

Programmable Controller

MELSEGQ_{series} MELSEGL_{series}

MELSEC-Q/L/QnA Programming Manual (SFC)

SAFETY PRECAUTIONS

Before using MELSEC-Q, -L, or -QnA series programmable controllers, please read the manuals included with each product and the relevant manuals introduced in those manuals carefully, and pay full attention to safety to handle the product correctly. Make sure that the end users read the manuals included with each product, and keep the manuals in a safe place for future reference.

CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and

ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries. MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-Q/L/QnA series programmable controllers.

Before using the product, please read this manual carefully and develop familiarity with the functions and performance of the MELSEC-Q/L/QnA series programmable controllers to handle the product correctly.

When applying the program examples provided in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.

Please make sure that the end users read this manual.

CONTENTS

SAFE	ETY PRECAUTIONS	1
	DITIONS OF USE FOR THE PRODUCT	
	EVANT MANUALS	
TERI	MS	6
_		
СНА	APTER 1 GENERAL DESCRIPTION	
1.1	Description of SFC Program	
1.2	SFC (MELSAP3) Features	9
СНА	APTER 2 SYSTEM CONFIGURATION	18
2.1	Applicable CPU modules	18
2.2	Peripheral devices for SFC programs	19
СНА	APTER 3 SPECIFICATIONS	20
3.1	Performance Specifications Related to SFC Programs	20
3.2	Device List	
3.3	Processing Time	
	Processing time for SFC program	
	Processing time for S(P).SFCSCOMR instruction and S(P).SFCTCOMR instruction	
3.4	Calculating the SFC Program Capacity.	
	Method for calculating the SFC program capacity	
	Number of steps required for expressing the SFC diagram as SFC dedicated instructions	
сни	APTER 4 SFC PROGRAM CONFIGURATION	43
4.1		-
4.1 4.2	Steps	
4.2		
	Step (without step attribute).	
	Initial step Dummy step	
	Coil HOLD step	
	•	
	Operation HOLD step (without transition check).	
	Operation HOLD step (with transition check)	
	Block START step (with END check).	
	Block START step (without END check)	
	End step	
	Instructions that cannot be used with operation outputs	
4.3	Transition	
	Selection transition	
	Precautions when creating sequence programs for operation outputs (steps) and transition conditions	
4.4	Controlling SFC Programs by Instructions (SFC Control Instructions).	
	Step operation status check instruction (LD, LDI, AND, ANI, OR, ORI) [Sn/BLm\Sn]	
	Forced transition check instruction (LD, LDI, AND, ANI, OR, ORI) [TRn/BLm\TRn]	
	Block operation status check instruction (LD, LDI, AND, ANI, OR, ORI) [BLm]	85

	147
Whole Program Processing of Basic Model QCPU	
Whole program processing sequence	
QCPU (except Basic model QCPU), LCPU, QnACPU	
Whole program processing sequence	
Execution type designation by instructions	
SFC program for program execution management	
SFC program execution	
Block execution sequence	
Block execution sequence Step execution sequence	
Block execution sequence Step execution sequence	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation PTER 6 SFC PROGRAM EXECUTION	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation PTER 6 SFC PROGRAM EXECUTION SFC Program START and STOP. SFC program resumptive START procedure.	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation PTER 6 SFC PROGRAM EXECUTION SFC Program START and STOP. SFC program resumptive START procedure. Block START and END	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation PTER 6 SFC PROGRAM EXECUTION SFC Program START and STOP. SFC program resumptive START procedure. Block START and END Block START methods.	
Block execution sequence Step execution sequence Continuous transition ON/OFF operation PTER 6 SFC PROGRAM EXECUTION SFC Program START and STOP. SFC program resumptive START procedure. Block START and END Block START methods. Block END methods	156
Block execution sequence Step execution sequence Continuous transition ON/OFF operation PTER 6 SFC PROGRAM EXECUTION SFC Program START and STOP.	

	Active step batch readout (BMOV)	
	Block START & END instructions (SET, RST) [BLm].	
	Block STOP and RESTART instructions (PAUSE, RSTART) [BLm]	
	Step START and END instructions (SET, RST) [Sn/BLm\Sn]	
	Forced transition EXECUTE & CANCEL instructions (SET, RST) [TRn/BLm\TRn]	
	Active step change instruction (SCHG)	
	Block switching instruction (BRSET)	
4.5	SFC Information Devices	
	Block START/END bit	
	Step transition bit	
	Block STOP/RESTART bit.	
	Block STOP mode bit	
	Continuous transition bit	
	Number of active steps register	
4.6	Step Transition Watchdog Timer	
4.7	SFC Operation Mode Setting	
	SFC program start mode	
	Block 0 START condition	
	Output mode at block STOP	
	Periodic execution block setting	
	Operation mode at double block START	
	Operation mode at transition to active step (double step START)	
4.8	SFC Comment Readout Instruction.	133
	SFC comment readout instruction (S(P). SFCSCOMR)	
	SFC transition comment readout instruction (S(P). SFCTCOMR)	

CHAPTER 5 SFC PROGRAM PROCESSING SEQUEN

CHAPTER 6 SFC PROGRAM EXECUTION

5.1	Whole Program Processing of Basic Model QCPU	
	Whole program processing sequence	
5.2	QCPU (except Basic model QCPU), LCPU, QnACPU	
	Whole program processing sequence	
	Execution type designation by instructions	
	SFC program for program execution management.	
5.3	SFC Program Processing Sequence	
	SFC program execution.	
	Block execution sequence	
	Step execution sequence	
	Continuous transition ON/OFF operation	

6.1	SFC Program START and STOP
	SFC program resumptive START procedure
6.2	Block START and END
	Block START methods
	Block END methods
6.3	Block Temporary Stop and Restart Methods

3

11121		202
INCT	RUCTION INDEX	202
INDE	X	200
	Active Step Change Instruction (SCHG) Replacement Method	
	Forced Transition Bit (TRn) Replacement Method	
	Periodic Execution Block Replacement Method	
	Step Transition Watchdog Timer Replacement Method	
	and LCPU and Alternative Methods	
Apper	ndix 3 Restrictions on Basic Model QCPU, Universal Model QCPU,	
	LCPU	
	Universal model QCPU	
	High Performance model QCPU, Process CPU, Redundant CPU and QnACPU	
	Basic model QCPU	
	Block/Step START, END, and STOP Methods	
	SFC Control Instructions	
	SFC Diagram Symbols	
Apper	ndix 2 MELSAP-II and MELSAP3 Comparison	
	Special Register (SD) List	
-1-1-4-1	Special Relay (SM) List	
Apper	ndix 1 Special Relay and Special Register List	
APP	ENDICES	178
	Online change (inactive block)	
	Program change by online change	
	Operation at program change made by write to PLC	
6.6	Operation at Program Change	
6.5	Operation Methods for Continuous Transition	
	(Not available for Basic model QCPU, Universal model QCPU, and LCPU) $\ldots \ldots$	
	Changing an active step status	
	Step END (deactivate) methods	
	Step START (activate) methods	
6.4	Step START (Activate) and END (Deactivate) Methods	

REVISIONS	
WARRANTY	
TRADEMARKS	

RELEVANT MANUALS

Manual name [manual number]	Description	Available form
GX Developer Version 8 Operating Manual (SFC)	Describes how to create SFC programs using the software package for	Print book
[SH-080374E]	creating SFC programs.	PDF
GX Works2 Version1 Operating Manual (Common)	Describes system configurations, parameter settings, online operations	Print book
[SH-080779ENG]	(common to Simple project and Structured project) of GX Works2.	PDF
TYPE SW2IVD/NX-GPPQ GPP Software package Operating	SW2IVD/NX-GPPQ GPP Software package Operating Describes how to create SFC programs using the software package for	
Manual (SFC) [IB-66776]	creating SFC programs.	PDF
QnUCPU User's Manual (Function Explanation, Program	Describes the functions, programming procedures, devices, etc.	Print book
Fundamentals) [SH-080807ENG]	necessary to create programs using the QCPU.	PDF
Qn(H)/QnPH/QnPRHCPU User's Manual(Function	Describes the functions, programming procedures, devices, etc.	Print book
Explanation, Program Fundamentals) [SH-080808ENG]	necessary to create programs using the QCPU.	PDF
MELSEC-L CPU Module User's Manual (Function Explanation,	Describes the functions required for programming, programming	Print book
Program Fundamentals) [SH-080889ENG]	methods, and devices.	e-Manual PDF
MELSEC-Q/L Programming Manual (Common Instruction)	Describes how to use sequence instructions, basic instructions, and	Print book
[SH-080809ENG]	application instructions.	e-Manual PDF
QnACPU Programming Manual (Common Instructions)	Describes how to use sequence instructions, basic instructions, and	Print book
[SH-080810ENG]	application instructions.	PDF
QnACPU Programming Manual (Fundamentals)	Describes the programming procedures, device names, parameters,	Print book
[IB-66614]	program types, etc. necessary to create programs.	PDF

e-Manual refers to the Mitsubishi FA electronic book manuals that can be browsed using a dedicated tool. e-Manual has the following features:

- Required information can be cross-searched in multiple manuals.
- Other manuals can be accessed from the links in the manual.
- The hardware specifications of each part can be found from the product figures.
- Pages that users often browse can be bookmarked.

TERMS

Generic term	Description	
Basic	A generic term for the Q00JCPU, Q00CPU, and Q01CPU	
Basic model QCPU		
High Performance	A generic term for the Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU	
High Performance model QCPU		
High-speed Universal model A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU QCPU Veneric term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU		
LCPU A generic term for the L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26C BT, and L26CPU-PBT		
Process CPU	A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU	
QCPU	A generic term for the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU, and Universal model QCPU	
QnACPU	A generic term for the Q2ASCPU, Q2ASCPU-S1, Q2ASHCPU, Q2ASHCPU-S1, Q2ACPU, Q2ACPU-S1, Q3ACPU, Q4ACPU, and Q4ARCPU	
QnCPU	A generic term for the Q02CPU	
QnHCPU	A generic term for the Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU	
QnPHCPU	A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU	
QnPRHCPU A generic term for the Q12PRHCPU and Q25PRHCPU		
QnUD(E)(H)CPU	A generic term for the Q03UDCPU, Q03UDECPU, Q04UDHCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDEHCPU, Q26UDEHCPU, and Q100UDEHCPU	
QnUDVCPU	A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU	
QnUDPVCPU	A generic term for the Q04UDPVCPU, Q06UDPVCPU, Q13UDPVCPU, and Q26UDPVCPU	
Redundant CPU	A generic term for the Q12PRHCPU and Q25PRHCPU	
Universal	A generic term for the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU,	
Universal model QCPU	Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU	
Universal model Process CPU	A generic term for the Q04UDPVCPU, Q06UDPVCPU, Q13UDPVCPU, and Q26UDPVCPU	

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

1 GENERAL DESCRIPTION

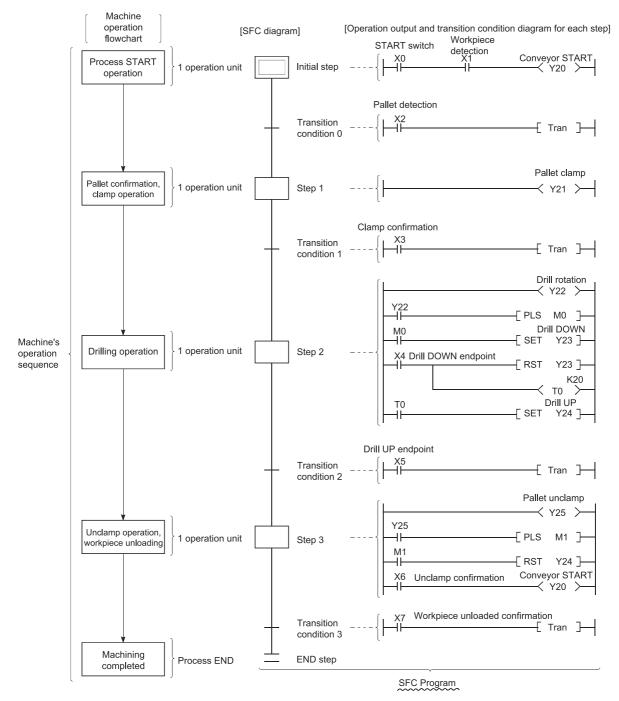
SFC, an abbreviation for "Sequential Function Chart", is a control specification description format in which a sequence of control operations is split into a series of steps to enable a clear expression of the program execution sequence and execution conditions.

This manual describes the specifications, functions, instructions, programming procedures, etc. used to perform programming with an SFC program using MELSAP3.

MELSAP3 can be used with the following CPU modules.

MELSAP3 conforms to the IEC Standard for SFC.

- Basic model QCPU whose serial number (first five digits) is 04122 or later
- High Performance model QCPU
- Process CPU
- Redundant CPU
- Universal model QCPU
- LCPU
- QnACPU


In this manual, MELSAP3 is referred to as SFC (program, diagram).

Point *P*

- The following functions cannot be executed if a parameter that sets the "high speed interrupt cyclic interval" is loaded into a High Performance model QCPU of which the first 5 digits of the serial number are "04012" or later. (S Step Transition Watchdog Timer, S Periodic execution block setting)
- The Qn(H)CPU-A (A mode) cannot use MELSAP3 described in this manual. The SFC function that can be used by the Qn(H)CPU-A (A mode) is "MELSAP-II". For MELSAP-II, refer to the "MELSAP-II (SFC) Programming Manual".

1.1 Description of SFC Program

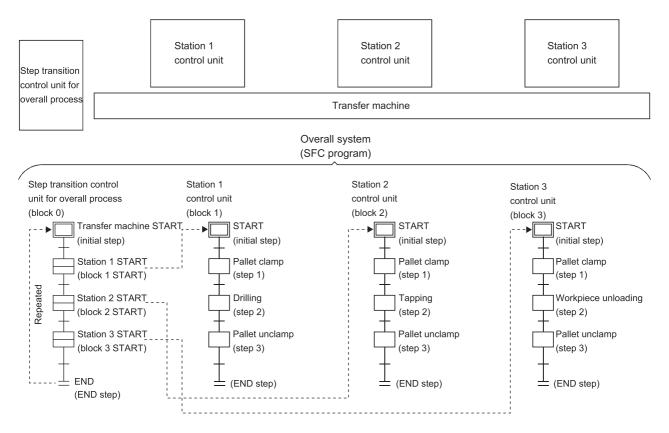
The SFC program consists of steps that represent units of operations in a series of machine operations. In each step, the actual detailed control is programmed by using a ladder circuit.

The SFC program performs a series of operations, beginning from the initial step, proceeding to execute each subsequent step as the transition conditions are satisfied, and ending with the END step.

- When the SFC program is started, the "initial" step is executed first.
- Execution of the initial step continues until transition condition 1 is satisfied. When this transition condition is satisfied, execution of the initial step is stopped, and processing proceeds to the step which follows the initial step.

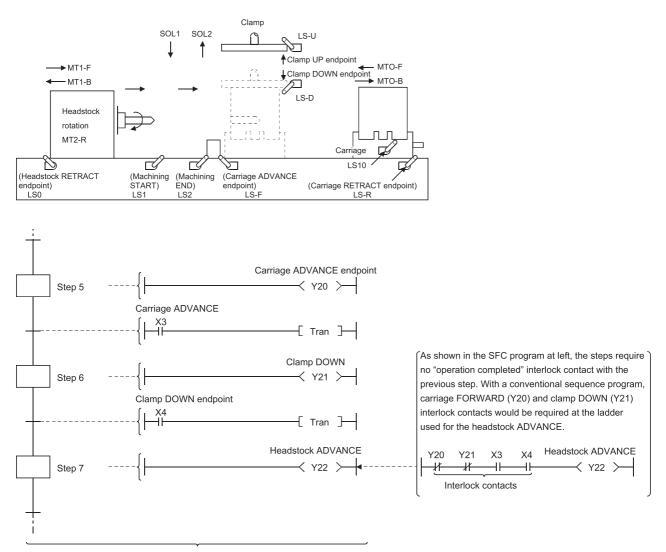
Processing of the SFC program continues from step to step in this manner until the END step has been executed.

8


1.2 SFC (MELSAP3) Features

This section describes the SFC (MELSAP3) features.

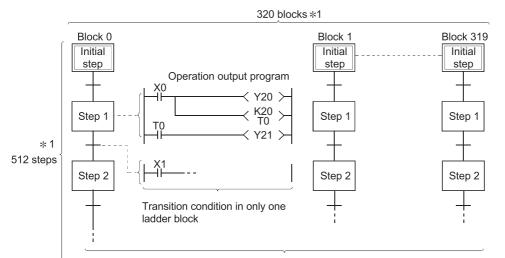
Easy to design and maintain systems


It is possible to correspond the controls of the entire facility, mechanical devices of each station, and all machines to the blocks and steps of the SFC program on a one-to-one basis. Because of this capability, systems can be designed and maintained with ease even by those with relatively little knowledge of sequence programs.

Moreover, programs designed by other programmers using this format are much easier to decode than sequence programs.

Requires no complex interlock circuitry

Interlock circuits are used only in the operation output program for each step. Because no interlocks are required between steps in the SFC program, it is not necessary to consider interlocks with regard to the entire system.


SFC program

Block and step configurations can easily be changed for new control applications

- A total of 320 blocks ^{*1} can be created in an SFC program.
- Up to 512 steps ^{*1} can be created per block.
- Up to 2k sequence steps can be created for all blocks for operation outputs.
- · Each transition condition can be created in only one ladder block.

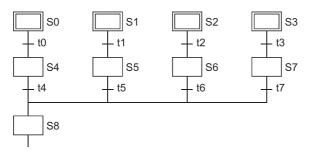
Reduced tact times, as well as easier debugging and trial run operations are possible by dividing blocks and steps as follows:

- Divide blocks properly according to the operation units of machines.
- Divide steps in each block properly.

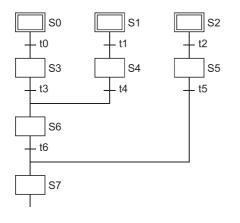
Operation output: 2k sequence steps for all blocks

- *1 For the following CPU modules, 128 blocks and 128 steps can be created.
 - · Basic model QCPU
 - · Universal model QCPU (Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU)
 - · LCPU (L02SCPU, L02SCPU-P, L02CPU, L02CPU-P)

Creation of multiple initial steps is possible


Multiple processes can easily be executed and combined. Initial steps are linked using a "selection coupling" format. When multiple initial steps (S0 to S3) are active, the step where the transition condition (t4 to t7) immediately prior to the selected coupling is satisfied becomes inactive, and a transition to the next step occurs.

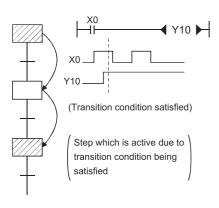
Moreover, when the transition condition immediately prior to an active step is satisfied, the next step is executed in accordance with the parameter settings.


Point P

Basic model QCPU, Universal model QCPU, and LCPU cannot be selected in the parameter setting. It operates in the default "Transfer" mode.

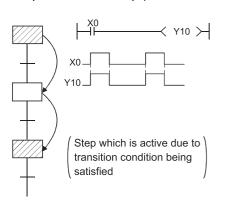
- Wait: Transition to the next step occurs after waiting for the next step to become inactive.
- Transfer: Transition to the next step occurs even if the next step is active. (Default)
- Pause: An error occurs if the next step is active.

Linked steps can also be changed at each initial step.

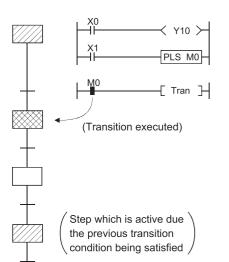


Program design is easy due to a wealth of step attributes

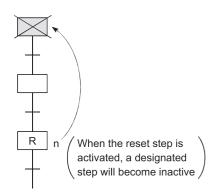
A variety of step attributes can be assigned to each step. Used singly for a given control operation, or in combination, these attributes greatly simplify program design procedures.


■Types of HOLD steps, and their operations

Coil HOLD step


- After a transition, operation output processing continues (is maintained), and the coil output status at the time when the transition condition is satisfied is maintained regardless of the ON/OFF status of the interlock condition (X0).
- Transition will not occur even if the transition condition is satisfied again.
- Convenient for maintaining an output until the block in question is completed (hydraulic motor output, pass confirmation signal, etc.).

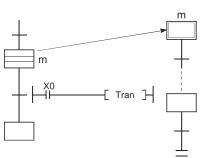
· Operation HOLD step (no transition check)


- Even after a transition, operation output processing continues (is maintained), and when the interlock condition (X0) turns ON/OFF, the coil output (Y10) also turns ON/OFF.
- Transition will not occur if the transition condition is satisfied again.
- Convenient for repeating the same operation (cylinder advance/retract, etc.) while the relevant block is active.

· Operation HOLD step (with transition check)

- Even after a transition, operation output processing continues (is maintained), and when the interlock condition (X0) turns ON/OFF, the coil output (Y10) also turns ON/OFF.
- When the transition condition is again satisfied, the transition is executed, and the next step is activated.
- Operation output processing is executed at the reactivated next step. When the transition condition is satisfied, transition occurs, and the step is deactivated.
- Convenient for outputs where there is an interlock with the next operation, for example where machining is started on completion of a repeated operation (workpiece transport, etc.).

■Reset step



When a HOLD status becomes unnecessary for machine control, or on selective branching to a manual ladder occurs after an error detection, etc., a reset request can be designated for the HOLD step, deactivating the step in question.

■Types of block START steps, and their operations

• Block START step (with END check)

- In the same manner as for a subroutine CALL-RET, a START source block transition will not occur until the end of the START destination block is reached.
- · Convenient for starting the same block several times, or to use several blocks together, etc.
- A convenient way to return to the START source block and proceed to the next process block when a given
 process is completed in a processing line, for example.
- Block START step (Without END check)

- Even if the START destination block is active, a START source block transition occurs when the transition condition associated with the block START step is satisfied. At this time, the processing of the START destination block will be continued unchanged until the end step is reached.
- By starting another block at a given step, the START destination block can be controlled independently and asynchronously with the START source block until processing of the current block is completed.

A given function can be controlled in a variety of ways according to the application

Block functions such as START, END, temporary stop, restart, and forced activation and ending of specified steps can be controlled by SFC diagram symbols, SFC control instructions, or by SFC information registers.

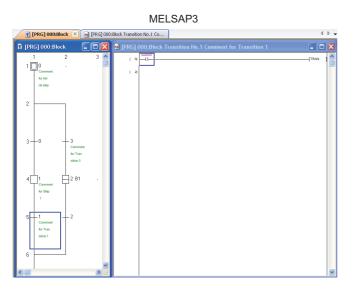
Control method	Description	
Control by SFC diagram symbols	ymbols Convenient for control of automatic operations with easy sequential control.	
Control by SFC instructions	Enables requests from program files other than the SFC, and is convenient for error processing, for example after emergency stops, and interrupt control.	
Control by SFC information devices	Enables control of SFC peripheral devices, and is convenient for partial operations such as debugging or trial runs.	

Functions which can be controlled by these 3 methods are shown below.

Function	Control Method		
	SFC Diagram	SFC Control Instructions	SFC Information Registers
Block START (with END wait)	m	-	-
Block START (without END wait)	m	SET BLm	Block START/END bit ON
Block END	<u>⊥</u>	RST BLm	Block START/END bit OFF
Block STOP	-	PAUSE BLm	Block STOP/RESTART bit ON
Restart stopped block	-	RSTART BLm	Block STOP/RESTART bit OFF
Forced step activation	-	• SET Sn • SET BLm\Sn	-
Forced step END	Rm	RST SnRST BLm\Sn	-

In cases where the same function can be executed by a number of methods, the first control method which has been designated by the request output to the block or step in question will be the effective control method. Functions controlled by a given control method can be canceled by another control method.

Ex.

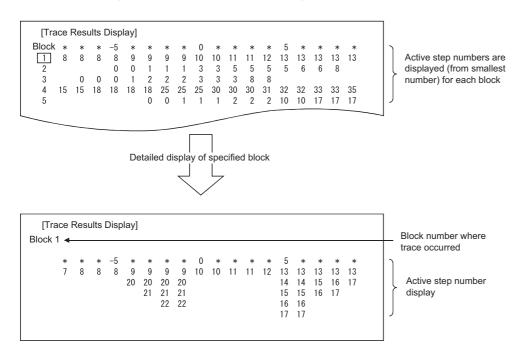

For block START, the active block started by the SFC diagram can be forcibly ended by executing the SFC control instruction before the END step or by turning OFF the block START/END bit of the SFC information devices.

A sophisticated edit function simplifies editing operations

A same-screen SFC diagram, operation output, and transition condition ladder display features a zoom function which can split the screen 4 ways (right/left/upper/lower) to simplify program cut-and-paste operations. Moreover, advanced program edit functions such as the SFC diagram or device search function, etc., make program creation and editing operations quick and easy.

Displays with comments for easy understanding

Comments can be entered at each step and transition condition item. Up to 32 characters can be entered.



Automatic scrolling function enables quick identification of machine system troubles

Active (execution) blocks and steps, as well as the execution of operation output/transition condition ladders can be monitored by a peripheral device (with automatic scrolling function). This monitor function enables even those with little knowledge of sequence programs to easily identify trouble spots.

Convenient trace function (when using GPPQ with QnACPU)

Blocks can be synchronized and traced, enabling the user to check the operation timing of multiple blocks. Moreover, the trace results display screen can be switched to display the trace result details for each block.

Point P

The trace function can be used during using GPPQ with QnACPU.

2 SYSTEM CONFIGURATION

This chapter describes the system configuration of the SFC program.

2.1 Applicable CPU modules

MELSAP-3 (SFC programs) runs on the following CPU modules.

CPU module type	Model name
Basic model QCPU ^{*1}	Q00JCPU, Q00CPU, Q01CPU
High Performance model QCPU Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU	
Process CPU Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU	
Redundant CPU	Q12PRHCPU, Q25PRHCPU
Universal model QCPU	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDEHCPU, Q04UDVCPU, Q04UDPVCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU,Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT
QnACPU	Q2ASCPU, Q2ASCPU-S1, Q2ASHCPU, Q2ASHCPU-S1, Q2ACPU, Q2ACPU-S1, Q3ACPU, Q4ACPU, Q4ARCPU

*1 Modules whose serial number (first five digits) is 04122 or later

2.2 Peripheral devices for SFC programs

The following peripheral devices can be used to create, edit and monitor SFC programs. The numbers in the following table mean (1): Basic model QCPU, (2): High Performance model QCPU, (3): Process CPU, (4): Redundant CPU, (5): Universal model QCPU, (6): LCPU, and (7): QnACPU.

 \bigcirc : Available, \times : Not available, \triangle : Partly available

Peripheral	Software package to be installed in a personal	CPU module						
device	computer	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Personal computer	SW3D5C/F-GPPW-E	×	×	×	×	×	×	0
(Windows [®] compatible)	SW4D5C-GPPW-E or later	×	0	×	×	×	×	0
	GX Developer Version 7.10L (SW7D5C-GPPW-E) or later		0	△*2	×	×	×	0
	GX Developer Version 8 (SW8D5C-GPPW-E) or later		0	∆*2	×	×	×	0
	GX Developer Version 8.18U (SW8D5C-GPPW-E) or later		0	∆*2	0	×	×	0
	GX Developer Version 8.48A (SW8D5C-GPPW-E) or later	0	0	△*2	0	△*1	×	0
	GX Developer Version 8.62Q (SW8D5C-GPPW-E) or later	0	0	∆*2	0	∆*3	×	0
	GX Developer Version 8.68W (SW8D5C-GPPW-E) or later	0	0	0	0	△*4	×	0
	GX Developer Version 8.78G (SW8D5C-GPPW-E) or later	0	0	0	0	△*5	×	0
	GX Developer Version 8.89T (SW8D5C-GPPW-E) or later	0	0	0	0	△*5	△*8	0
	GX Works2 Version 1.24A (SW1DNC-GXW2-E) or later	×	0	×	×	*5	∆*8	×
	GX Works2 Version 1.25B (SW1DNC-GXW2-E) or later	×	0	×	×	∆*6	∆*8	×
	GX Works2 Version 1.56J (SW1DNC-GXW2-E) or later	×	0	×	×	△*6	∆*7	×
	GX Works2 Version 1.98C (SW1DNC-GXW2-E) or later	0	0	0	0	∆*9	△*10	×
	GX Works2 Version 1.492N (SW1DNC-GXW2-E) or later	0	0	0	0	0	0	×
PC/AT compatible personal computer	SW2IVD-GPPQ-E	×	×	×	×	×	×	0
Q6PU	_	×	×	×	×	×	×	O*11

*1 Available only with the Q02UCPU, Q03UDCPU, Q04UDHCPU, and Q06UDHCPU

- *2 Available only with the Q12PHCPU and Q25PHCPU
- *3 Available only with the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q13UDHCPU, and Q26UDHCPU
- *4 Available only with the Q02UCPU, Q03UD(E)CPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q13UD(E)HCPU, and Q26UD(E)HCPU
- *5 Available only with the Q00U(J)CPU, Q01UCPU, Q02UCPU, Q03UD(E)CPU, Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU, Q13UD(E)HCPU, Q20UD(E)HCPU, and Q26UD(E)HCPU
- *6 Available only with the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDECPU, Q04UDHCPU, Q04UDEHCPU, Q06UDHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q20UDEHCPU
- *7 Available only with the L02CPU, L02CPU-P, L26CPU-BT, and L26CPU-PBT
- *8 Available only with the L02CPU and L26CPU-BT
- *9 Available only with the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDHCPU, Q04UDHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDHCPU, Q10UDHCPU, Q10UDHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDHCPU, Q20UDHCPU, Q20UDHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDHCPU, Q50UDHCPU, and Q100UDHCPU
- *10 Available only with the L02SCPU, L02CPU, L02CPU-P, L06CPU, L26CPU, L26CPU-BT, and L26CPU-PBT
- *11 Display is provided in list representation where an SFC diagram has been replaced by instructions. SFC diagrams cannot be created or edited. Only creation and correction of ladders associated with operation outputs and transition conditions are allowed.

3 SPECIFICATIONS

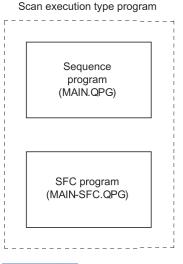
This chapter describes the specifications of SFC programs.

3.1 Performance Specifications Related to SFC Programs

This section describes the performance specifications of SFC programs.

Basic model QCPU

■Performance specifications


Item		Q00JCPU	Q00CPU	Q01CPU			
SFC program	Capacity	Max. 8k steps	Nax. 8k steps Max. 8k steps				
	Number of files	Scannable SFC program: 1 file*1					
	Number of blocks	Max. 128 blocks (0 to 127)					
	Number of SFC steps	Max. 1024 steps for all blocks, max. 128 steps for one block					
	Number of branches	Max. of 32					
	Number of concurrently active steps (including HOLD steps)	Max. 1024 steps for all blocks, max. 128 steps for one block					
	Number of operation output sequence steps	e steps Max. 2k steps for all blocks ^{*2} , no restriction on one step					
	Number of transition condition sequence steps	One ladder block only					

*1 SFC program for program management cannot be created.

*2 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

■Precautions for creating SFC programs

- Only one SFC program can be created. The created SFC program is a "scan execution type program".
- The Basic model QCPU allows creation of a total of two program files: one SFC program and one sequence program. (Two sequence programs or two SFC programs cannot be created.)

Point P

- The created sequence program and SFC program names are MAIN.QPG and MAIN-SFC.QPG. (The file names cannot be changed.)
- The SFC program and sequence program are processed in order of "sequence program" and "SFC program". (The processing order of the SFC program and sequence program cannot be changed.)

QCPU (except Basic model QCPU), LCPU

■Performance specifications

ltem		Q02CPU, Q02HCPU, Q02PHCPU	Q06HCP Q06PHC	- /	Q12HC Q12PH Q12PR	CPU, (Q25HCPU, Q25PHCPU, Q25PRHCPU		
SFC	Capacity	Max. 28k steps	Max. 60k	steps	Max. 124	4k steps	/lax. 252k steps		
program	Number of files	Scannable SFC program: 2 files (1 normal SFC program and 1 program execution management SFC program) ^{*1}							
	Number of blocks	Max. 320 blocks ((0 to 319)						
	Number of SFC steps	Max. 8192 steps	for all blocks, max.	512 steps for	one block	ζ			
	Number of branches	Max. of 32							
	Number of concurrently active steps (including HOLD steps)	Max. 1280 steps	for all blocks, max.	256 steps for	one block				
	Number of operation output sequence steps	Max. 2k steps for	all blocks ^{*2} , no res	striction on one	e step				
	Number of transition condition sequence steps	One ladder block only							
Step trans	ition watchdog timer function	Function exists (1	0 timers)						
Item		Q00UJCPU	Q00UCP	U	Q01UC	PU	Q02UCPU		
SFC	Capacity	Max. 10k steps	Max. 10k	steps	Max. 15	k steps	/lax. 20k steps		
program	Number of files	Scannable SFC program: 1 (normal SFC program only)							
	Number of blocks	Max. 128 blocks ((0 to 127)						
	Number of SFC steps	Max. 1024 steps	for all blocks, max.	128 steps for	one block				
	Number of branches	Max. of 32							
F	Number of concurrently active steps (including HOLD steps)	Max. 1024 steps for all blocks, max. 128 steps for one block							
	Number of operation output sequence steps	Max. 2k steps for all blocks ^{*2} , no restriction on one step							
	Number of transition condition sequence steps	One ladder block only							
Step trans	ition watchdog timer function	None							
Item		Q03UDCPU, Q03UDVCPU, Q03UDECPU	Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU Q04UDEHCPU	Q06UDV J, Q06UDP	VCPU, VCPU,	Q10UDHCPU, Q10UDEHCPU			
SFC	Capacity	Max. 30k steps	Max. 40k steps	Max. 60k	steps	Max. 100k steps	Max. 130k steps		
program	Number of files	Scannable SFC p	rogram: 1 (normal	SFC program	only)				
	Number of blocks	Max. 320 blocks ((0 to 319)						
	Number of SFC steps	Max. 16384 steps	s for all blocks ^{*3*4} ,	max. 512 step	s for one l	block			
	Number of branches	Max. of 32							
	Number of concurrently active steps (including HOLD steps)	Max. 1280 steps for all blocks, max. 256 steps for one block							
	Number of operation output sequence steps	Max. 2k steps for	all blocks ^{*2} , no res	striction on one	e step				
	Number of transition condition sequence steps	One ladder block	only						
Step trans	ition watchdog timer function	None							

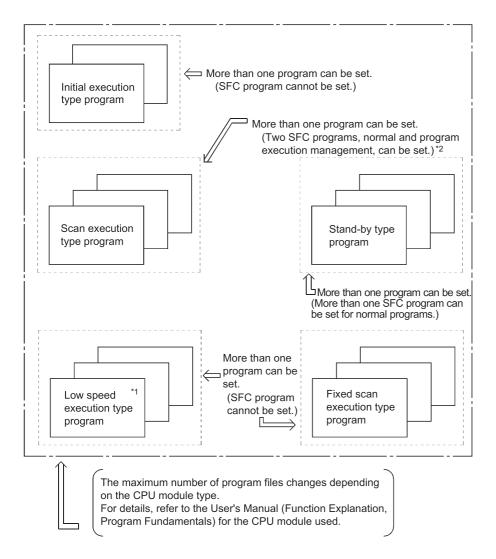
Item		Q20UDHCPU, Q20UDEHCPU	Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU	Q50UDEHCPU	Q100UDEHCPU				
SFC	Capacity	Max. 200k steps	Max. 260k steps	Max. 500k steps	Max. 1000k steps				
program	Number of files	Scannable SFC program: 1 (normal SFC program only)							
	Number of blocks	Max. 320 blocks (0 to 319)							
	Number of SFC steps	Max. 16384 steps for all blocks*3*4, max. 512 steps for one block							
	Number of branches	Max. of 32							
	Number of concurrently active steps (including HOLD steps)	Max. 1280 steps for all blocks, max. 256 steps for one block							
	Number of operation output sequence steps	Max. 2k steps for all blocks ^{*2} , no restriction on one step							
	Number of transition condition sequence steps	One ladder block only							
Step transi	tion watchdog timer function	None							

Item		L02SCPU, L02SCPU-P, L02CPU, L02CPU-P	L06CPU, L06CPU-P	L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT		
SFC	Capacity	Max. 20k steps	Max. 60k steps	Max. 260k steps		
program	Number of files	Scannable SFC program: 1 (normal SFC program only)				
	Number of blocks	Max. 128 blocks (0 to 127)	Max. 320 blocks (0 to 319)			
	Number of SFC steps	Max. 1024 steps for all blocks, max. 128 steps for one blockMax. 16384 steps for all blocks*5, max. 512 steps for one block				
	Number of branches	Max. of 32				
	Number of concurrently active steps (including HOLD steps)	Max. 1024 steps for all blocks, max. 128 steps for one blockMax. 1280 steps for all blocks, max. 256 steps for one block				
	Number of operation output sequence steps	Max. 2k steps for all blocks ^{*2} , no restriction on one step				
	Number of transition condition sequence steps	One ladder block only				
Step transi	tion watchdog timer function	None				

*1 Refer to Page 152 SFC program for program execution management for the program execution management SFC program.

*2 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

*3 For the Universal model QCPU whose serial number (first five digits) is "12051" or earlier, the maximum number of SFC steps is 8192 for all blocks.


*4 For the Universal model QCPU whose serial number (first five digits) is "12052" or later, the maximum number of SFC steps can be changed by changing the step relay (S) points in the Device tab of the PLC parameter dialog box. For settings, refer to the QnUCPU User's Manual (Function Explanation, Program Fundamentals).

*5 For the modules whose serial number (first five digits) is "15101" or earlier, the maximum number of steps is 8,192.

■Precautions for creating SFC programs

- The SFC programs that can be created are "scan execution type program" and "stand-by type program".
- Two SFC programs (one normal SFC program and one program execution management SFC program) can be set as a scan execution type program.^{*2}
- More than one SFC program can be set as a stand-by type program.
- The stand-by type SFC program is executed in the following procedure.
- **1.** The currently executed scan execution type program is switched to the stand-by type program by using the POFF instruction.
- **2.** The stand-by type program to be executed is switched to the scan execution type program by using the PSCAN instruction. Use the PSCAN instruction to switch the execution type of the program.

For details on the PSCAN and POFF instructions, refer to the Programming Manual (Common Instructions) for the CPU module used.

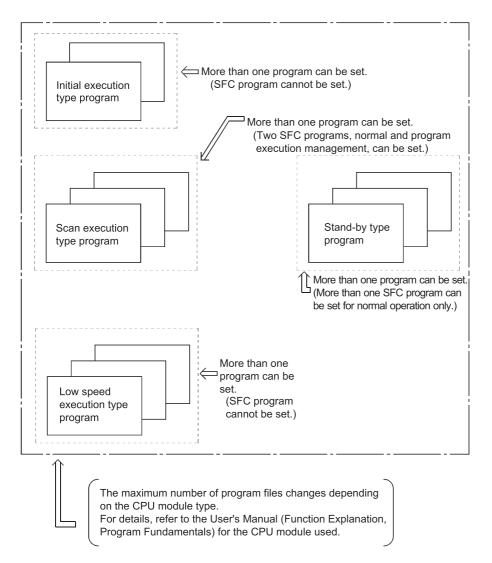
*1 The Redundant CPU, Universal model QCPU, and LCPU cannot execute the low-speed execution type program.

*2 The program execution management cannot set on the Universal model QCPU and LCPU.

QnACPU

■Performance specifications

Item			Q2ACPU, Q2ASCPU, Q2ASHCPU	Q2ACPU-S1, Q2ASCPU-S1, Q2ASHCPU-S1	Q3ACPU	Q4ACPU, Q4ARCPU				
SFC progra	am	Capacity	Max. 28k steps	Max. 28k steps Max. 60k steps Max. 92k steps Max. 124k ste						
		Number of files	Scannable SFC program: 2 files (1 normal SFC program and 1 program execution management SFC program) ^{*1}							
		Number of blocks	Max. 320 blocks (0 to 319)							
		Number of SFC steps	Max. 8192 steps for a	all blocks, max. 512 ste	ps for one block					
		Number of branches	Max. of 32							
		Number of concurrently active steps (including HOLD steps)	Max. 1280 steps for all blocks, max. 256 steps for one block							
		Number of operation output sequence steps	Max. 2k steps for all blocks ^{*3} , no restriction on one step							
		Number of transition condition sequence steps	One ladder block only	у						
STEP-	Break	All-block break	Batch break setting for	or all blocks						
RUN operation function		Designated block break	Up to 64 blocks can b	be set for the designate	d blocks.					
		Designated step break/number of cycles	Up to 64 points can be set for the designated steps./1 to 255 times							
	Continue	Designated block continue	1 block is set for the designated block.							
		Designated step continue	1 point is set for the c	designated step.						
		Continue from designated step	1 point is set for the c	designated step.						
	Forced	Forced block execution	1 block is set for the	designated block.						
	execution	Forced 1 step execution for designated step	1 point is set for the o	designated step.						
		Forced block end	1 block is set for the	designated block.						
		Forced step end	1 point is set for the o	designated step.						
Step trace		Trace memory capacity	Max. 48k bytes for al	l blocks, 1 to 48k bytes	for one block (1k byte	e units)				
(A memory required.)	card is	Trace memory capacity after trigger	128 bytes to capacity	setting of each block						
requireu.)		Block designation	Max. 12 blocks							
		Trigger step	1 step per block							
		Execution condition	Per designated time or per scan							
Step transit	tion watchdog	timer function	Function exists (10 til	mers)		Function exists (10 timers)				


*1 Refer to Page 152 SFC program for program execution management for the program execution management SFC program.

*2 This function can be executed only when the software package for personal computer is SW2IVD-GPPW/SW2NX-GPPW.

*3 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

■Precautions for creating SFC programs

- The SFC programs that can be created are "scan execution type program" and "stand-by type program".
- Two SFC programs (one normal SFC program and one program execution management SFC program) can be set as a scan execution type program.
- More than one SFC program can be set as a stand-by type program.
- The stand-by type SFC program is executed in the following procedure.
- **1.** The currently executed scan execution type program is switched to the stand-by type program. Use the POFF instruction to switch the execution type of the program. (Refer to the Programming Manual (Common Instructions) for the CPU module used.)
- **2.** The stand-by type program to be executed is switched to the scan execution type program. Use the PSCAN instruction to switch the execution type of the program. (Refer to the Programming Manual (Common Instructions) for the CPU module used.)

3.2 Device List

This section describes the transition conditions of SFC programs and devices used for operation output.

Classification	Туре	Device name		Default			Parameter setting	
				Point	Range		range	
nternal user	Bit device	Input		2048 points	X0 to X7FF	Hexadecimal	Can be changed within	
device		Output		2048 points	Y0 to Y7FF	Hexadecimal	16.4k words.*3	
		Internal relay		8192 points	M0 to M8191	Decimal		
		Latch relay		2048 points	L0 to L2047	Decimal		
		Annunciator		1024 points	F0 to F1023	Decimal		
		Edge relay		1024 points	V0 to V1023	Decimal		
		Step relay		2048 points	S0 to S127/block	Decimal		
		Link relay		2048 points	B0 to B7FF	Hexadecimal		
		Link special relay		1024 points	SB0 to SB3FF	Hexadecimal		
	Word	Timer ^{*1}		512 points	T0 to T511	Decimal		
	device	Retentive timer ^{*1}		0 point	(ST0 to ST511)	Decimal		
		Counter ^{*1}		512 points	C0 to C511	Decimal		
		Data register		11136 points	D0 to D1135	Hexadecimal		
		Link register		2048 points	W0 to W7FF	Hexadecimal		
		Link special register		1024 points	SW0 to SW3FF	Hexadecimal		
nternal system	Bit device	Function input		16 points	FX0 to FXF	Hexadecimal	N/A	
device		Function output		16 points	FY0 to FYF	Hexadecimal		
		Special relay		1024 points	SM0 to SM1023	Decimal		
	Word	Function register		5 points	FD0 to FD4	Decimal		
	device	Special register		1024 points	SD0 to SD1023	Decimal		
ink direct	Bit device	Link input		8192 points	Jn\X0 to Jn\X1FFF	Hexadecimal	N/A	
levice		Link output		8192 points	Jn\Y0 to Jn\Y1FFF	Hexadecimal		
		Link relay		16384 points	Jn\B0 to Jn\B3FFF	Hexadecimal		
	Word	Link special relay		512 points	Jn\SB0 to Jn\SB1FF	Hexadecimal		
		Link register		16384 points	Jn\W0 to Jn\W3FFF	Hexadecimal		
	device	Link special register		512 points	Jn\SW0 to Jn\SW1FF	Hexadecimal		
Module access device	Word device	Intelligent function mo	odule device	65536 points	Un\G0 to Un\G65535 ^{*2}	Decimal	N/A	
ndex register	Word device	Index register		10 points	Z0 to Z9	Decimal	N/A	
File register ^{*5}	Word device	File register		64K points	R0 to R32767 ZR0 to 65535	Decimal	N/A	
Vesting	—	Nesting		15 points	N0 to N14	Decimal	N/A	
Pointer	—	Pointer		300 points	P0 to P299	Decimal	N/A	
		Interrupt pointer		128 points	10 to 127	Decimal	N/A	
Others	Bit device	SFC block device		128 points	BL0 to BL127	Decimal	N/A	
	—	Network No. specifica	ation device	239 points	J1 to J239	Decimal	N/A	
	—	I/O No. specification	Q00JCPU	—	U0 to UF	Hexadecimal	N/A	
		device	Q00CPU, Q01CPU	—	U0 to U3F			
	—	Macro instruction arg	ument device	-	VD0 to VD□	Decimal	N/A	
Constant	-	Decimal constant		K-2147483648 to	ь К2147483647			
		Hexadecimal constar	ıt	H0 to HFFFFFF	F			
		Real constant		E±1.17550-38 to	E±3.40282+38			
		Character string cons	tant	"ABC", "123" ^{*4}				

Device list of Basic model QCPU

- *1 For the timer, retentive timer, and counter, contact/coil values are stored in bit devices, and current values are stored in word devices.
- *2 The number of points that can be actually used varies depending on the intelligent function module. For the points in the buffer memory, refer to the manual for the intelligent function module used.
- *3 The value can be changed in the Device setting of the PLC parameter dialog box. (Except for input, output, step relay, link special relay, and link special register) Refer to the User's Manual (Function Description/Program Fundamentals) of the CPU module used.
- *4 Character strings can be used only for the \$MOV, STR, DSTR, VAL, DVAL, ESTR, and EVAL instructions. They cannot be used for the other instructions.
- *5 Because the Q00JCPU does not have the standard RAM, the file register cannot be used.

Classification	Туре	Device name	Default			Parameter setting
			Point	Range		range
Internal user	Bit device	Input	8192 points	X0 to X1FFF	Hexadecimal	Can be changed withi
device		Output	8192 points	Y0 to Y1FFF	Hexadecimal	29k words.*3
		Internal relay	8192 points	M0 to M8191	Decimal	-
		Latch relay	8192 points	L0 to L8191	Decimal	
		Annunciator	2048 points	F0 to F2047	Decimal	
		Edge relay	2048 points	V0 to V2047	Decimal	
		Step relay	8192 points	S0 to S511/block	Decimal	
		Link relay	8192 points	B0 to B1FFF	Hexadecimal	
		Link special relay	2048 points	SB0 to SB7FF	Hexadecimal	
	Word	Timer ^{*1}	2048 points	T0 to T2047	Decimal	
	device	Retentive timer ^{*1}	0 point	(ST0 to ST2047)	Decimal	1
		Counter ^{*1}	1024 points	C0 to C1023	Decimal	
		Data register	12288 points	D0 to D12287	Hexadecimal	1
		Link register	8192 points	W0 to W1FFF	Hexadecimal	1
		Link special register	2048 points	SW0 to SW7FF	Hexadecimal	
device	Bit device	Function input	16 points	FX0 to FXF	Hexadecimal	N/A
		Function output	16 points	FY0 to FYF	Hexadecimal	
		Special relay	2048 points	SM0 to SM2047	Decimal	
	Word	Function register	5 points	FD0 to FD4	Decimal	
	device	Special register	2048 points	SD0 to SD2047	Decimal	
ink direct E	Bit device	Link input	8192 points	Jn\X0 to Jn\X1FFF	Hexadecimal	N/A
device		Link output	8192 points	Jn\Y0 to Jn\Y1FFF	Hexadecimal	
		Link relay	16384 points	Jn\B0 to Jn\B3FFF	Hexadecimal	
		Link special relay	512 points	Jn\SB0 to Jn\SB1FF	Hexadecimal	
	Word	Link register	16384 points	Jn\W0 to Jn\W3FFF	Hexadecimal	
	device	Link special register	512 points	Jn\SW0 to Jn\SW1FF	Hexadecimal	
Module access device	Word device	Intelligent function module device	65536 points	Un\G0 to Un\G65535 ^{*2}	Decimal	N/A
	Word device	Cyclic transmission area device ^{*4}	4096 points	U3En\G0 to U3En\G4095	Decimal	Setting available
Index register	Word device	Index register	16 points	Z0 to Z15	Decimal	N/A
File register	Word device	File register	0 point	-	_	0 to 1018K points
Nesting	—	Nesting	15 points	N0 to N14	Decimal	N/A
Pointer	—	Pointer	4096 points	P0 to P4095	Decimal	N/A
		Interrupt pointer	256 points	10 to 1255	Decimal	N/A
Others	Bit device	SFC block device	320 points	BL0 to BL319	Decimal	N/A
	Bit device	SFC transition device	512 points	TR0 to TR511	Decimal	N/A
	—	Network No. specification device	255 points	J1 to J255	Decimal	N/A
	-	I/O No. specification device	-	U0 to UFF	Hexadecimal	N/A
	—	Macro instruction argument device	—	VD0 to VD□	Decimal	N/A
Constant	_	Decimal constant	K-2147483648 t	o K2147483647		
		Hexadecimal constant	H0 to HFFFFFF	FF		
		Real constant	Double-precis	on floating-point data: E± ion floating-point data: E± 348623157+308		

Device list of High Performance model QCPU, Process CPU, and Redundant CPU

- *1 For the timer, retentive timer, and counter, contact/coil values are stored in bit devices, and current values are stored in word devices.
- *2 The number of points that can be actually used varies depending on the intelligent function module. For the points in the buffer memory, refer to the manual for the intelligent function module used.
- *3 The value can be changed in the Device setting of the PLC parameter dialog box. (Except for input, output, step relay, link special relay, and link special register) Refer to the User's Manual (Function Description/Program Fundamentals) of the CPU module used.
- *4 Available only in a multiple CPU system configuration.

Classification	Туре	Device name	Default			Parameter setting
			Point		range	
nternal user	Bit device	Input	8192 points	X0 to X1FFF	Hexadecimal	Can be changed withir
levice		Output	8192 points	Y0 to Y1FFF	Hexadecimal	29k words.*3*19
		Internal relay	8192 points ^{*20}	M0 to M8191 ^{*21}	Decimal	
		Latch relay	8192 points	L0 to L8191	Decimal	
		Annunciator	2048 points	F0 to F2047	Decimal	
		Edge relay	2048 points	V0 to V2047	Decimal	
		Step relay	8192 points	S0 to S511/block	Decimal	
		Link relay	8192 points	B0 to B1FFF	Hexadecimal	
		Link special relay	2048 points	SB0 to SB7FF	Hexadecimal	
	Word	Timer ^{*1}	2048 points	T0 to T2047	Decimal	
	device	Retentive timer ^{*1}	0 point	(ST0 to ST2047)	Decimal	
		Counter ^{*1}	1024 points	C0 to C1023	Decimal	
		Data register	12288 points*22	D0 to D12287 ^{*23}	Hexadecimal	
		Link register	8192 points	W0 to W1FFF	Hexadecimal	
		Link special register	2048 points	SW0 to SW7FF	Hexadecimal	
Internal system	Bit device	Function input	16 points	FX0 to FXF	Hexadecimal	N/A
device		Function output	16 points	FY0 to FYF	Hexadecimal	
		Special relay	2048 points	SM0 to SM2047	Decimal	
	Word	Function register	5 points	FD0 to FD4	Decimal	
	device	Special register	2048 points	SD0 to SD2047	Decimal	
ink direct	Bit device	Link input	16384 points*14	Jn\X0 to Jn\X3FFF ^{*15}	Hexadecimal	N/A
device		Link output	16384 points*14	Jn\Y0 to Jn\Y3FFF ^{*15}	Hexadecimal	
		Link relay	32768 points	Jn\B0 to Jn\B7FFF	Hexadecimal	
		Link special relay	512 points	Jn\SB0 to Jn\SB1FF	Hexadecimal	-
	Word device	Link register	131072 points	Jn\W0 to Jn\W1FFFF	Hexadecimal]
		Link special register	512 points	Jn\SW0 to Jn\SW1FF	Hexadecimal	
Module access device	Word device	Intelligent function module device	65536 points	Un\G0 to Un\G65535 ^{*2}	Decimal	N/A
	Word device	Cyclic transmission area device ^{*4}	4096 points	U3En\G0 to U3En\G4095	Decimal	N/A
			14336 points	U3En\G10000 to U3En\G24335	Decimal	Setting available
Index register/ standard device register	Word device	Index register/standard device register	20 points	Z0 to Z19	Decimal	N/A
File register ^{*7}	Word device	File register	0 point	—	—	0 to 4086K points ^{*6}
Extended data register ^{*7}	Word device	Extended data register	0 point ^{*16}	—	_	
Extended link register ^{*7}	Word device	Extended link register	0 point	_	_	
Vesting	_	Nesting	15 points	N0 to N14	Decimal	N/A
Pointer	_	Pointer	4096 points ^{*8*17}	P0 to P4095 ^{*9*18}	Decimal	N/A
		Interrupt pointer	256 points ^{*10}	10 to 1255 ^{*11}	Decimal	N/A
Others	Bit device	SFC block device	320 points ^{*25}	BL0 to BL319 ^{*12}	Decimal	N/A
	—	Network No. specification device	255 points	J1 to J255	Decimal	N/A
	—	I/O No. specification device	516 points	U0 to FF, U3E0 to U3E3 ^{*13}	Hexadecimal	N/A
	_	Macro instruction argument device	10 points	VD0 to VD9	Decimal	N/A

Device list of Universal model QCPU

Classification	Туре	Type Device name		Default				
			Point	Range	range			
Constant	_	Decimal constant	K-2147483648 to K2147483647					
		Hexadecimal constant	F					
		Real constant	 Single-precision floating-point data: E±1.17549435-38 to E±3.4 Double-precision floating-point data^{*5}: E±2.2250738585072014 E±1.7976931348623157+308 					
		Character string constant	Up to 32 characters (ex. "ABC", "123")					

- *1 For the timer, retentive timer, and counter, contact/coil values are stored in bit devices, and current values are stored in word devices.
- *2 The number of points that can be actually used varies depending on the intelligent function module. For the points in the buffer memory, refer to the manual for the intelligent function module used.
- *3 The number of points can be changed (except for input, output, and step relay) in the Device tab of the PLC parameter dialog box. Note that the step relay points can be changed to 0 point for the Universal model QCPU whose serial number (first five digits) is "10042" or later. For the Universal model QCPU whose serial number (first five digits) is "12052" or later, the step relay points can be set in increments of 1k points and up to the following points.
 - · Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU: 8192 points
 - Universal model QCPUs other than the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU: 16384 points
- *4 Available only in a multiple CPU system configuration.
- *5 Up to 15 digits can be entered in GX Developer.
- *6 The total of the points for the file register, extended data register (D), and extended link register (W)
- *7 The device cannot be used on the Q00UJCPU.
- *8 For the Q00UJCPU, Q00UCPU, and Q01UCPU, the number of points is 512.
- *9 For the Q00UJCPU, Q00UCPU, and Q01UCPU, the range is P0 to P511.
- *10 For the Q00UJCPU, Q00UCPU, and Q01UCPU, the number of points is 128.
- *11 For the Q00UJCPU, Q00UCPU, and Q01UCPU, the range is I0 to I127.
- *12 For the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU, the range is BL0 to BL127.
- *13 The range differs depending on the CPU module: U0 to UF for the Q00UJCPU; U0 to U3F and U3E0 to 3E2 for the Q00UCPU and Q01UCPU; and U0 to U7F and U3E0 to U3E2 for the Q02UCPU.
- *14 For the Universal model QCPU whose serial number (first five digits) is "12011" or earlier, the number of points is 8192.
- *15 For the Universal model QCPU whose serial number (first five digits) is "12011" or earlier, the range is Jn\X/Y0 to Jn\1FFF.
- *16 For the Q50UDEHCPU and Q100UDEHCPU, the number of points is 128k.
- *17 For the Q50UDEHCPU and Q100UDEHCPU, the number of points is 8192.
- *18 For the Q50UDEHCPU and Q100UDEHCPU, the range is P0 to P8191.
- *19 The changeable range differs depending on the CPU module: within 30k words for the Q03UDVCPU; within 40k words for the Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, and Q06UDPVCPU; and within 60k words for the Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, and Q26UDPVCPU.
- *20 The number of points differs depending on the CPU module: 9216 for the Q03UDVCPU; 15360 for the Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, and Q06UDPVCPU; and 28672 for the Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, and Q26UDPVCPU.
- *21 The range differs depending on the CPU module: M0 to M9215 for the Q03UDVCPU; M0 to M15359 for the Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, and Q06UDPVCPU; and M0 to M28671 for the Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, and Q26UDPVCPU.
- *22 The number of points differs depending on the CPU module: 13312 for the Q03UDVCPU; 22528 for the Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, and Q06UDPVCPU; and 41984 for the Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, and Q26UDPVCPU.
- *23 The range differs depending on the CPU module: D0 to D13311 for the Q03UDVCPU; D0 to D22527 for the Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, and Q06UDPVCPU; and D0 to D41983 for the Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, and Q26UDPVCPU.
- *24 The setting range differs depending on the CPU module: 0 to 4192k points for the Q03UDVCPU, 0 to 4224k points for the Q04UDVCPU and Q04UDPVCPU, 0 to 4480k points for Q06UDVCPU and Q06UDPVCPU, 0 to 4608k points for the Q13UDVCPU and Q13UDPVCPU, and 0 to 4736k points for the Q26UDVCPU and Q26UDPVCPU.
- *25 For the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU, the number of points is 128.

Classification	Туре	Device name	Default			Parameter setting
			Point Range		range	
Internal user	Bit device	Input	8192 points	X0 to X1FFF	Hexadecimal	Setting available (Up to
device		Output	8192 points	Y0 to Y1FFF	Hexadecimal	29K words for the
		Internal relay	8192 points	M0 to M8191	Decimal	internal user device) ^{*6}
		Latch relay	8192 points	L0 to L8191	Decimal	
		Link relay	8192 points	B0 to B1FFF	Hexadecimal	
		Annunciator	2048 points	F0 to F2047	Decimal	
		Link special relay	2048 points	SB0 to SB7FF	Hexadecimal	
		Edge relay	2048 points	V0 to V2047	Decimal	
		Step relay	8192 points	S0 to S8191	Decimal	
	Word device	Timer ^{*8}	2048 points	T0 to T2047	Decimal	
		Retentive timer ^{*8}	0 point	(ST0 to ST2047)	Decimal	
		Counter ^{*8}	1024 points	C0 to C1023	Decimal	
		Data register	12288 points	D0 to D12287	Hexadecimal	
		Link register	8192 points	W0 to W1FFF	Hexadecimal	
		Link special register	2048 points	SW0 to SW7FF	Hexadecimal	
Internal system	Bit device	Function input	16 points	FX0 to FXF	Hexadecimal	N/A
device		Function output	16 points	FY0 to FYF	Hexadecimal	
		Special relay	2048 points	SM0 to SM2047	Decimal	
	Word	Function register	5 points	FD0 to FD4	Decimal	
	device	Special register	2048 points	SD0 to SD2047	Decimal	
Module access device	Word device	Intelligent function module device	65536 points	Un\G0 to Un\G65535 ^{*2}	Decimal	N/A
Index register/ standard device register	Word device	Index register/standard device register	20 points	Z0 to Z19	Decimal	N/A
File register	Word device	File register	0 point	_	Decimal	0 to 384K points in total ^{*3} (in 1K units)
Extended data register	Word device	Extended data register	128K points	D12288 to D143359 ^{*1}	Decimal	
Extended link register	Word device	Extended link register	0 point	-	Hexadecimal	
Nesting	—	Nesting	15 points	N0 to N14	Decimal	N/A
Pointer	—	Pointer	4096 points*7	P0 to P4095 ^{*7}	Decimal	N/A ^{*7}
		Interrupt pointer	256 points	10 to 1255	Decimal	N/A
Others	Bit device	SFC block device	320 points	BL0 to BL319 ^{*4}	Decimal	N/A
	—	I/O No. specification device	—	U0 to FF ^{*5}	Hexadecimal	N/A
	—	Macro instruction argument device	10 points	VD0 to VD9	Decimal	N/A

Device list of LODU

*1 For the L02SCPU, L02SCPU-P, L02CPU, and L02CPU-P, the number of points is 32K (D12288 to D45055).

*2 The number of points that can be actually used varies depending on the intelligent function module. Refer to the manual for each intelligent function module.

*3 For the L02SCPU, L02SCPU-P, L02CPU, and L02CPU-P, the total number of points is 0 to 64K.

*4 For the L02SCPU, L02SCPU-P, L02CPU, and L02CPU-P, the number of points is 128 (BL0 to B127).

*5 For the L02SCPU, L02SCPU-P, L02CPU, and L02CPU-P, the range is U0 to U3F.

*6 For the LCPU whose serial number (first five digits) is "15101" or earlier, either 0K point or 8K point can be set for the step relay. For the LCPU whose serial number (first five digits) is "15102" or later, the step relay points can be set up to the following points. · L02(S)CPU, L02(S)CPU-P: 8192 points

· Other models: 16384 points

*7 For the L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, and L26CPU-PBT whose serial number (first five digits) is "16042" or later, the pointer for automatic-assign device is extended up to 32768 points in the Device tab of the PLC parameter dialog box. For details, refer to the MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals).

*8 For the timer, retentive timer, and counter, contact/coil values are stored in bit devices, and current values are stored in word devices.

Classification	Туре	Device name	Default	Default			
			Point	Range		range	
Internal user	Bit device	Input ^{*3}	8192 points	X0 to X1FFF	Hexadecimal	Setting available (Up to	
device		Output ^{*3}	8192 points	Y0 to Y1FFF	Hexadecimal	29K words for the	
		Internal relay	8192 points	M0 to M8191	Decimal	internal user device) ^{*3}	
		Latch relay	8192 points	L0 to L8191	Decimal	-	
		Annunciator	2048 points	F0 to F2047	Decimal	-	
		Edge relay	2048 points	V0 to V2047	Decimal	-	
		Step relay ^{*3}	8192 points	S0 to S8191	Decimal	-	
		Link relay	8192 points	B0 to B1FFF	Hexadecimal	-	
		Link special relay ^{*3}	2048 points	SB0 to SB7FF	Hexadecimal	-	
	Word	Timer ^{*1}	2048 points	T0 to T2047	Decimal	-	
	device	Retentive timer ^{*1}	0 point	(ST0 to ST2047)	Decimal	-	
		Counter ^{*1}	1024 points	C0 to C1023	Decimal	-	
		Data register	12288 points	D0 to D12287	Hexadecimal	-	
		Link register	8192 points	W0 to W1FFF	Hexadecimal	-	
		Link special register ^{*3}	2048 points	SW0 to SW7FF	Hexadecimal	-	
Internal system device	Bit device	Function input	16 points	FX0 to FXF	Hexadecimal	N/A	
		Function output	16 points	FY0 to FYF	Hexadecimal	-	
		Special relay	2048 points	SM0 to SM2047	Decimal	-	
	Word	Function register	5 points	FD0 to FD4	Decimal	-	
	device	Special register	2048 points	SD0 to SD2047	Decimal	-	
Link direct	Bit device	Link input	8192 points	Jn\X0 to Jn\X1FFF	Hexadecimal	N/A	
device		Link output	8192 points	Jn\Y0 to Jn\Y1FFF	Hexadecimal	-	
		Link relay	8192 points	Jn\B0 to Jn\B1FFF	Hexadecimal	-	
		Link special relay	512 points	Jn\SB0 to Jn\SB1FF	Hexadecimal	-	
	Word	Link register	8192 points	Jn\W0 to Jn\W1FFF	Hexadecimal	-	
	device	Link special register	512 points	Jn\SW0 to Jn\SW1FF	Hexadecimal	-	
Special function module device	Word device	Buffer register	16384 points	Un\G0 to Un\G16383 ^{*2}	Decimal	N/A	
Index register	Word device	Index register/standard device register	16 points	Z0 to Z15	Decimal	N/A	
File register	Word device	File register	0 point	-	Decimal	0 to 1024K points	
Nesting	—	Nesting	15 points	N0 to N14	Decimal	N/A	
Pointer	—	Pointer	4096 points	P0 to P4095	Decimal	N/A	
		Interrupt pointer	48 points	10 to 147	Decimal	N/A	
Others	Bit device	SFC block device	320 points	BL0 to BL319	Decimal	N/A	
	Bit device	SFC transition device	512 points	TR0 to TR511	Decimal	-	
	—	Network No. specification device	255 points	J1 to J255	Decimal		
	—	I/O No. specification device	—	U0 to FF	Hexadecimal	1	
Constant	—	Decimal constant	K-2147483648 t	o K2147483647	1	1	
		Hexadecimal constant	H0 to HFFFFF	FF			
		Real constant		8 to E±3.40282347+38			
		Character string constant	"ABC", "123"				

Device list of QnACPU

*1 For the timer, retentive timer, and counter, contact/coil values are stored in bit devices, and current values are stored in word devices.

*2 The number of points that can be actually used varies depending on the intelligent function module. Refer to the manual for each intelligent function module.

*3 The values of the input, output, step relay, link special relay, and link special register are fixed to the default values, and cannot be changed.

This section describes the processing time for SFC programs.

Processing time for SFC program

Calculate the SFC program processing time with the following expression

• Processing time for SFC program = (A) + (B) + (C)

Item		Description
(A)	Processing time of operation outputs in all steps	Total sum of the processing times of the instructions used for the operation outputs of all steps that are active
(B)	Processing time of all transition conditions	Total sum of the processing times of the instructions used for the transition conditions associated with all steps that are active
(C)	SFC system processing time	Total sum of the processing times described in Page 35 Processing time for SFC program.

Processing time of operation outputs in all steps

Indicates the total sum of the processing times of the instructions used for the operation outputs of all steps that are active. For the processing time of the instructions, refer to the Programming Manual (Common Instructions) for the CPU module used.

Processing time of all transition conditions

Indicates the total sum of the processing times of the instructions used for the transition conditions associated with all steps that are active. For the processing time of the instructions, refer to the Programming Manual (Common Instructions) for the CPU module used.

SFC system processing time

Calculate the SFC system processing time with the following expression.

• SFC system processing time (C) = (a) + (b) + (c) + (d) + (e) + (f) + (g)

Item		Calculation of Processing Time (Unit: µs)
(a)	Active block processing time	 (Active block processing time) = (active block processing time coefficient) × (number of active blocks) Active block processing time: System processing time required to execute active blocks Number of active blocks: Number of blocks that are active
(b)	Inactive block processing time	 (Inactive block processing time) = (inactive block processing time coefficient) × (number of inactive blocks) Inactive block processing time: System processing time required to execute inactive blocks Number of inactive blocks: Number of blocks that are inactive
(c)	Nonexistent block processing time	 (Nonexistent block processing time) = (nonexistent block processing time coefficient) × (number of nonexistent blocks) Nonexistent block processing time: System processing time required to execute blocks that have not been created Number of nonexistent blocks: Number of blocks where programs have not been created within the number of blocks set in the parameter
(d)	Active step processing time	 (Active step processing time) = (active step processing time coefficient) × (number of active steps) Active step processing time: Time required to execute active steps Number of active steps: Number of steps that are active in all blocks
(e)	Active transition processing time	 (Active transition processing time) = (active transition processing time coefficient) × (number of active transitions) Active transition processing time: System processing time required to execute active transitions Number of active transitions: Number of transition conditions associated with all steps that are active in all blocks
(f)	Transition condition-satisfied step processing time	 (Transition condition-satisfied step processing time) = (transition condition-satisfied step processing time coefficient) × (number of transition condition-satisfied steps) Transition condition-satisfied step processing time: Time required to perform OFF execution of active steps Number of transition condition-satisfied steps: Number of steps where operation outputs are turned OFF since transition conditions were satisfied in all blocks
(g)	SFC end processing time	(SFC end processing time) = (SFC end processing time)• SFC end processing time: System processing time required to perform the end processing of SFC program.

System processing times for different CPU module models

This section describes the system processing time for each CPU module.

• When Basic model QCPU is used

Item		Q00JCPU	Q00CPU	Q01CPU
Active block processing tir	me coefficient	41.9μs	35.5µs	27.3µs
Inactive block processing	time coefficient	10.5µs	8.8µs	6.8µs
Nonexistent block process	sing time coefficient	1.1µs	0.9µs	0.7µs
Active step processing tim	Active step processing time coefficient		26.7µs	20.5µs
Active transition processin	ig time coefficient	10.2µs	8.7µs	6.7µs
Transition condition- satisfied step processing	With HOLD step designation ^{*1}	216.0µs	182.8µs	140.6μs
time coefficient Normal step designation		263.5µs	222.9µs	171.5μs
SFC end processing time		66.8µs	56.5µs	43.5µs

• When High Performance model QCPU, Process CPU or Redundant CPU is used

Item		QnCPU	QnHCPU	QnPHCPU	QnPRHCPU
Active block processing til	me coefficient	33.7µs	14.5μs	14.5μs	14.5μs
Inactive block processing	time coefficient	12.0μs	5.2µs	5.2µs	5.2µs
Nonexistent block processing time coefficient		4.1µs	1.8µs	1.8µs	1.8µs
Active step processing tim	Active step processing time coefficient		10.6µs	10.6µs	10.6µs
Active transition processin	ng time coefficient	10.0μs	4.3µs	4.3µs	4.3µs
Transition condition- satisfied step processing	With HOLD step designation ^{*1}	130.4µs	56.2µs	56.2µs	56.2µs
time coefficient	Normal step designation	119.4μs	51.5µs	51.5µs	51.5μs
SFC end processing time		108.2µs	46.6µs	46.6µs	46.6µs

When Universal model QCPU is used

Item		Q00UJCPU, Q00UCPU, Q01UCPU	Q02UCPU	Q03UDCPU, Q03UDECPU	Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU
Active block processing tir	ne coefficient	12.7µs	8.4µs	8.3µs	7.0µs
Inactive block processing	time coefficient	5.3µs	3.9µs	3.8µs	3.4µs
Nonexistent block process	ing time coefficient	0.9µs	0.8µs	0.7µs	0.6µs
Active step processing tim	e coefficient	11.9μs	8.6µs	8.2µs	6.4µs
Active transition processin	g time coefficient	3.4µs	2.1µs	2.0µs	1.6µs
Transition condition- satisfied step processing	With HOLD step designation ^{*1}	86.7µs	69.6µs	60.3µs	42.7µs
time coefficient	Normal step designation	106.9µs	83.2µs	73.7µs	52.0µs
SFC end processing time		67.5µs	38.4µs	36.6µs	26.9µs

Item		Q03UDVCPU	Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU
Active block processing til	ne coefficient	5.0µs	4.8μs
Inactive block processing	time coefficient	2.5µs	2.3µs
Nonexistent block process	Nonexistent block processing time coefficient		0.33µs
Active step processing tim	e coefficient	5.8µs	5.5µs
Active transition processing	ig time coefficient	1.3µs	1.3µs
Transition condition- satisfied step processing	With HOLD step designation ^{*1}	38µs	34µs
time coefficient Normal step designation		50µs	41µs
SFC end processing time		25.5μs	25.5µs

LCPU

Item	Item		L02CPU, L02CPU-P	L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT
Active block processing til	me coefficient	12.7µs	8.5µs	7.0µs
Inactive block processing	time coefficient	5.3µs	3.8µs	3.4µs
Nonexistent block process	Nonexistent block processing time coefficient		1.2µs	0.6µs
Active step processing tim	ne coefficient	11.9µs	8.7µs	6.4µs
Active transition processir	ng time coefficient	3.4µs	2.0µs	1.6µs
Transition condition- satisfied step processing	With HOLD step designation ^{*1}	86.7µs	66.1µs	42.7µs
time coefficient Normal step designation		106.9µs	79.4µs	52.0µs
SFC end processing time	·	67.5µs	44.7µs	26.9µs

QnACPU

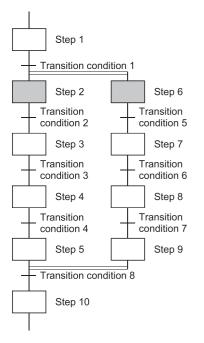
		Q4ACPU, Q4ARCPU, Q3ACPU Q2ASHCPU(S1)		Q2ACPU(S1), Q2ASCPU(S1)
Active block processing tir	ne coefficient	30.6µs	61.2µs	32.6µs
Inactive block processing	time coefficient	10.7µs	21.3µs	28.8µs
Nonexistent block process	Nonexistent block processing time coefficient		9.2µs	12.5µs
Active step processing tim	e coefficient	23.2µs	46.4µs	62.7µs
Active transition processin	g time coefficient	9.4µs	18.7µs	25.2µs
Transition condition- satisfied step processing	With HOLD step designation ^{*1}	137.2µs	274.3μs	370.4µs
time coefficient	Normal step designation	122.5µs	245.1µs	330.9µs
SFC end processing time		89.7µs	179.3μs	242.1µs

*1 The HOLD step includes all of the coil hold steps and operation hold steps (with or without transition check). The Normal step represents steps other than the above.

[SFC system processing time calculation example]

Using the Q25HCPU as an example, the processing time for the SFC system is calculated as shown below, given the following conditions.

- · Designated at initial START
- · Number of active blocks: 30 (active blocks at SFC program)
- Number of inactive blocks: 70 (inactive blocks at SFC program)
- Number of nonexistent blocks: 50 (number of blocks between 0 and the max. created block No. which have no SFC program)
- Number of active steps: 60 (active steps within active blocks)
- · Active step transition conditions: 60
- Steps with satisfied transition conditions: 10 (active steps (no HOLD steps) with satisfied transition conditions)


SFC system process time = $(14.5 \times 30) + (5.2 \times 70) + (1.8 \times 50) + (10.6 \times 60) + (4.3 \times 60) + (56.2 \times 10) + 46.6 = 2391.6 \mu s = 2.40 \text{ ms}$

In this case, calculation using the equation shown above results in an SFC system processing time of 2.40 ms. With the Q4ACPU, given the same conditions, the processing time would be 5.32 ms. The scan time is the total of the following times: SFC system processing time, main sequence program processing time, processing time of ladder circuit having transition conditions associated with SFC's active steps, and CPU module's END processing time.

The number of active steps, the number of transition conditions, and the number of steps with satisfied transition conditions varies according to the conditions shown below.

- · When transition condition is unsatisfied
- · When transition condition is satisfied (without continuous transition)
- · When transition condition is satisfied (with continuous transition)

The method for determining the number of the above items is illustrated in the SFC diagram below.

The following table indicates the number of active steps, number of active transitions, and number of transition conditionsatisfied steps when Step 2 and Step 6 are active.

Whether Transition Conditions Are Satisfied or Not	Presence/Absence of Continuous Transition	e of Number of Active Steps Number of Active Transitions		Number of Transition Condition-Satisfied Steps
Transition conditions not satisfied	—	2 (Steps 2, 6)	2 (Transition conditions 2, 5)	0
Transition conditions 2, 5	Absence	2 (Steps 2, 6)	2 (Transition conditions 2, 5)	2 (Steps 2, 6)
 satisfied Transition conditions 3, 6 not satisfied 	Presence	4 (Steps 2, 3, 6, 7)	4 (Transition conditions 2, 3, 5, 6)	2 (Steps 2, 6)
Transition conditions 2, 3, 5, 6	Absence	2 (Steps 2, 6)	2 (Transition conditions 2, 5)	2 (Steps 2, 6)
satisfied	Presence	6 (Steps 2 to 4, 6 to 8)	6 (Transition conditions 2 to 7)	4 (Steps 2, 3, 6, 7)

Processing time for S(P).SFCSCOMR instruction and S(P).SFCTCOMR instruction

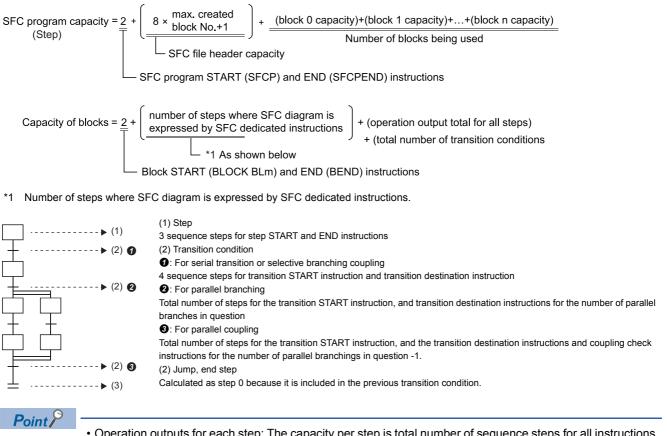
Processing time for S(P).SFCSCOMR instruction and S(P).SFCTCOMR instruction is shown below. [Condition]

- The number of comments to be stored in the comment file: 1000
- · Sequence steps in the SFC step in the SFC program: 1000 sequence steps
- The number of active steps: 40

Instruction	Condition			High Perform	nance model QCPU	Process CPU	Redundant	
					QnHCPU		CPU	
S(P).SFCSCOMR	At instruction exe	ecution		280µs	120µs	120µs	120µs	
	At END processi	ing (read 1 comme	ent)	780µs	350µs	350µs	350µs	
S(P).SFCTCOMR	At instruction execution			300µs	130µs	130µs	130µs	
	processing trans (read 1 • Tran comment) selec Transit conditi paralle	 Transition condition for serial transition Transition condition after selection branching 		2.5ms	1.1ms	1.1ms	1.1ms	
		Transition condition after parallel	Number of parallel couplings: 2	4.5ms	2.0ms	2.0ms	2.0ms	
		coupling Number of parallel couplings: 32		60.5ms ^{*1}	26.2ms	26.2ms	26.2ms	

*1 Indicates that the sequence steps in SFC steps consist of 800 sequence steps.

Instruction	Condition			Universal model QCPU				
					U	Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU, Q13UD(E)HCPU, Q20UD(E)HCPU, Q26UD(E)HCPU, Q50UDEHCPU, Q100UDEHCPU		
				Min.	Max.	Min.	Max.	
S(P).SFCSCOMR	At instruction ex	ecution		190µs	193µs	176µs	177µs	
S(P).SFCTCOMR				190µs	193µs	176µs	177µs	
Instruction	Condition			Universal mo	del QCPU			
				Q03UD(E)CPU		Q04UD(E)HCPU, Q06UD(E)HCPU, Q10UD(E)HCPU, Q13UD(E)HCPU, Q20UD(E)HCPU, Q26UD(E)HCPU, Q50UDEHCPU, Q100UDEHCPU		
				SRAM card	Flash card	SRAM card	Flash card	
S(P).SFCSCOMR	At END process	ing (read 1 comme	ent)	3.3ms	4.5ms	2.5ms	4.0ms	
S(P).SFCTCOMR	At END processing	Transition condit transition	Transition condition for serial transition		5.3ms	3.3ms	5.0ms	
	(read 1 comment)		Transition condition after selection branching		4.9ms	2.9ms	4.4ms	
		Transition condition after parallel coupling	Number of parallel couplings: 2	4.0ms	5.7ms	3.6ms	5.1ms	
			Number of parallel couplings: 32	18.7ms	21.0ms	13.8ms	14.0ms	


Instruction	Condition			Universal model QCPU						
					Q03UDVCPU			Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU		
				Min.	Ma	ix.	Min.		Max.	
S(P).SFCSCOMR	At instruction ex	ecution		54.7µs	60	.0μs	51.8µs		56.8µs	
S(P).SFCTCOMR				55.3µs	60	2μs	52.6µs		57.1µs	
Instruction	Condition			Universal mo	del (QCPU				
				Q03UDVCPU		Q06UDPV		DVCPU,	Q06UDVCPU, Q13UDPVCPU,	
				Standard RA	И	Standard RAM				
S(P).SFCSCOMR	At END process	ing (read 1 comme	nt)	0.26ms		0.25ms				
S(P).SFCTCOMR	At END Transition condition for series transition		ion for serial	0.66ms		0.44ms	15			
	(read 1 comment)	Transition condition after selection branching		0.66ms		0.35ms	1.35ms			
		Transition condition after parallel	Number of parallel couplings: 2	0.87ms		0.55ms 0.75ms				
		coupling	Number of parallel couplings: 32	1.28ms						
Instruction	Condition	LCPU								
						L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PB				
						Min.			Max.	
S(P).SFCSCOMR	At instruction ex	ecution		97.4μs 99.0μs 97.7μs 98.9μs			99.0µs			
S(P).SFCTCOMR										
Instruction	Condition			LCPU						
				L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PE						
		Standard ROM								
S(P).SFCSCOMR	At END process	ing (read 1 comme	nt)	1.5ms ^{*2}						
S(P).SFCTCOMR	At END processing	Transition condit transition	Transition condition for serial							
	(read 1 comment)		Transition condition after selection branching							
		Transition condition after parallel								
		coupling	Number of parallel couplings: 32							

*2 Processing time for the program shown in the condition (scan time: 15ms). The processing time varies depending on the number of files in standard ROM and the SFC program (transition conditions and the number of active steps).

3.4 Calculating the SFC Program Capacity

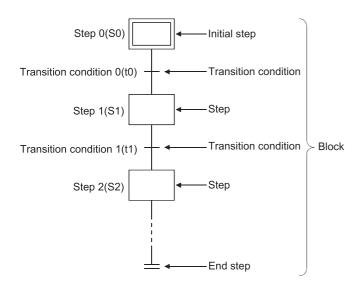
In order to express the SFC diagram using instructions, the memory capacity shown below is required. The method for calculating the SFC program capacity and the number of steps when the SFC diagram is expressed by SFC dedicated instructions is described in this section.

Method for calculating the SFC program capacity

- Operation outputs for each step: The capacity per step is total number of sequence steps for all instructions. For details regarding the number of sequence steps for each instruction, refer to the Programming Manual (Common Instructions) for the CPU module used.
- Transition conditions: The capacity per transition condition is total number of sequence steps for all instructions. For details regarding the number of sequence steps for each instruction, refer to the Programming Manual (Common Instructions) for the CPU module used.

Number of steps required for expressing the SFC diagram as SFC dedicated instructions

The following table shows the number of steps required for expressing the SFC diagram as SFC dedicated instructions.


Name	Ladder Expression	Number of Steps	Description	Required Number of Steps
SFCP START instruction	[SFCP]	1	Indicates the SFC program START	1 per program
SFCP END instruction	[SFCPEND]	1	Indicates the SFC program END	1 per program
Block START instruction	[BLOCK BLm]	1	Indicates the block START	1 per block
Block END instruction	[BEND]	1	Indicates the block END	1 per block
Step START instruction	[STEP Si]	2	Indicates the step START (" " varies according to the step attribute)	1 per step
Transition START instruction	[TRAND TRj]	2	Indicates the transition START (" " varies according to the step attribute)	1 per transition condition
Coupling check instruction	[TAND Si]	2	"Coupling completed" check occurs at parallel coupling	"[Number of parallel couplings] - [1]" per parallel coupling
Transition designation instruction	[TSET Si]	2	Designates the transition destination step	For serial transitions and selection transitions, 1 per transition condition; for parallel branching transitions, the number of steps is the same as the number of parallel couplings
Step END instruction	[SEND]	1	Indicates the step / transition END	1 per step

4 SFC PROGRAM CONFIGURATION

This chapter describes the SFC program symbols, SFC control instructions and SFC information devices that comprise an SFC program.

When applying the program examples introduced in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.

As shown below, an SFC program consists of an initial step, transition conditions, intermediate steps, and an END step. The data beginning from the initial step and ending at the END step is referred to as a block.

An SFC program starts at an initial step, executes a step following a transition condition in due order every time that transition condition is satisfied, and ends a series of operations at an end step.

- When the SFC program is started, the initial step is executed first. While the initial step is being executed, whether the transition condition following the initial step (transition condition 0 (t0) in the figure) has been satisfied or not is checked.
- Only the initial step is executed until transition condition 0 (t0) is satisfied. When transition condition 0 (t0) is satisfied, the execution of the initial step is stopped, and the step following the initial step (step 1 (S1) in the figure) is executed. While step 1 (S1) is being executed, whether the transition condition following step 1 (transition condition 1 (t1) in the figure) has been satisfied or not is checked.
- When transition condition 1 (t1) is satisfied, the execution of step 1 (S1) is stopped, and the next step (step 2 (S2) in the figure) is executed.
- Every time the transition condition is satisfied in order, the next step is executed, and the block ends when the end step is executed.

4.1 List of SFC Diagram Symbols

The symbols used in the SFC program are listed below.

Class	Name		SFC Diagram Symbol	Remarks
Step	Initial step	When step No. is "0"	🗌 o	Any of these steps in 1 block Initial step at top left (column 1) of SFC diagram is fixed to No.0. n = reset destination step No.
	Dummy initial step		0	
	Coil HOLD initial step		SC 0	
	Operation HOLD step (without transition check) initial step		SE 0	
	Operation HOLD step (with transition check) initial step		ST 0	
	Reset initial step		R 0 Sn	
	Initial step	When initial step No. is other than "0"	i	Up to 31 steps in 1 block. i = step No. (1 to 511)
	Dummy initial step		i i	n = reset destination step No.
	Coil HOLD initial step		[SC] i	
	Operation HOLD step (without transition check) initial step		SE i	
	Operation HOLD step (with transition check) initial step		[ST] i	
	Reset initial step		R i Sn	
	Step	Steps other than "initial" step	i	Up to 512 steps in 1 block, including initial step (128 steps for Basic model QCPU) i = step No. (1 to 511) n = reset destination step No. m = movement destination block
	Dummy step		i	
	Coil HOLD step		SC i	
	Operation HOLD step (without transition check)		SE i	No.
	Operation HOLD step (with transition check)		ST i	
	Reset step		R i Sn	
	Block START step (with END check)		i BLm	
	Block START step (without END check)		i BLm	
	End step		Ţ	More than one step can be used in 1 block.

Class	Name	SFC Diagram Symbol	Remarks
Transition	Serial transition	+ a	a, b = Transition condition No.
	Selection branching		
	Selection coupling		
	Selection coupling - parallel branching		
		t a b	
	Parallel branching		
	Parallel coupling		
	Parallel coupling - parallel branching		
		- a	
	Parallel coupling - selection branching		
		- a + b	
	Selection branching - parallel branching		
		+ a + b	
	Parallel coupling - selection coupling		
		- a - b	
	Selection branching - parallel branching		
		- a - b	
	Parallel coupling - selection coupling		
		- a - b	
	Jump transition		a = Transition condition No. j = jump destination step No.
			j – jump destination step No.

Class	Name	SFC Diagram Symbol	Remarks
Transition	End step transition	a	a, b = Transition condition No. j = jump destination step No.
	Selection coupling - Jump		
	Selection coupling - Selection branching -Jump		
	Selection coupling - Selection coupling - Jump	a b j + j + j	
	Selection branching - Jump	$\begin{bmatrix} a \\ b \\ b \\ j+1 \\ j+2 \\ + \\ j+2 $	
	Selection coupling - Jump	↓ a ↓ b ↓ j ↓ j ↓ j	

4.2 Steps

Steps are the basic units for comprising a block, and each step consists of operation outputs.

• The following table indicates the number of steps that can be used in one block.

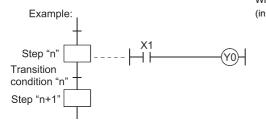
CPU module type		Maximum number of steps in one block	Maximum number of steps for all blocks
Basic model QCPU		128 steps	1024 steps
High Performance model Q	CPU	512 steps	8192 steps
Process CPU]	
Redundant CPU		1	
Universal model QCPU	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU	128 steps	1024 steps
	Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU	512 steps	16384 steps*1
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT	128 steps 512 steps	1024 steps 16384 steps ^{*2}
QnACPU		512 steps	8192 steps

*1 For the Universal model QCPU whose serial number (first five digits) is "12051" or earlier, the maximum number of steps for all blocks is 8192.

*2 For the modules whose serial number (first five digits) is "15101" or earlier, the maximum number of steps is 8192 for all blocks.

• Serial step numbers are assigned to the steps in creation order at the time of SFC program creation. The user can specify the step numbers to change them within the range of the maximum number of steps in one block. The step numbers are used for monitoring the executed step and for making a forced start or end with the SFC control instruction.

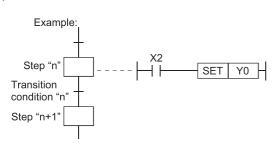
Step (without step attribute)


During processing of steps without attributes, the next transition condition is constantly monitored, with transition to the next step occurring when the condition is satisfied.

Output status after a transition to the next step

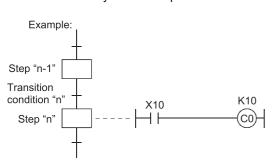
The operation output status of each step (n) varies after a transition to the next step (n + 1), depending on the instruction used.

■When the OUT instruction is used (excluding OUT C□)

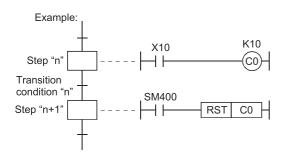

When a transition to the next step occurs and the corresponding step becomes inactive, the output turned ON by the OUT instruction turns OFF automatically. The timer also turns OFF its coil and contact and also clears its present value.

When transition condition "n" becomes satisfied at the step "n" operation output where Y0 is ON (in accordance with the OUT instruction), Y0 is automatically switched OFF.

When the SET, basic or application instruction is used

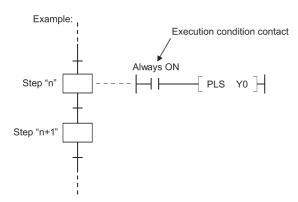

If a transition to the next step occurs and the corresponding step becomes inactive, the device remains ON or the data stored in the device is held. To turn OFF the ON device or clear the data stored in the device, use the RST instruction, etc. at another step.

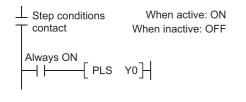
When transition condition "n" becomes satisfied at the step "n" operation output where Y0 is ON (by SET instruction), the Y0 ON status will be maintained even after the transition to step "n + 1".


■When the OUT C□ instruction is used:

• If the execution conditions for the counter at step "n" are already ON when transition condition "n" is satisfied, the counter's count will increase by 1 when step "n" becomes active.

If X10 at step n is already ON while step (n-1) is active, counter C0 counts once when execution proceeds to step n after transition condition n is satisfied.


• When a transition to the next step occurs before the reset instruction of the counter is executed, the present value of the counter and the ON/OFF status of the contact are held if the corresponding step becomes inactive. To reset the counter, use the RST instruction, etc. at another step.


When the counter (C0) is reset at step "n+1" (or subsequent step), the present value will be cleared, and the contact will be switched OFF.

PLS or DP instruction used for the operation output of any step

The PLS or \Box P instruction used for the operation output of any step is executed every time the corresponding step turns from an inactive to an active status if the execution condition contact is always ON.

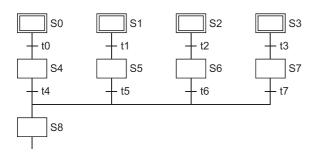
The ladder shown above is actually executed as shown below. Because the step conditions contact is ON when the step is active and OFF when the step is inactive, the PLS or \Box P instruction will be executed when the step becomes active, even though the execution condition contact is always ON.

Initial step

The initial step represents the beginning of a block. Up to 32 initial steps per block can be designated. When there are more than one initial step, the coupling enabled is only a selective coupling. Execute the initial steps in the same way as executing the steps other than the initial step.

Active steps at block START

When the block that has more than one initial step is started, the active steps change depending on the starting method as described below.


■All initial steps become active.

- · When a start is made using the block START step
- · When a start is made using the block START instruction (SET BLm) of the SFC control instructions
- · When a forced start is made using the block START/END bit of the SFC information devices

■Only the specified step becomes active.

 When any of the initial steps is specified using the step control instruction (SET BLm\Sn, SET Sn) of the SFC control instructions

Transition processing performed when multiple initial steps become active

If steps are selectively coupled in the block that has more than one active initial steps, the step immediately after the coupling becomes active if any of the transition conditions immediately before the coupling is satisfied. In the above program example, step 8 (S8) becomes active when any of transition conditions t4 to t7 is satisfied. When, after the step immediately after the coupling (S8 in the above program example) becomes active, another transition condition immediately before the coupling (any of t4 to t7 in the above program example) is satisfied, reactivation processing is performed as a follow-up function. The processing, which will be performed when another transition condition is satisfied with the step immediately after coupling being active, can be selected between STOP, WAIT and TRANSFER in the "Operation mode at transition to active step (double step START)" in the block parameter setting of the SFC setting dialog box in the Tools menu. (Immediately after 130 Operation mode at transition to active step (double step START))

Point P

For the Basic model QCPU, Universal model QCPU, and LCPU, setting of "Operation mode at transition to active step (double step START)" is not allowed. It operates in the default "TRANSFER" mode.

Operation of the initial steps with step attributes

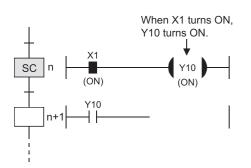
The operation of the initial steps with step attributes is the same as that of the other steps. Refer to Page 51 Coil HOLD step to Page 56 Reset step.

Dummy step

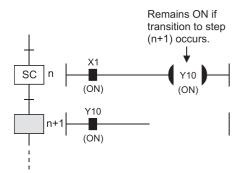
A dummy step is a waiting step, etc., which contains no operation output program.

- The transition condition following the corresponding step is always checked during execution of a dummy step, and execution proceeds to the next step when the transition condition is satisfied.
- The dummy step changes to a step (without step attribute, indication:) when an operation output program is created.

Coil HOLD step

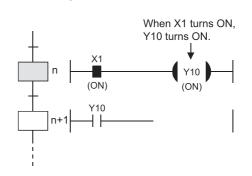

A coil HOLD step is a step where the coil output status is maintained in the transition to the next step. (The coil output is switched ON by the OUT instruction when the transition condition is satisfied.)

Coil switched ON by the OUT instruction when the transition condition is satisfied

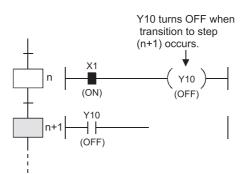

During normal SFC program operation, the coil ON status (switched ON by OUT instruction when transition condition is satisfied) is automatically switched OFF before proceeding to the next step. By designating an operation output step as a "coil HOLD step", the coil ON status will remain in effect when proceeding to the next step.

When designated as a coil HOLD step
 When designated as a coil HOLD step

1. When step n is executed

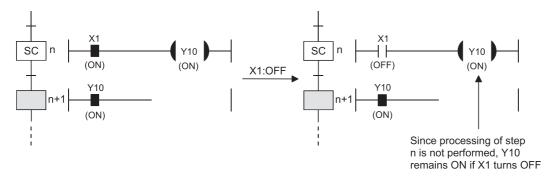


2. When a transition to step (n+1) occurs



At a designated coil HOLD step, "Y10" (switched ON by OUT instruction) will remain ON even when the transition condition is satisfied.

When not designated as a coil HOLD step
1. When step n is executed


2. When a transition to step (n+1) occurs

At steps not designated as coil HOLD steps, "Y10" (switched ON by OUT instruction) is automatically switched OFF when the transition condition is satisfied.

Ladder processing occurred after a transition to the next step

No ladder processing occurs following a transition to the next step. Therefore, the coil output status will remain unchanged even if the input conditions are changed.

Timing at coil is turned off when coil at coil HOLD step has been turned on to next step

When a coil ON status (at coil HOLD step) has been maintained to the next step, the coil will be switched OFF at any of the following times:

- When the end step of the corresponding block is executed. (Except when SM327 is ON)
- When an SFC control instruction (RST, BLm) designates a forced END at the block in question.
- When an SFC control instruction (RST, BLm\Sn, RST Sn) designates a reset at the block in question.
- When a reset occurs at the device designated as the SFC information register's block START/END device.
- When a reset step for resetting the step in question becomes active.
- When the SFC START/STOP command (SM321) is switched OFF.
- · When the coil in question is reset by the program.
- · When the STOP instruction is executed with the stop-time output mode OFF.
- When S999 is designated at the reset step in the corresponding block.

Block STOP processing

Make a block STOP using the STOP/RESTART bit of the SFC information devices or the block STOP instruction of the SFC control instructions. The processing of the active step in the block where a block STOP was made is as described below.

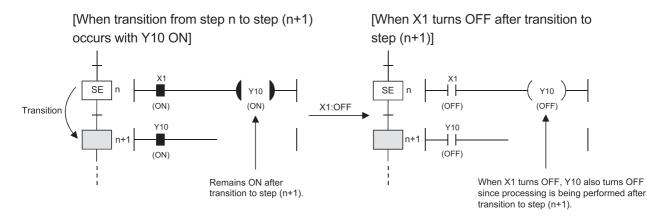
When the "block STOP-time operation output flag (SM325)" is OFF (coil output OFF)

- The step becomes inactive when the processing of the corresponding block is performed first after a block STOP request.
- All coil outputs turn OFF. However, the coils turned ON by the SET instruction remain ON.

When the "block STOP-time operation output flag (SM325)" is ON (coil output held)

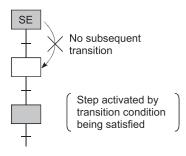
The coil outputs remain ON during a block STOP and after a block RESTART.

Precautions when designating coil HOLD steps


- When the execution condition of the PLS instruction is satisfied and the transition condition is satisfied at the same scan where the PLS instruction was executed, the device turned ON by the PLS instruction remains ON until the OFF condition in above (3) is satisfied.
- When the execution condition of the PLF instruction is satisfied and the transition condition is satisfied at the same scan where the PLF instruction was executed, the device turned ON by the PLF instruction remains ON until the OFF condition in above (3) is satisfied.
- If the count input condition turns ON/OFF after a transition to the next step, the counter does not start counting.
- When a step transition occurs after the transition condition is satisfied with the coil of the timer ON, the timer stops timing and holds the then present value.

Operation HOLD step (without transition check)

An operation HOLD step (without transition check) is a step where the operation output processing of the corresponding step continues after a transition to the next step. However, transition processing to the next step is not executed if the transition condition is satisfied again at the corresponding step.


Coil switched ON by the OUT instruction when the transition condition is satisfied

During normal SFC program operation, the coil ON status (switched ON by OUT instruction when transition condition is satisfied) is automatically switched OFF before proceeding to the next step. When an operation output step is designated as an operation HOLD step (without transition check), the corresponding step will remain active after a transition to the next step, and operation output processing will continue. Therefore, when the input condition changes, the coil status also changes.

Transition condition check after the next step becomes active

The transition conditions have been satisfied, so no transition condition check is performed after the next step becomes active. Therefore, no step transition (subsequent transition) will occur even if the transition conditions for the relevant step are satisfied again.

4.2 Steps

Timing when an operation HOLD step becomes inactive

An operation HOLD step (without transition check) becomes inactive when any of the following occur:

- When the END step of the block in question is executed.
- When an SFC control instruction (RST BLm) designates a forced END at the block in question.
- When the corresponding step is reset by the SFC control instruction (RST BLm\Sn, RST Sn). (Except when SM327 is ON)
- When the device designated as the block START/END device of the SFC information devices is reset.
- · When a reset step for resetting the step in question becomes active.
- · When "S999" is designated at the reset step in the same block.
- When the SFC START/STOP command (SM321) is switched OFF.

Block STOP processing

The following processing is performed when a block STOP request is issued to the corresponding block using the STOP/ RESTART bit of the SFC information devices or the block STOP instruction of the SFC control instructions.

■STOP status timing

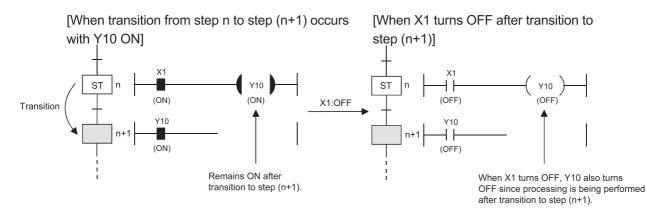
A STOP status is established after the block STOP request output occurs, and processing returns to the beginning of the block in question.

■Coil output

A coil output OFF or HOLD status will be established, depending on the output mode setting at the time of the block STOP designated in the SFC operation mode. (Page 126 Output mode at block STOP)

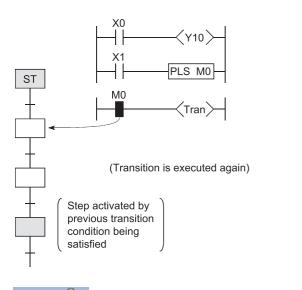
However, an ON status will be maintained for coil outputs which were switched ON by the SET instruction.

Point P


When the transition condition immediately before the corresponding step is satisfied or when the step is reactivated by a JUMP transition, a transition will occur again when the transition condition is satisfied.
Double STARTs do not apply to reactivated steps.

Operation HOLD step (with transition check)

An operation HOLD step (with transition check) is a step where the operation output processing of the corresponding step continues after a transition to the next step. When the transition condition is satisfied again at the corresponding step, transition processing to the next step (reactivation) is executed.


Coil switched ON by the OUT instruction when the transition condition is satisfied

During normal SFC program operation, the coil ON status (switched ON by OUT instruction when transition condition is satisfied) is automatically switched OFF before proceeding to the next step. When an operation output step is designated as an operation HOLD step (with transition check), the corresponding step will remain active after a transition to the next step, and operation output processing will continue. Therefore, when the input condition changes, the coil status also changes.

Transition condition check after the next step becomes active

The transition condition will be checked after the transition condition is satisfied and the next step is activated. Hence, when the transition condition of the corresponding step is satisfied again, a transition to the next step (subsequent transition) occurs to activate it. At this time, the current step remains active.

Point P

- Convert the transition conditions into pulses. If they are not pulsed, transition processing to the next step is performed every scan while the condition is satisfied.
- When a double START occurs as the transition condition was satisfied with the transition destination step being active, the processing changes depending on the parameter setting. The Basic model QCPU does not allow the parameters to be selected. It operates in the default "Transfer" mode. Refer to Figure 130 Operation mode at transition to active step (double step START) for the parameter setting and the processing performed for each setting.
- The difference between the operation HOLD step (with transition check) and the operation HOLD step (without transition check) is whether the next step will be activated or not as a follow-up when the transition condition is satisfied again.

Timing when an operation HOLD step becomes inactive

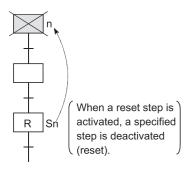
An operation HOLD step (with transition check) becomes inactive when any of the following occur:

- When the end step of the corresponding block is executed.
- When an SFC control instruction (RST BLm) designates a forced END at the block in question.
- When an SFC control instruction (RST BLm\Sn, RST Sn) designates a reset at the block in question.
- When a reset occurs at the device designated as the SFC information register's block START/END device.
- · When a reset step for resetting the step in question becomes active.
- When "S999" is designated at the reset step in the same block.
- When the SFC START/STOP command (SM321) is switched OFF.

Block STOP processing

Make a block STOP using the STOP/RESTART bit of the SFC information devices or the block STOP instruction of the SFC control instructions. The processing of the active step in the block where a block STOP was made is as described below.

When the "block STOP-time operation output flag (SM325)" is OFF (coil output OFF)


- The step becomes inactive when the processing of the corresponding block is performed first after a block STOP request.
- All coil outputs turn OFF. However, the coils turned ON by the SET instruction remain ON.

When the "block STOP-time operation output flag (SM325)" is ON (coil output held)

The coil outputs remain ON during a block STOP and after a block RESTART.

Reset step

A reset step is a step which designates a forced deactivation of another specified step (operation output). The reset step deactivates the designated step in the current block before execution of the operation output every scan. Except the deactivation of the specified step, the reset step execute the operation output with the same functions as a normal step (without step attributes).

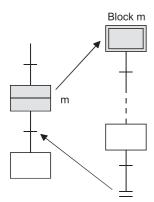
When deactivating only the designated step

Set the step number to be deactivated to the specified step number Sn.

When deactivating all the held steps

Set "999" to the specified step number Sn. When the number of the specified step is "999", the following are batchdeactivated.

- · Coil HOLD steps in the current block
- · Operation HOLD steps (without transition check)
- · Operation HOLD step (with transition check)


- Only held steps can be deactivated by the reset step. HOLD steps that are active but not held and steps that are not specified as the HOLD steps are not the targets of the reset step.
- For the Basic model QCPU, Universal model QCPU, and LCPU, a step of the CPU itself cannot be specified as a reset step.

Block START step (with END check)

A block START step (with END check) is the step where the specified block is started, and when the START destination block is then deactivated, the check of the transition condition to the next step is started.

The operation of the block START step (with END check) is described below.

- When activated, the block START step (with END check) starts the specified block.
- · No processing is performed until the START destination block is deactivated after its execution has ended.
- When the START destination block is deactivated after its execution has ended, only the transition condition check is performed.
- · When the transition condition is satisfied, a transition to the next step occurs.

Start for a single block

A simultaneous start cannot be made for a single block. The block that has already started cannot be started, either. If either of the above starts is made, the following processing is performed depending on the setting of the operation mode at block double START.

When the setting of the operation mode at block double START is "STOP"

A "BLOCK EXE. ERROR" (error code: 4620) occurs and the CPU module stops processing.

When the setting of the operation mode at block double START is the default setting of "WAIT"

Processing is not performed and waits until the START destination block ends its execution.

Point P

For the following CPU modules, the operation mode at double block START cannot be set. The operation mode at double block START is limited to the "WAIT" mode.

- Basic model QCPU
- Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCP
- · Universal model QCPU whose serial number (first five digits) is "12051" or earlier
- L02SCPU, L02SCPU-P, L02CPU, L02CPU-P
- · LCPU whose serial number (first five digits) is "15101" or earlier

Block START request

A block START request can start multiple blocks simultaneously by performing a parallel transition The steps in the simultaneously started blocks are processed in parallel.

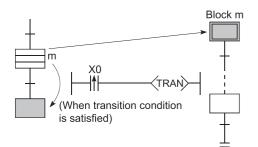
Number of concurrently active steps

The following table indicates the number of steps that can be executed simultaneously in all blocks and the maximum number of active steps in a single block.

CPU module type		Number of steps that can be executed simultaneously in all blocks	Maximum number of active steps in one block
Basic model QCPU		1024 steps	128 steps
High Performance model Q	CPU	1280 steps	256 steps
Process CPU			
Redundant CPU			
Universal model QCPU	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU	1024 steps	128 steps
	Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q50UDEHCPU, Q100UDEHCPU	1280 steps	256 steps
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P	1024 steps	128 steps
	L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT	1280 steps	256 steps
QnACPU		1280 steps	256 steps

Point P

• The block START step (with END check) cannot be described immediately before the coupling of a parallel coupling. (The block START step (with END check) cannot be used for a wait.) The block START step (without END check) can be described immediately before the coupling of a parallel coupling.


• The execution status of each block can be checked at another block using the block START/END bit of the SFC information devices or the block activation check instruction of the SFC control instructions.

Block START step (without END check)

A block START step (without END check) is the step where the specified block is started, and if the START destination block is active, the check of the transition condition to the next step is performed.

Operation of block START step (without END check)

- When activated, the block START step (without END check) starts the specified block.
- · After starting the specified block, the step performs only the check of the transition condition.
- When the transition condition is satisfied, execution proceeds to the next step without waiting for the START destination block to end.

Start for a single block

A simultaneous start cannot be made for a single block. The block that has already started cannot be started, either. If either of the above starts is made, the following processing is performed depending on the setting of the operation mode at block double START.

When the setting of the operation mode at block double START is "STOP"

A "BLOCK EXE. ERROR" (error code: 4620) occurs and the CPU module stops processing.

When the setting of the operation mode at block double START is the default setting of "WAIT"

Processing is not performed and waits until the START destination block ends its execution.

Point P

For the following CPU modules, the operation mode at double block START cannot be set. The operation mode at double block START is limited to the "WAIT" mode.

- Basic model QCPU
- Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCP
- · Universal model QCPU whose serial number (first five digits) is "12051" or earlier
- · L02SCPU, L02SCPU-P, L02CPU, L02CPU-P
- · LCPU whose serial number (first five digits) is "15101" or earlier

Block START request

A block START request can start multiple blocks simultaneously by performing a parallel transition The steps in the simultaneously started blocks are processed in parallel.

Number of steps that can be executed simultaneously

The following table indicates the number of steps that can be executed simultaneously and the maximum number of HOLD steps in a single block.

		Number of steps that can be executed simultaneously	Maximum number of HOLD steps in one block
Basic model QCPU		1024 steps	128 steps
High Performan	ice model QCPU	1280 steps	256 steps
Process CPU			
Redundant CPL	J		
Universal	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU	1024 steps	128 steps
model QCPU	Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU	1280 steps	256 steps
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT	1024 steps 1280 steps	128 steps 256 steps
QnACPU		1280 steps	256 steps

Point

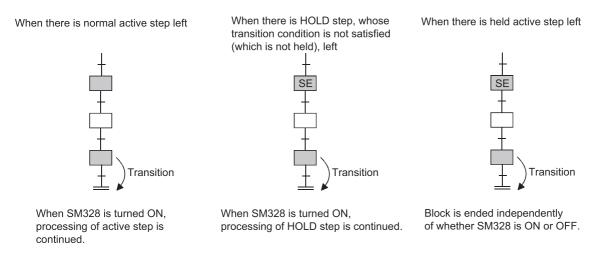
The execution status of each block can be checked at another block using the block START/END bit or the block activation check instruction of the SFC control instructions.

End step

An end step indicates that a series of processings in the corresponding block is all ended.

Operation of end step

When the end step is reached, the following processing is performed to end the block.

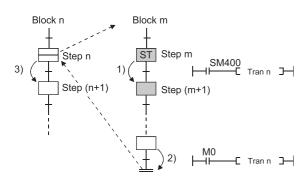

- All steps in the block are deactivated. (The held step are also deactivated.)
- The coil outputs turned ON by the OUT instruction are all turned OFF. When the special relay for output mode at end step execution (SM327) is ON, however, the coil outputs of the held steps all remain ON.

Point P

- SM327 is valid only when the end step is reached. When a forced end is made by the block END instruction, etc., the coil outputs of all steps are turned OFF.
- SM327 is valid for only the HOLD steps being held. The outputs of the HOLD steps that are not held as the transition conditions are not satisfied are all turned OFF.

Continuing execution of active step

When the special relay for clear processing mode at arrival at end step (SM328) is turned ON, the execution of the active step other than the one held in the block can be continued when the end step is reached. (The block is not ended if the end step is executed.) However, when there is only the held step left in the block at arrival at the end step, the held step is deactivated and the block ends if SM328 is ON.


Point P

For the Basic model QCPU, Universal model QCPU, and LCPU, SM328 can be used to continue execution of active steps other than the one held in the block.

Precautions to be taken when SM328 is turned ON

The following gives the precautions to be taken when SM328 is turned ON

- When there is only the held step left at arrival at the end step, that held step is deactivated if SM328 is ON. When the user does not want to turn OFF the coil output of the held step suddenly, it can be prevented by turning ON SM327.
- If a block is started at the block START step when SM328 is ON, execution returns to the source as soon as there are no non-held active steps in the block.
- · Do not describe an always satisfied transition condition immediately after the operation HOLD step (with transition check).

(1) Since the transition condition is always satisfied, step (m+1) remains an active step (non-held active status).
(2) If M0 turns ON and the transition condition is satisfied, block m cannot be ended.
(3) Since block m is not ended, execution cannot proceed to step (n+1).

Point P

- When the transition condition immediately after the operation HOLD step (with transition check) is always satisfied, the next step is kept in a "non-held active status". Therefore, the block cannot be ended when SM328 is ON. Further, if this block has been started at the block START step (with END check), processing cannot be returned to the START source step.
- When it is desired to describe an always satisfied transition condition immediately after the operation HOLD step (with transition check), make provision so that the block can be forcibly ended from outside.

Restart after end step execution

After end step execution, a restart is performed as described below.

Block No.		Restarting Method
Block 0	START condition of block 0 is set to "Auto START ON" in the SFC setting of the PLC parameter dialog box	Execution automatically returns to the initial step again, and processing is executed repeatedly.
	START condition of block 0 is set to "Auto START OFF" in the SFC setting of the PLC parameter dialog box	 A restart is made when any of the following is executed. When another START request is received from another block (when the block START step is activated)
All blocks other than block 0		 When the block START instruction of the SFC control instructions is executed When the block START/END bit of the block information devices is forcibly turned ON

Instructions that cannot be used with operation outputs

Class **Instruction Code** Symbol Function MC ND No.1_D Master control MC Master control set MCR MCR ND Master control reset End FEND FEND Main routine program end END END Sequence program end Program branch CJ CJ PD Conditional jump*3 Delayed jump*3 SCJ SCJ PD .IMP Unconditional jump*3 GOEND Jump to END GOEND Program control IRET IRET Return from interrupt program*4 Structuring BREAK BREAK (d) PD Repetitive forced end RET Return from subroutine RET Debugging troubleshooting (The Basic CHKST CHKST CHK instruction start model QCPU, Universal model QCPU, СНК СНК Specific format error check and LCPU do not support the CHKCIR CHKCIR Check pattern change start function.) CHKEND CHKEND Check pattern change end SFC dedicated instruction SFCP SFCP SFC program start SFCPEND SFCPEND SFC program end BI OCK SFC block start BLOCK (s) BEND BEND SFC block end STEP?*1 STEP? (s)*1 SFC step start TRAN?*2 TRAN? (s)*2 SFC transition start TAND TAND (s) SFC coupling check TSET TSET (s) SFC transition destination designation SEND SEND SFC step end

The following table lists instructions that cannot be used with operation outputs.

*1 ? = N, D, SC, SE, ST, R, C, G, I, ID, ISC, ISE, IST, IR

*2 ? = L, O, OA, OC, OCA, A, C, CA, CO, COC

*3 Label P cannot be used, either.

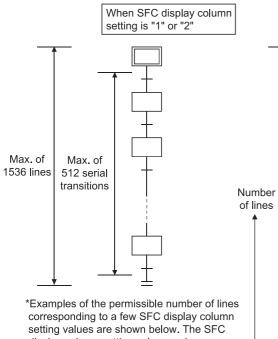
*4 Label I cannot be used, either.

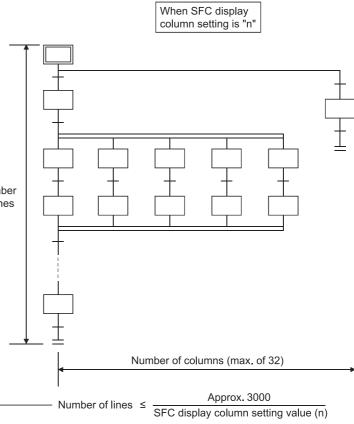
4.3 Transition

A transition is the basic unit for comprising a block, and is used by specifying a transition condition. A transition condition is a condition for execution to proceed to the next step, and execution proceeds to the next step when the condition is satisfied.

Туре	Function Outline
Serial transition	When the transition condition is satisfied, execution proceeds from the current step to the subsequent step.
Selection transition (branch/ coupling)	A single step branches out into multiple transition conditions. Among those multiple transition conditions, execution proceeds to only the step in the line where the transition condition is satisfied first.
Parallel transition (branch/ coupling)	Execution simultaneously proceeds to all multiple steps that branch from a single step. When all steps immediately before a coupling are activated, execution proceeds to the next step when the common transition condition is satisfied.
Jump transition	When the transition condition is satisfied, execution proceeds to the specified step in the same block.

Serial transition

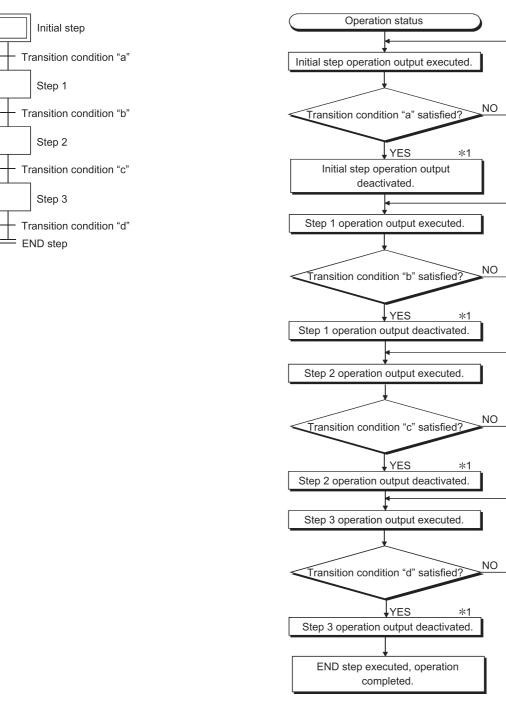

"Serial transition" is the transition format in which processing proceeds to the step immediately below the current step when the transition condition is satisfied.


When transition condition "b" becomes satisfied at step "n" (operation output [A]) execution, operation output [A] will be deactivated, and processing will proceed to step "n+1" (operation output [B]).

Step "n" (operation output [A]) Transition condition "b" Step "n+1" (operation output [B])

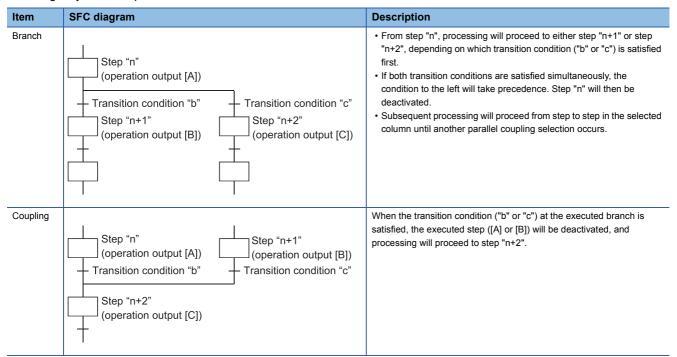
A maximum of 512 serial transition steps can be described in each block.^{*1} Therefore, a maximum of 512 serial transitions (+) can be described. However, there is a restriction on the number of lines as indicated below depending on the SFC display column setting.

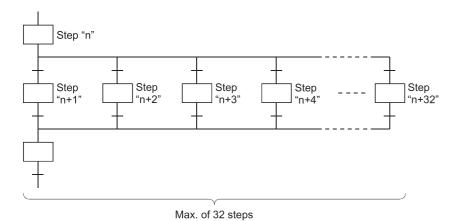
*1 128 for the Basic model QCPU, Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, L02SCPU, L02SCPU-P, L02CPU, and L02CPU-P.



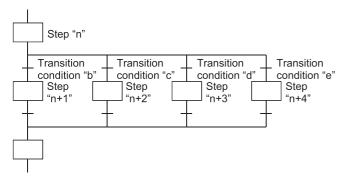
*Examples of the permissible number of lines corresponding to a few SFC display column setting values are shown below. The SFC display column setting value can be designated freely within a 1 to 32 range.

SFC Display Column setting	Number of Lines Possible
1/2	1536
8	384
16	192
22	138
28	108
32	96

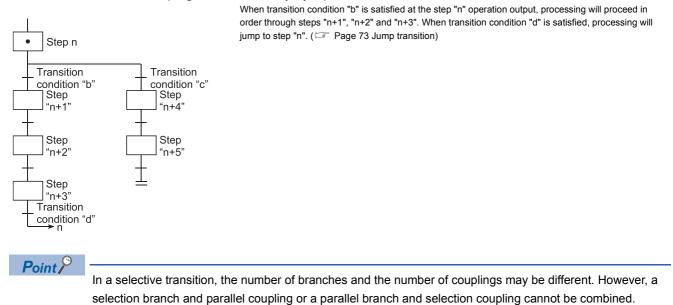

The following flow chart describes the operating status of the series sequence.


*1 For steps with attribute designations, processing occurs in accordance with the attributes.

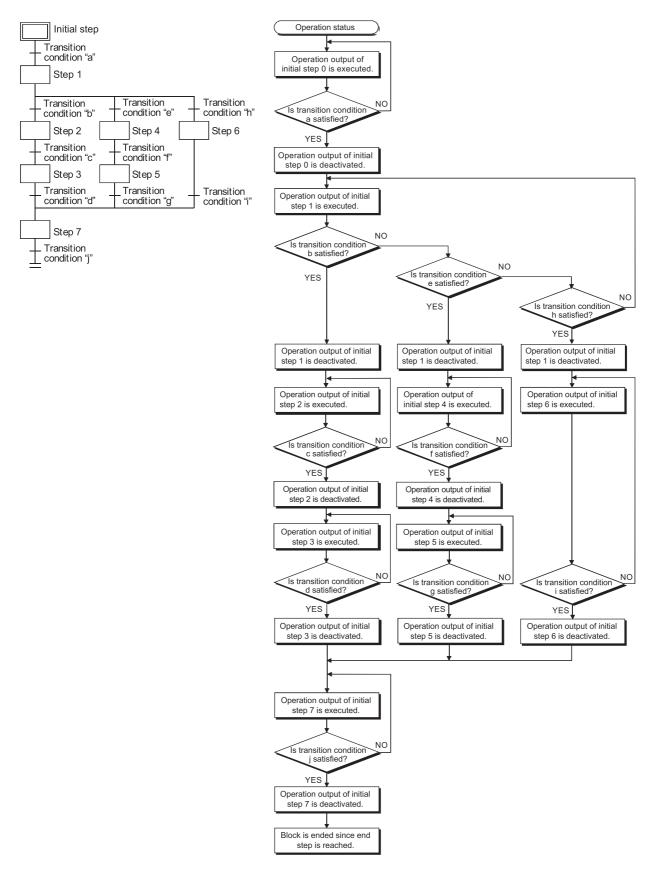
Selection transition


A "selection transition" is the transition format in which several steps are coupled in a parallel manner, with processing occurring only at the step where the transition condition is satisfied first.

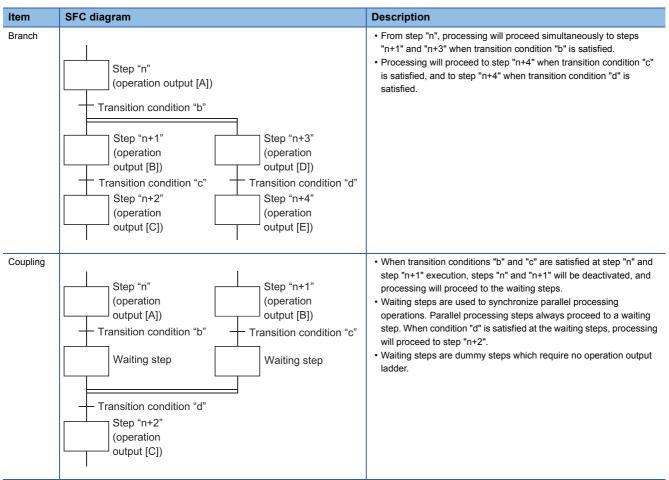
Up to 32 steps can be available for selection in the selection transition format.



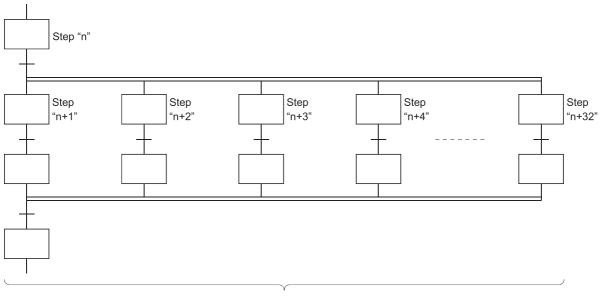
When two or more selection step transition conditions are satisfied simultaneously, the left-most condition will take precedence.


If transition conditions "c" and "d" are satisfied simultaneously, the step "n+2" operation output will be executed.

In a selection transition, a coupling can be omitted by a jump transition or end transition.

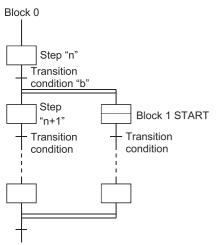

4

The following flow chart describes the operating status of the selective sequence.



Parallel transition

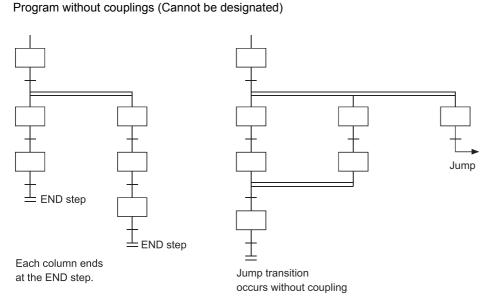
"Parallel transition" is the transition format in which several steps linked in parallel are processed simultaneously when the relevant transition condition is satisfied.



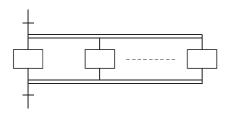
Up to 32 steps can processed simultaneously with the parallel transition format.

Up to 32 steps

If another block is started by the parallel processing operation, the START source block and START destination block will be executed simultaneously. (In the example below, processing from step "n+1" will be executed simultaneously with block 1.)

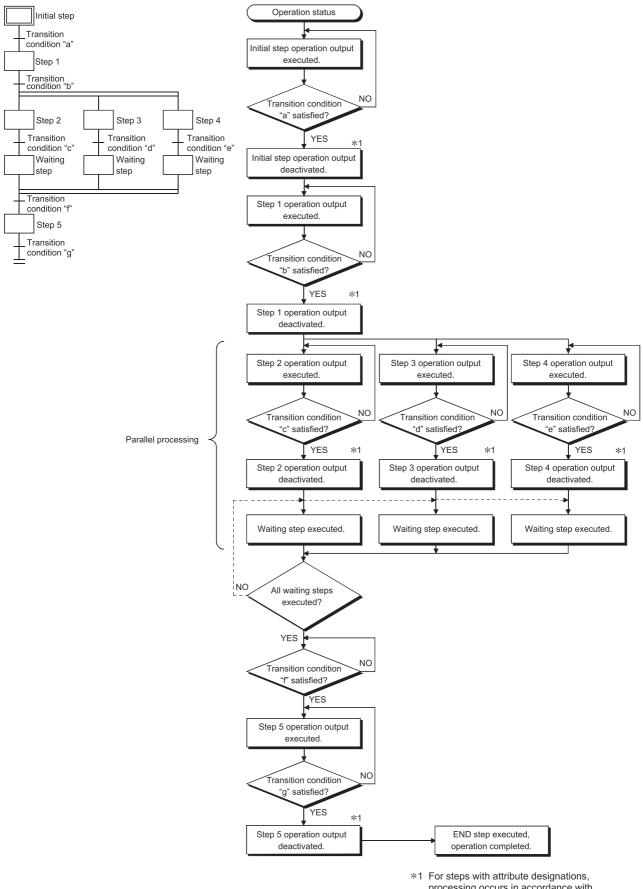


When condition "b" is satisfied at step "n" execution, processing will proceed to step "n+1" and block 1 will be started. Blocks "0" and "1" will then be processed simultaneously.


The following table indicates the number of steps that can be executed simultaneously in all blocks and the maximum number of active steps in a single block. If the number of simultaneously processed steps exceeds the value in the following table, an error occurs and the CPU module stops processing.

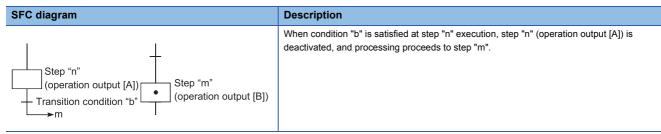
CPU module	type	Number of steps that are processed simultaneously	Maximum number of active steps in one block
Basic model QC	asic model QCPU		128 steps
High Performant	ce model QCPU	1280 steps	256 steps
Process CPU			
Redundant CPU			
Universal	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU	1024 steps	128 steps
model QCPU	Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU	1280 steps	256 steps
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P	1024 steps	128 steps
	L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU- PBT	1280 steps	256 steps
QnACPU	•	1280 steps	256 steps

Couplings must be provided when the parallel transition format is used. Program creation is impossible without couplings.



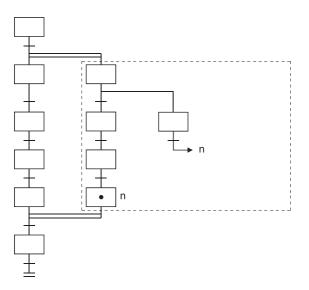
As a rule, a waiting step must be created prior to the coupling. However, in cases such as the example below where each of the parallel transition columns consist of only 1 step (program without a transition condition between the parallel transition branch and the coupling), a waiting step is not required.

Ex.

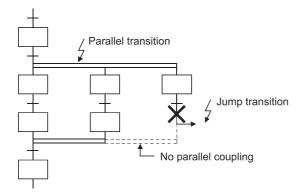

The following flow chart describes the operating status of the simultaneous sequence.

For steps with attribute designations, processing occurs in accordance with the attributes.

Jump transition


A "jump transition" is a jump to a specified step within the same block which occurs when the transition condition is satisfied.

There are no restrictions regarding the number of jump transitions within a single block.

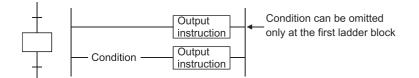

In the parallel transition format, only jumps in the vertical direction are possible at each of the branches.

A program of a jump transition to another vertically branched ladder, a jump transition for exiting from a parallel branch, or a jump transition to a parallel branch from outside a parallel branch cannot be created.

Program for exiting from parallel branch (cannot be designated)

Do not specify a jump transition to the current step when the transition condition is satisfied as shown below.

Ex.

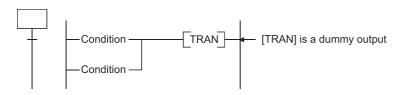

Precautions when creating sequence programs for operation outputs (steps) and transition conditions

The points to consider when creating operation output (step) and transition condition sequence programs are described below.

Sequence program for operation outputs (steps)

■Step sequence program expression format

A step sequence program using the ladder expression format is shown below.


Point P

The lack of a sequence program at a given step will not result in an error. In such cases, no processing will occur until the transition condition immediately following the step in question is satisfied.

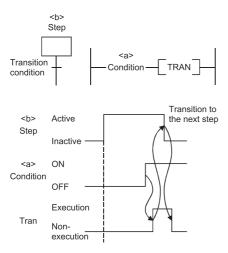
Sequence program for transition condition

■Transition condition sequence program expression format

A transition condition sequence program using the ladder expression format is shown below.

■Instructions used

Instructions which can be used in a transition condition sequence program are listed below.


 \bigcirc : Usable, \times : Unusable

Class	Instructi	Symbol	Function	CPU Module T	уре	
	on Code			Basic model QCPU	High Performance Model QCPU, Process CPU, QnACPU	Universal model QCPU, LCPU
Contacts	LD AND OR		Operation START (N/O contact) Serial connection (N/O contact) Parallel connection (N/O contact)	0	0	0
	ldi Ani Ori		Operation START (N/C contact) Serial connection (N/C contact) Parallel connection (N/C contact)	0	0	0
Contacts	LDP ANDP ORP		Leading edge pulse operation START Leading edge pulse serial connection Leading edge pulse parallel connection	0	0	0
	LDF ANDF ORF		Trailing edge pulse operation START Trailing edge pulse serial connection Trailing edge pulse parallel connection	0	0	0
Coupling	ANB ORB	_	Ladder block serial connection Ladder block parallel connection	0	0	0
	INV		Operation result inversion	0	0	0
	MEP MEF	\$	Operation results converted to leading edge pulse (step memory) Operation results converted to trailing edge pulse (step memory)	0	0	0
	EGP EGF		Operation results converted to leading edge pulse (memory) Operation results converted to trailing edge pulse (memory)	0	0	0

Class	Instructi	Symbol	Function	CPU Module	Гуре	
	on Code			Basic model QCPU	High Performance Model QCPU, Process CPU, QnACPU	Universal model QCPU, LCPU
Comparison operation	LD□ AND□ OR□	LD□ (s1) (s2) AND□ (s1) (s2) OR□ (s1) (s2) □ (=, <>, >, >=, <, <=)	BIN16 bit data comparison	0	0	0
	LDD□ ANDD□ ORD□	LDD□ (s1) (s2) ANDD□ (s1) (s2) ORD□ (s1) (s2) □ (=, <>, >, >=, <, <=)	BIN32 bit data comparison	0	0	0
	LDE□ ANDE□ ORE□	LDE□ (s1) (s2) ANDE□ (s1) (s2) ORE□ (s1) (s2) □ (=, <>, >, >=, <, <=)	Floating decimal point data comparison	0	0	0
	LDED ANDED ORED	LDED□ (s1) (s2) ANDED□ (s1) (s2) ORED□ (s1) (s2) □ (=, <>, >, >=, <, <=)	Floating decimal point data comparison	×	×	0
	LD\$□ AND\$□ OR\$□	LD\$□ (s1) (s2) AND\$□ (s1) (s2) OR\$□ (s1) (s2) □ (=, <>, >, >=, <, <=)	Character string data comparison	×	0	0

Point P

When using the leading edge pulse instructions mentioned below for the execution condition (<a> on the right) of "Tran" instruction on the transition condition, the "Tran" instruction becomes conductive only when the condition of the leading edge pulse instruction turns from OFF to ON after the step (on the right) that is associated with the transition condition becomes active. As described in the following time chart, "Tran" instruction is executed and the active step moves to the next step. (Leading edge pulse instruction: LDP, ANDP, ORP, MEP, and EGP)

- When the execution condition (<a> on the right) of "Tran" instruction on the transition condition has been turned ON before the step (on the right) becomes active, the "Tran" instruction does not become conductive and the active step does not move to the next step.
- When using the leading edge pulse instruction mentioned above for the execution condition (<a> on the right) of "Tran" instruction, specify a device whose condition turns from OFF to ON after the step (on the right) becomes active.

4.4 Controlling SFC Programs by Instructions (SFC Control Instructions)

SFC control instructions can be used to check a block or step operation status (active/inactive), or to execute a forced START or END, etc.

An normal SFC program can be controlled by SFC control instructions in a sequence program and SFC program.

(A program execution management SFC program cannot be controlled by using SFC control instructions.)

The types and functions of the SFC control instructions will be described.

Name	Ladder Expression		Function	CPU Module Type			
				Basic model QCPU	High Performance Model QCPU, Process CPU, Redundant CPU, QnACPU	Universal model QCPU, LCPU	
Step operation status check instruction 0	LD, AND, OR, LDI, ANI, ORI LD, AND, OR, LDI, ANI, ORI	Sn ^{*1} BLm\Sn	Checks a specified step in a specified block to determine if the step is active or inactive.	0	0	0	
Forced transition check instruction	LD, AND, OR, LD, AND, OR, LD, AND, OR, LD, AND, OR, LDI, ANI, ORI	TRn ^{*1} BLn\TRn	Checks a specified step in a specified block to determine if the transition condition (by transition control instruction) for that step was satisfied forcibly or not.	×	0	×	
Block operation status check instruction	LD, AND, OR, LDI, ANI, ORI	BLm	Checks a specified block to determine if it is active or inactive.	0	0	0	
Active steps batch readout instruction	MOV(P) K4Sn (d)*1 MOV(P) BLm\K4Sn (DMOV(P) K8Sn (d)*1 DMOV(P) BLm\K8Sn BMOV(P) K4Sn (d) K BMOV(P) BLm\K4Sn	(d) /n*1	Active steps in a specified block are read to a specified device as bit information.	0	0	0	
Block START instruction	SET BLm		A specified block is forcibly started (activated) independently and is executed from an initial step.	0	0	0	
Block END instruction	RST BLm		A specified block is forcibly ended (deactivated).	0	0	0	
Block STOP instruction	PAUSE BLm		A specified block is temporarily stopped.	0	0	0	
Block restart instruction	RSTART BLm		The temporary stop status at a specified block is canceled, with operation resuming from the STOP step.	0	0	0	
Step START instruction	SET Sn ^{*1} SET BLm\Sn		A specified block is forcibly started (activated) independently and is executed from a specified step.	0	0	0	

Name	Ladder Expression	Function	CPU Modu	le Type	
			Basic model QCPU	High Performance Model QCPU, Process CPU, Redundant CPU, QnACPU	Universal model QCPU, LCPU
Step END instruction	RST Sn ^{*1}	A specified step in a specified block is forcibly ended (deactivated).	0	0	0
	RST BLm\Sn				
	SCHG (d) ^{*2}	The instruction execution step is deactivated, and a specified step is activated.	×	0	×
Transition control	SET TRn ^{*1}	A specified transition condition at a	×	0	×
instruction	SET BLm\TRn	specified block is forcibly satisfied.			
	RST TRn ^{*1}	The forced transition at a specified	×	0	×
	RST BLm\TRn	transition condition in a specified block is canceled.			
Block switching instruction	BRSET (s)	Blocks subject to the "*1" SFC control instruction are designated.	×	0	O ^{*3}

○: Usable, ×: Unusable

*1 In a sequence program, block 0 is the instruction execution target block.

In an SFC program, the current block is the instruction execution target block.

The instruction execution target block can be changed with the block switching instruction (BRSET).

Note, however, that the following CPU modules cannot use the BRSET instruction.

Basic model QCPU

Universal model QCPU whose serial number (first five digits) is "13101" or earlier

LCPU

*2 Can be used at the step of an SFC program.

An error occurs if it is executed in a sequence program other than an SFC program.

- *3 The Universal model QCPU whose serial number (first five digits) is "13102" or later can execute this instruction.
- Point P

• Either of the following errors occurs if the SFC control instruction is executed from the sequence program when the special relay for SFC program start/stop (SM321) is OFF.

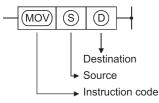
Instruction that specifies a block: BLOCK EXE. ERROR (error No.: 4621)

Instruction that specifies a step: STEP EXE. ERROR (error No.: 4631)

• Do not use the SFC control instructions in interrupt programs or fixed scan execution type programs. If used, operation of the SFC program cannot be guaranteed.

Index modification of SFC block (BL) and step relay (S)

The SFC block (BL) and step relay (S) in the High-speed Universal model QCPU and Universal model Process CPU can be index-modified within the following range. Note that the range will be S0 to S511 when the step relay (S) in SFC blocks is index-modified.


- BL0 to BL319 for the SFC block (BL)
- Range that is set in the Device tab of the PLC parameter dialog box for the step relay (S)

How to read tables for the instructions

The following table is used in the explanations of the various instructions. The table contents are described below.

	Internal Device (System, User)	File Link Direct Register R		t J⊡\⊡ Intelligent Function Module		Index Z	Constant K, H	Expansion SFC BLm\Sn	Other	
	Bit	Word		Bit	Word	UD\GD				
;)	0	-					·	-	0	-
)	0	1						-	-	-
)						0				
	Data Ty	pe		Using Instruc		9	Execution		Tra	nsition
	Data Ty	pe	Programs Sequence Program	-	Program	Transition Condition	Execution	n Site Step		nsition ndition
	Data Ty BIN16/BI		Sequence	SFC	Program	Transition				
)			Sequence Program	SFC Step	Program	Transition Condition	Block	Step	Co	

1 Ladder symbols are indicated in this area.

Destination: Indicates where data will be sent after operation.

Source: Stores data prior to operation.

2 Usable devices are indicated at this area.

• Devices indicated by a circle mark (\bigcirc) can be used with the instruction in question.

The device application classifications are shown below.

Device Class	Internal (System, User)		File Register R	Link Direct Jロ\ロ		Intelligent Function	Index ZD	Expansion SFC	Constant	Other
	Bit	Word		Bit	Word	Module U⊟\G⊡				
Usable devices	FX, FY, S, SM, X, Y, M, L, F, V, B, T, C, SB	A, VD, SD, T, C, D, W, SW, FD, ST	R, ZR	J_\X J_\Y J_\B J_\SB	J⊡\W J⊡\SW	UD\GD	Z	BLm\Sn BLm\TRn	Decimal hexadecimal real number constant character string constant	P, I, J, U, DX, DY, N, BL, TR, BL\S

- When a device name is indicated in the "constant", "expansion SFC", or the "other" column, only that device may be used.
- Ex.

If "K, H" is indicated in the "constant" column

Only a decimal (K) or hexadecimal (H) constant may be used.

Real number constants (E) and character string constants (\$) may not be used.

- 3 The data type for the designated device is indicated here.
- Bit: Indicates a bit data operation.
- BIN16: Indicates 16-bit binary value processing (1 word used).
- BIN32: Indicates 16-bit binary value processing (2 words used).
- · Character string: Indicates character string processing (Variable number of words).
- Device: Indicates device name and first device processing (Variable number of words).
- The type of program which can be used with the instruction in question is indicated here.
- **6** The request destination for the instruction in question is indicated here.

Step operation status check instruction (LD, LDI, AND, ANI, OR, ORI) [Sn/BLm\Sn]

QCPU						QnA	Q4AR
Programmable controller CPU			Process CPU	Redundant			
Basic	High Performance	Universal		CPU			
*1	0	0	0	0	0	0	0

*1 The serial number (first five digits) shall be 04122 or later.

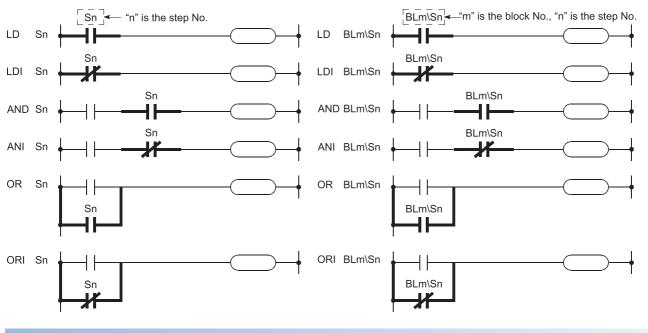
	Internal device (System, User)	File Register R	Link Dire	ect J⊡∖⊡	Intelligent Function Module U□\G□	Index Z	Constant K, H	Expansion SFC BLm\Sn	n Others	
	Bit	Word		Bit	Word					
(s)	○*2 —			·			•	_	0	-
	Data Typ	9	Programs Using	Instructions			Execution Site			
			Sequence	SFC Pro	gram		Block	Step		ansition
		Program	Step		Transition Condition			Co	ondition	

0

*2 Only step relay (S) can be used

Device name

(s)


[When step in current block is specified]

0

0

[When step in another block is specified] [When step is specified in sequence program]

0

Function

- · Checks a specified step in a specified block to determine if the step is active or inactive.
- The contact status changes as described below depending on whether the specified step is inactive or active.

	Contact of N/O Contact Instruction	Contact of N/C Contact Instruction		
Inactive	OFF	ON		
Active	ON	OFF		

· Specify the step as described below.

Item	Description
In the case of SFC program	Use "Sn" when specifying the step in the current block.
	Use "BLm\Sn" when specifying the step in another block in the SFC program.
In the case of sequence program	Use "BLm\Sn" when executing the step activation check instruction.
	When the block number is not specified, specify the block number with the BRSET instruction.*1

*1 Note that the following CPU modules cannot use the BRSET instruction. When no block number is specified, the block 0 is set. · Basic model QCPU

 \cdot Universal model QCPU whose serial number (first five digits) is "13101" or earlier

· LCPU

• If the step does not exist in the SFC program is specified, the contact remains OFF.

Point P

- As the "Sn" device is treated as a virtual device, the contact on the monitor of a peripheral device does not turn ON/OFF. If the internal device is ON, the coil instruction is switched ON for operations.
- In the High-speed Universal model QCPU and Universal model Process CPU, the number of steps in the step activation check instruction increases by one step from that in the QnUDE(H)CPU.

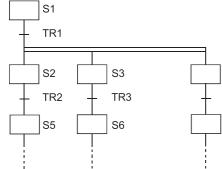
Program example

• The following program checks the status of step 5 in block 3 and turns ON Y20 when step 5 becomes active. When step is designated by operation output of block 3

S5

S5	5					
11	I			(V20	
				(<u></u>	

When step is designated by operation output of other than block 3 or sequence program


S4

TR4

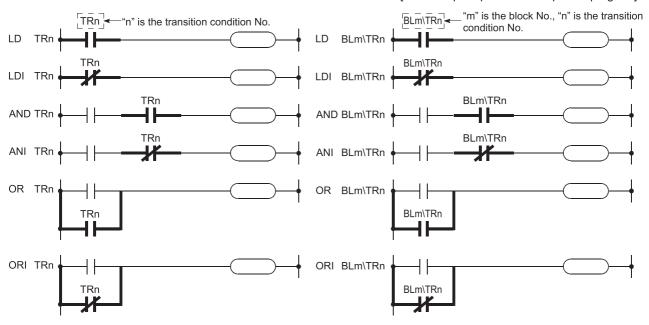
S7

• The following program executes a step synchronously with another step of a parallel branch.

When synchronizing transitions from S2 to S5, from S3 to S6, and from S4 to S7, describe the following program at TR3 and TR4.

TRAN

SFC control instructions


- Block switching instruction (BRSET): See Page 106 Block switching instruction (BRSET).
- Step control instruction (SCHG): See Page 105 Active step change instruction (SCHG).
- Active step batch readout instruction (MOV(P), DMOV(P), BMOV(P)): See Page 87 Active step batch readout (MOV and DMOV) and Page 90 Active step batch readout (BMOV).

Forced transition check instruction (LD, LDI, AND, ANI, OR, ORI) [TRn/BLm\TRn]

QC	PU									LCPU	Qr	۱A	Q4AR
Pro	grammabl	e contro	ller (CPU			Process CPU	Redundant					
Bas	Basic H		High	Performance	Universa	I		CPU					
×	× O			×		0	0		×	0		0	
	Usable D	evices											
	Internal device (System, User)			File Register R	Link Direct Jロ\ロ		Intelligent Function Module U□\G□	Index ZD	Constant K, H		Expansion SFC BLm/ TRn		Other TRn
	Bit	Word			Bit	Word							
(s)	—	•					·		—		0		0
	Data Typ	e		Programs Using	Instructio	ns		Execution	Site				
			Ē	Sequence	SFC Prog	gram		Block		Step		Trans	sition
	Program		Step		Transition Condition					Conc	Condition		
(s)	Device nan	ne		0	0		0	—		-		0	

[When step in current block is specified]

[When step in another block is specified] [When step is specified in sequence program]

Function

- Checks whether or not the specified transition condition of the specified block is specified for forced transition by the forced transition EXECUTE instruction (SET BLm\TRn).
- The contact status changes as described below depending on whether the specified transition condition is specified for a forced transition or not.

	Contact of N/O Contact Instruction	Contact of N/C Contact Instruction
When specified for forced transition	ON	OFF
When not specified for forced transition	OFF	ON

· Specify the transition as described below.

Item	Description
In the case of SFC program	Use "Sn" when specifying the step in the current block.
	Use "BLm\Sn" when specifying the step in another block in the SFC program.
In the case of sequence program	Use "BLm\Sn" when executing the step activation check instruction.
	When the block number is not specified, specify the block number with the BRSET instruction.

• If the transition condition in question does not exist in the SFC program, it will remain OFF.

Program Examples

• The following program turns ON Y20 when transition condition 5 of block 3 is specified for a forced transition. When transition condition is designated by operation output of block 3

TR5		
		(V20)
		120

When transition condition is designated by operation output of other than block 3 or sequence program

BL3\1	TR5	1
		(Y20)-
	l	(120)

■Related Instructions

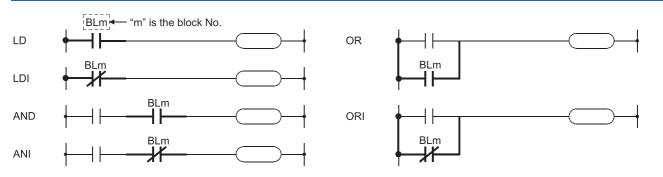
SFC control instructions

- Transition control instructions (SET TRn, SET BLm\TRn): See Page 103 Forced transition EXECUTE & CANCEL instructions (SET, RST) [TRn/BLm\TRn].
- Transition control instructions (RST TRn, RST BLm\TRn): See Page 103 Forced transition EXECUTE & CANCEL instructions (SET, RST) [TRn/BLm\TRn].
- Block switching instruction (BRSET): See Page 106 Block switching instruction (BRSET).

This instruction checks, from the first sequence step of the specified block in series, whether or not the specified transition condition number is existed.

Because of this, processing time of the instruction differs depending on the program capacity of the specified block (number of sequence steps), a maximum of hundred and several tens ms may be taken.

In case of occurring WDT error (error code: 5001), change the WDT setting value with the PLC RAS setting in the PLC parameter.


Block operation status check instruction (LD, LDI, AND, ANI, OR, ORI) [BLm]

QCPU	LCPU	QnA	Q4AR				
Programmable contr	Programmable controller CPU Process CPU Redundant						
Basic		CPU					
^{*1}	0	0	0	0	0	0	0

*1 The serial number (first five digits) shall be 04122 or later.

		Usable De	evices								
	Internal device (System, User)			File Register R	Link Direct J□\□		Intelligent Function Module U囗\G囗	Index Z	Constant K, H	Expansion SFC	Other BLm
		Bit Word Bit Word									
(:	s)							—	-	0	

	Data Type	Programs Using	Instructions	Execution Site			
		Sequence	SFC Program		Block	Step	Transition
		Program	Step	Transition Condition			Condition
(s)	Device name	0	0	0	0	—	—

Function

· Checks whether the specified block is active or inactive.

· The contact status changes as described below depending on whether the specified block is active or inactive.

Block Status	Contact of N/O Contact Instruction	Contact of N/C Contact Instruction		
Active	ON	OFF		
Inactive	OFF	ON		

• The contact is always OFF if the block that does not exist in the SFC program is specified.

Point P

• As the "BLm" device is treated as a virtual device, the contact on the monitor of a peripheral device does not turn ON/OFF. If the internal device is ON, the coil instruction is switched ON for operations.

• In the High-speed Universal model QCPU and Universal model Process CPU, the number of steps in the step activation check instruction increases by one step from that in the QnUDE(H)CPU.

Program example

• The following program turns ON Y20 when block 3 is active.

BL	_3	

■Related Instructions

SFC control instructions

 Block START instruction (SET BLm), block END instruction (RST BLm): See Page 94 Block START & END instructions (SET, RST) [BLm].

SFC diagram symbols

• Block START step (☐ m, ☐ m): See Page 57 Block START step (with END check) and Page 58 Block START step (without END check).

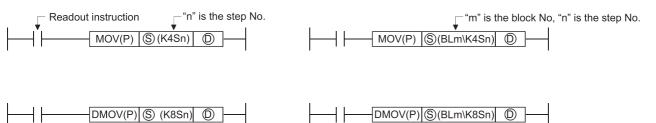
SFC information device

• Block START/END bit: See Page 109 Block START/END bit.

Active step batch readout (MOV and DMOV)

QCPU						QnA	Q4AR
Programmable contr	oller CPU	Process CPU	Redundant				
Basic	High Performance	Universal		CPU			
* 1	0	0	0	0	0	0	0

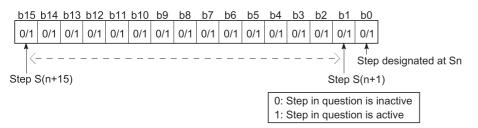
*1 The serial number (first five digits) shall be 04122 or later.


	Usable D	Usable Devices									
	Internal device (System, User)		File Register R	Link Direct J□\□		Intelligent Function Module UD\GD	Index ZD	Constant K, H	Expansion SFC BLm\Sn	Others	
	Bit	Word	-	Bit	Word	_					
(s)	O ^{*2}	—		•	-			—	0	_	
(d)	0								—	_	

	Data Type	Programs Using	Instructions	Execution Site						
		Sequence	SFC Program		Block	Step	Transition Condition			
		Program	Step	Transition Condition						
(s)	BIN16/BIN32	0	0	—	—	0	—			
(d)										

*2 Only step relay (S) can be used

[When step in current block is specified]


[When step in another block is specified] [When step is specified in sequence program]

Function

• Executes a batch readout of the operation statuses (active/inactive) of steps in a specified block.

• The readout results are stored at the "(d)" device as shown below.

4

• The bit corresponding to the unassigned step No. (nonexistent step No.) in the read data turns to "0". When step 5 and step 8 do not exist in the read block, b5 and b8 turn to "0".

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
D	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	
esponding step No.	S15	S14	S13	S12	S11	S10	S9	None	S7	S6	None	S4	S3	S2	S1	S0	

• When the block is not specified, specify the step number with which the read data range does not exceed the maximum step No. in the block.

Item	Description																	
If the maximum number of steps is exceeded	data will be undefi undefined.	ned. F	or ex	ample	e, whe	en the	last s	step o	f the I	block	to be	read	is ste	o 10 (S10),	data	in b11 to	15 will be
		b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
	D	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
	Corresponding step No.	S4	S3	S2	S1	S0	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0	
		-	Und	efinec	l data		-		Inf	orma	tion of	fcorre	espon	ding t	olock			
When the block has been specified	"0" is stored into th 10 (S10).	ne ren	nainin	g bits	. Whe	n blo	ck 1 is	spec	ified,	"0" is	store	d into	B11 ·	- 15 if	the la	ast ste	p of bloo	k 1 is step
		b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
	D	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
	Corresponding step No.	• 0 i	s stor	ed int	o all t	oits. ▶	S10	S9	S8	S7 Ir	S6 Iforma	S5 Ition c	S4 of bloc	S3 k 1	S2	S1	S0	

- In the activation step batch read instruction, do not specify a nonexistent block/step. An error will not occur if a nonexistent block/step is specified. However, the read data are undefined. The OPERATION ERROR (error code: 4101) will occur in the Universal model QCPU and LCPU if a nonexistent step is specified when the block specification is not performed.
- · Specify the step as described below.

Item	Description
In the case of SFC program	Use "K4Sn" when specifying the step in the current block.
	Use "BLm\K4Sn" when specifying the step in the SFC program.
In the case of sequence program	Use "BLm\K4Sn" when executing the step activation check instruction.
	When the block number is not specified, specify the block number with the BRSET instruction.*1

*1 Note that the following CPU modules cannot use the BRSET instruction. When no block number is specified, the block 0 is set. · Basic model QCPU

· Universal model QCPU whose serial number (first five digits) is "13101" or earlier

· LCPU

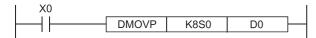
Point

Correspor

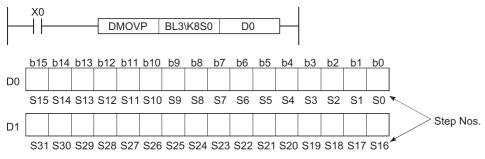
 Note that the following CPU modules cannot use the BRSET instruction. When no block number is specified, the block 0 is set.

Basic model QCPU

Universal model QCPU whose serial number (first five digits) is "13101" or earlier


LCPU

• In the High-speed Universal model QCPU and Universal model Process CPU, the number of steps in the step activation check instruction increases by one step from that in the QnUDE(H)CPU.


Operatior	n Error
Error code	Description
4101	 If exceeding the maximum step No. (8191) when block specification is not made (for the Universal model QCPU or LCPU) If specifying the stop which does not exist when block specification is not made (for the Universal model QCPU or LCPU)

Program Examples

• The following program reads 32 active steps, starting from step 0 of block 3, to D0 and D1 when X0 turns ON. When step is designated by operation output of block 3

When step is designated by operation output of other than block 3 or sequence program

■Related Instructions

SFC control instructions

- Block switching instruction (BRSET): See Page 106 Block switching instruction (BRSET).
- Step operation status check instruction (LD, LDI, AND, ANI, OR, ORI): See Page 81 Step operation status check instruction (LD, LDI, AND, ANI, OR, ORI) [Sn/BLm\Sn].
- Active step batch readout instruction (BMOV): See Page 90 Active step batch readout (BMOV).

4

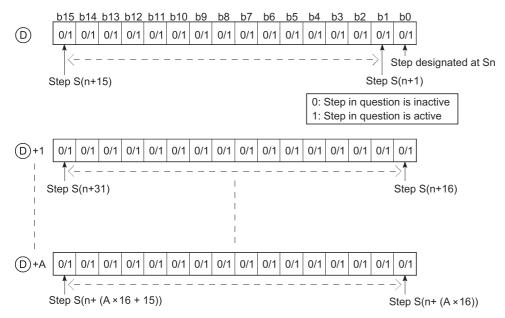
Active step batch readout (BMOV)

QCPU	QCPU										
Programmable contr	oller CPU		Process CPU	Redundant							
Basic	High Performance	Universal		CPU							
* 1	0	0	0	0	0	0	0				

*1 The serial number (first five digits) shall be 04122 or later.

	Usable	Devices								
	Internal (System		File Register R	Link Dire	ct Jロ\ロ	Intelligent Function Module UD\GD	Index Z	Constant K, H	Expansion SFC BLm\Sn	Other s
	Bit	Word		Bit	Word					
(s)	O*2	-	-	•	-			—	0	-
(d)	0						—	—	—	-
(n)	—							0	-	-

	Data Type	Programs Using	Instructions	Execution Site					
		Sequence	SFC Program		Block	Step	Transition		
		Program	Step	Transition Condition			Condition		
(S)	BIN16	0	0	—	—	0	—		
(d)									
(n)									


*2 Only step relay (S) can be used

┌─ "n" is the step No. ┌─ Num	er of readouts $-$ "m" is the block No.	
HBMOV(P) (S (K4Sn) (D (n))	⊢BMOV(P) ⑤ (BLm\K4Sn) ◎ ៣	

Function

• A batch readout (designated number of words) of step operation statuses is executed at the specified block.

• The readout results are stored at the "(d)" device as shown below.

- The bit corresponding to the unassigned step No. (nonexistent step No.) in the read data turns to "0".
- If the read data range exceeds the maximum step No. in the block, the data of the next block No. are read. When there are no blocks in and after the block to be read, "0" is stored into the remaining bits.

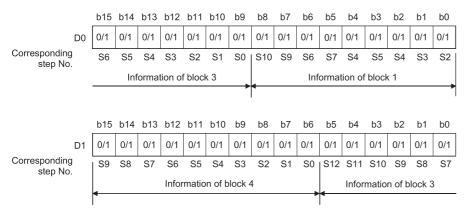
Ex.

When "BMOV BL1\S2 D0 K2" is executed in the following case,

- Block 1: The maximum step No. is 10 (S10) and step 5 (S5) and step 8 (S8) do not exist
- Block 2: The maximum step No. is 12 (S12) and step 3 (S3) does not exist
- Block 3 and later: Do not exist

data are stored as shown below.

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
D0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Corresponding step No.	S6	S5	S4	None	S2	S1	S0	S10	S9	None	9 S7	None	S5	S4	S3	S2
		In	forma	tion o	f bloc	k 2				Inf	forma	tion o	fblocl	< 1		
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
D1	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Corresponding step No.											S12	S11	S10	S9	S8	S7
		Al	l turn	to 0s	since	block	s do	not ex	dist.			Infor	matio	n of b	lock 2	2


• If there is a nonexistent block in the data to be read, the nonexistent block is omitted and the data of the next existing block are read.

Ex.

When "BMOV BL1\S2 D0 K2" is executed in the following case,

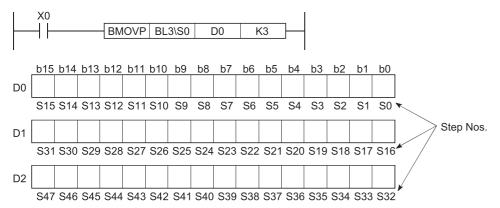
- Block 1: The maximum step No. is 10 (S10)
- Block 2: Nonexistent
- Block 3: The maximum step No. is 12 (S12)
- Block 4: The maximum step No. is 15 (S15)

data are stored as shown below.

- In the activation step batch read instruction, do not specify a nonexistent block/step. An error will not occur if a nonexistent block/step is specified. However, the read data are undefined.
- · Specify the step as described below.

Item	Description
In the case of SFC program	Use "K4Sn" when specifying the step in the current block.
	Use "BLm\K4Sn" when specifying the step in the SFC program.
In the case of sequence program	Use "BLm\K4Sn" when executing the step activation check instruction.
	 When the block number is not specified, specify the block number with the BRSET instruction. Note, however, that the following CPU modules cannot use the BRSET instruction. When no block number is specified, the block 0 is set. Basic model QCPU Universal model QCPU whose serial number (first five digits) is "13101" or earlier LCPU

Operatior	n Error
Error code	Description
4101	When the step relay (S) range is exceeded


Program Examples

• The following program reads the active step status of 48 steps (3 words), starting from step 0 of block 3, to D0 - D2 when X0 turns ON.

When step is designated by operation output of block 3

When step is designated by operation output of other than block 3 or sequence program

Related Instructions

SFC control instructions

- Block switching instruction (BRSET): See Page 106 Block switching instruction (BRSET).
- Step operation status check instruction (LD, LDI, AND, ANI, OR, ORI): See Page 81 Step operation status check instruction (LD, LDI, AND, ANI, OR, ORI) [Sn/BLm\Sn].
- Active step batch readout instruction (MOV, DMOV): See Page 87 Active step batch readout (MOV and DMOV).

Block START & END instructions (SET, RST) [BLm]

QC	PU								LCPU	Q	nA	Q4AR	
Pro	grammabl	le control	ler CPU			Process CPU	Redundant						
Bas	sic	ł	High Performance	Universal			CPU						
∆*1		(0	0		0	0		0	0		0	
*1	1 The serial number (first five digits) shall be 04122 or later.												
	Usable D	evices											
	Internal device (System, User)		File Register R	Link Dire	ct J□\□	Intelligent Function Module UD\GD	ion Module K, H		nstant Expansion H SFC		Other BLm		
	Bit	Word		Bit	Word								
(d)	—							—		—		0	
	Data Typ	e	Programs Using	Instructio	ns		Execution \$	Site					
			Sequence	SFC Prog	jram		Block		Step		Transition		
			Program	Step		Transition Condition					Cond	Condition	
(d)	Device nan	ne	0	0		—	0		_		-		
	(b) Device name C C "m" is the block No.												
Fu	nction												

■Block START instruction (SET BLm)

- A specified block is forcibly activated independently and is executed from its initial step. When there are multiple initial steps, all initial steps become active. When the bock START/END bit of the SFC information devices has been set, the corresponding bit device changes from OFF to ON.
- If the specified block is already active when this instruction is executed, the instruction will be ignored (equivalent to the NOP instruction), and processing will continue.
- While online change (inactive block) is executed to the specified block when this instruction is executed, the instruction will be ignored (equivalent to the NOP instruction), and the online change processing will continue. (Universal model QCPU whose serial number (first five digits) is "12052" or later, and the LCPU whose serial number (first five digits) is "15102" or later only)

■Block END instruction (RST BLm)

- A specified block is forcibly deactivated independently. When there are active steps, all are deactivated and the coil outputs are turned OFF. When the bock START/END bit of the SFC information devices has been set, the corresponding bit device changes from ON to OFF.
- If the specified block is already inactive when this instruction is executed, the instruction will be ignored (equivalent to the NOP instruction) and processing will continue.

Operation	Operation Error							
Error code	Description							
4621	When the specified block does not exist or when the SFC program is in the stand-by status							

Program Examples

• When X1 switches ON, the following program forcibly activates block1. When X2 switches ON, it ends and forcibly deactivates block1.

■Related Instructions

SFC diagram symbols

• Block START step (m, m): See Page 57 Block START step (with END check) and Page 58 Block START step (without END check).

SFC information device

Block START/END bit: See Page 109 Block START/END bit.

Block STOP and RESTART instructions (PAUSE, RSTART) [BLm]

QCPU	CPU							
Programmable contr	oller CPU	Process CPU	Redundant					
Basic	High Performance	Universal		CPU				
△*1	0	0	0	0	0	0	0	
*1 The serial number	(first five digits) shall be	e 04122 or later.					<u>.</u>	

ligits) (

	Usable D	evices								
	Internal device (System, User)		File Register R	Link Dire	ct Jロ\ロ	Intelligent Function Module UU\G	Index Z	Constant K, H	Expansion SFC	Other BLm
	Bit	Word		Bit	Word					
(d)	—							—	-	0

	Data Type	Programs Using	Instructions		Execution Site			
		Sequence	Sequence SFC Program			Step	Transition	
		Program	Step	Transition Condition			Condition	
(d)	Device name	0	0	—	0	—	—	

"m" is t	the block No.	
PAUSE (0 (BLm))	┤ ┝─┤┝──	RSTART (D) (BLm)

Function

■Block STOP instruction (PAUSE)

- Executes a temporary stop at the specified block.
- As shown below, processing varies, depending on when the stop occurs and on the coil output status setting (designated by OUT instruction).

Setting of	Operation	Status of	Operation						
Output Mode	Output at	STOP-time	Active step other than	Held step ^{*1}					
at Block Stop in PLC Parameter	Block Stop (SM325)	Mode Bit	held step (including HOLD step whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)			
Turns OFF (coil output OFF) Remains ON (coil output held)	OFF (coil output OFF)	OFF or no setting (immediate stop) ON (STOP after transition)	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status remains active. Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block is stopped before execution of the operation output. 	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status becomes inactive. 	 Immediately after a made, the coil outp output is turned OF stopped. The status remains 	ut of the operation F and the block is			

Setting of	Operation	Status of	Operation			
Output Mode	Output at	STOP-time	Active step other than	Held step ^{*1}		
at Block Stop in PLC Parameter	Block Stop (SM325)	Mode Bit	held step (including HOLD step whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)
Remains ON (coil output held)	ON (coil output held)	OFF or no setting (immediate stop) ON (STOP after transition)	 Immediately after a STOP request is made, the block is stopped with the coil output of the operation output being held. The status remains active. Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block is stopped before execution of the operation output. 		STOP request is made of the operation output active.	

*1 The held step indicates the step whose attribute has been set to the HOLD step (SC, SE, ST) and which is being held with the transition condition satisfied.

Point P

The operation of SM325 differs depending on the CPU module.

· For the Basic model QCPU, High Performance model QCPU, Process CPU, and QnACPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) at STOP to RUN of the CPU module.

• For the Universal model QCPU and LCPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) when the CPU module is powered ON or is reset.

Turning OFF the output mode setting at block stop (coil output OFF): SM325 is OFF.

Turning ON the output mode setting at block stop (coil output held): SM325 is ON.

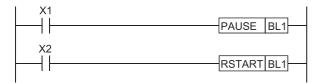
Note that the output mode at block stop can be changed regardless of the parameter setting by turning ON/ OFF SM325 in the user program.

• The STOP/RESTART bit switches ON when the SFC control "block STOP" instruction (PAUSE BLm) is executed.

Block RESTART instruction (RSTART)

- The block in question is restarted from the step where a STOP occurred. An "operation HOLD status" step (with transition check or without transition check) which has been stopped will be restarted with the operation HOLD status in effect. A "coil output HOLD" step cannot be restarted after being stopped as it becomes deactivated at that time.
- Depending on the ON/OFF status of the "block STOP-time operation output flag (SM325)", the operations of the PLS instruction and P instruction after block STOP cancellation change.

When SM325 is ON (coil output held): Not executed


When SM325 is OFF (coil output OFF): Executed again

 When the block STOP/RESTART bit of the SFC information devices has been set, the block STOP/RESTART bit also turns OFF.

Operation	Operation Error							
Error code	Description							
4621	When the specified block does not exist or when the SFC program is in the stand-by status							

Program Examples

• Block 1 is stopped when X1 switches ON, and is restarted when X2 switches ON.

■Related Instructions

SFC information device

• Block STOP/RESTART bit: See Page 112 Block STOP/RESTART bit.

Step START and END instructions (SET, RST) [Sn/BLm\Sn]

QCPU	LCPU	QnA	Q4AR				
Programmable contr	oller CPU	Process CPU	Redundant CPU				
Basic	High Performance	Universal					
*1	0	0	0	0	0	0	0

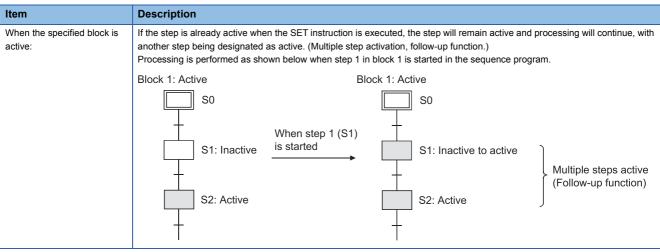
*1 The serial number (first five digits) shall be 04122 or later.

	Usable D	Usable Devices										
	Internal device (System, User)		File Register R	Link Dire	ct J⊡∖⊡	Intelligent Function Module UD\GD	Index Z	Constant K, H	Expansion SFC BLm\Sn	Other Sn		
	Bit	Word	1	Bit	Word	_						
(d)	O*2	—						—	0	0		

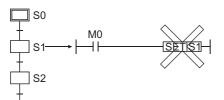
	Data Type	Programs Using Instructions			Execution Site			
		Sequence	SFC Program		Block	Step	Transition	
		Program	Step	Transition Condition			Condition	
(d)	Device name	0	0	—	_	0	_	

*2 Only step relay (S) can be used



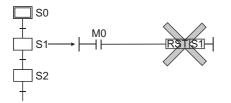


Function


■Step START instruction (SET)

• A specified step at a specified block is activated forcibly. Operation at the block in question varies as follows, depending on whether the block is active or inactive.

- When multiple initial steps exist, an initial step selection START will occur when a given step is specified and activated.
- When designating a step located in a parallel branch, all the parallel steps should be activated. An inactive parallel branch ladder at such a time will prevent the parallel coupling condition from being satisfied.
- If a specified step is already active when this instruction is executed, the instruction will be ignored (equivalent to the NOP instruction), and processing will continue. To hold a specified step with the HOLD step, the processing is "Transition to HOLD step by double START". For details, refer to Page 130 Operation mode at transition to active step (double step START).
- When the operation output is used to start the step, do not specify the current step number as the specified step number. If the current step is designated as the specified step number, normal operation will not be performed.

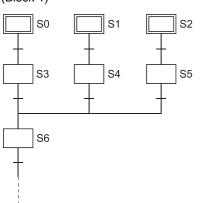

• Specify the step as described below.

Item	Description
In the case of SFC program	Use "Sn" when specifying the step in the current block.
	Use "BLm\Sn" when specifying the step in another block.
In the case of sequence program	Use "BLm\Sn" when executing the step START instruction in the sequence program.
	 When the block number is not specified, specify the block number with the BRSET instruction. Note, however, that the following CPU modules cannot use the BRSET instruction. When no block number is specified, the block 0 is set. Basic model QCPU Universal model QCPU whose serial number (first five digits) is "13101" or earlier LCPU

 While online change (inactive block) is executed to the specified block when this instruction is executed, the instruction will be ignored (equivalent to the NOP instruction), and the online change processing will continue. (Universal model QCPU whose serial number (first five digits) is "12052" or later, and the LCPU whose serial number (first five digits) is "15102" or later only)

■Step END instruction (RST)

- A specified step at a specified block is forcibly deactivated. "Coil HOLD" and "operation HOLD" steps are subject to this instruction.
- When the number of active steps in the corresponding block reaches 0 due to the execution of this instruction, END step processing is performed and the block becomes inactive. When the bock START/END bit of the SFC information devices has been set, the corresponding bit device changes from ON to OFF.
- If the RST instruction is executed at a step located in a parallel branch, the parallel coupling condition will remain unsatisfied.
- If a specified step is already inactive when this instruction is executed, the instruction will be ignored (equivalent to the NOP instruction).
- When the operation output is used to end the step, do not specify the current step as the specified step number. If the current step is designated as the specified step number, normal operation will not be performed.

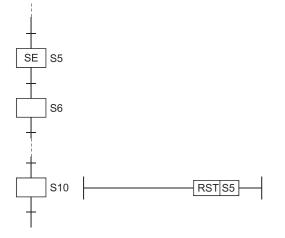

· Specify the step as described below.

Item	Description
In the case of SFC program	Use "Sn" when specifying the step in the current block.
	Use "BLm\Sn" when specifying the step in another block.
In the case of sequence program	Use "BLm\Sn" when executing the step END instruction in the sequence program.
	 When the block number is not specified, specify the block number with the BRSET instruction. Note, however, that the following CPU modules cannot use the BRSET instruction. When no block number is specified, the block 0 is set. Basic model QCPU Universal model QCPU whose serial number (first five digits) is "13101" or earlier LCPU

Operation	Operation Error							
Error code	Description							
4631	When no specified step is present or the SFC program is in stand-by mode							
4505	If using the own step as the specification step No. (Basic model QCPU, Universal model QCPU, and LCPU)							

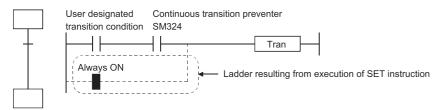
Program Examples

• When X1 switches ON, the following program will select and start step 2 of block 1 which contains multiple initial steps. (Block 1)


When step is designated by operation output of block 1

When step is designated by operation output of other than block 3 or sequence program

• The following program deactivates held step 5 when step 10 is activated.


Forced transition EXECUTE & CANCEL instructions (SET, RST) [TRn/BLm\TRn]

QC	PU								LCPU	C	QnA	Q4AR	
Programmable controller (Process CPU	Redundant CPU							
			High Performance	Universal			-						
×			0	×		0	0		×	C)	0	
	Usable D	evices											
	Internal device (System, User)		File Register R	Register R Link Direct JE		Intelligent Function Module U⊡\G⊡	Index ZD	Constant K, H		Expansion SFC BLm\TRn		Other TRn	
	Bit	Word		Bit	Word								
(d)	—							—		0		0	
	Data Typ	e	Programs Using	Instructio	ns		Execution Site						
			Sequence	SFC Prog	ıram		Block		Step		Transition		
			Program	Step		Transition Condition				Cond		dition	
(d)	Device nar	ne	0	0		—	—		_		0		
	"n" is the step No. SET (D) (TRn)												
	-		v fm" is tr SET© (BLm\TRn)-	he block No		[F	RST (D) (BLm)	\TRn)]				

Function

■Forced transition EXECUTE instruction (SET)

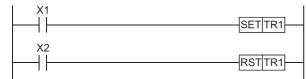
• A specified transition condition in a specified block is forcibly satisfied, and an unconditional transition is executed at the step which precedes the condition.

• After execution of the instruction, the forced transition status remains effective until a reset instruction is executed.

■Forced transition CANCEL instruction (RST)

• Cancels the forced transition setting (designated by SET instruction) at a transition condition, and restores the transition condition ladder created by the user.

Specify the transition condition as described below.


Item	Description					
In the case of SFC program Use "TRn" when specifying the transition condition in the current block.						
	Use "BLm \TRn" when specifying the transition condition in another block.					
In the case of sequence program	Use "BLm \TRn" when executing the forced transition EXECUTE/CANCEL instruction in the sequence program.					
	When the block number is not specified, specify the block number with the BRSET instruction.					

Operation	Operation Error							
Error code	Description							
4631	When the specified transition condition does not exist or the SFC program is in a wait state							

Program Examples

• When X1 switches ON, the following program executes a forced transition at transition condition 1 of block 1. The forced transition setting is canceled when X2 switches ON.

When step is designated by operation output of block 1

When step is designated by operation output of other than block 1 or sequence program

	SET BL1\TR1
X2	RSTBL1\TR1

Point P

This instruction checks, from the first sequence step of the specified block in series, whether or not the specified transition condition number is existed.

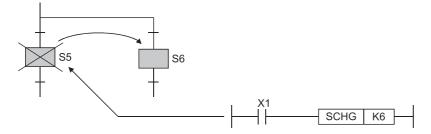
Because of this, processing time of the instruction differs depending on the program capacity of the specified block (number of sequence steps), a maximum of hundred and several tens ms may be taken.

In case of occurring WDT error (error code: 5001), change the WDT setting value with the PLC RAS setting in the PLC parameter.

Active step change instruction (SCHG)

QC	PU				LCPU	QnA	L	Q4AR					
Programmable controller CPU				CPU			Process CPU	Redundant					
Bas	sic		High	Performance	Universal			CPU					
×			0		×		0	0		×	0		0
	Usable D	evices											
	Internal device (System, User)		File Register R		Link Direct Jロ\ロ		Intelligent Function Module UU\GU	Index ZD	Co	onstant	Expansion SFC		Other
	Bit	Word			Bit	Word	-						
(d)	0							·	0		—		-
	Data Typ	e		Programs Using	Instructi	ions		Execution	Site				
		Sequence		SFC Program			Block		Step		Transit		
				Program	Step		Transition Condition				1	Condi	tion
(d)	BIN16			_	0		—	—		0		_	
	-			SCHG D	·						I		

Function


- Deactivates the step that executed an instruction, and forcibly activates the specified step (set with the device designated by (d)) in the same block.
- When the destination step is already active, the step that executed the SCHG instruction is deactivated and the destination step continues processing as-is.
- The step where this instruction is executed is deactivated when processing proceeds to the transition condition status check following the completion of that step's program operation.
- This instruction can only be used at SFC program steps.

Operation Error

Error code	Description
4631	When the specified destination step does not exist
4001	When this instruction is used at a sequence program other than an SFC program. An error is activated on switching from STOP to RUN.

Program Examples

• When X1 switches ON, the following program deactivates step 5, and activates step 6.

Block switching instruction (BRSET)

QCPU	LCPU	QnA	Q4AR				
Programmable contr	oller CPU		Process CPU	Redundant			
Basic	High Performance	Universal		CPU			
×	0	∆ ^{*1}	0	0	×	0	0

*1 The serial number (first five digits) shall be 13102 or later.

	Usable D	Usable Devices												
	Internal device (System, User)		File Register R	Link Direct Jロ\ロ		Intelligent Function Module U□\G□	Index Z	Constant K, H	Expansion SFC	Other				
	Bit	Word		Bit	Word									
(s)	0					·		0	—	—				

	Data Type	Programs Using	Instructions	Execution Site			
		Sequence	SFC Program		Block	Step	Transition Condition
		Program	Step	Transition Condition			
(s)	BIN16	0	0	-	_	—	—

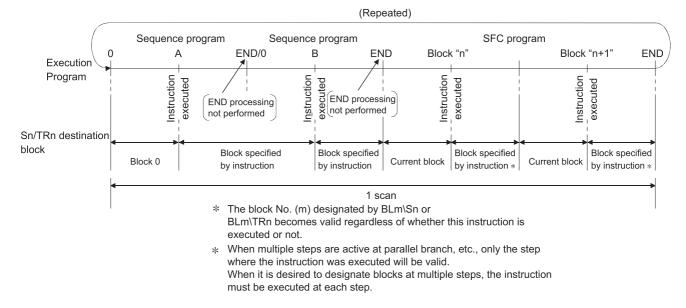
	BRSET	

Function

• Switches the target block number of the SFC control instruction that specifies only a step (Sn) and transition condition (TRn) to the number set for the device designated by (s).

- Although "BLm\Sn" or "BLm/TRn" may be used as the instruction device when designating the destination block number, only a constant (K, H) may be designated at the "m" of "BLm", thereby fixing the designation destination. When block switching is executed by this BRSET instruction, a word device can be used for indirect designation, index modification, etc.
- The effective operation range when block switching occurs (by BRSET instruction) varies according to the program being run at the time, as shown below.

When this instruction is executed in a sequence program, target block switching is valid from instruction execution to SFC execution.


At the next scan, the target block is block 0 as the default until the instruction is executed again.

If the BRSET instruction is executed at an SFC program, block switching will be effective only for the step currently being executed.

Even if the step in question is the same step, the BRSET instruction must be executed at each block where the Sn and TRn instructions are used.

Moreover, within a single step, block switching will be effective from the point where the BRSET instruction is executed to that step's processing END point.

When processing is repeated at the next scan following the processing END for that step, the block in question will be designated as the "current block" until the point when the BRSET instruction is executed again.

Operation	Operation Error						
Error code	Description						
4621	When the specified block does not exist or when the SFC program is in the stand-by status.						

Program Examples

• When X1 switches ON, the following program switches the Sn or TRn block number to the block number stored at the D0 data register.

• When X2 switches ON, the following program switches the Sn or TRn block number according to the constant at the Z1 index register.

4.5 SFC Information Devices

This section describes the SFC information devices set in each block. The following table lists the SFC information device types and usable devices.

SFC information device list

SFC	Function Outline	Usable	CPU Module	Туре	/ре		
information device		Device	Basic model QCPU	High Performance Model QCPU, Process CPU, Redundant CPU, QnACPU	Universal model QCPU, LCPU		
Block START/END bit	 Device designed to forcibly start or forcibly end the specified block by a sequence program or the test operation of the peripheral device. Can also be used to confirm the active status of the specified block. 	Y, M, L, F, V, B	0	0	0		
Step transition bit	Device that checks whether or not a step transition occurred in the corresponding scan in the specified block.	-					
Block STOP/ RESTART bit	Device designed to stop temporarily or restart the corresponding block that is active.	-					
Block STOP mode bit	• Device used to specify whether all steps will be immediately stopped or the block will be stopped after the transition of the corresponding step when the block is stopped temporarily.						
Continuous transition bit	• Device used to specify whether the operation output of the next step will be executed within the same scan or not when the transition condition is satisfied.						
"Number of active steps" register	Device that stores the number of steps currently active in the specified block.	D, W, R, ZR	0	0	0		

○: Usable

For settings to use SFC information devices, refer to the manual for the programming tool used.

Point P

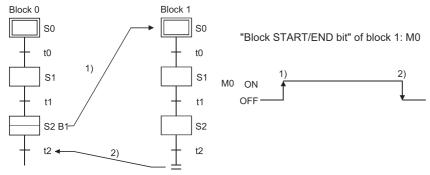
The following cannot be specified for the SFC information devices.

- Indirect designation (@)
- Digit designation (K)
- Index modification (Z)
- Word device bit designation (.)

Block START/END bit

The block START/END bit is used to confirm the active status of the specified block by a sequence program or the test operation of the peripheral device.

It can also be used as a device to forcibly start or forcibly end the specified block.


Operation of block START/END bit

The block START/END bit turns ON when the corresponding block starts.

The block START/END bit remains ON while the corresponding block is active.

The block START/END bit turns OFF when the corresponding block becomes inactive.

The block START/END bit remains OFF while the corresponding block is inactive.

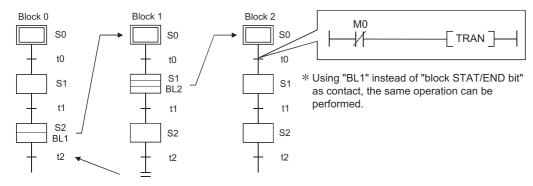
- When the corresponding block is inactive, it can be started independently by forcibly turning ON the block START/END bit.
 While the corresponding block is active, the processing of the corresponding block can be forcibly ended by forcibly turning OFF the block START/END bit. The block START/END bit can also be turned ON/OFF in the test mode of the peripheral device.
- When a forced OFF is executed by the block START/END bit, and the block in question becomes inactive, processing will
 occur as follows:

Execution of the block in question will stop together with all outputs from the step which was being executed.

(Devices switched ON by the SET instruction will not switch OFF.)

If another block is being started by the block START step in the corresponding block, the corresponding block stops.

However, the start destination block remains active and continues processing.


To also end the start destination block simultaneously, the block START/END bit of the start destination must also be turned OFF.

• A block which has been forcibly deactivated is restarted as shown below.

Relevant Block		Restart Status		
Block 0	When the START condition of block 0 is "Auto START ON" in the SFC setting of the PLC parameter dialog box.	Operation is restarted from the initial step following END step processing.		
	When the START condition of block 0 is "Auto START OFF" in the SFC setting of the PLC parameter dialog box.	The block is deactivated after END step processing, and processing is restarted from the initial step when another START request occurs for		
Other than block 0		that block.		

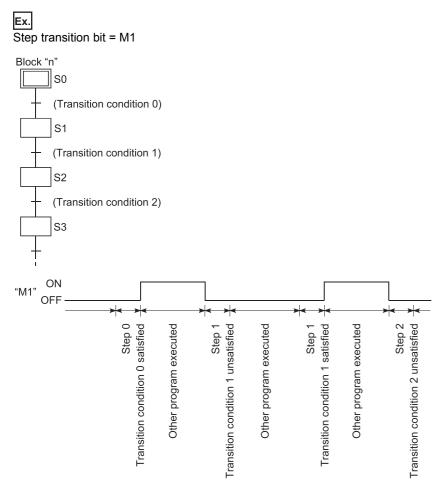
Program example

Use the contact of the "block START/END bit" when a transition occurs after block 1 ends.

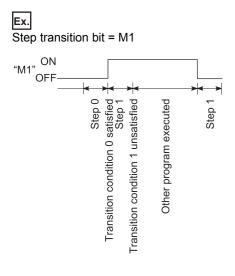
■Related Instructions

SFC control instructions

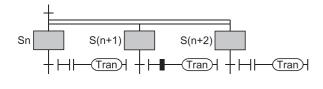
 Block START instruction (SET BLm), block END instruction (RST BLm): See Page 94 Block START & END instructions (SET, RST) [BLm].

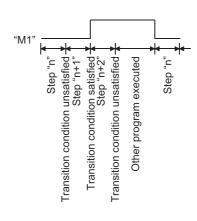

SFC diagram symbols

• Block START step (m, m): See Page 57 Block START step (with END check) and Page 58 Block START step (without END check).


Step transition bit

The step transition bit is designed to check whether the transition condition of the step in execution has been satisfied or not.


- After the operation output at each step is completed, the step transition bit automatically switches ON when the transition condition (for transition to the next step) is satisfied.
- A transition bit which is ON will automatically switch OFF when processing of the block in question occurs again.



If a continuous transition is designated (continuous transition bit ON), the transition bit will remain ON during the next step's operation output after the transition condition is satisfied. It will also remain ON following the execution of multiple steps, even if the transition condition is unsatisfied. In these cases, the transition bit will switch OFF when block execution occurs at the next scan.

• At active parallel branch steps, the transition bit will switch ON when any of the transition conditions are satisfied.

Block STOP/RESTART bit

The block STOP/RESTART bit is used to temporarily stop processing while the corresponding block is active.

- When the designated block STOP/RESTART bit is switched ON by the sequence program or peripheral device, processing
 will be stopped at the current step of the block in question. If a START status is in effect at another block, the STOP will still
 occur, but the START destination block will remain active and processing will continue. To stop the START destination block
 at the same time, the START destination's block STOP/RESTART bit must also be switched OFF.
- When a block is stopped by switching the block STOP/RESTART bit ON, the STOP timing will be as shown below.

Setting of	Operation	Status of	Operation				
Output Mode	Output at Block Stop	STOP-time Mode Bit	Active step other than	Held step ^{*1}			
at Block Stop in PLC Parameter	(SM325)		held step (including HOLD step whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)	
Turns OFF (coil output OFF) Remains ON (coil output held)	OFF (coil output OFF)	OFF or no setting (immediate stop) ON (STOP after transition)	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status remains active. Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block stops immediately. 	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status becomes inactive. 	 Immediately after a made, the coil outp output is turned OF stopped. The status remains 	ut of the operation F and the block is	

Setting of	Operation	Status of	Operation					
Output Mode	Output at Block Stop	STOP-time Mode Bit	Active step other than	Held step ^{*1}				
at Block Stop in PLC Parameter	(SM325)	mode Bit	held step (including HOLD step whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)		
Remains ON (coil output held)	ON (coil output held)	OFF or no setting (immediate stop) ON (STOP after transition)	 Immediately after a STOP request is made, the block is stopped with the coil output of the operation output being held. The status remains active. Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block stops immediately. 	-	STOP request is made of the operation output active.			

*1 The held step indicates the step whose attribute has been set to the HOLD step (SC, SE, ST) and which is being held with the transition condition satisfied.

Point P

The operation of SM325 differs depending on the CPU module.

• For the Basic model QCPU, High Performance model QCPU, Process CPU, and QnACPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) at STOP to RUN of the CPU module.

• For the Universal model QCPU and LCPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) when the CPU module is powered ON or is reset.

Turning OFF the parameter (coil output OFF): SM325 is OFF.

Remaining ON the parameter (coil output held): SM325 is ON.

Note that the output mode at block stop can be changed regardless of the parameter setting by turning ON/ OFF SM325 in the user program.

- The execution of the corresponding block is restarted from the step where it had stopped when the "block STOP/RESTART bit" is turned OFF in the sequence program, SFC program or peripheral device. An "operation HOLD status" step (with transition check or without transition check) which has been stopped will be restarted with the operation HOLD status in effect. A coil output HOLD step cannot be restarted after being stopped as it is deactivated at that time.
- When a block STOP is canceled, the PLS or P instruction is executed. When the special relay for operation output selection at block STOP (SM325) is turned ON, the PLS or P instruction is not executed if a block STOP is canceled.
- When the SFC control "block STOP" instruction (PAUSE BLm) is executed, the block in question is stopped, and the block STOP/RESTART bit switches ON. When the "block RESTART" instruction (RSTART BLm) is executed while the block is stopped, the block in question is restarted, and the block STOP/RESTART bit switches OFF.

Point P

- Stopping of program processing by a block STOP/RESTART bit being switched ON, or by a block STOP instruction, applies only to the specified block.
- Even if a block stop is executed for the START destination block, the START source block will not be stopped.
- Even if a block stop is executed for the START source block, the START destination block will not be stopped.

4

Related Instructions

SFC information device

Block STOP mode bit: See Page 115 Block STOP mode bit.

SFC control instructions

• Block STOP instruction (PAUSE BLm) and block RESTART instruction (RSTART BLm): See Page 96 Block STOP and RESTART instructions (PAUSE, RSTART) [BLm].

Block STOP mode bit

The block STOP mode bit setting determines when the specified block is stopped after the block STOP/RESTART bit switches ON, or after a stop designation by the block STOP instruction (PAUSE BLm).

 The stop timing for a block where a STOP request has occurred varies according to the ON/OFF setting of the block STOP mode bit, as shown below.

Block STOP mode bit	Stop timing
OFF	• The block is stopped immediately when the block STOP/RESTART bit switches from OFF to ON, or when a block STOP instruction is executed. However, if the block STOP/RESTART bit is switched ON within the current block, the STOP will occur when that block is processed at the next scan, or when the instruction is executed.
ON	 The block is stopped at the step transition which occurs when the transition condition for the current step (active step) is satisfied. However, the operation output will not be executed for the step following the transition. When multiple steps are active in a parallel branch, the STOP will occur sequentially at each of the steps as their transition conditions are satisfied. However, the held step stops immediately after a STOP request independently of the block STOP mode.

• When the corresponding block is stopped, the stop timing is as described below.

Setting of	Operation	Status of	Operation					
Output Mode at Block Stop	Output at	STOP-time	Active step other than held step	Held step ^{*1}				
in PLC Parameter	Block Stop (SM325)	Mode Bit	(including HOLD step whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)		
Turns OFF (coil output OFF) Remains ON (coil output held)	OFF (coil output OFF)	OFF or no setting (immediate stop)	etting made, the coil output of the operation after a STOP immediate output is turned OFF and the block is request is ma top) stopped. the coil output	after a STOP request is made, the coil output of the operation	after a STOP made, the coil output of the oper equest is made, output is turned OFF and the blo he coil output of stopped.			
		ON (STOP after transition)	 Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block is stopped before execution of the operation output. 	output is turned OFF and the block is stopped. • The status becomes inactive.				
Remains ON (coil output held)	ON (coil output held)	OFF or no setting (immediate stop)	 Immediately after a STOP request is made, the block is stopped with the coil output of the operation output being held. The status remains active. 		er a STOP request is made, the block is e coil output of the operation output being ains active.			
	ON · Norr (STOP after transition) · Whe satis corr the desi the		 Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block is stopped before execution of the operation output. 					

*1 The held step indicates the step whose attribute has been set to the HOLD step (SC, SE, ST) and which is being held with the transition condition satisfied.

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) at STOP to RUN of the CPU module.

Turning OFF the output mode setting at block stop (coil output OFF): SM325 is OFF.

Remaining ON the output mode setting at block stop (coil output held): SM325 is ON.

Note that the output mode at block stop can be changed regardless of the parameter setting by turning ON/ OFF SM325 in the user program.

Related Instructions

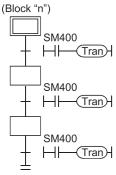
SFC information device

• Block STOP/RESTART bit: See Page 112 Block STOP/RESTART bit.

SFC control instruction

• Block STOP instruction (PAUSE BLm): See Page 96 Block STOP and RESTART instructions (PAUSE, RSTART) [BLm].

Continuous transition bit


The continuous transition bit specifies whether the operation output of the next step will be executed in the same scan or not when the transition condition is satisfied.

 There are two types of SFC program transition processing: "with continuous transition" and "without continuous transition". The user specifies either of them by turning ON/OFF the continuous transition bit.

Processing	Description
Continuous transition ON (Continuous transition bit: ON)	When the transition conditions at contiguous steps are satisfied, all the steps transition conditions will be executed at once within a single scan.
Continuous transition OFF (Continuous transition bit: OFF)	Steps are executed in a 1-step-per-scan format.

Ex.

Sample program processing

Continuous transition ON

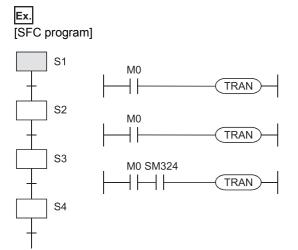
When the corresponding block becomes active, the processings of all steps are executed in the same scan, and end step processing is performed to deactivate the block.

• Continuous transition OFF

When the corresponding block becomes active, steps are executed in a 1-step-per-scan format, and end step processing is performed in the third scan to deactivate the block.

 A continuous transition can be designated for individual blocks by the continuous transition bit ON/OFF setting, or for all blocks using the batch setting special relay. As indicated below, whether a continuous transition is executed or not changes depending on the combination of the continuous transition bit and the special relay that sets "whether continuous transition of all blocks is executed or not" (SM323).

SM323 status	Continuous Transition Bit Status	SFC Program Operation	
ON	Continuous transition bit OFF	Operation occurs without continuous transition	
	No continuous transition bit setting	Operation occurs with continuous transition	
	Continuous transition bit ON		
OFF	Continuous transition bit OFF	Operation occurs without continuous transition	
	No continuous transition bit setting		
	Continuous transition bit ON	Operation occurs with continuous transition	

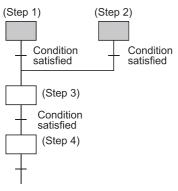

Point P

The tact time can be shortened by setting "with continuous transition".

This resolves the problem of waiting time from when the transition condition is satisfied until the operation output of the transition destination step is executed.

However, when "with continuous transition" is set, the operations of the other blocks and sequence program may become slower.

• The continuous transition disable flag (SM324) is always ON (turned ON automatically by the system at SFC program execution) normally, but is OFF during continuous transition. Use of SM324 under the AND condition in a transition condition disables a continuous transition.



[Operation]

- **1.** When M0 is ON, step 1 to step 4 are the targets of continuous transition.
- **2.** Since SM324 is added as the AND condition to the transition condition following step 3, the transition condition following step 3 is not satisfied after execution of step 3.
- **3.** When step 3 is executed in the next scan, execution proceeds to step 4 in the same scan since SM324 is ON.

Point P

• When a jump transition or selection coupling causes a transition from multiple steps to one step, the operation output of one step may be executed twice in a single scan. When the setting is "with continuous transition" in the case as shown above, execution passes through step 3 twice in a single scan.

- In the case of "with continuous transition", a step start/end is made within one scan. Since the END
 processing is not executed in this case, the coil output turned on by the OUT instruction in the operation
 output is not reflected on the device. When the coil output is the Y output, actual output is not provided. In
 addition, ON of the step relay cannot be detected.
- In the case of a program that uses a jump transition for looping, care must be taken when the transition conditions in the loop are all satisfied during execution at the "with continuous transition" setting, since an endless loop will occur within one scan, resulting in WDT Err. (No. 5001).

Number of active steps register

The "number of active steps" value for a given block is stored at this register.

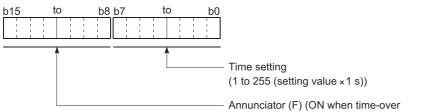
• The "number of active steps" value for a given block is stored.

Specified device

D[_][_][_][_] Number of steps

- The number of active steps applies to the following steps.
- Normal active steps
- Coil HOLD steps
- Operation HOLD steps (without transition check)
- Operation HOLD steps (with transition check)
- Stopping steps
- Step double START waiting steps

4.6 Step Transition Watchdog Timer

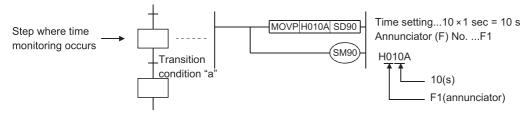

The step transition watch dog timers are timers that measure the time from the point when the relevant step is placed in the execution status until the point when a transition to the next step occurs.

If a transition from the relevant step to the next step fails to occur within the designated time period, the preset annunciator (F) will be turned ON.

- When using the step transition watchdog timer, set the "set time" and the "device number of annunciator (F) that will turn ON at time-out" to the special register for step transition watchdog timer setting (SD90 to SD99). The step transition watchdog timer starts timing when the special relay for step transition watchdog timer start (SM90 to SM99) is turned ON in the operation output of the step that performs a time check. When any corresponding one of SM90 to SM99 is turned OFF during timing, the step transition watchdog timer stops timing and is reset.
- There are 10 step transition watchdog timers, watchdog timer 1 to watchdog timer 10, in the whole SFC program. The special relay for step transition watchdog timer start and the special register for step transition watchdog timer setting are assigned to each watchdog timer as indicated below.

	Watchdog Timer 1	Watchdog Timer 2	Watchdog Timer 3	Watchdog Timer 4	Watchdog Timer 5	Watchdog Timer 6	Watchdog Timer 7	Watchdog Timer 8	Watchdog Timer 9	Watchdog Timer 10
Special relay	SM90	SM91	SM92	SM93	SM94	SM95	SM96	SM97	SM98	SM99
Special register	SD90	SD91	SD92	SD93	SD94	SD95	SD96	SD97	SD98	SD99

• The method of setting to SD90 - SD99 is as shown below.



status occurs) device No. setting (0 to 255)

Point P

- When the parameter where the "High speed interrupt I49 fixed scan interval" has been set is written to the High Performance model QCPU whose first five digits of serial No. are "04012" or later, the step transition watchdog timers cannot be used. No processing is performed if the step transition watchdog timers are executed.
- The step transition watchdog timers are not available for the Basic model QCPU, Universal model QCPU, and LCPU.

• The method for using a step transition watch dog timer is shown below.

When SM90 is turned ON in the operation output of the step that performs a time check as shown below, the step transition watchdog timer starts timing.

If transition condition a is not satisfied within the set time (10s) after SM90 has turned ON, annunciator F1 turns ON. (However, the SFC program continues operation.)

When transition condition a is satisfied within the set time and SM90 turns OFF, the step transition watchdog timer stops timing and is reset.

- If the annunciators (F0 to F255) turn ON, the number of detected annunciators that turned ON and the annunciator numbers are not stored into SD62, SD63 and SD64 - SD79.
- The step transition watchdog timers of the same number can be used at different steps if they do not become active simultaneously.

As there is no chance that steps 5 and 6 will be concurrently active, the same watch dog timer can be used at both steps.

Ex.

4.7 SFC Operation Mode Setting

The SFC operation mode setting is used to designate SFC program START conditions, or to designate the processing method at a double START.

Some settings can be made in "SFC setting of PLC parameter dialog box" in the system common setting and the others can be made in "block parameter" of the SFC program.

The SFC operation mode setting items and the resulting operations are shown below.

Item	Description	Setting Range	Default Value	Basic Model QCPU	High Performance Model QCPU, Process CPU, Redundant CPU, QnACPU	Universal model QCPU, LCPU
SFC program start mode	Designates an "Initial start" or "Resume start" when the SFC program is started.	Initial start/Resume start	Initial start	0	0	0
Start conditions	Designates whether block 0 is to be started automatically.	Autostart block 0/ Do not autostart block 0	Autostart block 0	0	0	0
Output mode when the block is stopped	Designates the coil output mode at a block STOP.	Turn OFF/Keep ON	OFF	0	0	0
Periodic execution block setting	Designates the first block No. of the periodic execution blocks.	0 to 319	No setting	×	0	×
	Designates the time interval for execution of the periodic execution blocks.	1 to 65535 ms				
Act at block multi- activated	Designates the operation which occurs when a START request is made for a block which is already active.	Stop blocks (A block range can be designated for the stop blocks setting.)	Waiting blocks	× (Wait only)	0	0'1
Act at step multi- activated	Designates the operation which occurs when a transition (follow-up) is executed to a step which is already active, or when an active step is started.	Waiting blocks/stop blocks (A step range can be designated for the stop blocks or "Waiting blocks" setting.)	Transfer	× (Transfer only)	0	× (Transfer only)

 $\bigcirc:$ Can be set, $\times:$ Cannot be set.

*1 For the following CPU modules, this item cannot be set. For these models, this operation is performed only in the "WAIT" mode.

· Universal model QCPU (Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU)

· Universal model QCPU whose serial number (first five digits) is "12051" or earlier

· L02(S)CPU and L02(S)CPU-P

LCPU whose serial number (first five digits) is "15101" or earlier

SFC program start mode

The SFC program start mode setting determines whether an SFC program START (SM321 OFF \rightarrow ON) is executed by an "Initial start", or by a Resume start from the preceding execution status.

Settings and corresponding operations

Set whether "initial start" or "resume start" will be selected for the SFC program.

■Initial start

The program is started after the active status at a previous stop is cleared. The operation after a start is performed according to the setting of block 0 START condition.

■Resume start

The program is started with the active status at a previous stop (ON to OFF of SM321 or RUN to STOP of CPU module) held.

The SFC program start mode changes depending on the combination of the setting of the "SFC program start mode" in the PLC parameter dialog box and the ON/OFF status of the "special relay for setting SFC program start status (SM322)" as indicated below.

SFC Program Start Mode Operation	Initial Start		Resume Start		
Start Mode Operation	SM322: OFF (Initial status) ^{*1}	SM322: ON (When changed by user)	SM322: ON (Initial status) ^{*1}	SM322: OFF (When changed by user)	
SM321: Turned ON	Initial	Initial	Resume	Initial	
Programmable controller: Powered ON			Resume/Initial ^{*3}	Initial	
Programmable controller: Powered OFF and then ON after SM321 is switched from ON to OFF or the CPU module is switched from RUN to STOP			Resume ^{*2}	Initial	
CPU module: Reset and RUN			Resume/Initial ^{*6}	Initial	
CPU module: Reset and RUN after SM321 is switched from ON to OFF or the CPU module is switched from RUN to STOP			Resume ^{*2}	Initial	
STOP→RUN	Resume ^{*7}	•	·	·	
CPU module: STOP, write a program, and then RUN	Initial ^{*4*5}				

Initial: Initial start, Resume: Resume start

- *1 SM322 is turned ON/OFF by the system according to the setting of the "SFC program start mode" in the PLC parameter dialog box when the CPU module switches from STOP to RUN.
 - · At initial start setting: OFF
 - · At resume start setting: ON
- *2 Operation at resume start

At a resume start, the SFC program stop position is held but the status of each device used for the operation output is not held. Therefore, make latch setting for the devices whose statuses must be held in making a resume start.

The held coil HOLD step SC becomes inactive, and is not kept held. In the Basic model QCPU, Universal model QCPU, and LCPU, the held coil HOLD step SC restarts in the held status under conditions other than those that turns OFF the coil HOLD step, such as turning ON and OFF of SM321 or operating status change (RUN to STOP) of the CPU module.

*3 Depending on the timing, a resume start is disabled and an initial start may be made.

To perform a resume start, turn ON and then OFF SM321 or switch the CPU module from RUN to STOP, and power OFF and then ON the programmable controller.

Note that the Basic model QCPU and the Universal model QCPU with serial number "11042" (first five digits) or earlier always perform an initial start.

*4 A resume start may be made depending on the SFC program change.

If a resume start is made as-is, a start is made from the old step number, leading to a malfunction of the mechanical system.

When any SFC program change (SFC diagram correction such as step addition and deletion) has been made, make an initial start once and then return it to a resume start.

An initial start is always performed in the Basic model QCPU and the Universal model QCPU with serial number (first five digits) "11042" or earlier.

- *5 In the Universal model QCPU and LCPU, a resume start is performed if data other than SFC programs are changed.
- *6 The Basic model QCPU and Universal model QCPU of which the first 5 digits of the serial number are "11042" always makes an initial start.
- *7 The status (ON/OFF) of the output is determined according to the "Output Mode at STOP to RUN" setting in PLC parameter.

Point P

- When the programmable controller is powered OFF or the CPU module is reset, the intelligent function modules and special function modules are initialized. When making a resume start, create an initial program for the intelligent function module/special function module in the block that is always active or in the sequence program.
- When the programmable controller is powered OFF or the CPU module is reset, values in the devices without a latch setting are cleared. To hold the values in the SFC information devices, set a latch range.

Block 0 START condition

The block 0 START condition is designed to set whether block 0 will be automatically activated or not at SFC program START (when SM321 turns from OFF to ON).

Use the block 0 START condition when it is desired to specify the START block at SFC program START according to the product type, etc.

"Auto START ON" is useful when block 0 is used as described below.

- · Used as a control block
- · Used as a preprocessing block
- Used as an always watched block

Settings and corresponding operations

Set block 0 to "Auto START ON" or "Auto START OFF".

At SFC program START and END step execution, operations are performed as described below.

Setting	Operation				
	At SFC Program START	At end step execution in block 0			
Autostart block 0 (default)	Block 0 is automatically activated, and is executed from its initial step.	When the end step is reached, the initial step is automatically activated again.			
Do not autostart block 0	Block 0 is activated by a START request resulting from an SFC control "block START" instruction or a block START step, in the same manner as other blocks.	When the end step is reached, block 0 is deactivated and waits for another START request to be issued again.			

Output mode at block STOP

The "output mode at block STOP" is designed to set whether the coil outputs turned ON by the OUT instruction will be held at the time of a stop (coil output held) or all coil outputs will be forcibly turned OFF (coil output OFF) when the corresponding block is stopped temporarily.

Stop the corresponding block temporarily using the "stop RESTART bit" of the SFC information devices or the "block STOP instruction (PAUSE BLm)" of the SFC control instructions.

Settings and corresponding operations

Set the output mode at block STOP in the "output mode at block STOP in PLC parameter dialog box" or the "special register for setting operation output at block STOP (SM325)".

The operation of the SFC program changes depending on the combination of the "output mode at block STOP in PLC parameter dialog box" setting and the SM325 setting.

Setting of	Operation	Status of	Operation			
Output Mode	Output at	STOP-time Mode Bit	Active step other than	Held step ^{*1}		
at Block Stop in PLC Parameter	Block Stop (SM325)	Mode Bit	held step (including HOLD step (SC, SE, ST) whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)
Turns OFF (coil output OFF) Remains ON (coil output held)	OFF (coil output OFF)	OFF or no setting (immediate stop)	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status remains active. 	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and 	 Immediately after a made, the coil outp output is turned OF stopped. The status remains 	ut of the operation F and the block is
		ON (STOP after transition)	 Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block stops immediately. 	 the block is stopped. The status becomes inactive. 		
Remains ON (coil output held)	ON (coil output held)	OFF or no setting (immediate stop)	 Immediately after a STOP request is made, the block is stopped with the coil output of the operation output being held. The status remains active. 		STOP request is made of the operation output active.	
		ON (STOP after transition)	 Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block stops immediately. 			

*1 The held step indicates the step whose attribute has been set to the HOLD step (SC, SE, ST) and which is being held with the transition condition satisfied.

■Output mode at block STOP in PLC parameter dialog box

Set the status of the output mode at block STOP when the programmable controller is powered ON or the CPU module is reset.

■SM325

The operation of SM325 differs depending on the CPU module.

• For the Basic model QCPU, High Performance model QCPU, Process CPU, and QnACPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) at STOP to RUN of the CPU module.

• For the Universal model QCPU and LCPU

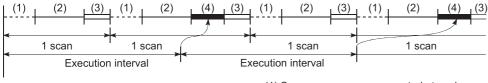
SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) when the CPU module is powered ON or is reset.

Parameter setting	SM325
Turns OFF (coil output OFF)	OFF
Remain ON (coil output held)	ON

The output mode at block stop can be changed by turning ON/OFF SM325 during the operation of the SFC program. (During the operation of the SFC program, the parameter setting is ignored.)

Periodic execution block setting

The periodic execution block setting designates the execution of a given block at specified time intervals rather than at each scan.


Setting items

Designate the first block number and the time of execution for the periodic execution blocks.

When these settings are designated, the "first block" and all subsequent blocks will become periodic execution blocks. The execution time interval setting can be designated in 1 ms units within a 1 to 65535 ms range.

Periodic execution block operation method

Periodic execution block operation occurs as shown below.

(1) Sequence programs executed at each scan

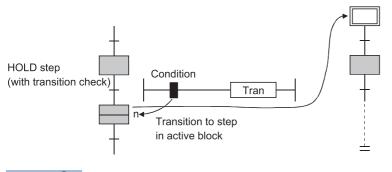
(2) Blocks executed at each scan

- (3) END processing
- (4) Periodic execution blocks
- Until the specified time interval elapses, only the sequence programs and blocks designated for execution at each scan will be executed.
- When the specified time interval elapses, the periodic execution blocks will be executed following execution of blocks designated for execution at each scan. If the specified time interval is shorter than the scan time, the periodic execution blocks will be executed at each scan in the same manner as the other blocks.
- · The specified time interval countdown is executed in a continuous manner.

Point P

- When the parameter where the "High speed interrupt I49 fixed scan interval" has been set is written to the High Performance model QCPU whose first five digits of serial No. are "04012" or later, the fixed-cycle execution block setting cannot be used. If the fixed-cycle execution block setting is made, no processing is performed and the block remains unchanged from the every scan execution block.
- To execute the periodic execution block, the block to be executed periodically must be activated.
- The fixed-cycle execution block setting is not available for the Basic model QCPU, Universal model QCPU, and LCPU.

Operation mode at double block START


This mode setting designates the operation mode which is to be effective when a block START request occurs (by block START step ($\square m, \square m$)) for a block which is already started.

Settings and corresponding operations

Set the operation mode at block double START to either STOP or WAIT in the "block parameter" of the SFC setting dialog box in the Tools menu.

The operations resulting from these settings are shown below.

Setting	Operation	Remarks
STOP	A CPU module operation error (BLOCK EXE.ERROR) occurs, and CPU module operation is stopped. All "Y" outputs switch OFF.	A block range can be designated for the STOP setting.
WAIT (default)	 CPU module operation continues, and a WAIT status is established when the transition condition is satisfied. The WAIT status continues until the START destination block is deactivated. A step transition occurs when the START destination block is deactivated, and that block is then reactivated. If a transition WAIT occurs, the previous step is deactivated, the output is switched OFF, and the operation output will not be executed. 	

Point P

• When a START request is issued to the block that is already active by execution of the following, the START request is ignored and the processing of the SFC program is continued as is.

Block START instruction (SET BLm) of SFC control instructions

ON of Block START/END bit of SFC information devices

• For the following CPU modules, the operation mode at double block START cannot be set. The operation mode at double block START is limited to the "WAIT" mode.

Basic model QCPU

Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCP

Universal model QCPU whose serial number (first five digits) is "12051" or earlier

L02(S)CPU, L02(S)CPU-P

LCPU whose serial number (first five digits) is "15101" or earlier

 When changing a setting for the operation mode at double block START, write both SFC programs and parameters to PLC. If both SFC programs and parameters are not written, the changed setting content may not be reflected.

Operation mode at transition to active step (double step START)

This mode setting designates the operation mode which is to be effective when a follow-up function such as an operation HOLD step (with transition check) is used to execute a transition to a step which is already active.

Settings and corresponding operations

For a transition to an active step, set any of STOP, WAIT and TRANSFER in the "block parameter" of the FC setting dialog box in the Tools menu.

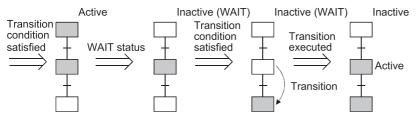
The operations resulting from these settings are shown below.

Setting	Operation	Remarks
STOP	A CPU module operation error (BLOCK EXE.ERROR) occurs, and CPU module operation is stopped. All "Y" outputs switch OFF.	A step range can be designated for the STOP setting.
WAIT	 CPU module operation continues, and a WAIT status is established when the transition condition is satisfied. The WAIT status continues until the START destination step is deactivated. If a transition WAIT occurs, the previous step is deactivated, the output is switched OFF, and the operation output will not be executed. 	A step range can be designated for the WAIT setting.
TRANSFER (default)	CPU module operation continues, the transition occurs, and the previous step is deactivated and absorbed by the transition destination step. Active step Condition satisfied Active step Condition satisfied Condition satisfied Active	

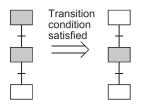
Transition to HOLD step by double START

The following table shows the transition procedure for transitions to coil HOLD steps, operation HOLD steps (with transition check), and operation HOLD steps (without transition check) which occur when the double START condition is satisfied. These transitions occur without regard to the settings described at item (1) above.

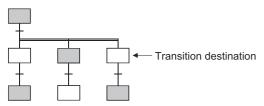
Setting	Operation	Remarks
STOP WAIT TRANSFER (default)	 The TRANSFER setting applies to all operations, regardless of the setting. At coil HOLD steps The operation output is restarted, and a transition condition check begins. The PLS instruction for which the input conditions have already been established is non-executable until the input conditions are turned on again. At operation HOLD steps (without transition check) A transition condition check begins. At operation HOLD steps (with transition check) Operation HOLD steps (with transition check) Operation continues as is. Active step Transition condition satisfied Coil HOLD step or operation output step (without transition check) (without transition check) (No transition condition check) 	Following the double START, execution of all subsequent steps where transition conditions are satisfied will occur according to the step attributes.


Operation at double START

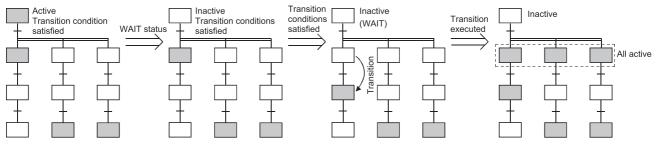
When transition destination is serial transition


• When setting is "STOP": If the transition destination is active, an error occurs and the processing of the CPU module stops.

• When setting is "WAIT": Execution waits until the transition destination step becomes inactive. When the transition destination step becomes inactive, a transition is executed and the transition destination step becomes active. In a WAIT status, the previous step is deactivated.



• When setting is "TRANSFER": A transition is executed and the previous step becomes inactive.



When transition destination is parallel branch

When setting is "STOP": If any one of the transition destinations of the parallel branch is active, an error occurs and the
processing of the CPU module stops.

• When setting is "WAIT": Execution waits until all the transition destination steps of the parallel branch become inactive. When the transition destination steps all become inactive, a transition is executed and all the first steps of the parallel branch become active. In a WAIT status, the previous step is deactivated.

• When setting is "TRANSFER": When any one of the transition destination steps of the parallel branch is active, a transition is executed and the previous step becomes inactive.

- When the transition destination steps are all inactive, normal transition processing is performed and all the transition destination steps become active.
- The operation mode for transition to active step (at step double START) applies to a transition to be
 executed when a transition condition is satisfied or to a forced transition set using the transition control
 instruction (SET TRn) of the SFC control instructions. When the step control instruction (SET Sn) of the
 SFC control instructions is used to issue a START request to the step that is already active, the request is
 ignored and the processing continues.
- For the Basic model QCPU, Universal model QCPU, and LCPU, setting of the transition to active step (at step double START) is not allowed. The transition to active step (at step double start) is fixed to "Transition" or them.

4.8 SFC Comment Readout Instruction

SFC comment readout instruction can read comments of steps being activated in the specified blocks or those of the

transition condition associated with active steps.

The instructions to read SFC comment are listed below.

Name	Ladder Expression	Function
Instruction to read SFC step comment	S.SFCSCOMR SP.SFCSCOMR	Reads comment of an active step in the specified block.
Instruction to read comment of SFC transition condition	S.SFCTCOMR SP.SFCTCOMR	Reads comment of transition condition associated with an active step in the specified block.

SFC comment readout instruction (S(P). SFCSCOMR)

QCPU	LCPU	QnA	Q4AR				
Programmable controller CPU Process				Redundant			
Basic	High Performance	Universal		CPU			
×	∆ ^{*1}	∆ ^{*3}	△*2	^{*2}	△ ^{*4}	×	×

*1 The serial number (first five digits) shall be 07012 or later.

*2 The serial number (first five digits) shall be 07032 or later.

*3 The serial number (first five digits) shall be 12052 or later except for the Q00U(J)/Q01U/Q02UCPU.

*4 The serial number (first five digits) shall be 15102 or later except for the L02(S)CPU(-P).

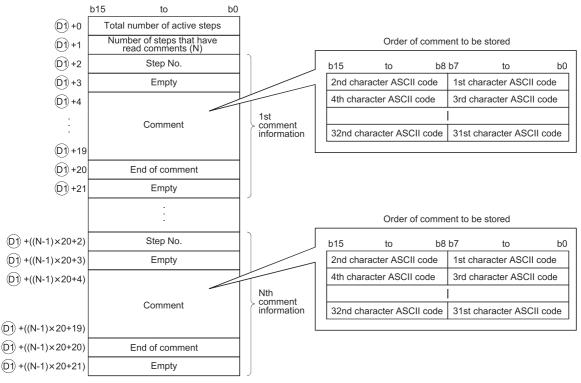
	Usable D	evices									
	Internal device (System, User)		File Register R Link Direct					Index Z	Constant K, H	Expansion SFC BLm\Sn	Others
	Bit	Word	Bit	Word	Bit	Word					
n1	—	0	—	0	—				0	—	
(d1)	—	∆*6	—	0	—	-		—	-		
n2	—	0	—	0	—				0	—	
n3	—	0	—	0	—				0	—	
(d2)	∆ ^{*6}	—	∆ ^{*5}	—	—				—	—	

	Data Type	Programs Using Ir	Execution Site					
		Sequence	nce SFC Program		Block	Step	Transition	
		Program	Step	Transition Condition			Condition	
n1	BIN16	0	0	—	0	—	—	
(d1)								
n2								
n3								
(d2)	Bit]						

*5 This item cannot be set when "Use the same file name as the program" has been selected in "File Register" in the PLC File tab of the PLC parameter dialog box.

*6 Local device cannot be used.

[Instruction Symbol] [Execution Condition]


S.SFCSCOMR	Command	S.SFCSCOMR	n1	01	n2	n3	D2
SP.SFCSCOMR	Command	SP.SFCSCOMR	n1	D1	n2	n3	02

Set Data					
Set Data	Meaning	Range			
n1	Indicates block No. of an SFC program that read comments or device number where block No. is stored.	0 to 319			
(d1)	Indicates the first number of device that stores comment read. ^{*3}	—			
n2	Indicates the device number where the number of comments to read or the number of comments is stored.	0 to 256 ^{*1}			
n3	Indicates the number of comments to read in a single scan or device number where the number of comments is stored.	0 to 256 ^{*2}			
(d2)	Indicates a device that turns ON for 1 scan at completion of the instruction.	—			

*1 when specifying 0, it is processed as 256.

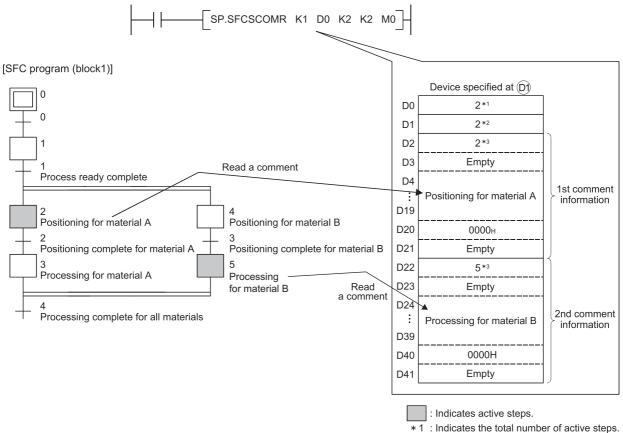
*2 when specifying 0, it is processed as 1.

*3 Comments to be read are stored as follows.

Area name	Data to be stored
Total number of steps	0000 _H is stored at S(P). SFCSCOMR instruction, and the total number of steps are stored at completion of comment readout.
Number of steps that have read comments (N)	• 0000 _H is stored at S(P). SFCSCOMR instruction, and the total number of steps that have actually read comments are stored.
Step No.	Active step No. that has read comment is stored.
Comment	 Comments that have been read are stored. Comment area is fixed by a maximum of 32 characters. In case the word length to be set for 1 comment^{*4} at the comment range setting is set by 32 or less, 0000_H is stored to the area after the number of characters for 1 comment.
End of comment	• 0000 _H is stored.
Empty	• Not used area (0000 _H is stored.)

*4 The number of characters for each comment in the comment range setting is set in the programming tool.

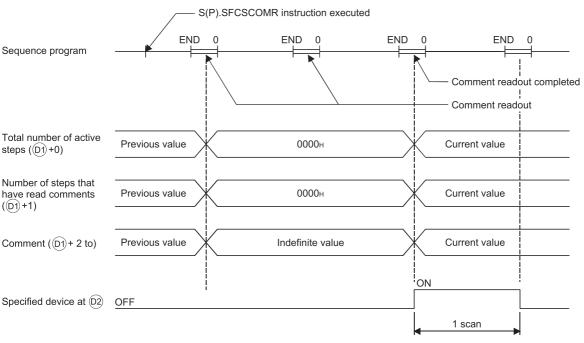
For details, refer to the manual for the programming tool.

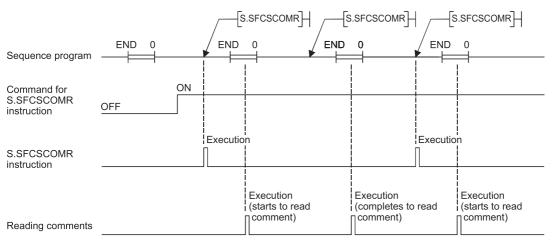

With S(P) .SFCSCOMR instruction, the points calculated by the following formula are occupied from the device No. specified at (d1).

(Points to be used for storing a comment) = $2 + 20 \times$ (number of comment to read (n2))

For (d1), make sure to set device No. that can store the above points successively.

Functions


• This function reads step comments being activated in the SFC block specified at n1, by the number of comment specified at n2, and stores those to the device number of after specified at (d1).


- * 2 : Indicates steps that have read comment.
- * 3 : Indicates step No.
- Executing S(P).SFCSCOMR instruction, SM735 of the special relay (SFC comment readout instruction executing flag) turns ON. Confirms whether or not S(P).SFCSCOMR instruction is executed by SM735.
- In case comments are not set into active steps, "2D_H(—)" is stored to the comment area (word length of 32 characters).
- · Read comments are stored in ascending order of the step No.
- · Comments are read from the comment file specified when S(P). SFCSCOMR instruction is executed.
- Comments to be read with S(P). SFCSCOMR instruction are those of steps^{*1} being activated when executing S(P).SFCSCOMR instruction.
- *1 As steps retaining coil outputs are not active steps, reading comments is not enabled.

• Reading comment is performed at END processing for a scan that has executed S(P).SFCSCOMR instruction. With per END processing, this function reads the number of comments specified at the number of comments in a single 1 scan (n3). Comments that are not read in per END processing are followed to the next scan. Reading comments for active steps (maximum: the number specified at n2) is completed, the device specified at (d2) turns ON for 1 scan.

For the Universal model QCPU and LCPU, when the standard ROM is selected in corresponding memory in "Comment File Used in a Command" in the PLC File tab of the PLC parameter dialog box, the number of comments read at END processing is determined by the system.

- The operation when a command of S(P).SFCSCOMR instruction is in ON status at S(P).SFCSCOMR instruction execution completed is as follows.
- S.SFCSCOMR instruction re-executes when a command for S.SFCSCOMR instruction is in ON status.

Point P

Even if a command for SP.SFCSCOMR instruction turns ON, SP.SFCSCOMR instruction is not executed.

		[s		[s.sfcscomr]- [s.sfcscomr]-
END 0				
OFF	ON			
		Executio	n	
			Execution (starts to read comment)	Execution (completes to read [comment)
		OFF OFF		END 0 END 0 END OFF OFF

- For the comment files to be used with S(P).SFCSCOMR, set them in the PLC File tab of the PLC parameter dialog box or at "file set instruction (QCDSET(P)) for comments". Executing S(P). SFCSCOMR without setting the comment file to use, 0 is stored to "the total number of steps ((d1) +0)" and "the number of steps that have read comments ((d1) +1)" At this time, the device specified in (d2) turns ON for 1 scan. When the comment file setting is configured in the PLC File tab of the PLC parameter dialog box but the file does not exist at power-on or reset, "FILE SET ERROR" (error code: 2400) will occur.
- The following table lists the availability of reading comments stored in the memories by the S(P).SFCSCOMR instruction.

\bigcirc Readable,	Х	Not readable	
----------------------	---	--------------	--

Memory type	Availability of reading comments
SRAM card (drive 1)	0
Flash card (drive 2)	0
Standard ROM (drive 4)	0
ATA card	×*2
SD memory card	×*2

*2 If the S(P).SFCSCOMR instruction is executed to the ATA card or SD memory card where the comments are stored, an operation error (error code: 4130) occurs.

- While SFC program is not executed, reading comments is not performed even if executing S(P).SFCSCOMR instruction.
 Executing S(P).SFCSCOMR instruction at a status without SFC program being executed, 0 is stored to "the total number of steps ((d1) +0)" and "the number of steps that have read comments ((d1) +1)". At this time, the device specified in (d2) turns ON for 1 scan.
- With S(P). SFCSCOMR instruction, comments for the normal SFC program can be read. Comments of a SFC program to control program execution are not read. Executing S(P).SFCSCOMR instruction specifying a SFC program for program execution control, 0 is stored to "the total number of transit conditions ((d1) +0)" and "the number of steps that have read comments ((d1) +1)". At this time, the device specified in (d2) turns ON for 1 scan.
- S(P).SFCSCOMR instruction cannot be executed simultaneously with S(P).SFCSCOMR instruction or S(P).SFCTCOMR instruction. Executing S(P).SFCSOMR, and if S(P).SFCSCOMR instruction or S(P).SFCTCOMR instruction is executed before reading comments completed, the 2nd instruction will be de-activated.
- When the S(P).SFCSCOMR instruction is attempted to be executed while SM721 is on, the instruction will not be executed. However, when the execution condition is met, the instruction will be executed in the next scan. SM721 turns on in the following operations:

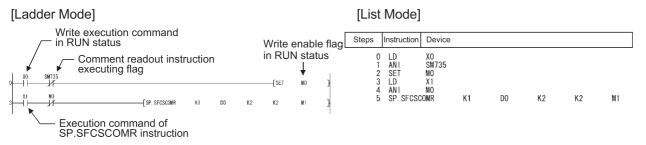
Function
The S(P).SFCSCOMR instruction or the S(P).SFCTCOMR instruction is executed.
The COMRD(P), S(P).FWRITE, S(P).FREAD, or SP.DEVST instruction is executed.
A file in the ATA card, SD memory card, or standard ROM is accessed by the read from PLC or write to PLC function, or by other file access operations.*3

*3 Effective only with the Universal model QCPU and LCPU.

• For the Universal model QCPU and LCPU, when the S(P).SFCSCOMR instruction is attempted to be executed while online change (inactive block) is executed to the SFC block of comment read target, the instruction will not be executed. However, when the execution condition is met, the S(P).SFCSCOMR instruction will be executed in the next scan.

Precautions

- Make sure to use comments to be read with S(P).SFCSCOMR after the device specified at (d2) turns ON. Comments to be read before the device specified at (d2) turns ON become an indefinite value.
- If the number of steps is larger than that of comments (n3) read in a single scan, the active step comments are divided into the number to be read in a single scan. Counting the total number of steps is also performed with the same comment number (n3) for 1 scan. In case transition conditions are remained without being counted when reading comments completed, the counting will be continued for the remained. Because of this, the number of scans calculated in the following formula is required. (Comments to be actually stored are the same points stored in ((d1)+1)


 $\left(\begin{array}{c} \text{The number of scans until S(P).SFCSCOMR} \\ \text{instruction completed} \end{array}\right)^* = \left(\begin{array}{c} \text{The total number of steps} \\ (\textcircled{0} + 0) \end{array}\right) \div \left(\begin{array}{c} \text{The number of comments} \\ \text{to be read at 1 scan (n3)} \end{array}\right)$

- *: It becomes a round-up below the decimal point.
- Execute "batch write of SFC program in RUN status", "online change (inactive block)", or "write of comment file in RUN status" while the S(P).SFCSCOMR instruction is not executed. Also, execute the S(P).SFCSCOMR instruction while these operations are not executed.

Operation Errors								
Error code	Description							
2410	When a comment file specified at execution of S(P).SFCSCOMR instruction does not existed							
4100	 When SFC block No. specified at n1 is other than 0 to 319 When the number of readout comment specified at n2 is other than 0 to 256 When the number of readout comments in a single scan specified at n3 is other than 0 to 256 							
4101	When the number of readout comments specified at n2 exceeds the device range of D1							
4130	When the S(P).SFCSCOMR instruction is executed to the comment file in the ATA card or SD memory card							

Program Example

 This program reads 2 comments being activated at the SFC block No.1 when X1 is turned ON, and stores those to the storage device after D0. (The number of comment to be read in a single scan is also set in 2.) An interlock ladder to execute "batch write of SFC program in RUN status", "online change (inactive block)", and "write of comment file in RUN status" is included in the following program.

- Procedure for "batch writes of SFC program in RUN status", "online change (inactive block)", or "write of comment file in RUN status"
- 1. Turns ON the X0 (write execution command in RUN status).
- **2.** M0 (write enable flag in RUN status) is turned ON when SP.SFCSCOMR instruction is deactivated.
- Turns OFF the X0 (write execution command in RUN status).
- **4.** Performs "batch write of SFC program in RUN status", "online change (inactive block)", or "write of comment file in RUN status".
- 5. Turns OFF the M0 (write enable flag in RUN status) in the device test of the programming tool.
- **6.** SP.SFCTCOMR instruction is executed again when M0 (write enable flag in RUN status) is turned OFF.

SFC transition comment readout instruction (S(P). SFCTCOMR)

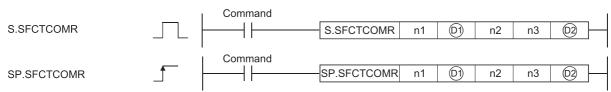
QCPU	LCPU	QnA	Q4AR				
Programmable contr	Process CPU	Redundant					
Basic	High Performance	Universal		CPU			
×	∆ ^{*1}	∆ ^{*3}	△*2	^{*2}	∆ ^{*4}	×	×

*1 The serial number (first five digits) shall be 07012 or later.

*2 The serial number (first five digits) shall be 07032 or later.

*3 The serial number (first five digits) shall be 12052 or later except for the Q00U(J)/Q01U/Q02UCPU.

*4 The serial number (first five digits) shall be 15102 or later except for the L02(S)CPU(-P).

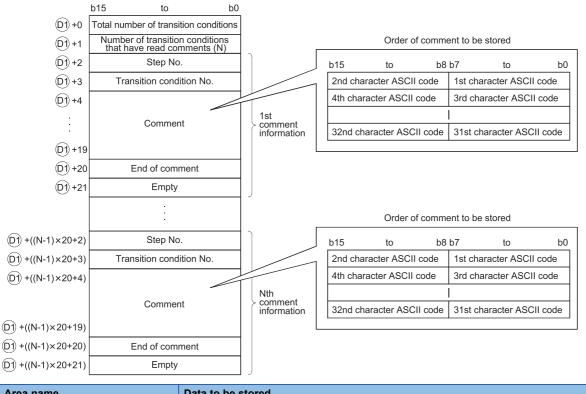

	Usable Devices														
	Internal d (System,		File Regis	ster R	Link Direct J□\□		Link Direct J□\□		Link Direct J⊡\⊡		Intelligent Function Module	Index Z	Constant K, H	Expansion SFC BLm\Sn	Others
	Bit	Word	Bit	Word	Bit	Word									
n1	—	0	—	0	—				0	—					
(d1)	—	∆*6	—	0	—	_			—	—					
n2	—	0	—	0	-			0	-						
n3	—	0	—	0	—			0	—						
(d2)	∆ ^{*6}	—	∆ ^{*5}	—	—				—	—					

	Data Type	Programs Using Ins	Execution Site					
		Sequence	SFC Program	C Program		Step	Transition	
		Program	Step	Transition Condition			Condition	
n1	BIN16	0	0	—	0	—	—	
(d1)								
n2								
n3								
(d2)	Bit	1						

*5 This item cannot be set when "Use the same file name as the program" has been selected in "File Register" in the PLC File tab of the PLC parameter dialog box.

*6 Local device cannot be used.

[Instruction Symbol] [Execution Condition]


Set Data

Set Data	Meaning	Range
n1	Indicates block No. of an SFC program that read comments or device number where block No. is stored.	0 to 319
(d1)	Indicates the first number of device that stores comment read. ^{*3}	-
n2	Indicates the device number where the number of comments to read or the number of comments is stored.	0 to 256 ^{*1}
n3	Indicates the number of comments to read in a single scan or device number where the number of comments is stored.	0 to 256 ^{*2}
(d2)	Indicates a device that turns ON for 1 scan at completion of the instruction.	—

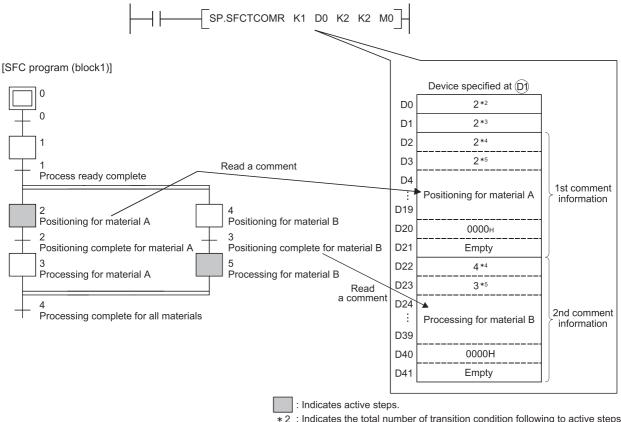
*1 when specifying 0, it is processed as 256.

*2 when specifying 0, it is processed as 1.

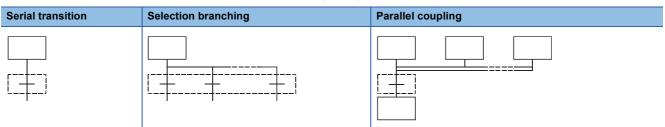
*3 Comments to be read are stored as follows.

Area name	Data to be stored
Total number of transition conditions	 0000_H is stored at S(P).SFCTCOMR instruction, and the total number of transition conditions associated with the steps activated when reading comments completed are stored. (Maximum of up to 256 detected)
Number of transition conditions that have read comments (N)	 0000_H is stored at S(P).SFCTCOMR instruction, and the total number of transition condition associated with the active steps that have actually when reading comments completed are stored.
Step No.	Transition condition step No. that has read comment is stored.
Transition condition No.	Transition condition No. that has read comment is stored.
Comment	 Comments that have been read are stored. Comment area is fixed by a maximum of 32 characters. In case the word length to be set for 1 comment^{*4} at the comment range setting is set by 32 or less, 0000_H is stored to the area after the number of characters for 1 comment.
End of comment	• 0000 _H is stored.
Empty	• Not used area (0000 _H is stored.)

*4 The number of characters for each comment in the comment range setting is set in the programming tool. For details, refer to the manual for the programming tool.


With S(P) .SFCTCOMR instruction, the points calculated by the following formula are occupied from the device No. specified at (d1).

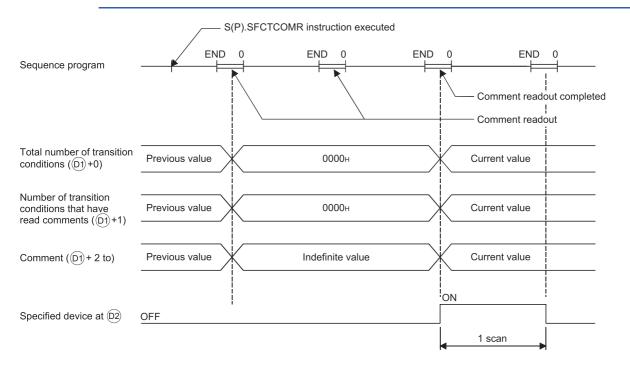
(Points to be used for storing a comment) = $2 + 20 \times$ (number of comment to read (n2))


For (d1), make sure to set device No. that can store the above points successively.

Functions

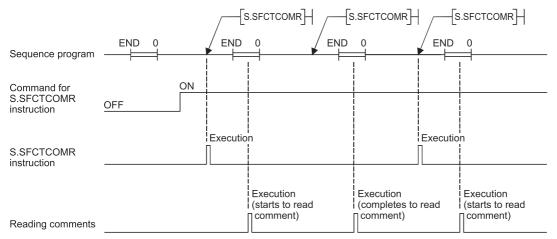
• This function reads comments of the transition condition^{*1} associated with steps activated in the SFC block specified at n1 with the number of comments specified at n2, and stores those to the device number of after specified at (d1).

- 2 : Indicates the total number of transition condition following to active steps (Maximum of 256).
- * 3 : Indicates the number of transition condition that have read comments.
- *4 : Indicates step No.
- * 5 : Indicates transition condition No.
- *1 Transition condition associated with active steps is shown below.
- · Serial transition is a transition condition for right under a step.
- Selection branching is a transition condition for all branches. Comment of transition condition is read from left to right in the SFC diagram.
- Parallel coupling is a transition condition for after parallel coupling. Comments are read only when steps with parallelcoupled are all activated Step No. described at the most right edge is stored for transit condition to be read.

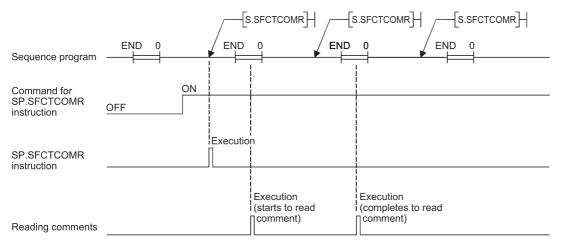


Indicates a transition condition associated with to steps.

- Executing S(P).SFCTCOMR instruction, SM735 of the special relay (SFC comment readout instruction executing flag) turns ON. Confirms whether or not S(P).SFCTCOMR instruction is executed by SM735.
- In case comments are not set into active steps, "2DH(--)" is stored to the comment area (word length of 32 characters).
- · Read comments are stored in ascending order of the step No.
- · Comments are read from the comment file specified when S(P).SFCTCOMR is executed.
- Comments to read with S(P).SFCTCOMR, comments of transition condition associated with active steps of ^{*2} with when S(P).SFCTCOMR instruction is executed. Because of this, step comments to be activated after S(P).SFCTCOMR execution can not be read.
- *2 As coil retention step at a status of retaining coil output or operation retention step retaining operation condition (without transition check) is not active step, a comment cannot be read.
- Reading comment is performed at END processing for a scan that has executed S(P).SFCTCOMR instruction. The number
 of comments specified at n3 is read per END processing. Comments that are not read per END processing are followed to
 the next END processing. Reading comments for transition conditions (maximum: the number specified at n2) associated
 with active steps is completed, the device specified at (d2) turns ON for 1 scan.


Point P

For the Universal model QCPU, when the standard ROM is selected in "Corresponding Memory" in "Comment File Used in a Command" in the PLC File tab of the PLC parameter dialog box, the number of comments read at END processing is determined by the system.



 The operation when a command of S(P).SFCTCOMR instruction is in ON status at S(P).SFCTCOMR instruction execution completed is as follows.

S.SFCTCOMR instruction re-executes when a command for S.SFCTCOMR instruction is in ON status.

Even if a command for SP.SFCTCOMR instruction turns ON, SP.SFCTCOMR instruction is not executed.

 For the comment files to be used with S(P).SFCTCOMR, set them in the PLC File tab of the PLC parameter dialog box or at "file set instruction (QCDSET(P)) for comments". Executing S(P).SFCTCOMR without setting of comment file to use, 0 is stored to "the total number of transition conditions ((d1) +0)" and "the number of transit condition that have read comments((d1) +1)". At this time, the device specified in (d2) turns ON for 1 scan. When the comment file setting is configured in the PLC File tab of the PLC parameter dialog box but the file does not exist at power-on or reset, "FILE SET ERROR" (error code: 2400) will occur.

• The following table lists the availability of reading comments stored in the memories by the S(P).SFCTCOMR instruction.

\bigcirc Readable, \times Not readable

Memory type	Availability of reading comments
SRAM card (drive 1)	0
Flash card (drive 2)	0
Standard ROM (drive 4)	0
ATA card	×*3
SD memory card	×*3

*3 If the S(P).SFCSCOMR instruction is executed to the ATA card or SD memory card where the comments are stored, an operation error (error code: 4130) occurs.

- While SFC program is not executed, reading comments is not performed even if executing S(P).SFCTCOMR instruction. Executing S(P).SFCTCOMR at a status of SFC program not being activated, 0 is stored to "total number of transition conditions ((d1) +0)" and "the number of transition condition that have read comments ((d1) +1)". At this time, the device specified in (d2) turns ON for 1 scan.
- With S(P). SFCTCOMR instruction, comments for the normal SFC program can be read. Comments of a SFC program to control program execution are not read. Executing S(P). SFCTCOMR instruction specifying the SFC program to control execution, 0 is stored to "the total number of transit conditions ((d1) + 0)" and "the number of transient conditions ((d1) + 1)". At this time, the device specified in (d2) turns ON for 1 scan.
- · S(P).SFCTCOMR instruction cannot be executed simultaneously with S(P).SFCTCOMR instruction or S(P).SFCTCOMR instruction. Executing S(P).SFCTOMR, and if S(P).SFCSCOMR instruction or S(P).SFCTCOMR instruction is executed before reading comments completed, the 2nd instruction will be de-activated.
- When the S(P).SFCTCOMR instruction is attempted to be executed while SM721 is on, the instruction will not be executed. However, when the execution condition is met, the instruction will be executed in the next scan. SM721 turns on in the following operations:

Function

The S(P).SFCSCOMR instruction or the S(P).SFCTCOMR instruction is executed.

The COMRD(P), S(P).FWRITE, S(P).FREAD, or SP.DEVST instruction is executed.

A file in the ATA card, SD memory card, or standard ROM is accessed by the read from PLC or write to PLC function, or by other file access operations.*4

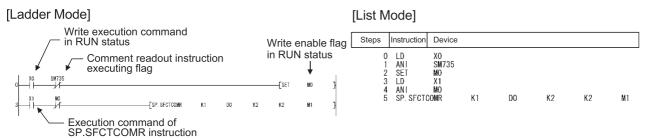
*4 Effective only with the Universal model QCPU and LCPU.

· For the Universal model QCPU, when the S(P).SFCTCOMR instruction is attempted to be executed while online change (inactive block) is executed to the SFC block of comment read target, the instruction will not be executed. However, when the execution condition is met, the instruction will be executed in the next scan.

Precautions

- Make sure to use comments to be read with S(P).SFCTCOMR after the device specified at (d2) turns ON. Comments to be read before the device specified at (d2) turns ON become an indefinite value.
- If the number of transition conditions associated with active steps is larger than that of comments to be read in a single (n3). the active step comments are divided into the number to be read in a single scan. Counting the total number of steps is also performed with the same comment number (n3) for 1 scan. In case transition conditions are remained without being counted when reading comments completed, the counting will be continued for the remained. Because of this, the number of scans calculated in the following formula is required. (Comments to be actually stored are the same points stored in (d1) +1)

The number of scans until S(P).SFCTCOMR ' Total number of transition \setminus The number of comments = (÷ conditions (D1+0) instruction completed to be read at 1 scan (n3)


*: It becomes a round-up below the decimal point.

• Execute "batch write of SFC program in RUN status", "online change (inactive block)", or "write of comment file in RUN status" while the S(P).SFCTCOMR instruction is not executed. Also, execute the S(P).SFCTCOMR instruction while these operations are not executed.

Operation Errors				
Error code	Description			
2410	When a comment file specified at execution of S(P).SFCSCOMR instruction does not existed			
4100	 When SFC block No. specified at n1 is other than 0 to 319 When the number of readout comment specified at n2 is other than 0 to 256 When the number of readout comments in a single scan specified at n3 is other than 0 to 256 			
4101	When the number of readout comments specified at n2 exceeds the device range of D1			
4130	When the S(P).SFCSCOMR instruction is executed to the comment file in the ATA card or SD memory card			

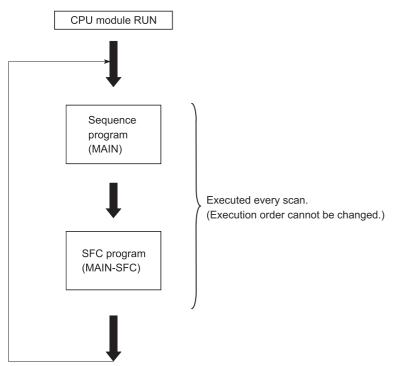
Program Example

• This program reads 2 comments associated with steps being activated at the SFC block No.1 when X1 is turned ON, and stores those to the storage device after D0. (The number of comment to be read in a single scan is also set in 2.) An interlock ladder to execute "batch write of SFC program in RUN status", "online change (inactive block)", and "write of comment file in RUN status" is included in the following program.

 Procedure for "batch writes of SFC program in RUN status", "online change (inactive block)", or "write of comment file in RUN status"

- 1. Turns ON the X0 (write execution command in RUN status).
- **2.** M0 (write enable flag in RUN status) is turned ON when SP.SFCTCOMR instruction is deactivated.
- 3. Turns OFF the X0 (write execution command in RUN status).
- **4.** Performs "batch write of SFC program in RUN status", "online change (inactive block)", or "write of comment file in RUN status".
- 5. Turns OFF the M0 (write enable flag in RUN status) in the device test of the programming tool.
- 6. SP.SFCTCOMR instruction is executed again when M0 (write enable flag in RUN status) is turned OFF.

5 SFC PROGRAM PROCESSING SEQUENCE


This chapter describes the processing sequence of the SFC programs.

5.1 Whole Program Processing of Basic Model QCPU

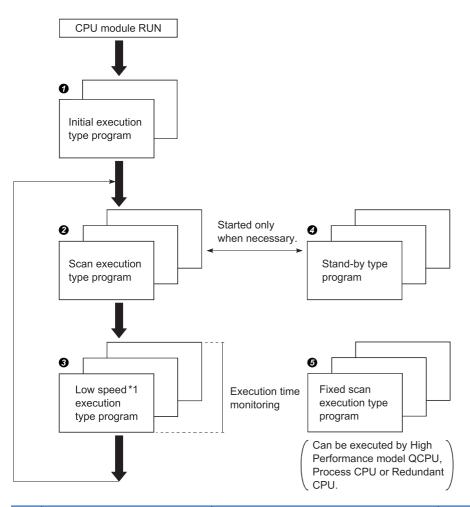
This section describes the program processing of the Basic model QCPU. Since this manual describes only the outline, refer to the QCPU User's Manual (Function Explanation, Programming Fundamentals) for details.

Whole program processing sequence

The Basic model QCPU can create and execute two programs, "sequence program" and "SFC program", in the program memory. (Two sequence programs or two SFC programs cannot be created. A SFC program for program execution management cannot be created either.)

- The execution types of the sequence program and SFC program are fixed to the "scan execution type". (The execution types of the sequence program and SFC program are fixed.)
- The Basic model QCPU executes the SFC program after execution of the sequence program. (The execution order of the sequence program and SFC program is fixed.)
- The file name of the sequence program is fixed to "MAIN". Also, the file name of the SFC program is fixed to "MAIN-SFC".

Point P


When both the "sequence program" and "SFC program" exist in the program memory, both programs are executed. Delete the programs, which will not be executed, from the program memory. When ROM operation is performed, delete the programs, which will not be executed, from the standard ROM.

5.2 QCPU (except Basic model QCPU), LCPU, QnACPU

This section describes the whole program processing of the High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU. Since this manual describes only the outline, refer to the QCPU User's Manual (Function Explanation, Programming Fundamentals) for details.

Whole program processing sequence

The High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU can store multiple programs in the program memory as files, and can execute multiple files concurrently or the specified file only. The whole operation image is as shown below.

No.	Execution Type	Description	SFC Compatibility
0	Initial execution type program (Initial)	 Executed only in one scan when the programmable controller is powered ON or the CPU module is switched from STOP to RUN. After that switches to a stand-by program. 	×
0	Scan execution type program (Scan)	Program executed every scan.	Max. 124 programs (changes depending on the CPU module type) SFC program: Max. 2 programs ^{*2} • Normal SFC program: 1 program • SFC program for program execution management: 1 program ^{*3}
0	Low speed execution type program (Low speed)	Program executed in the extra time of the constant scan time, or program executed only during preset time.	x

No.	Execution Type	Description	SFC Compatibility
0	Stand-by type program (wait)	 Programs such as a subroutine program and interrupt program. Started by the program START instruction for execution. 	Max. 124 programs (changes depending on the CPU module type) SFC program • Normal SFC program: Multiple programs can be set • SFC program for program execution management: Cannot be set
0	Fixed scan execution type program (Fixed scan)	Program executed in a fixed cycle.	×

*1 The low-speed execution type program execution is not available for the Redundant CPU, Universal model QCPU, and LCPU.

*2 Only one program is allowed for the Universal model QCPU and LCPU.

*3 The Universal model QCPU and LCPU do not support SFC programs for program execution management.

Point P

- When the SFC program set as a stand-by type program is to be started, the SFC program in execution must be switched to a stand-by type program before it is started. Refer to Page 150 Execution type designation by instructions for the method of switching between the scan execution type program and stand-by type program.
- Specify the execution type of each program file in "Program" of the PLC parameter dialog box.
- In the "Program" of the PLC parameter dialog box, set the normal SFC program to the number higher than that of the SFC program for program execution management. If the normal SFC program is set to the number lower than that of the SFC program for program execution management, an error may occur when the SFC program set as a stand-by type program is started.

Execution type designation by instructions

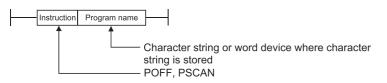
The "execution designation by instruction" function enables the execution type set in the program setting of the PLC parameter dialog box to be changed by the instruction. This function can be applied to normal SFC programs only. (Inapplicable to the SFC programs for program execution management.)

Instructions and corresponding operations

The following shows instructions and corresponding operations.

○: Compatible, ×: Incompatible

Instruction	Operation	SFC Compatibility
PSTOP	Switches the program of the specified file name to a stand-by status, beginning in the next scan.	×
POFF	Executes the end processing of all blocks in the next scan in the SFC program of the specified file name, and switches the program to a stand-by status in the second scan after execution of the instruction.	0
PSCAN	 Switches the program of the specified file name to a scan execution type, beginning in the next scan. The execution order of multiple programs changes depending on the program setting order in the PLC parameter dialog box. 	0
PLOW	 Switches the program of the specified file name to a low-speed execution type, beginning in the next scan. The execution order of multiple programs changes depending on the program setting order in the PLC parameter dialog box. 	×


Point *P*

The following conditions will result in an operation error:

- When the specified program does not exist. (error No. 2410).
- When the PSTOP or PLOW instruction is executed (error No. 2412)
- When an scan execution type SFC program already exists when changing another SFC program to a scan execution type using the PSCAN instruction. (error No.2504)
- The scan execution status of the specified SFC program can be checked using the PCHK instruction. (For the Basic model QCPU, Universal model QCPU, and LCPU, the PCHK instruction is not available.) For details on the PCHK instruction, refer to the Programming Manual (Common Instructions) for the CPU module used.

Instruction format

The following shows how to create an instruction.

Processing time required to switch SFC program from WAIT status to scan status

The processing time required to switch an SFC program from a WAIT status to a scan status is shown below. Although the scanning time is extended by the amount of the processing time, this will not result in a watch dog timer error detection. No system processing time is required when switching from a scan status to a WAIT status.

Con- stant	High Perf Model QC		Process CPU	Redundant CPU	Universal model QCPU				
	Q02CPU	QnHCPU	QnPHCPU	QnPRHCPU	Q00UJCPU, Q00UCPU, Q01UCPU	Q02UCPU	Q03UDCPU, Q03UDECPU	Q04UDHCPU, Q06UDHCPU, Q04UDEHCPU, Q06UDEHCPU	Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU
Km	451.9μs	194.7µs	194.7µs	194.7µs	11.8µs	11.2µs	10.6µs	4.4µs	7.3µs
Kn	19.1µs	8.2µs	8.2µs	8.2µs	3.8µs	3.6µs	0.7µs	0.5µs	1.1µs
Кр	6.2µs	2.7µs	2.7µs	2.7µs	0.9µs	0.8µs	0.8µs	0.7µs	0.7µs
Kq	—	—	—	—	8893.5µs	8470µs	13970µs	8070µs	8100μs

Switching time = (number of created programs \times Km) + (number of created steps \times Kn) + (SFC program capacity \times Kp)

Constant	Universal model QCPU		LCPU	LCPU				
	Q03UDVCPU	Q04UDVCPU, Q04UDPVCPU, Q06UDVCPU, Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU	L02SCPU, L02SCPU-P	L02CPU, L02CPU-P	L06CPU, L06CPU-P	L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT		
Km	9.6µs	6.3µs	11.8µs	11.6µs	4.4µs	7.3µs		
Kn	0.6µs	1.0µs	3.8µs	2.8µs	0.5µs	1.1µs		
Кр	0.7µs	0.6µs	0.9µs	0.8µs	0.7µs	0.7µs		
Kq	8920µs	5400µs	8893.5µs	8460.0µs	8070.0μs	8100.0µs		

SFC program for program execution management

This SFC program can be used to manage the program execution sequence when multiple program file switching is required. In addition to a normal SFC program, only one block can be created and executed for a single file of an SFC program for program execution management.

How to create SFC program for program execution management

This section describes how to create SFC program for program execution management.

■Number of files and blocks

In addition to a normal SFC program, only one file of an SFC program for program execution management can be created as a scan execution type program. Only one block of the SFC program for program execution management can be created.

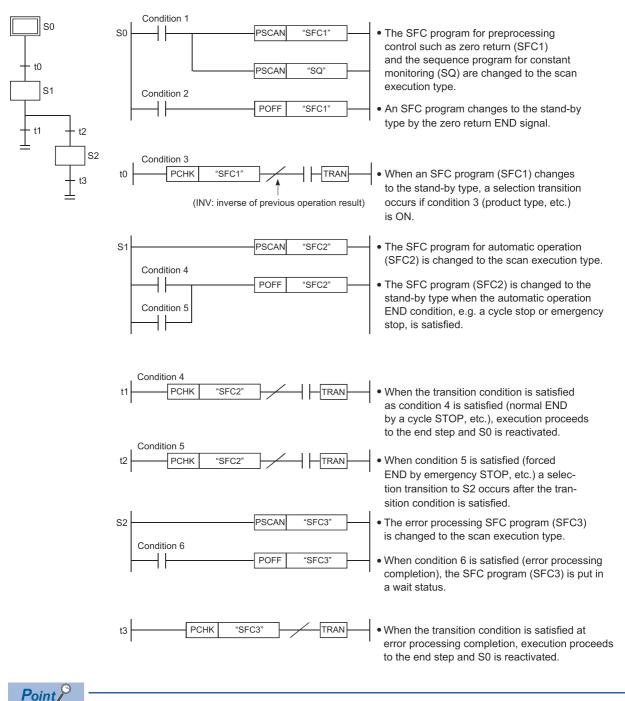
■Usable instructions

The SFC diagram symbols (except the block START steps) and steps that can be used in an SFC program and the sequence instructions that can be used in transition conditions can all be used.

Point P

If block start steps are described, a "BLOCK EXE. ERROR" error (error No. 4621) will occur during SFC program execution and the CPU module will stop the execution.

Execution procedure


The program is started automatically when registered as a scan execution type program. At end step processing, the initial step is reactivated and processing is repeated.

Point P

- Use the peripheral device to select between the SFC program for program execution management and the normal SFC program. For details regarding the setting procedure, refer to the GX Developer Operating Manual (SFC).
- Periodic execution block settings cannot be defined the SFC programs for program execution control. If a SFC program for program execution control is set in a periodic execution block, the execution of the SFC program will not be performed.
- The Basic model QCPU, Universal model QCPU, and LCPU do not support SFC programs for program execution management.
- The SFC program for program execution management cannot be set as a stand-by type program. In addition, execution designation by POFF or PSCAN instruction cannot be applied to the program.
- · The SFC control instructions cannot be executed for the SFC program for program execution management.

Example of program execution management SFC programs

SFC1, SFC2 and SFC3 are assumed to be SFC program files and SQ is assumed to be a program file for a program other than an SFC program.

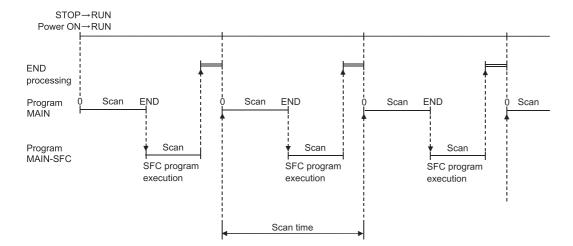
The processing sequence when transition condition t4 is satisfied is the same as that shown above except for a different "product type".

5.3 SFC Program Processing Sequence

This section describes the SFC program processing sequence.

SFC program execution

The SFC program is executed once per scan.

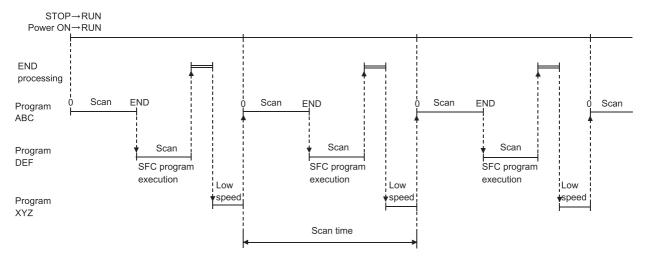

Basic model QCPU

The Basic model QCPU executes a sequence program and then executes a SFC program. The program execution status is shown below under the following condition.

[Condition]

· SFC program: Set to Auto START ON

[Program execution]


QCPU (except Basic model QCPU), LCPU, QnACPU

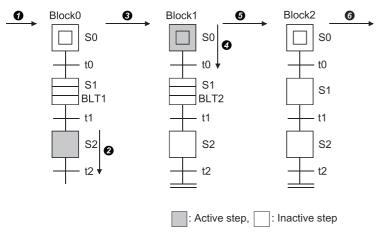
The High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU can store multiple programs in the program memory and execute them. (Scan execution is enabled for two SFC programs (one SFC program for program execution management and one normal SFC program).^{*1} Multiple programs are executed in the order of the program setting in the PLC parameter dialog box.

[Condition]

- · Program setting in PLC parameter dialog box
- 1: ABC (sequence) <scan>
- 2: DEF (SFC) <scan>
- 3: XYZ (sequence) <low speed>
- Low speed program time setting in parameter: 5ms
- SFC program: Set to Auto START ON

[Program execution]

*1 For the Universal model QCPU and LCPU, only one SFC program (one normal SFC program) can be scanned.

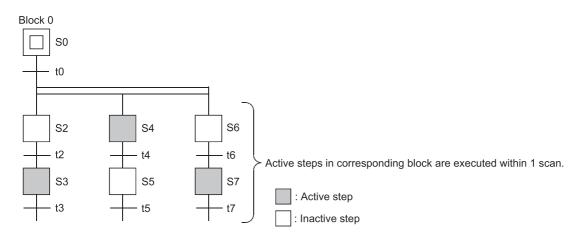

Point P

Refer to Page 161 SFC Program START and STOP for the SFC program start/stop method.

Block execution sequence

In the SFC program, the step in the active block is executed every scan. When there are multiple blocks, the blocks are processed in order of lower to higher block numbers.

- In the active block, the active step in that block is executed.
- The inactive block is checked for a START request, and if there is a START request, the block is activated and the step in that block is executed.

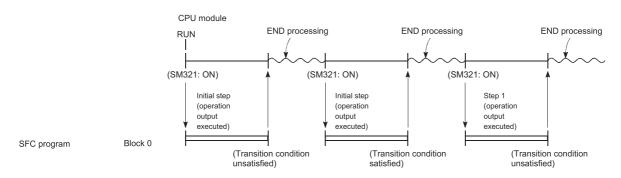


The SFC program is executed in order of **1** to **6**.

- **1**: Whether block 0 is active or inactive is checked.
- 2: Since block 0 is active, the active step (S2) is executed.
- S: Whether block 1 is active or inactive is checked.
- (3): Since block 1 is active, the active step (S0) is executed.
- **6**: Whether block 2 is active or inactive is checked.
- **6**: Since block 2 is inactive, whether the next block is active or inactive is checked.

Step execution sequence

In the SFC program, the operation outputs of all active steps are processed within one scan.


At the end of the operation output execution at each step, whether the transition condition to the next step is satisfied or not is checked.

- When the transition condition is not yet satisfied, the operation output of the same step is also executed in the next scan.
- When the transition condition is satisfied, the outputs turned ON by the OUT instruction at the executed steps are all turned OFF. When the next scan is executed, the operation output of the next step is executed. At this time, the operation output of the step executed previously is deactivated (unexecuted).

The CPU module processes only the program of the operation output of the currently active step and the transition condition to the next step.

Ex.

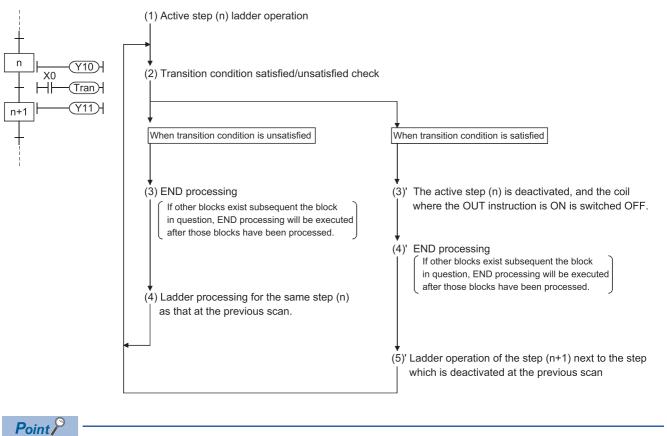
The execution sequence from a program start till a transition from the initial step to step 1 is as shown below.

Point P

The step whose attribute has been set to a HOLD step is not deactivated (unexecuted). Processing continues according to the set attribute.

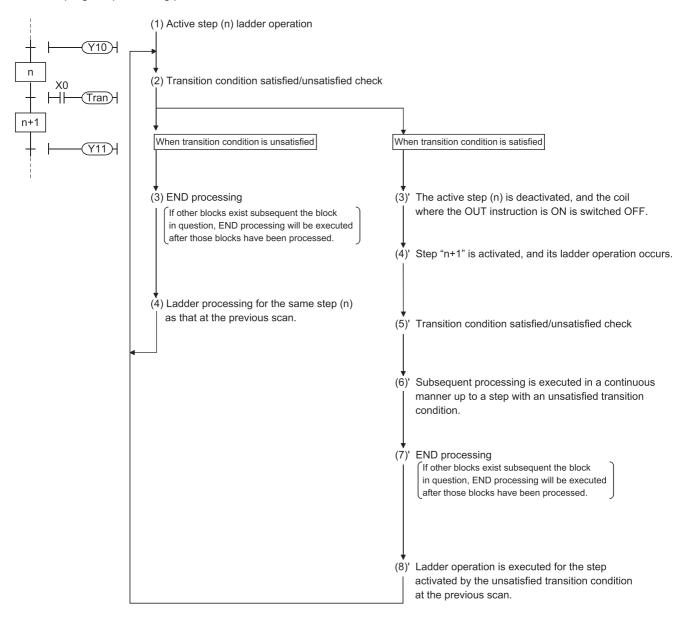
Continuous transition ON/OFF operation

There are two types of SFC program transition processing: "with continuous transition" and "without continuous transition". Set "with continuous transition" or "without continuous transition" using the continuous transition bit of the SFC information devices. When the device set to the continuous transition bit is turned ON/OFF by the user, operation is performed as described below.


Continuous Transition Bit	SM323	Operation	
No setting	OFF	Without continuous transition	When the transition condition is satisfied, the operation output of the transition destination step is executed in the next scan.
	ON	With continuous transition	When the transition condition is satisfied, the operation output of the transition destination step is executed within the same scan. When the transition conditions of the steps are satisfied continuously, the operation outputs are executed within the same scan until the transition condition is not satisfied or the end step is reached.
OFF	ON/OFF	Without continuous transition	When the transition condition is satisfied, the operation output of the transition destination step is executed in the next scan.
ON	ON/OFF	With continuous transition	When the transition condition is satisfied, the operation output of the transition destination step is executed within the same scan. When the transition conditions of the steps are satisfied continuously, the operation outputs are executed within the same scan until the transition condition is not satisfied or the end step is reached.

The tact time can be shortened by setting "with continuous transition". This resolves the problem of waiting time from when the transition condition is satisfied until the operation output of the transition destination step is executed. However, when "with continuous transition" is set, the operations of the other blocks and sequence program may become slower.

Transition processing for continuous transition OFF setting


The SFC program processing procedure without continuous transition will be described.

END processing is performed after all the program files set to the "scan execution type" in the program setting of the PLC parameter dialog box have been executed. Refer to the QCPU User's Manual (Function Explanation, Programming Fundamentals) for the detailed processing order of the programs other than the SFC program and their processings.

Transition processing for "continuous transition ON" setting

The SFC program processing procedure with continuous transition will be described.

Point P

END processing is performed after all the program files set to the "scan execution type" in the program setting of the PLC parameter dialog box have been executed. Refer to the QCPU User's Manual (Function Explanation, Programming Fundamentals) for the detailed processing order of the programs other than the SFC program and their processings.

6 SFC PROGRAM EXECUTION

This chapter describes the SFC program execution.

6.1 SFC Program START and STOP

There are the following four types of SFC program start and stop methods.

- Auto START using PLC parameter
- Start and stop using the special relay for SFC program start/stop (SM321)
- · Start and stop using the PSCAN/POFF instruction (except the Basic model QCPU)
- Start and stop using the programming tool (except the Basic model QCPU, Universal model QCPU, and LCPU)

Auto START using PLC parameter

Set the start condition in the "SFC setting" of the PLC parameter dialog box to "Block 0 Auto START". The SFC program is started when the CPU module switches from STOP to RUN. (When the SFC program starts, block 0 also starts.)

Q Parameter Setting	×
PLC Name PLC System PLC File PLC RAS Boot File Program SFC Device I/O Assignment Multiple CPU Setting	
SFC Program Start Mode	
[©] Initial Start [©] Resume Start	
Start Conditions	
C Do not Autostart Block 0	
- Output Mode When the Block is Stopped	
C Keep ON	
Print Window Print Window Preview Advnowledge XY Assignment Default Check End Can	cel

Start and stop using the special relay for SFC program start/stop (SM321)

SM321 turns ON when an Auto START is made using the PLC parameter.

- Turn OFF SM321 to stop the SFC program execution.
- Turn ON SM321 to start the SFC program.

Start and stop using the PSCAN/POFF instruction (except the Basic model QCPU)

- When the POFF instruction is executed, the SFC program in execution turns off the output and then stops. The execution type changes to the "stand-by type".
- When the PSCAN instruction is executed, the stand-by type SFC program can be started. However, when the SFC program has not been set to the "scan execution type" (SM321 is OFF) in the program setting of the PLC parameter dialog box, the SFC program is started by turning ON Sm321. The execution type changes to the "scan execution type".

SFC program resumptive START procedure

The SFC program START format can be designated as "initial START" or "resumptive START". The "resumptive START" setting procedure as well as some precautions regarding the "resumptive START" format are described below.

Resumptive START setting procedure

Make the resume START setting of the SFC program in the "SFC program start mode" of the SFC setting in the PLC parameter dialog box.

Block operation status resulting from "SFC program START mode" setting

At an SFC program start, whether an initial start or resume start will be made is determined by the combination of the setting of the "SFC program start mode" in the PLC parameter dialog box and the ON/OFF status of the "special relay for setting SFC program start status (SM322)".

Operation	SFC Program Start Mode					
	Initial Start		Resume Start			
	SM322: OFF (Initial status) ^{*1}	SM322: ON (When changed by user)	SM322: ON (Initial status) ^{*1}	SM322: OFF (When changed by user)		
SM321: Turned ON	Initial	Initial	Resume	Initial		
Programmable controller: Powered ON			Resume/Initial ^{*3}			
Programmable controller: Powered OFF and then ON after SM321 is switched from ON to OFF or the CPU module is switched from RUN to STOP			Resume ^{*2}			
CPU module: Reset and RUN			Resume/Initial ^{*6}			
CPU module: Reset and RUN after SM321 is switched from ON to OFF or the CPU module is switched from RUN to STOP			Resume ^{*2}			
CPU module: Switched from STOP to RUN	Resume					
CPU module: STOP, write a program, and then RUN	Initial ^{*4*5}					

*1 SM322 is turned ON/OFF by the system according to the setting of the "SFC program start mode" in the PLC parameter dialog box when the CPU module switches from STOP → RUN.

· At initial start setting: OFF

· At resume start setting: ON

*2 Operation at resume start

At a resume start, the SFC program stop position is held but the status of each device used for the operation output is not held. Therefore, make latch setting for the devices whose statuses must be held in making a resume start.

The held coil HOLD step SC becomes inactive, and is not kept held. In the Basic model QCPU, Universal model QCPU, and LCPU, the held coil HOLD step SC restarts in the held status. However, the output is not held. To hold the output, make latch setting for the devices desired to be held.

- *3 Depending on the timing, a resume start is disabled and an initial start may be made. To perform a resume start, turn ON and then OFF SM321 or switch the CPU module from RUN to STOP, and power OFF and then ON the programmable controller. Note that the Basic model QCPU and the Universal model QCPU with serial number "11042" (first five digits) or earlier always perform an initial start.
- *4 A resume start may be made depending on the SFC program change. If a resume start is made as-is, a start is made from the old step number, leading to a malfunction of the mechanical system. When any SFC program change (SFC diagram correction such as step addition and deletion) has been made, make an initial start once and then return it to a resume start. Note that the Basic model QCPU and the Universal model QCPU with serial number "11042" (first five digits) or earlier always perform an initial start.
- *5 In the Universal model QCPU and LCPU, a resume start is performed if data other than SFC programs are changed.
- *6 The Basic model QCPU and Universal model QCPU of which the first 5 digits of the serial number are "11042" always makes an initial start.

- When the programmable controller is powered OFF or the CPU module is reset, the intelligent function modules and special function modules are initialized. When making a resume start, create an initial program for the intelligent function module/special function module in the block that is always active or in the sequence program.
- When the programmable controller is powered OFF or the CPU module is reset, values in the devices without a latch setting are cleared. To hold the values in the SFC information devices, set a latch range.

6.2 Block START and END

This section describes the block START and END.

Block START methods

The block START methods during SFC program execution are described below. As shown below, there are several block START methods. Choose the method which is most suitable for the purpose at hand.

\bigcirc : Usable, \times : Unusable

START Method	Operation Description	Remarks	Block 0	Other than Block 0
Auto START using PLC parameter	By setting the "start condition" to "block 0 Auto START" in the SFC setting of the PLC parameter dialog box, block 0 is automatically started at an SFC program start, and processing is executed from the initial step.	Convenient when block 0 is used as a control block, a preprocessing block, or a constant monitoring block, for example.	0	×
Block START by SFC diagram symbol	Another block is started by the block START steps at each of the SFC program blocks.	 Convenient when the sequence control is clear as in automatic operation. There are 2 types of block START: The START source step remains active until the START destination block is ended. The START source transition occurs without waiting for the START destination block to be ended. 	0	0
Block START by SFC control instruction	Using an SFC control instruction, a specified block is forcibly started from an SFC program step (operation output), or from another sequence program. • When specified block is executed from its initial step: Condition • When specified block is executed from a specified step: Condition • When specified block is executed from a specified step: Condition • "m" is the block No. • "m" is the block No.	Convenient when starting an error reset processing block at error detection, etc., and for executing interrupt processing, for example.	0	0
Block START by SFC information device	The corresponding block is activated by forcibly turning ON the "block START/END bit", which was set to each block as the SFC information device, in the program or peripheral device.	Convenient for debugging and test operations in 1-block units because the block can be started from a peripheral device without requiring a program.	0	0

Block END methods

The methods for ending block operations are described below. As shown below, there are several block END methods. Choose the method which is most suitable for the purpose at hand.

END Method	Operation Description	Remarks
Block END by SFC diagram symbol	Block processing is ended and the block is deactivated when the block's END step is executed.	 Convenient for cycle stops at automatic operations, etc. Multiple END steps are possible within a single block.
Block END by SFC control instruction	Using an SFC control instruction, a specified block is forcibly ended and deactivated from an SFC program step (operation output), or from another sequence program.*1 Condition 	Convenient for executing a forced STOP (at emergency stops, etc.) without regard to the operation status.
Block END by SFC information device	The processing of the corresponding block is ended to deactivate it by forcibly turning OFF the "block START/ END bit", which was set to each block as the SFC information device, in the program or peripheral device.	Convenient for debugging and test operations because block processing can be ended from a peripheral device without requiring a program.

*1 Block processing is also ended when the RST BLm\Sn instruction is used to deactivate all steps at a specified block.

Point 🎾

A forced end to block processing is possible using a method which is different from that used to start the block.

- A block started by an SFC diagram symbol can be ended by an SFC control instruction (RST BLm).
- A block started by an SFC control instruction (SET BLm) can be ended by forcibly turning OFF the block START/END bit of the SFC information devices.

Restart after block END processing is completed

After block END processing is completed, the block can be restarted as shown below.

Block		Description	
Block 0	When the Start conditions is designated as "Autostart block 0"	After block processing is ended, processing is started automatically from the initial step.	
	When the Start conditions is designated as "Do not autostart block 0"	After block processing is ended, the block remains inactive until a START request occurs by one of the methods. (Page 163 Block START methods)	
Other than t	block 0		

6.3 Block Temporary Stop and Restart Methods

This section describes the block temporary stop and restart methods

Block STOP methods

The temporary block STOP methods which can be used during SFC program execution are described below.

Block STOP methods

The methods for temporarily stopping a block during SFC program operation are shown below.

STOP Method	Operation Description	Remarks
Block STOP by SFC control instruction	Using an SFC control instruction, a specified block is temporarily stopped from an SFC program step (operation output), or from another sequence program.	Convenient for temporarily stopping operation (at error detection, etc.) in order to correct the error by manual operation. (The manual operation control program can be placed at another block which is forcibly started when the block STOP occurs.)
STOP by SFC information device	The execution of the specified block is temporarily stopped by forcibly turning ON the "block STOP/ RESTART bit", which was set to each block as the SFC information device, in the program or peripheral device.	Convenient for confirming operation by step control at debugging and test operations, because block processing can be stopped from a peripheral device without requiring a program.

Block STOP timing and coil output status when STOP occurs

The STOP timing in response to a block STOP request, and the coil output status during the STOP are as shown below.

Setting of	Operation	Status of	Operation			
Output Mode at	Output at Block	STOP-time Mode Bit	Active step other than held	Held step ^{*1}		
Block Stop in PLC Parameter	Stop (SM325)		step (including HOLD step whose transition condition is not satisfied)	Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)
Turns OFF (coil output OFF) Remains ON (coil output held)	OFF (coil output OFF)	OFF No setting (immediate stop) ON (STOP after transition)	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status remains active. Normal operation is performed until the transition condition is satisfied. When the transition condition is 	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status becomes inactive. 	 Immediately after a STOP request is made, the coil output of the operation output is turned OFF and the block is stopped. The status remains active. 	
		satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block stops immediately.				

Setting of	Operation	Status of	Operation			
Output Mode at	Output at Block Stop (SM325)	STOP-time Mode Bit	Active step other than held step (including HOLD step whose transition condition is not satisfied)	Held step ^{*1}		
Block Stop in PLC Parameter				Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)
Remains ON (coil output held)	ON (coil output held)	OFF No setting (immediate stop)	 Immediately after a STOP request is made, the block is stopped with the coil output of the operation output being held. The status remains active. 	-	TOP request is made, the block is stop the operation output being held. tive.	
	ON (STOP after transition) • Norma until th satisfie • When satisfie the com perforr transiti becom	 Normal operation is performed until the transition condition is satisfied. When the transition condition is satisfied, the end processing of the corresponding step is performed. At the same time, the transition destination step becomes active and the block stops immediately. 				

*1 The held step indicates the step whose attribute has been set to the HOLD step (SC, SE, ST) and which is being held with the transition condition satisfied.

Operation of SM325

The operation of SM325 differs depending on the CPU module.

■For the Basic model QCPU, High Performance model QCPU, Process CPU, and QnACPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) at STOP RUN of the CPU module.

■For the Universal model QCPU and LCPU

SM325 turns ON/OFF according to the parameter setting (output mode setting at block stop) when the CPU module is powered ON or is reset.

Parameter setting	SM325
Turns OFF (coil output OFF)	OFF
Remain ON (coil output held)	ON

Point P

Note that the output mode at block stop can be changed regardless of the parameter setting by turning ON/ OFF SM325 in the user program.

Restarting a stopped block

The methods for restarting a block which has been temporarily stopped during SFC program processing are described below.

Restarting block processing

The methods for restarting a block which has been temporarily stopped are shown below.

Restart Method	Operation Description	Remarks
Restart by SFC control instruction	Processing of the specified block is restarted by an SFC control instruction at a step (operation output) or sequence program outside the stopped block.	Convenient for returning to automatic operation when the manual control END signal is output at the temporary STOP.
	Condition	
RESTART by SFC information device	The execution of the corresponding block is restarted by forcibly turning OFF the "block STOP/RESTART bit", which was set to each block as the SFC information device, in the program or peripheral device.	Convenient for confirming operation by step control at debugging and test operations, because block processing can be restarted from a peripheral device without requiring a program.

Active step when restart occurs

The step which is active when a block is restarted varies according to the status which existed when the STOP occurred, as shown below.

Output Mode	Operation Output at Block RESTART					
Setting at Block	Active step other than held step (including HOLD step whose transition condition is not satisfied)	Held step ^{*1}				
STOP		Coil HOLD step (SC)	Operation HOLD step (without transition check) (SE)	Operation HOLD step (with transition check) (ST)		
At coil output OFF	Returns to normal operation.	Restart disabled. (Since the step is deactivated at a block STOP)	Restarts the execution of the operation output in a HOLD status.	 Restarts the operation output in a HOLD status. Also checks the transition condition. 		
At coil output HOLD		Restarts as held.				

*1 The held step indicates the step whose attribute has been set to the HOLD step (SC, SE, ST) and which is being held with the transition condition satisfied.

Operation of SM325

The operation of SM325 is the same as one of the block STOP methods. (F Page 166 Operation of SM325)

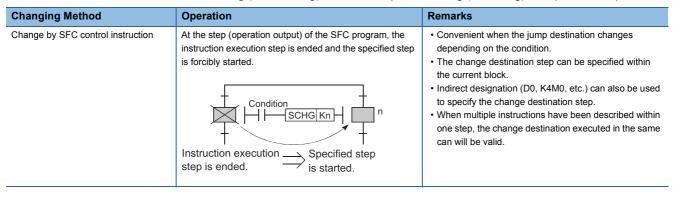
6.4 Step START (Activate) and END (Deactivate) Methods

This section describes the step START (Activate) and END (Deactivate) methods.

Step START (activate) methods

There are the following step START (activation) methods.

Step START (Activation) Operation Method		Remarks
Step START by SFC diagram symbol	The corresponding step is automatically started when the preceding transition condition is satisfied.	Basic operation of SFC program
Step START by SFC control instruction The specified step is forcibly started by the SFC control instruction at the step (operation output) of the SFC program or in another sequence program. Condition SET Sn * "n" is the step No. Condition * "m" is the block No., "n" is the step No.		 Jump to other blocks can be made. When the block of the destination step is inactive, a block forced START is made from the specified step. When there are initial steps in multiple blocks, a selection START is made.


Step END (deactivate) methods

Steps can be ended (deactivated) by the methods shown below.

END Method	Operation	Remarks
END by SFC diagram symbol	The step is automatically ended by the system when the transition condition associated with the corresponding step is satisfied.	 Basic operation of SFC program When the step attribute has been specified, operation is performed according to the attribute.
	Set the step to a reset step as the step attribute and specify the step number to be ended.	 Convenient for ending the HOLD step when the machine operation condition is satisfied during SFC program execution, when a transition to the error processing step is performed by selection branch, for example. The step number to be ended can be specified in only the same block.
END by SFC control instruction	The specified step is forcibly ended by the SFC control instruction at the step (operation output) of the SFC program or in another sequence program. Condition * "n" is the step No. Condition * "m" is the block No., "n" is the step No.	 The steps in different blocks can also be ended. The block is ended when all steps of the corresponding block are deactivated by the RST instruction.

Changing an active step status (Not available for Basic model QCPU, Universal model QCPU, and LCPU)

This section describes the method for ending (deactivating) an active step and starting (activating) the specified step.

6.5 Operation Methods for Continuous Transition

If "with continuous transition" is set, whether a continuous transition will be performed or not can be selected at each step using the continuous transition disable flag (SM324).

Processing performed when continuous transition disable flag is not used

SFC Program	With Continuous Transition	Without Continuous Transition
(Block n) $S0$ $SM400$ H $S1$ $S1$ $S2$ $SM400$ H $Tran$ $S2$ $SM400$ H $S3$	When the corresponding block becomes active, the processings of all steps are executed in the same scan, and end step processing is performed to deactivate the block.	 When the corresponding block becomes active, steps are executed in a 1-step-per-scan format. The end step processing is performed in the third scan to deactivate the block.

Processing performed when continuous transition disable flag is used

SFC Program	With Continuous Transition	Without Continuous Transition
(Block n) $S0$ $SM400 SM324$ $HHHHTTran$ $S1$ $S2$ $SM400 SM324$ $HHHTTran$ $S2$ $SM400 SM324$ $HHTTran$ $S3$	 When the corresponding block becomes active, execution proceeds to step 1 since SM324 is ON. When execution proceeds to step 1, the processing of the first scan is ended since SM324 turns OFF. In the second scan, execution proceeds to step 2 since SM324 turns ON again. When execution proceeds to step 2, SM324 turns OFF. Since the transition condition of step 2 does not have the contact of SM324, a transition occurs and the end step processing is performed to deactivate the block. 	 When the corresponding block becomes active, steps are executed in a 1-step-per-scan format independently of whether SM324 is present or absent. The end step processing is performed in the third scan to deactivate the block.

6.6 Operation at Program Change

SFC programs of the CPU module can be changed by executing any of the following functions.

- Write to PLC (write in file unit)
- · Online change (write in ladder block unit)
- Online change (inactive block) *1

The following table lists changes that can be made to the SFC programs by executing each function above.

○: Possible, ×: Impossible

Change Type			Program Change by Write to PLC		Program Change by	Online change (inactive
			PAUSE/ STOP status	RUN status ^{*2*3}	Online Change	block)
SFC program	addition		0	×	×	×
SFC block addition/deletion		0	0	×	0	
SFC block	SFC diagram change	Step/transition addition/deletion	0	0	×	O ^{*4}
change		Transition destination change	0	0	×	O ^{*4}
		Step attribute change	0	0	×	O ^{*4}
	Change in SFC diagram	Operation output sequence program change	0	0	0	0
		Transition condition sequence program change	0	0	0	0
	Block data change	Block data change		0	×	0

*1 For the L02(S)CPU, L02(S)CPU-P, and the LCPU whose serial number (first five digits) is "15101" or earlier, online change (inactive block) cannot be performed.

*2 This function can be executed only when a CPU module and programming tool are used in the following combination.

CPU module	Programming tool
High Performance model QCPU (whose first five digits of serial No. are "04122" or later)	GX Developer Version 8 or later, GX Works2
Process CPU (whose first five digits of serial No. are "07032" or later)	GX Developer Version 8 or later, GX Works2
Redundant CPU	GX Developer Version 8.18U or later, GX Works2

*3 The Universal model QCPU and LCPU do not support the use of this function in the RUN status.

*4 This function can be executed only when a CPU module and GX Works2 are used in the following combination.

CPU module	Programming tool
Universal model QCPU other than the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU (serial number (first five digits) is "12052" or later)	GX Works2 Version 1.34L or later
LCPU other than the L02(S)CPU and L02(S)CPU-P (serial number (first five digits) is "15102" or later)	GX Works2 Version 1.501X or later

Operation at program change made by write to PLC

This section describes the operation at program change made by write to PLC.

When program was written with CPU module in PAUSE/STOP status

■Program start after write to PLC

An initial start is performed independently of the SFC start mode setting (initial start/resume start). Depending on the SFC program change, however, an initial start is not made but a resume start may be made at the resume start setting. Refer to Page 123 SFC program start mode for details of the SFC program start mode.

Device status at program start

At a program start after write to PLC, the CPU module devices operate as described in the following table depending on the setting of the SFC device clear mode setting flag (SM326).

SM326	Operation		
	Step relay	Other than step relay	
OFF	Turned ON/OFF by the system. SFC program is executed after all devices have been cleared.		
ON	SFC program is executed with all devices held.		

Point P

The setting of SM326 is valid only when an SFC program exists after write to PLC. When sequence program and/or parameter write is performed, the setting of SM326 is also valid. (The setting of SM326 is ignored when only the data other than the SFC program, sequence program and parameters are written.)

When program was written with CPU module in RUN status

■Program start after write to PLC

An initial start is performed independently of the SFC start mode setting (initial start/resume start). Refer to Page 123 SFC program start mode for details of the SFC program start mode.

Device status at program start

The SFC program is executed with all devices held.

Program change by online change

This section describes the program change by online change.

Program start after write to PLC


When program change is made by online change, a resume start is performed independently of the SFC start mode setting.

Device status at program start

The SFC program is executed with all devices held.

Online change (inactive block)

An inactive SFC block can be changed in units of blocks.

Point P

This function can be executed only when a CPU module and GX Works2 are used in the following combination.

- Universal model QCPU other than the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU (serial number (first five digits) is "12052" or later): GX Works2 Version 1.34L or later
- LCPU other than the L02(S)CPU and L02(S)CPU-P (serial number (first five digits) is "15102" or later): GX Works2 Version 1.501X or later

Supported program

This function can be executed to an SFC program registered in the Program tab of the PLC parameter dialog box.

When there are multiple programs in the program memory, this function cannot be executed to a program not registered in the Program tab.

Available operations

The following operations can be executed to an inactive block with GX Works2.

Operation	Description
Changing a block	 An SFC block program in the CPU module can be changed. An SFC information device for the target SFC block can be changed.
Adding a block	An SFC block can be added to an SFC program in the CPU module. An SFC information device can be added to the target SFC block.
Deleting a block	 The specified SFC block can be deleted from the SFC program in the CPU module. An SFC information device for the target SFC block can be deleted. When the target block is not in an SFC program in the CPU module, deleting a block cannot be performed.

Area to be overwritten

This section describes the area to be overwritten.

■Area to be changed

All programs of the target block are overwritten. Multiple blocks cannot be batch-written. In online change (inactive block), a program (before change) in a programming tool is not verified with the program in the CPU module. Therefore, verifying an SFC program in the programming tool with that in the CPU module beforehand is recommended.

Change in signal flow memory

Signal flow memories of the target block all turn off.

■SFC information devices

The following SFC information devices can be added/changed/deleted.

- Block START/END bit
- · Step transition bit
- Block PAUSE/RESTART bit
- · Pause mode bit
- Number of active steps register
- Continuous transition bit

Point P

Before an SFC program is changed, the above devices are checked if they are within the device range. If any of them are outside the device range, the online change (inactive block) cannot be performed.

■Available execution type

Online change (inactive block) can be executed to a scan execution type program (cannot be executed to a standby type program).

Changing the execution type of a program during online change (inactive block)

The execution type of a program being written by online change (inactive block) cannot be changed with Program control instructions (POFF and PSCAN instructions).

Availability depending on block status

The following table shows availability of online change (inactive block) depending on the block status at the start of writing.

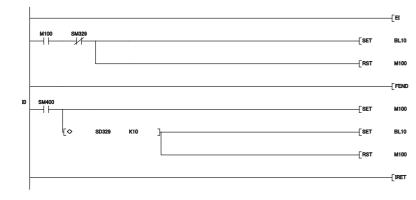
Block status	Availability
Inactive ^{*1}	Online change (inactive block) can be executed.
Active	Online change (inactive block) cannot be executed. However, while SM321 (Start/stop SFC program) is off, even when the block is active immediately before the relay turns off, online change (inactive block) can be executed. ^{*2}

*1 For how to end processing of a block and set it to inactive, refer to Page 164 Block END methods.

*2 While SM321 is off, online change (inactive block) can be executed, regardless of the target block status immediately before the relay turns off. Note when online change (inactive step) is executed while SM321 is off, the SFC program always starts in initial start mode, regardless of settings configured in "SFC Program Start Mode" in the SFC tab of the PLC parameter dialog box and SM322 (SFC program start status).

Operation when the target block is attempted to be started while online change (inactive block) is executed

The target block does not start. The following table shows operations depending on block start method.


Start method (activation method)	Operation at block start
Block START step (without END check)	 The target block does not start until when online change (inactive block) is ended. Even when the transition condition for the step is met, the processing does not move to the next step. The target block starts after online change (inactive block) is ended. When the transition condition is met, the processing moves to the next step.
Block START step (with END check)	 The target block does not start until when online change (inactive block) is ended. The target block starts after online change (inactive block) is ended. When the transition condition for the step is met, the processing moves to the next step.
SFC control instruction (SET BL □, SET S □, SET BL□\S □ instructions)	The target block does not start. While an instruction contact remains on, the target block starts after online change (inactive block) is ended (for a program to execute the Block START instruction, refer to the following program example.
SFC information device (block START/END bit)	The target block does not start even when the block START/END bit turns on. When the block START/END bit is on, the target block starts after online change (inactive block) is ended. (The status of the block START/END bit does not change until when online change (inactive block) is ended).

In the STOP or PAUSE status, an active step holds the activated status. Therefore, when the CPU module is set to STOP or PAUSE while the target block is active, online change (inactive block) cannot be executed to the block.

Ex.

Program example to execute the Block START instruction during online change (inactive block)

An interrupt is enabled.

When M100 is on and online change (inactive block) is not executed, the target block is started and M100 turns off.

When I0 (Block 10 start request interrupt) occurs, M100 (Block start requested) turns on.

When online change (inactive block) is not executed, the block is started and M100 turns off.

■Reserved area for online change

Secure reserved area for online change by the amount to be added/changed by online change (inactive block).

· Adding/changing an SFC information device

When all SFC information devices are not set for the target block, SFC information device area will not be created in the program file. The device area will be added to the program file when an SFC information device is added to the block by online change (inactive block). Then, free area in reserved area for online change will be reduced. (When the target block has already contained SFC information devices, changing the SFC information device will not reduce free area in reserved area for online change.)

Amount used in reserved area for online change by adding an SFC diagram symbol

The following table shows the amount used in reserved area for online change by adding an SFC diagram symbol by online change (inactive block).

Description	Before addition	After addition	Amount used in reserved area for online change (unit: step)
Adding an SFC step in serial transition		1 Addition 2 + 2	7 + Number of steps in step 2 + Number of steps of transition condition 2
Increasing the number branches in selection branching	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$\begin{array}{ c c c c c c } \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 1 & & & & & & & \\ \hline 2 & & & & & & & \\ \hline 2 & & & & & & & \\ \hline 2 & & & & & & & \\ \hline 3 & & & & & & & \\ \hline 4 & & & & & & \\ \hline 4 & & & & & \\ \hline 5 & & & & & \\ \hline \end{array}$	12 + Number of steps in step 5 + Number of steps of transition condition 6 + Number of steps of transition condition 7
Increasing the number of branches in parallel branching		1 Addition 2 5 6 4 4 3	7 + Number of steps in step 6
Adding an SFC block	(No relevant SFC blocks)	Newly created 0	10 + Number of steps in step 0 + Number of steps of transition condition 0 (When SFC information device is set, further 9 steps are reduced.)

Precautions

- If GX Works executes online change (inactive block) while another GX Works2 executes online change or program backup, the online change (inactive block) cannot be performed. The online change (inactive block) cannot be performed, if another GX works2 executes online change or program backup while GX Works2 executes online change (inactive block).
- After addition of SFC steps, if the number of SFC steps exceeds the number of step relay (S) points set in the Device tab of the PLC parameter dialog box, the online change (inactive block) cannot be performed.
- When online change (inactive block) is executed during boot operation from a memory card, the original program in the memory card will not be changed.
- If the CPU module is powered off and then on or is reset before termination of online change (inactive block), the changes in the target program will not be reflected.
- When the CPU module is set to STOP and an SFC program is written to the CPU module, online change (inactive block) cannot be executed to the SFC program until when the CPU module is set to RUN.
- When multiple SFC programs of scan execution type are registered and "CAN'T EXE.PRG." (error code: 2504) occurs, online change (inactive block) cannot be executed.

APPENDICES

Appendix 1 Special Relay and Special Register List

This section lists the special relays and special registers that can be used in SFC programs. For the special relays and special registers for other programs, refer to the user's manual for the CPU module used.

The heading descriptions in the lists are shown in the table below.

Item	Function of Item		
Number	Indicates special relay and special register number.		
Name	Indicates name of special relay and special register.		
Meaning	Indicates contents of special relay and special register.		
Explanation	Discusses contents of special relay and special register in more detail.		
Set by (When set)	Indicates whether the relay or register is set by the system or user, and, if it is set by the system, when setting is performed. • Set by S: Set by system U: Set by user (sequence programs or test operations from GX Developer) S/U: Set by both system and user • When set Indicated only for relays and registers set by system Initial: Set only during initial processing (when power supply is turned ON, or when going from STOP to RUN) Status change: Set only when there is a change in status Error: Set when error occurs Instruction execution: Set when instruction is executed		
Corresponding CPU	Indicates the corresponding CPU module type name. (1) Basic model QCPU (2) High Performance model QCPU (3) Process CPU (4) Redundant CPU (5) Universal model QCPU, LCPU (6) QnACPU		

Special Relay (SM) List

Number	Name	Meaning	Explanation	Set by	Cor	respo	nding	g CPL	J	
				(When set)	(1)	(2)	(3)	(4)	(5)	(6)
SM90	Step transition watch dog timer START (corresponds to SD90)	OFF: Not started (Watch dog timer reset) ON: Started (Watch dog	Switched ON to begin the step transition watch dog timer count.	U	×	0	0	0	×	0
SM91	Step transition watch dog timer START (corresponds to SD91)	timer start)	Watch dog timer is reset when switched OFF.							
SM92	Step transition watch dog timer START (corresponds to SD92)	-								
SM93	Step transition watch dog timer START (corresponds to SD93)									
SM94	Step transition watch dog timer START (corresponds to SD94)									
SM95	Step transition watch dog timer START (corresponds to SD95)									
SM96	Step transition watch dog timer START (corresponds to SD96)									
SM97	Step transition watch dog timer START (corresponds to SD97)									
SM98	Step transition watch dog timer START (corresponds to SD98)									
SM99	Step transition watch dog timer START (corresponds to SD99)									

The following table lists the special relays that can be used in the SFC programs.

Number	Name	Meaning	Explanation	Set by	Cor	respo	nding	g CPL	J	
				(When set)	(1)	(2)	(3)	(4)	(5)	(6)
SM320	SFC program presence/absence	OFF: Not started (Watch dog timer reset) ON: Started (Watch dog timer start)	 Switched ON to begin the step transition watch dog timer count. Watch dog timer is reset when switched OFF. 	S (Initial)	0 *1	0	0	0	0	0
SM321	SFC program START/ STOP	OFF: SFC program not executed (stop) ON: SFC program executed (start)	 The same value as in SM320 is set as the default value. (Automatically switches ON when the SFC program exists.) When this relay is switched from ON to OFF, the SFC program execution is stopped. When this relay is switched from OFF to ON, the SFC program execution is restarted. 	S (Initial), U						
SM322	SFC program START status	OFF: Initial START ON: Resumptive START	The SFC program start mode set in the SFC setting of the PLC parameter dialog box is set as the default value. At initial start: OFF At resume start: ON	S (Initial), U						
SM323	All-blocks continuous transition status	OFF: Continuous transition enabled ON: Continuous transition disabled	Set whether a continuous transition will be performed or not for the block where the "continuous transition bit" of the SFC information devices has not been set	U						

Number	Name	Meaning	Explanation	Set by	Cor	respo	nding	g CPU	J	
				(When set)	(1)	(2)	(3)	(4)	(5)	(6)
SM324	Continuous transition disable flag	OFF: After transition ON: Before transition	 OFF during operation in the "with continuous transition" mode or during continuous transition, and ON when not during continuous transition. Always ON during operation in the "without continuous transition" mode. 	S (Instruction execution) S (Status change)	0 *1	0	0	0	0	0
SM325	Operation output at block STOP	OFF: Coil output OFF ON: Coil output ON	 Select whether the coil output of the active step will be held or not at a block STOP. As the default value, OFF when coil output OFF is selected for the output mode at parameter block STOP, and ON when coil output held is selected. When this relay is OFF, the coil outputs are all turned OFF. When this relay is ON, the coil outputs are held. 	S (Initial), U						
SM326	SFC device clear mode	OFF: Clear device ON: Preserves device	Select the device status when the CPU is switched from STOP to program write to RUN. (All devices except the step relay)	U						
SM327	Output mode at end step execution	OFF: HOLD step output OFF ON: HOLD step output held	When this relay is OFF, the SC, SE or ST step that was held when a transition condition had been satisfied turns OFF the coil output when the end step is reached.							
SM328	Clear processing mode at arrival at end step	OFF: Clear processing is performed ON: Clear processing is not performed	Select whether clear processing will be performed or not when active steps other than those held exist in the block at the time of arrival at the end step. • When this relay is OFF, the active steps are all ended forcibly to end the block. • When this relay is ON, the execution of the block is continued as is. • When no active steps other than those held exist at the time of arrival at the end step, the held steps are all ended to end the		0 *1	x	x	x	0	×

Number Nam	Name	Meaning	Explanation	Set by	Corresponding CPU						
				(When set)	(1)	(2)	(3)	(4)	(5)	(6)	
SM329	Online change (inactive block) status flag	OFF: Not executed ON: Being executed	This relay indicates the execution status of online change (inactive block).	S (Status change)	×	×	×	×	○ *5	×	
SM331	Normal SFC program execution status		 Indicates whether the normal SFC program is being executed or not. Used as an execution interlock of the SFC control instruction. 	-	×	○ *2	×	○ *4	×	×	
SM332	Program execution management SFC program execution status		 Indicates whether the program execution management SFC program is being executed or not. Used as an execution interlock of the SFC control instruction. 	-							
SM735	SFC comment readout instruction in execution flag	OFF: SFC comment readout instruction is inactivated. ON: SFC comment readout instruction is activating.	Turns on the instructions, (S(P).SFCSCOMR) to read the SFC step comments and (S(P). SFCTCOMR) to read the SFC transition condition comments.		×	○ *3	○ *4	○ *4	○ *5	×	
SM820	Step trace ready status	OFF: Not ready ON: Ready	Switches ON when a "ready" status is established after step trace registration.	S (Status change)	×	×	×	×	×	0	
SM821	Step trace START	OFF: Trace STOP ON: Trace START	Designates the step trace START/STOP status. When ON: Step trace function is started. When OFF: Step trace function is stopped. If switched OFF during a trace execution, the trace operation is stopped.	U	_						
SM822	Step trace execution flag	OFF: Trace inactive ON: Trace active	ON when step trace execution is in progress, and OFF when tracing is completed or stopped.	S (Status change)							
SM823	Post-trigger step trace	OFF: Trigger unsatisfied ON: Trigger satisfied	Switches ON when a trigger condition is satisfied at any of the blocks where the step trace function is being executed.	-							
SM824	Post-trigger step trace	OFF: Block with unsatisfied trigger exists ON: Triggers at all blocks are satisfied	Switches ON when trigger conditions are satisfied at all blocks where the step trace function is being executed.								
SM825	Step trace END flag	OFF: Trace START ON: Trace END	Switches ON when step tracing is completed at all the specified blocks, and switches OFF when step tracing begins.								

*1 Available with the CPU module whose function version is B or later

*2 Available with the CPU module whose serial number (first five digits) is "04122" or later

*3 Available with the CPU module whose serial number (first five digits) is "07012" or later

*4 Available with the CPU module whose serial number (first five digits) is "07032" or later

*5 Available with the Universal model QCPU other than the Q00U(J), Q01U, Q02UCPU, whose serial number (first five digits) is "12052" or later. Available with the LCPU other than the L02(S)CPU(-P), whose serial number (first five digits) is "15102" or later.

Special Register (SD) List

The following table lists the special registers that can be used in the SFC programs.

Number	Name	Meaning	Explanation	Set by	Cor	respo	nding	g CPL	J	
				(When set)	(1)	(2)	(3)	(4)	(5)	(6)
SD90	Corresponding to SM90	Timer set value and F No. at	Set the set time of the step transition watch dog timer and the annunciator	U	×	0	0	0	×	0
SD91	Corresponding to SM91	time-out	No. (F No.) that will turn ON at time-out of the watch dog timer.							
SD92	Corresponding to SM92		b15 to b8 b7 to b0							
SD93	Corresponding to SM93		F number setting Timer time limit (0 to 255) setting							
SD94	Corresponding to SM94		(1 to 255) setting (1 to 255 sec: (1-second units))							
SD95	Corresponding to SM95		The timer starts when any of SM90 to SM99 is turned ON during an active							
SD96	Corresponding to SM96		step, and the set annunciator (F) turns ON if the transition condition following							
SD97	Corresponding to SM97		the corresponding step is not satisfied within the timer time limit.							
SD98	Corresponding to SM98									
SD99	Corresponding to SM99									
SD329	Online change (inactive block) target block number	SFC block number	 While online change (inactive block) is executed (SM329 is on.), this register stores the target SFC block number. In other than the status above, this register stores FFFFH. 	S (Status change)	×	×	×	×	0 *1	×

*1 Available with the Universal model QCPU other than the Q00U(J), Q01U, Q02UCPU, whose serial number (first five digits) is "12052" or later. Available with the LCPU other than the L02(S)CPU(-P), whose serial number (first five digits) is "15102" or later.

The special registers SD90 to SD99 correspond to the following special relays.

Special register	Special relay
SD90	SM90
SD91	SM91
SD92	SM92
SD93	SM93
SD94	SM94
SD95	SM95
SD96	SM96
SD97	SM97
SD98	SM98
SD99	SM99

Appendix 2 MELSAP-II and MELSAP3 Comparison

Compared to MELSAP-II, the improved MELSAP3 has additional functions which facilitate the use of SFC programs. MELSAP-II and MELSAP3 are compared below.

SFC program control by instructions

Using SFC control instructions at a sequence program, the SFC program status can be checked, and blocks/steps can be forcibly started and ended.

Additional step attributes

MELSAP3 offers many more step attributes, such as the operation HOLD step, reset step, block START step (without END wait), etc. Moreover, machine control by SFC program has been made easier by improvements such as the step follow-up function (activates multiple steps in a series within a single block), and a control function which allows transitions (at block START requests) without waiting for a block END status at the START destination block (asynchronous control of the START source and destination blocks).

Expanded memory capacity

In addition to an increased number of steps and branches per block, the capacity of step and transition condition programs has been increased to 4k sequence steps in order to make programming easier.

Substantial block information

The amount of block information has been increased, permitting operations such as a continuous transition designation in 1block units, and a STOP timing selection ("immediate STOP" or "STOP when transition condition is satisfied") for block STOP requests. Furthermore, the additional block information simplifies operation by permitting a block START and END to be executed from a single device.

Increased processing speed reduces system processing time

The SFC program's system processing time has been reduced, resulting in reduced tact times through the efficient combination of the SFC program functions.

Improved operability of SFC software package

Troublesome menu switching operations have been eliminated by permitting SFC comments, steps and transition condition programs to be created concurrently with SFC ladder creation. Moreover, the SFC diagram cut and paste function, and block unit registration/utilization have been simplified.

SFC Diagram Symbols

The following table lists the comparison of the SFC diagram symbols.

Name	MELSAP-I	MELSAP3
Step		
Coil HOLD step	S	SC
Operation HOLD step (without transition check)	_	SE
Operation HOLD step (with transition check)	_	ST
Reset step	_	R
Block START step (with END wait)		
Block START step (without END wait)	_	
Coupling and Branch	A dummy step is required when couplings or branches are duplicated at a transition condition.	<pre> t t t t t t t t t t t t t t t t t t t</pre>

SFC Control Instructions

Name	Ladder Expression	Function	Cor	respo	nding	CPU*	1					
			(1)	(2)	(3)	(4)	(5)	(6)				
Step status (active/	[LD, AND, OR, LDI, ANI, ORI] Sn	Executes a check to determine if a specified	0	0	0	0	0	0				
inactive) check instruction	[LD, AND, OR, LDI, ANI, ORI] BLmSn	step at a specified block is active or inactive.										
Forced transition	[LD, AND, OR, LDI, ANI, ORI] TRn	Checks a specified step in a specified block	×	0	0	0	×	0				
check instruction	[LD, AND, OR, LDI, ANI, ORI] BLmTRn	to determine if the transition condition (by transition control instruction) for that step was satisfied forcibly or not.		transition control instruction) for that step		transition control instruction) for that step						
Block operation status check instruction	[LD, AND, OR, LDI, ANI, ORI] BLm	Checks a specified block to determine if it is active or inactive.		0	0	0	0	0				
Active steps batch	MOV(P) K4Sn (d)	Active steps in a specified block are read to a										
readout instruction	MOV(P) BLm\K4Sn (d)	specified device as bit information.										
	DMOV(P) K8Sn (d)											
	DMOV(P) BLm\K8Sn (d)											
	BMOV(P) K4Sn (d) Kn											
	BMOV(P) BLm\K4Sn (d) Kn											
Block START instruction	SET BLm	A specified block is forcibly started (activated) independently, and is executed from its initial step.										
Block END instruction	RST BLm	A specified block is forcibly ended (deactivated).										
Block STOP instruction	PAUSE BLm	A specified block is temporarily stopped.										
Block restart instruction	RSTART BLm	The temporary stop status at a specified block is canceled, with operation resuming from the STOP step.										
Step control instruction	SET Sn	A specified block is forcibly started	0	0	0	0	0	0				
	SET BLm\Sn	(activated) independently, and is executed from a specified step.										
	RST Sn	A specified step in a specified block is										
	RST BLm\Sn	forcibly ended (deactivated).										
	SCHG (d)	The instruction execution step is deactivated, and a specified step is activated.	×	0	0	0	×	×				
Transition control	SET TRn	A specified transition condition at a specified	×	0	0	0	×	×				
instruction	SET BLm\TRn	block is forcibly satisfied.										
	RST TRn	The forced transition at a specified transition condition in a specified block is canceled.		The forced transition at a specified transition		The forced transition at a specified transition	1					
	RST BLm\TRn											
Block switching instruction	BRSET (s)	Blocks subject to the "*1" SFC control instruction are designated.	×	0	0	0	O*2	×				

The SFC control instruction shown below are available at MELSAP3. MELSAP-II has no SFC control instructions.

*1 Indicates the corresponding CPU module type name.

(1) Basic model QCPU

(2) High Performance model QCPU

(3) Process CPU

(4) Redundant CPU

(5) Universal model QCPU, LCPU

(6) QnACPU

*2 Available with the Universal model QCPU whose serial number (first five digits) is "13102" or later.

Block/Step START, END, and STOP Methods

The following table lists the comparison of the block/step START, END, and STOP methods.

Item	MELSAP-I		MELSAP3					
	By SFC Diagram Symbol	By Block Information	By SFC Diagram Symbol	By Block Information	By SFC control Instruction			
Block START (with END check)	m	-	m	_	—			
Block START (without END check)	—	Block active bit ON	⊟m	Block START/END bit ON	SET BLm SET BLm\Sn			
Block END	≟	Block clear bit ON \rightarrow OFF	⊥	Block START/END bit OFF	RST BLm			
Block STOP	-	Block STOP bit ON	-	Block STOP/RESTART bit ON	PAUSE BLm			
Block restart (STOP cancel)	—	Block STOP bit OFF	_	Block STOP/RESTART bit OFF	RSTART BLm			
Step START	t c_J	Block active No. register(at block STOP only)	t c_3	_	SET Sn SET BLm\Sn			
Step END	ET3 T	_	∏ R sn †	_	RST Sn RST BLm\Sn			
Active step change ^{*1}	_	_	-	_	SCHG Sn			
Active step forced transition ^{*1}	-	-	-	-	SET TRn SET BLm\TRn			
Forced transition cancel ^{*1}	_	-	_	_	RST TRn RST BLm\TRn			
STOP timing at block STOP request	_	Not specified (immediate STOP)	_	Specified by block STOP mode bit ("immediate STOP" or "STOP after transition condition is satisfied")	_			

*1 The Basic model QCPU cannot use active step change, active step forced transition, and forced transition cancel.

Basic model QCPU

The following table lists the comparison between MELSAP-II and MELSAP3 when the Basic model QCPU is used.

SFC Program Specifications

	- opeonious		
Item		MELSAP-II	MELSAP3
SFC program	Capacity	Max. 14k bytes (A1SHCPU)	Max. 14k steps (Q01CPU)
	Number of blocks	Max. 256 blocks	Max. 128 blocks
	Number of SFC steps	Max. of 255 steps per block	Max. of 1024 steps (total for all blocks) Max. of 128 steps per block
	Number of branches	Max. of 22	Max. of 32
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1024 steps (total for all blocks) Max. of 128 steps per block (including HOLD steps)
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 255 sequence steps Max. of 2k steps per block ^{*1} No limit per step
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only
Step transition watchd	og timer function	Function exists (8 timers)	None

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-II		MELSAP3					
				Basic model C	Basic model QCPU				
		A1S(J)H	A2SH	Q00JCPU	Q00CPU	Q01CPU			
Active block proc	cessing	63.6µs	48.2µs	41.9µs	35.5µs	27.3µs			
Inactive block pro	ocessing	3.2µs	2.4µs	10.5µs	8.8µs	6.8µs			
Nonexistent bloc	k processing	3.0µs	2.3μs	1.1µs	0.9µs	0.7µs			
Active step proce	essing	91.5µs	69.3µs	31.6µs	26.7µs	20.5µs			
Transition conditi with active step	ion processing associated	26.9µs	20.4µs	10.2µs	8.7µs	6.7µs			
Transition condition-	With HOLD step designation	9.9µs	7.5µs	216.0µs	182.8μs	140.6μs			
satisfied step processing	Normal step	35.9µs	27.2µs	263.5µs	222.9µs	171.5μs			
SFC END proces	ssing	200.8µs	152.1µs	66.8µs	56.5µs	43.5µs			

High Performance model QCPU, Process CPU, Redundant CPU and QnACPU

The following table lists the comparison between MELSAP-II and MELSAP3 when the High Performance model QCPU, Process CPU, Redundant CPU, or QnACPU is used.

SFC Program Specifications

Item		MELSAP-I	MELSAP3
SFC program	Capacity	Max. 58k bytes (A3NCPU, A3ACPU, A3UCPU, A4UCPU) (main program only)	Max. 124k steps (Q4ACPU) Max. 252k steps (Q25HCPU, Q25PHCPU, Q25PRHCPU)
	Number of blocks	Max. 256 blocks	Max. 320 blocks
	Number of SFC steps	Max. of 255 steps per block	Max. of 8192 steps (total for all blocks) Max. of 512 steps per block
	Number of branches	Max. of 22	Max. of 32
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1280 steps (total for all blocks) Max. of 256 steps per block (including HOLD steps)
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 2k steps per block ^{*1} No limit per step
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only
Step transition watch	dog timer function	Function exists (8 timers)	Function exists(10 timers)

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-II		MELSAP3				
		A3ACPU(F), A3UCPU,	AnNCPU-F, A1SCPU	Q4ACPU, Q2ASHCPU				Redundant CPU
	A4UCPI		A4UCPU		QnCPU	QnHCPU	QnPHCPU	QnPRHCPU
Active block processing		57.0μs	260.0µs	30.6µs	33.7µs	14.5µs	14.5µs	14.5μs
Inactive block processing		14.0μs	45.0μs	10.7µs	12.0µs	5.2µs	5.2µs	5.2µs
Nonexistent blo	Nonexistent block processing		25.0µs	4.6µs	4.1µs	1.8µs	1.8µs	1.8µs
Active step pro	ocessing	49.5µs	355.0μs	23.2µs	24.5µs	10.6µs	10.6µs	10.6µs
	Transition condition processing associated with active step		100.0µs	9.4µs	10.0µs	4.3µs	4.3µs	4.3µs
Transition condition-	With HOLD step designation	2.4µs	13.5µs	137.2µs	130.4µs	56.2µs	56.2µs	56.2µs
satisfied step processing	Normal step	17.0μs	60.0µs	122.5µs	119.4µs	51.5µs	51.5µs	51.5µs
SFC END proc	essing	195.0µs	285.0µs	89.7µs	108.2µs	46.6µs	46.6µs	46.6µs

Universal model QCPU

The following table lists the comparison between MELSAP-II and MELSAP3 when the Universal model QCPU is used. • Q00U(J)CPU, Q01UCPU, Q02UCPU

SFC Program Specifications

Item		MELSAP-II	MELSAP3	
SFC program	Capacity	Max. 14k bytes (A1SHCPU)	Max. 20k steps (Q02UCPU)	
	Number of blocks	Max. 256 blocks	Max. 128 blocks	
	Number of SFC steps	Max. of 255 steps per block	Max. of 1024 steps (total for all blocks) Max. of 128 steps per block	
	Number of branches	Max. of 22	Max. of 32	
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1024 steps (total for all blocks) Max. of 128 steps per block (including HOLD steps)	
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 2k steps per block ^{*1} No limit per step	
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only	
Step transition watchde	og timer function	Function exists (8 timers)	None	

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-II		MELSAP3	
		A1S(J)H	A2SH	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU	
Active block processing		63.6µs	48.2µs	8.4µs	
Inactive block processing		3.2µs	2.4µs	3.9µs	
Nonexistent block processing		3.0µs	2.3µs	0.8µs	
Active step processing		91.5µs	69.3μs	8.6µs	
Transition condition proces with active step	Transition condition processing associated with active step		20.4µs	2.1µs	
Transition With HC condition- designation		9.9µs	7.5µs	69.6µs	
satisfied step processing	step	35.9µs	27.2µs	83.2µs	
SFC END processing		200.8µs	152.1µs	38.4µs	

SFC Program Specifications

Item		MELSAP-II	MELSAP3
SFC program	Capacity	Max. 58k bytes (A3NCPU, A3ACPU, A3UCPU, A4UCPU) (main program only)	Max. 100k steps (Q100UDEHCPU)
	Number of blocks	Max. 256 blocks	Max. 320 blocks
	Number of SFC steps	Max. of 255 steps per block	Max. of 8192 steps (total for all blocks) Max. of 512 steps per block
	Number of branches	Max. of 22	Max. of 32
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1280 steps (total for all blocks) Max. of 256 steps per block (including HOLD steps)
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 2k steps per block ^{*1} No limit per step
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only
Step transition wat	chdog timer function	Function exists (8 timers)	None

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-II		MELSAP3	
		A3ACPU(F), A3UCPU, A4UCPU	AnNCPU-F, A1SCPU	Q03UDCPU, Q03UDECPU	Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU
Active block processing		57.0μs	260.0µs	8.3µs	7.0µs
Inactive block processing		14.0μs	45.0µs	3.8µs	3.4µs
Nonexistent blo	Nonexistent block processing		25.0μs	0.7µs	0.6µs
Active step proc	cessing	49.5µs	355.0μs	8.2µs	6.4µs
Transition cond associated with	ition processing active step	29.5µs	100.0μs	2.0µs	1.6µs
Transition condition-	With HOLD step designation	2.4µs	13.5µs	60.3µs	42.7µs
satisfied step processing	Normal step	17.0µs	60.0µs	73.7µs	52.0µs
SFC END proce	essing	195.0µs	285.0µs	36.6µs	26.9µs

SFC Program Specifications

Item		MELSAP-II	MELSAP3
SFC program	Capacity	Max. 58k bytes (A3NCPU, A3ACPU, A3UCPU, A4UCPU) (main program only)	Max. 260k steps (Q26UDVCPU, Q26UDPVCPU)
	Number of blocks	Max. 256 blocks	Max. 320 blocks
	Number of SFC steps	Max. of 255 steps per block	Max. of 8192 steps (total for all blocks) Max. of 512 steps per block
	Number of branches	Max. of 22	Max. of 32
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1280 steps (total for all blocks) Max. of 256 steps per block (including HOLD steps)
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 2k steps per block ^{*1} No limit per step
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only
Step transition wa	tchdog timer function	Function exists (8 timers)	None

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-II		MELSAP3		
		A3ACPU(F), A3UCPU, A4UCPU	AnNCPU-F, A1SCPU	Q03UDVCPU	Q04UDVCPU, Q04UDPVCPU	Q06UDVCPU, Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU
Active block processing		57.0μs	260.0µs	5.0μs	4.8μs	4.8µs
Inactive block processing		14.0μs	45.0µs	2.5µs	2.3µs	2.3µs
Nonexistent block processing		4.0μs	25.0µs	0.60µs	0.33µs	0.33µs
Active step proc	essing	49.5µs	355.0µs	5.8µs	5.5µs	5.5µs
Transition condi with active step	tion processing associated	29.5µs	100.0µs	1.3µs	1.3μs	1.3µs
Transition condition-	With HOLD step designation	2.4µs	13.5µs	38µs	34µs	34µs
satisfied step processing	Normal step	17.0μs	60.0µs	50µs	41µs	41µs
SFC END proce	essing	195.0µs	285.0μs	25.5µs	25.5µs	25.5µs

The following table lists the comparison between MELSAP-II and MELSAP3 when the LCPU is used. • L02SCPU, L02SCPU-P, L02CPU, L02CPU-P

Item		MELSAP-II	MELSAP3
SFC program	Capacity	Max. 14k bytes (A1SHCPU)	Max. 20k steps
	Number of blocks	Max. 256 blocks	Max. 128 blocks
	Number of SFC steps	Max. of 255 steps per block	Max. of 1024 steps (total for all blocks) Max. of 128 steps per block
	Number of branches	Max. of 22	Max. of 32
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1024 steps (total for all blocks) Max. of 128 steps per block (including HOLD steps)
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 2k steps per block ^{*1} No limit per step
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only
Step transition watchd	og timer function	Function exists (8 timers)	None

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-I		MELSAP3	
		A1S(J)H	A2SH	L02SCPU, L02SCPU-P	L02CPU, L02CPU-P
Active block processing		63.6µs	48.2µs	12.7µs	8.5µs
Inactive block processing		3.2µs	2.4µs	5.3µs	3.8µs
Nonexistent block processing		3.0µs	2.3µs	0.9µs	1.2µs
Active step processing		91.5µs	69.3µs	11.9µs	8.7µs
Transition condit with active step	tion processing associated	26.9µs	20.4µs	3.4µs	2.0µs
Transition condition- satisfied step processing	With HOLD step designation	9.9µs	7.5µs	86.7µs	66.1µs
	Normal step	35.9µs	27.2µs	106.9µs	79.4µs
SFC END proce	ssing	200.8µs	152.1µs	67.5μs	44.7µs

Item		MELSAP-II	MELSAP3
SFC program	Capacity	Max. 58k bytes (A3NCPU, A3ACPU, A3UCPU, A4UCPU) (main program only)	Max. 260k steps (L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT)
	Number of blocks	Max. 256 blocks	Max. 320 blocks
	Number of SFC steps	Max. of 255 steps per block	Max. of 8192 steps (total for all blocks) Max. of 512 steps per block
	Number of branches	Max. of 22	Max. of 32
	Number of concurrently active steps	Max. of 1024 steps (total for all blocks) Max. of 22 steps per block	Max. of 1280 steps (total for all blocks) Max. of 256 steps per block (including HOLD steps)
	Number of operation output sequence steps	Max. of 255 sequence steps	Max. of 2k steps per block ^{*1} No limit per step
	Number of transition condition sequence steps	One ladder block only Max. of 255 sequence steps	One ladder block only
Step transition wat	chdog timer function	Function exists (8 timers)	None

SFC Program Specifications

*1 The maximum number of sequence steps per block depends on the instruction used for operation output or a note editing setting. The number of steps (2k steps) indicated in the table applies when "Unite (United Note)" is selected for note editing. Note that 2k sequence steps per block may not be secured when "Peripheral (Peripheral Note)" is selected. If note editing is not set, 2k sequence steps or more per block may be secured depending on an instruction used.

Item		MELSAP-II		MELSAP3
		A3ACPU(F), A3UCPU, A4UCPU	AnNCPU-F, A1SCPU	L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT
Active block pro	cessing	57.0μs	260.0μs	7.0µs
Inactive block processing		14.0μs	45.0μs	3.4µs
Nonexistent block processing		4.0μs	25.0μs	0.6µs
Active step processing		49.5µs	355.0μs	6.4µs
Transition condit with active step	tion processing associated	29.5µs	100.0µs	1.6µs
Transition condition-	With HOLD step designation	2.4µs	13.5µs	42.7µs
satisfied step processing	Normal step	17.0µs	60.0μs	52.0µs
SFC END proce	ssing	195.0µs	285.0μs	26.9µs

Appendix 3 Restrictions on Basic Model QCPU, Universal Model QCPU, and LCPU and Alternative Methods

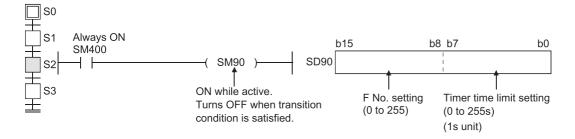
This section describes the restrictions on use of SFC programs for the Basic model QCPU, Universal model QCPU, and LCPU.

ltem			Basic Model QCPU, Universal model QCPU, LCPU	High Performance Model QCPU, Process CPU, Redundant CPU, QnACPU	Alternative Method
Step transition watchdog timer		Not provided	Provided	Page 196 Step Transition Watchdog Timer Replacement Method	
SFC operation mode setting	Operation mode at bl	ock double START	Not provided ^{*2} (Fixed to "WAIT")	Provided	—
	Operation mode for the step (at step double step)		Not provided (Fixed to "TRANSFER")	Provided	-
	Fixed scan execution block setting		Not provided	Provided	Page 197 Periodic Execution Block Replacement Method
SFC control	Forced transition	LD TRn	Not provided	Provided	—
instruction	check instruction	AND TRn			
		OR TRn			
		LDI TRn	-		
		ANI TRn	-		
		ORI TRn	-		
		LD BLm\TRn	-		
		AND BLm\TRn	-		
		AR BLm\TRn	-		
		LDI BLm\TRn	_		
		ANI BLm\TRn	_		
		ORI BLm\TRn			
	Active step change instruction	SCHG (d)	Not provided	Provided	Page 199 Active Step Change Instruction (SCHG Replacement Method
	Transition control	SET TRn	Not provided	Provided	Page 198 Forced
	instruction	SET BLm\TRn]		Transition Bit (TRn
		RST TRn]		Replacement Method
		RST BLm\TRn			
	Block switching instruction	BRSET (s)	Not provided ^{*3}	Provided	-
SFC program for prog	ram execution manage	ment	Not provided	Provided	-
SFC program for program execution management Program execution type setting			Not provided ^{*1}	Provided	-

*1 For the Universal model QCPU and LCPU, the execution type of the program can be set.

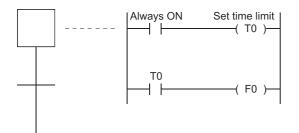
*2 For the following CPU modules, the operation mode at double block START cannot be set.

· Universal model QCPU other than the Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU, whose serial number (first five digits) is "12052" or later


· LCPU other than the L02(S)CPU and L02(S)CPU-P, whose serial number (first five digits) is "15102" or later

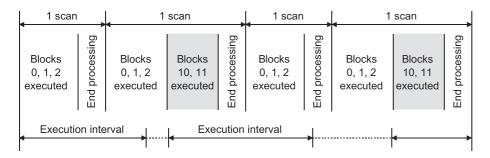
*3 The instruction can be used with the Universal model QCPU whose serial number (first five digits) is "13102" or later.

Step Transition Watchdog Timer Replacement Method

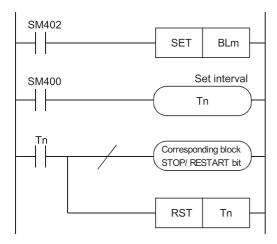

Operation of step transition watchdog timer

The step watchdog timer measures the ON time of the special relay for step transition watchdog timer start (SM90 to SM99), and when it exceeds the time set to the special register for step transition watchdog timer setting (SD90 to SD99), the corresponding annunciator (F) set to any of (SD90 to SD99) is turned ON. The following figure shows a step transition watchdog timer program.

Step transition watchdog timer replacement method

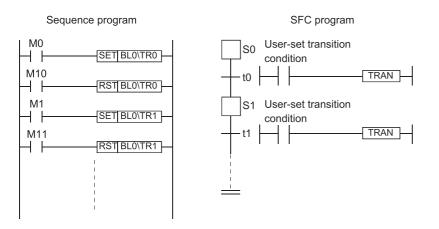

When performing the same operation as that of the step transition watchdog timer, create the following program at the operation output.

Periodic Execution Block Replacement Method

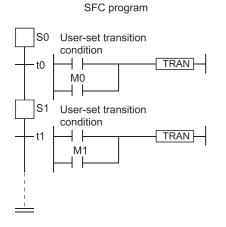

Operation of periodic execution block

A periodic execution block is executed in each scan where the specified execution interval has elapsed. The following figure shows the operation performed when blocks 0, 1, 2, 10 and 11 are used and blocks 10 and 11 are set as the periodic execution blocks.

Periodic execution block replacement method

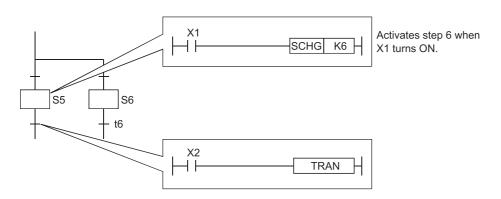

When the execution interval measured by the timer in the sequence program reaches the set time, the specified block is activated by the STOP/RESTART bit. When the set time is not reached, the block is in a stop status. To hold the output also when the block is in a stop status, select "Change OUT instruction in specified block to SET instruction" or "Coil output held for stop-time output mode".

Forced Transition Bit (TRn) Replacement Method

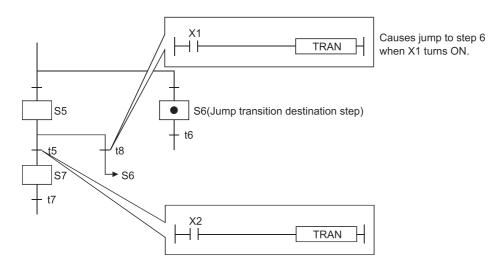

Operation by forced transition bit

The forced transition bit forcibly satisfies a transition condition. When the forced transition bits are used, the preset input conditions can be ignored and the transition conditions can be satisfied in due order.

Forced transition bit replacement method


Describe any bit device in the transition condition, where it is desired to cause a forced transition, under the OR condition and turn ON the bit device described under the OR condition to cause a forced transition.

Active Step Change Instruction (SCHG) Replacement Method


Operation of active step change instruction

The active step change instruction deactivates the instruction-executed step and forcibly activates the specified step in the same block.

Active step change instruction replacement method

Using a jump transition and selection branching, create a program that will cause a jump to the specified step when the transition condition is established.

INDEX

В
Basic model QCPU 6
н
High Performance model QCPU 6 High-speed Universal model QCPU 6
L
LCPU 6
Μ
MELSAP3 7
P
Process CPU 6
Q
QCPU 6 QnACPU 6 QnCPU 6 QnHCPU 6 QnPHCPU 6 QnPRHCPU 6 QnUD(E)(H)CPU 6 QnUDVCPU 6
R
Redundant CPU 6
S
SFC
U
Universal model Process CPU 6 Universal model QCPU 6

INSTRUCTION INDEX

Α
AND
В
BMOV
D
DMOV
L
LD
м
MOV
0
OR
Р
PAUSE
R
RST
s
S(P).SFCSCOMR 134 S(P).SFCTCOMR 140 SCHG 105 SET 94,99,103

REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date	*Manual number	Description
Dec., 1999	SH(NA)-080041-A	Due to the transition to the e-Manual, the details of revision have been deleted.
to	to	
Jun., 2014	SH(NA)-080041-V	
May, 2016	SH(NA)-080041-W	Complete revision (layout change)
Sep., 2018	SH(NA)-080041-X	Descriptions regarding the QnUDPVCPU is added.

Japanese manual number: SH-080023-AD

This manual confers no industrial property rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 1999 MITSUBISHI ELECTRIC CORPORATION

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:

- (1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
- (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
- (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
- (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

TRADEMARKS

Ethernet is a registered trademark of Fuji Xerox Corporation in Japan.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.

In some cases, trademark symbols such as 'TM, or '[®]' are not specified in this manual.

SH(NA)-080041-X(1809)MEE MODEL: QNA/QCPU-P(SF)-E MODEL CODE: 13JF60

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.