INVERTER

A800

FR-A860 (600V CLASS SPECIFICATION INVERTER) INSTRUCTION MANUAL (STARTUP)

FR-A860-00027-00450-N6 FR-A860-00680-04420

Thank you for choosing this Mitsubishi Electric Inverter.
This Instruction Manual and the enclosed CD-ROM give handling information and precautions for use of this product.
Do not use this product until you have a full knowledge of the equipment, safety information and instructions.
Please forward this Instruction Manual and the enclosed CD-ROM to the end user.

-CONTENTS-

1 INVERTER INSTALLATION AND PRECAUTIONS 5
2 WIRING 6
3 FAILSAFE SYSTEM WHICH USES THE INVERTER 8
4 PRECAUTIONS FOR USE OF THE INVERTER 8
5 INVERTER FUNCTION SETTING 10

This Instruction Manual provides handling information and precautions for use of the equipment.
Please forward this Instruction Manual to the end user

Safety Instructions

Do not attempt to install, operate, maintain or inspect the product until you have read through this Instruction Manual and supplementary documents carefully and can use the equipment correctly. Do not use this product until you have a full knowledge of this product mechanism, safety information and instructions.
Installation, operation, maintenance and inspection must be performed by qualified personnel. Here, qualified personnel means personnel who meets all the conditions below.

- A person who took a proper engineering training.

Such training may be available at your local Mitsubishi Electric office. Contact your local sales office for schedules and locations

- A person who can access operating manuals for the protective devices (e.g. light curtain) connected to the safety control system. A person who has read and familiarized himself/herself with the manuals.

In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION"

Incorrect handling may cause hazardous conditions, resulting in death or severe injury.
Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

Note that even the
 1. CAUTION level may even lead to a

 serious consequence according to conditions. Be sure to follow the instructions of both levels as they are critical to personal safety.
Electric Shock Prevention

1. WARNING

- Do not remove the front cover or the wiring cover while the power of this product is ON, and do not run this product with the front cover or the wiring cover removed as the exposed high voltage terminals or the charging part of the circuitry can be touched. Otherwise you may get an electric shock
- Even if power is OFF, do not remove the front cover except for wiring or periodic inspection as the inside of this product is charged. Otherwise you may get an electric shock.
- Before wiring or inspection, the power lamp must be switched OFF. Any person who is involved in wiring or inspection shall wait for at least 10 minutes after the power supply has been switched OFF and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- This product must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 61140 class 1 and other applicable standards).
- Any person who is involved in wiring or inspection of this product shall be fully competent to do the work.
- The inverter must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Do not touch the setting dial or keys with wed hands. Doing so may cause an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Doing so may cause an electric shock.
Do not change the cooling fan while power is ON as it is dangerous.
- Do not touch the printed circuit board or handle the cables with wet hands. Doing so may cause an electric shock.
- Never touch the motor terminals, etc. right after powering OFF as the DC voltage is applied to the motor for 1 second at powering OFF if the main circuit capacitor capacity is measured. Doing so may cause an electric shock.
- Before wiring or inspection for a PM motor, confirm that the PM motor is stopped as a PM motor is a synchronous motor with high-performance magnets embedded inside and high-voltage is generated at the motor terminals while the motor is running even after the power of this product is turned OFF. In an application, such as fan and blower, that the motor may be driven by the load, connect a low-voltage manual contactor at this product output side and keep it open during wiring and inspection of this product. Otherwise you may get an electric shock.

Fire Prevention

CAUTION

- Inverter must be installed on a nonflammable wall without holes in it so that its components cannot be touched from behind. Installing it to or near flammable material may cause a fire.
- If the inverter becomes faulty, the inverter power must be switched OFF. A continuous flow of large current may cause a fire
- When using a brake resistor, a sequence that will turn OFF power when a fault signal is output must be configured. Otherwise the brake resistor may excessively overheat due to damage of the brake transistor and such, causing a fire.
- Do not connect a resistor directly to the DC terminals P/+ and N/-. Doing so could cause a fire.
- Be sure to perform daily and periodic inspections as specified in the Instruction Manual (Detailed). There is a possibility of explosion, damage or fire if this product is used without inspection

Injury Prevention

CAUTION

The voltage applied to each terminal must be the ones specified in the Instruction Manual (Detailed). Otherwise an explosion or damage may occur.

- The cables must be connected to the correct terminals. Otherwise an explosion or damage may occur.
- The polarity (+ and -) must be correct. Otherwise an explosion or damage may occur
- While power is ON or for some time after power-OFF, do not touch the inverter as it will be extremely hot. Touching these devices may cause burns.

Additional Instructions
The following instructions must be also followed. If the product is handled incorrectly, it may cause unexpected fault, an injury, or an electric shock.

CAUTION

Transportation and installation

- To prevent injury, wear cut-resistant gloves when opening packaging with sharp tools.
- Use proper lifting techniques or a trolley when carrying products. Failure to do so may lead to injuries.
- Do not stand or rest heavy objects on the product.
- Do not stack the boxes containing inverters higher than the number recommended.
- When carrying the inverter, do not hold it by the front cover. It may fall or break.
- During installation, caution must be taken not to drop the inverter as doing so may cause injuries.
- The product must be installed on a surface that withstands the weight of the inverter
- Do not install the product on a hot surface.
- Ensure the mounting orientation of this product is correct.
- Ensure this product is mounted securely in its enclosure.
- Do not install or operate the inverter if it is damaged or has parts missing
- Foreign conductive objects must be prevented from entering the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- For the FR-A860-00090 or lower, the surrounding air temperature must be -10 to $+40^{\circ} \mathrm{C}$ for the LD, ND, or HD rating $\left(-10\right.$ to $+30^{\circ} \mathrm{C}$ for the SLD rating) (non-freezing). Otherwise the inverter may be damaged.
- For the FR-A860-00170 to 01080, the surrounding air temperature must be -10 to $+40^{\circ} \mathrm{C}$ (non-freezing). Otherwise the inverter may be damaged.
- For the FR-A860-01440 or higher, the surrounding air temperature must be -10 to $+50^{\circ} \mathrm{C}$ for the LD or ND rating $\left(-10\right.$ to $+40^{\circ} \mathrm{C}$ for the SLD or HD rating) (non-freezing). Otherwise the inverter may be damaged.
- The ambient humidity must be 95% RH or less (non-condensing).

Otherwise the inverter may be damaged. (Refer to page 5 for details.)

- The storage temperature (applicable for a short time, e.g. during transit) must be between -20 and $+65^{\circ} \mathrm{C}$. Otherwise the inverter may be damaged.
- The inverter must be used indoors (without corrosive gas, flammable gas oil mist, dust and dirt etc.) Otherwise the inverter may be damaged.
- Do not use this product at an altitude above 2500 m . Vibration should not exceed $5.9 \mathrm{~m} / \mathrm{s}^{2}{ }_{* 1}$ at 10 to 55 Hz in X , Y , and Z directions. Otherwise the inverter may be damaged. (For installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.)
- If halogens (including fluorine, chlorine, bromine, and iodine) contained in fumigants for wood packages enter this product, the product may be damaged. Prevent the entry of fumigant residuals or use an alternative method such as heat disinfection. Note that sterilization or disinfection of wood packages should be performed before packing the product.
- To prevent a failure, do not use the inverter with a part or material containing halogen flame retardant including bromine.

Wiring

- Do not install a power factor correction capacitor, surge absorber, or radio noise filter on the output side of this product. These devices may overheat or burn out.
- The output terminals (terminals U, V, and W) must be connected to a motor correctly. Otherwise the motor will rotate inversely.
- Even with the power OFF, high voltage is still applied to the terminals U, V and W while the PM motor is running. Ensure the PM motor has stopped before carrying out any wiring.
- Never connect a PM motor to a commercial power supply

Connecting a commercial power supply to the input terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ of a PM motor will burn it out. The PM motor must be connected with the output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ of this product.

Test operation

- Before starting operation, each parameter must be confirmed and adjusted. A failure to do so may cause some machines to make unexpected motions.

\triangle WARNING

Usage

- Stay away from the equipment when the retry function is set as it will restart suddenly after a trip
- Depending on the function settings of this product, the product does not stop its output even when the STOP/RESET key on the operation panel is pressed. To prepare for it, provide a separate circuit and switch (to turn OFF the power of this product, or apply a mechanical brake, etc.) for an emergency stop.
- Be sure to turn OFF the start (STF/STR) signal before clearing the fault as this product will restart the motor suddenly after a fault is cleared
- Do not use a PM motor for an application where the PM motor is driven by its load and runs at a speed higher than the maximum motor speed.
- Use this inverter only with three-phase induction motors or with a PM motor. Connection of any other electrical equipment to the inverter output may damage the equipment.
- Performing pre-excitation (LX signal and X13 signal) under torque control (Real sensorless vector control) may start the motor running at a low speed even when the start command (STF or STR) is not input. This product with the start command ON may also rotate the motor at a low speed when the speed limit value is set to zero. Confirm that the motor running will not cause any safety problems before performing preexcitation.
- Do not modify the equipment
- Do not perform parts removal which is not instructed in the Instruction Manual (Detailed). Doing so may lead to fault or damage of the product.

CAUTION

Usage

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not repeatedly start or stop this product with a magnetic contactor on its input side. Doing so may shorten the life of this product
- The effect of electromagnetic interference must be reduced by using a noise filter or by other means. Otherwise nearby electronic equipment may be affected
- Appropriate precautions must be taken to suppress harmonics. Otherwise power supply harmonics from the inverter may heat/damage the power factor correction capacitor and generator.
- To drive a 600 V class motor by this product, use an insulation-enhanced motor, or take measures to suppress surge voltage. Otherwise surge voltage, which is attributed to the length and thickness of wire, may occur at the motor terminals, causing the motor insulation to deteriorate.
- When parameter clear or all parameter clear is performed, the required parameters must be set again before starting operations because all parameters return to their initial values.
- This product can be easily set for high-speed operation. Before changing its setting, the performances of the motor and machine must be fully examined.
- This product's brake function cannot be used as a mechanical brake. Use a separate device instead.
- Perform an inspection and test operation of this product if it has been stored for a long period of time.
- Static electricity in your body must be discharged before you touch the product.
- Only one PM motor can be connected to an inverter.
- A PM motor must be used under PM sensorless vector control. Do not use a synchronous motor, induction motor, or synchronous induction motor.
- Do not connect a PM motor in the induction motor control settings (initial settings). Do not use an induction motor in the PM sensorless vector control settings. It will cause a failure
- In the system with a PM motor, the inverter power must be turned ON before closing the contacts of the contactor at the output side.
- When the emergency drive function is enabled, the operation is continued or the retry operation (automatic reset and restart) is repeated even if a fault occurs, which may damage or burn this product and the motor. Before restarting the normal operation after the operation using the emergency drive function, make sure that this product and the motor have no fault.
- To maintain the security (confidentiality, integrity, and availability) of the inverter and the system against unauthorized access, DoS*2 attacks, computer viruses, and other cyberattacks from external devices via network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions. We shall have no responsibility or liability for any problems involving inverter trouble and system trouble by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.
Emergency stop
- A safety backup such as an emergency brake must be provided for devices or equipment in a system to prevent hazardous conditions in case of failure of the inverter or an external device controlling the inverter.
- If the breaker installed on the input side of this product trips, check for wiring faults (short circuits etc.) and damage to internal parts of this product. Identify and remove the cause of the trip before resetting the tripped breaker and applying the power to the product again.
- When a protective function is activated, take an appropriate corrective action, then reset the inverter, and resume the operation.

Maintenance, inspection and parts replacement

- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure
Disposal
- The inverter must be treated as industrial waste
*2 DoS: A denial-of-service (DoS) attack disrupts services by overloading systems or exploiting vulnerabilities, resulting in a denial-of-service (DoS) state.

Application of caution labels

Caution labels are used to ensure safety during use of Mitsubishi Electric inverters.
Apply the following labels to the inverter if the "retry function" and/or "automatic restart after instantaneous power failure" have been enabled - For the retry function

CAUTION

Retry Function Has
Been Selected
0. Stay away from the motor and machine. They will start suddenly (after given time has elapsed) when alarm occurs.

- For automatic restart after instantaneous power failure

CAUTION

Automatic Restart after Instantaneous Power Failure Has Been Selected
2. Stay away from the motor and machine They will start suddenly (after reset time has elapsed) when instantaneous power failure occurs.

Application of motor control labels

Apply the following labels to the inverter to avoid connecting motors not intended for a particular motor control setting.

Induction motor setting
The inverter is set for the
induction motor control.
Do not connect a PM motor.

PM motor control setting

4 The inverter is set for the PM motor control.
Do not connect an induction
motor.

General instruction

- For clarity, illustrations in this Instruction Manual may be drawn with covers or safety guards removed. Ensure all covers and safety guards are properly installed prior to starting operation. For details on the PM motor, refer to the Instruction Manual of the PM motor.

MEMO

1 INVERTER INSTALLATION AND PRECAUTIONS

Inverter model

- FR-A860-00450 or lower

- FR-A860-00680 or higher

Capacity plate

Inverter model \rightarrow FR-A860-00320-1-N6
Serial number \rightarrow SERIAL: XXXXXXXXX

Rating plate

	\& Mrsumsi in INVERTER PASSED
Inverter model Input rating	MODEL :FR-A860-00320-1-N6 INPUT: XXXXX
Output rating	OUTPUT : XXXXX
SERIAL	SERIAL: XXXXXXXXXX
Country of origin	\longrightarrow MADE IN XxXxx

Inverter placement

Fix six positions for the FR-A860-02890 or higher

- Install the inverter on a strong surface securely with screws.
- Leave enough clearances and take cooling measures.
- Avoid places where the inverter is subjected to direct sunlight, high temperature and high humidity.
- Install the inverter on a nonflammable wall surface.
- When encasing multiple inverters, install them in parallel as a cooling measure.
- When designing or building an enclosure for the inverter, carefully consider influencing factors such as heat generation of the contained devices and the operating environment.

- Installation environment

Before installation, confirm that the following environment conditions are met.

Item	Description		
Surrounding air temperature*4	FR-A860-00090 or lower	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing) (LD/ND/HD rating) $-10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ (non-freezing) (SLD rating)	Enclosure *5 \square Measurement
	FR-A860-00170 to 01080	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing)	$5 \mathrm{~cm} \stackrel{\times}{\longleftrightarrow} \text { Inverter } \underset{\longleftrightarrow}{\longleftrightarrow} \stackrel{\substack{\text { position } \\ \longleftrightarrow}}{\longleftrightarrow}$
	FR-A860-01440 or higher	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing) (LD/ND rating) $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing) (SLD/HD rating)	$\begin{aligned} & \text { Measurement } \\ & \text { position } \end{aligned}$
Ambient humidity	95\% RH or less (non-condensing)		
Storage temperature	-20 to $+65^{\circ} \mathrm{C} * 1$		
Atmosphere	Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)		
Altitude	Maximum 2500 m*2		
Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2} * 3$ or less at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes)		

*1 Temperature applicable for a short time, e.g. in transit.
*2 For the installation at an altitude above 1000 m up to 2500 m , consider a 3% reduction in the rated current per 500 m increase in altitude.
*3 $\quad 2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A860-02890 or higher.
*4 Surrounding air temperature is a temperature measured at a measurement position in an enclosure. Ambient temperature is a temperature outside an enclosure.
*5 The FR-A860-00680 or higher inverter is intended for installation in an enclosure.

2 WIRING

2.1 Terminal connection diagrams

*1 For the FR-A860-01440 or higher, and when a 75 kW or higher motor is used, always connect a DC reactor, which is available as an option. (To select a DC reactor, refer to the Instruction Manual (Detailed), and select one according to the applicable motor capacity.)
When connecting a DC reactor, if a jumper is installed across terminals P 1 and $\mathrm{P} /+$, remove the jumper before installing the DC reactor. (The jumper is not installed for the FR-A860-01440 or higher.)
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 11.)
*4 Terminal JOG is also used as the pulse train input terminal. Use Pr. 291 to choose JOG or pulse.
*5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to the Instruction Manual (Detailed). It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*7 A brake resistor is provided with the FR-A860-00090 or lower. Connect the provided brake resistor to terminals P3 and PR as required.
*8 Connect a brake resistor across terminals $\mathrm{P} 3(\mathrm{P} /+)$ and PR . (Terminal PR is equipped in FR -A860-01080 or lower.) Install a thermal relay to prevent overheating and damage of discharging resistors. (Refer to the Instruction Manual (Detailed).)
*9 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 11.)
*10 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 11.)
*11 Terminal F/C (FM) can be used to output pulse trains as open collector output by setting Pr. 291
*12 Not required when calibrating the scale with the operation panel (FR-LU08) or the parameter unit (FR-PU07).

NOTE:

To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.

- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.
The terminals S1, S2, SIC, So (SO), and SOC are for manufacturer setting. Do not connect anything to these. Doing so may cause an inverter failure Do not remove the shorting wires across terminals S 1 and PC , terminals S2 and PC, and terminals SIC and SD. Removing either shorting wire disables the inverter operation.

2.2 Main circuit terminals

Cable gauge of main circuit terminals and earth (ground) terminals

Use an appropriate cable gauge to suppress the voltage drop to 2% or less.
If the wiring distance is long between the inverter and motor, the voltage drop in the main circuit will cause the motor torque to decrease especially at a low speed. The following table indicates a selection example for the wiring length of 20 m .

- 600 V class (575 V input power supply, 150% overload current rating for 1 minute)

Applicable inverter model	$\begin{gathered} \text { Terminal } \\ \text { screw } \\ \text { size } * 2 \end{gathered}$	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal				Cable gauge *1							
							HIV cables, etc. ($\mathrm{mm}^{\mathbf{2}}$)				AWG/MCM			
			R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable
$\begin{aligned} & \text { FR-A860-00027 to } \\ & 00090 \end{aligned}$	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-A860-00170	M4	1.5	3.5-4	2-4	3.5-4	3.5-4	3.5	2	3.5	3.5	12	14	10	12
FR-A860-00320	M5	2.5	5.5-5	5.5-5	8-5	5.5-5	5.5	5.5	8	5.5	10	10	8	10
FR-A860-00450	M6	4.4	14-6	14-6	14-6	14-6	14	14	14	14	6	6	4	6
FR-A860-00680	M8	7.8	22-8	22-8	22-8	22-8	22	22	22	22	4	4	2	4
FR-A860-01080	M8	7.8	38-8	38-8	38-8	22-8	38	38	38	22	2	2	1/0	4
FR-A860-01440	M10	26.5	60-10	60-10	60-10	38-10	60	60	60	38	2	2	1/0	1
FR-A860-01670	M10	26.5	60-10	60-10	60-10	38-10	60	60	60	38	1/0	1/0	2/0	1
FR-A860-02430	M10	26.5	60-10	60-10	60-10	38-10	60	60	60	38	2/0	2/0	3/0	1
FR-A860-02890	M12 (M10)	46	80-12	80-12	80-12	38-10	80	80	80	38	4/0	250	300	1
FR-A860-03360	M12 (M10)	46	100-12	100-12	125-12	38-10	100	100	125	38	250	300	$2 \times 2 / 0$	1
FR-A860-04420	M12 (M10)	46	125-12	125-12	150-12	60-10	125	125	150	60	$2 \times 2 / 0$	$2 \times 3 / 0$	$2 \times 4 / 0$	1/0

*1 The cables used should be $75^{\circ} \mathrm{C}$ copper cables.
*2 The terminal screw size indicates the size of terminal screw for R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, P1, P3, and the screw for earthing (grounding), and P/+ for option connection. A screw for earthing (grounding) of the FR-A860-02890 or higher is indicated in ().

The line voltage drop can be calculated by the following formula:
Line voltage drop $[\mathrm{V}]=\sqrt{3} \times$ wire resistance $[\mathrm{m} \Omega / \mathrm{m}] \times$ wiring distance $[\mathrm{m}] \times$ current $[\mathrm{A}] / 1000$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

- - NOTTE

Tighten the terminal screw to the specified torque. A screw that has been tightened too loosely can cause a short circuit or malfunction. A screw that has been tightened too tightly can cause a short circuit or malfunction due to the unit breakage.

- Use crimp terminals with insulation sleeves to wire the power supply and motor.

2.3 Control circuit terminal

- Wiring precautions

- It is recommended to use a cable of 0.3 to $0.75 \mathrm{~mm}^{2}$ for connection to the control circuit terminals.
- The wiring length should be $30 \mathrm{~m}(200 \mathrm{~m}$ for terminal FM$)$ at the maximum.
- Use two or more parallel micro-signal contacts or twin contacts to prevent contact faults when using contact inputs since the control circuit input signals are micro-currents.
- To suppress EMI, use shielded or twisted cables for the control circuit terminals and run them away from the main and power circuits (including the 200 V relay sequence circuit). For the cables connected to the control circuit terminals,

Micro signal contacts

Twin contacts connect their shields to the common terminal of the connected control circuit terminal. When connecting an external power supply to terminal PC, however, connect the shield of the power supply cable to the negative side of the external power supply. Do not directly earth (ground) the shield to the enclosure, etc.

- Always apply a voltage to the fault output terminals (A1, B1, C1, A2, B2, and C2) via a relay coil, lamp, etc.
- Do not connect any terminal SD on the inverter and the 0 V terminal of the external power supply (when the sink logic is selected).

- Wiring method

- Blade terminals commercially available (as of October 2020)

Cable gauge (mm^{2})	Ferrule terminal model			Manufacturer	Crimping tool name
	With insulation sleeve	Without insulation sleeve	For UL wire*1		
0.3	AI 0,34-10TQ	-	-	Phoenix Contact Co., Ltd.	CRIMPFOX 6
0.5	AI 0,5-10WH	-	AI 0,5-10WH-GB		
0.75	AI 0,75-10GY	A 0,75-10	AI 0,75-10GY-GB		
1	Al 1-10RD	A 1-10	Al 1-10RD/1000GB		
1.25, 1.5	Al 1,5-10BK	A 1,5-10	Al 1,5-10BK/1000GB*2		
0.75 (for two wires)	Al-TWIN 2×0,75-10GY	-	-		

*1 A ferrule terminal with an insulation sleeve compatible with the MTW wire which has a thick wire insulation.
*2 Applicable to terminals A1, B1, C1, A2, B2, and C2.

Cable gauge (mm $\mathbf{m}^{\mathbf{2}}$	Blade terminal product number	Insulation cap product number	Manufacturer	Crimping tool product number
0.3 to 0.75	BT $0.75-11$	VC 0.75	NICHIFU Co., Ltd.	NH 69

When a fault is detected by the protective function, the protective function is activated and output a Fault (ALM) signal. However, a fault signal may not be output at an inverter's fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi Electric assures the best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to the machine when the inverter fails for some reason. Also, at the same time consider the system configuration where a failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.

Interlock method which uses the inverter status output signals

By combining the inverter output signals to provide an interlock as shown below, an inverter failure can be detected.

Interlock method	Check method	Used signals	Refer to
Inverter protective function operation	Operation check of an alarm contact. Circuit error detection by negative logic.	Fault (ALM) signal	Chapter 5 of the Instruction Manual (Detailed)
Inverter operating status	Operation ready signal check.	Inverter operation ready (RY) signal	Chapter 5 of the Instruction Manual (Detailed)
Inverter running status	Logic check of the start signal and running signal.	Start signal (STF signal, STR signal) Inverter running (RUN) signal	Chapter 5 of the Instruction Manual (Detailed)
Inverter running status	Logic check of the start signal and output current.	Start signal (STF signal, STR signal) Output current detection (Y12) signal	Chapter 5 of the Instruction Manual (Detailed)

- Backup method outside the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, if an inverter CPU fails in a system interlocked with the inverter's fault, start, and RUN signals, no fault signal will be output and the RUN signal will be kept ON because the inverter CPU is down.
Provide a speed detector to detect the motor speed and current detector to detect the motor current and consider the backup system such as performing a check as below according to the level of importance of the system.

- Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the current is flowing through the motor while the motor coasts to stop, even after the inverter's start signal is turned OFF. For the logic check, configure a sequence considering the inverter's deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.

- Command speed and actual operation check

Check for a gap between the actual speed and commanded speed by comparing the inverter's speed command and the speed detected by the speed detector.

4
 PRECAUTIONS FOR USE OF THE INVERTER

The FR-A800 series inverter is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product. Before starting operation, always recheck the following points.

- Use crimp terminals with insulation sleeves to wire the power supply and the motor.
- Application of power to the output terminals ($\mathbf{U}, \mathrm{V}, \mathrm{W}$) of the inverter will damage the inverter. Never perform such wiring.
- After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Use an appropriate cable gauge to suppress the voltage drop to 2% or less.

If the wiring distance is long between the inverter and motor, a voltage drop in the main circuit will cause the motor torque to decrease especially during the output of a low frequency.
Refer to page 7 for the recommended cable gauge.

- Keep the total wiring length within the specified length.

In long distance wiring, charging currents due to stray capacitance in the wiring may degrade the fast-response current limit operation or cause the equipment on the inverter's output side to malfunction. Pay attention to the total wiring length. (Refer to Chapter 2 of the Instruction Manual (Detailed).)

- Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In such case, install a noise filter.

- Electrical corrosion of the bearing

When a motor is driven by the inverter, axial voltage is generated on the motor bearing, which may cause electrical corrosion of the bearing in rare cases depending on: condition of the grease used for the bearing, wiring, load, operating conditions of the motor, or specific inverter settings (high carrier frequency).
Contact your sales representative to take appropriate countermeasures for the motor
The following shows examples of countermeasures for the inverter.

- Decrease the carrier frequency
- Provide a common mode choke *1 on the output side of the inverter
*1 Recommended common mode choke: FT-3KM F series FINEMET ${ }^{\circledR}$ common mode choke cores manufactured by Hitachi Metals, Ltd. FINEMET is a registered trademark of Hitachi Metals, Ltd.
- Do not install a power factor correction capacitor, surge suppressor or capacitor type filter on the inverter's output side.

Doing so will cause the inverter to trip or the capacitor and surge suppressor to be damaged. If any of the above devices is connected, immediately remove it.

- For some short time after the power-OFF, a high voltage remains in the smoothing capacitor, and it is dangerous.

A smoothing capacitor holds high voltage some time after power-OFF. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched OFF, and then make sure that the voltage across the main circuit terminals $\mathrm{P} /+$ and $\mathrm{N} /-$ of the inverter is low enough using a tester, etc.

- If the alarm lamp is flickered, turn OFF the 24 V external power supply before performing wiring.
- A short circuit or earth (ground) fault on the inverter's output side may damage the inverter module.
- Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits caused by peripheral circuit inadequacy or an earth (ground) fault caused by wiring inadequacy or reduced motor insulation resistance may damage the inverter module.
Fully check the to-earth (ground) insulation and phase-to-phase insulation of the inverter's output side before power-ON. Especially for an old motor or use in hostile atmosphere, securely check the motor insulation resistance, etc.
- Do not use the magnetic contactor (MC) on the inverter's input side to start/stop the inverter

Since repeated inrush currents at power ON will shorten the life of the converter circuit (1,000,000 times for others), frequent starts and stops of the input side MC must be avoided. Turn ON/OFF the inverter's start signals (STF, STR) to run/stop the inverter. (Refer to page 6.)

- Across terminals P3(P/+) and PR, connect only a brake resistor.

Do not connect a mechanical brake.

- Do not apply a voltage higher than the permissible voltage to the inverter I/O signal circuits.

Application of a voltage higher than the permissible voltage to the inverter I/O signal circuits or opposite polarity may damage the I/O devices. Especially check the wiring to prevent the speed setting potentiometer from being connected incorrectly to short circuit terminals 10E and 5 .

- To use the commercial power supply during general-purpose motor operation, be sure to provide electrical and mechanical interlocks between the electronic bypass contactors MC1 and MC2.
When using a switching circuit as shown right, chattering due to mis-configured sequence or arc generated at switching may allow undesirable current to flow in and damage the inverter. Mis-wiring may also damage the inverter.
(The commercial power supply operation is not available with vector control dedicated motors nor with PM motors.)
- If the machine must not be restarted when power is restored after a power failure, provide an MC in the inverter's input side and also make up a sequence which will not switch ON the start signal.
If the start signal (start switch) remains ON after a power failure, the inverter will automatically restart as soon as the power is restored.
- Vector control is available with an encoder-equipped motor. And such an encoder must be directly connected to a motor shaft without any backlash. (Real sensorless vector control does not require an encoder.)
- MC on the inverter's input side

On the inverter's input side, connect an MC for the following purposes. (For the selection, refer to Chapter 2 of the Instruction Manual (Detailed).)

- To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.).
- To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure.
- To separate the inverter from the power supply to ensure safe maintenance and inspection work.

If using an MC for emergency stop during operation, select an MC regarding the inverter input side current as JEM 1038-AC-3 class rated current.

- Handling of the magnetic contactor on the inverter's output side

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When providing MCs to use the commercial power supply during general-purpose motor operation, switch the MCs after both the inverter and motor stop.
A PM motor is a synchronous motor with high-performance magnets embedded inside. High-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, confirm that the motor is stopped. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.

- Countermeasures against inverter-generated EMI

If electromagnetic noise generated from the inverter causes the frequency setting signal to fluctuate and the motor rotation speed to be unstable when changing the motor speed with analog signals, the following countermeasures are effective.

- Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them.
- Run signal cables as far away as possible from power cables (inverter I/O cables).
- Use shielded cables.
- Install a ferrite core on the signal cable.
- Instructions for overload operation

When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure.
Adding a margin to the current can eliminate such a condition. For a general-purpose motor, use an inverter of a higher capacity (up to 2 ranks). For an IPM motor, use an inverter and IPM motor of higher capacities.

- Make sure that the specifications and rating match the system requirements.

5 INVERTER FUNCTION SETTING

5.1 Operation panel (FR-LU08)

The operation panel can be used for setting the inverter parameters, monitoring various items, and checking fault indications.

- Removal and installation of the accessory cover

- Loosen the two fixing screws on the accessory cover. (These screws cannot be removed.)

- Push the upper edge of the accessory cover and pull the accessory cover to remove.

- To install the accessory cover, fit it securely and tighten the screws. (Tightening torque: 0.40 to $0.45 \mathrm{~N} \cdot \mathrm{~m}$)
- Installing the operation panel on the enclosure surface
- Having an operation panel on the enclosure surface is convenient. With a connection cable, you can install the operation panel to the enclosure surface, and connect it to the inverter.
Use the option FR-CB2[], or connectors and cables available on the market. (To install the operation panel, the optional connector (FR-ADP) is required.) Securely insert one end of the connection cable until the stoppers are fixed.

- Refer to the following table when fabricating the cable on the user side. Keep the total cable length within 20 m .

Name	Remarks
Communication cable	Cable compliant with EIA-568 (such as 10BASE-T cable)

- For the details of the FR-LU08, refer to the FR-LU08 Instruction Manual.

5.2 Parameter list

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be performed from the operation panel.

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
0*9	Torque boost	0 to 30%	5/3/2/1\%*1	51	Second electronic thermal O/L relay	0 to 500A, 9999*2	9999	86	Excitation current lowspeed scaling factor	0 to 300\%, 9999	9999
1*9	Maximum frequency	0 to 120 Hz	$120 \mathrm{~Hz} * 2$			$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{~A}, \\ 9999 * 3 \end{array}$	0	89	Speed control gain (Advanced magnetic flux vector)	0 to 200\%, 9999	9999
			60Hz*3	52	Operation panel main monitor selection	0,5 to 14,17 to 20,22 to 36,38 to 46,50 to $57,61,62$,$64,67,68,71$ to75,87 to 98,100					
2*9	Minimum frequency	0 to 120 Hz	OHz					90	Motor constant (R1)	0 to 50^, 9999*2	9999
3*9	Base frequency	0 to 590 Hz	60 Hz							$\begin{aligned} & 0 \text { to } 400 \mathrm{~m} \Omega, \\ & 9999 * 3 \end{aligned}$	
4*9	Multi-speed setting (high speed)	0 to 590 Hz	60 Hz								
5*9	Multi-speed setting (middle speed)	0 to 590 Hz	30 Hz					91	Motor constant (R2)	0 to $50 \Omega, 9999 * 2$ 0 to $400 \mathrm{~m} \Omega$,	9999
6*9	Multi-speed setting (low speed)	0 to 590 Hz	10Hz	54	FM terminal function selection	$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14, \\ & 17,18,21,24, \\ & 32 \text { to } 34,36,46, \\ & 50,52,53,61, \\ & 62,67,70, \\ & 87 \text { to } 90,92,93, \\ & 95,97,98 \end{aligned}$	1	92	Motor constant (L1)/daxis inductance (Ld)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 * 2 \end{aligned}$	9999
7*9	Acceleration time	0 to 3600s								$\begin{aligned} & 0 \text { to } 400 \mathrm{mH}, \\ & 9999 * 3 \end{aligned}$	
8*9	Deceleration time	0 to 3600s	5s*4	55	Frequency monitoring reference		60 Hz	93	Motor constant (L2)/qaxis inductance (Lq)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 * 2 \end{aligned}$	9999
9*9	Electronic thermal O/L relay	0 to 500A*2	Rated inverter current			0 to 590 Hz				$\begin{array}{\|l\|} \hline 0 \text { to } 400 \mathrm{mH}, \\ 9999 * 3 \end{array}$	
		0 to 3600A*3		56	Current monitoring reference	0 to 500A*2	Rated inverter current	94	Motor constant (X) Online auto tuning selection	0 to 100\%, 9999	9999
10	DC injection brake operation frequency	$\begin{aligned} & \begin{array}{l} 0 \text { to } 120 \mathrm{~Hz}, \\ 9999 \end{array} \end{aligned}$	3 Hz	57	Restart coasting time	$\begin{aligned} & 0,0.1 \text { to } 30 \mathrm{~s}, \\ & 9999 \\ & \hline \end{aligned}$				0 to 2	0
11	DC injection brake operation time	0 to 10s, 8888	0.5s	58	Restart cushion time	0 to 60s	1s	96	Auto tuning setting/ status	0, 1, 11, 101	0
12	DC injection brake operation voltage	0 to 30\%	1\%	59	Remote function selection	0 to 3,11 to 13	0	100	V/F1 (first frequency)	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
13	Starting frequency	0 to 60 Hz	0.5Hz	60	Energy saving control selection	0, 4, 9	0	101	V/F1 (first frequency voltage)	0 to 1000 V	OV
14	Load pattern selection	0 to 5, 12 to 15	0								
15*9	Jog frequency	0 to 590 Hz	5 Hz	61	Reference current	0 to $500 \mathrm{~A}, 9999 * 2$ 0 to 3600 A, $9999 * 3$	9999	102	V/F2 (second frequency) V/F2 (second frequency voltage)	$\begin{aligned} & \hline \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999
16*9	Jog acceleration/ deceleration time	0 to 3600s	0.5s					103		0 to 1000 V	OV
17	MRS input selection	0, 2, 4	0	62	Reference value at acceleration	0 to 400\%, 9999	9999				
18	High speed maximum frequency	0 to 590 Hz	120Hz*2	63	Reference value at deceleration	0 to 400\%, 9999	9999	104	V/F3 (third frequency)	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
			$60 \mathrm{~Hz} * 3$					105	V/F3 (third frequency voltage)	0 to 1000 V	OV
19	Base frequency voltage	$\begin{aligned} & 0 \text { to } 1000 \mathrm{~V}, \\ & 8888,9999 \\ & \hline \end{aligned}$	9999	64	Starting frequency for elevator mode	0 to 10Hz, 9999	9999	105	V/F4 (fourth frequency)		9999
20	Acceleration/ deceleration reference frequency	1 to 590 Hz	60 Hz	65	Retry selection	0 to 5	0	106		$\begin{aligned} & \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \end{aligned}$	
				66	Stall prevention operation reduction starting frequency	0 to 590 Hz	60 Hz	107	V/F4 (fourth frequency voltage)	0 to 1000 V	OV
21	Acceleration/ deceleration time increments	0, 1	0	67	Number of retries at fault occurrence	$\begin{array}{\|l} \hline 0 \text { to } 10,101 \text { to } \\ 110 \end{array}$	0	108	V/F5 (fifth frequency)	$\begin{array}{\|l\|} \hline \begin{array}{l} 0 \\ \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \\ \hline \end{array}$	9999
22	Stall prevention operation level (Torque limit level)	0 to 400\%	150\%	68	fault occurrence Retry waiting time		1s	109	V/F5 (fifth frequency voltage)	0 to 1000 V	OV
					Retry count display erase	0	0	110	Third acceleration/ deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
23	Stall prevention operation level compensation factor at double speed	0 to 200\%, 9999	9999	70	Special regenerative brake duty	0 to 100\%	0\%	111	Third deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
				71	Applied motor	0 to 6,13 to 16,$30,33,34$,8090,8093,8094,9090,9093,9094	0	$\begin{array}{\|l\|} \hline 112 \\ \hline 113 \end{array}$	Third torque boost Third V/F (base	0 to 30\%, 9999	9999
$\begin{aligned} & 24 \text { to } \\ & 27 \\ & \hline \end{aligned}$	Multi-speed setting (4 speed to 7 speed)	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999						Third V/F (base frequency)	$\begin{aligned} & \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \end{aligned}$	9999
28	Multi-speed input compensation selection	0, 1	0	72	PWM frequency selection	0 to $15 * 2$ 0 to $6,25 * 3$	2	114	Third stall prevention operation level	0 to 400\%	150\%
29	Acceleration/	0 to 6	0					115	Third stall prevention	0 to 590 Hz	OHz
	selection	0 to 6	0	73	Analog input selection	0 to 7, 10 to 17	1				
		0 to 2, 10, 11,		74	Input filter time constant	0 to 8	1	116	Third output frequency detection	0 to 590 Hz	60 Hz
30	Regenerative function selection	$\begin{aligned} & 20,21, \\ & 100 \text { to } 102,110, \\ & 111,120,121 \end{aligned}$	0			$\begin{array}{\|l} 0 \text { to } 3,14 \text { to } 17, \\ 1000 \text { to } 1003, \\ 1014 \text { to } 1017 * 2 \\ \hline \end{array}$		117	PU communication station number	0 to 31	0
31	Frequency jump 1A		9999		Reset selection/	0 to 3 , 14 to 17, 100 to 103		118	PU communication speed	$\begin{aligned} & 48,96,192,384, \\ & 576,768,1152 \end{aligned}$	192
32	Frequency jump 1B		9999	75	detection/PU stop	11	14				
33	Frequency jump 2A	0 to 590 Hz ,	9999			10		119	bit length / data length	0, 1, 10, 11	1
34	Frequency jump 2B		9999			1014 to 1017,		120	PU communication parity check	0 to 2	2
35	Frequency jump 3A		9999			1100 to 1103,			check		
36	Frequency jump 3B		9999			1114 to		121	Number of PU	0 to 10, 9999	1
37	Speed display	0, 1 to 9998	0	76	Fault code output selection	0 to 2	0				
41	Up-to-frequency sensitivity	0 to 100\%	10\%	77	Selection	to 2	0	122	PU communication check time interval	$\begin{aligned} & 0,0.1 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
42	Output frequency detection	0 to 590 Hz	6Hz	77	selection	to 2	0	123	PU communication waiting time setting	$\begin{aligned} & \begin{array}{l} 0 \text { to } 150 \mathrm{~ms}, \\ 9999 \end{array} \end{aligned}$	9999
				78	prevention selection	0 to 2	0	124	PU communication CR/ LF selection	0 to 2	1
43	detection for reverse rotation	${ }_{9999}$	9999	79*9	Operation mode selection	0 to 4, 6, 7	0	125*9	Terminal 2 frequency	0 to 590 Hz	60Hz
44	Second acceleration/ deceleration time	0 to 3600 s	5s	80	Motor capacity	$\begin{array}{\|l} \hline 0.4 \text { to } 55 \mathrm{~kW}, \\ 9999 * 2 \\ \hline \end{array}$	9999	126*9	setting gain frequency Terminal 4 frequency setting gain frequency	0 to 590 Hz	60 Hz
45	Second deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \\ & \hline \end{aligned}$	9999			$\begin{aligned} & 0 \text { to } 3600 \mathrm{~kW}, \\ & 9999 * 3 \end{aligned}$		127	PID control automatic switchover frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
46	Second torque boost	0 to 30\%, 9999	9999	81	Number of motor poles	$\begin{aligned} & 2,4,6,8,10, \\ & 12,9999 \end{aligned}$	9999				
47	Second V/F (base frequency)	$\begin{aligned} & \hline \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999			$\begin{aligned} & 0 \text { to 500A, } \\ & 9999=2 \end{aligned}$				40 to $43,50,51$, 60, 61, 70, 71,	
48	Second stall prevention operation level	0 to 400\%	150\%	82	Motor excitation current	$\begin{aligned} & \hline \begin{array}{l} 0 \text { to 3600A, } \\ 9999 * 3 \end{array} \\ & \hline \end{aligned}$	9999	128	PID action selection	80, 81, 90, 91, 100, 101, 1000, 1001, 1010,	0
49	Second stall prevention operation frequency	$\begin{aligned} & \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	OHz	83	Rated motor voltage	O 0 to 1000 V	575 V			1011, 2000, 2001, 2010, 2011	
50	Second output frequency detection	0 to 590 Hz	30 Hz	84	Rated motor frequency	$\begin{array}{\|l} \hline 10 \text { to } 400 \mathrm{~Hz}, \\ 9999 \end{array}$	9999	129	PID proportional band	$\begin{aligned} & 0.1 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	100\%
				85	Excitation current break point	$\begin{aligned} & \begin{array}{l} 0 \text { to } 400 \mathrm{~Hz}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999	130	PID integral time	$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1s

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
131	PID upper limit	0 to 100\%, 9999	999	182	RH terminal function selection	0 to 20,22 to 28, 32, 37,42 to 48, 50 to 53,57 to 62, 64 to 74 , 76 to $80,84,85$, 87 to 89,92 to$96,128,129$, 9999*7	2	271	High-speed setting maximum current	0 to 400\%	50\%
132	PID lower limit	0 to 100\%, 9999	9999	182	selection		2	271		碞	
133	PID action set point	0 to 100\%, 9999	9999	183	RT terminal function selection		3	272	Middle-speed setting minimum current	0 to 400\%	100\%
134	PID differential time	$\begin{aligned} & \begin{array}{l} 0.01 \text { to } 10 \mathrm{~s}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999	184	AU terminal function selection		4	273	$\begin{aligned} & \text { Current averaging } \\ & \text { range } \end{aligned}$	0 to 590Hz, 9999	9999
135	Electronic bypass sequence selection	0,1	0	185	JOG terminal function selection		5	274	Current averaging filter time constant	1 to 4000	16
136	MC switchover interlock time	0 to 100s	1s	186	CS terminal function selection		6	275	Stop-on contact excitation current low-	0 to 300\%, 9999	9999
137	Start waiting time	0 to 100s	0.5s	187	MRS terminal function selection				speed multiplying factor)	
138	Bypass selection at a fault	0, 1	0				24	276	PWM carrier frequency at stop-on contact	0 to 9, 9999*2	9999
139	Automatic switchover frequency from inverter to bypass operation	0 to 60Hz, 9999	9999	188	STOP terminal function selection		25 62	278	at stop-on contact Brake opening frequency	O to 4, 9 to 30 Hz	3 Hz
140	Backlash acceleration stopping frequency	0 to 590 Hz	1 Hz	190	RUN terminal function selection		0	280	Brake opening current detection time	O to 400\%	130\%
141	Backlash acceleration stopping time	0 to 360s	0.5s	191	SU terminal function selection	$\begin{array}{r} 38 \text { to } 57,60,61,63 \\ \text { to } 68,70,79, \\ -80,84,85,90 \text { to } 99, \end{array}$	1	2881	detection time Brake operation time at start	O to 5s	0.3s
142	Backlash deceleration stopping frequency	0 to 590 Hz	1Hz	192	IPF terminal function selection	$\begin{aligned} & 100 \text { to } 108, \\ & 110 \text { to } 116,120, \end{aligned}$	2	282	Brake operation frequency	0 to 30 Hz	6 Hz
143	Backlash deceleration stopping time	0 to 360s	0.5s	193	OL terminal function selection		3	283	Brake operation time at stop	0 to 5s	0.3s
144	Speed setting switchover	$\begin{aligned} & 0,2,4,6,8,10 \\ & 12,10,104,106, \\ & 108.110 .112 \end{aligned}$	4	194	$\begin{aligned} & \text { FU terminal function } \\ & \text { selection } \end{aligned}$	163 to 168, 170, 179, 180, 184, 185,	4	284	Deceleration detection function selection	0, 1	0
145	PU display language selection	0 to 7	-	195	ABC1 terminal function selection	190 to 199, 200 to 208, 211 to 213, 247, 300 to 308, 347, 311 to $313,9999 * 8$	99	285	Overspeed detection frequency (Excessive speed deviation detection frequency)	0 to 30Hz, 9999	9999
147	Acceleration/ deceleration time switching frequency	0 to 590Hz, 9999	9999	196	ABC2 terminal function selection		9999	286 287	deviation detection frequency) Droop gain Droop filter time constant	O to 100\%	0\%
148	Stall prevention level at 0 V input	0 to 400\%	150\%	$\begin{aligned} & 232 \text { to } \\ & 239 \\ & \hline \end{aligned}$	Multi-speed setting (8 speed to 15 speed)	Oto 590Hz, 9999	9999	288	Droop function activation selection	$\begin{aligned} & 0 \text { to } 2,10,11, \\ & 20 \text { to } 22 \end{aligned}$	0
149	Stall prevention level at 10 V input	0 to 400\%	200\%	240	Soft-PWM operation selection	0, 1	1	289	Inverter output terminal filter	5 to 50 ms , 9999	9999
150	Output current detection level	0 to 400\%	150\%	241	Analog input display unit switchover	0, 1	0	29	Monitor negative output selection	0 to 7	0
151	Output current detection signal delay time	0 to 10s	0s	242	Terminal 1 added compensation amount (terminal 2)	0 to 100\%	100\%	291	Pulse train I/O selection	$\begin{aligned} & 0,1,10,11,20, \\ & 21,100 \end{aligned}$	0
152	$\begin{aligned} & \text { Zero current detection } \\ & \text { level } \\ & \hline \end{aligned}$	0 to 400\%	5\%	243	Terminal 1 added compensation amount (terminal 4)	0 to 100\%	75\%	292	Automatic acceleration/ deceleration	0, 1, 3, 5 to 8, 11	0
153	Zero current detection time	0 to 10s	0.5s	244	Cooling fan operation selection	$\begin{aligned} & \text { 0, 1, 101 to 105, } \\ & 1000,1001,1101 \\ & \text { to } 1105 \\ & \hline \end{aligned}$	1	293	Acceleration/deceleration	0 to 2	0
154	Voltage reduction selection during stall prevention operation	0, 1, 10, 11	1					294	UV avoidance voltage gain	0 to 200\%	100\%
				246	Slip compensation time constant	0.01 to 10s	0.5s		Parameter for manufacturer setting. Do not set.		
155	validity condition selection	0, 10	0					296	Password lock level	$\begin{aligned} & 0 \text { to 6, 99, } \\ & 100 \text { to 106, 199, } \\ & 9999 \end{aligned}$	9999
156	Stall prevention operation selection OL signal output timer	O to 31, 100, 101	${ }^{0}$	248	Self power management selection	0 to 2	0	297	Password lock/unlock	$\begin{aligned} & \left(\begin{array}{l} 0 \text { to } 5), \\ 10000 \\ \text { 1009 to 9998, } \end{array},\right. \end{aligned}$	9999
158	AM terminal function selection	1 to 3,5 to 14, $17,18,21,24$, 32 to $34,36,46$, 50,52 to 54,61, $62,67,70$, 87 to 90, 91 to 98	1	249	Earth (ground) fault detection at start	0, 1	0	298	Frequency search gain	0 to 32767, 9999	9999
				250	Stop selection	0 to 100 s, 1000 100 1100 s, 8888,9999	9999	$\begin{array}{\|l\|} \hline 299 \\ \hline 313 * 10 \end{array}$	Rotation direction detection selection at restarting	0, 1, 9999	0
									DOO output selection	0 to 8,10 to 20, 22,25 22,289 	
				251	Output phase loss protection selection	0, 1	1				
159	Automatic switchover frequency range from bypass to inverter operation	0 to $10 \mathrm{~Hz}, 9999$	9999	$\begin{array}{\|l} 252 \\ 253 \\ \hline \end{array}$	Override bias Override gain Main circuit power OFF waiting time	$0 \text { to } 200 \%$	50\%	314*10	DO1 output selection	$\begin{aligned} & 60,61,63 \text { to } 66 \text {, } \\ & 68,70,79,80, \\ & 84 \text { to } 99, \end{aligned}$	9999
						$0 \text { to } 200 \%$	150\%	315*10	DO2 output selection		9999
160*9	User group read selection	0, 1, 9999	0	254		$\begin{aligned} & 1 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	600s	316*10	DO3 output selection	100 to 108, 110 to 116, 120, 122, 125 to 128 ,	9999
161	Parameter for manufacturer setting. Do not set.			255	$\begin{array}{\|l} \hline \begin{array}{l} \text { Life alarm status } \\ \text { display } \end{array} \\ \hline \end{array}$	(0 to 255)	0			1188 to 157, 160,	
162	Automatic restart after instantaneous power failure selection	$\begin{aligned} & 0 \text { to } 3,10 \text { to } 13, \\ & 1000 \text { to } 1003, \\ & 1010 \text { to } 1013 \end{aligned}$	0	256	Inrush current limit circuit life display	(0 to 100\%)	100\%	317*10	DO4 output selection DO5 output selection	161, 163 to 166 , 168, 170, 179, 180, 184 to 199	9999
163	First cushion time for restart	0 to 20s	0s	257	Control circuit capacitor life display	(0 to 100\%)	100\%		DOS ourpur selection	200 to 208, 211 to 330 to 308 250,	
164	First cushion voltage for restart	0 to 100\%	0\%	258	Main circuit capacitor life display	(0 to 100\%)	100\%	319*10	DO6 output selection	350, 311 to 313,9999	9999
165	Stall prevention operation level for restart	0 to 400\%	150\%	259	Main circuit capacitor life measuring	0, 1, 11	0	320*10	RA1 output selection	$0 \text { to } 8,10 \text { to } 20,$ 22, 25 to 28 ,	9999
166	Output current detection signal retention time	0 to 10s, 9999	0.1s	260	PWM frequency automatic switchover	0, 1	1	321*10	RA2 output selection	30 to 36,38 to 57 60, 61, 63 to 66 , 68,70,79,80	9999
167	Output current detection operation	0, 1, 10, 11	0	261	Power failure stop selection	$\begin{aligned} & 0 \text { to } 2,11,12, \\ & 21,22 \end{aligned}$	0			84 to 91,94 to 99 200 to 208	
167	delection	0, 1, 10, 11		262	Subtracted frequency at deceleration start	0 to 20 Hz	3 Hz	322*10	RA3 output selection	$\begin{aligned} & \text { 211 to } 213,247 \text { to } \\ & 250,9999 \end{aligned}$	9999
168	Parameter for manufactur	urer setting. Do not	ot set.	263	Subtraction starting frequency	0 to 590Hz, 9999	60 Hz	328	Parameter for manufactu	4rer setting. Do n	ot set.
170	Watt-hour meter clear	0, 10, 9999	9999	264	Power-failure	0 to 3600 s		331	RS-485 communication station number	0 to 31 (0 to 247)	0
171	Operation hour meter clear	0, 9999	9999	264	deceleration time 1			332	RS-485 communication	$\begin{aligned} & 3,6,12,24,48, \\ & 96 \\ & 96 \end{aligned}$	96
172	User group registered display/batch clear	9999, (0 to 16)	0	265	deceleration time 2	0 to 3600s, 9999	9999	332	speed		
173	display/batch clear	0 to 1999, 9999	9999	266	Power failure deceleration time switchover frequency	0 to 590 Hz	60 Hz	333	RS-485 communication stop bit length / data	0, 1, 10, 11	1
174	User group clear	0 to 1999, 9999	9999	267	Terminal				length		
178	STF terminal function selection	0 to 20, 22 to	60	267		0, 199	9999	334	RS-485 communication parity check selection	0 to 2	2
179	STR terminal function selection	$\begin{aligned} & 28,32,3,42 \text { to } \\ & 48,50 \text { to } 53,57 \end{aligned}$	61	268 269	\|leleselection Parameter for manufactur	0, 1, 9999	9999	335	RS-485 communication retry count	0 to 10, 9999	1
180	RL terminal function selection	76 to $80,84,85$, 87 to 89, 92 to	0		Stop-on contact/load torque high-speed			336	RS-485 communication check time interval	$\begin{aligned} & \begin{array}{l} 0 \text { to } 999.8 \mathrm{~s}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	Os
181	RM terminal function selection	$\begin{aligned} & -96,128,129, \\ & 9999 * 7 \end{aligned}$	1	270	frequency control selection	3, 11, 13	0	337	RS-485 communication waiting time setting	0 to 150ms, 9999	9999

Pr.	Name	Setting range	Initial value
338	Communication operation command source	0,1	0
339	Communication speed command source	0 to 2	0
340	Communication startup mode selection	0 to 2, 10, 12	0
341	RS-485 communication CR/LF selection	0 to 2	1
342	Communication EEPROM write selection	0, 1	0
343	Communication error count	-	0
350*6	Stop position command selection	0, 1, 9999	9999
$351 * 6$	Orientation speed	0 to 30 Hz	2 Hz
352*6	Creep speed	0 to 10 Hz	0.5Hz
353*6	Creep switchover position	0 to 16383	511
354*6	Position loop switchover position	0 to 8191	96
355*6	DC injection brake start position	0 to 255	5
356*6	Internal stop position command	0 to 16383	0
357*6	Orientation in-position zone	0 to 255	5
358*6	Servo torque selection	0 to 13	1
359*6	Encoder rotation direction	0, 1, 100, 101	1
360*6	16-bit data selection	0 to 127	0
361*6	Position shift	0 to 16383	0
362*6	Orientation position loop gain	0.1 to 100	1
363*6	Completion signal output delay time	0 to 5s	0.5s
364*6	Encoder stop check time	0 to 5s	0.5s
365*6	Orientation limit	0 to 60s, 9999	9999
366*6	Recheck time	0 to 5s, 9999	9999
367*6	Speed feedback range	0 to 590Hz, 9999	9999
368**	Feedback gain	0 to 100	1
369*6	Number of encoder pulses	0 to 4096	1024
373*6	Encoder position tuning setting/status	0, 1	0
374	Overspeed detection level	0 to 590Hz, 9999	9999
376*6	Encoder signal loss detection enable/ disable selection	0, 1	0
380	Acceleration S-pattern 1	0 to 50\%	0
381	Deceleration S-pattern 1	0 to 50\%	0
382	Acceleration S-pattern 2	0 to 50\%	0
383	Deceleration S-pattern 2	0 to 50\%	0
384	Input pulse division scaling factor	0 to 250	0
385	Frequency for zero input pulse	0 to 590 Hz	0
386	Frequency for maximum input pulse	0 to 590 Hz	60 Hz
$393 * 6$	Orientation selection	0 to 2, 10 to 12	0
394*6	Number of machine side gear teeth	0 to 32767	1
395*6	Number of motor side gear teeth	0 to 32767	1
396*6	Orientation speed gain (P term)	0 to 1000	60
397*6	Orientation speed integral time	0 to 20s	0.333s
398*6	Orientation speed gain (D term)	0 to 100	1
399*6	Orientation deceleration ratio	0 to 1000	20
413*6	Encoder pulse division ratio	1 to 32767	1
414	PLC function operation selection	0 to 2, 11, 12	0
415	Inverter operation lock mode setting	0, 1	0
416	Pre-scale function selection	0 to 5	0
417	Pre-scale setting value	0 to 32767	1
419	Position command source selection	$\begin{aligned} & 0 \text { to } 2,10,100, \\ & 110,200,210, \\ & 300,310,1110, \\ & 1310 \end{aligned}$	0
420	Command pulse scaling factor numerator (electronic gear numerator)	1 to 32767	1
421	Command pulse multiplication denominator (electronic gear denominator)	1 to 32767	1
422	Position control gain	0 to $150 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$

Pr.	Name	Setting range	Initial value
423	Position feed forward gain	0 to 100\%	0\%
424	Position command acceleration/ deceleration time constant	0 to 50s	0s
425	Position feed forward command filter	0 to 5s	Os
426	In-position width	0 to 32767 pulse	100 pulse
427	Excessive level error	$\begin{aligned} & \hline 0 \text { to } 400 \mathrm{~K} \text { pulse, } \\ & 9999 \\ & \hline \end{aligned}$	40K pulse
428	Command pulse selection	0 to 5	0
429	Clear signal selection	0,1	1
430	Pulse monitor selection	0 to 5, 12, 13, 100 to 105,112 , 113,1000 to 1005 , 1012, 1013, 1100 to 1105, 1112, 1113, 2000 to 2005, 2012, 2013, 2100 to 2105, 2112, 2113, 3000 to 3005 , 3012, 3013, 3100 to 3105 , $3112,3113,8888$, 9999	9999
432*6	Pulse train torque command bias	0 to 400\%	0\%
433*6	Pulse train torque command gain	0 to 400\%	150\%
446	Model position control gain	0 to $150 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$
450	Second applied motor	$0,1,3$ to 6, 13 to $16,30,33$, $34,8090,8093$, $8094,9090,9093$, 9094,9999	9999
451	Second motor control method selection	0 to 6,10 to 14, 20, 100 to 106, 110 to 114, 9999	9999
453	Second motor capacity	0.4 to $55 \mathrm{~kW}, 9999$ *2	9999
,	Second motor capacity	0 to 3600kW, 9999*3	
454	Number of second motor poles	$\begin{aligned} & 2,4,6,8,10, \\ & 12,9999 \end{aligned}$	9999
		0 to 500A, 9999*2	
455	Second motor excitation current	$\begin{aligned} & \hline 0 \text { to } 3600 \mathrm{~A}, \\ & 9999 * 3 \end{aligned}$	9999
456	Rated second motor voltage	0 to 1000V	575V
457	Rated second motor frequency	10 to 400Hz, 9999	9999
458	Second motor constant (R1)	$\begin{array}{\|l\|} \hline 0 \text { to } 50 \Omega, 9999 * 2 \\ \hline \begin{array}{l} 0 \text { to } 400 \mathrm{~m} \Omega, \\ 9999 * 3 \end{array} \\ \hline \end{array}$	9999
459	Second motor constant (R2)	0 to $50 \Omega, 9999 * 2$ 0 to $400 \mathrm{~m} \Omega$, $9999 * 3$	9999
460	Second motor constant (L1) / d-axis inductance (Ld)	$\left.\begin{array}{\|l\|} \hline 0 \text { to } 6000 \mathrm{mH}, \\ 9999 * 2 \end{array} \right\rvert\, \begin{aligned} & 0 \text { to } 400 \mathrm{mH}, \\ & 9999 * 3 \end{aligned}$	9999
461	Second motor constant (L2) / q-axis inductance (Lq)	0 to 6000 mH, $9999 * 2$,	9999
462	Second motor constant (X)	0 to 100\%, 9999	9999
463	Second motor auto tuning setting/status	0, 1, 11, 101	0
464	Digital position control sudden stop deceleration time	0 to 360s	0

Pr.	Name	Setting range	Initial value
465	First target position lower 4 digits	0 to 9999	0
466	First target position upper 4 digits		0
467	Second target position lower 4 digits		0
468	Second target position upper 4 digits		0
469	Third target position lower 4 digits		0
470	Third target position upper 4 digits		0
471	Fourth target position lower 4 digits		0
472	Fourth target position upper 4 digits		0
473	Fifth target position lower 4 digits		0
474	Fifth target position upper 4 digits 4 digits		0
475	Sixth target position lower 4 digits		0
476	Sixth target position upper 4 digits		0
477	Seventh target position lower 4 digits		0
478	Seventh target position upper 4 digits		0
479	Eighth target position lower 4 digits		0
480	Eighth target position upper 4 digits		0
481	Ninth target position lower 4 digits	0 to 9999	0
482	Ninth target position upper 4 digits		0
483	Tenth target position lower 4 digits		0
484	Tenth target position upper 4 digits		0
485	Eleventh target position lower 4 digits		0
486	Eleventh target position upper 4 digits		0
487	Twelfth target position lower 4 digits		0
488	Twelfth target position upper 4 digits		0
489	Thirteenth target position lower 4 digits		0
490	Thirteenth target position upper 4 digits		0
491	Fourteenth target position lower 4 digits		0
492	Fourteenth target position upper 4 digits		0
493	Fifteenth target position lower 4 digits		0
494	Fifteenth target position upper 4 digits		0
495	Remote output selection	0, 1, 10, 11	0
496	Remote output data 1	0 to 4095	0
497	Remote output data 2	0 to 4095	0
498	PLC function flash memory clear	0 to 9999	0
502	Stop mode selection at communication error	0 to 4, 11, 12	0
503	Maintenance timer 1	0(1 to 9998)	0
504	Maintenance timer 1 warning output set time	0 to 9998, 9999	9999
505	Speed setting reference	1 to 590 Hz	60 Hz
506	Display estimated main circuit capacitor residual life	(0 to 100\%)	100\%
507	Display/reset ABC1 relay contact life	0 to 100\%	100\%
508	$\begin{array}{\|l} \hline \begin{array}{l} \text { Display/reset ABC2 } \\ \text { relay contact life } \end{array} \\ \hline \end{array}$	0 to 100\%	100\%
514	Emergency drive dedicated waiting time	$\begin{aligned} & 0.1 \text { to } 600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
515	Emergency drive dedicated retry count	1 to 200, 9999	1
516	S-pattern time at a start of acceleration	0.1 to 2.5 s	0.1s
517	S-pattern time at a completion of acceleration	0.1 to 2.5 s	0.1s
518	S-pattern time at a start of deceleration	0.1 to 2.5 s	0.1s
519	S-pattern time at a completion of deceleration	0.1 to 2.5 s	0.1s
522	Output stop frequency	0 to 590 Hz , 9999	9999

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
523	Emergency drive mode selection	$100,111,112$,121 to 124,200,$211,212,221$ to$224,300,311$,312,321 to 324,$400,41,412$,421 to 424,9999	9999	$\begin{aligned} & 617 \\ & \hline 635 * 6 \\ & \hline 636 * 6 \\ & \hline \end{aligned}$	Reverse rotation excitation current lowspeed scaling factor Cumulative pulse clear signal selection	0 to 300\%, 9999	9999		Maximum motor frequency	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
						0 to 3	0	706	Induced voltage constant (phi f)	$\begin{array}{\|l\|} \hline 0 \text { to } 5000 \mathrm{mV} / \\ (\mathrm{rad} / \mathrm{s}), 9999 \\ \hline \end{array}$	9999
								707	Motor inertia (integer)	10 to 999, 9999	9999
					Cumulative pulse division scaling factor	0 to 16384	1	711	Motor Ld decay ratio	0 to 100%, 9999	9999
524	Emergency drive running speed	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	637*6	Control terminal option-Cumulative pulse division scaling factor	0 to 16384	1	712	Motor Lq decay ratio	0 to 100\%, 9999	9999
539	MODBUS RTU communication check time interval	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999					717	Starting resistance tuning compensation	0 to 200\%, 9999	9999
547	time interval station number)	638*6	factor Cumulative pulse storage	0 to 3	0	721	Starting magnetic pole position detection pulse width	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, \\ & 10000 \text { to } \\ & 16000 \mu \mathrm{~s}, 9999 \end{aligned}$	9999
	USB communication check			639	Brake opening cur	0, 1	0	724	Motor inertia (exponent)	0 to 7, 9999	9999
548	time interval	0 to 999.8s, 9999	9999	639	selection			725	Motor protection current level	$\begin{aligned} & 100 \text { to } 500 \%, \\ & 9999 \end{aligned}$	9999
549	Protocol selection	0,1	0	640	Brake operation frequency selection	0, 1	0	73	Second motor induced voltage constant (phif)	$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV} / \\ & (\mathrm{rad} / \mathrm{s}), 9999 \\ & \hline \end{aligned}$	9999
550	NET mode operation command source selection	0, 1, 9999	9999	641	Second brake sequence operation selection	0, 7, 8, 9999	0				
								739	Second motor Ld decay ratio	0 to 100\%, 9999	9999
551	PU mode operation command source selection	1 to 3, 9999	9999	642	Second brake opening frequency	0 to 30Hz	3 Hz	740	Second motor Lq decay ratio ratio	0 to 100\%, 9999	9999
552	Frequency jump range	0 to 30 Hz , 9999	9999	643	Second brake opening current	0 to 400\%	130\%	741	Second starting resistance tuning compensation	0 to 200\%, 9999	9999
553	PID deviation limit	0 to $100 \%, 9999$	9999	644	Second brake opening current detection time	0 to 2s	0.3s				
554	PID signal operation selection	0 to 3, 10 to 13	0					742	Second motor magnetic pole detection pulse width	O to $6000 \mu \mathrm{~s}$,10000 to$16000 \mu \mathrm{~s}, 9999$	9999
555	Current average time	0.1 to 1.0 s	1s		time at start	0 to 5s	0.3s				
556	Data output mask time	0 to 20s	Os	646	Second brake operation frequency	0 to 30 Hz	6 Hz	743	Second motor maximum frequency	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
557	Current average value monitor signal output reference current	0 to 500A*2	Rated inverter current	647	Second brake operation time at stop	0 to 5s	0.3s	744	Second motor inertia (integer)	10 to 999, 9999	9999
560	Second frequency search gain	$\begin{aligned} & 0 \text { to } 32767, \\ & 9999 \end{aligned}$	9999	648	Second deceleration detection function selection	0, 1	0	745	Second motor inertia (exponent)	0 to 7, 9999	9999
561	PTC thermistor protection level	$\begin{aligned} & 0.5 \text { to } 30 \mathrm{k} \Omega \text {, } \\ & 9999 \end{aligned}$	9999	650	Second brake opening current selection	0, 1	0	746	Second motor protection current level	100 to 500\%, 9999	9999
563	Energization time carrying-over times	(0 to 65535)	0	651	Second brake operation frequency selection	0, 1	0	753	Second PID action selection	$\begin{aligned} & 0,10,11,20,21, \\ & 50,51,60,61,70, \\ & 71,80,81,90,91, \\ & 100,101,1000, \\ & 101,1010,1011, \\ & 2000,2001,2010, \\ & 2011 \end{aligned}$	0
564	Operating time carrying-over times	(0 to 65535)	0	653		0 to 200\%	0				
565	Second motor excitation current break point	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	654	Speed smoothing cutoff frequency	0 to 120 Hz	20 Hz				
566	Second motor excitation current lowspeed scaling factor	0 to 300%, 9999	9999	655	frequency Analog remote output selection	0, 1, 10, 11	2 Hz	754	Second PID control automatic switchover frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
569	Second motor speed control gain	0 to 200\%, 9999	9999	656 657	Analog remote output 1 Analog remote output 2	800 to 1200\%	1000\%	755	Second PID action set point	0 to 100\%, 9999	9999
570	Multiple rating setting	0 to 3	2	658	Analog remote output 2 Analog remote output 3		$\begin{aligned} & 1000 \% \\ & \hline 1000 \% \\ & \hline \end{aligned}$	756	Second PID proportional band	$\begin{aligned} & 0.1 \text { to } 1000 \%, \\ & 9999 \end{aligned}$	100\%
571	Holding time at a start	0 to 10s, 9999	9999	659	Increased magnetic excitation deceleration operation selection			757		$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	1s
573	4 mA input check selection	$\begin{aligned} & 1 \text { to } 4,11 \text { to } 14, \\ & 21 \text { to } 24,9999 \\ & \hline \end{aligned}$	9999	660		0, 1	0		Second PID integral time		
574	Second motor online auto tuning	0 to 2	0					758	Second PID differential time	$\begin{array}{\|l\|} \hline 0.01 \text { to } 10.00 \mathrm{~s}, \\ 9999 \end{array}$	9999
575	Output interruption	0 to 3600s,	1s	661	Magnetic excitation increase rate	0 to 40\%, 9999	9999	759	PID unit selection Pre-charge fault	0 to 43, 9999	9999
575	detection time	9999	1 s	662	Increased magnetic excitation current level	0 to 300\%	100\%	760		0,1	0
576	Output interruption detection level	0 to 590 Hz	OHz				$0^{\circ} \mathrm{C}$	761	Pelection	0 to 100\%, 9999	9999
577	Output interruption cancel level	900 to 1100%	1000\%	663	Control circuit temperature signal output level	0 to $100^{\circ} \mathrm{C}$		763	Pre-charge ending time Pre-charge upper detection level		9999
592	Traverse function selection	0 to 2	0	665	Regeneration avoidance frequency gain	0 to 200\%	100\%			0 to 100\%, 9999	9999
								764		0 to 3600s, 9999	9999
593	Maximum amplitude	0 to 25\%	10\%	668	Power failure stop frequency gain	0 to 200\%	100\%	765	Second pre-charge fault selection	0, 1	0
594	Amplitude compensation amount during deceleration	0 to 50\%	10\%	675	frequency gain User parameter auto storage function	1,9999	9999	766	Second pre-charge ending level	0 to 100\%, 9999	9999
595	Amplitude compensation amount	0 to 50\%	10\%		selection	0 to 100\%	9999	767	Second pre-charge ending time	0 to 3600s, 9999	9999
	during acceleration			680	Second droop filter time	0 to 1s	9999	768	Second pre-charge upper detection leve	0 to 100\%, 9999	9999
596	Amplitude acceleration time	0.1 to 3600s	5s	681	constant Second droop function		9999	769	Second pre-charge time limit	0 to 3600s, 9999	9999
597	Amplitude deceleration time	0.1 to 3600s	5s	6881	activation selection	$20 \text { to } 22$	9999	774	Operation panel monitor selection 1	3, 5 to 14,	9999
599	X10 terminal input selection	0,1	0	682	point gain	0.1 to 100\%	9999	775	Operation panel monitor selection 2	17 to 20,22 to 36 38 to 46,50 to 57 61, 62, 64, 67,68	9999
600	First free thermal reduction frequency 1	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	684	point torque Tuning data unit	0, 1	0	776	Operation panel monitor selection 3	$\begin{aligned} & 71 \text { to } 75,87 \text { to } 98, \\ & 100,9999 \end{aligned}$	9999
601	First free thermal reduction ratio 1	1 to 100\%	100\%	684 686 6	switchover	0 (1 to 9998)	0	777	4 mA input fault operation frequency	0 to 590Hz, 9999	9999
602	First free thermal reduction frequency 2	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	687	Maintenance timer 2 warning output set time	0 to 9998, 9999	9999	778	4 mA input check filter	0 to 10s	0s
603	First free thermal reduction ratio 2	1 to 100\%	100\%	688	Maintenance timer 3	0 (1 to 9998)	0	779	Operation frequency during communication	0 to 590Hz, 9999	9999
604	First free thermal reduction frequency 3	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	689	Maintenance timer 3 warning output set time	0 to 9998, 9999	9999	79	error Acceleration time in	0 to 3600s, 9999	9999
	Power failure st		1	690	Deceleration check time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	1 s	79	low-speed range	Oto 3600s, 9999	9999
606		0,	1		Second free th	0 to 590 Hz ,	9999	792	Deceleration time in low-speed range	0 to 3600s, 9999	9999
607	Motor permissible load level	110 to 250\%	150\%	693	Second free thermal	1 to 100\%	100\%	799	Pulse increment setting for output power	$\begin{aligned} & 0.1,1,10,100, \\ & 1000 \mathrm{kWh} \end{aligned}$	1kWh
608	Second motor permissible load level	$\begin{aligned} & 110 \text { to } 250 \%, \\ & 9999 \end{aligned}$	9999	693	reduction ratio 1 Second free thermal reduction frequency 2	$\begin{array}{\|l\|} 1 \text { to } 100 \% \\ \hline \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz} \\ 9999 \end{array} \end{array}$	9999	800	Control method selection	0 to 6,9 to 14 , 20, 100 to 106, 109 to 114	20
609	PID set point/deviation input selection	1 to 5	2		Second free thermal	1 to 100\%	100\%	801	Output limit level	0 to 400\%, 9999	9999
610	PID measured value		3					802	Pre-excitation selection	0, 1	0
	input selection			696	Second free thermal reduction frequency 3	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999		Constant output range		
611	Acceleration time at a restart	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	699	reduction frequency 3	5 to $50 \mathrm{~ms}, 9999$	9999	803	torque characteristic selection	0 to 2, 10, 11	0

Pr.	Name	Setting range	Initial value
804	Torque command source selection	0 to 6	0
805	Torque command value (RAM)	600 to 1400\%	1000\%
806	Torque command value (RAM,EEPROM)	600 to 1400\%	1000\%
807	Speed limit selection	0 to 2	0
808	Forward rotation speed limit/speed limit	0 to 400 Hz	60 Hz
809	Reverse rotation speed limit/reverse-side speed limit	0 to 400Hz, 9999	9999
810	Torque limit input method selection	0, 1, 2	0
811	Set resolution switchover	0, 1, 10, 11	0
812	Torque limit level (regeneration)	0 to 400\%, 9999	9999
813	Torque limit level (3rd quadrant)		9999
814	Torque limit level (4th quadrant)		9999
815	Torque limit level 2	0 to 400\%, 9999	9999
816	Torque limit level during acceleration		9999
817	Torque limit level during deceleration		9999
818	Easy gain tuning response level setting	1 to 15	2
819	Easy gain tuning selection	0 to 2	0
820	Speed control P gain 1	0 to 1000\%	60\%
821	Speed control integral time 1	0 to 20s	0.333s
822	Speed setting filter 1	0 to 5s, 9999	9999
823*6	Speed detection filter 1	0 to 0.1s	0.001s
824	Torque control P gain 1 (current loop proportional gain)	0 to 500\%	100\%
825	Torque control integral time 1 (current loop integral time)	0 to 500 ms	5 ms
826	Torque setting filter 1	0 to 5s, 9999	9999
827	Torque detection filter 1	0 to 0.1s	0s
828	Model speed control gain	0 to 1000\%	60\%
829*6	Number of machine end encoder pulses	0 to 4096, 9999	9999
830	Speed control P gain 2	0 to $1000 \%, 9999$	9999
831	Speed control integral time 2	0 to 20s, 9999	9999
832	Speed setting filter 2	0 to 5s, 9999	9999
833*6	Speed detection filter 2	0 to 0.1s, 9999	9999
834	Torque control P gain 2	0 to 500\%, 9999	9999
835	Torque control integral time 2	0 to 500ms, 9999	9999
836	Torque setting filter 2	0 to 5s, 9999	9999
837	Torque detection filter 2	0 to 0.1s, 9999	9999
840	Torque bias selection	$\begin{aligned} & 0 \text { to } 3,24,25, \\ & 9999 \end{aligned}$	9999
841	Torque bias 1	$\begin{aligned} & 600 \text { to } 1400 \%, \\ & 9999 \end{aligned}$	9999
842	Torque bias 2	$\begin{aligned} & 600 \text { to } 1400 \%, \\ & 9999 \end{aligned}$	9999
843	Torque bias 3	$\begin{aligned} & 600 \text { to } 1400 \%, \\ & 9999 \end{aligned}$	9999
844	Torque bias filter	0 to 5s, 9999	9999
845	Torque bias operation time	0 to 5s, 9999	9999
846	Torque bias balance compensation	0 to 10V, 9999	9999
847	Fall-time torque bias terminal 1 bias	0 to 400\%, 9999	9999
848	Fall-time torque bias terminal 1 gain	0 to 400\%, 9999	9999
849	Analog input offset adjustment	0 to 200\%	100\%
850	Brake operation selection	0 to 2	0
851*6	Control terminal option-Number of encoder pulses	0 to 4096	2048
852*6	Control terminal option-Encoder rotation direction	0, 1, 100, 101	1
853*6	Speed deviation time	0 to 100s	1s
854	Excitation ratio	0 to 100\%	100\%
855*6	Control terminal option-Signal loss detection	0, 1	0
858	$\begin{aligned} & \text { Terminal } 4 \text { function } \\ & \text { assignment } \end{aligned}$	0, 1, 4, 9999	0
859	Torque current/Rated PM motor current	$\begin{array}{\|l\|} \hline \begin{array}{l} 0 \text { to } 500 \mathrm{~A}, \\ 9999 * 2 \end{array} \\ \hline \begin{array}{l} 0 \\ \text { to } 3600 \mathrm{~A}, \\ 9999 * 3 \end{array} \\ \hline \end{array}$	9999

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
860	Second motor torque current/Rated PM motor current	$\begin{aligned} & 0 \text { to 500A, } \\ & 9999 * 2 \end{aligned}$	9999	918	Terminal 1 gain frequency (speed)	0 to 590 Hz	60 Hz
		$\begin{aligned} & \hline 0 \text { to } 3600 \mathrm{~A}, \\ & 9999 * 3 \\ & \hline \end{aligned}$			Terminal 1 gain (speed)	0 to 300\%	100\%
862*6	Encoder option selection	9999*3	0	919	Terminal 1 bias command (torque/ magnetic flux)	0 to 400\%	0\%
863*6	Control terminal option-Encoder pulse division ratio	1 to 32767	1		Terminal 1 bias (torque/ magnetic flux)	0 to 300\%	0\%
		0 to 400\%		920	Terminal 1 gain command (torque/ magnetic flux)	0 to 400\%	150\%
865	Low speed detection	0 to 590 Hz	1.5Hz				
866	Torque monitoring reference	0 to 400\%	150\%		Terminal 1 gain (torque/ magnetic flux)	0 to 300\%	100\%
867	AM output filter	0 to 5s	0.01s	932	Terminal 4 bias command (torque/ magnetic flux)	0 to 400\%	0\%
868	Terminal 1 function	0 to 6, 9999	0				
870	Speed detection hysteresis	0 to 5Hz	OHz		Terminal 4 bias (torque/ magnetic flux)	0 to 300\%	20\%
871*6	Control terminal option-Encoder position tuning setting/ status	0, 1	0	933	Terminal 4 gain command (torque/ magnetic flux)	0 to 400\%	150\%
					Terminal 4 gain (torque/ magnetic flux)	0 to 300\%	100\%
872	Input phase loss protection selection	0, 1	0	934 *	PID display bias coefficient	$\begin{aligned} & 0 \text { to 500.00, } \\ & 9999 \end{aligned}$	9999
873*6	Speed limit	0 to 400 Hz	20Hz		PID display bias analog		
874	OLT level setting	0 to 400\%	150\%		value	0 to 300\%	20\%
875	Fault definition	0, 1	0	935*9	PID display gain coefficient	0 to 500.00,	9999
876*6	Thermal protector input	0, 1	1			9999	
877	Speed feed forward control/ model adaptive speed control selection	o to 2	0		PID display gain analog value	0 to 300\%	100\%
				989		10*2	10*2
878	Speed feed forward filter	0 to 1 s	Os			100*3	100*3
				990	release PU buzzer control	0, 1	1
879	Speed feed forward torque limit	0 to 400\%	150\%	991*9	PU contrast adjustment	0 to 63	58
880	Load inertia ratio	0 to 200 times	7 times	992	Parameter for manufactu	urer setting. Do n	ot set.
881	Speed feed forward	0 to 1000\%	\%	994	Droop break point gain	0.1 to 100\%, 9999	9999
881	gain	O to		995	Droop break point torque	0.1 to 100\%	100\%
882	Regeneration avoidance operation selection	0 to 2	0	997	Fault initiation	0 to 255, 9999	9999
883	Regeneration avoidance operation level	300 to 1200 V	940VDC	998*9	PM parameter initialization	$\begin{aligned} & 0,8009,8109, \\ & 9009,9109 \\ & \hline \end{aligned}$	0
				999**	Automatic parameter setting	$\begin{aligned} & 1,2,10 \text { to } 13, \\ & 20,21,9999 \end{aligned}$	9999
884	Regeneration avoidance at deceleration detection sensitivity	to 5	0	1000	Direct setting selection Lq tuning target current adjustment coefficient	$\begin{array}{\|l\|} \hline 0 \text { to } 2 \\ \hline 50 \text { to } 150 \%, \\ 9999 \\ \hline \end{array}$	9999
				1002			
885	Regeneration avoidance compensation frequency limit value	0 to $590 \mathrm{~Hz}, 9999$	6 Hz	1003	Notch filter frequency	0, 8 to 1250 Hz	0
				1004	Notch filter depth	0 to 3	0
886	Regeneration avoidance voltage gain	0 to 200\%	100\%	1005	Notch filter width	0 to 3	0
887*6			65535		Clock (year)	2000 to 2099	2000
	Control terminal option-Encoder magnetic pole position offset	$\begin{aligned} & 0 \text { to } 16383, \\ & 65535 \end{aligned}$		1007	Clock (month, day)	101 to 131, 201 to 229, 301 to 331 , 401 to 430 , 501 to 531 , 601 to 630, 701 to 731 , 801 to 831 , 901 to 930 , 1001 to 1031, 1101 to 1130, 1201 to 1231	101
888	Free parameter 1	0 to 9999	9999				
889	Free parameter 2	0 to 9999	9999				
891	Cumulative power monitor digit shifted times	0 to 4, 9999	9999				
892	Load factor	30 to 150\%	100\%				
893	Energy saving monitor reference (motor capacity)	0.1 to $55 \mathrm{~kW} * 2$	Rated inverter capacity				
		0 to $3600 \mathrm{~kW} * 3$		1008	Clock (hour, minute)	0 to 59,100 to159,200 to 259,300 to 359,400 to 459,500 to 559,600 to 659,700 to 759,800 to 859,900 to 959,1000 to 1059,1100 to 1159,1200 to 1259,1300 to 1359,1400 to 1459,1500 to 1559,1600 to 1659,1700 to 1759,1800 to 1859,1900 to 1959,2000 to 2059,2100 to 2159,2200 to 2259,2300 to 2359	0
894	Control selection during commercial powersupply operation	0 to 3	0				
895	Power saving rate reference value	0, 1,9999	9999				
896	Power unit cost	0 to 500, 9999	9999				
897	Power saving monitor average time	$\begin{aligned} & 0,1 \text { to } 1000 \mathrm{~h}, \\ & 9999 \\ & \hline \end{aligned}$	9999				
898	Power saving cumulative monitor clear	0, 1, 10, 9999	9999				
899	Operation time rate (estimated value)	0 to 100\%, 9999	9999				
900	FM terminal calibration	-	-				
901	AM terminal calibration	-	-				
902	Terminal 2 frequency setting bias frequency	0 to 590 Hz	OHz				
	Terminal 2 frequency setting bias	0 to 300\%	0\%				
903	Terminal 2 frequency setting gain frequency	0 to 590 Hz	60 Hz	1013	Emergency drive running speed after retry reset	0 to 590 Hz	60 Hz
	Terminal 2 frequency setting gain	0 to 300\%	100\%	1015	Integral stop selection at limited frequency	0 to 2, 10 to 12	0
904	Terminal 4 frequency setting bias frequency	0 to 590 Hz	OHz	1016	PTC thermistor protection detection time	0 to 60s	Os
	Terminal 4 frequency setting bias	0 to 300\%	20\%	1018	Monitor with sign selection	0, 1, 9999	9999
905	Terminal 4 frequency setting gain frequency	0 to 590 Hz	60 Hz	1020	Trace operation selection	0 to 4	0
				1021	Trace mode selection	0 to 2	0
	setting gain	0 to 300\%	100\%	1022	Sampling cycle	0 to 9	2
917	Terminal 1 bias frequency (speed)	0 to 590 Hz	OHz	1023	Number of analog channels	1 to 8	4
	Terminal 1 bias (speed)	0 to 300\%	0\%	1024	Sampling auto start	0, 1	0

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
1025	Trigger mode selection	0 to 4	0				1s	1259	Tenth positioning deceleration time	0.01 to 360s	5s
1026	Number of sampling before trigger	0 to 100\%	90\%	1147	interruption detection time	9999	1 s	1260	Tenth positioning dwell		
1027	Analog source selection (1ch)	1 to 3,5 to 14 , 17 to 20,22 to 24 , 32 to 35,39 to 42 , 52 to $54,61,62$, 64, 67,68, 71 to 75,87 to 98 , 201 to 213 , 230 to 232 , 235 to 238	201	1148	Second output interruption detection level	0 to 590 Hz	0 Hz	1260	time	0 to 20000 ms	Oms
1028	Analog source selection (2ch)		202					1261	Tenth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	10
1029	Analog source selection (3ch)		203	1149	Second output interruption cancel level	900 to 1100\%	1000\%				
1030	Analog source selection (4ch)		204					1262	Eleventh positioning acceleration time	0.01 to 360s	5 s
1031	Analog source selection (5ch)		205		User parameters 1 to 50	0 to 65535	0				
1032	Analog source selection (6ch)		206	1199 119				1263	Eleventh positioning deceleration time	0.01 to 360s	5 s
1033	Analog source selection (7ch)		207	1220	Target position/speed selection	0 to 2	0	1264	Eleventh positioning dwell time	0 to 20000 ms	Oms
1034	Analog source selection (8ch)		208								
1035	Analog trigger channel	1 to 8	1	1221	Start command edge detection selection	0, 1	0	1265	Eleventh positioning sub-function	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	10
1036	Analog trigger operation selection	0, 1	0	22	First positioning acceleration time	0.01 to 360s	5s				
1037	Analog trigger level	600 to 1400	1000		First positioning deceleration time		5 s	1266	Twelfth positioning acceleration time	0.01 to 360s	5s
1038	Digital source selection (1ch)	1 to 255	1	1223		0. 01 to 360s		1267	Twelfth positioning deceleration time	0.01 to 360s	5s
039	Digital source selection (2ch)		2	1224	First positioning dwell time	0 to 20000 ms	Oms				
1040	Digital source selection (3ch)		3					1268	Twelfth positioning dwell time	0 to 20000 ms	Oms
1041	Digital source selection (4ch)		4	225	First positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	10	1269		$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	10
1042	Digital source selection (5ch)		5						Twelfth positioning subfunction		
1043	Digital source selection (6ch)		6	1226	Second positioning acceleration time	0.01 to 360s	5s				
1044	Digital source selection (7ch)		7					127	Thirteenth positioning acceleration time	0.01 to 360s	5s
1045	Digital source selection (8ch)		8	1227	Second positioning deceleration time	0.01 to 360s	5s				
1046	Digital trigger channel	1 to 8	1					1271	Thirteenth positioning deceleration time	0.01 to 360s	5 s
1047	Digital trigger operation selection	0, 1	0	1228	Second positioning dwell time	0 to 20000 ms	Oms	127	Thirteenth positioning dwell time		Oms
1048	Parameter for manufacturer setting. Do not set.			1229	Second positioning sub-function	$\begin{aligned} & \hline 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \\ & \hline \end{aligned}$	10			0 to 20000m	
1049	USB host reset	0, 1	0					1273	Thirteenth positioning sub-function	$\begin{array}{\|l} 0 \text { to } 2,10 \text { to 12, } \\ 100 \text { to } 102, \\ 110 \text { to } 112 \\ \hline \end{array}$	10
1072	DC brake judgment time for anti-sway control	0 to 10s	3s	1230	Third positioning acceleration time	0. 01 to 360	5s				10
	operation				acceleration time	0. 01 to 360s	5 s	1274	Fourteenth positioning acceleration time	0.01 to 360s	5 s
1073	Anti-sway control operation selection	0, 1	0		Third positioning dwell time	. 01 to 360s	5 s	1275	Fourteenth positioning deceleration time	0.01 to 360s	5 s
1074	Anti-sway control frequency	$\begin{aligned} & 0.05 \text { to } 3 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	1 Hz	1232		0 to 20000 ms	Oms	1276	Fourteenth positioning dwell time	0 to 20000 ms	Oms
1075	Anti-sway control depth	0 to 3	0	1233	Third positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	10				
1076	Anti-sway control width	0 to 3	0					1277	Fourteenth positioning sub-function	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	10
1077	Rope length	0.1 to 50 m	1 m	1234	Fourth positioning acceleration time	0.01 to 360s	5 s				
1078	Trolley weight	1 to 50000 kg	1 kg	1235				1278	Fifteenth positioning acceleration time	0.01 to 360s	5s
1079	Load weight	1 to 50000 kg	1 kg		Fourth positioning deceleration time	0.01 to 360s	5 s				
1103	Deceleration time at emergency stop	0 to 3600s	5s	1236	Fourth positioning dwell time	0 to 20000ms	Oms	1279	Fifteenth positioning deceleration time	0.01 to 360s	5 s
1105	Encoder magnetic pole position offset	$\begin{aligned} & 0 \text { to 16383, } \\ & 65535 \end{aligned}$	65535	1237	Fourth positioning subfunction	$\begin{aligned} & \begin{array}{l} 0 \text { to } 2,10 \text { to } 12, \\ 100 \text { to } 102, \\ 110 \text { to } 112 \end{array}, \end{aligned}$	10	1280	Fifteenth positioning dwell time	0 to 20000 ms	Oms
1106	Torque monitor filter	0 to 5s, 9999	9999					1281	Fifteenth positioning sub-function	$\begin{aligned} & 0,2,10,12,100, \\ & 102,110,112 \end{aligned}$	10
1107	Running speed monitor filter	0 to 5s, 9999	9999	1238	Fifth positioning acceleration time	0.01 to 360s	5s	1282	Home position return	0 to 6	4
1108	Excitation current monitor filter	0 to 5s, 9999	9999	1239	Fifth positioning	0.01 to 360s	5				
1113	Speed limit method	2, 10,9999	9999		deceleration time	0.01 to 360s	5 s	1283	Home position return speed	0 to 30 Hz	2 Hz
	selection	2, 10, 9999	9999	1240	Fifth positioning dwell time	0 to 20000ms	Om	1284	Home position return creep speed	0 to 10 Hz	0.5Hz
1114	reverse selection	0, 1	1			0 to 2, 10 to 12,			Home position shift		
1115	Speed control integral term clear time	0 to 9998 ms	0s	1241	function	$\begin{aligned} & 100 \text { to } 102, \\ & 110 \text { to } 112, \end{aligned}$	10	1285	amount lower 4 digits	0 to 9999	0
1116	Constant output range	Oto 100\%	\%	1242	Sixth positioning acceleration time	0.01 to 360s	5s	1286	Home position shift amount upper 4 digits	0 to 9999	0
	compensation	,			Sixth positioning	0.01 to 360s	5 s	1287	Travel distance after proximity dog ON lower	0 to 9999	2048
1117	Speed control P gain 1	0 to 300, 9999	9999		deceleration time				4 digis		
1118	(per-unit system) Speed control P gain 2 (per-unit system)	0 to 300, 9999	9999	1244	time Sixth positioning sub	0 to 20000 ms	Oms	1288	Travel distance after proximity dog ON upper 4 digits	0 to 9999	0
1119	Model speed control gain (per-unit system)	0 to 300, 9999	9999	1245	function	100 to 102, 110 to 112	10	1289	Home position return stopper torque	O to 200\%	40\%
1121	Per-unit speed control reference frequency	0 to 400 Hz	$120 \mathrm{~Hz} * 2$ $60 \mathrm{~Hz} * 3$	1246	Seventh positioning acceleration time	0.01 to 360s	5s	1290	Home position return stopper waiting time	0 to 10s	0.5s
1134	PID upper limit manipulated value	0 to 100\%	100\%	1247	Seventh positioning deceleration time	0.01 to 360s	5 s	1292	Position control terminal input selection	0, 1	0
1135	PID lower limit manipulated value	0 to 100\%	100\%	1248	Seventh positioning dwell time	0 to 20000 ms	Oms	1293	Roll feeding mode selection	0,1	0
1136*9	Second PID display bias coefficient	0 to 500, 9999	9999	1249	Seventh positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	10	1294	Position detection lower 4 digits	0 to 9999	0
1137*9	Second PID display bias analog value	0 to 300\%	20\%	1250	Eighth positioning acceleration time	0.01 to 360s	5s	1295	Position detection upper 4 digits	0 to 9999	0
1138*9	Second PID display gain coefficient	0 to 500, 9999	9999	1251	Eighth positioning deceleration time	0.01 to 360s	5s	1296	Position detection selection	0 to 2	0
1139*9	Second PID display gain analog value	0 to 300\%	100\%	1252	Eighth positioning dwell time	0 to 20000 ms	Oms	1297	Position detection hysteresis width	0 to 32767	0
1140	Second PID set point/ deviation input	1 to 5	2	1253	Eighth positioning sub-	0 to 2,10 to 12, 100 to 102	10	1298	$\begin{array}{l}\text { Second position control } \\ \text { gain }\end{array}$	0 to $150 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$
	selection			1253	function	110 to 112		1299	Second pre-excitation	0, 1	0
1141	Second PID measured value input selection	1 to 5	3	1254	Ninth positioning acceleration time	0.01 to 360s	5 s	1300			
1142	Second PID unit selection	0 to 43, 9999	9999	1255	Ninth positioning deceleration time	0.01 to 360s	5s	$\left.\right\|_{1343} ^{\text {to }}$	Communication opt	parameter	
1143	Second PID upper limit	0 to 100\%, 9999	9999	1256	Ninth positioning dwell	0 to 20000ms	Oms	1348	P/PI control switchover frequency	0 to 400 Hz	OHz
1144	Second PID lower limit	0 to 100%, 9999	9999								
1145	Second PID deviation limit	0 to 100%, 9999	9999	1257	Ninth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to 12, } \\ & 100 \text { to } 102, \end{aligned}$	10	1349	operation selection	0, 1, 10, 11	0
1146	Second PID signal operation selection	0 to 3, 10 to 13	0	1258	Tenth positioning	110 to 112	5s	$\begin{array}{\|l\|} \hline 1350 \\ \text { to } \\ 1359 \\ \hline \end{array}$	Communication option p	parameters	
								1410	Starting times lower 4 digits digits	0 to 9999	0

Pr.	Name	Setting range	Initial value
1411	Starting times upper 4 digits	0 to 9999	0
1412	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	9999
1413	Second motor induced voltage constant (phi f) exponent	0 to 2, 9999	9999
1480	Load characteristics measurement mode	0 to 5, 81 to 85	0
1481	Load characteristics load reference 1		9999
1482	Load characteristics load reference 2		9999
1483	Load characteristics load reference 3	0 to 400\%	9999
1484	Load characteristics load reference 4		9999
1485	Load characteristics load reference 5		9999
1486	Load characteristics maximum frequency	0 to 590 Hz	60 Hz
1487	Load characteristics minimum frequency	0 to 590 Hz	6 Hz
1488	Upper limit warning detection width	0 to 400\%, 9999	20\%
1489	Lower limit warning detection width	0 to 400\%, 9999	20\%
1490	Upper limit fault detection width	0 to 400\%, 9999	9999
1491	Lower limit fault detection width	0 to 400\%, 9999	9999
1492	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	1 s
1499	Parameter for manufacturer setting. Do not set.		

*1 Differs according to capacities
3\%. FR

- 2\%: FR-A860-00090, 0017

1\%: FR-A860-0032, 00170
*2 For FR-A860-01080 or lower
*2 For FR-A860-01080 or lower
*4 For FR-A860-00170 or lower
*5 For FR-A860-00320 or higher
*6 The setting is available only when a vector control compatible option is installed. To check the availability of the parameter for each option, refer to the Instruction Manual (Detailed). for Pr. 190 to Pr. 194
These are the simple mode parameters when the FRLU08 is installed. (Initially set to the extended mode.) The setting is available when the PLC function is enabled.

Appendix

Appendix 1 Instructions for UL and cUL

(Standard to comply with: UL 508C, CSA C22.2 No.274-13)

- General precaution

CAUTION - Risk of Electric Shock -
The bus capacitor discharge time is 10 minutes. Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check for residual voltage between terminal P/+ and N/- with a meter etc., to avoid a hazard of electrical shock.
ATTENTION - Risque de choc électrique -
La durée de décharge du condensateur de bus est de 10 minutes. Avant de commencer le câblage ou l'inspection, mettez l'appareil hors tension et attendez plus de 10 minutes.

- Installation

- The FR-A860-00450 and lower inverters have been approved as products for a UL type1 enclosure that is suitable for Installation in a Compartment Handling Conditioned Air (Plenum).
Install the inverter so that the ambient temperature, humidity and ambience of the inverter will satisfy the specifications. (Refer to page 5.)
- The FR-A860-00680 and higher inverters have been approved as products for use in enclosure and approval tests were conducted under the following conditions.
Design the enclosure so that the surrounding air temperature, humidity and ambience of the inverter will satisfy the above specifications. (Refer to page 5.)

- Branch circuit protection

For installation in the United States, Class T, Class J, Class CC, or Class L fuse must be provided, in accordance with the National Electrical Code and any applicable local codes.
For installation in Canada, Class T, Class J, Class CC, or Class L fuse must be provided, in accordance with the Canadian Electrical Code and any applicable local codes.

FR-A860-[]		00027	00061	00090	00170	00320	00450	00680	01080	01440	01670	02430	02890	03360	04420
Rated fuse voltage(V)		600 V or more													
Fuse allowable rating (A)	Without power factor improving reactor	10	20	30	40	80	125	125	175	-	-	-	-	-	-
	With power factor improving reactor	6	10	15	25	40	60	100	150	200	250	300	400	450	600

Wiring to the power supply and the motor

Refer to the National Electrical Code (Article 310) regarding the allowable current of the cable. Select the cable size for 125% of the rated current according to the National Electrical Code (Article 430).
For wiring the input ($R / L 1, S / L 2, T / L 3$) and output (U, V, W) terminals of the inverter, use the UL listed copper, stranded wires (rated at $75^{\circ} \mathrm{C}$) and round crimping terminals. Crimp the crimping terminals with the crimping tool recommended by the terminal manufacturer.

Short circuit ratings

Suitable for use in a circuit capable of delivering not more than 100 kA rms symmetrical amperes, 600 V maximum.

Motor overload protection

When using the electronic thermal relay function as motor overload protection, set the rated motor current in Pr. 9 Electronic thermal O/L relay.

Operation characteristics of electronic thermal relay function

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output. (The operation characteristic is shown on the left.)
*1 When a value 50\% of the inverter rated output current (current value) is set in Pr. 9
*2 The \% value denotes the percentage to the inverter rated current. It is not the
percentage to the rated motor current.
*3 Transistor protection is activated depending on the temperature of the heat sink. The protection may be activated even with less than 150% depending on the operating conditions.

- The internal accumulated heat value of the electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and powerOFF.
- When multiple motors are driven with a single inverter or when a multi-pole motor or a special motor is driven, install an external thermal relay (OCR) between the inverter and motors. Note that the current indicated on the motor rating plate is affected by the line-to-line leakage current (details in the Instruction Manual (Detailed)) when selecting the setting for an external thermal relay.
- The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use an external thermal relay.
- Motor over temperature sensing is not provided by the drive.

Appendix 2 Restricted Use of Hazardous Substances in Electronic and Electrical Products

The mark of restricted use of hazardous substances in electronic and electrical products is applied to the product as follows based on the＂Management Methods for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products＂of the People＇s Republic of China．

电器电子产品有害物质限制使用标识要求

本产品中所含有的有害物质的名称，含量，含有部件如下表所示。
－产品中所含有害物质的名称及含量

部件名称＊2	有害物质＊1					
	$\begin{gathered} \text { 铅 } \\ (\mathrm{Pb}) \end{gathered}$	$\begin{gathered} \text { 汞 } \\ (\mathrm{Hg}) \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { 镉 } \\ (\mathrm{Cd}) \end{array} \end{gathered}$	六价铬 （Cr（VI））	多溴联苯 （PBB）	多溴二苯醚 （PBDE）
电路板组件（包括印刷电路板及其构成的零部件，如电阻，电容，集成电路，连接器等），电子部件	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
金属壳体，金属部件	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
树脂壳体，树脂部件	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
螺丝，电线	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

上表依据 SJ／T11364 的规定编制。
O：表示该有害物质在该部件所有均质材料中的含量均在 $G B / T 26572$ 规定的限重要求以下。
\times ：表示该有害物质在该部件的至少一种均质材料中的含量超出 $\mathrm{GB} / \mathrm{T} 26572$ 规定的限量要求。
＊1 即使表中记载为 \times ，根据产品型号，也可能会有有害物质的含量为限制值以下的情况。
＊2 根据产品型号，一部分部件可能不包含在产品中。

MEMO

WARRANTY

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
However, it will not be charged if we are responsible for the cause of the failure.
(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
(3) Even during the term of warranty, the repair cost will be charged on you in the following cases;

- a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
- a failure caused by any alteration, etc. to the Product made on your side without our approval
- a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
- a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
- any replacement of consumable parts (condenser, cooling fan, etc.)
- a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
- a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
- any other failures which we are not responsible for or which you acknowledge we are not responsible for

2. Term of warranty after the stop of production

(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi Electric shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi Electric.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi Electric products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi Electric products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Application and use of the Product

(1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
(2) Our product is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.
In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used.
We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

About the enclosed CD-ROM

- The enclosed CD-ROM contains PDF copies of the manuals related to this product.

- Before using the enclosed CD-ROM

- The copyright and other rights of the enclosed CD-ROM all belong to Mitsubishi Electric Corporation
- No part of the enclosed CD-ROM may be copied or reproduced without the permission of Mitsubishi Electric Corporation.
- Specifications of the enclosed CD-ROM are subject to change for modification without notice.
- We are not responsible for any damages and lost earnings, etc. from use of the enclosed CD-ROM.
- Trademarks

Microsoft, Windows, Windows Vista, and Internet Explorer are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries
Adobe and Adobe Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Intel and Pentium are trademarks of Intel Corporation in the United States and/or other countries.
Other company and product names of companies herein are all trademarks or registered trademarks of those respective companies.

- Warranty

We do not provide a warranty against defects in the enclosed CD-ROM and related documents.
:-…Nöter

- This is a personal computer dedicated CD-ROM. Do not attempt to play it on ordinary audio devices. The loud volume may damage hearing and speakers.

System requirements for the enclosed CD-ROM

- The following system is required to read instruction manuals contained in the enclosed CD-ROM.

Item	Specifications
OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$, Windows ${ }^{\circledR}{ }^{\circledR} 8.1$, Windows ${ }^{\circledR}{ }^{\circledR}$, Windows ${ }^{\circledR}{ }^{\text {® }}$, Windows Vista ${ }^{\circledR}$
CPU	Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR}$ or better processor
Memory	128 MB of RAM
Hard disk	90 MB of available hard-disk space
CD-ROM drive	Double speed or more (more than quadruple speed is recommended)
Monitor	800×600 dot or more
Application	Adobe ${ }^{\circledR}$ Reader ${ }^{\circledR} 7.0$ or more Internet Explorer ${ }^{\circledR} 6.0$ or more

- Operating method of the enclosed CD-ROM

- How to read instruction manuals

Step 1. Start a personal computer and place the enclosed CD-ROM in the CD-ROM drive
Step 2. The main window automatically opens by the web browser.
Step 3. Click a manual you want to read in the "INSTRUCTION MANUAL" list.
Step 4. PDF manual you clicked opens.

- Manual opening of the enclosed CD-ROM

Step 1. Start a personal computer and place the enclosed CD-ROM in the CD-ROM drive
Step 2. Open "index.html" file in the enclosed CD-ROM.
Step 3. The main window opens by the web browser. Follow the instructions from Step 3 of "How to read instruction manuals".

- PDF data of the instruction manual are stored in "MANUAL" folder on the enclosed CD-ROM.

Revision Date	*Manual Number	Revision
Nov. 2014	IB-0600562ENG-A	First edition
Jan. 2015	IB-0600562ENG-B	Added - FR-A860-00027 to 00170
May 2015	IB-0600562ENG-C	Added - Location change of earth (ground) terminals for the FR-A860-00027 to 00170
Oct. 2016	IB-0600562ENG-D	Added - Start count monitor (Pr.1410, Pr.1411) - Enhanced functions in the position command source selection (Pr. $419=10,100,110,1110$) - Enhanced auxiliary functions for position control by point tables (auxiliary function parameter setting: 2, 12, 102, 112) - Enhanced function in the stop mode selection at communication error ($\operatorname{Pr} .502=4$) - Excitation current low-speed scaling factor (Pr. $14=12$ to 15, Pr.85, Pr.86, Pr.565, Pr.566, Pr.617) - Motor induced voltage constant (Pr.1412, Pr.1413) - Load characteristics fault detection (Pr. 1480 to Pr.1492) - Input signals (CLRN, JOGF, JOGR) Edited - 7.1 Rating
Feb. 2019	IB-0600562ENG-E	Added - Application of caution labels - Droop control using the per-unit speed control reference frequency (Pr. 288 (Pr.681) = "20 to 22") - Torque current command limit (Pr. 803 = "2") - PID manipulated amount: 0 to 100\% (Pr. $1015=$ " 2,12 ") - Pr. 1348 P/PI control switchover frequency - Pr. 1349 Emergency stop operation selection - Operation selection at a communication error (Pr. $502=$ = 11, 12") - External fault during output operation - Pr. 275 setting range: 0 to 300% - Reset selection/disconnected PU detection/PU stop selection (Pr. $75=$ "1000 to 1003, 1014 to 1017, 1100 to 1103, 1114 to 1117") - External fault input signal (Pr. 178 to Pr. 189 = "32") - PLC function (Pr. 414 ="11, 12", Pr.675) - Pulse monitor selection (Pr. $430=$ " 2000 to 2005, 2012, 2013, 2100 to 2105, 2112, 2113, 3000 to 3005, 3012, 3013, 3100 to 3105, 3112, 3113") - Monitor with sign selection (Pr. $1018=$ = $1 "$) - Automatic restart after instantaneous power failure selection (Pr. $162=$ "1000 to 1003,1010 to 1013") - Position command source selection (Pr. $419=$ "200, 210, 300, 310, 1310")
Aug. 2021	IB-0600562ENG-F	Added - Main circuit capacitor life measurement at power OFF (every time) (Pr. $259=$ " 11 ") - Pr. 506 Display estimated main circuit capacitor residual life - Current input check terminal selection (Pr. 573 = "11 to 14, 21 to 24") - Low-speed forward rotation command (RLF) signal, Low-speed reverse rotation command (RLR) signal (Pr. 178 to Pr. 189 = "128, 129") - Vector control for PM motor with encoder supported (Pr.373, Pr.871, Pr.887, Pr.1105) - Cooling fan operation selection during the test operation (Pr. $244=$ "1000, 1001, 1101 to 1105") - Display/reset ABC relay contact life (Pr.507, Pr.508) -Emergency drive (Pr.514, Pr.515, Pr.523, Pr.524, Pr.1013, Pr. 178 to Pr. 189 = "84", Pr. 190 to Pr. 196 = "65, 66") Edited - Chapters deleted (6 TROUBLESHOOTING, 7 SPECIFICATIONS) - Tightening torque specifications

FR-A800/A800 Plus Series Instruction Manual Supplement

1
 Earth (ground) fault detection at start / restricting reset method for an earth (ground) fault

The reset method for the output side earth (ground) fault overcurrent (E.GF) can be restricted.

- Select whether to enable or disable the earth (ground) fault detection at start. When enabled, the earth (ground) fault detection is performed immediately after a start signal input to the inverter.
- Select whether to restrict the reset method for an earth (ground) fault.

Pr.	Name	Initial value	Setting range	Description	
				Earth (ground) fault	Reset method
$\begin{aligned} & 249 \\ & \mathrm{H} 101 \end{aligned}$	Earth (ground) fault detection at start	0	0	Not detected at start	Not restricted
			1	Detected at start	
			2		Restricted

Selecting whether to perform the earth (ground) fault detection at start V/F Magneticflux

- If an earth (ground) fault is detected at start while Pr. 249 = "1 or 2", the output side earth (ground) fault overcurrent (E.GF) is detected and output is shut off.
- Earth (ground) fault detection at start is enabled under V/F control and Advanced magnetic flux vector control.
- When the Pr. 72 PWM frequency selection setting is high, enable the earth (ground) fault detection at start.

NOTE

- Because the detection is performed at start, output is delayed for approx. 20 ms every start.
- Use Pr. 249 to enable/disable the earth (ground) fault detection at start. During operation, earth (ground) faults are detected regardless of the Pr. 249 setting.

Restricting reset method for an earth (ground) fault

- The reset method when the output is shut off due to the output side earth (ground) fault overcurrent (E.GF) can be restricted. When E.GF occurs while Pr. 249 = " 2 ", E.GF can be reset only by turning OFF the control circuit power.
- This restriction prevents the inverter from being damaged due to repeated reset operations by the other methods such as entering the RES signal.
- When E.GF occurs while Pr. 249 = "2", the output short-circuit detection (ALM4) signal can be output.
- For the terminal used to output the ALM4 signal, set "23" (positive logic) or "123" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If Pr. 249 is set to " 2 " while the retry function is enabled (Pr. 67 is not set to " 0 "), no retry is performed even when E.GF occurs.
- If Pr. 249 is set to " 2 " while the automatic bypass switching after inverter fault is enabled (Pr. 138 is not set to "1"), the operation is not switched to the commercial power supply operation even when E.GF occurs.

NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- E.GF is not cleared by turning ON the Fault clear (X51) signal when Pr. $249=$ " 2 ".
- If E.GF occurs during emergency drive operation when Pr. $249=$ " 2 ", the output is shut off.

Select the reset operation and fault indication for an output short-circuit.

Pr.	Name	Initial value	Setting range	Description	
				Operation after detection	Reset method
521	Output short-circuit	0	0	E.OC1 to E.OC3	Not restricted
H194	detection	0	1	E.SCF	Restricted

- The fault indication for an output short-circuit (E.OC1 to E.OC3, and E.SCF) can be changed by the Pr. 521 setting.
- When an output short-circuit is detected while Pr. 521 = "1", E.SCF is displayed and the inverter output is shut off.
- When E.SCF occurs while Pr. 521 = "1", E.SCF can be reset only by turning OFF the control circuit power. (E.OC1 to E.OC3 can be reset by any reset method.)
- This restriction prevents the inverter from being damaged due to repeated reset operations by the other methods such as entering the RES signal.
- When E.SCF occurs, the output short-circuit detection (ALM4) signal can be output.
- For the terminal used to output the ALM4 signal, set "23" (positive logic) or "123" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If the automatic bypass switching after inverter fault is enabled (Pr. 138 is not set to "1"), the operation is not switched to the commercial power supply operation even when E.SCF occurs.

Operation panel indication	E.SCF	FR-LU08 indication	Fault
Name	Output short-circuit fault		
Description	The inverter output is shut off when an output short-circuit is detected while Pr.521 = "1". When Pr.521 $=$ "0" (initial value), E.OC1, E.OC2, or E.OC3 appears when an output short-circuit is detected.		
Check point	Check for output short-circuit.		
Corrective action	Check the wiring to make sure that any output short circuit does not occur, then turn OFF the control circuit power to reset the inverter.		

NOTE

- When short-circuit resistance is large, the current does not reach the short-circuit detection level. In such a case, an output short-circuit cannot be detected.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- E.SCF does not activate the retry function.
- E.SCF is not cleared by turning ON the Fault clear (X51) signal.
- If E.SCF occurs during emergency drive operation, the output is shut off.
- The communication data code for E.SCF is 20 (H14).

Extended detection time of the output current and zero current

The setting range of the Pr. 151 Output current detection signal delay time and Pr. 153 Zero current detection time is extended.

Pr.	Name	Initial value	Setting range	Description
151 M461	Output current detection signal delay time	0 s	0 to 300 s	Set the output current detection time. Enter the time from when the output current reaches the set current or higher to when the Output current detection (Y12) signal is output.
153 M463	Zero current detection time	0.5 s	0 to 300 s	Set the time from when the output current drops to the Pr.152 setting or lower to when the Zero current detection (Y13) signal is output.

4
 Selecting the command interface in the Network operation mode (Pr.338, Pr.339)

- The proximity dog (X76) signal can be input via communication.
- The following table shows the command interface for the function in the Network operation mode, determined by the parameter settings: an external terminal or a communication interface (RS-485 terminals or communication option).

Pr. 338 Communication operation command source		0: NET			1: EXT		
Pr. 339 Communication speed command source		0: NET	1: EXT	2: EXT	0: NET	1: EXT	2: EXT
X76	Proximity dog	Combined		EXT			

[Explanation of Terms in Table]
EXT: External terminal only
Combined: Either external terminal or communication interface

FR-A860

Instruction Manual Supplement

1Instructions for UL and cUL
(Standard to comply with: UL 61800-5-1, CSA C22.2 No. 274)

- Applicable models

- FR-A860-00027 to 04420
- The above models are compliant with both UL 508C and UL 61800-5-1, CSA C22.2 No. 274. (The FR-A86000090 or less is not compliant with UL 508C.)
For the instructions for UL 61800-5-1, CSA C22.2 No. 274, refer to this Instruction Manual Supplement. For the instructions for UL 508C, refer to the FR-A860 (600V CLASS SPECIFICATION INVERTER) INSTRUCTION MANUAL (STARTUP).

- Product handling information / Informations sur la manipulation du produit

-WARNING- Operation of this product requires detailed installation and operation instructions provided in the Instruction Manual (Startup) and the Instruction Manual (Detailed) intended for use with this product. Please forward relevant manuals to the end user.
-AVERTISSEMENT-
L'utilisation de ce produit nécessite des instructions détaillées d'installation et d'utilisation fournies dans les manuels d'instructions en anglais (Instruction Manual (Startup) et Instruction Manual (Detailed)) destinés à être utilisés avec ce produit. Veuillez transmettre les manuels correspondants à l'utilisateur final.

Precautions for compliance with CSA C22.2 No. 274

Use the inverter under the conditions of overvoltage category III and pollution degree 2 or lower specified in IEC 60664.

Branch circuit protection

For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code and any applicable provincial codes.
For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes. Short circuit protection of the inverter cannot be used as branch circuit protection. Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local code.

■ Precautions for opening the branch-circuit protective device / Précautions pour ouvrir le dispositif de protection du circuit de dérivation

-WARNING- If the fuse melts down or the breaker trips on the input side of this product, check for wiring faults (such as short circuits). Identify and remove the cause of melting down or the trip before replacing the fuse or resetting the tripped breaker (or before applying the power to the inverter again).
-AVERTISSEMENT-
Si le fusible fond ou si le disjoncteur se déclenche du côté entrée de ce produit, vérifier les défauts de câblage (tels que les courts-circuits). Identifier et éliminer la cause de la fonte ou du déclenchement avant de remplacer le fusible ou de réinitialiser le disjoncteur déclenché (ou avant de remettre sous tension l'onduleur).

Fuse selection

Fuses are selected based on IEC/EN/UL 61800-5-1 and CSA C22.2 No. 274.
For installation in the United States, the following semi-conductor fuses must be provided, in accordance with the National Electrical Code and any applicable local codes. For installation in Canada, the following semi-conductor fuses must be provided, in accordance with the Canada Electrical Code and any applicable provincial codes. Always install the following semiconductor fuses for branch circuit protection.

Inverter Model	Cat. No.	Manufacturer	Rating (A)
FR-A860-00027	BS000GB69V20	Mersen	20
FR-A860-00061	BS000GB69V25	Mersen	25
FR-A860-00090	BS000GB69V32	Mersen	32
FR-A860-00170	BS000GB69V63	Mersen	63
FR-A860-00320	BS000GB69V100	Mersen	100
FR-A860-00450	BS000UB69V125	Mersen	125
FR-A860-00680	BS000UB69V160	Mersen	160
FR-A860-01080	PC30UD69V250TF	Mersen	250
FR-A860-01440	PC30UD69V315TF	Mersen	315
FR-A860-01670	PC30UD69V315TF	Mersen	315
FR-A860-02430	PC31UD69V350TF	Mersen	350
FR-A860-02890	PC31UD69V400TF	Mersen	400
FR-A860-03360	PC31UD69V500TF	Mersen	500
FR-A860-04420	PC33UD69V700TF	Mersen	700

Capacitor discharge time / Temps de décharge du condensateur

CAUTION -Risk of Electric Shock-
Before wiring or inspection, check that the LED indicator turns OFF. Any person who is involved in wiring or inspection shall wait for 10 minutes or longer after power OFF and check that there are no residual voltage using a digital multimeter or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.

ATTENTION -Risque de choc électrique-
Avant le câblage ou l'inspection, vérifier que le témoin LED s'éteint. Toute personne impliquée dans le câblage ou l'inspection doit attendre 10 minutes ou plus après la mise hors tension et vérifier l'absence de tension résiduelle à l'aide d'un multimètre numérique ou similaire. Le condensateur est chargé avec une haute tension pendant un certain temps après la mise hors tension, ce qui est dangereux. Précautions pour ouvrir le dispositif de protection du circuit de dérivation.

- Wiring to the power supply and the motor

- Refer to the National Electrical Code (Article 310) regarding the allowable current of the cable. Select the cable size for 125% of the rated current according to the National Electrical Code (Article 430). For wiring the input (R/ L1, S/L2, T/L3) and output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) terminals of the inverter, use the UL listed copper, stranded wires (rated at $75^{\circ} \mathrm{C}$) and round crimp terminals. Crimp the terminals with the crimping tool recommended by the terminal manufacturer.

Short circuit ratings

- Suitable for use in a circuit capable of delivering not more than 100 kA rms symmetrical amperes, 600 V maximum.

Motor overload protection

When using the electronic thermal relay function as motor overload protection, set the rated motor current in Pr. 9

Electronic thermal O/L relay.

Operation characteristics of electronic thermal relay function

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output. (The operation characteristic is shown on the left.)
*1 When a value 50\% of the inverter rated output current (current value) is set in Pr. 9
*2 The \% value denotes the percentage to the inverter rated current. It is not the percentage to the rated motor current.
*3 Transistor protection is activated depending on the temperature of the heat sink. The protection may be activated even with less than 150% depending on the operating conditions.

NOTE

- The internal accumulated heat value of the electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-OFF.
- When multiple motors are driven with a single inverter or when a multi-pole motor or a special motor is driven, install an external thermal relay (OCR) between the inverter and motors. Note that the current indicated on the motor rating plate is affected by the line-to-line leakage current (details in the Instruction Manual (Detailed)) when selecting the setting for an external thermal relay.
- The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use an external thermal relay.
- Motor over temperature sensing is not provided by the drive.

Applicable power supply

For use at an altitude above 2000 m (maximum 2500 m), only a neutral-point earthed (grounded) power supply can be used.

MEMO

	HEADQUARTERS
	Mitsubishi Electric Europe B.V. EUROP Mitsubishi-Electric-Platz 1 D-40882 Ratingen Phone: +49 (0)2102 / 486-0 Fax: +49 (0)2102 / 486-1120
	Mitsubishi Electric Europe B.V. CZECH REP. Pekařská 621/7 CZ-155 00 Praha 5 Phone: +420 255719200 Fax: +420 251551471
	Mitsubishi Electric Europe B.V. FRANCE 25, Boulevard des Bouvets F-92741 Nanterre Cedex Phone: +33 (0) $1 / 55685568$ Fax: +33 (0)1 / 55685757
	Mitsubishi Electric Europe B.V. IRELAND Westgate Business Park, Ballymount IRL-Dublin 24 Phone: +353 (0)1 4198800 Fax: +353 (0)1 4198890
	Mitsubishi Electric Europe B.V. ITALY Viale Colleoni 7 Palazzo Sirio I-20864 Agrate Brianza (MB) Phone: +39 039 / 60531 Fax: +39 039 / 6053312
	Mitsubishi Electric Europe B.V. NETHERLANDS Nijverheidsweg 23C NL-3641RP Mijdrecht Phone: +31 (0) 297250350
	Mitsubishi Electric Europe B.V. POLAND ul. Krakowska 50 PL-32-083 Balice Phone: +48 (0) 123476500 Fax: +48 (0) 126304701
	Mitsubishi Electric (Russia) LLC RUSSIA 2 bld. 1, Letnikovskaya st. RU-115114 Moscow Phone: +7 495 / 7212070 Fax: +7 495 / 7212071
	Mitsubishi Electric Europe B.V. SPAIN Carretera de Rubí 76-80 Apdo. 420 E-08190 Sant Cugat del Vallés (Barcelona) Phone: +34 (0) $93 / 5653131$ Fax: +34 (0) 93 / 5891579
	Mitsubishi Electric Europe B.V. (Scandinavia) SWEDEN Hedvig Möllers gata 6, SE- 22355 Lund Phone: +46 (0) 86251000
	Mitsubishi Electric Turkey Elektrik Ürünleri A.Ş. TURKEY Fabrika Otomasyonu Merkezi Şerifali Mahallesi Nutuk Sokak No. 5 TR-34775 Ümraniye-ISTANBUL Phone: +90 (216) 9692500 Fax: +90 (216) / 5263995
	Mitsubishi Electric Europe B.V. Travellers Lane UK-Hatfield, Herts. AL10 8XB Phone: +44 (0)1707 / 288780 Fax: +44 (0)1707 / 278695
	Mitsubishi Electric Europe B.V. UAE Dubai Silicon Oasis United Arab Emirates - Dubai Phone: +971 43724716 Fax: +97143724721
	Mitsubishi Electric Corporation JAPAN Tokyo Building 2-7-3 Marunouchi, Chiyoda-ku Tokyo 100-8310 Phone: +81 (3) 3218-2111 Fax: +81 (3) 3218-2185
	Mitsubishi Electric Automation, Inc. USA 500 Corporate Woods Parkway Vernon Hills, IL 60061 Phone: +1 (847) 478-2100 Fax: +1 (847) 478-0328

Wiener Straße 89
A-2500 Baden
Phone: +43 (0)2252 / 855520
Fax: +43 (0)2252 / 48860
OOO TECHNIKON BELARUS

BY-220125 Minsk

hone: +375(0)17/393 1177

NEA RBT d.o.o. BOSNIA AND HERZEGOVINA Stegne 11
Sl-1000 Ljubljana
-
AKHNATON BULGARIA
4, Andreitapchev Blva., PO Box 21

Fax: +359 (0)2
INEA CR
CROATIA
Losinjska 4 a
HR-10000 Zagreb

AutoCont C. S. S.R.O. CZECH REPUBLIC 1853/3

Phone: +420 595691150
Fax: +420 595691199
HANS FØLSGAARD A/S DENMARK
Theilgaards Torv 1
Phone: +45 43208600
Fax: +45 43968855

Pärnu mnt. 160i
EST-11317, Tallinn
Phone: +372 6518140
UTU Automation Oy
Peltotie 37 i
FINLAND
FIN-28400 Ulvila
Fone. +358 (0)207 / 463500
Fax: +358 207 / 463501

5, Mavrogenous Str
GR-18542 Piraeus
Phone: +30 (0)211 / 1206-900
Fax: +30 (0)211 / 1206-999
MELTRADE Kft.
HUNGARY
Fertő utca 14.
HU-1107 Budapest
Fax:
OAK Integrator Products SIA LATVIA Ritausmas iela 23

Phone: +371 67842280
Automatikos Centras, UAB LITHUANIA
Neries krantine 14A-101
LT-48397 Kaunas
Phone: +370 37262707

ALFATRADE Ltd.
MALTA
99, Paola Hill
Phone: +356 (0)21 / 697816
Fax: +356 (0)21 / 697817

EUROPEAN REPRESENTATIVES

NTEHSIS SRL MOLDOVA
bld. Traian 23/1

MD-2060 Kishinev

Phone: +373 (0)22 / 664242
Fax: +373 (0)22 / 664280
Fonseca S.A. PORTUGAL R. João Francisco do Casal 87/89 PT-3801-997 Aveiro, Esgueira
Phone: +351 (0)234 / 303900
Fax: +351 (0)234 / 303910
SIRIUS TRADING \& SERVICES SRL ROMANIA Aleea Lacul Morii Nr. 3
RO-060841 Bucuresti, Sector 6
Phone: +40 (0)21 / 4304006
Fax: +40 (0)21 / 4304002
INEA SR d.o.o. SERBIA
Ul. Karadjordjeva 12/217
SER-11300 Smederevo
Phone: +386 (026) 4615401
SIMAP SK (Západné Slovensko) SLOVAKIA
Dolné Pažite 603/97
SK-911 06 Trenčín
Phone: +421 (0)32 7430472
Fax: +421 (0)32 7437520
INEA RBT d.o.o. SLOVENIA

Stegne 11

Sl-1000 Ljubljana
Phone: +386 (0) $1 / 5138116$
Fax: +386 (0)1 / 5138170
OMNI RAY AG SWITZERLAND
Im Schörli 5
CH-8600 Dübendorf
Phone: +41 (0)44 / 8022880
Fax: +41 (0)44 / 8022828
CSC- AUTOMATION Ltd. UKRAINE
4 B, Yevhena Sverstyuka Str.
UA-02002 Kiev
Phone: +380 (0)44 / 4943344
Fax: +380 (0)44 / 494-33-66

EURASIAN REPRESENTATIVES
TOO Kazpromavtomatika KAZAKHSTAN
UL. ZHAMBYLA 28,
KAZ-100017 Karaganda
Phone: +7 7212 / 501000
Fax: +7 7212 / 501150

MIDDLE EAST REPRESENTATIVE

EIM Energy
EGYPT
3 Roxy Square
ET-11341 Heliopolis, Cairo
Phone: +202 24552559
Fax: +202 245266116
SHERF Motion Techn. Ltd. ISRAEL
Rehov Hamerkava 19
IL-58851 Holon
Phone: +972 (0)3 / 5595462
Fax: +972 (0)3 / 5560182
CEG LIBAN LEBANON
Cebaco Center/Block A Autostrade DORA
Lebanon-Beirut
Phone: +961 (0)1 / 240445
Fax: +961 (0) $1 / 240193$

AFRICAN REPRESENTATIVE

ADROIT TECHNOLOGIES SOUTH AFRICA 20 Waterford Office Park 189 Witkoppen Road

ZA-Fourways

Phone: + 27 (0)11 / 6588100
Fax: + 27 (0)11 / 6588101

