Mitsubishi Programmable Controller
WNELSECG $_{\text {series }}$

# QD72P3C3 Type Positioning Module with Built-in Counter Function User's Manual 

-GX Configurator-PT (SW1D5C-QPTU-E)

## - SAFETY PRECAUTIONS

(Read these precautions before use.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product. For the safety precautions of the programmable controller system, please read the User's Manual for the CPU module.

In this manual, the safety precautions are classified into two levels: " $\uparrow$ WARNING" and " 1 CAUTION".


Under some circumstances, failure to observe the precautions given under CAUTION" may lead to serious consequences.
Observe the precautions of both levels because they are important for personal and system safety.

Please save this manual to make it accessible when required and always forward it to the end user.
[DESIGN PRECAUTIONS]


#### Abstract

\section*{WARNING}

Provide a safety circuit outside the programmable controller so that the entire system will operate safely even when an external power error or programmable controller failure occurs. Failure to do so may cause an accident due to incorrect output or malfunction. (1) Outside the programmable controller, create an emergency stop circuit or interlock circuit to prevent mechanical damage due to excess of position control upper limit/lower limit. (2) The machine OPR control is controlled by the OPR direction and OPR speed data and deceleration starts when the near-point dog turns ON. Thus, if the OPR direction is incorrectly set, deceleration may not start and the motor continues rotating. Create an interlock circuit outside the programmable controller to prevent mechanical damage. (3) If the positioning module detects an error, it directs the motor to decelerate and stop. Make sure that the OPR data and positioning data are within the parameter setting values.


## CAUTION

Do not install the control lines, communication cables, pulse input wiring, and pulse output wiring together with the main circuit or power lines, and also do not bring them close to each other.
Keep a distance of 100 mm (3.94inch) or more between them.
Failure to do so may cause a malfunction due to noise.

## [INSTALLATION PRECAUTIONS]



- Use the programmable controller in the environment conditions given in the general specifications of the User's Manual for the CPU module.
Failure to do so may cause an electric shock, fire, malfunction, or damage to or deterioration of the product.
- While pressing the installation lever located at the bottom of the module, fully insert the module fixing projection into the fixing hole in the base unit and press the module using the hole as a fulcrum. Incorrect module mounting may cause a malfunction, failure, or drop of the module. In an environment of frequent vibrations, secure the module with screws.
Tighten the screw within the specified torque range. Undertightening can cause drop of the screw, short circuit or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- Be sure to shut off all phases of the external power supply used by the system before mounting or removing the module.
Failure to do so may cause damage to the product.
- Do not directly touch any conductive part or electronic part of the module.

Doing so may cause a malfunction or failure of the module.

## [WIRING PRECAUTIONS]

| Shut off the external power supply for the system in all phases before wiring. |
| :--- |
| Failure to do so may result in electric shock or damage to the product. |

## 1. CAUTION

Check the terminal layout before wiring to the module, and connect the cables correctly.

- Solder connectors for external devices correctly. Incomplete soldering may result in malfunction.
- Prevent foreign matter such as dust or wire chips from entering the module.

Such foreign matter can cause a fire, failure, or malfunction.

- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring.
Do not remove the film during wiring.
Remove it for heat dissipation before system operation.
- Securely connect connectors for external devices to the module connector and fully tighten the two screws.
- When disconnecting the external wiring cable connected to the module, do not pull it by holding the cable part. Disconnect the cable with connector with holding the connector plugged into the module. Pulling the cable part with the cable still connected to the module may cause a malfunction or damage to the module and/or cable.
- Do not install cables for connecting external I/O signals of the QD72P3C3 and drive unit together with the main circuit cables, power cables, and/or the load cables for any other than programmable controllers or not bring them close to each other.
Keep a distance of 100 mm ( 3.94 inches) or more between them.
Failure to do so may cause a malfunction due to noise, surge or induction.


## WARNING

- Be sure to shut off all phases of the external power supply used by the system before cleaning or retightening module fixing screw.
Failure to do so may cause an electric shock.


## CAUTION

Do not or remodel each of the modules.
Doing so may cause failure, malfunctions, personal injuries and/or a fire.

- Be sure to shut off all phases of the external power supply used by the system before mounting or removing the module.
Not doing so may result in a failure or malfunction of the module.
- Do not install/remove the module to/from the base unit more than 50 times after the first use of the product. (IEC 61131-2 compliant)
Failure to do so may cause malfunction.

Before starting test operation, set the parameter speed limit value slow, and prepare so that operation can be stopped immediately in case of hazardous situation.

- Before handling the module, touch a grounded metal object to discharge the static electricity from the human body.
Not doing so may result in a failure or malfunction of the module.


## [DISPOSAL PRECAUTIONS]

| When disposing of this product, treat it as industrial waste. |
| :--- |

## -CONDITIONS OF USE FOR THE PRODUCT-

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

* The manual number is given on the bottom left of the back cover.

| Print date | *Manual number | Revision |
| :---: | :---: | :---: |
| Jun., 2007 | SH(NA)-080683ENG-A | First edition |
| Jan., 2008 | SH(NA)-080683ENG-B | Correction <br> About the Generic Terms and Abbreviations, Section 2.3 to 2.6, Section 6.2.1, Section 6.2.2 Appendix 1 |
| May, 2008 | SH(NA)-080683ENG-C | Correction <br> SAFETY PRECAUTIONS, Compliance with the EMC and Low Voltage <br> Directives, Section 2.3, 2.6, 3.1, 5.4.1, 6.2.1, 6.3.1, 6.3.3, 14.1 to 14.5, 15.2.1 <br> Added <br> Section 12.8 |
| Sep., 2009 | SH(NA)-080683ENG-D | Correction <br> SAFETY PRECAUTIONS, Section 1.1, 2.3, 2.4, 2.6, 3.1, 5.1, 5.3, 6.2.1, Appendix 1, 5, 8 |
| May, 2010 | SH(NA)-080683ENG-E | Correction <br> SAFETY PRECAUTIONS, GENERIC TERMS AND ABBREVIATIONS, <br> Section 2.3, 2.6, 4.1.1, 5.1, 5.3, 5.4.1, 6.2.1, 7.1, 8.2.3, 11.5, 12.5, 15.2.1, 15.3 <br> Added <br> CONDITIONS OF USE FOR THE PRODUCT |
|  |  |  |

Japanese Manual Version SH-080682-E
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

## INTRODUCTION

Thank you for purchasing the Mitsubishi programmable controller MELSEC-Q series.
Before using the product, please read this manual carefully to develop full familiarity with the functions and performance of the Q series programmable controller to ensure correct use.

## CONTENTS

SAFETY PRECAUTIONS ..... A-1
CONDITIONS OF USE FOR THE PRODUCT ..... A - 5
REVISIONS ..... A-6
INTRODUCTION ..... A-7
CONTENTS ..... A-7
HOW TO READ THIS MANUAL ..... A-12
Compliance with the EMC and Low Voltage Directives ..... A-12
GENERIC TERMS AND ABBREVIATIONS ..... 13
PACKING LIST ..... A-13
PART 1 PRODUCT SPECIFICATIONS AND HANDLING
CHAPTER1 PRODUCT OUTLINE ..... 1-1 to 1-13
1.1 Features of QD72P3C3 ..... 1-1
1.2 Outline of Positioning Control and Count Operation ..... 1-3
1.2.1 Mechanism of positioning control ..... 1-3
1.2.2 Design outline of positioning control system ..... 1-5
1.2.3 Design outline of counter function ..... - 8
1.2.4 Communicating signals between QD72P3C3 and each module ..... -9
1.3 Basic Operation of Positioning Control ..... 1-12
1.3.1 Outline of control start ..... - 12
1.3.2 Outline of control stop ..... - 13
CHAPTER2 SYSTEM CONFIGURATION ..... 2-1 to 2-11
2.1 General Image of System ..... 2-1
2.2 Component List ..... 2-2
2.3 Applicable Systems ..... - 3
2.4 Using QD72P3C3 with Redundant CPUs ..... 2-7
2.5 About Use of the QD72P3C3 with the MELSECNET/H Remote I/O Station ..... 2-8
2.6 Checking Function Version, Serial Number and Software Version ..... 2-9
CHAPTER3 SPECIFICATIONS AND FUNCTIONS ..... 3-1 to 3-19
3.1 Performance Specifications ..... 3-1
3.2 Function List ..... 3-2
3.3 Specifications of I/O Signals with Programmable Controller CPU ..... 3-4
3.3.1 List of I/O signals with programmable controller CPU ..... 3-4
3.3.2 Details of input signal (QD72P3C3 programmable controller CPU) ..... 3-6
3.3.3 Details of output signals (programmable controller CPU QD72P3C3) ..... 3-8
3.4 List of Buffer Memory Addresses ..... 3-10
3.5 Specifications of I/O Interfaces with External Device ..... 3-12
3.5.1 Electrical specifications of I/O signals ..... 3-12
3.5.2 Signal layout for external device connector ..... 3-16
3.5.3 List of I/O signal details ..... 3-17
3.5.4 Internal circuit of I/O interface ..... 3-18
CHAPTER4 DATA USED FOR POSITIONING CONTROL ..... 4-1 to 4-31
4.1 Data Types ..... 4-1
4.1.1 Parameters and data required for control ..... 4-1
4.1.2 Parameter setting items ..... 4-3
4.1.3 JOG data setting items ..... 4-5
4.1.4 Positioning data setting items ..... -5
4.1.5 Types and functions of monitor data ..... 4-6
4.1.6 Types and functions of control data ..... 4-6
4.2 Parameter List ..... -7
4.3 JOG Data List ..... 4-21
4.4 Positioning Data List ..... 4-23
4.5 Monitor Data List ..... 4-28
4.6 Control Data List ..... 4-30
4.6.1 Axis control data ..... 4-30
CHAPTER5 PROCEDURES AND SETTINGS BEFORE OPERATION ..... 5-1 to 5-21
5.1 Handling Precautions ..... 5-1
5.2 Procedures Before Operation ..... 5-3
5.3 Part Names ..... 5-4
5.4 Wiring ..... -5-7
5.4.1 Wiring precautions ..... -5-7
5.5 Wiring Check ..... 5-12
5.5.1 Check items at wiring completion ..... 5-12
5.6 Intelligent Function Module Switch Setting• ..... 5-14
5.7 Simple Reciprocating Operation ..... 5-18
CHAPTER6 UTILITY PACKAGE (GX Configurator-PT) ..... 6-1 to 6-22
6.1 Utility Package Functions ..... 6-1
6.2 Installing and Uninstalling the Utility Package ..... 6-2
6.2.1 Handling precautions ..... 6-2
6.2.2 Operating environment ..... 6-4
6.3 Utility Package Operation ..... 6-6
6.3.1 Common utility package operations ..... 6-6
6.3.2 Operation overview ..... -6-8
6.3.3 Starting the Intelligent function module utility ..... 6-10
6.4 Initial Setting ..... 6-12
6.5 Auto Refresh Setting ..... 6-15
6.6 Monitor/Test ..... 6-17
6.6.1 Monitor/Test screen• ..... 6-17
6.6.2 ACC/DEC time calculation function screen ..... 6-21
CHAPTER7 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL
7-1 to 7-31
7.1 Precautions for Creating Program ..... 7-1
7.2 List of Devices Used ..... 7-4
7.3 Creating a Program ..... 7-9
7.3.1 General configuration of program ..... 7-9
7.3.2 Positioning control operation program ..... 7-10
7.4 Positioning Control Program Examples ..... 7-13
7.5 Program Details ..... 7-23
7.5.1 Initialization program ..... 7-23
7.5.2 Start method setting program ..... 7-24
7.5.3 Start program ..... 7-25
7.5.4 Auxiliary program ..... 7-30
7.6 Program Example when the Coincidence Detection Interrupt Function is Used ..... 7-31
PART 2 CONTROL DETAILS AND SETTING
CHAPTER8 OPR CONTROL ..... 8-1 to 8-12
8.1 Outline of OPR Control ..... -8-1
8.1.1 Two types of OPR control ..... 8-1
8.2 Machine OPR Control ..... 8-2
8.2.1 Outline of the machine OPR operation ..... 8-2
8.2.2 OPR method for machine OPR control ..... 8-4
8.2.3 OPR method (1): Near-point dog method ..... - 5
8.2.4 OPR method (2): Stopper 3 ..... -8
8.3 Fast OPR Control ..... 8-10
8.3.1 Outline of the fast OPR control operation ..... 8-10
8.4 Count Value Selection Function at OPR ..... - 12
CHAPTER9 POSITIONING CONTROL ..... 9-1 to 9-15
9.1 Outline of Positioning Control ..... 9-1
9.1.1 Data required for positioning control ..... - 9 -
9.1.2 Positioning control operation patterns ..... -2
9.1.3 Specifying the positioning address ..... -4
9.1.4 Checking the current value ..... 9-5
9.2 Positioning Data Setting ..... 9-7
9.2.1 Relation between each control and positioning data ..... 9-7
9.2.2 1-axis linear control ..... 9-8
9.2.3 Speed control ..... 9-10
9.2.4 Current value change ..... 9-13
9.3 Multiple axes concurrent start control ..... 9-15
CHAPTER10 JOG OPERATION ..... 10-1 to 10-7
10.1 Outline of JOG Operation ..... 10-1
10.2 JOG Operation Execution Procedure ..... 10-4
10.3 JOG Operation Example ..... 10-5
CHAPTER11 AUXILIARY FUNCTION ..... 11-1 to 11-16
11.1 Outline of the Auxiliary Function ..... 11-1
11.2 Speed Limit Function ..... 11-2
11.3 Speed Change Function ..... 11-3
11.4 Software Stroke Limit Function ..... 11-6
11.5 Hardware Stroke Limit Function ..... 11-9
11.6 ACC/DEC Process Function ..... 11-11
11.6.1 Calculating the actual ACC/DEC time ..... 11-13
CHAPTER12 COUNTER FUNCTION ..... 12-1 to 12-15
12.1 Outline of Counter Function ..... 12-1
12.1.1 Types of pulse input method ..... 12-1
12.1.2 Reading count values ..... 12-2
12.1.3 Selecting counter format ..... 12-2
12.2 Linear Counter Function ..... 12-3
12.3 Ring Counter Function ..... 12-4
12.4 Count Enable Function ..... 12-6
12.5 Coincidence Detection Function ..... 12-7
12.6 Preset Function ..... 12-11
12.7 Current Feed Value, Count Value Simultaneous Change Function ..... 12-12
12.8 Response Delay Time ..... 12-15
CHAPTER13 COMMON FUNCTION ..... 13-1 to 13-4
13.1 Outline of Common Function ..... 13-1
13.2 External I/O Signal Logic Switching Function ..... 13-2
13.3 External I/O Signal Monitor Function ..... 13-3
14.1 Dedicated Instruction List and Applicable Devices ..... 14-1
14.2 Interlock for Dedicated Instruction Execution ..... 14-2
14.3 ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3 ..... 14-3
14.4 ZP.DSTRT1, ZP.DSTRT2, ZP.DSTRT3 ..... 14-8
14.5 ZP.SPCHG1, ZP.SPCHG2, ZP.SPCHG3 ..... 14-12
CHAPTER15 TROUBLESHOOTING ..... 15-1 to 15-22
15.1 Troubleshooting Flow ..... 15-1
15.1.1 When the RUN LED turns OFF ..... 15-2
15.1.2 When the ERR.LED turns ON ..... 15-2
15.1.3 When the AX LED flashes after the ERR.LED flashes•• ..... 15-2
15.1.4 When the axis/CH warning occurrence signal ( X 4 to X 6 ) turns ON ..... 15-2
15.1.5 When the count operation is not executed, or not executed normally ..... 15-3
15.1.6 When the coincidence detection interrupt does not occur ..... 15-4
15.2 Error and Warning Descriptions ..... 15-5
15.2.1 Error code list ..... 15-7
15.2.2 List of warnings ..... 15-19
15.3 Checking Errors with the LED Display Function ..... 15-21
15.4 Checking Error Description Using System Monitor of GX Developer ..... 15-22
APPENDICES App - 1 to App - 21
Appendix 1 External Dimensions ..... App - 1
Appendix 2 Operation Timing and Processing Time in Each Control••.................................... App - 2
Appendix 3 Connection Examples with Servo Amplifiers Manufactured by Mitsubishi Electric Corporation............................................................................................................. App - 7
Appendix 4 Connection Examples with Stepping Motors Manufactured by ORIENTAL MOTOR CO., LTD.
..........................................................................................................App - 1 ..... - 11
Appendix 5 Connection Examples with Servo Amplifiers Manufactured by Panasonic Corporation ............................................................................................................................ ..... 13
Appendix 6 Connection Examples with Servo Amplifiers Manufactured by YASKAWA ELECTRIC CORPORATION ..... 15
Appendix 7 Connection Examples with Servo Amplifiers Manufactured by SANYO DENKI CO., LTD.  ..... $-16$
Appendix 8 Comparison with QD70P type positioning module ..... App - 17
Appendix 9 List of Buffer Memory Addresses ..... -App - 20
INDEX
(1) The symbols used in this manual are shown below.

Pr.* Indicates parameter item.
JOG.* Indicates JOG data item.
Da. ${ }^{*}$ Indicates positioning data item.
Md. ${ }^{*}$ Indicates monitor data item.
Cd.* Indicates control data item.
(Serial No. is displayed at the *.)
(2) Numeric values used in this manual

The buffer memory addresses, error codes and warning codes are represented in decimal.
The X/Y devices are represented in hexadecimal.
The setting data and monitor data are represented in either decimal or hexadecimal.
The data whose name is ended by " H " are represented in hexadecimal.
(Example) 10......Decimal, 10н...... Hexadecimal

## Compliance with the EMC and Low Voltage Directives

## (1) For programmable controller system

To configure a system meeting the requirements of the EMC and Low Voltage Directives when incorporating the Mitsubishi programmable controller (EMC and Low Voltage Directives compliant) into other machinery or equipment, refer to Chapter 9 "EMC AND LOW VOLTAGE DIRECTIVES" of the QCPU User's Manual (Hardware Design, Maintenance and Inspection).
The CE mark, indicating compliance with the EMC and Low Voltage Directives, is printed on the rating plate of the programmable controller.
(2) For the product

To make this product conform to the EMC and Low Voltage Directives, please refer to "Section 5.4.1 Wiring precautions".

## GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

| Generic term and abbreviation | Description |
| :---: | :---: |
| Programmable controller CPU | Generic term for the programmable controller CPU to which the QD72P3C3 can be mounted. |
| QD72P3C3 | Abbreviation for the QD72P3C3 type positioning module with built-in counter function |
| Peripheral | Generic term for IBM-PC/AT-compatible personal computer in which "GX Configurator-PT" and "GX Developer" below have been installed. |
| GX Configurator-PT | Abbreviation for utility package GX Configurator-PT (SW1D5C-QPTU-E) for the QD72P3C3 type positioning module |
| GX Developer <br> GX Works2 | Product name of the software package for the MELSEC programmable controllers |
| GX Works2 |  |
| Personal computer | Generic term for IBM-PC/AT-compatible personal computer |
| Workpiece | Generic term for mobile object and controlled object such as workpiece and industrial tool |
| Windows Vista ${ }^{\text {® }}$ |  |
| Windows ${ }^{\circledR} \mathrm{XP}$ | Generic term for the following: <br> Microsoft ${ }^{\oplus}$ Windows ${ }^{\circledR}$ XP Professional Operating System, <br> Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition Operating System |

## PACKING LIST

The following are included in the package.

| Model | Product name | Quantity |
| :--- | :--- | :---: |
| QD72P3C3 | QD72P3C3 type positioning module with built-in counter function | 1 |
| SW1D5C-QPTU-E | GX Configurator-PT Version 1 (single license product) (CD-ROM) | 1 |
| SW1D5C-QPTU-AE | GX Configurator-PT Version 1 (volume license product) (CD-ROM) | 1 |

Memo
$\qquad$

## PART 1 PRODUCT SPECIFICATIONS AND HANDLING

PART 1 consists for the following purposes (1) to (4).
(1) To understand the outline of positioning control, and the QD72P3C3 specifications and functions
(2) To perform actual work such as installation and wiring(3) To set parameters and data required for positioning control(4) To create a sequence program required for positioning control
For details of each control, refer to "PART 2".
CHAPTER1 PRODUCT OUTLINE 1-1 to 1 -
CHAPTER2 SYSTEM CONFIGURATION ..... 2-1 to 2 -
CHAPTER3 SPECIFICATIONS AND FUNCTIONS ..... 3-1 to 3 -
CHAPTER4 DATA USED FOR POSITIONING CONTROL ..... 4-1 to 4-
CHAPTER5 PROCEDURES AND SETTINGS BEFORE OPERATION ..... 5-1 to 5-
CHAPTER6 UTILITY PACKAGE (GX Configurator-PT) ..... 6-1 to 6-
CHAPTER7 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL .....  7 - 1 to 7 -
CHAPTER8 OPR CONTROL ..... 8-1 to 8 -
CHAPTER9 POSITIONING CONTROL ..... 9-1 to 9 -
CHAPTER10 JOG OPERATION. ..... 10-1 to 10 -
CHAPTER11 AUXILIARY FUNCTION ..... 11-1 to 11 -
CHAPTER12 COUNTER FUNCTION ..... 12-1 to 12 -
CHAPTER13 COMMON FUNCTION ..... 13-1 to 13 -
CHAPTER14 DEDICATED INSTRUCTIONS ..... 14-1 to 14 -
CHAPTER15 TROUBLESHOOTING ..... 15-1 to 15-

Memo

## CHAPTER1 PRODUCT OUTLINE

This User＇s Manual describes the specifications，handling，and programming methods for the type QD72P3C3 positioning module with built－in counter function used together with the MELSEC－Q series CPU module．

When applying any of the program examples introduced in this manual to the actual system，verify the applicability and confirm that no problem occurs in the system control．

## 1．1 Features of QD72P3C3

The following describes the features of the QD72P3C3．

## （1）Space saving

The QD72P3C3 provides 3－axes of positioning control and 3－channels of counter function per slot．

## （2）Positioning control

（a）The QD72P3C3 is an open－collector output type module，which can output pulses at a maximum rate of 100 kpps ．
（b）The pulse output mode is selectable．
The pulse output mode can be selected from PULSE／SIGN and CW／CCW．
（c）Easy positioning control with only a few parameter settings is possible． With only a few parameter settings，such as＂Command speed＂，＂ACC／DEC time＂ and＂Positioning address／movement amount＂，positioning control can be performed．
（d）3－axes concurrent start is possible．
（e）Speed change during positioning control is possible by the target speed change function．
（3）Counter function
（a）With this function，a maximum counting speed of 100 kpps is possible．
（b）A counting range is from -1073741824 to 1073741823.
（c）The pulse input mode is selectable
The pulse input mode can be selected from 1 multiple of 2 phases， 2 multiples of 2 phases， 4 multiples of 2 phases，and CW／CCW．
（d）The coincidence detection function is provided．
The coincidence detection point preset at an arbitrary channel is compared to the current counter value and the result can be checked．
When the current counter value coincides with the preset detection point，an interrupt program can be started using an interrupt pointer．
(4) Easy setting using GX Configurator-PT

With optional GX Configurator-PT, the QD72P3C3 settings can be configured on screen.
This reduces a load on sequence programs and makes checking the settings and operating status of the module easier.

### 1.2 Outline of Positioning Control and Count Operation

### 1.2.1 Mechanism of positioning control

Positioning control using the QD72P3C3 is performed using "pulse signals". (The QD72P3C3 is a module that outputs pulses.)
In a positioning control system using the QD72P3C3, a variety of software and external devices are used to play their roles as shown below.

The QD72P3C3 realizes complex positioning control by importing and controlling various signals, parameters, and data with the programmable controller CPU.


The following describes the operation principle of "position control" and "speed control".

## (1) Position control

The total number of pulses required to move the specified distance is obtained in the following manner.


* The number of pulses required for the motor to rotate once is the "encoder resolution" described in the motor catalog specification list.

When this total number of pulses is issued from the QD72P3C3 to the drive unit, the control, for which the workpiece to move the specified distance, can be realized. The machine side movement amount when one pulse is issued to the drive unit is called the "movement amount per pulse". This value is the minimum value for the workpiece to move, and is also the degree of accuracy for electrical positioning control.

## (2) Speed control

Although the above "total number of pulses" is an element required to control the movement amount, speed must be controlled to perform equal-speed operation. This "speed" is controlled by the "pulse frequency" output from the QD72P3C3 to the drive unit.


Figure 1.1 Relationship between position control and speed control

- The "movement amount per pulse" is the value determined on the machine side. (Refer to Section 1.2.2.)
- The QD72P3C3 uses the "total number of pulses" to control the position and the "pulse frequency" to control the speed.


### 1.2.2 Design outline of positioning control system

The following describes the outline of the operation of positioning control system, using the QD72P3C3.
(1) Positioning control system using the QD72P3C3


Figure 1.2 Outline of the operation of positioning control system using the QD72P3C3
(a) Positioning control operation using the QD72P3C3

1) The QD72P3C3 outputs a pulse train.

When the pulse train is output from the QD72P3C3, the deviation counter of the drive unit accumulates the input pulses.
The D/A converter converts these accumulated pulses (droop pulses) into DC analog voltage, which serves as a speed command for the servomotor.
2) The servomotor starts its rotation upon reception of the speed command from the drive unit.
As the servomotor rotates, the pulse encoder (PLG) attached to the servomotor generates feedback pulses in proportion to the rotation frequency. The generated feedback pulses are fed back to the drive unit, and reduce the droop pulses of the deviation counter.
The deviation counter maintains a certain number of droop pulses so that the servomotor keeps its rotation.
3) When the QD72P3C3 stops the output of commanded pulse train, the servomotor decelerates as the droop pulses of the deviation counter decrease and finally stops when the droop pulse count drops to zero.
That is, the servomotor rotation speed is proportional to the pulse frequency, while the servomotor rotation angle is proportional to the number of commanded pulses output from the QD72P3C3.
When the movement amount per pulse is given, the overall movement amount can be determined in proportion to the number of pulses in the pulse train. The rotation speed (feed speed) of the servomotor, on the other hand, can be determined by the pulse frequency.
(b) Output pulse from the QD72P3C3

1) As shown in Figure 1.3, the number of pulses in a pulse train is small at the start, and then the number increases as the servomotor accelerates and its speed approaches the command speed.
2) The pulse frequency stabilizes once the speed reaches the command speed.
3) To decelerate the servomotor, the QD72P3C3 decreases the number of pulses in a pulse train before it finally stops the output.
The servomotor actually decelerates and stops its rotation with little delay from the command pulse stop.
This time difference in deceleration and stop between pulse output from the QD72P3C3 and the servomotor is called the "stop settling time" and necessary for ensuring stopping accuracy.


Figure 1.3 Output pulse from the QD72P3C3
(2) Movement amount and speed in a system using ball screw


Figure 1.4 System using ball screw
In the system shown in Figure 1.4, the movement amount per pulse, command pulse frequency, and deviation counter droop pulse amount are determined in the following manner.

1) Movement amount per pulse

The movement amount per pulse is determined by the feed screw lead, deceleration ratio, and pulse encoder resolution.
The movement amount, therefore, will be: (Number of pulses output) $\times$ (Movement amount per pulse).

$$
A=\frac{\mathrm{L}}{\mathrm{R} \times \mathrm{n}}[\mathrm{~mm} / \text { pulse }]
$$

2) Command pulse frequency

The command pulse frequency is determined by the movable section speed and movement amount per pulse.

$$
\mathrm{Vs}=\frac{\mathrm{V}}{\mathrm{~A}}[\text { pulse/s] }
$$

3) Deviation counter droop pulse amount

The deviation counter droop pulse amount is determined by the command pulse frequency and position loop gain.

$$
\varepsilon=\frac{\mathrm{Vs}}{\mathrm{~K}} \text { [pulse] }
$$

### 1.2.3 Design outline of counter function

The following describes the outline of the count operation, using the counter function of the QD72P3C3.


1) Pulses input to the QD72P3C3 are counted.

- Counting pulses can be performed separately from positioning control.
- Counting feedback pulses enables positioning control, checking the actual position at the same time.
The positioning address and count value can be synchronized with the use of following functions.

| Count value selection function at OPR | Refer to <br> Section 8.4. |
| :--- | :--- |
| Current feed value, count value | Refer to |
| simultaneous change function | Section 12.7. |

2) The status of I/O signals and buffer memory of the QD72P3C3 can be checked with the sequence program.
The start/stop and preset of count operation can also be performed.

### 1.2.4 Communicating signals between QD72P3C3 and each module

The following shows the outline of the signal communication between the QD72P3C3 and programmable controller CPU, peripheral (GX Configurator-PT), and drive unit. (A peripheral is connected to the programmable controller CPU, and communicates signals with the QD72P3C3 via the programmable controller CPU.)
For details of each I/O signals, refer to CHAPTER 3.

(1) QD72P3C3 $\_$Programmable controller CPU

The QD72P3C3 and programmable controller CPU communicate the following data via the base unit.

| Direction <br> Communication | QD72P3C3 $\rightarrow$ Programmable controller CPU | Programmable controller CPU $\rightarrow$ QD72P3C3 |
| :---: | :---: | :---: |
| Control signal | Signals indicate the QD72P3C3 status: <br> -Module READY signal (X0) <br> -Axis/CH error occurrence signal (X1 to X3) <br> -Axis/CH warning occurrence signal (X4 to X6) <br> -BUSY signal (X8 to XA) <br> - Start complete signal (XC to XE) <br> -Positioning complete signal (X10 to X12) <br> -Count value large (X14, X18, and X1C) <br> -Count value coincidence (X15, X19, and X1D) <br> -Count value small (X16, X1A, and X1E) | Signals related to commands: <br> -Programmable controller CPU READY signal (Y0) <br> -Axis/CH error reset signal (Y1 to Y3) <br> -Axis stop signal (Y4 to Y6) <br> -Positioning start signal (Y8 to YA) <br> -Forward run JOG start signal (YC,YE, and Y10) <br> -Reverse run JOG start signal (YD, YF, and Y 11 ) <br> -Coincidence signal reset command (Y14 to Y16) <br> - Preset command (Y18 to Y1A) <br> -Count enable command (Y1C to Y1E) |
| Data (read/write) | - Parameter <br> -JOG data <br> -Positioning data <br> -Control data <br> - Monitor data | -Parameter <br> -JOG data <br> -Positioning data <br> - Control data |

(2) QCPU $\leftrightarrow$ Peripheral (GX Configurator-PT)

The QCPU and peripheral communicates the following data. (For details, refer to CHAPTER 6.)

| $\overbrace{\text { Communication }}^{\text {Direction }}$ | QCPU $\rightarrow$ Peripheral | Peripheral $\rightarrow$ QCPU |
| :---: | :---: | :---: |
| Data | - | - Initial setting <br> -Auto refresh setting |
| Operation monitor | -Monitor data (QD72P3C3 buffer memory/XY devices) | - |

(3) QD72P3C3 - Drive unit

The QD72P3C3 and drive unit communicate the following data via the external device connector.

| Direction | QD72P3C3 $\rightarrow$ Drive unit | Drive unit $\rightarrow$ QD72P3C3 |
| :--- | :--- | :--- |
| Communication | Signals related to commands: <br> •Deviation counter clear signal (CLEAR) | Signals indicate OP: <br> $\bullet$ Zero signal (PG0) |
| Control signal | •Pulse train output (PULSE F/PULSE R) | - |
| Pulse train |  |  |

## (4) Encoder $\rightarrow$ QD72P3C3

The input signals from the encoder are input to the QD72P3C3 via the external device connector.

| Encoder | $\cdot$ Pulse train input (CH A/CH B) |
| :--- | :--- |

(5) Mechanical system inputs (switches) $\rightarrow$ QD72P3C3

The input signals from the mechanical system inputs (switches) are input to the QD72P3C3 via the external device connector.

| Mechanical system input <br> (switch) | $\bullet$ Near-point dog signal (DOG) <br> $\cdot$ Upper/lower limit signal (FLS/RLS) |
| :--- | :--- |

### 1.3 Basic Operation of Positioning Control

### 1.3.1 Outline of control start

The following flowchart shows the outline of each control start.

* Assume that module installation and required settings for system configuration have already been prepared.



## 1．3．2 Outline of control stop

A control stops in the following cases：
（1）Each control ended normally．
（2）An error occurred in the programmable controller CPU．
（3）An error occurred in the QD72P3C3．
（4）The axis stop signal（Y4 to Y 6 ）from the programmable controller CPU is turned ON．

The following table shows the outline of the stop processing performed in the cases above．
（Except the case（1）where each control ended normally．）

| Cause of stop | Stopped | Axis operation |
| :--- | :---: | :---: | :---: | :---: | :---: |
| axis |  |  | \(\left.\begin{array}{c}status after <br>

stop（Md．4）\end{array}\right)\) OPR control $\left.\begin{array}{c}\text { Positioning } \\
\text { control }\end{array} \begin{array}{c}\text { JOG } \\
\text { operation }\end{array}\right]$

■Stop after multiple axes concurrent start under positioning control
The axes started will not stop simultaneously．The stop command（axis stop signal（Y4 to Y6）ON）must be issued to each axis．

## CHAPTER2 SYSTEM CONFIGURATION

This chapter describes the system configuration of the QD72P3C3.

### 2.1 General Image of System

The following is the general configuration including the QD72P3C3, programmable controller CPU, and peripheral, etc.
(Numbers in the figure correspond to the ones in the table in "Section 2.2 Component List" on the next page.


Remark
*1 For available CPU modules, refer to "Section 2.3 Applicable System".
*2 For available base units and power supply modules, refer to the User's Manual for the CPU module.

### 2.2 Component List

A positioning system using the QD72P3C3 consists of the following components.

| No. | Product name | Model | Remarks |
| :---: | :---: | :---: | :---: |
| 1 | Positioning module | QD72P3C3 | - |
| 2 | GX Developer | SWロD5C-GPPW-E | For details, refer to the GX Developer Operating Manual and "CHAPTER 6 UTILITY PACKAGE (GX Configurator-PT)". |
|  | GX Configurator-PT | SWロD5C-QPTU-E |  |
| 3 | Personal computer | IBM-PC/AT-compatible personal computer | (User preparation) <br> For details, refer to the GX Developer Operating Manual. |
| 4 | RS-232 cable | QC30R2 | (User preparation) <br> RS-232 cable for connecting CPU module with IBM-PC/ATcompatible personal computer <br> For details, refer to the GX Developer Operating Manual. |
| 5 | USB cable | - | (User preparation) <br> USB cable for connecting CPU module with IBM-PC/ATcompatible personal computer <br> For details, refer to the GX Developer Operating Manual. |
| 6 | Drive unit | - | (User preparation) <br> For details, refer to the manual for the drive unit. |
| 7 | Connection cable (for connection between the QD72P3C3 and drive unit) | - | (User preparation) <br> Cable for connecting the QD72P3C3, drive unit, and encoder (Install them with reference to the manual for the connected device and Section 3.5.2.) |

### 2.3 Applicable Systems

This section describes applicable systems.
(1) Applicable modules and base units, and No. of modules
(a) When mounted with a CPU module

The table below shows the CPU modules and base units applicable to the QD72P3C3 and quantities for each CPU model.
Depending on the combination with other modules or the number of mounted modules, power supply capacity may be insufficient.
Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.

| Applicable CPU module |  |  | No. of modules ${ }^{* 1}$ | Base unit ${ }^{*}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPU type |  | CPU model |  | Main base unit | Extension base unit |
| Programmable controller CPU | Basic model QCPU*3 | Q00JCPU | Up to 8 | 0 | O |
|  |  | Q00CPU |  |  |  |
|  |  | Q01CPU |  |  |  |
|  | High <br> Performance model QCPU | Q02CPU | Up to 64 | 0 | O |
|  |  | Q02HCPU |  |  |  |
|  |  | Q06HCPU |  |  |  |
|  |  | Q12HCPU |  |  |  |
|  |  | Q25HCPU |  |  |  |
|  | Process CPU | Q02PHCPU | Up to 64 | 0 | $\bigcirc$ |
|  |  | Q06PHCPU |  |  |  |
|  |  | Q12PHCPU |  |  |  |
|  |  | Q25PHCPU |  |  |  |
|  | Redundant CPU | Q12PRHCPU | Up to $53{ }^{* 4}{ }^{*}$ | $\times$ | $\bigcirc$ |
|  |  | Q25PRHCPU |  |  |  |
|  | Universal model QCPU | Q00UJCPU | Up to 8 | 0 | 0 |
|  |  | Q00UCPU | Up to 24 |  |  |
|  |  | Q01UCPU |  |  |  |
|  |  | Q02UCPU | Up to 36 |  |  |
|  |  | Q03UDCPU | Up to 64 |  |  |
|  |  | Q04UDHCPU |  |  |  |
|  |  | Q06UDHCPU |  |  |  |
|  |  | Q10UDHCPU |  |  |  |
|  |  | Q13UDHCPU |  |  |  |
|  |  | Q20UDHCPU |  |  |  |
|  |  | Q26UDHCPU |  |  |  |
|  |  |  |  |  | Applicable $\times$ : |


| Applicable CPU module |  |  | No. of modules ${ }^{* 1}$ | Base unit ${ }^{*}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPU type |  | CPU model |  | Main base unit | Extension base unit |
| Programmable controller CPU | Universal model QCPU | Q03UDECPU | Up to 64 | 0 | 0 |
|  |  | Q04UDEHCPU |  |  |  |
|  |  | Q06UDEHCPU |  |  |  |
|  |  | Q10UDEHCPU |  |  |  |
|  |  | Q13UDEHCPU |  |  |  |
|  |  | Q20UDEHCPU |  |  |  |
|  |  | Q26UDEHCPU |  |  |  |
|  |  | Q50UDEHCPU |  |  |  |
|  |  | Q100UDEHCPU |  |  |  |
|  | Safety CPU | QS001CPU | N/A | $\times$ | $\times{ }^{*}$ |
| C Controller module |  | Q06CCPU-V | Up to 64 | 0 | 0 |
|  |  | Q06CCPU-V-B |  |  |  |
|  |  | Q12DCCPU-V |  |  |  |
|  |  |  |  |  | Applicable $\times$ : N |

* 1 The CPU modules can be mounted within the range of each number of I/O points.
* 2 The CPU modules can be mounted on any I/O slots of the base units.
* 3 For the coincidence detection interrupt function, use the Basic model QCPU module of function version B or later.
* 4 The dedicated instructions are not supported.
* 5 The coincidence detection interrupt function is not supported.
* 6 The safety CPU cannot be connected with extension base units.

For the use of the C Controller module, refer to the C Controller Module User's Manual.
(b) Mounting to a MELSECNET/H remote I/O station The table below shows the network modules and base units applicable to the QD72P3C3 and quantities for each network module model.
Depending on the combination with other modules or the number of mounted modules, power supply capacity may be insufficient.
Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.

| Applicable network module ${ }^{* 3 * 4}$ | No. of modules*1 | Base unit ${ }^{\text {2 }}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Main base unit of remote I/O station | Extension base unit of remote I/O station |
| QJ72LP25-25 | Up to 64 | 0 | 0 |
| QJ72LP25G |  |  |  |
| QJ72LP25GE |  |  |  |
| QJ72BR15 |  |  |  |

* 1 Limited within the range of I/O points for the network module.
* 2 Can be installed to any I/O slot of a base unit.
* 3 The coincidence detection interrupt function is not supported.
* 4 The dedicated instructions are not supported.


## Remark

The Basic model QCPU or C Controller module cannot create the MELSECNET/ H remote I/O network.
(2) Support of the multiple CPU system

When using the QD72P3C3 in a multiple CPU system, refer to the following manual first.

- QCPU User's Manual (Multiple CPU System)
(a) Supported QD72P3C3

The function version of the QD72P3C3 has been "B" from the first release product, supporting the multiple CPU system.
(b) Intelligent function module parameters

Write intelligent function module parameters to only the control CPU of the QD72P3C3.

## (3) Supported software packages

Relation between the system containing the QD72P3C3 and software package is shown in the following table.
GX Developer is necessary when using the QD72P3C3.

|  |  | Software version |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | GX Developer | GX Configurator-PT | GX Works2 |
| Q00J/Q00/Q01CPU | Single CPU system | Version 7 or later | Version $1.23 Z$ or later | Version 1.10N or later |
|  | Multiple CPU system | Version 8 or later |  |  |
| $\begin{aligned} & \text { Q02/Q02H/Q06H/Q12H/ } \\ & \text { Q25HCPU } \end{aligned}$ | Single CPU system | Version 4 or later |  | Version 1.08J or later |
|  | Multiple CPU system | Version 6 or later |  |  |
| Q02PH/Q06PHCPU | Single CPU system | Version 8.68 W or later |  | Not supported |
|  | Multiple CPU system |  |  |  |
| Q12PH/Q25PHCPU | Single CPU system | Version 7.10L or later |  |  |
|  | Multiple CPU system |  |  |  |
| Q12PRH/Q25PRHCPU | Redundant CPU system | Version 8.45X or later |  |  |
| Q00UJ/Q00U/ Q01UCPU | Single CPU system | Version 8.78G or later |  | Version 1.08J or later |
|  | Multiple CPU system |  |  |  |
| Q02U/Q03UD/Q04UDH/ Q06UDHCPU | Single CPU system | Version 8.48A or later |  |  |
|  | Multiple CPU system |  |  |  |
| Q10UDH/ Q20UDHCPU | Single CPU system | Version 8.78G or later |  |  |
|  | Multiple CPU system |  |  |  |
| Q13UDH/Q26UDHCPU | Single CPU system | Version 8.62Q or later |  |  |
|  | Multiple CPU system |  |  |  |
| Q03UDE/Q04UDEH/ Q06UDEH/Q13UDEH/ Q26UDEHCPU | Single CPU system | Version 8.68W or later |  |  |
|  | Multiple CPU system |  |  |  |
| Q10UDEH/ Q20UDEHCPU | Single CPU system | Version 8.78G or later |  |  |
|  | Multiple CPU system |  |  |  |
| Q50UDEH/ <br> Q100UDEHCPU | Single CPU system | Not supported | Not supported | Version 1.31 H or later |
|  | Multiple CPU system |  |  |  |
| When mounted to the MELSECNET/H remote I/O station |  | Version 6 or later | Version $1.23 Z$ or later | Not supported |

### 2.4 Using QD72P3C3 with Redundant CPUs

This section explains the use of the QD72P3C3 with the Redundant CPUs.

## (1) Dedicated instruction

The dedicated instruction cannnot be used.

## (2) GX Configurator-PT connection

GX Configurator-PT cannot be used when the Redundant CPUs are accessed from
GX Developer via an intelligent function module on an extension base unit.
Connect a personal computer with a communication path indicated below.

(1) Direct connection to the CPU

2 Connection through an intelligent function module on the main base unit (Through Ethernet module, MELSECNET/H module, or CC-Link module)

### 2.5 About Use of the QD72P3C3 with the MELSECNET/H Remote I/O Station

This section describes when using the QD72P3C3 in the MELSECNET/H remote I/O station.
(1) The number of mountable QD72P3C3 modules when using the MELSECNET/H remote I/O station
For the number of mountable modules, refer to Section 2.3 (1)(b).

## (2) Restrictions on using the MELSECNET/H remote I/O station

(a) When using the QD72P3C3 in the MELSECNET/H remote I/O station, since delay time due to link scan time occurs, fully assure that the target system is controlled normally.
Example) Depending on the duration while the positioning complete signal (X10 to X 12 ) is ON, the ON status cannot be detected due to link scan time delay.
(b) The coincidence detection interrupt function is not supported.
(c) The dedicated instructions are not supported.

### 2.6 Checking Function Version, Serial Number and Software Version

(1) Checking the function version and serial number of the QD72P3C3

The serial number and function version of the QD72P3C3 are described in the rating plate, on the front part of the module, or displayed in the system monitor of GX Developer.
(a) Checking the rating plate located on the side of the QD72P3C3

(b) Checking the front part of the module

The serial number and function version described in the rating plate can be shown on the front (bottom part) of the module.


Remark
Printing of serial number on the front of the module has been started since December 2008. Products manufactured during switching period may not have the serial number on the front of the module.
(c) Checking the system monitor (Product Information List)

To display the system monitor, select [Diagnostics] $\rightarrow$ [System monitor] and click
the Product Information List button of GX Developer.


1) Displaying the product No.

Since the QD72P3C3 does not support the display function, "-" is displayed in the "Product No." field.

## ©POINT

The serial number displayed on the Product Information List screen of GX Developer may differ from that on the rating plate and on the front of the module.

- The serial number on the rating plate and front part of the module indicates the management information of the product.
- The serial number displayed on the Product Information List dialog box of GX Developer indicates the function information of the product. The function information of the product is updated when a new function is added.


## (2) Checking the software version of GX Configurator-PT

The software version of GX Configurator- PT can be checked by selecting [Help][Product information] of GX Developer.


## CHAPTER3 SPECIFICATIONS AND FUNCTIONS

This chapter describes the performance specifications and functions of the QD72P3C3, and the specifications of the I/O signals to the programmable controller CPU and external device.
For general specifications of the QD72P3C3, refer to the User's Manual for the CPU module.

### 3.1 Performance Specifications

| Item |  | Specification |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Positioning control | Number of axes | 3 axes |  |  |
|  | Interpolation function | None (Artificial linear interpolation by concurrent start is available.) |  |  |
|  | Control method | PTP (Point To Point) control, speed control |  |  |
|  | Control unit | pulse |  |  |
|  | Positioning data | 1 data/axis <br> (Set it with GX Configurator-PT or sequence program.) |  |  |
|  | Positioning control method | Incremental system, absolute system |  |  |
|  | Positioning control range | $[$ Incremental system] -1073741824 to 1073741823 pulse <br> (when using linear counter) <br> [Absolute system] -1073741824 to 1073741823 pulse <br> (when using ring counter) 0 to 1073741823 pulse |  |  |
|  | Speed command | 1 to 100000pulse/s |  |  |
|  | Acceleration/deceleration processing | Trapezoidal acceleration/deceleration |  |  |
|  | ACC/DEC time | 1 to 5000ms |  |  |
|  | Start time | Position control, speed control | 1-axis start | 1 ms |
|  |  |  | 3-axes concurrent start | 1 ms |
|  | Pulse output method | Open collector output |  |  |
|  | Maximum output pulse | 100kpps |  |  |
|  | Maximum connection distance between drive units | 2 m |  |  |
| Counter function | Counting speed (max.) | 100kPPS |  |  |
|  | Number of channels | 3 channels |  |  |
|  | Counting range | 31-bit signed binary <br> [Linear counter] -1073741824 to 1073741823 <br> [Ring counter] 0 to 1073741823 |  |  |
|  | External connection system | 40-pin connector |  |  |
|  | Applicable wire size | $0.3 \mathrm{~mm}^{2}$ or lower (for the A6CON1 and A6CON4), AWG24 (for the A6CON2) |  |  |
| Peripheral/c | mpatible utility package | GX Configurator-PT (sold separately) |  |  |
| Data backu |  | None |  |  |
| External de | ce connector | A6CON1, A6CON2, A6CON4 (sold separately) |  |  |
| 5VDC interna | current consumption | 0.57A |  |  |
| Number of | cupied I/O points | 32 points (I/O assignment: Intelligent 32 points) |  |  |
| Weight |  | 0.16 kg |  |  |

### 3.2 Function List

The following table lists the functions of the QD72P3C3.

| Control method/function name |  | Description | Reference |
| :---: | :---: | :---: | :---: |
| OPR <br> control | Machine OPR control | Mechanically establishes the positioning control start point using a near-point dog or stopper. | Section $8.2$ |
|  | Fast OPR control | Performs positioning control to the OP address (Md. 1 Current feed value) stored in the QD72P3C3 using machine OPR control. | Section $8.3$ |
|  | Count value selection function at OPR | Stores the OP address to " Md. 3 Count value" when OPR is completed. | Section $8.4$ |
| Positioning control | Position control (1-axis linear control) | Performs positioning control to the position specified to the address set in the positioning data or with the movement amount. | Section 9.2.2 |
|  | Speed control | Continuously outputs a pulse corresponding to the "Da. 4 Command speed" set in positioning data. | Section $9.2 .3$ |
|  | Current value change | Changes the "Md. 1 Current feed value" to the address set in the positioning data. | Section $9.2 .4$ |
| JOG operation |  | Outputs a pulse to drive unit while the JOG start signal (YC to Y11) is ON . | $\begin{array}{\|c} \hline \text { CHAPTER } \\ 10 \end{array}$ |
| Auxiliary function | Speed limit function | If the command speed exceeds the " Pr. 4 Speed limit value" during control, this function limits the command speed to within the $\square$ <br> Pr. 4 Speed limit value" setting range. | Section $11.2$ |
|  | Speed change function | Changes the speed during the constant speed of speed control or JOG operation. | Section $11.3$ |
|  | Software stroke limit function | When a command is issued to the outside of the upper limit/lower limit stroke limit setting range, which are set in the parameters, this function will not execute operation for that command. | Section $11.4$ |
|  | Hardware stroke limit function | Executes the deceleration stop by the limit switch connected to the QD72P3C3. | Section $11.5$ |
|  | ACC/DEC process function | Adjusts the acceleration/deceleration processing of control. | Section $11.6$ |


| Control method/function name |  | Description | Reference |
| :---: | :---: | :---: | :---: |
| Counter function | Linear counter function | Can count from -1073741824 to 1073741823 and detect an overflow when the count range is overrun. | Section $12.2$ |
|  | Ring counter function | Counts repeatedly from 0 to the "Pr. 16 Ring counter upper limit value". <br> Note) When using the ring counter function, the positioning control range is from 0 to 1073741823 (pulse). | Section $12.3$ |
|  | Count enable function | Counts pulses while the count enable command (Y1C to Y1E) is ON. | Section 12.4 |
|  | Coincidence detection function | By presetting the "Cd. 7 Coincidence detection point setting", this function outputs ON/OFF signal as compared to the " Md.3 Count value". | Section $12.5$ |
|  | Preset function | Rewrites the "Md.3 Count value" to an arbitrary value. | Section $12.6$ |
|  | Current feed value, count value simultaneous change function | Changes the "Md. 1 Current feed value" and the "Md. 3 Count value" to the same value at presetting or current value change. | Section $12.7$ |
| Common function | External I/O signal logic switching function | Changes the external I/O signal logic to match the externally connected device. <br> It can be changed by making the intelligent function module setting. | Section $13.2$ |
|  | External I/O signal monitor function | Monitors the external I/O signal status by using GX Developer. | $\begin{gathered} \hline \text { Section } \\ 13.3 \end{gathered}$ |

### 3.3 Specifications of I/O Signals with Programmable Controller CPU

### 3.3.1 List of I/O signals with programmable controller CPU

The QD72P3C3 uses 32 input points and 32 output points for exchanging data with the programmable controller CPU.
The I/O signals when the QD72PC3 is mounted in slot 0 of the main base unit are shown below.

Device X refers to the signals input from the QD72P3C3 to the programmable controller CPU, and device Y refers to the signals output from the programmable controller CPU to the QD72P3C3.

| Signal direction: QD72P3C3 $\rightarrow$ programmable <br> controller CPU |  | Signal direction: Programmable controller CPU $\rightarrow$ |  |
| :---: | :---: | :---: | :---: |
| QD72P3C3 |  |  |  |

XIMPORTANT
X07, X0B, X0F, X13, X17, X1B, X1F, Y07, Y0B, Y12, Y13, Y17, Y1B, Y1F are used by the system, and cannot be used by the user.
If used, the operations of the QD72P3C3 are not ensured.

### 3.3.2 Details of input signal (QD72P3C3 $\rightarrow$ programmable controller CPU)

The following table shows the details of input signals.

| Device No. | Signal name |  |  |  | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X0 | Module RE | Y signal | OFF: Not prepared/ watch dog timer error ON: Prepared |  | When the programmable controller CPU READY signal (YO) is turned from OFF to ON, the parameter setting range is checked. If no error is found, this signal turns ON. (When the error occurrence signal (X1 to X3) is ON , this signal does not turn ON even if the programmable controller CPU READY signal (YO) is turned from OFF to ON.) <br> When the programmable controller CPU READY signal (YO) is turned OFF, this signal turns OFF. <br> When a watch dog timer error occurs, this signal turns OFF. <br> This signal is used for an interlock of sequence programs. |
| $\begin{aligned} & \mathrm{X} 1 \\ & \mathrm{X} 2 \\ & \mathrm{X} 3 \end{aligned}$ | Axis $1 / \mathrm{CH} 1$ <br> Axis $2 / \mathrm{CH} 2$ <br> Axis 3/CH3 | Error occurrence signal | OFF: No error ON: Error occurrence |  | Module error occurrence status is displayed for each axis (each CH). This signal turns OFF when the error reset signal ( Y 1 to Y 3 ) is turned ON. <br> Error code can be checked by " Md.5Axis/CH error code" for each axis (each CH). |
| $\begin{aligned} & \mathrm{X} 4 \\ & \text { X5 } \\ & \text { X6 } \end{aligned}$ | Axis $1 / \mathrm{CH} 1$ <br> Axis $2 / \mathrm{CH} 2$ <br> Axis 3/CH3 | Warning occurrence signal | OFF: No warning ON: warning occurrence |  | Module warning occurrence status is displayed for each axis (each CH ). This signal turns OFF when the axis/CH error reset signal ( Y 1 to Y 3 ) is turned ON. <br> Warning code can be checked by "Md.7Axis/CH warning code" for each axis (each CH ). |
| $\begin{aligned} & \text { X8 } \\ & \text { X9 } \\ & \text { XA } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 | BUSY signal* ${ }^{*}$ | OFF: Not BUSY ON: BUSY |  | This signal turns ON at the start of positioning control, OPR control or JOG operation. It turns OFF after positioning control stops (This signal remains ON during positioning control). <br> This signal turns OFF at error or stop. |
| $\begin{aligned} & \mathrm{XC} \\ & \mathrm{XD} \\ & \mathrm{XE} \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 | Start complete signal | OFF: Start incomplete ON: Start complete |  | This signal turns ON when the positioning start signal (Y8 to YA) is turned ON and the QD72P3C3 starts the positioning control process. <br> (The signal turns ON during OPR control. The signal does not turn ON during JOG operation.) <br> Positioning start signal (Y8 to YA) <br> Start complete signal (XC to XE) |
| $\begin{aligned} & \mathrm{X} 10 \\ & \mathrm{X} 11 \\ & \mathrm{X} 12 \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 | Positioning complete signal* ${ }^{*}$ | OFF: Positioning incomplete ON: Positioning complete |  | This signal turns ON for a time set in " $\square$ Pr. 6 Positioning complete signal output time" after position control is completed for each axis. <br> (The signal does not turn ON when " $\qquad$ Pr. 6 Positioning complete signal output time" is 0 . <br> While this signal is ON, starting positioning control (including OPR control) or JOG operation causes the signal to be OFF. <br> This signal does not turn ON at the completion of JOG operation. <br> This signal does not turn ON if the position control is stopped midway. |


| Device No. | Signal name |  |  |  | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{X} 14 \\ & \mathrm{X} 18 \\ & \mathrm{X} 1 \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \end{aligned}$ | Count value large | OFF: Count value $\leqq$ Coincidence detection point setting, <br> ON: Count value > Coincidence detection point setting |  | This signal turns ON when " Md.3 Count value" $>$ " Cd. 7 Coincidence detection point setting". |
| $\begin{aligned} & \text { X15 } \\ & \text { X19 } \\ & \text { X1D } \end{aligned}$ | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \end{aligned}$ | Count value coincidence | OFF: Count value not coincided, ON: Count value coincided |  | This signal latches at ON when "Md. 3 Count value" = " Cd. 7 Coincidence detection point setting". <br> This signal turns OFF when the coincidence signal reset request is turned ON. |
| $\begin{aligned} & \mathrm{X} 16 \\ & \mathrm{X} 1 \mathrm{~A} \\ & \mathrm{X} 1 \mathrm{E} \end{aligned}$ | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \end{aligned}$ | Count value small | OFF: Count value $\geqq$ Coincidence detection point setting, <br> ON: Count value < Coincidence detection point setting |  | This signal turns ON when " Md.3 Count value" < " Cd.7 Coincidence detection point setting". |

*2: Position control completion of the QD72P3C3 refers to the point when the pulse output from the QD72P3C3 is completed. Thus, even if the positioning complete signal (X10 to X12) of the QD72P3C3 turns ON, the system may continue operation.

### 3.3.3 Details of output signals (programmable controller CPU $\rightarrow$ QD72P3C3)

The following table shows the details of output signals.

| Device No. | Signal name |  |  |  | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YO | Programmab CPU READY | e controller signal | OFF: <br> Programmable <br> controller CPU <br> READY OFF, <br> ON: Programmable <br> controller CPU <br> READY ON |  | This signal notifies the QD72P3C3 that the programmable controller CPU is normal. <br> - It is turned ON/OFF with the sequence program. <br> - This signal is turned ON during positioning control, OPR control and JOG operation. <br> When changing parameters or OPR data, turn OFF this signal. <br> The QD72P3C3 processes the following when this signal is turned from OFF to ON. <br> - The parameter and OPR data setting range is checked. <br> - The module READY signal (XO) turns ON. <br> The QD72P3C3 processes the following when this signal is turned from ON to OFF. In these cases, the OFF time should be set to 100 ms or more. <br> - The module READY signal (X0) turns OFF. <br> - The operating axis stops. |
| $\begin{aligned} & \text { Y1 } \\ & \text { Y2 } \\ & \text { Y3 } \end{aligned}$ | Axis $1 / \mathrm{CH} 1$ <br> Axis $2 / \mathrm{CH} 2$ <br> Axis $3 / \mathrm{CH} 3$ | Error reset signal | OFF: Error reset not requested ON: Error reset requested |  | When the axis/CH error or the axis/CH warning occurs, turning ON this signal clears the error, and "Md.5 Axis/CH error code" and "Md. 7 Axis/CH warning code" are cleared. <br> By turning ON this signal during error occurrence, " Md. 4 Axis operation status" changes from "Error" to "Standby". |
| $\begin{aligned} & \text { Y4 } \\ & \text { Y5 } \\ & \text { Y6 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 | Axis stop signal | OFF: Axis stop not requested ON: Axis stop requested | (2) | When this signal is turned ON, the OPR control, positioning control and JOG operation stop. In these cases, the ON time should be set to 4 ms or more. If ON time is less than 4 ms , the OPR control, positioning control and JOG operation may not stop. <br> Turning ON this signal during operation decelerates the axis to a stop. At this time, "Md. 4 Axis operation status" changes from "Deceleration (Axis stop signal (Y4 to Y6) ON)" to "Stopped". |
| $\begin{aligned} & \text { Y8 } \\ & \text { Y9 } \\ & \text { YA } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 | Positioning start signal | OFF: Positioning start not requested ON: Positioning start requested |  | OPR control and positioning control are started. <br> The positioning start becomes valid at the rising edge, and the operation is started. <br> When this signal is turned ON during BUSY, the "Start during operation" warning (warning code: 10) occurs. |
| YC <br> YD <br> YE <br> YF <br> Y10 <br> Y11 | Axis 1 forward run Axis 1 reverse run Axis 2 forward run Axis 2 reverse run Axis 3 forward run Axis 3 reverse run | JOG start signal | OFF: JOG not <br> started <br> ON: JOG started |  | While this signal is ON, JOG operation is performed at the "JOG.1 JOG speed". <br> When this signal is turned from ON to OFF, it decelerates to stop. |


| Device No. | Signal name |  |  | Description |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Y14 } \\ & \text { Y15 } \\ & \text { Y16 } \end{aligned}$ | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \end{aligned}$ | Coincidenc <br> e signal <br> reset <br> command | OFF: Coincidence signal reset not commanded ON: Coincidence signal reset commanded | (1) This signal is turned ON when resetting the count value coincidence ( X 15 , X19, and X1D). |
| $\begin{aligned} & \mathrm{Y} 18 \\ & \mathrm{Y} 19 \\ & \mathrm{Y} 1 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \end{aligned}$ | Preset command | OFF: Preset not commanded ON: Preset commanded | (1) On the rising edge of this signal, " Cd.6 Preset value setting" is set to " Md. 3 Count value". |
| $\begin{aligned} & \text { Y1C } \\ & \text { Y1D } \\ & \text { Y1E } \end{aligned}$ | $\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \end{aligned}$ | Count enable command | OFF: Count enable not commanded ON: Count enable commanded | (1) By turning ON this signal, the counting operation is started. |

### 3.4 List of Buffer Memory Addresses

The following is a list of buffer memory addresses.
In addition, for the details, such as a setting value, of each buffer memory, refer to "Chapter 4 DATA USED FOR POSITIONING CONTROL".



### 3.5 Specifications of I/O Interfaces with External Device

### 3.5.1 Electrical specifications of I/O signals

## (1) Input specifications

(a) Input specifications of external input device for positioning

| Signal name | Rated input voltage/ current | Operating voltage range | ON voltagel current | OFF voltage/ current | Input resistance | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5VDC/18mA | 4.5 to 5.5 VDC | 2.7VDC or more/ <br> 5.5 mA or more | 1.0 VDC or less 0.5 mA or less | Approx. 390』 | 0.1 ms or less |
| Zero signal (PG0) | - The minimum pulse width is as follows. |  |  |  |  |  |
| Near-point dog signal (DOG) <br> Upper limit signal (FLS) <br> Lower limit signal (RLS) | 24VDC/5mA | $\begin{gathered} 19.2 \text { to } \\ 26.4 \mathrm{VDC} \end{gathered}$ | 17.5VDC or more/ <br> 3.0 mA or more | $\begin{aligned} & \text { 7.0VDC or } \\ & \text { less/0.9mA or } \\ & \text { less } \end{aligned}$ | Approx. <br> $6.8 \mathrm{k} \Omega$ | 1 ms or less |

(b) Input specifications for the counter function

| Signal name | Rated input voltage/ current | Operating voltage range | ON voltage/ current | OFF voltage/ current | Input resistance | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5VDC | 5VDC/18mA | 4.5 to 5.5 V | 2.7VDC or more/ <br> 5.5 mA or more | $\begin{aligned} & \text { 1.0VDC or } \\ & \text { less } 0.5 \mathrm{~mA} \text { or } \\ & \text { less } \end{aligned}$ | Approx. <br> 390』 | $1 \mu \mathrm{~s}$ or less |
| 24VDC | $\begin{gathered} 24 \mathrm{VDC} / 2 \text { to } \\ 6 \mathrm{~mA} \end{gathered}$ | 21.6 to 26.4 V | 21.6VDC or more/ <br> 2 mA or more | 5VDC or less/ <br> 0.1 mA or less | $\begin{gathered} \text { Approx. } \\ 3900 \\ +390 \Omega \end{gathered}$ | $1 \mu \mathrm{~s}$ or less |

-Input pulse can be selected from 1 multiple of 2 phases, 2 multiples of 2 phases, 4 multiples of 2 phases, and CW/CCW.

Set it in pulse input mode of "Intelligent function module switch setting" (refer to Section 5.6).

| Pulse input mode | For addition count | For subtraction count |
| :---: | :---: | :---: |
| CW/CCW | $\phi_{\phi_{\mathrm{A}} \sim \sim}$ | $\phi A$ |
| 1 multiples of 2 phases | $\begin{aligned} & \phi_{\mathrm{A}} \square \square \square \\ & \phi_{\mathrm{B}}-\square \downarrow \square \end{aligned}$ | $\phi_{A}$ $\qquad$ $\phi$ B $\qquad$ |
| 2 multiples of 2 phases | $\begin{aligned} & \phi_{\mathrm{A}}^{\square} \square \\ & \phi_{\mathrm{B}} \leadsto \downarrow \downarrow \downarrow \end{aligned}$ | $\begin{aligned} & \phi_{\mathrm{A}} \_\downarrow \uparrow \downarrow \\ & \phi_{\mathrm{B}} \neg \square \square \end{aligned}$ |
| 4 multiples of 2 phases | $\begin{aligned} & \phi_{\mathrm{A}}-\downarrow \downarrow \\ & \phi_{\mathrm{B}}-\downarrow \square \end{aligned}$ | $\begin{aligned} & \phi_{\mathrm{A}} \uparrow \downarrow \uparrow \downarrow \\ & \phi_{\mathrm{B}} \uparrow \downarrow \downarrow \downarrow \end{aligned}$ |

-The minimum count pulse width is as follows.


Duty ratio 50\%
(Minimum phase difference for 2-phase input: $2.5 \mu \mathrm{~s}$ )
-The rise/fall time is as follows.


| Rise/fall time | 100k |
| :--- | :---: |
|  | Both 1 and 2-phase input |
| $t=1.25 \mu$ or less | 100kPPS |
| $t=2.5 \mu$ or less | 100kPPS |
| $t=25 \mu$ or less | 10kPPS |
| $t=500 \mu$ | - |

-Input pulse can be selected from 1 multiple of 2 phases, 2 multiples of 2 phases, 4 multiples of 2 phases, and CW/CCW.
Set it in pulse input mode of "Intelligent function module switch setting" (refer to Section 5.6).

## (2) Output specifications

(a) Input specifications of external input device for positioning

| Signal name | Rated load voltage | Operating load voltage range | Max. Ioad current/inrush current | Max. voltage drop at ON | Leakage current at OFF | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 to 24VDC | $\begin{aligned} & 4.75 \text { to } \\ & 30 \mathrm{VDC} \end{aligned}$ | 50mA/point / 200 mA 10 ms or less | 5VDC (TYP) | 0.1 mA or less | - |

-Set pulse output mode and pulse output logic selection with "Intelligent function module switch setting" (refer to Section 5.6).
-The following table shows the relationship of "Pulse output mode" and "Pulse output logic selection" with pulse output.

Pulse output F (PUSE F)

| Pulse output mode | Pulse output logic selection |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Positive logic |  | Negative logic |  |
|  | Forward run | Reverse run | Forward run | Reverse run |
| CW/CCW | $\square$ | $\square \square$ | $\square \square$ |  |
| PULSE/ <br> SIGN |  |  | Low |  |

The rise/fall time and duty ratio are as the table on the next page.*


| Deviation counter clear | 5 to 24 VDC | 4.75 to <br> 30 VDC | $0.1 \mathrm{~A} /$ point <br> (CLEAR) | $1 \mathrm{AA}, 10 \mathrm{~ms}$ or <br> less | 1VDC (TYP) <br> $2.5 \mathrm{VDC}(\mathrm{MAX})$ | 0.1 mA or less <br> or less |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | (resistance load), <br> pulse width is <br> from 1 to 20 ms. |
| :---: |

*: Pulse rise/fall time (unit tr.tf: $\mu \mathrm{s}$ Duty:\%) ... Ambient air temperature is assumed to be ordinary temperature.

| Load voltage (V) |  | 26.4 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cable length (m) |  | 1 |  |  | 2 |  |  |
| $\begin{gathered} \hline \text { Load } \\ \text { current } \\ (\mathrm{mA}) \end{gathered}$ | Pulse <br> speed <br> (kpps) | $\begin{gathered} \text { tr } \\ \text { (Rise) } \end{gathered}$ | $\begin{gathered} \text { tf } \\ \text { (Fall) } \end{gathered}$ | Duty | $\begin{gathered} \mathrm{tr} \\ \text { (Rise) } \end{gathered}$ | tf <br> (Fall) | Duty |
| 2 | 100 | 2.341 | 0.156 | 44.76 | 2.824 | 0.162 | 42.45 |
|  | 10 | 2.849 | 0.169 | 49.1 | 3.727 | 0.182 | 49.08 |
| 5 | 100 | 1.101 | 0.176 | 49.7 | 1.487 | 0.188 | 48.37 |
|  | 10 | 1.114 | 0.174 | 49.6 | 1.516 | 0.190 | 49.83 |
| 10 | 100 | 0.511 | 0.188 | 51.4 | 0.753 | 0.203 | 50.89 |
|  | 10 | 0.522 | 0.187 | 50.15 | 0.745 | 0.204 | 50.09 |
| 20 | 100 | 0.268 | 0.218 | 52.37 | 0.379 | 0.233 | 52.18 |
|  | 10 | 0.262 | 0.218 | 50.24 | 0.376 | 0.234 | 50.22 |
| 50 | 100 | 0.098 | 0.344 | 53.34 | 0.140 | 0.359 | 53.33 |
|  | 10 | 0.097 | 0.347 | 50.34 | 0.135 | 0.361 | 50.34 |


| Load voltage (V) |  | 4.75 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cable length (m) |  | 1 |  |  | 2 |  |  |
| Load current (mA) | Pulse <br> speed <br> (kpps) | $\begin{gathered} \mathrm{tr} \\ \text { (Rise) } \end{gathered}$ | $\begin{gathered} \text { tf } \\ \text { (Fall) } \end{gathered}$ | Duty | $\begin{gathered} \text { tr } \\ \text { (Rise) } \end{gathered}$ | $\begin{gathered} \text { tf } \\ \text { (Fall) } \end{gathered}$ | Duty |
| 2 | 100 | 0.510 | 0.107 | 50.87 | 0.712 | 0.113 | 50.38 |
|  | 10 | 0.492 | 0.107 | 50.08 | 0.680 | 0.112 | 50.04 |
| 5 | 100 | 0.207 | 0.117 | 51.8 | 0.289 | 0.120 | 51.74 |
|  | 10 | 0.201 | 0.113 | 50.19 | 0.288 | 0.119 | 50.18 |
| 10 | 100 | 0.097 | 0.129 | 52.29 | 0.138 | 0.131 | 52.28 |
|  | 10 | 0.098 | 0.128 | 50.23 | 0.131 | 0.130 | 50.23 |
| 20 | 100 | 0.039 | 0.160 | 52.75 | 0.055 | 0.159 | 52.80 |
|  | 10 | 0.038 | 0.159 | 50.28 | 0.054 | 0.158 | 50.28 |
| 50 | 100 | 0.015 | 0.255 | 53.41 | 0.016 | 0.258 | 53.47 |
|  | 10 | 0.014 | 0.254 | 50.34 | 0.016 | 0.259 | 50.36 |

### 3.5.2 Signal layout for external device connector

The specifications of the connector section, which is the I/O interface for the QD72P3C3 and external device, are shown below.


| Pin layout | CON2 (for axis 3) |  |  |  | CON1 (for axes 1 and 2) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$ | Signal name | $\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$ | Signal name | $\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$ | Signal name | $\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$ | Signal name |
|  | B20 | NC | A20 | CH3A_24V | B20 | CH2A_24V | A20 | CH1A_24V |
|  | B19 | NC | A19 | CH3A_5V | B19 | CH2A_5V | A19 | CH1A_5V |
|  | B18 | NC | A18 | CH3A COM ${ }^{*}$ | B18 | CH2A COM* ${ }^{1}$ | A18 | CH1A COM*1 |
|  | B17 | NC | A17 | CH3B_24V | B17 | CH2B_24V | A17 | CH1B_24V |
| $\mathrm { B } 2 0 \longdiv { 0 }$ | B16 | NC | A16 | CH3B_5V | B16 | CH2B_5V | A16 | CH1B_5V |
| B19 - a A19 <br> B18    | B15 | NC | A15 | CH3B COM ${ }^{2}$ | B15 | CH2B COM ${ }^{2}$ | A15 | CH1B COM ${ }^{2}$ |
| $\begin{array}{ll}\text { B17 } & \text { a } \\ \text { B17 }\end{array}$ | B14 | NC | A14 | PG03 | B14 | PG02 | A14 | PG01 |
| B16 O a A16 <br> B15 a a A15 | B13 | NC | A13 | PG03 COM ${ }^{\text {* }}$ | B13 | PG02 COM ${ }^{*}$ | A13 | PG01 COM*3 |
|  | B12 | NC | A12 | CLEAR3 | B12 | CLEAR2 | A12 | CLEAR1 |
|  | B11 | NC | A11 | CLEAR3 COM* ${ }^{*}$ | B11 | CLEAR2 COM ${ }^{*} 4$ | A11 | CLEAR1 COM ${ }^{*}$ |
| B10 B10 | B10 | NC | A10 | DOG3 | B10 | DOG2 | A10 | DOG1 |
|  | B9 | NC | A9 | COM1-3 ${ }^{\text {* }}$ | B9 | COM1-3 ${ }^{\text {5 }}$ | A9 | COM1-3 ${ }^{*}$ |
| B7 0 0 A7 <br> B6 0 0 A6 | B8 | NC | A8 | FLS3 | B8 | FLS2 | A8 | FLS1 |
| B5 0 0 A5 <br> B4   | B7 | NC | A7 | COM1-3* ${ }^{\text {* }}$ | B7 | COM1-3 ${ }^{*}$ | A7 | COM1-3 ${ }^{*}$ |
| B4 0 0 A4 <br> B3 0 0 A3 | B6 | NC | A6 | RLS3 | B6 | RLS2 | A6 | RLS1 |
| B 2 o a A2 <br> B 1 O a A 1 | B5 | NC | A5 | COM1-3*5 | B5 | COM1-3*5 | A5 | COM1-3*5 |
|  | B4 | NC | A4 | PULSE F3 | B4 | PULSE F2 | A4 | PULSE F1 |
|  | B3 | NC | A3 | PULSE COM1-3*6 | B3 | PULSE COM1-3*6 | A3 | PULSE COM1-3*6 |
|  | B2 | NC | A2 | PULSE R3 | B2 | PULSE R2 | A2 | PULSE R1 |
|  | B1 | NC | A1 | PULSE COM1-3*6 | B1 | PULSE COM1-3*6 | A1 | PULSE COM1-3*6 |

* 1 Common for $\mathrm{CH} \square \mathrm{A} \_5 \mathrm{~V}, \mathrm{CH} \square \mathrm{A} \_24 \mathrm{~V}$ ( $\square$ indicates any of channel numbers 1 to 3.)
* 2 Common for $\mathrm{CH} \square \mathrm{B} \_5 \mathrm{~V}, \mathrm{CH} \square \mathrm{B} \_24 \mathrm{~V}$ ( $\square$ indicates any of channel numbers 1 to 3.)
* 3 Common for PG0 $\square$ ( $\square$ indicates any of axis numbers 1 to 3.)
* 4 Common for CLEAR $\square$ ( $\square$ indicates any of axis numbers 1 to 3.)
* 5 Common for DOG $\square$, FLS $\square$, RLS $\square$ ( $\square$ indicates any of axis numbers 1 to 3.)
* 6 Common for PULSE F $\square$, PULSE R $\square$ ( $\square$ indicates any of axis numbers 1 to 3.)


### 3.5.3 List of I/O signal details

The details of each signal for the QD72P3C3 external device connector are shown below.

| Signal name | Pin No. |  | Symbol | Signal details <br> (Negative logic is selected by external I/O signal logic selection) |
| :---: | :---: | :---: | :---: | :---: |
| Zero signal | A14 | B14 | PG0 | -Input the zero signal for machine OPR control. <br> Use the encoder's zero signal and so on. <br> -Use this signal when " Pr. 10 OPR method" is the stopper 3 and the OPR complete is input from an external device. <br> -The zero signal is detected at turning from OFF to ON. |
| Zero signal common | A13 | B13 | PG0 COM | -Common for zero signal |
| Near-point dog signal | A10 | B10 | DOG | -This signal is used for detecting the near-point dog during machine OPR control. <br> -The near-point dog signal is detected at turning from OFF to ON. |
| Upper limit signal | A8 | B8 | FLS | - Input this signal from the limit switch, which is set to the stroke upper limit position. <br> -Turning OFF this signal stops positioning. |
| Lower limit signal | A6 | B6 | RLS | $\bullet$ Input this signal from the limit switch, which is set to the stroke lower limit position. <br> -Turning OFF this signal stops positioning. |
| Common | $\begin{aligned} & \text { A9 } \\ & \text { A7 } \\ & \text { A5 } \end{aligned}$ | $\begin{aligned} & \text { B9 } \\ & \text { B7 } \\ & \text { B5 } \end{aligned}$ | COM | -Common for near-point dog signal, upper limit signal, and lower limit signal |
| Deviation counter clear | A12 | B12 | CLEAR | -This signal is output during machine OPR control. <br> -The output time of the deviation counter clear is set in " $\qquad$ Pr. 7 Deviation counter clear signal input time". <br> -Use the drive unit that can reset the droop pulse amount in the internal deviation counter when the QD72P3C3 turns this signal ON. <br> (Note) The deviation counter clear is a signal output by the QD72P3C3 during machine OPR control. It cannot output randomly. |
| Deviation counter clear common | A11 | B11 | $\begin{gathered} \hline \text { CLEAR } \\ \text { COM } \end{gathered}$ | -Common for deviation counter clear |
| Pulse output F | A4 | B4 | PULSE F | -This signal is used to output command pulses to the open collector compatible unit. <br> CW/CCW mode: CW, PULSE/SIGN mode: PULSE |
| Pulse output R | A2 | B2 | PULSE R | -This signal is used to output command pulses to the open collector compatible unit. <br> CW/CCW mode: CCW, PULSE/SIGN mode: SIGN |
| Pulse output common | $\begin{aligned} & \text { A3 } \\ & \text { A1 } \end{aligned}$ | $\begin{aligned} & \text { B3 } \\ & \text { B1 } \end{aligned}$ | $\begin{gathered} \hline \text { PULSE } \\ \text { COM } \end{gathered}$ | -Common for pulse output $F$ and pulse output R |
| Phase A pulse input 24V | A20 | B20 | CHA_24V | -Phase A pulse input for 24 V |
| Phase A pulse input 5V | A19 | B19 | CHA_5V | -Phase A pulse input for 5V |
| Phase A common | A18 | B18 | CHA COM | -Common for phase A pulse |
| Phase B pulse input 24V | A17 | B17 | CHB_24V | -Phase B pulse input for 24 V |
| Phase B pulse input 5V | A16 | B16 | CHB_5V | -Phase B pulse input for 5V |
| Phase B common | A15 | B15 | CHB COM | -Common for phase B pulse |

### 3.5.4 Internal circuit of I/O interface

The following shows the schematic diagram of the internal circuit of the interface for external device connection of the QD72P3C3.
(for axis 1)

| I/O <br> classification | External wiring | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Internal circuit | Signal nam |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input <br> (for positioning) |  | A14 | $]^{390813 W}$ | Zero signal | PG0 1 |
|  |  | A13 | -. | Zero signal common | PG0 COM 1 |
|  |  | A10 |  | Near-point dog signal | DOG 1 |
|  |  | A8 |  | Upper limit signal | FLS 1 |
|  |  | A6 | ${ }^{11100}$ | Lower limit signal | RLS 1 |
|  |  | A9 | 1100. | Common | COM 1-3 |
| Output (for positioning) |  | A12 | 7 | Deviation counter clear | CLEAR 1 |
|  |  | A11 |  | Deviation counter clear common | $\begin{aligned} & \text { CLEAR } \\ & \text { COM } 1 \end{aligned}$ |
|  |  | A4 |  | Pulse output F | PULSE F 1 |
|  |  | A2 |  | Pulse output R | PULSER 1 |
|  |  | A3 |  | Pulse output common | PULSE <br> COM 1-3 |
| Input <br> (for counter <br> function) |  | A20 |  | Phase A pulse input 24V | CH1A_24V |
|  |  | A19 |  | Phase A pulse input 5V | CH1A_5V |
|  |  | A18 |  | Phase A common | CH1A COM |
|  |  | A17 |  | Phase B pulse input 24V | CH1B_24V |
|  |  | A16 |  | Phase B pulse input 5V | CH1B_5V |
|  |  | A15 |  | Phase B common | CH1B COM |

* Common terminal is available to both positive common and negative common (COM).


## (1) Input signal ON/OFF status

(a) Input signal ON/OFF status

The input signal ON/OFF status is defined by the external wiring and logic setting. The following shows an example of the near-point dog signal (DOG).
(The other input signals also perform the same operations as the near-point dog signal (DOG).)


* 1 Set the logic setting using "Intelligent function module switch setting". For details of the setting contents, refer to Section 5.6.
* 2 When using the upper limit signal (FLS) and/or the lower limit signal (RLS), always wire them/it as the normally closed contact in the negative logic setting. Turning OFF this signal stops positioning.
(b) Logic setting and internal circuit

In the QD72P3C3, the case where the internal circuit (photocoupler) is OFF in the negative logic setting is defined as "input signal OFF".
Reversely, the case where the internal circuit (photocoupler) is OFF in the positive logic setting is defined as "input signal ON".
(Photocoupler ON/OFF status)

- When voltage is not applied: Photocoupler OFF
- When voltage is applied: Photocoupler ON


## CHAPTER4 DATA USED FOR POSITIONING CONTROL

This chapter describes the specifications of the data to be set to the QD72P3C3.

### 4.1 Data Types

### 4.1.1 Parameters and data required for control

The parameters and data required to perform control with the QD72P3C3 include the following three types of data: "setting data", "monitor data", and "control data".

## Setting data



Set parameters for positioning, OPR, and counter function according to the mechanical appliances and applications. (Storage location: QD72P3C3 buffer memory)


Set values required to perform "JOG operation." (Storage location: QD72P3C3 buffer memory)


Set values required to perform "positioning control" such as speed and movement amount.
(Storage location: QD72P3C3 buffer memory)

Intelligent function module switches
(Switches 1 to 5)

Set the logics of the external I/O signal, pulse output mode, and pulse input mode.
(Storage location: [l/O assignment] in [PLC parameter] for QCPU)

- The parameters become valid when the programmable controller CPU READY signal (YO) is turned from OFF to ON.
- The JOG data and positioning data become valid when JOG operation and positioning control starts, respectively.
- Use GX Developer to set the intelligent function module switches. (For details, refer to "Section 5.6 Intelligent Function Module Switch Setting".)


Data related to the operations of the running


Operation-related settings are made and control such as speed change during operation is performed.
(Storage location: QD72P3C3 buffer memory)

■ How to set "setting data"

| Setting item Means | Sequence program | GX Configurator-PT | GX Developer | GX Works2 |
| :--- | :---: | :---: | :---: | :---: |
| Parameter | O | O (Initial setting ${ }^{*}$ ) | $\times$ | O |
| JOG data | O | $\times$ | $\times$ | $\times$ |
| Positioning data | O | O (Initial setting*) | $\times$ | O |
| Intelligent function module <br> switch | $\times$ | $\times$ | O | O |

* Initial setting is made to the intelligent function module parameters of the QCPU.

O: Can be set.
$x$ : Cannot be set.

## XPOINT

(1) Create "setting data" for each axis.
(2) The "setting data" parameters have determined default values, and have been set to the default values before shipment from the factory. (Leave the parameters for unused axes at the default values.)
(3) The "setting data" set in the QD72P3C3 buffer memory are not backed up. All data are initialized at power-ON of the system or reset of the programmable controller CPU.

### 4.1.2 Parameter setting items

The following table shows the "parameter" setting items. Set "parameters" to each axis for all controls using the QD72P3C3.
For details of each control, refer to "Chapter 8" to "Chapter 10".
For details of each setting item, refer to "Section 4.2 Parameter List".

|  | OPR control |  |  | Positioning control |  |  | JOG operation | Related subfunction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Near- <br> point <br> dog <br> method | $\begin{array}{\|c} \text { Stopper } \\ 3 \end{array}$ | Fast <br> OPR <br> control | Position control | Speed control | Current <br> value <br> change |  |  |
| Software stroke limit upper limit value | - | - | - | 0 | 0 | 0 | $\bigcirc$ | Section |
| Software stroke limit lower limit value | - | - | - | 0 | 0 | 0 | 0 | 11.4 |
|  Current feed value during <br> speed control  | - | - | - | - | 0 | - | - | - |
| Pr. 4 Speed limit value | $\bigcirc$ | $\bigcirc$ | ※ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - |
| Pr. 5 Bias speed at start | - | - | - | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - |
| Pr. 6 Positioning complete signal output time | 0 | 0 | ※ | 0 | 0 | - | - | - |
| Deviation counter clear signal output time | 0 | 0 | ※ | - | - | - | - | - |
| Current feed value, count value simultaneous change function selection | - | - | - | - | - | 0 | - | Section 12.7 |
| Pr. 10 OPR method | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - |  |
| Pr. 11 OPR direction | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - |  |
| Pr. 12 OP address | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - |  |
| Pr. 13 OPR speed | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - |  |
| Pr. 14 Creep speed | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - |  |
| Pr. 15 ACC/DEC time at OPR | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - |  |
| Ring counter upper limit value | - | - | - | 0 | - | - | - | Section |
| $\qquad$ Positioning range upper limit value | - | - | - | 0 | - | - | - | 12.3 |
| ${ }_{\square}{ }^{\text {Pr. } 18}$ Coincidence detection | - | - | - | 0 | 0 | - | $\bigcirc$ | Section $12.5$ |
| Pr. 19 Count value selection at OPR | $\bigcirc$ | $\bigcirc$ | ※ | - | - | - | - | Section 8.4 |

© : Setting is required.
O: Make setting as necessary. (If unnecessary, the field is represented with "-".)

- : Setting not required. (This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.)
※: Setting items of machine OPR control (near-point dog method or count 3) are used for those of fast OPR control.
-Checking the parameters
Setting ranges of Pr. 1 to Pr. 19 are checked when the "programmable controller CPU READY signal (YO)" output from the programmable controller CPU to the QD72P3C3 is changed from OFF to ON. At this time, an error occurs in the parameter whose setting value is outside the range. (For details, refer to "CHAPTER 15 TROUBLESHOOTING".)


### 4.1.3 JOG data setting items

The "JOG data" has to be set to perform "JOG operation". The following table shows the "JOG data" setting items.
Set "JOG data" to each axis.
For details of "JOG operation" and details of each setting item, refer to "CHAPTER 10 JOG OPERATION" and "Section 4.3 JOG Data List", respectively.

| JOG data | JOG operation |
| :--- | :---: |
| JOG.1 JOG speed | $\bigcirc$ |
| JOG.2 JOG ACC/DEC time | $\bigcirc$ |

©: Setting is required.

■ Checking the JOG data
Setting ranges of JOG. 1 to JOG. 2 are checked when the JOG operation starts. At this time, an error occurs in the JOG data whose setting value is outside the range. (For details, refer to "CHAPTER 15 TROUBLESHOOTING".)

### 4.1.4 Positioning data setting items

The "positioning data" has to be set to perform "positioning control". The following table shows the "positioning data" setting items.
One "positioning data" can be set to per axis.
For details of "positioning control" and details of each setting item, refer to "CHAPTER 9 POSITIONING CONTROL" and "Section 4.4 Positioning Data List", respectively.
$\left.\begin{array}{|l|c|c|c}\hline \text { Positioning data } & \text { Positioning control } & \begin{array}{c}\text { Position } \\ \text { control }\end{array} & \text { Speed control }\end{array} \begin{array}{c}\text { Current value } \\ \text { change }\end{array}\right]$
© : Setting is required.

- : Setting not required. (This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.)
$■$ Checking the positioning data
Setting ranges of Da. 1 to Da. 5 are checked when the positioning control starts. At this time, an error occurs in the positioning data whose setting value is outside the range. (For details, refer to "CHAPTER 15 TROUBLESHOOTING".)


### 4.1.5 Types and functions of monitor data

The monitor data area in the buffer memory stores the data showing the status of the positioning control system. To operate the positioning control system, monitor these data as necessary.
The following data are available for monitoring.
For details of monitor data, refer to "Section 4.5 Monitor Data List".

| Monitor data | Monitor details |
| :--- | :--- |
| Md. 1 | Current feed value |
| Md.2 | Current speed | The current feed value is monitored..

### 4.1.6 Types and functions of control data

To operate the positioning control system, perform controls as necessary. (Defalut value is stored to data to be used for controls at power-ON. However, the value can be set with the sequence program as necessary.)
The following items can be controlled.

For details of control data, refer to "Section 4.6 Control Data List".

| Control data | Description |  |
| :--- | :--- | :--- |
| Cd. 1 | New speed value | Set speed to be changed during operation. |
| Cd.2 | ACC/DEC time at speed change | Set the time until the speed reaches to the one after change from <br> the speed before change. |
| Cd.3 | Speed change request | Issues a command to change speed in operation to Cd.1 value. |
| Cd.4 | OPR request flag OFF request | Switches the OPR request flag from "ON to OFF". |
| Cd.5 | Start method | Set a control to be performed (start method). |
| Cd.6 | Preset value setting | Set a value to be stored in " Md.3 Count value" by turning ON <br> the preset command. |
| Cd.7 | Coincidence detection point setting | Enter a value to be compared with " Md.3 Count value". |

### 4.2 Parameter List

| Parameter |  | Setting value, setting range | Factory default value | Buffer memory address for setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{\|c\|} \hline \text { Axis } \\ 1 / \mathrm{CH} 1 \end{array}$ |  | $\begin{array}{\|c\|} \hline \text { Axis } \\ 2 / \mathrm{CH} 2 \end{array}$ | $\begin{array}{\|c\|} \hline \text { Axis } \\ 3 / \mathrm{CH} 3 \end{array}$ |
| Pr. 1 | Software stroke limit upper limit value |  | -1073741824 to 1073741823 (pulse) | 1073741823 | 0 | 100 | 200 |
|  |  | 1 |  |  | 101 | 201 |
| Pr. 2 | Software stroke limit lower limit value | -1073741824 to 1073741823 (pulse) | -1073741824 | 2 | 102 | 202 |
|  |  |  |  | 3 | 103 | 203 |
| Pr. 3 | Current feed value during speed control | 0: No update <br> 1: Update | 0 | 5 | 105 | 205 |
| Pr. 4 | Speed limit value | 1 to 100000 (pulse/s) ${ }^{* 1}$ | 8000 | 6 | 106 | 206 |
|  |  |  |  | 7 | 107 | 207 |
| Pr. 5 | Bias speed at start | 1 to 100000 (pulse/s) ${ }^{* 1}$ | 1 | 8 | 108 | 208 |
|  |  |  |  | 9 | 109 | 209 |
| Pr. 6 | Positioning complete signal output time | 0 to 65535 (ms) | 300 | 10 | 110 | 210 |
| Pr. 7 | Deviation counter clear signal output time | $\begin{array}{\|l\|} \hline 0: 1 \mathrm{~ms} \\ \text { 1: } 2 \mathrm{~ms} \\ \text { 2: } 10 \mathrm{~ms} \\ 3: 20 \mathrm{~ms} \end{array}$ | 2 | 11 | 111 | 211 |
| Pr. 9 | Current feed value, count value simultaneous change function selection | 0 : Values not changed simultaneously <br> 1: Count value changed together at current value change <br> 2: Current feed value changed together at preset <br> 3: Values changed both at current value change and at preset | 0 | 13 | 113 | 213 |
| Pr. 10 | OPR method | 0: OPR method 1) Near-point dog method <br> 1: OPR method 2) Stopper 3 | 0 | 20 | 120 | 220 |
| Pr. 11 | OPR direction | 0: Forward direction <br> 1: Reverse direction | 0 | 21 | 121 | 221 |
| Pr. 12 | OP address | -1073741824 to 1073741823 (pulse) | 0 | 22 | 122 | 222 |
|  |  |  |  | 23 | 123 | 223 |
| Pr. 13 | OPR speed | 1 to 100000 (pulse/s) ${ }^{* 1}$ | 1 | 24 | 124 | 224 |
|  |  |  |  | 25 | 125 | 225 |
| Pr. 14 | Creep speed | 1 to 100000 (pulse/s) ${ }^{* 1}$ | 1 | 26 | 126 | 226 |
|  |  |  |  | 27 | 127 | 227 |
| Pr. 15 | ACC/DEC time at OPR | 1 to 5000 (ms) ${ }^{*}$ | 1000 | 28 | 128 | 228 |
| Pr. 16 | Ring counter upper limit value | 0 to 1073741823 (pulse) | 0 | 30 | 130 | 230 |
|  |  |  |  | 31 | 131 | 231 |
| Pr. 17 | Positioning range upper limit value | 0 to 1073741823 (pulse) | 0 | 32 | 132 | 232 |
|  |  |  |  | 33 | 133 | 233 |
| Pr. 18 | Coincidence detection setting | 0 : Coincidence detection not request <br> 1: Coincidence detection requested | 0 | 34 | 134 | 234 |
| $\begin{array}{\|l\|} \hline \text { Pr. } 19 \\ \hline \end{array}$ | Count value selection at OPR | 0 : OP address not set to count value <br> 1: OP address set to count value | 0 | 35 | 135 | 235 |

* 1 Setting unit (pulse unit) for speed setting data changes according to the value set to " Pr. 4 Speed limit value" as the table below.

| Pr.4 <br> of "Spetting value <br> (pulse/s) | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

When setting " Pr. 4 Speed limit value" to 100000 (pulse/s) (when pulse unit is 25-pulse unit), set a value which is "multiples of 25 " to speed setting parameter and data.
If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 . Note if setting a value under 25 , corresponding to pulse unit, an error occurs.
[Setting example of speed setting parameters and data when " Pr. 4 Speed limit value" is set to 100000]
$\left.\begin{array}{l|c|}\hline \text { Pr. } 4 & \text { Speed limit value } \\ \hline \hline \text { Pr. } 5 & 100000 \\ \hline \text { Brias speed at start } & 100 \\ \hline \text { Pr.13 OPR speed } & 20000 \\ \hline \text { Pr. } 14 & \text { Creep speed }\end{array}\right] 1000$

Set speed setting parameter and data so that the values can be "multiples of 25 ".

If 65090 is set to speed setting parameter or data, it is dropped to 65075 , multiples of 25 .

* Pr. 15 Set ACC/DEC time at OPR within the range that the following formula is satisfied. If the condition is not satisfied, "Out of ACC/DEC time setting valid range"warning (warning code: 26) occurs, and control is performed in the time between the maximum value and the minimum value calculated by the following formula. (Refer to "Example" below.)

$$
1 \leqq \frac{\text { Pr. } 13 \text { OPR speed }- \text { Pr. } 14 \text { Creep speed }}{\text { Pr. } \left.15 \text { ACC/DEC time at OPR } \times \text { Pulse unit(Refer to } 1^{*}\right) \times 0.125} \leqq 8000
$$

## [Example]

When Pr. 13 OPR speed: 8000, Pr. 14 Creep speed: 1, and Pr. 4 Speed limit value: 8000 (=1pulse unit), the setting range of Pr. 15 ACC/DEC time at OPR is from 8 to 5000 (ms).

Pr. 1 Software stroke limit upper limit value, Pr. 2 Software stroke limit lower limit value [Setting contents]

Pr. 1 : Set the upper limit for the machine movement range.
Pr.2 : Set the lower limit for the machine movement range.


* 1 Generally, the OP is set at the lower limit or upper limit of the stroke limit.
*2 By setting the upper limit value or lower limit value of the software stroke limit, overrun in the software can be prevented. Also an emergency stop limit switch must be attached nearby the side of outside the range.

Pr. 3 Current feed value during speed control
[Setting contents]
Set whether to update "Md. 1 Current feed value" at speed control.

| 0: No update | The current feed value does not change. The current feed value at the start of <br> speed control is held. |
| :--- | :--- |
| 1: Update | The current feed value is updated. The current feed value at the start of speed <br> control is updated. |

Pr. 4 Speed limit value

## [Setting contents]

Set the maximum speed for OPR control, positioning control and JOG operation.
The Speed limit value is determined by the following two conditions.

- The number of motor rotations
- Moving speed of workpiece
[Setting contents]
- Set the minimum starting speed for positioning control and JOG operation.
- In case of using a motor such as a stepping motor, set this item to start the motor smoothly. (A stepping motor does not start smoothly if the motor speed is low at start.)


## [Precautions]

- The minimum starting speed during
- Set a value equal to or less than " $\quad$ Pr. 4 Speed limit value". If setting a value greater than " Pr. 4 Speed limit value", "Out of bias speed at start setting range" error (error code: 906) occurs.
- Setting unit (pulse unit) changes according to the value set to " Pr. 4 Speed limit value" as the table below.

| Setting value of <br> " Pr.4 Speed limit <br> value" (pulse/s) | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

When setting "Pr. 4 Speed limit value" to 100000 (pulse/s) (when pulse unit is 25-pulse unit), set a value which is "multiples of 25 " to " $\square$ Pr. 5 Bias speed at start".
If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 . Note if setting a value under 25 , corresponding to pulse unit, "Out of bias speed at start setting range" error (error code: 906) occurs.

## ®POINT

If the workpiece is dragged at start, the value set to Bias speed at start may be small. In this case, set Bias speed at start using the following formula as a reference.

Pr. 5 Bias speed at start $\geqq \sqrt{\text { Acceleration } \times 125 \times \text { Pulse unit }}$
［Setting contents］
－Set the output time of the positioning complete signal（X10 to X12）output from the QD72P3C3．
－Positioning complete designates the status when the QD72P3C3 finishes outputting pulses．
－If the setting value is $0(\mathrm{~ms})$ or the motor was stopped with the axis stop signal （Y4 to Y6）during JOG operation or speed control，the positioning complete signal （X10 to X 12 ）are not output．


Pr． 7 Deviation counter clear signal output time
［Setting contents］
Set the duration for outputting the deviation counter clear signal during machine OPR control．（For details，refer to the manual for the drive unit．）

Make setting to change "Md. 1 Current feed value" and "Md. 3 Count value" to the same value at current value change or presetting.

| 0: Values not changed simultaneously | The current feed value, count value simultaneous change function is not used. |
| :---: | :---: |
| 1: Count value changed together at current value change | Stores the value set to " Da. 5 Positioning address/movement amount"at current value change execution to " Md. 1 Current feed value" and " Md. 3 Count value". |
| 2: Current feed value changed together at preset | Stores the value set to " Cd. 5 Preset value setting" at preset to " Md. 1 Current feed value" and " Md. 3 Count value". |
| 3: Values changed both at current value change and at preset | Stores the values set to " Da. 5 Positioning address/movement amount" at current value change execution to "Md. 1 Current feed value" and "Md. 3 Count value". Stores the value set to " Cd. 6 Preset value setting" at preset to " Md. 1 Current feed value" and " Md. 3 Count value". |

## Pr. 10 OPR method

## [Setting contents]

Set "OPR method" for performing machine OPR control.

| 0: Near-point dog <br> method | After the axis decelerates at the near-point dog ON, it stops at the zero signal and <br> then the machine OPR control is completed. |
| :--- | :--- |
| 1: Stopper 3 | After the axis starts rotating at creep speed, it stops at the stopper and then the <br> machine OPR control is completed at zero signal. |

For details of each OPR method, refer to "Section 8.2.2 OPR method for machine OPR control".

## [Machine OPR control operation]

0: Near-point dog method
(1) The machine OPR control is started.
(The axis starts movement in " Pr. 11 OPR direction"at " Pr. 13 OPR speed".)
(2) The near-point dog ON is detected and deceleration starts.
(3) The axis decelerates until it reaches to "Pr. 14 Creep speed", and then starts moving at the Creep speed. (At this time, the near-point dog must be ON.)
(4) When the first zero signal (signal output for one pulse per one rotation) after near-point dog OFF is detected, pulse output from the QD72P3C3 stops, and the machine OPR control is completed.


1: Stopper 3
(1)
(The axis starts movement in "Pr. 11 OPR direction"at "Pr. 14 Creep speed".) At this time, a torque limit to the motor is required. If torque limit is not set, the motor may be a failure at (2).)
(2) The axis contacts against the stopper at "Pr. 14 Creep speed", and then stops.
(3) When the zero signal (signal which detects a contact against a stopper, and then is output) is detected, pulse output from the
 QD72P3C3 stops, and the machine OPR control is completed.

## [Setting contents]

Set the direction to start movement when starting machine OPR control.
0 : Forward direction......Moves in the direction that the address increases. (Arrow 2))
1: Reverse direction......Moves in the direction that the address decreases. (Arrow 1))

Normally, OP is set near the lower limit switch or the upper limit switch. Therefore, set " Pr. 11 OPR direction" as shown below.


Pr. 12 OP address
[Setting contents]
Set an address used as the reference point for position control (ABS system).
When machine OPR control is completed, the value of " Md. 1 Current feed value" is changed to that of "Pr. 12 OP address".
[Setting contents]
Set the speed for OPR control.

## [Precautions]

- Set "OPR speed" to equal to or less than " Pr. 4 Speed limit value". If the "Speed limit value" is exceeded, "Out of OPR speed setting range" error (error code: 913) occurs.
- Setting unit (pulse unit) for speed setting data changes according to the value set to " Pr. 4 Speed limit value" as the table below.

| Setting value of <br> "Pr.4 Speed limit <br> value" (pulse/s) 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |  |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

When setting " Pr. 4 Speed limit value" to 10000 (pulse/s) (when pulse unit is 25 -pulse unit), set a value which is "multiples of 25 " to "Pr. 13 OPR speed". If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 .
[Setting contents]

- Set the creep speed (low speed immediately before stop after deceleration from OPR speed).
- The creep speed has influence to detection tolerance in OPR method with nearpoint dog method, and has influence to the size of impact at collision in OPR method with the stopper 3.


## [Precautions]

- Set "Creep speed" to equal to or less than "Pr. 13 OPR speed". If the "OPR speed" is exceeded, "Out of creep speed setting range" error (error code: 914) occurs.

- Setting unit (pulse unit) for speed setting data changes according to the value set to " Pr .4 Speed limit value" as the table below.

| Setting value of <br> " Pr.4 Speed limit <br> value" (pulse/s) | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

When setting " Pr. 4 Speed limit value" to 100000 (pulse/s) (when pulse unit is 25 -pulse unit), set a value which is "multiples of 25 " to "Pr. 14 Creep speed". If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 . Note if setting a value under 25 , corresponding to pulse unit, "Out of creep speed setting range" error (error code: 914) occurs.
[Setting contents]
Set acceleration time from "Pr. 14 Creep speed" to " Pr. 13 OPR speed" and deceleration time from "Pr. 13 OPR speed" to " Pr. 14 Creep speed" during machine OPR control in near-point dog method.


## [Precautions]

Set ACC/DEC time at OPR within the range that the following formula is satisfied. If the condition is not satisfied, "Out of ACC/DEC time setting valid range" warning (warning code: 26) occurs, and control is performed in the time between the maximum value and the minimum value calculated by the following formula. (Refer to "Example" below.)

$$
1 \leqq \frac{\text { Pr. } 13 \text { OPR speed }- \text { Pr. } 14 \text { Creep speed }}{\text { Pr. } 15 \text { ACC/DEC time at OPR } \times \text { Pulse unit } \times 0.125} \leqq 8000
$$

[Example]
When Pr. 13 OPR speed: 8000, Pr. 14 Creep speed: 1, and Pr. 4 Speed limit value: 8000 (=1-pulse unit), the setting range of Pr. 15 ACC/DEC time at OPR is from 8 to 5000 (ms).

## Pr. 16 Ring counter upper limit value

[Setting contents]

- Set the upper limit value of count range when the ring counter is selected for the counter format*.
- For details of ring counter, refer to "Section 12.3 Ring Counter Function".
* : Select the counter format using the intelligent function module switch.

[Setting contents]
- Set the upper limit value of positioning range when the ring counter is selected for the counter format and positioning control is performed in absolute system. When positioning control is performed at ring counter setting, the movable range in absolute system is from 0 to "Pr. 17 Positioning range upper limit value -1".

- When Speed control or JOG operation is performed at ring counter setting, "Md. 1 Current feed value" is repeatedly updated between 0 and "Pr. 17 Positioning range upper limit value -1".



## [Precautions]

- When the ring counter is selected for the counter format, the setting range of "positioning address/movement amount" is from 0 to "Pr. 17 Positioning range upper limit value -1". If trying to perform positioning control at out of this range, "Out of positioning address/movement amount setting range" error (error code: 509) occurs.
- If trying to perform positioning control when "Md. 1 Current feed value" is outside the range from 0 to "Pr. 17 Positioning range upper limit value -1 ", "Out of current feed value range" error (error code: 518) occurs.
- When "Pr. 17 Positioning range upper limit value" is set to 0 , the setting range of "positioning address/movement amount" is from 0 to 1073741823.


## [Setting contents]

Select whether to use the coincidence detection function.
0 : Coincidence detection not request......The coincidence detection function is not used.

1: Coincidence detection requested......The coincidence detection function is used.

## [Precautions]

If setting "1: Coincidence detection requested" while the ring counter function is used, "Coincidence detection function/ring counter function setting error" (error code: 925) occurs.

## Pr. 19 Count value selection at OPR

[Setting contents]
Select whether to set OP address to the count value when OPR is completed.
0 : OP address not set to count value
Sets OP address stored into " Md. 1 Current feed value" to " Md. 3 Count value" when OPR is completed.
1: OP address set to count value
Does not set OP address stored into " Md. 1 Current feed value" to " Md. 3 Count value" when OPR is completed. ("Md. 3 Count value" does not change.)

### 4.3 JOG Data List

| Item |  |  |  | $\begin{array}{c}\text { Buffer memory } \\ \text { address for }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |$]$

## [Setting contents]

- Set the speed for JOG operation. (This value is used for both forward run JOG and reverse run JOG.)
- Set the JOG speed in the following range.
$($ Pr. 4 Speed limit value $) \geqq($ JOG. 1 JOG speed $) \geqq(\square$ Pr. 5 Bias speed at start $)$.

If "JOG speed" exceeds "Speed limit value", it is limited within " Pr. 4 Speed limit value".

If "JOG speed" is less than "Bias speed at start", it is limited within " Pr. 5 Bias speed at start".

## [Precautions]

- Setting unit (pulse unit) changes according to the value set to " Pr. 4 Speed limit value" as the table below.

| Setting value of <br> "\|Pr.4 Speed limit <br> value" (pulse/s) | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

When setting " Pr. 4 Speed limit value" to 100000 (pulse/s) (when pulse unit is 25-pulse unit), set a value which is "multiples of 25 " to "JOG. 1 JOG speed". If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 .

## JOG. 2 JOG ACC/DEC time

[Setting contents]
Set the ACC/DEC time for JOG operation.
(This ACC/DEC time is used for both forward run JOG and reverse run JOG.)

## [Precautions]

Set JOG ACC/DEC time within the range that the following formula is satisfied. If the condition is not satisfied, "Out of ACC/DEC time setting valid range" warning (warning code: 26) occurs, and control is performed in the time between the maximum value and the minimum value calculated by the following formula. (Refer to "Example" below.)

$$
1 \leqq \frac{\text { JOG. } 1 \text { JOG speed }- \text { Pr. } 5 \text { Bias speed at start }}{\text { JOG.2 JOG ACC/DEC time } \times \text { Pulse unit } \times 0.125} \leqq 8000
$$

## [Example]

When JOG. 1 JOG speed: 8000, Pr. 5 Bias speed at start: 1, and Pr. 4 Speed limit value: 8000 (=1-pulse unit), the setting range of JOG. 2 JOG ACC/DEC time is from 8 to 5000 (ms).

### 4.4 Positioning Data List

| Item | Setting value, setting range | Factory default value | Buffer memory address for setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{\|c} \hline \text { Axis } \\ 1 \end{array}$ | $\begin{gathered} \hline \text { Axis } \\ 2 \end{gathered}$ | $\begin{gathered} \hline \text { Axis } \\ 3 \end{gathered}$ |
| Da. 1 Operation pattern | 0 : Positioning start (independent) 5000: Positioning start (continuous) | 0 | 90 | 190 | 290 |
| Da. 2 Control method | 0 : No control method <br> 1: 1-axis linear control (ABS) <br> 2: 1-axis linear control (INC) <br> 3: Speed control (Forward run) <br> 4: Speed control (Reverse run) <br> 5: Current value change | 0 | 91 | 191 | 291 |
| Da. 3 ACC/DEC time | 1 to 5000 (ms) | 1000 | 92 | 192 | 292 |
| Da. 4 Command speed | 1 to 100000 (pulse/s) | 1 | 94 | 194 | 294 |
|  |  |  | 95 | 195 | 295 |
| Da. 5 Positioning address/movement amount | -1073741824 to 1073741823 (pulse) | 0 | 96 | 196 | 296 |
|  |  |  | 97 | 197 | 297 |

## [Setting contents]

Area to select a start method for positioning control.

0 : Positioning start (independent)
Select this item when performing positioning control whose movement amount is within 268435455 pulses, regardless whether the system is the absolute system or incremental system.

5000: Positioning start (continuous)
Select this item when performing positioning control whose movement amount is over 268435455 pulses, regardless whether the system is the absolute system or incremental system.

Example 1: Performing positioning control whose movement amount is within 268435455pulses
When performing position control from -99999999 (starting address) to 150000000 (end address) in absolute system, since the movement amount is 250000000 pulses,
select "0: Positioning start (independent)" as "Da. 1 Operation pattern".


Example 2: Performing positioning control whose movement amount is over 268435455pulses
When performing position control from -99999999 (starting address) to 500000000 (end address) in absolute system
Since the movement amount is 600000000 pulses, select "5000: Positioning start (continuous)" as "Da. 1 Operation pattern".
*The QD72P3C3 can output up to 268435455 pulses at a time. When performing positioning control exceeding the number of pulses that can be output, perform movement in multiple times as the figure below.


## [Setting contents]

Set the "control method" for positioning control.
0: No control method
1: 1-axis linear control (ABS)
2: 1-axis linear control (INC)
3: Speed control (Forward run)
4: Speed control (Reverse run)
5: Current value change

## [Precautions]

- For details of control method, refer to "CHAPTER 9 POSITIONING CONTROL".
- If setting "0: No control method", "Out of control method setting range" error (error code: 506) occurs.


## [Setting contents]

Set the acceleration/deceleration time for positioning control.

## [Precautions]

Set ACC/DEC time within the range that the following formula is satisfied. If the condition is not satisfied, "Out of ACC/DEC time setting valid range" warning (warning code: 26) occurs, and control is performed in the time between the maximum value and the minimum value calculated by the following formula. (Refer to "Example" below.)

[Example]
When Da. 4 Command speed: 8000, Pr. 5 Bias speed at start: 1, and Pr. 4 Speed limit value: 8000 (=1-pulse unit), the setting range of Da. 3 ACC/ DEC time is from 8 to 5000 (ms).
[Setting contents]
Set the speed during positioning control.

## [Precautions]

- If the set command speed exceeds " Pr. 4 Speed limit value", positioning control is performed at the speed limit value.
- Setting unit (pulse unit) changes according to the value set to " Pr. 4 Speed limit value" as the table below.

| Pr.4 Setting value of <br> "Speed limit value" <br> (pulse/s) | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

When setting " Pr. 4 Speed limit value" to 100000 (pulse/s) (when pulse unit is 25 -pulse unit), set a value which is "multiples of 25 " to "JOG. 1 JOG speed". If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 .
[Setting contents]
Set an address or movement amount which is to be a set point for positioning control.
The settable range depends on " Da. 2 Control method".
(refer to (a) and (b) below.)
(a) 1-axis linear control (ABS), current value change

Set a value (positioning address) for 1-axis linear control (ABS) or current value change using the absolute address (address from the OP).

(b) 1-axis linear control (INC)

Set a signed movement amount as the setting value (movement amount) for 1axis linear control (INC).
When the movement amount is positive: The axis moves in the positive direction (address increase direction).
When the movement amount is negative: The axis moves in the negative direction (address decrease direction).


## [Precautions]

If setting "0: Positioning start (independent)" to "Da. 1 Operation pattern", do not set movement amount over 268435455 pulses, regardless whether the system is the absolute system or incremental system.
If set, "Out of positioning address/movement amount setting range" error (error code: 509) occurs.

### 4.5 Monitor Data List

| Item |  | Stored data | Factory default value | Storage buffer memory address |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Axis } \\ 1 / \\ \mathrm{CH} 1 \end{gathered}$ |  | $\begin{gathered} \text { Axis } \\ 2 / \\ \text { CH2 } \end{gathered}$ | $\begin{gathered} \hline \text { Axis } \\ 3 / \\ \text { CH3 } \end{gathered}$ |
| Md. 1 | Current feed value |  | -The current position using the position when OPR is completed as the base is stored. <br> -Update timing: 2.5 ms <br> - On completion of machine OPR control, the OP address is stored. <br> -Current feed value not updated/current feed value updated can be selected during speed control by parameter setting. <br> -The software stroke limit can be activated by parameter setting. <br> -If the current value has been changed by the current value change function, the new value is stored. <br> [Range: -1073741824 to 1073741823 pulses] | 0 | $\begin{aligned} & 70 \\ & 71 \end{aligned}$ | $\begin{aligned} & 170 \\ & 171 \end{aligned}$ | $\begin{aligned} & 270 \\ & 271 \end{aligned}$ |
| Md. 2 | Current speed | -The current speed is stored. <br> -Update timing: 2.5 ms <br> [Range: 0 to 100000 pulses] | 0 | $\begin{aligned} & 72 \\ & 73 \end{aligned}$ | $\begin{aligned} & 172 \\ & 173 \end{aligned}$ | $\begin{aligned} & 272 \\ & 273 \end{aligned}$ |
| Md. 3 | Count value | -The count value of input pulse is stored. <br> -This value can be rewritten to " Cd.6 Preset value setting" with the preset command (Y18 to Y1A). <br> [Range: - 1073741824 to 1073741823 pulses] | 0 | $\begin{aligned} & 74 \\ & 75 \end{aligned}$ | $\begin{aligned} & 174 \\ & 175 \end{aligned}$ | $\begin{aligned} & 274 \\ & 275 \end{aligned}$ |
| Md. 4 | Axis operation status | The axis operation status is stored. <br> -1: Error <br> 0: Standby <br> 1: Stopped <br> 2: JOG operation <br> 3: OPR <br> 4: Position control <br> 5: Speed control <br> 6: Deceleration (axis stop ON) <br> 7: Deceleration (JOG start OFF) <br> 8: Fast OPR | 0 | 76 | 176 | 276 |
| Md. 5 | Axis/CH error code | -At axis/CH error occurrence, the error code corresponding to the error description is stored. <br> -If another error occurs during axis/CH error occurrence, the latest error code is ignored. <br> However, if an error which affects the system (error code: 800 to 830) occurs, the old error code is overwritten, and the latest error code is stored. <br> -The error codes 800 to 830 are stored into Md. 5 for all axes. <br> -When the axis/CH error reset signal (Y1 to Y3) of each axis is turned ON, the error code is cleared (becomes zero). <br> -For details of error code, refer to "Section 15.2.1". | 0 | 77 | 177 | 277 |
| Md. 7 | Axis/CH warning code | - At axis/CH warning occurrence, the warning code corresponding to the warning description is stored. <br> -If another warning occurs during axis/CH warning occurrence, the old warning code is overwritten, and the latest warning code is stored. <br> -When the axis/CH error reset signal ( Y 1 to Y 3 ) of each axis is turned ON , the warning code is cleared (becomes zero). <br> -For details of warning code, refer to "Section 15.2.2". | 0 | 78 | 178 | 278 |

DATA USED FOR POSITIONING CONTROL

| Item | Stored data | Factory default value | Buffer memory address for setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \hline \text { Axis } \\ \text { 1/ } \\ \text { CH1 } \end{gathered}$ | $\begin{gathered} \text { Axis } \\ 2 / \\ \mathrm{CH} 2 \end{gathered}$ | Axis <br> 3/ <br> CH3 |
| Md. 7 Status | The ON/OFF status of the following flags are stored. <br> The following items are stored. <br> - Speed control flag (for details, refer to "CHAPTER 9"). <br> This flag turns ON at speed control start, and turns OFF at speed control stop. <br> -OPR control flag (for details, refer to "CHAPTER 8"). <br> This flag turns ON at power-ON or at machine OPR control start, and turns OFF on completion of machine OPR control. <br> -OPR complete flag (for details, refer to "CHAPTER 8"). <br> This flag turns ON upon normal completion of machine OPR control, and turns OFF at OPR control, positioning control or JOG operation start. <br> -Overflow occurrence flag (for details, refer to "Section 12.1"). <br> This flag turns ON when count value overflow occurs while linear counter is selected for the counter format. <br> This flag turns OFF by presetting. | 0002H | 79 | 179 | 279 |
| Md. 8 External I/O signal | The ON/OFF status of the external I/O signals are stored. <br> The following items are stored. <br> - Upper limit signal <br> -Lower limit signal <br> -Zero signal <br> - Near-point dog signal | 0000H | 80 | 180 | 280 |

### 4.6 Control Data List

### 4.6.1 Axis control data

| Item | Stored data | Factory default value | Buffer memory address for setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \hline \text { Axis } \\ \text { 1/ } \\ \text { CH1 } \end{gathered}$ | Axis <br> 2/ <br> CH2 | $\begin{gathered} \hline \text { Axis } \\ 3 / \\ \text { CH3 } \end{gathered}$ |
| Cd. 1 New speed value | Set the new speed for JOG operation or speed control. <br> By turning ON " Cd.3Speed change request", the axis operates at the speed set to this buffer memory. <br> -Set a value equal to or less than " Pr. 4 Speed limit value". <br> - Set a value equal to or more than " Pr. 5 Bias speed at start". <br> [Setting range: 1 to 100000 pulse/s ${ }^{* 1}$ ] | 1 | 50 51 | 150 151 | 250 251 |
| Cd. 2 ACC/DEC time at speed change | Set the time taken the current speed to shift to the speed after change. [Setting range: 1 to $5000 \mathrm{~ms}^{*}$ ] | 1000 | 52 | 152 | 252 |
| Cd. 3 Speed change request | Set "1" to request speed change processing (make the value of " $\quad$ Cd. 1 New speed value" valid) after setting "Cd. 1 New speed value" for JOG operation or speed control. <br> (This data changes automatically to " 0 " after speed change request acceptance.) | 0 | 54 | 154 | 254 |
| Cd. 4 OPR request flag OFF request | When OPR request flag (b1 of Md.7) is ON, setting "1" forcibly turns this data OFF. <br> (This data automatically changes to " 0 " after the OPR request flag turns OFF.) | 0 | 55 | 155 | 255 |
| Cd. 5 Start method | Set this data when starting each control. <br> 0: Positioning control 9000: Machine OPR control <br> 9001: Fast OPR control | 0 | 56 | 156 | 256 |
|  | Set a value to be set to " Md. 3 Count value" with the preset command. Turning ON the preset command ( Y 18 to Y 1 A ) stores the value set to this |  | 60 | 160 | 260 |
|  | buffer memory into "Md.3Count value". <br> [Setting range: -1073741824 to 1073741823] |  | 61 | 161 | 261 |
| Cd. 7 Coincidence detection point setting | Enter a value to be compared with "Md.3 Count value". <br> Setting "1" to "Pr. 18 Coincidence detection setting" performs coincidence detection. <br> [Setting range: -1073741824 to 1073741823] | 0 | 62 63 | 162 163 | 262 263 |

* 1: Setting unit (pulse unit) changes according to the value set to " Pr. 4 Speed limit value" as the table below.

| Setting value of <br> "Pr.4 <br> value" (pulse/s) <br> Pulse unit | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |

When setting "Pr. 4 Speed limit value" to 100000 (pulse/s) (when pulse unit is 25-pulse unit), set a value which is "multiples of 25 " to " Cd. 1 Speed change value".
If setting a value that does not satisfy the condition, the value is dropped so that it can be multiples of 25 .

* 2: Set Cd.2 ACC/DEC time at speed change within the range that the following formula is satisfied. If the condition is not satisfied, "Out of ACC/DEC time setting valid range"warning (warning code: 26) occurs, and control is performed in the time between the maximum value and the minimum value calculated by the following formula. (Refer to "Example" below.)

$$
1 \leqq \frac{\text { Cd. } 1 \text { New speed value }- \text { Pr. } 5 \text { Bias speed at start }}{\text { Cd. } 2 \text { ACC/DEC time at speed change } \times \text { Pulse unit } \times 0.125} \leqq 8000
$$

## [Example]

When Cd. 1 Speed change value: 8000, Pr. 14 Creep speed: 1, and Speed limit value: 8000 (=1pulse unit), the setting range of Cd. 2 ACC/DEC time at speed change is from 8 to 5000 (ms).

『
Q series

## CHAPTER5 PROCEDURES AND SETTINGS BEFORE OPERATION

This chapter describes the operating procedures before operation, part names, and setting and wiring method of the QD72P3C3.

### 5.1 Handling Precautions

This section describes precautions on handling the QD72P3C3.

$$
!\text { WARNING }
$$

Be sure to shut off all phases of the external power supply used by the system before cleaning or
retightening module fixing screw.
Failure to do so may cause an electric shock.

## CAUTION

- Use the programmable controller in the environment conditions given in the general specifications of the User's Manual for the CPU module.
Failure to do so may cause an electric shock, fire, malfunction, or damage to or deterioration of the product.
- Do not directly touch any conductive part or electronic part of the module.

Doing so may cause a malfunction or failure of the module.

- Be careful to prevent foreign matter such as dust or wire chips from entering the module.

Failure to do so may cause a fire, failure or malfunction.

- Do not disassemble or remodel each of the modules.

Doing so may cause failure, malfunctions, personal injuries and/or a fire.

- Be sure to shut off all phases of the external power supply used by the system before mounting or removing the module.
Not doing so may result in a failure or malfunction of the module.
- While pressing the installation lever located at the bottom of the module, fully insert the module fixing projection into the fixing hole in the base unit and press the module using the hole as a fulcrum. Incorrect module mounting may cause a malfunction, failure, or drop of the module. In an environment of frequent vibrations, secure the module with screws.
The screws must be tightened within the specified torque range. If the screw is too loose, it may cause a drop, short circuit, or malfunction.
Excessive tightening may damage the screw and/or the module, resulting in a drop, short circuit or malfunction.


## (1) Main body

- The module case is made of resin. Do not drop nor apply strong impact onto the case.
- Do not remove the printed-circuit board of the QD72P3C3 from the case. Doing so may cause a failure.
- Tighten the module fixing screws within the following range.

| Screw | Tightening torque range |
| :---: | :---: |
| Module fixing screw (M3 screw) ${ }^{* 1}$ | 0.36 to $0.48 \mathrm{~N} \cdot \mathrm{~m}$ |

* 1 The module can be easily fixed to the base unit using a hook located on the top of the module. However, it is recommended to secure the module with module fixing screws if the module is subject to frequent vibrations.


## (2) Cable

- Do not press on the cable with a sharp object.
- Do not twist the cable with force.
- Do not forcibly pull the cable.
- Do not step on the cable.
- Do not place objects on the cable.
- Do not damage the cable coatings.


## (3) Installation environment

Do not install the module in the following environment:

- Where the ambient temperature exceeds the 0 to $55^{\circ} \mathrm{C}$ range
- Where the ambient humidity exceeds the 5 to $95 \%$ RH range
- Where condensation occurs due to sudden temperature change
- Where corrosive gas or flammable gas exists
- Where high levels of dust, conductive powder such as iron chips, oil mist, salt or organic solvent exists
- Where the module is subjected to direct sunlight
- Where intense electric fields or magnetic fields are created
- Where vibration or impact could be directly applied onto the main body


### 5.2 Procedures Before Operation

The following flowchart shows the procedures for operating the QD72P3C3.


### 5.3 Part Names

(1) The following explains the part names of the QD72P3C3.


| No. | Name |  |
| :---: | :--- | :--- |
| 1$)$ | RUN LED | Description |
| 2$)$ | ERR. LED |  |
| 3$)$ | AX LED |  |
| 4$)$ | $\phi$ A LED |  |
| 5$)$ | $\phi$ B LED |  |
| 6$)$ | External device connector | Connector for connecting a drive unit, encoder, and <br> mechanical system inputs |
| 7$)$ | Serial number plate | Indicates the serial No. of the QD72P3C3. |

## (2) The LED display changes according to the operation status of the QD72P3C3 and Axis/CH as follows.

| QD72P3C3 |  |  |
| :---: | :---: | :---: |
| RUN! | ! ? | $!? A X$ |
|  | ! 7 ! 7 | ! $\dagger$ A |
| ERR. ! | $!7!$ | $!\rightarrow \phi B$ |


| Display contents | Operation status | Description | Display contents | Operation status | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -RUN LED is OFF. <br> (The status of ERR. LED, AX1 to AX3 are undefined.) | Hardware: <br> Failure <br> Module: <br> Error |  | -AX_CH1 LED is ON. <br> (Same for other axes.) | Axis: In operation |
|  | -RUN LED is ON. <br> -ERR. LED is OFF. | Module: <br> Normal |  | -AX_CH1 LED is flashing. (Same for other axes.) -ERR. LED is flashing. | Axis/CH: <br> Error |
|  ${ }^{\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{CH} 1}$ <br> RUN $\square \square$ <br>  $\square \mathrm{AX}$ <br> ERR. $\square \square \square \phi \mathrm{A}$ <br>  $\square$ <br> $\square$ $\square \phi \mathrm{B}$ | -RUN LED is ON. ERR. LED is ON . | System: <br> Error |  | - $\phi \mathrm{A} \_\mathrm{CH} 1$ LED is ON. <br> (Same for other CHs.) | Phase A <br> voltage: <br> Applying |
|  | $\begin{gathered} \cdot \mathrm{AX} \text { AX_CH1 to } \\ \text { AX_CH3 } \end{gathered}$ <br> LEDs are OFF. | Axes: <br> Stopped <br> Axes: <br> Standby |  | - $\phi \mathrm{B} \_\mathrm{CH} 1$ LED is ON. <br> (Same for other CHs.) | Phase B <br> voltage: <br> Applying |

■External device connector
Purchase the connector for the QD72P3C3 separately.
The following tables show the recommended connector types and crimp tool.
(a) Connector types

| Type | Model |
| :---: | :---: |
| Soldering type, straight out | A6CON1 |
| Crimp type, straight out | A6CON2 |
| Soldering type, usable for both straight out and <br> diagonal out | A6CON4 |

(b) Connector crimp tool

| Type | Model | Applicable <br> wire size | Contact |
| :---: | :---: | :---: | :---: |
| Crimp tool | FCN-363T-T005/H | AWG24 | FUJITSU COMPONENT LIMITED |

### 5.4 Wiring

This section describes how to wire a drive unit and mechanical system inputs to the QD72P3C3.
The following describes the precautions for wiring the QD72P3C3. Read these precautions together with "Section 5.1 Handling Precautions" to ensure work safety.

### 5.4.1 Wiring precautions

(1) Correctly wire cables to the QD72P3C3 after checking the terminal layout.
(For details of terminal layout, refer to "Section 3.5.2 Signal layout for external device connector".)
(2) Correctly solder or bond the external device connector (A6CON1/ A6CON2/A6CON4). An incomplete soldering or bonding may cause a malfunction.
(3) Be careful to prevent foreign matter such as dust or wire chips from entering the QD72P3C3. Failure to do so may cause a fire, failure or malfunction.
(4) A protective film is attached to the top of the QD72P3C3 to prevent foreign matter such as wire chips from entering the module during wiring. Do not remove the film during wiring. Be sure to remove it for heat dissipation before system operation.
(5) Securely mount the external device connector (A6CON1/A6CON2/ A6CON4) to the connector on the QD72P3C3 with two screws.
(6) When disconnecting the cable connected to the QD72P3C3 or drive unit, do not pull it by holding the cable part. Hold the connector connected to the QD72P3C3 or drive unit and disconnect it. Pulling the cable part with the cable still connected to the QD72P3C3 or drive unit may cause a malfunction. Doing so may also cause damage of the QD72P3C3, drive unit or cable.
(7) Do not bind together or locate close to each other the QD72P3C3 cables connecting to external I/O signals or drive unit with the main circuit line, power line, and load lines other than for the programmable controller. Keep a distance of 100 mm ( 3.94 inch ) or more between those cables and lines. Failure to do so may cause a malfunction due to noise, surge, or induction.
(8) When the QD72P3C3 connection cable is located close to the power line (less than 100 mm ( 3.94 inch )), use a shielded cable for noise suppression. Be sure to ground the shield of shielded cables to a control panel on the QD72P3C3 side. (A wiring example is shown on the next page.)
[Wiring example of shielded cables]
Wiring example for noise suppression using the A6CON1

[Processing example of shielded cables]
Connecting FG wire and shielded cables


## Connector (A6CON1) assembly


(9) Be sure to place the cables connected to the QD72P3C3 in a duct or clamp them. Failure to do so may cause not only damage to the QD72P3C3, drive unit and/or cables by pulling unfixed cables carelessly, but also a malfunction due to poor cable connection.
(10)To conform the wiring to the EMC and Low Voltage Directives, ground the shielded cables to a control panel using the AD75CK cable clamp (manufactured by Mitsubishi Electric Corporation).


For details of the AD75CK, refer to the following.
? AD75CK-type Cable Clamping Instruction Manual
[Wiring examples using duct (improper example and improved example)]


The drive units are placed near the noise source. The connection cable between the QD72P3C3 and drive units is too long.


The QD72P3C3 and drive units are placed closely. The connection cable between them is located separately from the power line, and is as short as possible. (In this example, the cables are connected without using the duct.)

### 5.5 Wiring Check

### 5.5.1 Check items at wiring completion

Check the following items after installation and wiring of the QD72P3C3 are completed.

- Is the module correctly wired? $\qquad$ "Connection check"

By performing "connection check", "whether the QD72P3C3 recognizes the external I/O signals, such as near-point dog signal and upper/lower limit signals" can be checked.

The following describes the method of "connection check".
(1) Checking using GX Developer

Read the monitor data "Md.8 External I/O signal" using the monitor function (Buffer memory batch) and check the read values.

| Signal name | Buffer memory address |  |  |
| :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 |
| Md.8 External I/O signal | 80 | 180 | 280 |

[Bit pattern]

(Example) Checking the external I/O signals of Axis 1
(GX Developer screen)


The external I/O signal status can also be checked on the [System monitor] screen. For details, refer to "Section 13.3 External I/O Signal Monitor Function".

## (2) Checking using GX Configurator-PT

Monitor the external I/O signal status on the [Monitor/Test] screen.
(For details, refer to "Section 6.6 Monitor/Test".)
(Example) Checking the external I/O signals of Axis 1 (Axis \#1 OPR Monitor)
(GX Configurator-PT screen)


If the QD72P3C3 has a failure or does not recognize necessary signals, such as the near-point dog signal and upper/lower limit signals, an unexpected accident,
e.g. "the axis collides with the stopper without decelerating at the near-point dog the near-point dog signal and upper/lower limit signals, an unexpected accident,
e.g. "the axis collides with the stopper without decelerating at the near-point dog during machine OPR control", may occur.
Be sure to perform "connection check" not only when the positioning control system is configured but also when any modification, such as module change or rewiring, has been made.

## ®IMPORTANT

 rewing, has been made.
### 5.6 Intelligent Function Module Switch Setting

Pulse I/O mode, external I/O signal logic, and counter format can be set to the QD72P3C3 with intelligent function module switch setting of GX Developer.
The switch setting is made on the [I/O assignment] tab in the [PLC Parameter] screen of GX Developer.
The switch has five switches and is set at 16-bit data.
The switch settings become effective after power-ON or the programmable controller CPU reset. The settings cannot be changed during operation.

## (1) Setting item

| Switch No. | Setting item | Setting contents/bit assignment |  |  |  |  |  |  |  | Factory default value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switch 1 | Pulse output <br> mode (For <br> details, refer to <br> (1)(a) in this <br> section.) <br> Pulse output <br> logic selection <br> Deviation <br> counter clear <br> output logic <br> selection <br> Zero signal <br> input logic <br> selection | Pulse output mode (b2: Axis No.3, b1: Axis No.2, b0: Axis No.1) <br> 0 : CW/CCW mode <br> 1 : PULSE/SIGN mode <br> Pulse output logic selection (b6: Axis No.3, b5: Axis No.2, b4: Axis No.1) <br> 0 : Negative logic <br> 1 : Positive logic <br> Deviation counter clear output logic selection (b10: Axis No.3, b9: Axis No.2, b8: Axis No.1) <br> 0 : Negative logic <br> 1 : Positive logic <br> Zero signal input logic selection (b14: Axis No.3, b13: Axis No.2, b12: Axis No.1) <br> 0 : Negative logic <br> 1 : Positive logic |  |  |  |  |  |  |  | 0000H |
| Switch 2 | Near-point dog signal input logic selection <br> Lower limit signal input logic selection <br> Upper limit signal input logic selection | Near-point dog signal input logic selection (b2: Axis No.3, b1: Axis No.2, b0: Axis No.1) <br> 0 : Negative logic <br> 1 : Positive logic <br> Lower limit signal input logic selection (b6: Axis No.3, b5: Axis No.2, b4: Axis No.1) <br> 0 : Negative logic <br> 1 : Positive logic <br> Upper limit signal input logic selection (b10: Axis No.3, b9: Axis No.2, b8: Axis No.1) <br> 0 : Negative logic <br> 1 : Positive logic |  |  |  |  |  |  |  | 0000H |
| Switch 3 | Pulse input mode (For details, refer to (1)(b) in this section.) <br> Counter format* | ```Pulse input mode (b5 to 4: \(\mathrm{CH} 3, \mathrm{~b} 3\) to2: CH 2 , b1 to \(0: \mathrm{CH} 1\) ) 00 : CW/CCW 01: 1 multiple of 2 phases 10: 2 multiples of 2 phases 11: 4 multiples of 2 phases Counter format (b10: CH3, b9: CH2, b8: CH1) 0 : Linear counter 1: Ring counter``` |  |  |  |  |  |  |  | 0000H |
| Switch 4 | Reserved |  |  |  |  |  |  |  |  |  |
| Switch 5 | Reserved |  |  |  |  |  |  |  |  |  |

[Setting example]

| Setting item | Setting contents |  |  | Target signal name | Switch setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 3 | Axis 2 | Axis 1 |  |  |
| Pulse output mode | PULSE/SIGN mode |  | $\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \text { mode } \end{aligned}$ | PULSE F口, | $\begin{gathered} \text { Switch } 1 \\ : 6126 \mathrm{H} \end{gathered}$ |
| Pulse output logic selection | N | P | N | PULSE R $\square$ |  |
| Deviation counter clear output logic selection | N | N | P | CLEAR $\square$ |  |
| Zero signal input logic selection | P | P | N | PG0 $\square$ |  |
| Near-point dog signal input logic selection | P | N | P | DOG $\square$ | $\begin{aligned} & \text { Switch } 2 \\ & : 0005 \mathrm{H} \end{aligned}$ |
| Lower limit signal input logic selection | N | N | N | RLS $\square$ |  |
| Upper limit signal input logic selection | N | N | N | FLS $\square$ |  |
| Pulse input mode | 2 multiples of 2 phases | CW/CCW |  | $\begin{aligned} & \mathrm{CH} \square \mathrm{~A}, \\ & \mathrm{CH} \square \mathrm{~B} \end{aligned}$ | Switch 3$: 0420 \mathrm{H}$ |
| Counter format | Ring counter | Linear counter |  |  |  |

$P$ : positive logic, $N$ : negative logic

* Axis/channel No. is displayed in the $\square$.
(a) Pulse output mode

Sets the pulse output mode applicable to the drive unit used.
For switching between positive and negative logic of the pulse, "Switch 1 " is used.
The following shows the examples of each pulse output mode.

1) CW/CCW mode

During forward run, the forward run feed pulse (CW) is output.
During reverse run, the reverse run feed pulse (CCW) is output.


* CW is output from the "PULSE F" external I/O signal and CCW from "PULSE R". (Refer to "Section
3.5.3".)

2) PULSE/SIGN mode


[^0](b) Pulse input mode

Sets the pulse input mode applicable to the encoder and pulse generator used.
The following shows the examples of each pulse input mode.

| Pulse input <br> mode |  | For addition <br> count | For subtraction <br> Count |
| :--- | :--- | :--- | :--- |

## XIMPORTANT

*1: The module may not be able to operate normally if each I/O signal logic is set incorrectly. Pay special attention when changing the setting from the default value.
*2: When using the input mode of either 1 multiple of 2 phases or 2 multiples of 2 phases, be sure to input 2-phase pulses. With these input methods, pulses are counted according to the changes between phase A and phase B.

## (2) Operating procedure

Set the switches on the [I/O assignment] tab in the [PLC Parameter] screen of GX Developer.
(a) [I/O assignment] tab

Set the following to the slot to which the QD72P3C3 is mounted.
[Type]: Select [Intelli].
[Model name]: Input the model of the module.
[Points]: Select [32points].
[Start XY]: Input the start I/O number of the QD72P3C3.

(b) [Switch setting for I/O and intelligent function module] screen

Click the Switch setting button on the [I/O assignment] tab to display the screen below and set the switches from 1 to 3 .
Entering the values in hexadecimal make the setting easier.
Change [Input format] to [HEX.] and enter values.


## ®POINT

The values set on the [I/O assignment] tab in the [PLC Parameter] screen can be checked on the [Module's Detailed Information] screen displayed from the [System Monitor] screen of GX Developer. For details, refer to Section 12.3.

### 5.7 Simple Reciprocating Operation

Before operating the system, check the operation of the drive unit.
(Operation must be checked after confirming that the installation, wiring, intelligent function module switch setting, and connection of the QD72P3C3 are normal. For details of the drive unit, refer to the manual of the drive unit used.)

The following describes the method of "simple reciprocating operation".

## (1) Operation method

Using a sequence program, perform forward run/reserve run of JOG operation. (For details of JOG operation, refer to CHAPTER 10.)

## (2) Setting item

Set JOG data in the sequence program. Default values can be used for the other data (such as parameters, positioning data).
(Change the JOG data setting values according to the machine specifications.)

| JOG data | Setting value (example) | Setting contents | Buffer memory address |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Axis <br> 1 | Axis 2 | $\begin{gathered} \hline \text { Axis } \\ 3 \end{gathered}$ |
| JOG. 1 JOG speed | 5000pulse/s | Set the speed for JOG operation. | $\begin{aligned} & 40 \\ & 41 \end{aligned}$ | 140 141 | $\begin{aligned} & 240 \\ & 241 \end{aligned}$ |
| JOG. 2 JOG ACC/DEC time | 1000ms | Set the ACC/DEC time for JOG operation. | 42 | 142 | 242 |

* For details of the setting contents, refer to "Section 4.3 List of JOG Data".
(3) Reciprocating operation program using JOG operation

The following is a program example for Axis 1.
(When the QD72P3C3 is installed in slot 0 of the main base unit)
[Used device]

| Device name |  | Device | Application | ON details | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Special relay |  | SM403 | One scan OFF after RUN | -. | - |
| $\begin{gathered} \text { QD72P3C3 } \\ \text { I/O } \end{gathered}$ | Input | X0 | Module READY signal | QD72P3C3: Normal | - |
|  |  | X8 | Axis 1 BUSY signal | Axis 1: In operation | - |
|  | Output | Y0 | Programmable controller CPU READY signal | Programmable controller CPU: Normal | - |
|  |  | YC | Axis 1 forward run JOG start signal | Axis 1: Forward run JOG starting | - |
|  |  | YD | Axis 1 reverse run JOG start signal | Axis 1: Reverse run JOG starting |  |
| External input (command) |  | X27 | Forward run JOG command | Forward run JOG operation: <br> Being commanded | JOG operation is disabled if X27 and X28 are both ON or both OFF. |
|  |  | X28 | Reverse run JOG command | Reverse run JOG operation: <br> Being commanded |  |
| Internal relay |  | M8 | JOG operation flag | JOG operation | - |

[Program example]

series

## (4) Checking operation status

(a) Checking using GX Developer

Read the following monitor data using the monitor function (Buffer memory batch).

| Axis monitor data | Monitor contents | Buffer memory address |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Axis } \\ \text { 1/ } \\ \text { CH1 } \end{gathered}$ | $\begin{gathered} \text { Axis } \\ 2 / \\ \text { CH2 } \end{gathered}$ | $\begin{gathered} \text { Axis } \\ 3 / \\ \mathrm{CH} 3 \end{gathered}$ |
| Md. 1 Current feed value | Monitors the current position. | $\begin{aligned} & 70 \\ & 71 \end{aligned}$ | $\begin{aligned} & 170 \\ & 171 \end{aligned}$ | $\begin{aligned} & 270 \\ & 271 \end{aligned}$ |
| Md. 2 Current speed | Monitors the current speed. | $\begin{aligned} & 72 \\ & 73 \end{aligned}$ | 172 173 | $\begin{aligned} & \hline 272 \\ & 273 \end{aligned}$ |
| Md. 4 Axis operation status | Monitors the operation status "2: JOG operation" of the axis. | 76 | 176 | 276 |
| Md.5 Axis/CH error code | Monitors details of the error occurrence. | 77 | 177 | 277 |

* For details of the monitor contents, refer to "Section 4.5 List of Monitor Data".
(Example) Operation status of Axis 1
(GX Developer screen)

(b) Checking using GX Configurator-PT Monitor the "current feed value", "current speed", "axis operation status", and "axis error code" on the [Monitor/Test] screen. (For details, refer to "Section 6.6 Monitor/Test".)
(Example) Operation monitor of Axis 1 (Axis \#1 Monitor/Test) (GX Configurator-PT screen)



## CHAPTER6 UTILITY PACKAGE (GX Configurator-PT)

The QD72P3C3 utility package (GX Configurator-PT) is software designed to make initial setting, auto refresh setting, monitor and others of the QD72P3C3 using dedicated screens, without being conscious of the I/O signals and buffer memory.
Use the utility package together with GX Developer (SW4D5C-GPPW-E or later).

### 6.1 Utility Package Functions

The following table shows the functions of the utility package.

| Function | Description | Reference |
| :---: | :---: | :---: |
| Initial setting | Makes the initial setting for each axis to operate the QD72P3C3. <br> Sets the values of the items where the initial setting is required. <br> [Setting items] <br> - Parameter <br> -OPR data <br> - Positioning data <br> -Counter function parameter <br> (The initially set data are registered to programmable controller CPU parameters and automatically written to the QD72P3C3 when the programmable controller CPU changes to the RUN status.) | Section 6.4 |
| Auto refresh setting | Sets the QD72P3C3 buffer memory to be automatically refreshed. <br> [Auto refresh target buffer memory] <br> -Current feed value <br> -Current speed <br> - Count value <br> - Axis operation status <br> -Axis/CH error code <br> -Axis/CH warning code <br> (The values stored in the QD72P3C3 buffer memory with auto refresh setting are automatically read when the programmable controller CPU executes the END instruction.) | Section 6.5 |
| Monitor/Test | Monitors/tests the buffer memories and I/O signals of the QD72P3C3. <br> -Axis monitor/test <br> -OPR monitor <br> -Counter function monitor/test <br> -X/Y monitor <br> -ACC/DEC time calculation function | Section 6.6 |

### 6.2 Installing and Uninstalling the Utility Package

For how to install or uninstall the utility package, refer to "Method of installing the MELSOFT Series" included in the utility package.

### 6.2.1 Handling precautions

The following explains the precautions on using the Utility package.

## (1) For safety

Since the utility is add-in software for GX Developer, read "Safety Precautions" and the basic operating procedures in the GX Developer Operating Manual.

## (2) About installation

GX Configurator-PT is add-in software for SW4D5C-GPPW-E or later versions. Therefore, GX Configurator-PT must be installed on the personal computer that has already SW4D5C-GPPW-E or later version installed.
(3) Screen error of Intelligent function module utility

Insufficient system resource may cause the screen to be displayed inappropriately while using the Intelligent function module utility.
If this occurs, close the Intelligent function module utility, GX Developer (program, comments, etc.), and other applications, and then start GX Developer and Intelligent function module utility again.

## (4) To start the Intelligent function module utility

(a) In GX Developer, select "QCPU (Q mode)" for PLC series and specify a project. If any PLC series other than "QCPU (Q mode)" is selected, or if no project is specified, the Intelligent function module utility will not start.
(b) Multiple Intelligent function module utilities can be started.

However, [Open parameters] and [Save parameters] operations under [Intelligent function module parameter] are allowed for one Intelligent function module utility only. Only the [Monitor/test] operation is allowed for the other utilities.
(5) Switching between two or more Intelligent function module utilities

When two or more Intelligent function module utility screens cannot be displayed side by side, select a screen to be displayed on the top of others using the task bar.

IH start © MELSOFT series GX $\mathrm{D} \ldots$... Inteligent function $\mathrm{m} . .$. . Intelligent function $\mathrm{m} .$.
(6) Number of parameters that can be set in GX Configurator-PT

When multiple intelligent function modules are mounted, the number of parameter settings must not exceed the following limit.

| When intelligent function modules are <br> installed to: | Maximum number of settable parameters |  |
| :--- | :--- | :--- |
|  | Initial setting | Auto refresh setting |
| Q00J/Q00/Q01CPU | 512 | 256 |
| Q02/Q02H/Q06H/Q12H/Q25HCPU | 512 | 256 |
| Q02PH/Q06PH/Q12PH/Q25PHCPU | 512 | 256 |
| Q12PRH/Q25PRHCPU | 512 | 256 |
| Q00UJ/Q00U/Q01UCPU | 512 | 256 |
| Q02UCPU | 2048 | 1024 |
| Q03UD/Q04UDH/Q06UDH/Q10UDH/ <br> Q13UDH/Q20UDH/Q26UDH/Q03UDE/ <br> Q04UDEH/Q06UDEH/Q10UDEH/ | 4096 |  |
| Q13UDEH/Q20UDEH/Q26UDEHCPU |  | 2048 |
| Q50UDEH/Q100UDEHCPU | Not supported | Not supported |
| MELSECNET/H remote I/O station | 512 | 256 |

For example, if multiple intelligent function modules are installed to the MELSECNET/ H remote I/O station, configure the settings in GX Configurator so that the number of parameter settings for all the intelligent function modules does not exceed the limit of the MELSECNET/H remote I/O station.
Calculate the total number of parameter settings separately for the initial setting and for the auto refresh setting.
The number of parameters that can be set for one module in GX Configurator-PT is as shown below.

| Target module | Initial setting | Auto refresh setting |
| :--- | :--- | :--- |
| QD72P3C3 | 12 (fixed) | 18 (Max.) |

Example) Counting the number of parameter settings in Auto refresh setting


### 6.2.2 Operating environment

This section explains the operating environment of the personal computer that runs GX Configurator-PT.

| Item |  | Description |
| :---: | :---: | :---: |
| Installation (Add-in) target ${ }^{* 1}$ |  | Add-in to GX Developer Version 4 (English version) or later. ${ }^{*}$ |
| Computer |  | Windows ${ }^{\oplus}$-based personal computer |
|  | CPU | Refer to the following table "Used operating system and performance required for personal computer". |
|  | Required memory |  |
| Hard disk space ${ }^{* 3}$ | For installation | 65 MB or more |
|  | For operation | 10MB or more |
| Display |  | $800 \times 600$ dots or more resolution ${ }^{*} 4$ |
| Operating s |  |  |

* 1: Install GX Configurator-PT in GX Developer Version 4 or higher in the same language. GX Developer (English version) and GX Configurator-PT (Japanese version) cannot be used in combination, and GX Developer (Japanese version) and GX Configurator-PT (English version) cannot be used in combination.
* 2: GX Configurator-PT is not applicable to GX Developer Version 3 or earlier.
* 3: At least 15 GB is required for Windows Vista ${ }^{\circledR}$.
* 4: Resolution of $1024 \times 768$ dots or more is recommended for Windows Vista ${ }^{\circledR}$.

Used operating system and performance required for personal computer

| Operating system | Performance required for personal computer |  |
| :---: | :---: | :---: |
|  | CPU | Memory |
| Windows ${ }^{\circledR} 95$ | Pentium ${ }^{\circledR} 133 \mathrm{MHz}$ or more | 32 MB or more |
| Windows ${ }^{\circledR} 98$ | Pentium ${ }^{\circledR} 133 \mathrm{MHz}$ or more | 32 MB or more |
| Windows ${ }^{\circledR} \mathrm{Me}$ | Pentium ${ }^{\circledR} 150 \mathrm{MHz}$ or more | 32 MB or more |
| Windows $\mathrm{NT}^{\circledR}$ Workstation 4.0 | Pentium ${ }^{\circledR} 133 \mathrm{MHz}$ or more | 32 MB or more |
| Windows ${ }^{\circledR} 2000$ Professional | Pentium ${ }^{\circledR} 133 \mathrm{MHz}$ or more | 64 MB or more |
| Windows ${ }^{\circledR}$ XP Professional (Service Pack1 or later) | Pentium ${ }^{\circledR} 300 \mathrm{MHz}$ or more | 128 MB or more |
| Windows ${ }^{\circledR}$ XP Home Edition (Service Pack1 or later) | Pentium ${ }^{\circledR} 300 \mathrm{MHz}$ or more | 128MB or more |
| Windows Vista ${ }^{\circledR}$ Home Basic | Pentium ${ }^{\circledR} 1 \mathrm{GHz}$ or more | 1 GB or more |
| Windows Vista ${ }^{\circledR}$ Home Premium | Pentium ${ }^{\circledR} 1 \mathrm{GHz}$ or more | 1 GB or more |
| Windows Vista ${ }^{\circledR}$ Business | Pentium ${ }^{\circledR} 1 \mathrm{GHz}$ or more | 1 GB or more |
| Windows Vista ${ }^{\circledR}$ Ultimate | Pentium ${ }^{\circledR} 1 \mathrm{GHz}$ or more | 1GB or more |
| Windows Vista ${ }^{\circledR}$ Enterprise | Pentium ${ }^{\circledR} 1 \mathrm{GHz}$ or more | 1 GB or more |

NT PO|NT
(1) The functions shown below are not available for Windows ${ }^{\circledR} \mathrm{XP}$ and Windows Vista ${ }^{\circledR}$.
If any of the following functions is attempted, this product may not operate normally.

- Start of application in Windows ${ }^{\circledR}$ compatible mode
- Fast user switching
- Remote desktop
- Large fonts (Details setting of Display Properties)

Also, 64-bit version Windows ${ }^{\oplus}$ XP and Windows Vista ${ }^{\oplus}$ are not supported.
(2) Use a USER authorization or higher in Windows Vista ${ }^{\oplus}$.

### 6.3 Utility Package Operation

### 6.3.1 Common utility package operations

## (1) Control keys

Special keys that can be used for operation of the utility package and their applications are shown in the table below.

| Key | Application |
| :---: | :---: |
| Esc | Cancels the current entry in a cell. Closes the window. |
| Tab | Moves between controls in the window. |
| Ctrl | Used in combination with the mouse operation to select multiple cells for test execution. |
| Delete | Deletes the character where the cursor is positioned. When a cell is selected, clears all of the setting contents in the cell. |
| Back Space | Deletes the character where the cursor is positioned. |
| $\uparrow$ | Moves the cursor. |
| $\begin{aligned} & \text { Page } \\ & \text { Up } \end{aligned}$ | Moves the cursor one page up. |
| Page Down | Moves the cursor one page down. |
| Enter | Completes the entry in the cell. |

## (2) Data created with the utility package

The following data or files that are created with the utility package can be also handled in GX Developer. Figure 6.1 shows respective data or files are handled in which operation.
(a) Intelligent function module parameter This represents the data created in Auto refresh setting, and they are stored in an intelligent function module parameter file in a project created by GX Developer.


Steps 1) to 3) shown in Figure 6.1 are performed as follows:

1) From GX Developer, select:
[Project] $\rightarrow$ [Open project] / [Save] / [Save as]
2) On the intelligent function module selection screen of the utility, select:
[Intelligent function module parameter] $\rightarrow$ [Open parameters] / [Save parameters]
3) From GX Developer, select:
[Online] $\rightarrow$ [Read from PLC] / [Write to PLC] $\rightarrow$ "Intelligent function module parameters"
Alternatively, from the intelligent function module selection screen of the utility, select:
[Online] $\rightarrow$ [Read from PLC] / [Write to PLC]
(b) Text files

A text file can be created by clicking the Make text file button on the initial setting, Auto refresh setting, or Monitor/Test screen. The text files can be utilized to create user documents.


Figure 6.1 Correlation chart for data created with the utility package

### 6.3.2 Operation overview



Screen for selecting a target intelligent function module


Refer to Section 6.3.3. Enter "Start I/O No.", and select "Module type" and "Module model name".



Refer to Section 6.5.

Refer to Section 6.4.


### 6.3.3 Starting the Intelligent function module utility

[Operating procedure]
Intelligent function module utility is started from GX Developer.
[Tools] $\rightarrow$ [Intelligent function utility] $\rightarrow$ [Start]
[Setting screen]

[Explanation of items]

## (1) Activation of other screens

Following screens can be displayed from the intelligent function module utility screen.
(a) Initial setting screen
"Start I/O No. ${ }^{* 1 " ~} \rightarrow$ "Module type" $\rightarrow$ "Module model name" $\rightarrow$ Initial setting
(b) Auto refresh setting screen
"Start I/O No. ${ }^{* 1 " ~} \rightarrow$ "Module type" $\rightarrow$ "Module model name" $\rightarrow$ Auto refresh
(c) Select monitor/test module screen
[Online] $\rightarrow$ [Monitor/Test]

* 1 Enter the start I/O No. in hexadecimal.


## (2) Command buttons

Delete Deletes the initial setting and auto refresh setting of the selected module.
End Closes this screen.
(3) Menu bar
(a) File menu

Intelligent function module parameters of the project opened by GX Developer are handled.

| Q. Intelligent function module utility D: |
| :--- |
| Intelligent function module parameter Online <br> Open parameters Toc <br> Close parameters  <br> Save parameters Ctrl +5 <br> Delete parameters  <br> Open FB support parameters...  <br> Save as FB support parameters....  <br> Exit  |

[Open parameters] : Reads a parameter file.
[Close parameters] : Closes the parameter file. If any data are modified, a dialog asking for file saving will appear.
[Save parameters] : Saves the parameter file.
[Delete parameters] : Deletes the parameter file.
[Exit] : Closes this screen.
(b) Online menu
[Monitor/Test] : Activates the Select monitor/test module screen.
utility C:Inormal_q
Online Tools Help
Monitor;Test... Read from PLC Write to PLC
[Read from PLC]
[Write to PLC] : Writes intelligent function module parameters to the CPU module.

## QPOINT

(1) Saving intelligent function module parameters in a file Since intelligent function module parameters cannot be saved in a file by the project saving operation of GX Developer, save them on the shown module selection screen.
(2) Reading/writing intelligent function module parameters from/to a programmable controller CPU using GX Developer

- Intelligent function module parameters can be read from and written into a programmable controller after having been saved in a file.
- Set a target programmable controller CPU in GX Developer:
[Online] $\rightarrow$ [Transfer setup].
- When the QD72P3C3 is mounted to the remote I/O station, use "Read from PLC" and "Write to PLC" of GX Developer.
(3) Checking the required utility

While the start I/O is displayed on the Intelligent function module utility setting screen, "*" may be displayed for the model name.
This means that the required utility has not been installed or the utility cannot be started from GX Developer.
Check the required utility, selecting [Tools] - [Intelligent function utility] - [Utility list...] in GX Developer.

### 6.4 Initial Setting

## [Purpose]

Make initial setting axis-by-axis for the QD72P3C3 to operate. The following items are data that need initial setting.

- Parameters
- OPR data
- Positioning data
- Counter function parameter

This initial setting makes sequence program setting unnecessary.
For more information on the setting details, refer to "CHAPTER 4 DATA USED FOR POSITIONING CONTROL".
[Operating procedure]
"Start I/O No." $\rightarrow$ "Module type" $\rightarrow$ "Module model name" $\rightarrow$ Initial setting

* Enter the start I/O No. in hexadecimal.
[Setting screen]
(Initial setting of parameters and OPR data)

(Initial setting for positioning data and counter function parameter)


| Axis \#1 Parameter setting |
| :--- |
| Axis \#1 OPR data setting |
| Axis \#2 Parameter setting |
| Axis \#2 OPR data setting |
| Axis \#3 Parameter setting |
| Axis \#3 OPR data setting |
| Axis \#1 Positioning data setting |
| Axis \#2 Positioning data setting |
| Axis \#3 Positioning data setting |
| Counter function parameter setting |

(2) Command button

Make text file Creates a file containing the screen data in text file format.

End setup Saves the set data and ends the operation.
Cancel Cancels the setting and ends the operation.

## XPOINT

Initial settings are stored in an intelligent function module parameter file.
After being written to the CPU module, the initial setting is made effective by either (1) or (2).
(1) Cycle the RUN/STOP switch of the CPU module: STOP $\rightarrow$ RUN $\rightarrow$ STOP $\rightarrow$ RUN.
(2) With the RUN/STOP switch set to RUN, turn off and then on the power or reset the CPU module.
If the initialization settings have been written by a sequence program, the initialization settings will be executed during the STOP $\rightarrow$ RUN of the CPU module. Arrange so that the initial settings written by the sequence program are re-executed during the STOP $\rightarrow$ RUN of the CPU module.

### 6.5 Auto Refresh Setting

## [Purpose]

Configure the QD72P3C3's buffer memory for automatic refresh.
There are the following setting items as the auto refresh setting parameters.

| - Current feed value | - Current speed | - Count value |
| :--- | :--- | :--- |
| - Axis operation status | - Axis/CH error code | - Axis/CH warning code |

This auto refresh setting eliminates the need for reading by sequence programs.
[Operating procedure]
"Start I/O No."" $\rightarrow$ "Module type" $\rightarrow$ "Module model name" $\rightarrow$ Auto refresh

* Enter the start I/O No. in hexadecimal.
[Setting screen]

| Auto refresh setting $\quad \square \square$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module information-Module type: QD70 Model ModuleModule model name: QD72P3C3 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Setting item | Module side Buffer size | Module side Transfer word count |  | Transfer direction | PLC side Device |  |
| Axis \#1 Current feed value | 2 | 2 |  | -> | D200 |  |
| Axis \#1 Current speed | 2 | 2 |  | -> |  |  |
| CH 1 Count value | 2 | 2 |  | -> | D300 |  |
| Axis \#1 Axis operation status | 1 | 1 |  | -> |  | - |
| Axis \#1/CH1 Error code | 1 | 1 |  | -> |  |  |
| Axis \#1/CH1 Warning code | 1 | 1 |  | -> |  |  |
| Axis \#2 Current feed value | 2 | 2 |  | -> | D202 |  |
| Axis \#2 Current speed | 2 | 2 |  | -> |  |  |
| CH 2 Count value | 2 | 2 |  | -> | D302 | - |
| Make text file | End setup |  |  |  | Cancel |  |

[Explanation of items]
(1) Setting item list

|  | Setting item |
| :--- | :--- |
| Axis Current feed value |  |
| Axis Current speed |  |
| CH Count value |  |
| Axis operation status |  |
| Axis/CH Error code |  |
| Axis/CH Warning code |  |

## （2）Items

＂Module side Buffer size＂：Displays the buffer memory size of the setting item． ＂Module side Transfer word count＂：Displays the number of words to be transferred． ＂Transfer direction＂：＂$\leftarrow$＂indicates that data are written from the programmable controller CPU to the buffer memory．
$" \rightarrow$＂indicates that data are loaded from the buffer memory to the programmable controller CPU．
＂PLC side Device＂：Enter a CPU module side device that is to be automatically refreshed．
Applicable devices are X，Y，M，L，B，T，C，ST，D，W，R，and ZR．
When using bit devices $X, Y, M, L$ or $B$ ，set a number that can be divided by 16 points （examples：X10，Y120，M16，etc．）．
Also，buffer memory data are stored in a 16－point area，starting from the specified device number．For example，if X 10 is entered，data are stored in X 10 to X 1 F ．

## （3）Command button

| Make text file |
| :---: | Creates a file containing the screen data in text file format．

End setup Saves the set data and ends the operation．
Cancel Cancels the setting and ends the operation．
®POINT
－The auto refresh settings are stored in an intelligent function module parameter file．The auto refresh settings become effective by turning the power OFF and then ON or resetting the CPU module after writing the intelligent function module parameters to the CPU module．
－The auto refresh settings cannot be changed from sequence programs． However，processing equivalent to auto refresh can be added using the FROM／TO instruction in the sequence program．

### 6.6 Monitor/Test

### 6.6.1 Monitor/Test screen

[Purpose]
Start buffer memory monitoring/testing and I/O signal monitoring/testing from this screen. (Refer to "Section 4.5 List of monitor data" for details of monitor data.)
[Operating procedure]
Select monitor/test module screen $\rightarrow$ "Start I/O No. ${ }^{*} \rightarrow$ "Module type" $\rightarrow$ "Module model
name" $\rightarrow$ Monitor/Test

* Enter the start I/O No. in hexadecimal.

The screen can also be started from System monitor of GX Developer Version 6 or later. Refer to the GX Developer Operating Manual for details.

## [Setting screen]

(Axis Monitor/Test, OPR Monitor, Counter function Monitor/Test)

(X/Y Monitor)

[Explanation of items]
(1) Setting item list

| Module READY |
| :--- |
| Programmable controller CPU READY |
| Axis \#1 Operation status |
| Axis \#2 Operation status |
| Axis \#3 Operation status |
| Axis \#1/CH 1 Error occurrence(X01) |
| Axis \#2/CH 2 Error occurrence(X02) |
| Axis \#3/CH 3 Error occurrence(X03) |
| Axis \#1/CH 1 Warning occurrence(X04) |
| Axis \#2/CH 2 Warning occurrence(X05) |
| Axis \#3/CH 3 Warning occurrence(X06) |
| Axis \#1 BUSY(X08) |
| Axis \#2 BUSY(X09) |
| Axis \#3 BUSY(X0A) |
| Axis \#1 Monitor/Test |
| Axis \#1 OPR Monitor |
| Axis \#2 Monitor/Test |
| Axis \#2 OPR Monitor |
| Axis \#3 Monitor/Test |
| Axis \#3 OPR Monitor |
| Counter function Monitor/Test |
| X/Y Monitor |
| ACC/DEC time calculation function |

## (2) Items

"Setting item": Displays I/O signals and buffer memory names.
"Current value": Monitors the I/O signal states and present buffer memory values.
"Setting value": Enter or select values to be written into the buffer memory for test operation (Axis Error Reset).

## (3) Command button

Current value display Displays the current value of the item selected.
(This is used to check the text that cannot be displayed in the current value field. However, in this utility package, all items can be displayed in the display fields).

Make text file Creates a file containing the screen data in text file format.
Start monitor /Stop monitor Selects whether or not to monitor current values.
Execute test Performs a test on the selected items.
Click this button after selecting "Error Reset Request" in the Setting value field of "Axis Error Reset" on the Axis monitor/test sub window.


Close
Closes the currently open screen and returns to the previous screen.

### 6.6.2 ACC/DEC time calculation function screen

[Purpose]
The QD72P3C3 processes acceleration as integer. Therefore, the difference may be generated between actual ACC/DEC time and set ACC/DEC time. With this function, actual ACC/DEC time can be calculated by entering parameters required for calculating ACC/DEC time.
For details of ACC/DEC time, refer to "Section 11.6.1 Calculating actual ACC/ DEC time".
[Operating procedure]
Select monitor/test module screen $\rightarrow$ "Start I/O No. ${ }^{*}$ " $\rightarrow$ "Module type" $\rightarrow$
"Module model name" $\rightarrow$ Monitor/Test
*Enter the start I/O No. in hexadecimal.
The screen can also be started from System monitor of GX Developer Version 6 or later.
Refer to the GX Developer Operating Manual for details.
[Setting screen]

[Explanation of items]

- Enter parameters required for calculating acceleration into the "Setting" 1. to 4.
Parameters entered to the "Setting" 1. to 3. depend on control contents.

| Control contents | Parameter entered to 1. | Parameter entered to 2. | Parameter entered to 3. |
| :---: | :---: | :---: | :---: |
| OPR control | Pr. 13 OPR speed | Pr. 14 Creep speed | Pr. 15 ACC/DEC time at OPR |
| Positioning control | Da. 4 Command speed | Pr. 5 Bias speed at start | Da. 3 ACC/DEC time |
| JOG <br> operation | JOG. 1 JOG speed | Pr. 5 Bias speed at start | JOG.2 JOG ACC/DEC time |

- Enter "Pr. 4 Speed limit value" for the "Setting" 4.
- Click Calculation. Calculation results are displayed in the "Result" 5. to 9.

| 5. Acceleration | Displays the acceleration calculated according to the "Setting" 1. to 4. |
| :--- | :--- |
| 6. Actual <br> acceleration | Displays the rounded value of 5. Acceleration. Actual accleration/deceleraion <br> operation is performed with this acceleration. |
| 7. Difference <br> (\%) | Displays the difference between 5. Acceleration and 6. Actual acceleration. (The <br> displayed value is the difference over 5. Acceleration.) |
| 8. Difference <br> (ms) | Displays the difference between 3. ACC/DEC time and 9. Actual ACC/DEC time <br> (9. -3.). |
| 9. Actual ACC/ <br> DEC time (ms) | Displays the actual ACC/DEC time. |

## CHAPTER7 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL

This chapter describes sequence programs of the positioning control system using the QD72P3C3.

### 7.1 Precautions for Creating Program

(1) System configuration

Unless otherwise specified, the sequence programs in this chapter are for the following system.
For the applications of the devices used, refer to Section 7.2.
(a) System configuration

(b) Setting conditions of the intelligent function module switch

| Switch No. | Setting item | Setting contents | Setting value |
| :---: | :---: | :---: | :---: |
| Switch 1 | Pulse output mode | 0: CW/CCW mode | 0000н |
|  | Pulse output logic selection | 0: Negative logic |  |
|  | Deviation counter clear output logic selection | 0: Negative logic |  |
|  | Zero signal input logic selection | 0: Negative logic |  |
| Switch 2 | Near-point dog signal input logic selection | 0: Negative logic | 0000H |
|  | Lower limit signal input logic selection | 0: Negative logic |  |
|  | Upper limit signal input logic selection | 0: Negative logic |  |
| Switch 3 | Pulse input mode | 0: CW/CCW | 0000н |
|  | Counter format | 0: Linear counter |  |
| Switch 4 | Reserved |  | 0000H |
| Switch 5 | Reserved |  | 0000н |

## (2) Communication with QD72P3C3

There are two methods for communication with the QD72P3C3 using the sequence program: a method using an "intelligent function device" and a method using the FROM/TO instruction.
When using the FROM/TO instruction for communication with the QD72P3C3, change the circuit incorporating the "intelligent function device" as follows.
(a) When the circuit uses the "intelligent function device" on the destination (D) side of the MOV instruction, change the instruction to the TO instruction.

(b) When the circuit uses the "intelligent function device" on the source (S) side and the destination (D) side of the MOV instruction, change the instruction to the FROM instruction and the TO instruction.

(c) When the circuit uses the "intelligent function device" for the COMPARISON instruction, change the instruction to the FROM instruction and the COMPARISON instruction.

(d) When the circuit uses the "intelligent function device" for the WAND instruction, change the instruction to the FROM instruction and the WAND instruction.


## Remark

For intelligent function devices, refer to the User's Manual (Function Explanation, Program Fundamentals) for the CPU module used.
For details of the instructions used in the sequence program, refer to the MELSEC-Q/L Programming Manual (Common Instructions).

### 7.2 List of Devices Used

In "Section 7.4 Positioning Control Program Examples", the devices to be used are assigned as indicated in the following table.
The I/O numbers for the QD72P3C3 indicate those when the QD72P3C3 is mounted in the slot 0 of the main base.
When mounting the QD72P3C3 in the slot other than the slot 0 of the main base, change the I/O number for the mounted position.
In addition, change the external inputs, internal relays, and data resisters according to the system used.
(1) I/O and external inputs of the QD72P3C3

| Device name |  |  | Device |  | Application | ON details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1/ CH1 | Axis $2 /$ CH2 | Axis 3/ CH3 |  |  |
| I/O of the QD72 P3C3 | Input | X0 |  |  | Module READY signal | QD72P3C3 prepared |
|  |  | X01 | X02 | X03 | Axis/CH error occurrence signal | Axis/CH error occurring |
|  |  | X04 | X05 | X06 | Axis/CH warning occurrence signal | Axis/CH warning occurring |
|  |  | X08 | X09 | XOA | BUSY signal | BUSY (running) |
|  |  | X0C | X0D | X0E | Start complete signal | Start complete |
|  |  | X10 | X11 | X12 | Positioning complete signal | Positioning control complete |
|  |  | X14 | X18 | X1C | Count value large | Count value large detected |
|  |  | X15 | X19 | X1D | Count value coincidence | Count value coincidence detected |
|  |  | X16 | X1A | X1E | Count value small | Count value small detected |
|  | Outpu t | Y0 |  |  | Programmable controller CPU READY signal | Programmable controller CPU prepared |
|  |  | Y01 | Y02 | Y03 | Axis/CH error reset signal | Axis/CH error reset being requested |
|  |  | Y04 | Y05 | Y06 | Axis stop signal | Stop being requested |
|  |  | Y08 | Y09 | Y0A | Positioning start signal | Start being requested |
|  |  | Y0C | Y0E | Y10 | Forward run JOG start signal | Forward run JOG being started |
|  |  | YOD | Y0F | Y11 | Reverse run JOG start signal | Reverse run JOG being started |
|  |  | Y14 | Y15 | Y16 | Coincidence signal reset command | Coincidence signal reset being commanded |
|  |  | Y18 | Y19 | Y1A | Preset command | Preset being requested |
|  |  | Y1C | Y1D | Y1E | Count enable command | Count enable being requested |



SEQUENCE PROGRAM USED FOR POSITIONING CONTROL
(2) Internal relays of the QD72P3C3

| Device name | Device |  |  | Application | ON details |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1/ <br> CH1 | Axis $2 /$ <br> CH2 | Axis 3/ <br> CH3 |  |  |
| Internal relay | M0 |  | - | Initial data setting complete | Initial data setting complete |
|  | M1 |  |  | OPR request OFF command | OPR request OFF being commanded |
|  | M2 |  |  | OPR request OFF command pulse | OPR request OFF commanded |
|  | M3 |  |  | OPR request OFF command storage | OPR request OFF command held |
|  | M4 |  |  | Fast OPR control command | Fast OPR control being requested |
|  | M5 |  |  | Fast OPR control command storage | Fast OPR control command held |
|  | M6 |  |  | Positioning control start command pulse | Positioning control start commanded |
|  | M7 |  |  | Positioning control start command storage | Positioning control start signal command held |
|  | M8 |  |  | JOG operation flag | JOG operation in progress |
|  | M9 |  |  | Speed change command pulse | Speed change commanded |
|  | M10 |  |  | Speed change command storage | Speed change command held |
|  | M11 |  |  | Error reset command pulse | Error reset commanded |
|  | M12 |  |  | Stop command pulse | Stop commanded |

(3) Data registers (for Axis 1)

| Device name | Device |  | Stored data | Setting value |
| :---: | :---: | :---: | :---: | :---: |
|  | D0 | Parameter |  | 100000000pulse |
|  | D1 |  | Pr. 1 Software stroke limit upper limit |  |
|  | D2 |  | Pr. 2 Software stroke limit lower limit | -100000000pulse |
|  | D3 |  |  |  |
|  | D5 |  | Pr. 3 Current feed value during speed control | 0 (No update) |
|  | D6 |  | Pr.4 Speed limit value | 100000pulse/s |
|  | D7 |  | Speed limit value |  |
|  | D8 |  | Pr. 5 Bias speed at start | 100pulse/s |
|  | D9 |  |  |  |
|  | D10 |  | Pr. 6 Positioning complete output time | 100ms |
|  | D11 |  | Pr. 7 Deviation counter clear signal output time | 2 (10ms) |
|  | D13 |  | Pr. 9 Current feed value, count value simultaneous change function selection | 1 (update count value together) |
|  | D20 | OPR <br> data | Pr. 10 OPR method | 0 (Near-point dog method) |
|  | D21 |  | Pr. 11 OPR direction | 0 (Forward direction) |
|  | D22 |  | Pr. 12 OP address | Opulse |
|  | D23 |  |  |  |
|  | D24 |  | Pr. 13 OPR speed | 20000pulse/s |
|  | D25 |  |  |  |
|  | D26 |  | Pr. 14 Creep speed | 1000pulse/s |
|  | D27 |  | Pr. ${ }^{\text {c }}$ Creep speed |  |
|  | D28 |  | Pr. 15 ACC/DEC time at OPR | 1000ms |
| Data resister | D30 | Counter data |  | 0 |
|  | D31 |  | Pr. 16 Ring counter upper limit value |  |
|  | D32 |  |  | 0 |
|  | D33 |  | Pr. 17 Positioning range upper limit value | 0 |
|  | D34 |  | Pr. 18 Coincidence detection setting | 1 (coincidence detection requested) |
|  | D35 |  | Pr. 19 Count value selection at OPR | 1 (set) |
|  | D90 | Positioning data (for position control) | Da. 1 Operation pattern | 0 (Positioning start (independent)) |
|  | D91 |  | Da. 2 Control method | 1 (1-axis linear control (ABS)) |
|  | D92 |  | Da. 3 ACC/DEC time | 1000ms |
|  | D94 |  | Da. 4 Command speed | 30000pulse/s |
|  | D95 |  | Da. 4 Command speed |  |
|  | D96 |  | Da. 5 Positioning address/movement amount | 250000pulse |
|  | D97 |  | Da. 5 Positioning address/movement amount | 250000 pulse |
|  | D100 | Positioning data <br> (for speed control) | Da. 1 Operation pattern | 0 (Positioning start (independent)) |
|  | D101 |  | Da. 2 Control method | 3 (Speed control (Forward run)) |
|  | D102 |  | Da. 3 ACC/DEC time | 1000ms |
|  | D104 |  | Da. 4 Command speed | 40000pulse/s |
|  | D105 |  |  |  |
|  | D110 | Positioning data (for current value change) | Da. 1 Operation pattern | 0 (Positioning start (independent)) |
|  | D111 |  | Da. 2 Control method | 5 (current value change) |
|  | D116 |  |  | 300000pulse |
|  | D117 |  | Da. 5 Positioning address/movement amount |  |

(Continued to the next page)

SEQUENCE PROGRAM USED FOR POSITIONING CONTROL

| Device name | Device | Stored data | Setting value |
| :---: | :---: | :---: | :---: |
| Data resister | D120 | OPR request flag (Md.7 Status: bit1) | - |
|  | D56 | Cd. 5 Start method | Varies depending on the operation |
|  | D50 |  |  |
|  | D51 | Cd. 1 New speed value | 2000pulse/s |
|  | D52 | Cd.2 ACC/DEC time at speed change | 1000ms |
|  | D54 | Cd. 3 Speed change request | - |
|  | D77 | Md. 5 Axis/CH error code | - |
|  | D74 | Md.3 Count value | - |
|  | D75 | Ma.3 Count value |  |
|  | D121 | Overflow occurrence flag (Md.7 Status: bit3) | - |

### 7.3 Creating a Program

This section describes "positioning control operation programs" actually used. The programs designed to perform the functions described in "PART 2 CONTROL DETAILS AND SETTING" are installed in the "positioning control operation programs" described in Section 7.3.2. (To monitor control, add a necessary monitor program according to the system. For monitor items, refer to "Section 4.5 Monitor Data List".)

### 7.3.1 General configuration of program

The general configuration of the "positioning control operation program" is shown below.


### 7.3.2 Positioning control operation program

The following are individual programs which comprise the "positioning control operation programs". When creating a program, refer to each section of the corresponding program and "Section 7.4 Positioning Control Program Examples" and create an operation program according to the positioning control system. (The following programs are numbered. Create programs in order of the numbers is recommended.)



SEQUENCE PROGRAM USED FOR POSITIONING CONTROL


### 7.4 Positioning Control Program Examples

This section describes the examples of positioning control program for "Axis 1".

[^1]



## 7 <br> SEQUENCE PROGRAM USED FOR POSITIONING CONTROL



No. 5 Programmable controller CPU READY signal [Y0] ON program
(MO contact is not needed when GX Configurator-PT is used to set the initial setting of parameters and data.)


(6) Turning OFF fast OPR control command and fast OPR control command storage




## 7 <br> SEQUENCE PROGRAM USED FOR POSITIONING CONTROL



### 7.5 Program Details

### 7.5.1 Initialization program

## (1) OPR request OFF program

This program forcibly turns OFF the "OPR request flag" (Md. 7 Status: b1) which is ON.
When using a system that does not require OPR control, configure the program to cancel the "OPR request" executed by the QD72P3C3 at the power is turned ON.

■ Data requires setting
Set the following data to use the OPR request flag OFF request.

| Setting item | Setting value |  | Buffer memory address |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 |  |  |
| Cd.4 <br> request | OPR request flag OFF | 1: Turn OFF the OPR request flag | 55 | 155 |  |

* For details of the setting contents, refer to "Section 4.6 Control Data List".

■ OPR OFF request timing chart


Figure 7.1 OPR OFF request timing chart

### 7.5.2 Start method setting program

This program is designed to set a control to be performed out of "OPR control" or "Positioning control".

■Data requires setting
Set "Cd.5Start method" according to the control to be started.

| Setting item | Setting value | Buffer memory address |  |  |
| :--- | :--- | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 |  |
| Cd.5 Start method | 0: Positioning control <br> 9000: Machine OPR control <br> 9001: Fast OPR control | 56 | 156 | 256 |

* For details of the setting contents, refer to "Section 4.6 Control Data List".


### 7.5.3 Start program

This program is designed to start OPR control or positioning control using the positioning start signal (Y8 to YA). (For details of OPR control and positioning control, refer to CHAPTER 8 and CHAPTER 9.)


1) Set "Cd.5 Start method" according to the control to be started. (Positioning control in the above example)
2) Enter the positioning start signal (Y8).
3) Positioning control is started.

Figure 7.2 Procedures for starting control (for axis 1)
$\square$ Starting condition
To start the control, the following conditions must be satisfied.
In addition, the necessary conditions must be incorporated in the sequence program so that the control does not start when the conditions are not satisfied.

| Signal name |  | Signal status |  | Device |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis <br> 1 | Axis <br> 2 | Axis <br> 3 |
| Interface signal | Programmable controller CPU READY signal |  |  | ON | Programmable controller CPU prepared | Y0 |  |  |
|  | Module READY signal | ON | QD72P3C3 prepared | X0 |  |  |
|  | Axis/CH error occurrence signal | OFF | No error | X1 | X2 | X3 |
|  | Axis stop signal | OFF | Axis stop being OFF | Y4 | Y5 | Y6 |
|  | Start complete signal | OFF | Start complete being OFF | XC | XD | XE |
|  | BUSY signal | OFF | QD72P3C3 not operating | X8 | X9 | XA |

■Operation when starting
(1) When the positioning start signal (Y8 to $Y A$ ) is turned ON, the start complete signal (XC to XE) and BUSY signal (X8 to XA) turn ON, and the OPR control or positioning control starts. It can be seen that the axis is operating when the BUSY signal is ON.
(2) When the positioning start signal (Y8 to YA) is turned OFF, the start complete signal (XC to XE) also turns OFF. When the positioning start signal (Y8 to YA) remains ON even after OPR control or positioning control is completed, the start complete signal (XC to XE) remains ON.
(3) If the positioning start signal (Y8 to YA ) is turned ON again while the BUSY signal (X8 to XA) is ON, "Start during operation" warning (warning code: 10) occurs.
(4) The process taken when positioning control is completed is as follows.

- On completion of positioning control, the BUSY signal (X8 to XA) turns OFF and the positioning complete signal ( X 10 to X 12 ) turns ON .
However, the signal does not turn ON when " Pr. 6 Positioning complete signal output time" is 0 .
- After the " Pr. 6 Positioning complete signal output time" has elapsed, the positioning complete signal (X10 to X 12 ) turns OFF.


Figure 7.3 ON/OFF timing of each signal at the start of positioning control

## 区POINT

The BUSY signal (X8 to XA) turns ON even when position control of movement amount 0 is performed. However, since the ON time is short, the ON status may not be detected in the sequence program. (The ON status of the start complete signal (XC to XE) and the positioning complete signal (X10 to X12) can be detected in the sequence program.)

■ start timing chart
The timing charts for starting each control are shown below.
(5) Machine OPR control start timing chart


Figure 7.4 Machine OPR control start timing chart
(6) Fast OPR control start timing chart


Figure 7.5 Fast OPR control start timing chart
(7) Positioning control start timing chart


Figure 7.6 Positioning control start timing chart

## XPOINT

For positioning control and OPR control, multiple axes can be started simultaneously. In this case, turn ON the positioning start signal (Y8 to YA) of the target axes within the same scan.
(However, after multiple axes have been started simultaneously, they cannot be stopped simultaneously.)

### 7.5.4 Auxiliary program

## Speed change program

This program is used to change the speed within " Pr. 4 Speed limit value" range during the constant speed of the speed control and JOG operation.

Set the new speed in "Cd. 1 New speed value". The speed is changed according to "Cd. 3 Speed change request".
The ACC/DEC time when the speed is changed is the value set in " $\quad$ Cd.2 ACC/DEC time at speed change".
(For details of the speed change function, refer to "Section 11.3 Speed Change Function".)

■ Data requires setting
Set the following data.

| Setting item | Setting value | Buffer memory address |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{\|c} \hline \text { Axis } \\ 1 \end{array}$ | Axis 2 | $\begin{gathered} \hline \text { Axis } \\ 3 \end{gathered}$ |
| Cd. 1 New speed value | 2000pulse/s | $\begin{aligned} & 50 \\ & 51 \end{aligned}$ | $\begin{aligned} & 150 \\ & 151 \end{aligned}$ | $\begin{aligned} & 250 \\ & 251 \end{aligned}$ |
| Cd. $2 \mathrm{ACC} / \mathrm{DEC}$ time at speed change | 1000ms | 52 | 152 | 252 |
| Cd. 3 Speed change request | 1: Speed change requested | 54 | 154 | 254 |

* For details of the setting contents, refer to "Section 4.6 Control Data List".

Speed changing timing chart


Figure 7.7 Speed changing timing chart

### 7.6 Program Example when the Coincidence Detection Interrupt Function is Used

This section describes a program example to start an interrupt program upon detecting coincidence of coincidence detection point No. 1 of channel 1.
(1) Interrupt pointer setting

Set the values at [PLC parameter] - [PLC system] - [Intelligent function module setting] - [Interrupt pointer setting] in the [Project data list] on GX Developer.
Set the values for this program example as shown below.


## (2) Program example

An interrupt must be enabled using the IMASK instruction before using an interrupt pointer.


## PART 2 CONTROL DETAILS AND SETTING

PART 2 consists for the following purposes (1) to (3).<br>(1) To Understand the operation and restrictions of each control<br>(2) To perform the required settings in each control<br>(3) To deal with errors

The required settings in each control include parameter setting, positioning data setting, and control data setting by the sequence program.
Make the settings while referring to "CHAPTER 4 DATA USED FOR POSITIONING CONTROL". In addition, when creating a sequence program required for each control, refer to "CHAPTER 7 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL" and consider the entire control program configuration.
CHAPTER1 PRODUCT OUTLINE ..... 1-1 to 1 -
CHAPTER2 SYSTEM CONFIGURATION ..... 2-1 to $2-$
CHAPTER3 SPECIFICATIONS AND FUNCTIONS .....  3-1 to 3-
CHAPTER4 DATA USED FOR POSITIONING CONTROL .....  4 - 1 to 4 -
CHAPTER5 PROCEDURES AND SETTINGS BEFORE OPERATION ..... 5-1 to 5-
CHAPTER6 UTILITY PACKAGE (GX Configurator-PT) .....  6-1 to 6-
CHAPTER7 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL .....  7 - 1 to 7 -
CHAPTER8 OPR CONTROL .....  8 - 1 to 8 -
CHAPTER9 POSITIONING CONTROL .....  9 - 1 to 9 -
CHAPTER10 JOG OPERATION ..... 10-1 to 10 -
CHAPTER11 AUXILIARY FUNCTION ..... 11-1 to 11 -
CHAPTER12 COUNTER FUNCTION ..... 12-1 to 12 -
CHAPTER13 COMMON FUNCTION ..... 13-1 to 13 -
CHAPTER14 DEDICATED INSTRUCTIONS ..... 14-1 to 14-
CHAPTER15 TROUBLESHOOTING 15-1 to $15-$

Memo

## CHAPTER8 OPR CONTROL

This chapter describes details of the QD72P3C3 OPR control.

### 8.1 Outline of OPR Control

### 8.1.1 Two types of OPR control

"OPR control" is control to establish a position (=OP) which is to be a reference when performing positioning control.
This control is used to return a mechanical system at any position other than the OP to the OP when the QD72P3C3 issues "OPR request " " such as at power-ON or after positioning control stop.

The QD72P3C3 defines the following two control types as "OPR control" in the sequence of OPR operation.
These OPR controls can be performed by setting "OPR parameter", "9000" or "9001" to
"Cd. 5 Start method", and turning ON the positioning start signal (Y8 to YA).

| Establishing a positioning control OP | "Machine OPR control" ( $\square$ Cd.5 Start method: 9000) |
| :--- | :--- |
| Performing position control toward the OP | "Fast OPR control" ( Cd.5 Start method: 9001) |

* "Machine OPR control" must be performed before performing "fast OPR control".

When OPR control is not needed
In the system that does not require OPR control, setting "1" to "Cd.4 OPR request flag OFF request" forcibly turns OFF "OPR request flag" (Md. 7 Status: b1). When OPR control is not performed, operation starts using the position at power-ON (Md. 1 Current feed value) as " 0 ".

* Also, the "OPR parameter (Pr. 10 to Pr. 15 )" must all be set to the default values or the values that will not result in an error.


## Remark

OPR request ${ }^{*}$ In the following cases, the QD72P3C3 is required to turn ON "OPR request flag" (Md. 7 Status: b1) and perform machine OPR control.

- At power-ON
- At machine OPR control start

The "OPR request flag" turns OFF and the "OPR complete flag" (Md. 7 Status: b2) turns ON when the machine OPR control is performed and is completed normally.

### 8.2 Machine OPR Control

### 8.2.1 Outline of the machine OPR operation

## XIMPORTANT

(1) Always set the OP in the same direction as viewed from any position in the workpiece moving area (set the OP near the upper or lower limit of the machine).
(2) Correctly set the OPR direction so that it can be the same direction with the workpiece traveling direction to the OP.
(3) When the following two conditions are satisfied, the axis continues operating at the OPR speed since near-point dog is not detected at machine OPR control start.

- Machine OPR control is started at the position where the near-point dog is OFF.
- The near-point dog does not exist in the OPR direction as seen from the machine OPR control start position.
In this case, perform JOG operation to move the axis to the position where the near-point dog exists in the OPR direction and the near-point dog is OFF. (For details of JOG operation, refer to Chapter 10.)


## ■ Machine OPR control operation

In machine OPR control, near-point dog and zero signal are used to establish a machine OP.
None of the address information stored in the QD72P3C3, programmable controller CPU or drive unit is used at this time.

After the machine OPR control, mechanically established position is regarded as the "OP", reference for positioning control.
The method for establishing "OP" by a machine OPR control depends on "Pr. 10 OPR method".

The following describes the operation when starting machine OPR control.

| 1) | The machine OPR control is started. |
| :---: | :--- |
| 2) | The operation starts according to the direction and speed set in the OPR parameter <br> $\left(\begin{array}{l}\text { Pr. } 10\end{array}\right.$ to Pr. 15$)$ |
| 3) | The "OP" is established by the method set in " Pr.10 OPR method", and the axis stops. <br> (Refer to Section 8.2 .3 and Section 8.2.4.) |
| 4) | If "a" is set as " Pr.12 OP address", "a" will be stored as the current position in the <br> "Md. 1 Current feed value" which is monitoring the position. |
| 5) | The machine OPR control is completed. |

[^2]" Pr. 12 OP address" is a fixed value set by the user.


Figure 8.1 Example of a machine OPR control

### 8.2.2 OPR method for machine OPR control

This machine OPR control specifies a way to establish machine OP (method for judging the OP position and machine OPR control completion) according to configuration and application of the positioning control system.
The following table shows the two methods that can be used for this OPR method. (The OPR method is one of the items set in parameter. It is set to "Pr. 10 OPR method" in OPR parameter.)

| Pr. 10 OPR method | Description |
| :---: | :--- |
| Near-point dog method | Deceleration starts when the near-point dog turns from OFF to ON. <br> (The axis decelerates until it reaches at "Pr.14 Creep speed".) <br> The axis stops on detection of the first zero signal (signal output for <br> one pulse per one rotation, e.g. Zero signal output from the drive unit) <br> after the near-point dog turns from ON to OFF, and on completion of <br> the deviation counter clear output, machine OPR control is completed. |
| Stopper 3 | The stopper position is defined as the OP. <br> The axis starts at " $\because$ Pr. 14 <br> Creep speed" from the beginning, and is <br> brought into contact with the stopper to stop. <br> After stop, when the deviation counter clear output is completed after <br> zero signal (signal which detects that a workpiece contacts against a <br> stopper, and then is output) detection, the machine OPR control is <br> completed. |

Wiring of signals required for each OPR method

| I/O signal | OPR method | Near-point dog method |  |
| :--- | :---: | :---: | :---: |
| Zero signal (PGO) | $O$ | Stopper 3 |  |
| Near-point dog signal (DOG) | $O$ | $O$ |  |
| Deviation counter clear (CLEAR) | $O$ | - |  |
| O: Wiring required $-:$ Wiring not required |  |  |  |

Remark

## Creep speed

The speed is quite slow. The stopping accuracy is poor when the axis is suddenly stopped from high speed. Therefore, the axis must be switched to low speed. Set this speed to "Pr. 14 Creep speed".

### 8.2.3 OPR method (1): Near-point dog method

The following describes an operation outline of the OPR method "near-point dog method".
(1) Operation chart

| 1) | By turning ON the positioning start signal (Y8 to YA), machine OPR control is started. <br> (Acceleration starts in the direction set in "Pr. 11 OPR direction" and at the time set in "Pr. 15 ACC/DEC time at OPR", and the axis moves at "Pr. 13 OPR speed".) |
| :---: | :---: |
| 2) | Near-point dog ON is detected and deceleration starts at the time set in "[Pr.15ACC/DEC time at OPR". |
| 3) | The motor decelerates until it reaches to "Pr. 14 Creep speed", and then starts moving at the creep speed. (During deceleration, the near-point dog must be ON.) |
| 4) | On detection of the first zero signal after near-point dog OFF, the pulse output from the QD72P3C3 stops immediately and the "deviation counter clear output" is output to the drive unit. <br> (Set "deviation counter clear signal output time" to $\square$ |
| 5) | After the "deviation counter clear output" is output, the OPR complete flag ( Md .8 Status: b2) turns from OFF to ON and the OPR request flag (Md. 8 Status: b1) turns from ON to OFF. |



Figure 8.2 Machine OPR control in near-point dog method

## (2) Restrictions

A pulse generator with a zero signal is required. When using a pulse generator without a zero signal, provide a zero signal outside.
(3) Precautions during operation
(a) In OPR control, if a zero signal is ON when the near-point dog turns from ON to OFF, an error occurs.
(b) If a zero signal is input while the near-point dog signal is OFF, an error "Zero signal ON (error code: 202)" occurs.
(c) The near-point dog must be ON during deceleration from "Pr. 13 OPR speed" to "Pr. 14 Creep speed".
The following chart describes the operation when the near-point dog turns OFF before deceleration to "Pr. 14 Creep speed".


Figure 8.3 Operation when the near-point dog turns OFF before the axis reaches to the creep speed
(d) The following chart describes the operation when the near-point dog is OFF and no near-point dog exists in the OPR direction at the start of OPR control.


Figure 8.4 Operation when the near-point dog is OFF and no near-point dog exists in the OPR direction at the start of OPR control
(e) The following chart describes the operation when OPR is performed from ON position of the limit switch in the OPR direction at the start of OPR control.


Figure 8.5 Operation when OPR is performed from ON position of the limit switch in the OPR direction at the start of OPR control
(f) The following chart describes the operation when OPR is performed from the near-point dog ON position.


Figure 8.6 Operation when OPR is performed from the near-point dog ON position

### 8.2.4 OPR method (2): Stopper 3

The following describes an operation outline of the OPR method "stopper 3".
The "stopper 3" is effective when a near-point dog cannot be installed. (Note that the axis operates at "Pr. 14 Creep speed" from the start. Therefore, it will take time to complete the machine OPR control.)
(1) Operation chart

| 1) | By turning ON the positioning start signal (Y8 to YA), machine OPR control is started. <br> (The axis moves to the direction set in "Pr. 11 OPR direction" at "Pr. 14 Creep speed". At this time, a torque limit to the motor is required. If torque limit is not set, the motor may be a failure at 2).) |
| :---: | :---: |
| 2) | The workpiece contacts against a stopper and stops. |
| 3) | After the stop, the pulse output from the QD72P3C3 immediately stops on detection of a zero signal, and the "deviation counter clear output" is output to the drive unit. <br> (Set "deviation counter clear signal output time" to Pr. 7 .) |
| 4) | After "deviation counter clear output" is output, the OPR complete flag (Md.8Status: b1) turns from OFF to ON and the OPR complete flag ( $M d .8$ Status: b0) turns from ON to OFF. |



Figure 8.7 Stopper 3 machine OPR control

## (2) Restrictions

(a) Always set torque limit to the motor.

If the torque limit is not set, the motor may be a failure when the workpiece contacts against the stopper.
(For torque limit, refer to the manual for the drive unit.)
(b) Use an external input signal as the zero signal.

## (3) Precautions during operation

(a) When the zero signal is input before the workpiece is stopped by the stopper, the workpiece stops, and the stop position will become the OP.


Figure 8.8 When the zero signal is input before the workpiece is stopped by the stopper
(b) If the axis is started during zero signal ON, "Zero signal ON" error (error code: 202) occurs.

### 8.3 Fast OPR Control

### 8.3.1 Outline of the fast OPR control operation

■ Fast OPR control operation
In fast OPR control, positioning control is performed to "Md. 1 Current feed value" stored in the QD72P3C3 by machine OPR control.
By setting "9001" in "Cd.5 Start method" and turning ON the positioning start signal (Y8 to YA), fast OPR control performs position control at high speed without positioning data, near-point dog, and zero signal.

The following describes the operation when starting fast OPR control.

1) Set "9001" in "Cd.5 Start method" and turn ON the positioning start signal (Y8 to YA).
2) Position control is started to the OP address according to the OPR parameter ( Pr .10 to Pr. 15 ) when machine OPR control was performed.
3) The fast OPR control is completed.


Figure 8.9 Fast OPR control

■ Precautions during operation
(a) Perform fast OPR control after performing machine OPR control and the machine OP is established.
If fast OPR control is started without performing machine OPR control, "Machine OPR not performed" error (error code: 203) occurs.
(b) In fast OPR control, "OPR complete flag" (Md. 7 Status: b2) and "OPR request flag" (Md. 7 Status: b1) do not change.
(c) On completion of fast OPR control, "Pr. 12 OP address" is not stored into "Md. 1 Current feed value".
(d) If movement amount to the OP exceeds 268435455 pulses, position control to the OP is performed in every 268435455 pulses with alternating between stop and start.


Figure 8.10 Fast OPR control when the movement amount is over $\mathbf{2 6 8 4 3 5 4 5 5}$ pulses

ゆ
Q
series

### 8.4 Count Value Selection Function at OPR

This function stores "Pr. 12 OP address" to "Md.3 Count value" when OPR is completed. To use this function, set "Pr. 19 Count value selection at OPR" to "1: OP address set to count value".

## CHAPTER9 POSITIONING CONTROL

This chapter describes details of the QD72P3C3 positioning control (control functions using positioning data).

### 9.1 Outline of Positioning Control

"Positioning control" is a control using "positioning data" stored in the QD72P3C3. Position control, speed control, and current value change are performed by setting the necessary items to the "positioning data".
Set the control method of "positioning control" to "Da. 2 Control method" in setting item of the positioning data.
The following table shows controls which can be defined as "positioning control" by the setting in "Da. 2 Control method".

| Positioning control | Da. 2 Control method | Description |
| :---: | :---: | :---: |
| Position control (1-axis linear control) | 1-axis linear control (ABS) <br> 1-axis linear control (INC) | Performs positioning control from the starting address (current stop position) to the specified position using the specified one axis. |
| Speed control | Speed control <br> (Forward run) <br> Speed control <br> (Reverse run) | Continuously outputs pulses corresponding to the <br> " Da. 4 Command speed" set in positioning data. |
| Current value change | Current value change | Changes "Md. 1 Current feed value" to the address set in positioning data. |

### 9.1.1 Data required for positioning control

The following table shows an outline of the "positioning data" configuration and setting contents required to perform "positioning control".

| Setting item |  | Setting contents |
| :---: | :---: | :---: |
| Positioning data | Da. 1 Operation pattern | Select the type of operation pattern for positioning control to be performed. (Refer to Section 9.1.2.) |
|  | Da. 2 Control method | Set the control method defined for "positioning control". (Refer to Section 9.1) |
|  | Da. 3 ACC/DEC time | Set the acceleration/deceleration time for positioning control. |
|  | Da. 4 Command speed | Set speed at control execution. |
|  | Da. 5 Positioning address/ movement amount | Set the value of set point, movement amount or current value change when performing position control. (Refer to Section 9.1.3.) |
| * Setting contents from Da. 1 to Da. 5 differ in setting requirement and description, depending on " Da. 2 Control method". (Refer to "Section 9.2Positioning Data Setting".) |  |  |

### 9.1.2 Positioning control operation patterns

Depending on movement amount, positioning control has two operation patterns: "positioning start (independent)" and "positioning start (continuous)".
Select the operation pattern at "Da. 1 Operation pattern".
["Da. 1 Operation pattern" setting contents]

| " Da. 1 Operation pattern" setting | Setting contents |
| :--- | :--- |
| 0: Positioning start (independent) | Select this item when performing positioning control whose movement <br> amount is within 268435455pulses, regardless whether the system is <br> the absolute system or incremental system. |
| 5000: Positioning start (continuous) | Select this item when performing positioning control whose movement <br> amount is over 268435455pulses, regardless whether the system is <br> the absolute system or incremental system. |

Example 1: Performing positioning control whose movement amount is within 268435455pulses
When performing position control from -99999999 (address at start) to 150000000 (address at end) in absolute system, since the movement amount is 250000000pulses, select " 0 : Positioning start (independent)" as "Da. 1 Operation pattern".


Example 2: Performing positioning control whose movement amount is over 268435455pulses
When performing position control from -99999999 (starting address) to 500000000 (end address) in absolute system, since the movement amount is 600000000 pulses, select "5000: Positioning start (continuous)" as " Da. 1 Operation pattern".

* : The QD72P3C3 can output up to 268435455 pulses at a time. When performing positioning control exceeding the number of pulses that can be output, perform movement in multiple times as the figure below.

- Positioning data of the QD72P3C3 is started by setting "0" to "Cd.5 Start method".
- The BUSY signal (X8 to XA) turns ON even when position control of movement amount 0 is performed. However, since the ON time is short, the ON status may not be detected in the sequence program.


### 9.1.3 Specifying the positioning address

The following two methods are available for commanding a position in control using positioning data.

■Absolute system
A position based on the OP (absolute address) is specified and positioning control is performed. This address is regarded as the positioning address. (The start point can be anywhere.)


Figure 9.1 Absolute system positioning control

## ■ Incremental system

The position where the workpiece is currently stopped is regarded as the start point, and positioning control is performed by specifying movement direction and movement amount.


Figure 9.2 Incremental system positioning control

### 9.1.4 Checking the current value

■ Values representing the current value
In the QD72P3C3, the following address is used as a value representing the position. This address (current feed value) is stored in the monitor data area and is used in monitoring such as current value display.

| Current feed |
| :---: | :--- |
| value | | •Value stored in "Md. 1 Current feed value" |
| :--- |
| •The value is based on an address established with "machine OPR control". However, |
| the address can be changed by current value change. |
| •Update timing: 2.5 ms |



Figure 9.3 Current feed value

Current value when using the ring counter
When the counter format is set to "ring counter" in intelligent function module switch setting, the current value is repeatedly updated between 0 and "Pr. 17 Positioning range upper limit value -1 " during speed control (when " $\quad$ Pr. 3 Current feed value during speed control" is set to "1: Update") or JOG operation.


Figure 9.4 Current feed value when using the ring counter

## - Restrictions

If the stored "current feed value" is used for control, tolerance occurs by 2.5 ms at update timing of the current value.
$\square$ Monitoring the current value
The "current feed value" is stored in the following buffer memory and can be read using the "DFRO(P) instruction" from the programmable controller CPU.

|  | Buffer memory address |  |  |
| :--- | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 |
| Md.1 Current feed | 70 | 170 | 270 |
| value | 71 | 171 | 271 |



### 9.2 Positioning Data Setting

### 9.2.1 Relation between each control and positioning data

The setting requirements and description for the setting items of the positioning data to be set differ depending on "Da.2 Control method".
The following table shows the positioning data setting items of each control. For operation details and settings of each control, refer to Section 9.2.2 or the subsequent sections.

| Positioning data | Positioning control | Position <br> control | Speed <br> control | Current <br> value <br> change |
| :--- | :---: | :---: | :---: | :---: |
| Da. 1 Operation pattern | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
| Da. 2 Control method | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
| Da. 3 ACC/DEC time | $\bigcirc$ | $\bigcirc$ | - |  |
| Da. 4 Command speed | $\bigcirc$ | $\bigcirc$ | - |  |
| Da. 5 Positioning address/movement amount | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |

© : Setting is required.

- : Setting not required. (Setting value is invalid. If setting, use the defalut value or a value within the range where no error occurs.)


### 9.2.2 1-axis linear control

In 1-axis linear control ("Da.2 Control method" = 1-axis linear control (ABS), 1-axis linear control (INC)), one motor is used to perform position control in set axis direction.
[1] 1-axis linear control (ABS)
■Operation chart
In 1-axis linear control of absolute system, addresses established by a machine OPR control are used. Position control is performed from the current stop position (starting address) to the address set in "Da.5 Positioning address/movement amount" (end address).
-- Example
When the starting address (current stop position) is 1000 and the end address (positioning address) is 8000 , position control is performed in the positive direction by a movement amount of 7000 (1000 to 8000).


Positioning data setting example
The following table shows a setting example when "1-axis linear control (ABS)" is set in positioning data of axis 1 .

|  | Setting item | Setting example | Setting contents |
| :--- | :--- | :---: | :--- |
|  | Da.1 Operation pattern | Positioning start <br> (independent) | Set positioning start (independent) assuming <br> position control whose movement amount is <br> within 268435455pulses is performed. |
| Axis 1 <br> positioning <br> data | Da.2 Control method | 1-axis linear control <br> (ABS) | Set 1-axis linear control in absolute system . |
|  | ACC/DEC time | 1000ms | Set the acceleration/deceleration time for position <br> control. |
|  | Da.4 Command speed | 50000pulse/s | Set the speed during movement to the positioning <br> address. |
|  | Da.5 Positioning address/ <br> movement amount | 8000pulse | Set the positioning address. |

* For details of setting, refer to "Section 4.4 Positioning Data List".
[2] 1-axis linear control (INC)
■Operation chart
In 1-axis linear control of incremental system, addresses established by a machine OPR control are used. Position control is performed from the current stop position (starting address) for the movement amount set in "Da.5 Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.

-- Example
When the starting address is 5000 and the movement amount is -7000 , position control is performed to the -2000 position.



## $\square$ Positioning data setting example

The following table shows a setting example when "1-axis linear control (INC))" is set in positioning data of axis 1 .

|  | Setting item | Setting example | Setting contents |
| :---: | :---: | :---: | :---: |
| Axis 1 positioning data | Da. 1 Operation pattern | Positioning start (independent) | Set positioning start (independent) assuming position control whose movement amount is within 268435455 pulses is performed. |
|  | Da. 2 Control method | 1-axis linear control (INC) | Set 1-axis linear control in incremental system. |
|  | Da. 3 ACC/DEC time | 1000ms | Set the acceleration/deceleration time for position control. |
|  | Da. 4 Command speed | 50000pulse/s | Set the speed during movement. |
|  | Da. 5 Positioning address/ movement amount | -7000pulse | Set the movement amount. |

[^3]
### 9.2.3 Speed control

In "speed control" ("Da.2 Control method" = Speed (forward run), Speed (reverse run)), pulses are continued outputting at the speed set in "Da. 4 Command speed" until the axis stop signal ( Y 4 to Y 6 ) is input in axis direction set for positioning data.

The speed control has two types: control that starts in forward direction "speed control (forward run)" and control that starts in reverse direction "speed control (reverse run)".

■ Operation chart


Figure 9.5 Speed control operation timing

■ Current feed value during speed control
"Md. 1 Current feed value" during speed control differs depending on " Pr. 3 Current feed value during speed control" setting as follows.

| "Pr.3 Current feed value during speed |
| :--- | :--- |
| control" setting |$\quad$| Md. 1 |
| :--- |
| Current feed value |



Figure 9.6 Current feed value during speed control Current feed value when using the ring counter When the counter format is set to "ring counter" in intelligent function module switch setting, the current feed value is repeatedly updated between 0 and "Pr. 17 Positioning range upper limit value -1".


Figure 9.7 Current feed value when using the ring counter

## Restrictions

Software stroke limit range during speed control is checked when "Pr. 4 Current feed value during speed control" is set to "1: Update" and the counter format is set to "linear counter" in intelligent function module switch setting.

## ■ Positioning data setting example

The following table shows a setting example when "speed control in forward run" is set in positioning data of axis 1 .

|  |  | Setting item | Setting example |
| :--- | :--- | :---: | :--- |

* For details of setting, refer to "Section 4.4 Positioning Data List".


### 9.2.4 Current value change

Current value change performs a control to change "Md. 1 Current feed value" to any address.

Operation chart
The following chart shows the operation timing of current value change. Turning ON the positioning start signal (Y8 to YA) changes "Md. 1 Current feed value" to the value set to "Da. 5 Positioning address/movement amount".


## ■Restrictions

The current value cannot be changed in the following cases.

- When the linear counter is set for the counter format, if the value set to
"Da. 5 Positioning address/movement amount" (value of current value change) is out of "Software stroke limit upper/lower limit value ( Pr. 1 , Pr. 2 )" setting range, "Software stroke limit +, -" error (error code: 516, 517) occurs, and the current value cannot be changed.
- When the ring counter is set for the counter format, if the value set to "Da. 5 Positioning address/movement amount" (value of current value change) is out of 0 to "Pr. 17 Positioning range upper limit value -1 " range, "Out of positioning address/movement amount setting range" error (error code: 509) occurs, and the current value cannot be changed.
$\square$ Positioning data setting example
The following table shows a setting example when "current value change" is set in positioning data of axis 1 .

|  | Setting item | Setting example | Setting contents |
| :---: | :---: | :---: | :---: |
| Axis 1 positioning data | Da. 1 Operation pattern | Positioning start (independent) | Set positioning start (independent) assuming position control whose movement amount is within 268435455 pulses is performed. |
|  | Da. 2 Control method | Current value change | Set the current value change. |
|  | Da. 3 ACC/DEC time | - | Setting not required (Setting value is ignored). |
|  | Da. 4 Command speed | - | Setting not required (Setting value is ignored). |
|  | Da. 5 Positioning address/ movement amount | 10000pulse | Set the destination address. |

* For details of setting, refer to "Section 4.4 Positioning Data List".


### 9.3 Multiple axes concurrent start control

The QD72P3C3 allows the axes to be started concurrently on a pulse level by turning ON the positioning start signal ( Y 8 to YA ) within the same scan during positioning control.

■Precautions
(a) The speed limit function is valid on an axis basis.
(b) To perform stop processing, the stop command (axis stop signal (Y4 to Y6) ON) must be issued to each axis.
Note that the axes do not stop concurrently.
(c) JOG operation cannot start the axes concurrently.
(d) Note if an error occurs in any axis, it is processed in the corresponding axis.

## CHAPTER10 JOG OPERATION

This chapter describes details of the QD72P3C3 JOG operation.

### 10.1 Outline of JOG Operation

## XIMPORTANT

When performing JOG operation near the out of moving range, provide a safety circuit externally.

* If an external safety circuit is not provided, the workpiece may advance over the moving range, resulting in an accident.
"JOG operation" is a control method to move a workpiece by given movement amount without positioning data (the pulse is kept outputting while the JOG start signal (YC to Y11) is ON ). This control is used to move the workpiece to within the software stroke limit range if operation has been stopped by the positioning control system connection check or by the software stroke limit function.


## ■JOG operation

In JOG operation, while the forward run JOG start signal (YC, YE, and Y10) or the reverse run JOG start signal (YD, YF, and Y11) is ON, the QD72P3C3 outputs pulses to the drive unit, and moves the workpiece in the specified direction.

The following describes an example of JOG operation.

[^4]Figure 10.1 JOG operation start timing chart

## ■JOG operation monitor

When using GX Developer to directly monitor the buffer memory, refer to "Section 4.5 Monitor Data List".
When using the monitor function of GX Configurator-PT to monitor, refer to "Section 6.6 Monitor/Test".

■ Precautions during operation
Before starting JOG operation, grasp the following points.
(a) Set the JOG data before starting JOG.
(The settings cannot be changed during JOG operation.)
(b) Setting a great value to "JOG. 1 JOG speed" from the beginning is dangerous. For safety, set a small value at first and check the movement. After that, gradually increase the value and adjust the speed optimal for control.
(c) "JOG. 1 JOG speed" is higher than the speed set in " Pr. 4 Speed limit value", the axis operates $d$ at "Pr. 4 Speed limit value" and "Out of speed range" warning (warning code: 20) occurs.
(d) "JOG. 1 JOG speed" is lower than " Pr. 5 Bias speed at start", operation starts at " Pr. 5 Bias speed at start" and "Out of speed range" warning (warning code: 20) occurs.
(e) Even if a warning occurs, JOG operation is continued.

■Error during operation
If operation is stopped by the software stroke limit function, JOG operation can be performed within the software stroke limit range after an axis error reset. (For details, refer to "Section 11.4".)


### 10.2 JOG Operation Execution Procedure

The following shows the procedures for JOG operation.


For details of JOG operation start program, refer to "Section 5.7 Simple Reciprocating

## Remark

> Operation".

- It is assumed that machinery such as an external safety circuit has already been installed.
- Preset the external I/O signal logic, pulse output mode and pulse rotation direction with the intelligent function module switches. (For details, refer to "Section 5.6 Intelligent Function Module Switch Setting".)
- Set parameters such as speed limit value and bias speed at start as necessary.


### 10.3 JOG Operation Example

(1) When the "axis stop signal" ( Y 4 to Y 6 ) is turned ON during JOG operation
When the "axis stop signal" (Y4 to Y6)" is turned ON during JOG operation, JOG operation results in a "deceleration stop".
If turning ON the JOG start signal ( YC to Y 11 ) while the axis stop signal ( Y 4 to Y 6 ) is ON, "Stop signal ON at start" error (error code: 102) occurs and JOG does not start. It can be started by resetting the axis error, turning OFF the axis stop signal ( Y 4 to Y6), and turning the JOG start signal (YC to Y11) from OFF to ON again.


Figure 10.2 Operation when the axis stop signal (Y4 to Y6) is turned ON during JOG operation
(2) When the forward run JOG command signal and the reverse run JOG command signal are simultaneously turned ON
When the "forward run JOG start signal (YC, YE, Y10)" and "reverse run JOG start signal (YD, YF, Y11)" are simultaneously turned ON in one axis, the priority is given to the former. In this case, the "reverse run JOG start signal (YD, YF, Y11)" becomes effective when the BUSY signal (X8 to XA) of the QD72P3C3 turns OFF.
However, if the forward run JOG operation is stopped by the axis stop signal (Y4 to Y6) or axis error, the reverse run JOG operation is not performed even though the "reverse run JOG start signal (YD, YF, Y11)" is ON.
Note if the forward run JOG command signal is turned ON during reverse run JOG operation, the reverse run JOG operation is taken precedence.


Figure 10.3 Operation when the reverse run JOG start signal (YD, YF, Y11) is turned ON during forward run JOG operation
(3) When the "JOG start signal (YC to Y11)" is turned ON again during deceleration caused by turning the "JOG start signal (YC to Y11)" from ON to OFF
When the "JOG start signal (YC to Y11)" is turned ON again during deceleration caused by turning the "JOG start signal (YC to Y11)" from ON to OFF, the JOG start signal (YC to Y 11 ) is ignored.


Figure 10.4 Operation when the JOG start signal (YC to Y11) is turned ON during deceleration
(4) When the "axis stop signal ( Y 4 to Y 6 )" is turned OFF after a stop caused by turning ON the "axis stop signal (Y4 to Y6)" with the "JOG start signal (YC to Y11)" ON
When the "axis stop signal ( Y 4 to Y 6 )" is turned OFF after a stop caused by turning ON the "axis stop signal (Y4 to Y6)" with the "JOG start signal (YC to Y11)" ON, JOG operation is not performed.
JOG operation can be started by turning the "JOG start signal (YC to Y11)" from OFF to ON again.


Figure 10.5 Operation when the axis stop signal (Y4 to Y6) is turned from ON to OFF with the JOG start signal (YC to Y11) ON

## CHAPTER11 AUXILIARY FUNCTION

### 11.1 Outline of the Auxiliary Function

This function limits a control and add functions when performing OPR control, positioning control, and JOG operation. These auxiliary functions are performed by parameter setting, sequence programs, etc.

The "auxiliary function" has the following functions.
Table 11.1 Auxiliary function list

| Auxiliary function | Description | Reference |
| :---: | :---: | :---: |
| Speed limit function | If the command speed exceeds the " Pr. 4 Speed limit value" during control, this function limits the command speed to within the " Pr. 4 Speed limit value" setting range. | Section $11.2$ |
| Speed change function | This function changes the speed during the constant speed of speed control or JOG operation. <br> Set the new speed in "Cd. 1 New speed value" and change the speed according to " Cd. 3 Speed change request". | Section $11.3$ |
| Software stroke limit function | When a command is issued to the outside of the upper limit/lower limit stroke limit setting range, which are set in the parameters, this function does not perform a control for that command. | Section $11.4$ |
| Hardware stroke limit function | This function executes the deceleration stop by the limit switch connected to the external device connector of the QD72P3C3. | $\begin{gathered} \hline \text { Section } \\ 11.5 \end{gathered}$ |
| ACC/DEC process function | This function adjusts the acceleration/deceleration processing of control. | Section <br> 11.6 |

### 11.2 Speed Limit Function

If the command speed exceeds the "Speed limit value" during control, this function limits the command speed to within the "Speed limit value" setting range.
(1) Relation between the speed limit function and each control

The following table shows the relation between the "speed limit function" and each control.

Table 11.2 Relation between the speed limit function and each control

| Control type |  | Speed <br> limit <br> function | Speed limit <br> value | Operation when speed limit value is exceeded |
| :--- | :--- | :---: | :---: | :--- | :--- |

© : Setting is required.

- : Setting not required (Setting value is invalid. If setting, use the default value or a value within the range where no error occurs.)


## (2) Setting the speed limit function

To use the "speed limit function", set the "speed limit value" in the parameter as shown in the following table, and write it to the QD72P3C3. (The "speed limit value" depends on the motor used. Set it according to the motor used.)
The setting contents are enabled when the programmable controller CPU READY signal (Y0) is turned from OFF to ON.

Table 11.3 Relevant parameter

| Setting item | Setting <br> value | Setting contents | Factory <br> default value |
| :---: | :---: | :--- | :---: |
| Pr.4 <br> Speed limit <br> value | $\rightarrow$ | Set the speed limit value (maximum speed <br> during control). | 8000 <br> (pulse/s) |

* For details of the setting contents, refer to "Section 4.2 Parameter List".


### 11.3 Speed Change Function

This function changes the speed within " Pr. 4 Speed limit value" during the constant speed of speed control or JOG operation.

Set the new speed in "Cd. 1 New speed value". The speed is changed according to "Cd. 3 Speed change request".
The acceleration/deceleration time at speed change and deceleration stop time to stop control after speed change are the values set in " Cd. 2 ACC/DEC time at speed change".
(1) Control contents

The following shows the operation during speed change.


Figure 11.1 Speed change operation

## (2) Precautions during control

(a) When turning ON the axis stop signal (Y4 to Y6) or OFF the JOG start signal (YC to Y 11 ) during acceleration/deceleration using the speed change function, the axis continues decelerating at the accelerated velocity at the acceleration/deceleration until it reaches to " Pr. 5 Bias speed at start", and then stops.
[Example of stop operation from during deceleration (A)/acceleration (B)]


- Stop operation from during deceleration (A)

- Stop operation from during acceleration (B)


Figure 11.2 Operation when turning ON the axis stop signal (Y4 to Y6) or OFF the JOG start signal (YC to Y11) before the axis reaches to the speed change value
(b) The speed cannot be changed in the following cases. (The speed change request is ignored.)

- During deceleration started by turning ON the axis stop signal (Y4 to Y6)
- During deceleration started by turning OFF the JOG start signal (YC to Y11)
(c) If speed change request is made during position control, OPR control or acceleration/deceleration, "Speed change disabled" warning (warning code: 22) occurs and the speed cannot be changed.
(d) If the value set in "Cd. 1 New speed value" is equal to or more than " Pr. 4 Speed limit value", "Out of speed range" warning (warning code: 20) occurs and the speed is controlled at " Pr. 4 Speed limit value". Also, if the value set in " Cd. 1 New speed value" is less than " Pr. 5 Bias speed at start", "Out of speed range" warning (warning code: 20) occurs and the speed is controlled at " Pr. 5 Bias speed at start".


### 11.4 Software Stroke Limit Function

This function sets the upper/lower limits of workpiece movable range using the address (Md. 1 Current feed value) established by the machine OPR control and disables the movable command if it is issued to out of the setting range.

- This function works for "Md. 1 Current feed value" and "Da.5 Positioning address/movement amount" (value of current value change).
- This function works at operation start and during operation.

Set the upper/lower limits of the workpiece movable range in " Pr. 1 Software stroke limit upper limit value"/" Pr. 2 Software stroke limit lower limit value".

## (1) Movable region

The following figure shows the workpiece movable range when the software stroke limit function is used.


Figure 11.3 Workpiece movable range
(2) Software stroke limit check details

| Check details | Processing at error |  |  |
| :---: | :--- | :--- | :--- |
| 1) | "Md. 1 <br> "error". | Current feed value" out of the software stroke limit range is defined as an | An "error" occurs. |

(3) Relation between the software stroke limit function and each control

The following table shows the relation between the software stroke limit function and each control.

| Control type |  | Software stroke limit | Processing at check |
| :---: | :---: | :---: | :---: |
| OPR <br> control | Machine OPR control | - | Unchecked |
|  | Fast OPR control | - |  |
| Positioning control | Position control (1-axis linear control) | © | (2) 1) and (2) 2) above are checked at operation start. <br> Therefore, positioning control out of the software stroke limit range is not performed. |
|  | Speed control | O* | (2) 1 ) above is checked. <br> - At operation start <br> The axis does not start if the workpiece is out of the software stroke limit range. <br> -During operation <br> The axis starts deceleration to a stop when it exceeds the software stroke limit range. |
|  | Current value change | © | (2) 2 ) above is checked. <br> If the value of current value change is out of the software stroke limit range, the current value is not changed. |
| JOG operat |  | © * | (2) 1 ) above is checked. <br> -At operation start <br> The axis can be started only in the direction from the position out of the software stroke limit range to within the software stroke limit range (movable region). <br> -During operation <br> The axis starts deceleration to a stop when it exceeds the software stroke limit range. |

O: Is not checked if the current feed value is not updated (refer to "Current feed value during speed control") during speed control.

- : Unchecked
* When the counter format is set to "ring counter" in intelligent function module switch setting, software stroke limit check is not made.
(4) Precautions during software stroke limit check
- A machine OPR control must be performed beforehand for the "software stroke limit function" to work properly.
- Due to processing inside of the QD72P3C3, the software stroke limit check may delay by 2.5 ms at maximum.


## (5) Setting the software stroke limit function

To use the "software stroke limit function", set the required values in the parameters shown in the following table, and write them to the QD72P3C3.
The setting contents are enabled when the programmable controller CPU READY signal $(\mathrm{YO})$ is turned from OFF to ON.

| Setting item | Setting <br> value | Setting contents | Factory default <br> value |
| :--- | :---: | :--- | :---: |
| Pr. 1 Software stroke limit upper <br> limit value  | $\rightarrow$ | Set the upper limit value of the movable region. | 1073741823 |
| Pr.2 2 <br> limit value | $\rightarrow$ | Seftware stroke limit lower lower limit value of the movable region. | -1073741824 |

* For details of the setting contents, refer to "Section 4.2 Parameter List".

Set the values so that the formula ( $\square$ Pr. 1 Software stroke limit upper limit value) $>$
( $\stackrel{\text { Pr. } 2}{ }$ Software stroke limit lower limit value) is satisfied.
If this formula is not satisfied, "Software stroke limit upper/lower limit value error" (error code: 901) occurs.

### 11.5 Hardware Stroke Limit Function

| WARNING |
| :--- |
| When wiring hardware stroke limit is required, wire it in negative logic and use normally closed contact. Setting |
| positive logic and using normally open contact may result in serious accident. |

This function stops control (deceleration stop) by a signal input from the limit switch. To use this function, install limit switches to the upper limit/lower limits within physically movable range.
Stopping control before the axis reaches to the upper/lower limit in physically movable range prevents damage to equipment.
Normally, install the limit switches to "within the stroke limit for drive unit side/stroke end" to stop control before the axis reaches to the stroke limit for drive unit side/stroke end.

## (1) Control contents

The following shows the operation of the hardware stroke limit function.


Figure 11.4 Operation chart of the hardware stroke limit function

## (2) Hardware stroke limit wiring

To use the hardware stroke limit function, wire the terminals of the QD72P3C3 upper limit/lower limit signals as the figure below. (When "upper limit/lower limit signal input logic selection" in "intelligent function module switch setting" are default values)


Note) Wire the limit switch installed in the current feed value increase direction and the limit switch installed in address decrease direction as as upper limit and lower limit, respectively. If the limit switches are wired oppositely, the hardware stroke limit function does not operate normally and the motor does not stop.

Figure 11.5 Wiring when using the hardware stroke limit function
(3) Precautions during control
(a) When the workpiece stops at out of controllable range for the QD72P3C3 (outside of the upper limit/lower limit switch) or is stopped by the hardware stroke limit detection, "OPR control" and "positioning control" cannot be started. To resume control, move the workpiece to in the controllable range of the QD72P3C3 with "JOG operation".
(b) If "upper limit/lower limit logic selection" in "intelligent function module switch setting" are default values, the QD72P3C3 cannot perform positioning control when between FLS (upper limit signal) and COM or RLS (lower limit signal) and COM is open (including the case when they are not wired).
(4) When not using the hardware stroke limit function

When not using the hardware stroke limit function, wire the terminals of the QD72P3C3 upper limit/lower limit signals as the figure below.
(When "upper limit/lower limit signal input logic selection" in "intelligent function module switch setting" are default values)


Figure 11.6 Wiring when not using the hardware stroke limit function

### 11.6 ACC/DEC Process Function

This function adjusts the acceleration/deceleration when OPR control, positioning control or JOG operation is performed.
Adjusting the acceleration/deceleration processing according to used equipment and control enables finer control.
Settable adjustment items regarding acceleration/deceleration, "speed at start", "target speed", "ACC/DEC time", and "ACC/DEC method".
(1) Control contents
(a) Relation among "speed at start", "ACC/DEC time", and "target speed"


Set the time that the axis reaches the "target speed" from "speed at start" in "ACC/DEC time. Set "speed at start", "target speed", and "ACC/DEC time" to each control individually. (For details, refer to "CHAPTER 4 DATA USED FOR POSITIONING CONTROL".)

| Control contents | Parameter set as "target <br> speed" | Parameter set as "speed at <br> start" | Parameter set as "ACC/DEC <br> time" |
| :--- | :--- | :--- | :--- |
| OPR control | Pr.13 OPR speed | Pr.14 Creep speed | Pr.15 ACC/DEC time at OPR |

Figure 11.7 Relation among "speed at start", "ACC/DEC time", and "target speed"
(b) Handling of acceleration in the QD72P3C3 and actual ACC/DEC time Acceleration at acceleration/deceleration operation is calculated using "ACC/DEC time", "speed at start", "target speed", and "pulse unit". However, since acceleration is processed as integer value, time actually taken to acceleration/deceleration"actual ACC/DEC time" may differ from "ACC/DEC time".

## ®POINT

For calculation of "acceleration" and "time actually taken to acceleration/ deceleration", refer to the following.

- Section 11.6.1 Calculating the actual ACC/DEC time


## (2) Precautions

(a) When the target speed is 1 (pulse/s), the set ACC/DEC time is ignored.
(b) If the ACC/DEC pattern which does not have the constant speed part and whose movement amount is small for the ACC/DEC time, the axis does not operate at the set ACC/DEC time. In this case, review the setting contents.

## 11．6．1 Calculating the actual ACC／DEC time

＂Acceleration＂＂and＂time taken to the actual acceleration／deceleration＂during acceleration／deceleration operation can be calculated by the＂ACC／DEC time calculation function＂in GX Configurator－PT．

## （1）Calculating using GX Configurator－PT

（a）Enter parameters required for calculating acceleration into the＂Setting＂ 1 ．to 4. Parameters entered to the＂Setting＂1．to 3．depend on control contents．

| Control contents | Parameter entered to 1． | Parameter entered to 2． | Parameter entered to 3． |
| :--- | :--- | :--- | :--- |
| OPR control | Pr．13 OPR speed | Pr．14 Creep speed | Pr．15 ACC／DEC time at OPR |
| Positioning control | Da．4 Command speed | Pr．5 Bias speed at start | $\boxed{\text { Da．3 ACC／DEC time }}$ |
| JOG operation | JOG．1 JOG speed | Pr．5 Bias speed at start | JOG．2 JOG ACC／DEC time |

Enter＂Pr． 4 Speed limit value＂for the＂Setting＂ 4.
（b）Click Calculation．Calculation results are displayed in the＂Result＂5．to 9.

| 5．Acceleration | Displays the acceleration calculated according to the＂Setting＂1．to 4． |
| :--- | :--- |
| 6．Actual <br> acceleration | Displays the rounded value of 5．Acceleration．Actual acceleration／deceleration <br> operation is performed with this acceleration． |
|  | Difference <br> （\％） | | Displays the difference between 5．Acceleration and 6．Actual acceleration．（The |
| :--- |
| displayed value is the difference over 5．Acceleration．） |


(2) Calculation example of " 5. Acceleration" and "9.Actual ACC/DEC time"

Calculating formula for " 5 . Acceleration" is shown below.
5) Acceleration $=\frac{(1) \text { Target speed }-2) \text { Speed at start }) \times 8}{\text { 3) ACC/DEC time } \times \text { Pulse unit* }^{*}}$

* Pulse unit changes according to the value set to "4. Speed limit value ( Pr. 4 )" as the table below.

| "Pr. 4 Speed limit value" | 1 to 8000 | 8001 to 32000 | 32001 to 64000 | 64001 to 100000 |
| :--- | :---: | :---: | :---: | :---: |
| Pulse unit | 1-pulse unit | 4-pulse unit | 8-pulse unit | 25-pulse unit |

"6. Actual acceleration" is a value rounds " 5 . Acceleration" to the nearest whole number*.
Therefore, "9. Actual ACC/DEC time" and "3. ACC/DEC time" may differ as shown below.

* However, if " 5 . Acceleration" is less than 1, " 6 . Actual acceleration" is rounded up to 1.

[Calculation example 1: "9. Actual ACC/DEC time" is longer than "3. ACC/DEC time"]


When "1. Target speed" is 100000 pps , "2. Speed at start" is 100 pps , "3. ACC/DEC time" is 990 ms and pulse unit is 25 ("4. Speed limit value ( Pr .4 ) is 100000 pps ), " 9 . Actual ACC/DEC time" is calculated by the following formula.

- 5) Acceleration $=\frac{(1) \text { Target speed }-2) \text { Speed at start }) \times 8}{\text { 3) ACC/DEC time } \times \text { Pulse unit* }}=\frac{(100000-100) \times 8}{990 \times 25}=32.290$
- 6$)$ Actual acceleration $=32$

7) Difference (difference between

- acceleration and actual acceleration $=\frac{\text { 5) Acceleration }-6) \text { Actual acceleration }}{6) \text { Actual acceleration }} \times 100$ when using acceleration as the base.)

$$
\begin{aligned}
& =\frac{32.290-32}{32} \times 100 \\
& =0.9(\%)
\end{aligned}
$$

- 9) Actual ACC/DEC time $=3$ ) ACC/DEC time $+\left(\frac{7) \text { Difference }}{100} \times 3\right)$ ACC/DEC time $)$

$$
\begin{aligned}
& =990+\left(\frac{0.9}{100} \times 990\right) \\
& =999(\mathrm{~ms})
\end{aligned}
$$

Set "speed at start", "target speed", and "ACC/DEC time" to each control individually. (For details, refer to "CHAPTER 4 DATA USED FOR POSITIONING CONTROL".)

| Control contents | Parameter set as "target <br> speed" | Parameter set as "speed <br> at start" | Parameter set as "ACC/ <br> DEC time" |  |
| :--- | :--- | :--- | :--- | :--- |
| OPR control | Pr.13 OPR speed | Pr.14 Creep speed | Pr.15 ACC/DEC time at <br> OPR |  |
| Positioning control | Da.4 Command speed | Pr.5 | Bias speed at start | Da.3 ACC/DEC time |
| JOG operation | JOG.1 JOG speed | Pr.5 Bias speed at start | JOG.2 JOG ACC/DEC time |  |

[Calculation example 2: "9. Actual ACC/DEC time" is shorter than "3. ACC/DEC time"]


When "1. Target speed" is 100000 pps , " 2 . Speed at start" is 100 pps , "3. ACC/DEC time" is 1000 ms and pulse unit is 25 ("4. Speed limit value ( Pr .4 ) is 100000 pps ), " 9 . Actual ACC/DEC time" is calculated by the following formula.

- 5) Acceleration $=\frac{(1) \text { Target speed }-2) \text { Speed at start }) \times 8}{\text { 3) ACC/DEC time } \times \text { Pulse unit*}^{*}}=\frac{(100000-100) \times 8}{1000 \times 25}=31.968$
- 6) Actual acceleration $=32$

7) Difference (difference between

- Diference (difference between when using acceleration as the base.
$=\frac{\text { 5) Acceleration }-6) \text { Actual acceleration }}{\text { 6) Actual acceleration }} \times 100$

$$
\begin{aligned}
& =\frac{31.968-32}{32} \times 100 \\
& =-0.1(\%)
\end{aligned}
$$

- 8) Actual ACC/DEC time $=3$ ) ACC/DEC time $+\left(\frac{7) \text { Difference }}{100} \times 3\right)$ ACC/DEC time $)$

$$
\begin{aligned}
& =1000+\left(\frac{-0.1}{100} \times 1000\right) \\
& =999(\mathrm{~ms})
\end{aligned}
$$

Set "speed at start", "target speed", and "ACC/DEC time" to each control individually. (For details, refer to "CHAPTER 4 DATA USED FOR POSITIONING CONTROL".)

| Control contents | Parameter set as "target speed" | Parameter set as "speed at start" | Parameter set as "ACC/ DEC time" |
| :---: | :---: | :---: | :---: |
| OPR control | Pr. 13 OPR speed | ${ }^{\text {Pr. } 14}$ Creep speed | Pr. 15 ACC/DEC time at OPR |
| Positioning control | Da. 4 Command speed | Pr. 5 Bias speed at start | Da. 3 ACC/DEC time |
| JOG operation | JOG. 1 JOG speed | Pr. 5 Bias speed at start | JOG. 2 JOG ACC/DEC time |

## CHAPTER12 COUNTER FUNCTION

This chapter describes the counter function of the QD72P3C3.

### 12.1 Outline of Counter Function

### 12.1.1 Types of pulse input method

There are four kinds of the pulse input methods: CW/CCW pulse input and 2-phase pulse input (1, 2 or 4 multiples).
Select the pulse input method in the "pulse input mode" of the intelligent function module switch on GX Developer. For setting details, refer to Section 5.6.

The following table shows the pulse input methods and count timing.

| Pulse input method | Count timing |  |  |
| :---: | :---: | :---: | :---: |
| CW/CCW | For addition count | $\phi A$ $\qquad$ $\uparrow$ 4 $\phi B$ | Counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{A}$. |
|  | For subtraction count | $\phi$ A $\qquad$ $\phi$ B $\square$ 4 4 | Counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{B}$. |
| 1 multiple of 2 phases ${ }^{*}{ }^{2}$ | For addition count |  | When $\phi \mathrm{A}$ is OFF, counts on the falling edge ( $\downarrow$ ) of $\phi \mathrm{B}$. |
|  | For subtraction count | $\phi$ A $\qquad$ $\downarrow$ ฤ $\phi$ B $\qquad$ | When $\phi \mathrm{B}$ is OFF, counts on the falling edge ( $\downarrow$ ) of $\phi \mathrm{A}$. |
| 2 multiples of 2 phases*2 | For addition count |  | When $\phi \mathrm{A}$ is ON , counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{B}$. When $\phi \mathrm{A}$ is OFF, counts on the falling edge $(\downarrow)$ of $\phi \mathrm{B}$. |
|  | For subtraction count | $\begin{aligned} & \phi_{\mathrm{A}} \uparrow \downarrow \downarrow \\ & \phi_{\mathrm{B}} \square \square \square \end{aligned}$ | When $\phi \mathrm{B}$ is ON , counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{A}$. When $\phi \mathrm{B}$ is OFF, counts on the falling edge $(\downarrow)$ of $\phi \mathrm{A}$. |
| 4 multiples of 2 phases | For addition count | $\begin{aligned} & \phi_{\mathrm{A}} \sim \downarrow \downarrow \\ & \phi_{\mathrm{B}} \sim \downarrow \downarrow \end{aligned}$ | When $\phi \mathrm{B}$ is OFF, counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{A}$. When $\phi \mathrm{B}$ is ON , counts on the falling edge ( $\downarrow$ ) of $\phi \mathrm{A}$. When $\phi \mathrm{A}$ is ON , counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{B}$. When $\phi \mathrm{A}$ is OFF, counts on the falling edge $(\downarrow)$ of $\phi \mathrm{B}$. |
|  | For subtraction count | $\begin{aligned} & \phi_{A} \uparrow \downarrow \downarrow \\ & \phi_{B} \uparrow \downarrow \downarrow \downarrow \end{aligned}$ | When $\phi \mathrm{B}$ is ON , counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{A}$. When $\phi \mathrm{B}$ is OFF, counts on the falling edge $(\downarrow)$ of $\phi \mathrm{A}$. When $\phi \mathrm{A}$ is OFF, counts on the rising edge ( $\uparrow$ ) of $\phi \mathrm{B}$. When $\phi \mathrm{A}$ is ON , counts on the falling edge ( $\downarrow$ ) of $\phi \mathrm{B}$. |

## ©IMPORTANT

* 1: The module may not be able to operate normally if each I/O signal logic is set incorrectly. Pay special attention when changing the setting from the default value.
*2: When using the input method of either 1 multiple of 2 phases or 2 multiples of 2 phases, be sure to input 2-phase pulses. With these input methods, pulses are counted according to the changes between phase A and phase B.


### 12.1.2 Reading count values

Count operation starts when the count enable command (Y1 to Y1E) is turned ON.
Count values are stored to "Md.3 Count value" in 31-bit signed binary.
Since the contents of "Md. 3 Count value" are automatically updated by count operation, the latest count value can be read from "Md.3 Count value".
For details of count operation, refer to Section 12.4.

| Item | Buffer memory address |  |  |
| :--- | :---: | :---: | :---: |
|  | CH1 | CH2 | CH3 |
| Md.3 Count value | 74 | 174 | 274 |
|  | 75 | 175 | 275 |

### 12.1.3 Selecting counter format

Select the linear counter or ring counter in the intelligent function module switch setting of GX Developer.

- For setting details of counter format, refer to Section 5.6.
- For details of linear counter, refer to Section 12.2.
- For details of ring counter, refer to Section 12.3.


## 12．2 Linear Counter Function

## （1）Linear counter operation

When the linear counter is selected，counting is operated in a range between－ 1073741824 （lower limit value）and 1073741823 （upper limit value）．


## （2）Overflow

（a）When the linear counter is selected for the counter format，if the present value falls below－1073741824（lower limit value）in subtraction or exceeds 1073741823 （upper limit value）in addition，an＂Overflow＂warning（warning code：27）occurs．
（b）If an overflow occurs， 1 is stored in the overflow detection flag（Md．7 Status：b3） of the buffer memory，and counting is stopped．Even if a pulse is input in that condition，＂Md． 3 Count value＂does not change from－1073741824 or 1073741823.
（c）An overflow can be cancelled by presetting the＂Md．3 Count value＂to the value in the range between－1073741824 and 1073741823.
Executing preset stores 0 in the overflow detection flag（Md． 7 Status：b3）of the buffer memory，allowing restart of counting．
Note that the values stored in the＂Md．6Axis／CH Warning code＂and the ON status of the Axis／CH warning occurrence signal（X4 to X6）are not reset until the error is reset．Reset the error by turning ON the Axis／CH error reset signal（Y1 to Y 3 ）after counting is restarted by the preset function．

### 12.3 Ring Counter Function

## (1) Ring counter operation

(a) When the ring counter is selected, counting is repeated within the range between 0 and "Pr. 16 Ring counter upper limit value -1".
No overflow occurs when the ring counter is selected.

(b) When the ring counter is selected, the positioning range is from 0 to "Pr. 17 Positioning range upper limit value -1".

- When positioning control is performed in absolute system, the movement amount is limited between 0 to "Pr. 17 Positioning range upper limit value -1 ".

- When positioning control in incremental system, speed control, and JOG operation are performed, the current feed value is repeatedly updated between 0 and "Pr. 17 Positioning range upper limit -1".



## (Example)

By setting the same value in "Pr. 16 Ring counter upper limit value" and
"Pr. 17 Positioning range upper limit value", the angle of the rotation target can be controlled, checking the actual position at the same time.
The following shows the operation when controlling a rotation target which rotates once with 3000 pulses.
(Conditions)
"Pr. 16 Ring counter upper limit value"/"Pr. 17 Positioning range upper limit value": 3000,
"Md. 3 Count value"/" Md. 1 Current feed value": 500

(2) Precautions
(a) When the ring counter is selected, the supported counter functions are limited.

- Preset function: Supported
- Coincidence detection function: Not supported


## POINT

When 0 is set to "Pr. 16 Ring counter upper limit value", the counting range is from 0 to 1073741823.

### 12.4 Count Enable Function

The following shows the relationship between the count enable command (Y1C to Y1E) and "Md. 3 Count value".



1) Count operation does not start yet when the module READY signal (X0) turns ON.
2) Count operation starts when the count enable command (Y1C to Y1E) is turned ON.

Count operation stops when the count enable command (Y1C to Y1E) is turned OFF.
3)

This time, "Md. 3 Count value" retains the last value before counting has stopped.
4)

Count operation restarts when the count enable command (Y1C to Y1E) is turned ON
"Md. 3 Count value" is updated from the retained value.

## XPOINT

When the setting value of "Cd. 7 Coincidence detection point setting" is changed, change the count enable command (Y1C to Y1E) from ON to OFF, and again to ON.

### 12.5 Coincidence Detection Function

This function compares "Md.3 Count value" with a count value set in advance, and outputs signals when the values coincide.
The coincidence detection can be set for each channel in units of one points.

## (1) Operation of coincidence detection

To use the coincidence detection function, set "Pr. 18 Coincidence detection setting" to "1: Coincidence detection requested".


| No. | Description |
| :---: | :---: |
| 1) | Set the value for detecting coincidence (100) to " Cd.7 Coincidence detection point setting" in advance. <br> The coincidence detection starts using the value of "Cd.7 Coincidence detection point setting" when the count enable command (Y1C to Y1E) is turned ON. |
| 2) | When "Md.3 Count value" is smaller than " Cd.7 Coincidence detection point setting", the count value small (X16, X1A, and X1E) turns ON. |
| 3) | When " $M$ M. 3 Count value" coincides with " Cd. 7 Coincidence detection point setting", the count value small (X16, X1A, and X1E) turns OFF and the count value coincidence (X15, X19, and X1D) turns ON. |
| 4) | The coincidence signal reset command (Y14 to Y 16 ) is turned ON and the count value coincidence ( $\mathrm{X} 15, \mathrm{X} 19$, and $\mathrm{X1D}$ ) is reset. If the count value coincidence (X15, X19, and X1D) remains ON, the next coincidence signal cannot be output. |
| 5) | When " Md. 3 Count value" is larger than " Cd. 7 Coincidence detection point setting", the count value large (X14, X18, and X1C) turns ON. |

- When the first programmable controller CPU READY signal (YO) is turned ON after power-ON, the count value coincidence (X15, X19, and X1D) turns ON since "Cd. 7 Coincidence detection point setting" is set to zero. Therefore, write any value other than zero to " Cd. 7 Coincidence detection point setting" and change the count enable command (Y1C to Y1E) from OFF to ON, and again to OFF. Note that the ON time must be 2.5 ms or longer.
- The QD72P3C3 internal processing of coincidence detection may cause the count value large ( $\mathrm{X} 14, \mathrm{X} 18$, and X 1 C ) or the count value small (X16, X 1 A , and X 1 E ) to turn ON when the count value coincidence ( $\mathrm{X} 15, \mathrm{X} 19$, and X1D) status changes from OFF to ON.


## (2) Coincidence detection interrupt function

This function generates an interrupt request to the programmable controller CPU during coincidence detection.
This interrupt request enables the start of interrupt processing programs.
(When using this function with the Q00JCPU/Q00CPU/Q01CPU, select the CPU of function version B or later.)
(a) Up to 16-point interrupt factors (SI) are allowed for a single MELSECNET-Q series intelligent function module.
As shown in the table below, the QD72P3C3 has 3-point interrupt factors (SI) for coincidence detection.

| SI No. | Interrupt factor |
| :---: | :---: |
| 0 | Channel 1: Coincidence detection of coincidence detection point |
| 1 | Channel 2: Coincidence detection of coincidence detection point |
| 2 | Channel 3: Coincidence detection of coincidence detection point |
| 3 to 15 | Reserved |

Timing of interrupt signal generation

(b) It takes approx. $150 \mu$ s from when the QD72P3C3 detects coincidence until it makes an interrupt request to a programmable controller CPU.
(c) Set the interrupt factors (SI) and interrupt pointers of the programmable controller CPU on the screen displayed by selecting [PLC parameter] - [PLC system] "Intelligent function module setting" - "Interrupt pointer settings".

1) PLC side "Interrupt pointer Start No."

Set the start interrupt pointer number of the programmable controller CPU.
Setting range: 50 to 255
2) CPU side [Interrupt pointer No. of module]

Set the number of interrupt executing conditions set in "interrupt setting".
Setting range: 1 to 16
3) Intelli. module side "Start I/O No."

Set the start I/O number of the intelligent function module for which interrupt setting has been made.
Setting range: 0000 to 0FFO (н)
4) Intelli. module side "Start SI No."

Set the interrupt pointer number of intelligent function module set to "interrupt
(SI) No." in interrupt setting.
Setting range: 0 to 15

The following shows a setting example where SI 0 to 2 of the QD72P3C3 in the slot of start I/O No. 20 are assigned to interrupt pointers I50 to I55.

(d) The following two methods are available for using particular SI numbers only.

1) Using the interrupt pointer setting with parameters Only the interrupt factors, starting from the "Start SI No." for the number set at "Interrupt pointer No. of module" in the [Intelligent function module interrupt pointer setting] screen, are used.
For example, when the "Start SI No." and "Interrupt pointer No. of module" are set to 1 and 2 respectively, only SI 1 and 2 can be used.
The interrupt function is not used if the interrupt pointer setting with parameters has not been made.
2) Using the IMASK instruction in the sequence program

With the IMASK instruction, an interrupt enable/disable status (interrupt mask) can be set for each interrupt pointer number.
For details of the IMASK instruction, refer to the MELSEC-Q/L Programming Manual (Common Instructions).

## XPOINT

- A coincidence detection interrupt occurs when the count value coincidence signal rises (from OFF to ON).
This means that, unless the count value coincidence signal is turned OFF by performing coincidence signal reset, the next interrupt request is not issued.
- When the interrupt occurrence interval is within "interrupt delay time (approx. 100 to $200 \mu \mathrm{~s}$ ) + interrupt program processing time", "Watch dog timer error"of the CPU may occur and/or an interrupt request may not be detected. For details, refer to the MELSEC-Q/L Programming Manual (Common Instructions).



### 12.6 Preset Function

This function replaces "Md.3 Count value" to an arbitrary value.
An arbitrary value to be replaced is called a preset value.
This function is used to start counting pulses from the preset value.

## (1) Preset function operation

The preset function is activated by turning the preset command (Y18 to Y1A) ON.


| No. | Description |
| :---: | :--- |
| 1) | Write an arbitrary value to " $[$ Cd.6 Preset value setting". |
| 2) | When the preset command (Y18 to Y1A) rises (from OFFtoON), a value in <br> " <br> "Cd.6 <br> Preset value setting" is preset to " "Md.3 <br> Count value". |

## XPOINT

The preset function can be executed regardless of the ON/OFF status of the count enable command (Y1C to Y1E).

### 12.7 Current Feed Value, Count Value Simultaneous Change Function

This function stores the same value in " Md. 1 Current feed value" and "Md.3 Count value" by performing current value change or preset function.
For details of current value change, refer to "Section 9.2.4 Current value change".
For details of preset function, refer to "Section 12.6 Preset Function".

## (1) Operation pattern

To use this function, an operation pattern needs to be set for " Pr. 9 Current feed value, count value simultaneous change function selection".
The operating conditions and value stored to both " Md. 1 Current feed value" and " Md. 3 Count value" depend on the operation pattern.
(Refer to the table below.)

| Setting value of | Operating condition | Stored value |  |
| :---: | :---: | :---: | :---: |
|  |  | Md. 1 Current feed value | Md. 3 Count value |
| 1: Count value changed together at current value change | Current value change execution (Positioning start ON) | Da. 5 Positioning address/ movement amount | Da. 5 Positioning address/ movement amount |
|  | Preset command ON | - | Cd. 6 Preset value setting |
| 2: Current feed value changed together at preset | Current value change execution (Positioning start ON) | Da. 5 Positioning address/ movement amount | - |
|  | Preset command ON | Cd. 6 Preset value setting | Cd. 6 Preset value setting |
| 3: Values changed both at current value change and at preset | Current value change execution (Positioning start ON) | Da. 5 Positioning address/ movement amount | Da. 5 Positioning address/ movement amount |
|  | Preset command ON | Cd. 6 Preset value setting | Cd. 6 Preset value setting |

(a) Count value changed together at current value change (Setting value of $\square$ Pr. 9 : 1)


- When the current value change is executed (when the positioning start signal (Y8 to YA) is changed from OFF to ON), the value set to "Da. 5 Positioning address/movement amount" is stored to both "Md. 1 Current feed value" and "Md. 3 Count value".
- When the preset command (Y18 to Y1A) is changed from OFF to ON, a normal preset operation is performed. This time, "Md.3Count value" is not changed.
(b) Current feed value changed together at preset (Setting value of $\square$ Pr. 9 : 2)

| Da.5Positioning address/ <br> movement amount <br> Cd.6 Preset value setting <br> Current value change exec (Positioning start signal (Y8 to YA)) <br> Preset command (Y18 to $Y$ <br> Md.1 Current feed value <br> Md. 3 Count value | - When the preset command ( Y 18 to Y 1 A ) is changed from OFF to ON , a value in "Cd.6 Preset value setting" is stored to both "Md.1 Current feed value" and "Md. 3 Count value". <br> - When current value change is executed (when the positioning start signal ( Y 8 to YA ) is changed from OFF to ON), a normal current value change control is performed. This time, "Md.3Count value" is not changed. |
| :---: | :---: |

(c) 3: Values changed both at current value change and at preset (Setting value of Pr. 9 : 3)


## (2) Precautions

"Md. 1 Current feed value" is not changed by the preset command ( Y 18 to Y 1 A ) during positioning control.
When " Pr. 9 Current feed value, count value simultaneous change function selection" is set to either " 2 : Current feed value changed together at preset" or "3: Values changed both at current value change and at preset", a warning "Preset disabled" (warning code: 23) occurs when the preset command (Y18 to Y1A) is changed to ON during positioning control.

## XPOINT

The current feed value, count value simultaneous change function can be executed regardless of the ON/OFF status of the count enable command (Y1C to Y1E).

### 12.8 Response Delay Time

When using the counter function, response delay time needs to be considered.

## (1) Operation and control affected by response delay time

Response delay time is the maximum time to perform the following operation and control.
(a) Time before count operation starts after the $\mathrm{CH} \square$ count enable command (Y1C to $\mathrm{Y} 1 \mathrm{E})$ is turned ON .
(b) Time before the value in the "Md. 3 Count value" is updated after the $\mathrm{CH} \square$ preset command ( Y 18 to Y 1 A ) is turned ON .

## (2) Response delay time

Response delay time is calculated by the following formula:

(a) Scan time of sequence program

Scan time affects the delay of I/O signals.
The use of direct access inputs (DX) and direct access outputs (DY) can minimize the delay.
(b) Control cycle (2.5ms) of QD72P3C3

Up to 5 ms (Control cycle $(2.5 \mathrm{~ms}$ ) of QD72P3C3 $\times 2$ ) of delay occurs during the time when the QD72P3C3 reads the output signal and buffer memory updated by the sequence program and completes processing.

## CHAPTER13 COMMON FUNCTION

This chapter describes details of the common function of the QD72P3C3.

### 13.1 Outline of Common Function

"Common function" is the generic term for functions operable as necessary, regardless of the control method.
These common functions can be executed using GX Developer.
For details of GX Developer, refer to the GX Developer Operating Manual.

The following table shows the details of "common function".

| Common function | Description | Operating method |
| :--- | :--- | :--- |
| External I/O signal <br> logic switching | This function changes the external I/O <br> signal logic to match the device <br> connected to the QD72P3C3. | Set the switches on the [I/O assignment] tab in the <br> $[\mathrm{Qn}[\mathrm{H}]$ Parameter] screen of GX Developer. <br> (Intelligent function module switch) |
| External I/O signal <br> monitor | This function monitors the external I/O <br> signal status. | Monitors the external I/O signal information on the <br> [Module's Detailed Information] screen, which can <br> be displayed from the [System Monitor] screen of <br> GX Developer. |

### 13.2 External I/O Signal Logic Switching Function

This function changes the external I/O signal logic to match the device connected to the QD72P3C3.
The following table shows the external I/O signals whose logic is switchable.

| I/O <br> classification | Signal name | Symbol | Remarks |
| :---: | :--- | :--- | :--- |
|  | Zero signal | PG0 $\square$ | $\square$ of the symbol indicates |
|  | Near-point dog signal | DOG $\square$ |  |
|  | Upper/Lower limit signal | FLS $\square$, RLS $\square$ |  |
| Output | Pulse output F, pulse output R | PULSE F $\square$, PULSE R $\square$ |  |
|  | Deviation counter clear | CLEAR $\square$ |  |

## (1) Setting contents

Make settings at "Switch setting" (for intelligent function module) on the [I/O assignment] tab in the [PLC Parameter] screen of GX Developer. For details of the settings, refer to "Section 5.6 Intelligent Function Module Switch Setting".

## (2) Precautions for setting

(a) The switch settings become effective after power-ON or programmable controller CPU reset.
The settings cannot be changed during operation.
(b) The module may not be able to operate normally if each $\mathrm{I} / \mathrm{O}$ signal logic is set incorrectly.
Before setting, check the specifications of the device to be used.

### 13.3 External I/O Signal Monitor Function

This function monitors the module information, external I/O signal information, and intelligent function module switch setting status on the screen displayed by clicking the $\mathrm{H} / \mathrm{H} /$ W Information" button on the [Module's Detailed Information] screen, which can be displayed from the [System Monitor] screen of GX Developer (SW7D5C-GPPW-E or later).
[Setting procedure]
[Diagnostics] $\rightarrow$ [System monitor] $\rightarrow$ select "QD72P3C3" $\rightarrow$ [Module's Detailed Information...] $\rightarrow$

| H/W Information X |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module |  |  |  |  |  |  |  |
| Module Name QD72P3C3 |  | Product information 090410000000000 - B |  |  |  | - Display format <br> - HEX CDEC |  |
| H/W LED Information |  |  |  | H/W SW Information |  |  |  |
| Item | Value | Item | Value | Item | Value | Item | Value |
| RUN | 0001 |  |  |  |  | PLS OUT MOD | 0006 |
| ERR | 0000 |  |  |  |  | PLS OUT SIG | 0002 |
| ZER01 | 0000 |  |  |  |  | DCC CLR | 0001 |
| ZER02 | 0001 |  |  |  |  | ZER0 SIG | 0006 |
| ZER03 | 0001 |  |  |  |  | DOG SIG | 0000 |
| DOG1 | 0000 |  |  |  |  | FLS SIG | 0007 |
| D0G2 | 0000 |  |  |  |  | RLS SIG | 0007 |
| D0G3 | 0000 |  |  |  |  | PLS IN MODE | 0020 |
| FLSI | 0001 |  |  |  |  | RNG LIN | 0004 |
| FLS2 | 0001 |  |  |  |  | NOP | 0000 |
| FLS3 | 0001 |  |  |  |  | NOP | 0000 |
| RLS1 | 0001 |  |  |  |  |  |  |
| RLS2 | 0001 |  |  |  |  |  |  |
| RLS3 | 0001 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  | tranitor | Stop mon |  | Close |

[H/W LED Information]
The following information is displayed at "H/W LED Information" on the [H/W Information] screen.

| Item | Signal name | Value |
| :---: | :---: | :---: |
| RUN | "RUN" LED of the QD72P3C3 | 0 : The LED is OFF. |
| ERR. | "ERR." LED of the QD72P3C3 | 1: The LED is ON or flashing. |
| ZERO1 | Zero signal of Axis 1 | 0: OFF, 1: ON |
| ZERO2 | Zero signal of Axis 2 |  |
| ZERO3 | Zero signal of Axis 3 |  |
| DOG1 | Near-point dog signal of Axis 1 |  |
| DOG2 | Near-point dog signal of Axis 2 |  |
| DOG3 | Near-point dog signal of Axis 3 |  |
| FLS1 | Upper limit signal of Axis 1 |  |
| FLS2 | Upper limit signal of Axis 2 |  |
| FLS3 | Upper limit signal of Axis 3 |  |
| RLS1 | Lower limit signal of Axis 1 |  |
| RLS2 | Lower limit signal of Axis 2 |  |
| RLS3 | Lower limit signal of Axis 3 |  |

## [H/W SW Information]

The setting status of the intelligent function module switches is displayed.

| Item | Signal name | Corresponding switch |  | Value |
| :---: | :---: | :---: | :---: | :---: |
| PLS OUT <br> MODE | Pulse output mode | Switch 1 | 0 to 2 bits | For details, refer to "Section 5.6 Intelligent Function Module Switch Setting". |
| $\begin{aligned} & \text { PLS OUT } \\ & \text { SIG } \end{aligned}$ | Pulse output logic selection |  | 4 to 6 bits |  |
| DCC CLR | Deviation counter clear output logic selection |  | 8 to 10 bits |  |
| ZERO SIG | Zero signal input logic selection |  | 12 to 14 bits |  |
| DOG SIG | Near-point dog signal input logic selection | Switch 2 | 0 to 2 bits |  |
| FLS SIG | Lower limit signal input logic selection |  | 4 to 6 bits |  |
| RLS SIG | Upper limit signal input logic selection |  | 8 to 10 bits |  |
| PLS IN MODE | Pulse input mode | Switch 3 | 0 to 5 bits |  |
| RNF LIN | Counter format |  | 8 to 10 bits |  |
| NOP | - | Switch 4 |  |  |
| NOP | - |  | witch 5 |  |

## CHAPTER14 DEDICATED INSTRUCTIONS

### 14.1 Dedicated Instruction List and Applicable Devices

(1) Dedicated instruction list

| Application | Dedicated <br> instruction | Description | Reference |
| :--- | :--- | :--- | :---: |
| Positioning start | ZP.PSTRT $\square$ | Selects positioning control, machine OPR <br> control, and fast OPR control for the specified <br> axis of the QD72P3C3 and starts the control. | Section <br> 14.3 |
| Direct <br> positioning start | ZP.DSTRT $\square$ | Sets the positioning data to the specified axis of <br> the QD72P3C3 and starts the positioning <br> control. | Section |
| Speed change | ZP.SPCHG | Changes the speed of the specified axis of the <br> QD72P3C3 by setting the speed changing <br> parameters. | Section <br> 14.5 |

## (2) Applicable device

The following table shows the devices applicable to the dedicated instructions.

| Internal device |  | File register | Constant |
| :---: | :---: | :---: | :---: |
| Bit $^{*}$ | Word |  | - |
| $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{L}, \mathrm{F}, \mathrm{V}, \mathrm{B}$ | $\mathrm{T}, \mathrm{ST}, \mathrm{C}, \mathrm{D}, \mathrm{W}$ | Zn |  |

* Word device bit specification can be used as bit data.

Word device bit can be specified as "word device.bit number".
(Specify the bit number in hexadecimal.)
For example, bit 10 of D0 is specified as "D0.A".
Note, however, that timers (T), retentive timers (ST), and counters (C) are not subject to bit specification.

### 14.2 Interlock for Dedicated Instruction Execution

Dedicated instructions cannot be executed to different axes simultaneously. If that occurs, the second and subsequent instructions are ignored due to an interlock of the programmable controller CPU. (No error occurs.)
The following shows the timing of interlock for the positioning start dedicated instruction (ZP.PSTRTロ).

series

### 14.3 ZP．PSTRT1，ZP．PSTRT2，ZP．PSTRT3

Selects the start method（positioning control，machine OPR control or fast OPR control）for the specified axis and starts the positioning control．

| Setting data | Applicable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device J口1口 |  | Intelligent function module device UロIGロ | $\begin{aligned} & \text { Index } \\ & \text { register } \mathrm{Zn} \end{aligned}$ | Constant | Other |
|  | Bit | Word |  | Bit | Word |  |  | K，H，\＄ |  |
| （S） | － | $\bigcirc$ |  | － |  |  |  | － | － |
| （D） | $\bigcirc$ | $\bigcirc$ | － | － |  |  |  | － | － |


＊ 1 When describing shared information for ZP．PSTRT1，ZP．PSTRT2，and ZP．PSTRT3，＂ZP．PSTRT口＂ is used．
＊2 If the originating station is a Basic model QCPU（function version B or later），or Universal model QCPU，＂＂（double quotation）of the first argument can be omitted．
（1）Setting data

| Setting data | Description | Set by ${ }^{* 3}$ | Data type |
| :---: | :--- | :---: | :---: |
| ＂Un＂ | Start I／O number of the QD72P3C3 <br> （00 to FD：First two digits when I／O signals are expressed in 3－digit） | User | 1 bits |
| （S） | Start number of the device in which control data is stored | - | Device |
| （D） | Start number of the bit device to be turned ON for one scan upon <br> completion of the instruction <br> $((D)+1)$ also turns ON at error completion． | System | Bit |

＊ 3 Local devices and file registers for each program cannot be used for setting data．
)
(2) Control data

| Device | Item | Setting data | Setting range | Set by ${ }^{* 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| (S) +0 | System area | - | - | - |
| (S) +1 | Completion status | Stores the status at completion. <br> $\cdot 0$ : Normal completion <br> - Other than 0: Error completion (Error code) ${ }^{*}{ }^{2}$ | - | System |
| (S) +2 | Start number | Specifies the start number to start the control with the ZP.RSTRT■ instruction. <br> -Positioning control: 0 <br> -Machine OPR control: 9000 <br> -Fast OPR control: 9001 | $\begin{gathered} 0, \\ 9000, \\ 9001 \end{gathered}$ | User |

* 1 The setting side indicates the following:
- User: Data stored by the user at dedicated instruction execution.
- System: Data stored by the programmable controller CPU at dedicated instruction completion.
* 2 For details of error code at error completion , refer to "Section 15.3".


## (3) Function

(a) Starts the positioning control of the target axis (see below).

- ZP.PSTRT1: Axis 1
- ZP.PSTRT2: Axis 2
- ZP.PSTRT3: Axis 3
(b) Positioning control and OPR control are started by specifying either 0,9000 or 9001 at "Start number" of ((S) +2).
(c) Completion status of the ZP.PSTRT $\square$ instruction can be checked by the completion device ((D) +0) and ((D) +1).

1) Completion device ((D) +0)

Turns ON at END processing in the scan where the ZP.PSTRTロ instruction is completed, and turns OFF at the next END processing.
2) Completion status display device ((D) +1)

Turns ON/OFF according to the status when the ZP.PSTRT $\square$ instruction is completed.

- Normal completion: Remains OFF.
- Error completion: Turns ON at END processing in the scan where the ZP.PSTRT■ instruction is completed, and turns OFF at the next END processing. (Same ON/OFF operation as a completion device.)



## (4) Error

At error completion of the ZP.PSTRT■ instruction, the error completion signal ((D) +1) turns ON and the error code is stored in the completion status $((\mathrm{S})+1)$.
Refer to the error code list in Section 15.2.1, check the error and take corrective action.

## (5) Precautions

(a) When the positioning control is started with the ZP.PSTRTם instruction, the positioning start signal ( Y 8 to YA ) and the start complete signal ( X 8 to XA ) do not turn ON.
Check the positioning control operation status with the ZP.PSTRTם start command and the BUSY signal (X8 to XA).
(b) After the control has been started with the ZP.PSTRT■ instruction, if the stop command is entered without completing positioning, the completion device (D) turns ON for one scan and the ZP.PSTRTロ instruction execution ends.
(c) The ZP.PSTRT $\square$ instruction can be executed while the module READY signal $(\mathrm{XO})$ is ON. Even though the ZP.PSTRT $\square$ instruction execution is requested while the module READY signal (X0) is OFF, the instruction is not executed.
Before executing the ZP.PSTRT $\square$ instruction, turn ON the programmable controller CPU READY signal (Y0) and the module READY signal (X0).
(d) When the remote I/O station (Q corresponding MELSECNET/H network remote I/ O module) is used, this dedicated instruction (ZP.PSTRT■) cannot be used.
(e) When the ZP.PSTRT $\square$ instruction is executed with other than 0, 9000, and 9001 set for "Start number"(device: $(\mathrm{S})+2$ ) of the control data, "Dedicated instruction error" (error code: 804) occurs and the positioning control cannot be started.

## (6) Program example

The program which starts the positioning control when the X100 turns ON. D30 to D32 are used for the devices that store control data, and M32 and M33 are used for the completion devices.


The program example when a dedicated instruction is not used

series

## 14．4 ZP．DSTRT1，ZP．DSTRT2，ZP．DSTRT3

Sets the positioning data to the specified axis of the QD72P3C3 and starts the positioning control．

| Setting data | Applicable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device J口l口 |  | Intelligent function module device UロIGロ | Index register $\mathbf{Z n}$ | Constant | Other |
|  | Bit | Word |  | Bit | Word |  |  | K，H，\＄ |  |
| （S） | － | 0 |  | － |  |  |  | － | － |
| （D） | $\bigcirc$ | － | － | － |  |  |  | － | － |


＊ 1 When describing shared information for ZP．DSTRT1，ZP．DSTRT2，and ZP．DSTRT3， ＂ZP．DSTRT口＂is used．
＊ 2 If the originating station is a Basic model QCPU（function version B or later），or Universal model QCPU，＂＂（double quotation）of the first argument can be omitted．
（1）Setting data

| Setting data | Description | Set by ${ }^{* 3}$ | Data type |
| :---: | :--- | :---: | :---: |
| ＂Un＂ | Start I／O number of the QD72P3C3 <br> （00 to FD：First two digits when I／O signals are expressed in 3－digit） | User | BIN 16 bit |
| （S） | Start number of the device in which control data is stored． | - | Device |
| （D） | Start number of the bit device to be turned ON for one scan upon <br> completion of the instruction <br> $((D)+1)$ also turns ON at error completion． | System | Bit |

[^5]series
(2) Control data

| Device | Item | Setting data | Setting range | Set by ${ }^{* 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| (S) +0 | System area | - | - | - |
| (S) +1 | Completion status | Stores the status at completion. <br> $\cdot 0$ : Normal completion <br> - Other than 0: Error completion (Error code) ${ }^{* 2}$ | - | System |
| (S) +2 | Control method | Specifies the control method to start the control with the ZP.DSTRTロ instruction. <br> -1-axis linear control (ABS): 1 <br> -1-axis linear control (INC): 2 <br> -Speed control (Forward run): 3 <br> -Speed control (Reverse run): 4 <br> -Current value change: 5 | 1 to 5 | User |
| (S) +3 | ACC/DEC time | Specifies the ACC/DEC time to perform positioning control with the ZP.DSTRT $\square$ instruction. | 1 to 5000 (ms) | User |
| (S) +4 $(\mathrm{S})+5$ | Command speed | - Specifies the command speed to perform positioning control with the ZP.DSTRT $\square$ instruction. | 1 to 100000 (pulse/s) | User |
| $(S)+6$ (S) +7 | Positioning <br> address/ <br> movement amount | Specifies the positioning address/movement amount to perform positioning control with the ZP.DSTRT $\square$ instruction. <br> Specifies the change value when performing current value change. | $\begin{gathered} -1073741824 \text { to } \\ 1073741823 \end{gathered}$ | User |

* 1 The setting side indicates the following:
- User: Data stored by the user at dedicated instruction execution.
- System: Data stored by the programmable controller CPU at dedicated instruction completion.
* 2 For details of error code at error completion , refer to "Section 15.3".
(3) Function
(a) Sets the positioning data to the specified axis of the QD72P3C3 and starts the positioning control.
Note that the setting value for "Cd.5 Start method" is ignored when this instruction is executed.
- ZP.DSTRT1: Axis 1
- ZP.DSTRT2: Axis 2
- ZP.DSTRT3: Axis 3
(b) Positioning control can be started with a desired control method by specifying the value at "Control method" of ((S) +2).
(c) Completion status of the ZP.DSTRT■ instruction can be checked by the completion device ((D) +0) and ((D) +1).

1）Completion device（（D）＋0）
Turns ON at END processing in the scan where the ZP．DSTRT■ instruction is completed，and turns OFF at the next END processing．

2）Completion status display device（（D）＋1）
Turns ON／OFF according to the status when the ZP．DSTRT $\square$ instruction is completed．
－Normal completion：Remains OFF．
－Error completion：Turns ON at END processing in the scan where the ZP．DSTRT■ instruction is completed，and turns OFF at the next END processing．（Same ON／OFF operation as a completion device．）


## （4）Error

At error completion of the ZP．DSTRT $\square$ instruction，the error completion signal（（D）＋1） turns ON and the error code is stored in the completion status $((\mathrm{S})+1)$ ．
Refer to the error code list in Section 15．2．1，check the error and take corrective action．

## （5）Precautions

（a）When the positioning control is started with the ZP．DSTRT■ instruction，the positioning start signal（ Y 8 to YA ）and the start complete signal（ X 8 to XA ）do not turn ON．
Check the positioning control operation status with the ZP．DSTRT■ start command and the BUSY signal（X8 to XA）．
If the＂Command speed＂of $((S)+4,(S)+5)$ exceeds the speed limit value，an operation is performed with the speed limit value．If the＂Command speed＂is lower than the bias speed，an operation is performed with the bias speed．
（b）After the control has been started with the ZP．DSTRT口 instruction，if the stop command is entered without completing positioning，the completion device（D） turns ON for one scan and the ZP．DSTRT $\square$ instruction execution ends．
(c) The ZP.DSTRT $\square$ instruction can be executed while the module READY signal (XO) is ON. Even though the ZP.DSTRTa instruction execution is requested while the module READY signal (XO) is OFF, the instruction is not executed.
Before executing the ZP.DSTRT $\square$ instruction, turn ON the programmable controller CPU READY signal ( YO ) and the module READY signal ( XO ).
(d) When the remote I/O station (Q corresponding MELSECNET/H network remote I/ O module) is used, this dedicated instruction (ZP.DSTRTロ) cannot be used.
(e) In the following cases, "Dedicated instruction error" (error code: 804) occurs when the ZP.DSTRT $\square$ instruction is executed, and the positioning control cannot be started.

- The value other than 1 to 5 is set for "Control method" (device: $(\mathrm{S})+2$ ) of the control data.
- The value outside of the range between 1 and 5000 is set for "ACC/DEC time" (device: (S) +3) of the control data.
- The value outside of the range between -1073741824 and 1073741823 is set for "Positioning address/movement amount" (device: (S) $+6,(\mathrm{~S})+7$ ) of the control data.
series


### 14.5 ZP.SPCHG1, ZP.SPCHG2, ZP.SPCHG3

Changes the speed of the axis which is in JOG operation during speed control.

| Setting data | Applicable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device J■\ロ |  | Intelligent function module device U口IG $\square$ | Index register Zn | Constant | Other |
|  | Bit | Word |  | Bit | Word |  |  | K, H, \$ |  |
| (S) | - | $\bigcirc$ |  | - |  |  |  | - | - |
| (D) | $\bigcirc$ | $\bigcirc$ | - | - |  |  |  | - | - |



* 1 When describing shared information for ZP.SPCHG1, ZP.SPCHG2, and ZP.SPCHG3, "ZP.SPCHG $\square$ " is used.
* 2 If the originating station is a Basic model QCPU (function version B or later), or Universal model QCPU, "" (double quotation) of the first argument can be omitted.


## (1) Setting data

| Setting data | Setting contents | Set by ${ }^{* 3}$ | Data type |
| :---: | :--- | :---: | :---: |
| "Un" | Start I/O number of the QD72P3C3 <br> (00 to FD: First two digits when I/O signals are expressed in 3-digit) | User | BIN 16 bit |
| (S) | Start number of the device in which control data is stored | - | Device |
| (D) | Start number of the bit device to be turned ON for one scan upon <br> completion of the instruction <br> $((D)+1)$ also turns ON at error completion. | System | Bit |

* 3 Local devices and file registers for each program cannot be used for setting data.


## (2) Control data

| Device | Item | Setting data | Setting range | Set by ${ }^{* 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| (S) +0 | System area | - | - | - |
| (S) +1 | Completion status | Stores the status at completion. <br> $\cdot 0$ : Normal completion <br> -Other than 0: Error completion (Error code) ${ }^{*}{ }^{2}$ | - | System |
| $(S)+2$ $(S)+3$ | New speed value | Specifies the speed after performing speed change with the ZP.SPCHG $\square$ instruction. | $\begin{gathered} 1 \text { to } 100000 \\ \text { (pulse/s) } \end{gathered}$ | User |
| (S) +4 | ACC/DEC time at speed change | Specifies the ACC/DEC time and DEC/STOP time to perform speed change with the ZP.SPCHG $\square$ instruction. | 1 to 5000 (ms) | User |

* 1 The setting side indicates the following:
- User: Data stored by the user at dedicated instruction execution.
- System: Data stored by the programmable controller CPU at dedicated instruction completion.
* 2 For details of error code at error completion, refer to "Section 15.3".


## (3) Function

(a) Changes the speed of the Axis which is in JOG operation during speed control.

- ZP.SPCHG1: Axis 1
- ZP.SPCHG2: Axis 2
- ZP.SPCHG3: Axis 3
(b) The speed can be changed by specifying the value at "New speed value" of ((S) $+2)$ and "ACC/DEC time at speed change" of ((S) +3, (S) +4).
(c) Completion status of the ZP.SPCHG■ instruction can be checked by the completion device ((D) +0) and ((D) +1).

1) Completion device ((D) +0)

Turns ON at END processing in the scan where the ZP.SPCHG■ instruction is completed, and turns OFF at the next END processing.
2) Completion status display device ( $(D)+1$ )

Turns ON/OFF according to the status when the ZP.SPCHG■ instruction is completed.

- Normal completion: Remains OFF.
- Error completion: Turns ON at END processing in the scan where the ZP.SPCHG $\square$ instruction is completed, and turns OFF at the next END processing. (Same ON/OFF operation as a completion device.)



## (4) Error

At error completion of the ZP.SPCHG $\square$ instruction, the error completion signal ((D) +1 ) turns ON and the error code is stored in the completion status $((\mathrm{S})+1)$.
Refer to the error code list in Section 15.2.1, check the error and take corrective action.

## (5) Precautions

(a) The ZP.SPCHG■ instruction can be executed only at the constant speed section which is in JOG operation, during speed control. In other cases, the speed cannot be changed and the error completion signal ((D) +1) turns ON.
(b) If the "New speed value" of $((S)+2,(S)+3)$ exceeds the speed limit value, an operation is performed with the speed limit value. If the command speed is lower than the bias speed, an operation is performed with the bias speed.
(c) When the remote I/O station (Q corresponding MELSECNET/H network remote I/ O module) is used, this dedicated instruction (ZP.SPCHG■) cannot be used.
(d) In the following cases, "Dedicated instruction error" (error code: 804) occurs when the ZP.SPCHG $\square$ instruction is executed, and the speed cannot be changed.

- The value other than 1 to 100000 is set for "New speed value" (device: (S) $+2,(S)+3)$ of the control data.
- The value outside of the range between 1 and 5000 is set for "ACC/DEC time at speed change" (device: $(\mathrm{S})+4$ ) of the control data.


## CHAPTER15 TROUBLESHOOTING

This chapter describes the description of errors regarding the QD72P3C3 and troubleshooting for it.

### 15.1 Troubleshooting Flow



### 15.1.1 When the RUN LED turns OFF

| Check item | Action |
| :--- | :--- |
| Is power supplied? | Check if the service voltage of the power supply module is <br> within the rated range. |
| Is the capacity of the power supply module sufficient? | Calculate the consumption current of the modules mounted <br> to the base unit such as CPU module, I/O module, and <br> intelligent function module, and check that the power capacity <br> is sufficient. |
| Is the watchdog timer occurring? | Reset the programmable controller CPU and check that the <br> RUN LED turns ON. <br> If the RUN LED does not turn ON, the module may be at <br> failure. Please consult your local Mitsubishi representative to <br> explain a detailed description of the problem. |
| Are the modules correctly mounted to the base unit? | Check the module mounting status. |

### 15.1.2 When the ERR.LED turns ON

| Check item | Action |
| :--- | :--- |
| Is any error occurring? | Check the error code and take measures described in <br> Section 15.2.1. |

### 15.1.3 When the AX LED flashes after the ERR.LED flashes

| Check item | Action |
| :--- | :--- |
| Is any axis error occurring? | Check the error code and take measures described in <br> Section 15.2.1. |

### 15.1.4 When the axis/CH warning occurrence signal ( X 4 to X 6 ) turns ON

| Check item | Action |
| :--- | :--- |
| Is any warning occurring? | Check the warning code and take measures described in <br> Section 15.2.2. |

### 15.1.5 When the count operation is not executed, or not executed normally

| Check item |  | Action |
| :---: | :---: | :---: |
| Doesn't the programmable controller CPU indicate an error? |  | If the LED on the programmable controller CPU indicates an error, correct the error for normal operation with reference to troubleshooting in the manual for the programmable controller CPU used. |
| Is the external wiring of $\phi \mathrm{A}$ and $\phi \mathrm{B}$ normal? |  | Check the external wiring and correct the error. |
| Measures against noise | Are the shielded twisted pair cables used for pulse input wiring? | Use the shielded twisted pair cables for pulse input wiring. |
|  | Has the measures against noise been taken to the adjacent devices and inside the control panel? | Take noise reduction measures (e.g. attach a CR surge suppressor to the magnet switch). |
|  | Is the distance between the high voltage equipment and the pulse input line kept enough? | Bundle the pulse input lines and put them in a single tube, and keep a distance of 100 mm (3.94inch) or more with the power line even inside the control panel. |
| Do the LEDs of $\phi \mathrm{A}$ and $\phi \mathrm{B}$ turn ON by applying voltage to pulse input terminals of $\phi \mathrm{A}$ and $\phi \mathrm{B}$ using such as stabilize power supply? |  | If the LEDs turn ON, check the external wiring and the wiring of the pulse generator side. <br> If the LEDs do not turn ON, the module may be at failure. Please consult your local Mitsubishi representative to explain a detailed description of the problem. |
| Are the pulse input method and pulse input mode set with the intelligent function module switch setting the same? |  | Match the pulse input method with the pulse input mode made on the intelligent function module switch setting. |
| Is the maximum speed of input pulse within the range of the counting speed setting? |  | Set the maximum speed of the input pulse within the range of the counting speed. |
| Does the input pulse waveform match with the performance specifications? |  | Check the pulse waveform with synchronoscope. When the input pulse does not meet the performance specifications, input the pulse which meets the performance specifications. |
| Is the count enable command (Y1C to Y1E) ON? |  | Turn the count enable command (Y1C to Y1E) ON with the sequence program. |
| Is the overflow occurring? |  | Execute the preset to clear the overflow. |
| Is the " Md. 3 Count value" read in units of 2 words (32bits) in the sequence program? |  | Read with a batch of 2 words. |

## 15．1．6 When the coincidence detection interrupt does not occur

| Check item | Action |
| :--- | :--- |
| Is the Q00J／Q00／Q01CPU（function version A）used <br> as the programmable controller CPU？ | Change the CPU module to the one which supports the <br> intelligent function module event interrupt．（refer to Section <br> $2.3)$ |
| Is the module configured as a network module <br> （remote I／O station）？ | Configure the module as the programmable controller CPU． <br> （refer to Section 2．3） |
| Is the setting made on［Interrupt pointer setting］of <br> ［Intelligent function module setting］in［PLC <br> parameter］correct？ | Check the intelligent function module interrupt pointer setting． |
| Is the way to use the program execution control <br> instruction such as the IMASK correct？ | Check the sequence program． |
| Does the count value coincidence（X15，X19，X1D） <br> remain ON？ | Reset（OFF）the count value coincidence（X15，X19，X1D）by <br> the coincidence signal reset command（Y14 to Y16）． |

### 15.2 Error and Warning Descriptions

## (1) Errors

## ■Types of errors

Errors detected by the QD72P3C3 include errors out of the parameter settings, and errors at the operation start or during operation.
(a) Parameter setting range errors

The parameters are checked at the rising edge ( $\mathrm{OFF} \rightarrow \mathrm{ON}$ ) of the programmable controller CPU READY signal (YO). An error occurs when the parameter setting details are incorrect.
When this kind of error occurs, the module READY signal (X0) does not turn ON. To cancel the error, set the correct value in the parameter which the error occurred, and then turn ON the programmable controller CPU READY signal (YO).
(b) Erros at the operation start or during operation

These are errros that occur at the operation start or during operation when the OPR control, positioning control, or JOG operation is used.

If any error occurs on any axis at a start, the axis does not start and "Md.4 Axis operation status" changes to "Error ".
If any error occurs on any axis during operation, the axis decelerates to stop and
"Md.4Axis operation status" changes to "Error ".

## ■Error storage

When an error occurs, the axis/CH error occurrence signal (X1 to X 3 ) turns ON and the error code corresponding to the error description is stored in "Md.5Axis/CH error code".

| Axis/CH <br> number | Axis/CH error occurrence signal <br> (X1 to $\mathbf{X} 3)$ | "Md.5 Axis/CH error code" <br> buffer memory address |
| :---: | :---: | :---: |
| 1 | X 1 | 77 |
| 2 | X 2 | 177 |
| 3 | X 3 | 277 |

* For setting contents, refer to "Section 4.5 Monitor Data List".

If another error occurs during axis/CH error occurrence, the latest error code is ignored. However, if any of the system-affecting errors (error codes: 800 to 830) occurs, the old error code is overwritten by the newest error code.
(The error codes 800 to 830 are stored into " Md.5Axis/CH error code" for all axes.)

## (2) Warnings

■Types of warnings
These are warnings that occur during operation when the OPR control, positioning control, or JOG operation is used.
Even if a warning occurs, the operation continues. In addition, even if a warning occurs, "Md. 4 Axis operation status" does not change.

Warning storage
When a warning occurs, the axis/CH warning occurrence signal (X4 to X6) turns ON and the warning code corresponding to the warning description is stored in
"Md.6Axis/CH warning code".

| Axis/CH <br> number | Axis/CH warning occurrence <br> signal (X4 to X6) | "Md.6 Axis/CH warning code" <br> Buffer memory address |
| :---: | :---: | :---: |
| 1 | X 4 | 78 |
| 2 | X 5 | 178 |
| 3 | X 6 | 278 |

* For setting contents, refer to "Section 4.5 Monitor Data List".

For the axis warning code, the latest warning code is always stored.

## (3) Resetting errors and warnings

By turning ON the axis/CH error reset ( Y 1 to Y 3 ), the following is processed and then the error/warning status is cleared.

- The axis/CH error occurrence signals (X1 to X 3 ) are OFF. (the axis/CH error reset signals ( Y 1 to Y 3 ) for all axes are turned ON .)
- The axis/CH warning occurrence signals (X4 to X 6 ) are turned OFF. (the axis/CH error reset signals ( Y 1 to Y 3 ) for all axes are turned ON .)
- "Md. 4 Axis operation status" changes from "Error" to "Standby".
- "Md. 5 Axis/CH error code" is cleared to 0.
- "Md. 6 Axis/CH warning code" is cleared to 0.


## (4) Checking error and warning description

The error and warning description can be checked with " Md.5 Axis/CH error code" and "Md.6Axis/CH warning code". To check them, GX Developer or GX Configurator -PT is needed. For details, refer to "Section 15.4 Checking Error Description Using System Monitor of GX Developer" or "CHAPTER 6 UTILITY PACKAGE (GX Configurator-PT)". (For details of error code and warning code, refer to .Section 15.2 and Section 15.3.)
series

### 15.2.1 Error code list

The following table shows the error descriptions and measures to be taken when an error occurs.

| Error <br> code (decimal) | Error name | Description | Operation at error |
| :---: | :---: | :---: | :---: |
| 0 | Normal status | - | - |
| 100 | Fault | Hardware is a failure. | The system stops. |
| 102 | Stop signal ON at start | A start requested is executed when the axis stop signal ( Y 4 to Y 6 ) is ON . | The axis does not start. |
| 103 | Hardware stroke limit + | Hardware stroke limit (upper limit signal (FLS)) turned OFF. | At start: The axis does not start. <br> During operation: The axis decelerates to stop when the |
| 104 | Hardware stroke limit - | Hardware stroke limit (lower limit signal (RLS)) turned OFF. | limit signal turns OFF druing positioning control, speed control and JOG operation. |
| 105 | Programmable controller CPU READY OFF during operation | The programmable controller CPU READY signal (YO) is turned OFF during operation. | The axis decelerates to stop. |
| 110 | Programmable controller CPU READY OFF during writing | The programmable controller CPU READY signal (YO) is turned OFF immediately after turned ON. | - |
| 202 | Zero signal ON | Stopper 3 (the setting in "Pr. 10 OPR method"): A zero signal has already been input at the start of machine OPR control. Near-point dog method (the setting in " Pr. 10 OPR method": During control operation, a zero signal turned ON when the near-point dog signal turned OFF. | Stopper 3: The machine OPR control is not performed. Near-point dog method: The control operation is immediately stopped. |
| 203 | Machine OPR not performed | Fast OPR control was started without performing machine OPR control. | Fast OPR control is not performed. |



| Error <br> code (decimal) | Error name | Description | Operation at error |  |
| :---: | :---: | :---: | :---: | :---: |
| 501 | Out of start method setting range | The setting value of " Cd. 5 Start method" is other than 0,9000 , or 9001 . |  |  |
| 504 | Out of operation pattern setting range | The setting value of " Da. 1 Operation pattern" is out of the setting range. |  |  |
| 506 | Out of control method setting range | The setting value of " Da.2 Control method" is out of the setting range. | The axis does not start. |  |
| 507 | Out of ACC/DEC time setting range | Any of the "Pr. 15 ACC/DEC time at OPR", <br> " JOG. 2 JOG ACC/DEC time", <br> " Da. 3 ACC/DEC time", and " Cd. 2 ACC/ DEC time at speed change" setting values is out of the setting range. |  |  |
| 509 | Out of positioning address/movement amount setting range | The setting value of " Da.5 Positioning address/movement amount" is out of the setting range. |  |  |
| 516 | Software stroke limit | Positioning control was performed in a position in excess of " Pr. 1 Software stroke limit upper limit value". <br> " Md. 1 Current feed value", <br> " Da. 5 Positioning address/movement value" (New current value) has exceeded " Pr. 1 Software stroke limit upper limit value". | At start: The axis does not start. <br> At current value change: Current value change is not performed. <br> During speed control, or JOG operation, the axis decelerates to stop as soon as the " Md. 1 Current feed |  |
| 517 | Software stroke limit | Positioning control was carried out in a position in excess of " Pr. 2 Software stroke limit lower limit value". <br> " Md. 1 Current feed value", <br> " Da. 5 Positioning address/movement value"(New current value) has exceeded <br> " Pr. 2 Software stroke limit lower limit value". | value" exceeds the software stroke limit range. During positioning control, the axis decelerates to stop as soon as the " Md. 1 Current feed value" or " Da. 5 Positioning address/movement amout" exceeds the software stroke limit range. |  |
| 518 | Out of current feed value range | The " Md. 1 Current feed value" exceeds the " Pr. 17 Positioning range upper limit value". | The axis does not start. |  |



| Error <br> code (decimal) | Error name | Description | Operation at error |  |
| :---: | :---: | :---: | :---: | :---: |
| 800 | Hold error | The setting for the QD72P3C3 is "Hold" in the "Error time output mode" parameter of the CPU module. | The axis does not start. |  |
| 804 | Dedicated instruction error | -ZP.PSTRT $\square$ instruction was executed when the start method was other than 0 , 9000, or 9001. <br> -ZP.DSTRTD instruction was executed when the control method was other than 1 to 5 . <br> -ZP.DSTRTD instruction was executed when the ACC/DEC time was other than 1 to 5000 . <br> -ZP.SPCHG $\square$ instruction was executed when the ACC/DEC time was other than 1 to 5000 . | At start: The axis does not start. <br> During operation: The axis decelerates to stop. |  |
| 820 | Programmable controller CPU error | I/O reset occurred. | At start: The axis does not start. <br> During operation: The axis decelerates to stop. |  |
| 830 | Watchdog timer error of programmable controller CPU | Watchdog timer error of programmable controller CPU occurred. | At start: The axis does not start. <br> During operation: The axis decelerates to stop. |  |
| 901 | Software stroke limit upper/lower limit value error | (Upper limit value) $\leqq$ (Lower limit value) is satisfied in the software stroke limit upper/ lower limit values. |  |  |
| 904 | Out of current feed value during speed control setting range | The setting value of the " Pr. 3 Current feed value during speed control" is out of the setting range. | The module READY signal (X0) does not turn ON. |  |
| 905 | Out of speed limit value range | The setting value of the " Pr. 4 Speed limit value" is out of the setting range. |  |  |
| 906 | Out of bias speed at start setting range | -The setting value of " Pr. 5 Bias speed at start" is out of the setting range. <br> -The setting value of the " Pr. 5 Bias speed at start" exceeds the " Pr. 4 Speed limit value". <br> -The setting value of the " Pr. 5 Bias speed at start" is less than pulse unit. |  |  |



| Error <br> code (decimal) | Error name | Description | Operation at error |  |
| :---: | :---: | :---: | :---: | :---: |
| 907 | Out of deviation counter clear signal output time setting range | The setting value of the " Pr. 7 Deviation counter clear signal output time" is out of the setting range. |  |  |
| 910 | Out of OPR method setting range | The setting value of the " Pr. 10 OPR method" is out of the setting range. |  |  |
| 911 | Out of OPR direction setting range | The setting value of the " Pr. 11 OPR direction" is out of the setting range. |  |  |
| 912 | Out of OP address setting range | The setting value of the "Pr. 12 OP address" is out of the setting range. <br> The setting of the "Pr. 12 OP address" is out of the positioning range when using the ring counter. <br> When the "Pr. 19 Count value selection at OPR" is set to "1: OP address set to count value" for the ring counter, the setting of the " Pr. 12 OP address" is out of the count range. | The module READY signal (X0) does not turn ON. |  |
| 913 | Out of OPR speed setting range | The setting value of the " Pr. 13 OPR speed" is out of the setting range. <br> The setting value of the " Pr. 13 OPR speed" is lower than the " Pr. 14 Creep speed". <br> The setting value of the " Pr. 13 OPR speed" exceeds the " Pr. 4 Speed limit value". |  |  |


| Error <br> code (decimal) | Related buffer memory address |  |  | Setting range | Remedy |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis $1 /$ <br> CH 1 | Axis 2/ <br> CH 2 | Axis 3/ <br> CH 3 |  |  |
| 907 | 10 | 110 | 210 | Pr. 7 Deviation counter clear signal output time $0: 1 \mathrm{~ms}$ <br> 1: 2 ms <br> 2: 10 ms <br> 3: 20 ms |  |
| 910 | 20 | 120 | 220 | Pr. 10 OPR method <br> 0 : OPR method 1) <br> Near-point dog method <br> 1: OPR method 2) <br> Stopper 3 |  |
| 911 | 21 | 121 | 221 | Pr. 11 OPR direction <br> 0: Forward direction <br> 1: Reverse direction | Set the value within the setting range and turn OFF and then ON the programmable controller CPU READY signal (Y0). |
| 912 | $\begin{aligned} & 22 \\ & 23 \end{aligned}$ | $\begin{aligned} & 122 \\ & 123 \end{aligned}$ | $\begin{aligned} & 222 \\ & 223 \end{aligned}$ | Pr. 12 OP address -1073741824 to 1073741823 (pulse) |  |
| 913 | $\begin{aligned} & 24 \\ & 25 \end{aligned}$ | $\begin{aligned} & 124 \\ & 125 \end{aligned}$ | $\begin{aligned} & 224 \\ & 225 \end{aligned}$ | Pr. 13 OPR speed 1 to 100000 (pulse/s) | Set the value, which is lower than the " Pr. 4 Speed limit value" and higher than the "Pr. 14 Creep speed". Then turn OFF and then ON the programmable controller CPU READY signal (YO). |


| Error <br> code (decimal) | Error name | Description | Operation at error |  |
| :---: | :---: | :---: | :---: | :---: |
| 914 | Out of creep speed setting range | The setting value of the "Pr. 14 Creep speed" is out of the setting range. <br> The setting value of the "Pr. 14 Creep speed" is higher than the "Pr. 13 OPR speed". <br> The setting value of the " Pr. 14 Creep speed" is less than pulse unit. |  |  |
| 915 | Out of ACC/DEC time at OPR setting range | The setting value of the " Pr. 15 ACC/DEC time at OPR" is out of the setting range. |  |  |
| 923 | Out of current feed value, count value simultaneous change function selection setting range | The setting value of the " Pr. 9 Current feed value, count value simultaneous change selection" is out of the setting range. | The module READY signal (X0) does not turn ON. |  |
| 924 | Out of coincidence detection setting range | The setting value of the " Pr. 18 Coincidence detection setting" is out of the setting range. Ring counter is set for the counter format of the intelligent function module switch setting, which is set by GX Developer. |  |  |
| 925 | Coincidence detection function/ ring counter function setting error | When ring counter is set for the counter format, the " Pr. 18 Coincidence detection setting" is set to "1: Coincidence detection requested". |  |  |


| Error <br> code (decimal) | Related buffer memory address |  |  | Setting range | Remedy |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis/ <br> CH 1 | Axis/ <br> CH 2 | Axis/ <br> CH 3 |  |  |
| 914 | $\begin{aligned} & 26 \\ & 27 \end{aligned}$ | $\begin{aligned} & 126 \\ & 127 \end{aligned}$ | $\begin{aligned} & 226 \\ & 227 \end{aligned}$ | Pr. 14 Creep speed 1 to 100000 (pulse/s) | Set the value within the setting range and lower than the " Pr. 13 OPR speed", and turn OFF and then ON the programmable controller CPU READY signal (YO). |
| 915 | $\begin{aligned} & 28 \\ & 29 \end{aligned}$ | $\begin{aligned} & 128 \\ & 129 \end{aligned}$ | $\begin{aligned} & 228 \\ & 229 \end{aligned}$ | Pr. 15 ACC/DEC time at OPR 1 to 5000 (ms) |  |
| 923 | 13 | 113 | 213 | Pr. 9 Current feed value, count value simultaneous change function selection 0: Values not changed simultaneously <br> 1: Count value changed together at currnt value change <br> 2: Current feed value changed together at preset <br> 3: Values changed both at current value change and at preset | Set the value within the setting range and turn OFF and then ON the programmable controller CPU READY signal (Y0). |
| 924 | 34 | 134 | 234 | Pr. 18 Coincidence detection setting <br> 0 : Coincidence detection not |  |
| 925 |  |  |  | 1: Coincidence detection requested | Set the "Pr. 18 Coincidence detection setting" to " 0 : <br> Coincidence detection not request", and turn OFF and then ON the programmable controller CPU READY signal (Y0). <br> Set liner counter for the counter format. (Refer to Section 5.6) |


| Error code (decimal) | Error name | Description | Operation at error |  |
| :---: | :---: | :---: | :---: | :---: |
| 926 | Out of count value selection at OPR setting range | The setting value of the " Pr. 19 Count value selection at OPR" is out of the setting range. |  |  |
| 927 | Out of ring counter upper limit value setting range | The setting value of the "Pr. 16 Ring counter upper limit value" is out of the setting range. |  |  |
| 928 | Out of software stroke limit upper limit value setting range | The setting value of the " Pr. 1 Software stroke limit upper limit value" is out of the setting range. | The module READY signal (X0) does not turn ON. |  |
| 929 | Out of software stroke limit lower limit value setting range | The setting value of the " Pr. 2 Software stroke limit lower limit value" is out of the setting range. |  |  |
| 930 | Out of positioning range upper limit value setting range | The setting value of the " Pr. 17 Positioning range upper limit value" is out of the setting range. |  |  |


| Error <br> code (decimal) | Related buffer memory address |  |  | Setting range | Remedy |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis $1 /$ <br> CH 1 | Axis 2/ <br> CH 2 | Axis 3/ <br> CH 3 |  |  |
| 926 | 35 | 135 | 235 | Pr. 19 Count value selection at OPR <br> 0: OP address not set to count value <br> 1: OP address set to count value |  |
| 927 | $\begin{aligned} & 30 \\ & 31 \end{aligned}$ | $\begin{aligned} & 130 \\ & 131 \end{aligned}$ | $\begin{aligned} & 230 \\ & 231 \end{aligned}$ | Pr. 16 Ring counter upper limit value 0 to 1073741823 (pulse) |  |
| 928 | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 100 \\ & 101 \end{aligned}$ | $\begin{aligned} & 200 \\ & 201 \end{aligned}$ | Software stroke limit upper limit value -1073741824 to 1073741823 (pulse) | Set the value within the setting range and turn OFF and then ON the programmable controller CPU READY signal (Y0). |
| 929 | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 102 \\ & 103 \end{aligned}$ | $\begin{aligned} & 202 \\ & 203 \end{aligned}$ | Pr. 2 Software stroke limit lower limit value -1073741824 to 1073741823 (pulse) |  |
| 930 | $\begin{aligned} & 32 \\ & 33 \end{aligned}$ | $\begin{aligned} & 132 \\ & 133 \end{aligned}$ | $\begin{aligned} & 232 \\ & 233 \end{aligned}$ | Pr. 17 Positioning range upper limit value 0 to 1073741823 (pulse) |  |

### 15.2.2 List of warnings

The following table shows the warning descriptions and measures to be taken when a warning occurs.

| Warning code (decimal) | Warning name | Description | Operation at warning |  |
| :---: | :---: | :---: | :---: | :---: |
| 000 | (Normal) | - | - |  |
| 10 | Start during operation | The start is requested during the axis is BUSY. | The operation is continued. |  |
| 20 | Out of speed range | ```"Da.4 Command speed", and " Cd. }1\mathrm{ New speed value" are less than the " Pr.5 Bias speed at start", or exceed the " Pr. }4\mathrm{ Speed limit value".``` | Control the speed with the " Pr. 5 Bias speed at start" or "Pr. 4 Speed limit value". |  |
| 22 | Speed change disabled | Speed change was requested for other than speed control and JOG operation. | The operation is continued. |  |
| 23 | Preset disabled | Preset command (Y18 to Y1A) is executed during operation when the " Pr. 9 currrent feed value, count value simultaneous change function" is set to "2: Current feed value changed together at preset" or "3: Values changed both at current value change and at preset" |  |  |
| 24 | Out of preset value setting range | -The setting value of the " Cd. 6 Preset value setting" is out of the setting range. <br> -When the " Pr. 9 currrent feed value, count value simultaneous change function" is set to "2: <br> Current feed value changed together at preset" or "3: Values changed both at current value change and at preset", the setting value of the <br> " Cd. 6 Preset setting value" exceeds the "Software stroke limit upper/lower limit value" . | Preset is not executed, and operation or count operation is continued. |  |
| 25 | Coincidence detection disabled | The setting value of the " Cd. 7 Coincidence detection point setting" is out of the setting range. | Coincidence detection is not executed, and operation or count operation is continued. |  |
| 26 | Out of ACC/ DEC time setting valid range | Any of the " Pr. 15 ACC/DEC time at OPR", " JOG. 2 JOG ACC/DEC time", " Da. 3 ACC/DEC time", and " Cd. 2 ACC/DEC time at speed change" setting values is out of the setting valid range. | The operation is carried out at the maximum value or the minimum value of the setting valid range. |  |
| 27 | Overflow | Count value exceeded -1073741824 (lower limit value), or 1073741824 (upper limit value) when the linear counter is selected. | Count operation is stopped. (Positioning operation is continued.) |  |
| 31 | Out of count value range | The "Md. 3 Count value" exceeds the " Pr. 16 Ring counter upper limit value". | Count is executed with an invalid value. |  |


| Warning code (decimal) | Related buffer |  |  | Setting range | Remedy |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis/ <br> CH 1 | Axis/ $\text { CH } 2$ | Axis/ <br> CH 3 |  |  |
| 000 | - | - | - | - | - |
| 10 | - | - | - | - | Normalize the start request ON timing. |
| 20 | $\begin{aligned} & 6 \\ & 7 \\ & \hline \\ & \hline 8 \\ & 9 \end{aligned}$ | $\begin{aligned} & 106 \\ & 107 \\ & \hline \\ & 108 \\ & 109 \end{aligned}$ | $\begin{aligned} & 206 \\ & 207 \\ & \hline \\ & 208 \\ & 209 \end{aligned}$ | Pr. 4 Speed limit value 1 to 100000 (pulse/s) <br> Pr. 5 Bias speed at start 1 to 5000 (pulse/s) | Set the " Cd. 1 New speed value" to be higher than the " Pr. 5 Bias speed at start" and lower than the " Pr. 4 Speed limit value". |
| 22 | 55 | 155 | 255 | Cd. 3 Speed change request <br> 1: Speed change requested | Do not chang the speed during position control and OPR control. |
| 23 | $\begin{aligned} & 60 \\ & 61 \end{aligned}$ | $\begin{aligned} & 160 \\ & 161 \end{aligned}$ | $\begin{aligned} & 260 \\ & 261 \end{aligned}$ | Cd. 3 Preset value setting -1073741824 to1073741823 | Do not execute the preset command (Y18 to Y1A) during operation. |
| 24 | $\begin{aligned} & 60 \\ & 61 \end{aligned}$ | $\begin{aligned} & 160 \\ & 161 \end{aligned}$ | $\begin{aligned} & 260 \\ & 261 \end{aligned}$ | Cd. 3 Preset value setting <br> -At linear count: -1073741824 to 1073741823 <br> -At ring count: 0 to 1073741823 | Set the value within the setting range, and turn OFF and then ON the preset command (Y18 to Y1A). |
| 25 | $\begin{aligned} & 62 \\ & 63 \end{aligned}$ | $\begin{aligned} & 162 \\ & 163 \end{aligned}$ | $\begin{aligned} & 262 \\ & 263 \end{aligned}$ | Cd. 7 Coincidence detection point setting -1073741824 to 1073741823 | Set the value within the setting range, and turn OFF and then ON the count enable signal. |
| 26 | Refer to "Section 4.2 Parameter List". <br> Refer to "Section 4.3 JOG Data List". <br> Refer to "Section 4.4 Positioning Data List". <br> Refer to "Section 4.6 Control Data List". |  |  |  | Set "Pr. 15 ACC/DEC time at OPR", " JOG. 2 JOG ACC/DEC time", " Da. 3 ACC/DEC time", and " Cd. 2 ACC/DEC time at speed change" within the setting valid range. |
| 27 | - | - | - | - | Execute preset. |
| 31 | $\begin{aligned} & 30 \\ & 31 \end{aligned}$ | $\begin{aligned} & 130 \\ & 131 \end{aligned}$ | $\begin{aligned} & 230 \\ & 231 \end{aligned}$ | Pr. 16 Ring counter upper limit value 0 to 1073741823 (pulse) | Set the "Md. 3 Count value" within the range of the "Pr. 16 ring counter upper limit value" by the preset |

### 15.3 Checking Errors with the LED Display Function

The status of the QD72P3C3 and control status of each axis/CH can be checked by the LEDs located on the front of the QD72P3C3.

| QD72P3C3 |  |  |
| :---: | :---: | :---: |
| RUN ! | ! 7 ! | 17 AX |
|  | ! ㄱ ! | 17 ¢ ${ }^{\text {a }}$ |
| ERR. ! ? | ! 구 ! | ! $\dagger$ ¢ ${ }^{\text {b }}$ |

Each axis can be monitored by the status of the LEDs.
The operation and displays are as shown below.

| Display contents | Operation status | Description | Display contents | Operation status | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\cdot$ RUN LED is OFF. <br> (The status of ERR. LED, AX1 to AX3 are undefined.) | Hardware: <br> Failure <br> Module: <br> Error |  | -AX_CH1 LED is ON. <br> (Same for other axes.) | Axis: In operation |
|  | -RUN LED is ON. <br> -ERR. LED is OFF. | Module: <br> Normal |  | -AX_CH1 LED is flashing. (Same for other axes.) -ERR. LED is flashing. | Axis/CH: <br> Error |
|  | -RUN LED is ON. ERR. LED is ON . -ERR. LED is ON. | System: <br> Error |  | - $\phi \mathrm{A} \_\mathrm{CH} 1$ LED is ON. <br> (Same for other CHs.) | Phase A <br> voltage: <br> Applying |
|  | $\begin{array}{\|l} \hline \cdot \mathrm{AX} \_\mathrm{CH} 1 \text { to } \\ \text { AX_CH3 } \\ \text { LEDs are } \\ \text { OFF. } \end{array}$ | Axes: <br> Stopped <br> Axes: <br> Standby |  | - $\phi$ B_CH1 LED is ON. <br> (Same for other CHs.) | Phase B <br> voltage applying |

series

### 15.4 Checking Error Description Using System Monitor of GX Developer

Error codes for axis errors can be checked by selecting [Module's Detailed Information...] on the [System Monitor] screen of GX Developer.
(1) GX Developer operation

Select [Diagnostics...] $\rightarrow$ [System Monitor...] $\rightarrow$ "QD72P3C3" $\rightarrow$
Module's Detailed Information.

## (2) Checking error codes

The error code stored in the "Md.5Axis error code" is displayed in the "Present Error" field. (One of the axes from 1 to 3 )
(By clicking the $\qquad$ button, the error code of the error that has occurred for each axis is displayed in order of axis 1 to 3 . Note that this display does not give a history.)


## APPENDICES

## Appendix 1 External Dimensions




Unit: mm (inch)

## Appendix 2 Operation Timing and Processing Time in Each Control

(1) Operation timing and processing time of machine OPR control


A delay may occur in the t 1 depending on the operating conditions of the other axes.
(2) Operation timing and processing time of fast OPR control


| t 1 | t 2 | t 3 | t 4 | t 5 |
| :---: | :---: | :---: | :---: | :---: |
| 1 ms | 0.2 ms | 0 to 2.5 ms | 0 to 2.5 ms | 0 to 2.5 ms |

A delay may occur in the t 1 depending on the operating conditions of the other axes.
(3) Operation timing and processing time of position control


| $\mathrm{t} 1^{*}$ | t 2 | t 3 | t 4 | t 5 | t 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 ms | 0.2 ms | 0 to 2.5 ms | 0 to 2.5 ms | 0 to 2.5 ms | As set in parameter |

* t1 at multiple axes concurrent start

| Number of started axes | t 1 |
| :---: | :---: |
| 3-axes concurrent start | 1 ms |

A delay may occur in the t 1 depending on the operating conditions of the other axes.
(4) Operation timing and processing time of speed control


| t 1 | t 2 | t 3 | t 4 | t 5 | t 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 ms | 0.2 ms | 0 to 2.5 ms |

A delay may occur in the t 1 depending on the operating conditions of the other axes.
(5) Operation timing and processing time of JOG operation


A delay may occur in the t 1 depending on the operating conditions of the other axes.

## Appendix 3 Connection Examples with Servo Amplifiers Manufactured by Mitsubishi Electric Corporation

(1) Connection example of QD72P3C3 and MR-J3-■A


Remark
*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.) In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3 , refer to "Section 3.5.2 Signal layout for external device connector".)
*2: These are limit switches for servo amplifier (for stop).
*3: For details of connection, refer to the MR-J3 series Servo Amplifier Instruction Manual.
*4: This indicates the distance between the QD72P3C3 and servo amplifier.
(2) Connection example of QD72P3C3 and MR-J2S-■A


## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.) In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: These are limit switches for servo amplifier (for stop).
*3: For details of connection, refer to the MR-J2S series Servo Amplifier Instruction Manual.
*4: This indicates the distance between the QD72P3C3 and servo amplifier.
(3) Connection example of QD72P3C3 and MR-H $\square \mathbf{A}$


Remark
*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.)
In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3 , refer to "Section 3.5.2 Signal layout for external device connector".)
*2: These are limit switches for servo amplifier (for stop).
*3: For details of connection, refer to the MR-H series Servo Amplifier Instruction Manual.
*4: This indicates the distance between the QD72P3C3 and servo amplifier.

## (4) Connection example of QD72P3C3 and MR-C $\square A$



Remark
*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.) In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: These are limit switches for servo amplifier (for stop).
*3: For details of connection, refer to the MR-C series Servo Amplifier Instruction Manual.
*4: This indicates the distance between the QD72P3C3 and servo amplifier.

## Appendix 4 Connection Examples with Stepping Motors Manufactured by ORIENTAL MOTOR CO., LTD.

(1) Connection example of QD72P2C3 and RK series


## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.)
In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: For wiring or shield of each signal line of the stepping motor drive side other than mentioned above, refer to the manual for stepping motor drive.
*3: This indicates the distance between the QD72P3C3 and RK series.

## (2) Connection example of QD72P3C3 and $\alpha$ STEP series



## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.) In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: For wiring or shield of each signal line of the stepping motor drive side other than mentioned above, refer to the manual for stepping motor drive.
*3: This indicates the distance between the QD72P3C3 and $\alpha$ STEP series.

## Appendix 5 Connection Examples with Servo Amplifiers Manufactured by Panasonic Corporation

(1) Connection example of QD72P2C3 and MINAS-A4 series


## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.) In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: For wiring or shield of each signal line of the servo amplifier side other than mentioned above, refer to the manual for servo amplifier.
*3: This indicates the distance between the QD72P3C3 and MINAS-A4 series.
(2) Connection example of QD72P2C3 and MINAS-E series


## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.)
In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: For wiring or shield of each signal line of the servo amplifier side other than mentioned above, refer to the manual for servo amplifier.
*3: This indicates the distance between the QD72P3C3 and MINAS-E series.

## Appendix 6 Connection Examples with Servo Amplifiers Manufactured by YASKAWA ELECTRIC CORPORATION

(1) Connection example of QD72P2C3 and $\Sigma$ - II series


## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.)
In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: For wiring or shield of each signal line of the servo amplifier side other than mentioned above, refer to the manual for servo amplifier.
*3: This indicates the distance between the QD72P3C3 and $\Sigma$ - Il series.

## Appendix 7 Connection Examples with Servo Amplifiers Manufactured by SANYO DENKI CO., LTD.

(1) Connection example of QD72P2C3 and $R$ series


## Remark

*1: The logic of each I/O terminal can be changed by the intelligent function module switch setting (refer to Section 5.6). (The above example assumes that all terminals are set to the negative logic.)
In addition, the above example is for connecting to Axis 1. (For the pin layout when connecting to Axes 2 or 3, refer to "Section 3.5.2 Signal layout for external device connector".)
*2: For wiring or shield of each signal line of the servo amplifier side other than mentioned above, refer to the manual for servo amplifier.
*3: This indicates the distance between the QD72P3C3 and R series.

## Appendix 8 Comparison with QD70P type positioning module

| Item |  |  | QD72P3C3 | QD70P4 |
| :---: | :---: | :---: | :---: | :---: |
| Number of axes |  |  | 3 axes | 4 axes |
| Control unit |  |  | pulse | pulse |
| Number of positioning data |  |  | 1/axis*1 | 10/axis* ${ }^{1}$ |
| Position control interpolation function |  | 2-axes linear <br> interpolation <br> 3-axes linear <br> interpolation <br> 4-axes linear <br> interpolation <br> 2-axes circular <br> interpolation | $\times$ | $\times$ |
| Positioning control method | Position control | ABS system | $\bigcirc$ | $\bigcirc$ |
|  |  | INC system | $\bigcirc$ | $\bigcirc$ |
|  |  | Fixed-feed | $\times$ | $\times$ |
|  | Speed control | 1 axis | $\bigcirc$ | $\times$ |
|  |  | 2-axes linear interpolation 3-axes linear interpolation 4-axes linear interpolation | $\times$ |  |
|  | Speed-position switching control |  | $\times$ | O |
|  | Position-speed switching control |  | $\times$ | $\times$ |
|  | Current value change |  | $\bigcirc$ | $\bigcirc$ |
| Positioning control range |  |  | (ABS system positioning start (independent)) -1073741824 to 1073741823 pulse (ABS system positioning start (continuous)) -1073741824 to 1073741823 pulse <br> (INC system positioning start (independent)) -1073741824 to 1073741823 pulse (INC system positioning start (continuous)) -1073741824 to 1073741823 pulse | (ABS system) <br> -2147483648 to 2147483647 pulse <br> (INC system) <br> -2147483648 to 2147483647 pulse <br> (Speed-position switching control) 0 to 2147483647pulse (INC system) |
| Speed command range |  |  | 1 to 100000pulse/s*3 | 1 to 200000pulse/s |
| High-level positioning control |  |  | No | No |
| Machine OPR control |  |  | O (2 types) | O (6 types) |
| JOG operation |  |  | $\bigcirc$ | $\bigcirc$ |


| $\qquad$ |  | QD72P3C3 | QD70P4 |
| :---: | :---: | :---: | :---: |
| Inching operation |  | $\times$ | $\times$ |
| Manual pulse generator function |  | No | No |
| ACC/DEC <br> processing | Automatic trapezoidal ACC/DEC | 0 | 0 |
|  | S-pattern ACC/DEC | $\times$ | $\times$ |
| ACC/DEC time |  | ACC/DEC time can be set. <br> (1 to 5000 ms ) | ACC/DEC time and DEC/STOP time can be set. ( 0 to 32767 ms ) |
| Auxiliary function | OPR auxiliary function | No | No |
|  | Compensation function | No | No |
|  | Control limit function | Speed limit, software stroke limit, hardware stroke limit | Speed limit, software stroke limit |
|  | Control details change function | Speed change | Speed change |
|  | Absolute position restoration function | $\times$ | $\times$ |
|  | Other auxiliary functions | No | Restart |
| Start command |  | Device Y of the programmable controller CPU | Device Y of the programmable controller CPU |
| Stop command |  | Device Y of the programmable controller CPU | Device Y of the programmable controller CPU |
| Stop method | Deceleration stop | $\bigcirc$ | $\bigcirc$ |
|  | Sudden stop | $\times$ | $\times$ |
|  | Immediate stop | $\times$ | $\bigcirc$ |
| Current value monitor data |  | Current feed value | Current feed value |
| Error display |  | Error LED | Error LED |
| History data storage (Start, error, warning) |  | No | No |
| Data storage destination |  | No (Backup invalid) | No (Backup invalid) |
| Peripheral/software |  | GX Configurator-PT*2 | GX Configurator-PT*4 |
| Connector |  | A6CON1 (soldering type) | A6CON1 (soldering type) |
|  |  | A6CON2 (crimp type) | A6CON2 (crimp type) |
|  |  | A6CON1 (soldering type, usable for both straight out and diagonal out) | A6CON1 (soldering type, usable for both straight out and diagonal out) |
| Applicable wire size |  | A6CON1, A6CON4 : $0.3 \mathrm{~mm}^{2}$ | A6CON1, A6CON4 : $0.3 \mathrm{~mm}^{2}$ |
|  |  | A6CON2: AWG24 | A6CON2: AWG24 |
| Output type of command pulse |  | Open collector | Open collector |
| Maximum output pulse |  | 100kpps | 200kpps |
| Counter function |  | $\bigcirc$ | $\times$ |
| Maximum connection distance to servo |  | 2 m | 2 m |
| Internal current consumption (5VDC) |  | 0.57A | 0.55A |
| Number of occupied I/O points |  | 32points | 32points |
| Number of slots occupied by module |  | 1 | 1 |
| Weight |  | 0.16 kg | 0.17 kg |

* 1 Start method of positioning data differs according to the model.

QD70P4: Positioning data can be started from No. 1 only. (It cannot be started from No. 2 to No.10.)

* 2 Added into GX Developer for use.
* 3 Pulse unit for inside of the module differs according to the setting range of the speed limit value. (For details, refer to "CHAPTER 4.)
Speed limit value 1 to 8000 pulse/s: 1-pulse unit Speed limit value 8001 to 32000 pulse/s: 4-pulse unit
Speed limit value 32001 to 64000 pulse/s: 8-pulse unit
Speed limit value 64001 to 100000 pulse/s: 25 -pulse unit


## Appendix 9 List of Buffer Memory Addresses

| Item | Buffer memory address |  |  |
| :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 |
| Pr. 1 Software stroke limit upper limit value | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 100 \\ & 101 \end{aligned}$ | $\begin{aligned} & 200 \\ & 201 \end{aligned}$ |
| Pr. 2 Software stroke limit lower limit value | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 102 \\ & 103 \end{aligned}$ | $\begin{aligned} & 202 \\ & 203 \end{aligned}$ |
| Pr. 3 <br> Current feed value during speed control | 5 | 105 | 205 |
| Pr. 4 Speed limit value | $6$ | $\begin{aligned} & 106 \\ & 107 \end{aligned}$ | $\begin{aligned} & 206 \\ & 207 \end{aligned}$ |
| Pr. 5 Bias speed at start | $\begin{aligned} & \hline 8 \\ & 9 \end{aligned}$ | $\begin{aligned} & 108 \\ & 109 \end{aligned}$ | $\begin{aligned} & 208 \\ & 209 \end{aligned}$ |
| ${ }^{\square}$ Pr. 6 Positioning complete signal outputtime | 10 | 110 | 210 |
| Pr. 7 <br> Deviation counter clear signal output time | 11 | 111 | 211 |
| $\square$ <br> Current feed value, count value simultaneous change function selection | 13 | 113 | 213 |
| Pr. 10 OPR method | 20 | 120 | 220 |
| Pr. 11 OPR direction | 21 | 121 | 221 |
| Pr. 12 OP address | $\begin{aligned} & 22 \\ & 23 \end{aligned}$ | $\begin{aligned} & 122 \\ & 123 \end{aligned}$ | $\begin{aligned} & 222 \\ & 223 \end{aligned}$ |
| Pr. 13 OPR speed | $\begin{aligned} & 24 \\ & 25 \end{aligned}$ | $\begin{aligned} & 124 \\ & 125 \end{aligned}$ | $\begin{aligned} & 224 \\ & 225 \end{aligned}$ |
| Pr. 14 Creep speed | $\begin{aligned} & 26 \\ & 27 \end{aligned}$ | $\begin{aligned} & 126 \\ & 127 \end{aligned}$ | $\begin{aligned} & 226 \\ & 227 \end{aligned}$ |
| Pr. 15 ACC/DEC time at OPR | 28 | 128 | 228 |
| Pr. 16 Ring counter upper limit value | $\begin{aligned} & 30 \\ & 31 \end{aligned}$ | $\begin{aligned} & 130 \\ & 131 \end{aligned}$ | $\begin{aligned} & 230 \\ & 231 \end{aligned}$ |
| Pr. 17 Positioning range upper limit value | $\begin{aligned} & 32 \\ & 33 \end{aligned}$ | $\begin{aligned} & 132 \\ & 133 \end{aligned}$ | $\begin{aligned} & 232 \\ & 233 \end{aligned}$ |
| Pr. 18 Coincidence detection setting | 34 | 134 | 234 |
| Pr. 19 Count value selection at OPR | 35 | 135 | 235 |
| JOG. 1 JOG speed | $\begin{aligned} & 40 \\ & 41 \end{aligned}$ | $\begin{aligned} & 140 \\ & 141 \end{aligned}$ | $\begin{aligned} & 240 \\ & 241 \end{aligned}$ |
| JOG. 2 JOG ACC/DEC time | 42 | 142 | 242 |


| Item | Buffer memory address |  |  |
| :---: | :---: | :---: | :---: |
|  | Axis <br> 1 | Axis $2$ | Axis 3 |
| Da. 1 Operation pattern | 90 | 190 | 290 |
| Da. 2 Control method | 91 | 191 | 291 |
| Da. 3 ACC/DEC time | 92 | 192 | 292 |
| Da. 4 Command speed | 94 95 | $\begin{aligned} & 194 \\ & 195 \end{aligned}$ | $\begin{aligned} & 294 \\ & 295 \end{aligned}$ |
| $\qquad$ Positioning address/movement amount | $\begin{aligned} & 96 \\ & 97 \end{aligned}$ | $\begin{aligned} & 196 \\ & 197 \end{aligned}$ | $\begin{aligned} & 296 \\ & 297 \end{aligned}$ |
| Md. 1 Current feed value | $\begin{aligned} & 70 \\ & 71 \end{aligned}$ | $\begin{aligned} & \hline 170 \\ & 171 \end{aligned}$ | $\begin{aligned} & \hline 270 \\ & 271 \end{aligned}$ |
| Md. 2 Current speed | $\begin{aligned} & 72 \\ & 73 \end{aligned}$ | $\begin{aligned} & 172 \\ & 173 \end{aligned}$ | $\begin{aligned} & 272 \\ & 273 \end{aligned}$ |
| Md. 3 Count value | $\begin{aligned} & 74 \\ & 75 \end{aligned}$ | $\begin{aligned} & 174 \\ & 175 \end{aligned}$ | $\begin{aligned} & 274 \\ & 275 \end{aligned}$ |
| Md. 4 Axis operation status | 76 | 176 | 276 |
| Md. 5 Axis/CH error code | 77 | 177 | 277 |
| Md. 7 Axis/CH warning code | 78 | 178 | 278 |
| Md. 7 Status | 79 | 179 | 279 |
| Md. 8 External I/O signal | 80 | 180 | 280 |
| Cd. 1 New speed value | $\begin{aligned} & 50 \\ & 51 \end{aligned}$ | $\begin{aligned} & 150 \\ & 151 \end{aligned}$ | $\begin{aligned} & 250 \\ & 251 \end{aligned}$ |
| Cd. 2 ACC/DEC time at speed change | 52 | 152 | 252 |
| Cd. 3 Speed change request | 54 | 154 | 254 |
| Cd. 4 OPR request flag OFF request | 55 | 155 | 255 |
| Cd. 5 Start method | 56 | 156 | 256 |
| Cd. 6 Preset value setting | $\begin{aligned} & 60 \\ & 61 \end{aligned}$ | $\begin{aligned} & 160 \\ & 161 \end{aligned}$ | $\begin{aligned} & 260 \\ & 261 \end{aligned}$ |
| Cd. 7 Coincidence detection point setting | $\begin{aligned} & 62 \\ & 63 \end{aligned}$ | $\begin{aligned} & 162 \\ & 163 \end{aligned}$ | $\begin{aligned} & 262 \\ & 263 \end{aligned}$ |

* The writing of the addresses not indicated on the list are disabled. If the unlisted address is used, the system may not operate normally.


## Memo

$\qquad$

App-21 Appendix 9 List of Buffer Memory Addresses

## INDEX

## [A]

Absolute system ..... 9-4
ACC/DEC process function ..... 3-2
[C]
Coincidence detection function ..... 3-3
Connection check ..... 5-12
Control data ..... 4-6
Count enable function ..... 3-3
Count value selection function at OPR ..... 3-2
Counting range ..... 3-1
Counting speed ..... 3-1
Current feed value, count value simultaneous changefunction3-3
Current value change ..... 3-2
CW/CCW ..... 5-15,5-16
[D]
Da. 1 Operation pattern ..... 4-5
Da. 2 Control method ..... 4-5
Da. 3 ACC/DEC time ..... 4-5
Da. 4 Command speed ..... 4-5
Da. 5 Positioning address/movement amount $\cdot . .$. ..... 4-5
[E]
Electrical specifications ..... 3-12
Error code list ..... 15-7
External I/O signal logic switching function ..... 3-3
External I/O signal monitor function• ..... 3-3
[F]
Fast OPR control ..... 3-2
[G]
GX Configurator-PT ..... 6-1
[H]
Hardware stroke limit function ..... 3-2
[I]
Incremental system ..... 9-4
Intelligent Function Module Switch Setting ..... 5-14
Internal current consumption ..... 3-1
I/O interface ..... 3-18
[J]
JOG data ..... 4-5
JOG operation ..... 3-2,10-1
JOG operation start timing chart ..... 10-2
JOG. 1 JOG speed ..... 4-5
JOG. 2 JOG ACC/DEC time ..... 4-5
[L]
LED display ..... 5-5,15-21
Linear counter function ..... 3-3
List of warnings ..... 15-19
[M]
Machine OPR control ..... 3-2
Maximum connection distance ..... 3-1
Maximum output pulse ..... 3-1
Monitor data ..... 4-6
Movement amount per pulse ..... 1-4
Multiple axes concurrent start control ..... -15
[ N ]
Number of axes ..... 3-1
Number of channel ..... 3-1
Number of occupied I/O points ..... 3-1
[O]
OPR control ..... 3-2,8-1
Count value selection function at OPR ..... 8-12
Fast OPR control ..... 8-10
Fast OPR control start timing chart ..... --28
Machine OPR control start timing chart ..... 7-27
Near-point dog method ..... 8-5
Processing time of fast OPR control ..... App-3
Processing time of machine OPR control $\cdot \cdots \cdots$ App-2
[P]
Parameter ..... 4-3
Part Names ..... 5-4
Performance Specifications ..... 3-1
Position control ..... 3-2
Positioning control ..... 3-2
Positioning control start timing chart ..... 7-28
Processing time of positioning control ..... App-4
Positioning control range ..... 3-1
Positioning data ..... 4-5
Preset function ..... 3-3
Pr. 1 Software stroke limit upper limit value ..... 4-3
Pr. 10 OPR method ..... 4-3
Pr. 11 OPR direction ..... 4-3
Pr. 12 OP address ..... 4-3
Pr. 13 OPR speed ..... 4-3
Pr. 14 Creep speed ..... 4-3
Pr. 15 ACC/DEC time at OPR ..... 4-3
Pr. 16 Ring counter upper limit value ..... 4-3
Pr. 17 Positioning range upper limit value ..... 4-3
Pr. 18 Coincidence detection setting ..... 4-3
Pr. 19 Count value selection at OPR ..... 4-3
Pr. 2 Software stroke limit lower limit value ..... 4-3
Pr. 3 Current feed value during speed control ..... 4-3
Pr. 4 Speed limit value ..... 4-3
Pr. 5 Bias speed at start ..... 4-3
Pr. 6 Positioning complete signal output tim ..... 4-3
Pr. 7 Deviation counter clear signal output time•••• 4Pr. 9 Current feed value, count value simultaneouschange function selection4-3
PULSE/SIGN ..... 5-15
[Q]
QD70P ..... App-17
[R]
Ring counter function ..... 3-3
[S]
Signal ..... 3-4
Axis stop signal ..... 3-4,3-8
Axis/CH error occurrence signal ..... 3-4,3-6
Axis/CH error reset signa ..... 3-4,3-8
Axis/CH warning occurrence signal ..... 3-4,3-6
BUSY signal ..... 3-4,3-6
Coincidence signal reset command ..... 3-4,3-9
Count enable command ..... 3-4,3-9
Count value coincidence ..... 3-4,3-7
Count value large ..... 3-4,3-7
Count value small ..... 3-4,3-7
Forward run JOG start signal ..... 3-4,3-8
Module READY signal ..... 3-4,3-6
Positioning complete signal• ..... 3-4,3-6
Positioning start signal ..... 3-4,3-8
Preset command ..... 3-4,3-9
Programmable controller CPU READY signal ..... 3-4,3-8
Reverse run JOG start signal ..... 3-4,3-8
Start complete signal ..... 3-4,3-6
Signal layout for connector ..... 3-16
Simple Reciprocating Operation ..... 5-18
Software stroke limit function ..... 3-2
Speed change function ..... 3-2
Speed change timing chart ..... -30
Speed command ..... 3-1
Speed control ..... 3-2
Speed limit function ..... 3-2
Start time ..... 3-1
Stopper 3 ..... 8-8
[T]
TROUBLESHOOTING ..... 15-1
When the Axis/CH warning occurrence turns ON15-2
When the coincidence detection interrupt does not

When the count operation is not executed, or not
executed normally ..... 15-3
When the RUN LED turns OFF ..... 15-2
When the AX LED flashes after the ERR.LED ..... 15-2
When the ERR.LED turns OFF ..... 15-2
[U]
UTILITY PACKAGE ..... 6-1
[W]
Weight ..... 3-1
Numerics
1 multiple of 2 phases ..... 5-16
1-axis linear control (ABS) ..... 9-8
1-axis linear control (INC) ..... 9-9
2 multiples of 2 phases ..... 5-16
4 multiples of 2 phases ..... 5-16

## Warranty

Please confirm the following product warranty details before using this product.

## 1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

## 2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

## 3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

## 4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

## 5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

Microsoft, Windows, Windows NT, and Windows Vista are registered trademarks of Microsoft Corporation in the United States and other countries.
Pentium is a trademark of Intel Corporation in the United States and other countries.
Ethernet is a registered trademark of Xerox Corporation in the United States.
Other company names and product names used in this document are trademarks or registered trademarks of respective companies.

## SPREAD

Copyright (C) 1996 Farpoint Technologies, Inc.

## MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA, JAPAN

[^6]
[^0]:    * PULSE is output from the "PULSE F" external I/O signal and SIGN from "PULSE R". (Refer to "Section 3.5.3".)

[^1]:    --- $N$ No.1] to [No.4] parameter and data setting program
    When setting the parameters or data with the sequence program, set them in the QD72P3C3 using the TO instruction from the programmable controller CPU. (Carry out the setting while the programmable controller CPU READY signal (Y0) is OFF.)
    When setting the parameters or data with GX Configurator-PT, programs for [No.1] to [No.4] are not necessary.

[^2]:    * For details of OPR parameter, refer to "Section 4.2 Parameter List".

[^3]:    * For details of setting, refer to "Section 4.4 Positioning Data List".

[^4]:    Turning ON the JOG start signal (YC to Y11) starts acceleration in the direction specified in the JOG start signal (YC to Y11) and at the time set in "JOG. 2 JOG ACC/DEC time". At this time, the BUSY signal (X8 to XA) turns from OFF to ON.
    2) When the workpiece during acceleration reaches the speed set in "JOG. 1 JOG speed", it continues movement at this speed. (The workpiece moves at constant speed from 2) to 3).)

    Turning OFF the JOG start signal (YC to Y11) starts deceleration from the speed set in "JOG. 1 JOG speed" to the one set in "JOG. 2 JOG ACC/DEC time".
    4) The workpiece stops when it decelerates to the speed set in " Pr.5 Bias speed at start". At this time, the BUSY signal (X8 to XA) turns from ON to OFF.

[^5]:    ＊ 3 Local devices and file registers for each program cannot be used for setting data．

[^6]:    When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission

