Energy Measuring Unit
 MODEL
 EMU4-FD1-MB

User's Manual (Details)

- Before operating the instrument, you should first read thoroughly this operation manual for safe operation and optimized performance of the product.
Deliver this user's manual to the end user.

Safety precautions

Thank you for purchasing the Energy Measuring Unit.

- This manual describes setup and usage for the Energy Measuring Unit. Before using the product, please read this manual carefully to ensure correct use. Especially, in the case of where this unit is to be installed, please read "1. Precautions for Use" to ensure correct use.
- Make sure that the end users read this manual and then keep the manual in a safe place for future reference.
- Make sure to deliver this manual to the end-user.
- If you are considering using this unit for special purpose such as nuclear power plants, aerospace, medical care or passenger vehicles please refer to our sales representative.(For details, please see at the end of this manual.)
- Notations in this manual

Use the following marks in this manual.

Mark	Meaning of the icons
$\widehat{\Delta}$ Danger	Indicates that incorrect handling may result in death or severe injury, ignoring this marking.
$\boldsymbol{\Delta}$ Caution	Indicates that incorrect handling may result in injury or property damage, ignoring this marking.
$\boldsymbol{\checkmark}$ Supplement	Indicates that precautions to avoid a malfunction and to work the unit properly.
	Indicates that the pages described that related matters.

- This unit cannot be used for deal and proof of electric energy measurement stipulated in the measurement law. Please use the certified watt-hour meter to be used for deal and proof of electric energy measurement stipulated.
-When using this unit, make sure to use it in combination with 5A/1A current transformer.

Features

- This Energy Measuring unit can measure various types of electric quantity such as voltage, current, electric power and electric energy.
- The measured data can be sent to the high-end device, such as a monitoring device by MODBUS ${ }^{\circledR}$ RTU communication function.
- This Energy Measuring unit has one external input terminal, which can switch between pulse input and contact input.

Production quantity and water, gas, air (other than electricity) can be measured in the pulse input setting.
Monitoring of condition and alarm, measurement of operating time and electric energy during operation can be done in the contact input setting.

MODBUS ${ }^{\circledR}$ is a registered trademark of SCHNEIDER ELECTRIC USA, INC in the United States.

Table of Content

Safety precautions1
Features 1
Table of Content.2

1. Precautions for Use 3
Precautions for Operating Environment and Conditions 3
Matters concerning the precaution before use 3
Installation and Wiring Precautions 3
Precautions for Use 4
Maintenance Precautions 4
Storage Precautions 4
Disposal Precautions 4
About packaging materials and this manual 4
2. Disclaimer 5
3. Name and function of each part 5
4. Attaching and removing the unit 7
5. Procedure for wiring 10
Wiring for EMU4-FD1-MB 10
System configuration example of MODBUS ${ }^{\circledR}$ RTU communication 13
6. Operating mode 15
7. Setting method 16
Procedures for setting 16
Setting menu 1: Phase wire system, primary voltage, primary current, demand time, etc 18
Setting menu 2 : MODBUS ${ }^{\circledR}$ RTU communication 22
Setting menu 3: Contact / pulse input/output, equivalent CO_{2}, harmonic, operating time, etc 25
Setting menu 4: Upper / lower limit alarm setting, alarm delay time ,alarm reset, etc 26
Setting menu 5: Setting related to logging unit
Setting menu 5: MODBUS ${ }^{\circledR}$ TCP communication 29
Confirmation menu 1-5: Confirmation of setting values in setting menu 1-5 30
Initialization of related items by change of setting 31
Clock setting and logging data clear 32
Change of date format 33
How to use test mode 34
Test menu 1: Discrimination support function for improper connection 35
Test menu 2: Communication test 47
Test menu 3: Pulse output test 48
Test menu 4: Alarm output test 48
8. Operation 49
Operation procedure in operating mode 49
Measured item indication in operating mode
How to use upper/lower limit alarm function.54
Operations of alarm reset55
Preset and all data reset
9. Device operation 57
Measured items 57
Restrictions of measured data59
10. Reference. 60
In case you think the unit is in failure 60
About error number60
After-sales service 61
Q\&A 61
11. Requirement for the compliance with EMC Directives 63
12. Specifications 64
Common specifications64
Specifications of MODBUS ${ }^{\circledR}$ RTU communication66
13. Option devices 67
14. External dimensions 70
15. Index 71

Precautions for Operating Environment and Conditions

- This unit is premised on being used in pollution degree 2^{*} environment. When used in higher pollution degree, protect this unit from pollution on another device side to be incorporated.
- Over voltage category of measuring circuit in this unit is CAT $\mathbb{I I}^{*}$, and that of auxiliary power circuit (MA, MB) is CAT II*.
- Do not use this product in the places listed below. Failure to follow the instruction may cause malfunctions and a life decrease of product.
- Places the Ambient temperature exceeds the range $-5-+55^{\circ} \mathrm{C}$.
- Places the average daily temperature exceeds $+35^{\circ} \mathrm{C}$.
- Places the Relative humidity exceeds the range 30-85\% or places with dewfall.
- Vibration and impact exceed the specifications.
- Dust, corrosive gas, saline and oil smoke exist.
- Places exposed to direct sunlight.
- Places exposed to rain or water drop.
- Places in strong electromagnetic field or places large amounts of external noise exist.
- Places metal fragments or conductive substance are flying.
- Altitude exceeds 2000 m .
< For prevention of electric shock>
- This unit is designed to be housed within another device for prevention of electric shock. House this unit within the device such as the grounded control panel before use.
- To prevent persons with little knowledge about electric equipment from electric shock, panel must be taken either following measure.
- Lock the panel so that only those who get an education about electric equipment and have sufficient knowledge can unlock, or shut off power supply automatically by opening the panel.
- Cover the dangerous part of this unit. (Required protection code is higher than IP2X.)
*: For the definition of the pollution degree and the over voltage category, refer to EN61010-1/2010.

Matters concerning the precaution before use

- Use the unit in the specified usage environment and conditions.
- The setting of this unit (phase system, primary voltage, primary current) is necessary before use it.

Installation and Wiring Precautions

Make sure to read this manual carefully before Installation and Wiring.
<Precautions for Electric work>

- Any person who is involved in the installation and the wiring of this unit should be fully competent to do this work.
- Work under the electric outage condition when installing and wiring. Failure to do so may cause electric shock, a failure of the unit, a fire etc.
- When tapping or wiring, take care not to entering any foreign objects such as chips and wire pieces into this unit.
- Check the connection diagram when wiring. Wrong wiring may cause failure of the unit, a fire or electric shock.
- For protection against noise, transmission lines and input/output lines shall not be placed close to or bound together with the power lines and high-voltage lines.
- The wires to be connected to this unit shall be placed in a duct or fixed together by cramping. If the electric wires are not placed in the duct or cramped together, loosen wires or their movement or careless stretch may cause a breakage of the unit or wire or a malfunction due to poor contact of electric wires.
- If transmission lines and input/output lines are placed close to or bound together with the power lines and high-voltage lines, keep distance as below between them.

Condition	Distance
Power line 600 V or less	300 mm or longer
Other power line	600 mm or longer

<Connection of terminal block>

- Strip the wires with proper length. Overlong stripping length may cause short to next wire. Shorter stripping length may cause contact failure.
- Take care not to short to next terminal by a filament. (Do not plate the wires with solder.)
- Do not connect three or more wires to one terminal of a terminal block for preventing loose contact and wires dropout.
- Use appropriate size of electric wires. If inappropriate size of electric wire is used, it may cause a fire due to generated heat.
- Circuits connected to an auxiliary power circuit (MA, MB) need to be used the over current protection device (fuse, circuit breaker, etc.) to prevent shorting connecting wires. (Select an appropriate rating to prevent burnout of the wires.)
- Tighten the screw within the specified torque. Over tightening can damage the screw and/or terminal.
- After tightening the screws, be sure to check all the screws tightened. Loose screw may cause malfunction of the unit, a fire or electric shock.
- Be sure to attach the terminal cover to prevent electric shock.
- Do not directly touch any conductive part of the unit. Doing so can cause electric shock, failure or malfunction of the unit.
- If the wires connected to this unit are strongly pulled off, it may cause a malfunction or a breakage to the unit or the wire.
<Connection of frame GND terminal>
- Do not exceed the specified voltage when doing an insulation resistance test and a commercial frequency withstand voltage test. Do not connect to frame GND terminal during the insulation resistance test and pressure test.
- Use the crimp-type terminal appropriated for the size of electric wires. If inappropriate crimp-type terminal is used, a wire breakage or a contact failure may occur, which may cause a device malfunction, a failure, a burnout or a fire.
Frame GND terminal must be grounded according to the D-type ground (ground resistance is not exceed 100』).

Precautions for Use

- This unit cannot be used for deal and proof of electric energy measurement stipulated in the measurement law.
- Before operating the product, check that active bare wire and so on does not exist around the product. If any bare wire exists, stop the operation immediately, and take an appropriate action such as isolation protection.
In the event of a power outage during the setting, the unit is not set correctly. Please set again after power recovery

Danger
- Do not touch the live part. It may cause electric shock, electric burn injury or damage of the device.
- Work under the electric outage condition when installing and wiring.

© Caution

- Do not disassemble or modify this unit. It may cause failure, malfunction, injury or fire.
- Use this unit within the ratings specified in this manual. If it is used outside the ratings, it may cause not only malfunction or failure but also fire burnout
- When using this product, make sure to use it in combination with 5 A current transformer(max 30V AC).
- Do not open the secondary side of the CT circuit. If the CT is not connected properly or if the secondary side of the CT is open, it may result in high voltage on the secondary side of the CT , the insulation of the secondary winding wire may be damaged, and burnout may be caused.

Maintenance Precautions

- Use a soft dry cloth to clean off dirt of the unit surface. Do not let a chemical cloth remain on the surface for an extended period of time nor wipe the surface with thinner or benzene.
- Check for the following items to use this unit properly for long time.
(1) Daily maintenance
(a) No damage on this unit
(b) No abnormality with LCD indicators
(c) No abnormal noise, smell or heat
(2) Periodical maintenance (Once every 6 months to 1 year)
- No looseness with installation and wire connection electric shock, failure of the unit or a fire. Tighten the terminal regularly to prevent a fire.

Storage Precautions

- To store this unit, turn off the power and remove wires, and put it in a plastic bag
- For long-time storage, avoid the following places. Failure to follow the instruction may cause a failure and reduced life of the unit.
- Places the Ambient temperature exceeds the range $-10-+60^{\circ} \mathrm{C}$.
- Places the average daily temperature exceeds $+35^{\circ} \mathrm{C}$.
- Places the Relative humidity exceeds the range $30-85 \%$ or places with dewfall.
- Vibration and impact exceed the specifications.
- Dust, corrosive gas, saline and oil smoke exist.
- Places metal fragments or conductive substance are flying.
- Places exposed to rain, water drop or direct sunlight.

Disposal Precautions

When disposing of this unit, treat it as industrial waste.

About packaging materials and this manual

For reduction of environment load, packaging materials are produced with cardboard, and this manual is printed on recycled paper.

2. Disclaimer

- It is prohibited to reprint or copy all contents of this document in any form without our permission.
- The contents of this document will be updated to follow revisions to software and hardware, however under unavoidable circumstances it may not be synchronized.

3. Name and function of each part

Name of each part

Sign and function of the terminal block

Terminal symbols	Function	Description
P1/P1, P2/P0, P3/P3, NC/P2	Input voltage	Connect the voltage input wire of the measuring circuit.
().	Frame GND (FG)	Connect to ground. (D-type ground)
MA, MB	Auxiliary power	Connect the auxiliary power supply.
1k, 1L, 2k, 2L, 3k, 3L	Input current	Connect the secondary output of the current transformer (CT) connected to the measurement circuit's current wire.
485+, 485-		Connect the communication wire (MODBUS ${ }^{\circledR}$ RTU).
		Connect to ground. (D-type ground)
SLD	Connect with "485-" terminals (the unit at end of the link) Ter page 13	
X1, COMx	Pulse input/ contact input	Connect pulse input/contact input wires.
Y1, COMy	Pulse output/ contact output	Connect pulse output/contact output wires.

- Back view

- Function of operation buttons

Control buttons have many functions as below. (How to change mode page 15.)

Meaning of symbol: \bigcirc (Press), \square (Press more than 1 sec), © (Press more than 2 sec), — (Press both at the same time)

Operation Mode		Name of Button				Function
		SET	-/RESET	+/PHASE	DISP	
Operating Mode					\bigcirc	Change measured items
				\bigcirc		Change phase
			0			Change harmonic order (at harmonic display)
			©			Clear alarm (at alarm keeping)
		©				Transition to confirmation mode
		\bigcirc	\bigcirc			Transition to setting mode
	Contact display		\bigcirc			Clear contact latch
	Integrated		(2)	\bigcirc		Transition to preset display
	display	θ		\bigcirc		Transition to reset display of all data
Setting mode / Confirmation mode	Menu display	0				Enter setting menu
			$\begin{gathered} \mathrm{O} \\ \text { (ㅁ) } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { (口) } \end{gathered}$		Moving up or down of menu number (Move at fast speed when pressing more than 1 sec)
	Setting mode / Setting display	O				Change of setting items (forward) Transition to setting menu number (at final setting item)
			$\begin{gathered} \mathrm{O} \\ \text { (ㅁ) } \end{gathered}$	$\begin{gathered} \hline \bigcirc \\ \text { (口) } \end{gathered}$		Moving up or down of setting value (Move at fast speed when pressing more than 1 sec)
					\bigcirc	Change setting items (backward) Transition to setting menu number (at beginning setting item)
		\square				Go back to setting menu
	Confirmation mode / Setting display	O				Change setting items (forward) Transition to setting menu number (at final setting item)
					O	Change setting items (backward) Transition to setting menu number (at beginning setting item)
		\square				Transition to setting menu
	Confirmation display of setting reflection	O				At "END" display, memorize changed setting and transition to operating mode At "CANCEL" display, annul changed setting and transition to operating mode
			0	0		Moving up or down of setting value
			\bigcirc		©	Reset setting values to factory default (only effective at CANCEL display)

- Functions of LCD

No.	Indicator	Description
1	Measured value	Display measured value digitally.
2	Measured item	Display measured item displayed on indicator 1.
3	Communication	Light when connecting communication unit.
4	Energy Measurement	Light when measuring electric energy
5	Setting	Indicator SET lights on setting mode. Indicator SET lights on confirmation mode.

\triangle Caution

Any person who is involved in the installation and the wiring of this unit should be fully competent to do this work.
There are two installation methods, surface mounting and panel mounting

- Surface mounting

(1) How to attach to the IEC rail

Applicable IEC rail

Attaching
(1) Pull IEC rail fixture downward.

Removing

*1: When showing the display part by cutting the panel face in mounting the IEC rail, cut the panel at where it is more than 50 mm away from the fulcrum of the open/close of the door.

Plate mounting
(1) Screw mounting (Measuring unit)

Dimensions of hole panel (76×44.5)

*Panel cut dimensions are made larger than the product considering tolerance in panel cut.
If you want to prevent dust and other intrusion the gap of panel cut, cut the panel according to the product to be mounted.
(2) Screw mounting (Measuring unit + optional unit)

Dimensions of hole panel (101×44.5)

*Panel cut dimensions are made larger than the product considering tolerance in panel cut.
If you want to prevent dust and other intrusion the gap of panel cut, cut the panel according to the product to be mounted.

Attaching

Attach the plate by using 2 screws. Tightening torque: $0.63 \mathrm{~N} \cdot \mathrm{~m}$

$$
\begin{array}{l|l}
\hline \text { Recommended } & \begin{array}{l}
\text { cross recessed head screw with captive } \\
\text { washer and flat washer } \\
\text { screws }
\end{array} \\
\hline
\end{array}
$$

Attaching

Attach the plate by using 2 screws. Tightening torque: $0.63 \mathrm{~N} \cdot \mathrm{~m}$

(3) Screw mounting (When using the measuring unit and the attachment for panel mounting)

Dimensions of hole panel (76×44.5)

*Panel cut dimensions are made larger than the product considering tolerance in panel cut.
If you want to prevent dust and other intrusion the gap of panel cut, cut the panel according to the product to be mounted.

Attaching
Attach the plate by using 2 screws, then install the attachment on the plate. Tightening torque: $0.63 \mathrm{~N} \cdot \mathrm{~m}$

Attachment for panel

*Please screw up the panel mounting attachment where there are high levels of vibration.
*The screws (mounting screws and screws for panel mounting attachment) are supplied with panel mounting attachment.
(4) Screw mounting (Measuring unit + optional unit, when using the attachment for panel mounting)

Dimensions of hole panel (101×44.5)

*Panel cut dimensions are made larger than the product considering tolerance in panel cut.
If you want to prevent dust and other intrusion the gap of panel cut, cut the panel according to the product to be mounted.

Attaching

Attach the plate by using 2 screws, then install the attachment on the plate (Use the attachment to cut the three points as below). Tightening torque: $0.63 \mathrm{~N} \cdot \mathrm{~m}$

*Please screw up the panel mounting attachment where there are high levels of vibration.
*The screws (mounting screws and screws for panel mounting attachment) are supplied with panel mounting attachment.

Phase wire type	Type	Rating voltage	Figure
3-phase 4-wire type	STAR	max AC277V(L-N)/480V(L-L)	Figure 1
3-phase 3-wire type	DELTA	$\max A C 220 \mathrm{~V}$ (L-L)	Figure 2
	STAR	$\max A C 440 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$	Figure 3
1-phase 3-wire type	-	$\max A C 110 \mathrm{~V}(\mathrm{~L}-\mathrm{N}) / 220 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$	Figure 4
1-phase 2-wire type (Note)	DELTA	$\max A C 220 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$	Figure 5
	STAR	$\max A C 440 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$	Figure 6

Note. In case of a circuit which is wired from the delta connection of a 3-phase 3-wire type, a circuit of a transformer of a 1-phase 2-wire type or a 1-phase 3-wire type, the maximum rating is "AC220V".
In case of a circuit which is wired from a 3-phase 4-wire type or the star connection of a 3-phase 3-wire type, the maximum rating is " AC 440 V ".

Figure1. 3-PHASE 4-WIRE(STAR)

Figure2. 3-PHASE 3-WIRE(DELTA)

Figure4. 1-PHASE 3-WIRE

Figure5. 1-PHASE 2-WIRE(DELTA)

Figure3. 3-PHASE 3-WIRE(STAR)

Figure6. 1-PHASE 2-WIRE(STAR)

3-phase 4-wire(in combination with VT)
Power source side
*2,3,4 (refer to next page)

Load side
3-phase 3-wire(for high voltage circuit)
*2,3,4 (refer to next page)

1-phase 2-wire(for lowvoltage circuit)

3-phase 4-wire(for lowvoltage circuit)

1-phase 3-wire / 3-phase 3-wire(for low voltage circuit)

* Fuse is required to conform to UL.

Note 1: For low voltage circuits, do not connect to grounding the secondary side of VT and CT .

- Use appropriate crimp-type terminal. Appropriate crimp-type terminal is as below.
- Use electric wires as below, and tighten the terminal screws by the torque as below.

	Applicable wire	Tightening torque	Recommended crimp-type terminal
Auxiliary power, voltage input terminals	stranded wire: AWG26-14(0.13~2.0mm ${ }^{2}$) single wire : AWG26-14 ($\phi 0.41 \sim 1.62 \mathrm{~mm})$	0.8~1.0N $\cdot \mathrm{m}$	For M3.5 screw of external diameter below 5.6mm
Current input terminals	stranded wire: AWG18-14(0.82~2.0 $\left.\mathrm{mm}^{2}\right) \quad{ }^{* 5}$ single wire $:$ AWG18-14($\phi 1.03 \sim 1.62 \mathrm{~mm})$	$0.5 \sim 0.6 \mathrm{~N} \cdot \mathrm{~m}$	For M3 screw of external diameter below 5.6mm
Input and output terminals	stranded wire : AWG22-14(0.33~2.0mm²) single wire : AWG22-14 ($\phi 0.65 \sim 1.62 \mathrm{~mm}$)	$0.5 \sim 0.6 \mathrm{~N} \cdot \mathrm{~m}$	For M3 screw of external diameter below 5.6mm

*5: If the diameter of the wire is small, the conductor resistance of the wire will be high and the consumption VA of the wire will increase. Decide wire diameter and wire length so that it does not exceed the rated burden of CT to be connected.

- Maximum voltage of the circuit connected to this unit directly is 277 / 480 V . For the circuit over this voltage, use the transformer. Using the transformer, primary voltage is configurable up to 6600 V .
(Primary voltage of VT can be set up to 6600 V , and secondary voltage of VT can be set up to 220 V as optional setting.)
- For MODBUS ${ }^{\circledR}$ RTU communication wiring, recommended to have the extra length wires about 200 mm (When extended to B/ NET transmission from MODBUS ${ }^{\circledR}$ communication, use of MODBUS ${ }^{\circledR}$ RTU communication wiring is possible).
- When screwing the terminals at both ends of the terminal block, be careful not to touch the projection of the terminal block cover.
- In case using external input and/or external output, refer to the following.

External input:For the case of contact input

No-voltage a-contact
Use an appropriate type for 5V DC 7mA switching.

External output:For the case of contact output

External input: For the case of pulse input

No-voltage a-contact Use an appropriate type for 5V DC 7mA switching.

External output: For the case of pulse output

No-voltage a-contact
35V DC 75mA or,
24 V AC 75 mA (power factor: 1)

-Connection of MODBUS® ${ }^{\circledR}$ RU communication terminals:

1. Use the twisted shielded pair cable for transmission lines.(Recommended cable page 66.)
2. About the terminal resistance of the MODBUS®RTU transmission line
-Please get terminal resistance of 120Ω to the apparatus of transmission line both ends.
(Termination resistances of 120Ω can be used by short-circuiting " 485 -" and "Ter" terminals.)
-When you are connected to the PLC on transmission line one, please get terminal resistance of 110Ω in the PLC side.
(Please refer to Page14, " \cdot Wiring for MODBUS ${ }^{\circledR}$ UNIT(QJ71MB91) and EMU4-FD1-MB " for the details.)
-When you are connected to the GOT on transmission line one, please get terminal resistance of 110Ω in the GOT side.
(Please refer to Page14, " - Wiring for GOT(GOT1000) and EMU4-FD1-MB " for the details.)
3. Connect to ground by using thick wires to decrease impedance.
4. MODBUS ${ }^{\circledR}$ RTU transmission lines shall not be placed close to or bound together with the high-voltage lines.
5. Ground the "SLD" terminal at one end.

- wiring terminal

EMU4-FD1-MB

- Procedure for wiring

-Wiring for MODBUS ${ }^{\circledR}$ UNIT(QJ71MB91) and EMU4-FD1-MB

Note) The terminal resistance of the MODBUS ${ }^{\circledR}$ unit (QJ71MB91) side, please connect "110 $1 / 2 \mathrm{~W}$ ". For details, please refer to "Mitsubishi frequent use sequencer MELSEC-Q Series (QJ71MB91) MODBUS ${ }^{\circledR}$ interface unit (details)."
-Wiring for GOT(GOT1000) and EMU4-FD1-MB

Note) Please set the terminal resistance of the GOT(GOT1000) "110 Ω ".
Please of the setting method refer to " GOT1000 Series Connection Manual (Microcomputer, MODBUS Products, Peripherals) for GT Works3".

6. Operating mode

This unit has the operating modes. Switch these modes according to the purposes. The operating mode is displayed immediately after the auxiliary power loading.

Mode	Function	Reference
Operating mode	Display measured value digitally. It can display the condition of contact input and present time (*1) other than the present value of the measured values.	page 49
Setting mode	Set basic setting for phase wire method, primary voltage, primary current and alarm monitoring for alarm output elements.	page 16
Confirmation mode (Test mode)	Mode to confirm the setting value for each setting item. (The Setting cannot be changed in this mode, so it can be prevented setting change by human error.) In addition, this unit has the test function that can be used for such as set up of an equipment. - Discrimination support display for incorrect wiring: Display useful to discriminate for incorrect wiring such as phase angle display of voltage, current. - Pulse, Alarm test: Switch pulse output contact and alarm contact without measurement (voltage and current) input.	pommunication test: Send back fixed numerical data without measurement (voltage and current) input.
Reset mode / Preset mode	Reset: Integrated values (electric energy, operating time, etc.) can be zeroed. Preset: Preset of electric energy and reactive energy.	page 56

*1: Only when connecting logging unit.

7. Setting method

Procedures for setting

Set items such as phase wire system, primary voltage, and primary current in the setting mode to measure and monitor. Under normal use, it shall be sufficient to set the setting menu 1 (Basic setting) only.
For details, refer to after the following page.
<How to set>
(1) Go into the setting mode by pressing both SET and - / RESET at the same time for 2 sec.
(2) Select the setting menu number by pressing + / PHASE -/RESET
(3) Determine the setting menu number by pressing SET
(4) Set each setting item.
(5) After all setting are done, select "End" on the setting menu and press SET
(6) When prompted for End display, select "End" and press SET

Caution	-Setting menu 5 related to the logging Unit is shifted to Setting mode from Operating mode, and Please go in a procedure to set only Setting menu 5. page 28 •If you change setting, related setting items and measured data are initialized. Please check them beforehand.

Basic operations in setting

Function	Operation	Supplement
Choose setting value	Press +/PHASE or -/RESET.	Press for more than one second to fast- forward
confirm setting value	Press SET.	After setting value is confirmed, transition to next item.
Go back the previous setting item	Press DISP.	Setting value of the last item before return is effective.
Go back to setting menu during setting	Press SET for one second.	

Symbol	Behavior	Operation of control button	
$\xrightarrow{\square}$	Transition from operating mode to setting mode.	"SET" + "-"	Press both at the same time for 2 sec
$\xrightarrow{\square 0}$	Transition from operating mode to confirmation mode	"SET"	Press for 2 sec
\longrightarrow	Select menu number or "End".	"+" or "-"	Press several times
\longrightarrow	Enter each setting display or transition to next item.	"SET"	Press once
\longleftrightarrow	Go back to previous setting display.	"DISP"	Press once
No display	Select setting value.	"+" or "-"	Press several times
	Transition to "End" display.	"SET"	Press once
■ -	Memorize changed setting and transition to operating mode.	"SET"	Press once
$4 \cdots$	Select "CANCEL".	"+" or "-"	Press once
- . \rightarrow	Cancel change of setting value.	"SET"	Press once
*	Skip other items during setting.	"SET"	Press for 1 sec
\square	Reset setting values to factory default.	"DISP" + "-"	Press once

Setting menu 1: Phase wire system, primary voltage, primary current, demand time, etc.

In this menu, set phase wire system, primary voltage, primary current, demand time, etc.
In operating mode, press both SET nd $-/$ RESET at the same time for more than two seconds to transition to setting mode and enable the following operations.

Set the direct voltage according to voltage of the measured circuit

- In case you choose " 3 P4"in (1) Phase wire system

- In case you choose "3P3" or "1P2"in (1) Phase wire system

Set the primary voltage of combined $\mathrm{V} T$

Caution:

If there is no values above you want to set to, choose "SP" to enable the special primary voltage and the special secondary voltage.
In case you choose "3P4" (three-phase 4-wire system) in (1) Phase wire system, the special voltage is only available.

```
If you choose "SP", transition to "(5) Special primary voltage".
If you choose the value except for "SP", transition to "(7) Primary current)",
    (In this case, secondary voltage is fixed to 110V.)
```

Set the special primary voltage of combined VT.

- Setting range: 1V to 6600V

Default value is $\underline{690 \mathrm{~V}}$

Setting of special primary voltage

- Press +/PHASE or -/RESETo choose the value at flashing digit.
- Press SET for the setting digit (flashing digit) to shift to lower.
- Press DISP for the setting digit (flashing digit) to shift to upper.
- You can set the upper three digit of the value to the range of 1 V to 6600 V .

Caution: In case you set the value except for between 1 V and 6600 V , indicate the error (E005) When indicating the error, press SET check the setting values and set the new value again.

- Press SET at the lowest digit to transition to "(6) Special secondary voltage".

The values set the upper fourth digit and lowers to are rounded down. After setting value flashes three times, transition to "(6) Special secondary voltage".

Set the special secondary voltage of combined V .

- Setting range: 1 V to 220 V

Default value is 110 V (for three phase 3 -wire system and single-phase 2-wire system), or 64V (for three-phase 4-wire system).

Setting of special secondary voltage

- Press +/PHASE or -/RESET to choose the value at flashing digit.
- Press SET for the setting digit (flashing digit) to shift to lower.
- Press DISP for the setting digit (flashing digit) to shift to upper.
- You can set the value to the range of 1 V to 220 V .

Caution: In case you set the value except for between 1 V and 220 V , indicate the error (E005). When indicating the error, press SETo check the setting values and set the new value again.

- Press SET at the lowest digit to transition to "(7) Primary current".

Set the primary current of combined CT.

Supplement:
"CT" means Current Transformer.

Supplement: If there is no values above you want to set to, choose "SP" to enable the special primary current.

If you choose "SP", transition to "(8) Special primary current".
If you choose the value except for "SP", transition to "(9) Secondary current".

Set the special primary current of combined CT.

- Setting range: 1 A to 6000 A (Default: 100.0 A)

Setting of special primary current

- Press + / PHASE or -/ RESET to choose the value at flashing digit.
- Press SET for the setting digit (flashing digit) to shift to lower.
- Press DISP for the setting digit (flashing digit) to shift to upper.
- You can set the value in the range from 1A to 6000A.

If the value is less than 10A, you can set upper two digits of it.
If the value is 10 A or more, you can set upper three digits of it.
Caution: In case you set the value except for the range from 1A and 6000A, indicate the error (E005). When indicating the error, press SET check the setting values and set the new value again.

- Press SET at the lowest digit to transition to "(9) Secondary Current".

Set the secondary current of combined CT.
$\underline{5 A} \leftrightarrow 1 A$

Set the current demand time.
On setting display, " s " means "second" and " M " means "minute".

Set the electric power demand time.
On setting display, "s" means "second" and " M " means "minute".

The model code can be confirmed.
(This is only display, and settings cannot be changed.)

Complete the setting or continue in other menu according to procedures for setting.
For procedures for setting, page 16
12345

Setting menu 2: MODBUS ${ }^{\circledR}$ RTU communication

In this menu, set address, baud rate, parity and stop bit for MODBUS®RTU communication.
In operating mode, press both SET nd $-/$ RESET at the same time for more than two seconds to transition to setting mode and enable the following operations.

Setting menu 3: Contact / pulse input/output, equivalent CO_{2}, harmonic, operating time, etc.

In this menu, set contact / pulse input/output, equivalent CO_{2}, harmonic, operating time, etc.
In operating mode, press both SET nd -/RESET t the same time for more than two seconds to transition to setting mode and enable the following operations.

Choose the setting menu 3.
(As shown in the left figure)

Set External input signal.

For pulse input, choose "PLS.".
For contact input, choose "CO.P.".
In case you do not set it, choose "non".

Set the reset method of contact input.
Auto \leftrightarrow HoLd

Reset method (Setting value)	Summery
Auto-reset (Auto)	When contact input turns OFF (open), contact input state display also turns OFF (open) automatically.
Self-retention (HoLd)	Once the device detects contact input ON (close), contact input state display keeps ON (close) until retention clear operation even if contact input turns OFF (open).

Supplement: In (1) Contact/ pulse input, when you choose the value except for "CO.P.", this setting is skipped.

Set External output signal.

For pulse output, choose "PLS.". For contact output, choose "CO.P.". In case you do not set it, choose "non".

Set the unit amount per pulse of pulse output.
Selectable unit amount is as follows depending on the full load power:
*1: VT primary voltage in single-phase 3 -wire system is regarded as 110 V .
*2: Using direct connection, replace VT primary voltage with direct voltage in calculation above.
*3: In three-phase 4 -wire system, replace VT primary voltage or direct voltage with phase voltage in calculation above.

Full load power $[\mathrm{kW}]$		Selectable unit amount per pulse $[\mathrm{kWh} /$ pulse $]$				Default value
	less than 12		1	0.1	0.01	0.001
12 or more	and	less than 120	10	1	0.1	0.01
120 or more	and	less than 1200	100	10	1	0.1
1200 or more	and	less than 12000	1000	100	10	1
12000 or more		10000	1000	100	10	$\underline{0.1}$

Supplement: In (3) Contact/ pulse output, when you choose the value except for "PLS.", this setting is skipped.

Set whether the equivalent CO_{2} is indicated or not.

CO_{2} equivalent is the integration of the value obtained by multiplying electric energy and CO_{2} conversion factor.

- If you need this indication, choose "on" and press SET to transition to the setting below.
- If you do not need this indication, choose "OFF" and press SET to transition to (7) Harmonic current indication.

Set the CO_{2} conversion factor
(Default value: $0.555 \mathrm{~kg}-\mathrm{CO}_{2} / \mathrm{kWh}$)
Setting of CO_{2} conversion factor

- Press +/PHASE or -/RESET to choose the value at flashing digit.
- Press SET or the setting digit (flashing digit) to shift to lower.
- Press DISP for the setting digit (flashing digit) to shift to upper.
- You can set the value to the range of 0.000 to $0.999(\mathrm{~kg}-\mathrm{CO} 2 / \mathrm{kWh})$.
- Press SET tt the lowest digit to transition to (7) Harmonic current indication.

Set whether the harmonic current is indicated or not.
$\underset{\text { (Do not indicate) }}{\text { ofF }} \leftrightarrow \underset{\text { (Indicate) }}{\text { on }}$

Setting menu 4: Upper / lower limit alarm setting, alarm delay time, alarm reset, etc.

In this menu, set the upper / lower alarm, alarm delay time, reset method of alarm clear, etc.
In operating mode, press both SET and -/RESET at the same time for more than two seconds to transition to setting mode and enable the following operations.

Choose the setting menu No. 4.
(As shown in the left figure)

Set the use or non-use of upper / lower limit alarm.

$$
\underset{\text { (Do not use alarm) }}{\text { oFF }} \leftrightarrow \underset{\text { (Use alarm) }}{\text { on }}
$$

- If you do not use alarm, choose "OFF" and press SET to enter setting menu.
- If you use alarm, choose "on" and press $\mathrm{SET}^{\text {to }}$ transition to the setting below.

Set the measured element applying upper / lower limit alarm to.
Upper / lower limit alarm of measured value is available by setting this item.
 DA (N) upper limit $V(\mathrm{~L}-\mathrm{L})$ upper limit $V(L-L)$ lower limit V (L-N) upper limit $\mathrm{V}(\mathrm{L}-\mathrm{N})$ lower limit \uparrow

Caution:

1. DA: Current demand, $\mathrm{DA}(\mathrm{N})$: N -phase current demand, DW: Electric power demand V (L-L) : Line voltage, V (L-N) : Phase voltage
2. "DA (N)" and "V (L-N)" are selectable in three-phase 4 -wire system
3. "PULSE" is only selectable when you choose "Pulse (PLS.)" on (1) Contact / pulse input of setting menu No. 3 .

Set the alarm value of upper / lower limit alarm element.
Setting range is as follows:

Measured element	Setting range	Unit
DA upper limit, DA (N) upper limit	0-100 (\%) of primary current	A
DA lower limit	0-100 (\%) of primary current	A
V (L-L) upper limit, V (L-N) upper limit	0-100 (\%) of primary voltage	V
V (L-L) lower limit, V (L-N) lower limit	$\underline{0}-100$ (\%) of primary voltage	V
DW upper limit	-100-0-100 (\%) of full load power	W
DW lower limit	-100- -100 (\%) of full load power	W
PF upper limit	-50-100-50 (\%)	\%
PF lower limit	-50-100-50 (\%)	\%
PULSE upper limit	1-999999 (Default value is $\underline{100000}$)	

For operation of alarm value setting, refer to next section.

Operations in alarm value setting display are as follows:

Setting of "Upper / lower limit alarm value"

- Press + / PHASE or -/ RESET to choose the value at flashing digit.
- Press SET for the setting digit (flashing digit) to shift to lower.
- Press DISP for the setting digit (flashing digit) to shift to upper.
- Setting range is different for each alarm element. (refer to previous section)

Caution: In case the value is set to outside-set-value, indicate the error (E005)
When indicating the error, press SET check the setting values and set the new value again.
Press SET at the lowest digit to transition to (4) Alarm delay time.

Set the delay time from fulfilling alarm occurring condition.
Set the alarm delay time if you want to avoid the alarm caused by such as instant overload and noise.

Once setting, the alarm does not occur unless the time of exceeding the upper / lower limit alarm value is over the specified delay time.
In setting display, " s " means "second" and " M " means "minute".

Set the alarm reset method in alarm occurrence.

Alarm reset method (Setting value)	Summery (For details, page 54)
Auto-reset (Auto)	Reset the alarm automatically when alarm occurring condition is gone.
Self-retention (HoLd)	The alarm is held even after alarm occurring condition is gone. Button operation is necessary to clear the alarm.

Complete the setting or continue in other menu according to procedures for setting.
For procedures for setting, page 16

Setting menu 5: Setting related to logging unit

In this menu, set the logging unit ID or logging data clear.
In operating mode, press both SET nd -/RESET the same time for more than two seconds to transition to setting mode and enable the following operations.

Caution	You should set the setting menu 5 individually. You should not set it with other setting menu 1 to 4 at the same time. The setting requests of logging unit and the setting requests of main unit cannot be accepted at the same time. Because the setting of logging unit needs for the setting value of main unit which has already been completed.

Setting menu 5: MODBUS ${ }^{\circledR}$ TCP communication

In this menu, IP address, subnet mask, and default gateway for MODBUS ${ }^{\circledR}$ TCP communication.
In operating mode, press both SET nd -/RESET at the same time for more than two seconds to transition to setting mode and enable the following operations.

Set the subnet mask.

Select the subnet mask from the below table.

(1)	128.0.0.0	(9)	255.128.0.0	(17)	255.255.128.0	(25)	255.255.255.128
(2)	192.0.0.0	(10)	255.192.0.0	(18)	255.255.192.0	(26)	255.255.255.192
(3)	224.0.0.0	(11)	255.224.0.0	(19)	255.255.224.0	(27)	255.255.255.224
(4)	240.0.0.0	(12)	255.240.0.0	(20)	255.255.240.0	(28)	255.255.255.240
(5)	248.0.0.0	(13)	255.248.0.0	(21)	255.255.248.0	(29)	255.255.255.248
(6)	252.0.0.0	(14)	255.252.0.0	(22)	255.255.252.0	(30)	255.255.255.252
(7)	254.0.0.0	(15)	255.254.0.0	(23)	255.255.254.0	4	
(8)	255.0.0.0	(16)	255.255.0.0	(24)	$\underline{255.255 .255 .0}$		

Set the Default gateway existence.

If the default gateway exists on the Ethernet, select "on" to communicate with other network.

- If the default gateway exists, choose "on" and press SET to transition to the setting below. - If the default gateway does not exist, choose "oFF" and press SET to transition to (6)MODBUS ${ }^{\circledR}$ TCP module reset.

Set the Default gateway address.

When the changed above settings of MODBUS ${ }^{\circledR}$ TCP are enabled, set to "on."
(When it is not set to "on," the changed settings of MODBUS ${ }^{\circledR}$ TCP do not become effective.)
If invalid default gateway address is set, error code E05 is appears.
If that happens, press SETand set again after review the default gateway address.
The following default gateway addresses cannot be configured.
-0.0.0.0
-xxx.xxx.xxx. 255 (xxx are any values)

```
OFF \(\longleftrightarrow\) on
```


Confirmation menu 1-5: Confirmation of setting values in setting menu 1-5

In operating mode, press SET for more than two seconds to transition to confirmation mode and enable operation. Transition of display and operation is as same as those of setting menu 1-5.
For setting menu 1-5, p.18-30
(Caution: Change of setting is not available in confirmation mode.)

	Setting item		Changed setting value																															
			Menu 1									Menu 2				Menu 3										Menu 4					Menu 5			
																			$\begin{array}{\|c} \\ \hline \frac{1}{2} \\ \frac{1}{3} \\ \frac{3}{3} \\ \frac{2}{3} \\ \frac{3}{3} \\ 0 \\ 0 \\ \frac{0}{3} \\ \hline 2 \end{array}$															
	$\begin{aligned} & \stackrel{\Gamma}{\vec{J}} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\Sigma}{\Sigma} \end{aligned}$	Phase wire system																																
		Use of VT		,																														
		Direct voltage	\bigcirc																															
		Primary voltage (Special primary voltage)	-			\checkmark																												
		Secondary voltage	\bigcirc				\checkmark																											
		Primary current (Special primary current)	\bigcirc					,																										
		Secondary current	\bigcirc						\checkmark																									
		Electric power demand time								-																								
		Current demand time																																
	$\left\|\begin{array}{l} \sim \\ \vec{c} \\ \underset{\sim}{\omega} \\ \Sigma \end{array}\right\|$	MODBUS®RTU address																																
		MODBUS®RTU baud rate											-																					
		MODBUS®RTU parity												-																				
		MODBUS®RTU stop bit																																
		Contact/pulse input														\checkmark																		
		Contact reset status															,																	
		Contact/pulse output																,																
		Pulse output unit																																
		With or without CO2 indication																		,														
		Equivalent CO2 setting																			-													
		Harmonic current indication setting																				V												
		Harmonic voltage indication setting																					-											
		Operating time indication setting																																
		Operating time measured item setting																							,									
		Use of upper/lower limit alarm	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc								\square																		
		Upper/lower limit alarm element	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc								\square																		
		Upper/lower limit alarm value	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc								\square											\bigcirc	-						
		Alarm delay time																											-					
		Alarm reset method																												-				
		Logging unit ID																													-			
		Logging date clear confirmation																																
		MODBUS®TCP IP address																														\checkmark		
		MODBUS®TCP Subnet mask																															V	
		MODBUS®TCP Default gateway existence																																-
		MODBUS®TCP Default gateway address																																\bigcirc
			Symbol			Meaning																												
						Initialized																												
						Change to default value corresponding to phase wire system																												
			\square			Initialized when the Not initialized					he	upp	er li	limit	of p	ulse	co	unt	t is	set	and	inpu	ut m	meth	hod	is	chan	nged	d fro	m p	pulse to	o con	ntac	
			None																															

All settings are reset to factory default by the following operation.
Settings are only initialized. Integrated values (such as electric energy, reactive energy and operating time) are not changed.
Enter CANCEL display in setting mode and operate as follows to initialize all settings. For entering CANCEL display, refer to procedures for setting. (page 16)

Setting mode
Initialization completed

CANCEL display
$\begin{array}{r}\text { Mínlif } \\ -\quad 193455 \\ \hline \text { Measurement display }\end{array}$

Clock setting and logging data clear

When connecting logging unit, you can set the clock of it.
On the date indication in operating mode, press both +/PHASE -/RESET ee same time for more than two seconds to transition to clock setting and enable the following operations.
*Caution: The date is not indicated in operating mode when the logging unit is not connected.

Confirm logging data clear.

$$
\underset{\text { (Do not clear data) }}{\text { "no" }} \longleftrightarrow \underset{\text { (Clear data) }}{\text { "yES" }}
$$

If you do not clear logging data, choose "no" and press SET to enter date indication (operating mode).
If you clear logging data, choose " yES " and press SET to transition to below setting.
Caution: If you choose "no" (i.e. do not clear data), the clock setting is not changed.

Confirm logging data clear finally.
$\underset{\text { (Do not clear data) }}{\text { "no" }} \longleftrightarrow \underset{\text { (Clear data) }}{\text { "yES" }}$

If you do not clear logging data, choose "no" and press SET to enter date indication (operating mode).

- If you clear logging data, choose " yES " and press SET to transition to below setting.

Caution: If you choose "no" (i.e. do not clear data), the clock setting is not changed.
If you choose "yES" (i.e. clear data) here, logging data is cleared, and at the same time, clock setting is changed.

Change of date format

In date format setting, you can choose from "YYYY.MM.DD", "MM.DD.YYYY" or "DD.MM.YYYY" format.
On the date indication in operating mode, press +/PHASE for more than two seconds to transition to date format setting and enable the following operations.
*Caution: The date is not indicated in operating mode when the logging unit is not connected.

How to use test mode

Test mode has the functions which you can utilize in such as the launch of equipment. The functions in test mode are as follows:

Test menu	Details
1. Discrimination support function for improper connection	Indicate phase angle of current and voltage, electric power, voltage and current of each phase. You can discriminate easily whether the input connection for measurement (voltage and current) is proper or not by checking each indicated values.
2. Communication test	For the device with communication function, it can send back the fixed numerical data without the input of measurement (voltage and current). Use for such as the opposing test to host system.
3. Pulse output test	You can check the pulse output without the input of measurement (voltage and current). Use for such as the check of the connection to the receiving device.
4. Alarm output test	You can check the alarm output without the input of measurement (voltage and current). Use for such as the check of the connection to the receiving device.

- How to test
(1) Press SET for two seconds to enter confirmation mode.
(2) Press + / PHASE or - / RESET to choose confirmation menu 6.
(As shown in the right figure)
(3) Press SET to enter test mode
(4) Test for the each menu.

(Confirmation menu 6)
- Diagram for test mode

Test menu 1: Discrimination support function for improper connection

In configuration mode, choose menu " 6 " to enter test mode. (You cannot enter from setting mode.) In test mode, the following operations can be possible.

Choose the test menu 1.
(As shown in the left figure)

Indicate the phase angle, electric power, voltage and current.
<Example for three-phase 4-wire>

+ /PHASE

Phase angle (Voltage, phase 1N)
(Note: When voltage and current value is 0 , displays " -----".")

Phase angle (Current, phase 1) Phase angle (Current, phase 1) Phase angle (Current, phase 1) (Note: When voltage and current value is 0 , displays " ----"".)

Electric power (phase 1)
Electric power (phase 2)
Electric power (phase 3)

Current (phase 3)
*Press $\mathrm{SET}^{\text {to }}$ to transition to next element from each display.

Display example of discrimination support function for improper connection
Display example (Connection example for three-phase 3-wire)
Indicates improper connection

No.	Power factor (Input)	At the average current ($\left.\mathrm{V} 12=\mathrm{V}_{23}, \mathrm{I} 1=\mathrm{I} 3\right)$												Wiring				
		Phase angle display				Electric power display		Voltage display			Current display							
		$\angle \mathrm{V}_{12}$	$\angle \mathrm{V} 23$	$\angle 11$	$\angle 13$	W1	W3	V12	V23	V31	11	12	13					
Normal status	$\begin{gathered} \hline \text { Forward } \\ 0.707 \\ \hline \text { Forward } \\ 0.866 \\ \hline \end{gathered}$	0	300	345 0	225 240	$\mathrm{W}_{1}>\mathrm{W}_{3}$		$\mathrm{V}_{12}=\mathrm{V}_{23}=\mathrm{V}_{31}$				$11=12=13$						
	1			30	270	$\mathrm{W}_{1}=\mathrm{W}_{3}$												
	$\begin{gathered} \hline \text { Delayed } \\ 0.866 \\ \hline \end{gathered}$			60	300	$\mathrm{W}_{1}<\mathrm{W}_{3}$												
	$\begin{gathered} \hline \text { Delayed } \\ 0.707 \\ \hline \end{gathered}$			75	315													
1	$\begin{aligned} & \text { Forward } \\ & 0.707 \\ & \hline \end{aligned}$	0	60	165	45	W1 = Negative value $\mathrm{W} 3=$ Positive value			$\mathrm{V}_{12}=\mathrm{V}_{23}=\mathrm{V}_{31}$			$11=12=13$		Connection between P1 and P2 are reserved.				
	$\begin{gathered} \hline \text { Forward } \\ 0.866 \\ \hline \end{gathered}$			180	60													
	1			210	90													
	$\begin{gathered} \hline \text { Delayed } \\ 0.866 \\ \hline \end{gathered}$			240	120													
	$\begin{gathered} \hline \text { Delayed } \\ 0.707 \\ \hline \end{gathered}$			255	135													
2	$\begin{gathered} \text { Forward } \\ 0.707 \\ \hline \end{gathered}$	0	120	165	45	W1 = Negative value $\mathrm{W} 3=$ Positive value		$\mathrm{V}_{12}=\mathrm{V}_{23}<\mathrm{V}_{31}$			$11=12=13$			Connection of VT side "1"is reversed.				
	$\begin{gathered} \hline \text { Forward } \\ 0.866 \\ \hline \end{gathered}$			180	60													
	1			210	90													
	$\begin{gathered} \hline \text { Delayed } \\ 0.866 \end{gathered}$			240	120													
	$\begin{gathered} \hline \text { Delayed } \\ 0.707 \end{gathered}$			255	135													
3	$\begin{gathered} \hline \text { Forward } \\ 0.707 \\ \hline \end{gathered}$	0	300	165	225	$\mathrm{W} 1=$ Negative value W3 $=$ Positive value		$\mathrm{V}_{12}=\mathrm{V}_{23}=\mathrm{V}_{31}$			$11=13<12$			Connection of CT on side "1" is reversed.				
	$\begin{gathered} \text { Forward } \\ 0.866 \\ \hline \end{gathered}$			180	240													
	1			210	270													
	$\begin{gathered} \hline \text { Delayed } \\ 0.866 \\ \hline \end{gathered}$			240	300													
	$\begin{gathered} \text { Delayed } \\ 0.707 \\ \hline \end{gathered}$			255	315													
4	$\begin{gathered} \hline \text { Forward } \\ 0.707 \\ \hline \end{gathered}$	0	300	225	345	$\begin{gathered} \hline \mathrm{W} 1=\text { Negative } \\ \text { value } \\ \mathrm{W} 3=\text { Positive } \\ \text { value } \\ \hline \end{gathered}$		$\mathrm{V}_{12}=\mathrm{V}_{23}=\mathrm{V}_{31}$			$11=12=13$			CT side "1" and "3" are swapped.				
	$\begin{gathered} \hline \text { Forward } \\ 0.866 \\ \hline \end{gathered}$			240	0													
	1			270	30	W1	$3=0$											
	$\begin{gathered} \hline \text { Delayed } \\ 0.866 \\ \hline \end{gathered}$			300	60	W1 =	sitive e											
	$\begin{gathered} \hline \text { Delayed } \\ 0.707 \\ \hline \end{gathered}$			315	75	$\mathrm{W} 3=$	egative e											
5	$\begin{aligned} & \text { Forward } \\ & 0.707 \end{aligned}$	0	300	225	105	$\begin{gathered} \hline W 1=\text { Negative } \\ \text { value } \\ \mathrm{W} 3=\text { Negative } \\ \text { value } \\ \hline \end{gathered}$		$\mathrm{V}_{12}=\mathrm{V}_{23}=\mathrm{V}_{31}$			$11=12=13$			Connection of VT's terminals in order of P2, P3, P1 to measuring instrument's terminals P1, P2, P3.				
	$\begin{gathered} \hline \text { Forward } \\ 0.866 \\ \hline \end{gathered}$			240	120													
	1			270	150	$\begin{array}{r} W \\ W 3= \end{array}$	$\begin{aligned} & =0 \\ & \text { egative } \\ & \hline \end{aligned}$											
	$\begin{gathered} \text { Delayed } \\ 0.866 \\ \hline \end{gathered}$			300	180	$\begin{gathered} \mathrm{W} 1=\text { Positive } \\ \text { value } \\ \mathrm{W} 3=\text { Negative } \\ \text { value } \end{gathered}$												
	$\begin{gathered} \text { Delayed } \\ 0.707 \\ \hline \end{gathered}$			315	195													

Display example of discrimination support function for improper connection.
Display example (connection example for three-phase 4-wire)

Display example (connection example for three-phase 4-wire)																	------- Indicates improper connection		
No.	Power factor (input)	Phase angle display						At the average current ($\mathrm{V} 1 \mathrm{~N}=\mathrm{V} 2 \mathrm{~N}=\mathrm{V} 3 \mathrm{~N}, \mathrm{I}=12=13$)								Wiring			
								$\begin{gathered} \hline \text { Electric power } \\ \text { display } \end{gathered}$			Voltage display		Current display						
		$\angle \mathrm{V}_{1 \mathrm{~N}}$	$\angle \mathrm{V}_{2 \mathrm{~N}}$	$\angle \mathrm{V}_{3 N}$	$\angle 11$	$\angle 12$	$\angle 13$	W1	W_{2}	W3	$\mathrm{V}_{1 \times}$	$V_{3 N}$	11	13					
42	$\begin{aligned} & \text { Forward } \\ & 0.707 \end{aligned}$	0	330	300	225	105	345	$\mathrm{W}_{1}=$ Negative value $\mathrm{W}_{2}=$ Negative value $\mathrm{W}_{3}=$ Positive value			$\mathrm{V}_{1}=\mathrm{V}_{3} \times>\mathrm{V}_{2}$		${ }_{1}=12=13$		Connection between P2 and P0 are reserved. And CT side "1" and " 3 " are swapped.				
	Forward 0.866				240	120	0												
	1				270	150	30	$\begin{gathered} W_{1}=0 \\ W_{2}=\text { Negative value }_{W_{3}=0} \end{gathered}$											
	$\begin{gathered} \text { Delayed } \\ 0.866 \end{gathered}$				300	180	60	$W_{1}=$ Positive value $\mathrm{W}_{2}=$ Negative value $\mathrm{W}_{3}=$ Negative value											
	$\begin{gathered} \text { Delayed } \\ 0.707 \end{gathered}$				315	195	75												
42	Forward 0.707	0	60	30	165	45	285	$\mathrm{W}_{1}=$ Negative value $\mathrm{W}_{2}=$ Positive value $\mathrm{W}_{3}=$ Negative value					$\mathrm{V}_{11}=\mathrm{V}_{2 n}>\mathrm{V}_{3}$		$\mathrm{l}_{1}=12=13$		Connection between P3 and P0 are reserved. And CT side "1" and " 3 " are swapped.		
	$\begin{gathered} \text { Forward } \\ 0.866 \end{gathered}$				180	60	300	$\mathrm{W}_{1}=$ Negative value $\mathrm{W}_{2}=$ Positive value $\mathrm{W}_{3}=0$											
	1				210	90	330	$\mathrm{W}_{1}=$ Negative value $\mathrm{W}_{2}=$ Positive value $\mathrm{W}_{3}=$ Positive value											
	$\begin{gathered} \text { Delayed } \\ 0.866 \end{gathered}$				240	120	0												
	$\begin{gathered} \text { Delayed } \\ 0.707 \end{gathered}$				255	135	15												

Test menu 2: Communication test

In test mode, the following operations can be possible.

Test menu 3: Pulse output test

In test mode, the following operations can be possible.

Test menu 4: Alarm output test

In test mode, the following operations can be possible.

8. Operation

Operation procedure in operating mode

This unit indicates the measured value of each item in operating mode. (For the measured items which can be indicated, page 57)
Operation procedure to change the measured item indicated is as follows:

Operation procedure in operating mode

Indication of harmonic

This unit can indicate the RMS value of harmonic, distortion rate and content rate. To indicate them, the indication setting of harmonic is needed in advance.
(For indication setting of harmonic, refer to p.24,25.)

- Measured element

Order	Harmonic current		Harmonic voltage	
	RMS value	Distortion rate (Content rate)	RMS value	Distortion rate (Content rate)
Total of harmonic	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1st	\bigcirc	-	\bigcirc	-
3rd	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5th	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7th	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9th	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11th	\bigcirc	0	\bigcirc	\bigcirc
13th	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15th	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- Transition diagram for indication of harmonic (change degree)

Supplement: Harmonic total is shown by "ALL".

Measured item indication in operating mode

- Indication of electric energy, reactive energy and periodic energy

- Indication format

The indication format of electric energy, reactive energy and periodic energy is as follows depending on the full load power:

$$
\text { Full load power }[\mathrm{kW}]=\begin{array}{lll}
1000
\end{array}\left(\begin{array}{cl}
\alpha: 1 & \text { Single-phase, 2-wire } \\
2 & \text { Single-phase, 3-wire } \\
\sqrt{3} & \text { Three-phase, 3-wire } \\
3 & \text { Three-phase, 4-wire }
\end{array}\right)
$$

*1: VT primary voltage in single-phase 3-wire system is regarded as 110 V .
*2: Using direct connection, replace VT primary voltage with direct voltage in calculation above.
*3: In three-phase 4-wire system, replace VT primary voltage or direct voltage with phase voltage in calculation above.

Full load power [kW]	Indication format	
	Digital indication	Unit
less than 12	8888.88	kWh kvarh
12 or more and less than 120	88888.8	
120 or more and less than 1200	888888	
1200 or more and less than 12000	8888.88	MWh Mvarh
12000 or more	88888.8	

- Indication of electric power, power demand, reactive power and apparent power
- Indication format

The indication format of electric power, power demand, reactive power and apparent power is as follows depending on the full load power:
(For the full load power, refer to above.)

Full load power [kW]	Indication format	
	Digital indication	Unit
less than 12	888.888	kW kvar kVA
12 or more and less than 120	8888.88	
120 or more and less than 1200	88888.8	
1200 or more and less than 12000	888888	
12000 or more	8888.88	MW Mvar MVA

- Indication of current and current demand
- Indication format

The indication style of current and current demand is as follows depending on the primary current:

Primary current [A]		Indication format	
less than 40	Digital indication	Unit	
888.888			
40 or more and less than 400	8888.88	A	
400 or more and less than 4000	88888.8		
4000 or more	888888		

- Indication of voltage
- Indication style

The indication format of voltage is as follows depending on the primary voltage:

Primary voltage [V]		Indication format	
	Digital indication	Unit	
less than 300	88888.8	V	
300 or more	888888		

Caution: In three-phase 4-wire system, the indication of VT primary voltage and direct voltage depends on the phase voltage.

- Indication of harmonic current and harmonic voltage
- Indication format

To indicate harmonic current and harmonic voltage, the indication setting of them is needed in advance. The indication format of them is as follows depending on the full load power:

Measured element	Indication format	
	Digital indication	Unit
RMS value of harmonic current	same as current	same as current
Distortion rate of harmonic current (Content rate)	888.8	$\%$
RMS value of harmonic voltage	same as voltage	same as voltage
Distortion rate of harmonic voltage (Content rate)	888.8	$\%$

Indication of equivalent CO_{2}

- Indication format

To indicate equivalent CO 2 , the indication setting of it is needed in advance The indication format of it is as follows depending on the full load power:

Full load power $[\mathrm{kW}]$		Indication format	
less than 12	Digital indication	Unit	
12 or more and less than 120	8888.88		
120 or more and less than 1200	8888888	kg	
1200 or more and less than 12000	8888.88		
12000 or more	88888.8		

How to use upper/lower limit alarm function

This device can set the upper/lower limit alarm value for each measured value individually.

<Monitoring items>

Upper limit alarm items	Current demand, phase N current demand, Voltage, Electric power demand, Power factor, Pulse count
Lower limit alarm items	Current demand, Voltage, Electric power demand, Power factor,

<Alarm setting>

-Upper limit value Set the upper limit of measured value. For setting value and setting range, p.26,27
-Lower limit value Set the lower limit of measured value. For setting value and setting range, p.26,27

- Alarm delay time Set the value in case you want to remove the inrush current of the load, etc. from the objects of monitoring. Alarm does not occur when the measured value goes below the upper limit or goes over the lower limit within the configured time. For setting value and setting range, page 27.
-Alarm reset method
Alarm recovery operation is different according to the alarm reset method.

Reset method	Alarm recovery operation
Auto-reset (Auto)	Reset the alarm automatically if the measured value goes below the upper limit or goes over the lower limit.
Self-retention (HoLd)	The alarm is held after the measured value goes below the upper limit or goes over the lower limit. Alarm is cleared by alarm reset.

<Alarm occurrence / recovery condition>

Alarm item	Alarm reset method	Alarm status		Alarm occurrence / recovery condition
Current demand Phase N current demand Voltage Electric power demand Power factor	Auto-reset (Auto)	Upper limit monitoring	Occurrence	Measured value > configured upper limit (Alarm delay time is available)
			Recovery	Measured value \leq configured upper limit
		Lower limit monitoring	Occurrence	Measured value < configured lower limit (Alarm delay time is available)
			Recovery	Measured value \geq configured lower limit
	Self-retention (HoLd)	Upper limit monitoring	Occurrence	Measured value > configured upper limit (Alarm delay time is available)
			Retention	Measured value \leq configured upper limit
			Recovery	Measured value \leq configured upper limit AND Alarm reset
		Lower limit monitoring	Occurrence	Measured value < configured lower limit (Alarm delay time is available)
			Retention	Measured value \geq configured lower limit
			Recovery	Measured value \geq configured lower limit AND Alarm reset
Pulse count	Auto-reset (Auto)	Upper limit monitoring	Occurrence	Measured value \geq configured upper limit
			Recovery	Measured value < configured upper limit
	Self-retention (HoLd)	Upper limit monitoring	Occurrence	Measured value \geq configured upper limit
			Retention	Measured value < configured upper limit
			Recovery	Measured value < configured upper limit

Caution: Measured value of pulse count is integrated, so you can reduce it (i.e. clear it to zero) by the preset operation of pulse count only. For the preset operation of pulse count, page 56.
<Alarm indication at alarm status>

	No alarm	Alarm occurrence		Alarm retention	
		When indicating the alarm-occurrence phase	When indicating the other phase	When Indicating the alarm-occurrence phase	When indicating the other phase
	Turn ON	Flash (*1)	Turn ON	Flash (*2)	Turn ON
Measured element, Unit, Phase	Turn ON	Flash (*1)	Flash (*1)	Flash (*2)	Flash (*2)

*1: Flash ($250 \mathrm{~ms} \mathrm{ON} / 250 \mathrm{~ms}$ OFF)
*2: Flash (500 ms ON / 500ms OFF)

< Examples of alarm occurring (except for the upper limit of pulse count) >

(1) When the alarm reset method is "Auto-reset (Auto)".

Operations of alarm reset

Operations of alarm reset

Alarm recovery operation is different according to the alarm reset method.

Alarm reset method	Alarm recovery operation
Auto-reset (Auto)	Reset the alarm automatically if the measured value goes below the upper limit or goes over the lower limit.
She alarm is held after the measured value goes below the upper limit or goes over the lower limit. Clear the alarm as below after the value goes below the upper limit or goes over the lower (HoLd)	limit. - In the present value display of operating mode, press -/RESET button for two seconds to clear the alarm. (Alarm clear is effective even in other than the alarm-occurrence phase.)

Preset and all data reset

You can reset all the integrated measured values or some of them to zero. (such as electric energy, operating time, etc.)

- The integrated measured values you can reset to zero are as follows:

Electric energy (consumption, regeneration), Reactive energy, Periodic energy, Pulse count, Equivalent CO_{2}, Operation time

- Preset (Data reset of selected value)

- In each integrated value display of operating mode, press both +/PHASE and $-/$ RESET at the same time for more than two seconds to transition to preset mode.
- Preset procedure is as follows:

Operation of preset display

- Press + / PHASE or -/ RESET to choose the value at flashing digit.
- Press SET for the setting digit (flashing digit) to shift to lower.
- Press DISP for the setting digit (flashing digit) to shift to upper.
- Press SET at the lowest digit to transition to preset confirmation display as below.
- In preset confirmation display, choose "yES" to reset value, then back to the integrated value display.
- In preset confirmation display, choose "no" to cancel resetting value, then back to the integrated value display.
- Preset display transition example (Electric energy (consumption))

- All data reset

- In each integrated value display of operating mode, press both SET and +/PHASE at the same time for more than two seconds to transition to all-data-reset display as below.
- In all-data-reset display, choose "yES" to reset all the integrated values to zero, then back to the integrated value display.
- In all-data-reset display, choose "no" to cancel resetting, then back to the integrated value display.
- All data reset display transition

9. Device operation

Measured items

The table below shows whether indication and output are performed or not for each measured item.

- ... Data which are indicated and output - ... Data which are not indicated or output

Measured item				EMU4-FD1-MB			
		Details		1P2W	1P3W	3P3W	3P4W
Current		phase 1		\bullet	\bullet	\bullet	\bullet
		phase 2		-	\bullet	\bullet	\bullet
		phase 3		-	\bullet	\bullet	\bullet
		phase N		-	-	-	\bullet
		Average		\bullet	\bullet	\bullet	\bullet
Current demand *moving average for the set period of current demand is indicated		phase 1		\bullet	\bullet	\bullet	\bullet
		phase 2		-	\bullet	\bullet	\bullet
		phase 3		-	\bullet	\bullet	\bullet
		phase N		-	-	-	\bullet
Voltage		phase 12		\bullet	\bullet	\bullet	\bullet
		phase 23		-	\bullet	\bullet	\bullet
		phase 31		-	\bullet	\bullet	\bullet
		phase 1N		-	-	-	\bullet
		phase 2N		-	-	-	\bullet
		phase 3N		-	-	-	\bullet
		Average line voltage		\bullet	\bullet	\bullet	\bullet
Electric power				\bullet	\bullet	\bullet	\bullet
Electric power demand *moving average for the set period of current demand is indicated				\bullet	\bullet	\bullet	\bullet
Reactive power				\bullet	\bullet	\bullet	\bullet
Apparent power				-	-	-	\bullet
Power factor				\bullet	\bullet	\bullet	\bullet
Frequency				\bullet	\bullet	\bullet	\bullet
Harmonic current	RMS	Total1st3rd - 15th	phase 1	\bullet	\bullet	\bullet	\bullet
			phase 2	-	-	-	\bullet
			phase 3	-	-	\bullet	\bullet
			phase N	-	-	-	\bullet
	Distortion ratio	$\begin{aligned} & \text { Total } \\ & \text { 3rd - 15th } \end{aligned}$	phase 1	\bullet	\bullet	\bullet	\bullet
			phase 2	-	-	-	\bullet
			phase 3	-	\bullet	\bullet	\bullet
			phase N	-	-	-	\bullet
Harmonic voltage	RMS	Total1st3rd - 15th	phase 1N	-	-	-	\bullet
			phase 2N	-	-	-	\bullet
			phase 3N	-	-	-	\bullet
			phase 12	\bullet	\bullet	\bullet	-
			phase 23	-	\bullet	\bullet	-
	Distortion ratio	Total 3rd - 15th	phase 1N	-	-	-	\bullet
			phase 2N	-	-	-	\bullet
			phase 3N	-	-	-	-
			phase 12	\bullet	\bullet	\bullet	-
			phase 23	-	\bullet	\bullet	-
Electric energy		Consumption		\bullet	\bullet	\bullet	\bullet
		Regeneration		\bullet	\bullet	\bullet	\bullet
		Consumption (extended) (*1)		\bullet	\bullet	\bullet	\bullet
		Regeneration (extended) (*1)		\bullet	\bullet	\bullet	\bullet
Reactive energy		Consumption lag		\bullet	\bullet	\bullet	\bullet
		Consumption lag (extended) (*1)		\bullet	\bullet	\bullet	\bullet
External input	Pulse input	Pulse count		\bullet	\bullet	\bullet	\bullet
	Contact input	Periodic electric energy		\bullet	\bullet	\bullet	\bullet
Operating time				\bullet	\bullet	\bullet	\bullet
Equivalent CO2 (*2)				\bullet	\bullet	\bullet	\bullet

*1: Output is supported, but indication is not supported.
*2: Indication is supported, but communication is not supported.

Supplement

The table below shows how to calculate the average value.

Item	Phase-wire system	Calculating formula
RMS current value (Average)	Single-phase 2-wire	RMS current value (Average) = phase 1 current
	Single-phase 2-wire Three-phase 3-wire	RMS current value (Average) = (phase 1 current + phase 3 current) /2
	Three-phase 4-wire	RMS current value (Average) = (phase 1 current + phase 2 current + phase 3 current) / 3
RMS voltage (Average)	Single-phase 2-wire	RMS voltage value (Average) = voltage V12
	Single-phase 2-wire Three-phase 3-wire	RMS voltage value (Average) = (voltage V12+ voltageV23) / 2
	Three-phase 4-wire	RMS voltage value (Average) = (voltage V12 + voltage V23+ voltage V31) / 3

Restrictions of measured data

FW version is displayed in five seconds after the power loading to this device.
Measurement and communication do not performed in a few seconds after the configuration or the change of the rating to it. Behaviors during operation are as follows:

Measured item	Behaviors of this device	
	Display part indication	Communication data
Current	Indicate " 0 A " if RMS value is under 0.4% range of rating. Indicate upper indication limit value if RMS value is over it.	Same as on the left
Current demand	Indicate upper indication limit value if RMS value is over it.	Same as on the left
Voltage (*1)	Indicate " OV " if RMS value is under 11 V . Indicate upper indication limit value if RMS value is over it.	Same as on the left
Power Power demand Reactive power Apparent power	Indicate "OW", "Ovar" or "OVA" if indicated voltage values of all phases are 0 V or indicated current values of them are 0 A . Indicate upper indication limit value if the measured value is over it.	Same as on the left
Power factor	Indicate " 100.0% " if indicated voltage values of all phases are 0 V or indicated current values of them are 0A	Same as on the left
Frequency	Voltage condition: Indicate "---"" if voltage V12 (voltage V1N for 3P4W) is 0V.	0
	Frequency condition: Indicate "----"" if frequency is under 44.5 Hz .	44.5
RMS value of harmonic current	Voltage condition: Indicate "----" at all phase if voltage V12 (voltage V1N for 3P4W) is under 11V. Indicate " 0 A " at all phase if voltage V 12 (voltage V 1 N for 3 P 4 W) is under 40V.	0
		0
	Frequency condition: Indicate "----" at all phases if frequency is under 44.5 Hz .	0
Content rate of harmonic current (modulation distortion)	Voltage condition: Indicate "----" at all phase if voltage V12 (voltage V1N for 3P4W) is under 11V. Indicate " 0.0% " at all phase if voltage V12 (voltage V1N for 3P4W) is under 40V.	0
		0
	Frequency condition: Indicate "----" at all phases if frequency is under 44.5 Hz .	Outside-channel error
RMS value of harmonic voltage	Voltage condition: Indicate "----" at all phase if voltage V12 (voltage V1N for 3P4W) is under 11 V . Indicate "0V" at all phase if voltage V12 (voltage V1N for 3P4W) is under 40V.	0
	```Frequency condition: Indicate "---"" at all phases if frequency is under 44.5Hz```	0
Content rate of harmonic voltage (modulation distortion)	Voltage condition:   Indicate "----" at all phase if voltage V12 (voltage V1N for 3P4W) is under 11V.   Indicate " $0.0 \%$ " at all phase if voltage V12 (voltage V1N for 3P4W) is under 40V.	0
	Frequency condition:   Indicate "----" at all phases if frequency is under 44.5 Hz .	0
Pulse count	When use of upper / lower limit alarm = oFF or upper / lower limit alarm element $\neq$ pulse count (upper limit), counting restarts from 0 when 999999 have been exceeded.   When use of upper / lower limit alarm = on and upper / lower limit alarm element = pulse count (upper limit), it is fixed to 999999 when 999999 have been exceeded.	Same as on the left
Operating time (*2)	Indicate "999999h" if operating time is over 999999h.	Same as on the left
Periodic electric energy	For contact input ON/OFF, integrated value may deviate up to 250 ms less in time at the start or stop of integration.	Same as on the left

[^0]
## 10. Reference

This chapter explains the ways of dealing when you think the unit is in failure, Q\&A, etc

## In case you think the unit is in failure

If an abnormal sound, bad-smelling smoke, fever break out from this unit, switch it off promptly and don't use it. If you think the unit is in failure, check the following before sending for repair.

Obtained value is incompatible with other values.

- Integrated electric energy value is not measured though current value is indicated.
- Obtained values are different from other measuring instruments.

Check the polarity of connection between a CT and the terminals of this unit.
Check the settings of phase wire system, primary voltage and primary current.
Wrong settings may cause the incorrect measurement.
Check whether the short circuit or disconnection is present.
Obtained values are different from other measuring instruments. (over tolerance)
Check that the measuring instrument used for comparison indicates a correct RMS value. This unit indicates an RMS value.
If the measuring instrument used for comparison measures an average value instead of RMS value, distortion caused by harmonic etc. in the current of the circuit to be measured causes a significant difference of values.

## About error number

In case the display part indicates the error number as below, adopt measures indicated in the table below. If the unit does not resume after measures, it may be in failure. Contact our sales representative near you.
(Example) Error No. 005


\left.| Error No. | Kind of Error |  |
| :---: | :--- | :--- |
| 002 | FRAM error | Press the reset button until the display (LED) turns off. |
| or |  |  |$\right\}$| Restore auxiliary power supply. |
| :---: |

## After-sales service

If you have any questions or the product is broken down, contact our sales representative near you. (For details, refer to the end of this manual.)

- Gratis warranty is effective until the earlier of 1 year after the date of your purchase or 18 months after manufacturing.
- The gratis warranty shall apply if the product fails even though it is being used properly in the conditions, with the methods and under the environments in accordance with the terms and precautions described in the catalogs, the instruction manual, caution label on the product, etc.
- Repair shall be charged for the following cases even during the gratis warranty period.
- Failures occurring due to your improper storage or handling, carelessness or fault.
- Failures due to faulty workmanship
- Failures due to faults in use and undue modification
- Failures due to accidental force such as a fire, abnormal voltage, etc. and force majeure such as an earthquake, wind, flood, etc.
- Failures due to matters unpredictable based on the level of science technology at the time of product.
- Our company shall not be liable to compensate for any loss arising from events not attributable to our company, opportunity loss and lost earning of the customer due to failure of the product, and loss, secondary loss, accident compensation, damage to other products besides our products and other operations caused by a special reason regardless of our company's predictability


## Q\&A

- General

Q	To what degree is the unit durable against overvoltage and over current?
	Durability is as follows:
A	Momentary*: Up to 10 times as high as rated current and 2 times as high as rated voltage.   *Momentary means: Energizing 9 times for 0.5 seconds at 1 -minute intervals, and then 1 time for 5 seconds. Continuous: Up to 1.2 times as high as rated voltage and rated current.

Q Can the unit be used as an electric energy meter?
A This unit cannot be used for deal and proof of electric energy measurement stipulated in the measurement law.

Q Are errors in wiring verifiable easily?
A They are verifiable by the indication for discrimination support function for improper connection. p.37-46)

Q If a load such as welding equipment exists, a current flows only for a short period (e.g. 2 cycles). Is measurement possible?
The electrical amount such as current, voltage, electric power, power factor, frequency, harmonic voltage and harmonic current is measured in a cycle of 250 ms period. So it is impossible to measure the current accurately for a short period.
The amount of electricity and reactive power amount are measured separately from the momentary data described above, using a sampling period of about 4 kHz continuously without intermittence. Therefore, it is possible to measure the load for a short period.

Obtained values may be different from other measuring instruments. Why is it so?
There are various possible causes. Check the following first, please:
(1) Check for wiring errors.
(2) Check for the settings. (phase wires, primary voltage and primary current)
(3) Check for the short circuit on the secondary side of the current transformer (CT).
(4) Check that the measuring instrument used for comparison indicates a correct RMS value.

This unit indicates an RMS value. If the measuring instrument used for comparison measures an average value instead of RMS value, distortion caused by harmonic etc. in the current of the circuit to be measured causes a significant difference of values.

## Q What does "Allowable tolerance" mean?

A
In terms of the amount of electricity, it means a range of tolerances in reading values. For example, when the reading value is " 10 kWh ," a tolerance is $\pm 0.05 \mathrm{kWh}$. In terms of measured elements other than the amount of electricity, it means a tolerance to the full scale (refer to page 65). For a current, when a rated current is set to $5 \mathrm{~A}, \pm 0.5 \%$ of 5 A is a tolerance.

Q Is accuracy of a CT and a VT included?
A Accuracy of a CT and a VT is not included in accuracy of the unit.
A maximum value of tolerance is obtained by summing tolerance of the unit and that of a CT and a VT,

Q To what degree an area of micro current is measured?
A current value is measured from the area exceeding $0.4 \%$ of the rated current. In an area below $0.4 \%$, measurement result is indicated as " 0 " (zero). However, in that case, still, the amount of electricity is being measured. Even if the indicated value is " 0 ," measurement value will increase in continuing measurement for a long time.
The amount of electricity is measured with a load that is about $0.1 \%$ or more of all load power.
$Q$ Is measurement of inverter circuit possible?
Measuring the secondary side of the inverter is impossible due to the large fluctuation of frequency.
A Make measurement on the primary side of the inverter. However, since a current waveform on the primary side of the inverter has a distortion containing the harmonic components, a slight error occurs.

## Q\&A about connection

Q Does polarity exist in connection between a CT and the unit?
Yes.
A Make connections so that the polarity of the secondary terminals of a CT and terminal symbols of this unit agree with each other. If polarity is incorrect, the current value is measurable, but the electric power and the electrical energy cannot be measured correctly.

## Q Are there any key points in avoiding errors in wiring?

Check polarity of a CT. And also, check the wiring between the secondary side of a CT and this unit are connected correctly for the 1 -side circuit, 2 -side circuit, and 3 -side circuit.
Besides, check that voltage inputs for voltage transform unit are connected correctly among P1, P2, P3 and P0.

Q\&A about setting

Q	Is the setting required?
$\mathbf{A}$	At least, settings of phase wires, primary current and primary voltage are required. Specify settings in accordance with a circuit to be   connected.

## 11. Requirement for the compliance with EMC Directives

EMC Directives prescribe both "Emission (electromagnetic interference): Do not radiate strong electromagnetic waves outside" and "Immunity (electromagnetic susceptibility): Do not be influenced by electromagnetic waves from outside".

This section compiles the precautions for the compliance of the system incorporating the energy measuring unit (target model: EMU4-FD1-MB) with the EMC Directives. The following description is based on the requirement of the regulations and the standards we understand, but we do not guarantee to comply with the directives above for the whole system built in accordance with this description. The manufacturer of the system finally needs to evaluate the way of the compliance with EMC Directives and whether the system complies with them or not.

Harmonized standard for EMC Directives: EN61326-1:2013
(a) Compatibility condition for harmonized standard

The energy measuring unit is the open type device (i.e. the device incorporated in other device), and needs to be installed in the conductive control panel. The unit is tested with installed in the control panel for the emission and the immunity out of the test items for the standard.
(2) Condition for installation in the control panel
(a) Control panel

- Control panel needs to have conducting property.
- When bolting the top panel, bottom panel etc. of the control panel, mask the grounding part of the panel so as not to be painted.
- In inner panel, keep the conductivity in as large area as possible by masking the bolting part to the main panel to keep the electric contact to main panel.
- Ground the main panel by the thick wire so as to keep high impedance even for high-frequency wave.
(b) Installation of power line and ground line
- Set up the ground point to the control panel near the energy measuring unit, and ground the frame GND terminal of the unit to the ground terminal of the control panel (PE) by as thick and short wires as possible. (wire length is 30 cm or shorter)
(c) Cable
- power line

Attach ferrite cores to power line. Ferrite cores used in our testing is below.
KITAGAWA INDUSTRIES CO.,LTD., GRFC-10

- External input signal line, External output signal line

Wiring of each connection wire should satisfy the following conditions.
■For wiring inside buildings, the wiring length should not exceed 30 m .
-Do not route wiring from the inside of the building to the outside of the building.

Common specifications


Item		Specifications
Standard		EMC: EN-61326-1: 2013   UL: UL61010-1   LVD: EN-61010-1: 2010
Usage environment	Operating temperature	$-5-+55^{\circ} \mathrm{C}$ (Daily average temperature is $35^{\circ} \mathrm{C}$ or lower)
	Operating humidity	$30-85 \%$ RH (No condensation)
	Storage temperature	$-10-+60^{\circ} \mathrm{C}$
	Operating altitude	2000m or below
Commercial frequency withstand voltage		b/w all terminals (except for communication circuit and frame GND terminal) and casing: 2000 V AC, 1 min
		b/w all terminals of current input, voltage input / auxiliary power : 2000 V AC, 1min
		b/w all terminals of current input, voltage input, auxiliary power and all terminals of digital / pulse input, pulse / alarm output, communication: 2000V AC, 1min
Insulation resistance		$10 \mathrm{M} \Omega$ or more at the same part above (500V DC)
Appropriate wire	Terminals of auxiliary power circuit and voltage input	stranded wire: AWG26-14(0.13~2.0mm²)   single wire : AWG26-14 ( $\phi 0.41 \sim 1.62 \mathrm{~mm}$ )
	Terminals of current input	stranded wire: AWG18-14(0.82~2.0mm ${ }^{2}$ ) single wire : AWG18-14( $\phi 1.03 \sim 1.62 \mathrm{~mm})$
	Terminals of input/output	stranded wire: AWG22-14(0.33~2.0mm²) single wire : AWG22-14 ( $\phi 0.65 \sim 1.62 \mathrm{~mm})$
Tightening torque	Screws for terminals of auxiliary power circuit and voltage input	0.8-1.0N $\cdot \mathrm{m}$
	Screws for terminals of current input and input/output	0.5-0.6N $\cdot \mathrm{m}$
	Screws for installation to the panel	$0.63 \mathrm{~N} \cdot \mathrm{~m}$
Mass		0.3 kg
External dimensions (unit: mm)		$75(\mathrm{~W}) \times 90(\mathrm{H}) \times 75(\mathrm{D})$ (expect for the protruding portions)   (Maximum dimension including the protruding portions: $79(\mathrm{~W}) \times 90(\mathrm{H}) \times 75(\mathrm{D})$ )
Product life expectancy		10 years (under usage environmental condition indicated above)
Possible combination optional unit for UL		EMU4-LM, EMU4-CM-C, EMU4-CM-CIFB, EMU4-CM-MT

*1: 110V, 220V, 440V AC can connected to this unit directly. For the circuit over this voltage, transformer (VT) is necessary (Primary voltage of VT can be set up to 6600 V , and secondary voltage of V can be set up to 220 V as optional setting).Star- delta connection and delta-star connection transformer of cannot measure definitely to be out of phase. Please use a transformer of the same connection.
*2: 63.5/110V - 277/480V AC can connected to this unit directly. For the circuit over this voltage, transformer (VT) is necessary (Primary voltage of VT can be set up to 6600 V , and secondary voltage of V can be set up to 220 V as optional setting).Star- delta connection and delta-star connection transformer of cannot measure definitely to be out of phase. Please use a transformer of the same connection.
*3: Accuracy of A, V, W, var, VA, PF, Hz, HI and HV is specified according to the maximum scale value at standard test condition. (Maximum scale values lists below.)

A,HI	V,HV	W, var, VA	PF	Hz
5A	1P2W:600V   1P3W:300V   3P3W:600V   3P4W:600V	1P2W: $2000 \mathrm{~W}(440 \mathrm{~V} \times 5 \mathrm{~A} \times 1=2200 \mathrm{~W}$ $\rightarrow 2000)$   1P3W: $1000 \mathrm{~W}(110 \mathrm{~V} \times 5 \mathrm{~A} \times 2=1100 \mathrm{~W}$ $\rightarrow 1000)$   3P3W: $4000 \mathrm{~W}(440 \mathrm{~V} \times 5 \mathrm{~A} \times \sqrt{ }=3810 \mathrm{~W}$ $\rightarrow 4000)$   3P4W: $4000 \mathrm{~W}(277 \mathrm{~V} \times 5 \mathrm{~A} \times 3=4155 \mathrm{~W}$ $\rightarrow 4000)$	1	65 Hz

*4: If the diameter of the wire is small, the conductor resistance of the wire will be high and the consumption VA of the wire will increase. Decide wire diameter and wire length so that it does not exceed the rated burden of CT to be connected.

## Specifications of MODBUS®RTU communication

Item	Specifications
Communication method	RS-485 2wires half duplex
Protocol	MODBUS RTU mode
Synchronization method	Asynchronous
Transmission wiring type	Multi-point bus (either directly on the trunk cable, forming a daisy-chain)
Baud rate	$2400,4800,9600,19200,38400 \mathrm{bps} \quad$ (default: 19200bps)
Data bit	8bit
Stop bit	1, 2bit $\quad$ (default: 1bit)
Parity bit	ODD,EVEN,NONE $\quad$ (default: 1)
Slave address	$1 \sim 255$   (But 0 is impossible of authorization for a broadcast address. 248-255 is Reserve)
Response time	1s or shorter from completion of receiving query data to response transmission
Communications distance	Maximum 1200m
Connectable devices	Maximum 31 devices
Termination resistor	$120 \Omega$ 1/2W
Recommended cable	SPEV(SB)-MPC-0.2 $\times 1 \mathrm{P}$ (Mitsubishi cable industries)

## MODBUS ${ }^{\circledR}$ communication data Multiplying factor

The multiplying factor of electric energy, reactive energy and periodic energy is as follows depending on the full load power

*1: VT primary voltage in single-phase 3-wire system is regarded as 110 V .
*2: Using direct connection, replace VT primary voltage with direct voltage in calculation above.
*3: In three-phase 4-wire system, replace VT primary voltage or direct voltage with phase voltage in calculation above.

Full load power [kW]		Multiplying factor			
				less than 12	$\times 0.01$
12 or more	and	less than 120			
120 or more	and	less than 1200			
1200 or more	and	less than 12000			

The multiplying factor of electric power, power demand, reactive power and apparent power is as follows depending on the full load power
(For the full load power, refer to above.)

Full load power [kW]		Multiplying factor
less than 12	$\times 0.001$	
12 or more $\quad$ and $\quad$ less than 120	$\times 0.01$	
120 or more $\quad$ and $\quad$ less than 1200	$\times 0.1$	
1200 or more	and $\quad$ less than 12000	$\times 1$
12000 or more	$\times 10$	

The multiplying factor of current and current demand is as follows depending on the primary current

Primary current [A]		Multiplying factor
40 less than 40	$\times 0.001$	
40 or more $\quad$ and $\quad$ less than 400	$\times 0.01$	
400 or more $\quad$ and $\quad$ less than 4000	$\times 0.1$	
4000 or more	$\times 1$	

The Multiplying factor of voltage and harmonic voltage is as follows depending on the primary voltage:
Caution: In three-phase 4 -wire system, the Multiplying factor of VT primary voltage
and direct voltage depends on the phase voltage.

Primary voltage [V]	Multiplying factor
less than 300	$\times 0.1$
300 or more	$\times 1$

## 13. Option devices

(1) Part for installation to panel

- Attachment for installation to panel EMU4-PAT

Dimensions

(2)Option unit

- Logging unit: EMU4-LM Dimensions

- CC-Link communication unit: EMU4-CM-C

Dimensions


- MODBUS ${ }^{\circledR}$ TCP communication unit: EMU4-CM-MT Dimensions



## - CC-Link IE Field Network Basic Communication unit: EMU4-CM-CIFB

Dimensions


For specifications, please refer to each manual.

## 14. External dimensions

- EMU4-FD1-MB


When installing the attachment


## 15. Index

All data reset ..... 56
Alarm output test ..... 48
Attaching and removing the unit .....  7
After-sales service ..... 61
Clock setting ..... 32
Communication test ..... 47
Device operation ..... 57
Disclaimer .....  5
Disposal Precautions .....  4
Date format ..... 33
Discrimination support function for improper connection ..... 35
Error number ..... 60
External dimensions ..... 70
Features ..... 1
In case you think the unit is in failure ..... 60
Initialization ..... 31
Installation and wiring precautions ..... 3
Maintenance precautions .....  4
Measured item indication ..... 52
Measured items ..... 57
MODBUS ${ }^{\circledR}$ RTU communication ..... 22
MODBUS ${ }^{\circledR}$ TCP communication ..... 29
Name and function of each part ..... 5
Operating mode ..... 15
Operation procedure ..... 49
Option devices ..... 67
Precautions for use ..... 4
Preset ..... 56
Phase wire system ..... 18
Procedures for setting ..... 16
Procedure for wiring ..... 10
Pulse output test ..... 48
Q\&A ..... 61
Requirement for the compliance with EMC Directives ..... 63
Restrictions of measured data ..... 59
Safety precautions ..... 1
Setting menu ..... 18
Setting method ..... 16
Specifications ..... 64
Common specifications ..... 64
Specifications of MODBUS ${ }^{\circledR}$ communication ..... 66
Storage precautions ..... 4
Test mode ..... 34
Upper / lower limit alarm. ..... 26,54

## Energy Measuring Unit

- Service Network

Country/Region	Corporation Name	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd.	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7777
Algeria	Mec Casa	Rue iN 125 Hay-Es-Salem, 02000, W-Chlef, Algeria	+213-27798069
Bangladesh	PROGRESSIVE TRADING CORPORATION	HAQUE TOWER,2ND FLOOR,610/11, JUBILEE ROAD, CHITTAGONG, BANGLADESH	+880-31-624307
	ELECTRO MECH AUTOMATION\& ENGINEERING LTD.	SHATABDI CENTER, 12TH FLOOR, SUITES: 12-B, 292, INNER CIRCULAR ROAD, FAKIRA POOL MOTIHHEEL DHAKA-1000 BANGLADESH	+88-02-7192826
Belarus	Tehnikon	Oktyabrskaya 19, Off. 705, BY-220030 Minsk, Belarus	+375(0)17/2104626
Belgium	Koning \& Hartman B.V.	Woluwelaan 31, BE-1800 Vilvorde, Belgium	+32 (0)2/2570240
Brazil	Mitsubishi Electric do Brasil Comércio e Serviços Ltda.	Avenida Adelino Cardana, 293-21 ${ }^{\circ}$ Andar, Bethaville, Baruen, SP, Brasil, CEP 06401-147	+55-11-4689-3000
Cambodia	DHINIMEX CO.,LTD	\#245, St. Tep Phan, Phnom Penh, Cambodia	+855-23-997-725
Central America	Automation Intemational LLC	7050 W. Palmetto Park Road Suite \#15 PMB \#555, Boca Raton, FL 33433	+1-561-237-5228
Chile	Rhona S.A. (Main office)	Vte. Agua Santa 4211 Casilla $30-\mathrm{D}$ (P.O. Box) Vina del Mar, Chile	+56-32-2-320-600
China	Mitsubishi Electric Automation (China) Ltd.	Mitsubishi Electric Automation Building, No. 1386 Hongqiao Road, Shanghai, China 200336	+86-21-2322-3030
	Mitsubishi Electric Automation (China) Ltd. BeiJing	5/F,ONE INDIGO,20 Jiuxianqiao Road Chaoyang District,Beijing, China 100016	+86-10-6518-8830
	Mitsubishi Electric Automation (China) Ltd. ShenZhen	Level 8, Galaxy World Tower B, 1 Yabao Road, Longgang District, Shenzhen, China 518129	+86-755-2399-8272
	Mitsubishi Electric Automation (China) Ltd. GuangZhou	Rm.1006, A1 Times E-Park, No.276-282, Hanxi Road East, Zhongcun Street, Panyu Distric, Guangzhou, China 510030	+86-20-8923-6730
	Mitsubishi Electric Automation (China) Ltd. ChengDu	1501-1503,15F, Guang-hua Centre Building-C, No.98 North Guang Hua 3th Rd Chengdu, China 610000	+86-28-8446-8030
	Mitsubishi Electric Automation (Hong Kong) Ltd.	20/F., Cityplaza One, 1111 king's Road, Taikoo shing, Hong Kong	+852-2510-0555
Colombia	Proelectrico Representaciones S.A.	Carrera 42 N $75-367$ Bodega 109, Itagüi, Medellín, Antioquia, Colombia	+57-4-4441284
Czech Republic	AUTOCONT CONTROLSYSTEMS S.R.O	Technologickí 374/6, CZ-708 00 Ostrava - Pustkovec	+420 595691150
Denmark	BEIJER ELECTRONICS AS	LYKKEGARDSVEJ 17, DK-4000 ROSKILDE, Denmark	+45 (0)46/757666
Egypt	Cairo Electrical Group	9, Rostoum St. Garden City P.O. Box 165-11516 Maglis El-Shaab,Cairo - Egypt	+20-2-27961337
France	Mitsubishi Electric Europe B.V. French Branch	FR-92741 Nantere Cedex	+33(0)155685701
Germany	Mitsubishi Electric Europe B.V.	Mitsubishi-Electric-Plaz 1, 40882 Ratingen, Germany	+49 (0) 21024860
Greece	KALAMARAKIS -SAPOUNAS S.A.	IONIAS \& NEROMLLOU STR., CHAMOMILOSACHARNES, ATHENS, 13678 Greece	+30-2102 406000
	UTECO	5, MAVROGENOUS STR., 18542 PIRAEUS, Greece	+30-211-1206-900
Hungary	Meltrade Ltd.	Fertö utca 14. HU-1107 Budapest, Hungary	+36 (0)1-431-9726
India	Mitsubishi Electric India Private Limited	2nd Floor, Tower A\&B, Cyber Greens, DLF Cyber City, DLF Phase-III, Gurgaon - 122022 Haryana, India	+91-124-4630300
	Mitsubishi Electric India Private Limited Pune Sales Office	ICC-Devi Gaurav Technology Park, Unit no. 402, Fourth Floor, Survey no. 191-192 (P), Opp. Vallabh Nagar Bus Depot Pune-411018 Maharashtra India	+91-20-68192100
	Mitsubishi Electric India Private Limited FA Center	204-209, 2nd Floor, 31FIVE, Corporate Road, Prahladnagar, Ahmedabad 380015, Guiarat. India	+91-79677-77888
Indonesia	PT.MMitsubishi Electric Indonesia	Gedung Jaya 8th floor, JL.MH. Thamrin No.12 Jakarta Pusat 10340, Indonesia	+62-21-3192-6461
	P.T. Sahabat Indonesia	P.O.Box 5045 Kawasan Industri Pergudangan, Jakarta, Indonesia	+62-(0)21-6610651-9
Ireland	Mitsubishi Electric Europe B.V.	Westgate Business Park, Ballymount, IRL-Dublin 24, reland	+353 (0)1-4198800
Israel	Gino Industries Ltd.	26, Ophir Street LL-32235 Haifa, Israel	+972 (0)4-867-0656
Italy	Mitsubishi Electric Europe B.V.	Viale Colleoni 7, ,-20041 Agrate Brianza (MI), Italy	+39 039-60531
Kazakhstan	Kazpromavtomatika	UII. Zhambyla 28, KAZ - 100017 Karaganda	+7-7212-501000
Korea	Mitsubishi Electric Automation Korea Co., Ltd	9F Gangseo Hangang xi-tower A, 401 Yangcheon-ro, Gangseo-gu, Seoul 07528 Korea	+82-2-3660-9573
Laos	AROUNKIT CORPORATION IMPORT- EXPORT SOLE CO. LTD	SAPHANMO VILLAGE. SAYSETHA DISTRICT, VIENTIANE CAPITAL, LAOS	+856-20-415899
Lebanon	Comptoir d'Electricite Generale-Liban	Cebaco Center - Block AAutostrade Dora, P.O. Box 11-2597 Beirut - Lebanon	+961-1-240445
Lithuania	Rifas UAB	Tinklu 29A, LT-5300 Panevezys, Lithuania	+370 (0)45-582-728
Malaysia	Miltric Sdn Bhd	No. 5 Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie 40150 Shah Alam,Selangor, Malaysia	+603-5569-3748
	Flexible Automation System Sdn Bhd	60, Jalan USJ 10/1B, UEP Subang Jaya,47620 Selangor Darul Ehsan, Malaysia	+603-5633-1280
Malta	ALFATRADE LTD	99 PAOLA HILL, PAOLA PLA 1702, Malta	+356 (0)21-697-816
Maroco	SCHIELE MAROC	KM 7,2 NOUVELLE ROUTE DE RABAT AIN SEBAA, 20600 Casablanca, Maroco	+212661451596
Myanmar	Peace Myanmar Electric $\mathrm{Co} . .$, Ltd.	NO137/139 Botahtaung Pagoda Road, Botahtaung Town Ship 11161,Yangon,Myanmar	+95-(0)1-202589
Nepal	WattdVolt House	KHA 2-65,Volt House Dilibibazar Post Box:2108,Kathmandu, Nepal	+977-1-4411330
Netherlands	Imtech Marine \& Offshore B.V.	Sluisjesdijk 155, NL-3087 AG Rotterdam, Netherlands	+31 (0)10-487-19 11
North America	Mitsubishi Electric Automation, Inc.	500 Corporate Woods Parkway, Vemon Hills, IL60061 USA	+847-478-2100
Norway	Scanelec AS	Leivikasen 43B, NO-5179 Godvik, Norway	+47 (0)55-506000
Mexico	Mitsubishi Electric Automation, Inc. Mexico Branch	Blvd. Miguel de Cervantes Saavedra 301, Torre Norte Piso 5, Col. Ampliación Granada, Miguel Hidalgo, Ciudad de México, CP 11520, México	+52-55-3067-7511
Middle East Arab Countries \& Cyprus	Comptoir d'Electricite Generale-Intemational-S.A.L.	Cebaco Center - Block A Autostrade Dora P.O. Box 11-1314 Beirut - Lebanon	+961-1-240430
Pakistan	Prince Electric Co.	2-P GULBERG II, LAHORE, 54600, PAKISTAN	+92-42-575232, 5753373
Peru	Rhona S.A. (Branch office)	Avenida Argentina 2201, Cercado de Lima	+51-1-464-4459
Philippines	MELCO Factory Automation Philippines Inc.	128, Lopez Rizal St, Brgy. Highway Hills, Mandaluyong City, Metro Manila, Phillippines	+63-(0)2-256-8042
	Edison Electric Integrated, Inc.	24th Fl. Galleria Corporate Center, Edsa Cr. Ortigas Ave., Quezon City Metro Manila, Philippines	+63-(0)2-634-8691
Poland	Mitsubishi Electric Europe B.V. Polish Branch	Krakowska 48, 32-083 Balice, Poland	+48123476500
Republic of Moldova	Intehsis SRL	bld. Traian 23/1, MD-2060 Kishinev, Moldova	+373 (0)22-66-4242
Romania	Sirius Trading \& Services SRL	RO-060841 Bucuresti, Sector 6 Aleea Lacul Morii Nr. 3	+40-(0)21-430-40-06
Russia	Mitsubishi Electric (Russia) LLC	2 bld.1, Letnikovskaya street, Moscow, 115114, Russia	+7495 721-2070
Saudi Arabia	Center of Electrical Goods	Al-Shuwayer St. Side way of Salahuddin Al-Ayoubi St. P.O. Box 15955 Riyadh 11454 - Saudi Arabia	+966-1-4770149
Singapore	Mitsubishi Electric Asia Pte. Ltd.	307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	+65-6473-2308
Slovakia	PROCONT, Presov	Kupelna 1, SK - 08001 Presov, Slovakia	+421 (0)51-7580611
	SIMAP	Jana Derku 1671, SK - 91101 Trencin, Slovakia	+421 (0)32 7430472
Slovenia	Inea RBT d.o.o.	Stegne 11, Sl-1000 Ljubljana, Slovenia	+386 (0)1-513-8116
South Africa	CBI-electric: low voltage	Private Bag 2016, ZA-1600 Isando Gauteng, South Africa	+27-(0)11-9282000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch	Carretera de Rubi 76-80, E-08190 Sant Cugat del Vallés (Barcelona), Spain	+34(0)93-565-3131
Sweden	Mitsubishi Electric Europe B.V. (Scandinavia)	Hedvig Möllers gata 6, 22355 Lund, Sweden	+46 (0) $)$-625-10-00
	Euro Energy Components AB	Jämvägsgatan 36, S-434 24 Kungsbacka, Sweden	+46 (0)300-690040
Switzerland	TriElec AG	Muehlentaistrasse 136, CH-8201 Schafflausen, Switzerland	+41-(0)52-6258425
Taiwan	Setsuyo Enterprise Co., Ltd	5 th Fl., No.105, Wu Kung 3rd, Wu-Ku Hsiang, Taipei, Taiwan, R.O.C.	+886-(0)2-2298-8889
Thailand	United Trading \& Import Co., Ltd.	$77 / 12$ Bamrungmuang Road,Klong Mahanak Pomprab Bangkok Thailand	+66-223-4220-3
	MTTSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO.,LTD	101, True Digital Park Office, 5th Floor, Sukhumvit Road, Bangchak, Phara Khanong, Bangkok, 10260 Thailand	+662-092-8600
Tunisia	MOTRA Electric	3, Résidence Imen, Avenue des Martyrs Mourouj III, 2074 - EI Mourouj III Ben Arous, Tunisia	+216-71474 599
Turkey	Mitsubishi Electric Turkey A.S.	Serifiali Mahallesi Kale Sokak No: 41,34775 Ümraniye, Istanbul, Turkey	+90-216-969-2666
United Kingdom	Mitsubishi Electric Europe B.V.	Travellers Lane, UK-Hatfild, Herts. AL10 8XB, United Kingdom	+44 (0)1707-276100
Unguay	Fierro Vignoli S.A.	Avda. Unuguay 1274 Montevideo Unuguay	+598-2-902-0808
Vietnam	Mitsubishii Electric Vietnam Co.,Ltd. Head Office	11th \& 12th Floor, Viette Tower B, 285 Cach Mang Thang 8 Street, Ward 12, District 10, Ho Chi Minh City, Vietnam	+84-28-3910-5945
	Mitsubishi Electric Vietnam Co.,Ltd. Hanoi Branch	24th Floor, Handico Tower, Pham Hung Road, khu do thi moi Me Tri Ha, Nam Tu Liem District, Hanoi City, Vietnam	+84-24-3937-8075


[^0]:    *1: In single-phase, three-wire system, indicate " 0 V " if RMS value is under 22 V .
    *2: Operation time is reference value.

