FR-A860-00027 to 00450-N6
FR-A860-00680 to 04420

Safety Instructions

Thank you for choosing this Mitsubishi Electric inverter.
This Instruction Manual provides instructions for advanced use of the FR-A860 series inverters.
Incorrect handling might cause an unexpected fault. Before using this inverter, always carefully read this Instruction Manual and the Instruction Manual (Startup) [IB-0600562ENG] packed with the product to use the equipment to its optimum performance.
Do not attempt to install, operate, maintain or inspect the product until you have read through this Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use this product until you have a full knowledge of the equipment, safety information and instructions.
Installation, operation, maintenance and inspection must be performed by qualified personnel. Here, an expert means a person who meets all the conditions below.

- A person who took a proper engineering training. Such training may be available at your local Mitsubishi Electric office. Contact your local sales office for schedules and locations.
- A person who can access operating manuals for the protective devices (e.g. light curtain) connected to the safety control system. A person who has read and familiarized himself/herself with the manuals.
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION"

§WARNING Incorrect handling may cause hazardous conditions, resulting in death or severe injury.

ⒸAUTION
 Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

Note that even the $₫$ CAUTION level may lead to a serious consequence depending on conditions. Be sure to follow the instructions of both levels as they are critical to personnel safety.

Electric Shock Prevention

WARNING

- While the inverter power is ON, do not remove the front cover or the wiring cover. Do not run the inverter with the front cover or the wiring cover removed, as accidental contact with exposed highvoltage terminals and internal components may occur, resulting in an electrical shock.
- Even if power is OFF, do not remove the front cover except for wiring or periodic inspection. You may accidentally touch the charged inverter circuits and get an electric shock.
- Before wiring or inspection, the power lamp must be switched OFF. Any person who is involved in wiring or inspection shall wait for at least 10 minutes after the power supply has been switched OFF and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- This inverter must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 61140 class 1 and other applicable standards).
- Any person who is involved in wiring or inspection of this equipment shall be fully competent to do the work.
- The inverter must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Setting dial and key operations must be performed with dry hands to prevent an electric shock. Otherwise you may get an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Doing so may cause an electric shock.
- Do not change the cooling fan while power is ON. It is dangerous to change the cooling fan while power is ON.
- Do not touch the printed circuit board or handle the cables with wet hands. Doing so may cause an electric shock.
- When measuring the main circuit capacitor capacity, the DC voltage is applied to the motor for 1 s at powering OFF. Never touch the motor terminal, etc. right after powering OFF to prevent an electric shock.
- A PM motor is a synchronous motor with high-performance magnets embedded in the rotor. Motor terminals holds high-voltage while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, the motor must be confirmed to be stopped. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual motor starter must be connected at the inverter's output side, and wiring and inspection must be performed while the motor starter is open. Otherwise you may get an electric shock.

Fire Prevention

CAUTION

- Inverter must be installed on a nonflammable wall without holes (so that nobody touches the inverter heat sink on the rear side, etc.). Mounting it to or near flammable material may cause a fire.
- If the inverter has become faulty, the inverter power must be switched OFF. A continuous flow of large current may cause a fire.
- When using a brake resistor, a sequence that will turn OFF power when a fault signal is output must be configured. Otherwise the brake resistor may excessively overheat due to damage of the brake transistor and such, causing a fire.
- Do not connect a resistor directly to the DC terminals P/+ and N/-. Doing so could cause a fire.
- Be sure to perform daily and periodic inspections as specified in the Instruction Manual. If a product is used without any inspection, a burst, breakage, or a fire may occur.

Injury Prevention

\triangle CAUTION

- The voltage applied to each terminal must be the ones specified in the Instruction Manual. Otherwise an explosion or damage may occur.
- The cables must be connected to the correct terminals. Otherwise an explosion or damage may occur.
- The polarity (+ and -) must be correct. Otherwise burst, damage, etc. may occur.
- While power is ON or for some time after power-OFF, do not touch the inverter as it will be extremely hot. Touching these devices may cause a burn.

Additional Instructions

The following instructions must be also followed. If the product is handled incorrectly, it may cause unexpected fault, an injury, or an electric shock.

CAUTION

Transportation and installation

- Any person who is opening a package using a sharp object, such as a knife and cutter, must wear gloves to prevent injuries caused by the edge of the sharp object.
- The product must be transported in correct method that corresponds to the weight. Failure to do so may lead to injuries.
- Do not stand or rest heavy objects on the product.
- Do not stack the boxes containing inverters higher than the number recommended.
- When carrying the inverter, do not hold it by the front cover; it may fall off or fail.
- During installation, caution must be taken not to drop the inverter as doing so may cause injuries.
- The product must be installed on the surface that withstands the weight of the inverter.
- Do not install the product on a hot surface.
- The mounting orientation of the inverter must be correct.
- The inverter must be installed on a strong surface securely with screws so that it will not drop.
- Do not install or operate the inverter if it is damaged or has parts missing.
- Foreign conductive objects must be prevented from entering the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- For the FR-A860-00090 or lower, the surrounding air temperature must be -10 to $+40^{\circ} \mathrm{C}$ for the LD , ND, or HD rating (-10 to $+30^{\circ} \mathrm{C}$ for the SLD rating) (non-freezing). Otherwise the inverter may be damaged.
- For the FR-A860-00170 to 01080 , the surrounding air temperature must be -10 to $+40^{\circ} \mathrm{C}$ (nonfreezing). Otherwise the inverter may be damaged.
- For the FR-A860-01440 or higher, the surrounding air temperature must be -10 to $+50^{\circ} \mathrm{C}$ for the LD or ND rating (-10 to $+40^{\circ} \mathrm{C}$ for the SLD or HD rating) (non-freezing). Otherwise the inverter may be damaged.
- The ambient humidity must be 95% RH or less (non-condensing). Otherwise the inverter may be damaged. (Refer to page 32 for details.)

CAUTION

Transportation and Mounting

- The storage temperature (applicable for a short time, e.g. during transit) must be between - 20 and $+65^{\circ} \mathrm{C}$. Otherwise the inverter may be damaged.
- The inverter must be used indoors (without corrosive gas, flammable gas, oil mist, dust and dirt etc.) Otherwise the inverter may be damaged.
- The inverter must be used at an altitude of 2500 m or less, with $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less ${ }^{* 1}$ vibration at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes). Otherwise the inverter may be damaged. (For the installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.)
- If halogen-based materials (fluorine, chlorine, bromine, iodine, etc.) infiltrate into a Mitsubishi Electric product, the product will be damaged. Halogen-based materials are often included in fumigant, which is used to sterilize or disinfest wooden packages. When packaging, prevent residual fumigant components from being infiltrated into Mitsubishi Electric products, or use an alternative sterilization or disinfection method (heat disinfection, etc.) for packaging. Sterilization of disinfection of wooden package should also be performed before packaging the product.

Wiring

- Do not install a power factor correction capacitor or surge suppressor/capacitor type filter on the inverter output side. These devices on the inverter output side may be overheated or burn out.
- The output side terminals (terminals U, V, and W) must be connected correctly. Otherwise the motor will rotate inversely.
- PM motor terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) hold high-voltage while the PM motor is running even after the power is turned OFF. Before wiring, the PM motor must be confirmed to be stopped. Otherwise you may get an electric shock.
- Never connect an PM motor to the commercial power supply. Applying the commercial power supply to input terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of an PM motor will burn the PM motor. The PM motor must be connected with the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the inverter.

Trial run

- Before starting operation, each parameter must be confirmed and adjusted. A failure to do so may cause some machines to make unexpected motions.

[^0]
WARNING

Usage

- Stay away from the equipment after using the retry function in this product as the equipment will restart suddenly after the output shutoff of this product.
- Since pressing the STOP/RESET key may not stop output depending on the function setting status, separate circuit and switch that make an emergency stop (power OFF, mechanical brake operation for emergency stop, etc.) must be provided.
- OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting inverter fault with the start signal ON restarts the motor suddenly.
- Do not use an PM motor for an application where the PM motor is driven by its load and runs at a speed higher than the maximum motor speed.
- Use this inverter only with three-phase induction motors or with an PM motor. Connection of any other electrical equipment to the inverter output may damage the equipment.
- Performing pre-excitation (LX signal and X13 signal) under torque control (Real sensorless vector control) may start the motor running at a low speed even when the start command (STF or STR) is not input The motor may run also at a low speed when the speed limit value $=0$ with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Do not modify the equipment.
- Do not perform parts removal which is not instructed in this manual. Doing so may lead to fault or damage of the product.

CAUTION

Usage

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter. Doing so may shorten the life of this product.
- The effect of electromagnetic interference must be reduced by using a noise filter or by other means. Otherwise nearby electronic equipment may be affected.
- Appropriate measures must be taken to suppress harmonics. Otherwise power supply harmonics from the inverter may heat/damage the power factor correction capacitor and generator.
- When driving a 600 V class motor by the inverter, the motor must be an insulation-enhanced motor or measures must be taken to suppress surge voltage. Surge voltage attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor.
- When parameter clear or all parameter clear is performed, the required parameters must be set again before starting operations because all parameters return to their initial values.
- The inverter can be easily set for high-speed operation. Before changing its setting, the performances of the motor and machine must be fully examined.
- Stop status cannot be hold by the inverter's brake function. In addition to the inverter's brake function, a holding device must be installed to ensure safety.
- Before running an inverter which had been stored for a long period, inspection and test operation must be performed.
- Static electricity in your body must be discharged before you touch the product.
- Only one PM motor can be connected to an inverter.
- A PM motor must be used under PM sensorless vector control. Do not use a synchronous motor, induction motor, or synchronous induction motor.
- Do not connect an PM motor in the induction motor control settings (initial settings). Do not use an induction motor in the PM sensorless vector control settings. It will cause a failure.
- In the system with an PM motor, the inverter power must be turned ON before closing the contacts of the contactor at the output side.
- To maintain the security (confidentiality, integrity, and availability) of the inverter and the system against unauthorized access, DoS*2 attacks, computer viruses, and other cyberattacks from external devices via network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions. We shall have no responsibility or liability for any problems involving inverter trouble and system trouble by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.
- When the emergency drive function is enabled, the operation is continued or the retry operation (automatic reset and restart) is repeated even if a fault occurs, which may damage or burn this product and the motor. Before restarting the normal operation after the operation using the emergency drive function, make sure that this product and the motor have no fault.

[^1]
©CAUTION

Emergency stop

- A safety backup such as an emergency brake must be provided for devices or equipment in a system to prevent hazardous conditions in case of failure of this product or an external device controlling this product.
- When the breaker on the inverter input side trips, the wiring must be checked for fault (short circuit), and internal parts of the inverter for a damage, etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.
- When a protective function is activated, take an appropriate corrective action, then reset the inverter, and resume the operation.
Maintenance, inspection and parts replacement
- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure.
Disposal
- The inverter must be treated as industrial waste.

General instruction

- For clarity, illustrations in this Instruction Manual may be drawn with covers or safety guards removed. Ensure all covers and safety guards are properly installed prior to starting operation. For details on the PM motor, refer to the Instruction Manual of the PM motor.
Chapter 1 INTRODUCTION 18
1.1 Product checking and accessories 18
1.2 Component names 20
1.3 Operation steps 22
1.4 About the related manuals. 24
Chapter 2 INSTALLATION AND WIRING 26
2.1 Peripheral devices 26
2.1.1 Inverter and peripheral devices. 26
2.1.2 Peripheral devices. 28
2.2 Removal and reinstallation of the front covers. 29
2.3 Installation of the inverter and enclosure design 32
2.3.1 Inverter installation environment. 32
2.3.2 Amount of heat generated by the inverter 34
2.3.3 Cooling system types for inverter enclosure 35
2.3.4 Inverter installation 36
2.3.5 Protruding the heat sink through a panel 38
2.4 Terminal connection diagrams 40
2.5 Main circuit terminals 42
2.5.1 Details on the main circuit terminals 42
2.5.2 Terminal layout of the main circuit terminals, wiring of power supply and the motor 43
2.5.3 Applicable cables and the wiring length 49
2.5.4 Earthing (grounding) precautions 52
2.6 Control circuit 53
2.6.1 Details on the control circuit terminals 53
2.6.2 Control logic (sink/source) change 57
2.6.3 Wiring of control circuit 59
2.6.4 Wiring precautions 62
2.6.5 When using separate power supplies for the control circuit and the main circuit 63
2.6.6 When supplying 24 V external power to the control circuit 66
2.7 Communication connectors and terminals. 68
2.7.1 PU connector 68
2.7.2 USB connector 70
2.7.3 RS-485 terminal block. 71
2.8 Connection of motor with encoder (vector control) 72
2.9 Parameter settings for a motor with encoder 77
2.10 Connection of stand-alone option units 78
2.10.1 Connection of the brake resistor other than the provided brake resistor 78
2.10.2 Connection of the DC reactor 79
Chapter 3 PRECAUTIONS FOR USE OF THE INVERTER 82
3.1 Electro-magnetic interference (EMI) and leakage currents 82
3.1.1 Leakage currents and countermeasures. 82
3.1.2 Countermeasures against inverter-generated EMI 83
3.2 Power supply harmonics 86
3.3 Installation of a reactor 86
3.4 Power-OFF and magnetic contactor (MC) 87
3.5 Countermeasures against deterioration of the 600 V class motor insulation 89
3.6 Checklist before starting operation 90
3.7 Failsafe system which uses the inverter 92
Chapter 4 BASIC OPERATION 96
4.1 Frequently-used parameters (simple mode parameters) 96
4.1.1 Simple mode parameter list 96
4.2 Basic operation procedure (PU operation) 98
4.2.1 Operating at a set frequency (example: operating at 30 Hz) 98
4.2.2 Setting the frequency by switches (multi-speed setting) 99
4.2.3 Setting the frequency with analog signals (voltage input) 100
4.2.4 Using an analog signal (current input) to give a frequency command 102
4.3 Basic operation procedure (External operation) 104
4.3.1 Using the frequency set by the operation panel 104
4.3.2 Setting the frequency by switches (multi-speed setting) (Pr. 4 to Pr.6) 106
4.3.3 Setting the frequency with analog signals (voltage input) 107
4.3.4 Changing the frequency (60 Hz , initial value) at the maximum voltage input (5 V , initial value) 109
4.3.5 Using an analog signal (current input) to give a frequency command 110
4.3.6 Changing the frequency (60 Hz , initial value) at the maximum current input (at 20 mA , initial value) 111
4.4 Basic operation procedure (JOG operation) 112
4.4.1 Performing JOG operation using external signals. 112
4.4.2 JOG operation from the operation panel. 113

Chapter 5 PARAMETERS

5.1 Parameter List 116
5.1.1 Parameter list (by parameter number) 116
5.1.2 Parameter list (by function group). 148
5.2 Control method 160
5.2.1 Vector control and Real sensorless vector control 163
5.2.2 Changing the control method 166
5.2.3 Selecting the Advanced magnetic flux vector control 174
5.2.4 Selecting the PM sensorless vector control 176
5.3 Speed control under Real sensorless vector control, vector control, PM sensorless vector control 179
5.3.1 Setting procedure of Real sensorless vector control (speed control) 186
5.3.2 Setting procedure of vector control (speed control) 188
5.3.3 Setting procedure of PM sensorless vector control (speed control) 190
5.3.4 Setting the torque limit level 191
5.3.5 Performing high-accuracy, fast-response control (gain adjustment for Real sensorless vector control, vector control and PM sensorless vector control) 201
5.3.6 Troubleshooting in the speed control 209
5.3.7 Speed feed forward control and model adaptive speed control 211
5.3.8 Torque bias 214
5.3.9 Avoiding motor overrunning 218
5.3.10 Notch filter 220
5.4 Torque control under Real sensorless vector control and vector control 221
5.4.1 Torque control 221
5.4.2 Setting procedure of Real sensorless vector control (torque control) 229
5.4.3 Setting procedure for vector control (torque control) 231
5.4.4 Torque command 232
5.4.5 Speed limit 237
5.4.6 Torque control gain adjustment 243
5.4.7 Troubleshooting in torque control 244
5.4.8 Torque control by variable-current limiter control 245
5.5 Position control under vector control 247
5.5.1 About position control 247
5.5.2 Setting procedure of vector control (position control) 249
5.5.3 Simple positioning function by parameters 251
5.5.4 Position control by the FR-A8AL pulse train input 267
5.5.5 Position control by inverter pulse train input 271
5.5.6 Clear signal selection 273
5.5.7 Pulse monitor 274
5.5.8 Electronic gear setting 279
5.5.9 Position adjustment parameter settings 281
5.5.10 Position control gain adjustment 283
5.5.11 Troubleshooting in position control 284
5.6 Real sensorless vector control, vector control, PM sensorless vector control adjustment 287
5.6.1 Speed detection filter and torque detection filter. 287
5.6.2 Excitation ratio 288
5.6.3 Gain adjustment of current controllers for the d axis and the q axis 288
5.7 (E) Environment setting parameters 289
5.7.1 Real time clock function 290
5.7.2 Reset selection/disconnected PU detection/PU stop selection 291
5.7.3 PU display language selection 295
5.7.4 Buzzer control 295
5.7.5 PU contrast adjustment 295
5.7.6 Extended direct setting 296
5.7.7 Resetting USB host errors 296
5.7.8 Multiple rating setting 297
5.7.9 Parameter write selection 298
5.7.10 Password function 301
5.7.11 Free parameter 303
5.7.12 Setting multiple parameters as a batch 304
5.7.13 Extended parameter display and user group function 308
5.7.14 Parameter copy alarm release 310
5.7.15 PWM carrier frequency and Soft-PWM control 310
5.7.16 Inverter parts life display 312
5.7.17 Maintenance timer alarm. 316
5.7.18 Current average value monitor signal 317
5.8 (F) Setting of acceleration/deceleration time and acceleration/deceleration pattern 320
5.8.1 Setting the acceleration and deceleration time 320
5.8.2 Acceleration/deceleration pattern 325
5.8.3 Remote setting function 331
5.8.4 Starting frequency and start-time hold function 337
5.8.5 Minimum motor speed frequency 338
5.8.6 Shortest acceleration/deceleration and optimum acceleration/deceleration (automatic acceleration/deceleration). 339
5.8.7 Lift operation (automatic acceleration/deceleration) 343
5.9 (D) Operation command and frequency command 345
5.9.1 Operation mode selection 346
5.9.2 Startup in Network operation mode at power-ON 355
5.9.3 Start command source and frequency command source during communication operation 356
5.9.4 Reverse rotation prevention selection. 365
5.9.5 Frequency setting via pulse train input 365
5.9.6 JOG operation 370
5.9.7 Operation by multi-speed setting 372
5.10 (H) Protective function parameter 376
5.10.1 Motor overheat protection (electronic thermal O/L relay) 377
5.10.2 Fault definition 385
5.10.3 Cooling fan operation selection. 386
5.10.4 Earth (ground) fault detection at start 387
5.10.5 Initiating a protective function 388
5.10.6 I/O phase loss protection selection. 388
5.10.7 Retry function 389
5.10.8 Emergency drive (Fire mode) 391
5.10.9 Checking faulty area in the internal storage device 399
5.10.10 Limiting the output frequency (maximum/minimum frequency) 399
5.10.11 Avoiding the mechanical resonance points (frequency jump). 401
5.10.12 Stall prevention operation 403
5.10.13 Load characteristics fault detection. 410
5.10.14 Motor overspeeding detection 415
5.11 (M) Monitor display and monitor output signal 416
5.11.1 Speed display and rotations per minute setting 417
5.11.2 Monitor indicator selection using operation panel or via communication 419
5.11.3 Monitor display selection for terminals FM and AM 430
5.11.4 Adjustment of terminal FM and terminal AM. 437
5.11.5 Energy saving monitor 440
5.11.6 Output terminal function selection 446
5.11.7 Output frequency detection. 457
5.11.8 Output current detection function 461
5.11.9 Output torque detection. 463
5.11.10 Remote output function. 464
5.11.11 Analog remote output function 466
5.11.12 Fault code output selection 468
5.11.13 Pulse train output of output power 469
5.11.14 Detection of control circuit temperature 470
5.11.15 Encoder pulse dividing output 471
5.12 (T) Multi-Function Input Terminal Parameters 472
5.12.1 Analog input selection 473
5.12.2 Analog input terminal (terminal 1, 4) function assignment 476
5.12.3 Analog input compensation. 478
5.12.4 Analog input responsiveness and noise elimination 481
5.12.5 Frequency setting voltage (current) bias and gain 483
5.12.6 Bias and gain for torque (magnetic flux) and set voltage (current) 488
5.12.7 Checking of current input on analog input terminal. 493
5.12.8 Input terminal function selection 498
5.12.9 Inverter output shutoff signal 501
5.12.10 External fault input signal 502
5.12.11 Selecting operation condition of the second function selection signal (RT) and the third function selection signal (X9)503
5.13 (C) Motor constant parameters 505
5.13.1 Applied motor 506
5.13.2 Offline auto tuning for an induction motor 508
5.13.3 Offline auto tuning for a PM motor (under Vector control) 518
5.13.4 Offline auto tuning for a PM motor (motor constants tuning) 529
5.13.5 Online auto tuning 537
5.13.6 Signal loss detection of encoder signals. 540
5.14 (A) Application parameters 541
5.14.1 Electronic bypass function 542
5.14.2 Self power management 550
5.14.3 Brake sequence function 553
5.14.4 Start count monitor 558
5.14.5 Stop-on-contact control 559
5.14.6 Load torque high speed frequency control 563
5.14.7 Traverse function 566
5.14.8 Anti-sway control 568
5.14.9 Orientation control. 570
5.14.10 PID control 587
5.14.11 Changing the display increment of the numerical values used in PID control 603
5.14.12 PID pre-charge function 607
5.14.13 Dancer control. 611
5.14.14 Automatic restart after instantaneous power failure/flying start with an induction motor 618
5.14.15 Offline auto tuning for a frequency search 625
5.14.16 Power failure time deceleration-to-stop function 629
5.14.17 PLC function 634
5.14.18 Trace function 636
5.15 (N) Operation via communication and its settings 644
5.15.1 Wiring and configuration of PU connector. 644
5.15.2 Wiring and configuration of RS-485 terminals. 646
5.15.3 Initial setting of operation via communication 650
5.15.4 Initial settings and specifications of RS-485 communication 657
5.15.5 Mitsubishi inverter protocol (computer link communication) 659
5.15.6 MODBUS RTU communication specification 674
5.15.7 USB device communication 691
5.15.8 Automatic connection with GOT 692
5.15.9 Backup/restore 694
5.16 (G) Control parameters 696
5.16.1 Manual torque boost 697
5.16.2 Base frequency, voltage 699
5.16.3 Load pattern selection. 701
5.16.4 Excitation current low-speed scaling factor 703
5.16.5 Energy saving control 704
5.16.6 Adjustable 5 points V/F 705
5.16.7 DC injection brake, zero speed control, and servo lock 707
5.16.8 Output stop function 713
5.16.9 Start signal operation selection / stop selection 715
5.16.10 Regenerative brake selection and DC feeding mode 718
5.16.11 Regeneration avoidance function 725
5.16.12 Increased magnetic excitation deceleration 728
5.16.13 Slip compensation 729
5.16.14 Encoder feedback control 730
5.16.15 Droop control. 733
5.16.16 Speed smoothing control 736
Chapter 6 PROTECTIVE FUNCTIONS 738
6.1 Inverter fault and alarm indications 738
6.2 Reset method for the protective functions 739
6.3 The list of fault displays 740
6.4 Causes and corrective actions 742
6.5 Check first when you have a trouble 763
6.5.1 Motor does not start 763
6.5.2 Motor or machine is making abnormal acoustic noise 765
6.5.3 Inverter generates abnormal noise 765
6.5.4 Motor generates heat abnormally 766
6.5.5 Motor rotates in the opposite direction 766
6.5.6 Speed greatly differs from the setting 766
6.5.7 Acceleration/deceleration is not smooth 767
6.5.8 Speed varies during operation 767
6.5.9 Operation mode is not changed properly 769
6.5.10 Operation panel display is not operating. 769
6.5.11 Motor current is too large 769
6.5.12 Speed does not accelerate 770
6.5.13 Unable to write parameter setting 770
6.5.14 Power lamp is not lit 771
Chapter 7 PRECAUTIONS FOR MAINTENANCE AND INSPECTION 774
7.1 Inspection item 774
7.1.1 Daily inspection 774
7.1.2 Periodic inspection 774
7.1.3 Daily and periodic inspection 775
7.1.4 Checking the inverter module and the converter module 777
7.1.5 Cleaning 778
7.1.6 Replacement of parts 778
7.1.7 Removal and reinstallation of the control circuit terminal block 784
7.2 Measurement of main circuit voltages, currents and powers 786
7.2.1 Measurement of powers 788
7.2.2 Measurement of voltages 788
7.2.3 Measurement of currents 788
7.2.4 Measurement of inverter input power factor 788
7.2.5 Measurement of converter output voltage (across terminals P and N) 788
7.2.6 Measurement of inverter output frequency 789
7.2.7 Insulation resistance test using megger 789
7.2.8 Pressure test 789
Chapter 8 SPECIFICATIONS 792
8.1 Inverter rating 792
8.2 Common specifications 795
8.3 Outline dimension drawings 797
8.3.1 Inverter outline dimension drawings 797
Chapter 9 APPENDIX 804
9.1 For customers replacing the conventional model with this inverter 804
9.1.1 Replacement of the FR-A700 series 804
9.2 International standards 805
9.3 Specification comparison between PM sensorless vector control and induction motor control 806
9.4 Parameters (functions) and instruction codes under different control methods. 807
9.5 For customers using HMS network options 831
9.6 Ready bit status selection (Pr.349, N240) 836
REVISIONS 838

MEMO

CHAPTER 1 INTRODUCTION

1.1 Product checking and accessories 18
1.2 Component names 20
1.3 Operation steps 22
1.4 About the related manuals 24

The contents described in this chapter must be read before using this product.
Always read the instructions before using the equipment.
For the "INTRODUCTION" of the separated converter type, refer to the FR-A862 (Separated Converter Type) Instruction Manual (Hardware) [IB-0600571ENG]

- Abbreviations

Item	
DU	Operation panel (FR-LU08)
Operation panel	Operation panel (FR-LU08)
Parameter unit	Parameter unit (FR-PU07)
PU	Operation panel and parameter unit
Inverter	Mitsubishi Electric inverter FR-A860 series
Vector control compatible option	FR-A8AP/FR-A8AL/FR-A8APA/FR-A8APR/FR-A8APS (plug-in option), FR-A8TP (control terminal option)
Pr.	Parameter number (Number assigned to function)
PU operation	Operation using the PU (operation panel/parameter unit)
External operation	Operation using the control circuit signals
Combined operation	Combined operation using the PU (operation panel/parameter unit) and External operation

- Trademarks

- Microsoft and Visual C++ are registered trademarks of Microsoft Corporation in the United States and other countries.
- MODBUS is a registered trademark of SCHNEIDER ELECTRIC USA, INC.
- PROFIBUS and Profibus-DP are trademarks of PROFIBUS \& PROFINET International.
- Other company and product names herein are the trademarks and registered trademarks of their respective owners.

- Notes on descriptions in this Instruction Manual

- Connection diagrams in this Instruction Manual appear with the control logic of the input terminals as sink logic, unless otherwise specified. (For the control logic, refer to page page 57.)

1.1 Product checking and accessories

Unpack the product and check the rating plate and the capacity plate of the inverter to ensure that the model agrees with the order and the product is intact.

- Inverter model

- FR-A860-00450 or lower

- FR-A860-00680 or higher

Rating plate	
Inverter model Input rating	MODEL :FR-A860-00320-1-N6 INPUT :XXXXX
Output rating	OUTPUT : XXXXX
SERIAL	SERIAL : XXXXXXXXX
Country of origin	\longrightarrow MADE IN XXXXX

*1 Applicable for the FR-A860-00170 or higher.

Accessory

- Eyebolt for hanging the inverter

Capacity	Eyebolt Size	Quantity
FR-A860-02890, 03360	M 10	2
FR-A860-04420	M 12	2

- Brake resistor (FR-A860-00090 or lower)
- Protective bush (FR-A860-00090 or lower)

- How to read the SERIAL number

Rating plate example

The SERIAL consists of one symbol, two characters indicating the production year and month, and six characters indicating the control number. The last digit of the production year is indicated as the Year, and the Month is indicated by 1 to $9, \mathrm{X}$ (October), Y (November), or Z (December).

1.2 Component names

Component names are shown below.

Symbol	Name	Description	Refer to page	
(a)	PU connector	Connects the operation panel or the parameter unit. This connector also enables the RS-485 communication.	68	
(b)	USB A connector	Connects a USB memory device.	70	
(c)	USB mini B connector	Connects a personal computer and enables communication with FR Configurator2.	70	
(d)	RS-485 terminals	Enables RS-485, MODBUS RTU communication.	71	
(e)	Terminating resistor switch (SW1)	Select whether or not to use the terminating resistor for RS-485 communication.	71	
(f)	Plug-in option connector 1	Connects a plug-in option or a communication option.	Instruction Manual of the option	
(g)	Plug-in option connector 2		Selects between voltage and current for the terminal 2 and 4 inputs.	473
(h)	Plug-in option connector 3	Voltage/current input switch (SW2)	Connects cables for the control circuit.	53
(i)	Control circuit terminal block	Connects cables for the main circuit.	42	
(j)	Sain circuit terminal block	Stays ON while the power is supplied to the main circuit.	43	
(k)	When conduits are installed in the knockout holes of this cover, wiring can be passed through the conduits. (FR-A860-00450 or lower)	40		
(l)	Charge lamp	Turns ON when the protective function of the inverter is activated.	43	
(m)	Wiring cover	Stays ON while the power is supplied to the control circuit (R1/L11, S1/L21).	43	
(n)	Alarm lamp	Remove this cover for the installation of the product, installation of a plug-in (communication) option, RS-485 terminal wiring, switching of the voltage/current input switch, etc.	29	
(o)	Power lamp	Upper front cover	(p)	

Symbol	Name	Description	Refer to page
(q)	Lower front cover	Remove this cover for wiring.	29
(r)	Accessory cover	Remove this cover for using the PU connector.	68
(s)	Cooling fan	Cools the inverter. (FR-A860-00061 or higher)	779
(t)	Switches for manufacturer setting (SW3 and SW4)	Do not change the initial setting (OFF $\square_{\text {- }}^{\text {Off }}$ (${ }_{\text {ofe }}$).	-

1.3 Operation steps

Symbol	Overview	Refer to page
(I)	Inputs to terminal STF and STR give a start command, and current input to terminal 4 gives a frequency command. (External operation mode)	110

1.4 About the related manuals

The manuals related to FR-A860 are shown below.

Name	Manual number
FR-A860 Instruction Manual (Startup)	IB-0600562ENG
FR-A862 (Separated Converter Type) Instruction Manual (Hardware)	IB-0600571ENG
FR-CC2-C (Converter unit) Instruction Manual	IB-0600572ENG
PLC function programming manual	IB-0600492ENG
FR Configurator2 Instruction Manual	IB-0600516ENG

CHAPTER 2 INSTALLATION AND WIRING

2.1 Peripheral devices 26
2.2 Removal and reinstallation of the front covers 29
2.3 Installation of the inverter and enclosure design 32
2.4 Terminal connection diagrams 40
2.5 Main circuit terminals 42
2.6 Control circuit 53
2.7 Communication connectors and terminals 68
2.8 Connection of motor with encoder (vector control) 72
2.9 Parameter settings for a motor with encoder 77
2.10 Connection of stand-alone option units 78

INSTALLATION AND WIRING

This chapter explains the installation and the wiring of this product.
Always read the instructions before using the equipment.
For the "INSTALLATION AND WIRING" of the separated converter type, refer to the FR-A862 (Separated Converter Type) Instruction Manual (Hardware) [IB-0600571ENG].

2.1 Peripheral devices

2.1.1 Inverter and peripheral devices

(b) Three-phase AC power supply

III

(c) Molded case circuit breaker (MCCB) or earth leakage current breaker (ELB), fuse

(d) Magnetic contactor (MC)

(f) DC reactor

P 3
$(\mathrm{P} /+\mathrm{PR}$
\|II

(g) Noise filter

(j) Brake resistor

(i) Provided brake resistor

- To prevent an electric shock, always earth (ground) the motor and inverter.
- Do not install a power factor correction capacitor or surge suppressor or capacitor type filter on the inverter's output side. Doing so will cause the inverter to trip or the capacitor and surge suppressor to be damaged. If any of the above devices is connected, immediately remove it. When installing a molded case circuit breaker on the output side of the inverter, contact the manufacturer of the molded case circuit breaker.
- Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. Refer to page 83 for countermeasures.

- For details of options and peripheral devices, refer to the respective Instruction Manual.
- A PM motor cannot be driven by the commercial power supply.
- A PM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before closing the contactor at the output side, make sure that the inverter power is ON and the motor is stopped.

Symbol	Name	Overview	Refer to page
(a)	Inverter (FR-A860)	The life of the inverter is influenced by the surrounding air temperature. The surrounding air temperature should be as low as possible within the permissible range. This must be noted especially when the inverter is installed in an enclosure. Incorrect wiring may lead to damage of the inverter. The control signal lines must be kept fully away from the main circuit lines to protect them from noise.	$\begin{aligned} & 32 \\ & 40 \end{aligned}$
(b)	Three-phase AC power supply	Must be within the permissible power supply specifications of the inverter.	792
(c)	Molded case circuit breaker (MCCB), earth leakage circuit breaker (ELB), or fuse	Must be selected carefully since an inrush current flows in the inverter at power ON.	28
(d)	Magnetic contactor (MC)	Install this to ensure safety. Do not use this to start and stop the inverter. Doing so will shorten the life of the inverter.	87
(e)	AC reactor	Install this to suppress harmonics and to improve the power factor. An AC reactor is required when installing the inverter near a large power supply system (1000 kVA or more). Under such condition, the inverter may be damaged if you do not use a reactor. Select a reactor according to the applied motor capacity.	86
(f)	DC reactor	Install this to suppress harmonics and to improve the power factor. Select a reactor according to the applicable motor capacity. For the FR-A860-01440 or higher, or a motor with a capacity of 75 kW or higher, always connect a DC reactor. When using the DC reactor with the FR-A860-01080 or lower, remove the jumper across terminals P/+ and P1 before connecting the DC reactor to the inverter.	86
(g)	Noise filter	Suppresses the noise radiated from the power supply side of the inverter.	83
(h)	USB connection	A USB (Ver. 1.1) cable connects the inverter with a personal computer. A USB memory device enables parameter copies and the trace function.	70
(i)	Provided brake resistor	Improves the braking capability. This brake resistor is provided with the FR-A860-00090 or lower.	47
(j)	Brake resistor* ${ }^{* 1}$	Improves the braking capability. Install a thermal relay to prevent an overheat and burnout of the brake resistor.	78
(k)	Noise filter	Install this to reduce the electromagnetic noise generated from the inverter. The noise filter is effective in the range from about 0.5 MHz to 5 MHz . A wire should be wound four turns at maximum.	83
(I)	Induction motor	Connect a squirrel-cage induction motor.	-
(m)	Contactor Example) No-fuse switch (DSN type)	Connect this for an application where a PM motor is driven by the load even while the inverter power is OFF. Do not open or close the contactor while the inverter is running (outputting).	-
(n)	PM motor	A PM motor can be used. A PM motor cannot be driven by the commercial power supply.	-

[^2]
2.1.2 Peripheral devices

Check the model of the inverter you purchased. Appropriate peripheral devices must be selected according to the capacity. Refer to the table below to prepare appropriate peripheral devices.

Motor Output $(\mathrm{kW})^{* 1}$	Applicable Inverter Type	Rated current of Molded Case Circuit Breaker or Earth Leakage Circuit Breaker *2, *3		Magnetic Contactor
		Standard	With power factor improving reactor	
0.75	FR-A860-00027	5 A	3 A	3 A
2.2	FR-A860-00061	15 A	10 A	7 A
3.7	FR-A860-00090	20 A	10 A	11 A
7.5	FR-A860-00170	30 A	20 A	19 A
15	FR-A860-00320	60 A	40 A	33 A
22	FR-A860-00450	100 A	60 A	47 A
37	FR-A860-00680	125 A	100 A	70 A
55	FR-A860-01080	175 A	125 A	99 A
75	FR-A860-01440	-	175 A	98 A
90	FR-A860-01670	-	225 A	127 A
110	FR-A860-02430	-	250 A	146 A
132	FR-A860-02890	-	350 A	192 A
185	FR-A860-03360	-	400 A	234 A
220	FR-A860-04420	-	600 A	282 A

*1 Assumes the use of a 4-pole standard motor with the power supply voltage of 575 VAC 50 Hz .
*2 Select an MCCB according to the power supply capacity.
Install one MCCB per inverter.
For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware), and select an appropriate fuse or molded case circuit breaker (MCCB).

*3 Magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times.
If using an MC for emergency stop during motor driving, select an MC regarding the inverter input side current as JEM 1038-AC-3 class rated current. When using an MC on the inverter output side for commercial-power supply operation switching using a general-purpose motor, select an MC regarding the rated motor current as JEM 1038-AC-3 class rated current.

NOTE

- When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.
- When the breaker on the inverter's input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

2.2 Removal and reinstallation of the front covers

- Removal of the lower front cover (FR-A860-00450 or lower)

(a)

(c)

(a) Loosen the screws on the lower front cover. (These screws cannot be removed.)
(b) While holding the areas around the installation hooks on the sides of the lower front cover, pull out the lower front cover using its upper side as a support.
(c) With the lower front cover removed, wiring of the main circuit terminals and control circuit terminals can be performed.

- Removal of the upper front cover (FR-A860-00450 or lower)
(a)

(c)

(a) With the lower front cover removed, loosen the screw(s) on the upper front cover. (The screw(s) cannot be removed.) (FR-A860-00170 to 00450 have two mounting screws.)
(b) While holding the areas around the installation hooks on the sides of the upper front cover, pull out the cover using its upper side as a support.
(c) With the upper front cover removed, wiring of the RS-485 terminals and installation of the plug-in option can be performed.

NOTE

- For the procedures regarding removing the wiring cover and punching out the knockout holes, refer to page 40 and 46 .

\rightarrow Reinstallation of the front covers (FR-A860-00450 or lower)

(a) Clip on the upper front cover as illustrated. Check that it is properly secured.
(b) Tighten the screws on the lower part of the upper front cover. (FR-A860-00170 to 00450 have two mounting screws.)
(c) Install the lower front cover by inserting the upper hook into the socket of the upper front cover.
(d) Tighten the mounting screws at the lower part of the lower front cover.

NOTE

- When installing the upper front cover, fit the connector of the operation panel securely along the guides of the PU connector.
- Removal of the lower front cover (FR-A860-00680 or higher)

(a) When the mounting screws are removed, the lower front cover can be removed.
(b) With the lower front cover removed, wiring of the main circuit terminals can be performed.

- Removal of the upper front cover (FR-A860-00680 or higher)

(a)

(b)

(a) With the lower front cover removed, loosen the mounting screws on the upper front cover. (These screws cannot be removed.)
(b) Holding the areas around the installation hooks on the sides of the upper front cover, pull out the cover using its upper side as a support.
(c) With the upper front cover removed, wiring of the RS-485 terminals and installation of the plug-in option can be performed.

- Reinstallation of the front covers (FR-A860-00680 or higher)

(a) Insert the upper hooks of the upper front cover into the sockets of the inverter.

Securely install the upper front cover to the inverter by fixing the hooks on the sides of the cover into place.
(b) Tighten the mounting screw(s) at the lower part of the upper front cover.
(c) Fasten the lower front cover with the mounting screws.

NOTE

- Fully make sure that the front covers are installed securely. Always tighten the mounting screws of the front covers.

2.3 Installation of the inverter and enclosure design

When designing or manufacturing an inverter enclosure, determine the structure, size, and device layout of the enclosure by fully considering the conditions such as heat generation of the contained devices and the operating environment. An inverter unit uses many semiconductor devices. To ensure higher reliability and long period of operation, operate the inverter in the ambient environment that completely satisfies the equipment specifications.

2.3.1 Inverter installation environment

The following table lists the standard specifications of the inverter installation environment. Using the inverter in an environment that does not satisfy the conditions deteriorates the performance, shortens the life, and causes a failure. Refer to the following points, and take adequate measures.

Standard environmental specifications of the inverter

	Item		cription
Surrounding air temperature *4	FR-A860-00090 or lower FR-A860-00170 to 01080 FR-A860-01440 or higher	```-10 C to +40 ' C (non-freezing) (LD/ND/HD rating) -10}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+3\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ (non-freezing) (SLD rating) -10}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ (non-freezing) -10}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to +50}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (non-freezing) (LD/ND rating) -10}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ (non-freezing) (SLD/HD rating)```	Enclosure *5
Ambient humidity		95\% RH or less (non-condensing)	
Storage temperature		-20 to $+65^{\circ} \mathrm{C}^{* 1}$	
Atmosphere		Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)	
Altitude		Maximum $2500 \mathrm{~m}^{*} 2$	
Vibration		$5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less ${ }^{* 3}$ at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes)	

*1 Temperature applicable for a short time, e.g. in transit.
*2 For the installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.
*3 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A860-02890 or higher.
*4 Surrounding air temperature is a temperature measured at a measurement position in an enclosure. Ambient temperature is a temperature outside an enclosure.
*5 The FR-A860-00680 or higher inverter is intended for installation in an enclosure.

Temperature

For the FR-A860-00090 or lower, the permissible surrounding air temperature of the inverter is between $-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ (LD, ND, or HD rating) or between $-10^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ (SLD rating). For the FR-A860-00170 to 01080 , the permissible surrounding air temperature of the inverter is between $-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$. For the FR-A860-01440 or higher, the permissible surrounding air temperature of the inverter is between $-10^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ (ND or LD rating) or between $-10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ (SLD or HD rating). Always operate the inverter within this temperature range. Operation outside this range will considerably shorten the service lives of the semiconductors, parts, capacitors and others. Take the following measures to keep the surrounding air temperature of the inverter within the specified range.

■ Measures against high temperature

- Use a forced ventilation system or similar cooling system. (Refer to page 35.)
- Install the enclosure in an air-conditioned electric chamber.
- Block direct sunlight.
- Provide a shield or similar plate to avoid direct exposure to the radiated heat and wind of a heat source.
- Ventilate the area around the enclosure well.

■ Measures against low temperature

- Provide a space heater in the enclosure.
- Do not power OFF the inverter. (Keep the start signal of the inverter OFF.)

■ Sudden temperature changes

- Select an installation place where temperature does not change suddenly.
- Avoid installing the inverter near the air outlet of an air conditioner.
- If temperature changes are caused by opening/closing of a door, install the inverter away from the door.
- For the amount of heat generated by the inverter unit, refer to page 34 .

Humidity

Operate the inverter within the ambient air humidity of usually 45 to 95%. Too high humidity will pose problems of reduced insulation and metal corrosion. On the other hand, too low humidity may cause a spatial electrical breakdown.
The insulation distance defined in JEM 1103 "Control Equipment Insulator" is humidity of 45 to 85%.

■ Measures against high humidity

- Make the enclosure enclosed, and provide it with a hygroscopic agent.
- Provide dry air into the enclosure from outside.
- Provide a space heater in the enclosure.

Measures against low humidity

Air with proper humidity can be blown into the enclosure from outside. Also when installing or inspecting the unit, discharge your body (static electricity) beforehand, and keep your body away from the parts and patterns.

Measures against condensation
Condensation may occur if frequent operation stops change the in-enclosure temperature suddenly or if the outside air temperature changes suddenly.

Condensation causes such faults as reduced insulation and corrosion.

- Take the measures against high humidity in (a)
- Do not power OFF the inverter. (Keep the start signal of the inverter OFF.)

- Dust, dirt, oil mist

Dust and dirt will cause such faults as poor contacts, reduced insulation and cooling effect due to the moisture-absorbed accumulated dust and dirt, and in-enclosure temperature rise due to a clogged filter. In an atmosphere where conductive powder floats, dust and dirt will cause such faults as malfunction, deteriorated insulation and short circuit in a short time. Since oil mist will cause similar conditions, it is necessary to take adequate measures.

Countermeasure

- Place the inverter in a totally enclosed enclosure. Take measures if the in-enclosure temperature rises. (Refer to page 35.)
- Purge air. Pump clean air from outside to make the in-enclosure air pressure higher than the outside air pressure.

- Corrosive gas, salt damage

If the inverter is exposed to corrosive gas or to salt near a beach, the printed board patterns and parts will corrode or the relays and switches will result in poor contact.
In such places, take the measures given in the previous paragraph.

Explosive, flammable gases

As the inverter is non-explosion proof, it must be contained in an explosion-proof enclosure. In places where explosion may be caused by explosive gas, dust or dirt, an enclosure cannot be used unless it structurally complies with the guidelines and has passed the specified tests. This makes the enclosure itself expensive (including the test charges). The best way is to avoid installation in such places and install the inverter in a non-hazardous place.

- High altitude

Use the inverter at an altitude of within 2500 m . For use at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.
If it is used at a higher place, it is likely that thin air will reduce the cooling effect and low air pressure will deteriorate dielectric strength.

- Vibration, impact

The vibration resistance of the inverter is up to $5.9 \mathrm{~m} / \mathrm{s}^{2}\left(2.9 \mathrm{~m} / \mathrm{s}^{2}\right.$ or less for the FR-A860-02890 or higher) at 10 to 55 Hz frequency and 1 mm amplitude for the directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes. Applying vibration and impacts for a long time may loosen the structures and cause poor contacts of connectors, even if those vibration and impacts are within the specified values. Especially when impacts are applied repeatedly, caution must be taken because such impacts may break the installation feet. Countermeasure

- Provide the enclosure with rubber vibration isolators.
- Strengthen the structure to prevent the enclosure from resonance.
- Install the enclosure away from the sources of the vibration.

2.3.2 Amount of heat generated by the inverter

- Regarding the amount of heat generated in the FR-A860 series inverter

The amount of heat generated by the FR-A860 series inverter is shown in the following tables.

Voltage	Inverter model		Amount of heat generated (W)			
		SLD		LD	ND	
	FR-A860-00027	65	60	45	35	
	FR-A860-00061	115	105	75	55	
	FR-A860-00090	160	145	110	75	
	FR-A860-00170	270	250	185	140	
	FR-A860-00320	510	410	320	230	
	FR-A860-00450	680	610	480	340	
	FR-A860-00680	980	880	770	560	
	FR-A860-01080	1450	1300	1080	800	
	FR-A860-01440	2000	1800	1500	1200	
	FR-A860-01670	2400	2200	1800	1500	
	FR-A860-02430	3400	3100	2200	1800	
	FR-A860-02890	3600	3200	2600	1900	
	FR-A860-03360	4300	3900	3200	2400	
	FR-A860-04420	5500	5000	3700	2900	

NOTE

- The amount of heat generated shown assumes that the output current is inverter rated current, power supply voltage is 575 V , and carrier frequency is 2 kHz .

2.3.3 Cooling system types for inverter enclosure

From the enclosure that contains the inverter, the heat of the inverter and other equipment (transformers, lamps, resistors, etc.) and the incoming heat such as direct sunlight must be dissipated to keep the in-enclosure temperature lower than the permissible temperatures of the in-enclosure equipment including the inverter.
The cooling systems are classified as follows in terms of the cooling calculation method.

- Cooling by natural heat dissipation from the enclosure surface (totally enclosed type)
- Cooling by heat sink (aluminum fin, etc.)
- Cooling by ventilation (forced ventilation type, pipe ventilation type)
- Cooling by heat exchanger or cooler (heat pipe, cooler, etc.)

Cooling system			Comment (enclosed type / open type)	This system is low in cost and generally used, but the enclosure size increases as the inverter capacity increases. This system is for relatively small capacities.
Forced air	Natural ventilation (totally enclosed type)	Being a totally enclosed type, this system is the most appropriate for hostile environment having dust, dirt, oil mist, etc. The enclosure size increases depending on the inverter capacity.		

2.3.4 Inverter installation

- Inverter placement

Fix six positions for the FR-A860-02890 or higher.

- Install the inverter on a strong surface securely with screws.
- Leave enough clearances and take cooling measures.
- Avoid places where the inverter is subjected to direct sunlight, high temperature and high humidity.
- Install the inverter on a nonflammable wall surface.
- When encasing multiple inverters, install them in parallel as a cooling measure.
- For heat dissipation and maintenance, keep clearance between the inverter and the other devices or enclosure surface. The clearance below the inverter is required as a wiring space, and the clearance above the inverter is required as a heat dissipation space.
- When designing or building an enclosure for the inverter, carefully consider influencing factors such as heat generation of the contained devices and the operating environment.

*1 For the FR-A860-00090 or lower, allow 1 cm or more clearance.
*2 For replacing the cooling fan of the FR-A860-02890 or higher, 30 cm of space is necessary in front of the inverter. Refer to page 779 for fan replacement.

- Installation orientation of the inverter

Install the inverter on a wall as specified. Do not mount it horizontally or in any other way.

- Above the inverter

Heat is blown up from inside the inverter by the small fan built in the unit. Any equipment placed above the inverter should be heat resistant.

- Arrangement of multiple inverters

When multiple inverters are placed in the same enclosure, arrange them horizontally as shown in the right figure (a). When it is inevitable to arrange them vertically to minimize space, take such measures as to provide guides since heat from the bottom inverters can increase the temperatures in the top inverters, causing inverter failures.
When mounting multiple inverters, fully take caution not to make the surrounding air temperature of the inverter higher than the permissible value by providing ventilation and increasing the enclosure size.

- Arrangement of multiple inverters

- Arrangement of the ventilation fan and inverter

Heat generated in the inverter is blown up from the bottom of the unit as warm air by the cooling fan. When installing a ventilation fan for that heat, determine the place of ventilation fan installation after fully considering an air flow. (Air passes through areas of low resistance. Make an airway and airflow plates to expose the inverter to cool air.)

- Arrangement of the ventilation fan and inverter

2.3.5 Protruding the heat sink through a panel

When encasing the inverter of the FR-A860-02890 or higher to an enclosure, the heat generated in the enclosure can be greatly reduced by protruding the heat sink of the inverter.
When installing the inverter in a compact enclosure, etc., this installation method is recommended.

- Panel cutting

Cut the panel of the enclosure according to the inverter capacity.

- Shift and removal of a rear side installation frame

One installation frame is attached to each of the upper and lower parts of the inverter. Change the position of the rear side installation frame on the upper and lower sides of the inverter to the front side as shown on the right. When changing the installation frames, make sure that the installation orientation is correct.

- Installation of the inverter

Push the inverter heat sink portion outside the enclosure and fix the enclosure and inverter with upper and lower installation frame.

NOTE

- Having a cooling fan, the cooling section which comes out of the enclosure cannot be used in the environment of water drops, oil, mist, dust, etc.
- Be careful not to drop screws, dust etc. into the inverter and cooling fan section.

2.4 Terminal connection diagrams

*1 For the FR-A860-01440 or higher, and when a 75 kW or higher motor is used, always connect a DC reactor. (To select a DC reactor, refer to page 79, and select one according to the applicable motor capacity.)
When connecting a $D C$ reactor, if a jumper is installed across terminals $P 1$ and $P /+$, remove the jumper before installing the $D C$ reactor. (The jumper is not installed for the FR-A860-01440 or higher.)
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 498.)
*4 Terminal JOG is also used as the pulse train input terminal. Use Pr. 291 to choose JOG or pulse.
*5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to page 382.)
*6 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently.
*7 A brake resistor is provided with the FR-A860-00090 or lower. Connect the provided brake resistor to terminals P3 and PR as required.
*8 Connect a brake resistor across terminals P3 (P/+) and PR. (The terminal PR is equipped in FR-A860-01080 or lower.) Install a thermal relay to prevent overheating and damage of discharging resistors. (Refer to page 78.)
*9 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 446.)
*10 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 446.)
*11 The terminal F/C(FM) can be used to output pulse trains as open collector output by setting Pr. 291.
*12 Not required when calibrating the scale with the operation panel (FR-LU08) or the parameter unit (FR-PU07).

NOTE

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.
- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
- Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.
- The terminals S1, S2, SIC, So (SO), and SOC are for manufacturer setting. Do not connect anything to these. Doing so may cause an inverter failure. Do not remove the shorting wires across the terminals S 1 and PC , the terminals S 2 and PC , and the terminals SIC and SD. Removing either shorting wire disables the inverter operation.

2.5 Main circuit terminals

2.5.1 Details on the main circuit terminals

Terminal symbol	Terminal name	Terminal function description	Refer to page
$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \end{aligned}$	AC power input	Connect these terminals to the commercial power supply.	-
U, V, W	Inverter output	Connect these terminals to a three-phase squirrel cage motor or a PM motor.	-
R1/L11, S1/L21	Power supply for the control circuit	Connected to the AC power supply terminals R/L1 and S/L2. To retain the fault display and fault output, remove the jumpers across terminals R/L1 and R1/L11 and across S/L2 and S1/L21, and supply external power to these terminals. The power capacity necessary when separate power is supplied from R1/ L11 and S1/L21 differs according to the inverter capacity. FR-A860-00170 or lower 60 VA FR-A860-00320 or higher 80 VA	63
P3, PR	Brake resistor connection FR-A860-00027 to 00170 and FR-A860-00450 to 01080	Connect the provided brake resistor or another brake resistor across the terminals P3 and PR. Connecting a brake resistor increases the regenerative braking capability.	$\begin{aligned} & \hline 47 \\ & 78 \end{aligned}$
P/+, PR	Brake resistor connection FR-A860-00320	Connect a brake resistor across the terminals P/+ and PR. Connecting a brake resistor increases the regenerative braking capability.	
P/+, N/-	DC terminal	Connect these terminals to the DC power supply for DC feeding. A brake unit can be also connected to these terminals.	-
P/+, P1	DC reactor connection FR-A860-01080 or lower	Remove the jumper across terminals P/+ and P1, and connect a DC reactor. When a DC reactor is not connected, the jumper across terminals $\mathrm{P} /+$ and P1 should not be removed. When using a motor with a capacity of 75 kW or higher, always connect a DC reactor.	79
	DC reactor connection FR-A860-01440 or higher	Always connect a DC reactor. (The jumper is not installed for the FR-A86001440 or higher.)	
\pm	Earth (ground)	For earthing (grounding) the inverter chassis. This must be earthed (grounded).	52

2.5.2 Terminal layout of the main circuit terminals, wiring of power supply and the motor

*1 Do not remove the jumper from terminal P3.
*2 When an option other than the DC reactor must be connected to terminal P/+, use terminal P/+ (for option connection).

NOTE

- Make sure the power cables are connected to the R/L1, S/L2, and T/L3. (Phase need not be matched.) Never connect the power cable to the U, V, and W of the inverter. Doing so will damage the inverter.
- Connect the motor to U, V, and W . The phase need to be matched.
- When wiring the inverter main circuit conductor of the FR-A860-04420, tighten a nut from the right side of the conductor. When wiring two wires, place wires on both sides of the conductor. (Refer to the drawing on the right.) For wiring, use bolts (nuts) provided with the inverter.

- Wiring cover and handling (FR-A860-00450 or lower)

■ Removal of the wiring cover

1. Remove the inverter front cover (lower side). (For the details on how to remove the lower front cover, refer to page 29.)
2. Loosen the fixing screws, and remove the front lid of the wiring cover.

3. Loosen the fixing screws that fix the wiring cover to the inverter, and remove the wiring cover.

NOTE

- Always use fixing screws when attaching the wiring cover to the inverter. Otherwise, the inverter may be damaged. The table below shows the locations of the fixing screws and the screws for earthing (grounding). Locations are shown for each capacity.

■ Punching out the knockout holes

1. Punch out the knockout holes by firmly tapping it with a tool, such as a hammer. Remove any sharp edges and burrs from knockout holes of the wiring cover.
For the FR-A860-00090 or lower using a provided brake resistor, punch out the knockout hole on the wiring cover for wiring the provided brake resistor. (For how to connect the provided brake resistor, refer to page 47.)

2. Conduit hubs must always be used to connect conduit to the enclosure knockout. The hub shall be assembled to the conduit before it is installed in the conduit box knockout opening.

NOTE

- Be careful not to injure yourself with the sharp edges and burrs of the knockout holes.
- To avoid wire offcuts and other foreign matter to enter the inverter, conduits must be installed to the all knockout holes.

■ Wiring cover hole diameters

Inverter capacity	Hole diameter (mm)	Number of holes	Applicable conduit size (Nominal diameter)
FR-A860-00027 to 00090	$\phi 35$	3	1
FR-A860-00170, 00320	$\phi 44$	3	$1 \cdot 1 / 4$
FR-A860-00450	$\phi 63$	3	2

[^3]
- Connection of the provided brake resistor (FR-A860-00090 or lower)

Connecting the brake resistor provided with the unit to the FR-A860-00090 or lower will improve regeneration capability.

- Installation procedure

1. Remove the wiring cover of the inverter, and punch out the knockout hole on the wiring cover for wiring the provided brake resistor. After making the knockout hole, reinstall the wiring cover of the inverter.
(For the methods to remove the wiring cover and to punch out the knockout hole, refer to page 45 and 46 .)
2. Connect the provided brake resistor to the inverter with provided screws.

3. Make cuts in the provided protective bush with a nipper, a cutter knife, etc. and attach it to the knockout hole on the wiring cover for wiring the provided brake resistor. Connect the provided brake resistor cable with red sleeve to terminal PR, and the cable with transparent sleeve to terminal P3. (For details on the terminals PR and P3, refer to page 43.)

4. Install the inverter on a strong surface securely with screws.

NOTE

- The provided brake resistor cannot be used together with another brake resistor or a brake unit.
- Connecting the provided brake resistor changes the protective structure to OPEN type (NEMA1).
- To avoid wire offcuts and other foreign matter to enter the inverter, the provided protective bush must be installed to the wiring cover.

2.5.3 Applicable cables and the wiring length

Select a recommended cable size to ensure that the voltage drop will be 2% or less.
If the wiring distance is long between the inverter and motor, the voltage drop in the main circuit wires will cause the motor torque to decrease especially at a low speed.
The following table indicates a selection example for the wiring length of 20 m .

- 600 V class (575 V input power supply, 150% overload current rating for 1 minute)

Applicable inverter model	Terminal screw size *2	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimping terminal				Cable gauge ${ }^{* 1}$			
							HIV cables, etc. (mm^{2})			
			R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	$\begin{gathered} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \end{gathered}$	R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	\qquad
$\begin{aligned} & \text { FR-A860-00027 } \\ & \text { to } 00090 \end{aligned}$	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2
FR-A860-00170	M4	1.5	3.5-4	2-4	3.5-4	3.5-4	3.5	2	3.5	3.5
FR-A860-00320	M5	2.5	5.5-5	5.5-5	8-5	5.5-5	5.5	5.5	8	5.5
FR-A860-00450	M6	4.4	14-6	14-6	14-6	14-6	14	14	14	14
FR-A860-00680	M8	7.8	22-8	22-8	22-8	22-8	22	22	22	22
FR-A860-01080	M8	7.8	38-8	38-8	38-8	22-8	38	38	38	22
FR-A860-01440	M10	26.5	60-10	60-10	60-10	38-10	60	60	60	38
FR-A860-01670	M10	26.5	60-10	60-10	60-10	38-10	60	60	60	38
FR-A860-02430	M10	26.5	60-10	60-10	60-10	38-10	60	60	60	38
FR-A860-02890	M12(M10)	46	80-12	80-12	80-12	38-10	80	80	80	38
FR-A860-03360	M12(M10)	46	100-12	100-12	125-12	38-10	100	100	125	38
FR-A860-04420	M12(M10)	46	125-12	125-12	150-12	60-10	125	125	150	60

Applicable inverter model	Terminal screw size *2	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimping terminal				Cable gauge *1			
							AWG/MCM			
			R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	$\begin{gathered} \text { Earthing } \\ \text { (grounding) } \\ \text { cable } \\ \hline \end{gathered}$	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \\ & \hline \end{aligned}$	U, V, W	$\begin{gathered} \mathrm{P} /+, \\ \mathrm{P} 1 \end{gathered}$	\qquad
$\begin{aligned} & \text { FR-A860-00027 } \\ & \text { to } 00090 \end{aligned}$	M4	1.5	2-4	2-4	2-4	2-4	14	14	14	14
FR-A860-00170	M4	1.5	3.5-4	2-4	3.5-4	3.5-4	12	14	10	12
FR-A860-00320	M5	2.5	5.5-5	5.5-5	8-5	5.5-5	10	10	8	10
FR-A860-00450	M6	4.4	14-6	14-6	14-6	14-6	6	6	4	6
FR-A860-00680	M8	7.8	22-8	22-8	22-8	22-8	4	4	2	4
FR-A860-01080	M8	7.8	38-8	38-8	38-8	22-8	2	2	1/0	4
FR-A860-01440	M10	26.5	60-10	60-10	60-10	38-10	2	2	1/0	1
FR-A860-01670	M10	26.5	60-10	60-10	60-10	38-10	1/0	1/0	2/0	1
FR-A860-02430	M10	26.5	60-10	60-10	60-10	38-10	2/0	$2 / 0$	3/0	1
FR-A860-02890	M12(M10)	46	80-12	80-12	80-12	38-10	4/0	250	300	1
FR-A860-03360	M12(M10)	46	100-12	100-12	125-12	38-10	250	300	$2 \times 2 / 0$	1
FR-A860-04420	M12(M10)	46	125-12	125-12	150-12	60-10	$2 \times 2 / 0$	$2 \times 3 / 0$	$2 \times 4 / 0$	1/0

*1 The cables used should be $75^{\circ} \mathrm{C}$ copper cables. (For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup) or Instruction Manual (Hardware).)
*2 The terminal screw size indicates the size of terminal screw for R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, P1, P3, and the screw for earthing (grounding), and $\mathrm{P} /+$ for option connection. A screw for earthing (grounding) of the FR-A860-02890 or higher is indicated in ().

The line voltage drop can be calculated by the following formula:
Line voltage drop $[\mathrm{V}]=\frac{\sqrt{3} \times \text { wire resistance }[\mathrm{m} \Omega / \mathrm{m}] \times \text { wiring distance }[\mathrm{m}] \times \text { current }[\mathrm{A}]}{1000}$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

NOTE

- Tighten the terminal screw to the specified torque. A screw that has been tightened too loosely can cause a short circuit or malfunction. A screw that has been tightened too tightly can cause a short circuit or malfunction due to the unit breakage.
- Use crimping terminals with insulation sleeves to wire the power supply and motor.

- Total wiring length

■ With induction motor

Connect one or more induction motors within the total wiring length shown in the following table. (The wiring length should be 100 m or shorter under vector control.)

- When fast response current limit is enabled (Pr. $156=" 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28$, or 30 "), the wiring length should be within the value in the table below.
ND/HD rated

Pr.72 setting (carrier frequency)	FR-A860-00027	FR-A860-00061	FR-A860-00090	FR-A860-00170 or higher
$2(2 \mathrm{kHz})$ or less	100 m	300 m	300 m	500 m
$3(3 \mathrm{kHz})$ or more	100 m	200 m	300 m	500 m

LD/SLD rated

Pr.72 setting (carrier frequency)	FR-A860-00027	FR-A860-00061	FR-A860-00090	FR-A860-00170	FR-A860-00320 or higher
$2(2 \mathrm{kHz})$ or less	100 m	200 m	300 m	500 m	500 m
$3(3 \mathrm{kHz})$ or more	100 m	100 m	200 m	400 m	500 m

- When fast response current limit is disabled (Pr. $156=" 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29$, or 31 "), the wiring length should be within the value in the table below.

FR-A860-00027	FR-A860-00061	FR-A860-00090	FR-A860-00170 or higher
100 m	300 m	500 m	500 m

- Use a "600 V class inverter-driven insulation-enhanced motor" and set frequency in Pr. 72 PWM frequency selection according to wiring length.

Wiring length $\mathbf{5 0} \mathbf{~ m}$ or shorter	Wiring length $\mathbf{5 0} \mathbf{m}$ to $\mathbf{1 0 0} \mathbf{~ m}$	Wiring length longer than $\mathbf{1 0 0} \mathbf{~ m}$
$\mathbf{1 5 (1 4 . 5 \mathrm { kHz }) \text { or lower }}$	$9(9 \mathrm{kHz})$ or lower	$4(4 \mathrm{kHz})$ or lower

With PM motor

The wiring length should be 100 m or shorter when connecting a PM motor.
Use one PM motor for one inverter. Multiple PM motors cannot be connected to an inverter.
When the wiring length exceeds 50 m for a 600 V class motor driven by an inverter under PM sensorless vector control, set " 9 " (6 kHz) or less in Pr. 72 PWM frequency selection.

NOTE

- Especially for long-distance wiring, the inverter may be affected by a charging current caused by stray capacitance of the wiring, leading to an activation of the overcurrent protection, malfunction of the fast-response current limit operation, or even to an inverter failure. It may also cause a malfunction or fault of the equipment connected ON the inverter output side. If the fast-response current limit function malfunctions, disable this function. (Refer to Pr. 156 Stall prevention operation selection on page 403.)
- For details on Pr. 72 PWM frequency selection, refer to page 310.
- Refer to page 89 to drive a 600 V class motor by an inverter.
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 310.)

2.5.4 Earthing (grounding) precautions

- Always earth (ground) the motor and inverter.

- Purpose of earthing (grounding)

Generally, an electrical apparatus has an earth (ground) terminal, which must be connected to the ground before use.
An electrical circuit is usually insulated by an insulating material and encased. However, it is impossible to manufacture an insulating material that can shut off a leakage current completely, and actually, a slight current flows into the case. The purpose of earthing (grounding) the case of an electrical apparatus is to prevent operators from getting an electric shock from this leakage current when touching it.
To avoid the influence of external noises, this earthing (grounding) is important to audio equipment, sensors, computers and other apparatuses that handle low-level signals or operate very fast.

- Earthing (grounding) methods and earthing (grounding) work

As described previously, earthing (grounding) is roughly classified into an electrical shock prevention type and a noiseinfluenced malfunction prevention type. Therefore, these two types should be clearly distinguished, and the following work must be done to prevent the leakage current having the inverter's high frequency components from entering the malfunction prevention type earthing (grounding):

- Whenever possible, use the independent earthing (grounding) for the inverter.

If independent earthing (grounding) (I) is not available, use (II) common earthing (grounding) in the figure below where the inverter is connected with the other equipment at an earthing (grounding) point. Do not use the other equipment's earthing (grounding) cable to earth (ground) the inverter as shown in (III).
A leakage current containing many high frequency components flows into the earthing (grounding) cables of the inverter and peripheral devices. Because of this, the inverter must be earthed (grounded) separately from EMI-sensitive devices.
In a high building, it may be effective to use the EMI prevention type earthing (grounding) connecting to an iron structure frame, and electric shock prevention type earthing (grounding) with the independent earthing (grounding) together.

- Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 61140 class 1 and other applicable standards).
- Use the thickest possible earthing (grounding) cable. The size of the earthing (grounding) cable should be the same or larger than the one indicated in the table on page 49.
- The earthing (grounding) point should be as close as possible to the inverter, and the earth (ground) wire length should be as short as possible.
- Run the earthing (grounding) cable as far away as possible from the I/O wiring of equipment sensitive to noises and run them in parallel in the minimum distance.

(III) Inadequate common (single-point) earthing (grounding): Bad

2.6.1 Details on the control circuit terminals

Input signal

Type	Terminal Symbol	Common	Terminal name	Terminal function description	Rated specification	Refer to page
	10E	5	Frequency setting power supply	When connecting the frequency setting potentiometer at an initial status, connect it to the terminal 10. Change the input specifications of the terminal 2 using Pr. 73 when connecting it to the terminal 10E.	$10 \mathrm{VDC} \pm 0.4 \mathrm{~V}$ Permissible load current 10 mA	473
	10	5			$5 \mathrm{VDC} \pm 0.5 \mathrm{~V}$ Permissible load current 10 mA	473
	2	5	Frequency setting (voltage)	Inputting 0 to 5 VDC (or 0 to $10 \mathrm{~V}, 0$ to 20 mA) provides the maximum output frequency at $5 \mathrm{~V}(10 \mathrm{~V}, 20 \mathrm{~mA})$ and makes input and output proportional. Use Pr. 73 to switch among input 0 to 5 VDC (initial setting), 0 to 10 VDC, and 0 to 20 mA . Set the voltage/current input switch in the ON position to select current input (0 to 20 mA). *2	For voltage input, input resistance: 10 to $11 \mathrm{k} \Omega$, maximum permissible voltage: 20 VDC. For current input, input resistance: $245 \pm 5 \Omega$, maximum permissible current: 30 mA . Voltage/current input switch switch2	473
	4	5	Frequency setting (current)	Inputting 4 to 20 mADC (or 0 to $5 \mathrm{~V}, 0$ to 10 V) provides the maximum output frequency at 20 mA and makes input and output proportional. This input signal is valid only when the AU signal is ON (terminal 2 input is invalid). Use Pr. 267 to switch among input 4 to 20 mA (initial setting), 0 to 5 VDC, and 0 to 10 VDC. Set the voltage/current input switch in the OFF position to select voltage input (0 to $5 \mathrm{~V} / 0$ to 10 V). ${ }^{* 2}$ Use Pr. 858 to switch terminal functions.		473
	1	5	Frequency setting auxiliary	Inputting 0 to ± 5 VDC or 0 to ± 10 VDC adds this signal to terminal 2 or 4 frequency setting signal. Use Pr. 73 to switch between input 0 to ± 5 VDC and 0 to ± 10 VDC (initial setting). Use Pr. 868 to switch terminal functions.	Input resistance: 10 to $11 \mathrm{k} \Omega$, maximum permissible voltage: ± 20 VDC.	473
	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	-	PTC thermistor input	For receiving PTC thermistor outputs. When PTC thermistor is valid (Pr. $561 \neq$ "9999"), the terminal 2 is not available for frequency setting.	Applicable PTC thermistor specification Overheat detection resistance: 0.5 to 30 kW (Set by Pr.561)	377
	+24	SD	24 V external power supply input	For connecting a 24 V external power supply. If a 24 V external power supply is connected, power is supplied to the control circuit while the main power circuit is OFF.	Input voltage 23 to 25.5 VDC Input current 1.4 A or less	66
*2 Set Pr.73, Pr.267, Applying a voltage could cause compo			can be selected by d the voltage/curren the voltage/curren nt damage of the in	Pr. 178 to Pr. 189 (Input terminal function selection). (Refer to pa input switch correctly, then input an analog signal in accordance input switch ON (current input is selected) or a current with the sw verter or analog circuits of output devices. (For the details, refer to	ge 498.) with the setting. tch OFF (voltage input page 473.)	elected

- Output signal

Type	Terminal Symbol	Common	Terminal name	Terminal function description		Rated specification	Refer to page
$\begin{aligned} & \frac{\underset{\sigma}{0}}{\stackrel{\rightharpoonup}{\otimes}} \\ & \underset{\sim}{2} \end{aligned}$	A1, B1, C1* ${ }^{*}$	-	Relay output 1 (fault output)	1 changeover contact output that indicates that an inverter's protective function has been activated and the outputs are stopped. Fault: discontinuity across B and C (continuity across A and C), Normal: continuity across Band C (discontinuity across A and C)		Contact capacity 230 VAC 0.3 A (power factor $=$ 0.4) 30 VDC 0.3 A	446
	A2, B2, C2 ${ }^{*} 1$	-	Relay output 2	1 changeover contact output			446
	RUN*1	SE	Inverter running	Switched to LOW when the inverter output frequency is equal to or higher than the starting frequency (initial value 0.5 Hz). Switched to HIGH during stop or DC injection brake operation.		Permissible load 24 VDC (maximum 27 VDC) 0.1 A (The voltage drop is 2.8 V at maximum while the signal is ON.) LOW is when the open collector output transistor is ON (conducted). HIGH is when the transistor is OFF (not conducted).	446
	SU*1	SE	Up to frequency	Switched to LOW when the output frequency is within the set frequency range $\pm 10 \%$ (initial value). Switched to HIGH during acceleration/ deceleration and at a stop.	Fault code (4 bits) output. (Refer to page 468.)		457
	OL* ${ }^{*}$	SE	Overload warning	Switched to LOW when stall prevention is activated by the stall prevention function. Switched to HIGH when stall prevention is canceled.			403
	IPF*1	SE	Instantaneous power failure	Switched to LOW when an instantaneous power failure occurs or when the undervoltage protection is activated.			618
	FU*1	SE	Frequency detection	Switched to LOW when the inverter output frequency is equal to or higher than the preset detection frequency, and to HIGH when it is less than the preset detection frequency.			457
	FM	SD	For meter	Outputs a selected monitored item (such as output frequency) among several monitored items. The signal is not output during an inverter reset.	Output item: Output frequency (initial setting)	Permissible load current 2 mA For full scale 1440 pulses/s	430
$\begin{aligned} & \mathbb{0} \\ & \frac{0}{J} \\ & \stackrel{2}{2} \end{aligned}$			NPN open collector output	The output signal is proportional to the magnitude of the corresponding monitoring item. Use Pr.55, Pr.56, and Pr. 866 to set full scales for the monitored output	This terminal can be used for open collector outputs by setting Pr. 291.	Maximum output pulse 50k pulses/s Permissible load current 80 mA	365
¢ $\frac{8}{\square}$ $\frac{0}{4}$ 1	AM	5	Analog voltage output	frequency, output current, and torque. (Refer to page 430.)	Output item: Output frequency (initial setting)	Output signal 0 to ± 10 VDC, Permissible load current 1 mA (load impedance 10 kW or more) Resolution 13 bits	430

[^4]- Common terminal

Terminal Symbol	Common	Terminal name	Terminal function description	Rated specification	Refer to page
SD	-	Contact input common (sink) ${ }^{* 1}$	Common terminal for the contact input terminal (sink logic), terminal FM.	-	-
		External transistor common (source)	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the source logic to avoid malfunction by undesirable current.		
		24 VDC power supply common	Common terminal for the 24 VDC power supply (terminal PC, terminal +24). Isolated from terminals 5 and SE.		
PC	-	External transistor common (sink)* ${ }^{*}$	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the sink logic to avoid malfunction by undesirable currents.	Power supply voltage range 19.2 to 28.8 VDC Permissible load current 100 mA	58
		Contact input common (source)	Common terminal for contact input terminal (source logic).		
	SD	24 VDC power supply	Can be used as a 24 VDC 0.1 A power supply.		
5	-	Frequency setting common	Common terminal for frequency setting signal (terminal 2, 1 or 4) and analog output terminal AM. Do not earth (ground).	-	473
SE	-	Open collector output common	Common terminal for terminals RUN, SU, OL, IPF, FU	-	-

*1 Sink logic is initially set.

Communication

Type	Terminal Symbol		Terminal name	Terminal function description		Refer to page
	-		PU connector	With the PU connector, communication can be made through RS-485. (For connection on a 1:1 basis only) Conforming standard: EIA-485 (RS-485) Transmission format: Multidrop link Communication speed: 4800 to 115200 bps Wiring length: 500 m		644
		TXD+	Inverter transmission terminal	The RS-485 terminals enables the communication by RS-485. Conforming standard: EIA-485 (RS-485) Transmission format: Multidrop link Communication speed: 300 to 115200 bps Overall length: 500 m		646
		TXD-				
		RXD+	Inverter reception terminal			
		RXD-				
		GND (SG)	Earthing (grounding)			
	-		USB A connector	A connector (receptacle) A USB memory device enables parameter copies and the trace function.	Interface: Conforms to USB1.1 (USB2.0 full-speed compatible) Transmission speed: 12 Mbps	70
$\xrightarrow{\infty}$			USB B connector	Mini B connector (receptacle). By connecting the inverter to a personal computer via this connector, FR Configurator2 installed on the computer can be used for setting the inverter, or monitoring or testing the inverter operation.		70

- Terminals for manufacturer setting

Terminal symbol
S1
S2
SIC
So (SO)
SOC

Terminal function description

The terminals S1, S2, SIC, So (SO), and SOC are for manufacturer setting. Do not connect anything to these. Doing so may cause an inverter failure.
Do not remove the shorting wires across the terminals S1 and PC, the terminals S2 and PC, and the terminals SIC and SD. Removing either shorting wire disables the inverter operation.

2.6.2 Control logic (sink/source) change

Change the control logic of input signals as necessary.
To change the control logic, change the jumper connector position on the control circuit board.
Connect the jumper connector to the connector pin of the desired control logic.
The control logic of input signals is initially set to the sink logic (SINK).
(The output signals may be used in either the sink or source logic independently of the jumper connector position.)

NOTE

- Make sure that the jumper connector is installed correctly.
- Never change the control logic while power is ON.

- Sink logic and source logic

- In the sink logic, a signal switches ON when a current flows from the corresponding signal input terminal. Terminal SD is common to the contact input signals. Terminal SE is common to the open collector output signals.
- In the source logic, a signal switches ON when a current flows into the corresponding signal input terminal. Terminal PC is common to the contact input signals. Terminal SE is common to the open collector output signals.
- Current flow concerning the input/output signal when sink logic is selected

- When using an external power supply for transistor output

Sink logic
Use the terminal PC as a common terminal, and perform wiring as shown below. (Do not connect terminal SD of the inverter with the terminal 0 V of the external power supply. When using terminals PC-SD as a 24 VDC power supply, do not install an external power supply in parallel with the inverter. Doing so may cause a malfunction in the inverter due to undesirable currents.)

[^5]- Current flow concerning the input/output signal when source logic is selected

Source logic
Use the terminal SD as a common terminal, and perform wiring as shown below. (Do not connect terminal PC of the inverter with the terminal +24 V of the external power supply. When using terminals PC-SD as a 24 VDC power supply, do not install an external power supply in parallel with the inverter. Doing so may cause a malfunction in the inverter due to undesirable currents.)

2.6.3 Wiring of control circuit

- Control circuit terminal layout

- Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

*1 This terminal operates as the terminal FM.

- Wiring method

- Power supply connection

Use crimp terminals and stripped wire for the control circuit wiring. For single wire, the stripped wire can be used without crimp terminal.

Connect the end of wires (crimp terminal or stranded wire) to the terminal block.

1. Strip the signal wires as shown below. If too much of the wire is stripped, a short circuit may occur with neighboring wires. If not enough of the wire is stripped, wires may become loose and fall out. Twist the stripped end of wires to prevent them from fraying. Do not solder it.

Wire strip length

2. Use appropriate crimp terminals (ferrules, blade terminals, etc.).

Insert wires to the crimp terminal, and check that the wires come out for about 0 to 0.5 mm from a sleeve.
Check the condition of the crimp terminals after crimping. Do not use the crimp terminals of which the crimping is inappropriate, or the face is damaged.

- Crimp terminals commercially available (as of November 2020)

Phoenix Contact Co., Ltd.

Wire gauge ($\mathrm{mm}^{\mathbf{2}}$)	Ferrule part No.			Crimping tool model No.
	With insulation sleeve	Without insulation sleeve	For UL wire*1	
0.3	AI 0,34-10TQ	-	-	CRIMPFOX 6
0.5	Al 0,5-10WH	-	AI 0,5-10WH-GB	
0.75	Al 0,75-10GY	A 0,75-10	AI 0,75-10GY-GB	
1	Al 1-10RD	A 1-10	Al 1-10RD/1000GB	
1.25, 1.5	Al 1,5-10BK	A 1,5-10	Al $1,5-10 \mathrm{BK} / 1000 \mathrm{~GB}^{*} 2$	
0.75 (for two wires)	AI-TWIN $2 \times 0,75-10 \mathrm{GY}$	-	-	

*1 A ferrule terminal with an insulation sleeve compatible with the MTW wire which has a thick wire insulation.
*2 Applicable to the terminals A1, B1, C1, A2, B2, and C2.
NICHIFU Co., Ltd.

Wire gauge (mm $\left.\mathbf{m}^{2}\right)$	Crimp terminal part No.	Insulation cap part No.	Crimping tool model No.
0.3 to 0.75	BT $0.75-11$	VC 0.75	NH 69

3. Insert the wires into a socket.

When using a single wire or stranded wires without a crimp terminal, push the open/close button all the way down with a flathead screwdriver, and insert the wire.

NOTE

- When using stranded wires without a crimp terminal, twist enough to avoid short circuit with a nearby terminals or wires.
- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

$■$ Wire removal

Pull the wire while pushing the open/close button all the way down firmly with a flathead screwdriver.

NOTE

- Pulling out the wire forcefully without pushing the open/close button all the way down may damage the terminal block.
- Use a small flathead screwdriver (tip thickness: $0.4 \mathrm{~mm} / \mathrm{tip}$ width: 2.5 mm). If a flathead screwdriver with a narrow tip is used, terminal block may be damaged. Commercially available products (as of November 2020)

Name	Model	Manufacturer
Screwdriver	SZF	Phoenix Contact Co., Ltd.
	$0-0,4 \times 2,5$	

- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

Common terminals of the control circuit (SD, PC, 5, SE)

- Terminals SD (sink logic), PC (source logic), 5 , and SE are common terminals (0 V) for I/O signals. (All common terminals are isolated from each other.) Do not earth (ground) these terminals. Avoid connecting the terminal SD (sink logic) with 5, the terminal PC (source logic) with 5 , and the terminal SE with 5.
- In the sink logic, terminal SD is a common terminal for the contact input terminals (STF, STR, STP (STOP), RH, RM, RL, JOG, RT, MRS, RES, AU, CS) and the pulse train output terminal (FM). The open collector circuit is isolated from the internal control circuit by photocoupler.
- In the source logic, terminal PC is a common terminal for the contact input terminals (STF, STR, STP (STOP), RH, RM, RL, JOG, RT, MRS, RES, AU, CS). The open collector circuit is isolated from the internal control circuit by photocoupler.
- Terminal 5 is a common terminal for the frequency setting terminals (2,1 or 4) and the analog output terminals (AM). It should be protected from external noise using a shielded or twisted cable.
- Terminal SE is a common terminal for the open collector output terminals (RUN, SU, OL, IPF, FU). The contact input circuit is isolated from the internal control circuit by photocoupler.

- Signal inputs by contactless switches

The contact input terminals of the inverter (STF, STR, STP (STOP), RH, RM, RL, JOG, RT, MRS, RES, AU and CS) can be controlled using a transistor instead of a contact switch as shown below.

External signal input using transistor (sink logic)

External signal input using transistor
(source logic)

2.6.4 Wiring precautions

- It is recommended to use a cable of 0.3 to $0.75 \mathrm{~mm}^{2}$ for the connection to the control circuit terminals.
- The wiring length should be $30 \mathrm{~m}(200 \mathrm{~m}$ for the terminal FM$)$ at the maximum.
- Use two or more parallel micro-signal contacts or twin contacts to prevent contact faults when using contact inputs since the control circuit input signals are micro-currents.

Micro signal contacts

Twin contacts

- To suppress EMI, use shielded or twisted cables for the control circuit terminals and run them away from the main and power circuits (including the 200 V relay sequence circuit). For the cables connected to the control circuit terminals, connect their shields to the common terminal of the connected control circuit terminal. When connecting an external power supply to the terminal PC, however, connect the shield of the power supply cable to the negative side of the external power supply. Do not directly earth (ground) the shield to the enclosure, etc.
- Always apply a voltage to the fault output terminals (A1, B1, C1, A2, B2, and C2) via a relay coil, lamp, etc.
- When a relay coil is connected to the output terminals, use one with a surge absorbing function (reflux diode). When the voltage application direction is incorrect, the inverter will be damaged. Pay attention to the diode direction or other precautions to avoid incorrect wiring.

- For the FR-A860-01440 or higher, separate the wiring of the control circuit away from the wiring of the main circuit. Make cuts in rubber bush of the inverter side and lead the wires through.

2.6.5 When using separate power supplies for the control circuit and the main circuit

- Cable size for the control circuit power supply (terminals R1/L11 and S1/ L21)

- Terminal screw size: M4
- Cable gauge: $0.75 \mathrm{~mm}^{2}$ to $2 \mathrm{~mm}^{2}$
- Tightening torque: $1.5 \mathrm{~N} \cdot \mathrm{~m}$

- Connection method

<Connection diagram>

When a fault occurs, opening of the electromagnetic contactor (MC) on the inverter power supply side results in power loss in the control circuit, disabling the fault output signal retention. Terminals R1/L11 and S1/L21 are provided to hold a fault signal. In this case, connect the power supply terminals R1/L11 and S1/L21 of the control circuit to the input side of the MC.
Do not connect the power cable to incorrect terminals. Doing so may damage the inverter.

- FR-A860-00090 or lower

(a) Remove the upper screws.
(b) Remove the lower screws.
(c) Remove the jumper.
(d) Connect the separate power supply cable for the control circuit to the lower terminals (R1/L11, S1/L21).

(a) Remove the upper screws
(b) Remove the lower screws.
(c) Remove the jumper.
(d) Connect the separate power supply cable for the control circuit to the upper terminals (R1/L11, S1/L21).

- FR-A860-00450 or higher

(a) Remove the upper screws.
(b) Remove the lower screws.
(c) Pull the jumper toward you to remove.
(d) Connect the separate power supply cable for the control circuit to the upper terminals (R1/L11, S1/L21).

NOTE

- When using separate power supplies, always remove the jumpers across terminals R/L1 and R1/L11 and across S/L2 and S1/L21. The inverter may be damaged if the jumpers are not removed.
- The voltage should be the same as that of the main control circuit when the control circuit power is supplied from other than the input side of the MC.
- The power capacity necessary when separate power is supplied from R1/L11 and S1/L21 differs according to the inverter capacity.

Inverter	Power supply capacity
FR-A860-00170 or lower	60 VA
FR-A860-00320 or higher	80 VA

- If the main circuit power is switched OFF (for 0.1 s or more) then ON again, the inverter is reset and a fault output will not be held.
- When a power supply is provided for the control circuit separately from the main circuit and a capacitive device (such as an EMC filter or a radio noise filter) is connected, refer to the following diagram.

2.6.6 When supplying 24 V external power to the control circuit

Connect the 24 V external power supply across terminals +24 and SD to turn the I/O terminal ON/OFF operation, keep the operation panel ON, and carry out communication with other devices even at power-OFF state of inverter's main circuit power supply. When the main circuit power supply is turned ON , the power supply source changes from the 24 V external power supply to the main circuit power supply.

Specification of the applicable 24 V external power supply

Item	Rated specification
Input voltage	23 to 25.5 VDC
Input current	1.4 A or less

Commercially available products (as of October 2020)

Model	Product overview	Manufacturer
S8FS-G05024C*1	Specifications: Capacity 50 W, output voltage 24 VDC, output current 2.2 A Installation method: Direct installation, screw type terminal block with cover Input: Single-phase 100 to 240 VAC	OMRON Corporation
S8VK-S06024*1	Specifications: Capacity 60 W, output voltage 24 VDC, output current 2.5 A Installation method: DIN rail, push-in (spring) type terminal block Input: Single-phase 100 to 240 VAC	
S8VK-WA24024*1	Specifications: Capacity 240 W, output voltage 24 VDC, output current 10 A Installation method: DIN rail, push-in (spring) type terminal block Input: Three-phase 200 to 240 VAC	

*1 For the latest information about OMRON power supply, contact OMRON corporation.

- Starting and stopping the 24 V external power supply operation

- Supplying 24 V external power while the main circuit power is OFF starts the 24 V external power supply operation. Likewise, turning OFF the main circuit power while supplying 24 V external power starts the 24 V external power supply operation.
- Turning ON the main circuit power stops the 24 V external power supply operation and enables the normal operation.

NOTE

- During the 24 V external power supply operation, the inverter operation is disabled.
- In the initial setting, when the main power supply is turned ON during the 24 V external power supply operation, a reset is performed in the inverter, then the power supply changes to the main circuit power supply. (The reset can be disabled using Pr.30. (Refer to page 718.))

- Confirming the 24 V external power supply input

- During the 24 V external power supply operation, the alarm lamp flickers.

- During the 24 V external power supply operation, the 24 V external power supply operation signal (EV) is output. To use the EV signal, set "68 (positive logic) or 168 (negative logic)" in one of Pr. 190 to Pr. 196 (Output terminal function selection) to assign function to an output terminal.

- Operation while the 24 V external power is supplied

- Fault records and parameters can be read and parameters can be written (when the parameter write from the operation panel is enabled) using the operation panel keys.
- During the 24 V external power supply operation, monitored items and signals related to inputs to main circuit power supply, such as output current, converter output voltage, and IPF signal, are invalid.
- The faults, which have occurred when the main circuit power supply is ON, continue to be output after the power supply is changed to the 24 V external power supply. Perform the inverter reset or turn OFF then ON the power to reset the faults.
- If the power supply changes from the main circuit power supply to the 24 V external power supply while measuring the main circuit capacitor's life, the measurement completes after the power supply changes back to the main circuit power supply (Pr. 259 = "3").
- The output data is retained when "1 or 11" is set in Pr. 495 Remote output selection.

NOTE

- Inrush current equal to or higher than the 24 V external power supply specification may flow at power-ON. Confirm that the power supply and other devices are not affected by the inrush current and the voltage drop caused by it. Depending on the power supply, the overcurrent protection may be activated to disable the power supply. Select the power supply and capacity carefully.
- When the wiring length between the external power supply and the inverter is long, the voltage often drops. Select the appropriate wiring size and length to keep the voltage in the rated input voltage range.
- In a serial connection of several inverters, the current increases when it flows through the inverter wiring near the power supply. The increase of the current causes voltage to drop further. When connecting different inverters to different power supplies, use the inverters after confirming that the input voltage of each inverter is within the rated input voltage range. Depending on the power supply, the overcurrent protection may be activated to disable the power supply. Select the power supply and capacity carefully.
- "E.SAF or E.P24" may appear when the start-up time of the 24 V power supply is too long (less than $1.5 \mathrm{~V} / \mathrm{s}$) in the 24 V external power supply operation.
- "E.P24" may appear when the 24 V external power supply input voltage is low. Check the external power supply input.
- Do not touch the control circuit terminal block (circuit board) during the 24 V power supply operation (when conducted). Otherwise you may get an electric shock or burn.

2.7 Communication connectors and terminals

2.7.1 PU connector

Removal and reinstallation of the accessory cover

1. Loosen the two screws on the accessory cover.
(These screws cannot be removed.)

2. Press the upper edge of the accessory cover while pulling out the accessory cover.

To install the accessory cover, fit it securely and tighten the screws. (Tightening torque: 0.40 to $0.45 \mathrm{~N} \cdot \mathrm{~m}$)

- Mounting the operation panel on the enclosure surface

- The operation panel can be used for setting the inverter parameters, monitoring various items, and checking fault indications.
- Having an operation panel on the enclosure surface is convenient. With a connection cable, the operation panel can be mounted to the enclosure surface and connected to the inverter. Use the option FR-CB2[], or connectors and cables available on the market. (To mount the operation panel, the optional connector (FR-ADP) is required.) Securely insert one end of the connection cable until the stoppers are fixed.

NOTE

- Refer to the following table when fabricating the cable on the user side. Keep the total cable length within 20 m .

Name	Remarks
Communication cable	Cable compliant with EIA-568 (such as 10BASE-T cable)

- For details on the FR-LU08, refer to the FR-LU08 Instruction Manual.

- Communication operation

- Using the PU connector enables communication operation from a personal computer, etc. When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run to monitor the inverter or read and write parameters. Communication can be performed with the Mitsubishi inverter protocol (computer link operation). For the details, refer to page 644.

2.7.2 USB connector

USB host communication

Item		
Interface	Conforms to USB1.1	
Transmission speed	12 Mbps	
Wiring length	Maximum 5 m	
Connector	USB A connector (receptacle)	
Compatible USB memory	Format	FAT32
	Capacity	1 GB or more (used in the recorder mode of the trace function)
	Encryption function	Not available

- Different inverter data can be saved in a USB memory device. The USB host communication enables the following functions.

Function	Description	Refer to page
Parameter copy	- Copies the parameter setting from the inverter to the USB memory device. A maximum of 99 parameter setting files can be saved in a USB memory device. - The parameter setting data copied in the USB memory device can be copied to other inverters. This function is useful in backing up the parameter setting or for sharing the parameter setting among multiple inverters. - The parameter setting file can be copied onto a personal computer from the USB memory device and edited using FR Configurator2.	*1
Trace	- The monitored data and output status of the signals can be saved in a USB memory device. - The saved data can be imported to FR Configurator2 to diagnose the operating status of the inverter.	636
PLC function data copy	- This function copies the PLC function project data to a USB memory device when the PLC function is used. - The PLC function project data copied in the USB memory device can be copied to other inverters. - This function is useful in backing up the parameter setting and for allowing multiple inverters to operate by the same sequence programs.	634

*1 Refer to the Instruction Manual of the FR-LU08.

- The operating status of the USB host can be checked on the LED display of the inverter.

LED display status	Operating status
OFF	No USB connection.
ON	The communication is established between the inverter and the USB device.
Flickering rapidly	The USB memory device is being accessed. (Do not remove the USB memory device.)
Flickering slowly	Error in the USB connection.

- When a device such as a USB battery charger is connected to the USB connector and an excessive current (500 mA or more) flows, USB host error (UF warning) is displayed on the operation panel.
- When the UF warning appears, the USB error can be canceled by removing the USB device and setting Pr. 1049 = "1". (The UF warning can also be canceled by resetting the inverter power or resetting with the RES signal.)

NOTE

- Do not connect devices other than a USB memory device to the inverter.
- If a USB device is connected to the inverter via a USB hub, the inverter cannot recognize the USB memory device properly.

- USB device communication

The inverter can be connected to a personal computer with a USB (Ver. 1.1) cable.
Parameter setting and monitoring can be performed by using FR Configurator2.

Item	Specification
Interface	Conforms to USB1.1
Transmission speed	12 Mbps
Wiring length	Maximum 5 m
Connector	USB mini B connector (receptacle)
Power supply	Self-powered

NOTE

- For details on FR Configurator2, refer to the Instruction Manual of FR Configurator2.

2.7.3 RS-485 terminal block

- Communication operation

Item	Specification
Conforming standard	EIA-485 (RS-485)
Transmission format	Multidrop link
Communication speed	Maximum 115200 bps
Overall length	500 m
Connection cable	Twisted pair cable (4 pairs)

The RS-485 terminals enable communication operation from a personal computer, etc. When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run to monitor the inverter or read and write parameters.
Communication can be performed with the Mitsubishi inverter protocol (computer link operation) and MODBUS RTU protocol. For the details, refer to page 646.

2.8 Connection of motor with encoder (vector control)

Using encoder-equipped motors together with a vector control compatible option enables speed, torque, and positioning control operations under orientation control, encoder feedback control, and full-scale vector control.
This section explains wiring for use of the FR-A8AP.

- Appearance and parts name of FR-A8AP

Symbol	Name	Description	Refer to page
a	Mounting hole	Used for installation to the inverter.	-
b	Terminal block	Connected with the encoder.	75
C	Encoder type selection switch (SW3)	Switches the encoder type (differential line driver/complementary).	73
d	CON2 connector	Not used.	-
e	Terminating resistor selection switch (SW1)	Switches ON or OFF the internal terminating resistor.	73
f	Switch for manufacturer setting (SW2)	Do not change from the initially-set status. (Switches 1 and 2 are OFF罳昜. .)	-
g	Connector	Connected to the option connector of the inverter.	20
h	LED for manufacturer check	Not used.	-

- Terminals of the FR-A8AP

Terminal symbol	Terminal name	Description
PA1	Encoder A-phase signal input terminal	A-, B- and Z-phase signals are input from the encoder.
PA2	Encoder A-phase inverse signal input terminal	
PB1	Encoder B-phase signal input terminal	
PB2	Encoder B-phase inverse signal input terminal	
PZ1	Encoder Z-phase signal input terminal	
PZ2	Encoder Z-phase inverse signal input terminal	
PG	Encoder power supply (positive side) input terminal	Input terminal for the encoder power supply. Connect the external power supply and the encoder power cable. When the encoder output is the differential line driver type, only 5 V can be input. Make the voltage of the external power supply same as the encoder output voltage. (Check the encoder specification.)
SD	Encoder power supply ground terminal	
PIN	Not used.	
PO		

NOTE

- When the encoder's output voltage differs from its input power supply voltage, the signal loss detection (E.ECT) may occur.
- Incorrect wiring or faulty setting to the encoder will cause a fault such as an overcurrent (E.OC[]) and an inverter overload (E.THT). Correctly perform the encoder wiring and setting.

- Switches of the FR-A8AP

- Encoder type selection switch (SW3)

Selects either the differential line driver or complementary setting.
It is initially set to the differential line driver. Switch its position according to the output circuit.

- Terminating resistor selection switch (SW1)

Selects ON/OFF of the internal terminating resistor.
Set the switch to ON (initial status) when an encoder output type is differential line driver, and set to OFF when complementary.
ON: with internal terminating resistor (initial status)
OFF: without internal terminating resistor

NOTE

- Set all switches to the same setting (ON/OFF).
- Set the switch "OFF" when sharing an encoder with another unit (NC (computerized numerical controller), etc.) having a terminating resistor under the differential line driver setting.
- The SW2 switch is for manufacturer setting. Do not change the setting.

- Encoder specification

Item	Specification
Resolution	0 to 4096 Pulse/Rev (setting by Pr. 369)
Power supply voltage	$5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}$
Output signal form	A, B phases $\left(90^{\circ}\right.$ phase shift) Z phase: 1 pulse/rev
Output circuit	Differential line driver or complementary

NOTE

- Encoder with resolution of 1000 to 4096 pulse/rev is recommended.

- Encoder cable

- As the terminal block of the FR-A8AP is an insertion type, cables need to be treated when the encoder cables of the inverter are crimping terminals. Cut the crimping terminal of the encoder cable and strip its sheath to make its cable wires loose. Also, treat the shielding wires of the shielded twisted pair cable to ensure that they will not contact conductive areas. Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.

NOTE

- Information on crimp terminals

Commercially available products (as of November 2020)
Phoenix Contact Co., Ltd.

Terminal screw size	Cable gauge $\left(\mathbf{m m}^{2}\right)$	Ferrule terminal model		Crimping tool name
	W2 With insulation sleeve	Without insulation sleeve	CRIMPFOX 6	
	0.3	AI 0,34-6TQ		

NICHIFU Co., Ltd.

Terminal screw size	Cable gauge $\left(\mathbf{m m}^{\mathbf{2}}\right)$	Crimp terminal product number	Insulation cap product number	Crimping tool product number
M2	0.3 to 0.75	BT $0.75-7$	VC 0.75	NH 69

- When using a crimp terminal (without insulation sleeve), take caution that the twisted wires do not come out.

- Wiring example

- Speed control

*1 The pin number differs according to the encoder used
Speed control, torque control, and position control by pulse train input are available with or without the Z-phase being connected
*2 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
*3 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 76.)
*4 For the complementary, set the terminating resistor selection switch to OFF position. (Refer to page 73.)
*5 A separate external power supply is necessary according to the encoder power specification.
When the encoder output is the differential line driver type, only 5 V can be input.
Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply across PG and SD.

- Instructions for encoder cable wiring

- Use shielded twisted pair cables ($0.2 \mathrm{~mm}^{2}$ or larger) to connect the FR-A8AP. For the wiring to the terminals PG and SD, use several cables in parallel or use a thick cable, according to the wiring length. To protect the cables from noise, run them away from any source of noise (such as the main circuit and power supply voltage).

Wiring length	Parallel connection		Larger-size cable
Within 10 m	At least two cables in parallel	Cable gauge $0.2 \mathrm{~mm}^{2}$	$0.4 \mathrm{~mm}^{2}$ or larger
Within 20 m	At least four cables in parallel		$0.75 \mathrm{~mm}^{2}$ or larger
Within $100 \mathrm{~m}^{* 1}$	At least six cables in parallel		$1.25 \mathrm{~mm}^{2}$ or larger

*1 When differential line driver is set and a wiring length is 30 m or more.
The wiring length can be extended to 100 m by increasing the 5 V power supply (approximately to 5.5 V) while using six or more $0.2 \mathrm{~mm}^{2}$ gauge cables in parallel or a $1.25 \mathrm{~mm}^{2}$ or larger gauge cable. The voltage applied must be within power supply specifications of encoder.

- To reduce noise of the encoder cable, earth (ground) the encoder's shielded cable to the enclosure (as close as possible to the inverter) with a P-clip or U-clip made of metal.

Earthing (grounding) example using a P-clip

- When one encoder is shared between FR-A8AP and CNC (computerized numerical controller), its output signal should be connected as shown below. In this case, the wiring length between FR-A8AP and CNC should be as short as possible, within 5 m .

2.9 Parameter settings for a motor with encoder
\checkmark Parameter for the encoder (Pr.359, Pr.369, Pr.851, Pr.852)
- Set the encoder specifications.

Pr.		Name	Initial value	Setting range	Description	
$\begin{aligned} & 359 \\ & \text { C141 } \end{aligned}$	$\begin{aligned} & 852 \\ & \mathrm{C} 241 \end{aligned}$	Encoder rotation direction	1	0	Set when using a motor for which forward rotation (encoder) is clockwise (CW) viewed from the shaft	Set for the operation at 120 Hz or less.
				100		Set for the operation at a frequency higher than 120 Hz .
				1	Set when using a motor for which forward rotation (encoder) is counterclockwise (CCW) viewed from the shaft	Set for the operation at 120 Hz or less.
				101		Set for the operation at a frequency higher than 120 Hz .
$\begin{aligned} & 369 \\ & \text { C140 } \end{aligned}$	$\begin{aligned} & \hline 851 \\ & \mathrm{C} 240 \end{aligned}$	Number of encoder pulses	1024	0 to 4096	Set the number of encoder pulses output. Set the number of pulses before it is multiplied by 4 .	

The above parameters can be set when a vector control compatible option is mounted.

- The following table shows parameters to be set according to the vector control compatible option to be used.

Item	FR-A8AP/FR-A8AL/FR- A8APA parameter	FR-A8APR parameter	FR-A8APS parameter	FR-A8TP parameter
Encoder/Resolver rotation direction	Pr.359	Pr.852		
Number of detector pulses	Pr.369	- (fixed 1024 pulses)	- (obtained via communication from the encoder)	Pr.851

- Parameter settings for the motor under vector control

Motor name	Pr. 9 Electronic thermal O/L relay	$\text { Pr. } 71$ Applied motor	Pr. 80 Motor capacity	$\text { Pr. } 81$ Number of motor poles	Pr.359/Pr. 852 Encoder rotation direction	Pr.369/Pr. 851 Number of encoder pulses
Standard motor (thermal characteristic: standard)	Rated motor current	0 (initial value)	Motor capacity	Number of motor poles	1 (initial value)	1024 (initial value)
Constant-torque motor (thermal characteristic: constant torque)	Rated motor current	1	Motor capacity	4	1 (initial value)	1024 (initial value)
Vector control dedicated motor	0 *3	30	Motor capacity	4	1 (initial value)	2048
Other manufacturer's standard motor	Rated motor current	$0(3){ }^{* 1}$	Motor capacity	Number of motor poles	*2	*2
Other manufacturer's constanttorque motor	Rated motor current	1(13) *1	Motor capacity	Number of motor poles	*2	*2
PM motor	Refer to the instruction manual of the FR-A8APR.					

[^6]
2.10 Connection of stand-alone option units

The inverter accepts a variety of stand-alone option units as required.
Incorrect connection will cause inverter damage or accident. Connect and operate the option unit carefully in accordance with the corresponding option unit manual.

2.10.1 Connection of the brake resistor other than the provided brake resistor

When an inverter-driven motor is driven by a load or requires rapid deceleration, install a brake resistor. A brake resistor is provided with the FR-A860-00090 or lower. Fit another brake resistor when the provided brake resistor does not have enough thermal capability for high-duty operation. For the FR-A860-00027 to 00170, and the FR-A860-00450 to 01080, connect the brake resistor across terminals P3 and PR. For the FR-A860-00320, connect the brake resistor across terminals P/+ and PR. (For the locations of terminal P3(P/+) and PR, refer to the terminal block layout (page 43).)
The brake resistor should be as listed in the following table. Selected the rated power of the brake resistor according to the brake duty. (The rated power indicated below assumes that the brake resistor duty is 10\%)

Inverter size	Brake resistance	Reference rated power at brake duty of 10\% (6\%) ${ }^{* 1}$
FR-A860-00027	1000 W or more	180 W or more
FR-A860-00061	370 W or more	500 W or more
FR-A860-00090	220 W or more	800 W or more
FR-A860-00170	110 W or more	1600 W or more
FR-A860-00320	60 W or more	3600 W or more
FR-A860-00450	40 W or more	5500 W or more
FR-A860-00680	24 W or more	9000 W or more
FR-A860-01080	16 W or more	13500 W or more

*1 For the FR-A860-00320 or higher, the brake duty is 6%.
Set parameters as below.

- Pr. 30 Regenerative function selection $=" 1 "$
- Pr. 70 Special regenerative brake duty = "FR-A860-00170 or lower: 10%, FR-A860-00320 or higher: 6% "
(Refer to page 718.)
- When the regenerative brake transistor is damaged, install a thermal relay as shown in the following sequence diagrams to prevent overheat and burnout of the brake resistor. Properly select a thermal relay according to the regenerative driving frequency or the rated power or resistance of the brake resistor.

NOTE

- The brake resistor cannot be used together with a brake unit.
- Do not connect the provided brake resistor when connecting the brake resistor other than the provided brake resistor across terminals P3(P/+) and PR. Otherwise the inverter may be damaged.
- If the resistor selection is incorrect, overcurrent may damage the inverter built-in brake transistor. Also, the resistor may be burned due to overheat.
- If the selection of the thermal relay is incorrect, the resistor may be burned due to overheat.

2.10.2 Connection of the DC reactor

- When using the DC reactor, connect it across terminals P/+ and P1. For the FR-A860-01080 or lower, the jumper connected across terminals P/+ and P1 must be removed. Otherwise, the reactor will not be effective.

- Select a DC reactor according to the applied motor capacity. (Refer to page 792.)
- For the FR-A860-01440 or higher, and when a 75 kW or higher motor is used, always connect a DC reactor.
- Select a DC reactor according to the following table.

Motor capacity (kW)	Reactor specifications*1, *2	
	Reactor L value (mH)	DC reactor rated current (A)
75	0.616	124
90	0.517	149
110	0.426	182
132	0.351	219
160	0.294	265
185	0.254	307
220	0.214	365
250	0.188	414
280	0.169	464
315	0.150	522

*1 The power supply frequency of 60 Hz is assumed.
*2 Class H or higher insulation is recommended.
Select a DC reactor for which its L value does not fall to 50% or below when the inverter overload current rating is 150% (ND rating).

NOTE

- The wiring distance must be within 5 m .
- As a reference, the cable gauge for the connection must be equal to or larger than that of the power supply cables (R/L1, S/L2, T/L3) and the earthing (grounding) cable. (Refer to page 49.)

CHAPTER 3 PRECAUTIONS FOR USE OF THE INVERTER

3.1 Electro-magnetic interference (EMI) and leakage currents 82
3.2
Power supply harmonics 86

Installation of a reactor 86
Power-OFF and magnetic contactor (MC) 87
3.5 Countermeasures against deterioration of the 600 V class motor insulation 89
3.6 Checklist before starting operation 90
3.7 Failsafe system which uses the inverter 92

This chapter explains the precautions for use of this product.
Always read the instructions before using the equipment.
For the "PRECAUTIONS FOR USE OF THE INVERTER" of the separated converter type, refer to the FR-A862 (Separated Converter Type) Instruction Manual (Hardware) [IB-0600571ENG].

3.1 Electro-magnetic interference (EMI) and leakage currents

3.1.1 Leakage currents and countermeasures

Capacitance exist between the inverter I/O cables, other cables and earth and in the motor, through which a leakage current flows. Since its value depends on the static capacitance, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following countermeasures. Select the earth leakage current breaker according to its rated sensitivity current, independently of the carrier frequency setting.

- To-earth (ground) leakage currents

Leakage currents may flow not only into the power system of the inverter but also into the other power systems through the earthing (grounding) cable, etc. These leakage currents may operate earth leakage circuit breakers and earth leakage relays unnecessarily.

■ Precautions

- If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting. Note that motor noise increases. Selecting Pr. 240 Soft-PWM operation selection makes the sound inoffensive.
- By using earth leakage circuit breakers designed to suppress harmonics and surge voltage in the power system of the inverter and other devices, operation can be performed with the carrier frequency kept high (with low noise).

NOTE

- Long wiring will increase the leakage current.
- High motor capacity will increase the leakage current.

- Line-to-line leakage currents

Harmonics of leakage currents flowing in static capacitance between the inverter output cables may operate the external thermal relay unnecessarily. When the wiring length is long (50 m or more) for the 600 V class small-capacity models (FR-A860-00170 or lower), the external thermal relay is likely to operate unnecessarily because the ratio of the leakage current to the rated motor current increases.

Line-to-line leakage current example (600 V class)

- Precautions

- Use Pr. 9 Electronic thermal O/L relay.
- If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting.

Note that motor noise increases. Selecting Pr. 240 Soft-PWM operation selection makes the sound inoffensive.
To ensure that the motor is protected against line-to-line leakage currents, it is recommended to use a temperature sensor to directly detect motor temperature.

■ Installation and selection of the molded case circuit breaker

Install a molded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the inverter input side. Select an MCCB according to the inverter input side power factor, which depends on the power supply voltage, output frequency and load. Especially for a completely electromagnetic MCCB, a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check it in the data of the corresponding breaker.)

3.1.2 Countermeasures against inverter-generated EMI

Some electromagnetic noises enter the inverter to cause the inverter malfunction, and others are radiated by the inverter to cause the peripheral devices to malfunction. Though the inverter is designed to have high immunity performance, it handles low-level signals, so it requires the following basic techniques. Also, since the inverter chops outputs at high carrier frequency, that could generate electromagnetic noises. If these electromagnetic noises cause peripheral devices to malfunction, EMI countermeasures should be taken to suppress noises. These techniques differ slightly depending on EMI paths.

- Basic techniques

- Do not run the power cables (I/O cables) and signal cables of the inverter in parallel with each other and do not bundle them.
- Use shielded twisted pair cables for the detector connecting and control signal cables and connect the sheathes of the shielded cables to terminal SD.
- Ground (Earth) the inverter, motor, etc. at one point.

- Techniques to reduce electromagnetic noises that enter and cause a malfunction of the inverter (EMI countermeasures)

When devices that generate many electromagnetic noises (which use magnetic contactors, electromagnetic brakes, many relays, for example) are installed near the inverter and the inverter may malfunction due to electromagnetic noises, the following countermeasures must be taken:

- Provide surge suppressors for devices that generate many electromagnetic noises to suppress electromagnetic noises.
- Install data line filters (page 84) to signal cables.
- Ground (Earth) the shields of the detector connection and control signal cables with cable clamp metal.

- Techniques to reduce electromagnetic noises that are radiated by the inverter to cause the peripheral devices to malfunction (EMI countermeasures)

Inverter-generated noises are largely classified into those radiated by the cables connected to the inverter and inverter main circuits (I/O), those electromagnetically and electrostatically induced to the signal cables of the peripheral devices close to the main circuit power supply, and those transmitted through the power supply cables.

Inverter generated electromagnetic noise \qquad		
Noise propagation path		Countermeasure
(a)(b)(c)	When devices that handle low-level signals and instruments, receivers and sensors, are contain cables are run near the inverter, the devices may following countermeasures must be taken: - Install easily affected devices as far away as - Run easily affected signal cables as far away - Do not run the signal cables and power cables them. - Inserting a line noise filter into the output supp - Use shielded cables as signal cables and pow further effects.	are liable to malfunction due to electromagnetic noises, e.g. d in the enclosure that contains the inverter or when their signal malfunction due to by air-propagated electromagnetic noises. The possible from the inverter. as possible from the inverter and its I/O cables. (inverter I/O cables) in parallel with each other and do not bundle resses the radiated noise from the cables. er cables and run them in individual metal conduits to produce
(d)(e)(f)	When the signal cables are run in parallel with or may be propagated to the signal cables to cause be taken: - Install easily affected devices as far away as - Run easily affected signal cables as far away - Do not run the signal cables and power cables them. - Use shielded cables as signal cables and pow further effects.	bundled with the power cables, magnetic and static induction noises malfunction of the devices and the following countermeasures must ossible from the inverter. as possible from the inverter and its I/O cables. (inverter I/O cables) in parallel with each other and do not bundle er cables and run them in individual metal conduits to produce
(g)	When the peripheral devices use the power sys the power supply cables to cause malfunction - Install the line noise filter to the power cables	m of the inverter, inverter-generated noises may flow back through the devices and the following countermeasures must be taken: (output cables) of the inverter.
(h)	When a closed loop circuit is formed by connecting flow through the earthing (grounding) cable of the disconnecting the earthing (grounding) cable from	ing the peripheral device wiring to the inverter, leakage currents may e inverter to cause the device to malfunction. In that case, m the device may stop the malfunction of the device.

Data line filter

Data line filter is effective as an EMI countermeasure. Provide a data line filter for the detector cable, etc.

- EMI countermeasure example

3.2 Power supply harmonics

The inverter may generate power supply harmonics from its converter circuit to affect the power generator, power factor correction capacitor etc. Power supply harmonics are different from noise and leakage currents in source, frequency band and transmission path. Take the following countermeasure suppression techniques.

- The differences between harmonics and noises

Item	Harmonics	Noise
Frequency	Normally 40th to 50th degrees or less (3 kHz or less).	High frequency (several 10 kHz to 1 GHz order).
Location	To-electric channel, power impedance.	To-space, distance, wiring path,
Quantitative understanding	Theoretical calculation possible.	Random occurrence, quantitative grasping difficult.
Generated amount	Nearly proportional to the load capacity.	Changes with the current variation ratio. (Gets larger as switching speed increases.)
Affected equipment immunity	Specified by standards per equipment.	Different depending on maker's equipment specifications.
Countermeasure	Provide a reactor.	Increase distance.

- Countermeasures

The harmonic current generated from the inverter to the input side differs according to various conditions such as the wiring impedance, whether a reactor is used or not, and output frequency and output current on the load side.
For the output frequency and output current, we understand that this should be calculated in the conditions under the rated load at the maximum operating frequency.

NOTE

- The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not provide a capacitor and surge suppressor on the inverter output side when the motor is driven by the inverter. For power factor improvement, install a reactor on the inverter input side or in the DC circuit.

3.3 Installation of a reactor

When the inverter is connected near a large-capacity power transformer (1000 kVA or more) or when a power factor correction capacitor is to be switched over, an excessive peak current may flow in the power input circuit, damaging the converter circuit. To prevent this, always install an AC reactor, which is available as an option.

3.4 Power-OFF and magnetic contactor (MC)

- Inverter input side magnetic contactor (MC)

On the inverter input side, it is recommended to provide an MC for the following purposes:
(Refer to page 28 for selection.)

- To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.). For example, an MC prevents overheat or burnout of the brake resistor when heat capacity of the resistor is insufficient or brake regenerative transistor is damaged with short while connecting a brake resistor.
- To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure.
- To separate the inverter from the power supply to ensure safe maintenance and inspection work.

Use the inverter input current as a reference for selection of an MC to perform an emergency stop during operation, and select the MC conforming to JEM 1038-AC-3 class rated operational current.

NOTE

- Since repeated inrush currents at power ON will shorten the life of the converter circuit (switching life is about $1,000,000$ times), frequent starts and stops of the magnetic contactor must be avoided. Turn ON/OFF the inverter start controlling terminals (STF, STR) to run/stop the inverter.
- Inverter start/stop circuit example

As shown on the left, always use the start signal (ON or OFF of STF(STR) signal) to make a start or stop.
 of the jumper.)

- Handling of the magnetic contactor on the inverter's output side

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to use the electronic bypass function Pr. 135 to Pr. 139 (Refer to page 542). (The commercial power supply operation is not available with vector control dedicated motors nor with PM motors.)

- Handling of the manual contactor on the inverter's output side

A PM motor is a synchronous motor with high-performance magnets embedded inside. High-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. In an application where the PM motor is driven by the load even after the inverter is powered OFF, a low-voltage manual contactor must be connected at the inverter's output side.

NOTE

- Before wiring or inspection for a PM motor, confirm that the PM motor is stopped. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.
- Do not open or close the contactor while the inverter is running (outputting).

3.5
 Countermeasures against deterioration of the 600 V class motor insulation

In the PWM type inverter, a surge voltage attributable to wiring constants is generated at the motor terminals. Especially for a 600 V class motor, the surge voltage may deteriorate the insulation.

- Surge voltage at a motor terminal by motor wiring length (reference)

When the 600 V class motor is driven by the inverter, consider the following measures:

Measures

- Inverter duty motor

Select an inverter duty motor. Many motor manufacturers sell motors with insulation systems designed to withstand the stress imposed by PWM inverters

- AC reactor

For added protection, install an AC reactor on the inverter output

3.6 Checklist before starting operation

The FR-A860 series inverter is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product.
Before starting operation, always recheck the following points.

Checkpoint	Countermeasure	Refer to page	Check by user
Crimping terminals are insulated.	Use crimping terminals with insulation sleeves to wire the power supply and the motor.	-	
The wiring between the power supply (R/ L1, S/L2, T/L3) and the motor ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) is correct.	Application of power to the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the inverter will damage the inverter. Never perform such wiring.	42	
No wire offcuts are left from the time of wiring.	Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.	-	
The main circuit cable gauge is correctly selected.	Use an appropriate cable gauge to suppress the voltage drop to 2% or less. If the wiring distance is long between the inverter and motor, the voltage drop in the main circuit will cause the motor torque to decrease especially during the output of a low frequency.	49	
The total wiring length is within the specified length.	Keep the total wiring length within the specified length. In long distance wiring, charging currents due to stray capacitance in the wiring may degrade the fast-response current limit operation or cause the equipment on the inverter's output side to malfunction. Pay attention to the total wiring length.	49	
Countermeasures are taken against EMI.	The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In such case, install a noise filter.	83	
On the inverter's output side, there is no power factor correction capacitor, surge suppressor, or radio noise filter installed.	Such installation will cause the inverter to trip or the capacitor and surge suppressor to be damaged. If any of the above devices is connected, immediately remove it.	-	
When performing an inspection or rewiring on the product that has been energized, the operator has waited long enough after shutting off the power supply.	For a short time after the power-OFF, a high voltage remains in the smoothing capacitor, and it is dangerous. Before performing an inspection or rewiring, wait 10 minutes or longer after the power supply turns OFF, then confirm that the voltage across the main circuit terminals $\mathrm{P} /+$ and $\mathrm{N} /$ - of the inverter is low enough using a tester, etc.	-	
The inverter's output side has no short circuit or ground fault occurring.	A short circuit or ground fault on the inverter's output side may damage the inverter module. Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits caused by peripheral circuit inadequacy or a ground fault caused by wiring inadequacy or reduced motor insulation resistance may damage the inverter module. Fully check the to-earth (ground) insulation and phase-to-phase insulation of the inverter's output side before power-ON. Especially for an old motor or use in hostile atmosphere, make sure to check the motor insulation resistance, etc.	-	
The circuit is not configured to use the inverter's input-side magnetic contactor to start/stop the inverter frequently.	Since repeated inrush currents at power ON will shorten the life of the converter circuit, frequent starts and stops of the magnetic contactor must be avoided. Turn ON/OFF the inverter's start signals (STF, STR) to run/ stop the inverter.	87	
A mechanical brake is not connected across terminals P3(P/+) and PR.	Across terminals P3(P/+) and PR, connect only a brake resistor.	47, 78	
The voltage applied to the inverter I/O signal circuits is within the specifications.	Application of a voltage higher than the permissible voltage to the inverter I/O signal circuits or opposite polarity may damage the I/O devices. Especially check the wiring to prevent the speed setting potentiometer from being connected incorrectly to short circuit the terminals 10E and 5.	53	

Checkpoint	Countermeasure	Refer to page	Check by user
When using the electronic bypass operation, electrical and mechanical interlocks are provided between the electronic bypass contactors MC1 and MC2 .	When using a switching circuit as shown below, chattering due to misconfigured sequence or arc generated at switching may allow undesirable current to flow in and damage the inverter. Mis-wiring may also damage the inverter. (The commercial power supply operation is not available with vector control dedicated motors nor with PM motors.) If switching to the commercial power supply operation while a failure such as an output short circuit has occurred between the magnetic contactor MC2 and the motor, the damage may further spread. If a failure has occurred between the MC2 and the motor, a protection circuit such as using the OH signal input must be provided.	542	
A countermeasure is provided for power restoration after a power failure.	If the machine must not be restarted when power is restored after a power failure, provide an MC in the inverter's input side and also make up a sequence which will not switch ON the start signal. If the start signal (start switch) remains ON after a power failure, the inverter will automatically restart as soon as the power is restored.	-	
When using vector control, the encoder is properly installed.	The encoder must be directly connected to a motor shaft without any backlash. (Real sensorless vector control, PM sensorless vector control do not require an encoder.)	72	
A magnetic contactor (MC) is installed on the inverter's input side.	On the inverter's input side, connect an MC for the following purposes: To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.). To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure. To separate the inverter from the power supply to ensure safe maintenance and inspection work. If using an MC for emergency stop during operation, select an MC regarding the inverter input side current as JEM 1038-AC-3 class rated current.	87	
The magnetic contactor on the inverter's output side is properly handled.	Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop.	87	
When using a PM motor, a low-voltage manual contactor is installed on the inverter's output side.	When a failure occurs between the MC2 and motor, make sure to provide a protection circuit, such as using the OH signal input. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.	87	
An EMI countermeasure is provided for the frequency setting signals.	If electromagnetic noise generated from the inverter causes frequency setting signal to fluctuate and the motor rotation speed to be unstable when changing the motor speed with analog signals, the following countermeasures are effective: Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them. Run signal cables as far away as possible from power cables (inverter I/ O cables). Use shielded cables. Install a ferrite core on the signal cable.	83	
A countermeasure is provided for an overload operation.	When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity (up to two ranks). For a PM motor, use an inverter and PM motor of higher capacities.	-	
The specifications and rating match the system requirements.	Make sure that the specifications and rating match the system requirements.	792	

Checkpoint	Countermeasure	Refer to page	Check by user
Countermeasures are taken against electrical corrosion on the motor bearing.	When a motor is driven by the inverter, axial voltage is generated on the motor shaft, which may cause electrical corrosion of the bearing in rare cases depending on the wiring, load, operating conditions of the motor or specific inverter settings (high carrier frequency). Contact your sales representative to take appropriate countermeasures for the motor. The following shows examples of countermeasures for the inverter. Decrease the carrier frequency. Provide a common mode choke*1 on the output side of the inverter.		

*1 Recommended common mode choke: FT-3KM F series FINEMET® common mode choke cores manufactured by Hitachi Metals, Ltd. FINEMET is a registered trademark of Hitachi Metals, Ltd.

3.7 Failsafe system which uses the inverter

When a fault is detected by the protective function, the protective function is activated to output a fault signal. However, a fault signal may not be output at an inverter's fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi Electric assures the best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to the machine when the inverter fails for some reason. Also at the same time consider the system configuration where a failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.

- Interlock method which uses the inverter status output signals

By combining the inverter output signals to provide an interlock as shown below, an inverter failure can be detected.

No.	Interlock method	Check method	Used signals	Refer to page
a	Inverter protective function operation	Operation check of an alarm contact. Circuit error detection by negative logic.	Fault output signal (ALM signal)	456
b	Inverter operating status	Operation ready signal check.	Operation ready signal (RY signal)	452
c	Inverter running status	Logic check of the start signal and running signal.	Start signal (STF signal, STR signal) Running signal (RUN signal)	452,715
d	Inverter running status	Logic check of the start signal and output current.	Start signal (STF signal, STR signal) Output current detection signal (Y12 signal)	461,715

- When using various signals, assign the functions to Pr. 190 and Pr. 196 (Output terminal function selection) referring to the following table.

Output signal	Pr. 190 to Pr. 196 setting	
	Positive logic	Negative logic
ALM	99	199
RY	11	111
RUN	0	100
Y12	12	112

NOTE

- Changing the terminal assignment using Pr. 190 and Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

Checking by the output of the inverter fault signal

When the inverter's protective function is activated and the inverter trips, the fault output signal (ALM signal) is output. (ALM signal is assigned to terminal A1B1C1 in the initial setting). With this signal, check that the inverter operates properly. In addition, negative logic can be set. (ON when the inverter is normal, OFF when the fault occurs.)

- Checking the inverter operating status by the inverter operation ready completion signal

Operation ready signal (RY signal) is output when the inverter power is ON and the inverter becomes operative. Check if the RY signal is output after powering ON the inverter.

■ Checking the inverter operating status by the start signal input to the inverter and inverter running signal

The inverter running signal (RUN signal) is output when the inverter is running. (RUN signal is assigned to terminal RUN in the initial setting.) Check if RUN signal is being output while inputting a start signal to the inverter. (STF signal is a forward rotation signal, and STR is a reverse rotation signal.) Even after the start signal is turned OFF, the RUN signal is kept output until the inverter makes the motor to decelerate and to stop. For the logic check, configure a sequence considering the inverter's deceleration time.

\square Checking the motor operating status by the start signal input to the inverter and inverter output current detection signal

The output current detection signal (Y12 signal) is output when the inverter operates and currents flows into the motor. Check if Y 12 signal is being output while inputting a start signal to the inverter. (STF signal is a forward rotation signal, and STR is a reverse rotation signal.) The Y12 signal is initially set to be output at 150% rated inverter current. Adjust the level to around 20% using no load current of the motor as reference with Pr. 150 Output current detection level. Like the inverter running signal (RUN signal), even after the start signal is turned OFF, the Y12 signal is kept output until the inverter stops the output to a decelerating motor. For the logic check, configure a sequence considering the inverter's deceleration time.

- Backup method outside the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, if an inverter CPU fails in a system interlocked with the inverter's fault, start, and RUN signals, no fault signal will be output and the RUN signal will be kept ON because the inverter CPU is down.
Provide a speed detector to detect the motor speed and current detector to detect the motor current and consider the backup system such as performing a check as below according to the level of importance of the system.

■ Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the current is flowing through the motor while the motor coasts to stop, even after the inverter's start signal is turned OFF. For the logic check, configure a sequence considering the inverter's deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.

■ Command speed and actual operation check

Check for a gap between the actual speed and commanded speed by comparing the inverter's speed command and the speed detected by the speed detector.

CHAPTER 4 BASIC OPERATION

4.1 Frequently-used parameters (simple mode parameters) 96
$4.2 \quad$ Basic operation procedure (PU operation) 98
4.3 Basic operation procedure (External operation) 104
$4.4 \quad$ Basic operation procedure (JOG operation) 112

This chapter explains the basic operation of this product.
Always read the instructions before using the equipment.

4.1 Frequently-used parameters (simple mode parameters)

Parameters that are frequently used for the FR-A800 series are grouped as simple mode parameters.
When Pr. 160 User group read selection="9999", only the simple mode parameters are displayed.
The simple mode can be used when the operation panel (FR-LU08) or the parameter unit (FR-PU07) is used.
This section explains about frequently-used parameters.

4.1.1 Simple mode parameter list

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications.

Point ${ }^{\rho}$

- Pr. 160 User group read selection can narrow down the displayed parameters to only the simple mode parameters. (In the initial setting, all parameters are displayed.) Set Pr. 160 User group read selection as required. (For the parameter change, refer to the Instruction Manual of the FR-LU08.)

Pr. 160 setting	Description
9999	Displays only the simple mode parameters.
0 (initial value)	Displays simple mode + extended parameters.
1	Displays parameters registered in the user group.

Pr.	Pr. group	Name	Unit	Initial value	Range	Application	Refer to page
0	G000	Torque boost	0.1\%	5\% ${ }^{*}$	0 to 30\%	Set this parameter to obtain a higher starting torque under V/F control. Also set this when a loaded motor cannot be driven and the warning [OL] occurs, then the inverter trips with [OC1].	697
				3\%*2			
				2\%*3			
				$1 \%{ }^{*}{ }^{4}$			
1	H400	Maximum frequency	0.01 Hz	$120 \mathrm{~Hz}{ }^{*}$	0 to 120 Hz	Sets the upper limit for the output frequency.	399
				$60 \mathrm{~Hz}^{*}$			
2	H401	Minimum frequency	0.01 Hz	0 Hz	0 to 120 Hz	Sets the lower limit for the output frequency.	
3	G001	Base frequency	0.01 Hz	60 Hz	0 to 590 Hz	Set this parameter when the rated motor frequency is 50 Hz . Check the rating plate of the motor.	699
4	D301	Multi-speed setting (high speed)	0.01 Hz	60 Hz	0 to 590 Hz	Pre-sets the speeds that will be switched among by terminals.	$\begin{aligned} & 99 \\ & 106, \\ & 372 \end{aligned}$
5	D302	Multi-speed setting (middle speed)	0.01 Hz	30 Hz	0 to 590 Hz		
6	D303	Multi-speed setting (low speed)	0.01 Hz	10 Hz	0 to 590 Hz		
7	F010	Acceleration time	0.1 s	$5 \mathrm{~s}^{* 8}$	0 to 3600 s	Sets the acceleration time.	320
				$15 \mathrm{~s}^{*} 4$			
8	F011	Deceleration time	0.1 s	$5 \mathrm{~s}^{* 8}$	0 to 3600 s	Sets the deceleration time.	
				$15 \mathrm{~s}^{*} 4$			
9	$\begin{aligned} & \mathrm{H} 000 \\ & \mathrm{C} 103 \end{aligned}$	Electronic thermal O/L relay	$0.01 \mathrm{~A}^{* 5}$	Inverter rated current ${ }^{*} 7$	0 to $500 \mathrm{~A}^{*} 5$	Protects the motor from heat. Set the rated motor current.	377
			0.1 A*		0 to $3600 \mathrm{~A}^{*} 6$		
15	D200	Jog frequency	0.01 Hz	5 Hz	0 to 590 Hz	Sets the frequency during JOG operation.	370

Pr.	Pr. group	Name	Unit	Initial value	Range	Application	Refer to page
16	F002	Jog acceleration/ deceleration time	0.1 s	0.5 s	0 to 3600 s	Sets motor acceleration/deceleration time during JOG operation.	370
79	D000	Operation mode selection	1	0	0 to 4, 6, 7	Select the start and frequency command sources.	346
125	T022	Terminal 2 frequency setting gain frequency	0.01 Hz	60 Hz	0 to 590 Hz	Allows the frequency at the maximum potentiometer setting (5 V in the initial setting) to be changed.	$\begin{aligned} & 109, \\ & 483 \end{aligned}$
126	T042	Terminal 4 frequency setting gain frequency	0.01 Hz	60 Hz	0 to 590 Hz	Allows the frequency at the maximum current input (20 mA in the initial setting) to be changed.	$\begin{aligned} & 111, \\ & 483 \end{aligned}$
160	E440	User group read selection	1	0	0, 1, 9999	Restricts the parameters that are read by the operation panel and parameter unit.	308
934	A630	PID display bias coefficient	0.01	9999	$\begin{aligned} & 0 \text { to } 500 \text {, } \\ & 9999 \end{aligned}$	Adjust the bias value and the gain value that are displayed in relation to PID control.	603
934	A631	PID display bias analog value	0.1\%	20\%	0 to 300\%		
935	A632	PID display gain coefficient	0.01	9999	$\begin{aligned} & 0 \text { to } 500 \text {, } \\ & 9999 \end{aligned}$		
935	A633	PID display gain analog value	0.1\%	100\%	0 to 300\%		
991	E105	PU contrast adjustment	1	58	0 to 63	Contrast adjustment of the operation panel and the parameter unit can be performed.	295
998	E430	PM parameter initialization	1	0	$\begin{aligned} & 0,8009, \\ & 8109,9009, \\ & 9109 \end{aligned}$	Selects the PM sensorless vector control and set the parameters that are required to drive an PM motor.	176
999	E431	Automatic parameter setting	1	9999	$\begin{aligned} & 1,2,10,11, \\ & 12,13,20, \\ & 21,9999 \end{aligned}$	Changes parameter settings as a batch. The target parameters include communication parameters for the Mitsubishi Electric human machine interface (GOT) connection and the parameters for the rated frequency settings of $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.	304
$\begin{aligned} & 113 \\ & 6 \end{aligned}$	A670	Second PID display bias coefficient	0.01	9999	$\begin{aligned} & 0 \text { to } 500, \\ & 9999 \end{aligned}$	Adjust the bias value and the gain value that are displayed in relation to second PID control.	603
$\begin{aligned} & 113 \\ & 7 \end{aligned}$	A671	Second PID display bias analog value	0.1\%	20\%	0 to 300\%		
$\begin{aligned} & 113 \\ & 8 \end{aligned}$	A672	Second PID display gain coefficient	0.01	9999	$\begin{aligned} & 0 \text { to } 500, \\ & 9999 \end{aligned}$		
$\begin{aligned} & 113 \\ & 9 \end{aligned}$	A673	Second PID display gain analog value	0.1\%	100\%	0 to 300\%		
*1 Initial value for the FR-A860-00027.							
*2 Initial value for the FR-A860-00061.							
*3 Initial value for the FR-A860-00090 and FR-A860-00170.							
*4 Initial value for the FR-A860-00320 or higher.							
*5 For the FR-A860-01080 or lower.							
*6 For the FR-A860-01440 or higher.							
*7 The initial value for the FR-A860-00027 is set to the 85% of the inverter rated current.							
*8 Initial value for the FR-A860-00170 or lower.							

4．2 Basic operation procedure（PU operation）

Select a method to give the frequency command from the list below，and refer to the specified page for its procedure．

Method to give the frequency command	Refer to page
Setting the frequency on the operation panel in the frequency setting mode	98
Give commands by turning ON／OFF switches wired to inverter＇s terminals（multi－speed setting）	99
Setting the frequency by inputting voltage signals	100
Setting the frequency by inputting current signals	102

4．2．1 Operating at a set frequency（example：operating at 30 Hz）

Point 9

－Use the operation panel to give a start command and a frequency command．（PU operation）

The following shows the procedure to operate at 30 Hz ．

Operating procedure

1．Screen at power－ON
The monitor display appears．
2．Changing the operation mode
Press $\frac{\text { PU }}{\mathrm{EXT}}$ to choose the PU operation mode．［PU］indicator is on．
3．Setting the frequency
Turn 12 until the target frequency，＂ 30.00 Hz ＂，appears．
Press［SET］to enter the frequency．＂Completed＂flickers．After about 3 s of flickering，the indication goes back to ＂0．00 Hz＂（monitor display）．
4．Start \rightarrow acceleration \rightarrow constant speed
Press FwD or REV to start running．The frequency value on the indication increases in Pr． 7 Acceleration time， and＂ 30.00 Hz ＂appears．
（To change the set frequency，perform the operation in above step 3．The previously set frequency appears．）
5．Deceleration \rightarrow stop
Press $\frac{\frac{5 T O P}{R E S E T N}}{\text { R }}$ to stop．The frequency value on the indication decreases in Pr． 8 Deceleration time，and the motor stops rotating with＂ 0.00 Hz ＂displayed．

4．2．2 Setting the frequency by switches（multi－speed setting）

Point ${ }^{\rho}$

－Use the operation panel（ FWD or REV ）to give a start command．
－Turn ON the RH，RM，or RL signal to give a frequency command．（multi－speed setting）
－Set Pr． 79 Operation mode selection＝＂4＂（External／PU combination operation mode 2）．
［Connection diagram］

The following shows the procedure to operate at a low speed $(10 \mathrm{~Hz})$ ．

Operating procedure

1．Screen at power－ON
The monitor display appears．
2．Changing the operation mode
Set＂4＂in Pr．79．［PU＋E］indicator is on．
3．Setting the frequency
Turn ON the low－speed switch（RL）．
4．Start \rightarrow acceleration \rightarrow constant speed
Press FWD or REV to start running．The frequency value on the indication increases in Pr． 7 Acceleration time， and＂10．00 Hz＂appears．
5．Deceleration \rightarrow stop
Press $\frac{\text { STOP }}{\operatorname{RRSSETN}}$ to stop．The frequency value on the indication decreases in Pr． 8 Deceleration time，and the motor stops rotating with＂ 0.00 Hz ＂displayed．Turn OFF the low－speed switch（RL）．

NOTE

－The terminal $R H$ is initially set to 60 Hz ．The terminal $R M$ is set to 30 Hz ，and the $R L$ is set to 10 Hz ．（To change，set Pr．4， Pr．5，and Pr．6．）
－In the initial setting，when two or more of multi－speed settings are simultaneously selected，priority is given to the set frequency of the lower signal．For example，when RH and RM signals turn ON，RM signal（Pr．5）has a higher priority．
－Maximum of 15 －speed operation can be performed．

《｜Parameters referred to 》》

Pr． 4 to Pr． 6 （Multi－speed setting）\longmapsto page 372
Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320
Pr． 79 Operation mode selection page 346

4.2.3 Setting the frequency with analog signals (voltage input)

Point 9

- Use the operation panel (FWD or REV) to give a start command.
- Use the potentiometer (frequency setting potentiometer) to give a frequency command (by connecting it across terminals 2 and 5 (voltage input)).
- Set Pr. 79 Operation mode selection = "4" (External/PU combination operation mode 2).
[Connection diagram] (The inverter supplies 5 V power to the frequency setting potentiometer (terminal 10).)

The following shows the procedure to operate at 60 Hz .

Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Set "4" in Pr.79. [PU+E] indicator is on.
3. Start

Press FWD or REV . [FWD] or [REV] indicator is on.
4. Acceleration \rightarrow constant speed

Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency value on the indication increases in Pr. 7 Acceleration time, and " 60.00 Hz " appears.
5. Deceleration

Turn the potentiometer (frequency setting potentiometer) counterclockwise slowly to full. The frequency value on the indication decreases in Pr. 8 Deceleration time, and the motor stops rotating with " 0.00 Hz " displayed.
6. Stop

Press $\frac{\text { STTOP }}{\text { RREETV }}$. [FWD] or [REV] indicator turns OFF.

NOTE

- To change the frequency (60 Hz) at the maximum voltage input (initial value 5 V), adjust Pr. 125 Terminal 2 frequency setting gain frequency.
- To change the frequency $(0 \mathrm{~Hz})$ at the minimum voltage input (initial value 0 V), adjust the Pr. 902 Terminal 2 frequency setting bias frequency.
- When terminal 10 is used, the maximum output frequency may fluctuate in a range of $\pm 6 \mathrm{~Hz}$ due to fluctuations in the output voltage ($5 \pm 0.5 \mathrm{VDC}$). Use Pr. 125 to adjust the output frequency at the maximum analog input as required. (Refer to page 483.)
- When terminal 10E is used, the maximum output frequency may fluctuate (in a range of ± 2 to 3 Hz) due to fluctuations in the output voltage ($10 \pm 0.4 \mathrm{VDC}$). Use Pr. 125 to adjust the output frequency at the maximum analog input as required. (Refer to page 483.)

Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320
Pr． 79 Operation mode selection page 346
Pr． 125 Terminal 2 frequency setting gain frequency page 483
Pr． 902 Terminal 2 frequency setting bias frequency page 483

4.2.4 Using an analog signal (current input) to give a frequency command

Point

- Use the operation panel (FwD or REV) to give a start command.
- Use the outputs from the current signal source (4 to 20 mA) to give a frequency command (by connecting it across terminals 4 and 5 (current input)).
- Turn ON the AU signal.
- Set Pr. 79 Operation mode selection ="4" (External/PU combination operation mode 2).
[Connection diagram]

The following shows the procedure to operate at 60 Hz .

Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Set "4" in Pr.79. [PU+E] indicator is on.
3. Terminal 4 input selection

Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled.
4. Start

Press FWD or REV . [FWD] or [REV] indicator is on.
5. Acceleration \rightarrow constant speed

Input 20 mA . The frequency value on the indication increases in Pr. 7 Acceleration time, and " 60.00 Hz " appears.
6. Deceleration

Input 4 mA or less. The frequency value on the indication decreases in Pr. 8 Deceleration time, and the motor stops rotating with " 0.00 Hz " displayed.
7. Stop

Press $\frac{5 \pi}{\text { STOP }}$ REGEN . [FWD] or [REV] indicator turns OFF.

NOTE

- Pr. 184 AU terminal function selection must be set to "4" (AU signal) (initial value).
- To change the frequency $(60 \mathrm{~Hz})$ at the maximum current input (initial value 20 mA), adjust Pr. 126 Terminal 4 frequency setting gain frequency.
- To change the frequency (0 Hz) at the minimum current input (initial value 4 mA), adjust the Pr. 904 Terminal 4 frequency setting bias frequency.

Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320
Pr． 79 Operation mode selection page 346
Pr． 126 Terminal 4 frequency setting gain frequency page 483
Pr． 184 AU terminal function selection page 498
Pr． 904 Terminal 4 frequency setting bias frequency page 483

4.3
 Basic operation procedure (External operation)

Select a method to give the frequency command from the list below, and refer to the specified page for its procedure.

Method to give the frequency command	Refer to page
Setting the frequency on the operation panel in the frequency setting mode	104
Turning ON/OFF switches wired to inverter's terminals (multi-speed setting)	106
Setting the frequency by inputting voltage signals	107
Setting the frequency by inputting current signals	110

4.3.1 Using the frequency set by the operation panel

Point ρ

- Switch ON the STF (STR) signal to give a start command.
- Use the operation panel ($=12)$) to give a start command.
- Set Pr. 79 ="3" (External/PU combined operation mode 1).
[Connection diagram]

The following shows the procedure to operate at 30 Hz .

Operating procedure

1. Changing the operation mode

Set "3" in Pr.79. [PU+E] indicator is on.
2. Setting the frequency

Turn to until the target frequency, " 30.00 Hz ", appears.
Press [SET] to enter the frequency. "Completed" flickers.
3. Start \rightarrow acceleration \rightarrow constant speed

Turn ON the start switch (STF or STR). The frequency value on the indication increases in Pr. 7 Acceleration time, and " 30.00 Hz " appears. [FWD] indicator is on during the forward rotation, and [REV] indicator is on during the reverse rotation. (To change the set frequency, perform the operation in above step 2 . The previously set frequency appears.)
4. Deceleration \rightarrow stop

Turn OFF the start switch (STF or STR). The frequency value on the indication decreases in Pr. 8 Deceleration time, and the motor stops rotating with " 0.00 Hz " displayed.

NOTE

- When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- Pr. 178 STF terminal function selection must be set to "60" (or Pr. 179 STR terminal function selection must be set to "61"). (All are initial values.)
- Setting Pr. 79 Operation mode selection="3" also enables multi-speed operation.
- If stopped using $\frac{\text { STOP }}{\mathrm{RTSGTI}}$ on the operation panel during the External operation, the inverter enters the PU stop status. ([PS] appears on the operation panel.) To reset the PU stop status, turn OFF the start switch (STF or STR), and then press
$\frac{\mathrm{PU}}{\mathrm{EXT}}$
(Refer to page 294)

《| Parameters referred to 》

Pr. 4 to Pr. 6 (Multi-speed setting) \mathfrak{F} page 372
Pr. 7 Acceleration time, Pr. 8 Deceleration time page 320
Pr. 178 STF terminal function selection page 498
Pr. 179 STR terminal function selection page 498
Pr. 79 Operation mode selection 5 page 346

4．3．2 Setting the frequency by switches（multi－speed setting） （Pr． 4 to Pr．6）

Point 8

－Switch ON the STF（STR）signal to give a start command．
－Turn ON the RH，RM，or RL signal to give a frequency command．（Multi－speed setting）
［Connection diagram］

The following shows the procedure to operate at a high－speed $(60 \mathrm{~Hz})$ ．

Operating procedure

1．Screen at power－ON
The monitor display appears．
2．Setting the frequency
Turn ON the high－speed switch（RH）．
3．Start \rightarrow acceleration \rightarrow constant speed
Turn ON the start switch（STF or STR）．The frequency value on the indication increases in Pr． 7 Acceleration time， and＂ 60.00 Hz ＂appears．［FWD］indicator is on during the forward rotation，and［REV］indicator is on during the reverse rotation．When RM is turned $\mathrm{ON}, 30 \mathrm{~Hz}$ is displayed．When RL is turned $\mathrm{ON}, 10 \mathrm{~Hz}$ is displayed．
4．Deceleration \rightarrow stop
Turn OFF the start switch（STF or STR）．The frequency value on the indication decreases in Pr． 8 Deceleration time，and the motor stops rotating with＂ 0.00 Hz ＂displayed．［FWD］or［REV］indicator turns OFF．Turn OFF the high－ speed switch（RH）．

NOTE

－When both the forward rotation switch（STF）and the reverse rotation switch（STR）are ON，the motor cannot be started． If both are turned ON while the inverter is running，the inverter decelerates to a stop．
－The terminal RH is initially set to 60 Hz ．The terminal RM is set to 30 Hz ，and the RL is set to 10 Hz ．（To change，set Pr．4， Pr．5，and Pr．6．）
－In the initial setting，when two or more of multi－speed settings are simultaneously selected，priority is given to the set frequency of the lower signal．For example，when RH and RM signals turn ON，RM signal（Pr．5）has a higher priority．
－Maximum of 15 －speed operation can be performed．

《｜Parameters referred to 》》

Pr． 4 to Pr． 6 （Multi－speed setting）page 372
Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320

4.3.3 Setting the frequency with analog signals (voltage input)

Point ρ

- Switch ON the STF (STR) signal to give a start command.
- Use the potentiometer (frequency setting potentiometer) to give a frequency command (by connecting it across terminals 2 and 5 (voltage input)).

[Connection diagram]

(The inverter supplies 5 V power to the frequency setting potentiometer (terminal 10).)

The following shows the procedure to operate at 60 Hz .

Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Start

Turn ON the start switch (STF or STR). [STF] or [STR] indicator is on.
3. Acceleration \rightarrow constant speed

Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency value on the indication increases in Pr. 7 Acceleration time, and " 60.00 Hz " appears. [FWD] indicator is on during the forward rotation, and $[R E V]$ indicator is on during the reverse rotation.
4. Deceleration

Turn the potentiometer (frequency setting potentiometer) counterclockwise slowly to full. The frequency value on the indication decreases in Pr. 8 Deceleration time, and the motor stops rotating with " 0.00 Hz " displayed. [FWD] or [REV] indicator is OFF.
5. Stop

Turn OFF the start switch (STF or STR). [STF] or [STR] indicator turns OFF.

NOTE

- When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- Pr. 178 STF terminal function selection must be set to "60" (or Pr. 179 STR terminal function selection must be set to "61"). (All are initial values.)
- When terminal 10 is used, the maximum output frequency may fluctuate in a range of $\pm 6 \mathrm{~Hz}$ due to fluctuations in the output voltage ($5 \pm 0.5 \mathrm{VDC}$). Use Pr. 125 to adjust the output frequency at the maximum analog input as required. (Refer to page 483.)
- When terminal 10 E is used, the maximum output frequency may fluctuate (in a range of ± 2 to 3 Hz) due to fluctuations in the output voltage ($10 \pm 0.4 \mathrm{VDC}$). Use Pr. 125 to adjust the output frequency at the maximum analog input as required. (Refer to page 483.)

《｜Parameters referred to 》》
Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320
Pr． 178 STF terminal function selection page 498
Pr． 179 STR terminal function selection page 498

4.3.4 Changing the frequency (60 Hz , initial value) at the maximum voltage input (5 V , initial value)

Point/

 Change the maximum frequency.With a 0 to 5 VDC input frequency setting potentiometer, change the frequency at 5 V from 60 Hz (initial value) to 50 Hz . Adjust the setting so that the inverter outputs 50 Hz when 5 V is input. Set " 50 Hz " in Pr. 125.

Operating procedure

1. Changing the maximum frequency

Set " 50.00 Hz " in Pr. 125.
2. Checking the mode/monitor

Press mon to change to the monitor / frequency monitor.
3. Start

Turn ON the start switch (STF or STR), then turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. (Refer to steps 2 and 3 in 4.3.3.)
Operate at 50 Hz .

NOTE

- To set the frequency at 0 V , use the Pr .902 .

- Other adjustment methods for the frequency setting voltage gain are the following: adjustment by applying a voltage directly across terminals 2 and 5 , and adjustment using a specified point without applying a voltage across terminals 2 and 5.

```
<<Parameters referred to\》
Pr. }125\mathrm{ Terminal 2 frequency setting gain frequency page 483
Pr. }902\mathrm{ Terminal }2\mathrm{ frequency setting bias frequency page 483
Pr. }903\mathrm{ Terminal }2\mathrm{ frequency setting gain page 483
```


4.3.5 Using an analog signal (current input) to give a frequency command

Point/

- Switch ON the STF (STR) signal to give a start command.
- Turn ON the AU signal.
- Set Pr. 79 Operation mode selection="2" (External operation mode).
[Connection diagram]

The following shows the procedure to operate at 60 Hz .

Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Terminal 4 input selection

Turn ON the terminal 4 input selection signal (AU). Input to the terminal 4 is enabled.
3. Start

Turn ON the start switch (STF or STR). [STF] or [STR] indicator is on.
4. Acceleration \rightarrow constant speed

Input 20 mA . The frequency value on the indication increases in Pr. 7 Acceleration time, and " 60.00 Hz " appears. [FWD] indicator is on during the forward rotation, and [REV] indicator is on during the reverse rotation.
5. Deceleration

Input 4 mA or less. The frequency value on the indication decreases in Pr. 8 Deceleration time, and the motor stops rotating with " 0.00 Hz " displayed. [FWD] or [REV] indicator is OFF.
6. Stop

Turn OFF the start switch (STF or STR). [STF] or [STR] indicator turns OFF.

NOTE

- When both the forward rotation switch (STF) and the reverse rotation switch (STR) are ON, the motor cannot be started. If both are turned ON while the inverter is running, the inverter decelerates to a stop.
- Pr. 184 AU terminal function selection must be set to "4" (AU signal) (initial value).

《| Parameters referred to \gg

Pr. 7 Acceleration time, Pr. 8 Deceleration time page 320
Pr. 184 AU terminal function selection page 498

4．3．6 Changing the frequency（ 60 Hz ，initial value）at the maximum current input（at 20 mA ，initial value）

Point／

Change the maximum frequency．
With a 4 to 20 mA input frequency setting potentiometer，change the frequency at 20 mA from 60 Hz （initial value）to 50 Hz ． Adjust the setting so that the inverter outputs 50 Hz when 20 mA is input．Set＂ 50 Hz ＂in Pr． 126.

Operating procedure

1．Changing the maximum frequency
Set＂ 50.00 Hz ＂in Pr． 126.
2．Checking the mode／monitor
Press mon to change to the monitor／frequency monitor．
3．Start
Turn ON the start switch（STF or STR），then turn the potentiometer（frequency setting potentiometer）clockwise slowly to full．（Refer to steps 3 and 4 in 4．3．5．）
Operate at 50 Hz ．

NOTE

－To set the frequency at 4 mA ，use the Pr． 904 ．

－Other adjustment methods for the frequency setting current gain are the following：adjustment by applying a current through terminals 4 and 5 ，and adjustment using a specified point without applying a current through terminals 4 and 5 ．

《｜Parameters referred to 》》

Pr． 126 Terminal 4 frequency setting gain frequency page 483
Pr． 904 Terminal 4 frequency setting bias frequency page 483
Pr． 905 Terminal 4 frequency setting gain page 483

4．4．1 Performing JOG operation using external signals

Point 9

－Perform JOG operation only while the JOG signal is ON．
－Use Pr． 15 Jog frequency and Pr． 16 Jog acceleration／deceleration time for the operation．
－Set Pr． 79 Operation mode selection＝＂2＂（External operation mode）．
［Connection diagram］

The following shows the procedure to operate at 5 Hz ．

Operating procedure

1．Screen at power－ON
The monitor display appears．
2．Turning ON the JOG signal
Turn ON the JOG switch（JOG）．The inverter is set ready for the JOG operation．
3．Start \rightarrow acceleration \rightarrow constant speed
Turn ON the start switch（STF or STR）．The frequency value on the indication increases in Pr． 16 Jog acceleration／ deceleration time，and＂ 5.00 Hz ＂appears．［FWD］indicator is on during the forward rotation，and［REV］indicator is on during the reverse rotation．
4．Deceleration \rightarrow stop
Turn OFF the start switch（STF or STR）．The frequency value on the indication decreases in Pr． 16 Jog acceleration／deceleration time，and the motor stops rotating with＂ 0.00 Hz ＂displayed．［FWD］or［REV］indicator turns OFF．Turn OFF the JOG switch（JOG）．

NOTE

－To change the frequency，change Pr． 15 Jog frequency（initial value＂ 5 Hz ＂）．
－To change the acceleration／deceleration time，change Pr． 16 Jog acceleration／deceleration time（initial value＂ 0.5 s ＂）．

《 Parameters referred to 》》

Pr． 15 Jog frequency page 370
Pr． 16 Jog acceleration／deceleration time page 370
Pr． 79 Operation mode selection \mathfrak{F} page 346

4.4.2 JOG operation from the operation panel

Point 9

- Operate only while FWD or REV is pressed.

The following shows the procedure to operate at 5 Hz .

Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Press $\frac{\text { PU }}{\text { EXT }}$ twice to choose the PUJOG operation mode. [JOG] indicator is on.
3. Start \rightarrow acceleration \rightarrow constant speed

Keep pressing FWD or REV. The frequency value on the indication increases in Pr. 16 Jog acceleration/ deceleration time, and " 5.00 Hz " appears.
4. Deceleration \rightarrow stop

Release FWD or REV. The frequency value on the indication decreases in Pr. 16 Jog acceleration/deceleration time, and the motor stops rotating with " 0.00 Hz " displayed.

NOTE

- To change the frequency, change Pr. 15 Jog frequency (initial value " 5 Hz ").
- To change the acceleration/deceleration time, change Pr. 16 Jog acceleration/deceleration time (initial value " 0.5 s ").

《|Parameters referred to $》$

Pr. 15 Jog frequency page 370
Pr. 16 Jog acceleration/deceleration time page 370

CHAPTER 5 PARAMETERS

5.1 Parameter List 116
5.2 Control method 160
5.3 Speed control under Real sensorless vector control, vector control, PM sensorless vector control 179
5.4 Torque control under Real sensorless vector control and vector control 221
5.5 Position control under vector contro 247
5.6 Real sensorless vector control, vector control, PM sensorless vector control adjustment 287
5.7 (E) Environment setting parameters 289
5.8 (F) Setting of acceleration/deceleration time and acceleration/deceleration pattern 320
5.9 (D) Operation command and frequency command 345
5.10 (H) Protective function parameter 376
5.11 (M) Monitor display and monitor output signal 416
5.12 (T) Multi-Function Input Terminal Parameters 472
5.13 (C) Motor constant parameters 505
5.14 (A) Application parameters 541
5.15 (N) Operation via communication and its settings 644
5.16 (G) Control parameters 696

This chapter explains the function setting for use of this product.
Always read this instructions before use.
The following marks are used to indicate the controls as below. (Parameters without any mark are valid for all control.)

Mark	Control method	Applied motor
V/F	V/F control	Three-phase induction motor
Magneticflux	Advanced magnetic flux vector control	
Sensorless	Real sensorless vector control	
Vector	Vector control	Three-phase induction motor, PM motor
PMM	PM sensorless vector control	PM motor

The setting range and the initial value of parameters differ depending on the structure or functions of the inverter. The following common designations are used for each type of the inverter models.

Inverter model	Common designation
FR-A860	Standard model
FR-A862	Separated converter type

5.1 Parameter List

5.1.1 Parameter list (by parameter number)

For simple variable-speed operation of the inverter, the initial value of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel.

NOTE

- Simple indicates simple mode parameters. Use Pr. 160 User group read selection to indicate the simple mode parameters only.
- Parameter setting may be restricted in some operating status. Use Pr. 77 Parameter write selection to change the setting.
- Refer to Appendix 3 (page 807) for instruction codes for communication and availability of parameter clear, all clear, and parameter copy of each parameter.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Function \& Pr. \& Pr. group \& Name \& Setting range \& \qquad \& Initial value \& Refer to page \& Customer setting

\hline Multi-speed setting \& $$
\begin{aligned}
& 24 \text { to } \\
& 27
\end{aligned}
$$ \& D304 to D307 \& Multi-speed setting (speed 4 to speed 7) \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 9999 \& 372 \&

\hline - \& 28 \& D300 \& Multi-speed input compensation selection \& 0,1 \& 1 \& 0 \& 372 \&

\hline - \& 29 \& F100 \& Acceleration/deceleration pattern selection \& 0 to 6 \& 1 \& 0 \& 325 \&

\hline - \& 30 \& E300 \& Regenerative function selection \& $$
\begin{aligned}
& 0 \text { to } 2,10,11,20,21, \\
& 100 \text { to } 102,110,111, \\
& 120,121^{* 7} \\
& \hline 2,10,11,102,110, \\
& 111^{* 8}
\end{aligned}
$$ \& 1
1 \& 0

10 \& 718 \&

\hline \multirow[t]{6}{*}{Frequency jump} \& 31 \& H420 \& Frequency jump 1A \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 9999 \& 401 \&

\hline \& 32 \& H421 \& Frequency jump 1B \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 9999 \& 401 \&

\hline \& 33 \& H422 \& Frequency jump 2A \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 9999 \& 401 \&

\hline \& 34 \& H423 \& Frequency jump 2B \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 9999 \& 401 \&

\hline \& 35 \& H424 \& Frequency jump 3A \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 9999 \& 401 \&

\hline \& 36 \& H425 \& Frequency jump 3B \& 0 to $590 \mathrm{~Hz}, 9999$ \& 0.01 Hz \& 9999 \& 401 \&

\hline - \& 37 \& M000 \& Speed display \& 0, 1 to 9998 \& 1 \& 0 \& 417 \&

\hline \multirow[t]{3}{*}{Frequency detection} \& 41 \& M441 \& Up-to-frequency sensitivity \& 0 to 100\% \& 0.1\% \& 10\% \& 457 \&

\hline \& 42 \& M442 \& Output frequency detection \& 0 to 590 Hz \& 0.01 Hz \& 6 Hz \& 457 \&

\hline \& 43 \& M443 \& Output frequency detection for reverse rotation \& 0 to $590 \mathrm{~Hz}, 9999$ \& 0.01 Hz \& 9999 \& 457 \&

\hline \multirow[t]{10}{*}{Second functions} \& 44 \& F020 \& Second acceleration/ deceleration time \& 0 to 3600 s \& 0.1 s \& 5 s \& $$
\begin{aligned}
& 320, \\
& 611
\end{aligned}
$$ \&

\hline \& 45 \& F021 \& Second deceleration time \& 0 to 3600 s, 9999 \& 0.1 s \& 9999 \& $$
\begin{aligned}
& \hline 320, \\
& 611
\end{aligned}
$$ \&

\hline \& 46 \& G010 \& Second torque boost \& 0 to 30\%, 9999 \& 0.1\% \& 9999 \& 697 \&

\hline \& 47 \& G011 \& Second V/F (base frequency) \& 0 to $590 \mathrm{~Hz}, 9999$ \& 0.01 Hz \& 9999 \& 699 \&

\hline \& 48 \& H600 \& Second stall prevention operation level \& 0 to 400\% \& 0.1\% \& 150\% \& 403 \&

\hline \& 49 \& H601 \& Second stall prevention operation frequency \& 0 to 590 Hz, 9999 \& 0.01 Hz \& 0 Hz \& 403 \&

\hline \& 50 \& M444 \& Second output frequency detection \& 0 to 590 Hz \& 0.01 Hz \& 30 Hz \& 457 \&

\hline \& \multirow[t]{3}{*}{51} \& H010 \& Second electronic thermal O/L relay \& 0 to $500 \mathrm{~A}, 9999{ }^{* 2}$
0 to $3600 \mathrm{~A}, 9999 * 3$ \& 0.01 A

0.1 A \& \multirow[t]{3}{*}{9999} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 377, \\
& 508, \\
& 529
\end{aligned}
$$} \&

\hline \& \& \multirow[t]{2}{*}{C203} \& \multirow[t]{2}{*}{Rated second motor current} \& 0 to $500 \mathrm{~A}, 9999$ *2 \& 0.01 A \& \& \&

\hline \& \& \& \& 0 to 3600 A, 9999 *3 \& 0.1 A \& \& \&

\hline \multirow[t]{5}{*}{Monitor functions} \& 52 \& M100 \& Operation panel main monitor selection \& | 0,5 to 14,17 to 20,22 |
| :--- |
| to 36,38 to 46,50 to 57, 61, 62, 64, 67, 68, 71 to 75,87 to 98,100 | \& 1 \& 0 \& 419 \&

\hline \& 54 \& M300 \& FM terminal function selection \& 1 to 3,5 to $14,17,18$, 21, 24, 32 to 34,36 , 46, 50, 52, 53, 61, 62, 67, 70, 87 to 90, 92, 93, 95, 97, 98 \& 1 \& 1 \& 430 \&

\hline \& 55 \& M040 \& Frequency monitoring reference \& 0 to 590 Hz \& 0.01 Hz \& 60 Hz \& 430 \&

\hline \& \multirow[t]{2}{*}{56} \& \multirow[t]{2}{*}{M041} \& \multirow[t]{2}{*}{Current monitoring reference} \& 0 to $500 \mathrm{~A}^{*} 2$ \& $0.01 \mathrm{~A}^{*} 2$ \& \multirow[t]{2}{*}{Inverter rated current} \& \multirow[t]{2}{*}{430} \&

\hline \& \& \& \& 0 to $3600 \mathrm{~A}^{*} 3$ \& 0.1 A *3 \& \& \&

\hline \multirow[t]{2}{*}{Automatic restart} \& 57 \& A702 \& Restart coasting time \& 0, 0.1 to $30 \mathrm{~s}, 9999$ \& 0.1 s \& 9999 \& 618 \&

\hline \& 58 \& A703 \& Restart cushion time \& 0 to 60 s \& 0.1 s \& 1 s \& 618 \&

\hline - \& 59 \& F101 \& Remote function selection \& 0 to 3, 11 to 13 \& 1 \& 0 \& 331 \&

\hline
\end{tabular}

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	$\begin{aligned} & \text { Refer } \\ & \text { to } \\ & \text { page } \end{aligned}$	Customer setting
-	60	G030	Energy saving control selection	0, 4, 9	1	0	704	
Automatic acceleration/ deceleration	61	F510	Reference current	0 to $500 \mathrm{~A}, 9999$ *2	0.01 A *2	9999	$\begin{aligned} & 339, \\ & 343 \end{aligned}$	
				0 to 3600 A, 9999 *3	0.1 A *3			
	62	F511	Reference value at acceleration	0 to 400\%, 9999	0.1\%	9999	339	
	63	F512	Reference value at deceleration	0 to 400\%, 9999	0.1\%	9999	339	
	64	F520	Starting frequency for elevator mode	0 to $10 \mathrm{~Hz}, 9999$	0.01 Hz	9999	343	
-	65	H300	Retry selection	0 to 5	1	0	389	
-	66	H611	Stall prevention operation reduction starting frequency	0 to 590 Hz	0.01 Hz	60 Hz	403	
Retry	67	H301	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	389	
	68	H302	Retry waiting time	0.1 to 600 s	0.1 s	1 s	389	
	69	H303	Retry count display erase	0	1	0	389	
-	70 *9	G107	Special regenerative brake duty	0 to 100\%	0.1\%	0\%	718	
-	71	C100	Applied motor	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16,30,33 \text {, } \\ & 34,8090,8093,8094 \text {, } \\ & 9090,9093,9094 \end{aligned}$	1	0	$\begin{aligned} & 506, \\ & 508, \\ & 529 \end{aligned}$	
-	72	E600	PWM frequency selection	0 to $15{ }^{*}$	1	2	310	
				0 to 6, 25 *3				
-	73	T000	Analog input selection	0 to 7, 10 to 17	1	1	$\begin{aligned} & 473, \\ & 478 \end{aligned}$	
-	74	T002	Input filter time constant	0 to 8	1	1	481	
-	75	-	Reset selection/ disconnected PU detection/ PU stop selection	0 to 3,14 to 17,1000 to 1003,1014 to 1017 *2 0 to 3,14 to 17,100 to 103, 114 to 117, 1000 to 1003,1014 to 1017 , 1100 to 1103,1114 to 1117 *3	1	14	291	
		E100	Reset selection	0 to 3		0		
		E101	Disconnected PU detection	0, 1				
		E102	PU stop selection			1		
		E107	Reset limit	0 *2	1	0		
				0, $1^{* 3}$				
-	76	M510	Fault code output selection	0 to 2	1	0	468	
-	77	E400	Parameter write selection	0 to 2	1	0	298	
-	78	D020	Reverse rotation prevention selection	0 to 2	1	0	365	
-	79	D000	Operation mode selection Simple	0 to 4, 6, 7	1	0	$\begin{aligned} & 346, \\ & 355 \end{aligned}$	

Function	Pr.	Pr. group	Name	Setting range		Initial value	$\begin{aligned} & \text { Refer } \\ & \text { to } \\ & \text { page } \end{aligned}$	Customer setting
Third functions	110	F030	Third acceleration/ deceleration time	0 to 3600 s, 9999	0.1 s	9999	320	
	111	F031	Third deceleration time	0 to 3600 s, 9999	0.1 s	9999	320	
	112	G020	Third torque boost	0 to 30\%, 9999	0.1\%	9999	697	
	113	G021	Third V/F (base frequency)	0 to 590 Hz, 9999	0.01 Hz	9999	699	
	114	H602	Third stall prevention operation level	0 to 400\%	0.1\%	150\%	403	
	115	H603	Third stall prevention operation frequency	0 to 590 Hz	0.01 Hz	0 Hz	403	
	116	M445	Third output frequency detection	0 to 590 Hz	0.01 Hz	60 Hz	457	
PU connector communication	117	N020	PU communication station number	0 to 31	1	0	657	
	118	N021	PU communication speed	$\begin{aligned} & 48,96,192,384,576, \\ & 768,1152 \end{aligned}$	1	192	657	
	119	-	PU communication stop bit length / data length	0, 1, 10, 11	1	1	657	
		N022	PU communication data length	0, 1		0		
		N023	PU communication stop bit length	0,1		1		
	120	N024	PU communication parity check	0 to 2	1	2	657	
	121	N025	Number of PU communication retries	0 to 10, 9999	1	1	657	
	122	N026	PU communication check time interval	0, 0.1 to 999.8 s, 9999	0.1 s	9999	657	
	123	N027	PU communication waiting time setting	0 to $150 \mathrm{~ms}, 9999$	1 ms	9999	657	
	124	N028	PU communication CR/LF selection	0 to 2	1	1	657	
-	125	T022	Terminal 2 frequency setting gain frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz	483	
-	126	T042	Terminal 4 frequency setting gain frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz	483	
PID operation	127	A612	PID control automatic switchover frequency	0 to 590 Hz, 9999	0.01 Hz	9999	587	
	128	A610	PID action selection	$0,10,11,20,21,40$ to 43, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0	$\begin{aligned} & \hline 587, \\ & 611 \end{aligned}$	
	129	A613	PID proportional band	0.1 to 1000\%, 9999	0.1\%	100\%	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	
	130	A614	PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	
	131	A601	PID upper limit	0 to 100\%, 9999	0.1\%	9999	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	
	132	A602	PID lower limit	0 to 100\%, 9999	0.1\%	9999	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	
	133	A611	PID action set point	0 to 100\%, 9999	0.01\%	9999	$\begin{aligned} & \hline 587, \\ & 611 \end{aligned}$	
	134	A615	PID differential time	0.01 to 10 s, 9999	0.01 s	9999	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Bypass	135	A000	Electronic bypass sequence selection	0, 1	1	0	542	
	136	A001	MC switchover interlock time	0 to 100 s	0.1 s	1 s	542	
	137	A002	Start waiting time	0 to 100 s	0.1 s	0.5 s	542	
	138	A003	Bypass selection at a fault	0, 1	1	0	542	
	139	A004	Automatic switchover frequency from inverter to bypass operation	0 to $60 \mathrm{~Hz}, 9999$	0.01 Hz	9999	542	
Backlash measures	140	F200	Backlash acceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz	325	
	141	F201	Backlash acceleration stopping time	0 to 360 s	0.1 s	0.5 s	325	
	142	F202	Backlash deceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz	325	
	143	F203	Backlash deceleration stopping time	0 to 360 s	0.1 s	0.5 s	325	
-	144	M002	Speed setting switchover	$\begin{aligned} & 0,2,4,6,8,10,12 \\ & 102,104,106,108 \\ & 110,112 \end{aligned}$	1	4	417	
PU	145	E103	PU display language selection	0 to 7	1	-	295	
-	147	F022	Acceleration/deceleration time switching frequency	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999	320	
Current detection	148	H620	Stall prevention level at 0 V input	0 to 400\%	0.1\%	150\%	403	
	149	H621	Stall prevention level at 10 V input	0 to 400\%	0.1\%	200\%	403	
	150	M460	Output current detection level	0 to 400\%	0.1\%	150\%	461	
	151	M461	Output current detection signal delay time	0 to 10 s	0.1 s	0 s	461	
	152	M462	Zero current detection level	0 to 400\%	0.1\%	5\%	461	
	153	M463	Zero current detection time	0 to 10 s	0.01 s	0.5 s	461	
-	154	H631	Voltage reduction selection during stall prevention operation	0, 1, 10, 11	1	1	403	
-	155	T730	RT signal function validity condition selection	0, 10	1	0	503	
-	156	H501	Stall prevention operation selection	0 to 31, 100, 101	1	0	403	
-	157	M430	OL signal output timer	0 to $25 \mathrm{~s}, 9999$	0.1 s	0 s	$\begin{aligned} & 191, \\ & 403 \end{aligned}$	
-	158	M301	AM terminal function selection	1 to 3,5 to $14,17,18$, 21, 24, 32 to 34,36 , $46,50,52$ to 54,61 , 62, 67, 70, 87 to 90,91 to 98	1	1	430	
-	159	A005	Automatic switchover frequency range from bypass to inverter operation	0 to $10 \mathrm{~Hz}, 9999$	0.01 Hz	9999	542	
-	160	E440	User group read selection Simple	0, 1,9999	1	0	308	
-	161	E200	Parameter for manufacturer s	etting. Do not set.				
Automatic restart functions	162	A700	Automatic restart after instantaneous power failure selection	0 to 3,10 to 13,1000 to 1003,1010 to 1013	1	0	$\begin{aligned} & 618, \\ & 625 \end{aligned}$	
	163	A704	First cushion time for restart	0 to 20 s	0.1 s	0 s	618	
	164	A705	First cushion voltage for restart	0 to 100\%	0.1\%	0\%	618	
	165	A710	Stall prevention operation level for restart	0 to 400\%	0.1\%	150\%	618	

Function	Pr.	Pr. group	Name	Setting range		Initial value	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \end{gathered}$	Customer setting
Current detection	166	M433	Output current detection signal retention time	0 to $10 \mathrm{~s}, 9999$	0.1 s	0.1 s	461	
	167	M464	Output current detection operation selection	0, 1, 10, 11	1	0	461	
-	168	E000	Parameter for manufacturer setting. Do not set.					
		E080						
-	169	E001						
		E081						
Cumulative monitor clear	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999	419	
	171	M030	Operation hour meter clear	0,9999	1	9999	419	
User group	172	E441	User group registered display/batch clear	9999, (0 to 16)	1	0	308	
	173	E442	User group registration	0 to 1999, 9999	1	9999	308	
	174	E443	User group clear	0 to 1999, 9999	1	9999	308	
Input terminal function assignment	178	T700	STF terminal function selection	0 to 20, 22 to 28,32 , $33,37,42$ to 48,50 to 53, 57, 58, 60, 62, 64 to 74,76 to $80,84,87$ to 89,92 to 96,128 , 129, 9999	1	60	498	
	179	T701	STR terminal function selection	0 to 20, 22 to 28,32 , 33, 37, 42 to 48,50 to 53, 57, 58, 61, 62, 64 to 74,76 to $80,84,87$ to 89,92 to 96,128 , 129, 9999	1	61	498	
	180	T702	RL terminal function selection	0 to 20, 22 to 28,32 , $33,37,42$ to 48,50 to $53,57,58,62,64$ to 74,76 to $80,84,87$ to 89,92 to $96,128,129$, 9999	1	0	498	
	181	T703	RM terminal function selection		1	1	498	
	182	T704	RH terminal function selection		1	2	498	
	183	T705	RT terminal function selection		1	3	498	
	184	T706	AU terminal function selection		1	4	498	
	185	T707	JOG terminal function selection		1	5	498	
	186	T708	CS terminal function selection		1	6	498	
	187	T709	MRS terminal function selection		1	$\begin{array}{\|l\|} \hline 24^{* 7} \\ \hline 10^{* 8} \\ \hline \end{array}$	498	
	188	T710	STOP terminal function selection		1	25	498	
	189	T711	RES terminal function selection		1	62	498	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Frequency compensation function	252	T050	Override bias	0 to 200\%	0.1\%	50\%	478	
	253	T051	Override gain	0 to 200\%	0.1\%	150\%	478	
-	254	A007	Main circuit power OFF waiting time	1 to 3600 s, 9999	1 s	600 s	550	
Life check	255	E700	Life alarm status display	(0 to 255)	1	0	312	
	256*9	E701	Inrush current limit circuit life display	(0 to 100\%)	1\%	100\%	312	
	257	E702	Control circuit capacitor life display	(0 to 100\%)	1\%	100\%	312	
	258*9	E703	Main circuit capacitor life display	(0 to 100\%)	1\%	100\%	312	
	259*9	E704	Main circuit capacitor life measuring	0, 1, 11	1	0	312	
-	260	E602	PWM frequency automatic switchover	0, 1	1	1	310	
Power failure stop	261	A730	Power failure stop selection	0 to 2, 11, 12, 21, 22	1	0	629	
	262	A731	Subtracted frequency at deceleration start	0 to 20 Hz	0.01 Hz	3 Hz	629	
	263	A732	Subtraction starting frequency	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	60 Hz	629	
	264	A733	Power-failure deceleration time 1	0 to 3600 s	0.1 s	5 s	629	
	265	A734	Power-failure deceleration time 2	0 to 3600 s, 9999	0.1 s	9999	629	
	266	A735	Power failure deceleration time switchover frequency	0 to 590 Hz	0.01 Hz	60 Hz	629	
-	267	T001	Terminal 4 input selection	0 to 2	1	0	473	
-	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999	419	
-	269	E023	Parameter for manufacturer setting. Do not set.					
-	270	A200	Stop-on contact/load torque high-speed frequency control selection	0 to 3, 11, 13	1	0	$\begin{aligned} & 559, \\ & 563 \end{aligned}$	
Load torque high speed frequency control	271	A201	High-speed setting maximum current	0 to 400\%	0.1\%	50\%	563	
	272	A202	Middle-speed setting minimum current	0 to 400\%	0.1\%	100\%	563	
	273	A203	Current averaging range	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999	563	
	274	A204	Current averaging filter time constant	1 to 4000	1	16	563	
Stop-on contact control	275	A205	Stop-on contact excitation current low-speed multiplying factor	0 to 300\%, 9999	0.1\%	9999	559	
	276	A206	PWM carrier frequency at stop-on contact	0 to 9, 9999 *2	1	9999	559	
				0 to 4, 9999 *				

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	Refer to page	Customer setting
RS-485 communication	331	N030	RS-485 communication station number	0 to 31 (0 to 247)	1	0	657	
	332	N031	RS-485 communication speed	$\begin{aligned} & 3,6,12,24,48,96, \\ & 192,384,576,768, \\ & 1152 \end{aligned}$	1	96	657	
	333	-	RS-485 communication stop bit length / data length	0, 1, 10, 11	1	1	657	
		N032	PU communication data length	0, 1	1	0		
		N033	PU communication stop bit length	0, 1	1	1		
	334	N034	RS-485 communication parity check selection	0 to 2	1	2	657	
	335	N035	RS-485 communication retry count	0 to 10, 9999	1	1	657	
	336	N036	RS-485 communication check time interval	0 to 999.8 s, 9999	0.1 s	0 s	657	
	337	N037	RS-485 communication waiting time setting	0 to $150 \mathrm{~ms}, 9999$	1 ms	9999	657	
	338	D010	Communication operation command source	0, 1	1	0	356	
	339	D011	Communication speed command source	0 to 2	1	0	356	
	340	D001	Communication startup mode selection	0 to 2, 10, 12	1	0	355	
	341	N038	RS-485 communication CR/ LF selection	0 to 2	1	1	657	
	342	N001	Communication EEPROM write selection	0, 1	1	0	650	
	343	N080	Communication error count	-	1	0	674	
-	349 *11	-	Communication reset selection/Ready bit status selection/Reset selection after inverter faults are cleared/DriveControl writing restriction selection	$\begin{aligned} & \text { 0, 1, 100, 101, 1000, } \\ & 1001,1100,1101, \\ & 10000,10001,10100 \\ & 10101,11000,11001 \\ & 11100,11101 \end{aligned}$	1	0	650	
		N010	Communication reset selection	0, 1	1	0	650	
		N240	Ready bit status selection	0, 1	1	0	$\begin{aligned} & 831, \\ & 836 \end{aligned}$	
		N241	Reset selection after inverter faults are cleared	0, 1	1	0	831	
		N242	DriveControl writing restriction selection	0, 1	1	0	831	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Orientation control	350 *6	A510	Stop position command selection	0, 1, 9999	1	9999	570	
	351 *6	A526	Orientation speed	0 to 30 Hz	0.01 Hz	2 Hz	570	
	352 *6	A527	Creep speed	0 to 10 Hz	0.01 Hz	0.5 Hz	570	
	353 *6	A528	Creep switchover position	0 to 16383	1	511	570	
	354*6	A529	Position loop switchover position	0 to 8191	1	96	570	
	355 *6	A530	DC injection brake start position	0 to 255	1	5	570	
	356 * 6	A531	Internal stop position command	0 to 16383	1	0	570	
	357 *6	A532	Orientation in-position zone	0 to 255	1	5	570	
	358 *6	A533	Servo torque selection	0 to 13	1	1	570	
	359 *6	C141	Encoder rotation direction	0, 1, 100, 101	1	1	$\begin{array}{\|l\|} \hline 77, \\ 570, \\ 730 \\ \hline \end{array}$	
	360 *	A511	16-bit data selection	0 to 127	1	0	570	
	361 *6	A512	Position shift	0 to 16383	1	0	570	
	362 *6	A520	Orientation position loop gain	0.1 to 100	0.1	1	570	
	363 *6	A521	Completion signal output delay time	0 to 5 s	0.1 s	0.5 s	570	
	$364 * 6$	A522	Encoder stop check time	0 to 5 s	0.1 s	0.5 s	570	
	365 *6	A523	Orientation limit	0 to $60 \mathrm{~s}, 9999$	1 s	9999	570	
	366 *6	A524	Recheck time	0 to $5 \mathrm{~s}, 9999$	0.1 s	9999	570	
Encoder feedback	367 *6	G240	Speed feedback range	0 to 590 Hz, 9999	0.01 Hz	9999	730	
	368 *6	G241	Feedback gain	0 to 100	0.1	1	730	
	369 *	C140	Number of encoder pulses	0 to 4096	1	1024	$\begin{array}{\|l\|} \hline 77, \\ 570, \\ 730 \end{array}$	
	373 *6	C142	Encoder position tuning setting/status	0, 1	1	0	518	
	374	H800	Overspeed detection level	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999	415	
	376 *6	C148	Encoder signal loss detection enable/disable selection	0, 1	1	0	540	
S-pattern acceleration/ deceleration C	380	F300	Acceleration S-pattern 1	0 to 50\%	1\%	0\%	325	
	381	F301	Deceleration S-pattern 1	0 to 50\%	1\%	0\%	325	
	382	F302	Acceleration S-pattern 2	0 to 50\%	1\%	0\%	325	
	383	F303	Deceleration S-pattern 2	0 to 50\%	1\%	0\%	325	
Pulse train input	384	D101	Input pulse division scaling factor	0 to 250	1	0	365	
	385	D110	Frequency for zero input pulse	0 to 590 Hz	0.01 Hz	0 Hz	365	
	386	D111	Frequency for maximum input pulse	0 to 590 Hz	0.01 Hz	60 Hz	365	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	$\begin{aligned} & \text { Refer } \\ & \text { to } \\ & \text { page } \end{aligned}$	Customer setting
Orientation control	393 *6	A525	Orientation selection	0 to 2, 10 to 12	1	0	570	
	$394 * 6$	A540	Number of machine side gear teeth	0 to 32767	1	1	570	
	395 *6	A541	Number of motor side gear teeth	0 to 32767	1	1	570	
	396 * 6	A542	Orientation speed gain (P term)	0 to 1000	1	60	570	
	397 *6	A543	Orientation speed integral time	0 to 20 s	0.001 s	0.333 s	570	
	398 *6	A544	Orientation speed gain (D term)	0 to 100	0.1	1	570	
	399 * 6	A545	Orientation deceleration ratio	0 to 1000	1	20	570	
-	413 *6	M601	Encoder pulse division ratio	1 to 32767	1	1	471	
PLC function	414	A800	PLC function operation selection	0 to 2, 11, 12	1	0	634	
	415	A801	Inverter operation lock mode setting	0, 1	1	0	634	
	416	A802	Pre-scale function selection	0 to 5	1	0	634	
	417	A803	Pre-scale setting value	0 to 32767	1	1	634	
Position control	419	B000	Position command source selection	$\begin{aligned} & 0 \text { to } 2,10,100,110, \\ & 200,210,300,310, \\ & 1110,1310 \end{aligned}$	1	0	$\begin{aligned} & 251, \\ & 271 \end{aligned}$	
	420	B001	Command pulse scaling factor numerator (electronic gear numerator)	1 to 32767	1	1	279	
	421	B002	Command pulse multiplication denominator (electronic gear denominator)	1 to 32767	1	1	279	
	422	B003	Position control gain	0 to $150 \mathrm{~s}^{-1}$	$1 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$	283	
	423	B004	Position feed forward gain	0 to 100\%	1\%	0\%	283	
Position control	424	B005	Position command acceleration/deceleration time constant	0 to 50 s	0.001 s	0 s	279	
	425	B006	Position feed forward command filter	0 to 5 s	0.001 s	0 s	283	
	426	B007	In-position width	0 to 32767 pulse	1 pulse	100 pulse	281	
	427	B008	Excessive level error	0 to 400k pulse, 9999	1k pulse	40k pulse	281	
	428	B009	Command pulse selection	0 to 5	1	0	271	
	429	B010	Clear signal selection	0, 1	1	1	273	
	430	B011	Pulse monitor selection	0 to $5,12,13,100$ to $105,112,113,1000$ to 1005, 1012, 1013, 1100 to 1105, 1112, 1113, 2000 to 2005, 2012, 2013, 2100 to 2105, 2112, 2113, 3000 to 3005, 3012, 3013, 3100 to 3105, 3112, 3113, 8888, 9999	1	9999	274	
-	432 *	D120	Pulse train torque command bias	0 to 400\%	1\%	0\%	232	
-	433 *	D121	Pulse train torque command gain	0 to 400\%	1\%	150\%	232	
CC-Link IE	$434 * 11$	N110	Network number (CC-Link IE)	0 to 255	1	0	694	
	435*11	N111	Station number (CC-Link IE)	0 to 255	1	0	694	
-	446	B012	Model position control gain	0 to $150 \mathrm{sec}^{-1}$	$1 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$	283	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Second motor constants	450	C200	Second applied motor	$\begin{aligned} & 0,1,3 \text { to } 6,13 \text { to } 16, \\ & 30,33,34,8093, \\ & 8094,9090,9093 \\ & 9094,9999 \end{aligned}$	1	9999	506	
	451	G300	Second motor control method selection	$\begin{aligned} & 0 \text { to } 6,10 \text { to } 14,20, \\ & 100 \text { to } 106,110 \text { to } 114 \text {, } \\ & 9999 \end{aligned}$	1	9999	166	
	453	C201	Second motor capacity	0.4 to $55 \mathrm{~kW}, 9999$ *2	0.01 kW *2	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
				0 to $3600 \mathrm{~kW}, 9999$ *3	0.1 kW *3			
	454	C202	Number of second motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
	455	C225	Second motor excitation current	0 to 500 A, 9999 *2	0.01 A *2	9999	508	
				0 to $3600 \mathrm{~A}, 9999$ *3	0.1 A *3			
	456	C204	Rated second motor voltage	0 to 1000 V	0.1 V	575 V	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
	457	C205	Rated second motor frequency	10 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
	458	C220	Second motor constant (R1)	0 to $50 \Omega, 9999$ *2	$0.001 \Omega^{* 2}$	9999	$\begin{aligned} & \hline 508, \\ & 529, \\ & 625 \end{aligned}$	
				0 to $400 \mathrm{~m} \Omega, 9999$ *3	$0.01 \mathrm{~m} \Omega^{* 3}$			
	459	C221	Second motor constant (R2)	0 to $50 \Omega, 9999$ *2	$0.001 \Omega^{* 2}$	9999	508	
				0 to $400 \mathrm{~m} \Omega, 9999$ *	$0.01 \mathrm{~m} \Omega^{* 3}$			
	460	C222	Second motor constant (L1) / d-axis inductance (Ld)	0 to $6000 \mathrm{mH}, 9999$ *2	$0.1 \mathrm{mH}^{*} 2$	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
				0 to $400 \mathrm{mH}, 9999$ *3	$0.01 \mathrm{mH}^{* 3}$			
	461	C223	Second motor constant (L2) / q-axis inductance (Lq)	0 to $6000 \mathrm{mH}, 9999$ *2	$0.1 \mathrm{mH}^{*} 2$	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
				0 to $400 \mathrm{mH}, 9999{ }^{*}$	$0.01 \mathrm{mH}^{* 3}$			
	462	C224	Second motor constant (X)	0 to 100\%, 9999	0.1\% ${ }^{\text {2 }}$	9999	508	
					0.01\% *3			
	463	C210	Second motor auto tuning setting/status	0, 1, 11, 101	1	0	$\begin{aligned} & 508, \\ & 529, \\ & 625 \end{aligned}$	
Simple position control	464	B020	Digital position control sudden stop deceleration time	0 to 360 s	0.1 s	0 s	251	
	465	B021	First target position lower 4 digits	0 to 9999	1	0	251	
	466	B022	First target position upper 4 digits	0 to 9999	1	0	251	
	467	B023	Second target position lower 4 digits	0 to 9999	1	0	251	
	468	B024	Second target position upper 4 digits	0 to 9999	1	0	251	
	469	B025	Third target position lower 4 digits	0 to 9999	1	0	251	
	470	B026	Third target position upper 4 digits	0 to 9999	1	0	251	
	471	B027	Fourth target position lower 4 digits	0 to 9999	1	0	251	
	472	B028	Fourth target position upper 4 digits	0 to 9999	1	0	251	
	473	B029	Fifth target position lower 4 digits	0 to 9999	1	0	251	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Simple position control	474	B030	Fifth target position upper 4 digits	0 to 9999	1	0	251	
	475	B031	Sixth target position lower 4 digits	0 to 9999	1	0	251	
	476	B032	Sixth target position upper 4 digits	0 to 9999	1	0	251	
	477	B033	Seventh target position lower 4 digits	0 to 9999	1	0	251	
	478	B034	Seventh target position upper 4 digits	0 to 9999	1	0	251	
	479	B035	Eighth target position lower 4 digits	0 to 9999	1	0	251	
	480	B036	Eighth target position upper 4 digits	0 to 9999	1	0	251	
	481	B037	Ninth target position lower 4 digits	0 to 9999	1	0	251	
	482	B038	Ninth target position upper 4 digits	0 to 9999	1	0	251	
	483	B039	Tenth target position lower 4 digits	0 to 9999	1	0	251	
	484	B040	Tenth target position upper 4 digits	0 to 9999	1	0	251	
	485	B041	Eleventh target position lower 4 digits	0 to 9999	1	0	251	
	486	B042	Eleventh target position upper 4 digits	0 to 9999	1	0	251	
	487	B043	Twelfth target position lower 4 digits	0 to 9999	1	0	251	
	488	B044	Twelfth target position upper 4 digits	0 to 9999	1	0	251	
	489	B045	Thirteenth target position lower 4 digits	0 to 9999	1	0	251	
	490	B046	Thirteenth target position upper 4 digits	0 to 9999	1	0	251	
	491	B047	Fourteenth target position lower 4 digits	0 to 9999	1	0	251	
	492	B048	Fourteenth target position upper 4 digits	0 to 9999	1	0	251	
	493	B049	Fifteenth target position lower 4 digits	0 to 9999	1	0	251	
	494	B050	Fifteenth target position upper 4 digits	0 to 9999	1	0	251	
Remote output	495	M500	Remote output selection	0, 1, 10, 11	1	0	464	
	496	M501	Remote output data 1	0 to 4095	1	0	464	
	497	M502	Remote output data 2	0 to 4095	1	0	464	
-	498	A804	PLC function flash memory clear	$\begin{aligned} & \hline 0,9696 \\ & (0 \text { to } 9999) \end{aligned}$	1	0	634	
-	500 *11	N011	Communication error execution waiting time	0 to 999.8 s	0.1 s	0	650	
-	501 *11	N012	Communication error occurrence count display	0	1	0	650	
-	502	N013	Stop mode selection at communication error	0 to 4, 11, 12	1	0	650	
Maintenance	503	E710	Maintenance timer 1	0 (1 to 9998)	1	0	316	
	504	E711	Maintenance timer 1 warning output set time	0 to 9998, 9999	1	9999	316	
-	505	M001	Speed setting reference	1 to 590 Hz	0.01 Hz	60 Hz	417	
-	506*9	E705	Display estimated main circuit capacitor residual life	(0 to 100\%)	1\%	100\%	312	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	Refer to page	Customer setting
-	566	G302	Second motor excitation current low speed scaling factor	0 to 300\%, 9999	0.1\%	9999	703	
Second motor constants	569	G942	Second motor speed control gain	0 to 200\%, 9999	0.1\%	9999	174	
Multiple rating	570	E301	Multiple rating setting	0 to 3	1	2	297	
-	571	F103	Holding time at a start	0 to $10 \mathrm{~s}, 9999$	0.1 s	9999	337	
-	573	A680	4 mA input check selection	1 to 4,11 to 14,21 to 24, 9999	1	9999	493	
		T052						
-	574	C211	Second motor online auto tuning	0 to 2	1	0	537	
PID control	575	A621	Output interruption detection time	0 to 3600 s, 9999	0.1 s	1 s	587	
	576	A622	Output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz	587	
	577	A623	Output interruption cancel level	900 to 1100\%	0.1\%	1000\%	587	
Traverse function	592	A300	Traverse function selection	0 to 2	1	0	566	
	593	A301	Maximum amplitude amount	0 to 25\%	0.1\%	10\%	566	
	594	A302	Amplitude compensation amount during deceleration	0 to 50\%	0.1\%	10\%	566	
	595	A303	Amplitude compensation amount during acceleration	0 to 50\%	0.1\%	10\%	566	
	596	A304	Amplitude acceleration time	0.1 to 3600 s	0.1 s	5 s	566	
	597	A305	Amplitude deceleration time	0.1 to 3600 s	0.1 s	5 s	566	
-	599	T721	X10 terminal input selection	0,1	1	$0{ }^{*} 7$	718	
						1 *8		
Electronic thermal O/L relay	600	H001	First free thermal reduction frequency 1	0 to 590 Hz, 9999	0.01 Hz	9999	377	
	601	H002	First free thermal reduction ratio 1	1 to 100\%	1\%	100\%	377	
	602	H003	First free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999	377	
	603	H004	First free thermal reduction ratio 2	1 to 100\%	1\%	100\%	377	
	604	H005	First free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999	377	
-	606	T722	Power failure stop external signal input selection	0, 1	1	1	629	
-	607	H006	Motor permissible load level	110 to 250\%	1\%	150\%	377	
-	608	H016	Second motor permissible load level	110 to 250\%, 9999	1\%	9999	377	
PID control	609	A624	PID set point/deviation input selection	1 to 5	1	2	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	
	610	A625	PID measured value input selection	1 to 5	1	3	$\begin{aligned} & 587, \\ & 611 \end{aligned}$	
-	611	F003	Acceleration time at a restart	0 to 3600 s, 9999	0.1 s	9999	618	
-	617	G080	Reverse rotation excitation current low-speed scaling factor	0 to 300\%, 9999	0.1\%	9999	703	
Cumulative pulse monitor	635 *	M610	Cumulative pulse clear signal selection	0 to 3	1	0	274	
	636 *6	M611	Cumulative pulse division scaling factor	1 to 16384	1	1	274	
	$637{ }^{*} 6$	M612	Control terminal optionCumulative pulse division scaling factor	1 to 16384	1	1	274	
	$638{ }^{*} 6$	M613	Cumulative pulse storage	0 to 3	1	0	274	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \\ \hline \end{gathered}$	Customer setting
Brake sequence function	639	A108	Brake opening current selection	0, 1	1	0	553	
	640	A109	Brake operation frequency selection	0, 1	1	0	553	
	641	A130	Second brake sequence operation selection	0, 7, 8, 9999	1	0	553	
	642	A120	Second brake opening frequency	0 to 30 Hz	0.01 Hz	3 Hz	553	
	643	A121	Second brake opening current	0 to 400\%	0.1\%	130\%	553	
	644	A122	Second brake opening current detection time	0 to 2 s	0.1 s	0.3 s	553	
	645	A123	Second brake operation time at start	0 to 5 s	0.1 s	0.3 s	553	
	646	A124	Second brake operation frequency	0 to 30 Hz	0.01 Hz	6 Hz	553	
	647	A125	Second brake operation time at stop	0 to 5 s	0.1 s	0.3 s	553	
	648	A126	Second deceleration detection function selection	0,1	1	0	553	
	650	A128	Second brake opening current selection	0, 1	1	0	553	
	651	A129	Second brake operation frequency selection	0, 1	1	0	553	
Speed smoothing control	653	G410	Speed smoothing control	0 to 200\%	0.1\%	0\%	736	
	654	G411	Speed smoothing cutoff frequency	0 to 120 Hz	0.01 Hz	20 Hz	736	
Analog remote output function	655	M530	Analog remote output selection	0, 1, 10, 11	1	0	466	
	656	M531	Analog remote output 1	800 to 1200\%	0.1\%	1000\%	466	
	657	M532	Analog remote output 2	800 to 1200\%	0.1\%	1000\%	466	
	658	M533	Analog remote output 3	800 to 1200\%	0.1\%	1000\%	466	
	659	M534	Analog remote output 4	800 to 1200\%	0.1\%	1000\%	466	
Increased magnetic excitation deceleration	660	G130	Increased magnetic excitation deceleration operation selection	0, 1	1	0	728	
	661	G131	Magnetic excitation increase rate	0 to 40\%, 9999	0.1\%	9999	728	
	662	G132	Increased magnetic excitation current level	0 to 300\%	0.1\%	100\%	728	
-	663	M060	Control circuit temperature signal output level	0 to $100^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	470	
-	665	G125	Regeneration avoidance frequency gain	0 to 200\%	0.1\%	100\%	725	
-	668	A786	Power failure stop frequency gain	0 to 200\%	0.1\%	100\%	629	
-	675	A805	User parameter auto storage function selection	1,9999	1	9999	634	
Second droop control	679	G420	Second droop gain	0 to 100\%, 9999	0.1\%	9999	733	
	680	G421	Second droop filter time constant	0 to $1 \mathrm{~s}, 9999$	0.01 s	9999	733	
	681	G422	Second droop function activation selection	$\begin{aligned} & 0 \text { to } 2,10,11,20 \text { to } 22 \text {, } \\ & 9999 \end{aligned}$	1	9999	733	
	682	G423	Second droop break point gain	0.1 to 100\%, 9999	0.1\%	9999	733	
	683	G424	Second droop break point torque	0.1 to 100\%, 9999	0.1\%	9999	733	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	Refer to page	Customer setting
-	684	C000	Tuning data unit switchover	0, 1	1	0	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
Maintenance	686	E712	Maintenance timer 2	0 (1 to 9998)	1	0	316	
	687	E713	Maintenance timer 2 warning output set time	0 to 9998, 9999	1	9999	316	
	688	E714	Maintenance timer 3	0 (1 to 9998)	1	0	316	
	689	E715	Maintenance timer 3 warning output set time	0 to 9998, 9999	1	9999	316	
-	690	H881	Deceleration check time	0 to 3600 s, 9999	0.1 s	1 s	218	
Electronic thermal O/L relay	692	H011	Second free thermal reduction frequency 1	0 to 590 Hz, 9999	0.01 Hz	9999	377	
	693	H012	Second free thermal reduction ratio 1	1 to 100\%	1\%	100\%	377	
	694	H013	Second free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999	377	
	695	H014	Second free thermal reduction ratio 2	1 to 100\%	1\%	100\%	377	
	696	H015	Second free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999	377	
-	699	T740	Input terminal filter	5 to $50 \mathrm{~ms}, 9999$	1 ms	9999	498	
Motor constants	702	C106	Maximum motor frequency	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	529	
	706	C130	Induced voltage constant (phi f)	$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV} /(\mathrm{rad} / \mathrm{s}), \\ & 9999 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{mV} / \\ & (\mathrm{rad} / \mathrm{s}) \end{aligned}$	9999	529	
	707	C107	Motor inertia (integer)	10 to 999, 9999	1	9999	529	
	711	C131	Motor Ld decay ratio	0 to 100\%, 9999	0.1\%	9999	529	
	712	C132	Motor Lq decay ratio	0 to 100\%, 9999	0.1\%	9999	529	
	717	C182	Starting resistance tuning compensation	0 to 200\%, 9999	0.1\%	9999	529	
	721	C185	Starting magnetic pole position detection pulse width	0 to $6000 \mu \mathrm{~s}, 10000$ to $16000 \mu \mathrm{~s}, 9999$	$1 \mu \mathrm{~s}$	9999	529	
	724	C108	Motor inertia (exponent)	0 to 7, 9999	1	9999	529	
	725	C133	Motor protection current level	100 to 500\%, 9999	0.1\%	9999	529	
	738	C230	Second motor induced voltage constant (phif)	$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV} /(\mathrm{rad} / \mathrm{s}) \text {, } \\ & 9999 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{mV} / \\ & (\mathrm{rad} / \mathrm{s}) \end{aligned}$	9999	529	
	739	C231	Second motor Ld decay ratio	0 to 100\%, 9999	0.1\%	9999	529	
	740	C232	Second motor Lq decay ratio	0 to 100\%, 9999	0.1\%	9999	529	
	741	C282	Second starting resistance tuning compensation	0 to 200\%, 9999	0.1\%	9999	529	
	742	C285	Second motor magnetic pole detection pulse width	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, 10000 \text { to } \\ & 16000 \mu \mathrm{~s}, 9999 \end{aligned}$	$1 \mu \mathrm{~s}$	9999	529	
	743	C206	Second motor maximum frequency	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	529	
	744	C207	Second motor inertia (integer)	10 to 999, 9999	1	9999	529	
	745	C208	Second motor inertia (exponent)	0 to 7, 9999	1	9999	529	
	746	C233	Second motor protection current level	100 to 500\%, 9999	0.1\%	9999	529	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \\ \hline \end{gathered}$	Customer setting
PID control	753	A650	Second PID action selection	$0,10,11,20,21,50$, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0	587	
	754	A652	Second PID control automatic switchover frequency	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999	587	
	755	A651	Second PID action set point	0 to 100\%, 9999	0.01\%	9999	587	
	756	A653	Second PID proportional band	0.1 to 1000\%, 9999	0.1\%	100\%	587	
	757	A654	Second PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s	587	
	758	A655	Second PID differential time	0.01 to $10 \mathrm{~s}, 9999$	0.01 s	9999	587	
	759	A600	PID unit selection	0 to 43, 9999	1	9999	603	
PID pre-charge function	760	A616	Pre-charge fault selection	0, 1	1	0	607	
	761	A617	Pre-charge ending level	0 to 100\%, 9999	0.1\%	9999	607	
	762	A618	Pre-charge ending time	0 to 3600 s, 9999	0.1 s	9999	607	
	763	A619	Pre-charge upper detection level	0 to 100\%, 9999	0.1\%	9999	607	
	764	A620	Pre-charge time limit	0 to 3600 s, 9999	0.1 s	9999	607	
	765	A656	Second pre-charge fault selection	0, 1	1	0	607	
	766	A657	Second pre-charge ending level	0 to 100\%, 9999	0.1\%	9999	607	
	767	A658	Second pre-charge ending time	0 to 3600 s, 9999	0.1 s	9999	607	
	768	A659	Second pre-charge upper detection level	0 to 100\%, 9999	0.1\%	9999	607	
	769	A660	Second pre-charge time limit	0 to $3600 \mathrm{~s}, 9999$	0.1 s	9999	607	
Monitor function	774	M101	Operation panel monitor selection 1	1 to 3,5 to 14,17 to 20, 22 to $36,38,40$ to 46, 50 to $57,61,62$, $64,67,68,71$ to 75,87 to $98,100,9999$	1	9999	419	
	775	M102	Operation panel monitor selection 2		1	9999	419	
	776	M103	Operation panel monitor selection 3		1	9999	419	
-	777	A681	4 mA input fault operation frequency	0 to $590 \mathrm{~Hz}, 9999$	0.01 Hz	9999	493	
		T053						
-	778	A682	4 mA input check filter	0 to 10 s	0.01 s	0 s	493	
		T054						
-	779	N014	Operation frequency during communication error	0 to 590 Hz, 9999	0.01 Hz	9999	650	
-	791	F070	Acceleration time in lowspeed range	0 to 3600 s, 9999	0.1 s	9999	320	
-	792	F071	Deceleration time in lowspeed range	0 to 3600 s, 9999	0.1 s	9999	320	
-	799	M520	Pulse increment setting for output power	$0.1,1,10,100,1000$ kWh	0.1 kWh	1 kWh	469	
-	800	G200	Control method selection	0 to 6, 9 to 14, 20, 100 to 106,109 to 114	1	20	166	
-	801	H704	Output limit level	0 to 400\%, 9999	0.1\%	9999	$\begin{aligned} & 191, \\ & 232 \end{aligned}$	
-	802	G102	Pre-excitation selection	0,1	1	0	707	
Torque command	803	G210	Constant output range torque characteristic selection	0, 1, 2, 10, 11	1	0	$\begin{aligned} & 191, \\ & 232 \end{aligned}$	
	804	D400	Torque command source selection	0 to 6	1	0	232	
	805	D401	Torque command value (RAM)	600 to 1400\%	1\%	1000\%	232	
	806	D402	Torque command value (RAM, EEPROM)	600 to 1400\%	1\%	1000\%	232	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Speed limit	807	H410	Speed limit selection	0 to 2	1	0	237	
	808	H411	Forward rotation speed limit/ speed limit	0 to 400 Hz	0.01 Hz	60 Hz	237	
	809	H412	Reverse rotation speed limit/ reverse-side speed limit	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	237	
Torque limit	810	H700	Torque limit input method selection	0 to 2	1	0	191	
	811	D030	Set resolution switchover	0, 1, 10, 11	1	0	$\begin{aligned} & 191, \\ & 417 \end{aligned}$	
	812	H701	Torque limit level (regeneration)	0 to 400\%, 9999	0.1\%	9999	191	
	813	H702	Torque limit level (3rd quadrant)	0 to 400\%, 9999	0.1\%	9999	191	
	814	H703	Torque limit level (4th quadrant)	0 to 400\%, 9999	0.1\%	9999	191	
	815	H710	Torque limit level 2	0 to 400\%, 9999	0.1\%	9999	191	
	816	H720	Torque limit level during acceleration	0 to 400\%, 9999	0.1\%	9999	191	
	817	H721	Torque limit level during deceleration	0 to 400\%, 9999	0.1\%	9999	191	
Easy gain tuning	818	C112	Easy gain tuning response level setting	1 to 15	1	2	201	
	819	C113	Easy gain tuning selection	0 to 2	1	0	201	
Adjustment function	820	G211	Speed control P gain 1	0 to 1000\%	1\%	60\%	201	
	821	G212	Speed control integral time 1	0 to 20 s	0.001 s	0.333 s	201	
	822	T003	Speed setting filter 1	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999	481	
	823 *	G215	Speed detection filter 1	0 to 0.1 s	0.001 s	0.001 s	287	
	824	G213	Torque control P gain 1 (current loop proportional gain)	0 to 500\%	1\%	100\%	$\begin{array}{\|l\|} \hline 243 \\ 288 \\ \hline \end{array}$	
	825	G214	Torque control integral time 1 (current loop integral time)	0 to 500 ms	0.1 ms	5 ms	$\begin{array}{\|l\|} \hline 243, \\ 288 \end{array}$	
	826	T004	Torque setting filter 1	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999	481	
	827	G216	Torque detection filter 1	0 to 0.1 s	0.001 s	0 s	287	
	828	G224	Model speed control gain	0 to 1000\%	1\%	60\%	$\begin{aligned} & \hline 211, \\ & 283 \end{aligned}$	
	829 *	A546	Number of machine end encoder pulses	0 to 4096, 9999	1	9999	570	
	830	G311	Speed control P gain 2	0 to 1000\%, 9999	1\%	9999	201	
	831	G312	Speed control integral time 2	0 to 20 s, 9999	0.001 s	9999	201	
	832	T005	Speed setting filter 2	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999	481	
	833 *6	G315	Speed detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	0.001 s	9999	287	
	834	G313	Torque control P gain 2	0 to 500\%, 9999	1\%	9999	243	
	835	G314	Torque control integral time 2	0 to $500 \mathrm{~ms}, 9999$	0.1 ms	9999	243	
	836	T006	Torque setting filter 2	0 to $5 \mathrm{~s}, 9999$	0.001 s	9999	481	
	837	G316	Torque detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	0.001 s	9999	287	
Torque bias	840	G230	Torque bias selection	0 to 3, 24, 25, 9999	1	9999	214	
	841	G231	Torque bias 1	600 to 1400\%, 9999	1\%	9999	214	
	842	G232	Torque bias 2	600 to $1400 \%, 9999$	1\%	9999	214	
	843	G233	Torque bias 3	600 to 1400\%, 9999	1\%	9999	214	
	844	G234	Torque bias filter	0 to 5s, 9999	0.001 s	9999	214	
	845	G235	Torque bias operation time	0 to 5s, 9999	0.01 s	9999	214	
	846	G236	Torque bias balance compensation	0 to $10 \mathrm{~V}, 9999$	0.1 V	9999	214	
	847	G237	Fall-time torque bias terminal 1 bias	0 to 400\%, 9999	1\%	9999	214	
	848	G238	Fall-time torque bias terminal 1 gain	0 to 400\%, 9999	1\%	9999	214	

Function	Pr.	Pr. group	Name	Setting range		Initial value	Refer to page	Customer setting
Additional function	849	T007	Analog input offset adjustment	0 to 200\%	0.1\%	100\%	481	
	850	G103	Brake operation selection	0 to 2	1	0	707	
	851 *6	C240	Control terminal optionNumber of encoder pulses	0 to 4096	1	2048	77	
	852 *6	C241	Control terminal optionEncoder rotation direction	0, 1, 100, 101	1	1	77	
	853 *6	H417	Speed deviation time	0 to 100 s	0.1 s	1 s	218	
	854	G217	Excitation ratio	0 to 100\%	1\%	100\%	288	
	855 *6	C248	Control terminal optionSignal loss detection enable/ disable selection	0, 1	1	0	540	
	858	T040	Terminal 4 function assignment	0, 1, 4, 9999	1	0	$\begin{array}{\|l\|} \hline 191, \\ 403, \\ 476 \\ \hline \end{array}$	
	859	C126	Torque current/Rated PM motor current	0 to $500 \mathrm{~A}, 9999$ *2	0.01 A *2	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
				0 to 3600 A, 9999 *3	0.1 A *3			
	860	C226	Second motor torque current/Rated PM motor current	0 to 500 A, 9999 *2	0.01 A *2	9999	$\begin{aligned} & 508, \\ & 529 \end{aligned}$	
				0 to 3600 A, 9999 *3	0.1 A *3			
	862 *	C242	Encoder option selection	0,1	1	0	172	
	863 *6	M600	Control terminal optionEncoder pulse division ratio	1 to 32767	1	1	471	
	864	M470	Torque detection	0 to 400\%	0.1\%	150\%	463	
	865	M446	Low speed detection	0 to 590 Hz	0.01 Hz	1.5 Hz	457	
Indication function	866	M042	Torque monitoring reference	0 to 400\%	0.1\%	150\%	430	
-	867	M321	AM output filter	0 to 5 s	0.01 s	0.01 s	437	
-	868	T010	Terminal 1 function assignment	0 to 6, 9999	1	0	$\begin{aligned} & \hline 191, \\ & 403, \\ & 476 \\ & \hline \end{aligned}$	
-	870	M440	Speed detection hysteresis	0 to 5 Hz	0.01 Hz	0 Hz	457	
-	871 *6	C243	Control terminal optionEncoder position tuning setting/status	0, 1	1	0	518	
Protective Functions	872 *9	H201	Input phase loss protection selection	0, 1	1	0	388	
	873 *6	H415	Speed limit	0 to 400 Hz	0.01 Hz	20 Hz	218	
	874	H730	OLT level setting	0 to 400\%	0.1\%	150\%	191	
	875	H030	Fault definition	0,1	1	0	385	
-	876 *6	H022	Thermal protector input	0, 1	1	1	377	
Control system functions	877	G220	Speed feed forward control/ model adaptive speed control selection	0 to 2	1	0	$\begin{aligned} & 211, \\ & 283 \end{aligned}$	
	878	G221	Speed feed forward filter	0 to 1 s	0.01 s	0 s	211	
	879	G222	Speed feed forward torque limit	0 to 400\%	0.1\%	150\%	211	
	880	C114	Load inertia ratio	0 to 200 times	0.1 time	7 times	$\begin{aligned} & 201, \\ & 211, \\ & 283 \end{aligned}$	
	881	G223	Speed feed forward gain	0 to 1000\%	1\%	0\%	211	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Regeneration avoidance function	882	G120	Regeneration avoidance operation selection	0 to 2	1	0	725	
	883	G121	Regeneration avoidance operation level	300 to 1200 V	0.1 V	$\begin{aligned} & 940 \mathrm{~V} \\ & \mathrm{DC} \end{aligned}$	725	
	884	G122	Regeneration avoidance at deceleration detection sensitivity	0 to 5	1	0	725	
	885	G123	Regeneration avoidance compensation frequency limit value	0 to 590 Hz, 9999	0.01 Hz	6 Hz	725	
	886	G124	Regeneration avoidance voltage gain	0 to 200\%	0.1\%	100\%	725	
-	887 *6	C244	Control terminal optionEncoder magnetic pole position offset	0 to 16383, 65535	1	65535	518	
Free parameters	888	E420	Free parameter 1	0 to 9999	1	9999	303	
	889	E421	Free parameter 2	0 to 9999	1	9999	303	
-	890	H325	Internal storage device status indication	(0 to 9999)	1	0	399	
Energy saving monitor	891	M023	Cumulative power monitor digit shifted times	0 to 4, 9999	1	9999	$\begin{aligned} & 419, \\ & 440 \end{aligned}$	
	892	M200	Load factor Energy saving monitor reference (motor capacity)	30 to 150\%	0.1\%	100\%	440	
	893	M201	Energy saving monitor reference (motor capacity)	0.1 to 55 kW *2	0.01 kW *2	Rated inverter capacity	440	
				0 to 3600 kW *3	0.1 kW *3			
	894	M202	Control selection during commercial power-supply operation	0 to 3	1	0	440	
	895	M203	Power saving rate reference value	0, 1, 9999	1	9999	440	
	896	M204	Power unit cost	0 to 500, 9999	0.01	9999	440	
	897	M205	Power saving monitor average time	0 to 1000 h, 9999	1 h	9999	440	
	898	M206	Power saving cumulative monitor clear	0, 1, 10, 9999	1	9999	440	
	899	M207	Operation time rate (estimated value)	0 to 100\%, 9999	0.1\%	9999	440	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Calibration parameters	900	M310	FM terminal calibration	-	-	-	437	
	901	M320	AM terminal calibration	-	-	-	437	
	902	T200	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz	483	
	902	T201	Terminal 2 frequency setting bias	0 to 300\%	0.1\%	0\%	483	
	$\begin{aligned} & 903 \\ & (125) \end{aligned}$	T202	Terminal 2 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	483	
	903	T203	Terminal 2 frequency setting gain	0 to 300\%	0.1\%	100\%	483	
	904	T400	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz	483	
	904	T401	Terminal 4 frequency setting bias	0 to 300\%	0.1\%	20\%	483	
	$\begin{aligned} & 905 \\ & (126) \end{aligned}$	T402	Terminal 4 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	483	
	905	T403	Terminal 4 frequency setting gain	0 to 300\%	0.1\%	100\%	483	
	917	T100	Terminal 1 bias frequency (speed)	0 to 590 Hz	0.01 Hz	0 Hz	483	
	917	T101	Terminal 1 bias (speed)	0 to 300\%	0.1\%	0\%	483	
	918	T102	Terminal 1 gain frequency (speed)	0 to 590 Hz	0.01 Hz	60 Hz	483	
	918	T103	Terminal 1 gain (speed)	0 to 300\%	0.1\%	100\%	483	
Calibration parameters	919	T110	Terminal 1 bias command (torque)	0 to 400\%	0.1\%	0\%	488	
	919	T111	Terminal 1 bias (torque)	0 to 300\%	0.1\%	0\%	488	
	920	T112	Terminal 1 gain command (torque)	0 to 400\%	0.1\%	150\%	488	
	920	T113	Terminal 1 gain (torque)	0 to 300\%	0.1\%	100\%	488	
	932	T410	Terminal 4 bias command (torque)	0 to 400\%	0.1\%	0\%	488	
	932	T411	Terminal 4 bias (torque)	0 to 300\%	0.1\%	20\%	488	
	933	T412	Terminal 4 gain command (torque)	0 to 400\%	0.1\%	150\%	488	
	933	T413	Terminal 4 gain (torque)	0 to 300\%	0.1\%	100\%	488	
	934	A630	PID display bias coefficient Simple	0 to 500, 9999	0.01	9999	603	
	934	A631	PID display bias analog value Simple	0 to 300\%	0.1\%	20\%	603	
	935	A632	PID display gain coefficient Simple	0 to 500, 9999	0.01	9999	603	
	935	A633	PID display gain analog value Simple	0 to 300\%	0.1\%	100\%	603	
-	989	E490	Parameter copy alarm	10 *2	1	10 *2	310	
			release	100 *3		100 *3		
PU	990	E104	PU buzzer control	0, 1	1	1	295	
	991	E105	PU contrast adjustment Simple	0 to 63	1	58	295	
-	992	M104	Parameter for manufacturer setting. Do not set.					
Droop control	994	G403	Droop break point gain	0.1 to 100\%, 9999	0.1\%	9999	733	
	995	G404	Droop break point torque	0.1 to 100\%	0.1\%	100\%	733	
-	997	H103	Fault initiation	0 to 255, 9999	1	9999	388	
-	998	E430	PM parameter initialization Simple	$\begin{aligned} & 0,3003,3103,8009 \\ & 8109,9009,9109 \end{aligned}$	1	0	176	
-	999	E431	Automatic parameter setting Simple	$\begin{aligned} & 1,2,10,11,12,13,20 \\ & 21,9999 \end{aligned}$	1	9999	304	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \\ \hline \end{gathered}$	Customer setting
-	1000	E108	Direct setting selection	0 to 2	1	0	296	
-	1002	C150	Lq tuning target current adjustment coefficient	50 to 150\%, 9999	0.1\%	9999	529	
Additional function	1003	G601	Notch filter frequency	0, 8 to 1250 Hz	1 Hz	0	220	
	1004	G602	Notch filter depth	0 to 3	1	0	220	
	1005	G603	Notch filter width	0 to 3	1	0	220	
Clock function	1006	E020	Clock (year)	2000 to 2099	1	2000	290	
	1007	E021	Clock (month, day)	1/1 to 12/31	1	101	290	
	1008	E022	Clock (hour, minute)	0:00 to 23:59	1	0	290	
-	$1013{ }^{* 9}$	H323	Emergency drive running speed after retry reset	0 to 590 Hz	0.01 Hz	60 Hz	391	
-	1015	A607	Integral stop selection at limited frequency	0 to 2, 10 to 12	1	0	587	
-	1016	H021	PTC thermistor protection detection time	0 to 60 s	1 s	0	377	
-	1018	M045	Monitor with sign selection	0, 1,9999	1	9999	419	
Trace function	1020	A900	Trace operation selection	0 to 4	1	0	636	
	1021	A901	Trace mode selection	0 to 2	1	0	636	
	1022	A902	Sampling cycle	0 to 9	1	2	636	
	1023	A903	Number of analog channels	1 to 8	1	4	636	
	1024	A904	Sampling auto start	0,1	1	0	636	
	1025	A905	Trigger mode selection	0 to 4	1	0	636	
	1026	A906	Number of sampling before trigger	0 to 100\%	1\%	90\%	636	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \end{gathered}$	Customer setting
Trace function	1027	A910	Analog source selection (1ch)	1 to 3,5 to 14,17 to 20, 22 to 24,32 to 36 , 39 to $42,46,52$ to 54 , 61, 62, 64, 67, 68, 71 to 75,87 to 98,201 to 213, 222 to 227,230 to 232, 235 to 238	1	201	636	
	1028	A911	Analog source selection (2ch)			202	636	
	1029	A912	Analog source selection (3ch)			203	636	
	1030	A913	Analog source selection (4ch)			204	636	
	1031	A914	Analog source selection (5ch)			205	636	
	1032	A915	Analog source selection (6ch)			206	636	
	1033	A916	Analog source selection (7ch)			207	636	
	1034	A917	Analog source selection (8ch)			208	636	
	1035	A918	Analog trigger channel	1 to 8	1	1	636	
	1036	A919	Analog trigger operation selection	0, 1	1	0	636	
	1037	A920	Analog trigger level	600 to 1400	1	1000	636	
	1038	A930	Digital source selection (1ch)	1 to 255	1	1	636	
	1039	A931	Digital source selection (2ch)			2	636	
	1040	A932	Digital source selection (3ch)			3	636	
	1041	A933	Digital source selection (4ch)			4	636	
	1042	A934	Digital source selection (5ch)			5	636	
	1043	A935	Digital source selection (6ch)			6	636	
	1044	A936	Digital source selection (7ch)			7	636	
	1045	A937	Digital source selection (8ch)			8	636	
	1046	A938	Digital trigger channel	1 to 8	1	1	636	
	1047	A939	Digital trigger operation selection	0,1	1	0	636	
-	1048	E106	Parameter for manufacturer setting. Do not set.					
-	1049	E110	USB host reset	0, 1	1	0	296	
Anti-sway control	1072	A310	DC brake judgment time for anti-sway control operation	0 to 10 s	0.1 s	3 s	568	
	1073	A311	Anti-sway control operation selection	0,1	1	0	568	
	1074	A312	Anti-sway control frequency	0.05 to $3 \mathrm{~Hz}, 9999$	0.001 Hz	1 Hz	568	
	1075	A313	Anti-sway control depth	0 to 3	1	0	568	
	1076	A314	Anti-sway control width	0 to 3	1	0	568	
	1077	A315	Rope length	0.1 to 50 m	0.1 m	1 m	568	
	1078	A316	Trolley weight	1 to 50000 Kg	1 Kg	1 Kg	568	
	1079	A317	Load weight	1 to 50000 Kg	1 Kg	1 Kg	568	
-	1103	F040	Deceleration time at emergency stop	0 to 3600 s	0.1 s	5 s	320	
-	$1105 *$ *	C143	Encoder magnetic pole position offset	0 to 16383, 65535	1	65535	518	
Monitor function	1106	M050	Torque monitor filter	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999	419	
	1107	M051	Running speed monitor filter	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999	419	
	1108	M052	Excitation current monitor filter	0 to $5 \mathrm{~s}, 9999$	0.01 s	9999	419	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	Refer to page	Customer setting
-	1113	H414	Speed limit method selection	0 to 2, 10, 9999	1	0	237	
-	1114	D403	Torque command reverse selection	0, 1	1	1	232	
-	1115	G218	Speed control integral term clear time	0 to 9998 ms	1 ms	0 s	201	
-	1116	G206	Constant output range speed control P gain compensation	0 to 100\%	0.1\%	0\%	201	
-	1117	G261	Speed control P gain 1 (perunit system)	0 to 300, 9999	0.01	9999	201	
-	1118	G361	Speed control P gain 2 (perunit system)	0 to 300, 9999	0.01	9999	201	
-	1119	G262	Model speed control gain (per-unit system)	0 to 300, 9999	0.01	9999	211	
-	1121	G260	Per-unit speed control reference frequency	0 to 400 Hz	0.01 Hz	$120 \mathrm{~Hz}$	201	
						60 Hz *3		
PID control	1134	A605	PID upper limit manipulated value	0 to 100\%	0.1\%	100\%	611	
	1135	A606	PID lower limit manipulated value	0 to 100\%	0.1\%	100\%	611	
	1136	A670	Second PID display bias coefficient Simple	0 to 500, 9999	0.01	9999	603	
	1137	A671	Second PID display bias analog value Simple	0 to 300\%	0.1\%	20\%	603	
	1138	A672	Second PID display gain coefficient Simple	0 to 500, 9999	0.01	9999	603	
	1139	A673	Second PID display gain analog value Simple	0 to 300\%	0.1\%	100\%	603	
	1140	A664	Second PID set point/ deviation input selection	1 to 5	1	2	587	
	1141	A665	Second PID measured value input selection	1 to 5	1	3	587	
	1142	A640	Second PID unit selection	0 to 43, 9999	1	9999	587	
	1143	A641	Second PID upper limit	0 to 100\%, 9999	0.1\%	9999	587	
	1144	A642	Second PID lower limit	0 to 100\%, 9999	0.1\%	9999	587	
	1145	A643	Second PID deviation limit	0 to 100\%, 9999	0.1\%	9999	587	
	1146	A644	Second PID signal operation selection	0 to 3, 10 to 13	1	0	587	
	1147	A661	Second output interruption detection time	0 to 3600 s, 9999	0.1 s	1	587	
	1148	A662	Second output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz	587	
	1149	A663	Second output interruption cancel level	900 to 1100\%	0.1\%	1000\%	587	
PLC function	$\begin{aligned} & \hline 1150 \\ & \text { to } \\ & 1199 \end{aligned}$	A810 to A859	PLC function user parameters 1 to 50	0 to 65535	1	0	634	
-	1220	B100	Target position/speed selection	0 to 2	1	0	835	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Simple position control	1221	B101	Start command edge detection selection	0, 1	1	0	251	
	1222	B120	First positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1223	B121	First positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1224	B122	First positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1225	B123	First positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1226	B124	Second positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1227	B125	Second positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1228	B126	Second positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1229	B127	Second positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1230	B128	Third positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1231	B129	Third positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1232	B130	Third positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1233	B131	Third positioning subfunction	0 to 2,10 to 12,100 to 102, 110 to 112	1	10	251	
	1234	B132	Fourth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1235	B133	Fourth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1236	B134	Fourth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1237	B135	Fourth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1238	B136	Fifth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1239	B137	Fifth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1240	B138	Fifth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1241	B139	Fifth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1242	B140	Sixth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1243	B141	Sixth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1244	B142	Sixth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1245	B143	Sixth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1246	B144	Seventh positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1247	B145	Seventh positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1248	B146	Seventh positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1249	B147	Seventh positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1250	B148	Eighth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1251	B149	Eighth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1252	B150	Eighth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1253	B151	Eighth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	

Function	Pr.	Pr. group	Name	Setting range	$\begin{aligned} & \text { Minimum } \\ & \text { setting } \\ & \text { increments } \end{aligned}$	Initial value	Refer to page	Customer setting
Simple position control	1254	B152	Ninth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1255	B153	Ninth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1256	B154	Ninth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1257	B155	Ninth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1258	B156	Tenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1259	B157	Tenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1260	B158	Tenth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1261	B159	Tenth positioning subfunction	0 to 2,10 to 12,100 to 102, 110 to 112	1	10	251	
	1262	B160	Eleventh positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1263	B161	Eleventh positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1264	B162	Eleventh positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1265	B163	Eleventh positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1266	B164	Twelfth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1267	B165	Twelfth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1268	B166	Twelfth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1269	B167	Twelfth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1270	B168	Thirteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1271	B169	Thirteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1272	B170	Thirteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1273	B171	Thirteenth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1274	B172	Fourteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1275	B173	Fourteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1276	B174	Fourteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1277	B175	Fourteenth positioning subfunction	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12,100 \text { to } \\ & 102,110 \text { to } 112 \end{aligned}$	1	10	251	
	1278	B176	Fifteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1279	B177	Fifteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s	251	
	1280	B178	Fifteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms	251	
	1281	B179	Fifteenth positioning subfunction	$\begin{aligned} & 0,2,10,12,100,102 \\ & 110,112 \end{aligned}$	1	10	251	
	1282	B180	Home position return method selection	0 to 6	1	4	251	
	1283	B181	Home position return speed	0 to 30 Hz	0.01 Hz	2 Hz	251	
	1284	B182	Home position return creep speed	0 to 10 Hz	0.01 Hz	0.5 Hz	251	
	1285	B183	Home position shift amount lower 4 digits	0 to 9999	1	0	251	
	1286	B184	Home position shift amount upper 4 digits	0 to 9999	1	0	251	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
Simple position control	1287	B185	Travel distance after proximity dog ON lower 4 digits	0 to 9999	1	2048	251	
	1288	B186	Travel distance after proximity dog ON upper 4 digits	0 to 9999	1	0	251	
	1289	B187	Home position return stopper torque	0 to 200\%	0.1\%	40\%	251	
	1290	B188	Home position return stopper waiting time	0 to 10 s	0.1 s	0.5 s	251	
	1292	B190	Position control terminal input selection	0,1	1	0	251	
	1293	B191	Roll feeding mode selection	0,1	1	0	251	
	1294	B192	Position detection lower 4 digits	0 to 9999	1	0	281	
	1295	B193	Position detection upper 4 digits	0 to 9999	1	0	281	
	1296	B194	Position detection selection	0 to 2	1	0	281	
	1297	B195	Position detection hysteresis width	0 to 32767	1	0	281	
-	1298	B013	Second position control gain	0 to $150 \mathrm{~s}^{-1}$	$1 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$	283	
-	1299	G108	Second pre-excitation selection	0, 1	1	0	707	
-	$\begin{aligned} & 1300 \\ & \text { to } \\ & 1343 \end{aligned}$	N500 to N543	Communication option parameters. For details, refer to the Instruction Manual of the option.					
-	1348	G263	P/PI control switchover frequency	0 to 400 Hz	0.01 Hz	0 Hz	201	
-	1349	G264	Emergency stop operation selection	$0,1,10,11$	1	0	320	
-	$\begin{array}{\|l\|} \hline 1350 \\ \text { to } \\ 1359 \\ \hline \end{array}$	N550 to N559	Communication option parameters. For details, refer to the Instruction Manual of the option.					
-	1410	A170	Starting times lower 4 digits	0 to 9999	1	0	558	
-	1411	A171	Starting times upper 4 digits	0 to 9999	1	0	558	
-	1412	C135	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999	529	
-	1413	C235	Second motor induced voltage constant (phif) exponent	0 to 2, 9999	1	9999	529	

Function	Pr.	Pr. group	Name	Setting range	\qquad	Initial value	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \end{gathered}$	Customer setting
Load characteristics fault detection	1480	H520	Load characteristics measurement mode	0, 1 (2 to 5,81 to 85)	1	0	410	
	1481	H521	Load characteristics load reference 1	0 to 400\%, 8888, 9999	0.1\%	9999	410	
	1482	H522	Load characteristics load reference 2	0 to 400\%, 8888, 9999	0.1\%	9999	410	
	1483	H523	Load characteristics load reference 3	0 to 400\%, 8888, 9999	0.1\%	9999	410	
	1484	H524	Load characteristics load reference 4	0 to 400\%, 8888, 9999	0.1\%	9999	410	
	1485	H525	Load characteristics load reference 5	0 to 400\%, 8888, 9999	0.1\%	9999	410	
	1486	H526	Load characteristics maximum frequency	0 to 590 Hz	0.01 Hz	60 Hz	410	
	1487	H527	Load characteristics minimum frequency	0 to 590 Hz	0.01 Hz	6 Hz	410	
	1488	H531	Upper limit warning detection width	0 to 400\%, 9999	0.1\%	20\%	410	
	1489	H532	Lower limit warning detection width	0 to 400\%, 9999	0.1\%	20\%	410	
	1490	H533	Upper limit fault detection width	0 to 400\%, 9999	0.1\%	9999	410	
	1491	H534	Lower limit fault detection width	0 to 400\%, 9999	0.1\%	9999	410	
	1492	H535	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	0.1 s	1 s	410	
-	1499	E415	Parameter for manufacturer setting. Do not set.					

*1 Differ according to capacities.
5\%: FR-A860-00027
3\%: FR-A860-00061
2\%: FR-A860-00090, FR-A860-00170
1\%: FR-A860-00320 or higher
*2 The setting range or initial value for the FR-A860-01080 or lower.
*3 The setting range or initial value for the FR-A860-01440 or higher.
*4 The initial value for the FR-A860-00170 or lower.
*5 The initial value for the FR-A860-00320 or higher.
*6 The setting is available only when a plug-in option that supports Vector control is installed. For the corresponding parameters of each option, refer to the detail page.
*7 The setting range or initial value for the standard model.
*8 The setting range or initial value for the separated converter type.
*9 The setting is available for the standard model only.
*10 The setting is available when the PLC function is enabled.
*11 The setting is available when a compatible plug-in option is installed.
*12 Refer to the FR-A8AVP Instruction Manual (For Inverter/Converter Switching) (575V Class).

5.1.2 Parameter list (by function group)

\checkmark E: Environment setting parameters

Parameters that set the inverter operation characteristics.

Pr. group	Pr.	Name	Refer to page
E000	168	Parameter for manufacturer setting. Do not set.	
E001	169	Parameter for manufacturer setting. Do not set.	
E020	1006	Clock (year)	290
E021	1007	Clock (month, day)	290
E022	1008	Clock (hour, minute)	290
E023	269	Parameter for manufacturer setting. Do not set.	
E080	168	Parameter for manufacturer setting. Do not set.	
E081	169	Parameter for manufacturer setting. Do not set.	
E100	75	Reset selection	291
E101	75	Disconnected PU detection	291
E102	75	PU stop selection	291
E103	145	PU display language selection	295
E104	990	PU buzzer control	295
E105	991	PU contrast adjustment Simple	295
E106	1048	Parameter for manufacturer setting. Do not set.	
E107	75	Reset limit	291
E108	1000	Direct setting selection	296
E110	1049	USB host reset	296
E200	161	Parameter for manufacturer setting. Do not set.	
E201	295	Parameter for manufacturer setting. Do not set.	
E300	30	Regenerative function selection	718
E301	570	Multiple rating setting	297
E310	328	Inverter/converter switching	*5
E400	77	Parameter write selection	298
E410	296	Password lock level	301
E411	297	Password lock/unlock	301
E415	1499	Parameter for manufacturer setting. Do not set.	
E420	888	Free parameter 1	303
E421	889	Free parameter 2	303
E430	998	PM parameter initialization Simple	176
E431	999	Automatic parameter setting Simple	304
E440	160	User group read selection Simple	308
E441	172	User group registered display/ batch clear	308
E442	173	User group registration	308
E443	174	User group clear	308
E490	989	Parameter copy alarm release	310
E600	72	PWM frequency selection	310
E601	240	Soft-PWM operation selection	310

Pr. group	Pr.	Name	Refer to page
E602	260	PWM frequency automatic switchover	310
E700	255	Life alarm status display	312
E701	256 *2	Inrush current limit circuit life display	312
E702	257	Control circuit capacitor life display	312
E703	$258{ }^{* 2}$	Main circuit capacitor life display	312
E704	259 *2	Main circuit capacitor life measuring	312
E705	506 *2	Display estimated main circuit capacitor residual life	312
E706	507	Display/reset ABC1 relay contact life	312
E707	508	Display/reset ABC2 relay contact life	312
E710	503	Maintenance timer 1	316
E711	504	Maintenance timer 1 warning output set time	316
E712	686	Maintenance timer 2	316
E713	687	Maintenance timer 2 warning output set time	316
E714	688	Maintenance timer 3	316
E715	689	Maintenance timer 3 warning output set time	316
E720	555	Current average time	317
E721	556	Data output mask time	317
E722	557	Current average value monitor signal output reference current	317

F: Setting of acceleration/ deceleration time and acceleration/deceleration pattern

Parameters that set the motor acceleration/deceleration characteristics.

Pr. group	Pr.	Name	Refer to page
F000	20	Acceleration/deceleration reference frequency	320
F001	21	Acceleration/deceleration time increments	320
F002	16	Jog acceleration/deceleration time Simple	370
F003	611	Acceleration time at a restart	618
F010	7	Acceleration time Simple	320
F011	8	Deceleration time Simple	320
F020	44	Second acceleration/deceleration time	$\begin{aligned} & 320, \\ & 611 \end{aligned}$
F021	45	Second deceleration time	$\begin{aligned} & 320, \\ & 611 \end{aligned}$
F022	147	Acceleration/deceleration time switching frequency	320
F030	110	Third acceleration/deceleration time	320
F031	111	Third deceleration time	320
F040	1103	Deceleration time at emergency stop	320
F070	791	Acceleration time in low-speed range	320
F071	792	Deceleration time in low-speed range	320
F100	29	Acceleration/deceleration pattern selection	325
F101	59	Remote function selection	331
F102	13	Starting frequency	$\begin{aligned} & 337, \\ & 338 \end{aligned}$
F103	571	Holding time at a start	337
F200	140	Backlash acceleration stopping frequency	325
F201	141	Backlash acceleration stopping time	325
F202	142	Backlash deceleration stopping frequency	325
F203	143	Backlash deceleration stopping time	325
F300	380	Acceleration S-pattern 1	325
F301	381	Deceleration S-pattern 1	325
F302	382	Acceleration S-pattern 2	325
F303	383	Deceleration S-pattern 2	325
F400	516	S-pattern time at a start of acceleration	325
F401	517	S-pattern time at a completion of acceleration	325
F402	518	S-pattern time at a start of deceleration	325
F403	519	S-pattern time at a completion of deceleration	325
F500	292	Automatic acceleration/ deceleration	$\begin{aligned} & \hline 339, \\ & 343, \\ & 553 \\ & \hline \end{aligned}$

Pr. group	Pr.	Name	Refer to page
F510	61	Reference current	339, 343
F511	62	Reference value at acceleration	339
F512	63	Reference value at deceleration	339
F513	$\mathbf{2 9 3}$	Acceleration/deceleration separate selection	339
F520	64	Starting frequency for elevator mode	343

D: Operation command and frequency command

Parameters that specify the inverter's command source, and parameters that set the motor driving frequency and torque.

Pr. group	Pr.	Name	Refer to page
D000	79	Operation mode selection Simple	$\begin{aligned} & 346, \\ & 355 \end{aligned}$
D001	340	Communication startup mode selection	355
D010	338	Communication operation command source	356
D011	339	Communication speed command source	356
D012	550	NET mode operation command source selection	356
D013	551	PU mode operation command source selection	356
D020	78	Reverse rotation prevention selection	365
D030	811	Set resolution switchover	$\begin{aligned} & 191, \\ & 417 \end{aligned}$
D100	291	Pulse train I/O selection	$\begin{aligned} & 365, \\ & 430 \end{aligned}$
D101	384	Input pulse division scaling factor	365
D110	385	Frequency for zero input pulse	365
D111	386	Frequency for maximum input pulse	365
D120	432*1	Pulse train torque command bias	232
D121	433 *1	Pulse train torque command gain	232
D200	15	Jog frequency Simple	370
D300	28	Multi-speed input compensation selection	372
D301	4	Multi-speed setting (high speed) Simple	372
D302	5	Multi-speed setting (middle speed) Simple	372
D303	6	Multi-speed setting (low speed) Simple	372
D304 to D307	$\begin{aligned} & 24 \text { to } \\ & 27 \end{aligned}$	Multi-speed setting (speed 4 to speed 7)	372
D308 to D315	$\begin{aligned} & 232 \text { to } \\ & 239 \end{aligned}$	Multi-speed setting (speed 8 to speed 15)	372
D400	804	Torque command source selection	232
D401	805	Torque command value (RAM)	232

Pr. group	Pr.	Name	Refer to page
D402	806	Torque command value (RAM, EEPROM)	232
D403	1114	Torque command reverse selection	232

H: Protective function parameters

Parameters to protect the motor and the inverter.

Pr. group	Pr.	Name	Refer to page
H000	9	Electronic thermal O/L relay Simple	$\begin{aligned} & \hline 377, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
H001	600	First free thermal reduction frequency 1	377
H002	601	First free thermal reduction ratio 1	377
H003	602	First free thermal reduction frequency 2	377
H004	603	First free thermal reduction ratio 2	377
H005	604	First free thermal reduction frequency 3	377
H006	607	Motor permissible load level	377
H010	51	Second electronic thermal O/L relay	$\begin{aligned} & \hline 377, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
H011	692	Second free thermal reduction frequency 1	377
H012	693	Second free thermal reduction ratio 1	377
H013	694	Second free thermal reduction frequency 2	377
H014	695	Second free thermal reduction ratio 2	377
H015	696	Second free thermal reduction frequency 3	377
H016	608	Second motor permissible load level	377
H020	561	PTC thermistor protection level	377
H021	1016	PTC thermistor protection detection time	377
H022	876 *1	Thermal protector input	377
H030	875	Fault definition	385
H100	244	Cooling fan operation selection	386
H101	249	Earth (ground) fault detection at start	715
H103	997	Fault initiation	388
H106	244	Cooling fan operation selection during the test operation	386
H200	251	Output phase loss protection selection	388
H201	872 *2	Input phase loss protection selection	388
H300	65	Retry selection	389
H301	67	Number of retries at fault occurrence	389
H302	68	Retry waiting time	389
H303	69	Retry count display erase	389
H320	523 *2	Emergency drive mode selection	391
H321	524 *2	Emergency drive running speed	391

Pr. group	Pr.	Name	Refer to page
H322	515*2	Emergency drive dedicated retry count	391
H323	1013 *2	Emergency drive running speed after retry reset	391
H324	$514{ }^{*}$	Emergency drive dedicated waiting time	391
H325	890	Internal storage device status indication	399
H400	1	Maximum frequency Simple	399
H401	2	Minimum frequency Simple	399
H402	18	High speed maximum frequency	399
H410	807	Speed limit selection	237
H411	808	Forward rotation speed limit/ speed limit	237
H412	809	Reverse rotation speed limit/ reverse-side speed limit	237
H414	1113	Speed limit method selection	237
H415	873 *1	Speed limit	218
H416	285	Speed deviation excess detection frequency	$\begin{aligned} & \hline 218, \\ & 553, \\ & 730 \\ & \hline \end{aligned}$
H417	853 *1	Speed deviation time	218
H420	31	Frequency jump 1A	401
H421	32	Frequency jump 1B	401
H422	33	Frequency jump 2A	401
H423	34	Frequency jump 2B	401
H424	35	Frequency jump 3A	401
H425	36	Frequency jump 3B	401
H429	552	Frequency jump range	401
H500	22	Stall prevention operation level (Torque limit level)	$\begin{aligned} & 191, \\ & 403 \end{aligned}$
H501	156	Stall prevention operation selection	403
H520	1480	Load characteristics measurement mode	410
H521	1481	Load characteristics load reference 1	410
H522	1482	Load characteristics load reference 2	410
H523	1483	Load characteristics load reference 3	410
H524	1484	Load characteristics load reference 4	410
H525	1485	Load characteristics load reference 5	410
H526	1486	Load characteristics maximum frequency	410
H527	1487	Load characteristics minimum frequency	410
H531	1488	Upper limit warning detection width	410
H532	1489	Lower limit warning detection width	410
H533	1490	Upper limit fault detection width	410
H534	1491	Lower limit fault detection width	410
H535	1492	Load status detection signal delay time / load reference measurement waiting time	410
H600	48	Second stall prevention operation level	403

Pr. group	Pr.	Name	Refer to page
H601	49	Second stall prevention operation frequency	403
H602	114	Third stall prevention operation level	403
H603	115	Third stall prevention operation frequency	403
H610	23	Stall prevention operation level compensation factor at double speed	403
H611	66	Stall prevention operation reduction starting frequency	403
H620	148	Stall prevention level at 0 V input	403
H621	149	Stall prevention level at 10 V input	403
H631	154	Voltage reduction selection during stall prevention operation	403
H700	810	Torque limit input method selection	191
H701	812	Torque limit level (regeneration)	191
H702	813	Torque limit level (3rd quadrant)	191
H703	814	Torque limit level (4th quadrant)	191
H704	801	Output limit level	$\begin{aligned} & 191, \\ & 232 \end{aligned}$
H710	815	Torque limit level 2	191
H720	816	Torque limit level during acceleration	191
H721	817	Torque limit level during deceleration	191
H730	874	OLT level setting	191
H800	374	Overspeed detection level	415
H881	690	Deceleration check time	219

\checkmark M: Monitor display and monitor output signal

Parameters regarding the inverter's operating status. These parameters are used to set the monitors and output signals.

Pr. group	Pr.	Name	Refer to page
M000	$\mathbf{3 7}$	Speed display	417
M001	$\mathbf{5 0 5}$	Speed setting reference	417
M002	$\mathbf{1 4 4}$	Speed setting switchover	417
M020	$\mathbf{1 7 0}$	Watt-hour meter clear	419
M021	$\mathbf{5 6 3}$	Energization time carrying-over times	419
M022	$\mathbf{2 6 8}$	Monitor decimal digits selection	419
M023	$\mathbf{8 9 1}$	Cumulative power monitor digit shifted times	419,
M030	$\mathbf{1 7 1}$	Operation hour meter clear	419
M031	$\mathbf{5 6 4}$	Operating time carrying-over times	419
M040	$\mathbf{5 5}$	Frequency monitoring reference	430
M041	$\mathbf{5 6}$	Current monitoring reference	430
M042	$\mathbf{8 6 6}$	Torque monitoring reference	430
M043	$\mathbf{2 4 1}$	Analog input display unit switchover	483
M044	$\mathbf{2 9 0}$	Monitor negative output selection	419,
M045	$\mathbf{1 0 1 8}$	Monitor with sign selection	419
M050	$\mathbf{1 1 0 6}$	Torque monitor filter	419

Pr. group	Pr.	Name	Refer to page
M051	1107	Running speed monitor filter	419
M052	1108	Excitation current monitor filter	419
M060	663	Control circuit temperature signal output level	470
M100	52	Operation panel main monitor selection	419
M101	774	Operation panel monitor selection 1	419
M102	775	Operation panel monitor selection 2	419
M103	776	Operation panel monitor selection 3	419
M104	992	Parameter for manufacturer settin not set.	g. Do
M200	892	Load factor	440
M201	893	Energy saving monitor reference (motor capacity)	440
M202	894	Control selection during commercial power-supply operation	440
M203	895	Power saving rate reference value	440
M204	896	Power unit cost	440
M205	897	Power saving monitor average time	440
M206	898	Power saving cumulative monitor clear	440
M207	899	Operation time rate (estimated value)	440
M300	54	FM terminal function selection	430
M301	158	AM terminal function selection	430
M310	900	FM terminal calibration	437
M320	901	AM terminal calibration	437
M321	867	AM output filter	437
M400	190	RUN terminal function selection	446
M401	191	SU terminal function selection	446
M402	192	IPF terminal function selection	446
M403	193	OL terminal function selection	446
M404	194	FU terminal function selection	446
M405	195	ABC1 terminal function selection	446
M406	196	ABC2 terminal function selection	446
M410	313 *3	DO0 output selection	446
M411	314 *3	D01 output selection	446
M412	315*3	DO2 output selection	446
M413	316 *3	DO3 output selection	446
M414	317 *3	DO4 output selection	446
M415	318 *3	DO5 output selection	446
M416	319 *3	DO6 output selection	446
M420	320 *3	RA1 output selection	446
M421	321 *3	RA2 output selection	446
M422	322 *3	RA3 output selection	446
M430	157	OL signal output timer	$\begin{aligned} & 191, \\ & 403 \end{aligned}$
M431	289	Inverter output terminal filter	446
M433	166	Output current detection signal retention time	461
M440	870	Speed detection hysteresis	457
M441	41	Up-to-frequency sensitivity	457

Pr. group	Pr.	Name	Refer to page
M442	42	Output frequency detection	457
M443	43	Output frequency detection for reverse rotation	457
M444	50	Second output frequency detection	457
M445	116	Third output frequency detection	457
M446	865	Low speed detection	457
M460	150	Output current detection level	461
M461	151	Output current detection signal delay time	461
M462	152	Zero current detection level	461
M463	153	Zero current detection time	461
M464	167	Output current detection operation selection	461
M470	864	Torque detection	463
M500	495	Remote output selection	464
M501	496	Remote output data 1	464
M502	497	Remote output data 2	464
M510	76	Fault code output selection	468
M520	799	Pulse increment setting for output power	469
M530	655	Analog remote output selection	466
M531	656	Analog remote output 1	466
M532	657	Analog remote output 2	466
M533	658	Analog remote output 3	466
M534	659	Analog remote output 4	466
M600	863 *1	Control terminal option-Encoder pulse division ratio	471
M601	413 *1	Encoder pulse division ratio	471
M610	$635{ }^{* 1}$	Cumulative pulse clear signal selection	274
M611	$636{ }^{* 1}$	Cumulative pulse division scaling factor	274
M612	$637{ }^{* 1}$	Control terminal optionCumulative pulse division scaling factor	274
M613	$638{ }^{* 1}$	Cumulative pulse storage	274

- T: Multi-function input terminal parameters

Parameters for the input terminals where inverter commands are received through.

Pr. group	Pr.	Name	Refer to page
T000	$\mathbf{7 3}$	Analog input selection	473, 478
T001	$\mathbf{2 6 7}$	Terminal 4 input selection	473
T002	$\mathbf{7 4}$	Input filter time constant	481
T003	$\mathbf{8 2 2}$	Speed setting filter 1	481
T004	$\mathbf{8 2 6}$	Torque setting filter 1	481
T005	$\mathbf{8 3 2}$	Speed setting filter 2	481
T006	$\mathbf{8 3 6}$	Torque setting filter 2	481
T007	$\mathbf{8 4 9}$	Analog input offset adjustment	481
T010	$\mathbf{8 6 8}$	Terminal 1 function assignment	191,
			403,
T021	$\mathbf{2 4 2}$	Terminal 1 added compensation amount (terminal 2)	478

Pr. group	Pr.	Name	Refer to page
T022	125	Terminal 2 frequency setting gain frequency Simple.	483
T040	858	Terminal 4 function assignment	191, 403, 476
T041	243	Terminal 1 added compensation amount (terminal 4)	478
T042	126	Terminal 4 frequency setting gain frequency Simple	483
T050	252	Override bias	478
T051	253	Override gain	478
T052	573	4 mA input check selection	493
T053	777	4 mA input fault operation frequency	493
T054	778	4 mA input check filter	493
T100	917	Terminal 1 bias frequency (speed)	483
T101	917	Terminal 1 bias (speed)	483
T102	918	Terminal 1 gain frequency (speed)	483
T103	918	Terminal 1 gain (speed)	483
T110	919	Terminal 1 bias command (torque)	488
T111	919	Terminal 1 bias (torque)	488
T112	920	Terminal 1 gain command (torque)	488
T113	920	Terminal 1 gain (torque)	488
T200	902	Terminal 2 frequency setting bias frequency	483
T201	902	Terminal 2 frequency setting bias	483
T202	$\begin{aligned} & 903 \\ & (125) \end{aligned}$	Terminal 2 frequency setting gain frequency	483
T203	903	Terminal 2 frequency setting gain	483
T400	904	Terminal 4 frequency setting bias frequency	483
T401	904	Terminal 4 frequency setting bias	483
T402	$\begin{aligned} & 905 \\ & (126) \end{aligned}$	Terminal 4 frequency setting gain frequency	483
T403	905	Terminal 4 frequency setting gain	483
T410	932	Terminal 4 bias command (torque)	488
T411	932	Terminal 4 bias (torque)	488
T412	933	Terminal 4 gain command (torque)	488
T413	933	Terminal 4 gain (torque)	488
T700	178	STF terminal function selection	498
T701	179	STR terminal function selection	498
T702	180	RL terminal function selection	498
T703	181	RM terminal function selection	498
T704	182	RH terminal function selection	498
T705	183	RT terminal function selection	498
T706	184	AU terminal function selection	498
T707	185	JOG terminal function selection	498
T708	186	CS terminal function selection	498
T709	187	MRS terminal function selection	498
T710	188	STOP terminal function selection	498
T711	189	RES terminal function selection	498
T720	17	MRS input selection	501
T721	599	X10 terminal input selection	718
T722	606	Power failure stop external signal input selection	629
T730	155	RT signal function validity condition selection	503
T740	699	Input terminal filter	498

C: Motor constant parameters

Parameters for the applied motor setting.

Pr. group	Pr.	Name	Refer to page
C000	684	Tuning data unit switchover	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C100	71	Applied motor	$\begin{aligned} & 506, \\ & 508, \\ & 529 \end{aligned}$
C101	80	Motor capacity	$\begin{aligned} & 166, \\ & 508, \\ & 529 \end{aligned}$
C102	81	Number of motor poles	$\begin{aligned} & \hline 166, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
C103	9	Rated motor current Simple	$\begin{aligned} & \hline 377, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
C104	83	Rated motor voltage	$\begin{aligned} & \hline 166, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
C105	84	Rated motor frequency	$\begin{aligned} & \hline 166, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
C106	702	Maximum motor frequency	529
C107	707	Motor inertia (integer)	529
C108	724	Motor inertia (exponent)	529
C110	96	Auto tuning setting/status	$\begin{aligned} & 508, \\ & 529, \\ & 625 \end{aligned}$
C111	95	Online auto tuning selection	537
C112	818	Easy gain tuning response level setting	201
C113	819	Easy gain tuning selection	201
C114	880	Load inertia ratio	$\begin{aligned} & \hline 201, \\ & 211, \\ & 283 \end{aligned}$
C120	90	Motor constant (R1)	$\begin{aligned} & 508, \\ & 529, \\ & 625 \end{aligned}$
C121	91	Motor constant (R2)	508
C122	92	Motor constant (L1)/d-axis inductance (Ld)	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C123	93	Motor constant (L2)/q-axis inductance (Lq)	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C124	94	Motor constant (X)	508
C125	82	Motor excitation current	508
C126	859	Torque current/Rated PM motor current	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C130	706	Induced voltage constant (phi f)	529
C131	711	Motor Ld decay ratio	529
C132	712	Motor Lq decay ratio	529
C133	725	Motor protection current level	529
C135	1412	Motor induced voltage constant (phi f) exponent	529
C140	369 *1	Number of encoder pulses	$\begin{aligned} & \hline 77, \\ & 570, \\ & 730 \end{aligned}$
C141	359 *1	Encoder rotation direction	$\begin{aligned} & \hline 77, \\ & 570, \\ & 730 \\ & \hline \end{aligned}$
C142	373 *1	Encoder position tuning setting/ status	518

Pr. group	Pr.	Name	Refer to page
C143	$1105 * 1$	Encoder magnetic pole position offset	518
C148	376 *1	Encoder signal loss detection enable/disable selection	540
C150	1002	Lq tuning target current adjustment coefficient	529
C182	717	Starting resistance tuning compensation	529
C185	721	Starting magnetic pole position detection pulse width	529
C200	450	Second applied motor	506
C201	453	Second motor capacity	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C202	454	Number of second motor poles	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C203	51	Rated second motor current	$\begin{aligned} & \hline 377, \\ & 508, \\ & 529 \\ & \hline \end{aligned}$
C204	456	Rated second motor voltage	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C205	457	Rated second motor frequency	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C206	743	Second motor maximum frequency	529
C207	744	Second motor inertia (integer)	529
C208	745	Second motor inertia (exponent)	529
C210	463	Second motor auto tuning setting/ status	$\begin{aligned} & 508, \\ & 529, \\ & 625 \end{aligned}$
C211	574	Second motor online auto tuning	537
C220	458	Second motor constant (R1)	$\begin{aligned} & \hline 508, \\ & 529, \\ & 625 \\ & \hline \end{aligned}$
C221	459	Second motor constant (R2)	508
C222	460	Second motor constant (L1) / daxis inductance (Ld)	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C223	461	Second motor constant (L2) / qaxis inductance (Lq)	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C224	462	Second motor constant (X)	508
C225	455	Second motor excitation current	508
C226	860	Second motor torque current/ Rated PM motor current	$\begin{aligned} & 508, \\ & 529 \end{aligned}$
C230	738	Second motor induced voltage constant (phi f)	529
C231	739	Second motor Ld decay ratio	529
C232	740	Second motor Lq decay ratio	529
C233	746	Second motor protection current level	529
C235	1413	Second motor induced voltage constant (phi f) exponent	529
C240	$851{ }^{* 1}$	Control terminal option-Number of encoder pulses	77
C241	852 *1	Control terminal option-Encoder rotation direction	77
C242	862 *1	Encoder option selection	172
C243	$871{ }^{* 1}$	Control terminal option-Encoder position tuning setting/status	518
C244	$887{ }^{* 1}$	Control terminal option-Encoder magnetic pole position offset	518
C248	$855{ }^{* 1}$	Control terminal option-Signal loss detection enable/disable selection	540

Pr. group	Pr.	Name	Refer to page
C282	741	Second starting resistance tuning compensation	529
C285	742	Second motor magnetic pole detection pulse width	529

A: Application parameters

Parameters to set a specific application.

Pr. group	Pr.	Name	Refer to page
A000	135	Electronic bypass sequence selection	542
A001	136	MC switchover interlock time	542
A002	137	Start waiting time	542
A003	138	Bypass selection at a fault	542
A004	139	Automatic switchover frequency from inverter to bypass operation	542
A005	159	Automatic switchover frequency range from bypass to inverter operation	542
A006	248	Self power management selection	550
A007	254	Main circuit power OFF waiting time	550
A100	278	Brake opening frequency	553
A101	279	Brake opening current	553
A102	280	Brake opening current detection time	553
A103	281	Brake operation time at start	553
A104	282	Brake operation frequency	553
A105	283	Brake operation time at stop	553
A106	284	Deceleration detection function selection	553
A107	285	Overspeed detection frequency	$\begin{aligned} & 218, \\ & 553, \\ & 730 \end{aligned}$
A108	639	Brake opening current selection	553
A109	640	Brake operation frequency selection	553
A110	292	Automatic acceleration/ deceleration	$\begin{aligned} & 339, \\ & 343, \\ & 553 \end{aligned}$
A120	642	Second brake opening frequency	553
A121	643	Second brake opening current	553
A122	644	Second brake opening current detection time	553
A123	645	Second brake operation time at start	553
A124	646	Second brake operation frequency	553
A125	647	Second brake operation time at stop	553
A126	648	Second deceleration detection function selection	553
A128	650	Second brake opening current selection	553
A129	651	Second brake operation frequency selection	553
A130	641	Second brake sequence operation selection	553
A170	1410	Starting times lower 4 digits	558
A171	1411	Starting times upper 4 digits	558

Pr. group	Pr.	Name	Refer to page
A200	270	Stop-on contact/load torque highspeed frequency control selection	$\begin{aligned} & 559, \\ & 563 \end{aligned}$
A201	271	High-speed setting maximum current	563
A202	272	Middle-speed setting minimum current	563
A203	273	Current averaging range	563
A204	274	Current averaging filter time constant	563
A205	275	Stop-on contact excitation current low-speed multiplying factor	559
A206	276	PWM carrier frequency at stop-on contact	559
A300	592	Traverse function selection	566
A301	593	Maximum amplitude amount	566
A302	594	Amplitude compensation amount during deceleration	566
A303	595	Amplitude compensation amount during acceleration	566
A304	596	Amplitude acceleration time	566
A305	597	Amplitude deceleration time	566
A310	1072	DC brake judgment time for antisway control operation	568
A311	1073	Anti-sway control operation selection	568
A312	1074	Anti-sway control frequency	568
A313	1075	Anti-sway control depth	568
A314	1076	Anti-sway control width	568
A315	1077	Rope length	568
A316	1078	Trolley weight	568
A317	1079	Load weight	568
A510	350*1	Stop position command selection	570
A511	360*1	16-bit data selection	570
A512	$361{ }^{* 1}$	Position shift	570
A520	362 *1	Orientation position loop gain	570
A521	363 *1	Completion signal output delay time	570
A522	$364 * 1$	Encoder stop check time	570
A523	365*1	Orientation limit	570
A524	366*1	Recheck time	570
A525	393 *1	Orientation selection	570
A526	$351{ }^{* 1}$	Orientation speed	570
A527	352 *1	Creep speed	570
A528	353 *1	Creep switchover position	570
A529	$354 * 1$	Position loop switchover position	570
A530	355*1	DC injection brake start position	570
A531	356 *1	Internal stop position command	570
A532	357 *1	Orientation in-position zone	570
A533	$358 * 1$	Servo torque selection	570
A540	$394 * 1$	Number of machine side gear teeth	570
A541	$395 * 1$	Number of motor side gear teeth	570
A542	396 *1	Orientation speed gain (P term)	570
A543	$397 * 1$	Orientation speed integral time	570
A544	398 *1	Orientation speed gain (D term)	570
A545	399 *1	Orientation deceleration ratio	570

Pr. group	Pr.	Name	Refer to page
A546	829 *1	Number of machine end encoder pulses	570
A600	759	PID unit selection	603
A601	131	PID upper limit	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A602	132	PID lower limit	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A603	553	PID deviation limit	587
A604	554	PID signal operation selection	587
A605	1134	PID upper limit manipulated value	611
A606	1135	PID lower limit manipulated value	611
A607	1015	Integral stop selection at limited frequency	587
A610	128	PID action selection	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A611	133	PID action set point	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A612	127	PID control automatic switchover frequency	587
A613	129	PID proportional band	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A614	130	PID integral time	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A615	134	PID differential time	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A616	760	Pre-charge fault selection	607
A617	761	Pre-charge ending level	607
A618	762	Pre-charge ending time	607
A619	763	Pre-charge upper detection level	607
A620	764	Pre-charge time limit	607
A621	575	Output interruption detection time	587
A622	576	Output interruption detection level	587
A623	577	Output interruption cancel level	587
A624	609	PID set point/deviation input selection	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A625	610	PID measured value input selection	$\begin{aligned} & 587, \\ & 611 \end{aligned}$
A630	934	PID display bias coefficient Simple	603
A631	934	PID display bias analog value Simple	603
A632	935	PID display gain coefficient Simple	603
A633	935	PID display gain analog value Simple	603
A640	1142	Second PID unit selection	587
A641	1143	Second PID upper limit	587
A642	1144	Second PID lower limit	587
A643	1145	Second PID deviation limit	587
A644	1146	Second PID signal operation selection	587
A650	753	Second PID action selection	587
A651	755	Second PID action set point	587
A652	754	Second PID control automatic switchover frequency	587
A653	756	Second PID proportional band	587
A654	757	Second PID integral time	587
A655	758	Second PID differential time	587
A656	765	Second pre-charge fault selection	607

Pr. group	Pr.	Name	Refer to page
A657	766	Second pre-charge ending level	607
A658	767	Second pre-charge ending time	607
A659	768	Second pre-charge upper detection level	607
A660	769	Second pre-charge time limit	607
A661	1147	Second output interruption detection time	587
A662	1148	Second output interruption detection level	587
A663	1149	Second output interruption cancel level	587
A664	1140	Second PID set point/deviation input selection	587
A665	1141	Second PID measured value input selection	587
A670	1136	Second PID display bias coefficient Simple	603
A671	1137	Second PID display bias analog value Simple	603
A672	1138	Second PID display gain coefficient Simple	603
A673	1139	Second PID display gain analog value Simple	603
A680	573	4 mA input check selection	493
A681	777	4 mA input fault operation frequency	493
A682	778	4 mA input check filter	493
A700	162	Automatic restart after instantaneous power failure selection	$\begin{aligned} & 618, \\ & 625 \end{aligned}$
A701	299	Rotation direction detection selection at restarting	618
A702	57	Restart coasting time	618
A703	58	Restart cushion time	618
A704	163	First cushion time for restart	618
A705	164	First cushion voltage for restart	618
A710	165	Stall prevention operation level for restart	618
A711	298	Frequency search gain	$\begin{aligned} & 508, \\ & 625 \end{aligned}$
A712	560	Second frequency search gain	$\begin{aligned} & 508, \\ & 625 \end{aligned}$
A730	261	Power failure stop selection	629
A731	262	Subtracted frequency at deceleration start	629
A732	263	Subtraction starting frequency	629
A733	264	Power-failure deceleration time 1	629
A734	265	Power-failure deceleration time 2	629
A735	266	Power failure deceleration time switchover frequency	629
A785	294	UV avoidance voltage gain	629
A786	668	Power failure stop frequency gain	629
A800	414	PLC function operation selection	634
A801	415	Inverter operation lock mode setting	634
A802	416	Pre-scale function selection	634
A803	417	Pre-scale setting value	634
A804	498	PLC function flash memory clear	634

Pr. group	Pr.	Name	Refer to page
A805	675	User parameter auto storage function selection	634
A810 to A859	$\begin{aligned} & \hline 1150 \\ & \text { to } \\ & 1199 \end{aligned}$	PLC function user parameters 1 to 50	634
A900	1020	Trace operation selection	636
A901	1021	Trace mode selection	636
A902	1022	Sampling cycle	636
A903	1023	Number of analog channels	636
A904	1024	Sampling auto start	636
A905	1025	Trigger mode selection	636
A906	1026	Number of sampling before trigger	636
A910	1027	Analog source selection (1ch)	636
A911	1028	Analog source selection (2ch)	636
A912	1029	Analog source selection (3ch)	636
A913	1030	Analog source selection (4ch)	636
A914	1031	Analog source selection (5ch)	636
A915	1032	Analog source selection (6ch)	636
A916	1033	Analog source selection (7ch)	636
A917	1034	Analog source selection (8ch)	636
A918	1035	Analog trigger channel	636
A919	1036	Analog trigger operation selection	636
A920	1037	Analog trigger level	636
A930	1038	Digital source selection (1ch)	636
A931	1039	Digital source selection (2ch)	636
A932	1040	Digital source selection (3ch)	636
A933	1041	Digital source selection (4ch)	636
A934	1042	Digital source selection (5ch)	636
A935	1043	Digital source selection (6ch)	636
A936	1044	Digital source selection (7ch)	636
A937	1045	Digital source selection (8ch)	636
A938	1046	Digital trigger channel	636
A939	1047	Digital trigger operation selection	636

B: Position control parameters

Parameters for the position control setting.

Pr. group	Pr.	Name	Refer to page
B000	419	Position command source selection	251, 271
B001	420	Command pulse scaling factor numerator (electronic gear numerator)	279
B002	421	Command pulse multiplication denominator (electronic gear denominator)	279
B003	422	Position control gain	283
B004	423	Position feed forward gain	283
B005	424	Position command acceleration/ deceleration time constant	279
B006	425	Position feed forward command filter	283
B007	426	In-position width	281
B008	427	Excessive level error	281
B009	428	Command pulse selection	271
B010	429	Clear signal selection	271
B011	430	Pulse monitor selection	274
B012	446	Model position control gain	283

Pr. group	Pr.	Name	Refer to page
B013	1298	Second position control gain	283
B020	464	Digital position control sudden stop deceleration time	251
B021	465	First target position lower 4 digits	251
B022	466	First target position upper 4 digits	251
B023	467	Second target position lower 4 digits	251
B024	468	Second target position upper 4 digits	251
B025	469	Third target position lower 4 digits	251
B026	470	Third target position upper 4 digits	251
B027	471	Fourth target position lower 4 digits	251
B028	472	Fourth target position upper 4 digits	251
B029	473	Fifth target position lower 4 digits	251
B030	474	Fifth target position upper 4 digits	251
B031	475	Sixth target position lower 4 digits	251
B032	476	Sixth target position upper 4 digits	251
B033	477	Seventh target position lower 4 digits	251
B034	478	Seventh target position upper 4 digits	251
B035	479	Eighth target position lower 4 digits	251
B036	480	Eighth target position upper 4 digits	251
B037	481	Ninth target position lower 4 digits	251
B038	482	Ninth target position upper 4 digits	251
B039	483	Tenth target position lower 4 digits	251
B040	484	Tenth target position upper 4 digits	251
B041	485	Eleventh target position lower 4 digits	251
B042	486	Eleventh target position upper 4 digits	251
B043	487	Twelfth target position lower 4 digits	251
B044	488	Twelfth target position upper 4 digits	251
B045	489	Thirteenth target position lower 4 digits	251
B046	490	Thirteenth target position upper 4 digits	251
B047	491	Fourteenth target position lower 4 digits	251
B048	492	Fourteenth target position upper 4 digits	251
B049	493	Fifteenth target position lower 4 digits	251
B050	494	Fifteenth target position upper 4 digits	251
B100	1220	Target position/speed selection	835
B101	1221	Start command edge detection selection	251
B120	1222	First positioning acceleration time	251
B121	1223	First positioning deceleration time	251
B122	1224	First positioning dwell time	251
B123	1225	First positioning sub-function	251
B124	1226	Second positioning acceleration time	251

5. PARAMETERS
5.1 Parameter List

Pr. group	Pr.	Name	Refer to page
B125	1227	Second positioning deceleration time	251
B126	1228	Second positioning dwell time	251
B127	1229	Second positioning sub-function	251
B128	1230	Third positioning acceleration time	251
B129	1231	Third positioning deceleration time	251
B130	1232	Third positioning dwell time	251
B131	1233	Third positioning sub-function	251
B132	1234	Fourth positioning acceleration time	251
B133	1235	Fourth positioning deceleration time	251
B134	1236	Fourth positioning dwell time	251
B135	1237	Fourth positioning sub-function	251
B136	1238	Fifth positioning acceleration time	251
B137	1239	Fifth positioning deceleration time	251
B138	1240	Fifth positioning dwell time	251
B139	1241	Fifth positioning sub-function	251
B140	1242	Sixth positioning acceleration time	251
B141	1243	Sixth positioning deceleration time	251
B142	1244	Sixth positioning dwell time	251
B143	1245	Sixth positioning sub-function	251
B144	1246	Seventh positioning acceleration time	251
B145	1247	Seventh positioning deceleration time	251
B146	1248	Seventh positioning dwell time	251
B147	1249	Seventh positioning sub-function	251
B148	1250	Eighth positioning acceleration time	251
B149	1251	Eighth positioning deceleration time	251
B150	1252	Eighth positioning dwell time	251
B151	1253	Eighth positioning sub-function	251
B152	1254	Ninth positioning acceleration time	251
B153	1255	Ninth positioning deceleration time	251
B154	1256	Ninth positioning dwell time	251
B155	1257	Ninth positioning sub-function	251
B156	1258	Tenth positioning acceleration time	251
B157	1259	Tenth positioning deceleration time	251
B158	1260	Tenth positioning dwell time	251
B159	1261	Tenth positioning sub-function	251
B160	1262	Eleventh positioning acceleration time	251
B161	1263	Eleventh positioning deceleration time	251
B162	1264	Eleventh positioning dwell time	251
B163	1265	Eleventh positioning sub-function	251
B164	1266	Twelfth positioning acceleration time	251
B165	1267	Twelfth positioning deceleration time	251
B166	1268	Twelfth positioning dwell time	251
B167	1269	Twelfth positioning sub-function	251

Pr. group	Pr.	Name	Refer to page
B168	1270	Thirteenth positioning acceleration time	251
B169	1271	Thirteenth positioning deceleration time	251
B170	1272	Thirteenth positioning dwell time	251
B171	1273	Thirteenth positioning subfunction	251
B172	1274	Fourteenth positioning acceleration time	251
B173	1275	Fourteenth positioning deceleration time	251
B174	1276	Fourteenth positioning dwell time	251
B175	1277	Fourteenth positioning subfunction	251
B176	1278	Fifteenth positioning acceleration time	251
B177	1279	Fifteenth positioning deceleration time	251
B178	1280	Fifteenth positioning dwell time	251
B179	1281	Fifteenth positioning sub-function	251
B180	1282	Home position return method selection	251
B181	1283	Home position return speed	251
B182	1284	Home position return creep speed	251
B183	1285	Home position shift amount lower 4 digits	251
B184	1286	Home position shift amount upper 4 digits	251
B185	1287	Travel distance after proximity dog ON lower 4 digits	251
B186	1288	Travel distance after proximity dog ON upper 4 digits	251
B187	1289	Home position return stopper torque	251
B188	1290	Home position return stopper waiting time	251
B190	1292	Position control terminal input selection	251
B191	1293	Roll feeding mode selection	251
B192	1294	Position detection lower 4 digits	281
B193	1295	Position detection upper 4 digits	281
B194	1296	Position detection selection	281
B195	1297	Position detection hysteresis width	281

N: Operation via communication and its settings

Parameters for communication operation. These parameters set the communication specifications and operation.

Pr. group	Pr.	Name	Refer to page
N000	549	Protocol selection	650
N001	$\mathbf{3 4 2}$	Communication EEPROM write selection	650
N002	539	MODBUS RTU communication check time interval	674
N010	$\mathbf{3 4 9}{ }^{* 4}$	Communication reset selection	650
N011	$\mathbf{5 0 0}{ }^{* 4}$	Communication error execution waiting time	650

Pr. group	Pr.	Name	Refer to page
N012	$501 * 4$	Communication error occurrence count display	650
N013	502	Stop mode selection at communication error	650
N014	779	Operation frequency during communication error	650
N020	117	PU communication station number	657
N021	118	PU communication speed	657
N022	119	PU communication data length	657
N023	119	PU communication stop bit length	657
N024	120	PU communication parity check	657
N025	121	Number of PU communication retries	657
N026	122	PU communication check time interval	657
N027	123	PU communication waiting time setting	657
N028	124	PU communication CR/LF selection	657
N030	331	RS-485 communication station number	657
N031	332	RS-485 communication speed	657
N032	333	PU communication data length	657
N033	333	PU communication stop bit length	657
N034	334	RS-485 communication parity check selection	657
N035	335	RS-485 communication retry count	657
N036	336	RS-485 communication check time interval	657
N037	337	RS-485 communication waiting time setting	657
N038	341	RS-485 communication CR/LF selection	657
N040	547	USB communication station number	691
N041	548	USB communication check time interval	691
N080	343	Communication error count	674
N240	349 *4	Ready bit status selection	$\begin{aligned} & 831, \\ & 836 \end{aligned}$
N241	349 *4	Reset selection after inverter faults are cleared	831
N242	349 *4	DriveControl writing restriction selection	831
N500 to N543, N550 to N559	1300 to 1343, 1350 to 1359	Communication option parameters. For details, refer to the Instruction Manual of the option.	

- G: Control Parameters

Parameters for motor control.

Pr. group	Pr.	Name	Refer to page
G000	$\mathbf{0}$	Torque boost Simple	697
G001	$\mathbf{3}$	Base frequency Simple	699
G002	$\mathbf{1 9}$	Base frequency voltage	699
G003	$\mathbf{1 4}$	Load pattern selection	701

Pr. group	Pr.	Name	Refer to page
G010	46	Second torque boost	697
G011	47	Second V/F (base frequency)	699
G020	112	Third torque boost	697
G021	113	Third V/F (base frequency)	699
G030	60	Energy saving control selection	704
G040	100	V/F1 (first frequency)	705
G041	101	V/F1 (first frequency voltage)	705
G042	102	V/F2 (second frequency)	705
G043	103	V/F2 (second frequency voltage)	705
G044	104	V/F3 (third frequency)	705
G045	105	V/F3 (third frequency voltage)	705
G046	106	V/F4 (fourth frequency)	705
G047	107	V/F4 (fourth frequency voltage)	705
G048	108	V/F5 (fifth frequency)	705
G049	109	V/F5 (fifth frequency voltage)	705
G080	617	Reverse rotation excitation current low-speed scaling factor	703
G100	10	DC injection brake operation frequency	707
G101	11	DC injection brake operation time	707
G102	802	Pre-excitation selection	707
G103	850	Brake operation selection	713
G105	522	Output stop frequency	713
G106	250	Stop selection	715
G107	70 *2	Special regenerative brake duty	718
G108	1299	Second pre-excitation selection	707
G110	12	DC injection brake operation voltage	707
G120	882	Regeneration avoidance operation selection	725
G121	883	Regeneration avoidance operation level	725
G122	884	Regeneration avoidance at deceleration detection sensitivity	725
G123	885	Regeneration avoidance compensation frequency limit value	725
G124	886	Regeneration avoidance voltage gain	725
G125	665	Regeneration avoidance frequency gain	725
G130	660	Increased magnetic excitation deceleration operation selection	728
G131	661	Magnetic excitation increase rate	728
G132	662	Increased magnetic excitation current level	728
G200	800	Control method selection	166
G201	85	Excitation current refraction point	703
G202	86	Excitation current low-speed scaling factor	703
G203	245	Rated slip	729
G204	246	Slip compensation time constant	729
G205	247	Constant-power range slip compensation selection	729
G206	1116	Constant output range speed control P gain compensation	201
G210	803	Constant output range torque characteristic selection	$\begin{aligned} & 191, \\ & 232 \end{aligned}$
G211	820	Speed control P gain 1	201
G212	821	Speed control integral time 1	201

Pr. group	Pr.	Name	Refer to page
G213	824	Torque control P gain 1 (current loop proportional gain)	$\begin{aligned} & 243, \\ & 288 \end{aligned}$
G214	825	Torque control integral time 1 (current loop integral time)	$\begin{aligned} & 243, \\ & 288 \end{aligned}$
G215	823 *1	Speed detection filter 1	287
G216	827	Torque detection filter 1	287
G217	854	Excitation ratio	288
G218	1115	Speed control integral term clear time	201
G220	877	Speed feed forward control/model adaptive speed control selection	$\begin{aligned} & \hline 211, \\ & 283 \end{aligned}$
G221	878	Speed feed forward filter	211
G222	879	Speed feed forward torque limit	211
G223	881	Speed feed forward gain	211
G224	828	Model speed control gain	$\begin{aligned} & 211, \\ & 283 \end{aligned}$
G230	840	Torque bias selection	214
G231	841	Torque bias 1	214
G232	842	Torque bias 2	214
G233	843	Torque bias 3	214
G234	844	Torque bias filter	214
G235	845	Torque bias operation time	214
G236	846	Torque bias balance compensation	214
G237	847	Fall-time torque bias terminal 1 bias	214
G238	848	Fall-time torque bias terminal 1 gain	214
G240	367 *1	Speed feedback range	730
G241	368 *1	Feedback gain	730
G260	1121	Per-unit speed control reference frequency	201
G261	1117	Speed control P gain 1 (per-unit system)	201
G262	1119	Model speed control gain (per-unit system)	211
G263	1348	P/PI control switchover frequency	201
G264	1349	Emergency stop operation selection	320
G300	451	Second motor control method selection	166
G301	565	Second motor excitation current refraction point	703
G302	566	Second motor excitation current low speed scaling factor	703
G311	830	Speed control P gain 2	201
G312	831	Speed control integral time 2	201
G313	834	Torque control P gain 2	243
G314	835	Torque control integral time 2	243
G315	833 *1	Speed detection filter 2	287
G316	837	Torque detection filter 2	287
G361	1118	Speed control P gain 2 (per-unit system)	201
G400	286	Droop gain	733
G401	287	Droop filter time constant	733
G402	288	Droop function activation selection	733
G403	994	Droop break point gain	733
G404	995	Droop break point torque	733
G410	653	Speed smoothing control	736

Pr. group	Pr.	Name	Refer to page
G411	654	Speed smoothing cutoff frequency	736
G420	679	Second droop gain	733
G421	680	Second droop filter time constant	733
G422	681	Second droop function activation selection	733
G423	$\mathbf{6 8 2}$	Second droop break point gain	733
G424	$\mathbf{6 8 3}$	Second droop break point torque	733
G601	1003	Notch filter frequency	220
G602	$\mathbf{1 0 0 4}$	Notch filter depth	220
G603	1005	Notch filter width	220
G932	89	Speed control gain (Advanced magnetic flux vector)	174
G942	$\mathbf{5 6 9}$	Second motor speed control gain	174

*1 The setting is available when a plug-in option for Vector control is installed.
*2 Setting can be made only for the standard model.
*3 The setting is available when the PLC function is enabled.
*4 The setting is available when a compatible plug-in option is installed.
*5 Refer to the FR-A8AVP Instruction Manual (For Inverter/ Converter Switching) (575V Class).

5.2 Control method

V/F control (initial setting), Advanced magnetic flux vector control, Real sensorless vector control, vector control, and PM sensorless vector control are available with this inverter.

- V/F control

- It controls the frequency and voltage so that the ratio of frequency (F) to voltage (V) is constant while changing the frequency.

- Advanced magnetic flux vector control

- This control performs vector calculation and divide the inverter's output current into an excitation current and into a torque current. The frequency and the voltage are then compensated to flow the motor current that meets the load torque. This control methods improves the torque generation at a low speed. The output frequency is further compensated (slip compensation) to bring the actual motor speed closer to the commanded speed. This function is useful when the load fluctuates are severe.

NOTE

- Advanced magnetic flux vector control requires the following conditions. If the conditions are not satisfied, select V/F control. Otherwise, malfunctions such as insufficient torque, uneven rotation may occur.
- For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and torque accuracies. As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.
- The motor described in the table below is used.

Motor	Condition
Standard motor	Offline auto tuning is not required
Constant-torque motor	Offline auto tuning is required
Other motors (other manufacturers' motors)	

- Single-motor operation (one motor to one inverter) is preformed.
- The wiring length from inverter to motor is 30 m or less. (When the wiring length exceeds 30 m , perform offline auto tuning in a wired state.)

- Real sensorless vector control

- The motor speed estimation enables the speed control and the torque control to control currents more accurately. When a high-accuracy, fast-response control is needed, select Real sensorless vector control, and perform offline auto tuning.
- This control method can be applied for the following purposes:

To minimize the speed fluctuation even at a severe load fluctuation
To generate a low speed torque
To prevent machine from damage due to a too large torque (torque limit)
To perform the torque control

NOTE

- The Real sensorless vector control requires the following conditions. If the conditions are not satisfied, select V/F control. Otherwise, malfunctions such as insufficient torque, uneven rotation may occur.
- For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and torque accuracies. As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.
- Offline auto tuning is performed. Offline auto tuning is necessary under Real sensorless vector control even when the standard motor is used.
- Single-motor operation (one motor to one inverter) is preformed.

- Vector control

- With a vector control option installed, full-scale vector control operation of a motor with an encoder can be performed. Fast response/high accuracy speed control (zero speed control, servo lock), torque control, and position control can be performed.
- What is vector control?

Vector control has excellent control characteristic compared to V/F control and other controls. The control characteristic of the vector control is equal to those of DC machines.
This control method can be applied for the following purposes:

- To minimize the speed fluctuation even at a severe load fluctuation
- To generate a low speed torque
- To prevent machine from damage due to a too large torque (torque limit)
- To perform torque control or position control
- To control the torque at a servo-lock status (motor shaft stopped status)

NOTE

- Vector control requires the following conditions.
- When the conditions are not satisfied, malfunctions such as insufficient torque, uneven rotation may occur.
- For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and torque accuracies. As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.
- Torque control is not available with a PM motor.
- The motor described in the table below is used.

Motor	Condition
Vector control dedicated motor	Offline auto tuning is not required
Other motors (other manufacturers' motors)	Offline auto tuning is required

- Single-motor operation (one motor to one inverter) is preformed.
- The wiring length from inverter to motor is 30 m or less. (When the wiring length exceeds 30 m , perform offline auto tuning in a wired state.)

- PM sensorless vector control

- Highly efficient motor control and highly accurate motor speed control can be performed by using the inverter with a PM (permanent magnet embedded) motor, which is more efficient than an induction motor.
- The motor speed is calculated based on the output voltage and current from the inverter. It does not require a speed detector such as an encoder. The inverter drives the PM motor with the least required current when a load is applied in order to achieve the highest motor efficiency.

NOTE

- The PM sensorless vector control requires the following conditions.
- Offline auto tuning is performed.
- For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and torque accuracies. As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.
- Single-motor operation (one motor to one inverter) is preformed.
- The overall wiring length with the motor is 100 m or less. (Refer to page 51.)

5.2.1 Vector control and Real sensorless vector control

Vector control is one of the control techniques for driving an induction motor. To help explain vector control, the fundamental equivalent circuit of an induction motor is shown below:

In the above diagram, currents flowing in the induction motor can be classified into a current id (excitation current) for making a magnetic flux in the motor and a current iq (torque current) for causing the motor to develop torque.
In vector control, the voltage and output frequency are calculated to control the motor so that the excitation current and torque current flow to the optimum as described below:

- The excitation current is controlled to place the internal magnetic flux of the motor in the optimum status.
- The torque command value is derived so that the difference between the motor speed command and the actual speed (speed estimated value for Real sensorless vector control) obtained from the encoder connected to the motor shaft is zero. Torque current is controlled so that torque as set in the torque command is developed.
Motor-generated torque (TM), slip angular velocity ($\omega \mathrm{s}$) and the motor's secondary magnetic flux ($\Phi 2$) can be found by the following calculation:
$\mathrm{T}_{\mathrm{M}} \propto \Phi_{2} \cdot \mathrm{iq}$
$\Phi_{2}=M \cdot i d$
$\omega=\frac{\mathrm{r} 2}{\mathrm{~L} 2} \cdot \frac{\mathrm{iq}}{\mathrm{id}}$
where, L2: secondary inductance
$L 2=\ell_{2}+M$
Vector control provides the following advantages:
- Excellent control characteristics when compared to V/F control and other control techniques, achieving the control characteristics equal to those of $D C$ machines.
- Applicable to fast response applications with which induction motors were previously regarded as difficult to use. Applications requiring a wide variable-speed range from extremely low speed to high speed, frequent acceleration/ deceleration operations, continuous four-quadrant operations, etc.
- Allows torque control. (When induction motors are used.)
- Allows servo-lock torque control which generates a torque in the motor shaft while stopped. (Not available under Real sensorless vector control.)

Block diagram of Vector control

- Speed control

Speed control operation is performed to zero the difference between the speed command (ω^{*}) and actual rotation value detected by encoder ($\omega \mathrm{FB}$). At this time, the motor load is found and its result is transferred to the torque current controller as a torque current command (iq*).

- Torque current control

A voltage (Vq) is calculated to flow a current (iq) which is identical to the torque current command (iq*) found by the speed controller.

- Magnetic flux control

The magnetic flux ($\Phi 2$) of the motor is derived from the excitation current (id). The excitation current command (id*) is calculated to use that motor magnetic flux ($\Phi 2$) as a predetermined magnetic flux.

- Excitation current control

A voltage (Vd) is calculated to flow a current (id) which is identical to the excitation current command (id*).

- Output frequency calculation

Motor slip ($\omega \mathrm{s}$) is calculated on the basis of the torque current value (iq) and magnetic flux ($\Phi 2$). The output frequency ($\omega 0$) is found by adding that slip ($\omega \mathrm{s}$) to the feedback ($\omega \mathrm{FB}$) found by a feedback from the encoder.
The above results are used to make PWM modulation and run the motor.

5.2.2 Changing the control method

Set the control method and control mode.
V/F control, Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and PM sensorless vector control are the control methods available for selection.
The control modes are speed control, torque control, and position control.
These are set when selecting Advanced magnetic flux vector control, Real sensorless vector control, Vector control, and PM sensorless vector control. Under Real sensorless vector control, select a control mode from the speed control and torque control modes. Under Vector control, select a control mode from the speed control, torque control, and position control modes.

- Select a control method and control mode by using Pr. 800 (Pr.451) Control method selection.
- The control mode can be switched using the mode switching signal (MC).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0*1	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16,30,33,34 \text {, } \\ & 8090,8093,8094,9090 \text {, } \\ & 9093,9094 \end{aligned}$	By selecting a standard motor or constant-torque motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \text { C101 } \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}^{* 1}$	Set the applied motor capacity.
			0 to $3600 \mathrm{~kW}^{*}{ }^{2}$	
			9999	V/F control
$\begin{aligned} & 81 \\ & \text { C102 } \end{aligned}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & 83 \\ & \text { C104 } \end{aligned}$	Rated motor voltage	575 V	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \text { C105 } \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency (Hz).
			9999	The setting value of Pr. 3 Base frequency is used. ${ }^{*}$
$\begin{aligned} & 800 \\ & \text { G200 } \end{aligned}$	Control method selection	20	0 to 6	Vector control
			9	Vector control test operation, PM sensorless vector control test operation
			10 to 12	Real sensorless vector control
			13, 14	PM sensorless vector control
			20	V/F control (Advanced magnetic flux vector control)
			100 to 106	Vector control
			109	Vector control, PM sensorless vector control test operation
			110 to 112	Real sensorless vector control
			110, 113, 114	PM sensorless vector control
$\begin{aligned} & 451 \\ & \text { G300 } \end{aligned}$	Second motor control method selection	9999	0 to 6	Vector control
			10 to 12	Real sensorless vector control
			13, 14	PM sensorless vector control
			20	V/F control (Advanced magnetic flux vector control)
			100 to 106	Vector control ${ }^{\text {l }}$
			110 to 112	Real sensorless vector control operation
			110, 113, 114	PM sensorless vector control
			9999	Advanced magnetic flux vector control when the induction motor is selected in Pr.71. ${ }^{*}$ As set in Pr. 800 when the PM motor is selected in Pr. 71.

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.
*3 When a PM motor is selected by Pr. $71,75 \mathrm{~Hz}$ (for the motor capacity 15 kW or lower) or 100 Hz (18.5 kW or higher) is used
*4 V/F control is set when Pr. 453 and Pr. 454 = "9999".

- Setting the motor capacity and the number of motor poles (Pr.80, Pr.81)

- Motor specifications (the motor capacity and the number of motor poles) must be set to select Advanced magnetic flux vector control, Real sensorless vector control or vector control.
- Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles in Pr. 81 Number of motor poles.

NOTE

- Setting the number of motor poles in Pr. 81 changes the Pr. 144 Speed setting switchover setting automatically. (Refer to page 417.)

Selection of control method and control mode

- Select the inverter control method from V/F control, Advanced magnetic flux vector control (speed control), Real sensorless vector control (speed control, torque control), vector control (speed control, torque control, and position control), and PM sensorless vector control (speed control, position control).

$\begin{gathered} \text { Pr. } 80 \\ \text { (Pr. } 453 \text {), } \\ \text { Pr. } 81 \\ \text { (Pr. } 454 \text {) } \end{gathered}$	$\begin{gathered} \text { Pr. } 71 \\ \text { (Pr.450) } \end{gathered}$	$\text { Pr. } 800$ setting value	Pr. 451 setting value*	Control method	Control mode	Remarks
Other than 9999	Induction motor ${ }^{*} 3$	0,100		Vector control ${ }^{*}$ 2	Speed control	-
		$1,101$			Torque control	-
		$2,102$			Speed control/torque control switchover	MC signal ON: torque control MC signal OFF: speed control
		3,103			Position control	-
		4,104			Speed control/position control switchover	MC signal ON: position control MC signal OFF: speed control
		5,105			Position control/torque control switchover	MC signal ON: torque control MC signal OFF: position control
		6,106			Torque control (variablecurrent limiter control)	-
		9, 109	-	Vector control test operation		
		10, 110		Real sensorless vector control	Speed control	-
		11, 111			Torque control	-
		12, 112			Speed control/torque control switchover	MC signal ON: torque control MC signal OFF: speed control
		20 (initial value)	20	Advanced magnetic flux vector control	Speed control	-
		-	9999 (initial value)	Advanced magnetic flux vector control for the second motor		
	IPM/SPM motor	0,100*5		Vector control ${ }^{*} 7$	Speed control	-
		3,103			Position control	-
		4, 104*6			Speed control / position control switchover	MC signal ON: position control MC signal OFF: speed control
		9, 109	-	PM sensorless vector control test operation		
		20 (initial value), $110^{* 8}$	20, 110*8	PM sensorless vector control	Speed control	-
		-	9999 (initial value)	The setting value of Pr. 800 is used for the second motor. (PM sensorless vector control (speed control) when Pr.800="9 or 109")		
9999*4	-	-		V/F control		
-	-	13, 14, 113, 114		For manufacturer setting. Do not set.		

*1 The setting values of 100 and above are used when the fast-response operation is selected.
*2 Advanced magnetic flux vector control is applied if a Vector control compatible option is not installed.
*3 For an induction motor, the setting "13, 14, 113, or 114" in Pr. 800 (Pr.451) has the same meaning as the setting "10 or 110" in Pr. 800 (Pr.451) (speed control under Real sensorless vector control).
*4 V/F control is applied when Pr. 80 or Pr. 81 is "9999", regardless of the Pr. 800 setting. (When PM motors are used, set Pr. 80 and Pr. 81 according to the motor. Otherwise, proper operation cannot be performed.)
*5 The operation for the setting of " 0 or 100 " is performed when "1, 2, 6, 101, 102, or 106 " is set.
*6 The operation for the setting of " 4 or 104 " is performed when " 5 or 105 " is set.
*7 Speed control under PM sensorless vector control is applied if an option for vector control for PM motor is not installed.
*8 The operation for the setting of "20 or 110 " is performed when " 10 to 14 or 111 to 114 " is set.

- Selecting the fast-response operation (Pr. $800(\operatorname{Pr} .451)=$ " 100 to 106, 109

 to 112")- Setting Pr. 800 (Pr.451) = "any of 100 to 106 or 109 to 112 " selects the fast-response operation. The fast-response operation is available during vector control, Real sensorless vector control, and PM sensorless vector control.

Control method	Speed response	
	$\begin{gathered} \text { Fast-response operation } \\ \text { Pr. } 800(\operatorname{Pr} .451)=" 100 \text { to } 106,109 \text { to } 112 " \end{gathered}$	Normal-response operation Pr. 800 (Pr.451) = "0 to 6, 9 to 12"
Vector control	130 Hz at maximum	50 Hz at maximum
Real sensorless vector control	50 Hz at maximum*1	20 Hz at maximum ${ }^{*}{ }^{2}$
		10 Hz at maximum ${ }^{*} 3$
PM sensorless vector control	50 Hz at maximum	30 Hz at maximum

*1 When driving a 3.7 kW no-load motor.
*2 For the FR-A860-01080 or lower.
*3 For the FR-A860-01440 or higher.

NOTE

- Refer to page 310 for the carrier frequency during fast-response operation.
- E.THT is more likely to occur when fast-response operation is set at the SLD or LD rating.

Vector control test operation, PM sensorless vector control test operation (Pr.800="9, 109")

- Test operation in the speed control is available without connecting a motor. The speed calculation changes to track the speed command, and such speed changes can be checked on the operation panel or by outputting it as analog signals to the terminal FM or AM.

NOTE

- Since current is not detected and voltage is not output, monitors related to current and voltage such as output current and output voltage, etc. and output signals do not function.
- For speed calculation, speed is calculated in consideration of Pr. 880 Load inertia ratio.
- Since current synchronization operation occurs during PM sensorless vector control, the output frequency becomes the same value as the command frequency.

－I／O signal operation during the test operation

－During the test operation，the following signals are invalid．

■ Input terminal function selection（Pr． 178 to Pr．189）

－Brake opening completion signal（BRI）
－Load pattern selection forward／reverse rotation boost（X17）
－V／F switchover（X18）
－Control mode switchover（MC）
－Start－time tuning start external input（X28）
－Torque bias selection 1，Torque bias selection 2 （X42，X43）
－Second brake sequence open completion（BRI2）
－Torque limit selection（X93）

NOTE

－Do not use the Orientation command（X22）signal．The function may not operate normally．

Output terminal function selection（Pr． 190 to Pr．196）

－Electronic thermal O／L relay pre－alarm（THP）
－Brake opening request（BOF）
－Second brake opening request（BOF2）
－Orientation complete（ORA）
－Orientation fault（ORM）
－Regenerative status output（Y32）
－In－position（Y36）
－Travel completed（MEND）
－Start time tuning completion（Y39）
－Home position return failure（ZA）
－Position detection level（FP）
－During position command operation（PBSY）
－Home position return completed（ZP）
《＜Parameters referred to 》》
Pr． 178 to Pr． 189 （Input terminal function selection）\longmapsto page 498
Pr． 190 to Pr． 196 （Output terminal function selection）\longmapsto page 446

- Valid/invalid status of monitor outputs during the test run

O : Valid
\times : Invalid (always displays 0)
Δ : Displays accumulated value before the test
—: Not monitored

Types of monitor	DU/PU Monitor display	FM/AM Output
Output frequency	\bigcirc	\bigcirc
Fault display	\bigcirc	-
Frequency setting value	\bigcirc	\bigcirc
Running speed	\bigcirc	\bigcirc
Converter output voltage	\bigcirc	\bigcirc
Electric thermal relay load factor	$\times^{* 2}$	$\times^{* 2}$
Output current peak value	$\times^{* 2}$	$\times^{* 2}$
Converter output voltage peak value	\bigcirc	\bigcirc
Load meter	\bigcirc	\bigcirc
Cumulative energization time	\bigcirc	-
Reference voltage output	-	\bigcirc
Actual operation time	\bigcirc	-
Cumulative power	Δ	-
Trace status	\bigcirc	\times
Station number (RS-485 terminals)	\bigcirc	-
Station number (PU connector)	\bigcirc	\bigcirc
Station number (CC-Link)	\bigcirc	-
Energy saving effect	\bigcirc	\bigcirc
Cumulative energy saving	Δ	-
PID set point	\bigcirc	\bigcirc
PID measured value		

Types of monitor	DU/PU Monitor display	FM/AM Output
PID deviation	\bigcirc	$\bigcirc{ }^{* 3}$
Input terminal status	\bigcirc	-
Output terminal status	\bigcirc	-
Option input terminal status	\bigcirc	-
Option output terminal status	\bigcirc	-
Motor thermal load factor	$\bigcirc^{* 4}$	$\bigcirc^{* 4}$
Inverter thermal load factor	$\bigcirc{ }^{* 4}$	$\bigcirc \bigcirc^{* 4}$
PTC thermistor value	\bigcirc	-
PID measured value 2	\bigcirc	\bigcirc
Remote output 1	\bigcirc	\bigcirc
Remote output 2	\bigcirc	\bigcirc
Remote output 3	\bigcirc	\bigcirc
Remote output 4	\bigcirc	\bigcirc
PID manipulated amount	\bigcirc	$\bigcirc{ }^{* 3}$
Second PID set point	\bigcirc	\bigcirc
Second PID measured value	\bigcirc	\bigcirc
Second PID deviation	\bigcirc	$\bigcirc{ }^{* 3}$
Second PID measured value 2	\bigcirc	\bigcirc
Second PID manipulated amount	\bigcirc	\bigcirc
Dancer main speed setting	\bigcirc	\bigcirc

*1 Different output interface (operation panel, parameter unit, terminal FM or terminal AM) can output different monitored items. For details, refer to page 430.
*2 When the operation is switched to the test run, " 0 " is displayed. When PM sensorless vector control is selected again after a test run, the output current peak value and the electronic thermal relay load factor from the last operation are displayed.
*3 The monitored status can be output via the terminal AM only.
*4 When the operation is switched to the test run, accumulated thermal value is reduced by considering the output current is " 0 ".

Pr. 52 Operation panel main monitor selection page 419
Pr. 158 AM terminal function selection page 430

- Changing the control method with external terminals (RT signal, X18 signal)

- Control method (V/F control, Advanced magnetic flux vector control, Real sensorless vector control, Vector control) can be switched among using external terminals. The control method can be either switched using the Second function selection (RT) signal or the V/F switchover (X18) signal.
- When using the RT signal, set the second motor in Pr. 450 Second applied motor and set the second motor's control method in Pr. 451 Second motor control method selection. Turning ON the RT signal enables the second function, enabling the switchover of the control method.
- When using the X18 signal, turning ON the X18 signal switches the presently-selected control method (Advanced magnetic flux vector control, Real sensorless vector control, vector control) to the V/F control. At this time, the second functions including electronic thermal characteristic are not changed. Use this method to switch the control method for one motor. (To switch the second functions, use the RT signal.) To input the X18 signal, set "18" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.

First motor control method	Second motor control method (RT signal-ON)	Pr. 450 setting value	$\begin{aligned} & \text { Pr. } 453, \text { Pr. } 454 \\ & \text { setting value } \end{aligned}$	Pr. 451 setting value
V/F control	V/F control	9999	-	-
		-	-	9999
		-	9999 *2	-
	Advanced magnetic flux vector control	Induction motor	Other than 9999	20
	Real sensorless vector control			10 to 14
	Vector control	Induction motor		0 to 6, 100 to 106
		IPM/SPM motor		0, 3, 4, 6
	PM sensorless vector control	IPM/SPM motor		Other than 9999
Advanced magnetic flux vector control *1 Real sensorless vector control *1 Vector control *1 PM sensorless vector control	Same control as the first motor *1	9999	-	-
	V/F control	-	9999 *2	-
	Advanced magnetic flux vector control	Induction motor	Other than 9999	20,9999
	Real sensorless vector control			10 to 14
	Vector control	Induction motor		0 to 6, 100 to 106
		IPM/SPM motor		0, 3, 4, 6
	PM sensorless vector control	IPM/SPM motor		Other than 9999

*1 V/F control is set by turning ON the X18 signal.
*2 V/F control when Pr. 453 or Pr. 454 is set to " 9999 " regardless of the Pr. 451 setting.

NOTE

- RT signal is assigned to the terminal RT in the initial status. Set " 3 " in one of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 503.)
- The control method could be changed by external terminals (RT signal, X18 signal) while the inverter is stopped. If a signal is switched during the operation, the control method changes after the inverter stops.

- Switching between two encoder-equipped motors (Pr.862)

- Using the Vector control compatible plug-in options together with the control terminal option (FR-A8TP) enables the Vector control operation by switching between two encoder-equipped motors according to the RT signal. Use Pr. 862 Encoder option selection to set the combination of the motors (first/second), plug-in option, and control terminal option.

Pr. 862 Encoder option selection	RT signal-OFF (First motor)	RT signal-ON (Second motor) ${ }^{* 1}$
0 (initial value)	Plug-in option	Control terminal option
1	Control terminal option	Plug-in option

*1 When Pr. 450 Second applied motor = "9999", the first motor is selected even if the RT signal turns ON.

NOTE

- Pr. 862 setting is valid even when either one of the plug-in option or control terminal option is installed. For using the control terminal option alone, the motor does not run when Pr. 862 is the initial value as it is. (When the RT signal is OFF)

- Changing the control mode with external terminals (MC signal)

- To use ON/OFF of the MC signal to switch the control mode, set Pr. 800 or Pr.451. Refer to page 167 and set Pr. 800 or Pr.451. To input the MC signal, set " 26 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- When using an analog input terminal (terminal 1,4) for torque limit and torque command, switching of the control mode changes the terminal function as shown below.
- Functions of the terminal 1 under different control modes

$\begin{aligned} & \text { Pr. } 868 \\ & \text { setting } \end{aligned}$	Speed control/torque control switchover* ${ }^{* 1}$		Speed control/position control switchover ${ }^{*}{ }^{2}$		Position control/torque control switchover ${ }^{* 3}$	
	Speed control (MC signal-OFF)	Torque control (MC signal-ON)	Speed control (MC signal-OFF)	Position control (MC signal-ON)	Position control (MC signal-OFF)	Torque control (MC signal-ON)
$\begin{aligned} & 0 \\ & \text { (initial value) } \end{aligned}$	Speed setting assistance	Speed limit assistance	Speed setting assistance	-	-	Speed limit assistance
1	Magnetic flux command *4	Magnetic flux command *4	Magnetic flux command ${ }^{*} 4$	Magnetic flux command ${ }^{*} 4$	Magnetic flux command	Magnetic flux command
2	Regenerative torque limit (Pr.810=1)	-	Regenerative torque limit (Pr.810=1)	Regenerative torque limit (Pr.810=1)	Regenerative torque limit (Pr.810=1)	-
3	-	Torque command (Pr.804=0)	-	-	-	Torque command (Pr.804=0)
4	Torque limit (Pr.810=1)	Torque command (Pr.804=0) ${ }^{*} 5$	Torque limit (Pr.810=1)	Torque limit (Pr.810=1)	Torque limit (Pr.810=1)	Torque command (Pr.804=0) ${ }^{*} 5$
5	-	Forward/reverse rotation speed limit (Pr.807=2)	-	-	-	Forward/reverse rotation speed limit (Pr.807=2)
6	-	-	Torque bias	-	-	-
9999	-	-	-	-	-	-

- Functions of the terminal 4 under different control modes

$\begin{aligned} & \text { Pr. } 858 \\ & \text { setting } \end{aligned}$	Speed control/torque control switchover ${ }^{* 1}$		Speed control/position control switchover* ${ }^{*}$		Position control/torque control switchover ${ }^{* 3}$	
	Speed control (MC signal-OFF)	Torque control (MC signal-ON)	Speed control (MC signal-OFF)	Position control (MC signal-ON)	Position control (MC signal-OFF)	Torque control (MC signal-ON)
$\begin{aligned} & 0 \\ & \text { (initial value) } \end{aligned}$	Speed command (AU signal-ON)	Speed limit (AU signal-ON)	Speed command (AU signal-ON)	-	-	Speed limit (AU signal-ON)
1	Magnetic flux command ${ }^{* 4 *} 6$	Magnetic flux command ${ }^{* 4 *}{ }^{*}$	Magnetic flux command *4*6	Magnetic flux command *4*6	Magnetic flux command *6	Magnetic flux command *6
4	Torque limit $(\operatorname{Pr} .810=1)^{*} 7$	-	Torque limit $(\operatorname{Pr} .810=1)^{* 7}$	Torque limit $(\operatorname{Pr} .810=1)^{* 7}$	Torque limit $(\operatorname{Pr} .810=1)^{*} 7$	-
9999	-	-	-	-	-	-

-: No function
＊1 Real sensorless vector control（Pr．800＝＂12＂），vector control（Pr．800＝＂2＂）
＊2 Vector control（Pr．800＝＂4＂）
＊3 Vector control（Pr．800＝＂5＂）
＊4 Enabled under vector control
＊5 When using the iunverter with a negative torque command，set Pr． 801 to limit the torque．
＊6 Disabled when Pr．868＝＂1＂．
＊7 Disabled when Pr．868＝＂4＂．

NOTE

－Switching between the speed control and the torque control is always enabled regardless of the motor status：in a stop，in running，or in DC injection brake（during pre－excitation）．
－During operation，switching between speed control and position control or between torque control and position control occurs when the output frequency reaches Pr． 865 Low speed detection or lower with no position command provided．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

《｜Parameters referred to 》》

Pr． 178 to Pr． 189 （Input terminal function selection）\longmapsto page 498
Pr． 450 Second applied motor page 506
Pr． 801 Output limit level \wp page 191
Pr． 804 Torque command source selection \longmapsto page 232
Pr． 807 Speed limit selection page 237
Pr． 810 Torque limit input method selection page 191
Pr． 858 Terminal 4 function assignment，Pr． 868 Terminal 1 function assignment page 476

5.2.3 Selecting the Advanced magnetic flux vector control

- To use the Advanced magnetic flux vector control, set the motor capacity, the number of motor poles, and the motor type using Pr. 80 and Pr. 81.

Advanced magnetic flux vector control

Operating procedure

1. Wire a device correctly. (Refer to page 40.)
2. Make the motor setting. (Pr.71)

Motor	Pr.71 setting ${ }^{* 1}$	Remarks
Standard motor	0 (initial value) (3,4)	
Constant-torque motor	1	Offline auto tuning is required. ${ }^{* 2}$
Other manufacturers' standard motor	$0(3)$	Offline auto tuning is required. ${ }^{*}$
Other manufacturers' constant-torque motor	$1(13)$	Offline auto tuning is required. ${ }^{* 2}$

*1 For the other setting values of Pr.71, refer to page 506.
*2 For offline auto tuning, refer to page 508.
3. Set the motor overheat protection. (Pr.9) (Refer to page 377)

Set the rated motor current (A) in Pr. 9 Electronic thermal O/L relay.
4. Setting the motor capacity and the number of motor poles. (Pr.80, Pr.81) (Refer to page 166.)

Set the motor capacity (kW) in Pr. 80 Motor capacity, and set the number of motor poles in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
5. Set the rated motor voltage and frequency. (Pr.83, Pr.84) (Refer to page 508.)

Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 84 Rated motor frequency.
6. Set the operation command. (Refer to page 346.)

Select the start command and speed command.
7. Perform the test operation.

As required

- Perform offline auto tuning. (Pr.96) (Refer to page 508.)
- Select the online auto tuning. (Pr.95) (Refer to page 537.)

NOTE

- To perform driving in a better accuracy, perform offline auto tuning, then set the online auto tuning, and select Real sensorless vector control.
- Under this control, rotations are more likely to be uneven than under V/F control. (This control method is not suitable for grinder, wrapping machine, etc., which require even rotation at a low speed.)
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

- Keeping the motor speed constant when the load fluctuates (speed control gain)

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 89 \\ & \text { G932 } \end{aligned}$	Speed control gain (Advanced magnetic flux vector)	9999	0 to 200\%	Makes adjustments to keep the motor speed constant during variable load operation under Advanced magnetic flux vector control. The reference value is 100%.
			9999	The gain set by Pr.71. (The gain set in accordance with the motor.)
$\begin{aligned} & 569 \\ & \text { G942 } \end{aligned}$	Second motor speed control gain	9999	0 to 200\%	Makes adjustments to keep the second motor speed constant during variable load operation under Advanced magnetic flux vector control. The reference value is 100%.
			9999	The gain set by Pr.450. (The gain set in accordance with the motor.)

- Use Pr. 89 to keep the motor speed constant during variable load operation. (This parameter is useful to make adjustments on the motor speed after replacing a conventional model with an FR-A800 series model.)

Driving two motors under Advanced magnetic flux vector control

- Turning ON the Second function selection (RT) signal enables the second motor operation.
- Set a second motor in Pr. 450 Second applied motor. (In the initial setting, "9999 (no second motor)" is selected. Refer to page 506.)

Function	RT signal ON (second motor)	RT signal OFF (first motor)
Applied motor	Pr. 450	Pr. 71
Motor capacity	Pr. 453	Pr. 80
Number of motor poles	Pr. 454	Pr. 81
Speed control gain (Advanced magnetic flux vector)	Pr. 569	Pr. 89
Control method selection	Pr. 451	Pr. 800

NOTE

- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 503.) RT signal is assigned to the terminal RT in the initial status. Set " 3 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

< Parameters referred to 》》

Pr.71, Pr. 450 Applied motor page 506
Pr.800, Pr. 451 Control method selection page 166

5.2.4 Selecting the PM sensorless vector control

PM

\checkmark Initializing the parameters required for the PM sensorless vector control (Pr.998)

- The PM parameter initialization and the offline auto tuning enable the operation with a PM motor.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 998 \\ & \text { E430 } \end{aligned}$	PM parameter initialization	0	0	Parameter settings for an induction motor (frequency)	The parameter settings required to drive an induction motor are set.
			8009	The parameters settings required to drive an IPM motor are set. (rotations per minute)(after tuning)	The parameters settings required to drive an IPM motor are set.
			8109	The parameters settings required to drive an IPM motor are set. (frequency)(after tuning)	(Set Pr. 71 Applied motor and perform offline auto tuning in advance. (Refer to page 529.))
			9009	The parameters settings required to drive an SPM motor are set. (rotations per minute)(after tuning)	The parameters settings required to drive an SPM motor are set.
			9109	The parameters settings required to drive an SPM motor are set. (frequency)(after tuning)	(Set Pr. 71 Applied motor and perform offline auto tuning in advance. (Refer to page 529.))

- When Pr.998="8009 or 9009", the monitor is displayed and the frequency is set using the motor rotations per minute. To use frequency to display or set, set Pr. 998="8109 or 9109".
- Set Pr. $998=$ " 0 " to change the PM sensorless vector control parameter settings to the parameter settings required to drive an induction motor.

NOTE

- Make sure to set Pr. 998 before setting other parameters. If the Pr. 998 setting is changed after setting other parameters, some of those parameters will be initialized too. (Refer to the "List of the target parameters for the motor parameter initialization".)
- To change back to the parameter settings required to drive an induction motor, perform parameter clear or all parameter clear.
- If the setting of Pr. 998 PM parameter initialization is changed between "8009, 9009 (rotations per minute)" \Leftrightarrow " 8109 , 9109 (frequency)", the target parameters are respectively set to their initial values. The purpose of Pr. 998 is not to change the display units. Use Pr. 144 Speed setting switchover to change the display units between rotations per minute and frequency. Pr. 144 enables switching of display units between rotations per minute and frequency without initializing the parameter settings.
- Example) Changing the Pr. 144 setting between " 6 " and "106" switches the display units between frequency and rotations per minute.
- The PM parameter initialization (Pr.998) changes parameter settings for the first motor. When a PM motor is used as the second motor, parameters for the second motor must be set individually.

- PM parameter initialization list

- The parameter settings in the following table are changed to the settings required to perform PM sensorless vector control by selecting PM sensorless vector control with Pr. 998 PM parameter initialization.
- Performing parameter clear or all parameter clear sets back the parameter settings to the settings required to drive an induction motor.

Pr.	Name	Setting			Setting increments	
		Induction motor	PM motor (rotations per minute)	PM motor (frequency)		
		0 (initial value)	$\begin{aligned} & 8009 \\ & 9009 \end{aligned}$	$\begin{aligned} & 8109 \\ & 9109 \end{aligned}$	$\begin{aligned} & 8009, \\ & 9009 \end{aligned}$	$\begin{gathered} \hline 0,8109, \\ 9109 \end{gathered}$
1	Maximum frequency	$120 \mathrm{~Hz}^{* 1}$	Maximum motor frequency* ${ }^{*}$	Maximum motor frequency ${ }^{*}{ }^{4}$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
		$60 \mathrm{~Hz}^{*}$				
4	Multi-speed setting (high speed)	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
9	Electronic thermal O/L relay	Inverter rated current	-	-	$0.01 \mathrm{~A}^{* 1}$	
					$0.1 \mathrm{~A}^{* 2}$	
13	Starting frequency	0.5 Hz	Pr. $84 \times 10 \%$	Pr. $84 \times 10 \%$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
15	Jog frequency	5 Hz	Pr. $84 \times 10 \%$	Pr. $84 \times 10 \%$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
18	High speed maximum frequency	$120 \mathrm{~Hz}{ }^{* 1}$	-	-	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
		$60 \mathrm{~Hz}^{*}$				
20	Acceleration/deceleration reference frequency	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
22	Stall prevention operation level	150\%**	150\%**		0.1\%	
37	Speed display	0	0		1	
55	Frequency monitoring reference	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
56	Current monitoring reference	Inverter rated current	Pr. 859	Pr. 859	$0.01 \mathrm{~A}^{* 1}$	
					$0.1 \mathrm{~A}^{*} 2$	
71	Applied motor	0	-	-	1	
80	Motor capacity	9999	-	-	$0.01 \mathrm{~kW}^{* 1}$	
					$0.1 \mathrm{~kW}^{*} 2$	
81	Number of motor poles	9999	-	-	1	
84	Rated motor frequency	9999	-	-	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
116	Third output frequency detection	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
$\begin{aligned} & 125 \\ & (903) \\ & \hline \end{aligned}$	Terminal 2 frequency setting gain frequency	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
$\begin{aligned} & 126 \\ & (905) \end{aligned}$	Terminal 4 frequency setting gain frequency	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
144	Speed setting switchover	4	Pr. 81 +100	Pr. 81	1	
240	Soft-PWM operation selection	1	0		1	
263	Subtraction starting frequency	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
266	Power failure deceleration time switchover frequency	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
374	Overspeed detection level	9999	Maximum motor frequency $+10 \mathrm{~Hz}^{*} 4$	Maximum motor frequency $+10 \mathrm{~Hz}^{*} 4$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
386	Frequency for maximum input pulse	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
505	Speed setting reference	60 Hz	Pr. 84	Pr. 84	0.01 Hz	
557	Current average value monitor signal	Inverter rated	Pr. 859	Pr. 859	$0.01 \mathrm{~A}^{* 1}$	
					$0.1 \mathrm{~A}^{*}{ }^{\text {a }}$	
820	Speed control P gain 1	60\%	30\%		1\%	
821	Speed control integral time 1	0.333 s	0.333 s		0.001 s	
824	Torque control P gain 1 (current loop proportional gain)	100\%	100\%		1\%	
825	Torque control integral time 1 (current loop integral time)	5 ms	20 ms		0.1 ms	
870	Speed detection hysteresis	0 Hz	$8 \mathrm{r} / \mathrm{min}$	0.5 Hz	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
885	Regeneration avoidance compensation frequency limit value	6 Hz	Pr. $84 \times 10 \%$	Pr. $84 \times 10 \%$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz

Pr.	Name	Setting			Setting increments	
		Induction motor	PM motor (rotations per minute)	PM motor (frequency)		
		0 (initial value)	$\begin{aligned} & 8009 \\ & 9009 \end{aligned}$	$\begin{aligned} & 8109 \\ & 9109 \end{aligned}$	$\begin{aligned} & 8009, \\ & 9009 \end{aligned}$	$\begin{gathered} 0,8109 \\ 9109 \end{gathered}$
893	Energy saving monitor reference (motor capacity)	Inverter rated capacity	Motor capacity (Pr.80)		$0.01 \mathrm{~kW}^{* 1}$	
					0.1 kW*2	
918	Terminal 1 gain frequency (speed)	60 Hz	Pr. 84	Pr. 84	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
1121	Per-unit speed control reference frequency	$120 \mathrm{~Hz}^{* 1}$	Maximum motor frequency ${ }^{*} 4$	Maximum motor frequency ${ }^{*}{ }^{4}$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
		$60 \mathrm{~Hz}^{*}$				

-: Not changed

*1 Initial value for the FR-A860-01080 or lower.
*2 Initial value for the FR-A860-01440 and higher.
*3 110% for SLD, 120% for LD, 150% for ND, and 200% for HD (Refer to Pr. 570 Multiple rating setting page 297.)
*4 The Pr. 702 Maximum motor frequency is used as the maximum motor frequency. When Pr. 702 =" 9999 (initial value)", the Pr. 84 Rated motor frequency is used as the maximum motor frequency.

NOTE

- If PM parameter initialization is performed in rotations per minute (Pr. $998=$ " 8009 or 9009 "), the parameters not listed in the table and the monitored items are also set and displayed in rotations per minute.

5.3 Speed control under Real sensorless vector control, vector control, PM sensorless vector control

Purpose	Parameter to set			Refer to
To limit the torque during speed control	Torque limit	$\begin{aligned} & \text { P.H500, P.H700 to } \\ & \text { P.H703, P.H710, } \\ & \text { P.H720, P.H721, } \\ & \text { P.H730, P.T010, } \\ & \text { P.T040, P.G210 } \end{aligned}$	$\begin{aligned} & \text { Pr.22, Pr. } 803, \\ & \text { Pr.810, Pr. } 812 \text { to } \\ & \text { Pr.817, Pr. } 858 \text {, } \\ & \text { Pr. } 868, \text { Pr. } 874 \end{aligned}$	191
To adjust the gain for speed control	Easy gain tuning Gain adjustment	$\begin{aligned} & \text { P.C112 to P.C114, } \\ & \text { P.G206, P.G211, } \\ & \text { P.G212, P.G218, } \\ & \text { P.G260, P.G261, } \\ & \text { P.G311, P.G312, } \\ & \text { P.G361 } \end{aligned}$	$\begin{aligned} & \hline \text { Pr. } 818 \text { to Pr. } 821 \text {, } \\ & \text { Pr. } 830 \text {, Pr. } 831 \text {, } \\ & \text { Pr.880, Pr. } 1115 \text { to } \\ & \text { Pr.1118, Pr. } 1121 \end{aligned}$	201
To improve the motor trackability for the speed command changes	Speed feed forward control, model adaptive speed control	$\begin{aligned} & \text { P.G220 to P.G224, } \\ & \text { P.G262, P.C114 } \end{aligned}$	$\begin{aligned} & \text { Pr.828, Pr. } 877 \text { to } \\ & \text { Pr.881, Pr. } 1119 \end{aligned}$	211
To stabilize the speed detection signal	Speed detection filter	P.G215, P.G315	Pr.823, Pr. 833	287
To make starting torque start-up faster	Torque bias	P.G230 to P.G238	Pr. 840 to Pr. 848	218
To avoid motor overrunning	Speed deviation excess detection, speed limit, deceleration check	P.H415 to P.H417, P.H881	$\begin{aligned} & \text { Pr.285, Pr. } 853, \\ & \text { Pr.873, Pr. } 690 \end{aligned}$	218
To avoid mechanical resonance	Notch filter	P.G601 to P.G603	Pr. 1003 to Pr. 1005	220
To adjust the gain during PM sensorless vector control	Speed control gain adjustment	P.G211, P.G212	Pr.820, Pr. 821	201

Speed control performs control so that the speed command and the actual motor rotation speed match.

- Control block diagram

NOTE

- The RT (Second function selection) signal and the X9 (Third function selection) signal are used to enable switching between acceleration/deceleration time settings. The acceleration/deceleration time after switching depends on the settings in Pr. 44 Second acceleration/deceleration time and Pr. 45 Second deceleration time, or Pr. 110 Third acceleration/deceleration time and Pr. 111 Third deceleration time. The acceleration/deceleration time is a period of time taken to reach Pr. 20 Acceleration/deceleration reference frequency.
- Pr. 21 Acceleration/deceleration time increments is used to change the setting increment.
- When the automatic restart after instantaneous power failure is selected, the inverter accelerates the motor from the frequency search result frequency to the set frequency. (Pr. 57 Restart coasting time $\neq 9999$, Pr. 162 Automatic restart after instantaneous power failure selection = "10, 12, 13, 1010, 1012, or 1013")
- Pr. 811 Set resolution switchover is used to change the setting increment for speed setting, operation speed monitoring, and torque limit setting.
- Pr. 862 Encoder option selection is used to change the Vector control compatible plug-in option or the control terminal option for the first and second motors.
- To avoid overdriving the motor due to incorrect encoder pulse settings, the output frequency can be limited with the set frequency plus the value set in Pr. 873 Speed limit.

Speed controller P/PI selection

5.3.1 Setting procedure of Real sensorless vector control (speed control)

Sensorless

Operating procedure

1. Wire a device correctly. (page 40)
2. Set the motor. (Pr.71) (Refer to page 506.)

Set Pr. 71 Applied motor to "3" (standard motor) or "13" (constant-torque motor).
3. Set the overheat protection of the motor. (Pr.9) (Refer to page 377.) Set the rated motor current (A) in Pr. 9 Electronic thermal O/L relay.
4. Set the motor capacity and number of motor poles. (Pr.80, Pr.81) (Refer to page 166.) Set the motor capacity (kW) in Pr. 80 Motor capacity, and set the number of motor poles in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
5. Set the rated motor voltage and the rated motor frequency. (Pr.83, Pr.84) (Refer to page 508.)

Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 84
Rated motor frequency.
6. Select the control method. (Pr.800) (Refer to page 166.)

Select Pr. $800=$ "10" (speed control) or "12" (speed/torque switchover) to enable speed control.
7. Set the operation command. (Refer to page 346.)

Select the start command and speed command.
8. Set the torque limit. (Pr.810) (Refer to page 191.)
9. Perform offline auto tuning. (Pr.96) (Refer to page 508.)
10. Perform the test operation.

As required

- Select online auto tuning. (Pr.95) (Refer to page 537.)
- Easy gain tuning (Refer to page 204.)
- Adjusting the speed control gain manually (Refer to page 205.)
- During Real sensorless vector control, offline auto tuning must be performed properly before starting operations.
- The speed command setting range under Real sensorless vector control is 0 to 400 Hz .
- The carrier frequency is limited during Real sensorless vector control. (Refer to page 310.)
- Torque control is not available in a low-speed (about 10 Hz or lower) regenerative range, or with a low speed and light load (about 5 Hz or lower and rated torque about 20% or lower). The vector control must be selected.
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start signal (STF or STR) is not input. The motor may run also at a low speed when the speed limit value $=0$ with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Switching between the forward rotation command (STF) and reverse rotation command (STR) must not be performed during operations under torque control. An overcurrent trip (E.OC[]) or opposite rotation deceleration fault (E.11) will occur.
- When performing continuous operations under Real sensorless vector control in FR-A860-00090 or lower, the speed fluctuation increases when the value is 20 Hz or less, and in the low-speed range of less than 1 Hz , there may be torque shortage.
- If starting may occur while the motor is coasting under Real sensorless vector control, the frequency search must be set for the automatic restart after instantaneous power failure function (Pr. $57 \neq " 9999 "$ Pr. 162 = "10"). (Refer to page 618.)
- When Real sensorless vector control is applied, there may not be enough torque provided in the ultra low-speed range of about 2 Hz or lower. Generally, the speed control range is as follows.
For power driving, 1:200 (2, 4 or 6 poles) (available at 0.3 Hz or higher when the rating is 60 Hz), 1:30 (8 poles or more) (available at 2 Hz or higher when the rating is 60 Hz).
For regenerative driving, 1:12 (2 to 10 poles) (available at 5 Hz or higher when the rating is 60 Hz).

5.3.2 Setting procedure of vector control (speed control)

Vector

- Using an induction motor

Operating procedure

1. Wire a device correctly.

Install a vector control compatible option.
2. Set the option to be used. (Pr.862)

Set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 172.)
3. Set the applied motor and encoder. (Pr.71, Pr. 359 (Pr.852), Pr. 369 (Pr.851)) (Refer to page 77.)

Set Pr. 71 Applied motor, Pr. 359 (Pr.852) Encoder rotation direction and Pr. 369 (Pr. 851) Number of encoder pulses according to the applied motor and encoder.
4. Set the overheat protection of the motor. (Pr.9) (Refer to page 377.)

Set the rated motor current (A) in Pr. 9 Electronic thermal O/L relay.
When using a motor equipped with a thermal sensor, set Pr. $9=$ " 0 A ".
5. Set the motor capacity and number of motor poles. (Pr.80, Pr.81) (Refer to page 166.)

Set the motor capacity (kW) in Pr. 80 Motor capacity, and set the number of motor poles in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
6. Set the rated motor voltage and the rated motor frequency. (Pr.83, Pr.84) (Refer to page 77.)

Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 84 Rated motor frequency.
7. Select the control method. (Pr.800) (Refer to page 166.)

Select Pr. 800 = "0" (speed control), "2" (speed/torque switchover) or "4" (speed/position switchover) to enable speed control.
8. Set the operation command. (Refer to page 346.)

Select the start command and speed command.
9. Set the torque limit. (Pr.810) (Refer to page 191.)
10. Perform the test operation.

As required

- Perform offline auto tuning. (Pr.96) (Refer to page 508.)
- Select online auto tuning. (Pr.95) (Refer to page 537.)
- Easy gain tuning (Refer to page 204.)
- Adjusting the speed control gain manually (Refer to page 205.)

NOTE

- The speed command setting range under vector control is 0 to 400 Hz .
- The carrier frequency is limited during vector control. (Refer to page 312.)
- Refer to the Instruction Manual of each option for details on Vector control using the FR-A8APR, FR-A8APS, or FRA8APA.

- Using a PM motor

Operating procedure

1. Set the applied encoder (Pr. 359 (Pr. 852), Pr. 369 (Pr. 851)).

Refer to page 77 and set the parameters according to the option and the encoder to be used.
2. Set the applied motor (Pr.9, Pr.71, Pr.80, Pr.81, Pr.83, Pr.84).

Set Pr. 71 Applied motor, Pr. 9 Rated motor current, Pr. 80 Motor capacity, Pr. 81 Number of motor poles, Pr. 83 Rated motor voltage, and Pr. 84 Rated motor frequency according to the motor specifications. (Setting "9999 (initial value)" in Pr. 80 or Pr. 81 selects V/F control.) Set Pr. 702 , Pr. 706 , Pr. 707 , Pr. 724 and Pr. 725 as required.
3. Select Vector control (speed control). (Refer to page 166.)
4. Perform offline auto tuning and encoder position tuning (Pr.96). (Refer to page 518.)

Set Pr.96, and perform tuning.
5. Configure the initial parameter setting for the applied motor using Pr.998.

When the setting for the PM motor is selected in Pr. 998 PM parameter initialization, Vector control for the PM motor with an encoder is enabled.
"8009": Parameter (rotations per minute) settings for an IPM motor
"8109": Parameter (frequency) settings for an IPM motor
" 9009 ": Parameter (rotations per minute) settings for an SPM motor
" 9109 ": Parameter (frequency) settings for an SPM motor
6. Perform the test operation.

NOTE

- For PM motors, after performing offline auto tuning and encoder position tuning, first perform PM parameter initialization. If parameter initialization is performed after setting other parameters, some of those parameters are initialized too. (Refer to page 176 for the parameters that are initialized.)

5.3.3 Setting procedure of PM sensorless vector control (speed control)

PM

This inverter is set for a general-purpose motor in the initial setting. Follow the following procedure to change the setting for the PM sensorless vector control.

Operating procedure

1. Set the motor. (Pr.9, Pr.71, Pr.80, Pr.81, Pr.83, Pr.84) (Refer to page 506, 529.)

Set "8093 (IPM motor)" or "9093 (SPM motor)" in Pr. 71 Applied motor. Set Pr. 9 Rated motor current, Pr. 80 Motor capacity, Pr. 81 Number of motor poles, Pr. 83 Rated motor voltage, and Pr. 84 Rated motor frequency according to the motor specifications. (Setting "9999 (initial value)" in Pr. 80 or Pr. 81 selects V/F control.)
2. Perform offline auto tuning for a PM motor. (Pr.96) (Refer to page 529.)

Set "1" (offline auto tuning without rotating motor) in Pr.96, and perform tuning.
3. Configure the initial setting for the PM sensorless vector control using Pr.998. (Refer to page 176.)

When the setting for the PM motor is selected in Pr. 998 PM parameter initialization, the PM sensorless vector control is selected.
"8009": Parameter (rotations per minute) settings for an IPM motor
"8109": Parameter (frequency) settings for an IPM motor
"9009": Parameter (rotations per minute) settings for an SPM motor
"9109": Parameter (frequency) settings for an SPM motor
4. Set parameters such as the acceleration/deceleration time and multi-speed setting.

Set parameters such as the acceleration/deceleration time and multi-speed setting as required.
5. Set the operation command. (Refer to page 346.)

Select the start command and speed command.
6. Perform the test operation.

NOTE

- To change to the PM sensorless vector control, perform PM parameter initialization at first. If parameter initialization is performed after setting other parameters, some of those parameters will be initialized too. (Refer to page 177 for the parameters that are initialized.)
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 310.)
- Constant-speed operation cannot be performed in the low-speed range of $200 \mathrm{r} / \mathrm{min}$ or less.
- During PM sensorless vector control, the RUN signal is output about 100 ms after turning ON the start command (STF, STR). The delay is due to the magnetic pole detection.

5.3.4 Setting the torque limit level

Sensorless Vector PM

Limit the output torque not to exceed the specified value.
The torque limit level can be set in a range of 0 to 400%. The TL signal can be used to switch between two types of torque limit. The torque limit level can be selected by setting it with a parameter, or by using analog input terminals (terminals 1, 4). Also, the torque limit levels of forward rotation (power driving/regenerative driving) and reverse rotation (power driving/regenerative driving) can be set individually.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 22 \\ & \text { H500 } \end{aligned}$	Stall prevention operation level (Torque limit level)	150/200\%**	0 to 400\%	Set the torque limit level in percentage with regards to the rated torque as 100%.	
$\begin{aligned} & 85 \\ & \text { G201 } \end{aligned}$	Excitation current refraction point	9999	0 to 400 Hz	Set a frequency of the low-speed range in the constant output range torque characteristic selection.	
			9999	10 Hz is applied.	
$\begin{aligned} & 86 \\ & \text { G202 } \end{aligned}$	Excitation current lowspeed scaling factor	9999	0 to 300\%	Set a torque scaling factor applied to the operation in the lowspeed range in the constant output range torque characteristic selection.	
			9999	130\% is applied.	
$\begin{aligned} & 157 \\ & \text { M430 } \end{aligned}$	OL signal output timer	0 s	0 to 25 s	Set the OL signal output start time at the activation of torque limit operation.	
			9999	No OL signal output	
801	Output limit level	9999	0 to 400\%	Set the torque current limit level.	
H704			9999	The torque limit setting value is used for limiting the torque current level.	
$\begin{aligned} & 803 \\ & \text { G210 } \end{aligned}$	Constant output range torque characteristic selection	0	0	Torque rise in low-speed range Constant torque in low-speed range	In constant-power range, constant motor output limit
			1		In constant-power range, constant torque limit
			2	The torque is kept constant in the low-speed range. (The torque current is limited.)	The torque is limited to be constant in the constant power range unless the output limit of the torque current is reached. (The torque current is limited.)
			10	Constant torque in low-speed range	In constant-power range, constant motor output limit
			11	Torque rise in low-speed range	In constant-power range, constant torque limit
804	Torque command source	0	0	The internal torque limit 2 cannot be used.	
D400	selection		1	Torque limit (-400\% to 400\%) by the parameter setting (Pr. 805 or Pr.806)	
			3	Torque limit through the CC-Link / CC-Link IE Field Network / CC-Link IE TSN communication (FR-A8NC, FR-A8NCE, FRA8NCG)	
			4	The internal torque limit 2 cannot be used.	
			5	Torque limit through the CC-Link / CC-Link IE Field Network / CC-Link IE TSN communication (FR-A8NC, FR-A8NCE, FRA8NCG)	
			6		
$\begin{aligned} & 805 \\ & \text { D401 } \end{aligned}$	Torque command value (RAM)	1000\%	600 to 1400\%	Writes the torque limit value in RAM. Regards 1000% as 0%, and set torque command by an offset of 1000\%.	
$\begin{aligned} & \hline 806 \\ & \text { D402 } \end{aligned}$	Torque command value (RAM, EEPROM)	1000\%	600 to 1400\%	Writes the torque limit value in RAM and EEPROM. Regards 1000% as 0%, and set torque command by an offset of 1000\%.	
$\begin{aligned} & 810 \\ & \mathrm{H} 700 \end{aligned}$	Torque limit input method selection	0	0	Internal torque limit 1 (Torque limited by parameter settings.)	
			1	External torque limit (Torque limited by terminals 1 and 4.)	
			2	Internal torque limit 2 (Torque limited by communication options)	

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & \hline 811 \\ & \text { D030 } \end{aligned}$	Set resolution switchover	0	0	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.1\%
			1	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	
			10	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.01\%
			11	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	
$\begin{aligned} & 812 \\ & \text { H701 } \end{aligned}$	Torque limit level (regeneration)	9999	0 to 400\%	Set the torque limit level for forward rotation regenerative driving.	
			9999	Limit using Pr. 22 or the analog	terminal values.
813	Torque limit level (3rd quadrant)	9999	0 to 400\%	Set the torque limit level for reverse rotation power driving.	
H702			9999	Limit using Pr. 22 or the analog terminal values.	
$\begin{aligned} & 814 \\ & \text { H703 } \end{aligned}$	Torque limit level (4th quadrant)	9999	0 to 400\%	Set the torque limit level for reverse rotation regenerative driving.	
			9999	Limit using Pr. 22 or the analog terminal values.	
$\begin{aligned} & 815 \\ & \text { H710 } \end{aligned}$	Torque limit level 2	9999	0 to 400\%	When the torque limit selection (TL) signal is ON, Pr. 815 is the torque limit value regardless of Pr.810.	
			9999	The torque limit selected in Pr. 810 is valid.	
816	Torque limit level during acceleration	9999	0 to 400\%	Set the torque limit value during acceleration.	
H720			9999	The same torque limit as const	ant speed.
817	Torque limit level during deceleration	9999	0 to 400\%	Set the torque limit value during deceleration.	
H721			9999	The same torque limit as constant speed.	
$\begin{aligned} & 858 \\ & \text { T040 } \end{aligned}$	Terminal 4 function assignment	0	0, 1, 4, 9999	The torque limit level can be changed with setting value "4" and the signal to terminal 4.	
$\begin{aligned} & 868 \\ & \text { T010 } \end{aligned}$	Terminal 1 function assignment	0	0 to 6, 9999	The torque limit level can be changed with setting value "4" and the signal to terminal 1.	
$\begin{aligned} & 874 \\ & \text { H730 } \end{aligned}$	OLT level setting	150\%	0 to 400\%	A trip can be set for when the torque limit is activated and the motor stalls. Set the output at which to activate the trip.	

*1 When changing from V/F control or Advanced magnetic flux vector control to Real sensorless vector control or vector control in FR-A860-00090 or lower, 150% changes to 200%.

NOTE

- The lower limit for the torque limit level under Real sensorless vector control is set to 30% even if a value lower than 30% is set.
- Under PM sensorless vector control, the torque limit is not activated in a low-speed range with a rated frequency of less than 10%.
- Under PM sensorless vector control, the torque limit level is reduced inversely proportional to the output frequency in the constant output range of the rated motor frequency or higher.

Block diagram of torque limit

- Selecting the torque limit input method (Pr.810)

- Use Pr. 810 Torque limit input method selection to select which method to use to limit the output torque during speed control.

Pr.810 setting	Torque limit input method	Operation
0 (Initial value)	Internal torque limit 1	Perform the torque limit operation using the parameter (Pr.22, Pr.812 to Pr.814) settings. If changing the torque limit parameters via communication is enabled, the torque limit input can be performed via communication.
1	External torque limit	Torque limit using analog voltage (current) to terminal 1 or terminal 4 is valid.
2	Internal torque limit 2	The torque limit by communication option (FR-A8NC/FR-A8NCE) is enabled.

Torque limit level using parameter settings (Pr. $810=$ " 0 ", Pr. 812 to Pr.814)

- The torque is limited by parameter setting. (Internal torque limit 1)
- In the initial value, a limit is applied to all quadrants with Pr. 22 Stall prevention operation level (Torque limit level).
- To set individually for each quadrant, use Pr. 812 Torque limit level (regeneration), Pr. 813 Torque limit level (3rd quadrant), Pr. 814 Torque limit level (4th quadrant). When " 9999 " is set, Pr. 22 setting is regarded as torque limit level in all the quadrants.

- Torque limit level using analog input (terminals 1, 4) (Pr. 810 = "1", Pr.858, Pr.868)

- The torque is limited with the analog input of terminal 1 or terminal 4. (External torque limit)
- Torque limit using analog input is valid with a limit value lower than the internal torque limit (Pr.22, Pr. 812 to Pr.814). (If the torque limit using analog input exceeds the internal torque limit, the internal torque limit is valid.)
- When inputting the torque limit value from terminal 1, set Pr. 868 Terminal 1 function assignment="4". When inputting from terminal 4, set Terminal 4 function assignment="4".
- When Pr. $858=44$ " and Pr.868="2", the torque for regenerative driving is limited with the terminal 1 analog input, and the torque for power driving is limited with the terminal 4 analog input.

* Analog input (terminal 1, 4) or internal torque control (Pr. 22 etc.) whichever is smaller

- The torque limit using analog input can be corrected with Calibration parameters Pr.919, Pr.920, Pr.932, and Pr.933. (Refer to page 488.)

Calibration example of terminal 1

Calibration example of terminal 4

NOTE

- When inputting an analog signal to the terminal 1 , input a positive voltage (0 V to $+10 \mathrm{~V}(+5 \mathrm{~V})$). When a negative voltage (0 V to $-10 \mathrm{~V}(-5 \mathrm{~V})$) is input, the torque limit value set by the analog signal becomes " 0 ".
- Functions of terminals 1 and 4 by control (一: no function)

Pr. 858 setting value ${ }^{* 1}$	Terminal 4 function	Pr. 868 setting ${ }^{*}$ 2	Terminal 1 function
0 (Initial value)	Speed command (AU signal-ON)	$\begin{aligned} & 0 \\ & \text { (Initial value) } \end{aligned}$	Speed setting auxiliary
		$1^{*} 4$	Magnetic flux command* ${ }^{*}$
		2	-
		3	-
		4	Torque limit (Pr. $810=1$)
		5	-
		6	Torque bias (Pr.840 = 1 to 3)
		9999	-
$1{ }^{* 4}$	Magnetic flux command*4	$\begin{aligned} & 0 \\ & \text { (Initial value) } \end{aligned}$	Speed setting auxiliary
	-*3	$1^{*} 4$	Magnetic flux command*4
	Magnetic flux command* ${ }^{*}$	2	-
		3	-
		4	Torque limit (Pr.810 = 1)
		5	-
		6	Torque bias (Pr.840 = 1 to 3)
		9999	-
4*2	Torque limit (Pr. $810=1$)	$\begin{aligned} & 0 \\ & \text { (Initial value) } \end{aligned}$	Speed setting auxiliary
		$1^{*} 4$	Magnetic flux command* ${ }^{*}$
	Power driving torque limit (Pr.810 = 1)	2	Regenerative driving torque limit (Pr.810 = 1)
	Torque limit (Pr. $810=1$)	3	-
	-*3	4	Torque limit (Pr. $810=1$)
	Torque limit (Pr. $810=1$)	5	-
		6	Torque bias (Pr.840 = 1 to 3)
		9999	-
9999	-	-	-

*1 When Pr. $868 \neq$ " 0 ", the other functions of terminal 1 (auxiliary input, override function, PID control) do not operate.
*2 When Pr. $858 \neq$ " 0 ", PID control and speed commands using terminal 4 do not operate even when the AU signal is ON.
*3 When both Pr. 858 and Pr. 868 are "1" (magnetic flux command) or "4" (torque limit), the function of terminal 1 has higher priority, and terminal 4 does not function.
*4 Valid when vector control compatible options are installed and vector control is selected.

- Torque limit level through the CC-Link / CC-Link IE Field Network / CCLink IE TSN communication (Pr. $810=$ "2", Pr.805, Pr.806)

- When the CC-Link (FR-A8NC), CC-Link IE Field network (FR-A8NCE), or CC-Link IE TSN (FR-A8NCG) communication is used, the Pr. 805 or Pr. 806 setting is used as the torque limit value. (Internal torque limit 2)
- When the CC-Link communication (Ver. 2) is used in the quadruple or octuple setting (Pr.544="14, 18, 114, or 118"), the torque limit value can be input using a remote register ($\mathrm{RWwC} \mathrm{)}$.
- When the CC-Link IE Field Network or CC-Link IE TSN is used, the torque limit value can be input using a remote register (RWw2).

Pr. 804 setting	Torque limit input		Setting range*1	Setting increments
	CC-Link PLC function	CC-Link IE Field Network / CCLink IE TSN		
1	Torque limit by Pr. 805 or Pr.806*2	Torque limit by remote register (RWw2) ${ }^{* 3}$	$\begin{aligned} & 600 \text { to } 1400 \\ & (-400 \% \text { to } 400 \%) \end{aligned}$	1\%
3	Torque limit by remote register (RWwC) ${ }^{* 3}$			
5	Torque limit by remote register (RWwC) ${ }^{* 3}$	Torque limit by remote register $(\mathrm{RWW} 2)^{* 3}$	$\begin{array}{\|l\|} \hline-32768 \text { to } 32767 \\ \text { (complement of 2) } \\ (-327.68 \% \text { to } 327.67 \%)^{* 4} \\ \hline \end{array}$	0.01\% ${ }^{*}$
6	Torque limit by Pr. 805 or Pr.806*2			

*1 The torque limit setting is defined as an absolute value.
*2 Can also be set from operation panel or parameter unit.
*3 The torque can also be limited by setting a value in Pr. 805 or Pr. 806 .
*4 Setting range if set by operation panel or parameter unit is "673 to 1327 (-327% to 327%)"; setting increment is 1%.

- When the CC-Link communication (Ver. 2) is used in the quadruple or octuple setting (Pr.544="24, 28, or 128"), the torque limit value can be input using a remote register (RWwC to RWwF) for each of the four quadrants.

NOTE

- If "2" is set in Pr. 810 while the communication option is not connected, a protective function (E.OPT) is activated (when the PLC function is disabled).
- For details on the FR-A8NC, FR-A8NCE, or FR-A8NCG, refer to the Instruction Manual of each option.

- Second torque limit level (TL signal, Pr.815)

- For Pr. 815 Torque limit level 2, when the Torque limit selection (TL) signal is ON, the setting value of Pr. 815 is the limit value regardless of the setting of Pr. 810 Torque limit input method selection.
- To assign the TL signal, set "27" in any of Pr. 178 to Pr. 189 (Input terminal function selection).

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

- Setting the torque limit values during acceleration/deceleration individually (Pr.816, Pr.817)

- The torque limit during acceleration and deceleration can be set individually. Torque limit using the setting values of Pr. 816 Torque limit level during acceleration and Pr. 817 Torque limit level during deceleration is shown below.
- If 1 s elapses while the difference between the set speed and rotation speed is within $\pm 2 \mathrm{~Hz}$, the torque limit level during acceleration/deceleration (Pr. 816 or Pr.817) changes to the torque control level during constant speed (Pr.22).
- When the difference between the set speed and rotation speed is -2 Hz or less, the torque limit level during deceleration (Pr.817) activates.

NOTE

- The Pr. 816 and Pr. 817 settings are invalid under position control.

- Changing the setting increments of the torque limit level (Pr.811)

- The setting increments of Pr. 22 Torque limit level, Pr. 801 Output limit level, and Pr. 812 to Pr. 817 Torque limit level can be changed to 0.01% by setting Pr. 811 Set resolution switchover = " 10 or 11".

Pr. 811 setting	Increments of speed setting and running speed monitoring ${ }^{* 1}$	Torque limit setting increments
0	$1 \mathrm{r} / \mathrm{min}$	0.1%
1	$0.1 \mathrm{r} / \mathrm{min}$	0.01%
10	$1 \mathrm{r} / \mathrm{min}$	
11	$0.1 \mathrm{r} / \mathrm{min}$	

*1 For details on the increments of speed setting and running speed monitoring, refer to page 417.

NOTE

- The internal resolution of the torque limit is $0.024 \%\left(100 / 2^{12}\right)$, and fractions below this resolution are rounded off.
- When Real sensorless vector control is selected, fractions below a resolution equivalent to 0.1% are rounded off even if Pr.811="10, 11".
- For details on changing the speed setting increments, refer to page 417.

- Changing the torque characteristic of the constant-power range (Pr.801, Pr.803)

- Under Real sensorless vector control or Vector control, the torque characteristic can be changed between in the low-speed range and in the constant power range.
- Use Pr. 85 Excitation current refraction point to change the low-speed range, and use Pr. 86 Excitation current lowspeed scaling factor to change the torque in the low-speed range. When Pr. $85=$ " 9999 (initial value)", a predetermined frequency is used. When Pr. $86=$ "9999 (initial value)", a predetermined scaling factor is used (refer to page 703).

Pr.803 setting	Torque characteristic in low- speed range	Torque characteristic in constant-power range	
		Torque characteristic	Output limit
0 (initial value)	The torque changes according to the scaling factor set in Pr.86. ${ }^{*}$	Constant motor output	-
1	Constant torque	Constant torque	Without
2	Constant torque	Constant torque	With
10	Constant torque	Constant motor output	-
11	The torque changes according to the scaling factor set in Pr.86. ${ }^{*}$	Constant torque	Without

*1 This is applicable only under Real sensorless vector control. The upper limit of the torque at 0 Hz is determined by multiplying the torque limit in the constant-torque range by the scaling factor set in Pr. 86.

- To avoid overload or overcurrent of the inverter or motor, use Pr. 801 Output limit level to limit the torque current.

Pr. 801 setting	Description
0 to 400%	Set the torque current limit level.
9999	The torque limit setting value (Pr.22, Pr.812 to Pr.817, etc.) is used for limiting the torque current.

NOTE

- When the torque limit setting value (Pr.22, Pr. 812 to Pr.817, etc.) is less than the value set in Pr. 801 , the Pr. 801 setting is used for limiting the torque current.

- Trip during torque limit operation (Pr.874)

- A trip can be set for when the torque limit is activated and the motor stalls.
- When a high load is applied and the torque limit is activated under speed control or position control, the motor stalls. At this time, if a state where the rotation speed is lower than the value set in Pr. 865 Low speed detection and the output torque exceeds the level set in Pr. 874 OLT level setting continues for 3 s , Stall prevention stop (E.OLT) is activated and the inverter output is shut off.

NOTE

- Under V/F control or Advanced magnetic flux vector control, if the output frequency drops to 0.5 Hz due to the stall prevention operation and this state continues for 3 s , a fault indication (E.OLT) appears, and the inverter output is shut off. This operation is activated regardless of the Pr. 874 setting.
- This fault does not occur under torque control.

- Adjusting the stall prevention operation signal and output timing (OL signal, Pr.157)

- If the output torque exceeds the torque limit level and the torque limit is activated, the stall prevention operation signal (OL signal) is turned ON for 100 ms or longer. When the output torque drops to the torque limit level or lower, the output signal also turns OFF.
- Pr. 157 OL signal output timer can be used to set whether to output the OL signal immediately, or whether to output it after a certain time period has elapsed.

Pr. 157 setting	Description
0 (Initial value)	Output immediately.
0.1 to 25	Output after the set time (s).
9999	Not output.

- The OL signal is also output during the regeneration avoidance operation (overvoltage stall).

NOTE

- OL signal is assigned to the terminal OL in the initial setting. The OL signal can also be assigned to other terminals by setting " 3 (positive logic) or 103 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
</Parameters referred to \》
Pr. }22\mathrm{ Stall prevention operation level F page 403
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) page 498
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) page 446
Pr. }840\mathrm{ Torque bias selection page 214
Pr. }865\mathrm{ Low speed detection W page 457
```


5.3.5 Performing high-accuracy, fast-response control (gain adjustment for Real sensorless vector control, vector control and PM sensorless vector control)

Sensorless Vector PM

The load inertia ratio (load moment of inertia) for the motor is calculated in real time from the torque command and rotation speed during motor driving by the vector control. Because the optimum gain for speed control and position control is set automatically from the load inertia ratio and the response level, the work required for gain adjustment is reduced. (Easy gain tuning)
If the load inertia ratio cannot be calculated due to load fluctuations, or under Real sensorless vector control or PM sensorless vector control, the control gain can be set automatically by entering the load inertia ratio manually.
Manual gain adjustment is useful for achieving optimum machine performance or improving unfavorable conditions, such as vibration and acoustic noise during operation with high load inertia or gear backlash.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 818 \\ & \text { C112 } \end{aligned}$	Easy gain tuning response level setting	2	1 to 15	Set the response level. 1 (slow-response) to 15 (fast-response)
$\begin{aligned} & 819 \\ & \text { C113 } \end{aligned}$	Easy gain tuning selection	0	0	No easy gain tuning
			1	Gain is calculated with load calculation (This function is valid under vector control.)
			2	Gain is calculated with load (Pr.880) manual input
$\begin{aligned} & 820 \\ & \text { G211 } \end{aligned}$	Speed control P gain 1	60\%	0 to 1000\%	The proportional gain during speed control is set. (Setting this parameter higher improves the trackability for speed command changes. It also reduces the speed fluctuation caused by external disturbance.)
$\begin{aligned} & 821 \\ & \text { G212 } \end{aligned}$	Speed control integral time 1	0.333 s	0 to 20 s	The integral time during speed control is set. (Setting this parameter lower shortens the return time to the original speed when the speed fluctuates due to external disturbance.)
830 G311	Speed control P gain 2	9999	0 to 1000\%	Second function of Pr. 820 (valid when RT signal is ON)
			9999	The Pr. 820 setting is applied to the operation.
$\begin{aligned} & 831 \\ & \text { G312 } \end{aligned}$	Speed control integral time 2	9999	0 to 20 s	Second function of Pr. 821 (valid when RT signal is ON)
			9999	The Pr. 821 setting is applied to the operation.
$\begin{aligned} & 880 \\ & \text { C114 } \end{aligned}$	Load inertia ratio	7-fold	0 to 200-fold	Set the load inertia ratio for the motor.
$\begin{aligned} & 1115 \\ & \text { G218 } \end{aligned}$	Speed control integral term clear time	0 ms	0 to 9998 ms	Set time until the integral term is reduced and cleared after P control switching.
$\begin{aligned} & 1116 \\ & \text { G206 } \end{aligned}$	Constant output range speed control P gain compensation	0\%	0 to 100\%	Set a compensation amount of the speed control P gain in the constant output range (rated speed or higher).
$\begin{aligned} & 1117 \\ & \text { G261 } \end{aligned}$	Speed control P gain 1 (perunit system)	9999	0 to 300	Set a proportional gain under speed control in the per-unit system.
			9999	The Pr. 820 setting is applied to the operation.
$\begin{aligned} & 1118 \\ & \text { G361 } \end{aligned}$	Speed control P gain 2 (perunit system)	9999	0 to 300	Second function of Pr. 1117 (valid when RT signal ON)
			9999	The Pr. 1117 setting is applied to the operation.
$\begin{aligned} & 1121 \\ & \text { G260 } \end{aligned}$	Per-unit speed control reference frequency	$120 \mathrm{~Hz}^{* 1}$	0 to 400 Hz	Set the speed at 100% when setting speed control P gain or model speed control gain in the per-unit system.
		$60 \mathrm{~Hz}^{*}$		
$\begin{aligned} & 1348 \\ & \text { G263 } \end{aligned}$	P/PI control switchover frequency	0 Hz	0 to 400 Hz	Set the motor speed for the P/PI control switchover.

[^7]*2 The value for the FR-A860-01440 or higher.

- Block diagram of easy gain tuning function

NOTE

- Easy gain tuning is valid for the first motor. When applying the second motor (RT signal is ON), tuning is not performed

- Execution procedure for easy gain tuning (Pr. 819 = "1" Load inertia ratio automatic calculation)

Easy gain tuning (load inertia ratio automatic calculation) is only valid in the speed control and position control modes of vector control. It is invalid under torque control, V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.

1. Set the response level in Pr. 818 Easy gain tuning response level setting.

Increasing the value will improve trackability to the command, but too high value will generate vibration. The following figure shows the relationship between the setting and the response level.

2. The load inertia ratio is calculated during acceleration/deceleration, and from this value and the value of Pr. 818 Easy gain tuning response level setting, the gain for each control is set automatically. Pr. 880 Load inertia ratio is used as the initial value of the load inertia ratio when performing tuning. During tuning, the calculated value is set in Pr.880. The calculation of the load inertia ratio may take excessive time or otherwise not be performed properly if the following conditions are not satisfied.
-The time in acceleration/deceleration driving until $1500 \mathrm{r} / \mathrm{min}$ is reached in 5 s or less.
-The rotation speed in driving is $150 \mathrm{r} / \mathrm{min}$ or higher.
-The acceleration/deceleration torque is 10% or higher.

- No sudden external disturbances during acceleration/deceleration.
-The load inertia ratio is about 30 -fold or lower.
-No gear backlash or belt sagging.

3. Press FWD or REV to calculate the continuous load inertia ratio, or calculate the gain. (The operation command during External operation is the STF or STR signal.)

- Execution procedure for easy gain tuning (Pr. 819 = "2" Load inertia ratio manual input)

Easy gain tuning (load inertia ratio manual input) is valid in the speed control mode under Real sensorless vector control, the speed control and position control modes under vector control, and the speed control mode under PM sensorless vector control.

1. Set the load inertia ratio for the motor in Pr. 880 Load inertia ratio.
2. Set "2" (easy gain tuning enabled) in Pr. 819 Easy gain tuning selection. When set, Pr. 820 Speed control P gain 1 and Pr. 821 Speed control integral time 1 are set automatically. Operation is performed with the adjusted gain from the next operation.
3. Perform a test run, and set the response level in Pr. 818 Easy gain tuning response level setting. Setting this parameter higher improves the trackability for commands, but setting it too high causes vibration. (The response level can be adjusted during operation when Pr. 77 Parameter write selection ="2" (parameters can be written during operation).)

NOTE

- When Pr. $819=" 1,2$ " is set, even if the Pr. 819 setting value is returned to " 0 " after tuning is performed, the data that was set in each parameter is retained in the tuning results.
- If good precision cannot be obtained even after executing easy gain tuning, because of external disturbances or other reasons, perform fine adjustment manually. At this time, set the setting value of Pr. 819 to " 0 " (no easy gain tuning).

Parameters set automatically by easy gain tuning

The following table shows the relationship between the easy gain tuning function and gain adjustment parameters.

	Easy gain tuning selection (Pr.819) setting		
	0	1	2
Pr. 880 Load inertia ratio	Manual input	The inertia calculation result (RAM) using easy gain tuning is displayed. The parameter is set at the following times. - Every hour after turning ON the power - When Pr. 819 is set to a value other than "1" - After changing to a control other than vector control (such as V/F control) using Pr. 800 Write (manual input) is available only during a stop.	Manual input
Pr. 820 Speed control P gain 1 Pr. 821 Speed control integral time 1 Pr. 828 Model speed control gain Pr. 422 Position control gain Pr. 446 Model position control gain	Manual input	The tuning result (RAM) is displayed.	Gain is calculated when Pr. 819 is set to " 2 ", and the result is set in the parameter.
		The parameter is set at the following times. - Every hour after turning ON the power - When Pr. 819 is set to a value other than "1" - After changing to a control other than vector control (such as V/F control) using Pr. 800	When read, the tuning result (parameter setting value) is displayed.
		Write (manual input) is not available	Write (manual input) is not available

NOTE

- If easy gain tuning is executed at an inertia equal to or higher than the specified value under vector control, a fault such as hunting may occur. Also, if the motor shaft is fixed by the servo lock or position control, the bearing may be damaged. In this case, do not perform easy gain tuning. Adjust the gain manually.
- The load inertia ratio is only calculated under vector control.

- Adjusting the speed control gain manually (Pr. 819 = "0" No easy gain tuning)

- The speed control gain can be adjusted for the conditions such as abnormal machine vibration, acoustic noise, slow response, and overshoot.
- Pr. 820 Speed control \mathbf{P} gain $\mathbf{1 =}=60 \%$ (initial value)" is equivalent to $120 \mathrm{rad} / \mathrm{s}$ (speed response of a single motor). (Equivalent to the half the rad/s value during Real sensorless vector control or with the FR-A860-01440 or higher during vector control.) Setting this parameter higher speeds up the response, but setting this too high causes vibration and acoustic noise.
- Setting Pr. 821 Speed control integral time 1 lower shortens the return time to the original speed during speed fluctuation, but setting it too low causes overshoot.

Pr.820 setting	Response level (rad/s)			
	FR-A860-01080 or lower		FR-A860-01440 or higher	
	Vector control	Real sensorless vector control	Vector control	Real sensorless vector control
60	120	60	60	30
100	200	100	100	50

*2 Performing PM parameter initialization changes the settings. (Refer to page 176.)

- Actual speed gain is calculated as below when load inertia is applied.

$$
\text { Actual speed gain }=\text { Speed gain of a single motor } \times \frac{\mathrm{JM}}{\mathrm{JM}+\mathrm{JL}}
$$

JM: Motor inertia
JL: Load inertia converted as the motor axis inertia

- Adjust in the following procedure:

1. Change the Pr. 820 setting while checking the conditions.
2. If it cannot be adjusted well, change Pr. 821 setting, and perform step 1 again.

No.	Movement / condition	Adjustment method	
1	Load inertia is high.	Set Pr. 820 and Pr. 821 higher.	
		Pr. 820	If acceleration is slow, raise the setting by 10% s and then set the value to 0.8 to $0.9 \times$ the setting immediately before vibration/noise starts occurring.
		Pr. 821	If overshoots occur, raise the setting by double the setting and then set the value to 0.8 to $0.9 \times$ the setting where overshoots stop occurring.
2	Vibration or acoustic noise are generated from machines.	Set Pr. 820 lower and Pr.821 higher.	
		Pr. 820	Lower the setting by 10% and then set the value to 0.8 to $0.9 \times$ the setting immediately before vibration/noise starts occurring.
		Pr. 821	If overshoots occur, raise the setting by double the setting and then set the value to 0.8 to $0.9 \times$ the setting where overshoots stop occurring.

No.	Movement / condition	Adjustment method
3	Response is slow.	Set Pr. 820 higher.
		Pr. 820 If acceleration is slow, raise the setting by 5% s and then set the value to 0.8 to $0.9 \times$ the setting immediately before vibration/noise starts occurring.
4	Return time (response time) is long.	Set Pr. 821 lower.
		Lower Pr. 821 by half the current setting and then set the value to 0.8 to $0.9 \times$ the setting immediately before overshoots or unstable movements stop occurring.
5	Overshoots or unstable movements occur.	Set Pr. 821 higher.
		Raise Pr. 821 by double the current setting and then set the value to 0.8 to $0.9 \times$ the setting immediately before overshoots or unstable movements stop occurring.

NOTE

- When adjusting the gain manually, set Pr. 819 Easy gain tuning selection to "0" (no easy gain tuning) (initial value).
- Pr. 830 Speed control P gain 2 and Pr. 831 Speed control integral time 2 are valid when terminal RT is ON. In this case, replace them for Pr. 820 and Pr. 821 in the description above.

- When using a multi-pole motor (8 poles or more)

- If the motor inertia is known, set Pr. 707 Motor inertia (integer) and Pr. 724 Motor inertia (exponent). (Refer to page 508.)
- Under Real sensorless vector control or vector control, adjust Pr. 820 Speed control P gain 1 and Pr. 824 Torque control P gain 1 (current loop proportional gain) to suit the motor, by referring to the following methods.
- Setting the parameter of Pr. 820 Speed control P gain 1 higher speeds up the response, but setting this too high causes vibration and acoustic noise.
- Setting the parameter of Pr. 824 Torque control P gain 1 (current loop proportional gain) too low causes current ripple, and a noise synchronous with this will be emitted from the motor.
- Adjustment method:

No.	Movement / condition	Adjustment method
1	$\begin{array}{l}\text { Motor rotation speed in the low-speed } \\ \text { range is unstable. }\end{array}$	$\begin{array}{l}\text { Pr.820 Speed control P gain } 1 \text { must be set higher according to the motor inertia. For multi- } \\ \text { pole motors, because the inertia of the motor itself tends to be large, first perform broad } \\ \text { adjustment to improve the unstable movements, and then perform fine adjustment by } \\ \text { referring to the response level based on this setting. } \\ \text { Also, for vector control, gain adjustment appropriate for the inertia can be easily performed } \\ \text { by using easy gain tuning (Pr.819=1). }\end{array}$
2	Rotation speed trackability is poor.	$\begin{array}{l}\text { Set Pr.820 Speed control P gain } 1 \text { higher. Raise the setting by 10\%s and set a value that } \\ \text { satisfies the following condition: The setting immediately before vibration/noise starts }\end{array}$
occurring $\times 0.8$ to 0.9. If it cannot be adjusted well, double Pr.821 Speed control integral		
time 1 and perform the adjustment of Pr.820 again.		

- Compensating the speed control P gain in the constant output range (Pr.1116)

- In the constant output range (rated speed or higher), the response of speed control is reduced due to weak field. Thus, the speed control P gain is needed to be compensated using Pr. 1116 Constant output range speed control \mathbf{P} gain compensation.
- In Pr.1116, set a compensation amount for the doubled rated speed regarding the speed control P gain at the rated speed or lower as 100%. (Speed control P gain at rated speed or higher) $=($ Speed control P gain at rated speed or lower $) \times(100 \%$ + compensation amount)
Compensation amount = Pr. $1116 /$ Rated speed $\times($ Speed - Rated speed $)$

- Setting the speed control P gain in the per-unit system (Pr.1117, Pr.1118, Pr.1121)

- The speed control P gain can be set in the per-unit (pu) system.
- In the per-unit system:

When " 1 " is set, the torque (Iq) command is 100% (rated Iq) when the speed deviation is 100%.
When "10" is set, the torque (Iq) command is 10% (rated Iq) when the speed deviation is 10%.
Set the 100\% speed in Pr. 1121 Per-unit speed control reference frequency.

- The speed control P gain becomes as follows according to Pr. 1117 Speed control P gain 1 (per-unit system), Pr. 1118

Speed control P gain 2 (per-unit system), and the RT signal.

Pr. 1117	Pr. 1118	Pr. 830	RT signal	Speed control P gain
9999	9999	-	OFF	Pr. 820
		9999	ON	Pr. 820
		Other than 9999	ON	Pr. 830
Other than 9999	9999	-	-	Pr. 1117
9999	Other than 9999	-	OFF	Pr. 820
			ON	Pr. 1118
Other than 9999	Other than 9999	-	OFF	Pr. 1117
			ON	Pr. 1118

NOTE

- The per-unit system setting is available only under Real sensorless vector control or vector control.
- When the speed control P gain or model speed control gain is set in the per-unit system, the easy gain tuning selection (Pr. 819 = "1 or 2") becomes invalid.

\checkmark Switching over P/PI control (Pr.1115, X44 signal)

- In speed control under Real sensorless vector control or vector control, whether or not to add the integral time (I) when performing gain adjustment with P gain and integral time can be performed with the P / PI control switchover signal (X44).
When X 44 signal is OFF...PI control
When $X 44$ signal is ON...P control
- To input the X 44 signal, set "44" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.
- The shock of P/PI control switchover is absorbed by setting Pr. 1115 Speed control integral term clear time. When the motor speed falls below the Pr. 1348 setting, speed loop integration is stopped and the accumulated integral term is reduced and cleared according to the Pr. 1115 setting (initial value is 0 ms). In Pr.1115, set time when the integral term is reduced from 100% to 0% regarding the rated torque current (Iq) as 100%. Turning OFF the X44 signal resumes the integral operation.
[Function block diagram]

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- The speed loop integration can be disabled at the emergency stop using Pr. 1349 Emergency stop operation selection. (Refer to page 320.)

- P/PI control switchover according to the motor speed (Pr.1348)

- When the motor speed falls below the Pr. 1348 setting during speed control under Real sensorless vector control or Vector control, speed loop integration is stopped and the accumulated integral term is cleared.
Pr. 1348 setting or more: PI control
Less than the Pr. 1348 setting: P control
- The shock of P/PI control switchover is absorbed by setting Pr. 1115 Speed control integral term clear time. When the motor speed falls below the Pr. 1348 setting, speed loop integration is stopped and the accumulated integral term is reduced and cleared according to the Pr. 1115 setting (initial value is 0 ms). In Pr.1115, set time when the integral term is reduced from 100% to 0% regarding the rated torque current (lq) as 100%. When the motor speed is increased to the Pr. 1348 setting plus 2 Hz or more, integral operation is resumed.

NOTE

- The speed loop integration can be disabled at the emergency stop using Pr. 1349 Emergency stop operation selection. (Refer to page 320.)

5.3.6 Troubleshooting in the speed control

Sensorless Vector PM

No.	Condition	Cause	Countermeasure
1	The motor does not rotate. (Vector control)	Motor wiring is incorrect.	- Check the wiring. - Set V/F control (set Pr. 80 Motor capacity or Pr. 81 Number of motor poles to "9999") and check the motor rotation direction. - When a forward signal is input, rotation in the counterclockwise direction as viewed from the motor shaft direction is correct. (Clockwise rotation means that the phase sequence of the inverter secondary side wiring is different.)
		Encoder type selection switch (vector control compatible option) is incorrect.	- Check the encoder specifications. - Check the encoder type selection switch of differential/complementary (vector control compatible option).
		Wiring of encoder is incorrect.	- When using the system where the motor shaft can be rotated by an external force other than the motor without any safety troubles, rotate the motor counterclockwise and check if FWD is indicated. - If REV is indicated, the phase sequence of the encoder is incorrect. - Check the wiring, and set Pr. 359 (Pr.852) Encoder rotation direction in accordance with the motor specification. (Refer to page 77.) - If the clockwise direction is forward as viewed from the motor shaft side, set Pr. 359 (Pr.852) = "0". - If the counterclockwise direction is forward as viewed from the motor shaft side, set Pr. 359 (Pr.852) = "1".
		The parameter setting and the number of encoder pulses used are different.	- If the parameter setting value is lower than the number of encoder pulses used, the motor will not rotate. Set Pr. 369 (Pr.851) Number of encoder pulses correctly. (Refer to page 77.)
		Encoder power specifications are incorrect. Alternatively, power is not input.	- Check the encoder power specifications ($5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$), and input the external power supply. When the encoder output is the differential line driver type, only 5 V can be input. Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply between PG and SD.
		The option to be used and parameter settings do not match.	- Correctly set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 172.)
2	Motor does not run at the correct speed. (Command speed and actual speed differ.)	Speed command from the controller is different from the actual speed. The speed command is affected by noise.	- Check that the speed command sent from the controller is correct. (Take EMC measures.) - Set Pr. 72 PWM frequency selection lower.
		The command speed and the speed recognized by the inverter are different.	- Adjust the bias and gain (Pr.125, Pr.126, Pr. 902 to Pr.905, Pr.917, Pr.918) of the speed command again.
		The setting for the number of encoder pulses is incorrect.	- Check the setting of Pr. 369 (Pr.851). (Vector control) (Refer to page 77.)
		The motor constant varies due to increase in the motor temperature.	Enable the online auto tuning at startup (set Pr. 95 (Pr.574) = "1") (under Real sensorless vector control). (Refer to page 537.) To perform the online auto tuning at startup for a lift, use of the Start-time tuning start external input (X28) signal is recommended.
3	The speed does not accelerate to the command speed.	Torque shortage. The torque limit is operating.	- Raise the torque limit. (Refer to the torque limit for speed control on page 191.) - Increase the capacity.
		Only P (proportional) control is performed.	- Speed deviation occurs under P (proportional) control when the load is heavy. Select PI control.

No．	Condition	Cause	Countermeasure
4	Motor speed fluctuates．	Speed command varies．	－Check that the speed command sent from the controller is correct．（Take EMC measures．） －Set Pr． 72 lower． －Set Pr． 822 Speed setting filter 1 higher．（page 481）
		Torque shortage．	－Raise the torque limit．（Refer to the torque limit for speed control on page 191．）
		Speed control gain is not suitable for the machine． （Resonance occurs．）	－Perform easy gain tuning． －Adjust Pr． 820 Speed control P gain 1 and Pr． 821 Speed control integral time 1. －Perform speed feed forward control or model adaptive speed control．
5	Hunting（vibration or acoustic noise）occurs in the motor or the machine．	Speed control gain is too high．	－Perform easy gain tuning． －Set Pr． 820 lower and Pr． 821 higher． －Perform speed feed forward control or model adaptive speed control．
		Torque control gain is too high．	－Set Pr． 824 Torque control P gain 1 （current loop proportional gain） lower．
		Motor wiring is incorrect．	－Check the wiring．
6	Acceleration／ deceleration time is different from the setting．	Torque shortage．	－Raise the torque limit．（Refer to the torque limit for speed control on page 191．） －Perform speed feed forward control．
		Load inertia is too high．	－Set acceleration／deceleration time suitable for the load．
7	Machine movement is unstable．	Speed control gain is not suitable for the machine．	－Perform easy gain tuning． －Adjust Pr． 820 and Pr． 821. －Perform speed feed forward control or model adaptive speed control．
		Response is slow because of the inverter＇s acceleration／deceleration time setting．	－Set the optimum acceleration／deceleration time．
8	Rotation ripple occurs during the low－speed operation．	High carrier frequency is affecting the motor rotation．	－Set Pr． 72 lower．
		Speed control gain is too low．	－Set Pr． 820 higher．

《〈Parameters referred to 》》
Pr． 3 Base frequency，Pr． 19 Base frequency voltage page 699
Pr． 72 PWM frequency selection page 310
Pr． 80 Motor capacity，Pr． 81 Number of motor poles page 166
Pr． 125 Terminal 2 frequency setting gain frequency，Pr． 126 Terminal 4 frequency setting gain frequency page 483
Pr． 359 Encoder rotation direction，Pr． 369 Number of encoder pulses，Pr． 851 Control terminal option－Number of encoder pulses，Pr． 852 Control terminal option－Encoder rotation direction page 77
Pr． 822 Speed setting filter 1 page 481
Pr． 824 Torque control P gain 1 （current loop proportional gain）page 243

5.3.7 Speed feed forward control and model adaptive speed control

Sensorless Vector

- Speed feed forward control or model adaptive speed control can be selected using parameter settings. Under speed feed forward control, the motor trackability for speed command changes can be improved. Under model adaptive speed control, the speed trackability and the response level to motor external disturbance torque can be adjusted individually.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 828 \\ & \text { G224 } \end{aligned}$	Model speed control gain	60\%	0 to 1000\%	Set the gain for the model speed controller.
$\begin{aligned} & 877 \\ & \text { G220 } \end{aligned}$	Speed feed forward control/model adaptive speed control selection	0	0	Perform normal speed control.
			1	Perform speed feed forward control.
			2	Model adaptive speed control becomes valid.
$\begin{aligned} & 878 \\ & \text { G221 } \end{aligned}$	Speed feed forward filter	0 s	0 to 1 s	Set the primary delay filter for the result of the speed feed forward calculated from the speed command and load inertia ratio.
$\begin{aligned} & \hline 879 \\ & \text { G222 } \end{aligned}$	Speed feed forward torque limit	150\%	0 to 400\%	Set a maximum limit for the speed feed forward torque.
$\begin{aligned} & 880 \\ & \text { C114 } \end{aligned}$	Load inertia ratio	7-fold	0 to 200-fold	Set the load inertia ratio for the motor.
$\begin{aligned} & 881 \\ & \text { G223 } \end{aligned}$	Speed feed forward gain	0\%	0 to 1000\%	Set the calculation result for speed feed forward as the gain.
1119	Model speed control gain (per-unit system)	9999	0 to 300	Set the gain for the model speed controller in the per-unit system.
G262			9999	The Pr. 828 setting is applied to the operation.
1121	Per-unit speed control reference frequency	$120 \mathrm{Hz*}{ }^{\text {1 }}$	0 to 400 Hz	Set the speed at 100\% when setting speed control P gain or model speed control gain in the per-unit system.
G260		$60 \mathrm{~Hz}{ }^{*}$		

*1 The value for the FR-A860-01080 or lower.
*2 The value for the FR-A860-01440 or higher.

Point 9

- When using model adaptive speed control, use the data obtained from the easy gain tuning for Pr. 828 Model speed control gain setting. Make the setting with easy gain tuning (at the same time). (Refer to page 201.)

- Speed feed forward control (Pr. 877 = "1")

- When the load inertia ratio is set in Pr.880, the required torque for the set inertia is calculated according to the acceleration and deceleration commands, and the torque is generated quickly.
- When the speed feed forward gain is 100%, the calculation result for speed feed forward is applied as is.
- If the speed command changes suddenly, the torque is increased by the speed feed forward calculation. The maximum limit for the speed feed forward torque is set in Pr. 879.
- The speed feed forward result can also be lessened with a primary delay filter in Pr.878.

NOTE

- The speed feed forward control is enabled for the first motor.
- Even if the driven motor is switched to the second motor while Pr.877= "1", the second motor is operated as Pr.877="0".

－Model adaptive speed control（Pr． $877=$＂2＂，Pr．828，Pr．1119）

－The model speed of the motor is calculated，and the feedback is applied to the speed controller on the model side．Also， this model speed is set as the command of the actual speed controller．
－The inertia ratio of Pr． 880 is used when the speed controller on the model side calculates the torque current command value．
－The torque current command of the speed controller on the model side is added to the output of the actual speed controller， and set as the input of the iq current control．Pr． 828 is used for the speed control on the model side（ P control），and first gain Pr． 820 is used for the actual speed controller．
－The model speed control gain can be set in the per－unit（pu）system in Pr． 1119.
－In the per－unit system：
When＂ 1 ＂is set，the torque（Iq）command is 100%（rated Iq）when the speed deviation is 100% ．
When＂10＂is set，the torque（Iq）command is 10%（rated Iq）when the speed deviation is 10% ．
Set the 100% speed in Pr． 1121 Per－unit speed control reference frequency．

NOTE

－The model adaptive speed control is enabled for the first motor．
－Even if the driven motor is switched to the second motor while Pr． $877=$＂ 2 ＂，the second motor is operated as Pr． $877=00$＂．
－Under model adaptive speed control，because the appropriate gain values for the model and actual loop sections are based on the response that was set for easy gain tuning，when raising the response level，Pr． 818 Easy gain tuning response level setting must be re－evaluated（raised）．
－The per－unit system setting is available only under Real sensorless vector control or vector control．
－When the speed control P gain or model speed control gain is set in the per－unit system，the easy gain tuning selection （Pr．819＝＂1 or 2＂）becomes invalid．

－Combining with easy gain tuning

－The following table shows the relationship between speed feed forward and model adaptive speed control，and the easy gain tuning function．

	Easy gain tuning selection（Pr．819）setting		
	$\mathbf{0}$	$\mathbf{1}$	
Pr．880 Load inertia ratio	Manual input	The inertia ratio value calculated by easy gain tuning is displayed． Manual input is available only during a stop．	Manual input
Pr．820 Speed control P gain 1	Manual input	The tuning result is displayed． Write is not available．	The tuning result is displayed． Write is not available．
Pr．821 Speed control integral time 1	Manual input	The tuning result is displayed． Write is not available．	The tuning result is displayed． Write is not available．
Pr．828 Model speed control gain	Manual input	The tuning result is displayed． Write is not available．	
Pr．881 Speed feed forward gain	Manual input	Manual input	The tuning result is displayed． Write is not available．

《｜Parameters referred to 》》

Pr． 820 Speed control P gain 1，Pr． 830 Speed control P gain 2 page 201
Pr 821 Speed control integral time 1，Pr． 831 Speed control integral time 2 page 201

5.3.8 Torque bias

Sensorless Vector

The torque bias function can be used to make the starting torque start-up faster. At this time, the motor starting torque can be adjusted with a contact signal or analog signal.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 840 \\ & \text { G230 } \end{aligned}$	Torque bias selection	9999	0	Set the torque bias amount using contact signals (X42, X43) in Pr. 841 to Pr. 843.
			1	Set the torque bias amount using terminal 1 in any of Pr. 919 and Pr.920. (When the squirrel cage rises during forward motor rotation.)
			2	Set the torque bias amount using terminal 1 in any of Pr. 919 and Pr.920. (When the squirrel cage rises during reverse motor rotation.)
			3	The torque bias amount using terminal 1 can be set automatically in Pr.919, Pr. 920 and Pr. 846 according to the load.
			24	Torque bias command via PROFIBUS-DP communication (FRA8NP) (-400\% to 400\%)
			25	Torque bias command via PROFIBUS-DP communication (FRA8NP) (-327.68\% to 327.67\%)
			9999	No torque bias, rated torque 100\%
$\begin{aligned} & 841 \\ & \text { G231 } \end{aligned}$	Torque bias 1	9999	$\begin{aligned} & 600 \text { to } \\ & 999 \% \end{aligned}$	Negative torque bias amount (-400\% to -1\%)
$\begin{aligned} & 842 \\ & \text { G232 } \end{aligned}$	Torque bias 2		$\begin{aligned} & 1000 \text { to } \\ & 1400 \% \end{aligned}$	Positive torque bias amount (0 to 400\%)
$\begin{aligned} & \hline 843 \\ & \text { G233 } \end{aligned}$	Torque bias 3		9999	No torque bias setting
$\begin{aligned} & 844 \\ & \text { G234 } \end{aligned}$	Torque bias filter	9999	0 to 5 s	The time until the torque starts up.
			9999	The same operation as 0 s .
$\begin{aligned} & 845 \\ & \text { G235 } \end{aligned}$	Torque bias operation time	9999	0 to 5 s	The time for retaining the torque of the torque bias amount.
			9999	The same operation as 0 s .
$\begin{aligned} & 846 \\ & \text { G236 } \end{aligned}$	Torque bias balance compensation	9999	0 to 10 V	Set the voltage for the balanced load.
			9999	The same operation as 0 V . (Fixed to $0 \mathrm{~V} / 0 \%$.)
$\begin{aligned} & \hline 847 \\ & \text { G237 } \end{aligned}$	Fall-time torque bias terminal 1 bias	9999	0 to 400\%	The bias value setting in the torque command.
			9999	The same as during rising (Pr.919).
$\begin{aligned} & 848 \\ & \text { G238 } \end{aligned}$	Fall-time torque bias terminal 1 gain	9999	0 to 400\%	The gain value setting in the torque command.
			9999	The same as during rising (Pr.920).

Block diagram

- Setting the torque bias amount using contact input (Pr.840="0", Pr. 841 to Pr. 843)

- Select the torque bias amount shown in the table below using the corresponding contact signal combination.
- To input the X42 signal, set "42" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal, and to input the X 43 signal, set " 43 ".

Torque bias selection $\mathbf{1 (X 4 2)}$	Torque bias selection $\mathbf{2 (X 4 3)}$	Torque bias amount
OFF	OFF	0%
ON	OFF	Pr.841 -400\% to +400\% (Setting value: 600 to 1400%)
OFF	ON	Pr.842 -400\% to +400\% (Setting value: 600 to 1400%)
ON	ON	Pr. $843-400 \%$ to $+400 \%$ (Setting value: 600 to 1400%)

- When Pr. $841=1025$, the torque bias is 25%. When Pr. $842=975$, the torque bias is -25%. When $\operatorname{Pr} .843=925$, the torque bias is -75%.

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

\checkmark Setting the torque bias amount using terminal 1 (Pr. 840 ="1, 2", Pr.847, Pr.848)

- Calculate the torque bias from the load input to terminal 1 as shown in the diagram below, and then apply the torque bias.
- To set the torque bias amount with a voltage input to terminal 1, set Pr. 868 Terminal 1 function assignment ="6".
- The torque bias amount (Pr.847) and gain amount (Pr.848) when descending (reverse motor rotation when the Pr. 840 setting is "1", forward motor rotation when the setting is "2") can be set in a range of 0 to 400%. When Pr. 847 or Pr. 848 ="9999", the setting is the same for both descending and ascending (Pr.919, Pr.920).

$\text { Pr. } 840$ Setting	When ascending	When descending
1	(Forward motor rotation)	
2	(Reverse motor rotation)	(Forward motor rotation)

NOTE

- Input 0 to 10 V (torque command) to the terminal 1 that is used for the torque bias function. Any negative input voltage is regarded as 0 V .
- Setting the torque bias amount automatically using terminal 1 (Pr. $840=" 3$ ", Pr. 846)
- The settings of Pr. 919 Terminal 1 bias command (torque), Pr. 919 Terminal 1 bias (torque), Pr. 920 Terminal 1 gain command (torque), Pr. 920 Terminal 1 gain (torque) and Pr. 846 Torque bias balance compensation can be set automatically according to the load.
- To set the torque bias amount with a voltage input to terminal 1, set Pr. 868 Terminal 1 function assignment="6".
- Set the terminal 1 to accept inputs of load detection voltage, set " 3 " in Pr. 840 Torque bias selection, and adjust the parameter settings following the procedures below.

Setting Pr. 919

Setting Pr. 920

The load input at the maximum load is set as the terminal 1 gain, and a terminal 1 gain command is automatically set according to the load.

Setting Pr. 846

NOTE

- To perform a torque bias operation after the automatic setting is completed, set Pr. 840 to "1" or "2".
- Torque bias command via PROFIBUS-DP communication (Pr. $840=$ "24 or 25 ")
- A torque bias command value can be set using the FR-A8NP (PROFIBUS-DP communication).

Pr.840 setting	Torque bias command input	Setting range Setting increments	
24	Torque bias command from the buffer memory of PROFIBUS (REF1 to 7)	600 to 1400 $(-400 \%$ to $400 \%)$	1%
25	Torque bias command from the buffer memory of PROFIBUS (REF1 to 7$)$	-32768 to 32767 (complement of 2) $(-327.68 \%$ to $327.67 \%)$	0.01%

NOTE

- For details on FR-A8NP setting, refer to the Instruction Manual of FR-A8NP.

－Torque bias operation（Pr．844，Pr．845）

－The torque start－up can be made slower by setting Pr． 844 Torque bias filter \neq＂ 9999 ＂．The torque start－up operation at this time is the time constant of the primary delay filter．
－Set the time for continuing the output torque simply by using the command value for the torque bias in Pr． 845 Torque bias operation time．

NOTE

－When torque bias is enabled and Pr． $868=$＂ 6 ＂，terminal 1 operates as a torque command instead of a frequency setting auxiliary．When override compensation is selected using Pr． 73 Analog input selection and terminal 1 is the main speed， no main speed（main speed $=0 \mathrm{~Hz}$ ）is set．
－The torque bias is valid for the first motor．When applying the second motor（RT signal is ON ），the torque bias function is not performed．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

《｜Parameters referred to 》》

Pr． 73 Analog input selection page 473
Pr． 178 to Pr． 189 （Input terminal function selection）page 498
Pr．919，Pr． 920 （torque setting voltage（current）bias／gain）W page 488

5.3.9 Avoiding motor overrunning

Vector

Motor overrunning due to excessive load torque or an error in the setting of the number of encoder pulses can be avoided.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{\|l\|} \hline 285 \\ \text { H416 } \end{array}$	Speed deviation excess detection frequency *1	9999	0 to 30 Hz	Set the speed deviation excess detection frequency (difference between the actual rotation speed and speed command value) at which the protective function (E.OSD) activates.
			9999	No speed deviation excess
$\begin{aligned} & 853 \text { *2 } \\ & \mathrm{H} 417 \end{aligned}$	Speed deviation time	1 s	0 to 100 s	Set the time from when the speed deviation excess state is entered to when the protective function (E.OSD) activates.
$\begin{aligned} & 873^{* 2} \\ & \text { H415 } \end{aligned}$	Speed limit	20 Hz	0 to 400 Hz	Set the frequency limit with the set frequency + Pr. 873 value.
$\begin{aligned} & 690 \\ & \text { H881 } \end{aligned}$	Deceleration check time	1 s	0 to 3600 s	Set the time required to shut off output due to deceleration check after the start signal is OFF.
			9999	No deceleration check

*1 This is the overspeed detection frequency under encoder feedback control. (Refer to page 730.)
*2 The setting is available when a vector control compatible option is installed.

- Speed deviation excess detection (Pr.285, Pr.853)

- A trip can be set for when the deviation between the set frequency and actual rotation speed is large, such as when the load torque is excessive.
- When the difference (absolute value) between the speed command value and actual rotation speed in speed control under vector control is equal to or higher than the setting value in Pr. 285 Speed deviation excess detection frequency for a continuous time equal to or longer than the setting value in Pr. 853 Speed deviation time, Speed deviation excess detection (E.OSD) activates to shut off the inverter output.

－Speed limit（Pr．873）

－This function prevents overrunning even when the setting value for the number of encoder pulses and the value of the actual number of pulses are different．When the setting value for the number of encoder pulses is lower than the actual number of pulses，because the motor may increase speed，the output frequency is limited with the frequency of（set frequency＋Pr．873）．

NOTE

－When the automatic restart after instantaneous power failure function is selected（Pr． 57 Restart coasting time $=$＂9999＂） and the setting value for the number of encoder pulses is lower than the actual number of pulses，the output speed is limited with the synchronous speed of the value of Pr． 1 Maximum frequency＋Pr． 873.
－When a regenerative driving torque limit is applied and the speed limit function activates，the output torque may drop suddenly．Also，when the speed limit function activates during pre－excitation operation，output phase loss（E．LF）may occur．If the setting for the number of encoder pulses is confirmed as correct，it is recommended that Pr． 873 be set to the maximum value $(400 \mathrm{~Hz})$ ．
－Even if the set frequency is lowered after inverter operation，the speed limit value is not lowered．During deceleration，the speed is limited at frequency command value $+\operatorname{Pr} .873$.

－Deceleration check（Pr．690）

－This function can stop the inverter output when the motor is accelerated accidentally during rotation．This prevents a malfunction due to incorrect encoder pulse settings．
－The function is activated when the difference between the actual motor speed and the speed command value exceeds 2 Hz ．
－If the motor does not decelerate within the time period set in Pr．690，the speed deviation excess detection（E．OSD）is activated to shut off the inverter output．

NOTE

－The deceleration check is enabled in the speed control of the vector control．
－If the protective function（E．OSD）operates due to deceleration check，check whether the Pr． 369 （Pr．851）Number of encoder pulses setting is correct．

《｜Parameters referred to 》》

Pr． 285 Overspeed detection frequency page 730
Pr． 369 Number of encoder pulses，Pr． 851 Control terminal option－Number of encoder pulses page 77

5.3.10 Notch filter

Sensorless Vector PM

The response level of speed control in the resonance frequency band of mechanical systems can be lowered to avoid mechanical resonance.

Pr.	Name	Initial value	Setting range	
$\mathbf{1 0 0 3}$ G601	Notch filter frequency	0	0	Description
		8 to 1250 Hz	Set the frequency for the center of gain attenuation.	
$\mathbf{1 0 0 4}$	Notch filter depth	0	0 to 3	0 (Deep) $\rightarrow 3$ (Shallow)
G602		0	0 to 3	0 (Narrow) $\rightarrow 3$ (Wide)
$\mathbf{1 0 0 5}$	Notch filter width			

- Pr. 1003 Notch filter frequency

- This sets the frequency for the center when attenuating the gain. If the mechanical resonance frequency is unknown, lower the notch frequency in order from the highest. The point where the resonance is smallest is the optimum setting for the notch frequency.

- Pr. 1004 Notch filter depth

- A deeper notch depth has a greater effect in reducing mechanical resonance, but because the phase delay is larger, vibration may increase. Adjust by starting from the shallowest value.

Setting	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Depth	Shallow	\rightarrow	\leftarrow	Deep
Gain	-4 dB	-8 dB	-14 dB	-40 dB

Pr. 1005 Notch filter width

- This sets the width of the frequency to which to apply the notch filter. The setting can be adjusted according to the width of the frequency range to be excluded.
- If the width is too wide, the response level of speed control will drop, and the system may become unstable.

NOTE

- If a value higher than 500 Hz is set in Pr. 1003 while the response speed is normal ($\mathbf{P r} .800=$ any of " 0 to 5 and 9 to 14 "), the inverter operates at 500 Hz .

```
<<Parameters referred to \>
Pr. }800\mathrm{ Control method selection page 166
```


5.4 Torque control under Real sensorless vector control and vector control

Purpose		Parameter to set Refer to page		
To selection the torque command source and to set the torque command value	Torque command	P.D400 to P.D402, P.G210, P.H704	Pr.801, Pr.803 to Pr.806, Pr.1114	232
To prevent the motor from overspeeding	Speed limit	P.H410 to P.H412, P.H414	Pr.807 to Pr.809, Pr.1113	237
To raise precision of torque control	Torque control gain adjustment	P.G213, P.G214, P.G313, P.G314	Pr.824, Pr.825, Pr.834, Pr.835	243
To stabilize torque detection signal	Torque detection filter	P.G216, P.G316	Pr.827, Pr.837	287

5.4.1 Torque control

- Under torque control, the operation is controlled to output the commanded torque.
- Motor rotation speed is steady when the motor output torque and load torque are balanced. Thus, motor speed during torque control is determined by the load.
- Under torque control, motor speed accelerates so motor output torque does not exceed motor load. In order to prevent the motor from overspeeding, set a speed limit. (Speed control is performed instead of torque control during speed limit.)
- If speed limit is not set, speed limit value setting is regarded as 0 Hz and torque control is not enabled.

- Block diagram

Speed limit

NOTE

- To select coasting instead of deceleration stop with speed limit when the start command is turned OFF, set Pr. 250 Stop selection.
- The RT (Second function selection) signal and the X9 (Third function selection) signal are used to enable switching between acceleration/deceleration time settings. The acceleration/deceleration time after switching depends on the settings in Pr. 44 Second acceleration/deceleration time and Pr. 45 Second deceleration time, or Pr. 110 Third acceleration/deceleration time and Pr. 111 Third deceleration time. The acceleration/deceleration time is a period of time taken to reach Pr. 20 Acceleration/deceleration reference frequency.
- Pr. 21 Acceleration/deceleration time increments is used to change the setting increment.
- When the automatic restart after instantaneous power failure is selected, the inverter accelerates the motor from the frequency search result frequency to the set frequency. (Pr. 57 Restart coasting time $\neq 9999$, Pr. 162 Automatic restart after instantaneous power failure selection = "10, 12, 13, 1010, 1012, or 1013")
- Pr. 811 Set resolution switchover is used to change the setting increment for speed setting, operation speed monitoring, and torque limit setting.
- Pr. 862 Encoder option selection is used to change the Vector control compatible plug-in option or the control terminal option for the first and second motors.
- Pr. 1113 Speed limit method selection is used to change the direction of rotation, torque command polarity, and power driving / regenerative driving status.

Magnetic flux control / slip frequency

,

- Operation transition

- If the setting value of Pr. 7 and Pr. 8 is " 0 ", turning OFF the start signal enables speed control, and the output torque is controlled by the torque limit value.

Item	Description	
Start signal	External operation	STF, STR signal
	PU operation	
		FWD or REV on the operation panel or the parameter unit.
Torque command	Selects the torque command input method and inputs the torque command.	
Speed limit	Selects the speed limit input method and inputs a speed limit value.	

- Operation example (when Pr.804="0")

Torque control is possible when actual rotation speed does not exceed the speed limit value.
When the actual speed reaches or exceeds the speed limit value, speed limit is activated, torque control is stopped and speed control (proportional control) is performed.
The following diagram indicates operation relative to analog input command from the terminal 1.

- At STF signal ON, the speed limit value is raised in accordance with the setting of Pr.7.
- Speed control is performed when the actual speed exceeds the speed limit value.
- At STF signal OFF, the speed limit value is lowered in accordance with the setting of Pr.8.
- Under torque control, the actual operation speed is a constant speed when the torque command and load torque are balanced.
- The direction of motor torque generation is determined by a combination of the input torque command polarity and the start signal, as given in the following table.

Polarity of torque command	Torque generation direction	
	STF signal ON	STR signal ON
Forward direction (forward power driving /	Reverse direction (forward regenerative driving / reverse power driving)	
- torque command	Reverse direction (forward regenerative driving / reverse power driving)	Forward direction (forward power driving / reverse regenerative driving)

NOTE

- Once the speed limit is activated, speed control is performed and internal torque limit (Pr. 22 Torque limit level) is enabled. (Initial value) In this case, it may not be possible to return to torque control. Torque limit should be external torque limit (terminals 1 and 4). (Refer to page 191.)
- Under torque control, the undervoltage avoidance function (Pr.261="11" or "12"), which is one of the power failure deceleration stop function, is invalid. When $\operatorname{Pr} .261=" 11$ (12)", the operation is performed in the same manner as if Pr.261="1 (2)".
- Under torque control, perform linear acceleration/deceleration (Pr.29="0 (initial value)"). The inverter's protective function may operate for non-linear acceleration/deceleration patterns. (Refer to page 325.)
- Performing pre-excitation (LX signal and X13 signal) under torque control (Real sensorless vector control) may start the motor running at a low speed even when the start command (STF or STR) is not input The motor may run also at a low speed when the speed limit value=0 with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.

5.4.2 Setting procedure of Real sensorless vector control (torque control)

Sensorless

Operating procedure

1. Wire a device correctly. (Refer to page 40.)
2. Make the motor setting. (Pr.71) (Refer to page 506.)

Set "0 (standard motor)" or "1 (constant-torque motor)" in Pr. 71 Applied motor.
3. Set the motor overheat protection. (Pr.9) (Refer to page 377.)

Set the rated motor current (A) in Pr. 9 Electronic thermal O/L relay.
4. Set the motor capacity and the number of motor poles. (Pr.80, Pr.81) (Refer to page 166.)

Set the motor capacity (kW) in Pr. 80 Motor capacity, and set the number of motor poles in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
5. Set the rated motor voltage and frequency. (Pr.83, Pr.84) (Refer to page 508)

Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 84 Rated motor frequency
6. Select the control method. (Pr.800) (Refer to page 166)

Enable torque control by setting Pr. 800 Control method selection="11" (torque control) or "12" (speed/torque switch) and torque control becomes valid.
7. Set the torque command. (Pr.804) (Refer to page 232.)
8. Set the speed limit. (Pr.807) (Refer to page 237.)
9. Perform offline auto tuning. (Pr.96) (Refer to page 508.)
10. Set the acceleration time to "0" (Pr.7). (Refer to page 320.)
11. Perform the test operation.

As required

- Select online auto tuning. (Pr.95) (Refer to page 537.)
- Adjusting the torque control gain manually (Refer to page 243)
- During Real sensorless vector control, offline auto tuning must be performed properly before starting operations.
- The carrier frequency is limited during Real sensorless vector control. (Refer to page 310.)
- Torque control is not available in a low-speed (about 10 Hz or lower) regenerative range, or with a low speed and light load (about 5 Hz or lower and rated torque about 20% or lower).
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start signal (STF or STR) is not input. The motor may run also at a low speed when the speed limit value $=0$ with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Switching between the forward rotation command (STF) and reverse rotation command (STR) must not be performed during operations under torque control. Otherwise, an overcurrent trip (E.OC[]) or opposite rotation deceleration fault (E.11) will occur.
- When performing continuous operations under Real sensorless vector control in FR-A860-00090 or lower, the speed fluctuation increases at 20 Hz or less, and in the low-speed range of less than 1 Hz , there may be torque shortage. In such case, make a stop once and start again to improve the operating condition.
- If starting may occur while the motor is coasting under Real sensorless vector control, the frequency search must be set for the automatic restart after instantaneous power failure function (Pr.57キ"9999", Pr.162="10").
- When Real sensorless vector control is applied, not enough torque may be provided in the ultra low-speed range of about 2 Hz or lower. Generally, the speed control range is as follows. For power driving, 1:200 (2,4 or 6 poles) (available at 0.3 Hz or higher when the rating is 60 Hz), 1:30 (8 poles or more) (available at 2 Hz or higher when the rating is 60 Hz). For regenerative driving, 1:12 (2 to 10 poles) (available at 5 Hz or higher when the rating is 60 Hz).
- To give the constant torque command in the constant output range, set " 1 or 11 " in Pr. 803 Constant output range torque characteristic selection. (Refer to page 232.)

5.4.3 Setting procedure for vector control (torque control)

Vector

Operating procedure

1. Wire a device correctly. (Refer to page 40.) Install a vector control compatible option.
2. Set the option to be used. (Pr.862)

Set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 172.)
3. Set motor and encoder. (Pr.71, Pr. 359 (Pr. 852), Pr. 369 (Pr.851))

Set Pr. 71 Applied motor, Pr. 359 (Pr. 852) Encoder rotation direction or Pr. 369 (Pr. 851) Number of encoder pulses according to the motor and encoder used. (Refer to page 77.)
4. Set the overheat protection of the motor. (Pr.9) (Refer to page 377.) Set the rated motor current (A) in Pr. 9 Electronic thermal O/L relay. When using a motor equipped with a thermal sensor, set Pr. $9=$ " 0 A ".
5. Set the motor capacity and the number of motor poles. (Pr.80, Pr.81) (Refer to page 166.)

Set the motor capacity (kW) in Pr. 80 Motor capacity, and set the number of motor poles in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
6. Set the rated motor voltage and frequency. (Pr.83, Pr.84) (Refer to page 166)

Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 84 Rated motor frequency.
7. Select the control method. (Pr.800) (Refer to page 166)

Select Pr. 800 Control method selection="1 (torque control)", "2 (speed/torque switch)",or "5 (position torque switch)" to enable torque control.
8. Set the torque command. (Pr.804) (Refer to page 232.)
9. Set the speed limit. (Pr.807) (Refer to page 237.)
10. Set the acceleration time to "0" (Pr.7). (Refer to page 320.)
11. Perform the test operation.

As required

- Perform offline auto tuning. (Pr.96) (Refer to page 508)
- Select online auto tuning. (Pr.95) (Refer to page 537.)
- Adjusting the torque control gain manually (Refer to page 243)

NOTE

- The carrier frequency is limited during vector control. (Refer to page 312.)
- Torque control is not available under the vector control with PM motors.
- To give the constant torque command in the constant output range, set "1 or 11" in Pr. 803 Constant output range torque characteristic selection. (Refer to page 232.)

5.4.4 Torque command

Sensorless Vector

For torque control, the torque command source can be selected.

Pr.	Name	Initial value	Setting range	Description		
$\begin{aligned} & 432 \\ & \text { D120*1 } \end{aligned}$	Pulse train torque command bias	0\%	0 to 400\%	For 0 pulses/s, set the torque to be used during stall prevention operation.		
$\begin{aligned} & 433 \\ & \text { D121 }{ }^{* 1} \end{aligned}$	Pulse train torque command gain	150\%	0 to 400\%	For 400k pulses/s, set the torque command to be used during stall prevention operation.		
$\begin{aligned} & 801 \\ & \text { H704 } \end{aligned}$	Output limit level	9999	0 to 400\%	Set the torque current limit level.		
			9999	The torque limit setting value is used for limiting the torque current level.		
$\begin{aligned} & 803 \\ & \text { G210 } \end{aligned}$	Constant output range torque characteristic selection	0	0, 10	Constant motor output command	In the torque command setting, select torque command for the constant output area.	
			1, 11	Constant torque command		
			2	The torque is constant unless the output limit of the torque current is reached. (The torque current is limited.)		
$\begin{aligned} & 804 \\ & \text { D400 } \end{aligned}$	Torque command source selection	0	0	Torque command based on the analog input to the terminal 1		
			1	Torque command (-400% to 400%) by the parameter setting (Pr. 805 or Pr.806)		
			2	Torque command given by the pulse train input (FR-A8AL)		
			3	Torque command via CC-Link/CC-Link IE Field Network/CCLink IE TSN communication (FR-A8NC/FR-A8NCE/FRA8NCG) Torque command via PROFIBUS-DP communication (FRA8NP)		
			4	12/16-bit digital input (FR-A8AX)		
			5	Torque command via CC-Link/CC-Link IE Field Network/CCLink IE TSN communication (FR-A8NC/FR-A8NCE/FRA8NCG) Torque command via PROFIBUS-DP communication (FRA8NP)		
			6			
$\begin{aligned} & 805 \\ & \text { D401 } \end{aligned}$	Torque command value (RAM)	1000\%	600 to 1400\%	Writes the torque command value in RAM. Regards 1000\% as 0%, and set torque command by an offset of 1000%.		
$\begin{aligned} & 806 \\ & \text { D402 } \end{aligned}$	Torque command value (RAM, EEPROM)	1000\%	600 to 1400\%	Writes the torque command value in RAM and EEPROM. Regards 1000% as 0%, and set torque command by an offset of 1000\%.		
$\begin{aligned} & 1114 \\ & \text { D403 } \end{aligned}$	Torque command reverse selection	1	0	Not reversed	Select whether to reverse the torque command polarity or not when the reverse rotation command (STR) is turned ON.	
			1	Reversed		

*1 The setting is available when the FR-A8AL is installed.

- Control block diagram

- When the torque command exceeding the torque limit value (Pr.22, Pr.810, Pr. 812 to Pr.817) is given, the output torque is within the torque limit value. (Refer to page 221.)

Torque command by analog input (terminal 1) (Pr.804="0 (initial value)")

- Torque commands are given using voltage (current) input to the terminal 1.
- Set Pr. 868 Terminal 1 function assignment="3, 4" to use the terminal 1 for torque command inputs.
- Torque commands given using analog inputs can be calibrated by calibration parameters Pr. 919 and Pr. 920 (Refer to page 488.)

Torque command by parameter (Pr.804="1")

- Torque command values can be set by setting Pr. 805 Torque command value (RAM) and Pr. 806 Torque command value (RAM, EEPROM).
- For Pr. 805 or Pr.806, regard 1000% as 0%, and set torque command by offset from 1000%. The following diagram shows relation between the Pr. 805 or Pr. 806 setting and the actual torque command value.
- To change torque command value frequently, write in Pr.805. If values are written in Pr. 806 frequently, EEPROM life is shortened.
- When the CC-Link IE Field Network (FR-A8NCE) or CC-Link IE TSN (FR-A8NCG) communication is used, the torque command given from the remote register (RWw2) is valid.

NOTE

- When the torque command is set by Pr. 805 (RAM), powering OFF the inverter will erase the changed parameter value. Therefore, the parameter set value will be the one saved by Pr. 806 (EEPROM) when the power is turned back on.
- If providing torque command by parameter setting, set the speed limit value properly to prevent overspeeding. (Refer to page 237.)

－Torque command using pulse train（Pr． 804 ＝＂2＂）

－Torque command given by the pulse train input to the FR－A8AL is available．
－Use Pr． 428 Command pulse selection to select a type of pulse train input to the FR－A8AL．

Pr． 428 setting	Command pulse train type		During forward	During reverse
0 （initial value）	Negative logic	Forward pulse train Reverse pulse train	PP Nなたなも	
1		Pulse train＋sign	$\begin{aligned} & \text { PP \& } \\ & \text { NP } \end{aligned}$	$\frac{\text { モもなと }}{\mathrm{H}}$
2		A phase pulse train B phase pulse train	$\begin{aligned} & \mathrm{PP} \quad \checkmark \square \\ & \mathrm{NP}, \square \end{aligned}$	$\sqrt{\square}$
3	Positive logic	Forward pulse train Reverse pulse train	PP fratar NP \qquad なれなた	
4		Pulse train＋sign		$\begin{gathered} A G G G \\ L \\ \hline \end{gathered}$
5		A phase pulse train B phase pulse train	$\begin{aligned} & \mathrm{PP} \square \square \\ & \mathrm{NP} \square \square \end{aligned}$	\square

－Use Pr． 432 Pulse train torque command bias and Pr． 433 Pulse train torque command gain to set the bias and gain values for the torque command respectively．

NOTE
－For details on the FR－A8AL，refer to the Instruction Manual of the FR－A8AL．

- Torque command given through the CC-Link / CC-Link IE Field Network /CC-Link IE TSN / PROFIBUS-DP (Pr. 804 = "3, 5, 6")

- Set the torque command value via the CC-Link communication (FR-A8NC/PLC function), CC-Link IE Field Network communication (FR-A8NCE), CC-Link IE TSN communication (FR-A8NCG), or PROFIBUS-DP communication (FRA8NP).
- For speed limit when "3 or 5" is set in Pr. 804 via the CC-Link communication, Pr. 807 Speed limit selection becomes invalid and Pr. 808 Forward rotation speed limit/speed limit and Pr. 809 Reverse rotation speed limit/reverse-side speed limit become valid for speed limit. (When Pr. 544 CC-Link extended setting = " $0,1,12,100$, or 112")
- For the CC-Link communication, Pr. 807 is valid when the extended cyclic setting of CC-Link communication is quadruple or octuple. For CC-Link IE Field Network or CC-Link IE TSN, Pr. 807 is always valid.

$\begin{aligned} & \text { Pr. } 804 \\ & \text { setting } \end{aligned}$	Torque command input			Setting range	Setting increments
	CC-Link/PLC function	CC-Link IE Field Network / CC-Link IE TSN	PROFIBUS-DP		
1	Torque command by Pr.805, Pr.806* ${ }^{* 1}$	Torque command by remote register $(R W w 2)^{*}{ }^{2}$	Torque command by Pr.805, Pr.806*1	$\begin{aligned} & 600 \text { to } 1400 \\ & (-400 \% \text { to } 400 \%) \end{aligned}$	1\%
3	Torque command by remote register (RWw1 or RWwC) ${ }^{*}{ }^{2}$		Torque command by the buffer memory of PROFIBUS-DP (REF1 to 7) ${ }^{*}$		
5	Torque command by remote register (RWw1 or RWwC) ${ }^{*}{ }^{2}$	Torque command by remote register $(\mathrm{RWW} 2)^{*}{ }^{2}$	Torque command by the buffer memory of PROFIBUS-DP (REF1 to 7) ${ }^{*}$ 2	$\begin{aligned} & -32768 \text { to } 32767 \\ & \text { (complement of 2) } \\ & (-327.68 \% \text { to } 327.67 \%)^{* 3} \end{aligned}$	0.01\% ${ }^{*}$
6	Torque command by Pr.805, Pr.806* ${ }^{* 1}$		Torque command by Pr.805, Pr.806* ${ }^{*}$		

*1 The torque command can also be given from operation panel or parameter unit.
*2 The torque command can also be given by setting a value in Pr. 805 or Pr. 806.
*3 Setting range if set by operation panel or parameter unit is "673 to $1327(-327 \%$ to $327 \%)$ "; setting increment is 1%.

NOTE

- For details on FR-A8NC, FR-A8NCE, FR-A8NCG, FR-A8NP setting, refer to the Instruction Manual for the respective communication options.
- For details on the setting using the PLC function, refer to the PLC Function Programming Manual.

- Torque command by 16-bit digital input (Pr.804="4")

- Execute torque command by 12-bit or 16-bit digital input using FR-A8AX (plug-in option).

NOTE

- For details on FR-A8AX setting, refer to the Instruction Manual of FR-A8AX.

－Changing the torque characteristic in the constant power output range （Pr．801，Pr．803）

－Due to the characteristics of motors，the torque is reduced when the speed exceeds the rated speed．To keep the torque constant at the speed more than the rated speed，set＂1 or 11＂in Pr． 803 Constant output range torque characteristic selection．
－During torque control，the torque is kept constant in the low－speed range regardless of the Pr． 803 setting．However，When ＂2＂is set in Pr． 803 under Real sensorless vector control，the torque may not be kept constant in the low－speed range．

Pr．803 setting	Torque characteristic in constant power range	
	Torque characteristic	Output limit
0 （initial value）， 10	Constant motor output	-
1,11	Constant torque	Without
2	Constant torque	With

－To avoid overload or overcurrent of the inverter or motor，use Pr． 801 Output limit level to limit the torque current in the constant power range．

Pr．801 setting	
0 to 400%	Set the torque current limit level．
9999	The torque limit setting value（Pr．22，Pr．812 to Pr．817，etc．）is used for limiting the torque current．

Reverse selection of the torque command（Pr．1114）

－Whether the torque command polarity is reversed or not when the reverse rotation command（STR）is turned ON can be selected using Pr． 1114 Torque command reverse selection．

Pr． 1114 setting	Torque command polarity at STR signal ON（sign）
0	Not reversed
1 （initial value）	Reversed

《｜Parameters referred to 》》

Pr． 868 Terminal 1 function assignment page 476
Pr． 919 and Pr． 920 （terminal 1 bias，gain torque）page 488

5.4.5 Speed limit

Sensorless Vector

When operating under torque control, motor overspeeding may occur if the load torque drops to a value less than the torque command value, etc. Set the speed limit value to prevent overspeeding.
If the actual speed exceeds the speed limit value, the control method switches from torque control to speed control, preventing overspeeding.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 807 \\ & \mathrm{H} 410 \end{aligned}$	Speed limit selection	0	0	Uses the speed command during speed control as the speed limit.
			1	Sets speed limits for forward and reverse directions individually by using Pr. 808 and Pr. 809.
			2	Forward/reverse rotation speed limit. Applies speed limit by analog voltage input to the terminal 1. Speed limit for forward/reverse side is switched by its polarity.
$\begin{aligned} & \hline 808 \\ & \text { H411 } \end{aligned}$	Forward rotation speed limit/ speed limit	60 Hz	0 to 400 Hz	Sets the forward side speed limit.
$\begin{aligned} & 809 \\ & \mathrm{H} 412 \end{aligned}$	Reverse rotation speed limit/ reverse-side speed limit	9999	0 to 400 Hz	Sets the reverse side speed limit.
			9999	Pr. 808 setting value is effective.
1113 H414	Speed limit method selection	0	9999	Speed limit mode 1
			0	Speed limit mode 2
			1	Speed limit mode 3
			2	Speed limit mode 4
			10	X93-OFF: Speed limit mode 3 X93-ON: Speed limit mode 4

- Speed limit method selection (Pr.1113)

Pr. 1113 setting	Speed limit method	Speed limit value
9999	Speed limit mode 1	Forward rotation speed limit Pr.807=0: Speed commend under speed control Pr.807=1: Pr. 808 Pr.807="2": Analog input at analog input of 0 to 10 V , or Pr. 1 at analog input of -10 to 0 V Reverse rotation speed limit Pr.807=0: Speed commend under speed control Pr. $807=1$: Pr. 809 (Pr. 808 when Pr.809="9999") Pr.807="2": Pr. 1 at analog input of 0 to 10 V , or analog input at analog input of -10 to 0 V
0 (initial value)	Speed limit mode 2	Speed limit Pr.807=0 or 2: Speed commend under speed control Pr. $807=1$: Pr. 808 Reverse-side speed limit Pr. 809 (Pr. 808 when Pr.809="9999")
1	Speed limit mode 3	
2	Speed limit mode 4	
10	Switching by external terminals	X93-OFF: Speed limit mode 3 X93-ON: Speed limit mode 4

Control block diagram (Speed limit mode 1)

- Using the speed command during speed control (Pr.1113="9999",

 Pr.807="0").- Speed limit is set by the same method as speed setting during speed control. (Speed setting by PU (operation panel/ parameter unit), multi-speed setting, plug-in option, etc.)
- At turn-ON of the start signal, the speed limit is raised from 0 Hz in accordance with the Pr. 7 Acceleration time. At turnOFF of the start signal, the speed limit is lowered from the speed at that point to the Pr. 10 DC injection brake operation frequency in accordance with the Pr. 8 Deceleration time. Then the motor is stopped.

NOTE

- The second and third acceleration/deceleration time can be set.
- When the speed limit command is larger than the Pr. 1 Maximum frequency setting value, speed limit value becomes the Pr. 1 setting value. When the speed limit command is smaller than Pr. 2 Minimum frequency setting value, speed limit value becomes the Pr. 2 setting value. Also when the speed limit command is smaller than the Pr. 13 Starting frequency, the speed limit value becomes 0 Hz .
- To perform speed limit by analog input, calibrate analog input terminals 1,2 and 4. (Refer to page 483.)
- To use analog inputs to perform speed control, turn the external signals (RH, RM, RL) OFF. If any of the external signals ($\mathrm{RH}, \mathrm{RM}, \mathrm{RL}$) are ON, speed limit by multi-speed is enabled.

- Setting separately for forward and reverse rotation (Pr.1113="9999", Pr.807="1", Pr.808, Pr.809)

- Set the speed limit by Pr. 808 Forward rotation speed limit/speed limit for forward rotation, and by Pr. 809 Reverse rotation speed limit/reverse-side speed limit for reverse rotation.
 rotations.

- Forward/reverse rotation speed limit using analog input (Pr.1113="9999", Pr.807="2")

- When performing speed limit by analog inputs to terminal 1, speed limit can be switched between forward and reverse rotation by its voltage polarity.
- When Pr. 868 Terminal 1 function assignment ="5", forward/reverse speed limit is enabled.
- If 0 to 10 V is input, forward rotation speed limit is applied. Reverse rotation speed limit at this time is the value of Pr. 1 Maximum frequency.
- If -10 to 0 V is input, reverse rotation speed limit is applied. Forward rotation speed limit at this time is the value of Pr. 1 .
- Upper speed limit is the value of Pr. 1 for both forward and reverse rotations.
- When terminal 1 input is "-10 to 0 V "

- When terminal 1 input is " 0 to 10 V "

NOTE

- To perform speed limit by using the terminal 1, calibrate the terminal 1. (Refer to page 483.)

- Speed limit mode 2 (Pr.1113="0", initial value)

- Following the polarity change in the torque command, the polarity of the speed limit value changes. This prevents the speed from increasing in the torque polarity direction. (When the torque command is 0 , the polarity of the speed limit value is positive.)
- When Pr. 807 Speed limit selection="0 or 2", the speed setting value for speed control is applied for the speed limit. When Pr. 807 Speed limit selection="1", the setting of Pr. 808 Forward rotation speed limit/speed limit is applied for the speed limit.
- When the load has reversed the rotation opposite to the torque polarity, the setting of Pr. 809 Reverse rotation speed limit/reverse-side speed limit is applied for the speed limit. (The speed limit value and reverse-side speed limit value are limited at Pr. 1 Maximum frequency (maximum 400 Hz under vector control).)

Reverse-side Torque speed limit value command

When the torque command value is positive

When the torque command value is negative

- Speed limit mode 3 (Pr.1113="1")

- Select this mode when the torque command is positive. The forward rotation command is for power driving (such as winding) and the reverse rotation command is for regenerative driving (such as unwinding). (Refer to each inside of the frames in the following figures.)
- When Pr. 807 Speed limit selection="0 or 2", the speed setting value for speed control is applied for the speed limit. When Pr. 807 Speed limit selection="1", the setting of Pr. 808 Forward rotation speed limit/speed limit is applied for the speed limit.
- When the torque command becomes negative, the setting of Pr. 809 Reverse rotation speed limit/reverse-side speed limit is applied to prevent the speed from increasing in the reverse rotation direction. (The speed limit value and reverseside speed limit value are limited at Pr. 1 Maximum frequency (maximum 400 Hz under vector control).)

For forward rotation command

For reverse rotation command

For regenerative driving by reverse rotation command (unwinding)

- Speed limit mode 4 (Pr.1113="2")

- Select this mode when the torque command is negative. The forward rotation command is for regenerative driving (such as unwinding) and the reverse rotation command is for power driving (such as winding). (Refer to each inside of the frames in the following figures.)
- When Pr. 807 Speed limit selection="0 or 2", the speed setting value for speed control is applied for the speed limit. When Pr. 807 Speed limit selection="1", the setting of Pr. 808 Forward rotation speed limit/speed limit is applied for the speed limit.
- When the torque command becomes positive, the setting of Pr. 809 Reverse rotation speed limit/reverse-side speed limit is applied to prevent the speed from increasing in the forward rotation direction. (The speed limit value and reverseside speed limit value are limited at Pr. 1 Maximum frequency (maximum 400 Hz under vector control).)

For reverse rotation command

For forward rotation command

For regenerative driving by forward rotation command (unwinding)

- Speed limit mode switching by external terminals (Pr.1113="10")

- The speed limit mode can be switch between 3 and 4 using the torque control selection (X93) signal.
- To assign the X93 signal, set " 93 " in any of Pr. 178 to Pr. 189 (Input terminal function selection).

X93 signal	Speed limit mode
OFF	Mode 3 (torque command=positive, Pr.1113=1 or equivalent)
ON	Mode 4 (torque command=negative, Pr.1113=2 or equivalent)

NOTE

- During the speed limit operation, SL is displayed on the operation panel and OL signal is output.
- OL signal is assigned to the terminal OL in the initial status. Set "3" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the OL signal to another terminal. Changing the terminal assignment using Pr. 190 to Pr. 196 may affect the other functions. Set parameters after confirming the function of each terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

〈Parameters referred to|》

Pr. 1 Maximum frequency, Pr. 2 Minimum frequency page 399
Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr. 239 (Multi-speed operation) \wp page 372
Pr. 7 Acceleration time, Pr. 8 Deceleration time page 320
Pr. 13 Starting frequency page 337
Pr. 190 to Pr. 196 (Output terminal function selection) \leqslant page 446
Pr. 868 Terminal 1 function assignment \leftrightarrows page 476
Pr.125, Pr.126, Pr. 902 to Pr.905, Pr.917, Pr. 918 (frequency setting voltage (current) bias gain) page 483

5.4.6 Torque control gain adjustment

Sensorless Vector

Operation is normally stable enough in the initial setting, but some adjustments can be made if abnormal vibration, noise or overcurrent occur for the motor or machinery.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 824 \\ & \text { G213 } \end{aligned}$	Torque control P gain 1 (current loop proportional gain)	100\%	0 to 500\%	Sets the current loop proportional gain.
$\begin{aligned} & 825 \\ & \text { G214 } \end{aligned}$	Torque control integral time 1 (current loop integral time)	5 ms	0 to 500 ms	Sets current loop integral compensation time.
$\begin{aligned} & \hline 834 \\ & \text { G313 } \end{aligned}$	Torque control P gain 2	9999	0 to 500\%	Sets the current loop proportional gain when RT signal is ON.
			9999	The Pr. 824 setting is applied to the operation.
$\begin{aligned} & 835 \\ & \text { G314 } \end{aligned}$	Torque control integral time 2	9999	0 to 500 ms	Sets the current loop integral compensation time when RT signal is ON.
			9999	The Pr. 825 setting is applied to the operation.

Current loop proportional (P) gain adjustment (Pr.824)

- The 100% current loop proportional gain is equivalent to 1000 rad/s during Real sensorless vector control, and to 1400 rad/s during vector control.
- For ordinary adjustment, try to set within the range of 50 to 500%.
- Set the proportional gain for during speed control.
- If setting value is large, changes in current command can be followed well and current fluctuation relative to external disturbance is smaller. If the setting value is however too large, it becomes unstable and high frequency torque pulse is produced.

- Current control integral time adjustment (Pr.825)

- Set the integral time of current control during torque control.
- Torque response increases if set small; current however becomes unstable if set too small.
- If the setting value is small, it produces current fluctuation toward disturbance, decreasing time until it returns to original current value.

- Using two types of gain (Pr.834, Pr.835)

- Use Pr. 834 Torque control P gain 2, Pr. 835 Torque control integral time 2 if the gain setting needs to be switched according to application or if multiple motors are switched by a single inverter.
- The Pr. 834 and Pr. 835 settings are valid when the second function selection (RT) signal is ON.

NOTE

- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 503.)
- RT signal is assigned to the terminal RT in the initial status. Set "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.

Adjustment procedure

Adjust if any of phenomena such as unusual vibration, noise, current or overcurrent is produced by the motor or machinery.

1. Change the Pr. 824 setting while checking the conditions.
2. If it cannot be adjusted well, change the Pr. 825 setting, and perform 1) again.

Adjustment method

Set Pr. 824 lower and Pr. 825 longer. First, lower Pr. 824 and then check of there is still any abnormal vibration, noise or current from the motor. If it still requires improvement, make Pr. 825 longer.

Pr. 824	Lower the setting by 10% increments and set a value that is approximately 0.8 to 0.9 times the setting value, immediately before abnormal noise or current is improved. If set too low, current ripple is produced and produces a sound from the motor that synchronizes with it.
Pr. 825	Lengthen the current setting by doubling it each time and set a value that is approximately 0.8 to 0.9 times the setting value, immediately before abnormal noise or current is improved. If set too long, current ripple is produced and produces a sound from the motor that synchronizes with it.

5.4.7 Troubleshooting in torque control

Sensorless Vector

	Condition	Cause	Countermeasure
1	Torque control does not operate properly.	- There is incorrect phase sequence between the motor wiring and encoder wiring.	- Check the wiring. (Refer to page 75.)
		- Pr. 800 Control method selection setting is applied.	- Check the setting of Pr.800. (Refer to page 166.)
		- Speed limit value has not been input.	- Set speed limit value. (If speed limit value is not input, it becomes 0 Hz by default and the motor does not run.)
		- Torque command varies.	- Check that the torque command sent from the controller is correct. - Set Pr. 72 PWM frequency selection lower. - Set Pr. 826 Torque setting filter 1 higher.
		- The torque command and the torque recognized by the inverter are different.	- Re-calibrate the Pr. 919 Terminal 1 bias command (torque), Pr. 919 Terminal 1 bias (torque), Pr. 920 Terminal 1 gain command (torque), and Pr. 920 Terminal 1 gain (torque). (Refer to page 488.)
		- Torque fluctuation due to motor temperature variation	- Select the magnetic flux observer by Pr. 95 Online auto tuning selection. (Refer to page 537.)
		- The option to be used and parameter settings do not match.	- Correctly set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 172.)

	Condition	Cause	Countermeasure
2	When a small torque command is given, the motor rotates in a direction opposite to the start signal.	• Torque offset calibration is inaccurate.	• Re-calibrate Pr.919. (Refer to page 488.)
3	Torque control cannot operate normally during acceleration/deceleration. The motor vibrates.	• Speed limit is operating. (Speed limit may operate because the speed limit value will increase or decrease according to acceleration/deceleration time setting of Pr.7 and Pr.8 when Pr.807="0 or 2".)	• Set the acceleration/deceleration time shorter. Alternatively, set acceleration/deceleration time to "0". (Speed limit during acceleration/deceleration is determined by the speed limit for constant speed.)
4	Output torque is nonlinear for the torque command.	Torque shortage	Return Pr.854 Excitation ratio to the initial value.

Parameters referred to 》》

Pr. 72 PWM frequency selection page 310
Pr. 178 to Pr. 189 (Input terminal function selection) page 498
Pr. 800 Control method selection
Pr. 807 Speed limit selection page 237
Pr.919, Pr. 920 (torque setting voltage (current) bias/gain) ๒ page 488

5.4.8 Torque control by variable-current limiter control

Vector

By changing the torque limit value for speed control, torque control can be performed.

Pr.	Name	Initial value	Setting range		tion
$\begin{aligned} & 800 \\ & \text { G200 } \end{aligned}$	Control method selection	20	6	Vector control	Variable-current limiter torque control
			106	Vector control (fastresponse operation)	
			0 to 5, 100 to 105	Vector control	
			9, 109	Vector control test	
			10 to 12, 100 to 112	Real sensorless vect	
			13, 14, 113, 114	For manufacturer se	not set.
			20	V/F control (Advanc PM sensorless vect	netic flux vector control,)
$\begin{aligned} & 451 \\ & \text { G300 } \end{aligned}$	Second motor control method selection	9999	$\begin{aligned} & 0 \text { to } 6,10 \text { to } 14,20 \text {, } \\ & 100 \text { to } 106,110 \text { to } \\ & 114 \end{aligned}$	Select the control me The second motor is ON. The setting range is	the second motor. d when the RT signal is e as that of Pr. 800.
			9999	The Pr. 800 setting is	

- By adding the bias amount to the line speed (master speed) as the speed command value to saturate the speed controller and changing the torque limit value, torque control can be performed.
- For a positive bias amount (the speed command value faster than the line speed), power driving is applied, and for a negative bias amount (the speed command value slower than the line speed), regenerative driving is applied.
- Speed control is the basic control. For how to set the speed command and torque limit value, refer to the description of speed control (page 179).

－Under speed control with Pr． $800=$＂ 0 or 100 ＂，when the speed command value is changed by an external force，the torque limit is invalid during a change in the speed command value to adjust the internal speed command value to the actual speed．Under variable speed limiter control with Pr． $800=$＂ 6 or 106 ＂，the process to adjust the speed command value to the actual speed is not performed，and thus the torque limit remains valid．This prevents torque from suddenly changing at a speed change．

NOTE

－When Pr． $800=$＂ 6 or 106 ＂（torque control by a variable－current limiter），Pr． 690 Deceleration check time and Pr． 873 Speed limit are ignored．

〈Parameters referred to 》》
Pr． 690 Deceleration check time page 218
Pr． 873 Speed limit page 218
Pr． 800 Control method selection，Pr． 451 Second motor control method selection \curvearrowleft page 166

5.5 Position control under vector control

Purpose	Parameter to set			Refer to page
To perform Simple position control by setting parameters	To give parameter position command	$\begin{aligned} & \text { P.B000, P.B020 to } \\ & \text { P.B050, P.B101, } \\ & \text { P.B120 to P.B188, } \\ & \text { P.B190 to P.B195 } \end{aligned}$	$\begin{aligned} & \text { Pr.419, Pr. } 464 \text { to } \\ & \text { Pr.494, Pr. } 1221 \text { to } \\ & \text { Pr. } 1290, \text { Pr. } 1292 \text {, } \\ & \text { Pr. } 1293 \end{aligned}$	251
To perform position control by pulse input to the inverter	Simple pulse train position command	$\begin{aligned} & \text { P.B000, P.B009 to } \\ & \text { P.B010 } \end{aligned}$	Pr.419, Pr.428, Pr. 429	271
To adjust the gear ratio of the motor and machine	Electronic gear settings	$\begin{aligned} & \text { P.B001, P.B002 and } \\ & \text { P.B005 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 420 \text {, Pr. } 421 \text { and } \\ & \text { Pr. } 424 \end{aligned}$	279
To improve the precision of the position control	Setting the position adjustment parameters	$\begin{array}{\|l\|} \hline \text { P.B007, P.B008, } \\ \text { P.B192 to P.B195 } \end{array}$	$\begin{aligned} & \text { Pr. } 426, \text { Pr. } 427, \\ & \text { Pr. } 1294 \text { to Pr. } 1297 \end{aligned}$	281
	Position control gain adjustment	$\begin{aligned} & \text { P.B003, P.B004, } \\ & \text { P.B006, P.B012, } \\ & \text { P.B013, P.G220, } \\ & \text { P.G224, P.C114 } \end{aligned}$	$\begin{aligned} & \text { Pr.422, Pr. } 423 \text {, } \\ & \text { Pr.425, Pr. } 446 \text {, } \\ & \text { Pr.828, Pr. } 877 \text {, } \\ & \text { Pr. } 880, \text { Pr. } 1298 \end{aligned}$	283
To monitor pulses	Pulse monitor selection	P.B011	Pr. 430	274
	Cumulative pulse monitor	P.M610 to P.M613	Pr. 635 to Pr. 638	274

5.5.1 About position control

Vector

- In position control, speed commands, which are calculated to eliminate the difference between the command pulse (parameter setting) and the estimated feedback pulse, are output to rotate the motor.
- This inverter can perform simple positioning by contact input or position control by simple pulse input to the inverter.

- Control block diagram

－Operation example

－Calculate the speed command so that the difference between the number of pulses of the internal pulse train（if Pr． $419=$ ＂ 0 ＂，command pulses are used in the inverter from the number of pulses defined by parameters（Pr． 465 to Pr．494））and the number of pulses in the feedback from the motor terminal encoder is 0 ，and then rotate the motor based on the calculation．

1）Once a pulse train is input，pulses are accumulated in the deviation counter，and the droop pulses in this counter become position control pulses and speed command．
2）When the motor starts to rotate in response to the speed command from the inverter，feedback pulses are also generated by the encoder at the same time．Subtract the encoder feedback pulses or feedback estimate value from the droop pulses in the deviation counter．The deviation counter keeps rotating the motor while keeping a certain droop amount．
3）If the command pulse input stops，the amount of droop pulses in the deviation counter decreases and thus the speed slows down． When there is no droop pulse，the motor stops．
4）If the number of droop pulses becomes smaller than the value set in Pr． 426 In－position width，the system determines that positioning is complete and the In－position（Y36）signal is turned ON．

－The pulses are slow during motor acceleration．The pulses are fast at full speed．The pulses become slower during deceleration，and eventually becomes 0 and the motor stops a little after the command pulse．This time difference is necessary to ensure stop accuracy and is called stop setting time．

NOTE

－To assign the servo ON signal（LX），set＂ 23 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）．
－To assign the positioning completion signal（Y36），set＂36＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）．
－Changing the terminal assignment using Pr． 178 to Pr． 189 or Pr． 190 to Pr． 196 may affect other functions．Set parameters after confirming the function of each terminal．

《｜Parameters referred to 》》

Pr． 178 to Pr． 189 （Input terminal function selection）page 498
Pr． 190 to Pr． 196 （Output terminal function selection）page 446

5.5.2 Setting procedure of vector control (position control)

Vector

- Using an induction motor

Operating procedure

1. Wire a device correctly.

Install a vector control compatible option.
2. Set the option to be used. (Pr.862)

Set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 172.)
3. Set the motor and the encoder. (Pr.71, Pr. 359 (Pr.852), Pr. 369 (Pr.851)) (Refer to page 77.) Set Pr. 71 Applied motor, Pr. 359 (Pr.852) Encoder rotation direction, and Pr. 369 (Pr. 851) Number of encoder
4. Set the overheat protection of the motor. (Pr.9) (Refer to page 377.)

Set the rated motor current (A) in Pr. 9 Electronic thermal O/L relay
When using a motor equipped with a thermal sensor, set Pr. $9=$ " 0 A ".
5. Set the motor capacity and the number of motor poles. (Pr.80, Pr.81) (Refer to page 166.)

Set the motor capacity (kW) in Pr. 80 Motor capacity, and set the number of motor poles in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
6. Set the rated motor voltage and frequency. (Pr.83, Pr.84) (Refer to page 166)

Set the rated motor voltage (V) in Pr. 83 Rated motor voltage, and set the rated motor frequency (Hz) in Pr. 84 Rated motor frequency.
7. Select the control method. (Pr.800) (Refer to page 166) Set Pr. $800=$ "3" (position control), "4" (speed - position switching) or "5" (position - torque switching) to enable position control.
8. Select the position command source. (Pr.419)

- For position command given by point table, set Pr. $419=$ " 0 (initial value), 10, 100, or 110" to set the positioning parameters (Pr. 465 to Pr.494, Pr. 1222 to Pr.1281). (Refer to page 251.)
- For position command given by inverter pulse train input, set Pr. 419 = " 2 " to select a pulse train type for commands (Pr.428). (Refer to page 272.)
- For position command given from the positioning module of the programmable controller, set Pr. $419=" 1$ " to select a pulse train type for commands (Pr.428). (Refer to page 267.)

9. Perform the test operation.

As required

- Set the electronic gear. (Refer to page 279.)
- Set the position adjustment parameters. (Refer to page 281.)
- Adjust the position control gain. (Refer to page 283.)
- Set the torque limit. (Refer to page 191.)

NOTE

- The carrier frequency is limited during vector control. (Refer to page 310.)
- Refer to the Instruction Manual of each option for details on Vector control using the FR-A8APR, FR-A8APS, or FRA8APA.
- To perform operation in position control mode, the Pre-excitation/servo ON (LX) signal needs to be turned ON. To assign the LX signal, set "23" in any of Pr. 178 to Pr. 189 (Input terminal function selection).

- Using a PM motor

Operating procedure

1. Set the applied encoder (Pr. 359 (Pr.852), Pr. 369 (Pr.851)).

Refer to page 77 and set the parameters according to the option and the encoder to be used.
2. Set the applied motor (Pr.9, Pr.71, Pr.80, Pr.81, Pr.83, Pr.84).

Set Pr. 71 Applied motor, Pr. 9 Rated motor current, Pr. 80 Motor capacity, Pr 81 Number of motor poles, Pr. 83
Rated motor voltage, and Pr. 84 Rated motor frequency according to the motor specifications. (Setting "9999 (initial value)" in Pr. 80 or Pr. 81 selects V/F control.) Set Pr.702, Pr.706, Pr.707, Pr. 724 and Pr. 725 as required.
3. Select Vector control (speed control). (Refer to page 166.)
4. Perform offline auto tuning and encoder position tuning (Pr.96). (Refer to page 518.)

Set Pr.96, and perform tuning.
5. Configure the initial parameter setting for the applied motor using Pr. 998.

When the setting for the PM motor is selected in Pr. 998 PM parameter initialization, Vector control for the PM motor with an encoder is enabled.
"8009": Parameter (rotations per minute) settings for an IPM motor
"8109": Parameter (frequency) settings for an IPM motor
"9009": Parameter (rotations per minute) settings for an SPM motor
"9109": Parameter (frequency) settings for an SPM motor
6. Set Pr. 800 to position control. (Refer to page 166.)
7. Perform the test operation.

NOTE

- For PM motors, after performing offline auto tuning and encoder position tuning, first perform PM parameter initialization. If parameter initialization is performed after setting other parameters, some of those parameters are initialized too. (Refer to page 176 for the parameters that are initialized.)

5.5.3 Simple positioning function by parameters

Vector

Set positioning parameters such as the number of pulses (position) and acceleration/deceleration time in advance to create a point table (point table method). Positioning operation is performed by selecting the point table.

Pr.	Name	Initial value	Setting range	
419 B000	Position command source selection	0	$0,10,100$, $110,200,210$, 300,310, 1110,1310	Sescription Simple position control by point table (Settings are available for the home position data at servo-OFF, clearing of the current position 2 monitor value, and the absolute position control.)

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 487 \\ & \text { B043 } \end{aligned}$	Twelfth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 12.
$\begin{aligned} & 488 \\ & \text { B044 } \end{aligned}$	Twelfth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 489 \\ & \text { B045 } \end{aligned}$	Thirteenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 13.
$\begin{aligned} & 490 \\ & \text { B046 } \end{aligned}$	Thirteenth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 491 \\ & \text { B047 } \end{aligned}$	Fourteenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 14.
$\begin{aligned} & 492 \\ & \text { B048 } \end{aligned}$	Fourteenth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 493 \\ & \text { B049 } \end{aligned}$	Fifteenth target position lower 4 digits	0	0 to 9999	Set the target position of the point table 15.
$\begin{aligned} & 494 \\ & \text { B050 } \end{aligned}$	Fifteenth target position upper 4 digits	0	0 to 9999	
$\begin{aligned} & 1221 \\ & \text { B101 } \end{aligned}$	Start command edge detection selection	0	0	Turning OFF the forward (reverse) rotation command will stop the motor in the setting time of Pr. 464.
			1	Position forward is continued even if the forward (reverse) rotation command is turned OFF.
$\begin{aligned} & 1222 \\ & \text { B120 } \end{aligned}$	First positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 1.
$\begin{aligned} & 1223 \\ & \text { B121 } \end{aligned}$	First positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1224 \\ & \text { B122 } \end{aligned}$	First positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1225 \\ & \text { B123 } \end{aligned}$	First positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1226 \\ & \text { B124 } \end{aligned}$	Second positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 2.
$\begin{aligned} & 1227 \\ & \text { B125 } \end{aligned}$	Second positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1228 \\ & \text { B126 } \end{aligned}$	Second positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1229 \\ & \text { B127 } \end{aligned}$	Second positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1230 \\ & \text { B128 } \end{aligned}$	Third positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 3.
$\begin{aligned} & 1231 \\ & \text { B129 } \end{aligned}$	Third positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1232 \\ & \text { B130 } \end{aligned}$	Third positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1233 \\ & \text { B131 } \end{aligned}$	Third positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1234 \\ & \text { B132 } \end{aligned}$	Fourth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 4.
$\begin{aligned} & 1235 \\ & \text { B133 } \end{aligned}$	Fourth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1236 \\ & \text { B134 } \end{aligned}$	Fourth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1237 \\ & \text { B135 } \end{aligned}$	Fourth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1238 \\ & \text { B136 } \end{aligned}$	Fifth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 5.
$\begin{aligned} & 1239 \\ & \text { B137 } \end{aligned}$	Fifth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1240 \\ & \text { B138 } \end{aligned}$	Fifth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1241 \\ & \text { B139 } \end{aligned}$	Fifth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1242 \\ & \text { B140 } \end{aligned}$	Sixth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 6.
$\begin{aligned} & 1243 \\ & \text { B141 } \end{aligned}$	Sixth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1244 \\ & \text { B142 } \end{aligned}$	Sixth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1245 \\ & \text { B143 } \end{aligned}$	Sixth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1246 \\ & \text { B144 } \end{aligned}$	Seventh positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 7.
$\begin{aligned} & 1247 \\ & \text { B145 } \end{aligned}$	Seventh positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1248 \\ & \text { B146 } \end{aligned}$	Seventh positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1249 \\ & \text { B147 } \end{aligned}$	Seventh positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1250 \\ & \text { B148 } \end{aligned}$	Eighth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 8.
$\begin{aligned} & 1251 \\ & \text { B149 } \end{aligned}$	Eighth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1252 \\ & \text { B150 } \end{aligned}$	Eighth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1253 \\ & \text { B151 } \end{aligned}$	Eighth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1254 \\ & \text { B152 } \end{aligned}$	Ninth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 9.
$\begin{aligned} & 1255 \\ & \text { B153 } \end{aligned}$	Ninth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1256 \\ & \text { B154 } \end{aligned}$	Ninth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1257 \\ & \text { B155 } \end{aligned}$	Ninth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1258 \\ & \text { B156 } \end{aligned}$	Tenth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 10.
$\begin{aligned} & 1259 \\ & \text { B157 } \end{aligned}$	Tenth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1260 \\ & \text { B158 } \end{aligned}$	Tenth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1261 \\ & \text { B159 } \end{aligned}$	Tenth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1262 \\ & \text { B160 } \end{aligned}$	Eleventh positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 11.
$\begin{aligned} & 1263 \\ & \text { B161 } \end{aligned}$	Eleventh positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1264 \\ & \text { B162 } \end{aligned}$	Eleventh positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1265 \\ & \text { B163 } \end{aligned}$	Eleventh positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1266 \\ & \text { B164 } \end{aligned}$	Twelfth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 12.
$\begin{aligned} & 1267 \\ & \text { B165 } \end{aligned}$	Twelfth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1268 \\ & \text { B166 } \end{aligned}$	Twelfth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1269 \\ & \text { B167 } \end{aligned}$	Twelfth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1270 \\ & \text { B168 } \end{aligned}$	Thirteenth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 13.
$\begin{aligned} & 1271 \\ & \text { B169 } \end{aligned}$	Thirteenth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1272 \\ & \text { B170 } \end{aligned}$	Thirteenth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1273 \\ & \text { B171 } \end{aligned}$	Thirteenth positioning sub-function	10	$\begin{aligned} & 0 \text { to } 2,10 \text { to } 12, \\ & 100 \text { to } 102, \\ & 110 \text { to } 112 \end{aligned}$	
$\begin{aligned} & 1274 \\ & \text { B172 } \end{aligned}$	Fourteenth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 14.
$\begin{aligned} & 1275 \\ & \text { B173 } \end{aligned}$	Fourteenth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1276 \\ & \text { B174 } \end{aligned}$	Fourteenth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1277 \\ & \text { B175 } \end{aligned}$	Fourteenth positioning sub-function	10	0 to 2, 10 to 12, 100 to 102, 110 to 112	
$\begin{aligned} & 1278 \\ & \text { B176 } \end{aligned}$	Fifteenth positioning acceleration time	5 s	0.01 to 360 s	Set the characteristics of the point table 15.
$\begin{aligned} & 1279 \\ & \text { B177 } \end{aligned}$	Fifteenth positioning deceleration time	5 s	0.01 to 360 s	
$\begin{aligned} & 1280 \\ & \text { B178 } \end{aligned}$	Fifteenth positioning dwell time	0 ms	0 to 20000 ms	
$\begin{aligned} & 1281 \\ & \text { B179 } \end{aligned}$	Fifteenth positioning sub-function	10	$\begin{aligned} & 0,2,10,12, \\ & 100,102,110, \\ & 112 \end{aligned}$	
$\begin{aligned} & 1282 \\ & \text { B180 } \end{aligned}$	Home position return method selection	4	0	Dog type
			1	Count type
			2	Data set type
			3	Stopper type
			4	Ignoring the home position (servo-ON position as the home position)
			5	Dog type back end reference
			6	Count type front end reference
$\begin{aligned} & 1283 \\ & \text { B181 } \end{aligned}$	Home position return speed	2 Hz	0 to 30 Hz	Set the speed for the home position return operation.
$\begin{aligned} & 1284 \\ & \text { B182 } \end{aligned}$	Home position return creep speed	0.5 Hz	0 to 10 Hz	Set the speed immediately before the home position return.
$\begin{aligned} & 1285 \\ & \text { B183 } \end{aligned}$	Home position shift amount lower 4 digits	0	0 to 9999	Set the home position shift distance. Home position shift distance $=$ Pr. $1286 \times 10000+$ Pr. 1285
$\begin{aligned} & 1286 \\ & \text { B184 } \end{aligned}$	Home position shift amount upper 4 digits	0	0 to 9999	
$\begin{aligned} & 1287 \\ & \text { B185 } \end{aligned}$	Travel distance after proximity dog ON lower 4 digits	2048	0 to 9999	Set the travel distance after detecting the proximity dog. Travel distance after the proximity dog $=$ Pr. $1288 \times$ 10000 + Pr. 1287
$\begin{aligned} & 1288 \\ & \text { B186 } \end{aligned}$	Travel distance after proximity dog ON upper 4 digits	0	0 to 9999	
$\begin{aligned} & 1289 \\ & \text { B187 } \end{aligned}$	Home position return stopper torque	40\%	0 to 200\%	Set the activation level of torque limit operation for the stopper-type home position return.
$\begin{aligned} & 1290 \\ & \text { B188 } \end{aligned}$	Home position return stopper waiting time	0.5 s	0 to 10 s	Set the waiting time until home position return is started after the inverter detects the pressing status.
$\begin{aligned} & 1292 \\ & \text { B190 } \end{aligned}$	Position control terminal input selection	0	0	Sudden stop signal (X87) normally open input (NO contact input)
			1	Sudden stop signal (X87) normally closed input (NC contact input)

Pr.	Name	Initial value	Setting range	Description
$\mathbf{1 2 9 3}$	Roll feeding mode selection	0	0	Roll feed disabled
			1	Roll feed enabled

*1 During position control under Vector control, if Pr. $419=" 1$ " while the FR-A8AL is not installed (or is disabled), a protective function (E.OPT) is activated.

Selecting the position command input method (Pr.419)

- Use Pr. 419 to set simple position control by point table.
- Settings are available for the home position data at servo-OFF, clearing of the current position 2 monitor value, and the absolute position control.

Item	Description
Position command	The position command input method can be selected.
Home position retention	Select whether to retain the home position data when the LX signal is OFF (servo-OFF).
Monitor value clearing	Select whether to clear the current position 2 monitor value when the home position return is completed or when position control is switched to other control mode.
Absolute position control	Select the availability of absolute position control.

Pr. 419 setting	Position command	Home position retention	Monitor value clearing*1		Absolute position control
			When home position return is completed	When position control is switched to other control mode	
0	Simple position control by point table (position command given by setting parameters)	Not retained	Not cleared	Cleared	Disabled
1	Position command given by the pulse train input to the FR- $\text { A8AL }{ }^{* 2}$				
2	Simple pulse train position command given by the pulse train input to the inverter				
10	Simple position control by point table (position command given by setting parameters)	Retained			
100		Not retained	Cleared	Cleared	
110		Retained			
200		Not retained	Not cleared	Not cleared	
210		Retained			
300		Not retained	Cleared	Not cleared	
310		Retained			
1110			Cleared	Cleared	Enabled (with the FR-A8APS installed) ${ }^{*}$
1310			Cleared	Not cleared	

*1 Timing to clear the current position 2 monitor value differs depending on the setting value. (Refer to page 274.)
*2 During position control under Vector control, if Pr. $419=$ "1" while the FR-A8AL is not installed (or is disabled), a protective function (E.OPT) is activated.
*3 During position control under Vector control, if $\operatorname{Pr} .419=" 1110$ or 1310 " while the FR-A8APS is not installed (or is disabled), a protective function (E.OPT) is activated.

- Positioning by a point table (Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr.239, Pr. 465 to Pr.494, and Pr. 1222 to Pr.1281)

- Create a the point table by setting the following parameters.

Point table	Position data [command side]		Maximum speed	Acceleration time	Deceleration time	Dwell time	Auxiliary function	Point table selection signal			
	Upper	Lower						REX	RH	RM	RL
1	Pr. 466	Pr. 465	Pr. 4	Pr. 1222	Pr. 1223	Pr. 1224	Pr. 1225	OFF	ON	OFF	OFF
2	Pr. 468	Pr. 467	Pr. 5	Pr. 1226	Pr. 1227	Pr. 1228	Pr. 1229	OFF	OFF	ON	OFF
3	Pr. 470	Pr. 469	Pr. 6	Pr. 1230	Pr. 1231	Pr. 1232	Pr. 1233	OFF	OFF	OFF	ON
4	Pr. 472	Pr. 471	Pr. 24	Pr. 1234	Pr. 1235	Pr. 1236	Pr. 1237	OFF	OFF	ON	ON
5	Pr. 474	Pr. 473	Pr. 25	Pr. 1238	Pr. 1239	Pr. 1240	Pr. 1241	OFF	ON	OFF	ON
6	Pr. 476	Pr. 475	Pr. 26	Pr. 1242	Pr. 1243	Pr. 1244	Pr. 1245	OFF	ON	ON	OFF
7	Pr. 478	Pr. 477	Pr. 27	Pr. 1246	Pr. 1247	Pr. 1248	Pr. 1249	OFF	ON	ON	ON
8	Pr. 480	Pr. 479	Pr. 232	Pr. 1250	Pr. 1251	Pr. 1252	Pr. 1253	ON	OFF	OFF	OFF
9	Pr. 482	Pr. 481	Pr. 233	Pr. 1254	Pr. 1255	Pr. 1256	Pr. 1257	ON	OFF	OFF	ON
10	Pr. 484	Pr. 483	Pr. 234	Pr. 1258	Pr. 1259	Pr. 1260	Pr. 1261	ON	OFF	ON	OFF
11	Pr. 486	Pr. 485	Pr. 235	Pr. 1262	Pr. 1263	Pr. 1264	Pr. 1265	ON	OFF	ON	ON
12	Pr. 488	Pr. 487	Pr. 236	Pr. 1266	Pr. 1267	Pr. 1268	Pr. 1269	ON	ON	OFF	OFF
13	Pr. 490	Pr. 489	Pr. 237	Pr. 1270	Pr. 1271	Pr. 1272	Pr. 1273	ON	ON	OFF	ON
14	Pr. 492	Pr. 491	Pr. 238	Pr. 1274	Pr. 1275	Pr. 1276	Pr. 1277	ON	ON	ON	OFF
15	Pr. 494	Pr. 493	Pr. 239	Pr. 1278	Pr. 1279	Pr. 1280	Pr. 1281	ON	ON	ON	ON

- Position data settings

- Set the position feed length to Pr. 465 to Pr. 494.
- The feed length set to each point table is selected by multi-speed terminals (RH, RM, RL and REX).
- Under vector control with encoder, set the value calculated with the following formula as the position feed length: (encoder resolution \times number of rotations $\times 4$).
- For example, to stop the motor after 100 times of rotations using an encoder with 2048 pulses/rev, the value will be calculated with 2048 (pulse $/ \mathrm{r}$) $\times 100$ (rotations per minute) $\times 4$ (multiplier) $=819200$ (feed length)

To set 819200 as the first feed length, separate the number in to the upper and lower 4 digits as shown below.
Pr. 466 (upper) $=81$ (decimal), Pr. 465 (lower) $=9200$ (decimal)

- Acceleration/deceleration time

- Set the acceleration/deceleration time for parameters corresponding to each point table.
- The frequency that will be the basis of acceleration/deceleration time is Pr. 20 Acceleration/deceleration reference frequency. However, $1 \mathrm{~Hz} / \mathrm{s}$ is the minimum acceleration/deceleration rate (acceleration/deceleration frequency divided by acceleration/deceleration time). If the acceleration/deceleration rate is smaller than 1 , the motor runs at $1 \mathrm{~Hz} / \mathrm{s}$ or in the deceleration time.
- The maximum acceleration/deceleration time is limited at 360 s .
- During position control, acceleration/deceleration pattern is always the liner acceleration/deceleration, and the Pr. 29 Acceleration/deceleration pattern selection setting is ignored.

Setting the waiting (dwell) time

- Set the waiting (dwell) time which is the interval from the completion of the position command of a selected point table to the start of the position command of the next point table.
- Set the dwell time from 0 to 20000 ms for parameters corresponding to each point table.

- Auxiliary function setting

- Set the handling and operation methods of the position data in each point table.
- Set the auxiliary function for parameters corresponding to each point table.

Auxiliary function parameter setting	Sign (hundreds place)	Command method (tens place)	Operation method (ones place)
0	Plus (0)	Absolute position command (0)	Individual (0)
1			Continuous (1)
2			Loop operation using the point table selected at the start of the operation (2)
10		Incremental position command (1)	Individual (0)
11			Continuous (1)
12			Loop operation using the point table selected at the start of the operation (2)
100	Minus (1)	Absolute position command (0)	Individual (0)
101			Continuous (1)
102			Loop operation using the point table selected at the start of the operation (2)
110		Incremental position command (1)	Individual (0)
111			Continuous (1)
112			Loop operation using the point table selected at the start of the operation (2)

- For the sign, select the sign of position data.
- For the command method, select the absolute position command or incremental position command. For the absolute position command, specify the distance from the home position. For the incremental position command, specify the distance from the current position command.
- Position commands cannot be received until the completion of the home position return.
- For the operation method, select "individual", "continuous", or "loop operation using the point table selected at the start". When continuous operation is selected, next point table is executed after a command has been executed. Set "individual" as the operation method for the point table which is the last of the continuous operation. When "loop operation using the point table selected at the start" is selected, the positioning operation is the loop. To stop the operation, turn OFF the STF (STR) signal, or turn ON the X87 (sudden stop) input signal.
- Individual operation is only executed in the selected point table. The dwell time setting is disabled in individual operation.
- Continuous operation setting is not available for the point table 15 (" $0,2,10,12,100,102,110$ or 112" can be set to Pr.1281).

- Example 1 of positioning operation by point tables (automatic continuous positioning operation)

The figure below shows an operation example when the following settings are made for point tables.

Point table	Target position		Maximum	Acceleration speed $(\mathbf{H z})$	Deceleration time (s)	Dwell time (ime (s)	Auxiliary function
	100	0	60	5	5	1000	1 (absolute position, continuous)
2	50	0	30	6	6	0	10 (incremental position, individual)

NOTE

- During continuous operation, the operation moves on to the next table after the position command speed becomes 0 .
- During continuous operation, no point table selection signal is received. Select the position feed length by point tables before turning ON the start command. Only the maximum frequency can be changed during operation. Position feed length cannot be switched.
- Example 2 of positioning operation by point tables (automatic continuous positioning operation using the point table selected at the start of the operation)
The following figure shows a loop operation example using the point table 2 to point table 4 in the following point table. The operation is started from the point table 2 (start point). Set "12" in the auxiliary function of the point table 4 (end point).

Point table	Target position	Maximum speed (Hz)	Acceleration time (s)	Deceleration time (s)	Dwell time $\mathbf{(m s)})^{* 1}$	Auxiliary function
1	50000	60	1	1	100	1 (absolute position, continuous)
2	70000	20	2	2	100	11 (incremental position, individual)
3	100000	10	4	4	100	1 (absolute position, continuous)
4	60000	5	3	3	100	12 (incremental position, individual)

*1 The positioning operation is repeated. To stop the operation, turn OFF the STF (STR) signal, or turn ON the X87 (sudden stop) input signal.

Operation

1. The operation is started using the point table 2 (start point).
2. The operation is switched to use the point table 3 .
3. The operation is switched to use the point table 4 (end point).
4. According to the setting in the auxiliary function for the point table 4 (Pr.1237="12"), the operation is switched to use the point table 2 selected at the start (loops back the start point from the end point).
5. Steps 1 to 4 are repeated.

- Example 3 of positioning operation by point tables (variable speed operation)

- The maximum frequency can be changed during positioning operation. Use as many point tables as the number of maximum speeds to be set.
- The figure below shows an operation example when the following settings are made for point tables.

Point table	Target position		Maximum speed (Hz)		Acceleration time (s)	Deceleration time (s)	Dwell time $\mathbf{(m s)}$
	5	0	30	1	1	0	Auxiliary function
2	3	0	20	Lnvalid	Invalid	0	1 (absolute position, continuous)
3	10	0	10	Invalid	Invalid	0	11 (incremental position, individual)
4	6	0	5	Invalid	Invalid	0	1 (absolute position, continuous)

- Set " 0 " as the dwell time to perform variable speed operation.

- Return to home position during point table positioning

- Home position return is performed to match the command coordinates with the machine coordinates.
- The returned home position can be set as point 0 , and positioning operation is available using this.

- Home position return procedure

1. Set parameters related to home position return.

- Set the home position return method (Pr.1282).
- Set the speed for home position return operation (Pr.1283).
- Set the creep speed for home position return operation (Pr.1284).
- Set the home position return shift amount if necessary (Pr. $1286 \times 10000+$ Pr.1285).
- Set the post proximity dog travel distance if necessary (Pr. $1288 \times 10000+$ Pr.1287).

2. Turn OFF all point table selections.

- Turn OFF all RH, RM, RL and REX signals.

3. Turn $O N$ the Pre-excitation/servo $O N(L X)$ signal.
4. Turn ON the start signal (STF or STR).

- Home position return is performed according to the settings.

NOTE

- The setting values of the point table 1 are used as acceleration/deceleration time.
- After turning ON the start signal, only the setting values of Pr. 1283 Home position return speed or Pr. 1284 Home position return creep speed can be changed.
- Perform home position return at the motor switchover.

- Selecting the home position return method (Pr. 1282 to Pr.1288)

Pr. 1282 Setting	Home position return method	Description
0	Dog type	Deceleration starts when the proximity dog signal is turned ON. For the home position after turn OFF of the proximity dog signal, the position specified by the first Z-phase signal or the position of the first Z-phase signal shifted by the home position shift amount (Pr.1285, Pr.1286) is used.
1	Count type	Deceleration starts when the proximity dog signal is turned ON. After the proximity dog, the motor travels the specified travel distance (Pr.1287, Pr.1288). Then, it uses the position specified by the first Z-phase signal or position of the Z-phase signal shifted by the home position shift amount (Pr.1285, Pr.1286).
2	Data set type	The position at which the start signal is input is used as the home position.

$\text { Pr. } 1282$ Setting	Home position return method	Description
3	Stopper type	A workpiece is pressed to a mechanical stopper, and the position where it is stopped is set as the home position. Pressing is confirmed when the estimated speed value remains equal to or lower than the value set in Pr. 865 Low speed detection for 0.5 s during the torque limit operation. (While the stopper-type home position is performed, Pr. 1289 Home position return stopper torque is applied.) After Pr. 1290 Home position return stopper waiting time has passed after pressing is confirmed, the home position is shifted by the home position shift amount (Pr. 1285 and Pr.1286). After a position command is created and the absolute value of the droop pulse (after electronic gear) falls below the in-position width, the home position return is completed.
$\begin{aligned} & 4 \\ & \text { (initial value) } \end{aligned}$	Ignoring the home position (Servo ON position as the home position)	The servo ON position is used as the home position.
5	Dog type back end reference	Deceleration starts at the front end of the proximity dog. After the back end is passed, the position is shifted by the post-dog travel distance and home position shift amount. The position after the shifts is set as the home position. Set pulses required for deceleration from the creep speed or more as the total of the post-dog travel distance and home position shift amount.

$\text { Pr. } 1282$ Setting	Home position return method	Description
6	Count type front end reference	Deceleration starts at the front end of the proximity dog, and the position is shifted by the postdog travel distance and home position shift distance. The position after the shifts is set as the home position. Set pulses required for changing the speed from the home position speed to the creep speed or more as the total of the post-dog travel distance and home position shift amount.

NOTE

- Home position return automatic back-off function

In a system that uses home position return with proximity dog, if the home position return is commanded while the motor is in a position within the proximity dog, the motor moves out of the proximity dog once, then starts deceleration to stop when it comes to the proximity dog again. The home position return is performed automatically after that.

Home position return error

- If home position return is not normally completed, the following warnings appear on the operation panel.

Operation panel indication	Name	Cause
HP1	Home position return setting error	- The home position setting has failed.
HP2	Home position return uncompleted	- Start signal for the point table positioning has turned ON without completing the home position return. - The proximity dog signal is turned OFF during transition from the home position return speed to the creep speed when home position return is performed in the dog type or dog type back end reference. - The position command is given for the motor to reach the post-dog travel distance during transition from the home position return speed to the creep speed when home position return is performed in the count type. - The position command is given for the motor to reach the total of the postdog travel distance and home position shift distance during deceleration from the creep speed after the proximity dog signal is turned OFF in the dog type back end reference. - The speed did not reach the creep speed in the count type with front end reference.
HP3	Home position return parameter setting error	- An unavailable home position return method is selected.

- The Home position return failure (ZA) signal is output while the home position return warning is occurring. To use the $Z A$ signal, set "56 (positive logic) or 156 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.

- Sudden stop (Pr.464, Pr. 1221 and X87 signal)

- The operation performed during STF(STR)-OFF can be selected with Pr. 1221 Start command edge detection selection.
- If STF(STR) is turned OFF during positioning or home position returning when Pr.1221="0 (initial value)" is set, it stops in the time set as Pr. 464 Digital position control sudden stop deceleration time.

When Pr.1221="0 (initial value)" is set

When Pr.1221="1" is set

- Turning ON the Sudden stop signal (X87) during positioning operation or home position return operation, the motor stops in the setting time of Pr.464. For the X87 signal, set "87" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.

- The input logic of the X87 signal can be set using Pr. 1292 Position control terminal input selection.

Pr. 1292 setting	Input logic (X87)
0 (initial value)	Normally open input (NO contact input specification)
1	Normally closed input (NC contact input specification)

NOTE

- When deceleration time longer than the normal deceleration time (including Pr.1223) is set in Pr.464, the normal deceleration time is applied to stop.
- The X87 signal is effective during position control JOG operation.

- Roll feed mode (Pr.1293)

- If the roll feed mode is enabled in an application that needs repeated positioning in the same direction, such as a conveyor, positioning can be performed repeatedly without position command overflow.
- When the roll feed mode is enabled (Pr.1293="1"), the position where the first position command is created is set as the home position and the droop pulses are cleared. When Pr. 1293="1", simple positioning is available even if home position return cannot be completed.
- Positioning modes which enables the roll feed mode are the point table mode, the home position return mode, and the JOG mode.
- Basic operation example

Input/output signals for point table positioning

Input/ output	Signal name		Function	$\begin{gathered} \text { Pr. } 178 \text { to } \\ \text { Pr. } 189 \\ \text { setting } \end{gathered}$	Pr. 190 to Pr. 196 setting		
			Positive logic		Negative logic		
Input	X76	Proximity dog		ON: dog ON OFF: dog OFF	76	-	
	X87	Sudden stop	When turned ON, the motor decelerates and stops according to Pr. 464.	87	-		
Output	MEND	Travel completed	Turns ON when the position command operation has completed while the number of droop pulses is within the positioning completion width.	-	38	138	
	ZA	Home position return failure	Turns ON while the home position return warning occurs.	-	56	156	
	PBSY	During position command operation	Turns ON during position command operation.	-	61	161	
	ZP	Home position return completed	Turns ON after home position return operation is complete.	-	63	163	

- Output signal operation during positioning with point tables

－Output signal operation during positioning with home position return

NOTE

－When the $L X$ signal is turned OFF，the home position return completed（ZP）signal is turned OFF．When the LX signal is turned ON again while Pr． $419=$＂10＂，the ZP signal is also turned ON．

《｜Parameters referred to 》》

Pr． 20 Acceleration／deceleration reference frequency page 320
Pr． 29 Acceleration／deceleration pattern selection page 325

5.5.4 Position control by the FR-A8AL pulse train input

Vector PM

Position control by the command from the positioning module of the programmable controller is available using the FR-A8AL.

*1 During position control under Vector control, if Pr. $419=$ "1" while the FR-A8AL is not installed (or is disabled), a protective function (E.OPT) is activated.

- Connection diagram

- Connection with the positioning module of RD75P type MELSEC iQ-R series is also available.

*1 The pin number differs according to the encoder used. Speed control, torque control, and position control by pulse train input are available with or without the Z-phase being connected.
*2 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1
*3 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 72.)
*4 For the complementary, set the terminating resistor selection switch to the OFF position (initial status). (Refer to page 72 .)
*5 A separate external power supply of 15 V is necessary according to the encoder power specification. When the encoder output is the differential line driver type, only 5 V can be input. When the 24 V power supply of the FR-A8AL is used, the power is supplied to the encoder through termina PG24. When the $5 \mathrm{~V} / 12 \mathrm{~V}$ power supply of the FR-A8AL is used, the power is supplied to the encoder through terminal PGV. Do not use the external power supply simultaneously with the $5 \mathrm{~V} / 12 \mathrm{~V}$ power supply or the 24 V power supply. Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply between terminals PG and SD.
*6 Assign the function using Pr. 178 to Pr.184, Pr. 187 to Pr. 189 (Input terminal function selection).
*7 The pulse signal from the position module is available for both open collector and differential line driver. However, the connections are different. (The following figure shows an example for differential line driver.) For the connection method, refer to the Instruction Manual of the FR-A8AL.

- Operation outline

- If the pre-excitation/servo ON (LX) signal is turned ON, output shutoff is canceled and the position control preparation ready (RDY) signal is turned ON after 0.1 second. When the LSP signal (forward stroke end) or the LSN signal (reverse stroke end) is turned ON, the motor rotates according to the command pulse. When the forward (reverse) stroke end signal is turned OFF, the motor does not rotate in the corresponding direction.
- To use the LSP or LSN signal, set the corresponding number in the following table in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal. When the LSP and LSN signals are not assigned, the STF signal is used as the forward stroke end signal, and the STR signal is used as the reverse stroke end signal.

Pr. 178 to Pr. 189 setting	Signal
88	LSP
89	LSN

- The LSP and LSN signals can be input via an external terminal only regardless of the setting in Pr. 338 Communication operation command source or Pr. 339 Communication speed command source.

Interface between the position module and the inverter.

- To operate an inverter using a positioning module, the interfaces for the position command pulse train must agree with each other.

| Output form | Hardware | Input pulse frequency |
| :--- | :---: | :---: | :---: | :---: |
| Open collector | Command unit | Max 200k pulses/s |
| Differential line driver | | |
| Connect | | |
| externally | | |

- Selecting the pulse train type (Pr.428)

- To select the pulse train input to the FR-A8AL, set "1" in Pr. 419 after installing the FR-A8AL on the inverter.
- The command pulse is switchable according to the position module as shown in the following table.

5.5.5 Position control by inverter pulse train input

Vector

The simple position pulse train command can be input by pulse train input and sign signal (NP) to the JOG terminal.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 419 \\ & \text { B000 } \end{aligned}$	Position command source selection	0	$\begin{aligned} & 0,10,100,110 \\ & 200,210,300,310 \\ & 1110,1310 \end{aligned}$	Simple position contro for the home position current position 2 mon control.)	t table (Settings are available ervo-OFF, clearing of the , and the absolute position
			1	Position command giv A8AL ${ }^{* 1}$	pulse train input to the FR-
			2	Simple pulse train pos input to the inverter	mand given by the pulse train
$\begin{aligned} & 428 \\ & \text { B009 } \end{aligned}$	Command pulse selection	0	0 to 2	Pulse train + rotation direction sign	Negative logic
			3 to 5		Positive logic

*1 During position control under Vector control, if Pr. $419=$ "1" while the FR-A8AL is not installed (or is disabled), a protective function (E.OPT) is activated.

- Operation outline

- If the Pre-excitation/servo ON (LX) signal is turned ON, output shutoff is canceled and the Position control preparation ready (RDY) signal is turned ON after 0.1 s . When LSP (forward stroke end signal) or LSN (reverse stroke end signal) is turned ON, the motor rotates according to the command pulse. When the forward (reverse) stroke end signal is turned OFF, the motor does not rotate in the corresponding direction.
- To use the LSP or LSN signal, set the corresponding number in the following table in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal. When the LSP and LSN signals are not assigned, the STF signal is used as the forward stroke end signal, and the STR signal is used as the reverse stroke end signal.

Pr. 178 to Pr. 189 setting	Signal
88	LSP
89	LSN

- The LSP and LSN signals can be input via an external terminal only regardless of the setting in Pr. 338 Communication operation command source or Pr. 339 Communication speed command source.

－Selecting the pulse train type（Pr． 428 and NP signal）

－Set Pr． 419 Position command source selection＝＂2＂（simple pulse train position command）．
－Set＂68＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign Simple position pulse train sign（NP）．
－Select the command pulse train with Pr． 428 Command pulse selection．

Pr． 428 setting	Command pulse train type		During forward rotation	During reverse rotation
0 to 2	Negative logic	Pulse train＋rotation direction sign		$\frac{\text { なとたた }}{\mathrm{H}}$
3 to 5	Positive logic	Pulse train＋rotation direction sign	$\underset{N P}{\text { JOG }}$	$\underset{L}{A \in \leftrightarrow \in L}$

－Select vector control to select the position control method．

NOTE

－If Pr．419＝＂2＂（simple pulse train position command）is set，the terminal JOG is used for the simple position pulse train input regardless of the Pr． 291 Pulse train I／O selection pulse train input／output selection setting．

5．5．6 Clear signal selection

Pr．	Name	Initial value	Setting range	Description
429 B010	Clear signal selection	1	0	The values of the position pulse（command pulse，droop pulse，current position，and current position 2）are cleared at the rising edge when the clear（CLR／CLRN）signal is switched from OFF to ON．

－This function is useful to reset the number of position pulses to 0 when home position return is performed．
－The Simple position droop pulse clear（CLR）signal is valid when the inverter is in the External operation mode．The NET position pulse clear（CLRN）signal is valid when the inverter is in the Network operation mode（not applicable when the FR－A8NS is installed）．
－If the simple position droop pulse clear（CLR）signal is turned ON when Pr． 429 Clear signal selection＝＂ 0 ＂，the deviation counter is cleared at the edge of the signal．The CLR／CLRN signal is also turned ON in synchronization with the zero pulse signal of the encoder such as the home position return signal，and the deviation counter is cleared．
－For a terminal used for the CLR signal，set＂69＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function．
－For a terminal used for the CLRN signal，set＂59＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function．

NOTE

－The accumulated number of pulses is cleared at base shutoff or when the CLR／CLRN signal is turned ON．
－Refer to page 274 for the condition to clear the values of the position pulse．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

《 Parameters referred to 》》

Pr． 178 to Pr． 189 （Input terminal function selection）\longmapsto page 498

5.5.7 Pulse monitor

Vector

Various pulses can be monitored.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 430 \\ & \text { B011 } \end{aligned}$	Pulse monitor selection	9999	0 to $5,12,13,100$ to $105,112,113,1000$ to 1005, 1012, 1013, 1100 to 1105, 1112, 1113, 2000 to 2005, 2012, 2013, 2100 to 2105, 2112, 2113, 3000 to 3005,3012 , 3013, 3100 to 3105 , 3112, 3113	Shows the various pulse conditions during operation as the number of pulses.
			8888, 9999	Shows the frequency monitor.
$\begin{aligned} & 635^{* 1} \\ & \text { M610 } \end{aligned}$	Cumulative pulse clear signal selection	0	0 to 3	Select the clearing method for the cumulative pulse monitor.
$\begin{array}{\|l\|} \hline 636^{* 1} \\ \text { M611 } \\ \hline \end{array}$	Cumulative pulse division scaling factor	1	1 to 16384	Set the division scaling factor on the cumulative pulse for the Vector control compatible plug-in option (FR-A8AP).
$\begin{aligned} & 637^{* 1} \\ & \text { M612 } \end{aligned}$	Control terminal optionCumulative pulse division scaling factor	1	1 to 16384	Set the division scaling factor on the cumulative pulse for the control terminal option (FR-A8TP).
$\begin{aligned} & 638^{* 1} \\ & \text { M613 } \end{aligned}$	Cumulative pulse storage	0	0 to 3	Select the processing method for the cumulative pulse monitor value when the power is turned OFF or the inverter is reset.

*1 The setting is available when a vector control compatible option is installed.

- Pulse monitor selection (Pr.430)

- Shows the various pulse conditions during operation as the number of pulses. Set " 0 " in Pr. 52 Operation panel main monitor selection to display the output frequency monitor.
- Also, setting "26 to 31" in Pr.52, and Pr. 774 to Pr. 776 (multifunction monitor) changes the electronic gear operation setting in the case of monitoring pulses. (Refer to page 419)

$\begin{aligned} & \text { Pr. } 430 \\ & \text { setting } \end{aligned}$		Description
[][][]0	Pulse monitor selection	Displays the lower of the position command (accumulated value of command pulses).
[][][]1		Displays the upper of the position command (accumulated value of command pulses).
[][][2		Displays the lower of the current position (accumulated value of feedback pulses ${ }^{* 1}$).
[][][]3		Displays the upper of the current position (accumulated value of feedback pulses*1).
[][][]4		Displays the lower of the accumulated value of droop pulses.
[][][5		Displays the upper of the accumulated value of droop pulses.
[][12		Displays the lower of the current position 2 (accumulated value of feedback pulses ${ }^{* 1}$).
[][]13		Displays the upper of the current position 2 (accumulated value of feedback pulses ${ }^{* 1}$).
[]0[][]	For pulse monitor selection	Displays the monitor item selected in the pulse monitor selection after the electronic gear operation.
[11[][]		Displays the monitor item selected in the pulse monitor selection before the electronic gear operation.
0[][]]	For the multifunction monitor / PLC function special register	Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation.
1[][]]		Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation.
2[][]]		Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation.
3[][][]		Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation.
8888	Output frequency display	Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) after the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) after the electronic gear operation.
9999		Displays the monitor item selected in the multifunction monitor (position command, current position, and droop pulse) before the electronic gear operation.
		Displays the item in the PLC function special register (position command, current position, droop pulse, and current position 2) before the electronic gear operation.

[^8]- Position pulses are cleared according to the following conditions.

Clearing condition	Position command / current position / droop pulse			
	Pr. 419 setting			
	0, 100, 200, 300	10, 110, 210, 310	1,2	1110, 1310
Servo-OFF (LX-OFF) (output shutoff)	\bigcirc	\times	\bigcirc	\times
Clear signal input ${ }^{*}$	\bigcirc	$0^{* 3}$	\bigcirc	$\times^{* 5}$
Home position return completed	$0^{* 1}$	$\bigcirc^{* 1 * 4}$	-* ${ }^{*}$	$0^{* 1 * 4}$
When position control is switched to other control mode	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Clear signal input (When position control is switched to other control mode)	\times	\times	\times	\times

Clearing condition	Current position 2										
	Pr. 419 setting										
	0	10	100	110	1,2	1110	200	210	300	310	1310
Servo-OFF (LX-OFF) (output shutoff)	\times	\times	x	\times							
Clear signal input ${ }^{*}$	-	${ }^{*} 3$	\bigcirc	${ }^{*} 3$	\bigcirc	$\times^{* 5}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\times^{* 5}$
Home position return completed	\times	\times	\bigcirc	\bigcirc	- **	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
When position control is switched to other control mode	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\times^{* 7}$				
Clear signal input (When position control is switched to other control mode)	\times	\times	\times	\times	\times	\times	-*7	-*7	-*7	$0^{* 7}$	$0^{* 7}$

\bigcirc : Cleared, \times : Not cleared

*1 The droop pulses are not cleared.
*2 The CLR/CLRN signal is input when a value other than "1" is set in Pr.419, and the signal is input through terminal CR of the FR-A8AL when Pr. 419 = "1".
*3 Pulses are cleared when a clear signal is input. (The home position information is not retained.)
*4 Pulses are cleared only when the home position return is completed. Once the pulses are cleared, they are not cleared even if the LX signal is turned ON.
*5 The data is cleared when absolute position control is disabled.
*6 The home position return is not available.
*7 The following shows the example of the clearing the value of the current position 2 monitor under the control mode other than the position control mode.

- Pulse monitoring on the operation panel

- The position command, current position and the status of droop pulses can be displayed on the operation panel.
- If displayed data has signs, minus signs appear for both upper and lower digits.
- If -99999999 or 99999999 is exceeded on the pulse monitor, the monitor value is reset to 0 .

Display data		Monitor display without signs	Monitor display with signs			
-10000	Lower monitor		- 「\|F	「		
	Upper monitor	1	-- i			
-100	Lower monitor	"17	- Mrir			
	Upper monitor	T1	- !			

NOTE

- Cumulative pulse monitor

- When the Vector control compatible plug-in option or the control terminal option (FR-A8TP) is used, the accumulated value of the encoder pulses can be monitored.
- The cumulative pulse monitor is available when "71 to 74 " is set in the monitor selection parameters (Pr.52, Pr.774, Pr.775, Pr.776, and Pr.992).

Types of Monitor	Pr.52, Pr.774 to Pr.776, Pr.992	Display with minus sign	Description
Cumulative pulse	71	$\bigcirc^{* 1}$	The cumulative number of pulses is displayed (for Vector control compatible plug-in option). (Monitoring range: -32767 to 32767)
Cumulative pulse overflow times	72	$\bigcirc^{* 1}$	The number of the cumulative pulses carrying overflow times is displayed (for Vector control compatible plug-in option).
Cumulative pulse (control terminal option)	73	$\bigcirc^{* 1}$	The cumulative number of pulses is displayed (for the FR- A8TP). (Monitoring range: -32767 to 32767)
Cumulative pulse carrying overflow times (control terminal option)	74	The number of the cumulative pulse overflow times is displayed (for FR-A8TP).	

[^9]
Cumulative pulse division scaling factor (Pr.636, Pr.637)

- Set the division scaling factor on the cumulative pulse in Pr. 636 or Pr. 637.
- Cumulative pulse count value calculation method

Cumulative pulse count value $=$ Cumulative pulse division scaling factor \times (Cumulative pulse overflow times $\times 32768+$ Cumulative pulse monitor value)
Cumulative pulse count value: Number of pulses multiplied by 4
Cumulative pulse division scaling factor: Pr. 636 or Pr. 637

－Cumulative pulse monitor value clear（Pr．635）

－The cumulative pulse monitor and the cumulative pulse overflow times can be cleared by X52 signal or X53 signal．
－To input the X52 or X53 signal，set＂52（X52）＂or＂53（X53）＂in any of Pr． 178 to Pr． 184 （Input terminal function selection） to assign the function to a terminal．
－Use Pr． 635 Cumulative pulse clear signal selection to select the clearing method for the cumulative pulse monitor and the cumulative pulse overflow times．

Pr．635 setting	X52 signal Cumulative pulse monitor clear	X53 signal Cumulative pulse monitor clear（control terminal option）
0	Cleared at the edge when the signal is switched to ON．	Cleared at the edge when the signal is switched to ON．
1	Cleared while the signal is ON．	Cleared at the edge when the signal is switched to ON．
2	Cleared at the edge when the signal is switched to ON．	Cleared while the signal is ON．
3	Cleared while the signal is ON．	Cleared while the signal is ON．

Cumulative pulse storage

－The cumulative pulse monitor value can be retained when the power is turned OFF or the inverter is reset．

Pr．638 setting	Cumulative pulse monitor／ cumulative pulse overflow times		Cumulative pulse monitorl	
	At power－OFF reset	At power－OFF	At reset	
0	Not stored in the EEPROM	Cleared	Not stored in the EEPROM	Cleared
1	Stored in the EEPROM	Retained	Not stored in the EEPROM	Cleared
2	Not stored in the EEPROM	Cleared	Stored in the EEPROM	Retained
3	Stored in the EEPROM	Retained	Stored in the EEPROM	Retained

NOTE

－When the power is turned OFF during the reset process，the cumulative pulse monitor value and the cumulative pulse overflow times are not stored in the EEPROM．
－For storing the cumulative pulse monitor value and the cumulative pulse overflow times in the EEPROM at power OFF， connect R1／L11 with P／＋，and S1／L21 with N／－so that the control power is retained．When connecting the converter unit （FR－CC2），assign the instantaneous power failure detection（X11）signal to an input terminal to input the IPF signal from the FR－CC2 to the terminal for X 11 signal．

《 Parameters referred to 》》

Pr． 52 Operation panel main monitor selection page 419

5.5.8 Electronic gear setting

Vector

Set the gear ratio between the machine gear and motor gear.

Pr.	Name	Initial value	Setting range	Description
420 B001	Command pulse scaling factor numerator (electronic gear numerator)	1	1 to 32767	Set the electronic gear. Pr.420 is the numerator and Pr.421 is the denominator.
$\mathbf{4 2 1}$	Command pulse multiplication denominator (electronic gear denominator)	1	1 to 32767	
424 B005	Position command acceleration/ deceleration time constant	0 s	0 to 50 s	Use it when the rotation is not smooth because the electronic gear ratio is large (10 times or larger) and the rotation speed is slow.

Gear ratio calculation (Pr.420, Pr.421)

- The position resolution (travel distance per pulse $\Delta \ell[\mathrm{mm}]$) is the travel distance per motor rotation $\Delta \mathrm{s}$ [mm] and the feedback pulse of the detector. It is determined by $\mathrm{Pf}[\mathrm{pulse} / \mathrm{rev}]$ and represented with the following formula.

$$
\Delta \ell=\frac{\Delta s}{\text { Pf }} \quad \begin{aligned}
& \Delta \ell: \text { Travel distance per pulse }[\mathrm{mm}] \\
& \Delta \mathrm{s}: \text { Travel distance in one motor rotation }[\mathrm{mm}] \\
& \text { pf: Number of feedback pulses }[\text { pulse } / \text { rev] (the number of pulses after the number encoder } \\
& \text { pulses is quadruplicated) }
\end{aligned}
$$

The travel distance in 1 command pulse can be separately specified with a parameter and so an integer can be set as the travel distance in 1 command pulse.

$$
\Delta \ell=\frac{\Delta \mathrm{s}}{\operatorname{Pf}} \times \frac{\operatorname{Pr} .420}{\operatorname{Pr} .421}
$$

The following formula shows the relationship between the motor speed and internal command pulse frequency.

$$
\begin{array}{ll}
\text { fo } \times \frac{\operatorname{Pr} .420}{\operatorname{Pr} 421}=\operatorname{Pf} \times \frac{\text { No }}{60} \quad \begin{array}{l}
\text { fo: internal command pulse frequency [pulses/s] } \\
\text { No: motor rotation speed [r/min] }
\end{array}
\end{array}
$$

NOTE

- Set the electronic gear ratio in the range of $1 / 50$ to 20 . Note that, if the setting value is too small, the speed command will also be too small; while if it is too large, the speed ripple will be too large.

Setting example 1

In a driving system whose ball screw pitch is $\mathrm{PB}=10(\mathrm{~mm})$ and the reduction ratio is $1 / \mathrm{n}=1$, the electronic gear ratio is $\Delta s=10(\mathrm{~mm})$ when $\Delta \ell=0.01$ (mm) and $\mathrm{Pf}=4000$ (pulses/rev) is set as the number of feedback pulses. Based on this, use the following formula:

$$
\begin{aligned}
\Delta \ell & =\frac{\Delta s}{\operatorname{Pf}} \times \frac{\operatorname{Pr} .420}{\operatorname{Pr} .421} \\
\frac{\operatorname{Pr} .420}{\operatorname{Pr} .421} & =\Delta \ell \times \frac{\operatorname{Pf}}{\Delta \mathrm{s}} \\
& =0.01 \times \frac{4000}{10}=\frac{4}{1}
\end{aligned}
$$

Thus, set the parameters as follows: Pr. 420 = "4", Pr. 421 = "1"

Setting example 2

Find the internal command pulse frequency for the rated motor speed of the dedicated motor.
However, the command pulse ratio is Pr.420/Pr.421="1".
If the number of encoder pulses is 2048 (pulses/rev), (feedback pulse $\mathrm{pf}=2048 \times 4$)

$$
\begin{aligned}
\mathrm{fo} & =2048 \times 4 \times \frac{\text { No }}{60} \times \frac{\text { Pr. } 421}{\text { Pr. } 420} \\
& =204800
\end{aligned}
$$

The internal command pulse will be 204800 (pulses/s) in accordance with the above formula.

■ Relationship between the position resolution $\Delta \ell$ and system accuracy

The system accuracy（the positioning accuracy of the machine）is the sum of electric deviation and mechanical deviation． Normally try to prevent the total deviation from being affected by the electronic deviation．Refer to the following relationship as a reference．

$$
\Delta \ell<\left(\frac{1}{5} \text { to } \frac{1}{10}\right) \times \Delta \varepsilon \quad \Delta \varepsilon: \text { positioning accuracy }
$$

－Motor stop characteristics

When running the motor by parameter settings，the relationship between the internal command pulse frequency and the number of motor rotations will be as shown in the figure on page 248 ．Pluses as much as the motor speed delay are accumulated in the deviation counter．These pulses are called droop pulses (ε) ．The relationship between the command frequency（fo）and position loop gain（Kp：Pr．422）is shown in the following formula．

$$
\varepsilon=\frac{\mathrm{fo}}{\mathrm{Kp}} \text { [pulse] } \quad \varepsilon=\frac{204800}{25} \text { [pulse] (with the rated motor speed) }
$$

The number of droop pulses (ε) will be 8192 with the initial value $\mathrm{Kp}=25 \mathrm{~s}^{-1}$ ．
Since the inverter has droop pulses during operation，a stop setting time（ts），which is the time between the zero command output and the motor stop，is required．Set the operation pattern taking into the account the stop setting time．

$$
\mathrm{ts}=3 \times \frac{1}{\mathrm{Kp}}[\mathrm{~s}]
$$

The stop settling time（ts）will be 0.12 s for the initial value $\mathrm{Kp}=25 \mathrm{~s}^{-1}$ ．
The accuracy of positioning $\Delta \varepsilon$ will be（ 5 to 10）$\times \Delta \ell=\Delta \varepsilon$［mm］

\checkmark Position command constant value during acceleration／deceleration （Pr．424）

－If the electronic gear ratio is large（1：10 or larger）and the rotation speed is slow，the rotation is not smooth and the rotation shape becomes like a pulse．Set this option in such a case to smoothen the rotation．
－If the command pulse frequency varies rapidly when no acceleration time can be assigned to the command pulse， overshoot or excessive error alarms may occur．Set this option in such a case to set the acceleration／deceleration time． Normally it is set to 0 ．

Pr． 422 Position control gain page 283

5.5.9 Position adjustment parameter settings

Vector

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 426 \\ & \text { B007 } \end{aligned}$	In-position width	100 pulses	0 to 32767 pulses	Set the number of droop pulses that triggers the In-position (Y36) signal.
$\begin{aligned} & 427 \\ & \text { B008 } \end{aligned}$	Excessive level error	40K	0 to 400K	Set the number of droop pulses that activates Excessive position fault (E.OD).
			9999	Function invalid
$\begin{aligned} & 1294 \\ & \text { B192 } \end{aligned}$	Position detection lower 4 digits	0	0 to 9999	Set the lower four digits of the position detection value.
$\begin{aligned} & 1295 \\ & \text { B193 } \end{aligned}$	Position detection upper 4 digits	0	0 to 9999	Set the upper four digits of the position detection value.
$\begin{aligned} & 1296 \\ & \text { B194 } \end{aligned}$	Position detection selection	0	0	The position is detected on both the plus and minus sides.
			1	The position is detected on the plus side only.
			2	The position is detected on the minus side only.
$\begin{aligned} & 1297 \\ & \text { B195 } \end{aligned}$	Position detection hysteresis width	0	0 to 32767	Set the hysteresis width for the detection position of the position detected signal (FP signal).

- In-position width (Pr.426, Y36 signal)

- The Y36 signal is used as the in-position signal.
- If the number of droop pulses is equal to or smaller than the Pr. 426 setting value, the In-position (Y36) signal turns ON.
- To use the Y36 signal, set "36 (positive logic) or 136 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.

- Excessive error level (Pr.427)

- If the number of droop pulses exceeds the Pr. 427 setting, a position error is detected, Excessive position fault (E.OD) is activated and the inverter output is shut off. Increase the error threshold level when a small value is set as the Position control gain setting value. Set a small value for early detection even when the load is heavy.
- If Pr.427="9999" is set, E.OD is not activated regardless of the amount of droop pulses.

- Position detected signal (Pr. 1294 to Pr.1297, FP signal)

- The position detected signal (FP signal) is turned ON when the current position [before the electronic gear] exceeds the position detection level (Pr. 1295×10000 + Pr.1294). To use the FP signal, set "60 (positive logic) or 160 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.
- Whether the position detection is determined on the plus side or minus side can be selected by Pr. 1296 Position detection selection. When " 0 " is set, the position is detected on both the plus and minus sides. When " 1 " is set, the position is detected on the plus side only. When " 2 " is set, the position is detected on the minus side only.

- When a current position varies, the position detected signal may repeat ON/OFF (chatter). Setting hysteresis to the detected position prevents chattering of the signal. Use Pr. 1297 Position detection hysteresis width to set a hysteresis width.

5.5.10 Position control gain adjustment

Vector

Easy gain tuning is provided as an easy tuning method. For details about easy gain tuning, refer to page 201. If it does not produce any effect, make fine adjustments by using the following parameters.
Set " 0 " to Pr. 819 Easy gain tuning selection before setting the following parameters.

Pr.	Name	Initial value	Setting range	
422 B003	Position control gain	$25 \mathrm{~s}^{-1}$	0 to $150 \mathrm{~s}^{-1}$	Set the gain for the position loop.
$\mathbf{1 2 9 8}$ B013	Second position control gain	$25 \mathrm{~s}^{-1}$	0 to $150 \mathrm{~s}^{-1}$	Set the position loop gain for the second motor.
423 B004	Position feed forward gain	0%	0 to 100%	Function to cancel a delay caused by the droop pulses in the deviation counter.
425 B006	Position feed forward command filter	0 s	0 to 5 s	Input the primary delay filter for the feed forward command.
446 B012	Model position control gain	$25 \mathrm{~s}^{-1}$	0 to $150 \mathrm{~s}^{-1}$	Set the gain for the model position controller.
$\mathbf{8 2 8}$ G224	Model speed control gain	60%	0 to 1000%	Set the gain for the model speed controller.
$\mathbf{8 7 7}$ G220	Speed feed forward control/ model adaptive speed control selection	0	0,1	Perform position feed forward control.

- Position loop gain (Pr.422, Pr.1298)

- Make adjustment when any of such a phenomena as unusual vibration, noise and overcurrent of the motor/machine occurs.
- Increasing the setting improves traceability for the position command and also improves servo rigidity at a stop, but oppositely makes an overshoot and vibration more liable to occur.
- Normally set this parameter within the range about 5 to 50 .

Movement/condition	How to adjust Pr.422
Response is slow.	Increase the setting value. Increase the setting value by $3 \mathrm{~s}^{-1}$ until immediately before an overshoot, stop-time vibration or other instable phenomenon occurs, and set about 80 to 90% of that value.
Overshoot, stop-time vibration or other instable phenomenon occurs.	Lower the setting value. Lower the setting value by $3 \mathrm{~s}^{-1}$ until immediately before an overshoot, stop-time vibration or other instable phenomenon does not occur, and set about 80 to 90% of that value.

- Position feed forward gain (Pr.423)

- This function is designed to cancel a delay caused by the droop pulses in the deviation counter. Set this parameter when a sufficient position response cannot be obtained after setting Pr. 422.
- When a tracking delay for command pulses poses a problem, increase the setting gradually and use this parameter within the range where an overshoot or vibration will not occur.
- This function has no effects on servo rigidity at a stop.
- Normally set this parameter to 0.
- When setting Pr.423, set Pr.877="0 or 1" to enable position feed forward control.

- Model adaptive position control (Pr.446)

- Set each response for position commands and for load and external disturbances individually.
- Set this parameter when a sufficient position response cannot be obtained after setting Pr. 422.
- When setting Pr.446, set Pr.877="2" to enable the model adaptive position control, Pr. 828 Model speed control gain $=$ "0", and a load inertia ratio in Pr. 880 Load inertia ratio.
- Set a small value in Pr. 446 first, and then increase the setting gradually and use this parameter within the range where an overshoot or vibration will not occur.

5.5.11 Troubleshooting in position control

Vector

	Condition	Cause	Countermeasure
1	The motor does not rotate.	There is incorrect phase sequence between the motor wiring and encoder wiring.	Check the wiring. (Refer to page 72.)
		Control mode selection setting Pr. 800 Control method selection is not appropriate.	Check the Pr. 800 setting. (Refer to page 166.)
		No servo ON or stroke end signals (STF/STR) are input.	Check if a signal is properly input.
		A command pulse or position pulse sign (NP) is not correctly input.	Check if the command pulse is properly input (check the accumulated value for command pulses in Pr. 430 Pulse monitor selection). Check the command pulse type in Pr. 428 Command pulse selection. Check that the position pulse sign (NP) is assigned to an input terminal. (inverter pulse input)
		The setting in Pr. 419 Position command source selection (position command source selection) is not correct.	Check the position command source selection in Pr.419.
		When simple position control by a point table (Pr.419= "0") is used, the position feed length set by Pr. 465 to Pr. 494 is not correct.	Check the position feed length in Pr. 465 to Pr. 494.
		The option to be used and parameter settings do not match.	Correctly set Pr. 862 Encoder option selection according to the option to be used. (Refer to page 172.)
2	The position is unfavorably shifted.	A command pulse is not correctly input.	Check the command pulse type in Pr. 428 Command pulse selection. Check if the command pulse is properly input (check the accumulated value of command pulses in Pr.430). Check that the position pulse sign (NP) is assigned to an input terminal. (inverter pulse input)
		The command is affected by noise. Noise is superpositioned on the encoder feedback signals.	Set Pr. 72 PWM frequency selection lower. Change the earthing (grounding) position of the shielded cable. Alternatively, do not connect it.
3	Hunting occurs in the motor or the machine.	Position loop gain is too high.	Set Pr. 422 Position control gain lower.
		Speed loop gain is too high.	Perform easy gain tuning. Set Pr. 820 Speed control P gain 1 lower and Pr. 821 Speed control integral time 1 higher.
4	Machine movement is unstable.	Acceleration/deceleration time settings are affecting adversely.	Set Pr. 7 Acceleration time and Pr. 8 Deceleration time lower.

Flowchart

NOTE

- The speed command of position control is related to speed control. (Refer to page 179.)

《| Parameters referred to 》
Pr. 7 Acceleration time page 320
Pr. 8 Deceleration time page 320
Pr. 72 PWM frequency selection page 310
Pr. 800 Control method selection page 166
Pr. 802 Pre-excitation selection page 707
Pr. 819 Easy gain tuning selection page 201
Pr. 820 Speed control P gain 1 page 201
Pr. 821 Speed control integral time 1 page 201

5.6 Real sensorless vector control, vector control, PM sensorless vector control adjustment

| Purpose | Parameter to set | | Refer to
 page |
| :--- | :--- | :--- | :--- | :--- |
| To stabilize speed and torque feedback
 signal. | Speed detection filter
 Torque detection filter | P.G215, P.G216,
 P.G315, P.G316 | Pr.823, Pr.827,
 Pr.833, Pr.837 |
| To changes excitation ratio | Excitation ratio | P.G217 | Pr.854 |

5.6.1 Speed detection filter and torque detection filter

Sensorless Vector PM

Set the time constant of primary delay filter for speed feedback signal and torque feedback signal.
Speed loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is.

Pr.	Name	Initial value	Setting range	Description
823	Speed detection filter 1	0.001 s	0	Without filter
G215*1			0.001 to 0.1 s	Set the time constant of primary delay filter for speed feedback signal.
827	Torque detection filter 1	0 s	0	Without filter
G216			0.001 to 0.1 s	Set the time constant of primary delay filter torque feedback signal.
833	Speed detection filter 2	9999	0 to 0.1 s	Second function of Pr. 823 (enabled when RT signal ON)
G315*1			9999	Same as Pr. 823 setting
837	Torque detection filter 2	9999	0 to 0.1 s	Second function of Pr. 827 (enabled when RT signal ON)
G316			9999	Same as Pr. 827 setting

*1 The setting is available when a vector control compatible option is installed.

- Stabilizing speed detection (Pr.823, Pr.833)

- Speed loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is. If there is speed ripple due to high frequency disturbance, adjust until speed stabilizes by gradually raising the setting. Speed is oppositely destabilized if the setting value is too large.
- This setting is valid under vector control only.

- Stabilizing torque detection (Pr.827, Pr.837)

- Current loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is. If there is torque ripple due to high frequency disturbance, adjust until speed stabilizes by gradually raising the setting. Speed is oppositely destabilized if the setting value is too large.

- Employing multiple primary delay filters

- Use Pr.833, Pr. 837 if changing filter according to application. Pr.833, Pr.837: Second function selection (RT) signal

NOTE

- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 503.)
- The RT signal is assigned to the terminal RT in the initial setting. Set " 3 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.

5.6.2 Excitation ratio

Sensorless Vector

The excitation ratio can be lowered to enhance efficiency for light loads. (Motor magnetic noise can be reduced.)

Pr.	Name	Initial value	Setting range	Description
$\mathbf{8 5 4}$	Excitation ratio	100%	0 to 100%	Set an excitation ratio when there is no load.
$\mathbf{G 2 1 7}$				

NOTE

- When excitation ratio is reduced, output torque startup is less responsive.
- The setting of Pr. 854 is invalid if Pr. 858 Terminal 4 function assignment or Pr. 868 Terminal 1 function assignment is set to "1" (flux command according to terminal).

5.6.3 Gain adjustment of current controllers for the \mathbf{d} axis and the q axis

PM

The gain of the current controller can be adjusted.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{8 2 4}$ G213	Torque control P gain 1 (current loop proportional gain)	100%	0 to 500%	The proportional gain of the current controller is set.
$\mathbf{8 2 5}$ G214	Torque control integral time $\mathbf{1}$ (current loop integral time)	5 ms	0 to 500 ms	The integral time of the current controller is set.

- Use Pr. 824 Torque control P gain 1 (current loop proportional gain) to adjust the proportional gain of current controllers for the d axis and the q axis. The 100% gain is equivalent to $1000 \mathrm{rad} / \mathrm{s}$. Setting this parameter higher improves the trackability for current command changes. It also reduces the current fluctuation caused by external disturbance.
- Use Pr. 825 Torque control integral time 1 (current loop integral time) to set the integral time of current controllers for the d axis and the q axis. If the setting value is small, it produces current fluctuation toward disturbance, decreasing time until it returns to original current value.

NOTE

- Pr. 834 Torque control P gain 2 and Pr. 835 Torque control integral time 2 are valid when terminal RT is ON. In this case, replace them for Pr. 824 and Pr. 825 in the description above.

Purpose	Parameter to set			Refer to page
To set the time	Real time clock function	P.E030 to P.E032	Pr. 1006 to Pr. 1008	290
To set a limit for the reset function. To shut off output if the operation panel disconnects. To force deceleration to a stop on the operation panel.	Reset selection/ disconnected PU detection/ PU stop selection/Reset limit	$\begin{aligned} & \text { P.E100 to } \\ & \text { P.E102, P.E107 } \end{aligned}$	Pr. 75	291
To select the display language of the parameter unit	PU display language selection	P.E103	Pr. 145	295
To control the buzzer of the parameter unit and operation panel	PU buzzer control	P.E104	Pr. 990	295
To adjust the LCD contrast of the parameter unit	PU contrast adjustment	P.E105	Pr. 991	295
To switch the monitor display of the operation panel to the PID set point setting screen by simply turning the setting dial	Extended direct setting	P.E108	Pr. 1000	296
To use the USB memory	USB host reset	P.E110	Pr. 1049	296
To use the regeneration unit to increase the motor braking torque	Regenerative brake selection	P.E300, P.G107	Pr.30, Pr. 70	718
To change the overload current rating specification	Multiple rating setting	P.E301	Pr. 570	297
To prevent parameter rewriting	Parameter write disable selection	P.E400	Pr. 77	298
To restrict parameters with a password	Password function	P.E410, P.E411	Pr.296, Pr. 297	301
To use parameters freely	Free parameter	P.E420, P.E421	Pr.888, Pr. 889	303
To change parameter settings for an IPM motor as a batch	IPM parameter initialization	P.E430	Pr. 998	176
To set multiple parameters as a batch	Automatic parameter setting	P.E431	Pr. 999	304
To display the required parameters	Applicable parameter display and user group function	P.E440 to P.E443	$\begin{aligned} & \text { Pr. } 160 \text {, Pr. } 172 \text { to } \\ & \text { Pr. } 174 \end{aligned}$	308
To release the parameter copy warning (CP)	Parameter copy alarm release	P.E490	Pr. 989	310
To reduce the motor noise and EMI	PWM carrier frequency changing	P.E600 to P.E602	$\begin{aligned} & \text { Pr. } 72, \text { Pr. } 240 \text {, } \\ & \text { Pr. } 260 \end{aligned}$	310
To understand the maintenance time of inverter parts and peripheral device	Inverter parts life display	P.E700 to P.E707	$\begin{aligned} & \text { Pr. } 255 \text { to Pr. } 259 \text {, } \\ & \text { Pr. } 506 \text { to Pr. } 508 \end{aligned}$	312
	Maintenance output function	P.E710 to P.E715	$\begin{aligned} & \text { Pr. } 503 \text {, Pr. } 504, \\ & \text { Pr. } 686 \text { to Pr. } 689 \end{aligned}$	316
	Current average value monitor signal	P.E720 to P.E722	Pr. 555 to Pr. 557	317

5.7.1 Real time clock function

The time can be set. The time can only be updated while the inverter power is ON.
The real time clock function is enabled using an optional LCD operation panel (FR-LU08).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1006 \\ & \text { E030 } \end{aligned}$	Clock (year)	2000	2000 to 2099	Set the year.
$\begin{aligned} & 1007 \\ & \text { E031 } \end{aligned}$	Clock (month, day)	$\begin{aligned} & 101 \\ & \text { (January 1) } \end{aligned}$	101 to 131, 201 to 228, (229), 301 to 331,401 to 430,501 to 531,601 to 630 , 701 to 731,801 to 831,901 to 930,1001 to 1031, 1101 to 1130,1201 to 1231	Set the month and day. 1000's and 100's digits: Month (1 (January) to 12 (December)). 10's and 1's digits: Day (1 to the last day of the month (28, 29, 30, or 31$)$). For December 31, set "1231".
$\begin{aligned} & 1008 \\ & \text { E032 } \end{aligned}$	Clock (hour, minute)	$\begin{array}{\|l\|} \hline 0 \\ (00: 00) \end{array}$	0 to 59, 100 to 159,200 to 259, 300 to 359,400 to 459 , 500 to 559,600 to 659,700 to 759,800 to 859,900 to 959, 1000 to 1059,1100 to 1159, 1200 to 1259,1300 to 1359,1400 to 1459,1500 to 1559, 1600 to 1659,1700 to 1759, 1800 to 1859,1900 to 1959, 2000 to 2059, 2100 to 2159, 2200 to 2259, 2300 to 2359	Set the hour and minute using the 24-hour clock. 1000 and 100 digits: 0 to 23 hours 10 and 1 digits: 0 to 59 minutes For 23:59, set "2359".

Simple clock function

- When the year, month, day, time and minute are set in the parameters, the inverter counts the date and time. The date and time can be checked by reading the parameters.

NOTE

- The clock's count-up data is saved in the inverter's EEPROM every 10 minutes.
- Because the date and time are cleared after turning OFF the control circuit power supply, the clock function must be reset after turning ON the power supply. Use a separate power supply, such as an external 24 V power supply, for the control circuit of the simple clock function, and supply power continuously to this control circuit.
- In the initial setting, inverter reset is performed if supplying power to the main circuit is started when power is supplied only to the control circuit. Then, the clock information stored in EEPROM is restored. Reset at the start of supplying power to the main circuit can be disabled by setting Pr. 30 Regenerative function selection. (Refer to page 718)
- The set clock is also used for functions such as the fault history.

- Real time clock function

- When the FR-LU08 is connected to the inverter, the internal clock of the inverter can be synchronized with the clock of FRLU08. (Real time clock function)
With a battery (CR1216), the FR-LU08 time count continues even if the main power of the inverter is turned OFF. (The time count of the inverter internal clock does not continue when the inverter power is turned OFF.)
- To adjust the clock of FR-LU08, use the FR-LU08 and set Pr. 1006 to Pr. 1008.

NOTE

- Time adjustment between the inverter internal clock and the FR-LU08 is performed every one minute.
- When the FR-LU08 clock is initialized after the battery is exhausted for example, the inverter internal clock is valid.

5.7.2 Reset selection/disconnected PU detection/PU stop selection

The reset input acceptance, disconnected PU (operation panel/parameter unit) connector detection function and PU stop function (PU stop) can be selected.

Pr.	Name	Initial value	Setting range	Description
75	Reset selection/disconnected PU detection/PU stop selection	14	0 to 3,14 to 17,1000 to 1003, 1014 to $1017^{* 1}$	For the initial setting, reset is always enabled, without disconnected PU detection, and with the PU stop function.
			0 to 3,14 to 17,100 to 103, 114 to 117,1000 to 1003, 1014 to 1017, 1100 to 1103,1114 to $1117^{*} 2$	
E100	Reset selection	0	0	Reset input is always enabled.
			1	Reset input is enabled only when the protective function is activated.
			2	Reset input is enabled only when the start signal is OFF.
			3	Reset input is enabled when the protective function is activated and the start signal is OFF.
E101	Disconnected PU detection	0	0	Operation continues even when the PU is disconnected.
			1	The inverter output is shut off when the PU is disconnected.
E102	PU stop selection	1	0	Decelerates to a stop when the STOP key is pressed in PU operation mode only.
			1	Decelerates to a stop when the STOP key for PU is pressed in any of the PU, external and communication operation modes.
E107	Reset limit	0	0	Reset limit disabled
			$1{ }^{* 2}$	Reset limit enabled

The parameters above will not return to their initial values even if parameter (all) clear is executed.
*1 The setting range for the FR-A860-01080 or lower.
*2 The setting range for the FR-A860-01440 or higher.

Pr. 75 setting	Reset input	Operation after PU disconnection is detected	PU stop function	Reset limit function
0	Always enabled.	Operation continues.	Disabled	Disabled
1	When the protective function is activated.			
2	Always enabled.	Inverter output shutoff		
3	When the protective function is activated.			
14 (initial value)	Always enabled.	Operation continues.	Enabled	
15	When the protective function is activated.			
16	Always enabled.	Inverter output shutoff		
17	When the protective function is activated.			
100	Always enabled.	Operation continues.	Disabled	Enabled ${ }^{*}$
101	When the protective function is activated.			
102	Always enabled.	Inverter output shutoff		
103	When the protective function is activated.			
114	Always enabled.	Operation continues.	Enabled	
115	When the protective function is activated.			
116	Always enabled.	Inverter output shutoff		
117	When the protective function is activated.			
1000	When the start signal is OFF.	Operation continues.	Disabled	Disabled
1001	When the protective function is activated and the start signal is OFF.			
1002	When the start signal is OFF.	Inverter output shutoff		
1003	When the protective function is activated and the start signal is OFF.			
1014	When the start signal is OFF.	Operation continues.	Enabled	
1015	When the protective function is activated and the start signal is OFF.			
1016	When the start signal is OFF.	Inverter output shutoff		
1017	When the protective function is activated and the start signal is OFF.			
1100	When the start signal is OFF.	Operation continues.	Disabled	Enabled ${ }^{*}{ }^{3}$
1101	When the protective function is activated and the start signal is OFF.			
1102	When the start signal is OFF.	Inverter output shutoff		
1103	When the protective function is activated and the start signal is OFF.			
1114	When the start signal is OFF.	Operation continues.	Enabled	
1115	When the protective function is activated and the start signal is OFF.			
1116	When the start signal is OFF.	Inverter output shutoff		
1117	When the protective function is activated and the start signal is OFF.			

- Reset selection (P.E100)

- When P.E100="1" or Pr.75="1, 3, 15, 17, 100, 103, 115, or 117" is set, reset (reset command via the RES signal or communication) input is enabled only when the protective function is activated.
- While P.E100 = "2" or Pr. $75=" 1000,1002,1014,1016,1100,1102,1114$, or 1116 ", the reset command input is enabled (using the RES signal or through communication) only when the start signal is OFF.
- While P.E100 = "3" or Pr. $75=" 1001,1003,1015,1017,1101,1103,1115$, or $1117 "$, the reset command input is enabled (using the RES signal or through communication) only when the protective function is activated with the start signal OFF.

NOTE

- When the RES signal is input during operation, the motor coasts since the inverter being reset shuts off the output. Also, the cumulative values of electronic thermal O / L relay and regenerative brake duty are cleared.
- When "reset input always enabled" is selected, the reset key on the PU is enabled only when the protective function is activated.
- The following table shows applicable start commands. (When both the STF and STR signals are ON, the start signal status is OFF.)

Start signal input interface	Applicable start signal
External terminal	X13, X22, LX, X28, JOGF, JOGR, STF, or STR
PU	Forward/reverse rotation command given by pressing the FWD/REV key
Communication	X13, X22, LX, X28, STF, or STR

- During emergency drive operation, reset input is always enabled regardless of the reset selection setting.

- Disconnected PU detection (P.E101)

- When the inverter detects that the PU (operation panel/parameter unit) is disconnected from the inverter for 1 second or more while P.E101 or Pr. 75 is set to shut off the inverter output upon disconnection of the PU, the PU disconnection ("E.PUE") indication is displayed and the inverter output is shut off.

NOTE

- When the PU has been disconnected since before power-ON, the output is not shut off.
- To restart, confirm that the PU is connected and then reset.
- When the inverter detects that the PU is disconnected during PU JOG operation while P.E101 or Pr. 75 is set to continue the inverter operation even when the PU is disconnected, the inverter decelerates the motor to a stop.
- When RS-485 communication operation is performed through the PU connector, the reset selection/PU stop selection function is valid but the disconnected PU detection function is invalid. (The communication is checked according to Pr. 122 PU communication check time interval.)

- PU stop selection (P.E102)

- Stop can be performed by inputting 昰TOP and network operation.
- When stop is performed by the PU stop function, "PS" is displayed on the PU. A fault output is not provided.
- When P.E102="0" or Pr.75="0 to 3, 100 to 103 " is set, deceleration stop using $\frac{\text { STIOP }}{\mathbb{R} \cdot G 5 T V}$ is valid only in the PU operation mode.

NOTE

- When Pr. 551 PU mode operation command source selection="1" (PU mode RS-485 terminal), deceleration stop is performed even when STOP is input during operation in PU mode via RS-485 communication.

How to restart after stopping with［sㅜㅏㅇ operation（PU stop（PS）release method）

－PU stop release method for operation panel
1．After completion of deceleration to a stop，switch OFF the STF and STR signal．
2．Press $\frac{\text { PU }}{\text { EXT }}$ three times．（PS release）
（When Pr． 79 Operation mode selection＝＂0（initial value）or 6＂）
When Pr． 79 ＝＂ 2 ，3，or 7 ＂，PU stop can be released by pressing one time．
－PU stop release method for parameter unit
1．After completion of deceleration to a stop，switch OFF the STF or STR signal．
2．Press EXT．（PS release）

－The motor can be restarted by resetting the power supply or resetting with a RES signal．

NOTE

－Even when Pr． 250 Stop selection $=$＂9999＂is set and coasting stop is selected，deceleration stop and not coasting stop is performed in the PU stop function during External operation．

－Reset limit function（P．E107）

－When P．E107＝＂1＂or Pr． $75=$ any of＂100 to 103,114 to 117,1100 to 1103 ，or 1114 to 1117 ＂，if an electronic thermal $\mathrm{O} /$ L relay or an overcurrent protective function（E．THM，E．THT，E．OC［］）is activated while one of them has been already activated within 3 minutes，the inverter will not accept any reset command（RES signal，etc．）for about 3 minutes from the second activation．
－The reset limit function is available with the FR－A860－01440 or higher．

NOTE

－Resetting the inverter power（turning OFF the control power）will clear the accumulated thermal value．
－When the retry function is set enabled（Pr． 67 Number of retries at fault occurrence \neq＂ 0 ＂），the reset limit function is disabled．

CAUTION

－Do not perform a reset while a start signal is being input．Doing so will cause a sudden start of the motor，which is dangerous．

《｜Parameters referred to 》》

Pr． 67 Number of retries at fault occurrence \longmapsto page 389
Pr． 79 Operation mode selection page 346
Pr． 250 Stop selection page 715
Pr． 551 PU mode operation command source selection page 356

5.7.3 PU display language selection

The display language of the parameter unit (FR-PU07) can be selected.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 145 \\ & \text { E103 } \end{aligned}$	PU display language selection	-	0	Japanese
			1	English
			2	German
			3	French
			4	Spanish
			5	Italian
			6	Swedish
			7	Finnish

5.7.4 Buzzer control

The PU (operation panel or parameter unit) key sound and buzzer can be turned ON/OFF.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{9 9 0}$ E104	PU buzzer control	1	0	Turns the key sound and buzzer OFF.
			1	Turns the key sound and buzzer ON.

NOTE

- When with buzzer is set to ON, a warning sound will be audible when a fault occurs.

5.7.5 PU contrast adjustment

Contrast adjustment of the LCD of the LCD operation panel (FR-LU08) and the parameter unit (FR-PU07) can be performed. Decreasing the setting value lowers the contrast.

Pr.	Name	Initial value	Setting range	Description
991 E105	PU contrast adjustment	58	0 to 63	0: Low \rightarrow 63: High

The above parameter is displayed as a simple mode parameter only when the LCD operation panel (FR-LU08) and the parameter unit (FR-PU07) is connected.

5．7．6 Extended direct setting

The PID action set point setting screen can be displayed quickly on the monitor．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{1 0 0 0}$ E108	Direct setting selection	0	0	Displays the Frequency setting screen．
			1	Displays the Extended direct（set point setting）screen．
		2	Displays the Extended direct（set point setting）screen and the Frequency setting screen．	

－The monitor display can be switched from the Main monitor screen to the set point setting screen for the PID action by simply operation，according to the setting of Pr． 1000 Direct setting selection．On each setting screen，turn to input a setting value，and press $\underset{(\mathrm{SET})}{\frac{\mathrm{F} 2}{}}$ to confirm the setting．

Example of screen switching and shifting when the PID control is enabled（Pr． $128 \neq{ }^{\prime \prime} 0$＂）

＊1 When Pr．1000＝＂0＂
＊2 When Pr．1000＝＂1＂
＊3 When Pr．1000＝＂2＂
＊4 Not displayed when PID control is disabled（Pr．128＝＂0＂）．
＊5 Indication of［NEXT］is not displayed when Pr．1000＝＂0＂．
－To switch back the monitor display from the Extended direct screen or the Frequency setting screen to the Main monitor screen，press

```
(BACK)
```


NOTE

－For the availability of the extended direct setting for your operation panel，refer to your FR－LU08 Instruction Manual．

《｜Parameters referred to 》》

Pr． 128 PID action selection page 587

5．7．7 Resetting USB host errors

When a USB device is connected to the USB connector（connector A），the USB host error can be canceled without performing an inverter reset．

Pr．Name	Initial value	Setting range	Description	
1049	USB host reset	0	0	Read only
E110		1	Resets the USB host．	

－Parameter copy and the trace function can be used when a USB device（such as a USB memory）is connected to the USB connector（connector A）．（Refer to page 70．）
－When a device such as a USB charger is connected to the USB connector and an excessive current（ 500 mA or higher） flows，USB host error（UF warning）is displayed on the operation panel．
－If a UF warning occurs，disconnect the USB device and set Pr．1049＝＂1＂to cancel the USB error．（The UF warning can also be canceled by resetting the inverter power or resetting with the RES signal．）

5.7.8 Multiple rating setting

Four rating types of different rated current and permissible load can be selected. The optimal inverter rating can be chosen in accordance with the application, enabling equipment size to be reduced.

Pr.	Name	Initial value	Setting range	Description
570	Multiple rating setting	2	0	SLD rating
			1	LD rating
		2	ND rating	
			3	HD rating

- Overload current rating and surrounding air temperature

- The overload current rating of the inverter can be changed by the Pr. 570 setting.

Pr. $\mathbf{2 7 0}$ setting	Rating	Overload current rating	Surrounding air temperature	
		FR-A860-01080 or lower	FR-A860-01440 or higher	
0	SLD	$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$ (inverse-time characteristics)	$40^{\circ} \mathrm{C}{ }^{* 1}$	$40^{\circ} \mathrm{C}$
1	LD	$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics)	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
2	ND	$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics)	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
3	HD	$200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}, 280 \% 0.5 \mathrm{~s}$ (inverse-time characteristics)	$40^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$

```
*1 \(30^{\circ} \mathrm{C}\) for the FR-A860-00090 or lower.
```


Changing the parameter initial values and setting ranges

- When inverter reset and all parameter clear are performed after setting Pr.570, the parameter initial values are changed according to each rating, as shown below.

Pr.	Name	Pr. 570 setting				Refer to page
		0	1	2 (Initial value)	3	
0	Torque boost	*1	*1	*1	*1	697
7	Acceleration time	*1	*1	*1	*1	320
8	Deceleration time	*1	*1	*1	*1	320
9	Electronic thermal O/L relay	SLD rated current ${ }^{*}$ 2	LD rated current ${ }^{*}$	ND rated current ${ }^{*} 2^{*} 3$	HD rated current ${ }^{*} 2^{*} 3$	377
22	Stall prevention operation level	110\%	120\%	150\%	200\%	191, 403
48	Second stall prevention operation level	110\%	120\%	150\%	200\%	403
56	Current monitoring reference	SLD rated current ${ }^{*}$ 2	LD rated current ${ }^{*}$	ND rated current ${ }^{*}$ 2	HD rated current ${ }^{*}{ }^{2}$	430
114	Third stall prevention operation level	110\%	120\%	150\%	200\%	403
148	Stall prevention level at 0 V input	110\%	120\%	150\%	200\%	403
149	Stall prevention level at 10 V input	120\%	150\%	200\%	250\%	403
150	Output current detection level	110\%	120\%	150\%	200\%	461
165	Stall prevention operation level for restart	110\%	120\%	150\%	200\%	618
557	Current average value monitor signal output reference current	SLD rated current ${ }^{*}$ 2	LD rated current ${ }^{*}{ }^{2}$	ND rated current ${ }^{*}$ 2	HD rated current ${ }^{*}$ 2	317
874	OLT level setting	110\%	120\%	150\%	200\%	191
893	Energy saving monitor reference (motor capacity)	SLD rated motor capacity* ${ }^{*}$	LD rated motor capacity ${ }^{*}{ }^{2}$	ND rated motor capacity* ${ }^{*}$	HD rated motor capacity ${ }^{*}{ }^{2}$	440

[^10]| Pr． | $\text { Pr. } 570$setting | FR－A860－［］ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 00027 | 00061 | 00090 | 00170 | 00320 | 00450 | 00680 | 01080 | 01440 | $01670 \text { or }$ higher |
| $\begin{aligned} & 0 \\ & \text { (\%) } \end{aligned}$ | 0， 1 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | 2 | 5 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| | 3 | 5 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| 7
 （s） | 0， 1 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
| | 2， 3 | 5 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 15 | 15 |
| $\begin{aligned} & \hline 8 \\ & (\mathrm{~s}) \end{aligned}$ | 0，1 | 10 | 10 | 10 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
| | 2， 3 | 5 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 15 | 15 |

＊2 The rated current and motor capacity differ depending on the inverter capacity．Refer to the inverter rated specifications（page 792）．
＊3 The initial value for the FR－A860－00027 is set to the 85% of the inverter rated current．
－Setting Pr． 292 Automatic acceleration／deceleration＝＂5 or 6 （lift mode）＂will change the stall prevention operation level as shown below．

Pr．	Setting	Pr． 570 setting				Refer to page
		0	1	2 （Initial value）	3	
292	5	110\％	120\％	150\％	200\％	343
	6	115\％	140\％	180\％	230\％	

NOTE

－When Pr． $570=$＂ 0 ＂（SLD rating），carrier frequency automatic reduction is enabled regardless of the setting in Pr． 260 PWM frequency automatic switchover．
－To use the FR－A860－01080 in the LD and SLD ratings，a DC reactor corresponding to the applied motor is required．
－Setting the LD or SLD rating to the FR－A860－01080 changes their parameter setting increments and setting ranges in the same way as for the FR－A860－01440 or higher．For example，the setting increment and the setting range of Pr． 9 will change from＂ 0.01 A ＂to＂ 0.1 A ＂and from＂ 0 to 500 A ＂to＂ 0 to 3600 A ＂．For the setting of each parameter，refer to the parameter list（on page 116）．

《｜Parameters referred to 》》

Pr． 260 PWM frequency automatic switchover page 310

5．7．9 Parameter write selection

Whether to enable the writing to various parameters or not can be selected．Use this function to prevent parameter values from being rewritten by misoperation．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{7 7}$ E400	Parameter write selection	0	0	Writing is enabled only during stop．
			1	Parameter writing is disabled．
			Parameter writing is enabled in any operation mode regardless of the operation status．	

－Pr． 77 can be set at any time regardless of the operation mode or operation status．（Setting through communication is unavailable．）

- Writing parameters only during stop (Pr. 77 = "0" initial value)

- Parameters can be written only during a stop in the PU operation mode.
- The following parameters can always be written regardless of the operation mode or operation status.

Pr.	
4 to 6	(Multi-speed setting high-speed, middle-speed,
low-speed)	

Pr.	Name
496, 497	(Remote output)
498	PLC function flash memory clear
$550{ }^{*}$	NET mode operation command source selection
$551{ }^{*}$	PU mode operation command source selection
555 to 557	(Current average value monitor)
656 to 659	(Analog remote output)
663	Control circuit temperature signal output level
675	User parameter auto storage function selection
755 to 758	(Second PID control)
759	PID unit selection
774 to 776	(PU/DU monitor selection)
805	Torque command value (RAM)
806	Torque command value (RAM, EEPROM)
838	DA1 terminal function selection
866	Torque monitoring reference
888, 889	(Free parameter)
891 to 899	(Energy saving monitor)
900	FM terminal calibration
901	AM terminal calibration
990	PU buzzer control
991	PU contrast adjustment
997	Fault initiation
998*2	PM parameter initialization
999*2	Automatic parameter setting
1000	Direct setting selection
1006	Clock (year)
1007	Clock (month, day)
1008	Clock (hour, minute)
1018	Monitor with sign selection
1019	Analog meter voltage negative output selection
1142	Second PID unit selection
1150 to 1199	(PLC function user parameters)
1283	Home position return speed
1284	Home position return creep speed

*1 Writing during operation is enabled in PU operation mode, but disabled in External operation mode.
*2 Writing during operation is disabled. To change the parameter setting value, stop the operation.

Disabling parameter write (Pr.77="1")

- Parameter write, parameter clear and all parameter clear are disabled. (Parameter read is enabled.)
- The following parameters can be written even if Pr.77="1".

Pr.	Name	Pr.	Name
22	Stall prevention operation level	345, 346	(DeviceNet communication)
75	Reset selection/disconnected PU detection/PU stop selection	496, 497	(Remote output)
77	Parameter write selection	656 to 659	(Analog remote output)
79*1	Operation mode selection	805	Torque command value (RAM)
160	User group read selection	806	Torque command value (RAM, EEPROM)
296	Password lock level	997	Fault initiation
297	Password lock/unlock		

*1 Writing during operation is disabled. To change the parameter setting value, stop the operation.

Writing parameters during operation (Pr.77="2")

- These parameters can always be written.
- The following parameters cannot be written during operation if Pr.77= "2". To change the parameter setting value, stop the operation.

Pr.	Name
23	Stall prevention operation level compensation factor at double speed
48	Second stall prevention operation level
49	Second stall prevention operation frequency
60	Energy saving control selection
61	Reference current
66	Stall prevention operation reduction starting frequency
71	Applied motor
79	Operation mode selection
80	Motor capacity
81	Number of motor poles
82	Motor excitation current
83	Rated motor voltage
84	Rated motor frequency
90 to 94	(Motor constant)
95	Online auto tuning selection
96	Auto tuning setting/status
135 to 139	(Electronic bypass sequence parameter)
178 to 196	(Input and Output terminal function selection)
248	Self power management selection
254	Main circuit power OFF waiting time
261	Power failure stop selection
289	Inverter output terminal filter
291	Pulse train I/O selection
292	Automatic acceleration/deceleration
293	Acceleration/deceleration separate selection
298	Frequency search gain
313 to 322	(Extended output terminal function selection)
329	Digital input unit selection
373	Encoder position tuning setting/status
406	High resolution analog input selection
414	PLC function operation selection
415	Inverter operation lock mode setting
418	Extension output terminal filter
419	Position command source selection
420, 421	(Electronic gear)
450	Second applied motor

Pr.	Name
451	Second motor control method selection
453	Second motor capacity
454	Number of second motor poles
455	Second motor excitation current
456	Rated second motor voltage
457	Rated second motor frequency
458 to 462	(Second motor constant)
463	Second motor auto tuning setting/status
507, 508	(Display/reset ABC relay contact life)
541	Frequency command sign selection
560	Second frequency search gain
561	PTC thermistor protection level
570	Multiple rating setting
574	Second motor online auto tuning
606	Power failure stop external signal input selection
639, 640	(Brake sequence)
641, 650, 651	(Second brake sequence)
660 to 662	(Increased magnetic excitation deceleration)
699	Input terminal filter
702	Maximum motor frequency
$\begin{aligned} & 706,707,711, \\ & 712,717,721, \\ & 724,725, \\ & 1412 \end{aligned}$	(PM motor tuning)
$\begin{aligned} & 738 \text { to } 746 \text {, } \\ & 1413 \end{aligned}$	(Second PM motor tuning)
800	Control method selection
819	Easy gain tuning selection
858	Terminal 4 function assignment
859	Torque current/Rated PM motor current
860	Second motor torque current/Rated PM motor current
862	Encoder option selection
868	Terminal 1 function assignment
998	PM parameter initialization
999	Automatic parameter setting
1002	Lq tuning target current adjustment coefficient
1105	Encoder magnetic pole position offset
1292	Position control terminal input selection
1293	Roll feeding mode selection
1348	P/PI control switchover frequency

5.7.10 Password function

Registering a 4-digit password can restrict parameter reading/writing.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 296 \\ & \text { E410 } \end{aligned}$	Password lock level	9999	$\begin{aligned} & 0 \text { to } 6,99,100 \text { to } \\ & 106,199 \end{aligned}$	Select restriction level of parameter reading/ writing when a password is registered.
			9999	No password lock
$\begin{aligned} & 297 \\ & \text { E411 } \end{aligned}$	Password lock/unlock	9999	1000 to 9998	Register a 4-digit password
			(0 to 5) *1	Displays password unlock error count. (Reading only) (Valid when Pr. 296 = "100 to 106, or 199")
			9999 *1	No password lock

The above parameters can be set when Pr. 160 User group read selection = "0". However, when Pr. $296 \neq 9999$ (password lock is set), Pr. 297 can always be set, regardless of the setting in Pr. 160.
*1 When Pr. $297=$ " 0,9999 ", writing is always enabled, but setting is disabled. (The display cannot be changed.)

- Parameter reading/writing restriction level (Pr.296)

- The level of the reading/writing restriction using the PU/Network (NET) operation mode operation command can be selected with Pr. 296.

Pr. 296 setting	PU operation mode operation command ${ }^{* 3}$		NET operation mode operation command*4			
			RS-485 terminals / PLC function ${ }^{* 7}$		Communication option	
	Read*1	Write ${ }^{*}$	Read	Write ${ }^{*}$	Read	Write ${ }^{\text {* }}$
9999	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0,100*6	\times	\times	\times	\times	\times	\times
1,101	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times
2, 102	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3,103	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\times
4, 104	\times	\times	\times	\times	\bigcirc	\times
5,105	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6,106	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times
99 to 199	Only the parameters registered in the user group can be read/written. *5 (For the parameters not registered in the user group, same restriction level as "4, 104" applies.)					

O : Enabled, \times : Disabled
*1 If the parameter reading is restricted by the Pr. 160 User group read selection setting, those parameters are unavailable for reading even when " \bigcirc " is indicated.
*2 If the parameter writing is restricted by the Pr. 77 Parameter write selection setting, those parameters are unavailable for writing even when " \bigcirc " is indicated.
*3 This restricts parameter access from the command source that can write a parameter under the PU operation mode (initially the operation panel or the parameter unit). (For the PU operation mode command source selection, refer to page 356.)
*4 This restricts parameter access from the command source that can write a parameter under the Network operation mode (initially the RS-485 terminals or a communication option). (For the NET operation mode command source selection, refer to page 356.)
*5 Read/write is enabled only for the simple mode parameters registered in the user group when Pr. 160="9999". Pr. 296 and Pr. 297 are always read/write enabled whether registered to a user group or not.
*6 If a communication option is installed, an option fault Option fault (E.OPT) occurs, and the inverter output shuts off. (Refer to page 754.)
*7 The PLC function user parameters (Pr. 1150 to Pr.1199) can be written and read by the PLC function regardless of the Pr. 296 setting.

- Registering a password (Pr.296, Pr.297)

- The following section describes how to register a password.

1. Set the parameter reading/writing restriction level. (Pr. 296 = "9999")

Pr.296 setting	Password unlock error restriction	Pr.297 display
0 to 6,99	No restriction	Always displays 0
100 to $106,199^{* 1}$	Restricted at fifth error	Displays the error count (0 to 5)

*1 During Pr. 296 = any of "100 to 106, 199", if password unlock error has occurred 5 times, correct password will not unlock the restriction. All parameter clear can unlock the restriction. (In this case, the parameters are returned to their initial values.)
2. Write a four-digit number (1000 to 9998) in Pr. 297 as a password. (Writing is disabled when Pr.296="9999".) When a password is registered, parameter reading/writing is restricted with the restriction level set in Pr. 296 until unlocking.

NOTE

- After registering a password, the read value of Pr. 297 is always one of " 0 to 5 ".
- A password restricted parameter cannot be read/written.
- Even if a password is registered, the parameters, which the inverter itself writes, such as inverter parts life are overwritten as needed.
- Even if a password is registered, reading/writing is enabled for Pr. 991 PU contrast adjustment when the operation panel or the parameter unit (FR-PU07) is connected.

Unlocking a password (Pr.296, Pr.297)

- There are two ways of unlocking the password.
- Enter the password in Pr.297. If the password matches, it unlocks. If the password does not match, an error occurs and the password does not unlock. When any of "100 to 106, or 199" is set in Pr. 296 and a password unlock error occurs five times, the restriction will not be unlocked even if the correct password is subsequently input. (Password lock in operation.)
- Perform all parameter clear.

NOTE

- If the password is forgotten, it can be unlocked with all parameter clear, but doing so will also clear the other parameters.
- All parameter clear cannot be performed during the operation.
- When using FR Configurator2 in the PU operation mode, do not set " $0,4,5,99,100,104$, 105, or 199" (parameter read is disabled) in Pr.296. Doing so may cause abnormal operation.
- The password unlocking method differs between the operation panel, parameter unit, RS-485 communication, and communication option.

	Operation panel/parameter unit	RS-485 communication	Communication option
All parameter clear	\bigcirc	\bigcirc	\bigcirc
Parameter clear	\times	\times	\bigcirc

O: Password can be unlocked, \times : Password cannot be unlocked

- For the parameter clear and parameter all clear methods for the communication option and parameter unit, refer to the Instruction Manual of each option. (For the Mitsubishi inverter protocol of RS-485 communication, refer to page 659, and for the MODBUS RTU communication protocol, refer to page 674.)

－Parameter operations during password locking／unlocking

Operation		Password unlocked		Password locked	Password lock in operation
		$\begin{aligned} & \text { Pr. } 296=9999 \\ & \text { Pr. } 297=9999 \end{aligned}$	$\begin{aligned} & \text { Pr. } 296 \neq 9999 \\ & \text { Pr. } 297=9999 \end{aligned}$	$\begin{gathered} \text { Pr. } 296 \neq 9999 \\ \text { Pr. } 297=0 \text { to } 4 \text { (read value) } \end{gathered}$	$\begin{gathered} \text { Pr. } 296=100 \text { to } 106,199 \\ \text { Pr. } 297=5 \text { (read value) } \end{gathered}$
Pr． 296	Read	$\bigcirc^{* 1}$	\bigcirc	\bigcirc	\bigcirc
	Write	－＊1	$\bigcirc^{* 1}$	\times	\times
Pr． 297	Read	$\bigcirc^{* 1}$	\bigcirc	\bigcirc	\bigcirc
	Write	\times	\bigcirc	\bigcirc	$\bigcirc^{* 3}$
Parameter clear execution		\bigcirc	\bigcirc	$\times^{* 4}$	$\times{ }^{* 4}$
All parameter clear execution		\bigcirc	\bigcirc	－${ }^{2}$	○＊2
Parameter copy execution		\bigcirc	\bigcirc	\times	\times

\bigcirc ：Enabled，\times ：Disabled
＊1 Reading／writing is disabled if reading is restricted by the Pr． 160 setting．（Reading is available in the Network operation mode regardless of the Pr． 160 setting．）
＊2 All parameter clear cannot be performed during the operation．
＊3 Correct password will not unlock the restriction．
＊4 Parameter clear can only be performed from the communication option．

NOTE

－When Pr． $296=" 4,5,104$ ，or 105＂（password lock），the setting screen for PU JOG frequency is not displayed in the operation panel or the parameter unit（FR－PU07）．
－When the password is being locked，parameter copy using the operation panel，parameter unit，and USB memory is not enabled．

《＜Parameters referred to 》》

Pr． 77 Parameter write selection \longmapsto page 298
Pr． 160 User group read selection page 308
Pr． 550 NET mode operation command source selection page 356
Pr． 551 PU mode operation command source selection page 356

5．7．11 Free parameter

Any number within the setting range of 0 to 9999 can be input．
For example，these numbers can be used：
－As a unit number when multiple units are used．
－As a pattern number for each operation application when multiple units are used．
－As the year and month of introduction or inspection．

Pr．	Name	Initial value	Setting range	Description
888 E420	Free parameter 1	9999	0 to 9999	Any value can be input．The settings are retained even if the inverter power is turned OFF．
889 E421	Free parameter 2	9999	0 to 9999	

NOTE

－Pr． 888 and Pr． 889 do not influence the operation of the inverter．

5.7.12 Setting multiple parameters as a batch

Parameter settings are changed as a batch. Those include communication parameter settings for the Mitsubishi Electric human machine interface (GOT) connection and the parameter setting for the rated frequency settings of $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ and acceleration/deceleration time.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 999 \\ & \text { E431 } \end{aligned}$	Automatic parameter setting	9999*1	1	Standard PID display setting	
			2	Extended PID display setting	
			10	GOT initial setting (PU connector)	"Controller Type" in GOT: FREQROL 500/700/800, SENSORLESS SERVO
			11	GOT initial setting (RS485 terminals)	
			12	GOT initial setting (PU connector)	"Controller Type" in GOT: FREQROL 800 (Automatic Negotiation)
			13	GOT initial setting (RS-485 terminal)	
			20	50 Hz rated frequency	
			21	60 Hz rated frequency	
			9999	No action	

*1 The read value is always "9999".

- Automatic parameter setting (Pr.999)

- Select which parameters to automatically set from the table below, and set them in Pr.999. Multiple parameter settings are changed automatically. Refer to page 306 for the list of parameters that are changed automatically.

Pr. 999 Setting	Description		
1	Sets the standard monitor indicator setting of PID control.		
2	Automatically sets the monitor indicator for PID control.		
10	Automatically sets the communication parameters for the GOT connection with a PU connector ("Controller Type" in GOT: FREQROL 500/700/800, SENSORLESS SERVO)		
11	Automatically sets the communication parameters for the GOT connection with RS-485 terminals ("Controller Type" in GOT: FREQROL 500/700/800, SENSORLESS SERVO)		
12	Automatically sets the communication parameters for the GOT connection with a PU connector ("Controller Type" in GOT: FREQROL 800 (Automatic Negotiation))		
13	Automatically sets the communication parameters for the GOT connection with RS-485 terminals ("Controller Type" in GOT: FREQROL 800 (Automatic Negotiation))		
20	50 Hz rated frequency		Sets the related parameters of the rated frequency according to
:---			
the power supply frequency			

NOTE

- If the automatic setting is performed with Pr. 999 or the automatic parameter setting mode, the settings including the changed parameter settings (changed from the initial setting) will be automatically changed. Before performing the automatic setting, confirm that changing the parameters will not cause any problem.

- PID monitor indicator setting (Pr. 999 = "1 or 2")

Pr.	Name	Initial value	Pr.999="1"	Pr.999="2"	Refer to page
759	PID unit selection	9999	9999	4	603
1142	Second PID unit selection	9999	9999	4	
774	Operation panel monitor selection 1	9999	9999	52	419
775	Operation panel monitor selection 2	9999	9999	53	
776	Operation panel monitor selection 3	9999	9999	54	
934	PID display bias coefficient	9999	9999	0	603
935	PID display gain coefficient	9999	9999	100	
1136	Second PID display bias coefficient	9999	9999	0	
1138	Second PID display gain coefficient	9999	9999	100	
-	3-step monitor setting	-	Disabled	Enabled*1	-
-	Direct setting	-	Disabled	Enabled ${ }^{* 1}$	-
-	Dedicated parameter list function	-	Disabled	Enabled*1	-

3-line monitor setting

The 3 -line monitor is used as the first monitor.

Direct setting

Pressing the [FUNC] key of the FR-PU07-01 displays the direct setting screen. The PID action set point can be directly set regardless of the operation mode or Pr. 77 Parameter write selection setting.
Pressing the [FUNC] key on the direct setting screen displays the function menu.

Direct setting	Parameter to be set
Direct setting 1	Pr. 133 PID action set point
Direct setting 2	Pr. 755 Second PID action set point

Dedicated parameter list function
Pressing the [PrSET] key of the FR-PU07-01 displays the dedicated parameter list. Parameters that need to be set first for the PID extended display setting are listed.

Dedicated parameter list	Parameter to be set
No. 1	Pr. 999 Automatic parameter setting
No. 2	Pr. 934 PID display bias coefficient
No. 3	Pr. 935 PID display gain coefficient

NOTE

- The display of parameters other than the above may be changed due to changes in Pr. 934 or Pr. 935 . Set the PID monitor indicator before changing the settings of other parameters.
- To use the direct setting on the LCD operation panel, set Pr. 1000 Direct setting selection. (Refer to page 296.)

- GOT initial setting (PU connector) (Pr. 999 = "10, 12")

Pr.	Name	Initial value	Pr.999="10"	Pr.999="12"	Refer to page
$\mathbf{7 9}$	Operation mode selection	0	1	1	
$\mathbf{1 1 8}$	PU communication speed	192	192	1152	
$\mathbf{1 1 9}$	PU communication stop bit length	1	10	0	
$\mathbf{1 2 0}$	PU communication parity check	2	1	1	
$\mathbf{1 2 1}$	Number of PU communication retries	1	9999	9999	
$\mathbf{1 2 2}$	PU communication check time interval	9999	9999	9999	
$\mathbf{1 2 3}$	PU communication waiting time setting	9999	0 ms	0 ms	
$\mathbf{1 2 4}$	PU communication CR/LF selection	1	1	1	
$\mathbf{3 4 0}$	Communication startup mode selection	0	0	0	
$\mathbf{4 1 4}$	PLC function operation selection	0	-	$\mathbf{2}^{* 1}$	

*1 The setting is changed when Pr. $414=$ " 0 " (initial setting).

■ Initial setting with the GOT2000 series

- When "FREQROL 500/700/800, SENSORLESS SERVO" is selected for "Controller Type" in the GOT setting, set Pr.999="10" to configure the GOT initial setting.
- When "FREQROL 800 (Automatic Negotiation)" is selected for "Controller Type" in the GOT setting, the GOT automatic connection can be used. When "FREQROL 800 (Automatic Negotiation)" is selected for "Controller Type" in the GOT setting and the GOT automatic connection is not used, set Pr.999="12" to configure the GOT initial setting. (Refer to page 692)

■ Initial setting with the GOT1000 series

- Set Pr.999="10" to configure the GOT initial setting.

NOTE

- Always perform an inverter reset after the initial setting.
- For details on connection with GOT, refer to the Instruction Manual of GOT.

GOT initial setting (RS-485 terminals) (Pr. 999 = "11, 13")

Pr.	Name	Initial value	Pr.999="11"	Pr.999="13"	Refer to page
79	Operation mode selection	0	0	0	346
332	RS-485 communication speed	96	192	1152	657
333	RS-485 communication stop bit length	1	10	0	
334	RS-485 communication parity check selection	2	1	1	
335	RS-485 communication retry count	1	9999	9999	
336	RS-485 communication check time interval	0 s	9999	9999	
337	RS-485 communication waiting time setting	9999	0 ms	0 ms	
340	Communication startup mode selection	0	1	1	355
341	RS-485 communication CR/LF selection	1	1	1	657
414	PLC function operation selection	0	-	$2^{* 1}$	634
549	Protocol selection	0	0	0	674

*1 The setting is changed when Pr. $414=$ " 0 " (initial setting).

■ Initial setting with the GOT2000 series

- When "FREQROL 500/700/800, SENSORLESS SERVO" is selected for "Controller Type" in the GOT setting, set Pr.999="11" to configure the GOT initial setting.
- When "FREQROL 800(Automatic Negotiation)" is selected for "Controller Type" in the GOT setting, the GOT automatic connection can be used. When "FREQROL 800 (Automatic Negotiation)" is selected for "Controller Type" in the GOT setting and the GOT automatic connection is not used, set Pr.999="13" to configure the GOT initial setting. (Refer to page 692)

Initial setting with the GOT1000 series

- Set Pr.999="11" to configure the GOT initial setting.

NOTE

- Always perform an inverter reset after the initial setting.
- For details on connection with GOT, refer to the Instruction Manual of GOT.

Rated frequency (Pr. 999 = "20 (50 Hz), 21 (60 Hz)")

Pr.	Name	Initial value	Pr. 999 = "21"	Pr. 999 = "20"	Refer to page
3	Base frequency	60 Hz	60 Hz	50 Hz	699
4	Multi-speed setting (high speed)	60 Hz	60 Hz	50 Hz	372
20	Acceleration/deceleration reference frequency	60 Hz	60 Hz	50 Hz	320
37	Speed display	0	0		417
55	Frequency monitoring reference	60 Hz	60 Hz	50 Hz	430
66	Stall prevention operation reduction starting frequency	60 Hz	60 Hz	50 Hz	403
116	Third output frequency detection	60 Hz	60 Hz	50 Hz	403
125 (903)	Terminal 2 frequency setting gain frequency	60 Hz	60 Hz	50 Hz	483
126 (905)	Terminal 4 frequency setting gain frequency	60 Hz	60 Hz	50 Hz	
263	Subtraction starting frequency	60 Hz	60 Hz	50 Hz	629
266	Power failure deceleration time switchover frequency	60 Hz	60 Hz	50 Hz	
386	Frequency for maximum input pulse	60 Hz	60 Hz	50 Hz	365
505	Speed setting reference	60 Hz	60 Hz	50 Hz	417
808	Forward rotation speed limit/speed limit	60 Hz	60 Hz	50 Hz	237
918	Terminal 1 gain frequency (speed)	60 Hz	60 Hz	50 Hz	483
1013	Emergency drive running speed after retry reset	60 Hz	60 Hz	50 Hz	391

5.7.13 Extended parameter display and user group function

This function restricts the parameters that are read by the operation panel and parameter unit.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 160 \\ & \text { E440 } \end{aligned}$	User group read selection	0	9999	Only simple mode parameters can be displayed.
			0	Simple mode and extended parameters can be displayed.
			1	Only parameters registered in user groups can be displayed.
$\begin{aligned} & 172 \\ & \text { E441 } \end{aligned}$	User group registered display/ batch clear	0	(0 to 16)	Displays the number of groups that are registered as user groups. (Read-only)
			9999	Batch clear of user group registrations
$\begin{aligned} & 173 \\ & \text { E442 } \end{aligned}$	User group registration	9999*1	0 to 1999, 9999	Sets the parameter number to register for the user group.
$\begin{aligned} & 174 \\ & \text { E443 } \end{aligned}$	User group clear	9999*1	0 to 1999, 9999	Sets the parameter number to clear from the user group.

*1 The read value is always "9999"

Display of simple mode parameters and extended parameters (Pr.160)

- When Pr. $160=$ " 9999 ", only the simple mode parameters can be displayed on the operation panel and the parameter unit. (For the simple mode parameters, refer to the parameter list page 116.)
- With the initial value (Pr. $160=00 "$), simple mode parameters and extended parameters can be displayed.

NOTE

- When a plug-in option in installed on the inverter, the option parameters can also be read.
- Every parameter can be read regardless of the Pr. 160 setting when reading parameters via a communication option.
- When reading the parameters using the RS-485 terminals, all parameters can be read regardless of the Pr. 160 setting by setting Pr. 550 NET mode operation command source selection and Pr. 551 PU mode operation command source selection.

Pr. 551	Pr. 550	Pr. 160 enabled/disabled
1 (RS-485)	-	Enabled
```2 (PU) 3 (USB) 9 9 9 9 ~ ( A u t o m a t i c ~ d e t e r m i n a t i o n ) (Initial value)```	0 (Communication option)	Enabled
	1 (RS-485)	Disabled (All can be read)
	9999 (Automatic determination)	With communication option: Enabled
	(Initial value)	Without communication option: Disabled (All can be read)

## User group function (Pr.160, Pr. 172 to Pr.174)

- The user group function is a function for displaying only the parameters required for a setting.
- A maximum of 16 parameters from any of the parameters can be registered in a user group. When Pr.160="1", reading/ writing is enabled only for the parameters registered in user groups. (Parameters not registered in user groups can no longer be read.)
- To register a parameter in a user group, set the parameter number in Pr. 173.
- To clear a parameter from a user group, set the parameter number in Pr.174. To batch clear all the registered parameters, set Pr. 172 ="9999".


## Registering a parameter in a user group（Pr．173）

－To register Pr． 3 in a user group

## Operating procedure

1．Power ON
Make sure the motor is stopped．
2．Changing the operation mode
Select the PU operation mode．
3．Selecting the parameter number
Read Pr． 173.
4．Parameter registration
Set＂3＂in Pr． 173.
Pr． 3 is registered in the user group．

## －Clearing a parameter from a user group（Pr．174）

－To delete Pr． 3 from a user group

## Operating procedure

1．Power ON
Make sure the motor is stopped．
2．Changing the operation mode
Select the PU operation mode．
3．Selecting the parameter number
Read Pr． 174.
4．Clearing the parameter
Set＂3＂in Pr． 173.
Pr． 3 is deleted from the user group．

## NOTE

－Pr． 77 Parameter write selection，Pr．160，Pr． 296 Password lock level，Pr． 297 Password lock／unlock and Pr． 991 PU contrast adjustment can always be read regardless of the user group setting．
－Pr．77，Pr．160，Pr． 172 to Pr．174，Pr．296，and Pr． 297 cannot be registered in a user group．
－When Pr． 174 is read，＂9999＂is always displayed．＂9999＂can be written，but it does not function．
－Pr． 172 is disabled if set to a value other than＂ 9999 ＂．

```
《|Parameters referred to\》
Pr. }77\mathrm{ Parameter write selection 凸 page 298
Pr. }296\mathrm{ Password lock level, Pr. }297\mathrm{ Password lock/unlock 『 page 301
Pr. }550\mathrm{ NET mode operation command source selection $ page 356
Pr. }551\mathrm{ PU mode operation command source selection page 356
```


### 5.7.14 Parameter copy alarm release

The parameter copy alarm can be canceled. The parameter copy alarm is generated when parameter copy is performed between the FR-A860-01080 or lower and the FR-A860-01440 or higher.

Pr.	Name	Initial value	Setting range	Description
989   E490	Parameter copy alarm release	$10^{* 1}$   $100^{* 2}$	$10^{* 1}$	Cancels the alarm of FR-A860-01080 or   lower.
		$100^{* 2}$	Cancels the alarm of FR-A860-01440 or   higher.	

*1 The setting range or initial value for the FR-A860-01080 or lower.
*2 The setting range or initial value for the FR-A860-01440 or higher.

- The setting range of some parameters differ between the FR-A860-01080 or lower and the FR-A860-01440 or higher. When parameter copy is performed between the FR-A860-01080 or lower and the FR-A860-01440 or higher, the parameter copy alarm (CP) is displayed on the operation panel because resetting of some parameters is necessary.
- Use Pr. 989 to cancel the parameter copy alarm. After setting Pr.989, perform setting of Pr.9, Pr.30, Pr.51, Pr.56, Pr.57, Pr.61, Pr.70, Pr.72, Pr.80, Pr.82, Pr. 90 to Pr.94, Pr.453, Pr.455, Pr. 458 to Pr.462, Pr.557, Pr.859, Pr.860, and Pr. 893 again.


### 5.7.15 PWM carrier frequency and Soft-PWM control

The motor sound can be changed.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 72 \\ & \text { E600 } \end{aligned}$	PWM frequency selection	2	0 to 15*1	The PWM carrier frequency can be changed. The setting displayed is in [kHz]. Note that 0 indicates 0.7 $\mathrm{kHz}, 15$ indicates 14.5 kHz , and 25 indicates 2.5 kHz . (The setting value " 25 " is for manufacturer setting. Do not set.)
			0 to 6, 25*2	
$\begin{aligned} & \hline 240 \\ & \text { E601 } \end{aligned}$	Soft-PWM operation selection	1	0	Soft-PWM disabled
			1	The soft-PWM is enabled.
$\begin{aligned} & 260 \\ & \text { E602 } \end{aligned}$	PWM frequency automatic switchover	1	0	PWM carrier frequency automatic reduction function disabled (for the LD, ND, or HD rating)
			1	PWM carrier frequency automatic reduction function enabled

*1 The setting range for the FR-A860-01080 or lower.
*2 The setting range for the FR-A860-01440 or higher.

## - Changing the PWM carrier frequency (Pr.72)

- The PWM carrier frequency of the inverter can be changed.
- Changing the PWM carrier frequency can be effective for avoiding the resonance frequency of the mechanical system or motor, as a countermeasure against EMI generated from the inverter, or for reducing leakage current caused by PWM switching.
- Under Real sensorless vector control, vector control, and PM sensorless vector control, the following carrier frequencies are used. (For the control method and fast-response mode selection, refer to Pr. 800 Control method selection page 166.)

Pr. 72 setting	Carrier frequency (kHz)		
	Real sensorless vector control, vector control	PM sensorless vector control	Fast-response mode
0	2	2	4
1			
2			
3			
4			
5			
6	$6^{* 1}$	6	
7			
8			8
9			
10	$10^{* 1}$	10	
11			
12			12
13			
14	$14^{* 1}$	14	
15			

*1 In the low-speed range (3 Hz or lower) under Real sensorless vector control, the carrier frequency is automatically changed to 2 kHz . (For FR-A860-00170 or lower)

## NOTE

- In the low-speed range (about 10 Hz or lower), the carrier frequency may be automatically lowered. Motor noise increases, but not to the point of failure.


## - Soft-PWM control (Pr.240)

- Soft-PWM control is a control method that changes the motor noise from a metallic sound into an inoffensive, complex tone.
- Setting Pr. $240=$ " 1 " will enable the Soft-PWM control.
- To enable the Soft-PWM control for the FR-A860-01080 or lower, set Pr. 72 to " 5 kHz or less". To enable it for the FR-A86001440 or higher, set Pr. 72 to " 4 kHz or less".


## - PWM carrier frequency automatic reduction function (Pr.260)

- Setting Pr.260="1 (initial value)" will enable the PWM carrier frequency auto-reduction function. If a heavy load is continuously applied while the inverter carrier frequency is set to 3 kHz or higher ( $\operatorname{Pr} .72 \geq$ " 3 "), the carrier frequency is automatically reduced to prevent occurrence of the inverter overload trip (electronic thermal $\mathrm{O} / \mathrm{L}$ relay function) (E.THT). The carrier frequency is reduced to as low as 2 kHz . (Motor noise increases, but not to the point of failure.)
- When the PWM carrier frequency automatic reduction function is used, the operation with the carrier frequency set to 3 kHz or higher ( $\operatorname{Pr} .72 \geq$ " 3 ") automatically reduces the carrier frequency for heavy-load operation as shown below.

Pr. 260 setting	Pr. 570 setting	Carrier frequency automatic reduction operation	
		FR-A860-01080 or lower	FR-A860-01440 or higher
1	0 (SLD), 1 (LD)	Continuous operation with the $85 \%$ or higher inverter rated current reduces the carrier frequency automatically.	
	2 (ND), 3 (HD)	Operation with the $150 \%$ or higher inverter rated current for the ND rating reduces the carrier frequency automatically.	Continuous operation with the $85 \%$ or higher inverter rated current reduces the carrier frequency automatically.
0	0 (SLD)	Continuous operation with the $85 \%$ or higher inverter rated current reduces the carrier frequency automatically.	
	1 (LD)	Without carrier frequency automatic reduction (Perform continuous operation with the carrier frequency set to 2 kHz or lower or with less than $85 \%$ of the inverter rated current.)	
	2 (ND), 3 (HD)	Without carrier frequency automatic reduction	Without carrier frequency automatic reduction (Perform continuous operation with the carrier frequency set to 2 kHz or lower or with less than $85 \%$ of the inverter rated current.)

－Reducing the PWM carrier frequency is effective as a countermeasure against EMI from the inverter or for reducing leakage current，but doing so increases the motor noise．
－When the PWM carrier frequency is set to 1 kHz or lower（Pr． $72 \leq 1$ ），the increase in the harmonic current causes the fast－ response current limit to activate before the stall prevention operation，which may result in torque shortage．In this case， disable the fast－response current limit in Pr． 156 Stall prevention operation selection．
－During fast－response operation，the carrier frequency automatic reduction function is disabled．

## 〈Parameters referred to 》》

Pr． 156 Stall prevention operation selection page 403
Pr． 570 Multiple rating setting page 297
Pr． 800 Control method selection page 166

## 5．7．16 Inverter parts life display

The degree of deterioration of the control circuit capacitor，main circuit capacitor，cooling fan，inrush current limit circuit，and relay contacts of terminals $\mathrm{A}, \mathrm{B}$ ，and C can be diagnosed on the monitor．
When a part approaches the end of its life，an alarm can be output by self diagnosis to prevent a fault．
（Note that the life diagnosis of this function should be used as a guideline only，because with the exception of the main circuit capacitor，the life values are theoretical calculations．）

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 255 \\ & \text { E700 } \end{aligned}$	Life alarm status display	0	$\left(0\right.$ to 255）${ }^{* 1}$	Displays whether or not the parts of the control circuit capacitor，main circuit capacitor，cooling fan， and inrush current limit circuit have reached the life alarm output level．Read－only．
$\begin{aligned} & 256 \\ & \text { E701 *2 } \end{aligned}$	Inrush current limit circuit life display	100\％	（0 to 100\％）	Displays the deterioration degree of the inrush current limit circuit．Read－only．
$\begin{aligned} & 257 \\ & \text { E702 } \end{aligned}$	Control circuit capacitor life display	100\％	（0 to 100\％）	Displays the deterioration degree of the control circuit capacitor．Read－only．
$\begin{aligned} & 258 \\ & \text { E703 *2 } \end{aligned}$	Main circuit capacitor life display	100\％	（0 to 100\％）	Displays the deterioration degree of the main circuit capacitor．Read－only．   The value measured by Pr． 259 is displayed．
$\begin{aligned} & 259 \\ & \text { E704 *2 } \end{aligned}$	Main circuit capacitor life measuring	0	0， $1(2,3,8,9)$	Setting＂1＂and turning the power supply OFF starts the measurement of the main circuit capacitor life．   If the setting value of Pr． 259 becomes＂ 3 ＂after turning the power supply ON again，it means that the measurement is completed．The deterioration degree is read to Pr． 258.
			$\begin{aligned} & 11(12,13,18, \\ & 19) \end{aligned}$	When＂11＂is set，turning OFF the power supply starts the measurement of the main circuit capacitor life．   If the setting value of Pr． 259 becomes＂13＂after turning the power supply ON again，it means that the measurement is completed．The degree of deterioration is read to Pr． 258.
506   E705＊2	Display estimated main circuit capacitor residual life	100\％	（0 to 100\％）	Displays the estimated residual life of the main circuit capacitor．Read－only．
$\begin{aligned} & 507 \\ & \text { E706 } \end{aligned}$	Display／reset ABC1 relay contact life	100\％	0 to 100\％	Displays the degree of deterioration of the relay contacts of terminals A1，B1，and C1．
508   E707	Display／reset ABC2 relay contact life	100\％	0 to 100\％	Displays the degree of deterioration of the relay contacts of terminals A2，B2，and C2．

＊1 The setting range（read－only）differs depending on the inverter model（standard model or separate converter type）．
＊2 The setting is available only for standard models．

## - Life alarm display and signal output (Y90 signal, Pr.255)

## Point $\rho$

- In the life diagnosis of the main circuit capacitor, the alarm signal (Y90) is not output unless measurement by turning OFF the power supply is performed.
- Whether or not the parts of the control circuit capacitor, main circuit capacitor, cooling fan, inrush current limit circuit, or relay contacts of terminals $A, B$, and $C$ have reached the life alarm output level can be checked with Pr. 255 Life alarm status display and the Life alarm (Y90) signal.

bit0 Control circuit capacitor life

bit1 Main circuit capacitor life (Standard models)
bit2 Cooling fan life
bit3 Inrush current limit circuit life (Standard models)
bit4 Always 0
bit5 Estimated residual-life of main circuit capacitor
(Standard models)
bit6 ABC1 relay contact life
bit7 $A B C 2$ relay contact life
- When the parts have reached the life alarm output level, the corresponding bits of Pr. 255 turns ON. The ON/OFF state of the bits can be checked with Pr.255. The following table shows examples.

Pr. 255		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Remarks
Decimal	Binary									
239	11101111	$\bigcirc$	$\bigcirc$	-	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	All parts have reached alarm output level for standard structure models.
5	101	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	Control circuit capacitor and cooling fan have reached alarm output level.
0	0	$\times$	No parts have reached alarm output level.							

$\circ$ : Parts reaching alarm output level $\times$ : Parts not reaching alarm output level

- Diagnosable parts differ depending on the type of the inverter.

Part	Applicable inverter	
	Standard model	Separated converter type
Control circuit capacitor	$\circ$	$\circ$
Main circuit capacitor	$\circ$	$\times$
Cooling fan	$\circ$	$\circ$
Inrush current limit circuit	$\circ$	$\times$
Main circuit capacitor (estimated residual life)	$\circ$	$\times$
ABC relay contact	$\circ$	$\circ$

०: Diagnosable, $\times$ : Undiagnosable

- The Life alarm (Y90) signal turns ON when the life alarm output level is reached for either of the following: the control circuit capacitor life, main circuit capacitor life, cooling fan life, inrush current limit circuit life, estimated residual-life of the main circuit capacitor, ABC1 relay contact life, or ABC2 relay contact life.
- For the terminal used for the Y90 signal, set "90" (positive logic) or "190" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- When using an option (FR-A8AY, FR-A8AR, FR-A8NC, FR-A8NCE, FR-A8NCG), the life can be output separately to the Control circuit capacitor life (Y86) signal, Main circuit capacitor life (Y87) signal, Cooling fan life (Y88) signal, Inrush current limit circuit life (Y89) signal, Estimated residual-life of main circuit capacitor (Y248) signal, ABC1 relay contact life (Y249) signal, and $A B C 2$ relay contact life (Y250) signal.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Life display of the inrush current limit circuit (Pr.256) (Standard models)

- The life of the inrush current limit circuit (relay, contactor and inrush resistor) is displayed in Pr. 256.
- The number of contact (relay, contactor, thyristor) ON times is counted, and it is counted down from $100 \%$ ( 0 time) every $1 \% / 10,000$ times. As soon as $10 \%$ ( 900,000 times) is reached, Pr. 255 bit 3 is turned ON and also a warning is output to the Y 90 signal.


## - Life display of the control circuit capacitor (Pr.257)

- The deterioration degree of the control circuit capacitor is displayed in Pr.257.
- In the operating status, the control circuit capacitor life is calculated from the energization time and temperature, and is counted down from $100 \%$. As soon as the control circuit capacitor life falls below $10 \%$, Pr. 255 bit 0 is turned ON and also a warning is output to the Y 90 signal


## - Life display of the main circuit capacitor (Pr.258, Pr.259) (Standard models)

## Point $\rho$

- For accurate life measurement of the main circuit capacitor, wait three hours or longer after turning OFF. The temperature left in the main circuit capacitor affects measurement
- The deterioration degree of the main circuit capacitor is displayed in Pr. 258.
- With the main circuit capacitor capacity at factory shipment as $100 \%$, the capacitor life is displayed in Pr. 258 every time measurement is made. When the measured value falls to $85 \%$ or lower, $\operatorname{Pr} .255$ bit 1 is turned ON and also a warning is output to the Y90 signal.
- Measure the capacitor capacity according to the following procedure and check the deterioration degree of the capacitor capacity.

1. Check that the motor is connected and at a stop.
2. Set "1 or 11" (measuring start) in Pr. 259.
3. Switch the power OFF. The inverter applies DC voltage to the motor to measure the capacitor capacity while the inverter is OFF.
4. After confirming that the power lamp is OFF, turn ON the power again.
5. Check that "3 or 13" (measurement complete) is set in Pr.259, read Pr.258, and check the deterioration degree of the main circuit capacitor.

Pr. 259	Description	REMARKS
0	No measurement	Initial value
1,11	Measurement start	Measurement starts when the power supply is switched OFF. (Only once when Pr. 259 = "1")   When Pr. 259 = "11", the measurement starts every time the power supply is turned OFF.
2, 12	During measurement	Only displayed and cannot be set. (When "11" is set in Pr.259, "12, 13, 18, or 19 " is displayed.)
3, 13	Measurement complete	
8,18	Forced end	
9, 19	Measurement error	

## NOTE

- When the main circuit capacitor life is measured under the following conditions, "forced end" (Pr. $259=$ " 8 or 18"), or "measurement error" (Pr. 259 = "9 or 19") may occur, or the status may remain in "measurement start" (Pr. 259 = "1 or 11"). To perform measurement, first eliminate the following conditions. Under the following conditions, even if "measurement complete" (Pr. 259 = "3 or 13") is reached, measurement cannot be performed correctly.
Terminals R1/L11, S1/L21 or DC power supply is connected to terminals P/+ and N/-.
The power supply is switched ON during measurement.
The motor is not connected to the inverter.
The motor is running (coasting)
The motor capacity is smaller than the inverter capacity by two ranks or more
The inverter is tripped or a fault occurred while the power was OFF.
The inverter output is shut off with the MRS signal.
The start command is given while measuring.
The applied motor setting is incorrect.
- Operation environment: surrounding air temperature (annual average of $40^{\circ} \mathrm{C}$ (free from corrosive gas, flammable gas, oil mist, dust and dirt)). Output current ( $80 \%$ of the inverter rating)
- Since repeated inrush currents at power ON will shorten the life of the converter circuit, frequent starts and stops of the magnetic contactor must be avoided.


## WARNING

- When measuring the main circuit capacitor capacity (Pr. $259=11$ or $11 "$ ), the DC voltage is applied to the motor for about 1 s at power OFF. Never touch the motor terminal, etc. right after powering OFF to prevent an electric shock.


## Life display of the cooling fan

- When the cooling fan approaches the end of its life and a low rotation speed is detected for the cooling fan, the fan alarm (FN) is displayed on the operation panel or the parameter unit. As an alarm display, Pr. 255 bit 2 is turned ON and also a warning is output to the Y90 signal and Alarm (LF) signal.
- For the terminal used for the LF signal, set "98" (positive logic) or "198" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).


## NOTE

- When the inverter is mounted with two ore more cooling fans, "FN" is displayed with one or more fans with speed of $50 \%$ or less.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- For replacement of each part, contact the nearest Mitsubishi Electric FA center.


## - Estimated residual life display of the main circuit capacitor (Pr.506) (Standard models)

- Even when the power supply cannot be turned OFF, the remaining life of the main circuit capacitor can be estimated without stopping the operation. Note that the remaining life of the main circuit capacitor estimated by this function is theoretical, and should be used as a guideline only.
- The estimated residual life of the main circuit capacitor is displayed in Pr.506.
- The remaining life of the main circuit capacitor is calculated from the energization time and the inverter output power (100\% $=$ Start of service life). When the remaining life of the main circuit capacitor falls below 10\%, bit 5 of Pr. 255 Life alarm status display turns ON and a warning is output by the Y 90 signal.


## - Life display of the relay contacts of terminals A, B, and C (Pr.507, Pr.508)

- The degree of deterioration of the relay contacts of terminals A1, B1, and C1 is displayed in Pr.507, and that for terminals $\mathrm{A} 2, \mathrm{~B} 2$, and C 2 is displayed in Pr .508.
- The number of times the contacts of relay turn ON is counted down from $100 \%$ ( 0 time) by $1 \%$ ( 500 times). When the counter reaches $10 \%$ ( 45,000 times), bit 6 or bit 7 of Pr. 255 turns ON and a warning is output by the Y90 signal.
- Any value can be set in Pr. 507 and Pr.508. After replacement of the control circuit terminal block or installation of a control terminal option, set Pr. 507 and Pr. 508 again.


### 5.7.17 Maintenance timer alarm

The Maintenance timer (Y95) signal is output when the inverter's cumulative energization time reaches the time period set with the parameter. MT1, MT2 or MT3 is displayed on the operation panel.
This can be used as a guideline for the maintenance time of peripheral devices.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 503 \\ & \text { E710 } \end{aligned}$	Maintenance timer 1	0	0 (1 to 9998)	Displays the inverter's cumulative energization time in increments of 100 h (read-only).   Writing the setting of " 0 " clears the cumulative energization time while Pr. 503 = "1 to 9998". (Writing is disabled when Pr. 503 = "0".)
504   E711	Maintenance timer 1 warning output set time	9999	0 to 9998	Set the time until the Maintenance timer (Y95) signal is output.   MT1 is displayed on the operation panel.
			9999	No function
$\begin{aligned} & \hline 686 \\ & \text { E712 } \end{aligned}$	Maintenance timer 2	0	0 (1 to 9998)	The same function as Pr.503.
687   E713	Maintenance timer 2 warning output set time	9999	0 to 9998	The same function as Pr.504. MT2 is displayed on the operation panel.
			9999	
$\begin{aligned} & \hline 688 \\ & \text { E714 } \end{aligned}$	Maintenance timer 3	0	0 (1 to 9998)	The same function as Pr.503.
$\begin{aligned} & \hline 689 \\ & \text { E715 } \end{aligned}$	Maintenance timer 3 warning output set time	9999	0 to 9998	The same function as Pr. 504. MT3 is displayed on the operation panel.
			9999	



Operation example of the maintenance timer 1 (Pr.503, Pr.504) (with both MT2 and MT3 OFF)

- The cumulative energization time of the inverter is stored in the EEPROM every hour and displayed in Pr. 503 (Pr.686, Pr.688) in 100 h increments. Pr. 503 (Pr.686, Pr.688) is clamped at 9998 (999800 h).
- When the value in Pr. 503 (Pr.686, Pr.688) reaches the time ( 100 h increments) set in Pr. 504 (Pr.687, Pr.689), the Maintenance timer (Y95) signal is output, and also MT1, MT2, or MT3 is displayed on the operation panel.
- For the terminal used for Y95 signal output, assign the function by setting "95 (positive logic)" or "195 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).


## NOTE

- The Y95 signal turns ON when any of MT1, MT2 or MT3 is activated. It does not turn OFF unless all of MT1, MT2 and MT3 are cleared.
- If all of MT1, MT2 and MT3 are activated, they are displayed in the priority of "MT1 > MT2 > MT3".
- MT is displayed on the FR-PU07 parameter unit if any of MT1, MT2 or MT3 is activated.
- The cumulative energization time is counted every hour. Energization time of less than 1 h is not counted.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## Parameters referred to \》

Pr. 190 to Pr. 196 (Output terminal function selection) page 446

### 5.7.18 Current average value monitor signal

The output current average value during constant-speed operation and the maintenance timer value are output to the Current average monitor (Y93) signal as a pulse. The output pulse width can be used in a device such as the I/O unit of a programmable controller as a guideline for the maintenance time for mechanical wear, belt stretching, or deterioration of devices with age. The pulse is repeatedly output during constant-speed operation in cycles of 20 s to the Current average monitor (Y93) signal.


Pr.	Name	Initial value	Setting range	Description
$\mathbf{5 5 5}$   E720	Current average time	1 s	0.1 to 1 s	Set the time for calculating the average   current during start pulse output (1 s).
$\mathbf{5 5 6}$   E721	Data output mask time	0 s	0 to 20 s	Set the time for not obtaining (masking)   transitional state data.
557   E722	Current average value monitor   signal output reference current	Inverter rated   current	0 to $500 \mathrm{~A}^{* 1}$	Set the reference (100\%) for outputting the   output current average value signal.
		0 to $3600 \mathrm{~A}^{* 2}$		

*1 Initial value for the FR-A860-01080 or lower.
*2 Initial value for the FR-A860-01440 or higher.

## - Operation example

- The pulse output of the Current average monitor (Y93) signal is indicated below.
- For the terminal used for Y93 signal output, assign the function by setting "93 (positive logic)" or "193 (negative logic)" in any of Pr. 190 to Pr. 194 (Output terminal function selection). (This cannot be assigned by setting in Pr. 195 ABC1 terminal function selection or Pr. 196 ABC2 terminal function selection.)



## - Pr. 556 Data output mask time setting

- Immediately after acceleration/deceleration is shifted to constant-speed operation, the output current is unstable (transitional state). Set the time for not obtaining (masking) transitional state data in Pr. 556.


## - Pr. 555 Current average time setting

- The output current average is calculated during start pulse (1 s) HIGH output. Set the time for calculating the average current during start pulse output in Pr. 555.


## - Pr. 557 Current average value monitor signal output reference current setting

- Set the reference ( $100 \%$ ) for outputting the output current average value signal. The signal output time is calculated with the following formula.
$\frac{\text { Output current average value }}{\text { Pr. } 557 \text { setting value }} \times 5 \mathrm{~s} \quad$ (Output current average value $100 \% / 5 \mathrm{~s}$ )

The output time range is 0.5 to 9 s . When the output current average value is less than $10 \%$ of the setting value in Pr.557, the output time is 0.5 s , and when it is more than $180 \%$, the output time is 9 s .
For example, when Pr. $557=" 10 \mathrm{~A} "$ and the output current average value is 15 A :
$15 \mathrm{~A} / 10 \mathrm{~A} \times 5 \mathrm{~s}=7.5 \mathrm{~s}$, thus the current average value monitor signal maintains LOW output for 7.5 seconds.


## －Pr． 503 Maintenance timer 1 output

－After LOW output of the output current value is performed，HIGH output of the maintenance timer value is performed．The maintenance timer value output time is calculated with the following formula．
$\frac{\operatorname{Pr} .503 \times 100}{40000 \mathrm{~h}} \times 5 \mathrm{~s} \quad$（Maintenance timer value $100 \% / 5 \mathrm{~s}$ ）

The output time range is 2 to 9 s ．When Pr． 503 is less than 16000 h ，the output time is 2 s ，and when it is more than 72000 h ， the output time is 9 s ．


## NOTE

－Masking of the data output and sampling of the output current are not performed during acceleration／deceleration．
－If constant speed changes to acceleration or deceleration during start pulse output，it is judged as invalid data，and the signal maintains HIGH start pulse output for 3.5 seconds and LOW end pulse output for 16.5 seconds．After the start pulse output is completed，minimum 1－cycle signal output is performed even if acceleration／deceleration is performed．

－If the output current value（inverter output current monitor）is 0 A at the completion of the 1 －cycle signal output，no signal is output until the next constant－speed state．
－Under the following conditions，the Y93 signal maintains LOW output for 20 seconds（no data output）．
When acceleration or deceleration is operating at the completion of the 1－cycle signal output
When automatic restart after instantaneous power failure（Pr． 57 Restart coasting time $\neq$＂ 9999 ＂）is set，and the 1 －cycle signal output is completed during the restart operation
When automatic restart after instantaneous power failure（Pr． 57 \＃＂ 9999 ＂）is set，and the restart operation was being performed at the completion of data output masking
－Pr． 686 Maintenance timer 2 and Pr． 688 Maintenance timer 3 cannot be output．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## 《｜Parameters referred to 》》

Pr． 57 Restart coasting time page 618
Pr． 190 to Pr． 196 （Output terminal function selection）page 446
Pr． 503 Maintenance timer 1，Pr． 686 Maintenance timer 2，Pr． 688 Maintenance timer 3 page 316 acceleration/deceleration pattern

Purpose	Parameter to set			Refer to page
To set the motor acceleration/ deceleration time	Acceleration/deceleration time	$\begin{aligned} & \text { P.F000 to P.F003, P.F010, } \\ & \text { P.F011, P.F020 to P.F022, } \\ & \text { P.F030, P.F031, P.F040, } \\ & \text { P.F070, P.F071, P.G264 } \end{aligned}$	Pr.7, Pr.8, Pr.16, Pr.20, Pr.21, Pr.44, Pr.45, Pr.110, Pr.111, Pr.147, Pr.611, Pr.791, Pr.792, Pr.1103, Pr. 1349	320
To set the acceleration/ deceleration pattern suitable for an application	Acceleration/deceleration pattern and backlash measures	$\begin{aligned} & \text { P.F100, P.F200 to P.F203, } \\ & \text { P.F300 to P.F303, P.F400 } \\ & \text { to P.F403 } \end{aligned}$	Pr.29, Pr. 140 to Pr.143, Pr. 380 to Pr. 383, Pr. 516 to Pr. 519	325
To command smooth speed transition with terminals	Remote setting function	P.F101	Pr. 59	331
To set the starting frequency	Starting frequency and start-time hold	P.F102, P.F103	Pr.13, Pr. 571	337, 338
To set optimum acceleration/ deceleration time automatically	Automatic acceleration/ deceleration	P.F500, P.F510 to P.F513	Pr. 61 to Pr.63, Pr. 292	339
To set V/F pattern for lift automatically	Lift operation (Automatic acceleration/deceleration)	P.F500, P.F510, P.F520	Pr.61, Pr.64, Pr. 292	343

### 5.8.1 Setting the acceleration and deceleration time

The following parameters are used to set motor acceleration/deceleration time.
Set a larger value for a slower acceleration/deceleration, and a smaller value for a faster acceleration/deceleration.
For the acceleration time at automatic restart after instantaneous power failure, refer to Pr. 611 Acceleration time at a restart (page 618).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 20 \\ & \text { F000 } \end{aligned}$	Acceleration/deceleration reference frequency	60 Hz	1 to 590 Hz	Set the frequency that will be the basis of acceleration/ deceleration time. As acceleration/deceleration time, set the frequency change time from a stop status to Pr. 20.
$\begin{aligned} & 21 \\ & \text { F001 } \end{aligned}$	Acceleration/deceleration time increments	0	0	Select the increment for the acceleration/deceleration time setting.
			1	
$\begin{aligned} & 16 \\ & \text { F002 } \end{aligned}$	Jog acceleration/ deceleration time	0.5 s	0 to 3600 s	Set the acceleration/deceleration time for JOG operation (from stop status to Pr.20).   Refer to page 370.
$\begin{aligned} & 611 \\ & \text { F003 } \end{aligned}$	Acceleration time at a restart	9999	0 to 3600 s, 9999	Set the acceleration time for restart (from stop status to Pr.20).   When "9999" is set, standard acceleration time (like Pr.7) is applied as the acceleration time at restart. Refer to page 618.
$\begin{aligned} & \hline 7 \\ & \text { F010 } \end{aligned}$	Acceleration time	$5 \mathrm{~s}^{* 1}$	0 to 3600 s	Set the motor acceleration time (from stop status to Pr.20).
		$15 \mathrm{~s}^{*} 2$		
$\begin{array}{\|l\|} \hline 8 \\ \text { F011 } \end{array}$	Deceleration time	$5 \mathrm{~s}^{* 1}$	0 to 3600 s	Set the motor deceleration time (from Pr. 20 to stop status).
		$15 \mathrm{~s}^{*} 2$		
$\begin{aligned} & \hline 44 \\ & \text { F020 } \end{aligned}$	Second acceleration/ deceleration time	5 s	0 to 3600 s	Set the acceleration/deceleration time when the RT signal is ON.
$\begin{aligned} & 45 \\ & \mathrm{F021} \end{aligned}$	Second deceleration time	9999	0 to 3600 s	Set the deceleration time when the RT signal is ON.
			9999	Acceleration time = deceleration time
$\begin{aligned} & 147 \\ & \text { F022 } \end{aligned}$	Acceleration/deceleration time switching frequency	9999	0 to 590 Hz	Set the frequency where the acceleration/deceleration time switches to the time set in Pr. 44 and Pr. 45.
			9999	No function
$\begin{aligned} & \hline 110 \\ & \text { F030 } \end{aligned}$	Third acceleration/ deceleration time	9999	0 to 3600 s	Set the acceleration/deceleration time when X9 signal is ON .
			9999	Third acceleration/deceleration is disabled.
111	Third deceleration time	9999	0 to 3600 s	Set the deceleration time when X9 signal is ON.
F031			9999	Acceleration time $=$ deceleration time


Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 791 \\ & \text { F070 } \end{aligned}$	Acceleration time in lowspeed range	9999	0 to 3600 s	Set the acceleration time in a low-speed range (less than 10\% of the rated motor frequency).	
			9999	The acceleration time set in Pr. 7 is applied. (While RT signal or X 9 signal is ON , the second or third function is enabled.)	
$\begin{aligned} & 792 \\ & \text { F071 } \end{aligned}$	Deceleration time in lowspeed range	9999	0 to 3600 s	Set the deceleration time in a low-speed range (less than $10 \%$ of the rated motor frequency).	
			9999	The deceleration time set in Pr. 8 is applied. (While RT signal or X 9 signal is ON, the second or third function is enabled.)	
$\begin{aligned} & \hline 1103 \\ & \text { F040 } \end{aligned}$	Deceleration time at emergency stop	5 s	0 to 3600 s	Set the motor deceleration time at a deceleration by turning ON the X92 signal.	
$\begin{aligned} & 1349 \\ & \text { G264 } \end{aligned}$	Emergency stop operation selection	0	0	Droop control enabled.	Speed loop integration enabled.
			1	Droop control enabled.	Speed loop integration disabled.
			10	Droop control disabled.	Speed loop integration enabled.
			11	Droop control disabled.	Speed loop integration disabled.

*1 Initial value for the FR-A860-00170 or lower.
*2 Initial value for the FR-A860-00320 or higher.

## - Control block diagram



## - Acceleration time setting (Pr.7, Pr.20)

- Use Pr. 7 Acceleration time to set the acceleration time required to reach Pr. 20 Acceleration/deceleration reference frequency from stop status.
- Set the acceleration time according to the following formula.

Acceleration time setting $=$ Pr. $20 \times$ Acceleration time from stop status to maximum frequency $/$ (maximum frequency - Pr.13)

- For example, the following calculation is performed to find the setting value for Pr. 7 when increasing the output frequency to the maximum frequency of 50 Hz in 10 s with $\operatorname{Pr} .20=$ " 60 Hz (initial value)" and Pr. $13=$ " 0.5 Hz ".

$$
\operatorname{Pr} .7=60 \mathrm{~Hz} \times 10 \mathrm{~s} /(50 \mathrm{~Hz}-0.5 \mathrm{~Hz}) \fallingdotseq 12.1 \mathrm{~s}
$$



## - Deceleration time setting (Pr.8, Pr.20)

- Use Pr. 8 Deceleration time to set the deceleration time required to reach a stop status from to Pr. 20 Acceleration/ deceleration reference frequency.
- Set the deceleration time according to the following formula.

Deceleration time setting $=$ Pr. $20 \times$ deceleration time from maximum frequency to stop / (maximum frequency - Pr. 10 )

- For example, the following calculation is used to find the setting value for Pr. 8 when decreasing the output frequency to the maximum frequency of 50 Hz in 10 s with Pr. $\mathbf{2 0}=120 \mathrm{~Hz}$ and Pr. $10=3 \mathrm{~Hz}$.

Pr. $8=120 \mathrm{~Hz} \times 10 \mathrm{~s} /(50 \mathrm{~Hz}-3 \mathrm{~Hz}) \fallingdotseq 25.5 \mathrm{~s}$

## NOTE

- If the acceleration/deceleration time is set, the actual motor acceleration/deceleration time cannot be made shorter than the shortest acceleration/deceleration time determined by the mechanical system J (moment of inertia) and motor torque.
- If the Pr. 20 setting is changed, the Pr. 125 and Pr. 126 (frequency setting signal gain frequency) settings do not change. Set Pr. 125 and Pr. 126 to adjust the gains.
- Under PM sensorless vector control, if the protective function (E.OLT) is activated due to insufficient torque in the lowspeed range, set longer acceleration/deceleration times only in the low-speed range in Pr. 791 Acceleration time in lowspeed range and Pr. 792 Deceleration time in low-speed range.


## - Changing the minimum increment of the acceleration/deceleration time (Pr.21)

- Use Pr. 21 to set the minimum increment of the acceleration/deceleration time.

Setting value "0" (initial value): minimum increment 0.1 s
Setting value " 1 ": minimum increment 0.01 s

- Pr. 21 setting allows the minimum increment of the following parameters to be changed.

Pr.7, Pr.8, Pr.16, Pr.44, Pr.45, Pr.110, Pr.111, Pr.264, Pr.265, Pr.791, Pr.792, Pr. 1103

## NOTE

- Pr. 21 setting does not affect the minimum increment setting of Pr. 611 Acceleration time at a restart.
- The parameter can be set in five digits including the numbers below decimal point for the FR-PU07. A "1000" or more value is set in increments of 0.1 s even if Pr. $21=$ "1".


## - Setting multiple acceleration/deceleration times (RT signal, X9 signal,

 Pr.44, Pr.45, Pr.110, Pr.111, Pr.147)- Pr. 44 and Pr. 45 are valid when the RT signal is ON or when the output frequency is equal to or higher than the frequency set in Pr. 147 Acceleration/deceleration time switching frequency. Pr. 110 and Pr. 111 are valid when the X9 signal is ON.
- Even at the frequency lower than the Pr. 147 setting, turning ON the RT signal (X9 signal) will switch the acceleration/ deceleration time to the second (third) acceleration/deceleration time. The priority of the signals and settings is X 9 signal > RT signal > Pr. 147 setting.
- To input the X9 signal, set "9" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to the terminal.
- When "9999" is set in Pr. 45 and Pr.111, the deceleration time becomes equal to the acceleration time (Pr. 44, Pr.110).
- When Pr. $110=" 9999$ " is set, the third acceleration/deceleration function is disabled.
- If the Pr. 147 setting is equal to or less than the Pr. 10 DC injection brake operation frequency or the Pr. 13 Starting frequency setting, the acceleration/deceleration time switches to the Pr. 44 (Pr.45) when the output frequency reaches or exceeds the Pr. 10 or Pr. 13 setting.

Pr. 147 setting	Acceleration/deceleration time	Description
9999 (initial value)	Pr.7, Pr. 8	Acceleration/deceleration time is not   automatically changed.
0.00 Hz	Pr.44, Pr.45	Second acceleration/deceleration time is   applied from the start.
$0.01 \mathrm{~Hz} \leq$ Pr. $147 \leq$ set frequency	Output frequency < Pr.147: Pr.7, Pr.8   Pr. $147 \leq$ output frequency: Pr.44, Pr.45	Acceleration/deceleration time is   automatically changed.
Set frequency < Pr. 147	Pr.7, Pr.8	Not changed as the frequency has not   reached the switchover frequency.



- The reference frequency during acceleration/deceleration depends on the Pr. 29 Acceleration/deceleration pattern selection setting. (Refer to page 325.)
- The RT and X9 signals can be assigned to an input terminal by setting Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- The RT (X9) signal acts as the second (third) function selection signal and makes the other second (third) functions valid. (Refer to page 503.)
- RT signal is assigned to the terminal RT in the initial status. Set "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.


## - Setting the acceleration/deceleration time in the low-speed range (Pr.791, Pr.792)

- If torque is required in the low-speed range (less than $10 \%$ of the rated motor frequency) under PM sensorless vector control, set the Pr. 791 Acceleration time in low-speed range and Pr. 792 Deceleration time in low-speed range settings higher than the Pr. 7 Acceleration time and Pr. 8 Deceleration time settings so that the mild acceleration/ deceleration is performed in the low-speed range. (When RT signal or X9 signal is turned ON, the second or third acceleration/deceleration time setting is prioritized.)



## NOTE

- Set Pr. 791 higher than Pr.7, and Pr. 792 higher than Pr. 8 . If set as Pr. $791<$ Pr. 7 , the operation is performed as Pr. $791=$ Pr.7. If set as Pr. 792 < Pr.8, the operation is performed as Pr. $792=\mathrm{Pr} .8$.


## Emergency stop function (Pr.1103)

- When the Emergency stop (X92) signal is ON, the deceleration stop is performed according to the settings in the Pr. 1103 Deceleration time at emergency stop and Pr. 815 Torque limit level 2.
- To input the X92 signal, set "92" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.
- The X92 signal is a normally closed input (NC contact input).
- [PS] is displayed on the operation panel during activation of the emergency stop function.

－The droop control and the speed loop integration at the emergency stop by the Emergency stop（X92）signal can be enabled／disabled using Pr． 1349 Emergency stop operation selection．

Pr．1349   setting	Droop control	
	Enabled	Speed loop integration
1	Enabled	Enabled
10	Disabled	Disabled
11	Disabled	Enabled

## NOTE

－The X92 signals can be assigned to an input terminal by setting Pr． 178 to Pr． 189 （Input terminal function selection）． Changing the terminal assignment may affect other functions．Set parameters after confirming the function of each terminal．
－Refer to page 733 for details of the droop control．
－Refer to page 201 for details of the speed loop integration．

## 〈Parameters referred to 》》

Pr． 3 Base frequency page 699
Pr． 10 DC injection brake operation frequency page 707
Pr． 29 Acceleration／deceleration pattern selection page 325
Pr．125，Pr． 126 （frequency setting gain frequency）$\lessgtr$ page 483
Pr． 178 to Pr． 182 （Input terminal function selection）$\longmapsto$ page 498
Pr． 264 Power－failure deceleration time 1，Pr． 265 Power－failure deceleration time 2 page 629

## 5．8．2 Acceleration／deceleration pattern

The acceleration／deceleration pattern can be set according to the application．
In addition，the backlash measures that stop acceleration／deceleration by the frequency or time set with parameters at acceleration／deceleration can be set．

Pr．	Name	Initial value	Setting range	Description
29	Acceleration／deceleration pattern			
F100				
selection				


Pr.	Name	Initial value	Setting range	Description
$\mathbf{5 1 6}$   F400	S-pattern time at a start of acceleration	0.1 s	0.1 to 2.5 s	Set the time required for acceleration (S-   pattern) of S-pattern acceleration/   deceleration.   Valid by S-pattern acceleration/deceleration   D (Pr.29="5").
$\mathbf{5 1 7}$   F401	S-pattern time at a completion of   acceleration	0.1 s	0.1 to 2.5 s	
$\mathbf{5 1 8}$   F402	S-pattern time at a start of deceleration	0.1 s	0.1 to 2.5 s	
$\mathbf{5 1 9}$   F403	S-pattern time at a completion of   deceleration	0.1 s	0.1 to 2.5 s	

## - Linear acceleration/deceleration (Pr. $29=$ " 0 " initial value)

- When the frequency is changed for acceleration, deceleration, etc. during inverter operation, the output frequency is changed linearly (linear acceleration/deceleration) to reach the set frequency without straining the motor and inverter. Linear acceleration/deceleration has a uniform frequency/time slope.



## - S-pattern acceleration/deceleration A (Pr. 29 = "1")

- Use this when acceleration/deceleration is required for a short time until a high-speed area equal to or higher than the base frequency, such as for the main shaft of the machine.
- The acceleration/deceleration pattern has the Pr. 3 Base frequency (Pr. 84 Rated motor frequency uunder PM motor control) (fb) as the point of inflection in an S-pattern curve, and the acceleration/deceleration time can be set to be suitable for the motor torque reduction in the constant-power operation range at the base frequency (fb) or more.

- Acceleration/deceleration time calculation method when the set frequency is equal to or higher than the base frequency

Acceleration time $t=(4 / 9) \times\left(T / f^{2}\right) \times f^{2}+(5 / 9) \times T$
Where $T$ is the acceleration/deceleration time (s), $f$ is the set frequency $(\mathrm{Hz})$, and fb is the base frequency (rated motor frequency)

- Reference ( 0 Hz to set frequency) of acceleration/deceleration time when Pr. $3=$ " $60 \mathrm{~Hz} "$

Acceleration/deceleration time (s)	Set frequency (Hz)			
	$\mathbf{6 0}$			$\mathbf{1 2 0}$
$\mathbf{2 0 0}$	$\mathbf{4 0 0}$			
5	5	12	27	102
15	15	35	82	305

## NOTE

- For the acceleration/deceleration time setting of the S-pattern acceleration/deceleration A, set the time to Pr. 3 (Pr. 84 under PM sensorless vector control) instead of Pr. 20 Acceleration/deceleration reference frequency.


## S-pattern acceleration/deceleration B (Pr. 29 = "2")

- This is useful for preventing collapsing stacks such as on a conveyor. S-pattern acceleration/deceleration B can reduce the impact during acceleration/deceleration by accelerating/decelerating while maintaining an S-pattern from the present frequency (f2) to the target frequency (f1).



## NOTE

- When the RT or X9 signal turns ON during acceleration or deceleration with the S-pattern acceleration/deceleration B enabled, a pattern of acceleration or deceleration changes to linear at the moment.


## - Backlash measures (Pr. 29 = "3", Pr. 140 to Pr.143)

- Reduction gears have an engagement gap and have a dead zone between forward rotation and reverse rotation. This dead zone is called backlash, and this gap disables a mechanical system from following motor rotation. More specifically, a motor shaft develops excessive torque when the direction of rotation changes or when constant-speed operation shifts to deceleration, resulting in a sudden motor current increase or regenerative status.
- To avoid backlash, acceleration/deceleration is temporarily stopped. Set the acceleration/deceleration stopping frequency and time in Pr. 140 to Pr. 143.



## NOTE

- Setting the backlash measures increases the acceleration/deceleration time by the stopping time.


## - S-pattern acceleration/deceleration C (Pr. 29 = "4", Pr. 380 to Pr.383)

- Switch the acceleration/deceleration curve by the S-pattern acceleration/deceleration C switchover (X20) signal.
- To input the X20 signal, set "20" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to the terminal.

X20 signal	During acceleration	During deceleration
OFF	Pr. 380 Acceleration S-pattern 1	Pr. 381 Deceleration S-pattern 1
ON	Pr. 382 Acceleration S-pattern 2	Pr. 383 Deceleration S-pattern 2



- Set the ratio (\%) of time for drawing an S-shape in Pr. 380 to Pr. 383 with the acceleration time as $100 \%$.

Parameter setting (\%) = Ts / T $\times 100 \%$


## NOTE

- At a start, the motor starts at Pr. 13 Starting frequency when the start signal turns ON.
- If there is a difference between the speed command and speed at a start of deceleration due to torque limit operation etc., the speed command is matched with the speed to make deceleration.
- Change the X20 signal after the speed becomes constant. S pattern operation before switching continues even if the X20 signal is changed during acceleration or deceleration.
- The X20 signal can be assigned to an input terminal by setting any of Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- When the RT or X9 signal turns ON during acceleration or deceleration with the S-pattern acceleration/deceleration C enabled, a pattern of acceleration or deceleration changes to linear at the moment.


## - S-pattern acceleration/deceleration D (Pr. 29 = "5", Pr. 516 to Pr.519)

- Set the time required for S-pattern operation part of S-pattern acceleration/deceleration with Pr. 516 to Pr.519. Set each S-pattern operation time for acceleration start (Pr.516), acceleration completion (Pr.517), deceleration start (Pr.518), and deceleration completion (Pr.519).
- When S-pattern acceleration/deceleration D is set, the acceleration/deceleration time becomes longer, as shown below. The set acceleration/deceleration time T1 indicates the actual time taken for linear acceleration/deceleration as calculated based on Pr.7, Pr.8, Pr.44, Pr.45, Pr.110, and Pr. 111.

```
Actual acceleration time T2 = set acceleration time T1 + (S-pattern time at start of acceleration + S-pattern time at completion of acceleration)
/ 2
Actual deceleration time T2 = set deceleration time T1 + (S-pattern time at start of deceleration + S-pattern time at completion of deceleration)
/ }
```



## NOTE

- Even if the start signal is turned OFF during acceleration, the inverter will not decelerate immediately to avoid sudden frequency change. (Likewise, the inverter will not immediately accelerate when deceleration is changed to re-acceleration by turning the start signal ON during deceleration, etc.)
- For example, the following table shows the actual acceleration time when starting the inverter by selecting S-pattern acceleration/deceleration D from a stop to 60 Hz , as shown below, with the initial parameter settings.


```
Set acceleration time T1 = (set frequency - Pr.13) × Pr. }7\mathrm{ / Pr. }2
= (60 Hz-0.5 Hz) x 5 s / 60 Hz
\fallingdotseq 4 . 9 6 ~ s ~ (a c t u a l ~ a c c e l e r a t i o n ~ t i m e ~ a t ~ l i n e a r ~ a c c e l e r a t i o n)
Actual acceleration time T2 = set acceleration time T1 + (Pr.516 + Pr.517) / 2
= 4.96 s + (0.1 s + 0.1 s) / 2
=5.06 s (acceleration time at S-pattern acceleration)
```

- The following table shows the actual deceleration time when stopping the inverter by selecting S-pattern acceleration/ deceleration $D$ from operation to 0 Hz , as shown below, with the initial parameter settings.


Set deceleration time T1 = (set frequency - Pr. 10 DC injection brake operation frequency) $\times$ Pr. $8 /$ Pr. 20 $=(60 \mathrm{~Hz}-3 \mathrm{~Hz}) \times 5 \mathrm{~s} / 60 \mathrm{~Hz}$
$\fallingdotseq 4.75 \mathrm{~s}$ (actual deceleration time at linear deceleration)
Actual deceleration time T2 $=$ set deceleration time T1 $+(\operatorname{Pr} .518+\operatorname{Pr} .519) / 2$
$=4.75 \mathrm{~s}+(0.1 \mathrm{~s}+0.1 \mathrm{~s}) / 2$
$=4.85 \mathrm{~s}$ (deceleration time at S-pattern deceleration)

## NOTE

- When acceleration/deceleration time (such as Pr. 7 and Pr.8) is set to " 0 s " under Real sensorless vector control and vector control, linear acceleration and deceleration are performed for the S-pattern acceleration/deceleration A to D and backlash measures (Pr. 29 ="1 to 5").
- Set linear acceleration/deceleration (Pr. $29=$ " 0 (initial value)") when torque control is performed under Real sensorless vector control or vector control. When acceleration/deceleration patterns other than the linear acceleration/deceleration are selected, the protective function of the inverter may be activated.


## - Variable-torque acceleration/deceleration (Pr. 290 = "6")

- This function is suitable to accelerate/decelerate a variable torque load such as a fan and blower in a short time. Linear acceleration/deceleration is performed in the area where the output frequency > base frequency.



## NOTE

- When the base frequency is out of the range 45 to 65 Hz , the linear acceleration/deceleration is performed even if Pr. 29 = "6".
- Even if Pr. 14 Load pattern selection = "1 (variable torque load)", variable torque acceleration/deceleration setting is prioritized and the inverter operates as Pr. $14=$ " 0 (constant torque load)".
- For the variable torque acceleration/deceleration time setting, set the time period to reach Pr. 3 Base frequency. (Not the time period to reach Pr. 20 Acceleration/deceleration reference frequency.)
- The variable torque acceleration/deceleration is disabled during PM sensorless vector control. (Linear acceleration/ deceleration is performed.)


## Parameters referred to 》》

Pr. 3 Base frequency page 699
Pr. 7 Acceleration time, Pr. 8 Deceleration time, Pr. 20 Acceleration/deceleration reference frequency page 320
Pr. 10 DC injection brake operation frequency page 707
Pr. 178 to Pr. 182 (Input terminal function selection) $\longmapsto$ page 498

### 5.8.3 Remote setting function

Even if the operation panel is located away from the enclosure, contact signals can be used to perform continuous variablespeed operation, without using analog signals.

Pr.	Name	Initial value	Setting range	Description		
				RH, RM, RL signal function	Frequency setting storage function	Deceleration to the frequency lower than the set frequency
$\begin{aligned} & 59 \\ & \text { F101 } \end{aligned}$	Restart cushion time	0	0	Multi-speed setting	-	Disabled
			1	Remote setting	With	
			2	Remote setting	Without	
			3	Remote setting	Without (Turning STF/STR OFF clears remotely-set frequency.)	
			11	Remote setting	With	Enabled
			12	Remote setting	Without	
			13	Remote setting	Without (Turning STF/STR OFF clears remotely-set frequency.)	

## - Remote setting function

- When Pr. 59 = " 0 " (remote setting enabled), the functions of the signals are as shown in the following table.

Signal name	Function	Description
STF/STR	Forward/Reverse	The inverter accelerates the motor in the forward or reverse direction up to   the main speed or to the frequency stored by the remote setting function.
RH	Acceleration	The set frequency increases according to the Pr.44 setting.
RM	Deceleration	The set frequency decreases according to the Pr.45 setting.
RL	Clear	The set frequency is cleared and the main speed is applied.
Terminal 2 (analog signal)	Main speed	The setting of the main speed is used as a base. The main speed is   increased by the RH signal and decreased by the RM signal.



## - Main speed

- The main speed used in the remote setting corresponds with each of the following operation modes.

Operation mode	Main speed
PU operation mode / NET operation mode	Digital setting
External operation mode / PU/External combined operation mode 2 (Pr.79 = "4")	Analog input1
PU/External combined operation mode 1 (Pr.79 = "3")	Analog input via terminal 4 (AU signal ON) ${ }^{* 1}$

*1 Set Pr. 28 Multi-speed input compensation selection to "1" when enabling compensation for input via terminal 1.

## - Acceleration/deceleration operation

- The output frequency changes as follows when the set frequency is changed by the remote setting function.

Frequency	Time setting	Description
Set frequency	Pr.44/Pr.45	The set frequency increases/decreases by remote setting according to the Pr.44/Pr.45 setting.
Output frequency	Pr.7/Pr.8	The output frequency increases/decreases by the set frequency according to the Pr.7/Pr.8 setting.



## NOTE

- If the time setting of the output frequency is longer than the time setting of the set frequency, the motor accelerates/ decelerates according to the time setting of the output frequency.
- Deceleration to the main speed or lower

By setting Pr. 59 = "11 to 13", the speed can be decelerated to the frequency lower than the main speed (set by the External operation frequency (except multi-speed setting) or PU operation frequency).


- Regardless of whether the remote setting is enabled or disabled, the acceleration/deceleration time set for the output frequency can be changed to the second or third acceleration/deceleration time by turning ON the RT or X9 signal.
- The acceleration/deceleration time setting of the set frequency is fixed at the Pr. $44 / \mathrm{Pr} .45$ setting.


## - Frequency setting storage

- The remotely set frequency is stored, held, or cleared according to the Pr. 59 setting. When the inverter is turned ON again and the operation is resumed, the setting shown in the parentheses will be applied.

Pr.59 setting	Power OFF	STF/STR signal OFF
1,11	Stored (stored frequency)	Held (stored frequency)
2,12	Cleared (main speed)	Held (stored frequency)
3,13	Clear (main speed)	Cleared (main speed)

- Storage conditions

The remotely-set frequency is stored at the point when the start signal (STF or STR) turns OFF. The remotely-set frequency is stored every minute after turning OFF (ON) the RH and RM signals together. Every minute, the frequency is overwritten in the EEPROM if the latest frequency is different from the previous one when comparing the two. This cannot be written using the RL signal.

- When switching the start signal from ON to OFF, or changing frequency by the RH or RM signal frequently, set the frequency setting value storage function (write to EEPROM) invalid (Pr. $59=" 2,3,12,13$ "). If the frequency setting value storage function is valid (Pr. $59=" 1,11 "$ ), the frequency is written to EEPROM frequently, and this will shorten the life of the EEPROM.
- The range of frequency changeable by acceleration signal $(\mathrm{RH})$ and deceleration signal $(\mathrm{RM})$ is 0 to maximum frequency (Pr. 1 or Pr. 18 setting). Note that the maximum value of set frequency is (main speed + maximum frequency).

- Even if the start signal (STF or STR) is OFF, turning ON the RH or RM signal varies the preset frequency.
- The RH, RM, or RL signal can be assigned to an input terminal by setting Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- The inverter can be used in the Network operation mode.
- The remote setting function is invalid during JOG operation and PID control operation.
- The multi-speed operation function is invalid when remote setting function is selected.


## When the setting frequency is " 0 "

- Even when the remotely-set frequency is cleared by turning ON the RL (clear) signal after turning OFF (ON) both the RH and RM signals, the inverter operates at the remotely-set frequency stored in the last operation if power is reapplied before one minute has elapsed since turning OFF (ON) both the RH and RM signals.

- When the remotely-set frequency is cleared by turning ON the RL (clear) signal after turning OFF (ON) both the RH and RM signals, the inverter operates at the frequency in the remotely-set frequency cleared state if power is reapplied before one minute has elapsed since turning OFF (ON) both the RH and RM signals.



## CAUTION

- When using the remote setting function, set the maximum frequency again according to the machine.

Parameters referred to 》》
Pr. 1 Maximum frequency, Pr. 18 High speed maximum frequency page 399
Pr. 7 Acceleration time, Pr. 8 Deceleration time, Pr. 44 Second acceleration/deceleration time, Pr. 45 Second deceleration time page 320
Pr. 28 Multi-speed input compensation selection page 372
Pr. 178 to Pr. 182 (Input terminal function selection) page 498

### 5.8.4 Starting frequency and start-time hold function

## V/F Magneticflux Sensorless Vector

It is possible to set the starting frequency and hold the set starting frequency for a certain period of time.
Set these functions when a starting torque is needed or the motor drive at start needs smoothing.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{1 3}$				
F102	Starting frequency	0.5 Hz	0 to 60 Hz	Set the starting frequency at which the   start signal is turned ON.
$\mathbf{5 7 1}$			099	0 to 10 s
F103	Holding time at a start		9999	Set the holding time of Pr.13.

## - Starting frequency setting (Pr.13)

- The frequency at start can be set in the range of 0 to 60 Hz .
- Set the starting frequency at which the start signal is turned ON.



## NOTE

- The inverter does not start if the frequency setting signal is less than the value set in Pr.13. For example, while Pr. $13=5$ Hz , the inverter output starts when the frequency setting signal reaches 5 Hz .


## - Start-time hold function (Pr.571)

- This function holds during the period set in Pr. 571 and the output frequency set in Pr. 13 Starting frequency.
- This function performs initial excitation to smooth the motor drive at a start.



## NOTE

- When Pr. $13=0 \mathrm{~Hz}$ ", the starting frequency is held at 0.01 Hz .
- When the start signal was turned OFF during start-time hold, deceleration is started at that point.
- At switching between forward rotation and reverse rotation, the starting frequency is valid but the start-time hold function is invalid.


## $\triangle$ CAUTION

- Note that when Pr. 13 is set to any value equal to or lower than Pr. 2 Minimum frequency, simply turning ON the start signal will run the motor at the frequency set in Pr. 2 even if the command frequency is not input.


## 5．8．5 Minimum motor speed frequency

## PM

Set the frequency where the PM motor starts running．Set the deadband in the low－speed range to eliminate noise and offset deviation when setting a frequency with analog input．

Pr．	Name	Initial value	Setting range	Description
13	Starting frequency	Minimum frequency／   Minimum rotations   per minute	0 to 60 Hz	Set the frequency where the motor starts   running．

## Starting frequency setting（Pr．13）

－The frequency where the PM motor starts running can be set in the range of 0 to 60 Hz ．
－While the frequency command is less than the Pr． 13 Starting frequency setting，the PM motor is stopped．When the frequency command reaches the set frequency or higher，the PM motor accelerates according to the Pr． 7 Acceleration time setting．


## NOTE

－Under induction motor control（under V／F control，Advanced magnetic flux vector control，Real sensorless vector control， and vector control），the output starts at the frequency set in Pr．13．Under PM sensorless vector control，the output always starts at 0.01 Hz ．
－The inverter output does not start when the frequency－setting signal is less than Pr．13．For example，while Pr． 13 ＝＂ 20 Hz ＂， the inverter output starts when the frequency setting signal reaches 20 Hz ．

## CAUTION

－Note that when Pr． 13 is set to any value equal to or lower than Pr． 2 Minimum frequency，simply turning ON the start signal will run the motor at the frequency set in Pr． 2 even if the command frequency is not input．

## 《｜Parameters referred to 》》

Pr． 2 Minimum frequency page 399
Pr． 7 Acceleration time page 320

### 5.8.6 Shortest acceleration/deceleration and optimum acceleration/deceleration (automatic acceleration/ deceleration)

## V/F Magneticflux Sensorless Vector

The inverter can be operated with the same conditions as when the appropriate value is set to each parameter even when acceleration/deceleration time and V/F pattern are not set. This function is useful for operating the inverter without setting detailed parameters.

Pr.	Name	Initial   value	Setting range	Description
292	Automatic acceleration/deceleration	0	0	

[^11]
## - Shortest acceleration/deceleration (Pr. 292 = "1, 11", Pr.293)

- Set this parameter to accelerate/decelerate the motor at the shortest time. This function is useful when the motor needs to be accelerated/decelerated at a shorter time, such as for a machine, but the designed value of the machine constant is not known.
- This function adjusts the acceleration/deceleration time to accelerate/decelerate the motor with the maximum torque that can be output with the inverter. Pr. 7 Acceleration time and Pr. 8 Deceleration time settings are used as reference, and their settings are not changed.
- Use Pr. 293 Acceleration/deceleration separate selection to apply the shortest acceleration/deceleration to one of acceleration and deceleration only. When " 0 (initial value)" is set, the shortest acceleration/deceleration is performed for both acceleration and deceleration.
- When the brake resistor or the brake unit is connected, set Pr. 292 to "11". The deceleration time can further be shortened.
- When the shortest acceleration/deceleration is selected under V/F control and Advanced magnetic flux vector control, the stall prevention operation level during acceleration/deceleration becomes 150\% (adjustable using Pr. 61 to Pr.63). The setting of Pr. 22 Stall prevention operation level and stall level by analog input are used only during a constant speed operation. Under Real sensorless vector control and vector control, the torque limit level (Pr.22, etc.) is applied during acceleration/deceleration. The adjustments by Pr. 61 to Pr. 63 are disabled.
- It is inappropriate to use for the following applications.
- Machines with large inertia ( 10 times or more), such as a fan. Since stall prevention operation will be activated for a long time, this type of machine may trip due to motor overloading, etc.
- When the inverter is always operated at a specified acceleration/deceleration time.


## NOTE

- Even if automatic acceleration/deceleration has been selected, inputting the JOG signal (JOG operation), RT signal (second function selection) or X9 signal (third function selection) during an inverter stop will switch to the normal operation and give priority to JOG operation, second function selection or third function selection. Note that during operation, an input of JOG and RT signal does not have any influence even when the automatic acceleration/deceleration is enabled.
- Since the shortest acceleration/deceleration is made with the stall prevention operation being activated, the acceleration/ deceleration speed always varies according to the load conditions.
- By setting Pr. 7 and Pr. 8 appropriately, it is possible to accelerate/decelerate with a shorter time than when selecting the shortest acceleration/deceleration.


## - Optimum acceleration/deceleration (Pr. 292 = "3", Pr.293)

- The inverter operates at the most efficient level within the rated range that can be used continuously with reasonable inverter capacity. Using self-learning, the average current during acceleration/deceleration is automatically set so as to become the rated current. This is ideal for applications operated with a predetermined pattern and minimal load fluctuations, such as by an automatically operated conveyor.
- When the optimum acceleration/deceleration is selected, at first, the operation is performed with the values set in Pr. 0 Torque boost, Pr. 7 Acceleration time, and Pr. 8 Deceleration time. After the first operation is completed, average and peak currents are calculated based on the motor current during acceleration/deceleration, and the obtained values are compared with the reference current (initially set to the inverter rated current) to adjust the Pr.0, Pr.7, and Pr. 8 settings to their optimal values. The operation is the performed with the updated Pr.0, Pr.7, and Pr. 8 values onwards, and those parameters settings are adjusted each time. Under Advanced magnetic flux vector control, Real sensorless vector control and vector control, however, the Pr. 0 setting is not changed.
- When a Regenerative overvoltage trip during deceleration or stop (E.OV3) occurs during deceleration, the setting of Pr. 8 is multiplied by 1.4.
- Parameter storage

The optimum values of Pr.0, Pr. 7 and Pr. 8 are written to both the parameter RAM and EEPROM only three times of acceleration (deceleration) after the optimum acceleration/deceleration has been selected or after the power is switched ON or the inverter is reset. At or after the fourth attempt, they are not stored into EEPROM. Hence, after power-ON or inverter reset, the values changed at the third time are valid. However, the optimum values are calculated even for the fourth time and later, and Pr.0, Pr.7, and Pr. 8 are set to the RAM; therefore, these can be stored to the EEPROM by reading and writing the settings with the operation panel.

Number of   optimum value   changes	Pr.0, Pr.7, Pr.8	Operating   condition	
	Updated		
4 Und more times	Unchanged from the   3rd value	Updated	Updated

- Either acceleration or deceleration can be made in the optimum acceleration/deceleration using Pr. 293 Acceleration/ deceleration separate selection. When the setting value is " 0 " (initial value), both acceleration and deceleration are made in the optimum acceleration/deceleration.
- It is inappropriate for machines which change in load and operation conditions. Optimum values are saved for the next operation. If the operating condition changes before the next operation, a fault such as overcurrent trip or a lack of acceleration/deceleration may occur.


## NOTE

- Even if the optimum acceleration/deceleration has been selected, inputting the JOG signal (Jog operation), RT signal (second function selection) or X9 signal (third function selection) during an inverter stop will switch to the normal operation and give priority to JOG operation, second function selection or third function selection. Note that during operation, an input of JOG and RT signal does not have any influence even when the optimum acceleration/deceleration is enabled.
- Because of the learning method, the impact of the optimum acceleration/deceleration is not apparent in the first operation after setting to the optimum acceleration/deceleration mode.
- The optimum value are calculated for only acceleration from 0 to 30 Hz or higher or deceleration from 30 Hz or higher to 0 Hz .
- The optimum acceleration/deceleration will not operate if the motor was not connected or the output current is less than $5 \%$ of the rated current of the inverter.
- A Regenerative overvoltage trip during deceleration or stop (E.OV3) may occur during deceleration even if the optimum acceleration/deceleration is selected with Pr. $293=" 1$ (optimum acceleration/deceleration during acceleration only)" setting. In such case, set Pr. 8 setting longer.


## $\checkmark$ Shortest and optimum acceleration／deceleration adjustment（Pr． 61 to Pr．63）

－The application range can be expanded by setting the parameters for adjustment of Pr． 61 to Pr． 63.

Pr．	Name	Setting range	Description
61	Reference current	0 to $500 \mathrm{~A}^{* 1}$	Set the rated motor current value such as when the motor capacity and inverter capacity differ．   Shortest acceleration／deceleration：Set the reference current（A）of the stall prevention operation level during acceleration／deceleration．   Optimum acceleration／deceleration：Set the reference current $(A)$ of the optimum current during acceleration／deceleration．
		0 to $3600 \mathrm{~A}^{*}$	
		9999 （initial value）	The inverter rated current value is the reference．
$\begin{aligned} & 62 \\ & 63 \end{aligned}$	Reference value at acceleration Reference value at deceleration	0 to 400\％	Set this when changing the reference level of acceleration and deceleration． Shortest acceleration／deceleration：Set the stall prevention operation level （percentage of current value of Pr．61）during acceleration／deceleration． Optimum acceleration／deceleration：Set the optimum current level（percentage of current value of Pr．61）during acceleration／deceleration．
		9999 （initial value）	Shortest acceleration／deceleration：Stall prevention operation level is $150 \%$ for the shortest acceleration／deceleration． Optimum acceleration／deceleration： $100 \%$ as the optimum value．

$\begin{array}{ll}\text {＊1 } & \text { The setting range for the FR－A860－01080 or lower．} \\ \text {＊2 } & \text { The setting range for the FR－A860－01440 or higher．}\end{array}$

## NOTE

－When Real sensorless vector control or vector control is selected with the shortest acceleration／deceleration，Pr． 61 to Pr． 63 are invalid．
－Even if Pr． 61 to Pr． 63 are set once，changing the setting to other than the shortest acceleration／deceleration（Pr． $292 \neq$＂1 or 11＂）automatically resets to the initial setting（9999）．Set Pr． 61 to Pr． 63 after setting Pr． 292.

## 《 Parameters referred to 》》

Pr． 0 Torque boost page 697
Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320
Pr． 22 Stall prevention operation level $\mathfrak{F}$ page 403
Pr． 22 Torque limit level page 191

### 5.8.7 Lift operation (automatic acceleration/deceleration)

## V/F

The inverter can be operated according to the load pattern of the lift with counterweight.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 292 \\ & \text { F500 } \end{aligned}$	Automatic acceleration/ deceleration	0	0	Normal operation
			1	Shortest acceleration/deceleration   (without brakes) (Refer to   page 339.)
			11	Shortest acceleration/deceleration (with brakes)
			3	Optimum acceleration/deceleration
			5	Lift operation 1 (stall prevention operation level 150\%)
			6	Lift operation 2 (stall prevention operation level 180\%)
			7, 8	Brake sequence 1, 2 (Refer to page 553.)
$\begin{array}{\|l\|} \hline 61 \\ \text { F510 } \end{array}$	Reference current	9999	0 to $500 \mathrm{~A}^{* 1}$	Set the reference current during shortest (optimum) acceleration/deceleration.
			0 to $3600 \mathrm{~A}^{*}{ }^{2}$	
			9999	Rated output current value reference of the inverter
64	Starting frequency for elevator mode	9999	0 to 10 Hz	Set the starting frequency for the lift operation.
F520			9999	Starting frequency is 2 Hz .

## - Lift operation (Pr. 292 = "5, 6")

- When Pr. 292 Automatic acceleration/deceleration is set to " 5 " or " 6 ", the lift operation is selected, and each setting is changed, as shown in the table below.
- During power driving, sufficient torque is generated, and during regenerative driving and during driving with no load, the torque boost setting is adjusted automatically so as not to activate the overcurrent protective function by overexcitation.

Name	Normal operation	Multi-rating (Pr.570)	Lift operation (Pr.292)	
			5	6
Torque boost	Pr. 0 (5/3/2/1\%)		Changes according to the output current (as shown below)	
Starting frequency	Pr. 13 (0.5 Hz)		Pr. 64 (2 Hz) Accelerate after $100 \mathrm{~ms} \mathrm{hold}$.	
Base frequency voltage	Pr. 19 (9999)		575 V	
Stall prevention operation level	Pr. 22 (150\%), etc.	0 (SLD)	110\%	115\%
		1 (LD)	120\%	140\%
		2 (ND) Initial value	150\%	180\%
		3 (HD)	200\%	230\%



- If the lift has a load in which the rated current of the inverter is exceeded, the maximum torque may be insufficient. For a lift without counterweight, setting Pr. 14 Load pattern selection to "2 or 3" (for lift load) and setting Pr. 19 Base frequency voltage appropriately give the maximum torque a greater advantage than when selecting the lift operation.

NOTE

- The stall prevention operation level is automatically lowered according to the cumulative value of the electronic thermal O / L relay so as to prevent an inverter overload trip (E.THT) and the motor overload trip (E.THM) from occurring.


## Lift operation adjustment (Pr.61, Pr.64)

- The application range can be expanded by setting the parameters for adjustment of Pr. 61 and Pr. 64 .

Pr.	Name	Setting range	
$\mathbf{6 1}$	Reference current	0 to $500 \mathrm{~A}^{* 1}$	Set the rated motor current value when the motor capacity and inverter   capacity differ, etc. Set the reference current (A) of the stall prevention   operation level.
		0 to $3600 \mathrm{~A}^{* 2}$	The inverter rated output current value is the reference.
		9999 (initial value)	Set the starting frequency for the lift operation.
$\mathbf{6 4}$	Starting   frequency for   elevator mode	0 to 10 Hz	Starting frequency is 2 Hz.

*1 The setting range for the FR-A860-01080 or lower.
*2 The setting range for the FR-A860-01440 or higher.

## NOTE

- Even if the lift operation has been selected, inputting the JOG signal (Jog operation), RT signal (second function selection) or X9 signal (third function selection) during an inverter stop will disable the automatic acceleration/deceleration and give priority to JOG operation, second function selection or third function selection. Note that during operation, an input of JOG and RT signal does not have any influence even when the automatic acceleration/deceleration is enabled.
- Even if Pr. 61 and Pr. 64 are set, changing Pr. 292 automatically resets to the initial setting (9999). Set Pr. 61 and Pr. 64 after setting Pr. 292.


## 

Pr. 0 Torque boost page 697
Pr. 13 Starting frequency page 337
Pr. 14 Load pattern selection page 701
Pr. 19 Base frequency voltage page 699
Pr. 2 Stall prevention operation level page 403
Pr. 570 Multiple rating setting page 297

## 5.9

(D) Operation command and frequency command

Purpose	Parameter to set			Refer to page
To select the operation mode	Operation mode selection	P.D000	Pr. 79	346
To start up in Network operation mode at power-ON	Communication startup mode selection	P.D000, P.D001	Pr.79, Pr. 340	355
To select the command source during communication operation	Operation and speed command sources during communication operation, command source selection	P.D010 to P.D013	$\begin{aligned} & \text { Pr.338, Pr. } 339 \text {, } \\ & \text { Pr. } 550, \text { Pr. } 551 \end{aligned}$	356
To prevent motor from rotating reversely	Reverse rotation prevention selection	P.D020	Pr. 78	365
To change the setting resolution of speed	Set resolution switchover	P.D030	Pr. 811	417
To change the setting resolution of the torque limit	Set resolution switchover	P.D030	Pr. 811	417
To set the frequency by pulse train input	Pulse train input	$\begin{aligned} & \text { P.D100, P.D101, } \\ & \text { P.D110, P.D111 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 291, \text { Pr. } 384 \text { to } \\ & \text { Pr. } 386 \end{aligned}$	365
To perform JOG operation	JOG operation	P.D200, P.F002	Pr.15, Pr. 16	370
To control frequency with combinations of terminals	Multi-speed operation	P.D300 to P.D315	Pr.28, Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr. 239	372
To select torque command method during torque control	Torque command source selection	$\begin{aligned} & \text { P.D120, P.D121, } \\ & \text { P.D400 to P.D402 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 432, \text { Pr. } 433 \text {, } \\ & \text { Pr. } 804 \text { to Pr. } 806 \end{aligned}$	232

### 5.9.1 Operation mode selection

Select the operation mode of the inverter.
The mode can be changed among operations using external signals (External operation), operation by the operation panel or the parameter unit (PU operation), combined operation of PU operation and External operation (External/PU combined operation), and Network operation (when RS-485 terminals or a communication option is used).

Pr.	Name	Initial value	Setting range	Description
79   D000	Operation mode selection	0	0 to 4,6,7	Selects the operation mode.

The following table lists valid and invalid commands in each operation mode.

$\begin{gathered} \text { Pr. } 79 \\ \text { setting } \end{gathered}$	Description			Operation panel display	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \end{gathered}$
0 (initial value)	External/PU switchover mode.   The inverter operation mode can be switched between PU and External by pressing $\square$ PU . At power ON, the inverter is in the External operation mode.			PU operation   mode   [PU]   External operation   mode   [EXT]   NET operation   mode   [NET]	350
	Operation mode	Frequency command	Start command		
1	PU operation mode fixed	Operation panel or parameter unit	FWD or $\square$ REV on operation panel or parameter unit	PU operation mode [PU]	350
2	External operation mode fixed.   The operation can be performed by switching between the External and NET operation modes.	External signal input (terminal 2 and 4, JOG, multi-speed selection, etc.)	External signal input (terminal STF, STR)	External operation mode [EXT]   NET operation   mode   [NET]	350
3	External/PU combined operation mode 1	Operation panel/parameter unit or external signal input (multi-speed setting, terminal 4) ${ }^{* 1}$	External signal input (terminal STF, STR)	External/PU combined operation mode	351
4	External/PU combined operation mode 2	External signal input (terminal 2 and 4, JOG, multi-speed selection, etc.)	FWD or $\square$ REV on operation panel or parameter unit		351
6      7	Switchover mode Switching of PU, External,	NET operation modes can be perf	med during operation.	PU operation mode [PU]   External operation mode	351
7	External operation mode (P X12 signal ON: Switchover shutoff)   X12 signal OFF: Switchove	peration interlock) PU operation mode enabled (during   PU operation mode disabled	External operation, output	[EXT]   NET operation   mode   [NET]	352

*1 The priority of frequency commands when Pr. $79=" 3$ " is "multi-speed operation $(R L / R M / R H / R E X)>$ PID control $(X 14)>$ terminal 4 analog input (AU) > digital input by operation panel".

## Operation mode basics

- The operation mode specifies the source of the start command and the frequency command for the inverter.
- Basically, there are following operation modes.

External operation mode : For inputting a start command and a frequency command with an external potentiometer and switches which are connected to the control circuit terminal.
PU operation mode : For inputting a start command and a frequency command with the operation panel, parameter unit, or RS485 communication via the PU connector.
Network operation mode : For inputting a start command and a frequency command using the RS-485 terminals or communication (NET operation mode) option.

- The operation mode can be selected from the operation panel or with the communication instruction code.



## NOTE

- There are two settings of " 3 " and "4" with PU/External combined operation. The startup method differs according to the setting value.
- In the initial setting, the stop function (PU stop selection) by the operation panel or the parameter unit
 is effective in modes other than the PU operation mode. (Refer to Pr. 75 Reset selection/disconnected PU detection/PU stop selection on page 291.)


## - Operation mode switching method



## NOTE

- For details on switching by external terminals, refer to the following pages.

PU operation external interlock signal (X12) $\longmapsto$ page 352
PU-External operation switchover signal (X16) Њ page 353
External-NET operation switchover signal (X65), NET-PU operation switchover signal (X66) page 353
Pr. 340 Communication startup mode selection page 355

## - Operation mode selection flow

Referring to the following table, select the basic parameter settings or terminal wiring related to the operation mode.

Start command input method	Frequency setting method	Terminal wiring	Parameter setting	Operation method
External signal input (terminal STF, STR)	External (terminal 2 and 4, JOG, multispeed, etc.)	STF (forward rotation)/STR (reverse rotation) (Refer to page 715.)   Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	$\text { Pr. } 79 \text { = "2" }$   (External operation mode fixed)	- Frequency setting   Frequency setting terminal ON   - Start command   STF(STR)-ON
	PU (digital setting)	STF (forward rotation)/STR (reverse rotation) (Refer to page 715.)	$\begin{aligned} & \text { Pr. } 79=" 3 " \\ & \text { (External/PU } \\ & \text { combined operation 1) } \end{aligned}$	- Frequency setting DU digital setting   - Start command STF(STR)-ON
	Communication (RS-485 terminals)	STF (forward rotation)/STR (reverse rotation) (Refer to page 715.)   RS-485 terminals   (Refer to page 646.)	$\begin{aligned} & \text { Pr. } 338=\text { "1" } \\ & \text { Pr. } 340=\text { "1, } 2 " \end{aligned}$	- Frequency setting   Transmit a frequency command via communication.   - Start command   STF(STR)-ON
	Communication (communication option)	Terminals for communication option (Refer to the Instruction Manual of the communication option.)	$\begin{aligned} & \text { Pr. } 338=\text { = "1" } \\ & \text { Pr. } 340=\text { "1" } \end{aligned}$	- Frequency setting   Transmit a frequency command via communication.   - Start command   STF(STR)-ON
PU   (FWD/REV key)	External (terminal 2 and 4, JOG, multispeed, etc.)	Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	$\begin{aligned} & \text { Pr. } 79=\text { "4" } \\ & \text { (External/PU } \\ & \text { combined operation 2) } \end{aligned}$	- Frequency setting   Frequency setting terminal ON   - Start command   FWD/REV key ON
	PU (digital setting)	-	$\text { Pr. } 79 \text { = "1" }$   (PU operation mode fixed)	- Frequency setting   Digital setting   - Start command   FWD/REV key ON
	Communication (RS485 terminals/ communication option)	N/A		
Communication (RS-485 terminals)	Using external signals (input via terminal 2/4, using the JOG signal, using the multi-speed setting function, etc.)	RS-485 terminals   (Refer to page 646.)   Terminal 2 and 4 (analog)   RL, RM, RH, JOG, etc.	$\begin{aligned} & \text { Pr. } 339=\text { "1" } \\ & \text { Pr. } 340=\text { "1, } 2 " \end{aligned}$	- Frequency setting   Frequency setting terminal ON   - Start command   Transmit a start command via communication
	PU (digital setting)	N/A		
	Communication RS-485 terminals	RS-485 terminals (Refer to page 646.)	Pr. 340 = "1, 2"	- Frequency setting   Transmit a frequency command via communication.   - Start command   Transmit a start command via communication
Communication (Communication option)	Using external signals (input via terminal 2/4, using the JOG signal, using the multi-speed setting function, etc.)	Terminals on communication option   (Refer to the Instruction   Manual of the communication option.) Terminal 2 and 4 (analog) RL, RM, RH, JOG, etc.	$\begin{aligned} & \text { Pr. } 339=\text { = "1" } \\ & \text { Pr. } 340=\text { "1" } \end{aligned}$	- Frequency setting   Frequency setting terminal ON   - Start command   Transmit a start command via communication
	PU (digital setting)	N/A		
	Communication (communication option)	Terminals on communication option   (Refer to the Instruction   Manual of the communication option.)	Pr. 340 = "1"	- Frequency setting   Transmit a frequency command via communication.   - Start command   Transmit a start command via communication

## - External operation mode (Pr. 79 = "0" (initial value), "2")

- Select the External operation mode when the start command and the frequency command are applied from a frequency setting potentiometer, start switch, etc. which are provided externally and connected to the control circuit terminals of the inverter.
- Generally, parameter change cannot be performed in the External operation mode. (Some parameters can be changed. Refer to Pr. 77 Parameter write selection page 298.)
- When Pr. 79 = "0 or 2", the inverter starts up in the External operation mode at power-ON. (When using the Network operation mode, refer to page 355.)
- When parameter changing is seldom necessary, setting " 2 " fixes the operation mode to the External operation mode. When frequent parameter changing is necessary, setting "0" (initial value) allows the operation mode to be changed easily to the PU operation mode by pressing $\frac{\mathrm{PU}}{\mathrm{EXT}}$ of the operation panel. After switching to the PU operation mode, always return to the External operation mode.
- The STF and STR signal are used as a start command, and the voltage to terminal 2 and 4, current signal, multi-speed signal, and JOG signal are used as a frequency command.



## - PU operation mode (Pr. 79 = "1")

- Select the PU operation mode when applying start and frequency commands by only the key operation of the operation panel or the parameter unit. Also select the PU operation mode when making communication using the PU connector.
- When Pr. 79 ="1", the inverter starts up in the PU operation mode at power-ON. The mode cannot be changed to other operation modes.
- When the PU operation mode is selected, the PU operation mode signal (PU) can be output. For the terminal used for the PU signal, set "10 (positive logic)" or "110 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.

Operation panel


## - PU/External combined operation mode 1 (Pr. 79 = "3")

- Select the PU/External combined operation mode 1 when applying a frequency command from the operation panel or the parameter unit and inputting a start command with the external start switches.
- Set "3" in Pr.79. The mode cannot be changed to other operation modes.
- When a frequency is input from the external signal by multi-speed setting, it has a higher priority than the frequency command from the PU. Also, when AU is set to "ON", the command signal is output to the terminal 4.



## - PU/External combined operation mode 2 (Pr. 79 = "4")

- Select the PU/External combined operation mode 2 when applying a frequency command from the external potentiometer, or multi-speed and JOG signals, and inputting a start command by key operation of the operation panel or the parameter unit.
- Set "4" in Pr.79. The mode cannot be changed to other operation modes.



## Switchover mode (Pr. 79 = "6")

- PU, External and Network operation (when RS-485 terminals or communication option is used) can be switched among during operation.

Operation mode switchover	$\quad$ Operation switchover/Operating status
External operation $\rightarrow$ PU   operation	Set to the PU operation mode on the operation panel and parameter unit.   - As the direction of rotation, the direction that was active by External operation is continued.   • For the setting frequency, the setting of the potentiometer (frequency command) is continued. (Note,   however, that the setting disappears when the power is turned OFF or when the inverter is reset.)
External operation $\rightarrow$ NET   operation	The switchover command to the Network operation mode is transmitted via communication.   • As the direction of rotation, the direction that was active by External operation is continued.   • The setting by the setting potentiometer (frequency command) is kept. (Note, however, that the setting   disappears when the power is turned OFF or when the inverter is reset.)
PU operation $\rightarrow$ External   operation	Press the External operation key on the operation panel and parameter unit.   • The direction of operation is determined by the External operation input signal.   • The setting frequency is determined by the external frequency command signal.
PU operation $\rightarrow$ NET operation	The switchover command to the Network operation mode is transmitted via communication.   • For the direction of operation and setting frequency, the status during PU operation is continued.
NET operation $\rightarrow$ External   operation	The switchover command to the External operation mode is transmitted via communication.   • The direction of operation is determined by the External operation input signal.   • The setting frequency is determined by the external frequency command signal.
NET operation $\rightarrow$ PU operation	Switch to the PU operation mode on the operation panel and parameter unit.   • For the direction of operation and frequency, the status during Network operation is continued.

## - PU operation interlock (Pr. 79 = "7")

- The operation mode can be forcibly switched to the External operation mode by turning OFF of the PU operation interlock (X12) signal. This function prevents the operation mode from being accidentally unswitched from the PU operation mode. If the operation mode left unswitched from the PU operation mode, the inverter does not reply to the commands sent through external commands.
- To input the X12 signal, set "12" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal. (For details on Pr. 178 to Pr.189, refer to page 498.)
- Set Pr.79="7" (PU operation interlock).
- If the X12 signal is not assigned, the function of the MRS signal is switched to PU operation internal signal from MRS (output stop).

X12 (MRS) signal	Function/Operation	
	Operation mode	Parameter writing ${ }^{* 1}$
ON	Switching of the operation mode (External, PU, and   NET) is enabled.   Output is stopped during External operation.	Parameter writing enabled
OFF	Operation mode is forcefully changed to the External   operation mode.   External operation is enabled.   Switching to the PU or NET operation mode from the   External operation mode is disabled.	Writing of parameters other than Pr.79 is disabled.

*1 Depends on the Pr. 77 Parameter write selection setting and the writing conditions of each parameter. (Refer to page 298.)

- Functions/operations by X12 (MRS) signal ON/OFF

Operating status		X12 (MRS) signal	Operation mode	Operating status	Switching to PU or NET operation mode
Operation mode	Status				
PU/NET	during a stop	$\mathrm{ON} \rightarrow \mathrm{OFF}^{* 1}$	Externa\| ${ }^{*}$	If frequency and start commands are input from external source, the inverter runs by those commands.	Not available
	Running	$\mathrm{ON} \rightarrow \mathrm{OFF}^{* 1}$			Not available
External	during a stop	$\mathrm{OFF} \rightarrow \mathrm{ON}$	External ${ }^{*}$	during a stop	Available
		ON $\rightarrow$ OFF			Not available
	Running	OFF $\rightarrow$ ON		Running $\rightarrow$ Output shutoff	Not available
		ON $\rightarrow$ OFF		Output shutoff $\rightarrow$ Running	Not available

*1 The mode is switched to the External operation mode regardless of the ON/OFF state of the start signals (STF, STR). Thus, the motor runs under the External operation mode when the X12 (MRS) signal turns OFF with either of STF or STR in an ON state.
*2 When a fault occurs, the inverter can be reset by pressing

on the operation panel.

## NOTE

- The operation mode cannot switched to the PU operation mode with the start signal (STF, STR) in an ON state even if the X 12 (MRS) signal is ON.
- If the MRS signal is ON and Pr. 79 is written to a value other than " 7 " when the MRS signal is used as the PU interlock signal during PU operation mode, the MRS signal will act as a regular MRS function (output stop). Also, when Pr.79="7", the MRS signal becomes the PU interlock signal.
- The logic of the signal follows the Pr. 17 MRS input selection setting also when the MRS signal is used as the PU operation interlock signal. When Pr. $17=$ " 2 ", ON and OFF in the above explanation are reversed.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Switching operation mode by external signal (X16 signal)

- When External operation and the operation from the operation panel are used together, the PU operation mode and External operation mode can be switched during a stop (during motor stop, start command OFF) by using the PU-External operation switchover signal (X16).
- When Pr. $79=$ "0", "6" or "7", switching between the PU operation mode and External operation mode is possible. (When Pr.79="6", the switchover can also be made during operation.)
- To input the X16 signal, set "16" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.

Pr. 79   setting		X16 signal status and operation mode	

## NOTE

- The status of the operation mode follows the Pr. 340 Communication startup mode selection setting and the ON/OFF state of the X65 and X66 signals. (For details, refer to page 353.)
- The priority among Pr. 79 and Pr. 340 and signals is Pr. $79>\mathrm{X} 12>\mathrm{X} 66>\mathrm{X} 65>\mathrm{X} 16>\operatorname{Pr} .340$.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Switching the operation mode by external signals (X65, X66 signals)

- When Pr. 79 ="0, 2 or 6", the PU operation mode and External operation modes can be changed to the Network operation mode during a stop (during motor stop, start command OFF) by the PU/NET operation switchover (X65) signal, the External/NET operation switchover (X66) signal. (When Pr. $79=$ " 6 ", switchover is enabled during operation.)
- To switch between the Network operation mode and the PU operation mode

1. Set Pr. $79=00$ (initial value) or $6 "$.
2. Set Pr. 340 Communication startup mode selection="10 or 12".
3. Set "65" in any of Pr. 178 to Pr. 189 to assign the PU/NET operation switchover (X65) signal to a terminal.
4. When the X 65 signal is ON, the PU operation mode is selected. When the X65 signal is OFF, the Network operation mode is selected.

$\text { Pr. } 340$   setting	$\begin{aligned} & \text { Pr. } 79 \\ & \text { setting } \end{aligned}$		X65 signal state		REMARKS
			ON (PU)	OFF (NET)	
10, 12	0 (initial value)		PU operation mode	NET operation mode	-
	1		PU operation mode		PU operation mode fixed
	2		NET operation mode		NET operation mode fixed
	3, 4		External/PU combined operation mode		External/PU combined operation mode fixed
	6		PU operation mode	NET operation mode	Switching between operation modes is enabled while running.
	7	$\begin{aligned} & \text { X12 (MRS) } \\ & \text { ON } \end{aligned}$	Switching between the External operation mode and PU operation mode is enabled.		Output is shutoff in the External operation mode.
		X12 (MRS)   OFF	External operation mode		The operation mode is forcibly switched to the External operation mode.

- To switch between the Network operation mode and the External operation mode

1. Set Pr. $79=" 0$ " (initial value) or " 2 , " 6 " or " 7 ". (When Pr. $79=" 7$ " and the X 12 (MRS) signal is ON , the operation mode can be switched.)
2. Set Pr. 340 Communication startup mode selection $=$ " 0 " (initial value), " 1 " or " 2 ".
3. Set " 66 " in one of Pr. 178 to Pr. 189 to assign the NET-External operation switching signal (X66) to a terminal.
4. When the X 66 signal is ON, Network operation mode is selected. When the X66 signal is OFF, the External operation mode is selected.

Pr. 340 setting	$\begin{aligned} & \text { Pr. } 79 \\ & \text { setting } \end{aligned}$		X66 signal state		REMARKS
			ON (NET)	OFF (External)	
0 (initial value), 1, 2	0 (initial value)		NET operation mode	External operation mode	-
	1		PU operation mode		PU operation mode fixed
	2		NET operation mode	External operation mode	Switching to PU operation mode is disabled.
	3, 4		External/PU combined operation mode		External/PU combined operation mode fixed
	6		NET operation mode	External operation mode	Switching between operation modes is enabled while running.
	7	$\begin{aligned} & \text { X12 (MRS) } \\ & \text { ON } \end{aligned}$	NET operation mode	External operation mode	Output is shutoff in the External operation mode.
		$\begin{aligned} & \text { X12 (MRS) } \\ & \text { OFF } \end{aligned}$	External operation mode		The operation mode is forcibly switched to the External operation mode.

## NOTE

- The priority of Pr. 79 and Pr. 340 and signals is Pr. $79>\mathrm{X} 12>\mathrm{X} 66>\mathrm{X} 65>\mathrm{X} 16>\operatorname{Pr} .340$.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
Parameters referred to \>
Pr. }15\mathrm{ Jog frequency page 370
Pr. }4\mathrm{ to Pr.6, Pr. }24\mathrm{ to Pr.27, Pr. }232\mathrm{ to Pr. }239\mathrm{ multi-speed operation page }37
Pr. }75\mathrm{ Reset selection/disconnected PU detection/PU stop selection page 291
Pr. }178\mathrm{ to Pr. }182\mathrm{ (Input terminal function selection) W page }49
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) page 446
Pr. }340\mathrm{ Communication startup mode selection W page 355
Pr. }550\mathrm{ NET mode operation command source selection page 356
```


### 5.9.2 Startup in Network operation mode at power-ON

When power is switched ON or when power comes back ON after an instantaneous power failure, the inverter can be started up in the Network operation mode. After the inverter starts up in the Network operation mode, parameter writing and operation can be commanded from programs.
Set this mode when performing communication operation using the RS-485 terminals or a communication option.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 79 \\ & \text { D000 } \end{aligned}$	Operation mode selection	0	0 to 4, 6, 7	Selects the operation mode. (Refer to page 346.)
$\begin{aligned} & 340 \\ & \text { D001 } \end{aligned}$	Communication startup mode selection	0	0	Follows the Pr. 79 setting.
			1, 2	The inverter starts up in the Network operation mode. If an instantaneous power failure occurs when "2" is set, the operating status before the instantaneous power failure is maintained.
			10, 12	The inverter starts up in the Network operation mode. The operation mode can be changed between the PU operation mode and Network operation mode from the operation panel. If an instantaneous power failure occurs when "12" is set, running is continued at the condition before the instantaneous power failure.

## - Selecting the operation mode for power-ON (Pr.340)

- Depending on the Pr. 79 and Pr. 340 settings, the operation mode at power-ON (reset) changes as described below.

$\text { Pr. } 340$   setting	$\text { Pr. } 79$   setting	Operation mode at power-ON, at power restoration, or after a reset	Operation mode switching
0   (initial value)	0 (initial value)	External operation mode	Switching among the External, PU, and NET operation modes is enabled. ${ }^{*}$ 2
	1	PU operation mode	PU operation mode fixed
	2	External operation mode	Switching between the External and NET operation modes is enabled.   Switching to PU operation mode is disabled
	3, 4	External/PU combined operation mode	Operation mode switching is disabled
	6	External operation mode	Switching among the External, PU, and NET operation mode is enabled while running.
	7	X12 (MRS) signal ON External operation mode	Switching among the External, PU, and NET operation modes is enabled. ${ }^{*}$ 2
		X12 (MRS) signal OFF External operation mode	External operation mode fixed. (Forcibly switched to External operation mode.)
1, $2^{* 1}$	0	NET operation mode	Same as Pr.340="0" setting
	1	PU operation mode	
	2	NET operation mode	
	3, 4	External/PU combined operation mode	
	6	NET operation mode	
	7	X12 (MRS) signal ON NET operation mode	
		X12 (MRS) signal OFF External operation mode	
$10,12^{* 1}$	0	NET operation mode	Switching between the PU and NET operation mode is enabled ${ }^{* 3}$
	1	PU operation mode	Same as Pr.340="0" setting
	2	NET operation mode	NET operation mode fixed
	3, 4	External/PU combined operation mode	Same as Pr.340="0" setting
	6	NET operation mode	Switching between the PU and NET operation mode is enabled while running. ${ }^{* 3}$
	7	External operation mode	Same as Pr.340="0" setting

*1 Use Pr. $340=$ "2 or 12 " setting to perform communication with the RS-485 terminals. Even if an instantaneous power failure occurs while Pr. 57 Restart coasting time $\neq$ "9999" (with automatic restart after instantaneous power failure), inverter continues operation at the condition before the instantaneous failure.
*2 The operation mode cannot be directly changed between the PU operation mode and Network operation mode.
*3 Switching between the PU and NET operation modes is available with the $\qquad$ PU key on the operation panel and the X65 signal.

### 5.9.3 Start command source and frequency command source during communication operation

The start and frequency commands from an external device can be made valid when using the RS-485 terminals or the communication option. The command source in the PU operation mode can also be selected.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 338 \\ & \text { D010 } \end{aligned}$	Communication operation command source	0	0	Start command source is communication.
			1	Start command source is external.
$\begin{aligned} & 339 \\ & \text { D011 } \end{aligned}$	Communication speed command source	0	0	Frequency command source is communication.
			1	Frequency command source is external.
			2	Frequency command source is external. (When there is no external input, the frequency command via communication is valid, and the frequency command from terminal 2 is invalid.)
$\begin{aligned} & 550 \\ & \text { D012 } \end{aligned}$	NET mode operation command source selection	9999	0	The communication option is the command source when in the NET operation mode.
			1	The RS-485 terminals are the command source when in the NET operation mode.
			9999	Communication option is recognized automatically. Normally, the RS-485 terminals are the command source. When the communication option is mounted, the communication option is the command source.
$\begin{aligned} & 551 \\ & \text { D013 } \end{aligned}$	PU mode operation command source selection	9999	1	The RS-485 terminals are the command source when in the PU operation mode.
			2	The PU connector is the command source when in the PU operation mode.
			3	The USB connector is the command source when in the PU operation mode.
			9999	USB automatic recognition Normally, the PU connector is the command source. When the USB is connected, the USB connector is the command source.

## Selection of command source in Network operation mode (Pr.550)

- Either of the RS-485 terminals or the communication option can be specified for the command source in the Network operation mode.
- For example, whether or not the communication option is mounted, set Pr. $550=11$ to write parameters from or input the start and frequency commands via RS-485 terminals in the Network operation mode.


## NOTE

- In the initial setting, "9999" (communication option automatic recognition) is set for Pr.550. Thus, if the communication option is mounted, parameters cannot be written or the start and frequency commands cannot be sent by communications that use the RS-485 terminals. (Monitoring or parameter reading can be performed.)


## - Selection of the command source of the PU operation mode (Pr.551)

- Any of the PU connector, RS-485 terminals, or USB connector can be specified as the command source in the PU operation mode.
- Set Pr.551="1" to use communication connected to the RS-485 terminals to write parameters or execute start and frequency commands in the PU operation mode. Set Pr. $551=" 3$ " or " 9999 " to use the USB connector.


## NOTE

- When Pr. $550=11 "$ (NET mode RS-485 terminals) and Pr. $551=11 "(P U$ mode RS-485 terminals), the PU operation mode has a precedence. For this reason, if the communication option is not mounted, switching to the Network operation mode is not longer possible.
- Changed setting values are enabled at power-ON or inverter reset.

$\begin{aligned} & \text { Pr. } 550 \\ & \text { setting } \end{aligned}$	$\begin{aligned} & \text { Pr. } 551 \\ & \text { setting } \end{aligned}$	Command source				REMARKS
		PU connector	USB connector	RS-485 terminals	Communication option	
0	1	$\times$	$\times$	PU operation mode*1	NET operation mode ${ }^{*}{ }^{2}$	
	2	PU operation mode	$\times$	$\times$	NET operation mode ${ }^{*}$	
	3	$\times$	PU operation mode	$\times$	NET operation mode ${ }^{* 2}$	
	9999 (initial value)	PU operation mode*3	PU operation mode*3	$\times$	NET operation mode ${ }^{*}$	
1	1	$\times$	$\times$	PU operation mode ${ }^{* 1}$	$\times$	Switching to NET operation mode disabled
	2	PU operation mode	$\times$	NET operation mode	$\times$	
	3	$\times$	PU operation mode	NET operation mode	$\times$	
	9999   (initial value)	PU operation mode*3	PU operation mode*3	NET operation mode	$\times$	
9999 (initial value)	1	$\times$	$\times$	PU operation mode ${ }^{* 1}$	NET operation mode ${ }^{* 2}$	
	2	PU operation mode	$\times$	$\times$	NET operation mode ${ }^{*}$	With communication option
				NET operation mode	$\times$	Without communication option
	3	$\times$	PU operation mode	$\times$	NET operation mode ${ }^{* 2}$	With communication option
				NET operation mode	$\times$	Without communication option
	9999   (initial value)	PU operation mode*3	PU operation mode*3	$\times$	NET operation mode ${ }^{* 2}$	With communication option
				NET operation mode	$\times$	Without communication option

- Controllability through communication

Command interface	Condition (Pr. 551 setting)	Item	Controllability in each operation mode					
			PU operation	External operation	Combined operation mode 1 $\text { (Pr. } 79 \text { =3) }$	Combined operation mode 2 (Pr. 79 =4)	NET   operation   via RS-485 terminals* ${ }^{*}$	NET operation via option*8
$\begin{aligned} & \text { PU } \\ & \text { connector }{ }^{* 1} \end{aligned}$	```2 (PU connector) 9999 (automatic recognition, without USB connection)```	Operation (start) command	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	
		Operation (stop) command	$\bigcirc$	$\Delta^{* 4}$	$\Delta^{* 4}$	$\bigcirc$	$\Delta^{* 4}$	
		Frequency setting	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$\bigcirc{ }^{* 5}$	$\times^{*} 6$	* 5	○*	$x^{* 6}$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Other than the above	Operation (start) command	$\times$	$\times$	$\times$	$\times$	$\times$	
		Operation (stop) command	$\Delta^{* 4}$					
		Frequency setting	$\times$	$\times$	$\times$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$x^{* 6}$	$x^{*} 6$	$x^{*} 6$	$\times^{* 6}$	$x^{* 6}$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
RS-485 terminals	$\begin{array}{\|l\|} \hline 1 \\ \text { (RS-485 } \\ \text { terminals) } \end{array}$	Operation command (start, stop)	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	
		Frequency setting	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$\bigcirc{ }^{*}$	$x^{*} 6$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$	$x^{* 6}$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Other than the above	Operation command (start, stop)	$\times$	$\times$	$\times$	$\times$	$\bigcirc^{* 2}$	$\times$
		Frequency setting	$\times$	$\times$	$\times$	$\times$	$\bigcirc{ }^{*}$	$\times$
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Parameter writing	$x^{*} 6$	$x^{*} 6$	$x^{*} 6$	$\times^{*} 6$	$\bigcirc{ }^{*}$	$x^{*} 6$
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Inverter reset	$\times$	$\times$	$\times$	$\times$	$\bigcirc{ }^{*}$	$\times$


Command interface	Condition (Pr. 551 setting)	Item	Controllability in each operation mode					
			PU operation	External operation	Combined operation mode 1 $\text { (Pr. } 79 \text { =3) }$	Combined operation mode 2 (Pr. 79 =4)	NET   operation   via RS-485   terminals* ${ }^{*}$	NET operation via option ${ }^{* 8}$
USB connector	3   (USB   connector)   9999   (automatic recognition, with USB connection)	Operation command (start, stop)	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	
		Frequency setting	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$\bigcirc{ }^{*}$	$x^{* 6}$	$x^{*} 6$	$x^{* 6}$	$\times^{*} 6$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Other than the above	Operation command (start, stop)	$\times$	$\times$	$\times$	$\times$	$\times$	
		Frequency setting	$\times$	$\times$	$\times$	$\times$	$\times$	
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Parameter writing	$x^{*} 6$	$x^{*} 6$	$\times^{*} 6$	$\times^{*}{ }^{6}$	$\times{ }^{*} 6$	
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
Option	-	Operation command (start, stop)	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc{ }^{*}$
		Frequency setting	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc{ }^{* 2}$
		Monitor	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Parameter writing	$x^{* 6}$	$x^{*} 6$	$x^{*} 6$	$x^{* 6}$	$\times{ }^{*} 6$	* 5
		Parameter read	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		Inverter reset	$\times$	$\times$	$\times$	$\times$	$\times$	${ }^{* 3}$
External control circuit terminal	-	Inverter reset	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
		Operation command (start, stop)	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times^{* 2}$	
		Frequency setting	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$x^{* 2}$	

## $\bigcirc$ : Valid $\times$ : Invalid $\Delta$ : Partially valid

*1 RS-485 communication via PU connector
*2 Follows the Pr. 338 Communication operation command source and Pr. 339 Communication speed command source settings. (Refer to page 356.)
*3 At occurrence of RS-485 communication error, the inverter cannot be reset from the computer.
*4 PU stop is only enabled. PS is displayed on the operation panel during PU stop. Follows the Pr. 75 Reset selection/disconnected PU detection/ PU stop selection setting. (Refer to page 291.)
*5 Writing of some parameters may be disabled by the Pr. 77 Parameter write selection setting and the operating condition. (Refer to page 298.)
*6 Some parameters are write-enabled independently of the operation mode and command source presence/absence. Writing is also enabled when Pr.77="2". (Refer to page 298.) Parameter clear is disabled.
*7 When Pr. 550 NET mode operation command source selection="1" (RS-485 terminals enabled), or Pr. 550 NET mode operation command source selection="9999" with no communication option connected.
*8 When Pr. 550 NET mode operation command source selection="0" (communication option enabled), or Pr. 550 NET mode operation command source selection="9999" with communication option connected.

## - Operation at fault

Fault type	Conditions (Pr. 551 setting)	Operation in each operation mode at error occurrences					
		PU operation	External operation	Combined operation mode 1 $\text { (Pr. } 79 \text { =3) }$	Combined operation mode 2 $\text { (Pr. } 79=4 \text { ) }$	NET operation via RS-485 terminals ${ }^{* 5}$	NET operation via option ${ }^{*}$
Inverter fault	-	Stop					
PU connector disconnection	2 (PU connector) 9999 (automatic recognition)	Stop/continued *1*4					
	Other than 2	Stop/continued *1					
Communication error at PU	2 (PU connector)	Stop/ continued *2	Continued		Stop/ continued *2	Continued	
	Other than 2	Continued					
Communication error at RS-485 terminals	1 (RS-485 terminals)	Stop/ continued *2	Continued		Stop/ continued *2	Continued	
	Other than 1	Continued				Stop/continued *2	Continued
Communication error at USB connector	3 (USB connector) 9999 (automatic recognition)	Stop/ continued *2	Continued				
	Other than 3	Continued					
Communication error at communication option	-	Continued					Stop/continued *3

*1 Selectable with Pr. 75 Reset selection/disconnected PU detection/PU stop selection
*2 Selectable with Pr. 122 PU communication check time interval, Pr. 336 RS-485 communication check time interval, and Pr. 548 USB communication check time interval
*3 Follows the communication option
*4 In the PU JOG operation mode, operation always stops when the PU is disconnected. The operation of PU disconnection (E.PUE) follows the Pr. 75 Reset selection/disconnected PU detection/PU stop selection setting.
*5 When Pr. 550 NET mode operation command source selection= "1" (RS-485 terminals enabled), or Pr. 550 NET mode operation command source selection="9999" with no communication option connected.
*6 When Pr. 550 NET mode operation command source selection="0" (communication option enabled), or Pr. 550 NET mode operation command source selection="9999" with communication option connected.

## - Selection of control source in Network operation mode (Pr.338, Pr.339)

- There are two control sources: the start command source, which controls the signals related to the inverter stand command and function selection, and the speed command source, which controls signals related to frequency setting.
- The table below shows the commands from the external terminals and communication (RS-485 terminals or communication option) in the Network operation mode.

Operation location selection			Pr. 338 Communication operation command source		0: NET			1: EXT			REMARKS
			Pr. 339 Communication speed command source		$\begin{gathered} 0: \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{aligned} & \text { 2: } \\ & \text { EXT } \end{aligned}$	$\begin{gathered} \mathrm{O}: \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	
Fixed function (terminalequivalent function)			Frequency setting through communication		NET	-	NET	NET	-	NET	
			Terminal 2		-	EXT	-	-	-	-	
			Terminal 4		-	EXT		-	EXT		
			Terminal 1		Compensation						
Selectable function	Pr. 178 to Pr. 189 setting	0	RL	Low-speed operation command/ remote setting   Clear/Stop-on-contact selection 0	NET	EXT		NET	EXT		$\begin{aligned} & \text { Pr. } 59=" 0 " \text { (multi- } \\ & \text { speed) } \\ & \text { Pr. } 59 \neq " 0 " \text { (remote) } \end{aligned}$
		1	RM	Middle-speed operation command/remote setting deceleration	NET	EXT		NET	EXT		Pr. $270=$ ="1, 3, 11, or 13" (stop-on-contact)
		2	RH	High-speed operation command/ remote setting acceleration	NET	EXT		NET	EXT		
		3	RT	Second function selection/stop-on-contact selection 1	NET			EXT			Pr. 270 ="1, 3, 11, or 13" (stop-on-contact)
		4	AU	Terminal 4 input selection	-	Combined		-	Comb	ined	
		5	JOG	Jog operation selection	-			EXT			
		6	CS	Selection of automatic restart after instantaneous power failure, flying start	EXT/ NET			EXT			EXT/ NET is selected according to Pr. 162 setting. (The emergency electronic bypass is enabled only when the command source is External.) ${ }^{* 1}$
		7	OH	External thermal relay input	EXT						
		8	REX	15 -speed selection	NET	EXT		NET	EXT		$\text { Pr. } 59 \text { ="0" (multi- }$ speed)
		9	X9	Third function selection	NET			EXT			
		10	X10	Inverter run enable signal	EXT						
		11	X11	FR-CC2 connection, instantaneous power failure detection	EXT						
		12	X12	PU operation external interlock	EXT						
		13	X13	External DC injection brake operation start	NET			EXT			
		14	X14	PID control valid terminal	NET	EXT		NET	EXT		
		15	BRI	Brake opening completion signal	NET			EXT			
		16	X16	PU/External operation switchover	EXT						
		17	X17	Load pattern selection forward/ reverse rotation boost	NET			EXT			
		18	X18	V/F switchover	NET			EXT			
		19	X19	Load torque high-speed frequency	NET			EXT			
		20	X20	S-pattern acceleration/ deceleration C switchover	NET			EXT			
		22	X22	Orientation command	NET			EXT			
		23	LX	Pre-excitation/servo ON	NET			EXT			
		24	MRS	Output stop	Combined			EXT			Pr. 79 \# "7"
				PU operation interlock	EXT						$\text { Pr. } 79 \text { = "7" }$   When X 12 signal is not assigned.
		25	$\begin{array}{\|l\|} \hline \text { STP } \\ \text { (STOP) } \\ \hline \end{array}$	Start self-holding selection	-			EXT			


Operation location selection			Pr. 338 Communication operation command source		0: NET			1: EXT			REMARKS
			Pr. 339 Communication speed command source		$\begin{gathered} \text { 0: } \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 0: } \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	
Selectable function	$\begin{array}{\|l\|} \hline \text { Pr. } 178 \\ \text { to } \\ \text { Pr. } 189 \\ \text { setting } \end{array}$	26	MC	Control mode switchover	NET			EXT			
		27	TL	Torque limit selection	NET			EXT			
		28	X28	Start-time tuning start external input	NET			EXT			
		32	X32	External fault input	EXT						
		33	PWS	Phase synchronization command for bypass switching	EXT						
		37	X37	Traverse function selection	NET			EXT			
		42	X42	Torque bias selection 1	NET			EXT			
		43	X43	Torque bias selection 2	NET			EXT			
		44	X44	P/PI control switchover	NET			EXT			
		45	BRI2	Second brake sequence open completion	NET			EXT			
		46	TRG	Trace trigger input	Combined			EXT			
		47	TRC	Trace sampling start/end	Combined			EXT			
		48	X48	Power failure stop external	EXT						
		50	SQ	Sequence start	EXT, NET			EXT			Pr.414="1": Valid when there is external or network input Pr.414="2": External
		51	X51	Fault clear	Combined			EXT			
		52	X52	Cumulative pulse monitor clear	NET			EXT			
		53	X53	Cumulative pulse monitor clear (control terminal option)	NET			EXT			
		57	JOGF	JOG forward rotation command	-			EXT			
		58	JOGR	JOG reverse rotation command	-			EXT			
		59	CLRN	NET position pulse clear	NET						
		60	STF	Forward rotation command	NET			EXT			
		61	STR	Reverse rotation command	NET			EXT			
		62	RES	Inverter reset	EXT						
		64	X64	PID forward/reverse action switchover	NET	EXT		NET	EXT		
		65	X65	PU/NET operation switchover	EXT						
		66	X66	External/NET operation switchover	EXT						
		67	X67	Command source switchover	EXT						
		68	NP	Simple position pulse train sign	EXT						
		69	CLR	Simple position droop pulse clear	EXT						
		70	X70	DC feeding operation permission	NET			EXT			
		71	X71	DC feeding cancel	NET			EXT			
		72	X72	PID P control switchover	NET	EXT		NET	EXT		
		73	X73	Second PID P control switchover	NET	EXT		NET	EXT		
		74	X74	Magnetic flux decay output shutoff signal	NET			EXT			
		76	X76	Proximity dog	EXT						
		77	X77	Pre-charge end command	NET EXT			NET	EXT		
		78	X78	Second pre-charge end command	NET	EXT		NET	EXT		
		79	X79	Second PID forward/reverse action switchover	NET	EXT		NET	EXT		
		80	X80	Emergency drive execution command	NET	EXT		NET	EXT		
		84	X84	Emergency drive execution command	Combined						
		85	X85	SSCNET III communication disabled	EXT						
		87	X87	Sudden stop	Combined			EXT			


Operation location selection			Pr. 338 Communication operation command source		0: NET			1: EXT			REMARKS
			Pr. 339 Communication speed command source		$\begin{gathered} \hline \mathbf{0 :} \\ \text { NET } \end{gathered}$	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	0 : NET	$\begin{gathered} \text { 1: } \\ \text { EXT } \end{gathered}$	$\begin{gathered} \text { 2: } \\ \text { EXT } \end{gathered}$	
Selectable function	$\begin{array}{\|l\|} \hline \text { Pr. } 178 \\ \text { to } \\ \text { Pr. } 189 \\ \text { setting } \\ \hline \end{array}$	88	LSP	Forward stroke end	EXT						
		89	LSN	Reverse stroke end	EXT						
		92	X92	Emergency stop	EXT						
		93	X93	Torque limit selection	NET			EXT			
		94	X94	Control signal input for main circuit power supply MC	EXT						
		95	X95	Converter unit fault input	EXT						
		96	X96	Converter unit fault (E.OHT, E.CPU) input	EXT						
		128	RLF	Low-speed forward rotation command	-			-	EXT		
		129	RLR	Low-speed reverse rotation command	-			-	EXT		

*1 When Pr. 77 = "2", Pr. 162 setting can be changed during operation. The new setting is applied after stop. Until the inverter has stopped, the previous setting of the interface for the operation command and the speed command in the Network operation mode is valid.
[Explanation of terms in table]
External (EXT): Commands from external terminal are only valid.
NET: Commands via communication are only valid.
Combined: Command from both external terminal and communication is valid.
-: Command from either of external terminal and communication is invalid.
Compensation: Commands are valid only from external terminal signals when Pr. 28 Multi-speed input compensation selection = "1".

## NOTE

- The command source of communication follows the Pr. 550 and Pr. 551 settings.
- The Pr. 338 and Pr. 339 settings can be changed while the inverter is running when Pr. $77=22$ ". Note that the setting change is applied after the inverter has stopped. Until the inverter has stopped, communication operation command source and communication speed command source before the setting change are valid.


## - Command source switchover via external terminals (X67)

- In the Network operation mode, the start command source and speed command source can be switched over by the command source switchover signal (X67). This can be used to control signal inputs from both the external terminals and via communication.
- For the X67 signal, set "67" to any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a control terminal.
- When the X67 signal is OFF, the start command source and speed command source are given via control terminals.

X67 signal state	Start command source	Speed command source
Signal not assigned	According to Pr. 338	According to Pr. 339
ON		
OFF	Commands from external terminals are only valid.	

## NOTE

- The ON/OFF state of the X67 signal is applied only during a stop. When the terminals are switched during operation, the ON/OFF state is applied after a stop.
- When the X67 is OFF, a reset via communication is disabled.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## －Precautions for electronic bypass sequence function

－The response time of the inverter to the signals depends on the command source，NET or External．After the communication with the inverter is established，the motor operation is performed according to the command via NET．The commercial power supply operation with the motor is performed when the MRS signal turns ON before the communication is established．It is recommended to turn the MRS signal ON after the communication is established．
Example：the response time of the inverter to the signals in the Network operation mode（power－ON）．The command source is External for the MRS signal and NET for the STF（STR）and CS signals．


《 Parameters referred to 》》
Pr． 28 Multi－speed input compensation selection page 372
Pr． 59 Remote function selection page 331
Pr． 79 Operation mode selection $\longmapsto$ page 346

### 5.9.4 Reverse rotation prevention selection

This function can prevent reverse rotation fault resulting from the incorrect input of the start signal.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{7 8}$D020	Reverse rotation prevention   selection	0	0	Both forward and reverse rotations   allowed
			1	Reverse rotation disabled
		2	Forward rotation disabled	

- Set this parameter to limit the motor rotation to only one direction.
- This parameter is valid for all of the reverse rotation and forward rotation keys of the operation panel and of the parameter unit, the start signals (STF, STR signals) via external terminals, and the forward and reverse rotation commands through communication.


### 5.9.5 Frequency setting via pulse train input

A pulse train input to the terminal JOG can be used to set the inverter's speed command.
Moreover, speed synchronized operation of an inverter can be performed by using the pulse train output together with the terminal JOG.

Pr.	Name	Initial value	Setting range	Description	
				Pulse train input (terminal JOG)	Pulse train output (terminal FM)
$\begin{array}{\|l\|} \hline 291 \\ \text { D100 } \\ \hline \end{array}$	Pulse train I/O selection	0	0	JOG signal ${ }^{* 1}$	FM output
			1	Pulse train input	FM output
			10	JOG signal* ${ }^{* 1}$	High-speed pulse train output (50\% duty)
			11	Pulse train input	High-speed pulse train output (50\% duty)
			20	JOG signal ${ }^{* 1}$	High-speed pulse train output (ON width is fixed)
			21	Pulse train input	High-speed pulse train output (ON width is fixed)
			100	Pulse train input	High-speed pulse train output (ON width is fixed)   Output of pulse train input as is
$\begin{aligned} & 384 \\ & \text { D101 } \end{aligned}$	Input pulse division scaling factor	0	0	Pulse train input disabled	
			1 to 250	Division ratio on the input pulse. The frequency resolution on the input pulse changes according to this setting.	
$\begin{aligned} & 385 \\ & \text { D110 } \end{aligned}$	Frequency for zero input pulse	0 Hz	0 to 590 Hz	Sets the frequency when the input pulse is zero (bias).	
$\begin{aligned} & 386 \\ & \text { D101 } \end{aligned}$	Frequency for maximum input pulse	60 Hz	0 to 590 Hz	Sets the frequency when the input pulse is maximum (gain).	

*1 Function assigned to Pr. 185 JOG terminal function selection.

## - Selection of pulse train input (Pr.291)

- Setting Pr. 291 Pulse train I/O selection = "1, 11, 21, 100" and Pr. 384 Input pulse division scaling factor $\neq$ " 0 " changes the function of terminal JOG to a pulse train input so that the frequency can be set to the inverter. In the initial setting, the JOG signal is assigned to terminal JOG. A maximum pulse train of 100 k pulses/s can be input.
- Connection with an open collector output system pulse generator

*1 When the wiring length is long with open collector outputs, the influence of stray capacitance causes the pulse to flatten out and prevents the input pulse from being recognized. When the wiring length is long ( 10 m or longer of shielded twisted pair cable with a recommended cable gauge of $0.75 \mathrm{~mm}^{2}$ ), connect the open collector output signal to the power supply by an external pull-up resistor. The table below shows the reference resistance values for wiring length. The stray capacitance of the wiring changes considerably according to how the cable is laid, thus the above wiring lengths are not guaranteed values. When using a pull-up/down resistor, check the permissible power of the resistor and the permissible load current of the output transistor, and use within the permissible range.

Wiring length	Less than $\mathbf{1 0} \mathbf{~ m}$	$\mathbf{1 0}$ to $\mathbf{5 0} \mathbf{m}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m}$
Pull-up/down resistor	Not required	$1 \mathrm{k} \Omega$	$470 \Omega$
Load current (reference)	10 mA	35 mA	65 mA

- Connection with a complementary output system pulse generator



## NOTE

- When pulse train input is selected, the function assigned to terminal JOG by Pr. 185 JOG terminal function selection is invalid.
- When "2" (simple position pulse train command by pulse train input) is set to Pr. 419 Position command source selection, the JOG terminal becomes the simple position pulse train terminal regarding of the Pr. 291 setting.
- Pr. 291 is the selection parameter for pulse train output/FM output. Thus, before changing the setting, check the specifications of the device connected to the terminal FM. (For the pulse train output, refer to page 434.)
- Pulse train input specification

Item	Specification
Supported pulse method	Open collector output.   Complementary output. (24 V power supply voltage)
HIGH input level	20 V or more (voltage between JOG and SD)
LOW input level	5 V or less (voltage between JOG and SD)
Maximum input pulse rate	100 k pulses/s
Minimum input pulse width	2.5 us
Input resistance/load current	$2 \mathrm{k} \Omega$ (typ)/10 mA (typ)
Maximum wiring length   (reference value)	Open collector output method
	Complementary output method
Detection resolution	$10 \mathrm{~m} \mathrm{(0.75mm}^{2} /$ twisted pair)(output resistance $50 \Omega)^{* 1}$

*1 The wiring length of complementary output is dependent on the output wiring specification of the complementary output unit. The stray capacitance of the wiring changes considerably according to how the cable is laid, thus the maximum wiring length is not a guaranteed value.

## - Adjustment of pulse train and frequency (Pr.385, Pr.386)

- The frequency during zero input pulse and maximum input pulse can be set with Pr. 385 Frequency for zero input pulse and Pr. 386 Frequency for maximum input pulse, respectively.



## - How to calculate the input pulse division scaling factor (Pr.384)

- The maximum number of pulses can be calculated by the following formula with Pr. 384 Input pulse division scaling factor: Maximum number of pulses (pulse/s) $=$ Pr. $384 \times 400$ (maximum 100k pulses/s) (number of detectable pulses $=$ 11.45 pulses/s)
- For example, to run the invert at 0 Hz when pulse train input is zero and at 30 Hz when pulse train is $4000 \mathrm{pulses} / \mathrm{sec}$, set the inverter as follows:

Pr. 384 = 10 (maximum number of input pulses 4000 pulses/s)
Pr. $385=0 \mathrm{~Hz}$, Pr. $386=30 \mathrm{~Hz}$ (pulse train limit value 33 Hz )

## NOTE

- The priority of the frequency command by the external signals is "JOG operation > multi-speed operation > terminal 4 analog input". When pulse train input is enabled ( $\operatorname{Pr} .291=" 1,11,21,100$ and $\operatorname{Pr} .384 \neq " 0 "$ ), terminal 2 analog input becomes invalid.


## Speed synchronized operation by pulse input/output


*1 When the wiring length between FM and JOG is long, the influence of stray capacitance causes the pulse to flatten out and prevents the input pulse from being recognized. When the wiring length is long ( 10 m or longer of shielded twisted pair cable with a recommended cable size of 0.75 $\mathrm{mm}^{2}$ ), connect the terminal JOG to the terminal PC by an external pull-up resistor. The table below shows the reference resistance values for wiring length. The stray capacitance of the wiring changes considerably according to how the cable is laid, thus the wiring lengths are not guaranteed values. When using a pull-up/down resistor, check the permissible load of the resistor and the permissible load current (terminal PC: 100 mA , high-speed pulse train output: 85 mA ), and use within the permissible range.

Wiring length	Less than $\mathbf{1 0} \mathbf{m}$	to $\mathbf{5 0} \mathbf{~ m}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m}$
Pull-up resistor	Not required	$1 \mathrm{k} \Omega$	$470 \Omega$
Load current (reference)	10 mA	35 mA	65 mA

－Setting＂100＂to Pr． 291 enables out of the pulse train input as it is to the pulse train output（terminal FM）．Connecting in a daisy chain enables speed synchronized operation of multiple inverters．
－Set Pr． 384 to＂ 125 ＂for inverters that receive pulse train since the maximum pulse train output is 50 k pulses／s．
－The maximum number of input pulses should be 50 k pulses／s．
－When performing synchronized operation，wire according to the following procedure．（This is to prevent contact input of 24 V from being applied to the terminal FM ．）
1．Set pulse train output（setting other than＂ 0,1 ＂）to Pr． 291 on the master side inverter．
2．Turn the inverter power supply OFF．
3．Wire the slave side terminal JOG－SD to the master side terminal FM－SD．
4．Turn the inverter power supply ON ．

## NOTE

－After changing the Pr． 291 setting，connect the JOG terminal to the terminal FM－SD．When FM output（voltage output）is taken as the pulse train，take caution to prevent voltage from being applied to the terminal FM．
－Use the sink logic（factory setting）for the slave side inverter．The inverter does not operate properly with source logic．

## －Speed synchronized operation specification

Item	Specification
Output pulse format	Pulse width fixed $(10 \mu \mathrm{~s})$
Pulse rate	0 to 50 k pulses／s
Pulse propagation delay	1 to $2 \mu \mathrm{~s} / 1$ unit $^{*} 1$

＊1 A pulse transmission delay of about 1 to $2 \mu s$ in the slave occurs and further increases when the wiring length is long．

### 5.9.6 JOG operation

The frequency and acceleration/deceleration time for JOG operation can be set. JOG operation is possible in both External operation and PU.
JOG operation can be used for conveyor positioning, test run, etc.

Pr.	Name	Initial value	Setting range	Description
15   D200	Jog frequency	5 Hz	0 to 590 Hz	Sets the frequency during JOG operation.
16   F002	Jog acceleration/   deceleration time	0.5 s	0 to 3600 s	Sets motor acceleration/deceleration time during JOG   operation. For the acceleration/deceleration time, set the time   until the frequency ${ }^{* 1}$ set in Pr.20 Acceleration/deceleration   reference frequency is reached.   The acceleration/deceleration times cannot be set separately.

Note that these parameters are categorized as a simple mode parameter when the LCD operation panel or the parameter unit is used. Setting of this parameter is enabled when the operation panel is connected and " 0 " is set to Pr .160 User group read selection. (Refer to page 308.)

$$
\text { *1 The Pr. } 20 \text { initial value is set to } 60 \mathrm{~Hz} \text {. }
$$

## JOG operation using the external signals

- Operation can be started and stopped by the start signals (STF and STR signals) when the Jog operation selection (JOG) signal is ON. (For the operation method, refer to page 112.)
- While the JOGF or JOGR signal is input, Jog frequency setting (Pr.15) is used for operation. The rotation is forward while the JOGF signal is input, and the rotation is reverse while the JOGR signal is input. (Direct JOG function)
- Use the JOG acceleration/deceleration time function (Pr.16) to set the acceleration/deceleration time for JOG operation.
- To use each signal, set the corresponding number selected from the following table in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.

Input signal	Pr. 178 to Pr. 189 settings
JOG	5 (Pr. 185 initial value)
JOGF	57
JOGR	58



## - JOG operation in PU

- When the operation panel or parameter unit is in the JOG operation mode, the motor jogs only while the start button is pressed. (For the operation method, refer to page 113.)


## NOTE

- The reference frequency of the acceleration/deceleration time differs according to the Pr. 29 Acceleration/deceleration pattern selection setting. (Refer to page 325.)
- The Pr. 15 setting should be equal to or higher than the Pr. 13 Starting frequency setting.
- The JOG signal can be assigned to an input terminal by setting Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.
- During JOG operation, the second acceleration/deceleration cannot be selected with the RT signal. (Other second functions are enabled. (Refer to page 503.))
- When the JOGR or STR signal is input while the JOGF signal is input, the motor is decelerated to stop.
- When the JOGF or STF signal is input while the JOGR signal is input, the motor is decelerated to stop.
- The three-wire type connection is not available for the JOGF and JOGR signals.
- When Pr. 79 Operation mode selection="4", JOG operation is started by one push of FWD/ REV on the operation panel and stopped by $\frac{\text { STIOP }}{\text { RESET }}$.
- This function is invalid when Pr.79= " 3 ".
- Under the position control, when the position command speed creation is completed and the droop pulse is within inposition width, the external JOG operation can be operated. (The JOG operation cannot be performed from PU.)
- To perform the JOG operation using the external signals, select the setting of "JOG signal" for the input via terminal JOG in Pr. 291 Pulse train I/O selection. (Refer to page 365.)

```
< Parameters referred to \>
```

Pr. 13 Starting frequency page 337
Pr. 20 Acceleration/deceleration reference frequency, Pr. 21 Acceleration/deceleration time increments page 320
Pr. 29 Acceleration/deceleration pattern selection $\longmapsto$ page 325
Pr. 79 Operation mode selection $\longmapsto$ page 346
Pr. 178 to Pr. 182 (Input terminal function selection) $\longmapsto$ page 498

### 5.9.7 Operation by multi-speed setting

Use these parameters to change among pre-set operation speeds with the terminals. The speeds are pre-set with parameters. Any speed can be selected by simply turning ON/OFF the contact signals (RH, RM, RL, and REX signals).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 28 \\ & \text { D300 } \end{aligned}$	Multi-speed input compensation selection	0	0	Without compensation
			1	With compensation
$4$	Multi-speed setting (high speed)	60 Hz	0 to 590 Hz	Sets the frequency when RH is ON .
$\begin{aligned} & \hline 5 \\ & \text { D302 } \end{aligned}$	Multi-speed setting (middle speed)	30 Hz	0 to 590 Hz	Sets the frequency when RM is ON.
$\begin{aligned} & 6 \\ & \text { D303 } \end{aligned}$	Multi-speed setting (low speed)	10 Hz	0 to 590 Hz	Sets the frequency when RL is ON.
$\begin{aligned} & 24 \\ & \text { D304 } \end{aligned}$	Multi-speed setting (speed 4)	9999	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	Frequency from 4th speed to 15th speed can be set according to the combination of the RH, RM, RL and REX signals.   9999: Not selected
$\begin{aligned} & 25 \\ & \text { D305 } \end{aligned}$	Multi-speed setting (speed 5)			
$\begin{aligned} & 26 \\ & \text { D306 } \end{aligned}$	Multi-speed setting (speed 6)			
$\begin{aligned} & 27 \\ & \text { D307 } \end{aligned}$	Multi-speed setting (speed 7)			
$\begin{aligned} & 232 \\ & \text { D308 } \end{aligned}$	Multi-speed setting (speed 8)			
$\begin{aligned} & 233 \\ & \text { D309 } \end{aligned}$	Multi-speed setting (speed 9)			
$\begin{aligned} & 234 \\ & \text { D310 } \end{aligned}$	Multi-speed setting (speed 10)			
235   D311	Multi-speed setting (speed 11)			
$\begin{aligned} & \hline 236 \\ & \text { D312 } \end{aligned}$	Multi-speed setting (speed 12)			
$\begin{aligned} & 237 \\ & \text { D313 } \end{aligned}$	Multi-speed setting (speed 13)			
$\begin{aligned} & 238 \\ & \text { D314 } \end{aligned}$	Multi-speed setting (speed 14)			
$\begin{aligned} & 239 \\ & \text { D315 } \end{aligned}$	Multi-speed setting (speed 15)			

## - Multi-speed setting (Pr. 4 to Pr.6)

- The inverter operates at frequencies set in Pr. 4 when RH signal is ON, Pr. 5 when RM signal is ON and Pr. 6 when RL signal is ON.



## NOTE

- In the initial setting, when two or more of multi-speed settings are simultaneously selected, priority is given to the set frequency of the lower signal. For example, when RH and RM signals turn ON, RM signal (Pr.5) has a higher priority.
- The RH, RM and RL signals are assigned to the terminals RH, RM and RL in the initial status. Set " 0 (RL)", "1 (RM)", and "2 (RH)" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the signals to other terminals.


## - Multi-speed setting for 4th speed or more (Pr. 24 to Pr.27, Pr. 232 to Pr.239)

- The frequency from 4th speed to 15th speed can be set by the combination of the RH, RM, RL, and REX signals. Set the running frequencies in Pr. 24 to Pr.27, Pr. 232 to Pr.239. (In the initial status, 4th to 15th speeds are invalid.)
- For the terminal used for REX signal input, set "8" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.

*1 When RH, RM and RL is set to OFF and REX is set to ON when "9999" is set to Pr. 232 Multi-speed setting (speed 8), the inverter runs by the frequency set to Pr. 6.


## - Direct multi-speed setting

- While the RLF or RLR signal is input, the operation is according to Pr. 6 Multi-speed setting (low speed). The rotation is forward while the RLF signal is input, and the rotation is reverse while the RLR signal is input.




## NOTE

- The Pr. 6 setting should be equal to or higher than the Pr. 13 Starting frequency setting.
- To assign the RLF and RLR signals to input terminals, set "128 (RLF)" and "129 (RLR)" in any two parameters from Pr. 178 to Pr. 189 (Input terminal function selection).
- The direct multi-speed operation is enabled when the inverter operates in External operation mode or External/PU combined operation mode 1.
- When the RLR or STR signal is input while the RLF signal is input, the motor is decelerated to stop.
- When the RLF or STF signal is input while the RLR signal is input, the motor is decelerated to stop.
- When Pr. 59 Remote function selection $\neq$ " 0 ", the RLF signal is used as the STF signal, and the RLR signal is used as the STR signal.
- When the stop-on-contact function is enabled, the RLF signal is used as the STF signal, and the RLR signal is used as the STR signal.


## - Input compensation of multi-speed setting (Pr.28)

- Speed (frequency) compensation can be applied for the multi-speed setting and the remote setting by inputting the frequency setting compensation signal (terminals 1, 2).


## NOTE

- The priority of the frequency commands by the external signals are "Jog operation > multi-speed operation > terminal 4 analog input > pulse train input > terminal 2 analog input". (For details on frequency commands by analog input, refer to page 483.)
- Valid in the External operation mode or PU/External combined operation mode (Pr.79= "3" or "4").
- Multi-speed parameters can also be set during PU operation or External operation.
- The Pr. 24 to Pr. 27 and Pr. 232 to Pr. 239 settings have no priority among them.
- When Pr. 59 Remote function selection $=$ " 0 ", the multi-speed setting is invalid since the RH, RM, and RL signals are for remote setting.
- When performing analog input compensation, set Pr. 28 Multi-speed input compensation selection to "1".
- Select the terminals (terminals 1, 2) to use for compensation input voltage ( 0 to $\pm 5 \mathrm{~V}, 0$ to $\pm 10 \mathrm{~V}$ ) at Pr. 73 Analog input selection.
- When using terminal 1 for compensation input, set Pr. 868 Terminal 1 function assignment "0" (initial value).
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
<<Parameters referred to\>
Pr. }15\mathrm{ Jog frequency page 370
Pr. }59\mathrm{ Remote function selection page 331
Pr. }73\mathrm{ Analog input selection page 473
Pr. }79\mathrm{ Operation mode selection page 346
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) W page 498
Pr. }868\mathrm{ Terminal }1\mathrm{ function assignment page }47
```

| Purpose | Parameter to set <br> Refer to <br> page |  |  |
| :--- | :--- | :--- | :--- | :--- |
| To protect the motor from overheating | Electronic thermal O/L relay | P.H000, P.H006, <br> P.H010, P.H016, <br> P.H020 to P.H022 | Pr.9, Pr.51, Pr.561, <br> Pr.607, Pr.608, <br> Pr.876, Pr.1016 |

### 5.10.1 Motor overheat protection (electronic thermal O/L relay)

Set the current of the electronic thermal O/L relay function to protect the motor from overheating. Such settings will provide the optimum protective characteristic considering the low cooling capability of the motor during low-speed operation.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 9 \\ & \mathrm{H} 000 \end{aligned}$	Electronic thermal O/L relay	Inverter rated current* ${ }^{*}$	0 to $500 \mathrm{~A}^{*}$	Set the rated motor current.
			0 to $3600 \mathrm{~A}^{* 3}$	
$\begin{aligned} & 600 \\ & \mathrm{H} 001 \end{aligned}$	First free thermal reduction frequency 1	9999	0 to 590 Hz	The electronic thermal O/L relay operation level can be changed to match the motor temperature characteristics with the combination of these three points (Pr.600, Pr.601), (Pr.602, Pr.603), (Pr.604, Pr.9). 9999: Free thermal O/L relay invalid
			9999	
$\begin{aligned} & \hline 601 \\ & \mathrm{H} 002 \end{aligned}$	First free thermal reduction ratio 1	100\%	1 to 100\%	
			9999	
$\begin{aligned} & 602 \\ & \text { H003 } \end{aligned}$	First free thermal reduction frequency 2	9999	0 to 590 Hz	
			9999	
$\begin{aligned} & 603 \\ & \text { H004 } \end{aligned}$	First free thermal reduction ratio 2	100\%	1 to 100\%	
			9999	
$\begin{aligned} & 604 \\ & \mathrm{H} 005 \end{aligned}$	First free thermal reduction frequency 3	9999	0 to 590 Hz	
			9999	
$\begin{aligned} & 607 \\ & \mathrm{H} 006 \end{aligned}$	Motor permissible load level	150\%	110 to 250\%	Set the permissible load according to the motor characteristics.
$\begin{aligned} & 51 \\ & \mathrm{H} 010 \end{aligned}$	Second electronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{*}{ }^{\text {a }}$	Enabled when the RT signal is ON. Set the rated motor current.
			0 to $3600 \mathrm{~A}^{* 3}$	
			9999	Second electronic thermal O/L relay invalid
692   H011	Second free thermal reduction frequency 1	9999	0 to 590 Hz	The electronic thermal O/L relay operation level can be changed to match the second motor temperature characteristics with the combination of these three points (Pr.692, Pr.693), (Pr.694, Pr.695), (Pr.696, Pr.51).   9999: Second free thermal O/L relay invalid
			9999	
$\begin{aligned} & 693 \\ & \mathrm{H} 012 \end{aligned}$	Second free thermal reduction ratio 1	100\%	1 to 100\%	
			9999	
$\begin{aligned} & \hline 694 \\ & \mathrm{H} 013 \end{aligned}$	Second free thermal reduction frequency 2	9999	0 to 590 Hz	
			9999	
$\begin{aligned} & 695 \\ & \mathrm{H} 014 \end{aligned}$	Second free thermal reduction ratio 2	100\%	1 to 100\%	
			9999	
$\begin{aligned} & 696 \\ & \text { H015 } \end{aligned}$	Second free thermal reduction frequency 3	9999	0 to 590 Hz	
			9999	
$\begin{aligned} & 608 \\ & \mathrm{H} 016 \end{aligned}$	Second motor permissible load level	9999	110 to 250\%	Set the permissible load when the RT signal is ON.
			9999	The Pr. 607 setting is applied even when the RT signal is ON.
$\begin{aligned} & 561 \\ & \mathrm{HO} 020 \end{aligned}$	PTC thermistor protection level	9999	0.5 to $30 \mathrm{k} \Omega$	Set the PTC thermistor protection level (resistance).
			9999	PTC thermistor protection disabled
$\begin{aligned} & 1016 \\ & \mathrm{H} 021 \end{aligned}$	PTC thermistor protection detection time	0 s	0 to 60 s	Set the time from when the resistance of the PTC thermistor reaches the protection level until the protective function is activated.
$\begin{aligned} & 876 \\ & \mathrm{H} 022^{* 4} \end{aligned}$	Thermal protector input	1	0	Terminal OH of the control terminal option (FR-A8TP) is invalid.
			1	Terminal OH of the control terminal option (FR-A8TP) is valid.

[^12]
## - Electronic thermal O/L relay operation characteristic for induction motor (Pr.9, E.THM)

- This function detects the overload (overheat) of the motor and trips the inverter by stopping the operation of the transistor at the inverter output side.
- Set the rated current (A) of the motor in Pr.9. (If the motor has both 50 Hz and 60 Hz ratings and the Pr. 3 Base frequency is set to 60 Hz , set to 1.1 times the 60 Hz rated motor current.)
- Set "0" in Pr. 9 to avoid activating the electronic thermal O/L relay function; for example, when using an external thermal relay for the motor. (Note that the output transistor protection of the inverter is activated. (E.THT))

*1 When setting Pr. 9 to a value (current value) of $50 \%$ of the inverter rated current
*2 The \% value denotes the percentage to the inverter rated current. It is not the percentage to the rated motor current
*3 Transistor protection is activated depending on the temperature of the heat sink. The protection may be activated even with less than $150 \%$ depending on the operating conditions.


## NOTE

- The internal accumulated heat value of the electronic thermal relay function is reset to the initial value by the inverter's power reset and reset signal input. Avoid unnecessary reset and power-OFF.
- Install an external thermal relay (OCR) between the inverter and motors to operate several motors, a multi-pole motor or a dedicated motor with one inverter. When setting an external thermal relay, note that the current indicated on the motor rating plate is affected by the line-to-line leakage current. (Refer to page 82.) The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- The protective characteristic of the electronic thermal $O / L$ relay is degraded when there is a large difference in capacity between the inverter and motor, and when the set value is small. In such case, use an external thermal relay.
- A dedicated motor cannot be protected by an electronic thermal O/L relay. Use an external thermal relay.
- The transistor protection thermal O/L relay is activated early when the Pr. 72 PWM frequency selection setting is increased.
- When using a PM motor, set the free thermal parameters (Pr. 600 to Pr.604) in accordance with the motor characteristic.


## - Set two types of electronic thermal O/L relays (Pr.51)



- These settings are used when rotating two motors with different rated current separately by a single inverter. (When rotating two motors together, use an external thermal relay.)
- Set the rated motor current for the second motor in Pr.51.
- When the RT signal is ON, thermal protection is provided based on the Pr. 51 setting.

Pr. 450   Second applied motor	Pr. 9   Electronic thermal O/L relay	$\text { Pr. } 51$   Second electronic thermal O/L relay	RT-OFF		RT-ON	
			No. 1   Motor	No. 2   Motor	No. 1 motor	No. 2 motor
9999	0	9999	$\times$	$\times$	$\times$	$\times$
		0	$\times$	$\times$	$\times$	$\times$
		0.01 to 500 (0.1 to 3600)	$\times$	$\Delta$	$\times$	$\bigcirc$
9999	Other than 0	9999	$\bigcirc$	$\times$	$\bigcirc$	$\times$
		0	$\bigcirc$	$\times$	$\Delta$	$\times$
		0.01 to 500 (0.1 to 3600)	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$
Other than 9999	0	9999	$\times$	$\times$	$\times$	$\times$
		0	$\times$	$\times$	$\times$	$\times$
		0.01 to 500 (0.1 to 3600)	$\times$	$\Delta$	$\times$	$\bigcirc$
Other than 9999	Other than 0	9999	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$
		0	$\bigcirc$	$\times$	$\Delta$	$\times$
		0.01 to 500 (0.1 to 3600)	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$

O: Values are accumulated by using the output current.
$\Delta$ : Values are accumulated by assuming the output current is " 0 A " (cooling processing).
$x$ : Electronic thermal O/L relay does not operate.

## NOTE

- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 503.)
- The RT signal is assigned to the terminal RT in the initial setting. Set "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection), to assign the RT signal to another terminal.


## - Motor permissible load level setting (Pr.607, Pr.608)

The electronic thermal $\mathrm{O} / \mathrm{L}$ relay operation characteristic can be changed by setting the permissible load level according to the motor characteristics.


Example of motor permissible load setting (when Pr.9="100\% of the inverter rating")

## Electronic thermal O/L relay pre-alarm (TH) and warning signal (THP signal)

- If the accumulated electronic thermal value reaches $85 \%$ of the $\operatorname{Pr} .9$ or $\operatorname{Pr} .51$ setting, electronic thermal O/L relay function pre-alarm (TH) is displayed and the electronic thermal O/L relay pre-alarm (THP) signal is output. If the value reaches $100 \%$ of the Pr. 9 setting, the motor thermal protection (E.THM/E.THT) is activated to shut off the inverter output. The inverter output is not shut off with the TH display. The inverter output is not shut off with the warning signal (THP).
- For the terminal used for THP signal output, set "8 (positive logic)" or "108 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.

Electronic thermal   relay function   operation level
Electronic thermal O/L   relay alarm (THP)

- $100 \%$ : Electronic thermal O/L relay activation value


## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - External thermal relay input (OH signal, E.OHT)



External thermal relay input connection diagram

- The external thermal relay input $(\mathrm{OH})$ signal is used when using an external thermal relay or a thermal protector built into the motor to protect the motor from overheating.
- When the thermal relay function is activated, the external thermal operation (E.OHT) shuts off the inverter output.
- For the terminal used for the OH signal input, set "7" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- When the control terminal option (FR-A8TP) is used, valid/invalid setting of the terminal OH can be changed using Pr. 876 Thermal protector input.

NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## $\checkmark$ PTC thermistor input (Pr.561, Pr.1016, E.PTC)

This function is used to protect the motor from overheating by inputting outputs from the motor's built-in PTC thermistor to the inverter. It is recommended that a PTC thermistor whose resistance increases most rapidly around the rated activating temperature ( $\mathrm{TN} \pm \mathrm{DT}$ ) is used.

- PTC thermistor input connection diagram

- Example of PTC thermistor characteristics

- Output from the PTC thermistor, which is built into the motor, can be input to terminals 2 and 10 . If the input from the PTC thermistor reaches the resistor value set in Pr. 561 PTC thermistor protection level, the PTC thermistor operation (E.PTC) shuts off the inverter output.
- To use the PTC thermistor input function, select voltage input (initial setting) for terminal 2 using the voltage/current input selection switch. (For details on the voltage/current input switch assembly, refer to page 473.)
- Confirm the characteristic of the PTC thermistor to be used, and set the resistance for Pr. 561 around the center of the R1 and R2 values shown on the figure above so that it does not deviate from the protective function activating temperature TN. If the Pr. 561 setting becomes too close to R1 or R2, the protective function activating temperature may be too hot (protection is delayed), or too cold (too much protection).
- When the PTC thermistor protection is enabled (Pr. $561 \neq$ "9999"), the resistance value for the PTC thermistor can be displayed on the operation panel or via RS-485 communication. (Refer to page 419.)
- When the PTC thermistor protection level setting is used, use Pr. 1016 PTC thermistor protection detection time to set the time from when the resistance of the PTC thermistor reaches the protection level until the protective function (E.PTC) is activated. If the resistance of the PTC thermistor falls below the protection level within the protection detection time, the elapsed time count is cleared.



## NOTE

- When using terminal 2 for PTC thermistor input (Pr. $561 \neq$ "9999"), the terminal 2 will not operate as an analog frequency command terminal. The PID and dancer control functions assigned to the terminal 2 will be also disabled. Use Pr. 133 PID action set point to set the set point for the PID function.
- To input power to the PTC thermistor power supply, always use the terminal 10. Do not use any other terminals or an external power supply. Otherwise, the PTC thermistor protection (E.PTC) does not operate properly.
- When E.PTC is activated, the alarm display, "External protection (AU terminal)", may appear on the parameter unit (FRPU07), but it is not a fault.


## - Overheat protection to match the characteristic of the motor (Pr. 600 to Pr.604, Pr. 692 to Pr.696)

- The activation level of the electronic thermal $O / L$ relay can be varied to match the motor temperature characteristic.
- The electronic thermal O/L relay's activation level can be set using the combination of three points (Pr.600, Pr.601), (Pr.602, Pr.603), (Pr.604, Pr.9). Two or more points are required for setting.
- The electronic thermal O/L relay's activation level can be set to using the combination of three points (Pr.692, Pr.693), (Pr.694, Pr.695), (Pr.696, Pr.51) when the RT signal is ON.


- When setting Pr.600, Pr.602, Pr. 604 (Pr.692, Pr.694, Pr.696) to the same frequency, the following graph's upper level will be applied.



## NOTE

- Make sure to set the parameters according to the motor temperature characteristic used.

```
< Parameters referred to\》
Pr. }71\mathrm{ Applied motor page 506
Pr. }72\mathrm{ PWM frequency selection page 310
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) W page 498
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) page 446
```


## 5．10．2 Fault definition

Fault output can be done after deceleration stop when motor thermal protection is activated

Pr．	Name	Initial value	Setting   range	Description
875   H030	Fault definition	0	0	Normal operation
		1	Decelerates to stop at activation of motor thermal protection．	

## －Output shutoff at activation of any protective function（Pr． $875=$＂ 0 ＂initial value）

－At activation of a protective function，output is shutoff，and the alarm output 2 signal（ER）and the fault signal（ALM）are output．

## －Deceleration stop at motor thermal protection activation（Pr． $875=$＂1＂）

－At activation of the external thermal relay（E．OHT），motor load（electronic thermal O／L relay）（E．THM）and PTC thermistor （E．PTC）protective functions，the alarm output 2 （ER）signal is displayed，and the motor decelerates to stop．After it stops， a fault signal（ALM）is output．
－When the ER signal comes ON，reduce the load or take other measures to allow the inverter to decelerate．
－During fault occurrence aside from the E．OHT，E．THM and E．PTC，the output is immediately shut off，and the fault signal （ALM）is output．
－To use the ER signal，set＂97（positive logic）＂or＂197（negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）to assign the function to the output terminal．


## NOTE

－Regardless of the Pr． 875 setting，when the protective function is operating during position control，output is immediately shut off．（No deceleration stop）
－For systems with a large load－side torque that prevents deceleration，setting value＂ 0 ＂is recommended．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

[^13]
### 5.10.3 Cooling fan operation selection

A cooling fan is built into the inverter and its operation can be controlled.

Pr.	Name	Initial value	Setting range	Description
244	Cooling fan operation selection	1	0	Cooling fan ON/OFF control is invalid. (The cooling fan is always ON at power ON)   A cooling fan operates at power ON.
			1	Cooling fan ON/OFF control enabled. The fan is always ON while the inverter is running. During a stop, the inverter status is monitored and the fan switches ON/OFF according to the temperature.
			101 to 105	Cooling fan ON/OFF control enabled.   Set the cooling fan stop delay time within 1 to 5 seconds.
			1000	Cooling fan ON/OFF control is invalid. (The The cooling fan can   co set to always OFF   cooling fan is always ON at power ON) during Vector control
			1001	Cooling fan ON/OFF control enabled. The fan is always ON while the inverter is running. During a stop, the inverter status is monitored and the fan switches ON/OFF according to the temperature.   test operation or PM sensorless vector control test operation.
			1101 to 1105	Cooling fan ON/OFF control enabled. Set the cooling fan stop delay time within 1 to 5 seconds.
H100	Cooling fan operation selection	1	0	Cooling fan ON/OFF control is invalid. (The cooling fan is always ON at power ON)   A cooling fan operates at power ON.
			1	Cooling fan ON/OFF control enabled.   The fan is always ON while the inverter is running. During a stop, the inverter status is monitored and the fan switches ON/OFF according to the temperature.
			101 to 105	Cooling fan ON/OFF control enabled. Set the cooling fan stop delay time within 1 to 5 seconds.
H106	Cooling fan operation selection during the test operation	0	0	The cooling fan operates according to the $\mathbf{H 1 0 0}$ setting during Vector control test operation or PM sensorless vector control test operation.
			1	The cooling fan can be set to always OFF during Vector control test operation or PM sensorless vector control test operation.

## Cooling fan always ON (Pr. 244 = " 0 ")

- When Pr. $244=$ " 0 ", the cooling fan operates at power ON. If the fan stops at this time, fan operation is regarded as faulty, Fan alarm [FN] is displayed on the operation panel, and the fan fault (FAN) and alarm (LF) signals are output.
- For the terminal used for the FAN signal output, set "25 (positive logic)" or "125 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection). For the LF signal, set "98 (positive logic)" or "198 (negative logic)".


## - Cooling fan operation control (Pr. 244 (P.H100) = "1" (initial value), "101 to 105")

- The cooling fan operation is controlled when Pr. $244=11$. When the inverter is running, the cooling fan operates; and when it is stopped, the cooling fan operates according to the temperature of the inverter heat sink. If the fan stops although it meets the conditions for running, fan operation is regarded as faulty, [FN] is displayed on the operation panel, and the fan signal and LF signals are output.
- To prevent the cooling fan from turning ON and OFF repeatedly during frequent starts/stops (inching), the cooling fan stop waiting time can be set. The waiting time when Pr. $244=$ "101 to 105 " is $\operatorname{Pr} .244-100$ (or 1 s , if the $\operatorname{Pr} .244=" 101 "$ ).


## - Cooling fan operation command signal (Y206 signal)

- The cooling fan operation command signal (Y206 signal) can be output when the inverter cooling fan meets the conditions for running. The function can be used when the fan installed on the enclosure is synchronized with the inverter cooling fan.
- Y206 signal indicates the operating command condition of the inverter cooling fan depending on the power supply ON/OFF or the Pr. 244 settings. The signal does not indicate the actual operation of the cooling fan. (The signal is output even if the cooling fan is stopped due to a fault.)
- To use the Y206 signal, set "206 (positive logic) or 306 (negative logic)" in one of Pr. 190 to Pr. 196 (Output terminal function selection) to assign function to an output terminal.


## - Cooling fan operation selection during the test operation (Pr. 244 = "1000,

 1001, 1101 to 1105" (P.H106 = "1"))- When P.H106 = "1" or Pr. $244=$ "1000, 1001, or 1101 to 1105 ", the cooling fan can be set to always OFF during Vector control test operation or PM sensorless vector control test operation.


## NOTE

- The cooling fan is installed on the FR-A860-00061 or higher.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## 《| Parameters referred to ${ }^{\text {|》 }}$

Pr. 190 to Pr. 196 (Output terminal function selection) page 446

### 5.10.4 Earth (ground) fault detection at start

## V/F Magneticflux

Select whether to enable/disable earth (ground) fault detection at start. When enabled, earth (ground) fault detection is performed immediately after a start signal input to the inverter.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{2 4 9}$	Earth (ground) fault	0	0	Without the earth (ground) fault detection at start
H101	detection at start			

- If a ground fault is detected at start while Pr. $249=11 "$, the output-side earth (ground) fault overcurrent (E.GF) is displayed and the outputs are shut off. (Refer to page 753)
- The Pr. 249 setting is enabled during V/F control and Advanced magnetic flux vector control
- When the Pr. 72 PWM frequency selection selection setting is high, enable the ground fault detection at start.


## NOTE

- Because of the detection performed at start, the output is delayed by approximately 20 ms at every start.
- Use Pr. 249 to enable/disable ground fault detection at operation start. Ground faults are detected always during operation regardless of the Pr. 249 setting.


## 5．10．5 Initiating a protective function

A fault（protective function）is initiated by setting the parameter．
This function can be used to check how the system operates at activation of a protective function．

Pr．	Name	Initial value	Setting   range	Description

－To initiate a fault（protective function），set the assigned number of the protective function you want to initiate in Pr． 997 ．
－The value set in Pr． 997 is not stored in EEPROM．
－When a protective function activates，the inverter trips，a fault is displayed，and a fault signal（ALM，ALM2）is output．
－The latest fault in the fault history is displayed while the fault initiation function is in operation．After a reset，the fault history goes back to the previous status．（The protective function generated by the fault is not saved in the fault history．）
－Perform inverter reset to cancel the protective function．
－For the selectable parameter by Pr． 997 and the corresponding protective functions，refer to page 742.

## NOTE

－If a protective function is already operating，no fault can be activated by Pr． 997.
－The retry function is disabled when a protective function has been initiated by the fault initiation function．
－If a fault occurs after a protective function has been activated，the protective function indication does not change．The fault is not saved in the fault history either．

## 5．10．6 I／O phase loss protection selection

The output phase loss protection function，which stops the inverter output if one of the three phases $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ on the inverter＇s output side（load side）is lost，can be disabled．
The input phase loss protective function on the inverter input side（R／L1，S／L2，T／L3）can be enabled．

Pr．	Name	Initial value	Setting   range	Description
$\mathbf{2 5 1}$	Output phase loss   H200	1	0	Without output phase loss protection
		1	With output phase loss protection	
$\mathbf{8 2 0 1}{ }^{* 1}$	Input phase loss protection   selection	0	0	Without input phase loss protection
			1	With input phase loss protection

＊1 The setting is available only for standard models．

## Output phase loss protection selection（Pr．251）

－When Pr． 251 ＝＂ 0 ＂，output phase loss（E．LF）protection is disabled．

## －Input phase loss protection selection（Pr．872）（Standard models）

－When Pr． $872=11$＂，input phase loss（E．ILF）protection will be activated if one of three phases is detected to be lost for 1 s continuously．

## NOTE

－When several motors are connected，output phase loss cannot be detected even if the wiring to one motor loses phase．
－If an input phase is lost while Pr． 872 ＝＂1＂（with input phase loss protection），Pr． 261 Power failure stop selection $\neq$＂0＂ （power failure stop function enabled），the motor decelerates to stop without outputting E．ILF．
－In the case of R／L1，S／L2 phase loss，the input phase loss protection will not operate，and the inverter will trip．
－If an input phase loss continues for a long time，the converter section and capacitor lives of the inverter will be shorter．

## 《 Parameters referred to 》》

Pr． 261 Power failure stop selection page 563

### 5.10.7 Retry function

This function allows the inverter to reset itself and restart at activation of the protective function (fault indication). The retry generating protective functions can be also selected.
When the automatic restart after instantaneous power failure function is selected (Pr. 57 Restart coasting time $\neq 9999$ ), the restart operation is also performed after a retry operation as well as after an instantaneous power failure. (Refer to page 618 for the restart operation.)

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 65 \\ & \text { H300 } \end{aligned}$	Retry selection	0	0 to 5	A retry-making fault can be selected. (Refer to the table on the next page.)
$\begin{aligned} & 67 \\ & \text { H301 } \end{aligned}$	Number of retries at fault occurrence	0	0	No retry function
			1 to 10	Set the number of retries at a fault occurrence. A fault output is not provided during the retry operation.
			101 to 110	Set the number of retries at a fault occurrence. (The setting value minus 100 is the number of retries.)   A fault output is provided during the retry operation.
$\begin{aligned} & 68 \\ & \text { H302 } \end{aligned}$	Retry waiting time	1 s	0.1 to 600 s	Set the waiting time from a fault occurrence to a retry.
$\begin{aligned} & \hline 69 \\ & \text { H303 } \end{aligned}$	Retry count display erase	0	0	Clears the number of successful restarts made by retries.

## Setting the retry function (Pr.67, Pr.68)

- When the inverter protective function is operating (fault indication), the retry function automatically cancels (resets) the protective function after the time set in Pr.68. The retry function then restarts the operation from the starting frequency.
- Retry operation is enabled when $\operatorname{Pr} .67 \neq 0$ " 0 . For Pr. 67 , set the number of retries at activation of the protective function.

Pr. 67 setting	Fault output during retry operation	Retry count
0	-	No retry function
1 to 10	Not provided	1 to 10 times
101 to 110	Provided	1 to 10 times

- When retries fail consecutively more than the number of times set in Pr.67, a retry count excess (E.RET) occurs, resulting in an inverter retries. (Refer to the retry failure example.)
- Use Pr. 68 to set the waiting time from a protective function activation to a retry in the range of 0.1 to 600 s .
- During retry operation, the during retry (Y64) signal is ON. For the Y64 signal, set "64 (positive logic)" or "164 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.


## - Retry count check (Pr.69)

- Reading the Pr. 69 value provides the cumulative number of successful restart times made by retries. The cumulative count in Pr. 69 increases by 1 when a retry is successful. Retry is regarded as successful when normal operation continues without a fault for the Pr. 68 setting multiplied by four or longer ( 3.1 s at the shortest). (When retry is successful, the cumulative number of retry failures is cleared.)
- Writing "0" in Pr. 69 clears the cumulative count.



## - Selecting retry generating faults (Pr.65)

- Using Pr.65, you can select the fault that will cause a retry. No retry will be made for the fault not indicated. (For the fault details, refer to page 742.) • indicates the faults selected for retry.

Retry-making fault	Pr. 65 setting						Retry-making fault	Pr. 65 setting					
	0	1	2	3	4	5		0	1	2	3	4	5
E.OC1	$\bullet$	-		$\bullet$	-	-	E.MB3	-				-	
E.OC2	$\bullet$	$\bullet$		$\bullet$	$\bullet$		E.MB4	$\bullet$				$\bullet$	
E.OC3	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$	E.MB5	$\bullet$				$\bullet$	
E.OV1	$\bullet$		-	$\bullet$	-		E.MB6	$\bullet$				$\bullet$	
E.OV2	$\bullet$		$\bullet$	$\bullet$	$\bullet$		E.MB7	$\bullet$				$\bullet$	
E.OV3	$\bullet$		$\bullet$	$\bullet$	$\bullet$		E.OS	$\bullet$				$\bullet$	
E.THM	$\bullet$						E.OSD	$\bullet$				$\bullet$	
E.THT	$\bullet$						E.PTC	$\bullet$					
E.IPF	$\bullet$				$\bullet$		E.CDO	$\bullet$				$\bullet$	
E.UVT	$\bullet$				$\bullet$		E.SER	$\bullet$				$\bullet$	
E. BE	$\bullet$				$\bullet$		E.USB	$\bullet$				$\bullet$	
E. GF	$\bullet$				$\bullet$		E.ILF	$\bullet$				$\bullet$	
E.OHT	$\bullet$						E.PID	$\bullet$				$\bullet$	
E.OLT	$\bullet$				$\bullet$		E.PCH	$\bullet$				$\bullet$	
E.OPT	$\bullet$				$\bullet$		E.SOT	$\bullet$	$\bullet$		$\bullet$	$\bullet$	$\bullet$
E.OP1	$\bullet$				$\bullet$		E.LCI	$\bullet$				$\bullet$	
E. PE	$\bullet$				$\bullet$		E.LUP	$\bullet$				-	
E.MB1	$\bullet$				$\bullet$		E.LDN	$\bullet$				$\bullet$	
E.MB2	$\bullet$				$\bullet$								

## NOTE

- Use the retry function only when the operation can be resumed after resetting a protective function activation. Making a retry against the protective function, which is activated by an unknown condition, will lead the inverter and motor to be faulty. Identify what condition the protective function was activated, and eliminate such condition before resuming the operation.
- If the retry function operates during PU operations, the operating conditions (forward/reverse rotation) are stored; and operations resume after retry reset.
- Only the fault details for the first fault that occurred are stored in the fault history.
- The reset by the retry function does not clear the accumulated data of the electronic thermal O/L relay, regenerative brake duty, etc. (This is different from power supply reset or reset by RES signal.)
- When the parameter storage device fault (control circuit board) (E.PE) is occurring and reading of the retry-function-related parameters is not possible, retry cannot operated.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## $\triangle$ CAUTION

- When the retry function is set enabled, stay away from the motor and machine in the case of an inverter trip. The motor and machine will start suddenly (after the reset time has elapsed) after the inverter trip. When the retry function is set enabled, apply in easily visible places the CAUTION stickers supplied to this product.

Parameters referred to |>
Pr. 57 Restart coasting time page 618

### 5.10.8 Emergency drive (Fire mode)

## V/F Magneticflux Sensorless PM

This function is used in case of emergency such as a fire to forcibly continue inverter operation to drive a motor without activating protective functions even if the inverter detects a fault. Using this function may cause damage of the motor or the inverter because driving the motor is given the highest priority. Use this function for emergency operation only. When the inverter is damaged by a fault, the motor operation can be continued by switching to the commercial power supply operation. The emergency drive function is available only for standard structure models.

Pr.	Name	Initial value	Setting range	Description
523 H320* ${ }^{*}$	Emergency drive mode selection	9999	100, 111, 112,   121, 122, 123,   124, 200, 211,   212, 221, 222,   223, 224, 300,   311, 312, 321,   322, 323, 324,   400, 411, 412,   421, 422, 423,   424	Select the operation mode of the emergency drive.
			9999	Emergency drive disabled.
$\begin{array}{\|l\|} \hline \mathbf{5 2 4} \\ \mathbf{H} 321 \\ * 1 * 2 \\ \hline \end{array}$	Emergency drive running speed	9999	0 to $590 \mathrm{~Hz}^{* 3}$	Set the running frequency in the fixed frequency mode of the emergency drive (when the fixed frequency mode is selected in Pr.523)
			$0 \%$ to $100 \%{ }^{*} 3$	Set the PID set point in the PID control mode of the emergency drive (when the PID control mode is selected in Pr.523)
			9999*3	Emergency drive disabled.
515 H322 ${ }^{* 1}$	Emergency drive dedicated retry count	1	1 to 200	Set the retry count during emergency drive operation.
			9999*3	Without retry count excess (no restriction on the number of retries).
$\begin{aligned} & 1013 \\ & \mathrm{H} 323^{* 1} \end{aligned}$	Emergency drive running speed after retry reset	60 Hz	0 to 590 Hz	Set the frequency for operation after a retry when any of E.CPU, E. 1 to E.3, and E. 5 to E. 7 occurs during emergency drive operation.
514 H324 ${ }^{* 1}$	Emergency drive dedicated waiting time	9999	0.1 to 600 s	Set the retry waiting time during emergency drive operation.
			9999	The Pr. 68 setting is applied to the operation.
$\begin{aligned} & 136 \\ & \text { A001 } \end{aligned}$	MC switchover interlock time	1 s	0 to 100 s	Set the operation interlock time for MC2 and MC3.
$\begin{aligned} & 139 \\ & \text { A004 } \end{aligned}$	Automatic switchover frequency from inverter to bypass operation	9999	0 to 60 Hz	Set the frequency at which the inverter-driven operation is switched over to the commercial power supply operation when the condition for the electronic bypass is established during emergency drive operation.
			8888, 9999	Electronic bypass during emergency drive is disabled.
$\begin{aligned} & 57 \\ & \text { A702 } \end{aligned}$	Restart coasting time	9999	0	Coasting time differs according to the inverter capacity. (Refer to page 618)
			0.1 to 30 s	Set the waiting time for the inverter to perform a restart after restoring power due to an instantaneous power failure.
			9999	No restart

*1 The setting is available for the standard structure model.
*2 Set Pr. 524 after setting Pr. 523.
*3 When Pr. $523=" 100,200,300$, or 400 ", the emergency drive is activated regardless of the Pr. 524 setting.

## - Connection diagram

- A connection diagram of the emergency drive (commercial mode) is as follows.

*1 Be careful of the capacity of the sequence output terminals. The applied terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).

Output terminal capacity	Output terminal permissible load
Open collector output of inverter   (RUN, SU, IPF, OL, FU)	24 VDC 0.1 A
Inverter relay output	
(A1-C1, B1-C1, A2-B2, B2-C2)	30 VAC 0.3 A
Relay output option	
(FR-A8AR)	

*2 When connecting a DC power supply, insert a protective diode. When connecting an AC power supply, use relay output terminals of the inverter or contact output terminals of the relay output option (FR-A8AR).
*3 The applied terminals differ by the settings of Pr. 180 to Pr. 189 (Input terminal function selection)
*4 The applied terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).

## NOTE

- Be sure to provide a mechanical interlock for MC2 and MC3.


## - Emergency drive execution sequence

## Point $\rho$

- When the X84 signal is ON for 3 seconds, the emergency drive is activated.
- The Y65 signal turns ON during emergency drive operation.
- "ED" appears on the operation panel during emergency drive operation.
- The ALM3 signal turns ON when a fault occurs during emergency drive operation.
- To activate the emergency drive, the X84 signal needs to be ON for three seconds while all the following conditions are satisfied.

Item	Condition
Emergency drive parameter settings	$\begin{aligned} & \text { Pr. } 523 \neq \text { "9999" } \\ & \text { Pr. } 524 \neq=\text { "9999" (Setting is not required when Pr. } 523=\text { "100, 200, } 300 \text {, or } 400 " .) \end{aligned}$
Control method	Either of the following control methods is selected (when Pr. $800=" 9,10,20,109$, or 110 " or Pr. 451 = "10, 20, 110, or 9999")   - V/F control   - Advanced magnetic flux vector control   - Real sensorless vector control (speed control)   - PM sensorless vector control (speed control)   - PM sensorless vector control test operation
Contradictory condition	None of the following conditions are satisfied.   - Enabling the electronic bypass sequence function   - Enabling the brake sequence function   - Using the FR-A8NS (option)   - During offline auto tuning   - Supplying power through terminals R1 and S1

- When the "retry" (Pr. $523=$ "2[][], $3[[][]$ ) is selected, it is recommended to use the automatic restart after instantaneous power failure function at the same time.
- Parameter setting is not available during emergency drive operation.
- To return to the normal operation during emergency drive operation, do the following. (The operation will not be returned to normal only by turning OFF the X84 signal.) Reset the inverter, or turn the power supply OFF. Clear a fault by turning ON the X 51 signal while the sequence function is enabled (when the protective function is activated).
- The operation is switched over to the commercial power supply operation in case of the following during emergency drive operation while the commercial mode or the retry / commercial mode is selected. 24 V external power supply operation, power failure status or operation with the power supplied through R1/S1 (except when the DC feeding mode 1 or 2 is selected), undervoltage
- To input the X84 signal, set " 84 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- For the terminal used for the Y65 signal output, assign the function by setting "65 (positive logic)" or "165 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection). For the terminal used for the ALM3 signal output, assign the function by setting "66 (positive logic)" or "166 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- The X84 signal input is valid either through the external terminal or via network regardless of the Pr. 338 and Pr. 339 settings (Selection of control source in Network operation mode).
- During emergency drive operation, the operation is performed as Pr. 502 Stop mode selection at communication error $=$ " 0 (initial value)" and communication errors (such as E.SER) do not occur. (A protective function is performed according to its operation during emergency drive operation.)
- The following diagram shows the operation of the emergency drive function (in the retry / output shutoff mode or in the fixed frequency mode (Pr. $523=$ "211")).

- The following diagram shows the operation of switching over to the commercial power supply operation during emergency drive operation by using the CS signal (in the commercial mode or in the fixed frequency mode (Pr. $523=411 "$ )).

*1 Input the CS signal via an external terminal.


## - Emergency drive operation selection (Pr.523, Pr.524)

- Use Pr. 523 Emergency drive mode selection to select the emergency drive operation. Set a value in the hundreds place to select the operation when a valid protective function is activated (critical fault) during emergency drive. Set values in the ones and tens places to select the operation method.

Pr. 523	Emergency drive operation mode			Description
1[]]	Output shutoff mode		Selecting operation when a critical fault occurs during emergency drive operation	Output shutoff at a critical fault occurrence.
2[][]	Retry / output shutoff mode			Retry operation at a critical fault occurrence.   The output is shut off when a critical fault for which retry is not permitted occurs, or the retry count is exceeded.
3[][]$^{* 1}$	Retry / commercial mode			Retry operation at a critical fault occurrence.   The operation is switched over to the commercial power supply operation when a critical fault for which retry is not permitted occurs, or the retry count is exceeded. While Pr. 515 = "9999", the operation is switched over to the commercial power supply operation when the retry count reaches 200.
4[][]$^{* 1}$	Commercial mode			The operation is switched over to the commercial power supply operation when a critical fault occurs.
[]00	Normal operation		Selecting the operation method during emergency drive operation	The operation is performed with the same set frequency and by the same starting command as those in the normal operation. Use this mode to avoid output shutoff due to a fault.
[111	Fixed frequency mode	Forward rotation		The operation is forcibly performed with the frequency set in
[]12		Reverse rotation		Pr. 524.   Even when the motor is stopped, the operation is started by the emergency drive operation.
[]21	PID control mode	Forward rotation		The operation is performed under PID control using the Pr. 524
[]22		Reverse rotation		setting as a set point. The measured values are input in the method set in Pr. 128.
[]23		Forward rotation (Second PID measured value input)		The operation is performed under PID control using the Pr. 524 setting as a set point. The measured values are input in the method set in Pr. 753.
[]24		Reverse rotation (Second PID measured value input)		
9999	Emergency drive disabled.			

*1 Under PM sensorless vector control, the operation is not switched over to the commercial power supply operation and the output is shut off.

## NOTE

- The operation is automatically switched from the PU operation mode or External/PU combined operation mode to the External operation mode when the emergency drive is activated in the fixed frequency mode or in the PID control mode.


## - Retry operation during emergency drive (Pr.515, Pr.514)

- Set the retry operation during emergency drive operation. Use Pr. 515 Emergency drive dedicated retry count to set the retry count, and use Pr. 514 Emergency drive dedicated waiting time to set the retry waiting time.
- The ALM signal output conditions depend on the Pr. 67 Number of retries at fault occurrence setting. (Refer to page 389.)
- For the protective functions (critical faults) for which a retry is performed during emergency drive operation, refer to page 397.


## NOTE

- During emergency drive operation, Pr. 65 Retry selection is not available.


## - Electronic bypass during emergency drive (Pr.136, Pr.139, Pr.57)

- For selecting the commercial mode (Pr. $523=$ " 3[][]$, 4[[]] ")$, setting is required as follows. Set Pr. 136 MC switchover interlock time and Pr. 139 Automatic switchover frequency from inverter to bypass operation and assign MC2 and MC3 signals to output terminals. When the CS signal is assigned to an input terminal, set Pr. 57 Restart coasting time $\neq$ "9999" and input the CS signal through the terminal. (In the initial setting, the CS signal is assigned to the terminal CS.) Select V/F control, Advanced magnetic flux vector control, or Real sensorless vector control. (Under PM sensorless vector control, the operation is not switched over to the commercial power supply operation the output is shut off.)
- During emergency drive operation, the operation is switched over to the commercial power supply operation when any of the following conditions is satisfied. CS signal turns OFF. A critical fault for which retry is not permitted occurs while Pr. 523 $=$ "3[][]". A critical fault occurs while Pr. $523=$ " 4[][] ".
- While the motor is driven by the inverter during emergency drive operation, if a condition for electronic bypass is satisfied, the output frequency is accelerated/decelerated to the Pr. 139 setting. When the frequency reaches the set frequency, the operation is switched over to the commercial power supply operation. (The operation is immediately switched over to the commercial power supply operation during output shutoff due to a critical fault occurrence.)
- If the parameter for electronic bypass is not set while the commercial mode is set ( $\mathrm{Pr} .523=3[][], 4[[] ")$, the operation is not switched over to the commercial power supply operation even when a condition for switchover is satisfied, and the output is shut off.
- To assign the MC2 and MC3 signals to output terminals, use any two of Pr. 190 to Pr. 196 (Output terminal function selection) and set "18 (positive logic)" for the MC2 signal and set "19 (positive logic)" for the MC3 signal.
- Operation of magnetic contactor (MC2, MC3)

Magnetic   contactor	Installation location		Operation	
		During commercial power   supply operation		
MC2	Between power supply and motor	Shorted	During inverter operation	
MC3	Between inverter output side and motor	Open	Shorted	

- The input signals are as follows.

Signal	Function	Operation	MC operation*4	
			MC2	MC3
CS*1	Inverter/bypass	ON: Inverter operation	$\times$	$\bigcirc$
		OFF: Emergency drive commercial power supply operation ${ }^{2}$	$\bigcirc$	$\times$
X84	Emergency drive operation	ON: Emergency drive operation	-	-
		OFF: Normal operation ${ }^{*}$	$\times$	$\bigcirc$
RES	Operation status reset	ON: Reset	$\times$	No change
		OFF: Normal operation	-	-

*1 Input the CS signal via an external terminal. (Set Pr. $162=$ " 0 to 3,10 to 13 " or $\operatorname{Pr} .338=" 1$ ".)
*2 If the signal is turned ON after switchover to the emergency drive commercial power supply operation, the operation will not be returned to the inverter-driven operation.
*3 If the signal is turned OFF during the emergency drive operation, the operation will not be returned to normal.
*4 MC operation is as follows.

Notation	MC operation
$\circ$	ON
$\times$	OFF
-	During inverter operation: MC2-OFF, MC3-ON   During commercial power supply operation: MC2-ON, MC3-OFF
No change	The operation status before changing the signal state to ON or OFF is held.

## NOTE

- During electronic bypass operation while the electronic bypass sequence is enabled (Pr. $135=" 1$ "), the emergency drive function is not available.


## - PID control during emergency drive operation

- During emergency drive operation in the PID control mode, the operation is performed under PID control using the Pr. 524 setting as a set point. Input the measured values in the method set in Pr. 128 or Pr. 753.
- When the PID control mode is selected for emergency drive, the PID action during emergency drive operation is as follows depending on the PID control setting.

Item	PID control action		
	Set point / measured   value input setting	Deviation input setting	Without PID control   setting
Measured value input selection (Pr.128, Pr.753)	Held	Terminal 4 input	Terminal 4 input
Forward action / reverse action selection (Pr.128, Pr.753)	Held	Held	Reverse action
Proportional band (Pr.129, Pr.756)	Held	Held	100\% (initial value)
Integral time (Pr.130, Pr.757)	Held	Held	1s (initial setting)
Differential time (Pr.134, Pr.758)	Held	Held	Not used (initial setting)
Applied to the frequency / calculation only (Pr.128,   Pr.753)	Applied to the frequency	Applied to the frequency	Applied to the frequency
Dancer control	Invalid	Invalid	Invalid
Other PID-related settings	Held	Held	Held

- While the "retry" (Pr. 523 = "22[], 32[]") is selected in the PID control mode, if a retry occurs at an occurrence of E.CPU, E. 1 to E.3, or E. 5 to E. 7 during emergency drive operation, the operation is performed not under PID control but with the fixed frequency. Use Pr. 1013 Emergency drive running speed after retry reset to set the fixed frequency.


## Operation of protective functions during emergency drive

- Operation of protective functions during emergency drive is as follows.

Protective function	Operation during emergency drive	Protective function	Operation during emergency drive	Protective function	Operation during emergency drive
E.OC1	Retry	E.OP3	The function is disabled.	E.OD	The function is disabled.
E.OC2	Retry	E. 16	The function is disabled.	E.ECA	The function is disabled.
E.OC3	Retry	E. 17	The function is disabled.	E.MB1	The function is disabled.
E.OV1	Retry	E. 18	The function is disabled.	E.MB2	The function is disabled.
E.OV2	Retry	E. 19	The function is disabled.	E.MB3	The function is disabled.
E.OV3	Retry	E. 20	The function is disabled.	E.MB4	The function is disabled.
E.THT	Retry	E.PE	Output shutoff	E.MB5	The function is disabled.
E.THM	Retry	E.PE6	The function is disabled.	E.MB6	The function is disabled.
E.FIN	Retry	E.PUE	The function is disabled.	E.MB7	The function is disabled.
E.IPF	The function is disabled.	E.RET	Output shutoff	E.EP	The function is disabled.
E.UVT	The function is disabled.	E.PE2	Output shutoff	E.MP	The function is disabled.
E.ILF	The function is disabled.	E.CPU	Retry	E.EF	The function is disabled.
E.OLT	Retry	E.CTE	The function is disabled.	E.IAH	The function is disabled.
E.SOT	Retry	E.P24	The function is disabled.	E.LCI	The function is disabled.
E.LUP	The function is disabled.	E.CDO	Retry	E.PCH	The function is disabled.
E.LDN	The function is disabled.	E.IOH	Output shutoff	E.PID	The function is disabled.
E.BE	Retry* ${ }^{*}$	E.SER	The function is disabled.	E. 1	Retry*2
E.GF	Retry	E.AIE	The function is disabled.	E. 2	Retry*2
E.LF	The function is disabled.	E.USB	The function is disabled.	E. 3	Retry*2
E.OHT	Retry	E.SAF	Retry* ${ }^{1}$	E. 5	Retry*2
E.PTC	Retry	E.PBT	Retry* ${ }^{1}$	E. 6	Retry ${ }^{* *}{ }^{*}$
E.OPT	The function is disabled.	E.OS	The function is disabled.	E. 7	Retry ${ }^{* * * 2}$
E.OP1	The function is disabled.	E.OSD	The function is disabled.	E. 11	The function is disabled.
E.OP2	The function is disabled.	E.ECT	The function is disabled.	E. 13	Output shutoff

*1 While the switchover to the commercial power supply operation during emergency drive operation is enabled, when the same protective function is activated twice consecutively, the retry is attempted up to twice.
*2 In normal operation (Pr. $523=$ " 200 or 300 "), the start signal is turned OFF at the same time the retry function resets the protective function. Input the start signal again to resume the operation.

- The fault output during emergency drive operation is as follows.

Signal	Pr. 190 to Pr. 196 setting		Description
	Positive logic	Negative logic	
ALM	99	199	Turns ON at the occurrence of a fault that causes the above-mentioned "retry" or   "output shutoff" during emergency drive operation.
ALM3	66	166	Output when a fault occurs during emergency drive operation.   During emergency drive operation, if a fault that does not activate any protective   function occurs, the signal turns ON for 3 seconds and then turns OFF.

## - Input signal operation

- During emergency drive operation in the fixed frequency mode or in the PID control mode, input signals unrelated to the emergency drive become invalid with some exceptions.
- The following table shows functions of the signals that do not become invalid during emergency drive operation in the fixed frequency mode or in the PID control mode.

Input signal status	Fixed frequency mode	PID control mode
Valid	OH, X32, TRG, TRC, X51, RES, X70, X71	OH, X32, TRG, TRC, X51, RES, X70, X71
Held	RT, X9, X17, X18, MC, SQ, X84	$\begin{aligned} & \text { RT, X9, X17, X18, MC, SQ, X64, X65, X66, } \\ & \text { X67, X79, X84 } \end{aligned}$
Always-ON	-	X14, X77, X78, X80

## - Emergency drive status monitor

- Set "68" in Pr.52, Pr. 774 to Pr.776, Pr. 992 to monitor the status of the emergency drive on the operation panel.
- Description of the status monitor

Operation panel indication	Description		
	Emergency drive setting	Emergency drive operating status	
0	Emergency drive function setting is not available.	-	
1	Electronic bypass during emergency drive operation is disabled.	During normal operation	
2		Emergency drive in operation	Operating properly
3			A certain alarm is occurring. ${ }^{*}$
4			A critical fault is occurring. The operation is being continued by the retry.
5			A critical fault is occurring. The continuous operation is not allowed due to output shutoff.
11	Electronic bypass during emergency drive operation is enabled.	During normal operation	
12		Emergency drive in operation	Operating properly
13			A certain alarm is occurring. ${ }^{*}$
14			A critical fault is occurring. The operation is being continued by the retry.
15			A critical fault is occurring. The continuous operation is not allowed due to output shutoff.
2[]$^{* 1}$		Electronic bypass is started during emergency drive (during acceleration/ deceleration to the switchover frequency).	
3[]$^{* 1}$		During electronic bypass during emergency drive (waiting during the interlock time).	
4[]$^{* 1}$		During commercial power supply operation during emergency drive	

*1 The first digit remains the same as the previous numerical value (fault condition).
*2 "A certain alarm" means a protective function disabled during emergency drive shown in the tables on page 397.

## $\triangle C A U T I O N$

- When the emergency drive operation is performed, the operation is continued or the retry is repeated even when a fault occurs, which may damage or burn the inverter and motor. Before restarting the normal operation after using this function, make sure that the inverter and motor have no fault. Any damage of the inverter or the motor caused by using the emergency drive function is not covered by the warranty even within the guarantee period.


### 5.10.9 Checking faulty area in the internal storage device

When E.PE6 occurs, faulty area in the internal storage device can be checked by reading Pr. 890.
When the read value of Pr. 890 is "7" or smaller, an inverter reset after All parameter clear can return the operation to normal. (The parameters that had been changed before All parameter clear must be set again.)

Pr.	Name	nitial value	Setting range	Description
$\mathbf{8 9 0}$	Internal storage device status   H325   indication	0	$(0$ to 9999$)$	A faulty area detected by self-check function can   be indicated in the internal storage device.

- Use the read value of Pr. 890 to check the faulty area
- The following table shows faulty areas indicated by the read value of Pr.890. Some read values indicate that there are multiple faulty areas. (For example, the read value " 7 " indicates that all the areas described in No. 1 to No. 3 are faulty.)

No.	Read value	Description
1	$1,3,5,7$	Storage area other than the area for parameter settings is faulty (such as area for the set frequency). (When All   parameter clear is performed, the set frequency, remotely-set frequency, host name for Ethernet communication,   position pulse, multi-revolution counter, and offline auto tuning data are cleared.)
2	$2,3,6,7$	Storage area for standard parameter settings is faulty.
3	$4,5,6,7$	Storage area for communication parameter settings is faulty.
4	8 to 9999	Area for manufacturer setting

### 5.10.10 Limiting the output frequency (maximum/minimum frequency)

Motor speed can be limited. Clamp the output frequency at the upper and lower limits.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1 \\ & \mathrm{H} 400 \end{aligned}$	Maximum frequency	$120 \mathrm{~Hz}{ }^{* 1}$	0 to 120 Hz	Set the upper limit of the output frequency.
		$60 \mathrm{~Hz}{ }^{*}$		
$\begin{aligned} & 2 \\ & \mathrm{H} 401 \end{aligned}$	Minimum frequency	0 Hz	0 to 120 Hz	Set the lower limit of the output frequency.
$\begin{aligned} & 18 \\ & \mathrm{H} 402 \end{aligned}$	High speed maximum frequency	$120 \mathrm{~Hz}^{* 1}$	0 to 590 Hz	Set when operating at 120 Hz or higher.
		$60 \mathrm{~Hz}{ }^{*}$		

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## Setting the maximum frequency (Pr.1, Pr.18)

- Set Pr. 1 Maximum frequency to the upper limit of the output frequency. If the value of the frequency command entered is higher than the setting, the output frequency is clamped at the maximum frequency.
- To operate at a frequency higher than the 120 Hz , adjust the upper output frequency limit with Pr. 18 High speed maximum frequency. (When setting a frequency in Pr.18, the Pr. 1 setting automatically changes to the frequency set in Pr.18. Also, when setting a frequency in Pr.1, the Pr. 18 setting automatically changes to the frequency set in Pr.1.)



## －Setting the minimum frequency（Pr．2）

－Set Pr． 2 Minimum frequency to the lower limit of the output frequency．
－If the set frequency is Pr． 2 or less，the output frequency is clamped at Pr． 2 （will not fall below Pr．2）．

## NOTE

－To operate with a frequency higher than 60 Hz using frequency－setting analog signals，change the Pr． 125 （Pr．126） （frequency setting gain）setting．Simply changing the Pr． 1 and Pr． 18 settings does not enable operation at a frequency higher than 60 Hz ．
－During Real sensorless vector control，vector control，and PM sensorless vector control，the upper and lower limits are for the commanded frequency．
－When Pr． 15 Jog frequency setting is equal to or less than Pr． 2 setting，the Pr． 15 setting has precedence over the Pr． 2 setting．
－If a jump frequency that exceeds Pr． 1 （Pr．18）Maximum frequency is set for the 3－point frequency jump，the maximum frequency setting is the set frequency．If the set frequency is less than the jump frequency Pr． 2 Minimum frequency，the jump frequency is the set frequency．（The set frequency can be equal to or lower than the frequency lower limit．）When stall prevention is activated to decrease the output frequency，the output frequency may drop to Pr． 2 or below．

## $\triangle$ CAUTION

－Note that when Pr． 2 is set to any value equal to or higher than Pr． 13 Starting frequency，simply turning ON the start signal will run the motor at the frequency set in Pr． 2 even if the command frequency is not input．

## 《｜Parameters referred to 》》

Pr． 13 Starting frequency $\longmapsto$ page 337，page 338
Pr． 15 Jog frequency page 370
Pr． 125 Terminal 2 frequency setting gain frequency，Pr． 126 Terminal 4 frequency setting gain frequency page 483

### 5.10.11 Avoiding the mechanical resonance points (frequency jump)

When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 31 \\ & \mathrm{H} 420 \end{aligned}$	Frequency jump 1A	9999	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	$1 A$ to $1 B, 2 A$ to $2 B, 3 A$ to $3 B$ are frequency jumps. (3-point jump) 9999: Function disabled
$\begin{aligned} & 32 \\ & \mathrm{H} 421 \end{aligned}$	Frequency jump 1B			
$\begin{aligned} & 33 \\ & \mathrm{H} 422 \end{aligned}$	Frequency jump 2A			
$\begin{aligned} & 34 \\ & \mathrm{H} 423 \end{aligned}$	Frequency jump 2B			
$\begin{aligned} & 35 \\ & \mathrm{H} 424 \end{aligned}$	Frequency jump 3A			
$\begin{aligned} & 36 \\ & \mathrm{H} 425 \end{aligned}$	Frequency jump 3B			
552	Frequency jump range	9999	0 to 30 Hz	Set the jump range for the frequency jumps (6-point jump).
H429			9999	3-point jump

## - 3-point frequency jump (Pr. 31 to Pr.36)

- Up to three areas may be set, with the jump frequencies set to either the top or bottom point of each area.
- The settings of frequency jumps 1A, 2A, 3A are jump points, and operation is performed at these frequencies in the jump areas.

- [Example 1] To fix the frequency to 30 Hz in the range of 30 Hz to 35 Hz , set 35 Hz in Pr. 34 and 30 Hz in Pr. 33 .

Pr.34: 35 Hz
Pr.33: 30 Hz


- [Example 2] To jump the frequency to 35 Hz in the range of 30 Hz to 35 Hz , set 35 Hz in Pr. 33 and 30 Hz in Pr. 34 .

Pr.33: 35 Hz $\qquad$ ,
Pr.34: 30 Hz

## - 6-point frequency jump (Pr.552)

- A total of six jump areas can be set by setting the common jump range for the frequencies set in Pr. 31 to Pr. 36 .
- When frequency jump ranges overlap, the lower limit of the lower jump range and the upper limit of the upper jump range are used.
- When the set frequency decreases and falls within the jump range, the upper limit of the jump range is the set frequency. When the set frequency increases and falls within the jump range, the lower limit of the jump range is the set frequency.




## NOTE

- During acceleration/deceleration, the frequency within the set area is valid.
- If the setting ranges of individual groups (1A and 1B, 2A and 2B, 3A and 3B) overlap, write disable error (Er1) will occur.
- Setting Pr. $552=$ " 0 " disables frequency jumps.
- If a jump frequency that exceeds Pr. 1 (Pr.18) Maximum frequency is set for the 3-point jump, the maximum frequency setting is the set frequency. If the jump frequency is less than the setting of Pr. 2 Minimum frequency, the jump frequency is the set frequency. (The set frequency can be equal to or lower than the frequency lower limit.) Example with 6-point frequency jump



## 《 Parameters referred to 》

Pr. 1 Maximum frequency, Pr. 18 High speed maximum frequency, Pr. 2 Minimum frequency page 399

### 5.10.12 Stall prevention operation

## V/IF Magneticflux

This function monitors the output current and automatically changes the output frequency to prevent the inverter from tripping due to overcurrent, overvoltage, etc. It can also limit the stall prevention and fast-response current limit operation during acceleration/deceleration and power/regenerative driving.
This function is disabled during Real sensorless vector control, vector control and PM sensorless vector control.

- Stall prevention

If the output current exceeds the stall prevention operation level, the output frequency of the inverter is automatically changed to reduce the output current.
Also the second stall prevention function can limit the output frequency range in which the stall prevention function is enabled.

- Fast-response current limit

If the current exceeds the limit value, the output of the inverter is shut off to prevent an overcurrent.

Pr.	Name	Initial value	Setting range	Description	
$\begin{array}{\|l\|} \hline 22 \\ \mathrm{H} 500 \end{array}$	Stall prevention operation level	150\%	0	Stall prevention operation disabled.	
			0.1 to 400\% *1	Set the current limit at which the stall prevention operation will start.	
$\begin{aligned} & 156 \\ & \text { H501 } \end{aligned}$	Stall prevention operation selection	0	$\begin{aligned} & 0 \text { to } 31, \\ & 100 \text { to } 101 \end{aligned}$	Enable/disable the stall prevention operation and the fastresponse current limit operation.	
$\begin{array}{\|l\|} \hline 48 \\ \mathrm{H} 600 \end{array}$	Second stall prevention operation level	150\%	0	Second stall prevention operation disabled.	
			0.1 to 400\% *1	The stall prevention operation level can be changed using the RT signal.	
$\begin{array}{\|l\|} \hline 49 \\ \mathrm{H} 601 \end{array}$	Second stall prevention operation frequency	0 Hz	0	Second stall prevention operation disabled.	
			0.01 to 590 Hz	Set the frequency at which the Pr. 48 stall prevention operation will start.	
			9999	Pr. 48 is enabled when RT signal is ON.	
$\begin{aligned} & 114 \\ & \mathrm{H} 602 \end{aligned}$	Third stall prevention operation level	150\%	0	Third stall prevention operation disabled.	
			0.1 to 400\% *1	The stall prevention operation level can be changed using the X9 signal.	
$\begin{array}{\|l\|} \hline 115 \\ \mathrm{H} 603 \end{array}$	Third stall prevention operation frequency	0 Hz	0	Third stall prevention operation disabled.	
			0.01 to 590 Hz	Set the frequency at which the stall prevention operation will start when the X9 signal turns ON.	
$\begin{array}{\|l\|} \hline 23 \\ \mathrm{H} 610 \end{array}$	Stall prevention operation level compensation factor at	9999	0 to 200\%	The stall operation level when running at high speeds above the rated frequency can be reduced.	
	double speed		9999	Stall prevention operation disabled at double speed.	
66   H611	Stall prevention operation reduction starting frequency	60 Hz	0 to 590 Hz	Set the frequency at which the stall operation level reduction will start.	
$\begin{array}{\|l\|} \hline 148 \\ \mathrm{H} 620 \\ \hline \end{array}$	Stall prevention level at 0 V input	150\%	0 to 400\% *1	The stall prevention operation level can be changed by the analog signal input to the terminal 1 (terminal 4).	
$\begin{aligned} & \hline 149 \\ & \mathrm{H} 621 \end{aligned}$	Stall prevention level at 10 V input	200\%	0 to 400\% *1		
$\begin{aligned} & 154 \\ & \mathrm{H} 631 \end{aligned}$	Voltage reduction selection during stall prevention operation	1	0	Output voltage reduction enabled.	Enable/disable the output voltage reduction during stall prevention operation.
			1	Output voltage reduction disabled.	
			10	Output voltage reduction enabled.	Use this setting when the overvoltage protective function (E.OV[ ]) activates during stall prevention operation in an application with large load inertia.
			11	Output voltage reduction disabled.	
$\begin{aligned} & 157 \\ & \text { M430 } \end{aligned}$	OL signal output timer	0 s	0 to 25 s	Set the OL signal output start time when stall prevention is activated.	
			9999	No OL signal output.	
$\begin{aligned} & 858 \\ & \text { T040 } \end{aligned}$	Terminal 4 function assignment	0	0, 1, 4, 9999	When set "4", the stall prevention level can be changed with the signal to the terminal 4.	
$\begin{aligned} & 868 \\ & \text { T010 } \end{aligned}$	Terminal 1 function assignment	0	0 to 6, 9999	When set "4", the stall prevention level can be changed with the signal to the terminal 1.	

*1 The upper limit of stall prevention operation is limited internally to the following. 120\% (SLD rating), 150\% (LD rating), 220\% (ND rating), or 280\% (HD rating)

## - Setting the stall prevention operation level (Pr.22)

- For Pr. 22 Stall prevention operation level, set the ratio of the output current to the inverter's rated current at which the stall prevention operation will be activated. Normally, use this parameter in the initial setting.
- Stall prevention operation stops acceleration (makes deceleration) during acceleration, makes deceleration during constant speed, and stops deceleration during deceleration.
- When the stall prevention operation is performed, the Overload warning (OL) signal is output.



## NOTE

- A continuous overloaded condition may activate a protective function such as motor overload trip (electronic thermal O/L relay function) (E.THM).
- When Pr. 156 has been set to activate the fast response current limit (initial value), the Pr. 22 setting should not be higher than $170 \%$. Such setting will prevent torque generation
- When Real sensorless vector control or vector control is selected using Pr. 800 Control method selection, Pr. 22 serves as torque limit level. For the FR-A860-00090 or lower, the initial value of Pr. 22 is 200\% instead of $150 \%$.


## $\bullet$ Disabling the stall prevention operation and fast-response current limit according to operating conditions (Pr.156)

- Referring to the table below, enable/disable the stall prevention operation and the fast-response current limit operation, and also set the operation at OL signal output.

Pr. 156 setting		Fast response current limit   O: enabled   $\bullet$ : disabled	Stall prevention operation selection   O: enabled   - : disabled			OL signal output   O: operation continued   -: operation stopped ${ }^{* 1}$	
		Acceleration	Constant speed	Deceleration			
0 (initial value)			$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1		$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	0	
2		$\bigcirc$	$\bullet$	$\bigcirc$	0	$\bigcirc$	
3		$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
4		$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	
5		$\bullet$	O	-	0	O	
6		$\bigcirc$	-	-	$\bigcirc$	$\bigcirc$	
7		-	$\bullet$	-	$\bigcirc$	$\bigcirc$	
8		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	
9		-	$\bigcirc$	0	$\bullet$	$\bigcirc$	
10		$\bigcirc$	-	$\bigcirc$	$\bullet$	$\bigcirc$	
11		$\bullet$	$\bullet$	$\bigcirc$	-	$\bigcirc$	
12		$\bigcirc$	$\bigcirc$	-	-	$\bigcirc$	
13		$\bullet$	$\bigcirc$	-	-	0	
14		$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	
15		-	$\bullet$	$\bullet$	$\bullet$	-*2	
$\begin{aligned} & 100 \\ & { }_{3} \end{aligned}$	Power driving	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Regenerative driving	-	-	-	-	-*2	
16		$\bigcirc$	0	0	0	$\bullet$	
17		-	$\bigcirc$	0	$\bigcirc$	$\bullet$	
18		$\bigcirc$	-	$\bigcirc$	$\bigcirc$	$\bullet$	
19		$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	-	
20		$\bigcirc$	0	$\bullet$	$\bigcirc$	$\bullet$	
21		$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$	
22		$\bigcirc$	-	$\bullet$	0	$\bullet$	
23		-	$\bullet$	$\bullet$	$\bigcirc$	-	
24		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bullet$	
25		$\bullet$	$\bigcirc$	0	$\bullet$	$\bullet$	
26		$\bigcirc$	-	$\bigcirc$	-	$\bullet$	
27		$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	
28		$\bigcirc$	$\bigcirc$	-	-	$\bullet$	
29		-	$\bigcirc$	$\bullet$	-	$\bullet$	
30		$\bigcirc$	-	$\bullet$	$\bullet$	$\bullet$	
31		$\bullet$	-	$\bullet$	$\bullet$	-*2	
$\begin{aligned} & \hline 101 \\ & { }_{*} 101 \end{aligned}$	Power driving	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	Regenerative driving	-	-	-	-	-*2	

*1 When "operation stop at OL signal output" is selected, the inverter stops its operation at the OL signal output (stall prevention stop).
*2 The OL signal and E.OLT are not outputted because fast-response current limit and stall prevention are not operating.
*3 Setting values "100, 101" can be individually set for power driving and regenerative driving. The setting value "101" disables the fast-response current limit during power driving.

## NOTE

- When the load is heavy or the acceleration/deceleration time is short, stall prevention operates and acceleration/ deceleration may not be performed according to the time set. In such case, set Pr. 156 and the stall prevention operation level to the optimum values.
- For lift applications, make settings to disable the fast-response current limit. Otherwise, the torque may be insufficient, causing the load to drop.


## - Adjusting the stall prevention operation signal output and output timing (OL signal, Pr.157)

- If the output current exceeds the stall prevention operation level and stall prevention is activated, Overload warning (OL) signal will turn ON for 100 ms or more. The output signal turns OFF when the output current falls to the stall prevention operation level or less.
- Pr. 157 OL signal output timer can set whether to output the OL signal immediately, or to output it after a certain time period.
- This function also operates during regeneration avoidance operation (overvoltage stall).

Pr. 157 setting	Description
0 (initial value)	Output immediately.
0.1 to 25	Output after the set time (s).
9999	Not output.



## NOTE

- OL signal is assigned to the terminal OL in the initial status. The OL signal can be assigned to other terminals by setting " 3 (positive logic) or 103 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If the stall prevention operation has lowered the output frequency to 0.5 Hz and kept the level for 3 s , the stall prevention stop (E.OLT) is activated to shut off the inverter output.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- Setting for stall prevention operation in the high-frequency range (Pr.22, Pr.23, Pr.66)


- When operating at the rated motor frequency or higher, acceleration may not be made because the motor current does not increase. Also, when operating in the high-frequency range, the current flowing to the locked motor becomes less than the rated output current of the inverter; and even if the motor is stopped, the protective function will not operate (OL). In a case like this, the stall prevention level can be reduced in the high-frequency range to improve the motor's operating characteristics. This is useful when operating up to the high speed range, such as when using a centrifuge. Normally, set Pr. 66 Stall prevention operation reduction starting frequency to 60 Hz , and Pr. 23 Stall prevention operation level compensation factor at double speed to $100 \%$.
- Calculation formula for stall prevention operation level

$$
\begin{aligned}
& \begin{array}{l}
\text { Stall prevention operation level }(\%) \\
\text { in the high-frequency range }
\end{array}=A+B \times\left[\frac{\operatorname{Pr} .22-A}{\operatorname{Pr} .22-B}\right] \times\left[\frac{\operatorname{Pr} .23-100}{100}\right] \\
& \text { Where, } \quad A=\frac{\operatorname{Pr} .66(\mathrm{~Hz}) \times \operatorname{Pr} .22(\%)}{\text { Output frequency }(\mathrm{Hz})}, B=\frac{\operatorname{Pr} .66(\mathrm{~Hz}) \times \operatorname{Pr} .22(\%)}{400 \mathrm{~Hz}}
\end{aligned}
$$

- When Pr. 23 ="9999" (initial value), the stall prevention operation level is constant at the Pr. 22 level up to 590 Hz .


## - Setting multiple stall prevention operation levels (Pr.48, Pr.49, Pr.114, Pr.115)

- By setting Pr. 49 Second stall prevention operation frequency $=$ " 9999 " and turning ON the RT signal, Pr. 48 Second stall prevention operation level will be enabled.
- For Pr. 48 (Pr.114), set the stall prevention operation level that is effective in the output frequency range between 0 Hz and Pr. 49 (Pr.115). However, the operation level is Pr. 22 during acceleration.
- Stop-on-contact operation can be used by decreasing the Pr. 48 (Pr.114) setting and loosening the reduction torque (torque when stopped).
- Pr. 114 and Pr. 115 are enabled when the X9 signal is ON. To input the X9 signal, set " 9 " in any of Pr. 178 to Pr. 189 Input terminal function selection to assign the function to the terminal.

Pr.49 setting	Pr. 115 setting	Operation
0 (initial value)	The second (third) stall prevention function disabled.	
0.01 Hz to 590 Hz	The second (third) stall prevention function operates according to the frequency. ${ }^{* 1}$	
$999{ }^{* 2} 2$	Setting not available	The second stall prevention function operates according to the RT signal.  
		RT signal ON: stall level Pr.48
RT signal OFF: stall level Pr. 22		

*1 For the stall prevention operation level, the smaller of Pr. 22 and Pr. 48 (Pr.115) has precedence.
*2 When Pr. $858=$ "4 (analog input to terminal 4 for stall prevention operation level)" or Pr. $868=$ " 4 (analog input to terminal 1 for stall prevention operation level)", turning ON the RT (X9) signal will not enable the second (third) stall prevention function. (Input to the terminal 4 or terminal 1 is valid.)


## NOTE

- When Pr. $49 \neq$ "9999" (level change according to frequency) and Pr. $48=$ " $0 \%$ ", the stall prevention function will be disabled at or lower than the frequency set in Pr. 49.
- The RT signal is assigned to the terminal RT in the initial status. Set " 3 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- The RT (X9) signal acts as the second (third) function selection signal and makes the other second (third) functions valid. (Refer to page 503.)


## - Stall prevention operation level setting (analog variable) from terminal 1 (terminal 4) (Pr.148, Pr.149, Pr.858, Pr.868)

- To use the terminal 1 (analog voltage input) to set the stall prevention operation level, set Pr. 868 Terminal 1 function assignment = "4". Then, input a 0 to 5 V (or 0 to 10 V ) to the terminal 1 . To choose whether 5 V or 10 V , use Pr. 73 Analog input selection. In the initial status, $\operatorname{Pr} .73=" 1$ (initial value)" is set to choose 0 to $\pm 10 \mathrm{~V}$ input.
- When setting the stall prevention operation level from terminal 4 (analog current input), set Pr. 858 Terminal 4 function assignment = "4".
- Input 0 to 20 mA into terminal 4. There is no need to turn ON the AU signal.
- Set Pr. 148 Stall prevention level at $0 \mathbf{V}$ input to the current limit level when input voltage is $0 \mathrm{~V}(0 \mathrm{~mA})$.
- Set Pr. 149 Stall prevention level at $10 \mathbf{V}$ input to the current limit level when input voltage is $10 \mathrm{~V} / 5 \mathrm{~V}(20 \mathrm{~mA})$.


Pr. 858 setting	Pr. 868 setting	V/F, Advanced magnetic flux vector control	
		Terminal 4 function	Terminal 1 function
$\begin{aligned} & 0 \\ & \text { (initial value) } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \text { (initial value) } \end{array}$	Frequency command (AU signal-ON)	Auxiliary frequency
	1		-
	2		-
	3		-
	4*1		Stall prevention
	5		-
	6		-
	9999		-
1	$\begin{array}{\|l\|} \hline 0 \\ \text { (initial value) } \end{array}$	-	-
	1		-
	2		-
	3		-
	4*1		Stall prevention
	5		-
	6		-
	9999		-
$4^{* 2}$	$\begin{array}{\|l\|} \hline 0 \\ \text { (initial value) } \end{array}$	Stall prevention	Auxiliary frequency
	1		-
	2		-
	3	-	-
	4*1	-*3	Stall prevention
	5	Stall prevention	-
	6		-
	9999		-
9999	-	-	-

*1 When Pr. $868=$ "4" (analog stall prevention), the other functions for terminal 1 (auxiliary input, override function, PID control) will be disabled.
*2 When Pr. $858=$ "4" (analog stall prevention), PID control and speed commands using terminal 4 will not operate, even if the AU signal turns ON.
*3 When both of Pr. 858 and Pr. 868 are set to "4" (stall prevention), terminal 1 functions take priority and terminal 4 has no function.

- The fast-response current limit cannot be set.


## - To further prevent a trip (Pr.154)

- When Pr. 154 Voltage reduction selection during stall prevention operation $=$ " 0,10 ", the output voltage is reduced. By making this setting, an overcurrent trip becomes less likely to occur. Use this setting when torque reduction does not pose a problem. (Under V/F control, the output voltage is reduced only during the stall prevention operation is activated.)
- Set Pr. $154=" 10,11 "$ when the overvoltage protective function (E.OV[ ]) activates during stall prevention operation in an application with large load inertia. Note that turning OFF the start signal (STF/STR) or varying the frequency command during stall prevention operation may delay the acceleration/deceleration start.

Pr. 154	E.OC[ ] countermeasure	E.OV[ ] countermeasure
0	Effective	-
1 (initial value)	-	-
10	Effective	Effective
11	-	Effective

## $\triangle C A U T I O N$

- Do not set the stall prevention operation current too low. Doing so will reduce the generated torque.
- Be sure to perform a test run. Stall prevention operation during acceleration may extend the acceleration time. Stall prevention operation during constant-speed operation may cause sudden speed changes. Stall prevention operation during deceleration may extend the deceleration time.


## 

Pr. 22 torque limit level page 191
Pr. 73 Analog input selection page 473
Pr. 178 to Pr. 189 (Input terminal function selection) page 498
Pr. 190 to Pr. 196 (Output terminal function selection) page 446
Pr. 858 Terminal 4 function assignment, Pr. 868 Terminal 1 function assignment page 476

### 5.10.13 Load characteristics fault detection

This function is used to monitor whether the load is operating in normal condition by storing the speed/torque relationship in the inverter to detect mechanical faults or for maintenance. When the load operating condition deviates from the normal range, the protective function is activated or the warning is output to protect the inverter or the motor.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1480 \\ & \text { H520 } \end{aligned}$	Load characteristics measurement mode	0	0	Load characteristics measurement mode does not start. (Measurement of load characteristics complete without fault.)
			1	Load characteristics measurement mode starts.
			$\begin{aligned} & 2,3,4,5 \\ & 81,82,83 \\ & 84,85 \end{aligned}$	The load characteristics measurement status is displayed. (Read-only)
$\begin{aligned} & 1481 \\ & \text { H521 } \end{aligned}$	Load characteristics load reference 1	9999	0 to 400\%	Set the reference value of normal load characteristics.   8888: The present load status is written as reference status.   9999: The load reference is invalid.
$\begin{aligned} & 1482 \\ & \text { H522 } \end{aligned}$	Load characteristics load reference 2	9999		
$\begin{aligned} & 1483 \\ & \text { H523 } \end{aligned}$	Load characteristics load reference 3	9999		
$\begin{aligned} & 1484 \\ & \text { H524 } \end{aligned}$	Load characteristics load reference 4	9999		
$\begin{aligned} & 1485 \\ & \text { H525 } \end{aligned}$	Load characteristics load reference 5	9999		
$\begin{aligned} & 1486 \\ & \text { H526 } \end{aligned}$	Load characteristics maximum frequency	60 Hz	0 to 590 Hz	Set the maximum frequency of the load characteristics fault detection range.
$\begin{aligned} & 1487 \\ & \mathrm{H} 527 \end{aligned}$	Load characteristics minimum frequency	6 Hz	0 to 590 Hz	Set the minimum frequency of the load characteristics fault detection range.
$\begin{aligned} & 1488 \\ & \text { H531 } \end{aligned}$	Upper limit warning detection width	20\%	0 to 400\%	Set the detection width when the upper limit load fault warning is output.
			9999	Function disabled
$\begin{aligned} & 1489 \\ & \text { H532 } \end{aligned}$	Lower limit warning detection width	20\%	0 to 400\%	Set the detection width when the lower limit load fault warning is output.
			9999	Function disabled
$\begin{aligned} & 1490 \\ & \text { H533 } \end{aligned}$	Upper limit fault detection width	9999	0 to 400\%	Set the detection width when output is shut off when the upper limit load fault occurs.
			9999	Function disabled
$\begin{aligned} & 1491 \\ & \text { H534 } \end{aligned}$	Lower limit fault detection width	9999	0 to 400\%	Set the detection width when output is shut off when the lower limit load fault occurs.
			9999	Function disabled
$\begin{aligned} & 1492 \\ & \text { H535 } \end{aligned}$	Load status detection signal delay time / load reference measurement waiting time	1 s	0 to 60 s	Set the waiting time after the load fault is detected until warning output or output shutoff.   In the load characteristics measurement mode, set the waiting time after the load measurement frequency is reached until the load reference is set.

## Load characteristics reference setting (Pr. 1481 to Pr.1487)

- Use Pr. 1481 to Pr. 1485 to set the reference value of load characteristics.
- Use Pr. 1486 Load characteristics maximum frequency and Pr. 1487 Load characteristics minimum frequency to set the output frequency range for load fault detection.



## - Automatic measurement of the load characteristics reference (Load characteristics measurement mode) (Pr.1480)

## Point ${ }^{\rho}$

- Perform measurement under actual environment with the motor connected.
- Set Pr. 1487 Load characteristics minimum frequency to a value higher than the Pr. 13 Starting frequency setting.
- Setting Pr. 1480 Load characteristics measurement mode $=" 1 "$ enables automatic measurement of the load characteristics reference. (Load characteristics measurement mode)
- Use Pr. 1486 and Pr. 1487 to set the frequency band for the measurement, and set Pr. $1480=11$ ". After setting, when the inverter is started, the measurement starts. (When the value set in Pr. 1486 is smaller than the value set in Pr. 1487, the measurement does not start.)
- The automatically measured load characteristics reference is written in Pr. 1481 to Pr. 1485.
- After the measurement is started, read Pr. 1480 to display the status of the measurement. If " 8 " appears in the tens place, the measurement has not properly completed.

Read value of Pr. $\mathbf{1 4 8 0}$		Status
Tens place	Ones place	
-	1	During measurement from the starting point to Point 1
-	2	During measurement from Point 1 to Point 2
-	3	During measurement from Point 2 to Point 3
-	5	During measurement from Point 3 to Point 4
-	0	During measurement from Point 4 to Point 5
-	1 to 5	Termination of measurement by an activation of a protective function, Inverter reset, turning ON of MRS   signal, turning OFF of the start command, or timeout. (The value in the ones place represents the above-   mentioned measurement point.)
8		

- While measuring automatically, the During load characteristics measurement (Y213) signal is output. For the Y213 signal, assign the function by setting "213 (positive logic)" or "313 (negative logic)" in any of in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- Setting "8888" in Pr. 1481 to Pr. 1485 enables fine adjustment of load characteristics. When setting Pr. 1481 to Pr. $1485=$ " 8888 " during operation, the load status at that point is set in the parameter. (Only when the set frequency is within $\pm 2 \mathrm{~Hz}$ of the frequency of the measurement point, and SU signal is in the ON state.)



## NOTE

- Even if the load measurement is not properly completed, the load characteristics fault is detected based on the load characteristics found by the already-completed portion of the measurement.
- During the load characteristics measurement, the load characteristics fault detection is not performed.
- During the load characteristics measurement, linear acceleration/deceleration is performed even if the S-pattern acceleration/deceleration is set.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## $\bullet$ Setting the load characteristics reference manually (Pr. 1481 to Pr.1485)

- Set Pr. 1480 Load characteristics measurement mode = "0" (initial value).
- Set Pr. 1486 and Pr. 1487 to specify the frequency band for the measurement, and calculate the frequency as the load characteristics reference ( $\mathrm{f} 2 \mathrm{to} \mathrm{f4}$ ) using the following table.
- Start the inverter operation, and set Pr. 1481 = " 8888 " during operation at the frequency of the load characteristics reference 1 (f1). The load status at that point is set in Pr. 1481 (only when the set frequency is within $\pm 2 \mathrm{~Hz}$ of the frequency of the measurement point, and the SU signal is ON).
- Set load references in Pr. 1482 to Pr. 1485 in the same way as Pr. 1481.

Reference	Frequency	Load reference
Load characteristics reference 1	f 1 : load characteristics minimum frequency (Pr.1487)	Pr. 1481
Load characteristics reference 2	$\mathrm{f} 2=(\mathrm{f} 5-\mathrm{f} 1) / 4+\mathrm{f} 1$	Pr. 1482
Load characteristics reference 3	$\mathrm{f} 3=(\mathrm{f} 5-\mathrm{f} 1) / 2+\mathrm{f} 1$	Pr. 1483
Load characteristics reference 4	$\mathrm{f} 4=(\mathrm{f} 5-\mathrm{f} 1) \times 3 / 4+\mathrm{f} 1$	Pr. 1484
Load characteristics reference 5	$\mathrm{f5}$ : load characteristics maximum frequency (Pr.1486)	Pr. 1485

## NOTE

- When inputting values directly in Pr. 1481 to Pr. 1485 under V/F control or Advanced magnetic flux vector control, input the load meter value monitored at each reference frequency.
- When inputting values directly in Pr. 1481 to Pr. 1485 under Real sensorless vector control, Vector control, or PM sensorless vector control, input the motor torque value monitored at each reference frequency.


## - Load fault detection setting (Pr. 1488 to Pr.1491)

- When the load is deviated from the detection width set in Pr. 1488 Upper limit warning detection width, the Upper limit warning detection (LUP) signal is output. When the load is deviated from the detection width set in Pr. 1489 Lower limit warning detection width, the Lower limit warning detection (LDN) signal is output. At the same time, the Load fault warning (LDF) appears on the operation panel.
- For the LUP signal, assign the function by setting "211 (positive logic)" or "311 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection). For the LDN signal, assign the function by setting "212 (positive logic)" or "312 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- When the load is deviated from the detection width set in Pr. 1490 Upper limit fault detection width, the protective function (E.LUP) is activated and the inverter output is shut off. When the load is deviated from the detection width set in Pr. 1491 Lower limit fault detection width, the protective function (E.LDN) is activated and the inverter output is shut off.
- To prevent the repetitive on/off operation of the signal due to load fluctuation near the detection range, Pr. 1492 Load status detection signal delay time / load reference measurement waiting time can be used to set the delay time. Even when a fault is detected out of the detection range once, the warning is not output if the characteristics value returns to the normal range from a fault state within the output delay time.



## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## －Setting example

－The load characteristics are calculated from the parameter setting and the output frequency．
－A setting example is as follows．The reference value is linearly interpolated from the parameter settings．For example，the reference when the output frequency is 30 Hz is $26 \%$ ，which is linearly interpolated from values of the reference 2 and the reference 3.

Reference	Frequency	Load reference
Load characteristics reference 1	$\mathrm{f} 1:$ Load characteristics minimum frequency $($ Pr．1487 $)=10 \mathrm{~Hz}$	Pr．1481 $=15 \%$
Load characteristics reference 2	$\mathrm{f} 2=(\mathrm{ff}-\mathrm{f} 1) / 4+\mathrm{f} 1=22.5 \mathrm{~Hz}$	Pr．1482 $=20 \%$
Load characteristics reference 3	$\mathrm{f} 3=(\mathrm{f5}-\mathrm{f} 1) / 2+\mathrm{f} 1=35 \mathrm{~Hz}$	Pr．1483 $=30 \%$
Load characteristics reference 4	$\mathrm{f4}=(\mathrm{f5}-\mathrm{f} 1) \times 3 / 4+\mathrm{f} 1=47.5 \mathrm{~Hz}$	Pr．1484 $=60 \%$
Load characteristics reference 5	$\mathrm{f5}:$ Load characteristics maximum frequency $($ Pr．1486 $)=60 \mathrm{~Hz}$	Pr．1485 $=100 \%$



## NOTE

－When the load reference is not set for five points，the load characteristics value is determined by linear interpolation of the set load reference values only．If there is only one load reference setting，the set load reference is used as the load reference all through the range．

## 《Parameters referred to 》》

Pr． 41 Up－to－frequency sensitivity page 457
Pr． 190 to Pr． 196 （Output terminal function selection）page 446

### 5.10.14 Motor overspeeding detection

The Overspeed occurrence (E.OS) is activated when the motor speed exceeds the overspeed detection level. This function prevents the motor from accidentally speeding over the specified value, due to an error in parameter setting, etc.

Pr.	Name	Initial value	Setting   range	Description
H84   H800	Overspeed detection level	9999	0 to 590 Hz	If the motor rotation speed exceeds the speed set in Pr. 374   during encoder feedback control, Real sensorless vector   control, vector control or PM sensorless vector control,   Overspeed occurrence (E.OS) occurs, the inverter output is   shut off.
			9999	If the speed exceeds "the maximum speed (Pr.1, Pr.18) + 20   Hz" during encoder feedback control, Real sensorless vector   control, or vector control, E.OS occurs.   During PM sensorless vector control, E.OS occurs when the   speed exceeds "the motor maximum frequency +10 Hz**1

*1 The motor maximum frequency is set in Pr. 702 Maximum motor frequency. When Pr. $702=$ " 9999 (initial value)", the Pr. 84 Rated motor frequency setting is applied as the motor maximum frequency.


## NOTE

- During encoder feedback control and vector control, the motor speed is compared against Pr.374. During Real sensorless vector control and PM sensorless vector control, the output frequency is compared against Pr. 374 .


### 5.11 (M) Monitor display and monitor output signal

Purpose	Parameter to set   Refer to   page			
To display the motor speed.   To set to rotations per minute.	Speed display and rotations   per minute setting	P.M000 to P.M002,   P.D030	Pr.37, Pr.144,   Pr.505, Pr.811	
To change the monitored item on the   operation panel and parameter unit	Operation panel monitored   item selection,   clearing the cumulative   monitor	P.M020 to P.M023,   P.M030, P.M031,   P.M044, P.M045,   P.M050 to P.M052,	Pr.52, Pr.170,   Pr.171, Pr.268,   Pr.290, Pr.563,   Pr.564, Pr.774 to   Pr.776, Pr.891,   Pr.1018, Pr.1106 to   Pr.1108	4419

### 5.11.1 Speed display and rotations per minute setting

The monitor display unit and the frequency setting on the operation panel can be switched to motor speed and machine speed.

Pr.	Name	Initial value	Setting range	Description	
37	Speed display	0	0	Frequency display and setting	
M000			1 to 9998*1	Set the machine speed for Pr. 505.	
$\begin{aligned} & 505 \\ & \text { M001 } \end{aligned}$	Speed setting reference	60 Hz	1 to 590 Hz	Set the reference speed for Pr.37.	
$\begin{aligned} & 144 \\ & \text { M002 } \end{aligned}$	Speed setting switchover	4	$\begin{aligned} & 0,2,4,6,8,10,12 \\ & 102,104,106,108 \\ & 110,112 \end{aligned}$	Set the number of motor poles when displaying the motor speed.	
$\begin{aligned} & \hline 811 \\ & \text { D030 } \end{aligned}$	Set resolution switchover	0	0	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.1\%
			1	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	
			10	Speed setting, running speed monitor increments $1 \mathrm{r} / \mathrm{min}$	Torque limit setting increments 0.01\%
			11	Speed setting, running speed monitor increments $0.1 \mathrm{r} / \mathrm{min}$	

*1 The maximum value of the setting range differs according to the Pr. 1 Maximum frequency, Pr. 505 Speed setting reference, and it can be calculated from the following formula.
The maximum value of Pr. $37<65535 \times$ Pr. $505 /$ Pr. 1 setting value ( Hz ).
The maximum setting value of $\operatorname{Pr} .37$ is 9998 if the result of the above formula exceeds 9998.

## Display in speed (Pr.37, Pr.144)

- Set the number of motor poles $(2,4,6,8,10,12)$ for Pr. 144 , or the number of motor poles + $100(102,104,106,108,110$, 112) to display the motor speed.
- The Pr. 144 setting will change automatically when setting the motor poles with Pr. 81 Number of motor poles. Pr. 81 will not automatically change when Pr. 144 is changed.
Example 1) Changing the initial value of Pr. 81 to "2" will change Pr. 144 from "4" to "2".
Example 2) When setting Pr. 81 = "2" while Pr. 144 = "104", Pr. 144 will change from "104" to "102".


## - Display in motor speed (Pr.37, Pr.505)

- To display in the machine speed, set Pr. 37 to the machine speed at the frequency set in Pr. 505.
- For example, when Pr. 505 is set to 60 Hz and Pr. 37 is set to " 1000 ", the operation panel indicates " 1000 " as the monitor value of machine speed while the output frequency is 60 Hz . " 500 " is displayed while the output frequency is 30 Hz .


## Changing the monitored value and speed setting increment (Pr.811)

- When Pr. 811 = "1 or 11", the speed setting for PU input and RS-485 communication, speed setting from communication option and the running speed monitor will be in increments of $0.1 \mathrm{r} / \mathrm{min}$.
- For availability of changing the speed setting increments via communication options, refer to the Instruction Manual of each communication option.
- Refer to page 191 for details of the setting increments for the torque limit level.


## - Monitor display (setting) increments

- When both settings of Pr. 37 and Pr. 144 are changed from the initial values, a precedence order for these settings is as follows: Pr. 144 = "102 to 112" > Pr. 37 = "1 to 9998" > Pr. 144 = "2 to 12".
- The combination of the Pr. 37 and Pr. 144 settings as shown below determines the setting increment for each monitor.

$\begin{aligned} & \text { Pr. } 37 \\ & \text { Setting } \end{aligned}$	Pr. 144   Setting	Output frequency monitor	Set frequency monitor	Running speed monitor	Frequency setting parameter setting
0   (initial value)	0	0.01 Hz	0.01 Hz	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	0.01 Hz
	2 to 12	0.01 Hz (initial setting)	0.01 Hz (initial setting)	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$ (initial setting)	0.01 Hz (initial setting)
	102 to 112	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	$1 \mathrm{r} / \mathrm{min}^{* 1}$
1 to 9998	0	0.01 Hz	0.01 Hz	1 (machine speed*1)	0.01 Hz
	2 to 12	1 (machine speed*1 ${ }^{* 1}$	1 (machine speed*1)	1 (machine speed*1 ${ }^{* 1}$ )	1 (machine speed ${ }^{* 1}$ )
	102 to 112	0.01 Hz	0.01 Hz	$1 \mathrm{r} / \mathrm{min}^{* 1 * 2}$	0.01 Hz

*1 Motor speed r/min conversion formula:.... frequency $\times 120 /$ number of motor poles (Pr.144) Machine speed conversion formula:......... Pr. $37 \times$ frequency / Pr. 505
For Pr. 144 in the above formula, the value is "Pr. $144-100$ " when " 102 to 112 " is set in Pr.144; and the value is " 4 " when $\operatorname{Pr} .37=0$ and $\operatorname{Pr} .144=$ 0.

Pr. 505 is always set as frequency $(\mathrm{Hz})$.
*2 Use Pr. 811 to change the increment from $1 \mathrm{r} / \mathrm{min}$ to $0.1 \mathrm{r} / \mathrm{min}$.

## NOTE

- The inverter's output frequency is displayed as synchronous speed under V/F control. The displayed value is "actual motor speed" + "motor slip." When Advanced magnetic flux vector control, Real sensorless vector control or PM sensorless vector control is selected, the actual motor speed (estimated value by motor slip calculation) is used. When the encoder feedback control or vector control is selected, the actual motor speed from the encoder is used.
- When Pr. $37=$ " 0 " and $\operatorname{Pr} .144=" 0 "$, the running speed monitor is displayed with the number of motor poles 4 . (Displays $1800 \mathrm{r} / \mathrm{min}$ at 60 Hz )
- To change the PU main monitor (PU main display), refer to Pr. 52.
- If the setting increment is changed to $1 \mathrm{r} / \mathrm{min}(\operatorname{Pr} .811=" 0,10 ")$ after setting the running speed in $0.1 \mathrm{r} / \mathrm{min}(\operatorname{Pr} .811=" 1,11 ")$, the $0.1 \mathrm{r} / \mathrm{min}$ increment may be dropped, in order for the rotations per minute resolution to change from $0.1 \mathrm{r} / \mathrm{min}$ to $0.3 \mathrm{r} /$ min (when using four poles).
- When using the machine speed display for the parameter unit (FR-PU07), do not change the speed with the up/down key if a set speed above 65535 is being displayed. The set speed may become an undetermined value.
- When a certain type of communication option is used, the frequency display (setting) is used regardless of the Pr. 37 and Pr. 144 settings. Refer to the Instruction Manual of each communication option for details. (The frequency display (setting) is always used for HMS network options.)
- When Pr. 811 = "1 or 11 " with the $0.1 \mathrm{r} / \mathrm{min}$ increment, the upper limit is as follows.

Speed command setting range: $6000 \mathrm{r} / \mathrm{min}$ for 2 to 10 motor poles, $5900 \mathrm{r} / \mathrm{min}$ for 12 motor poles
Running speed monitor such as the operation panel: $6553.5 \mathrm{r} / \mathrm{min}$
Full scale of the running speed motor for analog output (terminals FM and AM): $6000 \mathrm{r} / \mathrm{min}$

## $\triangle$ CAUTION

- Make sure to set the running speed and the number of motor poles. Otherwise, the motor might run at extremely high speed, damaging the machine.


## Parameters referred to $\gg$

[^14]
### 5.11.2 Monitor indicator selection using operation panel or via communication

The monitored item to be displayed on the operation panel or the parameter unit can be selected.

Pr.	Name	Initial value	Setting range	Description
52   M100	Operation panel main monitor selection	$0$   (output frequency)	0,5 to 14,17 to 20,22 to 36,38 to 46,50 to 57,61 , 62, 64, 67, 68, 71 to 75 , 87 to 98,100	Select the monitor to be displayed on the operation panel and parameter unit. Refer to page 420 for the monitor description.
$\begin{aligned} & \hline 774 \\ & \text { M101 } \end{aligned}$	Operation panel monitor selection 1	9999	1 to 3,5 to 14,17 to 20, 22 to 36,38 to 46,50 to 57 , 61, 62, 64, 67, 68, 71 to 75,87 to $98,100,9999$	The output frequency, output current and output voltage monitor that are displayed in monitor mode on the operation panel and parameter unit can be switched to a specified monitor.   9999: Follows the Pr. 52 setting.
$\begin{aligned} & \hline 775 \\ & \text { M102 } \end{aligned}$	Operation panel monitor selection 2			
776   M103	Operation panel monitor selection 3			
$\begin{aligned} & \hline 170 \\ & \text { M020 } \end{aligned}$	Watt-hour meter clear	9999	0	Set "0" to clear the watt-hour meter monitor.
			10	Set the maximum value for monitoring via communication. Set it in the range of 0 and 9999 kWh.
			9999	Set the maximum value for monitoring via communication. Set it in the range of 0 and 65535 kWh .
$\begin{aligned} & 563 \\ & \text { M021 } \end{aligned}$	Energization time carrying-over times	0	(0 to 65535)   (Read-only)	Displays the numbers of times that the cumulative energization time monitor exceeded 65535 h. Read-only.
$\begin{aligned} & 268 \\ & \text { M022 } \end{aligned}$	Monitor decimal digits selection	9999	0	Displays as integral value.
			1	Displays in 0.1 increments.
			9999	No function
$\begin{aligned} & 891 \\ & \text { M023 } \end{aligned}$	Cumulative power monitor digit shifted times	9999	0 to 4	Set the number of times to shift the cumulative power monitor digit. The monitor value is clamped at the maximum value.
			9999	No shift   Monitor value is cleared when it exceeds the maximum value.
$\begin{aligned} & 171 \\ & \text { M030 } \end{aligned}$	Operation hour meter clear	9999	0	Set "0" to clear the operation hour monitor.
			9999	The read value is always 9999. Nothing happens when "9999" is set.
$\begin{aligned} & 564 \\ & \text { M031 } \end{aligned}$	Operating time carrying-over times	0	(0 to 65535) (Read-only)	Displays the numbers of times that the operating time monitor exceeded 65535 h. Read-only.
$\begin{aligned} & 290 \\ & \text { M044 } \end{aligned}$	Monitor negative output selection	0	0 to 7	Set the availability of output with a minus sign for the terminal AM, the operation panel display, or monitoring via communication. (Refer to page 428)
$\begin{aligned} & 1018 \\ & \text { M045 } \end{aligned}$	Monitor with sign selection	9999	0, 1,9999	Select items to be displayed with minus signs.
$\begin{aligned} & 1106 \\ & \text { M050 } \end{aligned}$	Torque monitor filter	9999	0 to 5 s	The filter time constant is selectable for monitoring of the torque. A larger setting results in slower response.
			9999	0.3 s filter
$\begin{aligned} & 1107 \\ & \text { M051 } \end{aligned}$	Running speed monitor filter	9999	0 to 5 s	The filter time constant is selectable for monitoring of the running speed. A larger setting results in slower response.
			9999	0.08 s filter
1108 M052	Excitation current monitor filter	9999	0 to 5 s	The filter time constant is selectable for monitoring of the motor excitation current. A larger setting results in slower response.
			9999	0.3 s filter

## $\checkmark$ Monitor description list (Pr.52, Pr. 774 to Pr.776)

- Set the monitor to be displayed on the operation panel and the parameter unit in Pr.52, Pr. 774 to Pr. 776.
- Refer to the following table to find the setting value for each monitoring. The value in the Pr. setting column is set in each of the parameters for monitoring (Pr.52, Pr. 774 to Pr.776) to determine the monitor item. The value in the RS-485 column is used for the RS-485 communication special monitor selection. The value in the MODBUS RTU column is used for the MODBUS RTU real time monitor. (The items marked with "-" cannot be selected. The circle in the negative indication () column indicates that the indication of negative signed numbers is available.)

Monitor item	Increment and unit	Pr. setting	RS-485	MODBUS RTU	Negative indication $(-)^{* 1}$	Description
Output frequency/speed ${ }^{* 17}$	$\underset{* 16}{0.01 \mathrm{~Hz} / 1}$	1/0/100	H01	40201	$\bigcirc{ }^{* 20}$	Displays the inverter output frequency.
Output current ***17	$\begin{aligned} & 0.01 \mathrm{~A} / \\ & 0.1 \mathrm{~A}^{* 6} \end{aligned}$	2/0/100	H02	40202		Displays the inverter output current effective value.
Output voltage ${ }^{* 17}$	0.1 V	3/0/100	H03	40203		Displays the inverter output voltage.
Fault display	-	0/100	-	-		Displays 8 past faults individually.
Frequency setting value/ speed setting	$\begin{aligned} & 0.01 \mathrm{~Hz} / 1 \\ & { }_{*} 16 \end{aligned}$	$5^{*}$	H05	40205		Displays the set frequency
Running speed	1 (r/min)	$6^{* 2}$	H06	40206	$\bigcirc{ }^{* 20}$	Displays the motor speed (by the Pr.37, Pr. 144 settings). (Refer to page 417)   The actual motor speed by encoder signal is used during encoder feedback control and vector control.
Motor torque	0.1\%	$7{ }^{*}$	H07	40207	$\bigcirc$	Displays motor torque as a percentage ( $0 \%$ under V/F control), considering the rated torque as 100\%.
Converter output voltage	0.1 V	$8^{* 2}$	H08	40208		Displays the DC bus voltage value.
Regenerative brake duty ${ }^{*} 7$	0.1\%	$9^{* 2}$	H09	40209		Brake duty set in Pr. 30 and Pr. 70
Electronic thermal O/L relay load factor	0.1\%	$10^{*}$	H0A	40210		Displays the motor thermal cumulative value, considering the thermal operation level as $100 \%$.
Output current peak value	$\begin{aligned} & 0.01 \mathrm{~A} / \\ & 0.1 \mathrm{~A}^{* 6} \end{aligned}$	$11^{*} 2$	H0B	40211		Saves and displays the output current monitor peak value. (Cleared with each start.)
Converter output voltage peak value	0.1 V	$12^{*}$	H0C	40212		Saves and displays the DC bus voltage peak value. (Cleared with each start.)
Input power	$\begin{aligned} & 0.01 \mathrm{~kW} / 0.1 \\ & \mathrm{~kW}^{*} 6 \end{aligned}$	$13 * 2$	H0D	40213		Displays the power at the inverter input side.
Output power* ${ }^{*}$	$\begin{aligned} & 0.01 \mathrm{~kW} / 0.1 \\ & \mathrm{~kW}^{*} 6 \end{aligned}$	$14^{*} 2$	H0E	40214		Displays the power at the inverter output side.
Load meter	0.1\%	17	H11	40217		Displays torque current as a percentage, considering Pr. 56 setting value as $100 \%$ (motor rated torque is considered as $100 \%$ during Sensorless vector and vector control).
Motor excitation current	$\begin{aligned} & 0.01 \mathrm{~A} / \\ & 0.1 \mathrm{~A}^{* 6} \end{aligned}$	18	H12	40218		Displays the motor excitation current
Position pulse	-	19	H13	40219		Displays the number of pulses per motor rotation during orientation control and position control. (Displays the voltage monitor when a vector control compatible option is not connected.)
Cumulative energization time ${ }^{* 3}$	1 h	20	H14	40220		Displays the cumulative energization time since the inverter shipment. Check how many times the monitor value exceeded 65535 h with Pr. 563.


Monitor item	Increment and unit	Pr. setting	RS-485	MODBUS RTU	Negative indication $(-)^{* 1}$	Description
Orientation status*10	1	22	H16	40222		Displays values only when orientation control is enabled. (Displays the voltage monitor when a vector control compatible option is not connected.) (Refer to page 570)
Actual operation time ${ }^{* 3 * 4}$	1 h	23	H17	40223		Displays the cumulative time since the inverter began running.   The number of times the monitor value exceeded 65535 h can be checked with Pr. 564   This can be cleared with Pr. 171. (Refer to page 427)
Motor load factor	0.1\%	24	H18	40224		Displays the output current value as a percentage, considering the inverter rated current value as 100\%. Monitor value = output current monitor value / inverter rated current $\times 100$ [\%]
Cumulative power	$\begin{aligned} & 0.01 \mathrm{kWh} / \\ & 0.1 \mathrm{kWh}^{*} 5^{*} 6 \end{aligned}$	25	H19	40225		Displays the cumulative energy based on the output power monitor. This can be cleared with Pr. 170. (Refer to page 426.)
Position command	1	26	H1A	40226	$\bigcirc$	Displays the position command
Position command (upper digits)	1	27	H1B	40227	$\bigcirc$	(decimal) before the electronic gear is set. ${ }^{* 9}$
Current position	1	28	H1C	40228	$\bigcirc$	
Current position (upper digits)	1	29	H1D	40229	$\bigcirc$	feedback pulse after converting it into the number of pulses before the electronic gear is set. ${ }^{* 9}$
Droop pulse	1	30	H1E	40230	$\bigcirc$	Displays the droop pulse before the
Droop pulse (upper digits)	1	31	H1F	40231	$\bigcirc$	electronic gear. ${ }^{* 9}$
Torque command	0.1\%	32	H20	40232	$\bigcirc$	Displays the torque command value obtained from the vector control results.
Torque current command	0.1\%	33	H 21	40233	$\bigcirc$	Displays the commanded current for the torque.
Motor output	$\begin{aligned} & 0.01 \mathrm{~kW} / 0.1 \\ & \mathrm{~kW}^{*} 6 \end{aligned}$	34	H 22	40234		Multiplies the output torque at that time with the motor speed, and displays the machine output for the motor shaft end.
Feedback pulse*10	-	35	H 23	40235		Display the number of pulses fed back from the encoder during one sampling (also displays during stop). (Displays the voltage monitor when a vector control compatible option is not connected.)   The sampling time varies with the Pr. 369 Number of encoder pulses setting.   1050 or less: 1 s   1051 to 2100: 0.5 s   2101 to 4096: 0.25 s
Torque monitor (power driving/regenerative driving polarity switching)	0.1\%	36	H24	40236	$\bigcirc$	Displays the same value as that of the motor torque. Displays plus value for power driving and negative value for regenerative driving.
Trace status	1	38	H26	40238		Displays the trace status. (Refer to page 636).
SSCNET III communication status ${ }^{* 10}$	1	39	H 27	40239		The SSCNET III communication status between the inverter and the controller is displayed.   The output voltage is displayed when the FR-A8NS is not installed.


Monitor item	Increment and unit	Pr. setting	RS-485	MODBUS RTU	Negative indication $(-)^{* 1}$	Description
PLC function user monitor 1	According to the SD1215 setting	40	H28	40240		Displays the arbitrary monitoring item using the PLC function. Displays the following special register values.   SD1216: Displays in No. 40   SD1217: Displays in No. 41   SD1218: Displays in No. 42   (Refer to the PLC Function   Programming Manual.)
PLC function user monitor 2		41	H29	40241		
PLC function user monitor 3		42	H2A	40242		
Station number (RS-485 terminals)	1	43	H2B	40243		Displays which station number (0 to 31) can currently be used for communication from the RS-485 terminal block.
Station number (PU)	1	44	H2C	40244		Displays which station number (0 to 31) can currently be used for communication from the PU connector.
Station number (CC-Link)	1	45	H2D	40245		Displays which station number (0 to 31) can currently be used for CCLink communication. Displays " 0 " when the FR-A8NC is not connected.
-	-	46	H2E	40246		For manufacturer setting. Do not set.
Energy saving effect	Changeable by parameter setting.	50	H32	40250		Displays the energy saving effect monitor.   Conversion to power saving, average power saving, price display, and percentage display can be done using parameters.   (Refer to page 440.)
Cumulative energy saving		51	H33	40251		
PID set point	0.1\%	52	H34	40252		Displays the set point, measured value, and deviation under PID control.   (Refer to page 598)
PID measured value	0.1\%	53	H35	40253		
PID deviation	0.1\%	54	H36	40254	$\bigcirc$	
Input terminal status	-	$55^{* 18}$	H0F*11	40215*11		Displays input terminal ON/OFF state of the inverter. (Refer to the instruction manual of the operation panel.)
Output terminal status	-		H10*12	40216*12		Displays output terminal ON/OFF state of the inverter. (Refer to the instruction manual of the operation panel.)
Option input terminal status*10	-	$56^{* 18}$	-	-		Displays input terminal ON/OFF state of the digital input option (FRA8AX) on the DU. (Refer to the instruction manual of the operation panel.)
Option output terminal status ${ }^{* 10}$	-	$57^{* 18}$	-	-		Displays output terminal ON/OFF state of the digital output option (FRA8AY) and the relay output option (FR-A8AR) on the DU. (Refer to the instruction manual of the operation panel.)
Option input terminal status 1 (for communication) ${ }^{* 10}$	-	-	H3A ${ }^{* 13}$	40258*13		Input terminal X0 to X15 ON/OFF state of the digital input option (FRA8AX) can be monitored via RS-485 communication and the communication option.
Option input terminal status 2 (for communication) ${ }^{* 10}$	-	-	H3B*14	40259*14		Input terminal DY ON/OFF state of the digital input option (FR-A8AX) can be monitored via RS-485 communication and the communication option.


Monitor item	Increment and unit	Pr. setting	RS-485	MODBUS RTU	Negative indication $(-)^{* 1}$	Description
Option output terminal status 1 (for communication) ${ }^{* 10}$	-	-	H3C**	40260*15		Output terminal ON/OFF state of the digital output option (FR-A8AY) and relay output option (FR-A8AR) can be monitored via RS-485 communication and the communication option.
Motor thermal load factor	0.1\%	61	H3D	40261		Displays the accumulated heat value of the motor thermal O/L relay. The motor overload trip (E.THM) occurs at $100 \%$.
Inverter thermal load factor	0.1\%	62	H3E	40262		Displays the accumulated heat value of the inverter thermal O/L relay. The inverter overload trip (E.THT) occurs at 100\%.
PTC thermistor resistance	$0.01 \mathrm{k} \Omega$	64	H40	40264		Displays the PTC thermistor resistance when Pr. 561 PTC thermistor protection level $\neq 9999$ (voltage monitor when Pr. 561 = 9999).
PID measured value 2	0.1\%	67	H43	40267		Displays PID measured value even if PID control operating conditions are not satisfied while the PID control is enabled (Pr. $128 \neq{ }^{\prime \prime} 0$ "). (Refer to page 598)
Emergency drive status*7	1	68	H44	40268		Displays the emergency drive status. (Refer to page 391.)
Cumulative pulse*10	-	71	H47	40271	○*19	The cumulative number of pulses is displayed (for Vector control compatible plug-in option).   (Monitoring range: -32767 to 32767)
Cumulative pulse overflow times ${ }^{*}{ }^{10}$	-	72	H48	40272	○*19	The number of the cumulative pulses carrying overflow times is displayed (for Vector control compatible plug-in option).
Cumulative pulse (control terminal option) ${ }^{* 10}$	-	73	H49	40273	○*19	The cumulative number of pulses is displayed (for the FR-A8TP).   (Monitoring range: -32767 to 32767)
Cumulative pulse overflow times (control terminal option) ${ }^{* 10}$	-	74	H4A	40274	○*19	The number of the cumulative pulse overflow times is displayed (for the FR-A8TP).
Multi-revolution counter*10	1	75	H4B	40275		The multi-revolution encoder counter is monitored when the FR-A8APS is installed. (The output voltage is monitored when the FR-A8APS is not installed.)
32-bit cumulative power (lower 16 bits)	1 kWh	-	H4D	40277		Displays the 32-bit cumulative power value in multiplies of 16 bits.   Monitoring can be performed via RS485 communication and communication options. (To find the monitor codes for each communication option, refer to the Instruction Manual of each communication option.)
32-bit cumulative power (upper 16 bits)	1 kWh	-	H4E	40278		
32-bit cumulative power (lower 16 bits)	0.01 kWh/ $0.1 \mathrm{kWh}^{*}{ }^{6}$	-	H4F	40279		
32-bit cumulative power (upper 16 bits)	0.01 kWh/ $0.1 \mathrm{kWh}^{*}{ }^{6}$	-	H50	40280		
Remote output value 1	0.1\%	87	H57	40287	$\bigcirc$	Displays the setting values of Pr. 656 to Pr. 659 (analog remote output). (Refer to page 466.)
Remote output value 2	0.1\%	88	H58	40288		
Remote output value 3	0.1\%	89	H59	40289		
Remote output value 4	0.1\%	90	H5A	40290		
PID manipulated variable	0.1\%	91	H5B	40291	$\bigcirc$	Displays the PID control manipulated amount. (Refer to page 598)
Second PID set point	0.1\%	92	H5C	40292		Displays the set point, measured value, and deviation under second PID control. (Refer to page 598)
Second PID measured value	0.1\%	93	H5D	40293		
Second PID deviation	0.1\%	94	H5E	40294	$\bigcirc$	


Monitor item	Increment and unit	Pr. setting	RS-485	MODBUS RTU	Negative indication $(-)^{* 1}$	Description
Second PID measured value 2	0.1\%	95	H5F	40295		Displays PID measured value even if PID control operating conditions are not satisfied while the second PID control is enabled ( $\operatorname{Pr} .753 \neq{ }^{\prime \prime} 0$ "). (Refer to page 598)
Second PID manipulated variable	0.1\%	96	H60	40296	$\bigcirc$	Displays the second PID control manipulated amount.   (Refer to page 598)
Dancer main speed setting	0.01 Hz	97	H61	40297		Displays the main speed setting under step control
Control circuit temperature	$1^{\circ} \mathrm{C}$	98	H62	40298	$\bigcirc$	Displays the temperature of the control circuit board.   (Refer to page 470.)   Without minus sign: 0 to $100^{\circ} \mathrm{C}$   With minus sign: -20 to $100^{\circ} \mathrm{C}$

*1 Indication with a minus sign is not possible via RS-485 or MODBUS RTU communication.
*2 When using the item as the main monitor data on the LCD operation panel (FR-LU08) or the parameter unit (FR-PU07), use Pr. 774 to Pr. 776 or the monitor function of the FR-LU08 or the FR-PU07 for setting.
*3 The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0 .
*4 The actual operation time does not increase if the cumulative running time before power OFF is less than an hour.
*5 When using the parameter unit (FR-PU07), "kW" is displayed.
*6 Differs according to capacities. (FR-A860-01080 or lower / FR-A860-01440 or higher)
*7 The setting is available only for standard models.
*8 When the output current is less than the specified current level ( $5 \%$ of the inverter rated current), the output current is monitored as 0 A . Therefore, the monitored value of an output current and output power may be displayed as "0" when using a much smaller-capacity motor compared to the inverter or in other instances that cause the output current to fall below the specified value.
*9 Can be changed to the pulse display after the electronic gear using Pr. 430 Pulse monitor selection. (Refer to page 274.)
*10 Available when the plug-in option or control terminal option is connected.
*11 Input terminal monitor details ("1" denotes terminal ON, "0" denotes terminal OFF, and "-" denotes undetermined value.)
b15

-	-	-	-	CS	RES	STP   $($ STOP $)$	MRS	JOG	RH	RM	RL	RT	AU	STR	STF

*12 Output terminal monitor details ("1" denotes terminal ON, "0" denotes terminal OFF, and "-" denotes undetermined value.)
b15

-	-	-	-	-	-	-	-	-	ABC2	ABC1	FU	OL	IPF	SU	RUN

*13 Option input terminal monitor 1 details (FR-A8AX input terminal status, " 1 " denotes terminal ON and "0" denotes terminal OFF.) ——All are OFF when the option is not connected.
b15

X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	X0

*14 Option input terminal monitor 2 details (FR-A8AX input terminal status. "1" denotes terminal ON, "0" denotes terminal OFF, "一" denotes undetermined value.) - All are OFF when the option is not connected.


*15 Option output terminal monitor details (FR-A8AY/A8AR output terminal status. "1" denotes terminal ON, "0" denotes terminal OFF, and "-" denotes undetermined value.)- All are OFF when the option is not connected.
b15

-	-	-	-	-	-	RA3	RA2	RA1	Y6	Y5	Y4	Y3	Y2	Y1	Y0

*16 The increment is 1 when $\operatorname{Pr} .37=" 1$ to 9998 " or when $\operatorname{Pr} .144=" 2$ to 12 , or 102 to 112 ". (Refer to page 417 .)
*17 The monitored values are retained even if an inverter fault occurs. Resetting will clear the retained values.
*18 Parameter setting is not available for setting the item as the main monitor data on the LCD operation panel (FR-LU08) or the parameter unit (FRPU07). Use the monitor function of the FR-LU08 or the FR-PU07 for setting.
*19 Negative values are not displayed on the operation panel. The values "-1 to -32767" are displayed as " 65535 to 32769 " on the operation panel.
*20 Setting of Pr. 1018 Monitor with sign selection is required. Also, it will be displayed without a minus sign on the operation panel. Confirm the rotation direction with the [FWD] or [REV] indicator.

## - Monitor display for operation panel (Pr.52, Pr. 774 to Pr.776)

- When Pr. 52 = "0" (initial value), the monitoring of output frequency, output current, output voltage, 3 -line monitor, and fault display can be selected in sequence by pressing [NEXT].
- Among the items set in Pr.52, the load meter and motor load factor are displayed in the second screen (initially set to monitor the output current). Other items are displayed in the third screen (initially set to monitor the output voltage).
- The monitor item to be displayed is set using Pr. 774 for the first screen, Pr. 775 for the second screen, and Pr. 776 for the third screen. When Pr. 774 to Pr. 776 = "9999" (initial value), the Pr. 52 setting value is used.


## NOTE

- For details on the operation panel, refer to the instruction manual of the operation panel (FR-LU08).


## Displaying the set frequency during stop (Pr.52)

- When Pr. 52 = "100", the set frequency is displayed during stop, and output frequency is displayed during running. ("Hz" is highlighted during stop.)

Pr.52 setting	Status	Output frequency	Output current	Output voltage	Fault or alarm   indication
0	During running/stop	Output frequency	Output current	Output voltage	Fault or alarm   indication
100	During stop	Set frequency ${ }^{*} 1$			
	Running	Output frequency			

*1 Displays the frequency that is output when the start command is ON. The value considers the maximum/minimum frequency and frequency jumps. It is different from the frequency setting displayed when Pr. $52=$ " 5 "

## NOTE

- During an error, the output frequency at error occurrence appears.
- During output shutoff by the MRS signal, the values displayed are the same as during a stop.
- During offline auto tuning, the tuning state monitor takes priority.


## - Cumulative power monitor and clear (Pr.170, Pr.891)

- On the cumulative power monitor (Pr. $52=" 25 "$ ), the output power monitor value is added up and updated in 100 ms increments.
- The values are stored in EEPROM every 10 minutes. The values are also stored in EEPROM at power OFF or inverter reset.
- Display increments and display ranges of the operation panel, parameter unit and communication (RS-485 communication, communication option) are as indicated below (when Pr. 891 = "9999 (initial value)").

Operation panel, parameter unit ${ }^{* 1}$		Communication		
Range	Unit	Range		Unit
		Pr. $170=10$	Pr. 170 = 9999	
0 to 999.99 kWh	$0.01 \mathrm{kWh}^{*} 2$	0 to 9999 kWh	0 to 65535 kWh (initial value)	1 kWh
1000.0 to 9999.9 kWh	0.1 kWh			
10000 to 99999 kWh	1 kWh			

*1 For the FR-A860-01080 or lower, the value is measured in 0.01 kWh increments and the upper five digits are displayed. For the FR-A860-01440 or higher, the value is measured in 0.1 kWh increments and the upper five digits are displayed.
For the FR-A860-01080 or lower, the cumulative energy up to 999.99 kWh is displayed in 0.01 increments such as " 999.99 ", and that of 1000 kWh or more is displayed in 0.1 increments such as "1000.0".
*2 The display in 0.01 kWh increments is available only for the FR-A860-01080 or lower.

- The monitor data digit can be shifted to the right by the number of Pr.891. For example, if the cumulative power value is 1278.56 kWh when $\operatorname{Pr} .891=$ " 2 ", the operation panel display is 12.78 (display in 100 kWh increments) and the communication data is 12 .
- If the maximum value is exceeded at $\operatorname{Pr} .891=" 0$ to 4 ", the monitor value is clamped at the maximum value, indicating that a digit shift is necessary. If the maximum value is exceeded at $\operatorname{Pr} .891=" 9999 "$, the monitor value returns to 0 , and the counting starts again.
- Writing "0" in Pr. 170 clears the cumulative power monitor.


## NOTE

- If " 0 " is written to Pr.170, and Pr. 170 is read again, " 9999 " or " 10 " is displayed.


## - Monitoring cumulative energization time (Pr.563)

- When the cumulative energization time is selected as a monitor item (Pr. $52=$ " 20 "), the counter of cumulative energization time since the inverter shipment accumulated every hour is displayed.
- The cumulative energization time is displayed in 0.001 -hour increments until the cumulative time reaches one hour, and then the time is displayed in 1 -hour increments.
- The EEPROM is updated every minute until the cumulative energization time reaches one hour, and then the EEPROM is updated every 10 minutes. The EEPROM is also updated at power OFF.
- When the cumulative energization time counter reaches 65535, it starts from 0 again. The number of times the cumulative energization time counter reaches 65535 can be checked with Pr.563.


## NOTE

- The cumulative energization time does not increase if the power is turned OFF after less than an hour.


## - Actual operation time monitoring (Pr.171, Pr.564)

- On the actual operation time monitoring (Pr.52 = " 23 "), the inverter running time is added up every hour. (Time is not added up during a stop.)
- The time is displayed in 1 -hour increments.
- The values are stored in EEPROM every 10 minutes. The EEPROM is also updated at power OFF.
- When the cumulative energization time counter reaches 65535 , it starts from 0 again. The number of times the actual operation time counter reaches 65535 can be checked with Pr. 564 .
- Setting "0" in Pr. 171 clears the actual operation time meter.


## NOTE

- The actual operation time does not increase if the cumulative running time before power OFF is less than an hour.
- Once "0" is set in Pr.171, the setting of Pr. 171 is always turned to "9999" afterwards. Setting "9999" does not clear the actual operation time meter.


## - Hiding the decimal places for the monitors (Pr.268)

- The numerical figures after a decimal point displayed on the operation panel may continuously fluctuate during analog input, etc. The decimal places can be hidden by selecting the decimal digits with Pr. 268.

Pr. 268 setting	Description
9999 (initial value)	No function
0	For the first or second decimal places (0.1 increments or 0.01 increments) of the monitor, numbers in the first   decimal place and smaller are rounded to display an integral value (1 increments). The monitor value equal to or   smaller than 0.99 is displayed as 0.
1	When monitoring with the second decimal place (0.01 increments), the 0.01 decimal place is dropped and the   monitor displays the first decimal place ( 0.1 increments). When monitoring with the first decimal place, the display   will not change.

## NOTE

- The number of display digits on the cumulative energization time (Pr. $52=" 20 ")$, actual operation time (Pr. $52=$ " 23 "), cumulative power (Pr. $52=" 25 ")$ and cumulative energy saving (Pr. $52=" 51 "$ ) does not change.


## - Minus sign display for the monitors (Pr.290)

- A negative output can be selected for the monitor display of the terminal AM (analog voltage output), the operation panel, and a communication option. For a list of the monitors that can output values with minus signs, refer to the monitor description list (on page 420).
- Negative output is available for FR Configurator2 or the trace function.

Pr. 290 setting	Connection port			
	Terminal AM	Operation panel	Communication option $^{* 1}$	FR Configurator2 etc. ${ }^{* 2}$
0 (initial value)	-	-	-	-
1	Enabled	-	-	-
2	-	Enabled	-	-
3	Enabled	Enabled	-	-
4	-	-	Enabled	Enabled
5	Enabled	-	Enabled	Enabled
6	-	Enabled	Enabled	
7	Enabled	Enabled	Enabled	Enabled

—: Disabled (unsigned numbers only)
*1 The following communication does not support the negative output. RS-485 communication (Mitsubishi inverter protocol, MODBUS RTU), SLMP communication, and HMS network option
*2 Under the condition that the high-speed sampling and the negative output are selected for FR Configurator2, the display range of the output frequency (Monitor No.1) is -300.00 Hz to 300.00 Hz . A value outside the range is clamped at -300.00 Hz or 300.00 Hz . Under the same condition, the display range of the running speed (Monitor No.6) is $-30000 \mathrm{r} / \mathrm{min}$ to $30000 \mathrm{r} / \mathrm{min}$. A value outside the range is clamped at $-30000 \mathrm{r} / \mathrm{min}$ or $30000 \mathrm{r} / \mathrm{min}$. During the trace sampling, the same display ranges are applied. A value outside the ranges is clamped.

- Select items to be displayed with minus signs using Pr. 1018 Monitor with sign selection.

Monitor item	Pr. 1018 setting		
	9999	0	1
Output frequency	-	-*1	-*1
Motor speed	-	$0^{* 1}$	-*1
Motor torque	$\bigcirc$	$\bigcirc$	$\bigcirc$
Position command (lower) ${ }^{*} 4$	${ }^{*} 2$	$0^{* 2}$	${ }^{*} 3$
Position command (upper) ${ }^{*} 4$	$0^{* 2}$	$0^{* 2}$	$0^{* 3}$
Current position (lower) ${ }^{*} 4$	${ }^{*}{ }^{2}$	${ }^{*}{ }^{2}$	${ }^{*} 3$
Current position (upper) ${ }^{*} 4$	$0^{*}{ }^{2}$	$0^{* 2}$	$0^{* 3}$
Droop pulse (lower) ${ }^{*} 4$	${ }^{*}{ }^{2}$	$0^{* 2}$	${ }^{*} 3$
Droop pulse (upper) ${ }^{*}$	${ }^{*}{ }^{2}$	${ }^{*}{ }^{\text {2 }}$	${ }^{*}{ }^{*}$
Torque command	$\bigcirc$	$\bigcirc$	$\bigcirc$
Torque current command	$\bigcirc$	$\bigcirc$	$\bigcirc$
Torque monitor (power driving / regenerative driving polarity switching)	-	-	$\bigcirc$
Motor temperature	$\bigcirc$	$\bigcirc$	$\bigcirc$
PID deviation	$\bigcirc$	$\bigcirc$	$\bigcirc$
Cumulative pulse	$\bigcirc$	$\bigcirc$	$\bigcirc$
Cumulative pulse overflow times	$\bigcirc$	$\bigcirc$	$\bigcirc$
Cumulative pulse (control terminal option)	$\bigcirc$	$\bigcirc$	$\bigcirc$
Cumulative pulse overflow times (control terminal option)	$\bigcirc$	$\bigcirc$	$\bigcirc$
Remote output 1	$\bigcirc$	$\bigcirc$	$\bigcirc$
Remote output 2	$\bigcirc$	$\bigcirc$	$\bigcirc$
Remote output 3	$\bigcirc$	$\bigcirc$	$\bigcirc$
Remote output 4	$\bigcirc$	$\bigcirc$	$\bigcirc$
PID manipulated amount	$\bigcirc$	$\bigcirc$	$\bigcirc$
Second PID deviation	$\bigcirc$	$\bigcirc$	$\bigcirc$
Second PID manipulated amount	$\bigcirc$	-	$\bigcirc$
Control circuit temperature	$\bigcirc$	$\bigcirc$	$\bigcirc$

$\circ$ : Displayed with minus signs, 一: Displayed without minus signs (unsigned numbers only)
*1 Displayed without minus signs on the operation panel. Confirm the rotation direction with the [FWD] or [REV] indicator.
*2 Signed values are displayed only on the FR-DU08 (-9999 to 9999). Unsigned values (0 to 9999) are displayed on other devices.
*3 Full 32-bit data ( -2147483648 to 2147483647 ) is displayed during monitoring via the communication option.
*4 Monitor the lower and upper digits at the same timing. Otherwise, the data may not be reliable.

## NOTE

－When indication with negative numbers is enabled for the output via terminal AM（analog voltage output），the output is within the range of -10 to +10 VDC．Connect a meter suitable for the output．
－Parameter unit displays only unsigned numbers．

## Monitor filter（Pr． 1106 to Pr．1108）

－The response level（filter time constant）of the following monitor indicators can be adjusted．

Pr．	Monitor number	Monitor indicator name
1106	7	Motor torque
	17	Load meter
	32	Torque command
	33	Torque current command
	36	Torque monitor
1107	6	Running speed
1108	18	Motor excitation current

## 《｜Parameters referred to 》》

Pr． 30 Regenerative function selection，Pr． 70 special regenerative brake duty page 718
Pr． 37 motor speed display，Pr． 144 Speed setting switchover page 417
Pr． 55 Frequency monitoring reference，Pr． 56 Current monitoring reference，Pr． 866 Torque monitoring reference
W page 430

### 5.11.3 Monitor display selection for terminals FM and AM

The monitored status can be output as the following items: analog voltage (terminal AM), pulse train (terminal FM).
The signal (monitored item) to be output to terminal FM and terminal AM can be selected.

| Pr. | Name | Initial value | Setting range | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^15]*2 FR-A860-01440 or more.
*3 Function assigned to Pr. 185 JOG terminal function selection.

## - Monitor description list (Pr.54, Pr.158)

- Set Pr. 54 FM terminal function selection for the monitor to be output to the terminal FM (pulse train output).
- Set Pr. 158 AM terminal function selection for the monitor to be output to the terminal AM (analog voltage output). Output with a negative sign can be made ( -10 VDC to +10 VDC) from the terminal AM. O in the [Negative (-) output] indicates the output value is negative at the terminal AM. (For setting of the output with/without minus sign, refer to page 419.)
- Refer to the following table and set the monitor to be displayed. (Refer to page 420 for the monitor description.)

Monitor item	Increment and unit	$\begin{gathered} \hline \text { Pr. } 54 \text { (FM) } \\ \text { Pr. } 158 \text { (AM) } \\ \text { setting } \\ \hline \end{gathered}$	Terminal FM/AM Full-scale value	Negative   (-) output	REMARKS
Output frequency	0.01 Hz	1	Pr. 55	$\bigcirc^{* 3}$	
Output current ${ }^{*}{ }^{2}$	0.01 A/0.1 A ${ }^{* 1}$	2	Pr. 56		
Output voltage	0.1 V	3	1000 V		
Frequency setting value	0.01 Hz	5	Pr. 55		
Running speed	1 (r/min)	6	Value is Pr. 55 converted by Pr.37, Pr.144. (Refer to page 417.)	$\bigcirc{ }^{*}$	Refer to page 417 for the running speed monitor.
Motor torque	0.1\%	7	Pr. 866	$\bigcirc$	
Converter output voltage*2	0.1 V	8	1000 V		
Regenerative brake duty* ${ }^{*}$	0.1\%	9	Brake duty decided by Pr. 30 and Pr. 70.		
Electronic thermal O/L relay load factor	0.1\%	10	Electronic thermal O/L relay operation level (100\%)		
Output current peak value	0.01 A/0.1 A ${ }^{* 1}$	11	Pr. 56		
Converter output voltage peak value	0.1 V	12	1000 V		
Input power	$\begin{aligned} & 0.01 \mathrm{~kW} / \\ & 0.1 \mathrm{~kW}^{* 1} \end{aligned}$	13	Inverter rated power $\times 2$		
Output power*2	$\begin{aligned} & 0.01 \mathrm{~kW} / \\ & 0.1 \mathrm{~kW}^{* 1} \end{aligned}$	14	Inverter rated power $\times 2$		
Load meter	0.1\%	17	Pr. 866		
Motor excitation current	0.01 A/0.1 A ${ }^{* 1}$	18	Pr. 56		
Reference voltage output	-	21	-		Terminal FM:   1440 pulses/s is output when Pr. 291 = 0,1.   50 k pulses/s is output when Pr. $291 \neq 0,1$.   Terminal AM: output is 10 V .
Motor load factor	0.1\%	24	200\%		
Torque command	0.1\%	32	Pr. 866	$\bigcirc$	
Torque current command	0.1\%	33	Pr. 866	$\bigcirc$	
Motor output	$\begin{aligned} & 0.01 \mathrm{~kW} / \\ & 0.1 \mathrm{~kW}^{* 1} \end{aligned}$	34	Rated motor capacity		
Torque monitor (power driving/regenerative driving polarity switching)	0.1\%	36	Pr. 866	$\bigcirc$	
-	-	46	-		For manufacturer setting. Do not set.
Energy saving effect	Changeable by parameter setting	50	Inverter capacity		Regarding the energy saving monitor, refer to page 440
PID set point	0.1\%	52	100\%		Refer to page 598 for the PID
PID measured value	0.1\%	53	100\%		control.
PID deviation	0.1\%	$54 * 5$	100\%	$\bigcirc$	Output with a negative sign (terminal AM)
Motor thermal load factor	0.1\%	61	Motor thermal operation level (100\%)		
Inverter thermal load factor	0.1\%	62	Inverter thermal operation level (100\%)		
PID measured value 2	0.1\%	67	100\%		


Monitor item	Increment and unit	$\begin{gathered} \text { Pr. } 54 \text { (FM) } \\ \text { Pr. } 158 \text { (AM) } \\ \text { setting } \end{gathered}$	Terminal FM/AM Full-scale value	Negative   (-) output	REMARKS
PLC function analog output	0.1\%	70	100\%	$\bigcirc$	Refer to page 634 for the PLC function.
Remote output value 1	0.1\%	87	100\%	$\bigcirc$	Refer to page 466 for the analog remote output.
Remote output value 2	0.1\%	88	100\%		
Remote output value 3	0.1\%	89	100\%		
Remote output value 4	0.1\%	90	100\%		
PID manipulated variable	0.1\%	$91^{* 5}$	100\%	$\bigcirc$	Output with a minus sign (terminal AM)
Second PID set point	0.1\%	92	100\%		Refer to page 598 for the PID control.
Second PID measured value	0.1\%	93	100\%		
Second PID deviation	0.1\%	$94^{* 5}$	200\%	$\bigcirc$	
Second PID measured value 2	0.1\%	95	100\%		
Second PID manipulated variable	0.1\%	$96^{*}$	100\%	$\bigcirc$	
Dancer main speed setting	0.01 Hz	97	Pr. 55		Refer to page 466 for the dancer control.
Control circuit temperature	$1^{\circ} \mathrm{C}$	98	$100^{\circ} \mathrm{C}$	$\bigcirc$	Terminal FM: 0 to $100^{\circ} \mathrm{C}$   Terminal AM: -20 to $100^{\circ} \mathrm{C}$

*1 Differs according to capacities. (FR-A860-01080 or lower /FR-A860-01440 or higher)
*2 When the output current is less than the specified current level ( $5 \%$ of the inverter rated current), the output current is monitored as 0 A . Therefore, the monitored value of an output current and output power may be displayed as " 0 " when using a much smaller-capacity motor compared to the inverter or in other instances that cause the output current to fall below the specified value.
Setting of Pr. 1018 Monitor with sign selection is required.
The setting is available only for standard models.
The setting is available only with terminal AM (Pr.158).

## - Frequency monitor reference (Pr.55)

- Set the full-scale value for outputting the monitored items of output frequency, frequency setting value, and Dancer main speed setting to the terminals FM and AM.
- For the calibration of terminal FM, set the full-scale value of the connected meter when the pulse speed of terminal FM is 1440 pulses/s ( 50 k pulses/s). Set the frequency to be indicated as the full scale value on the frequency meter ( 1 mA analog meter) connected between terminal FM and SD. (For example, 60 Hz or 120 Hz .) Pulse speed is proportional to the output frequency of the inverter. (Maximum pulse train output is 2400 pulses/s ( 55 k pulses/s).)

- For the calibration of terminal AM, set the full-scale value of the connected meter when output voltage of terminal FM is 10 VDC. Set the frequency to be indicated as the full scale value on the meter ( 10 VDC voltmeter) connected between terminal AM and 5. (For example, 60 Hz or 120 Hz ) Output voltage is proportional to the frequency. (The maximum output voltage is 10 VDC .)

*1 Output with a negative sign available when Pr. 290 Monitor negative output selection = "1, 3"


## - Current monitor reference (Pr.56)

- Output current, Output current peak value, Motor excitation current and monitor from the terminals FM and AM.
- For the calibration of terminal FM, set the full-scale value of the connected meter when the pulse speed of terminal FM is 1440 pulses/s ( 50 k pulses $/ \mathrm{s}$ ). Set the current to be indicated as the full scale value to the meter ( 1 mA analog meter) connected between terminal FM and SD. Pulse speed is proportional to the monitored value of output current. (Maximum pulse train output is 2400 pulses/s ( 55 k pulses/s).)
- For the calibration of terminal AM, set the full-scale value of the connected current meter when the output voltage of terminal AM is 10 VDC. Set the current to be indicated as the full scale value on the meter ( 10 VDC voltmeter) connected between terminal $A M$ and 5 . Output voltage is proportional to the monitored value of output current. (The maximum output voltage is 10 VDC .)


## - Torque monitor reference (Pr.866)

- Set the full scale value when outputting the current monitor from terminal the FM or AM.
- For the calibration of terminal FM, set the full-scale value of the connected torque meter when the pulse speed of terminal FM is 1440 pulses $/ \mathrm{s}$ ( 50 k pulses $/ \mathrm{s}$ ). Set the torque to be indicated as the full scale value on the meter ( 1 mA analog meter) connected between terminals FM and SD. Pulse speed is proportional to the monitored value of torque. (Maximum pulse train output is 2400 pulses/s ( 55 k pulses $/ \mathrm{s}$ ).)
- For the calibration of terminal AM, set the full-scale value of the connected torque meter when the output voltage of terminal AM is at 10 VDC . Set the torque to be indicated as the full scale value on the meter ( 10 VDC voltmeter) connected between terminal AM and 5 . Output voltage is proportional to the monitored value of torque. (The maximum output voltage is 10 VDC.)


## - Terminal FM pulse train output (Pr.291)

- Two kinds of pulse trains can be output to the terminal FM.
- When Pr. 291 Pulse train I/O selection = " 0 (initial value) or 1 ", this is FM output with a maximum output of 8 VDC and 2400 pulses/s. The pulse width can be adjusted by using the operation panel or parameter unit and calibration parameter


## Pr. 900 FM terminal calibration.

- Commands can be sent (such as inverter output frequency) by connecting a 1 mA full-scale DC ammeter or a digital meter.


Pulse width T1: Adjust using calibration parameter 900
Pulse cycle T2: Set with Pr. 55 (frequency monitor)
Set with Pr. 56 (current monitor)
*1 Not needed when the operation panel or the parameter unit is used for calibration. Use a calibration resistor when the indicator (frequency meter) needs to be calibrated by a neighboring device because the indicator is located far from the inverter. However, the frequency meter needle may not deflect to full-scale if the calibration resistor is connected.
*2 In this case, calibrate additionally with the operation panel or parameter unit.In the initial setting, 1 mA full-scale and 1440 pulses/s terminal FM are used at 60 Hz .

- When Pr. 291 Pulse train I/O selection = "10, 11, 20, 21, 100", this is high-speed pulse train output for open collector output. A maximum pulse train of 55 k pulses/s is outputted. There are two types of pulse width: " $50 \%$ duty" and "fixed ON width"; this cannot be adjusted with the calibration parameter Pr. 900 FM terminal calibration.

High-speed pulse train output circuit
(example of connection to pulse counter)
Pulse counter

*3 The pulses may weaken due to stray capacitance in the wiring if the wiring is long, and the pulse counter will be unable to recognize the pulses. Connect the open collector output to the power source with a pull-up resistor if the wiring is too long.
Check the pulse counter specs for the pull-up resistance. The resistance should be at 80 mA of the load current or less.

- When Pr. $291=" 10,11$ ", the pulse cycle is $50 \%$ duty (ON width and OFF width are the same).
- When Pr. 291 = "20, 21, 100", the pulse ON width is output at a fixed width (approx. $10 \mu \mathrm{~s}$ ).
- At the "100" setting, the same pulse train from the pulse train input (terminal JOG) will be outputted. This is used when running at a synchronized speed with more than one inverter. (Refer to page 365.)


Item	High-speed pulse train output specifications
Output method	NPN open collector output
Voltage between collector-emitter	30 V (max.)
Maximum permissible load current	80 mA
Output pulse rate	0 to 55 k pulses/s*1
Output resolution	3 pulses/s (excluding jitter)

*1 50 k pulses/s when the monitor output value is $100 \%$.

## NOTE

- Terminal JOG input specifications (pulse train input or contact input) can be selected with Pr.291. When changing the setting value, be careful not to change the terminal JOG input specifications. (Refer to page 365 for pulse train input.)
- Connect a meter between the terminals FM and SD after changing the Pr. 291 setting value. When using the pulse train of FM output (voltage output), be careful that voltage is not added to terminal FM.
- A connection cannot be made to the pulse input of a source logic type.
- If all parameter clear is performed when selecting the high-speed pulse train output ( $\operatorname{Pr} .291=" 10,11,20,21,100 ")$, the terminal FM output can be changed from high-speed pulse train output to FM output (voltage output), since the Pr. 291 setting value returns to the initial value of " 0 ". Perform all parameter clear after removing the device connected to the terminal FM.



### 5.11.4 Adjustment of terminal FM and terminal AM

By using the operation panel or parameter unit, terminals FM and AM can be adjusted (calibrated) to the full scale.

Pr.	Name	Initial value	Setting range	Description
900   M310	FM terminal calibration	-	-	Calibrates the scale of the meter   connected to terminal FM.
$\mathbf{9 0 1}$   M320	AM terminal calibration	-	-	Calibrates the scale of the analog meter   connected to terminal AM.
$\mathbf{8 6 7}$   M321	AM output filter	0.01 s	0 to 5 s	Set the terminal AM output filter.

## - Terminal FM calibration (Pr.900)

- The terminal FM is preset to output pulses. By setting Pr.900, the meter connected to the inverter can be calibrated by parameter setting without use of a calibration resistor.
- The pulse train output via terminal FM can be used for digital display on a digital counter. The output is 1440 pulses/s at full scale. (Refer to page 430 for the full-scale value of each monitor item.)


Pulse cycle T2: Set with Pr. 55 (frequency monitor)
Set with Pr. 56 (current monitor)
*1 Not needed when the operation panel or the parameter unit is used for calibration.
Use a calibration resistor when the indicator (frequency meter) needs to be calibrated by a neighboring device because the indicator is located far from the inverter.
However, the frequency meter needle may not deflect to full-scale if the calibration resistor is connected. In this case, perform calibration using the operation panel or parameter unit.
*2 In the initial setting, 1 mA full-scale and 1440 pulses/s terminal FM are used at 60 Hz .

- Calibrate the terminal FM in the following procedure.

1. Connect an indicator (frequency meter) across terminals FM and SD of the inverter. (Note the polarity. The terminal FM is positive.)
2. When a calibration resistor has already been connected, adjust the resistance to "0" or remove the resistor.
3. Set a monitor item in Pr. 54 FM terminal function selection. (Refer to page 430.) When the output frequency or inverter output current is selected on the monitor, set the output frequency or current value at which the output signal will be 1440 pulses/s, using Pr. 55 Frequency monitoring reference or Pr. 56 Current monitoring reference beforehand. Normally, at 1440 pulses/s the meter deflects to full-scale.
4. If the meter needle does not point to maximum even at maximum output, calibrate it with Pr. $\mathbf{9 0 0}$.

- When outputting such an item as the output current, which cannot reach a $100 \%$ value easily by operation, set Pr. 54 to "21" (reference voltage output) and calibrate. 1440 pulses/s are output from the terminal FM.
- When Pr. 310 Analog meter voltage output selection = " 21 ", the terminal FM calibration cannot be performed. For details on Pr.310, refer to the Instruction Manual of FR-A8AY.
- The wiring length of the terminal FM should be 200 m at maximum.
- The initial value of the calibration parameter Pr. 900 is set to 1 mA full-scale and 1440 pulses $/ \mathrm{s}$ terminal FM pulse train output at 60 Hz . The maximum pulse train output of terminal FM is 2400 pulses/s.
- When connecting a frequency meter between terminals FM-SD and monitoring the output frequency, it is necessary to change Pr. 55 to the maximum frequency, since the FM terminal output will be saturated at the initial value when the maximum frequency reaches 100 Hz or greater.
- Calibration with the calibration parameter Pr. 900 cannot be done when Pr. 291 Pulse train I/O selection = "10, 11, 20, 21, 100" (high-speed pulse train output).


## - Calibration procedure for terminal FM when using the operation panel

## Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Select the PU operation mode. [PU] indicator is lit.
Calibration is also possible in the External operation mode.
3. Selecting the parameter number

Read Pr.900. The monitored value of the item (initially the output frequency) selected by Pr. 54 FM terminal function selection will appear.
4. Pulse output via terminal FM

If stopped, press FWD or REV to start the inverter operation. (To monitor the output frequency, motor connection is not required.
When a monitor that does not require inverter operation is set in Pr.54, calibration is also possible during a stop status.
5. Scale adjustment

Turn to move the meter needle to a desired position.
6. Setting completed

Press [SET] to enter the setting.

## NOTE

- Calibration can also be made for the External operation. Set the frequency in the External operation mode, and make calibration in the above procedure.
- Calibration can be performed during operation.
- For the operation from the parameter unit, refer to the Instruction Manual of the parameter unit.


## －Calibration of terminal AM（Pr．901）

－Terminal AM is initially set to provide a 10 VDC output in the full－scale state of the corresponding monitor item．Pr． 901 allows the output voltage ratio（gains）to be adjusted according to the meter scale．Note that the maximum output voltage is 10 VDC ．

－Calibrate the AM terminal in the following procedure．
1．Connect a $0-10$ VDC indicator（frequency meter）across terminals $A M$ and 5 of the inverter．（Note the polarity．The terminal AM is positive．）

2．Set a monitor item in Pr． 158 AM terminal function selection．（Refer to page 430．）
When the output frequency or inverter output current is selected on the monitor，set the output frequency or current value at which the output signal will be 10 V，using Pr． 55 or Pr． 56 beforehand．
3．If the meter needle does not point to maximum even at maximum output，calibrate it with Pr． 901 ．

## NOTE

－When outputting such an item as the output current，which cannot reach a $100 \%$ value easily by operation，set Pr． 158 to ＂ 21 ＂（reference voltage output）and calibrate． 10 VDC is output from the terminal AM．
－When Pr． 306 Analog output signal selection＝＂ 21 ＂，the terminal AM calibration cannot be performed．For details on Pr．306，refer to the Instruction Manual of FR－A8AY．
－Use Pr． 290 Monitor negative output selection to enable negative output from the terminal AM．When this is set，the output voltage range will be -10 VDC to +10 VDC．Calibrate the terminal AM with the maximum positive output value．

## Adjusting the response of terminal AM（Pr．867）

－Using Pr．867，the output voltage response of the terminal AM can be adjusted in the range of 0 to 5 s ．
－Increasing the setting stabilizes the terminal AM output more but reduces the response level．（Setting＂0＂sets the response level to 7 ms ．）

《 Parameters referred to 》》
Pr． 54 FM terminal function selection $\longmapsto$ page 430
Pr． 55 Frequency monitoring reference page 430
Pr． 56 Current monitoring reference page 430
Pr． 158 AM terminal function selection $\Vdash$ page 430
Pr． 290 Monitor negative output selection $\leftrightarrows$ page 430
Pr． 291 Pulse train I／O selection page 365

### 5.11.5 Energy saving monitor

From the estimated consumed power during commercial power supply operation, the energy saving effect by use of the inverter can be monitored and output.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 52 \\ & \text { M100 } \end{aligned}$	Operation panel main monitor selection	$0$   (output frequency)	Refer to page 419	50: Power saving monitor   51: Cumulative power saving monitor
774   M101	Operation panel monitor selection 1	9999		
$\begin{aligned} & \hline 775 \\ & \text { M102 } \end{aligned}$	Operation panel monitor selection 2			
$\begin{aligned} & 776 \\ & \text { M103 } \end{aligned}$	Operation panel monitor selection 3			
54   M300	FM terminal function selection	1 (output frequency)	Refer to page 430	50: Power saving monitor
$\begin{aligned} & 158 \\ & \text { M301 } \end{aligned}$	AM terminal function selection			
$\begin{aligned} & 891 \\ & \text { M023 } \end{aligned}$	Cumulative power monitor digit shifted times	9999	0 to 4	Set the number of times to shift the cumulative power monitor digit. The monitored value is clamped at the maximum value.
			9999	No shift.   The monitored value is cleared when it exceeds the maximum value.
$\begin{aligned} & 892 \\ & \text { M200 } \end{aligned}$	Load factor	100\%	30 to 150\%	Set the load factor for the commercial power supply operation.   This is multiplied by the power consumption rate (page 444) during commercial power supply operation.
$\begin{aligned} & 893 \\ & \text { M201 } \end{aligned}$	Energy saving monitor reference (motor capacity)	Inverter rated current	0.1 to $55 \mathrm{~kW}{ }^{* 1}$	Set the motor capacity (pump capacity). Set when calculating the power saving power rate, average power saving rate, and power during commercial power supply operation.
			0 to $3600 \mathrm{~kW}^{*} 2$	
$\begin{aligned} & 894 \\ & \text { M202 } \end{aligned}$	Control selection during commercial power-supply operation	0	0	Discharge damper control (fan)
			1	Inlet damper control (fan)
			2	Valve control (pump)
			3	Commercial power supply drive (fixed value)
$\begin{aligned} & 895 \\ & \text { M203 } \end{aligned}$	Power saving rate reference value	9999	0	Consider the value during commercial power supply operation as 100\%.
			1	Consider Pr. 893 setting as 100\%.
			9999	No function
$\begin{aligned} & 896 \\ & \text { M204 } \end{aligned}$	Power unit cost	9999	0 to 500	Set the power unit cost. The power cost savings are displayed on the energy saving monitor.
			9999	No function
$\begin{aligned} & 897 \\ & \text { M205 } \end{aligned}$	Power saving monitor average time	9999	0	Average of 30 minutes
			1 to 1000 h	Average of the set time
			9999	No function
$\begin{aligned} & 898 \\ & \text { M206 } \end{aligned}$	Power saving cumulative monitor clear	9999	0	Cumulative monitor value clear
			1	Cumulative monitor value hold
			10	Continue accumulation (communication data upper limit 9999)
			9999	Continue accumulation (communication data upper limit 65535)
$\begin{aligned} & 899 \\ & \text { M207 } \end{aligned}$	Operation time rate (estimated value)	9999	0 to 100\%	This value is used for calculating the annual power saving amount. Set the annual operation ratio (consider 365 days $\times 24 \mathrm{~h}$ as $100 \%$ ).
			9999	No function

[^16]*2 For the FR-A860-01440 or higher.

## - Energy saving monitor list

- The items that can be monitored on the power saving monitor (Pr.52, Pr.54, Pr. 158, Pr. 774 to Pr. $776=$ " 50 ") are indicated below. (Only [1 Power saving] and [3 Average power saving] can be set to Pr. 54 (terminal FM) and Pr. 158 (terminal AM).)

- The items that can be monitored on the cumulative energy saving monitor (Pr.52, Pr. 774 to Pr. $776=$ " 51 ") are indicated below. (The monitor value of the cumulative monitor can be shifted to the right with Pr. 891 Cumulative power monitor digit shifted times.)

	Energy saving monitored item	Description and formula	Increment	Parameter setting			
				Pr. 895	Pr. 896	Pr. 897	Pr. 899
6	Power saving amount	The cumulative power saving is added up per hour. $\Sigma([1$ Power saving $] \times \Delta t)$	$\begin{aligned} & 0.01 \mathrm{kWh} / \\ & 0.1 \mathrm{kWhh} \\ & * 1 * 2 * 3 \end{aligned}$	-	9999	-	9999
7	Power cost saving	The power saving amount in terms of cost. [6 Power saving amount] $\times$ Pr. 896	0.01/0.1**3	-	$\begin{aligned} & 0 \text { to } \\ & 500 \end{aligned}$		
8	Annual power saving amount	Estimated value of annual power saving amount. $\frac{[6 \text { Power saving amount] }}{\begin{array}{c} \text { Operation time during power } \\ \text { saving accumulation } \end{array}} \times 24 \times 365 \times \frac{\text { Pr. } 899}{100}$	$\begin{aligned} & 0.01 \mathrm{kWh} / \\ & 0.1 \mathrm{kWhh} \\ & * 1 * 2 * 3 \end{aligned}$	-	9999		$\begin{aligned} & \hline 0 \text { to } \\ & 100 \% \end{aligned}$
9	Annual power cost savings	Annual power saving amount in terms of cost. [8 Annual power saving amount] $\times$ Pr. 896	0.01/0.1**3	-	$\begin{aligned} & 0 \text { to } \\ & 500 \end{aligned}$		

*1 For communication, (RS-485 communication, communication option), the display increments are 1. For example, "10.00 kWh" is displayed as " 10 " for communication data.
*2 When using the LCD operation panel or the parameter unit, "kW" is displayed
*3 The increment differs according to capacities. (FR-A860-01080 or lower / FR-A860-01440 or higher.)

- The operation panel and the parameter unit have a 5-digit display. This means, for example, that when a monitor value in 0.01 units exceeds "999.99", the decimal place is moved up as in "1000.0" and the display changes to 0.1 units. The maximum display number is "99999".
- The maximum value for communication (RS-485 communication, communication option) when Pr. 898 Power saving cumulative monitor clear $=$ " 9999 " is " 65535 ". The maximum value for the 0.01 -unit monitor is " 655.35 ", and the maximum value for the 0.1 -unit monitor is " 6553.5 ".


## - Power saving real-time monitor ([1 Power saving] and [2 Power saving rate])

- On the [1 Power saving monitor], an energy saving effect as compared to the consumed power during commercial power supply operation (estimated value) is calculated and displays on the main monitor.
- In the following cases, the [1 Power saving monitor] indicates "0".

Calculated values of the power saving monitor are negative values.
During DC injection brake operation.
The motor is not connected (output current monitor is $0 A$ ).

- On the [2 Power saving rate monitor], the power saving rate considering the consumed power during the power supply operation (estimated value) as $100 \%$ is displayed. Pr. 895 Power saving rate reference value needs to be set to " 0 ". Energy saving monitor reference (motor capacity)


## - Average power saving monitor ([3 Average power saving], [4 Average power saving rate], [5 Average power cost savings])

- The average power saving monitors are displayed by setting a value other than 9999 in Pr. 897 Power saving monitor average time.
- On the [3 Average power saving monitor], average power saving amount for each average time period s displayed.
- When Pr. 897 is set, the average value is updated each time the average time period elapses, with the power-ON or inverter reset as the starting point. The power savings average value update timing signal (Y92) is inverted every time the average value is updated.

- When Pr. 895 Power saving rate reference value the [2 Average power saving rate] for the averaging time period is displayed on the [4 Average power saving rate] monitor.
- When the power cost per 1 kWh power amount is set in Pr. 896 Power unit cost, the cost of the saved power ([3 Average power saving] $\times$ Pr.896) is displayed on the [5 Average power cost savings].


## - Cumulative energy saving monitors ([6 Power saving amount], [7 Power

 cost saving], [8 Annual power saving amount], [9 Annual power saving savings]).- On the cumulative energy saving cumulative monitors, the monitor data digit can be shifted to the right by the number of Pr. 891 Cumulative power monitor digit shifted times. For example, if the cumulative power value is 1278.56 kWh when Pr. 891 = "2", the PU/DU display is 12.78 (display in 100 kWh increments) and the communication data is 12 . If the maximum value is exceeded when Pr. $891=" 0$ to $4 "$, the value is clamped at the maximum value, indicating that a digit shift is necessary. If the maximum value is exceeded when Pr. $891=$ " 9999 ", the value returns to 0 , and the counting starts again. In other monitors, the value is clamped at the displayed maximum value.
- The [6 Cumulative power saving amount] monitor (6)] can measure the power during a predetermined period. Measure with the following procedure.

1. Write "9999" or " 10 " in Pr. 898 Power saving cumulative monitor clear.
2. Write " 0 " in Pr. 898 at the measurement start time to clear the power saving cumulative monitor value and start power saving accumulation.
3. Write "1" in Pr. 898 at the measurement end time to hold the power saving cumulative monitor value.


## NOTE

- The power saving cumulative monitor value is saved every hour. This means that if the power is turned OFF after less than an hour, when then the power is turned ON again, the previously saved monitor value is displayed, and accumulation starts. (In some cases, the cumulative monitor value may go down.)


## - Estimated power value in commercial power supply operation (Pr.892, Pr.893, Pr.894)

- Select the pattern for commercial power supply operation from the four patterns of discharge damper control (fan), suction damper control (fan), valve control (pump) and commercial power driving, and set it in Pr. 894 Control selection during commercial power-supply operation.
- Set the motor capacity (pump capacity) in Pr. 893 Energy saving monitor reference (motor capacity).
- As shown below, the consumed power ratio (\%) during commercial power supply operation is estimated from the rotations per minute ratio for each operation pattern and rating (current output frequency/Pr. 3 Base frequency).

- The estimated value of the consumed power during commercial power supply operation (kW) is calculated from the motor capacity set in Pr. 893 and Pr. 892 Load factor with the following formula.

Estimated consumed power during
commercial power supply operation $(k W)$

## NOTE

- In commercial power supply operation, because the rotations per minute cannot rise higher than the power supply frequency, if the output frequency rises to Pr. 3 Base frequency or higher, it stays at a constant value.


## - Annual power saving amount and power cost savings (Pr.899)

- When the operation time rate [\%] (ratio of time in year that the inverter actually drives the motor) is set in Pr.899, the annual energy saving effect can be estimated.
- When the operation pattern is determined to a certain extent, the estimated value of the annual power saving amount can be calculated by measuring the power saving in a certain measurement period.
- Refer to the following to set the operation time rate.

1. Estimate the average time of operation per day [h/day].
2. Calculate the number of operation days per year [days/year]. (Average number of operation days per month $\times 12$ months)
3. Calculate the annual operation time [h/year] from step 1 and step 2.

> Annual operation time (h/year) = average time (h/day) × number of operation days (days/year)
4. Calculate the operation time rate and set it in Pr. 899.

$$
\text { Operation time rate }(\%)=\frac{\text { Annual operation time (h/year) }}{24(\mathrm{~h} / \text { day) } \times 365(\text { days/year) }} \times 100(\%)
$$

## NOTE

- Setting example for operation time rate: When operation is performed about 21 h per day for an average 16 operation days per month, Annual operation time $=21(\mathrm{~h} /$ day $) \times 16($ days $/$ month $) \times 12$ months $=4032(\mathrm{~h} /$ year $)$

$$
\text { Operation time rate }(\%)=\frac{4032(\mathrm{~h} / \text { year })}{24(\mathrm{~h} / \text { day }) \times 365(\text { days } / \text { year })} \times 100(\%)=\underline{46.03 \%}
$$

Set 46.03\% in Pr.899.

- Calculate the annual power saving amount from Pr. 899 Operation time rate (estimated value) and the average power saving monitor.

Annual power saving amount $(k W h / y e a r)=$| With Pr. $898=10$ or 9999 , average power |
| :--- |
| saving $(k W)$ during cumulative period |$\times 24 \mathrm{~h} \times 365$ days $\times \frac{\text { Pr. } 899}{100}$

- When the power cost per hour is set in Pr. 896 Power unit cost, the annual power cost savings can be monitored.

Annual power cost saving = annual power saving amount (kWh/year) $\times$ Pr. 896

## NOTE

- During regenerative driving, make calculation on the assumption that "power saving = power during commercial power supply operation (input power = 0)".


## Parameters referred to >>

Pr. 3 Base frequency page 699
Pr. 52 Operation panel main monitor selection page 419
Pr. 54 FM terminal function selection page 430
Pr. 158 AM terminal function selection page 430

### 5.11.6 Output terminal function selection

Use the following parameters to change the functions of the open collector output terminals and relay output terminals.

Pr.	Name		Initial value	Initial set signal	Setting range
$\begin{aligned} & 190 \\ & \text { M400 } \end{aligned}$	RUN terminal function selection	Open collector output terminal	0	RUN (Inverter running)	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to $57,60,61,63$ to $68,70,79,84,85,90$ to 99 , 100 to 108,110 to $116,120,122,125$ to 128, 130 to 136, 138 to $157,160,161,163$ to $168,170,179,184,185,190$ to 199,200 to 208,211 to $213,247,300$ to 308,311 to 313, 347, 9999
$\begin{aligned} & 191 \\ & \text { M401 } \end{aligned}$	SU terminal function selection		1	SU (Up to frequency)	
$\begin{aligned} & 192 \\ & \text { M402 } \end{aligned}$	IPF terminal function selection		2*1	IPF (Instantaneous power failure/undervoltage)	to 208,211 to $213,247,300$ to 308,311 to 313, 347, 9999
			9999*2	No function	
$\begin{aligned} & 193 \\ & \text { M403 } \end{aligned}$	OL terminal function selection		3	OL (Overload warning)	
$\begin{aligned} & 194 \\ & \text { M404 } \end{aligned}$	FU terminal function selection		4	FU (Output frequency detection)	
$\begin{aligned} & 195 \\ & \text { M405 } \end{aligned}$	ABC1 terminal function selection	Relay output terminal	99	ALM (Fault)	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to $57,60,61,63$ to $68,70,79,84,85,90,91$, 94 to 99,100 to 108,110 to $116,120,122$, 125 to 128,130 to 136,138 to 157,160 , 161, 163 to $168,170,179,184,185,190$, 191, 194 to 199,200 to 208,211 to 213 , 247, 300 to 308,311 to $313,347,9999$
$\begin{aligned} & 196 \\ & \text { M406 } \end{aligned}$	ABC2 terminal function selection		9999	No function	
313   M410*3	DO0 output selection	For terminal on the option	9999	No function	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to $57,60,61,63$ to $66,68,70,79,80,84$ to 99 , 100 to 108,110 to $116,120,122,125$ to 128,130 to 136,138 to $157,160,161,163$ to $166,168,170,179,180,184$ to 199,200 to 208,211 to 213,247 to 250,300 to 308 , 311 to 313,347 to 350,9999
314   M411 ${ }^{* 3}$	DO1 output selection		9999	No function	
315 M412*	DO2 output selection		9999	No function	
316   M413* ${ }^{*}$	DO3 output selection		9999	No function	
317   M414 ${ }^{* 3}$	DO4 output selection		9999	No function	
318   M415* ${ }^{*}$	DO5 output selection		9999	No function	
319   M416*	DO6 output selection		9999	No function	
320   M420*3	RA1 output selection		0	RUN (Inverter running)	0 to 8,10 to $20,22,25$ to 28,30 to 36,38 to $57,60,61,63$ to $66,68,70,79,80,84$ to 91 , 94 to 99,200 to 208,211 to 213,247 to 250, 9999
321   M421*3	RA2 output selection		1	SU (Up to frequency)	
$\begin{aligned} & \text { 322 } \\ & \text { M422*3 } \end{aligned}$	RA3 output selection		2*1	IPF (Instantaneous power failure/undervoltage)	
			9999*2	No function	


Pr.	Name	Initial value	Setting range	Description
$\mathbf{2 8 9}$	Inverter output terminal   M431   filter	9999	5 to 50 ms	Set the time delay for the output terminal response.
			No output terminal filter.	

[^17]
## - Output signal list

- The functions of the output terminals can be set.
- Refer to the following table and set each parameter. (0 to 99: Positive logic, 100 to 199, 300 to 399: Negative logic)

Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
0	100	RUN	Inverter running	Output during operation when the inverter output frequency reaches Pr. 13 Starting frequency or higher.	-	452
1	101	SU	Up to frequency *1	Output when the output frequency reaches the set frequency.	Pr. 41	457
2	102	IPF	Instantaneous power failure/undervoltage *2	Output when an instantaneous power failure or undervoltage protection operation occurs.	Pr. 57	618
3	103	OL	Overload warning	Output during operation of the stall prevention function.	$\begin{aligned} & \hline \text { Pr.22, Pr.23, } \\ & \text { Pr.66, Pr.148, } \\ & \text { Pr.149, Pr. } 154 \\ & \hline \end{aligned}$	403
4	104	FU	Output frequency detection	Output when the output frequency reaches the frequency set in Pr. 42 (Pr. 43 during reverse rotation) or higher.	Pr.42, Pr. 43	457
5	105	FU2	Second output frequency detection	Output when the output frequency reaches the frequency set in Pr. 50 or higher.	Pr. 50	457
6	106	FU3	Third output frequency detection	Output when the output frequency reaches the frequency set in Pr. 116 or higher.	Pr. 116	457
7	107	RBP	Regenerative brake prealarm *2	Output when $85 \%$ of the regenerative brake duty set in Pr. 70 is reached.	Pr. 70	718
8	108	THP	Electronic thermal O/L relay pre-alarm	Output when the cumulative electronic thermal $\mathrm{O} / \mathrm{L}$ relay value reaches $85 \%$ of the trip level. (Electronic thermal O/L relay protection (E.THT/E.THM) is activated when the value reaches 100\%.)	Pr. 9	377
10	110	PU	PU operation mode	Output when PU operation mode is selected.	Pr. 79	346
11	111	RY	Inverter operation ready	Output when the reset process is completed after powering ON the inverter (when starting is possible by switching the start signal ON or during operation).	-	452
12	112	Y12	Output current detection	Output when the output current is higher than the Pr. 150 setting for the time set in Pr. 151 or longer.	Pr.150, Pr. 151	461
13	113	Y13	Zero current detection	Output when the output current is lower than the Pr. 152 setting for the time set in Pr. 153 or longer.	Pr.152, Pr. 153	461
14	114	FDN	PID lower limit	Output when the value is lower than the lower limit of PID control.	$\begin{aligned} & \text { Pr. } 127 \text { to Pr. } 134 \text {, } \\ & \text { Pr. } 575 \text { to Pr. } 577 \end{aligned}$	587
15	115	FUP	PID upper limit	Output when the value is higher than the upper limit of PID control.		
16	116	RL	PID forward/reverse rotation output	Output during forward rotation under PID control.		
17	-	MC1	Electronic bypass MC1	Used when using the electronic bypass function.	$\begin{aligned} & \text { Pr. } 135 \text { to Pr.139, } \\ & \text { Pr. } 159 \end{aligned}$	542
18	-	MC2	Electronic bypass MC2			
19	-	MC3	Electronic bypass MC3			
20	120	BOF	Brake opening request	Output to open the brake when the brake sequence function is selected.	$\begin{aligned} & \text { Pr. } 278 \text { to Pr. } 285 \text {, } \\ & \text { Pr. } 292 \end{aligned}$	553
22	122	BOF2	Second brake opening request	Output to open the brake when the second brake sequence function is selected (RT signal ON).	$\begin{aligned} & \text { Pr. } 641 \text { to Pr. } 649 \text {, } \\ & \text { Pr. } 292 \end{aligned}$	
25	125	FAN	Fan fault output	Output when a fan fault occurs.	Pr. 244	386
26	126	FIN	Heat sink overheat prealarm	Output when the heat sink temperature reaches about $85 \%$ of the heat sink overheat protection operation temperature.	-	751


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
27	127	ORA	Orientation complete (for vector control compatible option) *4	When orientation is enabled.	Pr. 350 to Pr.366, Pr.369, Pr.393, Pr. 396 to Pr. 399	570
28	128	ORM	Orientation fault (for vector control compatible option) *4			
30	130	Y30	Forward rotation output (for vector control compatible option) *4	Output during motor forward rotation.	-	455
31	131	Y31	Reverse rotation output (for vector control compatible option) *4	Output during motor reverse rotation.		455
32	132	Y32	Regenerative status output (for vector control compatible option) *4	Output when the regenerative status is entered under vector control.		455
33	133	RY2	Operation ready 2	Output during pre-excitation or operation under Real sensorless vector control and vector control.	-	452
34	134	LS	Low speed detection	Output when the output frequency drops to the Pr. 865 setting or lower.	Pr. 865	457
35	135	TU	Torque detection	Output when the motor torque is higher than the Pr. 864 setting.	Pr. 864	463
36	136	Y36	In-position	Output when the number of droop pulses drops below the setting.	Pr. 426	281
38	138	MEND	Travel completed	Output when the droop pulse is within the inposition width, and the position command operation is not completed or performing home position return.	Pr. 426	281
39	139	Y39	Start time tuning completion	Output when tuning is completed during startup.	Pr.95, Pr. 574	537
40	140	Y40	Trace status	Output during trace operation.	$\begin{aligned} & \text { Pr. } 1020 \text { to } \\ & \text { Pr. } 1047 \end{aligned}$	636
41	141	FB	Speed detection	Output when the actual motor rotations per minute (estimated rotations per minute) reaches Pr. 42 (Pr.50, Pr.116).	$\begin{aligned} & \text { Pr. } 42, \text { Pr. } 50 \text {, } \\ & \text { Pr. } 116 \end{aligned}$	457
42	142	FB2	Second speed detection			
43	143	FB3	Third speed detection			
44	144	RUN2	Inverter running 2	Output while the forward rotation or reverse rotation signal is ON.   Output during deceleration even while the forward rotation or reverse rotation signal is OFF. (Not output while pre-excitation LX is ON.)   Output also while the orientation command ( X 22 ) signal is ON .   Under position control, turns ON when the servo is turned ON (LX ON). (Turns OFF when the servo turned is OFF (LX OFF)).	-	452
45	145	RUN3	Inverter running and start command is ON	Output while the inverter is running and the start command is ON.	-	452
46	146	Y46	During deceleration at occurrence of power failure	Output after the power-failure deceleration function operates.   (Retained until canceled.)	Pr. 261 to Pr. 266	629
47	147	PID	During PID control activated	Output during PID control.	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	587
48	148	Y48	PID deviation limit	Output when the absolute deviation value exceeds the limit value.	Pr. 127 to Pr.134, Pr.553, Pr. 554	587


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
49	149	Y49	During pre-charge operation	Output during pre-charge operation.	Pr. 127 to Pr.134, Pr.241, Pr.553, Pr.554, Pr. 575 to Pr.577, Pr. 753 to Pr.769, C42 to C45	607
50	150	Y50	During second pre-charge operation			
51	151	Y51	Pre-charge time over	Output when the pre-charge operation reaches the time limit set in Pr. 764 or Pr. 769 .		
52	152	Y52	Second pre-charge time over			
53	153	Y53	Pre-charge level over	Output when the measured value before reaching the ending time during pre-charge operation is higher than the detection level set in Pr. 763 or Pr. 768.		
54	154	Y54	Second pre-charge level over			
55	155	For manufacturer setting. Do not set.				
56	156	ZA	Home position return failure	Output while a home position return failure warning is occurring.	-	251
57	157	IPM	During PM sensorless vector control	Output while the control method is PM sensorless vector control.	$\begin{aligned} & \text { Pr.71, Pr.80, } \\ & \text { Pr. } 998 \end{aligned}$	176
60	160	FP	Position detection level	Output when the current position exceeds the position detection judgment value (Pr. 1294 and Pr.1295).	$\begin{aligned} & \text { Pr. } 1294 \text { to } \\ & \text { Pr. } 1297 \end{aligned}$	281
61	161	PBSY	During position command operation	Output during position command operation.	-	251
63	163	ZP	Home position return completed	Output after home position return is completed.		
64	164	Y64	During retry	Output during retry processing.	Pr. 65 to Pr. 69	389
65	165	Y65	Emergency drive in operation *2	Output during emergency drive operation.	$\begin{aligned} & \text { Pr.514, Pr.515, } \\ & \text { Pr.523, Pr.524, } \end{aligned}$	391
66	166	ALM3	Fault output during emergency drive *2	Output when a fault occurs during emergency drive operation.	Pr. 1013	
67	167	Y67	Power failure*3	Output when the output is shut off due to power failure or undervoltage, or the power failure time deceleration-to-stop function is activated.	Pr. 261 to Pr. 266	629
68	168	EV	24 V external power supply operation	Output while operating with a 24 V power supply input from an external source.	-	66
70	170	SLEEP	PID output interruption	Output during PID output suspension function operation.	$\begin{aligned} & \text { Pr. } 127 \text { to Pr. } 134 \text {, } \\ & \text { Pr. } 575 \text { to Pr. } 577 \end{aligned}$	587
79	179	Y79	Pulse train output of output power	Output in pulses every time the accumulated output power of the inverter reaches the Pr. 799 setting.	Pr. 799	469
84	184	RDY	Position control preparation ready	Output when the operation is set ready by servo ON (LX ON)	$\begin{aligned} & \text { Pr. } 419 \text {, Pr. } 428 \text { to } \\ & \text { Pr. } 430 \end{aligned}$	271
85	185	Y85	DC current feeding *5	Output when there is a power failure or undervoltage for the AC current.	Pr. 30	718
86	186	Y86	Control circuit capacitor life (for Pr. 313 to Pr.322) *5	Output when the control circuit capacitor approaches the end of its life.	Pr. 255 to Pr. 259	312
87	187	Y87	Main circuit capacitor life (for Pr. 313 to Pr. 322$)^{* 2 * 5}$	Output when the main circuit capacitor approaches the end of its life.		
88	188	Y88	Cooling fan life (for Pr. 313 to Pr.322) *5	Output when the cooling fan approaches the end of its life.		
89	189	Y89	Inrush current limit circuit life (for Pr. 313 to Pr.322) *2*5	Output when the inrush current limit circuit approaches the end of its life.		
90	190	Y90	Life alarm	Output when any of the control circuit capacitor, main circuit capacitor and inrush current limit circuit or the cooling fan approaches the end of its life.		
91	191	Y91	Fault output 3 (power-OFF signal)	Output when an error occurs due to an inverter circuit fault or connection fault.	-	456


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
92	192	Y92	Energy saving average value updated timing	Switches between ON and OFF each time the average power saving is updated when using the power saving monitor. This cannot be set in Pr. 195 or Pr.196, Pr. 320 to Pr. 322 (relay output terminal).	$\begin{aligned} & \text { Pr. } 52 \text {, Pr. } 54 \text {, } \\ & \text { Pr. } 158 \text {, Pr. } 891 \text { to } \\ & \text { Pr. } 899 \end{aligned}$	440
93	193	Y93	Current average monitor	Outputs the average current and maintenance timer value as a pulse. This cannot be set in Pr. 195 or Pr.196, Pr. 320 to Pr. 322 (relay output terminal).	Pr. 555 to Pr. 557	317
94	194	ALM2	Fault output 2	Output when the inverter's protective function is activated to stop the output (at fault occurrence).   The signal output continues even during an inverter reset, and the signal output stops after the reset release. *6	-	456
95	195	Y95	Maintenance timer	Output when Pr. 503 reaches the Pr. 504 setting or higher.	Pr.503, Pr. 504	316
96	196	REM	Remote output	Output via terminals when certain parameters are set.	Pr. 495 to Pr. 497	464
97	197	ER	Alarm output 2	When Pr. 875 = "0" (initial value), output in the same way as the ALM signal.   When Pr. 875 = "1", if OHT/THM/PTC occurs, the signal is output, and deceleration to a stop is performed at the same time. When other protective functions operate, output when output is stopped.	Pr. 875	385
98	198	LF	Alarm	Output when an alarm (fan fault or communication error warning) occurs.	Pr.121, Pr. 244	$\begin{aligned} & 386, \\ & 650 \end{aligned}$
99	199	ALM	Fault	Output when the inverter's protective function is activated to stop the output (at fault occurrence). The signal output is stopped after a reset.	-	456
200	300	FDN2	Second PID lower limit	Output when the value is lower than the lower limit of second PID control.	Pr. 753 to Pr. 758	587
201	301	FUP2	Second PID upper limit	Output when the value is higher than the upper limit of second PID control.		
202	302	RL2	Second PID forward/ reverse rotation output	Output during forward rotation under second PID control.		
203	303	PID2	Second During PID control activated	Output during second PID control.		
204	304	$\begin{aligned} & \text { SLEEP } \\ & 2 \end{aligned}$	During second PID output shutoff	Output during second PID output suspension function operation.	$\begin{aligned} & \text { Pr. } 753 \text { to Pr. } 758 \text {, } \\ & \text { Pr. } 1147 \text { to } \\ & \text { Pr. } 1149 \end{aligned}$	
205	305	Y205	Second PID deviation limit	Output when the absolute deviation value during second PID control exceeds the limit value.	Pr. 753 to Pr.758, Pr.1145, Pr. 1146	
206	306	Y206	Cooling fan operation command signal	Output when the cooling fan operation is commanded.	Pr. 244	386
207	307	Y207	Control circuit temperature	Output when the temperature of the control circuit board reaches the detection level or higher.	Pr. 663	470
208	308	PS	PU stopped	Output while the PU is stopped.	Pr. 75	291
211	311	LUP	Upper limit warning detection	Outputted when the load fault upper limit warning is detected.	$\begin{aligned} & \text { Pr. } 1480 \text { to } \\ & \text { Pr. } 1492 \end{aligned}$	410
212	312	LDN	Lower limit warning detection	Outputted when the load fault lower limit warning is detected.		
213	313	Y213	During load characteristics measurement	Outputted during measurement of the load characteristics.		
247	347	LSYN	Phase synchronization completion *4	Output when phase synchronization for bypass switching has completed (for FRA8AVP).	Pr. 139	-


Setting		Signal name	Function	Operation	Related parameter	Refer to page
Positive logic	Negative logic					
248	348	Y248	Estimated residual-life of main circuit capacitor (for Pr. 313 to Pr. 322$)^{* 2 * 5}$	Output when the main circuit capacitor approaches the end of its estimated life.	Pr.255, Pr. 506	312
249	349	Y249	ABC1 relay contact life (for Pr. 313 to Pr.322) ${ }^{*}$	Output when the relay contacts of terminals $\mathrm{A} 1, \mathrm{~B} 1$, and C 1 approach the end of their life.	Pr.255, Pr. 507	
250	350	Y250	ABC2 relay contact life (for Pr. 313 to Pr. 322$)^{* 5}$	Output when the relay contacts of terminals A2, B2, and C2 approach the end of their life.	Pr.255, Pr. 508	
9999		-	No function	-	-	-

*1 Take caution when changing the frequency setting with an analog signal, because this change speed and the timing of the change speed determined by the acceleration/deceleration time setting may cause the output of the SU (up to frequency) signal to switch repeatedly between ON and OFF. (This repeating does not occur when the acceleration/deceleration time setting is " 0 s ".)
*2 The setting is available only for standard models.
*3 This signal cannot be assigned to the output terminals for plug-in options (FR-A8AY, FR-A8AR).
*4 Available when the plug-in option or control terminal option is connected.
*5 This signal is available for the PLC function is enabled, or when an option (FR-A8AY, FR-A8AR, FR-A8NC, or FR-A8NCE) is installed. Use Pr. 313 to Pr. 322 to assign the function to the terminal. For the information of the availability of these parameters for each option, refer to the Instruction Manual of the option.
*6 When the power is reset, the fault output 2 signal (ALM2) turns OFF at the same time as the power turns OFF.

## NOTE

- The same function may be set to more than one terminal
- The terminal conducts during function operation when the setting is " 0 to 99,200 to 299 ", and does not conduct when the setting is "100 to 199, 300 to 399".
- When Pr. 76 Fault code output selection = "1", the output signals of terminals SU, IPF, OL and FU operate according to Pr. 76 setting. (When the inverter's protective function is activated, the signal output switches to fault code output.)
- The outputs of terminal RUN and the fault output relay are assigned according to the settings above, regardless of Pr. 76 .
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- Do not assign signals which repeat frequently between ON and OFF to terminals A1B1C1 or A2B2C2. The life of the relay contacts will be shortened.


## Adjusting the output terminal response level (Pr.289)

- The response level of the output terminals can be delayed in a range of 5 to 50 ms . (Operation example for the RUN signal.)



## NOTE

- When Pr. 157 OL signal output timer is set for the Overload warning (OL) signal output, the OL signal is output when the set time of (Pr. 157 + Pr. 289 ) elapses.
- For the output signal and the fault code output (on page 468) used in the PLC function (on page 634), the Pr. 289 setting is invalid (no filter).


## - Inverter operation ready signals (RY, RY2 signals) and inverter running signals (RUN, RUN2, RUN3 signals)

## ■ Operation under V/F control and Advanced magnetic flux vector control

- When the inverter is ready for operation, the Inverter operation ready (RY) signal turns ON (stays ON during operation.)
- When the inverter output frequency reaches Pr. 13 Starting frequency or higher, the Inverter running (RUN, RUN2) signals turn ON. The signal is OFF while the inverter is stopped and during DC injection brake operation.
- The Inverter running and start command is ON (RUN3) signal is ON while the inverter is running or the start signal is ON. (When the start command is ON, the RUN3 signal output turns ON even while the inverter's protective function is activated or the MRS is ON.) During DC injection brake operation as well, the output is ON, and when the inverter stops, it turns OFF.

- According to the inverter condition, the ON/OFF operation of each signal is as shown below.

Output signal	Start signal OFF   (during stop)	Start signal ON (during stop)	Start signal ON (running)	DC injection brake operation	Output shutoff ${ }^{*}$		Automatic restart after instantaneous power failure		
							Coasting		Restarting
					Start signal ON	Start signal OFF	Start signal ON	Start signal OFF	
RY*3	ON	ON	ON	ON	OFF		ON* ${ }^{*}$		ON
RY2	OFF	OFF	OFF	OFF	OFF		OFF		ON
RUN	OFF	OFF	ON	OFF	OFF		OFF		ON
RUN2	OFF	OFF	ON	OFF	OFF		OFF		ON
RUN3	OFF	ON	ON	ON	ON	OFF	ON	OFF	ON

*1 OFF during power failure or undervoltage.
*2 Output is shutoff in conditions like a fault and when the MRS signal is ON.
*3 OFF while power is not supplied to the main circuit power supply.

## Operation under Real sensorless vector control, vector control and PM sensorless vector control

- When the inverter is ready for operation, the Inverter operation ready (RY) signal turns ON (and stays ON during operation).
- When the inverter output frequency reaches Pr. 13 Starting frequency or higher, the output of Inverter running (RUN) turns ON. The signal is OFF while the inverter is stopped, the DC injection brake is operating, during tuning at start-up, or during pre-excitation.
- The Inverter running 2 (RUN2) signal is ON while the inverter is running or the start signal is ON. (When the inverter's protective function is activated or the MRS is ON, the RUN2 signal turns OFF.)
- The Inverter running and start command is ON (RUN3) signal output is ON while the inverter is running or the start signal is ON .
- The RUN2 and RUN3 signals also are ON when the start command is ON and when pre-excitation is operating with the speed command $=0$. (However, the RUN2 signal is OFF during pre-excitation operation activated by LX signal ON.)
- The Operation ready 2 (RY2) signal turns ON when the pre-excitation starts. It stays ON while pre-excitation is operating even when the inverter is stopped.



## NOTE

- When pre-excitation is activated by the pre-excitation signal (LX), the RY2 signal turns ON 100 ms ( 500 ms for FR-A86001440 or higher) after the LX signal turns ON. (When online auto tuning at start-up (Pr. $95=11$ ) is selected, the ON timing is delayed by the tuning time.)

- According to the inverter condition, the ON/OFF operation of each signal is as shown below.

Output signal	Start signal OFF (during stop)	Start signal ON ${ }^{* 1}$ (preexcitation)	Start signal ON (running)	LX signal ON (preexcitation)	DC injection brake operating (preexcitation)	Output shutoff ${ }^{* 5}$		Automatic restart after instantaneous power failure		
								Coasting		Restarting
						Start signal ON	Start signal OFF	Start signal ON	Start signal OFF	
RY* ${ }^{*}$	ON	ON	ON	ON	ON	OFF		ON ${ }^{*}$		ON
RY2	OFF	ON	ON	$\mathrm{ON}^{* 3}$	ON	OFF		OFF		ON
RUN	OFF	OFF	ON	OFF*4	OFF	OFF		OFF		ON
RUN2	OFF	ON	ON	OFF*4	OFF	OFF		OFF		ON
RUN3	OFF	ON	ON	ON	ON	ON	OFF	ON	OFF	ON

*1 When the start signal is ON and the frequency command is 0 Hz , pre-excitation is entered.
*2 Turns OFF during power failure or undervoltage.
*3 A delay of 100 ms ( 500 ms for FR-A860-01440 or higher) occurs when turned ON.
*4 Turns ON while the servo is ON (LX signal ON) under position control.
*5 Output is shutoff in conditions like a fault and when the MRS signal is ON
*6 OFF while power is not supplied to the main circuit power supply.

- When using the RY, RY2, RUN, RUN2 and RUN3 signals, refer to the following and assign the functions by Pr. 190 to Pr. 196 (Output terminal function selection).

Output signal	Pr. 190 to Pr.196 settings	
	Positive logic	Negative logic
RY	11	111
RY2	33	133
RUN	0	100
RUN2	44	144
RUN3	45	145

## NOTE

- The RUN signal (positive logic) is assigned to the terminal RUN in the initial status.


## - Forward rotation and reverse rotation signals (Y30 and Y31)

- Under Vector control or encoder feedback control, the Forward rotation output (Y30) signal or the Reverse rotation output (Y31) signal is output according to the actual rotation direction of the motor.
- During pre-excitation (zero speed, servo lock) under speed control or torque control, Y30 and Y31 are OFF. Note that during servo lock under position control, the output is according to the motor rotation, the same as during operation.
- To use the Y30 signal, set " 30 (positive logic) or 130 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- To use the Y31 signal, set "31 (positive logic) or 131 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- The Y30 and Y31 signals are always OFF under V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.
- If the motor is rotated by an external force or other cause while the inverter is stopped, Y30 and Y31 stay OFF.


## - Regenerative status output signal (Y32)

- When the motor is in the regenerative status (motor is in the dynamic braking status) under vector control, the Regenerative status output (Y32) signal turns ON. Once it turns ON, the signal is retained for at least 100 ms .
- The signal turns OFF during a stop or pre-excitation.
- To use the Y32 signal, set "32 (positive logic) or 132 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- Always OFF under V/F control, Advanced magnetic flux vector control, Real sensorless vector control, and PM sensorless vector control.


## - Fault output signals (ALM, ALM2)

- The Fault (ALM, ALM2) signals are output when the inverter protective function is activated.
- The ALM2 signal stays ON during the reset period after the fault occurs.
- To use the ALM2 signal, set "94 (positive logic) or 194 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- The ALM signal is assigned to the A1B1C1 contacts in the initial status.



## NOTE

- For the inverter fault details, refer to page 742 .


## - Input MC shutoff signal (Y91)

- The Fault output 3 (Y91) signal is output when a fault originating in the inverter circuit or a connection fault occurs.
- To use the Y91 signal, set "91 (positive logic) or 191 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- The following table shows the faults that output the Y91 signal. (For the fault details, refer to page 742 .)

Fault record
Inrush current limit circuit fault (E.IOH)
CPU fault (E.CPU)
CPU fault (E.6)
CPU fault (E.7)
Parameter storage device fault (control circuit board) (E.PE)
Parameter storage device fault (main circuit board) (E.PE2)
Internal storage device fault (E.PE6)
24 VDC power fault (E.P24)
Operation panel power supply short circuit/RS-485 terminals   power supply short circuit (E.CTE)
Output side earth (ground) fault overcurrent (E.GF)
Output phase loss (E.LF)
Brake transistor alarm detection (E.BE)
Internal circuit fault (E.13/E.PBT)

## - Changing the special relay function for the PLC function

- For the PLC function, the function of special relays (SM1225 to SM1234) can be changed by setting Pr. 313 to Pr.322. (For details on the PLC function, refer to the PLC Function Programming Manual.)

《|Parameters referred to $\gg$
Pr. 13 Starting frequency page 337, page 338
Pr. 76 Fault code output selection page 468

### 5.11.7 Output frequency detection

The inverter output frequency is detected and output as output signals.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{4 1}$   M441	Up-to-frequency sensitivity	$10 \%$	0 to $100 \%$	Set the level where the SU signal turns ON.
$\mathbf{4 2}$   M442	Output frequency   detection	6 Hz	0 to 590 Hz	Set the frequency where the FU (FB) signal turns ON.
$\mathbf{4 3}$   M443	Output frequency   detection for reverse   rotation	9999	0 to 590 Hz	Set the frequency where the FU (FB) signal turns ON in   reverse rotation.
50   M444	Second output frequency   detection	30 Hz	0 to 590 Hz	Set the frequency where the FU2 (FB2) signal turns ON.
$\mathbf{1 1 6}$   M445	Third output frequency   detection	60 Hz	0 to 590 Hz	Set the frequency where the FU3 (FB3) signal turns ON.
$\mathbf{8 6 5}$   M446	Low speed detection	1.5 Hz	0 to 590 Hz	Set the frequency where the LS signal turns ON.
$\mathbf{8 7 0}$   M400	Speed detection hysteresis	0 Hz	0 to 5 Hz	Set the hysteresis width for the detected frequency.

## - Output up-to-frequency sensitivity (SU signal, Pr.41)

- Up to frequency (SU) is output when the output frequency reaches the set frequency.
- The Pr. 41 value can be adjusted within the range $\pm 1 \%$ to $\pm 100 \%$ considering the set frequency as $100 \%$.
- This parameter can be used to check that the set frequency has been reached, and provide signals such as the operation start signal for related equipment.



## - Output frequency detection (FU (FB) signal, FU2 (FB2) signal, FU3 (FB3) signal, Pr.42, Pr.43, Pr.50, Pr.116)

- Output frequency detection (FU (FB)) is output when the output frequency reaches the Pr. 42 setting or higher.
- The FU (FU2, FU3) signals can be used for electromagnetic brake operation, opening, etc.
- The FU (FU2, FU3) signal is output when the output frequency (frequency command) reaches the set frequency. The FB (FU2, FU3) signal is output when the actual rotation detection speed (estimated speed in Real sensorless vector control, feedback value in vector control) of the motor reaches the set frequency. The FU signal and FB signal are output in the same manner under V/F control, Advanced magnetic flux vector control and encoder feedback control.
- Frequency detection that is dedicated to reverse rotation can be set by setting the detection frequency in Pr.43. This is useful for changing the timing of the electromagnetic brake operation during forward rotation (lifting) and reverse rotation (lowering) in operations such as lift operation.
- When Pr. $43 \neq$ " 9999 ", forward rotation uses the Pr. 42 setting and reverse rotation uses the Pr. 43 setting.
- When outputting a frequency detection signal separately from the FU signal, set the detection frequency in Pr. 50 or Pr. 116. When the output frequency reaches the Pr. 50 setting or higher, the FU2 (FB2) signal is output (when it reaches the Pr. 116 setting or higher, the FU3 (FB3) signal is output).

- For each signal, refer to the following table and assign the function by Pr. 190 to Pr. 196 (Output terminal function selection).

Output   signal	Pr.190 to Pr.196 settings		Pr.
	Positive logic	Negative logic	
FU	4	104	42,43
FB	41	141	
FU2	5	105	50
FB2	42	142	116
FU3	6	106	
FB3	43	143	

## - Low speed detection (LS signal, Pr.865)

- When the output frequency (refer to the table below) drops to the Pr. 865 Low speed detection setting or lower, the low speed detection signal (LS) is output.
- In speed control under Real sensorless vector control, vector control or PM sensorless vector control, when the frequency drops to the Pr. 865 setting, the output torque exceeds the Pr. 874 OLT level setting, and this status continues for 3 s , a fault (E.OLT) appears and the inverter output stops.
- For the LS signal, set "34 (positive logic) or 134 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## - Speed detection hysteresis (Pr.870)

This function prevents chattering of the speed detection signals. When an output frequency fluctuates, the following signals may repeat ON/OFF (chatter).

- Up to frequency signal (SU)
- Speed detection signal (FB, FB2, FB3)
- Low speed output signal (LS)

Setting hysteresis to the detected frequency prevents chattering of these signals.


NOTE
－In the initial setting，the FU signal is assigned to the terminal FU，and the SU signal is assigned to the terminal SU．
－All signals turn OFF during DC injection brake，pre－excitation（zero speed control，servo lock）and tuning at start－up．
－Each signal＇s reference frequency differs by the control method．

Control method	Compared frequency	
	FU，FU2，FU3	FB，FB2，FB3，SU，LS
V／F control	Output frequency	Output frequency
Advanced magnetic flux vector control	Output frequency before the slip   compensation	Output frequency before the slip   compensation
Real sensorless vector control	Frequency command value	Estimated frequency（estimated from the   actual motor speed）
Encoder feedback control	Actual motor speed converted as frequency	Actual motor speed converted as frequency
vector control	Frequency command value	Actual motor speed converted as frequency
PM sensorless vector control	Frequency command value	Estimated frequency（actual motor speed）

－Setting a higher value in Pr． 870 slows the response of frequency detection signals（SU，FB，FB2，FB3，and LS）．
－The ON／OFF logic for the LS signal is opposite for the FB signal．
－Changing the terminal assignment using Pr． 190 to Pr． 196 （Output terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

[^18]
### 5.11.8 Output current detection function

The output current during inverter running can be detected and output to the output terminal.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 150 \\ & \text { M460 } \end{aligned}$	Output current detection level	150\%	0 to 220\%	Set the output current detection level. Consider the value of the inverter rated current as 100\%.
$\begin{aligned} & 151 \\ & \text { M461 } \end{aligned}$	Output current detection signal delay time	0 s	0 to 10 s	Set the time from when the output current exceeds the Pr. 150 setting until the Output current detection (Y12) signal is output.
$\begin{aligned} & 152 \\ & \text { M462 } \end{aligned}$	Zero current detection level	5\%	0 to 220\%	Set the zero current detection level.   The inverter rated current is regarded as 100\%.
$\begin{aligned} & 153 \\ & \text { M463 } \end{aligned}$	Zero current detection time	0.5 s	0 to 10 s	Set the time from when the output current falls below the Pr. 152 setting until the Zero current detection (Y13) signal is output.
166	Output current detection	0.1 s	0 to 10 s	Set the retention time when the Y12 signal is ON.
M433	signal retention time		9999	Retain the Y12 signal ON status. The signal is turned OFF at the next start.
$\begin{aligned} & 167 \\ & \text { M464 } \end{aligned}$	Output current detection operation selection	0	0, 1, 10, 11	Select the operation when Y12 and Y13 signals turn ON.

## Output current detection (Y12 signal, Pr.150, Pr.151, Pr.166, Pr.167)

- The output current detection function can be used for purposes such as overtorque detection.
- If the inverter output during inverter running remains higher than the Pr. 150 setting for the time set in Pr. 151 or longer, the Output current detection (Y12) signal is output.
- When the Y12 signal turns ON, the ON state is retained for the time set in Pr. 166.
- When Pr. $166=$ " 9999 ", the ON state is retained until the next start.
- Setting Pr. $167=$ "1" while the Y12 signal is ON does not cause E.CDO. The Pr. 167 setting becomes valid after the Y12 signal is turned OFF.
- For the Y12 signal, set "12 (positive logic) or 112 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- Select whether the inverter output stops or the inverter operation continues when Y12 signal turns ON, by setting Pr.167.

Pr.167 setting	When Y12 signal turns ON	When Y13 signal turns ON
0 (Initial value)	Continuous operation	Continuous operation
1	Inverter trip (E.CDO)	Continuous operation
10	Continuous operation	Inverter trip (E.CDO)
11	Inverter trip (E.CDO)	Inverter trip (E.CDO)



## - Zero current detection (Y13 signal, Pr.152, Pr.153)

- If the inverter output during inverter running remains lower than the Pr. 152 setting for the time set in Pr. 153 or longer, the Zero current detection (Y13) signal is output.
- Once turned ON, the zero current detection time signal (Y13) is held ON for at least 0.1 s .
- If the inverter output current decreases, slippage due to gravity may occur, especially in a lift application, because the motor torque decreases. To prevent this, the Y13 signal can be output from the inverter to apply the mechanical brake when the output current falls below the Pr. 152 setting.
- For the Y13 signal, set "13 (positive logic) or 113 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- Select whether the inverter output stops or the inverter operation continues when Y13 signal turns ON, by setting Pr. 167.



## NOTE

- The signals are enabled even when online or offline auto tuning is being executed.
- The response time of the Y 12 and Y 13 signals is approximately 0.1 s . Note that the response time varies with the load.
- When Pr. $152=$ " 0 ", detection is disabled.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## ©CAUTION

- The zero current detection level setting should not be too low, and the zero current detection time setting not too long. When the output current is low and torque is not generated, the detection signal may not be output.
- Even when using the zero current detection signal, a safety backup such as an emergency brake must be provided to prevent hazardous machine or equipment conditions.


## |Parameters referred to 》》

Online auto tuning page 537
Offline auto tuning page 508, page 529
Pr. 190 to Pr. 196 (Output terminal function selection) page 446

### 5.11.9 Output torque detection

## Magneticflux Sensorless Vector LPM

A signal is output when the motor torque is higher than the setting.
This function can be used for electromagnetic brake operation, open signal, etc.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{8 6 4}$   M470	Torque detection	$150 \%$	0 to $400 \%$	Set the torque value where the TU   signal turns ON.

- The Torque detection (TU) signal turns ON when the output torque reaches the detection torque value set in Pr. 864 or higher. The TU signal turns OFF when the output torque drops lower than the detection torque value.
- Pr. 864 is not available under V/F control
- For the TU signal, set "35 (positive logic) or 135 (negative logic)" in one of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.



## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
<<Parameters referred to\》
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) $age }44
```


## 5．11．10 Remote output function

The inverter output signals can be turned ON／OFF like the remote output terminals of a programmable controller．

Pr．	Name	Initial value	Setting range	Description	
$\begin{aligned} & 495 \\ & \text { M500 } \end{aligned}$	Remote output selection	0	0	Remote output data is cleared when the power supply is turned OFF	Remote output data is cleared during an inverter reset
			1	Remote output data is retained when the power supply is turned OFF	
			10	Remote output data is cleared when the power supply is turned OFF	Remote output data is retained during an inverter reset
			11	Remote output data is retained when the power supply is turned OFF	
$\begin{aligned} & 496 \\ & \text { M501 } \end{aligned}$	Remote output data 1	0	0 to 4095	Set values for the bits corresponding to each output terminal of the inverter output terminal．（Refer to the diagram below．）	
$\begin{aligned} & 497 \\ & \text { M502 } \end{aligned}$	Remote output data 2	0	0 to 4095	Set values for the bits corresponding to each output terminal of options FR－A8AY and FR－A8AR．（Refer to the diagram below．）	

## Remote output setting（REM signal，Pr．496，Pr．497）

－The output terminal can be turned ON／OFF with the Pr． 496 and Pr． 497 settings．ON／OFF control can be performed for the remote output terminal via the PU connector，RS－485 terminals and communication option．
－To assign the Remote output（REM）signal to the terminal to be used for remote output，set＂96（positive logic）or 196 （negative logic）＂in any of Pr． 190 to Pr． 196 （Output terminal function selection）．
－Refer to the left figure，and set＂1＂in the terminal bit（terminal with the REM signal assigned）of Pr． 496 or Pr． 497 to turn ON the output terminal（OFF when using negative logic）．Set＂0＂to turn OFF the output terminal（ON when using negative logic）．
－For example，when Pr． 190 RUN terminal function selection＝＂96＂（positive logic）and＂1＂（H01）is set in Pr．496，the terminal RUN turns ON．
Pr． 496


Pr． 497

$\stackrel{*}{-}$	$\stackrel{*}{ }$	召     	$$	$\xrightarrow{\text { 何 }}$	ふ $\stackrel{*}{*}$ $\stackrel{1}{*}$	¢ $\stackrel{\rightharpoonup}{*}$	$\begin{aligned} & \text { 【 } \\ & \text { * } \end{aligned}$	¢ $\stackrel{*}{*}$	$\stackrel{\sim}{\sim}$	$\stackrel{3}{3}$	O $\stackrel{*}{*}$

＊1 Any value．
＊2 Y0 to Y6 are available when the extension output option（FR－A8AY）is installed．
＊3 RA1 to RA3 are available hen the relay output option（FR－A8AR）is installed．

## $\checkmark$ Remote output data retention（REM signal，Pr．495）

－If the power supply is reset（including a power failure）while Pr． $495=$＂ 0 （initial value）or 10＂，the REM signal output is cleared．（The terminal ON／OFF status is determined by the settings in Pr． 190 to Pr．196．）＂0＂is also set in Pr． 496 and Pr． 497.
－When Pr． $495=$＂ 1 or 11 ＂，the remote output data is saved in EEPROM before the power supply is turned OFF．This means that the signal output after power restoration is the same as before the power supply was turned OFF．However，when Pr． $495=" 1 "$ ，the data is not saved during an inverter reset（terminal reset，reset request via communication）．
－When Pr． $495=$＂ 10 or 11 ＂，the signal before the reset is saved even during an inverter reset．


Signal condition during a reset

＊When Pr． 495 ＝＂1＂，the signal condition saved in EEPROM （condition of the last power OFF）is applied．

## NOTE

－The output terminals that have not been assigned with a REM signal by Pr． 190 to Pr． 196 do not turn ON／OFF even if＂ 0 or $1^{\prime \prime}$ is set in the terminal bits of Pr． 496 and Pr．497．（ON／OFF is performed with the assigned functions．）
－When Pr． $495=" 1$ or 11 ＂（remote output data retention at power OFF），take measures such as connecting R1／L11 with P／ ＋，and S1／L21 with N／－so that the control power is retained．If the control power is not retained，the output signal after turning ON the power is not guaranteed to work．When connecting the converter unit（FR－CC2），assign the instantaneous power failure detection（X11）signal to an input terminal to input the IPF signal from the FR－CC2 to the terminal for X11 signal．

## 《〈Parameters referred to 》》

Pr． 190 to Pr． 196 （Output terminal function selection）page 446

### 5.11.11 Analog remote output function

An analog value can be output from the analog output terminal.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 655 \\ & \text { M530 } \end{aligned}$	Analog remote output selection	0	0	Remote output data is cleared when the power supply is turned OFF	Remote output data is cleared during an inverter reset
			1	Remote output data is retained when the power supply is turned OFF	
			10	Remote output data is cleared when the power supply is turned OFF	Remote output data is retained during an inverter reset
			11	Remote output data is retained when the power supply is turned OFF	
656   M531	Analog remote output 1	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output from the terminal set as "87" in terminal function selection (Pr.54, Pr.158)	Set the analog value for outputting from the analog output terminals FM and AM and option FR-A8AY.
$\begin{aligned} & 657 \\ & \text { M532 } \end{aligned}$	Analog remote output 2	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output from the terminal set as "88" in terminal function selection (Pr.54, Pr.158)	
658   M533	Analog remote output 3	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output from the terminal set as "89" in terminal function selection (Pr.54, Pr.158)	
659   M534	Analog remote output 4	1000\%	$\begin{aligned} & 800 \text { to } \\ & 1200 \% \end{aligned}$	Value output from the terminal set as "90" in terminal function selection (Pr.54, Pr.158)	

## - Analog remote output (Pr. 656 to Pr.659)

- The terminals FM, AM and the analog output terminal of the option FR-A8AY can output the values set in Pr. 656 to Pr. 659 (Analog remote output).
- When Pr. 54 FM terminal function selection = " $87,88,89$, or 90 " (remote output), a pulse train can be output from the terminal FM.
- For FM output (Pr. 291 Pulse train I/O selection ="0 (initial value) or 1"):

Terminal FM output [pulses/s] $=1440[\mathrm{~Hz}] \times($ analog remote output value -1000$) / 100$
Where the output range is 0 to 2400 pulses/s.

- For high-speed pulse output (Pr. 291 Pulse train I/O selection = "10, 11, 20, or 21"):

Terminal FM output [pulses/s] $=50 \mathrm{~K}[\mathrm{~Hz}] \times($ analog remote output value -1000$) / 100$
Where the output range is 0 to 55 k pulses $/ \mathrm{s}$.



- When Pr. 158 AM terminal function selection $=" 87,88,89$, or $90 "$, an analog voltage can be output from the terminal AM.
- Terminal AM output [V] $=10[\mathrm{~V}] \times($ analog remote output value -1000$) / 100$

The output range is -10 V to +10 V regardless of the Pr. 290 Monitor negative output selection setting.


## - Analog remote output data retention (Pr.655)

- When the power supply is reset (including a power failure) while Pr. 655 Analog remote output selection = "0" (initial value) or 10" and , the remote analog output (Pr. 656 to Pr.659) returns to its initial value (1000\%).
- When Pr. $655=$ " 1 or 11 ", the analog remote output data is saved in EEPROM before the power supply is turned OFF. This means that the analog value output after power restoration is the same as before the power supply was turned OFF. However, when Pr. $655=11 "$, the data is not saved during an inverter reset (terminal reset, reset request via communication).
- When Pr. $655=$ " 10 or 11 ", the analog output before the reset is saved even during an inverter reset.
- When the setting in Pr. 655 is changed, the remote analog output (Pr. 656 to Pr.659) returns to its initial value (1000\%).

* When Pr. 655 = "1", the signal condition saved in EEPROM (condition of the last power OFF) is applied.


## NOTE

- When Pr. $655=$ "1 or 11" (remote analog output data retention at power OFF), take measures such as connecting R1/L11 with $\mathrm{P} /+$, and $\mathrm{S} 1 / \mathrm{L} 21$ with $\mathrm{N} /-$ so that the control power is retained (While power is supplied to $R / L 1, \mathrm{~S} / \mathrm{L} 2$ and $\mathrm{T} / \mathrm{L} 3$ ). If the control power is not retained, the analog output after turning ON the power is not guaranteed to work. When connecting the converter unit (FR-CC2), assign the instantaneous power failure detection (X11) signal to an input terminal to input the IPF signal from the FR-CC2 to the terminal for X11 signal.


## Parameters referred to 》》

[^19]
## 5．11．12 Fault code output selection

When a fault occurs，the corresponding data can be output as a 4－bit digital signal using via an open collector output terminal． The fault code can be read using an input module of programmable controller，etc．

Pr．	Name	Initial value	Setting range	Description
76	Fault code output selection	0	0	Without fault code output
			1	With fault code output   （Refer to the table below．）
			2	Fault code is output only when a fault occurs．   （Refer to the table below．）

－Fault codes can be output to the output terminals by setting Pr． 76 Fault code output selection＝＂1 or 2＂．
－When the setting is＂2＂，a fault code is only output when a fault occurs．In normal operation the terminal outputs the signal assigned in Pr． 191 to Pr． 194 （Output terminal function selection）．
－The fault codes that can be output are shown in the table below．（0：Output transistor OFF，1：Output transistor ON）

Fault indication	Output terminal operation			Fault code	
	SU	IPF			FU
Normal $^{*} 1$	0	0	0	0	0
E．OC1	0	0	0	1	1
E．OC2	0	0	1	0	2
E．OC3	0	0	1	1	3
E．OV1 to E．OV3	0	1	0	0	4
E．THM	0	1	0	1	5
E．THT	0	1	1	0	6
E．IPF	0	1	1	1	7
E．UVT	1	0	0	0	8
E．FIN	1	0	0	1	9
E．BE	1	0	1	0	A
E．GF	1	0	1	1	B
E．OHT	1	1	0	0	C
E．OLT	1	1	0	1	D
E．OPT	1	1	0	E	
E．OP1 to E．OP3		1	1	1	F
Other than the above	1				

＊1 When Pr． $76=$＂2＂，the terminal outputs the signal assigned by Pr． 191 to Pr． 194

## NOTE

－If an error occurs while Pr． $76 \neq "^{\prime 0} 0$ ，the output terminals SU，IPF，OL，and FU output the signals in the table above regardless of the settings in Pr． 191 to Pr． 194 （Output terminal function selection）．Take caution when controlling the inverter with the output signals set by Pr． 191 to Pr． 194.

## 《Parameters referred to 》》

Pr． 190 to Pr． 196 （Output terminal function selection）page 446

### 5.11.13 Pulse train output of output power

After power ON or inverter reset, output signal (Y79 signal) is output in pulses every time accumulated output power, which is counted after the Pr. 799 Pulse increment setting for output power is set, reaches the specified value (or its integral multiples).

Pr.	Name	Initial value	Setting range	Description
799	Pulse increment setting for output	1 kWh	$0.1 \mathrm{kWh}, 1 \mathrm{kWh}$,	Pulse train output of output power (Y79) is   M520   power
		$10 \mathrm{kWh}, 100 \mathrm{kWh}$,   output in pulses at every output power (kWh)   that is specified.		

## - Pulse increment setting for output power (Y79 signal, Pr.799)

- After power ON or inverter reset, output signal (Y79 signal) is output in pulses every time accumulated output power of the inverter exceeds Pr. 799 Pulse increment setting for output power.
- The inverter continues to count the output power at retry function or when automatic restart after instantaneous power failure function works without power OFF of output power (power failure that is too short to cause an inverter reset), and it does not reset the count.
- If power failure occurs, output power is counted from 0 kWh again.
- Assign pulse output of output power (Y79: setting value 79 (positive logic), 179 (negative logic)) to any of Pr. 190 to Pr. 196 (Output terminal function selection).



## NOTE

- Because the accumulated data in the inverter is cleared when control power is lost by power failure or at an inverter reset, the value on the monitor cannot be used to charge electricity bill.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal. (Refer to page 446)
- In an application where the pulse outputs are frequently turned ON/OFF, do not assign the signal to the terminal $A B C 1$ or $A B C 2$. Otherwise, the life of the relay contact decreases.


## Parameters referred to \》

Pr. 190 to Pr. 196 (Output terminal function selection) page 446

### 5.11.14 Detection of control circuit temperature

The temperature of the control circuit board can be monitored, and a signal can be output according to a predetermined temperature setting.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{6 6 3}$   M060	Control circuit temperature signal   output level	$0^{\circ} \mathrm{C}$	0 to $100^{\circ} \mathrm{C}$	Set the temperature where the Y207 signal   turns ON.

## - Control circuit temperature monitor

- The operation panel, terminal FM, or terminal AM can be used to monitor the temperature of the control circuit board within the range of 0 to $100^{\circ} \mathrm{C}$. Refer to page 419 for information on how to select the monitor item.
- When monitoring with the operation panel or terminal AM, the range becomes -20 to $100^{\circ} \mathrm{C}$ by setting the display/output with a minus sign in Pr. 290 Monitor negative output selection.
- The monitor value is a rough approximation of the change in the surrounding air temperature of the inverter. Use this parameter to grasp the operating environment of the inverter.


## - Control circuit temperature detection (Pr.663, Y207 signal)

- The Y207 signal can be output when the control circuit temperature reaches the Pr. 663 setting or higher.
- For the Y207 signal, set "207 (positive logic) or 307 (negative logic)" in one of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.


## NOTE

- The Y207 signal is turned OFF when the control circuit temperature becomes $5^{\circ} \mathrm{C}$ or more lower than the Pr. 663 setting.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
<<Parameters referred to\》
Pr.54 FM terminal function selection page 430
Pr. }158\mathrm{ AM terminal function selection page 430
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) page 446
Pr. }290\mathrm{ Monitor negative output selection ছ page 430
```


### 5.11.15 Encoder pulse dividing output

The encoder pulse signal at the motor end can be divided in division ratio set in Pr. 863 and output.
Use this parameter to make the response of the machine to be input slower, etc. The FR-A8AL or the FR-A8TP is required to be installed.

Pr.	Name	Initial value	Setting range	Description
413 M601* ${ }^{*}$	Encoder pulse division ratio	1	1 to 32767	Set a numerical value by which pulses are divided.
863   M600 ${ }^{*}{ }^{2}$	Control terminal option-Encoder pulse division ratio			

*1 This parameter is available when the FR-A8AL (option) is installed.
*2 This parameter is available when the FR-A8TP (option) is installed.

- Division waveform by division ratio

Both ON-OFF width is division times. ( $50 \%$ duty)

- Pulse waveform example at 1000 pulse input when $\operatorname{Pr} .413$ or $\operatorname{Pr} .863=$ " $2 "$



## NOTE

- Control of forward rotation/reverse rotation by phase difference between $A$ phase and $B$ phase.

When A phase is $90^{\circ}$ advanced as compared to $B$ phase: forward rotation
When A phase is $90^{\circ}$ behind as compared to B phase: reverse rotation

### 5.12 (T) Multi-Function Input Terminal Parameters

Purpose	Parameter to set			Refer to   page473
To inverse the rotation direction with the voltage/current analog input selection (terminals 1, 2, and 4)	Analog input selection	P.T000, P.T001	Pr.73, Pr. 267	
To assign functions to analog input terminals	Terminal 1 and terminal 4 function assignment	P.T010, P.T040	Pr.858, Pr. 868	476
To adjust the main speed by the analog auxiliary input	Analog auxiliary input and compensation (addition compensation and override functions)	$\begin{aligned} & \text { P.T000, P.T021, } \\ & \text { P.T041, P.T050, } \\ & \text { P.T051 } \end{aligned}$	$\begin{aligned} & \hline \text { Pr.73, Pr.242, } \\ & \text { Pr. } 243 \text {, Pr. } 252 \text {, } \\ & \text { Pr. } 253 \end{aligned}$	478
To eliminate noise on analog inputs	Analog input filter	P.T002 to P.T007	$\begin{aligned} & \text { Pr.74, Pr.822, } \\ & \text { Pr.826, Pr.832, } \\ & \text { Pr.836, Pr. } 849 \end{aligned}$	481
To adjust analog input frequency/ voltage (current) (calibration)	Frequency setting voltage (current) bias and gain	P.T100 to P.T103,   P.T200 to P.T203,   P.T400 to P.T403,   P.M043	$\begin{aligned} & \text { Pr.125, Pr. } 126, \\ & \text { Pr.241, Pr. } 902 \text { to } \\ & \text { Pr. } 905 \text {, Pr. } 917 \text {, } \\ & \text { Pr. } 918 \end{aligned}$	483
To adjust analog input torque/voltage (current) (calibration)	Torque setting voltage (current) bias and gain	$\begin{aligned} & \text { P.T110 to P.T113, } \\ & \text { P.T410 to P.T413, } \\ & \text { P.M043 } \end{aligned}$	$\begin{aligned} & \text { Pr.241, Pr.919, } \\ & \text { Pr. } 920, \text { Pr. } 932 \text {, } \\ & \text { Pr. } 933 \end{aligned}$	488
To continue operating at analog current input loss	4-mA input check	P.T052 to P.T054	$\begin{aligned} & \text { Pr. } 573, \text { Pr. } 777 \text {, } \\ & \text { Pr. } 778 \end{aligned}$	493
To assign functions to input terminals	Input terminal function selection	$\begin{aligned} & \text { P.T700 to P.T711, } \\ & \text { P.T740 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 178 \text { to Pr. } 189 \text {, } \\ & \text { Pr. } 699 \end{aligned}$	498
To change the input specification (NO/ NC contact) of input signals	Output stop signal (MRS) input selection	P.T720	Pr. 17	501
	Inverter run enable signal (X10) input selection	P.T721	Pr. 599	719
	Power failure stop external signal (X48) input selection	P.T722	Pr. 606	629
To enable the second (third) function only during the constant speed	RT signal application period selection	P.T730	Pr. 155	503
To assign start and forward/reverse commands to different signals	Start signal (STF/STR) operation selection	P.G106	Pr. 250	715

### 5.12.1 Analog input selection

The functions to switch the analog input terminal specifications, override function, forward/reverse rotation by the input signal polarity are selectable.


## - Analog input specification selection

- Concerning the terminals 2 and 4 used for analog input, the voltage input ( 0 to $5 \mathrm{~V}, 0$ to 10 V ) and current input ( 0 to 20 mA ) are selectable. To change the input specification, change the parameters (Pr.73, Pr.267) and voltage/current input switch settings (switches 1, 2).


Switch state		Input specification	Input	Rated specification
Switch 1	ON	Current input	Terminal 2	For voltage input, the input resistance is $10 \pm 1 \mathrm{k} \Omega$ and the maximum permissible voltage is 20 VDC .   For current input, the input resistance is $245 \pm 5 \Omega$ and the maximum permissible current is 30 mA .
	OFF	Voltage input (initial status)		
Switch 2	ON	Current input (initial status)	Terminal 4	
	OFF	Voltage input		

- Change the setting of the voltage/current input selection switch to change the rated specification of terminal 2 or 4.
- Correctly set Pr.73, Pr. 267 and voltage/current input switch settings so that the analog signal appropriate for the settings is input. The incorrect settings shown in the table below cause a failure. Other incorrect settings result in an incorrect operation.

Setting causing a failure		Operation
Switch setting	Terminal input	
ON (current input)	Voltage input	Causes an analog signal output circuit failure in an external device   (due to increased loads on the signal output circuit of the external device).
OFF (voltage input)	Current input	Causes an input circuit failure in the inverter   (due to an increased output power in the analog signal output circuit of an external device).

## NOTE

- Check the voltage/current input switch number indication before setting, because it is different from the FR-A700 series switch number indication.
- Set the Pr. 73 and voltage/current input switch settings according to the table.

Pr. 73 setting	Terminal 2 input	Switch 1	Terminal 1 input	Compensation input terminal compensation method	Polarity reversible
0	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$	Terminal 1   Addition compensation	Not applied (state in which a negative polarity frequency command signal is not accepted)
1 (initial value)	0 to $5 \mathrm{~V}^{*}$	OFF	0 to $\pm 10 \mathrm{~V}$		
2	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
3	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
4	0 to 10 V	OFF	0 to $\pm 10 \mathrm{~V}^{* 1}$	Terminal 2 Override	
5	0 to 5 V	OFF	0 to $\pm 5 \mathrm{~V}^{* 1}$		
6	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 10 \mathrm{~V}$	Terminal 1   Addition compensation	
7	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 5 \mathrm{~V}$		
10	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$		Applied
11	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 10 \mathrm{~V}$		
12	0 to $10 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
13	0 to $5 \mathrm{~V}^{* 1}$	OFF	0 to $\pm 5 \mathrm{~V}$		
14	0 to 10 V	OFF	0 to $\pm 10 \mathrm{~V}^{* 1}$	Terminal 2 Override	
15	0 to 5 V	OFF	0 to $\pm 5 \mathrm{~V}^{* 1}$		
16	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 10 \mathrm{~V}$	Terminal 1   Addition compensation	
17	0 to $20 \mathrm{~mA}^{* 1}$	ON	0 to $\pm 5 \mathrm{~V}$		

*1 The main speed setting is indicated.

- Turning the Terminal 4 input selection (AU) signal ON sets terminal 4 to the main speed. With this setting, the main speed setting terminal is invalidated.
- Set the Pr. 267 and voltage/current input switch setting according to the table below.

Pr.267 setting	Terminal 4 input	Switch 2
0 (initial value)	4 to 20 mA	ON
1	0 to 5 V	OFF
2	0 to 10 V	OFF

## NOTE

- To enable the terminal 4, turn the AU signal ON.
- Set the parameters and the switch settings so that they agree. Incorrect setting may cause a fault, failure or malfunction.
- Terminal 1 (frequency setting auxiliary input) is added to the terminal 2 or 4 main speed setting signal.
- When the override setting is selected, terminal 1 or 4 is set to the main speed setting, and terminal 2 is set to the override signal ( 0 to 5 V or 0 to 10 V , and $50 \%$ to $150 \%$ ). (If the main speed of terminal 1 or 4 is not input, the compensation by terminal 2 is disabled.)
- Use Pr. 125 (Pr.126) (frequency setting gain) to change the maximum output frequency at the input of the maximum output frequency command voltage (current). At this time, the command voltage (current) need not be input. The acceleration/deceleration time inclines up/down to the acceleration/deceleration reference frequency, so it is not affected by change of Pr. 73.
- When Pr. 858 Terminal 4 function assignment and Pr. 868 Terminal 1 function assignment = " 4 ", the terminal 1 and terminal 4 values are set to the stall prevention operation level.
- After the voltage/current input signal is switched with Pr.73, Pr.267, and voltage/current input switches, be sure to let calibration performed.
- When Pr. 561 PTC thermistor protection level $=$ " 9999 ", terminal 2 does not function as an analog frequency command.


## - To run with an analog input voltage

- Concerning the frequency setting signal, input 0 to 5 VDC (or 0 to 10 VDC ) to terminals 2 and 5 . The $5 \mathrm{~V}(10 \mathrm{~V}$ ) input is the maximum output frequency.
- The power supply $5 \mathrm{~V}(10 \mathrm{~V})$ can be input by either using the internal power supply or preparing an external power supply. The internal power source is 5 VDC output between terminals 10 and 5 , and 10 VDC output between terminals 10E and 5 .

Terminal	Inverter internal power source   voltage	Frequency setting resolution	Pr.73 (terminal 2 input voltage)
10	5 VDC	$0.030 \mathrm{~Hz} / 60 \mathrm{~Hz}$	0 to 5 VDC input
10 E	10 VDC	$0.015 \mathrm{~Hz} / 60 \mathrm{~Hz}$	0 to 10 VDC input

- To supply the 10 VDC input to terminal 2 , set " $0,2,4,10,12$, or 14 " in $\operatorname{Pr} .73$. (The initial value is 0 to 5 V .)
- Setting " 1 ( 0 to 5 VDC )" or " $2(0$ to 10 VDC )" in Pr. 267 and turning the voltage/current input switches OFF sets the terminal 4 to the voltage input specification. Turning ON the AU signal activates terminal 4 input.



Connection diagram using terminal 2 ( 0 to 10 VDC)


Connection diagram using terminal 4 ( 0 to 5 VDC)

## NOTE

- The wiring length of the terminal $10,2,5$ should be 30 m at maximum.


## - To run with an analog input current

- For constant pressure or temperature control with fans, pumps, or other devices, automatic operation is available by setting the regulator output signal 4 to 20 mADC to between terminals 4 and 5 .
- To use the terminal 4 , the AU signal needs to be turned ON.


Connection diagram using
terminal 4 (4 to 20 mADC)

- Setting "6, 7, 16, or 17" in Pr. 73 and turning the voltage/current input switches ON sets terminal 2 to the current input specification. Concerning the settings, the AU signal does not need to be turned ON.


Connection diagram using
terminal 2 ( 4 to 20 mADC)

## －To perform forward／reverse rotation with the analog input（polarity reversible operation）

－Setting Pr． 73 to a value of＂10 to 17＂enables the polarity reversible operation．
－Setting $\pm$ input（ 0 to $\pm 5 \mathrm{~V}$ or 0 to $\pm 10 \mathrm{~V}$ ）to the terminal 1 allows the operation of forward／reverse rotation by the polarity．


Compensation input characteristics when STF is ON

## 《｜Parameters referred to 》》

Pr． 22 Stall prevention operation level page 403
Pr． 125 Terminal 2 frequency setting gain frequency，Pr． 126 Terminal 4 frequency setting gain frequency page 483
Pr．252，Pr． 253 override bias／gain page 478
Pr． 561 PTC thermistor protection level page 377
Pr． 858 Terminal 4 function assignment，Pr． 868 Terminal 1 function assignment page 476

## 5．12．2 Analog input terminal（terminal 1，4）function assignment

The analog input terminal 1 and terminal 4 functions are set and changeable with parameters．

Pr．	Name	Initial value	Setting range	Description
$\mathbf{8 6 8}$   T010	Terminal 1 function assignment	0	0 to 6，9999	Select the terminal 1 function（Refer to the   table below．）
$\mathbf{8 5 8}$   T040	Terminal 4 function assignment	0	$0,1,4,9999$	Select the terminal 4 function（Refer to the   table below．）

－Concerning terminal 1 and terminal 4 used for analog input，the frequency（speed）command，magnetic flux command， torque command，and other similar commands are usable．The functions available are different depending on control mode as shown in the table below．（For control mode，see page 166．）
－Terminal 1 functions under different control modes

$\begin{aligned} & \text { Pr. } 868 \\ & \text { setting } \end{aligned}$	V／F control   Advanced magnetic flux vector control	Real sensorless vector control，vector control，PM sensorless vector control		
		Speed control	Torque control	Position control
0   （initial value）	Frequency setting auxiliary	Speed setting auxiliary	Speed limit assistance	－
1	－	Magnetic flux command＊1	Magnetic flux command＊1	Magnetic flux command＊1
2	－	Regenerative torque limit （Pr．810＝1）	－	Regenerative torque limit $(\text { Pr. } 810=1)$
3	－	－	Torque command（Pr． $804=0)$	－
4	Stall prevention operation level input	Torque limit（Pr． $810=1$ ）	Torque command（Pr． $804=0)$	Torque limit（Pr． $810=1$ ）
5	－	－	Forward／reverse rotation speed limit $(\operatorname{Pr} .807=2)$	－
6	－	Torque bias input $(\operatorname{Pr} .840=1,2,3)$	－	－
9999	－	－	－	－

－Terminal 4 functions by control

$\begin{aligned} & \text { Pr. } 858 \\ & \text { setting } \end{aligned}$	V／F controlAdvanced magnetic flux vectorcontrol	Real sensorless vector control，vector control，PM sensorless vector control		
		Speed control	Torque control	Position control
$\begin{array}{\|l\|} \hline 0 \\ \text { (initial } \\ \text { value) } \\ \hline \end{array}$	Frequency command（AU signal－ ON）	Speed command（AU signal－ ON）	Speed limit（AU signal－ON）	－
1	－	Magnetic flux command ${ }^{* 1 * 2}$	Magnetic flux command ${ }^{* 1 * 2}$	Magnetic flux command ${ }^{* 1 * 2}$
4	Stall prevention operation level input	Torque limit（Pr． $810=1)^{* 3}$	－	Torque limit（Pr． $810=1)^{* 3}$
9999	－	－	－	－

－：No function
＊1 This function is valid under vector control．
＊2 Invalid when Pr． 868 ＝＂1＂
＊3 Invalid when Pr． 868 ＝＂4＂

## NOTE

－When Pr． 868 ＝＂1＂（magnetic flux command）or＂4＂（stall prevention／torque limit），the terminal 4 function is enabled whether the AU terminal is turned ON／OFF．

## 《｜Parameters referred to 》》

Advanced magnetic flux vector control page 174
Real sensorless vector control page 166
Pr． 804 Torque command source selection page 232
Pr． 807 Speed limit selection page 237
Pr． 810 Torque limit input method selection page 191
Pr． 840 Torque bias selection Ю page 214

### 5.12.3 Analog input compensation

Addition compensation or fixed ratio analog compensation (override) with terminal 2 set to auxiliary input is applicable to the multi-speed operation or terminal 2/terminal 4 speed setting signal (main speed).

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 73 \\ & \text { T000 } \end{aligned}$	Analog input selection	1	$\begin{aligned} & 0 \text { to } 3,6,7,10 \text { to } 13 \text {, } \\ & 16,17 \end{aligned}$	Addition compensation
			4, 5, 14, 15	Override compensation
$\begin{aligned} & 242 \\ & \text { T021 } \end{aligned}$	Terminal 1 added compensation amount (terminal 2)	100\%	0 to 100\%	Set the percentage of addition compensation when terminal 2 is set to the main speed.
$\begin{aligned} & 243 \\ & \text { T041 } \end{aligned}$	Terminal 1 added compensation amount (terminal 4)	75\%	0 to 100\%	Set the percentage of addition compensation when terminal 4 is set to the main speed.
$\begin{aligned} & 252 \\ & \text { T050 } \end{aligned}$	Override bias	50\%	0 to 200\%	Set the percentage of override function bias side compensation.
$\begin{aligned} & \hline 253 \\ & \text { T051 } \end{aligned}$	Override gain	150\%	0 to 200\%	Set the percentage of override function gain side compensation.

## Addition compensation (Pr.242, Pr.243)

- Example of addition compensation connection

- A compensation signal is addable to the main speed setting for such as synchronous or continuous speed control operation.
- Setting a value of " 0 to $3,6,7,10$ to 13,16 , and 17 " to Pr. 73 adds the voltage between terminals 1 and 5 to the voltage signal of the terminals 2 and 5 .
- When Pr. $73=$ " 0 to 3,6 , or 7 ", and if the result of addition is negative, it is regarded as 0 and the operation is stopped. When Pr. $73=$ " 10 to 13,16 , or 17 ", the operation is reversed (polarity reversible operation) with STF signal ON.
- The terminal 1 compensation input is addable to the multi-speed setting or terminal 4 (initial value: 4 to 20 mA ).
- The degree of addition compensation to terminal 2 is adjustable with Pr.242.
- The degree of addition compensation to terminal 4 is adjustable with Pr.243.

Analog command value with use of terminal $2=$ terminal 2 input + terminal 1 input $\times \frac{\text { Pr. } 242}{100(\%)}$

Analog command value with use of terminal $4=$ terminal 4 input + terminal 1 input $\times \frac{\text { Pr. } 243}{100(\%)}$

- Auxiliary input characteristics



## NOTE

- After changing the Pr. 73 setting, check the voltage/current input switch setting. Incorrect setting may cause a fault, failure or malfunction. (For the settings, refer to page 473.)


## －Override function（Pr．252，Pr．253）

－Connection example for the override function

－Use the override function to make the main speed changed at a specified rate．
－Set Pr． 73 ＝＂4，5，14，or 15 ＂to select the override function．
－When the override function is selected，terminal 1 or 4 is used for the main speed setting，and terminal 2 is used for the override signal．（If the main speed is not input to the terminal 1 or 4 ，the compensation by terminal 2 is disabled．）
－Specify the scope of override by using Pr． 252 and Pr． 253.
－How to calculate the set frequency for override：
Main speed setting frequency（ Hz ）：Terminals 1 or 4 input，multi－speed setting Compensation（\％）：Terminal 2 input

Set frequency $(\mathrm{Hz})=$ main speed setting frequency $(\mathrm{Hz}) \times \frac{\text { Compensation }(\%)}{100(\%)}$


## NOTE

－To use terminal 4，the AU signal needs to be turned ON．
－To make compensation input for the multi－speed operation or remote setting，set Pr． 28 Multi－speed input compensation selection＝＂1＂（with compensation）（initial value＂0＂）．
－After changing the Pr． 73 setting，check the voltage／current input switch setting．Incorrect setting may cause a fault，failure or malfunction．（For the settings，refer to page 473．）

## 《｜Parameters referred to 》》

Pr． 28 Multi－speed input compensation selection page 372
Pr． 73 Analog input selection page 473

### 5.12.4 Analog input responsiveness and noise elimination

The frequency command/torque command responsiveness and stability are adjustable by using the analog input (terminals 1 , 2, and 4) signal.

Pr.	Name	Initial value	Setting range	Description
$\begin{array}{\|l\|} \hline 74 \\ \text { T002 } \end{array}$	Input filter time constant	1	0 to 8	The primary delay filter time constant to the analog input is selectable. The higher the value, the lower the responsiveness.
$\begin{aligned} & 822 \\ & \text { T003 } \end{aligned}$	Speed setting filter 1	9999	0 to 5 s	Set the primary delay filter time constant to the external speed command (analog input command).
			9999	Use the Pr. 74 setting.
$\begin{aligned} & \hline 826 \\ & \text { T004 } \end{aligned}$	Torque setting filter 1	9999	0 to 5 s	Set the primary delay filter time constant to the external torque command (analog input command).
			9999	Use the Pr. 74 setting.
$\begin{aligned} & 832 \\ & \text { T005 } \end{aligned}$	Speed setting filter 2	9999	0 to $5 \mathrm{~s}, 9999$	Second function of Pr. 822 (enabled when the RT signal is ON)
$\begin{aligned} & \hline 836 \\ & \text { T006 } \end{aligned}$	Torque setting filter 2	9999	0 to $5 \mathrm{~s}, 9999$	Second function of Pr. 826 (enabled when the RT signal is ON)
$\begin{aligned} & 849 \\ & \text { T007 } \end{aligned}$	Analog input offset adjustment	100\%	0 to 200\%	Make the analog speed input (terminal 2) have an offset. This prevents the motor from rotating by noise to the analog input or another cause on the speed 0 command.

## Block diagram



## - Analog input time constant (Pr.74)

- It is effective to eliminate noise on the frequency setting circuit.
- Increase the filter time constant if steady operation cannot be performed due to noise, etc. A larger setting results in slower response. (The time constant can be between 0 and 8, which are about 2 ms to 1 s .)


## - Analog speed command input time constant (Pr.822, Pr.832)

- Set the primary delay filter time constant to the external speed command (analog input command) by using Pr. 822 Speed setting filter 1.
- To change the time constant, for example, in a case where only one inverter is used to switch between more than one motor, use Pr. 832 Speed setting filter 2.
- Pr. 832 Speed setting filter 2 is enabled when the RT signal is ON.


## - Analog torque command input time constant (Pr.826, Pr.836)

- Set the primary delay filter time constant to the external torque command (analog input command) by using Pr. 826 Torque setting filter 1.
- To change the time constant, for example, in a case where only one inverter is used to switch between two motors, use Pr. 836 Torque setting filter 2.
- Pr. 836 Torque setting filter 2 is enabled when the RT signal is ON.


## - Analog speed command input offset adjustment (Pr.849)

- This is used to set a range in which the motor is stopped for prevention of incorrect motor operation in a very low speed rotation by the analog input speed command.
- Regarding the Pr. 849 Analog input offset adjustment value $100 \%$ is 0 , the offset voltage is set as described below:
100\% < Pr. 849 ..... Positive side
100\% > Pr. 849 ..... Negative side

The detailed calculation of the offset voltage is as described below:
Offset voltage $[\mathrm{V}]=$ Voltage at the time of $100 \%\left(5 \mathrm{~V}\right.$ or $\left.10 \mathrm{~V}^{* 1}\right) \times(\operatorname{Pr} .849-100) / 100$


## NOTE

- Under PID control, the analog input filter is invalid (no filter).

```
<<Parameters referred to\》
Pr. }73\mathrm{ Analog input selection p page 473
Pr.125, Pr.902, Pr. }903\mathrm{ (bias and gain of the terminal 2 frequency setting) page 483
```


### 5.12.5 Frequency setting voltage (current) bias and gain

The degree (incline) of the output frequency to the frequency setting signal ( 0 to $5 \mathrm{VDC}, 0$ to 10 V or 4 to 20 mA ) is selectable to a desired amount.

Use Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection, or the voltage/current input switch to switch among input 0 to $5 \mathrm{VDC}, 0$ to 10 V , and 4 to 20 mA . (Refer to page 473)

Pr.		Name	Initial value	Setting range		Description
$\begin{aligned} & 902 \\ & \text { T200 } \end{aligned}$		Terminal 2 frequency setting bias frequency	0 Hz	0 to 590 Hz	Set the term	2 input bias side frequency.
$\begin{aligned} & 902 \\ & \text { T201 } \end{aligned}$		Terminal 2 frequency setting bias	0\%	0 to 300\%	Set the con (current) of	ed on the bias side voltage terminal 2 input.
$\begin{aligned} & 125 \\ & \text { T022 } \end{aligned}$	$\begin{aligned} & 903 \\ & \text { T202 } \end{aligned}$	Terminal 2 frequency setting gain frequency	60 Hz	0 to 590 Hz	Set the term	2 input gain (maximum) frequency.
$\begin{array}{\|l\|} \hline 903 \\ \text { T203 } \end{array}$		Terminal 2 frequency setting gain	100\%	0 to 300\%	Set the con (current) of	ed on the gain side voltage terminal 2 input.
$\begin{array}{l\|} \hline 904 \\ \text { T400 } \end{array}$		Terminal 4 frequency setting bias frequency	0 Hz	0 to 590 Hz	Set the term	l 4 input bias side frequency.
$\begin{aligned} & \hline 904 \\ & \text { T401 } \end{aligned}$		Terminal 4 frequency setting bias	20\%	0 to 300\%	Set the conv (voltage) of $t$	ed \% on the bias side current minal 4 input.
$\begin{aligned} & 126 \\ & \text { T042 } \end{aligned}$	$\begin{aligned} & 905 \\ & \text { T402 } \end{aligned}$	Terminal 4 frequency setting gain frequency	60 Hz	0 to 590 Hz	Set the term	4 input gain (maximum) frequency.
$\begin{array}{\|l\|} \hline 905 \\ \text { T403 } \end{array}$		Terminal 4 frequency setting gain	100\%	0 to 300\%	Set the con of terminal	ed on gain side current (voltage) put.
$\begin{aligned} & 917 \\ & \text { T100 } \end{aligned}$		Terminal 1 bias frequency (speed)	0 Hz	0 to 590 Hz	Set the termi (speed). (spe	1 input bias side frequency dimit)
$\begin{aligned} & \hline 917 \\ & \text { T101 } \end{aligned}$		Terminal 1 bias (speed)	0\%	0 to 300\%	Set the conve   1 input. (speed	ed on bias side voltage of terminal limit)
$\begin{aligned} & 918 \\ & \text { T102 } \end{aligned}$		Terminal 1 gain frequency (speed)	60 Hz	0 to 590 Hz	Set the termi (speed). (spe	1 input gain (maximum) frequency d limit)
$\begin{aligned} & 918 \\ & \text { T103 } \end{aligned}$		Terminal 1 gain (speed)	100\%	0 to 300\%	Set the converted \% on the gain side voltage of terminal 1 input. (speed limit)	
$\begin{aligned} & \hline 241 \\ & \text { M043 } \end{aligned}$		Analog input display unit switchover	0	0	\% display	Select the unit for analog input display
		1		V/mA display		

## - Relationship between the analog input terminal function and the calibration parameter

- Calibration parameter according to the terminal 1 function

Pr. 868 Setting	Terminal function	Calibration parameter	
		Bias setting	Gain setting
0   (initial value)	Frequency (speed) setting auxiliary	Pr. 902 Terminal 2 frequency setting bias frequency   Pr. 902 Terminal 2 frequency setting bias Pr. 904 Terminal 4 frequency setting bias frequency   Pr. 904 Terminal 4 frequency setting bias	Pr. 125 (Pr.903) Terminal 2 frequency setting gain frequency   Pr. 903 Terminal 2 frequency setting gain Pr. 126 (Pr.905) Terminal 4 frequency setting gain frequency   Pr. 905 Terminal 4 frequency setting gain
1	Magnetic flux command	Pr. 919 Terminal 1 bias command (torque) Pr. 919 Terminal 1 bias (torque)	Pr. 920 Terminal 1 gain command (torque) Pr. 920 Terminal 1 gain (torque)
2	Regenerative driving torque limit	Pr. 919 Terminal 1 bias command (torque) Pr. 919 Terminal 1 bias (torque)	Pr. 920 Terminal 1 gain command (torque) Pr. 920 Terminal 1 gain (torque)
3	Torque command		
4	Stall prevention operation level ${ }^{* 1} /$ torque limit/torque command		
5	Forward/reverse rotation speed limit	Pr. 917 Terminal 1 bias frequency (speed) Pr. 917 Terminal 1 bias (speed)	Pr. 918 Terminal 1 gain frequency (speed) Pr. 918 Terminal 1 gain (speed)
6	Torque bias input	Pr. 919 Terminal 1 bias command (torque) Pr. 919 Terminal 1 bias (torque)	Pr. 920 Terminal 1 gain command (torque) Pr. 920 Terminal 1 gain (torque)
9999	No function	-	-

- Calibration parameter according to the terminal 4 function

Pr. 858   setting	Terminal function	Calibration parameter	
	Frequency command	Pr.904 Terminal 4 frequency setting bias   frequency   Pr.904 Terminal 4 frequency setting bias	Pr.126 (Pr.905) Terminal 4 frequency setting   gain frequency   Pr.905 Terminal 4 frequency setting gain
1	Magnetic flux command	Pr.932 Terminal 4 bias command (torque)   Pr.932 Terminal 4 bias (torque)	Pr.933 Terminal 4 gain command (torque)   Pr.933 Terminal 4 gain (torque)
4	Stall prevention operation   level *1/ torque limit	Pr.932 Terminal 4 bias command (torque)   Pr.932 Terminal 4 bias (torque)	Pr.933 Terminal 4 gain command (torque)   Pr.933 Terminal 4 gain (torque)
9999	No function	-	-

*1 Perform stall prevention operation level bias/gain adjustment by using the Pr. 148 Stall prevention level at 0 V input and Pr. 149 Stall prevention level at 10 V input

## To change the frequency for the maximum analog input (Pr.125, Pr.126)

- To change only the frequency setting (gain) for the maximum analog input voltage (current), set Pr. 125 (Pr. 126). (Pr. 902 to Pr. 905 settings do not need to be changed.)


## - Analog input bias/gain calibration (Pr. 902 to Pr.905, Pr.917, Pr.918)

- The "bias" and "gain" functions serve to adjust the relationship between a setting input signal and the output frequency. A setting input signal is such as 0 to $5 \mathrm{VDC} / 0$ to 10 V or 4 to 20 mADC externally input to set the output frequency.
- Set the terminal 2 input bias frequency by using Pr.902. (It is initially set to the frequency at 0 V .)
- Set the output frequency to the frequency command voltage (current) set by the Pr. 73 Analog input selection by using Pr. 125 (Pr.903).
- Set the bias frequency of the terminal 1 input using Pr.917. (It is initially set to the frequency at 0 V .)
- Set the gain frequency of the terminal 1 input using Pr.918. (It is initially set to the frequency at 10 V .)
- Set the bias frequency of the terminal 4 input using Pr.904. (It is initially set to the frequency at 4 mA .)
- Set the output frequency for 20 mA of the frequency command current (4 to 20 mA ) by using Pr. 126 (Pr.905).

- There are three methods to adjust the frequency setting voltage (current) bias/gain.

Adjust any point with application of a voltage (current) between terminals 2 and 5 (4 and 5). 5 page 486
Adjust any point without application of a voltage (current) between terminals 2 and 5 (4 and 5). 5 page 486
Adjust frequency only without adjustment of voltage (current).

## NOTE

- Performing terminal 2 calibration that includes a change of the setting frequency incline changes terminal 1 setting.
- Calibration with voltage input to terminal 1 sets (terminal 2 (4) analog value + terminal 1 analog value) as the analog calibration value.
- Always calibrate the input after changing the voltage/current input signal with Pr.73, Pr.267, and the voltage/current input selection switch.


## - Analog input display unit changing (Pr.241)

- The analog input display unit $(\% / \mathrm{V} / \mathrm{mA})$ for analog input bias and gain calibration can be changed.
- Depending on the terminal input specification set to Pr.73, Pr.267, and voltage/current input switches, the analog value display unit of Pr.902, Pr.903, Pr.904, and Pr. 905 changes as described below.

Analog command (terminals 2, 4)   (depending on Pr.73, Pr.267, and   voltage/current input switch)	Pr.241 = 0 (initial value)	Pr.241 = 1
0 to 5 V input	0 to $5 \mathrm{~V} \rightarrow 0$ to $100 \%(0.1 \%)$	0 to $100 \% \rightarrow 0$ to 5 V (0.01 V)
0 to 10 V input	0 to $10 \mathrm{~V} \rightarrow 0$ to $100 \%(0.1 \%)$	0 to $100 \% \rightarrow 0$ to 5 V (0.01 V) display
0 to 20 mA input	0 to $20 \mathrm{~mA} \rightarrow 0$ to $100 \%(0.1 \%)$	0 to $100 \% \rightarrow 0$ to 20 mA ( 0.01 mA$)$

## NOTE

- When the terminal 1 input specification ( 0 to $\pm 5 \mathrm{~V}, 0$ to $\pm 10 \mathrm{~V}$ ) does not agree with the main speed (terminal 2 , terminal 4 input) specification ( 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 20 mA ), and if the voltages are applied to terminal 1 , the analog input is not correctly displayed. (For example, in the initial status, when 0 V is applied to terminal 2 and 10 V is applied to terminal 1 , and the analog value is displayed as $5 \mathrm{~V}(100 \%)$.) Use the inverter with the Pr. $241=00$ (initial value)" setting. ( $0 \%$ display).


## - Frequency setting voltage (current) bias/gain adjustment method

■ Adjust any point with application of a voltage (current) between terminals 2 and 5 (4 and 5). (Frequency setting gain adjustment example)

## Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Select the PU operation mode.
3. Selecting the parameter number

Read Pr. 903 for terminal 2.
Read Pr. 905 for terminal 4.
4. Analog voltage (current) display

Press [A-SET]. The analog voltage (current) value (\%) currently applied to the terminal $2(4)$ is displayed.
Do not touch until calibration is completed.
5. Voltage (current) application

Apply a $5 \mathrm{~V}(20 \mathrm{~mA})$. (Turn the external potentiometer connected across terminals 2 and 5 (terminals 4 and 5 ) to a desired position.)
6. Setting completed

Press [SET] twice.
The analog voltage (current) value (\%) adjustment is completed.
■ Adjust any point without application of a voltage (current) between terminals 2 and 5 (4 and 5). (Frequency setting gain adjustment example)

## Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Select the PU operation mode.
3. Selecting the parameter number

Read Pr. 903 for terminal 2.
Read Pr. 905 for terminal 4.
4. Analog voltage (current) display

Press [A-SET]. The analog voltage (current) value (\%) currently applied to the terminal 2 (4) is displayed.
5. Analog voltage (current) adjustment

Press [SET]. Select the gain voltage (current) value (\%) currently set in the parameter.
When until the desired gain voltage (current) \% is displayed.
6. Setting completed

Press [SET].
The analog voltage (current) value (\%) adjustment is completed.

## Adjust only frequency without adjustment of gain voltage (current) (When changing the gain frequency from 60 Hz to 50 Hz )

## Operating procedure

1. Parameter selection

Read Pr. 125 for terminal 2.
Read Pr. 126 for terminal 4.
The present set value is displayed. $(60.00 \mathrm{~Hz})$
2. Changing the maximum frequency.

Turn to change the set value to " 50.00 Hz ".
Press [SET] to enter the setting. " 50.00 Hz " is set in Pr. 125 (Pr.126).
3. Checking the mode/monitor

Change the status to the monitor mode.
4. Start

Turn ON the start switch (STF or STR), then turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. (Refer to steps 2 and 3 in page 100.)
Operate at 50 Hz .

## NOTE

- If the frequency meter (display meter) connected across the terminals FM and SD does not indicate exactly 60 Hz , set the Pr. 900 FM terminal calibration. (Refer to page 437.)
- If the gain and bias of voltage (current) setting voltage are too close, an error (Er3) may be displayed at setting.
- Changing Pr. 903 or Pr. 905 (gain adjustment) will not change Pr.20. Input to the terminal 1 (frequency setting auxiliary input) is added to the frequency setting signal.
- For operation outline of the parameter unit (FR-PU07), refer to the Instruction Manual of the FR-PU07.
- To set the value to 120 Hz or higher, the Pr. 18 High speed maximum frequency needs to be 120 Hz or higher. (Refer to page 399.)
- Make the bias frequency setting using the Pr. 902 and Pr.904. (Refer to page 485.)


## CAUTION

- Be cautious when setting any value other than " 0 " as the bias frequency at $0 \mathrm{~V}(0 \mathrm{~mA})$. Even if a speed command is not given, simply turning ON the start signal will start the motor at the preset frequency.


## 《| Parameters referred to |》

Pr. 1 Maximum frequency, Pr. 18 High speed maximum frequency page 399
Pr. 20 Acceleration/deceleration reference frequency page 320
Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection page 473
Pr. 79 Operation mode selection page 346
Pr. 858 Terminal 4 function assignment, Pr. 868 Terminal 1 function assignment page 476

### 5.12.6 Bias and gain for torque (magnetic flux) and set voltage (current)

## Sensorless Vector PM

The magnitude (slope) of the torque can be set as desired in relation to the torque setting signal ( 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 20 mA ).
Use Pr. 73 Analog input selection or Pr. 267 Terminal 4 input selection to switch among input 0 to $5 \mathrm{VDC}, 0$ to 10 V , and 4 to 20 mA . (Refer to page 473.)

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 919 \\ & \text { T110 } \end{aligned}$	Terminal 1 bias command (torque)	0\%	0 to 400\%	Set the torque (magnetic flux) of the bias side of terminal 1 input.
$\begin{aligned} & 919 \\ & \text { T111 } \end{aligned}$	Terminal 1 bias (torque)	0\%	0 to 300\%	Set the converted \% on bias side voltage of terminal 1 input.
$\begin{aligned} & 920 \\ & \text { T112 } \end{aligned}$	Terminal 1 gain command (torque)	150\%	0 to 400\%	Set the torque (magnetic flux) of the gain (maximum) of terminal 1 input.
$\begin{aligned} & 920 \\ & \text { T113 } \end{aligned}$	Terminal 1 gain (torque)	100\%	0 to 300\%	Set the converted \% on the gain side voltage of terminal 1 input.
$\begin{aligned} & 932 \\ & \text { T410 } \end{aligned}$	Terminal 4 bias command (torque)	0\%	0 to 400\%	Set the torque (magnetic flux) of the bias side of terminal 4 input.
$\begin{aligned} & 932 \\ & \text { T411 } \end{aligned}$	Terminal 4 bias (torque)	20\%	0 to 300\%	Set the converted \% on the bias side current (voltage) of terminal 4 input.
$\begin{aligned} & 933 \\ & \text { T412 } \end{aligned}$	Terminal 4 gain command (torque)	150\%	0 to 400\%	Set the torque (magnetic flux) of the gain (maximum) of terminal 4 input.
$\begin{aligned} & 933 \\ & \text { T413 } \end{aligned}$	Terminal 4 gain (torque)	100\%	0 to 300\%	Set the converted \% on gain side current (voltage) of terminal 4 input.
241	Analog input display unit switchover	0	0	\% display $\quad$ Select the unit for analog input display.
M043			1	V/mA display

## - Changing the function of analog input terminal

- The initial value for terminal 1 used as analog input is set to speed setting auxiliary (speed limit auxiliary), and terminal 4 is set to speed command (speed limit). To use the analog input terminal as torque command, torque limit, or magnetic flux command, set Pr. 868 Terminal 1 function assignment, Pr. 858 Terminal 4 function assignment to change the function. (Refer to page 476.) The magnetic flux command is valid under vector control only.


## $\checkmark$ Relationship between the analog input terminal function and the calibration parameter

- Calibration parameter according to the terminal 1 function

Pr. 868 setting	Terminal function	Calibration parameter	
		Bias setting	Gain setting
0   (initial   value)	Frequency (speed) setting auxiliary	Pr. 902 Terminal 2 frequency setting bias frequency   Pr. 902 Terminal 2 frequency setting bias Pr. 904 Terminal 4 frequency setting bias frequency   Pr. 904 Terminal 4 frequency setting bias	Pr. 125 (Pr.903) Terminal 2 frequency setting gain frequency   Pr. 903 Terminal 2 frequency setting gain Pr. 126 (Pr.905) Terminal 4 frequency setting gain frequency   Pr. 905 Terminal 4 frequency setting gain
1	Magnetic flux command	Pr. 919 Terminal 1 bias command (torque) Pr. 919 Terminal 1 bias (torque)	Pr. 920 Terminal 1 gain command (torque) Pr. 920 Terminal 1 gain (torque)
2	Regenerative driving torque limit	Pr. 919 Terminal 1 bias command (torque) Pr. 919 Terminal 1 bias (torque)	Pr. 920 Terminal 1 gain command (torque) Pr. 920 Terminal 1 gain (torque)
3	Torque command		
4	Stall prevention operation level *1 /torque limit/torque command		
5	Forward/reverse rotation speed limit	Pr. 917 Terminal 1 bias frequency (speed) Pr. 917 Terminal 1 bias (speed)	Pr. 918 Terminal 1 gain frequency (speed) Pr. 918 Terminal 1 gain (speed)
6	Torque bias input	Pr. 919 Terminal 1 bias command (torque) Pr. 919 Terminal 1 bias (torque)	Pr. 920 Terminal 1 gain command (torque) Pr. 920 Terminal 1 gain (torque)
9999	No function	-	-

- Calibration parameter according to the terminal 4 function

$\begin{aligned} & \text { Pr. } 858 \\ & \text { setting } \end{aligned}$	Terminal function	Calibration parameter	
		Bias setting	Gain setting
$0$   (initial value)	Frequency (speed) command/ Speed limit	Pr. 904 Terminal 4 frequency setting bias frequency   Pr. 904 Terminal 4 frequency setting bias	Pr. 126 (Pr.905) Terminal 4 frequency setting gain frequency   Pr. 905 Terminal 4 frequency setting gain
1	Magnetic flux command	Pr. 932 Terminal 4 bias command (torque) Pr. 932 Terminal 4 bias (torque)	Pr. 933 Terminal 4 gain command (torque) Pr. 933 Terminal 4 gain (torque)
4	Stall prevention operation level *2 /torque limit	Pr. 932 Terminal 4 bias command (torque) Pr. 932 Terminal 4 bias (torque)	Pr. 933 Terminal 4 gain command (torque) Pr. 933 Terminal 4 gain (torque)
9999	No function	-	-
*2 Adjustment of the bias and gain for stall prevention operation level is done by Pr. 148 Stall prevention level at 0 V input and Pr. 149 Stall prevention level at 10 V input.			

## Torque change at maximum analog input (Pr.920, Pr.933)

- To only change the torque setting (gain) of the maximum analog input voltage (current), set to Pr.920, Pr.933.


## - Calibration of analog input bias and gain (Pr.919, Pr.920, Pr.932, Pr.933)

- The "bias" and "gain" functions are used to adjust the relationship between the setting input signal such as 0 to 5 VDC/0 to 10 VDC or 4 to 20 mADC entered from outside for torque command or setting the torque limit and the torque.
- Set the bias torque of the terminal 1 input using Pr.919. (Shipped from factory with torque for 0 V )
- Set the torque against the torque command voltage set by Pr. 73 Analog input selection with Pr. 920 . (Initial value is 10 V .)
- Set the bias torque of the terminal 4 input using Pr.932. (The initial value is the torque for 4 mA .)
- Set the torque against the 20 mA for torque command current (4 to 20 mA ) with $\operatorname{Pr} .933$.



Calibration example of terminal 4
*1 A negative voltage ( 0 V to $-10 \mathrm{~V}(-5 \mathrm{~V})$ ) is valid as a torque command. If a negative voltage is input as a torque limit value, the torque limit is regarded as "0".

- There are three methods to adjust the torque setting voltage (current) bias and gain.

Method to adjust arbitrary point with application of a voltage (current) between terminals 1 and 5 (4 and 5). page 491
Method to adjust arbitrary point without application of a voltage (current) between terminals 1 and 5 (4 and 5). page 491
Method to adjust only torque without adjusting voltage (current).

## NOTE

- Always calibrate the input after changing the voltage/input signal with Pr.73, Pr.267, and the voltage/current input selection switch.


## - Analog input display unit changing (Pr.241)

- The analog input display unit (\%/V/mA) for analog input bias and gain calibration can be changed.
- Depending on the terminal input specification set to Pr.73, Pr.267, and voltage/current input switches, the analog value display unit of Pr.919, Pr.920, Pr.932, and Pr. 933 changes as described below.

Analog command (terminals 1 and 4)   (Depends on Pr.73, Pr.267)	Pr.241 = 0 (initial value)	Pr.241 = 1
0 to 5 V input	0 to $5 \mathrm{~V} \rightarrow 0$ to $100 \%(0.1 \%)$ display	0 to $100 \% \rightarrow 0$ to $5 \mathrm{~V}(0.01 \mathrm{~V})$ display
0 to 10 V input	0 to $10 \mathrm{~V} \rightarrow 0$ to $100 \%(0.1 \%)$ display	0 to $100 \% \rightarrow 0$ to $10 \mathrm{~V}(0.01 \mathrm{~V})$ display
0 to 20 mA input	0 to $20 \mathrm{~mA} \rightarrow 0$ to $100 \%(0.1 \%)$ display	0 to $100 \% \rightarrow 0$ to $20 \mathrm{~mA} \mathrm{( } 0.01 \mathrm{~mA})$

## - Adjust method for the torque setting voltage (current) bias and gain

■ Adjust any point with application of a voltage (current) between terminals 1 and 5 (4 and 5).

## Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Select the PU operation mode.
3. Selecting the parameter number

Read Pr. 920 for terminal 1.
Read Pr. 933 for terminal 4.
4. Analog voltage (current) display

Press [A-SET]. The analog voltage (current) value (\%) currently applied to the terminal 1 (4) is displayed.
Do not touch until calibration is completed.
5. Voltage (current) application

Apply a $5 \mathrm{~V}(20 \mathrm{~mA})$. (Turn the external potentiometer connected across terminals 1 and 5 (terminals 4 and 5 ) to a desired position.)
6. Setting completed

Press [SET] twice.
The analog voltage (current) value (\%) adjustment is completed.

## Adjust any point without application of a voltage (current) between terminals 1 and 5 (4 and 5).

## Operating procedure

1. Screen at power-ON

The monitor display appears.
2. Changing the operation mode

Select the PU operation mode.
3. Selecting the parameter number

Read Pr. 920 for terminal 1.
Read Pr. 933 for terminal 4.
4. Analog voltage (current) display

Press [A-SET]. The analog voltage (current) value (\%) currently applied to the terminal 1 (4) is displayed.
5. Analog voltage (current) adjustment

Press [SET]. Select the gain voltage (current) value (\%) currently set in the parameter.
Turn until the desired gain voltage (current) \% is displayed.
6. Setting completed

Press [SET].
The analog voltage (current) value (\%) adjustment is completed.

Adjust only torque without adjustment of gain voltage (current). (When changing the gain torque from $150 \%$ to $130 \%$.)

## Operating procedure

1. Parameter selection

Read Pr. 920 for terminal 1.
Read Pr. 933 for terminal 4.
The present set value is displayed. ( $150.0 \%$ )
2. Torque setting change

Turn (3) to change the set value to " $130.0 \%$ ".
Press [SET] to enter the setting. "130\%" is set in Pr. 920 (Pr. 933 ).
3. Checking the mode/monitor

Change the status to the monitor mode.
4. Start

Turn ON the start switch (STF or STR) to apply a voltage across terminals 1 and 5 (4 and 5), Operation is performed with $130 \%$ torque.

## NOTE

- If the gain and bias of torque setting are too close, an error (Er3) may displayed at setting.
- For operation outline of the parameter unit (FR-PU07), refer to the Instruction Manual of the FR-PU07.
- Set the bias torque setting using the Pr. 919 or Pr.932. (Refer to page 490.)


## CAUTION

- Be cautious when setting any value other than " 0 " as the bias torque at $0 \mathrm{~V}(0 \mathrm{~mA})$. Even if a torque command is not given, simply turning ON the start signal will start the motor at the preset frequency.


## 《| Parameters referred to ${ }^{\text {|》 }}$

Pr. 20 Acceleration/deceleration reference frequency page 320
Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection page 473
Pr. 79 Operation mode selection page 346
Pr. 858 Terminal 4 function assignment, Pr. 868 Terminal 1 function assignment page 476

### 5.12.7 Checking of current input on analog input terminal

When current is input to the analog input terminal 2 and terminal 4, operation when the current input has gone below the specified level (loss of analog current input) can be selected. It is possible to continue the operation even when the analog current input is lost.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 573 \\ & \text { T052 } \end{aligned}$	4 mA input check selection	9999	1	Operation continues with output frequency before the current input loss.	Check the current input on terminals 2 and 4.
			2	4 mA input fault (E.LCI) is activated when the current input loss is detected.	
			3	The inverter output decelerates the motor to a stop when the current input loss is detected. After the motor is stopped, 4 mA input fault (E.LCI) is activated.	
			4	Operation continues at the frequency set in Pr. 777.	
			11	Operation continues at the output frequency before the current input loss.	Check the current input on terminal 4.
			12	4 mA input fault (E.LCI) is activated when the current input loss is detected.	
			13	The inverter output decelerates the motor to a stop when the current input loss is detected. After the motor is stopped, 4 mA input fault (E.LCI) is activated.	
			14	Operation continues at the frequency set in Pr. 777.	
			21	Operation continues at the output frequency before the current input loss.	Check the current input on terminal 2.
			22	4 mA input fault (E.LCI) is activated when the current input loss is detected.	
			23	The inverter output decelerates the motor to a stop when the current input loss is detected. After the motor is stopped, 4 mA input fault (E.LCI) is activated.	
			24	Operation continues at the frequency set in Pr. 777 .	
			9999	No current input check	
$\begin{aligned} & 777 \\ & \text { T053 } \end{aligned}$	4 mA input fault operation frequency	9999	0 to 590 Hz	Set the frequency to continue operation when the current input is lost. (Valid when Pr. 573 = "4, 14, or 24")	
A681			9999	No current input check when Pr. 573 = "4, 14, or 24 "	
778   T054 A682	4 mA input check filter	0 s	0 to 10 s	Set the current input loss detection time.	

## - Analog current input loss condition (Pr.778)

- When the condition of current input to the terminal 4 (terminal 2) continues to be 2 mA or less for Pr. 778 setting time, it is considered as loss of analog current input and alarm (LF) signal is turned ON. The LF signal will turn OFF when the current input becomes 3 mA or higher.
- For the LF signal, set "98 (positive logic) or 198 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assigns the function.

*1 When the Pr. $573 \neq$ "9999" and terminal 4 (terminal 2) is calibrated to 2 mA or less with Pr. 902 (Pr.904), analog input frequency that is 2 mA or less will become input current loss, thus it will not be as the bias setting frequency.


## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Continuous operation at analog current input loss (Pr. $573=11,4,11,14$, 21, or 24", Pr.777)

- When Pr. $573=$ "1, 11, or 21 ", operation is continued with the output frequency before the current input loss.
- When Pr. $573=$ " 4,14 , or 24 " and $\operatorname{Pr} .777 \neq$ "9999", operation is continued with frequency set in Pr. 777 .
- When the start command is turned OFF during the input current loss, deceleration stop is immediately performed, and the operation is not restored even if start command is input again.
- When the current input is restored, the LF signal is turned OFF, and operation is performed according to the current input.
- The following is the operation example during External operation.

- PID control (reverse action)



## NOTE

- When the setting is changed to continuously operate after the input current loss ( $\operatorname{Pr} .573=11,4,11,14,21$, or 24 "), the motor will operate as the frequency before loss is 0 Hz .


## Fault output (Pr. 573 = "2, 12, or 22")

- When the analog current input becomes 2 mA or lower, 4 mA input fault (E.LCI) will be activated and the output is shut off.
- The following is the operation example during PID control (reverse action) operation.



## - Fault output after deceleration to stop (Pr. 573 = "3, 13, or 23")

- When the analog current input becomes 2 mA or lower, 4 mA input fault ( $\mathrm{E} . \mathrm{LCI}$ ) will be activated after the deceleration stop and the output is shut off.
- When the analog current input is restored during the deceleration, it will accelerate again and operate according to the current input.
- The following is the operation example during PID control (reverse action) operation.

- The following is the operation example when the analog input current is restored during deceleration under PID control (reverse action).



## －Function related to current input check

Function	Operation	Refer to page
Minimum frequency	When the operation continues，the minimum frequency setting is valid even during current input loss．	399
Multi－speed operation	The multi－speed setting signal is prioritized even during current input loss（operate according to multi－speed setting even during operation in continuous frequency or during deceleration stop）．   When the multi－speed setting signal is turned OFF due to input current loss condition during the multi－speed operation，it will perform deceleration stop even if it is set to continue operation for current input loss．	372
JOG operation	JOG operation is prioritized even during current input loss（switch to JOB operation even during operation with continuous frequency or during deceleration stop）． When the JOG signal is turned OFF due to input current loss condition during the JOG operation，it will perform deceleration stop even if it is set to continue operation for current input loss．	370
MRS signal	MRS signal is enabled even during current input loss（output is shut off with MRS signal ON even during operation with continuous frequency or during deceleration stop）．	501
Remote setting	During operation with remote setting and transferred to operation continuation due to input current loss，acceleration，deceleration，and clear by the remote setting is invalid．They will become valid after restoring the current input loss．	331
Retry function	When the protective function has operated during the operation continuation due to current input loss，and retry was a success，operation will continue without clearing the operation continuation frequency．	389
Added compensation， override compensation	During operation with added compensation or override compensation and transferred to operation continuation due to input current loss，added compensation and override compensation will become invalid．They will become valid after restoring the current input loss．	478
Input filter time constant	Current input loss is detected with the value before the filter． Operation continuation before the input loss will use the value after the filter．	493
PID control	PID calculation is stopped during the current input loss．However，PID control will not be disabled（normal operation）．   During the pre－charge，end determination or fault determination by the pre－charge function will not be performed when the current input loss occurs．   Sleep function is prioritized even during current input loss．When the clearing condition of the sleep function is met during the current input loss，operation is restored with continuation frequency．	587
Power failure stop	The power failure stop function is prioritized even if power failure current input loss is detected． Set frequency after the power failure stop and re－acceleration is the operation continuation frequency at the current input loss．   When the E．LCI generation at the time of current input loss is selected，E．LCI will be generated after the power failure stop．	629
Traverse function	Traverse operation is performed based on frequency even during the operation continuation during current input loss．	566

### 5.12.8 Input terminal function selection

Use the following parameters to select or change the input terminal functions.

Pr.	Name	Initial value	Initial signal	Setting range
$\begin{aligned} & 178 \\ & \text { T700 } \end{aligned}$	STF terminal function selection	60	STF (Forward rotation command)	0 to 20, 22 to 28, 32, 33, 37, 42 to 48,50 to 53,57 to $60,62,64$ to $74,76,77$ to $80,84,85,87$ to 89, 92 to $96,128,129,9999$
$\begin{aligned} & 179 \\ & \text { T7001 } \end{aligned}$	STR terminal function selection	61	STR (Reverse rotation command)	0 to 20, 22 to $28,32,33,37,42$ to 48,50 to 53,57 to $59,61,62$, 64 to $74,76,77$ to $80,84,85,87$ to 89,92 to $96,128,129,9999$
$\begin{aligned} & 180 \\ & \text { T702 } \end{aligned}$	RL terminal function selection	0	RL (Low-speed operation command)	0 to 20, 22 to $28,32,33,37,42$ to 48,50 to 53,57 to $59,62,64$ to $74,76,77$ to $80,84,85,87$ to 89, 92 to $96,128,129,9999$
$\begin{aligned} & 181 \\ & \text { T703 } \end{aligned}$	RM terminal function selection	1	RM (Middle-speed operation command)	
$\begin{aligned} & 182 \\ & \text { T704 } \end{aligned}$	RH terminal function selection	2	RH (High-speed operation command)	
$\begin{aligned} & 183 \\ & \text { T705 } \end{aligned}$	RT terminal function selection	3	RT (Second function selection)	
$\begin{aligned} & 184 \\ & \text { T706 } \end{aligned}$	AU terminal function selection	4	AU (Terminal 4 input selection)	
$\begin{aligned} & 185 \\ & \text { T707 } \end{aligned}$	JOG terminal function selection	5	JOG (Jog operation selection)	
$\begin{aligned} & 186 \\ & \text { T708 } \end{aligned}$	CS terminal function selection	6	CS (Selection of automatic restart after instantaneous power failure, flying start)	
$\begin{aligned} & 187 \\ & \text { T709 } \end{aligned}$	MRS terminal function selection	$24^{* 1}$	MRS (Output stop)	
		$10^{*}$	X10 (Inverter run enable signal)	
$\begin{aligned} & 188 \\ & \text { T710 } \end{aligned}$	STOP terminal function selection	25	STP (STOP) (Start self-holding selection)	
$\begin{aligned} & 189 \\ & \text { T711 } \end{aligned}$	RES terminal function selection	62	RES (Inverter reset)	


Pr.	Name	Initial   value	Setting range	Description
699   T740	Input terminal filter	9999	5 to 50 ms	Set the time to delay the input terminal response.
		9999	No input terminal filter	

*1 The initial value is for standard models.
*2 The initial value is for separated converter types.

## Input terminal function assignment

- Using Pr. 178 to Pr.189, set the functions of the input terminals
- Refer to the following table and set the parameters.

Setting	Signal name	Function		Related parameter	Refer to page
0	RL	Pr. 59 = 0 (initial value)	Low-speed operation command	$\text { Pr. } 4 \text { to Pr.6, Pr. } 24 \text { to Pr.27, Pr. } 232$ to Pr. 239	372
		Pr. 59 \# 0 * 1	Remote setting (setting clear)	Pr. 59	331
		Pr. 270 = 1, 3, 11, 13 *2	Stop-on-contact selection 0	Pr.270, Pr.275, Pr. 276	559
1	RM	Pr. 59 = 0 (initial value)	Middle-speed operation command	Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr. 239	372
		Pr. 59 \# 0 * 1	Remote setting (deceleration)	Pr. 59	331
2	RH	Pr. 59 = 0 (initial value)	High-speed operation command	$\begin{aligned} & \text { Pr. } 4 \text { to Pr.6, Pr. } 24 \text { to Pr. } 27 \text {, Pr. } 232 \\ & \text { to Pr. } 239 \end{aligned}$	372
		Pr. $59 \neq 0$ *	Remote setting (acceleration)	Pr. 59	331
3	RT	Second function selection		Pr. 44 to Pr.51, Pr. 450 to Pr.463, Pr.569, Pr.832, Pr.836, etc.	503
		Pr. 270 = 1, 3, 11, 13 *2	Stop-on-contact selection 1	Pr.270, Pr.275, Pr. 276	559
4	AU	Terminal 4 input selection		Pr. 267	473
5	JOG	Jog operation selection		Pr.15, Pr. 16	370


Setting	Signal name	Function	Related parameter	Refer to page
6	CS	Selection of automatic restart after instantaneous power failure, flying start	$\begin{aligned} & \text { Pr.57, Pr.58, Pr. } 162 \text { to Pr.165, } \\ & \text { Pr.299, Pr. } 611 \end{aligned}$	618
		Electronic bypass function	$\begin{aligned} & \text { Pr. } 57 \text {, Pr. 58, Pr. } 135 \text { to Pr. } 139 \text {, } \\ & \text { Pr. } 159 \end{aligned}$	542
7	OH	External thermal relay input *3	Pr. 9	377
8	REX	15 -speed selection (Combination with multi-speeds of RL, RM, and RH)	Pr. 4 to Pr.6, Pr. 24 to Pr.27, Pr. 232 to Pr. 239	372
9	X9	Third function selection	Pr. 110 to Pr. 116	503
10	X10	Inverter run enable signal (FR-CC2 connection)	Pr.30, Pr.70, Pr. 599	718
11	X11	FR-CC2 connection, instantaneous power failure detection	Pr.30, Pr. 70	718
12	X12	PU operation external interlock	Pr. 79	346
13	X13	External DC injection brake operation start	Pr. 10 to Pr. 12	707
14	X14	PID control valid terminal	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	587
15	BRI	Brake opening completion signal	Pr. 278 to Pr. 285	553
16	X16	PU/External operation switchover (External operation with X16-ON)	Pr.79, Pr. 340	346
17	X17	Load pattern selection forward/reverse rotation boost (For constant-torque with X17-ON)	Pr. 14	701
18	X18	V/F switchover (V/F control with X18-ON)	Pr.80, Pr.81, Pr. 800	166
19	X19	Load torque high-speed frequency	Pr. 270 to Pr. 274	563
20	X20	S-pattern acceleration/deceleration C switchover	Pr. 380 to Pr. 383	325
22	X22	Orientation command for Vector control compatible options ${ }^{*} 4 * 6$	Pr. 350 to Pr. 369	570
23	LX	Pre-excitation/servo ON *5	Pr. 850	707
24	MRS	Output stop	Pr. 17	501
		Electronic bypass function	$\begin{aligned} & \text { Pr. } 57 \text {, Pr. 58, Pr. } 135 \text { to Pr. } 139 \text {, } \\ & \text { Pr. } 159 \end{aligned}$	542
25	$\begin{aligned} & \text { STP } \\ & \text { (STOP) } \end{aligned}$	Start self-holding selection	Pr. 250	715
26	MC	Control mode switchover	Pr. 800	166
27	TL	Torque limit selection	Pr. 815	191
28	X28	Start-time tuning start external input	Pr. 95	537
32	X32	External fault input	-	502
33	PWS	Phase synchronization command for bypass switching	Pr. 139	*8
37	X37	Traverse function selection	Pr. 592 to Pr. 597	566
42	X42	Torque bias selection 1	Pr. 840 to Pr. 845	214
43	X43	Torque bias selection 2	Pr. 840 to Pr. 845	214
44	X44	P/PI control switchover (P control with X44-ON)	Pr.820, Pr.821, Pr.830, Pr. 831	201
45	BRI2	Second brake sequence open completion	Pr. 641 to Pr. 649	553
46	TRG	Trace trigger input	Pr. 1020 to Pr. 1047	636
47	TRC	Trace sampling start/end	Pr. 1020 to Pr. 1047	636
48	X48	Power failure stop external	Pr. 261 to Pr.266, Pr.294, Pr. 668	629
50	SQ	Sequence start	Pr. 414	634
51	X51	Fault clear	Pr. 414	*9
52	X52	Cumulative pulse monitor clear for Vector control compatible options	Pr. 635	274
53	X53	Cumulative pulse monitor clear (control terminal option) (for FR-A8TP)		
57	JOGF	JOG forward rotation command	Pr.15, Pr. 16	370
58	JOGR	JOG reverse rotation command	Pr.15, Pr. 16	370
59	CLRN	NET position pulse clear	Pr.291, Pr. 419 to Pr.430, Pr. 464	273
60	STF	Forward rotation command (Assignable to the STF terminal (Pr.178) only)	Pr. 250	715
61	STR	Reverse rotation command (Assignable to the STR terminal (Pr.179) only)	Pr. 250	715
62	RES	Inverter reset	Pr. 75	291
64	X64	PID forward/reverse action switchover	Pr. 127 to Pr. 134	587
65	X65	PU/NET operation switchover (PU operation with X65-ON)	Pr.79, Pr. 340	346
66	X66	External/NET operation switchover (NET operation with X66-ON)	Pr.79, Pr. 340	346


Setting	Signal name	Function	Related parameter	Refer to page
67	X67	Command source switchover (Command by Pr.338, Pr. 339 enabled with X67-ON)	Pr.338, Pr. 339	356
68	NP	Simple position pulse train sign	Pr.291, Pr. 419 to Pr.430, Pr. 464	272
69	CLR	Simple position droop pulse clear	Pr.291, Pr. 419 to Pr.430, Pr. 464	273
70	X70	DC feeding operation permission*7	Pr. 30	718
71	X71	DC feeding cancel ${ }^{*} 7$	Pr. 30	718
72	X72	PID P control switchover	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	587
73	X73	Second PID P control switchover	Pr. 127 to Pr.134, Pr. 575 to Pr. 577	587
74	X74	Magnetic flux decay output shutoff signal	Pr. 850	709
77	X77	Pre-charge end command	Pr. 760 to Pr. 764	607
78	X78	Second pre-charge end command	Pr. 765 to Pr. 769	607
79	X79	Second PID forward/reverse action switchover	Pr. 753 to Pr. 758	587
80	X80	Emergency drive execution command	Pr. 753 to Pr. 758	587
84	X84	Emergency drive execution command ${ }^{*} 7$	$\begin{aligned} & \text { Pr.514, Pr.515, Pr.523, Pr.524, } \\ & \text { Pr. } 1013 \end{aligned}$	391
85	X85	SSCNET III communication disabled*6	Pr. 499	-
87	X87	Sudden stop	Pr. 464 to Pr. 494	251
88	LSP	Forward stroke end	Pr. 419	267, 271
89	LSN	Reverse stroke end		
92	X92	Emergency stop	Pr. 1103	320
93	X93	Torque limit selection	Pr. 1113	237
94	X94	Control signal input for main circuit power supply MC	Pr.30, Pr.137, Pr.248, Pr. 254	550
95	X95	Converter unit fault input	$\begin{aligned} & \text { Pr. } 57 \text {, Pr. } 58, \text { Pr. } 135 \text { to Pr. } 139 \text {, } \\ & \text { Pr. } 159 \end{aligned}$	542
96	X96	Converter unit fault (E.OHT, E.CPU) input		
128	RLF	Low-speed forward rotation command	Pr. 6	372
129	RLR	Low-speed reverse rotation command		
9999	-	No function	-	-

*1 When Pr. 59 Remote function selection $\neq$ " 0 ", functions of the $R L$, RM, and $R H$ signals will be changed as in the table.
*2 When Pr. 270 Stop-on contact/load torque high-speed frequency control selection = "1, 3, 11, or 13", functions of the RL and RT signals will be changed as in the table.
*3 OH signal will operate with the relay contact "open"
*4 When stop position is to be input from external for orientation control, FR-A8AX (16-bit digital input) is required.
*5 Servo ON is enabled during the position control.
*6 Available when the plug-in option is connected. For details, refer to the Instruction Manual of the option.
*7 The setting is available only for standard models.
*8 Refer to the FR-A8AVP Instruction Manual (For Phase-Synchronized Bypass Switching) ( 575 V class).
*9 Refer to FR-A800/F800 PLC function programming manual.

## NOTE

- Same function can be assigned to two or more terminals. In this case, the logic of terminal input is OR.
- Priority of the speed command is JOG > multi-speed setting (RH, RM, RL, REX) > PID (X14).
- When the (X10) signal is not set up, Pr. 79 Operation mode selection = " 7 ", and PU operation external interlock (X12) signal is Inverter run enable signal.
- Same signal is used to assign multi-speed ( 7 speed) and remote setting. Setting cannot be performed individually.
- When the Load pattern selection forward/reverse rotation boost (X17) signal is not assigned, RT signal will share this function.
- If Pr. 419 = "2" (simple pulse train position command) is set, the terminal JOG is used for the simple position pulse train input regardless of the Pr. 291 Pulse train I/O selection pulse train input/output selection setting.
- When the terminal assignment is changed using Pr. 178 to Pr. 189 (Input terminal function selection), the terminal name will be different, which may result in an error of wiring, or affect other functions. Set parameters after confirming the function of each terminal.


## - Adjusting the response of input terminal (Pr.699)

- Response of the input terminal can be delayed in a range between 5 to 50 ms . (Example of STF signal operation)



## NOTE

- Setting of Pr. 699 is disabled (no filter) in the following cases.
- Input terminal is already turned ON when the power is turned ON
- Input signal used for the PLC function
- Inverter run enable signal (X10) signal, Simple position pulse train sign (NP) signal, Simple position droop pulse clear (CLR) signal


### 5.12.9 Inverter output shutoff signal

The inverter output can be shut off with the MRS signal. The logic of the MRS signal can also be selected.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 17 \\ & \text { T720 } \end{aligned}$	MRS input selection	0	0	Normally open input
			2	Normally closed input (NC contact input specification)
			4	External terminal: Normally closed input (NC contact input specification) Communication: Normally open input

## - About output shutoff signal (MRS signal)



- When the Output stop (MRS) signal is turned ON while operating the inverter, the inverter output is instantaneously shut off.
- The response time of the MRS signal is within 2 ms .
- Terminal MRS may be used as described below.

Application	Description
To stop the motor using a mechanical brake   (e.g. electromagnetic brake)	The inverter output is shut off when the mechanical brake operates.
To provide interlock to disable the motor   operation by the inverter	With the MRS signal ON, the motor cannot be driven by the inverter even if the start signal   is input to the inverter.
To coast the motor to a stop	When the start signal is turned OFF, the inverter decelerates the motor to a stop in the preset   deceleration time, but when the MRS signal is turned ON, the motor coasts to a stop.

## －MRS signal logic inversion（Pr． 17 ＝＂2＂）

－When Pr． 17 ＝＂2＂，the MRS signal can be changed to normally closed（NC contact）specification．The inverter will shut off the output with MRS signal turned OFF（opened）．

## －Assigning a different action for each MRS signal input via communication and external terminal（Pr． 17 ＝＂4＂）

－When Pr． 17 ＝＂4＂，the MRS signal from an external terminal can be set as the normally closed（NC contact）input，and the MRS signal from communication as the normally open（NO contact）input．This function is useful to perform operation by communication with MRS signal from external terminal remained ON．

External MRS	Communication MRS	Pr． 17 setting					
		$\mathbf{0}$				$\mathbf{2}$	Output shutoff
OFF	OFF	Operation enabled	Output shutoff	Output shutoff			
OFF	ON	Output shutoff	Output shutoff	Operation enabled			
ON	OFF	Output shutoff	Output shutoff	Output shutoff			
ON	Output shutoff	Operation enabled					

## NOTE

－The MRS signal is assigned to the terminal MRS in the initial status．By setting＂ 24 ＂in either Pr． 178 to Pr． 189 （Input terminal function selection），the RT signal can be assigned to the other terminal．
－When using an external terminal to input the MRS signal，the MRS signal shuts off the output in any of the operation modes．
－MRS signal is valid from either of communication or external，but when the MRS signals is to be used as Inverter run enable signal（X10），it is required to input from external．
－When the terminal assignment is changed using Pr． 178 to Pr． 189 （Input terminal function selection），the terminal name will be different，which may result in an error of wiring，or affect other functions．Set parameters after confirming the function of each terminal．

## 《｜Parameters referred to 》》

Pr． 178 to Pr． 189 （Input terminal function selection）

## 5．12．10 External fault input signal

The inverter output can be shut off by inputting the External fault input（X32）signal when an external fault occurs．To assign the X32 signal，set＂ 32 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）．

## －Details of the operation

－When the External fault input（X32）signal turns OFF during operation，the inverter activates the protective function with the indication＂E．EF＂displayed to shut off the output．
－When the X32 signal turns OFF during a stop，the protective function is not activated（＂E．EF＂is not displayed）．
－When the inverter operation is started with the X32 signal OFF，the inverter activates the protective function immediately to shut off the output．

## NOTE

－When the X32 signal turns OFF during zero speed control or pre－excitation while the start signal is OFF，the inverter output is shut off．
－When the inverter operation is started with the X32 signal OFF，the inverter may output the AC voltage for an extremely brief moment．

### 5.12.11 Selecting operation condition of the second function selection signal (RT) and the third function selection signal (X9)

The second function can be selected using the RT signal, and the third function can be selected using the X9 signal.
The condition to activate the second or third function can be also set.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{1 5 5}$ T730	RT signal function validity   condition selection	0	0	The second function is immediately enabled when   the RT signal is turned ON, and the third function   is immediately enabled when the X9 signal is   turned ON.
			10	The function cannot be changed to the second or   third function during acceleration/deceleration.   When the signal is turned ON during acceleration/   deceleration, the function is changed after the   acceleration/deceleration is finished.

- Turning ON the Second function selection (RT) signal enables the second functions.
- Turning ON the Third function selection (X9) enables the third functions. For the X9 signal, set "9" in Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- The following are the examples of the applications of the second (third) functions.

Switching between regular use and emergency use
Switching between heavy load and light load
Change the acceleration/deceleration time by break point acceleration/deceleration
Switching characteristics of main motor and sub motor

Connection diagram for second function selection


Example of second acceleration/deceleration time

－Turning ON the RT signal enables the second function，and turning ON the X9 signal enables the third function．The following table shows the functions which can be changed to the second or third function．

Function	First function Parameter number	Second function Parameter number	Third function Parameter number	Refer to page
Torque boost	Pr． 0	Pr． 46	Pr． 112	697
Base frequency	Pr． 3	Pr． 47	Pr． 113	699
Acceleration time	Pr． 7	Pr． 44	Pr． 110	320
Deceleration time	Pr． 8	Pr．44，Pr． 45	Pr．110，Pr． 111	320
Electronic thermal O／L relay	Pr． 9	Pr． 51	＊2	377
Free thermal	Pr． 600 to Pr． 604	Pr． 692 to Pr． 696	＊2	
Motor permissible load level＊1	Pr． 607	Pr． 608	＊2	377
Stall prevention	Pr． 22	Pr．48，Pr． 49	Pr．114，Pr． 115	403
Applicable motor＊1	Pr． 71	Pr． 450	＊2	506
Motor constant ${ }^{* 1}$	$\begin{aligned} & \text { Pr. } 80 \text { to Pr. } 84 \text {, Pr. } 90 \text { to Pr. } 94 \text {, } \\ & \text { Pr. } 298 \text {, Pr. } 702 \text {, Pr. } 706 \text {, } \\ & \text { Pr. } 707 \text {, Pr. } 711, \text { Pr. } 712 \text {, } \\ & \text { Pr. } 717, \text { Pr. } 721, \text { Pr. } 724, \\ & \text { Pr. } 725, \text { Pr. } 859 \end{aligned}$	Pr． 453 to Pr．457，Pr．560， Pr． 458 to Pr． 462 ，Pr． 738 to Pr．747，Pr． 860	＊2	508， 529
Excitation current low－speed scaling factor	Pr．85，Pr． 86	Pr．565，Pr． 566	＊2	703
Speed control gain（Advanced magnetic flux vector）	Pr． 89	Pr． 569	＊2	174
Offline auto tuning＊1	Pr． 96	Pr． 463	＊2	508， 529
Online auto tuning＊1	Pr． 95	Pr． 574	＊2	537
PID control	Pr． 127 to Pr． 134	Pr． 753 to Pr． 758	＊2	587
PID Pre－charge function	Pr． 760 to Pr． 764	Pr． 765 to Pr． 769	＊2	550
Brake sequence＊1	$\begin{aligned} & \text { Pr. } 278 \text { to Pr. } 285 \text {, Pr. } 639 \text {, } \\ & \text { Pr. } 640 \end{aligned}$	$\begin{aligned} & \text { Pr. } 641 \text { to Pr.648, Pr. } 650 \text {, } \\ & \text { Pr. } 651 \end{aligned}$	＊2	553
Droop control	$\begin{aligned} & \text { Pr. } 286 \text { to Pr. } 288 \text {, Pr. } 994 \text {, } \\ & \text { Pr. } 995 \end{aligned}$	Pr． 679 to Pr． 683	＊2	733
Motor control method＊1	Pr． 800	Pr． 451	＊2	166
Speed control gain	Pr．820，Pr． 821	Pr．830，Pr． 831	＊2	201
Analog input filter	Pr．822，Pr． 826	Pr．832，Pr． 836	＊2	481
Speed detection filter	Pr． 823	Pr． 833	＊2	287
Torque control gain	Pr．824，Pr． 825	Pr．834，Pr． 835	＊2	243
Torque detection filter	Pr． 827	Pr． 837	＊2	287

＊1 The function can be changed by switching the RT signal ON／OFF while the inverter is stopped．If a signal is switched during operation，the operation method changes after the inverter stops．（Pr． $\mathbf{4 5 0} \neq 9999$ ）
＊2 When the RT signal is OFF，the first function is selected and when it is ON，the second function is selected．

## NOTE

－RT signal is assigned to the terminal RT in the initial status．Set＂ 3 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－When both the RT signal and X9 signal are ON，the X9 signal（third function）is prioritized．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## 《｜Parameters referred to 》》

Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 498

### 5.13 (C) Motor constant parameters

Purpose	Parameter to set			Refer to page
To select the motor to be used	Applicable motor	P.C100, P.C200	Pr.71, Pr. 450	506
To run by maximizing the performance of the induction and vector motors	Offline auto tuning	$\begin{aligned} & \text { P.C000, P.C100 to } \\ & \text { P.C105, P.C107, } \\ & \text { P.C108, P.C110, } \\ & \text { P.C120 to P.C126, } \\ & \text { P.C200 to P.C205, } \\ & \text { P.C207, P.C208, } \\ & \text { P.C210, P.C220 to } \\ & \text { P.C226 } \end{aligned}$	Pr.9, Pr.51, Pr.71, Pr. 80 to Pr.84, Pr. 90 to Pr.94, Pr.96, Pr.450, Pr. 453 to Pr.463, Pr.684, Pr.707, Pr.724, Pr.744, Pr.745, Pr.859, Pr. 860	508
To maximize the performance of the PM motor to perform Vector control operation	PM motor offline auto tuning (under Vector control)	$\begin{aligned} & \text { P.C000, P.C100 to } \\ & \text { P.C108, P.C110, } \\ & \text { P.C120, P.C122, } \\ & \text { P.C123, P.C126, } \\ & \text { P.C130 to P.C133, } \\ & \text { P.C135, P.C150, } \\ & \text { P.C200 to P.C208, } \\ & \text { P.C210, P.C220, } \\ & \text { P.C222, P.C223, } \\ & \text { P.C226, P.C230 to } \\ & \text { P.C233, P.C235 } \end{aligned}$	Pr.9, Pr.51, Pr.71, Pr.80,   Pr.81, Pr.83, Pr.84,   Pr.90, Pr.92, Pr.93,   Pr.96, Pr.450, Pr.453,   Pr.454, Pr. 456 to Pr.458,   Pr.460, Pr.461, Pr.463,   Pr.684, Pr.702, Pr.706,   Pr.707, Pr.711, Pr.712,   Pr.724, Pr.725, Pr. 738 to   Pr. 740 , Pr. 743 to Pr.746,   Pr.859, Pr.860, Pr.1002,   Pr.1412, Pr. 1413	518
To maximize the performance of the PM motor to perform PM sensorless vector control operation	PM motor offline auto tuning	$\begin{aligned} & \text { P.C000, P.C100 to } \\ & \text { P.C108, P.C110, } \\ & \text { P.C120, P.C122, } \\ & \text { P.C123, P.C126, } \\ & \text { P.C130 to P.C133, } \\ & \text { P.C135, P.C150, } \\ & \text { P.C182, P.C185, } \\ & \text { P.C200 to P.C208, } \\ & \text { P.C210, P.C220, } \\ & \text { P.C222, P.C223, } \\ & \text { P.C226, P.C230 to } \\ & \text { P.C233, P.C235, } \\ & \text { P.C282, P.C285 } \end{aligned}$		529
To perform high accuracy operation without being affected by temperature and high-torque/ultra-low speed	Online auto tuning	P.C111, P.C211	Pr.95, Pr. 574	508
To use the motor with encoder	Encoder specifications	$\begin{aligned} & \text { P.C140, P.C141, } \\ & \text { P.C240, P.C241 } \end{aligned}$	$\begin{aligned} & \text { Pr.359, Pr.369, Pr.851, } \\ & \text { Pr. } 852 \end{aligned}$	77
To detect signal loss of encoder signals	Signal loss detection	P.C148, P.C248	Pr.376, Pr. 855	540

### 5.13.1 Applied motor

By setting the applied motor type, the thermal characteristic appropriate for the motor can be selected.
When using a constant-torque or PM motor, the electronic thermal O/L relay is set according to the used motor.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{7 1}$	Applied motor	0	0 to 6,13 to $16,30,33,34,8090$,   $8093,8094,9090,9093,9094$	By selecting a motor, the thermal characteristic   and motor constant of each motor are set.
C100			$0,1,3$ to 6,13 to 16, 30,33, 34,   450   C200	Second applied   motor

## Setting the applied motor

- Refer to the following list and set the parameters according to the applied motor.

Pr. 71	Pr. 450	Motor	Constant value range when performing offline auto tuning (increment)		Operational characteristic of the electronic thermal O/L relay	
					Standard	Constanttorque
0 (Pr. 71 initial value)		Standard motor	Pr. 82 (Pr. 455 ) and Pr. 859 (Pr.860)   - 0 to 500 A, 9999 ( 0.01 A$)^{* 1}$   - 0 to 3600 A, 9999 ( 0.1 A) ${ }^{* 2}$   Pr. 90 (Pr.458) and Pr. 91 (Pr.459)   - 0 to $50 \Omega, 9999(0.001 \Omega)^{* 1}$		$\bigcirc$	
1		Constant-torque motor				$\bigcirc$
2	-	Standard motor Adjustable 5 points V/F (Refer to page 705.)	- 0 to 400 m   Pr. 92 (Pr. 46   - 0 to 6000	$\Omega, 9999(0.01 \mathrm{~m} \Omega)^{* 2}$   ) and Pr. 93 (Pr.461) (Induction motor) $\mathrm{mH}, 9999(0.1 \mathrm{mH})^{* 1}$	$\bigcirc$	
30		Vector control dedicated motor	- 0 to 400 m   Pr. 92 (Pr. 4   - 0 to 500 m	$\mathrm{H}, 9999(0.01 \mathrm{mH})^{* 2}$   0 ) and Pr. 93 (Pr.461) (PM motor) $\mathrm{H}, 9999(0.01 \mathrm{mH})^{* 1}$		$\bigcirc$
8090		IPM motor	$\begin{aligned} & \text { • } 0 \text { to } 50 \mathrm{mH}, 9999(0.001 \mathrm{mH})^{* 2} \\ & \text { Pr. } 94 \text { (Pr. } 462 \text { ) } \end{aligned}$			$\bigcirc$
9090		SPM motor	- 0 to 100\%, 9999(0.1\%)* ${ }^{*}$   - 0 to 100\%, 9999(0.01\%) ${ }^{* 2}$   Pr. 706 (Pr.738)   - 0 to $5000 \mathrm{mV} /(\mathrm{rad} / \mathrm{s}), 9999$ ( $0.1 \mathrm{mV} /(\mathrm{rad} / \mathrm{s})$ )			$\bigcirc$
$3(4)^{* 3}$		Standard motor	$\begin{aligned} & \text { Pr. } 82 \text { (Pr. } 455 \text { ), Pr. } 859 \text { (Pr. } 860 \text { ), Pr. } 90 \text { (Pr. } 458 \text { ), } \\ & \text { Pr. } 91 \text { (Pr. } 459 \text { ), Pr. } 92 \text { (Pr. } 460 \text { ), Pr. } 93 \text { (Pr. } 461 \text { ), Pr. } 94 \\ & \text { (Pr. } 462 \text { ) and Pr. } 706 \text { (Pr. } 738 \text { ) } \\ & \text { - Internal data value } 0 \text { to } 65534,9999 \text { (1) } \\ & \text { The display increment can be changed in Pr. } 684 . \end{aligned}$		$\bigcirc$	
$13(14)^{* 3}$		Constant-torque motor				$\bigcirc$
$33(34){ }^{* 3}$		Vector control dedicated motor				$\bigcirc$
8093 (8094)* ${ }^{*}$		IPM motor				$\bigcirc$
9093 (9094)*3		SPM motor				$\bigcirc$
5		Standard motor	Star connection	Pr. 82 (Pr.455) and Pr. 859 (Pr.860)   - 0 to $500 \mathrm{~A}, 9999$ (0.01 A) *1   - 0 to 3600 A, 9999 (0.1 A) *2   Pr. 90 (Pr.458) and Pr. 91 (Pr.459)   - 0 to $50 \Omega, 9999(0.001 \Omega){ }^{* 1}$	$\bigcirc$	
15		Constant-torque motor				$\bigcirc$
6		Standard motor	Delta connection	$\begin{aligned} & \text { • } 0 \text { to } 400 \mathrm{~m} \Omega, 9999(0.01 \mathrm{~m} \Omega){ }^{* 2} \\ & \text { Pr. } 92(\operatorname{Pr} .460) \text { and Pr. } 93(\operatorname{Pr} .461) \\ & \text { • } 0 \text { to } 50 \Omega, 9999(0.001 \Omega)^{* 1} \end{aligned}$	$\bigcirc$	
16		Constant-torque motor		- 0 to $3600 \mathrm{~m} \Omega$, $9999(0.1 \mathrm{~m} \Omega)$ *2 Pr. 94 (Pr.462)   - 0 to $500 \Omega$, $9999(0.01 \Omega)^{* 1}$   - 0 to $100 \Omega$, $9999(0.01 \Omega)^{* 2}$		$\bigcirc$
-	9999   (initial value)	No second applied motor				

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.
*3 The same operation is performed for the both settings.

## NOTE

－Regardless of the Pr． 71 （Pr．450）setting，offline auto tuning can be performed according to Pr． 96 （Pr．463）Auto tuning setting／status．（Refer to page 508 for offlne auto tuning．）

## Using two types of motors（RT signal，Pr．450）

－When using two types of motors with one inverter，set Pr． 450 Second applied motor．
－The setting value＂9999＂（initial value）disables second applied motor．
－If Pr． $450 \neq 9999$ ，the following parameters will be enabled by turning ON the Second function selection（RT）signal．

Function	RT signal ON（second motor）	RT signal OFF（first motor）
Electronic thermal O／L relay	Pr． 51	Pr． 9
Applied motor	Pr． 450	Pr． 71
Control method selection	Pr． 451	Pr． 800
Motor capacity	Pr． 453	Pr． 80
Number of motor poles	Pr． 454	Pr． 81
Motor excitation current	Pr． 455	Pr． 82
Rated motor voltage	Pr． 456	Pr． 83
Rated motor frequency	Pr． 457	Pr． 84
Motor constant（R1）	Pr． 458	Pr． 90
Motor constant（R2）	Pr． 459	Pr． 91
Motor constant（L1）／d－axis inductance（Ld）	Pr． 460	Pr． 92
Motor constant（L2）／q－axis inductance（Lq）	Pr． 461	Pr． 93
Motor constant（X）	Pr． 462	Pr． 94
Auto tuning setting／status	Pr． 463	Pr． 96
Frequency search gain	Pr． 560	Pr． 298
Online auto tuning selection	Pr． 574	Pr． 95
Induced voltage constant（phi f）	Pr． 738	Pr． 706
Motor Ld decay ratio	Pr． 739	Pr． 711
Motor Lq decay ratio	Pr． 740	Pr． 712
Starting resistance tuning compensation	Pr． 741	Pr． 717
Starting magnetic pole position detection pulse width	Pr． 742	Pr． 721
Maximum motor frequency	Pr． 743	Pr． 702
Motor inertia（integer）	Pr． 744	Pr． 724
Motor inertia（exponent）	Pr． 745	Pr． 746
Motor protection current level	Pr	
Torque current／Rated PM motor current		

## NOTE

－The RT signal is a second function selection signal．The RT signal also enables other second functions．（Refer to page 503．）
－The RT signal is assigned to the terminal RT in the initial status．Set＂3＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## © CAUTION

[^20]
## 〈Parameters referred to 》》

Pr． 96 Auto tuning setting／status page 508
Pr． 100 to Pr． 109 （Adjustable 5 points V／F）Њ page 705
Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 498
Pr． 684 Tuning data unit switchover page 508
Pr． 800 Control method selection page 166

### 5.13.2 Offline auto tuning for an induction motor

## Magneticflux Sensorless Vector

The offline auto tuning enables the optimal operation of an motor.

- What is offline auto tuning? Under Advanced magnetic flux vector control, real sensor vector control or vector control operation, measuring motor constants automatically (offline auto tuning) enables optimal operation of motors even when motor constants vary, when a motor of another company is used or when the wiring distance is long.
For the offline auto tuning for a PM motor, refer to page 529.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 684 \\ & \text { C000 } \end{aligned}$	Tuning data unit switchover	0	0	Internal data converted value
			1	The value is indicated with "A, $\Omega, \mathrm{mH}$ or \%".
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16,30,33,34,8090 \text {, } \\ & 8093,8094,9090,9093,9094 \end{aligned}$	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \text { C101 } \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}{ }^{*} 2$	Set the applied motor capacity.
			0 to $3600 \mathrm{~kW}^{* 3}$	
			9999	V/F control
$\begin{aligned} & 81 \\ & \mathrm{C} 102 \end{aligned}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & 9 \\ & \mathrm{C} 103 \end{aligned}$	Electronic thermal O/L relay	Inverter rated current ${ }^{* 1}$	0 to $500 \mathrm{~A}^{*}{ }^{\text {a }}$	Set the rated motor current.
			0 to 3600 A *	
$\begin{aligned} & 83 \\ & \text { C104 } \end{aligned}$	Rated motor voltage	575 V	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \text { C105 } \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency (Hz).
			9999	Use the value set in Pr. 3 Base frequency.
$\begin{aligned} & 707 \\ & \text { C107 } \end{aligned}$	Motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia.   9999: Uses the constant value of standard motor
$\begin{aligned} & 724 \\ & \text { C108 } \end{aligned}$	Motor inertia (exponent)	9999	0 to 7, 9999	or vector control dedicated motor selected by Pr. 71 .
$\begin{aligned} & 96 \\ & \text { C110 } \end{aligned}$	Auto tuning setting/ status	0	0	No offline auto tuning
			1	Performs offline auto tuning without rotating the motor
			11	Performs offline auto tuning without rotating the motor (V/F control)   (Refer to page 529)
			101	Performs offline auto tuning by rotating the motor
$\begin{aligned} & 90 \\ & \mathrm{C} 120 \end{aligned}$	Motor constant (R1)	9999	0 to $50 \Omega, 9999 * 24$	Tuning data   (The value measured by offline auto tuning is automatically set.)   9999: Uses the constant value of standard motor or vector control dedicated motor selected by Pr. 71 .
			0 to $400 \mathrm{~m} \Omega, 9999 * 3$ *	
$\begin{aligned} & 91 \\ & \text { C121 } \end{aligned}$	Motor constant (R2)	9999	0 to $50 \Omega, 9999 * 2$ *	
			0 to $400 \mathrm{~m} \Omega, 9999{ }^{* 3}{ }^{* 4}$	
$\begin{aligned} & 92 \\ & \mathrm{C} 122 \end{aligned}$	Motor constant (L1)/daxis inductance (Ld)	9999	0 to $6000 \mathrm{mH}, 9999 * 2$ *	
			0 to $400 \mathrm{mH}, 9999 * 3$ *	
$\begin{aligned} & 93 \\ & \mathrm{C} 123 \end{aligned}$	Motor constant (L2)/qaxis inductance (Lq)	9999	0 to $6000 \mathrm{mH}, 9999 * 2$ *4	
			0 to $400 \mathrm{mH}, 9999^{*}{ }^{* 4}$	
$\begin{aligned} & 94 \\ & \mathrm{C} 124 \end{aligned}$	Motor constant (X)	9999	0 to $100 \%, 9999{ }^{*} 4$	
$\begin{aligned} & 82 \\ & \mathrm{C} 125 \end{aligned}$	Motor excitation current	9999	0 to 500 A, 9999*2 *4	
			0 to 3600 A, 9999*3 *4	
859   C126	Torque current/Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999$ *2 *4	
			0 to 3600 A, 9999*3 *4	
298   A711	Frequency search gain	9999	0 to 32767	The offline auto tuning automatically sets the gain required for the frequency search.
			9999	Uses the constant value of standard motor or vector control dedicated motor selected by Pr. 71 .
$\begin{aligned} & 450 \\ & \mathrm{C} 200 \end{aligned}$	Second applied motor	9999	$\begin{aligned} & 0,1,3 \text { to } 6,13 \text { to } 16,30,33,34 \text {, } \\ & 8090,8093,8094,9090,9093 \text {, } \\ & 9094 \end{aligned}$	Set this parameter when using the second motor. (the same specifications as Pr.71).
			9999	The function is disabled.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 453 \\ & \mathrm{C} 201 \end{aligned}$	Second motor capacity	9999	0.4 to $55 \mathrm{~kW}^{*}{ }^{2}$	Set the capacity of the second motor.
			0 to $3600 \mathrm{~kW}^{* 3}$	
			9999	V/F control
$\begin{aligned} & 454 \\ & \mathrm{C} 202 \end{aligned}$	Number of second motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of poles of the second motor.
			9999	V/F control
$\begin{aligned} & 51 \\ & \text { C203 } \end{aligned}$	Second electronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{*}{ }^{\text {a }}$	This function is enabled when the RT signal is ON.   Set the rated motor current.
			0 to $3600 \mathrm{~A}^{* 3}$	
			9999	Second electronic thermal O/L relay disabled
$\begin{aligned} & 456 \\ & \mathrm{C} 204 \end{aligned}$	Rated second motor voltage	575 V	0 to 1000 V	Set the rated voltage ( V ) of the second motor.
$\begin{aligned} & 457 \\ & \mathrm{C} 205 \end{aligned}$	Rated second motor frequency	9999	10 to 400 Hz	Set the rated frequency (Hz) of the second motor.
			9999	Use the Pr. 84 Rated motor frequency setting.
$\begin{aligned} & 744 \\ & \text { C207 } \end{aligned}$	Second motor inertia (integer)	9999	10 to 999, 9999	Set the inertia of the second motor.   9999: Uses the constant value of standard motor or vector control dedicated motor selected by Pr. 71.
$\begin{aligned} & 745 \\ & \text { C208 } \end{aligned}$	Second motor inertia (exponent)	9999	10 to 7, 9999	
$\begin{aligned} & \hline 463 \\ & \mathrm{C} 210 \end{aligned}$	Second motor auto tuning setting/status	0	0	No auto tuning for the second motor.
			1	Performs offline auto tuning without rotating the second motor
			11	Performs offline auto tuning without rotating the motor (V/F control)   (Refer to page 529)
			101	Performs offline auto tuning by rotating the second motor
$\begin{aligned} & 458 \\ & \mathrm{C} 220 \end{aligned}$	Second motor constant (R1)	9999	0 to $50 \Omega, 9999^{* 2}{ }^{*}$	Tuning data of the second motor   (The value measured by offline auto tuning is automatically set.)   9999: Uses the constant value of standard motor or vector control dedicated motor selected by Pr. 71.
			0 to $400 \mathrm{~m} \Omega, 9999 * 3$ *	
$\begin{aligned} & 459 \\ & \mathrm{C} 221 \end{aligned}$	Second motor constant (R2)	9999	0 to $50 \Omega, 9999^{*}{ }^{*} 4$	
			0 to $400 \mathrm{~m} \Omega, 9999 * 3$ *	
$\begin{aligned} & 460 \\ & \mathrm{C} 222 \end{aligned}$	Second motor constant (L1) / d-axis inductance (Ld)	9999	0 to $6000 \mathrm{mH}, 9999{ }^{* 2}{ }^{*} 4$	
			0 to $400 \mathrm{mH}, 9999 * 3$ *4	
$\begin{aligned} & 461 \\ & \text { C223 } \end{aligned}$	Second motor constant (L2) / q-axis inductance (Lq)	9999	0 to $6000 \mathrm{mH}, 9999{ }^{* 2}$ *4	
			0 to $400 \mathrm{mH}, 9999 * 3$ *	
$\begin{aligned} & 462 \\ & \mathrm{C} 224 \end{aligned}$	Second motor constant (X)	9999	0 to 100\%, 9999*4	
$\begin{aligned} & 455 \\ & \mathrm{C} 225 \end{aligned}$	Second motor excitation current	9999	0 to 500 A, 9999*2 *4	
			0 to 3600 A, 9999*3*	
$\begin{aligned} & 860 \\ & \mathrm{C} 226 \end{aligned}$	Second motor torque current/Rated PM motor current	9999	0 to 500 A, 9999*2*4	
			0 to 3600 A, 9999*3*4	
$\begin{aligned} & 560 \\ & \text { A712 } \end{aligned}$	Second frequency search gain	9999	0 to 32767	The offline auto tuning automatically sets the gain required for the frequency search of the second motor.
			9999	Uses the constant value of standard motor or vector control dedicated motor selected by Pr.71.

*1 For FR-A860-00027, it is set to $85 \%$ of the inverter rated current.
*2 For the FR-A860-01080 or lower.
*3 For the FR-A860-01440 or higher.
*4 The setting range and unit change according to the Pr. 71 (Pr.450) setting.

## Point?

- The function is enabled under Advanced magnetic flux vector control, Real sensorless vector control, and vector control.
- When an induction motor by other manufacturers is used or the wiring length between the inverter and the motor is long ( 30 m or longer as a reference), use the offline auto tuning function to drive the motor in the optimum operation characteristic.
- Tuning is enabled even when a load is connected to the motor.
- During offline auto tuning, the motor rotation can be locked (Pr. $96=" 1 "$ ) or unlocked (Pr. $96=$ "101"). The tuning is more accurate when the motor can rotate (unlocked).
- Reading/writing of the motor constants tuned by offline auto tuning are enabled. The offline auto tuning data (motor constants) can be copied to another inverter with the operation panel.
- The offline auto tuning status can be monitored with the operation panel and the parameter unit.


## Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- A value other than "9999" is set in Pr. 80 and Pr.81, and Advanced magnetic flux vector control, Real sensorless vector control or vector control is selected (with Pr.800).
- A motor is connected. (The motor should not be rotated by the force applied from outside during the tuning.)
- For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- The target motor is other than a high-slip motor, a high-speed motor, or a special motor.
- The highest frequency is 400 Hz .
- The motor may rotate slightly even if the offline auto tuning without motor rotation (Pr. 96 Auto tuning setting/status ="1") is selected. (The slight motor rotation does not affect the tuning performance.) Fix the motor securely with a mechanical brake, or before tuning, make sure that it is safe even if the motor rotates. (Caution is required especially in vertical lift applications.)
- Check the following points for the offline auto tuning with motor rotation (Pr. 96 Auto tuning setting/status = "101").

Torque is not sufficient during tuning.
The motor can be rotated up to the speed close to the rated speed.
The mechanical brake is released.

- Make sure to connect the encoder to the motor without coaxial misalignment during vector control. Set the speed ratio to 1:1.


## - Settings

- To perform tuning, set the following parameters about the motor.

First   motor Pr.	Second   motor Pr.	Name	Initial value	Description
80	453	Motor capacity	9999 (V/F control)	Set the motor capacity (kW).
81	454	Number of motor poles	9999 (V/F control)	Set the number of motor poles (2 to 12).
800	451	Control method selection	20	Set this parameter when using vector control or Real   sensorless vector control.
9	51	Electronic thermal O/L   relay	Inverter rated   current	Set the rated motor current (A).
83	456	Rated motor voltage	575 V	Set the rated motor voltage (V) printed on the motor's rating   plate.
84	450	Applied motor	Set the rated motor frequency (Hz).   When the setting is "9999", the Pr.3 Base frequency   setting is used.	
71	463	Auto tuning setting/   status frequency	0999	Set this parameter according to the motor. ${ }^{* 1}$   Three types of motor constant setting ranges, units and   tuning data can be stored according to settings.
96			Set "1" or "101".   1: Performs tuning without rotating the motor. (Excitation   noise occurs at this point.)	
$101:$ Performs tuning by rotating the motor. The motor can				
rotate up to the speed near the rated motor frequency.				

*1 According to the Pr. 71 setting, the range of the motor constant parameter setting values and units can be changed. Set the Pr. 71 Applied motor setting according to the motor to be used and the motor constant setting range. (For other setting values of Pr.71, refer to page 506.)

Motor	Pr.71 setting		
	Motor constant parameter   $\mathbf{m H}, \%$ and A unit setting	Motor constant parameter   Internal data setting	Motor constant parameter   $\Omega, \mathrm{m} \Omega$ and A unit setting
Standard motor	0 (initial value)	$3(4)$	-
Constant-torque motor	1	$13(14)$	-
Vector control dedicated   motor	30	$33(34)$	-
Other manufacturer's   standard motor	0 (initial value)	$3(4)$	5 (star connection motor)   6 (delta connection motor)
Other manufacturer's   constant-torque motor	1	$13(14)$	15 (star connection motor)   16 (delta connection motor)

## NOTE

- If Pr. 11 DC injection brake operation time $=$ " 0 " or Pr. 12 DC injection brake operation voltage = " 0 ", offline auto tuning is performed considering Pr. 11 or Pr. 12 is set to the initial value.
- If position control is selected ( $\operatorname{Pr} .800=" 3$ or $5 "$ (when the MC signal is OFF)), offline auto tuning is not performed.
- If "star connection" or "delta connection" is incorrectly selected in Pr.71, Advanced magnetic flux vector control, Real sensorless vector control and vector control are not performed normally.
- For tuning accuracy improvement, set the following parameters when the motor constants are known in advance.

First motor   Pr.	Second   motor Pr.	Name	Standard motor, vector   control dedicated motor	Other motors   707
744	Motor inertia (integer)	9999 (initial value)	Motor inertia ${ }^{* 2}$   Jm=Pr. $707 \times 10^{\wedge}(-\operatorname{Pr} .724)\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	
724	745	Motor inertia (exponent)		

[^21]
## - Performing tuning

## Point ${ }^{\circ}$

- Before performing tuning, check the monitor display of the operation panel or the parameter unit if the inverter is in the state ready for tuning. (Refer to 2) below.) Turning ON the start command while tuning is unavailable starts the motor.
- In the PU operation mode, press FWD/REV on the operation panel. For External operation, turn ON the start command (STF signal or STR signal). Tuning will start.


## NOTE

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of MRS signal.
- To force tuning to end, use the MRS or RES signal or press $\frac{\text { STTOP }}{\operatorname{RRSETE}}$ on the operation panel. (Turning the start signal (STF signal or STR signal) OFF also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid (initial value).

Input terminals <effective signals>: STP (STOP), OH, MRS, RT, RES, STF, and STR
Output terminals: RUN, OL, IPF, FM, AM, and A1B1C1

- When the rotation speed and the output frequency are selected for terminals FM and AM, the progress status of offline auto tuning is output in fifteen steps from FM and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- Setting offline auto tuning (Pr. 96 Auto tuning setting/status = "1 or 101") will make pre-excitation invalid.
- When the offline auto tuning is selected (Pr. 96 Auto tuning setting/status = "101"), the motor rotates. Take caution and ensure the safety.
- Since the Inverter running (RUN) signal turns ON when tuning is started, pay close attention especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the run command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = "7", turn the PU operation external interlock (X12) signal ON to tune in the PU operation mode.


## - Monitor is displayed on the operation panel and parameter unit during tuning as below.

Pr. 96 setting value	1	101	1	101
	Parameter unit display		Operation panel display	
(1) Setting	TUNE    READ:List    --- STOP    -PU	READ:List    TUNE 101   --- STOP PU		AutoTune   TUNE   TUN  $12: 34$     101   --- STOP PU   PREV
(2) During tuning		IIIIII    TUNE    TUNE 102   STF FWD PU		
(3) Normal completion		IIIIIIIIIIIIIIIIIIII\|   TUNE   COMPLETION   STF STOP PU		

- Note: Offline auto tuning time (with the initial setting)

Offline auto tuning setting	
No motor rotation (Pr.96 (Pr.463) $=$   "1")	Approx. 25 to 120 s   (The time depends on the inverter capacity and motor type.)
With motor rotation (Pr.96 (Pr.463) $=$   "101)	Approx. 40 s   (The following offline auto tuning time is set according to the acceleration/deceleration time   setting. Offline auto tuning time $=$ acceleration time + deceleration time + approx. 30 s$)$

- When offline auto tuning ends, press on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal). This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The motor constants measured once in the offline auto tuning are stored as parameters and their data are held until the offline auto tuning is performed again. However, the tuning data is cleared by performing all parameter clear.
- Changing Pr. 71 (Pr.450) after tuning completion will change the motor constant. For example, if Pr. $71=$ " 3 " is set after tuning is performed with Pr. $71=$ " 0 ", the tuning data becomes invalid. Set Pr. $71=$ " 0 " again for using the tuning data.
- If offline auto tuning has ended in error (see the table below), motor constants are not set. Perform an inverter reset and restart tuning.

Error display	Error cause	Countermeasures
8	Forced end	Set Pr. 96 (Pr.463) = "1" or "101" and try again.
9	Inverter protective function operation	Make the setting again.
91	The current limit (stall prevention) function is   activated.	Set the acceleration/deceleration time longer.   Set Pr. $156=$ "1".
92	The converter output voltage has dropped to   $75 \%$ of the rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr.83 Rated motor voltage (Pr. 456   Rated second motor voltage) setting.
93	Calculation error   The motor is not connected.	Check the Pr. 83 and Pr.84 settings.   Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error   (The frequency command for the tuning was   given to exceed the maximum frequency setting,   or to be in the frequency jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to   Pr. 36 Frequency jump settings.

- When tuning is ended forcibly by pressing $\frac{\text { STOP }}{\text { RTSETV }}$ or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.) Perform an inverter reset and restart tuning.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when STF (STR) signal is ON, the motor runs in the forward (reverse) rotation.
- Any alarm occurring during tuning is handled as in the normal operation. Note that even if a retry operation has been set, retry is not performed.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz


## $\triangle$ CAUTION

- Note that the motor may start running suddenly.
- For the offline auto tuning in vertical lift applications, etc., caution is required to avoid falling due to insufficient torque.


## - Changing the motor constants

- If the motor constants are known, the motor constants can be set directly or set using data measured through offline auto tuning.
- According to the Pr. 71 (Pr.450) setting, the range of the motor constant parameter setting values and units can be changed. The setting values are stored in the EEPROM as motor constant parameters, and three types of motor constants can be stored.


## - Changing the motor constants (If setting the Pr. 92 and Pr. 93 motor constants in units of mH )

- Set Pr. 71 as shown below.

Motor	Pr.71 setting
Standard motor	0 (initial value)
Constant-torque motor	1
Vector control dedicated motor	30

- Use the following formula to find the Pr. 94 setting value and set a given value as the motor constant parameter.

The setting value of Pr. $94=\left(1-\frac{\mathrm{M}^{2}}{\mathrm{~L} 1 \times \mathrm{L} 2}\right) \times 100(\%)$

- Equivalent circuit diagram of the motor


L1 $=11+\mathrm{M}$ : Primary inductance
L2= $12+\mathrm{M}$ : Secondary inductance

First motor Pr.	Second motor Pr.	Name	Setting range	Setting increments	Initial value
82	455	Motor excitation current (No-load current)	0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	9999
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
90	458	Motor constant (R1)	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega$, $9999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
91	459	Motor constant (R2)	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/d-axis inductance (Ld)	0 to $6000 \mathrm{mH}, 9999 * 1$	$0.1 \mathrm{mH}^{* 1}$	
			0 to $400 \mathrm{mH}, 9999^{*}$	$0.01 \mathrm{mH}^{* 2}$	
93	461	Motor constant (L2)/q-axis inductance (Lq)	0 to $6000 \mathrm{mH}, 9999^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
			0 to $400 \mathrm{mH}, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{mH}^{* 2}$	
94	462	Motor constant (X)	0 to 100\%, 9999	$0.1 \%{ }^{*}$	
				0.01\% ${ }^{\text {2 }}$	
859	860	Torque current/Rated PM motor current	0 to 500 A, 9999*1	0.01 A*1	
			0 to 3600 A, $9999{ }^{*}$	$0.1 \mathrm{~A}^{* 2}$	
298	560	Frequency search gain	0 to 32767, 9999	1	

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## NOTE

- "If "9999" is set, tuning data will be invalid and the motor constant values for standard motors / vector control dedicated motors are used.


## - Changing the motor constants (If setting motor constants in the internal data of the inverter)

- Set Pr. 71 as follows.

Motor	Pr.71 setting
Standard motor	$3(4)$
Constant-torque motor	$13(14)$
Vector control dedicated motor	$33(34)$
Other manufacturer's standard motor	$3(4)$
Other manufacturer's constant-torque motor	$13(14)$

- Set given values as the motor constant parameters. The displayed increments of the read motor constants can be changed with Pr. 684 Tuning data unit switchover.

First motor Pr.	Second motor Pr.	Name	Pr. 684 = 0 (initial value)		Pr. 684 = 1		Initial value
			Setting range	Setting increments	Range indication	Unit indication	
82	455	Motor excitation current	0 to ***, 9999	1	0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	9999
					0 to 3600 A, $9999{ }^{*}{ }^{2}$	$0.1 \mathrm{~A}^{*}$	
90	458	Motor constant (R1)			0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
					0 to $400 \mathrm{~m} \Omega, 9999{ }^{*} 2$	$0.01 \mathrm{~m} \Omega^{* 2}$	
91	459	Motor constant (R2)			0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
					0 to $400 \mathrm{~m} \Omega, 9999{ }^{*}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/daxis inductance (Ld)			0 to $6000 \mathrm{mH}, 9999{ }^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
					0 to $400 \mathrm{mH}, 9999{ }^{*}$	$0.01 \mathrm{mH}^{*}{ }^{2}$	
93	461	Motor constant (L2)/qaxis inductance (Lq)			0 to $6000 \mathrm{mH}, 9^{999}{ }^{* 1}$	$0.1 \mathrm{mH}^{* 1}$	
					0 to $400 \mathrm{mH}, 9999{ }^{*}$	$0.01 \mathrm{mH}^{*}{ }^{2}$	
94	462	Motor constant (X)			0 to 100\%, 9999	0.1\%* ${ }^{\text {1 }}$	
						0.01\% ${ }^{*}$	
859	860	Torque current/Rated PM motor current			0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	
					0 to 3600 A, $9999{ }^{*}{ }^{2}$	$0.1 \mathrm{~A}^{*}$	
298	560	Frequency search gain	0 to 32767, 9999	1	0 to 32767, 9999	1	

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## NOTE

- As the motor constants measured in the offline auto tuning have been converted into internal data (****), refer to the following setting example when making setting:
- Setting example:To slightly increase the Pr. 90 value (5\%)

If $\operatorname{Pr} .90=$ " 2516 " is displayed, the value is calculated with $2516 \times 1.05=2641.8$. Therefore set $\operatorname{Pr} .90=$ " 2642 ". (The value displayed has been converted into a value for internal use. Hence, simple addition of a given value to the displayed value has no significance.)

- "If "9999" is set, tuning data will be invalid and the motor constant values for standard motors / vector control dedicated motors are used.


## - Changing the motor constants (If setting the Pr. 92 and Pr. 93 motor constants in units of [ $\Omega$ ])

- Set Pr. 71 as shown below.

Applicable motor	Pr.71 setting	
	Star connection motor	Delta connection motor
Standard motor	5	6
Constant-torque motor	15	16

- Set given values as the motor constant parameters.
$\mathrm{Iq}=$ torque current, $\mathrm{I} 100=$ rated current, $\mathrm{I} 0=$ no load current

$$
I q=\sqrt{1100^{2}-10^{2}}
$$

First motor Pr.	Second motor Pr.	Name	Setting range	Setting increments	Initial value
82	455	Motor excitation current (No-load current)	0 to 500 A, 9999*1	0.01 A*1	9999
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}{ }^{\text {a }}$	
90	458	Motor constant (r1)	0 to $50 \Omega, 9999{ }^{* 1}$	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
91	459	Motor constant (r2)	0 to $50 \Omega$, $9999{ }^{* 1}$	$0.001 \Omega^{* 1}$	
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (×1)	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
			0 to $3600 \mathrm{~m} \Omega$, $9999{ }^{*}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
93	461	Motor constant (×2)	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	
			0 to 3600 m , 9999*2	$0.01 \mathrm{~m} \Omega^{* 2}$	
94	462	Motor constant ( $\times \mathrm{m}$ )	0 to $500 \Omega, 9999{ }^{* 1}$	$0.01 \Omega$	
			0 to $100 \Omega$, 9999*2		
859	860	Torque current/Rated PM motor current	0 to $500 \mathrm{~A}, 999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
298	560	Frequency search gain	0 to 32767, 9999	1	

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## NOTE

- If "star connection" or "delta connection" is incorrectly selected in Pr.71, Advanced magnetic flux vector control, Real sensorless vector control and vector control are not performed normally.
- "If "9999" is set, tuning data will be invalid and the motor constant values for standard motors / vector control dedicated motors are used.


## －Tuning the second applied motor

－When one inverter switches the operation between two different motors，set the second motor in Pr． 450 Second applied motor．（Refer to page 506．）In the initial setting，no second motor is applied．
－Turning ON the RT signal will enable the parameter settings for the second motor as shown below．

Function	RT signal ON（second motor）	RT signal OFF（first motor）
Motor capacity	Pr． 453	Pr． 80
Number of motor poles	Pr． 454	Pr． 81
Motor excitation current	Pr． 455	Pr． 82
Rated motor voltage	Pr． 456	Pr． 83
Rated motor frequency	Pr． 457	Pr． 84
Motor constant（R1）	Pr． 458	Pr． 90
Motor constant（R2）	Pr． 459	Pr． 91
Motor constant（L1）／d－axis   inductance（Ld）	Pr． 460	Pr． 92
Motor constant（L2）／q－axis   inductance（Lq）	Pr． 461	Pr． 93
Motor constant（X）	Pr． 462	Pr． 94
Auto tuning setting／status	Pr． 463	Pr． 96
Frequency search gain	Pr． 560	Pr． 298

## NOTE

－The RT signal is assigned to the terminal RT in the initial status．Set＂3＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

## 《｜Parameters referred to 》》

Pr． 1 Maximum frequency page 399
Pr． 9 Electronic thermal O／L relay page 377
Pr． 31 to Pr． 36 Frequency jump page 401
Pr． 71 Applied motor page 506
Pr． 156 Stall prevention operation selection $\mathfrak{F}$ page 403
Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 498
Pr． 190 to Pr． 196 （Output terminal function selection）
Pr． 800 Control method selection page 166

### 5.13.3 Offline auto tuning for a PM motor (under Vector control)

## Vector

The offline auto tuning enables the optimal operation of a PM motor (under Vector control).

- Automatic measurement of motor constants (offline auto tuning) enables optimal operation of motors for Vector control even when motor constants vary or when the wiring distance is long.
For the offline auto tuning under Vector control (for induction motor), refer to page 508.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 684 \\ & \text { C000 } \end{aligned}$	Tuning data unit switchover	0	0	Internal data converted value
			1	The value is indicated in $\mathrm{A}, \Omega, \mathrm{mH}$, or mV .
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16,30,33 \text {, } \\ & 34,8090,8093,8094 \text {, } \\ & 9090,9093,9094 \end{aligned}$	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \text { C101 } \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}{ }^{*} 2$	Set the applied motor capacity.
			0 to $3600 \mathrm{~kW}^{*} 3$	
			9999	V/F control
$\begin{aligned} & 81 \\ & \text { C102 } \end{aligned}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & 9 \\ & \mathrm{C} 103 \end{aligned}$	Rated motor current	Inverter rated current ${ }^{* 1}$	0 to $500 \mathrm{~A}^{*}$	Set the rated motor current.
			0 to $3600 \mathrm{~A}^{*}$	
$\begin{aligned} & 83 \\ & \text { C104 } \end{aligned}$	Rated motor voltage	575 V	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \text { C105 } \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency (Hz).
			9999	As the internal data of the inverter is used, set it correctly according to the motor specifications.
$\begin{aligned} & 702 \\ & \text { C106 } \end{aligned}$	Maximum motor frequency	9999	0 to 400 Hz	Set the permissible speed (frequency) of the motor.
			9999	The Pr. 84 setting is used.
$\begin{aligned} & 707 \\ & \text { C107 } \end{aligned}$	Motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia. 9999: Inverter internal data
$\begin{aligned} & 724 \\ & \text { C108 } \end{aligned}$	Motor inertia (exponent)	9999	0 to 7, 9999	
96 C110	Auto tuning setting/ status	0	0	No offline auto tuning
			1	Offline auto tuning is performed without the motor rotating.
			11	Offline auto tuning is performed only for motor constant R1 (without motor rotation).
			101	Encoder position tuning and offline auto tuning are performed (with the motor rotating slightly).
$\begin{aligned} & 90 \\ & \mathrm{C} 120 \end{aligned}$	Motor constant (R1)	9999	0 to $50 \Omega, 9999^{* 2 * 4}$	Tuning data (The value measured by offline auto tuning is automatically set.) 9999: Inverter internal data is used.
			0 to $400 \mathrm{~m} \Omega, 9999^{* 3 * 4}$	
$\begin{aligned} & 92 \\ & \mathrm{C} 122 \end{aligned}$	Motor constant (L1)/daxis inductance (Ld)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
			0 to $50 \mathrm{mH}, 9999{ }^{* 3 * 4}$	
$\begin{aligned} & 93 \\ & \mathrm{C} 123 \end{aligned}$	Motor constant (L2)/qaxis inductance (Lq)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
			0 to $50 \mathrm{mH}, 9999{ }^{* 3 * 4}$	
$\begin{aligned} & 859 \\ & \text { C126 } \end{aligned}$	Torque current/Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999{ }^{*}{ }^{*} 4$	
			0 to 3600 A, 9999*3*4	
$\begin{aligned} & 706 \\ & \text { C130 } \end{aligned}$	Induced voltage constant (phi f)	9999	0 to 5000 mV (rad/s) ${ }^{*} 4$	Set this parameter according to the PM motor specifications.
			9999	The value calculated from the parameter setting for motor constant is used.
$\begin{aligned} & 1412 \\ & \text { C135 } \end{aligned}$	Motor induced voltage constant (phif) exponent	9999	0 to 2	Set the exponent n when the induced voltage constant phif (Pr.706) is multiplied by $10^{\mathrm{n}}$.
			9999	No exponent setting
$\begin{aligned} & 711 \\ & \text { C131 } \end{aligned}$	Motor Ld decay ratio	9999	0 to 100\%, 9999	Tuning data (The value measured by offline auto tuning is automatically set.) 9999: Inverter internal data is used.
$\begin{aligned} & 712 \\ & \text { C132 } \end{aligned}$	Motor Lq decay ratio	9999	0 to 100\%, 9999	


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 725 \\ & \text { C133 } \end{aligned}$	Motor protection current level	9999	100 to 500\%	Set the maximum current (OCT) level of the motor.
			9999	200\%
$\begin{aligned} & 1002 \\ & \text { C150 } \end{aligned}$	Lq tuning target current adjustment coefficient	9999	50 to 150\%	Adjust the target current during tuning.
			9999	100\%
$\begin{aligned} & 450 \\ & \mathrm{C} 200 \end{aligned}$	Second applied motor	9999	$0,1,3$ to 6,13 to 16, 30, $33,34,8090,8093,8094$, 9090, 9093, 9094	Set this parameter when using the second motor (the same specifications as Pr.71).
			9999	The function is disabled.
$\begin{aligned} & 453 \\ & \text { C201 } \end{aligned}$	Second motor capacity	9999	0.4 to $55 \mathrm{~kW}^{*} 2$	Set the capacity of the second motor.
			0 to $3600 \mathrm{~kW}^{*} 3$	
			9999	V/F control
$\begin{aligned} & 454 \\ & \mathrm{C} 202 \end{aligned}$	Number of second motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of poles of the second motor.
			9999	V/F control
$\begin{aligned} & 51 \\ & \text { C203 } \end{aligned}$	Second electronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{*}$	Set the rated current of the second motor.
			0 to $3600 \mathrm{~A}^{* 3}$	
			9999	The second electronic thermal O/L relay is disabled.
$\begin{aligned} & 456 \\ & \text { C204 } \end{aligned}$	Rated second motor voltage	575 V	0 to 1000 V	Set the rated voltage (V) of the second motor.
$\begin{aligned} & 457 \\ & \mathrm{C} 205 \end{aligned}$	Rated second motor frequency	9999	10 to 400 Hz	Set the rated frequency (Hz) of the second motor.
			9999	As the inverter internal data is used for the second motor, set it correctly according to the motor specifications.
$\begin{aligned} & 743 \\ & \text { C206 } \end{aligned}$	Second motor maximum frequency	9999	0 to 400 Hz	Set the permissible speed (frequency) of the second motor.
			9999	The Pr. 457 setting is used.
$\begin{aligned} & 744 \\ & \text { C207 } \end{aligned}$	Second motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia of the second motor. 9999: Inverter internal data
$\begin{aligned} & 745 \\ & \text { C208 } \end{aligned}$	Second motor inertia (exponent)	9999	0 to 7,9999	
$\begin{aligned} & 463 \\ & \mathrm{C} 210 \end{aligned}$	Second motor auto tuning setting/status	0	0	No auto tuning for the second motor.
			1	Offline auto tuning is performed without the motor rotating.
			11	Offline auto tuning is performed only for motor constant R1 (without motor rotation)
			101	Encoder position tuning and offline auto tuning are performed (with the motor rotating slightly).
$\begin{aligned} & 458 \\ & \text { C220 } \end{aligned}$	Second motor constant (R1)	9999	0 to $50 \Omega, 9999{ }^{*}{ }^{*} 4$	Tuning data of the second motor. (The value measured by offline auto tuning is automatically set.) 9999: Inverter internal data is used.
			0 to $400 \mathrm{~m} \Omega, 99993^{*} 4$	
$\begin{aligned} & 460 \\ & \mathrm{C} 222 \end{aligned}$	Second motor constant (L1) / d-axis inductance (Ld)	9999	0 to $500 \mathrm{mH}, 9999^{* 2 * 4}$	
			0 to $50 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
$\begin{aligned} & 461 \\ & \mathrm{C} 223 \end{aligned}$	Second motor constant (L2) / q-axis inductance (Lq)	9999	0 to $500 \mathrm{mH}, 99992^{*} 4$	
			0 to $50 \mathrm{mH}, 9999{ }^{*} 3^{*} 4$	
$\begin{aligned} & 860 \\ & \mathrm{C} 226 \end{aligned}$	Second motor torque current/Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999{ }^{*}{ }^{*} 4$	
			0 to 3600 A, 9999***	
$\begin{aligned} & 738 \\ & \text { C230 } \end{aligned}$	Second motor induced voltage constant (phi f)	9999	0 to $5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s})^{*}{ }^{4}$	Set this parameter according to the PM motor specifications.
			9999	The value calculated from the parameter setting for motor constant is used.
$\begin{aligned} & 1413 \\ & \text { C235 } \end{aligned}$	Second motor induced voltage constant (phif) exponent	9999	0 to 2	Set the exponent n when the induced voltage constant phif (Pr.738) is multiplied by 10 n .
			9999	No exponent setting
$\begin{aligned} & 739 \\ & \text { C231 } \end{aligned}$	Second motor Ld decay ratio	9999	0 to 100\%, 9999	Tuning data of the second motor. (The value measured by offline auto tuning is automatically set.) 9999: Inverter internal data is used.
$\begin{aligned} & 740 \\ & \text { C232 } \end{aligned}$	Second motor Lq decay ratio	9999	0 to 100\%, 9999	
$\begin{aligned} & \hline 746 \\ & \mathrm{C} 233 \end{aligned}$	Second motor protection current level	9999	100 to 500\%	Set the maximum current (OCT) level of the second motor.
			9999	200\%
$\begin{aligned} & 373 \\ & \text { C142*5 } \end{aligned}$	Encoder position tuning setting/status	0	0	Encoder position tuning disabled.
			1	Encoder position tuning enabled.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 871 \\ & \mathrm{C} 243^{*} 6 \end{aligned}$	Control terminal option-Encoder position tuning setting/status	0	0	Encoder position tuning disabled.
			1	Encoder position tuning enabled.
1105	Encoder magnetic pole position offset	65535	0 to 16383	Encoder position tuning data set.
C143*5			65535	Encoder position tuning not performed.
$\begin{aligned} & 887 \\ & \mathrm{C} 143^{*} 6 \end{aligned}$	Control terminal option-Encoder magnetic pole position offset	65535	0 to 16383	Encoder position tuning data set.
			65535	Encoder position tuning not performed.

[^22]
## Point ${ }^{\rho}$

- Tuning is enabled even when a load is connected to the motor.
- Reading/writing of the motor constants tuned by offline auto tuning are enabled. The offline auto tuning data (motor constants) can be copied to another inverter using the operation panel.
- The offline auto tuning status can be monitored on the operation panel or the parameter unit.


## Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- The Vector control is selected.
- Check that a motor is connected. (Check that the motor is not rotated by an external force during tuning.)
- The rated motor current should be equal to or less than the inverter rated current. (The motor capacity must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- The maximum frequency is 400 Hz .
- The motor may rotate slightly even if the offline auto tuning without motor rotation (Pr. 96 Auto tuning setting/status = "1") is selected. (It does not affect the tuning performance.) Fix the motor securely with a mechanical brake, or before tuning, make sure that it is safe even if the motor rotates. (Caution is required especially in vertical lift applications.)
- Tuning is not available during position control.
- Tuning may be disabled depending on the motor characteristics.


## - Settings

- To perform tuning, set the following parameters about the motor.

First motor   Pr.	Second   motor Pr.	Name	Setting value
80	453	Motor capacity	Motor capacity (kW)
81	454	Number of motor poles	Number of motor poles (2 to 12)
9	51	Electronic thermal O/L relay	Rated motor current (A)
84	457	Rated motor frequency	Rated motor frequency (Hz)
83	456	Rated motor voltage	Rated motor voltage (V)
71	450	Applied motor	8090,8093 (IPM motor), 9090, 9093   $\left(\right.$ SPM motor) ${ }^{* 1}$
96	463	Auto tuning setting/status	1,101

*1 Set Pr. 71 Applied motor according to the motor to be used. According to the Pr. 71 setting, the range of the motor constant parameter setting values and units can be changed. (For other setting values of Pr.71, refer to page 506.)

Motor	Pr.71 setting	
	Motor constant parameter $\Omega$,   $\mathbf{m H}$, and $\mathbf{A}$ unit setting	Motor constant parameter   internal data setting
IPM motor	8090	$8093(8094)$
SPM motor	9090	$9093(9094)$

- For tuning accuracy improvement, set the following parameters when the motor constants are known in advance.

First motor   Pr.	Second   motor Pr.	Name	Setting value
702	743	Maximum motor frequency	Maximum motor frequency (Hz)
707	744	Motor inertia (integer)	Motor inertia*2   Jm $=$ Pr.707 $\times 10^{\wedge}(-P r .724)\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
724	745	Motor inertia (exponent)	Motor protection current level

*2 The setting is valid only when a value other than "9999" is set in both Pr. 707 (Pr.744) and Pr. 724 (Pr.745).

## - Performing tuning

## Point $\rho$

- Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable.
- In the PU operation mode, press FWD/REV on the operation panel. For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.


## NOTE

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of the MRS signal.
- To force tuning to end, use the MRS or RES signal or $\frac{\text { STOP }}{\text { RESETV }}$ on the operation panel. (Turning OFF the start signal (STF signal or STR signal) also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid (initial value).
- Input terminals <valid signals>: STP (STOP), OH, MRS, RT, RES, STF, and STR
- Output terminals: RUN, OL, IPF, FM, AM, and A1B1C1
- When the rotation speed and the output frequency are selected for terminals FM and AM, the progress status of offline auto tuning is output in 15 steps from FM and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly
- A motor with 14 or more poles cannot be tuned.
- Since the Inverter running (RUN) signal turns ON when tuning is started, pay close attention especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the operation command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = "7", turn ON the PU operation external interlock (X12) signal for tuning in the PU operation mode.
- Setting offline auto tuning (Pr. $96=$ = 1 ") will make pre-excitation invalid.
- During tuning, the monitor is displayed on the operation panel as follows.

Pr. 96 (Pr.463) setting value	1	101	1	101
	Parameter unit display		Operation panel display	
(1) Setting	TUNE READ:List       --- STOP PU	TUNE READ:List   --- STOP 101   -1		
(2) During tuning	IIIIII    TUNE    I    STF FWD PU	IIIIII    TUNE    STF 102   STF FWD PU		
(3) Normal completion	\|IIIIIIIIIIIIIIIIIII   TUNE   COMPLETION   STF   STF STOP PU			

- When offline auto tuning ends, press on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal). This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The motor constants measured once during offline auto tuning are stored as parameters and their data are held until offline auto tuning is performed again. However, the tuning data is cleared when performing All parameter clear.
- Changing Pr. 71 after tuning completion will change the motor constant. For example, if the Pr. 71 setting is changed to " 8093 " after tuned with Pr. 71 = " 8090 ", the tuning data become invalid. To use the tuned data, set " 8090 " again in Pr. 71 .
- If offline auto tuning has ended in error (see the following table), motor constants are not set. Perform an inverter reset and restart tuning.

Error display	Error cause	Countermeasures
8	Forced end	Set Pr. 96 (Pr.463)="1 or 101" and try again.
9	Inverter protective function operation	Make the setting again.
92	The converter output voltage fell to $75 \%$ of the rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr. 83 Rated motor voltage (Pr. 456 Rated   second motor voltage) setting.
93	Calculation error. The motor is not connected.	Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error. (The frequency   command for the tuning was given to exceed the maximum   frequency setting, or to be in the frequency jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to Pr. 36   Frequency jump settings.

- When tuning is ended forcibly by pressing
 or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.) Perform an inverter reset and perform tuning again.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when the STF (STR) signal is ON, the motor starts forward (reverse) rotation.
- Any fault occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed even when a protective function that performs a retry is activated.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## $\triangle$ CAUTION

- Note that the motor may start running suddenly.


## - Parameters updated by tuning results after tuning

Pr.		Name	Tuning according to Pr. 96 (Pr.463) setting			Description	
		101	1	11			
90 (458)			Motor constant (R1)	$\bigcirc$	$\bigcirc$	$\bigcirc$	Resistance per phase
92 (460)		Motor constant (L1)/d-axis inductance (Ld)	-	$\bigcirc$	-	d-axis inductance	
93 (461)		Motor constant (L2)/q-axis inductance (Lq)	$\bigcirc$	$\bigcirc$	-	q-axis inductance	
711 (739)		Motor Ld decay ratio	$\bigcirc$	$\bigcirc$	-	d-axis inductance decay ratio	
712 (740)		Motor Lq decay ratio	$\bigcirc$	$\bigcirc$	-	q-axis inductance decay ratio	
859 (860)		Torque current/Rated PM motor current	$\bigcirc$	$\bigcirc$	-		
96 (463)		Auto tuning setting/status	$\bigcirc$	$\bigcirc$	$\bigcirc$		
$373{ }^{* 1}$	$871^{* 2}$	Encoder position tuning setting/status	$\bigcirc$	-	-	Encoder position tuning status	
1105*1	$887^{*} 2$	Encoder magnetic pole position offset	-	-	-	Turning data of encoder position tuning	

$\circ$ : Tuned, 一: Not tuned
*1 The setting is available when the FR-A8AL/FR-A8APR/FR-A8APS/FR-A8APA is installed.
*2 The setting is available when the FR-A8TP is installed.

## NOTE

- If the offline auto tuning is started before the encoder position tuning is finished (Pr. 1105 (Pr.887) = "65535") for a PM motor, the protective function (E.MP) is activated.


## - Tuning adjustment (Pr.1002)

- The overcurrent protective function may be activated during Lq tuning for an easily magnetically saturated motor (motor with a large Lq decay ratio). In such case, adjust the target flowing current used for tuning with Pr. 1002 Lq tuning target current adjustment coefficient.


## - Changing the motor constants

- The motor constants can be set directly when the motor constants are known in advance, or by using the data measured during offline auto tuning.
- According to the Pr. 71 (Pr.450) setting, the range of the motor constant parameter setting values and units can be changed. The changed settings are stored in the EEPROM as the motor constant parameters.


## - Changing the motor constants (when setting motor constants in units of $\Omega, \mathrm{mH}$, or A )

- Set Pr. 71 as follows.

Motor	Pr.71 setting
IPM motor	8090
SPM motor	9090

- Set desired values as the motor constant parameters.

First motor Pr.	Second motor Pr.	Name	Setting range	Setting increments	Initial value
90	458	Motor constant (R1)	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	9999
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/d-axis inductance (Ld)	0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
			0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*}{ }^{\text {2 }}$	
93	461	Motor constant (L2)/q-axis inductance (Lq)	0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
			0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*}{ }^{\text {d }}$	
706	738	Induced voltage constant (phif)	0 to 5000 mV (rad/s), 9999	0.1 mV ( $\mathrm{rad} / \mathrm{s}$ )	
859	860	Torque current/Rated PM motor current	0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	
			0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
1412	1413	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	

*1 For the FR-A860-01080 or lower
*2 For the FR-A860-01440 or higher.

## NOTE

- If "9999" is set, tuning data will be invalid and the inverter internal constant is used.
- To change a motor induced voltage constant of PM motors, the setting in Pr. 706 Induced voltage constant (phi f) or Pr. 738 Second motor induced voltage constant (phif) must be changed. If the constant after the change exceeds the setting range of Pr. 706 or Pr. 738 ( 0 to 5000 mV (rad/s)), set Pr. 1412 Motor induced voltage constant (phi f) exponent or Pr. 1413 Second motor induced voltage constant (phif) exponent. Set a value in the exponent n in the formula, $\operatorname{Pr} .706$ (Pr.738) $\times 10^{\mathrm{n}}[\mathrm{mV}(\mathrm{rad} / \mathrm{s})]$, to set the induced voltage constant (phif).
- When Pr. 71 (Pr.450) = "8093, 8094, 9093, or 9094", or Pr. 1412 (Pr.1413) = "9999", the motor induced voltage constant is as set in Pr. 706 (Pr.738). (No exponent setting)


## - Changing the motor constants (when setting a motor constants in the internal data of the inverter)

- Set Pr. 71 as follows.

Motor	Pr.71 setting
IPM motor	$8093(8094)$
SPM motor	$9093(9094)$

- Set desired values as the motor constant parameters. The displayed increments of the read motor constants can be changed with Pr. 684 Tuning data unit switchover. Setting Pr. $684=$ "1" disables parameter setting changes.

$\begin{gathered} \text { First } \\ \text { motor Pr. } \end{gathered}$	Second motor Pr.	Name	Pr. 684 = 0 (initial value)		Pr. 684 = 1		Initial value
			Setting range	Setting increments	Setting range	Setting increments	
90	458	Motor constant (R1)	0 to ***, 9999	1	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	9999
					0 to $400 \mathrm{~m} \Omega, 9999^{*}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/ d-axis inductance (Ld)			0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
					0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*}{ }^{\text {2 }}$	
93	461	Motor constant (L2)/ q-axis inductance (Lq)			0 to $500 \mathrm{mH}, 9999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
					0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*} 2$	
706	738	Induced voltage constant (phi f)			$\begin{aligned} & 0 \text { to } 5000 \mathrm{mV}(\mathrm{rad} / \mathrm{s}), \\ & 9999 \end{aligned}$	0.1 mV ( $\mathrm{rad} / \mathrm{s}$ )	
859	860	Torque current/Rated PM motor current			0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	
					0 to 3600 A, $9999{ }^{*}{ }^{2}$	$0.1 \mathrm{~A}^{*}{ }^{\text {a }}$	
1412	1413	Motor induced voltage constant (phi   f) exponent			0 to 2, 9999	1	

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## NOTE

- As the motor constants measured in the offline auto tuning have been converted into internal data ( ${ }^{* * * *)}$, refer to the following setting example when making setting. (The value displayed has been converted into a value for internal use. Therefore, simple addition of a value to the displayed value does not bring the desired effect.)
Setting example: to slightly increase the Pr. 90 value (5\%)
When " 2516 " is displayed for Pr.90, set $2642(2516 \times 1.05=2641.8)$ in Pr.90.
- If "9999" is set, tuning data will be invalid. The inverter internal constant is used for a PM motor.
- To change a motor induced voltage constant of PM motors, the setting in Pr. 706 Induced voltage constant (phi f) or Pr. 738 Second motor induced voltage constant (phif) must be changed. If the constant after the change exceeds the setting range of Pr. 706 or $\operatorname{Pr} .738$ ( 0 to 5000 mV (rad/s)), set Pr. 1412 Motor induced voltage constant (phi f) exponent or Pr. 1413 Second motor induced voltage constant (phif) exponent. Set a value in the exponent n in the formula,

Pr. 706 (Pr.738) $\times 10^{\mathrm{n}}[\mathrm{mV}(\mathrm{rad} / \mathrm{s})]$, to set the induced voltage constant (phi f).

- When Pr. 71 (Pr.450) = "8093, 8094, 9093, or 9094", or Pr. 1412 (Pr.1413) = "9999", the motor induced voltage constant is as set in Pr. 706 (Pr.738). (No exponent setting)


## - Encoder position tuning

Encoder position tuning is required when a PM motor with an encoder is driven. The measured offset value between the motor home magnetic pole position and the encoder home position is stored. Only encoder position tuning can be performed when offline auto tuning is not required, such as when the parameters for motor constant are set manually, or when offline auto tuning is already performed.

## - Before performing encoder position tuning

- Check that an option for vector control for PM motor, a motor, and an encoder are properly connected.
- Check that a motor (single, stop status) is connected. (Check that the motor is not rotated by an external force during tuning.)
- The mechanical brake is released.
- Check that the vector control (speed control) for the PM motor with an encoder is selected. (Refer to page 166.)


## NOTE

- Encoder position tuning is required when a PM motor is used. (It is disabled when an induction motor is used.)
- When auto tuning is performed while Pr. $96=$ " 101 ", offline auto tuning and encoder position tuning can be performed at the same time.


## - Setting

- To perform tuning, set Pr. 373 (Pr.871) ="1".


## - Performing tuning

## Point ${ }^{\rho}$

- Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable.
- In the PU operation mode, press FWD/REV on the operation panel. In the external operation mode, turn ON the start command (STF signal or STR signal). Tuning starts.


## NOTE

- The motor shaft rotates up to 2 times during tuning.
- During tuning, the monitor is displayed on the operation panel as follows.

Status	Parameter unit display	Operation panel display
(1) Setting	TUNE READ ${ }^{\text {List }}$       --- STOP PU	
(2) During tuning	IIIIII    TUNE    STF 2   SWD PU	
(3) Normal completion	IIIIIIIIIIIIIIIIIIIII   TUNE   COMPLETION   STF STOP PU	

- When encoder position tuning ends, press $\frac{\text { STIO }}{\text { RESE }}$ on the PU in the PU operation mode. For External operation, turn OFF the start signal (STF signal or STR signal). This operation resets encoder position tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The encoder position tuning data is stored in Pr. 1105 (Pr.887) until encoder position tuning is performed again. However, performing All parameter clear resets the tuning data.
－If encoder position tuning has ended in error（see the following table），motor constants are not set．Perform an inverter reset and perform tuning again．

Pr．373（Pr．871）   setting	Error cause	Countermeasures
8	Forced end	Set＂1＂in Pr．373（Pr．871）and retry．
9	Inverter protective function operation	Identify and remove the cause of the protective function   activation，and make the setting again．
93	The motor or the encoder is not connected．	Check the wiring of the motor and the encoder，the brake   opening，and make the setting again．

－When tuning is ended forcibly by pressing $\frac{\text { STIOP }}{\mathrm{RESETE}}$ or turning OFF the start signal（STF or STR）during tuning，the tuning does not end properly．（The tuning data have not been set．）Perform an inverter reset and perform tuning again．
－When the protective function（E．EP）is activated during tuning，check the wiring of the motor and the encoder，Pr． 359 （Pr．852）setting，and then perform tuning again．
－When tuning ends properly，the counter value of the offset between the motor home magnetic pole position and the encoder home position is written in Pr． 1105 （Pr．887）．

## 《Parameters referred to 》》

Pr． 9 Electronic thermal O／L relay page 377
Pr． 71 Applied motor page 506
Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 498
Pr． 800 Control method selection page 166

### 5.13.4 Offline auto tuning for a PM motor (motor constants tuning)

PM
The offline auto tuning for an PM motor enables the optimal operation of a PM motor.

- What is offline auto tuning?

Automatic setting of motor constants necessary for operation under PM sensorless vector control (offline auto tuning) enables optimal operation of PM motors.
For the offline auto tuning under Advanced magnetic flux vector control, Real sensorless vector control, and vector control, refer to page 508.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 684 \\ & \text { C000 } \end{aligned}$	Tuning data unit switchover	0	0	Internal data converted value
			1	The value is indicated with "A, $\Omega, \mathrm{mH}$ or mV".
$\begin{aligned} & 1002 \\ & \text { C150 } \end{aligned}$	Lq tuning target current adjustment coefficient	9999	50 to 150\%	Perform adjustment if the overcurrent protective function is activated during tuning.
			9999	No adjustment
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	0 to 6,13 to $16,30,33,34,8090$, 8093, 8094, 9090, 9093, 9094	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{aligned} & 80 \\ & \mathrm{C} 101 \end{aligned}$	Motor capacity	9999	0.4 to $55 \mathrm{~kW}^{*} 2$	Applied motor capacity setting.
			0 to $3600 \mathrm{~kW}^{*} 3$	
			9999	V/F control
$\begin{aligned} & 81 \\ & \text { C102 } \end{aligned}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & 9 \\ & \mathrm{C} 103 \end{aligned}$	Electronic thermal O/L relay	Inverter rated current ${ }^{* 1}$	0 to $500 \mathrm{~A}^{*}$	Set the rated motor current.
			0 to $3600 \mathrm{~A}^{* 3}$	
$\begin{aligned} & 83 \\ & \text { C104 } \end{aligned}$	Rated motor voltage	575 V	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \mathrm{C} 105 \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency ( Hz ).
			9999	The inverter internal data is used. Use the correct setting according to the motor specification.
$\begin{aligned} & 702 \\ & \text { C106 } \end{aligned}$	Maximum motor frequency	9999	0 to 400 Hz	Set the maximum frequency of the motor.
			9999	Pr. 84 setting is used.
$\begin{aligned} & 707 \\ & \text { C107 } \end{aligned}$	Motor inertia (integer)	9999	10 to 999, 9999	Set the motor inertia. 9999: The inverter internal data is used.
$\begin{aligned} & 724 \\ & \text { C108 } \end{aligned}$	Motor inertia (exponent)	9999	0 to 7, 9999	
$\begin{aligned} & 96 \\ & \text { C110 } \end{aligned}$	Auto tuning setting/status	0	0, 11, 101	No offline auto tuning.
			1	Performs offline auto tuning without rotating the motor.
$\begin{aligned} & 90 \\ & \mathrm{C} 120 \end{aligned}$	Motor constant (R1)	9999	0 to $50 \Omega, 9999{ }^{*}{ }^{*} 4$	Tuning data (The value measured by offline auto tuning is automatically set.) 9999: The inverter internal data is used.
			0 to $400 \mathrm{~m} \Omega, 9999 * 3 * 4$	
$\begin{aligned} & 92 \\ & \mathrm{C} 122 \end{aligned}$	Motor constant (L1)/d-axis inductance (Ld)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
			0 to $50 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
$\begin{aligned} & 93 \\ & \mathrm{C} 123 \end{aligned}$	Motor constant (L2)/q-axis inductance (Lq)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
			0 to $50 \mathrm{mH}, 9999^{* 3 * 4}$	
$\begin{aligned} & 859 \\ & \text { C126 } \end{aligned}$	Torque current/Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999 *{ }^{*} 4$	
			0 to $3600 \mathrm{~A}, 9999 * 3{ }^{*}$	
$\begin{aligned} & 706 \\ & \text { C130 } \end{aligned}$	Induced voltage constant (phif)	9999	0 to $5000 \mathrm{mV} /(\mathrm{rad} / \mathrm{s})^{*} 4$	Set this parameter according to the PM motor specifications.
			9999	The value calculated by the motor constant parameter setting is used.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1412 \\ & \text { C135 } \end{aligned}$	Motor induced voltage constant (phi f) exponent	9999	0 to 2	Set the exponent n when the induced voltage constant phi $\mathrm{f}(\mathrm{Pr} .706)$ is multiplied by $10^{\mathrm{n}}$.
			9999	No exponent setting
$\begin{aligned} & 711 \\ & \text { C131 } \end{aligned}$	Motor Ld decay ratio	9999	0 to 100\%, 9999	Tuning data (The value measured by offline auto tuning is automatically set.) 9999: The inverter internal data is used.
$\begin{aligned} & 712 \\ & \text { C132 } \end{aligned}$	Motor Lq decay ratio	9999	0 to 100\%, 9999	
$\begin{aligned} & 717 \\ & \text { C182 } \end{aligned}$	Starting resistance tuning compensation	9999	0 to 200\%, 9999	
$\begin{aligned} & 721 \\ & \text { C185 } \end{aligned}$	Starting magnetic pole position detection pulse width	9999	0 to $6000 \mu \mathrm{~s}, 10000$ to $16000 \mu \mathrm{~s}$, 9999	
$\begin{aligned} & 725 \\ & \text { C133 } \end{aligned}$	Motor protection current level	9999	100 to 500\%	Set the maximum current (OCT) level of the motor.
			9999	Maximum current level of the motor: 200\%
$\begin{aligned} & 450 \\ & \mathrm{C} 200 \end{aligned}$	Second applied motor	9999	$\begin{aligned} & 0,1,3 \text { to } 6,13 \text { to } 16,30,33,34 \text {, } \\ & 8090,8093,8094,9090,9093 \text {, } \\ & 9094 \end{aligned}$	Set this parameter when using the second motor. (the same specifications as Pr.71).
			9999	The function is disabled.
$\begin{aligned} & 453 \\ & \text { C201 } \end{aligned}$	Second motor capacity	9999	0.4 to $55 \mathrm{~kW}^{*} 2$	Set the capacity of the second motor.
			0 to $3600 \mathrm{~kW}^{*} 3$	
			9999	V/F control
$\begin{aligned} & 454 \\ & \mathrm{C} 202 \end{aligned}$	Number of second motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of poles of the second motor.
			9999	V/F control
$\begin{aligned} & 51 \\ & \text { C203 } \end{aligned}$	Second electronic thermal O/L relay	9999	0 to $500 \mathrm{~A}^{* 2}$	Set the rated current of the second motor.
			0 to $3600 \mathrm{~A}^{*}$	
			9999	Second electronic thermal O/L relay disabled.
$\begin{aligned} & 456 \\ & \mathrm{C} 204 \end{aligned}$	Rated second motor voltage	575 V	0 to 1000 V	Set the rated voltage $(\mathrm{V})$ of the second motor.
$\begin{aligned} & 457 \\ & \mathrm{C} 205 \end{aligned}$	Rated second motor frequency	9999	10 to 400 Hz	Set the rated frequency $(\mathrm{Hz})$ of the second motor.
			9999	The inverter internal data is used. Use the correct setting according to the motor specification.
$\begin{aligned} & 743 \\ & \text { C206 } \end{aligned}$	Second motor maximum frequency	9999	0 to 400 Hz	Set the maximum frequency of the second motor.
			9999	The setting value of Pr. 457 is used.
$\begin{aligned} & 744 \\ & \text { C207 } \end{aligned}$	Second motor inertia (integer)	9999	10 to 999, 9999	Set the inertia of the second motor. 9999: The inverter internal data is used.
$\begin{aligned} & 745 \\ & \text { C208 } \end{aligned}$	Second motor inertia (exponent)	9999	0 to 7, 9999	
$\begin{aligned} & 463 \\ & \mathrm{C} 210 \end{aligned}$	Second motor auto tuning setting/status	0	0, 11, 101	No auto tuning for the second motor.
			1	Performs offline auto tuning without rotating the second motor.
$\begin{aligned} & 458 \\ & \mathrm{C} 220 \end{aligned}$	Second motor constant (R1)	9999	0 to $50 \Omega, 9999 * 2^{*} 4$	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.) 9999: The inverter internal data is used.
			0 to $400 \mathrm{~m} \Omega, 9999{ }^{*}{ }^{*} 4$	
$\begin{aligned} & 460 \\ & \mathrm{C} 222 \end{aligned}$	Second motor constant (L1) / daxis inductance (Ld)	9999	0 to $500 \mathrm{mH}, 9999{ }^{*}{ }^{*} 4$	
			0 to $50 \mathrm{mH}, 9999{ }^{*} 3^{*} 4$	
$\begin{aligned} & 461 \\ & \mathrm{C} 223 \end{aligned}$	Second motor constant (L2) / qaxis inductance (Lq)	9999	0 to $500 \mathrm{mH}, 9999^{* 2 * 4}$	
			0 to $50 \mathrm{mH}, 9999{ }^{* 3 * 4}$	
$\begin{aligned} & 860 \\ & \text { C226 } \end{aligned}$	Second motor torque current/ Rated PM motor current	9999	0 to $500 \mathrm{~A}, 9999{ }^{*}{ }^{* 4}$	
			0 to 3600 A, 9999*3*4	
$\begin{aligned} & 738 \\ & \text { C230 } \end{aligned}$	Second motor induced voltage constant (phif)	9999	0 to $5000 \mathrm{mV} /(\mathrm{rad} / \mathrm{s})^{*} 4$	Set this parameter according to the PM motor specifications.
			9999	The value calculated by the motor constant parameter setting is used.


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1413 \\ & \mathrm{C} 235 \end{aligned}$	Second motor induced voltage constant (phi f) exponent	9999	0 to 2	Set the exponent n when the induced voltage constant phif $(\operatorname{Pr} .738)$ is multiplied by $10^{n}$.
			9999	No exponent setting
$\begin{aligned} & 739 \\ & \mathrm{C} 231 \end{aligned}$	Second motor Ld decay ratio	9999	0 to 100\%, 9999	Tuning data of the second motor. (The value measured by offline auto tuning is automatically set.) 9999: The inverter internal data is used.
$\begin{aligned} & 740 \\ & \mathrm{C} 232 \end{aligned}$	Second motor Lq decay ratio	9999	0 to 100\%, 9999	
$\begin{aligned} & 741 \\ & \text { C282 } \end{aligned}$	Second starting resistance tuning compensation	9999	0 to 200\%, 9999	
$\begin{aligned} & 742 \\ & \text { C285 } \end{aligned}$	Second motor magnetic pole detection pulse width	9999	$\begin{aligned} & 0 \text { to } 6000 \mu \mathrm{~s}, 10000 \text { to } 16000 \mu \mathrm{~s}, \\ & 9999 \end{aligned}$	
$\begin{aligned} & 746 \\ & \text { C233 } \end{aligned}$	Second motor protection current level	9999	100 to 500\%	Set the maximum current (OCT) level of the second motor.
			9999	Maximum current level of the motor: 200\%

*1 For FR-A860-00027, it is set to $85 \%$ of the inverter rated current.
*2 For the FR-A860-01080 or lower.
*3 For the FR-A860-01440 or higher.
*4 The setting range and unit change according to the Pr. 71 (Pr.450) setting.

## Point 8

- The settings are valid under the PM sensorless vector control.
- The offline auto tuning enables the operation with SPM motors and IPM motors. (When a PM motor is used, always perform the offline auto tuning.)
- Tuning is enabled even when a load is connected to the motor.
- Reading/writing of the motor constants tuned by offline auto tuning are enabled. The offline auto tuning data (motor constants) can be copied to another inverter with the operation panel.
- The offline auto tuning status can be monitored with the operation panel and the parameter unit.


## - Before performing offline auto tuning

Check the following points before performing offline auto tuning.

- The PM sensorless vector control is selected.
- A motor is connected. Note that the motor should be at a stop at a tuning start. (The motor should not be rotated by the force applied from outside during the tuning.)
- For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- The maximum frequency under PM sensorless vector control is 400 Hz .
- The motor may rotate slightly even if the offline auto tuning without motor rotation (Pr. 96 Auto tuning setting/status = "1") is selected. (It does not affect the tuning performance.) Fix the motor securely with a mechanical brake, or before tuning, make sure that it is safe even if the motor rotates. (Caution is required especially in vertical lift applications.)
- Tuning may be disabled depending on the motor characteristics.


## - Setting

- To perform tuning, set the following parameters about the motor.

First motor   Pr.	Second   motor Pr.	Name	Setting
80	453	Motor capacity	Motor capacity (kW)
81	454	Number of motor poles	The number of motor poles (2 to 12)
9	51	Electronic thermal O/L relay	Rated motor current (A)
84	457	Rated motor frequency	Rated motor frequency (Hz)
83	456	Rated motor voltage	Rated motor voltage (V)
71	450	Applied motor	8090,8093 (IPM motor)   9090,9093 (SPM motor) ${ }^{* 1}$
96	463	Auto tuning setting/status	1

*1 Set Pr. 71 Applied motor according to the motor to be used. According to the Pr. 71 setting, the range of the motor constant parameter setting values and units can be changed. (For other setting values of Pr.71, refer to page 506.)

Motor	Pr.71 setting	
	Motor constant parameter $\mathbf{\Omega}$,   $\mathbf{m H}$ and A unit setting	Motor constant parameter   Internal data setting
IPM motor	8090	$8093(8094)$
SPM motor	9090	$9093(9094)$

## NOTE

- If PM sensorless vector control is performed, tuning cannot be performed even when Pr. $96=" 11,101$ " is set.
- For the tuning accuracy improvement, set the following parameter when the motor constant is known in advance.

First motor   Pr.	Second   motor Pr.	Name	Setting
702	743	Maximum motor frequency	The maximum motor frequency (Hz)
707	744	Motor inertia (integer)	Motor inertia ${ }^{* 1}$   724
745	Motor inertia (exponent)	Jm=Pr.707 $\times 10^{\wedge}\left(-\right.$ Pr.724) (kg/m $\left.{ }^{2}\right)$	
725	746	Motor protection current level	Maximum current level of the motor (\%)

*1 The setting is valid only when both of the Pr. 707 (Pr. 744 ) and Pr. 724 (Pr. 745 ) settings are other than " 9999 ".

## - Performing tuning

## Point 9

- Before performing tuning, check the monitor display of the operation panel or the parameter unit if the inverter is in the state ready for tuning. Turning ON the start command while tuning is unavailable starts the motor.
- In the PU operation mode, press FWD/REV on the operation panel. For External operation, turn ON the start command (STF signal or STR signal). Tuning will start.


## NOTE

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of MRS signal.
- To force tuning to end, use the MRS or RES signal or press $\frac{\text { STOP }}{\text { STSGT }}$ on the operation panel. (Turning the start signal (STF signal or STR signal) OFF also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid (initial value)

Input terminals <effective signals>: STP (STOP), OH, MRS, RT, RES, STF, and STR
Output terminals: RUN, OL, IPF, FM, AM, and A1B1C1

- When the rotation speed and the output frequency are selected for terminals FM and AM, the progress status of offline auto tuning is output in fifteen steps from FM and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- A motor with 14 or more poles cannot be tuned.
- Since the Inverter running (RUN) signal turns ON when tuning is started, pay close attention especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the run command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = "7", turn the PU operation external interlock (X12) signal ON to tune in the PU operation mode.
- Monitor is displayed on the operation panel and parameter unit during tuning as below.

Pr. 96 (Pr.463) Setting	1	1
	Parameter unit display	Operation panel display
(1) Setting		
(2) During tuning	IIIIII    TUNE    S    STF FWD	
(3) Normal completion	IIIIIIIIIIIIIIIIIIIII   TUNE   COMPLETION   STF   STE STOP PU	

- When offline auto tuning ends, press
on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal). This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The motor constants measured once in the offline auto tuning are stored as parameters and their data are held until the offline auto tuning is performed again. However, the tuning data is cleared by performing all parameter clear.
- Changing Pr. 71 after tuning completion will change the motor constant. For example, if Pr. $71=$ " 8093 " is set after tuning is performed with Pr. 71 ="8090", the tuning data becomes invalid. Set Pr. $71=$ " 8090 " again for using the tuning data.
- If offline auto tuning has ended in error (see the table below), motor constants are not set. Perform an inverter reset and restart tuning.

Error display	Error cause	Countermeasures
8	Forced end	Set Pr. 96 (Pr.463) $=$ "1" and try again.
9	Inverter protective function operation	Make the setting again.
92	The converter output voltage has dropped to   $75 \%$ of the rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr. 83 Rated motor voltage setting.
93	Calculation error.   The motor is not connected.	Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error   (The frequency command for the tuning was   given to exceed the maximum frequency setting,   or to be in the frequency jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to   Prequency jump settings.

- When tuning is ended forcibly by pressing $\begin{aligned} & \text { STOP } \\ & \mathbb{R E S E T I}\end{aligned}$ or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.) Perform an inverter reset and restart tuning.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when STF (STR) signal is ON, the motor runs in the forward (reverse) rotation.
- Any alarm occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed even when a protective function that performs a retry is activated.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## $\triangle$ CAUTION

- Note that the motor may start running suddenly.


## - Parameters in which the tuning results are set to after tuning

First   motor Pr.	Second   motor Pr.	Name	Description
90	458	Motor constant (R1)	Resistance per phase
92	460	Motor constant (L1)/d-axis inductance (Ld)	d-axis inductance
93	461	Motor constant (L2)/q-axis inductance (Lq)	q-axis inductance
711	739	Motor Ld decay ratio	d-axis inductance decay ratio
712	740	Motor Lq decay ratio	q-axis inductance decay ratio
717	741	Starting resistance tuning compensation	
721	742	Starting magnetic pole position detection   pulse width	When the setting value is 10000 or more:   With polarity inversion for compensation,   voltage pulse (Pr. setting minus 10000) $\mu \mathrm{s}$
859	860	Torque current/Rated PM motor current	
96	463	Auto tuning setting/status	

## - Tuning adjustment (Pr.1002)

- The overcurrent protective function may be activated during Lq tuning for an easily magnetically saturated motor (motor with a large Lg decay ratio). In such case, adjust the target flowing current used for tuning with Pr. 1002 Lq tuning target current adjustment coefficient.


## Changing the motor constants

- If the motor constants are known, the motor constants can be set directly or set using data measured through offline auto tuning.
- According to the Pr. 71 (Pr.450) setting, the range of the motor constant parameter setting values and units can be changed. The setting values are stored in the EEPROM as motor constant parameters, and two types of motor constants can be stored.


## - Changing the motor constants (If setting motor constants in units of [ $\Omega$ ], [mH] or [A])

- Set Pr. 71 as shown below.

Motor	Pr. 71 setting
IPM motor	8090
SPM motor	9090

- Set given values as the motor constant parameters.

First Pr.	Second Pr.	Name	Setting range	Setting increments	Initial value
90	458	Motor constant (R1)	0 to $50 \Omega, 9999{ }^{* 1}$	$0.001 \Omega^{* 1}$	9999
			0 to $400 \mathrm{~m} \Omega, 9999{ }^{*}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/d-axis inductance (Ld)	0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
			0 to $50 \mathrm{mH}, 9999{ }^{*}$	$0.001 \mathrm{mH}^{*} 2$	
93	461	Motor constant (L2)/q-axis inductance (Lq)	0 to $500 \mathrm{mH}, 999{ }^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
			0 to $50 \mathrm{mH}, 9999{ }^{*}$	$0.001 \mathrm{mH}^{*} 2$	
706	738	Induced voltage constant (phi f)	0 to $5000 \mathrm{mV} /(\mathrm{rad} / \mathrm{s}), 9999$	$0.1 \mathrm{mV} /(\mathrm{rad} / \mathrm{s})$	
859	860	Torque current/Rated PM motor current	0 to 500 A, 9999*1	$0.01 \mathrm{~A}^{* 1}$	
			0 to 3600 A, $9999{ }^{*}$	$0.1 \mathrm{~A}^{*}{ }^{\text {a }}$	
1412	1413	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## NOTE

- Setting "9999" disables the tuning data. The inverter internal constant is used.
- To change a motor induced voltage constant of PM motors, the setting in Pr. 706 Induced voltage constant (phif) or Pr. 738 Second motor induced voltage constant (phif) must be changed. If the constant after the change exceeds the setting range of Pr. 706 or Pr. 738 ( 0 to 5000 mV ( $\mathrm{rad} / \mathrm{s}$ )), set Pr. 1412 Motor induced voltage constant (phif) exponent or Pr. 1413 Second motor induced voltage constant ( $\mathbf{p h i} \mathbf{f}$ ) exponent. Set a value in the exponent n in the formula, $\operatorname{Pr} .706$ (Pr.738) $\times 10^{\mathrm{n}}[\mathrm{mV}(\mathrm{rad} / \mathrm{s})]$, to set the induced voltage constant (phif).
- When Pr. 71 (Pr.450) = "8093, 8094, 9093, or 9094", or Pr. 1412 (Pr.1413) = "9999", the motor induced voltage constant is as set in Pr. 706 (Pr.738). (No exponent setting)


## - Changing the motor constants (If setting a motor constants in the internal data of the inverter)

- Set Pr. 71 as follows.

Motor	Pr.71 setting
IPM motor	$8093(8094)$
SPM motor	$9093(9094)$

- Set given values as the motor constant parameters. The displayed increments of the read motor constants can be changed with Pr. 684 Tuning data unit switchover.

First motor Pr.	Second motor Pr.	Name	Pr. 684 = 0 (initial value)		Pr. 684 = 1		Initial value
			Setting range	Setting increments	Setting range	Setting increments	
90	458	Motor constant (R1)	0 to ***, 9999	1	0 to $50 \Omega$, 9999*1	$0.001 \Omega^{* 1}$	9999
					0 to $400 \mathrm{~m} \Omega, 9999{ }^{* 2}$	$0.01 \mathrm{~m} \Omega^{* 2}$	
92	460	Motor constant (L1)/daxis inductance (Ld)			0 to $500 \mathrm{mH}, 9999^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
					0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*} 2$	
93	461	Motor constant (L2)/qaxis inductance (Lq)			0 to $500 \mathrm{mH}, 9999^{* 1}$	$0.01 \mathrm{mH}^{* 1}$	
					0 to $50 \mathrm{mH}, 9999 * 2$	$0.001 \mathrm{mH}^{*} 2$	
706	738	Induced voltage constant (phi f)			0 to $5000 \mathrm{mV} / \mathrm{s} / \mathrm{rad}$, 9999	$0.1 \mathrm{mV} /(\mathrm{rad} / \mathrm{s})$	
859	860	Torque current/Rated PM motor current			0 to $500 \mathrm{~A}, 9999{ }^{* 1}$	$0.01 \mathrm{~A}^{* 1}$	
					0 to 3600 A, 9999*2	$0.1 \mathrm{~A}^{*}$	
1412	1413	Motor induced voltage constant (phi f) exponent			0 to 2, 9999	1	

*1 For the FR-A860-01080 or lower.
*2 For the FR-A860-01440 or higher.

## NOTE

- As the motor constants measured in the offline auto tuning have been converted into internal data ( ${ }^{* * * *) \text {, refer to the }}$ following setting example when making setting:
- Setting example: To slightly increase Pr. 90 value (5\%)

If Pr. $90=$ " 2516 " is displayed
The value can be calculated with " $2516 \times 1.05=2641.8$ ". Therefore set Pr. $90=$ "2642".
(The value displayed has been converted into a value for internal use. Hence, simple addition of a given value to the displayed value has no significance)

- Setting "9999" disables the tuning data. The inverter internal constant is used.
- To change a motor induced voltage constant of PM motors, the setting in Pr. 706 Induced voltage constant (phif) or Pr. 738 Second motor induced voltage constant (phif) must be changed. If the constant after the change exceeds the setting range of Pr. 706 or Pr. 738 ( 0 to 5000 mV (rad/s)), set Pr. 1412 Motor induced voltage constant (phif) exponent or Pr. 1413 Second motor induced voltage constant (phif) exponent. Set a value in the exponent n in the formula, Pr. 706 (Pr. 738 ) $\times 10^{\mathrm{n}}[\mathrm{mV}(\mathrm{rad} / \mathrm{s})]$, to set the induced voltage constant (phi f).
- When Pr. 71 (Pr.450) = "8093, 8094, 9093, or 9094", or Pr. 1412 (Pr.1413) = "9999", the motor induced voltage constant is as set in Pr. 706 (Pr.738). (No exponent setting)


## 《|Parameters referred to \》

Pr. 9 Electronic thermal O/L relay page 377
Pr. 71 Applied motor page 506
Pr. 178 to Pr. 189 (Input terminal function selection)
Pr. 800 Control method selection page 166

### 5.13.5 Online auto tuning

## Magneticfilux Sensorless Vector

If online auto tuning is selected under Advanced magnetic flux vector control, Real sensorless vector control or vector control, favorable torque accuracy is retained by adjusting temperature even when the resistance value varies due to increase in the motor temperature.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{9 5}$   C111	Online auto tuning selection	0	0	Do not perform online auto tuning
		1	2	Perform online auto tuning at startup
		0	0	Magnetic flux observer (tuning always)
$\mathbf{5 7 4}$				
C211	Second motor online auto   (tuning		Select online auto tuning for the second motor.   (same as Pr.95)	

## - Performing online auto tuning at startup (setting value "1")

- By promptly tuning the motor status at startup, accurate operation without being affected by motor temperature is achieved. Also high torque can be provided at very low speed and stable operation is possible.
- When using Advanced magnetic flux vector control (Pr. 80 Motor capacity, Pr. 81 Number of motor poles or Real sensorless vector control (Pr.80, Pr.81, Pr. 800 Control method selection), select the online auto tuning at start.
- Make sure to perform offline auto tuning before performing online auto tuning.


## Operating procedure

1. Perform offline auto tuning. (Refer to page 508.)
2. Check that Pr. 96 Auto tuning setting/status $=$ " 3 or 103 (offline auto tuning completion)".
3. Set Pr. 95 Online auto tuning selection $=$ " 1 (online auto tuning at start)".
4. Check that the following parameters are set before starting operation.

Pr.	Description
9	Uses both rated motor current and electronic thermal O/L relay.
71	Applicable motor
80	Motor capacity (with the rated motor current equal to or lower than the inverter   rated current)
81	Number of motor poles

*1 If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
5. In the PU operation mode, press Ewo / REV on the operation panel. For External operation, turn ON the start command (STF signal or STR signal).

- When performing the online auto tuning at start for a lift, consider utilization of a brake sequence function for the brake opening timing at a start or tuning using the external terminal. The tuning is completed in approximately 500 ms at the maximum after the start. Not enough torque may be provided during that period. Caution is required to prevent the object from dropping. Use of the start-time tuning start (X28) signal is recommended to perform tuning. (Refer to page 538.)
- Perform online auto tuning at startup when the motor is stopped.
- The online auto tuning is disabled when the MRS signal is being input, the setting speed is Pr. 13 Starting frequency or lower (V/F control, Advanced magnetic flux vector control), an inverter fault is occurring, or the inverter's startup condition is not satisfied.
- Online auto tuning does not operate during deceleration and restart from DC injection brake operation.
- It is disabled during JOG operation.
- If automatic restart after instantaneous power failure is selected, automatic restart is prioritized. (Online auto tuning at startup does not run during frequency search.) If automatic restart after instantaneous power failure is used together, perform online auto tuning while stopping operation with the X28 signal. (Refer to page 538.)
- Zero current detection and output current detection are enabled during online auto tuning.
- No RUN signal is output during online auto tuning. The RUN signal is turned ON at operation startup.
- If the time between the inverter stop and restart is within 4 s , tuning is performed at startup but its result will not be applied.


## - Online auto tuning at startup using the external terminal (setting value "1", X28 signal and Y39 signal)

- Before turning ON the start signal (STF or STR), online auto tuning can be performed by turning ON the Start-time tuning start external input (X28) signal in a stopped status. Such operation will minimize the startup delay by turning at start.
- Perform offline auto tuning and set Pr. $95=$ "1" (tuning at start).
- When Start time tuning completion (Y39) is OFF, tuning at start can be performed with X28 signal.
- Up to 500 ms can be taken to complete tuning at startup.
- To use the X28 signal, set "28" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.
- To use the Y39 signal, set "39 (positive logic) or 139 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign function to an output terminal.






## NOTE

- Even if the start signal is turned ON during zero speed control or servo lock, tuning is performed at startup.
- The Y39 signal remains ON as long as there is second flux even after the motor is stopped.
- The X28 signal is disabled while the Y39 signal is ON.
- The STF and STR signals are enabled after completing tuning at start.
- The Inverter running (RUN) signal is not turned ON during online auto tuning. The RUN signal is turned ON after starting up.
- It is disabled during V/F control or PM sensorless vector control.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection) may affect other functions. Set parameters after confirming the function of each terminal.


## - Magnetic flux observer (tuning always) (setting value "2")

- If vector control is performed using a motor with an encoder, this setting improves torque accuracy. Estimate or measure the flux within the motor using the current running through the motor and the inverter output voltage. Because the flux of a motor can always be accurately estimated (even during operation), fine characteristics can always be attained without being affected by temperature change in the second resistance.
- When vector control (Pr.80, Pr. 81 or Pr.800) is used, select the magnetic flux observer. (Refer to page 166.)
- Make sure to perform offline auto tuning before performing online auto tuning.


## - Tuning the second applied motor (Pr.574)

- When switching two different motors by one inverter, set the second motor in Pr. 450 Second applied motor. (In the initial setting, no second motor is applied. (Refer to page 506.))
- Pr. 574 is enabled when the Second function selection (RT) signal is turned ON.

Pr.	Description
450	Applicable motor
453	Motor capacity (with the rated motor current equal to or lower than the inverter rated current) ${ }^{* 1}$
454	Number of motor poles

*1 If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.

## NOTE

- The RT signal is a second function selection signal. The RT signal also enables other second functions. (Refer to page 498.) The RT signal is assigned to the terminal RT in the initial status. Set " 3 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
Parameters referred to \>
Pr. }9\mathrm{ Electronic thermal O/L relay page 377
Pr. }71\mathrm{ Applied motor page 506
Pr. }80\mathrm{ Motor capacity W page 166, page 508, page }52
Pr. }81\mathrm{ Number of motor poles 凸 page 166, page 508, page }52
Pr. }96\mathrm{ Auto tuning setting/status page 508, page 529
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) W page 498
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) $ page 446
Pr. }800\mathrm{ Control method selection page 166
```


### 5.13.6 Signal loss detection of encoder signals

## V/F Magneticflix Vector

If encoder signals are disconnected during encoder feedback control, orientation control or vector control, Signal loss detection (E.ECT) is turned ON to shut off the inverter output.

Signal loss detection (E.ECA) is activated to shut off the inverter output when the machine end encoder signal is lost during machine end orientation control.

Pr.		Name	Initial value	Setting range	Description
$\mathbf{3 7 6}$	$\mathbf{8 5 5}$	Encoder signal loss detection	0	0	Signal loss detection disabled
C148 ${ }^{* 1}$	C248 $^{* 2}$	enable/disable selection		1	Signal loss detection enabled

[^23]5.14 (A) Application parameters

Purpose	Parameter to set			
To operate by switching between the inverter and the commercial power supply operation	Electronic bypass function	P.A000 to P.A005	$\begin{aligned} & \text { Pr. } 135 \text { to Pr. } 139 \text {, } \\ & \text { Pr. } 159 \end{aligned}$	542
To reduce the standby power	Self power management	$\begin{aligned} & \text { P.A002, P.A006, } \\ & \text { P.A007, P.E300 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 30, \text { Pr. } 137, \text { Pr. } 248 \text {, } \\ & \text { Pr. } 254 \end{aligned}$	550
To stop the motor with a mechanical brake (operation timing of mechanical brake)	Brake sequence function	$\begin{aligned} & \text { P.A100 to P.A106, } \\ & \text { P.F500, P.A108, } \\ & \text { P.A109, P.A120 to } \\ & \text { P.A130 } \end{aligned}$	Pr. 278 to Pr.285, Pr.292, Pr. 639 to Pr. 651	553
To count the number of inverter starting times	Start count monitor	P.A170, P.A171	Pr.1410, Pr. 1411	558
To stop the motor with a mechanical brake   (vibration control at stop-on-contact)	Stop-on-contact control	$\begin{aligned} & \text { P.A200, P.A205, } \\ & \text { P.A206 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 270, \text { Pr. } 275 \text {, } \\ & \text { Pr. } 276 \end{aligned}$	559
To increase the speed at light load	Load torque high-speed frequency control	$\begin{aligned} & \text { P.D301, P.D302 } \\ & \text { P.A200 to P.A204 } \end{aligned}$	$\begin{aligned} & \text { Pr.4, Pr.5, Pr. } 270 \text { to } \\ & \text { Pr. } 274 \end{aligned}$	563
To strengthen or weaken the frequency at a constant cycle	Traverse operation	P.A300 to P.A305	Pr. 592 to Pr. 597	566
To suppress the swinging of an object moved by a crane by crane control	Anti-sway control	P.A310 to P.A317	Pr. 1072 to Pr. 1079	568
To adjust the stop position (orientation control) of the rotating shaft	Orientation control	P.A510 to P.A512, P.A520, P.A524, P.A525, P.A526 to P.A533, P.A540 to P.A545, P.C140, P.C141	$\begin{aligned} & \text { Pr. } 350 \text { to Pr. } 366 \text {, } \\ & \text { Pr. } 369 \text {, Pr. } 393 \text { to } \\ & \text { Pr. } 399 \end{aligned}$	570
To perform process control, such as for the pump flow volume and air volume	PID control	P.A601 to P.A607,   P.A610 to P.A615,   P.A621 to P.A625,   P.A640 to P.A644,   P.A650 to P.A655,   P.A661 to P.A665	Pr. 127 to Pr.134, Pr.553, Pr.554,   Pr. 575 to Pr.577,   Pr.609, Pr.610,   Pr. 753 to Pr.758,   Pr.1015, Pr.1134,   Pr.1135, Pr.1140,   Pr.1141, Pr. 1143 to Pr. 1149	587
	PID pre-charge function	P.A616 to P.A620, P.A656 to P.A660	Pr. 760 to Pr. 769	607
	PID display adjustment	$\begin{aligned} & \text { P.A600, P.A630 to } \\ & \text { P.A633, P.A670 to } \\ & \text { P.A673 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 759, \text { C42 to C45 } \\ & \text { (Pr. } 934, \text { Pr. } 935 \text { ), } \\ & \text { Pr. } 1136 \text { to Pr. } 1139 \end{aligned}$	603
To control the dance roll for winding/ unwinding	Dancer control	$\begin{aligned} & \text { P.A601, P.A602, } \\ & \text { P.A605, P.A606, } \\ & \text { P.A610, P.A611, } \\ & \text { P.A613, P.A615, } \\ & \text { P.A624, P.A625, } \\ & \text { P.F020, P.F021 } \end{aligned}$	$\begin{aligned} & \text { Pr.44, Pr.45, Pr.128, } \\ & \text { Pr. } 134, \text { Pr. } 609, \\ & \text { Pr.610, Pr.1134, } \\ & \text { Pr. } 1135 \end{aligned}$	611
To continue operating at analog current input loss	4 mA input check	P.A680 to P.A682	$\begin{aligned} & \text { Pr. } 573 \text {, Pr. } 777 \text {, } \\ & \text { Pr. } 778 \end{aligned}$	493
To restart without stopping the motor at instantaneous power failure	Automatic restart after instantaneous power failure / flying start function for induction motors	P.A700 to P.A705, P.A710, P.F003	$\begin{aligned} & \text { Pr.57, Pr.58, Pr. } 162 \\ & \text { to Pr.165, Pr. } 299 \text {, } \\ & \text { Pr. } 611 \end{aligned}$	618
	Frequency search accuracy improvement (V/F control, offline auto tuning)	$\begin{aligned} & \text { P.A700, P.A711, } \\ & \text { P.A712, P.C110, } \\ & \text { P.C210 } \end{aligned}$	$\begin{aligned} & \text { Pr.96, Pr.162, Pr.298, } \\ & \text { Pr.463, Pr. } 560 \end{aligned}$	625
To decelerate the motor to a stop at instantaneous power failure	Power failure time deceleration-to-stop function	$\begin{aligned} & \text { P.A730 to P.A735, } \\ & \text { P.A785 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 261 \text { to Pr. } 266 \text {, } \\ & \text { Pr. } 294 \end{aligned}$	629
To operate with sequence program	PLC function	$\begin{aligned} & \text { P.A800 to P.A805, } \\ & \text { P.A811 to P.A859 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 414 \text { to Pr. } 417 \text {, } \\ & \text { Pr. } 498 \text {, Pr. } 675 \text {, } \\ & \text { Pr. } 1150 \text { to Pr. } 1199 \\ & \hline \end{aligned}$	634


Purpose	Parameter to set   Refer to   page			
To store the inverter running status   to a USB memory device	Trace function	P.A900 to P.A906,   P.A910 to P.A920,   P.A930 to P.A939	Pr.1020 to Pr.1047	636

### 5.14.1 Electronic bypass function

## VIF Magneticiflux Sensorless Vector

The inverter contains complicated sequence circuits for switching between the commercial power supply operation and inverter operation. Therefore, interlock operation of the magnetic contactor for switching can be easily performed by simply inputting start, stop, and automatic switching selection signals.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 57 \\ & \text { A702 } \end{aligned}$	Restart coasting time	9999	0	Coasting time differs according to the inverter capacity. ${ }^{* 1}$
			0.1 to 30 s	Set the waiting time for the inverter to perform a restart at power restoration after an instantaneous power failure.
			9999	No restart
$\begin{aligned} & 58 \\ & \text { A703 } \end{aligned}$	Restart cushion time	1 s	0 to 60 s	Set the voltage cushion time for restart.
$\begin{aligned} & 135 \\ & \text { A000 } \end{aligned}$	Electronic bypass sequence selection	0	0	Without electronic bypass sequence
			1	With electronic bypass sequence
$\begin{aligned} & 136 \\ & \text { A001 } \end{aligned}$	MC switchover interlock time	1 s	0 to 100 s	Set the operation interlock time for MC2 and MC3.
$\begin{aligned} & 137 \\ & \text { A002 } \end{aligned}$	Start waiting time	0.5 s	0 to 100 s	Set a time period that is a little longer than the time period from the ON signal input to the actual pick-up operation of MC3 ( 0.3 to 0.5 s ).
$\begin{aligned} & 138 \\ & \text { A003 } \end{aligned}$	Bypass selection at a fault	0	0	Inverter output stop (motor coasting) at inverter failure
			1	Automatic switchover to commercial power supply operation at inverter failure. (Switchover is not possible when an external thermal relay (E.OHT) or CPU fault (E.CPU) is occurring.)
$\begin{aligned} & 139 \\ & \text { A004 } \end{aligned}$	Automatic switchover frequency from inverter to bypass operation	9999	0 to 60 Hz	Set the frequency where the inverter operation is switched to commercial power supply operation.   The inverter operation is performed from a start to Pr. 139 setting, then it switches automatically to the commercial power supply operation when the output frequency is equal to or above Pr. 139.
			9999	Without automatic switchover
$\begin{aligned} & 159 \\ & \text { A005 } \end{aligned}$	Automatic switchover frequency range from bypass to inverter operation	9999	0 to 10 Hz	Set the frequency where the commercial power supply operation, which has been switched from the inverter operation with Pr.139, switches back to inverter operation. When the frequency command becomes less than (Pr. 139 Pr.159), the motor switches automatically to inverter operation and operates at the frequency of the frequency command. Turning OFF the inverter start command (STF/ STR) also switches the operation to the inverter operation.
			9999	To switch the commercial power supply operation, which has been switched from the inverter operation with Pr.139, to the inverter operation again, the inverter start command (STF/ STR) is turned OFF. The operation switches to the inverter operation, and the motor decelerates to a stop.

*1 The coasting time when Pr. $57=" 0$ " is as shown below. (When Pr. 162 Automatic restart after instantaneous power failure selection is set to the initial value.)
FR-A860-00027: 0.5 s
FR-A860-00061 to FR-A860-00170: 1 s
FR-A860-00320 to FR-A860-01080: 3.0 s
FR-A860-01440 or higher: 5.0 s

## - Electronic bypass sequence function

- When operating the motor at 60 Hz (or 50 Hz ), the motor can be more efficiently operated with a commercial power supply. In addition, if the motor cannot be stopped for a long period of time even for an inverter maintenance and inspection, it is recommended that a commercial power supply circuit be installed.
- When switching between inverter operation and commercial power supply operation, commercial power supply may be accidentally applied to the output side of the inverter. To avoid such situation, provide an interlock where the magnetic contactor at the commercial power supply side turns ON at turn OFF of the magnetic contactor at the inverter output side. The inverter's electronic bypass sequence that outputs timing signals for the magnetic contactors can act as a complicated interlock between the commercial power supply operation and the inverter operation.


## NOTE

- The commercial power supply operation is not available with a PM motor.


## - Connection diagram

- A typical connection diagram of the electronic bypass sequence is shown below.
- Standard models

- Separated converter type

*1 Be careful of the capacity of the sequence output terminals. The applied terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).

Output terminal capacity	Output terminal permissible load
Open collector output of inverter (RUN, SU, IPF, OL, FU)	24 VDC 0.1 A
Inverter relay output (A1-C1, B1-C1, A2-B2, B2-C2)	230 VAC 0.3 A
Relay output option (FR-A8AR)	30 VDC 0.3 A

*2 When connecting a DC power supply, insert a protective diode. When connecting an AC power supply, use relay output terminals of the inverter or contact output terminals of the relay output option (FR-A8AR).
*3 The applied terminals differ by the settings of Pr. 180 to Pr. 189 (Input terminal function selection).
*4 To use the signal, assign the function to the output terminal Pr. 190 to Pr. 195 (Output terminal function selection) of the converter unit. Always set the negative logic for the ALM signal.

## NOTE

- Use the electronic bypass function in External operation mode. In addition, the wiring terminals R1/L11 and S1/L21 must be connected to a separate power source that does go through MC1. Be sure to connect using a separate power supply.
- Be sure to provide a mechanical interlock for MC2 and MC3.
- Operation of magnetic contactor (MC1, MC2, MC3)

Magnetic   contactor	Installation location	Operation		
		During commercial   power supply operation	During inverter   operation	During inverter fault
MC1	Between power supply and inverter input side	Shorted	Shorted	Open   (short by reset)
MC2	Between power supply and motor	Shorted	Open	Open   (Selected by Pr.138. Always   open when the external   thermal relay is operating.)
MC3	Between inverter output side and motor	Open	Shorted	Open

- The input signals are as shown below.

Signal	Applied terminal	Function	Operation	MC operation*8		
				MC1 ${ }^{*}{ }^{6}$	MC2	MC3
MRS	MRS*1	Selects whether or not operation is available. ${ }^{*}$ 2	ON Electronic bypass operation available	$\bigcirc$	-	-
			OFF Electronic bypass operation not available	$\bigcirc$	$\times$	Unchanged
CS	CS	Inverter/commercial power supply operation switchover ${ }^{*}{ }^{3}$	ON Inverter operation	$\bigcirc$	$\times$	$\bigcirc$
			OFF Commercial power supply operation	$\bigcirc$	$\bigcirc$	$\times$
$\begin{aligned} & \text { STF } \\ & \text { (STR) } \end{aligned}$	STF (STR)	Inverter operation command (Disabled during commercial power supply operation) ${ }^{*} 4$	ON Forward rotation (reverse rotation)	$\bigcirc$	$\times$	$\bigcirc$
			OFF Stop	$\bigcirc$	$\times$	$\bigcirc$
OH	Set one of Pr. 180 to Pr. 189 to "7".	External thermal relay input	ON Motor normal	$\bigcirc$	-	-
			OFF Motor fault	$\times$	$\times$	$\times$
RES	RES	Operation status reset*5	ON Reset	Unchanged	$\times$	Unchanged
			OFF Normal operation	$\bigcirc$	-	-
X95/X96	Set "95" and "96" in any of Pr. 180 to Pr. 189.	Converter unit fault / Converter unit fault (E.OHT, E.CPU)	X95 signal OFF, X96 signal OFF Converter fault (E.OHT, E.CPU)	$\times$	$\times$	$\times$
			X95 signal ON, X96 signal ON Converter normal	$\bigcirc$	-	-
			X95 signal OFF, X96 signal ON Converter fault (other than E.OHT or E.CPU)	$\times$	- *7	$\times$

*1 For separated converter types, the X10 signal is assigned to the terminal MRS in the initial setting. For the MRS signal, set " 24 " to any of Pr. 180 to Pr. 189 (Input terminal function selection) to assign the function to another terminal.
*2 When the MRS signal is OFF, neither the commercial power supply operation nor the inverter operation can be performed.
*3 The CS signal operates only when the MRS signal is ON.
*4 STF (STR) operates only when the MRS and CS signals are both ON.
*5 The RES signal can be used for reset input acceptance with Pr. 75 Reset selection/disconnected PU detection/PU stop selection. When RES signal and another input signal are simultaneously input, the MC operation by the RES signal has a higher priority.
*6 MC1 turns OFF at an inverter fault.
*7 When Pr.138="0 (electronic bypass invalid at a fault)", MC2 is OFF. When Pr. $138=$ " 1 (electronic bypass valid at a fault)", MC2 is ON.
*8 MC operation is as shown below.

Notation	MC operation
$\bigcirc$	ON
$\times$	OFF
-	MC2-OFF, MC3-ON during inverter operation,   MC2-ON, MC3-OFF during commercial power supply operation
Unchanged	The status of the MC remains the same after turning ON or OFF of the signal.

- The output signals are as shown below.

Signal	Applied terminal   (Pr.190 to Pr.196 setting)	Description
MC1	17	Operation output signal of the magnetic contactor MC1   on the inverter's input side.
MC2	18	Operation output signal of the magnetic contactor MC2   for the commercial power supply operation.
MC3	19	Operation output signal of the magnetic contactor MC3   on the inverter's output side.

## Electronic bypass operation sequence

- Example of operation sequence without automatic bypass sequence (Pr. 139 = "9999")

- Example of operation sequence with automatic bypass sequence (Pr. 139 = "9999", Pr. 159 = "9999")

- Example of operation sequence with automatic bypass sequence (Pr. $139 \neq$ "9999", Pr. $159 \neq$ "9999")



## Operating procedure

## - Operation flowchart



- Pr. 135 = "1"
-Pr. 136 = " 2.0 s"
- Pr. $137=$ " 1.0 s" (Set the time until MC3 is actually turned ON and the inverter and motor are electrically connected. If the time is short, the restart may not function properly.)
- Pr. 57 = " 0.5 s"
- Pr. 58 = " 0.5 s" (Always set this to switchover from the commercial power supply operation to the inverter operation.)
- Signal operation after setting parameters

Status	MRS	CS	STF	MC1	MC2	MC3	Remarks
Power ON	OFF   (OFF)	OFF   (OFF)	OFF   (OFF)	OFF $\rightarrow$ ON   (OFF $\rightarrow$ ON)	OFF   (OFF)	OFF $\rightarrow$ ON   (OFF $\rightarrow$ ON)	External operation mode   (PU operation mode)
At start (Inverter)	OFF $\rightarrow$ ON	OFF $\rightarrow$ ON	OFF $\rightarrow$ ON	ON	OFF	ON	
During constant-   speed operation   (commercial power   supply)	ON	ON $\rightarrow$ OFF	ON	ON	OFF $\rightarrow$ ON	ON $\rightarrow$ OFF	MC2 turns ON after MC3   turns OFF.   Waiting time is $2 \mathrm{~s} \mathrm{(while}$   coasting).
For deceleration,   switched to the   Onverter operation   (inverter)   Stop	ON	OFF $\rightarrow$ ON	ON	ON	ON $\rightarrow$ OFF	OFF $\rightarrow$ ON	MC3 turns ON after MC2   turns OFF.   Waiting time is 4 s (while   coasting).

- Connect the control power (R1/L11, S1/L21) in front of the input-side MC1. If the control power is connected behind the input-side MC1, the electronic bypass sequence function will not operate.
- The electronic bypass sequence function is only enabled when Pr. $135=11 "$ and in the External operation mode or combined operation mode (PU speed command and External operation command with Pr. $79=" 3 "$ ). MC1 and MC3 turn ON when Pr. $135=11 "$ and in an operation mode other than mentioned above.
- MC3 turns ON when the MRS and CS signals are ON and the STF (STR) signal is OFF. If the motor was coasted to a stop from commercial power supply operation at the previous stop, the motor starts running only after waiting the time set in Pr. 137.
- Inverter operation is only available when the MRS, STF (STR), and CS signals are ON. In all other cases (when the MRS signal is ON), commercial power supply operation is available.
- When the CS signal is OFF, the motor switches to the commercial power supply operation. However, when the STF (STR) signal is OFF, the motor decelerates to a stop during inverter operation.
- From the point where MC2 and MC3 are both turned OFF, there is a waiting time set in Pr.136, till MC2 or MC3 is turned ON.
- Even when the electronic bypass sequence is enabled (Pr. $135=11 "$ ), the Pr. 136 and Pr. 137 settings are ignored in PU operation mode. In addition, the input terminals (STF, CS, MRS, OH) return to perform their normal functions.
- When the electronic bypass sequence function (Pr. $135=11 "$ ) and PU operation interlock function ( $\operatorname{Pr} .79=$ "7") are used at the same time, the MRS signal is shared with the PU operation external interlock if the X 12 signal is not assigned. (The inverter operation is available when the MRS and CS signals are ON.)
- Set the acceleration time to the level that does not activate the stall prevention operation.
- When switching to the commercial power supply operation while a failure such as an output short circuit is occurring between the magnetic contactor MC3 and the motor, the damage may further spread. When a failure occurs between the MC3 and motor, make sure to provide a protection circuit, such as using the OH signal input.
- Changing the terminal functions with Pr. 178 to Pr. 189 and Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.
- Switching with the electronic bypass sequence is not available during retry. Switching occurs after the retry. When the electronic bypass is valid at a fault (Pr.138="1"), switching occurs also during retry.
- When the electronic bypass sequence function and the retry function of the converter unit are used at the same time for the separated converter type, set 101 or more in the number of retries at fault occurrence (Pr.67) on the converter unit side. When a value less than 100 is set, ALM signal does not turn ON until the retry count is exceeded. In this case, the electronic bypass at a fault is not performed until the retry count is exceeded.


## - Precautions for electronic bypass sequence function

- The response time of the inverter to the signals depends on the command source, NET or External. After the communication with the inverter is established, the motor operation is performed according to the command via NET. The commercial power supply operation with the motor is performed when the MRS signal turns ON before the communication is established. It is recommended to turn the MRS signal ON after the communication is established. Example: the response time of the inverter to the signals in the Network operation mode (power-ON). The command source is External for the MRS signal and NET for the STF (STR) and CS signals.



## Operation in combination with the self power management function for the separated converter type

- When the self power management function is used with the separated converter type, the input signal operations are as follows.

X95 (Converter unit fault)	X96   (Converter unit fault (E.OHT, E.CPU))	X94   (Control signal for main circuit power supply MC)	MC operation ${ }^{* 3}$			Converter status
			MC1	MC2	MC3	
OFF	OFF	ON	$\bigcirc{ }^{*}$	$\times$	$\times$	Converter fault (E.OHT (Pr.248="2"))
		OFF	$\times$	$\times$	$\times$	Converter fault (E.OHT (Pr.248="1"), E.CPU)
ON	ON	ON	- ${ }^{2}$	-	-	Converter normal
OFF	ON	ON	$\bigcirc^{* 2}$	-*1	$\times$	Converter fault (other than the circuit failure fault or E.OHT) (Pr.248="2")
		OFF	$\times$	-*1	$\times$	Converter fault (other than E.OHT or E.CPU)

[^24]| Notation | MC operation |
| :--- | :--- |
| $\bigcirc$ | ON |
| $\times$ | OFF |
| - | MC2-OFF, MC3-ON during inverter operation, <br> MC2-ON, MC3-OFF during commercial power supply operation |

```
<|Parameters referred to\》
Pr. }11\mathrm{ DC injection brake operation time page }70
Pr. }57\mathrm{ Restart coasting time page 618
Pr. }58\mathrm{ Restart cushion time page 618
Pr. }79\mathrm{ Operation mode selection W page 346
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) W page }49
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) W page 446
```


### 5.14.2 Self power management

## V/F Magneticflix PM

By turning ON the magnetic contactor (MC) on the input side before the motor is started and turning OFF the MC after the motor is stopped, power is not supplied to the main circuit, reducing the standby power.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 248 \\ & \text { A006 } \end{aligned}$	Self power management selection	0	0	Self power management function disabled
			1	Self power management function enabled (main circuit OFF at protective function activation)
			2	Self power management function enabled (main circuit OFF at protective function activation due to a circuit failure)
$\begin{aligned} & 137 \\ & \text { A002 } \end{aligned}$	Start waiting time	0.5 s	0 to 100 s	Set a time period that is a little longer than the time period from the ON signal input to the actual pick-up operation of MC1 ( 0.3 to 0.5 s ).
$\begin{aligned} & 254 \\ & \text { A007 } \end{aligned}$	Main circuit power OFF waiting time	600 s	1 to 3600 s	Set the waiting time until the main circuit power supply is turned OFF after the motor is stopped.
			9999	The main circuit power supply is turned OFF only when the protective function selected by Pr. 248 is activated.
$\begin{aligned} & 30 \\ & \text { E300 } \end{aligned}$	Regenerative function selection	0	100, 101	Power supply to the inverter: AC (terminals R, S, and T) When power is supplied only to the control circuit, and then switched to be supplied to both the control and main circuits, inverter reset is not performed.
			$\begin{aligned} & 0 \text { to } 2,10,11, \\ & 20,21,102, \\ & 110,111,120, \\ & 121 \end{aligned}$	For other settings, refer to page 718.

## - Connection diagram

- Terminal R1, S1 inputs

- 24 V external power supply input



## - Operation of the self power management function

- This function controls the magnetic contactor (MC) on the input side using the output relay to reduce the standby power during inverter stop. With the terminals R1/L11 and S1/L21 (refer to page 63) and 24 V external power supply input (refer to page 66), the main circuit power supply and control circuit power supply are separated, and the MC for main circuit power supply is controlled by the electronic bypass MC1 signal.
- Set Pr. 248 Self power management selection = "1 or 2", Pr. 30 Regenerative function selection $\neq$ "20, 21, 120, or 121" (other than DC feeding mode 2), and Pr. 190 to Pr. 196 (Output terminal function selection) = "17 (positive logic)" to assign the Electronic bypass MC1 (MC1) signal to an output terminal.
- After the inverter is stopped and the time set in Pr. 11 DC injection brake operation time and Pr. 254 Main circuit power OFF waiting time have passed, turning OFF the MC1 signal releases the MC on the input side (main circuit power supply OFF). Set Pr. 254 to prevent frequent MC operation.
- Turning ON the start signal turns ON the MC1 signal and closes the MC on the input side (main circuit power supply ON). After the time set in Pr. 137 Start waiting time has passed, the inverter starts. Set time slightly longer (about 0.3 to 0.5 s ) than the time period from the MC1-ON to the actual pick-up operation of the MC is turned ON in Pr.137.

- When the protective function of the inverter is activated, the MC1 signal is immediately turned OFF according to the Pr. 248 setting. (The MC1 signal is turned OFF before the time set in Pr. 254 has passed.) When Pr. $248=11 "$, the MC1 signal is turned OFF when the protective function is activated due to any cause. When Pr.248="2", the MC1 signal is turned OFF only when the protective function is activated due to an error resulted from a failure in the inverter circuit or a wiring error (refer to the following table). (For the alarm details, refer to page 742.)

Fault record
Inrush current limit circuit fault (E.IOH)
CPU fault (E.CPU)
CPU fault (E.6)
CPU fault (E.7)
Parameter storage device fault (control circuit board) (E.PE)
Parameter storage device fault (main circuit board) (E.PE2)
24 VDC power fault (E.P24)
Operation panel power supply short circuit/RS-485 terminals power supply short circuit (E.CTE)
Output side earth (ground) fault overcurrent (E.GF)
Output phase loss (E.LF)
Brake transistor alarm detection (E.BE)
Internal circuit fault (E.13/E.PBT)

- To enable the self power management function for the separated converter type, enable the self power management function also on the converter unit side. To activate the self power management function when a converter unit fault occurs, connect the terminal to which Y 17 signal of the converter unit is assigned and the terminal to which X94 signal of the inverter is assigned.

Y17 output signal (on the   converter unit side)	MC1 output signal   (inverter side)	MC1 output signal actual   operation	Main circuit power supply
OFF	OFF	OFF	Stop
OFF	ON	OFF	Stop
ON	OFF	OFF	Stop
ON	ON	ON	Supplied

- To use the X94 signal, set "94" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.


## NOTE

- When the start signal is turned OFF before the time set in Pr. 137 has passed after the start signal is turned ON, the inverter does not start and the MC1 signal is turned OFF after the time set in Pr. 254 has passed. If the start signal is turned ON again before the time set in Pr. 254 has passed, the inverter immediately starts outputting.

- At inverter reset, the status of the MC1 signal is held and operation of the magnetic contactor is not performed.
- When the inverter stops the output due to, for example, the Output stop (MRS) signal, the MC1 signal is turned OFF after the time set in Pr. 254 has passed.
- During the stop, turning ON the External DC injection brake operation start signal (X13) and Pre-excitation/servo ON signal (LX) turns ON the MC1 signal.
- To avoid inverter reset when starting to supply power to the main circuit when power is already supplied only to the control circuit, set 100 or more in Pr.30. (For the separated converter type, setting Pr. 30 of the converter unit is also required.)
- When supplying power to the main circuit is started when power is supplied only to the control circuit, there is a little waiting time before starting.
- Repeated operation of the magnetic contactor due to frequent start and stop or activation of the protective function may shorten the inverter life.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## 《|Parameters referred to $》$

Pr. 11 DC injection brake operation time page 707
Pr. 30 Regenerative function selection page 718
Pr. 190 to Pr. 196 (Output terminal function selection) page 446

### 5.14.3 Brake sequence function

## V/F Magneticflux Sensorless Vector

This function outputs operation timing signals of the mechanical brake from the inverter, such as for lift applications.
This function is useful in preventing load slippage at a start due to poor mechanical brake timing and overcurrent alarm in stop status and enable secure operation.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 278 \\ & \text { A100 } \end{aligned}$	Brake opening frequency	3 Hz	0 to 30 Hz	Set the rated slip frequency of the motor + approx. 1.0 Hz . This can be set only when Pr. $278 \leq$ Pr. 282.
$\begin{aligned} & 279 \\ & \text { A101 } \end{aligned}$	Brake opening current	130\%	0 to 400\%	If the setting is too low, dropping of the load is more likely to occur at a start, and generally, it is set between 50 and $90 \%$. The inverter rated current is regarded as $100 \%$, or the rated motor torque is regarded as 100\%. (According to Pr. 639 setting)
$\begin{aligned} & 280 \\ & \text { A102 } \end{aligned}$	Brake opening current detection time	0.3 s	0 to 2 s	Generally set between 0.1 and 0.3 s .
$\begin{aligned} & 281 \\ & \text { A103 } \end{aligned}$	Brake operation time at start	0.3 s	0 to 5 s	Set the mechanical delay time until braking eases. When Pr. 292 = "8" set the mechanical delay time until braking eases + approx. 0.1 to 0.2 s .
$\begin{aligned} & 282 \\ & \text { A104 } \end{aligned}$	Brake operation frequency	6 Hz	0 to 30 Hz	Turn OFF the brake opening request signal (BOF) and set the frequency for operating the electromagnetic brake. Generally, set the setting value of Pr. $278+3$ to 4 Hz . This can be set only when Pr. $282 \geq$ Pr. 278.
$\begin{aligned} & \hline 283 \\ & \text { A105 } \end{aligned}$	Brake operation time at stop	0.3 s	0 to 5 s	When Pr. 292 = "7" set the mechanical delay time until the brake closes +0.1 s .   When Pr. 292 = "8" set the mechanical delay time until the brake closes + approx. 0.2 to 0.3 s .
$\begin{aligned} & 284 \\ & \text { A106 } \end{aligned}$	Deceleration detection function selection	0	0	The deceleration detection function disabled.
			1	The protective function activates when the deceleration speed of the deceleration operation is not normal.
$\begin{aligned} & 285 \\ & \text { A107 } \end{aligned}$	Overspeed detection frequency ${ }^{* 1}$	9999	0 to 30 Hz	The brake sequence fault (E.MB1) activates when the difference between the detection frequency and output frequency is equal to or greater than the setting value under encoder feedback control.
			9999	Overspeed detection disabled.
$\begin{aligned} & 292 \\ & \text { A110 } \\ & \text { F500 } \end{aligned}$	Automatic acceleration/ deceleration	0	0	Normal operation
			1, 11	Operation with the shortest acceleration/deceleration time. (Refer to page 339.)
			3	Operation with the optimum acceleration/deceleration time. (Refer to page 339.)
			5, 6	Lift operation 1, 2. (Refer to page 343.)
			7	Brake sequence mode 1
			8	Brake sequence mode 2
$\begin{aligned} & 639 \\ & \text { A108 } \end{aligned}$	Brake opening current selection	0	0	Brake opening by output current
			1	Brake opening by motor torque
$\begin{aligned} & 640 \\ & \text { A109 } \end{aligned}$	Brake operation frequency selection	0	0	Brake closing operation by frequency command
			1	Brake closing operation by the actual motor rotation speed (estimated value)
$\begin{aligned} & \hline 641 \\ & \text { A130 } \end{aligned}$	Second brake sequence operation selection	0	0	Normal operation when the RT signal is ON
			7	Second brake sequence 1 when the RT signal is ON
			8	Second brake sequence 2 when the RT signal is ON
			9999	First brake sequence 1 is valid when the RT signal is ON


Pr.	Name	Initial value	Setting range	Description	
$\mathbf{6 4 2}$   A120	Second brake opening   frequency	3 Hz	0 to 30 Hz	Refer to Pr.278.	Set the second brake sequence   function.   The second brake sequence function   is enabled when the RT signal is ON.
$\mathbf{6 4 3}$   A121	Second brake opening current	$130 \%$	0 to $400 \%$	Refer to Pr.279.	
644   A122	Second brake opening current   detection time	0.3 s	0 to 2 s	Refer to Pr.280.	
$\mathbf{6 4 5}$   A123	Second brake operation time at   start	0.3 s	0 to 5 s	Refer to Pr.281.	
$\mathbf{6 4 6}$   A124	Second brake operation   frequency	6 Hz	0 to 30 Hz	Refer to Pr.282.	
$\mathbf{6 4 7}$   A125	Second brake operation time at   stop	0.3 s	0 to 5 s	Refer to Pr.283.	
$\mathbf{6 4 8}$   A126	Second deceleration detection   function selection	0	0,1	Refer to Pr.284.	
$\mathbf{6 5 0}$   A128	Second brake opening current   selection	0	0,1	Refer to Pr.639.	
$\mathbf{6 5 1}$   A129	Second brake operation   frequency selection	0	0,1	Refer to Pr.640.	

## - Connection diagram



NOTE

- The automatic restart after instantaneous power failure function and orientation function do not operate when brake sequence is selected.
- To use this function, set the acceleration/deceleration time to 1 s or higher.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Setting the brake sequence operation

- Set Pr. 292 = " 7 or 8 (braking sequence operation)". To ensure sequence operation, it is recommended to use with Pr. 292 = "7" (with brake opening completion signal input).
- Set "15" in any of Pr. 178 to Pr. 189 (Input terminal function selection), and assign the brake opening completion signal (BRI) to the input terminal.
- Set "20" (positive logic) or "120" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection), and assign the brake opening request signal (BOF) to the output terminal.
- Use Pr. 639 Brake opening current selection to select whether the output current or the motor torque is used as a reference for the brake opening operation. (Under V/F control, the output current is used as a reference regardless of the Pr. 639 setting.)
- Under Real sensorless vector control or vector control, use Pr. 640 Brake operation frequency selection to select whether the frequency command or the actual motor speed (estimated value) is used as a reference for brake closing operation. If the brake operation timing is different from the motor speed because of the load, set Pr. $640=$ "1 (brake operation with the actual motor speed (estimated value))".
- Under V/F control or Advanced magnetic flux vector control, perform brake operation while referring to the frequency command regardless of the Pr. 640 setting.


## NOTE

- Under torque control, position control, or PM sensorless vector control, the brake sequence function is disabled.


## - Operation with brake opening completion signal input (Pr. 292 = "7")

- When the start signal is input to the inverter, the inverter starts running, and when the output frequency reaches the frequency set in Pr. 278 Brake opening frequency and the output current or the motor torque is equal to or greater than the Pr. 279 Brake opening current setting, the brake opening request signal (BOF) is output after the time set in Pr. 280 Brake opening current detection time. The brake opening completion signal (BRI) is input, and the output frequency is increased to the set speed after the set time in Pr. 281 Brake operation time at start.
- When the inverter decelerates to the frequency set in Pr. 282 Brake operation frequency during deceleration, the inverter turns OFF the BOF signal and decelerates further to the frequency set in Pr.278. After electromagnetic brake operation completes and the inverter recognizes the turn OFF of the BRI signal, the inverter holds the frequency set in Pr. 278 for the time set in Pr. 283 Brake operation time at stop. And after the time set in Pr. 283 passes, the inverter decelerates again. The inverter outputs is shut off when the frequency reaches Pr. 13 Starting frequency setting or 0.5 Hz , whichever is lower.



## - Operation without brake opening completion signal input (Pr. 292 = "8")

- When the start signal is input to the inverter, the inverter starts running, and when the output frequency reaches the frequency set in Pr. 278 Brake opening frequency and the output current or the motor torque is equal to or greater than the Pr. 279 Brake opening current setting, the brake opening request signal (BOF) is output after the time set in Pr. 280 Brake opening current detection time. After the BOF signal is output, the output frequency is increased to the set speed after the set time in Pr. 281 Brake operation time at start.
- When the inverter decelerates to the frequency set to Pr. 282 Brake operation frequency during deceleration, the inverter turns OFF the brake opening request signal (BOF) and decelerates further to the frequency set in Pr.278. After the turn OFF of BOF signal, the inverter holds the frequency set in Pr. 278 for the time set in Pr. 283 Brake operation time at stop. And after the set time in Pr. 283 passes, the inverter decelerates again. Pr. 13 Starting frequency setting or 0.5 Hz , whichever is lower



## NOTE

- Even if the brake sequence operation has been selected, inputting the JOG signal (JOG operation) will change the operation method to normal operation and give a priority to the JOG operation. Note that the JOG signal input by the brake sequence function is invalid during operation.


## Set multiple brake sequence functions (Pr.641)

- When the second brake sequence function is set, it is possible to switch between and use two types of brake sequence functions. Turning ON the RT signal enables the second brake sequence function.
- Select the operation of the second brake sequence function with Pr. 641 Second brake sequence operation selection.

Pr.641 setting	Brake sequence function when the RT signal is ON
0 (initial value)	Normal operation (The first and second brake sequence functions invalid)
7	Second brake sequence mode 1
8	Second brake sequence mode 2
9999	First brake sequence mode is valid

- Set " 45 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the Second brake sequence open completion signal (BRI2) to the input terminal.
- To use the Second brake opening request signal (BOF2), set "22 (positive logic)" or "122 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.
- The method of setting the second brake sequence parameters is the same as that for the corresponding first brake sequence function parameters.
- Switchover of the brake sequence function by $R T$ signal is valid when the inverter is stopped.


## －Protective function

－If one of the following faults occur while the brake sequence function is enabled，the inverter trips，shuts off output，and turns OFF the brake opening request signal（BOF）．

Fault   indication	Description
E．MB1	When（Detection frequency）－（output frequency）$\geq$ Pr．285 during encoder feedback control．   When Pr．285（Overspeed detection function）$=$＂9999＂，overspeed is not detected．
E．MB2	When deceleration is not normal during deceleration operation from the set frequency to the frequency set in Pr．282（when   Pr．284＝＂1＂）（except stall prevention operation）
E．MB3	When the BOF signal turned ON while the motor is at a stop．（load slippage prevention function）
E．MB4	When more than 2 s have elapsed after the start command（forward or reverse rotation）is input，but the BOF signal does   not turn ON．
E．MB5	When more than 2 s have elapsed after the BOF signal turned ON，but the BRI signal does not turn ON．
E．MB6	When the inverter had turned ON the brake opening request signal（BOF），but the BRI signal turned OFF．
E．MB7	When more than 2 s have elapsed after the BOF signal turned OFF at a stop，but the BRI signal does not turn OFF．

## NOTE

－During deceleration，inverter output is shut OFF when the frequency reaches Pr． 13 Starting frequency or 0.5 Hz ， whichever is lower．For Pr． 278 Brake opening frequency，set a frequency equal to or higher than the Pr． 13 setting or 0.5 Hz．
－Pr． 285 Overspeed detection frequency is valid under encoder feedback control（used with a Vector control option）even if a value other than＂ 7 or 8＂is set in Pr． 292 Automatic acceleration／deceleration．
－Setting Pr． 278 too high activates the stall prevention and may cause E．MB4．
－E．MB4 occurs when the acceleration time from Pr． 13 to Pr． 278 ＋Pr． 280 reaches or exceeds 2 s．


## 《 Parameters referred to 》》

Pr． 3 Base frequency page 699
Pr． 178 to Pr． 186 （Input terminal function selection）page 498
Pr． 190 to Pr． 195 （Output terminal function selection）page 446

### 5.14.4 Start count monitor

The inverter starting times can be counted.
Confirming the starting times can be used to determine the timing of the maintenance, or can be used as a reference for system inspection or parts replacement.

Pr.	Name	Initial   value	Setting   range	Description
1410   A170	Starting times lower 4   digits	0	0 to 9999	Displays the lower four digits of the number of the inverter starting   times.
1411   A171	Starting times upper 4   digits	0	0 to 9999	Displays the upper four digits of the number of the inverter starting   times.

- Every start signal input (the RUN signal ON) while the inverter output is stopped is counted as the inverter starting time. (Starting during pre-excitation is also counted.)

- The lower four digits of the number of starting times is displayed in Pr. 1410 Starting times lower 4 digits, and the upper four digits of the number of starting times is displayed in Pr. 1411 Starting times upper 4 digits.
- The maximum count is "99999999". When "99999999" is exceeded on the monitor, the monitor value is reset to 0 .

Display data		Monitor display
10000	Pr. 1410 (Lower digits monitor)	Pr
	Pr. 1411 (Upper digits monitor)	1
	Pr. 1410 (Lower digits monitor)	Pr. 1411 (Upper digits monitor)
	Pr	

## NOTE

- Any value can be set in Pr. 1410 or Pr.1411. Set "0" to clear the number on the monitor.
- Starting during offline auto tuning is not counted.
- Under position control, the count increases when the LX signal turns ON.
- The counting is enabled even if the RUN signal is not assigned to an output terminal.
- For the RUN signal, refer to page 446.
- Starting during the test operation ( $\mathrm{Pr} .800=" 9 "$ ) is not counted.


### 5.14.5 Stop-on-contact control

## Magneticfliux Sensorless

To ensure accurate positioning at the upper limit, etc. of a lift, stop-on-contact control causes the mechanical brake to close while the motor creates a holding torque to keep the load in contact with a mechanical stopper, etc.
This function suppresses vibration that is likely to occur when the load is stopped upon contact in lift applications, thereby ensuring reliable and highly accurate positioning stop.

$<$ Withou   Vibration   L	op-on-contact control> <With   Complete st   Lift		ct control> L/		
Pr.	Name	Initial value	Setting range	Description	
$\begin{array}{\|l\|} \hline 6 \\ \text { D303 } \\ \hline \end{array}$	Multi-speed setting (low speed)	10 Hz	0 to 590 Hz	Set the output frequency for stop-on-cont	control.
$\begin{aligned} & \text { 22 } \\ & \text { H500 } \end{aligned}$	Stall prevention operation level	150\%	0 to 400\%	Set the stall prevention operation level for The smaller value set in either Pr. 22 or $\operatorname{Pr}$	top-on-contact control. 48 has priority.
$\begin{aligned} & 48 \\ & \mathrm{H} 600 \end{aligned}$	Second stall prevention operation level	150\%	0 to 400\%		
270	Stop-on contact/load torque	0	0	Normal operation	
A200	high-speed frequency		1	Stop-on-contact control	
	control selection		2	Load torque high-speed frequency contro	Refer to page 563.)
			3	Stop-on contact + load torque high speed page 563)	equency control (Refer to
			11	Stop-on-contact control	E.OLT is invalid under
			13	Stop-on contact + load torque high speed frequency control (Refer to page 563.)	stop-on-contact control
$\begin{aligned} & 275 \\ & \text { A205 } \end{aligned}$	Stop-on contact excitation current low-speed	9999	0 to 300\%	Set the force (holding torque) for stop-onNormally, set it from 130 to 180\%.	ntact control.
	multiplying factor		9999	No compensation.	
276	PWM carrier frequency at	9999	0 to $9^{* 1}$	Set a PWM carrier frequency for stop-on-	ntact control.
A			0 to $4^{*}{ }^{2}$	For Real sensorless vector control, the kHz when the setting value is 0 to 5 and value is 6 to 9 . (Valid at the output frequ	ier frequency is always 2 ys 6 kHz when the setting y of 3 Hz or less.)
			9999	As set in Pr. 72 PWM frequency selection	

[^25]
## - Connection and operation example



* The input terminal used differs according to the Pr. 180 to Pr. 189 settings.


* Goes into stop-on-contact control mode when both RL and RT switch on.
RL and RT may be switched on in any order with any time difference
(a): Acceleration time (Pr.7)
(b): Deceleration time (Pr.8)
(c): Second deceleration time (Pr.44/Pr.45)


## Setting the stop-on-contact control

- Make sure that the inverter is in External or Network operation mode. (Refer to page 346.)
- Select either Real sensorless vector control (speed control) or Advanced magnetic flux vector control.
- Set "1, 3, 11 or 13" in Pr. 270 Stop-on contact/load torque high-speed frequency control selection.
- Set the output frequency for stop-on-contact control in Pr. 6 Multi-speed setting (low speed). Set the frequency as low as possible (about 2 Hz ). If a frequency higher than 30 Hz is set, it operates with 30 Hz .
- When both the RT and RL signals are switched ON, the inverter enters the stop-on-contact control, and operation is performed at the frequency set in Pr. 6 independently of the preceding speed.
- Setting Pr. $270=$ " 11 or 13 " disables stall prevention stop (E.OLT) during stop-on-contact control (with both RL and RT signals ON).


## NOTE

- By increasing the Pr. 275 setting, the low-speed (stop-on-contact) torque increases, but overcurrent fault (E.OC[]) may occur or the machine may oscillate in stop-on-contact status.
- The stop-on-contact function is different from the servo-lock function, and if used to stop or hold a load for an extended period, this function can cause the motor to overheat. After a stop, immediately switch to a mechanical brake to hold the load.
- Under the following operating conditions, the stop-on-contact function is invalid:

PU operation (Pr.79), JOG operation (JOG signal), PU + External operation (Pr.79), PID control function operation (Pr.128), Remote setting function operation (Pr.59), Automatic acceleration/deceleration (Pr.292), Start time tuning, Orientation control function operation

- When performing stop-on-contact control during encoder feedback control, encoder feedback control is invalid due to a transition to the stop-on-contact control mode.


## - Function switching of stop-on-contact control selection

Main functions	Normal operation (either RL or RT is OFF or both are OFF)		Stop-on-contact control (both RL and RT are ON)	
	Real sensorless vector control	Advanced magnetic flux vector control	Real sensorless vector control	Advanced magnetic flux vector control
Output frequency	Multi-speed, 0 to $5 \mathrm{~V}, 0$ to 10 V 4 to 20 mA , etc.		Pr. 6 setting	
Stall prevention operation level	-	Pr. 22 setting	-	The smaller value set in either Pr. 22 or Pr.48. ${ }^{* 1}$
Torque limit level	Pr. 22 setting	-	Pr. 22 setting	-
Excitation current lowspeed scaling factor	-		The current is compensated by Pr. 275 (0 to 300\%) setting from normal operation.	
Carrier frequency	Pr. 72 setting		When output frequency is 3 Hz or lower, Pr. 276 setting (Pr. 72 when Pr. 276 = "9999")	
Fast-response current limit	-	Enabled	-	Disabled

*1 When RL and RT are ON, Pr. 49 Second stall prevention operation frequency is invalid.

## - Setting the frequency during stop-on-contact control (Pr. $270=$ "1, 3, 11 or 13")

- The following table lists the frequencies set when the input terminals (RH, RM, RL, RT, JOG) are selected together.
- Stop-on-contact control is disabled when remote setting function is selected (Pr. 59 = "1 to 3 ").

Input signal					Set   frequency	Stop-on-contact   control
RH	RM	RL	RT	JOG	Pr.4	
ON					Pr.5	
	ON				Pr.6	
		ON			Pr	
			ON		$* 1$	
				ON	Pr.15	
ON	ON				Pr. 26	
ON		ON			Pr.25	
ON			ON		Pr.4	
ON				ON	Pr.15	
	ON	ON			Pr.24	
	ON		ON		Pr.5	
	ON			ON	Pr.15	
		ON	ON		Pr.6	Enabled
		ON		ON	Pr.15	
			ON	ON	Pr.15	
		ON	ON	ON	Pr.15	


Input signal					Set   RH	Stop-on-contact   control
	RM	RL	RT	JOG	frequency	(ON
	ON	ON	Pr.15			
	ON	ON		ON	Pr.15	
	ON	ON	ON		Pr.6	Enabled
ON			ON	ON	Pr.15	
ON		ON		ON	Pr.15	
ON		ON	ON		Pr.6	Enabled
ON	ON			ON	Pr.15	
ON	ON		ON		Pr. 26	
ON	ON	ON			Pr. 27	
	ON	ON	ON	ON	Pr.15	
ON		ON	ON	ON	Pr.15	
ON	ON		ON	ON	Pr.15	
ON	ON	ON		ON	Pr.15	
ON	ON	ON	ON		Pr.6	Enabled
ON	ON	ON	ON	ON	Pr.15	
					$* 1$	

## NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

《｜Parameters referred to 》》
Pr． 4 to Pr．6，Pr． 24 to Pr． 27 （Multi－speed setting）
Pr． 15 Jog frequency page 370
Pr． 22 Stall prevention operation level，Pr． 48 Second stall prevention operation level page 403
Pr． 22 Torque limit level $\leftrightarrows$ page 191
Pr． 59 Remote function selection page 331
Pr． 72 PWM frequency selection page 310
Pr． 79 Operation mode selection page 346
Pr． 95 Online auto tuning selection page 537
Pr． 128 PID action selection $\mathfrak{F}$ page 587
Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 498
Pr． 270 Stop－on contact／load torque high－speed frequency control selection page 563
Pr． 292 Automatic acceleration／deceleration page 339，page 343

### 5.14.6 Load torque high speed frequency control

Load torque high-speed frequency control is a function that automatically sets the maximum operable frequency according to the load.
The load size during power driving is estimated by detecting average currents at set timings after a start. When the load is light, the frequency is increased from the originally-set frequency. (In regenerative driving, the frequency is not increased.)
This function is designed to increase speed automatically under light load, for example to minimize the incoming/outgoing time in a multi-story parking lot.

> <Without high-speed frequency control>
<With high-speed frequency control>


Pr.	Name	Initial value	Setting range	Description		
$\begin{aligned} & 4 \\ & \text { D301 } \end{aligned}$	Multi-speed setting (high speed)	60 Hz	0 to 590 Hz	Set the higher-speed frequency.		
$\begin{aligned} & 5 \\ & \text { D302 } \end{aligned}$	Multi-speed setting (middle speed)	30 Hz	0 to 590 Hz	Set the lower-speed frequency.		
$\begin{aligned} & \hline 270 \\ & \text { A200 } \end{aligned}$	Stop-on contact/load torque high-speed frequency control selection	0	0	Normal operation		
			1	Stop-on-contact control (Refer to page 559.)		
			2	Load torque high-speed frequency control		
			3	Stop-on-contact (refer to page 559) + load torque high- speed frequency control		
			11	Stop-on-contact control	E.OLT invalid under stop-oncontact control	
			13	Stop-on-contact + load torque high- speed frequency control   (Refer to page 559.)		
$\begin{aligned} & 271 \\ & \text { A201 } \end{aligned}$	High-speed setting maximum current	50\%	0 to 400\%	Set the upper and lower limits of the current at high and middle speeds.		
$\begin{aligned} & 272 \\ & \text { A202 } \end{aligned}$	Middle-speed setting minimum current	100\%	0 to 400\%			
$\begin{aligned} & \hline 273 \\ & \text { A203 } \end{aligned}$	Current averaging range	9999	0 to 590 Hz	Set the average current during acceleration from (Pr. $273 \times 1 /$ 2) Hz to (Pr.273) Hz.		
			9999	Set the average current during acceleration from (Pr. $5 \times 1 / 2$ ) Hz to (Pr.5) Hz.		
$\begin{aligned} & 274 \\ & \text { A204 } \end{aligned}$	Current averaging filter time constant	16	1 to 4000	Set the time constant of the primary delay filter relative to the output current.   (The time constant [ ms ] is $0.5 \times \mathrm{Pr} .274$, and the initial value is 8 ms .)   A larger setting results in a stable operation with poorer response.		

## - Connection diagram


*1 The applied terminals differ by the settings of Pr. 180 to Pr. 189 (Input terminal function selection).

## Load torque high speed frequency control setting

- Set "2, 3 or 13" in Pr. 270 Stop-on contact/load torque high-speed frequency control selection.
- When the load torque high-speed frequency selection (X19) signal ON, the inverter automatically adjusts the maximum frequency in the range between the Pr. 4 Multi-speed setting (high speed) and Pr. 5 Multi-speed setting (middle speed) in accordance with the average current in the current averaging range. The current averaging range is from the $1 / 2$ the Pr. 5 to the full Pr. 5 setting (in the current averaging range).
- To use the X19 signal, set "19" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.
- This is valid in External operation mode and Network operation mode.
- The control can be activated at every start.


## - Operation of load torque high-speed frequency control

- When the average current of the current averaging range (chart A below) during operation with the X 19 signal ON is the "inverter rated current $\times$ Pr. 271 setting (\%)" or less, the maximum frequency automatically becomes the Pr. 4 Multi-speed setting (high speed) setting value.
- When the average current of the current averaging range (chart B below) during operation with the X 19 signal ON is greater than the "inverter rated current $\times$ Pr. 272 setting (\%)", the maximum frequency automatically becomes the Pr. 5 Multi-speed setting (middle speed) setting value.
- During regeneration load operation, the Pr. 5 setting is the maximum frequency regardless of the average current.
- When Pr. 273 is used, the current averaging range can be set between one half of the frequency of the Pr. 273 setting value and the Pr. 273 set frequency. (However, the setting value must be smaller than Pr. 5 setting.)

- When the average current is larger than "inverter rated current $\times$ Pr. 271 setting (\%)" and smaller than "inverter rated current $\times$ Pr. 272 setting (\%)", linear compensation is performed as shown below.


Value in parenthesis is initial value.

## NOTE

- When the current averaging range includes the constant-output range, the output current may become large in the constant-output range.
- When the average current value in the current averaging range is small, deceleration time becomes longer as the output frequency increases.
- The automatic restart after instantaneous power failure function, fast-response current limit operation, fast-response current limit operation, shortest acceleration/deceleration, and optimum acceleration/deceleration are invalid.
- Changing the terminal assignment with Pr. 178 to Pr. 189 (Input terminal function selection) may affect other functions. Set parameters after confirming the function of each terminal.
- Under the following operating conditions, the load torque high-speed frequency function is invalid:

PU operation (Pr.79), PU + External operation (Pr.79), JOG operation, PID control function operation (Pr.128), remote setting function operation (Pr.59), orientation control function operation, multi-speed setting (RH, RM, RL signal), torque control, position control.

- When the average current during acceleration is too small, it may be judged as regeneration, and the maximum frequency may become the setting of Pr. 5 .
- The output frequency may change due to the load, so do not get unnecessarily close to the motor or machine.

```
<Parameters referred to|>
Pr. }4\mathrm{ to Pr.6, Pr. }24\mathrm{ to Pr. }27\mathrm{ (Multi-speed setting) F page }37
Pr. }57\mathrm{ Restart coasting time page 618
Pr. }59\mathrm{ Remote function selection page 331
Pr. }79\mathrm{ Operation mode selection W page 346
Pr. }128\mathrm{ PID action selection page 587
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) ছ page 498
```


### 5.14.7 Traverse function

The traverse operation, which oscillates the frequency at a constant cycle, is available.

Pr.	Name	Initial value	Setting range	
$\mathbf{5 9 2}$   A300	Traverse function selection	0	0	Description
			1	Traverse function invalid
		2	Traverse function valid only in External operation mode	
$\mathbf{5 9 3}$   A301	Maximum amplitude amount	$10 \%$	0 to $25 \%$	Level of amplitude during traverse operation
$\mathbf{5 9 4}$   A302	Amplitude compensation   amount during deceleration	$10 \%$	0 to $50 \%$	Compensation amount during amplitude inversion (from   acceleration to deceleration)
$\mathbf{5 9 5}$   A303	Amplitude compensation   amount during acceleration	$10 \%$	0 to $50 \%$	Compensation amount during amplitude inversion (from   deceleration to acceleration)
$\mathbf{5 9 6}$   A304	Amplitude acceleration time	5 s	0.1 to 3600 s	Time period of acceleration during traverse operation
$\mathbf{5 9 7}$   A305	Amplitude deceleration time	5 s	0.1 to 3600 s	Time period of deceleration during traverse operation

- Setting Pr. 592 Traverse function selection = "1 or 2" will enable the traverse function.
- Assigning the Traverse function selection (X37) signal to the input terminal will enable the traverse function only when the X 37 signal is ON. (When the X37 signal is not assigned, the traverse function is always available.) To input the X 37 signal, set " 37 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.

- The motor accelerates to the set frequency f0 according to the normal Pr. 7 Acceleration time at turn ON of the start command (STF or STR).
- When the output frequency reaches $\mathrm{f0}$ and the X 37 signal turns ON, the inverter begins traverse operation and accelerates to $\mathrm{fO}+\mathrm{f} 1$. The acceleration time at this time is according to the Pr. 596 setting. (If the X37 signal turns ON before the output frequency reaches fO , traverse operation begins after the output frequency reaches fO .)
- After the inverter accelerates to $\mathrm{f0}+\mathrm{f} 1$, this is compensated with f 2 ( $\mathrm{f} 1 \times$ Pr.594), and the inverter decelerates to $\mathrm{f0}-\mathrm{f} 1$. The deceleration time at this time is according to the Pr. 597 setting.
- After the inverter decelerates to $\mathrm{f0}-\mathrm{f} 1$, this is compensated with f 3 ( $\mathrm{f} 1 \times \operatorname{Pr} .595$ ), and the inverter accelerates again to f0 + f1.
- When the X37 signal turns OFF during traverse operation, the inverter accelerates/decelerates to f0 according to the normal acceleration/deceleration time (Pr.7, Pr.8). If the start command (STF or STR) is turned OFF during traverse operation, the inverter decelerates to a stop according to the normal deceleration time (Pr.8).
- If the set frequency (f0) and traverse operation parameters (Pr. 593 to Pr.597) are changed during traverse operation, this is applied in operations after the output frequency reaches f0 before the change was made.
- If the output frequency exceeds Pr. 1 Maximum frequency or Pr. 2 Minimum frequency during traverse operation, the output frequency is clamped at the maximum/minimum frequency when the set pattern exceeds the maximum/minimum frequency.
- When the traverse function and S-pattern acceleration/deceleration (Pr. $29 \neq 0 "$ ") are selected, S-pattern acceleration/ deceleration operation occurs only in the range operated at the normal acceleration/deceleration time (Pr.7, Pr.8). Acceleration/deceleration during traverse operation is performed linearly.
- If stall prevention activates during traverse operation, traverse operation stops and normal operation begins. When stall prevention operation is completed, the inverter accelerates/decelerates to f0 at the normal acceleration/deceleration time (Pr.7, Pr.8). After the output frequency reaches f0, the traverse operation begins again.
- If the value of the amplitude inversion compensation amount (Pr.594, Pr.595) is too large, an overvoltage trip or stall prevention occurs, and pattern operation cannot be performed as set.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
< Parameters referred to >>
Pr. }3\mathrm{ Base frequency page }69
Pr. }180\mathrm{ to Pr. }186\mathrm{ (Input terminal function selection) W page }49
Pr. }190\mathrm{ to Pr. }195\mathrm{ (Output terminal function selection) W page }44
```


### 5.14.8 Anti-sway control

When an object is moved by a gantry crane, swinging is suppressed on the crane's traveling axis.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1072 \\ & \text { A310 } \end{aligned}$	DC brake judgment time for anti-sway control operation	3 s	0 to 10 s	Set the waiting time to start the DC injection brake (zero speed control, servo lock) after the output frequency reaches the Pr. 10 DC injection brake operation frequency or lower.
$\begin{aligned} & 1073 \\ & \text { A311 } \end{aligned}$	Anti-sway control operation selection	0	0	Anti-sway control disabled
			1	Anti-sway control enabled
$\begin{aligned} & 1074 \\ & \text { A312 } \end{aligned}$	Anti-sway control frequency	1 Hz	0.05 to 3 Hz	Sets the swinging frequency of the load.
			9999	A swinging frequency is estimated based on the Pr. 1077 to Pr. 1079 settings, and anti-sway control is performed.
$\begin{aligned} & 1075 \\ & \text { A313 } \end{aligned}$	Anti-sway control depth	0	0 to 3	0 (Deep) $\rightarrow 3$ (Shallow)
$\begin{aligned} & 1076 \\ & \text { A314 } \end{aligned}$	Anti-sway control width	0	0 to 3	0 (Narrow) $\rightarrow 3$ (Wide)
$\begin{aligned} & 1077 \\ & \text { A315 } \end{aligned}$	Rope length	1 m	0.1 to 50 m	Set the rope length of the crane.
$\begin{aligned} & 1078 \\ & \text { A316 } \end{aligned}$	Trolley weight	1 kg	1 to 50000 kg	Set the weight of the trolley.
$\begin{aligned} & 1079 \\ & \text { A317 } \end{aligned}$	Load weight	1 kg	1 to 50000 kg	Set the weight of the load.

## Anti-sway control operation (Pr.1073)

- Setting Pr. 1073 Anti-sway control operation selection = "1" enables anti-sway control. (Anti-sway control is not available under zero speed or servo lock control.)
- During operation under anti-sway control, the travel distance becomes longer. Input a stop command earlier to avoid a collision with an obstacle.
- A deceleration to stop without anti-sway control is applied for stopping as a result of PU stop, an emergency stop command input from a communication option, Pr. 875 Fault definition, or an emergency stop input (X92 signal).



## NOTE

- Under torque control or position control, the anti-sway control is disabled.
- During operation of the power failure time deceleration-to-stop function, or when the automatic restart after instantaneous power failure is enabled ( $\operatorname{Pr} .57 \neq " 9999 ")$, the anti-sway control is disabled.


## - Swinging frequency setting (Pr. 1074 to Pr.1079)

- Set a swinging frequency in Pr. 1074 Anti-sway control frequency. The swinging frequency is used as a notch filter frequency. Lower the response level of speed control in the frequency band with the width set in the Pr. 1076 Anti-sway control width by the gain set in the Pr. 1075 Anti-sway control depth.
- A deeper notch depth has a greater effect in reducing mechanical resonance, but because the phase delay is larger, swinging may increase. Adjust by starting from the shallowest value.

Setting value	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Depth	Shallow	$\rightarrow$	$\leftarrow$	Deep
Gain	-4 dB	-8 dB	-14 dB	$-\infty$

- If the Pr. 1076 setting is too large (the width is too wide), the response level of speed control will drop, and the system may become unstable.
- After setting Pr. 1074 = "9999", set the crane rope length in the Pr. 1077 Rope length, the trolley weight in the Pr. 1078 Trolley weight, and the weight of an object in the Pr. 1079 Load weight. Then, anti-sway control is performed using a swinging frequency estimated by the inverter.


## - Waiting time for brake operation of anti-sway control (Pr.1072)

- Set the time from when the output frequency becomes the Pr. 10 DC injection brake operation frequency or less to when the zero speed control or the servo lock operation starts in the Pr. 1072 DC brake judgment time for anti-sway control operation.



## NOTE

- During anti-sway control operation, even if the motor rotation is restricted to one direction in the Pr. 78 Reverse rotation prevention selection, the motor may rotate in a direction opposite to the setting.
- A protective function (E.OSD) may be activated during vibration control. When using anti-sway control, set Pr. 690 Deceleration check time = "9999 (initial value)" to disable the deceleration check function.
- When anti-sway control is enabled, regeneration avoidance, shortest acceleration/deceleration, and the traverse function are disabled.
- Do not set anti-sway control and droop control together.

```
<<Parameters referred to 》》
Pr. }10\mathrm{ DC injection brake operation frequency page 707
Pr. }78\mathrm{ Reverse rotation prevention selection w page 365
Pr. }286\mathrm{ Droop gain page }73
Pr. }292\mathrm{ Automatic acceleration/deceleration W page 339
Pr. }592\mathrm{ Traverse function selection 5 page 566
Pr. }690\mathrm{ Deceleration check time }$\mathrm{ page 218
Pr. }875\mathrm{ Fault definition page }38
Pr. }882\mathrm{ Regeneration avoidance operation selection page }72
```


### 5.14.9 Orientation control

## V/F Magneticflux Vector

The inverter can adjust the stop position (Orientation control) using a position detector (encoder) attached to a place such as the main shaft of the machine.

A vector control compatible option is required.
Because Pr. 350 Stop position command selection is initially set to "9999", the orientation control function is invalid.

Pr.		Name	Initial value	Setting range	Description		
$350$   A510* ${ }^{*}$		Stop position command selection	9999	0	Internal stop position command (Pr.356)		
				1	External stop position command (FR-A8AX 16-bit data)		
				9999	Orientation control invalid		
351 A526 ${ }^{* 1}$		Orientation speed	2 Hz	0 to 30 Hz	Turning ON the X22 signal decelerates the motor speed to the set value.		
$\begin{aligned} & 352 \\ & \text { A527 }{ }^{* 1} \end{aligned}$		Creep speed	0.5 Hz	0 to 10 Hz	After the speed reaches the orientation speed, the speed decreases to the creep speed set in Pr. 352 as soon as the current position pulse reaches the creep switchover position set in Pr. 353.		
353   A528* ${ }^{*}$		Creep switchover position	511	0 to 16383			
$\begin{aligned} & 354 \\ & \text { A529*1 } \end{aligned}$		Position loop switchover position	96	0 to 8191	As soon as the current position pulses reach the set position loop switchover position, control is changed to the position loop.		
$\begin{aligned} & 355 \\ & \text { A530*1 } \end{aligned}$		DC injection brake start position	5	0 to 255	After the motor moves into the position loop, the motor stops by the DC injection brake when the current position pulses reach the specified start position of the DC injection brake.		
$\begin{aligned} & 356 \\ & \text { A531*1 } \end{aligned}$		Internal stop position command	0	0 to 16383	When " 0 " is set in Pr.350, the internal position command is activated and the setting value of Pr. 356 becomes the stop position.		
$\begin{aligned} & 357 \\ & \text { A532*1 } \end{aligned}$		Orientation in-position zone	5	0 to 255	Set the in-position width at a stop of the orientation.		
$\begin{aligned} & \hline 358 \\ & \text { A533*1 } \end{aligned}$		Servo torque selection	1	0 to 13	Operation at orientation completion can be selected.		
$\begin{aligned} & 359 \\ & \text { C141*2 } \end{aligned}$	$\begin{aligned} & 852 \\ & \mathrm{C} 241{ }^{\star} 3 \end{aligned}$	Encoder rotation direction	1	0	Set when using a motor for which forward rotation (encoder) is clockwise (CW) viewed from the shaft	Set for the operation at 120 Hz or less.	
				100		Set for the operation at a frequency higher than 120 Hz .	
				1	Set when using a motor for which forward rotation (encoder) is counterclockwise (CCW) viewed from the shaft	Set for the operation at 120 Hz or less.	
				101		Set for the operation at a frequency higher than 120 Hz .	
360   A511 ${ }^{* 1}$		16-bit data selection	0	0	Speed command	When Pr. $350=" 1 "$ is set and the FR-A8AX is mounted together, set the stop position using 16-bit data.   Stop position command is input as binary regardless of the Pr. 304 setting.	
		1		16 -bit data is used as the external position command as is.			
		2 to 127		Set the stop position by dividing up to 128 stop positions.			
$\begin{aligned} & 361 \\ & \text { A512*1 } \end{aligned}$			Position shift	0	0 to 16383	Shift the home position using a compensation value without changing the home position of the encoder. The stop position is a position obtained by adding the setting of Pr. 361 to the position command.	
$\begin{aligned} & 362 \\ & \text { A520*1 } \end{aligned}$			Orientation position loop gain	1	0.1 to 100	When the servo torque function output frequency for generating increases to the creep speed of set in Pr.362. Although the ope value is increased, hunting may	is selected using Pr.358, the servo torque gradually Pr. 352 according to the slope tion becomes faster when the occur in the machine.


Pr.		Name	Initial value	Setting range	Description		
$\begin{aligned} & 363 \\ & \text { A521*1 } \end{aligned}$		Completion signal output delay time	0.5 s	0 to 5 s	The orientation complete signal turns ON after going into the inposition width and waiting for the set time. Also, the signal turns OFF after going out of the in-position width and waiting for the set time.		
364 A522 ${ }^{* 1}$		Encoder stop check time	0.5 s	0 to 5 s	If the orientation complete signal (ORA) has never been output and the encoder stays stopped for the set time without completing orientation, the orientation fault signal (ORM) is output. If the ORA signal has been output before but the orientation cannot be completed within the set time, the ORM signal is also output.		
$\begin{aligned} & 365 \\ & \text { A523*1 } \end{aligned}$		Orientation limit	9999	0 to 60 s	The time elapses after passing the creep switchover position is measured. If orientation cannot be completed within the set time, the orientation fault signal (ORM) is output.		
		9999		Set to 120 s .			
366   A524 ${ }^{* 1}$			Recheck time	9999	0 to 5 s	When the start signal is turned OFF with the orientation command (X22) ON after stopping the motor by orientation control, the present position is checked again after the set time elapses, and the orientation complete signal (ORA) or orientation fault signal (ORM) is output.	
		9999			Not checked.		
$\begin{aligned} & 369 \\ & \text { C140*4 }^{*} \end{aligned}$	$\begin{aligned} & 851 \\ & \mathrm{C} 240^{*} 3 \end{aligned}$	Number of encoder pulses	1024		Set the number of encoder pulses.   Set the number of pulses before it is multiplied by 4.		
393   A525* ${ }^{*}$		Orientation selection	0	0	Orientation is executed from the current rotation direction.	Motor end orientation	
		1		Orientation is executed from the forward rotation direction.			
		2		Orientation is executed from the reverse rotation direction.			
		10		Orientation is executed from the current rotation direction.	Machine end orientation *4		
		11		Orientation is executed from the forward rotation direction.			
		12		Orientation is executed from the reverse rotation direction.			
$\begin{aligned} & 394 \\ & \text { A540*5 } \end{aligned}$			Number of machine side gear teeth	1	0 to 32767	Set the encoder orientation gear ratio.	
395 A541 ${ }^{* 5}$			Number of motor side gear teeth				
$\begin{aligned} & 396 \\ & \text { A542*1 } \end{aligned}$			Orientation speed gain (P term)	60	0 to 1000	Response level during position control loop (servo rigidity) can be adjusted at orientation stop.	
397 A543 ${ }^{* 1}$			Orientation speed integral time	0.333	0 to 20 s		
398 A544 ${ }^{* 1}$			Orientation speed gain (D term)	1	0 to 100	Lag/advance compensation gain	can be adjusted.
399 A545 ${ }^{* 1}$		Orientation deceleration ratio	20	0 to 1000	Make adjustment when the mo or the orientation time is long.	runs back at orientation stop	
829   A546* ${ }^{*}$		Number of machine end encoder pulses	9999	0 to 4096	Set the number of pulses output from the encoder connected to the end of the machine.   Set the number of pulses before it is multiplied by 4.		
		9999		Machine end orientation invalid.			


Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 862 \\ & \mathrm{C} 242^{* 1} \end{aligned}$	Encoder option selection	0	0	First motor: plug-in option that supports the vector control Second motor: control terminal option that supports the vector control *8	Machine end orientation invalid
			1	First motor: control terminal option that supports the vector control Second motor: plug-in option that supports the vector control *8	Machine end orientation invalid (when Pr. 393 = "0, 1, or 2")
				Motor end: control terminal option that supports the vector control   Machine end: plug-in option that supports the vector control	Machine end orientation valid (when Pr. 393 = "10, 11, or 12")

[^26]
## - Motor end orientation connection example


*1 The pin number differs according to the encoder used.
*2 Use Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal. (Refer to page 498.)
*3 Use Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to a terminal. (Refer to page 446 .)
*4 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
*5 Connect the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 76.)
*6 For the differential line driver, set the terminating resistor selection switch to the ON position (initial status) to use. (Refer to page 73 .) Note that the terminating resistor switch should be set to the OFF position when sharing the same encoder with another unit (NC, etc.) or when the terminating resistor is connected to another unit. For the complementary, set the switch to the OFF position.
*7 A separate external power supply is necessary according to the encoder power specification. Make the voltage of the external power supply same as the encoder output voltage, and connect the external power supply between PG and SD. When performing encoder feedback control and vector control together, an encoder and power supply can be shared.
*8 When a stop position command is input from outside, a plug-in option FR-A8AX is required. Refer to page 574 for the external stop position command.

## Setting

- If the orientation command signal (X22) is turned ON during operation after the various parameters have been set, the speed will decelerate to the "orientation switchover speed". After the "orientation stop distance" is calculated, the speed will further decelerate, and the "orientation state" (servo lock) will be entered. The "orientation complete signal" (ORA) will be output when the "orientation complete width" is entered.


## Setting I/O signals

Signal	Signal name	Description
X22	Orientation command	Use a terminal to input the orientation signal that commands orientation.   For the X22 signal input, set "22" in any of Pr. 178 to Pr. 189 to assign the function.
ORA	Orientation complete	Output switches to Low if the orientation stop has made within the orientation complete width while the   start and X22 signals are input.   For the ORA signal output, set "27 (positive logic)" or "127 (negative logic)" in any of Pr. 190 to Pr. 196.
ORM	Orientation fault	Output switches to Low if the orientation not stop has made within the orientation complete width while   the start and X22 signals are input.   For the ORM signal output, set "28 (positive logic)" or "128 (negative logic)" in any of Pr. 190 to Pr. 196.

## Selecting stop position command (Pr. 350 Stop position command selection)

- Select either to use the internal stop position command (Pr. 356 Internal stop position command) or the external stop position command (16-bit data using the FR-A8AX).

Pr. 350 setting	Stop position command source
0	Internal stop position command (Pr.356: $\mathbf{0}$ to 16383)
1	External stop position command (FR-A8AX) 16-bit data
9999 (Initial value)	Orientation control invalid

- When the internal stop position command ( $\operatorname{Pr} .350=" 0$ ") is selected, the $\operatorname{Pr} .356$ setting is used as the stop position.
- When the number of encoder pulses is 1024 pulses/r, one revolution $\left(360^{\circ}\right)$ of the encoder is divided by 4096 pulses so that the degree per pulse can be calculated as $360^{\circ} / 4096$ pulses $=0.0879^{\circ} /$ pulse.
- Refer to the following figure. Stop position (address) is shown within parentheses.

- When the external stop position command ( $\operatorname{Pr} .350=" 1 ")$ is selected while the FR-A8AX option is mounted, 16 -bit data (binary input) is used to give the stop position.
- The value set in Pr. 360 16-bit data selection should be the divided value minus 1.

Pr. $\mathbf{3 6 0}$ Setting	Description
0	External position command is invalid (speed command or torque command via the FR-A8AX)
1	Position command direct input   The 16-bit digital signal via the FR-A8AX is the direct stop position command.   <Example>   When the Pr.369 Number of encoder pulses setting is "1024", the stop position command from "0 to $4095 "$ can   be input using FR-A8AX, and the digital signal of "2048 (H800)" is input to stop the motor at a $180^{\circ}$ position.
2 to 127	Set the stop position command by dividing up to 128 stop positions.   If the external stop command input is greater than the setting, the stop positions are the same as those in the   maximum external stop command value.   <Example>   When the number of stop positions is 90 (divided at intervals of $\left.4^{\circ}\right), 90-1=89$. Hence, set " $89^{\prime \prime}$.


[Example 1] When Pr. 369 = "1024"	[Example 2] With 8 stop positions	[Example 3] With 120 stop positions
$\text { Pr. } 360=\text { "1" }$	$\text { Pr. } 360 \text { = "7" }$   (4)	$\text { Pr. } 360=\text { "119" }$

## NOTE

- Values in parentheses indicate binary data input from the terminals. Even if the position pulse monitor (Pr. 52 Operation panel main monitor selection = "19") is selected, the data monitored is not the number of stop positions but is 0 to 65535 pulses.
- FR-A8AX parameters (Pr. 300 to Pr.305) are invalid (Valid when Pr. $360=$ " 0 ".)
- Terminal DY (data read timing input signal) becomes invalid during vector control. (The position data is downloaded at the start of orientation.)
- Internal stop position command is given when no option is mounted or Pr. $360=$ " 0 " even if "1" (external stop position command) is set in Pr. 350.
- Relationship between stop position command and 16-bit data

Pr. 350 Stop position command selection	Pr. 360 16-bit data selection	Operation status		
		Stop position command	16-bit data (FRA8AX)	Speed command
0 : internal	0: speed command	Internal (Pr.356)	Speed command	16-bit data
	1, 2 to 127: position command	Internal (Pr.356)	Invalid	```External command (or PU)```
1: external	0 : speed command	Internal (Pr.356)	Speed command	16-bit data
	1, 2 to 127: position command	External (Internal when the FRA8AX is not mounted (Pr.356))	Position command	External command (or PU)

## - Pr. 361 Position shift (initial value "0")

- The stop position is a position obtained by adding the setting of Pr. 361 to the position command.
- Position shift function

Shift the home position using a compensation value without changing the home position of the position detector (encoder).

## NOTE

- When orientation control is valid using Pr. 350 Stop position command selection with a vector control compatible option mounted, the rotation direction of the encoder is displayed on the rotation direction display of the PU (operation panel/ parameter unit). Make settings so that FWD is displayed at turn ON of the STF signal and REV is displayed at turn ON of the STR signal.


## Monitor display change

- The following items can be monitored by the operation panel. (Refer to page 419)

Monitor	REMARKS
Position pulse monitor	When "19" is set in Pr. 52 Operation panel main monitor selection, the position pulse monitor is displayed instead of the output voltage monitor of the PU.   (Displayed only when a vector control compatible option is mounted.)
Orientation status*1	When "22" is set in Pr.52, the orientation status is displayed instead of the output voltage monitor of the PU. (Displayed only when a vector control compatible option is mounted.)   0 : Other than orientation operation or orientation speed is not reached   1: Orientation speed is reached   2: Creep speed is reached   3: Position loop is reached   4: Orientation complete   5: Orientation fault (pulse stop)   6: Orientation fault (orientation limit)   7: Orientation fault (recheck)   8: Continuous multi-point orientation

*1 Invalid during vector control. (" 0 " is always displayed.)

## - Pr. 357 Orientation in-position zone (initial value "5")

- The in-position width for orientation stop can be set. The initial value of Pr. 357 is " 5 ". To change the $\Delta \theta$ value, make fine adjustments by changing in increments of $\pm 10$.
- If the position detection value from the encoder enters $\pm \Delta \theta$ during orientation stop, the Orientation complete signal (ORA) will be output.
- Operation example



## - Orientation from the running status (under V/F control, Advanced magnetic flux vector control)

1. When the orientation command (X22) turns on, the motor speed decreases to the Pr. 351 Orientation speed. (Pr. 351 initial value: 2 Hz )
2. After the speed reaches the orientation speed, the speed further decreases to the Pr. 352 Creep speed as soon as the current position pulse reaches the Pr. 353 Creep switchover position. (Pr. 352 is initially set to " 0.5 Hz ", Pr. 353 is initially set to " 511 ")
3. Moreover, as soon as the current position pulse reaches the Pr. 354 Position loop switchover position, control is changed to the position loop. (Pr. 354 is initially set to "96")
4. After the motor moves into the position loop, the motor decelerates and stops by the DC injection brake as soon as the current position pulse reaches the Pr. 355 DC injection brake start position. (Pr. 355 is initially set to "5")
5. When the motor stops in Pr. 357 Orientation in-position zone, the orientation complete (ORA) signal is output after Pr. 363 Completion signal output delay time. If the motor does not stop within the in-position width because of external force, etc., the ORA signal turns OFF after the time set in Pr.363. (Pr. 357 is initially set to " 5 ", Pr. 363 is initially set to " 0.5 s ")
6. If the orientation is not completed continuously in Pr. 365 Orientation limit after passing the creep switchover position, the orientation fault signal (ORM) is output.
7. After the orientation start, if the motor is stopped by external force, etc. before reaching the in-position width and therefore the ORA signal has not been output, the ORM signal is output after the Pr. 364 Encoder stop check time. If the motor is moved out of the in-position width by external force, etc. after the ORA signal has been output once, the ORA signal turns OFF after the set time in Pr.363. If the orientation is not completed within the time set in Pr.364, the ORM signal is output.
8. If the ORA and ORM signals have been output once, but the start signal (STF or STR) is turned OFF while the X22 signal is ON, the ORA or ORM signal will be output again after Pr. 366 Recheck time.
9. The ORA and ORM signals cannot be output while the X 22 signal is OFF.

## NOTE

- When the orientation command turns OFF while the start signal is ON, the speed accelerates to the command speed.

- If hunting of the motor shaft occurs during orientation stop, set a larger value in Pr. 354 or a smaller value in Pr. 352 to prevent it.



## - Orientation from the stop status (V/F control, Advanced magnetic flux vector control)

- Turning ON the start signal after turning ON the orientation command (X22) will increase the motor speed to the Pr. 351 Orientation speed, and then orientation operation will be performed with the same operation as for "orientation from the running status".
- Note that the DC injection brake operates without increasing to the orientation speed if the position signal is within the DC injection brake start position.



## - Continuous multi-point orientation (V/F control, Advanced magnetic flux vector control)

- Orientation command and orientation with STF/STR ON. (Orientation in servo-in status)

- The position data is read at the rising edge of DY. (For the details, refer to the Instruction Manual of FR-A8AX).
- When the position signal is within the creep switchover position, the speed starts up to the creep speed not to the orientation speed.
- When the position signal is outside the creep switchover position, the speed starts up to the orientation speed.
- The DC injection brake operates if the position signal is within the DC injection brake start position.
- 16-bit data with the FR-A8AX is valid only when the DY signal is ON.


## NOTE

- Couple the encoder with the motor shaft or with the shaft that stops the main shaft at the specified position. Couple it with the speed ratio of 1:1 and without any mechanical looseness.
- The DC injection brake operates at orientation stop. Release the DC injection brake as soon as possible (within several seconds), as continuous operation of the DC injection brake will cause the motor to overheat, leading to burnout.
- Because the servo lock function is not available after orientation stop, provide a holding mechanism, such as a mechanical brake or knock pin, when secure holding of the main shaft is required.
- To ensure correct positioning, the encoder must be set in the proper rotation direction, and the $A$ and $B$ phases must be connected correctly.
- If the pulse signal from the encoder stops due to encoder signal loss, etc. during orientation, the Orientation fault (ORM) signal may be output.
- When performing orientation control, enable the DC injection brake. (Refer to page 707.) When the DC injection brake is disabled, orientation operation cannot be completed.
- When orientation control is performed, the DC injection brake operates regardless of the External DC injection brake operation start (X13) signal even when Pr. 11 DC injection brake operation time = "8888" (DC injection brake external selection).
- To terminate orientation, the start signal (STF or STR) must be first switched OFF, and then the X22 signal must be switched OFF. As soon as this X22 signal is switched OFF, orientation control ends. (Depending on the Pr. 358 Servo torque selection setting, the orientation status continues if the X 22 signal remains ON even if the DC injection brake is released by turning OFF the start signal. Because of this, the orientation status on the monitor does not show "0".
- When the retry function of Pr. 358 Servo torque selection is selected, the retry operation is performed three times including the first orientation.
- When performing orientation control, properly set Pr. 350 Stop position command selection and Pr. 360 16-bit data selection (external position command selection). If the values are set incorrect, proper orientation control will not be performed.
- When orientation control is performed, PID control is disabled.


## - Servo torque selection (Pr.358) (V/F control, Advanced magnetic flux vector control)

Function and description	Operation for each Pr. 358 setting														REMARKS
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
a. Servo torque function until output of the orientation complete signal (ORA)	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	With servo torque function   $\times$ : Without servo torque function
b. Retry function	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	O: With retry function $\times$ : Without retry function						
c. Output frequency compensation when the motor stops outside the inposition zone	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	With frequency compensation $\times$ : Without frequency compensation
d. DC injection brake and servo torque when the motor exits the inposition zone after output of the orientation complete signal (ORA)	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	DC injection brake enabled $\times$ : Servo torque enabled								
e. Turning OFF the orientation complete signal (ORA) when the orientation operation is ended.	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	When the start signal (STF, STR) or orientation command is turned OFF   $x$ : When the orientation command is turned OFF
f. Complete signal when the motor exits the in-position zone after output of the orientation complete signal (ORA)	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	O: Turns OFF the complete signal when the motor exits the in-position zone   $\times$ : Complete signal remains ON even if the motor exits the in-position zone (orientation fault signal (ORM) is not output)								

## NOTE

- When the orientation command turns OFF while the start signal is ON, the motor accelerates to the command speed.
- When the motor shaft stops outside of the set setting range of the stop position, the motor shaft is returned to the stop position by the servo torque function (if enough torque is generated).
a. Servo torque function until output of the orientation complete signal

Select whether or not servo torque is available using Pr. 358 Servo torque selection. Servo torque is not generated if the current position pulse is in between the orientation stop position and DC injection brake start position. The shaft is fixed using the DC injection brake, and when the motor exits the width by external force, etc., the servo torque is generated to move the motor back within the width. Once the orientation complete (ORA) signal is output, the operation is performed as described in d .
b. Retry function

Select retry function using Pr.358. Note that the retry function cannot be used together with the servo torque function. If the motor shaft does not stop within the in-position zone when the motor stop is checked, orientation operation is performed again by the retry function. This retry function is performed three times including the first orientation. The maximum retry number is three. (The orientation fault (ORM) signal is not output during retry operation.)
c. Frequency compensation when the motor stops outside the orientation complete width

When the motor stops before entering the in-position width due to external force, etc., the output frequency is increased to move the shaft to the orientation stop position. The output frequency is gradually increased to the Pr. 352 Creep speed. This function cannot be used with the retry function.
d. DC injection brake and servo torque selection when the position pulse exits the in-position zone after output of the ORA signal

If the motor exits the in-position width, select the setting either to fix the shaft with the $D C$ injection brake or by returning the motor to the orientation stop position with the servo torque.
e. Turning OFF the orientation complete signal (ORA) when the orientation operation is ended.

When ending the orientation operation, first turn OFF the start signal (STF or STR), and then turn OFF the X22 signal. At this time, select when to turn OFF the ORA signal from either the time the start signal is turned OFF or the time the orientation command signal is turned OFF.
f. Complete signal when the motor exits the in-position zone after output of the orientation complete signal (ORA)

Select to turn OFF the ORA signal or to keep the ORA signal ON (ORM signal is not output) when the motor exits the in-position width.

## - Position loop gain (Pr.362) (V/F control, Advanced magnetic flux vector control)

- When the servo torque function is selected using Pr. 358 Servo torque selection, the output frequency for generating servo torque gradually increases to the Pr. 352 Creep speed according to the slope set in Pr. 362 Orientation position loop gain.
- Although the operation becomes faster when the value is increased, a machine may hunt, etc.


## - Description of orientation operation (Vector control)

- Setting the rotation direction (Pr. 393 Orientation selection)

Pr.393   setting	Rotation direction		Remarks
0   (initial value)	Pre-orientation	Orientation is executed from the current rotation direction.	Motor end orientation
1	Rerward rotation orientation	Orientation is executed from the forward rotation direction.   (If the motor is running in reverse, orientation is executed from   the forward rotation direction after deceleration.)	
2	Pre-orientation	Forward rotation orientation	Orientation is executed from the forward rotation direction.   (If the motor is running in reverse, orientation is executed from   the forward rotation direction after deceleration.)
10	Reverse rotation orientation	Orientation is executed from the reverse rotation direction.   (If the motor is running forward, orientation is executed from   the reverse rotation direction after deceleration.)	Machine end orientation
(If the motor is running forward, orientation is executed from			
the reverse rotation direction after deceleration.)			
11			

## - Orientation from the current rotation direction (Pr. $393=$ " 0 (initial value), 10") (Vector control)

- When the orientation command (X22) is input, the motor speed will decelerate from the running speed to Pr. 351 Orientation speed. At the same time, the orientation stop position command will be read in. (The stop position command is determined by the setting of Pr. 350 Stop position command selection and Pr. 360 16-bit data selection.)

- When the orientation switchover speed is reached, the encoder $Z$ phase pulse will be confirmed, and the control will change from speed control to position control (Pr. 362 Orientation position loop gain).
- The distance to the orientation stop position is calculated at switching of the control, and the motor decelerates to a stop with a set deceleration pattern (Pr. 399 Orientation deceleration ratio) and enters the orientation (servo lock) state.
- Once in the Pr. 357 Orientation in-position zone, the orientation complete (ORA) signal is output.
- The home position can be moved using Pr. 361 Position shift.


## $\triangle$ CAUTION

- If the X22 is turned OFF while the start signal is input, the motor will accelerate toward the speed of the current speed command.

Therefore, to stop, turn the forward rotation (reverse rotation) signal OFF.

## - Orientation from the forward rotation direction (Pr. 393 = "1, 11") (Vector control)

- This method is used to improve the stopping precision and maintain the mechanical precision when the backlash is large.
- If the motor is running in the forward rotation direction, it will make an orientation stop with the same method as "orientation from the current rotation direction".
- If the motor is running in reverse, it will decelerate, change to the forward rotation direction, and then orientation stop will be executed.



## - Orientation from the reverse rotation direction (Pr. $393=$ " 2,12 ") (Vector control)

- If the motor is running in the reverse rotation direction, it will make an orientation stop with the same method as "orientation from the current rotation direction".
- If the motor is running in forward, it will decelerate, change to the reverse rotation direction, and then orientation stop will be executed.




## NOTE

- Couple the encoder with the motor shaft that stops the shaft at the specified position. Couple it with the speed ratio of 1:1 and without any mechanical looseness.
- To ensure correct positioning, the encoder must be set in the proper rotation direction, and the A and B phases must be connected correctly.
- If the pulse signal from the encoder stops due to encoder signal loss, etc. during orientation, orientation may not be completed.
- To terminate orientation, the start signal (STF or STR) must be first switched OFF, and then the orientation signal (X22) must be switched OFF. As soon as this orientation signal is switched OFF, orientation control ends.
- When performing orientation control, properly set Pr. 350 Stop position command selection and Pr. 360 16-bit data selection. If the values set are incorrect, proper orientation control will not be performed.
- When orientation control is performed, PID control is disabled.
- If Signal loss detection (E.ECT) is displayed when the X22 signal is ON, causing the inverter to trip, check for a break in the cable of the $Z$ phase of the encoder.


## - Servo rigidity adjustment (Pr.362, Pr. 396 to Pr.398) (Vector control)

- To increase the servo rigidity ${ }^{* 1}$ during orientation stop using Pr. 396 Orientation speed gain (P term) or Pr. 397 Orientation speed integral time, adjust with the following procedures.

1. Increase the Pr. 362 Orientation position loop gain value to the extent that rocking ${ }^{* 2}$ does not occur during orientation stop.
2. Increase Pr. 396 and Pr. 397 at the same rate. Normally, adjust Pr. 396 in the range from 10 to 100, and Pr. 397 from 0.1 to 1.0 s. (Note that these do not need to be set to the same rate.) <Example>
When the Pr. 396 value is multiplied by 1.2, divide the Pr. 397 value by 1.2. If vibration occurs during orientation stop, the scale cannot be raised any higher.
3. Pr. 398 Orientation speed gain ( $\mathbf{D}$ term) is the lag/advance compensation gain.

The limit cycle ${ }^{* 3}$ can be prevented by increasing the value, and operation can be stopped stably. However, the torque will decrease in relation to the position deviation, and the motor will stop with deviation.
*1 Servo rigidity: This is the response when a position control loop is configured. When the servo rigidity is raised, the holding force will increase and operation will stabilize, but vibration will more easily occur. When the servo rigidity is lowered, the holding force will decrease, and the settling time will increase
*2 Rocking: Movement in which return occurs when the stopping position is exceeded.
*3 Limit cycle: This is a phenomenon that generates $\pm$ continuous vibration centering on the target position.

## Point $\rho$

- Application of lag/advance control and PI control

PI control can be applied by setting Pr. 398 to 0 . Normally, use the lag/advance control. PI control should be used when using a machine with a high spindle static friction torque and requires a stop position accuracy.

## Pr. 399 Orientation deceleration ratio (initial value: 20) (Vector control)

- Make adjustments, as shown below, according to the orientation status. (Make adjustments in the order of a, b, and c.) Normally, adjust Pr. 362 Orientation position loop gain in the range from 5 to 20, and Pr. 399 Orientation deceleration ratio from 5 to 50 .

Condition	Adjustment procedure
Rocking occurs during   stopping	a. Decrease the Pr. 399 setting.   b. Decrease the Pr. 362 setting.   c. Increase the Pr. 396 and Pr. 397 settings.
The orientation time is long.	a. Increase the Pr. 399 setting.   b. Increase the Pr. 362 setting.
Hunting occurs during   stopping	a. Decrease the Pr. 362 setting.   b. Decrease the Pr. 396 setting and increase the Pr. 397 setting.
Low servo rigidity during   stopping	a. Increase the Pr. 396 setting and decrease the Pr. 397 setting.   b. Increase the Pr. 362 setting.

## NOTE

- Orientation stop operation will fail, causing an excessive position error, or if the motor performs forward/reverse reciprocation operation $\circlearrowright$, review the settings of Pr. 393 Orientation selection (on page 570) and Pr. 359 Encoder rotation direction (on page 570).


## Pr. 351 Orientation speed (initial value: 2 Hz) (Vector control)

- Set the speed when switching between the speed control mode and the position control mode is performed under orientation operation. Decreasing the set speed enables stable orientation stop. Note that the orientation time will increase.



## - Machine end orientation connection diagram (Vector control)

- To perform machine end orientation control, the following settings are required.
- Install a plug-in option (FR-A8AP/FR-A8AL or FR-A8APR) and a control terminal option (FR-A8TP) to the inverter, a motor end encoder to the control terminal option, and a machine end encoder to the plug-in option.
- Set Pr. 862 Encoder option selection="1".
- Set Pr. 393 Orientation selection="10 to 12". (Refer to page 580.)
- Set the gear ratio by setting Pr. 394 Number of machine side gear teeth and Pr. 395 Number of motor side gear teeth. (Refer to page 585.)

*1 The pin number differs according to the encoder used
*2 Use Pr. 178 to Pr.182, Pr.185, or Pr. 189 (Input terminal function selection) to assign the function to a terminal. (Refer to page 498.)
*3 Use Pr. 190 to Pr.192, or Pr. 195 (Output terminal function selection) to assign the function to a terminal. (Refer to page 446.)
*4 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
*5 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to page 73.)
*6 For the differential line driver, set the terminating resistor selection switch to the ON position. (Refer to page 76.) Note that the terminating resistor switch should be set to the OFF position (initial status) when sharing the same encoder with another unit (NC etc.) having a terminating resistor under the differential line driver setting. For the complementary, set the switch to the OFF position.
*7 For terminal compatibility between the FR-A8TP and the FR-JCBL/FR-V7CBL, refer to the Instruction Manual of the FR-A8TP.
*8 A separate external power supply is necessary according to the encoder power specification. When the encoder output is the differential line driver type, only 5 V can be input. Make the voltage of the external power supply same as the encoder output voltage, and connect the external power supply between PG and SD. If using the 24 V power supply of the FR-A8TP, 24 V power can be supplied from terminal PG24. When performing encoder feedback control and Vector control together, an encoder and power supply can be shared.
The encoder and the power supply can be shared under orientation control, encoder feedback control, or vector control
*9 When a stop position command is input from outside, a plug-in option FR-A8AX is required. Refer to page 574 for the external stop position command.


## - Encoder orientation gear ratio setting (Pr.394, Pr.395) (Vector control)

- Set the encoder orientation gear ratio for machine end orientation control.
- Set the encoder orientation gear ratio in Pr. 394 Number of machine side gear teeth and in Pr. 395 Number of motor side gear teeth. An accurate gear ratio (or pulley ratio) from the motor shaft to the spindle is necessary.
Set correct numbers of gear teeth in Pr. 394 and Pr. 395.
Pr. $394=A \times C \times E$
Pr. $395=B \times D \times F$
Exercise care so that the $\mathrm{A} \times \mathrm{C} \times \mathrm{E}$ and $\mathrm{B} \times \mathrm{D} \times \mathrm{F}$ settings do not exceed 32767 .
If either or both of them exceed that value, make approximations.
 numbers of gear teeth.) $F=$ Motor
- Pulley ratio ...... Ratio of vector-driven motor side pulley diameter to spindle side pulley diameter

- Setting example (When the numbers of gear teeth are as follows)

A:15, C: 43, E: 60, B: 10, D: 28, F:55
Pr. $394=15 \times 43 \times 60=38700$
Pr. $395=10 \times 28 \times 55=15400$
Since Pr. 394 setting exceeds 32767 at this time, make approximations as follows.
Pr.394/Pr. $395=38700 / 15400=3870 / 1540$

## - Machine end simple orientation control

- Machine end simple orientation control is available when the FR-A8AL option is installed on the inverter and connected to a machine end encoder. Both machine end orientation control and encoder feedback control/ Vector control is also enabled at the same time.
- Set the orientation speed at the motor end encoder in Pr. 351 Orientation speed.
- Set the rotation direction of the encoder in Pr. 359 Encoder rotation direction. If the rotation directions of the motor end encoder and the machine end encoder differ, set the rotation direction of the motor end encoder.
- To perform encoder feedback control or Vector control using the machine end encoder, set Pr. 369 Number of encoder pulses with the number of motor end encoder pulses converted from the number of machine end encoder pulses.
- To enable encoder feedback control or Vector control and machine end orientation control at the same time using the machine end encoder, set the number of machine end encoder pulses in Pr. 829 Number of machine end encoder pulses and " 0 " in Pr. 862 Encoder option selection.

Pr. 829 setting	Pr.862 setting	
9999	-	Description
$\begin{array}{l}\text { Other than } 9999 \text { (The } \\ \text { number of machine end } \\ \text { encoder pulses (before } \\ \text { multiplied by four) is set.) }\end{array}$	0	1

the same time using the machine end encoder is enabled.\end{array}\right]\)

- When the number of machine end encoder pulses is 4000 and the gear ratio between motor end and machine end is $4: 1$ ( 4 rotations of motor equals one rotation of machine), set the value as Pr. $369=" 1000 "$, Pr. $829=4000$ " (the number of machine end encoder pulses) according to the following formula, The equivalent of number of motor end encoder pulses $=4000 \times 1 / 4=1000$


## NOTE

- For other settings, refer to descriptions of motor end orientation control in this manual.


### 5.14.10 PID control

Process control such as flow rate, air volume or pressure are possible on the inverter.
A feedback system can be configured and PID control can be performed using the terminal 2 input signal or parameter setting value as the set point, and the terminal 4 input signal as the feedback value.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 127 \\ & \text { A612 } \end{aligned}$	PID control automatic switchover frequency	9999	0 to 590 Hz	Set the value at which control is automatically switched to PID control.
			9999	Without PID control automatic switchover function
$\begin{aligned} & 128 \\ & \text { A610 } \end{aligned}$	PID action selection	0	$\begin{aligned} & \hline 0,10,11,20,21 \\ & 50,51,60,61,70 \\ & 71,80,81,90,91 \\ & 100,101,1000 \\ & 1001,1010,1011 \\ & 2000,2001,2010 \\ & 2011 \end{aligned}$	Select how to input the deviation value, measured value and set point, and forward and reverse action.
			40 to 43	Refer to page 611.
$\begin{aligned} & 129 \\ & \text { A613 } \end{aligned}$	PID proportional band	100\%	0.1 to 1000\%	If a narrow proportional band is set (small parameter setting value), the manipulated amount changes considerably by slight changes in the measured value. As a result, response improves as the proportional band becomes narrower, though stability worsens as shown by the occurrence of hunting. Gain $\mathrm{Kp}=1 /$ proportional band
			9999	Without proportional band
$\begin{aligned} & 130 \\ & \text { A614 } \end{aligned}$	PID integral time	1 s	0.1 to 3600 s	With deviation step input, this is the time (Ti) used for obtaining the same manipulated amount as proportional band $(P)$ by only integral $(I)$ action. Arrival to the set point becomes quicker the shorter an integral time is set, though hunting is more likely to occur.
			9999	Without integral control
$\begin{aligned} & 131 \\ & \text { A601 } \end{aligned}$	PID upper limit	9999	0 to 100\%	Sets the upper limit. The FUP signal is output when the feedback value exceeds this setting. The maximum input (20 $\mathrm{mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value (terminal 4) is equivalent to $100 \%$.
			9999	No function
$\begin{aligned} & 132 \\ & \text { A602 } \end{aligned}$	PID lower limit	9999	0 to 100\%	Set the lower limit. The FDN signal is output when the measured value falls below the setting range. The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value (terminal 4) is equivalent to $100 \%$.
			9999	No function
133   A611	PID action set point	9999	0 to 100\%	Set the set point during PID control.
			9999	Set point set by Pr. 128.
$\begin{aligned} & 134 \\ & \text { A615 } \end{aligned}$	PID differential time	9999	0.01 to 10 s	With deviation ramp input, this is the time (Td) used for obtaining the manipulated amount only by proportional action ( P ). Response to changes in deviation increase greatly as the differential time increases.
			9999	Without differential control
$\begin{aligned} & 553 \\ & \text { A603 } \end{aligned}$	PID deviation limit	9999	0 to 100\%	The Y48 signal is output when the absolute value of the deviation exceeds the deviation limit value.
			9999	No function
$\begin{aligned} & 554 \\ & \text { A604 } \end{aligned}$	PID signal operation selection	0	0 to 3, 10 to 13	The action when the upper or lower limit for a measured value input is detected or when a limit for the deviation is detected can be selected. The operation for PID output suspension function can be selected.
$\begin{aligned} & 575 \\ & \text { A621 } \end{aligned}$	Output interruption detection time	1 s	0 to 3600 s	If the status where the output frequency after PID calculation is less than the Pr. 576 setting is continuously the Pr. 575 set time or more, inverter running is suspended.
			9999	Without output interruption function
$\begin{aligned} & 576 \\ & \text { A622 } \end{aligned}$	Output interruption detection level	0 Hz	0 to 590 Hz	Set the frequency at which output interruption is performed.
$\begin{aligned} & 577 \\ & \text { A623 } \end{aligned}$	Output interruption cancel level	1000\%	900 to 1100\%	Level at which the PID output suspension function is released.   Set "Pr. 577 -1000\%".


Pr.	Name	Initial value	Setting range		Description
$\begin{aligned} & \hline 609 \\ & \text { A624 } \\ & \hline \end{aligned}$	PID set point/deviation input selection	2	1	Input of set point, deviation value from terminal 1	
			2	Input of set point, deviation value from terminal 2	
			3	Input of set point, deviation value from terminal 4	
			4	Input of set point, deviation value via communication	
			5	Input of set point, deviation value by PLC function	
$\begin{aligned} & \hline 610 \\ & \text { A625 } \end{aligned}$	PID measured value input selection	3	1	Input of measured value from terminal 1	
			2	Input of measured value from terminal 2	
			3	Input of measured value from terminal 4	
			4	Input of measured value via communication	
			5	Input of measured value by sequence function	
$\begin{aligned} & 1015 \\ & \text { A607 } \end{aligned}$	Integral stop selection at limited frequency	0	0	Integral stopped at the limit, manipulation range of $\pm 100 \%$, integral cleared during output interruption	
			1	Integral continued at the limit, manipulation range of $\pm 100 \%$, integral cleared during output interruption	
			2	Integral stopped at the limit, manipulation range of 0 to $100 \%$, integral cleared during output interruption	
			10	Integral stopped at the limit, manipulation range of $\pm 100 \%$, integral stopped during output interruption	
			11	Integral continued at the limit, manipulation range of $\pm 100 \%$, integral stopped during output interruption	
			12	Integral stopped at the limit, manipulation range of 0 to $100 \%$, integral stopped during output interruption	
$\begin{aligned} & \hline 753 \\ & \text { A650 } \end{aligned}$	Second PID action selection	0	$\begin{aligned} & \hline 0,10,11,20,21 \\ & 50,51,60,61,70 \\ & 71,80,81,90,91 \\ & 100,101,1000 \\ & 1001,1010,1011 \\ & 2000,2001,2010 \\ & 2011 \end{aligned}$	Refer to Pr. 128.	Set the second PID control. For how to enable the second PID control, refer to page 601.
$\begin{aligned} & 754 \\ & \text { A652 } \end{aligned}$	Second PID control automatic switchover frequency	9999	0 to $600 \mathrm{~Hz}, 9999$	Refer to Pr. 127.	
$\begin{aligned} & \hline 755 \\ & \text { A651 } \end{aligned}$	Second PID action set point	9999	0 to 100\%, 9999	Refer to Pr. 133.	
$\begin{aligned} & 756 \\ & \text { A653 } \end{aligned}$	Second PID proportional band	100	$\begin{aligned} & 0.1 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 129.	
$\begin{aligned} & 757 \\ & \text { A654 } \end{aligned}$	Second PID integral time	1 s	$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 130.	
$\begin{aligned} & 758 \\ & \text { A655 } \end{aligned}$	Second PID differential time	9999	0.01 to 10 s, 9999	Refer to Pr. 134.	
$\begin{aligned} & 1140 \\ & \text { A664 } \end{aligned}$	Second PID set point/ deviation input selection	2	1 to 5	Refer to Pr. 609.	
$\begin{aligned} & 1141 \\ & \text { A665 } \end{aligned}$	Second PID measured value input selection	3	1 to 5	Refer to Pr. 610.	
$\begin{aligned} & 1143 \\ & \text { A641 } \end{aligned}$	Second PID upper limit	9999	0 to 100\%, 9999	Refer to Pr. 131.	
$\begin{aligned} & 1144 \\ & \text { A642 } \end{aligned}$	Second PID lower limit	9999	0 to 100\%, 9999	Refer to Pr. 132.	
$\begin{aligned} & 1145 \\ & \text { A643 } \end{aligned}$	Second PID deviation limit	9999	0 to 100\%, 9999	Refer to Pr. 553. (Y205 signal is output.)	
$\begin{aligned} & 1146 \\ & \text { A644 } \end{aligned}$	Second PID signal operation selection	0	0 to 3, 10 to 13	Refer to Pr. 554.	
$\begin{aligned} & 1147 \\ & \text { A661 } \end{aligned}$	Second output interruption detection time	1 s	0 to 3600 s, 9999	Refer to Pr. 575.	
$\begin{aligned} & 1148 \\ & \text { A662 } \end{aligned}$	Second output interruption detection level	0 Hz	0 to 600 Hz	Refer to Pr. 576.	
$\begin{aligned} & 1149 \\ & \text { A663 } \end{aligned}$	Second output interruption cancel level	1000\%	900 to 1100\%	Refer to Pr. 577.	

## Basic configuration of PID control

- Pr. 128 ="10, 11" (deviation value signal input)


Kp: Proportionality constant Ti: Integral time S: Operator Td: Differential time
*1 Set " 0 " to Pr. 868 Terminal 1 function assignment. When Pr. $868 \neq{ }^{\prime \prime} 0$ ", PID control is invalid.

- Pr. 128 = "20, 21" (measured value input)


Kp: Proportionality constant Ti: Integral time S: Operator Td: Differential time
*2 Note that the input of terminal 1 is added to the set point of terminal 2 as a set point.
*3 Set " 0 " to Pr. 858 Terminal 4 function assignment. When Pr. $858 \neq " 0$ ", PID control is invalid.

## - PID action outline

- Pl action

Pl action is a combination of proportional action $(\mathrm{P})$ and integral action ( I , and applies a manipulated amount according to the size of the deviation and transition or changes over time.
[Example of action when the measured value changes in a stepped manner]

(Note) Pl action is the result of P and I actions being added together.

- PD action

PD action is a combination of proportional action ( P ) and differential action (D), and applies a manipulated amount according to the speed of the deviation to improve excessive characteristics.
[Example of action when the measured value changes proportionately]

(Note) PD action is the result of $P$ and $D$ actions being added together.

- PID action

PID action is a combination of PI and PD action, which enables control that incorporates the respective strengths of these actions.

(Note) PID action is the result of all P, I and D actions being added together.

- Reverse action

When deviation $X=$ (set point - measured value) is a plus value, the manipulated amount (output frequency) is increased, and when the deviation is a minus value, the manipulated amount is decreased.


- Forward action

When deviation $\mathrm{X}=$ (set point - measured value) is a minus value, the manipulated amount (output frequency) is increased, and when the deviation is a plus value, the manipulated amount is decreased.


Relationship between deviation and manipulated amount (output frequency)

PID action setting	Deviation	
	Plus	
Minus		
Reverse action	$\boldsymbol{\pi}$	$\boldsymbol{\searrow}$
Forward action	$\boldsymbol{y}$	$\boldsymbol{\pi}$

## Connection diagram

- Sink logic
- Pr.128=20

Pr.183=14

- Pr.191=47
- Pr.192=16

Pr.193=14

- Pr. 194=15

*1 Prepare a power supply matched to the power supply specification of the detector.
*2 The output signal terminal to be used differs according to the Pr. 190 to Pr. 196 (Output terminal function selection) setting
*3 The input signal terminal to be used differs according to the Pr. 178 to Pr. 189 (Input terminal function selection) setting.
*4 The AU signal need not be input


## Selection of deviation value, measured value and set point input method, and PID action method (Pr.128, Pr.609, Pr.610)

- Using Pr.128, select the input method for the PID set point, measured value detected by the meter, and externally calculated deviation. Also, select forward or reverse action.
- Switch the power voltage/current specifications of terminals 2 and 4 by Pr. 73 Analog input selection or Pr. 267 Terminal 4 input selection to match the specification of the input device. After changing the Pr. 73 and Pr. 267 settings, check the voltage/current input selection switch. Incorrect setting may cause a fault, failure or malfunction. (Refer to page 473 for the setting.)

$\begin{aligned} & \text { Pr. } 128 \\ & \text { setting } \end{aligned}$	$\begin{aligned} & \hline \text { Pr. } 609 \\ & \text { Pr. } 610 \end{aligned}$	PID action	Set point input	Measured value input	Deviation input
0	Invalid	PID invalid	-	-	-
10		Reverse action	-	-	Terminal 1
11		Forward action			
20		Reverse action	Terminal 2 or Pr. 133 *1	Terminal 4	-
21		Forward action			
40 to 43	Valid	Dancer control	For details on dancer co	, refer to page 611.	


$\begin{aligned} & \text { Pr. } 128 \\ & \text { setting } \end{aligned}$	$\begin{aligned} & \hline \text { Pr. } 609 \\ & \text { Pr. } 610 \end{aligned}$	PID action	Set point input	Measured value input	Deviation input
50	Invalid	Reverse action	-	-	Communication ${ }^{*}$
51		Forward action			
60		Reverse action	Communication ${ }^{*}$	Communication ${ }^{*}$	-
61		Forward action			
70		Reverse action	-	-	PLC function (with frequency reflected)*3
71		Forward action			
80		Reverse action	PLC function   (with frequency reflected) ${ }^{* 3}$	PLC function   (with frequency reflected) *3	-
81		Forward action			
90		Reverse action	-	-	PLC function (without frequency reflected) ${ }^{*} 3$
91		Forward action			
100		Reverse action	PLC function (without frequency reflected) ${ }^{* 3}$	PLC function (without frequency reflected) ${ }^{* 3}$	-
101		Forward action			
1000	Valid	Reverse action	According to Pr.609*1	According to Pr. 610	-
1001		Forward action			
1010		Reverse action	-	-	According to Pr. 609
1011		Forward action			
2000		Reverse action (without frequency reflected)	According to Pr. 609 *1	According to Pr. 610	-
2001		Forward action (without frequency reflected)			
2010		Reverse action (without frequency reflected)	-	--	According to Pr. 609
2011		Forward action (without frequency reflected)			

*1 When Pr. 133 = "9999", the Pr. 133 setting is valid.
*2 CC-Link, CC-Link IE Field Network, or LONWORKS communication is available. For details on communication, refer to the Instruction Manual of each option.
*3 For details on the PLC function, refer to the PLC Function Programming Manual.

- The set point/deviation input method can also be flexibly selected by Pr. 609 PID set point/deviation input selection and the measured value input method can be selected by Pr. 610 PID measured value input selection. Selection by Pr. 609 and Pr. 610 is valid when Pr. 128 = "1000 to 2011".

Pr.609 and Pr.610 settings	Input method
1	Terminal $1^{* 4}$
2	Terminal 2*4
3	Terminal $4 *^{*}$
4	Communication $^{* 5}$
5	PLC function

*4 When the same input method has been selected for the set point and measured value using Pr. 609 and Pr.610, set point input is invalid. (The inverter runs at set point 0\%)
*5 CC-Link, CC-Link IE Field Network, or LONWORKS communication is available. For details on communication, refer to the Instruction Manual of each option.

## NOTE

- When terminals 2 and 4 are selected for deviation input, perform bias calibration using C3 and $\mathbf{C 6}$ to prevent a minus voltage from being entered as the deviation input signal. Input of a minus voltage might damage devices and the inverter.
- For the set point setting by parameters, the set point setting screen can be displayed quickly by setting the Extended direct setting. (Refer to page 296.)
- The following shows the relationship between the input values of the analog input terminals and set point, measured value and deviation. (Calibration parameter initial values)

Input terminal	Inspect specification ${ }^{*} 6$	Relationship with analog input			Calibration parameter
		Set point	Result	Deviation	
Terminal 2	0 to 5 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.125, C2 to C4
	0 to 10 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	
Terminal 1	0 to $\pm 5 \mathrm{~V}$	$\begin{aligned} & -5 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -5 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -5 V=-100 \% \\ & 0 V=0 \% \\ & 5 V=+100 \% \\ & \hline \end{aligned}$	When Pr. 128 = "10",   Pr.125, C2 to C4.   When Pr. $128 \geq$ "1000",   C12 to C15.
	0 to $\pm 10 \mathrm{~V}$	$\begin{aligned} & \hline-10 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & \hline-10 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -10 V=-100 \% \\ & 0 V=0 \% \\ & 10 V=+100 \% \end{aligned}$	
Terminal 4	0 to 5 V	$\begin{aligned} & \hline 0 \mathrm{~V} \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { Vto } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=-20 \% \\ & 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.126, C5 to C7
	0 to 10 V	$\begin{aligned} & \hline 0 \mathrm{~V} \text { to } 2 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & \hline 0 \mathrm{~V} \text { to } 2 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=-20 \% \\ & 1 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=-20 \% \\ & 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \\ & \hline \end{aligned}$	

*6 Can be changed by Pr. 73 and Pr. 267 and the voltage/current input switch. (Refer to page 473.)

## NOTE

- Always perform calibration after changing the voltage/input specification with Pr.73, Pr.267, and the voltage/current input selection switch.


## - Input/output signals

- Assigning the PID control valid terminal signal (X14) to the input terminal by Pr. 178 to Pr. 189 (Input terminal function selection) enables PID control to be performed only when the X 14 signal is turned ON. When the X 14 signal is OFF, regular inverter running is performed without PID action. (When the X14 signal is not assigned, PID control is enabled only by setting Pr. 128 = " 0 ".)
- Input signal

Signal	Function	Pr. 178 to Pr. 189   setting	Description
X14	PID control valid terminal	14	When the signal is assigned to the input terminal, PID control is enabled   when the signal is ON.
X80	Emergency drive   execution command	80	PID control is switched between forward and reverse action without   changing parameters by turning ON the signal.
X64	PID forward/reverse   action switchover	64	
X79	Second PID forward/   reverse action switchover	79	Integral and differential values can be reset by turning the signal ON.
X72	PID P control switchover	72	73
X73	Second PID P control   switchover		

- Output signal

Signal	Function	Pr. 190 to Pr. 196 setting value		Description
		positive logic	negative logic	
FUP	PID upper limit	15	115	Output when the measured value signal exceeds Pr. 131 PID upper limit (Pr. 1143 Second PID upper limit).
FUP2	Second PID upper limit	201	301	
FDN	PID lower limit	14	114	Output when the measured value signal falls below Pr. 132 PID lower limit (Pr. 1144 Second PID lower limit).
FDN2	Second PID lower limit	200	300	
RL	PID forward/reverse rotation output	16	116	"Hi" is output when the output display of the parameter unit is forward rotation (FWD), and "Low" is output when the display is reverse rotation (REV) and stop (STOP).
RL2	Second PID forward/ reverse rotation output	202	302	
PID	During PID control activated	47	147	Turns ON during PID control.   When the PID calculation result is reflected to the output frequency (Pr. 128 < "2000"), the PID signal turns OFF at turn OFF of the start signal. When the PID calculation result is not reflected to the output frequency (Pr. $128 \geq$ " 2000 "), the PID signal turns ON during PID calculation regardless of the start signal status.
PID2	Second During PID control activated	203	303	
Y48	PID deviation limit	48	148	Output when the absolute deviation value exceeds the limit value set in Pr. 553 PID deviation limit (Pr. 1145 Second PID deviation limit).
Y205	Second PID deviation limit	205	305	
SLEEP	PID output interruption	70	170	Set Pr. 575 Output interruption detection time (Pr. 1147 Second output interruption detection time) $\neq " 9999 "$. This signal turns ON when the PID output suspension function is activated.
SLEEP2	During second PID output shutoff	204	304	

## NOTE

- Changing the terminal functions with Pr. 178 to Pr. 189 and Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.


## - PID automatic switchover control (Pr.127)

- The system can be started up more quickly by starting up without PID control activated.
- When Pr. 127 PID control automatic switchover frequency is set, the startup is made without PID control until the output frequency reaches the Pr. 127 setting. Once the PID control starts, the PID control is continued even if the output frequency drops to Pr. 127 setting or lower.



## Selection of action at a communication error and sleep function stop selection (FUP signal, FDN signal, Y48 signal, Pr.554)

- Using Pr. 554 PID signal operation selection, set the action when the measured value input exceeds the upper limit (Pr. 131 PID upper limit) or lower limit (Pr. 132 PID lower limit), or when the deviation input exceeds the permissible value (Pr. 553 PID deviation limit).
- Choose whether to output the signals (FUP, FDN, Y48) only or to activate the protective function to output the inverter shutoff.
- The stop action when the inverter output is shut off by the SLEEP function can be selected.

Pr.554 setting	Inverter operation		
	At FUP signal, FDN signal output ${ }^{* 1}$	At Y48 signal output ${ }^{* 1}$	At SLEEP operation start
0 (Initial value)	Signal output only	Signal output only	Coasts to stop
1	Signal output + output shutoff (E.PID)		
2	Signal output only	Signal output + output shutoff   (E.PID)	
3	Signal output + output shutoff (E.PID)	Signal output only	Deceleration stop
10	Signal output only	Signal output + output shutoff (E.PID)	
11	Signal output only	Signal output + output shutoff   (E.PID)	
12	Signal output + output shutoff (E.PID)	(E.	
13			

*1 When each of Pr.131, Pr. 132 and Pr. 553 corresponding to each of the FUP, FDN and Y48 signals is set to "9999" (function not activated), signal output and protective function are disabled.

## - PID output suspension function (SLEEP function) (SLEEP signal, Pr. 575 to Pr.577)

- When a status where the output frequency after PID calculation is less than Pr. 576 Output interruption detection level has continued for the time set in Pr. 575 Output interruption detection time or longer, inverter running is suspended. This allows the amount of energy consumed in the inefficient low-speed range to be reduced.
- When the deviation (for instance, the set point - measured value) reaches the PID output shutoff release level (Pr. 577 setting value $-1000 \%$ ) while the PID output suspension function is activated, the PID output suspension function is released, and PID control operation is automatically restarted.
- Whether to allow motor to coast to a stop or perform a deceleration stop when SLEEP operation is started can be selected using Pr. 554.
- While the PID output suspension function is activated, the PID output interruption signal (SLEEP) is output. During this time, the inverter running signal (RUN) turns OFF and the During PID control activated signal (PID) turns ON.
- For the terminal used for the SLEEP signal, set "70 (positive logic)" or "170 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).


When Pr.554="10 to 13", reverse operation (Pr.128="10")

*1 When the PID output shutoff release level is reached during a deceleration stop, output shutoff is released, operation is re-accelerated and PID control is continued. During deceleration Pr. 576 Output interruption detection level is invalid.

## - Integral stop selection when the frequency is limited (Pr.1015)

- The operation for the integral term can be selected when the frequency or the manipulated amount is limited during PID control. The operation during output suspension can be selected for the integral term using the PID output suspension (sleep) function.
- The manipulation range can be selected.

Pr. 1015 setting	Operation at limited   frequency	Range of manipulation	Operation during output   interruption
0 (initial value)	Integral stop	$-100 \%$ to $+100 \%$	Integral clear
1	Integral continuation		
2	Integral stop	0 to $100 \%$	
10	Integral stop	$-100 \%$ to $+100 \%$	Integral stop
11	Integral continuation		
12	Integral stop		

## NOTE

- While the integral stop is selected, the integral stop is enabled when any of the following conditions is met.

| Integral stop conditions |
| :--- | :--- |
| The frequency reaches the upper or lower limit. |
| The manipulated amount reaches plus or minus $100 \%$ (Pr. $1015=$ " 0 or $10 "$ "). |
| The manipulated amount reaches $0 \%$ or $100 \%$ (Pr.1015 = "2 or $12 "$ ". |

## - PID monitor function

- This function displays the PID control set point, measured value and deviation on the operation panel, and can output these from the terminals FM and AM.
- An integral value indicating a negative $\%$ can be displayed on the deviation monitor. $0 \%$ is displayed as 1000 . (These values cannot be output on the deviation monitor from terminal FM.)
- Set the following values to Pr. 52 Operation panel main monitor selection, Pr. 774 to Pr. 776 (Operation panel monitor selection), Pr. 54 FM terminal function selection and Pr. 158 AM terminal function selection for each monitor.

Parameter settings	Monitor description	Minimum increment	Monitor range			Remarks
			Terminal FM	Terminal AM	Operation panel	
52	PID set point	0.1\%	0 to 100\%*1			" 0 " is displayed at all times when PID control is based in deviation input.
92	Second PID set point					
53	PID   measured value	0.1\%	0 to 100\%* ${ }^{\text {1 }}$			
93	Second PID measured value					
67	PID   measured value 2	0.1\%	0 to 100\%* ${ }^{\text {1 }}$			Displays PID measured value even if the PID control operating conditions are not satisfied while the PID control is enabled. " 0 " is displayed at all times when PID control is based in deviation input.
95	Second PID measured value 2					
54	PID deviation	0.1\%	Setting not available	$\begin{aligned} & -100 \% \text { to } \\ & 100 \%{ }^{* 1 * 2} \end{aligned}$	$900 \% \text { to } 1100 \%$   or $-100 \% \text { to } 100 \%{ }^{*} 1$	Using Pr. 290 Monitor negative output selection, minus values can be output to the terminal AM and displayed on the operation panel.   Even if minus display is enabled, the display range is $900 \%$ to $1100 \%$ in monitors on the operation panel. ( $0 \%$ is offset and displayed as 1000\%.)
94	Second PID deviation					
91	PID manipulated variable	0.1\%	Setting not available	$\begin{aligned} & -100 \% \text { to } \\ & 100 \%{ }^{2} 2 \end{aligned}$	$\begin{aligned} & 900 \% \text { to } 1100 \% \\ & \text { or } \\ & -100 \% \text { to } 100 \% \end{aligned}$	
96	Second PID manipulated variable					

*1 When Pr. 934 and Pr. 935 are set, the minimum increment changes from unit \% to no unit, and the monitor range can be changed. (Refer to page 603.)
*2 When the minus value display is set disabled using Pr.290, the terminal AM output becomes "0".

## Adjustment procedure

1. Enable PID control

When Pr. $128 \neq$ "0", PID control is enabled.
Set the set point, measured value and deviation input methods at Pr.128, Pr. 609 and Pr.610.
2. Setting the parameter

Adjust the PID control parameters of Pr.127, Pr. 129 to Pr.134, Pr.553, Pr.554, Pr. 575 to Pr. 577.
3. Terminal setting

Set the I/O terminals for PID control. (Pr. 178 to Pr. 189 (Input terminal function selection), Pr. 190 to Pr. 196 (Output terminal function selection))
4. Turn the X 14 signal ON

When the X 14 signal is assigned to the input terminal, PID control is enabled by the X 14 signal turning ON.
5. Start

## Calibration example

Adjust room temperature to $25^{\circ} \mathrm{C}$ by PID control using a detector that outputs 4 mA at $0^{\circ} \mathrm{C}$ and 20 mA at $50^{\circ} \mathrm{C}$.)

*1 When calibration is required
Calibrate detector output and set point input by Pr.125, Pr.902, and Pr. 903 (terminal 2), or Pr.126, Pr.904, and Pr. 905 (terminal 4). (Refer to page 483.) When both Pr. 934 and Pr. 935 are other than " 9999 ", calibrate the detector output and set point input by Pr. 934 and Pr. 935 (terminal 4). (Refer to page 603.) Make calibration in the PU operation mode during an inverter stop.

- Calibrating set point input
(Example: To enter the set point on terminal 2 )

1. Apply the input (for example, 0 V ) of set point setting $0 \%$ across terminals 2 and 5 .
2. Using Pr.902, enter the frequency (for example, 0 Hz ) to be output by the inverter when the deviation is $0 \%$.
3. Using Pr.902, set the voltage value at $0 \%$.
4. Apply the input (for example, 5 V ) of set point setting $100 \%$ across terminals 2 and 5 .
5. Using Pr. 125 (Pr.903), enter the frequency (for example, 60 Hz ) to be output by the inverter when the deviation is 100\%.
6. Using Pr. 903 , set the voltage value at $100 \%$.

## NOTE

- When the set point is set at Pr.133, the setting frequency of Pr. 902 is equivalent to $0 \%$ and the setting frequency of Pr. 125 (Pr.903) is equivalent to $100 \%$.
- Calibrating measured value input

1. Apply the input (for example, 4 mA ) of measured value $0 \%$ across terminals 4 and 5 .
2. Perform calibration by Pr. 904 .
3. Apply the input (for example, 20 mA ) of measured value $100 \%$ across terminals 4 and 5 .
4. Perform calibration by Pr. 905 .

## NOTE

- Set the frequencies set at Pr. 904 and Pr. 126 (Pr.905) to each of the same values set at Pr. 902 and Pr. 125 (Pr. 903 ).
- The display unit for analog input can be changed from "\%" to "V" or "mA". (Refer to page 485.)
- The figure below shows the results of having performed the calibration above.
[Set point setting]

[Measured value]

[Manipulated variable]
Manipulated variable (Hz)



## - Setting multiple PID functions

- When the second PID function is set, two sets of PID functions can be switched for use. The PID setting is selected as shown in the table below.

Pr. 128 setting (First PID setting)	Pr.753 setting (Second PID   setting)	Pr.155   setting ${ }^{* 1}$	RT signal	PID setting applied to the   output frequency
"0" or not applied to the frequency	"0" or not applied to the frequency	-	-	Control other than PID control
"0" or not applied to the frequency	Applied to the frequency	-	-	Second PID setting
Applied to the frequency	"0" or not applied to the frequency	-	-	First PID setting
Applied to the frequency	Applied to the frequency	0	OFF	First PID setting
			ON	Second PID setting
Dancer control	Not applied to the frequency ${ }^{* 2}$	-	-	First PID setting

*1 While Pr. 155 = " 0 ", the second function is enabled immediately after RT signal turns ON. While Pr. $155=$ " 10 ", the second function is enabled only during constant speed operation when RT signal turns ON. (Refer to page 503 for the details.)
*2 When dancer control is selected, the setting is not applied to the frequency.

- The second PID function parameters and signals function in the same way as the following parameters and signals of the first PID function. Refer to the first PID function when setting the second PID functions.

Classification	First PID function parameters		Second PID function parameters	
	Pr.	Name	Pr.	Name
Parameter	127	PID control automatic switchover frequency	754	Second PID control automatic switchover frequency
	128	PID action selection	753	Second PID action selection
	129	PID proportional band	756	Second PID proportional band
	130	PID integral time	757	Second PID integral time
	131	PID upper limit	1143	Second PID upper limit
	132	PID lower limit	1144	Second PID lower limit
	133	PID action set point	755	Second PID action set point
	134	PID differential time	758	Second PID differential time
	553	PID deviation limit	1145	Second PID deviation limit
	554	PID signal operation selection	1146	Second PID signal operation selection
	575	Output interruption detection time	1147	Second output interruption detection time
	576	Output interruption detection level	1148	Second output interruption detection level
	577	Output interruption cancel level	1149	Second output interruption cancel level
	609	PID set point/deviation input selection	1140	Second PID set point/deviation input selection
	610	PID measured value input selection	1141	Second PID measured value input selection


Classification	First PID function parameters		Second PID function parameters	
	signal	Name	signal	Name
Input signal	X14	PID control valid terminal	X80	Emergency drive execution command
	X64	PID forward/reverse action switchover	X79	Second PID forward/reverse action   switchover
	Output signal	FUP	PID P control switchover	X73
	FDN	PID lower limit	FUP2	Second PID upper limit
	RL	PID forward/reverse rotation output	RL2	Second PID lower limit
	PID	During PID control activated	PID2	Second PID forward/reverse rotation output
	SLEEP	PID output interruption	SLEEP2	During second PID output shutoff
	Y48	PID deviation limit	Y205	Second PID deviation limit

- Even if the X14 signal is ON, PID control is stopped and multi-speed or JOG operation is performed when the RH, RM, RL, or REX signal (multi-speed operation) or JOG signal (JOG operation) is input.
- PID control is invalid under the following settings. Pr. 79 Operation mode selection = "6" (Switchover mode)
- Note that input to the terminal 1 is added to the terminals 2 and 4 inputs. For example when Pr. $128=$ " 20 or $21 "$, the terminal 1 input is considered as a set point and added to the set point of the terminal 2.
- To use terminal 4 and 1 inputs in PID control, set " 0 " (initial value) to Pr. 858 Terminal 4 function assignment and Pr. 868 Terminal 1 function assignment. When a value other than " 0 ", PID control is invalid.
- Changing the terminal assignment using Pr. 178 to Pr. 189 or Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.
- When PID control is selected, the minimum frequency becomes the frequency of Pr. 902 and the maximum frequency becomes the frequency of Pr.903. (The Pr. 1 Maximum frequency and Pr. 2 Minimum frequency settings also are valid.)
- During PID operation, the remote operation function is invalid.
- When control is switched to PID control during normal operation, the frequency during that operation is not carried over, and the value resulting from PID calculation referenced to 0 Hz becomes the command frequency.


Operation when control is switched to PID control during normal operation

```
《 Parameters referred to\》
Pr. }59\mathrm{ Remote function selection page 331
Pr. }73\mathrm{ Analog input selection page 473
Pr. }79\mathrm{ Operation mode selection W page 346
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) W page 498
Pr. }190\mathrm{ to Pr. }196\mathrm{ (Output terminal function selection) page 446
Pr. }290\mathrm{ Monitor negative output selection W page 430
C2 (Pr.902) to C7 (Pr.905) Frequency setting voltage (current) bias/gain page 483
```


### 5.14.11 Changing the display increment of the numerical values used in PID control

When the operation panel or the parameter unit is used, the display unit of parameters and monitored items related to PID control can be changed to various units.

Pr.	Name	Initial value	Setting range		Description
$\begin{aligned} & 759 \\ & \text { A600 } \end{aligned}$	Operation mode selection	0	0 to 43	Change the PID control-related display unit that is displayed on the operation panel or the parameter unit.	
			9999	Without display unit switching	
$\begin{aligned} & 934 \\ & \text { A630 } \end{aligned}$	PID display bias coefficient	9999	0 to 500	Set the coefficient of the bias side (minimum) of measured value input.	
			9999	Displayed in \%.	
$\begin{aligned} & 934 \\ & \text { A631 } \end{aligned}$	PID display bias analog value	20\%	0 to 300\%	Set the converted \% of the bias side (minimum) current/ voltage of measured value input.	
$\begin{aligned} & 935 \\ & \text { A632 } \end{aligned}$	PID display gain coefficient	9999	0 to 500	Set the coefficient of the gain side (maximum) of measured value input.	
			9999	Displayed in \%.	
$\begin{aligned} & 935 \\ & \text { A633 } \end{aligned}$	PID display gain analog value	100\%	0 to 300\%	Set the converted \% of the gain side (maximum) current/ voltage of measured value input.	
1136	Second PID display bias coefficient	9999	0 to 500	Refer to Pr. 934	Second PID control
A670			9999		
$\begin{aligned} & 1137 \\ & \text { A671 } \end{aligned}$	Second PID display bias analog value	20\%	0 to 300\%	Refer to Pr. 934	
1138	Second PID display gain coefficient	9999	0 to 500	Refer to Pr. 935	
A672			9999		
$\begin{aligned} & 1139 \\ & \text { A673 } \end{aligned}$	Second PID display gain analog value	100\%	0 to 300\%	Refer to Pr. 935	
$\begin{aligned} & 1142 \\ & \text { A640 } \end{aligned}$	Second PID unit selection	9999	0 to 43, 9999	Refer to Pr. 759	

## - Calibration of PID display bias and gain (Pr. 934 to Pr.935)

- When both Pr. 934 and Pr. $935 \neq$ " 9999 ", the bias and gain values for the set point, measured value and deviation in PID control can be calibrated.
- "Bias"/"gain" function can adjust the relation between PID displayed coefficient and measured value input signal that is externally input. Examples of these measured value input signals are 0 to $5 \mathrm{VDC}, 0$ to 10 VDC , or 4 to 20 mADC.
- Set the value that is displayed when the PID measured value (control amount) is $0 \%$ to $\operatorname{Pr} .934$ and the value that is displayed when the PID measured value (control amount) is $100 \%$ to $\operatorname{Pr} .935$.
- When both of Pr. 934 and Pr. 935 \#" 9999 " and Pr. 133 is set as the set point, the setting of Pr. 934 is treated as 0\%, and Pr. 935 as 100\%.

- There are three methods to adjust the PID display bias/gain.

Method to adjust any point by application of a current (voltage) to the measured value input terminal
Method to adjust any point without application of a current (voltage) to the measured value input terminal
Method to adjust only the display coefficient without adjustment of current (voltage)
(Refer to page 483 for details, and make the necessary adjustments by considering Pr. 905 as Pr. 935 and Pr. 126 (Pr. 905 ) as Pr.935.)

## NOTE

- Always calibrate the input after changing the voltage/current input specification with Pr. 73 and Pr.267, and the voltage/ current input selection switch.
- Take caution when the following condition is satisfied because the inverter recognizes the deviation value as negative (positive) value even though a positive (negative) deviation is given: Pr. 934 (PID bias coefficient) > Pr. 935 (PID gain coefficient)
To perform a reverse action, set Pr. 128 PID action selection to forward action. Alternatively, to perform a forward action, set Pr. 128 to reverse action.

Pr. 934 < Pr. 935 (normal setting)			Pr. $934 \geq$ Pr. 935
Reverse action	Reverse action setting to Pr. 128	Reverse action	Forward action setting to Pr. 128
Forward action	Forward action setting to Pr. 128	Forward action	Reverse action setting to Pr. 128
PID output shutoff release level	Pr. $577-1000$	PID output shutoff release level	1000 -Pr. 577

(Example) Set the following: Pr.934="500", 20\% (4 mA is applied), Pr.935="100", 100\% ( 20 mA is applied). When the set point $=400$ and the measured value $=360$, the deviation is $+40(>0)$, but the inverter recognizes the deviation as $-10 \%(<0)$. Because of this, operation amount does not increase in the reverse operation setting. The operation amount increases when the forward operation is set. To perform PID output shutoff release at deviation of +40 or higher, set Pr. $577=$ " 960 ".


- The display of the following parameters is changed according to the C42 (Pr.934)), C44 (Pr.935), Pr.1136, and Pr. 1138 settings.

Pr.	Name
131	PID upper limit
132	PID lower limit
133	PID action set point
553	PID deviation limit
577	Output interruption cancel level
761	Pre-charge ending level
763	Pre-charge upper detection level


Pr.	Name
1143	Second PID upper limit
1144	Second PID lower limit
755	Second PID action set point
1145	Second PID deviation limit
1149	Second output interruption cancel level
766	Second pre-charge ending level
768	Second pre-charge upper detection level

## - Changing the PID display coefficient of the operation panel or the parameter unit (Pr.759)

- Use Pr. 759 PID unit selection to change the unit displayed on the operation panel or the parameter unit. For the coefficient set in Pr. 934 and Pr.935, the displayed units can be changed to the following units.

Pr.759 setting	Displayed   unit	
9999	$\%$	Unit name
0	-	Not displayed
1	K	Kelvin
2	C	Degree Celsius
3	F	Degree Fahrenheit
4	MPa	Pound-force per Square Inch
5	kPa	Kilo Pascal
6	Par	Pascal
7	Gbr	Bar
8	GPH	Millibar
9	GPS	Gallon per Hour
10	L/H	Gallon per Minute
11	L/M	Liter per Hour
12	L/S	Liter per Minute
13	CFH	Liter per Second
14	CFM	Cubic Feet per Hour
15	CFS	Cubic Feet per Minute
16	CMH	Cubic Feet per Second
17	CMM	Cubic Meter per Hour
18	CMS	Cubic Meter per Minute
19		Cubic Meter per Second
20		
21		


Pr.759 setting	Displayed   unit	Unit name
22	ftM	Feet per Minute
23	ftS	Feet per Second
24	$\mathrm{~m} / \mathrm{M}$	Meter per Minute
25	$\mathrm{~m} / \mathrm{S}$	Meter per Second
26	lbH	Pound per Hour
27	lbM	Pound per Minute
28	lbS	Pound per Second
29	iWC	Inch Water Column
30	fWG	Inch Water Gauge
31	mWG	Feet of Water Gauge
32	mHg	Meter of Water Gauge
33	kgH	Inches of Mercury
34	kgM	Millimeters of Mercury
35	pgS	Kilograms per Hour
36	pps	Kilograms per Minute
37	kW	Kilograms per Second
38	hp	Pulse per Minute
39	Hz	Pulse per Second
40	rpm	Kilo Watt
41		Horse Power
42	Hertz	
43	Revolutions per Minute	

### 5.14.12 PID pre-charge function

This function drives the motor at a certain speed before starting PID control. This function is useful for a pump with a long hose. Without this function, PID control would start before the pump is filled with water, and proper control would not be performed.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 760 \\ & \text { A616 } \end{aligned}$	Pre-charge fault selection	0	0	Fault indication with output shutoff immediately after pre-charge fault occurs.	
			1	Fault indication with deceleration stop after pre-charge fault occurs.	
761	Pre-charge ending level	9999	0 to 100\%	Set the measured amount to end the pre-charge operation.	
A617			9999	Without pre-charge ending level	
762	Pre-charge ending time	9999	0 to 3600 s	Set the time to end the pre-charge operation.	
A618			9999	Without pre-charge ending time	
763   A619	Pre-charge upper detection level	9999	0 to 100\%	Set the upper limit for the pre-charged amount. A pre-charge fault occurs when the measured value exceeds the setting during pre-charging.	
			9999	Without pre-charge upper limit level	
$\begin{aligned} & 764 \\ & \text { A620 } \end{aligned}$	Pre-charge time limit	9999	0 to 3600 s	Set the time limit for the pre-charged amount. A pre-charge fault occurs when the pre-charge time exceeds the setting.	
			9999	Without pre-charge time limit	
$\begin{aligned} & 765 \\ & \text { A656 } \end{aligned}$	Second pre-charge fault selection	0	0, 1	Refer to Pr. 760.	Set the second pre-charge function. The second pre-charge function is valid when the RT signal is ON.
$\begin{aligned} & 766 \\ & \text { A657 } \end{aligned}$	Second pre-charge ending level	9999	$\begin{aligned} & 0 \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 761.	
$\begin{aligned} & 767 \\ & \text { A658 } \end{aligned}$	Second pre-charge ending time	9999	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 762.	
$\begin{aligned} & 768 \\ & \text { A659 } \end{aligned}$	Second pre-charge upper detection level	9999	$\begin{aligned} & 0 \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 763.	
$\begin{aligned} & 769 \\ & \text { A660 } \end{aligned}$	Second pre-charge time limit	9999	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	Refer to Pr. 764.	

## - Operation selection for the pre-charge function

- To enable the pre-charge function when PID control is enabled, set the pre-charge end conditions at Pr. 761 Pre-charge ending level and at Pr. 762 Pre-charge ending time, or set " 77 " to Pr. 178 to Pr. 189 (Input terminal function selection). When operation is started, the inverter runs at the frequency set to Pr. 127 PID control automatic switchover frequency to enter the pre-charge state.
- Pre-charge ends and PID control starts after a pre-charge ending condition is satisfied.
- The pre-charge function is also activated at a start after release of a PID output suspension (SLEEP) state or MRS (output shutoff). The PID output suspension (SLEEP) function is not activated until the started pre-charge operation ends.
- During pre-charge operation, the During pre-charge operation (Y49) signal is output. For the terminal used for Y49 signal output, set "49 (positive logic)" or "149 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.
- The pre-charge function valid/invalid settings and pre-charge ending conditions are as follows:

Pr. 127 setting	Pre-charge ending condition setting			Pre-charge function	Valid pre-charge ending condition ${ }^{* 1}$		
	Pr. 761 setting	Pr. 762 setting	X77 signal				
9999	-	-	-	Disabled	-		
Other than 9999	9999	9999	Not assigned				
			Assigned	Enabled	-	-	X77
		Other than 9999	Not assigned		-	Time	-
			Assigned		-	Time	X77
	Other than 9999	9999	Not assigned		Result	-	-
			Assigned		Result	-	X77
		Other than 9999	Not assigned		Result	Time	-
			Assigned		Result	Time	X77

[^27]
## NOTE

- During the pre-charge operation, it is regarded as integrated value=estimated value. The motor speed may drop shortly from the automatic switchover frequency depending on the parameter settings.
- Parameter changes and switchover to the second PID control are applied immediately. If PID control has not started when the settings were changed, PID control starts with changed settings. (If PID control has already started, these settings do not apply. If the changed settings already satisfies a condition to start PID control, the PID control starts as soon as these are changed.)
- The pre-charge also ends when PID control is set to invalid, the start command has been turned OFF, and output has been shut off.


## Example of pre-charge operation

- When the measured amount reaches the pre-charge ending level (Pr. 761 Pre-charge ending level $\neq$ "9999")

The pre-charge operation ends when the measured value reaches the Pr. 761 setting or higher, then the PID control is performed.


- When the elapsed time reaches the pre-charge ending time (Pr. 762 Pre-charge ending time $\neq$ "9999")

The pre-charge operation ends when the pre-charge time reaches the Pr. 762 setting or higher, then the PID control is performed.


- When the signal is input to end the pre-charge operation

When the X 77 signal turns ON, the pre-charge operation ends, and the PID control starts. (If a start command is given while the X 77 signal is ON , the pre-charge operation is not performed, and PID control starts.)


## NOTE

- When the PID output suspension (SLEEP) function is in use, and the X 77 signal is set to valid after this function is released, set the X 77 signal to OFF after checking that the during pre-charge operation signal (Y49) is OFF.
- When the PID output suspension (SLEEP) function is in use, and PID control is to be performed immediately after this function is released, leave the X77 signal ON until PID control ends.
- When the pre-charge operation is valid, the pre-charge operation is performed at the output shutoff cancellation (MRS signal, etc.). (The pre-charge operation is also performed in the case of instantaneous power failure when the automatic restart after instantaneous power failure is valid.)
- When the control method is changed to PID control from a control with higher priority in frequency command (multi-speed setting, Jog operation, etc.), the motor is accelerated/decelerated until its speed reaches the automatic switchover frequency (Pr.127), and the pre-charge is performed


## Operation setting at pre-charge fault

- The protective function can be activated when limit values are exceeded if the time limit is set at Pr. 764 Pre-charge time limit and the measured value limit level is set at Pr. 763 Pre-charge upper detection level.
- Whether to shut off output immediately after the protective function is activated or after a deceleration stop can be selected by Pr. 760 Pre-charge fault selection.
- When the time limit is exceeded, the Pre-charge time over (Y51) signal is output. When the measured value limit level is exceeded, the Pre-charge level over (Y53) signal is output. For the Y51 signal, set " 51 (forward action)" or "151 (reverse action)" to Pr. 190 to Pr. 196 (Output terminal function selection), and for the Y53 signal, set " 53 (forward action)" or "153 (reverse action)" in Pr. 190 to Pr. 196 (Output terminal function selection) to assign the functions to terminals.


## NOTE

- For Pr. 764 Pre-charge time limit, set a value greater than Pr. 762 Pre-charge ending time.
- For Pr. 763 Pre-charge upper detection level, set a value greater than Pr. 761 Pre-charge ending level.
- Example of protective function by time limit (Pr. $760=$ "0")

- Example of protective function measured value limit (Pr. $760=$ = $1 "$ )



## Setting multiple PID pre-charge functions

- When the second pre-charge function is set, two sets of pre-charge functions can be switched for use. The second precharge function is enabled by turning ON the RT signal.
- The second pre-charge function parameters and signals function in the same way as the following parameters and signals of the first pre-charge function. Refer to the first pre-charge function when setting the second pre-charge functions.

Classification	First pre-charge function parameters		Second pre-charge function parameters	
	Pr.	Name	Pr.	Name
Parameter	760	Pre-charge fault selection	765	Second pre-charge fault selection
	761	Pre-charge ending level	766	Second pre-charge ending level
	762	Pre-charge ending time	767	Second pre-charge ending time
	763	Pre-charge upper detection level	768	Second pre-charge upper detection   level
	764	Pre-charge time limit	769	Second pre-charge time limit


Classification	First pre-charge function parameters		Second pre-charge function parameters	
	Signal	Name	Signal	Name
Input signal	X77	Pre-charge end command	X78	Second pre-charge end command
Output signal	Y49	During pre-charge operation	Y50	During second pre-charge operation
	Y51	Pre-charge time over	Y52	Second pre-charge time over
	Y53	Pre-charge level over	Y54	Second pre-charge level over

## NOTE

- The second PID pre-charge function is valid also when the first pre-charge function is set to invalid and the second precharge function is set.
- When "10" (second function enabled only during constant-speed operation) is set to Pr.155, the second PID function is not selected even if the RT signal turns ON.


### 5.14.13 Dancer control

PID control is performed using the detected dancer roll positions as feedback data. The dancer roll is controlled to be at a designated position.

Pr.	Name	Initial value	Setting range	Description		
$\begin{aligned} & \hline 44 \\ & \text { F020 } \end{aligned}$	Second acceleration/ deceleration time	5 s	0 to 3600 s	Set the acceleration/deceleration time during dancer control. In dancer control, this parameter becomes the acceleration/ deceleration time of the main speed.   This setting does not operate as the second acceleration/ deceleration time.		
$\begin{aligned} & \hline 45 \\ & \mathrm{F021} \end{aligned}$	Second deceleration time	9999	0 to 3600 s	Set the deceleration time during dancer control.   In dancer control, this parameter becomes the deceleration time of the main speed.   This setting does not operate as the second deceleration time.		
			9999	Pr. 44 is the deceleration time.		
$\begin{aligned} & 128 \\ & \text { A610 } \end{aligned}$	PID action selection	0	0	No PID action		
			40	PID reverse action	Additive method: Fixed	For dancer control
			41	PID forward action	Additive method: Fixed	
			42	PID reverse action	Additive method: Ratio	
			43	PID forward action	Additive method: Ratio	
			Others	Refer to page 587.		
$\begin{aligned} & 129 \\ & \text { A613 } \end{aligned}$	PID proportional band	100\%	0.1 to 1000\%	If a narrow proportional band is set (small parameter setting value), the manipulated amount changes considerably by slight changes in the measured value.   As a result, response improves as the proportional band becomes narrower, though stability worsens as shown by the occurrence of hunting.   Gain $\mathrm{Kp}=1$ /proportional band		
			9999	Without proportional band		
$\begin{aligned} & 130 \\ & \text { A614 } \end{aligned}$	PID integral time	1s	0.1 to 3600 s	With deviation step input, this is the time (Ti) used for obtaining the same manipulated amount as proportional band $(P)$ by only integral (I) action.   Arrival to the set point becomes quicker the shorter an integral time is set, though hunting is more likely to occur.		
			9999	Without integral control		
$\begin{aligned} & 131 \\ & \text { A601 } \end{aligned}$	PID upper limit	9999	0 to 100\%	Sets the upper limit.   The FUP signal is output when the feedback value exceeds this setting.   The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value (terminal 4) is equivalent to $100 \%$.		
			9999	No function		
$\begin{aligned} & 132 \\ & \text { A602 } \end{aligned}$	PID lower limit	9999	0 to 100\%	Set the lower limit.   The FDN signal is output when the measured value (terminal 4) falls below the setting range.   The maximum input ( $20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$ ) of the measured value is equivalent to $100 \%$.		
			9999	No function		
133	PID action set point	9999	0 to 100\%	Set the set point during PID control.		
A611			9999	Input of set point by terminal selected by Pr. 609		
$\begin{aligned} & 134 \\ & \text { A615 } \end{aligned}$	PID differential time	9999	0.01 to 10 s	With deviation ramp input, this is the time (Td) used for obtaining the manipulated amount only by proportional action ( P ). Response to changes in deviation increase greatly as the differential time increases.		
			9999	Without differential control		
$\begin{aligned} & 609 \\ & \text { A624 } \end{aligned}$	PID set point/deviation input selection	2	1	Input set point from terminal 1		
			2	Input set point from terminal 2		
			3	Input set point from terminal 4		
			4	Input set point via communication		
			5	Input set point by PLC function		


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & \hline 610 \\ & \text { A625 } \end{aligned}$	PID measured value input selection	3	1	Input measured value from terminal 1
			2	Input measured value from terminal 2
			3	Input measured value from terminal 4
			4	Input measured value via communication
			5	Input measured value by PLC function
$\begin{aligned} & 1134 \\ & \text { A605 } \end{aligned}$	PID upper limit manipulated value	100\%	0 to 100\%	Set the upper limit of PID action.
$\begin{aligned} & 1135 \\ & \text { A606 } \end{aligned}$	PID lower limit manipulated value	100\%	0 to 100\%	Set the lower limit of PID action.

## - Block diagram of dancer control


*1 The main speed can be selected in all operation modes, External (analog voltage input, multi-speed), PU (digital frequency setting) and Communication (RS-485).

## - Outline of dancer control

- Dancer control is performed by setting " 40 to 43 " in Pr. 128 PID action selection. The main speed command is the speed command for each operation mode (External, PU and communication). PID control is performed by the dancer roll position detection signal, and the control result is added to the main speed command. For the main speed acceleration/deceleration time, set the acceleration time to Pr. 44 Second acceleration/deceleration time and the deceleration time to Pr. 45 Second deceleration time.



## NOTE

- Normally, set Pr. 7 Acceleration time and Pr. 8 Deceleration time to " 0 s". When the Pr. 7 and Pr. 8 settings are large, dancer control response becomes slow during acceleration/deceleration.
- The Pr. 127 PID control automatic switchover frequency setting is enabled. The larger setting value between Pr. 7 and Pr. 44 is used as the acceleration time during normal operation. For the deceleration time, the larger setting value between Pr. 8 and Pr. 45 is used. (For details on Pr.127, refer to page 587.)
- If an automatic restart after instantaneous power failure is activated during dancer control, E.OC[] or E.OV[] is likely to occur. In such case, disable the automatic restart after instantaneous power failure function (Pr. $57=$ " 9999 ").


## - Connection diagram

- Sink logic
- Pr. $128=41$
- Pr. 182 =14
- Pr. $193=14$
- Pr. 194 =15
- Pr. 133 =set point

*1 The main speed command differs according to each operation mode (External, PU, communication).
*2 The output signal terminal to be used differs according to the Pr. 190 to Pr. 196 (Output terminal function selection) setting.
*3 The input signal terminal to be used differs according to the Pr. 178 to Pr. 189 (Input terminal function selection) setting
*4 The AU signal need not be input.


## - Dancer control operation selection (Pr.128)

$\begin{aligned} & \text { Pr. } 128 \\ & \text { setting } \end{aligned}$	PID action	Additive method	Set point input	Measured value input
0	PID invalid	-	-	-
40	Reverse action	Fixed	Set by Pr. 133 or Input by terminal selected by Pr. $609{ }^{* 1}$	Input by terminal selected by Pr. 610
41	Forward action			
42	Reverse action	Ratio		
43	Forward action			
Others	Refer to page 587.			

*1 When Pr. 133 = "9999", the Pr. 133 setting is valid

- To enable dancer control, set " 40 to 43 " in Pr. 128 PID action selection.
- Dancer control is enabled only when the PID control valid terminal (X14) signal turns ON when "14" is set in one of Pr. 178 to Pr. 182 (Input terminal function selection) and X14 signal is assigned. When the X14 signal is not assigned, dancer control is enabled only by the Pr. 128 setting
- Input the main speed command (External, PU, Communication). Dancer control is also supported by the main speed command in all operation modes.
- Input the set point between the terminals 2 and 5 (the setting can be selected using Pr. 133 or Pr.609) and input the measured value signal (dancer roll position detection signal) between the inverter terminals 4 and 5 (the setting can be selected using Pr.610)
- The action of Pr. 129 PID action selection, Pr. 130 PID integral time, Pr. 131 PID upper limit, Pr. 132 PID lower limit and Pr. 134 PID differential time is the same as PID control action. In the relationship between the control amount (\%) and frequency in PID control, 0\% and 100\% are equivalent to the frequencies set to Pr. 902 and Pr.903, respectively.


## NOTE

- When Pr. 128 is set to " 0 " or the X14 signal is OFF, regular inverter running not dancer control is performed.
- Dancer control is enabled by turning ON/OFF the bits of terminals assigned the X14 signal by RS-485 communication or over the network.
- When dancer control is selected, set the PID output suspension function (Pr. 575 Output interruption detection time $=$ "9999")
- When Pr. 561 PTC thermistor protection level $\neq$ "9999", terminal 2 cannot be used for the main speed command. Terminal 2 becomes the PTC thermistor input terminal.


## - Selection of set point/measured value input method (Pr.609, Pr.610)

- Select the set point input method by Pr. 609 PID set point/deviation input selection and the measured value input method by Pr. 610 PID measured value input selection. Switch the power voltage/current specifications of terminals 2 and 4 by Pr. 73 Analog input selection or Pr. 267 Terminal 4 input selection to match the specification of the input device.
- When Pr. 133 PID action set point $\neq$ "9999", Pr. 133 is the set point. When the set point is set at Pr.133, the setting frequency of Pr. 902 is equivalent to $0 \%$ and the setting frequency of Pr. 903 is equivalent to $100 \%$.

Pr.609, Pr.610 settings	Input method
1	Terminal 1 ${ }^{* 1}$
2	Terminal 2*1
3	Terminal 4 ${ }^{* 1}$
4	Communication ${ }^{* 2}$
5	PLC function

*1 When the same input method has been selected for the set point and measured value at Pr. 609 and Pr.610, set point input is invalid. (Inverter runs at set point 0\%)
*2 CC-Link, CC-Link IE Field Network, or LONWORKS communication is available. For details on communication, refer to the Instruction Manual of each option.

## NOTE

- After changing the Pr. 73 and Pr. 267 settings, check the voltage/current input switch. Incorrect setting may cause a fault, failure or malfunction. (For details on the setting, refer to page 473.)
- When terminals 2 and 4 are selected for deviation input, perform bias calibration using Pr. 902 and Pr. 904 to prevent a minus voltage from being entered as the deviation input signal. Input of a minus voltage might damage devices and the inverter.
- The following shows the relationship between the input values of the analog input terminals, and the set point and measured value.

Input terminal	Inspect specification*3	Relationship with analog input		Calibration parameter
		Set point	Result	
Terminal 2	0 to 5 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.125, Pr.902, Pr. 903
	0 to 10 V	$\begin{aligned} & 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & \hline 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	
Terminal 1	0 to $\pm 5 \mathrm{~V}$	$\begin{aligned} & -5 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -5 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=+100 \% \end{aligned}$	When Pr. 128 = "10" Pr.125, Pr.902, Pr. 903   When Pr. $128 \geq$ "1000" Pr.917, Pr. 918
	0 to $\pm 10 \mathrm{~V}$	$\begin{aligned} & -10 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=+100 \% \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \text { to } 0 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=+100 \% \end{aligned}$	
Terminal 4	0 to 5 V	$\begin{aligned} & 0 \mathrm{~V} \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } 1 \mathrm{~V}=0 \% \\ & 5 \mathrm{~V}=100 \% \end{aligned}$	Pr.126, Pr.904, Pr. 905
	0 to 10 V	$\begin{aligned} & 0 \mathrm{~V} \text { to } 2 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } 2 \mathrm{~V}=0 \% \\ & 10 \mathrm{~V}=100 \% \end{aligned}$	
	0 to 20 mA	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	$\begin{aligned} & 0 \text { to } 4 \mathrm{~mA}=0 \% \\ & 20 \mathrm{~mA}=100 \% \end{aligned}$	

*3 Can be changed by Pr. 73 and Pr. 267 and the voltage/current input switch. (Refer to page 473.)

## - Selection of additive method for PID calculation result

- When ratio is selected as the additive method (Pr. $128=42,43 "$ ), PID calculation result $\times$ (ratio of main speed) is added to the main speed. The ratio is determined by the Pr. 125 Terminal 2 frequency setting gain frequency and Pr. 902 Terminal 2 frequency setting bias frequency settings. In the initial status, 0 to 60 Hz is set for 0 to $100 \%$. Thus, 60 Hz main speed is regarded as $100 \%$, and the 30 Hz main speed is regarded as $50 \%$.



## NOTE

- Even if Pr. 903 is set to other than $100 \%$, the frequency setting signal is treated as $100 \%$.
- Even if Pr. 902 is set to other than $0 \%$, the frequency setting signal is treated as $0 \%$.
- If Pr. 902 is set to other than 0 Hz , the frequency setting signal is $0 \%$ at the $\operatorname{Pr} .902$ frequency setting or below.


## - Setting the upper and lower limits of the PID manipulated amount

 (Pr.1134, Pr.1135)- Set the upper and lower limits of the PID manipulated amount.
- The upper limit of the manipulated amount is the frequency obtained by adding the value resulting from frequency conversion of Pr. 1134 to the main speed. The lower limit of the manipulated amount is the frequency obtained by subtracting the value resulting from frequency conversion of Pr. 1135 from the main speed.



## - Input/output signals

- The following signals can be used by assigning functions to Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection).
- Input signal

Signal	Function	Pr. 178 to Pr. 189   setting	Description
X14	PID control valid   terminal	14	When this signal is assigned to the input terminal, PID control is enabled when   this signal is ON.
X64	PID forward/reverse   action switchover	64	PID control is switched between forward and reverse action without changing   parameters by turning ON this signal.
X72	PID P control   switchover	72	Integral and differential values can be reset by turning ON this signal.

- Output signal

Signal	Function	Pr. 190 to Pr. 196   setting		Description
		positive   logic	negative   logic	
FUP	PID upper limit	15	115	Output when the measured value signal exceeds Pr. 131 PID upper limit   (Pr. 1143 Second PID upper limit).
FDN	PID lower limit	14	114	Output when the measured value signal exceeds Pr. 132 PID lower limit (Pr. 1144   Second PID lower limit).
RL	PID forward/reverse   rotation output	16	116	"HI" is output when the output display of the parameter unit is forward rotation   (FWD) and "LOW" is output when the display is reverse rotation (REV) and stop   (STOP).
PID	During PID control   activated	47	147	Turns ON during PID control.

## NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 or Pr. 190 to Pr. 196 may affect other functions. Set parameters after confirming the function of each terminal.


## - PID monitor function

- This function displays the PID control set point and measured value on the operation panel, and can output these from the terminals FM and AM.
- Set the following values to Pr. 52 Operation panel main monitor selection, Pr. 774 to Pr. 776 (Operation panel monitor selection), Pr. 54 FM terminal function selection and Pr. 158 AM terminal function selection for each monitor.

Parameter settings	Monitor description	Minimum increment	Monitor range			Remarks
			Terminal FM	Terminal AM	Operation panel	
97	Dancer main speed setting	0.01 Hz	0 to 590 Hz			When outputting from terminals FM and AM, the full scale value can be adjusted by Pr. 55 Frequency monitoring reference.

## NOTE

- Refer to page 598 for details on other PID control monitors.


## Priority of main speed commands

- The priority of main speed command sources when the speed command source is External is as follows: JOG signal > multi-speed setting signal (RL/RM/RH/REX) > pulse train input > 16bit digital input (option FR-A8AX) > analog input (terminals 2, 4, 1)
- The priority of main speed command sources when " 3 " is set to Pr. 79 Operation mode selection is as follows:

Multi-speed setting signal (RL/RM/RH/REX) > frequency setting (digital setting by PU or operation panel)

- Even if the remote operation function is selected by Pr. 59 Remote function selection $\neq$ " 0 ", compensation of the remote setting frequency against the main speed is ignored. (The value is " 0 ".)
- If terminal 1 is selected for the first and second PID, terminal 1 added compensation of the main speed is invalid.
- If terminal 2 is selected for the first and second PID, the terminal 2 override function of the main speed is invalid.
- If the same terminal as an external input terminal having a speed command source (external terminal where a main speed is input) is specified as the measured value input or set point input, the main speed is treated as " 0 ".
- Setting "10 to 17" in Pr. 73 Analog input selection enables the polarity reversible operation of the main speed command to which PID manipulated amount added. (Polarity reversible operation of the main speed command without addition is not possible.)
- When the polarity reversible operation is enabled, the integral term cannot be limited by the maximum and minimum frequency when Pr. 1015 Integral stop selection at limited frequency $=$ " 0 or 10".


## - Adjustment procedure for dancer roll position detection signal

- When the input of terminal 4 is voltage input, 0 V and $5 \mathrm{~V}(10 \mathrm{~V})$ are the lower limit position and upper limit position, respectively. When it is current input, 4 mA and 20 mA are the lower limit position and upper limit position, respectively. (initial value) When the potentiometer has an output of 0 to 7 V , Pr. 905 must be calibrated at 7 V .

(Example) To execute control at the dancer center position using a 0 to 7 V potentiometer

1. Switch the currentvoltage input selection switch 2 to "OFF", set "2" to Pr. 267 and set terminal 4 input to voltage input.
2. Input 0 V across terminals 4 and 5 , and calibrate $\operatorname{Pr}$.904. (The $\%$ display that is indicated at analog calibration is not related to the \% of the feedback value.)
3. Input 7 V across terminals 4 and 5 , and calibrate $\operatorname{Pr}$.905. (The $\%$ display that is indicated at analog calibration is not related to the \% of the feedback value.)
4. Set Pr. 133 to " $50 \%$ ".

## NOTE

- After changing the Pr. 267 setting, check the voltage/current input selection switch. Incorrect setting may cause a fault, failure or malfunction. (Refer to page 473 for the setting.)
- If the RH, RM, RL, or REX signal (multi-speed operation), or JOG signal is input in regular PID control, PID control is interrupted. However, at dancer control, these signals are treated as main speed commands, so PID control is continued.
- During dancer control, Pr. 44 and Pr. 45 Second deceleration time is the parameter for setting the acceleration/ deceleration time for the main speed command. This function does not function as a second function.
- When the switchover mode is set by setting "6" to Pr.79, dancer control (PID control) is invalid.
- The acceleration/deceleration action of the main speed command is the same as that when the frequency is increased or decrease by analog input. For this reason,
- With the main speed setting frequency setting, acceleration/deceleration is performed for the acceleration/deceleration time set at Pr. 44 and Pr.45, and with the output frequency setting, acceleration/deceleration is performed for the acceleration/deceleration time set at Pr. 7 and Pr.8. For this reason, with the output frequency, when the time set at Pr. 7 and Pr. 8 is longer than the time set at Pr. 44 and Pr.45, acceleration/deceleration is performed for the acceleration/ deceleration time set at Pr. 7 and Pr. 8 .
- The limit of the integral term is the smaller of $100 \%$ and the value after conversion of the straight line after interpolation of Pr. 1 Maximum frequency by Pr. 902 and Pr. 903 to the PID manipulated amount. Note, however, that the lower limit frequency limits the output frequency, but does not restrict the action of the integral item.


## Parameters referred to >>

Pr. 57 Restart coasting time page 618
Pr. 59 Remote function selection page 331
Pr. 73 Analog input selection page 473
Pr. 79 Operation mode selection page 346
Pr. 178 to Pr. 189 (Input terminal function selection)
Pr. 190 to Pr. 196 (Output terminal function selection) page 446
Pr. 561 PTC thermistor protection level page 377
Pr. 902 to Pr. 905 Frequency setting voltage (current) bias/gain page 483

### 5.14.14 Automatic restart after instantaneous power failure/flying start with an induction motor

V/FF Magneticflux Sensorless Vector
The inverter can be restarted without stopping the motor in the following conditions:

- When switching from commercial power supply operation over to inverter running
- When an instantaneous power failure occurs during inverter running
- When the motor is coasting at start

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 162 \\ & \text { A700 } \end{aligned}$	Automatic restart after instantaneous power failure selection	0	0,1000	Frequency search only performed at the first start
			1,1001	Reduced voltage start only at the first start (no frequency search)
			2, 1002	Encoder detection frequency search
			3, 1003	Frequency search only performed at the first start (reduced impact restart)
			10, 1010	Frequency search at every start
			11, 1011	Reduced voltage start at every start (no frequency search)
			12, 1012	Encoder detection frequency search at every start
			13,1013	Frequency search at every start (reduced impact restart)
$\begin{aligned} & 299 \\ & \text { A701 } \end{aligned}$	Rotation direction detection selection at restarting	0	0	Without rotation direction
			1	With rotation direction
			9999	When Pr. $78=$ ="0", with rotation direction When Pr. 78 ="1, 2" without rotation direction
$\begin{aligned} & 57 \\ & \text { A702 } \end{aligned}$	Restart coasting time	9999	0	Coasting time differs according to the inverter capacity. ${ }^{* 1}$
			0.1 to 30 s	Set the time delay for the inverter to perform a restart after restoring power due to an instantaneous power failure.
			9999	No restart
$\begin{aligned} & 58 \\ & \text { A703 } \end{aligned}$	Restart cushion time	1 s	0 to 60 s	Set the voltage cushion time for restart.
$\begin{aligned} & 163 \\ & \text { A704 } \end{aligned}$	First cushion time for restart	0 s	0 to 20 s	Set the voltage cushion time for restart. Consider this matched to the size of the load (moment of inertia/torque)
$\begin{aligned} & 164 \\ & \text { A705 } \end{aligned}$	First cushion voltage for restart	0\%	0 to 100\%	
$\begin{aligned} & 165 \\ & \text { A710 } \end{aligned}$	Stall prevention operation level for restart	150\%	0 to 400\%	Set the stall prevention operation level at a restart operation on the assumption that the inverter rated current is $100 \%$.
$\begin{aligned} & 611 \\ & \text { F003 } \end{aligned}$	Acceleration time at a restart	9999	0 to 3600 s	Set the acceleration time that takes to reach Pr. 20 Acceleration/deceleration reference frequency setting at a restart.
			9999	Standard acceleration time (for example, Pr.7) is applied as the acceleration time at restart.

*1 The coasting time when Pr. $57=" 0$ " is as shown below. (When Pr.162, Pr. 570 are set to the initial value.)
FR-A860-00027: 0.5 s
FR-A860-00061 to FR-A860-00170: 1 s
FR-A860-00320 to FR-A860-01080: 3.0 s
FR-A860-01440 or higher: 5.0 s

## Point ${ }^{\circ}$

- To operate the inverter with the automatic restart after instantaneous power failure function enabled, check the following points.
- Set Pr. 57 Restart coasting time = " 0 ".
- Turn the terminal CS (Selection of automatic restart after instantaneous power failure, flying start) ON.
- When the Selection of automatic restart after instantaneous power failure / flying start (CS) signal is assigned to the input terminal, restart operation is enabled at turn-ON of the CS signal.


## - Automatic restart after instantaneous power failure function



- The inverter output is shut off at the activation of the instantaneous power failure protection (E.IPF) or undervoltage protection (E.UVT). (Refer to page 742 for E.IPF or E.UVT.)
- When E.IPF or E.UVT is activated, the instantaneous power failure (IPF)/undervoltage signal is output.
- The IPF signal is assigned to terminal IPF in the initial setting. To assign the IPF signal to a different terminal, set "2 (positive logic) or 102 (negative logic)" to any of Pr. 190 to Pr. 196 (Output terminal function selection).
- When the automatic restart after instantaneous power failure function is selected, motor restarts at the power restoration after an instantaneous power failure or undervoltage. (E.IPF and E.UVT are not activated.)


## - Connection (CS signal)



Separated converter type

With electronic bypass sequence


Only with restart after instantaneous power failure

- Restart is enabled at turn-ON of the automatic restart after instantaneous power failure/flying start (CS) signal.
- The inverter operation is disabled at turn-OFF of the CS signal while Pr. 57 Restart coasting time $\neq$ "9999" (with restart).
- Separated converter types detect the instantaneous power failure on the converter unit side. Perform wiring so that the IPF signal transmitted from the converter unit is input to the terminal to which the X11 signal is assigned. On the converter unit side, enable the restart operation. (For setting the converter unit, refer to the Instruction Manual of the converter unit.)
- For the terminal to be used for the X10 and X11 signal, set "10" (X10), "11" (X11) in Pr. 178 to Pr. 189 and assign the function. (For separated converter types, the X 10 signal is assigned to the terminal MRS in the initial setting.)
- For the X10 signal of separated converter types, NC contact input specification is selected in the initial setting. Set Pr. 599 $=$ " 0 " to change the input specification to NO contact.


## NOTE

- The CS signal is assigned to terminal CS in the initial setting. By setting "6" to any of Pr. 178 to Pr. 189 (Input terminal function selection), the CS signal can be assigned to other terminals. Changing the terminal assignment using Pr. 178 to Pr. 189 may affect other functions. Set parameters after confirming the function of each terminal.
- If the CS signal is not assigned to any input terminal, solely setting Pr. 57 will enable the restart operation at all times.


## - Setting for the automatic restart after instantaneous power failure operation (Pr.162)

- The Pr. 162 settings and the instantaneous power failure automatic restart operation under each operation mode are as shown below.

Pr. 162 setting	Restart timing	Automatic restart operation selection after instantaneous power failure				CS signal command source selection
		V/F control, Advanced magnetic flux vector control		Real sensorless vector control	Vector control	
		Without encoder	With encoder			
0 (initial value)	At first start	Frequency search	Frequency search	Frequency search (reduced impact restart)	Encoder detection frequency search	Always External
1		Reduced voltage start	Reduced voltage start			
2		Frequency search	Encoder detection frequency search			
3		Frequency search (reduced impact restart)	Frequency search (reduced impact restart)			
10	At every start	Frequency search	Frequency search			
11		Reduced voltage start	Reduced voltage start			
12		Frequency search	Encoder detection frequency search			
13		Frequency search (reduced impact restart)	Frequency search (reduced impact restart)			
1000	At first start	Frequency search	Frequency search			Determined by the Pr. 338 setting
1001		Reduced voltage start	Reduced voltage start			
1002		Frequency search	Encoder detection frequency search			
1003		Frequency search (reduced impact restart)	Frequency search (reduced impact restart)			
1010	At every start	Frequency search	Frequency search			
1011		Reduced voltage start	Reduced voltage start			
1012		Frequency search	Encoder detection frequency search			
1013		Frequency search (reduced impact restart)	Frequency search (reduced impact restart)			

## - Restart operation with frequency search (Pr. 162 = "0, 3, 10, 13, 1000, 1003, 1010, or 1013", Pr.299)

- When Pr. $162=" 0$ (initial value), $3,10,13,1000,1003,1010,1013 "$ ", the motor speed is detected at a power restoration so that the motor can re-start smoothly.
- The encoder also detects the rotation direction so that the motor can re-start smoothly even during the reverse rotation.
- Whether or not to detect the rotation direction can be selected by Pr. 299 Rotation direction detection selection at restarting. If the motor capacity is different from the inverter capacity, set Pr. $299=$ " 0 (no rotation direction detection)".
- When the rotation direction is detected, the following operation is performed according to the Pr. 78 Reverse rotation prevention selection setting.

Pr.299 setting	Pr.78 setting		
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
9999	$\bigcirc$	$\times$	$\times$
0 (initial value)	$\times$	$\times$	$\times$
1	$\bigcirc$	$\bigcirc$	$\bigcirc$

[^28]- By setting "3, 13, 1003, or 1013" in Pr.162, the restart can be made smoother with even less impact than when " 0,10 , 1000 , or 1010 " is set in Pr.162. When the inverter is restarted with " $3,13,1003$, or 1013" set to Pr. 162, offline auto tuning is required. (For details on offline auto tuning of Advanced magnetic flux vector control and Real sensorless vector control, refer to page 508 , and for details on offline auto tuning of V/F control, refer to page 626.)



## NOTE

- The rotation speed detection time (frequency search) changes according to the rotation speed of the motor. (maximum 1 s )
- When the inverter capacity is two ranks or greater than the motor capacity, the overcurrent protective function (E.OC[]) is sometimes activated and prevents the inverter from restarting.
- If two or more motors are connected to one inverter, this function operates abnormally. (The inverter does not restart successfully.)
- Because a DC injection brake is applied instantaneously at speed detection during a restart, the speed might drop if the moment of inertia ( J ) of the load is small.
- If reverse operation is detected when "1" (reverse rotation disabled) is set to Pr.78, operation decelerates by reverse rotation and then changes to forward rotation when the start command is forward rotation. The inverter does not restart when the start command is reverse rotation.
- When " $3,13,1003$, or 1013 " is set to Pr. 162 , limit the wiring length to within 100 m .


## - Restart operation without frequency search (Pr. 162 = "1, 11, 1001, or 1011")

- When Pr. $162=" 1,11,1001$, or $1011 "$, reduced voltage start is used for the restart operation. In this method, the voltage is raised gradually while keeping the output frequency level at the level before the instantaneous failure, regardless of the motor's coasting speed.

V/F control, Advanced magnetic flux vector control


[^29]- This restart method uses the output frequency that was active before the instantaneous power failure stored in memory. If the instantaneous power failure time is 0.2 s or more, the output frequency can no longer be stored and held in memory, so the restart is performed from Pr. 13 Starting frequency.
- During Real sensorless vector control, Pr. 162 is set to " 3,13 , 1003, or 1013" (reduced impact restart).
- Restart operation with encoder detection frequency search (Pr.162 = "2, 12,1002 , or 1012 ")
- When " 2,12 , 1002, or 1012 " is set to Pr. 162 by encoder feedback control, the inverter is restarted by the motor speed and direction of rotation that were detected by the encoder at the power restoration.
- By encoder detection frequency search, the Pr. 299 Rotation direction detection selection at restarting setting are invalid.

* The output shut off timing differs according to the load condition.


## NOTE

- If "2, 12, 1002, or 1012" are set to Pr. 162 when encoder feedback control is invalid, the automatic restart is with a frequency search (Pr. $162=$ " $0,10,1000$, or 1010").
- In vector control, encoder detection frequency search is used regardless of the Pr. 162 setting. The Pr. 58 and Pr. 299 settings are invalid at this time.
- For the encoder feedback control, refer to page 730.


## - Restart at every start (Pr. 162 ="10 to 13, or 1010 to 1013")

- When "10 to 13, or 1010 to 1013" is set in Pr.162, a restart operation is performed at each start and automatic restart after instantaneous power failure (Pr. 57 start after the reset time has elapsed). When " 0 (initial value) to 3 , or 1000 to 1003 " is set in Pr.162, a restart operation is performed at the first start after a power-ON, and from the second power-ON onwards, a start from the starting frequency is performed.


## - Automatic restart operation of MRS (X10) signal

- The restart operation after restoration from output shutoff by the MRS (X10) signal is as shown in the table below according to the Pr. 30 setting

Pr. $\mathbf{3 0}$ setting	Operation after restoration from output shutoff by the MRS (X10) signal
$2,10,11,102,110,111$	Restart operation (starting from the coasting speed)
Other than the above	Starting from Pr. 13 Starting frequency.

## - Adjustment of restart coasting time (Pr.57)

- Restart coasting time is the time period from the occurrence of instantaneous power failure until the operation is restarted after power is restored. With frequency search, the motor speed is detected and operation is restarted after the coasting time.
- To enable restart operation, set " 0 " to Pr. 57 Restart coasting time. If " 0 " is set to Pr. 57 , the coasting time is automatically set to the following value (Unit: s). Generally, this setting does not interfere with inverter operation.

$\begin{aligned} & \text { Pr. } 570 \\ & \text { setting } \end{aligned}$	Pr. 162   setting	FR-A860-[]									
		00027	00061	00090	00170	00320	00450	00680	01080	01440	$\begin{aligned} & 01670 \text { or } \\ & \text { higher } \end{aligned}$
$\begin{aligned} & 0 \text { (SLD) } \\ & 1 \text { (LD) } \end{aligned}$	$\begin{aligned} & 3,13,1003, \\ & 1013 \end{aligned}$	1	2	2	3	3	3	3	5	5	5
	Other than the above	0.5	1	1	3	3	3	3	5	5	5
2 (ND)	$\begin{aligned} & 3,13,1003, \\ & 1013 \end{aligned}$	1	2	2	2	3	3	3	3	5	5
	Other than the above	0.5	1	1	1	3	3	3	3	5	5
3 (HD)	$\begin{aligned} & 3,13,1003, \\ & 1013 \end{aligned}$	1	1	2	2	3	3	3	3	3	5
	Other than the above	0.5	0.5	1	1	3	3	3	3	3	5



Interruption $\leq$ Pr. 57 setting


- Inverter operation is sometimes hindered by the size of the moment of inertia ( J ) of the load, output frequency, or the residual magnetic flux in the motor. Adjust this coasting time within the range 0.1 to 30 seconds to match the load specification.


## NOTE

- Note that the coasting time setting is different from that of the FR-A700 series inverter. (Refer to page 804.)


## - Restart cushion time (Pr.58)

- The cushion time is the time taken to raise the voltage to the level required for the specified speed after the motor speed detection (output frequency before instantaneous power failure when Pr. $162=11,11,1001$, or 1011").
- Normally, the motor runs at the initial value as it is. However, adjust to suit the moment of inertia (J) of the load or the size of the torque.
- Pr. 58 is invalid under Real sensorless vector control or vector control.


## －Adjustment of restart operation（Pr． 163 to Pr．165，Pr．611）

－The voltage cushion time at a restart can be adjusted by Pr． 163 and Pr． 164 as shown in the figure on the left．

－The stall prevention operation level at a restart operation can be set at Pr． 165.
－Using Pr．611，the acceleration time to reach Pr． 20 Acceleration／deceleration reference frequency after a restart operation can be set．This can be set individually from the normal acceleration time．

## NOTE

－Pr． 163 to Pr． 165 are invalid under Real sensorless vector control and vector control．
－Changing the Pr． 21 setting does not affect the Pr． 611 setting increment．
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．
－When the restart operation is selected，undervoltage（E．UVT）and instantaneous power failure（E．IPF）of the fault output signals become invalid．
－The SU and FU signals are not output during the restart．These signals are output after the restart cushion time passes．
－Restart operation is also performed after the inverter reset is released or after the retry by the retry function occurs．
－The automatic restart after instantaneous power failure function is invalid when the load torque high－speed frequency control（Pr． $270=$＂ $2,3,13$＂）is set．

## －Operation command source selection for the CS signal during communication operation（Pr． 162 ＝＂1000 to 1003， 1010 to 1013＂）

－When＂1000 to 1003，or 1010 to 1013＂is set in Pr．162，the CS signal input via communication is enabled depending on the setting in Pr． 338 Communication operation command source．（When Pr． $162=" 0$ to 3 ，or 10 to 13 ＂，the CS signal can be input via an external terminal only．）

## $\triangle$ CAUTION

－Provide a mechanical interlock for MC1 and MC2．The inverter will be damaged if power supply is input to the inverter output section．
－When the automatic restart after instantaneous power failure function is selected，the motor suddenly starts（after reset time passes） when an instantaneous power failure occurs．Stay away from the motor and machinery．Apply the supplied CAUTION stickers to easily visible places when automatic restart after instantaneous power failure has been selected．

《Parameters referred to 》》
Pr． 7 Acceleration time，Pr． 21 Acceleration／deceleration time increments page 320
Pr． 13 Starting frequency page 337，page 338
Pr．65，Pr． 67 to Pr． 69 retry function page 389
Pr． 78 Reverse rotation prevention selection page 365
Pr． 178 to Pr． 189 （Input terminal function selection）$\longmapsto$ page 498

### 5.14.15 Offline auto tuning for a frequency search

## V/F

During V/F control, the accuracy of the "frequency search", which is used to detect the motor speed for the automatic restart after instantaneous power failure and flying start, can be improved.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 162 \\ & \text { A700 } \end{aligned}$	Automatic restart after instantaneous power failure selection	0	0,1000	Frequency search only performed at the first start
			1, 1001	Reduced voltage start only at the first start (no frequency search)
			2,1002	Encoder detection frequency search
			3, 1003	Frequency search only performed at the first start (reduced impact restart)
			10, 1010	Frequency search at every start
			11, 1011	Reduced voltage start at every start (no frequency search)
			12, 1012	Encoder detection frequency search at every start
			13, 1013	Frequency search at every start (reduced impact restart)
$\begin{aligned} & 298 \\ & \text { A711 } \end{aligned}$	Frequency search gain	9999	0 to 32767	The offline auto tuning automatically sets the gain required for the frequency search.
			9999	Uses the constant value of standard motor.
$\begin{aligned} & 560 \\ & \text { A712 } \end{aligned}$	Second frequency search gain	9999	0 to 32767	The offline auto tuning automatically sets the gain required for the frequency search of the second motor.
			9999	Uses the constant value of standard motor.
$\begin{aligned} & 96 \\ & \text { C110 } \end{aligned}$	Auto tuning setting/status	0	0	No offline auto tuning.
			1,101	Perform offline auto tuning for the Advanced magnetic flux vector control, Real sensorless vector control, and vector control. (Refer to page 508 and page 518.)
			11	Performs offline auto tuning without rotating the motor (V/F control).
$\begin{aligned} & 90 \\ & \mathrm{C} 120 \end{aligned}$	Motor constant (R1)	9999	0 to $50 \Omega$, 9999*1	Tuning data (The value measured by offline auto tuning is automatically set.) 9999: Uses the constant value of standard motor.
			0 to $400 \mathrm{~m} \Omega, 999{ }^{*}{ }^{2}$	
$\begin{aligned} & 463 \\ & \text { C210 } \end{aligned}$	Second motor auto tuning setting/status	0	0	No auto tuning for the second motor.
			1,101	Performs offline auto tuning for the second motor. (Refer to page 508 and page 518.)
			11	Performs offline auto tuning without rotating the second motor (V/F control).
$\begin{aligned} & 458 \\ & \mathrm{C} 220 \end{aligned}$	Second motor constant (R1)	9999	0 to $50 \Omega, 999{ }^{* 1}$	Tuning data of the second motor (same as Pr.90)
			0 to $400 \mathrm{~m} \Omega, 9999^{*} 2$	

[^30]
## - Offline auto tuning when performing a frequency search by V/F control (reduced impact restart)

- When the frequency search (reduced impact restart) is selected by setting Pr. 162 Automatic restart after instantaneous power failure selection $=" 3,13,1003$, or 1013", perform offline auto tuning.


## - Before executing offline auto tuning

Check the following points before performing offline auto tuning:

- V/F control is selected.
- A motor is connected. (The motor should not be rotated by the external force applied from outside during the tuning.)
- The motor with the rated motor current equal to or less than the inverter rated current is used. (It must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- The target motor is other than a high-slip motor, a high-speed motor, or a special motor.
- The motor may run slightly without actually turning during offline auto-tuning (Pr. 96 Auto tuning setting/status = "11"), so either firmly secure the motor by the mechanical brake or check to see if turning the motor will cause any safety problems. (Attention is required for lifts, in particular.) The motor turning slightly will not affect tuning performance.


## - Setting

## 1. Set Pr. 96 Auto tuning setting/status $=" 11$ ".

2. Set the rated motor current (initial value is inverted rated current) to Pr. 9 Electronic thermal O/L relay. (Refer to page 377.)
3. Set Pr. 71 Applied motor according to the motor to be used.

Motor	Pr.71 setting
Standard motor	$0(3,4)$
Constant-torque motor	$1(13,14)$
Other manufacturer's standard motor	$0(3,4)$
Other manufacturer's constant-torque motor	$1(13,14)$

## Performing tuning

## Point ${ }^{\rho}$

- Before performing tuning, check the monitor display of the operation panel or the parameter unit if the inverter is in the state ready for tuning. Turning ON the start command while tuning is unavailable starts the motor.
- In the PU operation mode, press FWD/REV on the operation panel. For External operation, turn ON the start command (STF signal or STR signal). Tuning will start. (At this time, excitation noise occurs.)
- It takes about 10 seconds for tuning to complete. (The time depends on the inverter capacity and motor type.)
- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of MRS signal.
- To force tuning to end, use the MRS or RES signal or press $\frac{\text { STTOP }}{\text { RRSET }}$ on the operation panel. (Turning the start signal (STF signal or STR signal) OFF also ends tuning.)
- During offline auto tuning, only the following I/O signals are valid. (Initial value)

Input terminals <valid signals> STP (STOP), OH, MRS, RT, RES, STF, and STR
Output terminals: RUN, OL, IPF, FM, AM, and A1B1C1

- When the rotation speed and the output frequency are selected for terminals FM and AM, the progress status of offline auto tuning is output in fifteen steps from FM and AM.
- During execution of offline auto tuning, do not switch the second function selection signal (RT) ON or OFF. Auto tuning is not executed properly.
- Since the RUN signal turns ON when tuning is started, caution is required especially when a sequence which releases a mechanical brake by the RUN signal has been designed
- When executing offline auto tuning, input the run command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = "7", turn the PU operation external interlock (X12) signal ON to tune in the PU operation mode.
- Monitor is displayed on the operation panel and parameter unit during tuning as below.

status	Parameter unit display	Operation panel display
Setting	TUNE READ:List   $-{ }^{\text {a }}$ 11   -- STOP PU	
Tuning in progress	IIII    TUNE 12   STF FWD PU	
Normal end		

- When offline auto tuning ends, press $\frac{\text { STOP }}{\text { RTSEET }}$ on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal).
This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication.
(Without this operation, next operation cannot be started.)
- At tuning completion, the tuning results are set in the following parameters:

Parameter	Name
90	Motor constant (R1)
298	Frequency search gain
96	Auto tuning setting/status

## NOTE

- The motor constants measured once in the offline auto tuning are stored as parameters and their data are held until the offline auto tuning is performed again. However, the tuning data is cleared when performing all parameter clear.
- If offline auto tuning has ended in error (see the table below), motor constants are not set.

Perform an inverter reset and restart tuning.

Error display	Error cause	Countermeasures
8	Forced end	Set "11" to Pr. 96 and retry.
9	Inverter protective function operation	Make the setting again.
91	The current limit (stall prevention) function is activated.	Set the acceleration/deceleration time longer.   Set Pr. 156 Stall prevention operation selection $=$ "1".
92	The converter output voltage fell to $75 \%$ of the rated value.	Check for the power supply voltage fluctuation.
93	Calculation error   The motor is not connected.	Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error   (The frequency command for the tuning was given to exceed   the maximum frequency setting, or to be in the frequency   jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to   Prequency jump settings.

- When tuning is ended forcibly by pressing $\frac{\text { STOP }}{R E S E T V}$ or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)
Perform an inverter reset and restart tuning.


## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter goes into the normal operation. Therefore, when STF (STR) signal is ON, the motor runs in the forward (reverse) rotation.
- Any alarm occurring during tuning is handled as in the normal operation. Note that even if a retry operation has been set, retry is not performed.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## - Tuning the second applied motor (Pr.463)

- When performing operation where two motors are switched between one inverter, set the second motor in Pr. 450 Second applied motor, set Pr. 463 Second motor auto tuning setting/status $=$ " 11 ", and perform tuning of the second motor.
- Turning ON the RT signal will enable the parameter settings for the second motor as shown below.

Function	RT signal ON (second motor)	RT signal OFF (first motor)
Motor constant (R1)	Pr. 458	Pr. 90
Auto tuning setting/status	Pr. 463	Pr. 96
Frequency search gain	Pr. 560	Pr. 298

## NOTE

- The RT signal is assigned to the terminal RT in the initial status. Set "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## $\triangle$ CAUTION

- Note that the motor may start running suddenly.
- For the offline auto tuning in vertical lift applications, etc., caution is required to avoid falling due to insufficient torque.


## 

Pr. 9 Electronic thermal O/L relay page 377
Pr.65, Pr. 67 to Pr. 69 retry function page 389
Pr. 71 Applied motor page 506
Pr. 79 Operation mode selection page 346
Pr. 156 Stall prevention operation selection page 403
Pr. 178 to Pr. 189 (Input terminal function selection)

### 5.14.16 Power failure time deceleration-to-stop function

This is a function to decelerate the motor to a stop when an instantaneous power failure or undervoltage occurs.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 261 \\ & \text { A730 } \end{aligned}$	Power failure stop selection	0	0	Power failure time deceleration-to-stop function disabled
			$\begin{aligned} & 1,2,11,12, \\ & 21,22 \end{aligned}$	Power failure time deceleration-to-stop function enabled Select action at an undervoltage or when an power failure occurs.
$\begin{aligned} & \hline 262 \\ & \text { A731 } \end{aligned}$	Subtracted frequency at deceleration start	3 Hz	0 to 20 Hz	Normally, the motor runs at the initial value as it is. However, adjust to suit the size of the load specification (moment of inertia, torque).
$\begin{array}{l\|} \hline 263 \\ \text { A732 } \end{array}$	Subtraction starting frequency	60 Hz	0 to 590 Hz	When output frequency $\geq$ Pr. 263   Output frequency - deceleration from Pr. 262   When output frequency < Pr. 263   Deceleration from output frequency
			9999	The motor decelerates from the "output frequency - Pr.262".
$\begin{aligned} & 264 \\ & \text { A733 } \end{aligned}$	Power-failure deceleration time 1	5 s	0 to 3600	Set the slope applicable from the deceleration start to the Pr. 266 set frequency.
$\begin{aligned} & 265 \\ & \text { A734 } \end{aligned}$	Power-failure deceleration time 2	9999	0 to 3600	Set the slope applicable for the frequency range starting at Pr. 266 and downward.
			9999	Same as Pr. 264.
$\begin{aligned} & 266 \\ & \text { A735 } \end{aligned}$	Power failure deceleration time switchover frequency	60 Hz	0 to 590 Hz	Set the frequency at which the slope during deceleration switches from the Pr. 264 setting to the Pr. 265 setting.
$\begin{aligned} & 294 \\ & \text { A785 } \end{aligned}$	UV avoidance voltage gain	100\%	0 to 200\%	Adjust the response at undervoltage avoidance operation. Setting a large value improves the response to changes in the bus voltage.
$\begin{aligned} & 668 \\ & \text { A786 } \end{aligned}$	Power failure stop frequency gain	100\%	0 to 200\%	Adjust the response level for the operation where the deceleration time is automatically adjusted.
$\begin{aligned} & 606 \\ & \text { T722 } \end{aligned}$	Power failure stop external signal input selection	1	0	Normally open input (NO contact input specification)
			1	Normally closed input (NC contact input specification)

## Connection and parameter setting



- For the standard model, remove the jumpers between terminals R/L1 and R1/L11 and terminals S/L2 and S1/L21, and connect terminals R1/L11 and P/+ and terminals S1/L21 and N/-.
- If an undervoltage, power failure or input phase loss occurs when Pr. 261 Power failure stop selection $\neq$ " 0 ", the motor decelerates to a stop.
- The power failure time deceleration stop function operates as follows at an input phase loss.

Pr.261	Pr.872	Operation when an input phase loss occurs
	0	Continuous operation
	1	Input phase loss (E.ILF)
	0	Continuous operation
	1	Deceleration stop
21,22	-	Deceleration stop

- For the separated converter type, remove the jumpers between terminals R/L1 and R1/L11 and terminals S/L2 and S1/ L21 of the converter unit, and connect terminals R1/L11 and P/+ and terminals S1/L21 and N/-. Do not remove the jumpers of terminal R1/L11 and terminal S1/L21 of the inverter. (In the initial status of the separated converter type, terminals P/+ and R1/L11 and terminals $\mathrm{N} /-$ and $\mathrm{S} 1 / \mathrm{L} 21$ are connected.)
- For the separated converter type, connect the terminal to which PWF signal of the converter unit is assigned and the terminal to which X48 signal of the inverter is assigned. Also, set Pr. 261 of the converter unit in accordance with the inverter setting. (Refer to the Instruction Manual of the converter unit.)


## Outline of operation of deceleration stop at a power failure

- If an undervoltage or power failure occurs, the output frequency is turned OFF only for the frequency set to Pr. 262 Subtracted frequency at deceleration start.
- The motor decelerates for the time set to Pr. 264 Power-failure deceleration time 1. (The deceleration time setting is the time it takes for the motor to stop from Pr. 20 Acceleration/deceleration reference frequency.)
- Change the deceleration time (slope) to stop using Pr. 265 Power-failure deceleration time 2 when the frequency is too low to obtain the regenerative energy or in other instances.



## - Action setting at undervoltage and power failure

- Set Pr. 261 to select the action at an undervoltage and power failure.

$\text { Pr. } 261$   Setting	Action at undervoltage and power failure	Power restoration during deceleration at occurrence of power failure	Deceleration stop time	Undervoltage avoidance function
0	Coasts to stop	Coasts to stop	-	-
1	Deceleration stop	Deceleration stop	According to Pr. 262 to Pr. 266 setting	Not used
2		Re-acceleration		Not used
11		Deceleration stop		With
12		Re-acceleration		With
21		Deceleration stop	Automatic adjustment of deceleration time	Not used
22		Re-acceleration		Not used

## - Power failure stop function (Pr. 261 ="1, 11, 21")

- Even if power is restored during deceleration triggered by a power failure, deceleration stop is continued after which the inverter stays stopped. To restart operation, turn the start signal OFF then ON again.



## NOTE

- If the automatic restart after instantaneous power failure is selected (Pr. 57 Restart coasting time $\neq$ "9999") while the power failure time deceleration stop function is set enabled ( $\operatorname{Pr} .261=" 1,11$, or $21 "$ ), the power failure time deceleration stop function is disabled.
- When the power failure time deceleration stop function is enabled (Pr. $261=" 1,11$ or 21 "), the inverter will not start even if the power is turned ON or inverter reset is performed with the start signal (STF/STR) ON. Turn OFF the start signal once and then ON again to make a start.

- During cyclic transmission or the like (in which start commands are periodically transmitted), operation is restarted if the power is restored during the deceleration even when the power failure time deceleration-to-stop function is enabled.


## - Continuous operation function at instantaneous power failure (Pr. 261

 ="2, 12, 22")- The motor re-accelerates to the set frequency if the power restores during the deceleration to stop.
- Combining with the automatic restart after instantaneous power failure function enables a power failure time deceleration stop and re-acceleration at a power restoration. If the power is restored after stoppage by a power failure, a restart operation is performed when automatic restart after instantaneous power failure ( $\operatorname{Pr} .57 \neq$ "9999") is selected.


Pr. $261=2$, Pr. $57 \neq 9999 \begin{aligned} & \text { When used with automatic restart } \\ & \text { after instantaneous power failure }\end{aligned}$


## - Undervoltage avoidance function (Pr. 261 = "11, 12" Pr.294)

- If "11, 12" is set to Pr.261, the deceleration time is adjusted (shortened) to prevent an undervoltage from occurring during deceleration at occurrence of power failure.
- Adjust the downward frequency slope and the response level using Pr. 294 UV avoidance voltage gain. Setting a large value improves the response to the bus voltage.


## NOTE

- The undervoltage avoidance function is invalid under torque control by Real sensorless vector control. When "11 (12)" is set to Pr.261, operation is the same as when "1 (2) is set to Pr.261.


## Automatic adjustment of deceleration time (Pr. 261 ="21, 22", Pr.294, Pr.668)

- When "21, 22" is set to Pr.261, the deceleration time is automatically adjusted to keep (DC bus) voltage constant in the converter when the motor decelerates to a stop at a power failure. Setting of Pr. 262 to Pr. 266 is not required.
- If a phenomenon such as motor vibration occurs during operation of the deceleration time automatic adjustment function, adjust the response level by setting the Pr. 668 Power failure stop frequency gain. Increasing the setting improves the response to change in the bus voltage. However, the output frequency may become unstable.
- If setting Pr. 294 UV avoidance voltage gain lower also does not suppress the vibration, set Pr. 668 lower.



## Deceleration stop by the power failure stop external signal (X48)

- By turning OFF X48 signal, the power failure time deceleration-to-stop function is activated. This function is used, for example, when an external power failure detection circuit is installed.
- To use the power failure time deceleration-to-stop function for the separated converter type, use X 48 signal. Connect the terminal to which PWF signal of the converter unit is assigned and the terminal to which X 48 signal of the inverter is assigned.
- In the initial setting, X48 signal is used with the normally closed (NC contact) input specification. Use Pr. 606 Power failure stop external signal input selection to change the specification to the normally open (NO contact) input.
- To use the X48 signal, set "48" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to an input terminal.


## - During deceleration at occurrence of power failure signal (Y46)

- After deceleration by a power failure, the inverter is not restarted even though the start command is input. Check the during deceleration at occurrence of power failure signal (Y46) at a power failure. (For example, when input phase loss protection (E.ILF) occurs.)
- The Y46 signal is turned ON during deceleration at occurrence of power failure and in a stop status after deceleration at occurrence of power failure.
- For the Y46 signal, assign the function by setting "46 (forward action)" or "146 (reverse action)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).


## - Power failure signal (Y67 signal)

- Y67 signal turns ON when the output is shut off due to detection of power failure (power supply fault) or undervoltage, or the power failure time deceleration-to-stop function is activated.
- To use the Y67 signal, assign the function by setting "67 (positive logic)" or "167 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).


## NOTE

- If the "output frequency - Pr.262" at undervoltage or at power failure is a negative value, it is regarded as 0 Hz . (DC injection brake operation is performed without deceleration.)
- The power failure time deceleration stop function is disabled during a stop or when the breaker is tripped.
- The Y46 signal turns ON if an undervoltage occurs even if a deceleration at a power failure has not occurred. For this reason, the Y46 signal is sometimes output instantaneously when the power supply is turned OFF. This is not a fault.
- When the power failure time deceleration stop function is selected, undervoltage protection (E.UVT), instantaneous power failure protection (E.IPF) and input phase loss protection (E.ILF) are not invalid.
- When the load is high during PM sensorless vector control, an undervoltage sometimes causes the coasting stop.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) and Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## ! CAUTION

- Even if the power failure time deceleration stop function is set, some loads might cause the inverter to trip and the motor to coast. The motor will coast if sufficient regenerative power is not obtained from the motor.


## 《| Parameters referred to $\gg$

Pr. 12 DC injection brake operation voltage $\longmapsto$ page 707
Pr. 20 Acceleration/deceleration reference frequency, Pr. 21 Acceleration/deceleration time increments page 320
Pr. 30 Regenerative function selection $\longmapsto$ page 718
Pr. 57 Restart coasting time page 618
Pr. 190 to Pr. 196 (Output terminal function selection) page 446
Pr. 872 Input phase loss protection selection $\longmapsto$ page 388

### 5.14.17 PLC function

The inverter can be run in accordance with a sequence program.
In accordance with the machine specifications, a user can set various operation patterns: inverter movements at signal inputs, signal outputs at particular inverter status, and monitor outputs, etc.

Pr.	Name	Initial value	Setting range	Description		
$\begin{aligned} & 414 \\ & \text { A800 } \end{aligned}$	PLC function operation selection	0	0	PLC function disabled		
			1,11	PLC function enabled	The SQ signal is enabled by input from a command source (external input terminal/ communication).	
			2, 12		The SQ signal is enabled by input from an external input terminal.	
$\begin{aligned} & 415 \\ & \text { A801 } \end{aligned}$	Inverter operation lock mode setting	0	0	The inverter start command is enabled regardless of the operating status of the sequence program.		
			1	The inverter start command is enabled only while the sequence program is running.		
$\begin{aligned} & \hline 416 \\ & \text { A802 } \end{aligned}$	Pre-scale function selection	0	0 to 5	Unit scale factor 0 : No function 1: $\times 1$ 2: $\times 0.1$   3: $\times 0.01$   4: $\times 0.001$   5: $\times 0.0001$	When the pulse train is input from terminal JOG, the number of sampled pulses can be converted.   The result of conversion is stored to SD1236. "Number of sampled pulses" = "input pulse value per count cycle" $\times$ "pre-scale setting value (Pr.417)" $\times$ "unit scale factor (Pr.416)"	
$\begin{aligned} & 417 \\ & \text { A803 } \end{aligned}$	Pre-scale setting value	1	0 to 32767	Pre-scale setting value		
$\begin{aligned} & 498 \\ & \text { A804 } \end{aligned}$	PLC function flash memory clear	0	$\begin{aligned} & 0,9696 \\ & (0 \text { to } 9999) \end{aligned}$	0: Clears the flash memory fault display (no operation after writing while the flash memory is in normal operation).		Write
				9696: Clears the flash memory (no operation Write after writing during flash memory fault).		
				Other than 0 and 9696: Outside of the setting range		
				0: Normal display		Read
				1: The flash memory has not been cleared because the PLC function is enabled.		
				9696: During flash memory clearing operation or flash memory fault		
675	User parameter auto storage function selection	9999	1	Auto storage function enabled		
A805			9999	Auto storage function disabled		
$\begin{aligned} & 1150 \text { to } \\ & 1199 \\ & \text { A810 to } \\ & \text { A859 } \end{aligned}$	User parameters 1 to User parameters 50	0	0 to 65535	Desired values can be set.   Because devices D206 to D255 used by the PLC function can be mutually accessed, the values set to Pr. 1150 to Pr. 1199 can be used by the sequence program. The result of performing calculation by a sequence program can also be monitored by Pr. 1150 to Pr. 1199.		

## - Outline of PLC function

- To enable the PLC function, set a value other than "0" in Pr. 414 PLC function operation selection. When " 2 or 12 " is set in Pr.414, the Sequence startup (SQ) signal from the external input terminal is valid regardless of the setting of the Pr. 338 Communication operation command source. (The Pr. 414 setting change becomes valid after inverter reset.)
- Switch the execution key (RUN/STOP) of the sequence program by turning the SQ signal ON/OFF. The sequence program can be executed by turning the SQ signal ON. To input the SQ signal, set " 50 " in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.
- When "1" is set in Pr. 415 Inverter operation lock mode setting, the inverter can be operated only when the sequence program is running. By changing the PLC program status from RUN to STOP during inverter operation, the motor decelerates to stop. To stop the inverter operation at the STOP status of the PLC program while performing auto operation using SD1148 (or SM1200 to 1211) of the PLC program, set Pr. $415=11$ ".
- For reading or writing sequence programs, use FR Configurator2 on the personal computer connected to the inverter via RS-485 communication or USB. (When Pr. $\mathbf{4 1 4} \neq$ " 0 ", sequence programs can be read from or written to FR Configurator2.)
- The following shows the required conditions to enable the SQ signal.

Pr.414 setting	Pr.338 setting	SQ signal	
		Input via an external (physical)   terminal	
1,11	0	ON	Input via a communication virtual   terminal
	1	ON	ON
2,12	-	ON	-

-: Not required to enable the SQ signal

## User parameter (data register (D)) auto storage function selection

- Setting Pr. $675=$ " 1 " enables the auto storage function for user parameters.
- The user parameter auto storage function is used to store the setting of Pr. 1195 PLC function user parameters 46 (D251) to Pr. 1199 PLC function user parameters 50 (D255) automatically in EEPROM at power OFF or inverter reset.
- The auto storage function is disabled while the inverter performs any of the following. Measurement of the main circuit capacitor's life, offline auto tuning, emergency drive function, or measurement of load characteristics


## NOTE

- The auto storage function may fail if the EEPROM is accessed by other functions at the same time at power OFF. To ensure the auto storage, provide a power source for the control circuit separately from that of the main circuit.


## User parameter reading from EEPROM

- User parameters (Pr. 1150 to Pr.1199) are read from RAM or EEPROM according to the settings in Pr. 342 Communication EEPROM write selection and Pr. 414 PLC function operation selection. When Pr. $414=$ "11 or 12", RAM data is read regardless of the Pr. 342 setting.

Device	Pr. 342	Pr. 414	Read from	Written to
Inverter (via communication), FR Configurator2	0	0, 1, 2	EEPROM	EEPROM
		11, 12	RAM	
	1	0, 1, 2	RAM	RAM
		11, 12	RAM	
Communication option	0	0, 1, 2	(Differs according to the option type.)	EEPROM
		11, 12	RAM	
	1	0, 1, 2	RAM	RAM
		11, 12	RAM	
Parameter unit Operation panel	0	0, 1, 2	EEPROM	EEPROM
		11, 12	RAM	
	1	0, 1, 2	EEPROM	RAM
		11, 12	RAM	

NOTE
－For details on the PLC function，refer to the PLC Function Programming Manual and the Instruction Manual of FR Configurator2．

## －Copying the PLC function project data to USB memory

－This function copies the PLC function project data to a USB memory device．The PLC function project data copied in the USB memory device can be copied to other inverters．This function is useful in backing up the parameter setting and for allowing multiple inverters to operate by the same sequence programs．
－Refer to page 70 for an outline of the USB communication function．
－The following data can be copied by copying the project data via USB memory device．

Extension	File type	Copy from inverter to USB   memory device	Copy from USB memory   device to inverter
．QPA	Parameter file	Supported	Supported
．QPG	Program file	Supported	Supported
．C32	Function block source information	Supported	Supported
．QCD	Global text comment information	Supported	Supported
．DAT	Project management information	Supported	Not available
．TXT	Copy information	Supported	Not available

## NOTE

－If the project data of the PLC function is locked with a password using FR Configurator2，copying to the USB memory device and verification are disabled．Also if set to write－disabled，writing to the inverter is disabled．（For details on the PLC function，refer to the PLC Function Programming Manual and the Instruction Manual of FR Configurator2．）
－The PLC function project data can be copied to a USB memory device by using the operation panel．For details，refer to the instruction manual of the FR－LU08．

## 《Parameters referred to 》》

Pr． 338 Communication operation command source page 356

## 5．14．18 Trace function

－The operating status of the inverter can be traced and saved on a USB memory device．
－Stored data can be monitored by FR Configurator2，and the status of the inverter can be analyzed．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 1020 \\ & \text { A900 } \end{aligned}$	Trace operation selection	0	0	Without trace operation（The read value is always＂0＂．）
			1	Sampling start
			2	Forced trigger
			3	Sampling stop
			4	Transfer of data to USB memory device
$\begin{aligned} & 1021 \\ & \text { A901 } \end{aligned}$	Trace mode selection	0	0	Memory mode
			1	Memory mode（automatic transfer）
			2	Recorder mode
$\begin{aligned} & 1022 \\ & \text { A902 } \end{aligned}$	Sampling cycle	2	0 to 9	Set the sampling cycle．   0： $0.125 \mathrm{~ms}, 1: 0.252 \mathrm{~ms}, 2: 1 \mathrm{~ms}, 3: 2 \mathrm{~ms}, 4: 5 \mathrm{~ms}, 5: 10 \mathrm{~ms}$ ， 6： $50 \mathrm{~ms}, 7: 100 \mathrm{~ms}, 8: 500 \mathrm{~ms}, 9: 1 \mathrm{~s}$ （Regarding the setting value＂ 0 and 1 ＂，the cycle varies by the control mode．）
$\begin{aligned} & 1023 \\ & \text { A903 } \end{aligned}$	Number of analog channels	4	1 to 8	Select the number of analog channels to be sampled．
$\begin{aligned} & 1024 \\ & \text { A904 } \end{aligned}$	Sampling auto start	0	0	Manual sampling start
			1	Sampling starts automatically when the power supply is turned ON or at a reset


Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 1025 \\ & \text { A905 } \end{aligned}$	Trigger mode selection	0	0	Fault trigger
			1	Analog trigger
			2	Digital trigger
			3	Analog or digital trigger (OR logic)
			4	Both analog and digital trigger (AND logic)
$\begin{aligned} & 1026 \\ & \text { A906 } \end{aligned}$	Number of sampling before trigger	90\%	0 to 100\%	Set the percentage of the pre-trigger sampling time with respect to the overall sampling time.
$\begin{aligned} & 1027 \\ & \text { A910 } \end{aligned}$	Analog source selection (1ch)	201	1 to 3,5 to 14,17 to 20 , 22 to 24,32 to 36,39 to 42, 46, 52 to 54, 61, 62, 64, 67, 68, 71 to 75,87 to 98,201 to 213, 222 to 227, 230 to 232, 235 to 238	Select the analog data (monitor) to be sampled on each channel.
$\begin{aligned} & 1028 \\ & \text { A911 } \end{aligned}$	Analog source selection (2ch)	202		
$\begin{aligned} & 1029 \\ & \text { A912 } \end{aligned}$	Analog source selection (3ch)	203		
$\begin{aligned} & 1030 \\ & \text { A913 } \end{aligned}$	Analog source selection (4ch)	204		
$\begin{aligned} & 1031 \\ & \text { A914 } \end{aligned}$	Analog source selection (5ch)	205		
$\begin{aligned} & 1032 \\ & \text { A915 } \end{aligned}$	Analog source selection (6ch)	206		
$\begin{aligned} & 1033 \\ & \text { A916 } \end{aligned}$	Analog source selection (7ch)	207		
$\begin{aligned} & 1034 \\ & \text { A917 } \end{aligned}$	Analog source selection (8ch)	208		
$\begin{aligned} & 1035 \\ & \text { A918 } \end{aligned}$	Analog trigger channel	1	1 to 8	Select the analog channel to be the trigger.
$\begin{aligned} & 1036 \\ & \text { A919 } \end{aligned}$	Analog trigger operation selection	0	0	Sampling starts when the value of the analog monitor exceeds the value set at the trigger level (Pr.1037)
			1	Sampling starts when the value of the analog monitor falls below the value set at the trigger level (Pr.1037)
$\begin{aligned} & 1037 \\ & \text { A920 } \end{aligned}$	Analog trigger level	1000	600 to 1400	Set the level at which the analog trigger turns ON.   The trigger level is the value obtained by subtracting 1000 from the set value.
$\begin{aligned} & 1038 \\ & \text { A930 } \end{aligned}$	Digital source selection (1ch)	1	1 to 255	Select the digital data (I/O signal) to be sampled on each channel.
$\begin{aligned} & 1039 \\ & \text { A931 } \end{aligned}$	Digital source selection (2ch)	2		
$\begin{aligned} & 1040 \\ & \text { A932 } \end{aligned}$	Digital source selection (3ch)	3		
$\begin{aligned} & 1041 \\ & \text { A933 } \end{aligned}$	Digital source selection (4ch)	4		
$\begin{aligned} & 1042 \\ & \text { A934 } \end{aligned}$	Digital source selection (5ch)	5		
$\begin{aligned} & 1043 \\ & \text { A935 } \end{aligned}$	Digital source selection (6ch)	6		
$\begin{aligned} & 1044 \\ & \text { A936 } \end{aligned}$	Digital source selection (7ch)	7		
$\begin{aligned} & 1045 \\ & \text { A937 } \end{aligned}$	Digital source selection (8ch)	8		
$\begin{aligned} & 1046 \\ & \text { A938 } \end{aligned}$	Digital trigger channel	1	1 to 8	Select the digital channel to be the trigger.
1047	Digital trigger operation selection	0	0	Trace starts when the signal turns ON
A939			1	Trace starts when the signal turns OFF

## - Operation outline

- This function samples the status (analog monitor and digital monitor) of the inverter, traces the sampling data when a trigger (trace start condition) is generated, and saves the resulting trace data.
- When the trace function is set enabled, samplings are collected and the inverter goes into the pre-trigger status.
- In the pre-trigger status, samples are collected, and the trigger standby status is entered when sufficient samples for the number of pre-trigger samples have been collected.
- When the trigger is generated in the trigger standby status, the trace is started and the trace data is saved.



## Tracing procedure

## 1. Preparing a USB memory device

Select a USB memory device with ample capacity to store the necessary amount of trace data. When the trace function is used in the recorder mode, use a USB memory device with at least 1 GB of free space.
2. Prior setting for tracing

Set Pr. 1021 to select a trace mode.
Set Pr. 1022 Sampling cycle and Pr. 1023 Number of analog channels according to the necessary sampling time. Use Pr. 1027 to Pr. 1034 to set analog sources, and Pr. 1038 to Pr. 1045 to set digital sources.
Set a trigger type in Pr. 1025.
3. Tracing

Set Pr. 1020 or Pr. 1024 to start sampling or store trace data in the USB memory device.
The trace status can be monitored. (Refer to page 643.)
4. Waveform check

By using FR Configurator2, trace data stored in a USB memory device can be displayed on a computer screen. For details, refer to the Instruction Manual of FR Configurator2.

## - Selection of trace mode (Pr.1021)

- Select how to save the trace data which results from sampling the inverter status.
- There are two trace data save methods, memory mode and recorder mode.

Pr.1021   setting	Mode	Description	Storing trace data
0	Memory mode	Trace data is stored sequentially to the internal RAM   in the inverter.	To store trace data on a USB memory device, set   Pr. 1020 Trace operation selection = "4" after the   sampling and tracing is completed.
1	Memory mode   (automatic   transfer)	Trace data is stored sequentially to the internal RAM   in the inverter, and automatically transferred to the   USB memory device.	Trace data is automatically stored on the USB   memory device after tracing is completed.
2	Recorder mode	Trace data is stored directly on the USB memory   device. Sampling data is fixed at 8 analog channels   and 8 digital channels. The sampling cycle in this   mode is longer than in the memory mode. (1 ms or   longer)	To stop sampling and complete storing trace data   after the sampling is started, set "2" (forced trigger)   or "3" (sampling stop) in Pr.1020 Trace operation   selection.

*1 For details on Pr.1020, refer to page 642.

## NOTE

- When the trace function is used in the recorder mode, use a USB memory device having at least 1 GB of free space.
- Data transferred to USB is saved in the "TRC" folder under the "FR_INV" folder.
- Up to 99 sets of trace data can be stored in the USB memory device in the memory mode. When a data set is transferred to the USB memory that contains 99 sets of data, its "MEM001.tr1" file will be overwritten. REC001.tr1 is the only data file stored in the recorder mode.
- The data sampled in the recorder mode will be corrupted by resetting or turning OFF the inverter during sampling.
- By using FR Configurator2, the trace data of the internal RAM can be directly transmitted to the personal computer via the USB cable. For details, refer to the Instruction Manual of FR Configurator2.


## Selection of sampling time (Pr.1022, Pr.1023)

- The sampling time is determined by the sampling cycle and the number of data acquisition points. The number of data acquisition points differs between the memory mode and the recorder mode.


## Memory mode

The sampling time varies depending on the setting in Pr. 1022 Sampling cycle and Pr. 1023 Number of analog channels.

Pr. 1023 Number of analog channels	Memory mode sampling time		Number of data acquisition points
	Minimum (Pr. 1022 = "0")	Maximum (Pr. 1022 = "9")	
1	213 ms	1704 s	1704
2	160 ms	1280 s	1280
3	128 ms	1024 s	1024
4	106.5 ms	852 s	852
5	91 ms	728 s	728
6	80 ms	640 s	640
7	71 ms	568 s	568
8	64 ms	512 s	512

## Recorder mode

The sampling time varies depending on the setting in Pr. 1023 Number of analog channels.

Analog channel number	Recorder mode sampling time		Number of data   acquisition points
	Minimum (Pr.1022 = "2")	Maximum (Pr.1022 = "9")	
Fixed to 8ch (analog source   selection)	Approx. 14 hours	Approx. 621 days	

*1 Sampling is performed at a sampling cycle of 1 ms even if " 0 or 1 " is set to Pr. 1022 Sampling cycle.

## - Analog source (monitored item) selection

- Select the analog sources (monitored items) to be set to Pr. 1027 to Pr. 1034 from the table below.

Setting value	Monitored item ${ }^{* 1}$	$\begin{gathered} \text { Minus } \\ \text { sign } \\ \text { display }{ }^{*} \end{gathered}$	Trigger level criterion ${ }^{* 3}$	Setting value	Monitored item ${ }^{* 1}$	Minus sign display*2	Trigger level criterion ${ }^{* 3}$
1	Output frequency/speed		*4	74	Cumulative pulse overflow times (control terminal option)	$\bigcirc$	*4
2	Output current		*4	75	Multi-revolution counter		65535
3	Output voltage		*4	87	Remote output value 1	$\bigcirc$	*4
5	Frequency setting value/ speed setting		*4	88	Remote output value 2	$\bigcirc$	*4
6	Running speed		*4	89	Remote output value 3	$\bigcirc$	*4
7	Motor torque		*4	90	Remote output value 4	$\bigcirc$	*4
8	Converter output voltage		*4	91	PID manipulated variable	$\bigcirc$	*4
$9^{*} 5$	Regenerative brake duty		*4	92	Second PID set point		*4
10	Electronic thermal O/L relay load factor		*4	93	Second PID measured value		*4
11	Output current peak value		*4	94	Second PID deviation	$\bigcirc$	*4
12	Converter output voltage peak value		*4	95	Second PID measured value 2		*4
13	Input power		*4	96	Second PID manipulated variable	$\bigcirc$	*4
14	Output power		*4	97	Dancer main speed setting		*4
17	Load meter		*4	98	Control circuit temperature	$\bigcirc$	*4
18	Motor excitation current		*4	201	*Output frequency		Pr. 84
19	Position pulse		65535	202	*U Phase Output Current	$\bigcirc$	ND rated current
20	Cumulative energization time		65535	203	*V Phase Output Current	$\bigcirc$	ND rated current
22	Orientation status		65535	204	*W Phase Output Current	$\bigcirc$	ND rated current
23	Actual operation time		65535	205	*Converter Output Voltage		1000 V
24	Motor load factor		*4	206	*Output Current (all three phases)		ND rated current
32	Torque command		*4	207	*Excitation Current(A)		ND rated current
33	Torque current command		*4	208	*Torque Current(A)		ND rated current
34	Motor output		*4	209	Terminal 2		100\%
35	Feedback pulse		65535	210	Terminal 4		100\%
36	Torque monitor (power driving/ regenerative driving polarity switching)	$\bigcirc$	*4	211	Terminal 1	$\bigcirc$	100\%
39	SSCNET III communication status ${ }^{* 7}$		65535	212	*Excitation Current (\%)	$\bigcirc$	100\%
40	PLC function user monitor 1	$\bigcirc$	*4	213	*Torque Current (\%)	$\bigcirc$	100\%
41	PLC function user monitor 2	$\bigcirc$	*4	222	Position command		65535
42	PLC function user monitor 3	$\bigcirc$	*4	223	Position command (upper digits)	$\bigcirc$	65535
46	For manufacturer setting. Do not set.			224	Current position		65535
52	PID set point		*4	225	Current position (upper digits)	$\bigcirc$	65535
53	PID measured value		*4	226	Droop pulse		65535
54	PID deviation	$\bigcirc$	*4	227	Droop pulse (upper digits)	$\bigcirc$	65535
61	Motor thermal load factor		*4	230	*Output Frequency (signed)	$\bigcirc$	Pr. 84
62	Inverter thermal load factor		*4	231	*Motor Speed	$\bigcirc$	*6
64	PTC thermistor resistance		Pr. 561	232	*Speed Command	$\bigcirc$	*6
67	PID measured value 2		*4	235	*Torque Command	$\bigcirc$	100\%
$68^{*}$	Emergency drive status		65535	236	*Motor Torque	$\bigcirc$	100\%


Setting   value	Monitored item ${ }^{* 1}$	Minus   sign   display ${ }^{* 2}$	Trigger   level   criterion
71	Cumulative pulse	$\bigcirc$	${ }^{* 4}$
72	Cumulative pulse overflow   times	$\bigcirc$	${ }^{* 4}$
73	Cumulative pulse (control   terminal option)	$\bigcirc$	${ }^{* 4}$


Setting   value	Monitored item ${ }^{* 1}$	Minus   sign   display	Trigger   level   criterion
237	*Excitation Current Command	$\bigcirc$	$100 \%$
238	*Torque Current Command	$\bigcirc$	$100 \%$

*1 "*" shows a monitored item with a high-speed sampling cycle.
*2 "○" shows that the display with a minus sign is available.
*3 Indicates a criterion at $100 \%$ when the analog trigger is set.
*4 Refer to Terminal FM/AM Full-scale value (page 431).
*5 Monitoring is available only for standard models.
*6 Rated motor frequency $\times 120$ / number of motor poles
*7 Inverter output voltage is displayed when the FR-A8NS is not installed.

## - Digital source (monitored item) selection

- Select the digital sources (input/output signals) to be set to Pr. 1038 to Pr. 1045 from the table below. When a value other than the below, 0 (OFF) is applied for display.

Setting value	Signal name	Remarks
1	STF	For details on the signals, refer to page 498.
2	STR	
3	AU	
4	RT	
5	RL	
6	RM	
7	RH	
8	JOG	
9	MRS	
10	$\begin{aligned} & \text { STP } \\ & \text { (STOP) } \end{aligned}$	
11	RES	
12	CS	
21	X0	For details on the signals, refer to the Instruction Manual of FR-A8AX (option).
22	X1	
23	X2	
24	X3	
25	X4	
26	X5	
27	X6	
28	X7	
29	X8	
30	X9	
31	X10	
32	X11	
33	X12	
34	X13	
35	X14	
36	X15	
37	DY	


Setting value	Signal name	Remarks
101	RUN	For details on the signals, refer to page 446.
102	SU	
103	IPF	
104	OL	
105	FU	
106	ABC	
107	ABC2	
121	DO0	For details on the signals, refer to the Instruction Manual of FR-A8AY (option).
122	DO1	
123	DO2	
124	DO3	
125	DO4	
126	DO5	
127	DO6	
128	RA1	For details on the signals, refer to the Instruction Manual of FR-A8AR (option).
129	RA2	
130	RA3	

## - Trigger setting (Pr.1025, Pr. 1035 to Pr.1037, Pr.1046, Pr.1047)

- Set the trigger generating conditions and trigger target channels.

Pr. 1025 setting		Trigger generating conditions
0	Trace starts when inverter enters an fault status (protective function activated)	Selection of trigger target   channel
1	Trace starts when analog monitor satisfies trigger conditions	Pr.1035
2	Trace starts when digital monitor satisfies trigger conditions	Pr.1046
3	Trace starts when either of analog or digital monitor satisfies trigger conditions (OR)	Pr.1035, Pr.1046
4	Trace starts when both of analog or digital monitor satisfies trigger conditions (AND)	Pr.1035, Pr.1046

- Set the trigger generation conditions for the analog monitor.

Pr. 1036 setting	Trigger generation conditions	Trigger level setting
0	Sampling starts when the analog data targeted for the trigger exceeds the value specified   at the trigger level	Set the trigger level by   Pr. $1037(-400 \% \text { to } 400 \%)^{* 1}$
1	Sampling starts when the analog data targeted for the trigger has fallen below the value   specified at the trigger level	

*1 For Pr.1037, set the number obtained by adding 1,000 to the trigger level.

- Set the trigger generation conditions for the digital monitor.

Pr. 1047 setting	Trigger generation conditions
0	Trace starts when the digital data targeted for the trigger turns ON
1	Trace starts when the digital data targeted for the trigger turns OFF

## Start of sampling and copying of data (Pr.1020, Pr.1024)

- Set the trace operation. The trace operation is set by setting Pr. 1020 Trace operation selection.
- When "1" is set in Pr.1020, sampling is started.
- When "2" is set in Pr.1020, a trigger is regarded as having been generated (for instance, a forced trigger), sampling is stopped and the trace is started.
- When "3" is set in Pr.1020, sampling is stopped.
- When " 4 " is set in Pr.1020, the trace data in internal RAM is transferred to a USB memory device. (Trace data cannot be transferred during sampling.)
- To automatically start sampling when the power supply is turned ON or at a recovery after an inverter reset, set "1" to Pr. 1024 Sampling auto start.

Pr. $\mathbf{1 0 2 0}$ setting	Operation
0	Sampling standby
1	Sampling start
2	Forced trigger (sampling stop)
3	Sampling stop
4	Data transmission

- The read value of Pr. 1020 is always " 0 ".


## - Selection of trace operation by input terminal (TRG signal, TRC signal)

- Trace operation can be selected by signal inputs.
- A forced trigger can be applied when the Trace trigger input (TRG) signal is ON.
- Sampling is started and stopped by the Trace sampling start/end (TRC) signal turning ON and OFF, respectively.
- To input the TRG signal, set "46" in any of Pr. 178 to Pr. 189 (Input terminal function selection), and to input the TRC signal, set " 47 " to assign the function to a terminal.


## NOTE

- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Monitoring the trace status

- The trace status can be monitored on the operation panel by setting " 38 " in Pr. 52 Operation panel main monitor selection, Pr. 774 to Pr. 776 (Operation panel monitor selection).


Monitor   value	Trace status			
	No trace data in internal RAM	USB memory not accessed	Trigger not detected	10s place
1	Trace data in internal RAM	USB memory being accessed	Trigger detected	Trace stopped
2	-	USB memory transfer error	-	Trace operation
3	-	USB buffer overrun	-	-

*1 The "0(s)" to the left of the leftmost non-zero digit is(are) not shown in the monitor display.
For example, if no trace data is in internal RAM, the USB memory is not accessed, no trigger is detected, and the trace operation is performed, "1" appears (not "0001").

- When copying the traced data to a USB memory device, the operating status of the USB host can be checked with the inverter LED. For the overview of the USB communication function, refer to page 70.

LED status	Operating status
OFF	No USB connection.
ON	The communication is established between the inverter and the USB device.
Flickering rapidly	Traced data is being transmitted. (In the memory mode, transmission command is being issued. In the recorder   mode, sampling is being performed.)
Flickering slowly	Error in the USB connection.

- During trace operation, the trace status signal (Y40) can be output. To use the Y40 signal, set "40 (positive logic) or 140 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal.


## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## 《 Parameters referred to 》

Pr. 52 Operation panel main monitor selection page 419
Pr. 178 to Pr. 189 (Input terminal function selection) $\longmapsto$ page 498

### 5.15 (N) Operation via communication and its settings

Purpose	Parameter to set			Refer to
To start operation via communication	Initial setting of operation via communication	$\begin{aligned} & \text { P.N000, P.N001, } \\ & \text { P.N013, P.N014 } \end{aligned}$	$\begin{aligned} & \text { Pr.549, Pr.342, } \\ & \text { Pr.502, Pr. } 779 \end{aligned}$	650
To operate via communication from PU connector	Initial setting of computer link communication (PU connector)	P.N020 to P.N028	Pr. 117 to Pr. 124	657
To operate via communication from RS-485 terminals	Initial setting of computer link communication (RS-485 terminals)	P.N030 to P.N038	$\begin{aligned} & \text { Pr. } 331 \text { to Pr. } 337 \text {, } \\ & \text { Pr. } 341 \end{aligned}$	
	MODBUS RTU communication specification	$\begin{aligned} & \text { P.N002, P.N030, } \\ & \text { P.N031, P.N034, } \\ & \text { P.N080 } \end{aligned}$	$\begin{aligned} & \text { Pr.539, Pr.331, } \\ & \text { Pr.332, Pr.334, } \\ & \text { Pr.343 } \end{aligned}$	674
To Communicate using USB (FR Configurator2)	USB communication	P.N040, P.N041	Pr.547, Pr. 548	691
To connect a GOT	GOT automatic recognition	P.N020, P.N030	Pr.117, Pr. 331	692
To back up the data of parameter settings and PLC function to the GOT	Backup/restore	P.N110, P.N111	Pr.434, Pr. 435	694

### 5.15.1 Wiring and configuration of PU connector

Using the PU connector enables communication operation from a personal computer, etc.
When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run and monitor the inverter or read and write to parameters.

## - PU connector pin-outs

Inverter
(Receptacle side)
Front view


Pin number	Name	
1	SG	Earth (ground) (connected to terminal 5)
2	-	Operation panel power supply
3	RDA	Inverter receive+
4	SDB	Inverter send-
5	SDA	Inverter send+
6	RDB	Inverter receive-
7	SG	Earth (ground) (connected to terminal 5)
8	-	Operation panel power supply

## NOTE

- Pins No. 2 and 8 provide power to the operation panel or parameter unit. Do not use these pins for RS-485 communication.
- Do not connect the PU connector to the computer's LAN board, FAX modem socket or telephone modular connector. The product could be damaged due to differences in electrical specifications.


## - Wiring and configuration of PU connector communication system

- System configuration

- Wiring of computer by RS-485

*1 Make connection in accordance with the Instruction Manual of the computer to be used with. Fully check the terminal numbers of the computer since they vary with the model.


## NOTE

- When performing RS-485 communication with multiple inverters, use the RS-485 terminals. (Refer to page 647.)
- Computer-inverter connection cable

Refer to the following for the connection cable (RS-232C $\Leftrightarrow$ RS-485 converter) between the computer with an RS-232C interface and an inverter. Commercially available products (as of November 2020)

Model	Manufacturer
Interface embedded cable    DAFXIH-CAB (D-SUB25P for personal computer side)    DAFXIH-CABV (D-SUB9P for personal computer side)    + Diatrend Corp.   Connector conversion cable DINV-485CAB (for inverter side)    Interface embedded cable dedicated for inverter   DINV-CABV *2	

*2 The conversion cable cannot connect multiple inverters. (The computer and inverted are connected in a 1:1 pair.) This product is a RS-232C $\Leftrightarrow$ RS-485 conversion cable that has a built-in converter. No additional cable or connector is required. For the product details, contact the manufacturer.

- Use Ethernet cables compliant with the following standards when fabricating the cable.

Ethernet cable	Connector	Standard
Category 5e or higher straight cable   (double shielded / STP)${ }^{* 3}$	RJ-45 connector	The cables compliant with the following   standards:
		•IEEE 802.3 (1000BASE-T)  
		ANSI/TIA/EIA-568-B (Category 5e)

[^31]
### 5.15.2 Wiring and configuration of RS-485 terminals - RS-485 terminal layout



Name	Description
RDA1 (RXD1+)	Inverter receive +
RDB1 (RXD1-)	Inverter receive -
RDA2 (RXD2+)	Inverter receive + (for branch)
RDB2 (RXD2-)	Inverter receive - (for branch)
SDA1 (TXD1+)	Inverter send +
SDB1 (TXD1-)	Inverter send -
SDA2 (TXD2+)	Inverter send + (for branch)
SDB2 (TXD2-)	Inverter send - (for branch)
P5S (VCC)	5V Permissible load current 100 mA
SG (GND)	Earthing (grounding) (connected to terminal SD)

## - Connection of RS-485 terminals and wires

- The size of RS-485 terminal block is the same as the control circuit terminal block. Refer to page 59 for the wiring method.


## NOTE

- To avoid malfunction, keep the RS-485 terminal wires away from the control circuit board.
- When the FR-A860-00450 or lower is used with a plug-in option, lead the wires through the hole on the side face of the front cover for wiring of the RS-485 terminals.

- When the FR-A860-00680 or higher is used with a plug-in option, lead the wires on the left side of the plug-in option for wiring of the RS-485 terminals.


## System configuration of RS-485 terminals

- Computer and inverter connection (1:1)

- Combination of computer and multiple inverters (1:n)



## - How to wire RS-485 terminals

- 1 inverter and 1 computer with RS-485 terminals

- Multiple inverters and 1 computer with RS-485 terminals

*1 Make connection in accordance with the Instruction Manual of the computer to be used with. Fully check the terminal numbers of the computer since they vary with the model.
*2 For the inverter farthest from the computer, set the terminating resistor switch to ON ( $100 \Omega$ side).


## NOTE

- To connect multiple inverters using RS-485 distributors, refer to the following.

- To connect multiple inverters using RS-485 distributors, refer to the following. Commercially available products (as of October 2020)

Product name	Model	Manufacturer
RS-485 distributor	BMJ-8-28N (Pins No. 2 and No. 8 are not connected internally.)   (A plug with a terminating resistor is not used.)	HACHIKO ELECTRIC CO., LTD.
	DMDH-3PN (Pins No. 2 and No. 8 are not connected internally.)   DMDH-10PN (Pins No. 2 and No. 8 are not connected internally.)	Diatrend Corp.

## - Two-wire type connection

- If the computer is 2 -wire type, a connection from the inverter can be changed to 2 -wire type by passing wires across reception terminals and transmission terminals of the RS-485 terminals.



## NOTE

- A program should be created so that transmission is disabled (receiving state) when the computer is not sending and reception is disabled (sending state) during sending to prevent the computer from receiving its own data.


### 5.15.3 Initial setting of operation via communication

Set the action when the inverter is performing operation via communication.

- Set the communication protocol. (Mitsubishi inverter protocol/MODBUS RTU protocol)
- Set the action at fault occurrence or at writing of parameters

Pr.	Name	Initial value	Setting range	Description
549   N000	Protocol selection	0	0	Mitsubishi inverter protocol (computer link)
			1	MODBUS RTU protocol
$\begin{aligned} & 342 \\ & \text { N001 } \end{aligned}$	Communication EEPROM write selection	0	0	Parameter values written by communication are written to the EEPROM and RAM.
			1	Parameter values written by communication are written to the RAM.
349*1	Communication reset selection/Ready bit status selection/Reset selection after inverter faults are cleared/DriveControl writing restriction selection	0	0	Enables the error reset function in any operation mode.
			1	Enables the error reset function only in the Network operation mode.
			100, 101	For details, refer to page 831 and page 836.
			$\begin{aligned} & 1000,1001, \\ & \text { 1100, 1101, } \\ & 10000,10001, \\ & 10100,10101, \\ & 11000,11001, \\ & 11100,11101 \end{aligned}$	For details, refer to page 831.
N010*1	Communication reset selection	0	0	Enables the error reset function in any operation mode.
			1	Enables the error reset function only in the Network operation mode.
N240*1	Ready bit status selection	0	0	The status of Ready bit in communication data can be changed.
			1	
500   N011 ${ }^{* 1}$	Communication error execution waiting time	0	0 to 999.8 s	Set the time from when the communication line error occurs until the inverter starts the operation for the communication error (when a communication option is used).
501 N012 ${ }^{* 1}$	Communication error occurrence count display	0	0	Displays the communication error occurrence count (when a communication option is used).
$\begin{aligned} & 502 \\ & \text { N013 } \end{aligned}$	Stop mode selection at communication error	0	0 to 4, 11, 12	Select the operation at a communication error occurrence.
$\begin{aligned} & 779 \\ & \text { N014 } \end{aligned}$	Operation frequency during communication error	9999	0 to 590 Hz	Set the frequency to be run at a communication error occurrence.
			9999	The motor runs at the frequency used before the communication error.

*1 The setting is available only when a communication option is installed.
*2 If in communication by the communication option, E.OP1 is displayed.

## Setting the communication protocol (Pr.549)

- Select the communication protocol.
- The MODBUS RTU protocol can be used by communication from the RS-485 terminals.

Pr.549 setting	Communication protocol
0 (initial value)	Mitsubishi inverter protocol (computer link)
1	MODBUS RTU protocol

## - Communication EEPROM write selection (Pr.342)

- When parameter write is performed via the inverter PU connector, RS-485 terminal, USB communication, or a communication option, the parameters storage device can be changed from EEPROM + RAM to RAM only. Use this function if parameter settings are changed frequently.
- When changing the parameter values frequently, set "1" in Pr. 342 Communication EEPROM write selection to write them to the RAM only. The life of the EEPROM will be shorter if parameter write is performed frequently with the setting unchanged from " 0 (initial value)" (EEPROM write).


## NOTE

- Turning OFF the inverter's power supply clears the modified parameter settings when Pr. $342=$ " 1 (write only to RAM)". Therefore, the parameter values at next power-ON are the values last stored in EEPROM.
- The parameter setting written in RAM cannot be checked on the operation panel. (The values displayed on the operation panel are the ones stored in EEPROM.)


## - Operation selection at a communication error (Pr.502, Pr.779)

- For communication using RS-485 terminals or a communication option, operation at a communication error can be selected. The operation is active under the Network operation mode.
- Select the stop operation at the retry count excess (Pr.335, enabled only when the Mitsubishi inverter protocol is selected) or at a signal loss detection (Pr.336, Pr.539).

Fault type	Pr. 502 setting	At fault occurrence			At fault removal		
		Operation	Indication	Fault (ALM) signal	Operation	Indication	Fault (ALM) signal
Communication line	0 (initial value)	Output shutoff	E. SER*1	ON	Output stop status	E. SER*1	ON
	1,11	Output to decelerate and stop the motor.	"E.SER"   indication after stop*1	ON after stop	continues.		
	2, 12			OFF	Restart ${ }^{* 3}$	Normal	OFF
	3	Operation continues at the frequency set in Pr.779. ${ }^{*}$	Normal	OFF	Normal	Normal	OFF
	4		"CF" warning				
Communication option (when a communication option is used)	0, 3	Output shutoff	"E. 1"	ON	Output stop status continues.	"E. 1"	ON
	$\begin{aligned} & 1,2,11 \\ & 12 \end{aligned}$	Output to decelerate and stop the motor.	"E. 1" after stop	ON after stop			
	4	Operation continues at the frequency set in Pr.779. ${ }^{*}$	"CF" warning	OFF	Operation continues at the frequency set in Pr. 779 .	"CF" warning	OFF

*1 If in communication by the communication option, "E.OP1" is displayed.
*2 Under position control, the operation is continued to the target position.
*3 When the communication error is removed during deceleration, the motor re-accelerates. Under position control, the motor does not re-accelerate even when the communication error is removed during deceleration.

- The motor is decelerated to a stop according to the setting of Pr. 111 Third deceleration time when an error occurs while Pr. 502 = "11 or 12".

Pr. 502 setting	$\quad$ Operation to a stop at a communication error occurrence
0	Output shutoff
1 to 4	Deceleration stop according to the selected deceleration time (selectable using the RT or X9 signal)
11,12	Deceleration stop according to the setting of Pr. 111

- When a communication error is detected while communication with the RS-485 terminals is performed, the Alarm (LF) signal is output to an output terminal of the inverter. To use the LF signal, set "98 (positive logic) or 198 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to the output terminal. (To output the LF signal even if communication through RS-485 terminals is not performed for the time set in Pr. 336 or longer, or during communication using a communication option, set " 3 or 4" in Pr.502.)
- The following charts show operations when a communication line error occurs.


Pr. 502 = "4"


- The following charts show operations when a communication option fault occurs.

$$
\text { Pr. } 502 \text { = "0 (initial value) or 3" }
$$



Pr. 502 = "1 or 2"



- When a communication option is used, the protective function [E.OP1 (fault data: HA1)] is activated at error occurrences on the communication line. The protective function [E. 1 (fault data: HF1)] is activated at error occurrences in the communication circuit inside the option.
- Fault output indicates the Fault (ALM) signal and an alarm bit output.
- When the fault output is set enabled, fault records are stored in the fault history. (A fault record is written to the fault history at a fault output.)
- When the fault output is not enabled, a fault record is overwritten to the fault history temporarily but not stored.
- After the fault is removed, the fault indication goes back to normal indication on the monitor, and the fault history goes back to the previous status.
- When Pr. $502 \neq$ " 0 ", the normal deceleration time setting (settings like Pr.8, Pr.44, and Pr.45) is applied as the deceleration time. Normal acceleration time setting (settings like Pr. 7 and Pr.44) is applied as the acceleration time for restart.
- When Pr. $502=$ " 2,3 , or 4 ", the inverter operates with the start command and the speed command, which were used before the fault.
- If a communication line error occurs, then the error is removed during deceleration while Pr. $502=$ " 2 ", the motor reaccelerates from that point. (When a communication option is used, acceleration does not restart at a communication option error.)
- The Pr. 502 and Pr. 779 settings are valid when communication is performed via the RS-485 terminals or a communication option.
- These parameters are valid under the Network operation mode. When performing communication through RS-485 terminals, set Pr. 551 PU mode operation command source selection $\neq$ "1".
- Pr. 502 is valid for the device that has the command source under the Network operation mode. If a communication option is installed while Pr. 550 = " 9999 (initial setting)", a communication error in RS-485 terminals occurs and Pr. 502 becomes invalid.
- If the communication error setting is disabled with Pr. 335 = " 9999 " or Pr. 539 = " 9999 " while Pr. $502=$ " 3 or 4", the inverter does not operate with the frequency set in Pr. 779 when a communication error occurs.
- If a communication error occurs while continuous operation at Pr. 779 is selected with Pr. $502=$ " 3 or 4", the inverter operates at the frequency set in Pr. 779 even though the speed command source is at the external terminals.
- Example) If a communication error occurs while Pr. $339=$ " 2 " and the $R L$ signal is input through an external terminal, the operation is continued at the frequency set in Pr. 779 .
- During position control, an error occurs even if "2" is set in Pr.502.

[^32]
## - Waiting time setting from the communication line error occurrence to the communication error activation (Pr.500)

- When a communication option is used, use Pr. 500 Communication error execution waiting time to set the time from when the communication line error occurs until the inverter starts the operation for the communication error.
- When a communication line error occurs and lasts longer than the time set in Pr.500, it is recognized as a communication error. If the communication returns to normal within the time, it is not recognized as a communication error, and the operation continues.

- Operation from the error occurrence until the Pr. 500 setting time elapses

Fault type	$\begin{aligned} & \text { Pr. } 502 \\ & \text { setting } \end{aligned}$	Operation	Indication	Fault output
Communication line	0	Operation continues. ${ }^{* 1}$	Norma**	Not provided. ${ }^{* 1}$
	1			
	2			
	3			
	4			
Communication option	0, 3	Output shutoff	"E. 1"	Output
	1,2	Output to decelerate and stop the motor.	"E. 1" after stop	Output after stop
	4	Operation continues.	"CF" warning	Not output

*1 When the communication returns to normal within the time period set in Pr.500, the protective function (E.OP1) is not activated.

## Displaying and clearing the communication error count (Pr.501)

- When a communication option is used, the cumulative count of communication error occurrences can be displayed. Write " 0 " to clear this cumulative count.
- When a communication line error occurs, the setting of Pr. 501 Communication error occurrence count display increases by one.
- The cumulative count of communication error occurrences is counted from 0 to 65535 . When the count exceeds 65535 , the displayed value is cleared and the counting starts over from 0 again.



## NOTE

- Communication error count is temporarily stored in the RAM memory. The error count is stored in EEPROM only once per hour. If power reset or inverter reset is performed, Pr. 501 setting will be the one that is last stored to EEPROM depending on the reset timing.


## - Error reset operation selection at inverter fault (Pr.349)

- An error reset command from a communication option can be invalidated in the External operation mode or the PU operation mode.

Pr.349 setting	Description
0 (initial value)	Error reset is enabled independently of operation mode.
1	Error reset is enabled in the Network operation mode.
100,101	For details, refer to page 833 and page 836.
$1000,1001,1100,1101,10000$, For details, refer to page 833.   $10001,10100,10101,11000$,    $11001,11100,11101$	

## Operation mode switching and communication startup mode (Pr.79,

 Pr.340)- Check the following before switching the operation mode. The inverter is at a stop. Both the STF and STR signals are off. The Pr. 79 Operation mode selection setting is correct. (Check the setting on the operation panel of the inverter.) (Refer to page 346.)
- The operation mode at power ON and at restoration from instantaneous power failure can be selected. Set a value other than " 0 " in Pr. 340 Communication startup mode selection to select the Network operation mode. (Refer to page 355.)
- After the inverter starts up in the Network operation mode, parameter write can be commanded via the network.


## NOTE

- The changed value in Pr. 340 is applied after the next power-ON or inverter reset.
- The Pr. 340 setting can be changed on the operation panel in any operation mode.
- When setting a value other than " 0 " in Pr. 340 , make sure that the communication settings of the inverter are correct.

```
<<Parameters referred to 》
Pr. }7\mathrm{ Acceleration time, Pr. }8\mathrm{ Deceleration time, Pr. }111\mathrm{ Third deceleration time page 320
Pr. }79\mathrm{ Operation mode selection Ю page 346
Pr. }340\mathrm{ Communication startup mode selection page 355
Pr. }335\mathrm{ RS-485 communication retry count W page 657
Pr. }336\mathrm{ RS-485 communication check time interval S page 657
Pr. }539\mathrm{ MODBUS RTU communication check time interval $ page 674
Pr. }550\mathrm{ NET mode operation command source selection W page 356
Pr. }551\mathrm{ PU mode operation command source selection \
```


### 5.15.4 Initial settings and specifications of RS-485 communication

Use the following parameters to perform required settings for the RS-485 communication between the inverter and a personal computer.

- There are two types of communication, communication using the inverter's PU connector and communication using the RS-485 terminals.
- Parameter setting, monitoring, etc. can be performed using Mitsubishi inverter protocol and MODBUS RTU communication protocol.
- To make communication between the personal computer and inverter, setting of the communication specifications must be made to the inverter in advance. Data communication cannot be made if the initial settings are not made or if there is any setting error.
[Parameters related to PU connector communication]

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 117 \\ & \text { N020 } \end{aligned}$	PU communication station number	0	0 to 31	Specify the inverter station number. Set the inverter station numbers when two or more inverters are connected to one personal computer.
$\begin{aligned} & 118 \\ & \text { N021 } \end{aligned}$	PU communication speed	192	$\begin{aligned} & 48,96,192 \\ & 384,576,768, \\ & 1152 \end{aligned}$	Set the communication speed.   The setting value $\times 100$ equals the communication speed. For example, if 192 is set, the communication speed is 19200 bps .
N022	PU communication data length	0	0	Data length 8 bits
			1	Data length 7 bits
N023	PU communication stop bit length	1	0	Stop bit length 1 bit
			1	Stop bit length 2 bits
119	PU communication stop bit length / data length	1	0	Data length 8 bits
			1	
			10	Data length 7 bits
			11	Stop bit length 2 bits
$\begin{aligned} & 120 \\ & \text { N024 } \end{aligned}$	PU communication parity check	2	0	Without parity check
			1	With parity check at odd numbers
			2	With parity check at even numbers
121   N025	Number of PU communication retries	1	0 to 10	Set the permissible number of retries for unsuccessful data reception. If the number of consecutive errors exceeds the permissible value, the inverter will trip.
			9999	If a communication error occurs, the inverter will not trip.
$\begin{aligned} & 122 \\ & \text { N026 } \end{aligned}$	PU communication check time interval	9999	0	No PU connector communication
			0.1 to 999.8 s	Set the interval of the communication check (signal loss detection) time.   If a no-communication state persists for longer than the permissible time, the inverter will trip.
			9999	No communication check (signal loss detection)
$\begin{aligned} & 123 \\ & \text { N027 } \end{aligned}$	PU communication waiting time setting	9999	0 to 150 ms	Set the waiting time between data transmission to the inverter and the response.
			9999	Set with communication data.   Delay time: Number set in the data $\times 10 \mathrm{~ms}$
$\begin{aligned} & 124 \\ & \text { N028 } \end{aligned}$	PU communication CR/LF selection	1	0	Without CR/LF
			1	With CR
			2	With CR/LF

[Parameters related to communication with the RS-485 terminals]

Parameter   number	Name	Initial   value	Setting range	Description
331   N030	RS-485 communication   station number	0	0 to $31(0$ to   $247)^{* 1 * 2}$	Set the inverter station number. (Same specifications as Pr.117)
N32   N031	RS-485 communication   speed	96	$3,6,12,24$,   $48,96,192$,   $384,576,768$,   1152	Select the communication speed. (Same specifications as   Pr.118)
N032	RS-485 communication   data length	0	0,1	Select the data length. (Same specifications as P.N022)

*1 When "1" (MODBUS RTU protocol) is set in Pr.549, the setting range within parentheses is applied.
*2 When a value outside the setting range is set, the inverter operates at the initial value.
*3 In the MODBUS RTU protocol, the data length is fixed at 8 bits.
*4 In the MODBUS RTU protocol, Pr. 334 setting is applied as the stop bit length. (Refer to page 674.)
*5 In the MODBUS RTU protocol, this is invalid.

## NOTE

- The monitored items and parameter settings can be read during communication with the Pr. 336 RS-485 communication check time interval = "0 (initial value)" setting, but such operation will become faulty once the operation mode is changed to the NET operation mode. When the NET operation mode is selected as the start-up operation mode, communication is performed once, then a Communication fault (inverter) (E.SER) occurs. To perform operation or parameter writing via communication, set "9999" or a large setting value in Pr.336. (The setting value is determined by the computer program.)(Refer to page 666.)
- Always reset the inverter after making the initial settings of the parameters. After changing the communication-related parameters, communication cannot be made until the inverter is reset.


### 5.15.5 Mitsubishi inverter protocol (computer link communication)

Parameter settings and monitoring are possible by using the Mitsubishi inverter protocol (computer link communication) via inverter PU connector and the RS-485 terminals.

## Communication specifications

- The communication specifications are given below.

Item		Description	Related Parameter
Communication protocol		Mitsubishi inverter protocol (computer link)	Pr. 551
Conforming standard		EIA-485 (RS-485)	-
Connectable units		1:N (maximum 32 units), the setting range of station number is 0 to 31 .	$\begin{aligned} & \text { Pr. } 117 \\ & \text { Pr. } 331 \end{aligned}$
Communication Speed	PU connector	Selected among 4800/9600/19200/38400/57600/76800/115200 bps	Pr. 118
	RS-485 terminals	Selected among 300/600/1200/2400/4800/9600/19200/38400/38400/ 57600/76800/115200 bps	Pr. 332
Control procedure		Asynchronous system	-
Communication method		Half-duplex system	-
Communication specifications	Character system	ASCII (7 bits or 8 bits can be selected.)	$\begin{aligned} & \hline \text { Pr. } 119 \\ & \text { Pr. } 333 \end{aligned}$
	Start bit	1 bit	-
	Stop bit length	1 bit or 2 bits can be selected.	$\begin{aligned} & \hline \text { Pr. } 119 \\ & \text { Pr. } 333 \end{aligned}$
	Parity check	Check (at even or odd numbers) or no check can be selected.	$\begin{aligned} & \text { Pr. } 120 \\ & \text { Pr. } 334 \end{aligned}$
	Error check	Sum code check	-
	Terminator	CR/LF (presence/absence selectable)	$\begin{aligned} & \text { Pr. } 124 \\ & \text { Pr. } 341 \end{aligned}$
Waiting time setting		Selectable between presence and absence	$\begin{aligned} & \text { Pr. } 123 \\ & \text { Pr. } 337 \end{aligned}$

## - Communication procedure

- Data communication between the computer and inverter is made in the following procedure.
(a) Request data is sent from the computer to the inverter. (The inverter will not send data unless requested.)
(b) After waiting for the waiting time,
(c) The inverter sends reply data to the computer in response to the computer request.
(d) After waiting for the inverter data processing time,
(e) An answer from the computer in response to reply data (c) of the inverter is transmitted. (Even if (e) is not sent, subsequent communication is made properly.)

*1 If a data error is detected and a retry must be made, perform retry operation with the user program. The inverter trips if the number of consecutive retries exceeds the parameter setting.
*2 On receipt of a data error occurrence, the inverter returns reply data (c) to the computer again. The inverter trips if the number of consecutive data errors reaches or exceeds the parameter setting


## - Communication operation presence/absence and data format types

- Data communication between the computer and inverter is made in ASCII code (hexadecimal code).
- Communication operation presence/absence and data format types are as follows.

Symbol	Operation		Operation command	Operation frequency	Multi command	Parameter write	Inverter reset	Monitor	Parameter read
a	Communication request is sent to the inverter in accordance with the user program in the computer.		A, A1	A	A2	A	A	B	B
b	Inverter data processing time		With	With	With	With	Without	With	With
C	Reply data from the inverter (Data (a) is checked for an error)	No error ${ }^{* 1}$ (Request accepted)	C	C	$\mathrm{C} 1{ }^{* 3}$	C	$\mathrm{C}^{* 2}$	$\begin{aligned} & \text { E, E1, E2, } \\ & \text { E3 } \end{aligned}$	E
		With error (Request rejected)	D	D	D	D	D*2	D	D
d	Computer processing delay time		10 ms or more						
e	Answer from computer in response to reply data c (Data c is checked for error)	No error *1 (No inverter processing)	Without	Without	Without (C)	Without	Without	Without (C)	Without (C)
		With error (Inverter outputs C again.)	Without	Without	F	Without	Without	F	F

*1 In the communication request data from the computer to the inverter, 10 ms or more is also required after "no data error (ACK)". (Refer to page 664.)
*2 Reply from the inverter to the inverter reset request can be selected. (Refer to page 669.)
*3 At mode error, and data range error, C1 data contains an error code. (Refer to page 673) Except for those errors, the error is returned with data format D.

- Data writing format
a. Communication request data from the computer to the inverter

Format	Number of characters																
	1	2 3	4 4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A	$\begin{aligned} & \text { ENQ } \\ & { }_{* 1} \end{aligned}$	Inverter station No. *2	Instruction code	*3	Data				Sum check		*4						
A1	$\begin{aligned} & \text { ENQ } \\ & { }_{* 1} \end{aligned}$	Inverter station No. ${ }^{*}$	Instruction code	*3	Data		Sum check		*4								
A2	$\begin{aligned} & \text { ENQ } \\ & { }_{* 1} \end{aligned}$	Inverter station No. *2	Instruction code	*3	Send   data   type	Receive data type	Data				Dat				Sum check		*4

c. Reply data from the inverter to the computer (No data error detected)

Format	Number of characters																	
	1	23	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C	$\underset{*_{1}}{\text { ACK }}$	Inverter station No. *2	*4															
C1	$\underset{* 1}{ }$	Inverter station No. ${ }^{*}$	Send data type	Receive data type	$\begin{aligned} & \text { Error } \\ & \text { code } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Error } \\ & \text { code } \\ & 2 \end{aligned}$	Data1				Data2				$\begin{aligned} & \text { ETX } \\ & { }_{* 1} \end{aligned}$	Sum check		*4

c. Reply data from the inverter to the computer(Data error detected)

Format	Number of characters				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
D	NAK $^{* 1}$	Inverter station   No. ${ }^{* 2}$	Error   code	${ }^{* 4}$	

*1 Indicates a control code.
*2 Specifies the inverter station numbers in the range of H 00 to H 1 F (stations 0 to 31 ) in hexadecimal.
*3 Set the delay time. When Pr. 123 or Pr. 337 (Waiting time setting) $\neq 9999$, create a communication request data without "waiting time" in the data format. (The number of characters decreases by 1.)
*4 CR, LF code: When data is transmitted from the computer to the inverter, codes CR (carriage return) and LF (line feed) are automatically set at the end of a data group on some computers. In this case, setting must be also made on the inverter according to the computer. Whether the CR and LF codes will be present or absent can be selected using Pr. 124 or Pr. 341 (CR/LF selection).

- Data reading format
a. Communication request data from the computer to the inverter

Format	Number of characters								
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
B	ENQ   ${ }^{*} 1$	Inverter station   No. ${ }^{* 2}$	Instruction   code	${ }^{* 3}$	Sum check	${ }^{*} 4$			

c. Reply data from the inverter to the computer (No data error detected)

Format	Number of characters											
	1	2 3	4	5	6	7	8	9	10	11	12	13
E	STX* ${ }^{\text {¹ }}$	Inverter station No. *2	Read data				$E T{ }^{* 1}$	Sum check		*4		
E1	STX*1	Inverter station No. *2	Read data		ETX* ${ }^{*}$	Sum check		*4				
E2	STX*1	Inverter station No. *2	Read data						ETX*1	Sum		*4


Format	Number of characters							
	1	2	3	4 to 23	24	25	26	27
E3	STX* ${ }^{*}$	Inverter station No. *2		Read data (Inverter model information)	ETX ${ }^{* 1}$	Sum check		*4

c. Reply data from the inverter to the computer (Data error detected)

Format	Number of characters				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
D	NAK $^{* 1}$	Inverter station   No. *2	Error   code	*4	

e. Transmission data from the computer to the inverter when reading data

Format	Number of characters			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
C   (No data error   detected)	ACK $^{* 1}$	Inverter station   No. *2	*4	
F   (Data error detected)	NAK $^{* 1}$	Inverter station   No. ${ }^{* 2}$	*4	

*1 Indicates a control code.
*2 Specifies the inverter station numbers in the range of H 00 to H 1 F (stations 0 to 31 ) in hexadecimal.
*3 Set the delay time. When Pr. 123 or Pr. 337 (Waiting time setting) $\neq 9999$, create a communication request data without "waiting time" in the data format. (The number of characters decreases by 1.)
*4 CR, LF code: When data is transmitted from the computer to the inverter, codes CR (carriage return) and LF (line feed) are automatically set at the end of a data group on some computers. In this case, setting must be also made on the inverter according to the computer. Whether the CR and LF codes will be present or absent can be selected using Pr. 124 or Pr. 341 (CR/LF selection).

## - Data definitions

- Control code

Signal name	ASCII Code	Description
STX	H02	Start Of Text (Start of data)
ETX	H03	End Of Text (End of data)
ENQ	H05	Enquiry (Communication request)
ACK	H06	Acknowledge (No data error detected)
LF	H0A	Line Feed
CR	H0D	Carriage Return
NAK	H15	Negative Acknowledge (Data error detected)

- Inverter station number

Specify the station number of the inverter which communicates with the computer.

- Instruction code

Specify the processing request, for example, operation or monitoring, given by the computer to the inverter. Hence, the inverter can be run and monitored in various ways by specifying the instruction code appropriately. (Refer to page 669.)

- Data

Indicates the data such as frequency and parameters transferred to and from the inverter. The definitions and ranges of set data are determined in accordance with the instruction codes. (Refer to page 669.)

- Waiting time

Specify the waiting time between the receipt of data at the inverter from the computer and the transmission of reply data. Set the waiting time in accordance with the response time of the computer in the range of 0 to 150 ms in 10 ms increments. (For example; 1=10 $\mathrm{ms}, 2=20 \mathrm{~ms}$ )
When Pr. 123 PU communication waiting time setting or Pr. 337 RS-485 communication waiting time setting is set to other than "9999", create the communication request data without "delay time" in the data format. (The number of characters decreases by 1.)

*1 Number set in data $\times 10(\mathrm{~ms})$ when Pr. $123=$ "9999". Pr. 123 setting (ms) when Pr. 123 = "9999".
*2 About 5 to 50 ms . It varies depending on the instruction code.

## NOTE

- The data check time varies depending on the instruction code. (Refer to page 664.)
- Sum check code

The sum check code is a 2-digit ASCII (hexadecimal) representing the lower 1 byte ( 8 bits) of the sum (binary) derived from the checked ASCII data.

*When the Pr. 123 or Pr. 337 (Waiting time setting) $\neq 9999 "$, create the communication request data without "waiting time" in the data format. (The number of characters decreases by 1.)


- Error code

If any error is found in the data received by the inverter, its error definition is sent back to the computer together with the NAK code.

Error Code	Error Item	Error Description	Inverter Operation
H0	Computer NAK error	The number of errors consecutively detected in communication request data from the computer is greater than the permissible number of retries.	Trips (E.PUE/E.SER) if error occurs continuously more than the permissible number of retries.   The LF signal is output.
H1	Parity error	The parity check result does not match the specified parity.	
H2	Sum check error	The sum check code in the computer does not match that of the data received by the inverter.	
H3	Protocol error	The data received by the inverter has a grammatical mistake. Or, data receive is not completed within the predetermined time. CR or LF is not as set in the parameter.	
H4	Framing error	The stop bit length differs from the initial setting.	
H5	Overrun error	New data has been sent by the computer before the inverter completes receiving the preceding data.	
H6	-	-	-
H7	Character error	The character received is invalid (other than 0 to 9 , $A$ to $F$, control code).	Does not accept the received data, but the inverter does not trip.
H8	-	-	-
H9	-	-	-
HA	Mode error	Parameter write was attempted in other than the computer link operation mode, when operation command source is not selected or during inverter operation.	Does not accept the received data, but the inverter does not trip.
HB	Instruction code error	The specified instruction code does not exist.	
HC	Data range error	Invalid data has been specified for parameter writing, frequency setting, etc.	
HD	-	-	-
HE	-	-	-
HF	Normal (no error)	-	-

## - Response time


[Formula for data transmission time]

$\frac{1}{$|  Communication  |
| :---: |
|  speed (bps)  |}$\times$ Number of data characters *1 $\times$| Communication specifications |
| :--- |
| (Total number of bits) |${ }^{2}=$ data transmission time $(\mathrm{s})$

*1 Refer to page 660.
*2 Communication specifications

Name		Number of bits
Stop bit length	1 bit	
	2 bits	
Data Length	7 bits	
8 bits		
Parity check	With	1 bit
	Without	0

In addition to the above, 1 start bit is necessary.
Minimum number of total bits: 9 bits
Maximum number of total bits: 12 bits
*3 Data check time

Item	Check time
Operation command, inverter status   monitor, reading the monitor item,   reading/writing the set frequency (RAM)	$<20 \mathrm{~ms}$
Reading/writing the set frequency   (EEPROM)	$<40 \mathrm{~ms}$
Reading/writing parameters (RAM)	< Approximately   20 ms
Reading/writing parameters (EEPROM)	$<$ Approximately
50 ms	

## - Retry count setting (Pr.121, Pr.335)

- Set the permissible number of retries at data receive error occurrence. (Refer to page 663 for data receive error for retry.)
- When the data receive errors occur consecutively and the number of retries exceeds the permissible number setting, a communication fault (PU connector communication: E.PUE, RS-485 terminal communication: E.SER) occurs and the inverter trips.
- When a data transmission error occurs while "9999" is set, the inverter does not trip but outputs the alarm (LF) signal. To use the LF signal, set "98 (positive logic) or 198 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function to an output terminal.

Example: PU connector communication, Pr. 121 = "1" (initial value)


Example: PU connector communication, Pr. 121 = "9999"


## NOTE

- For the RS-485 terminal communication, the operation at a communication error occurrence depends on the Pr. 502 Stop mode selection at communication error setting. (Refer to page 650)


## - Signal loss detection (Pr.122, Pr. 336 RS-485 communication check time interval)

- If a signal loss (communication stop) is detected between the inverter and computer as a result of a signal loss detection, a communication fault (PU connector communication: E.PUE, RS-485 terminal communication: E.SER) occurs and the inverter trips.
- The LF signal is not output when a signal loss is detected. However, when a signal loss is detected via communication through the RS-485 terminals while Pr. $502=$ " 3 or 4 ", the LF signal is output.
- When the setting is "9999", communication check (signal loss detection) is not made.
- When the setting is " 0 ", communication from the PU connector is not possible. In the case of communication by RS-485 terminals, reading, etc. of monitors and parameters is possible, though a communication error (E.SER) occurs instantly when the Network operation mode is switched to.
- A signal loss detection is made when the setting is any of " 0.1 s to 999.8 s ". To make a signal loss detection, it is necessary to send data (for details on control codes, refer to page 662) from the computer within the communication check time interval. (The inverter makes a communication check (clearing of communication check counter) regardless of the station number setting of the data sent from the master).
- Communication check is started at the first communication in the operation mode having the operation source (PU operation mode for PU connector communication in the initial setting or Network operation mode for RS-485 terminal communication).



## - Instructions for the program

- When data from the computer has any error, the inverter does not accept that data. Hence, in the user program, always insert a retry program for data error.
- All data communication, for example, run command or monitoring, are started when the computer gives a communication request. The inverter does not return any data without the computer's request. Hence, design the program so that the computer gives a data read request for monitoring, etc. as required.
- Program example: To switch to the Network operation mode

Microsoft $®$ Visual C++® (Ver.6.0) programming example

```
#include <stdio.h>
#include <windows.h>
void main(void){
\begin{tabular}{lll}
HANDLE & hCom; & // Communication handle \\
DCB & hDcb; & // Structure for setting communication settings \\
COMMTIMEOUTS & hTim; & // Structure for setting timeouts
\end{tabular}
 COMMTIMEOUTS hTim; // Structure for setting timeouts
 char szTx[0x10]; // Send buffer
 char szRx[0x10]; // Receive buffer
 char szCommand[0x10];// Command
 int nTx,nRx; // For storing buffer size
 int nSum; // For calculating sum code
 BOOL bRet;
 int nRet;
 int i;
 // **** Open COM1 port ****
 hCom = CreateFile("COM1", (GENERIC_READ | GENERIC_WRITE), 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 if(hCom != NULL) {
 // **** Set COM1 port communication ****
 GetCommState(hCom,&hDcb); // Get current communication information
 hDcb.DCBlength = sizeof(DCB); // Structure size setting
 hDcb.BaudRate = 19200; // Communication speed = 19200 bps
 hDcb.ByteSize = 8; // Data length = 8 bits
 hDcb.Parity = 2; // Parity check at even numbers
 hDcb.StopBits = 2; // Stop bit = 2 bits
 bRet = SetCommState(hCom,&hDcb); // Setting of changed communication information
 if(bRet == TRUE) {
 / **** Set COM1 port timeout ****
 GetCommTimeouts(hCom,&hTim); // Get current timeout values
 hTim.WriteTotalTimeoutConstant = 1000; // Write timeout 1 second
 hTim.ReadTotalTimeoutConstant = 1000; // Read timeout 1 second
 hTim.ReadTotalTimeoutConstantSetCommTimeouts(hCom,&hTim);// Setting of changed timeout values
 // **** Setting of command for switching the station number }1\mathrm{ inverter to the Network operation mode ****
 sprintf(szCommand,"01FB10000"); // Send data (NET operation write)
 nTx = strlen(szCommand); // Send data size
 // **** Generate sum code ****
 nSum = 0; // Initialize sum data
 for(i = 0;i < nTx;i++) {
 nSum += szCommand[i]; // Calculate sum code
 nSum &= (0xff); // Mask data
 }
 // **** Generate send data ****
 memset(szTx,0,sizeof(szTx)); // Initialize send buffer
 memset(szRx,0,sizeof(szRx)); // Initialize receive buffer
 sprintf(szTx,"\5%s%02X",szCommand,nSum);// ENQ code + send data + sum code
 nTx}=1+nTx+2; // ENQ code + number of send data + number of sum code
 nRet = WriteFile(hCom,szTx,nTx,&nTx,NULL);
 // **** Send ****
 if(nRet != 0) {
 nRet = ReadFile(hCom,szRx,sizeof(szRx),&nRx,NULL);
 // **** Receive ****
 if(nRet != 0) {
 // **** Display receive data ****
 for(i = 0;i < nRx;i++) {
 printf("%02X ",(BYTE)szRx[i]);// Output received data to console
 // Display ASCII code in Hexadecimal' In case of 0', "30" is displayed.
 }
 printf("\n\r");
 }
 }
 }
 CloseHandle(hCom);
 // Close communication port
 }
}
```


## General flowchart

Port open
Communication setting
Time out setting
Send data processing   oData setting   oSum code calculation   oData transmission
Receive data waiting
Receive data processing
oData retrieval
oScreen display

## CAUTION

- Always set the communication check time interval before starting operation to prevent hazardous conditions
- Data communication is not started automatically but is made only once when the computer provides a communication request. If communication is disabled during operation due to signal cable breakage etc., the inverter cannot be stopped. When the communication check time interval has elapsed, the inverter will trip (E.PUE, E.SER). The inverter can be coasted to a stop by switching ON the RES signals or by switching the power OFF.
- If communication is broken due to signal cable breakage, computer fault etc., the inverter does not detect such a fault. This should be fully noted.


## - Setting items and set data

- After completion of parameter settings, set the instruction codes and data, then start communication from the computer to allow various types of operation control and monitoring.


Item	Read/   Write	Instruction   code	Number of   Set frequency (RAM)	Write	HED

*1 Refer to page 660 for data formats (A, A1, A2, B, C, C1, D, E, E1, E2, E3, F)
*2 Turning OFF the power supply while clearing parameters with H5A5A or H55AA returns the communication parameter settings to the initial settings.
*3 Refer to the calibration parameter list below for details on calibration parameters.
*4 The gain frequency can be also written using Pr. 125 (instruction code: H99) or Pr. 126 (instruction code: H9A).

## NOTE

- Set 65520 (HFFF0) as a parameter value " 8888 " and 65535 (HFFFF) as "9999".
- For the instruction codes HFF, HEC and HF3, their values are held once written but cleared to zero when an inverter reset or all clear is performed.
- When a 32-bit parameter setting or monitored value is read and the read value exceeds HFFFF, the reply data will be HFFFF.

Example) When reading the Pr. 902 and Pr. 904 settings from the inverter of station No. 0.

	Computer send data	Inverter send data	Description
a	ENQ 00 FF 0 01 7D	ACK 00	Set "H01" in the extended link parameter
b	ENQ 00 EC 0 01 79	ACK 00	Set "H01" in second parameter changing
c	ENQ 00 5E 0 0A	STX 000000 ETX 20	Pr.902 is read. 0\% is read.
d	ENQ 00 60 0 F6	STX 000000 ETX 20	Pr.904 is read. 0\% is read.

To read/write Pr. 902 or Pr. 904 after inverter reset or parameter clear, execute from (a) again.

## - List of calibration parameters

Pr.	Name	Instruction code		
		Read	Write	Extended
902	Terminal 2 frequency setting bias frequency	5E	DE	1
902	Terminal 2 frequency setting bias	5E	DE	1
125 (903)	Terminal 2 frequency setting gain frequency	5F	DF	1
903	Terminal 2 frequency setting gain	5F	DF	1
904	Terminal 4 frequency setting bias frequency	60	E0	1
904	Terminal 4 frequency setting bias	60	E0	1
126 (905)	Terminal 4 frequency setting gain frequency	61	E1	1
905	Terminal 4 frequency setting gain	61	E1	1
917	Terminal 1 bias frequency (speed)	11	91	9
917	Terminal 1 bias (speed)	11	91	9
918	Terminal 1 gain frequency (speed)	12	92	9
918	Terminal 1 gain (speed)	12	92	9
919	Terminal 1 bias command (torque)	13	93	9
919	Terminal 1 bias (torque)	13	93	9
920	Terminal 1 gain command (torque)	14	94	9
920	Terminal 1 gain (torque)	14	94	9
930	Current output bias signal	1E	9E	9
930	Current output bias current	1E	9E	9
931	Current output gain signal	1F	9F	9
931	Current output gain current	1F	9F	9
932	Terminal 4 bias command (torque)	20	A0	9
932	Terminal 4 bias (torque)	20	A0	9
933	Terminal 4 gain command (torque)	21	A1	9
933	Terminal 4 gain (torque)	21	A1	9
934	PID display bias coefficient	22	A2	9
934	PID display bias analog value	22	A2	9
935	PID display gain coefficient	23	A3	9
935	PID display gain analog value	23	A3	9

## - Operation command


*1 The signal within parentheses () is the initial status. The description changes depending on the setting of Pr. 180 to Pr. 184, Pr. 187 (Input terminal function selection) (page 498).
*2 The inverter run enable signal is in the initial status for the separated converter type.
*3 JOG operation/automatic restart after instantaneous power failure/start self-holding selection/reset cannot be controlled over a network, so in the initial status bit8 to bit11 are invalid. To use bit8 to bit11, change the signal by Pr.185, Pr.186, Pr.188, or Pr. 189 (Input terminal function selection) (page 498) (A reset can be executed by the instruction code HFD.)
*4 In RS-485 communication from the PU connector, only the forward rotation command and reverse rotation command can be used.

## - Inverter status monitor


*1 The signal within parentheses () is the initial status. The description changes depending on the setting of Pr. 190 to Pr. 196 (Output terminal function selection).
*2 No function is assigned in the initial status for the separated converter type.

## - Multi command (HFO)

- Sending data format from computer to inverter

Format	Number of characters																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A2	ENQ	Inverter station No.		Instruction Code (HFO)		Waiting   timeSend   data   type   ${ }^{* 1}$		Receive data type ${ }^{* 2}$	Data1 *3				Data2 *3				Sum check		$\begin{aligned} & \mathrm{CR} / \\ & \mathrm{LF} \end{aligned}$

- Reply data format from inverter to computer (No data error detected)

Format	Number of characters																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C1	STX	Inverter station No.		Send   data   type   *1	Receive data type*2	Error code 1 *5	Error code 2 *5	Data1 *4				Data2*4				ETX	Sum check		$\begin{aligned} & \text { CR/ } \\ & \text { LF } \end{aligned}$

*1 Specify the data type of sending data (from computer to inverter).
*2 Specify the data type of reply data (from inverter to computer).
*3 Combination of data 1 and data 2 for sending

Data type	Data 1	Data 2	Remarks
0	Operation command   (extended)	Set frequency (RAM)	Run command (extended) is same as instruction code HF9 (Refer   to page 672)
1	Operation command   (extended)	Set frequency (RAM,   EEPROM)	

*4 Combination of data 1 and data 2 for reply

Data type	Data 1	Data 2	Remarks
0	Inverter status   monitor (extended)	Output frequency   (speed)	Inverter status monitor (extended) is same as instruction code H79   (Refer to page 672)
1	Inverter status   monitor (extended)	Special monitor	Replies the monitor item specified in instruction code HF3 for   special monitor. (Refer to page 419)

*5 Error code for sending data 1 is set in error code 1, and error code for sending data 2 is set in error code 2 . Mode error (HA), instruction code error (HB), data range error (HC) or no error (HF) is replied. (Refer to page 740 for details on the error codes.)

### 5.15.6 MODBUS RTU communication specification

Operation by MODBUS RTU communication or parameter setting is possible by using the MODBUS RTU communication protocol from the RS-485 terminals of the inverter.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 331 \\ & \text { N030 } \end{aligned}$	RS-485 communication station number	0	0	Broadcast communication	
			1 to 247	Inverter station number specification Set the inverter station numbers when two or more inverters are connected to one personal computer.	
$\begin{aligned} & 332 \\ & \text { N031 } \end{aligned}$	RS-485 communication speed	96	$\begin{aligned} & 3,6,12,24, \\ & 48,96,192, \\ & 384,576,768, \\ & 1152 \end{aligned}$	Set the communication speed.   The setting value $\times 100$ equals the communication speed. For example, if 96 is set, the communication speed is 9600 bps.	
N033	RS-485 communication stop bit length	1	0	Stop bit length 1 bit	$\begin{aligned} & \text { Valid when Pr.N034 (Pr.334) } \\ & =" 0 " \end{aligned}$
			1	Stop bit length 2 bits	
333	RS-485 communication stop bit length / data length	1	0	Stop bit length 1 bit	Valid when Pr. 334 = "0"
			1	Stop bit length 2 bits	
			10	Stop bit length 1 bit	
			11	Stop bit length 2 bits	
$\begin{aligned} & 334 \\ & \text { N034 } \end{aligned}$	RS-485 communication parity check selection	2	0	Without parity check Stop bit length 1 bit / 2 bits (depends on the setting of Pr.333)	
			1	With parity check at Stop bit length 1 bit	mbers
			2	With parity check at Stop bit length 1 bit	umbers
$\begin{aligned} & 343 \\ & \text { N080 } \end{aligned}$	Communication error count	0	-	Displays the commu RTU communication	error count during MODBUS -only.
539   N002	MODBUS RTU communication check time interval	9999	0	MODBUS RTU communication, but the inverter trips in the NET operation mode.	
			0.1 to 999.8 s	Set the interval of the communication check (signal loss detection) time (same specifications as Pr.122).	
			9999	No communication check (signal loss detection)	
549	Protocol selection	0	0	Mitsubishi inverter protocol (computer link)	
N000			1	MODBUS RTU protocol	

## NOTE

- To use the MODBUS RTU protocol, set "1" to Pr. 549 Protocol selection.
- If MODBUS RTU communication is performed from the master to the address 0 (station number 0 ), the data is broadcasted, and the inverter does not send any reply to the master. To obtain replies from the inverter, set Pr. 331 RS485 communication station number $\neq$ " 0 (initial value)". Some functions are disabled in broadcast communication. (Refer to page 677.)
- If a communication option is mounted with Pr. 550 NET mode operation command source selection = "9999 (initial value)", commands (operation commands) transmitted via RS-485 terminals become invalid. (Refer to page 356.)


## - Communication specifications

- The communication specifications are given below.

Item		Description	Related parameter
Communication protocol		MODBUS RTU protocol	Pr. 549
Conforming standard		EIA-485 (RS-485)	-
Connectable units		$1: \mathrm{N}$ (maximum 32 units), setting is 0 to 247 stations	Pr. 331
Communication Speed		Selected among 300/600/1200/2400/4800/9600/19200/38400/57600/76800/ 115200 bps	Pr. 332
Control procedure		Asynchronous system	-
Communication method		Half-duplex system	-
Communication specifications	Character system	Binary (fixed at 8 bits)	-
	Start bit	1 bit	-
	Stop bit length	Select from the following three types:   No parity check, stop bit length 1 bit / 2 bits (depends on the setting of Pr.333). Odd parity check, stop bit length 1 bit Even parity check, stop bit length 1 bit	$\begin{aligned} & \hline \text { Pr. } 333 \\ & \text { Pr. } 334 \end{aligned}$
	Parity check		
	Error check	CRC code check	-
	Terminator	Not used	-
Waiting time setting		Not used	-

## - Outline

- The MODBUS communication protocol was developed by Modicon for programmable controllers.
- The MODBUS protocol uses exclusive message frames to perform serial communication between a master and slaves. These exclusive message frames are provided with a feature called "functions" that allows data to be read or written. These functions can be used to read or write parameters from the inverter, write input commands to the inverter or check the inverter's operating status, for example. This product classifies the data of each inverter into holding register area (register address 40001 to 49999). The master can communicate with inverters (for instance, slaves) by accessing pre-assigned holding register addresses.


## NOTE

- There are two serial transmission modes, the ASCII (American Standard Code for Information Interchange) mode and the RTU (Remote Terminal Unit) mode. However, this product supports only the RTU mode, which transfers 1 byte data (8 bits) as it is. Also, only communication protocol is defined by the MODBUS protocol. Physical layers are not stipulated.
- Message format

- Data check time

Item	Check time				
Monitoring, operation command,   frequency setting (RAM)	$<20 \mathrm{~ms}$				
Frequency setting (EEPROM)	$<50 \mathrm{~ms}$				
Reading/writing parameters	$<$ Approximately				
50 ms		$	$	Parameter clear / All parameter clear	Less than 5 s
:---	:---	:---			
Reset command	No reply				

- Query

A message is sent to the slave (for instance, the inverter) having the address specified by the master.

- Normal Response

After the query from the master is received, the slave executes the request function, and returns the corresponding normal response to the master.

- Error Response

When an invalid function code, address or data is received by the slave, the error response is returned to the master. This response is appended with an error code that indicates the reason why the request from the master could not be executed. This response cannot be returned for errors, detected by the hardware, frame error and CRC check error.

## - Broadcast

The master can broadcast messages to all slaves by specifying address 0 . All slaves that receive a message from the master execute the requested function. With this type of communication, slaves do not return a response to the master.

## NOTE

- During broadcast communication, functions are executed regarded of the set inverter station number (Pr.331).


## - Message frame (protocol)

- Communication method

Basically, the master sends a Query message (question), and slaves return the Response message (response). At normal communication, the Device Address and Function Code are copied as they are, and at erroneous communication (illegal function code or data code), bit7 ( $=80 \mathrm{~h}$ ) of the Function Code is turned ON, and the error code is set at Data Bytes.

Query message from Master


Message frames comprise of the four message fields shown in the figures above.
A slave recognizes message data as a message by the message data being prefixed and appended with a no data time of 3.5 characters (T1: start/end).

- Details of protocol

The following table explains the four message fields.

Start	ADDRESS	FUNCTION	DATA	CRC CHECK		End
T1	8 bits	8 bits	$\mathrm{n} \times 8$ bits	L   8 bits	H   8 bits	T1


Message field	$\quad$ Description
ADDRESS field	0 to 247 can be set in single byte lengths (8 bits). Set "0" when sending broadcast messages   (instructions to all addresses), and "1 to 247 " to send messages to individual slaves.   The address set by the master is also returned when the response from the slave is.   The value set to Pr.331 RS-485 communication station number is the slave address.
FUNCTION field	1 to 255 can be set in single byte lengths (8 bits) for the function code. The master sets the function   to be sent to the slave as the request, and the slave performs the requested operation. "Function code   list" summarizes the supported function codes. An error response is generated when a function code   other than "Function code list" is set.   At a response from the slave, the function code set by the master is returned in the case of a normal   response. At an error response, H80 + the function code is returned.
DATA field	The format changes according to the function code. (Refer to page 678.) The data, for example,   includes the byte count, number of bytes and accessing content of holding registers.
CRC CHECK field	Errors in the received message frame are detected. Errors are detected in the CRC check, and the   message is appended with data 2 bytes long. When the message is appended with the CRC, the lower   bytes are appended first, followed by the upper bytes.   The CRC value is calculated by the sender that appends the message with the CRC. The receiver   recalculates the CRC while the message is being received, and compares the calculation result   against the actual value that was received in the error check field. If the two values do not match, the   result is treated as an error.

## - Function code list

Function name	Read/ Write	Code	Outline	Broadcast communication	Message format reference page
Read Holding Register	Read	H03	The data of the holding registers is read.   The various data of the inverter can be read from MODBUS registers.   System environmental variable (Refer to page 685.)   Real time monitor (Refer to page 420.)   Fault history (Refer to page 687.)   Model information monitor (Refer to page 687.)   Inverter parameters (Refer to page 686.)	Not available	page 679.
Preset Single Register	Write	H06	Data is written to holding registers. Data can be written to MODBUS registers to output instructions to the inverter or set parameters. System environmental variable (Refer to page 685.) Inverter parameters (Refer to page 686.)	Available	page 680.
Diagnostics	Read	H08	Functions are diagnosed. (communication check only) A communication check can be made since the query message is sent and the query message is returned as it is as the return message (subfunction code H 00 function).   Subfunction code H00 (Return Query Data)	Not available	page 681.
Preset Multiple Registers	Read	H10	Data is written to consecutive multiple holding registers. Data can be written to consecutive multiple MODBUS registers to output instructions to the inverter or set parameters.   System environmental variable (Refer to page 685.) Inverter parameters (Refer to page 686.)	Available	page 682.
Read holding register access log	Read	H46	The number of registers that were successfully accessed by the previous communication is read. Queries by function codes H 03 and H 10 are supported. The number and start address of holding registers successfully accessed by the previous communication are returned.   " 0 " is returned for both the number and start address for queries other than function code H 03 and H 10 .	Not available	page 683.

## - Read Holding Register (reading of data of holding registers) (H03 or 03)

- Query message

a.Slave Address	b. Function	c. Starting Address		d. No. of Points		CRC Check	
$(8$ bits $)$	H 03	H	L	H	L	L	
	$(8 \mathrm{bits})$						

- Normal response (Response message)

a.Slave Address	b. Function	e. Byte Count	f. Data			CRC Check	
$(8$ bits $)$	H 03	$(8$ bits $)$	H	L	$\ldots$	H	
	$(8$ bits $)$		$(8 \mathrm{bits})$	$(8$ bits $)$	$(\mathrm{n} \times 16$ bits $)$	$(8$ bits $)$	$(8$ bits $)$

- Query message setting

Message		Description
a	Slave Address	Set the address to send messages to. Broadcast communication is not possible. (Invalid   when "0" is set.)
b	Function	Set H03.
c	Starting Address	Set the address from which to start reading of data from the holding register.   Start address = start register address (decimal) - 40001   For example, when start register address 0001 is set, the data of holding register address   40002 is read.
d	No. of Points	Set the number of holding registers to read. Data can be read from up to 125 registers.

- Content of normal response

Message		Description
e	Byte Count	The setting range is H02 to HFA (2 to 250).   Twice the number of reads specified by (d) is set.
f	Data	The amount of data specified by (d) is set. Read data is output Hi bytes first followed by   Lo bytes, and is arranged as follows: data of start address, data of start address +1, data   of start address +2, and so forth.

Example) Read the register values of 41004 (Pr.4) to 41006 (Pr.6) from slave address 17 (H11).
Query message

Slave Address	Function	Starting Address		No. of Points		CRC Check	
H11	H 03	H 03	HEB	H 00	H 03	H 77	H 2 B
$(8 \mathrm{bits})$							

Response message

Slave Address	Function	Byte Count	Data					CRC Check		
H11	H03	H06	H17	H70	H0B	HB8	H03	HE8	H2C	HE6
$(8$ bits $)$										

Read value
Register 41004 (Pr.4): H1770 ( 60.00 Hz )
Register 41005 (Pr.5): H0BB8 ( 30.00 Hz )
Register 41006 (Pr.6): H03E8 (10.00 Hz)

## - Preset Single Register (writing of data to holding registers) (H06 or 06)

- The content of the "system environmental variables" and "inverter parameters" assigned to the holding register area (refer to the register list (page 685)) can be written.
- Query message

a. Slave Address	b. Function	c. Register Address		d. Preset Data		CRC Check	
$(8$ bits $)$	H 06	H	L	H	L	L	H
	$(8 \mathrm{bits})$	$(8 \mathrm{bits})$	$(8 \mathrm{bits})$	$(8 \mathrm{bits})$	$(8$ bits $)$	$(8$ bits $)$	$(8$ bits $)$

- Normal response (Response message)

a. Slave Address	b. Function	c. Register Address		d. Preset Data			CRC Check	
$(8$ bits $)$	H06	H	L	H	L	L	H	
	$(8 \mathrm{bits})$							

- Query message setting

Message		Description
a	Slave Address	Set the address to send messages to. Setting "0" enables broadcast communication.
b	Function	Set H06.
c	Register Address	Set the address from data is written to the holding register.   Register address = holding register address (decimal) - 40001   For example, when register address 0001 is set, data is written to holding register   address 40002.
d	Preset Data	Set the data to write to the holding register. Write data is fixed at 2 bytes.

- Content of normal response

With a normal response, the content is the same as a to $\mathbf{d}$ (including the CRC check) query messages. In the case of broadcast communication, no response is returned.

## ■ Example) Write 60 Hz (H1770) to 40014 (set frequency) of slave address 5 (H05).

Query message

Slave Address	Function	Register Address		Preset Data		CRC Check	
H05	H06	H00	H0D	H17	H70	H17	H99
$(8$ bits $)$							

Normal response (Response message)
Same data as query message

## NOTE

- With broadcast communication, no response is generated even if a query is executed, so when the next query is made, it must be made after waiting for the inverter data processing time after the previous query is executed.


## - Diagnostics (diagnosis of functions) (H08 or 08)

- A communication check can be made since the query message is sent and the query message is returned as it is as the return message (subfunction code H00 function). Subfunction code H00 (Return Query Data)
- Query message

a. Slave Address	b. Function	c. Subfunction		d. Data		CRC Check	
$(8$ bits $)$	H 08	H 00	H 00	H	L	L	H
	$(8$ bits $)$	$(8$ bits $)$	$(8 \mathrm{bits})$	$(8 \mathrm{bits})$	$(8$ bits $)$	$(8$ bits $)$	$(8$ bits $)$

- Normal response (Response message)

a. Slave Address	b. Function	c. Subfunction		d. Data		CRC Check	
$(8 \mathrm{bits})$	H 08	H 00	H 00	H	L	L	H
	$(8 \mathrm{bits})$						

- Query message setting

Message		Description
a	Slave Address	Set the address to send messages to. Broadcast communication is not possible.   (Invalid when "0" is set.)
b	Function	Set H08.
c	Subfunction	Set H0000.
d	Data	Any data 2 bytes long can be set. Setting range is H0000 to HFFFF.

- Content of normal response

With a normal response, the content is the same as a to $\mathbf{d}$ (including the CRC check) query messages.

## NOTE

- With broadcast communication, no response is generated even if a query is executed, so when the next query is made, it must be made after waiting for the inverter data processing time after the previous query is executed.


## - Preset Multiple Registers (writing of data to multiple holding registers) (H10 or 16)

- Data can be written to multiple holding registers.
- Query message

a. Slave Address	b. Function	c. Starting Address		d. No. of Registers		e. Byte Count	f. Data			CRC Check	
(8 bits)	H10   (8 bits)	H   (8 bits)	(8 bits)	H   (8 bits)	(8 bits)	(8 bits)	$\begin{aligned} & \mathrm{H} \\ & (8 \text { bits }) \end{aligned}$	(8 bits)	$\text { ( } \mathrm{n} \times 2 \times 8 \text { bits) }$	$\begin{aligned} & \mathrm{L} \\ & (8 \text { bits }) \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & (8 \text { bits }) \end{aligned}$

- Normal response (Response message)

a. Slave   Address	b. Function	c. Starting   Address		d. No. of   Registers		CRC Check	
(8 bits)	H 10	H	L	H	L	L	H
	$(8 \mathrm{bits})$	$(8$ bits $)$	$(8$ bits $)$	$(8$ bits $)$	$(8$ bits $)$	(8 bits)	(8 bits)

- Query message setting

Message		Description
a	Slave Address	Set the address to send messages to. Setting "0" enables broadcast communication.
b	Function	Set H10.
c	Starting Address	Set the address from which to start writing of data to the holding register.   Start address = start register address (decimal) - 40001   For example, when starting address 0001 is set, data is written to holding register   40002.
d	No. of Registers	Set the number of holding registers to write to. Data can be written to up to 125   registers.
e	Byte Count	The setting range is H02 to HFA (2 to 250).   Set twice the value specified by d.
f	Data	Set the amount of data specified by d. Set write data Hi bytes first followed by Lo bytes,   and arrange it as follows: data of start address, data of start address+1, data of start   address+2, and so forth.

- Content of normal response

With a normal response, the content is the same as a to $\mathbf{d}$ (including the CRC check) query messages.
■ Example) Write 0.5 s (H05) to 41007 (Pr.7) and 1 s (HOA) to 41008 (Pr.8) of slave address 25 (H19).
Query message

Slave   Address	Function	Starting   Address		No. of Registers		Byte Count	Data				CRC Check	
H19   (8 bits)	H10 (8 bits)	H03   (8 bits)	HEE   (8 bits)	H00   (8 bits)	H02   (8 bits)	H04   (8 bits)	H00   (8 bits)	H05   (8 bits)	H00   (8 bits)	HOA   (8 bits)	H86   (8 bits)	H3D (8 bits)

Normal response (Response message)

Slave   Address	Function	Starting   Address		No. of   Registers		CRC Check			
H 19   $(8$ bits $)$	H 10   $(8$ bits $)$	H 03   $(8$ bits $)$	HEE   $(8$ bits $)$	H 00   $(8$ bits $)$	H 02   $(8$ bits $)$	H 22   $(8$ bits $)$			H 61
:---									
(8 bits) $)$									

## $\checkmark$ Read Holding Register access Log (H46 or 70)

- Queries by function codes H 03 and H 10 are supported. The number and start address of holding registers successfully accessed by the previous communication are returned. "0" is returned for both the number and start address for queries other than the function codes.
- Query message

a. Slave Address	b. Function	CRC Check	
$(8$ bits $)$	H46	L	H
	$(8$ bits $)$	$(8$ bits $)$	$(8$ bits $)$

- Normal response (Response message)

a. Slave Address	b. Function	c. Starting Address		d. No. of Points		CRC Check	
$(8$ bits $)$	H46	H	L	H	L	L	H
	$(8$ bits $)$						

- Query message setting

Message		Description
a	Slave Address	Set the address to send messages to. Broadcast communication is not possible.   (Invalid when "0" is set.)
b	Function	Set H46.

- Content of normal response

Message		Description
c	Starting Address	The start address of the holding register that was successfully accessed is   returned.   Start address = start register address (decimal) - 40001   For example, when start address 0001 is returned, the holding register address   that was successfully accessed is 40002.
d	No. of Points	The number of holding registers that were successfully accessed is returned.

■ Example) Read the successful register start address and number of successful accesses from slave address 25 (H19).
Query message

Slave Address	Function	CRC Check	
H19	H46	H8B	HD2
$(8$ bits $)$	(8 bits)	(8 bits)	(8 bits)

Normal response (Response message)

Slave Address	Function	Starting Address		No. of Points		CRC Check	
H19	H10	H03	HEE	H00	H02	H22	H61
$(8$ bits $)$							

Two successful reads of start address 41007 (Pr.7) are returned.

## - Error response

- An error response is returned if the query message received from the master contains an illegal function, address or data. No response is returned for parity, CRC, overrun, framing, and Busy errors.


## NOTE

- No response is also returned in the case of broadcast communication.
- Error response (Response message)

a. Slave Address		b. Function	c. Exception Code	CRC Check	
$(8$ bits $)$	H80 + Function   $(8$ bits $)$	$(8$ bits $)$	L   $(8$ bits $)$	Hessage   $(8$ bits $)$	

- Error code list

Code	Error Item	Error description
01	ILLEGAL FUNCTION	The query message from the master is set with a function code that cannot be   handled by the slave.
02	ILLEGAL DATA ADDRESS *1	The query message from the master is set with a register address that cannot   be handled by the inverter.   (No parameter, parameter cannot be read, parameter cannot be written)
03	ILLEGAL DATA VALUE	The query message from the master is set with data that cannot be handled by   the inverter.   (Out of parameter write range, a mode is specified, other error)

*1 An error does not occur in the following cases:
Function code H 03 (read data of holding register)
When there are 1 or more number of reads (No. of Points) and there is 1 or more holding register from where data can be read Function code H 10 (write data to multiple holding registers)
When there are 1 or more number of writes (No. of Registers) and there is 1 or more holding registers to which data can be written. In other words, when function code H 03 or H 10 is used and multiple holding registers are accessed, an error will not occur even if a non-existent holding register or holding register that cannot be read or written is accessed.

## NOTE

- An error will occur if all accesses holding registers do not exist. The data read value of non-existent holding registers is 0 , and data is invalid when written to non-existent holding registers.


## - Error detection of message data

The following errors are detected in message data from the master. The inverter is not tripped even if an error is detected.
Error check items

Error item	Error description	Inverter operation
Parity error	The data received by the inverter is different from the specified parity (Pr. 334 setting).	When this error occurs, Pr. 343 is incremented by one.   When this error occurs, the LF signal is output.
Framing error	The data received by the inverter is different from the stop bit length (Pr.333/Pr.334) setting.	
Overrun error	The next data has been sent by the master before the inverter completes receiving the preceding data.	
Message frame error	The data length of the message frame is checked, and an error is generated if the received data length is less than 4 bytes.	
CRC check error	An error is generated if the data in the message frame does not match the calculation result.	

## NOTE

- The LF signal can be assigned to an output terminal by setting Pr. 190 to Pr. 196 (Output terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.


## MODBUS register

- The following shows the MODBUS registers for system environment variables (read/write), real time monitor items (read), parameters (read/write), fault history data (read/write), and model information monitor items (read).
- System environmental variables

Register	Definition	Read/Write	
40002	Inverter reset	Write	Any value can be written
40003	Parameter clear	Write	Set H965A for the write value.
40004	All parameter clear	Write	Set H99AA for the write value.
40006	Parameter clear *1	Write	Set H5A96 for the write value.
40007	All parameter clear *1	Write	Set HAA99 for the write value.
40009	Inverter status/control input command *2	Read/Write	Refer to the following.
40010	Operation mode/inverter setting *3	Read/Write	Refer to the following.
40014	Set frequency (RAM value)	Read/Write	The display can be changed to the rotations per minute using Pr.37,   Pr.144 and Pr.811. (Refer to page 417)
40015	Set frequency (EEPROM value)	Write	

*1 Communication parameter settings are not cleared.
*2 At a write, the data is set as the control input command. At a read, the data is read as the inverter running status.
*3 At a write, the data is set as the operation mode setting.
At a read, the data is read as the operation mode setting.

- Inverter status/control input command

Bit	Definition	
	Control input command	Inverter status
0	Stop command	RUN (Inverter running) *6
1	Forward rotation command	During forward rotation
2	Reverse rotation command	During reverse rotation
3	RH (High-speed operation command) ${ }^{*} 4$	SU (Up to frequency) ${ }^{*}$
4	RM (Middle-speed operation command) ${ }^{*} 4$	OL (Overload warning) ${ }^{*} 6$
5	RL (Low-speed operation command)* ${ }^{*}$	IPF (Instantaneous power failure/undervoltage) ${ }^{* * *}$
6	JOG (Jog operation selection) ${ }^{*} 4$	FU (Output frequency detection) ${ }^{*} 6$
7	RT (Second function selection) *4	ABC1 (Fault) ${ }^{*} 6$
8	AU (Terminal 4 input selection) *4	ABC2 (-) ${ }^{*}$
9	CS (Selection of automatic restart after instantaneous power failure, flying start) ${ }^{*} 4$	0
10	MRS (Output stop) ${ }^{* 4 * 5}$	0
11	STP (STOP) (Start self-holding selection) *4	0
12	RES (Inverter reset) ${ }^{*}$	0
13	-	0
14	-	0
15	-	Fault occurrence

[^33]- Operation mode/inverter setting

Mode	Read value	Write value
EXT	H 0000	$\mathrm{H} 0010^{* 8}$
PU	H 0001	$\mathrm{H} 0011^{*} 8$
EXT   JOG	H 0002	-
PU   JOG	H 0003	-
NET	H 0004	H 0014
PU+EXT	H 0005	-

*8 Enable/disable parameter writing by Pr. 79 and Pr. 340 settings. For the details, refer to page 355.
Restrictions in each operation mode conform with the computer link specification.

- Real-time monitor

Refer to page 419 for the register numbers and monitored items of the real time monitor.

- Parameters

Pr.	Register	Name	Read/Write	Remarks
0 to 999	$\begin{aligned} & 41000 \text { to } \\ & 41999 \end{aligned}$	For details on parameter names, refer to the parameter list (page 116).	Read/Write	The parameter number +41000 is the register number.
902	41902	Terminal 2 frequency setting bias (frequency)	Read/Write	
902	42092	Terminal 2 frequency setting bias (analog value)	Read/Write	Analog value (\%) set to Pr. 902
	43902	Terminal 2 frequency setting bias (terminal analog value)	Read	Analog value (\%) of voltage (current) applied to terminal 2
125 (903)	41903	Terminal 2 frequency setting gain (frequency)	Read/Write	
903	42093	Terminal 2 frequency setting gain (analog value)	Read/Write	Analog value (\%) set to Pr. 903
	43903	Terminal 2 frequency setting gain (terminal analog value)	Read	Analog value (\%) of voltage (current) applied to terminal 2
904	41904	Terminal 4 frequency setting bias (frequency)	Read/Write	
904	42094	Terminal 4 frequency setting bias (analog value)	Read/Write	Analog value (\%) set to Pr. 904
	43904	Terminal 4 frequency setting bias (terminal analog value)	Read	Analog value (\%) of current (voltage) applied to terminal 4
126 (905)	41905	Terminal 4 frequency setting gain (frequency)	Read/Write	
905	42095	Terminal 4 frequency setting gain (analog value)	Read/Write	Analog value (\%) set to Pr. 905
	43905	Terminal 4 frequency setting gain (terminal analog value)	Read	Analog value (\%) of current (voltage) applied to terminal 4
917	41917	Terminal 1 bias frequency (speed)	Read/Write	
917	42107	Terminal 1 bias (speed)	Read/Write	Analog value (\%) set to Pr. 917
	43917	Terminal 1 bias (speed) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 1
918	41918	Terminal 1 gain frequency (speed)	Read/Write	
918	42108	Terminal 1 gain (speed)	Read/Write	Analog value (\%) set to Pr. 918
	43918	Terminal 1 gain (speed) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 1
919	41919	Terminal 1 bias command (torque)	Read/Write	
919	42109	Terminal 1 bias (torque)	Read/Write	Analog value (\%) set to Pr. 919
	43919	Terminal 1 bias (torque) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 1
920	41920	Terminal 1 gain command (torque)	Read/Write	
920	42110	Terminal 1 gain (torque)	Read/Write	Analog value (\%) set to Pr. 920
	43920	Terminal 1 gain (torque) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 1
926	41926	Terminal 6 bias frequency (speed)	Read/Write	
926	42116	Terminal 6 bias (speed)	Read/Write	Analog value (\%) set to C31 (926)
	43926	Terminal 6 bias (speed) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 6 of the FR-A8AZ


Pr.	Register	Name	Read/Write	Remarks
927	41927	Terminal 6 gain frequency (speed)	Read/Write	
927	42117	Terminal 6 gain (speed)	Read/Write	Analog value (\%) set to C33 (927)
	43927	Terminal 6 gain (speed) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 6 of the FR-A8AZ
928	41928	Terminal 6 bias command (torque)	Read/Write	
928	42118	Terminal 6 bias (torque)	Read/Write	Analog value (\%) set to C35 (928)
	43928	Terminal 6 bias (torque) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 6 of the FR-A8AZ
929	41929	Terminal 6 gain command (torque)	Read/Write	
929	42119	Terminal 6 gain (torque)	Read/Write	Analog value (\%) set to C37 (929)
	43929	Terminal 6 gain (torque) (terminal analog value)	Read	Analog value (\%) of voltage applied to terminal 6 of the FR-A8AZ
932	41932	Terminal 4 bias command (torque)	Read/Write	
932	42122	Terminal 4 bias (torque)	Read/Write	Analog value (\%) set to Pr. 932
	43932	Terminal 4 bias (torque) (terminal analog value)	Read	Analog value (\%) of current (voltage) applied to terminal 4
933	41933	Terminal 4 gain command (torque)	Read/Write	
933	42123	Terminal 4 gain (torque)	Read/Write	Analog value (\%) set to Pr. 933
	43933	Terminal 4 gain (torque) (terminal analog value)	Read	Analog value (\%) of current (voltage) applied to terminal 4
934	41934	PID display bias coefficient	Read/Write	
934	42124	PID display bias analog value	Read/Write	Analog value (\%) set to Pr. 934
	43934	PID display bias analog value (terminal analog value)	Read	Analog value (\%) of current (voltage) applied to terminal 4
935	41935	PID display gain coefficient	Read/Write	
935	42125	PID display gain analog value	Read/Write	Analog value (\%) set to Pr. 935
	43935	PID display gain analog value (terminal analog value)	Read	Analog value (\%) of current (voltage) applied to terminal 4
$\begin{aligned} & 1000 \text { to } \\ & 1999 \end{aligned}$	$\begin{aligned} & 45000 \text { to } \\ & 45359 \end{aligned}$	For details on parameter names, refer to the parameter list (page 116).	Read/Write	The parameter number +44000 is the register number.

- Fault history

Register	Definition	Read/Write	Remarks
40501	Fault record 1	Read/Write	Data is 2 bytes and so is stored in " H 00 O O ".   The lowest 1 byte can be referred to for the error code.   (For details on error codes, refer to page 740.)   The fault history is batch-cleared by writing to register 40501.   Set any value for the data.
40502	Fault record 2	Read	
40503	Fault record 3	Read	
40504	Fault record 4	Read	
40505	Fault record 5	Read	
40506	Fault record 6	Read	
40507	Fault record 7	Read	
40508	Fault record 8	Read	

- Model information monitor

Register	Definition	Read/Write	Remarks
44001	Model (First and second characters)	Read	Reading inverter type in ASCII code. "H2O" (blank code) is set for blank area.   Example of FR-A860-1 H46, H52, H2D, H41, H38, H36, H30, H2D, $\mathrm{H} 31, \mathrm{H} 20 \ldots . . . \mathrm{H} 20$
44002	Model (Third and fourth characters)	Read	
44003	Model (Fifth and sixth characters)	Read	
44004	Model (Seventh and eighth characters)	Read	
44005	Model (Ninth and tenth characters)	Read	
44006	Model (Eleventh and twelfth characters)	Read	
44007	Model (Thirteenth and fourteenth characters)	Read	
44008	Model (Fifteenth and sixteenth characters)	Read	
44009	Model (Seventeenth and eighteenth characters)	Read	
44010	Model (Nineteenth and twentieth characters)	Read	
44011	Capacity (First and second characters)	Read	The capacity in the inverter model can be read in ASCll code.   Data is read in increments of 0.1 kW , and rounds down to 0.01 kW increments.   "H20" (blank code) is set for blank area.   Example   0.75K...... "7"   (H2O, H2O, H2O, H2O, H2O, H37)
44012	Capacity (Third and fourth characters)	Read	
44013	Capacity (Fifth and sixth characters)	Read	

## NOTE

- When a 32-bit parameter setting or monitored value is read and the read value exceeds HFFFF, the reply data will be HFFFF.


## - Pr. 343 Communication error count

- The communication error occurrence count can be checked.

Parameter	Setting range	Minimum setting range	Initial value
343	(Read only)	1	0

## NOTE

- The communication error count is temporarily stored in the RAM memory. The value is not stored in EEPROM, and so is cleared to 0 when power is reset and the inverter is reset.


## Output signal LF "alarm output (communication error warning)"

- During a communication error, the alarm signal (LF signal) is output by open collector output. Assign the terminal to be used using any of Pr. 190 to Pr. 196 (Output terminal function selection).



## NOTE

- The LF signal can be assigned to an output terminal by setting Pr. 190 to Pr.196. Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.


## - Signal loss detection (Pr. 539 MODBUS RTU communication check time interval)

- If a signal loss (communication) is detected between the inverter and the master as a result of a signal loss detection, an inverter communication fault (E.SER) occurs and the inverter trips.
- When the setting is "9999", communication check (signal loss detection) is not made.
- When the setting is " 0 ", reading, etc. of monitors and parameters is possible, though a Communication fault (inverter) (E.SER) occurs instantly when the Network operation mode is switched to.
- A signal loss detection is made when the setting is any of " 0.1 s to 999.8 s ". To make a signal loss detection, it is necessary to send data from the master within the communication check time interval. (The inverter makes a communication check (clearing of communication check counter) regardless of the station number setting of the data sent from the master).
- The communication check is made from the first communication in the Network operation mode (can be changed by Pr. 551 PU mode operation command source selection).
- The communication check time by query communication includes a no data time ( 3.5 bytes). This no data time differs according to the communication speed, so take this time no data time into consideration when setting the communication check time.

Example: RS-485 terminal communication, Pr. $539=$ "0.1 to 999.8 s"


## NOTE

- For the RS-485 terminal communication, the operation at a communication error occurrence depends on the Pr. 502 Stop mode selection at communication error setting. (Refer to page 650)


## 5．15．7 USB device communication

A personal computer and an inverter can be connected with a USB cable．Setup of the inverter can be easily performed with FR Configurator2．
The inverter can be connected simply to a personal computer by a USB cable．

Pr．	Name	Initial value	Setting range	Description
$\begin{aligned} & 547^{* 1} \\ & \text { N040 } \end{aligned}$	USB communication station number	0	0 to 31	Inverter station number specification
$\begin{aligned} & 548{ }^{* 1} \\ & \text { N041 } \end{aligned}$	USB communication check time interval	9999	0	USB communication is possible，however the inverter will trip （E．USB）when the mode changes to the PU operation mode．
			0.1 to 999.8 s	Set the communication check time interval． If a no－communication state persists for longer than the permissible time，the inverter will trip（E．USB）．
			9999	No communication check

＊1 Changed setting value becomes valid at power ON or the inverter reset．

## USB communication specifications

Interface	Conforms to USB1．1（USB2．0 full speed）
Transmission speed	12 Mbps
Wiring length	Maximum 5 m
Connector	USB mini B connector（receptacle）
Power supply	Self－powered
Recommended USB cable	MR－J3USBCBL3M（cable length 3 m）


－At the initial setting（Pr． 551 PU mode operation command source selection＝＂9999＂），communication with FR Configurator2 can be made in the PU operation mode simply by connecting a USB cable．To fix the command source to the USB connector in the PU operation mode，set＂3＂in Pr． 551.
－Parameter setting and monitoring can be performed by using FR Configurator2．For details，refer to the Instruction Manual of FR Configurator2．

## 〈Parameters referred to 》》

Pr． 551 PU mode operation command source selection page 356

### 5.15.8 Automatic connection with GOT

When the automatic connection is enabled in the GOT2000 series, the inverter can communicate with the GOT2000 series with only setting the station number and connecting the GOT. This eliminates the need for the communication parameter setting.

Pr.	Name	Initial value	Setting range	Description		
$\mathbf{1 1 7}$   N020	PU communication station   number	0	0 to 31	Set the inverter station numbers.   The inverter station number setting is required when multiple   inverters are connected to one GOT (PU connector   communication).		
$\mathbf{3 3 1}$   N030	RS-485 communication   station number	0	0 to 31			
$(0 \text { to 247) })^{*} 1^{* 2}$						Set the inverter station numbers.
:---						
The inverter station number setting is required when multiple						
inverters are connected to one GOT (RS-485 terminal						
communication).						

*1 When Pr. 549 Protocol selection = "1" (MODBUS RTU protocol), the setting range is as shown in the parentheses.
*2 When the set value is outside of the setting range, the initial value is applied.

## - Automatic connection system configuration



## －GOT2000 series automatic recognition

－When the GOT2000 series is connected，the parameters required for the GOT connection are automatically changed by setting the automatic recognition on the GOT2000 series side．
－Set the station number（Pr． 117 or Pr．331）of the inverter before the automatic recognition is performed．
－Connect all the stations of inverters with GOT before the automatic recognition is performed．The inverter newly added after automatic recognition will not be recognized automatically．（When an inverter is added，perform the initial setting in Pr． 999 Automatic parameter setting or set the automatic recognition on the GOT side again．）

Automatic change item	Automatic change parameter		$\begin{array}{c}\text { Setting value after } \\ \text { change }\end{array}$
	PU connector connection	RS－485 terminal connection	
Communication speed	Pr． 118	Pr． 332	Depending on the setting
of the connected device			
on the GOT side．			

## NOTE

－If the automatic recognition cannot be performed，initial setting in Pr． 999 is required．
－For connection to a device other than the GOT2000 series，initial setting in Pr． 999 is required．
－For details，refer to the GOT2000 Series Connection Manual（Mitsubishi Electric Product）．

## 《｜Parameters referred to 》》

Pr． 999 Automatic parameter setting page 304

### 5.15.9 Backup/restore

The GOT can be used for backing up inverter parameters and the data used in the PLC function of inverter.
The backup data stored in the GOT can be used to restore the data in the inverter.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{4 3 4}$   N110*1	Network number (CC-Link IE)	0	0 to 255	Enter the network number of the inverter.
$\mathbf{4 3 5}$	Station number (CC-Link IE)	0	0 to 255	Enter the station number of the inverter.

*1 The setting is available in the inverter on which the FR-A8NCE is installed.


FR-A800 (with the FR-A8NCE installed)

## - Connected devices

- To enable backup/restore, connect either the general-purpose inverter with the FR-A8NCE to a programmable controller (master station) via the CC-Link IE Field Network.


## NOTE

- The backup/restore function is enabled only when the inverter is connected to a master station programmable controller.
- For details on the connected devices, refer to the GOT2000 Series User's Manual (Monitor).


## - Data to be backed up and restored

- The following data can be backed up and restored. The data other than listed in the following table cannot be backed up or restored.

Item
Inverter parameters
Parameters used for activating the PLC function
Programs (including SFCs) used in the PLC function
Global device comment information used in the PLC function
Function block source information

## Backup/restore operation

- The GOT backs up all applicable data in all the inverters that can be identified with the network numbers and station numbers in the controller list file.
- The GOT restores all relevant data of the inverters selected based on the network numbers and station numbers using the backup data.
- The backup/restore cannot be performed in the following cases.

Operation	Inverter status
Backup	During an inverter reset   A password is registered or password protection is enabled (Pr.297 $\neq$ "9999").   During parameter copy using an operation panel or USB memory device (during writing to the inverter)   During restore   While password protection is enabled for files used in the PLC function (read protection)   While PLC function project data is written to, read from, or verified against a USB memory device
Restore	During an inverter reset   During running   During auto tuning   A password is registered or password protection is enabled (Pr.297 $\neq$ "9999").   While parameter write is disabled (Pr.77 = "1")   During parameter copy using an operation panel or USB memory device (during writing to / reading from /   verification against the inverter)   During backup operation   During the RUN status of the PLC function   While password protection is enabled for files used in the PLC function (write protection)   While PLC function project data is written to, read from, or verified against a USB memory device

- On the operation panel, "RD" is displayed during backup, and "WR" is displayed during restore.


## NOTE

- To enable the restore operation, Pr. 434 Network number (CC-Link IE) and Pr. 435 Station number (CC-Link IE) must be set.
- Backup is performed for parameters for which parameter copy can be performed.
- For details on backup/restore function, refer to the GOT2000 Series User's Manual (Monitor).


### 5.16 (G) Control parameters

Purpose	Parameter to set			
To set the starting torque manually	Manual torque boost	$\begin{aligned} & \text { P.G000, P.G010, } \\ & \text { P.G020 } \end{aligned}$	Pr.0, Pr.46, Pr. 112	697
To set the motor constant	Base frequency, base frequency voltage	$\begin{aligned} & \text { P.G001, P.G002, } \\ & \text { P.G011, P.G021 } \end{aligned}$	$\begin{aligned} & \text { Pr.3, Pr.19, Pr.47, } \\ & \text { Pr. } 113 \end{aligned}$	699
To select the V/F pattern matching the application	Load pattern selection	P.G003	Pr. 14	701
To improve the torque in a low-speed range	Excitation current low-speed scaling factor	$\begin{aligned} & \text { P.G003, P.G080, } \\ & \text { P.G201, P.G202, } \\ & \text { P.G301, P.G302 } \end{aligned}$	$\begin{aligned} & \text { Pr.14, Pr.85, Pr.86, } \\ & \text { Pr. } 565, \text { Pr. } 566, \\ & \text { Pr. } 617 \\ & \hline \end{aligned}$	703
To perform energy saving operation	Energy saving operation	P.G030	Pr. 60	704
To use a special motor	Adjustable 5 points V/F	$\begin{aligned} & \text { P.C100, } \\ & \text { P.G040 to P.G049 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 71 \text {, } \\ & \text { Pr. } 100 \text { to Pr. } 109 \end{aligned}$	705
To adjust the motor braking torque	DC injection brake, zero speed control, and servo lock, magnetic flux decay output shutoff	$\begin{aligned} & \text { P.G100 to P.G103, } \\ & \text { P.G108, P.G110 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 10 \text { to Pr.12, } \\ & \text { Pr. } 802 \text {, Pr. } 850 \text {, } \\ & \text { Pr. } 1299 \end{aligned}$	707
To coast the motor to a stop	Output stop function	P.G105	Pr. 522	713
	Selection of motor stop method	P.G106	Pr. 250	715
To use the regeneration unit to increase the motor braking torque	Regenerative brake selection	$\begin{aligned} & \text { P.E300, P.G107, } \\ & \text { P.T721 } \end{aligned}$	$\begin{aligned} & \text { Pr.30, Pr. } 70 \text {, } \\ & \text { Pr. } 599 \end{aligned}$	718
To operate the inverter with DC power supply	DC feeding mode	P.E300	Pr. 30	718
To avoid overvoltage alarm due to regenerative driving by automatic adjustment of the output frequency	Regeneration avoidance function	P.G120 to P.G125	$\begin{aligned} & \text { Pr. } 882 \text { to Pr. } 886 \text {, } \\ & \text { Pr. } 665 \end{aligned}$	725
To decrease the deceleration time of the motor	Increased magnetic excitation deceleration	P.G130 to P.G132	Pr. 660 to Pr. 662	728
To select the control method	Control method selection	P.G200, P.G300	Pr.800, Pr. 451	166
To secure the low-speed torque by compensating the slip of the motor	Slip compensation	P.G203 to P.G205	Pr. 245 to Pr. 247	729
To select the torque characteristic	Constant output range torque characteristic selection	P.G210	Pr. 803	191, 232
To adjust the speed control gain	Speed control gain	$\begin{aligned} & \text { P.G211, P.G212 } \\ & \text { P.G311, P.G312 } \end{aligned}$	$\begin{aligned} & \text { Pr.820, Pr.821, } \\ & \text { Pr.830, Pr. } 831 \end{aligned}$	201
To adjust the torque control gain	Torque control gain	$\begin{aligned} & \text { P.G213, P.G214, } \\ & \text { P.G313, P.G314 } \end{aligned}$	$\begin{aligned} & \text { Pr.824, Pr.825, } \\ & \text { Pr.834, Pr. } 835 \end{aligned}$	243
To stabilizes speed and torque feedback signal	Speed detection filter, torque detection filter	$\begin{aligned} & \text { P.G215, P.G216, } \\ & \text { P.G315, P.G316 } \end{aligned}$	$\begin{aligned} & \text { Pr.823, Pr. } 827 \text {, } \\ & \text { Pr. } 833, \text { Pr. } 837 \end{aligned}$	287
To changes excitation ratio	Excitation ratio	P.G217	Pr. 854	288
To improve the motor trackability for the speed command changes	Speed feed forward control, model adaptive speed control	$\begin{aligned} & \text { P.G224, P.G220 to } \\ & \text { P.G222, P.G223 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 828 \text {, } \\ & \text { Pr. } 877 \text { to Pr. } 879 \text {, } \\ & \text { Pr. } 881 \end{aligned}$	211
To make starting torque start-up faster	Torque bias	P.G230 to P.G238	Pr. 840 to Pr. 848	214
To make the motor speed constant by the encoder	Encoder feedback control	$\begin{aligned} & \text { P.M002, P.A107, } \\ & \text { P.C140, P.C141, } \\ & \text { P.G240, P.G241 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 144 \text {, Pr. } 285 \text {, } \\ & \text { Pr. } 359 \text {, } \\ & \text { Pr. } 367 \text { to Pr. } 369 \end{aligned}$	730
To select operation at emergency stop	Emergency stop operation selection	P.G264	Pr. 1349	320
To perform frequency control appropriate for load torque	Droop control	$\begin{aligned} & \text { P.G400 to P.G404, } \\ & \text { P.G420 to P.G424 } \end{aligned}$	$\begin{aligned} & \text { Pr. } 286 \text { to Pr. } 288 \text {, } \\ & \text { Pr. } 679 \text { to Pr. } 683 \text {, } \\ & \text { Pr. } 994 \text { Pr. } 995 \end{aligned}$	733
To suppress the machine resonance	Speed smoothing control	P.G410, P.G411	Pr.653, Pr. 654	736
	Notch filter	P.G601 to P.G603	Pr. 1003 to Pr. 1005	220
To adjust the speed gain for Advanced magnetic flux vector control	Speed control gain	P.G932, P.G942	Pr.89, Pr. 569	174

### 5.16.1 Manual torque boost

## V/F

Voltage drop in the low-frequency range can be compensated, improving reduction of the motor torque in the low-speed range.

- Motor torque in the low-frequency range can be adjusted according to the load, increasing the motor torque at the start up.
- By using the RT signal or X9 signal, it is possible to switch between 3 types of torque boost.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 0 \\ & \text { G000 } \end{aligned}$	Torque boost	$5 \%{ }^{* 1}$	0 to 30\%	Set the output voltage at 0 Hz in \%.
		$3 \%^{*}{ }^{2}$		
		2\%*3		
		$1 \%{ }^{*} 4$		
46	Second torque boost	9999	0 to 30\%	Set the torque boost value at when RT signal is ON.
G010			9999	Without second torque boost
112	Third torque boost	9999	0 to 30\%	Set the torque boost value at when X 9 signal is ON.
G020			9999	Without third torque boost

*1 Initial value for the FR-A860-00027.
*2 Initial value for the FR-A860-00061.
*3 Initial values for the FR-A860-00090, 00170.
*4 Initial value for the FR-A860-00320 or higher.

## - Starting torque adjustment

- Assuming Pr. 19 Base frequency voltage is $100 \%$, set the output voltage at 0 Hz to $\operatorname{Pr} .0$ (Pr.46, Pr.112) in percentage.
- Perform the adjustment of the parameter little by little (approximately $0.5 \%$ ), and confirm the status of the motor each time.

The motor may overheat when the value is set too high. Do not use more than $10 \%$ as a guideline.


## －Setting multiple torque boosts（RT signal，X9 signal，Pr．46，Pr．112）

－When changing the torque boost depending on the usage or when using single inverter switching between multiple motors， use the second（third）torque boost．
－Pr． 46 Second torque boost will become enabled when the RT signal turns ON．
－Pr． 112 Third torque boost will become enabled when X9 signal turns ON．Set＂ 9 ＂in Pr． 178 to Pr． 189 （Input terminal function selection）to assign X 9 signal function to a terminal．

## NOTE

－The RT（X9）signal acts as the second（third）function selection signal and makes the other second（third）functions valid． （Refer to page 503．）
－The RT signal is assigned to the terminal RT in the initial status．Set＂ 3 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the RT signal to another terminal．
－Set a larger value when the distance between the inverter and the motor is long or when there is not enough motor torque in the low－speed range．It may cause overcurrent trip when it is set too large．
－Setting for Pr．0，Pr．46，and Pr． 112 becomes enabled only when the V／F control is selected．
－When the initial value is set in Pr．0，the Pr． 0 setting is automatically changed by changing the Pr． 71 Applied motor setting． （Refer to page 506）
－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．

[^34]
### 5.16.2 Base frequency, voltage

## V/F

Use this function to adjust the inverter outputs (voltage, frequency) to match with the motor rating.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 3 \\ & \text { G001 } \end{aligned}$	Base frequency	60 Hz	0 to 590 Hz	Set the frequency at the rated motor torque. ( $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ )
$\begin{aligned} & 19 \\ & \text { G002 } \end{aligned}$	Base frequency voltage	9999	0 to 1000 V	Set the base voltage.
			8888	$95 \%$ of the power supply voltage
			9999	Same as the power supply voltage
$\begin{aligned} & \text { 47 } \\ & \text { G011 } \end{aligned}$	Second V/F (base frequency)	9999	0 to 590 Hz	Set the base frequency at the RT signal ON.
			9999	Second V/F disabled
$\begin{aligned} & 113 \\ & \text { G021 } \end{aligned}$	Third V/F (base frequency)	9999	0 to 590 Hz	Set the base frequency at the X9 signal ON.
			9999	Third V/F disabled

## Setting of base frequency (Pr.3)

- When operating a standard motor, generally set the rated frequency of the motor in Pr. 3 Base frequency. When the motor operation require switching to the commercial power supply, set the power supply frequency in Pr.3.
- When the frequency described on the motor rating plate is 50 Hz only, make sure to set to 50 Hz . When it is set to 60 Hz , the voltage will drop too much, causing insufficient torque. As a result, the inverter may trip due to overload. A caution is required especially in case of Pr. 14 Load pattern selection = "1" (variable torque load).



## Setting multiple base frequencies (Pr.47, Pr.113)

- To change the base frequency when using single inverter switching between multiple motors, use Pr. 47 Second V/F (base frequency) and Pr. 113 Third V/F (base frequency).
- Pr. 47 will become enabled when the RT signal turns ON and Pr. 113 when the X9 signal turns ON. To input the X9 signal, set "9" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.


## NOTE

- The RT (X9) signal acts as the second (third) function selection signal and makes the other second (third) functions valid. (Refer to page 503.)
- The RT signal is assigned to the terminal RT in the initial status. It is also possible to assign the RT signal to other terminal by setting "3" on Pr. 178 to Pr. 189 (Input terminal function selection).


## - Setting of base frequency voltage (Pr.19)

- For Pr. 19 Base frequency voltage, set the base voltage (rated motor voltage, etc.).
- When it is set lower than the power supply voltage, maximum output voltage of the inverter will be the voltage set in Pr. 19 .
- Pr. 19 can be used in following cases.
(a) Regenerative driving (continuous regeneration, etc.) is performed often

Output voltage will get higher than the specification during the regenerative driving, which may cause overcurrent trip (E.OC[]) by the increase in motor current.
(b) When the fluctuation of power supply voltage is high

When the power supply voltage exceeds the rated voltage of the motor, fluctuation of rotation speed or overheating of motor may occur due to excessive torque or increase in motor current.

## NOTE

- When the operation becomes not possible due to failure in encoder, etc., at the time of vector control, set Pr. 80 Motor capacity or Pr. 81 Number of motor poles = "9999" to perform V/F control.
- When the Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control is selected, Pr.3, Pr.47, Pr.113, and Pr. 19 will become disabled, and Pr. 83 and Pr. 84 will become enabled. However, S-pattern curve with Pr. 29 Acceleration/deceleration pattern selection = "1" (S-pattern acceleration/ deceleration A) will make Pr. 3 or Pr. 47 and Pr. 113 enabled. (S-pattern curve at the time of the PM sensorless vector control is the rated frequency of the motor.)
- When Pr. 71 Applied motor = "2" (adjustable 5 points V/F), setting for Pr. 47 and Pr. 113 will become disabled. Also, Pr. 19 cannot be set to "8888" or "9999".
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
<< Parameters referred to \>
Pr. 14 Load pattern selection \longmapsto page 701
Pr. }29\mathrm{ Acceleration/deceleration pattern selection に page 325
Pr. }71\mathrm{ Applied motor page }50
Pr. }83\mathrm{ Rated motor voltage, Pr. }84\mathrm{ Rated motor frequency page 508
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) W page 498
```


### 5.16.3 Load pattern selection

## V/F

Optimal output characteristics (V/F characteristics) for application or load characteristics can be selected.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 14 \\ & \text { G003 } \end{aligned}$	Load pattern selection	0	0	For constant-torque load
			1	For variable-torque load
			2	For constant-torque lift (boost at reverse rotation 0\%)
			3	For constant-torque lift (boost at forward rotation 0\%)
			4	RT signal ON... for constant-torque load   RT signal OFF... for constant-torque lift, boost at reverse rotation 0\%
			5	RT signal ON... for constant-torque load   RT signal OFF... for constant-torque lift, boost at forward rotation 0\%
			12 to 15	Excitation current low-speed scaling factor (Refer to page 703.)

## - Application for constant-torque load (Pr. $14=$ " 0 ", initial value)

- The output voltage will change linearly against the output frequency at the base frequency or lower.
- Set this parameter when driving a load that has constant load torque even when the rotation speed is changed, such as conveyor, dolly, or roll drive.



## Point/

Select for constant-torque load (setting value "0") even for fan and pump in following cases.

- When accelerating a blower with large moment of inertia $(\mathrm{J})$ in a short period of time.
- When it is a constant-torque load such as rotary pump or gear pump.
- When the load torque increases in low speed such as screw pump.


## - Application for variable-torque load (Pr. 14 = "1")

- The output voltage will change in square curve against the output frequency at the base frequency or lower. (1.75th-power curve for FR-A860-00680 or higher)
- Set this parameter when driving a load with load torque change proportionally against the square of the rotation speed, such as fan and pump.



## - Vertical lift load applications (Pr. 14 = "2, 3")

- Set "2" when a vertical lift load is fixed as power driving load at forward rotation and regenerative load at reverse rotation.
- Pr. 0 Torque boost is valid during forward rotation, and torque boost is automatically changed to " $0 \%$ " during reverse rotation.
- Set " 3 " for an elevated load that is in the driving mode during reverse rotation and in the regenerative load mode during forward rotation according to the load weight, e.g. counterweight system.

Pr. $14=2$
For vertical lift loads
At forward rotation boost...Pr. 0 setting
At reverse rotation boost... $0 \%$


\[\)	Pr.  $14=3$
For vertical lift loads	
At forward rotation boost...  $0 \%$	
At reverse rotation boost...Pr.  0  setting	

\]

Output frequency (Hz)

## NOTE

- When torque is continuously regenerated as vertical lift load, it is effective to set the rated voltage in Pr. 19 Base frequency voltage to prevent trip due to current at regeneration.


## - Switching applied load selection with a terminal (Pr. 14 = "4, 5")

- It is possible to switch between for constant-torque load and for lift with RT signal or X17 signal.
- To input the X17 signal, set "17" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- Switching with RT signal will become disabled when X 17 signal is assigned.

Pr.14 setting	RT (X17) signal	Output characteristics
4	ON	For constant-torque load (same as setting value "0")
	OFF	For lift, boost at reverse rotation $0 \%$ (same as setting value "2")
5	ON	For constant-torque load (same as setting value "0")
	OFF	For lift, boost at forward rotation $0 \%$ (same as setting value "3")

## NOTE

- The RT signal is assigned to the terminal RT in the initial status. Set "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to 189 may affect other functions. Set parameters after confirming the function of each terminal.
- Pr. 14 will become enabled at the time of V/F control.
- Other second functions will become enabled when the RT signal is ON.

```
Parameters referred to \>
Pr. O Torque boost page 697
Pr. }3\mathrm{ Base frequency ञ page 699
Pr. }178\mathrm{ to Pr. }182\mathrm{ (Input terminal function selection) page }49
```


### 5.16.4 Excitation current low-speed scaling factor

## Magneticflux Sensorless

Under Advanced magnetic flux vector control or Real sensorless vector control, the excitation current scaling factor in the lowspeed range can be adjusted.

Pr.	Name	Initial value	Setting range	Description
$14$G003	Load pattern selection	0	0 to 5	Excitation current low-speed scaling factor: Pr. 86 Refer to page 701 for details of the operation under V/F control.
			$12^{* 1}$	Forward rotation excitation current low-speed scaling factor: Pr. 86 Reverse rotation excitation current low-speed scaling factor: Pr. 617
			$13^{* 1}$	Forward rotation excitation current low-speed scaling factor: Pr. 617 Reverse rotation excitation current low-speed scaling factor: Pr. 86
			$14^{* 1}$	Forward rotation excitation current low-speed scaling factor: Pr. 86 Reverse rotation excitation current low-speed scaling factor: Pr. 617 (X17-OFF), Pr. 86 (X17 signal-ON)
			$15^{* 1}$	Forward rotation excitation current low-speed scaling factor: Pr. 617 (X17-OFF), Pr. 86 (X17 signal-ON)   Reverse rotation excitation current low-speed scaling factor: Pr. 86
$\begin{aligned} & 85 \\ & \text { G201 } \end{aligned}$	Excitation current refraction point	9999	0 to 400 Hz	Set the frequency at which increased excitation is started.
			9999	10 Hz is applied.
$\begin{aligned} & 86 \\ & \text { G202 } \end{aligned}$	Excitation current lowspeed scaling factor	9999	0 to 300\%	Set an excitation current scaling factor at 0 Hz .
			9999	130\% is applied.
$\begin{aligned} & 617 \\ & \text { G080 } \end{aligned}$	Reverse rotation excitation current low-speed scaling factor	9999	0 to 300\%	Set an excitation current scaling factor when different excitation current scaling factors are used for forward and reverse rotation.
			9999	130\% is applied.
$\begin{aligned} & 565 \\ & \text { G301 } \end{aligned}$	Second motor excitation current refraction point	9999	0 to 400 Hz	Set an excitation current break point when the RT signal is ON.
			9999	10 Hz is applied.
$\begin{aligned} & 566 \\ & \text { G302 } \end{aligned}$	Second motor excitation current low speed scaling factor	9999	0 to 300\%	Set an excitation current low-speed scaling factor when the RT signal is ON.
			9999	130\% is applied.

*1 The setting is valid only under Advanced magnetic flux vector control or Real sensorless vector control. When Pr. 14 = "12 to 15" and V/F control is selected, the operation is the same as the one for constant-torque load (Pr. $14=$ " 0 "). (Refer to page 701.)

- Under Advanced magnetic flux vector control or Real sensorless vector control, excitation current in the low-speed range can be increased to improve torque. When Pr. 14 = "12 to 15", the excitation current scaling factor can be switched for the forward/reverse rotation.
- Increased excitation is applied when the output frequency is equal to or lower than the setting in Pr. 85 Excitation current refraction point. The excitation current scaling factor at 0 Hz is set in Pr. 86 Excitation current low-speed scaling factor. Use Pr. 565 Second motor excitation current refraction point and Pr. 566 Second motor excitation current low speed scaling factor for the setting for using the second motor (RT signal-ON).

- When Pr. 14 = "14 or 15 " and the X17 signal is turned ON, the excitation current scaling factor is switched from the value set in Pr. 617 to the value set in Pr. 86.
- An excitation current low-speed scaling factor set in the parameter shown in the table is used according to the Pr. 14 setting and other conditions.

Pr. 14 setting	X17 signal	During forward rotation		During reverse rotation	
		RT signal OFF	RT signal ON	RT signal OFF	RT signal ON
0 to 5	-	Pr. 86	Pr. 566	Pr. 86	Pr. 566
12	-	Pr. 86	Pr. 566	Pr. 617	Pr. 617
13	-	Pr. 617	Pr. 617	Pr. 86	Pr. 566
14	Pr. 86	Pr. 566	Pr. 617	Pr. 617	
	Pr. 86	Pr. 566	Pr. 86	Pr. 566	
	OF	Pr. 617	Pr. 617	Pr. 86	Pr. 566

### 5.16.5 Energy saving control

## V/F Magneticflux

Inverter will perform energy saving control automatically even when the detailed parameter settings are made.
It is appropriate for applications such as fan and pump.

Pr.	Name	Initial value	Setting range	
$\mathbf{6 0}$G030	Energy saving control   selection	0	0	Normal operation
		4	Energy saving operation	
		9	Optimum excitation control	

## - Energy saving operation (setting "4")

- Setting Pr. $60=44$ will select the energy saving operation.
- With the energy saving operation, the inverter will automatically control the output voltage so the inverter output power during the constant-speed operation will become minimal.
- Energy saving operation will be enabled under V/F control.


## - Optimum excitation control (setting "9")

- Setting Pr. $60=$ " 9 " will select the Optimum excitation control.
- The Optimum excitation control is a control method to decide the output voltage by controlling the excitation current so the efficiency of the motor is maximized.
- Optimum excitation control will be enabled under V/F control and Advanced magnetic flux vector control.


## NOTE

- An energy saving effect is not expected with the energy saving operation mode for applications with high load torque or with the equipment with frequent acceleration and deceleration.
- An energy saving effect is not expected with the Optimum excitation control mode when the motor capacity is extremely small compared with the inverter capacity or when multiple motors are connected to a single inverter.
- When the energy saving operation mode or Optimum excitation control mode is selected, the deceleration time may become longer than setting value. Also, it may cause overvoltage more often compared to constant-torque load characteristics, so set the deceleration time longer.
- When the motor becomes unstable during the acceleration, set the acceleration time longer.
- Output current may increase slightly with the energy saving operation mode or the Optimum excitation control mode since the output voltage is controlled.


### 5.16.6 Adjustable 5 points V/F

## V/F

By setting a desired V/F characteristic from the start up to the base frequency or base voltage with the V/F control (frequency voltage/frequency), a dedicated V/F pattern can be generated.
Optimal V/F pattern matching the torque characteristics of the facility can be set.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	2	Standard motor Adjustable 5 points V/F
			Others	Refer to page 506.
$\begin{aligned} & 100 \\ & \text { G040 } \end{aligned}$	V/F1 (first frequency)	9999	0 to 590 Hz, 9999	Set each point of the V/F pattern (frequency, voltage).   9999: Do not set V/F
$\begin{aligned} & 101 \\ & \text { G041 } \end{aligned}$	V/F1 (first frequency voltage)	0 V	0 to 1000 V	
$\begin{aligned} & 102 \\ & \text { G042 } \end{aligned}$	V/F2 (second frequency)	9999	0 to 590 Hz, 9999	
$\begin{aligned} & 103 \\ & \text { G043 } \end{aligned}$	V/F2 (second frequency voltage)	0 V	0 to 1000 V	
$\begin{aligned} & 104 \\ & \text { G044 } \end{aligned}$	V/F3 (third frequency)	9999	0 to 590 Hz, 9999	
$\begin{aligned} & 105 \\ & \text { G045 } \end{aligned}$	V/F3 (third frequency voltage)	0 V	0 to 1000 V	
$\begin{aligned} & 106 \\ & \text { G046 } \end{aligned}$	V/F4 (fourth frequency)	9999	0 to $590 \mathrm{~Hz}, 9999$	
$\begin{aligned} & 107 \\ & \text { G047 } \end{aligned}$	V/F4 (fourth frequency voltage)	0 V	0 to 1000 V	
$\begin{aligned} & 108 \\ & \text { G048 } \end{aligned}$	V/F5 (fifth frequency)	9999	0 to 590 Hz, 9999	
$\begin{aligned} & 109 \\ & \text { G049 } \end{aligned}$	V/F5 (fifth frequency voltage)	0 V	0 to 1000 V	

- By setting the V/F1 (first frequency voltage/first frequency) to V/F5 parameters in advance, a desired V/F characteristic can be obtained.
- For an example, with the equipment with large static friction factor and small dynamic friction factor, large torque is required only at the start up, so a V/F pattern that will raise the voltage only at the low-speed range is set.
- Setting procedure

1. Set the rated motor voltage in Pr. 19 Base frequency voltage. (No function at the setting of "9999" or "8888".)
2. Set Pr. 71 Applied motor $=$ " 2 " (adjustable 5 points V/F).
3. Set frequency and voltage to be set in Pr. 100 to Pr. 109.


Pr. 3

## CAUTION

- Make sure to set this parameter correctly according to the motor used. Incorrect setting may cause the motor to overheat and burn.


## NOTE

－Adjustable 5 points V／F will become enabled at the time of V／F control．
－At the time of Pr． 19 Base frequency voltage＝＂ 8888 ，9999＂，setting of Pr． 71 ＝＂2＂cannot be made．When setting Pr． 71 ＝＂2＂，set the rated motor voltage in Pr． 19.
－Read only error（Er1）is generated when the frequency value for each point is same．
－Set each point for Pr． 100 to Pr． 109 （frequency，voltage）within the range of Pr． 3 Base frequency and Pr． 19 Base frequency voltage．
－When Pr． 71 ＝＂2＂，Pr． 47 Second V／F（base frequency）and Pr． 113 Third V／F（base frequency）will not function．
－When Pr． 71 ＝＂2＂，electronic thermal O／L relay will make calculations assuming a standard motor．
－By simultaneously using Pr． 60 Energy saving control selection and the adjustable 5 points V／F，further energy saving effect is expected．

## 《｜Parameters referred to 》》

Pr． 0 Torque boost page 697
Pr． 3 Base frequency，Pr． 19 Base frequency voltage page 699
Pr． 12 DC injection brake operation voltage page 707
Pr． 47 Second V／F（base frequency），Pr． 113 Third V／F（base frequency）page 705
Pr． 60 Energy saving control selection page 704
Pr． 71 Applied motor，Pr． 450 Second applied motor $\mathfrak{F}$ page 506

### 5.16.7 DC injection brake, zero speed control, and servo lock

- Timing to stop or braking torque can be adjusted by applying DC injection brake at the time of stopping motor. Zero speed control can also be selected at the time of the Real sensorless vector control, and zero speed control and servo lock can be selected at the time of vector control or PM sensorless vector control. DC injection brake is preventing the motor shaft to turn by applying DC voltage to the motor, and the other hand, zero speed control is using vector control to maintain $0 \mathrm{r} /$ min . Either way, the motor shaft will not return to its original position when it is rotated due to external force. Servo lock will maintain the position of the motor shaft. When a motor shaft is rotated by external force, it goes back to the original position.
- Select the magnetic flux decay output shutoff function to decay the magnetic flux before shutting off the output at a stop.

Pr.	Name	Initial value	Setting range	Description
10 G100	DC injection brake operation frequency	3 Hz	0 to 120 Hz	Set the operation frequency for the DC injection brake (zero speed control and servo lock).
			9999	Operate at Pr. 13 or lower
$\begin{aligned} & 11 \\ & \text { G101 } \end{aligned}$	DC injection brake operation time	0.5 s	0	Without DC injection brake (zero speed control and servo lock)
			0.1 to 10 s	Set the operation time for the DC injection brake (zero speed control and servo lock).
			8888	Operate with X13 signal ON
$\begin{aligned} & 12 \\ & \text { G110 } \end{aligned}$	DC injection brake operation voltage	1\%	0 to 30\%	Set the DC injection brake voltage (torque). When set to " 0 ", there will be without DC injection brake.
$\begin{aligned} & 802 \\ & \text { G102 } \end{aligned}$	Pre-excitation selection	0	0	Zero speed control
			1	Servo lock
$\begin{aligned} & 1299 \\ & \text { G108 } \end{aligned}$	Second pre-excitation selection	0	0	Zero speed control $\quad \begin{aligned} & \text { The pre-excitation } \\ & \end{aligned}$
			1	motor can be selected.
$\begin{aligned} & 850 \\ & \text { G103 } \end{aligned}$	Brake operation selection	0	0	DC injection brake operation
			1	Zero speed control (Real sensorless vector control)
			2	Magnetic flux decay output shutoff (Real sensorless vector control)

## - Setting of operating frequency (Pr.10)

- By setting the frequency to operate the DC injection brake (zero speed control and servo lock) to Pr. 10 DC injection brake operation frequency, the DC injection brake (zero speed control and servo lock) will operate when it reaches this frequency at the time of deceleration.
- When Pr. 10 = "9999", DC injection brake (zero speed control, servo lock) will start when the frequency reaches Pr. 13 Starting frequency.
- The DC injection brake operation frequency depends on the stopping method.

Stopping method	Parameter setting	DC injection brake operation frequency
Press the STOP key on the   operation panel   Turning OFF of the STF/STR   signal	0.5 Hz or higher in Pr. 10	Pr. 10 setting
	Lower than 0.5 Hz in Pr.10, and 0.5 Hz or   higher in Pr. 13	0.5 Hz
	Lower than 0.5 Hz in both Pr. 10 and Pr. 13	Pr. 10 or Pr. 13 setting, whichever larger
Set the frequency to 0 Hz	-	Pr. 13 setting or 0.5 Hz, whichever smaller

- DC injection brake operation frequency will be fixed to 0 Hz at the time of PM sensorless vector control.



## NOTE

- When executing pre-excitation (zero speed control) at the time of Real sensorless vector control, set Pr. 10 DC injection brake operation frequency to 0.5 Hz or lower since it may cause motor vibration, etc., at the time of deceleration stop.
- Initial value of Pr. 10 will automatically switch to 0.5 Hz at the time of vector control.


## - Setting of operation time (X13 signal, Pr.11)

- Set the time applying the DC injection brake (zero speed control and servo lock) to Pr. 11 DC injection brake operation time.
- When the motor does not stop due to large load moment (J), increasing the setting produces an effect.
- When Pr. $11=$ " 0 s ", DC injection brake (zero speed control and servo lock) will not operate. (The motor will coast to stop.)
- When Pr. 11 = "8888", DC injection brake (zero speed control and servo lock) will operate when the X13 signal is turned ON. DC injection brake will operate when the X13 signal is turned ON even while operating.
- For the X13 signal input, set "13" in any of Pr. 178 to Pr. 189 to assign the function.


NOTE

- Under Real sensorless vector control, when the X13 signal turns ON while Pr. $11=$ " 8888 ", the zero speed control is activated regardless of the Pr. 850 Brake operation selection setting.
- At the time of vector control, the zero speed control or the servo lock will operate depending of the setting of Pr. 802 .
- The X13 signal is disabled during PM sensorless vector control.


## - Setting of operation voltage (torque) (Pr.12)

- Pr. 12 DC injection brake operation voltage will set the percent against the power supply voltage. (Not used at the time of zero speed control or servo lock)
- DC injection brake will not operate with setting of Pr. $12=$ " $0 \%$ ". (The motor will coast to stop.)


## NOTE

- Even if the setting value of Pr. 12 is made larger, braking torque will be limited so the output current will be within the rated current of the inverter.


## - Braking operation selection at the time of Real sensorless vector control (Pr. 850 = "0, 1")

- The braking operation at the time of the Real sensorless vector control can be selected between the DC injection brake (initial value) or the Zero speed control. By setting Pr. 850 Brake operation selection $=" 1 "$, zero speed control will be performed under the frequency set in Pr. 10 DC injection brake operation frequency.


## NOTE

- Under Real sensorless vector control, when the X13 signal turns ON while Pr. $11=$ " 8888 ", the zero speed control is activated regardless of the Pr. 850 setting.
- When restarting from brake operation at the time of Real sensorless vector control, set Pr. $850=11$ (zero speed control). In case of setting value " 0 " ( DC injection brake), it may take approximately 2 s from the time the start up command is input until it actually is output.


## - Magnetic flux decay output shutoff and magnetic flux decay output shutoff signal (X74 signal, Pr. $850=$ "2")

- The failure of inverter or increased error in motor may occur due to effect of the motor residual magnetic flux at the time when the inverter output is shut off when frequent start and stop (inching operation) is repeated at the time of Real sensorless vector control. If this is the case, set Pr. $\mathbf{8 5 0}=$ " 2 " (magnetic flux decay output shutoff) or turn ON the magnetic flux decay output shutoff (X74) signal to decay the magnetic flux at a stop, and then shut off the output.
- With Pr. $850=$ "2", deceleration starts at turning OFF of the start command, and the magnetic flux decay output shutoff is activated when the estimated speed becomes lower than Pr. 10 DC injection brake operation frequency.
- With the brake sequence function is set enabled, the magnetic flux decay output shutoff is activated when the frequency becomes lower than 0.5 Hz or the Pr. 13 Starting frequency setting, whichever smaller, during deceleration.
- Inverter output voltage shutoff timing when Pr. $850=$ " 2 "

*1 Maximum time for the magnetic flux decay operation
- Regardless of the Pr. 850 setting, the magnetic flux decay output shutoff will operate immediately when the Magnetic flux decay output shutoff signal (X74) is turned ON. For the X74 signal, set "74" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- Inverter output shutoff timing with X74 signal

*1 Maximum time for the magnetic flux decay operation
- Since the torque will decrease at the time of magnetic flux decay output shutoff, set up so the mechanical brake will operate.
- Magnetic flux decay output shutoff will be canceled at the time of restart and when the Pre-excitation/servo ON (LX) signal/ External DC injection brake operation start (X13) signal is turned ON.
- When the MC is installed on the inverter output side, set up so the MC is released after the magnetic flux decay operation time (see below) has passed.

Motor capacity   (Pr.80 setting value)	$\mathbf{2 . 2} \mathbf{~ k W}$ or lower	$\mathbf{3 . 7} \mathbf{~ k W}$ to $\mathbf{1 1} \mathbf{~ k W}$	$\mathbf{1 5} \mathbf{~ k W}$ to $\mathbf{3 0} \mathbf{~ k W}$	$\mathbf{3 7} \mathbf{~ k W}$ to $\mathbf{5 5} \mathbf{~ k W}$	$\mathbf{7 5} \mathbf{~ k W}$ or higher
Magnetic flux decay process time	250 ms	500 ms	800 ms	900 ms	1100 ms

## NOTE

- When operating in anything other than the Real sensorless vector control, the inverter will immediately shutoff the output when the X 74 signal is turned ON.
- Even at the time of Real sensorless vector control, the inverter will immediately shutoff the output when the X 74 signal is turned ON during the automatic restart after instantaneous power failure and online auto tuning during the start up.
- When other output shutoff trigger (inverter fault, turning ON the MRS signal, etc.) occurs during the magnetic flux decay operation, the magnetic flux operation is terminated, and the output is shut off immediately.
- Unlike the MRS signal, voltage is output during the magnetic flux decay output shutoff operation, so take caution on electric shocks.
- When the release timing of the mechanical brake is too fast, the motor shaft may be rotated by dropping or external force. When the release timing is too late, the overcurrent prevention operation or electronic thermal $O / L$ relay may operate, so perform release of the mechanical brake matching the equipment utilizing the output frequency detection (FU) signal and output current detection (Y12) signal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## - Braking operation selection for vector control (Pr.802, Pr.1299)

- Select the braking operation when the pre-excitation is performed with Pr. 802 Pre-excitation selection from either zero speed control or servo lock.
- Turning ON the RT signal enables the second pre-excitation selection (when Pr. 450 = "9999").

Pr.802 (Pr.1299)   setting	Pre-   excitation	Description
0 (initial value)	Zero speed   control	It will try to maintain 0 r/min so the motor shaft will not rotate even when a load is applied. However,   it will not return to its original position when the shaft moves due to external force.   It will not perform position control, but operate only with the speed control.
1	Servo lock	It will try to maintain the position of the motor shaft even if a load is applied. When the shaft moves   due to external force, it will return to its original position after the external force is removed.
To perform the position control, this loop gain can be adjusted with Pr.422 Position control gain		
(Pr. 1298 Second position control gain).		

- The relation between the DC injection brake operation and pre-excitation operation is as follows.

Control method	Control mode	$\begin{gathered} \text { Pr. } 802 \\ \text { (Pr. } 1299 \text { ) } \end{gathered}$	Pr. 850	Deceleration stop	LX-ON	$\begin{gathered} \text { X13-ON } \\ \text { (Pr. } 11=\text { "8888") } \end{gathered}$
V/F control	-	-	-	DC injection brake	-	DC injection brake
Advanced magnetic flux vector control	-	-	-	DC injection brake	-	DC injection brake
Real sensorless vector control	Speed	-	0	DC injection brake	Zero speed	Zero speed
		-	1	Zero speed		
		-	2	Magnetic flux decay output shutoff	Zero speed	Zero speed
	Torque	-	0	DC injection brake	Zero speed	Zero speed
		-	1	Zero speed		
		-	2	Magnetic flux decay output shutoff	Zero speed	Zero speed
Vector control	Speed	0	-	Zero speed	Zero speed	Zero speed
		1	-	Servo lock	Servo lock	Servo lock
	Torque	-	-	Zero speed	Zero speed	Zero speed
	Position	-	-	-	Servo lock	-
PM sensorless vector control	Speed	-	-	DC injection brake	-	-

## －Pre－excitation signal（LX signal）

－When the Pre－excitation／servo ON（LX）signal is turned ON at the time of Real sensorless vector control or vector control， pre－excitation（zero speed control，servo lock）will be ON while stopped．
－To input the LX signal，set＂ 23 ＂in any of Pr． 178 to Pr． 189 （Input terminal function selection）to assign the function．

$$
\text { When Pr. } 850=1
$$



## NOTE

－Changing the terminal assignment using Pr． 178 to Pr． 189 （Input terminal function selection）may affect the other functions．Set parameters after confirming the function of each terminal．
－Performing pre－excitation（LX signal and X13 signal）under torque control（Real sensorless vector control）may start the motor running at a low speed even when the start command（STF or STR）is not input．The motor may run also at a low speed when the speed limit value $=0$ with a start command input．It must be confirmed that the motor running will not cause any safety problem before performing pre－excitation．
－Note that during the pre－excitation operation，a voltage is applied to the motor even with the FWD／REV indicator OFF on the operation panel．
－When offline auto tuning（Pr． 96 Auto tuning setting／status $=$＂1，11，101＂）is executed at the time of pre－excitation operation，pre－excitation is disabled．

## CAUTION

－Do not set Pr． 11 to＂0，8888＂and Pr． 12 to＂ 0 ＂at the time of orientation operation．The motor may not stop properly．
－Install a mechanical brake to make an emergency stop or to stay stopped for a long time．After the machine comes to a full stop and the motor is fixed by the mechanical brake，turn OFF the LX signal（pre－excitation）．

## 《｜Parameters referred to 》》

Pr． 13 Starting frequency $\longmapsto$ page 337，page 338
Pr． 71 Applied motor page 506
Pr． 80 Motor capacity page 508
Pr． 178 to Pr． 182 （Input terminal function selection）page 498
Pr． 422 Position control gain，Pr． 1298 Second position control gain $\mathfrak{F}$ page 283

### 5.16.8 Output stop function

The motor coasts to a stop (inverter output shutoff) when inverter output frequency falls to Pr. $\mathbf{5 2 2}$ setting or lower.

Pr.	Name	Initial value	Setting   range	Description
$\mathbf{5 2 2}$	Output stop frequency	9999	0 to 590 Hz	Set the frequency to start coasting to a stop (output shutoff).
G105			No function	

- When both of the frequency setting signal and output frequency falls to the frequency set in Pr. $\mathbf{5 2 2}$ or lower, the inverter stops the output and the motor coasts to a stop.
- At a stop condition, the motor starts running when the frequency setting signal exceeds Pr. $522+2 \mathrm{~Hz}$. The motor is accelerated at the Pr. 13 Starting frequency ( 0.01 Hz under PM sensorless vector control) at the start.

Example of when target frequency>Pr. $\mathbf{5 2 2 + 2 H z}$, and start signal is ON/OFF
Output frequency *1

*1 The output frequency before the slip compensation is compared with the Pr. 522 setting.

## NOTE

- When the output stop function is valid (Pr. $522 \neq$ " 9999 "), the DC injunction brake (zero speed control, servo lock) becomes invalid and the motor coasts to stop when the output frequency drops to the Pr. 522 setting or lower.

*1 At a stop condition, the motor is accelerated at the Pr. 13 Starting frequency ( 0.01 Hz under PM sensorless vector control).
*2 The output frequency to be compared with the Pr. 522 setting is the output frequency before slip compensation (V/F control and Advanced magnetic flux vector control), or the speed command value converted into the frequency (Real sensorless vector control, vector control, and PM sensorless vector control).
*3 Steepness of the slope depends on the acceleration/deceleration time settings such as Pr. 7

NOTE
－Motor coasts when the command value drops to Pr． 522 or lower while the start signal is ON．If the command value exceeds Pr． $522+2 \mathrm{~Hz}$ again while coasting，the motor starts running at Pr． 13 Starting frequency（ 0.01 Hz under PM sensorless vector control）．When the motor re－accelerates after coasting，the inverter may trip in some parameter settings．（Activation of the restart function is recommended especially for an PM motor．）
－The output stop frequency function is disabled during PID control，JOG operation，power failure stop，traverse function operation，offline auto tuning，orientation control，position control，torque control，or stop－on contact control．
－Output stop function does not operate during reverse rotation deceleration．However，when the frequency setting signal and output frequency falls to Pr． 522 or lower，the inverter coasts to a stop．
－During the output stop due to the output stop function（when forward／reverse command is given，but frequency command is not given），FWD／REV LED indication on the operation panel flickers fast．

## $\triangle$ CAUTION

－A PM motor is a motor with interior permanent magnets．High voltage is generated at motor terminals while the motor is running．Do not touch motor terminals and other parts until the motor stops to prevent an electric shock

## 《｜Parameters referred to 》》

Pr． 10 DC injection brake operation frequency，Pr． 11 DC injection brake operation time，Pr． 12 DC injection brake operation voltage page 707
Pr． 13 Starting frequency $\longmapsto$ page 337，page 338

### 5.16.9 Start signal operation selection / stop selection

Select the stopping method (deceleration to stop or casting) at turn-OFF of the start signal.
Use this function to stop a motor with a mechanical brake at turn-OFF of the start signal.
Selection of start signal (STF/STR) operation can also be selected.

Pr.	Name	Initial value	Setting range	Description	
				Start signal (STF/STR)	Stop operation
$\begin{aligned} & 250 \\ & \text { G106 } \end{aligned}$	Stop selection	9999	0 to 100 s	STF signal: Forward rotation start STR signal: Reverse rotation start	It will coast to stop after set time when the start signal is turned OFF.
			$\begin{aligned} & 1000 \mathrm{~s} \text { to } \\ & 1100 \mathrm{~s}^{* 1} \end{aligned}$	STF signal: Start signal STR signal: Forward/reverse rotation signal	It will coast to stop after (Pr.250-1000) s when the start signal is turned OFF.
			9999	STF signal: Forward rotation start STR signal: Reverse rotation start	It will perform deceleration stop when the start signal is
			8888*1	STF signal: Start signal   STR signal: Forward/reverse rotation signal	turned OFF.

*1 This setting value is valid only in External operation mode.

## Stop selection

## ■ Make the motor perform deceleration stop

- Set Pr. 250 = "9999 (initial value) or 8888".
- It will perform deceleration stop when the start signal (STF/STR) is turned OFF.



## ■ Make the motor perform coast to stop

- Set the time from the time the start signal is turned OFF to when the output is shutoff in Pr.250. When set to "1000 to 1100", output is shutoff after (Pr. 250-1000) s.
- The output is shutoff after the set time of Pr. 250 has elapsed after the start signal is turned OFF. The motor will coast to stop.
- The RUN signal will be turned OFF at the time of output stop.



## NOTE

- Stop selection is disabled when following functions are operating.

Position control
Power failure stop function (Pr.261)
PU stop (Pr.75)
Deceleration stop due to fault initiation (Pr.875)
Deceleration stop due to communication error (Pr.502)
Offline auto tuning (with motor rotation)

- When Pr. 250 = "9999 or 8888 ", acceleration/deceleration is performed in accordance to the frequency command until the output is shutoff by turning OFF the start signal.
- When the restart signal is turned ON during the motor coasting, the operation is resumed from Pr. 13 Starting frequency.
- Even with the setting of coasting to stop, when the LX signal is turned ON, the motor does not coast but zero speed control or servo lock is applied.


## - Start signal operation selection

## ■ 2-wire type (STF, STR signal)

- The following figure shows the connection in 2-wire type.
- As an initial setting, forward/reverse rotation signals (STF/STR) acts as both start and stop signals. Either one turned ON will be enabled, and the operation will follow that signal. The motor will perform a deceleration stop when both are turned OFF (or both are turned ON) during the operation.
- There are methods such as inputting 0 to 10 VDC between the speed setting input terminals 2 and 5, or Pr. 4 to Pr. 6 multispeed setting (fast, medium, slow) for the frequency setting signal. (For multi-speed operation, refer to page 372.)
- By setting Pr. $250=$ "1000 to 1100, 8888", STF signal becomes start command and STF signal becomes forward/reverse command.






## NOTE

- By setting Pr. $250=$ " 0 to 100,1000 to 1100 ", it will perform coast to stop when the start command is turned OFF.
- The STF and STR signals are assigned to the terminals STF and STR in the initial status. STF signal can be assigned to a terminal by Pr. 178 STF terminal function selection, and STR signal can be assigned to a terminal by Pr. 179 STR terminal function selection.


## 3－wire type（STF，STR，STP（STOP）signal）

－The following figure shows the connection in 3－wire type．
－Start self－holding function is enabled when the STP（STOP）signal is turned ON．In such case，forward／reverse signal will only operate as start signal．
－Even if start signal（STF or STR）is turned ON and then OFF，the start signal will be maintained and it will start．To change the rotation direction，turn STR（STF）ON once and then OFF．
－The inverter will perform deceleration stop by turning the STP（STOP）signal OFF once．


## NOTE

－The STP（STOP）signal is assigned to the terminal STP（STOP）by the initial setting．Set＂ 25 ＂in any of Pr． 178 to Pr． 189 to assign the STP（STOP）signal to another terminal．
－When the JOG operation is enabled by turning ON the JOG signal，STOP signal will be disabled．
－Even when the output is stopped by turning ON the MRS signal，self－holding function is not canceled．

## Start signal selection

STF	STR	Pr．250 setting and inverter condition	
		$\mathbf{0}$ to $\mathbf{1 0 0} \mathbf{s}, \mathbf{9 9 9 9}$	$\mathbf{1 0 0 0} \mathbf{s}$ to $\mathbf{1 1 0 0} \mathbf{s}, \mathbf{8 8 8 8}$
OFF	OFF	Stop	Stop
OFF	ON	Reverse rotation	
ON	OFF	Forward rotation	Forward rotation
ON	ON	Stop	Reverse rotation

《 Parameters referred to 》》
Pr． 4 to Pr． 6 （Multi－speed setting）page 372
Pr． 7 Acceleration time，Pr． 8 Deceleration time page 320
Pr． 13 Starting frequency $\longmapsto$ page 337，page 338
Pr． 75 Reset selection／disconnected PU detection／PU stop selection page 291
Pr． 178 to Pr． 189 （Input terminal function selection）W page 498
Pr． 261 Power failure stop selection page 629
Pr． 502 Stop mode selection at communication error page 650
Pr． 875 Fault definition page 385

### 5.16.10 Regenerative brake selection and DC feeding mode

- When performing frequent start and stop operation, usage rate of the regenerative brake can be increased by using the brake resistor or the brake unit.
- It is possible to choose between the DC feeding mode 1, which will operate with DC power supply (terminals $P$ and $N$ ), and DC feeding mode 2 , which will normally operate in AC power supply (terminals $R, S$, and $T$ ) and operate in DC power supply (terminal $P$ and $N$ ), such as batteries, at the time of power failure.
- While the power is supplied only to the control circuit, the reset operation when the power is supplied to the main circuit can be selected.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 30 \\ & \text { E300 } \end{aligned}$	Regenerative function selection	$\begin{aligned} & 0^{* 1} \\ & 10^{* 2} \end{aligned}$	$\begin{aligned} & \hline 0 \text { to } 2,10,11,20, \\ & 21,100 \text { to } 102, \\ & 110,111,120, \\ & 121^{* 1} \\ & \hline 2,10,11,102, \\ & 110,111^{* 2} \end{aligned}$	Set the applied regeneration unit, the terminal used for power supply, and whether to reset the inverter when the power is supplied to the main circuit.
$\begin{aligned} & 70 \\ & \mathbf{G 1 0 7}{ }^{* 3} \end{aligned}$	Special regenerative brake duty	0\%	0 to 100\%	Set the \%ED of the built-in brake transistor operation.
$\begin{aligned} & 599 \\ & \mathrm{~T} 721 \end{aligned}$	X10 terminal input selection	$0{ }^{* 1}$	0	Normally open input
		$1^{* 2}$	1	Normally closed input (NC contact input specification)

[^35]
## - Details of the setting value

- FR-A860-01080 or lower

Regeneration unit	Power supply terminals of inverter	$\begin{aligned} & \text { Pr. } 30 \\ & \text { Setting }{ }^{*} \end{aligned}$	$\text { Pr. } 70$   Setting	Remarks
Provided brake resistor *3, Brake unit	R, S, T	0 (initial value), 100	-	The regenerative brake duty will be as follows.   - FR-A860-00090 or lower: 2\%   - Other than above: 0\%
	P, N	10, 110		
	R, S, T/P, N	20, 120		
Brake resistor other than the provided brake resistor	R, S, T	1,101	$\begin{aligned} & 10 \%{ }^{* 1} \\ & 6 \%{ }^{* 2} \end{aligned}$	-
	P, N	11, 111		
	R, S, T/P, N	21, 121		
For manufacturer's. Do not set.	-	2, 102	-	-

- FR-A860-01440 or higher

Regeneration unit	Power supply terminals of inverter	Pr. 30 Setting ${ }^{*} 4$	Pr. 70 Setting
Without regenerative function	R, S, T	0 (initial value), 100	-
	P, N	10, 110	
	R, S, T/P, N	20, 120	
For manufacturer's. Do not set.	-	$\begin{aligned} & 1,2,11,21,101,102, \\ & 111,121 \end{aligned}$	0\% (initial value)

- FR-A862-05450 or higher

Regeneration unit	Pr. 30 Setting $^{*}{ }^{4}$
Without regenerative function (FR-CC2)	10 (initial value), 110
For manufacturer's. Do not set.	$2,11,102,111$

*1 For the FR-A860-00170 or lower.
*2 For the FR-A860-00320 or higher.
*3 For the FR-A860-00090 or lower.
*4 While the power is supplied only to the control circuit with Pr. $30=$ "100 or higher", the inverter reset is not performed when the power is supplied to the main circuit.

## - When using the provided brake resistor, or the brake unit (FR-A86001080 or lower)

- When using the provided brake resistor or the brake unit, set Pr. $30=$ " 0 (initial value), 10, 20, 100, 110, 120". Setting of Pr. 70 will become disabled. At this time, the regenerative brake duty is as follows.

Inverter	Regenerative brake duty
FR-A860-00090 or lower	$2 \%$
Other than above	$0 \%$

## NOTE

- The brake resistor is provided with the FR-A860-00090 or lower.
- When using the brake resistor other than the provided brake resistor (FR-A860-01080 or lower)
- Set Pr. 30 = "1, 11, 21".
- Set Pr. 70 as follows.

Inverter	Pr. 70 setting
FR-A860-00170 or lower	$10 \%$
FR-A860-00320 or higher	$6 \%$

## When using the converter unit (FR-CC2) (separated converter type)

- When using FR-CC2, set Pr.30="10" (initial value of separated converter type).
- Assign the following signal to a contact input terminal using any of Pr. 178 to Pr. 189 (Input terminal function selection).
(a) Inverter run enable signal (X10): FR-CC2 connection

To have coordinated protection with FR-CC2, shutoff the inverter output by the X10 signal. Input the RDA signal of FR-CC2.
(b) FR-CC2 connection, instantaneous power failure detection signal (X11): FR-CC2 connection During the operation using RS-485 communication, with the remote output and analog remote output functions enabled, the X11 signal is used to store the status when the inverter is set to store the status before an instantaneous power failure. Input the IPF signal (instantaneous power failure detection signal) of the FR-CC2.

- For the terminal to be used for the X10 and X11 signal, set "10" (X10), "11" (X11) in Pr. 178 to Pr. 189 and assign the function. (For separated converter types, the X10 signal is assigned to the terminal MRS in the initial setting.)


## - Logic reversing of inverter run enable signal (X10 signal, Pr.599) (separated converter type)

- Use Pr. 599 X10 terminal input selection to select the X10 signal input specification between normally open (NO contact) and normally closed (NC contact). With the normally closed (NC contact) input specification, the inverter output is shut off by turning OFF (opening) the X10 signal.
- Changing the inverter logic (NO/NC contact) with the Pr. 599 setting is required according to the logic of the inverter operation enable signal sent from the option unit.
- The response time of the M10 signal is within 2 ms .

- Relationship between Pr. 599 and the inverter operation enable signal of each option unit

Pr.599 setting	Corresponding signals of   the FR-CC2	Operation according to the X10   signal status
0	RDB	X10-ON: Inverter output shutoff   (NO contact)
1   (Initial value)	RDA	X10-OFF: Inverter output shutoff   (NC contact)

## NOTE

- If the X 10 signal is unassigned, the MRS signal can be used as the X 10 signal. At this time, logic setting for the signal will follow Pr. 17 MRS input selection.
- The X10 signal is valid when Pr. $30=" 10,11,110$, or $111 "$.
- MRS signal is enabled from any of the communication or external input, but when using the MRS signal as Inverter run enable signal (X10), it can be used as input from external.
- When the terminal assignment is changed with Pr. 178 to Pr. 189 (Input terminal function selection), wiring may be mistaken due to different terminal name and signal contents, or may affect other functions. Set parameters after confirming the function of each terminal.


## - Regenerative brake usage rate alarm output and alarm signal (RBP signal) (Standard models)

- When the usage rate of regenerative brake reaches $85 \%$ of the Pr. 70 setting, [RB] is displayed on the operation panel and alarm signal (RBP) is output. When it reaches $100 \%$ of the Pr. 70 setting, it will become regenerative overvoltage (E.OV[]).
- The inverter will not shutoff output with the alarm signal.
- For the terminal to be used for the RBP signal output, set "7 (positive logic) or 107 (negative logic)" to one of Pr. 190 to Pr. 196 (Output terminal function selection), and assign the function.
$100 \%$ : Regeneration overvoltage protection operation value



## NOTE

- When Pr. $30=$ " 0 (initial value), 10 or 20 " for FR-A860-00320 or higher, the RB display is disabled.
- When the terminal assignment is changed with Pr. 190 to Pr. 196 (Output terminal function selection), wiring may be mistaken due to different terminal name and signal contents, or may affect other functions. Set parameters after confirming the function of each terminal.


## - Reset when the power is supplied to the main circuit (Pr. $30=0100,101$,

 $110,111,120$ or $121^{\prime \prime}$ )- While the power is supplied only to the control circuit (R1/L11, S1/L12 input or 24 V external power supply) with Pr. $30=$ "100 or higher", the inverter reset is not performed when the power is supplied (R/L1, S/L2, T/L3 input) to the main circuit.
- When a communication option, etc. is used, communication interruption due to the inverter reset can be avoided.


## NOTE

- When the power is supplied to the main circuit while the inverter protective function is activated, the inverter reset is performed even if it the setting is "No reset" at power ON.


## DC feeding mode 1 (Pr. 30 = "10, 11") (Standard models)

- For standard models, setting Pr.30="10 or 11" allows operation with a DC power supply.
- Do not connect anything to the AC power supply connecting terminals R/L1, S/L2, and T/L3, and connect the DC power supply to the terminals $P /+$ and $N /$-. Also, remove the jumpers between terminal R/L1 and R1/L11 and between S/L2 and S1/L21, and connect the terminals R1/L11 and S1/L21 to the terminals P/+ and N/- respectively.
- Following is a connection example.



## CAUTION

- Do not connect a separated converter type inverter to a DC power supply. Doing so may damage the inverter.


## - DC feeding mode 2 (Pr. $30=$ "20 or 21") (Standard models)

- When Pr. 30 = "20, 21 ", it will normally operate with AC power supply and operate with DC power supply such as batteries at the time of power failure.
- Connect the AC power supply to the AC power supply connecting terminals R/L1, S/L2, and T/L3, and connect the DC power supply to the terminals P/+ and N/-. Also, remove the jumpers between terminal R/L1 and R1/L11 and between S/ L2 and S1/L21, and connect the terminals R1/L11 and S1/L21 to the terminals P/+ and N/- respectively.
- Operation with DC current is possible by turning ON the DC feeding operation permission signal (X70). For details on I/O signal, refer to following table.

Signal name		Name	Description	Parameter
Input	X70	DC feeding operation permission signal	To operate with DC feeding, turn ON the X70 signal. When the inverter output is shutoff due to power failure, it will be possible to start up 200 ms after turning ON the X 70 signal. (Automatic restart after instantaneous power failure can start after the time set in Pr. 57 has elapsed.)   When the X 70 signal is turned OFF while operating the inverter, output shutoff (Pr. $261=$ 0 ) or deceleration stop ( $\operatorname{Pr} .261 \neq 0$ ) will occur.	Set "70" to either of Pr. 178 to Pr. 189.
	X71	DC feeding cancel signal	Turn ON when stopping the DC feeding. When the X71 signal is turned ON during the operation of the inverter and X70 signal is ON, output shutoff (Pr. $261=0$ ) or deceleration stop (Pr. $261 \neq 0$ ) will occur, and Y85 signal will turn OFF after stopping. After turning ON the X 71 signal, operation is not possible even if the X 70 signal is turned ON .	Set "71" to either of Pr. 178 to Pr. 189.
Output	Y85	DC feeding signal	This will turn ON during power failure or undervoltage of the AC power supply. It will turn OFF when the X71 signal turns ON or power restoration.   The Y85 signal will not turn OFF even with the power restoration while the inverter is running, but turns OFF after stopping the inverter. When the Y85 signal is turned ON due to undervoltage, the Y85 signal will not turn OFF even when the undervoltage is resolved. The ON/OFF status is maintained when the inverter is reset.	Set "85 (positive logic) or 185 (negative logic)" to one of Pr. 190 to Pr. 196.

- Following is the connection diagram of switching to DC power supply using the power failure detection of the inverter.

*1 Assign the function by setting Pr. 178 to Pr. 189 (Input terminal function selection).
*2 Assign the function by setting Pr. 190 to Pr. 196 (Output terminal function selection).
- Operation example at the time of power failure occurrence 1

- Operation example at the time of power failure occurrence 2 (when the AC power supply is restored)

- Operation example at the time of power failure occurrence 3 (when continuing the operation)

- Power supply specification for DC feeding (Standard models)

Rated input DC voltage	742 VDC to 848 VDC
Permissible fluctuation	667 VDC to 933 VDC

## NOTE

- The voltage between P and N will temporarily increase to 1057 V or higher during the regenerative driving, so take caution on the selection of the DC power supply.
- When an AC power supply is connected to the R/L1, S/L2, and T/L3 terminals during the DC feeding with Pr. $30=10,11$ " (DC feeding), an option fault (E.OPT) will occur.
- When the input voltage is insufficient during inverter operation with Pr. $30=10,11,20$, or 21 " (DC feeding), the inverter output will be shut off. (The undervoltage protection function (E.UVT) is not activated.)
- When set to Pr. $30=10,11,20,21 "(D C$ feeding) and operated by $D C$ feeding, detection of instantaneous power failure (E.IPF) is not performed.
- When DC power is switched on, a larger inrush current flows than in AC power. The number of power-on times should be minimized.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) or Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.


## © WARNING

- The value set in Pr. 70 must not exceed the setting of the brake resistor used. It may cause overheating.

《|Parameters referred to ${ }^{\text {| }}$ 》
Pr. 17 MRS input selection page 501
Pr. 57 Restart coasting time page 618
Pr. 178 to Pr. 189 (Input terminal function selection) $\longmapsto$ page 498
Pr. 190 to Pr. 196 (Output terminal function selection) page 446
Pr. 261 Power failure stop selection $\$$ page 629

### 5.16.11 Regeneration avoidance function

The regenerative status can be avoided by detecting the regenerative status and raising the frequency.

- Continuous operation is possible by increasing the frequency automatically so it will not go into regenerative operation even when the fan is turned forcefully by other fans in the same duct.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 882 \\ & \text { G120 } \end{aligned}$	Regeneration avoidance operation selection	0	0	Disables regeneration avoidance function
			1	Constantly enables regeneration avoidance function
			2	Enables regeneration avoidance function only during constant-speed operation
$\begin{aligned} & 883 \\ & \text { G121 } \end{aligned}$	Regeneration avoidance operation level	940 VDC	300 to 1200 V	Set the bus voltage level to operate the regeneration avoidance operation. When the bus voltage level is set low, it will be harder to generate overvoltage error, but actual deceleration time will be longer.   Set the setting value higher than power supply voltage $\times \sqrt{2}$.
$\begin{aligned} & 884 \\ & \text { G122 } \end{aligned}$	Regeneration avoidance at deceleration detection sensitivity	0	0	Disables regeneration avoidance due to bus voltage change rate
			1 to 5	Set the sensitivity to detect the bus voltage change rate Setting value 1 (detection sensitivity: low) to 5 (detection sensitivity: high)
$\begin{aligned} & 885 \\ & \text { G123 } \end{aligned}$	Regeneration avoidance compensation frequency limit value	6 Hz	0 to 590 Hz	Set the limit value for frequency to rise when the regeneration avoidance function operates.
			9999	Disables frequency limit
$\begin{aligned} & 886 \\ & \text { G124 } \end{aligned}$	Regeneration avoidance voltage gain	100\%	0 to 200\%	Adjust the response at the time of regeneration avoidance operation. When the setting value is set larger, response against the bus voltage change will improve, but the output
$\begin{aligned} & 665 \\ & \text { G125 } \end{aligned}$	Regeneration avoidance frequency gain	100\%	0 to 200\%	frequency may become unstable.   When the vibration cannot be stabilized even if the setting value of Pr. 886 is made smaller, set the setting value of Pr. 665 smaller.

## What is regeneration avoidance operation? (Pr.882, Pr.883)

- When the regenerative status is large, DC bus voltage will rise, which may cause overvoltage alarm (E.OV[]). Regenerative status can be avoided by detecting this rise of bus voltage, and raising the frequency when the bus voltage level exceeds


## Pr. 883 Regeneration avoidance operation level.

- The regeneration avoidance operation can be selected to operate constantly or operate only during constant speed.
- The regeneration avoidance function is enabled by setting to Pr. 882 Regeneration avoidance operation selection = "1, 2".

- The slope of frequency rising or lowering by the regeneration avoidance operation will change depending on the regenerative status.
- The DC bus voltage of the inverter will be approximately $\sqrt{2}$ times of the normal input voltage. The bus voltage will be approximately 813 VDC in case of input voltage of 575 VAC. However, it may vary depending on the input power supply waveform.
- Make sure that the setting value of Pr. 883 will not get under DC bus voltage level. The frequency will rise with operation of the regeneration avoidance function even at the time of no regenerative status.
- The stall prevention (overvoltage) (oL) will only operate during deceleration, stopping the lowering of output frequency, but on the other hand, the regeneration avoidance function will constantly operate (Pr. $882=11 "$ ) or operate only at constant speed ( $\operatorname{Pr} .882=" 2 "$ ), and raise the frequency depending on the amount of regeneration.
- When the motor becomes unstable due to operation of the stall prevention (overcurrent) (OL) during the regeneration avoidance operation, increase the deceleration time or lower the setting of Pr. 883.
- Under position control, the regeneration avoidance function is not activated.


## - To detect the regenerative status during deceleration faster (Pr.884)

- Since a rapid change in bus voltage cannot be handled by bus voltage level detection during the regeneration avoidance operation, deceleration is stopped by detecting the change in bus voltage and if it is equal or lower than Pr. 883 Regeneration avoidance operation level. Set the detectable bus voltage change rate as the detection sensitivity in Pr. 884 Regeneration avoidance at deceleration detection sensitivity. A larger set value increases the detection sensitivity.


## NOTE

- When the setting value is too small (detection sensitivity is not good), detection will not be possible, and regeneration avoidance will operate even with the bus voltage change caused by a change in the input power.


## Limit regeneration avoidance operation frequency (Pr.885)

- It is possible to assign a limit to the output frequency corrected (rise) by the regeneration avoidance operation.
- Limit of the frequency is output frequency (frequency before regeneration avoidance operation) + Pr. 885 Regeneration avoidance compensation frequency limit value for during acceleration and constant speed. During deceleration, when the frequency increases due to the regeneration avoidance operation and exceeds the limit value, the limit value will be retained until the output frequency is reduced to be the half the Pr. 885 setting.
- When the frequency that have increased by the regeneration avoidance operation exceeds Pr. 1 Maximum frequency, it will be limited to the maximum frequency.
- By setting to Pr. 885 = "9999", regeneration avoidance operation frequency limitation is disabled.
- Set using the motor rated slip frequency as a guideline. Raise the setting value if the overvoltage protection function (E.OV[]) operation at the start of deceleration.

Rated motor slip frequency $=\frac{\text { Synchronized speed at the time of base frequency }- \text { rated rotation speed }}{\text { Synchronized speed at the time of base frequency }} \times$ Rated motor frequency


## - Adjustment of regeneration avoidance operation (Pr.665, Pr.886)

- When the frequency becomes unstable at the time of regeneration avoidance operation, set the setting value for Pr. 886 Regeneration avoidance voltage gain smaller. On the other hand, if an overvoltage fault occurs due to a sudden regeneration, increase the setting.
- When the vibration cannot be stabilized even if the setting value of Pr. 886 is made smaller, set the setting value of Pr. 665 Regeneration avoidance frequency gain smaller.


## NOTE

- During the regeneration avoidance operation, the stall prevention (overvoltage) (oL) is displayed and the overload alarm (OL) signal is output. The operation when the OL signal is output can be set with Pr. 156 Stall prevention operation selection. The OL signal output timing can be set with Pr. 157 OL signal output timer.
- The stall prevention is enabled even at the time of regeneration avoidance operation.
- The regeneration avoidance function cannot decrease the actual deceleration time for the motor to stop. The actual deceleration time is determined by the regenerative power consumption performance, so to decrease the deceleration time, consider using a regeneration unit (brake unit) or a brake resistor.
- When using a regeneration unit (brake unit) or a brake resistor to consume the regenerative power, set to Pr. 882 = " 0 (initial value)" (disables regeneration avoidance function). When consuming the regenerative power at the time of deceleration with the regeneration unit, etc., set to Pr. $882=$ " 2 " (enables regeneration avoidance function only at the time of constant speed).
- When using the vector control and the regeneration avoidance function together, there may be a sound from the motor at the time of deceleration. In such case, adjust the gain by performing easy gain tuning, etc. (Refer to page 201.)

```
<Parameters referred to \>
Pr. }1\mathrm{ Maximum frequency page }39
Pr. }8\mathrm{ Deceleration time page }32
Pr. }22\mathrm{ Stall prevention operation level ञ page 403
```


### 5.16.12 Increased magnetic excitation deceleration

## V/F Magneticiflux Sensorless Vector

Increase the loss in the motor by increasing the magnetic flux at the time of deceleration. Deceleration time can be reduced by suppressing the stall prevention (overvoltage) (oL).
It will make possible to reduce the deceleration time without a brake resistor. (Usage can be reduced if a brake resistor is used)

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 660 \\ & \text { G130 } \end{aligned}$	Increased magnetic excitation deceleration operation selection	0	0	Without increased magnetic excitation deceleration
			1	With increased magnetic excitation deceleration
$\begin{aligned} & 661 \\ & \text { G131 } \end{aligned}$	Magnetic excitation increase rate	9999	0 to 40\%	Set the increase of excitation.
			9999	Magnetic excitation increase rate 10\% under V/F control and Advanced magnetic flux vector control
				Magnetic excitation increase rate 0\% under Real sensorless vector control and vector control
$\begin{aligned} & 662 \\ & \text { G132 } \end{aligned}$	Increased magnetic excitation current level	100\%	0 to 300\%	The increased magnetic excitation rate is automatically lowered when the output current exceeds the setting value at the time of increased magnetic excitation deceleration.

## - Setting of increased magnetic excitation rate (Pr.660, Pr.661)

- To enable the increased magnetic excitation deceleration, set Pr. 660 Increased magnetic excitation deceleration operation selection = "1".
- Set the amount of excitation increase in Pr. 661 Magnetic excitation increase rate.
- Increased magnetic excitation deceleration will be disabled when Pr. $661=$ " 0 ". When " 8888 or 9999 " is not set in Pr. 19 under V/F control, increased magnetic excitation deceleration will be enabled even when Pr. 661 = "0".
- When the DC bus voltage exceeds the increased magnetic excitation deceleration operation level during the deceleration, excitation is increased in accordance with the setting value in Pr.661.
- The increased magnetic excitation deceleration will continue even if the DC bus voltage goes under the increased magnetic excitation deceleration operation level ( 850 V ) during increased magnetic excitation deceleration.
- When the stall prevention (overvoltage) occurs during the increased magnetic excitation deceleration operation, increase the deceleration time or raise the setting value of Pr.661. When the stall prevention (overcurrent) occurs, increase the deceleration time or lower the setting value of Pr.661.
- Increased magnetic excitation deceleration is enabled with V/F control, Advanced magnetic flux vector control, Real sensorless vector control (speed control), and vector control (speed control).


## NOTE

- The increased magnetic excitation deceleration will be disabled in the following conditions:

During PM sensorless vector control, power failure stop, orientation control, energy saving operation, Optimum excitation control, and stop-on-contact control.

## - Overcurrent prevention function (Pr.662)

- The overcurrent prevention function is valid under V/F control and Advanced magnetic flux vector control.
- Increased magnetic excitation rate is lowered automatically when the output current exceeds Pr. 662 at the time of increased magnetic excitation deceleration.
- When the inverter protective function (E.OC[], E.THT) operates due to increased magnetic excitation deceleration, adjust with Pr. 662.
- Overcurrent preventive function will be disabled when Pr.662= " 0 ".


## NOTE

- When set to Pr. 662 > Pr. 22 Stall prevention operation level, overcurrent preventive function will operate at the setting value of Pr.22. (Operates at Pr. 622 when Pr. $22=$ "0")


## 《Parameters referred to \》

Pr. 19 Base frequency voltage page 699
Pr. 22 Stall prevention operation level page 403
Pr. 30 Regenerative function selection page 718
Pr. 60 Energy saving control selection page 704
Pr. 162 Automatic restart after instantaneous power failure selection page 618
Pr. 270 Stop-on contact/load torque high-speed frequency control selection page 559
Pr. 261 Power failure stop selection page 629
Pr. 350 Stop position command selection $\longmapsto$ page 570

### 5.16.13 Slip compensation

## V/F

Slip of the motor is estimated from the inverter output current at the time of V/F control, and maintain the rotation of the motor constant.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 245 \\ & \text { G203 } \end{aligned}$	Rated slip	9999	0.01 to 50\%	Set the rated motor slip.
			0, 9999	Without slip compensation
$\begin{aligned} & 246 \\ & \text { G204 } \end{aligned}$	Slip compensation time constant	0.5s	0.01 to 10s	Set the response time of the slip compensation. Response will become faster when the value is lowered, but the regenerative overvoltage (E.OV[]) error will occur more frequently when the load inertia is larger.
$\begin{aligned} & 247 \\ & \text { G205 } \end{aligned}$	Constant-power range slip compensation selection	9999	0	Do not perform slip compensation at constant output range (frequency range higher than the frequency set in Pr.3).
			9999	Perform the slip compensation of the constant output range.

- Slip compensation will become enabled by calculating the rated motor slip, and setting to Pr.245. Slip compensation is not performed when Pr. $245=$ "0, 9999".

$$
\text { Rated slip }=\frac{\text { Synchronized speed at the time of base frequency - rated rotation speed }}{\text { Synchronized speed at the time of base frequency }} \times 100[\%]
$$

## NOTE

- When the slip compensation is performed, the output frequency may become larger than the set frequency. Set Pr. 1 Maximum frequency higher than the set frequency
- Slip compensation will be disabled in following cases. At the times of stall preventive (oL, OL) operation, regeneration avoidance operation, auto tuning, encoder feedback control operation

```
Parameters referred to \>
Pr. }1\mathrm{ Maximum frequency page 399
Pr. }3\mathrm{ Base frequency page }69
```


### 5.16.14 Encoder feedback control

## V/F Magneticflux

By detecting the rotation speed of the motor with the speed detector (encoder) and feeding it back to the inverter, output frequency of the inverter is controlled to keep the speed of the motor constant even for the load change.
Vector control compatible option is required.

Pr.		Name	Initial value	Setting range	Desc	ption	
$\begin{aligned} & 144 \\ & \text { M002 } \end{aligned}$		Speed setting switchover	4	$\begin{aligned} & 0,2,4,6,8,10 \\ & 12,102,104 \\ & 106,108,110 \\ & 112 \end{aligned}$	Set the number of motor pol control and the encoder feed	sor the operation by V/F control.	
$\begin{aligned} & 285 \\ & \text { H416 } \end{aligned}$		Overspeed detection frequency ${ }^{* 1}$	9999	0 to 30 Hz	When the difference between the detected frequency and the output frequency exceeds the set value at the time of encoder feedback control, an inverter fault (E.MB1) is generated.		
		9999		Overspeed detection disabled.			
359   C141   *2*3	$\begin{array}{\|l\|} \hline 852 \\ \text { C241 } \\ { }^{*} 4 \\ \hline \end{array}$		Encoder rotation direction	1	0	Set when using a motor for which forward rotation (encoder) is clockwise (CW) viewed from the shaft	Set for the operation at 120 Hz or less.
		100			Set for the operation at a frequency higher than 120 Hz .		
		1			Set when using a motor for which forward rotation (encoder) is counterclockwise (CCW) viewed from the shaft	Set for the operation at 120 Hz or less.	
		101				Set for the operation at a frequency higher than 120 Hz .	
$\begin{aligned} & \mathbf{3 6 7} \\ & \mathbf{G 2 4 0} \text { *2 } \end{aligned}$		Speed feedback range	9999	0 to 590 Hz	Set the range of speed feedback control.		
		9999		Disables encoder feedback control			
$\begin{aligned} & \text { 368 } \\ & \mathbf{G 2 4 1} \text { *2 } \end{aligned}$			Feedback gain	1	0 to 100	Set when the rotation is unstable or response is slow.	
$\begin{aligned} & 369 \\ & \text { C140 } \\ & { }^{2}{ }^{*} 3 \end{aligned}$	851   C240   *4	Number of encoder pulses	1024	0 to 4096	Set the number of encoder pulses output. Set the number of pulses before it is multiplied by 4.		

*1 The speed deviation excess detection frequency is used when vector control compatible option is mounted and vector control is performed. (For the details, refer to page 218.)
*2 These parameters are available when vector control compatible option is installed.
*3 The parameter number is the one for use a Vector control compatible option. (Pr. 369 is applicable for the FR-A8AP and FR-A8AL.)
*4 The parameter number is the one for use with the control terminal option (FR-A8TP).

## - Setting before operation (Pr.144, Pr.359, Pr.369)

- When driving with V/F control and the encoder feedback control, set the number of motor poles in Pr. 144 Speed setting switchover in accordance with the applied motor. During Advanced magnetic flux vector, the Pr. 81 Number of motor poles setting is used, so the Pr. 144 setting does not need to be changed.
- Using Pr. 359 Encoder rotation direction and Pr. 369 Number of encoder pulses, set the rotation direction and the number of pulses for the encoder.


## NOTE

- When the inverter is operated with Pr. $144=$ " $0,10,12,110,112$ ", it will cause E. 1 to E. 3.
- When set to Pr. 144 = "102, 104, 106, 108", number with 100 subtracted will be set as the number of poles.
- When Pr. 81 is set, setting value for Pr. 144 will be automatically changed, but even if Pr. 144 is changed, Pr. 81 will not automatically change.
- Control with correct speed is not possible if the number of poles for the applied motor is incorrect. Make sure to confirm before operation.
- Encoder feedback control is not possible when the rotation direction setting of the encoder is incorrect. (Operation of the inverter is possible.) Confirm with the rotation direction indicator on the parameter unit.


## －Selection of encoder feedback control（Pr．367）

－When a value other than＂9999＂is set in Pr． 367 Speed feedback range，encoder feedback control is valid．Using the set point（frequency at which stable speed operation is performed）as reference，set the higher and lower setting range． Normally，set the frequency converted from the slip amount（r／min）of the rated motor speed（rated load）．If the setting is too large，response becomes slow．

－For example，when the rated speed of a motor（4 poles）is $1740 \mathrm{r} / \mathrm{min}$ at 60 Hz ，

```
Slip Nsp = Synchronous speed - Rated speed
 = 1800-1740
 = 60(r/min)
Frequency equivalent to slip（fsp）\(=\mathrm{Nsp} \times\) Number of poles／120 \(=60 \times 4 / 120\)
\[
=2(\mathrm{~Hz})
\]
```


## －Feedback gain（Pr．368）

－Set Pr． 368 Feedback gain when the rotation is unstable or response is slow．
－Response of the feedback will become slow when the acceleration／deceleration time is long．In such case，increase the setting value of Pr． 368.

Pr． 368 setting	Description
Pr． $368>1$	Response will become faster but it may cause overcurrent or become unstable．
$1>$ Pr． 368	Response will become slower but it will become more stable．

## －Overspeed detection（Pr．285）

－To prevent malfunction when the correct pulse signal cannot be detected from the encoder，when ［detection frequency］－［output frequency］$\geq$ Pr． 285
at the time of encoder feedback control，protective function（E．MB1）will activate and the inverter will shutoff output．
－Overspeed detection is not performed when Pr． 285 ＝＂9999＂．

## NOTE

－Couple the encoder on the same axis as the motor axis without any mechanical clatter，with speed ratio of 1：1．
－Encoder feedback control is not performed during the acceleration and deceleration to prevent the unstable phenomenon such as hunting．
－Encoder feedback control is performed after the output frequency has reached［set frequency］$\pm$［speed feedback range］ once．
－When following status occurs at the time of encoder feedback control operation，inverter will not stop with an alarm，and operate with output frequency of［set frequency］$\pm$［speed feedback range］，and will not follow the speed of the motor．
When the pulse signal from the encoder is lost due to a break，etc．
When correct pulse signal cannot be detected due to induction noise，etc．
When the motor is forcefully accelerated（regenerative rotation）or decelerated（motor lock）due to large external force
－Use the Inverter running（RUN）signal when releasing the brake from the motor with a brake．（The brake may not be released when the Output frequency detection（FU）signal is used．）
－Do not turn OFF the external power supply for the encoder at the time of encoder feedback control．Correct encoder feedback control will not be possible．

## 《｜Parameters referred to 》》

Pr． 81 Number of motor poles page 166，page 508

### 5.16.15 Droop control

## Magneticfliux Sensorless Vector PM

This is a function to give droop characteristics to the speed by balancing the load in proportion with the load torque during the Advanced magnetic flux vector control, Real sensorless vector control, vector control, and PM sensorless vector control. This is effective when balancing the load when using multiple inverters.

Pr.	Name	Initial value	Setting range	Description	
$\begin{aligned} & 286 \\ & \text { G400 } \end{aligned}$	Droop gain	0\%	0	Normal operation	
			0.1\% to 100\%	Set the droop amount at the time of rated torque as \% value of the rated motor frequency.	
$\begin{aligned} & 287 \\ & \text { G401 } \end{aligned}$	Droop filter time constant	0.3 s	0 to 1 s	Set the filter time constant to apply to the current for torque.	
$\begin{aligned} & 288 \\ & \text { G402 } \end{aligned}$	Droop function activation selection	0	0	Without droop control during acceleration/deceleration (With 0 limit)	Rated motor frequency is the droop compensation reference
			1	Continuous droop control during operation (With 0 limit)	
			2	Continuous droop control during operation (Without 0 limit)	
			10	Without droop control during acceleration/deceleration (With 0 limit)	Motor speed is the droop compensation reference
			11	Continuous droop control during operation (With 0 limit)	
			20	No droop control during acceleration/deceleration (with 0 limit)	The Pr. 1121 setting is the droop compensation reference.
			21	Continuous droop control during operation (with 0 limit)	
			22	Continuous droop control during operation (without 0 limit)	
$\begin{aligned} & 994 \\ & \text { G403 } \end{aligned}$	Droop break point gain	9999	0.1 to 100\%	No droop control during acceleration/deceleration (with 0 limit)	The Pr. 1121 setting is the droop compensation reference.
			9999	No function	
$\begin{aligned} & 995 \\ & \text { G404 } \end{aligned}$	Droop break point torque	100\%	0.1 to 100\%	Set the torque when the droop amount is to be changed.	
679	Second droop gain	9999	0 to 100\%	Refer to Pr. 286	Set the second droop control.   The droop control is enabled when the RT signal is ON .
G420			9999	The first droop control setting is applied to the operation.	
$\begin{aligned} & 680 \\ & \text { G421 } \end{aligned}$	Second droop filter time constant	9999	0 to 1 s	Refer to Pr. 287	
			9999	The first droop control setting is applied to the operation.	
$\begin{aligned} & 681 \\ & \text { G422 } \end{aligned}$	Second droop function activation selection	9999	$\begin{aligned} & 0,1,2,10,11, \\ & 20,21,22 \end{aligned}$	Refer to Pr. 288	
			9999	The first droop control setting is applied to the operation.	
$\begin{aligned} & 682 \\ & \text { G423 } \end{aligned}$	Second droop break point gain	9999	0.1 to 100\%	Refer to Pr. 994	
			9999	The first droop control setting is applied to the operation.	
$\begin{aligned} & 683 \\ & \text { G424 } \end{aligned}$	Second droop break point torque	9999	0.1 to 100\%	Refer to Pr. 995	
			9999	The first droop control setting is applied to the operation.	

## - Droop control

- Droop control is enabled for Advanced magnetic flux vector control, Real sensorless vector control, vector control, and PM sensorless vector control.
- Output frequency will change depending on the size of the current for torque with the droop control. Set \% of the droop amount of rated torque with rated frequency (motor speed in case of Pr.288 = "10, 11") as a reference for the droop gain.
- Upper limit of the droop compensation frequency is smaller frequency between 400 Hz and Pr. 1 Maximum frequency.
- During PM sensorless vector control, the lowest frequency among 400 Hz , Pr.1, and maximum motor frequency becomes the upper limit droop compensation frequency.

- The droop compensation frequency is calculated as follows.

Droop compensation frequency $=\frac{\text { Current for torque after filtering }}{\text { Rated torque current }} \times \mathrm{K} \times \frac{\text { Droop compensation reference } \times \text { Droop gain }}{100}$
When the output frequency is equal to or lower than the rated frequency set in Pr.84: $\mathrm{K}=1$ When the output frequency is higher than the rated frequency set in Pr.84: K $=\frac{\text { Rated frequency (Pr.84) }}{\text { Output frequency }}$

## NOTE

- Setting of the droop gains should be approximately the rated slip of the motor.

$$
\text { Rated slip }=\frac{\text { Synchronized speed at the time of base frequency }- \text { rated rotation speed }}{\text { Synchronized speed at the time of base frequency }} \times 100[\%]
$$

- The speed loop integration can be disabled at the emergency stop using Pr. 1349 Emergency stop operation selection. (Refer to page 320.)


## - Limiting the frequency after the droop compensation (0 limit)

- By setting Pr. 288 at the time of Real sensorless vector control, vector control, or PM sensorless control, the negative frequency command when the frequency after droop compensation can be limited.

Pr. 288 setting	Operation	When the output frequency after droop compensation is negative	Droop compensation reference
0 (initial value)	No droop control during acceleration/deceleration	Limited at 0 Hz (limited at 0.5 Hz under Advanced magnetic flux vector control)	Rated motor frequency (Pr. 84 setting)
10*1			Motor speed
$20^{*}$			Per-unit speed control reference frequency (Pr. 1121 setting)
$1^{* 1}$	Continuous droop control during operation		Rated motor frequency (Pr. 84 setting)
$11^{* 1}$			Motor speed
$21^{* 1}$			Per-unit speed control reference frequency (Pr. 1121 setting)
2*1	Continuous droop control during operation	Not limited (but reversed) under Vector control or PM sensorless vector control Limited at 0 Hz under Real sensorless vector control	Rated motor frequency (Pr. 84 setting)
$22^{*}$			Per-unit speed control reference frequency (Pr. 1121 setting)

*1 During Advanced magnetic flux vector control, the action same as the "0" setting will be performed.

## - Droop control break point setting (Pr.994, Pr.995)

- By setting Pr. 994 and Pr.995, break point (1 point) can be set up for the droop compensation frequency. Setting a break point allows the inverter to raise the droop compensation frequency for light-load (no load) operation without raising it for heavy-load operation.



## NOTE

- Droop break point function is disabled in one of following conditions. (Linear compensation by Pr. 286 will be performed.)

Pr. 995 = "100\% (initial value)"
Pr. 286 <Pr. 994
Pr. $994 \leq$ Pr. $995 \times$ Pr. $286 / 100 \%$

## - Setting multiple droop control types (Pr. 679 to Pr.683)

- When the second droop control is set, two droop control types can be switched. Turning ON the second function selection (RT) signal enables the second droop control.


## NOTE

- The RT signal is a second function selection signal. The RT signal also enables other second functions.
- The RT signal is assigned to the terminal RT in the initial status. Set "3" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the RT signal to another terminal.
- Changing the terminal assignment using Pr. 178 to Pr. 189 (Input terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.

```
<<Parameters referred to \>
Pr. }1\mathrm{ Maximum frequency page 399
Pr. }178\mathrm{ to Pr. }189\mathrm{ (Input terminal function selection) Wage pag
```


### 5.16.16 Speed smoothing control

V/F
There are times where the vibration due to mechanical resonance affect the inverter, making the output current (torque) unstable. In such case, vibration can be decreased by reducing the deviation in the output current (torque) by changing the output frequency.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{6 5 3}$   G410	Speed smoothing control	$0 \%$	0 to $200 \%$	Confirm the effect by raising and lowering the value with   $100 \%$ as a reference.
654   G411	Speed smoothing cutoff   frequency	20 Hz	0 to 120 Hz	Set the lower limit of the torque deviation cycle (frequency).

## - Control block diagram



## $\checkmark$ Setting method

- When vibration caused by mechanical resonance occurs, set $100 \%$ in Pr. 653 Speed smoothing control, perform operation at the frequency with the largest vibration, and check if the vibration is suppressed after few seconds.
- If there is no effect, gradually raise the setting value of Pr.653, perform the operation and confirmation of the effect repeatedly, and use the value (Pr.653) with most effect as the final setting value.
- If the vibration gets larger by raising Pr.653, lower the value of Pr. 653 under 100\%, and perform the confirmation of result in a same manner.
- When the vibration frequency (frequency of torque deviation, speed deviation, or converter output voltage deviation) by the mechanical resonance with a measurement device, etc., set the frequency of $1 / 2$ to 1 times the vibration frequency in Pr. 654 Speed smoothing cutoff frequency. (Setting vibrational frequency range can suppress the vibration better.)



## NOTE

- Depending on the equipment, the vibration may not be suppressed sufficiently or the effect is not obtained.


## CHAPTER 6 PROTECTIVE FUNCTIONS

6.1 Inverter fault and alarm indications ..... 738
6.2 Reset method for the protective functions ..... 739
6.3 The list of fault displays ..... 740
6.4 Causes and corrective actions. ..... 742
6.5 Check first when you have a trouble ..... 763

PROTECTIVE FUNCTIONS

This chapter explains the protective function that operates in this product.
Always read the instructions before using the equipment.

### 6.1 Inverter fault and alarm indications

- When the inverter detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function is activated to trip the inverter.
- When any fault occurs, take an appropriate corrective action, then reset the inverter, and resume the operation. Restarting the operation without a reset may break or damage the inverter.
- When a protective function is activated, note the following points.

Item	Description
Fault output signal	Opening the magnetic contactor (MC) provided on the input side of the inverter at a fault occurrence   shuts off the control power to the inverter, therefore, the fault output will not be retained.
Fault or alarm indication	When a protective function is activated, the operation panel displays a fault indication.
Operation restart method	While a protective function is activated, the inverter output is kept shutoff. Reset the inverter to restart   the operation.

- Inverter fault or alarm indications are categorized as below.

Displayed item	Description
Error message	A message regarding an operational fault and setting fault by the operation panel and the parameter   unit. The inverter does not trip.
Warning	The inverter does not trip even when a warning. However, failure to take appropriate measures will   lead to a fault.
Alarm	The inverter does not trip. An Alarm (LF) signal can also be output with a parameter setting.
Fault	A protective function is activated to trip the inverter and output a Fault (ALM) signal.

## NOTE

- The past eight faults can be displayed on the operation panel. (Fault history) (For the operation, refer to the operation panel or the parameter unit Instruction Manual.)


### 6.2 Reset method for the protective functions

Reset the inverter by performing any of the following operations. Note that the accumulated heat value of the electronic thermal relay function and the number of retries are cleared (erased) by resetting the inverter.
The inverter recovers about 1 s after the reset is released.

- On the operation panel, press $\square$ to reset the inverter. (This may only be performed when a fault occurs. (Refer to page 748 of the Instruction Manual for faults.))

- Switch the power OFF once, then switch it ON again.

- Turn ON the reset signal (RES) for 0.1 s or more. (If the RES signal is kept ON, "Err" appears (flickers) to indicate that the inverter is in a reset status.)



## NOTE

- OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting an inverter fault with the start signal ON restarts the motor suddenly.


### 6.3 The list of fault displays

If the displayed message does not correspond to any of the following or if you have any other problem, please contact your sales representative.

## Error message

- A message regarding operational fault and setting fault by the operation panel and the parameter unit is displayed. The inverter does not trip.

Abbreviation	Name	Refer   to
LOCD	Password locked	742
Er1 to Er 4   Er8	Parameter write error	742
rE1 to rE8	Copy operation error	743
Err.	RES signal ON or communication circuit   fault	744

## - Warning

- The inverter does not trip even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.

Abbreviation	Name	Refer   to   page
OL	Stall prevention (overcurrent)	745
oL	Stall prevention (overvoltage)	745
RB	Regenerative brake pre-alarm	746
TH	Electronic thermal relay function pre-   alarm	746
PS	PU stop	746
SL	Speed limit indication	746
CP	Parameter copy	746
SA	SA	746
MT1 to MT3	Maintenance signal output	747
UF	USB host error	747
HP1	Home position return setting error	747
HP2	Home position return uncompleted	747
HP3	Home position return parameter setting   error	747
CF	Continuous operation during   communication fault	747
ED	Emergency drive in operation	747
LDF	Load fault warning	747

## - Alarm

- The inverter does not trip. An Alarm (LF) signal can also be output with a parameter setting.

Abbreviation	Name	Refer   to   page
FN	Fan alarm	748

## Fault

- A protective function trips the inverter and outputs a Fault (ALM) signal.
- The data code is used for checking the fault detail via communication or with Pr. 997 Fault initiation.

Abbreviation	Name	Data code	Refer to page
E.OC1	Overcurrent trip during acceleration	$\begin{aligned} & 16 \\ & (\mathrm{H} 10) \end{aligned}$	748
E.OC2	Overcurrent trip during constant speed	$17$ (H11)	749
E.OC3	Overcurrent trip during deceleration or stop	$\begin{aligned} & 18 \\ & (\mathrm{H} 12) \end{aligned}$	749
E.OV1	Regenerative overvoltage trip during acceleration	$\begin{array}{\|l\|} \hline 32 \\ (\mathrm{H} 20) \end{array}$	750
E.OV2	Regenerative overvoltage trip during constant speed	$\begin{aligned} & 33 \\ & (\mathrm{H} 21) \end{aligned}$	750
E.OV3	Regenerative overvoltage trip during deceleration or stop	$\begin{aligned} & 34 \\ & (\mathrm{H} 22) \end{aligned}$	750
E.THT	Inverter overload trip (electronic thermal relay function)	$\begin{aligned} & 48 \\ & (\mathrm{H} 30) \end{aligned}$	751
E.THM	Motor overload trip (electronic thermal relay function)	$\begin{aligned} & 49 \\ & (\mathrm{H} 31) \end{aligned}$	751
E.FIN	Heat sink overheat	$\begin{aligned} & 64 \\ & (\mathrm{H} 40) \end{aligned}$	751
E.IPF	Instantaneous power failure	$\begin{aligned} & 80 \\ & (\mathrm{H} 50) \end{aligned}$	751
E.UVT	Undervoltage	81 (H51)	752
E.ILF	Input phase loss	$\begin{aligned} & 82 \\ & (\mathrm{H} 52) \end{aligned}$	752
E.OLT	Stall prevention stop	$\begin{aligned} & 96 \\ & (\mathrm{H} 60) \end{aligned}$	752
E.SOT	Loss of synchronism detection	$\begin{aligned} & 97 \\ & (\mathrm{H} 61) \end{aligned}$	752
E. LUP	Upper limit fault detection	$\begin{aligned} & 98 \\ & (\mathrm{H} 62) \end{aligned}$	753
E. LDN	Lower limit fault detection	$\begin{aligned} & 99 \\ & (\mathrm{H} 63) \end{aligned}$	753
E.BE	Brake transistor alarm detection	$\begin{aligned} & 112 \\ & (\mathrm{H} 70) \end{aligned}$	753
E.GF	Output side earth (ground) fault overcurrent	$\begin{aligned} & 128 \\ & (\mathrm{H} 80) \end{aligned}$	753
E.LF	Output phase loss	$\begin{aligned} & 129 \\ & (\mathrm{H} 81) \end{aligned}$	753
E.OHT	External thermal relay operation	$\begin{aligned} & 144 \\ & \text { (H90) } \end{aligned}$	753
E.PTC	PTC thermistor operation	$\begin{aligned} & 145 \\ & \text { (H91) } \end{aligned}$	754
E.OPT	Option fault	$\begin{aligned} & 160 \\ & \text { (HAO) } \end{aligned}$	754
E.OP1	Communication option fault	$\begin{aligned} & 161 \\ & \text { (HA1) } \end{aligned}$	754
E.OP2		$\begin{aligned} & \hline 162 \\ & \text { (HA2) } \end{aligned}$	
E.OP3		$\begin{aligned} & 163 \\ & (\mathrm{HA} 3) \end{aligned}$	


Abbreviation	Name	Data code	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \\ \hline \end{gathered}$
E. 16	User definition error by the PLC function	$\begin{aligned} & 164 \\ & \text { (HA4) } \end{aligned}$	754
E. 17		$\begin{aligned} & 165 \\ & \text { (HA5) } \end{aligned}$	
E. 18		$\begin{aligned} & 166 \\ & \text { (HA6) } \end{aligned}$	
E. 19		$\begin{aligned} & 167 \\ & \text { (HA7) } \end{aligned}$	
E. 20		$\begin{aligned} & 168 \\ & \text { (HA8) } \end{aligned}$	
E.PE6	Internal storage device fault	172   (HAC)	755
E.PE	Parameter storage device fault (control circuit board)	$\begin{aligned} & \hline 176 \\ & \text { (HBO) } \end{aligned}$	755
E.PUE	PU disconnection	$\begin{aligned} & \hline 177 \\ & \text { (HB1) } \end{aligned}$	755
E.RET	Retry count excess	$\begin{aligned} & 178 \\ & \text { (HB2) } \end{aligned}$	755
E.PE2	Parameter storage device fault (main circuit board)	$\begin{aligned} & 179 \\ & \text { (HB3) } \end{aligned}$	755
E.CPU	CPU fault	$\begin{aligned} & 192 \\ & (\mathrm{HCO}) \end{aligned}$	755
E.CTE	Operation panel power supply short circuit/RS-485 terminals power supply short circuit	$\begin{aligned} & 193 \\ & (\mathrm{HC} 1) \end{aligned}$	756
E.P24	24 VDC power fault	$\begin{aligned} & \hline 194 \\ & (\mathrm{HC} 2) \end{aligned}$	756
E.CDO	Abnormal output current detection	$\begin{aligned} & 196 \\ & (\mathrm{HC} 4) \end{aligned}$	756
E.IOH	Inrush current limit circuit fault	$\begin{array}{\|l\|} \hline 197 \\ \text { (HC5) } \\ \hline \end{array}$	756
E.SER	Communication fault (inverter)	$\begin{aligned} & 198 \\ & (\mathrm{HC} 6) \end{aligned}$	756
E.AIE	Analog input fault	$\begin{aligned} & 199 \\ & (\mathrm{HC} 7) \end{aligned}$	757
E.USB	USB communication fault	$\begin{aligned} & 200 \\ & (\mathrm{HC} 8) \end{aligned}$	757
E.SAF	Safety circuit fault	$\begin{array}{\|l\|} \hline 201 \\ \text { (HC9) } \\ \hline \end{array}$	757
E.PBT	Internal circuit fault	$\begin{aligned} & 202 \\ & \text { (HCA) } \end{aligned}$	757
E. 13		$\begin{aligned} & \hline 253 \\ & \text { (HFD) } \end{aligned}$	757
E.OS	Overspeed occurrence	$\begin{aligned} & 208 \\ & \text { (HDO) } \end{aligned}$	757
E.OSD	Speed deviation excess detection	$\begin{array}{\|l\|} \hline 209 \\ \text { (HD1) } \\ \hline \end{array}$	758
E.ECT	Signal loss detection	$\begin{aligned} & \hline 210 \\ & \text { (HD2) } \\ & \hline \end{aligned}$	758
E.OD	Excessive position fault	$\begin{array}{\|l\|} \hline 211 \\ \text { (HD3) } \\ \hline \end{array}$	758
E.ECA	Orientation encoder no-signal	$\begin{aligned} & \hline 212 \\ & \text { (HD4) } \end{aligned}$	759


Abbreviation	Name	Data code	Refer to page
E.MB1	Brake sequence fault	$\begin{aligned} & 213 \\ & \text { (HD5) } \end{aligned}$	759
E.MB2		$\begin{array}{\|l\|} \hline 214 \\ \text { (HD6) } \\ \hline \end{array}$	
E.MB3		$\begin{array}{\|l\|} \hline 215 \\ \text { (HD7) } \\ \hline \end{array}$	
E.MB4		$\begin{aligned} & 216 \\ & \text { (HD8) } \end{aligned}$	
E.MB5		$\begin{aligned} & 217 \\ & \text { (HD9) } \end{aligned}$	
E.MB6		$\begin{aligned} & \hline 218 \\ & \text { (HDA) } \end{aligned}$	
E.MB7		$\begin{array}{\|l\|} \hline 219 \\ \text { (HDB) } \\ \hline \end{array}$	
E.EP	Encoder phase fault	$\begin{array}{\|l\|} \hline 220 \\ \text { (HDC) } \\ \hline \end{array}$	759
E.MP	Magnetic pole position unknown	$\begin{aligned} & 222 \\ & (\mathrm{HDE}) \\ & \hline \end{aligned}$	759
E.EF	External fault during output operation	$\begin{array}{\|l\|} \hline 224 \\ \text { (HEO) } \\ \hline \end{array}$	759
E.LCI	4 mA input fault	$\begin{aligned} & 228 \\ & \text { (HE4) } \\ & \hline \end{aligned}$	760
E.PCH	Pre-charge fault	$\begin{aligned} & \hline 229 \\ & \text { (HE5) } \end{aligned}$	760
E.PID	PID signal fault	$\begin{aligned} & \hline 230 \\ & \text { (HE6) } \end{aligned}$	760
E. 1	Option fault	$\begin{aligned} & \hline 241 \\ & \text { (HF1) } \\ & \hline \end{aligned}$	760
E. 2		$\begin{aligned} & \hline 242 \\ & \text { (HF2) } \\ & \hline \end{aligned}$	
E. 3		$\begin{array}{\|l\|} \hline 243 \\ \text { (HF3) } \\ \hline \end{array}$	
E. 5	CPU fault	$\begin{aligned} & 245 \\ & \text { (HF5) } \end{aligned}$	755
E. 6		$\begin{array}{\|l\|} \hline 246 \\ \text { (HF6) } \\ \hline \end{array}$	
E. 7		$247$   (HF7)	
E. 11	Opposite rotation deceleration fault	251   (HFB)	761

## Others

- The fault history and the operation status of the inverter are displayed. It is not a fault indication.

Abbreviation	Name	Refer   to
E.0	No fault history	762
EV	24 V external power supply operation	762
RD	Backup in progress	762
WR	Restoration in progress	762

If faults other than the above appear, contact your sales representative.

### 6.4 Causes and corrective actions

## Error message

A message regarding operational troubles is displayed. Output is not shut off.

Abbreviation	LOCD
Name	Password locked
Description	Password function is active. Display and setting of parameters are restricted.
Check point	-
Corrective action	Enter the password in Pr.297 Password lock/unlock to unlock the password function before operating.   (Refer to page 303.)


Abbreviation	Er1
Name	Parameter write error
Description	- Parameter setting was attempted while Pr. 77 Parameter write selection is set to disable parameter write.   - Overlapping range has been set for the frequency jump.   - Overlapping range has been set for the adjustable 5 points V/F.   - The PU and inverter cannot make normal communication.
Check point	- Check the Pr. 77 Parameter write selection setting. (Refer to page 298.)   - Check the settings of Pr. 31 to Pr. 36 (frequency jump). (Refer to page 401.)   - Check the settings of Pr. 100 to Pr. 109 (adjustable 5 points V/F). (Refer to page 705.)   - Check the connection of PU and the inverter.


Abbreviation	Er2
Name	Write error during operation
Description	Parameter write was attempted while Pr.77 $=$ "0".
Check point	$\bullet$ Check that the inverter is stopped.
Corrective action	• After stopping the operation, make parameter setting.   $\quad$ When setting Pr.77 = "2", parameter write is enabled during operation. (Refer to page 298.)


Abbreviation	Er3
Name	Calibration error
Description	Analog input bias and gain calibration values have been set too close.
Check point	Check the settings of Pr.902, Pr.903, Pr.904, and Pr.905 (calibration functions). (Refer to page 483.)


Abbreviation	Er4
Name	Mode designation error
Description	- Parameter setting was attempted in the External or NET operation mode while Pr. 77 = "1".   - Parameter write was attempted when the command source is not at the operation panel.
Check point	- Check that operation mode is PU operation mode.   - Check that the Pr. 551 setting is correct.
Corrective action	- After setting the operation mode to the "PU operation mode", make parameter setting. (Refer to page 346.)   - When Pr. 77 = "2", parameter write is enabled regardless of the operation mode. (Refer to page 298.)   - Set Pr. 551 = "2". (Refer to page 356.)


Abbreviation	Er8
Name	USB memory device operation error
Description	• An operation command was given during the USB memory device operation.      - A copy operation (writing) was performed while the PLC function was in the RUN state.   - A copy operation was attempted for a password locked project.
Check point	- Check if the USB memory device is operating.   - Check if the PLC function is in the RUN state.   - Check if the project data is locked with a password.
	- Perform the operation after the USB memory device operation is completed.   - Stop the PLC function. (Refer to page 636 and the PLC function programming manual.)   - Unlock the password of the project data using FR Configurator2. (Refer to the Instruction Manuals of FR   Configurator2 and GX Works2.)


Abbreviation	rE1
Name	Parameter read error
Description	• A failure has occurred at the operation panel side EEPROM while reading the copied parameters.   • A failure has occurred in the USB memory device while copying the parameters or reading the PLC function   project data.
Check point	- Perform parameter copy again.
Corrective action	- Perform PLC function project data copy again. (Refer to page 636)   - The USB memory device may be faulty. Replace the USB memory device.   • The operation panel may be faulty. Please contact your sales representative.


Abbreviation	rE2
Name	Parameter write error
Description	• Parameter copy from the operation panel to the inverter was attempted during operation.   - A failure has occurred at the operation panel side EEPROM while writing the copied parameters.   • A failure has occurred in the USB memory device while writing the copied parameters or PLC function   project data.
Check point	• Check that the inverter is stopped.
Corrective action	- After stopping the operation, perform parameter copy again.   - The operation panel may be faulty. Please contact your sales representative.   • Perform parameter copy or PLC project data copy again. (Refer to page 636)
	• The USB memory device may be faulty. Replace the USB memory device.


Abbreviation	rE3
Name	Parameter verification error
Description	- The data in the inverter are different from the data in the operation panel.   - A failure has occurred at the operation panel side EEPROM during parameter verification.   - A failure has occurred in the USB memory device during parameter verification.   - The data in the inverter are different from the data in the USB memory device or the personal computer (FR Configurator2).
Check point	- Check the parameter setting of the source inverter against the setting of the destination inverter.
Corrective action	- Continue the verification by pressing [SET]. Perform parameter verification again.   - The operation panel may be faulty. Please contact your sales representative.   - The USB memory device may be faulty. Replace the USB memory device.   - Verify the PLC function project data again. (Refer to page 636.)


Abbreviation	rE4
Name	Model error
Description	• A different model was used when parameter copy from the operation panel or parameter verification was   performed.
	• The data in the operation panel were not correct when parameter copy from the operation panel or   parameter verification was performed.
Check point	• Check that the parameter copy or verification source inverter is of the same model.   • Check that parameter copy to the operation panel was not interrupted by switching OFF the power or by   disconnecting the operation panel.
Corrective action	• Perform parameter copy and parameter verification between inverters of the same model (FR-A800 series).   • Perform parameter copy to the operation panel from the inverter again.


Abbreviation	rE5
Name	File error
Description	$\bullet$ The data in the USB memory device may be damaged.
Check point	-
Corrective action	$\bullet$ Delete the copy file in the USB memory device and perform parameter copy again.


Abbreviation	rE6
Name	File error
Description	• The parameter copy file in the USB memory device cannot be recognized.   • An error has occurred in the file system during transfer of the PLC function data or writing to RAM.
Check point	- Perform parameter copy again.
Corrective action	• Copy the PLC function project data again. (Refer to page 636.)


Abbreviation	rE7
Name	File quantity error
Description	$\bullet$ A parameter copy was attempted to the USB memory device in which the copy files from 001 to 099 had   already been saved.
Check point	$\bullet$ Check if the number of copy files in the USB memory device has reached 99.
Corrective action	$\bullet$ Delete the copy file in the USB memory device and perform parameter copy again.


Abbreviation	rE8
Name	No PLC function project file
Description	The specified PLC function project file does not exist in the USB memory device.
Check point	$\bullet$ Check that the file exists in the USB memory device.      • Check that the folder name and the file name in the USB memory device is correct.
Corrective action	The data in the USB memory device may be damaged.


Abbreviation	Err.
Name	RES signal ON or communication circuit fault
Description	- The RES signal is turned ON.   - The operation panel and inverter cannot make normal communication (contact faults of the connector).   - This error may occur when the voltage at the input side of the inverter drops.   - When using a separate power source for the control circuit power (R1/L11, S1/L21) from the main circuit power (R/L1, S/L2, T/L3), this error may appear at turning ON of the main circuit. It is not a fault.
Corrective action	- Turn OFF the RES signal.   - Check the connection between the operation panel and the inverter.   - Check the voltage on the input side of the inverter.

## - Warning

Output is not shut off when a protective function activates.

Abbreviation	OL		FR-LU08 FR-PU07	OL
Name	Stall prevention (overcurrent)			
Description	- When the output current of the inverter increases, the stall prevention (overcurrent) function activates.   - The following section explains about the stall prevention (overcurrent) function.			
	During acceleration	When the output current (output torque under Real sensorless vector control or vector control) of the inverter exceeds the stall prevention level (Pr. 22 Stall prevention operation level, etc.), this function stops the increase in frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current has reduced below stall prevention operation level, this function increases the frequency again.		
	During constantspeed operation	When the output current (output torque under Real sensorless vector control or vector control) of the inverter exceeds the stall prevention level (Pr. 22 Stall prevention operation level, etc.), this function reduces frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current has reduced below stall prevention operation level, this function increases the frequency up to the set value.		
	During deceleration	When the output current (output torque under Real sensorless vector control or vector control) of the inverter exceeds the stall prevention level (Pr. 22 Stall prevention operation level, etc.), this function stops the decrease in frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current has decreased below stall prevention operation level, this function decreases the frequency again.		
Check point	- Check that the Pr. 0 Torque boost setting is not too large.   - The Pr. 7 Acceleration time and Pr. 8 Deceleration time settings may be too short.   - Check that the load is not too heavy.   - Check for any failures in peripheral devices.   - Check that the Pr. 13 Starting frequency is not too large.   - Check that Pr. 22 Stall prevention operation level is appropriate.			
Corrective action	- Gradually increase or decrease the Pr. 0 setting by $1 \%$ at a time and check the motor status. (Refer to page 697.)   - Set a larger value in Pr. 7 Acceleration time and Pr. 8 Deceleration time. (Refer to page 320.)   - Reduce the load.   - Try Advanced magnetic flux vector control, Real sensorless vector control, or vector control.   - Change the Pr. 14 Load pattern selection setting.   - The stall prevention operation current can be set in Pr. 22 Stall prevention operation level. (Initial value is 150\%.) The acceleration/deceleration time may change. Increase the stall prevention operation level with Pr. 22 Stall prevention operation level, or disable stall prevention with Pr. 156 Stall prevention operation selection. (Use Pr. 156 to set either operation continued or not at OL operation.)			


Abbreviation	oL		FR-LU08 FR-PU07	oL
Name	Stall prevention (overvoltage)			
Description	- When the output voltage of the inverter increases, the stall prevention (overvoltage) function activates.   - The regeneration avoidance function activates due to excessive regenerative power of the motor. (Refer to page 725.)   - The following section explains the stall prevention (overvoltage) function.			
	During deceleration	If the regenerative power of the motor becomes excessive to exceed the regenerative power consumption capability, this function stops decreasing the frequency to prevent overvoltage trip. As soon as the regenerative power has reduced, deceleration resumes.		
Check point	- Check for sudden speed reduction.   - Check if the regeneration avoidance function (Pr. 882 to Pr.886) is being used. (Refer to page 725.)			
Corrective action	The deceleration time may change. Increase the deceleration time using Pr. 8 Deceleration time.			


Abbreviation	RB	FR-LU08   FR-PU07	RB
Name	Regenerative brake pre-alarm (Standard models only)		
Description	Appears if the regenerative brake duty reaches or exceeds $85 \%$ of the Pr.70 Special regenerative brake duty   value. If the regenerative brake duty reaches 100\%, a regenerative overvoltage (E. OV [ ]) occurs.		
Check point	•Check if the brake resistor duty is not too high.   $\bullet$ •Check that the Pr. 30 Regenerative function selection and Pr. 70 settings are correct.		
Corrective action	•Set the deceleration time longer.   • Check the Pr. 30 and Pr. 70 settings. (Refer to page 718.)		


Abbreviation	TH	FR-LU08   FR-PU07	TH
Name	Electronic thermal relay function pre-alarm		
Description	Appears if the cumulative value of the electronic thermal O/L relay reaches or exceeds 85\% of the preset level   of Pr.9 Electronic thermal O/L relay. If the specified value is reached, the protection circuit is activated to   shut off the inverter output.		
Check point	•Check for large load or sudden acceleration.   • Check that the Pr.9 setting is appropriate. (Refer to page 377.)		
Corrective action	- Reduce the load and frequency of operation.   • Set an appropriate value in Pr.9. (Refer to page 377.)		


Abbreviation	PS	FR-LU08 FR-PU07	PS	
Name	PU stop			
Description	- The motor is stopped using $\square$ $\frac{\text { STIOP }}{\text { RESET }}$ under the mode other than the PU operation mode. (To enable under the mode other than the PU operation mode, set Pr. 75 Reset selection/disconnected PU detection/PU stop selection. Refer to page 291 for details.)   - The motor is stopped by the emergency stop function.			
Check point	- Check for a stop made by pressing $\frac{\text { STOP }}{\text { RESETI }}$ $\square$ of the operation panel.   - Check for whether the X92 signal is OFF.			
Corrective action	- Turn the start signal OFF and release with $\square$ EXT .   - Turn ON the X92 signal and OFF the start signal for release.			


Abbreviation	SL	FR-LU08   FR-PU07	SL
Name	Speed limit indication		
Description	Output if the speed limit level is exceeded during torque control.		
Check point	•Check that the torque command is not larger than required.   $\bullet$ •Check if the speed limit level is set too low.		
Corrective action	• Decrease the torque command value.   $\bullet$		


Abbreviation	CP	FR-LU08   FR-PU07	CP
Name	Parameter copy		
Description	Appears when parameter copy is performed between inverters FR-A860-01080 or lower, FR-A860-01440 or   higher		
Check point	Resetting of Pr.9, Pr.30, Pr.51, Pr.56, Pr.57, Pr.61, Pr.70, Pr.72, Pr.80, Pr.82, Pr.90 to Pr.94, Pr.453, Pr.455,   Pr.458 to Pr.462, Pr.557, Pr.859, Pr.860 and Pr.893 is necessary.		
Corrective action	Set the initial value in Pr.989 Parameter copy alarm release.		


Abbreviation	SA	FR-LU08   FR-PU07	SA
Name	SA		
Description	Appears when the shorting wire across the terminals S1 and PC or the terminals S2 and PC is disconnected.		
Check point	$\bullet$ Check if the shorting wire across the terminals S1 and PC or the terminals S2 and PC is disconnected.		
Corrective action	$\bullet$ Short across the terminals S1 and PC and the terminals S2 and PC with shortening wires.		


Abbreviation	MT1 to MT3	FR-LU08   FR-PU07	MT1 to MT3
Name	Maintenance signal output 1 to 3		
Description	Appears when the inverter's cumulative energization time reaches or exceeds the parameter set value. Set   the time until the MT is displayed using Pr.504 Maintenance timer 1 warning output set time (MT1), Pr.687   Maintenance timer 2 warning output set time (MT2), and Pr. 689 Maintenance timer 3 warning output set   time (MT3).   MT does not appear when the settings of Pr.504, Pr.687, and Pr. 689 are initial values (9999).		
Check point	The set time of maintenance timer has been exceeded. (Refer to page 316.)		
Corrective action	Take appropriate countermeasures according to the purpose of the maintenance timer setting.   Setting "0" in Pr.503 Maintenance timer 1, Pr. 686 Maintenance timer 2, and Pr. 688 Maintenance timer 3   clears the indication.		


Abbreviation	UF	FR-LU08   FR-PU07	UF
Name	USB host error		
Description	Appears when an excessive current flows into the USB A connector.		
Check point	Check if a USB device other than a USB memory device is connected to the USB A connector.		
Corrective action	•If a device other than a USB memory device is connected to the USB A connector, remove the device.   - Setting Pr. 1049 USB host reset $=$ "1" or inverter reset clears the UF indication.		


Abbreviation	HP1 to HP3	FR-LU08   FR-PU07	HP1 to HP3
Name	Home position return error		
Description	Appears when an error occurs during the home position return operation under position control. For the details,   refer to page 263.		
Check point	Identify the cause of the error occurrence.		
Corrective action	Check the parameter setting, and check that the input signal is correct.		


Abbreviation	CF	FR-LU08   FR-PU07	CF
Name	Continuous operation during communication fault		
Description	Appears when the operation continues while an error is occurring in the communication line or communication   option (when Pr.502 $=$ "4").		
Check point	•Check for a break in the communication cable.   •Check for communication option faults.   •Check the connection of communication cable.   - Replace the communication option.		
Corrective action			


Abbreviation	ED	FR-LU08   FR-PU07	ED
Name	Emergency drive in operation		
Description	Appears during emergency drive operation.		
Check point	$\bullet$ Emergency drive operation is performed by turning ON the X84 signal.		
Corrective action	• The display is cleared when the emergency drive operation ends. (Refer to page 391.)		


Abbreviation	LDF	FR-LU08   FR-PU07	LDF
Name	Load fault warning		
Description	Appears when the load is deviated from the detection width set in Pr. 1488 Upper limit warning detection   width or Pr. 1489 Lower limit warning detection width.		
Check point	• Check if too much load is applied to the equipment, or if the load is too light.   • Check that the load characteristics settings are correct.		
Corrective action	•Inspect the equipment.   • Set the load characteristics (Pr. 1481 to Pr.1487) correctly.		

## - Alarm

Output is not shut off when a protective function activates. An alarm can also be output with a parameter setting.
(Set "98" in Pr. 190 to Pr. 196 (Output terminal function selection).) (Refer to page 446.)

Abbreviation	FN	FR-LU08   FR-PU07	FN
Name	Fan alarm	For the inverter that contains a cooling fan, FN appears on the operation panel when the cooling fan stops due   to a fault, low rotation speed or different operation from the setting of Pr.244 Cooling fan operation selection.	
Description	When the cooling fan is replaced, check that the fan is not installed upside down.   Check the cooling fan for a failure.		
Check point	Install the fan correctly. (Refer to page 778.)   If the fan alarm still occurs after the fan is installed correctly, the fan may be faulty. Contact your sales   representative.		
Corrective action			

## Fault

When a protective function activates, the inverter trips and a fault signal is output.

Abbreviation	E.OC1	FR-LU08 FR-PU07	OC During Acc
Name	Overcurrent trip during acceler		
Description	When the inverter output current reaches or exceeds approximately $235 \%{ }^{* 1}$ of the rated current during acceleration, the protection circuit is activated and the inverter trips.		
Check point	- Check for sudden speed acceleration.   - Check if the downward acceleration time is too long in a lift application.   - Check for output short-circuit.   - Check that the Pr. 3 Base frequency setting is not 60 Hz when the motor rated frequency is 50 Hz .   - Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled.   - Check that the regenerative driving is not performed frequently. (Check if the output voltage becomes larger than the V/F reference voltage at regenerative driving and overcurrent occurs due to increase in the motor current.)   - Check that the power supply for RS-485 terminal is not shorted (under vector control).   - Check that the encoder wiring and the specifications (encoder power supply, resolution, differential/ complementary) are correct. Check also that the motor wiring ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) is correct (under vector control).   - Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control.   - Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control)   - Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)		
Corrective action	- Set the acceleration time longer. (Shorten the downward acceleration time of the lift.)   - If "E.OC1" always appears at start, disconnect the motor once and restart the inverter. If "E.OC1" still appears, contact your sales representative.   - Check the wiring to make sure that output short circuit does not occur.   - Set 50 Hz in Pr. 3 Base frequency. (Refer to page 699.)   - Lower the stall prevention operation level. Activate the fast-response current limit operation. (Refer to page 403.)   - Set the base voltage (rated voltage of the motor, etc.) in Pr. 19 Base frequency voltage. (Refer to page 699.)   - Check RS-485 terminal connection (under vector control).   - Check the wiring and specifications of the encoder and the motor. Perform the setting according to the specifications of the encoder and the motor (under vector control). (Refer to page 72.)   - Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control.   - Choose inverter and motor capacities that match. (PM sensorless vector control)   - Input a start command after the motor stops. (PM sensorless vector control)		

*1 Differs according to ratings. The rating can be changed using Pr. 570 Multiple rating setting. (Refer to page 297.) 148\% for SLD rating, 170\% for LD rating, 235\% for ND rating (initial setting), and 280\% for HD rating

Abbreviation	E.OC2	FR-LU08   FR-PU07	OC During Cnst Spd
Name	Overcurrent trip during constant speed		
Description	When the inverter output current reaches or exceeds approximately $235 \%{ }^{*} 2$ of the rated current during   constant-speed operation, the protection circuit is activated and the inverter trips.		
Check point	- Check for sudden load change.   - Check for output short-circuit.   - Check if the stall prevention operation level is set too high. Check if the fast-response current limit   operation is disabled.		
	- Check that the power supply for RS-485 terminal is not shorted (under vector control).   - Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to   forward) during torque control under Real sensorless vector control.		
- Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control)			
- Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)			


Abbreviation	E.OC3	$\begin{aligned} & \text { FR-LU08 } \\ & \text { FR-PU07 } \end{aligned}$	OC During Dec
Name	Overcurrent trip during deceleration or stop		
Description	When the inverter output current reaches or exceeds approximately $235 \%{ }^{* 3}$ of the rated current during deceleration (other than acceleration or constant speed), the protection circuit is activated and the inverter trips.		
Check point	- Check for sudden speed reduction.   - Check for output short-circuit.   - Check for too fast operation of the motor's mechanical brake.   - Check if the stall prevention operation level is set too high. Check if the fast-response current limit operation is disabled.   - Check that the power supply for RS-485 terminal is not shorted (under vector control).   - Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control.   - Check that the inverter capacity matches with the motor capacity. (PM sensorless vector control)   - Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)		
Corrective action	- Set the deceleration time longer.   - Check the wiring to make sure that output short circuit does not occur.   - Check the mechanical brake operation.   - Lower the stall prevention operation level. Activate the fast-response current limit operation. (Refer to page 403.)   - Check RS-485 terminal connection (under vector control).   - Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control.   - Choose inverter and motor capacities that match. (PM sensorless vector control)   - Input a start command after the motor stops. (PM sensorless vector control)		

*3 Differs according to ratings. The rating can be changed using Pr. 570 Multiple rating setting. (Refer to page 297.) 148\% for SLD rating, 170\% for LD rating, 235\% for ND rating (initial setting), and 280\% for HD rating

Abbreviation	E.OV1	FR-LU08   FR-PU07	OV During Acc
Name	Regenerative overvoltage trip during acceleration		
Description	If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified   value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge   voltage produced in the power supply system.		
Check point	• Check for too slow acceleration. (e.g. during downward acceleration in vertical lift load)   • Check that the Pr.22 Stall prevention operation level is not set to the no load current or lower.   - Check if the stall prevention operation is frequently activated in an application with a large load inertia.		
Corrective action	• Set the acceleration time shorter. Use the regeneration avoidance function (Pr.882 to Pr.886). (Refer to   page 725.)   • Set a value larger than the no load current in Pr.22.   • Set Pr.154 Voltage reduction selection during stall prevention operation = "10, 11". (Refer to page   403.)		


Abbreviation	E.OV2	FR-LU08 FR-PU07	OV During Cnst Spd
Name	Regenerative overvoltage trip during constant speed		
Description	If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system.		
Check point	- Check for sudden load change.   - Check that the Pr. 22 Stall prevention operation level is not set to the no load current or lower.   - Check if the stall prevention operation is frequently activated in an application with a large load inertia.   - Check that acceleration/deceleration time is not too short.		
Corrective action	- Keep the load stable.   - Use the regeneration avoidance function (Pr. 882 to Pr.886). (Refer to page 725.)   - Use the brake unit as required.   - Set a value larger than the no load current in Pr. 22.   - Set Pr. 154 Voltage reduction selection during stall prevention operation = "10, 11". (Refer to page 403.)   - Set the acceleration/deceleration time longer. (Under vector control or Advanced magnetic flux vector control, the output torque can be increased. However, sudden acceleration may cause an overshoot in speed, resulting in an occurrence of overvoltage.)		


Abbreviation	E.OV3	FR-LU08   FR-PU07	OV During Dec
Name	Regenerative overvoltage trip during deceleration or stop		
Description	If regenerative power causes the inverter's internal main circuit DC voltage to reach or exceed the specified   value, the protection circuit is activated to stop the inverter output. The circuit may also be activated by a surge   voltage produced in the power supply system.		
Check point	• Check for sudden speed reduction.   - Check if the stall prevention operation is frequently activated in an application with a large load inertia.		
Corrective action	• Set the deceleration time longer. (Set the deceleration time which matches the moment of inertia of the   load.)   • Make the brake cycle longer.   • Use the regeneration avoidance function (Pr.882 to Pr.886). (Refer to page 725.)   • Use the brake unit as required.   • Set Pr. 154 Voltage reduction selection during stall prevention operation = "10, 11". (Refer to page   403.)		


Abbreviation	E.THT	FR-LU08 FR-PU07	Inv. overload trip
Name	Inverter overload trip*4		
Description	When the temperature of the output transistor element exceeds the protection level while a current flows at the rated output current level or higher without causing an overcurrent trip (E.OC[]), the inverter output is stopped.(Permissible overload capacity $150 \% 60$ s)		
Check point	- Check that acceleration/deceleration time is not too short.   - Check that torque boost setting is not too large (small).   - Check that load pattern selection setting is appropriate for the load pattern of the using machine.   - Check the motor for the use under overload.   - Check that the encoder wiring and the specifications (encoder power supply, resolution, differential/ complementary) are correct. Check also that the motor wiring ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) is correct (under vector control).		
Corrective action	- Set the acceleration/deceleration time longer.   - Adjust the torque boost setting.   - Set the load pattern selection setting according to the load pattern of the using machine.   - Reduce the load.   - Check the wiring and specifications of the encoder and the motor. Perform the setting according to the specifications of the encoder and the motor (under vector control). (Refer to page 72.)		


Abbreviation	E.THM	FR-LU08   FR-PU07	Motor overload trip
Name	Motor overload trip*5		
Description	The electronic thermal O/L relay function in the inverter detects motor overheat, which is caused by overload   or reduced cooling capability during low-speed operation. When the cumulative heat value reaches 85\% of the   Pr.9 Electronic thermal O/L relay setting, pre-alarm (TH) is output. When the accumulated value reaches the   specified value, the protection circuit is activated to stop the inverter output.		
Check point	- Check the motor for the use under overload.   - Check that the setting of Pr.71 Applied motor for motor selection is correct. (Refer to page 506.)   - Check that the stall prevention operation setting is correct.		
Corrective action	- Reduce the load.   - For a constant-torque motor, set the constant-torque motor in Pr.71.   •Set the stall prevention operation level accordingly. (Refer to page 403.)		


Abbreviation	E.FIN	FR-LU08   FR-PU07	H/Sink O/Temp
Name	Heat sink overheat	When the heat sink overheats, the temperature sensor activates, and the inverter output is stopped.   The FIN signal can be output when the temperature becomes approximately 85\% of the heat sink overheat   protection operation temperature.   For the terminal used for the FIN signal output, assign the function by setting "26 (positive logic) or 126   (negative logic)" from Pr. 190 to Pr.196 (Output terminal function selection). (Refer to page 446.)	
Description	• Check for too high surrounding air temperature.   • Check for heat sink clogging.   • Check that the cooling fan is not stopped. (Check that FN is not displayed on the operation panel.)		
Check point	• Set the surrounding air temperature to within the specifications.   • Clean the heat sink.   • Replace the cooling fan.		
Corrective action			


Abbreviation	E.IPF	FR-LU08   FR-PU07	Inst. Pwr. Loss
Name	Instantaneous power failure (Standard models only)		
Description	If a power failure occurs for longer than 15 ms (this also applies to inverter input shut-off), the instantaneous   power failure protective function is activated to trip the inverter in order to prevent the control circuit from   malfunctioning. If a power failure persists for 100 ms or longer, the fault warning output is not provided, and   the inverter restarts if the start signal is ON upon power restoration. (The inverter continues operating if an   instantaneous power failure is within $15 \mathrm{ms}$. . In some operating status (load magnitude, acceleration/   deceleration time setting, etc.), overcurrent or other protection may be activated upon power restoration.   When instantaneous power failure protection is activated, the IPF signal is output. (Refer to page 618.)		
Check point	Find the cause of instantaneous power failure occurrence.		
Corrective action	- Remedy the instantaneous power failure.   - Prepare a backup power supply for instantaneous power failure.   - Set the function of automatic restart after instantaneous power failure (Pr. 57). (Refer to page 618.)		


Abbreviation	E.UVT	FR-LU08   FR-PU07	Under Voltage
Name	Undervoltage (Standard models only)		
Description	If the power supply voltage of the inverter decreases, the control circuit will not perform normal functions. In   addition, the motor torque will be insufficient and/or heat generation will increase. To prevent this, if the power   supply voltage decreases to about 440 VAC or below, this function shuts off the inverter output.   When a jumper is not connected across P/+ and P1, the undervoltage protective function is activated.   When undervoltage protection is activated, the IPF signal is output. (Refer to page 618.)		
Check point	- Check if a high-capacity motor is driven.   - Check if the jumper is connected across terminals P/+ and P1.		
Corrective action	- Check the power supply system equipment such as the power supply.   - Do not remove the jumper across terminals P/+ and P1 except when connecting a DC reactor.   • If the problem still persists after taking the above measure, contact your sales representative.		


Abbreviation	E.ILF	FR-LU08   FR-PU07	Input phase loss
Name	Input phase loss (Standard models only)		
Description	When Pr.872 Input phase loss protection selection is enabled ("1") and one of the three-phase power input   is lost, the inverter output is shut off. This protective function is not available when Pr.872 is set to the initial   value (Pr.872 $=$ "0"). (Refer to page 388)		
Check point	Check for a break in the cable for the three-phase power supply input.		
Corrective action	- Wire the cables properly.   - Repair a break portion in the cable.		


Abbreviation	E.OLT	FR-LU08   FR-PU07	Stll Prev STP
Name	Stall prevention stop		
Description	V/F   If the output frequency   appears and the inverter trips. OL appears while stall prevention is being activated.		

## Sensorless Vector PM

When speed control is performed, a fault (E.OLT) appears and the inverter trips if frequency drops to the Pr. 865 Low speed detection (initial value is 1.5 Hz ) setting by torque limit operation and the output torque exceeds the Pr. 874 OLT level setting (initial value is $150 \%$ ) setting and remains 3 s .
Check point

- Check the motor for the use under overload.
- Check that the Pr. 865 and Pr. 874 values are correct. (Check the Pr. 22 Stall prevention operation level setting under V/F control and Advanced magnetic flux vector control.)
- Check if a motor is connected under PM sensorless vector control.
- Reduce the load.
- Change the Pr.22, Pr. 865, and Pr. 874 values. (Check the Pr. 22 setting under V/F control and Advanced magnetic flux vector control.)
- For a test run without connecting a motor, select the PM sensorless vector control test operation. (Refer to page 168.)
- Also check that the stall prevention (overcurrent) warning (OL) or the stall prevention (overvoltage) warning (oL) countermeasure is taken.

Abbreviation	E.SOT PM	FR-LU08   FR-PU07	Motor step out
Name	Loss of synchronism detection		
Description	The inverter trips when the motor operation is not synchronized. (This function is only available under PM   sensorless vector control.)		
Check point	• Check that the PM motor is not driven overloaded.   - Check if a start command is given to the inverter while the PM motor is coasting.   - Check if a motor is connected under PM sensorless vector control.		
Corrective action	• Set the acceleration time longer.   - Reduce the load.   • Check the connection of the PM motor.   - For a test run without connecting a motor, select the PM sensorless vector control test operation. (Refer to   page 168.)   - Offline auto tuning must be performed. (Refer to page 529.)		


Abbreviation	E.LUP	FR-LU08	Upper limit fault detection
		FR-PU07	E.LUP
Name	Brake transistor alarm detection		
Description	The inverter output is shut off when the load exceeds the upper limit fault detection range. This protective   function is not available in the initial setting of Pr. 1490 (Pr. $1490=$ "9999").		
Check point	• Check if too much load is applied to the equipment.      • Check that the load characteristics settings are correct.		
Corrective action	• Inspect the equipment.   - Set the load characteristics (Pr. 1481 to Pr.1487) correctly.		


Abbreviation	E.LDN	FR-LU08	Lower limit fault detection
		FR-PU07	E.LDN
Name	Lower limit fault detection		
Description	The inverter output is shut off when the load falls below the lower limit fault detection range. This protective   function is not available in the initial setting of Pr. 1491 (Pr. $1491=$ "9999").		
Check point	• Check if too much load is applied to the equipment.      • Check that the load characteristics settings are correct.		
Corrective action	• Inspect the equipment.   • Set the load characteristics (Pr. 1481 to Pr.1487) correctly.		


Abbreviation	E.BE	FR-LU08   FR-PU07	Br.Cct.Fault
Name	Brake transistor alarm detection		
Description	• The inverter trips if a fault due to damage of the brake transistor and such occurs in the brake circuit. In   such a case, the power supply to the inverter must be shut off immediately.   • Appears when an internal circuit fault occurred for separated converter types.		
Check point	• Reduce the load inertia.   • Check that the brake duty is proper.		
Corrective action	Replace the inverter.		


Abbreviation	E.GF	FR-LU08   FR-PU07	Ground Fault
Name	Output side earth (ground) fault overcurrent		
Description	The inverter trips if an earth (ground) fault overcurrent flows due to an earth (ground) fault that occurred on the   inverter's output side (load side).		
Check point	Check for an earth (ground) fault in the motor and connection cable.		
Corrective action	Remedy the earth (ground) fault portion.		


Abbreviation	E.LF	FR-LU08	Output phase loss
		FR-PU07	E.LF
Name	Output phase loss		
Description	The inverter trips if one of the three phases ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) on the inverter's output side (load side) is lost.		
Check point	- Check the wiring. (Check that the motor is normally operating.)   - Check that the capacity of the motor used is not smaller than that of the inverter.   - Check if a start command is given to the inverter while the motor is coasting. (PM sensorless vector control)		
Corrective action	- Wire the cables properly.   - Input a start command after the motor stops. (PM sensorless vector control)		


Abbreviation	E.OHT	FR-LU08   FR-PU07	OH Fault
Name	External thermal relay operation		
Description	The inverter trips if the external thermal relay provided for motor overheat protection or the internally mounted   thermal relay in the motor, etc. switches ON (contacts open). This function is available when "7" (OH signal)   is set in any of Pr. 178 to Pr. 189 (Input terminal function selection). This protective function is not available   in the initial status. (OH signal is not assigned.)		
Check point	- Check for motor overheating.   • Check that the value "7" (OH signal) is set correctly to any of Pr. 178 to Pr. 189 (Input terminal function   selection).		
Corrective action	- Reduce the load and operation duty.   •Even if the relay contacts are reset automatically, the inverter will not restart unless it is reset.		


Abbreviation	E.PTC	FR-LU08   FR-PU07	PTC activated
Name	PTC thermistor operation		
Description	The inverter trips if resistance of the PTC thermistor connected between the terminal 2 and terminal 10 is equal   to or higher than the Pr.561 PTC thermistor protection level setting for a continuous time equal to or longer   than the setting value in Pr.1016 PTC thermistor protection detection time. When the initial value (Pr. 561   $=$ "9999") is set, this protective function is not available.		
Check point	- Check the connection with the PTC thermistor.   - Check the Pr.561 and Pr.1016 settings.   - Check the motor for operation under overload.		
Corrective action	Reduce the load.		


Abbreviation	E.OPT	$\begin{aligned} & \hline \text { FR-LU08 } \\ & \text { FR-PU07 } \end{aligned}$	Option Fault
Name	Option fault		
Description	- Appears when the AC power supply is connected to the terminal R/L1, S/L2, or T/L3 accidentally when Pr. 30 Regenerative function selection = "2 or 102".   - Appears when torque command by the plug-in option is selected using Pr. 804 Torque command source selection and no plug-in option is installed. This function is available under torque control.   - Appears when either one of a Vector control compatible plug-in option or a control terminal option (FRA8TP) is not installed during machine end orientation control.   - Appears when the switch for manufacturer setting of the plug-in option is changed.   - Appears when a communication option is connected while Pr. 296 Password lock level = "0 or 100".		
Check point	- Check if "2 or 102" is set in Pr. 30.   - Check that the plug-in option for torque command setting is connected.   - Check that the Vector control plug-in option and the control terminal option (FR-A8TP) are installed correctly. Check that the settings of Pr. 393 Orientation selection and Pr. 862 Encoder option selection are correct.   - Check for the password lock with a setting of Pr. $296=$ " 0,100 ".		
Corrective action	-The setting values "2 and 102" of Pr. 30 are for manufacturer setting. Do not set.   - Check for connection of the plug-in option. Check the Pr. 804 setting.   - Install the Vector control plug-in option and the control terminal option (FR-A8TP) correctly. Set Pr. 393 and Pr. 862 correctly. (Refer to page 570.)   - Set the switch on the plug-in option, which is for manufacturer setting, back to the initial setting. (Refer to the Instruction Manual of each option.)   -To apply the password lock when installing a communication option, set Pr. $296 \neq " 0,100$ ". (Refer to page 301.)		


Abbreviation	E.OP1 to E.OP3	FR-LU08 FR-PU07	Option1 Fault to Option3 Fault
Name	Communication option fault		
Description	- The inverter trips if a communication line error occurs in the communication option.   - When the FR-A8APR is installed to the inverter and a motor with a resolver is used, the inverter trips if the FR-A8APR fails or the wiring of the resolver is not properly connected.		
Check point	- Check for an incorrect option function setting and operation.   - Check that the plug-in option is plugged into the connector properly.   - Check for a break in the communication cable.   - Check that the terminating resistor is fitted properly.   - Check that the wiring of the resolver is correct. (When the FR-A8APR is used)		
Corrective action	- Check the option function setting, etc.   - Connect the plug-in option securely.   - Check the connection of communication cable.   - Check the wiring of the resolver. (When the FR-A8APR is used)   - If the fault occurs again when the inverter is reset, contact your sales representative.		


Abbreviation	E.16 to E.20	FR-LU08   FR-PU07	Fault 16 to Fault 20
Name	User definition error by the PLC function		
Description	The protective function is activated by setting "16 to 20" in the special register SD1214 for the PLC function.   The inverter trips when the protective function is activated.   The protective function is activated when the PLC function is enabled. This protective function is not available   in the initial setting (Pr.414 $=$ "0").   Any character string can be displayed on FR-LU08 or FR-PU07 by sequence programs.		
Check point	•Check if "16 to 20" is set in the special register SD1214.		
Corrective action	•Set a value other than "16 to 20" in the special register SD1214.		


Abbreviation	E.PE6	FR-LU08   FR-PU07	Fault
Name	Internal storage device fault		
Description	This protective function is activated by an inverter reset if writing data fails due to power-OFF or a data fault   occurs in the storage device during parameter operations		
Check point	Check if the power was turned OFF during parameter operations.		
Corrective action	Check the power supply or the devices on the power system to check that the devices have no fault.   - When E.PE6 occurs due to power-OFF during parameter operations: Check the read value of Pr.890.   When the value is "7" or smaller, perform All parameter clear and then an inverter reset. The parameters   that had been changed before All parameter clear must be set again.   - When E.PE6 occurs due to other reason (such as turning OFF/ON the power or an inverter reset): Contact   your sales representative.		

*6 For example, when parameter clear, All parameter clear, Parameter copy, or offline auto tuning is performed in the inverter, or when parameter batch write is performed in FR Configurator2.

Abbreviation	E.PE	FR-LU08	Corrupt Memory
		FR-PU07	Corrupt Memry
Name	Parameter storage device fault (control circuit board)		
Description	The inverter trips if a fault occurs in the parameter stored. (EEPROM failure)		
Check point	Check for too many number of parameter write times.		
Corrective action	Please contact your sales representative.   Set "1" in Pr.342 Communication EEPROM write selection (write to RAM) for the operation which requires   frequent parameter writing via communication, etc. Note that writing to RAM goes back to the initial status at   power OFF.		

$\left.\begin{array}{|l|l|l|l|}\hline \text { Abbreviation } & \text { E.PUE } & \begin{array}{l}\text { FR-LU08 } \\ \text { FR-PU07 }\end{array} & \text { PU Leave Out } \\ \hline \text { Name } & \text { PU disconnection } \\ \hline \text { Description } & \begin{array}{l}\text { •The inverter trips if communication between the inverter and PU is suspended, e.g. the operation panel or } \\ \text { parameter unit is disconnected, when the disconnected PU disconnection function is valid in Pr. } 75 \text { Reset } \\ \text { selection/disconnected PU detection/PU stop selection. }\end{array} \\ \text { • The inverter trips if communication errors occurred consecutively for more than permissible number of } \\ \text { retries when Pr. } 121 \text { Number of PU communication retries } \neq \text { "9999" during the RS-485 communication. } \\ \text { - The inverter trips if communication is broken within the period of time set in Pr. } 122 \text { PU communication } \\ \text { check time interval during the RS-485 communication via the PU connector. }\end{array}\right\}$

Abbreviation	E.RET	FR-LU08   FR-PU07	Retry No Over
Name	Retry count excess		
Description	The inverter trips if the operation cannot be resumed properly within the number of retries set in Pr.67 Number   of retries at fault occurrence.		
Check point	Find the cause of the fault occurrence.		
Corrective action	Eliminate the cause of the error preceding this error indication.		


Abbreviation	E.PE2	FR-LU08   FR-PU07	PR storage alarm
Name	Parameter storage device fault (main circuit board)		
Description	The inverter trips if a fault occurs in the parameter stored. (EEPROM failure)		
Check point	-		
Corrective action	Please contact your sales representative.		


Abbreviation	E.CPU	FR-LU08	CPU Fault
	E. 5 to E. 7	FR-PU07	Fault 5 to Fault 7
Name	CPU fault		
Description	The inverter trips if the communication fault of the built-in CPU occurs.		
Check point	Check for devices producing excess electrical noises around the inverter.		
Corrective action	•Take measures against noises if there are devices producing excess electrical noises around the inverter.	• Please contact your sales representative.	


Abbreviation	E.CTE	FR-LU08	Circuit fault	
		FR-PU07	E.CTE	
Name	Operation panel power supply short circuit/RS-485 terminals power supply short circuit			
Description	- When the power supply for the operation panel (PU connector) is shorted, the power output is shutoff and the inverter trips. The use of the operation panel (parameter unit) and the RS-485 communication via the PU connector are disabled. To reset, enter the RES signal from the terminal, reset via communication through the RS-485 terminals, or switch power OFF then ON again.   - When the power supply for the RS-485 terminals are short circuited, this function shuts off the power output. At this time, communication from the RS-485 terminals cannot be made. To reset, use $\frac{\text { STOP }}{\text { RESEET }}$ on the operation panel, enter the RES signal, or switch power OFF then ON again.			
Check point	- Check that the PU connector cable is not shorted.   - Check that the RS-485 terminals are connected correctly.			
Corrective action	- Check PU and the cable.   - Check the connection of the RS-485 terminals.			


Abbreviation	E.P24	FR-LU08	24 VDC power fault
		FR-PU07	E.P24
Name	24 VDC power fault		
Description	When the 24 VDC power output from the PC terminal is shorted, this function shuts off the power output. At this time, all external contact inputs switch OFF. The inverter cannot be reset by entering the RES signal. To reset it, use the operation panel, or switch power OFF, then ON again.		
Check point	- Check for a short circuit in the PC terminal output.   - Check that the 24 V external power supply voltage is correct.		
Corrective action	- Repair the short-circuited portion.   - Supply the power at 24 V . (If the power at insufficient voltage is supplied to the 24 V input circuit for a long time, the inverter internal circuit may heat up. Input power at correct voltage although it will not damage the inverter.)		


Abbreviation	E.CDO	FR-LU08   FR-PU07	OC detect level
Name	Abnormal output current detection		
Description	The inverter trips if the output current exceeds the Pr.150 Output current detection level setting.   This functions is available when Pr. 167 Output current detection operation selection is set to "1". When   the initial value (Pr.167 ="0") is set, this protective function is not available.		
Check point	Check the settings of Pr.150, Pr.151 Output current detection signal delay time, Pr. 166 Output current   detection signal retention time, and Pr.167. (Refer to page 461.)		


Abbreviation	E.IOH	FR-LU08   FR-PU07	Inrush overheat
Name	Inrush current limit circuit fault (Standard models only)		
Description	The inverter trips when the resistor of the inrush current limit circuit is overheated. The inrush current limit   circuit failure		
Check point	• Check that frequent power ON/OFF is not repeated.   • Check if the input side fuse (5A) in the power supply circuit of the inrush current limit circuit contactor (FR-   A860-02890 or higher) is blown.   • Check that the power supply circuit of inrush current limit circuit contactor is not damaged.		
Corrective action	Configure a circuit where frequent power ON/OFF is not repeated. If the situation does not improve after taking   the above measure, please contact your sales representative.		


Abbreviation	E.SER	FR-LU08   FR-PU07	VFD Comm error
Name	Communication fault (inverter)	The inverter trips when communication error occurs consecutively for the permissible number of retries or   more when Pr.335 RS-485 communication retry count $\neq$ "9999" during RS-485 communication from the RS-   485 terminals. The inverter also trips if communication is broken for the period of time set in Pr. 336 RS-485   communication check time interval.	
Description	Check the RS-485 terminal wiring.		
Check point	Perform wiring of the RS-485 terminals properly.		
Corrective action			


Abbreviation	E.AIE	FR-LU08   FR-PU07	Analog in error
Name	Analog input fault		
Description	The inverter trips when a 30 mA or higher current or a 7.5 V or higher voltage is input to terminal 2 while the   current input is selected by Pr. 73 Analog input selection, or to terminal 4 while the current input is selected   by Pr.267 Terminal 4 input selection.		
Check point	Check the Pr.73, Pr.267, and the voltage/current input switch settings. (Refer to page 473)		
Corrective action	Either give a current less than 30 mA, or set Pr.73, Pr.267, and the voltage/current input switch to the voltage   input and input a voltage.		


Abbreviation	E.USB	FR-LU08   FR-PU07	USB comm error
Name	USB communication fault		
Description	The inverter trips when the communication is cut off for the time set in Pr.548 USB communication check   time interval.		
Check point	•Check that the USB communication cable is connected securely.		
Corrective action	•Check the Pr.548 setting.   • Connect the USB communication cable securely.   • Increase the Pr.548 setting or set "9999." (Refer to page 691.)		


Abbreviation	E.SAF	FR-LU08	Safety circuit fault
		FR-PU07	E.SAF
Name	Safety circuit fault		
Description	- Appears when internal circuits are malfunctioning.   - Appears when one of the lines between S1 and PC, or between S2 and PC is opened.   - Settings of the switches (SW3 and SW4) for manufacturer setting may have been changed from the initial settings.		
Check point	- Check if the shorting wire across the terminals S1 and PC or the terminals S2 and PC is disconnected.   - Check that the initial position of each switch was not changed.		
Corrective action	- Short across the terminals S1 and PC and the terminals S2 and PC with shortening wires.   - Set each manufacturer setting switch to the initial position (OFF). (Refer to page 20 for the positions of the switches.)		


Abbreviation	E.PBT	FR-LU08	PBT fault
		FR-PU07	Fault
	E. 13	$\begin{aligned} & \text { FR-LU08 } \\ & \text { FR-PU07 } \end{aligned}$	Fault 13
Name	Internal circuit fault		
Description	The inverter trips when an internal circuit fault occurs.		
Corrective action	Please contact your sales representative.		
Abbreviation	E.OS	FR-LU08	Overspee
		FR-PU07	E.OS
Name	Overspeed occurrence		
Description	The inverter trips when the motor speed exceeds the Pr. 374 Overspeed detection level under encoder feedback control, Real sensorless vector control, vector control, and PM sensorless vector control. When Pr. 374 = "9999 (initial value)", the inverter output is shut off when the motor speed exceeds the "maximum frequency +20 Hz " for the induction motor (up to 420 Hz under Vector control or Real sensorless vector control), or when the motor speed exceeds the "maximum motor frequency +10 Hz " for the PM motor.		
Check point	- Check that the Pr. 374 setting is correct.   - Check that the number of encoder pulses does not differ from the actual number of Pr. 369 (Pr.851) Number of encoder pulses (under encoder feedback control or vector control).   - Check that the motor temperature is not increased under Real sensorless vector control. (The motor constant may vary due to increase in the motor temperature.)		
Corrective action	- Set Pr. 374 correctly.   - Set the Pr. 369 (Pr.851) correctly (under encoder feedback control or vector control).   -Enable the online auto tuning at startup (set Pr. 95 (Pr.574) = "1") (under Real sensorless vector control). (Refer to page 537.) To perform the online auto tuning at startup for a lift, use of the Start-time tuning start external input (X28) signal is recommended.		


Abbreviation	E.OSD Vector	FR-LU08	Spd deviation fault
		FR-PU07	E.OSd
Name	Speed deviation excess detection		
Description	- The inverter trips if the motor speed is increased or decreased under the influence of the load etc. during vector control with Pr. 285 Speed deviation excess detection frequency set and cannot be controlled in accordance with the speed command value.   - If the motor is accelerated against the stop command accidentally, the deceleration check function (Pr.690) is activated to stop the inverter output.		
Check point	- Check that the values of Pr. 285 and Pr. 853 Speed deviation time are correct.   - Check for sudden load change.   - Check that the number of encoder pulses does not differ from the actual number of Pr. 369 (Pr.851) Number of encoder pulses.		
Corrective action	- Set Pr. 285 and Pr. 853 correctly.   - Keep the load stable.   - Set Pr. 369 (Pr.851) correctly.		


Abbreviation	E.ECT	FR-LU08	Encoder signal loss
		FR-PU07	E.ECT
Name	Signal loss detection		
Description	The inverter trips when the encoder signal is shut off under orientation control, encoder feedback control or vector control. This protective function is not available in the initial status.		
Check point	- Check for the encoder signal loss.   - Check that the encoder specifications are correct.   - Check for a loose connector.   - Check that the switch setting of a vector control compatible option is correct.   - Check that the power is supplied to the encoder. Alternatively, check that the power is not supplied to the encoder later than the inverter.   - Check that the voltage of the power supplied to the encoder is the same as the encoder output voltage.		
Corrective action	- Remedy the signal loss.   - Use an encoder that meets the specifications.   - Make connection securely.   - Make a switch setting of a vector control compatible option correctly. (Refer to page 73.)   - Supply the power to the encoder. Or supply the power to the encoder at the same time when the power is supplied to the inverter. If the power is supplied to the encoder after sent to the inverter, check that the encoder signal is properly sent and set " 0 (initial value)" in Pr. 376 Encoder signal loss detection enable/ disable selection to disable signal loss detection.   - Make the voltage of the power supplied to the encoder the same as the encoder output voltage.		


Abbreviation	E.OD Vector	FR-LU08	Position fault
	Excessive position fault	FR-PU07	E.Od
Name	The inverter trips when the difference between the position command and position feedback exceeds Pr.427		
Description	Excessive level error under position control.		


Abbreviation	E.ECA Vector	FR-LU08	ENC direction fault
		FR-PU07	E.ECA
Name	Orientation encoder no-signal		
Description	The inverter output is shut off when the machine end encoder signal is shut off during machine end orientation control under Vector control. This protective function is not available in the initial status.		
Check point	- Check for the encoder signal loss.   - Check that the encoder specifications are correct.   - Check for a loose connector.   - Check that the switch setting of a Vector control compatible option is correct.   - Check that the power is supplied to the encoder. Alternatively, check that the power is not supplied to the encoder later than the inverter.   - Check that the voltage of the power supplied to the encoder is the same as the encoder output voltage.		
Corrective action	- Remedy the signal loss.   - Use an encoder that meets the specifications.   - Make connection securely.   - Make a switch setting of a Vector control compatible option correctly. (Refer to page 73.)   - Supply the power to the encoder. Or supply the power to the encoder at the same time when the power is supplied to the inverter.   - If the power is supplied to the encoder after sent to the inverter, check that the encoder signal is properly sent and set " 0 (initial value)" in Pr. 376 Encoder signal loss detection enable/disable selection to disable signal loss detection.   - Make the voltage of the power supplied to the encoder the same as the encoder output voltage.		


Abbreviation	E.MB1 to 7	FR-LU08   FR-PU07	E.MB1 Fault to E.MB7 Fault
Name	Brake sequence fault		
Description	• The inverter trips when a sequence error occurs during use of the brake sequence function (Pr.278 to   Pr.285). This protective function is not available in the initial status. (The brake sequence function is   invalid.) (For details on fault record, refer to page 553.)		
Check point	Find the cause of the fault occurrence.		
Corrective action	Check the set parameters and perform wiring properly.		
Abbreviation	E.EP Vector	FR-LU08   Name	Encoder phase fault
Description	The inverter trips when the rotation command of the inverter differs from the actual motor rotation direction   detected from the encoder during offline auto tuning. This protective function is not available in the initial status.		
Check point	•Check for mis-wiring of the encoder cable.   • Check if the Pr. 359 (Pr.852) Encoder rotation direction setting is incorrect.		
Corrective action	• Perform connection and wiring securely.   • Change the Pr. 359 (Pr.852) setting.		


Abbreviation	E.MP Vector	FR-LU08	MagnetPole Pos Fault
	FR-PU07	E.MP	
Name	Magnetic pole position unknown		
Description	When the offset value between the PM motor home magnetic pole position and the home position of the   encoder (position detector) is unknown, the protective circuit is activated to stop the inverter output.		
Check point	• Check that the encoder position tuning was performed.   • Check that the encoder position tuning ended properly. When Pr.1105 (Pr.887) Encoder magnetic pole   position offset = "9999", the encoder position tuning does not end properly.		
Corrective action	• Perform encoder position tuning with Pr.373 (Pr.871) Encoder position tuning setting/status. (Refer to   page 518.)		
• Remove the cause of the tuning error, and perform tuning again. (Refer to page 518.)			


Abbreviation	E.EF	FR-LU08   FR-PU07	E.EF
Name	External fault during output operation		
Description	When the X32 signal turns OFF (the contact opens) due to an external fault or other factor, the inverter output   is shut off. This function is available when "32" is set in any of Pr. 178 to Pr. 189 (Input terminal function   selection). This protective function is not available in the initial status (X32 signal is not assigned).		
Check point	•Check that the X32 signal is OFF.		
Corrective action	• Make sure that there is no problem in starting operation, and turn ON the X32 signal.		


Abbreviation	E.LCI	FR-LU08	4 mA input fault
		FR-PU07	Precharge Error
Name	4 mA input fault		
Description	The inverter trips when the analog input current is 2 mA or less for the time set in Pr.778 4 mA input check   filter. This function is available when Pr.573 4 mA input check selection $=$ "2 or 3". (Refer to page 493.) This   function is not available in the initial status.		
Check point	- Check for a break in the wiring for the analog current input.   - Check that the Pr. 778 setting is not too short.		
Corrective action	- Check the wiring for the analog current input.   - Set the Pr. 778 setting larger.		


Abbreviation	E.PCH	FR-LU08	Pre-charge fault
	FR-PU07	Precharge Error	
Name	Pre-charge fault		
Description	- The inverter trips when the pre-charge time exceeds Pr. 764 Pre-charge time limit.   - The inverter trips when the measured value exceeds Pr. 763 Pre-charge upper detection level during pre-   charging.   - This function is available when Pr. 764 and Pr. 763 are set. This protective function is not available in the   initial status.		
Check point	- Check that the Pr. 764 setting is not too short.   - Check that the Pr. 763 setting is not too small.   - Check that the Pr. 127 PID control automatic switchover frequency setting is not too low.   - Check for a break in the connection to the pump.		
Corrective action	- Set the Pr. 764 setting longer.   - Set the Pr. 763 setting larger.   - Set the Pr. 127 setting higher.   - Check the connection to the pump.		


Abbreviation	E.PID	FR-LU08   FR-PU07	PID Signal Error
Name	PID signal fault		
Description	The inverter trips if the measured value exceeds the PID upper limit or PID lower limit parameter setting, or   the absolute deviation value exceeds the PID deviation parameter setting during PID control.   Set this function in Pr.131 PID upper limit, Pr.132 PID lower limit, Pr.553 PID deviation limit, and Pr.554   PID signal operation selection. (Refer to page 587.) This protective function is not available in the initial   status.		
Check point	- Check the meter for a failure or break.   - Check that the parameter settings are correct.		
Corrective action	- Check that the meter has no failure or break.   - Set the parameters correctly.		


Abbreviation	E. 1 to E. 3	FR-LU08   FR-PU07	Fault 1 to Fault 3
Name	Option fault	- The inverter trips when a contact fault is found between the inverter and the plug-in option, or when the   communication option is not connected to the connector 1.   - The inverter output is shut off when encoder feedback control is performed while 10 poles or more is set in   Pr.144 Speed setting switchover.   - Appears when the switch for manufacturer setting of the plug-in option is changed.	
Description	- Check that the plug-in option is plugged into the connector properly. (1 to 3 indicate connector numbers for   connection of options.)   - Check for excessive noise around the inverter.   - Check if the communication option is connected to the connector 2 or 3.   - For encoder feedback control operation, check that the number of motor poles is correct.		
Check point	- Connect the plug-in option securely.   - Take measures against noises if there are devices producing excess electrical noises around the inverter.   If the situation does not improve after taking the above measure, please contact your sales representative.   - Connect the communication option to the connector 1.   - For encoder feedback control operation, use a motor with 8 poles or less.   - Set the switch on the plug-in option, which is for manufacturer setting, back to the initial setting. (Refer to   the Instruction Manual of each option.)		
Corrective action			


Abbreviation	E. 11 Sensorless	FR-LU08   FR-PU07	Fault 11
Name	Opposite rotation deceleration fault		
Description	The speed may not decelerate during low speed operation if the rotation direction of the speed command and   the estimated speed differ when the rotation is changing from forward to reverse or from reverse to forward   during torque control under Real sensorless vector control. The inverter trips when overload occurs due to the   un-switched rotation direction. This protective function is not available in the initial status (V/F control). (This   function is only available under Real sensorless vector control.)		
Check point	• Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to   forward) during torque control under Real sensorless vector control.		
Corrective action	- Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward)   during torque control under Real sensorless vector control.		

## - Others

Indicate the status of the inverter. It is not a fault.

Abbreviation	E.0	FR-LU08	No faults
Name	No fault history		
Description	Appears when no fault records are stored. (Appears when the fault history is cleared after the protective   function has been activated.)		


Abbreviation	EV	FR-LU08	-
		FR-PU07	EV
Name	24 V external power supply operation		
Description	Blinks when the main circuit power supply is off and the 24 V external power supply is being input.		
Check point	Power is supplied from a 24 V external power supply.		
Corrective action	• Turning ON the power supply (main circuit) of the inverter clears the indication.   • If the indication is still displayed after turning ON of the power supply (main circuit) of the inverter, the   power supply voltage may be low, or the jumper between terminals $\mathrm{P} /+$ and P 1 may be disconnected.		


Abbreviation	RD	FR-LU08   FR-PU07	Rd
Name	Backup in progress		
Description	The GOT is used for backing up inverter parameters and the data used in the PLC function of inverter. (Refer   to page 694.)		


Abbreviation	WR	FR-LU08   FR-PU07	WR
Name	Restoration in progress		
Description	The backup data stored in the GOT is used to restore the data in the inverter. (Refer to page 694.)		

## NOTE

- If protective functions with indication of "Fault" on the operation panel or parameter unit are activated, "ERR" appears in the fault history of the operation panel or parameter unit.
- If faults other than the above appear, contact your sales representative.


### 6.5 Check first when you have a trouble

For Real sensorless vector control and vector control, also refer to the troubleshooting on page 209 (speed control), page 244 (torque control), and page 284 (position control).

## NOTE

- If the cause is still unknown after every check, it is recommended to initialize the parameters, set the required parameter values and check again.


### 6.5.1 Motor does not start

Check points	Possible cause	Countermeasure	Refer to page
Main circuit	Appropriate power supply voltage is not applied.   (Operation panel display is not provided.)	Power on a molded case circuit breaker (MCCB), an earth leakage circuit breaker (ELB), or a magnetic contactor (MC).	-
		Check for the decreased input voltage, input phase loss, and wiring.	-
		If only the control power is ON when using a separate power source for the control circuit, turn ON the main circuit power.	63
	Motor is not connected properly.	Check the wiring between the inverter and the motor. If the electronic bypass function is active, check the wiring of the magnetic contactor (MC) between the inverter and the motor.	43
	The jumper across P/+ to P1 is disconnected. $A D C$ reactor is not connected.	Securely fit a jumper across P/+ and P1. When using a DC reactor, remove the jumper across $\mathrm{P} /+$ to P 1 , and then connect the $D C$ reactor.   Connect the DC reactor securely when required according to the capacity.	43,79
Input signal	Start signal is not input.	Check the start command source, and input a start signal.   PU operation mode: $\square$   FWD $\square$   External operation mode: STF/STR signal	349
	Both the forward and reverse rotation start signals (STF, STR) are input simultaneously.	Turn ON only one of the forward and reverse rotation start signals (STF or STR).   When the STF and STR signals are turned ON simultaneously in the initial setting, a stop command is given.	53
	Frequency command is zero.	Check the frequency command source and enter a frequency command.	349
	AU signal is not ON when terminal 4 is used for frequency setting.	Turn ON the AU signal.   Turning ON the AU signal activates terminal 4 input.	473
	Output stop signal (MRS) or reset signal (RES) is ON.	Turn MRS or RES signal OFF.   Inverter starts the operation with a given start command and a frequency command after turning OFF MRS or RES signal. Before turning OFF, ensure the safety.	53
	CS signal is OFF while the automatic restart after instantaneous power failure function is selected (Pr. 57 Restart coasting time $\neq$ 9999).	Turn ON the automatic restart after instantaneous power failure/flying start (CS) signal.   When the CS signal is assigned to an input terminal, automatic restart operation is enabled when the CS signal is turned ON.	618
	Jumper connector of sink - source is incorrectly selected.	Check that the control logic switchover jumper connector is correctly installed.   If it is not installed correctly, input signal is not recognized.	57
	Wiring of encoder is incorrect. (Under encoder feedback control or vector control)	Check the wiring of encoder.	75
	Voltage/current input switch is not correctly set for analog input signal ( 0 to $5 \mathrm{~V} / 0$ to $10 \mathrm{~V}, 4$ to 20 mA ).	Set Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection, and a voltage/current input switch correctly, then input an analog signal in accordance with the setting.	473
	was pressed.   (Operation panel indication is PS.)	During the External operation mode, check the method of restarting from a $\square$ $\frac{\text { STOP }}{\text { RESET }}$ input stop from PU.	294, 746


Check points	Possible cause	Countermeasure	Refer to page
Input signal	For the separated converter type, terminals RDA and SE of the converter unit are not connected to terminals MRS (X10 signal) and SD (PC for source logic) of the inverter respectively.	Check for the wiring.	Refer to the Instruction Manual (Hardware ) of the FRA862.
	Two-wire or three-wire type connection is incorrect.	Check the wiring.   Use the Start self-holding selection (STP (STOP)) signal when the three-wire type is used.	715
Parameter setting	Under V/F control, Pr. 0 Torque boost setting is improper.	Increase the Pr. 0 setting by $0.5 \%$ increments while observing the rotation of a motor.   If that makes no difference, decrease the setting.	697
	Pr. 78 Reverse rotation prevention selection is set.	Check the Pr. 78 setting.   Set Pr. 78 when you want to limit the motor rotation to only one direction.	365
	Pr. 79 Operation mode selection setting is incorrect.	Select the operation mode which corresponds with input methods of start command and frequency command.	346
	Bias and gain (Pr. 902 to Pr.905) settings are improper.	Check the bias and gain (Pr. 902 to Pr.905) settings.	483
	Pr. 13 Starting frequency setting is greater than the set frequency.	Set frequency higher than Pr. 13.   The inverter does not start if the frequency setting signal is less than the value set in Pr. 13.	337, 338
	Frequency settings of various set frequency (such as multi-speed operation) are zero. Especially, Pr. 1 Maximum frequency is zero.	Set the frequency command according to the application. Set Pr. 1 higher than the actual frequency used.	372, 399
	Pr. 15 Jog frequency is lower than Pr. 13 Starting frequency for JOG operation.	Set Pr. 15 higher than Pr. 13.	$\begin{aligned} & 337,338, \\ & 370 \end{aligned}$
	The Pr. 359 (Pr.852) Encoder rotation direction setting is incorrect under encoder feedback control or under vector control.	If the "REV" on the operation panel is lit even though the forward-rotation command is given, set Pr. 359 (Pr.852) = "1".	77, 730
	When a vector control compatible option is used, the option to be used and parameter settings do not match.	Correctly set Pr. 862 Encoder option selection according to the option to be used.	172
	Operation mode and a writing device do not correspond.	Check Pr. 79 Operation mode selection, Pr. 338   Communication operation command source, Pr. 339   Communication speed command source, Pr. 550 NET mode operation command source selection and Pr. 551 PU mode operation command source selection, and select an operation mode suitable for the purpose.	346, 356
	Start signal operation selection is set by Pr. 250 Stop selection.	Check the Pr. 250 setting and the connection of STF and STR signals.	715
	The motor has decelerated to a stop when power failure deceleration stop function is selected.	When power is restored, ensure the safety, and turn OFF the start signal once, then turn ON again to restart.   When Pr. 261 Power failure stop selection = "2 or 12", the motor automatically restarts after the power is restored.	629
	Performing auto tuning.	When offline auto tuning ends, press $\square$ $\frac{\text { STOP }}{\text { DTSEP }}$ of the operation panel for the PU operation. For the External operation, turn OFF the start signal (STF or STR).   This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication.   (Without this operation, next operation cannot be started.)	$\begin{aligned} & 508,518, \\ & 626 \end{aligned}$
	The automatic restart after instantaneous power failure function or power failure stop function has been activated.   (Performing overload operation during input phase loss may cause voltage insufficiency, and that may result in detection of power failure.)	Set Pr. 872 Input phase loss protection selection ="1" (input phase failure protection active).   Disable the automatic restart after instantaneous power failure function and power failure stop function.   Reduce the load.   Increase the acceleration time if the function was activated during acceleration.	$\begin{aligned} & 388,618, \\ & 629 \end{aligned}$
	The motor test operation is selected under vector control or PM sensorless vector control.	Check the Pr. 800 Control method selection setting.	166
	When the FR-CC2 is used, the input logic setting of the X10 signal is incorrect.	Set Pr. $599=$ " 0 " to use the X10 signal with the NO contact input specification, and Pr. $599=$ "1" (initial value for separated converter types) to use the X10 signal with the NC contact input specification.	718


Check   points	Possible cause	Countermeasure   pefer to   page	
Load	Load is too heavy.	Reduce the load.	-
	Shaft is locked.	Inspect the machine (motor).	-

### 6.5.2 Motor or machine is making abnormal acoustic noise

Check points	Possible cause	Countermeasure	Refer to page
Input signal	Disturbance due to EMI when frequency or torque command is given from analog input (terminal 1, 2, 4).	Take countermeasures against EMI.	82
Parameter setting		Increase the Pr. 74 Input filter time constant if steady operation cannot be performed due to EMI.	481
Parameter setting	No carrier frequency noises (metallic noises) are generated.	In the initial setting, Pr. 240 Soft-PWM operation selection is enabled to change motor noise to an unoffending complex tone. Therefore, no carrier frequency noises (metallic noises) are generated.   Set Pr. $240=$ " 0 " to disable this function.	310
	The motor noise increases due to activation of the carrier frequency automatic reduction function when the motor is driven overloaded.	Reduce the load.   Disable the automatic reduction function by setting Pr. 260 PWM frequency automatic switchover = "0".	310
	Resonance occurs. (output frequency)	Set Pr. 31 to Pr.36, Pr. 552 (Frequency jump).   When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.	401
	Resonance occurs. (carrier frequency)	Change Pr. 72 PWM frequency selection setting. Changing the PWM carrier frequency produces an effect on avoiding the resonance frequency of a mechanical system or a motor.	310
		Set a notch filter.	220
	Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Perform offline auto tuning.	508
	Gain adjustment during PID control is insufficient.	To stabilize the measured value, change the proportional band (Pr.129) to a larger value, the integral time (Pr.130) to a slightly longer time, and the differential time (Pr.134) to a slightly shorter time.   Check the calibration of set point and measured value.	587
	The gain is too high under Real sensorless vector control, vector control, or PM sensorless vector control.	During speed control, check the setting of Pr. 820 Speed control P gain 2.	201
		During torque control, check the setting of Pr. 824 Torque control P gain 2.	243
Others	Mechanical looseness	Adjust machine/equipment so that there is no mechanical looseness.	-
	Contact the motor manufacturer.		
Motor	Operating with output phase loss	Check the motor wiring.	-

### 6.5.3 Inverter generates abnormal noise

Check   points	Possible cause	Countermeasure   page	
Fan	Fan cover was not correctly installed when a   cooling fan was replaced.	Install a fan cover correctly.	779

### 6.5.4 Motor generates heat abnormally

Check   points	Possible cause	Countermeasure   Refer to   page	
Motor	Motor fan is not working   (Dust is accumulated.)	Clean the motor fan.   Improve the environment.	
	Phase to phase insulation of the motor is   insufficient.	Check the insulation of the motor.	-
Main circuit	The inverter output voltage (U, V, W) are   unbalanced.	Check the output voltage of the inverter.   Check the insulation of the motor.	-
Parameter   setting	Pr.71 Applied motor setting is incorrect.	Check the Pr.71 Applied motor setting.	786
-	Motor current is large.	Refer to "6.5.11 Motor current is too large".	506

### 6.5.5 Motor rotates in the opposite direction

Check   points	Possible cause	Countermeasure   page	
Main circuit	Phase sequence of output terminals U, V and   W is incorrect.	Connect phase sequence of the output cables (terminal U, V,   W) to the motor correctly.	43
Input signal	The start signals (forward rotation, reverse   rotation) are connected improperly.	Check the wiring. (STF: forward rotation, STR: reverse rotation)	53,715
	The polarity of the frequency command is   negative during the polarity reversible   operation set by Pr.73 Analog input   selection.	Check the polarity of the frequency command.	473
	Torque command is negative during torque   control under vector control.	Check the torque command value.	232

### 6.5.6 Speed greatly differs from the setting

Check points	Possible cause	Countermeasure	Refer to page
Input signal	Frequency setting signal is incorrectly input.	Measure the input signal level.	-
	The input signal lines are affected by external EMI.	Take countermeasures against EMI, such as using shielded wires for input signal lines.	83
Parameter setting	Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency, and Pr. 902 to Pr. 905 settings are improper.	Check the settings of Pr.1, Pr.2, and Pr. 18.	399
		Check the Pr. 902 to Pr. 905 settings.	483
	Pr. 31 to Pr.36, Pr. 552 (frequency jump) settings are improper.	Narrow down the range of frequency jump.	401
Load	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
Parameter setting		Set Pr. 22 Stall prevention operation level (torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.)	191, 403
Motor		Check the capacities of the inverter and the motor.	-

### 6.5.7 Acceleration/deceleration is not smooth

Check points	Possible cause	Countermeasure	Refer to page
Parameter setting	Acceleration/deceleration time is too short.	Increase the acceleration/deceleration time.	320
	Torque boost (Pr.0, Pr.46, Pr.112) setting is improper under V/F control, so the stall prevention function is activated.	Increase/decrease the Pr. 0 Torque boost setting value by $0.5 \%$ increments so that stall prevention does not occur.	697
	The base frequency does not match the motor characteristics.	Under V/F control, set Pr. 3 Base frequency, Pr. 47 Second V/ F (base frequency), and Pr. 113 Third V/F (base frequency).	699
		Under vector control, set Pr. 84 Rated motor frequency.	166
	Regeneration avoidance operation is performed	If the frequency becomes unstable during regeneration avoidance operation, decrease the setting of Pr. 886 Regeneration avoidance voltage gain.	725
Load	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
Parameter setting		Set Pr. 22 Stall prevention operation level (torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.)	191, 403
Motor		Check the capacities of the inverter and the motor.	-

### 6.5.8 Speed varies during operation

Under Advanced magnetic flux vector control, Real sensorless vector control, vector control, and encoder feedback control, the output frequency varies between 0 and 2 Hz as the load fluctuates. This is a normal operation and not a fault.

Check points	Possible cause	Countermeasure	Refer to page
Load	Load varies during an operation.	Select Advanced magnetic flux vector control, Real sensorless vector control, vector control, or encoder feedback control.	166, 730
Input signal	Frequency setting signal is varying.	Check the frequency setting signal.	-
	The frequency setting signal is affected by EMI.	Set filter to the analog input terminal using Pr. 74 Input filter time constant, Pr. 822 Speed setting filter 1.	481
		Take countermeasures against EMI, such as using shielded wires for input signal lines.	83
	Malfunction is occurring due to the undesirable current generated when the transistor output unit is connected.	Use terminal PC (terminal SD when source logic) as a common terminal to prevent a malfunction caused by undesirable current.	58
	Multi-speed command signal is chattering.	Take countermeasures to suppress chattering.	-
	Feedback signal from the encoder is affected by EMI.	Place the encoder cable far from the EMI source such as main circuit and power supply voltage.   Earth (ground) the shield of the encoder cable to the enclosure using a metal P-clip or U-clip.	75


Check points	Possible cause	Countermeasure	Refer to page
Parameter setting	Fluctuation of power supply voltage is too large.	Under V/F control, change the Pr. 19 Base frequency voltage setting (approximately by $3 \%$ ).	699
	Pr. 80 Motor capacity and Pr. 81 Number of motor poles are not appropriate for the motor capacity under Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control.	Check the settings of Pr. 80 and Pr.81.	166
	Wiring length exceeds 30 m when Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control is selected.	Perform offline auto tuning.	508
	Under V/F control, wiring is too long and a voltage drop occurs.	In the low-speed range, set 0.5\% in Pr. 0 Torque boost.	697
		Change the control method to Advanced magnetic flux vector control or Real sensorless vector control.	166
	Hunting occurs by the generated vibration, for example, when structural rigidity at load side is insufficient.	Disable automatic control functions, such as the energy saving operation, fast-response current limit operation, torque limit, regeneration avoidance function, Advanced magnetic flux vector control, Real sensorless vector control, vector control, encoder feedback control, droop control, stall prevention, online auto tuning, notch filter, and orientation control. Under PID control, set smaller values to Pr. 129 PID proportional band and Pr. 130 PID integral time.   Adjust so that the control gain decreases and the level of safety increases.	-
		Change Pr. 72 PWM frequency selection setting.	310

### 6.5.9 Operation mode is not changed properly

Check points	Possible cause	Countermeasure	Refer to page
Input signal	Start signal (STF or STR) is ON.	Check that the STF and STR signals are off. When either is ON, the operation mode cannot be changed.	53, 715
Parameter setting	Pr. 79 Operation mode selection setting is improper.	When the Pr. 79 is set to " 0 (initial value)", the operation mode is the External operation mode at power ON. To switch to the   PU operation mode, press $\square$ PU on the operation panel (press $\square$ on the parameter unit (FR-PU07)). At other settings (1 to $4,6,7$ ), the operation mode is limited accordingly.	346
	Operation mode and a writing device do not correspond.	Check Pr. 79 Operation mode selection, Pr. 338   Communication operation command source, Pr. 339   Communication speed command source, Pr. 550 NET mode operation command source selection and Pr. 551 PU mode operation command source selection, and select an operation mode suitable for the purpose.	346, 356

### 6.5.10 Operation panel display is not operating

Check   points	Possible cause	Countermeasure   page	
Main circuit   Control   circuit	Power is not input.	Input the power.	40
Front cover	Operation panel is not properly connected to   the inverter.	Check if the inverter front cover is installed securely.	29

### 6.5.11 Motor current is too large

Check points	Possible cause	Countermeasure	Refer to page
Parameter setting	Torque boost (Pr.0, Pr.46, Pr.112) setting is improper under V/F control, so the stall prevention function is activated.	Increase/decrease the Pr. 0 Torque boost setting value by $0.5 \%$ increments so that stall prevention does not occur.	697
	V/F pattern is improper when V/F control is performed.(Pr.3, Pr.14, Pr.19)	Set rated frequency of the motor to Pr. 3 Base frequency. Use Pr. 19 Base frequency voltage to set the base voltage (for example, rated motor voltage).	699
		Change Pr. 14 Load pattern selection according to the load characteristic.	701
	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
		Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.)	191, 403
		Check the capacities of the inverter and the motor.	-
	Offline auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Perform offline auto tuning.	508
	When PM sensorless vector control is selected for a PM motor, and offline auto tuning is not performed.	Perform offline auto tuning for a PM motor.	529

### 6.5.12 Speed does not accelerate

Check points	Possible cause	Countermeasure	Refer to page
Input signal	Start command and frequency command are chattering.	Check if the start command and the frequency command are correct.	-
	The wiring length used for analog frequency command is too long, and it is causing a voltage (current) drop.	Perform Analog input bias/gain calibration.	483
	The input signal lines are affected by external EMI.	Take countermeasures against EMI, such as using shielded wires for input signal lines.	83
Parameter setting	Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency, and Pr. 902 to Pr. 905 settings are improper.	Check the settings of Pr. 1 and Pr. 2 and set Pr. 18.	399
		Check the Pr. 902 to Pr. 905 settings.	483
	The maximum voltage (current) input value is not set during the External operation. (Pr.125, Pr.126, Pr.18)	Check the settings of Pr. 125 Terminal 2 frequency setting gain frequency and Pr. 126 Terminal 4 frequency setting gain frequency.   To operate at 120 Hz or higher, set Pr. 18 High speed maximum frequency.	399, 483
	Torque boost (Pr.0, Pr.46, Pr.112) setting is improper under V/F control, so the stall prevention function is activated.	Increase/decrease the Pr. 0 Torque boost setting value by $0.5 \%$ increments so that stall prevention does not occur.	697
	V/F pattern is improper when V/F control is performed.   (Pr.3, Pr.14, Pr.19)	Set rated frequency of the motor to Pr. 3 Base frequency. Use Pr. 19 Base frequency voltage to set the base voltage (for example, rated motor voltage).	699
		Change Pr. 14 Load pattern selection according to the load characteristic.	701
	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
		Set Pr. 22 Stall prevention operation level (torque limit level) higher according to the load. (If Pr. 22 is set too high, an overcurrent trip (E.OC[]) is likely to occur.)	191, 403
		Check the capacities of the inverter and the motor.	-
	Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Perform offline auto tuning.	508
	The setting of pulse train input is improper.	Check the specification of the pulse generator (open collector output or complementary output) and check the adjustment of the pulse train and frequency (Pr. 385 Frequency for zero input pulse and Pr. 386 Frequency for maximum input pulse).	365
	During PID control, output frequency is automatically controlled to make measured value = set point.		587
Main circuit	A brake resistor is connected across terminals $\mathrm{P} 3(\mathrm{P} /+)$ and P 1 or across P1 and PR by mistake.	Connect a brake resistor across terminals P3(P/+) and PR.	78

### 6.5.13 Unable to write parameter setting

Check   points	Possible cause	Countermeasure   page	
Input signal	Operation is being performed (signal STF or   STR is ON).	Stop the operation.   When Pr.77 Parameter write selection = "0" (initial value),   write is enabled only during a stop.	298
	You are attempting to set the parameter in the   External operation mode.	Choose the PU operation mode.   Or, set Pr.77 Parameter write selection = "2" to enable   parameter write regardless of the operation mode.	298,346
	Parameter write is disabled by the Pr.77   Parameter write selection setting.	Check the Pr.77 setting.	298
	Operation mode and a writing device do not   correspond.	Check Pr.79, Pr.338, Pr.339, Pr.550 and Pr.551, and select an   operation mode suitable for the purpose.	346,356

### 6.5.14 Power lamp is not lit

Check   points	Possible cause	Countermeasure   page	
Main circuit   Control   circuit	Wiring or installation is improper.	Check for the wiring and the installation.   Power lamp is lit when power is supplied to the control circuit   (R1/L11, S1/L21).	42

## CHAPTER 7 PRECAUTIONS FOR MAINTENANCE AND INSPECTION

Inspection item.774
7.2 Measurement of main circuit voltages, currents and powers ..... 786

PRECAUTIONS FOR MAINTENANCE AND
INSPECTION
This chapter explains the precautions for maintenance and inspection for this product.
Always read the instructions before using the equipment.
For the "PRECAUTIONS FOR MAINTENANCE AND INSPECTION" of the separated converter type, refer to the FR-A862 (Separated Converter Type) Instruction Manual (Hardware) [IB-0600571ENG].

### 7.1 Inspection item

The inverter is a static unit mainly consisting of semiconductor devices. Daily inspection must be performed to prevent any fault from occurring due to the adverse effects of the operating environment, such as temperature, humidity, dust, dirt and vibration, changes in the parts with time, service life, and other factors.

## - Precautions for maintenance and inspection

When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched OFF, and then make sure that the voltage across the main circuit terminals $\mathrm{P} /+$ and $\mathrm{N} /-$ of the inverter is not more than 30 VDC using a tester, etc.

### 7.1.1 Daily inspection

Basically, check for the following faults during operation.

- Motor operation fault
- Improper installation environment
- Cooling system fault
- Abnormal vibration, abnormal noise
- Abnormal overheat, discoloration


### 7.1.2 Periodic inspection

Check the areas inaccessible during operation and requiring periodic inspection.
Consult us for periodic inspection.

- Check and clean the cooling system:
- Check the tightening and retighten:

Clean the air filter, etc.
The screws and bolts may become loose due to vibration, temperature changes, etc. Check and tighten them. Tighten them according to the specified tightening torque. (Refer to page 49.)

- Check the conductors and insulating materials for corrosion and damage.
- Measure the insulation resistance.
- Check and change the cooling fan and relay.


### 7.1.3 Daily and periodic inspection

Area of inspection	Inspection item		Description	Inspection interval		Corrective action at fault occurrence	Check by the user	
			Daily	Periodic *3				
General	Surrounding environment			Check the surrounding air temperature, humidity, dirt, corrosive gas, oil mist, etc.	$\bigcirc$		Improve the environment.	
	Overall unit		Check for unusual vibration and noise.	$\bigcirc$		Check fault location and retighten.		
			Check for dirt, oil, and other foreign material. *1	$\bigcirc$		Clean.		
	Power supply voltage		Check that the main circuit voltages and control voltages are normal. *2	$\bigcirc$		Inspect the power supply.		
Main circuit	General		Check with megger (across main circuit terminals and earth (ground) terminal).		$\bigcirc$	Contact the manufacturer.		
			Check for loose screws and bolts.		$\bigcirc$	Retighten.		
			Check for overheat traces on the parts.		$\bigcirc$	Contact the manufacturer.		
			Check for stain.		$\bigcirc$	Clean.		
	Conductors, cables		Check conductors for distortion.		$\bigcirc$	Contact the manufacturer.		
			Check cable sheaths for breakage and deterioration (crack, discoloration, etc.).		$\bigcirc$	Contact the manufacturer.		
	Transformer/ reactor		Check for unusual odor and abnormal increase of whining sound.	$\bigcirc$		Stop the equipment and contact the manufacturer.		
	Terminal block		Check for a damage.		$\bigcirc$	Stop the equipment and contact the manufacturer.		
	Smoothing aluminum electrolytic capacitor		Check for liquid leakage.		$\bigcirc$	Contact the manufacturer.		
			Check for safety valve projection and bulge.		$\bigcirc$	Contact the manufacturer.		
			Visual check and judge by the life check of the main circuit capacitor. (Refer to page 778.)		$\bigcirc$			
	Relay/contactor		Check that the operation is normal and no chattering sound is heard.		$\bigcirc$	Contact the manufacturer.		
	Resistor		Check for crack in resistor insulation.		$\bigcirc$	Contact the manufacturer.		
			Check for a break in the cable.		$\bigcirc$	Contact the manufacturer.		
Control circuit, protective circuit	Operation check		Check that the output voltages across phases are balanced while operating the inverter alone.		$\bigcirc$	Contact the manufacturer.		
			Check that no fault is found in protective and display circuits in a sequence protective operation test.		$\bigcirc$	Contact the manufacturer.		
	Components check	Overall	Check for unusual odor and discoloration.		$\bigcirc$	Stop the equipment and contact the manufacturer.		
			Check for serious rust development.		$\bigcirc$	Contact the manufacturer.		
		Aluminum electrolytic capacitor	Check for liquid leakage in a capacitor and deformation trace.		$\bigcirc$	Contact the manufacturer.		
			Visual check and judge by the life check of the control circuit capacitor. (Refer to page 778.)		$\bigcirc$			


Area of inspection	Inspection item	Description	Inspection interval		Corrective action at fault occurrence	Check by the user
			Daily	Periodic *3		
Cooling system	Cooling fan	Check for unusual vibration and noise.	$\bigcirc$		Replace the fan.	
		Check for loose screws and bolts.		$\bigcirc$	Fix with the fan cover fixing screws	
		Check for stain.		$\bigcirc$	Clean.	
	Heat sink	Check for clogging.		$\bigcirc$	Clean.	
		Check for stain.		$\bigcirc$	Clean.	
Display	Indication	Check that display is normal.	$\bigcirc$		Contact the manufacturer.	
		Check for stain.		$\bigcirc$	Clean.	
	Meter/counter	Check that reading is normal.	$\bigcirc$		Stop the equipment and contact the manufacturer.	
Load motor	Operation check	Check for vibration and abnormal increase in operation noise.	$\bigcirc$		Stop the equipment and contact the manufacturer.	

*1 Oil component of the heat dissipation grease used inside the inverter may leak out. The oil component, however, is not flammable, corrosive, nor conductive and is not harmful to humans. Wipe off such oil component
*2 It is recommended to install a voltage monitoring device for checking the voltage of the power supplied to the inverter.
*3 One to two years of periodic inspection cycle is recommended. However, it differs according to the installation environment. Consult us for periodic inspection.

## NOTE

- Continuous use of a leaked, deformed, or degraded smoothing aluminum electrolytic capacitor (as shown in the table above) may lead to a burst, breakage or fire. Replace such a capacitor without delay.


### 7.1.4 Checking the inverter module and the converter module

## - Preparation

- Disconnect the external power supply cables (R/L1, S/L2, T/L3) and motor cables (U, V, W).
- Prepare a tester. (For the resistance measurement, use the $100 \Omega$ range.)


## - Checking method

Change the polarity of the tester alternately at the inverter terminals $\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{P} /+$, and $\mathrm{N} /-$ and check the electric continuity.

## NOTE

- Before measurement, check that the smoothing capacitor is discharged.
- At the time of electric discontinuity, the measured value is almost $\infty$. When there is an instantaneous electric continuity, due to the smoothing capacitor, the tester may not indicate $\infty$. At the time of electric continuity, the measured value is several $\Omega$ to several tens of $\Omega$. If all measured values are almost the same, although these values are not constant depending on the module type and tester type, the modules are without fault.


## - Module device numbers and terminals to be checked

		Tester polarity		Result		Tester polarity		Result
		$\bigoplus$	$\bigcirc$			$\bigoplus$	$\bigcirc$	
Converter module	D1	R/L1	P/+	Discontinuity	D4	R/L1	N/-	Continuity
		P/+	R/L1	Continuity		N/-	R/L1	Discontinuity
	D2	S/L2	P/+	Discontinuity	D5	S/L2	N/-	Continuity
		P/+	S/L2	Continuity		N/-	S/L2	Discontinuity
	D3	T/L3	P/+	Discontinuity	D6	T/L3	N/-	Continuity
		P/+	T/L3	Continuity		N/-	T/L3	Discontinuity
Inverter module	TR1	U	P/+	Discontinuity	TR4	U	N/-	Continuity
		P/+	U	Continuity		N/-	U	Discontinuity
	TR3	V	P/+	Discontinuity	TR6	V	N/-	Continuity
		P/+	V	Continuity		N/-	V	Discontinuity
	TR5	W	P/+	Discontinuity	TR2	W	N/-	Continuity
		P/+	W	Continuity		N/-	W	Discontinuity

(Assumes the use of an analog meter.)


### 7.1.5 Cleaning

Always run the inverter in a clean status.
When cleaning the inverter, gently wipe dirty areas with a soft cloth immersed in neutral detergent or ethanol.

## NOTE

- Do not use solvent, such as acetone, benzene, toluene and alcohol, as these will cause the inverter surface paint to peel off.
- The display, etc. of the operation panel (FR-LU08) and parameter unit (FR-PU07) are vulnerable to detergent and alcohol. Therefore, avoid using them for cleaning.


### 7.1.6 Replacement of parts

The inverter consists of many electronic parts such as semiconductor devices.
The following parts may deteriorate with age because of their structures or physical characteristics, leading to reduced performance or fault of the inverter. For preventive maintenance, the parts must be replaced periodically.
Use the life check function as a guidance of parts replacement.

Part name	Estimated lifespan ${ }^{* 1}$	Description
Cooling fan	10 years	Replace (as required)
Main circuit smoothing capacitor	10 years $^{* 2}$	Replace (as required)
On-board smoothing capacitor	10 years $^{* 2}$	Replace the board (as required)
Relays	-	As required
Main circuit fuse (FR-A860-02890 or higher)	10 years	Replace the fuse (as required)

*1 Estimated lifespan for when the yearly average surrounding air temperature is $40^{\circ} \mathrm{C}$. (without corrosive gas, flammable gas, oil mist, dust and dirt etc.)
*2 Output current: $80 \%$ of the inverter rating

## NOTE

- For parts replacement, contact the nearest Mitsubishi FA center.


## - Displaying the life of the inverter parts

The inverter diagnoses the main circuit capacitor, control circuit capacitor, cooling fan, and inrush current limit circuit by itself and estimates their lives.
The self-diagnostic warning is output when the life span of each part is near its end. It gives an indication of replacement time. The life warning output can be used as a guideline for life judgment.

Parts	Judgment level
Main circuit capacitor	$85 \%$ of the initial capacity
Control circuit capacitor	Estimated remaining life 10\%
Inrush current limit circuit	Estimated remaining life 10\% (Power ON: 100,000 times left)
Cooling fan	Less than the specified speed

## NOTE

- Refer to page 312 to perform the life check of the inverter parts.


## - Replacement procedure of the cooling fan

The replacement interval of the cooling fan used for cooling the parts generating heat such as the main circuit semiconductor is greatly affected by the surrounding air temperature. When unusual noise and/or vibration are noticed during inspection, the cooling fan must be replaced immediately.

## ■ Removal (FR-A860-00061 to 02430)

1. Push the hooks from above and remove the fan cover.


FR-A860-00061, 00090


FR-A860-00170 to 00450


FR-A860-00680 to 02430
2. Disconnect the fan connectors.
3. Remove the fan.


FR-A860-00061, 00090


FR-A860-00170 to 00450


FR-A860-00680 to 02430

## ■ Reinstallation (FR-A860-00061 to 02430)

1. After confirming the orientation of the fan, reinstall the fan so that the "AIR FLOW" faces up.

2. Reconnect the fan connectors.


FR-A860-00061, 00090


FR-A860-00450


FR-A860-00170, 00320

FR-A860-00680, 01080



FR-A860-01440 to 02430
3. Reinstall the tan cover.


## NOTE

- Installing the fan in the opposite direction of air flow can cause the inverter life to be shorter.
- Prevent the cable from being caught when installing a fan.
- Switch the power OFF before replacing fans. Since the inverter circuits are charged with voltage even after power OFF, replace fans only when the inverter cover is on the inverter to prevent an electric shock accident.


## ■ Removal (FR-A860-02890 or higher)

1. Remove the fan cover fixing screws, and remove the fan cover.
2. Disconnect the fan connector and remove the fan block.
3. Remove the fan fixing screws, and remove the fan.

*1 The number of cooling fans differs according to the inverter capacity.

## ■ Reinstallation (FR-A860-02890 or higher)

1. After confirming the orientation of the fan, reinstall the fan so that the arrow on the left of "AIR FLOW" faces up. - <Fan side face>

2. Install fans referring to the above figure. The tightening torque of the fan fixing screws is $0.73 \mathrm{~N} \cdot \mathrm{~m}$.

## NOTE

- Installing the fan in the opposite air flow direction can cause the inverter life to be shorter.
- Prevent the cable from being caught when installing a fan.
- Switch the power OFF before replacing fans. Since the inverter circuits are charged with voltage even after power OFF, replace fans only when the inverter cover is on the inverter to prevent an electric shock accident.


## - Smoothing capacitors

A large-capacity aluminum electrolytic capacitor is used for smoothing in the DC section of the main circuit, and an aluminum electrolytic capacitor is used for stabilizing the control power in the control circuit. Adverse effects from ripple currents deteriorate capacitors. Replacement intervals of capacitors vary greatly with surrounding temperatures and operating conditions. Replace them roughly every 10 years when used in normal air-conditioned environments.
Inspecting the product visually:

- Case: Check that the sides and bottom of the capacitor have not ruptured.
- Rubber seal: Check for any noticeable bulging or severe cracks.
- Check for external cracks, discoloration, leakage, etc. It is assumed that the capacitor has reached the end of its life when its capacity has dropped below $80 \%$ of its rated capacity.


## NOTE

- The inverter diagnoses the main circuit capacitor and control circuit capacitor by itself and estimates its remaining life. (Refer to page 312.)


## - Relay output terminals

- The contacts of relays deteriorate over time. To prevent faults from occurring, relays must be replaced when they have reached the maximum of switching operations (switching life).
- The control terminal block must be replaced (refer to page 784) in case of failure of either relay between the relay output terminals C 1 and B 1 or A 1 , or terminals C 2 and B 2 or A 2 . After replacing the control terminal block, connect the jumper connector to the correct position in accordance with the control logic of input signals. (Refer to page 57.)


## Main circuit fuse inside the inverter (FR-A860-02890 or higher)

A fuse is used inside the inverter. Replacement intervals of fuses vary with surrounding temperatures and operating conditions. Replace them roughly every 10 years when used in normal air-conditioned environments.

### 7.1.7 Removal and reinstallation of the control circuit terminal block

The FR-A800 series inverter has a removable control circuit terminal block, which can be replaced with a new one or a control terminal option.

## - Removal and reinstallation

1. Loosen the two mounting screws at the both side of the control circuit terminal block. (These screws cannot be removed.) Slide down the control circuit terminal block to remove it.

2. Be careful not to bend the pins of the inverter's control circuit connector, reinstall the control circuit terminal block and fix it with the mounting screws.

## NOTE

- Before starting the replacement, power OFF the inverter, wait for at least 10 minutes, and then check that the charge lamp is OFF to ensure safety.


## - Removal and reinstallation precautions

Precautions to be taken when removing or reinstalling the control circuit terminal block are shown below.
Observe the following precautions and handle the inverter properly to avoid malfunctions or failures.

- To remove or reinstall the control circuit terminal block, keep it upright so that it is parallel with the inverter.
- To install the control circuit terminal block, slide it upward so that the tongues on the inverter slot into the grooves on the terminal block.
- Check that the terminal block is parallel to the inverter and the pins on the inverter control circuit connector are not bent. After checking proper connection, fix the terminal block in place with two screws.



## NOTE

- Do not tilt the terminal block while tightening the screws or removing it from the inverter. (Otherwise, stress applied to the control circuit terminal block or the control circuit connector may damage the pins.)
- After replacing the control terminal block, connect the jumper connector to the correct position in accordance with the control logic of input signals. (Refer to page 57.)


### 7.2 Measurement of main circuit voltages, currents and powers

Since the voltages and currents on the inverter power supply and output sides include harmonics, measurement data depends on the instruments used and circuits measured. When instruments for commercial frequency are used for measurement, measure the following circuits with the instruments given on the next page.

## NOTE

- When installing meters etc. on the inverter output side

When the inverter-to-motor wiring length is large, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating. To measure and display the output voltage and output current of the inverter, it is recommended to use the terminal AM and FM output functions of the inverter.


## - Measuring points and instruments

Item	Measuring point	Measuring instrument	Remarks (reference measured value)
Power supply voltage V1	Across R/L1 and S/ L2, S/L2 and T/L3, T/ L3 and R/L1	Digital power meter (for inverter)	Commercial power supply Within permissible AC voltage fluctuation (Refer to page 792.)
Power supply side current 11	R/L1, S/L2, T/L3 line current		
Power supply side power P1	R/L1, S/L2, T/L3 and Across R/L1 and S/ L2, S/L2 and T/L3, T/ L3 and R/L1		$\mathrm{P} 1=\mathrm{W} 11+\mathrm{W} 12+\mathrm{W} 13$ (3-wattmeter method)
Power supply side power factor Pf1	Calculate after measuring power supply voltage, power supply side current and power supply side power.$\mathrm{Pf}_{1}=\frac{\mathrm{P}_{1}}{\sqrt{3} \mathrm{~V}_{1} \times \mathrm{I}_{1}} \times 100 \%$		
Output side voltage V2	Across U and $\mathrm{V}, \mathrm{V}$ and $W$, and $W$ and $U$	Digital power meter (for inverter) ${ }^{* 1}$	Difference between the phases is within $1 \%$ of the maximum output voltage.
Output side current I2	$\mathrm{U}, \mathrm{V}$ and W line currents	Digital power meter (for inverter)	Difference between the phases is $10 \%$ or lower of the inverter rated current.
Output side power P2	U, V, W and across U and $\mathrm{V}, \mathrm{V}$ and W		$\mathrm{P} 2=\mathrm{W} 21+\mathrm{W} 22$   2-wattmeter method (or 3-wattmeter method)
Output side power factor Pf2	Calculate in similar manner to power supply side power factor.$\mathrm{Pf}_{2}=\frac{\mathrm{P}_{2}}{\sqrt{3} \mathrm{~V}_{2} \times \mathrm{I}_{2}} \times 100 \%$		
Converter output	Across P/+ and N/-	Tester such as a digital multimeter   Tester such as a digital multimeter, or moving-coil type instrument (internal resistance 50 $\mathrm{k} \Omega$ or more)	Inverter LED is lit. $1.35 \times \mathrm{V} 1$
Frequency setting	Across 2, 4(+) and 5		0 to $10 \mathrm{VDC}, 4$ to 20 mA
sig	Across 1(+) and 5		0 to $\pm 5$ VDC and 0 to $\pm 10$ VDC ${ }^{\text {V }}$
Frequency setting power supply	Across 10(+) and 5		5.2 VDC
	Across 10E(+) and 5		10 VDC
Frequency meter signal   Start signal Select signal Reset signal Output stop signal	Across AM(+) and 5		Approximately 10 VDC at maximum frequency (without frequency meter)
	Across FM(+) and SD		Approximately 5 VDC at maximum   frequency   (without frequency meter) "SD" is   common
			Pulse width T1: Adjust with Pr. 900 . Pulse cycle T2: Set with Pr. 55. (frequency monitor only)
	Across STF, STR, RH, RM, RL, JOG, RT, AU, STP (STOP), CS, RES, MRS(+) and SD (for sink logic)		When open 20 to 30 VDC   ON voltage: 1 V or less
Fault signal	Across A1 and C1   Across B1 and C1	Tester such as a digital multimeter	Continuity check ${ }^{*}{ }^{2}$   Normal: discontinuity across A1 and C1 (continuity across B1 and C1)   Fault: continuity across A 1 and C 1 (discontinuity across B1 and C1)

### 7.2.1 Measurement of powers

Use a digital power meter (for inverter) on the inverter's input side.

### 7.2.2 Measurement of voltages

## - Inverter input side

Use a digital power meter (for inverter) on the inverter's input side.

## - Inverter output side

When using a measuring instrument, use a digital power meter for inverters since the inverter outputs PWM-controlled square wave voltage. The value monitored on the operation panel is the inverter-controlled voltage itself. Monitoring values via the operation panel or by outputting the analog signal is recommended as these values are accurate.

### 7.2.3 Measurement of currents

Use a digital power meter (for inverter) both on the inverter's input and output sides.
Since current on the inverter input side tends to be unbalanced, measurement of three phases is recommended. Correct value cannot be obtained by measuring only one or two phases. On the other hand, the unbalanced ratio of each phase of the output side current should be within $10 \%$.
The inverter output current can be monitored on the operation panel. The value monitored on the operation panel is accurate if the output frequency varies, and it is recommended to monitor values (provide analog output) using the operation panel.

### 7.2.4 Measurement of inverter input power factor

Calculate using effective power and apparent power. A power-factor meter cannot indicate an exact value.
Total power factor of the inverter $=$
$\frac{\text { Effective power }}{\text { Apparent power }}$
$=\frac{\text { Three-phase input power found by the } 3 \text {-wattmeter method }}{\sqrt{3} \times \mathrm{V} \text { (power supply voltage) } \times \mathrm{I} \text { (input current effective value) }}$

### 7.2.5 Measurement of converter output voltage (across terminals $\mathbf{P}$ and $\mathbf{N}$ )

The output voltage of the converter is output across terminals P and N , and can be measured with a voltmeter such as a digital multimeter. Although the voltage varies according to the power supply voltage, approximately 800 VDC to 900 VDC is output when no load is connected and voltage decreases during driving load operation.
When energy is regenerated from the motor during deceleration, for example, the converter output voltage rises to nearly 1100 VDC to 1300 VDC maximum.

### 7.2.6 Measurement of inverter output frequency

In the initial setting, a pulse train proportional to the output frequency is output across the pulse train output terminals FM and SD of the inverter. This pulse train output can be counted by a frequency counter, or a meter can be used to read the mean value of the pulse train output voltage. When a meter is used to measure the output frequency, approximately 5 VDC is indicated at the maximum frequency.
For detailed specifications of the pulse train output terminal FM, refer to page 437.

### 7.2.7 Insulation resistance test using megger

- For the inverter, conduct the insulation resistance test on the main circuit only as shown below and do not perform the test on the control circuit. (Use a 500 VDC megger.)


## NOTE

- Before performing the insulation resistance test on the external circuit, disconnect the cables from all terminals of the inverter so that the test voltage is not applied to the inverter.
- For the continuity test of the control circuit, use a tester (high resistance range) and do not use the megger or buzzer.



### 7.2.8 Pressure test

Do not conduct a pressure test. Deterioration may occur.

## CHAPTER 8 SPECIFICATIONS

8.1 Inverter rating ..... 792
8.2 Common specifications. ..... 795
8.3 Outline dimension drawings ..... 797

## 8 SPECIFICATIONS

This chapter explains the specifications of this product.
Always read the instructions before using the equipment.
For the "SPECIFICATIONS" of the separated converter type, refer to the FR-A862 (Separated Converter Type) Instruction Manual (Hardware) [IB-0600571ENG].

### 8.1 Inverter rating

## FR-A860-00450 or lower

Model FR-A860-[ ]-N6				00027	00061	00090	00170	00320	00450	
Inverter capacity (kW)				0.75	2.2	3.7	7.5	15.0	22.0	
Applicable motor capacity (kW) *1		SLD		1.5	3.7	5.5	11	22	30	
		LD		1.12	2.2	3.7	7.5	18.5	30	
		ND (initial setting)		0.75	2.2	3.7	7.5	15	22	
		HD		0.4	1.5	2.2	5.5	11	18.5	
Rated capacity$($ kVA $) ~ * 2$		SLD		2.7	6.1	9	17	32	45	
		LD		2.5	5.6	8.2	16	27	41	
		ND (initial setting)		1.7	4	6.1	12	22	33	
		HD		1	2.7	4	9	16	24	
Rated current   (A) ${ }^{*}$		SLD		2.7 (2.3)	6.1 (5.2)	9 (7.65)	17 (14.4)	32 (27.2)	45 (38.2)	
		LD		2.5 (2.1)	5.6 (4.8)	8.2 (7)	16 (13.6)	27 (22.9)	41 (34.8)	
		ND (initial setting)		1.7	4	6.1	12	22	33	
		HD		1.0	2.7	4	9	16	24	
Overload current rating *4		SLD		$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature $30^{\circ} \mathrm{C}$			$110 \% 60 \mathrm{~s}, 120 \% 3$ s (inverse-time characteristics) at ambient temperature $40^{\circ} \mathrm{C}$			
		LD		$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at ambient temperature $40^{\circ} \mathrm{C}$						
		ND (initial setting)		$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics) at ambient temperature $40^{\circ} \mathrm{C}$						
		HD		$200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}, 280 \% 0.5 \mathrm{~s}$ (inverse-time characteristics) at ambient temperature $40^{\circ} \mathrm{C}$						
	Rated voltage*5			Three-phase 525 to 600 V						
횰	Regenerative	Brake transistor		Built-in						
$\bigcirc$	braking	Maximum brake torque *6		20\% torque/continuous						
Rated input AC voltage/frequency				Three-phase 525 to 600 V 60 Hz						
Permissible AC voltage fluctuation				472 to 660 V 60 Hz						
Permissible frequency fluctuation				$\pm 5 \%$						
Rated input current (A) *7		Without DC reactor	SLD	4.7	11.0	15.0	27.0	43.0	61.0	
		LD	4.4	9.8	14.0	25.0	36.0	55.0		
		ND (initial setting)	3.0	7.0	10.0	19.0	29.0	44.0		
		HD	1.8	4.7	6.8	14.0	21.0	32.0		
		With DC reactor *3	SLD	2.7 (2.3)	6.1 (5.2)	9.0 (7.65)	17.0 (14.4)	32.0 (27.2)	45.0 (38.2)	
		LD	2.5 (2.1)	5.6 (4.8)	8.2 (7.0)	16.0 (13.6)	27.0 (22.9)	41.0 (34.8)		
		ND (initial setting)	1.7	4.0	6.1	12.0	22.0	33.0		
		HD	1.0	2.7	4.0	9.0	16.0	24.0		
Power supply capacity (kVA) *8			Without DC reactor	SLD	4.7	10.6	15.0	26.7	42.4	60.6
		LD		4.4	9.8	13.8	25.2	35.8	54.4	
		ND (initial setting)		3.0	7.0	10.3	18.9	29.2	43.8	
		HD		1.8	4.7	6.7	14.2	21.2	31.9	
		With DC reactor	SLD	2.7	6.1	9.0	17.0	32.0	45.0	
		LD	2.5	5.6	8.2	16.0	27.0	41.0		
		ND (initial setting)	1.7	4.0	6.1	12.0	22.0	33.0		
		HD	1.0	2.7	4.0	9.0	16.0	24.0		
Protective structure (IEC 60529)				$\begin{aligned} & \text { Enclosed type (UL type } 1 \text { plenum rated) }{ }^{* 9} \text {, } \\ & { }^{*} 10 \end{aligned}$			Enclosed type (UL type 1 plenum rated) ${ }^{* 9}$			


| Model FR-A860-[ ]-N6 | $\mathbf{0 0 0 2 7}$ | $\mathbf{0 0 0 6 1}$ | $\mathbf{0 0 0 9 0}$ | $\mathbf{0 0 1 7 0}$ | $\mathbf{0 0 3 2 0}$ | $\mathbf{0 0 4 5 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cooling system | Natural | Forced air |  |  |  |  |
| Approx. mass (kg) | 3.5 | 4.0 | 4.0 | 7 | 9 | 17 |

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the 4-pole standard motor.
*2 The rated output capacity indicated assumes that the output voltage is 575 V .
*3 When an operation is performed with the carrier frequency set to 3 kHz or more, and the inverter output current reaches the value indicated in the parenthesis, the carries frequency is automatically lowered. The motor noise becomes louder accordingly.
*4 The \% value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under $100 \%$ load.
*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.
*6 Value for the ND rating
*7 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.
*8 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).
*9 UL Type 1 Enclosure - Suitable for Installation in a Compartment Handling Conditioned Air (Plenum)
*10 When a provided brake resistor is used, the protective structure is open type (NEMA 1).

## FR-A860-00680 or higher

Model FR-A860-[ ]			00680	01080	01440	01670	02430	02890	03360	04420
Inverter capacity (kW)			37.0	55.0	75.0	90.0	110.0	132.0	185.0	220.0
Applicable motor capacity (kW) *1		SLD	45	75	110	110	185	220	260	335
		LD	45	75	90	110	150	185	220	300
		ND (initial setting)	37	55	75	90	110	150	185	220
		HD	30	45	55	75	90	110	150	185
Rated capacity$(k V A)^{* 2}$		SLD	68	108	144	167	242	288	335	441
		LD	62	99	131	152	221	254	303	401
		ND (initial setting)	55	84	104	131	152	221	254	303
		HD	41	63	84	104	131	152	202	254
Rated current (A) *3		SLD	68 (57.8)	$\begin{aligned} & \hline 108 \\ & (91.8) \end{aligned}$	$\begin{aligned} & 144 \\ & (122) \end{aligned}$	$\begin{aligned} & 167 \\ & (141) \end{aligned}$	$\begin{aligned} & 243 \\ & (206) \end{aligned}$	$\begin{aligned} & 289 \\ & (245) \end{aligned}$	$\begin{aligned} & 336 \\ & (285) \end{aligned}$	$\begin{aligned} & 442 \\ & (375) \end{aligned}$
		LD	62 (52.7)	99 (84.1)	$\begin{aligned} & 131 \\ & (111) \end{aligned}$	$\begin{aligned} & \hline 152 \\ & (129) \end{aligned}$	$\begin{aligned} & 221 \\ & (187) \end{aligned}$	$\begin{aligned} & 255 \\ & (216) \end{aligned}$	$\begin{aligned} & 304 \\ & (258) \end{aligned}$	$\begin{aligned} & 402 \\ & (341) \end{aligned}$
		ND (initial setting)	55	84	104 (88)	$\begin{aligned} & 131 \\ & (111) \\ & \hline \end{aligned}$	$\begin{aligned} & 152 \\ & (129) \end{aligned}$	$\begin{aligned} & 221 \\ & (187) \end{aligned}$	$\begin{aligned} & 255 \\ & (216) \end{aligned}$	$\begin{aligned} & 304 \\ & (258) \\ & \hline \end{aligned}$
		HD	41	63	84 (71)	104 (88)	$\begin{aligned} & 131 \\ & (111) \end{aligned}$	$\begin{aligned} & 152 \\ & (129) \end{aligned}$	$\begin{aligned} & 202 \\ & (171) \end{aligned}$	$\begin{aligned} & 255 \\ & (216) \end{aligned}$
Overload current rating *4		SLD	$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature $40^{\circ} \mathrm{C}$							
		LD	$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$   (inverse-time characteristics) at surrounding air temperature $40^{\circ} \mathrm{C}$		$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature $50^{\circ} \mathrm{C}$					
		ND (initial setting)	$150 \% 60$ s, 200\% 3 s (inverse-time characteristics) at surrounding air temperature $40^{\circ} \mathrm{C}$		$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature $50^{\circ} \mathrm{C}$					
		HD	$200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}, 280 \% 0.5 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature $40^{\circ} \mathrm{C}$							
$\begin{aligned} & \stackrel{\rightharpoonup}{\partial} \\ & \stackrel{\rightharpoonup}{7} \\ & 0 \end{aligned}$	Rated voltage *5		Three-phase 525 to 600 V							
	Regenerative braking	Brake transistor	Built-in		Not included					
		Maximum brake torque *6	20\% torque/ continuous		-	-	-	-	-	-


*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the 4-pole standard motor.
*2 The rated output capacity indicated assumes that the output voltage is 575 V .
*3 When an operation is performed with the carrier frequency set to 3 kHz or more, and the inverter output current reaches the value indicated in the parenthesis, the carries frequency is automatically lowered. The motor noise becomes louder accordingly.
*4 The \% value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under $100 \%$ load.
*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.
*6 Value for the ND rating
*7 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.
*8 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).
8.2 Common specifications
$\left.\left.\begin{array}{|l|l|l|}\hline & \text { Control method } & \begin{array}{l}\text { Soft-PWM control, high carrier frequency PWM control (selectable among V/F control, Advanced magnetic } \\ \text { flux vector control, Real sensorless vector control), vector control }\end{array} \\ \hline \text { Output frequency range PM sensorless vector control }\end{array}\right] \begin{array}{l}\text { 0.2 to } 590 \mathrm{~Hz} \text { (The upper-limit frequency is } 400 \mathrm{~Hz} \text { under Advanced magnetic flux vector control, Real } \\ \text { sensorless vector control, vector control }{ }^{* 1} \text {, and PM sensorless vector control.) }\end{array}\right]$

	For meter	Pulse train output	Max. 2.4 kHz : one terminal (output frequency)   The monitored item can be changed using Pr. 54 FM terminal function selection.
		Voltage output	Max. 10 VDC: one terminal (output voltage)   The monitored item can be changed using Pr. 158 AM terminal function selection.
Protective/ warning function		Protective function	Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip, Motor overload trip, Heat sink overheat, Instantaneous power failure ${ }^{* 4}$, Undervoltage ${ }^{* 4}$, Input phase loss ${ }^{* 4 * 5}$, Stall prevention stop, Loss of synchronism detection ${ }^{* 5}$, Brake transistor alarm detection ${ }^{* 6}$, Upper limit fault detection, Lower limit fault detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation ${ }^{* 5}$, PTC thermistor operation ${ }^{* 5}$, Option fault, Communication option fault, Parameter storage device fault (control circuit board), PU disconnection, Retry count excess ${ }^{* 5}$, Parameter storage device fault (main circuit board), CPU fault, Operation panel power supply short circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current detection ${ }^{* 5}$, Inrush current limit circuit fault ${ }^{*}$, Communication fault (inverter), Analog input fault, USB communication fault, Overspeed occurrence ${ }^{* 5}$, Speed deviation excess detection ${ }^{* 1 * 5}$, Signal loss detection ${ }^{* 1 * 5}$, Excessive position fault ${ }^{* 1 * 5}$, Orientation encoder no-signal ${ }^{* 1 * 5}$, Brake sequence fault ${ }^{* 5}$, Encoder phase fault ${ }^{* 1 * 5}, 4 \mathrm{~mA}$ input fault ${ }^{* 5}$, Pre-charge fault ${ }^{*}$, PID signal fault ${ }^{* 5}$, Option fault, Opposite rotation deceleration fault ${ }^{* 5}$, Internal circuit fault, Magnetic pole position unknown ${ }^{* 1}$, External fault during output operation ${ }^{* 5}$
		Warning function	Fan alarm, Stall prevention (overcurrent), Stall prevention (overvoltage), Regenerative brake pre-alarm ${ }^{* 5 * 6 \text {, }, \text {, }, \text {, }}$ Electronic thermal relay function pre-alarm, PU stop, Speed limit indication ${ }^{* 5}$, Parameter copy, Maintenance signal output ${ }^{* 5}$, USB host error, Home position return setting error ${ }^{* 5}$, Home position return uncompleted ${ }^{* 5}$, Home position return parameter setting error ${ }^{* 5}$, Operation panel lock ${ }^{* 5}$, Password locked ${ }^{* 5}$, Parameter write error, Copy operation error, 24 V external power supply operation, Continuous operation during communication fault ${ }^{* 5}$, Load fault warning, Emergency drive in operation ${ }^{*} 4^{*} 5$
	Surrounding air temperature		FR-A860-00090 or lower: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing) (LD/ND/HD rating), $-10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ (non-freezing) (SLD rating)   FR-A860-00170 to 01080 : $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing)   FR-A860-01440 or higher : $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing) (LD/ND rating), $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing) (SLD/HD rating)
	Surrounding	air humidity	95\% RH or less (non-condensing)
	Storage temp	erature*7	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
	Atmosphere		Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt, etc.)
	Altitude/vibra		Maximum 2500 m (For the installation at an altitude above 1000 m , consider a $3 \%$ reduction in the rated current per 500 m increase in altitude.), $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less ${ }^{* 8}$ at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes)
*1 Available only when a vector control compatible option is mounted.			
*2 For PM sensorless vector control, refer to page 806.			
*3 In the initial setting for the FR-A860-00170 or higher, the starting torque is limited to $150 \%$ by the torque limit level.			
*4 Available only for the standard model.			
*5 This protective function is not available in the initial status.			
*6 Available only for the standard model.			
*7 Temperature applicable for a short time, e.g. in transit.			
*8 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A860-02890 or higher.			

### 8.3 Outline dimension drawings

### 8.3.1 Inverter outline dimension drawings

FR-A860-00027, 00061, 00090



Inverter Model	H	H1	H2	H3	D	D1	D2
FR-A860-00170	324	260	64	245	170	89.3	126.8
FR-A860-00320	363	300	63	285	190	109.3	146.8

(Unit: mm)

(Unit: mm)
FR-A860-00680, 01080, 01440, 01670, 02430


Inverter Model	W	W1	H	H1	H2	d	D	D1
FR-A860-00680, 01080*1	435	380	550	525	514	25	250	24
FR-A860-01440 ${ }^{* 1}, 01670^{* 1}, 02430^{* 1}$	465	400	620	595	584	24	300	22

*1 For the FR-A860-01440 or higher, and when a 75 kW or higher motor is used, always connect a DC reactor.
(Unit: mm)


Always connect a DC reactor.
(Unit: mm)


Always connect a DC reactor.
(Unit: mm)

- When a provided brake resistor is used (FR-A860-00090 or lower)

(Unit: mm)
Operation panel (FR-LU08)

Outline dimensions


Enclosure cut dimensions

*1 Denotes the combined length of the two connectors when the operation panel connection cable (FR-CB2[]) is connected to the operation panel connection connector (FR-ADP). The combined length of the two connectors will be different if other (3rd party) operation panel connection cables are used.
(Unit: mm)

## CHAPTER 9 APPENDIX

9.1 For customers replacing the conventional model with this inverter ..... 804
9.2
International standards ..... 805
9.3
Specification comparison between PM sensorless vector control and induction motor control ..... 806
9.4 Parameters (functions) and instruction codes under different control methods ..... 807
9.5 For customers using HMS network options ..... 831
9.6 Ready bit status selection (Pr.349, N240) ..... 836

APPENDIX provides the reference information for use of this product.
Refer to APPENDIX as required.

## 9.1 For customers replacing the conventional model with this inverter

### 9.1.1 Replacement of the FR-A700 series

## - Differences and compatibility with the FR-A700 series

Item		FR-A760	FR-A860
Control method		V/F control   Advanced magnetic flux vector control   Real sensorless vector control   Vector control (with plug-in option)	V/F control   Advanced magnetic flux vector control   Real sensorless vector control   Vector control (with plug-in option/control terminal option)   PM sensorless vector control (IPM motor/SPM motor)
Brake transistor (brake resistor usable)		Built in for the FR-A760-00330 or lower	Built in for the FR-A860-01080 or lower
Maximum output frequency	V/F control	400 Hz	590 Hz
	Advanced magnetic flux vector control	120 Hz	400 Hz
	Real sensorless vector control	120 Hz	400 Hz
	vector control	120 Hz	400 Hz
	PM   sensorless   vector control	-	400 Hz
PID control		Turn the X14 signal ON to enable PID control.	When the X14 signal is not assigned, just set a value in Pr. 128 to enable PID control.   When the X 14 signal is assigned, turn the X 14 signal ON while Pr. $128 \neq$ " 0 " to enable PID control. The PID pre-charge function and dancer control are added.
Automatic restart after instantaneous power failure	Restart operation	Turn the CS signal ON to enable restart.	Restart is enabled by turning ON the CS signal, or solely setting Pr. 57 if the CS signal is not assigned to any input terminal.
	Restart coasting time	Time period from restoration of power until the operation is restarted	Time period from occurrence of instantaneous power failure until the operation is restarted
Number of motor poles V/F control switching		The V/F switching signal (X18) is valid when Pr. 81 = "12 to 20 ( 2 to 10 poles)".	$\text { Pr. } 81 \text { = "12 (12 poles)" }$   X 18 is valid regardless of the Pr. 81 setting. (The Pr. 81 settings " 14 to 20 " are not available.)
PTC thermistor input		Input from the terminal AU (The function of the terminal AU is switched by a switch.)	Input from the terminal 2. (The function of the terminal 2 is switched by the Pr. 561 setting.)
USB connector		B connector	Mini B connector
Control circuit terminal block		Removable terminal block (screw type)	Removable terminal block (spring clamp type)

9.1 For customers replacing the conventional model with this inverter

Item	FR-A760	FR-A860	
Terminal response level	The FR-A800's I/O terminals have better response level than the FR-A700's terminals. By setting Pr.289   Inverter output terminal filter and Pr.699 Input terminal filter, the terminal response level can be   compatible with that of FR-A700. Set to approximately 5 to 8 ms and adjust the setting according to the   system.		
PU	Standard	FR-DU07 (4-digit LED)	None (FR-DU07 is not supported.)
	Optional	FR-PU07	FR-LU08 (LCD)   FR-PU07 (Some functions, such as parameter   copy, are unavailable.)
Plug-in option	Dedicated plug-in options (not interchangeable)		
Communication option	Connected to the connector 3	Connected to the connector 1	

*1 For the FR-A860-00450 or lower, the height is increased because the wiring cover shape differs.

## - Installation precautions

- Removal procedure of the front cover is different. (Refer to page 29.)
- Plug-in options of the FR-A700 series are not compatible.
- Operation panel (FR-DU07) cannot be used.


## Wiring precautions

- The spring clamp type terminal block has changed to the screw type. Use of blade terminals is recommended.


## - Instructions for continuous use of the PU07 (parameter unit) manufactured in September 2015 or earlier

- For the FR-A800 series, many functions (parameters) have been added. When setting these parameters, the parameter names and setting ranges are not displayed.
- Only the parameter with the numbers up to "999" can be read and set. The parameters with the numbers after "999" cannot be read or set.
- Many protective functions have been added for the FR-A800 series. These functions are available, but all faults are displayed as "Fault". When the fault history is checked, "ERR" appears. Added faults will not appear on the parameter unit. (However, MT1 to MT3 are displayed as MT.)
- Parameter copy/verification function are not available.


## - Copying parameter settings

- The FR-A700 series' parameter settings can be easily copied to the FR-A800 series by using the setup software (FR Configurator2). Not supported by the setup software FR-SW3-SETUP or older.


## NOTE

- For the installation size and the outline dimensions of the separated converter type, refer to the FR-A862 (Separated Converter Type) Instruction Manual (Hardware).


### 9.2 International standards

- For information on compliance with EU Directives or standards including UL or cUL standards, refer to both the Startup and Hardware versions of the Instruction Manual.


### 9.3 Specification comparison between PM sensorless vector control and induction motor control

Item	PM sensorless vector control	Induction motor control
Applicable motor	PM motor (tuning required) ${ }^{* 1}$	Induction motor* ${ }^{*}$
Starting torque	50\%	200\% (FR-A860-00090 or lower) 150\% (FR-A860-00170 or higher) under Real sensorless vector control and vector control
Zero speed	Not available	Available under Real sensorless vector control and vector control
Carrier frequency	$\begin{aligned} & 2 \mathrm{kHz}(\text { Pr. } 72=" 0 \text { to } 5 \text { "), } 6 \mathrm{kHz}(\text { Pr. } 72=" 6 \text { to } 9 "), 10 \\ & \mathrm{kHz}(\text { Pr. } 72=" 10 \text { to } 13 "), 14 \mathrm{kHz}(\text { Pr. } 72=" 14 \text { or } 15 ") \\ & (6 \mathrm{kHz} \text { in a low-speed range of } 10 \mathrm{kHz} \text { or higher. }) \end{aligned}$	Any value in the range of 0.75 kHz to 14.5 kHz (FR-A860-01080 or lower)   0.75 kHz to 6 kHz   (FR-A860-01440 or higher)
Startup delay	Startup delay of about 0.1 s for magnetic pole position detection.	No startup delay (when online auto tuning is not performed at startup).
Driving by the commercial power supply	Cannot be driven by the commercial power supply.	Can be driven by the commercial power supply. (Other than vector control dedicated motor.)
Operation during coasting	While the motor is coasting, potential is generated across motor terminals.	While the motor is coasting, potential is not generated across motor terminals.
Torque control	Not available	Available under Real sensorless vector control and vector control.
Position control	Not available	Available under vector control.

*1 For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.

## NOTE

- Before wiring, make sure that the motor is stopped. Otherwise you may get an electric shock.
- Never connect a PM motor to the commercial power supply.
- No slippage occurs with a PM motor because of its characteristic. If a PM motor, which took over an induction motor, is driven at the same speed as for the general-purpose motor, the running speed of the PM motor becomes faster by the amount of the general-purpose motor's slippage. Adjust the speed command to run the PM motor at the same speed as the induction motor, as required.
*1 Instruction codes are used to read and write parameters in accordance with the Mitsubishi inverter protocol of RS-485 communication. (For RS485 communication, refer to page 657.)
*2 Function availability under each control method is shown as below:
O: Available
$x$ : Not available
$\Delta$ : Available with some restrictions
*3 If function availability differs between using induction motors with an encoder and using PM motors with an encoder, the function availability using PM motors with an encoder is described in parentheses. Also, a PM motor with an encoder is not available under the torque control.
*4 For "parameter copy", "parameter clear", and "all parameter clear", "○" indicates the function is available, and " $\times$ " indicates the function is not available.
*5 These parameters are not cleared by the parameter clear (all parameter clear) command, which are sent through RS-485 communication. (For RS-485 communication, refer to page 657.)
*6 When a communication option is installed, parameter clear (lock release) during password lock (Pr. $297 \neq$ "9999") can be performed only from the communication option.
*7 Reading and writing via the PU connector are available.
Symbols in the table indicate parameters that operate when the options are connected.
APPR-A8AP, ALFR-A8AL, TPFR-A8TP, APRFR-A8APR, APS FR-A8APS, APAFR-A8APA, ARFR-A8AR, AX FR-A8AX, AYFR-A8AY, AVPFR-A8AVP, NCFR-A8NC, NCEFR-A8NCE, NCGFR-A8NCG, NDFR-A8ND, AZFR-A8AZ, NPFR-A8NP, NFFR-A8NF, NSFR-A8NS

Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
		$\begin{aligned} & \underset{\pi}{0} \\ & \underset{\sim}{\otimes} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \frac{N}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \frac{0}{0} \\ & \frac{C}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \hline \end{aligned}$			$\text { Vector }^{* 3}$			Sensorless		$P M M$   0	$\begin{aligned} & * \\ & \stackrel{\pi}{\circ} \\ & \stackrel{\pi}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{*} \\ & \stackrel{\pi}{\varpi} \\ & \frac{\mathbb{U}}{U} \end{aligned}$	
											0   $\overline{3}$   $\overline{0}$				
0	Torque boost	00	80	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
1	Maximum frequency	01	81	0	$\bigcirc$										
2	Minimum frequency	02	82	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
3	Base frequency	03	83	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
4	Multi-speed setting (high speed)	04	84	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
5	Multi-speed setting (middle speed)	05	85	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
6	Multi-speed setting (low speed)	06	86	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
7	Acceleration time	07	87	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
8	Deceleration time	08	88	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
9	Electronic thermal O/L relay	09	89	0	$\bigcirc$										
10	DC injection brake operation frequency	0A	8A	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
11	DC injection brake operation time	0B	8B	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
12	DC injection brake operation voltage	OC	8C	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
13	Starting frequency	OD	8D	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
14	Load pattern selection	OE	8E	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
15	Jog frequency	0F	8F	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
16	Jog acceleration/deceleration time	10	90	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
17	MRS input selection	11	91	0	$\bigcirc$										
18	High speed maximum frequency	12	92	0	$\bigcirc$										
19	Base frequency voltage	13	93	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
20	Acceleration/deceleration reference frequency	14	94	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
21	Acceleration/deceleration time increments	15	95	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
22	Stall prevention operation level (Torque limit level)	16	96	0	$\bigcirc$										
23	Stall prevention operation level compensation factor at double speed	17	97	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
24	Multi-speed setting (speed 4)	18	98	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
25	Multi-speed setting (speed 5)	19	99	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
26	Multi-speed setting (speed 6)	1A	9A	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code ${ }^{* 1}$			Control method*2								Parameter		
		$\begin{aligned} & \mathbf{0} \\ & \mathbb{\pi} \\ & \mathbb{D} \end{aligned}$					Vector ${ }^{*}$			Sensorless		$P M$   0	$\stackrel{*}{*}$	$\begin{aligned} & * \\ & \frac{\pi}{\approx} \\ & \frac{\mathbb{U}}{\cup} \end{aligned}$	
27	Multi-speed setting (speed 7)	1B	9B	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
28	Multi-speed input compensation selection	1C	9C	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
29	Acceleration/deceleration pattern selection	1D	9D	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
30	Regenerative function selection	1E	9E	0	$\bigcirc$										
31	Frequency jump 1A	1F	9F	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
32	Frequency jump 1B	20	A0	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
33	Frequency jump 2A	21	A1	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
34	Frequency jump 2B	22	A2	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
35	Frequency jump 3A	23	A3	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
36	Frequency jump 3B	24	A4	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
37	Speed display	25	A5	0	$\bigcirc$										
41	Up-to-frequency sensitivity	29	A9	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
42	Output frequency detection	2A	AA	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
43	Output frequency detection for reverse rotation	2B	AB	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
44	Second acceleration/deceleration time	2 C	AC	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
45	Second deceleration time	2D	AD	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
46	Second torque boost	2E	AE	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
47	Second V/F (base frequency)	2F	AF	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
48	Second stall prevention operation level	30	B0	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
49	Second stall prevention operation frequency	31	B1	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
50	Second output frequency detection	32	B2	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
51	Second electronic thermal O/L relay	33	B3	0	$\bigcirc$										
52	Operation panel main monitor selection	34	B4	0	$\bigcirc$										
54	FM terminal function selection	36	B6	0	$\bigcirc$										
55	Frequency monitoring reference	37	B7	0	$\bigcirc$										
56	Current monitoring reference	38	B8	0	$\bigcirc$										
57	Restart coasting time	39	B9	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
58	Restart cushion time	3A	BA	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
59	Remote function selection	3B	BB	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
60	Energy saving control selection	3C	BC	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
61	Reference current	3D	BD	0	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
62	Reference value at acceleration	3E	BE	0	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
63	Reference value at deceleration	3F	BF	0	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
64	Starting frequency for elevator mode	40	C0	0	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
65	Retry selection	41	C1	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
66	Stall prevention operation reduction starting frequency	42	C2	0	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
67	Number of retries at fault occurrence	43	C3	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
68	Retry waiting time	44	C4	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
69	Retry count display erase	45	C5	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
70	Special regenerative brake duty	46	C6	0	$\bigcirc$										
71	Applied motor	47	C7	0	$\bigcirc$										
72	PWM frequency selection	48	C8	0	$\bigcirc$										
73	Analog input selection	49	C9	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
74	Input filter time constant	4A	CA	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
75	Reset selection/disconnected PU detection/PU stop selection	4B	CB	0	$\bigcirc$	$\times$	$\times$								
76	Fault code output selection	4C	CC	0	$\bigcirc$										


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
		$\begin{aligned} & \text { ס } \\ & \underset{\sim}{\mathbb{O}} \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \frac{\pi}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { d } \\ & \frac{0}{0} \\ & \frac{1}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \hline \end{aligned}$					$\underbrace{* 3}$			$P M$   0   00   0.   0.   0   0   0   0	$\begin{aligned} & x_{n} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \frac{2}{\pi} \\ & \frac{\pi}{U} \end{aligned}$	
$77^{* 7}$	Parameter write selection	4D	CD	0	$\bigcirc$										
78	Reverse rotation prevention selection	4E	CE	0	$\bigcirc$										
$79^{* 7}$	Operation mode selection	4F	CF	0	$\bigcirc$										
80	Motor capacity	50	D0	0	$\times$	$\bigcirc$									
81	Number of motor poles	51	D1	0	$\times$	$\bigcirc$									
82	Motor excitation current	52	D2	0	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
83	Rated motor voltage	53	D3	0	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
84	Rated motor frequency	54	D4	0	$\times$	$\bigcirc$									
85	Excitation current refraction point	55	D5	0	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
86	Excitation current low-speed scaling factor	56	D6	0	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
89	Speed control gain (Advanced magnetic flux vector)	59	D9	0	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
90	Motor constant (R1)	5A	DA	0	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
91	Motor constant (R2)	5B	DB	0	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
92	Motor constant (L1)/d-axis inductance (Ld)	5C	DC	0	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
93	Motor constant (L2)/q-axis inductance (Lq)	5D	DD	0	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
94	Motor constant (X)	5E	DE	0	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
95	Online auto tuning selection	5F	DF	0	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
96	Auto tuning setting/status	60	E0	0	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
100	V/F1 (first frequency)	00	80	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
101	V/F1 (first frequency voltage)	01	81	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
102	V/F2 (second frequency)	02	82	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
103	V/F2 (second frequency voltage)	03	83	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
104	V/F3 (third frequency)	04	84	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
105	V/F3 (third frequency voltage)	05	85	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
106	V/F4 (fourth frequency)	06	86	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
107	V/F4 (fourth frequency voltage)	07	87	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
108	V/F5 (fifth frequency)	08	88	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
109	V/F5 (fifth frequency voltage)	09	89	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
110	Third acceleration/deceleration time	0A	8A	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
111	Third deceleration time	OB	8B	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
112	Third torque boost	OC	8C	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
113	Third V/F (base frequency)	OD	8D	1	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
114	Third stall prevention operation level	OE	8E	1	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
115	Third stall prevention operation frequency	OF	8F	1	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
116	Third output frequency detection	10	90	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\Delta$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
117	PU communication station number	11	91	1	$\bigcirc$	${ }^{* 5}$	$\bigcirc^{* 5}$								
118	PU communication speed	12	92	1	$\bigcirc$	*5	* ${ }$								
119	PU communication stop bit length / data length	13	93	1	$\bigcirc$	${ }^{*} 5$	$\bigcirc{ }^{*}$								
120	PU communication parity check	14	94	1	$\bigcirc$	* ${ }^{\text {5 }}$	- ${ }^{\text {5 }}$								
121	Number of PU communication retries	15	95	1	$\bigcirc$	*5	* ${ }$								
122	PU communication check time interval	16	96	1	$\bigcirc$	* ${ }$	* ${ }$								
123	PU communication waiting time setting	17	97	1	$\bigcirc$	*5	* ${ }^{*}$								
124	PU communication CR/LF selection	18	98	1	$\bigcirc$	*5	*5								
125	Terminal 2 frequency setting gain frequency	19	99	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$


Pr.	Name	Instruction code ${ }^{* 1}$			Control method ${ }^{*}{ }^{2}$								Parameter		
		$\begin{aligned} & \text { ס } \\ & \underset{\pi}{0} \\ & \boldsymbol{\sim} \end{aligned}$										$P M$   0   00   0.   0.   0   0   0   0	$\begin{aligned} & * \\ & \stackrel{\rightharpoonup}{\circ} \\ & \vdots \end{aligned}$	$\begin{gathered} \pm \\ \frac{\pi}{\pi} \\ \frac{0}{0} \end{gathered}$	$\begin{aligned} & \frac{\pi}{*} \frac{1}{\pi} \\ & \frac{\mathrm{e}}{0} \\ & \frac{1}{\overline{4}} \end{aligned}$
126	Terminal 4 frequency setting gain frequency	1A	9A	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
127	PID control automatic switchover frequency	1B	9B	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
128	PID action selection	1C	9C	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
129	PID proportional band	1D	9D	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
130	PID integral time	1E	9E	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
131	PID upper limit	1F	9F	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
132	PID lower limit	20	A0	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
133	PID action set point	21	A1	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
134	PID differential time	22	A2	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
135	Electronic bypass sequence selection	23	A3	1	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
136	MC switchover interlock time	24	A4	1	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
137	Start waiting time	25	A5	1	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
138	Bypass selection at a fault	26	A6	1	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
139	Automatic switchover frequency from inverter to bypass operation	27	A7	1	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
140	Backlash acceleration stopping frequency	28	A8	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
141	Backlash acceleration stopping time	29	A9	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
142	Backlash deceleration stopping frequency	2A	AA	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
143	Backlash deceleration stopping time	2B	AB	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
144	Speed setting switchover	2C	AC	1	$\bigcirc$										
145	PU display language selection	2D	AD	1	$\bigcirc$	$\times$	$\times$								
147	Acceleration/deceleration time switching frequency	2 F	AF	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
148	Stall prevention level at 0 V input	30	B0	1	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
149	Stall prevention level at 10 V input	31	B1	1	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
150	Output current detection level	32	B2	1	$\bigcirc$										
151	Output current detection signal delay time	33	B3	1	$\bigcirc$										
152	Zero current detection level	34	B4	1	$\bigcirc$										
153	Zero current detection time	35	B5	1	$\bigcirc$										
154	Voltage reduction selection during stall prevention operation	36	B6	1	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
155	RT signal function validity condition selection	37	B7	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
156	Stall prevention operation selection	38	B8	1	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
157	OL signal output timer	39	B9	1	$\bigcirc$										
158	AM terminal function selection	3A	BA	1	$\bigcirc$										
159	Automatic switchover frequency range from bypass to inverter operation	3B	BB	1	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
160	User group read selection	00	80	2	$\bigcirc$										
161	Parameter for manufacturer setting. Do not set.														
162	Automatic restart after instantaneous power failure selection	02	82	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
163	First cushion time for restart	03	83	2	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
164	First cushion voltage for restart	04	84	2	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
165	Stall prevention operation level for restart	05	85	2	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
166	Output current detection signal retention time	06	86	2	$\bigcirc$										
167	Output current detection operation selection	07	87	2	$\bigcirc$										


Pr.	Name	Instruction code* ${ }^{\text {1 }}$			Control method ${ }^{*}$ 2								Parameter		
								ctor	$\mathrm{r}^{* 3}$	Senso	orless	PMM			
		$\begin{aligned} & \underset{\pi}{\widetilde{\pi}} \\ & \dot{\mathscr{N}} \end{aligned}$	$\begin{aligned} & \pm \\ & \\ & \end{aligned}$					$\begin{aligned} & 0 \\ & \text { O } \\ & \text { 민 } \\ & \text { O } \\ & 1 \end{aligned}$			$\begin{aligned} & 0 \\ & \text { 0 } \\ & \text { 밀 } \\ & \text { 근 } \end{aligned}$		${ }^{x}$	$\begin{aligned} & \frac{\pi}{*} \frac{\pi}{\approx} \\ & \frac{0}{U} \end{aligned}$	$\begin{aligned} & \text { 发 } \\ & \frac{0}{ভ} \\ & \bar{ভ} \end{aligned}$
168	Parameter for manufacturer setting. Do not set.														
169															
170	Watt-hour meter clear	OA	8A	2	$\bigcirc$	$\times$	$\bigcirc$								
171	Operation hour meter clear	OB	8B	2	$\bigcirc$	$\times$	$\times$	$\times$							
172	User group registered display/batch clear	OC	8C	2	$\bigcirc$	$\times$	$\times$	$\times$							
173	User group registration	0D	8D	2	$\bigcirc$	$\times$	$\times$	$\times$							
174	User group clear	0E	8E	2	$\bigcirc$	$\times$	$\times$	$\times$							
178	STF terminal function selection	12	92	2	$\bigcirc$	$\times$	$\bigcirc$								
179	STR terminal function selection	13	93	2	$\bigcirc$	$\times$	$\bigcirc$								
180	RL terminal function selection	14	94	2	$\bigcirc$	$\times$	$\bigcirc$								
181	RM terminal function selection	15	95	2	$\bigcirc$	$\times$	$\bigcirc$								
182	RH terminal function selection	16	96	2	$\bigcirc$	$\times$	$\bigcirc$								
183	RT terminal function selection	17	97	2	$\bigcirc$	$\times$	$\bigcirc$								
184	AU terminal function selection	18	98	2	$\bigcirc$	$\times$	$\bigcirc$								
185	JOG terminal function selection	19	99	2	$\bigcirc$	$\times$	$\bigcirc$								
186	CS terminal function selection	1A	9A	2	$\bigcirc$	$\times$	$\bigcirc$								
187	MRS terminal function selection	1B	9B	2	$\bigcirc$	$\times$	$\bigcirc$								
188	STOP terminal function selection	1C	9C	2	$\bigcirc$	$\times$	$\bigcirc$								
189	RES terminal function selection	1D	9D	2	$\bigcirc$	$\times$	$\bigcirc$								
190	RUN terminal function selection	1E	9E	2	$\bigcirc$	$\times$	$\bigcirc$								
191	SU terminal function selection	1F	9 F	2	$\bigcirc$	$\times$	$\bigcirc$								
192	IPF terminal function selection	20	A0	2	$\bigcirc$	$\times$	$\bigcirc$								
193	OL terminal function selection	21	A1	2	$\bigcirc$	$\times$	$\bigcirc$								
194	FU terminal function selection	22	A2	2	$\bigcirc$	$\times$	$\bigcirc$								
195	ABC1 terminal function selection	23	A3	2	$\bigcirc$	$\times$	$\bigcirc$								
196	ABC2 terminal function selection	24	A4	2	$\bigcirc$	$\times$	$\bigcirc$								
232	Multi-speed setting (speed 8)	28	A8	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
233	Multi-speed setting (speed 9)	29	A9	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
234	Multi-speed setting (speed 10)	2A	AA	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
235	Multi-speed setting (speed 11)	2B	AB	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
236	Multi-speed setting (speed 12)	2C	AC	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
237	Multi-speed setting (speed 13)	2D	AD	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
238	Multi-speed setting (speed 14)	2E	AE	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
239	Multi-speed setting (speed 15)	2 F	AF	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\Delta$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
240	Soft-PWM operation selection	30	B0	2	$\bigcirc$										
241	Analog input display unit switchover	31	B1	2	$\bigcirc$										
242	Terminal 1 added compensation amount (terminal 2)	32	B2	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
243	Terminal 1 added compensation amount (terminal 4)	33	B3	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
244	Cooling fan operation selection	34	B4	2	$\bigcirc$										
245	Rated slip	35	B5	2	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
246	Slip compensation time constant	36	B6	2	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
247	Constant-power range slip compensation selection	37	B7	2	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
248	Self power management selection	38	B8	2	$\bigcirc$	$\bigcirc$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
249	Earth (ground) fault detection at start	39	B9	2	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
250	Stop selection	3A	BA	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
251	Output phase loss protection selection	3B	BB	2	$\bigcirc$										
252	Override bias	3C	BC	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
253	Override gain	3D	BD	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
254	Main circuit power OFF waiting time	3E	BE	2	$\bigcirc$	$\bigcirc$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
		$\begin{aligned} & \text { ס } \\ & \underset{\sim}{0} \\ & \mathbb{R} \end{aligned}$					Vector ${ }^{*}$			Sensorless		$P M$   0	$\begin{aligned} & * \\ & \stackrel{\pi}{\circ} \\ & \stackrel{2}{\circ} \\ & \hline \end{aligned}$		
										응 0 o on 0 0					
255	Life alarm status display	3F	BF	2	$\bigcirc$	$\times$	$\times$	$\times$							
256	Inrush current limit circuit life display	40	C0	2	$\bigcirc$	$\times$	$\times$	$\times$							
257	Control circuit capacitor life display	41	C1	2	$\bigcirc$	$\times$	$\times$	$\times$							
258	Main circuit capacitor life display	42	C2	2	$\bigcirc$	$\times$	$\times$	$\times$							
259	Main circuit capacitor life measuring	43	C3	2	$\bigcirc$										
260	PWM frequency automatic switchover	44	C4	2	$\bigcirc$										
261	Power failure stop selection	45	C5	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
262	Subtracted frequency at deceleration start	46	C6	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
263	Subtraction starting frequency	47	C7	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
264	Power-failure deceleration time 1	48	C8	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
265	Power-failure deceleration time 2	49	C9	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
266	Power failure deceleration time switchover frequency	4 A	CA	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
267	Terminal 4 input selection	4B	CB	2	$\bigcirc$	$\times$	$\bigcirc$								
268	Monitor decimal digits selection	4C	CC	2	$\bigcirc$										
269	Parameter for manufacturer setting. D	o not	set.												
270	Stop-on contact/load torque highspeed frequency control selection	4E	CE	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
271	High-speed setting maximum current	4F	CF	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
272	Middle-speed setting minimum current	50	D0	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
273	Current averaging range	51	D1	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
274	Current averaging filter time constant	52	D2	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
275	Stop-on contact excitation current low-speed multiplying factor	53	D3	2	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
276	PWM carrier frequency at stop-on contact	54	D4	2	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
278	Brake opening frequency	56	D6	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
279	Brake opening current	57	D7	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
280	Brake opening current detection time	58	D8	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
281	Brake operation time at start	59	D9	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
282	Brake operation frequency	5A	DA	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
283	Brake operation time at stop	5B	DB	2	$\bigcirc$	$\Delta$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
284	Deceleration detection function selection	5 C	DC	2	$\times$	$\Delta$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
285	Overspeed detection frequency (Speed deviation excess detection frequency)	5D	DD	2	$\times$	$\Delta$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
286	Droop gain	5E	DE	2	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
287	Droop filter time constant	5F	DF	2	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
288	Droop function activation selection	60	E0	2	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
289	Inverter output terminal filter	61	E1	2	$\bigcirc$	$\times$	$\bigcirc$								
290	Monitor negative output selection	62	E2	2	$\bigcirc$										
291	Pulse train I/O selection	63	E3	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
292	Automatic acceleration/deceleration	64	E4	2	$\Delta$	$\Delta$	$\Delta(\times)$	$\times$	$\times$	$\Delta$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
293	Acceleration/deceleration separate selection	65	E5	2	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
294	UV avoidance voltage gain	66	E6	2	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
295	Parameter for manufacturer setting. Do not set.														
296	Password lock level	68	E8	2	$\bigcirc$	$\times$	$\bigcirc$								
297	Password lock/unlock	69	E9	2	$\bigcirc$	○*	$\bigcirc$								
298	Frequency search gain	6A	EA	2	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
299	Rotation direction detection selection at restarting	6B	EB	2	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{\text {1 }}$			Control method ${ }^{*}$								Parameter		
								ctor		Senso	orless				
		$\begin{aligned} & \underset{\pi}{\widetilde{\pi}} \\ & \dot{\mathscr{N}} \end{aligned}$	$\begin{aligned} & \pm \\ & \\ & \end{aligned}$	-				$\begin{aligned} & 0 \\ & \text { O } \\ & \text { 민 } \\ & \text { O } \\ & 1 \end{aligned}$					${ }^{x}$	$\begin{aligned} & *^{\pi} \frac{\pi}{\pi} \\ & \frac{\stackrel{\omega}{U}}{0} \end{aligned}$	$\frac{\stackrel{1}{历}}{\frac{0}{0}}$
300	BCD input bias AX	00	80	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
301	BCD input gain AX	01	81	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
302	BIN input bias AX	02	82	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
303	BIN input gain AX	03	83	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
304	Digital input and analog input compensation enable/disable selection AX	04	84	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
305	Read timing operation selection $\triangle$ AX	05	85	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
306	Analog output signal selection ${ }^{\text {AY }}$	06	86	3	$\bigcirc$										
307	Setting for zero analog output AY	07	87	3	$\bigcirc$										
308	Setting for maximum analog output AY	08	88	3	$\bigcirc$										
309	Analog output signal voltage/current switchover AY	09	89	3	$\bigcirc$										
310	Analog meter voltage output selection AY	0A	8A	3	$\bigcirc$										
311	Setting for zero analog meter voltage output AY	OB	8B	3	$\bigcirc$										
312	Setting for maximum analog meter voltage output AY	0C	8C	3	$\bigcirc$										
313	DO0 output selection AY NC NCE NCG	OD	8D	3	$\bigcirc$	$\times$	$\bigcirc$								
314	DO1 output selection AY NC NCE NCG	0E	8E	3	$\bigcirc$	$\times$	$\bigcirc$								
315	DO2 output selection AY NC NCE NCG	0F	8F	3	$\bigcirc$	$\times$	$\bigcirc$								
316	DO3 output selection AY	10	90	3	$\bigcirc$	$\times$	$\bigcirc$								
317	DO4 output selection AY	11	91	3	$\bigcirc$	$\times$	$\bigcirc$								
318	DO5 output selection AY	12	92	3	$\bigcirc$	$\times$	$\bigcirc$								
319	DO6 output selection AY	13	93	3	$\bigcirc$	$\times$	$\bigcirc$								
320	RA1 output selection AR	14	94	3	$\bigcirc$	$\times$	$\bigcirc$								
321	RA2 output selection AR	15	95	3	$\bigcirc$	$\times$	$\bigcirc$								
322	RA3 output selection AR	16	96	3	$\bigcirc$	$\times$	$\bigcirc$								
323	AMO OV adjustment AY	17	97	3	$\bigcirc$	$\times$	$\bigcirc$								
324	AM1 0mA adjustment AY	18	98	3	$\bigcirc$	$\times$	$\bigcirc$								
326	Parameter for manufacturer setting. Do not set. AZ														
328	Inverter/converter switching AVP	1C	9C	3	$\times$										
329	Digital input unit selection AX	1D	9D	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
331	RS-485 communication station number	1F	9 F	3	$\bigcirc$	○ ${ }^{\text { }}$	$\bigcirc{ }^{* 5}$								
332	RS-485 communication speed	20	A0	3	$\bigcirc$	*5	- ${ }$								
333	RS-485 communication stop bit length / data length	21	A1	3	$\bigcirc$	* ${ }^{\text {* }}$	○*								
334	RS-485 communication parity check selection	22	A2	3	$\bigcirc$	○ ${ }$	- 5								
335	RS-485 communication retry count	23	A3	3	$\bigcirc$	*5	- ${ }$								
336	RS-485 communication check time interval	24	A4	3	$\bigcirc$	* ${ }^{\text {\% }}$	$\bigcirc{ }^{* 5}$								
337	RS-485 communication waiting time setting	25	A5	3	$\bigcirc$	* ${ }^{\text {\% }}$	○ 5								
338	Communication operation command source	26	A6	3	$\bigcirc$	* ${ }^{*}$	○ 5								
339	Communication speed command source	27	A7	3	$\bigcirc$	$\bigcirc{ }^{* 5}$	* ${ }$								


Pr.	Name	Instruction code* ${ }^{*}$			Control method ${ }^{*}$ 2								Parameter		
		$\begin{aligned} & \underset{\widetilde{\pi}}{\mathbf{0}} \\ & \boldsymbol{\sim} \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & \vdots \end{aligned}$						$\underbrace{n^{3}}$	$\begin{aligned} & \hline \text { Sens } \\ & \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \text { on } & 0 \\ 0 \end{array} \end{aligned}$			$\stackrel{+}{*}$		
340	Communication startup mode selection	28	A8	3	$\bigcirc$	* 5	$\bigcirc{ }^{*}$								
341	RS-485 communication CR/LF selection	29	A9	3	$\bigcirc$	* 5	$\bigcirc{ }^{* 5}$								
342	Communication EEPROM write selection	2A	AA	3	$\bigcirc$										
343	Communication error count	2B	AB	3	$\bigcirc$	$\times$	$\times$	$\times$							
345	DeviceNet address ND	2D	AD	3	$\bigcirc$	*5	$\bigcirc{ }^{*}$								
346	DeviceNet baud rate ${ }^{\text {ND }}$	2E	AE	3	$\bigcirc$	* ${ }$	$\bigcirc^{* 5}$								
349	Communication reset selection/ Ready bit status selection/Reset selection after inverter faults are cleared/DriveControl writing restriction selection	31	B1	3	$\bigcirc$	- ${ }$	$\bigcirc{ }^{*}$								
350	Stop position command selection   AP AL TP APR APS APA	32	B2	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
351	Orientation speed AP AL TP APR APS APA	33	B3	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
352	$\begin{aligned} & \text { Creep } \\ & \text { speed AP AL TP APR APS APA } \end{aligned}$	34	B4	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
353	Creep switchover position   AP TP APR APS APA	35	B5	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
354	Position loop switchover position   AP AL TP APR APS APA	36	B6	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
355	DC injection brake start position AP AL AL TP APR APS APA	37	B7	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
356	Internal stop position command   AP AL TP APR APS APA	38	B8	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
357	Orientation in-position zone AP AL TP APR APS APA	39	B9	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
358	Servo torque selection   AP AL TP APR APS APA	3A	BA	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
359	Encoder rotation direction   AP AL APR APS APA	3B	BB	3	$\bigcirc$	$\bigcirc$	$\bigcirc(\Delta)$	$\bigcirc$	$\bigcirc(\Delta)$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
360	16-bit data selection   AP AL TP APR APS APA	3 C	BC	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
361	Position   shift AP AL TP APR APS APA	3D	BD	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
362	Orientation position loop gain AP AL TP APR APS APA	3E	BE	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
363	Completion signal output delay time $\mathrm{AP} \mathrm{AL} \text { TP APR APS APA }$	3F	BF	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
364	Encoder stop check time   AP AL TP APR APS APA	40	C0	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
365	Orientation   limit AP AL TP APR APS APA	41	C1	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
366	Recheck   time AP AL TP APR APS APA	42	C2	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
367	Speed feedback range   AP AL TP APR APS APA	43	C3	3	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
368	Feedback gain AP AL TP APR APS APA	44	C4	3	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
369	Number of encoder pulses AP AL	45	C5	3	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
								ector	$\mathrm{r}^{* 3}$	Sens	orless	PM			
		$\begin{aligned} & \underset{\pi}{\widetilde{Z}} \\ & \dot{\mathscr{N}} \end{aligned}$	$\begin{aligned} & \cong \\ & \\ & \frac{2}{3} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \stackrel{0}{c} \\ & \underset{\sim}{x} \\ & \underset{\sim}{2} \end{aligned}$						응			${ }^{+}$	$\begin{aligned} & \pi^{2} \frac{1}{\mathbb{N}} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { 发 } \\ & \frac{0}{ভ} \\ & \bar{ভ} \end{aligned}$
373	Encoder position tuning setting/ status   AL APR APS APA	49	C9	3	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
374	Overspeed detection level	4A	CA	3	$\times$	$\times$	$\bigcirc$								
376	Encoder signal loss detection enable/ disable selection AP AL APR APS APA	4C	CC	3	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
379	SSCNET III rotation direction selection NS	4F	CF	3	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	* ${ }$	$\bigcirc{ }^{*}$
380	Acceleration S-pattern 1	50	D0	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
381	Deceleration S-pattern 1	51	D1	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
382	Acceleration S-pattern 2	52	D2	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
383	Deceleration S-pattern 2	53	D3	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
384	Input pulse division scaling factor	54	D4	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
385	Frequency for zero input pulse	55	D5	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
386	Frequency for maximum input pulse	56	D6	3	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
393	Orientation selection   AP AL TP APR APS APA	5D	DD	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
394	Number of machine side gear teeth   AP AL TP APR APS APA	5E	DE	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
395	Number of motor side gear teeth AP AL TP APR APS APA	5F	DF	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
396	Orientation speed gain (P term)   AP AL TP APR APS APA	60	E0	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
397	Orientation speed integral time AP AL TP APR APS APA	61	E1	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
398	Orientation speed gain ( D term) AP AL TP APR APS APA	62	E2	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
399	Orientation deceleration ratio AP AL TP APR APS APA	63	E3	3	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
406	High resolution analog input selection AZ	06	86	4	$\bigcirc$	$\times$	$\bigcirc$								
407   408	Parameter for manufacturer setting. Do not set. AZ														
413	Encoder pulse division ratio AL	OD	8D	4	$\bigcirc$										
414	PLC function operation selection	0E	8E	4	$\bigcirc$	$\times$	$\times$								
415	Inverter operation lock mode setting	0F	8F	4	$\bigcirc$										
416	Pre-scale function selection	10	90	4	$\bigcirc$										
417	Pre-scale setting value	11	91	4	$\bigcirc$										
418	Extension output terminal filter AY AR	12	92	4	$\bigcirc$	$\times$	$\bigcirc$								
419	Position command source selection	13	93	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
420	Command pulse scaling factor numerator (electronic gear numerator)	14	94	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
421	Command pulse multiplication denominator (electronic gear denominator)	15	95	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
422	Position control gain	16	96	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
423	Position feed forward gain	17	97	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
424	Position command acceleration/ deceleration time constant	18	98	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
425	Position feed forward command filter	19	99	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
426	In-position width	1A	9A	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
427	Excessive level error	1B	9B	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
		$\begin{aligned} & \text { ס } \\ & \underset{\sim}{0} \\ & \boldsymbol{\sim} \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \text { ס } \\ & \frac{0}{0} \\ & \frac{c}{o} \\ & \underset{\sim}{x} \\ & \hline \end{aligned}$			Vector ${ }^{*}$			Sensorless		$P M$   0	$\stackrel{\pi}{*}_{\stackrel{\pi}{\circ}}^{0}$	$\begin{aligned} & \pm \\ & \stackrel{\pi}{\varpi} \\ & \frac{\otimes}{U} \end{aligned}$	$\begin{gathered} \frac{\pi}{*} \\ \frac{2}{\pi} \\ \frac{\mathbf{e}}{0} \\ \frac{1}{4} \end{gathered}$
										$\begin{array}{ll} \dot{O} & \overline{0} \\ \dot{0} & \frac{1}{c} \\ \text { on } \end{array}$					
428	Command pulse selection	1C	9C	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
429	Clear signal selection	1D	9D	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
430	Pulse monitor selection	1E	9E	4	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
432	Pulse train torque command bias AL	20	A0	4	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
433	Pulse train torque command gain AL	21	A1	4	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
434	Network number (CC-Link IE) NCE	22	A2	4	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{* 5}$								
	IP address 1 NCG														
435	Station number (CC-Link IE) NCE	23	A3	4	$\bigcirc$	○*	○ 5								
	IP address 2 NCG														
436	IP address 3 NCG	24	A4	4	$\bigcirc$	$\bigcirc^{* 5}$	$\bigcirc{ }^{* 5}$								
437	IP address 4 NCG	25	A5	4	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$								
438	Subnet mask 1 NCG	26	A6	4	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$								
439	Subnet mask 2 NCG	27	A7	4	$\bigcirc$	${ }^{*} 5$	$\bigcirc{ }^{* 5}$								
440	Subnet mask 3 NCG	28	A8	4	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$								
441	Subnet mask 4 NCG	29	A9	4	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$								
446	Model position control gain	2E	AE	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
447	Digital torque command bias AX	2F	AF	4	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
448	Digital torque command gain AX	30	B0	4	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
449	SSCNET III input filter setting	31	B1	4	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$
450	Second applied motor	32	B2	4	$\bigcirc$										
451	Second motor control method selection	33	B3	4	$\bigcirc$										
453	Second motor capacity	35	B5	4	$\times$	$\bigcirc$									
454	Number of second motor poles	36	B6	4	$\times$	$\bigcirc$									
455	Second motor excitation current	37	B7	4	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
456	Rated second motor voltage	38	B8	4	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
457	Rated second motor frequency	39	B9	4	$\times$	$\bigcirc$									
458	Second motor constant (R1)	3A	BA	4	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
459	Second motor constant (R2)	3B	BB	4	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
460	Second motor constant (L1) / d-axis inductance (Ld)	3 C	BC	4	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
461	Second motor constant (L2) / q-axis inductance (Lq)	3D	BD	4	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
462	Second motor constant (X)	3E	BE	4	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
463	Second motor auto tuning setting/ status	3F	BF	4	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
464	Digital position control sudden stop deceleration time	40	C0	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
465	First target position lower 4 digits	41	C1	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
466	First target position upper 4 digits	42	C2	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
467	Second target position lower 4 digits	43	C3	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
468	Second target position upper 4 digits	44	C4	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
469	Third target position lower 4 digits	45	C5	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
470	Third target position upper 4 digits	46	C6	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
471	Fourth target position lower 4 digits	47	C7	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
472	Fourth target position upper 4 digits	48	C8	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
473	Fifth target position lower 4 digits	49	C9	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
474	Fifth target position upper 4 digits	4A	CA	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
475	Sixth target position lower 4 digits	4B	CB	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
476	Sixth target position upper 4 digits	4C	CC	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
477	Seventh target position lower 4 digits	4D	CD	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
478	Seventh target position upper 4 digits	4E	CE	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
		$\begin{aligned} & \underset{\widetilde{~}}{\boldsymbol{\pi}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{N}{2} \\ & 3 \end{aligned}$				Vector ${ }^{*}$			Sensorless		$P M$   0	$\begin{aligned} & x^{+} \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & *^{*} \frac{1}{\nwarrow} \\ & \frac{\mathbf{d}}{0} \end{aligned}$	
											$$				
479	Eighth target position lower 4 digits	4F	CF	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
480	Eighth target position upper 4 digits	50	D0	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
481	Ninth target position lower 4 digits	51	D1	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
482	Ninth target position upper 4 digits	52	D2	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
483	Tenth target position lower 4 digits	53	D3	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
484	Tenth target position upper 4 digits	54	D4	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
485	Eleventh target position lower 4 digits	55	D5	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
486	Eleventh target position upper 4 digits	56	D6	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
487	Twelfth target position lower 4 digits	57	D7	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
488	Twelfth target position upper 4 digits	58	D8	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
489	Thirteenth target position lower 4 digits	59	D9	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
490	Thirteenth target position upper 4 digits	5A	DA	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
491	Fourteenth target position lower 4 digits	5B	DB	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
492	Fourteenth target position upper 4 digits	5C	DC	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
493	Fifteenth target position lower 4 digits	5D	DD	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
494	Fifteenth target position upper 4 digits	5E	DE	4	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
495	Remote output selection	5F	DF	4	$\bigcirc$										
496	Remote output data 1	60	E0	4	$\bigcirc$	$\times$	$\times$	$\times$							
497	Remote output data 2	61	E1	4	$\bigcirc$	$\times$	$\times$	$\times$							
498	PLC function flash memory clear	62	E2	4	$\bigcirc$	$\times$	$\times$	$\times$							
499	SSCNET III operation selection NS	63	E3	4	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc{ }^{* 5}$	* 5
500	Communication error execution waiting time NC NCE NCG ND NP NF	00	80	5	$\bigcirc$										
501	Communication error occurrence count display NC NCE NCG ND NP NF	01	81	5	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$							
502	Stop mode selection at communication error	02	82	5	$\bigcirc$										
503	Maintenance timer 1	03	83	5	$\bigcirc$	$\times$	$\times$	$\times$							
504	Maintenance timer 1 warning output set time	04	84	5	$\bigcirc$	$\times$	$\bigcirc$								
505	Speed setting reference	05	85	5	$\bigcirc$										
506	Display estimated main circuit capacitor residual life	06	86	5	$\bigcirc$	$\times$	$\times$	$\times$							
507	Display/reset ABC1 relay contact life	07	87	5	$\bigcirc$	$\times$	$\times$	$\times$							
508	Display/reset ABC2 relay contact life	08	88	5	$\bigcirc$	$\times$	$\times$	$\times$							
514	Emergency drive dedicated waiting time	0E	8E	5	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
515	Emergency drive dedicated retry count	0F	8F	5	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
516	S-pattern time at a start of acceleration	10	90	5	$\bigcirc$										
517	S-pattern time at a completion of acceleration	11	91	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
518	S-pattern time at a start of deceleration	12	92	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
519	S-pattern time at a completion of deceleration	13	93	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
522	Output stop frequency	16	96	5	$\bigcirc$										
523	Emergency drive mode selection	17	97	5	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
		$\begin{aligned} & \text { ס } \\ & \underset{\sim}{0} \\ & \mathbb{R} \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \text { d } \\ & \frac{0}{0} \\ & \frac{1}{0} \\ & \underset{x}{x} \\ & \hline \end{aligned}$					$\overbrace{}^{* 3}$				${ }^{+\pi}$	$\begin{aligned} & \pm \\ & \stackrel{*}{\pi} \\ & \frac{0}{0} \end{aligned}$	
524	Emergency drive running speed	18	98	5	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
539	MODBUS RTU communication check time interval	27	A7	5	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{*}$								
541	Frequency command sign selection NC NCE NCG NP	29	A9	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc{ }^{*}$	○ ${ }$
542	Communication station number (CCLink) NC	2A	AA	5	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{* 5}$								
543	Baud rate selection (CC-Link) NC	2B	AB	5	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{* 5}$								
544	CC-Link extended setting NC	2C	AC	5	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{*}$								
547	USB communication station number	2F	AF	5	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$								
548	USB communication check time interval	30	B0	5	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{* 5}$								
549	Protocol selection	31	B1	5	$\bigcirc$	$\bigcirc * 5$	○*								
550	NET mode operation command source selection	32	B2	5	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{* 5}$								
551	PU mode operation command source selection	33	B3	5	$\bigcirc$	$\bigcirc{ }^{* 5}$	○*								
552	Frequency jump range	34	B4	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
553	PID deviation limit	35	B5	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
554	PID signal operation selection	36	B6	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
555	Current average time	37	B7	5	$\bigcirc$										
556	Data output mask time	38	B8	5	$\bigcirc$										
557	Current average value monitor signal output reference current	39	B9	5	$\bigcirc$										
560	Second frequency search gain	3C	BC	5	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
561	PTC thermistor protection level	3D	BD	5	$\bigcirc$	$\times$	$\bigcirc$								
563	Energization time carrying-over times	3F	BF	5	$\bigcirc$	$\times$	$\times$	$\times$							
564	Operating time carrying-over times	40	C0	5	$\bigcirc$	$\times$	$\times$	$\times$							
565	Second motor excitation current refraction point	41	C1	5	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
566	Second motor excitation current low speed scaling factor	42	C2	5	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
569	Second motor speed control gain	45	C5	5	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
570	Multiple rating setting	46	C6	5	$\bigcirc$	$\times$	$\times$								
571	Holding time at a start	47	C7	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
573	4 mA input check selection	49	C9	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
574	Second motor online auto tuning	4A	CA	5	$\times$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
575	Output interruption detection time	4B	CB	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
576	Output interruption detection level	4C	CC	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
577	Output interruption cancel level	4D	CD	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
592	Traverse function selection	5C	DC	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
593	Maximum amplitude amount	5D	DD	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
594	Amplitude compensation amount during deceleration	5E	DE	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
595	Amplitude compensation amount during acceleration	5F	DF	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
596	Amplitude acceleration time	60	E0	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
597	Amplitude deceleration time	61	E1	5	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
599	X10 terminal input selection	63	E3	5	$\bigcirc$										
600	First free thermal reduction frequency 1	00	80	6	$\bigcirc$										
601	First free thermal reduction ratio 1	01	81	6	$\bigcirc$										
602	First free thermal reduction frequency 2	02	82	6	$\bigcirc$										


Pr.	Name	Instruction code* ${ }^{\text {1 }}$			Control method ${ }^{*}{ }^{2}$								Parameter		
		$\begin{aligned} & \mathbf{0} \\ & \mathbb{\pi} \\ & \boldsymbol{\sim} \end{aligned}$					Vector ${ }^{*}$			Sensorless		$P M$   0	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{\circ} \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & x^{2} \frac{\pi}{\pi} \\ & \frac{\mathbb{O}}{0} \end{aligned}$	
603	First free thermal reduction ratio 2	03	83	6	$\bigcirc$										
604	First free thermal reduction frequency 3	04	84	6	$\bigcirc$										
606	Power failure stop external signal input selection	06	86	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
607	Motor permissible load level	07	87	6	$\bigcirc$										
608	Second motor permissible load level	08	88	6	$\bigcirc$										
609	PID set point/deviation input selection	09	89	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
610	PID measured value input selection	OA	8A	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
611	Acceleration time at a restart	0B	8B	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
617	Reverse rotation excitation current low-speed scaling factor	11	91	6	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
635	Cumulative pulse clear signal selection $\mathrm{AP} \mathrm{AL} \text { TP APR APS APA }$	23	A3	6	$\bigcirc$										
636	Cumulative pulse division scaling factor AP AL TP APR APS APA	24	A4	6	$\bigcirc$										
637	Control terminal option-Cumulative pulse division scaling factor $\mathrm{AP} \mathrm{AL} \text { TP APR APS APA }$	25	A5	6	$\bigcirc$										
638	Cumulative pulse storage   AP AL TP APR APS APA	26	A6	6	$\bigcirc$										
639	Brake opening current selection	27	A7	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
640	Brake operation frequency selection	28	A8	6	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
641	Second brake sequence operation selection	29	A9	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
642	Second brake opening frequency	2A	AA	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
643	Second brake opening current	2B	AB	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
644	Second brake opening current detection time	2C	AC	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
645	Second brake operation time at start	2D	AD	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
646	Second brake operation frequency	2E	AE	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
647	Second brake operation time at stop	2F	AF	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
648	Second deceleration detection function selection	30	B0	6	$\times$	$\Delta$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
650	Second brake opening current selection	32	B2	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
651	Second brake operation frequency selection	33	B3	6	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
653	Speed smoothing control	35	B5	6	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
654	Speed smoothing cutoff frequency	36	B6	6	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
655	Analog remote output selection	37	B7	6	$\bigcirc$										
656	Analog remote output 1	38	B8	6	$\bigcirc$	$\times$	$\times$	$\times$							
657	Analog remote output 2	39	B9	6	$\bigcirc$	$\times$	$\times$	$\times$							
658	Analog remote output 3	3A	BA	6	$\bigcirc$	$\times$	$\times$	$\times$							
659	Analog remote output 4	3B	BB	6	$\bigcirc$	$\times$	$\times$	$\times$							
660	Increased magnetic excitation deceleration operation selection	3C	BC	6	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
661	Magnetic excitation increase rate	3D	BD	6	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
662	Increased magnetic excitation current level	3E	BE	6	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
663	Control circuit temperature signal output level	3F	BF	6	$\bigcirc$										
665	Regeneration avoidance frequency gain	41	C1	6	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
								ctor	${ }^{* 3}$	Senso	orless	PM			
		$\begin{aligned} & \underset{\sim}{\nabla} \\ & \underset{\sim}{0} \\ & \text { O} \end{aligned}$	$\xlongequal[N]{2}$							을 0 o o 0 0	은 을 $ㅇ ㅡ ㅇ ~$		${ }^{ \pm}$	$\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\mathbb{E}}{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \frac{2}{\pi} \\ & \frac{0}{0} \\ & \frac{1}{\mathbf{4}} \end{aligned}$
668	Power failure stop frequency gain	44	C4	6	$\bigcirc$										
675	User parameter auto storage function selection	4B	CB	6	$\bigcirc$										
679	Second droop gain	4F	CF	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
680	Second droop filter time constant	50	D0	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
681	Second droop function activation selection	51	D1	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
682	Second droop break point gain	52	D2	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
683	Second droop break point torque	53	D3	6	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
684	Tuning data unit switchover	54	D4	6	$\times$	$\bigcirc$									
686	Maintenance timer 2	56	D6	6	$\bigcirc$	$\times$	$\times$	$\times$							
687	Maintenance timer 2 warning output set time	57	D7	6	$\bigcirc$	$\times$	$\bigcirc$								
688	Maintenance timer 3	58	D8	6	$\bigcirc$	$\times$	$\times$	$\times$							
689	Maintenance timer 3 warning output set time	59	D9	6	$\bigcirc$	$\times$	$\bigcirc$								
690	Deceleration check time	5A	DA	6	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
692	Second free thermal reduction frequency 1	5C	DC	6	$\bigcirc$										
693	Second free thermal reduction ratio 1	5D	DD	6	$\bigcirc$										
694	Second free thermal reduction frequency 2	5E	DE	6	$\bigcirc$										
695	Second free thermal reduction ratio 2	5F	DF	6	$\bigcirc$										
696	Second free thermal reduction frequency 3	60	E0	6	$\bigcirc$										
699	Input terminal filter	63	E3	6	$\bigcirc$	$\times$	$\bigcirc$								
702	Maximum motor frequency	02	82	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
706	Induced voltage constant (phif)	06	86	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
707	Motor inertia (integer)	07	87	7	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
711	Motor Ld decay ratio	0B	8B	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
712	Motor Lq decay ratio	OC	8C	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
717	Starting resistance tuning compensation	11	91	7	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$						
721	Starting magnetic pole position detection pulse width	15	95	7	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$						
724	Motor inertia (exponent)	18	98	7	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
725	Motor protection current level	19	99	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
738	Second motor induced voltage constant (phi f)	26	A6	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
739	Second motor Ld decay ratio	27	A7	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
740	Second motor Lq decay ratio	28	A8	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
741	Second starting resistance tuning compensation	29	A9	7	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$						
742	Second motor magnetic pole detection pulse width	2A	AA	7	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$						
743	Second motor maximum frequency	2B	AB	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
744	Second motor inertia (integer)	2C	AC	7	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
745	Second motor inertia (exponent)	2D	AD	7	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
746	Second motor protection current level	2E	AE	7	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
750   751	Parameter for manufacturer setting. Do not set. AZ														
753	Second PID action selection	35	B5	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
754	Second PID control automatic switchover frequency	36	B6	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
755	Second PID action set point	37	B7	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
								ctor			orless				
		$\begin{aligned} & \underset{\pi}{\widetilde{\pi}} \\ & \dot{\mathscr{N}} \end{aligned}$		$\begin{aligned} & \frac{0}{0} \\ & \stackrel{0}{\overline{0}} \\ & \underset{\sim}{x} \\ & \hline \end{aligned}$	$\stackrel{14}{3}$			$\begin{aligned} & \text { O } \\ & \text { 흔 } \\ & \text { 흘 } \\ & \text { O } \end{aligned}$					$\begin{aligned} & x^{+} \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x^{*} \frac{\pi}{\approx} \\ & \frac{\mathrm{E}}{0} \end{aligned}$	
756	Second PID proportional band	38	B8	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
757	Second PID integral time	39	B9	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
758	Second PID differential time	3A	BA	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
759	PID unit selection	3B	BB	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
760	Pre-charge fault selection	3C	BC	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
761	Pre-charge ending level	3D	BD	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
762	Pre-charge ending time	3E	BE	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
763	Pre-charge upper detection level	3F	BF	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
764	Pre-charge time limit	40	C0	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
765	Second pre-charge fault selection	41	C1	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
766	Second pre-charge ending level	42	C2	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
767	Second pre-charge ending time	43	C3	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
768	Second pre-charge upper detection level	44	C4	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
769	Second pre-charge time limit	45	C5	7	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
774	Operation panel monitor selection 1	4A	CA	7	$\bigcirc$										
775	Operation panel monitor selection 2	4B	CB	7	$\bigcirc$										
776	Operation panel monitor selection 3	4C	CC	7	$\bigcirc$										
777	4 mA input fault operation frequency	4D	CD	7	$\bigcirc$										
778	4 mA input check filter	4E	CE	7	$\bigcirc$										
779	Operation frequency during communication error	4F	CF	7	$\bigcirc$										
791	Acceleration time in low-speed range	5B	DB	7	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
792	Deceleration time in low-speed range	5C	DC	7	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$						
799	Pulse increment setting for output power	63	E3	7	$\bigcirc$										
800	Control method selection	00	80	8	$\bigcirc$										
801	Output limit level	01	81	8	$\times$	$\times$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
802	Pre-excitation selection	02	82	8	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
803	Constant output range torque characteristic selection	03	83	8	$\times$	$\times$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
804	Torque command source selection	04	84	8	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
805	Torque command value (RAM)	05	85	8	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$
806	Torque command value (RAM, EEPROM)	06	86	8	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
807	Speed limit selection	07	87	8	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
808	Forward rotation speed limit/speed limit	08	88	8	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
809	Reverse rotation speed limit/reverseside speed limit	09	89	8	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
810	Torque limit input method selection	0A	8A	8	$\times$	$\times$	$\bigcirc$								
811	Set resolution switchover	OB	8B	8	$\bigcirc$										
812	Torque limit level (regeneration)	OC	8C	8	$\times$	$\times$	$\bigcirc$								
813	Torque limit level (3rd quadrant)	OD	8D	8	$\times$	$\times$	$\bigcirc$								
814	Torque limit level (4th quadrant)	OE	8E	8	$\times$	$\times$	$\bigcirc$								
815	Torque limit level 2	0F	8F	8	$\times$	$\times$	$\bigcirc$								
816	Torque limit level during acceleration	10	90	8	$\times$	$\times$	$\bigcirc$								
817	Torque limit level during deceleration	11	91	8	$\times$	$\times$	$\bigcirc$								
818	Easy gain tuning response level setting	12	92	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
819	Easy gain tuning selection	13	93	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
820	Speed control P gain 1	14	94	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
821	Speed control integral time 1	15	95	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
822	Speed setting filter 1	16	96	8	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
			$\begin{aligned} & \pm \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { ס } \\ & \underline{0} \\ & \mathbf{0} \\ & \mathbf{0} \\ & \underset{\sim}{x} \end{aligned}$			Vector ${ }^{*}$			Sensorless		$P M$   0	$\begin{aligned} & * \\ & \stackrel{*}{\circ} \\ & 0 \\ & 0 \end{aligned}$		
823	Speed detection filter 1   AP AL TP APR APS APA	17	97	8	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
824	Torque control P gain 1 (current loop proportional gain)	18	98	8	$\times$	$\times$	$\bigcirc$								
825	Torque control integral time 1 (current loop integral time)	19	99	8	$\times$	$\times$	$\bigcirc$								
826	Torque setting filter 1	1A	9A	8	$\times$	$\times$	$\bigcirc$								
827	Torque detection filter 1	1B	9B	8	$\times$	$\times$	$\bigcirc$								
828	Model speed control gain	1C	9C	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
829	Number of machine end encoder pulses	1D	9D	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
830	Speed control P gain 2	1E	9E	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
831	Speed control integral time 2	1F	9F	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
832	Speed setting filter 2	20	A0	8	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
833	Number of machine end encoder pulses AP AL TP APR APS APA	21	A1	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
834	Torque control P gain 2	22	A2	8	$\times$	$\times$	$\bigcirc$								
835	Torque control integral time 2	23	A3	8	$\times$	$\times$	$\bigcirc$								
836	Torque setting filter 2	24	A4	8	$\times$	$\times$	$\bigcirc$								
837	Torque detection filter 2	25	A5	8	$\times$	$\times$	$\bigcirc$								
838	DA1 terminal function selection AZ	26	A6	8	$\bigcirc$										
839	DA1 output filter AZ	27	A7	8	$\bigcirc$										
840	Torque bias selection	28	A8	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
841	Torque bias 1	29	A9	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
842	Torque bias 2	2A	AA	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
843	Torque bias 3	2B	AB	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
844	Torque bias filter	2C	AC	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
845	Torque bias operation time	2D	AD	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
846	Torque bias balance compensation	2E	AE	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
847	Fall-time torque bias terminal 1 bias	2F	AF	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
848	Fall-time torque bias terminal 1 gain	30	B0	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
849	Analog input offset adjustment	31	B1	8	$\bigcirc$										
850	Brake operation selection	32	B2	8	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
851	Control terminal option-Number of encoder pulses TP	33	B3	8	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
852	Control terminal option-Encoder rotation direction TP	34	B4	8	$\bigcirc$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
853	Speed deviation time   AP AL TP APR APS APA	35	B5	8	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
854	Excitation ratio	36	B6	8	$\times$	$\times$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
855	Control terminal option-Signal loss detection enable/disable selection TP	37	B7	8	$\times$	$\times$	$\bigcirc(\times)$	$\bigcirc$	$\bigcirc(\times)$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
857	DA1-0V adjustment ${ }_{\text {AZ }}$	39	B9	8	$\bigcirc$	$\times$	$\bigcirc$								
858	Terminal 4 function assignment	3A	BA	8	$\bigcirc$	$\times$	$\bigcirc$								
859	Torque current/Rated PM motor current	3B	BB	8	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
860	Second motor torque current/Rated PM motor current	3C	BC	8	$\times$	$\bigcirc$	$\times$	$\bigcirc$							
862	Encoder option selection   AP AL TP APR APS APA	3E	BE	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
863	Control terminal option-Encoder pulse division ratio TP	3F	BF	8	$\bigcirc$										


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
								ector	${ }^{* 3}$	Sens	orless	PMM			
		$\begin{aligned} & \underset{\pi}{\widetilde{\pi}} \\ & \dot{\mathscr{N}} \end{aligned}$						$\begin{aligned} & 0 \\ & \text { O } \\ & \text { 민 } \\ & \text { O } \\ & 1 \end{aligned}$					$\begin{aligned} & \pi \\ & \frac{\pi}{0} \\ & 0 \\ & 0 \end{aligned}$		
864	Torque detection	40	C0	8	$\times$	$\times$	$\bigcirc$								
865	Low speed detection	41	C1	8	$\bigcirc$										
866	Torque monitoring reference	42	C2	8	$\times$	$\bigcirc$									
867	AM output filter	43	C3	8	$\bigcirc$										
868	Terminal 1 function assignment	44	C4	8	$\bigcirc$	$\times$	$\bigcirc$								
870	Speed detection hysteresis	46	C6	8	$\bigcirc$										
871	Control terminal option-Encoder position tuning setting/status TP	47	C7	8	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
872	Input phase loss protection selection	48	C8	8	$\bigcirc$										
873	Speed limit AP AL TP APR APS APA	49	C9	8	$\times$	$\times$	$\bigcirc(\times)$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
874	OLT level setting	4A	CA	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
875	Fault definition	4B	CB	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
876	Thermal protector input TP	4C	CC	8	$\bigcirc$										
877	Speed feed forward control/model adaptive speed control selection	4D	CD	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
878	Speed feed forward filter	4E	CE	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
879	Speed feed forward torque limit	4F	CF	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
880	Load inertia ratio	50	D0	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
881	Speed feed forward gain	51	D1	8	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
882	Regeneration avoidance operation selection	52	D2	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
883	Regeneration avoidance operation level	53	D3	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
884	Regeneration avoidance at deceleration detection sensitivity	54	D4	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
885	Regeneration avoidance compensation frequency limit value	55	D5	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
886	Regeneration avoidance voltage gain	56	D6	8	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
887	Control terminal option-Encoder magnetic pole position offset TP	57	D7	8	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
888	Free parameter 1	58	D8	8	$\bigcirc$	$\times$	$\times$								
889	Free parameter 2	59	D9	8	$\bigcirc$	$\times$	$\times$								
890	Internal storage device status indication	5A	DA	8	$\bigcirc$	$\times$	$\times$	$\times$							
891	Cumulative power monitor digit shifted times	5B	DB	8	$\bigcirc$										
892	Load factor	5C	DC	8	$\bigcirc$										
893	Energy saving monitor reference (motor capacity)	5D	DD	8	$\bigcirc$										
894	Control selection during commercial power-supply operation	5E	DE	8	$\bigcirc$										
895	Power saving rate reference value	5F	DF	8	$\bigcirc$										
896	Power unit cost	60	E0	8	$\bigcirc$										
897	Power saving monitor average time	61	E1	8	$\bigcirc$										
898	Power saving cumulative monitor clear	62	E2	8	$\bigcirc$	$\times$	$\bigcirc$								
899	Operation time rate (estimated value)	63	E3	8	$\bigcirc$										
900	FM terminal calibration	5C	DC	1	$\bigcirc$	$\times$	$\bigcirc$								
901	AM terminal calibration	5D	DD	1	$\bigcirc$	$\times$	$\bigcirc$								
902	Terminal 2 frequency setting bias frequency	5E	DE	1	$\bigcirc$	$\times$	$\bigcirc$								
902	Terminal 2 frequency setting bias	5E	DE	1	$\bigcirc$	$\times$	$\bigcirc$								
$\begin{aligned} & 903 \\ & (125) \end{aligned}$	Terminal 2 frequency setting gain frequency	5F	DF	1	$\bigcirc$	$\times$	$\bigcirc$								
903	Terminal 2 frequency setting gain	5F	DF	1	$\bigcirc$	$\times$	$\bigcirc$								


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
			$\begin{aligned} & \text { IN } \\ & \frac{1}{2} \\ & \hline \end{aligned}$									$P M$   O   0	$\begin{aligned} & + \\ & \stackrel{0}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \frac{\pi}{*} \\ \frac{2}{\pi} \\ \frac{0}{0} \\ \frac{1}{4} \end{gathered}$
904	Terminal 4 frequency setting bias frequency	60	E0	1	$\bigcirc$	$\times$	$\bigcirc$								
904	Terminal 4 frequency setting bias	60	E0	1	$\bigcirc$	$\times$	$\bigcirc$								
$\begin{aligned} & \hline 905 \\ & (126) \\ & \hline \end{aligned}$	Terminal 4 frequency setting gain frequency	61	E1	1	$\bigcirc$	$\times$	$\bigcirc$								
905	Terminal 4 frequency setting gain	61	E1	1	$\bigcirc$	$\times$	$\bigcirc$								
917	Terminal 1 bias frequency (speed)	11	91	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
917	Terminal 1 bias (speed)	11	91	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
918	Terminal 1 gain frequency (speed)	12	92	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
918	Terminal 1 gain (speed)	12	92	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
919	Terminal 1 bias command (torque)	13	93	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
919	Terminal 1 bias (torque)	13	93	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
920	Terminal 1 gain command (torque)	14	94	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
920	Terminal 1 gain (torque)	14	94	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
925	Parameter for manufacturer setting. Do not set. AZ														
926	Terminal 6 bias frequency (speed) AZ	1A	9A	9	$\bigcirc$	$\times$	$\bigcirc$								
926	Terminal 6 bias (speed) AZ	1A	9A	9	$\bigcirc$	$\times$	$\bigcirc$								
927	Terminal 6 gain frequency (speed) AZ	1B	9B	9	$\bigcirc$	$\times$	$\bigcirc$								
927	Terminal 6 gain (speed) AZ	1B	9B	9	$\bigcirc$	$\times$	$\bigcirc$								
928	Terminal 6 bias command (torque) AZ	1C	9C	9	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
928	Terminal 6 bias (torque) AZ	1C	9C	9	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
929	Terminal 6 gain command (torque) AZ	1D	9D	9	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
929	Terminal 6 gain (torque) AZ	1D	9D	9	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
932	Terminal 4 bias command (torque)	20	A0	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
932	Terminal 4 bias (torque)	20	A0	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
933	Terminal 4 gain command (torque)	21	A1	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
933	Terminal 4 gain (torque)	21	A1	9	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$						
934	PID display bias coefficient	22	A2	9	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
934	PID display bias analog value	22	A2	9	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
935	PID display gain coefficient	23	A3	9	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
935	PID display gain analog value	23	A3	9	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
989	Parameter copy alarm release	59	D9	9	$\bigcirc$	$\times$	$\bigcirc$								
990	PU buzzer control	5A	DA	9	$\bigcirc$										
991	PU contrast adjustment	5B	DB	9	$\bigcirc$	$\times$	$\bigcirc$								
992	Parameter for manufacturer setting. Do not set.														
994	Droop break point gain	5E	DE	9	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
995	Droop break point torque	5F	DF	9	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
997	Fault initiation	61	E1	9	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$							
998	PM parameter initialization	62	E2	9	$\bigcirc$										
999	Automatic parameter setting	63	E3	9	$\bigcirc$	$\times$	$\times$	$\bigcirc$							
1000	Direct setting selection	00	80	A	$\bigcirc$										
1002	Lq tuning target current adjustment coefficient	02	82	A	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1003	Notch filter frequency	03	83	A	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1004	Notch filter depth	04	84	A	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1005	Notch filter width	05	85	A	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1006	Clock (year)	06	86	A	$\bigcirc$	$\times$	$\times$	$\times$							
1007	Clock (month, day)	07	87	A	$\bigcirc$	$\times$	$\times$	$\times$							
1008	Clock (hour, minute)	08	88	A	$\bigcirc$	$\times$	$\times$	$\times$							


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
								ector	$\mathrm{r}^{* 3}$	Senso	orless	PM			
		$\begin{aligned} & \underset{\pi}{\mathbf{\pi}} \\ & \text { \& } \end{aligned}$	$\begin{aligned} & \cong \\ & \\ & \frac{2}{3} \end{aligned}$					$\begin{aligned} & \text { OO } \\ & \text { 은 } \\ & \text { 응 } \\ & 1 \end{aligned}$	$\begin{array}{ll} \frac{c}{0} & 0 \\ & \frac{1}{4} \\ 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		$\begin{aligned} & 0 \\ & \hline 10 \\ & \text { 흔 } \\ & \text { ㅇ } \\ & \hline 0 \end{aligned}$		${ }^{+}$	$\begin{aligned} & \pi^{2} \frac{1}{\pi} \\ & \frac{0}{U} \end{aligned}$	
1013	Emergency drive running speed after retry reset	OD	8D	A	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1015	Integral stop selection at limited frequency	OF	8F	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1016	PTC thermistor protection detection time	10	90	A	$\bigcirc$	$\times$	$\bigcirc$								
1018	Monitor with sign selection	12	92	A	$\bigcirc$										
1019	Analog meter voltage negative output selection AY	13	93	A	$\bigcirc$										
1020	Trace operation selection	14	94	A	$\bigcirc$										
1021	Trace mode selection	15	95	A	$\bigcirc$										
1022	Sampling cycle	16	96	A	$\bigcirc$										
1023	Number of analog channels	17	97	A	$\bigcirc$										
1024	Sampling auto start	18	98	A	$\bigcirc$										
1025	Trigger mode selection	19	99	A	$\bigcirc$										
1026	Number of sampling before trigger	1A	9A	A	$\bigcirc$										
1027	Analog source selection (1ch)	1B	9B	A	$\bigcirc$										
1028	Analog source selection (2ch)	1C	9C	A	$\bigcirc$										
1029	Analog source selection (3ch)	1D	9D	A	$\bigcirc$										
1030	Analog source selection (4ch)	1E	9E	A	$\bigcirc$										
1031	Analog source selection (5ch)	1F	9F	A	$\bigcirc$										
1032	Analog source selection (6ch)	20	A0	A	$\bigcirc$										
1033	Analog source selection (7ch)	21	A1	A	$\bigcirc$										
1034	Analog source selection (8ch)	22	A2	A	$\bigcirc$										
1035	Analog trigger channel	23	A3	A	$\bigcirc$										
1036	Analog trigger operation selection	24	A4	A	$\bigcirc$										
1037	Analog trigger level	25	A5	A	$\bigcirc$										
1038	Digital source selection (1ch)	26	A6	A	$\bigcirc$										
1039	Digital source selection (2ch)	27	A7	A	$\bigcirc$										
1040	Digital source selection (3ch)	28	A8	A	$\bigcirc$										
1041	Digital source selection (4ch)	29	A9	A	$\bigcirc$										
1042	Digital source selection (5ch)	2A	AA	A	$\bigcirc$										
1043	Digital source selection (6ch)	2B	AB	A	$\bigcirc$										
1044	Digital source selection (7ch)	2C	AC	A	$\bigcirc$										
1045	Digital source selection (8ch)	2D	AD	A	$\bigcirc$										
1046	Digital trigger channel	2E	AE	A	$\bigcirc$										
1047	Digital trigger operation selection	2F	AF	A	$\bigcirc$										
1048	Parameter for manufacturer setting. Do not set.														
1049	USB host reset	31	B1	A	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$							
1072	DC brake judgment time for antisway control operation	48	C8	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1073	Anti-sway control operation selection	49	C9	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1074	Anti-sway control frequency	4A	CA	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1075	Anti-sway control depth	4B	CB	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1076	Anti-sway control width	4C	CC	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1077	Rope length	4D	CD	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1078	Trolley weight	4E	CE	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1079	Load weight	4F	CF	A	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1103	Deceleration time at emergency stop	03	83	B	$\bigcirc$										
1105	Encoder magnetic pole position offset   AL APR APS APA	05	85	B	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$
1106	Torque monitor filter	06	86	B	$\bigcirc$										
1107	Running speed monitor filter	07	87	B	$\bigcirc$										
1108	Excitation current monitor filter	08	88	B	$\bigcirc$										


Pr.	Name	Instruction code* ${ }^{*}$			Control method ${ }^{*}{ }^{2}$								Parameter		
							$\begin{array}{ll} \hline \text { O } & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ \omega & 0 \end{array}$						$\begin{aligned} & +\pi \\ & \stackrel{+}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\mathbb{E}}{U} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & * \\ & \frac{\pi}{\pi} \\ & \frac{2}{0} \\ & \frac{0}{\overline{4}} \end{aligned}$
1109	PROFIBUS communication command source selection NP	09	89	B	$\times$	$\bigcirc$	* 5	$\bigcirc{ }^{* 5}$							
1110	PROFIBUS format selection NP	0A	8A	B	$\bigcirc$	○*	○ ${ }^{*}$								
1113	Speed limit method selection	OD	8D	B	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1114	Torque command reverse selection	0E	8E	B	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1115	Speed control integral term clear time	0F	8F	B	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1116	Constant output range speed control $P$ gain compensation	10	90	B	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1117	Speed control P gain 1 (per-unit system)	11	91	B	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1118	Speed control P gain 2 (per-unit system)	12	92	B	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1119	Model speed control gain (per-unit system)	13	93	B	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1121	Per-unit speed control reference frequency	15	95	B	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1134	PID upper limit manipulated value	22	A2	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1135	PID lower limit manipulated value	23	A3	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1136	Second PID display bias coefficient	24	A4	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1137	Second PID display bias analog value	25	A5	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1138	Second PID display gain coefficient	26	A6	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1139	Second PID display gain analog value	27	A7	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1140	Second PID set point/deviation input selection	28	A8	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1141	Second PID measured value input selection	29	A9	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1142	Second PID unit selection	2A	AA	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1143	Second PID upper limit	2B	AB	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1144	Second PID lower limit	2C	AC	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1145	Second PID deviation limit	2D	AD	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1146	Second PID signal operation selection	2E	AE	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1147	Second output interruption detection time	2 F	AF	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1148	Second output interruption detection level	30	B0	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1149	Second output interruption cancel level	31	B1	B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1150	User parameters 1	32	B2	B	$\bigcirc$										
1151	User parameters 2	33	B3	B	$\bigcirc$										
1152	User parameters 3	34	B4	B	$\bigcirc$										
1153	User parameters 4	35	B5	B	$\bigcirc$										
1154	User parameters 5	36	B6	B	$\bigcirc$										
1155	User parameters 6	37	B7	B	$\bigcirc$										
1156	User parameters 7	38	B8	B	$\bigcirc$										
1157	User parameters 8	39	B9	B	$\bigcirc$										
1158	User parameters 9	3A	BA	B	$\bigcirc$										
1159	User parameters 10	3B	BB	B	$\bigcirc$										
1160	User parameters 11	3C	BC	B	$\bigcirc$										
1161	User parameters 12	3D	BD	B	$\bigcirc$										
1162	User parameters 13	3E	BE	B	$\bigcirc$										
1163	User parameters 14	3F	BF	B	$\bigcirc$										
1164	User parameters 15	40	C0	B	$\bigcirc$										
1165	User parameters 16	41	C1	B	$\bigcirc$										


Pr.	Name	Instruction code* ${ }^{\text {1 }}$			Control method*2								Parameter		
		$\begin{aligned} & \text { ס } \\ & \underset{\pi}{0} \\ & \boldsymbol{\sim} \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \text { ס } \\ & \frac{0}{0} \\ & \frac{c}{o} \\ & \underset{\sim}{x} \\ & \hline \end{aligned}$			$\text { Vector }^{* 3}$			Sensorless			${ }^{*}$	$\begin{aligned} & \overbrace{}^{2} \\ & \frac{\mathscr{O}}{\pi} \\ & \hline \end{aligned}$	
1166	User parameters 17	42	C2	B	$\bigcirc$										
1167	User parameters 18	43	C3	B	$\bigcirc$										
1168	User parameters 19	44	C4	B	$\bigcirc$										
1169	User parameters 20	45	C5	B	$\bigcirc$										
1170	User parameters 21	46	C6	B	$\bigcirc$										
1171	User parameters 22	47	C7	B	$\bigcirc$										
1172	User parameters 23	48	C8	B	$\bigcirc$										
1173	User parameters 24	49	C9	B	$\bigcirc$										
1174	User parameters 25	4A	CA	B	$\bigcirc$										
1175	User parameters 26	4B	CB	B	$\bigcirc$										
1176	User parameters 27	4C	CC	B	$\bigcirc$										
1177	User parameters 28	4D	CD	B	$\bigcirc$										
1178	User parameters 29	4E	CE	B	$\bigcirc$										
1179	User parameters 30	4F	CF	B	$\bigcirc$										
1180	User parameters 31	50	D0	B	$\bigcirc$										
1181	User parameters 32	51	D1	B	$\bigcirc$										
1182	User parameters 33	52	D2	B	$\bigcirc$										
1183	User parameters 34	53	D3	B	$\bigcirc$										
1184	User parameters 35	54	D4	B	$\bigcirc$										
1185	User parameters 36	55	D5	B	$\bigcirc$										
1186	User parameters 37	56	D6	B	$\bigcirc$										
1187	User parameters 38	57	D7	B	$\bigcirc$										
1188	User parameters 39	58	D8	B	$\bigcirc$										
1189	User parameters 40	59	D9	B	$\bigcirc$										
1190	User parameters 41	5A	DA	B	$\bigcirc$										
1191	User parameters 42	5B	DB	B	$\bigcirc$										
1192	User parameters 43	5C	DC	B	$\bigcirc$										
1193	User parameters 44	5D	DD	B	$\bigcirc$										
1194	User parameters 45	5E	DE	B	$\bigcirc$										
1195	User parameters 46	5 F	DF	B	$\bigcirc$										
1196	User parameters 47	60	E0	B	$\bigcirc$										
1197	User parameters 48	61	E1	B	$\bigcirc$										
1198	User parameters 49	62	E2	B	$\bigcirc$										
1199	User parameters 50	63	E3	B	$\bigcirc$										
1220	Target position/speed selection	14	94	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1221	Start command edge detection selection	15	95	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1222	First positioning acceleration time	16	96	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1223	First positioning deceleration time	17	97	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1224	First positioning dwell time	18	98	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1225	First positioning sub-function	19	99	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1226	Second positioning acceleration time	1A	9A	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1227	Second positioning deceleration time	1B	9B	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1228	Second positioning dwell time	1C	9C	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1229	Second positioning sub-function	1D	9D	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1230	Third positioning acceleration time	1E	9E	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1231	Third positioning deceleration time	1F	9 F	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1232	Third positioning dwell time	20	A0	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1233	Third positioning sub-function	21	A1	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1234	Fourth positioning acceleration time	22	A2	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1235	Fourth positioning deceleration time	23	A3	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1236	Fourth positioning dwell time	24	A4	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1237	Fourth positioning sub-function	25	A5	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1238	Fifth positioning acceleration time	26	A6	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{*}$			Control method*2								Parameter		
								ctor	$\mathrm{r}^{* 3}$		orless	PM			
		$\begin{aligned} & \mathbf{0} \\ & \mathbb{\pi} \\ & \mathbb{\otimes} \end{aligned}$		$\begin{aligned} & \frac{0}{0} \\ & \stackrel{0}{c} \\ & \underset{\sim}{x} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \text { o } \\ & 0 \\ & 0 \\ & 0 \\ & \text { on } \\ & \text { o } \\ & \hline \end{aligned}$			$$			$\begin{aligned} & + \\ & \stackrel{0}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
1239	Fifth positioning deceleration time	27	A7	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1240	Fifth positioning dwell time	28	A8	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1241	Fifth positioning sub-function	29	A9	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1242	Sixth positioning acceleration time	2A	AA	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1243	Sixth positioning deceleration time	2B	AB	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1244	Sixth positioning dwell time	2C	AC	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1245	Sixth positioning sub-function	2D	AD	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1246	Seventh positioning acceleration time	2E	AE	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1247	Seventh positioning deceleration time	2 F	AF	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1248	Seventh positioning dwell time	30	B0	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1249	Seventh positioning sub-function	31	B1	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1250	Eighth positioning acceleration time	32	B2	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1251	Eighth positioning deceleration time	33	B3	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1252	Eighth positioning dwell time	34	B4	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1253	Eighth positioning sub-function	35	B5	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1254	Ninth positioning acceleration time	36	B6	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1255	Ninth positioning deceleration time	37	B7	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1256	Ninth positioning dwell time	38	B8	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1257	Ninth positioning sub-function	39	B9	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1258	Tenth positioning acceleration time	3A	BA	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1259	Tenth positioning deceleration time	3B	BB	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1260	Tenth positioning dwell time	3C	BC	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1261	Tenth positioning sub-function	3D	BD	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1262	Eleventh positioning acceleration time	3E	BE	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1263	Eleventh positioning deceleration time	3F	BF	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1264	Eleventh positioning dwell time	40	C0	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1265	Eleventh positioning sub-function	41	C1	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1266	Twelfth positioning acceleration time	42	C2	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1267	Twelfth positioning deceleration time	43	C3	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1268	Twelfth positioning dwell time	44	C4	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1269	Twelfth positioning sub-function	45	C5	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1270	Thirteenth positioning acceleration time	46	C6	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1271	Thirteenth positioning deceleration time	47	C7	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1272	Thirteenth positioning dwell time	48	C8	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1273	Thirteenth positioning sub-function	49	C9	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1274	Fourteenth positioning acceleration time	4A	CA	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1275	Fourteenth positioning deceleration time	4B	CB	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1276	Fourteenth positioning dwell time	4C	CC	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1277	Fourteenth positioning sub-function	4D	CD	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1278	Fifteenth positioning acceleration time	4E	CE	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1279	Fifteenth positioning deceleration time	4F	CF	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1280	Fifteenth positioning dwell time	50	D0	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1281	Fifteenth positioning sub-function	51	D1	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1282	Home position return method selection	52	D2	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1283	Home position return speed	53	D3	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{\text {1 }}$			Control method ${ }^{*}{ }^{2}$								Parameter		
							Vector ${ }^{*}$			Sensorless		PMM   ס $\overline{0}$   0.   0   0   0   0	$\begin{aligned} & * \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & { }_{*}^{*} \\ & \stackrel{2}{\pi} \\ & \frac{\mathbb{O}}{U} \end{aligned}$	
											$\begin{array}{lc} 0 & 0 \\ \text { 믄 } \\ \text { 은 } \\ \hline \end{array}$				
1284	Home position return creep speed	54	D4	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1285	Home position shift amount lower 4 digits	55	D5	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1286	Home position shift amount upper 4 digits	56	D6	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1287	Travel distance after proximity dog ON lower 4 digits	57	D7	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1288	Travel distance after proximity dog ON upper 4 digits	58	D8	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1289	Home position return stopper torque	59	D9	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1290	Home position return stopper waiting time	5A	DA	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1292	Position control terminal input selection	5C	DC	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1293	Roll feeding mode selection	5D	DD	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1294	Position detection lower 4 digits	5E	DE	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1295	Position detection upper 4 digits	5F	DF	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1296	Position detection selection	60	E0	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1297	Position detection hysteresis width	61	E1	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1298	Second position control gain	62	E2	C	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1299	Second pre-excitation selection	63	E3	C	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1344	R-S turns ratio compensation AVP	2C	AC	D	$\bigcirc$	$\times$	$\times$								
1345	T-S turns ratio compensation AVP	2D	AD	D	$\bigcirc$	$\times$	$\times$								
1348	P/PI control switchover frequency	30	B0	D	$\times$	$\times$	$\bigcirc$	$\times$	$\times(\bigcirc)$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1349	Emergency stop operation selection	31	B1	D	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times(\bigcirc)$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1382	MC switchover interlock time (for phase-synchronized bypass   switching function) AVP	52	D2	D	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1383	Phase compensation amount for synchronous bypass switching AVP	53	D3	D	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1384	PLL tuning gain AVP	54	D4	D	$\bigcirc$	$\bigcirc$	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1410	Starting times lower 4 digits	OA	8A	E	$\bigcirc$	$\times$	$\times$	$\times$							
1411	Starting times upper 4 digits	OB	8B	E	$\bigcirc$	$\times$	$\times$	$\times$							
1412	Motor induced voltage constant (phi f) exponent	OC	8C	E	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1413	Second motor induced voltage constant (phi f) exponent	OD	8D	E	$\times$	$\times$	$\times(\bigcirc)$	$\times$	$\times(\bigcirc)$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$
1442	IP filter address 1 (Ethernet) NCG	2A	AA	E	$\bigcirc$	${ }^{* 5}$	$\bigcirc{ }^{*}$								
1443	IP filter address 2 (Ethernet) NCG	2B	AB	E	$\bigcirc$	${ }^{*} 5$	$\bigcirc{ }^{*}$								
1444	IP filter address 3 (Ethernet) NCG	2C	AC	E	$\bigcirc$	${ }^{*}{ }^{5}$	$\bigcirc{ }^{* 5}$								
1445	IP filter address 4 (Ethernet) NCG	2D	AD	E	$\bigcirc$	${ }^{* 5}$	$\bigcirc{ }^{* 5}$								
1446	IP filter address 2 range specification (Ethernet) NCG	2E	AE	E	$\bigcirc$	$\bigcirc{ }^{* 5}$	$\bigcirc{ }^{* 5}$								
1447	IP filter address 3 range specification (Ethernet) NCG	2 F	AF	E	$\bigcirc$	$\bigcirc{ }^{*}$	$\bigcirc{ }^{* 5}$								
1448	IP filter address 4 range specification (Ethernet) NCG	30	B0	E	$\bigcirc$	$\bigcirc * 5$	$\bigcirc{ }^{* 5}$								
1459	Clock source selection NCG	3B	BB	E	$\bigcirc$										
1480	Load characteristics measurement mode	50	D0	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1481	Load characteristics load reference 1	51	D1	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1482	Load characteristics load reference 2	52	D2	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1483	Load characteristics load reference 3	53	D3	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1484	Load characteristics load reference 4	54	D4	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$


Pr.	Name	Instruction code* ${ }^{\text {1 }}$			Control method ${ }^{*}$ 2								Parameter		
			$$							$\begin{array}{\|l\|} \hline \text { Sens } \\ \hline \text { o } \\ \hline \end{array}$		PPM   ס $\overline{0}$   o   o   0	$\begin{aligned} & * \\ & \stackrel{ \pm}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$		
1485	Load characteristics load reference 5	55	D5	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1486	Load characteristics maximum frequency	56	D6	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1487	Load characteristics minimum frequency	57	D7	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1488	Upper limit warning detection width	58	D8	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1489	Lower limit warning detection width	59	D9	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1490	Upper limit fault detection width	5A	DA	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1491	Lower limit fault detection width	5B	DB	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
1492	Load status detection signal delay time / load reference measurement waiting time	5C	DC	E	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\times$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$

## 9.5 <br> For customers using HMS network options

## - List of inverter monitored items / command items

The following items can be set using a communication option.
16-bit data

No.			Tescription	-


No.	Description	Unit	Type	Read/write
H003B	Option input terminal status2*1	-	-	R
H003C	Option output terminal status*1	-	-	R
H003D	Motor thermal load factor	0.1\%	unsigned	R
H003E	Transistor thermal load factor	0.1\%	unsigned	R
H003F	reserved	-	-	-
H0040	PTC thermistor resistance	$0.01 \mathrm{k} \Omega$	unsigned	R
H0041	Output power (with regenerative display)	0.1 kW	unsigned	R
H0042	Cumulative regenerative power	1kWh	unsigned	R
H0043	PID measured value 2	0.1\%	unsigned	R
H0044	Second PID set point	0.1\%	unsigned	R/W
H0045	Second PID measured value	0.1\%	unsigned	R/W
H0046	Second PID deviation	0.1\%	unsigned	R/W
H0047	Cumulative pulse (Built-in OPT)	1	signed	R
H0048	Cumulative pulse carrying-over times (Built-in OPT)	1	signed	R
H0049	Cumulative pulse (control terminal option)	1	signed	R
H004A	Cumulative pulse carrying-over times (control terminal option)	1	signed	R
H004B	Multi-revolution counter	1	unsigned	R
H004C to H004F	reserved	-	-	-
H0050	Integrated power on time	1h	unsigned	R
H0051	Running time	1h	unsigned	R
H0052	Saving energy monitor	-	unsigned	R
H0053	reserved	-	-	-
H0054	Fault code (1)	-	-	R
H0055	Fault code (2)	-	-	R
H0056	Fault code (3)	-	-	R
H0057	Fault code (4)	-	-	R
H0058	Fault code (5)	-	-	R
H0059	Fault code (6)	-	-	R
H005A	Fault code (7)	-	-	R
H005B	Fault code (8)	-	-	R
H005C to H005E	reserved	-	-	-
H005F	Second PID measured value 2	0.1\%	unsigned	R
H0060	Second PID manipulated variable	0.1\%	signed	R
H0061 to H0063	reserved	-	-	-
H0064	Current position 2 (0-15 bit)	1	signed	R
H0065	Current position 2 (16-31 bit)			
H0066	PID manipulated variable	0.1\%	signed	R
H0067 to H00F8	reserved	-		-
H00F9	Run command ${ }^{*}$	-	-	R/W
H00FA to H01FF	reserved	-	-	-

*1 For details, refer to page 419.
*2 Run command
Users can specify the terminal function using this data. These bits function is depending on inverter parameter setting. (Refer to page 498)

b15															
-	-	-	-	RES	$\begin{array}{\|c\|} \hline \text { STP } \\ \text { (STOP) } \end{array}$	CS	JOG	MRS	RT	RH	RM	RL	-	-	AU


No.	Description	Unit	Type	Read/write
H0200	reserved	-	-	-
H0201	Output frequency (0-15 bit)	0.01 Hz	signed	R
H0202	Output frequency (16-31 bit)			
H0203	Setting frequency (0-15 bit)	0.01 Hz	unsigned	R
H0204	Setting frequency (16-31 bit)			
H0205	Motor rotation (0-15 bit)	$1 \mathrm{r} / \mathrm{min}$	signed	R
H0206	Motor rotation (16-31 bit)			
H0207	Load meter (0-15 bit)	0.1\%	unsigned	R
H0208	Load meter (16-31 bit)			
H0209	Positioning pulse (0-15 bit)	1	signed	R/W
H020A	Positioning pulse (16-31 bit)			
H020B	Watt-hour meter (1 kWh step) (0-15 bit)	1 kWh	unsigned	R
H020C	Watt-hour meter (1 kWh step) (16-31 bit)			
H020D	Watt-hour meter (0.1/0.01 kWh step) (0-15 bit)	0.1/0.01 kWh	unsigned	R
H020E	Watt-hour meter (0.1/0.01 kWh step) (16-31 bit)			
H020F	Position error (0-15 bit)	1	signed	R
H0210	Position error (16-31 bit)			
H0211	Position command (0-15bit)	1	signed	R
H0212	Position command (16-31 bit)			
H0213	Current position (0-15bit)	1	signed	R
H0214	Current position (16-31 bit)			
H0215 to H03FF	reserved	-	-	-

## Error reset and Ready bit status selection

- An error reset command from a communication option can be invalidated in the External operation mode or the PU operation mode.
- The status of Ready bit is selectable.

Pr.	Name	Initial value	Setting range	Description
349	Communication reset selection/Ready bit status selection/Reset selection after inverter faults are cleared/ DriveControl writing restriction selection	0	$\begin{aligned} & 0,1,100,101, \\ & 1000,1001, \\ & 1100,1101, \\ & 10000,10001, \\ & 10100,10101, \\ & 11000,11001, \\ & 11100,11101 \end{aligned}$	Use this parameter to select the error reset operation, Ready bit status, and inverter reset operation when a fault is cleared.
N010	Communication reset selection	0	0	Enables the error reset function in any operation mode.
			1	Enables the error reset function only in the Network operation mode.
N240	Ready bit status selection	0	0	The status of Ready bit in communication data can be selected.
			1	
N241	Reset selection after inverter faults are cleared	0	0	The inverter is reset when a fault is cleared.
			1	The inverter is not reset when a fault is cleared.
N242	DriveControl writing restriction selection	0	0	DriveControl writing is not restricted.
			1	DriveControl writing is restricted.

- The status of Ready bit in communication data can be changed when an HMS network option is installed. (P.N240)
- When an HMS network option is installed and the communication option is specified for the command source in Network operation mode, it is possible to select whether the inverter is reset after the "Fault reset" command is executed. (P.N241)
- When an HMS network option is installed, the command source to change the DriveControl settings can be restricted to only the command source selected by Pr. 550 NET mode operation command source selection. (P.N242)

Setting value					Description					
Pr. 349	N010	N240	N241	N242	Communication reset selection ${ }^{* 1}$		Ready bit status selection ${ }^{*}{ }^{2}$		Reset selection after inverter faults are cleared	DriveControl writing restriction
					NET operation mode	Other than NET operation mode	Main circuit: power-ON	Main circuit: powerOFF ${ }^{* 3}$		
0	0	0	0	0	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: ON	Reset	Not restricted
1	1	0	0	0	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: ON	Reset	Not restricted
100	0	1	0	0	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: OFF	Reset	Not restricted
101	1	1	0	0	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: OFF	Reset	Not restricted
1000	0	0	1	0	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: ON	Not reset ${ }^{*}$	Not restricted
1001	1	0	1	0	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: ON	Not reset ${ }^{*}$	Not restricted
1100	0	1	1	0	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: OFF	Not reset ${ }^{* 4}$	Not restricted
1101	1	1	1	0	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: OFF	Not reset ${ }^{* 4}$	Not restricted
10000	0	0	0	1	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: ON	Reset	Restricted ${ }^{*} 4$
10001	1	0	0	1	Reset enabled	$\begin{aligned} & \text { Reset } \\ & \text { disabled } \end{aligned}$	Ready bit: ON	Ready bit: ON	Reset	Restricted ${ }^{* 4}$
10100	0	1	0	1	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: OFF	Reset	Restricted ${ }^{* 4}$
10101	1	1	0	1	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: OFF	Reset	Restricted ${ }^{* 4}$
11000	0	0	1	1	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: ON	Not reset ${ }^{*}$	Restricted ${ }^{* 4}$
11001	1	0	1	1	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: ON	Not reset ${ }^{*} 4$	Restricted ${ }^{* 4}$
11100	0	1	1	1	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: OFF	Not reset ${ }^{* 4}$	Restricted ${ }^{* 4}$
11101	1	1	1	1	Reset enabled	$\begin{aligned} & \text { Reset } \\ & \text { disabled } \end{aligned}$	Ready bit: ON	Ready bit: OFF	Not reset ${ }^{*}$	Restricted ${ }^{* 4}$

*1 The operation mode affects the availability of communication reset.
*2 The ON/OFF state of the power supply affects the ON/OFF state of Ready bit.
*3 When either the external 24 V power supply or the control circuit power supply is ON.
*4 Available when the HMS network option is installed.

## - Direct command mode for position control

In the direct command mode, the target position and maximum speed can be set through communication.

Pr.	Name	Initial value	Setting   range	Description
1220	Target position/speed selection	0	0	Target position and maximum speed: Point table
			1	Target position: Direct command   Maximum speed: Point table
			2	Target position and maximum speed: Direct command

- The point table is set as follows in the direct command mode. (The setting is applied when the start signal is turned ON.)

Pr.1220   setting	Target position	Maximum speed	Acceleration   time	Deceleration   time	Dwell time	Auxiliary   function
1	Direct command	Point table 1	${ }^{* 1}$	*1	Invalid *2	${ }^{* 1}$
2	Direct command	Direct command	Pr.7	Pr.8	Invalid *2	$*^{* 1}$

*1 Same as point table 1. However, even when continuous operation is set in the auxiliary function, individual operation is applied.
*2 The direct command mode is available only for individual operation. The dwell time is invalid.

- To perform positioning operation in the direct command mode, specify the point table (RH recommended) and turn ON the start signal. (When no point table is specified, home position return operation is performed.)
- Example when Pr.1220="1"

- Example when Pr.1220="2"



### 9.6 Ready bit status selection (Pr.349, N240)

## - Error reset operation selection at inverter fault

- The status of Ready bit in communication data can be selected when a communication option (FR-A8ND or FR-A8NF) is installed.
- An error reset command from a communication option can be invalidated in the External operation mode or the PU operation mode.
- The status of Ready bit is selectable.

Pr.	Name	Initial value	Setting range	Function
349*1	Communication reset selection/Ready bit status selection/ Reset selection after inverter faults are cleared/DriveControl writing restriction selection	0	0,100	Error reset is enabled independently of operation mode.
			1,101	Error reset is enabled in the Network operation mode.
			$\begin{aligned} & \text { 1001, 1000, 1100, } \\ & \text { 1101, 10000, 10001, } \\ & \text { 10100, 10101, } \\ & \text { 11000, 11001, } \\ & 11100,11101 \end{aligned}$	For details, refer to page 831.
N010*1	Communication reset selection	0	0	Enables the error reset function in any operation mode.
			1	Enables the error reset function only in the Network operation mode.
N240*1	Ready bit status selection	0	0	The status of Ready bit in communication data can be selected when a communication option is installed.
			1	

*1 The setting is available only when a communication option is installed.

## ■ Ready bit status selection (P.N240)

The status of Ready bit in communication data can be selected.

Setting value			Description				
Pr.349		N010	N240	Communication reset selection		Ready bit status selection	
				Other than NET   operation mode	Main circuit:   power-ON	Main circuit:   power-OFF	
0	0	0	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: ON	
1	1	0	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: ON	
100	0	1	Reset enabled	Reset enabled	Ready bit: ON	Ready bit: OFF	
101	1	1	Reset enabled	Reset disabled	Ready bit: ON	Ready bit: OFF	

*1 When either the external 24 V power supply or the control circuit power supply is ON .

- FR-A8ND

Class 0x29 Instance 1

| Attribute ID | Access | Name | Data <br> type | Number <br> of data <br> bytes | Initial <br> value | Range | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | Get | Ready | BOOL | 1 | 1 | 0 | Other than the below |

- FR-A8NF

Inverter status monitor

Bit	Name	Description		
14	READY signal	Reset cancel	$\begin{aligned} & \text { Pr. } 349=\text { "0, 1" } \\ & \text { N240 = "0" } \end{aligned}$	0: During an inverter reset / during startup after power-ON.   1: During normal operation
			$\begin{aligned} & \text { Pr. } 349=\text { "100, 101" } \\ & \text { N240 = "1" } \end{aligned}$	0 : RY signal is OFF   1: $R Y$ signal is $O N$

## REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date	Manual number	Revision
Nov. 2014	IB(NA)-0600563ENG-A	First edition
Jan. 2015	IB(NA)-0600563ENG-B	Added   - FR-A860-00027 to 00170
May 2015	IB(NA)-0600563ENG-C	Edited   - Location change of earth (ground) terminals for the FR-A860-00027 to 00170
Mar. 2019	IB(NA)-0600563ENG-D	Added   - Start count monitor (Pr.1410, Pr.411)   - Excitation current low-speed scaling factor (Pr. 14 = "12 to 15", Pr.85, Pr.86, Pr.565, Pr.566, Pr.617)   - Backup/restore function   - Input signals (CLRN, JOGF, JOGR)   - Output signal (SAFE)   - Simple position control by point table (The home position information is retained at servo-OFF.) (Pr. 419 = "10")   - MODBUS RTU communication stop bit length selection   - Continuous operation at communication error (Pr. 502 = "4")   - Load characteristics fault detection (Pr. 1480 to Pr.1492)   - Droop control using the per-unit speed control reference frequency (Pr. 288 (Pr.681) = "20 to 22")   - Torque current command limit (Pr.801, Pr. 803 = "2")   - PID manipulated amount: 0 to 100\% (Pr. $1015=$ " 2,12 ")   - Pr. 1348 P/PI control switchover frequency   - Pr. 1349 Emergency stop operation selection   - Operation selection at a communication error (Pr. $502=$ " $11,12 "$ )   - Multi-revolution counter monitoring   Edited   - Pr. 275 setting range: 0 to $300 \%$   - Reset selection / disconnected PU detection / PU stop selection (Pr. 75 = "1000 to 1003, 1014 to 1017, 1100 to 1103,1114 to 1117")   - External fault input signal (Pr. 178 to Pr. $189=$ " 32 ")   - Error reset operation selection at inverter fault (Pr. 349 = "100, 101")   - PLC function (Pr. 414 = "11, 12", Pr.675)   - Pulse monitor selection (Pr. 430 = "2000 to 2005, 2012, 2013, 2100 to 2105, 2112, 2113, 3000 to 3005, 3012, 3013, 3100 to 3105, 3112, 3113")
Sep. 2021	IB(NA)-0600563ENG-E	Added   - Main circuit capacitor life measurement at power OFF (every time) (Pr. 259 = "11")   - Pr. 506 Display estimated main circuit capacitor residual life   - Current input check terminal selection (Pr. 573 = "11 to 14, 21 to 24")   - Forward stroke end (LSP) signal, Reverse stroke end (LSN) signal   - Low-speed forward rotation command (RLF) signal, Low-speed reverse rotation command (RLR) signal   - Vector control for PM motor with encoder supported (for FR-A8AL and FR-A8TP)   - Reset selection after inverter faults are cleared (with the HMS network option installed)   - Cooling fan operation selection during the test operation (Pr. $244=" 1000,1001,1101$ to 1105")   - Display/reset ABC relay contact life (Pr.507, Pr.508)   - Reset selection after inverter faults are cleared, DriveControl writing restriction selection (Pr. $349=" 1000,1001,1100,1101,10000,10001,10100,10101,11000,11001,11100$, 11101")
Sep. 2022	IB(NA)-0600563ENG-F	Added   - Pr. 890 Internal storage device status indication   - Internal storage device fault (E.PE6)

# FR-A800/A800 Plus Series Instruction Manual Supplement 

## 1 <br> Earth (ground) fault detection at start / restricting reset method for an earth (ground) fault

The reset method for the output side earth (ground) fault overcurrent (E.GF) can be restricted.

- Select whether to enable or disable the earth (ground) fault detection at start. When enabled, the earth (ground) fault detection is performed immediately after a start signal input to the inverter.
- Select whether to restrict the reset method for an earth (ground) fault.

Pr.	Name	Initial value	Setting range	Description	
				Earth (ground) fault	Reset method
$\begin{aligned} & 249 \\ & \mathrm{H} 101 \end{aligned}$	Earth (ground) fault detection at start	0	0	Not detected at start	Not restricted
			1	Detected at start	
			2		Restricted

## Selecting whether to perform the earth (ground) fault detection at start V/F Magneticflux

- If an earth (ground) fault is detected at start while Pr. 249 = "1 or 2", the output side earth (ground) fault overcurrent (E.GF) is detected and output is shut off.
- Earth (ground) fault detection at start is enabled under V/F control and Advanced magnetic flux vector control.
- When the Pr. 72 PWM frequency selection setting is high, enable the earth (ground) fault detection at start.


## NOTE

- Because the detection is performed at start, output is delayed for approx. 20 ms every start.
- Use Pr. 249 to enable/disable the earth (ground) fault detection at start. During operation, earth (ground) faults are detected regardless of the Pr. 249 setting.


## Restricting reset method for an earth (ground) fault

- The reset method when the output is shut off due to the output side earth (ground) fault overcurrent (E.GF) can be restricted. When E.GF occurs while Pr. 249 = " 2 ", E.GF can be reset only by turning OFF the control circuit power.
- This restriction prevents the inverter from being damaged due to repeated reset operations by the other methods such as entering the RES signal.
- When E.GF occurs while Pr. 249 = "2", the output short-circuit detection (ALM4) signal can be output.
- For the terminal used to output the ALM4 signal, set "23" (positive logic) or "123" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If Pr. 249 is set to " 2 " while the retry function is enabled (Pr. 67 is not set to " 0 "), no retry is performed even when E.GF occurs.
- If Pr. 249 is set to " 2 " while the automatic bypass switching after inverter fault is enabled (Pr. 138 is not set to "1"), the operation is not switched to the commercial power supply operation even when E.GF occurs.


## NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- E.GF is not cleared by turning ON the Fault clear (X51) signal when Pr. $249=$ " 2 ".
- If E.GF occurs during emergency drive operation when Pr. $249=$ " 2 ", the output is shut off.

Select the reset operation and fault indication for an output short-circuit.

Pr.	Name	Initial value	Setting range	Description	
				Operation after detection	Reset method
521	Output short-circuit	0	0	E.OC1 to E.OC3	Not restricted
H194	detection	0	1	E.SCF	Restricted

- The fault indication for an output short-circuit (E.OC1 to E.OC3, and E.SCF) can be changed by the Pr. 521 setting.
- When an output short-circuit is detected while Pr. 521 = "1", E.SCF is displayed and the inverter output is shut off.
- When E.SCF occurs while Pr. 521 = "1", E.SCF can be reset only by turning OFF the control circuit power. (E.OC1 to E.OC3 can be reset by any reset method.)
- This restriction prevents the inverter from being damaged due to repeated reset operations by the other methods such as entering the RES signal.
- When E.SCF occurs, the output short-circuit detection (ALM4) signal can be output.
- For the terminal used to output the ALM4 signal, set "23" (positive logic) or "123" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If the automatic bypass switching after inverter fault is enabled (Pr. 138 is not set to "1"), the operation is not switched to the commercial power supply operation even when E.SCF occurs.

Operation panel   indication	E.SCF	FR-LU08   indication	Fault
Name	Output short-circuit fault		
Description	The inverter output is shut off when an output short-circuit is detected while Pr.521 = "1". When Pr.521   $=$ "0" (initial value), E.OC1, E.OC2, or E.OC3 appears when an output short-circuit is detected.		
Check point	Check for output short-circuit.		
Corrective action	Check the wiring to make sure that any output short circuit does not occur, then turn OFF the control   circuit power to reset the inverter.		

## NOTE

- When short-circuit resistance is large, the current does not reach the short-circuit detection level. In such a case, an output short-circuit cannot be detected.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- E.SCF does not activate the retry function.
- E.SCF is not cleared by turning ON the Fault clear (X51) signal.
- If E.SCF occurs during emergency drive operation, the output is shut off.
- The communication data code for E.SCF is $20(\mathrm{H} 14)$.


## Extended detection time of the output current and zero current

The setting range of the Pr. 151 Output current detection signal delay time and Pr. 153 Zero current detection time is extended.

Pr.	Name	Initial   value	Setting range	Description
151   M461	Output current detection   signal delay time	0 s	0 to 300 s	Set the output current detection time. Enter the time from   when the output current reaches the set current or higher   to when the Output current detection (Y12) signal is output.
153   M463	Zero current detection   time	0.5 s	0 to 300 s	Set the time from when the output current drops to the   Pr.152 setting or lower to when the Zero current detection   (Y13) signal is output.

## 4 <br> Selecting the command interface in the Network operation mode (Pr.338, Pr.339)

- The proximity dog (X76) signal can be input via communication.
- The following table shows the command interface for the function in the Network operation mode, determined by the parameter settings: an external terminal or a communication interface (RS-485 terminals or communication option).

Pr. 338 Communication operation command source		0: NET			1: EXT		
Pr. 339 Communication speed command source		0: NET	1: EXT	2: EXT	0: NET	1: EXT	2: EXT
X76	Proximity dog	Combined		EXT			

[Explanation of Terms in Table]
EXT: External terminal only
Combined: Either external terminal or communication interface

# FR-A800/A800 Plus Series Instruction Manual Supplement 

## 1 Online L compensation

## Sensorless

Under Real sensorless vector control, inductance compensation can be used to prevent degradation in control performance when magnetic saturation occurs in the motor.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 221 \\ & \text { C161 } \end{aligned}$	Excitation current compensation point 1	25\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{array}{\|l\|} \hline 222 \\ \text { C162 } \end{array}$	Inductance compensation rate 1	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 1 disabled.
$\begin{array}{\|l\|} \hline 223 \\ \text { C163 } \end{array}$	Excitation current compensation point 2	50\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{aligned} & 224 \\ & \text { C164 } \end{aligned}$	Inductance compensation rate 2	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 2 disabled.
$\begin{aligned} & 225 \\ & \text { C165 } \end{aligned}$	Excitation current compensation point 3	75\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{aligned} & 226 \\ & \text { C166 } \end{aligned}$	Inductance compensation rate 3	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 3 disabled.
$\begin{aligned} & 227 \\ & \text { C167 } \end{aligned}$	Excitation current compensation point 4	125\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{aligned} & 228 \\ & \text { C168 } \end{aligned}$	Inductance compensation rate 4	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 4 disabled.
$\begin{aligned} & \hline 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	*1	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
80 C101	Motor capacity	9999	0.4 to $55 \mathrm{~kW}^{*} 2$	
			0 to $3600 \mathrm{~kW}^{* 3}$	Set the applied motor capacity.
			9999	V/F control
$\begin{array}{\|l\|} \hline 81 \\ \text { C102 } \end{array}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{array}{\|l} 9 \\ \text { C103 } \end{array}$	Electronic thermal O/ L relay	Inverter rated current ${ }^{*} 4$	0 to $500 \mathrm{~A}^{*}$	Set the rated motor current.
			0 to $3600 \mathrm{~A}^{* 3}$	
$\begin{array}{\|l\|} \hline 83 \\ \text { C104 } \end{array}$	Rated motor voltage	575 V	0 to 1000 V	Set the rated motor voltage (V).
$\begin{array}{\|l\|} \hline 84 \\ \text { C105 } \end{array}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency ( Hz ).
			9999	The setting value of Pr. 3 Base frequency is used.
96   C110	Auto tuning setting/ status	0	0	No offline auto tuning
			1	Offline auto tuning is performed without the motor rotating.
			11	Offline auto tuning is performed without the motor rotating (under V/F control).
			101	Offline auto tuning is performed with the motor rotating.
			131	Offline auto tuning is performed with the motor rotating (including magnetic saturation $L$ tuning).

[^36]
## Pr.225, Pr.227)

- The excitation current compensation points 1 to 4 can be set regardless of the order of the parameters Pr.221, Pr.223, Pr.225, and Pr.227. (The Pr. 221 setting needs not be smaller than the Pr. 225 setting.) The setting values of the excitation current compensation points 1 to 4 are automatically arranged by the inverter in ascending order.
- 100\% cannot be set in Pr.221, Pr.223, Pr.225, and Pr. 227.
- Set different values in Pr.221, Pr.223, Pr.225, and Pr. 227.
- Setting example when Pr. 221 setting < Pr. 223 setting < Pr. 225 setting < Pr. 227 setting

- Setting example when Pr. 225 setting < Pr. 223 setting < Pr. 221 setting < Pr. 227 setting



## - Inductance compensation rate settings (Pr.222, Pr.224, Pr.226, Pr.228)

- The inductance compensation rates 1 to 4 can be automatically set by offline auto tuning.
- When "9999" is set in Pr.222, Pr.224, Pr.226, or Pr.228, the corresponding point is invalid.
- Setting example when "9999" is set in Pr. 224 and Pr. 228



## Offline auto tuning (including magnetic saturation $L$ tuning)

## Point ${ }^{\rho}$

- The following describes how to perform magnetic saturation $L$ tuning. For other offline auto tuning, refer to the description of offline auto tuning for an induction motor in the Instruction Manual (Detailed).
- When offline auto tuning (including magnetic saturation $L$ tuning) is performed, the tuning result is set in the motor constant related parameters (Pr.82, Pr. 90 to Pr.94, Pr.859, and Pr.298). For details, refer to the description of offline auto tuning for an induction motor in the Instruction Manual (Detailed).


## ■ Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- Check that a value other than "9999" is set in Pr. 80 and Pr.81, and Real sensorless vector control is selected (with Pr.800).
- Check that a motor is connected. (Check that the motor is not rotated by an external force during tuning.)
- To perform magnetic saturation $L$ tuning, remove the load and apply only the inertia load.
- Select a motor with the rated current equal to or less than the inverter rated current. (The motor capacity must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- Tuning is not available for a high-slip motor, high-speed motor, or special motor.
- The maximum frequency is 400 Hz .
- Check the following points for the offline auto tuning with motor rotation (Pr. 96 Auto tuning setting/status = "131").
The torque is not sufficient during tuning.
Check that the motor can be rotated up to the speed close to the rated speed.
Check that the mechanical brake is released.


## Settings

- To perform tuning, set the following parameters about the motor.

First   motor   Pr.	Name	Initial value	Description
80	Motor capacity	9999 (V/F control)	Set the motor capacity (kW).
81	Number of motor poles	9999 (V/F control)	Set the number of motor poles (2 to 12).
800	Control method   selection	20	Set this parameter under Real sensorless vector control.
9	Electronic thermal O/L   relay	Inverter rated current	Set the rated motor current (A).
83	Rated motor voltage	575 V	Set the rated motor voltage (V) printed on the motor's rating plate.
84	Rated motor   frequency	9999	Set the rated motor frequency (Hz). When the setting is "9999", the Pr.3   Base frequency setting is used.
71	Applied motor	0 (standard motor)	Set this parameter according to the motor. ${ }^{* 1}$ Three types of motor   constant setting ranges, units and tuning data can be stored according   to settings.
96	Auto tuning setting/   status	0	Set "131".   131: Tuning is performed with the motor rotating. The motor can rotate   up to the speed near the rated motor frequency. The magnetic   saturation characteristic is also tuned.

*1 Set Pr. 71 Applied motor according to the motor to be used. (For the Pr. 71 setting values, refer to the Instruction Manual (Detailed).)

## NOTE

- "131" cannot be set in Pr. 463 Second motor auto tuning setting/status.
- When Pr. 11 DC injection brake operation time = " 0 " or Pr. 12 DC injection brake operation voltage = "0", offline auto tuning is performed at the initial setting of Pr. 11 or Pr. 12 .
- For tuning accuracy improvement, set the following parameters when the motor constants are known in advance.

First motor   Pr.	Name	Standard motor	Other motors
707	Motor inertia (integer)	(initial value)	Motor inertia ${ }^{* 2}$   $\mathrm{Jm}=$ Pr. $707 \times 10^{\wedge}(-\operatorname{Pr} .724)\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$   724

*2 The setting is valid only when a value other than "9999" is set in both Pr. 707 and $\operatorname{Pr} .724$.
Performing tuning

## Point!

- Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable.
- In the PU operation mode, press FWD / REV on the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of the MRS signal.
- To force tuning to end, use the MRS or RES signal or


## STOP RESETT

 on the operation panel. (Turning OFF the start signal (STF signal or STR signal) also ends tuning.)- During offline auto tuning, only the following I/O signals are valid (initial value). Input terminals <valid signals>: STP (STOP), OH, MRS, RT, RES, STF, and STR Output terminals: RUN, OL, IPF, FM/CA, AM, and A1B1C1
- When the rotation speed and the output frequency are selected for terminals FM/CA and AM, the progress status of offline auto tuning is output in 15 steps from FM/CA and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- Setting offline auto tuning (Pr. 96 Auto tuning setting/status = "131") will make pre-excitation invalid.
- When the offline auto tuning with motor rotation is selected (Pr. 96 Auto tuning setting/status = "131"), take caution and ensure safety against the rotation of the motor.
- When executing offline auto tuning, input the operation command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = " 7 ", turn ON the PU operation external interlock (X12) signal for tuning in the PU operation mode.
- During tuning, the monitor is displayed on the operation panel as follows.

Tuning status	Parameter unit (FR-PU07) display	LCD operation panel (FR-LU08) display
(1) Setting	TUNE READ LList   131    --- STOP PU	
(2) During tuning	IIIIII    TUNE 132   STF FWD PU	
(3) Normal completion	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|lllll\|} \hline \text { TUNE } \\ \text { TUMELETION } \\ \text { COM STOP PU } \\ \hline \end{array}$	

- Note: Offline auto tuning time (with the initial setting)

Offline auto tuning setting	Time
With the motor rotating (including magnetic saturation $L$ tuning)   $(P r .96=" 131 ")$	Approximately 140 s maximum

- When offline auto tuning ends, press
on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal).
This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The motor constants measured once during offline auto tuning are stored as parameters and their data are held until offline auto tuning is performed again. However, the tuning data is cleared when performing All parameter clear.
- Changing Pr. 71 after tuning completion will change the motor constant. For example, if " 3 " is set in Pr. 71 after tuning is performed with Pr. $71=$ " 0 ", the tuning data becomes invalid. To use the tuned data, set " 0 " again in Pr. 71 .
- If offline auto tuning has ended in error (see the following table), motor constants are not set. Perform an inverter reset and perform tuning again.

Error display	$\quad$ Error cause	Countermeasures					
8	Forced end	Set Pr. $96=$ "131" and retry.	$	$	9	Inverter protective function operation	Make the setting again.
:---	:---	:---					
91	The current limit (stall prevention) function is   activated.	Set the acceleration/deceleration time longer.   Set Pr. 156 Stall prevention operation selection $=$ " $1 "$.   Remove the load and apply only the inertia load, then retry.					
92	The converter output voltage fell to $75 \%$ of the   rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr. 83 Rated motor voltage setting.					
93	Calculation error.   The motor is not connected.	Check the Pr. 83 and Pr.84 settings.   Check the motor wiring and make the setting again.					
94	Rotation tuning frequency setting error.   (The frequency command for the tuning was   given to exceed the maximum frequency setting,   or to be in the frequency jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to Pr. 36   Frequency jump settings.					
95	Magnetic saturation L tuning error   (The excitation current did not reach the set point   within 20 s.)	Remove the load and apply only the inertia load, then retry.   Reduce the range of the excitation current compensation   points, and adjust the setting so that the excitation current   compensation points 1 to 4 are evenly distributed, then retry.					

- When tuning is ended forcibly by pressing


## SIOP RESET

or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)
Perform an inverter reset and perform tuning again.

## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when the STF (STR) signal is ON, the motor starts forward (reverse) rotation.
- Any fault occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## CAUTION

- Note that the motor may start running suddenly.

Parameters updated by tuning results after tuning
The following table shows the parameters to which the offline auto tuning result is applied according to the Pr. 96 setting.
$\circ$ : Applied, —: Not applied

First motor Pr.	Name	Pr. $96=1$	Pr. $96=11$	Pr. $96=101$	Pr. $96=131$
82	Motor excitation current	$\bigcirc$	-	-	-
90	Motor constant (R1)	-	-	$\bigcirc$	-
91	Motor constant (R2)	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
92	Motor constant (L1)/d-axis inductance (Ld)	$\bigcirc$	-	-	$\bigcirc$
93	Motor constant (L2)/q-axis inductance (Lq)	-	-	-	$\bigcirc$
94	Motor constant (X)	$\bigcirc$	-	$\bigcirc$	-
859	Torque current/Rated PM motor current	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
298	Frequency search gain	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
96	Auto tuning setting/status	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
222	Inductance compensation rate 1	-**	-	-*1	$\bigcirc$
224	Inductance compensation rate 2	-*1	-	-*1	-
226	Inductance compensation rate 3	-*1	-	-*1	$\bigcirc$
228	Inductance compensation rate 4	-*1	-	-*1	-

*1 When offline auto tuning is performed with $\operatorname{Pr} .96=" 1$ or $101 "$, " 9999 " is set.

## 2 Starting magnetic pole position detection pulse width

## Vector

When the FR-A8AL or FR-A8TP is used to drive a PM motor under Vector control, the tuning result is applied to the starting magnetic pole position detection pulse width at offline auto tuning with the Vector control setting.
For how to perform offline auto tuning, refer to "Offline auto tuning for a PM motor (under Vector control)" in the Instruction Manual (Detailed).

## Parameters updated by tuning results after tuning

Pr.		Name	Tuning according to Pr. 96 (Pr.463) setting			Description	
		101	1	11			
90 (458)			Motor constant (R1)	$\bigcirc$	$\bigcirc$	$\bigcirc$	Resistance per phase
92 (460)		Motor constant (L1)/d-axis inductance (Ld)	-	-	-	d-axis inductance	
93 (461)		Motor constant (L2)/q-axis inductance (Lq)	-	-	-	q -axis inductance	
711 (739)		Motor Ld decay ratio	$\bigcirc$	$\bigcirc$	-	d-axis inductance decay ratio	
712 (740)		Motor Lq decay ratio	$\bigcirc$	$\bigcirc$	-	q-axis inductance decay ratio	
721 (742)		Starting magnetic pole position detection pulse width	$0^{* 3}$	$0^{* 3}$	-	When the setting value is 10000 or more: With polarity inversion for compensation, voltage pulse (Pr. setting minus 10000) $\mu \mathrm{s}$	
859 (860)		Torque current/Rated PM motor current	-	-	-		
96 (463)		Auto tuning setting/status	-	-	$\bigcirc$		
$373 * 1$	$871^{* 2}$	Encoder position tuning setting/ status	-	-	-	Encoder position tuning status	
$1105^{* 1}$	$887^{*} 2$	Encoder magnetic pole position offset	-	-	-	Turning data of encoder position tuning	

०: Tuned, —: Not tuned
*1 The setting is available when the FR-A8AL/FR-A8APR/FR-A8APS/FR-A8APA is installed.
*2 The setting is available when the FR-A8TP is installed.
*3 The tuning result is set only when the FR-A8AL or FR-A8TP is used.

## NOTE

- If the offline auto tuning is started before the encoder position tuning is finished (Pr. 1105 (Pr.887) = "65535") for a PM motor, the protective function (E.MP) is activated.
"10" has been added for the emergency drive status monitor display on the operation panel.
- Set "68" in Pr.52, Pr. 774 to Pr.776, Pr. 992 to monitor the status of the emergency drive on the operation panel.
- Description of the status monitor

Operation panel indication	Description		
	Emergency drive setting	Emergency drive operating status	
0	Emergency drive function setting is not available.	-	
1	Electronic bypass during emergency drive operation is disabled.	During normal oper	
2		Emergency drive in operation	Operating properly
3			A certain alarm is occurring. ${ }^{\text {* }}$ 2
4			A fault is occurring. The operation is being continued by the retry.
5			A fault is occurring. The continuous operation is not allowed due to output shutoff.
10	Parameter settings for electronic bypass during emergency drive operation are enabled.	During normal operation	
11	Electronic bypass during emergency drive operation is enabled.		
12		Emergency drive in operation	Operating properly
13			A certain alarm is occurring. ${ }^{\text {2 }}$
14			A fault is occurring. The operation is being continued by the retry.
15			A fault is occurring. The continuous operation is not allowed due to output shutoff.
2[]$^{* 1}$		Electronic bypass is started during emergency drive (during acceleration/ deceleration to the switchover frequency).	
3[]$^{* 1}$		During electronic bypass during emergency drive (waiting during the interlock time).	
4[]$^{* 1}$		During commercial power supply operation during emergency drive	

[^37]
## NOTE

- For other information on the emergency drive function, refer to the Instruction Manual (Detailed).


# FR-A800/A800 Plus Series <br> FR-A862 Instruction Manual Supplement 

## 1 Emergency drive (Fire mode)

## V/F Magneticflux Sensorless PM

The emergency drive function is available for the separated converter type.
The inverter can continue driving the motor in case of emergency such as a fire, since protective functions are not activated even if the inverter detects a fault. Using this function may damage the motor or inverter because driving the motor is given the highest priority. Use this function for emergency operation only. The operation can be switched to the commercial power supply operation at the occurrence of a fault which may cause damage of the inverter. To set the emergency drive function, enable the function also in the converter unit.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 523 \\ & \text { H320 } \end{aligned}$	Emergency drive mode selection	9999	$\begin{aligned} & \hline 100,111,112, \\ & 121,122,123, \\ & 124, \\ & 200,211,212, \\ & 221,222,223, \\ & 224, \\ & 300,311,312, \\ & 321,322,323, \\ & 324, \\ & 400,411,412, \\ & 421,422,423, \\ & 424 \end{aligned}$	Select the operation mode of the emergency drive.
			9999	Emergency drive disabled.
$\begin{aligned} & 524 \\ & \text { H321*1 } \end{aligned}$	Emergency drive running speed	9999	0 to $590 \mathrm{~Hz}^{* 2}$	Set the running frequency in the fixed frequency mode of the emergency drive (when the fixed frequency mode is selected in Pr.523).
			0 to $100 \%{ }^{2}$	Set the PID set point in the PID control mode of the emergency drive (when the PID control mode is selected in Pr.523).
			9999*2	Emergency drive disabled.
$\begin{aligned} & 515 \\ & \text { H322 } \end{aligned}$	Emergency drive dedicated retry count	1	1 to 200	Set the retry count during emergency drive operation.
			9999*2	Without retry count excess (no restriction on the number of retries)
$\begin{array}{\|l\|} 1013 \\ \text { H323 } \end{array}$	Running speed after emergency drive retry reset	60 Hz	0 to 590 Hz	Set the frequency for operation after a retry when any of E.CPU, E. 1 to E.3, and E. 5 to E. 7 occurs during emergency drive operation.
$\begin{array}{\|l\|} \hline 514 \\ \text { H324 } \end{array}$	Emergency drive dedicated retry waiting time	9999	0.1 to 600 s	Set the retry waiting time during emergency drive operation.
			9999	The Pr. 68 setting is applied to the operation.
$\begin{array}{\|l\|} \hline 136 \\ \text { A001 } \end{array}$	MC switchover interlock time	1 s	0 to 100 s	Set the operation interlock time for MC2 and MC3.
$\begin{array}{\|l\|} \hline 139 \\ \text { A004 } \end{array}$	Automatic switchover frequency from inverter to bypass operation	9999	0 to 60 Hz	Set the frequency at which the inverter-driven operation is switched over to the commercial power supply operation when the condition for the electronic bypass is established during emergency drive operation.
			8888, 9999	Electronic bypass during emergency drive is disabled.
57   A702	Restart coasting time	9999	0	Coasting time differs depending on the inverter capacity. (For details on the coasting time, refer to the Instruction Manual (Detailed).)
			0.1 to 30 s	Set the delay time for the inverter to perform a restart after restoring power due to an instantaneous power failure.
			9999	No restart

## - Connection example

- The following diagram shows a connection example for emergency drive operation (in the commercial mode).

*1 Be careful of the capacity of the sequence output terminals. The applied terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).

Output terminal capacity	Output terminal permissible load
Open collector output of inverter (RUN, SU, IPF, OL, FU)	24 VDC 0.1 A
Inverter relay output (A1-C1, B1-C1, A2-B2, B2-C2)   Relay output option (FR-A8AR)	$\begin{aligned} & 230 \mathrm{VAC} 0.3 \mathrm{~A} \\ & 30 \mathrm{VDC} 0.3 \mathrm{~A} \end{aligned}$

*2 When connecting a DC power supply, insert a protective diode.
When connecting an AC power supply, use relay output terminals of the inverter or contact output terminals of the relay output option (FR-A8AR).
*3 The applied terminals differ by the settings of Pr. 180 to Pr. 189 (Input terminal function selection)
*4 The applied terminals differ by the settings of Pr. 190 to Pr. 196 (Output terminal function selection).
*5 The applied terminals differ by the settings of Pr.178, Pr.187, and Pr. 189 (Input terminal function selection). For setting the converter unit, refer to the Instruction Manual of the converter unit.
*6 The applied terminals differ by the settings of Pr. 190 to Pr. 195 (Output terminal function selection). For setting the converter unit, refer to the Instruction Manual of the converter unit.

## NOTE

- Be sure to provide a mechanical interlock for MC2 and MC3.


## Emergency drive execution sequence

## Point $\rho$

- When the X 84 signal is ON for three seconds, the emergency drive is activated.
- The Y65 signal is ON during emergency drive operation.
- "ED" is displayed on the operation panel during emergency drive operation.
- The ALM3 signal is ON when a fault occurs during emergency drive operation.
- For protective functions (faults) valid during emergency drive operation, refer to page 8.
- To activate the emergency drive, the X84 signal needs to be ON for three seconds while all the following conditions are satisfied.

Item	Condition
Emergency drive parameter settings	$\begin{aligned} & \text { Pr. } 523 \neq \text { "9999" } \\ & \text { Pr. } 524 \neq \text { "9999" (Setting is not required when Pr. } 523=\text { " } 100,200,300 \text {, or } 400 " .) \end{aligned}$
Control method	Either of the following control methods is selected (when Pr. $800=" 9,10,20,109$, or 110" or Pr. 451 = "10, 20, 110, or 9999")   - V/F control   - Advanced magnetic flux vector control   - Real sensorless vector control (speed control)   - PM sensorless vector control (speed control)   - PM sensorless vector control test operation
Contradictory condition	None of the following conditions are satisfied.   - Enabling the electronic bypass sequence function   - Enabling the brake sequence function   - Using the FR-A8NS (option)   - During offline auto tuning   - Supplying power through terminals R1 and S1

- When the "retry" (Pr. $523=$ " 2[][]$, 3[][] ")$ is selected, it is recommended to use the automatic restart after instantaneous power failure function at the same time.
- Parameter setting is not available during emergency drive operation.
- To return to the normal operation during emergency drive operation, do the following. (The operation will not be returned to normal only by turning OFF the X84 signal.)
Reset the inverter, or turn OFF the power supply.
Clear a fault by turning ON the X51 signal while the sequence function is enabled (when the protective function is activated).
- The operation is switched over to the commercial power supply operation in case of the following during emergency drive operation while the commercial mode or the retry / commercial mode is selected.
24 V external power supply operation, power failure status or operation with the power supplied through R1/S1, undervoltage
- To input the X84 signal, set "84" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function.
- To output the Y65 signal, set "65" (positive logic) or "165" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function. To output the ALM3 signal, set "66" (positive logic) or "166" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection) to assign the function.
- The X84 signal input is valid either through the external terminal or via network regardless of the Pr. 338 and Pr. 339 settings (Selection of control source in Network operation mode).
- During emergency drive operation, the operation is performed as Pr. 502 Stop mode selection at communication error = " 0 (initial value)" and communication errors (such as E.SER) do not occur. (A protective function is performed according to its operation during emergency drive operation.)
- The following diagram shows the operation of the emergency drive function (in the retry / output shutoff mode or in the fixed frequency mode ( $\operatorname{Pr} .523=$ " 211 ") ).

- The following diagram shows the operation of switching over to the commercial power supply operation during emergency drive operation by using the CS signal (in the commercial mode or in the fixed frequency mode (Pr. 523 = "411")).


[^38]
## - Emergency drive operation selection (Pr.523, Pr.524)

- Use Pr. 523 Emergency drive mode selection to select the emergency drive operation. Set a value in the hundreds place to select the operation when a valid protective function is activated (fault) during emergency drive operation. Set values in the ones and tens places to select the operation method.
- For protective functions (faults) valid during emergency drive operation, refer to page 8.

$\text { Pr. } 523$ setting	Emergency drive operation mode			Description
1[]]	Output shutoff mode		Selecting operation when a fault occurs during emergency drive operation	Output shutoff when a fault occurs.
2[]]	Retry / output shutoff mode			Retry operation when a fault occurs. Output shutoff when a fault for which retry is not permitted occurs or when the retry count is exceeded.
3[][]$^{* 1}$	Retry / commercial mode			Retry operation when a fault occurs. The operation is switched over to the commercial power supply operation when a fault for which retry is not permitted occurs or when the retry count is exceeded. While Pr. 515 = "9999", the operation is switched over to the commercial power supply operation when the retry count reaches 200.
4[][]$^{* 1}$	Commercial mode			The operation is switched over to the commercial power supply operation when a fault occurs.
[]00	Normal operation		Selecting the operation method during emergency drive operation	The operation is performed with the same set frequency and by the same starting command as those in the normal operation.   Use this mode to avoid output shutoff due to a fault.
[111	Fixed frequency mode	Forward rotation		The operation is forcibly performed with the frequency set in Pr. 524.   Even when the motor is stopped, the operation is started by the emergency drive operation.
[]12		Reverse rotation		
[]21	PID control mode	Forward rotation		The operation is performed under PID control using the
[]22		Reverse rotation		Pr. 524 setting as a set point. The measured values are input in the method set in Pr. 128.
[]23		Forward rotation (Second PID measured value input)		The operation is performed under PID control using the Pr. 524 setting as a set point. The measured values are input in the method set in Pr. 753.
[]24		Reverse rotation (Second PID measured value input)		
9999	Emergency drive disabled.			

*1 Under PM sensorless vector control, the operation is not switched over to the commercial power supply operation and the output is shut off.

## NOTE

- The operation is automatically switched from the PU operation mode or External/PU combined operation mode to the External operation mode when the emergency drive is activated in the fixed frequency mode or in the PID control mode.


## Retry operation during emergency drive operation (Pr.515, Pr.514)

- Set the retry operation during emergency drive operation. Use Pr. 515 Emergency drive dedicated retry count to set the retry count, and use Pr. 514 Emergency drive dedicated retry waiting time to set the retry waiting time.
- The ALM signal output conditions depend on the Pr. 67 Number of retries at fault occurrence setting. (For details on the retry function, refer to the Instruction Manual (Detailed).)
- For the protective functions (faults) for which retry is permitted during emergency drive operation, refer to page 8.
- The Pr. 65 Retry selection is disabled during emergency drive operation.


## Electronic bypass during emergency drive (Pr.136, Pr.139, Pr.57)

- For selecting the commercial mode (Pr. 523 = "3[][], 4[][]"), setting is required as follows.

Set Pr. 136 MC switchover interlock time and Pr. 139 Automatic switchover frequency from inverter to bypass operation and assign the MC2 and MC3 signals to output terminals.
When the CS signal is assigned to an input terminal, set Pr. 57 Restart coasting time $\neq " 9999$ " and input the CS signal through the terminal. (In the initial setting, the CS signal is assigned to the terminal CS.)
Select V/F control, Advanced magnetic flux vector control, or Real sensorless vector control. (Under PM sensorless vector control, the operation is not switched over to the commercial power supply operation and the output is shut off.)

- During emergency drive operation, the operation is switched over to the commercial power supply operation when any of the following conditions is satisfied.

The CS signal turns OFF.
A fault for which retry is not permitted occurs while Pr. $523=$ " 3[][]$]$.
A fault occurs while Pr. 523 = "4[][]".

- While the motor is driven by the inverter during emergency drive operation, if a condition for electronic bypass is satisfied, the output frequency is accelerated/decelerated to the Pr. 139 setting. When the frequency reaches the set frequency, the operation is switched over to the commercial power supply operation. (The operation is immediately switched over to the commercial power supply operation during output shutoff due to a fault occurrence.)
- If the parameter for electronic bypass is not set while the commercial mode is set ( $\operatorname{Pr} .523=$ "3[][], 4[][]"), the operation is not switched over to the commercial power supply operation even when a condition for switchover is satisfied, and the output is shut off.
- To assign the MC2 and MC3 signals to output terminals, use any two of Pr. 190 to Pr. 196 (Output terminal function selection) and set "18" (positive logic) for the MC2 signal and set "19" (positive logic) for the MC3 signal.
- Operation of magnetic contactor (MC2, MC3)

Magnetic   contactor	Installation location		Operation	
		During commercial power supply   operation	During inverter operation	
MC2	Between power supply and motor	Shorted	Open	
MC3	Between inverter output side and motor	Open	Shorted	

- The input signals are as follows.

Signal	Function	Operation	MC operation ${ }^{*}$	
			MC2	MC3
CS**	Inverter/bypass	ON: Inverter operation	$\times$	-
		OFF: Emergency drive commercial power supply operation*2	-	$\times$
X84	Emergency drive operation	ON: Emergency drive operation	-	-
		OFF: Normal operation ${ }^{* 3}$	$\times$	$\bigcirc$
RES	Operation status reset	ON: Reset	$\times$	Unchanged
		OFF: Normal operation	-	-

*1 Input the CS signal via an external terminal. (Set Pr. $162=$ " 0 to 3,10 to 13 " or Pr. $338=$ "1".)
*2 If the signal is turned ON after switchover to the emergency drive commercial power supply operation, the operation will not be returned to the inverter-driven operation.
*3 The operation is not switched over to the normal operation even when the signal is turned OFF during emergency drive operation.
*4 MC operation is as follows.

Notation	MC operation
$\circ$	ON
$\times$	OFF
-	During inverter operation: MC2-OFF, MC3-ON   During commercial power supply operation: MC2-ON, MC3-OFF
Unchanged	The status of the MC remains the same after turning ON or OFF the signal.

## NOTE

- During electronic bypass operation while the electronic bypass sequence is enabled (Pr. $135=11 "$ ), the emergency drive function is not available.


## PID control during emergency drive operation

- The Pr. 524 setting is used as a set point for operation during emergency drive operation in the PID control mode. Input the measured values in the method set in Pr. 128 or Pr. 753.
- When the PID control mode is selected for emergency drive, the PID action during emergency drive operation is as follows depending on the PID control setting.

Item	PID control action		
	Set point / measured value   input setting	Deviation input setting	Without PID control setting
Measured value input selection   (Pr.128 and Pr.753)	Held	Terminal 4 input	Terminal 4 input
Forward action / reverse action   selection (Pr.128 and Pr.753)	Held	Held	Reverse action
Proportional band (Pr.129 and   Pr.756)	Held	Held	100\% (initial setting)
Integral time (Pr.130 and Pr.757)	Held	Held	1s (initial setting)
Differential time (Pr.134 and   Pr.758)	Held	Held	Not used (initial setting)
Applied to the frequency /   calculation only (Pr.128 and   Pr.753)	Applied to the frequency	Applied to the frequency	Applied to the frequency
Dancer control	Invalid	Invalid	Invalid
Other PID-related settings	Held	Held	Held

- While the "retry" (Pr. 523 = "22[], 32[]") is selected in the PID control mode, if a retry occurs at an occurrence of E.CPU, E. 1 to E.3, or E. 5 to E. 7 during emergency drive operation, the operation is performed not under PID control but with the fixed frequency.
Use Pr. 1013 Running speed after emergency drive retry reset to set the fixed frequency.


## NOTE

- For details on the PID control, refer to the Instruction Manual (Detailed).


## $\checkmark$ Protective functions during emergency drive operation

- Protective functions during emergency drive operation are as follows.

Protective   function	Operation during   emergency drive
E.OC1	Retry
E.OC2	Retry
E.OC3	Retry
E.SCF	Output shutoff
E.OV1	Retry
E.OV2	Retry
E.OV3	Retry
E.THT	Retry
E.THM	Retry
E.FIN	Retry
E.OLT	Retry
E.SOT	Retry
E.LUP	The function is disabled.
E.LDN	The function is disabled.
E.BE	Retry ${ }^{*} 1$
E.GF ${ }^{*} 2$	Retry
E.LF	The function is disabled.
E.OHT	Retry
E.PTC	Retry
E.OPT	The function is disabled.
E.OP1	The function is disabled.
E.OP2	The function is disabled.
E.OP3	The function is disabled.


Protective   function	Operation during   emergency drive
E.16	The function is disabled.
E.17	The function is disabled.
E.18	The function is disabled.
E.19	The function is disabled.
E.20	The function is disabled.
E.PE6	The function is disabled.
E.PE	Output shutoff
E.PUE	The function is disabled.
E.RET	Output shutoff
E.PE2	Output shutoff
E.CPU	Retry
E.CTE	The function is disabled.
E.P24	The function is disabled.
E.CDO	Retry
E.SER	The function is disabled.
E.AIE	The function is disabled.
E.USB	The function is disabled.
E.SAF	Retry ${ }^{* 1}$
E.PBT	Retry ${ }^{* 1}$
E.OS	The function is disabled.
E.OSD	The function is disabled.
E.ECT	The function is disabled.
E.OD	The function is disabled.


Protective   function	Operation during   emergency drive
E.ECA	The function is disabled.
E.MB1	The function is disabled.
E.MB2	The function is disabled.
E.MB3	The function is disabled.
E.MB4	The function is disabled.
E.MB5	The function is disabled.
E.MB6	The function is disabled.
E.MB7	The function is disabled.
E.EP	The function is disabled.
E.MP	The function is disabled.
E.EF	The function is disabled.
E.LCI	The function is disabled.
E.PCH	The function is disabled.
E.PID	The function is disabled.
E. 1	Retry ${ }^{* 3}$
E. 2	Retry ${ }^{* 3}$
E. 3	Retry ${ }^{* 3}$
E. 5	Retry ${ }^{* 3}$
E. 6	Retry ${ }^{* * 3}$
E. 7	Retry ${ }^{* * 3}$
E.11	The function is disabled.
E.13	Output shutoff

*1 If the same protective function is activated continuously while the electronic bypass during emergency drive operation is enabled, retry is performed up to twice and then operation is switched over to the commercial power supply operation.
*2 If E.GF occurs when Pr. $249=$ "2", the output is shut off.
*3 In normal operation (Pr. $523=$ " 200 or 300 "), the start signal is turned OFF at the same time the retry function resets the protective function. Input the start signal again to resume the operation.

- Fault output during emergency drive operation are as follows.

Signal	Pr. 190 to Pr. 196 setting		Description
	Positive   logic	Negative   logic	
ALM	99	199	The signal is ON at the occurrence of a fault that causes the above-mentioned "retry"   or "output shutoff" during emergency drive operation.
ALM3	66	166	The signal is output when a fault occurs during emergency drive operation.   When a fault which does not activate protective functions occurs during emergency   drive operation, the signal is ON for three seconds and then turned OFF.

## - Input signal operation

- During emergency drive operation in the fixed frequency mode or in the PID control mode, input signals unrelated to the emergency drive become invalid with some exceptions.
- The following table shows functions of the signals that do not become invalid during emergency drive operation in the fixed frequency mode or in the PID control mode.

Input signal status	Fixed frequency mode	PID control mode
Valid	OH, X10, MRS*1, X32, TRG, TRC, X51, RES, X70, X71	OH, X10, MRS* ${ }^{*}$, X32, TRG, TRC, X51, RES, X70, X71
Held	RT, X9, X17, X18, MC, SQ, X84	$\begin{aligned} & \text { RT, X9, X17, X18, MC, SQ, X64, X65, } \\ & \text { X66, X67, X79, X84 } \end{aligned}$
Always-ON	-	X14, X77, X78, X80

[^39]
## - Emergency drive status monitor

- Set "68" in Pr.52, Pr. 774 to Pr.776, Pr. 992 to monitor the status of the emergency drive on the operation panel.
- Description of the status monitor

Operation panel indication	Description		
	Emergency drive setting	Emergency drive operating status	
0	Emergency drive function setting is not available.	-	
1	Electronic bypass during emergency drive operation is disabled.	During normal ope	
2		Emergency drive in operation	Operating properly
3			A certain alarm is occurring.*2
4			A fault is occurring. The operation is being continued by the retry.
5			A fault is occurring. The continuous operation is not allowed due to output shutoff.
10	Parameter settings for electronic bypass during emergency drive operation are enabled.	During normal operation	
11	Electronic bypass during emergency drive operation is enabled.		
12		Emergency drive in operation	Operating properly
13			A certain alarm is occurring.*2
14			A fault is occurring. The operation is being continued by the retry.
15			A fault is occurring. The continuous operation is not allowed due to output shutoff.
2[]$^{* 1}$		Electronic bypass is started during emergency drive (during acceleration/ deceleration to the switchover frequency).	
3[]$^{* 1}$		During electronic bypass during emergency drive (waiting during the interlock time).	
$4\left[{ }^{* 1}\right.$		During commercial power supply operation during emergency drive	

*1 The value in the ones place indicates the previous displayed value (the setting at a fault occurrence).
*2 "A certain alarm" means a protective function disabled during emergency drive shown in the tables on page 8.

## CAUTION

- When the emergency drive function is enabled, the operation is continued or the retry operation (automatic reset and restart) is repeated even if a fault occurs, which may damage or burn this product and the motor. Before restarting the normal operation after using this function, make sure that the inverter and motor have no fault. Any damage of the inverter or the motor caused by using the emergency drive function is not covered by the warranty even within the guarantee period.


## Sensorless

Under Real sensorless vector control, inductance compensation can be used to prevent degradation in control performance when magnetic saturation occurs in the motor.

Pr.	Name	Initial value	Setting range	Description
$\begin{aligned} & 221 \\ & \text { C161 } \end{aligned}$	Excitation current compensation point 1	25\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{aligned} & 222 \\ & \text { C162 } \end{aligned}$	Inductance compensation rate 1	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 1 disabled.
$\begin{aligned} & 223 \\ & \text { C163 } \end{aligned}$	Excitation current compensation point 2	50\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{aligned} & 224 \\ & \text { C164 } \end{aligned}$	Inductance compensation rate 2	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 2 disabled.
$\begin{aligned} & 225 \\ & \text { C165 } \end{aligned}$	Excitation current compensation point 3	75\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{aligned} & 226 \\ & \text { C166 } \end{aligned}$	Inductance compensation rate 3	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 3 disabled.
$\begin{aligned} & 227 \\ & \text { C167 } \end{aligned}$	Excitation current compensation point 4	125\%	25 to 200\%	Set the excitation current command value for inductance compensation.
$\begin{array}{\|l\|} 228 \\ \text { C168 } \end{array}$	Inductance compensation rate 4	9999	0 to 200\%	Set the inductance compensation rate.
			9999	Inductance compensation rate 4 disabled.
$\begin{aligned} & \hline 71 \\ & \text { C100 } \end{aligned}$	Applied motor	0	*1	By selecting a motor, the thermal characteristic and motor constant of each motor are set.
$\begin{array}{\|l\|} \hline 80 \\ \text { C101 } \end{array}$	Motor capacity	9999	0 to 3600 kW	Set the applied motor capacity.
			9999	V/F control
$\begin{array}{\|l\|} \hline 81 \\ \text { C102 } \end{array}$	Number of motor poles	9999	2, 4, 6, 8, 10, 12	Set the number of motor poles.
			9999	V/F control
$\begin{aligned} & 9 \\ & \text { C103 } \end{aligned}$	Electronic thermal O/L relay	Inverter rated current	0 to 3600 A	Set the rated motor current.
$\begin{array}{\|l\|} \hline 83 \\ \text { C104 } \end{array}$	Rated motor voltage	575 V	0 to 1000 V	Set the rated motor voltage (V).
$\begin{aligned} & 84 \\ & \text { C105 } \end{aligned}$	Rated motor frequency	9999	10 to 400 Hz	Set the rated motor frequency ( Hz ).
			9999	The setting value of Pr. 3 Base frequency is used.
$\begin{array}{\|l} 96 \\ \text { C110 } \end{array}$	Auto tuning setting/status	0	0	No offline auto tuning
			1	Offline auto tuning is performed without the motor rotating.
			11	Offline auto tuning is performed without the motor rotating (under V/F control).
			101	Offline auto tuning is performed with the motor rotating.
			131	Offline auto tuning is performed with the motor rotating (including magnetic saturation $L$ tuning).

[^40]
## Pr.225, Pr.227)

- The excitation current compensation points 1 to 4 can be set regardless of the order of the parameters Pr.221, Pr.223, Pr.225, and Pr.227. (The Pr. 221 setting needs not be smaller than the Pr. 225 setting.) The setting values of the excitation current compensation points 1 to 4 are automatically arranged by the inverter in ascending order.
- 100\% cannot be set in Pr.221, Pr.223, Pr.225, and Pr. 227.
- Set different values in Pr.221, Pr.223, Pr.225, and Pr. 227.
- Setting example when Pr. 221 setting < Pr. 223 setting < Pr. 225 setting < Pr. 227 setting

- Setting example when Pr. 225 setting < Pr. 223 setting < Pr. 221 setting < Pr. 227 setting



## - Inductance compensation rate settings (Pr.222, Pr.224, Pr.226, Pr.228)

- The inductance compensation rates 1 to 4 can be automatically set by offline auto tuning.
- When "9999" is set in Pr.222, Pr.224, Pr.226, or Pr.228, the corresponding point is invalid.
- Setting example when "9999" is set in Pr. 224 and Pr. 228



## Offline auto tuning (including magnetic saturation $L$ tuning)

## Point ${ }^{\rho}$

- The following describes how to perform magnetic saturation $L$ tuning. For other offline auto tuning, refer to the description of offline auto tuning for an induction motor in the Instruction Manual (Detailed).
- When offline auto tuning (including magnetic saturation $L$ tuning) is performed, the tuning result is set in the motor constant related parameters (Pr.82, Pr. 90 to Pr.94, Pr.859, and Pr.298). For details, refer to the description of offline auto tuning for an induction motor in the Instruction Manual (Detailed).


## - Before performing offline auto tuning

Check the following points before performing offline auto tuning:

- Check that a value other than "9999" is set in Pr. 80 and Pr.81, and Real sensorless vector control is selected (with Pr.800).
- Check that a motor is connected. (Check that the motor is not rotated by an external force during tuning.)
- To perform magnetic saturation $L$ tuning, remove the load and apply only the inertia load.
- Select a motor with the rated current equal to or less than the inverter rated current. (The motor capacity must be 0.4 kW or higher.) If a motor with substantially low rated current compared with the inverter rated current, however, is used, speed and torque accuracies may deteriorate due to torque ripples, etc. Set the rated motor current to about $40 \%$ or higher of the inverter rated current.
- Tuning is not available for a high-slip motor, high-speed motor, or special motor.
- The maximum frequency is 400 Hz .
- Check the following points for the offline auto tuning with motor rotation (Pr. 96 Auto tuning setting/status = "131").

The torque is not sufficient during tuning.
Check that the motor can be rotated up to the speed close to the rated speed.
Check that the mechanical brake is released.

## Settings

- To perform tuning, set the following parameters about the motor.

First   motor   Pr.	Name	Initial value	Description
80	Motor capacity	9999 (V/F control)	Set the motor capacity (kW).
81	Number of motor poles	9999 (V/F control)	Set the number of motor poles (2 to 12).
800	Control method   selection	20	Set this parameter under Real sensorless vector control.
9	Electronic thermal O/L   relay	Inverter rated current	Set the rated motor current (A).
83	Rated motor voltage	575 V	Set the rated motor voltage (V) printed on the motor's rating plate.
84	Rated motor   frequency	9999	Set the rated motor frequency (Hz). When the setting is "9999", the Pr.3   Base frequency setting is used.
71	Applied motor	0 (standard motor)	Set this parameter according to the motor. ${ }^{* 1}$ Three types of motor   constant setting ranges, units and tuning data can be stored according   to settings.
96	Auto tuning setting/   status	0	Set "131".   131: Tuning is performed with the motor rotating. The motor can rotate   up to the speed near the rated motor frequency. The magnetic   saturation characteristic is also tuned.

*1 Set Pr. 71 Applied motor according to the motor to be used. (For the Pr. 71 setting values, refer to the Instruction Manual (Detailed).)

## NOTE

- "131" cannot be set in Pr. 463 Second motor auto tuning setting/status.
- When Pr. 11 DC injection brake operation time = " 0 " or Pr. 12 DC injection brake operation voltage = "0", offline auto tuning is performed at the initial setting of Pr. 11 or Pr. 12 .
- For tuning accuracy improvement, set the following parameters when the motor constants are known in advance.

First motor   Pr.	Name	Standard motor	Other motors
707	Motor inertia (integer)	(initial value)	Motor inertia ${ }^{* 2}$   $\mathrm{Jm}=$ Pr. $707 \times 10^{\wedge}(-\operatorname{Pr} .724)\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$   724

*2 The setting is valid only when a value other than "9999" is set in both Pr. 707 and $\operatorname{Pr} .724$.
Performing tuning

## Point!

- Before performing tuning, check the monitor display of the operation panel or parameter unit if the inverter is in the state ready for tuning. The motor starts by turning ON the start command while tuning is unavailable.
- In the PU operation mode, press FWD / REV on the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.

- Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of the MRS signal.
- To force tuning to end, use the MRS or RES signal or


## STOP RESETT

 on the operation panel. (Turning OFF the start signal (STF signal or STR signal) also ends tuning.)- During offline auto tuning, only the following I/O signals are valid (initial value). Input terminals <valid signals>: STP (STOP), OH, MRS, RT, RES, STF, and STR Output terminals: RUN, OL, IPF, FM/CA, AM, and A1B1C1
- When the rotation speed and the output frequency are selected for terminals FM/CA and AM, the progress status of offline auto tuning is output in 15 steps from FM/CA and AM.
- Do not perform ON/OFF switching of the Second function selection (RT) signal during offline auto tuning. Auto tuning will not be performed properly.
- Setting offline auto tuning (Pr. 96 Auto tuning setting/status = "131") will make pre-excitation invalid.
- When the offline auto tuning with motor rotation is selected (Pr. 96 Auto tuning setting/status = "131"), take caution and ensure safety against the rotation of the motor.
- When executing offline auto tuning, input the operation command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
- While Pr. 79 Operation mode selection = " 7 ", turn ON the PU operation external interlock (X12) signal for tuning in the PU operation mode.
- During tuning, the monitor is displayed on the operation panel as follows.

Tuning status	Parameter unit (FR-PU07) display	LCD operation panel (FR-LU08) display
(1) Setting	TUNE READ LList   131    --- STOP PU	
(2) During tuning	IIIIII    TUNE 132   STF FWD PU	
(3) Normal completion	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|lllll\|} \hline \text { TUNE } \\ \text { TUMELETION } \\ \text { COM STOP PU } \\ \hline \end{array}$	

- Note: Offline auto tuning time (with the initial setting)

Offline auto tuning setting	Time
With the motor rotating (including magnetic saturation $L$ tuning)   $(P r .96=" 131 ")$	Approximately 140 s maximum

- When offline auto tuning ends, press
on the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal).
This operation resets the offline auto tuning, and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)


## NOTE

- The motor constants measured once during offline auto tuning are stored as parameters and their data are held until offline auto tuning is performed again. However, the tuning data is cleared when performing All parameter clear.
- Changing Pr. 71 after tuning completion will change the motor constant. For example, if " 3 " is set in Pr. 71 after tuning is performed with Pr. $71=$ " 0 ", the tuning data becomes invalid. To use the tuned data, set " 0 " again in Pr. 71 .
- If offline auto tuning has ended in error (refer to the following table), motor constants are not set. Perform an inverter reset and perform tuning again.

Error display	Error cause	Countermeasures
8	Forced end	Set Pr. $96=$ "131" and retry.
9	Inverter protective function operation	Make the setting again.
91	The current limit (stall prevention) function is   activated.	Set the acceleration/deceleration time longer.   Set Pr. 156 Stall prevention operation selection $=$ " $1 "$.   Remove the load and apply only the inertia load, then retry.
92	The converter output voltage fell to $75 \%$ of the   rated voltage.	Check for the power supply voltage fluctuation.   Check the Pr.83 Rated motor voltage setting.
93	Calculation error.   The motor is not connected.	Check the Pr. 83 and Pr. 84 settings.   Check the motor wiring and make the setting again.
94	Rotation tuning frequency setting error.   (The frequency command for the tuning was   given to exceed the maximum frequency setting,   or to be in the frequency jump range.)	Check the Pr. 1 Maximum frequency and Pr. 31 to Pr. 36   Frequency jump settings.
95	Magnetic saturation L tuning error   (The excitation current did not reach the set point   within 20 s.)	Remove the load and apply only the inertia load, then retry.   Reduce the range of the excitation current compensation   points, and adjust the setting so that the excitation current   compensation points 1 to 4 are evenly distributed, then retry.

- When tuning is ended forcibly by pressing


## STOP 

 or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)Perform an inverter reset and perform tuning again.

## NOTE

- An instantaneous power failure occurring during tuning will result in a tuning error. After power is restored, the inverter starts normal operation. Therefore, when the STF (STR) signal is ON, the motor starts forward (reverse) rotation.
- Any fault occurring during tuning is handled as in the normal operation. However, if the retry function is set, no retry is performed.
- The set frequency monitor displayed during the offline auto tuning is 0 Hz .


## CAUTION

- Note that the motor may start running suddenly.


## Parameters updated by tuning results after tuning

The following table shows the parameters to which the offline auto tuning result is applied according to the Pr. 96 setting.
$\circ$ : Applied, —: Not applied

First motor Pr.	Name	Pr. $96=1$	Pr. $96=11$	Pr. $96=101$	Pr. $96=131$
82	Motor excitation current	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
90	Motor constant (R1)	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
91	Motor constant (R2)	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
92	Motor constant (L1)/d-axis inductance (Ld)	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
93	Motor constant (L2)/q-axis inductance (Lq)	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
94	Motor constant (X)	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
859	Torque current/Rated PM motor current	$\bigcirc$	-	$\bigcirc$	$\bigcirc$
298	Frequency search gain	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
96	Auto tuning setting/status	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
222	Inductance compensation rate 1	-*1	-	-*1	$\bigcirc$
224	Inductance compensation rate 2	-*1	-	-*1	$\bigcirc$


First   motor Pr.	Name	Pr. $96=\mathbf{1}$	Pr. $96=11$	Pr. $96=101$	Pr. $96=131$
226	Inductance compensation rate 3	$-{ }^{* 1}$	-	$-{ }^{* 1}$	0
228	Inductance compensation rate 4	$-{ }^{* 1}$	-	$-{ }^{* 1}$	$\circ$

*1 When offline auto tuning is performed with Pr. $96=$ "1 or 101 ", " 9999 " is set.

## 3 Starting magnetic pole position detection pulse width

## Vector

When the FR-A8AL or FR-A8TP is used to drive a PM motor under Vector control, the tuning result is applied to the starting magnetic pole position detection pulse width at offline auto tuning with the Vector control setting.
For how to perform offline auto tuning, refer to "Offline auto tuning for a PM motor (under Vector control)" in the Instruction Manual (Detailed).

## Parameters updated by tuning results after tuning

Pr.		Name	Tuning according to Pr. 96 (Pr.463) setting			Description	
		101	1	11			
90 (458)			Motor constant (R1)	-	$\bigcirc$	$\bigcirc$	Resistance per phase
92 (460)		Motor constant (L1)/d-axis inductance (Ld)	-	-	-	d-axis inductance	
93 (461)		Motor constant (L2)/q-axis inductance (Lq)	-	-	-	q -axis inductance	
711 (739)		Motor Ld decay ratio	$\bigcirc$	$\bigcirc$	-	d-axis inductance decay ratio	
712 (740)		Motor Lq decay ratio	-	$\bigcirc$	-	q-axis inductance decay ratio	
721 (742)		Starting magnetic pole position detection pulse width	$0^{* 3}$	$0^{* 3}$	-	When the setting value is 10000 or more: With polarity inversion for compensation, voltage pulse (Pr. setting minus 10000) $\mu \mathrm{s}$	
859 (860)		Torque current/Rated PM motor current	-	-	-		
96 (463)		Auto tuning setting/status	-	-	-		
$373{ }^{* 1}$	$871^{* 2}$	Encoder position tuning setting/ status	-	-	-	Encoder position tuning status	
$1105^{* 1}$	$887^{*}{ }^{2}$	Encoder magnetic pole position offset	$\bigcirc$	-	-	Turning data of encoder position tuning	

○: Tuned, 一: Not tuned
$\begin{array}{ll}\text { *1 } & \text { The setting is available when the FR-A8AL/FR-A8APR/FR-A8APS/FR-A8APA is installed. } \\ \text { *2 } & \text { The setting is available when the FR-A8TP is installed. } \\ \text { *3 } & \text { The tuning result is set only when the FR-A8AL or FR-A8TP is used. }\end{array}$

## NOTE

- If the offline auto tuning is started before the encoder position tuning is finished (Pr. 1105 (Pr.887) = "65535") for a PM motor, the protective function (E.MP) is activated.


## MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN


[^0]:    *1 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A860-02890 or higher.

[^1]:    *2 DoS: A denial-of-service (DoS) attack disrupts services by overloading systems or exploiting vulnerabilities, resulting in a denial-of-service (DoS) state.

[^2]:    *1 Compatible with the FR-A860-01080 or lower

[^3]:    4. warning

    - Do not wire without using conduits. Otherwise, the cable sheathes may be scratched by the wiring cover edges, resulting in a short circuit or ground fault.

[^4]:    *1 The terminal function can be selected by Pr. 190 to Pr. 196 (Output terminal function selection). (Refer to page 498)

[^5]:    -..... Current flow

[^6]:    *1 Offline auto tuning is required (Refer to page 508.)
    *2 Set this parameter according to the motor.
    *3 Use the thermal protector input provided with the motor.

[^7]:    *1 The value for the FR-A860-01080 or lower.

[^8]:    *1 Accumulated value of estimated feedback pulses when PM sensorless vector control is used

[^9]:    *1 Negative values are not displayed on the operation panel. The values "-1 to -32767 " are displayed as " 65535 to 32769 " on the operation panel.

[^10]:    *1 Initial values differ depending on the rating as follows.

[^11]:    *1 The setting range for the FR-A860-01080 or lower.
    *2 The setting range for the FR-A860-01440 or higher.

[^12]:    *1 The initial value for the FR-A860-00027 is set to the $85 \%$ of the inverter rated current.
    *2 The setting range for FR-A860-01080 or lower. The minimum setting increment is "0.01 A".
    *3 The setting range for FR-A860-01440 or higher. The minimum setting increment is "0.1 A".
    *4 The setting is available when the FR-A8TP is installed.

[^13]:    《Parameters referred to 》》
    Pr． 190 to Pr． 196 （Output terminal function selection）

[^14]:    Pr. 1 Maximum frequency page 399
    Pr. 22 Torque limit level page 191
    Pr. 52 Operation panel main monitor selection page 419
    Pr. 81 Number of motor poles page 166
    Pr. 800 Control method selection page 166
    Pr. 811 Set resolution switchover page 191

[^15]:    *1 FR-A860-01080 or lower.

[^16]:    *1 For the FR-A860-01080 or lower.

[^17]:    *1 The initial value is for standard models.
    *2 The initial value is for separated converter types.
    *3 The setting is available when the PLC function is enabled or when a compatible plug-in option is installed.

[^18]:    《｜Parameters referred to 》》
    Pr． 190 to Pr． 196 （Output terminal function selection）page 446
    Pr． 874 OLT level setting page 191

[^19]:    Pr. 54 FM terminal function selection page 430
    Pr. 158 AM terminal function selection page 430
    Pr. 290 Monitor negative output selection page 430
    Pr. 291 Pulse train I/O selection $\mathfrak{\xi}$ page 430

[^20]:    －Make sure to set this parameter correctly according to the motor used．Incorrect setting may cause the motor and inverter to overheat and burn．

[^21]:    *2 The setting is valid only when a value other than "9999" is set in both Pr. 707 (Pr.744) and Pr. 724 (Pr.745).

[^22]:    FR-A860-00027 or lower, it is set to $85 \%$ of the inverter rated current.
    FR-A860-01080 or lower.
    FR-A860-01440 or higher.
    The setting range and unit change according to the Pr. 71 (Pr.450) setting.
    *5 The setting is available when the FR-A8AL/FR-A8APR/FR-A8APS/FR-A8APA is installed.
    *6 The setting is available when the FR-A8TP is installed.

[^23]:    *1 The setting is available when a Vector control compatible plug-in option is installed.
    *2 These parameters are available when the control terminal option (FR-A8TP) is installed.

[^24]:    *1 When Pr.138="0 (electronic bypass invalid at a fault)", MC2 is OFF. When Pr. $138=$ "1 (electronic bypass valid at a fault)", MC2 is ON.
    *2 The self power management operation is followed.
    *3 MC operation is as shown below.

[^25]:    *1 The setting range of FR-A860-01080 or lower
    *2 The setting range of FR-A860-01440 or higher

[^26]:    *1 The setting is available when a Vector control compatible option is installed.
    *2 These parameters are available when a plug-in option (FR-A8AP/FR-A8AL/FR-A8APR/FR-A8APS) is installed.
    *3 These parameters are available when the option (FR-A8TP) is installed.
    *4 The setting is available when the FR-A8AP/FR-A8AL is installed.
    *5 The setting is available when the FR-A8AP/FR-A8AL/FR-A8APR/FR-A8TP is installed.
    *6 To perform machine end orientation, the plug-in option (FR-A8AP/FR-A8AL/FR-A8APR/FR-A8APS) and control terminal option (FR-A8TP) are required.
    *7 The setting is available when the FR-A8AL is installed.
    *8 When the second motor is selected, the orientation control is disabled.

[^27]:    *1 When two or more ends conditions are satisfied, the pre-charge operation ends by the first-satisfied condition.

[^28]:    $\bigcirc$ : With rotation direction detection $\times$ : Without rotation direction detection

[^29]:    * The output shut off timing differs according to the load condition.

[^30]:    *1 For the FR-A860-01080 or lower.
    *2 For the FR-A860-01440 or higher.

[^31]:    *3 Do not use pins No. 2 and 8 of the communication cable.

[^32]:    CAUTION

    - When Pr. 502 = "3" and a communication line error occurs, or Pr. $502=44$ " and a communication line error or a communication option fault occurs, the operation continues. When setting "3 or 4" in Pr.502, provide a safety stop countermeasure other than via communication. For example, input a signal through an external terminal (RES, MRS, or X92) or press the PU stop on the operation panel.

[^33]:    *4 The signal within parentheses ( ) is the initial status. The description changes depending on the setting of Pr. 180 to Pr. 189 (Input terminal function selection) (page 498).
    For each of the assigned signals, some signals are enabled by NET and some are disabled. (Refer to page 361.)
    *5 The inverter run enable signal is in the initial status for the separated converter type.
    *6 The signal within parentheses ( ) is the initial status. The description changes depending on the setting of Pr. 190 to Pr. 196 (Output terminal function selection) (page 446).
    *7 No function is assigned in the initial status for the separated converter type

[^34]:    《｜Parameters referred to 》》
    Pr． 3 Base frequency，Pr． 19 Base frequency voltage page 699
    Pr． 71 Applied motor page 506
    Pr． 178 to Pr． 182 （Input terminal function selection）

[^35]:    *1 The initial value or setting range for the standard model
    *2 The initial value or setting range for the separated converter type
    *3 Available only with the standard model

[^36]:    *1 For the setting range, refer to the Instruction Manual (Detailed).
    *2 For the FR-A860-01080 or lower.
    *3 For the FR-A860-01440 or higher.
    *4 For the FR-A860-00027, it is set to $85 \%$ of the inverter rated current.

[^37]:    *1 The value in the ones place indicates the previous displayed value (the setting at a fault occurrence).
    *2 "A certain alarm" means a protective function disabled during emergency drive.

[^38]:    *1 Input the CS signal via an external terminal.

[^39]:    *1 When the X 10 signal is not assigned to any input terminal, the MRS signal is used as the X 10 signal. Therefore, the MRS signal becomes valid when the X 10 signal is not assigned to any input terminal.

[^40]:    *1 For the setting range, refer to the Instruction Manual (Detailed).

