Mitsubishi Safety Programmable Controller

QSCPU Programming Manual (Common Instructions)

- SAFETY PRECAUTIONS

(Always read these cautions before using the product)

Before using this product, please read this manual and the related manuals introduced in this manual, and pay full attention to safety to handle the product correctly.

Please store this manual in a safe place and make it accessible when required. Always forward a copy of the manual to the end user.

- CONDITIONS OF USE FOR THE PRODUCT•

(1) Although MELCO has obtained the certification for Product's compliance to the international safety standards IEC61508, EN954-1/ISO13849-1 from TUV Rheinland, this fact does not guarantee that Product will be free from any malfunction or failure. The user of this Product shall comply with any and all applicable safety standard, regulation or law and take appropriate safety measures for the system in which the Product is installed or used and shall take the second or third safety measures other than the Product. MELCO is not liable for damages that could have been prevented by compliance with any applicable safety standard, regulation or law.
(2) MELCO prohibits the use of Products with or in any application involving, and MELCO shall not be liable for a default, a liability for defect warranty, a quality assurance, negligence or other tort and a product liability in these applications.
(a) power plants,
(b) trains, railway systems, airplanes, airline operations, other transportation systems,
(c) hospitals, medical care, dialysis and life support facilities or equipment,
(d) amusement equipments,
(e) incineration and fuel devices,
(f) handling of nuclear or hazardous materials or chemicals,
(g) mining and drilling,
(h) and other applications where the level of risk to human life, health or property are elevated.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
Sep., 2006	SH(NA)-080628ENG-A	First edition
Sep.,2007	SH(NA)-080628ENG-B	Partial corrections Section 3.2, 5.2.3, 5.3.3, 5.4.1, 6.2.5, 6.3.1, 6.3.2, 6.4.1, INDEX
Apr.,2008	SH(NA)-080628ENG-C	Partial corrections ABOUT MANUALS, Section 1.2, 3.2.2, 3.2.3, Chapter 4, Section 6.1.1, 6.1.2, $6.2 .1,6.2 .2,6.2 .3,6.2 .4,6.2 .5,6.2 .6,6.3 .1,6.3 .2,6.3 .3,6.3 .4,7.1 .1,7.1 .2,7.1 .3,$ 7.1.4, 9.1.1, 9.1.4, 9.1.5, 9.1.6, 9.1.8, Appendix1.1, Appendix 2, Appendix3
May, 2011	SH(NA)-080628ENG-D	Partial corrections ABOUT MANUALS, Section 1.2, 9.1.1, 9.1.4, 9.1.5, Appendix1.1, Appendix 2, Appendix3

Japanese Manual Version SH-080610-D
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-QS Series of Safety Programmable Logic Controllers.
Before using the equipment, please read this manual carefully to develop full familiarity with the functions and performance of the QS series PLC you have purchased, so as to ensure correct use.
A copy of this manual should be forwarded to the end User.

CONTENTS

SAFETY PRECAUTIONS A-1
REVISIONS A-3
INTRODUCTION A - 4
CONTENTS A-4
ABOUT MANUALS A-7

1. GENERAL DESCRIPTION 1-1 to 1-4
1.1 Manuals Essential for Programming 1-2
1.2 Generic Terms and Abbreviations 1-3
2. INSTRUCTION TABLES 2-1 to 2-16
2.1 Types of Instructions 2-2
2.2 How to Read Instruction Tables 2-3
2.3 Sequence Instruction 2-5
2.3.1 Contact instructions 2-5
2.3.2 Connection instructions 2-6
2.3.3 Output instructions. 2-7
2.3.4 Master control instructions 2-7
2.3.5 Termination instruction 2-8
2.3.6 Other instructions. 2-8
2.4 Basic Instructions 2-9
2.4.1 Comparison operation instructions 2-9
2.4.2 Arithmetic operation instructions. 2-11
2.4.3 Data conversion instructions 2-12
2.4.4 Data transfer instructions 2-13
2.5 Application Instructions 2-14
2.5.1 Logical operation instructions 2-14
2.6 QSCPU Dedicated Instruction 2-16
2.6.1 Forced control stop instruction 2-16
3. CONFIGURATION OF INSTRUCTIONS 3-1 to 3-18
3.1 Configuration of Instructions 3-2
3.2 Designating Data 3-3
3.2.1 Using bit data 3-3
3.2.2 Using word (16 bits) data 3-4
3.2.3 Using double word (32 bits) data 3-6
3.3 Subset Processing 3-9
3.4 Cautions on Programming (Operation Errors) 3-10
3.5 Conditions for Execution of Instructions 3-12
3.6 Counting Step Number 3-13
3.7 Operation when OUT, SET/RST, or PLS/PLF Instructions Use the Same Device 3-14
4. HOW TO READ INSTRUCTIONS 4-1 to 4-4
5. SEQUENCE INSTRUCTIONS 5-1 to 5-46
5.1 Contact Instruction 5-2
5.1.1 Operation start, series connection, parallel connection (LD, LDI, AND, ANI, OR, ORI) 5-2
5.1.2 Pulse operation start, pulse series connection, pulse parallel connection (LDP, LDF, ANDP, ANDF, ORP, ORF) 5-5
5.2 Connection Instructions 5-7
5.2.1 Ladder block series connections and parallel connections (ANB, ORB) 5-7
5.2.2 Operation results push, read, pop (MPS, MRD, MPP) 5-9
5.2.3 Operation results inversion (INV) 5-12
5.2.4 Operation result pulse conversion (MEP, MEF) 5-14
5.2.5 Pulse conversion of edge relay operation results (EGP, EGF) 5-15
5.3 Output Instruction 5-17
5.3.1 Out instructions (excluding timers, counters, and annunciators) (OUT) 5-17
5.3.2 Timers (OUT T,OUTH T) 5-19
5.3.3 Counters (OUT C) 5-23
5.3.4 Annunciator output (OUT F) 5-25
5.3.5 Setting devices (except for annunciators) (SET) 5-27
5.3.6 Resetting devices (except for annunciators) (RST) 5-29
5.3.7 Setting and resetting the annunciators (SET F, RST F) 5-31
5.3.8 Leading edge and trailing edge output (PLS, PLF) 5-33
5.3.9 Bit device output reverse (FF) 5-36
5.4 Master Control Instructions 5-38
5.4.1 Setting and resetting the master control (MC, MCR). 5-38
5.5 Termination Instruction 5-42
5.5.1 End sequence program (END) 5-42
5.6 Other Instructions 5-43
5.6.1 No-operation (NOP, NOPLF, PAGE n) 5-43
6. BASIC INSTRUCTIONS6-1 to 6-38
6.1 Comparison Operation Instruction 6-2
6.1.1 BIN 16-bit data comparisons (= , <> , >, <= , <, >=) 6-2
6.1.2 BIN 32-bit data comparisons ($\mathrm{D}=, \mathrm{D}<>, \mathrm{D}>, \mathrm{D}<=, \mathrm{D}<, \mathrm{D}>=$) 6-4
6.2 Arithmetic Operation Instructions 6-6
6.2.1 BIN 16-bit addition and subtraction operations (+(P), -(P)) 6-6
6.2.2 BIN 32-bit addition and subtraction operations (D+(P), D-(P)) 6-10
6.2.3 BIN 16-bit multiplication and division operations (* $(\mathrm{P}), /(\mathrm{P})$) 6-14
6.2.4 BIN 32-bit multiplication and division operations $\left(D^{*}(P), D /(P)\right)$ 6-16
6.2.5 Incrementing and decrementing 16-bit BIN data (INC(P), DEC(P)) 6-18
6.2.6 Incrementing and decrementing 32-bit BIN data (DINC(P), DDEC(P)) 6-20
6.3 Data Conversion Instructions 6-22
6.3.1 Conversion from BIN data to 4-digit and 8-digit BCD (BCD (P), DBCD(P)) 6-22
6.3.2 Conversion from BCD 4-digit and 8-digit data to BIN data ($\mathrm{BIN}(P), \operatorname{DBIN}(P)$) 6-24
6.3.3 Complement of 2 of BIN 16- and 32-bit data (sign reversal) (NEG(P), DNEG(P)) 6-27
6.4 Data Transfer Instructions 6-29
6.4.1 16-bit and 32-bit data transfers (MOV(P), DMOV(P)) 6-29
6.4.2 16-bit and 32-bit negation transfers (CML(P), DCML(P)) 6-31
6.4.3 Block 16-bit data transfers (BMOV(P)) 6-34
6.4.4 Identical 16-bit data block transfers (FMOV(P)) 6-36
7. APPLICATION INSTRUCTIONS 7-1 to 7-20
7.1 Logical Operation Instructions 7-2
7.1.1 Logical products with 16-bit and 32-bit data (WAND(P), DAND(P)) 7-3
7.1.2 Logical sums of 16-bit and 32-bit data (WOR(P), DOR(P)) 7-8
7.1.3 16-bit and 32-bit exclusive OR operations (WXOR(P), DXOR(P)) 7-12
7.1.4 16-bit and 32-bit data exclusive NOR operations (WXNR(P), DXNR(P)) 7-16
8. QSCPU DEDICATED INSTRUCTIONS 8-1 to 8-4
8.1 Forced Control Stop Instruction (S.QSABORT) 8-2
9. ERROR CODE 9-1 to 9-46
9.1 Error Code List 9-2
9.1.1 Error codes 9-3
9.1.2 Reading an error code 9-3
9.1.3 Error code list (1000 to 1999) 9-4
9.1.4 Error code list (2000 to 2999) 9-10
9.1.5 Error code list (3000 to 3999) 9-16
9.1.6 Error code list (4000 to 4999) 9-26
9.1.7 Error code list (5000 to 5999) 9-30
9.1.8 Error code list (8000 to 9000) 9-32
APPENDICIES App - 1 to App - 34
Appendix 1 OPERATION PROCESSING TIME App- 2
Appendix 1.1 Definition App- 2
Appendix 1.2 Operation Processing Time App- 3
Appendix 2 SPECIAL RELAY LIST App- 11
Appendix 3 SPECIAL REGISTER LIST App- 16
INDEX
Index - 1 to Index - 5

Introduction Manua

Read the following manual before designing and constructing a safety system.

| Manual Name | Manual Number |
| :--- | :---: | :---: | :---: |
| (Model Code) | |

Related Manuals

The manuals related to this product are listed below.
Please place an order as needed.

Manual Name	Manual Number (Model Code)
QSCPU User's Manual (Hardware Design, Maintenance and Inspection) Explains the specifications of the QSCPU, safety power supply module, and safety base unit.	SH-080626ENG (13JR92)
QSCPU User's Manual (Function Explanation, Program Fundamentals) Explains the functions, programming methods, devices and others that are necessary to create programs with the QSCPU. (Sold separately)	$\begin{gathered} \text { SH-080627ENG } \\ \text { (13JR93) } \end{gathered}$
CC-Link Safety System Master Module User's Manual Explains the specifications, procedures and settings before operation, parameter settings, and troubleshooting of the QS0J61BT12 CC-Link Safety system master module.	SH-080600ENG (13JR88)
CC-Link Safety System Remote I/O Module User's Manual Explains the specifications, procedures and settings before operation, parameter settings, and troubleshooting of the CC-Link Safety system remote I/O modules.	SH-080612ENG (13JR89)
MELSEC-QS CC-Link IE Field Network Master/Local Module User's Manual Explains the system configuration, performance specifications, functions, handling, wiring, and troubleshooting of the CC-Link IE Field Network master/local module (with safety functions).	$\begin{gathered} \text { SH-080969ENG } \\ \text { 13JZ53 } \end{gathered}$
CC-Link IE Controller Network Reference Manual Explains the system configuration, specifications, functions, handling, wiring, and troubleshooting of CC-Link IE Controller Network.	SH-080668ENG (13JV16)
Q corresponding MELSECNET/H Network System Reference Manual (PLC to PLC network) Explains the specifications, procedures and settings before operation, parameter settings, programming, and troubleshooting of a MELSECNET/H network system for PLC to PLC network. (Sold separately)	$\begin{gathered} \text { SH-080049 } \\ (13 J F 92) \end{gathered}$
Q Corresponding Ethernet Interface Module User's Manual (Basic) Explains the specifications, procedures for data communication with external devices, line connection (open/close), fixed buffer communication, random access buffer communication, and troubleshooting of the Ethernet module. (Sold separately)	SH-080009 (13JL88)

Manual Name	Manual Number (Model Code)
Q Corresponding Ethernet Interface Module User's Manual (Application)	
Explains the e-mail function, programmable controller CPU status monitoring function, communication function via CC-Link IE Controller Network, MELSECNET/H or MELSECNET/10, communication function using the data link instructions, file transfer function (FTP server) of the Ethernet module.	SH-080010 (13JL89)
(Sold separately)	

Printed materials are separately available for single item purchase. Order the manual by quoting the manual number on the table above (Model code).

A-8

GENERAL DESCRIPTION

CONFIGURATION
OF INSTRUCTIONS

This manual describes the instructions required to execute programming of the QSCPU.

1.1 Manuals Essential for Programming

Before reading this manual, check the functions, programming methods, devices and others that are necessary to create programs with the QSCPU in the manuals below:

- QSCPU User's Manual (Function Explanation, Program Fundamentals)

1.2 Generic Terms and Abbreviations

This manual describes the QS series CPU module using the following generic terms and abbreviations, unless otherwise specified.

Generic term/Abbreviation	Description
Safety PLC	Generic term for safety CPU module, safety power supply module, safety main base unit, CC-Link safety master module, CC-Link safety remote I/O module, and CC-Link IE Field Network master/local module (with safety functions).
Standard PLC	Generic term of each module for MELSEC-Q series, MELSEC-L series, MELSEC-QnA series, MELSEC-A series and MELSEC-FX series. (Used for distinction from safety PLC.)
QS Series	Abbreviation for Mitsubishi Safety PLC MELSEC-QS Series
QS001CPU	Abbreviation for QS001CPU-type safety CPU module
CPU Module	Other name for QS001CPU
GX Developer	Generic product name for product models SW8D5C-GPPW-E, SW8D5C-GPPW-EA, SW8D5C-GPPW-EV and SW8D5C-GPPW-EVA
QS0J61BT12	Abbreviation for QS0J61BT12-type CC-Link Safety system master module
CC-Link Safety	Abbreviation for the CC-Link Safety system
CC-Link Safety master module	Other name for QS0J61BT12
QS0J65BTS2-8D	Abbreviation for the QS0J65BTS2-8D CC-Link Safety remote I/O module
QS0J65BTS2-4T	Abbreviation for the QS0J65BTS2-4T CC-Link Safety remote I/O module
QS0J65BTB2-12DT	Abbreviation for the QSOJ65BTB2-12DT CC-Link Safety remote I/O module
CC-Link Safety remote I/O module	Generic term for the QS0J65BTS2-8D, QS0J65BTS2-4T, and QS0J65BTB2-12DT
CC-Link IE Field Network master/local module (with safety functions)	Abbreviation for MELSEC-QS series CC-Link IE Field Network master/ local module
CC-Link IE Controller Network module	Abbreviation for the QJ71GP21-SX CC-Link IE Controller Network module and QJ71GP21S-SX CC-Link IE Controller Network module (with external power supply function)
MELSECNET/H	Abbreviation for the MELSECNET/H network system
MELSECNET/H module	Abbreviation for the QJ71LP21-25, QJ71LP21S-25, QJ71LP21G, QJ71BR11 MELSECNET/H network module
Ethernet	Abbreviation for the Ethernet network system
Ethernet module	Abbreviation for the QJ71E71-100, QJ71E71-B5, QJ71E71-B2 Ethernet interface module
Intelligent function module	Generic term for the CC-Link Safety master module, CC-Link IE Field Network master/local module (with safety functions), CC-Link IE Controller Network module, MELSECNET/H module, and Ethernet module

MEMO

INSTRUCTION TABLES

2.1 Types of Instructions

The major types of safety CPU module instructions are sequence instructions, basic instructions, application instructions, and QSCPU dedicated instructions as shown in Table 2.1

Table 2.1 Types of Instructions

Types of Instructions		Meaning	Reference Chapter
Sequence instruction	Contact instruction	Operation start, series connection, parallel connection	5
	Connection instructions	Ladder block connection, store/read operation results, creation of pulses from operation results	
	Output instruction	Bit device output, output reversal	
	Master control instruction	Master control	
	Termination instruction	Program termination	
	Other instructions	Instructions such as no operation which do not fit in the above categories	
Basic instructions	Comparison operation instruction	Comparisons such as $=,>,<$	6
	Arithmetic operation instruction	Addition, subtraction, multiplication or division of BIN	
	$B C D \leftrightarrow B I N$ conversion instruction	Conversion from BCD to BIN and from BIN to BCD	
	Data transfer instruction	Transmits designated data	
Application instructions	Logical operation instructions	Logical operations such as logical sum, logical product, etc.	7
QSCPU dedicated instruction	QSCPU dedicated instruction	Forced control stop	8

2.2 How to Read Instruction Tables

The instruction tables found from Section 2.3 to 2.6 have been made according to the following format:

Table 2.2 How to Read Instruction Tables

Description

1) Classifies instructions according to their application.
2) Indicates the instruction symbol used in a program. Instruction code is built around the 16-bit instruction.
The following notations are used to mark 32-bit instructions, instructions executed only at the leading edge of OFF to ON.

- 32-bit instruction . . The letter "D" is added to the first line of the instruction.

- Instructions executed only at the leading edge of OFF to ON The letter "P" is added to the end of the instruction.

3)Shows symbol diagram on the ladder.

Fig. 2.1 Shows Symbol Diagram on the Ladder
Destination Indicates where data will be sent after operation.
Source Stores data prior to operation.
4) Indicates the type of processing that is performed by individual instructions.

Fig. 2.2 Type of Processing Performed by Individual Instructions
5)The details of conditions for the execution of individual instructions are as follows:

| Symbol |
| :--- | :--- |
| No symbol |
| recorded | | Instruction executed under normal circumstances, with no regard to the ON/OFF status of conditions prior to |
| :--- |
| the instruction. |
| If the precondition is OFF, the instruction will conduct OFF processing. |

6) Indicates the basic number of steps for individual instructions.

See 3.6 for a description of the number of steps.
7) The mark indicates instructions for which subset processing is possible.

See Section 3.3 for details on subset processing.
8) Indicates the page numbers where the individual instructions are explained.

2.3 Sequence Instruction

2.3.1 Contact instructions

Table 2.3 Contact Instructions

Category		Symbol	Processing Details	Execution Condition			
Contact	LD	$\dagger \vdash$	- Starts logic operation (Starts a contact logic operation)		1	-	5-2
	LDI	HXt	- Starts logical NOT operation (Starts b contact logic operation)				
	AND	$\text { H }-$	- Logical product (a contact series connection)				
	ANI	HK	- Logical product NOT (b contact series connection)				
	OR	\longmapsto	- Logical sum (a contact parallel connection)				
	ORI	ł	- Logical sum NOT (b contact parallel connection)				
	LDP	H4\|-	- Starts leading edge pulse operation				
	LDF		- Starts trailing edge pulse operation				
	ANDP	$\rightarrow \downarrow$	- Leading edge pulse series connection				
	ANDF	\square	- Trailing edge pulse series connection				
	ORP	$\square \wedge \mid$	- Leading edge pulse parallel connection				
	ORF	$Ч \downarrow \downarrow$	- Trailing edge pulse parallel connection				

2.3.2 Connection instructions

Table 2.4 Connection Instructions

Category		Symbol	Processing Details	Execution Condition		$\stackrel{\rightharpoonup}{0}$ 0 $\stackrel{0}{3}$ $\stackrel{1}{*}$	
Connection	ANB	ANB	- AND between logical blocks (Series connection between logical blocks)		1	-	5-7
	ORB		- OR between logical blocks (Series connection between logical blocks)				
	MPS		- Memory storage of operation results		1	-	5-9
	MRD		- Read of operation results stored with MPS instruction				
	MPP		- Read and reset of operation results stored with MPS instruction				
	INV	\bigcirc	- Inversion of operation result		1	-	5-12
	MEP	4	- Conversion of operation result to leading edge pulse		1	-	5-14
	MEF	\downarrow	- Conversion of operation result to trailing edge pulse				
	EGP		- Conversion of operation result to leading edge pulse (Stored at Vn)		1	-	5-15
	EGF		- Conversion of operation result to trailing edge pulse (Stored at Vn)		2		

2.3.3 Output instructions

Table 2.5 Output Instructions

Category		Symbol		Processing Details	Execution Condition		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{亏} \\ & \stackrel{\rightharpoonup}{\vec{n}} \end{aligned}$	
Output	OUT	$\longrightarrow \quad \mapsto$		- Device output		*1	-	$\begin{aligned} & 5-17 \\ & 5-19 \\ & 5-23 \\ & 5-25 \end{aligned}$
	SET	SET	D	- Set device	$\square\left(4^{* 2}\right)$	*1	-	$\begin{aligned} & 5-27 \\ & 5-31 \end{aligned}$
	RST	RST	D	- Reset device	$\square\left(\downarrow^{* 2}\right)$	*1	-	$\begin{aligned} & 5-29 \\ & 5-31 \end{aligned}$
	PLS	PLS	D	- Generates 1 cycle program pulse at leading edge of input signal.	\uparrow	2	-	5-33
	PLF	PLF	D	- Generates 1 cycle program pulse at trailing edge of input signal.				
	FF	$-\mathrm{FF}$	D	- Reversal of device output	\uparrow	2	-	5-36

*1: The number of steps may vary depending on the device being used.
See description pages of individual instructions for number of steps.
*2: The \mp execution condition applies only when an annunciator (F) is in use.

2.3.4 Master control instructions

Table 2.6 Master Control Instructions

2.3.5 Termination instruction

Table 2.7 Termination Instruction

Category		Symbol	Processing Details	Execution Condition		$\stackrel{\rightharpoonup}{0}$ $\stackrel{0}{3}$ $\stackrel{\text { d }}{ }$	ㄷ 흘 0 0 0 0 \vdots \vdots 0
Termination	END	\square END	- Termination of sequence program		1	-	5-42

2.3.6 Other instructions

Table 2.8 Other Instructions

Category		Symbol	Processing Details	Execution Condition		\# 0 0 $\stackrel{3}{3}$	
No-operation	NOP	-	- Ignored (For program deletion or space)		1	-	5-43
	NOPLF	NOPLF	- Ignored (To change pages during printouts)				
	PAGE	PAGE	- Ignored (Subsequent programs will be controlled from step 0 of page n)				

2.4 Basic Instructions

2.4.1 Comparison operation instructions

Table 2.9 Comparison Operation Instructions

Table 2.9 Comparison Operation Instructions (Continued)

2.4.2 Arithmetic operation instructions

Table 2.10 Arithmetic Operation Instructions

Table 2.10 Arithmetic Operation Instructions (Continued)

Category		Symbol	Processing Details	Execution Condition		$\stackrel{\rightharpoonup}{0}$ 0 $\stackrel{3}{3}$	
BIN data increment	INC INCP	- INC D $-I N C P$ D	- $(\mathrm{D})+1 \rightarrow$ (D)		2	-	6-18
	DINC DINCP	- DINC D - DINCP D	- $(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$		2	\bigcirc	6-20
	DEC DECP	- DEC D -DECP D	-(D) - $1 \rightarrow$ (D)		2	0	6-18
	DDEC DDECP	-DDEC D -DDECP D	- $(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$		2	0	6-20

2.4.3 Data conversion instructions

Table 2.11 Data Conversion Instructions

Category		Symbol	Processing Details	Execution Condition		$\stackrel{\rightharpoonup}{0}$ 0 $\stackrel{\rightharpoonup}{J}$ $\stackrel{y}{*}$	
BCD conversions	BCD	$B C D$ S D $-B C D P$ S D	$\text { - } \underset{\mathrm{S})}{\mathrm{BCD} \text { conversion }}(\mathrm{D})$		3	-	6-22
	DBCD	DBCD S D -DBCDP S D	$\text { - } \underbrace{\text { BCD conversion }}_{\boxed{(S+1, S)}}(D+1, D)$		3	-	
BIN conversions	BIN	BIN S D - BINP S D	$\xrightarrow[\text { - }]{(\mathrm{S})} \xrightarrow{\text { BIN conversion }}(\mathrm{D})$		3	-	6-24
	DBIN DBINP	DBIN S D - DBINP S D	$\underbrace{(S+1, S)} \xrightarrow{\text { BIN conversion }}(\mathrm{D}+1, \mathrm{D})$		3	-	
Complement to 2	NEG NEGP	NEG D - NEGP D	- $\overline{(\mathrm{D})} \longrightarrow(\mathrm{D})$		2	-	6-27
	DNEG DNEGP	$\begin{array}{\|l\|l\|} \hline \text { DNEG } & \text { D } \\ \hline \end{array}$	- $(\overline{\mathrm{D}+1, \mathrm{D})} \longrightarrow(\mathrm{D}+1, \mathrm{D})$		2	-	

2.4.4 Data transfer instructions

Table 2.12 Data Transfer Instructions

Category		Symbol	Processing Details	Execution Condition		$\stackrel{\rightharpoonup}{0}$ 0 $\stackrel{\rightharpoonup}{3}$ $\stackrel{3}{3}$	
16-bit data transfer	MOV MOVP	MOV S D - MOVP S D	$\bullet(\mathrm{S}) \longrightarrow$ (D)		*1	-	
32-bit data transfer	DMOV	DMOV S D	- $(\mathrm{S}+1, \mathrm{~S}) \longrightarrow(\mathrm{D}+1, \mathrm{D})$		*2	-	
16-bit data negation transfer	CML CMLP	-CML S D -CMLP S D	$\bullet(\overline{\mathrm{S}}) \longrightarrow(\mathrm{D})$		*1	-	
32-bit data negation transfer	DCML	DCML S D - DCMLP S D	- $\overline{(S+1, S)} \longrightarrow(D+1, D)$		*2	O	
Block transfer	BMOV	- BMOV S D$\mathrm{n}-\|子\|$BMOVP S D n	(S) (D)		4	-	6-34
Multiple transfers of same data block	FMOV FMOVP	FMOV$\mathrm{S}\|\mathrm{D}\| \mathrm{n}\|-\|$FMOVP S D n			4	-	6-36

*1: The number of steps may vary depending on the device being used.

	Device	Number of Steps
- Word device:Internal device - Bit device: \quadDevices whose device Nos. are multiples of 16 and whose digit designation is K4 - Constant: \quad No limitations	2	
Devices other than above	3	

*2: The number of steps may vary depending on the device being used.

	Device	Number of Steps
- Word device: \quadInternal device - Bit device: Devices whose device Nos. are multiples of 16 and whose digit designation is K8	3	
- Constant: \quad No limitations Note 1)		
Devices other than above	$3^{\text {Note 1) }}$	

Note 1) The number of steps may increase due to the conditions described in 3.6.

2.5 Application Instructions

2.5.1 Logical operation instructions

Table 2.13 Logical Operation Instructions

Category		Symbol	Processing Details	Execution Condition		$\stackrel{\rightharpoonup}{0}$ 0 $\stackrel{0}{3}$ ¢	
Logical product	WAND WANDP	WAND S D WANDP S D	$\cdot(\mathrm{D}) \wedge(\mathrm{S}) \rightarrow(\mathrm{D})$		3	-	7-3
	WAND	- WAND S 1 $\mathrm{~S}_{2}\|\mathrm{D}\|-\mid$	$\cdot(\mathrm{S} 1) \wedge(\mathrm{S} 2) \rightarrow(\mathrm{D})$		4	-	7-5
	DAND DANDP	DAND S D - DANDP S D	$\cdot(\mathrm{D}+1, \mathrm{D}) \wedge(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$		$\begin{gathered} * 1 \\ 3 \end{gathered}$	0	7-3
	DAND DANDP		$(\mathrm{S} 1+1, \mathrm{~S} 1) \wedge(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$		$\begin{aligned} & * 1 \\ & 4 \end{aligned}$		7-5
	WOR	WOR S D - WORP S D	- D$) \vee(\mathrm{S}) \rightarrow(\mathrm{D})$		3		7-8
Logical	WOR	- WOR S1 S2	$\cdot(\mathrm{S} 1) \vee(\mathrm{S} 2) \rightarrow(\mathrm{D})$		4	-	7-10
sum	DOR	DOR S D - DORP S D	$\cdot(\mathrm{D}+1, \mathrm{D}) \vee(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	$\frac{\square}{\square}$	$\begin{aligned} & * 1 \\ & 3 \end{aligned}$		7-8
	DOR	- DOR $\mathrm{S} 1 \mid \mathrm{S} 2$ D - DORP $\mathrm{S} 1 \|$S D	$(\mathrm{S} 1+1, \mathrm{~S} 1) \vee(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$		$\begin{aligned} & * 1 \\ & 4 \end{aligned}$	0	7-10
Exclusive OR	WXOR	WXOR S D - WXORP S D	. D$) \forall(\mathrm{S}) \rightarrow(\mathrm{D})$		3	0	7-12
	WXOR WXORP	- WXOR S1 S2$\|$D - WXORP	$\cdot(\mathrm{S} 1) \forall(\mathrm{S} 2) \rightarrow(\mathrm{D})$		4	O	7-14
	DXOR	DXOR S D - DXORP S D	$\cdot(\mathrm{D}+1, \mathrm{D}) \forall(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	$\frac{\sqrt{4}}{\square}$	$\begin{aligned} & * 1 \\ & 3 \end{aligned}$	0	7-12
	DXOR	-DXOR S 1 S 2 D - DXORP S 1 S 2 D	$\cdot(\mathrm{S} 1+1, \mathrm{~S} 1) \forall(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	$\frac{\square}{4}$	$\begin{aligned} & * 1 \\ & 4 \end{aligned}$	\bigcirc	7-14

*1: The number of steps may increase due to the conditions described in 3.6.

Table 2.13 Logical Operation Instructions (Continued)

Category		Symbol	Processing Details	Execution Condition		芯	
NON exclusive logical sum	WXNR WXNRP	WXNR S D - WXNRP S D	- $\overline{\mathrm{D}) \forall(\mathrm{S})} \rightarrow$ (D$)$		3	-	7-16
	WXNR WXNRP	WXNR S1 S2 D	$\overline{(S 1) \forall(\mathrm{S} 2)} \rightarrow$ (D)		4	-	7-18
	DXNR	- DXNR S D - DXNRP S D	$\overline{(D+1, D) \forall(S+1, S)} \rightarrow(\mathrm{D}+1, \mathrm{D})$		3	-	7-16
	DXNR DXNRP		$\overline{(S 1+1, S 1) \forall(S 2+1, S 2)} \rightarrow(\mathrm{D}+1, \mathrm{D})$		4	-	7-18

*1: The number of steps may increase due to the conditions described in 3.6.

2.6 QSCPU Dedicated Instruction

2.6.1 Forced control stop instruction

Table 2.14 Forced Control Stop Instruction

*1: 8 steps when a constant is used.

CONFIGURATION OF INSTRUCTIONS

3.1 Configuration of Instructions

Most safety CPU module instructions consist of an instruction part and a device part.
Each part is used for the following purpose:

- Instruction part .. Indicates the function of the instruction.
- Device part........ Indicates the data that is to be used with the instruction.

The device part is classified into source data, destination data, and number of devices.
(1) Source (S)
(a) Source is the data used for operations.
(b) The following source types are available, depending on the designated device:

- Constant \qquad Designates a numeric value to be used in the operation.
This is set when the program is created, and cannot be changed during the execution of the program.
- Bit devices and word devices \qquad Designates the device that stores the data to be used in the operation.
Data must be stored in the designated device until the operation is executed. By changing the data stored in a designated device during program execution, the data to be used in the instruction can be changed.
(2) Destination (D)
(a) The destination stores the data after the operation has been conducted.

However, some instructions require storing the data to be used in an operation at the destination prior to the operation execution.
Example An addition instruction involving BIN 16-bit data

Stores the data needed for operation prior to the actual operation.

Stores only the operation results.
(b) A device for the data storage must always be set to the destination.
(3) Number of devices and number of transfers (n)
(a) The number of devices and number of transfers designate the numbers of devices and transfers used by instructions involving multiple devices.

Example Block transfer instruction

Designates the number of transfers transferred by a BMOV instruction.
(b) The number of devices or number of transfers can be set between 0 and 32767 . However, if the number is 0 , the instruction will be a no-operation instruction.

3.2 Designating Data

The following three types of data can be used with safety CPU module instructions:

3.2.1 Using bit data

Bit data is data used in one-bit units, such as for contact points or coils.
"Bit devices" and "Bit designated word devices" can be used as bit data.
(1) When using bit devices

Bit devices are designated in one-point units.

(2) Using word devices
(a) Word devices enable the use of a designated bit number $1 / 0$ as bit data by the designation of that bit number.

(b) Word device bit designation is done by designating " Word device. Bit No. " (Designation of bit numbers is done in hexadecimal.)
For example, bit 5 (b5) of D0 is designated as D0.5, and bit 10 (b10) of D0 is designated as D0.A.
However, there can be no bit designation for timers (T), retentive timers (ST) or counters (C). (Example: C0.0 is not available)

3.2.2 Using word (16 bits) data

Word data is 16 -bit numeric data used by basic instructions and application instructions.
The following two types of word data can be used with safety CPU module:

- Decimal constants \qquad K-32768 to K32767
- Hexadecimal constants \qquad H0000 to HFFFF

Word devices and bit devices designated by digit can be used as word data.

(1) When Using Bit Devices

(a) Bit devices can deal with word data when digits are designated.

Digit designation of bit devices is done by designating " Number of digits
Start number of bit device ${ }^{\prime \prime}$.
Digit designation of bit devices can be done in 4-point (4-bit) units, and designation can be made for K1 to K4.
For example, if X 0 is designated for digit designation, the following points would be designated:

- K1X0 The 4 points X0 to X3 are designated
- K2X0 The 8 points X0 to X7 are designated
- K3X0 The 12 points X0 to XB are designated
- K4X0 The 16 points X0 to XF are designated

Fig 3.1 Digit Designation Setting Range for 16-Bit Instruction
(b) In cases where digit designation has been made at the source (S), the numeric values shown in Table 3.1 are those which can be dealt with as source data.

Table 3.1 List of Numeric Values that Can Be Dealt with as Digit Designation

Number of Digits Designated	With 16-Bit Instruction
K1 (4 points)	0 to 15
K2 (8 points)	0 to 255
K3 (12 points)	0 to 4095
K4 (16 points)	-32768 to 32767

(c) When destination (D) data is a word device

The word device for the destination becomes 0 following the bit designated by digit designation at the source.

Ladder Example	Processing											
16-bit Instruction												
	Filled with 0.											
	D0		0	0	0	0	0	0	0	0	0	

Fig 3.2 Ladder Example and Processing Conducted
(d) In cases where digit designation is made at the destination (D), the number of points designated are used as the destination.
Bit devices below the number of points designated as digits do not change.

Fig 3.3 Ladder Example and Processing Conducted
(2) Using word devices

Word devices are designated in 1-point (16 bits) units.

VPOINT

When digit designation processing is conducted, a random value can be used for the bit device head device number.

3.2.3 Using double word (32 bits) data

Double word data is 32-bit numerical data used by basic instructions and application instructions. The two types of double word data that can be dealt with by CPU module are as follows:

- Decimal constants \qquad K-2147483648 to K2147483647
- Hexadecimal constants \qquad H00000000 to HFFFFFFFF

Word devices and bit devices designated by digit designation can be used as double word data.
(1) When Using Bit Devices
(a) Digit designation can be used to enable a bit device to deal with double word data.

Digit designation of bit devices is done by designating "Number of digits
Start number of bit device ".
Digit designation of bit devices can be done in 4-point (4-bit) units, and designation can be made for K1 to K8.
For example, if XO is designated for digit designation, the following points would be designated:

- K1X0 .. The 4 points X0 to X3 are designated
- K2X0 .. The 8 points X0 to X 7 are designated
- K3X0 .. The 12 points X0 to XB are designated
- K4X0 .. The 16 points X0 to XF are designated
- K5X0... The 20 points X0 to X13 are designated
- K6X0... The 24 points X0 to X17 are designated
- K7X0... The 28 points X0 to X1B are designated
- K8X0... The 32 points X0 to X1F are designated

Fig 3.4 Digit Designation Setting Range for 32-Bit Instructions
(b) In cases where digit designation has been made at the source (S), the numeric values shown in Table 3.2 are those which can be dealt with as source data.

Table 3.2 List of Numeric Values that Can Be Dealt with as Digit Designation

Number of Digits Designated	With 32 bit Instructions	Number of Digits Designated	With 32 bit Instructions
K1 (4 points)	0 to 15	K5 (20 points $)$	0 to 1048575
K2 (8 points)	0 to 255	K6 (24 points)	0 to 16777215
K3 (12 points)	0 to 4095	K7 (28 points)	0 to 268435455
K4 (16 points)	0 to 65535	K8 (32 points $)$	-2147483648 to 2147483647

(c) When destination (D) data is a word device

The word device for the destination becomes 0 following the bit designated by digit designation at the source.

Fig 3.5 Ladder Example and Processing Conducted
(d) In cases where digit designation is made at the destination (D), the number of points designated are used as the destination.
Bit devices below the number of points designated as digits do not change.

Fig 3.6 Ladder Example and Processing Conducted

When digit designation processing is conducted, a random value can be used for the bit device head device number.
(2) Using word devices

A word device designates devices used by the lower 16 bits of data.
A 32-bit instruction uses (designation device number) and (designation device number +1).

3.3 Subset Processing

Subset processing is used to place limits on bit devices used by basic instructions and application instructions in order to increase processing speed.

However, the instruction symbol does not change.
To shorten scans, run instructions under the conditions indicated below.
(1) Conditions which each device must meet for subset processing
(a) When using word data

Device	Condition
Bit device	- Designates a bit device number in a factor of 16 • Only K4 can be designated for digit designation.
Word device	• Internal Device
Constants	• No limitations

(b) When using double word data

Device	Condition
Bit device	• Designates a bit device number in a factor of 16 • Only K8 can be designated for digit designation.
Word device	• Internal Device
Constants	• No limitations

(2) Instructions for which subset processing can be used

| Types of Instructions | Instruction Symbols |
| :--- | :--- | :--- |
| Comparison operation instruction | $\cdot=,<>,<,<=,>,>=, \mathrm{D}=, \mathrm{D}<>, \mathrm{D}<, \mathrm{D}<=, \mathrm{D}>, \mathrm{D}>=$ |
| Arithmetic operation | $\cdot \mathrm{BCD}, \mathrm{BIN}, \mathrm{DBCD}, \mathrm{DBIN}$ |
| Data conversion instructions | $\cdot \mathrm{MOV}, \mathrm{DMOV}, \mathrm{CML}, \mathrm{DCML}$ |
| Data transfer instruction | \cdot FMOV, BMOV |
| Logic operations | - WAND, DAND, WOR, DOR, WXOR, DXOR, WXNR, DXNR |

3.4 Cautions on Programming (Operation Errors)

Operation errors are returned in the following cases when executing basic instructions, application instructions and QSCPU dedicated instructions with safety CPU module:

- An error listed on the explanatory page for the individual instruction occurred.
(1) Device range check

Device range checks for the devices used by basic instructions and application instructions in safety CPU module are as indicated below:
(a) No device range check is made for instructions dealing with fixed-length devices (MOV, DMOV, etc.).
In cases where the corresponding device range is exceeded, data is written to other devices. ${ }^{*}$
For example, in a case where the data register has been allocated 6 k points, there will be no error even if it exceeds D6143.

(b) Device range checks are conducted for instructions dealing with variable-length devices (BMOV, FMOV, and others which designate transfer numbers).
In cases where the corresponding device range has been exceeded, an operation error will be returned.
For example, in a case where the data register has been allocated 6 k points, there will be an error if it exceeds D6143.

*1: See the figure below for the internal user device assignment order.

Head address (fixed)	SM
	X
	Y
	M
	B
	F
	SB
	v
	Contact and coil of T
	Contact and coil of ST
	Contact and coil of C
	Present value of T
	Present value of ST
	Present value of C
	D
	w
	Empty area
	SW
	SD

Refer to the manual below for how to change the internal user device allocation: - QSCPU User's Manual (Function Explanation, Program Fundamentals)
(2) Device data check

Device data checks for the devices used by basic instructions and application instructions in safety CPU module are as indicated below:
(a) When using BIN data

No error is returned even if the operation results in overflow or underflow.
The carry flag does not go on at such times, either.
(b) When using BCD data

1) Each digit is check for BCD value (0 to 9).

An operation error is returned if individual digits are outside the 0 to 9 (A to F) range.
2) No error is returned even if the operation results in overflow or underflow.

The carry flag does not go on at such times, either.

3.5 Conditions for Execution of Instructions

The following four types of execution conditions exist for the execution of safety CPU module sequence instructions, basic instructions, application instructions and QSCPU dedicated instructions:

- Non-conditional execution..... Instructions executed without regard to the ON/OFF status of the device

Example LD X0, OUT Y10

- Executed at ON \qquad Instructions executed while input condition is ON
Example MOV instruction, FMOV instruction
- Executed at leading edge...... Instructions executed only at the leading edge of the input condition (when it goes from OFF to ON)

Example PLS instruction, MOVP instruction

- Executed at trailing edge....... Instructions executed only at the trailing edge of the input condition (when it goes from ON to OFF)

Example PLF instruction

For coil or equivalent basic instructions or application instructions, where the same instruction can be designated for either execution at ON or leading edge execution, a " P " is added after the instruction name to specify the condition for execution.

- Instruction to be executed at ON Instruction
- Instruction to be executed at leading edge
Instruction + P

Execution at ON and execution at leading edge for the MOV instruction are designated as follow:

3.6 Counting Step Number

The number of steps in basic instructions and application instructions of the safety CPU module may increase depending on the devices to be used.
(1) Counting the number of basic steps

The basic number of steps for basic instructions and application instructions is calculated by adding the device number and 1.
For example, the "+ instruction" would be calculated as follows:

(2) Conditions for increasing the number of steps

In the following case, the number of steps increases over the number of basic steps.

- When a constant is used in device designation with a 32-bit instruction.

Example

3.7 Operation when OUT, SET/RST, or PLS/PLF Instructions Use the Same Device

The following describes the operation for executing multiple instructions of OUT, SET/RST, or PLS/PLF that use the same device in one scan.
(1) OUT instructions using the same device

Do not program more than one OUT instruction using the same device in one scan.
If the OUT instructions using the same device are programmed in one scan, the specified device will turn ON or OFF every time the OUT instruction is executed, depending on the operation result of the program up to the relevant OUT instruction.
Since turning ON or OFF of the device is determined when each OUT instruction is executed, the device may turn ON and OFF repeatedly during one scan.
The following diagram shows an example of a circuit that turns the same internal relay (M0) with inputs X0 and X1 ON and OFF.
[Circuit]

[Timing Chart]

When specifying output (Y) in OUT instruction, the ON/OFF status of the device at the execution of the last OUT instruction in the scan is returned as the output (Y).
(2) SET/RST instructions using the same device
(a) The SET instruction turns ON the specified device when the execution command is ON and performs nothing when the execution command is OFF.
For this reason, when SET instructions using the same device are executed two or more times in one scan, the specified device will be ON if any one of the execution commands is ON.
(b) The RST instruction turns OFF the specified device when the execution command is ON and performs nothing when the execution command is OFF. For this reason, when RST instructions using the same device are executed two or more times in one scan, the specified device will be OFF if any one of the execution commands is ON.
(c) When the SET instruction and RST instruction using the same device are programmed in one scan, the SET instruction turns ON the specified device when the SET execution command is ON and the RST instruction turns OFF the specified device when the RST execution command is ON.

When both the SET and RST execution commands are OFF, the ON/OFF status of the specified device will not be changed.
[Circuit]

[Timing Chart]

When specifying output (Y) in SET/RST instruction, the ON/OFF status of the device at the execution of the last instruction in the scan is returned as the output (Y).
(3) PLS instructions using the same device

The PLS instruction turns ON the specified device when the execution command is turned ON from OFF.
It turns OFF the device at any other time (OFF to OFF, ON to ON, or ON to OFF).
If two or more PLS instructions using the same device are executed in one scan, each instruction turns ON the device when the corresponding execution command is turned ON from OFF and turns OFF the device in other cases.
For this reason, if multiple PLS instructions using the same device are executed in a single scan, a device that has been turned ON by a PLS instruction may not be turned ON during one scan.
[Circuit]

[Timing Chart]

- The ON/OFF timing of the X 0 and X 1 is different. (The specified device does not turn ON throughout the scan.)

- The X0 and X1 turn ON from OFF at the same time.

When specifying output (Y) in PLS instructions, the ON/OFF status of the device at the execution of the last PLS instruction in the scan is returned as the output (Y).
(4) PLF instructions using the same device

The PLF instruction turns ON the specified device when the execution command is turned OFF from ON.
It turns OFF the device at any other time (OFF to OFF, OFF to ON, or ON to ON).
If two or more PLF instructions using the same device are executed in one scan, each instruction turns ON the device when the corresponding execution command is turned OFF from ON and turns OFF the device in other cases.
For this reason, if multiple PLF instructions using the same device are executed in a single scan, a device that has been turned ON by a PLF instruction may not be turn ON during one scan.
[Circuit]

[Timing Chart]

- The ON/OFF timing of the X 0 and X 1 is different. (The specified device does not turn ON throughout the scan.)

- The X0 and X1 turn OFF from ON at the same time.

When specifying output (Y) in PLF instructions, the ON/OFF status of the device at the execution of the last PLF instruction in the scan is returned as the output (Y).

HOW TO READ INSTRUCTIONS

The description of instructions that are contained in the following chapters are presented in the following format.

1) Code used to write instruction (instruction symbol).
2) Section number and general category of instructions being discussed.
3) Indicates ladder mode expressions and execution conditions for instructions.

Execution Condition	Non-conditional Execution	Executed while ON	Executed One Time at ON	Executed One Time at OFF
Code recorded on description page	No symbol recorded	$-\square$	-	-

4) Discusses the data set for each instruction and the data type.

Data Type	Meaning
Bit	Bit data or start number of bit device
BIN 16 bits	BIN 16-bit data or start number of word device
BIN 32 bits	BIN 32-bit data or start number of double word device
BCD 4-digit	4-digit BCD data
BCD 8-digit	8-digit BCD data

5) Devices which can be used by the instruction in question are indicated with circle. The types of devices that can be used are as indicated below:

Device Type	Internal Devices (System, User)		Constant *3	Others *3
	Bit	Word		
Applicable devices *1	X, Y, M SM, F, B, SB,	T, ST, C, *2 D, W, SD, SW	K, H	N, V

*1: Refer to the manual below for the description for the individual devices.

- QSCPU User's Manual (Function Explanation, Program Fundamentals)
*2: When T, ST and C are used for other than the instructions below, only word data can be used. (Bit data cannot be used.)
[Instructions that can be used with bit data]
LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, OUT, RST
*3: Devices which can be set are described in the "Constant" and the "Others" columns.

6) Indicates the function of the instruction.
7) Indicates conditions under which error is returned, and error number.
8) Indicates simple program examples.

Also indicates the types of individual devices used when the program is executed.

MEMO
\qquad

5
 SEQUENCE INSTRUCTIONS

Category	Processing Details	Reference section
Contact instruction	Operation start, series connection, parallel connection	5.1
Connection instructions	Ladder block connection, creation of pulses from operation results, store/read operation results	5.2
Output instruction	Bit device output, output reversal	5.3
Master control instruction	Master control	5.4
Termination instruction	Program termination	5.5
Other instructions	Instructions such as no operation which do not fit in the above categories	5.6

5.1 Contact Instruction

5.1.1 Operation start, series connection, parallel connection (LD, LDI, AND, ANI, OR, ORI)

(S) : Devices used as contacts (bits)

Function

LD, LDI

(1) LD is the A contact operation start instruction, and LDI is the B contact operation start instruction. They read ON/OFF information from the designated device ${ }^{* 1}$, and use that as an operation result.
*1: When a bit designation is made for a word device, the device turns ON or OFF depending on the $1 / 0$ status of the designated bit.

AND, ANI

(1) AND is the A contact series connection instruction, and ANI is the B contact series connection instruction. They read the ON/OFF data of the designated bit device ${ }^{* 2}$, perform an AND operation on that data and the operation result to that point, and take this value as the operation result.
*2: When a bit designation is made for a word device, the device turns ON or OFF depending on the $1 / 0$ status of the designated bit.
(2) There are no restrictions on the use of AND or ANI, but the following applies to the ladder mode of the GX Developer:
(a) Write.... When AND and ANI are connected in series, a ladder with up to 24 stages can be displayed.
(b) Read ... When AND and ANI are connected in series, a ladder with up to 24 stages can be displayed. If the number exceeds 24 stages, up to 24 will be displayed.

OR, ORI

(1) $O R$ is the A contact single parallel connection instruction, and $O R I$ is the B contact single parallel connection instruction. They read ON/OFF information from the designated device ${ }^{* 3}$, and perform an OR operation with the operation results to that point, and use the resulting value as the operation result.
*3: When a bit designation is made for a word device, the device turns ON or OFF depending on the $1 / 0$ status of the designated bit.
(2) There are no restrictions on the use of OR or ORI, but the following applies to the ladder mode of the GX Developer
(a) Write.... OR and ORI can be used to create connections of up to 23 ladders.
(b) Read ... OR and ORI can be used to create connections of up to 23 ladders.

The 24th or subsequent ladders cannot be displayed properly.

Remark

Word device bit designations are made in hexadecimal.
Bit b11 of D0 would be D0.0B.
See 3.2.1 for more information on word device bit designation.

Operation Error

(1) There are no operation errors with LD, LDI, AND, ANI, OR, or ORI instructions.

\triangle Program Example

(1) A program using LD, AND, OR, and ORI instructions.
[Ladder Mode]

(2) A program linking contact points established through the use of ANB and ORB instructions. [Ladder Mode]

(3) A parallel program with OUT instruction.
[Ladder Mode]

5.1.2 Pulse operation start, pulse series connection, pulse parallel connection (LDP, LDF, ANDP, ANDF, ORP, ORF)

(s) : Devices used as contacts (bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		
S	\bigcirc		-	

Function

LDP, LDF

(1) LDP is the leading edge pulse operation start instruction, and is ON only at the leading edge of the designated bit device (when it goes from OFF to ON). If a word device has been designated, it is ON only when the designated bit changes from 0 to 1.
In cases where there is only an LDP instruction, it acts identically to instructions for the creation of a pulse that are executed during ON (P).

(2) LDF is the trailing edge pulse operation start instruction, and is ON only at the trailing edge of the designated bit device (when it goes from ON to OFF).
If a word device has been designated, it is ON only when the designated bit changes from 1 to 0 .

ANDP, ANDF

(1) ANDP is a leading edge pulse series connection instruction, and ANDF is a trailing edge pulse series connection instruction. They perform an AND operation with the operation result to that point, and take the resulting value as the operation result.
The ON/OFF data used by ANDP and ANDF are indicated in the table below:

Device specified in ANDP or ANDF		ANDP State	ANDF State
Bit device	Bit designated for word device		
OFF to ON	0 to 1		OFF
OFF	0	OFF	
ON	1		
ON to OFF	1 to 0		ON

ORP, ORF

(2) ORP is a leading edge pulse parallel connection instruction, and ORF is a trailing edge pulse serial connection instruction. They perform an OR operation with the operation result to that point, and take the resulting value as the operation result.
The ON/OFF data used by ORP and ORF are indicated in the table below:

Device designated in ORP or ORF		ORP State	ORF State
Bit device	Bit designated for word device		
OFF to ON	0 to 1		OFF
OFF	0	OFF	
ON	1		ON
ON to OFF	1 to 0		

Operation Error

(1) There are no operation errors with LDP, LDF, ANDP, ANDF, ORP, or ORF instructions.

Program Example

(1) The following program executes the MOV instruction at input XO , or at the leading edge of b10 (bit 11) of data register D0:
[Ladder Mode]

*1: Word device bit designations are performed in hexadecimal. Bit b10 of D0 would be D0.A.

5.2 Connection Instructions

5.2.1 Ladder block series connections and parallel connections (ANB, ORB)

Function

ANB

(1) Performs an AND operation on block A and block B, and takes the resulting value as the operation result.
(2) The symbol for ANB is not the contact symbol, but rather is the connection symbol.

ORB

(1) Conducts an OR operation on Block A and Block B, and takes the resulting value as the operation result.
(2) ORB is used to perform parallel connections for ladder blocks with two or more contacts. For ladder blocks with only one contact, use OR or ORI; there is no need for ORB in such cases.

(3) The ORB symbol is not the contact symbol, but rather is the connection symbol.

Operation Error

(1) There are no operation errors associated with ANB or ORB instructions.
\triangle Program Example
(1) A program using ANB and ORB instructions.
[Ladder Mode]

5.2.2 Operation results push, read, pop (MPS, MRD, MPP)

Function

MPS

(1) Stores in memory the operation result (ON or OFF) immediately prior to the MPS instruction.
(2) Up to 16 MPS instructions can be used successively.

If an MPP instruction is used during this process, the number of uses calculated for the MPS instruction will be decremented by one.

MRD

(1) Reads the operation result stored for the MPS instruction, and uses that result to perform the operation in the next step.

MPP

(1) Reads the operation result stored for the MPS instruction, and uses that result to perform the operation in the next step.
(2) Clears the operation results stored by the MPS instruction.
(3) Subtracts 1 from the number of MPS instruction times of use.

XPOINT

1. The following shows ladders both using and not using the MPS, MRD, and MPP instructions.

Ladder Using the MPS, MRD and MPP Instruction Ladder not Using MPS, MRD, and MPP Instructions

2. The number of times the MPS and MPP instructions are used must be the same.
If not, correct ladder display is not possible in the ladder mode of the GX Developer.

O Operation Error

(1) There are no errors associated with the MPS, MRD, or MPP instructions.

\square Program Example

(1) A program using the MPS, MRD, and MPP instructions.
[Ladder Mode]

(2) A program using MPS and MPP instructions successively. [Ladder Mode]

5.2.3 Operation results inversion (INV)

Function

(1) Inverts the operation result immediately prior to the INV instruction.

Operation Result Immediately Prior to the INV Instruction.	Operation Result Following the Execution of the INV Instruction.
OFF	ON
ON	OFF

0 Operation Error

(1) There are no operation errors associated with the INV instruction.

IProgram Example
(1) A program which inverts the $\mathrm{X0} 0 \mathrm{ON} / \mathrm{OFF}$ data, and outputs from Y 10.
[Ladder Mode]

[Timing Chart]

XPOINT

1. The INV instruction operates based on the results of calculation made until the INV instruction is given. Accordingly, use it in the same position as that of the AND instruction.

The INV instruction cannot be used at the LD and OR positions.
2. When a ladder block is used, the operation result is inverted within the range of the ladder block. To operate a ladder using the INV instruction in combination with the ANB instruction, pay attention to the range that will be inverted.

For details of the ANB instruction, refer to Section 5.2.1.

5.2.4 Operation result pulse conversion (MEP, MEF)

Function

MEP

(1) If operation results up to MEP instruction are leading edge (from OFF to ON), goes ON (continuity status).
If operation results up to MEP instruction are anything other than leading edge, goes OFF (non-continuity status).
(2) Use of the MEP instruction simplifies pulse conversion processing when multiple contacts are connected in series.

MEF

(1) If operation results up to MEF instruction are trailing edge (from ON to OFF), goes ON (continuity status).
If operation results up to MEF instruction are anything other than trailing edge, goes OFF (non-continuity status).
(2) Use of the MEF instruction simplifies pulse conversion processing when multiple contacts are connected in series.

O Operation Error

(1) There are no operation errors associated with the MEP or MEF instructions.
\triangle Program Example
(1) A program which performs pulse conversion on the operation results of X 0 and X 1 :
[Ladder Mode]

®POINT

Because the MEP and MEF instructions operate according to the operation result immediately before the execution of these instructions, they must be used at the same position as the AND instruction. The MEP and MEF instructions cannot be used at the position of LD or OR instruction.

5．2．5 Pulse conversion of edge relay operation results（EGP，EGF）

（D）：Edge relay number where operation results are stored（bits）

Set Data	Internal Devices		Constants	Others V
	Word			\bigcirc

Function
EGP
（1）Operation results up to the EGP instruction are stored in memory by the edge relay（V）．
（2）Goes ON（continuity status）at the leading edge（OFF to ON）of the operation result up to the EGP instruction．
If the operation result up to the EGP instruction is other than a leading edge（i．e．，from ON to ON，ON to OFF，or OFF to OFF），it goes OFF（non－continuity status）．
（3）The EGP instruction can be used like an AND instruction．

EGF

（1）Operation results up to the EGF instruction are stored in memory by the edge relay（V）．
（2）Goes ON at the trailing edge（from ON to OFF）of the operation result up to the EGF instruction．
If the operation result up to the EGF instruction is other than a trailing edge（i．e．，from OFF to ON，ON to ON，or OFF to OFF），it goes OFF（non－continuity status）．
（3）The EGF instruction can be used like an AND instruction．
（1）There are no operation errors associated with the EGP or EGF instructions．

\square Program Example

(1) A program containing a subroutine program using an EGP instruction [Ladder Mode]

[Operation]

®POINT

1. Since EGP and EGF instructions are executed according to the results of operation performed immediately before the EGP/EGF instruction, these instructions must be used in the same position as the AND instruction (refer to 5.1.1.). An EGP and EGF instruction cannot be used at the position of an LD or OR instruction.
2. EGP and EGF instructions cannot be used at the circuit block positions shown below.

5.3 Output Instruction

5.3.1 Out instructions (excluding timers, counters, and annunciators) (OUT)

(D) : Number of the device to be turned ON and OFF (bits)

Function

(1) Operation results up to the OUT instruction are output to the designated device.
(a) When Using Bit Devices

Operation Results	Coil
OFF	OFF
ON	ON

(b) When Bit Designation has been Made for Word Device

Operation Results	Bit Designated
OFF	0
ON	1

O Operation Error

(1) There are no operation errors associated with OUT instruction.

Program Example

(1) When Using Bit Devices
[Ladder Mode]

(2) When Bit Designation has been Made for Word Device [Ladder Mode]

Remark

The number of basic steps is 1 when a device other than a timer, counter and annunciator is designated for the OUT instruction.

5.3.2 Timers (OUT T,OUTH T)

(D) : Timer number (bit)

Set value : Value set for timer (BIN 16 bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word	K	
(D)	Only T) (Only	-	-	-
Set value	-	(Except T, C)	$\bigcirc * 1$	-

*1: Timer values can be set only in a decimal constant (K). A hexadecimal constant (H) cannot be used for timer settings.

Function

(1) When the operation results up to the OUT instruction are ON, the timer coil goes ON and the timer starts measurement; at the time-up (measured value \geqq set value), the contact is as follows:

A Contact	Continuity
B Contact	Non-continuity

(2) The contact responds as follows when the operation result up to the OUT instruction is a change from ON to OFF:

Type of Timer	Timer Coil	Present Value of Timer	Prior to Time Up		After Time Up	
			A Contact	B Contact	A Contact	B Contact
Low speed timer	OFF	0	Noncontinuity	Continuity	Noncontinuity	Continuity
High speed timer						
Low speed retentive timer	OFF	Maintains the present value	Noncontinuity	Continuity	Continuity	Noncontinuity
High speed retentive timer						

(3) To clear the present value of a retentive timer and turn the contact OFF after time up, use the RST instruction.
(4) A negative number (-32768 to -1) cannot be set as the setting value for the timer.

If the setting value is 0 , the timer will time out when the time the OUT instruction is executed.
(5) The following processing is conducted when the OUT instruction is executed:

- OUT TJ coil turned ON or OFF
- OUT T.j contact turned ON or OFF
- OUT T present value updated

If the same OUT T. instruction is executed twice or more times during the same scan, the present value is updated by the number of times the instruction is executed.

1. Timer's time limit

Time limit of the timer is set in the PLC system setting of the PLC parameter dialog box.

Type of Timer	QSCPU	
	Setting Range	Setting unit
Low speed timer Low speed retentive timer	1 ms to 1000 ms (Default: 100 ms)	1 ms
High speed timer High speed retentive timer	0.1 ms to 100 ms (Default: 10 ms)	0.1 ms

2. Refer to the manual below for information on timer counting methods.

- QSCPU User's Manual (Function Explanation, Program Fundamentals)

3. The number of basic steps of the OUT Tinstruction is 4.
(1) There are no operation errors associated with the OUT T. instruction.
(1) When creating a program in which the operation of the timer contact triggers the operation of other timer, create the program according to the operation order of the timers - create the program for the timer that operates later first.
In the following cases, all timers go ON at the same scan if the program is created in the order the timers operate.

- If the set value is smaller than a scan time.
- If " 1 " is set.

Example

- For timers T0 to T2, the program is created in the order the timer operates later.

- For timers T0 to T2, the program is created in the order of timer operation.

\square Program Example

(1) The following program turns Y 10 and Y 14 ON 10 seconds after X 0 has gone ON . [Ladder Mode]

*2: The set value of the low-speed timer indicates its default time limit (100 ms).
(2) The following program uses the BCD data at X10 to X1F as the timer's set value. [Ladder Mode]

(3) The following program turns Y 10 ON 250 m after X 0 goes ON .
[Ladder Mode]

*3: The set value of the high speed timer indicates its default time limit (10 ms).

5.3.3 Counters (OUT C)

$\begin{aligned} \text { (D): } & \text { Counter number (bits) } \\ \text { Set value: } & \text { Counter set value (BIN } 16 \text { bits) }\end{aligned}$

Set Data	Internal Devices		Constants K	Others
	Bit (Only C)	-	-	-
Set value	-	Word (Except T, C)	$\bigcirc^{* 1}$	-

*1: Counter values can be set only in a decimal constant (K). A hexadecimal constant (H) cannot be used for the counter value setting.

Function

(1) When the operation results up to the OUT instruction change from OFF to ON, 1 is added to the present value (count value) and the count up status (present value \geqq set value), and the contacts respond as follows:

A Contact	Continuity
B Contact	Non-continuity

(2) No count is conducted with the operation results at ON. (There is no need to perform pulse conversion on count input.)
(3) After the count up status is reached, there is no change in the count value or the contacts until the RST instruction is executed.
(4) A negative number $(-32768$ to -1) cannot be set as the setting value for the timer. If the set value is 0 , the processing is identical to that which takes place for 1 .

1. Refer to the manual below for counter counting methods.

- QSCPU User's Manual (Function Explanation, Program Fundamentals)

2. The number of basic steps of the OUT C instruction is 4.

Operation Error

(1) There are no operation errors associated with the OUT C instruction.
(1) The following program turns Y 30 ON after X 0 has gone ON 10 times, and resets the counter when X1 goes ON.
[Ladder Mode]

(2) The following program sets the value for C 10 at 10 when X 0 goes ON , and at 20 when X 1 goes ON.
[Ladder Mode]

5.3.4 Annunciator output (OUT F)

(D) : Number of the annunciator to be turned ON (bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		

Function

(1) Operation results up to the OUT instruction are output to the designated annunciator.
(2) The following responses occur when an annunciator (F) is turned $O N$.

- The "USER" LED goes ON.
- The annunciator numbers which are ON (F numbers) are stored in special registers (SD64 to SD79).
- The value of SD63 is incremented by 1.
(3) If the value of SD63 is 16 (which happens when 16 annunciators are already ON), even if a new annunciator is turned ON, its number will not be stored at SD64 to SD79.
(4) When the annunciator is turned OFF by the OUT instruction, although the coil goes OFF, status of the "USER" LED and the contents of SD63 to SD79 are not changed. To turn OFF the "USER" LED or to delete the annunciator, which was turned OFF by the OUT Finstruction from SD63 to SD79, use the RST Finstruction.
(1) There are no operation errors associated with the OUT Finstruction.

1. Refer to the manual below for details of annunciators.

- QSCPU User's Manual (Function Explanation, Program Fundamentals)

2. The number of basic steps for the OUT module F instruction is 2.
(1) The following program turns F7 ON when X0 goes ON, and stores the value 7 from SD64 to SD79.
[Ladder Mode]
 3
[Operation]

SD63	XO ON		
	0	Adds 1. SD63	1
SD64	0	SD64	7
SD65	0	SD65	0
SD66	0	SD66	0
SD67	0	SD67	0
))
SD79	0	SD79	0

5.3.5 Setting devices (except for annunciators) (SET)

(D) : Bit device number to be set (ON)/Word device bit designation (bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		
(D)	\bigcirc	(Except T, C)	-	\bigcirc

Function

(1) When the execution command is turned ON , the status of the designated devices becomes as shown below:

Device	Device Status
Bit device	Coils and contacts turned ON
When Bit Designation has been Made for Word Device	Designation bit set at 1

(2) Devices turned ON by the instruction remain ON when the same command is turned OFF. Devices turned ON by the SET instruction can be turned OFF by the RST instruction.

(3) When the execution command is OFF, the status of devices does not change.

Operation Error

(1) There are no operation errors associated with the SET instruction.

\square Program Example

(1) The following program sets $\mathrm{Y} 8 \mathrm{~B}(\mathrm{ON})$ when X 8 goes ON , and resets Y 8 B (OFF) when X 9 goes ON.
[Ladder Mode]

(2) The following program sets the value of D 0 bit 5 (b5) to 1 when X 8 goes ON , and set the bit value to 0 when X9 goes ON.
[Ladder Mode]

Remark

1. The number of basic steps is 1 when a device other than an annunciator is designated for the SET instruction.
2. When using X as a device, use the device numbers that are not used for the actual input. If the same number is used for the actual input device and input X, the data of the actual input will be written over the input X specified in the SET instruction.

5．3．6 Resetting devices（except for annunciators）（RST）

（D）：Bit device number to be reset／Word device bit designation（bits） Word device number to be reset（BIN 16 bits）

Set	Internal Devices		Constants	Others
Data	Bit	Word		
（D）				

Function

（1）When the execution command is turned ON ，the status of the designated devices becomes as shown below：

Device	Device Status
Bit device	Turns coils and contacts OFF
Timers and counters	Sets the present value to 0，and turns coils and contacts OFF
When Bit Designation has been Made for Word Device	Sets value of designated bit to 0
Word devices other than timers and counters	Sets contact to 0

（2）When the execution command is OFF，the status of devices does not change．
（3）The functions of the word devices designated by the RST instruction are identical to the following ladder：

8 Operation Error

（1）There are no operation errors associated with the RST instruction．

Remark

The basic number of steps of the RST instruction is as follows．
a）For bit processing
－Internal device（bit to be specified by bit device or word device）： 1
－Timer，counter
b）The number of basic steps is 2 for word processing．

\square Program Example

(1) The following program sets the value of the data register to 0 .
[Ladder Mode]

(2) The following program resets the 100 ms retentive timer and counter.
[Ladder Mode]

5.3.7 Setting and resetting the annunciators (SET F, RST F)

SET (D) : Number of the annunciator to be set (F number) (bits)
RST (D) : Number of the annunciator to be reset (F number) (bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		
	Only F)		-	

$\sqrt{2}$ Function

SET

(1) The annunciator designated by (D) is turned ON when the execution command is turned ON.
(2) The following responses occur when an annunciator (F) is turned ON.

- The "USER" LED goes ON.
- The annunciator numbers which are ON (F numbers) are stored in special registers (SD64 to SD79).
- The value of SD63 is incremented by 1.
(3) If the value of SD63 is 16 (which happens when 16 annunciators are already ON), even if a new annunciator is turned ON, its number will not be stored at SD64 to SD79.

RST
(1) The annunciator designated by (D) is turned OFF when the execution command is turned ON.
(2) The annunciator numbers (F numbers) of annunciators that have gone OFF are deleted from the special registers (SD64 to SD79), and the value of SD63 is decremented by 1.

Remark

1. Refer to the manual below for details of annunciators.

- QSCPU User's Manual (Function Explanation, Program Fundamentals)

2. The number of basic steps for the SET F
(3) When the value of SD63 is "16", the annunciator numbers are deleted from SD64 to SD79 by the use of the RST instruction. If the annunciators whose numbers are not registered in SD64 to SD79 are ON, these numbers will be registered.
If all annunciator numbers from SD64 to SD79 are turned OFF, the "USER" LED on the front of the safety CPU module will be turned OFF.

[Operations which take place when SD63 is 16]

Values of SD63,
SD64 to SD79 are not changed.

F30, which was ON, is stored in SD79.

Operation Error

(1) There are no operation errors associated with the SET F or RST Finstructions.

\triangle Program Example

(1) The following program turns annunciator F 11 ON when X 1 goes ON , and stores the value 11 at the special register (SD64 to SD79). Further, the program resets annunciator F11 if X2 goes ON, and deletes the value 11 from the special registers (SD64 to SD79).
[Ladder Mode]

[Operation]

5.3.8 Leading edge and trailing edge output (PLS, PLF)

(D) : Pulse conversion device (bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		
(D)	\bigcirc		-	

Function

PLS

(1) Turns ON the designated device when the execution command is turned OFF $\rightarrow \mathrm{ON}$, and turns OFF the device in any other case the execution command is turned OFF $\rightarrow \mathrm{ON}$ (i.e., at $\mathrm{ON} \rightarrow \mathrm{ON}, \mathrm{ON} \rightarrow$ OFF or OFF \rightarrow OFF of the execution command).

When there is one PLS instruction for the device designated by (D) during one scan, the specified device turns ON one scan.
See 3.7 for the operation to be performed when the PLS instruction for the same device is executed more than once during one scan.

(2) If the RUN/STOP/RESET switch is changed from RUN to STOP after the execution of the PLS instruction, the PLS instruction will not be executed again even if the switch is set back to RUN.

(3) When designating a latch relay (L) for the execution command and turning the power supply OFF to ON with the latch relay ON, the execution command turns OFF to ON at the first scan, executing the PLS instruction and turning ON the designated device.
The device turned ON at the first scan after power-ON turns OFF at the next PLS instruction.

PLF

(1) Turns ON the designated device when the execution command is turned $\mathrm{ON} \rightarrow \mathrm{OFF}$, and turns OFF the device in any other case the execution command is turned ON \rightarrow OFF (i.e., at OFF \rightarrow OFF, OFF \rightarrow ON or ON \rightarrow ON of the execution command).
When there is one PLF instruction for the device designated by (D) during one scan, the specified device turns ON one scan.
See 3.7 for the operation to be performed when the PLF instruction for the same device is executed more than once during one scan.

(2) If the RUN/STOP/RESET switch is changed from RUN to STOP after the execution of the PLF instruction, the PLF instruction will not be executed again even if the switch is set back to RUN.

Operation Error

(1) There are no operation errors associated with the PLS or PLF instructions.

\triangle Program Example

(1) The following program executes the PLS instruction when X9 goes ON.
[Ladder Mode]

[Timing Chart]

(2) The following program executes the PLF instruction when X9 goes OFF. [Ladder Mode]

[Timing Chart]

5.3.9 Bit device output reverse (FF)

FF

(D) : Device number of the device to be reversed (bits)

Set Data	Internal Devices		Constants	Others	
	Bit	Word		-	
(D)	\bigcirc				

Function

(1) Reverses the output status of the device designated by (D) when the execution command is turned OFF \rightarrow ON.

Device	Device Status	
	Prior to FF execution	After FF execution
Bit device	OFF	ON
	ON	OFF
Bit designated for word device	0	1
	1	0

O Operation Error

(1) There are no operation errors associated with the FF instruction.

\square Program Example

(1) The following program reverses the output of Y 10 when X 9 goes ON. [Ladder Mode]

[Timing Chart]

(2) The following program reverses b10 (bit 10) of D10 when X0 goes ON. [Ladder Mode]

[Timing Chart]

5.4 Master Control Instructions

5.4.1 Setting and resetting the master control (MC, MCR)

n : Nesting (N0 to N14) (Nesting)
(D): Number of the device to turn ON (bits)

Set Data	Internal Devices		Constants	Others N
	Bit	Word		
n	-		-	\bigcirc
(D)	\bigcirc		-	-

Function

(3) The master control instruction is used to enable the creation of highly efficient ladder switching sequence programs, through the opening and closing of a common bus for ladders.
A ladder using the master control would look as shown below:

Remark
Inputting contacts on the vertical bus is not necessary when programming in the write mode of the GX Developer.
These will be automatically displayed when the "conversion" operation is conducted after the creation of the ladder and then "read" mode is set.

MC

(1) If the execution command of the MC instruction is $O N$ when master control is commenced, the result of the operation from the MC instruction to the MCR instruction will be exactly as the instruction (ladder) shows.
If the execution command of the MC instruction is OFF, the result of the operation from the MC instruction to the MCR instruction will be as shown below:

Device	Device Status
High speed timer Low speed timer	Count value goes to 0, coils and contacts all go OFF
High speed retentive timer Low speed retentive timer Counter	Coils go OFF, but counter values and contacts all maintain current status.
Devices in OUT instruction	All turned OFF
SET, RST $\left.\begin{array}{l}\text { Basic, } \\ \text { Application }\end{array}\right\}$ Devices in the following instructions:	Maintain current status

(2) Even when the MC instruction is OFF, instructions from the MC instruction to the MCR instruction will be executed, so scan time will not be shortened.
(3) By changing the device designated by (D), the MC instruction can use the same nesting (N) number as often as desired.
(4) Coils from devices designated by (D) are turned ON when the MC instruction is ON. Further, using these same devices with the OUT instruction or other instructions will cause them to become double coils, so devices designated by (D) should not be used within other instructions.

MCR

(1) This is the instruction for recovery from the master control, and indicates the end of the master control range of operation.
(2) Do not place contact instructions before the MCR instruction.
(3) Use the MC instruction and MCR instruction of the same nesting number as a set. However, when the MCR instructions are nested in one place, all master controls can be terminated with the lowest nesting (N) number.
(Refer to the "Cautions when Using Nesting Architecture" in the program example.)

O Operation Error

(1) There are no operation errors associated with the MC or MCR instructions.

\square Program Example

(1) The master control instruction can be used in nesting. The different master control regions are distinguished by nesting (N). Nesting can be performed from N0 to N14.
The use of nesting enables the creation of ladders which successively limit the execution condition of the program.
A ladder using nesting would appear as shown below:

[Ladder of actual operation]

Cautions when Using Nesting Architecture

(1) Nesting can be used up to 15 times (N0 to N14)

When using nesting, nests should be inserted from the lower to higher nesting number (N) with the MC instruction, and from the higher to the lower order with the MCR instruction. If this order is reversed, there will be no nesting architecture, and the safety CPU module will not be capable of performing correct operations.
For example, if nesting is designated in the order N1 to N0 by the MC instruction, and also designated in the N1 to N0 order by the MCR instruction, the vertical bus will intersect and a correct master control ladder will not be produced.
$\left[\begin{array}{l}\text { Ladder displayed in the GX Developer } \\ \text { ladder mode }\end{array}\right] \quad$ [Ladder of actual operation]

(2) If the nesting architecture results in MCR instructions concentrated in one location, all master controls can be terminated by use of just the lowest nesting number (N).

5.5 Termination Instruction

5.5.1 End sequence program (END)

Function

(1) The termination of a sequence program is indicated.

Execution of the END instruction will cause the safety CPU module to terminate the program that was being executed.

(2) END instruction is automatically set by the GX Developer during programming.

O Operation Error

(1) There are no operation errors associated with the END instruction.

5.6 Other Instructions

5.6.1 No-operation (NOP, NOPLF, PAGE n)

Function

NOP

(1) This is a no operation instruction that has no impact on any operations up to that point.
(2) NOP instruction is used to insert space for debugging a sequence program.

NOPLF

(1) This is a no operation instruction that has no impact on any operations up to that point.
(2) NOPLF instruction is used to make a page break at a desired position when printing out from the GX Developer.

- A page break will be inserted between ladder blocks with the presence of the NOPLF instruction.
- The ladder cannot be displayed correctly if an NOPLF instruction is inserted in the midst of a ladder block.
Do not insert an NOPLF instruction in the midst of a ladder block.
(3) For the print out operation by the GX Developer, refer to the GX Developer Operating Manual.

PAGE n

(1) This is a no operation instruction that has no impact on any operations up to that point.
(2) No processing is performed at the GX Developer with this instruction.

O Operation Error

(1) There are no errors associated with the NOP, NOPLF, or PAGE instructions.

Program Example

NOP

(1) Contact closed......... Deletes AND or ANI instruction.
[Ladder Mode]
Before change

After change

(2) Contact closed......... LD, LDI changed to NOP (Note carefully that changing the LD and
LDI instructions to NOP completely changes the nature of the ladder.)
[Ladder Mode]
Before change

After change

[Ladder Mode]

Before change

NOPLF

[Ladder Mode]

- Printing the ladder will result in the following:

PAGE n

[Ladder Mode]

6
 BASIC INSTRUCTIONS

Category	Processing Details	Reference section
Comparison operation instruction	Compares data to data	6.1
Arithmetic operation instruction	Adds, subtracts, multiplies, divides, increments, or decrements data with other data	6.2
Data conversion instructions	Converts data types	6.3
Data transfer instruction	Transmits designated data	6.4

```
=, <>, >, <=, <, >=
```


6.1 Comparison Operation Instruction

6.1.1 BIN 16-bit data comparisons (= , <> , >, <= , <, >=)

(51), (32) : Data for comparison or start number of the devices where the data for comparison is stored (BIN 16 bits)

Set Data	Internal Devices		Constants K, H	Others
	Bit	Word		-
(S1)	\bigcirc		\bigcirc	-
(S2)		\bigcirc		-

Function

(1) Treats BIN 16-bit data from device designated by (51) and BIN 16-bit data from device designated by (2) as an a normally-open contact, and performs comparison operation.
(2) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbol in \square	Condition	Comparison Operation Result	Instruction Symbol in \square	Condition	Comparison Operation Result
$=$	(32) $=$ (51)	Continuity	$=$	(31) \neq (32)	Non-continuity
< >	(31) \neq (52)		< >	(52) $=$ (51)	
>	(51) $>$ (52)		>	(31) \leqq (32)	
<=	(51) \leqq (32)		<=	(51) $>$ (52)	
<	(51) < (52)		<	(31) \geqq (32)	
>=	(51) \geqq (52)		>=	(51) $<$ (52)	

(3) When (51) and (32) are assigned by a hexadecimal constant and the numerical value (8 to F) whose most significant bit (b15) is "1" is designated as a constant, the value is considered as a negative BIN value in comparison operation.

Operation Error

(1) There are no operation errors associated with the $=,<>,>,<=,<$ or $>=$ instructions.

\triangle Program Example

(1) The following program compares the data at X 0 to XF with the data at D 3 , and turns Y 33 ON if the data is identical.
[Ladder Mode]

(2) The following program compares BIN value K100 to the data at D3, and establishes continuity if the data in D3 is something other than 100.
[Ladder Mode]

(3) The following program compares the BIN value 100 with the data in X 0 to XF , and establishes continuity if the D3 data is less than 100.
[Ladder Mode]

(4) The following program compares the data in D0 and D3, and if the data in D0 is equal to or less than the data in D3, establishes continuity.
[Ladder Mode]

$$
D=, D<>, D>, D<=, D<, D>=
$$

6.1.2 BIN 32-bit data comparisons ($D=, D<>, D>, D<=, D<, D>=)$

(31), (32) : Data for comparison or start number of the devices where the data for comparison is stored (BIN 32 bits)

Set Data	Internal Devices		Constants	Others
	Word			
(1)				-
(52)				-

Function

(1) Treats BIN 32-bit data from device designated by (31) and BIN 32-bit data from device designated by (2) as an a normally-open contact, and performs comparison operation.
(2) The results of the comparison operations for the individual instructions are as follows:

Instruction Symbol in	Condition	Comparison Operation Result	Instruction Symbol in \square	Condition	Comparison Operation Result
D =	(32) $=$ (51)	Continuity	D =	(31) \neq (52)	Non-continuity
D <>	(51) \neq (52)		D <>	(32) $=$ (51)	
D >	(51) $>$ (52)		D >	(51) \leqq (52)	
D <=	(51) \leqq (52)		D <=	(51) $>$ (52)	
D <	(31) < (52)		D <	(51) \geqq (52)	
D >=	(51) \geqq (52)		D >=	(51) $<$ (52)	

(3) When (51) and (52) are assigned by a hexadecimal constant and the numerical value (8 to F) whose most significant bit (b31) is "1" is designated as a constant, the value is considered as a negative BIN value in comparison operation.
(4) Data used for comparison should be designated by a 32-bit instruction (DMOV instruction, etc.).
If designation is made with a 16-bit instruction (MOV instruction, etc.), comparisons of large and small values cannot be performed correctly.

Operation Error

(1) There are no operation errors associated with the $\mathrm{D}=, \mathrm{D}<>, \mathrm{D}>, \mathrm{D}<=, \mathrm{D}<$ or $\mathrm{D}>=$ instruction.

\square Program Example

(1) The following program compares the data at X0 to X1F with the data at D3 and D4, and turns Y33 ON, if the data at X0 to X1F and the data at D3 and D4 match.
[Ladder Mode]

(2) The following program compares BIN value K38000 to the data at D3, and D4, and establishes continuity if the data in D3 and D4 is something other than 38000.
[Ladder Mode]

(3) The following program compares BIN value $\mathrm{K}-80000$ to the data at D3 and D4, and establishes continuity if the data in D3 and D4 is less than -80000 .
[Ladder Mode]

(4) The following program compares the data in D0 and D1 with the data in D3 and D4, and establishes continuity if the data in D0 and D1 is equal to or less than the data in D3 and D4.
[Ladder Mode]

6.2 Arithmetic Operation Instructions

6.2.1 BIN 16-bit addition and subtraction operations (+(P), -(P))

1 When two data are set $($ (D) + (S) \rightarrow (D), (D) - (S) \rightarrow (D)

(S) : Data for additing/subtracting or start number of the devices where the data for additing/subtracting is stored (BIN 16 bits)
(D) :Start number of the devices where the data to be added to/subtracted from is stored (BIN 16 bits)

Set Data	Internal Devices		Constants	Others
	Kit	Word	H	
(S)	\bigcirc		\bigcirc	-
(D)	\bigcirc			-

is Function

$+$
(1) Adds 16-bit BIN data designated by (D) to 16-bit BIN data designated by © and stores the result of the addition at the device designated by (D).

(2) Values for (S) and (D) can be designated between - 32768 and 32767 (BIN, 16 bits).
(3) The judgment of whether data is positive or negative is made by the most significant bit (b15).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

$\begin{gathered} \text { K32767 } \\ \text { (H7FFF) } \end{gathered}$	$\begin{aligned} & +\mathrm{K} 2 \\ & (\mathrm{H} 0002) \end{aligned}$	$\begin{gathered} \mathrm{K}-32767 \\ (\mathrm{H} 8001) \end{gathered}$	Since b15 is "1", the judgment is a negative value.
$\begin{aligned} & \text { K-32768 } \\ & (\mathrm{H} 8000) \end{aligned}$	$+\mathrm{K}-2$ (HFFFE)	$\begin{aligned} & \text { K32766… } \\ & \text { (H7FFE) } \end{aligned}$	Since b15 is " 0 ", the judgment is a positive value.

(1) Subtracts 16-bit BIN data designated by (D) from 16-bit BIN data designated by © and stores the result of the subtraction at the device designated by (D).

(2) Values for (S) and (D) can be designated between - 32768 and 32767 (BIN, 16 bits).
(3) The judgment of whether data is positive or negative is made by the most significant bit (b15).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

$\begin{aligned} & \text { K-32768 } \\ & (\mathrm{H} 8000) \end{aligned}$	$\left.-\mathrm{K}_{(} \mathrm{H} 0002\right)$	$\begin{aligned} & \text { K32766 } \\ & \text { (H7FFE) } \end{aligned}$	Since b15 is " 0 ", the judgment is a positive value.
$\begin{gathered} \text { K32767 } \\ \text { (H7FFF) } \end{gathered}$	$\begin{aligned} & -\mathrm{K}-2 \\ & \quad \text { (HFFFE) } \end{aligned}$	$\begin{aligned} & K-32767 \\ & (\mathrm{H} 8001) \end{aligned}$	Since b15 is "1", the judgment is a negative value.

O Operation Error

(1) There are no operation errors associated with the $+(P)$ or $-(P)$ instructions.

```
When three data are set ((1) + (52) -> (D), (51) - (52) }->\mathrm{ (D) )
```


(51) : Data to be added to/subtracted from or start number of the devices where the data to be added to/ subtracted from is stored (BIN 16 bits)
(22) : Data for additing/subtracting or start number of the devices where the data for additing/subtracting is stored (BIN 16 bits)
(D) : Start number of the devices where the addition/subtraction operation result will be stored (BIN 16 bits)

Set Data	Internal Devices		Constants K, H	Others
	Bit	Word		
(51)	\bigcirc	\bigcirc	-	
(32	\bigcirc	\bigcirc	-	
(D)	\bigcirc	-	-	

Function

$+$
(1) Adds 16-bit BIN data designated by (31) to 16-bit BIN data designated by (®2) and stores the result of the addition at the device designated by (D).

(2) Values for (51), (52) and (D) can be designated between -32768 and 32767 (BIN, 16 bits).
(3) The judgment of whether data is positive or negative is made by the most significant bit (b15).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

$\begin{gathered} \text { K32767 } \\ \text { (H7FFF) } \end{gathered}$	$\begin{aligned} & +\mathrm{K} 2 \\ & (\mathrm{H} 0002) \end{aligned}$	$\rightarrow \underset{(\mathrm{H} 8001)}{\mathrm{K}-32767}$	Since b15 is " 1 ", the judgment is a negative value.
$\begin{aligned} & \text { K-32768 } \\ & (\mathrm{H} 8000) \end{aligned}$	$+K-2$ (HFFFE)	$\begin{aligned} & \text { K32766.. } \\ & \text { (H7FFE) } \end{aligned}$	Since b15 is " 0 ", the judgment is a positive value.

(1) Subtracts 16-bit BIN data designated by (51) from 16-bit BIN data designated by (22) and stores the result of the subtraction at the device designated by (D).

(2) Values for (51), (22) and (D) can be designated between - 32768 and 32767 (BIN, 16 bits).
(3) The judgment of whether data is positive or negative is made by the most significant bit (b15).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

Operation Error

(1) There are no operation errors associated with the $+(P)$ or $-(P)$ instructions.

\square Program Example

(1) The following program adds, when X 5 is turned $O N$, the data at $D 3$ and $D 0$ and outputs the operation result at Y38 to Y3F.
[Ladder Mode]

(2) The following program outputs the difference between the set value for timer T3 and its present value in BCD to Y40 to Y53.
[Ladder Mode]

6.2.2 BIN 32-bit addition and subtraction operations (D+(P), D-(P))

1 When two data are set $(($ (D) +1 , © $)+($ (S) +1 , © $) \rightarrow($ (D) +1 , (D) $)$,

$$
(\text { (D) }+1, \text { (D) })-(\text { (S) }+1, \text { (S) }) \rightarrow((D)+1,(\square))
$$

(S) : Data for additing/subtracting or start number of the devices where the data for additing/subtracting is stored (BIN 32 bits)
(D) : Start number of the devices where the data to be added to/subtracted from is stored (BIN 32 bits)

Set Data	Internal Devices		Constants	Others
	Kit	Word	H	
(S)				
(D)	\bigcirc	-	-	

Function

D+
(1) Adds 32-bit BIN data designated by © to 32-bit BIN data designated by © , and stores the result of the addition at the device designated by (D).

(2) The values for (s) and (D) can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
(3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

K2147483647 (H7FFFFFFF)	$\underset{(\mathrm{H} 00000002)}{+\mathrm{K} 2} \underset{(\mathrm{H} 80000001)}{\mathrm{K}-2147483647}$	Since b31 is "1", the judgment is a negative value.
$\begin{aligned} & \text { K- } 2147483648 \\ & (\mathrm{H} 80000000) \end{aligned}$	$\begin{gathered} +\mathrm{K}-2 \longrightarrow \mathrm{~K} 2147483646 . \\ \text { (HFFFFFFFE) } \end{gathered}$	Since b31 value is " 0 ", the judgment is a positive value.

D

(1) Subtracts 32-bit BIN data designated by (D) from 32-bit BIN data designated by © and stores the result of the subtraction at the device designated by (D).

(2) The values for (S) and (D) can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
(3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

$\begin{aligned} & K-2147483648 \\ & (H 80000000) \end{aligned}$	$\begin{aligned} & \text { K2 } \\ & (\mathrm{H} 00000002) \end{aligned}$	$\begin{aligned} & \text { K2147483646 } \\ & \text { (H7FFFFFFE) } \end{aligned}$	Since b31 is "0", the judgment is a positive value.
K2147483647 (H 7 FFFFFFF)	$\begin{aligned} & -\mathrm{K}-2 \\ & \text { (HFFFFFFFE) } \end{aligned}$	$\rightarrow \underset{(\mathrm{H} 80000001)}{\mathrm{K}-2147483647}$	Since b31 is "1", the judgment is a negative value.

0 Operation Error

(1) There are no operation errors associated with the $+(P)$ or $-(P)$ instructions.

2 When three data are set $(($ (S1) +1 , (S1) $)+($ (S2 $)+1$, (S2) $) \rightarrow($ (D) +1 , (D) $)$,

$$
(\text { (S1) }+1, \text { (ㄱ1) })-(\text { (S2 }+1, \text { (S2) }) \rightarrow(\text { (D) }+1 \text {, (D) }))
$$

(S1) : Data to be added to/subtracted from or start number of the devices where the data to be added to/subtracted from is stored (BIN 32 bits)
(52) : Data for additing/subtracting or start number of the devices where the data for additing/subtracting is stored (BIN 32 bits)
(D) : Start number of the devices where the addition/subtraction operation result will be stored (BIN 32 bits)

$\begin{aligned} & \text { Set } \\ & \text { Data } \end{aligned}$	Internal Devices		Constants K, H	Others
	Bit	Word		
(51)	\bigcirc		\bigcirc	-
(2)	\bigcirc		\bigcirc	-
(D)	\bigcirc		-	-

Function

D+

(1) Adds 32-bit BIN data designated by (51) to 32-bit BIN data designated by ©2, and stores the result of the addition at the device designated by (D).

(2) The values for (51), (52) and (D) can be designated at between - 2147483648 and 2147483647 (BIN 32 bits).
(3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

```
K2147483647 +K2 }\longrightarrow\mathrm{ K-2147483647 旃泣ce b31 is "1", the judgment is
(H7FFFFFFF) (H00000002) (H80000001) a negative value.
K-2147483648 +K-2 C K2147483646 \cdots\cdots.Since b31 is "0", the judgment is
(H80000000) (HFFFFFFFE) (H7FFFFFFE) a positive value.
```


D -

(1) Subtracts 32-bit BIN data designated by (51) from 32-bit BIN data designated by (22) and stores the result of the subtraction at the device designated by (D).

(2) The values for (51), (52) and (D) can be designated at between - 2147483648 and 2147483647 (BIN 32 bits).
(3) Judgment of whether the data is positive or negative is made on the basis of the most significant bit (b31).

- 0: Positive
- 1: Negative
(4) The following will happen when an underflow or overflow is generated in an operation result: The carry flag in this case does not go ON.

```
K-2147483648-K2 }\longrightarrow\mathrm{ K2147483646 * ... Since b31 is "0", the judgment is
(H80000000) (H00000002) (H7FFFFFFE) a positive value.
K2147483647 - K-2 }\longrightarrow\textrm{K}-2147483647\cdots\mathrm{ Since b31 is "1", the judgment is
(H7FFFFFFF) (HFFFFFFFE) (H80000001) a negative value.
```


O Operation Error

(1) There are no operation errors associated with the $+(P)$ or $-(P)$ instructions.

\square Program Example

(1) The following program adds 28-bit data from X 10 to X 2 B to the data at D9 and D10 when X 0 goes ON, and outputs the result of the operation to Y 30 to Y 4 B .
[Ladder Mode]

(2) The following program subtracts the data from M0 to M23 from the data at D0 and D1 when XB goes ON, and stores the result at D10 and D11.
[Ladder Mode]

6.2.3 BIN 16-bit multiplication and division operations (* P), /(P))

(51) : Data to be multiplied/divided or start number of the devices where the data to be multiplied/divided is stored (BIN 16 bits)
(52) : Data for multiplying/dividing or start number of the devices where the data for multiplying/dividing is stored (BIN 16 bits)
(D) : Start number of the devices where the multiplication/division operation result will be stored (BIN 32 bits)

Set Data	Internal Devices		Constants	Others
	Bit		Word	K

Function

*

(1) Multiplies BIN 16-bit data designated by (51) and BIN 16-bit data designated by (22), and stores the result in the device designated by (D).

(2) If (D) is a bit device, designation is made from the lower bits.

Example
K1........ Lower 4 bits (b0 to b3)
K4........ Lower 16 bits (b0 to b15)
K8........ 32 bits (b0 to b31)
(3) Values for (51) and (52) can be designated between -32768 and 32767 (BIN, 16 bits).
(4) Judgments whether (51), (32), and (D) are positive or negative are made on the basis of the most significant bit (b15 for (S1), and (S2), for (D) and b31).

- 0: Positive
- 1: Negative

I
(1) Divides BIN 16-bit data designated by (3) and BIN 16-bit data designated by (2, and stores the result in the device designated by (D).

(2) If a word device has been used, the result of the division operation is stored as 32 bits, and both the quotient and remainder are stored; if a bit device has been used, 16 bits are used and only the quotient is stored.
Quotient: Stored at the lower 16 bits
Remainder: Stored at the upper 16 bits (Stored only when using a word device)
(3) Values for (5i) and (22) can be designated between -32768 and 32767 (BIN, 16 bits).
(4) Judgment whether values for (31), (32), (D) and (D) +1 are positive or negative is made on the basis of the most significant bit (b15). (Sign is attached to both the quotient and remainder.)

- 0: Positive
- 1: Negative

O Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SMO) turns ON, and the corresponding error code is stored into SDO.

- Attempt to divide (22 by 0 .
(Error code: 4100)

Program Example

(1) The following program divides " 5678 " by " 1234 " when X 5 goes ON , and stores the result at D3 and D4.
[Ladder Mode]

(2) The following program divides BIN data at X 8 to XF by BIN data at X 10 to X 1 B , and outputs the result of the division operation to Y30 to Y3F.
[Ladder Mode]

(3) The following program divides, when X 3 is turned ON , the data at X 8 to XF by 3.14 and outputs the operation result at Y 30 to Y 3 F .
[Ladder Mode]

6.2.4 BIN 32-bit multiplication and division operations ($\left.D^{*}(P), D /(P)\right)$

(51) : Data to be multiplied/divided or start number of the devices where the data to be multiplied/divided is stored (BIN 32 bits)
(32) : Data for multiplying/dividing or start number of the devices where the data for multiplying/dividing is stored (BIN 32 bits)
(D) : Start number of the devices where the multiplication/division operation result will be stored (BIN 64 bits)

Set Data	Internal Devices		Constants	Others
	Word	H		
(51)	\bigcirc	\bigcirc	-	
(52)	\bigcirc	\bigcirc	-	
(D)	\bigcirc	-	-	

D*

(1) Multiplies BIN 32-bit data designated by (S1) and BIN 32-bit data designated by (22), and stores the result in the device designated by (D).

(2) If (D) is a bit device, only the lower 32 bits of the multiplication result will be considered, and the upper 32 bits cannot be designated.

Example
K1........ Lower 4 bits (b0 to b3)
K4....... Lower 16 bits (b0 to b15)
K8........ Lower 32 bits (b0 to b31)
If the upper 32 bits of the bit device are required for the result of the multiplication operation, first temporarily store the data in a word device, then transfer the word device data to the bit device by designating $(+2)$ and $(D+3)$ data.
(3) The values for (51) and (52) can be designated at between -2147483648 and 2147483647 (BIN 32 bits).
(4) Judgments whether (S1), (32), and (D) are positive or negative are made on the basis of the most significant bit (b31 for (51) and (32), b63 for (D)).

- 0: Positive
- 1: Negative

D/

(1) Divides BIN 32-bit data designated by (31) and BIN 32-bit data designated by (s2), and stores the result in the device designated by (D).

(51) +1 (51)		(32) +1 (s2)	(D) +1 (D)	(D) +3 (D) +2
b31-b16b15--b0		b31-b16b15--b0	b31-b16b15--b0	b31-b16b15--b0
567890 (BIN)	\div	123456 (BIN)	4 (BIN)	74066 (BIN)

(2) With a word device, the division operation result is stored in 64 bits and both the quotient and remainder are stored. With a bit device, only the quotient is stored as the operation result in 32 bits.

Quotient: Stored at the lower 32 bits
Remainder: Stored at the upper 32 bits (Stored only when using a word device)
(3) The values for (51) and (52) can be designated at between - 2147483648 and 2147483647 (BIN 32 bits).
(4) Judgment whether values for (51), (32), (D) and (D) +2 are positive or negative is made on the basis of the most significant bit (b31).
(Sign is attached to both the quotient and remainder)

- 0: Positive
- 1: Negative

0 Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SMO) turns ON, and the corresponding error code is stored into SD0.

- Attempt to divide (82) by 0 .
(Error code: 4100)

\triangle Program Example

(1) The following program divides the BIN data at D7 and D8 by the BIN data at D18 and D19 when X5 is ON, and stores the result at D1 to D4.
[Ladder Mode]

(2) The following program outputs the value resulting when the data at $X 8$ to $X F$ is multiplied by 3.14 to Y 30 to Y 3 F when X 3 is ON .
[Ladder Mode]

6.2.5 Incrementing and decrementing 16-bit BIN data (INC(P), DEC(P))

(D) : Start number of devices for INC (+1)/DEC (-1) operation (BIN 16 bits)

Set Data	Internal Devices		Constants	Others	
	Bit	Word		-	
(D)	\bigcirc		-		

Function

INC

(1) Adds 1 to the device designated by (D) (16-bit data).

(2) When INC/INCP operation is executed for the device designated by © , whose content is 32767 , the value -32768 is stored at the device designated by (D).

DEC

(1) Subtracts 1 from the device designated by (D) (16-bit data).

(2) When DEC/DECP operation is executed for the device designated by (D), whose content is -32768 , the value 32767 is stored at the device designated by (D).

O Operation Error

(1) There are no operation errors associated with the INC(P)/DEC(P) instruction.

\square Program Example

(1) The following program outputs the present value at the counter C 0 to C 20 to the area Y 30 to Y3F in BCD, every time X8 is turned ON. (When present value is less than 9999) [Ladder Mode]

(2) The following is a down counter program.
[Ladder Mode]

6.2.6 Incrementing and decrementing 32-bit BIN data (DINC(P), DDEC(P))

(D) : Start number of devices for DINC(+1) or DDEC(-1) operation (BIN 32 bits)

Set Data	Internal Devices		Constants	Others	
	Bit	Word		-	
(D)	\bigcirc				

Function

DINC

(1) Adds 1 to the device designated by (D) (32-bit data).

(2) When DINC/DINCP operation is executed for the device designated by (D), whose content is 2147483647 , the value -2147483648 is stored at the device designated by (D).

DDEC

(1) Subtracts 1 from the device designated by (D) (32-bit data).

(2) When DDEC/DDECP operation is executed for the device designated by © , whose content is 0 , the value -1 is stored at the device designated by (D).

O Operation Error

(1) There are no operation errors associated with DINC(P) or DDEC(P).

\square Program Example

(1) The following program adds 1 to the data at D 0 and D 1 when X 0 is ON .
[Ladder Mode]

(2) The following program adds 1 to the data set at X 10 to X 27 when X 0 goes ON , and stores the result at D3 and D4.
[Ladder Mode]

(3) The following program subtracts 1 from the data at D0 and D1 when X 0 goes ON.
[Ladder Mode]

(4) The following program subtracts 1 from the data set at X 10 to X 27 when X 0 goes ON , and stores the result at D3 and D4.
[Ladder Mode]

6.3 Data Conversion Instructions

6.3.1 Conversion from BIN data to 4-digit and 8-digit BCD ($\mathrm{BCD}(\mathrm{P})$, $\mathrm{DBCD}(\mathrm{P}))$

(5) : BIN data or start number of the devices where the BIN data is stored (BIN 16/32 bits)
(D) : Start number of the devices where BCD data will be stored (BCD 4/8 digits)

Set Data	Internal Devices		Constants	Others
	Kit	Word	H	
(S	\bigcirc			-
(D)	\bigcirc	-	-	

5 Function

BCD

(1) Converts BIN data (0 to 9999) at the device designated by (5) to BCD data, and stores it at the device designated by (D).

DBCD

(1) Converts BIN data (0 to 99999999) at the device designated by (s) to BCD data, and stores it at the device designated by (D).
(S) +1 (Upper 16 digits)
(S) (Lower 16 digits)

(S) BIN 99999999 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | 1

Always filled with 0 (Upper 5 digits) ζ BCD conversion

(D) +1 (Upper 4 digits)
(D) (Lower 4 digits)

Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SMO) turns ON, and the corresponding error code is stored into SD0.

- The data of (5) is other than 0 to 9999 at BCD instruction.
(Error code: 4100)
- The data of (5) or (5) +1 is other thean 0 to 99999999 at DBCD instruction.
(Error code: 4100)

\triangle Program Example

(1) The following program outputs the present value of C 4 from Y 20 to Y 2 F to the BCD display device.

7-segment indicator
[Ladder Mode]

(2) The following program outputs 32-bit data from D0 to D1 to Y40 to Y67.

7-segment indicator
[Ladder Mode]

6.3.2 Conversion from BCD 4-digit and 8-digit data to BIN data (BIN(P), DBIN(P))

(5) : BCD data or start number of the devices where the BCD data is stored (BCD $4 / 8$ digits)
(D) : Start number of the devices where BIN data will be stored (BIN 16/32 bits)

Set Data	Internal Devices		Constants	Others
	Word			
(S	\bigcirc			-
(D)	\bigcirc	-	-	

Function

BIN

(1) Converts BCD data (0 to 9999) at device designated by (5) to BIN data, and stores at the device designated by (D).

DBIN

(1) Converts BCD data (0 to 99999999) at device designated by (5) to BIN data, and stores at the device designated by (D).

Always filled with 0 .

O Operation Error

(1) In the following cases, an operation error occurs, the error flag (SMO) turns ON, an error code is stored in SDO, and the instruction is not executed.

- When values other than 0 to 9 are designated to any digits of () .(Error code: 4100)

In this regard, however, the error above can be suppressed by turning SM722 ON. However, the instruction is not executed regardless of whether SM722 is turned ON or OFF if the designated value is out of the available range.
For the BINP/DBINP instruction, the next operation will not be performed until the command (execution condition) is turned from OFF to ON regardless of the presence/absence of an error.

Program Example

(1) The following program converts the BCD data at X 10 to X 1 B to BIN when X 8 is ON , and stores it at D8.

[Ladder Mode]

(2) The following program converts the BCD data at X 10 to X 37 to BIN when X 8 is ON , and stores it at D0 and D1.
(Addition of the BIN data converted from BCD at X20 to X37 and the BIN data converted from BCD at X10 to X1F)

[Ladder Mode]

If the data set at X 10 to X 37 is a BCD value which exceeds 2147483647 , the value at D0 and D1 will be a negative value, because it exceeds the range of numerical values that can be handled by a 32-bit device.

6.3.3 Complement of 2 of BIN 16- and 32-bit data (sign reversal) (NEG(P), DNEG(P))

(D) : Start number of the devices where the data for which complement of 2 is performed is stored (BIN $16 / 32$ bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		
(D)	\bigcirc		-	

Function

NEG

(1) Reverses the sign of the 16-bit device designated by (D) and stores at the device designated by (D).

DNEG

(1) Reverses the sign of the 32-bit device designated by (D) and stores at the device designated by (D).

(2) Used when reversing positive and negative signs.

Operation Error

(1) There are no operation errors associated with the NEG(P) or DNEG(P) instructions.

\triangle Program Example

(1) The following program calculates a total for the data at D10 through D20 when XA goes ON, and seeks an absolute value if the result is negative.
[Ladder Mode]

6.4 Data Transfer Instructions

6.4.1 16-bit and 32-bit data transfers (MOV(P), DMOV(P))

(s) : Data to be transferred or the number of the device where the data to be transferred is stored (BIN 16/32 bits)
(D) : Number of the device where the data will be transferred (BIN 16/32 bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word		
(S)	\bigcirc			-
(D)				-

Function

MOV

(1) Transfers the 16-bit data from the device designated by (s) to the device designated by (D).

Before transfer
(S)

Transfer
After transfer
(D)

DMOV
(1) Transfers 32-bit data at the device designated by © to the device designated by (D).
(S) +1
(S)

Before
transfer

After

O Operation Error

(1) There are no operation errors associated with the MOV(P) or DMOV(P) instructions.

\square Program Example

(1) The following program stores input data from X 0 to XB at D 8 .
[Ladder Mode]

(2) The following program stores the constant K155 at D8 when X8 goes ON. [Ladder Mode]

(3) The following program stores the data from D0 and D1 at D7 and D8.
[Ladder Mode]

(4) The following program stores the data from X0 to X1F at D0 and D1. [Ladder Mode]

6.4.2 16-bit and 32-bit negation transfers (CML(P), $\operatorname{DCML}(P)$)

(S) : Data to be reversed or the number of the device where data to be reversed is stored (BIN $16 / 32$ bits)
(D): Number of the device where the reversing result will be stored (BIN 16/32 bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word	H	
(S	\bigcirc			
(D)	\bigcirc		-	-

Function

CML

(1) Inverts 16-bit data designated by (s) bit by bit, and transfers the result to the device designated by (D).

Before execution

(S) | b15- | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |

After execution

DCML
(1) Inverts 32-bit data designated by (S) bit by bit, and transfers the result to the device designated by © .

Operation Error

(1) There are no operation errors associated with the $\mathrm{CML}(\mathrm{P})$ or $\mathrm{DCML}(\mathrm{P})$ instructions.

\square Program Example

(1) The following program inverts the data from X 0 to X 7 , and transfers result to D 0 .
[Ladder Mode]

[Operation]

When "Number of bits of $(S)<$ Number of bits of (D)"

(2) The following program inverts the data at M16 to M23, and transfers the result to Y40 to Y47.
[Ladder Mode]

[Operation]
When "Number of bits of $(S)<$ Number of bits of (D)"

(3) The following program inverts the data at D0 when X 3 is ON, and stores the result at D16. [Ladder Mode]

[Operation]

(4) The following program inverts the data at X0 to X1F, and transfers results to D0 and D1. [Ladder Mode]

[Operation]

When "Number of bits of (S) < Number of bits of (D)"

(5) The following program inverts the data at M16 to M35, and transfers it to Y40 to Y63. [Ladder Mode]

[Operation]

When "Number of bits of (S) < Number of bits of (D)"

(6) Inverts the data at D0 and D1 when X3 is ON, and stores the result at D16 and D17. [Ladder Mode]

[Operation]

$$
\begin{aligned}
& \text { b31-------b24-----b8b7------ b0 }
\end{aligned}
$$

6.4.3 Block 16-bit data transfers (BMOV(P))

(S): Start number of the devices where the data to be transferred is stored (BIN 16 bits)
(D): Start number of the devices of transfer destination (BIN 16 bits)
n : Number of data to be transferred (BIN 16 bits)

Set Data	Internal Devices		ConstantsK, H	Others
	Bit	Word		
(S)	\bigcirc		-	-
(D)	\bigcirc		-	-
n	\bigcirc		\bigcirc	-

Function

(1) Transfers in batch 16-bit data n-points from the device designated by ©s to location n-points from the device designated by (D).

(2) Transfers can be accomplished even in cases where there is an overlap between the source and destination device.

In the case of transmission to the smaller device number, transmission is from (s); for transmission to the larger device number, transmission is from © $+(n-1)$.
(3) When © (3) is a word device and () is a bit device, the target for the word device is the number of bits designated by the bit device digit specification.
If (D) is designated for K1Y30, the lower four bits of the word device designated by © are the target.

(4) If bit device has been designated for (S) and (D), then (S) and (D) should always have the same number of digits.

O Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SMO) turns ON, and the corresponding error code is stored into SD0.

- The device range of n-points from (S) or (D) exceeds the corresponding device range.
(Error code: 4101)

\triangle Program Example

(1) The following program outputs the lower 4 bits of data at D66 to D69 to Y30 to Y3F in 4-point units.
[Ladder Mode]

[Operation]

(2) The following program outputs the data at X20 to X2F to D100 to D103 in 4-point units. [Ladder Mode]

[Operation]

6.4.4 Identical 16-bit data block transfers (FMOV(P))

(s) : Data to be transferred or the start number of the devices where the data to be transferred is stored (BIN 16 bits)
(D) : Start number of the devices of transfer destination (BIN 16 bits)
n : Number of data to be transferred (BIN 16 bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word	K	
S	\bigcirc		\bigcirc	-
(D)	\bigcirc	-	-	
n		\bigcirc	\bigcirc	-

Function

(1) Transfers 16-bit data at the device designated by © to n points of devices starting from the one designated by (D).

(2) When () is a word device and (D) is a bit device, the target for the word device (s) is the number of bits designated by the bit device digit specification.
If ($)$ is designated for K1Y30, the lower 4 bits of the word device designated by © are the target.
(S)

b15-------- b4b3b2b1b0	
D100	1)0111

(3) If bit device has been designated for (S) and (D), then (S) and (D) should always have the same number of digits.

O Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SMO) turns ON, and the corresponding error code is stored into SD0.

- The device range of n-points from (D) or exceeds the corresponding device range.
(Error code: 4101)

\triangle Program Example

(1) The following program outputs the lower 4 bits of D0 when XA goes ON to Y 10 to Y 23 in 4-bit units.
[Ladder Mode]

[Operation]

(2) The following program outputs the data at X20 through X23 to D100 through D103 when XA goes ON.
[Ladder Mode]

[Operation]

Filled with 0.

MEMO
\qquad

APPLICATION INSTRUCTIONS

Category	Processing Details	Reference section
Logical operation instructions	Logical operations such as logical sum, logical product, etc.	7.1

7.1 Logical Operation Instructions

(1) The logical operation instructions perform logical sum, logical product or other logical operations in 1-bit units.

Category	Processing Details	Formula for Operation	Example		
			A	B	Y
Logical product (AND)	Becomes 1 only when both input A and input B are 1; otherwise, is 0	$Y=A * B$	0	0	0
			0	1	0
			1	0	0
			1	1	1
Logical sum (OR)	Becomes 0 only when both input A and input B are 0 ; otherwise, is 1	$Y=A+B$	0	0	0
			0	1	1
			1	0	1
			1	1	1
Exclusive OR (XOR)	Becomes 0 if input A and input B are equal; otherwise, is 1	$Y=\bar{A} * B+A * \bar{B}$	0	0	0
			0	1	1
			1	0	1
			1	1	0
NON exclusive logical sum (XNR)	Becomes 1 if input A and input B are equal; otherwise, is 0	$Y=(\bar{A}+B)(A+\bar{B})$	0	0	1
			0	1	0
			1	0	0
			1	1	1

7.1.1 Logical products with 16-bit and 32-bit data (WAND (P), DAND (P))

(S) : Data for a logical product operation or the start number of the devices where the data is stored (BIN 16/32 bits)
(D) : Start number of the devices where the logical product operation result will be stored (BIN $16 / 32$ bits)

Set Data	Internal Devices		Constants K, H	Others
	Bit	Word		
(S)	\bigcirc			-
(D)	\bigcirc	-	-	

$\underset{\sim}{2}$ Function

WAND

(1) A logical product operation is conducted for each bit of the 16-bit data of the device designated at (D) and the 16-bit data of the device designated at (S), and the results are stored in the device designated at (D).

(2) When bit devices are designated, the bit devices below the points designated as digits are regarded as " 0 " in the operation. (See Program Example (2))
DAND
(1) Conducts a logical product operation on each bit of the 32-bit data for the device designated by (D) and the 32-bit data for the device designated by (S), and stores the results at the device designated by (D).
(D) +1
(D)

(D) +1
(D)
$\underbrace{+1}$

(2) When bit devices are designated, the bit devices below the points designated as digits are regarded as "0" in the operation. (See Program Example (2))

Operation Error

(1) There are no operation errors associated with the WAND (P) or DAND (P) instruction.

\triangle Program Example

(1) The following program masks the digit in the 10 s place of the 4 -digit BCD value at D10 (second digit from the end) to 0 when XA is turned ON.
[Ladder Mode]

[Operation]

(2) The following program performs a logical product operation on the data at D99 and D100, and the 24-bit data between X30 and X47 when X8 is ON, and stores the results at D99 and D100.
[Ladder Mode]

[Operation]


```
When three data are set (S1) \ (52) }->\mathrm{ (D), (S1) + 1, (S1) ) \ (S2) +1, (52) ) }->(\mathrm{ (D) +1, (D) ))
```


(51), (22) : Data for a logical product operation or the start number of the devices where the data is stored (BIN 16/32 bits)
(D): Start number of the devices where the logical product operation result will be stored (BIN $16 / 32$ bits)

Set Data	Internal Devices		ConstantsK, H	Others
	Bit	Word		
(51)	\bigcirc		\bigcirc	-
(52)	\bigcirc		\bigcirc	-
(D)	\bigcirc		-	-

\mathcal{Y} Function

WAND

(1) A logical product operation is conducted for each bit of the 16-bit data of the device designated at (S1) and the 16-bit data of the device designated at (s2), and the results are stored in the device designated at (D).

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as "0" in the operation. (See Program Examples (1) and (2))
DAND
(1) Conducts a logical product operation on each bit of the 32-bit data for the device designated by (51) and the 32-bit data for the device designated by (32), and stores the results at the device designated by (D).

(D) +1
(D)

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as "0" in the operation. (See Program Example (3))

O Operation Error

(1) There are no operation errors associated with the WAND (P) or DAND (P) instruction.

\triangle Program Example

(1) The following program performs a logical product operation on the data from X 10 to X 1 B and the data at D33 when XA is ON, and stores the results at D40.
[Ladder Mode]

[Operation]

(2) The following program performs a logical product operation on the data at D10 and at D20 when X1C is ON, and stores the results from M0 to M11.
[Ladder Mode]

[Operation]

Not changed.
(3) The following program masks the digit in the hundred-thousands place of the 8-digit BCD value at D10 and D11 (sixth digit from the end) to 0 when XA is ON, and outputs the results to from Y10 to Y2B.
[Ladder Mode]

[Operation]

7.1.2 Logical sums of 16 -bit and 32 -bit data (WOR(P), $\operatorname{DOR}(P)$)

1 When two data are set $($ (D) \forall (S) \rightarrow (D),$($ (D) +1 , (D) $) \forall($ (S +1 , © $) \rightarrow($ (D) +1 , © $))$

(S) : Data for a logical sum operation or start number of the devices where the data is stored (BIN 16/32 bits)
(D) : Start number of the devices where the logical sum operation result will be stored (BIN 16/32 bits)

Set Data	Internal Devices		Constants	Others
	Kit	Word	K	
(S)	\bigcirc		\bigcirc	-
(D)	\bigcirc		-	-

Function

WOR

(1) Conducts a logical sum operation on each bit of the 16-bit data of the device designated by (D) and the 16-bit data of the device designated by (S), and stores the results at the device designated by (D).
(D)

(S)

(D)

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

DOR

(1) Conducts a logical sum operation on each bit of the 32-bit data of the device designated by (D) and the 32-bit data of the device designated by (S), and stores the results at the device designated by (D).

(D) +1
(D)

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

Operation Error

(1) There are no operation errors associated with the $\mathrm{WOR}(\mathrm{P})$ or $\mathrm{DOR}(\mathrm{P})$ instructions.

\triangle Program Example

(1) The following program performs a logical sum operation on the data at D10 and D20 when XA goes ON, and stores the results at D10.
[Ladder Mode]

[Operation]

(2) The following program performs a logical sum operation on the 32-bit data from X0 to X1F, and on the hexadecimal value $\mathrm{FF} 00 \mathrm{FF} 00_{\mathrm{H}}$ when XB goes ON, and stores the results at D66 and D67.
[Ladder Mode]

[Operation]

(D) +1
(D)

2 When three data are set $($ (51) \forall (S2) \rightarrow (D),$($ (S1) +1 , (S7) $) \forall($ (S2) +1 , (32) $) \rightarrow($ (D) +1 , (D) $)$

(51), (32) : Data for a logical sum operation or start number of the devices where the data is stored (BIN $16 / 32$ bits)
(D) : Start number of the devices where the logical sum operation result will be stored (BIN 16/32 bits)

Set Data	Internal Devices		Constants K, H	Others
	Bit	Word		
(51)	\bigcirc		\bigcirc	-
(52)	\bigcirc		\bigcirc	-
(D)	\bigcirc		-	-

Function

WOR

(1) Conducts a logical sum operation on each bit of the 16-bit data of the device designated by (51) and the 16-bit data of the device designated by (22), and stores the results at the device designated by (D).

(5)

b15															
0	0	0	0	1	1	0	0	1	1	0	0	0	0	1	1

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation. (See Program Example (1))

DOR

(1) Conducts a logical sum operation on each bit of the 32-bit data of the device designated by (51) and the 32-bit data of the device designated by (22), and stores the results at the device designated by (D).

(D) +1

(2) When bit devices are designated, the bit devices below the points designated as digits are regarded as "0" in the operation. (See Program Example (2))

0 Operation Error

(1) There are no operation errors associated with the WOR(P) or DOR(P) instructions.

\triangle Program Example

(1) The following program performs a logical sum operation on the data from X 10 to X 1 B , and the data at D33, and stores the result at Y30 to Y3B when XA is ON.
[Ladder Mode]

[Operation]

Regarded as 0 . OR

(2) The following program performs a logical sum operation on the 32-bit data at D0 and D1, and the 24-bit data from X20 to X37, and stores the results at D23 and D24 when M8 is ON. [Ladder Mode]

[Operation]

$$
\text { (D) }+1
$$

(D)

7.1.3 16-bit and 32 -bit exclusive OR operations (WXOR(P), DXOR(P))

When two data are set $($ (D) \forall (S) \rightarrow (ㅁ),$($ (D) +1 , © $) \forall($ (S) +1 , (S) $) \rightarrow($ (D) +1 , (D) $)$

(S) : Data for an exclusive OR operation or start number of the devices where the data is stored (BIN $16 / 32$ bits)
(D) : Start number of the devices where the exclusive OR operation result will be stored (BIN 16/32 bits)

Set Data	Internal Devices		ConstantsK, H	Others
	Bit	Word		
(S)	\bigcirc		\bigcirc	-
(D)	\bigcirc		-	-

Function

WXOR

(1) Conducts an exclusive OR operation on each bit of the 16-bit data of the device designated by (D) and the 16-bit data of the device designated by (S), and stores the results at the device designated by (D).

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

DXOR

(1) Conducts an exclusive OR operation on each bit of the 32-bit data of the device designated by (D) and the 32-bit data of the device designated by (S), and stores the results at the device designated by (D).
(D) +1

(S) +1
(S)

 \begin{tabular}{l}

$-\quad$| |
| :--- |
| 0 |
| 0 | $1: 1: 0$

\hline
\end{tabular}

(D) +1
(D)

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

O Operation Error

(1) There are no operation errors associated with the WXOR (P) or $\operatorname{DXOR}(\mathrm{P})$ instructions.

\triangle Program Example

(1) The following program performs an exclusive OR operation on the data at D10 and D20 when XA is ON, and stores the result at D10.
[Ladder Mode]

[Operation]

(2) The following program compares the bit pattern of the 32-bit data from X20 to X3F with the bit pattern of the data at D9 and D10 when X6 is ON.
[Ladder Mode]

[Operation]

> (S) +1
> (S)
> X3F-X3C X3B-X38 X37-X34 X33-X30 X2F-X2CX2B-X28 X27-X24 X23-X20

> (D) +1
> XOR
> (D)

> (D) +1
> (D)

2 When three data are set $($ (1) \forall (S2) \rightarrow (D) $($ (51) +1 , (S1) $) \forall($ (S2 $)+1$, (32) $) \rightarrow($ (D) +1 , (D) $))$

(51), (52) : Data for an exclusive OR operation or start number of the devices where the data is stored (BIN 16/32 bits)
(D): Start number of the devices where the exclusive OR operation result will be stored (BIN 16/32 bits)

Set Data	Internal Devices		Constants	Others
	Bit	Word	H	(51)
\bigcirc		\bigcirc	-	
(52)	\bigcirc	\bigcirc	-	
(D)	\bigcirc	-	-	

Function

WXOR

(1) Conducts an exclusive OR operation on each bit of the 16-bit data of the device designated by (51) and the 16-bit data of the device designated by (22), and stores the results at the device designated by (D).

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation. (See Program Example (1))

DXOR

(1) Conducts an exclusive OR operation on each bit of the 32-bit data of the device designated by (51) and the 32-bit data of the device designated by (22), and stores the results at the device designated by (D).
(51)

(D) +1
(D)
(D)

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

Operation Error

(1) There are no operation errors associated with the WXOR(P) or $\operatorname{DXOR}(\mathrm{P})$ instructions.

\triangle Program Example

(1) The following program conducts an exclusive OR operation on the data from X 10 to X 1 B and the data at D33 when X10 is ON, and outputs the result to from Y30 to Y3B.
[Ladder Mode]

[Operation]

(2) The following program conducts an exclusive OR operation on the data at D20 and D21, and the data at D30 and D31 when X10 goes ON, and stores the results at D40 and D41.
[Ladder Mode]

[Operation]

(D) +1
(D)

7.1.4 16-bit and 32-bit data exclusive NOR operations (WXNR(P), DXNR(P))

1 When two data are set $\overline{(\mathrm{D}) \forall(\mathrm{S})} \rightarrow(\mathrm{D}, \overline{(\mathrm{D})+1, \mathrm{D}) \forall(\mathrm{S})+1, \mathrm{~S})} \rightarrow(\mathrm{D}+1$, (D) $)$

(S) : Data for an exclusive NOR operation or start number of the devices where the data is stored (BIN $16 / 32$ bits)
(D) : Start number of the devices where the exclusive NOR operation result will be stored (BIN $16 / 32$ bits)

Set Data	Internal Devices		Constants	Others
	Kit	Word		
(S)	\bigcirc			-
(D)	\bigcirc		-	-

\mathcal{Y} Function

WXNR

(1) Conducts an exclusive NOR operation on the 16-bit data of the device designated by (D) and the 16-bit data of the device designated by (s), and stores the results at the device designated by (D).

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

DXNR

(1) Conducts an exclusive NOR operation on the 32-bit data of the device designated by (D) and the 32-bit data of the device designated by © , and stores the results at the device designated by (D).

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

O Operation Error

(1) There are no operation errors associated with the $\mathrm{WXNR}(\mathrm{P})$ or $\operatorname{DXNR}(P)$ instructions.

\triangle Program Example

(1) The following program compares the bit pattern of the 16-bit data from X 30 to X 3 F with the bit pattern of the 16-bit data at D99 when X6 is ON
[Ladder Mode]

[Operation]

(2) The following program compares the bit pattern of the 32-bit data from X20 to X3F with the bit pattern of the data at D16 and D17 when X6 is ON.
[Ladder Mode]

[Operation]

2 When three data are set $\overline{(\text { (S1) } \forall \text { (S2) }} \rightarrow$ (D),$\overline{(\text { (S1) }+1, \text { (S1) }) \forall(\text { (22 }+1, ~(S 2) ~} \rightarrow($ (D) +1 , (D) $))$

(51), (82) : Data for an exclusive NOR operation or start number of the devices where the data is stored (BIN 16/32 bits)
(D): Start number of the devices where the exclusive NOR operation result will be stored (BIN $16 / 32$ bits)

$\begin{aligned} & \text { Set } \\ & \text { Data } \end{aligned}$	Internal Devices		Constants K, H	Others
	Bit	Word		
(51)	\bigcirc		\bigcirc	-
(52)	\bigcirc		\bigcirc	-
(D)	\bigcirc		-	-

Function

WXNR

(1) Conducts an exclusive NOR operation on the 16-bit data of the device designated by (51) and the 16-bit data of the device designated by (22), and stores the results at the device designated by (D).

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

DXNR

(1) Conducts an exclusive NOR operation on the 32-bit data of the device designated by (51) and the 32-bit data of the device designated by (52), and stores the results at the device designated by (D).

(D) +1
(D)
(D)

(2) For bit devices, the bit devices below the points designated by digit specification are regarded as " 0 " in the operation.

Operation Error

(1) There are no operation errors associated with the $\mathrm{WXNR}(\mathrm{P})$ or $\operatorname{DXNR}(P)$ instructions.

Program Example

(1) The following program performs an exclusive NOR operation on the 16-bit data from X30 to X3F and the data at D99 when X0 is turned ON, and stores the results to D7.
[Ladder Mode]

[Operation]

(2) The following program performs an exclusive NOR operation on the 32-bit data at D20 and D21 and the data at D10 and D11 when X10 is turned ON, and stores the result to D40 and D41.
[Ladder Mode]

[Operation]
(S) +1
(S)

(S) +1
(S)

(D) +1
(D)

MEMO

- qscpu dedicated INSTRUCTIONS

Category	Processing Details	Reference section
Forced control stop instruction	Forced control stop	8.1

8.1 Forced Control Stop Instruction (S.QSABORT)

(S) : Data to be stored in SD16 as the abort code, or the number of the device where the data is stored (BIN 16 bits).

Set Data	Internal Devices		Constants	Others
	Bit	Word	H	
(S)	\bigcirc			-

Function

(1) Execution of the S.QSABORT instruction stops program execution and brings the safety CPU module into the stop error status (error code: 4700). ${ }^{* 1}$
SM0 (diagnostics error) turns ON to store the error information in SD0 to SD26. In this case, however, SM1 (self-diagnostics error) does not turn ON.
*1: For the CPU operation at a stop error, refer to the following manual

- QSCPU User's Manual (Function Explanation, Program Fundamentals)

(2) Details of the program error are stored in the common information (SD5 to SD15).

Device	Meaning	
SD5	File name (ASCII code: 8 characters)	
SD6		
SD7		
SD8		
SD9	Extension (ASCII code: 3 characters)) 2EH(.)
SD10		
SD11	Fixed to 0	
SD12	0 (Block No.)	
SD13	0 (Step No. / Shift conditions)	
SD14	Sequence step No. (L) where the S.QSABORT instruction was executed	
SD15	Sequence step No. (H) where the S.QSABORT instruction was executed	

(3) Program abort information is stored in the individual information (SD16 to SD26).

Device	Meaning
SD16	Abort code (The first argument of the S.QSABORT instruction is stored.)
SD17	Empty (Fixed at 0)
SD18	
SD19	
SD20	
SD21	
SD22	
SD23	
SD24	
SD25	
SD26	

(4) If the abort code is designated using digit designation of a bit device, the data of the designated digit in the designated bit device is obtained from the device memory as abort code. If the designated number of bits is less than 16 bits, empty bits are filled with 0.

Example

O Operation Error

(1) In any of the following cases, an operation error occurs, the error flag (SMO) turns ON, and the corresponding error code is stored into SD0.

- The designated instruction name is incorrect.
(Error code: 4002)
- The number of the arguments used in the instruction is incorrect. (Error code: 4003)
- A device that cannot be used in an argument is designated. (Error code: 4004)

\triangle Program Example

(1) The program below shows that, when X0 turns ON, the CPU module enters the stop error state and the abort code is stored in SD16.
[Ladder Mode]

MEMO

ERROR CODE

9.1 Error Code List

If an error occurs under one of the following conditions, the QS series CPU module uses the selfdiagnostic function to display error information (LED indication) and stores it in the special relay (SM) and special register (SD):

- the programmable controller is powered on
- the programmable controller is reset
- the programmable controller is switched from STOP to RUN
- the programmable controller is running

If an error occurs when a communication request is issued from GX Developer, intelligent function module or network system to the CPU module, the CPU module returns the error code (4000н to 4FFFh) to the request source.

The following describes the description of errors which occur in the CPU module and the corrective actions for the errors.
(1) How to read the error code list

The following describes how to read Section 9.1.3 Error code list (1000 to 1999) to Section 9.1.8 Error code list (8000 to 9000).
(a) Error code, common information and individual information Alphanumeric characters in the parentheses of the titles indicate the special register numbers where each information is stored.
(b) Compatible CPU

QS: Compatible with the QSCPU.

9.1.1 Error codes

Errors are detected by the self diagnostic function of the CPU module or detected during communication with the CPU module.

The relation between the error detection pattern, error detection location and error code is shown in the following table.

Table9.1 The relation between the error detection pattern, error detection location and error code

Error detection pattern	Error detection location	Error code	Reference
Detection by the self diagnostics function of CPU module	CPU module	1000 to $9000{ }^{* 1}$	Section 9.1.3 to 9.1.8
Detection at communication with CPU module	CPU module	4000 to 4FFF\%	QSCPU User's Manual (Hardware Design, Maintenance and Inspection)
	CC-Link Safety master module	B000n to BFFF\%	CC-Link Safety System Master Module User's Manual
	Ethernet module	C000 ${ }_{\text {to }}$ CFFF\%	Ethernet Interface Module UserAfs Manual
	CC-Link IE Field Network master/local module (with safety functions)		MELSEC-QS CC-Link IE Field Network Master/Local Module User's Manual
	CC-Link IE Controller Network module	E000n to EFFF\%	CC-Link IE Controller Network Reference Manual
	MELSECNET/H module	F000 ${ }_{\text {to }}$ to FFFFH	MELSECNET/H Network System Reference Manual

*1: CPU module error codes are classified into minor, moderate, major errors as shown below.
-Minor error:Errors that may allow the CPU module to continue the operation, e.g., battery error. (Error code: 1300 to 9000)
-Moderate error:Errors that may cause the CPU module to stop the operation, e.g., WDT error. (Error code: 1300 to 9000)
-Major error:Errors that may cause the CPU module to stop the operation, e.g., RAM error. (Error code: 1000 to 1299)
"Errors that may allow the CPU module to continue the operation" and "Errors that may cause the CPU module to stop the operation" can be distinguished using "Operating Statuses of CPU" of Section 9.1.3 to 9.1.8 Error code list.

9.1.2 Reading an error code

If an error occurs, information such as the error code and error message for troubleshooting can be read using GX Developer.
To read error codes, follow the instructions described below.

1) Start GX Developer.
2) Connect the CPU module to the personal computer that started GX Developer.
3) On GX Developer, choose the [Online] \rightarrow [Read from PLC] menu and read the project from the CPU module.
4) Choose the [Diagnostic] \rightarrow [PLC diagnostic] menu.
5) Click the "Current error" button in the PLC diagnostic dialog box to display the error code and error message.
6) Choose the [Help] \rightarrow [CPU error] menu and check details of the corresponding error code.

For details, refer to the following.
$\xrightarrow{\rightrightarrows}$ GX Developer Operating Manual

9.1.3 Error code list (1000 to 1999)

The following shows the error messages from the error code 1000 to 1999, the contents and causes of the errors, and the corrective actions for the errors.

Table9.2 Error code

*1 BAT.ALM LED is displayed at BATTERY ERROR.

*1 BAT.ALM LED is displayed at BATTERY ERROR.

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
1131	A fault was detected in the internal memory of the CPU module.	Hardware error of the CPU module. (Please consult your local Mitsubishi Service or representative.)	QS
1132			
1133			
1136			
1137			
1141			
1142			
1143			
1146			
1210	The operation circuit for sequence processing in the CPU module does not operate normally.	Hardware error of the CPU module. (Please consult your local Mitsubishi Service or representative.)	QS
1311	An interrupt request from the module where interrupt pointer setting has not been made in the PLC parameter dialog box was detected.	Hardware error of either of the CPU module or base unit. (Please consult your local Mitsubishi Service or representative.)	QS
1401	- There was no response from the intelligent function module in the initial processing. - The size of the buffer memory of the intelligent function module is invalid.	Hardware error of the intelligent function module, CPU module or base unit is expecting a hardware fault. (Please consult your local Mitsubishi Service or representative.)	QS
1403	- The hardware test of the module installed in the slot indicated by module number has completed. - There was no response from the intelligent function module when the END instruction is executed. - An error is detected at the intelligent function module. - The intelligent function module being accessed is broken down.	- Confirm if the setting of hardware test of the module installed in the slot indicated by the module number has been set or not. - Hardware error of the access target intelligent function module. (Please consult your local Mitsubishi Service or representative.)	QS
1404	An intelligent function module response data error was detected.	Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)	QS

Hardware error of the CPU module.
(Please consult your local Mitsubishi
your local Mitsubishi Service or

Hardware error of the intelligent function module, CPU module or base unit is expecting a hardware fault. (Please
consult your local Mitsubishi Service or representative.)

- Confirm if the setting of hardware test of the module installed in the slot indicated by the module number has been set or not.
- Hardware error of the access target intelligent function module. (Please consult your local Mitsubishi Service or representative.)

Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.)

$\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SD0) } \end{aligned}$	Error Message	Common Information (SD5 to 15)	Individual Information (SD16 to 26)	LED Status		CPU Operation Status	Diagnostic Timing	
				RUN	ERROR			
1411	CONTROLBUS ERROR	Module No.	-	Off	Flash	Stop	At power ON/ At reset	
1413	CONTROLBUS ERROR	-	-	Off	Flash	Stop	Always	
1414	CONTROLBUS ERROR	-	-	Off	Flash	Stop	When an END instruction executed	
1415	CONTROLBUS ERROR	Base No.	-	Off	Flash	Stop	When an END instruction executed.	
1500	AC/DC DOWN	-	-	On	Off	Continue	Always	
1600	BATTERY ERROR*1	Drive Name	-	On	Off	Continue	Always	
1610	EXCEED MAX FLASH ROM REWRIT. ERR.	-	-	On	On	Continue	When an END instruction executed	

[^0]| Error Code (SD0) | Error Contents and Cause | Corrective Action | Corresponding CPU |
| :---: | :---: | :---: | :---: |
| 1411 | When performing a parameter I/O allocation the intelligent function module could not be accessed during initial communications.
 (On error occurring, the head I/O number of the corresponding intelligent function module is stored in the common information.) | Reset the CPU module and RUN it again. If the same error is displayed again, the intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.) | QS |
| 1413 | An error was detected on the system bus. | The intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.) | QS |
| 1414 | An error was detected on the system bus. | The intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.) | QS |
| 1415 | Fault of the base unit was detected. | The intelligent function module, CPU module or base unit is faulty. (Contact your local Mitsubishi representative.) | QS |
| 1500 | - A momentary power supply interruption has occurred.
 - The power supply went off. | Check the power supply. | QS |
| 1600 | - The battery voltage in the CPU module has dropped below stipulated level.
 - The lead connector of the CPU module battery is not connected.
 - The lead connector of the CPU module battery is not securely engaged. | - Change the battery.
 - Install a lead connector of the battery.
 - Check the lead connector of the CPU module for looseness. Firmly engage the connector if it is loose. | QS |
| 1610 | The number of writing to the standard ROM exceeded one hundred thousand times.
 (Number of writing>100,000 times) | Replace the CPU modules. | QS |

9.1.4 Error code list (2000 to 2999)

The following shows the error messages from the error code 2000 to 2999, the contents and causes of the errors, and the corrective actions for the errors.

$\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SDO) } \end{aligned}$	Error Message	Common Information (SD5 to 15)	Individual Information (SD16 to 26)	LED Status		CPUOperationStatus	Diagnostic Timing	
				RUN	ERROR			
2000	MODULE VERIFY ERROR	Module No.	-	Off	Flash	Stop	When an END instruction executed.	
2100	MODULE LAYOUT ERROR	Module No.	-	Off	Flash	Stop	At power ON/ At reset	
2106	MODULE LAYOUT ERROR	Module No.	-	Off	Flash	Stop	At power ON/ At reset	
2107	MODULE LAYOUT ERROR	Module No.	-	Off	Flash	Stop	At power ON/ At reset	

$\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SD0) } \end{aligned}$	Error Contents and Cause	Corrective Action	Corresponding CPU
2000	- Intelligent function module information at power ON are changed. - During operation, Intelligent function module are not installed properly or installed on the base unit.	Read the common information of the error using the GX Developer, and check and/or change the module that corresponds to the numerical values (module number) there. Alternatively, monitor the special registers SD 150 to SD 153 at a GX Developer, and change the fuse at the output module whose bit has a value of "1".	QS
2100	- In the parameter I/O allocation settings, an Inteli (intelligent function module) was allocated to a location reserved for an I/O module. - In the I/O assignment setting of the PLC parameter dialog box, the number of points assigned to the intelligent function module is less than the number of points of the mounted module.	Reset the parameter I/O allocation setting to conform to the actual status of the intelligent function module.	QS
2106	- More than three CC-Link Safety master modules are mounted. - More than two CC-Link IE Controller Network modules are mounted. - More than two MELSECNET/H modules are mounted. - More than two Ethernet modules are mounted. - A module that the Safety CPU module cannot recognize has been mounted. - More than two CC-Link IE Field Network master/local modules (with safety functions) are mounted.	- Mount two or less CC-Link Safety master modules. - Mount either only one CC-Link IE Controller Network module or MESECNET/H module. - Mount only one Ethernet module. - Mount a module supported in the Safety CPU module. - Mount only one CC-Link IE Field Network master/local module (with safety functions).	QS
2107	The start X/Y set in the PLC parameter's I/O assignment settings is overlapped with the one for another module.	Make the PLC parameter's I/O assignment setting again so it is consistent with the actual status of the intelligent function module.	QS

information at power ON are changed.

- During operation, Intelligent function module are not installed properly or installed on the base unit.

Developer, and change the fuse at the output module whose bit has a value of "1".

Reset the parameter I/O allocation setting to conform to the actual status of

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
2500	- There is a program file that uses a device that is out of the range set in the PLC parameter device setting.	Read the common information of the error using the GX Developer, check to be sure that the parameter device allocation setting and the program file device allocation correspond to the numerical values there (file name), and correct if necessary.	QS
2501	- More than two program files exist for one drive. - The program name differs from the program contents.	- Delete unnecessary program files. - Match the program name with the program contents.	QS
2502	The program file is incorrect. Alternatively, the file contents are not those of a sequence program.	Check whether the program version is * * *. QPG, and check the file contents to be sure they are for a sequence program.	QS
2503	There are no program files at all. (A drive No. is only displayed on the common information.)	- Check program configuration. - Check parameters and program configuration.	QS

9.1.5 Error code list (3000 to 3999)

The following shows the error messages from the error code 3000 to 3999, the contents and causes of the errors, and the corrective actions for the errors.

Error Code (SDO)	Error Contents and Cause	Corrective Action The PLC parameter settings for timer time limit setting, the RUN-PAUSE contact, and number of vacant slots is outside the range that can be used by the CPU module.	Read the detailed information of the error using the GX Developer, check the parameter items corresponding to those numerical values (parameter numbers), and correct when necessary.	QS

[^1]

- The number of modules actually mounted is different from that is set in Network parameter for CC-Link IE Controller Network.
- The start I/O number of the module actually mounted is different from that is set in Network parameter for CCLink IE Controller Network.
- Some data in the parameters are not supported.
- The station type for a CC-Link IE Controller Network has been changed while the power is ON. (RESET \rightarrow RUN is required to change the station type.)
- The number of modules actually mounted is different from that is set in Network parameter for MELSECNET/ H.
- The start I/O number of the module . actually mounted is different from thatis set in Network parameter for MELSECNET/H.
- Some data in the parameters are not supported.
- The station type for a MELSECNET/H has been changed while the power is ON.
(RESET \rightarrow RUN is required to change the station type.)
- The mode switches of MELSECNET/ H module*1 are out of the setting range.
- Check the setting in Network parameter and actual mounting status, and if they differ, correct either the setting or mounting status so that they become the same. If the parameter setting is corrected, write Network parameter to the CPU module.
- If an error occurs even after correction, a hardware failure is considered. (Please consult your local Mitsubishi representative.)
- Check the setting in Network parameter and actual mounting status, and if they differ, correct either the setting or mounting status so that they become the same. If the parameter setting is corrected, write Network parameter to the CPU module.
- If an error occurs even after correction, a hardware failure is considered. (Please consult your local Mitsubishi representative.)
- Set the mode switches of

MELSECNET/H module ${ }^{* 1}$ within the setting range.

[^2]

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
3101	The refresh parameter for CC-Link IE Controller Network is out of the setting range. - The refresh parameter for CC-Link IE Field Network is out of the setting range. - The refresh parameter for CC-Link IE Field Network is overlapped with the refresh parameter or the I/O assignment setting for other networks. - The start I/O number of the module actually mounted is different from that is set in Network parameter. - The refresh parameter for MELSECNET/H is out of the setting range.	Check the setting in Network parameter and actual mounting status, and if they differ, correct either the setting or mounting status so that they become the same. If the parameter setting is corrected, write Network parameter to the CPU module.	QS
3102	- The network module detected an error in Network parameter. - The MELSECNET/H inherent parameter setting is incorrect.	- Correct the parameter setting and write Network parameter to the CPU. - If an error occurs even after correction, a hardware failure is considered. (Please consult your local Mitsubishi representative.)	QS
3103	- The number of modules actually mounted is different from that is set in Network parameter for Ethernet. - The start I/O number of the module actually mounted is different from that is set in Network parameter for Ethernet.	- Check the setting in Network parameter and actual mounting status, and if they differ, correct either the setting or mounting status so that they become the same. If the parameter setting is corrected, write Network parameter to the CPU module. - If an error occurs even after correction, a hardware failure is considered. (Please consult your local Mitsubishi representative.)	QS

[^3]| $\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SDO) } \end{aligned}$ | Error Message | Common Information (SD5 to 15) | Individual Information (SD16 to 26) | LED Status | | CPU Operation Status | Diagnostic Timing | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | RUN | ERROR | | | |
| 3104 | NETWORK
 PARAMETER ERROR | File name/ Drive No. | Parameter number | Off | Flash | Stop | At power ON/ At reset | |
| 3105 | CC-LINK
 PARAMETER
 ERROR | File name/ Drive No. | Parameter number | Off | Flash | Stop | At power ON/ At reset | |
| 3106 | CC-LINK
 PARAMETER ERROR | File name/ Drive No. | Parameter number | Off | Flash | Stop | At power ON/ At reset | |

$\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SDO) } \end{aligned}$	Error Contents and Cause	Corrective Action	Corresponding CPU
3104	- The same network number is used for Ethernet, CC-Link IE Controller Network, and MELSECNET/H. - The network number, station number, and/or group number set in Network parameter are out of the setting range. - The specified I/O number is outside the range of the used CPU module. - The Ethernet inherent parameter setting is incorrect.	- Correct the parameter setting and write Network parameter to the CPU module. - If an error occurs even after correction, a hardware failure is considered. (Please consult your local Mitsubishi representative.)	QS
3105	- Though the number of CC-Link modules set in the network parameters is one or more, the number of actually mounted modules is zero. - The start I/O number in the common parameters is different from that of the actually mounted module. - The station type of the CC-Link module count setting parameters is different from that of the actually mounted station.	- Correct and write the network parameters. - If the error occurs after correction, it suggests a hardware fault. (Contact your local Mitsubishi representative.)	QS
3106	- The network refresh parameter for CC-Link is out of range. - Although the safety remote station set in the network parameter does not support the safety data monitoring time, it is set for the station. - The refresh parameter for CC-Link IE Field Network is overlapped with the refresh parameter or the I/O assignment setting for other networks.	- Check the [Model name] and [Module technical version] of the safety remote station settings, or delete the setting of the safety data monitoring time. - Correct and write the network parameters. - If the error occurs after correction, it suggests a hardware fault. (Contact your local Mitsubishi representative.)	QS
	The safety data monitoring time has been set.	Delete the setting of the safety data monitoring time.	QS*2

[^4]| Error Code (SD0) | Error
 Message | Common Information (SD5 to 15) | Individual Information (SD16 to 26) | LED Status | | CPU
 Operation Status | Diagnostic Timing | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | RUN | ERROR | | | |
| 3107 | CC-LINK PARAMETER ERROR | File name/ Drive No. | Parameter number | Off | Flash | Stop | At power ON/
 At reset | |
| 3150 | DUPLICAT.NE T.NO. | File name/ Drive No. | Parameter number
 (A block No. of the switch setting is stored.) | Off | Flash | Stop | At power ON/
 At reset | |
| 3400 | REMOTE PASSWORD ERROR | --- | ---- | Off | Flash | Stop | At power ON/
 At reset | |
| 3401 | REMOTE PASSWORD ERROR | --- | --- | Off | Flash | Stop | At power ON/
 At reset | |

	Error Code (SDO)	Error Contents and Cause	Corrective Action	Corresponding CPU
3107	The CC-Link parameter setting is incorrect.	•Correct and write the network parameters. - If the error occurs after correction, it suggests a hardware fault. (Contact your local Mitsubishi representative.)	QS	
3150	The network No. set in Network parameter for CC-Link IE Field Network is overlapped with the one set for another network module.	Check the parameter setting.	QS ${ }^{* 3}$	
3400	The start I/O number of the target module in Remote password is set to other than OH to 3EOH.	Change the start I/O number of the target module to the number within OH to 3EOH.	QS	
	Ethernet module of function version B or later is not mounted on the slot specified for the start I/O number of Remote password.	Mount the Ethernet module of function version B or later on the slot specified for the start I/O number of Remote password.	QS	

*1 This applies when the serial number (first five digits) of the MELSECNET/H module is "08102" or later.
*2 This applies when the serial number (first five digits) of the CPU module is "10031" or earlier.
*3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

9.1.6 Error code list (4000 to 4999)

The following shows the error messages from the error code 4000 to 4999, the contents and causes of the errors, and the corrective actions for the errors.

Table9.5 Error code

Error Code (SD0)	Error Message	Common Information (SD5 to 15)	Individual Information (SD16 to 26)	LED Status		CPU Operation Status	Diagnostic Timing	
				RUN	ERROR			
4000	INSTRUCTION CODE ERROR	Program error location	-	Off	Flash	Stop	At power ON/ At reset/ STOP \rightarrow RUN	
4002	INSTRUCTION CODE ERROR	Program error location	-	Off	Flash	Stop	At power ON/ At reset/ $S T O P \rightarrow R U N$	
4003	INSTRUCTION CODE ERROR	Program error location	-	Off	Flash	Stop	At power ON/ At reset/ STOP \rightarrow RUN	
4004	INSTRUCTION CODE ERROR	Program error location	-	Off	Flash	Stop	At power ON/ At reset/ STOP \rightarrow RUN	
4010	MISSING END INSTRUCTION	Program error location	-	Off	Flash	Stop	At power ON/ At reset/ STOP \rightarrow RUN	
4100	OPERATION ERROR	Program error location	-	$\begin{aligned} & \text { Off/ } \\ & \text { On } \end{aligned}$	Flash	Stop	When instruction executed.	
4101	OPERATION ERROR	Program error location	-	$\begin{aligned} & \text { Off/ } \\ & \text { On } \end{aligned}$	Flash	Stop	When instruction executed.	

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
4000	- The program contains an instruction code that cannot be decoded. - An unusable instruction is included in the program. - An unusable safety FB is included in the program.	Read the common information of the error using a GX Developer, check error step corresponding to its numerical value (program error location), and correct the problem.	QS
4002	- The name of dedicated instruction specified in the program is incorrect. - The dedicated instruction specified in the program cannot be executed by the specified module. - An unsupported instruction exists.		QS
4003	The number of devices for the dedicated instruction specified in the program is incorrect.		
4004	The device, which cannot be used by the dedicated instruction specified in the program, is specified.		
4010	There is no END instruction in the program.		QS
4100	The instruction cannot process the contained data.	Read the common information of the error using the GX Developer, check error step corresponding to its numerical value (program error location), and correct the problem.	QS
4101	- The designated device number for data processed by the instruction exceeds the usable range. - Alternatively, the stored data or constants for the devices designated by the instruction exceeds the usable range.	Read the common information of the error using the GX Developer, check error step corresponding to its numerical value (program error location), and correct the problem.	QS

Error Code (SD0)	Error Message	Common Information (SD5 to 15)	Individual Information (SD16 to 26)	LED Status		CPU Operation Status	Diagnostic Timing	
				RUN	ERROR			
4102	OPERATION ERROR	Program error location	-	Off	Flash	Stop	At an execution of instruction	
4700	PROGRAM ABORT EXECUTED	Program error location	Aborted program information	Off	Flash	Stop	When executing the S.QSABORT instructions.	

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
4102	- The network number and/or station number specified by the dedicated instruction are incorrect. - The module number, network number, and/or number of character strings specified by the dedicated instruction exceed the allowable range.	Read the common information of the error using the GX Developer, check error step corresponding to its numerical value (program error location), and correct the problem.	QS
4700	The S.QSABORT instruction was executed, and the program was forcefully stopped.	Remove the cause before executing the S.QSABORT instruction.	QS

9.1.7 Error code list (5000 to 5999)

The following shows the error messages from the error code 5000 to 5999, the contents and causes of the errors, and the corrective actions for the errors.

Table9.6 Error code									
Error Code (SD0)	Error	Message	Common Information (SD5 to 15)	Individual Information (SD16 to 26)	LED Status	RUN	ERROR	Operation Status	Diagnostic Timing
5001	WDT ERROR	Time (value set)	Time (value actually measured)	Off	Flash	Stop	Always		
5010	PROGRAM SCAN TIME OVER	Time (value set)	Time (value actually measured)	On	On	Continue	Always		

Error Code (SDO)	Error Contents and Cause	Corrective Action	Corresponding CPU
5001	The program scan time exceeded the WDT value specified in the PLC RAS setting of the PLC parameter dialog box.	Read the individual information of the error with the GX Developer, check its value (time), and shorten the scan time.	QS
5010	The program scan time exceeded the constant scan time specified in the PLC RAS setting of the PLC parameter dialog box.	Review the constant scan time in the PLC parameter so that the margin time of constant scan may be fully reserved.	QS

9.1.8 Error code list (8000 to 9000)

The following shows the error messages from the error code 8000 to 9000, the contents and causes of the errors, and the corrective actions for the errors.

Table9.7 Error code

$\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SDO) } \end{aligned}$	Error Message	Common Information (SD5 to 15)	Individual Information (SD16 to 26)	LED Status		CPU Operation Status	Diagnostic Timing	
				RUN	ERROR			
8000	INTERNAL REGISTER ERROR	-	Error information	Off	Flash	Stop	At power ON/ At reset/When an END instruction executed.	
8010	INTERNAL BUS ERROR	-	Error information	Off	Flash	Stop	At power ON/ At reset/When an END instruction executed.	
8020	U A \&						Always	
8021	CAN'T BE SYNCHRONIZED	-	Error information	Off	Flash	Stop	When an END instruction executed.	
8031	INCORRECT FILE	-	Diagnostics file information	Off	Flash	Stop	At power ON/ At reset	
8032	INCORRECT FILE	-	Diagnostics file information	Off	Flash	Stop	When an END instruction executed.	
8050	SAFETY OUTPUT VERIFY ERROR	Module No./ Station No.	-	Off	Flash	Stop	When an END instruction executed.	

[^5]| | Error Code (SD0) | Error Contents and Cause | Corrective Action | Corresponding CPU |
| :---: | :---: | :---: | :---: | :---: |
| | 8000 | Error is detected by the inside register diagnostics built in the CPU module. | This suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| | 8010 | Error is detected inside the bus of the CPU module. | This suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| | 8020 | Mismatch has occurred in the execution status of CPU A and CPU B. | - Take measure against noise.
 - Reset it and run it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| | 8021 | Mismatch of program execution times is detected between CPU A and CPU B. | | |
| | 8031 | Error of a file stored in the program memory or the standard ROM is detected. | The file indicated by the individual information SD17~SD22 is written into the individual information SD16, and turn the CPU power is turned OFF $\rightarrow \mathrm{ON}$ or reset \rightarrow reset canceling.If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| | 8032 | | | |
| | 8050 | The verification of safety outputs between the CPU A and CPU B in a CPU module resulted in a mismatch. | - Check if the program for outputing safety outputs is correct.
 - Take measure against noise.
 - Reset it and run it again.
 If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |

[^6]| $\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SD0) } \end{aligned}$ | Error Message | Common Information (SD5 to 15) | Individual Information (SD16 to 26) | LED Status | | CPU Operation Status | Diagnostic Timing | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | RUN | ERROR | | | |
| 8060 | incorrect FIRMWARE | - | Error information | Off | Flash | Stop | At power ON/ At reset/When an END instruction executed. | |
| 8070 | INTERNAL CPU COMMUNICATION ERROR | - | Error information | Off | Flash | Stop | At power ON/ At reset | |
| 8071 | | | | | | | | |
| 8072 | | | | | | | | |
| 8073 | | | | | | | When an END instruction executed. | |
| 8074 | | | | | | | | |
| 8080 | $\begin{aligned} & \text { POWER } \\ & \text { SUPPLY } \\ & \text { ERROR } \end{aligned}$ | - | Error information | Off | Off/On | Stop | Always | |
| 8090 | Voltage DIAGNOSIS ERROR | - | Error information | Off | Flash | Stop | When an END instruction executed | |
| 8100 | TEST MODE TIME EXCEEDED | - | - | On | On | Continues | When an END instruction executed. | |
| 8120 | WDT CLOCK CHECK ERROR | - | - | Off | Flash | Stop | Always | |
| 8300 | CC-LINK REMOTE DETECTION ERROR | CC-Link Safety information | CC-Link Safety information | Off/On ${ }^{* 1}$ | Flash/ $\text { On }{ }^{* 1}$ | Stop/ Continues ${ }^{*} 1$ | Always | |

[^7]| Error Code (SD0) | Error Contents and Cause | Corrective Action | Corresponding CPU |
| :---: | :---: | :---: | :---: |
| 8060 | Error of system programs is detected. | - Take measure against noise.
 - Reset it and run it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| 8070 | The initial communication between CPU A and CPU B was unsuccessful. | - Take measure against noise.
 - Reset it and run it again.
 If the same error is displayed again, this suggests a CPU module hardware fault.
 (Contact your local Mitsubishi representative.) | QS |
| 8071 | CPU A and CPU B cannot send data to each other. | | |
| 8072 | CPU A and CPU B cannot receive data from each other. | | |
| 8073 | CPU A and CPU B cannot send data to each other. | | |
| 8074 | CPU A and CPU B cannot receive data from each other. | | |
| 8080 | Power supply voltage error has been detected in a CPU module. | - Take measure against noise.
 - Reset it and run it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| 8090 | The error of line voltage monitoring circuit is detected. | - Take measure against noise.
 - Reset it and run it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| 8100 | The continuous operation time on TEST MODE exceeds the TEST MODE continuous operation time set by the parameter. | Confirm that the safety CPU operation mode can be switched to the SAFETY MODE, and start operation after switching the TEST MODE to the SAFETY MODE. | QS |
| 8120 | Clock stop of the WDT is detected. | - Take measure against noise.
 - Reset it and run it again. If the same error is displayed again, this suggests a CPU module hardware fault. (Contact your local Mitsubishi representative.) | QS |
| 8300 | Error information is received from CCLink Safety remote station. | Confirm the error code of the relevant CC-Link Safety remote station. (Refer to the manual of the CC-Link Safety remote module for the confirmation.) | QS |

[^8]| $\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SD0) } \end{aligned}$ | Error Message | Common Information (SD5 to 15) | Individual Information (SD16 to 26) | LED Status | | CPU Operation Status | Diagnostic Timing | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | RUN | ERROR | | | |
| 8310 | CC-LINK
 PRODUCT
 INFO.
 MISMATCH | CC-Link Safety information | CC-Link Safety information | Off/On ${ }^{* 1}$ | $\begin{aligned} & \text { Flash/ } \\ & \text { On }{ }^{* 1} \end{aligned}$ | Stop/ Continues ${ }^{*} 1$ | Always | |
| 8320 | | | | | | | While initializing remote station | |
| 8321 | | | | | | | Always | |
| 8322 | CC-LINK
 DATA
 RECEPTION
 TIMEOUT | CC-Link Safety information | CC-Link Safety information | Off/On ${ }^{* 1}$ | $\begin{aligned} & \text { Flash/ } \\ & \text { On }{ }^{* 1} \end{aligned}$ | Stop/ Continues ${ }^{*} 1$ | When receiving remote station's error information | |

[^9]9-36

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
8310	The installed product is different from the specified one by network parameter.	Check that [Model name], [Module technical version] or [Production information] of the CC-Link Safety remote station set in the network parameter matches the product information of the relevant CC-Link Safety remote station.(Refer to the manual of the CC-Link Safety remote module for the confirmation.)	QS
8320	The response data cannot be received during the initial processing of CC-Link Safety remote station.	- Check that the following operations are not executed. (1)Switching the operation mode (2)Writing the program memory to ROM (3)Registration/change of the CPU access password (4)Initialization of PLC memory (If executed, this error may occur due to the increase of the interval between data communications of CC-Link Safety.) - When instantaneous power failure occurs to the supply power, change to the asynchronous mode or slow down the speed. - Execute the link test to check the soundness of transmission path. - Check the setting of transmission speed. - Check if the setting value of the Safety refresh monitoring time is appropriate. - Check if the setting value of the Safety data monitoring timer is appropriate.	QS
8321	The response data cannot be received during the normal communication with CC-Link Safety remote station.		QS
8322	The response data cannot be received during processing error information from CC-Link Safety remote station.		QS

[^10]

[^11]| $\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SDO) } \end{aligned}$ | Error Contents and Cause | Corrective Action | Corresponding CPU |
| :---: | :---: | :---: | :---: |
| 8330 | The received command differs from the expected value. | - Check the cable status visually or by a line test.
 - Hardware error of the CC-Link Safety master module or the relevant CCLink Safety remote module (Contact your local Mitsubishi representative.) | QS |
| 8331 | Lapse in separated receiving data has occurred. | | QS |
| 8332 | The link ID in receiving data is different from the expected value. | - Check if the link ID setting of the relevant remote station and the link ID that has been set in the network parameter are identical.
 - Hardware error of the CC-Link Safety master module or the relevant CCLink Safety remote module (Contact your local Mitsubishi representative.) | QS |
| 8333 | The running No. in receiving data is different from the expected value. | - Check if the setting value of the Safety refresh monitoring time is appropriate.
 - Hardware error of the CC-Link Safety master module or the relevant CCLink Safety remote module (Contact your local Mitsubishi representative.) | QS |
| 8334 | The CC-Link Safety master station cannot recognize the received data. | - Check the cable status visually or by a line test.
 - Hardware error of the CC-Link Safety master module or the relevant CCLink Safety remote module (Contact your local Mitsubishi representative.) | QS |
| 8400 | Safety communication target station detection error (Error information is received from a safety communication target station on CC-Link IE Field Network.) | Check the error code of the communication target station on CCLink IE Field Network. | QS*3 |
| 8410 | Safety station product information mismatch ("Model name" or "Production information" of a safety station is incorrect.) | It may be malfunction due to noise. Check the soundness of transmission path by performing the CC-Link IE Field Network diagnostics. Check the distance between power lines and communication cables, and the installation status of each device as well. | QS*3 |

[^12]

Error Code (SD0)	Error Contents and Cause	Corrective Action	Corresponding CPU
8425	Safety monitoring timeout error (A timeout error occurred during safety communication.)	- Check that the following operations are not performed. 1) Switching the operation mode 2) Writing the program memory to ROM 3) Registration/change of the CPU access password 4) Initialization of PLC memory 5) Monitoring, diagnostics (If executed, this error may occur due to the increase of the interval between data communications of CCLink IE Field.) - Check that the transmission interval monitoring time for the target station is correctly set. - It may be malfunction due to noise. Check the soundness of transmission path by performing the CC-Link IE Field Network diagnostics. Check the distance between power lines and communication cables, and the installation status of each device as well.	QS*3

[^13]| $\begin{aligned} & \text { Error } \\ & \text { Code } \\ & \text { (SDO) } \end{aligned}$ | Error Contents and Cause | Corrective Action | Corresponding CPU |
| :---: | :---: | :---: | :---: |
| 8426 | Safety monitoring timeout error (A timeout error occurred during safety communication.) | - Check that the following operations are not performed.
 1) Switching the operation mode
 2) Writing the program memory to ROM
 3) Registration/change of the CPU access password
 4) Initialization of PLC memory
 5) Monitoring, diagnostics
 (If executed, this error may occur due to the increase of the interval between data communications of CCLink IE Field.)
 - Set the larger value for the safety refresh monitoring time. Or set the smaller value for the transmission interval monitoring time.
 - It may be malfunction due to noise. Check the soundness of transmission path by performing the CC-Link IE Field Network diagnostics. Check the distance between power lines and communication cables, and the installation status of each device as well. | QS*3 |
| 8430 | | It may be malfunction due to noise. | |
| 8431 | | Check the soundness of transmission | |
| 8432 | Safety station reception data error (Incorrect data is received.) | Network diagnostics. Check the distance between power lines and communication cables, and the installation status of each device as well. | QS*3 |
| 8440 | Safety connection setting error (Incorrect CID is received.) | Check that safety connection is correctly set for own station. | QS*3 |
| 9000 | Annunciator (F) was set ON ${ }^{* * * * *}$ in the error message indicates the detected annunciator number.) | Read the individual information of the error using the GX Developer, and check the program corresponding to the numerical value (annunciator number). | QS |

[^14]Memo
\qquad

APPENDICIES

Appendix 1 OPERATION PROCESSING TIME

Appendix 1.1 Definition

(1) Processing time taken by the QSCPU is the total of the following processing times.

- Total of each instruction processing time
- END processing time
- I/O refresh time
- Service processing time
(2) Instruction processing time

This is the total of processing time of each instruction shown in Appendix 1.2.
(3) END processing time

END instruction processing time is the total of the following processing times.

- END instruction processing time shown in Appendix 1.2
- CC-Link IE Field Network, CC-Link IE Controller Network, and MELSECNET/H refresh time
- Auto refresh time of CC-Link Safety ${ }^{* 1}$
- MELSECNET/H refresh time ${ }^{* 2}$
- Communication processing time with GX Developer *3
*1: For details CC-Link IE Field Network, CC-Link IE Controller Network and MELSECNET/H refresh time, refer to the following manual.
- QSCPU User's Manual (Function Explanation, Program Fundamentals)
*2: For details the auto refresh time of CC-Link Safety., refer to the following manual.
- CC-Link Safety System Master Module User's Manual
*3: Also refer to the following manual for the communication processing time with the GX Developer.
- QSCPU User's Manual (Function Explanation, Program Fundamentals)
(4) I/O refresh time can be calculated using the equation below.

I/O refresh time $(\mu \mathrm{s})=$ Number of I/O points $\times 0.224+310(\mu \mathrm{~s})$
(5) For details of service processing time, refer to the following manual.

- QSCPU User's Manual (Function Explanation, Program Fundamentals)
(6) Calculation of processing time

The total of the processing time when executed by the QSCPU is calculated as follows:

Appendix 1.2 Operation Processing Time

The processing times for the individual instructions are shown in the table on the following pages. Operation processing times can vary substantially depending on the nature of the sources and destinations of the instructions, and the values contained in the following tables should therefore be taken as a set of general guidelines to processing times rather than as being strictly accurate.
(1) Sequence instruction

Instruction	Conditions (Device)		Processing Time ($\mu \mathrm{s}$)
LD LDI AND			0.10
ANI OR ORI			0.15
LDP LDF ANDP ANDF ORP ORF	X0		0.15
ANB ORB MPS MRD MPP	-		0.10
INV	When	executed	0.10
MEP MEF	When n	executed	0.15
EGP	When not executed When executed	$\begin{gathered} \hline(\mathrm{OFF} \rightarrow \mathrm{OFF}) \\ (\mathrm{ON} \rightarrow \mathrm{ON}) \\ \hline(\mathrm{OFF} \rightarrow \mathrm{ON}) \\ (\mathrm{ON} \rightarrow \mathrm{OFF}) \end{gathered}$	0.10
EGF	When not executed	$\frac{(\mathrm{OFF} \rightarrow \mathrm{OFF})}{(\mathrm{ON} \rightarrow \mathrm{ON})}$	11 14
	When executed	$(\mathrm{OFF} \rightarrow \mathrm{ON})$ $(\mathrm{ON} \rightarrow \mathrm{OFF})$	$\begin{aligned} & \frac{14}{16} \end{aligned}$

Instruction		Conditions (Device)		Processing Time ($\mu \mathrm{s}$)
RST	Y	When not executed		0.10
		When executed	When not changed (OFF \rightarrow OFF)	0.10
			When changed (ON \rightarrow OFF)	0.10
	D0.0	When not executed		0.20
		When executed	When not changed ($\mathrm{ON} \rightarrow \mathrm{ON}$)	0.20
			When changed (OFF $\rightarrow \mathrm{ON}$)	0.20
	SM	When not executed		0.10
		When executed		0.10
	F	When not executed		0.25
		When	When displayed	115
		executed	Display completed	87
	T, C	When not executed		0.40
		When executed		0.50
	D	When not executed		0.20
		When executed		0.30
PLS		-		7.1
PLF		-		7.1
FF	Y	When not executed		0.25
		When executed		4.9
MC			M0	0.20
			D0.0	0.30
MCR			-	0.10
END			orms error check	8200
NOP			-	0.10
NOPLF PAGE		-		0.10

(2) Basic instructions

The processing time when the instruction is not executed is calculated as follows: $0.10 \times($ Number of steps of each instruction +1$) \mu \mathrm{s}$

Instruction	Conditions (Device)		Processing Time ($\mu \mathrm{s}$)
LD =	When continuity established		0.40
	When no continuity		0.40
AND $=$	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
$\mathrm{OR}=$	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
LD < >	When continuity established		0.40
	When no continuity		0.40
AND < >	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
$\mathrm{OR}<>$	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
LD >	When continuity established		0.40
	When no continuity		0.40
AND >	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
OR >	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
LD $<=$	When continuity established		0.40
	When no continuity		0.40

Instruction	Conditions (Device)		Processing Time ($\mu \mathrm{s}$)
AND < =	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
$\mathrm{OR}<=$	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
LD <	When continuity established		0.40
	When no continuity		0.40
AND <	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
OR <	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
LD > =	When continuity established		0.40
	When no continuity		0.40
AND > =	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
OR > =	When not executed		0.35
	When executed	When continuity established	0.40
		When no continuity	0.40
LDD $=$	When continuity established		0.50
	When no continuity		0.50
ANDD =	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
ORD $=$	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
LDD < >	When continuity established		0.50
	When no continuity		0.50
ANDD < >	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
ORD < >	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
LDD >	When continuity established		0.50
	When no continuity		0.50
ANDD >	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
ORD >	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
LDD < =	When continuity established		0.50
		ontinuity	0.50

Instruction	Conditions (Device)		Processing Time ($\mu \mathrm{s}$)
ANDD < =	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
ORD < =	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
LDD <	When continuity established		0.50
	When no continuity		0.50
ANDD <	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
ORD <	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
LDD > =	When continuity established		0.50
	When no continuity		0.50
ANDD > =	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
ORD > =	When not executed		0.40
	When executed	When continuity established	0.50
		When no continuity	0.50
$\begin{aligned} & + \text { (S) (D) } \\ & +\mathrm{P} \text { (S) (D) } \end{aligned}$	When executed		0.50
$\begin{aligned} & + \text { (51) (52) (D) } \\ & +\mathrm{P} \text { (51) (22) (D) } \end{aligned}$	When executed		0.60
$\begin{aligned} & + \text { (S) (D) } \\ & -P \text { (S) (D) } \end{aligned}$	When executed		0.50
$\begin{aligned} & \text { + (51) (52) (D) } \\ & \text { - P (51) (52) (D) } \end{aligned}$	When executed		0.60
$\begin{aligned} & \mathrm{D}+\mathrm{S} \text { (D) } \\ & \mathrm{D}+\mathrm{P} \text { (S) (D) } \end{aligned}$	When executed		0.65
$\begin{aligned} & \mathrm{D}+\text { (51) (52) ((D) } \\ & \mathrm{D}+\mathrm{P} \text { (51) (22) (} \mathrm{D} \end{aligned}$	When executed		0.75
$\begin{aligned} & \text { D- (S) (D) } \\ & \mathrm{D}-\mathrm{P} \text { (S) (D) } \end{aligned}$	When executed		0.65
$\begin{aligned} & \hline \mathrm{D}-\text { (51) (22) (D) } \\ & \mathrm{D}-\mathrm{P} \text { (31) (52) (D) } \end{aligned}$	When executed		0.75
$\begin{aligned} & \text { * (51) (22) (D) } \\ & \text { * } \mathrm{P} \text { (11) (32) (D) } \end{aligned}$	When executed		0.55
$\begin{aligned} & \text { I (51) (52) (D) } \\ & \text { IP (51) (52) (D) } \end{aligned}$	-		14
$\begin{aligned} & \mathrm{D} * \text { (51) (52) (D) } \\ & \mathrm{D} * \mathrm{P} \text { (51) (22) (D) } \end{aligned}$	-		42
$\begin{aligned} & \hline \mathrm{D} / \text { (51) (52) (D) } \\ & \mathrm{D} / \mathrm{P} \text { (51) (52) (D) } \end{aligned}$	-		25

Instruction	Conditions (Device)	Processing Time ($\mu \mathrm{s}$)
INC INCP	-	0.35
DINC DINCP	-	0.45
$\begin{aligned} & \hline \mathrm{DEC} \\ & \mathrm{DECP} \end{aligned}$	-	0.35
$\begin{aligned} & \hline \text { DDEC } \\ & \text { DDECP } \end{aligned}$	-	0.45
$\begin{aligned} & \hline B C D \\ & B C D P \end{aligned}$	-	16
$\begin{aligned} & \hline \text { DBCD } \\ & \text { DBCDP } \end{aligned}$	-	23
$\begin{aligned} & \hline \mathrm{BIN} \\ & \mathrm{BINP} \end{aligned}$	-	15
DBIN DBINP	-	18
$\begin{aligned} & \hline \text { NEG } \\ & \text { NEGP } \end{aligned}$	-	14
DNEG DNEGP	-	15
MOV MOVP	(5 = D0, © $\mathrm{D}=\mathrm{D} 1$	0.35
DMOV DMOVP	(S $^{\prime}=\mathrm{D} 0, ~(1)=\mathrm{D} 1$	0.45
CML CMLP	-	0.35
DCML DCMLP	-	0.45
BMOV (S) (D) n	$\mathrm{n}=1$	35
$\text { BMOVP (S) (D) } \mathrm{n}$	$\mathrm{n}=96$	67
FMOV (S) (D) n	$\mathrm{n}=1$	30
FMOVP (S) (D) n	$\mathrm{n}=96$	48

(3) Application instructions

The processing time when the instruction is not executed is calculated as follows: $0.10 \times($ Number of steps of each instruction +1$) \mu \mathrm{s}$

Instruction	Conditions (Device)	Processing Time ($\mu \mathrm{s}$)
WAND (S) (D) WANDP (S) (D)	When executed	0.50
WAND (51) (52) (D) WANDP (51) (32) (ㅁ)	When executed	0.60
DAND (S) (D) DANDP (S) (D)	When executed	0.65
DAND (31) (52) (D) DANDP (51) (32) (D)	When executed	0.75
WOR (S) ($)$ WORP (S) (D)	When executed	0.50
WOR (51) (32) (D) WORP (51) (52) (D)	When executed	0.60
DOR (S) (ㅁ DORP (ㄷ) (D)	When executed	0.65
DOR (51) (32) (D) DORP (51) (52) (D)	When executed	0.75
WXOR (S) (D) WXORP (S) (D)	When executed	0.50
WXOR (51) (2) (D) WXORP (51) (32) (D)	When executed	0.60
DXOR (S) (D) DXORP (S) (D)	When executed	0.65
DXOR (51) (52) (D) DXORP (51) (52) (D)	When executed	0.75
WXNR (S) (D) WXNRP (5) (D)	When executed	0.50
WXNR (51) (52) (D) WXNRP (51) (32) (D)	When executed	0.60
DXNR (5) (D) DXNRP (S) (D)	When executed	0.65
DXNR (51) (52) (D) DXNRP (51) (52) (D)	When executed	0.75

(4) QSCPU dedicated instruction

Instruction	Conditions (Device)	Processing Time $(\mu \mathrm{s})$
S.QSABORT ©	When executed (K1234)	344
	When not executed	34

Appendix 2 SPECIAL RELAY LIST

Special relays, SM, are internal relays whose applications are fixed in the Programmable Controller.
For this reason, they cannot be used by sequence programs in the same way as the normal internal relays.
However, they can be turned ON or OFF as needed in order to control the CPU module and remote I/O modules.
The heading descriptions in the following special relay lists are shown in TableApp.2.1.
TableApp.2.1 Descriptions of the special relay lists headings

Item	Function of Item
Number	- Indicates special register number
Name	- Indicates name of special register
Meaning	- Indicates contents of special register
Explanation	- Discusses contents of special register in more detail
Set by (When set)	- Indicates whether the relay is set by the system or user, and, if it is set by the system, when setting is performed. <Set by> S : Set by system U : Set by user (sequence programs or test operations from GX Developer) S/U : Set by both system and user <When set> Indicated only for registers set by system Every END : Set during every END processing Initial : Set only during initial processing (when power supply is turned ON, or when going from STOP to RUN) Status change : Set only when there is a change in status Error : Set when error occurs Instruction execution: Set when instruction is executed Request : Set only when there is a user request (through SM, etc.)

For details on the following items, refer to the following manuals:

- Networks \rightarrow Manuals of each network module

区POINT

In the program that achieves the safety function, only SM1000 to SM1299 can be used.
Special relay other than SM1000 to SM1299 cannot be used in the program that achieves the safety function.

(1) Diagnostic Information

TableApp.2.2 Descriptions of the special relay headings

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM0	Diagnostic errors	OFF : No error ON : Error	- Turns ON when an error is detected by diagnostics (Includes when an annunciator is ON) - Remains ON if the condition is restored to normal thereafter.	S (Error)	QS
SM1	Self-diagnosis error	OFF : No self-diagnosis errors ON : Self-diagnosis	- Turns ON when an error is detected by selfdiagnostics (Does not include when an annunciator is ON) - Remains ON if the condition is restored to normal thereafter.	S (Error)	
SM5	Error common information	OFF : No error common information ON : Error common information	- When SMO is ON, ON if there is error common information	S (Error)	
SM16	Error individual information	OFF : No error individual information ON : Error individual information	- When SMO is ON, ON if there is error individual information	S (Error)	
SM50	Error reset	OFF \rightarrow ON: Error reset	- Conducts error reset operation	U	
SM51	Battery low latch	OFF : Normal ON: Battery low	- ON if battery voltage at CPU module or memory card drops below rated value. - Remains ON if the battery voltage returns to normal thereafter. - Synchronous with BAT. LED	S (Error)	
SM52	Battery low	OFF : Normal ON: Battery low	- Same as SM51, but goes OFF subsequently when battery voltage returns to normal.	S (Error)	
SM53	AC DOWN detection	OFF : AC DOWN not detected ON : AC DOWN detected	- Turns ON if an instantaneous power failure of within 20 ms occurs during use of the AC power supply module. Reset when the power supply is switched OFF, then ON.	S (Error)	
SM56	Operation error	OFF : Normal ON : Operation error	- ON when operation error is generated - Remains ON if the condition is restored to normal thereafter.	S (Error)	
SM61	I/O module verify error	OFF : Normal ON : Error	- Turns ON if the I/O module differs from the status registered at power on. - Remains ON if the condition is restored to normal thereafter.	S (Error)	
SM62	Annunciator detection	OFF : Not detected ON : Detected	- Goes ON if even one annunciator F goes ON.	S (Instruction execution)	

(2) System information

TableApp.2.3 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM203	STOP contact	STOP status	- Turns ON when the CPU is in STOP status.	S (Status change)	QS
SM210	Clock data set request	OFF : Ignored ON : Set request	- Writes clock data stored in SD210 to SD213 to the CPU module after the END instruction of the scan where the relay changes OFF to ON has been executed.	U	
SM211	Clock data error	OFF : No error ON : Error	- Turns ON when an error is detected in the clock data (SD210 to SD213) and turns OFF if no error is detected.	S (Request)	
SM213	Clock data read request	OFF : Ignored ON: Read request	- Reads clock data to SD210 to SD213 in BCD value when the relay is ON .	U	
SM232	Number of writes to ROM	OFF : Within the number of writes ON:Over the number of writes	- Turns ON when the number of writes to ROM exceeds 100,000.	S (Error)	

(3) System clocks/counters

TableApp.2.4 Special relay

(4) Safety CPU

TableApp.2.5 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM560	TEST MODE flag	OFF : Other than TEST MODE ON : TEST MODE	- Turns ON when operating on the TEST MODE. - Turns OFF when operating on the other mode (SAFETY MODE, SAFETY MODE (wait-for-restart)).	S (Status change)	QS
SM561	Continuous RUN of tolerance time setting for the TEST MODE	OFF : Within the setting time ON : Over the setting time	- Turns ON when the continuous RUN of tolerance time set for the TEST MODE in the parameter is exceeded.	S (Error)	

(5) Boot operation

TableApp.2.6 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM660	Boot operation	OFF : Program memory execution ON : During boot operation	(On the TEST MODE) - Turns ON during the boot operation from standard ROM. - Turns OFF when the boot operation from standard ROM is not run. (On the SAFETY MODE) - Always ON	S (Initial)	QS

(6) Instruction-Related Special Relays

TableApp.2.7 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM722	BIN/DBIN instruction error disabling flag	OFF : Error detection performed Orror detection not performed	- Turned ON when "OPERATION ERROR" is suppressed for BIN or DBIN instruction.	U	QS

(7) CC-Link Safety

TableApp.2.8 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM1004	Safety refresh communication status of each safety remote station (Safety master module 1)	OFF : Normal ON : Communication error	The safety station refresh communication status is stored. (The status of each station are stored in SD1004 to SD1007.)	S (Status change)	
SM1204	Safety refresh communication status of each safety remote station (Safety master module 2)	OFF : Normal ON : Communication error	The safety station refresh communication status is stored. (The status of each station are stored in SD1204 to SD1207.)	S (Status change)	

(8) CC-Link IE Field Network

TableApp.2.9 Special relay

Number	Name	Meaning	Explanation	Set by (When Set)	Corresponding CPU
SM1400	Setting status of safety communication with master station	OFF : Not set ON : Set	The setting status of safety communication with the master station is stored.	S (Initial)	
SM1420	Safety refresh communication status of each safety station	OFF: Normal (excluding safety refresh communication with the master station) ON : Communication error	The safety refresh communication status with each safety station (excluding the master station) is stored. (The status of each safety station is stored in SD1420 to SD1427.)		
SM1421	Safety refresh communication status of safety master station	OFF : Normal or safety communication with master station on CC-Link IE Field Network not set ON:Safety refresh communication error	The safety refresh communication status with the master station is stored. When safety communication with the master station is not set in parameter or own station is the master station, this bit turns OFF.	S (Status change)	QS*1
SM1700	Safety master station interlock status	OFF : Not interlocked ON : Interlocked	When an error is detected and an interlock is activated, this bit turns ON.		
SM1720	Safety master station interlock release request		The safety station interlock status is released by changing this bit from OFF to ON.	U	

* 1: This applies when the serial number (first five digits) of the CPU module is "13042" or later.

Appendix 3 SPECIAL REGISTER LIST

Special relays, SM, are internal relays whose applications are fixed in the Programmable Controller.
For this reason, it is not possible to use these registers in sequence programs in the same way that normal registers are used.
However, data can be written as needed in order to control the CPU modules and remote I/ O modules.
Data stored in the special registers are stored as BIN values if no special designation has been made to the contrary.

The heading descriptions in the following special register lists are shown in TableApp.3.1.
TableApp.3.1 Descriptions of the special register list headings

Item	Function of Item
Number	- Indicates special register number
Name	- Indicates name of special register
Meaning	- Indicates contents of special register
Explanation	- Discusses contents of special register in more detail
Set by (When set)	- Indicates whether the relay is set by the system or user, and, if it is set by the system, when setting is performed. <Set by> S : Set by system U : Set by user (sequence programs or test operations from GX Developer) S/U : Set by both system and user <When set> Indicated only for registers set by system Every END : Set during every END processing Initial : Set only during initial processing (when power supply is turned ON, or when going from STOP to RUN) Status change : Set only when there is a change in status Error : Set when error occurs Instruction execution : Set when instruction is executed Request : Set only when there is a user request (through SM, etc.) Writing to ROM : Set when writing to ROM

For details on the following items, refer to the following manuals:

- Networks \rightarrow Manuals of each network module

XPOINT

In the program that achieves the safety function, only SD1000 to SD1299 can be used.
Special register other than SD1000 to SD1299 cannot be used in the program that achieves the safety function.
(9) Diagnostic Information

TableApp.3.2 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD0	Diagnostic errors	Diagnosis error code	- Error codes for errors detected by diagnostics are stored as BIN data. - Contents identical to latest fault history information.	S (Error)	QS
SD1	Clock time for diagnosis error occurrence	Clock time for diagnosis error occurrence	- Stores the year (last two digits) and month when SD0 data was updated as BCD 2-digit code.	S (Error)	
SD2			- Stores the day and hour when SDO data was updated as BCD 2-digit code.		
SD3			- Stores the minute and second when SD0 data was updated as BCD 2-digit code.		
SD4	Error information categories	Error information category code	Category codes to identify what type of error information is stored in the common information (SD5 to SD15) or in the individual information (SD16 to SD26). - The common information category codes store the following codes: 0 : No error 1: Module No./Base No. 2: File name/Drive name 3: Time (value set) 4: Program error location 9: CC-Link Safety information 10: Module No./Station No. 11: CC-Link IE Field Network information - The individual information category codes store the following codes: 0: No error 2: File name/Drive name 3: Time (value actually measured) 4: Program error location 5: Parameter number 6: Annunciator (F) number 9: Error information 10: CC-Link Safety information 11: Program abort information 12: File diagnostics information 13: CC-Link IE Field Network information	S (Error)	

TableApp.3.2 Special register

Remark
*3 : Extensions are shown in TableApp.3.3.
TableApp.3.3Extension name

SDn	SDn+1		Extension name	
Higher 8 bits	Lower 8 bits	Higher 8 bits	File type	
51 H	50 H	41 H	QPA	Parameters
51 H	50 H	47 H	QPG	Sequence program
51 H	43 H	44 H	QCD	Device comment

TableApp.3.2 Special register

TableApp.3.2 Special register

TableApp.3.2 Special register

TableApp.3.2 Special register

TableApp.3.2 Special register

(10) System information

TableApp.3.4 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD200	Status of switch	Status of CPU switch	- The CPU switch status is stored in the following format.	S (Every END)	
SD201	LED status	Status of CPU-LED	- The following bit patterns are used to store the statuses of the LEDs on the CPU module: - 0 is off, 1 is on, and 2 is flicker. 1): RUN 5): Empty 2): ERR. 6): Empty 3): USER 7): TEST 4): BAT. 8): Empty	S (Status change)	QS
SD203	Operating status of CPU	Operating status of CPU	- The CPU operating status is stored as indicated in the following figure:	S (Every END)	

TableApp.3.4 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD210	Clock data	Clock data (year, month)	- The year (last two digits) and month are stored as BCD code at SD210 as shown below: b15 to b12b11 to b8b7 to b4b3 to b0 Example:		
SD211	Clock data	Clock data (day, hour)	- The day and hour are stored as BCD code at SD211 as shown below: b15 to b12b11 to b8 b7 to b4 b3 to b0 Example:		
SD212	Clock data	Clock data (minute, second)	- The minutes and seconds (after the hour) are stored as BCD code at SD212 as shown below: b 15 to b 12 b 11 to b 8 b 7 to b 4 b 3 to b 0 Example:	S (Request)/U	QS
SD213	Clock data	Clock data (later digits of year, day of week)	- Stores the year (two digits) and the day of the week in SD213 in the BCD code format as shown below.		
SD232	ROM write count	ROM write count up to now	- Store the ROM write count up to now.	S (Writing to ROM)	
SD240	Base mode	0: Automatic mode	- Stores the base mode.(0 fixed)	S (Initial)	
SD241	Extension stage number	0: Main base only	- Stores the maximum number of the extension bases being installed. (0 fixed)	S (Initial)	

TableApp.3.4 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD300	Device assignment (Same as the parameter setting)	Number of points assigned for ST	- Stores the number of points currently set for ST devices	S (Initial)	QS
SD301		Number of points assigned for C	- Stores the number of points currently set for C devices		
SD302		Number of points assigned for D	- Stores the number of points currently set for D devices		
SD303		Number of points assigned for W	- Stores the number of points currently set for W devices		
SD304		Number of points assigned for SW	- Stores the number of points currently set for SW devices		
SD340	Ethernet information	Number of modules mounted	- Indicates the number of mounted Ethernet modules.	S (Initial)	
SD341		I/O number	- Indicates the I/O number of mounted Ethernet module.		
SD342		Network number	- Indicates the network number of mounted Ethernet module.		
SD343		Group number	- Indicates the group number of mounted Ethernet module.		
SD344		Station number	- Indicates the station number of mounted Ethernet module.		

(11) System clocks/counters

TableApp.3.5 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD412	1 second counter	Number of counts in 1second units	- Following programmable controller CPU module RUN, 1 is added each second - Count repeats from 0 to 32767 to -32768 to 0	S (Status change)	QS
SD414	2n second clock setting	$2 n$ second clock units	- Stores value n of 2 n second clock (Default is 30) - Setting can be made between 1 to 32767	U	
SD420	Scan counter	Number of counts in each scan	- Incremented by 1 for each scan execution after the CPU module is set to RUN. - Count repeats from 0 to 32767 to -32768 to 0	S (Every END)	

(12) Scan information

TableApp.3.6 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD520 SD521	Current scan time	Current scan time (in 1 ms units) Current scan time (in $100 \mu \mathrm{~s}$ units)	- The current scan time is stored into SD520 and SD521. (Measurement is made in $100 \mu \mathrm{~s}$ units.) SD520: Stores the value of ms. (Storage range: 0 to 6553) SD521: Stores the value of $\mu \mathrm{s}$. (Storage range: 0 to 900) (Example) When the current scan time is 23.6 ms , the following values are stored. $\begin{aligned} & \text { SD520 }=23 \\ & \text { SD521 }=600 \end{aligned}$ - The accuracy of processing time of scantime is $\pm 0.1 \mathrm{~ms}$.	S (Every END)	QS
SD524 SD525	Minimum scan time	Minimum scan time (in 1 ms units) Minimum scan time (in $100 \mu \mathrm{~s}$ units)	- Stores the minimum value of the scan time into SD524 and SD525. (Measurement is made in $100 \mu \mathrm{~s}$ units.) SD524: Stores the ms place. (Storage range: 0 to 6553) SD525: Stores the μ s place. (Storage range: 0 to 900) - The accuracy of processing time of scantime is $\mu 0.1 \mathrm{~ms}$.	S (Every END)	
SD526 SD527	Maximum scan time	Maximum scan time (in 1 ms units) Maximum scan time (in $100 \mu \mathrm{~s}$ units)	- Stores the maximum value of the scan time into SD526 and SD527. (Measurement is made in 100μ s units.) SD526: Stores the ms place. (Storage range: 0 to 6553) SD527: Stores the $\mu \mathrm{s}$ place. (Storage range: 0 to 900) - The accuracy of processing time of scantime is $\pm 0.1 \mathrm{~ms}$.	S (Every END)	
SD540 SD541	END processing time	END processing time (in 1 ms units) END processing time (in $100 \mu \mathrm{~s}$ units)	- Stores the time from when the scan program ends until the next scan starts into SD540 and SD541. (Measurement is made in $100 \mu \mathrm{~s}$ units.) SD540: Stores the ms place. (Storage range: 0 to 6553) SD541: Stores the $\mu \mathrm{s}$ place. (Storage range: 0 to 900) - The accuracy of END processing time is $\pm 0.1 \mathrm{~ms}$.	S (Every END)	
SD542 SD543	Constant scan wait time	Constant scan wait time (in 1 ms units) Constant scan wait time (in $100 \mu \mathrm{~s}$ units)	- Stores the wait time for constant scan setting into SD542 and SD543. (Measurement is made in $100 \mu \mathrm{~s}$ units.) SD542: Stores the ms place. (Storage range: 0 to 6553) SD543: Stores the $\mu \mathrm{s}$ place. (Storage range: 0 to 900) - The accuracy of constant scan wait time is $\pm 0.1 \mathrm{~ms}$.	S (Every END)	
SD548	Scan program execution time	Scan program execution time (in 1 ms units)	- Stores the execution time of a scan program during one scan into SD548 and SD549. (Measurement is made in 100μ s units.)		
SD549		Scan program execution time (in $100 \mu \mathrm{~s}$ units)	SD548: Stores the ms place. (Storage range: 0 to 6553) SD549: Stores the $\mu \mathrm{s}$ place. (Storage range: 0 to 900) - Stored every scan. - The accuracy of scan program execution time is $\pm 0.1 \mathrm{~ms}$.	S (Every END)	

(13) Safety CPU

TableApp.3.7 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD560	Safety CPU operation mode	Safety CPU operation mode	- Stores the safety CPU operation mode.	S (Status change)	QS
SD561 SD562	TEST MODE continuous RUN time	TEST MODE continuous RUN time (seconds)	- Stores the TEST MODE continuous RUN time. (Measured in seconds) (RUN time in TEST MODE. Start measurement when STOP \& RUN (Time when operation is STOP is not included.) - Stores the measurement valve with the range of 1 to 2147483647.	S (Every END)	

(14) Memory card

TableApp.3.8 Special register

Number	Name	Meaning	Explanation	Set by (When set)	Corresponding CPU
SD620	Memory type	Memory type	- Indicates the type of built-in memory.	S (Initial)	QS
SD623	Drive 4 (ROM) capacity	Drive 4 capacity	- Drive 4 capacity is stored in 1 kbyte units.	S (Initial)	

TableApp.3.9 Special register

TableApp.3.9 Special register

TableApp.3.9 Special register

Number	Name	Meaning	Explanation						Set by (When set)	Corresponding CPU
	Safety station interlock status (CC-Link Safety master module 2)	0 : Interlock is not executed 1: During interlock	Bit corresponding to the station number turns 1 when the master station goes to the interlock status after the error was detected at the master station.						S (Status change)	QS
				b15	b14	to	b1	b0		
			SD1272	16	15	to	2	1		
			SD1273	32	31	to	18	17		
			SD1274	48	47	to	34	33		
			SD1275	64	63	to	50	49		
			1 to 64 in the table indicate station numbers.							
SD1276 to SD1279	Safety station interlock cancel request (CC-Link Safety master module 2)	0: I/O interlock of safety station on CCLink Safety not released 1: I/O interlock of safety station on CCLink Safety released	Cancel the I/O interlock of safety station by changing the bit of register from 0 to 1 .						U (Request)	
				b15	b14	to	b1	b0		
			SD1276	16	15	to	2	1		
			SD1277	32	31	to	18	17		
			SD1278	48	47	to	34	33		
			SD1279	64	63	to	50	49		
					to 64			numbers.		

(16) CC-Link IE Field Network

TableApp.3.9 Special register

Number	Name	Meaning						xplan	anatio							Set by (When set)	Corresponding CPU
	Setting status of safety communicatio n with each station	0 : Not set 1: Set	The safety communication setting status for each station is stored. For standard stations, " 0 " is stored.													S (Initial)	QS**
					b14 to	to	b9 b	b8 b	b7 b	b6	b5	b4	b3 b2	b1	b0		
			SD1400	16	15 to	to	10	9	8	7	6	5	43	2	1		
			SD1401	32	31 to	to	26	25	24	23	22	21	2019	18	17		
			SD1402	48	47 to	to	42	414	403	39	38	37	36 35	34	33		
			SD1403	64	63 to	to	58	57	56	55	54	53	5251	50	49		
			SD1404	80	79 to	to	74	737	727	71	70	69	$68 \quad 67$	66	65		
			SD1405	96	95 to	to	90	898	88	87	86	85	8483	82	81		
			SD1406		111 to	to 1	10610	10510	10410	1031	102	1011	10099	98	97		
			SD1407		to	to				119	118	1171	116115				
			1 to 120 in the table indicate station numbers. -: Fixed to "0"														
SD1420 to SD1427	Safety refresh communicatio n status of each safety station	0: Normal, Reserved station specified, unused station, standard station on CC-Link IE Field Network, or own station 1: Communicati on error of safety station on CC-Link IE Field Network	The communication status with each safety station is stored. For standard stations, " 0 " is stored.													S (Status change)	QS*1
			b15 b		b14 to	to	b9 b	b8 b	b7 b	b6	b5	b4	b3 ${ }^{\text {b2 }}$	b1	b0		
			SD1420	16	15 to	to	10	9	8	7	6	5	43	2	1		
			SD1421	32	31 to	to	26	25	242	23	22	21	2019	18	17		
			SD1422	48	47 to	to	42	414	403	39	38	37	36	34	33		
			SD1423	64	63 to	to	58	575	565	55	54	53	5251	50	49		
			SD1424	80	79 to	to	74	737	727	71	70	69	6867	66	65		
			SD1425	96	95 to	to	908	898	88	87	86	85	8483	82	81		
			SD1426	1121	111 to	to 1	10610	10510	10410	1031	102	1011	10099	98	97		
			SD1427		to	to	-	- 12	12011	119	118	1171	116115		113		
			1 to 120 in the table indicate station numbers. -: Fixed to "0"														
SD1440 to SD1560	Safety communicatio n status of each safety station	Stores the communication status with each safety station.	- The communication status with each safety station is stored. - SD1440: Station number 0 to SD1560: Station number 120 - (For reserved stations, unused stations, standard stations, or own station, "0" is stored.) 0 : Safety refresh communication 10 to 15: Safety initial communication 30: Communication error or interlocked 8400: Safety communication target station detection error 8420, 8421, 8422, 8423, 8424, 8425: Safety monitoring timeout error 8430, 8431, 8432: Safety station reception data error 8440: Safety connection setting error													S (Status change)	QS*1

TableApp.3.9 Special register

Number	Name	Meaning	Explanation														Set by (When set)	Corresponding CPU
	Safety station interlock status	0 : Not interlocked 1: Interlocked	- When an error is detected and an interlock is activated, the bit corresponding to the error station turns to "1".														S (Status change)	QS*1
				b15 b	b14	to	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0		
			SD1700	16	15	to	10	9	8	7	6	5	4	3	2	1		
			SD1701	32	31	to	26	25	24	23	22	21	20	19	18	17		
			SD1702	48	47	to	42	41	40	39	38	37	36	35	34	33		
			SD1703	64	63	to	58	57	56	55	54	53	52	51	50	49		
			SD1704	80	79	to	74	73	72	71	70	69	68	67	66	65		
			SD1705	96	95	to	90	89	88	87	86	85	84	83	82	81		
			SD1706	1121	111	to	1061	105	104	103	102	101	100	99	98	97		
			SD1707	-		to	-	- 1	1201	119	1181	117	1161	115		113		
			1 to 120 in the table indicate station numbers. -: Fixed to "0"															
	Safety station interlock release request	0: I/O interlock of safety station on CC-Link IE Field Network not released 1: I/O interlock of safety station on CC-Link IE Field Network released	- The interlock status of a safety station is released when the corresponding bit in this register is changed from " 0 " to " 1 ".														U (Request)	QS*1
						to	b9	b8 b7	b7	b6	b5	b4	b3	b2	b1	b0		
			SD1720	16	15	to	10	9	8	7	6	5	4	3	2	1		
			SD1721	32	31	to	26	25	24	23	22	21	20	19	18	17		
			SD1722	48	47	to	42	41	40	39	38	37	36	35	34	33		
			SD1723	64	63	to	58	57	56	55	54	53	52	51	50	49		
			SD1724	80	79	to	74	73	72	71	70	69	68	67	66	65		
			SD1725	96	95	to	90	89	88	87	86	85	84	83	82	81		
			SD1726	1121	111	to	1061	105	1041	103	102	101	100	99	98	97		
			SD1727	-	-	to	-	- 1	1201	119	1181	117	1161	115		113		
			1 to 120 in the table indicate station numbers. -: Fixed to "0"															

*1: This applies when the serial number (first five digits) of the CPU module is "13042" or later.
[Symbols]

* (BIN 16-bit multiplication operations) 6-14
+ (BIN 16-bit addition operations) 6-6
- (BIN 16-bit subtraction operations) 6-6
/ (BIN 16-bit division operations) 6-14
<(BIN 16-bit data comparisons) 6-2
<=(BIN 16-bit data comparisons) 6-2
<>(BIN 16-bit data comparisons) 6-2
=(BIN 16-bit data comparisons) 6-2
>(BIN 16-bit data comparisons) 6-2
>=(BIN 16-bit data comparisons) 6-2
[0] to [9]
16-bit data exclusive NOR operation (WXNR) 7-16
16-bit data transfers (MOV) 6-29
16-bit exclusive OR operations (WXOR) 7-12
16-bit negation transfers (CML) 6-31
32-bit data exclusive NOR operation (DXNR) 7-16
32-bit data transfers (DMOV) 6-29
32-bit exclusive OR operations (DXOR) 7-12
32-bit negation transfers (DCML) 6-31
[A]
A contact operation start (LD) 5-2
A contact parallel connection (OR) 5-2
A contact series connection (AND) 5-2
Addition
BIN 16-bit data (+) 6-6
BIN 32-bit data (D+) 6-10
ANB (Ladder block series connections) 5-7
AND (=, <>, >, <=, <, >=)
(BIN 16-bit data comparisons) 6-2
AND (A contact series connection) 5-2
AND ($D=, D<>, D>, D<=, D<, D>=)$
(BIN 32-bit data comparisons) 6-4
ANDF (Pulse series connections / trailing edge) 5-5
ANDP (Pulse series connections / leading edge) 5-5
ANI (B contact series connection) 5-2
Annunciator output (OUT F) 5-25
Application Instructions List 2-14
Arithmetic operation instructions 2-11
[B]
B contact operation start (LDI) 5-2
B contact parallel connection (ORI) 5-2
B contact series connection (ANI) 5-2
Basic Instructions List 2-9
BCD (Conversion from BIN data to 4-digit BCD) 6-22
BCD conversion
BIN 16 bits to 4-digit BCD (BCD) 6-22
BIN 32 bits to 8-digit BCD (DBCD) 6-22
BIN (Conversion from BCD 4-digit data to BIN data) 6-24
BIN 16-bit addition and subtraction operations (+, -)6-6
BIN 16-bit data comparisons
AND (=, <>, >, <=, <, >=) 6-2
LD (=, <>, >, <=, <, >=) 6-2
OR (=, <>, >, <=, <, >=) 6-2
BIN 16-bit multiplication and division operations (*, /) 6-14
BIN 32-bit addition and subtraction operations (D+, D-)6-10
BIN 32-bit data comparisons
AND ($\mathrm{D}=, \mathrm{D}<>, \mathrm{D}>, \mathrm{D}<=, \mathrm{D}<, \mathrm{D}>=$) 6-4
LD ($\mathrm{D}=, \mathrm{D}<>, \mathrm{D}>, \mathrm{D}<=, \mathrm{D}<, \mathrm{D}>=$) 6-4
OR ($D=, D<>, D>, D<=, D<, D>=)$ 6-4
BIN 32-bit multiplication and division operations (D*, D/) 6-16
BIN conversions
4-digit BCD to BIN16 bits (BIN) 6-24
8-digit BCD to BIN32 bits (DBIN) 6-24
Bit Data 3-3
Bit device output reverse (FF) 5-36
Block 16-bit data transfers (BMOV) 6-34
BMOV (Block 16-bit transfers) 6-34
[C]
Cautions on Programming 3-10
CML (16-bit negation transfers) 6-31
Comparison operation instructions 6-2
Comparison Operation Instructions List 2-9
Comparisons (BIN 16-bit data) 6-2
Comparisons (BIN 32-bit data) 6-4
Complement of 2 of BIN 16-bit data (NEG) 6-27
Complement of 2 of BIN 32-bit data (DNEG) 6-27
Conditions for Execution of Instructions 3-12
Connection Instructions List 2-6
Contact Instructions List 2-5
Conversion
BCD 4-digit to BIN data (BIN) 6-24
BCD 8-digit to BIN data (DBIN) 6-24
BIN to BCD 4-digit data (BCD) 6-22
BIN to BCD 8-digit data (DBCD) 6-22
Counters (OUT C) 5-23
[D]
DAND (Logical products with 32-bit data) 7-3
Data conversion instructions 6-22
Data conversion instructions List 2-12
DBCD (Conversion from BIN data to 8-digit BCD) 6-22
DBIN (Conversion from BCD 8-digit data to BIN data)6-24
DCML (32-bit negation transfers) 6-31
DDEC (Decrementing 32-bit BIN data) 6-20
DEC (Decrementing 16-bit BIN data) 6-18
Decrementing
BIN 16-bit (DEC) 6-18
BIN 32-bit (DDEC) 6-20
Designating Data 3-3
Device range check 3-10
Digit designation 3-4
Digit designation of bit devices 3-4
DINC (Incrementing 32-bit BIN data) 6-20
Division
BIN 16-bit data(/) 6-14
BIN 32-bit data(D/) 6-16
DMOV (32-bit data transfers) 6-29
DNEG (Complement of 2 of BIN 32-bit data) 6-27
DOR (Logical sums of 32-bit data) 7-8
Double word data 3-6
DXNR (32-bit data exclusive NOR operation) 7-16
DXOR (32-bit exclusive OR operations) 7-12
D* (BIN 32-bit multiplication operations) 6-16
D+ (BIN 32-bit addition operations) 6-10
D/ (BIN 32-bit division operations) 6-16
D- (BIN 32-bit subtraction operations) 6-10
D<= (BIN 32-bit data comparisons) 6-4
D<> (BIN 32-bit data comparisons) 6-4
D< (BIN 32-bit data comparisons) 6-4
D= (BIN 32-bit data comparisons) 6-4
D>= (BIN 32-bit data comparisons) 6-4
D> (BIN 32-bit data comparisons) 6-4
[E]
EGF (Edge relay operation results pulse / trailing edge)5-15
EGP (Edge relay operation results pulse / leading edge) 5-15
END (End sequence program) 5-42
End sequence program (END) 5-42
Exclusive OR 7-2
[F]
FF (Bit device output reverse) 5-36
FMOV (Identical 16-bit data block transfers) 6-36
Forced control stop instruction (S.QSABORT) 8-2
[H]
High speed retentive timer (OUTH ST) 5-19
High speed timer (OUTH T) 5-19
How to Read Instruction 4-2
How to Read Instruction Tables 2-3
[I]
Identical 16-bit data block transfers (FMOV) 6-36
INC (Incrementing 16-bit BIN data) 6-18
Incrementing
16-bit BIN data (INC) 6-18
32-bit BIN data (DINC) 6-20
INV (Operation results inversion) 5-12
[L]
Ladder block parallel connections (ORB) 5-7
Ladder block series connections (ANB) 5-7
LD (=, <>, >, <=, <, >=)
(BIN 16-bit data comparisons) 6-2
LD (A contact operation start) 5-2
LD ($\mathrm{D}=, \mathrm{D}<>, \mathrm{D}>, \mathrm{D}<=, \mathrm{D}<, \mathrm{D}>=$
(BIN 32-bit data comparisons) 6-2
LDF (Pulse operation start / trailing edge) 5-5
LDI (B contact operation start) 5-2
LDP (Pulse operation start / leading edge) 5-5
Leading edge output (PLS) 5-33
Load (LD) 5-2
Load inverse (LDI) 5-2
Logical Operation Instructions List 2-14
Logical product 7-2
Logical products with 16-bit data (WAND) 7-3
Logical products with 32-bit data (DAND) 7-3
Logical sum 7-2
Logical sums of 16-bit data (WOR) 7-8
Logical sums of 32-bit data (DOR) 7-8
Low speed retentive timer (OUT ST) 5-19
Low speed timer (OUT T) 5-19
[M]
Master Control Instructions 5-38
MC (Setting the master control) 5-38
MCR (Resetting the master control) 5-38
MEF (Pulse operation results / trailing edge) 5-14
MEP (Pulse operation results / leading edge) 5-14
MOV (16-bit data transfers) 6-29
MPP (Operation results pop) 5-9
MPS (Operation results push) 5-9
MRD (Operation results read) 5-9
Multiplication
BIN 16-bit (*) 6-14
BIN 32-bit (D*) 6-16
[N]
NEG (Complement of 2 of BIN 16-bit data) 6-27
No-operation (NOP, NOPLF, PAGE n) 5-43
NON exclusive logical sum 7-2
NOP (No operation) 5-43
NOPLF (No operation / page break) 5-43
[0]
Operation error 3-10
Operation results inversion (INV) 5-12
Operation results pop (MPP) 5-9
Operation results pulse
Edge relay memory (EGF, EGP) 5-15
Memory (MEF, MEP) 5-14
Operation results push (MPS) 5-9
Operation results read (MRD) 5-9
Operation start (LD, LDI) 5-2
OR (=, , >, =) (BIN 16-bit data comparisons) 6-2
OR (=, <>, >, <=, <, >=)
(BIN 16-bit data comparisons) 6-2
OR (A contact parallel connection) 5-2
OR ($D=, D<>, D>, D<=, D<, D>=)$
(BIN 32-bit data comparisons) 6-4
OR inverse (ORI) 5-2
ORB (Ladder block parallel connections) 5-7
ORF (Pulse parallel connection / trailing edge) 5-5
ORI (B contact parallel connection) 5-2
ORP (Pulse parallel connection / leading edge) 5-5
Other Instructions 5-43
OUT
Annunciator output (OUT F) 5-25
Counters (OUT C) 5-23
High speed retentive timer (OUTH ST) 5-19
High speed timer (OUTH T) 5-19
Low speed retentive timer (OUT ST) 5-19
Low speed timer (OUT T) 5-19
Output (OUT) 5-17
Output Instruction (OUT) 5-17
Output Instructions List 2-7
Output Reverse (FF) 5-36
[P]
PAGE break (NOPLF) 5-43
PAGE n (No operation) 5-43
Parallel connection (OR,ORI) 5-2
Parallel connection (ORB) 5-7
PLF (Trailing edge output) 5-33
PLS (Leading edge output) 5-33
Pop (MPP) 5-9
Pulse (PLS) 5-33
Pulse conversion
(EGP, EGF) 5-15
(MEF, MEP) 5-14
Pulse operation start (LDP, LDF) 5-5
Pulse parallel connection (ORP, ORF) 5-5
Pulse series connection (ANDP, ANDF) 5-5
Push (MPS) 5-9
[Q]
QSCPU Dedicated Instruction List 2-16
[R]
Read (MRD) 5-9
Reset (RST) 5-29
Resetting devices (RST) 5-29
Resetting the annunciators (RST F) 5-31
Resetting the master control (MCR) 5-38
Reverse
Bit device output (FF) 5-36
Operation results (INV) 5-12
RST
Resetting devices (RST) 5-29
Resetting the annunciators (RST F) 5-31
[S]
S.QSABORT (Forced control stop instruction) 8-2
Sequence Instruction List 2-5
Series connection (ANB) 5-7
Series connection (AND, ANI) 5-2
SET
Setting devices (SET) 5-27
Setting the annunciators (SET F) 5-31
Setting devices 5-27
Setting the master control (MC) 5-38
Step Number 3-13
Subset Processing 3-9
Subtraction
BIN 16-bit data (-) 6-6
BIN 32-bit data (D-) 6-10
[T]
Timers (OUT T) 5-19
Trailing edge output (PLF) 5-33
Types of Instructions 2-2
[W]
WAND (Logical products with 16-bit data) 7-3
WOR (Logical sums of 16-bit data) 7-8
Word data 3-4
Word device bit designation 3-3
WXNR (16-bit data exclusive NOR operation) 7-16
WXOR (16-bit exclusive OR operations) 7-12

MEMO

\qquad

WARRANTY

Please confirm the following product warranty details before using this product.

1. Limited Warranty and Product Support.

a. Mitsubishi Electric Company ("MELCO") warrants that for a period of eighteen (18) months after date of delivery from the point of manufacture or one year from date of Customer's purchase, whichever is less, Mitsubishi MELSEC Safety programmable logic controllers (the "Products") will be free from defects in material and workmanship.
b. At MELCO's option, for those Products MELCO determines are not as warranted, MELCO shall either repair or replace them or issue a credit or return the purchase price paid for them.
c. For this warranty to apply:
(1) Customer shall give MELCO (i) notice of a warranty claim to MELCO and the authorized dealer or distributor from whom the Products were purchased, (ii) the notice shall describe in reasonable details the warranty problem, (iii) the notice shall be provided promptly and in no event later than thirty (30) days after the Customer knows or has reason to believe that Products are not as warranted, and (iv) in any event, the notice must given within the warranty period;
(2) Customer shall cooperate with MELCO and MELCO's representatives in MELCO's investigation of the warranty claim, including preserving evidence of the claim and its causes, meaningfully responding to MELCO's questions and investigation of the problem, grant MELCO access to witnesses, personnel, documents, physical evidence and records concerning the warranty problem, and allow MELCO to examine and test the Products in question offsite or at the premises where they are installed or used; and
(3) If MELCO requests, Customer shall remove Products it claims are defective and ship them to MELCO or MELCO's authorized representative for examination and, if found defective, for repair or replacement. The costs of removal, shipment to and from MELCO's designated examination point, and reinstallation of repaired or replaced Products shall be at Customer's expense.
(4) If Customer requests and MELCO agrees to effect repairs onsite at any domestic or overseas location, the Customer will pay for the costs of sending repair personnel and shipping parts. MELCO is not responsible for any re-commissioning, maintenance, or testing on-site that involves repairs or replacing of the Products.
d. Repairs of Products located outside of Japan are accepted by MELCO's local authorized service facility centers ("FA Centers"). Terms and conditions on which each FA Center offers repair services for Products that are out of warranty or not covered by MELCO's limited warranty may vary.
e. Subject to availability of spare parts, MELCO will offer Product repair services for (7) years after each Product model or line is discontinued, at MELCO's or its FA Centers' rates and charges and standard terms in effect at the time of repair. MELCO usually produces and retains sufficient spare parts for repairs of its Products for a period of seven (7) years after production is discontinued.
f. MELCO generally announces discontinuation of Products through MELCO's Technical Bulletins. Products discontinued and repair parts for them may not be available after their production is discontinued.

2. Limits of Warranties.

a. MELCO does not warrant or guarantee the design, specify, manufacture, construction or installation of the materials, construction criteria, functionality, use, properties or other characteristics of the equipment, systems, or production lines into which the Products may be incorporated, including any safety, fail-safe and shut down systems using the Products.
b. MELCO is not responsible for determining the suitability of the Products for their intended purpose and use, including determining if the Products provide appropriate safety margins and redundancies for the applications, equipment or systems into which they are incorporated.
c. Customer acknowledges that qualified and experienced personnel are required to determine the suitability, application, design, construction and proper installation and integration of the Products. MELCO does not supply such personnel.
d. MELCO is not responsible for designing and conducting tests to determine that the Product functions appropriately and meets application standards and requirements as installed or incorporated into the end-user's equipment, production lines or systems.
e. MELCO does not warrant any Product:
(1) repaired or altered by persons other than MELCO or its authorized engineers or FA Centers;
(2) subjected to negligence, carelessness, accident, misuse, or damage;
(3) improperly stored, handled, installed or maintained;
(4) integrated or used in connection with improperly designed, incompatible or defective hardware or software;
(5) that fails because consumable parts such as batteries, backlights, or fuses were not tested, serviced or replaced;
(6) operated or used with equipment, production lines or systems that do not meet applicable and commensurate legal, safety and industry-accepted standards;
(7) operated or used in abnormal applications;
(8) installed, operated or used in contravention of instructions, precautions or warnings contained in MELCO's user, instruction and/or safety manuals, technical bulletins and guidelines for the Products;
(9) used with obsolete technologies or technologies not fully tested and widely accepted and in use at the time of the Product's manufacture;
(10)subjected to excessive heat or moisture, abnormal voltages, shock, excessive vibration, physical damage or other improper environment; or
(11)damaged or malfunctioning due to Acts of God, fires, acts of vandals, criminals or terrorists, communication or power failures, or any other cause or failure that results from circumstances beyond MELCO's control.
f. All Product information and specifications contained on MELCO's website and in catalogs, manuals, or technical information materials provided by MELCO are subject to change without prior notice.
g. The Product information and statements contained on MELCO's website and in catalogs, manuals, technical bulletins or other materials provided by MELCO are provided as a guide for Customer's use. They do not constitute warranties and are not incorporated in the contract of sale for the Products.
h. These terms and conditions constitute the entire agreement between Customer and MELCO with respect to warranties, remedies and damages and supersede any other understandings, whether written or oral, between the parties. Customer expressly acknowledges that any representations or statements made by MELCO or others concerning the Products outside these terms are not part of the basis of the bargain between the parties and are not factored into the pricing of the Products.
i. THE WARRANTIES AND REMEDIES SET FORTH IN THESE TERMS ARE THE EXCLUSIVE AND ONLY WARRANTIES AND REMEDIES THAT APPLY TO THE PRODUCTS.
j. MELCO DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

3. Limits on Damages.

a. MELCO'S MAXIMUM CUMULATIVE LIABILITY BASED ON ANY CLAIMS FOR BREACH OF WARRANTY OR CONTRACT, NEGLIGENCE, STRICT TORT LIABILITY OR OTHER THEORIES OF RECOVERY REGARDING THE SALE, REPAIR, REPLACEMENT, DELIVERY, PERFORMANCE, CONDITION, SUITABILITY, COMPLIANCE, OR OTHER ASPECTS OF THE PRODUCTS OR THEIR SALE, INSTALLATION OR USE SHALL BE LIMITED TO THE PRICE PAID FOR PRODUCTS NOT AS WARRANTED.
b. Although MELCO has obtained the certification for Product's compliance to the international safety standards IEC61508 and EN954-1/ISO13849-1 from TUV Rheinland, this fact does not guarantee that Product will be free from any malfunction or failure. The user of this Product shall comply with any and all applicable safety standard, regulation or law and take appropriate safety measures for the system in which the Product is installed or used and shall take the second or third safety measures other than the Product. MELCO is not liable for damages that could have been prevented by compliance with any applicable safety standard, regulation or law.
c. MELCO prohibits the use of Products with or in any application involving power plants, trains, railway systems, airplanes, airline operations, other transportation systems, amusement equipments, hospitals, medical care, dialysis and life support facilities or equipment, incineration and fuel devices, handling of nuclear or hazardous materials or chemicals, mining and drilling, and other applications where the level of risk to human life, health or property are elevated.
d. MELCO SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT OR PUNITIVE DAMAGES, FOR LOSS OF PROFITS, SALES, OR REVENUE, FOR INCREASED LABOR OR OVERHEAD COSTS, FOR DOWNTIME OR LOSS OF PRODUCTION, FOR COST OVERRUNS, OR FOR ENVIRONMENTAL OR POLLUTION DAMAGES OR CLEAN-UP COSTS, WHETHER THE LOSS IS BASED ON CLAIMS FOR BREACH OF CONTRACT OR WARRANTY, VIOLATION OF STATUTE, NEGLIGENCE OR OTHER TORT, STRICT LIABILITY OR OTHERWISE.
e. In the event that any damages which are asserted against MELCO arising out of or relating to the Products or defects in them, consist of personal injury, wrongful death and/or physical property damages as well as damages of a pecuniary nature, the disclaimers and limitations contained in these terms shall apply to all three types of damages to the fullest extent permitted by law. If, however, the personal injury, wrongful death and/or physical property damages cannot be disclaimed or limited by law or public policy to the extent provided by these terms, then in any such event the disclaimer of and limitations on pecuniary or economic consequential and incidental damages shall nevertheless be enforceable to the fullest extent allowed by law.
f. In no event shall any cause of action arising out of breach of warranty or otherwise concerning the Products be brought by Customer more than one year after the cause of action accrues.
g. Each of the limitations on remedies and damages set forth in these terms is separate and independently enforceable, notwithstanding the unenforceability or failure of essential purpose of any warranty, undertaking, damage limitation, other provision of these terms or other terms comprising the contract of sale between Customer and MELCO.

4. Delivery/Force Majeure.

a. Any delivery date for the Products acknowledged by MELCO is an estimated and not a promised date. MELCO will make all reasonable efforts to meet the delivery schedule set forth in Customer's order or the purchase contract but shall not be liable for failure to do so.
b. Products stored at the request of Customer or because Customer refuses or delays shipment shall be at the risk and expense of Customer.
c. MELCO shall not be liable for any damage to or loss of the Products or any delay in or failure to deliver, service, repair or replace the Products arising from shortage of raw materials, failure of suppliers to make timely delivery, labor difficulties of any kind, earthquake, fire, windstorm, flood, theft, criminal or terrorist acts, war, embargoes, governmental acts or rulings, loss or damage or delays in carriage, acts of God, vandals or any other circumstances reasonably beyond MELCO's control.

5. Choice of Law/Jurisdiction.

These terms and any agreement or contract between Customer and MELCO shall be governed by the laws of the State of New York without regard to conflicts of laws. To the extent any action or dispute is not arbitrated, the parties consent to the exclusive jurisdiction and venue of the federal and state courts located in the Southern District of the State of New York. Any judgment there obtained may be enforced in any court of competent jurisdiction.

6. Arbitration.

Any controversy or claim arising out of, or relating to or in connection with the Products, their sale or use or these terms, shall be settled by arbitration conducted in accordance with the Center for Public Resources (CPR) Rules for Non-Administered Arbitration of International Disputes, by a sole arbitrator chosen from the CPR's panels of distinguished neutrals. Judgment upon the award rendered by the Arbitrator shall be final and binding and may be entered by any court having jurisdiction thereof. The place of the arbitration shall be New York City, New York. The language of the arbitration shall be English. The neutral organization designated to perform the functions specified in Rule 6 and Rules 7.7(b), 7.8 and 7.9 shall be the CPR.

Microsoft, Windows, Windows NT are registered trademarks of Microsoft Corporation in the United States and other countries.
Pentium and Celeron are trademarks of Intel Corporation in the United States and other countries.
Ethernet is a trademark of Xerox Co., Ltd. in the United States.
CompactFlash is a trademark of SanDisk Corporation.
VxWorks, Tornado, WindPower, WindSh and WindView are registered trademarks of Wind River Systems, Inc.
Other company names and product names used in this document are trademarks or registered trademarks of respective owners.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

[^15]
[^0]: *1 BAT.ALM LED is displayed at BATTERY ERROR.

[^1]: *1 This applies when the serial number (first five digits) of the MELSECNET/H module is "08102" or later.
 *2 This applies when the serial number (first five digits) of the CPU module is "10031" or earlier.
 *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^2]: *1 This applies when the serial number (first five digits) of the MELSECNET/H module is "08102" or later.
 *2 This applies when the serial number (first five digits) of the CPU module is "10031" or earlier.
 *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^3]: *1 This applies when the serial number (first five digits) of the MELSECNET/H module is "08102" or later.
 *2 This applies when the serial number (first five digits) of the CPU module is "10031" or earlier.
 *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^4]: *1 This applies when the serial number (first five digits) of the MELSECNET/H module is "08102" or later.
 *2 This applies when the serial number (first five digits) of the CPU module is "10031" or earlier.
 *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^5]: *1 The operating status of a CPU module in case of an error can be set in the "Operation settings during remote station error" of "Parameter". The default is set to "Stop" (The LED indication changes according to the status).
 *2 At occurrence of "F****", the "USER" LED turns on.

[^6]: *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^7]: *1 The operating status of a CPU module in case of an error can be set in the "Operation settings during remote station error" of "Parameter". The default is set to "Stop" (The LED indication changes according to the status).
 *2 At occurrence of "F****", the "USER" LED turns on.

[^8]: *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^9]: *1 The operating status of a CPU module in case of an error can be set in the "Operation settings during remote station error" of "Parameter". The default is set to "Stop" (The LED indication changes according to the status).
 *2 At occurrence of "F****", the "USER" LED turns on.

[^10]: *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^11]: *1 The operating status of a CPU module in case of an error can be set in the "Operation settings during remote station error" of "Parameter". The default is set to "Stop" (The LED indication changes according to the status).
 *2 At occurrence of "F****", the "USER" LED turns on.

[^12]: *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^13]: *1 The operating status of a CPU module in case of an error can be set in the "Operation settings during remote station error" of "Parameter". The default is set to "Stop" (The LED indication changes according to the status).
 *2 At occurrence of "F****", the "USER" LED turns on.

[^14]: *3 This applies when the serial number (first five digits) of the CPU module is "13042" or later.

[^15]: When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission

