-65 for important points to note.

[Appendix 2] Introduction to Renewal Tool

(3) Existing HC-SFS motor series (G5, G7 reducer)

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

	(1)		(2)	(3)	(4)			(5)	
$\begin{aligned} & \text { Existing model } \\ & (\text { Note 13) } \end{aligned}$		Primary/secondary/simultaneous replacement models (Note 5, 14)			Secondary replacement/simultaneous replacement models				
Servo	Servo motor model	Servo amplifier model (Note 1, 12)		Renewal kit model	Servo motor model (Note 1)		Motor side conversion cable model		
amplifier model			conversion unit model (Note 1)			Compatibility	Power supply conversion cable	Encoder conversion cable	Brake conversion cable
[Medium capacity/medium inertia HC-SFS series with high-precision reducer, flange output type (G5)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 60B4 } \end{aligned}$	HC-SFS524(B)G5 1/5	MR-J4-60B4RJO20	(1)	$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS02 } \\ & \quad \text { (Note 18) } \end{aligned}$	HG-SR524(B)G5 1/5	$\begin{gathered} \Delta \\ \text { (Note 6) } \end{gathered}$	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	(Note 7)
	HC-SFS524(B)G5 1/11				HG-SR524(B)G5 1/11				
	HC-SFS524(B)G5 1/21				HG-SR524(B)G5 1/21				
	HC-SFS524(B)G5 1/33				HG-SR524(B)G5 1/33				
	HC-SFS524(B)G5 1/45				HG-SR524(B)G5 1/45				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 100B4 } \end{aligned}$	HC-SFS1024(B)G5 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 100B4- } \\ & \text { RJ020 } \end{aligned}$			HG-SR1024(B)G5 1/5				
	HC-SFS1024(B)G5 1/11				HG-SR1024(B)G5 1/11				
	HC-SFS1024(B)G5 1/21				HG-SR1024(B)G5 1/21				
	HC-SFS1024(B)G5 1/33				HG-SR1024(B)G5 1/33				
	HC-SFS1024(B)G5 1/45				HG-SR1024(B)G5 1/45				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200B4 } \end{aligned}$	HC-SFS1524(B)G5 1/5	MR-J4-200B4RJO20		$\begin{aligned} & \text { SC- } \\ & \text { J2SJ4BS03 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR1524(B)G5 1/5				
	HC-SFS1524(B)G5 1/11				HG-SR1524(B)G5 1/11				
	HC-SFS1524(B)G5 1/21				HG-SR1524(B)G5 1/21				
	HC-SFS1524(B)G5 1/33				HG-SR1524(B)G5 1/33				
	HC-SFS1524(B)G5 1/45				HG-SR1524(B)G5 1/45				
	HC-SFS2024(B)G5 1/5				HG-SR2024(B)G5 1/5		SC-HAJ3PW1C1M		
	HC-SFS2024(B)G5 1/11				HG-SR2024(B)G5 1/11				
	HC-SFS2024(B)G5 1/21				HG-SR2024(B)G5 1/21				
	HC-SFS2024(B)G5 1/33				HG-SR2024(B)G5 1/33				
	HC-SFS2024(B)G5 1/45				HG-SR2024(B)G5 1/45				
MR-J2S350B4	HC-SFS3524(B)G5 1/5			SC- J2SJ4BS04 (Note 18)	HG-SR3524(B)G5 1/5				
	HC-SFS3524(B)G5 1/11				HG-SR3524(B)G5 1/11				
	HC-SFS3524(B)G5 1/21				HG-SR3524(B)G5 1/21				
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ \text { 500B4 } \end{array}$	HC-SFS5024(B)G5 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 500B4- } \\ & \text { RJ020 } \end{aligned}$		(Note 19)	HG-SR5024(B)G5 1/5				
	HC-SFS5024(B)G5 1/11				HG-SR5024(B)G5 1/11				
$\begin{aligned} & \hline \text { MR- } \\ & \text { J2S- } \\ & \text { 700B4 } \\ & \hline \end{aligned}$	HC-SFS7024(B)G5 1/5	$\begin{aligned} & \hline \text { MR-J4- } \\ & \text { 700B4- } \\ & \text { RJ020 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS05 } \\ & \text { (Note 18) } \\ & \hline \end{aligned}$	HG-SR7024(B)G5 1/5		Existing cable can be used.		
[Medium capacity/medium inertia HC-SFS series with high-precision reducer, shaft output type (G7)] ((B) represents models with brake)									
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 60B4 } \end{aligned}$	HC-SFS524(B)G7 1/5	MR-J4-60B4RJO20	MR-J4-T20	SCJ2SJ4BS02 (Note 18)	HG-SR524(B)G7 1/5	(Note 6)	SC- SAJ3PW2KC1M-S2	SC-HAJ3ENM3C1M	
	HC-SFS524(B)G7 1/11				HG-SR524(B)G7 1/11				
	HC-SFS524(B)G7 1/21				HG-SR524(B)G7 1/21				
	HC-SFS524(B)G7 1/33				HG-SR524(B)G7 1/33				
	HC-SFS524(B)G7 1/45				HG-SR524(B)G7 1/45				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 100B4 } \end{aligned}$	HC-SFS1024(B)G7 1/5	MR-J4-100B4RJ020			HG-SR1024(B)G7 1/5				
	HC-SFS1024(B)G7 1/11				HG-SR1024(B)G7 1/11				
	HC-SFS1024(B)G7 1/21				HG-SR1024(B)G7 1/21				
	HC-SFS1024(B)G7 1/33				HG-SR1024(B)G7 1/33				
	HC-SFS1024(B)G7 1/45				HG-SR1024(B)G7 1/45				
$\begin{aligned} & \text { MR- } \\ & \text { J2S- } \\ & \text { 200B4 } \end{aligned}$	HC-SFS1524(B)G7 1/5	$\begin{aligned} & \text { MR-J4- } \\ & \text { 200B4- } \\ & \text { RJ020 } \end{aligned}$		SCJ2SJ4BS03 (Note 18)	HG-SR1524(B)G7 1/5				
	HC-SFS1524(B)G7 1/11				HG-SR1524(B)G7 1/11				
	HC-SFS1524(B)G7 1/21				HG-SR1524(B)G7 1/21				
	HC-SFS1524(B)G7 1/33				HG-SR1524(B)G7 1/33				
	HC-SFS1524(B)G7 1/45				HG-SR1524(B)G7 1/45				(Note 7)
	HC-SFS2024(B)G7 1/5				HG-SR2024(B)G7 1/5		SC-HAJ3PW1C1M		
	HC-SFS2024(B)G7 1/11				$\begin{array}{\|l\|} \hline \text { HG-SR2024(B)G7 1/11 } \\ \hline \end{array}$				
	HC-SFS2024(B)G7 1/21				HG-SR2024(B)G7 1/21				
	HC-SFS2024(B)G7 1/33				HG-SR2024(B)G7 1/33				
	HC-SFS2024(B)G7 1/45				HG-SR2024(B)G7 1/45				
MR-	HC-SFS3524(B)G7 1/5	MR-J4-		SC-	HG-SR3524(B)G7 1/5				
J2S-	HC-SFS3524(B)G7 1/11	350B4-		J2SJ4BS04	HG-SR3524(B)G7 1/11				
350B4	HC-SFS3524(B)G7 1/21	RJ020		(Note 18)	HG-SR3524(B)G7 1/21				
$\begin{aligned} & \hline \text { MR- } \\ & \text { J2S- } \\ & \text { 500B4 } \\ & \hline \end{aligned}$	HC-SFS5024(B)G7 1/5	MR-J4-500B4RJ020		(Note 19)	HG-SR5024(B)G7 1/5				
	HC-SFS5024(B)G7 1/11				HG-SR5024(B)G7 1/11				
$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { J2S- } \\ \text { 700B4 } \\ \hline \end{array}$	HC-SFS7024(B)G7 1/5	MR-J4-700B4RJO20		$\begin{aligned} & \hline \text { SC- } \\ & \text { J2SJ4BS05 } \\ & \text { (Note 18) } \end{aligned}$	HG-SR7024(B)G7 1/5		Existing cable can be used.		

Refer to Appendix page 2-65 for important points to note.
(4) Existing HA-LFS motor series

O: Compatible; Δ : Limited functions or compatible with certain conditions; \times : Incompatible

Refer to Appendix page 2-65 for important points to note.

1. Purchase from Mitsubishi Electric.
2. The actual reduction ratio is different when replacing a servo motor. Note that it is necessary to adjust the electronic gear after checking the actual reduction ratio of the servo motor. Refer to Part 8 for details.
3. Note that because the flange dimensions and shaft end dimensions are not compatible it is necessary to change the servo motor shaft connection portion, including the mounting portion and the coupling/pulley when replacing the servo motor. Refer to Part 8 for details.
4. Before replacing the servo motor, the moment of inertia is different from the servo motor before replacement. Take note of the load to motor inertia ratio. Review of the operation pattern is necessary depending on the existing device. Refer to Part 8 for details.
5. If the gain of the existing servo amplifier is extremely high, there may be slight differences in characteristics upon primary replacement. Make sure to set the gain again.
6. Note that it is because the total length of the servo motor becomes shorter, the servo motor connector may interfere with the device side.
7. Laying a new electromagnetic brake cable is required when performing a secondary replacement or simultaneous replacement of a servo motor with brake. Use a servo motor electromagnetic brake cable (SC-BKC1CBL_M-L or SC-BKC1CBL_M-H) made by Mitsubishi Electric System \& Service Co., Ltd.
8. If the servo motor is replaced, it is necessary to change the crimped terminal of the existing power supply cable. Refer to Part 8 for details.
9. There is no cooling fan in the replacement servo motor when the servo motor is replaced. Because the existing wiring becomes unnecessary, insulate as needed.
10. Simultaneous replacement is recommended because replacing the servo amplifier again is necessary at secondary replacement.
11. The renewal kit cannot be used for secondary or simultaneous replacement due to large differences in servo amplifier shape resulting from changes in servo amplifier capacity.
12. The software version for primary replacement of servo amplifiers are different depending on the servo motor. Consult local sales office when making an order.
13. Contact local sales office regarding replacement of existing models that have not been listed.
14. The replacement servo amplifier, SSCNET conversion unit, and renewal kit are the same for primary, secondary, and simultaneous replacement.
15. When replacing a servo motor, the torque characteristics are different compared with the servo motor before replacement. Refer to Part 8 for details.
16. This is not compatible with primary replacement. Perform a simultaneous replacement of a servo amplifier and a servo motor.
17. When performing a replacement of a servo motor, a new encoder cable is required to be laid. Contact Mitsubishi Electric System \& Service Co., Ltd. if a new cable required.
18. A conversion cable on the servo amplifier side is not included in the package. Purchase the following cable set separately according to a servo amplifier to be used and its capacity.
MR-J4-700A4 or less: SC-J2SJ4CSET-01
MR-J4-11KA4 or more: SC-J2SJ4CSET-02
MR-J4-700B4 or less: SC-J2SBJ4CSET-01
MR-J4-11KB4 or more: SC-J2SBJ4CSET-02
19. When combining, a renewal kit is not required. Purchase only a conversion cable on the servo amplifier side, if necessary.
20. This servo amplifier is required to be used in combination with the converter unit MR-CR55K.
21. This servo amplifier is required to be used in combination with the converter unit MR-CR55K4.

5. RENEWAL TOOL CONNECTION DIAGRAM

These diagrams are the connection diagrams for wiring the servo amplifier and servo motor when using the renewal tool.

* Since a terminal block is not included with the renewal tool (mounting attachment) for 400 V , refer to MR-J4 Servo Amplifier Instruction Manual for the detailed connection.

5.1 SC-J2SJ4(CP)KT02K to 3K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. When using the regenerative option, make sure to remove the wiring or the short-circuit bar across $\mathrm{P}(+)$ and D , connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between P and C .
When using a built-in regenerative resistor, make sure to connect the wiring or the short-circuit bar across $\mathrm{P}(+)$ and D . For SC-J2S(CP)J4KT3K, insulate the wiring between the renewal kit and the servo amplifier. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. The N terminal of TE2 is limited to SC-J2S(CP)J4KT1K and 3 K . There is no D terminal wiring for SC-J2S(CP)J4KT3K.
3. Required only when the internal power supply ($24 \mathrm{~V} D C$) for the I/F is used in the existing MR-J2S servo amplifier. Not included with the renewal tool. Note that a separate 24 VDC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier) /Simultaneous replacement (when replacing the servo amplifier and the servo motor simultaneously)

Note 1. When using the regenerative option, make sure to remove the wiring or the short-circuit bar across $P(+)$ and D , connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between P and C . When using a built-in regenerative resistor, make sure to connect the wiring or the short-circuit bar across $\mathrm{P}(+)$ and D . For SC-J2S(CP)J4KT3K, insulate the wiring between the renewal kit and the servo amplifier. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. The N terminal of TE2 is limited to SC-J2S(CP)J4KT1K and 3K. There is no D terminal wiring for SC-J2S(CP)J4KT3K.
3. Unnecessary if electromagnetic brakes are not installed.
4. Required only when the internal power supply (24 V DC) for the I/F is used in the existing MR-J2S servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))

[Appendix 2] Introduction to Renewal Tool

5.2 SC-J2S(CP)J4KT5K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. When using the regenerative option, make sure to remove the short-circuit bar between $P+$ and D, connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between $P+$ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2S(CP)J4KT5K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Required only when the internal power supply (24 V DC) for the I / F is used in the existing MR-J2S servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/Simultaneous replacement (when replacing the servo amplifier and the servo motor simultaneously)

Note 1. When using the regenerative option, make sure to remove the short-circuit bar between $P+$ and D, connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between $\mathrm{P}+$ and C . Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2S(CP)J4KT5K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Unnecessary if electromagnetic brakes are not installed.
4. Required only when the internal power supply ($24 \mathrm{~V} \operatorname{DC}$) for the I/F is used in the existing MR-J2S servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))

[Appendix 2] Introduction to Renewal Tool

5.3 SC-J2S(CP)J4KT7K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. When using the regenerative option, make sure to remove the wiring for the regenerative resistor built in to the servo amplifier, and mount the regenerative option between P+ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2S(CP)J4KT7K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Required only when the internal power supply (24 VDC) for the I/F is used in the existing MR-J2S servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/Simultaneous replacement (when replacing the servo amplifier and the servo motor simultaneously)

Note 1. When using the regenerative option, make sure to remove the wiring for the regenerative resistor built in to the servo amplifier, and mount the regenerative option between P+ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2S(CP)J4KT7K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Unnecessary if electromagnetic brakes are not installed.
4. Required only when the internal power supply (24 VDC) for the $1 / F$ is used in the existing MR-J2S servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))

[Appendix 2] Introduction to Renewal Tool

5.4 SC-J2SJ4KT15K, 22K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. Make sure to connect between P3 and P4. When using the power factor improving DC reactor, remove the short circuit bar between P3 and P4 before connection.
2. When using the regenerative option, make sure to mount the regenerative option between $P+$ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
3. Required only when the internal power supply (24 V DC) for the l/F is used in the existing MR-J2S-_A_ servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the "24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
4. When connecting a power regenerative converter (FR-RC-_K) and a brake unit (FR-BU2-_K), connect between P+ and N-. Make sure to remove the built-in regenerative resistor or the regenerative option.
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/Simultaneous replacement (when replacing the servo amplifier and the servo motor

*2: For secondary replacement, replacement finished through the primary replacement

Note 1. Make sure to connect between P3 and P4. When using the power factor improving DC reactor, remove the short circuit bar between P3 and P4 before connection.
2. When using the regenerative option, make sure to mount the regenerative option between $P+$ and C. Ensure the connection destinations are correct. If the connection destinations are incorrect, the servo amplifier may malfunction
3. Required only when the internal power supply ($24 \mathrm{~V} D C$) for the I/F is used in the existing MR-J2S-_ A_ servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: $80 \mathrm{~mA} \overline{\mathrm{~A}}$ or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package.
(Electric wire colors: Red (+ side); white (- side))
4. When connecting a power regenerative converter (FR-RC-_K) and a brake unit (FR-BU2-_K), connect between P+ and N-. Make sure to remove the built-in regenerative resistor or the regenerative option.
5. Unnecessary if electromagnetic brakes are not installed.
6. Required for the HG-JR22K1M motor only. There is no cooling fan for the HG-JR11K1M or HG-JR15K1M motor. Because the existing wiring becomes unnecessary, insulate as needed.
7. There is no cooling fan for the HG-JR11K1M or HG-JR15K1M motor. Because the existing wiring will become unnecessary, terminate the cables.
8. After replacing with the HG-JR22K1M, HG-JR30K1M. HG-JR37K1M, HG-JR45K1M or HG-JR55K1M motor, a new encoder cable is required to be laid. Contact Mitsubishi Electric System \& Service Co., Ltd. if a new cable required.

* When using an existing encoder cable, an alarm No. AL 46.3 (thermistor disconnected error) occurs.

5.5 SC-J2SBJ4KT02K to 3K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. When using the regenerative option, make sure to remove the wiring or the short-circuit bar across $P(+)$ and D , connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between P and C.
When using a built-in regenerative resistor, make sure to connect the wiring or the short-circuit bar across $\mathrm{P}(+)$ and D . For SC-J2SBJ4KT3K, insulate the wiring between the renewal kit and the servo amplifier. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. The N terminal of TE2 is limited to SC-J2SBJ4KT1K and $3 K$. There is no D terminal wiring for SC-J2SBJ4KT3K.
3. Required only when the internal power supply ($24 \mathrm{~V} \operatorname{DC}$) for the I/F is used in the existing MR-J2S-_B servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: $8 \overline{0} \mathrm{~mA}$ or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/Simultaneous replacement (when replacing the servo amplifier and the servo motor

Note 1. When using the regenerative option, make sure to remove the wiring or the short-circuit bar across $P(+)$ and D, connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between P and C .
When using a built-in regenerative resistor, make sure to connect the wiring or the short-circuit bar across $\mathrm{P}(+)$ and D . For SC-J2SBJ4KT3K, insulate the wiring between the renewal kit and the servo amplifier. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. The N terminal of TE2 is limited to SC-J2SBJ4KT1K and 3K. There is no D terminal wiring for SC-J2SBJ4KT3K.
3. Unnecessary if electromagnetic brakes are not installed.
4. Required only when the internal power supply (24 V DC) for the I/F is used in the existing MR-J2S-_B servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the "24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))

[Appendix 2] Introduction to Renewal Tool

5.6 SC-J2SBJ4KT5K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. When using the regenerative option, make sure to remove the short-circuit bar between $\mathrm{P}+$ and D , connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between $P+$ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2SBJ4KT5K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Required only when the internal power supply (24 V DC) for the I / F is used in the existing MR-J2S-_B servo amplifier.

Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/Simultaneous replacement (when replacing the servo amplifier and the servo motor simultaneously)

Note 1. When using the regenerative option, make sure to remove the short-circuit bar between $\mathrm{P}+$ and D , connect with the wiring between the renewal kit and the servo amplifier, and mount the regenerative option between $\mathrm{P}+$ and C . Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2SBJ4KT5K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Unnecessary if electromagnetic brakes are not installed.
4. Required only when the internal power supply (24 V DC) for the I/F is used in the existing MR-J2S-_B servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (-side))

[Appendix 2] Introduction to Renewal Tool

5.7 SC-J2SBJ4KT7K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. When using the regenerative option, make sure to remove the wiring for the regenerative resistor built in to the servo amplifier, and mount the regenerative option between P+ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2SBJ4KT7K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Required only when the internal power supply (24 V DC) for the I/F is used in the existing MR-J2S-_B servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package. (Electric wire colors: Red (+ side); white (- side))
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/Simultaneous replacement (when replacing the servo amplifier and the servo motor simultaneously)

Note 1. When using the regenerative option, make sure to remove the wiring for the regenerative resistor built in to the servo amplifier, and mount the regenerative option between $\mathrm{P}+$ and C . Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
2. There is no conversion terminal block in the SC-J2SBJ4KT7K renewal kit. Directly connect to the MR-J4 servo amplifier.
3. Unnecessary if electromagnetic brakes are not installed.
4. Required only when the internal power supply ($24 \mathrm{~V} \operatorname{DC}$) for the I/F is used in the existing MR-J2S-_B servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package.
(Electric wire colors: Red (+ side); white (- side))

[Appendix 2] Introduction to Renewal Tool

5.8 SC-J2SBJ4KT15K, 22K

(1) Primary replacement (when replacing the servo amplifier only)

Note 1. Make sure to connect between P3 and P4. When using the power factor improving DC reactor, remove the short circuit bar between P3 and P4 before connection.
2. When using the regenerative option, make sure to mount the regenerative option between $P+$ and C. Ensure the connection destinations are correct. The servo amplifier may malfunction if the connection destinations are incorrect.
3. Required only when the internal power supply ($24 \mathrm{~V} D C$) for the I/F is used in the existing MR-J2S-_B servo amplifier. Not included with the renewal tool. Note that a separate 24 V DC power supply (current capacity: 80 mA or more) is required when replacing.
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package.
(Electric wire colors: Red (+ side); white (- side))
4. When connecting a power regenerative converter (FR-RC-_K) and a brake unit (FR-BU2-_K), connect between P+ and N-. Make sure to remove the built-in regenerative resistor or the regenerative option.
(2) Secondary replacement (when replacing the servo motor after replacing the servo amplifier)/ Simultaneous replacement (when replacing the servo amplifier and the servo motor simultaneously)
regenerative option between P+ and C. Ensure the connection

No.	Product name	
(1)	Servo amplifier	*1,2
(2)	Servo motor	*1
(3)	SSCNET conversion unit	*1,2
(4)	Renewal kit	*2
(5)	Encoder conversion cable	*2
(6)	Control signal conversion cable	*2
(7)	24 V DC power supply connection cable	*2
(8)	Power supply conversion cable on the motor side	
(9)	Encoder conversion cable on the motor side	
(10)	Brake conversion cable on the motor side	
(11)	Conversion cable for the cooling fan on the motor side	

*2: For secondary replacement, replacement finished through the primary replacement
3. Required only when the internal power supply ($24 \vee \mathrm{DC}$) for the I / F is used in the existing MR-J2S-_A servo amplifier.

Not included with the renewal tool. Note that a separate
$\underline{24 \mathrm{~V} \text { DC power supply (current capacity: } 80 \mathrm{~mA} \text { or more) is required when replacing. }}$
When connecting the 24 V DC power supply, use the " 24 V DC power supply connection cable (model: SC-J2SJ4CTPWC5M)" included in the package.
(Electric wire colors: Red (+ side); white (- side))
4. When connecting a power regenerative converter (FR-RC-_K) and a brake unit (FR-BU2-_K), connect between $\mathrm{P}+$ and N -. Make sure to remove the built-in regenerative resistor or the regenerative option.
5. Unnecessary if electromagnetic brakes are not installed.
6. Required for the HG-JR22K1M motor only. There is no cooling fan for the HG-JR11K1M or HG-JR15K1M motor. Because the existing wiring becomes unnecessary, insulate as needed.
7. There is no cooling fan for the HG-JR11K1M or HG-JR15K1M motor. Because the existing wiring will become unnecessary, terminate the cables.
8. After replacing with the HG-JR22K1M, HG-JR30K1M. HG-JR37K1M, HG-JR45K1M or HG-JR55K1M motor, a new encoder cable is required to be laid. Contact Mitsubishi Electric System \& Service Co., Ltd. if a new cable required.

* When using an existing encoder cable, an alarm No. AL46.3 (thermistor disconnected error) occurs.

6. SPECIFICATIONS

6.1 Standard Specifications

(1) Renewal kit specifications

Item			Specifications
	Voltage/Frequency (Note)		1-phase 100 V AC to $120 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$. 3-phase 200 V AC to 240 V AC, $50 / 60 \mathrm{~Hz}$.
	Permissible voltage fluctuation (Note)		1-phase 85 to 127 V 3-phase 170 V AC to 264 V AC.
	Permissible frequency fluctuation		Within $\pm 5 \%$.
苞EE를ய	Ambient temperature	Operation	0 to $+55^{\circ} \mathrm{C}$ (non-freezing).
		Storage	-20 to $+65^{\circ} \mathrm{C}$ (non-freezing).
	Ambient humidity	Operation	90\% RH or less (non-condensing).
		Storage	
	Ambience		Indoors (no direct sunlight) and free from corrosive gas, flammable gas, oil mist, dust, and dirt
	Altitude		1000 m or less above sea level.
	Vibration		$5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less, 10 to 55 Hz (Each direction of X, Y, and Z).

Note: Exclude for 400 V , since a terminal block is not included with.

6.2 Terminal Block Specifications

Note. There is no conversion terminal block for the MR-J2S-500_ and MR-J2S-700_ servo amplifier because the recommended wiring and screw sizes are the same as for the MR-J4 servo amplifier. Connect the existing wiring, except for the junction terminal block of the renewal kit mentioned above, directly to the MR-J4 servo amplifier.

Note. The renewal kits for the MR-J2S-11K_, MR-J2S-15K_ and MR-J2S-22K_ servo amplifiers have a different terminal position than the MR-J2S servo amplifier.

6.3 Recommended 24 V DC Power Supply Specifications for Interface

These are the recommended specifications for a 24 V DC power source for interface that is required for renewal.
Make a selection according to the following specifications.

Product name	Specifications
For interface	24 V DC $\pm 10 \%$
24 V DC power	Power capacity: 80 mA or more

7. PARAMETER SETTING

7.1 List of General-Purpose Interface Setting Requisite Parameters

(1) For primary replacement

The following parameters are a minimum number of parameters that need to be set for primary replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set. For details, refer to Part 2 Section 3.6.

Parameter number	Setting item	Setting value	Description
Changing required.			
PA04	Function selection A-1	0000h	Forced stop deceleration function selection To configure the same settings as those for MR-J2S, select "Forced stop deceleration function disabled (EM1)".
PC22	Function selection C-1	_ ${ }^{1}$ _ ${ }^{\text {h }}$	Serial encoder selection. This setting is for communication with the encoder of MR-J2S. An incorrect setting causes encoder initial communication data error 1 (AL.20.1).
PA09	Auto Tuning Response	8	Auto tuning response setting When replacing, switch the power on after setting the parameter value to " 8 ". * It is necessary to make gain adjustment again when replacing. The setting value of this parameter is equivalent to the slow response of the MRJ2S. Perform adjustment since tha gain can be too low for the slow response. For details on how to make gain adjustments, refer to Chapter 6 of the MR-J4 Servo Amplifier Instruction Manual.
PD27	Output device selection 2 * 11 kW or more, only when using this function	0006h	Dynamic brake interlock (DB) selection) When using this function for the MR-J2S servo amplifier of 11 kW or more, set the parameter. Assign a DB signal to pin CN1-48.
PD03 to PD14	Input signal device selection	-	When the assignment of the Input/output signal for the existing MR-J2S servo amplifier is changed, setting is required. For details, refer to Section 5.2 in "Manual for Replacement from MR-J2S Renewal Tool (X903120707)" issued by Mitsubishi Electric System \& Service Co., Ltd.
Position control mode only			
PA06	Electronic gear numerator (CMX) (Command input pulse multiplication numerator)	(Note 1)	When using an electronic gear, it is necessary to change the setting value. Set the same value as [Pr. 3] or [Pr. 4] of for the MR-J2S- A servo amplifier.
PA07	Electronic gear denominator (CDV) (Commanded pulse multiplication denominator)	$\begin{gathered} 1 \\ (\text { Note 1) } \end{gathered}$	
PA21	Electronic gear selection	0001h	A setting value for the electronic gear [Pr. PA06] or [Pr. PA07] becomes effective.
PA13	Command pulse input form	_ ${ }^{\text {_ _ }} \mathrm{h}$	Pulse train filter selection The setting value mentioned at the left side is a command pulse train filter setting equivalent to the MR-J2S-_A_ (when setting the differential line driver type). * If it is not set, position mismatch will occur. Make sure to set a filter. In addition, it is necessary to adjust the command pulse logic to the positioning module. For details, refer to Part 2 Section 3.7. * An incorrect logic setting causes the servo motor to not rotate. Make sure to configure the settings.
PA10	In-position range	$\begin{gathered} 100 \\ (\text { Note 2) } \end{gathered}$	In-position range Used to set an in-position range per command pulse unit. Set the same value as [Pr. 5] of for the MR-J2S- A servo amplifier.
Speed control mode only			
PA01	Control mode	--- ${ }^{2 h}$	Select the servo amplifier control mode. Select the speed control mode.
PC12	Analog speed command Maximum speed	$\begin{gathered} 3000 \\ (\text { Note 3) } \end{gathered}$	Analog speed command - Maximum speed

Note 1. The example value shown is for when the electronic gear setting of an existing servo amplifier is set as " $8 / 1^{\prime \prime}$.
2. The example value shown is for when the in-position range of an existing servo amplifier is set as "100".
3. The example value shown is for when the servo amplifier setting of an existing servo amplifier is set as "3000".
(2) For secondary replacement

The following parameters are a minimum number of parameters that need to be set for secondary replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set. For details, refer to Part 2 Section 3.6.

Parameter number	Setting item	Setting value		Description
		Before changing (Note 1)	After changing	
Changing required.				
PC22	Function selection C-1	\sim^{1} _- ${ }^{\text {h }}$	$\sim_{0}{ }_{\text {_ }} \mathrm{h}$	Serial encoder selection. This setting is for communication with the encoder of MR-J4. An incorrect setting causes encoder initial communication data error 1 (AL.20.1).
Position control mode only				
PA21	Electronic gear selection	0001h	3001h	J2S electronic gear setting value compatibility mode * For [Pr. PA06] or [Pr. PA07], the value when performing the primary replacement is required to be maintained. Magnify the electronic gear setting value by 32 times.
Speed control mode only				
PC12	Analog speed command Maximum speed	0	3000	Analog speed command - Maximum speed The setting value at left is for when the HC-SFS53 motor is replaced with the HG-SR52 motor.
Torque control mode only				
PC12	Analog speed limit - Maximum speed	0	3000	Analog speed limit - Maximum speed The setting value at left is for when the HC-SFS53 motor is replaced with the HG-SR52 motor.
When using encoder output pulses				
PA15	Encoder output pulses	$\begin{gathered} 4 \\ \text { (Note 3) } \end{gathered}$	128	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier. An output pulse is required to be set.
PC19	Encoder output pulse setting selection	$\begin{aligned} & 0 _1 _ \text {h } \\ & (\text { Note } 3) \end{aligned}$	1 _ ${ }^{1}$ - ${ }^{\text {h }}$	Encoder output pulse setting selection Used to set the encoder pulses output by the servo amplifier. The setting value at left is according to the dividing ratio setting.

Note 1. Setting example at primary replacement.
2. The value is for when the electronic gear setting of an existing servo motor (encoder resolution: 131072 pulses/rev) is " $8 / 1^{\text {" }}$.
3. The value is for when the output pulse setting of an existing HC-KFS motor (encoder resolution: 131072 pulses/rev) is "Dividing ratio: 1/4"
(3) For simultaneous replacement

The following parameters are a minimum number of parameters that need to be set for simultaneous replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set. For details, refer to Part 2 Section 3.6.

Parameter number	Setting item	Setting value	Description
Changing required.			
PA04	Function selection A-1	0000h	Forced stop deceleration function selection To configure the same settings as those for MR-J2S, select "Forced stop deceleration function disabled (EM1)".
PA09	Auto Tuning Response	8	Auto tuning response setting When replacing, switch the power on after setting the parameter value to " 8 ". * It is necessary to make gain adjustment again when replacing. The setting value of this parameter is equivalent to the slow response of the MR-J2S. Perform adjustment since tha gain can be too low for the slow response. For details on how to make gain adjustments, refer to Chapter 6 of the MR-J4 Servo Amplifier Instruction Manual.
PD27	Output device selection 2 * 11 kW or more, only when using this function	0006h	Dynamic brake interlock (DB) selection) When using this function for the MR-J2S servo amplifier of 11 kW or more, set the parameter. Assign a DB signal to pin CN1-48.
PD03 to 14	Input signal device selection	-	When the assignment of the Input/output signal for the existing MR-J2S servo amplifier, setting is required. For details, refer to Part 2 Section 3.6.
Position control mode only			
PA06	Electronic gear numerator (CMX) (Command input pulse multiplication numerator)	(Note 1)	When using an electronic gear, it is necessary to change the setting value. Set the same value as [Pr. 3] or [Pr. 4] of for the MR-J2S- A servo amplifier.
PA07	Electronic gear denominator (CDV) (Commanded pulse multiplication denominator)	$\begin{gathered} 1 \\ \text { (Note 1) } \end{gathered}$	
PA21	Electronic gear selection	3001h	J2S electronic gear setting value compatibility mode Magnify the electronic gear setting value by 32 times.
PA13	Command pulse input form	_ ${ }^{\text {_ _ }}$ h	Pulse train filter selection The setting value mentioned at the left side is a command pulse train filter setting equivalent to the MR-J2S-_A_ (when setting the differential line driver type). * If it is not set, position mismatch will occur. Make sure to set a filter. In addition, it is necessary to adjust the command pulse logic to the positioning module. For details, refer to Part 2 Section 3.7. * An incorrect logic setting causes the servo motor to not rotate. Make sure to configure the settings.
PA10	In-position range	$\begin{gathered} 100 \\ (\text { Note 2) } \end{gathered}$	In-position range Used to set an in-position range per command pulse unit. Set the value of [Pr. 5] for the MR-J2S- A servo amplifier in this parameter as well.
Speed control mode only			
PA01	Control mode	--- ${ }^{2 h}$	Select the servo amplifier control mode. Select the speed control mode.
PC12	Analog speed command Maximum speed	3000	Analog speed command - Maximum speed The setting value at left is for when the HC-SFS53 motor is replaced with the HGSR52 motor.
Torque control mode only			
PA01	Control mode	-_-4h	Select the servo amplifier control mode. Select the torque control mode.
PC12	Analog speed limit - Maximum speed	3000	Analog speed limit - Maximum speed The setting value at left is for when the HC-SFS53 motor is replaced with the HGSR52 motor.
PC13	Analog torque command maximum output	100	Analog torque command maximum output Set the same value as for the MR-J2S- A servo amplifier.
When using encoder output pulses			
PA15	Encoder output pulses	$\begin{gathered} 128 \\ (\text { Note 3) } \end{gathered}$	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier.
PC19	Encoder output pulse setting selection	$\begin{aligned} & 0-1-h \\ & (\text { Note } 3) \end{aligned}$	Encoder output pulse setting selection Used to set the encoder pulses output by the servo amplifier. The setting value at left is according to the dividing ratio setting.

Note 1. The example value shown is for when the electronic gear setting of an existing servo amplifier is set as " $8 / 1$ ".
2. The example value shown is for when the in-position range of an existing servo amplifier is set as "100".
3. The example value shown is for when the output pulse setting of an existing HC-KFS motor (encoder resolution: 131072 pulses/rev) is "Dividing ratio: 1/4".

7.2 List of SSCNET Interface Setting Requisite Parameters

POINT

When the MR-J4-_B-RJ020 servo amplifier is combined with the MR-J4-T20 SSCNET conversion unit, the servo amplifier is recognized as MR-J2S by the controller. For parameters, changes to the program or the parameters are required as necessary.
(For details, refer to "[Appendix 1] Summary of MR-J4_B_-RJ020 + MR-J4-T20" in this document.)
For details on how to set parameters, refer to Chapter 5 of the "MR-J4- B RJ020 Servo Amplifier Instruction Manual (SH(NA)030124)".

7.3 List of Built-in Positioning Function Setting Requisite Parameters

(1) For primary replacement

The parameters shown below are a minimum number of parameters that need to be set for primary replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set. For details, refer to Part 4 Section 3.6.

Parameter number	Setting item	Setting value	Description
Changing required.			
PA01	Control mode	_-_6h	Select the servo amplifier control mode. Select the positioning mode (point table method).
PA04	Function selection A-1	0000h	Forced stop deceleration function selection To configure the same settings as those for MR-J2S, select "Forced stop deceleration function disabled (EM1)".
PC22	Function selection C-1	\sim^{1} _- h	Serial encoder selection. This setting is for communication with the encoder of MR-J2S. An incorrect setting causes encoder initial communication data error 1 (AL.20.1).
PA09	Auto Tuning Response	8	Auto tuning response setting When replacing, switch the power on after setting the parameter value to " 8 ". * It is necessary to make gain adjustment again when replacing. The setting value of this parameter is equivalent to the slow response of the MR-J2S. Perform adjustment since tha gain can be too low for the slow response. For details on how to make gain adjustments, refer to Chapter 6 of the MR-J4 Servo Amplifier Instruction Manual.
PA06	Electronic gear numerator (CMX) (Command input pulse multiplication numerator)	(Note 1)	When using an electronic gear, it is necessary to change the setting value. Set the same value as [Pr. 4] and [Pr. 5] of for the MR-J2S- CP servo amplifier.
PA07	Electronic gear denominator (CDV) (Commanded pulse multiplication denominator)	$\begin{gathered} 1 \\ \text { (Note 1) } \end{gathered}$	
PA21	Electronic gear selection	0001h	A setting value for the electronic gear [Pr. PA06] or [Pr. PA07] becomes effective.
PA10	In-position range	$\begin{gathered} 100 \\ (\text { Note 2) } \end{gathered}$	In-position range Used to set an in-position range per command pulse unit. Set the same value as [Pr. 6] of for the MR-J2S-CP servo amplifier.
PA15	Encoder output pulses	$\begin{gathered} 4 \\ \text { (Note 3) } \\ \hline \end{gathered}$	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier.
PC19	Encoder output pulse setting selection	$\begin{aligned} & 0-1-h \\ & (\text { Note } 3) \end{aligned}$	Encoder output pulse setting selection Used to set the encoder pulses output by the servo amplifier. The setting value at left is according to the dividing ratio setting.
PD01	Input signal automatic on selection	1 ___h	When the EMG signal of the existing MR-J2S-CP servo amplifier has not been assigned, enable automatic on of the forced stop signal after replacement. An incorrect setting causes Servo forced stop warning (AL. E6.1).
PD04 to 28	Input signal device selection	-	When the assignment of the Input/output signal for the existing MR-J2S servo amplifier, setting is required. For details, refer to Part 4 Section 3.6.

Note 1. The example value shown is for when the electronic gear setting of an existing servo amplifier is set as " $8 / 1$ ".
2. The example value shown is for when the in-position range of an existing servo amplifier is set as "100".
3. The example value shown is for when the output pulse setting of an existing HC-KFS motor (encoder resolution: 131072 pulses/rev) is "Dividing ratio: $1 / 4$ ".

[Appendix 2] Introduction to Renewal Tool

(2) For secondary replacement

The parameters shown in this section are a minimum number of parameters that need to be set for secondary replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set. For details, refer to Part 4 Section 3.6.

Parameter number	Setting item	Setting value		Description
		Before changing (Note 1)	After changing	
Changing required.				
PC22	Function selection C-1	\sim^{1} _ h	$\sim_{-}{ }_{-} \mathrm{h}$	Serial encoder selection. This setting is for communication with the encoder of MR-J4. An incorrect setting causes encoder initial communication data error 1 (AL.20.1).
PA21	Electronic gear selection	0001h	3001h	J2S electronic gear setting value compatibility mode * For [Pr. PA06] or [Pr. PA07], the value when performing the primary replacement is required to be maintained. Magnify the electronic gear setting value by 32 times.
PA10	In-position range	100	3200	Set the range of droop pulses occurred when outputting a positioning completion signal (INP). Set the value as magnified by 32 times of the parameter No. 6 for the MR-J2SCP servo amplifier.
PA15	Encoder output pulses	(Note 3)	128	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier. An output pulse is required to be set.
PC19	Encoder output pulse setting selection	$\begin{aligned} & 0 _1 _ \text {h } \\ & (\text { Note 3) } \end{aligned}$	1 _ ${ }_{\text {_ }} \mathrm{h}$	Encoder output pulse setting selection Used to set the encoder pulses output by the servo amplifier. The setting value at left is according to the dividing ratio setting.

Note 1. Setting example at primary replacement.
2. The value is for when the electronic gear setting of an existing servo motor (encoder resolution: 131072 pulses/rev) is " $8 / 1$ ".
3. The example value shown is for when the output pulse setting of an existing HC-KFS motor (encoder resolution: 131072 pulses/rev) is "Dividing ratio: $1 / 4$ ".
(3) For simultaneous replacement

The parameters shown below are a minimum number of parameters that need to be set for simultaneous replacement. Depending on the settings of the currently used servo amplifier, parameters other than these may need to be set. For details, refer to Part 4 Section 3.6.

Parameter number	Setting item	Setting value	Description
Changing required.			
PA01	Control mode	_-_ 6 h	Select the servo amplifier control mode. Select the positioning mode (point table method).
PA04	Function selection A-1	0000h	Forced stop deceleration function selection To configure the same settings as those for MR-J2S, select "Forced stop deceleration function disabled (EM1)".
PA09	Auto Tuning Response	8	Auto tuning response setting When replacing, switch the power on after setting the parameter value to " 8 ". * It is necessary to make gain adjustment again when replacing. The setting value of this parameter is equivalent to the slow response of the MR-J2S. Perform adjustment since tha gain can be too low for the slow response. For details on how to make gain adjustments, refer to Chapter 6 of the MR-J4-_A_ Servo Amplifier Instruction Manual.
PA06	Electronic gear numerator (CMX) (Command input pulse multiplication numerator)	(Note 1)	When using an electronic gear, it is necessary to change the setting value. Set the same value as [Pr. 3] or [Pr. 4] of for the MR-J2S- A servo amplifier.
PA07	Electronic gear denominator (CDV) (Commanded pulse multiplication denominator)	(Note 1)	
PA21	Electronic gear selection	3001h	J2S electronic gear setting value compatibility mode Magnify the electronic gear setting value by 32 times.
PA10	In-position range	$\begin{gathered} 3200 \\ (\text { Note 2) } \end{gathered}$	In-position range Used to set an in-position range per command pulse unit. Set the value of [Pr. 6] for the MR-J2S- CP servo amplifier in this parameter as well.
PA15	Encoder output pulses	$\begin{gathered} 128 \\ (\text { Note 3) } \\ \hline \end{gathered}$	Used to set the encoder pulses (A-phase and B-phase) output by the servo amplifier.
PC19	Encoder output pulse setting selection	$\begin{aligned} & 0 _1 _ \text {h } \\ & (\text { Note 3) } \end{aligned}$	Encoder output pulse setting selection Used to set the encoder pulses output by the servo amplifier. The setting value at left is according to the dividing ratio setting.
PD01	Input signal automatic on selection	$1 \ldots$ - ${ }^{\text {h }}$	When the EMG signal of the existing MR-J2S-CP servo amplifier has not been assigned, enable automatic on of the forced stop signal after replacement. An incorrect setting causes Servo forced stop warning (AL. E6.1).

Note 1. The example value shown is for when the electronic gear setting of an existing servo amplifier is set as " $8 / 1$ ".
2. The example value shown is for when the in-position range of an existing servo amplifier is set as "100".
3. The example value shown is for when the output pulse setting of an existing HC-KFS motor (encoder resolution: 131072 pulses/rev) is "Dividing ratio: $1 / 4$ ".

[Appendix 2] Introduction to Renewal Tool

8. DIMENSIONS

8.1 Renewal Kit

The dimensions are the same for general-purpose interface, SSCNET interface, and built-in positioning function.
(1) SC-J2SJ4KT02K

SC-J2SBJ4KT02K
SC-J2SCPJ4KT02K

Note 1. The above dimensions are for when MR-BAT6V1SET has been mounted. Note that MR-BAT6V1BJ cannot be mounted.
2. Wiring and other items in the renewal kit are not drawn so that mounting method can be easily seen.
(2) SC-J2SJ4KT06K

SC-J2SBJ4KT06K
SC-J2SCPJ4KT06K

[^6](3) SC-J2SJ4KT1K

SC-J2SBJ4KT1K
SC-J2SCPJ4KT1K
Unit [mm]

Note 1.The above dimensions are for when MR-BAT6V1SET has been mounted. Note that MR-BAT6V1BJ cannot be mounted.
2. Wiring and other items in the renewal kit are not drawn so that mounting method can be easily seen.
(4) SC-J2SJ4KT3K

SC-J2SBJ4KT3K
SC-J2SCPJ4KT3K
Unit [mm]

Note 1.The above dimensions are for when MR-BAT6V1SET has been mounted. Note that MR-BAT6V1BJ cannot be mounted.
2. Wiring and other items in the renewal kit are not drawn so that mounting method can be easily seen.
(5) SC-J2SJ4KT5K

SC-J2SBJ4KT5K
SC-J2SCPJ4KT5K
Unit [mm]

Note. Wiring and other items in the renewal kit are not drawn so that mounting method can be easily seen.
(6) SC-J2SJ4KT7K

SC-J2SBJ4KT7K
SC-J2SCPJ4KT7K
Unit [mm]

Note. Wiring and other items in the renewal kit are not drawn so that mounting method can be easily seen.
(7) SC-J2SJ4KT15K

SC-J2SBJ4KT15K

Unit [mm]

Note. A renewal kit is not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.
(8) SC-J2SJ4KT22K

SC-J2SBJ4KT22K

Unit [mm]

Note. A renewal kit is not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.
(9) SC-J2SJ4BS01

Unit [mm]

Note 1: When the battery is mounted

[Appendix 2] Introduction to Renewal Tool

(10) SC-J2SJ4BS02

Unit [mm]

Note 1: When the battery is mounted

[Appendix 2] Introduction to Renewal Tool

(11) SC-J2SJ4BS03

Unit [mm]

Note 1: When the battery is mounted

[Appendix 2] Introduction to Renewal Tool

(12) SC-J2SJ4BS04

Unit [mm]

[Appendix 2] Introduction to Renewal Tool

(13) SC-J2SJ4BS05

Unit [mm]

[Appendix 2] Introduction to Renewal Tool

(14) SC-J2SJ4BS06

Unit [mm]

Note. A mounting attachment is not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.

[Appendix 2] Introduction to Renewal Tool

(15) SC-J2SJ4BS07

Unit [mm]

Note. A mounting attachment is not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.

[Appendix 2] Introduction to Renewal Tool

(16) SC-J2SJ4BS08

Note. A mounting attachment is not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.

[Appendix 2] Introduction to Renewal Tool

(17) SC-J2SJ4BS09

Unit [mm]

Variable dimensions of drive unit

	A
$M R-J 4-D U 37 K A(B) 4$	240
$M R-J 4-D U 45 K A(B) 4$	
$M R-J 4-D U 55 K A(B) 4$	300
$M R-J 4-D U 30 K A(B)$	
$M R-J 4-D U 37 K A(B)$	

Note. A mounting attachment is not compatible with a heat sink outside mounting attachment of the MR-J2S servo amplifier.

[Appendix 2] Introduction to Renewal Tool

8.2 Conversion Cable

8.2.1 Conversion cable on the servo amplifier side
(1) SC-J2SJ4CTC03M, SC-J2SCPJ4CTC03M
[Unit: mm]

(2) SC-J2SBJ4CT1C03M
[Unit: mm]

[Unit: mm]

Appendix 2-107

[Appendix 2] Introduction to Renewal Tool

(4) SC-J2SJ4MOC03M

[Unit: mm]

Cable OD: $\varphi 5.2$

(5) SC-J2SJ4MO2C03M
[Unit: mm]

(6) SC-J2SJ4CTPWC5M
[Unit: mm]

(7) SC-J2SJ4ENC03M
[Unit: mm]

[Appendix 2] Introduction to Renewal Tool

8.2.2 Power supply conversion cable on the motor side

(1) SC-J2SJ4PW1C03M-
\qquad
[Unit: mm]

(2) SC-J2SJ4PWBK1C03M-

Cable use division: A1, A2 (Note 1)
[Unit: mm]

(3) SC-SAJ3PW2KC1M-S2
(4) SC-HAJ3PW1C1M
(5) SC-J2SJ4PW2C1M
[Unit: mm]

Item		Specifications		
Model		SC-SAJ3PW2KC1M-S2	SC-HAJ3PW1C1M	SC-J2SJ4PW2C1M
Connector dimensions	A	$\varphi 35$	$\varphi 39$	φ 烈
	B	$\varphi 35$	$\varphi 41$	$\varphi 44$
	C	68	74	74
	D	78	77	77
Cable shape	E	12	14	14

[^7]
[Appendix 2] Introduction to Renewal Tool

(6) SC-J2SJ4PW3C1M-
[Unit: mm]
T
Cable use division: A1, A2 (Note 1)

8.2.3 Encoder conversion cable on the motor side
(1) SC-HAJ3ENM1C03M- \qquad [Unit: mm]

[Unit: mm]

8.2.4 Conversion cable for the cooling fan on the motor side
[Unit: mm]
(1) SC-J2SJ4FAN1C1M

Note 1. Cable usage division

A1: Load-side lead

A2: Opposite to load-side lead

REVISIONS
*The installation guide number is given on the bottom left of the back cover.

Print date	*Installation guide number	Revision description	
August 2013	L(NA)03093-A	First edition	
June 2015	L(NA)03093-B	SAFETY INSTRUCTIONS	Modified the table.
		Part 1, Section 2.1	Modified the table.
		Part 1, Section 3.2	Modified the table.
		Part 1, Section 3.3.1	Modified the table.
		Part 1, Section 3.3.2	Modified the contents.
		Part 1, Section 3.3.4	Modified the contents.
		Part 1, Section 4.2	Modified the contents.
		Part 2, Section 2.2	Modified the contents.
		Part 2, Section 3.1	Modified the table.
		Part 2, Section 3.2	Modified the table.
		Part 2, Section 3.3, (1)	Modified the table.
		Part 2, Section 3.4	Modified the table.
		Part 2, Section 3.6.1, (1), (2)	Modified the table.
		Part 2, Section 3.6.2	Modified the table.
		Part 2, Section 3.6.3	Modified the table.
		Part 3, Chapter 1	Modified the contents.
		Part 3, Section 2.1	Modified the figure.
		Part 3, Section 2.2	Modified the table.
		Part 3, Section 3.1	Modified the table.
		Part 3, Section 3.2	Modified the table.
		Part 3, Section 3.5	Modified the contents.
		Part 3, Section 3.7.3	Modified the table.
		Part 3, Section 3.8	Modified the contents.
		Part 4, Part 5	New addition
		Part 4, Section 2.2	Modified the table.
		Part 6 to 10	Modified part 4, 5, 6, 7 and 8 into part 6, 7, 8, 9 and 10 respectively.
		Part 6, Section 2.1	Modified the figure.
		Part 6, Section 3.1.1	Modified the table.
		Part 6, Section 3.3	Modified the table.
		Part 6, Section 3.5.1, (1)	Modified the contents.
		Part 6, Section 4.1	Modified the figure.
		Part 6, Section 4.2	Modified the contents.
		Part 6, Section 4.5	Modified the contents.
		Part 6, Section 4.7.1	Modified the contents.
		Part 7, Section 1.1	Modified the table.
		Part 7, Section 1.2.1	Modified the table.
		Part 7, Section 1.2.2	Modified the table.
		Part 7, Section 1.2.3	Modified the contents.
		Part 7, Section 1.2.4	Modified the contents.
		Part 7, Section 1.2.5	Modified the table.
		Part 7, Section 1.2.6	Modified the contents.
		Part 7, Section 1.2.8	Modified the contents.
		Part 7, Section 1.2.9	Modified the contents.
		Part 7, Section 2.1.1 to Section 2.1.7	Reviewed Section 2.1.1 and 2.1.2 layouts, and modified them into
			Section 2.1.1 to 2.1.7.
		Part 7, Section 2.2	Modified the contents.
		Part 7, Section 2.3, Section 2.4	Reviewed Chapter 3 layout and modified it into Section 23 and 2.4

Print date	*Installation guide number		Revision description
June 2015	L(NA)03093-B	Part 7, Chapter 3,	Modified Chapter 4 and 5 into Chapter 3
		Chapter 4	and 4 respectively.
		Part 7, Section 3.1	Modified the contents.
		Part 7, Section 4.1	Modified the contents.
		Part 7, Section 4.2	Added a table.
		Part 7, Section 4.3	New addition
		Part 8, Section 1.1	Modified the table.
		Part 8, Section 2.1	Modified the table.
		Part 8, Section 2.2	Modified the contents.
		Part 8, Section 2.3	Modified the contents.
		Part 8, Section 2.4	Modified the contents.
		Part 8, Section 2.5	Modified the table.
		Part 8, Section 2.6	Modified the contents.
		Part 8, Section 2.7	Modified the contents.
		Part 9, Chapter 1	Modified the contents.
		Part 9, Section 1.1	Modified the contents.
		Part 9, Section 1.1.1	Modified the contents.
		Part 9, Section 1.1.3	Modified the contents.
		Part 9, Section 1.2	Modified the contents.
		Part 9, Section 1.3	Modified the contents.
		Part 9, Section 1.3.1	Modified the contents.
		Part 9, Section 1.3.2	Modified the table.
		Part 9, Section 1.4	Modified the table.
		Part 9, Chapter 2	Modified the table.
		Part 9, Section 2.1	Modified the table.
		Part 9, Chapter 3	Modified the table.
		Part 9, Section 4.1.1	Modified the table.
		Part 9, Section 4.1.2	Modified the table.
		Part 9, Section 4.2.1	Modified the contents.
		Part 9, Section 4.2.2	Modified the contents.
		Part 9, Section 4.3.1	Modified the table.
		Part 9, Section 4.3.2	Modified the table.
		Part 9, Section 5.3.1	Modified the contents.
		Part 9, Section 5.3.2	Modified the contents.
		Part 9, Section 5.3.3, Section 5.3.4	New addition
		Part 9, Section 6.1	Modified the table.
		Part 9, Section 6.1.1	Modified the contents.
		Part 9, Section 6.2	Modified the table.
		Part 9, Section 6.2.1	Modified the contents.
		Part 9, Section 6.3	Modified the table.
		Part 9, Section 6.3.1	Modified the contents.
		Part 9, Section 6.3.2	Modified the contents.
		Part 9, Section 6.4	Modified the contents.
		Part 9, Section 6.4.1	Modified the table.
		Part 9, Section 6.4.3	Modified the contents.
		Part 9, Section 7.1	Modified the contents.
		Part 9, Section 7.2	Modified the contents.
		Part 9, Section 7.3	Modified the contents.
		Part 9, Section 7.4	Modified the contents.
		Part 9, Section 7.5	Modified the contents.
		Part 9, Section 7.6	Modified the contents.
		Part 9, Section 7.7	Modified the contents.

Print date	*Installation guide number		Revision description
June 2015	L(NA)03093-B	Part 9, Section 7.8 Part 9, Section 8.1 Part 9, Section 8.2.1 Part 9, Section 8.3.1 Appendix 1 Appendix 1, Chapter 7 Appendix 1, Section 8.1 Appendix 1, Chapter 11 Appendix 2, Section 1.1 Appendix 2, Section 1.2 Appendix 2, Section 1.2.1 Appendix 2, Section 1.2.2 Appendix 2, Section 1.3 Appendix 2, Section 1.4 Appendix 2, Chapter 2 Appendix 2, Section 2, (2) Appendix 2, Chapter 3 Appendix 2, Section 3.1 Appendix 2, Section 3.2.1 Appendix 2, Chapter 4 Appendix 2, Section 4.1 Appendix 2, Section 4.2 Appendix 2, Section 4.3 Appendix 2, Chapter 5 Appendix 2, Section 5.1 Appendix 2, Section 5.2 Appendix 2, Section 5.3 Appendix 2, Section 5.4 Appendix 2, Section 5.5 Appendix 2, Section 5.6 Appendix 2, Section 5.7 Appendix 2, Section 5.8 Appendix 2, Section 6.1 Appendix 2, Section 6.2 Appendix 2, Chapter 7 Appendix 2, Section 7.2.1 Appendix 2, Chapter 8 Appendix 2, Section 8.1	Modified the contents. Modified the contents. Modified the contents. Modified the table. Revised all contents. Modified the table. Modified the contents. New addition Modified the contents. Modified the contents. Modified the figure. Modified the table. Modified the contents. Modified the contents. Modified the contents. Modified the table. Modified the contents. Modified the contents. Modified the contents. Revised all contents. Modified the contents. Modified the contents. Modified the contents. Revised all contents. Modified the table. Modified the table. New addition Modified the contents. Modified former Chapter 7 into Chapter 8 due to adding the new Chapter 7. Modified the contents.
July 2016	L(NA)03093-C	Part 1, Section 2.2 Part 1, Section 3.2 Part 1, Section 3.2 Part 1, Section 3.3.1 Part 1, Section 4.3 Part 1, Section 4.5 Part 2, Section 2.1, Section 2.2 Part 2, Section 3.6.1, (1) Part 2, Section 3.6.3 Part 3, Chapter 1 Part 3, Section 2.1 Part 3, Section 2.2 Part 3, Section 2.2, (1)	The table is partially changed. Partially changed. The table is partially changed. The table is partially changed. Partially changed. Partially changed. The diagram is partially changed. The table is partially changed. The table is partially changed. The table is partially changed. The diagram is partially changed. Partially changed. The diagram is partially changed.

Print date	*Installation guide number		Revision description
July 2016	L(NA)03093-C	Part 3, Section 2.2, (2)	The diagram is partially changed.
		Part 3, Section 2.2, (3)	The diagram is partially changed.
		Part 3, Section 2.2, (4)	The diagram is partially changed.
		Part 3, Section 3.5, (1)	The diagram is partially changed.
		Part 3, Section 3.7.2	The table is partially changed.
		Part 3, Section 3.7.3	The table is partially changed.
		Part 4, Section 2.1	The diagram is partially changed.
		Part 4, Section 2.2, (1)	The diagram is partially changed.
		Part 4, Section 3.1, (1)	The table is partially changed.
		Part 4, Section 3.1, (2)	The table is partially changed.
		Part 4, Section 3.6, (1) (b)	The table is partially changed.
		Part 4, Section 3.6.3	The table is partially changed.
		Part 4, Section 3.7, (6)	The table is partially changed.
		Part 6, Section 3.1.1	The table is partially changed.
		Part 6, Section 3.3, (1)	The diagram is partially changed.
		Part 6, Section 3.3, (1)	The table is partially changed.
		Part 6, Section 3.5.1, (1)	The table is partially changed.
		Part 6, Section 4.2, (1)	The diagram is partially changed.
		Part 6, Section 4.5, (1)	The diagram is partially changed.
		Part 6, Section 4.5, (1)	The table is partially changed.
		Part 7, Section 1.1, (1)	The table is partially changed.
		Part 7, Section 1.1, (2)	The table is partially changed.
		Part 7, Section 1.1, (3)	The table is partially changed.
		Part 7, Section 2.1.4	The diagram is partially changed.
		Part 7, Section 2.1.5	The diagram is partially changed.
		Part 7, Section 2.1.6	The diagram is partially changed.
		Part 7, Section 2.1.7	The diagram is partially changed.
		Part 7, Section 2.3.1	POINT is changed.
		Part 7, Section 2.3.3, (3)	The diagram is partially changed.
		Part 7, Section 2.3.4, (2)	The diagram is partially changed.
		Part 7, Section 2.3.4, (3)	The diagram is partially changed.
		Part 7, Section 2.3.4, (4)	The diagram is partially changed.
		Part 7, Section 2.3.5	POINT is changed.
		Part 7, Section 2.3.5, (1)	The table is partially changed.
		Part 7, Section 2.3.5, (2)	The table is partially changed.
		Part 7, Section 2.3.5, (3)	The table is partially changed.
		Part 7, Section 2.3.5, (6)	The table is partially changed.
		Part 7, Section 2.3.5, (7)	The table is partially changed.
		Part 7, Section 2.4	POINT is changed.
		Part 7, Section 2.4.1, (2)	The diagram is partially changed.
		Part 7, Section 2.4.1, (4)	Partially changed.
		Part 7, Section 2.4.1, (5)	Partially changed.
		Part 7, Section 2.4.1, (6)	Partially changed.
		Part 7, Section 2.4.2	Partially changed.
		Part 7, Section 2.4.2, (2)	Partially changed.
		Part 7, Section 2.4.2, (3)	The diagram is partially changed.
		Part 7, Section 2.4.2, (4)	The diagram is partially changed.
		Part 7, Section 2.4.3	The table is partially changed.
		Part 7, Section 4.1, (1)	The table is partially changed.
		Part 7, Section 4.1, (2)	The table is partially changed.
		Part 7, Section 4.2	The table is partially changed.
		Part 7, Section 4.3	The diagram is partially changed.
		Part 8, Section 2.1	The table is partially changed.

Print date	*Installation guide number	Revision description	
July 2016	L(NA)03093-C	Part 8, Section 2.5, (6)	The table is partially changed.
		Part 8, Section 2.6, (3)	The diagram is partially changed.
		Part 8, Section 2.7	POINT is changed.
		Part 9, Section 1.1.1	Partially changed.
		Part 9, Section 1.2	The table is partially changed.
		Part 9, Section 1.3.1	Partially changed.
		Part 9, Section 1.3.2	The table is partially changed.
		Part 9, Section 1.4	The table is partially changed.
		Part 9, Chapter 3	The table is partially changed.
		Part 9, Section 4.1.2	Partially changed.
		Part 9, Section 4.2.2, (1)	The table is partially changed.
		Part 9, Section 4.2.2, (2)	The table is partially changed.
		Part 9, Section 4.3.2, (1)	The table is partially changed.
		Part 9, Section 8.2	POINT is changed.
		Appendix 1, Chapter 1	Partially changed.
		Appendix 1, Section 1.1.1	Partially changed.
		Appendix 1, Section 2.1	Partially changed.
		Appendix 1, Chapter 5	Partially changed.
		Appendix 1, Chapter 5, (1)	Partially changed.
		Appendix 1, Chapter 7	Partially changed.
		Appendix 1, Chapter 7, (1)	Items are added.
		Appendix 1, Chapter 7, (2)	Items are added.
		Appendix 1, Chapter 8	Partially changed.
		Appendix 1, Section 9.1	Partially changed.
		Appendix 1, Section 9.2, (7)	Newly added.
		Appendix 1, Section 11.2.3	The table is partially changed.
		Appendix 1, Section 13.2	The table is partially changed.
		Appendix 1, Section 13.4.1	The table is partially changed.
		Appendix 2, Section 1.2.2, (1)	The table is partially changed.
		Appendix 2, Section 1.2.2, (2)	The table is partially changed.
		Appendix 2, Section 1.2.2, (3)	The table is partially changed.
		Appendix 2, Section 1.2.2, (4)	Partially changed.
		Appendix 2, Section 1.3, (1)	The diagram is partially changed.
		Appendix 2, Section 1.3, (2)	The diagram is partially changed.
		Appendix 2, Chapter 2, (5)	Partially changed.
		Appendix 2, Section 4.1, (1)	The table is partially changed.
		Appendix 2, Section 4.1, (2)	The table is partially changed.
		Appendix 2, Section 4.1, (3)	The table is partially changed.
		Appendix 2, Section 4.1, (4)	The table is partially changed.
		Appendix 2, Section 4.1, (5)	The table is partially changed.
		Appendix 2, Section 4.1, (13)	The table is partially changed.
		Appendix 2, Section 4.2, (2)	The table is partially changed.
		Appendix 2, Section 4.2, (13)	The table is partially changed.
		Appendix 2, Section 4.3, (1)	The table is partially changed.
		Appendix 2, Section 4.3, (2)	The table is partially changed.
		Appendix 2, Section 4.3, (3)	The table is partially changed.
		Appendix 2, Section 4.3, (4)	The table is partially changed.
		Appendix 2, Section 4.3, (5)	The table is partially changed.
		Appendix 2, Section 4.3, (6)	The table is partially changed.
		Appendix 2, Section 4.3, (7)	The table is partially changed.
		Appendix 2, Section 4.3, (8)	The table is partially changed.
		Appendix 2, Section 4.3, (9)	The table is partially changed.
		Appendix 2, Section 4.3, (10)	The table is partially changed.

Print date	*Installation guide number	Revision description
July 2016	L(NA)03093-C	Appendix 2, Section 4.3, (11) The table is partially changed. Appendix 2, Section 4.3, (12) The table is partially changed. Appendix 2, Section 4.3, (13) The table is partially changed. Appendix 2, Section 4.4, (4) The table is partially changed. Appendix 2, Section 4.5, (4) The table is partially changed. Appendix 2, Section 5.1, (1) The diagram is partially changed. Appendix 2, Section 5.1, (2) The diagram is partially changed. Appendix 2, Section 5.5, (1) Partially changed. Appendix 2, Section 5.5, (2) Partially changed. Appendix 2, Section 7.1, (1) Partially changed. Appendix 2, Section 7.1, (2) The table is partially changed. Appendix 2, Section 7.1, (3) The table is partially changed. Appendix 2, Section 7.2 POINT is changed. Appendix 2, Section 7.3, (2) The table is partially changed. Appendix 2, Section 7.3, (3) The table is partially changed. Appendix 1, Chapter 8 The diagram is partially changed.
May 2017	L(NA)03093-D	SAFETY INSTRUCTIONS Partially changed. Part 1, Section 3.2 The diagram is partially changed. Part 1, Section 3.2 The table is partially changed. Part 1, Section 3.3.2, (1) Note 2 is changed. Part 1, Section 4.6 Partially changed. Part 2, Section 3.6.2 The table is partially changed. Part 2, Section 3.6.3 [PC21] is partially changed. Part 3, Section 2.1. The diagram is partially changed. Part 3, Section 2.2, (1) The diagram is partially changed. Part 3, Section 2.2, (2) The diagram is partially changed. Part 3, Section 2.2, (4) POINT is partially changed. Part 4, Section 3.2, (1) The table is partially changed. Part 4, Section 3.7.1 The description of [Pr. PT01] is changed. Part 5, Section 2.1 The diagram is partially changed. Part 5, Section 2.2, (2) Partially changed. Part 5, Section 5.4.3, (5) The table is partially changed. Part 6, Section 3.1.1 The table is partially changed. Part 6, Section 3.5.1, (2) The table is partially changed. Part 6, Section 4.1 The diagram is partially changed. Part 6, Section 4.2, (1) The diagram is partially changed. Part 6, Section 4.2, (2) The diagram is partially changed. Part 7, Section 1.1, (1) The table is partially changed. Part 7, Section 1.1, (2) The table is partially changed. Part 7, Section 1.1, (3) The table is partially changed. Part 7, Section 1.2.3, (2) Partially changed. Part 7, Section 1.2.6, (1) Note 5 is partially changed. Part 7, Section 2.3.5 POINT is partially changed. Part 8, Section 1.1, (1) The table is partially changed. Part 8, Section 1.1, (2) The table is partially changed. Part 8, Section 1.1, (3) The table is partially changed. Part 8, Section 1.1, (4) The table is partially changed. Part 8, Section 2.4 Partially changed. Part 9, Section 1.1.1 The tabli is partially changed. Part 9, Section 1.1.3 The table is partiallly changed. Part 9, Section 1.3.1 The table is partiallly changed. Part 9, Section 1.3.2 The table is partially changed. Part 9, Section 8.1 Partially changed.

Print date	*Installation guide number	Revision description
May 2017	L(NA)03093-D	Part 9, Section 8.2.1 Note 5 is partially changed. Part 9, Section 8.3.1 The table is partially changed. Note is changed. Appendix 1, Section 1.1.1 The table is partially changed. Appendix 1, Section 2.1 The table and Note are changed. POINT is changed. Appendix 1, Chapter 5, (1) All contents are revised. Appendix 1, Chapter 8 Note is changed. Appendix 1, Section 9.1 Partially changed. Appendix 1, Section 9.2, (1) The table is partially changed. Appendix 1, Section 9.2, (8) Newly added. Appendix 1, Section 13.5.1 The table is partially changed. Appendix 2, Section 4.1, (13) The table is partially changed. Appendix 2, Section 4.2, (13) The table is partially changed. Appendix 2, Section 4.4, (4) The table is partially changed. Appendix 2, Section 4.5, (4) The table is partially changed. Appendix 2, Section 7.1, (1) The table is partially changed. Appendix 2, Section 7.1, (3) The table is partially changed. Appendix 3, Section 2.2.2 Newly added.
September 2020	L(NA)03093-E	SAFETY INSTRUCTIONS Partially changed. Part 1, Section 2.2 Partially changed. Part 1, Section 3.2 Partially changed. Part 1, Section 3.3.1 Partially changed. Part 1, Section 3.3.2 Partially changed. Part 1, Section 3.3.3 Partially changed. Part 1, Section 3.3.4 Partially changed. Part 1, Section 3.3.5 Partially changed. Part 1, Section 3.3.6 Partially changed. Part 1, Section 4.5 Partially changed. Part 2, Section 2.1 The diagram is partially changed. Part , Section 2.2 Partially changed. Part 2, Section 3.1 The table is partially changed. Part 2, Section 3.3 Partially changed. Part 2, Section 3.4 The table is partially changed. Part 2, Section 3.5 POINT is partially changed. Part 2, Section 3.6 POINT is partially changed. Part 2, Section 3.6.1 The table is partially changed. Part 2, Section 3.6.2 Partially changed. Part 2, Section 3.6.3 The table is partially changed. Part 2, Section 3.7 POINT is partially changed. Part 3, Section 2.1 The diagram is partially changed. Part 3, Section 2.2 The diagram is partially changed. Part 3, Section 3.1 The table is partially changed. Part 3, Section 3.1.1 The table is partially changed. Part 3, Section 3.5, (2) Partially changed. Part 3, Section 3.6 POINT is partially changed. Part 3, Section 3.7 POIIT is partially changed. Part 3, Section 3.7.1 Partially changed. Part 3, Section 3.7.2 The table is partially changed. Part 3, Section 3.8 Partially changed. Part 4 Section 1 Changed. Part 4 Section 2.1 The diagram is partially changed. Part 4, Section 2.2 Partially changed.

Print date	*Installation guide number		vision description
$\begin{gathered} \text { September } \\ 2020 \end{gathered}$	L(NA)03093-E	Part 4, Section 3.1 Part 4, Section 3.1, (1) Part 4, Section 3.1, (2) Part 4, Section 3.2, (1) Part 4, Section 3.4, (2) Part 4, Section 3.5 Part 4, Section 3.6 Part 4, Section 3.6.1, (1) Part 4, Section 3.6.2 Part 4, Section 3.6.3 Part 4, Section 3.7 Part 5, Section 1.2 Part 5, Section 1.3 Part 5, Section 1.4 Part 5, Section 2.1 Part 5, Section 2.2 Part 5, Section 2.3 Part 5, Section 3.1 Part 5, Section 4.1 Part 5, Section 4.2 Part 5, Section 5.1 Part 5, Section 5.2 Part 5, Section 5.2.1 Part 5, Section 5.2.2 Part 5, Section 5.3.1 Part 5, Section 5.3.2 Part 5, Section 5.4.3 Part 5, Section 5.5 Part 7, Section 1.2.3 Part 6, Section 2.2 Part 6, Section 3.3.1 Part 6, Section 3.3, (1) Part 6, Section 3.4 Part 6, Section 3.5.1 Part 6, Section 3.5.1, (1) Part 6, Section 3.5.1, (2) Part 6, Section 4.1 Part 6, Section 4.2 Part 6, Section 4.3 Part 6, Section 4.5 Part 6, Section 4.6 Part 6, Section 4.7.1 Part Pection	POINT is partially changed. The table is partially changed. The table is partially changed. Partially changed. Partially changed. POINT is partially changed. POINT is partially changed. The table is partially changed. The table is partially changed. The table is partially changed. POINT is partially changed. Partially changed. POINT is partially changed. Partially changed. Partially changed. The diagram is partially changed. Partially changed. POINT is partially changed. The diagram is partially changed. Partially changed. The diagram is partially changed. The diagram is partially changed. POINT is partially changed. The table is partially changed. Partially changed. Partially changed. The table is partially changed. POINT is partially changed. The diagram is partially changed. The diagram is partially changed. The table is partially changed. The table is partially changed. The diagram is partially changed. Partially changed. POINT is partially changed. The table is partially changed. The table is partially changed. The diagram is partially changed. POINT is partially changed. POINT is partially changed. The table is partially changed. The table is partially changed. The diagram is partially changed. Partially changed. Partially changed. Partially changed. POINT is partially changed. POINT is partially changed. The table is partially changed. The table is partially changed. Partially changed. The table is partially changed. The table is partially changed.

Print date	*Installation guide number		Revision description
$\begin{gathered} \text { September } \\ 2020 \end{gathered}$	L(NA)03093-E	Part 7, Section 1.2.4 Part 7, Section 1.2.5 Part 7, Section 1.2.6 Part 7, Section 1.2.7 Part 7, Section 1.2.8 Part 7, Section 1.2.9 Part 7, Section 2.1.1 Part 7, Section 2.1.2 Part 7, Section 2.1.3 Part 7, Section 2.1.4 Part 7, Section 2.1.5 Part 7, Section 2.1.6 Part 7, Section 2.1.6 Part 7, Section 2.2 Part 7, Section 2.3.5 Part 7, Section 2.4.3 Part 7, Section 4 Part 7, Section 4.2 Part 7, Section 4.3 Part 8, Section 1.1 Part 8, Section 2.1 Part 8, Section 2.3 Part 8, Section 2.4.1 Part 8, Section 2.4.2 Part 8, Section 2.5 Part 8, Section 2.6 Part 8, Section 2.7 Part 9, Section 1 Part 9, Section 1.1.1 Part 9, Section 1.1.3 Part 9, Section 1.2 Part 9, Section 1.3.1 Part 9, Section 1.3.2 Part 9, Section 2 Part 9, Section 3 Part 9, Section 4 Part 9, Section 4.1.1 Part 9, Section 4.1.2 Part 9, Section 4.2.1 Part 9, Section 4.2.2 Part 9, Section 4.3.1 Part 9, Section 4.3.2 Part 9, Section 5.3.1 Part 9, Section 5.3.4 Part 9, Section 6.1 Part 9, Section 6.3	The table is partially changed. Partially changed. The table is partially changed. Partially changed. Partially changed. The diagram is partially changed. Partially changed. Partially changed. Partially changed. The table is partially changed. The table is partially changed. POINT is partially changed. The table is partially changed. The table is partially changed. POINT is partially changed. The table is partially changed. Partially changed. POINT is partially changed. The table is partially changed. The table is partially changed. Partially changed. Partially changed. Partially changed. The table is partially changed. Partially changed. Partially changed. Partially changed. POINT is partially changed. Partially changed. The table is partially changed. POINT is partially changed. Partially changed. The table is partially changed. The table is partially changed. Partially changed. Partially changed. The table is partially changed. The table is partially changed. WARNING is partially changed. POINT is partially changed. Partially changed. Partially changed. The table is partially changed.

Print date	*Installation guide number	Revision description
$\begin{gathered} \text { September } \\ 2020 \end{gathered}$	L(NA)03093-E	Appendix 2, Section 7.1 Partially changed. Appendix 2, Section 7.1 The table is partially changed. Appendix 2, Section 7.2 POINT is partially changed. Appendix 2, Section 7.3 Partially changed. The table is partially changed. Appendix 2, Section 8.2.1 Partially changed. Appendix 2, Section 8.2.2 Partially changed.
$\begin{gathered} \hline \text { March } \\ 2022 \end{gathered}$	L(NA)03093-F	Part 3, Section 3.3.1 Partially changed. Part 3, Section 3.7.2 The table is partially changed. Part 6, Section 3.5.1 POINT is partially changed. Part 6, Section 4.3, (2) Partially changed. Part 7, Section 4.2 The table is partially changed. Part 9, Chapter 3 The table is partially changed. Appendix 1, Chapter 3 Partially changed. Appendix 1, Chapter 4 POINT is added. Appendix 1, Chapter 7, (1) The table is partially changed. Appendix 1, Chapter 7, (2) The table is partially changed. Appendix 1, Section 12.1, (2) Partially changed. Appendix 1, Section 12.2, (2) Partially changed.

This installation guide guarantees no industrial rights or implementation of any rights of any other kind, nor does it grant any licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial rights which may occur as a result of using the contents noted in this installation guide.

Warranty

1. Warranty period and coverage

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product" arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced
[Term]
For terms of warranty, please contact your original place of purchase.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not be charged if we are responsible for the cause of the failure.
(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product
(3) Even during the term of warranty, the repair cost will be charged on you in the following cases
(i) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
(ii) a failure caused by any alteration, etc. to the Product made on your side without our approval
(iii) a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
(iv) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
(v) any replacement of consumable parts (battery, fan, smoothing capacitor, etc.)
(vi) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
(vii) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
(viii) any other failures which we are not responsible for or which you acknowledge we are not responsible for
2. Term of warranty after the stop of production
(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.
3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product. However, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details
4. Exclusion of loss in opportunity and secondary loss from warranty liability Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.
5. Change of Product specifications Specifications listed in our catalogs, manuals or technical documents may be changed without notice.
6. Application and use of the Product
(1) For the use of our AC Servo, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in AC Servo, and a backup or fail-safe function should operate on an external system to AC Servo when any failure or malfunction occurs.
(2) Our AC Servo is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used
In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

Extensive global support coverage providing expert help whenever needed

Global FA centers

Transition from MELSERVO-J2-Super/J2M Series to J4 Series Handbook

Country/Region	促	
USA	Mitsubishi Electric Automation, Inc. 500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A.	Tel : +1-847-478-2100
Mexico	Mitsubishi Electric Automation, Inc. Mexico Branch Boulevard Miguel de Cervantes Saavedra 301, Torre Norte Piso 5, Ampliacion Granada, Miguel Hidalgo, Ciudad de Mexico, Mexico, C.P. 11520	Tel : +52-55-3067-7512
Brazil	Mitsubishi Electric do Brasil Comercio e Servicos Ltda. Avenida Adelino Cardana, 293, 21 andar, Bethaville, Barueri SP, Brazil	Tel : +55-11-4689-3000
Germany	Mitsubishi Electric Europe B.V. German Branch Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany	Tel : +49-2102-486-0
UK	Mitsubishi Electric Europe B.V. UK Branch Travellers Lane, UK-Hatfield, Hertfordshire, AL10 8XB, U.K.	Tel : +44-1707-28-8780
Italy	Mitsubishi Electric Europe B.V. Italian Branch Centro Direzionale Colleoni - Palazzo Sirio, Viale Colleoni 7, 20864 Agrate Brianza (MB), Italy	Tel : +39-039-60531
Spain	Mitsubishi Electric Europe B.V. Spanish Branch Carretera de Rubi, 76-80-Apdo. 420, E-08174 Sant Cugat del Valles (Barcelona), Spain	Tel : +34-935-65-3131
France	Mitsubishi Electric Europe B.V. French Branch 25, Boulevard des Bouvets, 92741 Nanterre Cedex, France	Tel : +33-1-55-68-55-68
Czech Republic	Mitsubishi Electric Europe B.V. Czech Branch, Prague Office Pekarska 621/7, 15500 Praha 5, Czech Republic	Tel : +420-255-719-200
Poland	Mitsubishi Electric Europe B.V. Polish Branch ul. Krakowska 48, 32-083 Balice, Poland	Tel : +48-12-347-65-00
Russia	Mitsubishi Electric (Russia) LLC St. Petersburg Branch Startovaya street, 8, BC "Aeroplaza", office 607; 196210, St. Petersburg, Russia	Tel : +7-812-449-51-34
Sweden	Mitsubishi Electric Europe B.V. (Scandinavia) Hedvig Mollersgata 6, 22355 Lund, Sweden	Tel : +46-8-625-10-00
Turkey	Mitsubishi Electric Turkey A.S. Umraniye Branch Serifali Mah. Kale Sok. No:41 34775 Umraniye - Istanbul, Turkey	Tel : +90-216-969-2500
UAE	Mitsubishi Electric Europe B.V. Dubai Branch Dubai Silicon Oasis, P.O.BOX 341241, Dubai, U.A.E.	Tel : +971-4-3724716
South Africa	Adroit Technologies 20 Waterford Office Park, 189 Witkoppen Road, Fourways, South Africa	Tel : +27-11-658-8100
China	Mitsubishi Electric Automation (China) Ltd. Mitsubishi Electric Automation Center, No. 1386 Hongqiao Road, Shanghai, China	Tel : +86-21-2322-3030
Taiwan	SETSUYO ENTERPRISE CO., LTD. 6F, No.105, Wugong 3rd Road, Wugu District, New Taipei City 24889, Taiwan	Tel : +886-2-2299-2499
Korea	Mitsubishi Electric Automation Korea Co., Ltd. 7F to 9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul 07528, Korea	Tel : +82-2-3660-9529
Singapore	Mitsubishi Electric Asia Pte. Ltd. 307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	Tel : +65-6473-2486
Thailand	Mitsubishi Electric Factory Automation (Thailand) Co., Ltd. True Digital Park Building Sukhumvit 101 Sukhumvit Road, Bang Chak, Prakanong, Bangkok, Thailand	Tel : +66-2092-8600
Indonesia	PT. Mitsubishi Electric Indonesia Gedung Jaya 8th Floor, JL. MH. Thamrin No.12, Jakarta Pusat 10340, Indonesia	Tel : +62-21-3192-6461
Vietnam	Mitsubishi Electric Vietnam Company Limited 11th \& 12th Floor, Viettel Tower B, 285 Cach Mang Thang 8 Street, Ward 12, District 10, Ho Chi Minh City, Vietnam	Tel : +84-28-3910-5945
India	Mitsubishi Electric India Pvt. Ltd. Pune Branch Emerald House, EL-3, J Block, M.I.D.C., Bhosari, Pune - 411026, Maharashtra, India	Tel : +91-20-2710-2000
Australia	Mitsubishi Electric Australia Pty. Ltd. 348 Victoria Road P O. Box 11, Rydal	Tel : +61-2-9684-7777

[^0]: Note. The example value shown is for when the electronic gear ratio of an existing servo amplifier is set as " $8 / 1$ ".

[^1]: Note. A term on the left in () is for a drive unit and one on the right is for a converter unit.

[^2]: Note. These replacement models do not have compatibility in mounting.

[^3]: Note. The values in the parentheses are applied to when a heat sink is placed in a cabinet. Pay attention to the depth.

[^4]: Note. For items that have no setting value listed in the table, refer to "Part 3: Review on Replacement of MR-J2S-_B_with MR-J4-_B_".

[^5]: Note 1. For details on crimp terminals and applicable tools, refer to section 4.2.1 (2) of this document.
 2. P 1 is not available for a servo amplifier of 7 kW or less.

[^6]: Note 1.The above dimensions are for when MR-BAT6V1SET has been mounted. Note that MR-BAT6V1BJ cannot be mounted.
 2. Wiring and other items in the renewal kit are not drawn so that mounting method can be easily seen.

[^7]: Refer to the next page regarding Note 1.

