INVERTER
 F800-E
 FR-F860-E (600V CLASS SPECIFICATION INVERTER) INSTRUCTION MANUAL (STARTUP)
 FR-F860-00027-00450-E-N6 FR-F860-00680-04420-E

Thank you for choosing this Mitsubishi Electric Inverter.
This Instruction Manual and the enclosed CD-ROM give handling information and precautions for use of this product.
Do not use this product until you have a full knowledge of the equipment, safety information and instructions.
Please forward this Instruction Manual and the enclosed CD-ROM to the end user.

-CONTENTS-

1 INVERTER INSTALLATION AND PRECAUTIONS ... 5

2 WIRING.. 7
3 FAILSAFE SYSTEM WHICH USES THE INVERTER .. 14
4 PRECAUTIONS FOR USE OF THE INVERTER .. 14
5 INVERTER FUNCTION SETTING... 16
6 TROUBLESHOOTING ... 22
7 SPECIFICATIONS.. 24

This Instruction Manual provides handling information and precautions for use of this product.
Please forward this Instruction Manual to the end user.

Safety Instructions

Do not attempt to install, operate, maintain or inspect this product until you have read through this Instruction Manual and supplementary documents carefully and can use the equipment correctly. Do not use this product until you have a full knowledge of this product, safety information and instructions.
Installation, operation, maintenance and inspection must be performed by qualified personnel. Here, qualified personnel means personnel who meets all the conditions below.

- A person who took a proper engineering training.

Such training may be available at your local Mitsubishi Electric office. Contact your local sales office for schedules and locations.

- A person who can access operating manuals for the protective devices (e.g. light curtain) connected to the safety control system. A person who has read and familiarized himself/herself with the manuals.

In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION"

Incorrect handling may cause
hazardous conditions, resulting in death or severe injury.
Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

Note that even the \triangle CAUTION level may even lead

 to a serious consequence according to conditions. Be sure to follow the instructions of both levels as they are critical to personal safety.
Electric Shock Prevention

1. WARNING

- While the inverter power is ON, do not remove the front cover or the wiring cover. Do not run the inverter with the front cover or the wiring cover removed, as accidental contact with exposed high-voltage terminals and internal components may occur, resulting in an electrical shock.
- Even if power is OFF, do not remove the front cover except for wiring or periodic inspection. You may accidentally touch the charged inverter circuits and get an electric shock.
- Before wiring or inspection, the power lamp must be switched OFF. Any person who is involved in wiring or inspection shall wait for at least 10 minutes after the power supply has been switched OFF and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- This inverter must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 61140 class 1 and other applicable standards).
- Any person who is involved in wiring or inspection of this equipment shall be fully competent to do the work
- The inverter must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Do not touch the setting dial or keys with wet hands. Doing so may cause an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Doing so may cause an electric shock.
- Do not change the cooling fan while power is ON as it is dangerous.
- Do not touch the printed circuit board or handle the cables with wet hands.

Doing so may cause an electric shock.

- Never touch the motor terminals, etc. right after powering OFF as the DC voltage is applied to the motor for 1 second at powering OFF if the main circuit capacitor capacity is measured. Doing so may cause an electric shock.
- Before wiring or inspection for a PM motor, confirm that the PM motor is stopped as a PM motor is a synchronous motor with high-performance magnets embedded inside and high-voltage is generated at the motor terminals while the motor is running even after the power of this product is turned OFF. In an application, such as fan and blower, that the motor may be driven by the load, connect a low-voltage manual contactor at this product output side and keep it open during wiring and inspection of this product. Otherwise you may get an electric shock.

Fire Prevention

CAUTION

- Inverter must be installed on a nonflammable wall without holes in it so that its components cannot be touched from behind. Mounting it to or near flammable material may cause a fire.
- If the inverter becomes faulty, the inverter power must be switched OFF. A continuous flow of large current may cause a fire
- Do not connect a resistor directly to the DC terminals P/+ and N/-. Doing so could cause a fire
Be sure to perform daily and periodic inspections as specified in the Instruction Manual (Detailed). There is a possibility of explosion, damage, or fire if this product is used without inspection
- Injury Prevention

CAUTION

The voltage applied to each terminal must be as specified in the
Instruction Manual (Detailed).

- The cables must be connected to the correct terminals. Otherwise an explosion or damage may occur.
- The polarity (+ and -) must be correct. Otherwise burst, damage, etc. may occur.
- While power is ON or for some time after power-OFF, do not touch the inverter as it will be extremely hot. Touching these devices may cause a burn.

Additional Instructions

The following instructions must be also followed. If the product is handled incorrectly, it may cause unexpected fault, an injury, or an electric shock.

CAUTION

Transportation and installation

- To prevent injury, wear cut-resistant gloves when opening packaging with sharp tools.
- Use proper lifting techniques or a trolley when carrying products
- Do not stand or rest heavy objects on the product.
- Do not stack the boxes containing inverters higher than the number recommended.
- When carrying the inverter, do not hold it by the front cover; it may fall or break.
- During installation, caution must be taken not to drop the inverter as doing so may cause injuries.
- The product must be installed on a surface that withstands the weight of the inverter.
- Do not install the product on a hot surface.
- Ensure the mounting orientation of this product is correct.
- Ensure this product is mounted securely in its enclosure.
- Do not install or operate the inverter if it is damaged or has parts missing
- Foreign conductive objects must be prevented from entering the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- For the FR-F860-00090 or lower, the surrounding air temperature must be -10 to $+30^{\circ} \mathrm{C}$ for the SLD rating $\left(-10\right.$ to $+40^{\circ} \mathrm{C}$ for the LD rating) (non freezing). Otherwise the inverter may be damaged.
- For the FR-F860-00170 to 01080, the surrounding air temperature must be -10 to $+40^{\circ} \mathrm{C}$ (non-freezing). Otherwise the inverter may be damaged
- For the FR-F860-01440 or higher, the surrounding air temperature must be -10 to $+40^{\circ} \mathrm{C}$ for the SLD rating (-10 to $+50^{\circ} \mathrm{C}$ for the LD rating) (nonfreezing). Otherwise the inverter may be damaged.
- The ambient humidity must be 95% RH or less (non-condensing) Otherwise the inverter may be damaged. (Refer to page 5 for details.)
- The storage temperature (applicable for a short time, e.g. during transit) must be between -20 and $+65^{\circ} \mathrm{C}$. Otherwise the inverter may be damaged.
- The inverter must be used indoors (without corrosive gas, flammable gas, oil mist, dust and dirt etc.) Otherwise the inverter may be damaged.
- Do not use this product at an altitude above 2500 m . Vibration should not exceed $5.9 \mathrm{~m} / \mathrm{s}^{2}$ at 10 to 55 Hz in X, Y, and Z directions. (For installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.) Otherwise the inverter may be damaged.
- If halogens (including fluorine, chlorine, bromine, and iodine) contained in fumigants for wood packages enter this product, the product may be damaged. Prevent the entry of fumigant residuals or use an alternative method such as heat disinfection. Note that sterilization or disinfection of wood packages should be performed before packing the product.
- To prevent a failure, do not use the inverter with a part or material containing halogen flame retardant including bromine.

Wiring

- Do not install a power factor correction capacitor, surge absorber, or radio noise filter on the output side of this product. These devices may overheat or burn out.
- The output terminals (terminals U, V, and W) must be connected to a motor correctly. Otherwise the motor will rotate inversely.
- Even with the power OFF, high voltage is still applied to the terminals U, V and W while the PM motor is running. Ensure the PM motor has stopped before carrying out any wiring.
- Never connect a PM motor to a commercial power supply

Connecting a commercial power supply to the input terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of a PM motor will burn it out. The PM motor must be connected with the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the inverter.

Test operation

- Before starting operation, each parameter must be confirmed and adjusted. A failure to do so may cause some machines to make unexpected motions.

4. WARNING

Usage

- Stay away from the equipment when the retry function is set as it will restart suddenly after a trip.
- Since pressing the STOP/RESET key may not stop output depending on the function setting status, separate circuit and switch that make an emergency stop (power OFF, mechanical brake operation for emergency stop, etc.) must be provided.
- Be sure to turn OFF the start (STF/STR) signal before clearing the fault as this product will restart the motor suddenly after a fault is cleared.
- Do not use a PM motor for an application where the PM motor is driven by its load and runs at a speed higher than the maximum motor speed.
- Use this inverter only with three-phase induction motors or with a PM motor. Connection of any other electrical equipment to the inverter output may damage the equipment.
- Do magdify the equipment
- Do not remove any part which is not instructed to be removed in the Instruction Manual (Detailed). Doing so may lead to fault or damage of the product.

CAUTION

Usage

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not repeatedly start or stop this product with a magnetic contactor on its input side.
- The effect of electromagnetic interference must be reduced by using a noise filter or by other means. Otherwise nearby electronic equipment may be affected.
- Appropriate precautions must be taken to suppress harmonics. Otherwise power supply harmonics from the inverter may heat/damage the power factor correction capacitor and generator.
- To drive a 600 V class motor with this product, use an insulationenhanced motor, or take measures to suppress surge voltage. Otherwise surge voltage, which is attributed to the length and thickness of wire, may occur at the motor terminals, causing the motor insulation to deteriorate.
- When parameter clear or all parameter clear is performed, the required parameters must be set again before starting operations because all parameters return to their initial values.
- The inverter can be easily set for high-speed operation. Before changing its setting, the performances of the motor and machine must be fully examined.
- This product's brake function cannot be used as a mechanical brake. Use a separate device instead.
- Perform an inspection and test operation of this product if it has been stored for a long period of time.
- Static electricity in your body must be discharged before you touch the product.
- Only one PM motor can be connected to an inverter
- A PM motor must be used under PM motor control. Do not use a synchronous motor, induction motor, or synchronous induction motor. - Do not connect a PM motor to this product with it set to the induction motor control setting (initial setting). Do not connect an induction motor to this product with it set to the PM sensorless vector control setting. Doing so will cause failure
- In the system with a PM motor, the inverter power must be turned ON
before closing the contacts of the contactor at the output side.
- When the emergency drive operation is performed, the operation is continued or the retry is repeated even when a fault occurs, which may damage or burn the inverter and motor. Before restarting the normal operation after using the emergency drive function, make sure that the inverter and motor have no fault.
- In order to protect the inverter and the system against unauthorized access by external systems via network, take security measures including firewall settings.
- Depending on the network environment, the inverter may not operate as intended due to delays or disconnection in communication. Carefully consider the conditions and safety for the inverter on site.
- To maintain the security (confidentiality, integrity, and availability) of the inverter and the system against unauthorized access, DoS *1 attacks, computer viruses, and other cyberattacks from external devices via network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions. We shall have no responsibility or liability for any problems involving inverter trouble and system trouble by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.
- When the emergency drive function is enabled, the operation is continued or the retry operation (automatic reset and restart) is repeated even if a fault occurs, which may damage or burn the inverter, the converter unit, or the motor. Before restarting the normal operation after the operation using the emergency drive function, make sure that the inverter, the converter unit, and the motor have no fault.

Emergency stop

- A safety backup such as an emergency brake must be provided for devices or equipment in a system to prevent hazardous conditions in case of failure of the inverter or an external device controlling the inverter.
- If the breaker installed on the input side of this product trips, check for wiring faults (short circuits etc.) and damage to internal parts of this product. Identify and remove the cause of the trip before resetting the tripped breaker and applying the power to the product again.
- When a protective function is activated, take an appropriate corrective action, then reset the inverter, and resume the operation.
Maintenance, inspection and parts replacement
- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure.

Disposal

- The inverter must be treated as industrial waste.
*1 DoS: A denial-of-service (DoS) attack disrupts services by overloading systems or exploiting vulnerabilities, resulting in a denial-of-service (DoS) state

Application of caution labels

Caution labels are used to ensure safety during use of Mitsubishi Electric inverters.
Apply the following labels to the inverter if the "retry function" and/or "automatic restart after instantaneous power failure" have been enabled. - For the retry function

CAUTION

(Retry Function Has
Been Selected
Stay away from the motor and machine.
They will start suddenly (after given
time has elapsed) when alarm occurs

- For automatic restart after instantaneous power failure

Application of motor control labels
Apply the following labels to the inverter to avoid connecting motors not intended for a particular motor control setting.

Induction motor setting

4. The inverter is set for the induction motor control. Do not connect a PM motor.

PM motor control setting

1. The inverter is set for the PM motor control.
Do not connect an induction motor.

General instruction

For clarity, illustrations in this Instruction Manual may be drawn with covers or safety guards removed. Ensure all covers and safety guards are properly installed prior to starting operation. For details on the PM motor, refer to the Instruction Manual of the PM motor.

MEMO

1 INVERTER INSTALLATION AND PRECAUTIONS

- Inverter model

- FR-F860-00450 or lower

- FR-F860-00680 or higher

*1 Inverter equipped with a built-in Ethernet board (FR-A8ETH).

Capacity plate

Inverter model \rightarrow FR-F860-00027-E3-N6
Serial number

Rating plate

	\$ Mrisusisul INVERTER PASSED
Inverter model Input rating	MODEL :FR-F860-00027-E3-N6 INPUT : XXXXX
Output rating	OUTPUT : Xxxxx
SERIAL	SERIAL: Xx]xxxxxx
Country of origin	\longrightarrow MADE IN Xxxxx

Inverter placement

Installation on the enclosure

- Install the inverter on a strong surface securely with screws.
- Leave enough clearances and take cooling measures.
- Avoid places where the inverter is subjected to direct sunlight, high temperature and high humidity.
- Install the inverter on a nonflammable wall surface.
- When encasing multiple inverters, install them in parallel as a cooling measure.
- When designing or building an enclosure for the inverter, carefully consider influencing factors such as heat generation of the contained devices and the operating environment.

*1 For the FR-F860-00090 or lower, allow 1 cm or more clearance.
*2 For replacing the cooling fan of the FR-F860-02890 or higher, 30 cm of space is necessary in front of the inverter Refer to the FR-F860 Instruction Manual (Detailed) for fan replacement.
- Installation environment

Before installation, confirm that the following environment conditions are met.

Item	Description		
Surrounding air temperature*4	FR-F860-00090 or lower	$-10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ (non-freezing) (SLD rating) $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing) (LD rating)	Enclosure*5
	FR-F860-00170 to 01080	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing)	
	FR-F860-01440 or higher	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (non-freezing) (SLD rating) $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing) (LD rating)	$\begin{aligned} & \text { Measurement } \\ & \text { position } \end{aligned}$
Ambient humidity	95\% RH or less (non-condensing)		
Storage temperature	-20 to $+65^{\circ} \mathrm{C} * 1$		
Atmosphere	Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)		
Altitude	Maximum $2500 \mathrm{m*2}$		
Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2}{ }^{* 3}$ or less at 10 to 55 Hz (directions of X, Y, Z axes)		

*1 Temperature applicable for a short time, e.g. in transit.
*2 For the installation at an altitude above 1000 m , consider a 3% reduction in the rated current per 500 m increase in altitude.
*3 $\quad 2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-F860-02890 or higher.
*4 Surrounding air temperature is a temperature measured at a measurement position in an enclosure. Ambient temperature is a temperature outside an enclosure.
*5 The FR-F860-00680 or higher inverter is intended for installation in an enclosure.

Accessory

- Eyebolt for hanging the inverter

Capacity	Eyebolt size	Quantity
FR-F860-02890, 03360	M10	2
FR-F860-04420	M12	2

- Earthing (grounding) cable (1): For connection with a communication option
- CD-ROM (1): Including the Instruction Manual (Detailed) and other documents

- Installing a communication option

- To use a communication option, the enclosed earthing (grounding) cable needs to be installed. Install the cable according to the following procedure.

No.	\quad Installation procedure
1	Insert spacers into the mounting holes that will not be tightened with the option mounting screws.
2	Fit the connector of the communication option to the guide of the connector of the inverter, and insert the option as far as it goes. (Insert it to the inverter option connector 1.)
3	Remove the mounting screw (lower) of the Ethernet board earth plate. Fit the one terminal of the earthing (grounding) cable on the Ethernet board earth plate and fix it securely to the inverter with the mounting screw. (tightening torque $0.33 \mathrm{~N} \cdot \mathrm{~m}$ to $0.40 \mathrm{~N} \cdot \mathrm{~m}$)
4	Fix the left part of the communication option securely with the option mounting screw, and place another terminal of the earthing (grounding) cable on the right part of the option and fix the cable terminal and the option with the option mounting screw. (tightening torque $0.33 \mathrm{~N} \cdot \mathrm{~m}$ to $0.40 \mathrm{~N} \cdot \mathrm{~m})$ If the screws are not tightened properly, the connector may not be inserted deep enough. Check the connector.

Example of FR-A8NC

Ethernet board earth plate

- The number and shape of the spacers used differ depending on the communication option type. Refer to the Instruction Manual of each communication option for details.
- The earth plate enclosed with a communication option is not used.

2 WIRING

2.1 Terminal connection diagrams

*1 For the FR-F860-01080 or higher, or whenever a 75 kW or higher motor is used, always connect a DC reactor, which is available as an option. (To select a DC reactor, refer to page 24, and select one according to the applicable motor capacity.)
When connecting a DC reactor, if a jumper is installed across terminals $P 1$ and $P /+$, remove the jumper before installing the $D C$ reactor. (The jumper is not installed for the FR-F860-01440 or higher.)
*2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
*3 The function of these terminals can be changed with the input terminal assignment (Pr. 178 to Pr.189). (Refer to page 17.)
*4 Terniol
Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561) (Refer to the FR-F860 Instruction Manual (Detailed).)
*6 It is recommended to use $2 \mathrm{~W} 1 \mathrm{k} \Omega$ when the frequency setting signal is changed frequently
*7 Do not use terminals PR and P3. (Terminals PR and P3 are equipped in FR-F860-01080 or lower.)
*8 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 17.)
*9 The function of these terminals can be changed with the output terminal assignment (Pr. 190 to Pr.194). (Refer to page 17.)
*10 No function is assigned in the initial status. Assign the function using Pr. 186 CS terminal function selection. (Refer to page 17.)
*11 The option connector 2 cannot be used because the Ethernet board is installed in the initial status. The Ethernet board must be removed to install a plug-in option to the option connector 2. (However, Ethernet communication is disabled in that case.)

NOTTE:

- To prevent a malfunction due to noise, keep the signal cables 10 cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.
- After wiring, wire offcuts must not be left in the inverter. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.
- Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.
- Terminals S1, S2, SIC, So (SO), and SOC are for manufacturer setting. Do not connect anything to these. Doing so may cause an inverter failure. Do not remove the shorting wires across the terminals S1 and PC, terminals S2 and PC, and the terminals SIC and SD. Removing either shorting wire disables the inverter operation.

2.2 Main circuit terminals

Terminal arrangement and wiring

*1 Do not remove the jumper from terminal P3.
*2 For the FR-F860-01080, a jumper is not installed across terminals P1 and P/+. Always connect a DC reactor (FR-HEL), which is available as an option, across terminals P1 and P/+.
*3 When an option other than the DC reactor must be connected to terminal $\mathrm{P} /+$, use terminal $\mathrm{P} /+$ (for option connection).
:-NöTM

- Make sure the power cables are connected to the R/L1, S/L2, T/L3. (Phase need not be matched.) Never connect the power cable to the U, V, W of the inverter. Doing so will damage the inverter.
- Connect the motor to U, V, and W . Turning ON the forward rotation switch (signal) at this time rotates the motor counterclockwise when viewed from the load shaft. (The phase sequence must be matched.)
- The charge lamp will turn ON when the power is supplied to the main circuit.
- When wiring the inverter main circuit conductor of the FR-F860-04420, tighten a nut from the right side of the conductor. When wiring two wires, place wires on both sides of the conductor. (Refer to the drawing on the right.) For wiring, use bolts (nuts) provided with the inverter.

- Wiring cover and handling (FR-F860-00450 or lower)
- Removal of the wiring cover
(1) Remove the inverter front cover (lower side). (For the details on how to remove the front cover (lower side), refer to the Instruction Manual (Detailed).)
(2) Loosen the fixing screws, and remove the front lid of the wiring cover.

(3) Loosen the fixing screws that fix the wiring cover to the inverter, and remove the wiring cover.

:-№̈TM.
- Always use fixing screws when attaching the wiring cover to the inverter. Otherwise, the inverter may be damaged.

The table below shows the locations of the fixing screws and the screws for earthing (grounding). Locations are shown for each capacity.

- Punching out the knockout holes
(1) Punch out the knockout holes by firmly tapping it with an object, such as a hammer. Remove any sharp edges and burrs from knockout holes of the wiring cover.

(2) Conduit hubs must always be used to connect conduit to the enclosure knockout. The hub shall be assembled to the conduit before it is installed in the conduit box knockout opening.
:- NöT゙E
- Be careful not to injure yourself with the sharp edges and burrs of the knockout holes.
- To avoid wire offcuts and other foreign matter to enter the inverter, conduits must be installed to the all knockout holes.
- Wiring cover hole diameters

Inverter capacity	Hole diameter (mm)	Number of holes	Applicable conduit size (Nominal diameter)
FR-F860-00027 to 00090	$\phi 35$	3	1
FR-F860-00170, 00320	$\phi 44$	3	$1 \cdot 1 / 4$
FR-F860-00450	$\phi 63$	3	2

4. WARNING

- Do not wire without using conduits. Otherwise, the cable sheathes may be scratched by the wiring cover edges, resulting in a short circuit or ground fault.

- Cable gauge of main circuit terminals and earth (ground) terminals

Use an appropriate cable gauge to suppress the voltage drop to 2% or less.
If the wiring distance is long between the inverter and motor, the voltage drop in the main circuit will cause the motor torque to decrease especially at a low speed. The following table indicates a selection example for the wiring length of 20 m .

- SLD rating (Pr. 570 Multiple rating setting = " 0 ")
- 600 V class (575 V input power supply)

Applicable inverter model	Terminal screw size *2	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal				Cable gauge *1							
							HIV cables, etc. (mm^{2})				AWG/MCM			
			R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \end{aligned}$	U, V, W	$\begin{gathered} \mathrm{P} /+ \\ \mathrm{P} 1 \end{gathered}$	Earthing (grounding) cable
$\begin{aligned} & \text { FR-F860-00027 to } \\ & 00090 \end{aligned}$	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-F860-00170	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-F860-00320	M5	2.5	5.5-5	5.5-5	8-5	5.5-5	5.5	5.5	8	5.5	10	10	8	10
FR-F860-00450	M6	4.4	14-6	14-6	14-6	14-6	14	14	14	14	6	6	4	6
FR-F860-00680	M8	7.8	22-8	22-8	22-8	22-8	22	22	22	22	4	4	2	4
FR-F860-01080	M8	7.8	38-8	38-8	38-8	22-8	38	38	38	22	1	1	1/0	4
FR-F860-01440	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	1/0	1/0	1/0	1
FR-F860-01670	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	2/0	2/0	2/0	1
FR-F860-02430	M10	14.7	80-10	80-10	80-10	38-10	80	80	80	38	4/0	250	4/0	1
FR-F860-02890	M12 (M10)	24.5	100-12	100-12	100-12	38-10	100	100	100	38	250	300	250	1
FR-F860-03360	M12 (M10)	24.5	125-12	125-12	125-12	38-10	125	125	125	38	$2 \times 2 / 0$	$2 \times 2 / 0$	$2 \times 2 / 0$	1
FR-F860-04420	M12 (M10)	46	2×80-12	2×80-12	2×80-12	60-10	2×80	2×80	2×80	60	$2 \times 4 / 0$	2×250	$2 \times 4 / 0$	1/0

*1 The cables used should be $75^{\circ} \mathrm{C}$ copper cables. (For the use in the United States or Canada, refer to page 27.)
*2 The terminal screw size indicates the size of terminal screw for R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, P1, P3, and the screw for earthing (grounding), and P/+ for option connection. A screw for earthing (grounding) of the FR-F860-02890 or higher is indicated in ().

- LD rating (Pr. 570 Multiple rating setting = "1")
- 600 V class (575 V input power supply)

Applicable inverter model	Terminal screw size *2	Tightening torque $\mathrm{N} \cdot \mathrm{m}$	Crimp terminal				Cable gauge *1							
							HIV cables, etc. (mm^{2})				AWG/MCM			
			R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \text { P/+, } \\ \text { P1 } \end{gathered}$	Earthing (grounding) cable	R/L1, S/L2, T/L3	U, V, W	$\begin{gathered} \mathrm{P} /+ \\ \mathrm{P} 1 \end{gathered}$	\qquad
$\begin{aligned} & \text { FR-F860-00027 to } \\ & 00090 \end{aligned}$	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-F860-00170	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-F860-00320	M5	2.5	5.5-5	5.5-5	8-5	5.5-5	5.5	5.5	8	5.5	10	10	8	10
FR-F860-00450	M6	4.4	8-6	14-6	8-6	5.5-6	8	14	8	5.5	8	6	8	10
FR-F860-00680	M8	7.8	22-8	22-8	22-8	22-8	22	22	22	22	4	4	2	4
FR-F860-01080	M8	7.8	38-8	38-8	38-8	22-8	38	38	38	22	2	2	1/0	4
FR-F860-01440	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	1/0	1/0	1/0	1
FR-F860-01670	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	2/0	2/0	2/0	1
FR-F860-02430	M10	14.7	80-10	80-10	80-10	38-10	80	80	80	38	4/0	250	4/0	1
FR-F860-02890	M12 (M10)	24.5	100-12	100-12	100-12	38-10	100	100	100	38	250	300	250	1
FR-F860-03360	M12 (M10)	24.5	125-12	125-12	125-12	38-10	125	125	125	38	2×2/0	$2 \times 3 / 0$	$2 \times 2 / 0$	1
FR-F860-04420	M12 (M10)	46	2×80-12	2×80-12	$2 \times 80-12$	60-10	2×80	2×80	2×80	60	2×4/0	2×250	2×4/0	1/0

*1 The cables used should be $75^{\circ} \mathrm{C}$ copper cables. (For the use in the United States or Canada, refer to page 27.)
*2 The terminal screw size indicates the size of terminal screw for R/L1, S/L2, T/L3, U, V, W, PR, P/+, N/-, P1, P3, and the screw for earthing (grounding), and P/+ for option connection. A screw for earthing (grounding) of the FR-F860-02890 or higher is indicated in ().

The line voltage drop can be calculated by the following formula:
Line voltage drop $[\mathrm{V}]=\sqrt{3} \times$ wire resistance $[\mathrm{m} \Omega / \mathrm{m}] \times$ wiring distance $[\mathrm{m}] \times$ current $[\mathrm{A}] / 1000$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

NOTE:

- Tighten the terminal screw to the specified torque. A screw that has been tightened too loosely can cause a short circuit or malfunction. A screw that has been tightened too tightly can cause a short circuit or malfunction due to the unit breakage.
- Use crimp terminals with insulation sleeves to wire the power supply and motor.

- Total wiring length

- With general-purpose motor

Connect one or more general-purpose motors within the total wiring length shown in the following table.

- When fast response current limit is enabled ($\operatorname{Pr} .156=" 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28$, or 30 "), the wiring length should be within the value in the table below.

Pr.72 setting (carrier frequency)	FR-F860-00027	FR-F860-00061	FR-F860-00090	FR-F860-00170	FR-F860-00320 or higher
$2(2 \mathrm{kHz})$ or less	100 m	200 m	500 m	500 m	
$3(3 \mathrm{kHz})$ or more	100 m	100 m	400 m	500 m	

- When fast response current limit is disabled (Pr. $156=" 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29$, or 31 "), the wiring length should be within the value in the table below.

FR-F860-00027	FR-F860-00061	FR-F860-00090	FR-F860-00170 or higher
100 m	300 m	500 m	500 m

- Use a " 600 V class inverter-driven insulation-enhanced motor" and set frequency in Pr. 72 PWM frequency selection according to wiring length.

Wiring length $\mathbf{5 0} \mathbf{~ m}$ or shorter	Wiring length $\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ m}$	Wiring length longer than $\mathbf{1 0 0} \mathbf{~ m}$
$15(14.5 \mathrm{kHz})$ or lower	$9(9 \mathrm{kHz})$ or lower	$4(4 \mathrm{kHz})$ or lower

- With PM motor

Use the wiring length of 100 m or shorter when connecting a PM motor.
Use one PM motor for one inverter. Multiple PM motors cannot be connected to an inverter.
When the wiring length exceeds 50 m for a 600 V class motor driven by an inverter under PM motor control, set " 9 " (6 kHz) or less in Pr. 72 PWM frequency selection.

NOMTE

- Especially for long-distance wiring, the inverter may be affected by a charging current caused by stray capacitance of the wiring, leading to an activation of the overcurrent protection, malfunction of the fast-response current limit operation, or even to an inverter failure. If the fast-response current limit function malfunctions, disable this function.
(Pr. 156 Stall prevention operation selection Refer to Chapter 5 of the FR-F860 Instruction Manual (Detailed).)
- Refer to Chapter 3 in the FR-F860 Instruction Manual (Detailed) to drive a 600 V class motor by an inverter.
- Cable size for the control circuit power supply (terminals R1/L11 and S1/L21)
- Terminal screw size: M4
- Cable gauge: $0.75 \mathrm{~mm}^{2}$ to $2 \mathrm{~mm}^{2}$
- Tightening torque: $1.5 \mathrm{~N} \cdot \mathrm{~m}$

2.3 Control circuit terminal

Terminal layout

Recommended cable gauge: 0.3 to $0.75 \mathrm{~mm}^{2}$

*1 This terminal functions as terminal CA.

- Wiring method

- Power supply connection

For the control circuit wiring, strip off the sheath of a cable, and use it with a crimp terminal. For a single wire, strip off the sheath of the wire and apply directly. Insert the crimp terminal or the single wire into a socket of the terminal.
(1) Strip the signal wires as follows. If too much of the wire is stripped, a short circuit may occur with neighboring wires. If not enough of the wire is stripped, wires may become loose and fall out. Twist the stripped end of wires to prevent them from fraying. Do not solder them.

Cable sheath stripping length

(2) Crimp the terminals on the wire

Insert the wire into a crimp terminal, making sure that 0 to 0.5 mm of the wire protrudes from the end of the sleeve. Check the condition of the crimp terminals after crimping. Do not use the crimp terminals of which the crimping is inappropriate, or the face is damaged.

Wires are not inserted into the sleeve

- Crimp terminals commercially available (as of October 2020)

Cable gauge (mm^{2})	Ferrule terminal model			Manufacturer	Crimping tool name
	With insulation sleeve	Without insulation sleeve	For UL wire*1		
0.3	AI 0,34-10TQ	-	-	Phoenix Contact Co., Ltd.	CRIMPFOX 6
0.5	AI 0,5-10WH	-	AI 0,5-10WH-GB		
0.75	Al 0,75-10GY	A 0,75-10	AI 0,75-10GY-GB		
1	AI 1-10RD	A 1-10	Al 1-10RD/1000GB		
1.25, 1.5	Al 1,5-10BK	A 1,5-10	Al 1,5-10BK/1000GB*2		
0.75 (for two wires)	AI-TWIN $2 \times 0,75-10 \mathrm{GY}$	-	-		

*1 A ferrule terminal with an insulation sleeve compatible with the MTW wire which has a thick wire insulation.
*2 Applicable to terminals A1, B1, C1, A2, B2, and C2.

Cable gauge (mm ${ }^{\mathbf{2}}$)	Blade terminal product number	Insulation cap product number	Manufacturer	Crimping tool product number
0.3 to 0.75	BT $0.75-11$	VC 0.75	NICHIFU Co., Ltd.	NH 69

(3) Insert the wires into a socket.

When using a single wire or stranded wires without a crimp terminal, push the open/close button all the way down with a flathead screwdriver, and insert the wire.

- Wire removal

Pull the wire while pressing down the open/close button firmly with a flathead screwdriver.

NoTE.
 - When using stranded wires without a crimp terminal, twist enough to avoid short circuit with a nearby terminals or wires.

- During wiring, pulling out the wire forcefully without pushing the open/close button all the way down may damage the terminal block
- Use a small flathead screwdriver (tip thickness: 0.4 mm , tip width: 2.5 mm).

If a flathead screwdriver with a narrow tip is used, terminal block may be damaged.
Commercially available products (as of October 2020) .

Name	Model	Manufacturer
Screwdriver	SZF $0-0,4 \times 2,5$	Phoenix Contact Co., Ltd.

- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

- Wiring precautions

- It is recommended to use a cable of 0.3 to $0.75 \mathrm{~mm}^{2}$ for connection to the control circuit terminals.
- The wiring length should be 30 m at the maximum.
- Use two or more parallel micro-signal contacts or twin contacts to prevent contact faults when using contact inputs since the control circuit input signals are micro-currents.
- To suppress EMI, use shielded or twisted cables for the control circuit terminals and run them away from the main and power circuits (including the 200 V relay sequence circuit). For the cables connected to the control circuit terminals,

Micro signal contacts

Twin contacts connect their shields to the common terminal of the connected control circuit terminal. When connecting an external power supply to terminal PC, however, connect the shield of the power supply cable to the negative side of the external power supply. Do not directly earth (ground) the shield to the enclosure, etc.

- Always apply a voltage to the fault output terminals (A1, B1, C1, A2, B2, and C2) via a relay coil, lamp, etc.
- When using an external power supply for transistor output, note the following points to prevent a malfunction caused by undesirable current. Do not connect any terminal SD on the inverter and the 0 V terminal of the external power supply (when the sink logic is selected). Do not connect terminal PC on the inverter and the +24 V terminal of the external power supply (when the source logic is selected). Do not install an external power source in parallel with the internal 24 VDC power source (connected to terminals PC and SD) to use them together. Refer to Chapter 2 of the Instruction Manual (Detailed) for the detail.

- Control logic (sink/source) change

Change the control logic of input signals as necessary.
To change the control logic, change the jumper connector position on the control circuit board.
Connect the jumper connector to the connector pin of the desired control logic.
The control logic of input signals is initially set to the sink logic (SINK).
(The output signals may be used in either the sink or source logic independently of the jumper connector position.)

- When supplying 24 V external power to the control circuit

Connect a 24 V external power supply across terminals +24 and SD . Connecting a 24 V external power supply enables I/O terminal ON/OFF operation, the operation panel displays, control functions, and communication during communication operation even during power-OFF of inverter's main circuit power supply. When the main circuit power supply is turned ON , the power supply source changes from the 24 V external power supply to the main circuit power supply. During the 24 V external power supply operation, the alarm lamp blinks.

- Applied 24 V external power specification

Item	Rated specification
Input voltage	23 to 25.5 VDC
Input current	1.4 A or less

3 FAILSAFE SYSTEM WHICH USES THE INVERTER

When a fault is detected by the protective function, the protective function is activated and output a Fault (ALM) signal. However, a fault signal may not be output at an inverter's fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi Electric assures the best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to the machine when the inverter fails for some reason. Also, at the same time consider the system configuration where a failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.

Interlock method which uses the inverter status output signals

By combining the inverter output signals to provide an interlock as shown below, an inverter failure can be detected.

Interlock method	Check method	Used signals	Refer to
Inverter protective function operation	Operation check of an alarm contact. Circuit error detection by negative logic.	Fault (ALM) signal	Chapter 5 of the FR-F860 Instruction Manual (Detailed).
Inverter operating status	Operation ready signal check.	Inverter operation ready (RY) signal	Chapter 5 of the FR-F860 Instruction Manual (Detailed).
Inverter running status	Logic check of the start signal and running signal.	Start signal (STF signal, STR signal) Inverter running (RUN) signal	Chapter 5 of the FR-F860 Instruction Manual (Detailed).
Inverter running status	Logic check of the start signal and output current.	Start signal (STF signal, STR signal) Output current detection (Y12) signal	Chapter 5 of the FR-F860 Instruction Manual (Detailed).

Backup method outside the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, if an inverter CPU fails in a system interlocked with the inverter's fault, start, and RUN signals, no fault signal will be output and the RUN signal will be kept ON because the inverter CPU is down.
Provide a speed detector to detect the motor speed and current detector to detect the motor current and consider the backup system such as performing a check as below according to the level of importance of the system.

- Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the current is flowing through the motor while the motor coasts to stop, even after the inverter's start signal is turned OFF. For the logic check, configure a sequence considering the inverter's deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.

- Command speed and actual operation check

Check for a gap between the actual speed and commanded speed by comparing the inverter's speed command and the speed detected by the speed detector.

4 PRECAUTIONS FOR USE OF THE INVERTER

The FR-F800 series inverter is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product. Before starting operation, always recheck the following points.

- Use crimp terminal with insulation sleeves to wire the power supply and the motor.
- Application of power to the output terminals ($\mathbf{U}, \mathrm{V}, \mathrm{W}$) of the inverter will damage the inverter. Never perform such wiring.
- After wiring, wire offcuts must not be left in the inverter

Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter.

- Use an appropriate cable gauge to suppress the voltage drop to $\mathbf{2 \%}$ or less.

If the wiring distance is long between the inverter and motor, a voltage drop in the main circuit will cause the motor torque to decrease especially during the output of a low frequency.
Refer to page 11 for the recommended cable gauge.

- Keep the total wiring length within the specified length.

In long distance wiring, charging currents due to stray capacitance in the wiring may degrade the fast-response current limit operation or cause the equipment on the inverter's output side to malfunction. Pay attention to the total wiring length. (Refer to page 11.)

- Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In such case, install a noise filter.

- Electrical corrosion of the bearing

When a motor is driven by the inverter, axial voltage is generated on the motor bearing, which may cause electrical corrosion of the bearing in rare cases depending on: condition of the grease used for the bearing, wiring, load, operating conditions of the motor, or specific inverter settings (high carrier frequency).
Contact your sales representative to take appropriate countermeasures for the motor.
The following shows examples of countermeasures for the inverter.

- Decrease the carrier frequency.
- Provide a common mode choke on the output side of the inverter.*1
*1 Recommended common mode choke: FT-3KM F series FINEMET ${ }^{\circledR}$ common mode choke cores manufactured by Hitachi Metals, Ltd. FINEMET is a registered trademark of Hitachi Metals, Ltd.
- Do not install a power factor correction capacitor, surge suppressor or capacitor type filter on the inverter's output side.

Doing so will cause the inverter to trip or the capacitor and surge suppressor to be damaged. If any of the above devices is connected, immediately remove it.

- For some short time after the power-OFF, a high voltage remains in the smoothing capacitor, and it is dangerous.

A smoothing capacitor holds high voltage some time after power-OFF. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched OFF, and then make sure that the voltage across the main circuit terminals $\mathrm{P} /+$ and $\mathrm{N} /$ - of the inverter is low enough using a tester, etc.

- If the alarm lamp blinks, turn OFF the 24 V external power supply before performing wiring.
- A short circuit or earth (ground) fault on the inverter's output side may damage the inverter module.
- Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits caused by peripheral circuit inadequacy or an earth (ground) fault caused by wiring inadequacy or reduced motor insulation resistance may damage the inverter module.
- Fully check the to-earth (ground) insulation and phase-to-phase insulation of the inverter's output side before power-ON. Especially for an old motor or use in hostile atmosphere, securely check the motor insulation resistance, etc.
- Do not use the magnetic contactor (MC) on the inverter's input side to start/stop the inverter.

Since repeated inrush currents at power ON will shorten the life of the converter circuit ($1,000,000$ times for others), frequent starts and stops of the input side MC must be avoided. Turn ON/OFF the inverter's start signals (STF, STR) to run/stop the inverter. (Refer to page 7.)

- Do not apply a voltage higher than the permissible voltage to the inverter I/O signal circuits.

Application of a voltage higher than the permissible voltage to the inverter I/O signal circuits or opposite polarity may damage the I/O devices. Especially check the wiring to prevent the speed setting potentiometer from being connected incorrectly to short circuit terminals 10E and 5 .

- To use the commercial power supply during general-purpose motor operation, be sure to provide electrical and mechanical interlocks between the electronic bypass contactors MC1 and MC2.
When using a switching circuit as shown right, chattering due to mis-configured sequence or arc generated at switching may allow undesirable current to flow in and damage the inverter. Mis-wiring may also damage the inverter.

(The commercial power supply operation is not available with PM motors.)
- If the machine must not be restarted when power is restored after a power failure, provide an MC in the inverter's input side and also make up a sequence which will not switch ON the start signal.
If the start signal (start switch) remains ON after a power failure, the inverter will automatically restart as soon as the power is restored.
- MC on the inverter's input side

On the inverter's input side, connect an MC for the following purposes. (For the selection, refer to Chapter 2 of the FR-F860 Instruction Manual (Detailed).)

- To disconnect the inverter from the power supply at activation of a protective function or at malfunctioning of the driving system (emergency stop, etc.).
- To prevent any accident due to an automatic restart at power restoration after an inverter stop made by a power failure.
- To separate the inverter from the power supply to ensure safe maintenance and inspection work.

If using an MC for emergency stop during operation, select an MC regarding the inverter input side current as JEM 1038-AC-3 class rated current.

- Handling of the magnetic contactor on the inverter's output side

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When providing MCs to use the commercial power supply during general-purpose motor operation, switch the MCs after both the inverter and motor stop.
A PM motor is a synchronous motor with high-performance magnets embedded inside. High-voltage is generated at the motor terminals while the motor is running even after the inverter power is turned OFF. Before wiring or inspection, confirm that the motor is stopped. In an application, such as fan and blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise you may get an electric shock.

- Countermeasures against inverter-generated EMI

If electromagnetic noise generated from the inverter causes the frequency setting signal to fluctuate and the motor rotation speed to be unstable when changing the motor speed with analog signals, the following countermeasures are effective.

- Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them.
- Run signal cables as far away as possible from power cables (inverter I/O cables).
- Use shielded cables.
- Install a ferrite core on the signal cable.
- Instructions for overload operation

When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For a general-purpose motor, use an inverter of a higher capacity (up to 2 ranks). For an IPM motor, use an inverter and IPM motor of higher capacities.

- Make sure that the specifications and rating match the system requirements.

5 INVERTER FUNCTION SETTING

5.1 Operation panel (FR-LU08)

The operation panel can be used for setting the inverter parameters, monitoring various items, and checking fault indications.

- Removal and installation of the accessory cover

- Loosen the two fixing screws on the accessory cover. (These screws cannot be removed.)

- Push the upper edge of the accessory cover and pull the accessory cover to remove.

- To install the accessory cover, fit it securely and tighten the screws. (Tightening torque: 0.40 to $0.45 \mathrm{~N} \cdot \mathrm{~m}$)
- Installing the operation panel on the enclosure surface
- Having an operation panel on the enclosure surface is convenient. With a connection cable, you can install the operation panel to the enclosure surface, and connect it to the inverter.
Use the option FR-CB2[], or connectors and cables available on the market. (To install the operation panel, the optional connector (FR-ADP) is required.) Securely insert one end of the connection cable until the stoppers are fixed.

OMOTE:

- Refer to the following table when fabricating the cable on the user side. Keep the total cable length within 20 m
- Commercially available products (as of February 2015)

Name	Model	Manufacturer
Communication cable	SGLPEV-T $(\mathrm{Cat5e} / 300 \mathrm{~m}) 24 \mathrm{AWG} \times 4 \mathrm{P}$	Mitsubishi Cable Industries, Ltd.
RJ-45 connector	$5-554720-3$	Tyco Electronics

- For the details of the FR-LU08, refer to the FR-LU08 Instruction Manual.

5.2 Parameter list

For simple variable-speed operation of the inverter, the initial values of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be performed from the operation panel.

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
0*8	Torque boost	0 to 30%	$\begin{array}{\|l\|} \hline 3 \% / 2 \% / 1 \% \\ * 1 \\ \hline 100 \mathbf{1} \\ \hline \end{array}$	51	Second electronic thermal O/L relay	0 to 500A, $9999 * 2$ 0 to 3600 A,	9999	91	Motor constant (R2)	$\begin{array}{\|l\|} \hline 0 \text { to } 50 \Omega, 9999 * 2 \\ \hline 0 \text { to } 400 \mathrm{~m} \Omega, \\ 9999 * 3 \end{array}$	9999
1*8	Maximum frequency	0 to 120 Hz	120Hz*2	52	Operation panel main monitor selection	0,5 to 14,17, $18,20,23$ to $25,34,38,40$ to 45,50 to 57, $61,62,64$, 67 to 69, 81 to 96,98, 100	0	92	Motor constant (L1)/daxis inductance (Ld)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 * 2 \end{aligned}$	9999
2*8	Minimum frequency	0 to 120 Hz	OHz							$\begin{aligned} & 0 \text { to } 400 \mathrm{mH}, \\ & 9999 * 3 \end{aligned}$	
3*8	Base frequency	0 to 590 Hz	60 Hz								
4*8	Multi-speed setting (high speed)	0 to 590 Hz	60 Hz					93	Motor constant (L2)/qaxis inductance (Lq)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 * 2 \end{aligned}$	9999
5*8	Multi-speed setting (middle speed)	0 to 590 Hz	30 Hz							$\begin{array}{\|l} \hline 0 \text { to } 400 \mathrm{mH}, \\ 9999 * 3 \end{array}$	
6*8	Multi-speed setting (low	0 to 590 Hz	10Hz	54	CA terminal function selection	1 to 3,5 to 14,$17,18,21,24$,$34,50,52,53$,$61,62,67,69$,$70,85,9$87 to 90,92,$93,95,98$	1	94	Motor constant (X)	0 to 100\%, 9999	9999
	Acceleration time							95	Online auto tuning selection	0, 1	0
7*8		0 to 3600s	$\frac{5 s * 4}{15 s * 5}$					96	Auto tuning setting/status	0, 1, 11, 101	0
8*8	Deceleration time	0 to 3600s	10s*4					100	V/F1 (first frequency)	0 to $590 \mathrm{~Hz}, 9999$	9999
			30s*5	55	Frequency monitoring reference	0 to 590Hz	60Hz	101	V/F1 (first frequency voltage)	0 to 1000 V	OV
9*8	Electronic thermal O/L relay	0 to 500A*2	Inverter				$\begin{aligned} & \text { Inverter } \\ & \text { rated } \\ & \text { current } \end{aligned}$	102	V/F2 (second frequency) V/F2 (second frequency voltage)	0 to 590Hz, 9999	9999
		0 to 3600A*3	curren	56	Current monitoring reference	O to 500		103		0 to 1000 V	OV
10	DC injection brake operation frequency	$\begin{aligned} & 0 \text { to } 120 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	3 Hz	57	Restart coasting time	$\begin{aligned} & 0,0.1 \text { to } 30 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	104	voltage)	0 to 590Hz, 9999	9999
11	DC injection brake operation time	0 to 10s, 8888	0.5s	58	Restart cushion time	$\begin{array}{\|l\|} \hline 9999 \\ \hline 0 \text { to } 60 \mathrm{~s} \\ \hline \end{array}$	1 s	104 105	V/F3 (third frequency) V/F3 (third frequency voltage)	0 to 1000 V	OV
12	DC injection brake operation voltage	0 to 30\%	1\%	59	Remote function selection	0 to 3, 11 to 13	0	106	V/F4 (fourth frequency)	0 to 590Hz, 9999	9999
13	Starting frequency	0 to 60 Hz	0.5Hz	60	Energy saving control selection	0, 4, 9	0	107	V/F4 (fourth frequency voltage)	0 to 1000 V	OV
14	Load pattern selection	0, 1, 12 to 15	1	65	Retry selection	0 to 5	0	108	V/F5 (fifth frequency)	0 to 590Hz, 9999	9999
15*8	Jog frequency	0 to 590 Hz	5 Hz	66	Stall prevention operation reduction starting frequency	0 to 590 Hz	60 Hz	109	V/F5 (fifth frequency voltage)	0 to 1000 V	OV
16*8	Jog acceleration/ deceleration time	0 to 3600s	0.5s					11	Check valve deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
17	MRS input selection	0, 2, 4	0	67	Number of retries at fault occurrence	$\begin{aligned} & 0 \text { to } 10, \\ & 101 \text { to } 110 \end{aligned}$	0				
18	High speed maximum frequency	0 to 590 Hz	$120 \mathrm{~Hz} * 2$	68	Retry waiting time	0.1 to 600s	1 s	117	PU communication station number	0 to 31	0
			60Hz*3	69	Retry count display erase	0	0	118	PU communication	3, 96, 192, 384,	192
19	Base frequency voltage	$\begin{aligned} & 0 \text { to 1000V, } \\ & 8888,9999 \end{aligned}$	9999	70	Parameter for manufactu	urer setting. Do n	not set.	118	speed	576, 768, 1152	
20	Acceleration/ deceleration reference frequency	1 to 590 Hz	60 Hz	71	Applied motor	$\begin{aligned} & 0 \text { to } 6,13 \text { to } 16, \\ & 8090,8093, \\ & 8094,9090, \\ & 9093,9094 \end{aligned}$	0	119	PU communication stop bit length / data length	0, 1, 10, 11	1
								120	PU communication parity check	0 to 2	2
21	Acceleration/ deceleration time increments	0,1	0	72	PWM frequency selection	0 to $15 * 2$ 0 to $6,25 * 3$	2	121	Number of PU communication retries	0 to 10, 9999	1
22	Stall prevention operation level (Torque limit level)	0 to 400\%	110\%	73	Analog input selection	0 to 7, 10 to 17	1	122	PU communication check time interval	$\begin{aligned} & 0,0.1 \text { to } \\ & 999.8 \mathrm{~s}, 9999 \end{aligned}$	9999
				74	Input filter time constant	0 to 8	1				
23	Stall prevention operation level compensation factor at double speed	$\begin{aligned} & 0 \text { to 200\%, } \\ & 9999 \end{aligned}$	9999	75	Reset selection/ disconnected PU detection/PU stop selection	$\begin{aligned} & 0 \text { to } 3,14 \text { to } \\ & 17,1000 \text { to } \\ & 1003,1014 \text { to } \\ & 1017 * 2 \end{aligned}$	14	123 124	waiting time setting PU communication CR/ LF selection	9999 0 to 2	9999
$\begin{aligned} & 24 \text { to } \\ & 27 \end{aligned}$	Multi-speed setting (4 speed to 7 speed)	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999			0 to 3, 14 to 17, 100 to 103,		125*8	Terminal 2 frequency setting gain frequency Terminal 4 frequency	0 to 590 Hz	60Hz
28	Multi-speed input compensation selection	0, 1	0			$\begin{aligned} & 114 \text { to } 117, \\ & 1000 \text { to } 1003, \end{aligned}$		126*8	Terminal 4 frequency setting gain frequency	0 to 590 Hz	60Hz
	Acceleration/ $\begin{aligned} & \text { deceleration pattern }\end{aligned}$					$\begin{aligned} & 1014 \text { to } 1017, \\ & 1100 \text { to } 1103, \end{aligned}$		127	PID control automatic switchover frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
29	deceleration pattern selection	0 to 3, 6	0			1114 to 1117*		128	PID action selection	$0,10,11,20$,$21,50,51,60$,$61,70,71,80$,$81,90,91$,100,101,1000,1001,1010,1011,2000,2001,2010,2011	0
		$\begin{aligned} & \begin{array}{l} 0 \text { to } 2,10,11, \\ 20,21, \end{array} \end{aligned}$		76	Fault code output selection	0 to 2	0				
30	selection	$\begin{aligned} & 100 \text { to 102, } \\ & 110,111,120, \end{aligned}$	0	77	Parameter write selection	0 to 2	0				
31	Frequency jump 1A	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	78	Reverse rotation prevention selection	0 to 2	0				
32	Frequency jump 1B		9999	79*8	Operation mode selection	0 to 4, 6, 7	0	129	PID proportional band	$\begin{aligned} & 0.1 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	100\%
34	Frequency jump 2A		9999	80	Motor capacity	$\begin{aligned} & 0.4 \text { to } 55 \mathrm{~kW}, \\ & 9999 * 2 \end{aligned}$	9999	130	PID integral time		1s
35	Frequency jump 3A		9999							$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	
36	Frequency jump 3B		9999			$\begin{aligned} & 0 \text { to } 3600 \mathrm{~kW}, \\ & 9999 * 3 \end{aligned}$		131	PID upper limit	0 to $100 \%, 9999$	9999
37	Speed display	0, 1 to 9998	0	81	Number of motor poles	$\begin{aligned} & 2,4,6,8,10, \\ & 12,9999 \end{aligned}$	9999	132	PID lower limit	0 to 100\%, 9999	9999
41	Up-to-frequency sensitivity	0 to 100\%	10\%					133	PID action set point	0 to 100\%, 9999	9999
42	Output frequency detection	0 to 590 Hz	6 Hz	82	Motor excitation current	$\begin{aligned} & \text { 0 to 500A, } \\ & \text { t } \mathrm{ta99*2} \\ & \hline \begin{array}{l} 0 \text { to } 3600 \mathrm{~A}, \\ 9999 * 3 \end{array} \end{aligned}$	9999	134	PID differential time	$\begin{aligned} & 0.01 \text { to } 10 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
43	Output frequency detection for reverse rotation	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999					135	Electronic bypass sequence selection	0, 1	0
				83	Rated motor voltage	0 to 1000 V	575V	136	MC switchover interlock time	0 to 100s	1s
44	Second acceleration/ deceleration time	0 to 3600s	5s	84	Rated motor frequency	$\begin{aligned} & 10 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999			0 to 100s	0.5s
45	Second deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	85	Excitation current break point	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	138	Bypass selection at a fault	0, 1	0
46	Second torque boost	0 to 30\%, 9999	9999	86		$0 \text { to } 300 \% \text {, }$	9999		Automatic switchover		
47	Second V/F (base frequency)	$\begin{aligned} & \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \end{aligned}$	9999	86	speed scaling factor Speed control gain	9999	9999	139	frequency from inverter to bypass operation	9999	9999
48	Second stall prevention operation level	0 to 400\%	110\%	89	(Advanced magnetic flux vector)	$\begin{aligned} & 0 \text { to } 200 \%, \\ & 9999 \end{aligned}$	9999	140	Backlash acceleration stopping frequency	0 to 590 Hz	1Hz
49	Second stall prevention operation frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	OHz	90	Motor constant (R1)	(0 to $50 \Omega, 9999$ *2	9999	141	Backlash acceleration stopping time	0 to 360s	0.5s
50	Second output frequency detection	0 to 590 Hz	30 Hz			9999*3		142	Backlash deceleration stopping frequency	0 to 590 Hz	1Hz
								143	Backlash deceleration stopping time	0 to 360s	0.5s

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
458	Second motor constant (R1)	$\begin{array}{\|l\|} \hline 0 \text { to } 50 \Omega, 9999 * 2 \\ \hline 0 \text { to } 400 \mathrm{~m} \Omega, \\ \hline \end{array}$	9999	573 574	4 mA input check selection Second motor online auto tuning	$\begin{aligned} & 1 \text { to } 4,11 \text { to } 14, \\ & 21 \text { to } 24,9999 \end{aligned}$	9999
		9999*3				0, 1	0
459	Second motor constant (R2)	$\begin{array}{\|l\|} \hline 0 \text { to } 50 \Omega, 9999 * 2 \\ \hline 0 \text { to } 400 \mathrm{~m} \Omega, \\ 9999 * 3 \end{array}$	9999	575	Output interruption detection time	$\begin{aligned} & \hline \begin{array}{l} 0 \text { to } 3600 \mathrm{~s}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	1s
460	Second motor constant (L1) / d-axis inductance (Ld)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 * 2 \end{aligned}$	9999	576	Output interruption detection level	0 to 590 Hz	OHz
		$\begin{aligned} & 0 \text { to } \begin{array}{l} 400 \mathrm{mH}, \\ 9999 * 3 \end{array} \end{aligned}$		577	Output interruption cancel level	900 to 1100\%	1000\%
461	Second motor constant (L2) / q-axis inductance (Lq)	$\begin{aligned} & 0 \text { to } 6000 \mathrm{mH}, \\ & 9999 * 2 \end{aligned}$	9999	578	Auxiliary motor operation selection	0 to 3	0
		$\begin{aligned} & 0 \text { to } 400 \mathrm{mH}, \\ & 9999 * 3 \end{aligned}$		579	Motor connection function selection	0 to 3	0
462	Second motor constant (X)	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999	580	MC switching interlock time (multi-pump)	0 to 100s	1 s
463	Second motor auto tuning setting/status	0, 1, 11, 101	0	581	Start waiting time (multipump)	0 to 100s	1s
495	Remote output selection	0, 1, 10, 11	0	582	Auxiliary motor connection-time deceleration time	$\begin{aligned} & 0 \text { to 3600s, } \\ & 9999 \end{aligned}$	1s
496	Remote output data 1	0 to 4095	0				
497	Remote output data 2	0 to 4095	0	583	Auxiliary motor disconnection-time acceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	1s
498	PLC function flash memory clear	$\begin{array}{\|l\|} \hline 0,9696 \\ \text { (0 to 9999) } \\ \hline \end{array}$	0				
502	Stop mode selection at communication error	0 to 4	0	584	Auxiliary motor 1 starting frequency	0 to 590 Hz	60 Hz
503	Maintenance timer 1	0(1 to 9998)	0	585	Auxiliary motor 2 starting frequency	0 to 590 Hz	60 Hz
504	Maintenance timer 1 warning output set time	$\begin{aligned} & 0 \text { to } 9998 \text {, } \\ & 9999 \end{aligned}$	9999	586	Auxiliary motor 3 starting frequency	0 to 590 Hz	60 Hz
505	Speed setting reference	1 to 590 Hz	60 Hz	587	Auxiliary motor 1 stopping frequency	0 to 590 Hz	OHz
506	Display estimated main circuit capacitor residual life	(0 to 100\%)	100\%				
				588	Auxiliary motor 2 stopping frequency	0 to 590 Hz	OHz
507	$\begin{array}{\|l} \hline \text { Display/reset ABC1 } \\ \text { relay contact life } \\ \hline \end{array}$	(0 to 100\%)	100\%	589	Auxiliary motor 3 stopping frequency	0 to 590 Hz	OHz
508	Display/reset ABC2 relay contact life	(0 to 100\%)	100\%	590	Auxiliary motor start detection time	0 to 3600s	5s
514	Emergency drive dedicated retry waiting time	$0.1 \text { to 600s, }$ 9999	9999	591	Auxiliary motor stop detection time	0 to 3600s	5 s
515	Emergency drive dedicated retry count	1 to 200, 9999	1	592	Traverse function selection	0 to 2	0
522	Output stop frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	593	Maximum amplitude amount	0 to 25\%	10\%
523	Emergency drive mode selection	$100,111,112$,$121,122,123$,$124,200,211$,$212,221,222$,$223,224,300$$311,312,321$,$322,323,324$,$400,411,42$,$421,422,423$,424,9999	9999	594	Amplitude compensation amount during deceleration	0 to 50\%	10\%
				595	Amplitude compensation amount during acceleration	0 to 50\%	10\%
				596	Amplitude acceleration time	0.1 to 3600s	5s
				597	Amplitude deceleration time	0.1 to 3600s	5 s
524	Emergency drive running speed	$\begin{aligned} & 0 \text { to } 590 \mathrm{Hzl} \\ & 0 \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	9999	599	time X10 terminal input selection	0,1	0
541	Frequency command sign selection	0, 1	0	600	First free thermal reduction frequency 1	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
544	CC-Link extended setting	$\begin{aligned} & 0,1,12,14,18, \\ & 24,28,100,112, \\ & 114,118,128 \end{aligned}$	0	601	First free thermal reduction ratio 1	$\begin{array}{\|l\|} \hline 1 \text { to } 100 \% \\ \hline 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array}$	100\%
547	USB communication station number	0 to 31	0	602	First free thermal reduction frequency 2		9999
548	USB communication check time interval	O to 999.8s,	9999	603	First free thermal reduction ratio 2	1 to 100\%	100\%
550	NET mode operation command source selection	0, 1, 5, 9999	9999	604	First free thermal reduction frequency 3	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
				606	Power failure stop external signal input selection	0, 1	1
551	PU mode operation command source selection	1 to 3, 5, 9999	9999	607	Motor permissible load level	110 to 250\%	150\%
552	Frequency jump range	0 to 30Hz, 9999	9999	608	Second motorpermissible load level	$\begin{aligned} & 110 \text { to } 250 \%, \\ & 9999 \end{aligned}$	9999
553	PID deviation limit	0 to 100\%, 9999	9999				
554	PID signal operation selection	0 to 7, 10 to 17	0	609	PID set point/deviation input selection	1 to 5	2
555	Current average time	0.1 to 1.0 s	1s	610	PID measured value	1 to 5, 101 to 105	3
556	Data output mask time	0 to 20s	0s		input selection	101 to 105	
557	Current average value monitor signal output reference current	0 to 500A*2	Inverter rated current	611	Acceleration time at a restart	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
		0 to 3600A*3		617	Reverse rotation excitation current lowspeed scaling factor	$\begin{aligned} & 0 \text { to } 300 \%, \\ & 9999 \end{aligned}$	9999
560	Second frequency search gain	$\begin{aligned} & 0 \text { to } 32767, \\ & 9999 \end{aligned}$	9999				
561	PTC thermistor protection level	$\begin{aligned} & 0.5 \text { to } 30 \mathrm{k} \Omega \text {, } \\ & 9999 \end{aligned}$	9999	653	Speed smoothing control	0 to 200\%	0
563	Energization time carrying-over times	(0 to 65535)	0	654	Speed smoothing cutoff frequency	0 to 120 Hz	20 Hz
564	Operating time carrying-over times	(0 to 65535)	0	655	Analog remote output selection	0, 1, 10, 11	0
565	Second motor excitation current break point	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999	$\begin{array}{\|l\|} \hline 656 \\ \hline 657 \\ \hline \end{array}$	Analog remote output 1 Analog remote output 2	300 to 1200\%	1000\%
	Second motor			$\begin{array}{\|l\|} \hline 657 \\ \hline 658 \\ \hline \end{array}$	Analog remote output 3		1000\%
566	excitation current lowspeed scaling factor	9999	9999	659	Analog remote output 4		1000\%
569	Second motor speed control gain	$\begin{aligned} & \text { 0 to 200\%, } \\ & 9999 \end{aligned}$	9999	660	Increased magnetic excitation deceleration operation selection	0, 1	0
570	Multiple rating setting	0,1	0				
571	Holding time at a start	0 to 10s, 9999	9999	661	increase rate	0 to 40\%, 9999	9999

Pr.	Name	Setting range	Initial value
662	Increased magnetic excitation current level	0 to 300\%	100\%
663	Control circuit temperature signal output level	0 to $100^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$
665	Regeneration avoidance frequency gain	0 to 200\%	100\%
668	Power failure stop frequency gain	0 to 200\%	100\%
675	User parameter auto storage function selection	1,9999	9999
684	Tuning data unit switchover	0, 1	0
686	Maintenance timer 2	0 (1 to 9998)	0
687	Maintenance timer 2 warning output set time	$\begin{aligned} & 0 \text { to } 9998, \\ & 9999 \end{aligned}$	9999
688	Maintenance timer 3	0 (1 to 9998)	0
689	Maintenance timer 3 warning output set time	$\begin{aligned} & 0 \text { to } 9998, \\ & 9999 \end{aligned}$	9999
692	Second free thermal reduction frequency 1	$\begin{aligned} & \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \end{aligned}$	9999
693	Second free thermal reduction ratio 1	1 to 100\%	100\%
694	Second free thermal reduction frequency 2	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
695	Second free thermal reduction ratio 2	1 to 100\%	100\%
696	Second free thermal reduction frequency 3	$\begin{aligned} & \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999
699	Input terminal filter	$\begin{aligned} & 5 \text { to } 50 \mathrm{~ms}, \\ & 9999 \end{aligned}$	9999
702	Maximum motor frequency	0 to 400Hz, 9999	9999
706	Induced voltage constant (phi f)	$\begin{array}{\|l} \hline 0 \text { to } 5000 \mathrm{mV} / \\ (\mathrm{rad} / \mathrm{s}), 9999 \\ \hline \end{array}$	9999
707	Motor inertia (integer)	10 to 999, 9999	9999
711	Motor Ld decay ratio	0 to $100 \%, 9999$	9999
712	Motor Lq decay ratio	0 to 100\%, 9999	9999
717	Starting resistance tuning compensation	$\begin{aligned} & \begin{array}{l} 0 \text { to } 200 \%, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999
721	Starting magnetic pole position detection pulse width	0 to $6000 \mu \mathrm{~s}$, 10000 to $16000 \mu \mathrm{~s}, 9999$	9999
724	Motor inertia (exponent)	0 to 7, 9999	9999
725	Motor protection current level	$\begin{aligned} & 100 \text { to } 500 \%, \\ & 9999 \end{aligned}$	9999
726	Auto Baudrate/Max Master	0 to 255	255
727	Max Info Frames	1 to 255	1
728	Device instance number (Upper 3 digits)	0 to 419	0
729	$\begin{array}{\|l\|} \hline \text { Device instance } \\ \text { number (Lower } 4 \text { digits) } \\ \hline \end{array}$	0 to 9999	0
738	Second motor induced voltage constant (phif)	$\begin{array}{\|l} \hline 0 \text { to } 5000 \mathrm{mV} / \\ (\mathrm{rad} / \mathrm{s}), 9999 \end{array}$	9999
739	Second motor Ld decay ratio	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999
740	Second motor Lq decay ratio	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999
741	Second starting resistance tuning compensation	$\left\lvert\, \begin{aligned} & 0 \text { to } 200 \%, \\ & 9999 \end{aligned}\right.$	9999
742	Second motor magnetic pole detection pulse width	0 to $6000 \mu \mathrm{~s}$, 10000 to $16000 \mu \mathrm{~s}, 9999$	9999
743	Second motor maximum frequency	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
744	Second motor inertia (integer)	$\begin{aligned} & 10 \text { to } 999, \\ & 9999 \end{aligned}$	9999
745	Second motor inertia (exponent)	0 to 7, 9999	9999
746	Second motor protection current level	$\begin{aligned} & 100 \text { to } 500 \%, \\ & 9999 \end{aligned}$	9999
753	Second PID action selection	$0,10,11,20$, $21,50,51,60$, $61,70,71,80$, $81,90,91$, 100,101, 1000,1001, 1010,1011, 2000,2001, 2010,2011,	0
754	Second PID control automatic switchover frequency	$\begin{aligned} & 0 \text { to } 590 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
755	Second PID action set point	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999
756	Second PID proportional band	$\begin{aligned} & 0.1 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	100\%
757	Second PID integral time	$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1s
758	Second PID differential time	$\begin{aligned} & 0.01 \text { to } 10.00 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
759	PID unit selection	0 to 43, 9999	9999
760	Pre-charge fault selection	0,1	0
761	Pre-charge ending level	$\begin{aligned} & 0 \text { to } 100 \%, \\ & 9999 \end{aligned}$	9999
762	Pre-charge ending time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999

Pr.	Name	Setting range	Initial value
1125	Number of inverters in inverter-to-inverter link system	2 to 6	2
1132	Pre-charge change increment amount	$\begin{aligned} & 0 \text { to } 100 \%, \\ & 9999 \end{aligned}$	9999
1133	Second pre-charge change increment amount	$\begin{aligned} & 0 \text { to } 100 \%, \\ & 9999 \end{aligned}$	9999
1136*8	Second PID display bias coefficient	0 to 500, 9999	9999
1137*8	Second PID display bias analog value	0 to 300\%	20\%
1138*8	Second PID display gain coefficient	0 to 500, 9999	9999
1139*8	Second PID display gain analog value	0 to 300\%	100\%
1140	Second PID set point/ deviation input selection	1 to 5	2
1141	Second PID measured value input selection	$\begin{aligned} & \hline 1 \text { to } 5, \\ & 101 \text { to } 105 \\ & \hline \end{aligned}$	3
1142	Second PID unit selection	0 to 43, 9999	9999
1143	Second PID upper limit	0 to 100\%, 9999	9999
1144	Second PID lower limit	0 to 100\%, 9999	9999
1145	Second PID deviation limit	$\begin{aligned} & 0.0 \text { to } 100.0 \%, \\ & 9999 \end{aligned}$	9999
1146	Second PID signal operation selection	0 to 7, 10 to 17	0
1147	Second output interruption detection time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1s
1148	Second output interruption detection level	0 to 590 Hz	OHz
1149	Second output interruption cancel level	900 to 1100%	1000\%
$\begin{aligned} & \hline 1150 \\ & \text { to } \\ & 1199 \end{aligned}$	User parameters 1 to 50	0 to 65535	0
1211	PID gain tuning timeout time	1 to 9999s	100s
1212	Step manipulated amount	900 to 1100\%	1000\%
1213	Step response sampling cycle	0.01 to 600s	1s
1214	Timeout time after the maximum slope	1 to 9999s	10s
1215	Limit cycle output upper limit	900 to 1100\%	1100\%
1216	Limit cycle output lower limit	900 to 1100%	1000\%
1217	Limit cycle hysteresis	0.1 to 10\%	1\%
1218	PID gain tuning setting	0,100 to 102, $111,112,121$, 122,200 to $202,211,212$, 221,222	0
1219	PID gain tuning start/ status	$\begin{aligned} & \begin{array}{l} (0), 1,8,(9, \\ 90 \text { to } 96) \end{array} \\ & \hline \end{aligned}$	0
$\begin{aligned} & \hline 1300 \\ & \text { to } \\ & 1343 \end{aligned}$	Communication option parameters		
1346	PID lower limit operation detection time	$\begin{aligned} & 0 \text { to } 900 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
$\begin{aligned} & 1350 \\ & \text { to } \\ & 1359 \end{aligned}$	Communication option parameters		
1361	Detection time for PID output hold	0 to 900s	5 s
1362	PID output hold range	0 to 50%, 9999	9999
1363	PID priming time	0 to 360s, 9999	9999
1364	Stirring time during sleep	0 to 3600s	15s
1365	Stirring interval time	0 to 1000h	0h
1366	Sleep boost level	0 to 100\%, 9999	9999
1367	Sleep boost waiting time	0 to 360s	0s
1368	Output interruption cancel time	0 to 360s	0s
1369	Check valve closing completion frequency	$\begin{aligned} & 0 \text { to } 120 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
1370	Detection time for PID limiting operation	0 to 900s	Os
1371	PID upper/lower limit pre-warning level range	0 to 50\%, 9999	9999
1372	PID measured value control set point change amount	0 to 50\%	5\%
1373	PID measured value control set point change rate	0 to 100\%	0\%
1374	Auxiliary pressure pump operation starting level	900 to 1100%	1000\%

Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value
1375	Auxiliary pressure pump operation stopping level	900 to 1100\%	1000\%	1460	$\underset{1}{\text { PID multistage set point }}$	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999
1376	Auxiliary motor stopping level	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999	1461	$\begin{aligned} & \text { PID multistage set point } \\ & 2 \end{aligned}$		9999
1377	PID input pressure selection	1 to 3,9999	9999	1462	$\begin{array}{\|l\|} \hline \text { PID multistage set point } \\ 3 \\ \hline \end{array}$		9999
1378	PID input pressure warning level	0 to 100\%	20\%	1463	PID multistage set point 4		9999
1379	PID input pressure fault level	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999	1464	PID multistage set point 5		9999
1380	PID input pressure warning set point change amount	0 to 100\%	5\%	1465	$\begin{aligned} & \text { PID multistage set point } \\ & 6 \end{aligned}$		9999
				1466	PID multistage set point 7		9999
1381	PID input pressure fault operation selection	0, 1	0	1469	Number of cleaning times monitor	0 to 255	0
1410	Starting times lower 4 digits	0 to 9999	0	1470	Number of cleaning times setting	0 to 255	0
1411	Starting times upper 4 digits	0 to 9999	0	1471	$\begin{aligned} & \text { Cleaning trigger } \\ & \text { selection } \\ & \hline \end{aligned}$	0 to 15	0
1412	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	9999	1472	Cleaning reverse rotation frequency	0 to 590 Hz	30 Hz
				1473	Cleaning reverse rotation operation time	0 to 3600s	5s
1413	Second motor induced voltage constant (phi f) exponent	0 to 2, 9999	9999	1474	Cleaning forward rotation frequency	$\begin{aligned} & \hline \begin{array}{l} 0 \text { to } 590 \mathrm{~Hz}, \\ 9999 \end{array} \\ & \hline \end{aligned}$	9999
1424	Ethernet communication station number	1 to 239	1	1475	Cleaning forward rotation operation time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
				1476	Cleaning stop time	0 to 3600s	5s
1425	Ethernet communication network number	1 to 120	1	1477	Cleaning acceleration time	$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{~s}, \\ 9999 \end{array}$	9999
1426	Link speed and duplex mode selection	0 to 4	0	1478	Cleaning deceleration time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
1427	Ethernet function selection 1	502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 47808, 61450	5001	1479	Cleaning time trigger	0 to 6000hr	0
1428	Ethernet function selection 2		45237	1480	Load characteristics measurement mode	$\begin{aligned} & 0,1,(2,3,4,5, \\ & 81,82,83,84, \\ & 85) \end{aligned}$	0
1429	Ethernet function selection 3		9999	1481	Load characteristics load reference 1	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 8888,9999 \end{aligned}$	9999
1431	Ethernet signal loss detection function selection	0 to 3	0	1482	Load characteristics load reference 2	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 8888,9999 \end{aligned}$	9999
1432	Ethernet communication check time interval	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999	1483	Load characteristics load reference 3	$\begin{array}{r} 0 \text { to } 400 \%, \\ 8888,9999 \\ \hline \end{array}$	9999
				1484	Load characteristics load reference 4	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 8888,9999 \end{aligned}$	9999
1434	IP address 1 (Ethernet)	0 to 255	192			$\begin{aligned} & 0 \text { to } 400 \%, \\ & 8888,9999 \end{aligned}$	
1435	IP address 2 (Ethernet)	0 to 255	168	1485	Load characteristics load reference 5		9999
1436	IP address 3 (Ethernet)	0 to 255	50	1486	Load characteristics maximum frequency	0 to 590 Hz	60 Hz
1437	IP address 4 (Ethernet)	0 to 255	1	1487	Load characteristics minimum frequency	0 to 590 Hz	6Hz
1438	Subnet mask 1	0 to 255	255	1488	Upper limit warning detection width	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 9999 \end{aligned}$	20\%
1439	Subnet mask 2	0 to 255	255	1489	Lower limit warning detection width	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 9999 \\ & \hline \end{aligned}$	20\%
1440	Subnet mask 3	0 to 255	255	1490	Upper limit fault detection width	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 9999 \end{aligned}$	9999
1441	Subnet mask 4	0 to 255	0	1491	Lower limit fault detection width	$\begin{aligned} & 0 \text { to } 400 \%, \\ & 9999 \end{aligned}$	9999
1442	$\begin{aligned} & \text { IP filter address } 1 \\ & \text { (Ethernet) } \end{aligned}$	0 to 255	0				
1443	IP filter address 2 (Ethernet)	0 to 255	0	1492	Load status detection signal delay time / load reference measurement waiting time	0 to 60s	1s
1444	$\begin{aligned} & \text { IP filter address } 3 \\ & \text { (Ethernet) } \\ & \hline \end{aligned}$	0 to 255	0	1499		Parameter for manufacturer setting. Do not set.	
1445	IP filter address 4 (Ethernet)	0 to 255	0		Differs according to capacities. - 3\%: FR-F860-00027		
1446	IP filter address 2 range specification (Ethernet)	0 to 255, 9999	9999		1\%: FR-F860-00170 or higher For FR-F860-00680 or lower		
1447	IP filter address 3 range specification (Ethernet)	0 to 255, 9999	9999	$\begin{aligned} & * 3 \\ & * 4 \end{aligned}$	For FR-F860-01080 or higher For FR-F860-00090 or lower		
1448	IP filter address 4 range specification (Ethernet)	0 to 255, 9999	9999		For FR-F860-00090 or lower For FR-F860-00170 or higher		
1449	Ethernet command source selection IP address 1	0 to 255	0		The setting values "92, 93, 192, 193" are only available for Pr. 190 to Pr. 194. These are the simple mode parameters when the FR-		
1450	Ethernet command source selection IP address 2	0 to 255	0	*9	These are the simple mode parameters when the FRLU08 is installed. (Initially set to the extended mode.) The setting is available when the PLC function is enabled.		

6 TROUBLESHOOTING

When a fault occurs in the inverter, the protective function is activated, and the operation panel display automatically changes to one of the fault or alarm indications on page 23.
If the fault does not correspond to any of the following faults or if you have any other problem, please contact your sales representative.

- Retention of the fault output signal

Opening the magnetic contactor (MC) provided on the input side of the inverter at a fault occurrence shuts off the control power to the inverter, therefore, the fault output will not be retained.

- Fault or alarm indication

When a fault or alarm occurs, the operation panel display automatically switches to a fault or alarm indication.

- Resetting method

When a fault occurs, the inverter output is kept stopped. Unless reset, the inverter cannot restart. (Refer to page 22.)

- When any fault occurs, take an appropriate corrective action, then reset the inverter, and resume the operation. Not doing so may lead to an inverter fault and damage.

Inverter fault or alarm indications are roughly categorized as below.

- Error message

A message regarding operational fault and setting fault by the operation panel is displayed. The inverter output is not shut off.

- Warning

The inverter output is not shut off even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.

- Alarm

The inverter output is not shut off. An alarm can also be output with a parameter setting.

- Fault

When a protective function is activated, the inverter output is shut off and a fault signal is output.

O-NOTE:

- For the details of fault displays and other troubles, also refer to the FR-F860 Instruction Manual (Detailed).
- The past eight faults can be displayed using the operation panel. (Refer to the FR-LU08 Instruction Manual.)

6.1 Reset method for the protective functions

Reset the inverter by performing any of the following operations. Note that the accumulated heat value of the electronic thermal relay function and the number of retries are cleared (erased) by resetting the inverter. The inverter recovers about 1 second after the reset is released.

- On the operation panel, press the STOP/RESET key to reset the inverter.
(This may only be performed when a fault occurs.)
- Switch power OFF once, then switch it ON again.
- Turn ON the Reset (RES) signal for 0.1 seconds or more. (If the RES signal is kept ON, "Err" appears (blinks) to indicate that the inverter is in a reset status.)

NÖTE:

- OFF status of the start signal must be confirmed before resetting an inverter fault. Resetting an inverter fault with the start signal ON restarts the motor suddenly.

6.2 List of fault displays

	Abbreviation	Name
	E.OS	Overspeed occurrence
	E.USB	USB communication fault
	E. 13 E.PBT E.BE	Internal circuit fault
$\stackrel{\square}{\square}$	E.SAF	Safety circuit fault
-	E.LCI	4 mA input fault
	E.PCH	Pre-charge fault
	E.PID	PID signal fault
	E.EHR	Ethernet communication fault
	E. 16 to E. 20	User definition error by the PLC function
$\left\lvert\, \begin{aligned} & \frac{\varrho}{0} \\ & \stackrel{0}{5} \\ & \hline \end{aligned}\right.$	E. 0	No fault history
	RD	Backup in progress
	WR	Restoration in progress

If faults other than the above appear, contact your sales representative.

7 SPECIFICATIONS

7.1 Rating

FR-F860-00450 or lower

Model FR-F860-[]-N6				00027	00061	00090	00170	00320	00450
Inverter capacity (kW)				1.5	3.7	5.5	11.0	18.5	30.0
Applicable motor capacity (kW) *1		SLD		1.5	3.7	5.5	11.0	22.0	30.0
		LD		1.12	2.2	3.7	7.5	18.5	30.0
Rated capacity (kVA) *2		SLD		2.7	6.1	9.0	17.0	32.0	45.0
		LD		2.5	5.6	8.2	16.0	27.0	41.0
$\begin{aligned} & \stackrel{\rightharpoonup}{\partial} \\ & \text { a } \\ & \text { O } \end{aligned}$	Rated current (A) *3	SLD		2.7 (2.3)	6.1 (5.2)	9.0 (7.65)	17.0 (14.4)	32.0 (27.2)	45.0 (38.2)
		LD		2.5 (2.1)	5.6 (4.8)	8.2 (7.0)	16.0 (13.6)	27.0 (22.9)	41.0 (34.8)
	Overload current rating *4	SLD		$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$ (inverse-time characteristics) at ambient temperature of $30^{\circ} \mathrm{C}$			$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$ (inverse-time characteristics) at ambient temperature of $40^{\circ} \mathrm{C}$		
		LD		$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at ambient temperature of $40^{\circ} \mathrm{C}$					
	Rated voltage *5			Three-phase 525 to 600 V					
	Rated input AC voltage/frequency			Three-phase 525 to 600 V 60 Hz					
	Permissible AC voltage fluctuation			472 to 660 V 60 Hz					
	Permissible frequency fluctuation			$\pm 5 \%$					
	Rated input current (A) *6	Without DC reactor	SLD	4.7	11.0	15.0	27.0	43.0	61.0
			LD	4.4	9.8	14.0	25.0	36.0	55.0
		With DC reactor *3	SLD	2.7 (2.3)	6.1 (5.2)	9.0 (7.65)	17.0 (14.4)	32.0 (27.2)	45.0 (38.2)
			LD	2.5 (2.1)	5.6 (4.8)	8.2 (7.0)	16.0 (13.6)	27.0 (22.9)	41.0 (34.8)
	Power supply capacity (kVA) *7	Without DC reactor	SLD	4.7	10.6	15.0	26.7	42.4	60.6
			LD	4.4	9.8	13.8	25.2	35.8	54.4
		With DC reactor	SLD	2.7	6.1	9.0	17.0	32.0	45.0
			LD	2.5	5.6	8.2	16.0	27.0	41.0
Protective structure (IEC 60529)				Enclosed type (UL type 1 plenum rated) *8					
Cooling system				Self-cooling	Forced air				
Approx. mass (kg)				3.5	4.0	4.0	7.0	9.0	17.0

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the 4-pole standard motor.
*2 The rated output capacity indicated assumes that the output voltage is 575 V .
*3 When an operation is performed with the carrier frequency set to 3 kHz or more, and the inverter output current reaches the value indicated in the parenthesis, the carries frequency is automatically lowered. The motor noise becomes louder accordingly.
*4 The \% value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load.
*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.
*6 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.
*7 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).
*8 UL Type 1 Enclosure - Suitable for Installation in a Compartment Handling Conditioned Air (Plenum)

- FR-F860-00680 or higher

Model FR-F860-[]				00680	01080	01440	01670	02430	02890	03360	04420
Inverter capacity (kW)				45.0	75.0	90.0	110.0	132.0	160.0	220.0	250.0
Applicable motor capacity (kW) *1		SLD		45.0	75.0	110.0	110.0	185.0	220.0	260.0	335.0
		LD		45.0	75.0	90.0	110.0	150.0	185.0	220.0	300.0
Rated capacity$(\mathrm{kVA}) * 2$		SLD		68.0	108.0	144.0	167.0	242.0	288.0	335.0	441.0
		LD		62.0	99.0	131.0	152.0	221.0	254.0	303.0	401.0
$\begin{aligned} & \overrightarrow{3} \\ & \frac{2}{3} \\ & 0 \end{aligned}$	Rated current (A) *3	SLD		68.0 (57.8)	108.0 (91.8)	144.0 (122.0)	167.0 (141.0)	243.0 (206.0)	289.0 (245.0)	336.0 (285.0)	442.0 (375.0)
		LD		62.0 (52.7)	99.0 (84.1)	131.0 (122.0)	152.0 (129.0)	221.0 (187.0)	255.0 (216.0)	304.0 (258.0)	402.0 (341.0)
	Overload current rating *4	SLD		$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $40^{\circ} \mathrm{C}$							
		LD		120\% 60 s, 150\% 3 s (inverse-time characteristics) at surrounding air temperature of $40^{\circ} \mathrm{C}$		$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$ (inverse-time characteristics) at surrounding air temperature of $50^{\circ} \mathrm{C}$					
	Rated voltage *5			Three-phase 525 to 600 V							
	Rated input AC voltage/frequency			Three-phase 525 to 600 V 60 Hz							
	Permissible AC voltage fluctuation			472 to 660 V 60 Hz							
	Permissible frequency fluctuation			$\pm 5 \%$							
	Rated input current (A) *6	Without DC reactor	SLD	87.0	-	-	-	-	-	-	-
			LD	79.0	-	-	-	-	-	-	-
		With DC reactor *3	SLD	68.0 (57.8)	108.0 (91.8)	144.0 (122.0)	167.0 (141.0)	243.0 (206.0)	289.0 (245.0)	336.0 (285.0)	442.0 (375.0)
			LD	62.0 (52.7)	99.0 (84.1)	131.0 (122.0)	152.0 (129.0)	221.0 (187.0)	255.0 (216.0)	304.0 (258.0)	402.0 (341.0)
	Power supply capacity (kVA) *7	Without DC reactor	SLD	86.8	-	-	-	-	-	-	-
			LD	79.1	-	-	-	-	-	-	-
		With DC reactor	SLD	68.0	108.0	144.0	167.0	242.0	288.0	335.0	441.0
			LD	62.0	99.0	131.0	152.0	221.0	254.0	303.0	401.0
Protective structure (IEC 60529)				Open type (IP00)							
Cooling system				Forced air							
Approx. mass (kg)				36.0	41.0	52.0	52.0	55.0	112.0	115.0	153.0

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the 4-pole standard motor.
*2 The rated output capacity indicated assumes that the output voltage is 575 V .
*3 When an operation is performed with the carrier frequency set to 3 kHz or more, and the inverter output current reaches the value indicated in the parenthesis, the carries frequency is automatically lowered. The motor noise becomes louder accordingly.
*4 The \% value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100\% load.
*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.
*6 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.
*7 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).

7.2 Outline dimensions

Inverter model	W	W1	H	H1	D	C
FR-F860-00027	150	125	318	245	140	6
FR-F860-00061						
FR-F860-00090						
FR-F860-00170	220	195	324		170	
FR-F860-00320			363	285	190	
FR-F860-00450	250	230	517.3	380		10
FR-F860-00680	435	380	550	525	250	12
FR-F860-01080	435	380	55	525	250	
FR-F860-01440	465	400	620	595	300	
FR-F860-01670						
FR-F860-02430						
FR-F860-02890	498	200		985		
FR-F860-03360	808	200	1010	985	380	
FR-F860-04420	680	300		984		

Appendix

Appendix 1 Instructions for UL and cUL

(Standard to comply with: UL 508C, CSA C22.2 No.274-13)

- General precaution

CAUTION - Risk of Electric Shock -
The bus capacitor discharge time is 10 minutes. Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check for residual voltage between terminal $\mathrm{P} /+$ and $\mathrm{N} /-$ with a meter etc., to avoid a hazard of electrical shock. ATTENTION - Risque de choc électrique -
La durée de décharge du condensateur de bus est de 10 minutes. Avant de commencer le câblage ou l'inspection, mettez l'appareil hors tension et attendez plus de 10 minutes.

- Installation

- The FR-F860-00450 and lower inverters have been approved as products for a UL type1 enclosure that is suitable for Installation in a Compartment Handling Conditioned Air (Plenum).
Install the inverter so that the ambient temperature, humidity and ambience of the inverter will satisfy the specifications. (Refer to page 5 .)
- The FR-F860-00680 and higher inverters have been approved as products for use in enclosure and approval tests were conducted under the following conditions.
Design the enclosure so that the surrounding air temperature, humidity and ambience of the inverter will satisfy the specifications. (Refer to page 5.)

- Branch circuit protection

For installation in the United States, Class T, Class J, Class CC, or Class L fuse must be provided, in accordance with the National Electrical Code and any applicable local codes.
For installation in Canada, Class T, Class J, Class CC, or Class L fuse must be provided, in accordance with the Canadian Electrical Code and any applicable local codes.

FR-F860-[]		00027	00061	00090	00170	00320	00450	00680	01080	01440	01670	02430	02890	03360	04420
Rated fuse voltage(V)		600 V or more													
Fuse allowable rating (A)	Without power factor improving reactor	10	20	30	40	80	125	125	175	-	-	-	-	-	-
	With power factor improving reactor	6	10	15	25	40	60	100	150	200	250	300	400	450	600

- Wiring to the power supply and the motor

Refer to the National Electrical Code (Article 310) regarding the allowable current of the cable. Select the cable size for 125% of the rated current according to the National Electrical Code (Article 430).
For wiring the input ($\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3$) and output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) terminals of the inverter, use the UL listed copper, stranded wires (rated at $75^{\circ} \mathrm{C}$) and round crimp terminals. Crimp the terminals with the crimping tool recommended by the terminal manufacturer.

- Short circuit ratings

Suitable for use in a circuit capable of delivering not more than 100 kA rms symmetrical amperes, 600 V maximum.

- Motor overload protection

When using the electronic thermal relay function as motor overload protection, set the rated motor current in Pr. 9 Electronic thermal O/L relay.

Operation characteristics of electronic thermal relay function

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output. (The operation characteristic is shown on the left.)
*1 When a value 50\% of the inverter rated output current (current value) is set in Pr. 9
*2 The \% value denotes the percentage to the inverter rated current. It is not the percentage to the rated motor current.
*3 Transistor protection is activated depending on the temperature of the heat sink. The protection may be activated even with less than 150% depending on the operating conditions.

OMOTE:

- The internal accumulated heat value of the electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and powerOFF.
- When multiple motors are driven with a single inverter or when a multi-pole motor or a special motor is driven, install an external thermal relay (OCR) between the inverter and motors. Note that the current indicated on the motor rating plate is affected by the line-to-line leakage current (details in the FR-F860 Instruction Manual (Detailed)) when selecting the setting for an external thermal relay.
- The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use an external thermal relay.
- Motor over temperature sensing is not provided by the drive.

Appendix 2 Restricted Use of Hazardous Substances in Electronic and Electrical Products

The mark of restricted use of hazardous substances in electronic and electrical products is applied to the product as follows based on the＂Management Methods for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products＂of the People＇s Republic of China．

电器电子产品有害物质限制使用标识要求
环境保护使用期

限标识
15

本产品中所含有的有害物质的名称，含量，含有部件如下表所示。
－产品中所含有害物质的名称及含量

部件名称＊2	有害物质＊1					
	$\begin{gathered} \begin{array}{c} \text { 铅 } \\ (\mathrm{Pb}) \end{array} \end{gathered}$	$\begin{gathered} \text { 汞 } \\ (\mathrm{Hg}) \end{gathered}$	$\begin{aligned} & \frac{\text { 镉 }}{(\mathrm{Cd})} \end{aligned}$	六价铬 （Cr（VI））	多溴联苯 （PBB）	多溴二苯醚 （PBDE）
电路板组件（包括印刷电路板及其构成的零部件， 如电阻，电容，集成电路，连接器 等），电子部件	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
金属壳体，金属部件	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
树脂壳体，树脂部件	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
螺丝，电线	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

上表依据 SJ／T11364的规定编制。
O：表示该有害物质在该部件所有均质材料中的含量均在 $\mathrm{GB} / \mathrm{T} 26572$ 规定的限量要求以下。
\times ：表示该有害物质在该部件的至少一种均质材料中的含量超出 GB／T26572 规定的限量要求
＊1 即使表中记载为 \times ，根据产品型号，也可能会有有害物质的含量为限制值以下的情况。
＊2 根据产品型号，一部分部件可能不包含在产品中。

WARRANTY

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
However, it will not be charged if we are responsible for the cause of the failure.
(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
(3) Even during the term of warranty, the repair cost will be charged on you in the following cases;

- a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
- a failure caused by any alteration, etc. to the Product made on your side without our approval
- a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
- a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
- any replacement of consumable parts (condenser, cooling fan, etc.)
- a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
- a failure caused by using the emergency drive function
- a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
- any other failures which we are not responsible for or which you acknowledge we are not responsible for

2. Term of warranty after the stop of production

(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi Electric shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi Electric.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi Electric products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi Electric products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Application and use of the Product

(1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
(2) Our product is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used. In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used.
We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

About the enclosed CD-ROM

- The enclosed CD-ROM contains PDF copies of the manuals related to this product.

- Before using the enclosed CD-ROM

- The copyright and other rights of the enclosed CD-ROM all belong to Mitsubishi Electric Corporation
- No part of the enclosed CD-ROM may be copied or reproduced without the permission of Mitsubishi Electric Corporation.
- Specifications of the enclosed CD-ROM are subject to change for modification without notice.
- We are not responsible for any damages and lost earnings, etc. from use of the enclosed CD-ROM.
- Trademarks

Microsoft, Windows, Windows Vista, and Internet Explorer are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Adobe and Adobe Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Intel and Pentium are trademarks of Intel Corporation in the United States and/or other countries.
Other company and product names of companies herein are all trademarks or registered trademarks of those respective companies

- Warranty

We do not provide a warranty against defects in the enclosed CD-ROM and related documents.

This is a personal computer dedicated CD-ROM. Do not attempt to play it on ordinary audio devices. The loud volume may damage hearing and speakers

System requirements for the enclosed CD-ROM

- The following system is required to read instruction manuals contained in the enclosed CD-ROM.

Item	Specifications
OS	Microsoff ${ }^{\circledR}$ Windows ${ }^{\circledR} 10$, Windows ${ }^{\circledR} 8.1$, Windows ${ }^{\circledR} 8$, Windows ${ }^{\circledR} 7$, Windows Vista ${ }^{\circledR}$
CPU	Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR}$ or better processor
Memory	128 MB of RAM
Hard disk	90 MB of available hard-disk space
CD-ROM drive	Double speed or more (more than quadruple speed is recommended)
Monitor	800×600 dots or more
Application	Adobe ${ }^{\circledR}$ Reader $^{\circledR} 7.0$ or more Internet Explorer ${ }^{\circledR} 6.0$ or more

Operating method of the enclosed CD-ROM

- How to read instruction manuals

Step 1. Start a personal computer and place the enclosed CD-ROM in the CD-ROM drive
Step 2. The main window automatically opens by the web browser.
Step 3. Click a manual you want to read in the "INSTRUCTION MANUAL" list.
Step 4. PDF manual you clicked opens.

- Manual opening of the enclosed CD-ROM

Step 1. Start a personal computer and place the enclosed CD-ROM in the CD-ROM drive
Step 2. Open "index.html" file in the enclosed CD-ROM.
Step 3. The main window opens by the web browser. Follow the instructions from Step 3 of "How to read instruction manuals".

- PDF data of the instruction manual are stored in "MANUAL" folder on the enclosed CD-ROM.

Revision Date	*Manual Number	Revision
Oct. 2016	IB-0600691ENG-A	First edition
Feb. 2019	IB-0600691ENG-B	Added - Application of caution labels - Reset selection/disconnected PU detection/PU stop selection (Pr. 75 = "1000 to 1003, 1014 to 1017, 1100 to 1103, 1114 to 1117") - Automatic restart after instantaneous power failure selection (Pr. 162 = "1000 to 1003, 1010 to 1013") - Communication reset selection (Pr. $349=" 100,101 "$) - PLC function operation selection (Pr. 414 = "11, 12", Pr.675) - Control method selection (Pr. $800=" 109,110 ")$ - Monitor with sign selection (Pr. 1018 = "1") - Ethernet function selection 1 to 3 (Pr. 1427 to Pr. 1429 = "47808")
Mar. 2022	IB-0600691ENG-C	Added - Main circuit capacitor life measurement at power OFF (every time) (Pr. 259 = "11") - Pr. 506 Display estimated main circuit capacitor residual life - Current input check terminal selection (Pr. 573 = "11 to 14, 21 to 24 ") - Low-speed forward rotation command (RLF) signal, Low-speed reverse rotation command (RLR) signal - Cooling fan operation selection during the test operation (Pr. $244=$ " 1000, 1001, 1101 to 1105") - Display/reset ABC relay contact life (Pr.507, Pr.508) - Pr. 890 Internal storage device status indication - Pr. 1346 PID lower limit operation detection time - Internal storage device fault (E.PE6)

Earth (ground) fault detection at start / restricting reset method for an earth (ground) fault

The reset method for the output side earth (ground) fault overcurrent (E.GF) can be restricted.

- Select whether to enable or disable the earth (ground) fault detection at start. When enabled, the earth (ground) fault detection is performed immediately after a start signal input to the inverter.
- Select whether to restrict the reset method for an earth (ground) fault.

Pr.	Name	Initial value	Setting range	Description	
				Earth (ground) fault	Reset method
$\begin{aligned} & 249 \\ & \mathrm{H} 101 \end{aligned}$	Earth (ground) fault detection at start	0	0	Not detected at start	Not restricted
			1	Detected at start	
			2		Restricted

Selecting whether to perform the earth (ground) fault detection at start V/F Magneticflux

- If an earth (ground) fault is detected at start while Pr. 249 = "1 or 2", the output side earth (ground) fault overcurrent (E.GF) is detected and output is shut off.
- Earth (ground) fault detection at start is enabled under V/F control and Advanced magnetic flux vector control.
- When the Pr. 72 PWM frequency selection setting is high, enable the earth (ground) fault detection at start.

NOTE

- Because the detection is performed at start, output is delayed for approx. 20 ms every start.
- Use Pr. 249 to enable/disable the earth (ground) fault detection at start. During operation, earth (ground) faults are detected regardless of the Pr. 249 setting.

Restricting reset method for an earth (ground) fault

- The reset method when the output is shut off due to the output side earth (ground) fault overcurrent (E.GF) can be restricted. When E.GF occurs while Pr. 249 = "2", E.GF can be reset only by turning OFF the control circuit power.
- This restriction prevents the inverter from being damaged due to repeated reset operations by the other methods such as entering the RES signal.
- When E.GF occurs while Pr. 249 = "2", the output short-circuit detection (ALM4) signal can be output.
- For the terminal used to output the ALM4 signal, set "23" (positive logic) or "123" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If Pr. 249 is set to "2" while the retry function is enabled (Pr. 67 is not set to "0"), no retry is performed even when E.GF occurs.
- If Pr. 249 is set to " 2 " while the automatic bypass switching after inverter fault is enabled (Pr. 138 is not set to "1"), the operation is not switched to the commercial power supply operation even when E.GF occurs.

NOTE

- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- E.GF is not cleared by turning ON the Fault clear (X51) signal when Pr. $249=$ " 2 ".
- If E.GF occurs during emergency drive operation when $\operatorname{Pr} .249=" 2 "$, the output is shut off.

Select the reset operation and fault indication for an output short-circuit.

Pr.	Name	Initial value	Setting range	Description	
				Operation after detection	Reset method
521	Output short-circuit	0	0	E.OC1 to E.OC3	Not restricted
H194	detection	0	1	E.SCF	Restricted

- The fault indication for an output short-circuit (E.OC1 to E.OC3, and E.SCF) can be changed by the Pr. 521 setting.
- When an output short-circuit is detected while Pr. 521 = "1", E.SCF is displayed and the inverter output is shut off.
- When E.SCF occurs while Pr. 521 = "1", E.SCF can be reset only by turning OFF the control circuit power. (E.OC1 to E.OC3 can be reset by any reset method.)
- This restriction prevents the inverter from being damaged due to repeated reset operations by the other methods such as entering the RES signal.
- When E.SCF occurs, the output short-circuit detection (ALM4) signal can be output.
- For the terminal used to output the ALM4 signal, set "23" (positive logic) or "123" (negative logic) in any of Pr. 190 to Pr. 196 (Output terminal function selection).
- If the automatic bypass switching after inverter fault is enabled (Pr. 138 is not set to "1"), the operation is not switched to the commercial power supply operation even when E.SCF occurs.

Operation panel indication	E.SCF	FR-LU08 indication	Fault
Name	Output short-circuit fault		
Description	The inverter output is shut off when an output short-circuit is detected while Pr.521 = "1". When Pr.521 $=$ "0" (initial value), E.OC1, E.OC2, or E.OC3 appears when an output short-circuit is detected.		
Check point	Check for output short-circuit.		
Corrective action	Check the wiring to make sure that any output short circuit does not occur, then turn OFF the control circuit power to reset the inverter.		

NOTE

- When short-circuit resistance is large, the current does not reach the short-circuit detection level. In such a case, an output short-circuit cannot be detected.
- Changing the terminal assignment using Pr. 190 to Pr. 196 (Output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
- E.SCF does not activate the retry function.
- E.SCF is not cleared by turning ON the Fault clear (X51) signal.
- If E.SCF occurs during emergency drive operation, the output is shut off.
- The communication data code for E.SCF is 20 (H14).

The setting range of the Pr. 151 Output current detection signal delay time and Pr. 153 Zero current detection time is extended.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{1 5 1}$	Output current detection signal delay time	0 s	0 to 300 s	Set the output current detection time. Enter the time from when the output current reaches the set current or higher to when the Output current detection (Y12) signal is output.
$\mathbf{1 5 3}$	Zero current detection M463	0.5 s	0 to 300 s	Set the time from when the output current drops to the Pr.152 setting or lower to when the Zero current detection (Y13) signal is output.

4

Emergency stop function (Pr.1103)

When a fault occurs in the superordinate controller, the motor can be decelerated by the signal input via an external terminal.

Pr.	Name	Initial value	Setting range	Description
$\mathbf{8 1 5}$ H710	Torque limit level 2	9999	0 to 400%	Set the torque limit level at a deceleration by turning ON the X92 signal.
			The torque limit set to Pr.22 is valid.	
$\mathbf{1 1 0 3}$	Deceleration time at emergency stop	5 s	0 to 3600 s	Set the motor deceleration time at a deceleration by turning ON the X92 signal.

- The motor will decelerate to stop according to the settings of Pr. 1103 Deceleration time at emergency stop and Pr. 815 Torque limit level 2 when the Emergency stop (X92) signal is turned OFF (when the contact is opened).
- To input the X92 signal, set "92" in any of Pr. 178 to Pr. 189 (Input terminal function selection) to assign the function to a terminal.
- The X92 signal is a normally closed input (NC contact input).
- "PS" is displayed on the operation panel during activation of the emergency stop function.

*1 ON/OFF indicates the input status of the physical terminal.

NOTE

- The X92 signals can be assigned to an input terminal by setting Pr. 178 to Pr. 189 (Input terminal function selection). Changing the terminal assignment may affect other functions. Set parameters after confirming the function of each terminal.

Instruction Manual Supplement

1Instructions for UL and cUL
(Standard to comply with: UL 61800-5-1, CSA C22.2 No. 274)

- Applicable models

- FR-F860-00027 to 04420
- The above models are compliant with both UL 508C and UL 61800-5-1, CSA C22.2 No. 274. (The FR-F86000090 or less is not compliant with UL 508C.)
For the instructions for UL 61800-5-1, CSA C22.2 No. 274, refer to this Instruction Manual Supplement. For the instructions for UL 508C, refer to the FR-F860 (600V CLASS SPECIFICATION INVERTER) INSTRUCTION MANUAL (STARTUP).

- Product handling information / Informations sur la manipulation du produit

-WARNING- Operation of this product requires detailed installation and operation instructions provided in the Instruction Manual (Startup) and the Instruction Manual (Detailed) intended for use with this product. Please forward relevant manuals to the end user.
-AVERTISSEMENT-
L'utilisation de ce produit nécessite des instructions détaillées d'installation et d'utilisation fournies dans les manuels d'instructions en anglais (Instruction Manual (Startup) et Instruction Manual (Detailed)) destinés à être utilisés avec ce produit. Veuillez transmettre les manuels correspondants à l'utilisateur final.

Precautions for compliance with CSA C22.2 No. 274

Use the inverter under the conditions of overvoltage category III and pollution degree 2 or lower specified in IEC 60664.

Branch circuit protection

For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code and any applicable provincial codes.
For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes. Short circuit protection of the inverter cannot be used as branch circuit protection. Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local code.

■ Precautions for opening the branch-circuit protective device / Précautions pour ouvrir le dispositif de protection du circuit de dérivation

-WARNING- If the fuse melts down or the breaker trips on the input side of this product, check for wiring faults (such as short circuits). Identify and remove the cause of melting down or the trip before replacing the fuse or resetting the tripped breaker (or before applying the power to the inverter again).
-AVERTISSEMENT-
Si le fusible fond ou si le disjoncteur se déclenche du côté entrée de ce produit, vérifier les défauts de câblage (tels que les courts-circuits). Identifier et éliminer la cause de la fonte ou du déclenchement avant de remplacer le fusible ou de réinitialiser le disjoncteur déclenché (ou avant de remettre sous tension l'onduleur).

Fuse selection

Fuses are selected based on IEC/EN/UL 61800-5-1 and CSA C22.2 No. 274.
For installation in the United States, the following semi-conductor fuses must be provided, in accordance with the National Electrical Code and any applicable local codes. For installation in Canada, the following semi-conductor fuses must be provided, in accordance with the Canada Electrical Code and any applicable provincial codes. Always install the following semiconductor fuses for branch circuit protection.

Inverter Model	Cat. No.	Manufacturer	Rating (A)
FR-F860-00027	BS000GB69V20	Mersen	20
FR-F860-00061	BS000GB69V25	Mersen	25
FR-F860-00090	BS000GB69V32	Mersen	32
FR-F860-00170	BS000GB69V63	Mersen	63
FR-F860-00320	BS000GB69V100	Mersen	100
FR-F860-00450	BS000UB69V125	Mersen	125
FR-F860-00680	BS000UB69V160	Mersen	160
FR-F860-01080	PC30UD69V250TF	Mersen	250
FR-F860-01440	PC30UD69V315TF	Mersen	315
FR-F860-01670	PC30UD69V315TF	Mersen	315
FR-F860-02430	PC31UD69V350TF	Mersen	350
FR-F860-02890	PC31UD69V400TF	Mersen	400
FR-F860-03360	PC31UD69V500TF	Mersen	500
FR-F860-04420	PC33UD69V700TF	Mersen	700

Capacitor discharge time / Temps de décharge du condensateur

CAUTION -Risk of Electric Shock-
Before wiring or inspection, check that the LED indicator turns OFF. Any person who is involved in wiring or inspection shall wait for 10 minutes or longer after power OFF and check that there are no residual voltage using a digital multimeter or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.

ATTENTION -Risque de choc électrique-
Avant le câblage ou l'inspection, vérifier que le témoin LED s'éteint. Toute personne impliquée dans le câblage ou l'inspection doit attendre 10 minutes ou plus après la mise hors tension et vérifier l'absence de tension résiduelle à l'aide d'un multimètre numérique ou similaire. Le condensateur est chargé avec une haute tension pendant un certain temps après la mise hors tension, ce qui est dangereux. Précautions pour ouvrir le dispositif de protection du circuit de dérivation.

- Wiring to the power supply and the motor

- Refer to the National Electrical Code (Article 310) regarding the allowable current of the cable. Select the cable size for 125% of the rated current according to the National Electrical Code (Article 430). For wiring the input (R/ L1, S/L2, T/L3) and output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) terminals of the inverter, use the UL listed copper, stranded wires (rated at $75^{\circ} \mathrm{C}$) and round crimp terminals. Crimp the terminals with the crimping tool recommended by the terminal manufacturer.

- Short circuit ratings

- Suitable for use in a circuit capable of delivering not more than 100 kA rms symmetrical amperes, 600 V maximum.

Motor overload protection

When using the electronic thermal relay function as motor overload protection, set the rated motor current in Pr. 9

Electronic thermal O/L relay.

Operation characteristics of electronic thermal relay function
(LD rating)

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output. (The operation characteristic is shown on the left.)
*1 When a value 50\% of the inverter rated output current (current value) is set in Pr. 9
*2 The \% value denotes the percentage to the inverter rated current. It is not the percentage to the rated motor current.
*3 Transistor protection is activated depending on the temperature of the heat sink. The protection may be activated even with less than 120% depending on the operating conditions.

NOTE

- The internal accumulated heat value of the electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-OFF.
- When multiple motors are driven with a single inverter or when a multi-pole motor or a special motor is driven, install an external thermal relay (OCR) between the inverter and motors. Note that the current indicated on the motor rating plate is affected by the line-to-line leakage current (details in the Instruction Manual (Detailed)) when selecting the setting for an external thermal relay.
- The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use an external thermal relay.
- Motor over temperature sensing is not provided by the drive.

- Applicable power supply

For use at an altitude above 2000 m (maximum 2500 m), only a neutral-point earthed (grounded) power supply can be used.

Some descriptions about motor overload protection are incorrect in APPENDIX of the Instruction Manual. The descriptions are corrected as follows.

Motor overload protection

When using the electronic thermal relay function as motor overload protection, set the rated motor current in Pr. 9 Electronic thermal O/L relay.

Operation characteristics of electronic thermal relay function
(LD rating)

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output. (The operation characteristic is shown on the left.)
*1 When a value 50% of the inverter rated output current (current value) is set in Pr. 9
*2 The \% value denotes the percentage to the inverter rated current. It is not the percentage to the rated motor current.
*3 Transistor protection is activated depending on the temperature of the heat sink. The protection may be activated even with less than 120% depending on the operating conditions.

NOTE

- The internal accumulated heat value of the electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-OFF.
- When multiple motors are driven with a single inverter or when a multi-pole motor or a special motor is driven, install an external thermal relay (OCR) between the inverter and motors. Note that the current indicated on the motor rating plate is affected by the line-to-line leakage current (details in the Instruction Manual (Detailed)) when selecting the setting for an external thermal relay.
- The cooling effect of the motor drops during low-speed operation. Use a thermal protector or a motor with built-in thermistor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use an external thermal relay.
- Motor over temperature sensing is not provided by the drive.

	HEADQUARTERS
	Mitsubishi Electric Europe B.V.EUROPE Mitsubishi-Electric-Platz 1 D-40882 Ratingen Phone: +49 (0)2102 / 486-0 Fax: +49 (0)2102 / 486-1120
	Mitsubishi Electric Europe B.V.CZECH REP. Pekařská 621/7 CZ-155 00 Praha 5 Phone: +420 255719200 Fax: +420 251551471
	Mitsubishi Electric Europe B.V.FRANCE 25, Boulevard des Bouvets F-92741 Nanterre Cedex Phone: +33 (0)1 / 55685568 Fax: +33 (0)1 / 55685757
	Mitsubishi Electric Europe B.V.IRELAND Westgate Business Park, Ballymount IRL-Dublin 24 Phone: +353 (0)1 4198800 Fax: +353 (0) 14198890
	Mitsubishi Electric Europe B.V.ITALY Viale Colleoni 7 Palazzo Sirio I-20864 Agrate Brianza (MB) Phone: +39 039 / 60531 Fax: +39 039 / 6053312
	Mitsubishi Electric Europe B.V.NETHERLANDS Nijverheidsweg 23C NL-3641RP Mijdrecht Phone: +31 (0) 297250350
	Mitsubishi Electric Europe B.V.POLAND ul. Krakowska 50 PL-32-083 Balice Phone: +48 (0) 123476500 Fax: +48 (0) 126304701
	Mitsubishi Electric (Russia) LLCRUSSIA 2 bld. 1, Letnikovskaya st. RU-115114 Moscow Phone: +7 495 / 7212070 Fax: +7 495 / 7212071
	Mitsubishi Electric Europe B.V.SPAIN Carretera de Rubí 76-80 Apdo. 420 E-08190 Sant Cugat del Vallés (Barcelona) Phone: +34 (0) 93 / 5653131 Fax: +34 (0) 93 / 5891579
	Mitsubishi Electric Europe B.V. (Scandinavia)SWEDEN Hedvig Möllers gata 6, SE- 22355 Lund Phone: +46 (0) 86251000
	Mitsubishi Electric Turkey Elektrik Ürünleri A.Ş.TURKEY Fabrika Otomasyonu Merkezi Şerifali Mahallesi Nutuk Sokak No. 5 TR-34775 Ümraniye-íSTANBUL Phone: +90 (216) 9692500 Fax: +90 (216) / 5263995
	Mitsubishi Electric Europe B.V.UK Travellers Lane UK-Hatfield, Herts. AL10 8XB Phone: +44 (0)1707 / 288780 Fax: +44 (0)1707 / 278695
	Mitsubishi Electric Europe B.V.UAE Dubai Silicon Oasis United Arab Emirates - Dubai Phone: +971 43724716 Fax: +97143724721
	Mitsubishi Electric CorporationJAPAN Tokyo Building 2-7-3 Marunouchi, Chiyoda-ku Tokyo 100-8310 Phone: +81 (3) 3218-2111 Fax: +81 (3) 3218-2185
	Mitsubishi Electric Automation, Inc.USA 500 Corporate Woods Parkway Vernon Hills, IL 60061 Phone: +1 (847) 478-2100 Fax: +1 (847) 478-0328

EUROPEAN REPRESENTATIVES
GEVAAUSTRIA
Wiener Straße 89
A-2500 Baden
Phone: +43 (0)2252 / 855520
Fax: +43 (0)2252 / 48860
OOO TECHNIKONBELARUS
Prospect Nezavisimosti 177-9
BY-220125 Minsk
Phone: +375 (0)17 / 3931177
Fax: +375 (0)17 / 3930081
NEA RBT d.o.o.BOSNIA AND HERZEGOVINA Stegne 11
SI-1000 Ljubljana
Phone: +386 (0)1/ 5138116
Fax: +386 (0)1/ 5138170
AKHNATONBULGARIA
4, Andrei Ljapchev Blvd., PO Box 21
BG-1756 Sofia
Phone: +359 (0)2 / 8176000
Fax: +359 (0)2 / 9744061
INEA CRCROATIA
Losinjska 4 a
HR-10000 Zagreb
Phone: +385 (0)1 / 36 940-01/-02/-03
Fax: +385 (0)1 / 36 940-03
AutoCont C. S. S.R.O.CZECH REPUBLIC
Kafkova 1853/3
CZ-702 00 Ostrava 2
Phone: +420 595691150
Fax: +420 595691199
HANS FØLSGAARD A/SDENMARK
Theilgaards Torv 1
DK-4600 Køge
Phone: +45 43208600
Fax: +45 43968855
Electrobit OÜESTONIA
Pärnu mnt. 160i
EST-11317, Tallinn
Phone: +372 6518140
UTU Automation OyFINLAND
Peltotie 37i
FIN-28400 Ulvila
Phone: +358 (0)207 / 463500
Fax: +358 207 / 463501
UTECO A.B.E.E.GREECE
5, Mavrogenous Str
GR-18542 Piraeus
Phone: +30 (0)211 / 1206-900
Fax: +30 (0)211 / 1206-999
MELTRADE Kft.HUNGARY
Fertő utca 14
HU-1107 Budapest
Phone: +36 (0)1 / 431-9726
Fax: +36 (0)1 / 431-9727
OAK Integrator Products SIALATVIA Ritausmas iela 23
LV-1058 Riga
Phone: +371 67842280
Automatikos Centras, UABLITHUANIA
Neries krantiné 14A-101
LT-48397 Kaunas
Phone: +370 37262707
Fax: +370 37455605
ALFATRADE Ltd.MALTA
99, Paola Hill
Malta-Paola PLA 1702
Phone: +356 (0)21 / 697816
Fax: +356 (0)21 / 697817

EUROPEAN REPRESENTATIVES

NTEHSIS SRLMOLDOVA bld. Traian 23/1 MD-2060 Kishinev
Phone: +373 (0)22 / 664242
Fax: +373 (0)22 / 664280
Fonseca S.A.PORTUGAL
R. João Francisco do Casal 87/89

PT-3801-997 Aveiro, Esgueira
Phone: +351 (0)234 / 303900 Fax: +351 (0)234 / 303910

SIRIUS TRADING \& SERVICES SRLROMANIA
Aleea Lacul Morii Nr. 3
RO-060841 Bucuresti, Sector 6
Phone: +40 (0)21 / 4304006
Fax: +40 (0)21 / 4304002
INEA SR d.o.o.SERBIA
Ul. Karadjordjeva 12/217
SER-11300 Smederevo
Phone: +386 (026) 4615401
SIMAP SK (Západné Slovensko)SLOVAKIA
Dolné Pažite 603/97
SK-911 06 Trenčín
Phone: +421 (0)32 7430472
Fax: +421 (0)3274375 20
INEA RBT d.o.o.SLOVENIA
Stegne 11
SI-1000 Ljubljana
Phone: +386 (0)1 / 5138116
Fax: +386(0)1 / 5138170
OMNI RAY AGSWITZERLAND m Schörli 5

CH-8600 Dübendorf

Phone: +41 (0)44 / 8022880
Fax: +41 (0)44 / 8022828
CSC- AUTOMATION Ltd.UKRAINE 4 B, Yevhena Sverstyuka Str. UA-02002 Kiev
Phone: +380 (0)44 / 4943344
Fax: +380 (0)44 / 494-33-66

