

Programmable Controller

MELSEGQ_{series} MELSEGL_{series}

MELSEC-Q/L Structured Programming Manual (Common Instructions)

SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using MELSEC-Q or -L series programmable controllers, please read this manual and the related manuals introduced in this manual, and pay full attention to safety to handle the product correctly.

Please store this manual in a safe place and make it accessible when required. Always forward a copy of the manual to the end user.

CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi Electric programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and

ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries. MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC-Q or -L series programmable controllers.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the programming specifications to handle the product correctly.

When applying the program examples introduced in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.

CONTENTS

SAFI	ETY PRECAUTIONS	1
	IDITIONS OF USE FOR THE PRODUCT	
	RODUCTION	
MAN	IUALS	
Term	าร	
СН	APTER 1 OVERVIEW	14
1.1	Purpose of This Manual	
СЦ	APTER 2 INSTRUCTION TABLES	
сп/ 2.1	Types of Instructions	16
2.1	How to Read Instruction Tables	
2.3	Sequence Instructions	
2.0	Contact instructions	
	Bond instructions	
	Output instructions.	
	Shift instructions	
	Master control instructions.	
	End instructions	
	Other instructions	
2.4	Basic Instructions	
	Comparison operation instructions	
	Arithmetic operation instructions	
	Data conversion instructions	
	Data transfer instructions.	
	Program branch instructions	
	Program execution control instructions	
	I/O refresh instructions	
	Other convenient instructions	
2.5	Application Instructions	
	Logical operation instructions	
	Rotation instructions	
	Shift instructions	
	Bit processing instructions	
	Data processing instructions	
	Structured instructions.	
	Data table operation instructions	
	Buffer memory access instructions	
	Display instructions	
	Debug/error diagnostics instructions	
	String processing instructions	
	Special function instructions	
	Data control instructions	
	File register switching instructions	
	Clock instructions	
	Extended clock instructions	
	Program control instructions	

2.6	Data Link Instructions.	58
	Network refresh instructions	58
	Reading/Registering routing information	58
	Refresh device write/read instructions.	58
2.7	Multiple CPU Dedicated Instructions.	59
	Writing data to host CPU shared memory	59
	Reading data from other CPU shared memory	59
2.8	Multiple CPU High Speed Transmission Dedicated Instructions	60
	Multiple CPU high speed transmission dedicated instructions	60
2.9	Redundant System Instruction (For Redundant CPU)	60
	Redundant system instruction (for redundant CPU)	60
СНА	PTER 3 CONFIGURATION OF INSTRUCTIONS	61

CHAPTER 3 CONFIGURATION OF INSTRUCTIONS

3.1	Configuration of Instructions
3.2	Precautions on Programming
3.3	Executing Conditions for Instructions71
3.4	Operation of OUT Instructions, SET/RST Instructions, or PLS/PLF Instructions Using Same Device 72
3.5	Precautions on Using File Registers78

CHAPTER 4 HOW TO READ INSTRUCTIONS

CHAPTER 5 SEQUENCE INSTRUCTIONS

5.1	Contact Instructions	83
	Operation start, series connection, parallel connection.	83
	Edge operation start, edge series connection, edge parallel connection	86
	Negated edge operation start, negated edge series connection, negated edge pulse parallel connection .	89
5.2	Bond Instructions	92
	Ladder block series connection and parallel connection	92
	Operation result push/read/pop	94
	Operation result inversion	97
	Pulse conversion of operation result	99
	Pulse conversion of edge relay operation result	101
5.3	Output Instructions	103
	Out (excluding timers, counters and annunciators)	103
	Timer	105
	Counter	109
	Annunciator output	111
	Setting devices (excluding annunciators)	113
	Resetting devices (excluding annunciators)	115
	Setting and resetting annunciators	117
	Rising edge and falling edge outputs	120
	Bit device output inversion.	123
	Pulse conversion of direct output	125
5.4	Shift Instructions	127
	Bit device shift	127
5.5	Master Control Instructions	130
	Setting and resetting master control	130
5.6	End Instructions	135
	Ending main routine program	135

5.7	Other Instructions	137
	Sequence program stop	137
СНА	APTER 6 BASIC INSTRUCTIONS	139
6.1	Comparison Operation Instructions	139
	16-bit BIN data comparison	139
	32-bit BIN data comparison	142
	Floating-point data comparison (single precision)	145
	Floating-point data comparison (double precision)	148
	Character string data comparison	152
	16-bit BIN block data comparison	156
	32-bit BIN block data comparison	159
6.2	Arithmetic Operation Instructions	163
	16-bit BIN data addition and subtraction	163
	32-bit BIN data addition and subtraction	165
	16-bit BIN data multiplication and division	
	32-bit BIN data multiplication and division	170
	4-digit BCD data addition and subtraction	173
	8-digit BCD data addition and subtraction	175
	4-digit BCD data multiplication and division	177
	8-digit BCD data multiplication and division	
	Floating-point data addition and subtraction (single precision)	
	Floating-point data addition and subtraction (double precision)	
	Floating-point data multiplication and division (single precision)	
	Floating-point data multiplication and division (double precision)	
	16-bit BIN block data addition and subtraction	190
	32-bit BIN block data addition and subtraction	193
	Character string data concatenation	196
	16-bit BIN data increment and decrement	198
	32-bit BIN data increment and decrement	
6.3	Data Conversion Instructions	
	BIN data to 4-/8-digit BCD data conversion.	
	4-/8-digit BCD data to BIN data conversion.	205
	16-/32-bit BIN data to floating-point data conversion (single precision)	
	16-/32-bit BIN data to floating-point data conversion (double precision)	
	Floating-point data to 16-/32-bit BIN data conversion (single precision)	
	Floating-point data to 16-bit/32-bit BIN data conversion (double precision)	
	16-bit BIN data to 32-bit BIN data conversion	
	32-bit BIN data to 16-bit BIN data conversion	
	16-/32-bit BIN data to Gray code conversion	
	Gray code to 16-/32-bit BIN data conversion	
	Two's complement of 16-/32-bit BIN data (sign inversion)	
	Sign inversion of floating-point data (single precision)	
	Sign inversion of floating-point data (double precision)	
	16-bit BIN block data to 4-digit BCD block data conversion	
	4-digit BCD block data to 16-bit BIN block data conversion	
	Single-precision to double-precision conversion	
	Double-precision to single-precision conversion	
6.4	Data Transfer Instructions	
	16-/32-bit data transfer	

	Jump to END processing.	
6.6	Program Execution Control Instructions	
	Interrupt disable/enable, interrupt program mask	
	Recovery from interrupt programs	
6.7	I/O Refresh Instructions	
	I/O refresh	
6.8	Other Convenient Instructions	
	Single-phase input up/down counter	
	Two-phase input up/down counter	
	Teaching timer	
	Special function timer	
	Rotary table shortest direction control	
	Ramp signal	
	Pulse density measurement	
	Fixed cycle pulse output	
	Pulse width modulation	
	Matrix input	
СН4	APTER 7 APPLICATION INSTRUCTIONS	318
7.1	Logical Operation Instructions	
•••	Logical AND operation on 16-/32-bit data	310

- 4		040
7.1	Logical Operation Instructions	
	Logical AND operation on 16-/32-bit data	
	Logical AND operation on block data	
	Logical OR operation on 16-/32-bit data	
	Logical OR operation on block data	
	Exclusive OR operation on 16-/32-bit data	
	Exclusive OR operation on block data	
	Exclusive NOR operation on 16-/32-bit data	
	Exclusive NOR operation on block data	
7.2	Rotation Instructions	
	Right rotation of 16-bit data	
	Left rotation of 16-bit data	
	Right rotation of 32-bit data	
	Left rotation of 32-bit data	
7.3	Shift Instructions	
	n-bit right/left shift of 16-bit data	
	1-bit right/left shift of n-bit data	
	n-bit right/left shift of n-bit data	
	1-word right/left shift of n-word data	

	n-word right/left shift of n-word data	367
7.4	Bit Processing Instructions	370
	Bit set and reset of word devices.	370
	Bit test	372
	Batch reset of bit devices	375
7.5	Data Processing Instructions	377
	16-/32-bit data search	377
	16-/32-bit data bit check	381
	Decoding from 8 to 256 bits.	383
	Encoding from 256 to 8 bits.	386
	7-segment decode	389
	4-bit separation of 16-bit data	
	4-bit connection of 16-bit data	
	Separation and connection of random data	
	Separation and connection of data in units of bytes	
	Maximum value search of 16-/32-bit data	
	Minimum value search of 16-/32-bit data	
	Sorting 16-/32-bit data	
	Total calculation of 16-bit data	
	Total calculation of 32-bit data	
	Average calculation of 16-/32-bit data	
7.6	Structured Instructions.	
1.0	FOR to NEXT instruction loop	
	Forced termination of FOR to NEXT instruction loop	
	Subroutine program call	
	Return from subroutine program	
	Refresh	
	Selection of refresh(COM).	
	Selection of refresh(CCOM(P))	
7.7	Data Table Operation Instructions	
1.1	Writing data to data table.	
	Reading oldest data from data table	
	•	
	Reading newest data from data table	
7.0	Deleting/inserting data from/to data table	
7.8	Buffer Memory Access Instructions	
	Reading 1-/2-word data from intelligent function module	
7 0	Writing 1-/2-word data to intelligent function module.	
7.9		
	Printing ASCII code	
	Printing comments	
7 40	Resetting error display or annunciator.	
7.10	Debug/Error Diagnostics Instructions.	
	Special format error check.	
7 44	Changing check format of the CHK instruction	
7.11	String Processing Instructions	
	16-/32-bit BIN data to decimal ASCII data conversion	
	16-/32-bit BIN data to hexadecimal ASCII data conversion.	
	4-/8-digit BCD data to decimal ASCII data conversion	
	Decimal ASCII data to 16-/32-bit BIN data conversion	
	Hexadecimal ASCII data to 16-/32-bit BIN data conversion	
	Decimal ASCII data to 4-/8-digit BCD data conversion	492

	Reading device comment data	49	5
	Character string length detection.	498	8
	16-/32-bit BIN data to character string data conversion	500	0
	Character string data to 16-/32-bit BIN data conversion	50	5
	Floating-point data to character string data conversion.	510	0
	Character string data to floating-point data conversion	516	6
	Hexadecimal BIN data to ASCII data conversion	52′	1
	ASCII data to hexadecimal BIN data conversion.	524	4
	Extraction of character string data from right/left	52	7
	Random selection and replacement in character string data	530	0
	Character string data search	53	5
	Character string data insert	538	8
	Character string data delete	54′	1
	Floating-point data to BCD format conversion.	543	3
	BCD format to floating-point data conversion	546	6
7.12	Special Function Instructions	548	8
	SIN operation on floating-point data (single precision)	548	8
	SIN operation on floating-point data (double precision)	55′	1
	COS operation on floating-point data (single precision)	553	3
	COS operation on floating-point data (double precision)	556	6
	TAN operation on floating-point data (single precision)	559	9
	TAN operation on floating-point data (double precision)	562	2
	SIN ⁻¹ operation on floating-point data (single precision)	56	5
	SIN ⁻¹ operation on floating-point data (double precision)	568	8
	COS ⁻¹ operation on floating-point data (single precision)	57′	1
	COS ⁻¹ operation on floating-point data (double precision)	574	4
	TAN ⁻¹ operation on floating-point data (single precision)	57	7
	TAN ⁻¹ operation on floating-point data (double precision)	580	0
	Degree to radian conversion on floating-point data (single precision).	583	3
	Degree to radian conversion on floating-point data (double precision)	586	6
	Radian to degree conversion on floating-point data (single precision)	589	9
	Radian to degree conversion on floating-point data (double precision)	592	2
	Exponentiation on floating-point data (single precision)	59	5
	Exponentiation on floating-point data (double precision)	598	8
	Square root operation on floating-point data (single precision)	60′	1
	Square root operation on floating-point data (double precision)	604	4
	Exponential operation on floating-point data (single precision)	60	7
	Exponential operation on floating-point data (double precision)	610	0
	Natural logarithm operation on floating-point data (single precision)	613	3
	Natural logarithm operation on floating-point data (double precision)	616	6
	Common logarithm operation on floating-point data (single precision)	619	9
	Common logarithm operation on floating-point data (double precision)	622	2
	Random number generation and series update	62	5
	Square root operation on 4-/8-digit BCD data	62	7
	SIN operation on data in BCD format	63(0
	COS operation on data in BCD format	633	3
	TAN operation on data in BCD format	636	6
	SIN ⁻¹ operation on data in BCD format		
	COS ⁻¹ operation on data in BCD format	642	2
	TAN ⁻¹ operation on data in BCD format	64!	5

7.13	Data Control Instructions	647
	Upper and lower limit controls of 16-/32-bit BIN data	647
	Dead band control of 16-/32-bit BIN data	650
	Zone control of 16-/32-bit BIN data	653
	Scaling (coordinate by point data)	656
	Scaling (coordinate by X/Y data)	660
7.14	File Register Switching Instructions	664
	Switching file register block numbers	664
	Setting file register files	667
	Setting files for comments	670
7.15	Clock Instructions	673
	Reading clock data	673
	Writing clock data	676
	Clock data addition	679
	Clock data subtraction	681
	Time data conversion (hour/minute/second format to seconds)	684
	Time data conversion (seconds to hour/minute/second format)	686
	Date data comparison	688
	Time data comparison	692
7.16	Extended Clock Instructions	
	Read extended clock data	696
	Addition of extended clock data.	700
	Subtraction of extended clock data	703
7.17	Program Control Instructions	
	Program standby	
	Program output OFF standby	
	Registering program as scan execution type	
	Registering program as low-speed execution type	
	Checking program execution status	
7.18	Other Instructions	
	Resetting watchdog timer	
	Timing pulse generation	
	Time check	
	Reading 1 byte directly from file register	
	Writing 1 byte directly to file register	
	Reading indirect address.	
	Numeric input from keyboard	
	Batch save and recovery of index registers.	
	Reading module information	
	Reading module type.	
	Writing data to specified file.	
	Reading data from specified file	
	Writing data to standard ROM	
	Reading data from standard ROM.	
	Program load from memory card.	
	Program unload from program memory	
	Load and unload	
	File register high-speed block transfer	
	User message	796

8.1	Network Refresh Instructions	799
	Refresh instruction for specified module	799
8.2	Reading/Registering Routing Information	803
	Reading routing information	803
	Registering routing information	805
8.3	Refresh Device Write/Read Instruction	808
	Refresh device write (in 1-bit units)	808
	Refresh device write (in 16-bit units)	813
	Refresh device read (in 1-bit units)	818
	Refresh device read (in 16-bit units)	823
СНА	APTER 9 MULTIPLE CPU DEDICATED INSTRUCTIONS	828
9.1	Writing Data to Host CPU Shared Memory	828
	Writing data to host CPU shared memory(S(P)_TO)	831
	Writing data to host CPU shared memory(TO(P), DTO(P))	834
9.2	Reading data from other CPU shared memory	838
	Reading data from other CPU shared memory	839
СНА	APTER 10 MULTIPLE CPU HIGH SPEED TRANSMISSION DEDICATED	
•••	INSTRUCTIONS	846
10.1	Overview.	846
10.2	Writing Device Data to Other CPUs	
10.3	Reading Device Data from Other CPUs.	
~		000
C.	APTER 11 REDUNDANT SYSTEM INSTRUCTIONS (FOR REDUNDANT CPU)	863
11.1	System Switching	863
APF	PENDIX	867
Арре	endix 1 Added/Changed Instructions with Version Upgrade of GX Works2	867
IND	EX	869
INS	TRUCTION INDEX	871
		0/1
REV	ISIONS	876
WAR	RANTY	877
TRA	DEMARKS	878

CHAPTER 8 DATA LINK INSTRUCTIONS

CONTENTS

799

MANUALS

Relevant manuals

The manuals related to this product are listed below. Order each manual as needed, referring to the following lists.

■Structured programming

Manual name <manual number=""></manual>	Description
MELSEC-Q/L/F Structured Programming Manual (Fundamentals) <sh-080782eng></sh-080782eng>	Methods and languages for structured programming
MELSEC-Q/L Structured Programming Manual (Application Functions) <sh-080784eng></sh-080784eng>	Specifications and functions of application functions that can be used in structured programs
MELSEC-Q/L Structured Programming Manual (Special Instructions) <sh-080785eng></sh-080785eng>	Specifications and functions of special instructions, such as module dedicated instructions, PID control instructions, and built-in I/O function instructions, that can be used in structured programs

■Operation of GX Works2

Manual name <manual number=""></manual>	Description
GX Works2 Version 1 Operating Manual (Common) <sh-080779eng></sh-080779eng>	System configuration, parameter settings, and online operations of GX Works2, which are common to Simple projects and Structured projects
GX Works2 Version 1 Operating Manual (Structured Project) <sh-080781eng></sh-080781eng>	Operations, such as programming and monitoring in Structured projects, of GX Works2
GX Works2 Beginner's Manual (Structured Project) <sh-080788eng></sh-080788eng>	Basic operations, such as programming, editing, and monitoring in Structured projects, of GX Works2. This manual is intended for first-time users of GX Works2.

Terms

This manual uses the generic terms and abbreviations listed in the following table to discuss the software packages and programmable controller CPUs. Corresponding module models are also listed if needed.

Term	Description
Application function	A generic term for the functions, such as functions and function blocks, defined in IEC 61131-3. (It is executed by combinations of multiple common instructions in a programmable controller.)
Basic model QCPU	A generic term for the Q00JCPU, Q00CPU, and Q01CPU
Built-in Ethernet port LCPU	A generic term for the L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, and L26CPU-PBT
Built-in Ethernet port QCPU	A generic term for the Q03UDVCPU, Q03UDECPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU
CC-Link IE	A generic term for CC-Link IE Controller Network and CC-Link IE Field Network
Common instruction	A generic term for the sequence instructions, basic instructions, application instructions, data link instructions, multiple CPU dedicated instructions, multiple CPU high-speed transmission dedicated instructions, and redundant system instructions
CPU module	A generic term for the QCPU (Q mode) and LCPU
GX Works2	Product name for the MELSEC programmable controller software package
High Performance model QCPU	A generic term for the Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU
High-speed Universal model QCPU	A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU
IEC61131-3	The abbreviation for the IEC 61131-3 international standard
LCPU	A generic term for the L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-P, L26CPU-BT, and L26CPU-PBT
MELSECNET/H	The abbreviation for the MELSECNET/H network system
Personal computer	A generic term for personal computer on which Windows [®] operates
Process CPU	A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU
QCPU (Q mode)	A generic term for the Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU, and Universal model QCPU
QnCPU	A generic term for the Q00JCPU, Q00CPU, Q01CPU, and Q02CPU
QnHCPU	A generic term for the Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU
QnPHCPU	A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU
QnPRHCPU	A generic term for the Q12PRHCPU and Q25PRHCPU
QnU(D)(H)CPU	A generic term for the Q02UCPU, Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, and Q26UDHCPU
QnUCPU	A generic term for the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU
QnUD(H)CPU	A generic term for the Q03UDCPU, Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, and Q26UDHCPU
QnUDE(H)CPU	A generic term for the Q03UDECPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU
QnUDPVCPU	A generic term for the Q04UDPVCPU, Q06UDPVCPU, Q13UDPVCPU, and Q26UDPVCPU
QnUDVCPU	A generic term for the Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU
Redundant CPU	A generic term for the Q12PRHCPU and Q25PRHCPU
Special instruction	A generic term for module dedicated instructions, PID control instructions, socket communication function instructions, built-in I/O function instructions, and data logging function instructions
Universal model Process CPU	A generic term for the Q04UDPVCPU, Q06UDPVCPU, Q13UDPVCPU, and Q26UDPVCPU
Universal model QCPU	A generic term for the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDHCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDEHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDEHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU

1 OVERVIEW

1.1 Purpose of This Manual

This manual explains the common instructions used for creating structured programs. Manuals for reference are listed in the following table according to their purpose.

For information such as the contents and number of each manual, refer to the list of 'Related manuals'.

Page 12 Relevant manuals

Operation of GX Works2

Purpose		Summary	Detail
Installation	Learning the operating environment and installation method	-	GX Works2 Installation Instructions
	Learning a USB driver installation method	_	GX Works2 Version 1 Operating Manual (Common)
Operation of GX	Learning all functions of GX Works2	GX Works2 Version 1 Operating Manual	—
Works2	Learning the project types and available languages in GX Works2	(Common)	_
	Learning the basic operations and operating procedures when creating a simple project for the first time	_	GX Works2 Beginner's Manual (Simple Project)
	Learning the basic operations and operating procedures when creating a structured project for the first time	_	GX Works2 Beginner's Manual (Structured Project)
	Learning the operations of available functions regardless of project type.	-	GX Works2 Version 1 Operating Manual (Common)
	Learning the functions and operation methods for programming	GX Works2 Version 1 Operating Manual (Common)	GX Works2 Version 1 Operating Manual (Simple Project) GX Works2 Version 1 Operating Manual (Structured Project)
	Learning data setting methods for intelligent function module	-	GX Works2 Version 1 Operating Manual (Intelligent Function Module)

Operations in each programming language

For details of instructions used in each programming language, refer to the following.

Page 15 Details of instructions in each programming language

Purpose		Summary	Detail	
Simple Project	Ladder	GX Works2 Beginner's Manual (Simple Project)	GX Works2 Version 1 Operating Manual (Simple Project)	
	SFC	GX Works2 Beginner's Manual (Simple Project) ^{*1}		
	ST	GX Works2 Beginner's Manual (Structured Project)	GX Works2 Version 1 Operating Manual (Structured Project)	
Structured Project	Ladder	GX Works2 Beginner's Manual (Simple Project)	GX Works2 Version 1 Operating Manual (Simple Project)	
	SFC	GX Works2 Beginner's Manual (Simple Project) ^{*1}		
	Structured ladder/FBD	GX Works2 Beginner's Manual	GX Works2 Version 1 Operating Manual	
	ST	(Structured Project)	(Structured Project)	

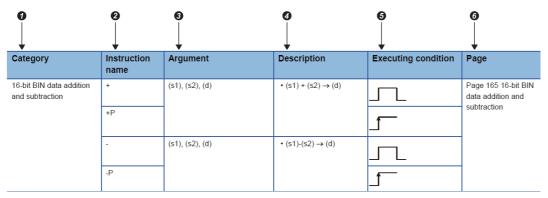
*1 MELSAP3 and FX series SFC only

Details of instructions in each programming language

Purpose		Summary	Detail
All languages	Learning details of programmable controller CPU error codes, special relays, and special registers	_	L Use's Manual (Hardware Design, Maintenance and Inspection) for the CPU module used
Using ladder language	Learning the types and details of common instructions	_	MELSEC-Q/L Programming Manual (Common Instruction)
	Learning the types and details of instructions for intelligent function modules	_	L Manual for the intelligent function module used
	Learning the types and details of instructions for network modules	_	Manual for the network module used
	Learning the types and details of instructions for the PID control function	_	MELSEC-Q/L/QnA Programming Manual (PID Control Instructions)
	Learning the types and details of the process control instructions	_	MELSEC-Q Programming/Structured Programming Manual (Process Control Instructions)
Using SFC language	Learning details of specifications, functions, and instructions of SFC (MELSAP3)	_	MELSEC-Q/L/QnA Programming Manual (SFC)
Using structured ladder/FBD/ST	Learning the fundamentals for creating a structured program	_	MELSEC-Q/L/F Structured Programming Manual (Fundamentals)
language	Learning the types and details of common instructions	_	MELSEC-Q/L Structured Programming Manual (Common Instructions)
	Learning the types and details of instructions for intelligent function modules	MELSEC-Q/L Structured Programming Manual (Special Instructions)	Manual for the intelligent function module used
	Learning the types and details of instructions for network modules		Manual for the network module used
	Learning the types and details of instructions for the PID control function		MELSEC-Q/L/QnA Programming Manual (PID Control Instructions)
	Learning the types and details of application functions	_	MELSEC-Q/L Structured Programming Manual (Application Functions)
	Learning the types and details of the process control instructions	_	MELSEC-Q Programming/Structured Programming Manual (Process Control Instructions)

2 INSTRUCTION TABLES

2.1 Types of Instructions


Instructions for CPU modules are classified into sequence instructions, basic instructions, application instructions, data link instruction, multiple CPU dedicated instructions, multiple CPU high speed transmission dedicated instructions, and redundant system instructions. These types of instructions are listed in the following Table.

Type of instruction		Description	Reference		
Sequence	Contact instruction	Operation start, series connection, parallel connection	Page 83		
nstruction	Bond instruction	Ladder block connection, operation result pulse, operation result store/read	SEQUENCE		
	Output instruction	Bit device output, pulse output, output inversion			
	Shift instruction	Bit device shift			
	Master control instruction	Master control			
	End instruction	Program conclusion			
	Other instructions	Instructions not classified into the above types, such as program stop and no operation			
Basic	Comparison operation instruction	Comparison such as =, >, and <	Page 139 BASI		
instruction	Arithmetic operation instruction	Addition, subtraction, multiplication, and division of BIN, BCD, floating-point data or string	INSTRUCTIONS		
	Data conversion instruction	Conversion from BIN to BCD data and vice versa, conversion from BIN data to floating-point data and vice versa			
	Data transfer instruction	Specified data transfer	1		
	Program branch instruction	Program jump			
	Program execution control instruction	Enable/disable interrupt programs	1		
	I/O refresh instruction	Partial refresh execution	1		
	Other convenient instructions	Instructions such as up/down counter, teaching timer, special function timer, and rotary table shortest direction control			
Application	Logical operation instruction	Logical operations such as logical OR and logical AND	Page 318		
nstruction	Rotation instruction	Specified data rotation	APPLICATION INSTRUCTIONS		
	Shift instruction	Specified data shift			
	Bit processing instruction	Bit set/reset, bit test, bit device batch reset			
	Data processing instruction	Data processes such as 16-bit data search, decode, and encode			
	Structured instruction	Repeated operation, subroutine program call, selection of refresh, fixed index setting			
	Data table operation instruction	Data read/write from/to data tables			
	Buffer memory access instruction	Data read/write from/to intelligent function module			
	Display instruction	ASCII code print, reset the annunciator			
	Debug/error diagnostics instruction	Special format error check, changing check format of the CHK instruction	1		
	String processing instruction	Conversion from BIN/BCD data to ASCII data and vice versa, conversion from BIN data to character string data and vice versa, conversion from floating-point data to character string data and vice versa, character string process			
	Special function instruction	Trigonometric functions, conversion from degree to radian and vice versa, exponential operation, natural logarithm, common logarithm, square root			
	Data control instruction	Upper/lower limit control, dead band control, zone control, scaling	1		
	File register switching instruction	File register block numbers switch, file register/comment file specification	1		
-	Clock instruction	Clock data (year, month, day, hour, minute, second, and day of week) read/ write, clock data (hour, minute, and second) addition/subtraction, time data conversion from hour/minute/second format to seconds and vice versa, date (year, month, and day) comparison, clock data (hour, minute, and second) comparison			
	Extended Clock Instruction	Clock data (year, month, day, hour, minute, second, day of week, and millisecond) read/write, clock data (hour, minute, second, and millisecond) addition/subtraction			
	Program control instruction	Switch instruction of program executing conditions			
	Other instructions	Instructions not classified into the above types, such as WDT reset and timing clock	3		

Type of instr	uction	Description	Reference
Data Link	Network link refresh instruction	Specified network module refresh	Page 799 DATA
instruction	Routing information read/register instruction	Routing data read/register	LINK
	Refresh device write/read instruction	Refresh device write/read	
Multiple CPU dedicated instruction	Multiple CPU dedicated instruction	Data write to host CPU shared memory, data read from other CPU shared memory	Page 828 MULTIPLE CPU DEDICATED INSTRUCTIONS
Multiple CPU high speed transmission dedicated instruction	Multiple CPU device data write/read instruction	Device data write to other CPU, device data read from other CPU	Page 846 MULTIPLE CPU HIGH SPEED TRANSMISSION DEDICATED INSTRUCTIONS
Redundant system instruction	Redundant CPU dedicated instruction	System switching	Page 863 REDUNDANT SYSTEM INSTRUCTIONS (FOR REDUNDANT CPU)

2.2 How to Read Instruction Tables

The instruction tables found from Page 19 Sequence Instructions to Page 60 Redundant System Instruction (For Redundant CPU) have been made according to the following format:

Description

Classifies instructions by application.

Indicates the instructions used in a programs.

3 Indicates the arguments of the instruction.

Symbol	Name	Description	
(s), (s1)	Source	Stores data before operation.	
(d), (d1)	Destination	Indicates the destination of data after operation.	
n, n1	—	Specifies the number of devices and the number of transfers.	
р	—	Specifies the pointer number.	

Indicates the processing details of each instruction.

6 Details of executing conditions of each instruction are as follows:

Symbol	Executing condition
No symbol	Indicates a non-conditional executing instruction that is always executed regardless of the ON/OFF status of the precondition of the instruction. When the precondition is OFF, the instruction performs 'OFF' processing.
	Indicates an 'executed while ON' type instruction that is executed only while the precondition is ON. When the precondition is OFF, the instruction is not executed and does not perform processing.
	Indicates an 'executed once at ON' type instruction that is executed only at the rising edge (OFF to ON) of the precondition of the instruction.
	When the precondition is OFF, the instruction is not executed and does not perform processing. When the precondition is ON, the instruction is not executed and does not perform processing.
	Indicates an 'executed once at OFF' type instruction that is executed only at the falling edge (ON to OFF) of the precondition of the instruction. The instruction is not executed afterwards even when the condition is OFF and thus does not perform processing.

6 Indicates the pages on which the instructions are explained.

2.3 Sequence Instructions

Contact instructions

Category	Instruction name	Symbol used in structured ladder/ FBD	Description	Executing condition	Page
Contact	LD	$\vdash \vdash$	Starts a logical operation. (Starts a logical operation with normally open contact)		Page 83 Operation start, series connection, parallel connection
	LDI		 Starts a logical NOT operation. (Starts a logical operation with normally closed contact) 		
	AND		Performs a logical AND operation (Normally open contact series connection)		
	ANDI		Performs a negative AND operation (Normally closed contact series connection)		
	OR		Performs a logical OR operation (Normally open contact parallel connection)		
	ORI		Performs a negative OR operation (Normally closed contact parallel connection)		
	LDP		Starts a rising edge operation	-	Page 86 Edge operation start, edge series connection, edge parallel connection
	LDF		Starts a falling edge pulse operation		
	ANDP		Rising edge series connection		
	ANDF		Falling edge series connection		
	ORP		Rising edge parallel connection		
	ORF		Falling edge parallel connection		
	LDPI		Starts a negated rising edge operation		Page 89 Negated edge operation start, negated
	LDFI		Starts a negated falling edge operation		edge series connection, negated edge pulse parallel connection
	ANDPI		Negated rising edge series connection	- p	
	ANDFI		Negated falling edge series connection		
	ORPI		Negated rising edge parallel connection		
	ORFI		Negated falling edge parallel connection		

Bond instructions

Category	Instruction name	Symbol used in structured ladder/FBD	Description	Executing condition	Page
Bond	ANB		Performs a logical AND operation between logical blocks (Series connection between logical blocks)		Page 92 Ladder block series connection and parallel connection
	ORB	[;;;;]	Performs a logical OR operation between logical blocks (Parallel connection between logical blocks)		
	MPS		Stores operation results		Page 94 Operation result push/read/pop
	MRD	MRD MPP	Reads operation results stored in the MPS instruction	-	pusnineadipop
	MPP		Reads and resets operation results stored in the MPS instruction		
	INV	-	Inverts operation results		Page 97 Operation result inversion
	MEP	_	Outputs a pulse at a rising edge of operation result		Page 99 Pulse conversion of operation result
	MEF	_	 Outputs a pulse at a falling edge of operation result 		
	EGP	_	 Outputs a pulse at a rising edge of operation result 		Page 101 Pulse conversion of edge relay operation result
	EGF	_	 Outputs a pulse at a falling edge of operation result 		

Output instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Output	OUT	(d)	Outputs devices (excluding timers, counters and annunciators)		Page 103 Out (excluding timers, counters and annunciators)
	OUT_T	(s1), (s2), (d)	 Outputs devices 		Page 105 Timer
	OUTH_T		(Timer)		
	OUT_C	(s1), (s2), (d)	Outputs devices (Counter)		Page 109 Counter
	OUT	(d)	Outputs devices (Annunciator output)		Page 111 Annunciator output
	SET	(d)	Sets devices		Page 113 Setting devices (excluding annunciators)
				When annunciator (F) is used	Page 117 Setting and resetting annunciators
	RST	(d)	Resets devices		Page 115 Resetting devices (excluding annunciators)
				When annunciator (F) is used	Page 117 Setting and resetting annunciators
	PLS	(d)	Generates a pulse for one program cycle at the rising of the input signal	1	Page 120 Rising edge and falling edge outputs
	PLF	(d)	Generates a pulse for one program cycle at the falling of the input signal	_	
	FF	(s)	Inverts device outputs		Page 123 Bit device output inversion
	DELTA	(d)	Direct output pulse		Page 125 Pulse conversion of direct
	DELTAP	(d)			output

Shift instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Shift	SFT	(d)	 1-bit shift of a device 		Page 127 Bit device shift
	SFTP				

Master control instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Master control	MC	n [*] , (d)	 Starts master control 		Page 130 Setting and
	MCR	n*	Resets master control		resetting master control

End instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Program end	FEND	—	 Ends main program 		Page 135 Ending main routine program

Other instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Stop	STOP	_	 Stops sequence program operations after the input condition is satisfied Executes the sequence program when the RUN/STOP (key) is switched back to the RUN position 		Page 137 Sequence program stop

2.4 Basic Instructions

Comparison operation instructions

Category	Instruction name	Argument	Description	Executing condition	Page
16-bit BIN data comparison	LD=	(s1), (s2)	Conduction state when (s1) = (s2)		Page 139 16-bit
	AND=	(s1), (s2)	Non-conduction state when (s1) ≠ (s2)		BIN data
	OR=	(s1), (s2)			comparison
	LD<>	(s1), (s2)	Conduction state when (s1) ≠ (s2)		_
	AND<>	(s1), (s2)	• Non-conduction state when (s1) = (s2)		
	OR<>	(s1), (s2)			
	LD<=	(s1), (s2)	• Conduction state when $(s1) \leq (s2)$		
	AND<=	(s1), (s2)	Non-conduction state when (s1) > (s2)		
	OR<=	(s1), (s2)			
	LD<	(s1), (s2)	Conduction state when (s1) < (s2)		
	AND<	(s1), (s2)	• Non-conduction state when $(s1) \ge (s2)$		
	OR<	(s1), (s2)			
	LD>=	(s1), (s2)	• Conduction state when $(s1) \ge (s2)$		
	AND>=	(s1), (s2)	• Non-conduction state when (s1) < (s2)		_
	OR>=	(s1), (s2)			
	LD>	(s1), (s2)	• Conduction state when (s1) > (s2)		
	AND>	(s1), (s2)	• Non-conduction state when $(s1) \leq (s2)$		
	OR>	(s1), (s2)			
32-bit BIN data comparison	LDD=	(s1), (s2)	• Conduction state when ((s1)+1, (s1)) =		Page 142 32-bit BIN data comparison
	ANDD=	(s1), (s2)	((s2)+1, (s2)) • Non-conduction state when ((s1)+1, (s1)) ≠		
	ORD=	(s1), (s2)	((s2)+1, (s2))		
	LDD<>	(s1), (s2)	Conduction state when ((s1)+1, (s1)) ≠		
	ANDD<>	(s1), (s2)	((s2)+1, (s2))		
	ORD<>	(s1), (s2)	• Non-conduction state when ((s1)+1, (s1)) = ((s2)+1, (s2))		
	LDD<=	(s1), (s2)	 Conduction state when ((s1)+1, (s1)) ≤ 		
	ANDD<=	(s1), (s2)	((s2)+1, (s2))		
	ORD<=	(s1), (s2)	• Non-conduction state when ((s1)+1, (s1)) > ((s2)+1, (s2))		
	LDD<	(s1), (s2)	Conduction state when ((s1)+1, (s1)) <		-
	ANDD<	(s1), (s2)	((s2)+1, (s2))		
	ORD<	(s1), (s2)	 Non-conduction state when ((s1)+1, (s1)) ≥ ((s2)+1, (s2)) 		
	LDD>=	(s1), (s2)	 Conduction state when ((s1)+1, (s1)) ≥ 		1
	ANDD>=	(s1), (s2)	((s2)+1, (s2))		
	ORD>=	(s1), (s2)	 Non-conduction state when ((s1)+1, (s1)) < ((s2)+1, (s2)) 		
	LDD>	(s1), (s2)	Conduction state when ((s1)+1, (s1)) >		-
	ANDD>	(s1), (s2)	((s2)+1, (s2))		
	ORD>	(s1), (s2)	 Non-conduction state when ((s1)+1, (s1)) ≤ ((s2)+1, (s2)) 		

Category	Instruction name	Argument	Description	Executing condition	Page
Floating-point data	LDE=	(s1), (s2)	Conduction state when ((s1)+1, (s1)) =		Page 145
comparison (single precision)	ANDE=	(s1), (s2)	((s2)+1, (s2)) • Non-conduction state when ((s1)+1, (s1)) ≠		Floating-point data comparison
	ORE=	(s1), (s2)	((s2)+1, (s2))		(single precision)
	LDE<>	(s1), (s2)	Conduction state when ((s1)+1, (s1)) ≠		
	ANDE<>	(s1), (s2)	((s2)+1, (s2)) • Non-conduction state when ((s1)+1, (s1)) =		
	ORE<>	(s1), (s2)	((s2)+1, (s2))		
	LDE<=	(s1), (s2)	 Conduction state when ((s1)+1, (s1)) ≤ ((s2)+1, (s2)) Non-conduction state when ((s1)+1, (s1)) > ((s2)+1, (s2)) 		
	ANDE<=	(s1), (s2)			
	ORE<=	(s1), (s2)			
	LDE<	(s1), (s2)	Conduction state when ((s1)+1, (s1)) <		
	ANDE<	(s1), (s2)	((s2)+1, (s2)) • Non-conduction state when ((s1)+1, (s1)) ≥		
	ORE<	(s1), (s2)	((s2)+1, (s2))		
	LDE>=	(s1), (s2)	 Conduction state when ((s1)+1, (s1)) ≥ 		
	ANDE>=	(s1), (s2)	((s2)+1, (s2)) • Non-conduction state when ((s1)+1, (s1)) <		
	ORE>=	(s1), (s2)	((s2)+1, (s2))		
	LDE>	(s1), (s2)	Conduction state when ((s1)+1, (s1)) >		1
	ANDE>	(s1), (s2)	((s2)+1, (s2)) • Non-conduction state when ((s1)+1, (s1)) ≤		
	ORE>	(s1), (s2)	$((s_2)+1, (s_2))$		

Category	Instruction name	Argument	Description	Executing condition	Page
Floating-point data comparison (double precision)	LDED=	(s1), (s2)	 Conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) = ((s2)+3, (s2)+2, (s2)+1, (s2)) Non-conduction state when ((s1)+3, (s1)+2, 		Page 148 Floating-point data comparison
	ANDED=	(s1), (s2)	$(s1)+1, (s1)) \neq ((s2)+3, (s2)+2, (s2)+1, (s2))$		(double precision)
	ORED=	(s1), (s2)	-		
	LDED<>	(s1), (s2)	 Conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) ≠ ((s2)+3, (s2)+2, (s2)+1, (s2)) 		
	ANDED<>	(s1), (s2)	• Non-conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) = ((s2)+3, (s2)+2, (s2)+1, (s2))		
	ORED<>	(s1), (s2)	-		
	LDED<=	(s1), (s2)	 Conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) ≤ ((s2)+3, (s2)+2, (s2)+1, (s2)) Non-conduction state when ((s1)+3, (s1)+2, 		-
	ANDED<=	(s1), (s2)	(s1)+1, (s1)) > ((s2)+3, (s2)+2, (s2)+1, (s2))		
	ORED<=	(s1), (s2)	-		
	LDED<	(s1), (s2)	 Conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) < ((s2)+3, (s2)+2, (s2)+1, (s2)) Non-conduction state when ((s1)+3, (s1)+2, 		-
	ANDED<	(s1), (s2)	$(s1)+1, (s1)) \ge ((s2)+3, (s2)+2, (s2)+1, (s2))$		
	ORED<	(s1), (s2)	-		
	LDED>=	(s1), (s2)	• Conduction state when $((s1)+3, (s1)+2, (s1)+1, (s1)) \ge ((s2)+3, (s2)+2, (s2)+1, (s2))$		
	ANDED>=	(s1), (s2)	• Non-conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) < ((s2)+3, (s2)+, (s2)+1, (s2))		
	ORED>=	(s1), (s2)			
	LDED>	(s1), (s2)	 Conduction state when ((s1)+3, (s1)+2, (s1)+1, (s1)) > ((s2)+3, (s2)+2, (s2)+1, (s2)) Non-conduction state when ((s1)+3, (s1)+2, 		-
	ANDED>	(s1), (s2)	$(s1)+1, (s1)) \le ((s2)+3, (s2)+2, (s2)+1, (s2))$		
	ORED>	(s1), (s2)			

Category	Instruction	Argument	Description	Executing	Page
	name			condition	
Character string data comparison	LD\$=	(s1), (s2)	Compares the character string of (s1) with the character string of (s2) character by character.*1		Page 152 Character string data comparison
	AND\$=	(s1), (s2)	 Conduction state when (Character string of (s1)) = (Character string of (s2)) Non-conduction state when (Character string 		
	OR\$=	(s1), (s2)	of (s1)) ≠ (Character string of (s2))		
	LD\$<>	(s1), (s2)	Compares the character string of (s1) with the character string of (s2) character by character. ^{*1}		
	AND\$<>	(s1), (s2)	 Conduction state when (Character string of (s1)) ≠ (Character string of (s2)) 		
	OR\$<>	(s1), (s2)	 Non-conduction state when (Character string of (s1)) = (Character string of (s2)) 		
	LD\$<=	(s1), (s2)	Compares the character string of (s1) with the character string of (s2) character by character.*1		
	AND\$<=	(s1), (s2)	 Conduction state when (Character string of (s1)) ≤ (Character string of (s2)) Non-conduction state when (Character string of (s1)) > (Character string of (s2)) 		
	OR\$<=	(s1), (s2)			
	LD\$<	(s1), (s2)	Compares the character string of (s1) with the character string of (s2) character by character.*1		
	AND\$<	(s1), (s2)	 Conduction state when (Character string of (s1)) < (Character string of (s2)) Non-conduction state when (Character string 		
	OR\$<	(s1), (s2)	of $(s1)$ \geq (Character string of $(s2)$)		
	LD\$>=	(s1), (s2)	Compares the character string of (s1) with the character string of (s2) character by character. ^{*1}		
	AND\$>=	(s1), (s2)	 Conduction state when (Character string of (s1)) ≥ (Character string of (s2)) 		
	OR\$>=	(s1), (s2)	 Non-conduction state when (Character string of (s1)) < (Character string of (s2)) 		
	LD\$>	(s1), (s2)	Compares the character string of (s1) with the character string of (s2) character by character. ^{*1}		-
	AND\$>	(s1), (s2)	 Conduction state when (Character string of (s1)) > (Character string of (s2)) Non-conduction state when (Character string of (s2)) 		
	OR\$>	(s1), (s2)	of (s1)) ≤ (Character string of (s2))		

 $^{\star}1$ $\,$ The following shows the comparison conditions when character strings are compared.

Match condition: All character strings are matched.

• Conditions for larger character string: For different character strings, character strings with larger character codes. For different character string lengths, larger character string lengths.

• Conditions for smaller character string:For different character strings, character strings with smaller character codes. For different character string lengths, smaller character string lengths.

Category	Instruction name	Argument	Description	Executing condition	Page
16-bit BIN block data	BKCMP=	(s1), (s2), n, (d)	Compares the 16-bit		Page 156 16-bit BIN block data comparison
comparison	BKCMP<>	(s1), (s2), n, (d)	BIN data n points from the device specified for		
	BKCMP<=	(s1), (s2), n, (d)	(s1) or constant with		companson
	BKCMP<	(s1), (s2), n, (d)	the 16-bit BIN data n		
	BKCMP>=	(s1), (s2), n, (d)	points from the device specified for (s2), and		
	BKCMP>	(s1), (s2), n, (d)	stores the result to (d)		
	BKCMP=P	(s1), (s2), n, (d)	and the following	f	
	BKCMP<>P	(s1), (s2), n, (d)	devices.		
	BKCMP<=P	(s1), (s2), n, (d)	-		
	BKCMP <p< td=""><td>(s1), (s2), n, (d)</td><td></td></p<>	(s1), (s2), n, (d)			
	BKCMP>=P	(s1), (s2), n, (d)	-		
	BKCMP>P	(s1), (s2), n, (d)	-		
32-bit BIN block data	DBKCMP=	(s1), (s2), n, (d)	Compares the 32-bit		Page 159 32-bit BIN block data comparison
comparison	DBKCMP<>	(s1), (s2), n, (d)	BIN data n points from the device specified for		
	DBKCMP<=	(s1), (s2), n, (d)	(s1) or constant with		
	DBKCMP<	(s1), (s2), n, (d)	the 32-bit BIN data n		
	DBKCMP>=	(s1), (s2), n, (d)	points from the device specified for (s2), and		
	DBKCMP>	(s1), (s2), n, (d)	stores the result to (d)		
	DBKCMP=P	(s1), (s2), n, (d)	and the following	f	-
	DBKCMP<>P	(s1), (s2), n, (d)	devices		
	DBKCMP<=P	(s1), (s2), n, (d)	1		
	DBKCMP <p< td=""><td>(s1), (s2), n, (d)</td><td>1</td><td></td></p<>	(s1), (s2), n, (d)	1		
	DBKCMP>=P	(s1), (s2), n, (d)]		
	DBKCMP>P	(s1), (s2), n, (d)]		

Arithmetic operation instructions

Category	Instruction name	Argument	Description	Executing condition	Page
16-bit BIN data addition and subtraction	+	(s1), (s2), (d)	• (s1) + (s2) \rightarrow (d)		Page 163 16-bit BIN data addition and
	+P				subtraction
	-	(s1), (s2), (d)	• (s1)-(s2) \rightarrow (d)		-
	-P	_			
32-bit BIN data addition and subtraction	D+	(s1), (s2), (d)	• $((s1)+1, (s1))+((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		Page 165 32-bit BIN data addition and
	D+P	-			subtraction
	D-	(s1), (s2), (d)	• $((s1)+1, (s1)) - ((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		-
	D-P	-			-
16-bit BIN data multiplication and division	*	(s1), (s2), (d)	• $(s1) \times (s2) \rightarrow ((d)+1,$ (d))		Page 167 16-bit BIN data multiplication
·	*P	-			and division
	1	(s1), (s2), (d)	 (s1) ÷ (s2) → Quotient (d), Remainder ((d)+1) 		
	/P	_			
32-bit BIN data multiplication and division	D*	(s1), (s2), (d)	• $((s1)+1, (s1)) \times ((s2)+1, (s2)) \rightarrow ((d)+3, (d)+2,$		Page 170 32-bit BIN data multiplication
·	D*P	_	(d)+1, (d))		and division
	D/	(s1), (s2), (d)	• ((s1)+1, (s1)) ÷ ((s2)+1, (s2)) → Quotient		-
	D/P	-	((d)+1, (d)), Remainder ((d)+3, (d)+2)		-
4-digit BCD data addition and subtraction	B+	(s1), (s2), (d)	• $(s1) + (s2) \rightarrow (d)$		Page 173 4-digit BCD data addition
	B+P	_			and subtraction
	B-	(s1), (s2), (d)	• (s1)-(s2) → (d)		-
	B-P	_			-
8-digit BCD data addition and subtraction	DB+	(s1), (s2), (d)	• $((s1)+1, (s1))+((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		Page 175 8-digit BCD data addition
	DB+P	_			and subtraction
	DB-	(s1), (s2), (d)	• $((s1)+1, (s1)) - ((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		-
	DB-P	_		<u> </u>	-
4-digit BCD data multiplication and division	В*	(s1), (s2), (d)	• $(s1) \times (s2) \rightarrow ((d)+1,$ (d))		Page 177 4-digit BCD data
	B*P	-	(~)/		multiplication and division
	В/	(s1), (s2), (d)	• (s1) \div (s2) \rightarrow Quotient (d), Remainder ((d)+1)		-
	B/P	-			-

Category	Instruction name	Argument	Description	Executing condition	Page
8-digit BCD data multiplication and division	DB*	(s1), (s2), (d)	• $((s1)+1, (s1)) \times ((s2)+1,$ (s2)) $\rightarrow ((d)+3, (d)+2,$ (d)+1, (d))		Page 179 8-digit BCD data multiplication and
	551				division
	DB/	(s1), (s2), (d)	• $((s1)+1, (s1)) \div ((s2)+1, (s2)) \rightarrow Quotient$		
	DB/P		((d)+1, (d)), Remainder ((d)+3, (d)+2)	_ _	
Floating-point data addition and subtraction	E+	(s1), (s2), (d)	• $((s1)+1, (s1))+((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		Page 182 Floating- point data addition
(single precision)	E+P				and subtraction (single precision)
	E-	(s1), (s2), (d)	• $((s1)+1, (s1)) - ((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		
	E-P			_ _	
Floating-point data addition and subtraction	ED+	(s1), (s2), (d)	• ((s1)+3, (s1)+2, (s1)+1, (s1))+((s2)+3, (s2)+2,		Page 184 Floating- point data addition
(double precision)	ED+P		$(s2)+1, (s2)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))$	_ _	and subtraction (double precision)
	ED-	(s1), (s2), (d)	• ((s1)+3, (s1)+2, (s1)+1, (s1)) - ((s2)+3, (s2)+2,		
	ED-P		$(s2)+1, (s2)) \rightarrow ((d)+3,$ (d)+2, (d)+1, (d))	_ _	
Floating-point data multiplication and division	E*	(s1), (s2), (d)	• $((s1)+1, (s1)) \times ((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		Page 186 Floating- point data
(single precision)	E*P				multiplication and division (single precision)
	E/	(s1), (s2), (d)	• $((s1)+1, (s1)) \div ((s2)+1,$ (s2)) \rightarrow Quotient ((d)+1, (d))		
	E/P		((a), (a))	_ _	
Floating-point data multiplication and division	ED*	(s1), (s2), (d)	 • ((s1)+3, (s1)+2, (s1)+1, (s1)) × ((s2)+3, (s2)+2, 		Page 188 Floating- point data
(double precision)	ED*P	-	$(s_2)+1, (s_2) \rightarrow (d)+3,$ (d)+2, (d)+1, (d))		multiplication and division (double
	ED/	(s1), (s2), (d)	• ((s1)+3, (s1)+2, (s1)+1, (s1)) ÷ ((s2)+3, (s2)+2,		precision)
	ED/P	-	$(s2)+1, (s2)) \rightarrow$ Quotient ((d)+3, (d)+2, (d)+1, (d))	1	
16-bit BIN block data addition and subtraction	BK+	(s1), (s2), n, (d)	Batch adds 16-bit BIN data n points from (s1)		Page 190 16-bit BIN block data addition
	BK+P		and data of n points from (s2).		and subtraction
	BK-	(s1), (s2), n, (d)	Batch subtracts 16-bit BIN data n points from]
	ВК-Р		(s2) from the data of n points from (s1).]

Category	Instruction name	Argument	Description	Executing condition	Page
32-bit BIN block data addition and subtraction	DBK+ DBK+P	(s1), (s2), n, (d)	 Adds 32-bit BIN data or contacts n points from the device specified for (s1) or constant and 32-bit BIN data n points from the device specified for (s2), and stores the result to (d) and the following devices. 		Page 193 32-bit BIN block data addition and subtraction
	DBK- DBK-P	(s1), (s2), n, (d)	Subtracts 32-bit BIN data or contacts n points from the device specified for (s2) or constant from 32-bit BIN data n points from the device specified for (s1), and stores the result to (d) and the following devices.		-
Character string data concatenation	\$+ \$+P	(\$1), (\$2), (d)	Connects the character string specified for (s2) to the character string specified for (s1) and stores the result to (d) and the following devices.		Page 196 Character string data concatenation
BIN data increment	INC INCP DINC DINCP	(d) (d)	• (d) + 1 \rightarrow (d) • ((d)+1, (d))+1 \rightarrow ((d)+1, (d))		Page 198 16-bit BIN data increment and decrement Page 200 32-bit BIN data increment and decrement
BIN data decrement	DEC DECP	(d)	• (d)-1 → (d)		Page 198 16-bit BIN data increment and decrement
	DDEC DDECP	(d)	• ((d)+1, (d))-1 \rightarrow ((d)+1, (d))		Page 200 32-bit BIN data increment and decrement

Data conversion instructions

Category	Instruction name	Argument	Description	Executing condition	Page
BCD data conversion	BCD	(s), (d)	BCD conversion		Page 202 BIN data to 4-/8-
	BCDP		• (s)		digit BCD data conversion
	DBCD	(s), (d)	BCD conversion • (⊚+1,⊚) → (@+1,@)		
	DBCDP		BIN (0 to 99999999)		
BIN data conversion	BIN	(s), (d)	BIN conversion • (s) → (d)		Page 205 4-/8- digit BCD data
	BINP		▲BCD (0 to 9999)		to BIN data conversion
	DBIN	(s), (d)	BIN conversion • (⊚+1,⊛) ——→(@+1,@)		
	DBINP		BCD (0 to 99999999)	_ f	
BIN data to floating- point data conversion	FLT	(s), (d)	Conversion to real number • ⊚→(@+1,@)		Page 208 16-/ 32-bit BIN data
(single precision)	FLTP		BIN(-32768 to 32767)		to floating-point data
	DFLT	(s), (d)	Conversion to real number		conversion (single
	DFLTP		• <u>((s)+1,(s)</u> → ((d)+1,(d)) BIN (-2147483648 to 2147483647)		precision)
BIN data to floating- point data conversion (double precision)	FLTD	(s), (d)	Conversion to real number		Page 211 16-/ 32-bit BIN data
	FLTDP		• <u>s</u> →(@+3,@+2,@+1,@) ■ BIN (-32768 to 32767)		to floating-point data
	DFLTD	(s), (d)	Conversion to real number • (ⓒ+1,ⓒ) → (ⓓ+3,ⓓ+2,ⓓ+1,ⓓ)		conversion (double precision)
	DFLTDP		BIN (-2147483648 to 2147483647)	_ _	p. co.c.c.,
Floating-point data to BIN data conversion (single precision)	INT	(s), (d)	• (⊚+1,⊚) ————●ⓓ		Page 213 Floating-point
	INTP		Real number (-32768 to 32767)		data to 16-/32- bit BIN data
	DINT	(s), (d)	Conversion to BIN data • ((s+1,(s)) → (d+1,(d))		conversion (single
	DINTP		Real number (-2147483648 to 2147483647)		precision)
Floating-point data to BIN data conversion	INTD	(s), (d)	Conversion to BIN data		Page 216 Floating-point
(double precision)	INTDP		• (<u>(s)+3,(s)+2,(s)+1,(s)</u>)+0 •	_ _	data to 16-bit/ 32-bit BIN data
	DINTD	(s), (d)	Conversion to BIN data		conversion (double
	DINTDP		• (((s)+3,(s)+2,(s)+1,(s)) → ((d)+1,(d)) • Real number (-2147483648 to 2147483647)		precision)
16-bit BIN data to 32- bit BIN data	DBL	(s), (d)			Page 219 16- bit BIN data to
bit BIN data conversion	DBLP		• (<u>s</u>) →((<u></u>)+1,(<u>d</u>)) ■ BIN (-32768 to 32767)		32-bit BIN data conversion
32-bit BIN data to 16- bit BIN data	WORD	(s), (d)	 (s)+1,s) Conversion → d 		Page 221 32- bit BIN data to
conversion	WORDP		BIN (-32768 to 32767)		16-bit BIN data conversion

Category	Instruction name	Argument	Description	Executing condition	Page
BIN data to Gray code	GRY	(s), (d)	Conversion to Gray code data		Page 223 16-/
data conversion	GRYP	-	• <u>s</u> d BIN (-32768 to 32767)		32-bit BIN data to Gray code conversion
	DGRY	(s), (d)	Conversion to Gray code data		
	DGRYP		• (<u>(s)+1,(s)</u> → (d)+1,(d) BIN (-2147483648 to 2147483647)		
Gray code data to BIN data conversion	GBIN	(s), (d)	Conversion to BIN data • (s) → (d)		Page 225 Gray code to 16-/32-
	GBINP		• (s) → (d) Gray code (-32768 to 32767)		bit BIN data conversion
	DGBIN	(s), (d)	Conversion to BIN data • (⊚+1,⊚) → (@+1,@)		
	DGBINP		Gray code (-2147483648 to 2147483647)		
Sign inversion (two's complement)	NEG	(d)	• <u>d</u>		Page 227 Two's
	NEGP		[™] ——BIN data		complement of 16-/32-bit BIN
	DNEG	(d)	• (@+1,@)+(@+1,@)		data (sign inversion)
	DNEGP		Ê—— BIN data		
Floating-point sign inversion (single-	ENEG	(d)	• (<u>(</u>]+1, <u>(</u>) • (()+1, <u>(</u>))		Page 229 Sign inversion of
precision)	ENEGP		[‡] —— Real number data		floating-point data (single
Floating-point sign inversion (double-	EDNEG	(d)	• ((@+3,@+2,@+1,@) → ((@+3,@+2,@+1,@)		precision)
precision)	EDNEGP		^T ——Real number data		
Block data conversion	BKBCD	(s), n, (d)	Batch converts BIN data n points from (s) to BCD data and stores the result to (d) and the following devices.		Page 233 16- bit BIN block
	BKBCDP				data to 4-digit BCD block data conversion
	BKBIN	(s), n, (d)	Batch converts BCD data n points from (s) to BIN data and stores the result to (d) and the following devices.		Page 236 4- digit BCD block
	BKBINP				data to 16-bit BIN block data conversion
Floating-point data single precision to double precision conversion	ECON	(s), (d)	Conversion to double precision • (⊚+1,⊚)(@+3,@+2,@+1,@)		Page 239 Single-
	ECONP	-			precision to double- precision conversion
Floating-point data double precision to	EDCON	(s), (d)	Conversion to single precision		Page 241 Double-
single precision conversion	EDCONP		• (((§+3,(s)+2,(s)+1,(s)) → ((d)+1,(d)) 	1	precision to single- precision conversion

Data transfer instructions

Category	Instruction name	Argument	Description	Executing condition	Page
16-bit data transfer	MOV	(s), (d)	• sd		Page 243 16-/ 32-bit data
	MOVP	-			transfer
32-bit data transfer	DMOV	(s), (d)	• (⑤+1,⑤) →(ⓓ+1,ⓓ)		
	DMOVP	-		_ _	
Floating-point data transfer (single	EMOV	(s), (d)	• ((()+1,(())) Real number data		Page 245 Floating-point
precision)	EMOVP				data transfer (single precision)
Floating-point data transfer (double	EDMOV	(s), (d)	• ((\$+3,\$+2,\$+1,\$)→(@+3,@+2,@+1,@)		Page 247 Floating-point
precision)	EDMOVP		[¶] —— Real number data		data transfer (double precision)
Character string data transfer	\$MOV	(s), (d)	Transfers the character string data specified for (s) to (d) and the following devices.		Page 249 Character
	\$MOVP				string data transfer
16-bit data negation transfer	CML	(s), (d)	• s d		Page 252 16-/ 32-bit data
	CMLP				negation transfer
32-bit data negation transfer	DCML	(s), (d)	• ((((s)+1,(s))) → (((d)+1,(d)))		
	DCMLP				
Block data transfer	BMOV	(s), n, (d)			Page 255 16- bit block data
	BMOVP			_ _	transfer
Same 16-bit BIN data block transfer	FMOV	(s), n, (d)	s d		Page 259 Identical 16-bit
	FMOVP			_ _	block data transfer
Same 32-bit BIN data block transfer	DFMOV	(s), n, (d)	@+1,@ \$+1,8 n		Page 262 Identical 32-bit
	DFMOVP				block data transfer
16-bit data exchange	ХСН	(d1), (d2)	• @ • @		Page 265 16-/ 32-bit data
	XCHP				exchange
32-bit data exchange	DXCH	(d1), (d2)	 (@+1,@) (@+1,@) 		
	DXCHP				
Block data exchange	BXCH	n, (d1), (d2)	⊕ @		Page 268 16- bit block data
	BXCHP				exchange
Upper and lower bytes exchange	SWAP	(s)	b15 to b8 b7 to b0 (s) 8 bits 8 bits		Page 270 Upper and
	SWAPP		b15 to b8 b7 to b0 (s) 8 bits 8 bits		lower bytes exchange

Program branch instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Jump	CJ	р	 Jumps to p when the input condition is satisfied. 		Page 272 Pointer branch
	SCJ	p	 Jumps to p from the next scan after the input condition is satisfied. 		
	JMP	р	Unconditionally jumps to p.		
	GOEND	_	Jumps to the FEND instruction when the input condition is satisfied.		Page 276 Jump to END processing

Program execution control instructions

Category	Instruction name	Argument	Description	Executing condition	Page	
Disable interrupt	DI	—	 Disables the execution of interrupt programs. 		Page 278 Interrupt disable/enable, interrupt	
Enable interrupt	EI	—	Cancels the execution disabled status of the interrupt program.		program mask	
Disable/enable interrupt setting	IMASK	(s)	Disables/enables interrupts for each interrupt program.			
Recovery	IRET	_	 Returns to the sequence program from the interrupt program. 		Page 287 Recovery from interrupt programs	

I/O refresh instructions

Category	Instruction name	Argument	Description	Executing condition	Page
I/O refresh	RFS	(s), n	 Performs partial refresh of the corresponding inputs/outputs during one scan. 		Page 290 I/O refresh
	RFSP				

Other convenient instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Up/down counter	UDCNT1	(s), n, (d)	(5)+0		Page 292 Single- phase input up/ down counter
	UDCNT2	(s), n, (d)	(s)+0		Page 295 Two- phase input up/ down counter
Teaching timer	TTMR	n, (d)	• (Time that TTMR is ON)×n → ⓓ n=0:1, n=1:10, n=2:100		Page 298 Teaching timer
Special function timer	STMR	(s), n, (d)	 The 4 points from the bit device specified for (d) perform the following operations depending on the ON/OFF status of input condition of the STMR instruction: (d)+0: Off-delay timer output (d)+1: One-shot timer output after Off (d)+2: One-shot timer output after On (d)+3: On-delay + Off-delay timer output 		Page 300 Special function timer
Shortest direction control	ROTC	(s), n1, n2, (d)	 Rotates the rotary table divided into n1, from the stop position to the position specified for ((s)+1) in the shortest path. 		Page 303 Rotary table shortest direction control
Ramp signal	RAMP	n1, n2, n3, (d1), (d2)	Changes the data of the device specified for (d1) from n1 to n2 in n3 scans.		Page 306 Ramp signal
Pulse density	SPD	(s), n, (d)	• Counts the pulse inputs of the device specified for (s) for the time specified by n and stores the result to the device specified for (d).		Page 309 Pulse density measurement
Fixed cycle pulse output	PLSY	n1, n2, (d)	• (n1)Hz—►@ Output n2 times		Page 311 Fixed cycle pulse output
Pulse width modulation	PWM	n1, n2, (d)			Page 313 Pulse width modulation
Matrix input	MTR	(s), n, (d1), (d2)	 Sequentially captures the data of 16 points multiplied by n columns from the device specified for (s), and stores the captured data to (d2) and the following devices. 		Page 315 Matrix input

2.5 Application Instructions

Logical operation instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Logical AND	WAND	(s1), (s2), (d)	(s1)∧(s2)→(d)		Page 319 Logical AND operation on 16-/32-bit
	WANDP			_ _	data
	DAND	(s1), (s2), (d)	$((s1)+1, (s1)) \land ((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		
	DANDP				
	BKAND	(s1), (s2), n, (d)			Page 322 Logical AND operation on block data
	BKANDP				
Logical OR	WOR	(s1), (s2), (d)	(s1)∀(s2)→(d)		Page 325 Logical OR operation on 16-/32-bit
	WORP				data
	DOR	(s1), (s2), (d)	$((s1)+1, (s1)) \lor ((s2)+1, (s2)) \to ((d)+1, (d))$		
	DORP				
	BKOR	(s1), (s2), n, (d)	(s) @ (d)		Page 328 Logical OR operation on block data
	BKORP			_ _	
Exclusive OR	WXOR	(s1), (s2), (d)	(s1)∀(s2)→(d)		Page 331 Exclusive OR operation on 16-/32-bit
	WXORP				data
	DXOR	(s1), (s2), (d)	$((s1)+1, (s1)) \forall ((s2)+1, (s2)) \rightarrow ((d)+1, (d))$		
	DXORP				
	BKXOR	(s1), (s2), n, (d)			Page 334 Exclusive OR operation on block data
	BKXORP			_ _	
Exclusive NOR	WXNR	(s1), (s2), (d)	$\bullet \ \overline{(\mathfrak{g}) \not \smile (\mathfrak{g})} \to (\mathfrak{g})$		Page 337 Exclusive NOR operation on 16-/
	WXNRP			_ _	32-bit data
	DXNR	(s1), (s2), (d)	$\bullet \overline{(\widehat{\mathrm{sl}}+1, \mathrm{sl})} \not\rightarrowtail (\widehat{\mathrm{e}}+1, \widehat{\mathrm{e}})} \to (\widehat{\mathrm{d}}+1, \mathrm{d})$		
	DXNRP				
	BKXNR	(s1), (s2), n, (d)			Page 340 Exclusive NOR operation on block
	BKXNRP				data

Rotation instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Right rotation	ROR	n, (d)	b15 @ b0 SM700		Page 343 Right rotation of 16-bit
	RORP		Rotates n bits to the right. Carry flag	_ _	data
	RCR	n, (d)	b15 @ b0 SM700		
	RCRP		Rotates n bits to the right. Carry flag	_ _	-
Left rotation	ROL	n, (d)	SM700 b15 @ b0		Page 347 Left rotation of 16-bit
	ROLP		Carry flag Rotates n bits to the left.		data
	RCL	n, (d)	SM700 b15 @ b0		
	RCLP		Carry flag Rotates n bits to the left.		
Right rotation	DROR	n, (d)	(@+1) @ <u>b31 to b16 b15 to b0</u> SM700		Page 351 Right rotation of 32-bit
	DRORP		Rotates n bits to the right. Carry flag	1	data
	DRCR	n, (d)	(@+1) @ <u>b31 to b16 b15 to b0</u> <u>SM70</u> 0		-
	DRCRP		Rotates n bits to the right. Carry flag	1	-
Left rotation DROL	DROL	n, (d)	(@+1) SM700 <u>b31 to b16 b15 to b0</u>		Page 353 Left rotation of 32-bit
	DROLP	-	Carry flag Rotates n bits to the left.		data
	DRCL	n, (d)	(@+1) @ SM700 <u>b31to b16 b15 to b0</u>		-
	DRCLP		Carry flag Rotates n bits to the left.		-

Shift instructions

Category	Instruction name	Argument	Description	Executing condition	Page
n-bit shift	SFR	n, (d)	b15 bn b0		Page 355 n-bit right/left shift of 16-bit data
	SFRP		b15 Carry flag b15 b0 SM700		
	SFL	n, (d)	b15 bn b0		
	SFLP		Carry flag SM700 b15 b0		
1-bit shift of n-bit data	BSFR	n, (d)	n		Page 358 1-bit right/left shift of
	BSFRP		Carry flag SM700		n-bit data
	BSFL	n, (d)			
	BSFLP		Garry flag		
n-bit shift of n-bit data	SFTBR	n1, n2, (d)	n1		Page 361 n-bit right/left shift of
	SFTBRP		Carry flag		n-bit data
	SFTBL	n1, n2, (d)	<u>n</u>		-
	SFTBLP		Garry flag		
1-word shift of n-word data	DSFR	n, (d)	n		Page 364 1-wor right/left shift of
	DSFRP				n-word data
	DSFL	n, (d)	n		-
	DSFLP				-
n-word shift of n-word data	SFTWR	n1, n2, (d)	n1		Page 367 n-wor right/left shift of
	SFTWRP			<u>_</u>	- n-word data
	SFTWL	n1, n2, (d)			-
	SFTWLP				-

Bit processing instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Bit set/reset	BSET	n, (d)	@ b15 bn b0		Page 370 Bit set and reset of
	BSETP	_		_ _	word devices
	BRST	n, (d)	@ <u>b15 bn b</u> 0		-
	BRSTP			1	
Bit test	TEST	(s1), (s2), (d)	(e) b15 to b0 (d) ↓ Bit specified for @		Page 372 Bit test
	TESTP			_ _	
	DTEST	(s1), (s2), (d)	ள் <u>b31 to b0</u>		
	DTESTP	_	Bit specified for @	_ _	
Bit device batch reset	BKRST	(s), n	© ON © OFF OFF OFF		Page 375 Batch reset of
	BKRSTP		ON OFF		bit devices

Data processing instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Data search	SER SERP	(s1), (s2), n, (d)			Page 377 16-/ 32-bit data search
	DSER DSERP	(s1), (s2), n, (d)	32 bits (a) (b) (c) (c) (c) (c) (c) (c) (c) (c		
Bit check	SUM SUMP	(s), (d)	b15 b0 └───→ⓓ: Number of 1s		Page 381 16-/ 32-bit data bit check
	DSUM DSUMP	(s), (d)	(s)+1) s →@: Number of 1s		
Decode	DECO DECOP	(s), n, (d)	Decode from 8 to 256 (a) a a b a a a b a a a b a a b a b a b b a b b b a b b a b b a b b a		Page 383 Decoding from 8 to 256 bits
Encode	ENCO ENCOP	(s), n, (d)	Decode from 256 to 8 (s) $and and and and and and and and and and $		Page 386 Encoding from 256 to 8 bits
7-segment decode	SEG SEGP	(s), (d)	b3 to b0 ⑤ Ø 7SEG ▲		Page 389 7- segment decode
Separation and connection	DIS DIPS	(s), n, (d)	 Separates 16-bit data specified for (s) in units of 4 bits and stores the result to lower 4 bits n points from (d) (n≤4) 		Page 392 4-bit separation of 16- bit data
	UNI	(s), n, (d)	 Connects lower 4-bit data n points from the device specified for (s) and stores the result to the device specified for (d) (n≤4) 		Page 394 4-bit connection of 16-bit data
	NDIS NDISP	(s1), (s2), (d)	 Separates the data in (s1) and the following devices per bits specified by the devices from (s2), and stores the result to (d) and the following devices. 		Page 396 Separation and connection of random data
	NUNI	(s1), (s2), (d)	 Connects the data in (s1) and the following devices per bits specified by the devices from (s2), and stores the result to (d) and the following devices. 		
	WTOB WTOBP	(s), n, (d)	Separates 16-bit data specified for (s) in units of 8 bits for n points of devices and stores the result in order from the device specified for (d).		Page 401 Separation and connection of data in units of bytes
	BTOW BTOWP	(s), n, (d)	Connects lower 8 bits of 16-bit data for n points from the device specified for (s) to 16 bits and stores the result sequentially to the devices starting from the one specified for (d).		

Category	Instruction name	Argument	Description	Executing condition	Page
Search	MAX	(s), n, (d)	Searches the data n points from the device specified for (s) in units of 16 bits and stores the		Page 405 Maximum value
	MAXP		maximum value to the device specified for (d).	_ _	- search of 16-/32- bit data
	DMAX	(s), n, (d)	Searches the data 2 multiplied by n points from the device specified for (s) in units of 32 bits and		-
	DMAXP		stores the maximum value to the device specified for (d).	_ _	
	MIN	(s), n, (d)	Searches the data n points from the device specified for (s) in units of 16 bits and stores the		Page 408 Minimum value
	MINP		minimum value to the device specified for (d).		- search of 16-/32- bit data
	DMIN	(s), n, (d)	Searches the data 2 multiplied by n points from the device specified for (s) in units of 32 bits and		
	DMINP		stores the minimum value to the device specified for (d).		
Sort	SORT	(s1), n, (s2), (d1), (d2)	Sorts the data n points from the device specified for (s1) in units of 16 bits. [n multiplied by (n-1) ÷ 2 scans required]		Page 411 Sorting 16-/32- bit data
	DSORT	(s1), n, (s2), (d1), (d2)	Sorts the data 2 multiplied by n points from the device specified for (s1) in units of 32 bits. [n multiplied by (n-1) ÷ 2 scans required]		
Total calculation	WSUM	(s), n, (d)	Adds all 16-bit BIN data n points from the device specified for (s) and stores the result to the		Page 415 Total calculation of 16- bit data
	WSUMP		device specified for (d).		
	DWSUM	(s), n, (d)	Adds all 32-bit BIN data n points from the device specified for (s) and stores the result to the		Page 417 Total calculation of 32-
	DWSUMP		device specified for (d).		- bit data
Average calculation	MEAN	(s), n, (d)	Calculates the average of n points (unit of 16-bit) from the device specified for (s) and stores the		Page 419 Average
	MEANP		result to the device specified for (d).		calculation of 16- /32-bit data
	DMEAN	(s), n, (d)	Calculates the average of n points (unit of 32-bit) from the device specified for (s) and stores the		
	DMEANP		result to the device specified for (d).		

Structured instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Repeat	FOR NEXT	n 	Executes the operation n times within the FOR to NEXT instruction loop.		Page 421 FOR to NEXT instruction loop
	BREAK	p, (d)	Forcibly terminates the execution of the [FOR] to [NEXT] instruction loop and jumps to the pointer p.		Page 424 Forced termination of FOR to NEXT instruction loop
Subroutine program call	CALL	p	Executes the subroutine program p when the input condition is satisfied.		Page 426 Subroutine program call
Return from subroutine program	RET	-	Returns from the subroutine program.		Page 429 Return from subroutine program
Selection of refresh instructions	СОМ	-	• Executes the auto refresh of intelligent function modules, the auto refresh of link refresh, and the communication processing.		Page 430 Refresh
			• Executes the auto refresh of intelligent function modules, the link refresh, the auto refresh of CPU shared memory, and the communication processing.		Page 433 Selection of refresh(COM)
	ССОМ	_	Executes the auto refresh of intelligent function modules, the auto refresh of the CPU shared memory, and the communication processing.		Page 437 Selection of refresh(CCOM(P))

Data table operation instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Data table process	FIFW	(s), (d)	© @ Pointer Pointer + 1		Page 439 Writing data to
	FIFWP		Device at pointer + 1		— data table
	FIFR	(s), (d)	Pointer Pointer - 1		Page 442 Reading oldest data from data
	FIFRP				table
	FPOP	(s), (d)	Pointer Pointer - 1		Page 445 Reading newest data
	FPOPP		Device at pointer + 1	_ _	from data table
	FDEL	(s), n, (d)	Pointer - 1 ④		Page 448 Deleting/
	FDELP		Specified for n		 inserting data from/to data table
	FINS	(s), n, (d)	© @ Pointer Pointer + 1		
	FINSP		Specified for n		

Buffer memory access instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Data read	FROM	n1, n2, n3, (d)	 Reads data in units of 16 bits from the intelligent function module. 		Page 451 Reading 1-/2-
	FROMP			_ _	word data from intelligent
	DFRO	n1, n2, n3, (d)	Reads data in units of 32 bits from the intelligent function module.		function module
	DFROP			_ _	
Data write	ТО	(s), n1, n2, n3	Writes data in units of 16 bits to the intelligent function module.		Page 454 Writing 1-/2-
	ТОР	-		_ _	word data to intelligent
	DTO	(s), n1, n2, n3	Writes data in units of 32 bits to the intelligent function module.		function module
	DTOP]		_ _	

Display instructions

Category	Instruction name	Argument	Description	Executing condition	Page
ASCII print	PR	(s), (d)	When SM701 is ON, outputs 8 points of ASCII code (16 characters) from the device specified for (s) to the output module.	_ _	Page 458 Printing ASCII code
	PR	(s), (d)	When SM701 is OFF, outputs ASCII code data from the device specified for (s) up to 00H to the output module.		
	PRC	(s), (d)	Converts comments in the device specified for (s) to ASCII code data and outputs the result to the output module.		Page 462 Printing comments
Reset	LEDR	-	Resets the error display or the annunciator.	1	Page 466 Resetting error display or annunciator

Debug/error diagnostics instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Check	CHKST	_	 Executes the CHK instruction when the CHKST instruction is executed. Jumps to the step following the CHK instruction when the CHKST instruction is not executed. 		Page 468 Special format error check
	СНК	-	 Normal operation → SM80: OFF, SD80: 0 Abnormal operation → SM80: ON, SD80: Error number 		
	CHKCIR	—	Start of change in a ladder pattern checked by the CHK instruction		Page 472 Changing check format of the CHK instruction
	CHKEND	-	End of change in a ladder pattern checked by the CHK instruction		

String processing instructions

Category	Instruction name	Argument	Description	Executing condition	Page
BIN data to decimal ASCII data conversion	BINDA	(s), (d)	Converts 1 word of BIN data specified for (s) to 5 digits of decimal ASCII data and stores the result to the word device specified for (d).		Page 475 16-/ 32-bit BIN data to decimal ASCII data
	DBINDA	(s), (d)	Converts 2 words of BIN data specified for (s) to 10 digits of decimal ASCII data and stores the result to (d) and the following word devices.		conversion
BIN data to hexadecimal ASCII data conversion	BINHA	(s), (d)	Converts 1 word of BIN data specified for (s) to 4 digits of hexadecimal ASCII data and stores the result to (d) and the following word devices.		Page 479 16-/ 32-bit BIN data to hexadecimal ASCII data conversion
	DBINHA	(s), (d)	Converts 2 words of BIN data specified for (s) to 8 digits of hexadecimal ASCII data and stores the result to (d) and the following word devices.	ſ	_
BCD data to decimal ASCII data conversion	BCDDA	(s), (d)	Converts 1 word of BCD data specified for (s) to 4 digits of decimal ASCII data and stores the result to (d) and the following word devices.		Page 482 4-/8- digit BCD data to decimal ASCII data conversion
	DBCDDA DBCDDAP	(s), (d)	Converts 2 words of BCD data specified for (s) to 8 digits of decimal ASCII data and stores the result to (d) and the following word devices.		_
Decimal ASCII data to BIN data conversion	DABIN	(s), (d)	Converts 5 digits of decimal ASCII data specified for (s) to 1 word of BIN data and stores the result to the word device specified for (d).		Page 486 Decimal ASCII data to 16-/32- bit BIN data conversion
	DDABIN	(s), (d)	• Converts 10 digits of decimal ASCII data specified for (s) to 2 words of BIN data and stores the result to the word device specified for (d).		-
Hexadecimal ASCII data to BIN data conversion	HABIN	(s), (d)	Converts 4 digits of hexadecimal ASCII data specified for (s) to 1 word of (16-bit) BIN data and stores the result to the word device specified for (d).		Page 489 Hexadecimal ASCII data to 16-/32-bit BIN data
	DHABIN	(s), (d)	Converts 8 digits of hexadecimal ASCII data specified for (s) to 2 words of BIN data and stores the result to the word device specified for (d).		conversion
Decimal ASCII data to BCD data conversion	DABCD DABCDP	(s), (d)	Converts 4 digits of decimal ASCII data specified for (s) to 1 word of BCD data and stores the result to the word device specified for (d).		Page 492 Decimal ASCII data to 4-/8- digit BCD data
	DDABCD DDABCDP	(s), (d)	Converts 8 digits of decimal ASCII data specified for (s) to 2 words of BCD data and stores the result to the word device specified for (d).		conversion
Device comment data read	COMRD	(s), (d)	Stores the comment data from the device specified for (s) and stores it to the device specified for (d).		Page 495 Reading device comment data

Category	Instruction name	Argument	Description	Executing condition	Page
Character string length detection	LEN	(s), (d)	Stores the length (number of characters) of character string data stored in the device specified for (s) to the device specified for (d).		Page 498 Character string length detection
BIN data to decimal character string data conversion	STR STRP	(s1), (s2), (d)	Converts 1 word of BIN value specified for (s2) to character string data according to the total number of digits and number of digits in the fractional part specified for (s1), and stores the result to the device specified for (d).	 	Page 500 16-/ 32-bit BIN data to character string data conversion
	DSTR	(s1), (s2), (d)	Converts 2 words of BIN value specified for (s2) to character string data according to the total number of digits and number of digits in the fractional part specified for (s1), and stores the result to the device specified for (d).	 	_
Decimal character string data to BIN data conversion	VAL	(s), (d1), (d2)	Converts character string data contain a decimal point specified for (s) to 1 word of BIN value and number of digits in the fractional part, and stores the result to the devices specified for (d1) and (d2).		Page 505 Character string data to 16-/32-bit BIN data
	DVAL DVALP	(s), (d1), (d2)	Converts character string data contain a decimal point specified for (s) to 2 words of BIN data and number of digits in the fractional part, and stores the result to the devices specified for (d1) and (d2).		conversion
Floating-point data to character string data conversion	ESTR	(s1), (s2), (d)	Converts floating-point data specified for (s) to character string data according to the display specification specified for (s) and stores the result to the device specified for (d).		Page 510 Floating-point data to character string data conversion
Character string data to floating- point data conversion	EVAL	(s), (d)	Converts character string data specified for (s) to floating-point data and stores the result to the device specified for (d).		Page 516 Character string data to floating-point data conversion
Hexadecimal BIN data to ASCII data conversion	ASC ASCP	(s), n, (d)	Converts 1 word of BIN value in (s) and the following word devices to hexadecimal ASCII data and stores the number of characters specified for n to (d) and the following word devices.		Page 521 Hexadecimal BIN data to ASCII data conversion
ASCII data to hexadecimal BIN data conversion	HEX HEXP	(s), n, (d)	Converts n numbers of hexadecimal ASCII data in (s) and the following word devices to BIN data and stores the result to (d) and the following word devices.		Page 524 ASCII data to hexadecimal BIN data conversion

Category	Instruction name	Argument	Description	Executing condition	Page
String processing	RIGHT RIGHTP	(s), n, (d)	Stores n characters from the end of the character string data specified for (s) to the device specified for (d).		Page 527 Extraction of character string data from right/
	LEFT	(s), n, (d)	Stores n characters from the start of the character string data specified for (s) to the device specified for (d).		left
	MIDR	(s1), (s2), (d)	• Stores the specified number of characters from the position specified for (s2) of the character string data specified for (s1) to the device specified for (d).		Page 530 Random selection and replacement in character string
	MIDW	(s1), (s2), (d)	• Stores the specified number of characters from the character string data (s1) to the position specified for (s2) of the character string data (d).		data
	INSTR	(s1), (s2), n, (d)	Searches for the character string data (s1) from the nth character of the character string data (s2) and stores matched positions to (d).		Page 535 Character string data search
	STRINS STRINSP	(s), n, (d)	 Inserts the character string data specified for (s) to the n-th character (insert position) from the top of the character string data specified for (d). 		Page 538 Character string data insert
	STRDEL STRDELP	n1, n2, (d)	Deletes n2 characters from n1-th character (deletion start position) from the top of the character string data specified for (d).		Page 541 Character string data delete
Floating-point data to BCD format data conversion	EMOD	(s1), (s2), (d)	Converts floating-point data (s1) to BCD data of the fractional part digits specified for (s2) and stores the result to the device specified for (d).		Page 543 Floating-point data to BCD format conversion
BCD format data to floating-point data conversion	EREXP	(s1), (s2), (d)	Converts BCD data (s1) to floating-point data with the fractional part digits specified for (s2) and stores the result to the device specified for (d).		Page 546 BCD format to floating-point data conversion

Special function instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Trigonometric functions (single- precision floating-point data)	SIN	(s), (d)	 Sin((s)+1, (s)) → ((d)+1, (d)) 		Page 548 SIN operation on floating-point data (single precision)
	COS COSP	(s), (d)	• $Cos((s)+1, (s)) \rightarrow ((d)+1, (d))$		Page 553 COS operation on floating-point data (single precision)
	TAN	(s), (d)	• Tan((s)+1, (s)) → ((d)+1, (d))		Page 559 TAN operation on floating-point data (single
	ASIN	(s), (d)	• Sin ⁻¹ ((s)+1, (s)) \rightarrow ((d)+1, (d))		precision) Page 565 SIN ⁻¹ operation on floating-point data (single precision)
	ACOS ACOSP	(s), (d)	• $\text{Cos}^{-1}((s)+1, (s)) \to ((d)+1, (d))$		Page 571 COS ⁻¹ operation on floating-point data (single precision)
	ATAN ATANP	(s), (d)	• Tan ⁻¹ ((s)+1, (s)) → ((d)+1, (d))		Page 577 TAN ⁻ ¹ operation on floating-point data (single precision)
Trigonometric functions (double- precision floating-point data)	SIND SINDP	(s), (d)	• Sin((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))		Page 551 SIN operation on floating-point data (double precision)
	COSD	(s), (d)	• Cos((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))		Page 556 COS operation on floating-point data (double precision)
	TAND	(s), (d)	• Tan((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))	 	Page 562 TAN operation on floating-point data (double precision)
	ASIND	(s), (d)	• Sin ⁻¹ ((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))		Page 568 SIN ⁻¹ operation on floating-point data (double precision)
	ACOSD ACOSDP	(s), (d)	• $\operatorname{Cos}^{-1}((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))$		Page 574 COS ⁻ ¹ operation on floating-point data (double precision)
	ATAND	(s), (d)	• Tan ⁻¹ ((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))		Page 580 TAN ⁻ ¹ operation on floating-point data (double precision)

Category	Instruction name	Argument	Description	Executing condition	Page
Degree to radian, radian to degree conversion	RAD RADP	(s), (d)	 ((s)+1, (s)) → ((d)+1, (d)) Degree → Radian conversion 		Page 583 Degree to radian conversion on floating-point data (single precision)
	RADD	(s), (d)	 ((s)+3, (s)+2, (s)+1, (s)) → ((d)+3, (d)+2, (d)+1, (d)) Degree → Radian conversion 		Page 586 Degree to radian conversion on floating-point data (double precision)
	DEG DEGP	(s), (d)	• ((s)+1, (s)) \rightarrow ((d)+1, (d)) • Radian \rightarrow Degree conversion		Page 589 Radian to degree conversion on
	DEGD		- ((a) (2 (a) (2 (a) (4 (a)) - ((d) (2 (d) (2		floating-point data (single precision)
	DEGD	(s), (d)	 ((s)+3, (s)+2, (s)+1, (s)) → ((d)+3, (d)+2, (d)+1, (d)) Radian → Degree conversion 		Page 592 Radian to degree conversion on floating-point data (double precision)
Exponentiation	POW POWP	(s1), (s2), (d)	• $((s1)+1, (s1))^{((s2)+1, (s2))} \rightarrow ((d)+1, (d))$		Page 595 Exponentiation on floating- point data (single precision)
	POWD	(\$1), (\$2), (d)	• ((s1)+3, (s1)+2, (s1)+1, (s1)) ^{((s2)+3, (s2)+2, (s2)+1, (s2))} \rightarrow ((d)+3, (d)+2, (d)+1, (d))		Page 598 Exponentiation on floating- point data (double precision)
Square root	SQR SQRP	(s), (d)	• $\sqrt{((s)+1, (s))} \to ((d)+1, (d))$		Page 601 Square root operation on floating-point data (single precision)
	SQRD SQRDP	(\$), (d)	• $\sqrt{((s)+3, (s)+2, (s)+1, (s))} \rightarrow ((d)+3, (d)+2, (d)+1, (d))$		Page 604 Square root operation on floating-point data (double precision)
Exponential	EXP	(s), (d)	• $e^{((s)+1, (s))} \rightarrow ((d)+1, (d))$		Page 607 Exponential operation on floating-point data (single precision)
	EXPD	(s), (d)	• $e^{((s)+3, (s)+2, (s)+1, (s))} \rightarrow ((d)+3, (d)+2, (d)+1,$ (d))		Page 610 Exponential operation on floating-point data (double precision)

Category	Instruction name	Argument	Description	Executing condition	Page
Natural logarithm	LOG LOGP	(s), (d)	• $\log_{e}((s)+1, (s)) \rightarrow ((d)+1, (d))$		Page 613 Natural logarithm operation on floating-point data (single precision)
	LOGD	(s), (d)	• $\log_{e}((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))$		Page 616 Natural logarithm operation on floating-point data (double precision)
Common logarithm operation	LOG10 LOG10P	(s), (d)	 log₁₀((s)+1, (s)) → ((d)+1, (d)) 		Page 619 Common logarithm operation on floating-point data (single precision)
	LOG10D LOG10DP	(\$), (d)	• $\log_{10}((s)+3, (s)+2, (s)+1, (s)) \rightarrow ((d)+3, (d)+2, (d)+1, (d))$		Page 622 Common logarithm operation on floating-point data (double precision)
Random number generation	RND RNDP	(d)	Generates random numbers in the range from 0 to number less than 32767 and stores it to the device specified for (d).		Page 625 Random number generation and
Random number series update	SRND SRNDP	(S)	Updates the random number series according to the content of 16-bit BIN data stored in the device specified for (s).		series update
Square root	BSQR BSQRP	(s), (d)	• $\sqrt{\text{s}} \rightarrow \text{@+0}$ Integer part +1 Fractional part		Page 627 Square root operation on 4- /8-digit BCD
	BDSQR BDSQRP	(s), (d)	• $\sqrt{(s+1,s)} \rightarrow (d+0)$ Integer part +1 Fractional part		data

Category	Instruction name	Argument	Description	Executing condition	Page
Trigonometric functions (BCD format)	BSIN	(s), (d)	• Sin (s) → (d)+0 Sign +1 Integer part		Page 630 SIN operation on
	BSINP	_	+2 Fractional part		data in BCD format
	BCOS	(s), (d)	• Cos ⊚ → @+0 Sign +1 Integer part		Page 633 COS operation on
	BCOSP	_	+2 Fractional part	_ _	data in BCD format
	BTAN	(s), (d)	•Tan (s) → (d+0 Sign +1 Integer part		Page 636 TAN operation on
	BTANP		+2 Fractional part	_ _	data in BCD format
	BASIN	(s), (d)	• Sin ⁻¹ ⊚ → @+0 Sign +1 Integer part		Page 639 SIN ⁻¹ operation on
	BASINP		+2 Fractional part		data in BCD format
	BACOS	(s), (d)	• $\cos^{-1}(s) \longrightarrow (d+0) \frac{\text{Sign}}{+1}$ Integer part		Page 642 COS ⁻ ¹ operation on
	BACOSP		+2 Fractional part		data in BCD format
	BATAN	(s), (d)	•Tan ⁻¹ (s) → ⓓ+0 Sign +1 Integer part		Page 645 TAN ⁻ ¹ operation on
	BATANP		+2 Fractional part		data in BCD format

Data control instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Upper/lower limit control		(s1), (s2), (s3), (d)	 When (s3) < (s1), stores the value of (s1) to (d). When (s1) ≤ (s3) ≤ (s2), stores the value of (s3) to (d). When (s2) < (s3), stores the value of (s2) to (d). 	 	Page 647 Upper and lower limit controls of 16-/ 32-bit BIN data
	DLIMIT	(s1), (s2), (s3), (d)	 When ((s3)+1, (s3)) < ((s1)+1, (s1)), stores the values of ((s1)+1, (s1)) to ((d)+1, (d)). When ((s1)+1, (s1)) ≤ ((s3)+1, (s3)) < ((s2)+1, (s2)), stores the values of ((s3)+1, (s3)) to ((d)+1, (d)). 		
	DLIMITP		• When ((s2), (s2)+1) < ((s3), (s3)+1), stores the values of ((s2)+1, (s2)) to ((d)+1, (d)).		
Dead band control	BAND	(s1), (s2), (s3), (d)	• When $(s1) \le (s3) \le (s2)$, 0 → (d) • When $(s3) < (s1)$, $(s3) - (s1) → (d)$ • When $(s2) < (s3)$, $(s3) - (s2) → (d)$		Page 650 Dead band control of 16-/32-bit BIN
	DBAND	(s1), (s2), (s3), (d)	• When $((s1)+1, (s1)) \le ((s3)+1, (s3)) \le$ $((s2)+1, (s2)), 0 \rightarrow ((d)+1, (d))$ • When $((s3)+1, (s3)) \le ((s1)+1, (s1)), ((s3)+1, (s3)) - ((s1)+1, (s1)) \rightarrow ((d)+1, (d))$		data
	DBANDP	-	 When ((s2)+1, (s2)) < ((s3)+1, (s3)), ((s3)+1, (s3)) - ((s2)+1, (s2)) → ((d)+1, (d)) 		
Zone control	ZONE	(s1), (s2), (s3), (d)	• When $(s3) = 0, 0 \rightarrow (d)$ • When $(s3) > 0, (s3) + (s2) \rightarrow (d)$ • When $(s3) < 0, (s3) + (s1) \rightarrow (d)$		Page 653 Zone control of 16-/
	ZONEP		$(30) \times (0, (30) \times (0) \rightarrow (0)$	_ _	32-bit BIN data
	DZONE	(s1), (s2), (s3), (d)	$\begin{array}{l} \bullet \text{ When } ((s3)+1, (s3)) = 0, \ 0 \rightarrow ((d)+1, (d)) \\ \bullet \text{ When } ((s3)+1, (s3)) > 0, \ ((s3)+1, (s3)) + \\ ((s2)+1, (s2)) \rightarrow ((d)+1, (d)) \\ \bullet \text{ When } ((s3)+1, (s3)) < 0, \ ((s3)+1, (s3)) + \\ ((s1)+1, (s1)) \rightarrow ((d)+1, (d)) \end{array}$		
	DZONEP	-			
Coordinate by point data	SCL	(s1), (s2), (d)	Process the scaling on the conversion data (unit of 16-bit data) specified for (s2) with the		Page 656 Scaling
	SCLP		input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in accordance with the conversion data for scaling stored in (s2) and the following devices.		(coordinate by point data)
	DSCL	(s1), (s2), (d)	 Process the scaling on the conversion data (unit of 32-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The conjug conversion is proceeded in 		
	DSCLP	-	scaling conversion is processed in accordance with the conversion data for scaling stored in (s2) and the following devices.		

Category	Instruction name	Argument	Description	Executing condition	Page
Coordinate by X/Y data	SCL2 SCL2P	(s1), (s2), (d)	Process the scaling on the conversion data (unit of 16-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in conversion data for		Page 660 Scaling (coordinate by X/Y data)
	DSCL2	(s1), (s2), (d)	 accordance with the conversion data for scaling stored in (s2) and the following devices. Process the scaling on the conversion data 		
		_	(unit of 32-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in		
	DSCL2P		accordance with the conversion data for scaling stored in (s2) and the following devices.		

File register switching instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Block number switch	RSET	(s)	• Changes the block number of the extended file register to the number specified for (s).		Page 664 Switching file
	RSETP				register block numbers
File set	QDRSET	(s)	Sets the file name used as a file register.		Page 667 Setting file
	QDRSETP				register files
	QCDSET	(S)	Sets file names used as comment files.		Page 670 Setting files for
	QCDSETP				comments

Clock instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Clock data read/write	DATERD	(d)	• (Clock elements) → @+0 Year +1 Month +2 Dav		Page 673 Reading clock data
	DATERDP		+3 Hour +4 Minute +5 Sec. +6 Day of week		
	DATEWR	(s)	•		Page 676 Writing clock data
	DATEWRP		+3 Hour +4 Minute +5 Sec. +6 Day of week		
Clock data addition/subtraction	DATE+	(s1), (s2), (d)	জ ֎ d Hour Hour		Page 679 Clock data
	DATE+P		$\begin{array}{c cccc} \mbox{Minute} & + & \mbox{Minute} & \rightarrow & \mbox{Minute} \\ \mbox{Sec.} & & \mbox{Sec.} & & \mbox{Sec.} \end{array}$		addition
	DATE-	(s1), (s2), (d)	ís) @ d Hour Hour Hour		Page 681 Clock data
	DATE-P		$\begin{array}{c cccc} \mbox{Minute} & - & \mbox{Minute} \\ \mbox{Sec.} & & \mbox{Sec.} \end{array} \rightarrow & \mbox{Minute} \\ \mbox{Sec.} & & \mbox{Sec.} \end{array}$		subtraction

Category	Instruction name	Argument	Description	Executing condition	Page
Clock data conversion	SECOND	(s), (d)	$ \begin{array}{ccc} (s) & (d) \\ \hline Hour \\ \hline Minute \\ Sec. \end{array} \rightarrow & \begin{array}{c} \hline Sec. (Lower level) \\ \hline Sec. (Upper level) \\ \hline \end{array} $		Page 684 Time data conversion (hour/minute/ second format to seconds)
	HOUR	(s), (d)	(s) Sec. (Lower level) Sec. (Upper level) → Minute Sec.		Page 686 Time data conversion (seconds to hour/minute/ second format)
Date comparison	ANDDT=	(s1), (s2), n (s1), (s2), n (s1), (s2), n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Page 688 Date data comparison
	LDDT<> ANDDT<> ORDT<>	(s1), (s2), n (s1), (s2), n (s1), (s2), n	$ \begin{array}{c c} \hline \hline$		
	LDDT< ANDDT< ORDT<	(s1), (s2), n (s1), (s2), n (s1), (s2), n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-
	LDDT<= ANDDT<= ORDT<=	(s1), (s2), n (s1), (s2), n (s1), (s2), n	$ \begin{array}{c c} \hline (1) & Year \\ \hline (1) + 1 & Month \\ \hline (1) + 2 & Day \end{array} & \stackrel{\textcircled{\scale{2}}}{=} & \stackrel{\textcircled{\scale{2}}}{=} & \stackrel{\textcircled{\scale{2}}}{=} & \stackrel{Year }{=} & \stackrel{\r{\scale{2}}}{\to} & \stackrel{\r{\scale{2}}$		-
	LDDT> ANDDT> ORDT>	(s1), (s2), n (s1), (s2), n (s1), (s2), n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	LDDT>= ANDDT>= ORDT>=	(s1), (s2), n (s1), (s2), n (s1), (s2), n	$ \begin{array}{c c} \hline & \hline \\ \hline \\$		

Category	Instruction name	Argument	Description	Executing condition	Page
Time data comparison	LDTM=	(s1), (s2), n	61 Hour 62 Hour		Page 692 Time data
	ANDTM=	(s1), (s2), n	(a) +1 Minute = (a) +1 Minute → Comparison (a) +2 Second (a) +2 Second (a) +2 Second		comparison
	ORTM=	(s1), (s2), n			
	LDTM<>	(s1), (s2), n	© Hour © Hour		
	ANDTM<>	(s1), (s2), n	(i) + 1 Minute $<>$ $(i) + 1$ Minute $<>$ $(i) + 2$ Second $(i) + 2$ Se		
	ORTM<>	(s1), (s2), n			
	LDTM<	(s1), (s2), n	6) Hour 62 Hour		
	ANDTM<	(s1), (s2), n	(a) +1 Minute < (a) +1 Minute → Comparison (a) +2 Second (a) +2 Second		
	ORTM<	(s1), (s2), n			
	LDTM<=	(s1), (s2), n	6) Hour 62 Hour		
	ANDTM<=	(s1), (s2), n	$ \begin{array}{ c c c c c } \hline (s) + 1 & \hline \text{Minute} & < = & \textcircled{2} + 1 & \hline \text{Minute} & \rightarrow & Comparison \\ \hline (s) + 2 & \fbox{Second} & & \textcircled{2} + 2 & \vspace{-1mm} \\ \hline (s) + 2 & $		
	ORTM<=	(s1), (s2), n			
	LDTM>	(s1), (s2), n	6) Hour 😥 Hour		
	ANDTM>	(s1), (s2), n	(a) +1 Minute > (a) +1 Minute → Comparison (a) +2 Second (a) +2 Second		
	ORTM>	(s1), (s2), n			
	LDTM>=	(s1), (s2), n	(i) Hour (i) Hour		1
	ANDTM>=	(s1), (s2), n	(i) + 1 Minute $>=$ $(i) + 1$ Minute $i) + 2$ Second $(i) + 2$ Second		
	ORTM>=	(s1), (s2), n			

Extended clock instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Extended clock data read	S_DATERD	(d)	• (Clock elements) \rightarrow (d) +0 Year +1 Month +2 Day +3 Hour		Page 696 Read extended clock data
	SP_DATERD		+4 Minute +5 Sec. +6 Day of week +7 Millisecond		
Extended clock data addition/ subtraction	S_DATE+	(s1), (s2), (d)	$ \begin{array}{c} \textcircled{\texttt{s}} & \textcircled{\texttt{s}} & \textcircled{\texttt{s}} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		Page 700 Addition of extended clock data
	S_DATE-	(s1), (s2), (d)			Page 703 Subtraction of extended clock data

Program control instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Program control instructions	PSTOP	(s)	Sets the specified program in the standby status.		Page 706 Program
	PSTOPP				standby
	POFF	(S)	Turns OFF the coil of the OUT instruction of the specified program and sets the program		Page 708 Program output
	POFFP	-	in the standby status.	†	OFF standby
	PSCAN	(s)	Registers the specified program as a scan execution type program.		Page 710 Registering
	PSCANP			_ _	program as scan execution type
	PLOW	(s)	Registers the specified program as a low- speed execution type program.		Page 712 Registering
	PLOWP				program as low-speed execution type
	LDPCHK	(S)	Conduction state when the program of the		Page 714
	ANDPCHK	(S)	specified file name is in execution.		Checking
	ORPCHK	(\$)	 Non-conduction state when the program of the specified file name is not in execution. 		program execution status

Other instructions

Category	Instruction name	Argument	Description	Executing condition	Page
WDT reset	WDT WDTP	_	Resets WDT in the sequence program.		Page 716 Resetting watchdog timer
Timing clock	DUTY	n1, n2, (d)	ⓓ n1 scans n2 scans \$M420 to SM424, SM430 to SM434		Page 718 Timing pulse generation
Time check	ТІМСНК	(s1), (s2), (d)	Measures the ON time of the input condition, and when the input condition remains ON over the preset time, turns ON the device specified for (d).		Page 720 Time check
Direct 1-byte read/write	ZRRDB	n, (d)	0 Lower 8 bits 1 Upper 8 bits		Page 722 Reading 1 byte
	ZRRDBP		2 Lower 8 bits 3 Upper 8 bits n 8 bits d □		directly from file register
	ZRWRB	n, (s)	© 0 Lower 8 bits 1 Upper 8 bits 2 Lower 8 bits 7P1		Page 725 Writing 1 byte directly to file
	ZRWRBP		2 Lower 8 bits 3 Upper 8 bits 1 8 bits		register
	ADRSET	(s), (d)	(s) → (d) ↑ Indirect address of		Page 728 Reading indirect
	ADRSETP		specified device Device name		address
Numeric input from keyboard	KEY	(s), n, (d1), (d2)	Imports ASCII data into 8 points of the input module specified for (s), converts the data to hexadecimal data and stores the result to (d1) and the following devices.		Page 729 Numeric input from keyboard
Batch save of index register	ZPUSH	(d)	Saves the contents of index registers to (d) and the following devices.		Page 733 Batch save and recovery of
	ZPUSHP				index registers
Batch recovery of index register	ZPOP	(d)	Reads data saved in (d) and the following devices into the index registers.		
	ZPOPP				
Module information read	UNIRD	n1, n2, (d)	Reads the module information whose amount is specified for n2 from the start I/O		Page 736 Reading
	UNIRDP		number specified for n1, and stores the information to (d) and the following devices.		module information
Module type read	TYPERD	n, (d)	Reads the module type of the start I/O number specified for n, and stores the		Page 742 Reading
	TYPERDP		information to (d) and the following devices.	1	module type
Trace set	TRACE	-	Stores trace data set in the peripheral in the number of set times when SM800, SM801, or SM802 is turned ON to the sampling trace file.		Page 747 Trace set/reset
Trace reset	TRACER	-	Resets data set by the TRACE instruction.		-
Data write to specified file	SP_FWRITE	(s0), (s1), (s2), (d0), (d1)	Writes data to the specified file.	_ _	Page 750 Writing data to specified file
Data read from specified file	SP_FREAD	(s0), (s1), (d0), (d1), (d2)	Reads data from the specified file.		Page 763 Reading data from specified file

Category	Instruction name	Argument	Description	Executing condition	Page
Data write to standard ROM	SP_DEVST	(s1), (s2), n, (d)	Writes data to the device data storage file in the standard ROM.	1	Page 777 Writing data to standard ROM
Data read from standard ROM	S_DEVLD SP_DEVLD	(s), n, (d)	Reads data from the device data storage file in the standard ROM.		Page 780 Reading data from standard ROM
Program load from memory	PLOADP	(\$), (d)	• Transfers a program stored in the memory card or standard ROM (other than drive 0) to drive 0 and sets the program in the standby type.		Page 782 Program load from memory card
Program unload from program memory	PUNLOADP	(s), (d)	Deletes a standby type program stored in the program memory (drive 0) from the memory.		Page 785 Program unload from program memory
Load + unload	PSWAPP	(s1), (s2), (d)	• Deletes a standby type program stored in the program memory (drive 0) specified for (s1) from the memory, and transfers a program stored in the memory card or standard ROM (other than drive 0) specified for (s2) to drive 0 and places the program in the standby type.		Page 788 Load and unload
File register high-speed block transfer	RBMOV RBMOVP	(s), n, (d)	Batch transfers n points of 16-bit data from the device specified for (s) to n points of devices starting from the one specified for (d).		Page 791 File register high- speed block transfer
User message	UMSG	(s)	Displays specified character strings on the display module as a user message.		Page 796 User message

Network refresh instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Network refresh	S_ZCOM_J SP_ZCOM_J	Jn*	Refreshes specified network.		Page 799 Network Refresh Instructions
	S_ZCOM_U SP_ZCOM_U	Un*			

Reading/Registering routing information

Category	Instruction name	Argument	Description	Executing condition	Page
Routing information read	S_RTREAD SP_RTREAD	n, (d)	Reads data set in the routing parameter.		Page 803 Reading routing information
Routing information registration	S_RTWRITE	n, (s)	Writes routing data to the location specified in the routing parameter.		Page 805 Registering routing information

Refresh device write/read instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Refresh device write	S_REFDVWRB	n1, (s1), (s2), n2, (d1)	 Writes data in 1-bit units to the specified refresh device. 		Page 808 Refresh device
	SP_REFDVWRB			_ _	write (in 1-bit units)
	S_REFDVWRW	n1, (s1), (s2), n2, (d1)	Writes data in 16-bit units to the specified refresh device.		Page 813 Refresh device
	SP_REFDVWRW				write (in 16-bit units)
Refresh device read	S_REFDVRDB	n1, (s1), (s2), n2, (d1)	Reads data in 1-bit units from the specified refresh device.		Page 818 Refresh device
	SP_REFDVRDB			_ _	read (in 1-bit units)
	S_REFDVRDW	n1, (s1), (s2), n2, (d1)	Reads data in 16-bit units from the specified refresh device.		Page 823 Refresh device
	SP_REFDVRDW				read (in 16-bit units)

2.7 Multiple CPU Dedicated Instructions

Writing data to host CPU shared memory

Category	Instruction name	Argument	Description	Executing condition	Page
Data write to host CPU shared memory	S_TO SP_TO	(s1), (s2), (s3), (s4), (d)	Writes devices of the host station to the CPU shared memory of the host station CPU module.		Page 831 Writing data to host CPU shared
	ТО	(s), n1, n2, n3	Writes devices of the host station to the CPU shared memory of the host station CPU module.		memory(S(P)_ TO)
	DTO DTOP	(s), n1, n2, n3	Writes devices of the host station to the CPU shared memory of the host station CPU module in units of 32-bit data.		

Reading data from other CPU shared memory

Category	Instruction name	Argument	Description	Executing condition	Page
Data read from other CPU shared memory	FROM FROMP	n1, n2, n3, (d)	 Reads devices from the CPU shared memory of another station CPU module to the host station. 		Page 839 Reading data from other CPU shared memory
	DFRO DFROP	n1, n2, n3, (d)	Reads devices from the CPU shared memory of another station CPU module to the host station in units of 32-bit data.		

2.8 Multiple CPU High Speed Transmission Dedicated Instructions

Multiple CPU high speed transmission dedicated instructions

Category	Instruction name	Argument	Description	Executing condition	Page
Device data write to other CPU	D_DDWR	n, (s1), (s2), (d1), (d2)	 Writes data stored in the device (s2) and the following devices in the host CPU at the time of multiple CPU system configuration, to the device (d1) and the following devices specified in the other CPU (n) for the number of points specified for (s1)+1. 		Page 855 Writing Device Data to Other
	DP_DDWR	n, (s1), (s2), (d1), (d2)		_ _	– CPUs
Device data read from other CPU	D_DDRD	n, (s1), (s2), (d1), (d2)	 Stores data read from the device (s2) and the following devices specified in the other CPU (n) for the number of points specified for (s1)+1, to the device (d1) and the following devices specified in the host CPU at the time of multiple CPU system configuration. 		Page 859 Reading Device Data
	DP_DDRD	n, (s1), (s2), (d1), (d2)			from Other CPUs

2.9 Redundant System Instruction (For Redundant CPU)

Redundant system instruction (for redundant CPU)

Category	Instruction name	Argument	Description	Executing condition	Page
System switching	SP_CONTSW	(s), (d)	 Switches between the control system and standby system at the END processing of the scan executed with the SP_CONTSW instruction. 		Page 863 System Switching

3 CONFIGURATION OF INSTRUCTIONS

3.1 Configuration of Instructions

The instructions available for CPU modules can be divided into an instruction name and arguments.

The application of an instruction name and arguments are as follows:

- · Instruction name: Indicates the function of the instruction.
- · Argument: Indicates the I/O data used in the instruction.

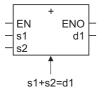
Arguments are classified into source data, destination data, number of devices, executing condition, and execution status.

Source (s)

A source is data used in an operation.

The following source types are available depending on the device specified in an instruction.

Туре	Description
Constant	Specifies a numeric value used in an operation. Constants are set during programming so that they cannot be changed while the program is being executed. Perform index setting when using them as variable data.
Bit device and word device	Specifies the device in which the data used in the operation are stored. Data must be stored to the specified device before executing the operation. By changing the data to be stored to the specified device while a program is being executed, the data used in the instruction can be changed.


Contacts cannot be directly input to sources that use bit devices.

Destination (d)

Data after the operation are stored to a destination. Some instructions require to store data used in the operation to the destination before the operation.

Ex.

Addition instruction of 16-bit BIN data

Set a device in which data are to be stored to a destination.

Coils cannot be directly connected to destinations which store bit devices.

Number of devices and number of transfers (n)

The number of devices and number of transfers used in an instruction that uses multiple devices are specified for n.

Ex.

Block data transfer instruction

Specifies the number of transfers used by a BMOV instruction

A value in the range of 0 to 32767 can be set for the number of devices and number of transfers. When the number of devices or number of transfers is 0, the instruction performs no processing.

Executing condition (EN)

An input variable EN inputs an executing condition of an instruction.

Execution status (ENO)

An output variable ENO outputs an execution status.

For details of the instruction configurations of labels and structures etc., refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

3.2 Precautions on Programming

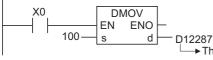
The following cases cause an operation error during the execution of basic instructions and application instructions in a CPU module.

- · Errors described on each page of instruction explanation are occurred.
- No intelligent function module is mounted at the specified I/O number position when an intelligent function module device is used.
- The specified buffer memory address does not exist when an intelligent function module device is used.
- The corresponding network does not exist when a link device is used.
- No network module is mounted at the specified I/O number position when a link device is used.
- A CPU module is not mounted at the start I/O number position of the specified CPU module when a multiple CPU area device is used. (For Universal model QCPU (except for Q00UJCPU) only)
- The specified shared memory address does not exist when a multiple CPU area device is used. (For Universal model QCPU (except for Q00UJCPU) only)
- The setting that crosses internal user devices and extended data registers (D)/extended link registers (W) is set. (For Universal model QCPU (except for Q00UJCPU) and LCPU)

Point P

The following are the results of the file register data write/read when the file register setting is not set, or when the file register setting is set, but a file register file does not exist.

- For High Performance model QCPU, Process CPU, and Redundant CPU An error does not occur even when writing/reading data to/from file registers. However, "0H" is stored when reading from file registers.
- For Universal model QCPU and LCPU The OPERATION ERROR (error code: 4101) occurs when writing/reading data to/from file registers. By setting the PLC parameter to not check the device range, an error is not detected. (Refer to Page 64 Device range check.)

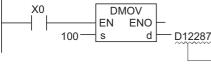

Device range check

The following explains how the range is checked for devices used in basic instructions and application instructions in a CPU module.

Instructions that handle fixed-length devices (such as MOV or DMOV)

• For Basic model QCPU, High Performance model QCPU, Process CPU, and Redundant CPU

The device range is not checked. If the data exceed the corresponding device range, the data are written to another devices. *1For example, when the data registers are assigned in 12K points, an error does not occur even if the data exceed D12287.


→ This specifies D12287 and D12288 as the target devices for executing the DMOV instruction However, since D12288 does not exist, data in another device is corrupted.

The device range is not checked when the index setting is applied.

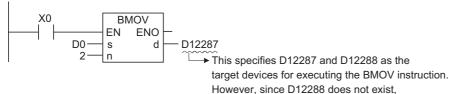
If the result of the index setting exceeds the corresponding device range, the data are written to another devices.*1

- *1 For the assignment order of internal user devices, refer to 🖙 Page 66 Character string data.
- For Universal model QCPU and LCPU

The device range is checked. When the data exceed the corresponding device range, an operation error occurs. For example, when data registers are assigned in 12K points, an error occurs if the data exceed D12287.

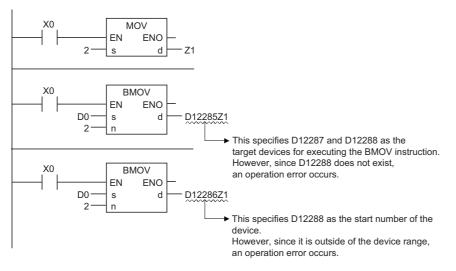
This specifies D12287 and D12288 as the target devices for executing the DMOV instruction. However, since D12288 does not exist, an operation error occurs.

The device range is checked even when the index setting is applied.

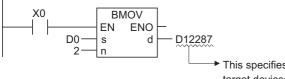

By changing the settings of the PLC parameter, the device range is not checked. $\ensuremath{^{\ast 2}}$

*2 For changing the setting of device range check, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module to be used.

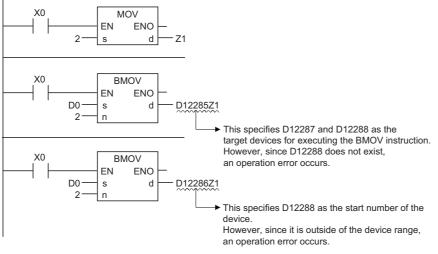
Instructions that handle variable-length devices (such as BMOV or FMOV that specifies the number of transfers)


• For Basic model QCPU, High Performance model QCPU, Process CPU, and Redundant CPU

The device range is checked. When the data exceed the corresponding device range, an operation error occurs. For example, when data registers are assigned in 12K points, an error occurs if the data exceed D12287.


an operation error occurs.

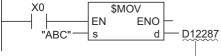
The device range is checked even when the index setting is applied. However, when the start number of the device exceeds the corresponding device range with the index setting, an error occurs.


• For Universal model QCPU and LCPU

The device range is checked. When the data exceed the corresponding device range, an operation error occurs. For example, when data registers are assigned in 12K points, an error occurs if the data exceed D12287.

This specifies D12287 and D12288 as the target devices for executing the BMOV instruction. However, since D12288 does not exist, an operation error occurs.

The device range is checked even when the index setting is applied. Also, when the start number of the device exceeds the corresponding device range with the index setting, an error occurs.

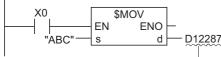

By changing the settings of the PLC parameter, the device range is not checked.*1

*1 For changing the setting of device range check, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module to be used.

■Character string data

• For Basic model QCPU, High Performance model QCPU, Process CPU, and Redundant CPU Since character string data are treated as variable-length data without exception, the device range is checked. When the data exceed the corresponding device range, an operation error occurs.

For example, when data registers are assigned in 12K points, an error occurs if the data exceed D12287.


This specifies D12287 and D12288 as the target devices for executing the \$MOV instruction. However, since D12288 does not exist, an operation error occurs.

When the index modification is executed, the device range is checked.

However, when the index modification is executed, an error does not occur if the start device number exceeds the corresponding device range. Other devices are accessed.

• For Universal model QCPU and LCPU

Since character string data are treated as variable-length data without exception, the device range is checked. When the data exceed the corresponding device range, an operation error occurs. For example, when data registers are assigned in 12K points, an error occurs if the data exceed D12287.

This specifies D12287 and D12288 as the target devices for executing the \$MOV instruction. However, since D12288 does not exist, an operation error occurs.

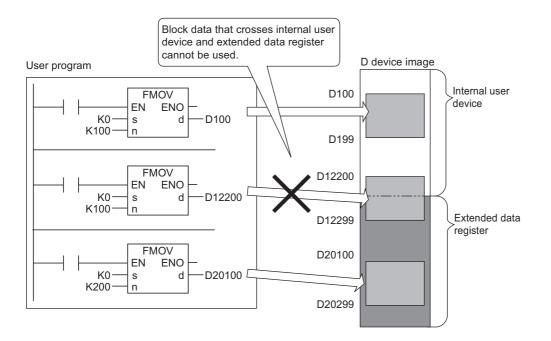
When the index modification is executed, the device range is checked. When the index modification is executed, an error occurs if the start device number exceeds the corresponding device range.

The PLC parameter setting enables the device range check not to be performed.*1

*1 For the setting method which the device range check is not performed when the index modification is executed, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used.

■Direct access output (DY)

When the index setting is applied to direct access output (DY), the device range is checked.


■Precautions on using extended data registers (D) and extended link registers (W)^{*1}

An index setting that crosses internal user devices and extended data registers (D)/extended link registers (W) cannot be applied in the following specification methods as shown below. If it is specified, an OPERATION ERROR (Error code: 4101) occurs.

- *1 Universal model QCPU and LCPU other than Q00UJCPU
- · Index setting
- · Indirect specification
- · Specification in the instruction that uses block data

Block data are the data described below.

- Data used for the instruction in which multiple words (such as FMOV, BMOV, BK+) are the operating target.
- Control data configured with more than two words and specified for SP_FWRITE, SP_FREAD.
- Data format data more than 32 bits. (BIN 32-bit, real number, indirect address of device)

■Precautions when using Universal model QCPU/LCPU

For the Universal model QCPU and LCPU, an error occurs when the following access are executed with the instructions or data shown below. (Error code: 4101)

Instructions and data

- Instructions that handle fixed-length devices (such as MOV or DMOV)
- Instructions that handle variable-length devices (such as BMOV or FMOV that specifies the number of transfers)
- · Character string data

Access method

- (1) Data access that exceeds the device boundary by the index modification (range of area A)^{*1}
- (2) Data access that exceeds the file register boundary by the index modification
- (3) Data access to file registers (R, ZR) when file register files are not set
- (4) Data access to file registers (R, ZR) that exceeds the range of file register files

*1 The following shows the assignment order of devices.

SM	. ≜
SD	
Х	
Y	
Μ	
L	
В	
F	
SB	
V	Area A
S	Alea A
Contact and coil of T	
Contact and coil of ST	
Contact and coil of C	
Present value of T	
Present value of ST	
Present value of C	
D	
W	
SW	
Empty area	Boundary B
File register (32K points)	Boundary B

However, by setting the PLC parameter to not check the device range, an error is not detected if the above access are executed.

For the Universal model QCPU, the operation differs according to the serial number as shown by the following table.^{*2}

Device range setting at index	First five digits of the serial number (Universal model QCPU)		LCPU
modification	'10021' or earlier	'10022' or later	
Applied	Errors are detected in the data access of 1) to 4)		
Not applied	Errors are detected in the data access of 2) to 4)	No error is detected	

*2 For the setting method which the device range check is not performed when the index modification is executed, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used.

For the Universal model QCPU and LCPU, the index modification that crosses internal user devices (SW) and file registers (R) cannot be applied. (Error code: 4101)

For the method for changing the assignment of internal user devices, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used.

Device data check

The following explains how the data are checked for devices used in basic instructions and application instructions in a CPU module.

■BIN data

Even if the operation results in overflow or underflow, an error does not occur, and the carry flag (SM700) is not turned ON.

■BCD data

Checks whether each digit has a BCD value (0 to 9). If each digit has a value other than 0 to 9 (A to F), an operation error occurs.

Even if the operation results in overflow or underflow, an error does not occur, and the carry flag (SM700) is not turned ON.

■Floating-point data

If the operation results are as follows in an instruction that performs single-precision floating-point operation, an operation error occurs.

- 1.0 \times 2 $^{-127}$ or less
- + 1.0 \times 2 128 or more

If the operation results are as follows in an instruction that performs double-precision floating-point operation, an operation

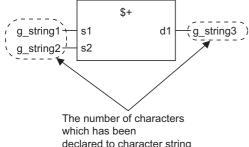
error occurs.

- 1.0 \times 2 $^{-1023}$ or less 1.0 \times 2 1024 or more
- 1.0×2^{1024} or more

Character string data

Data check is not performed.

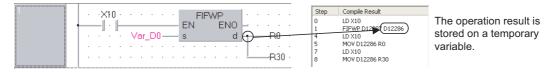
Buffer memory access


For accessing buffer memories, using instructions with intelligent function module devices (from Un\G0) is recommended.

Multiple CPU shared memory access

For accessing multiple CPU shared memories, using instructions with multiple CPU area devices (from U3En\G10000) is recommended.

Number of characters in character string type label check


In the operation of character string type labels, the number of characters which has been declared to character string type labels is not checked. When using instructions/functions which process character strings, check not to exceed the number of characters which has been declared to character string type labels.

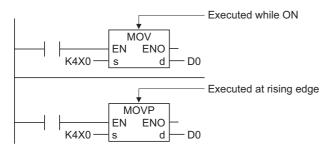
declared to character string type labels is not checked.

Branch point of line from destination

When a line is branched, a temporary variable is created on the branch point. When a line which is from destination is branched as shown below, the operation result may not be output to the devices or labels of branch destination correctly since the operation result is stored on a temporary variable which is created on the branch point. For details of temporary variable, refer to GX Works2 Version 1 Operating Manual (Structured Project).

3.3 Executing Conditions for Instructions

This section describes the types of executing condition for sequence instructions, basic instructions, and application instructions executed in a CPU module.

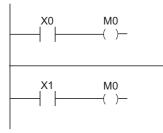

Туре	Description	Example		
Non-conditional execution	Instructions executed regardless of ON/OFF status of the device.	LD=		
Executed while ON	Instructions executed while the input condition is ON.	MOV instruction, FROM instruction		
Executed at rising edge	Instructions executed only at the rising edge (OFF to ON) of the input condition.	PLS instruction, MOVP instruction		
Executed while OFF	Instructions executed while the input condition is OFF.	-		
Executed at falling edge	Instructions executed only at the falling edge (ON to OFF) of the input condition.	PLF instruction		

For basic instructions and application instructions that are equivalent to coils, when both 'Executed while ON' and 'Executed at rising edge' are applicable, 'P' is appended to an instruction name to distinguish executing conditions.

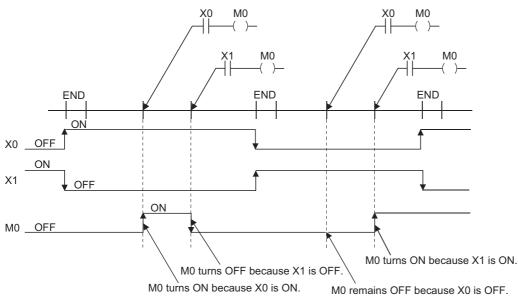
· An instruction executed while ON: Instructions name

· An instruction executed at rising edge: Instructions name P

The following shows how the executing conditions of 'Executed while ON' and 'Executed at rising edge' are specified for the MOV(P) instruction.



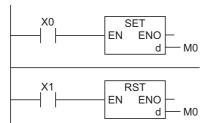
3.4 Operation of OUT Instructions, SET/RST Instructions, or PLS/PLF Instructions Using Same Device


This section describes the operation when the OUT instructions, SET/RST instructions, or PLS/PLF instructions that use a same device are executed multiple times in one scan.

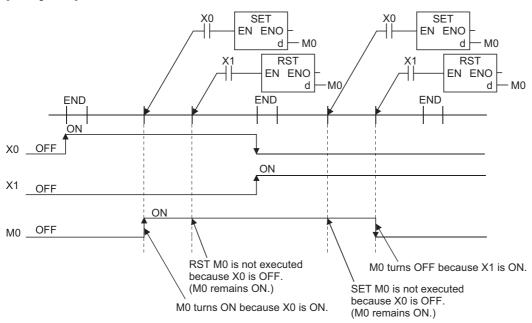
OUT instructions that use a same device

Avoid executing the OUT instructions that use a same device multiple times during one scan. If the OUT instructions that use a same device are executed multiple times during one scan, the specified device is turned ON/OFF according to the operation result obtained by each execution of the OUT instruction. Since the ON/OFF status of the specified device is determined by each execution of the OUT instruction, turning ON/OFF may be repeated during one scan. The following figures show the operation example of the ladder that turns ON/OFF the same internal relay (M0) by the inputs X0 and X1. [Ladder]

[Timing chart]

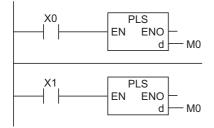


For refresh type CPU modules, the ON/OFF status of the OUT instruction executed last during one scan is output when output (Y) is specified for the OUT instruction.

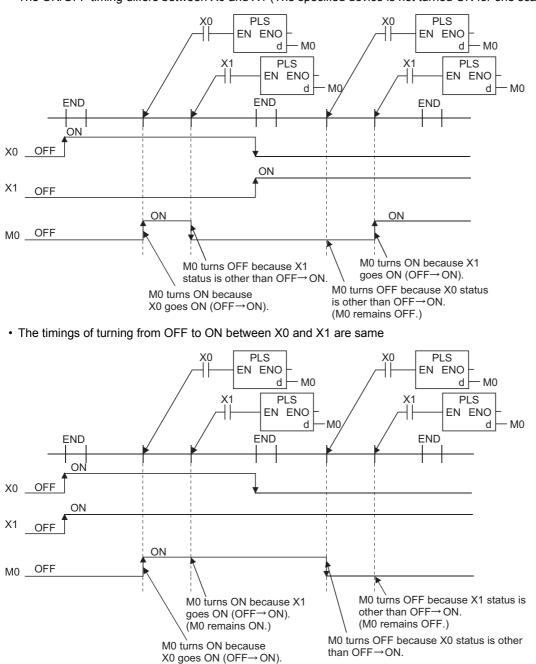

SET/RST instructions that use a same device

- The SET instruction turns ON the specified device when the execution command is ON, while it performs no operation when the execution command is OFF. Thus, if the SET instructions that use a same device are executed multiple times during one scan, the specified device is turned ON when any of the execution commands is turned ON.
- The RST instruction turns OFF the specified device when the execution command is ON, while it performs no operation when the execution command is OFF. Thus, if the RST instructions that use a same device is executed multiple times during one scan, the specified device is turned OFF when any of the execution commands is turned ON.
- If the SET and RST instructions use the same device in one scan, the SET instruction turns ON the specified device when the execution command is ON, while the RST instruction turns OFF the specified device when the execution command is ON. When the execution command of the SET and RST instructions is OFF, the ON/OFF status of the specified device does not change.

[Ladder]

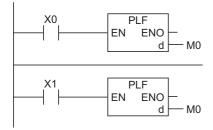

[Timing chart]

For refresh type CPU modules, the ON/OFF status of the SET/RST instruction executed last during one scan is output when output (Y) is specified for the SET/RST instruction.

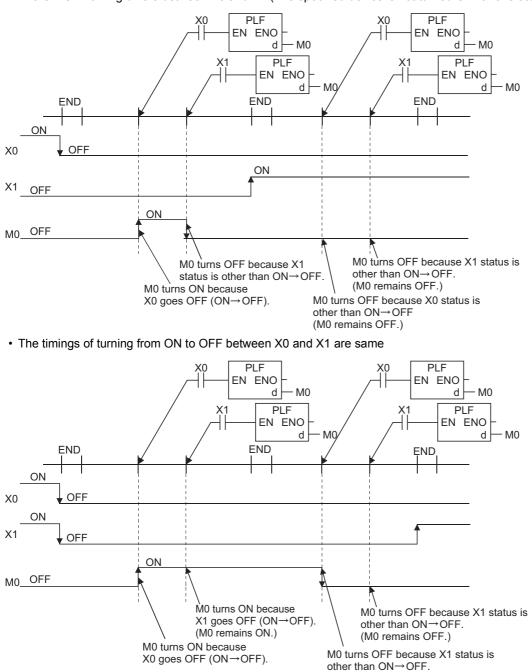

PLS instructions that use a same device

The PLS instruction turns ON the specified device when the execution command turns from OFF to ON. When the status is other than turning from OFF to ON, (OFF to OFF, ON to ON or ON to OFF), the PLS instruction turns OFF the specified device. If the PLS instructions that use a same device are executed multiple times during one scan, the PLS instructions turn ON the specified device when the execution command turns from OFF to ON. In the status other than turning from OFF to ON, they turn OFF the specified device. Thus, when the PLS instructions that use a same device are executed multiple times during one scan, the devices turned ON in the PLS instructions may not be turned ON for one scan. [Ladder]

[Timing chart]


• The ON/OFF timing differs between X0 and X1 (The specified device is not turned ON for one scan)

For refresh type CPU modules, the ON/OFF status of the PLS instruction executed last during one scan is output when output (Y) is specified for the PLS instruction.


PLF instructions that use a same device

The PLF instruction turns ON the specified device when the execution command turns from ON to OFF. If the status is other than turning from ON to OFF (OFF to OFF, OFF to ON or ON to OFF), the PLF instruction turns OFF the specified device. If the PLF instructions that use a same device are executed multiple times during one scan, the PLF instructions turn ON the specified device. Thus, when the PLF instructions that use a same device are executed multiple times as a same device are executed multiple times during one scan, the PLF instruction of the PLF instructions that use a same device. Thus, when the PLF instructions that use a same device are executed multiple times during one scan, the devices turned ON in the PLF instruction may not be turned ON for one scan. [Ladder]

[Timing chart]

• The ON/OFF timing differs between X0 and X1 (The specified device is not turned ON for one scan)

For refresh type CPU modules, the ON/OFF status of the PLF instruction executed last during one scan is output when output (Y) is specified for the PLF instruction.

3.5 Precautions on Using File Registers

This section describes the precautions on using file registers in QCPU (Q mode) and LCPU.

CPU module that does not support file registers

Q00JCPU and Q00UJCPU do not support file registers.

To use file registers, use CPU modules other than Q00JCPU and Q00UJCPU.

Setting file registers to be used

To use file registers, they need to be set in the PLC parameter or the QDRSET instruction. (With Q00CPU, Q01CPU or LCPU, they do not need to be set because the PLC parameter is set to 'Use file register'. The QDRSET instruction cannot be used for LCPU.) To use file registers, they need to be set in the PLC parameter or the QDRSET instruction. If the file registers are not set, normal operations cannot be performed in the instructions that use the file registers.

Point P

Even when file registers are not set in the PLC parameter, a program that uses file registers can be created. For CPU modules other than Universal model QCPU and LCPU, an error does not occur when that program is written to the CPU module.

Note that the data cannot be written/read correctly to/from file registers.

For Universal model QCPU and LCPU, an error occurs if the program that uses file registers is executed.

Reserving the file register area

■For Basic model QCPU

The file register area is reserved in the standard RAM in advance. Users do not need to reserve the file register area.

■For High Performance model QCPU, Process CPU, Redundant CPU, and Universal model QCPU (except for High-speed Universal model QCPU and Universal model Process CPU)

To use file registers, register them to the standard RAM/memory card and reserve the file register area.

■For High-speed Universal model QCPU, Universal model Process CPU, and LCPU

To use file registers, register them to the standard RAM and reserve the file register area.

Point P

For the method for setting file registers and the memory which can be used the file registers of each CPU module, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used.

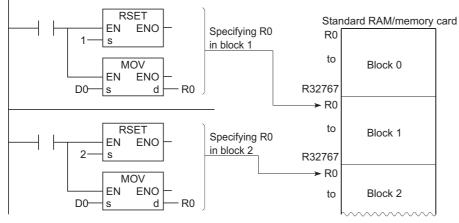
Specifying the file register number exceeding the registered number

■For Basic model QCPU, High Performance model QCPU, Process CPU, and Redundant CPU

An error does not occur when data are written/read to/from the file register numbers that are greater than the registered number of points. Note that the data cannot be written/read correctly to/from file registers.

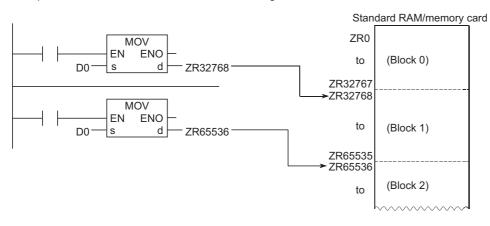
■For Universal model QCPU and LCPU

When data are written/read to/from the file register numbers that are greater than the registered number of points, an error occurs. (Error code: 4101)


Method for specifying file registers

The methods for specifying file registers are the block switching method and the serial number access method.

■Block switching method


The block switching method specifies file register points being used in units of 32K points (one block).

File registers exceeding 32K points is specified by switching block numbers of the file registers used in the RSET instruction. File register points are specified in the range from R0 to R32767 for each block.

Serial number access method

The serial number access method specifies file registers exceeding 32K points with serial device numbers. File registers of multiple blocks can be used as continuous file registers. Use 'ZR' as a device name.

Settings and restrictions when specifying file registers to refresh devices

Setting refresh devices

Refresh devices can be set by the following settings.

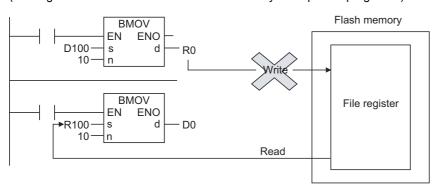
- Refresh settings of CC-Link IE module (Not available for LCPU)
- Refresh settings of CC-Link IE Field Network (Not available for Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU with a serial number whose first five digits are "12011" or earlier, and LCPU with a serial number whose first five digits are "13011" or earlier.)
- Refresh settings of MELSECNET/H (Not available for LCPU)
- Refresh settings of CC-Link
- · Auto refresh settings of the intelligent function module
- Auto refresh settings of the multiple CPU system (Not available for LCPU)

■Restrictions

The following are the restrictions when specifying file registers to refresh devices.

- For QCPU (Q mode), the refresh cannot be performed correctly if the file register which has the same name as the program is specified by the PLC parameter. When the file register whose file name is same as the program name is used, the refresh is performed to the file register whose file name is same as the program name that is set at the last number in the program settings. To read or write the refresh data, use the QDRSET instruction to switch to the corresponding file register.
- The refresh cannot be performed correctly if the file name of file register or drive number is changed by using the QDRSET instruction. (The QDRSET instruction cannot be used for LCPU.) When the file name or drive number is changed on QDRSET instruction, the link refresh is performed to the set file when the END processing is carried out. To read or write the refresh data, specify the set file at the END processing. Note that If the drive number is changed by using the QDRSET instruction when "ZR" is specified for the device in a CPU module other than Universal model QCPU, an error (LINK PARA ERROR (3101)) occurs. (If "R" is specified for the device, an error does not occur.)
- When a block number is selected by using the RSET instruction, the refresh is performed to the file register (R) in the selected block number. When a block number is switched on RSET instruction, the refresh is performed to the file register (R) in the block number when the END processing is carried out. To read or write the refresh data, specify the file register of the block number at the END processing.

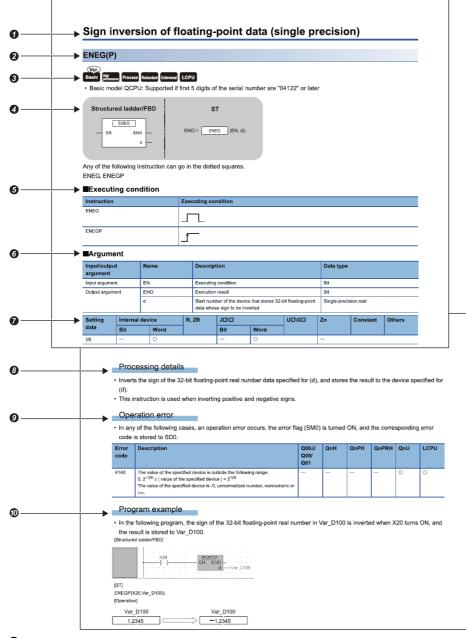
Precautions on using file registers in the flash memory


This section describes the precautions on the flash memory that can use file registers.

■Applicable flash memory

Flash card

■Precautions


File registers in a flash memory can be only read in sequence programs. (File registers cannot be written to a flash memory in sequence programs.)

When using a flash memory for file registers, write data to a flash memory in advance. Use the programming tool to write data to a flash card.

4 HOW TO READ INSTRUCTIONS

Chapter 5 and after provide detailed explanation on each instruction in the layout as shown below.

OIndicates an outline of an instruction.

2 Indicates an instruction to be explained.

Indicates the CPU modules that can use the instruction.

lcon	Icon											
Basic model QCPU	High Performance model QCPU	Process CPU	Redundant CPU	Universal model QCPU	LCPU							
Basic	High performance	Process	Redundant	Universal	LCPU	Icons without any marks indicate that the CPU module can use the corresponding instructions.						
Ver. Basic	High performance	Process	Ver. Redundant	Ver. Universal	(Ver.) LCPU	Icons with a "Ver." mark indicate that the CPU module can use the corresponding instructions under certain restrictions. related to function version and software version.						
Basic	High performance	Process	Redundant	Universal	LCPU	Icons with an "×" mark indicate that the CPU module cannot use the corresponding instructions.						

Indicates the description format of the instruction in the structured ladder/FBD/ST language.

OIndicates the instruction name and executing condition of the instruction.

Executing condition	Non-conditional execution	Executed at ON	Executed on the rising edge	Executed at OFF	Executed on the falling edge
Description on corresponding pages	Non-conditional execution				

6 Indicates the names of input and output arguments, and the data type of each argument. For details of each data type, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Obvices that can be used in the instruction are marked with \bigcirc .

The following table shows applicable classification for usable devices.

Device classification	Internal dev user)	ice (system,			Intelligent function	Index register Zn	Constant ^{*5}	Others *5		
	Bit	Word	R, ZR	Bit	Word	module U⊟\G⊟				
Usable device *1	X, Y, M, L, SM, F, B, SB, FX ^{*2} , FY ^{*2}	T ^{*3} , ST ^{*3} , C ^{*3} , D, W, SD, SW, FD ^{*2}	R, ZR	JD\X JD\Y JD\B JD\SB	J⊡\W J⊡\SW	UD\GD	Z	K, H, E, \$	P, I, J, U, DX, DY, N, B, L, TR, BL\S, V	

*1 For description of each device, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used.

*2 FX and FY can be used in bit data only, and FD can be used in word data only.

*3 T, ST or C can be used in word data only (they cannot be used in bit data) when they are used in the instructions other than the following instructions.

[Usable instructions in bit data]

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, and BKRST

*4 These devices can be used in CC-Link IE, MELSECNET/H, and MELSECNET/10.

*5 The Constant and Others columns describe settable devices.
*6 Link direct devices (J□\□) cannot be used for LCPU.

Indicates the processing performed by the instruction.

Indicates whether to exist the related error. When an error exists, conditions that cause an error are described.

Indicates program examples in the structured ladder/FBD/ST language.

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

Operation start, series connection, parallel connection

■Executing condition

ORI

Instruction	Executing condition
LD, LDI, AND, ANI, OR, ORI	Non-conditional execution

X3/D0.3

■Argument

Input/output argument	• •			Description			Data type						
Input argumen	t	S	Devices used as contacts				Bit						
Setting	Internal	device	R,	ZR	10/D			UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Wo	ord				DX		
(s)	0				—						0		

Point *P*

When BL, S, TR, BL\S, or BL\TR is used, refer to SFC control instructions of the MELSEC-Q/L/QnA Programming Manual (SFC).

Processing details

■LD, LDI

- LD is the normally open operation start instruction, and LDI is the normally closed operation start instruction. They read ON/ OFF information from the specified device^{*1}, and use that as the operation result.
- *1 For a bit-specified word device, the device turns ON or OFF depending on the 1/0 status of the specified bit.

■AND, ANI

- AND is the normally open series connection instruction, and ANI is the normally closed series connection instruction. They read the ON/OFF data of the specified bit device^{*1}, perform an AND operation on that data and the operation result to that point, and take this value as the operation result.
- *1 For a bit-specified word device, the device turns ON or OFF depending on the 1/0 status of the specified bit.

■OR, ORI

- OR is the normally open single parallel connection instruction, and ORI is the normally closed single parallel connection instruction. They read ON/OFF information from the specified device^{*1}, and perform an OR operation with the operation results to that point, and use the resulting value as the operation result.
- *1 For a bit-specified word device, the device turns ON or OFF depending on the 1/0 status of the specified bit.

Point P

A bit of word device is specified in hexadecimal. Bit b11 of D0 would be D0.B. For more information on bit specification of word device, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error

• There is no operation error.

Program example

• The program using the LD, AND, OR, and ORI instructions. [Structured ladder/FBD]

2 D0.5- D0.5- 	1	· · · X3 · · · · · · · · · · · · · · · ·
2 - ×5 - ×		
2 - ×5 · · · · · · · · · · · · · · · · · ·		50.0
2 ×5. · · · · · · · · · · · · · · · · · · ·		
2 · · X5 · · · M11 · · · · · Y34 · · ·		
2 · · ×5 · · · M11 · · · · · Y34 · · ·		
2		••••••••••••••••••••••••••••••••••••••
2		
2		
	1	
	2	· · X5 · · · M11 · · · · · Y34 · · ·
· · · ×5 · · · · · · · · · · · · · · · ·		· · · ×5 · · · · · · · · · · · · · · · ·
		↓

• The program connecting contacts using the ANB and ORB instructions. [Structured ladder/FBD]

1	
2	

• The parallel program of the OUT instructions. [Structured ladder/FBD]

	×5	÷												· Y35 ·	
—			Τ												
														· Y36 ·	
1				-										-(:)-	
														· Y37 ·	
·		•		·	•	·	-	-1	/	F	 	 	 	-((•))-	•
 ·															

5

Edge operation start, edge series connection, edge parallel connection

LDP, LDF, ANDP, ANDF, ORP, ORF Basic High Process Redundant Universal LCPU Structured ladder/FBD (Symbolic description) Bit device number/bit-specified word device ((s)) X1/D0.1 LDP (┨║┠ X1/D0.1 LDF X2/D0.2 ANDP X2/D0.2 ANDF (╢ ORP X3/D0.3 ORF X3/D0.3 ┨╢┣ Structured ladder/FBD ST (Functional description) LDP

Any of the following instruction can go in the dotted squares. LDP, LDF, ANDP, ANDF, ORP, ORF

ENO:=

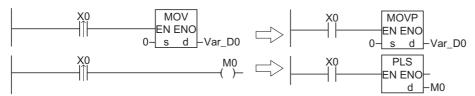
■Executing condition

EN s ENO

Instruction	Executing condition
LDP, LDF, ANDP, ANDF, ORP, ORF	Non-conditional execution

(EN, s);

LDP


■Argument

Input/output argument	t	Name		Description Data type									
Input argument EN				Executing	condition		Bit						
S				Devices used as contacts			Bit						
Output argume	ent	ENO		Executing	cuting condition Bit								
Setting	Internal	device	R , 1	ZR	JD/D			UD\GD	Zn	Constant	Others		
data	Bit	Word	1		Bit	Wo	ord				DX		
(s)	0								—		0		

Processing details

■LDP, LDF

 LDP is the rising edge operation start instruction, and it is ON only at the rising edge of the specified bit device (when it turns from OFF to ON). For a bit-specified word device, it is ON only when the specified bit changes from 0 to 1. In cases where there is only an LDP instruction, it acts identically to instructions for the creation of a pulse that are executed while ON(DP).

• LDF is the falling edge operation start instruction, and it is ON only at the falling edge of the specified bit device (when it turns from ON to OFF). For a bit-specified word device, it is ON only when the specified bit changes from 1 to 0.

EANDP, ANDF

• ANDP is a rising edge series connection instruction, and ANDF is a falling edge series connection instruction. They perform AND operations with the operation result to that point, and take the resulting value as the operation result. The ON/OFF data used by ANDP and ANDF are indicated in the table below.

Device specified in ANDP or AN	IDF	ANDP status	ANDF status		
Bit device	Bit-specified word device				
OFF→ON	0→1	ON	OFF		
OFF	0	OFF			
ON	1				
ON→OFF	1→0		ON		

■ORP, ORF

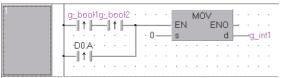
ORP is a rising edge parallel connection instruction, and ORF is a falling edge serial connection instruction. They perform
OR operations with the operation result to that point, and take the resulting value as the operation result. The ON/OFF data
used by ORP and ORF are indicated in the table below.

Device specified in ORP or ORF	:	ORP status	ORF status					
Bit device	Bit-specified word device							
OFF→ON	0→1	ON	OFF					
OFF	0	OFF						
ON	1							
ON→OFF	1→0		ON					

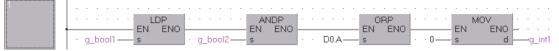
• The ORP or ORF instruction performs OR operation of operation result between (s) and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the ORP or ORF instruction, connect EN and ENO in series as shown below.

		LDP		ORP		MOV	
	g_bool1	EN ENO- s	D0.A	EN ENO s	0	EN ENO s d	
					_		
~							

Operation error


.....

There is no operation error.


Program example

• In the following program, the MOV instruction is executed at the rising edge of g_bool1 and g_bool2, or b10 (bit 10) of data register D0.

[Structured ladder/FBD (Symbolic description)]

[Structured ladder/FBD (Symbolic description)]

[ST (When using IF syntax)]

IF ((LDP(TRUE,g_bool1) AND LDP(TRUE,g_bool2)) OR LDP(TRUE,D0.A)) THEN

MOV(TRUE,0,g_int1);

END_IF;

[ST (When not using IF syntax)]

MOV(ORP(ANDP(LDP(TRUE,g_bool1),g_bool2),D0.A),0,g_int1);

Negated edge operation start, negated edge series connection, negated edge pulse parallel connection

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI Ver. (High nerformance) Basic Redundant Universal LCPU Process • QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported Structured ladder/FBD (Symbolic description) Bit device number/bit-specified word device ((s)) X1/D0.1 LDPI X1/D0.1 **LDFI** -#1 X2/D0.2 **ANDPI** X2/D0.2 **ANDFI** X **ORPI** X3/D0.3 ╢ ORFI X3/D0.3 ╢ Structured ladder/FBD ST (Functional description) LDPI ENO:= LDPI (EN, s); ENO ΕN s

Any of the following instruction can go in the dotted squares. LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

■Executing condition

Instruction	Executing condition
LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI	Non-conditional execution

■Argument

Input/output argument	t	Name	Descrip	tion		Data typ	ta type										
Input argumen	t	EN	Executing	condition		Bit											
		S	Devices ι	sed as contacts		Bit											
Output argume	rgument ENO Execution result																
Setting	Internal	device	R, ZR	J□\□ Bit Wor			UD\GD	Zn	Constant	Others							
data	Bit	Word				ord				DX							
(s)	0	—	0	0 –			0	-		0							

Processing details

■LDPI, LDFI

- LDPI is a negated rising edge operation start instruction, and it is ON when the specified bit device is OFF or ON, or at the falling edge of the specified bit device (when it turns from ON to OFF). For a bit-specified word device, it is ON only when the specified bit is 0 or 1, or it changes from 1 to 0.
- LDFI is a negated falling edge operation start instruction, and it is ON when the specified bit device is OFF or ON, or at the rising edge of the specified bit device (when it turns from OFF to ON). For a bit-specified word device, it is ON only when the specified bit is 0 or 1, or it changes from 0 to 1

Device specified in LDPI or LDF	1	LDPI status	LDFI status
Bit device	Bit-specified word device		
OFF→ON	0→1	OFF	ON
OFF	0	ON	ON
ON	1	ON	ON
ON→OFF	1→0	ON	OFF

■ANDPI, ANDFI

• ANDPI is a negated rising edge series connection instruction, and ANDFI is a negated falling edge series connection instruction. They perform AND operations with the operation result to that point, and take the resulting value as the operation result. The ON/OFF data used by ANDPI and ANDFI are indicated in the table below.

Device specified in ANDPI or Al	NDFI	ANDPI status	ANDFI status
Bit device	Bit-specified word device		
OFF→ON	0→1	OFF	ON
OFF	0	ON	ON
ON	1	ON	ON
ON→OFF	1→0	ON	OFF

■ORPI, ORFI

• ORPI is a negated rising edge parallel connection instruction, and ORFI is a negated falling edge serial connection instruction. They perform OR operations with the operation result to that point, and take the resulting value as the operation result. The ON/OFF data used by ORPI and ORFI are indicated in the table below.

Device specified in ORPI or OR	FI	ORPI status	ORFI status
Bit device	Bit-specified word device		
OFF→ON	0→1	OFF	ON
OFF	0	ON	ON
ON	1	ON	ON
ON→OFF	1→0	ON	OFF

• The ORPI or ORFI instruction performs OR operation of operation result between (s) and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the ORPI or ORFI instruction, connect EN and ENO in series as shown below.

	LI	DP		0	RPI		N	10
g_bool1 —	EN s	ENO	D0.A	EN s	ENO	0	EN s	ENO dg_int1

Operation error

1

• There is no operation error.

Program example

• In the following program, the value 0 is stored to Var D0 in any of the following status: X0 is ON/OFF, X0 turns from ON to OFF, M0 is ON/OFF, or M0 turns from OFF to ON.

[Structured ladder/FBD (Symbolic description)]

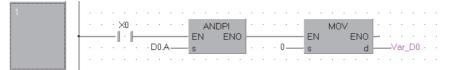
		・×0 								mix_	· * .			•				
		∎4 M0	Ŀ.		.	0-		s					d	 _\/	'ar_	D	0.	
		_∥≯ 	ŀ				•	:	•	:	•	•						

[Structured ladder/FBD (Functional description)]

•	1	·	• •	EN						1 ENO					NO					
		×O	_	- S				S	_	ENU	0 —	_	S		140	F				

[ST (When using IF syntax)]

1

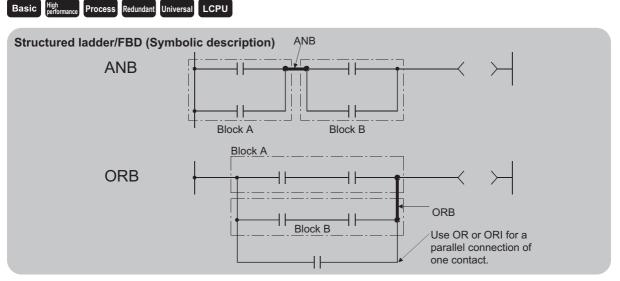

IF (LDPI(TRUE,X0) OR LDFI(TRUE,M0)) THEN MOV(TRUE,0,Var_D0); END_IF; [ST (When not using IF syntax)] MOV(ORFI(LDPI(TRUE,X0),M0),0,Var_D0);

• In the following program, the value 0 is stored to Var D0 when X0 is ON and b10 (bit 10) of D10 is ON/OFF or turns from ON to OFF.

[Structured ladder/FBD (Symbolic description)]

[Structured ladder/FBD (Functional description)]

[ST (When using IF syntax)]


IF (X0 & LDPI(TRUE,D0.A)) THEN MOV(TRUE,0,Var_D0); END_IF;

[ST (When not using IF syntax)] MOV((ANDPI(TRUE,X0),D0.A),0,D5);

5.2 Bond Instructions

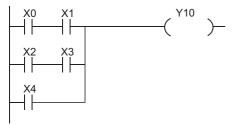
Ladder block series connection and parallel connection

ANB, ORB

■Executing condition

Instruction	Executing condition
ANB, ORB	Non-conditional execution

Processing details


■ANB

- Performs an AND operation on block A and block B, and takes the resulting value as the operation result.
- The symbol for ANB is not the contact symbol, but rather is the connection symbol.

■ORB

- · Conducts an OR operation on Block A and Block B, and takes the resulting value as the operation result.
- ORB is used to perform parallel connections for ladder blocks with two or more contacts. For ladder blocks with only one contact, use OR or ORI.

[Structured ladder/FBD]

• The ORB symbol is not the contact symbol, but rather is the connection symbol.

Operation error

• There is no operation error.

Program example

• The program using the ANB and ORB instructions. [Structured ladder/FBD]

1							
		·					
	· · · ×4 · · · ×5 · · · ·	:	:	:	· · · ·	:	:
			•	•		•	•

Operation result push/read/pop

MPS, MRD, MPP Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST EN ENO_ EN ENO_ (EN);

Any of the following instruction can go in the dotted squares. MPS, MRD, MPP

■Executing condition

Instruction	Executing condition					
MPS, MRD, MPP	Non-conditional execution					

■Argument

Input/output argument				Description		Data type					
Input argumen	nput argument EN			Executing condition		Bit	Bit				
Output argument ENO			Execution result		Bit						
Setting Interna		device	vice R, ZR		JO/O		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word					
_	—	·				·					

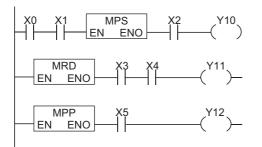
Processing details

■MPS

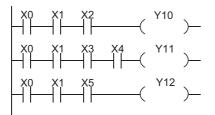
- Stores the memory of the operation result (ON or OFF) immediately prior to the MPS instruction.
- Up to 16 MPS instructions can be used successively. If the MPP instruction is used during this process, the number of uses calculated for the MPS instruction will be decremented by one.

■MRD

• Reads the operation result stored in the MPS instruction, and uses that result to perform the operation in the next step.


■MPP

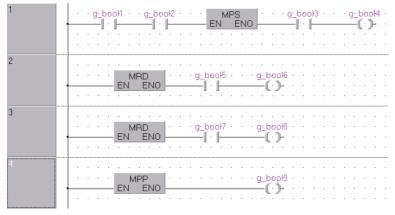
- Reads the operation result stored in the MPS instruction, and uses that result to perform the operation in the next step.
- · Clears the operation results stored in the MPS instruction.
- Subtracts 1 from the number of MPS instruction times of use.



The following shows the ladders using and without using the MPS, MRD, and MPP instructions.

• Ladder using the MPS, MRD, and MPP instructions

· Ladder without using the MPS, MRD, and MPP instructions


The MPS and MPP instructions must be used the same number of times.

Operation error

• There is no operation error.

Program example

• The program using the MPS, MRD, and MPP instructions. [Structured ladder/FBD]

[ST]

OUT(MPS(g_bool1 AND g_bool2) AND g_bool3,g_bool4); OUT(MRD(TRUE) AND g_bool5,g_bool6); OUT(MRD(TRUE) AND g_bool7,g_bool8); OUT(MPP(TRUE),g_bool9);

• The program using the MPS and MPP instructions successively. [Structured ladder/FBD]

1	· · · g_bool1 · · MPS · g_bool2 · · MPS · g_bool3 · · MPS · · g_bool4 · · · · · · · · · · · · · · · · · · ·
	MPS <u>g_bool5</u> <u>MPS</u> <u>g_bool6</u>
2	
3	
4	
5	MPP • • · · · · · · · · · · · · · · · · ·
6	
0	

[ST]

 $\mathsf{OUT}(\mathsf{MPS}(\mathsf{MPS}(\mathsf{MPS}(\mathsf{MPS}(\mathsf{g_bool1})\mathsf{AND}\ g_\mathsf{bool2})\mathsf{AND}\ g_\mathsf{bool3})\mathsf{AND}\ g_\mathsf{bool4})\mathsf{AND}\ g_\mathsf{bool5}, g_\mathsf{bool6});$

OUT(MPP(TRUE),g_bool7); OUT(MPP(TRUE),g_bool8);

OUT(MPP(TRUE),g_bool9);

OUT(MPP(TRUE),g_bool10);

OUT(MPP(TRUE),g_bool11);

Operation result inversion

INV			
Basic High Process R	Redundant Universal	LCPU	
Structured ladder/	FBD	ST	
EN ENO]_	ENO:= INV (EN);	

Any of the following instruction can go in the dotted squares. INV

■Executing condition

Instruction	Executing condition
INV	Non-conditional execution

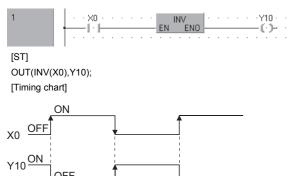
■Argument

Input/output argument	•			Descript	ion	Data type				
Input argument EN			Executing	Executing condition Bit						
Output argument ENO			Execution result		Bit					
Setting	Internal	ternal device R		R, ZR J⊡\□			UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word				
_	_								·	

Processing details

· Inverts the operation result immediately prior to the INV instruction.

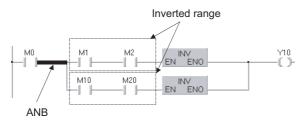
Operation result immediately prior to the INV instruction	Operation result following the execution of the INV instruction
OFF	ON
ON	OFF


Operation error

.OFF

• There is no operation error.

Program example


• The program which inverts the X0 ON/OFF data, and outputs from Y10. [Structured ladder/FBD]

5

- The INV instruction operates based on the results of calculation made until the INV instruction is given. Accordingly, use it in the same position as that of AND. The INV instruction cannot be used at the LD and OR positions.
- When using a ladder block, the operation result is inverted within the range of the ladder block. To operate a ladder using the INV instruction in combination with the ANB instruction, pay attention to the range which is inverted.

For details of the ANB instruction, refer to 🖙 Page 92 Ladder block series connection and parallel connection.

Pulse conversion of operation result

MEP, MEF

Basic High performance Process Redundant U	niversal
Structured ladder/FBD	ST
EN ENO	ENO:= MEP (EN);

Any of the following instruction can go in the dotted squares. MEP, MEF

■Executing condition

Instruction	Executing condition
MEP, MEF	Non-conditional execution

■Argument

Input/output argument				Descript	ion	Data type				
Input argument EN			Executing condition		Bit	Bit				
Output argument ENO			Execution result		Bit					
Setting	Internal device		R,	R, ZR J□\□			UE\GE	Zn	Constant	Others
data	Bit	Word			Bit	Word				
_	—		•			•				

Processing details

■MEP

- If operation results up to the MEP instruction are rising edge (from OFF to ON), turns ON (conduction state). If operation results up to the MEP instruction are anything other than rising edge, turns OFF (non-conduction state).
- Use of the MEP instruction simplifies pulse conversion processing when multiple contacts are connected in series.

■MEF

- If operation results up to the MEF instruction are falling edge (from ON to OFF), turns ON (conduction state). If operation results up to the MEF instruction are anything other than falling edge, turns OFF (non-conduction state).
- Use of the MEF instruction simplifies pulse conversion processing when multiple contacts are connected in series.

Operation error

• There is no operation error.

Program example

 The program which performs pulse conversion to the operation results of X0 and X1 [Structured ladder/FBD]

[ST] IF X0 AND X1 THEN SET(MEP(TRUE),M0); END_IF;

- The MEP and MEF instructions will occasionally not function properly when pulse conversion is conducted for a contact that has been indexed by a subroutine program or FOR to NEXT instruction loop. If pulse conversion is to be conducted for a contact that has been indexed by a subroutine program or FOR to NEXT instruction loop, use the EGP/EGF instructions.
- Because the MEP and MEF instructions operate with the operation results immediately prior to the MEP and MEF instructions, AND should be used at the same position. The MEP and MEF instructions cannot be used at the LD or OR position.

Pulse conversion of edge relay operation result

EGP, EGF Basic High process Redundant Universal LCPU Structured ladder/FBD ENO ENO:= EGP (EN,d);

Any of the following instruction can go in the dotted squares. EGP, EGF

■Executing condition

Instruction	Executing condition
EGP	
EGF	

■Argument

Input/output Name argument			Description			Data type					
Input argument EN			Executing condition			Bit					
Output argument		ENO		Execution result			Bit				
		d		Edge relay operation	/ number that st result	ores the	Bit				
Setting data	Internal device		R,	R, ZR J□\□				Zn	Constant	Others	
	Bit	Word			Bit	Word					V

(C	I)	

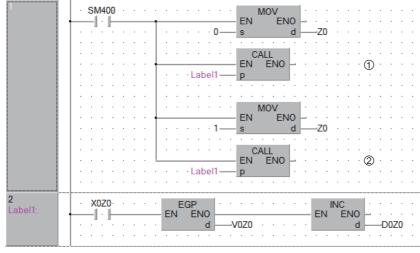
Processing details

■EGP

- Operation results up to the EGP instruction are stored in memory by the edge relay (V).
- Turns ON (conduction state) at the rising edge (OFF to ON) of the operation result up to the EGP instruction. If the operation result up to the EGP instruction is other than a rising edge (ON to ON, ON to OFF, or OFF to OFF), it turns OFF (non-conduction state).
- The EGP instruction is used when conducting pulse operations for indexed programs in subroutine programs and FOR to NEXT instruction loop.
- The EGP instruction can be used like AND.

■EGF

- Operation results up to the EGF instruction are stored in memory by the edge relay (V).
- Turns ON at the falling edge (from ON to OFF) of the operation result up to the EGF instruction. If the operation result up to the EGF instruction is other than a falling edge (OFF to ON, ON to ON, or OFF to OFF), it turns OFF (non-conduction state).
- The EGF instruction is used when conducting pulse operations for indexed programs in subroutine programs and FOR to NEXT instruction loop.
- The EGF instruction can be used like AND.


Operation error

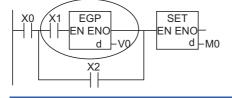
· There is no operation error.

Program example

The program using the EGP instruction.

[Structured ladder/FBD]

[ST]


INC(EGP(X0Z0,V0Z0),D0Z0);

[Operation]

END processing 1 2 (1	
X0 OFF	
X1 OFF	Turns OFF because X0 stays ON
V0 <u>OFF</u> Turns ON by the rising edge of X0	ON Turns OFF because X1 stays ON
D01	Turns ON by the rising edge of X1 X2
D1	<u> </u>

Point *P*

- Since the EGP and EGF instructions are executed according to the operation results performed immediately before the EGP and EGF instructions, these instructions must be used at the same position as AND. (Refer to Immediately Page 83 Operation start, series connection, parallel connection.) The EGP and EGF instructions cannot be used at the LD or OR position.
- EGP and EGF instructions cannot be used at the ladder block positions shown below.

5.3 Output Instructions

Out (excluding timers, counters and annunciators)

DUT	
Basic High performance Process Redundant Uni	versal
Structured ladder/FBD	ST
EN ENO	ENO:= OUT (EN, d);

The following instruction can go in the dotted squares. OUT

ł

■Executing condition

Instruction	Executing condition
OUT	Non-conditional execution

■Argument

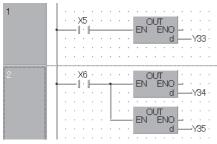
Input/outpu argument	t	Name	Descript	ion		Data type					
Input argumen	nput argument El		Executing	Executing condition			Bit				
Output argume	Output argument E		Execution	Execution result			Bit				
		d	Device nu OFF	mber to be turne	ed ON or	Bit					
Setting	Internal of	device	R, ZR	, ZR J□\□			UD\GD	Zn	Constant	Others	
data	Bit	Word		Bit Word						DY	
(d)	O(Other th T, CF)	ian O						_		0	

Processing details

· Operation results up to the OUT instruction are output to the specified device.

Item	Operation result	Coil	
For bit devices	OFF	OFF	
	ON	ON	
Item	Operation result	Bit specified	
Item For bit-specified word devices	Operation result OFF	Bit specified 0	

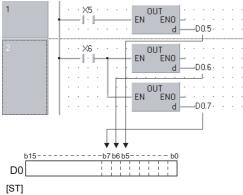
Operation error


• There is no operation error.

5

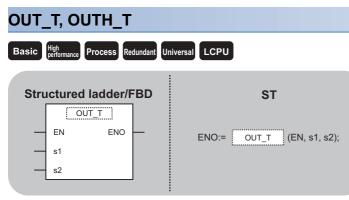
Program example

· For bit devices


[Structured ladder/FBD]

[ST] OUT(X5,Y33); OUT(X6,Y34); OUT(X6,Y35);

· For bit-specified word devices


[Structured ladder/FBD]

OUT(X5,D0.5); OUT(X6,D0.6); OUT(X6,D0.7);

5 SEQUENCE INSTRUCTIONS 104 5.3 Output Instructions

Timer

Any of the following instruction can go in the dotted squares. $\ensuremath{\mathsf{OUT}_\mathsf{T}}$, $\ensuremath{\mathsf{OUTH}_\mathsf{T}}$

■Executing condition

Instruction	Executing condition
OUT_T, OUTH_T	Non-conditional execution

■Argument

Input/outpu argument	t	Name	Descript	Description Data type						
Input argument EN			Executing	Executing condition			Bit	Bit		
s1(TCoil)			Timer num	Timer number			Bit	Bit		
		s2(TValue)	Timer set v	Timer set value (Setting range: 1 to 32767)				ANY16		
Output argume	ent	ENO	Execution	result			Bit			
Setting	Internal	device	R, ZR	JD\D UD\G		UD\GD	Zn	Constant Others		
data	ata Bit Word Bit Word			к						
(s1)	O (TC only	y) —	—	-	—		—	—	—	
(s2)	-	○ (Other than T or C)	0	-	0		_	0	-	

Processing details

- When the operation results up to the OUT(H)_T instruction are ON, the timer coil turns ON and the timer counts up to the value that has been set, when the time up status (total numeric value is equal to or greater than the setting value), the contact responds as follows.
- Normally open contact: Conduction
- Normally closed contact: Non-conduction
- The contact responds as follows when the operation result up to the OUT(H)_T instruction is a change from ON to OFF.

Type of timer	Timer coil	Current value of timer	Prior to time up		After time up		
			Normally open contact	Normally closed contact	Normally open contact	Normally closed contact	
Low-speed timer	OFF	0	Non-conduction	Conduction	Non-conduction	Conduction	
High-speed timer							
Low-speed retentive timer	OFF	Retains the Current value	Non-conduction	Conduction	Conduction	Non-conduction	
High-speed retentive timer							

- To clear the current value of a retentive timer and turn the contact OFF after time up, use the RST instruction.
- A negative number (-32768 to -1) cannot be set as the setting value for the timer. If the set value is 0, the timer will time out when the time the OUT(H) T instruction is executed.
- The following processing is conducted when the OUT(H)_T instruction is executed. In cases where the JMP instruction or the like is used to jump to the OUT(H)_T instruction while the OUT(H)_T instruction is ON, no current value update or contact ON/OFF operation is conducted. Also, if the same OUT(H)_T instruction is conducted two or more times during the same scan, the current value of the number of repetitions executed will be updated.

• OUT(H)_T T□ coil turned ON or OFF

OUT(H)_T T□ contact turned ON or OFF

OUT(H)_T T□ current value updated

- Index setting for timer coils or contacts can be conducted only by Z0 or Z1 (except for the QnUDVCPU and QnUDPVCPU).
- Timer setting value has no limitation for index setting.

Point P

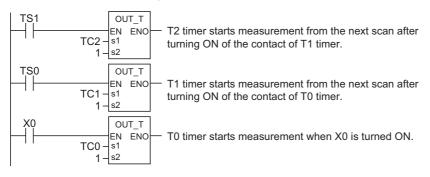
• Time limit of the timer is set in the PLC system of the PLC parameter dialog box.

[For the Basic model QCPU, high Performance model QCPU, Process CPU, and Redundant CPU] Low speed timer/Low speed retentive timer: 1ms to 1000ms (default: 100ms, setting unit: 1ms) High speed timer/High speed retentive timer: 0.1ms to 100.0ms (default: 10.0ms, setting unit: 0.1ms) [For the Universal model QCPU and LCPU]

Low speed timer/Low speed retentive timer: 1ms to 1000ms (default: 100ms, setting unit: 1ms) High speed timer/High speed retentive timer: 0.01ms to 100.0ms (default: 10.0ms, setting unit: 0.01ms)

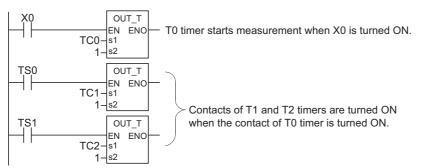
• For information on timer counting methods, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.

Operation error


There is no operation error.

Precautions

- When creating a program in which the operation of the timer contact triggers the operation of other timer, create the program for the timer that operates later first. In any of the following cases, all timers turn ON at the same scan if the program is created in the order the timers operate.
- If the set value is smaller than a scan time
- If 1 is set

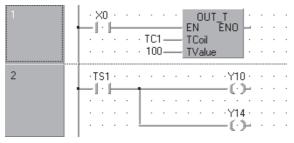

Ex.

For timers T0 to T2, the program is created in the order the timer operates later.

Ex.

For timers T0 to T2, the program is created in the order of timer operation.

• When using timer devices in a program, it is necessary to separate the usage of devices into following classification depending on the position of use. When T or ST is entered, they are treated as TN or STN respectively.


• When using it for a contact: TS, STS

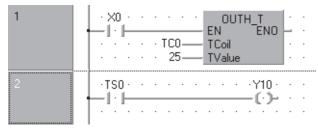
- When using it for a coil: TC, STC
- When using it for a current value: TN, STN

Program example

• In the following program, Y10 and Y14 are turned ON, 10 seconds after X0 has turned ON. The setting value of the low-speed timer indicates its default time limit (100ms).

[Structured ladder/FBD]

[ST] OUT_T(X0,TC1,100); OUT(TS1,Y10); OUT(TS1,Y14);


• In the following program, the BCD data of X10 to X1F are set as the timer's setting value. [Structured ladder/FBD]

1	EN ENO s d Var_D10	nverts BCD data from X10 to X1F to I data, and stores the result to Var_D10.
2	• ×2 • OUT_T • • • I I EN ENO • • • TC2 TCoil • • • •	e data stored in Var_D10 are used for asurement as a set value when X2 ns ON.
3	· · TS2 · · · · · · · · · · · · · · · · · · ·	5 turns ON when T2 counts out.
[ST]		

BINP(X0,K4X10,Var_D10); OUT_T(X2,TC2,Var_D10); OUT(TS2,Y15);

• In the following program, Y10 is turned ON, 250 milliseconds after X0 has turned ON. The setting value of the high-speed timer indicates its default time limit (10ms).

[Structured ladder/FBD]

[ST] OUTH_T(X0,TC0,25); OUT(TS0,Y10);

Counter

OUT_C	
Basic High Process Redundant Univer	rsal LCPU
Structured ladder/FBD	ST
OUT_C EN ENO s1 s2	ENO:= OUT_C (EN, s1, s2);

The following instruction can go in the dotted squares. OUT_C

■Executing condition

Instruction	Executing condition
OUT_C	Non-conditional execution

■Argument

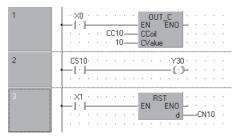
Input/output Name argument			Descript	Description			Data type		
Input argument		EN	Executing	condition			Bit		
		s1(CCoil)	Counter n	Counter number			Bit		
		s2(CValue)	Counter se	Counter set value (Setting range: 1 to 32767)				ANY16	
Output argument ENO		Execution	Execution result			Bit			
Setting	Internal o	levice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			к	
(s1)	O (CC only	/) —	—	-	-		—	—	-
(s2)	—	○ (Other than T or C)	0	-	0		_	0	—

Processing details

- When the operation results up to the OUT_C instruction change from OFF to ON, 1 is added to the current value (count value) and the count up status (current value set value), and the contacts respond as follows
- Normally open contact: Conduction
- Normally closed contact: Non-conduction
- No count is performed with the operation results at ON. (There is no need to perform pulse conversion on count input.)
- After the count up status is reached, there is no change in the count value or the contacts until the RST instruction is executed.
- A negative number (-32768 to -1) cannot be set as the setting value for the timer. If the set value is 0, the processing is identical to that which takes place for 1.
- Indexing for the counter coil and contact can use only Z0 and Z1. (except for the QnUDVCPU and QnUDPVCPU).
- · Counter setting value has no limitation for index setting.
- When using counter devices in a program, it is necessary to separate the usage of devices into following classification depending on the position of use. When C is entered, it is treated as CN.
- When using it for a contact: CS
- When using it for a coil: CC

```
Point P
```

For counter counting methods, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.


When using it for a current value: CN

Operation error

• There is no operation error.

Program example

• In the following program, Y30 is turned ON after X0 has turned ON 10 times, and the counter is reset when X1 turns ON. [Structured ladder/FBD]

[ST]

OUT_C(X0,CC10,10); OUT(CS10,Y30); RST(X1,CN10);

• In the following program, the setting value for C10 is set at 10 when X0 turns ON, and at 20 when X1 turns ON. [Structured ladder/FBD]

1	×0 · · ×1 · · · · · · · · · · · · · · · ·	Stores 10 to D0 when X0 turns ON.
2	· X1 · · X0 · · · · · · · · · MOVP □ ↓ ↓ ↓ ↓ ↓ EN ENO · · · · · · · · · · · · · · · · · · ·	Stores 20 to D0 when X1 turns ON.
3	· X3 · · · · · · · · · · · · OUT_C · · · · · · · · · · · · · · · · · · ·	C10 counts data stored in D0 as a setting value.
4	·CS10···································	Y30 turns ON when C10 counts out.

[ST]

IF X0 AND NOT(X1) THEN MOVP(TRUE,10,Var_D0); END_IF; IF NOT(X0) AND X1 THEN MOVP(TRUE,20,Var_D0); END_IF; OUT_C(X3,CC10,Var_D0); OUT(CS10,Y30);

Annunciator output

Ουτ	
Basic High performance Process Redundant	Universal LCPU
Structured ladder/FBD	ST
EN ENO	ENO:= OUT (EN, d);

The following instruction can go in the dotted squares. OUT

■Executing condition

Instruction	Executing condition
OUT	Non-conditional execution

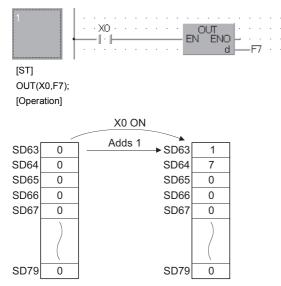
■Argument

Input/output Name argument			Descripti	Description			Data type	Data type			
Input argumer	nput argument EN			Executing of	Executing condition			Bit	Bit		
Output argument ENO		Execution r	Execution result			Bit	Bit				
d		Annunciato	Annunciator number to be turned ON		Bit	Bit					
Setting	Internal	device		R, ZR			UD\GD	Zn	Constant Others	Others	
data	Bit	Word			Bit	Word					
(d)	○ F only	_									

Processing details

- · Operation results up to the OUT instruction are output to the specified annunciator.
- The following responses occur when an annunciator (F) is turned ON.
- The "USER" LED^{*1} turns ON.
- The annunciator numbers which are ON (F numbers) are stored to special registers (SD64 to SD79).
- The value of SD63 is incremented by 1.
- *1 For Basic model QCPU, the "ERR" LED displays on the front of the CPU module.
- If the value of SD63 is 16 (which happens when 16 annunciators are already ON), even if a new annunciator is turned ON, its number will not be stored to SD64 to SD79.
- The following responses occur when the annunciator is turned OFF by the OUT instruction.
- The coil turns OFF, but there are no changes in the status of the "USER" LED^{*2} and the content of the values stored to SD63 to SD79.
- Use the RST instruction to make the "USER" LED^{*2} turn OFF as well as to delete the annunciator which was turned OFF by the OUT instruction from SD63 to SD79.
- *2 For Basic model QCPU, the "ERR" LED displays on the front of the CPU module.

Point P


For details of annunciators, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module to be used.

Operation error

• There is no operation error.

Program example

• In the following program, F7 is turned ON when X0 turns ON, and the value 7 is stored to the devices from SD64 to SD79. [Structured ladder/FBD]

Setting devices (excluding annunciators)

SET		
Basic High performance Process Redundant Ur	niversal	
Structured ladder/FBD	ST	
EN ENO	ENO:= SET (EN, d);	

The following instruction can go in the dotted squares. SET

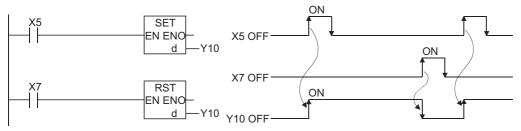
■Executing condition

Instruction	Executing condition
SET	

■Argument

Input/output Name argument		Descript	Description			Data type			
Input argument EN		EN	Executing	Executing condition			Bit		
Output argument		ENO	Execution	Execution result			Bit		
		d	Bit device ON	Bit device number or bit-specified word device to be turned ON			Bit		
Setting	Internal	device	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word				DY
(d)	0	○ (Other than	T or C)	0				0	

Point P


When BL, S, TR, BL\S, or BL\TR is used, refer to SFC control instructions of the MELSEC-Q/L/QnA Programming Manual (SFC).

Processing details

• When the execution command is turned ON, the status of the specified devices becomes as shown below:

Device	Device status
Bit device	Turns coils and contacts ON
Bit-specified word device	Sets the value of specified bit to 1

 Devices turned ON remain ON even when the execution command is turned OFF. Devices turned ON by the SET instruction can be turned OFF by the RST instruction.

• When the execution command is OFF, the status of devices does not change.

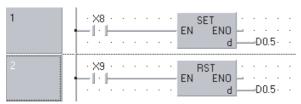
Operation error

• There is no operation error.

Program example

• In the following program, Y8B is set (ON) when X8 turns ON, and Y8B is reset (OFF) when X9 turns ON. [Structured ladder/FBD]

1	· ×8 · —∥·⊫	•	•		•		EN ENO - Y8B ·	
2	· ×9 ·	•	•	•	•	•	EN ENO - Y8B ·	


[ST]

SET(X8,Y8B);

RST(X9,Y8B);

• In the following program, the value of D0 b5 (bit 5) is set to 1 when X8 turns ON, and the bit value is set to 0 when X9 turns ON.

[Structured ladder/FBD]

[ST] SET(X8,D0.5); RST(X9,D0.5);

When using X as a device, use the device numbers that are not used for the actual input. If the same number is used for the actual input device and input X, the data of the actual input will be written over with the input X specified in the SET instruction.

Resetting devices (excluding annunciators)

RST		
Basic High performance Process Redundant Ur	iversal LCPU	
Structured ladder/FBD	ST	
EN ENO	ENO:= RST (EN, d);	

The following instruction can go in the dotted squares. RST

■Executing condition

Instruction	Executing condition
RST	

■Argument

Input/output argument	t	Name	De	script	ion	Data type	Data type				
Input argumen	ıt	EN	Exe	Executing condition					Bit		
Output argume	ent	ENO	Exe	Execution result				Bit	Bit		
d				Bit device number or bit-specified word device to be reset Word device number to be reset					ANY_SIMPLE		
Setting	Internal	device	R, ZR		JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word	1	Bit Word						DY	
(d)	0								-	0	

Point P

When BL, S, TR, BL\S, or BL\TR is used, refer to SFC control instructions of the MELSEC-Q/L/QnA Programming Manual (SFC).

Processing details

• When the execution command is turned ON, the status of the specified devices becomes as shown below:

Device	Device status
Bit device	Turns coils and contacts OFF
Timer and counter	Sets the current value to 0, and turns coils and contacts OFF
For bit-specified word devices	Sets the value of specified bit to 0
Word device other than timer and counter	Sets the value to 0

- When the execution command is OFF, the status of devices does not change.
- The functions of the word devices specified by the RST instruction are identical to the following ladder.

Operation error

· There is no operation error.

Program example

• In the following program, the value of the data register is set to 0. [Structured ladder/FBD]

[ST] MOVP(X0,K4X10,Var_D8); RST(X5,Var_D8);

. .

• In the following program, the 100ms retentive timer and counter are reset. [Structured ladder/FBD]

1	X10 · · · · · · · · · · · · · · · · · · ·
	EN END it turns ON when X4's ON time
	· · · · · · 18000 TValue · · · · · · · reaches 30 minutes.
2	STS225 · · · · · · OUT C · · · · · ·
	EN EN EN Counts the number of times ST225
	RST Resets the coil, contact, and current
	EN END Value of ST255 when the contact of STN225 ST255 turns ON.
3	$[CS23 \cdots V55 \cdots V55 \cdots V55 \cdots V55 \cdots V55 turns ON when C23 counts out.$
4	· X5 · · · · · · · · BST · · · · · · · ·
	EN END Resets the data in C23 when X5 turns ON.
[ST]	
IF STS225 T	TC225,18000);
	RUE,CC23,16);
	iE,STN225);
END_IF;	
OUT(CS23.)	55):

OUT(CS23,Y55); RST(X5,CN23);

Point P

When resetting timers and counter devices, only coils (TC, STC, CC) and current values (TN, STN, CN) can be specified for output argument (d). Contacts (TS, STS, CS) cannot be specified.

Setting and resetting annunciators

SET, RST Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST ENO = SET (EN, d);

Any of the following instruction can go in the dotted squares. SET, $\ensuremath{\mathsf{RST}}$

■Executing condition

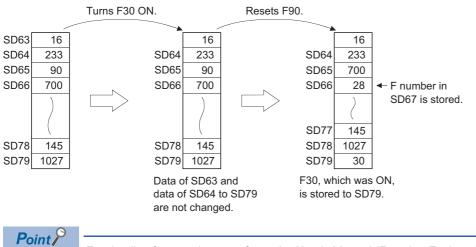
Instruction	Executing condition
SET	
RST	

■Argument

Input/output argument	t	Nai	me	C	Descripti	ion		Data type	Data type			
Input argumen	ument EN I				Executing	condition		Bit	Bit			
Output argume	ent	ENG	0	E	Execution	result		Bit	Bit			
d				A	Annunciator number to be set					Bit		
				Α	Annunciato	or number to be	reset	Bit	Bit			
Setting	Internal	devi	се	R, ZI	R	J⊡\⊡ Bit Word		UD\GD	Zn	Constant	Others	
data	Bit		Word									
(d)	○ F only		_					1				

Processing details

SET


- The annunciator specified for (d) is turned ON when the execution command is turned ON.
- The following responses occur when an annunciator (F) is turned ON.
- The "USER" LED*1 turns ON.
- The annunciator numbers which are ON (F numbers) are stored to special registers (SD64 to SD79).
- The value of SD63 is incremented by 1.
- *1 For Basic model QCPU, the "ERR" LED displays on the front of the CPU module.
- If the value of SD63 is 16 (which happens when 16 annunciators are already ON), even if a new annunciator is turned ON, its number will not be stored to SD64 to SD79.

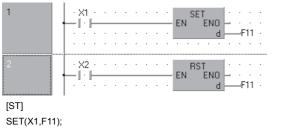
■RST

- The annunciator specified for (d) is turned OFF when the execution command is turned ON.
- The annunciator numbers (F numbers) of annunciators that have turned OFF are deleted from the special registers (SD64 to SD79), and the value of SD63 is decremented by 1.
- When the value of SD63 is "16", the annunciator numbers are deleted from SD64 to SD79 by the use of the RST instruction. If the annunciators whose numbers are not registered to SD64 to SD79 are ON, these numbers are registered. If all annunciator numbers from SD64 to SD79 are turned OFF, the "USER" LED^{*1} is turned OFF.
- *1 For Basic model QCPU, the "ERR" LED displays on the front of the CPU module.

Ex.

[Operations which take place when SD63 is 16]

For details of annunciators, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module to be used.


Operation error

· There is no operation error.


Program example

• In the following program, the annunciator F11 is turned ON when X1 turns ON, and the value 11 is stored to the special register (SD64 to SD79). Further, the annunciator F11 is reset when X2 turns ON, and the value 11 is deleted from the special registers (SD64 to SD79).

[Structured ladder/FBD]

RST(X2,F11); [Operation]

Rising edge and falling edge outputs

PLS, PLF Basic High Process Redundant Universal LCPU Structured ladder/FBD ST PLS ENO = PLS (EN, d);

Any of the following instruction can go in the dotted squares. $\ensuremath{\mathsf{PLS}}$, $\ensuremath{\mathsf{PLF}}$

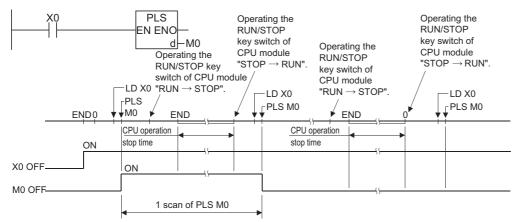
■Executing condition

Instruction	Executing condition				
PLS					
PLF					

■Argument

Input/output argument	t	Name		Descript	ion		Data type			
Input argumen	t	EN		Executing	condition		Bit			
Output argume	argument ENO				result		Bit			
d				Device to be set as pulse output				Bit		
Setting	Internal	device	R,	ZR				Zn	Constant	Others
data	Bit	Word			Bit Word					DY
(d)	0	·						_		0

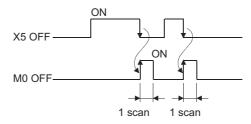
5


Processing details

■PLS

- Turns ON the specified device when the execution command is turned from OFF to ON, and turns OFF the device in any other case the execution command is turned from OFF to ON (ON to ON, ON to OFF or OFF to OFF).
- When there is one PLS instruction for the device specified for (d) during one scan, the specified device turns ON one scan.
- Refer to FP Page 72 Operation of OUT Instructions, SET/RST Instructions, or PLS/PLF Instructions Using Same Device for the operation to be performed when the PLS instruction for the same device is executed more than once during one scan.

• If the switch is changed from RUN to STOP after the execution of the PLS instruction, the PLS instruction will not be executed again even if the switch is set back to RUN.

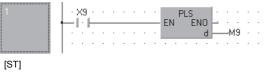


• When specifying a latch relay (L) for the execution command and turning the power supply from OFF to ON with the latch relay ON, the execution command turns from OFF to ON at the first scan, executing the PLS instruction and turning ON the specified device. The device turned ON at the first scan after power-ON turns OFF at the next PLS instruction.

■PLF

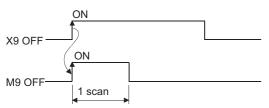
- Turns ON the specified device when the execution command is turned from ON to OFF, and turns OFF the device in any other case the execution command is turned from ON to OFF (OFF to OFF, OFF to ON or ON to ON).
- When there is one PLF instruction for the device specified for (d) during one scan, the specified device turns ON one scan.
- Refer to SP Page 72 Operation of OUT Instructions, SET/RST Instructions, or PLS/PLF Instructions Using Same Device for the operation to be performed when the PLS instruction for the same device is executed more than once during one scan.

• If the switch is changed from RUN to STOP after the execution of the PLF instruction, the PLF instruction will not be executed again even if the switch is set back to RUN.

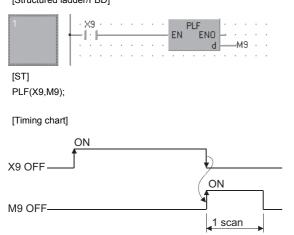

Note that the device specified for (d) may remain ON for more than one scan if the PLS or PLF instruction is jumped by the CJ instruction or if the executed subroutine program was not called by the CALL instruction.

Operation error

• There is no operation error.


Program example

• In the following program, the PLS instruction is executed when X9 turns ON. [Structured ladder/FBD]



PLS(X9,M9);

[Timing chart]

• In the following program, the PLF instruction is executed when X9 turns OFF. [Structured ladder/FBD]

Bit device output inversion

FF					
Basic	High performance Process F	Redundant	Universal LCPU		
Str	uctured ladder/	/FBD		ST	
_	EN ENO		ENO:=	FF (EN, s)	•
	s				

The following instruction can go in the dotted squares. FF

■Executing condition

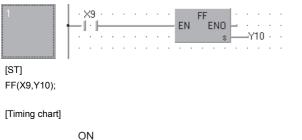
Instruction	Executing condition
FF	

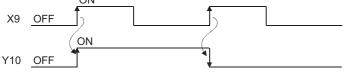
■Argument

Input/output argument	t	Name		Description			Data type					
Input argumen	t	EN		Executing	Executing condition				Bit			
		S		Device nur	Device number whose status to be inverted				Bit			
Output argume	ent	ENO		Execution	Execution result			Bit				
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn Consta		Others		
data	Bit	Word			Bit	Word				DY		
(s)	0							_		0		

Processing details

• Inverts the output status of the device specified for (s) when the execution command is turned from OFF to ON.

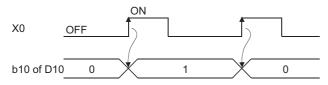

Device	Device status					
	Prior to execution of the FF instruction	After execution of the FF instruction				
Bit device	OFF	ON				
	ON	OFF				
Bit-specified word device	0	1				
	1	0				


Operation error

• There is no operation error.

Program example

• In the following program, the output of Y10 is inverted when X9 turns ON. [Structured ladder/FBD]



• In the following program, b10 (bit 10) of D10 is inverted when X0 turns ON. [Structured ladder/FBD]

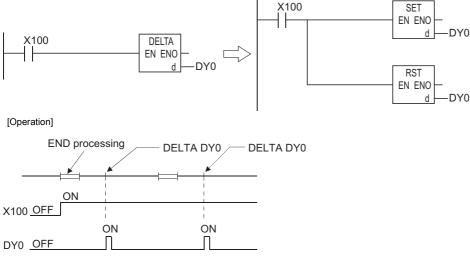
[Timing chart]

Pulse conversion of direct output

DELTA(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST Universal LCPU Structured ladder/FBD CONSTRUCTION (EN, d);

Any of the following instruction can go in the dotted squares. DELTA, DELTAP

■Executing condition


Instruction	Executing condition
DELTA	
DELTAP	

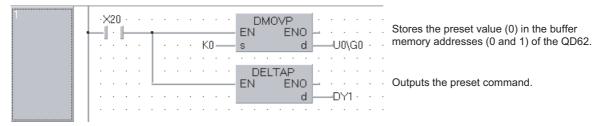
■Argument

Input/output argument	t	Name	Des	Description Data type							
Input argumen	t	EN	Exe	Executing condition Bit			Bit				
Output argume	ent	ENO	Exe	Execution result			Bit				
		d	Bit to	o be se	et as pulse outp	ut			Bit		
Setting	Internal	device	R, ZR		JD/D		UD\GE	U⊟\G⊟ Zn		Constant	Others
data	Bit	Word			Bit	Word					DY
(d)	—										0

Processing details

• Performs pulse output of direct access output (DY) specified for (d). If DY0 of the DELTA instruction has been specified, the resulting operation will be identical to the ladder shown below, which uses the SET and RST instructions.

• The DELTA(P) instruction is used by commands for rising edge execution for an intelligent function module.


Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	A specified direct access output number has exceeded the CPU module output range.	0	0	0	0	0	0

Program example

• In the following program, CH1 of the QD62 module mounted at slot 0 of the main base unit is preset, when X20 turns ON. [Structured ladder/FBD]

[ST] DMOVP(X20,K0,U0\G0); DELTAP(X20,DY1);

5.4 Shift Instructions

Bit device shift

_			
C	E7	Г/	D)
J			г,
_		- 1	- /

Basic High Process Redundant Universal LCPU

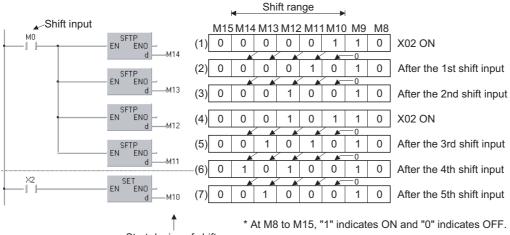
Structured ladder/FBD	ST
EN ENO	ENO:= SFT (EN, d);

Any of the following instruction can go in the dotted squares. SFT, SFTP

■Executing condition

Instruction	Executing condition
SFT	
SFTP	

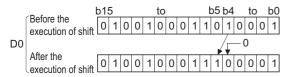
■Argument


Input/output argument	t	Name	Descript	Description			Data type			
Input argumen	ıt	EN	Executing	condition	Bit					
Output argume	ent	ENO	Execution	result		Bit				
		d	Device nu	Device number to be shifted						
Setting	Internal	device	R, ZR			Zn	Constant	Others		

Setting	Internal dev	ternal device		JD/D		JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word				DY		
(d)	○ (Other thar	n T or C)					—		0		

Processing details

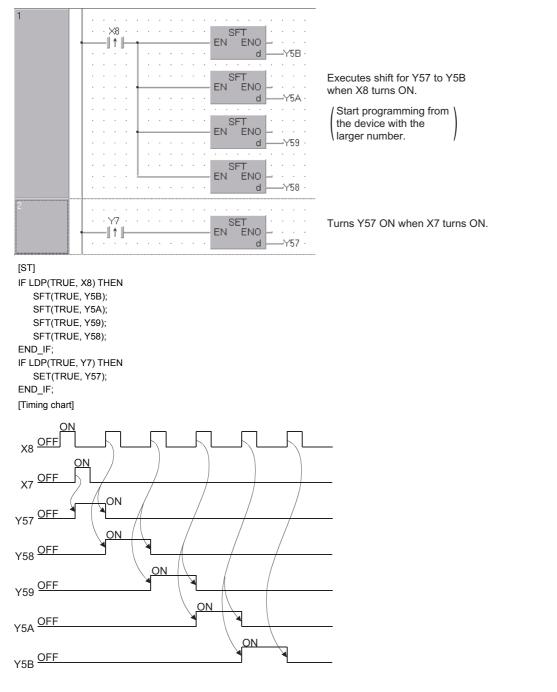
When a bit device is used


- Shifts to a device specified for (d) the ON/OFF status of the device immediately prior to the one specified for (d), and turns the prior device OFF. For example, if M11 has been specified in the SFT instruction, when the SFT instruction is executed, it will shift the ON/OFF status of M10 to M11, and turns M10 OFF.
- Turn the first device to be shifted ON with the SET instruction.
- When the SFT and SFTP instructions are to be used consecutively, the program starts from the device with the larger number.

Start device of shift

■When a bit-specified word device is used

• Shifts to a bit in the device specified for (d) the 1/0 status of the bit immediately prior to the one specified for (d), and turns the prior bit to 0. For example, if D0.5 (bit 5 [b5] of D0) has been specified in the SFT instruction, when the SFT instruction is executed, it will shift the 1/0 status of b4 of D0 to b5, and turns b4 to 0.


Operation error

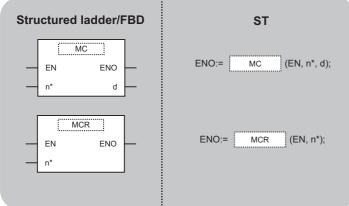
• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The specified device exceeds the corresponding device range.	—	—	—	—	0	0

Program example

• In the following program, the devices from Y57 to Y5B are shifted when X8 turns ON. [Structured ladder/FBD]

Precautions


When using the SFT instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

5.5 Master Control Instructions

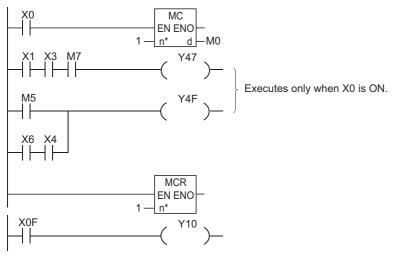
Setting and resetting master control

MC, MCR

Basic High performance Process Redundant Universal LCPU

Any of the following instruction can go in the dotted squares. MC, $\ensuremath{\mathsf{MCR}}$

■Executing condition


Instruction	Executing condition
MC, MCR	Non-conditional execution

■Argument

Input/outpu argument	t	Name		Dese	cription				Data type		
Input argumer	nt	EN		Exec	uting condition	l			Bit		
		n*		Nesti	ng (N0 to N14)			ANY16		
Output argum	ent	ENO		Exec	ution result				Bit		
		d			e number to b ction)	e turned ON (When using the	MC	Bit		
Setting	Internal	device	R, ZR	2	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word				N	DY
n*	—							—		0	—
(d)	0							-		-	0

Processing details

- The master control instruction is used to enable the creation of highly efficient ladder switching sequence programs, through the opening and closing of a common bus for ladders.
- A ladder using the master control is as follows.

■MC

• If the execution command of the MC instruction is ON when master control is started, the result of the operation from the MC instruction to the MCR instruction will be exactly as the instruction (ladder) shows.

If the execution command of the MC instruction is OFF, the result of the operation from the MC instruction to the MCR instruction will be as shown below.

Device	Device status
High-speed timer Low-speed timer	Count value turns to 0, coils and contacts all turn OFF.
High-speed retentive timer Low-speed retentive timer Counter	Coils turn OFF, but counter values and contacts all retain current status.
Devices in the OUT instruction	All turned OFF
Devices in the SET, RST instructions Devices in the SFT instruction Devices in the basic, application instructions	Retain current status

• Even when the MC instruction is OFF, instructions from the MC instruction to the MCR instruction will be executed, so scan time will not be shortened.

Point P

When a ladder with master control contains instructions that do not require any contact instruction (such as the FOR to NEXT instruction loop, EI and DI instructions), the CPU module executes these instructions regardless of the ON/OFF status of the MC instruction execution command.

- By changing the device specified for (d), the MC instruction can use the same nesting (N) number as often as desired.
- Coils from devices specified for (d) are turned ON when the MC instruction is ON.
 Further, using these same devices with the OUT instruction or other instructions will cause them to become duplicated coils, so devices specified for (d) should not be used within other instructions.

■MCR

- This is the instruction for recovery from the master control, and indicates the end of the master control range of operation.
- Do not place contacts before the MCR instruction.
- Use the MC instruction and MCR instruction of the same nesting number as a set.

However, when the MCR instructions are nested in one place, all master controls can be terminated with the lowest nesting number. (Refer to the "Precautions for nesting" in the program example.)

Operation error

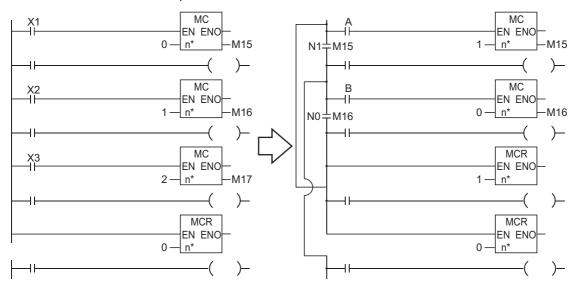
• There is no operation error.

Program example

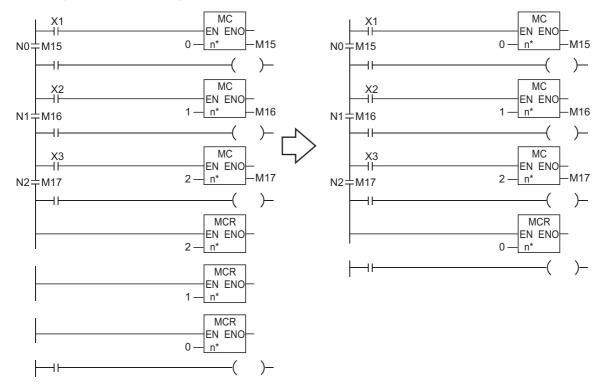
The master control instruction can be used in nesting. The different master control regions are distinguished by nesting number. Nesting can be performed from N0 to N14.

The use of nesting enables the creation of ladders which successively limit the executing condition of the program. A ladder using nesting would appear as shown below.

[Structured ladder/FBD]


1	· · · g_bool1 · · · · · MC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	
2	· · · <u>g_bool3</u> · · · · · · · · · · · · · g_bool4 · · · · · · · · · · · · · · · · · · ·	Executes when g_bool1 is ON.
3	• · · g_bool5 · · · · · MC • · · · · · · · · EN ENO • · · · · · · · · · · n* d	
4	· · · g_bool7 · · · · · · · · · · · · · · · · g_bool8 · · · · · · · · · · · · · · · · · · ·	Executes when g_bool1 and g_bool5 are ON.
5	• · · g_bool9 · · · · · MC • · · · · · · · · EN ENO · · · · · · · · · · · n* d	
6	· · · · · · · · · · · · · · · · · · ·	Executes when g_bool1, g_bool5, and g_bool9 are ON.
7		
8	· · · · · · · · · · · · · · · · · · ·	Executes when g_bool1 and g_bool5 are ON.
9	MCR EN EN ••••••• •••••••••	
10	· · · · · · · · · · · · · · · · · · ·	Executes when g_bool1 is ON.
11		
12	· · · · · · · · · · · · · · · · · · ·	Not related to the status of g_bool1, g_bool5, and g_bool9.

Precautions


■Precautions when using nesting architecture

Nesting can be used up to 15 times (N0 to N14)

When using nesting, nests should be inserted from the lower to higher nesting number with the MC instruction, and from the higher to the lower order with the MCR instruction. If this order is reversed, there will be no nesting architecture, and the CPU module will not be capable of performing correct operations. For example, if nesting is specified in the order N1 to N0 by the MC instruction, and also specified in the N1 to N0 order by the MCR instruction, the vertical bus will intersect and a correct master control ladder will not be produced.

 If the nesting architecture results in MCR instructions concentrated in one location, all master controls can be terminated by use of just the lowest nesting number.

■Precautions when using MC/MCR instruction in structured ladder/FBD/ST

- MC/MCR instruction is not required when using structured ladder/FBD/ST. Although, if using MC/MCR instruction, nesting number should be used in the ascending order from 0 regardless of whether MC/MCR instruction is used or not in nesting.
- The released nesting number and the following number using a MCR instruction can be used in a next MC instruction.

■Precautions for using the MC instruction

• When using the MC instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to 🖙 Page 63 Precautions on Programming.

5.6 End Instructions

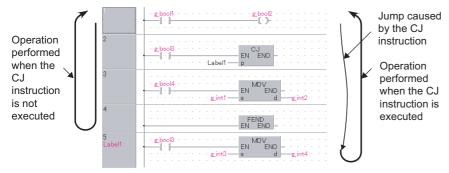
Ending main routine program

FEND

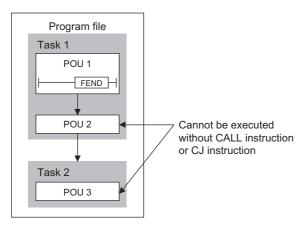
Basic High Process Redundant U	Jniversal LCPU
Structured ladder/FBD	ST
EN ENO	ENO:= FEND (EN);

The following instruction can go in the dotted squares. FEND

■Executing condition


Instruction	Executing condition
FEND	Non-conditional execution

■Argument


Input/output argument	t	Name		Descript	ion			Data type		
Input argumen	t	EN		Executing	condition			Bit		
Output argume	ent	ENO		Execution	result			Bit		
Setting	Internal	device	R	, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word				
_	—									

Processing details

- The FEND instruction is used in cases where the CJ instruction or other instructions are used to cause a branch in the sequence program operations.
- Execution of the FEND instruction will cause the CPU module to terminate the program it was executing.
- Even sequence programs following the FEND instruction can be displayed in ladder display using a programming tool.

• When the multiple tasks or multiple POUs are registered in program files, tasks or POU which are set after POUs with FEND instruction cannot be executed without the CALL instruction or CJ instruction.

Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4200	The FEND instruction is executed after the execution of the FOR instruction, and before the execution of the NEXT instruction.	0	0	0	0	0	0
4211	The FEND instruction is executed after the execution of the CALL instruction, and before the execution of the RET instruction.	0	0	0	0	0	0
4221	The FEND instruction is executed while an interrupt program, and before the execution of the IRET instruction.	0	0	0	0	0	0
4230	The FEND instruction is executed within the CHKCIR and CHKEND instruction loop.	0	0	0	0	0	0

5.7 Other Instructions

Sequence program stop

STOP

Basic High performance Process Redundant U	niversal
Structured ladder/FBD	ST
EN ENO	ENO:= STOP (EN);

The following instruction can go in the dotted squares. STOP

■Executing condition

Instruction	Executing condition
STOP	

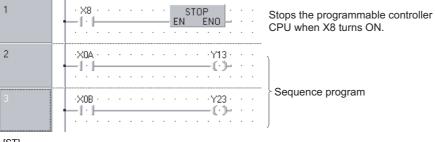
■Argument

Input/output argument	t	Name		Descript	ion			Data type		
Input argumen	t	EN		Executing	condition			Bit		
Output argume	ent	ENO		Execution	result			Bit		
Setting	Internal	device	R,	, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word				
_	_	÷								

Processing details

- Resets the output (Y) and stops the CPU module operation when the execution command is turned ON. (The same result will take place if the switch is turned to the STOP setting.)
- Execution of the STOP instruction will cause the value of b4 to b7 of the special register SD203 to become 3.

• In order to restart CPU module operations after the execution of the STOP instruction, return the switch from RUN to STOP, and back to the RUN position.


Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4200	The STOP instruction was executed before the execution of the NEXT instruction and after the execution of the FOR instruction.	0	0	0	0	0	0
4211	The STOP instruction was executed before the execution of the RET instruction and after the execution of the CALL instruction.	0	0	0	0	0	0
4221	The STOP instruction was executed during an interrupt program prior to the execution of the IRET instruction.	0	0	0	0	0	0
4223	The STOP instruction was executed in the fixed scan execution program.	—	—	—	-	0	0
4230	The STOP instruction was executed within the CHKCIR to CHKEND instruction loop.	0	0	0	0	0	0

Program example

• In the following program, the CPU module is stopped when X8 turns ON. [Structured ladder/FBD]

[ST] STOP(X8); OUT(X0A,Y13); OUT(X0B,Y23);

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

16-bit BIN data comparison

|--|

Basic High process Redundant Universal LCPU
Structured ladder/FBD
LD=
EN
EN
EN
ST
Not supported
s1
s2

Any of the following instruction can go in the dotted squares. LD=, LD<>, LD<=, LD<, LD>=, LD>, AND=, AND<>, AND<=, AND<, AND>=, AND>, OR=, OR<>, OR<=, OR<>, OR>=, OR>

■Executing condition

Instruction	Executing condition
	Non-conditional execution

■Argument

Input/output Name argument			Description				Data type			
Input argument EN s1, s2			Executing condition				Bit	Bit		
			Comparison data, or start number of the device that stores comparison data				ANY16			
Output argument ENO			Execution result			Bit				
Setting	Internal	I device R		ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word		K	К, Н	
(s1)	0								•	-
(s2)	0									—

Processing details

• Treats 16-bit BIN data from device specified for (s1) and 16-bit BIN data from device specified for (s2) as a normally open contact, and performs comparison operation.

Instruction symbol	Condition	Comparison result	Condition	Comparison result
LD=, AND=, OR=	(s1)=(s2)	Conduction state	(s1)≠(s2)	Non-conduction state
LD<>, AND<>, OR<>	(s1)≠(s2)		(s1)=(s2)	
LD<=, AND<=, OR<=	(s1)≤(s2)		(s1)>(s2)	
LD<, AND<, OR<	(s1) < (s2)		(s1)≥(s2)	
LD>=, AND>=, OR>=	(s1)≥(s2)		(s1)<(s2)	
LD>, AND>, OR>	(s1)>(s2)		(s1)≤(s2)	

• The results of the comparison operations for each instruction are as follows.

• When assigning hexadecimal constants to (s1) and (s2), and if the numeric value (8 to F) whose most significant bit (b15) is 1 is specified as a constant, the value is considered as a negative BIN value in comparison operation.

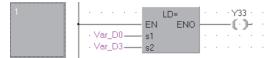
• When assigning "word [unsigned]/ bit string [16 bits]" type label to (s1) and (s2), the type is considered as word [signed] type in comparison operation. For comparison operation as "word [unsigned]/ bit string [16 bits]" type, use application functions EQ_E, NE_E, LE_E, LT_E, GE_E, GT_E. For details on the application functions, refer to the following.

MELSEC-Q/L Structured Programming Manual (Application Functions)

Instruction symbol	Condition	Corresponding application function
LD=, AND=, OR=	(s1)=(s2)	EQ_E
LD<>, AND<>, OR<>	(s1)≠(s2)	NE_E
LD<=, AND<=, OR<=	(s1)≤(s2)	LE_E
LD<, AND<, OR<	(s1)<(s2)	LT_E
LD>=, AND>=, OR>=	(s1)≥(s2)	GE_E
LD>, AND>, OR>	(s1)>(s2)	GT_E

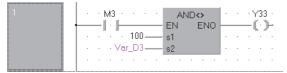
Program example	Input value	Returned value
LD<=	wordVar1:= 1 wordVar2:= 32768	OFF Since 32768 of wordVar2 is considered as word [signed] type, executes comparison operation with -32768, and the output becomes OFF.
· · · TRUE EN EN EN V1 · · · · · · · · · · · · · · · · · ·	wordVar1:= 1 wordVar2:= 32768	ON Using an application function executes comparison operation as "word [unsigned]/ bit string [16 bits]" type, and the output becomes ON.

The OR=, OR<>, OR<=, OR<, OR>=, or OR> instruction performs OR operation of operation result between "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the OR=, OR<>, OR<=, OR<, OR>=, or OR> instruction, connect EN and ENO in series as shown below.

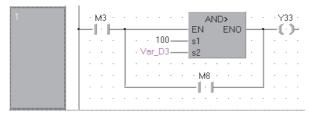

Operation error

• There is no operation error.

Program example


• In the following program, the value in Var_D0 is compared with the value in Var_D3, and Y33 turns ON when the values are identical.

[Structured ladder/FBD]



• In the following program, the BIN value of 100 is compared with the value in Var_D3 when M3 is ON, and Y33 turns ON when the value in Var_D3 is other than 100.

[Structured ladder/FBD]

In the following program, the BIN value of 100 is compared with the value in Var_D3 when M3 turns ON, and Y33 turns ON when the value in Var_D3 is less than 100 or when M8 is ON.
 [Structured ladder/FBD]

In the following program, the value in Var_D0 is compared with the value in Var_D3, and Y33 turns ON when the value in Var_D3 is equal or greater than the value in Var_D0 or when both M3 and M8 are ON.
 [Structured ladder/FBD]

1	· M3 · · · · · M8 · · · · · · · · · · · · ·	33 ·) -
	· · · · · · · · · LD<= · ·	
	EN ENO	
	•••••Var_D0s1 ••••	
	· · · · Var_D3 — s2 · · ·	
		•

32-bit BIN data comparison

LDDI, ANDDI, ORD	
Basic High Process Redundant Ur	iversal LCPU
Structured ladder/FBD	ST
EN ENO s1 s2	Not supported

The following instruction can go in the dotted squares.

LDD=, LDD<>, LDD<=, LDD>, LDD>=, LDD>, ANDD=, ANDD<>, ANDD<=, ANDD<, ANDD>=, ANDD>, ORD=, ORD<>, ORD<=, ORD<, ORD>=, ORD>

■Executing condition

Instruction	Executing condition
	Non-conditional execution

■Argument

Input/outpu argument				Description				Data type		
Input argument EN s1, s2			Executing condition				Bit	Bit		
			Comparison data, or start number of the device that stores comparison data				ANY32	ANY32		
Output argument ENO			Execution result			Bit				
Setting	Internal	device R		R, ZR J□\□	JD/D	UD\GD	Zn (Constant	Others	
data	Bit	Word			Bit	Word			К, Н	
(s1)	0					·		•	-	
(s2)	0									—

• Treats 32-bit BIN data from device specified for (s1) and 32-bit BIN data from device specified for (s2) as a normally open contact, and performs comparison operation.

Instruction symbol	Condition	Comparison result	Condition	Comparison result
LDD=, ANDD=, ORD=	(s1)=(s2)	Conduction state	(s1)≠(s2)	Non-conduction state
LDD<>, ANDD<>, ORD<>	(s1)≠(s2)		(s1)=(s2)	
LDD<=, ANDD<=, ORD<=	(s1)≤(s2)		(s1)>(s2)	
LDD<, ANDD<, ORD<	(s1)<(s2)		(s1)≥(s2)	
LDD>=, ANDD>=, ORD>=	(s1)≥(s2)		(s1)<(s2)	
LDD>, ANDD>, ORD>	(s1)>(s2)		(s1)≤(s2)	

• The results of the comparison operations for each instruction are as follows.

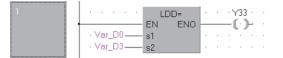
- When assigning hexadecimal constants to (s1) and (s2), and if the numeric value (8 to F) whose most significant bit (b31) is 1 is specified as a constant, the value is considered as a negative BIN value in comparison operation.
- Data used for comparison should be specified by a 32-bit instruction (such as DMOV instruction). If specification is made with a 16-bit instruction (such as MOV instruction), comparisons of large and small values cannot be performed correctly.
- When assigning "double word [unsigned]/ bit string [32 bits]" type label to (s1) and (s2), the type is considered as double word [signed] type in comparison operation. For comparison operation as "double word [unsigned]/ bit string [32 bits]" type, use application functions EQ_E, NE_E, LE_E, LT_E, GE_E, GT_E. For details on the application functions, refer to the following.

MELSEC-Q/L Structured Programming Manual (Application Functions)

Instruction symbol	Condition	Corresponding application function
LDD=, ANDD=, ORD=	(s1)=(s2)	EQ_E
LDD<>, ANDD<>, ORD<>	(s1)≠(s2)	NE_E
LDD<=, ANDD<=, ORD<=	(s1)≤(s2)	LE_E
LDD<, ANDD<, ORD<	(s1)<(s2)	LT_E
LDD>=, ANDD>=, ORD>=	(s1)≥(s2)	GE_E
LDD>, ANDD>, ORD>	(s1)>(s2)	GT_E

Program example	Input value	Returned value
LDD<=	dwordVar1 := 1 dwordVar2 := 2147483648	OFF Since 2147483648 of dwordVar2 is considered as double word [signed] type, executes comparison operation with - 2147483648, and the output becomes OFF.
LE_E TRUE EN ENO dwordVar1IN () · · · · · · · · · · · · · · · · · ·	dwordVar1 := 1 dwordVar2 := 2147483648	ON Using an application function executes comparison operation as "double word [unsigned]/ bit string [32 bits]" type, and the output becomes ON.

The ORD=, ORD<>, ORD<=, ORD<, ORD>=, or ORD> instruction performs OR operation of operation result between
 "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit
 device to be always set to ON like SM400. When using the ORD=, ORD<>, ORD<=, ORD<, ORD>=, or ORD> instruction,
 connect EN and ENO in series as shown below.


Operation error

• There is no operation error.

Program example

• In the following program, the value in Var_D0 is compared with the value in Var_D3, and Y33 turns ON when the values are identical.

[Structured ladder/FBD]

• In the following program, the BIN value of 38000 is compared with the value in Var_D3 when M3 is ON, and Y33 turns ON when the value in Var_D3 is other than 38000.

[Structured ladder/FBD]

1	···M3······· ANDD↔	· · Y33 ·	•
	· · · · · · · 38000 — s1		
	· · · · · · Var_D3—_ <u>s2</u>		•
			·

In the following program, the BIN value of -80000 is compared with the value in Var_D3 when M3 is ON, and Y33 turns ON when the value in Var_D3 is less than -80000, or when M8 is ON.
 [Structured ladder/FBD]

1	M3 · · · · · · ANDD	> · · · Y33 · ·
	· · · · · · · · · · · · · · · · · · ·	
	· · · M8 · · · · · · · · · · · · · · ·	

• In the following program, the value in Var_D0 is compared with the value in Var_D3, and Y33 turns ON when the value in Var_D3 is equal or greater than the value in Var_D0 or when both M3 and M8 are ON. [Structured ladder/FBD]

1	—	мз ·	H												 —(/33 [•]	-
										·	•						
	•	•	•	•	•	•	•	•	·	E١	LDI	_	NO	ŀ	•	•	•
						Var	D	0 —	_		4		NU				
						Var	_D:	3 —		s2				- E			
	•	·						•	•		•				·	·	

Floating-point data comparison (single precision)

LDED, ANDED, ORED

Basic High Process Redundant Universal LCPU

• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Any of the following instruction can go in the dotted squares.

LDE=, LDE<>, LDE<, LDE>=, LDE>, ANDE=, ANDE<>, ANDE<=, ANDE<, ANDE>=, ANDE>, ORE=, ORE<>, ORE<=, ORE<, ORE>=, ORE>

■Executing condition

Instruction	Executing condition
	Non-conditional execution

Input/output argument	t	Name		Description				Data type				
Input argumen	t	EN		Executing	condition			Bit	Bit			
		s1, s2			Comparison data, or start number of the device that stores Single-precision real comparison data					ision real		
Output argume	ent	ENO		Execution result				Bit				
Setting	Internal	device	R,	ZR	JD/D		UEI\GE	Zn	Constant	Others		
data	Bit	Word			Bit	Word			E			
(s1)	—	0			—	0		_	0	-		
(s2)	—	0			—	0 -		_	0	-		

• Treats the floating-point data from device specified for (s1) and the floating-point data from device specified for (s2) as a normally open contact, and performs comparison operation.

• The results of the comparison operations for each instruction are as follows.

Instruction symbol	Condition	Comparison result	Condition	Comparison result
LDE=, ANDE=, ORE=	(s1)=(s2)	Conduction state	(s1)≠(s2)	Non-conduction state
LDE<>, ANDE<>, ORE<>	(s1)≠(s2)		(s1)=(s2)	
LDE<=, ANDE<=, ORE<=	(s1)≤(s2)		(s1)>(s2)	
LDE<, ANDE<, ORE<	(s1)<(s2)		(s1)≥(s2)	
LDE>=, ANDE>=, ORE>=	(s1)≥(s2)	1	(s1)<(s2)	
LDE>, ANDE>, ORE>	(s1)>(s2)		(s1)≤(s2)	

The ORE=, ORE<>, ORE<=, ORE<, ORE>=, or ORE> instruction performs OR operation of operation result between "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the ORE=, ORE<>, ORE<=, ORE<, ORE>=, or ORE> instruction, connect EN and ENO in series as shown below.

Point P

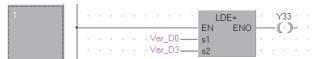
Note that when using the $\Box E$ = instruction, the values of operation result may not be equal depending on the error.

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is -0. ^{*1}	0	0	0	0	—	—
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le $ value of the specified device $ < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$.	_	—	_	_	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following.

Program example

• In the following program, the value in Var_D0 is compared with the value in Var_D3, and Y33 turns ON when the values are identical.

[Structured ladder/FBD]

• In the following program, the floating-point real number 1.23 is compared with the value in Var_D3 when M3 is ON, and Y33 turns ON when the value in Var_D3 is other than 1.23. [Structured ladder/FBD]

• In the following program, the value in Var_D0 is compared with the value in Var_D3 when M3 is ON, and Y33 turns ON when the value in Var_D3 is less than the value in Var_D0 or when M8 is ON.

[Structured ladder/FBD]

• In the following program, the value in Var_D0 is compared with the floating-point real number 1.23, and Y33 turns ON when 1.23 is equal to or greater than the value in Var_D0 or when both M3 and M8 are ON. [Structured ladder/FBD]

1	· M3 · · · · · M8 · · · · · · · · · · · · ·
	LDE<= · · · · ·
	EN ENO
	· · · · · Var_D0 — s1 · · · · ·
	·····

Floating-point data comparison (double precision)

LDEDL, ANDEDL, OREDL Basic High Process Redundant Universal LCPU Structured ladder/FBD ST LDED= EN ENO s1 s2

Any of the following instruction can go in the dotted squares.

LDED=, LDED<>, LDED<=, LDED<, LDED>=, LDED>, ANDED=, ANDED<>, ANDED<=, ANDED<, ANDED>=, ANDED>, ORED=, ORED<>, ORED<=, ORED<>, ORED<=, ORED>=, ORED>

■Executing condition

Instruction	Executing condition
	Non-conditional execution

Input/output argument	t	Name		Descript	tion			Data type		
Input argument EN				Executing condition			Bit	Bit		
s1, s2			Comparison data, or start number of the device that stores comparison data			Double-precision real				
Output argument ENO			Execution result			Bit				
Setting	etting Internal device R,		R,	ZR	JD\D UD\GD		Zn	Constant	Others	
data	Bit	Word			Bit	Word			E	
(s1)	—	0			—				0	-
(s2)	—	0							0	—

- Treats the 64-bit floating-point real number specified for (s1) and the 64-bit floating-point real number specified for (s2) as a normally open contact, and performs comparison operation.
- The results of the comparison operations for each instruction are as follows.

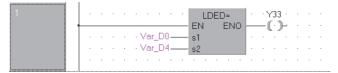
Instruction symbol	Condition	Comparison result	Condition	Comparison result
LDED=, ANDED=, ORED=	(s1)=(s2)	Conduction state	(s1)≠(s2)	Non-conduction state
LDED<>, ANDED<>, ORED<>	(s1)≠(s2)		(s1)=(s2)	
LDED<=, ANDED<=, ORED<=	(s1)≤(s2)		(s1)>(s2)	
LDED<, ANDED<, ORED<	(s1)<(s2)		(s1)≥(s2)	
LDED>=, ANDED>=, ORED>=	(s1)≥(s2)		(s1)<(s2)	
LDED>, ANDED>, ORED>	(s1)>(s2)		(s1)≤(s2)	

 The ORED=, ORED<, ORED<=, ORED<, ORED>=, or ORED> instruction performs OR operation of operation result between "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the ORED=, ORED<>, ORED<=, ORED<, ORDE>=, or ORED> instruction, connect EN and ENO in series as shown below.

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error

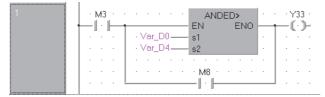

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le $ value of the specified device $ < 2^{1024}$ The value of the specified device is -0.	_	—	—	—	0	0

Program example

In the following program, the value in Var_D0 is compared with the value in Var_D4, and Y33 turns ON when the value in Var_D0 and the value in Var_D4 are matched.

[Structured ladder/FBD]

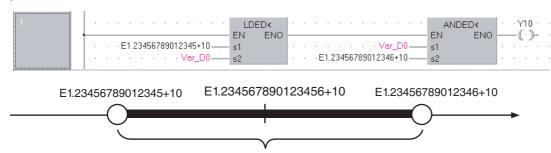

• In the following program, the floating-point real number 1.23 is compared with the value in Var_D4 when M3 is ON, and Y33 turns ON when the value in Var_D4 is other than 1.23.

[Structured ladder/FBD]

st	1	- · · M3 · · · · · · · ANDED↔ · · · Y33 ·	
· · · · · Var_D4— <u>s2</u> · · · ·		• • • • • • • 1.23 — s1	
		••••••Var_D4 — <u>\$2</u>	

• In the following program, the value in Var_D0 is compared with the value in Var_D4, and Y33 turns ON when the value in Var_D4 is smaller than the value in Var_D0 or when M8 is ON.

[Structured ladder/FBD]

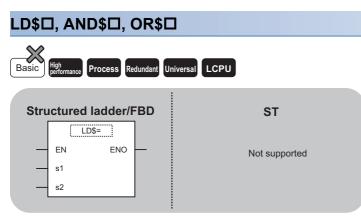

• In the following program, the value in Var_D0 is compared with the floating-point real number 1.23, and Y33 turns ON when 1.23 is equal to or greater than the value in Var_D0 or when both M3 and M8 are ON. [Structured ladder/FBD]

1	· M3 · · · · · M8 · · · · · · · · · · · · ·
	LDED<= · · · · ·
	EN ENO
	•••••Var_D0
	• • • • • • 1.23 <u></u> • • • • • • •

Precautions

• Since the maximum number of digits of real number that can be input by the programming tool is 15 digits, the comparison with the real number whose number of significant figures is 16 or more cannot be made by the instruction shown in this section. When judging match/mismatch with the real number whose significant figures is 16 or more by the instruction in this section, compare it with the approximate values of the real number to be compared and judge by the sizes.

Ex. When judging the match of E1.234567890123456+10 (Number of significant figures is 16) and the double-precision floating-point data.


Check if values of D0 to D3 are within this range. (Boundary values are not included.)

Ex.

Judging the mismatch of E1.234567890123456+10 (Number of significant figures is 16) and the double-precision floating-point data.

LDEI EN s1 	ENO	
E1.23456789012345+10	E1.234567890123456+10	E1.23456789012346+10
	lues of D0 to D3 are within the values are included.)	ese ranges.

Character string data comparison

Any of the following instruction can go in the dotted squares.

LD\$=, LD\$<>, LD\$<=, LD\$<, LD\$>=, LD\$>, AND\$=, AND\$<>, AND\$<=, AND\$<, AND\$>=, AND\$>, OR\$=, OR\$<>, OR\$<, OR\$>=, OR\$>

■Executing condition

Instruction	Executing condition
LD\$□, AND\$□, OR\$□	Non-conditional execution

Input/output argument	t	Name		Descript	iion			Data type		
Input argument EN				Executing condition			Bit	Bit		
s1, s2				Comparison data, or start number of the device that stores comparison data				String		
Output argume	ent	ENO		Execution result			Bit			
Setting	Setting Internal device R		R,	ZR				Zn Constant C	Others	
data	Bit	Word			Bit	Word			\$	
(s1)	—	0			—				0	-
(s2)	—	0			—				0	—

- Treats the character string data specified for (s1) and the character string data specified for (s2) as a normally open contact, and performs comparison operation.
- A comparison operation involves the character-by-character comparison of the ASCII code from the first character in the character string.
- The character string data of (s1) and (s2) for the comparison refers to the data up to 00H.
- If all character string data are matched, the comparison result will be matched.

Instruction symbol	Comparison result	Instruction symbol	Comparison result
LD\$=, AND\$=, OR\$=	Conduction state	LD\$<, AND\$<, OR\$<	Non-conduction state
LD\$<>, AND\$<>, OR\$<>	Non-conduction state	LD\$>=, AND\$>=, OR\$>=	Conduction state
LD\$<=, AND\$<=, OR\$<=	Conduction state	LD\$>, AND\$>, OR\$>	Non-conduction state

• If the character string data are different, the character string with the larger character code will be larger. (s1) 42_{H} (B) 41_{H} (A) (s2) 42_{H} (B) 41_{H} (A)

(s1)	42н	(B)	41н	(A)	
	44н	(D)	43н	(C)	
	00н		46 H	(F)	

	42н	(B)	41н	(A)				
	44н	(D)	43н	(C)				
	00н		45н	(E)				
"ABCDE"								

Instruction symbol	Comparison result	Instruction symbol	Comparison result
LD\$=, AND\$=, OR\$=	Non-conduction state	LD\$<, AND\$<, OR\$<	Non-conduction state
LD\$<>, AND\$<>, OR\$<>	Conduction state	LD\$>=, AND\$>=, OR\$>=	Conduction state
LD\$<=, AND\$<=, OR\$<=	Non-conduction state	LD\$>, AND\$>, OR\$>	Conduction state

• If the character string data are different, the first different sized character code will determine whether the character string is larger or smaller.

(s1)	32н	(2)	31н	(1)	
	34н	(4)	33н	(3)	
	00н		35н	(5)	
		"12	345"		

s2)	32н	(2)	31н	(1)
	33н	(3)	34н	(4)
	00н		35н	(5)
		"124	135"	

Instruction symbol	Comparison result	Instruction symbol	Comparison result
LD\$=, AND\$=, OR\$=	Non-conduction state	LD\$<, AND\$<, OR\$<	Conduction state
LD\$<>, AND\$<>, OR\$<>	Conduction state	LD\$>=, AND\$>=, OR\$>=	Non-conduction state
LD\$<=, AND\$<=, OR\$<=	Conduction state	LD\$>, AND\$>, OR\$>	Non-conduction state

(1)

• If the character string data specified for (s1) and (s2) are of different lengths, the data with the longer character string will be larger.

32н (2) 31н

34н (4)

(\$2)

(s1)	32н	(2)	31н	(1)	
	34н	(4)	33н	(3)	
	36н	(6)	35н	(5)	
	00н		37н	(7)	

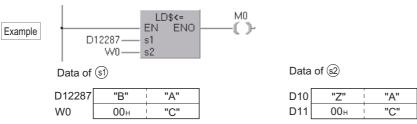
36н	(6)	35н	(5)
00)н	00	н
	"123	456"	

33н (3)

"123456<u>7</u>"

Instruction symbol	Comparison result	Instruction symbol	Comparison result
LD\$=, AND\$=, OR\$=	Non-conduction state	LD\$<, AND\$<, OR\$<	Non-conduction state
LD\$<>, AND\$<>, OR\$<>	Conduction state	LD\$>=, AND\$>=, OR\$>=	Conduction state
LD\$<=, AND\$<=, OR\$<=	Non-conduction state	LD\$>, AND\$>, OR\$>	Conduction state

The OR\$=, OR\$<>, OR\$<=, OR\$<, OR\$>=, or OR\$> instruction performs OR operation of operation result between "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the OR\$=, OR\$<>, OR\$<=, OR\$<, OR\$>=, or OR\$> instruction, connect EN and ENO in series as shown below.

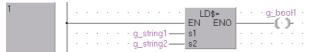

Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The code 00H does not exist within the corresponding device range, starting from the device number specified for (s1) and (s2). The character string of (s1) and (s2) exceeds 16383 characters.	_	0	0	0	0	0

Point

The character string data comparison operation instruction checks the device range while comparing the character string data. For this reason, if the 00H code does not exist in the corresponding device range, the instruction outputs the comparison operation result instead of returning an operation error when mismatch of characters is detected.



If (s1) and (s2) data are as shown above, the second character of (s1) does not match with that of (s2), and the comparison result is expressed as $(s1) \neq (s2)$ (the operation result is "non-conduction"). Though the 00H code is not included within the (s1) device range, no operation error is returned, because the mismatch is detected at D12287, which is within the device range.

Program example

In the following program, the character string data stored in g_string1 is compared with the character string data stored in g_string2, and g_bool1 turns ON when they are matched.

[Structured ladder/FBD]

• In the following program, the character string g_string1 is compared with the character string data stored in g_string2 and when g_bool1 is ON, and g_bool2 turns ON when the character string data stored in g_string2 is other than g_string1. [Structured ladder/FBD]

2		÷ g	g_be	oH IL	•		AN		•	÷	g_k		ł2
				5		g_string1 —	s1	LINO			- 6	2	
	·	÷	• •	•		g_string2	s2		•	÷	·		•

• In the following program, the character string data stored in g_string1 is compared with the character string data stored in g_string2 when g_bool1 is ON, and g_bool2 turns ON when the character string data stored in g_string2 is equal to or shorter than the character string data stored in g_string1, or when g_bool3 is ON.

[Structured ladder/FBD]

3	
	string1 — st
	· · · · · g_string2 s2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

• In the following program, the character string data stored in g_string1 is compared with the character string g_string2, and g_bool3 turns ON when g_string2 is equal to or longer than the character string data stored in g_string1 or when both g bool1 and g bool2 are ON.

[Structured ladder/FBD]

4		•	•	g:	be .	ofi H	g	_b -	00	ok2	·	•	•		•		•	•	•	•	•	•		•	g <u>.</u> (bo(513) -
			:								•	•		Ol	R\$	<= ENI		•	•	•		•	•	•	•		
		•												1				•	•	•	•		•	•		•	

16-bit BIN block data comparison

BKC	ИРС	l(P)					
Basic	High performance	Process Red	lundant Ur	niversal	LCPU		
S		ed ladder/FBI)			ST	
_	EN	ENO	_				
_	s1	d	_			Not supp	orted
_	s2						
	n						

Any of the following instruction can go in the dotted squares.

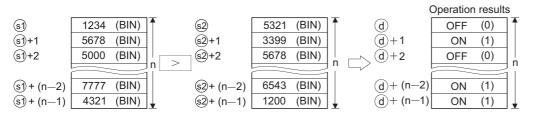
BKCMP=, BKCMP<>, BKCMP<=, BKCMP<, BKCMP>=, BKCMP>, BKCMP=P, BKCMP<>P, BKCMP<=P, BKCMP<=P, BKCMP>=P, BKCMP>P

■Executing condition

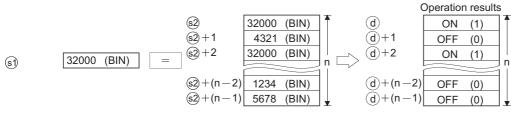
Instruction	Executing condition
□ВКСМР	
ВКСМРПР	

■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Data to be compared, or start number of the device that stores data to be compared	ANY16
	s2	Start number of the device that stores comparison data	ANY16
	n	Number of data to be compared	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the operation result	Bit


Setting	Internal dev	ice	R, ZR	JD/D		U⊟\G⊟ Zn	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(s1)	—	0		—				0	—
(s2)	—	0		—				—	—
n	0	0		0				0	—
(d)	0	0		—				—	—

Processing details


• Compares the 16-bit BIN data n points from the device number specified for (s1) with the 16-bit BIN data n points from the device number specified for (s2), and stores the operation result to the device specified for (d) and the following devices.

 ${\boldsymbol \cdot}$ If the comparison condition has been met, the corresponding device of (d) turns ON.

• If the comparison condition has not been met, the corresponding device of (d) turns OFF.

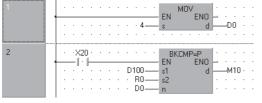
- The comparison operation is performed in units of 16 bits.
- The constant can be specified between -32768 and 32767 (BIN 16 bits) for (s1).

• The results of the comparison operations for each instruction are as follows.

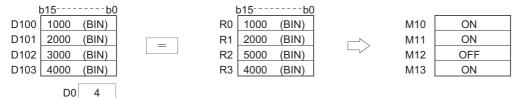
Instruction symbol	Condition	Comparison result	Condition	Comparison result
BKCMP=(P)	(s1)=(s2)	ON (1)	(s1)≠(s2)	OFF (0)
BKCMP<>	(s1)≠(s2)		(s1)=(s2)	
BKCMP<=(P)	(s1)≤(s2)		(s1)>(s2)	
BKCMP<(P)	(s1)<(s2)		(s1)≥(s2)	
BKCMP>=(P)	(s1)≥(s2)		(s1)<(s2)	
BKCMP>(P)	(s1)>(s2)		(s1)≤(s2)	

• If all comparison results stored to devices n points from (d) are ON (1), SM704 (block comparison signal) turns ON.

Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of the n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The range of n points from the device specified for (s1) overlaps with the range of n points from the device specified for (d). The range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (d).	0	0	0	0	0	0


Program example

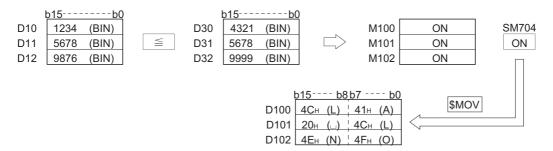
• In the following program, the data stored in D100 to D103 is compared with the data stored in R0 to R3 when X20 turns ON, and the result is stored to M10 and the following devices.

[Structured ladder/FBD]

[Operation]

• In the following program, the constant K1000 is compared with the data stored in D10 to D13 when X1C turns ON, and the result is stored to b4 to b7 of D0.

[Structured ladder/FBD]


	· · · 1000· · · · D10· · · · 4·	s1 s2	ND
b15b0 1000 (BIN)	<>	D10 20 D11 10 D12 10	b0 00 (BIN) 00 (BIN) 00 (BIN) 22 (BIN)
	0 before peration	b15 0:1:0:0:0:0:1	b7b4b0 0.0.0.1.0.0.0.0.0
	0 after peration	b15	b7b4b0 0:1:0:0:1:0:0:0:0

• In the following program, the data in D10 to D12 are compared with the data in D30 to D32 when X20 turns ON, and the result is stored to M100 and the following devices. The character string "ALL ON" is transferred to Var_D100 and the following variables when all devices of M100 and the following turn to 1 (ON status).

[Structured ladder/FBD]

1	
2	SM704 SM704 SM0V Image: SM704 Image: SM0V Image: SM0V Image: SM0V Image: SM0V Image: SM0V Image: SM0V

[Operation]

32-bit BIN block data comparison

DBKCMPD(P)

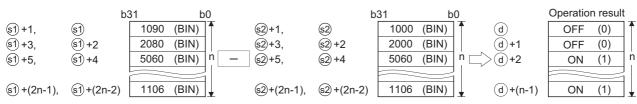
• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Stru	ctured la	adder/FBD	ST
	DBKC	/IP=	
_	EN	ENO -	
_	s1	d -	Not supported
_	s2		
_	n		

Any of the following instruction can go in the dotted squares. DBKCMP=, DBKCMP<>, DBKCMP<=, DBKCMP<, DBKCMP>=, DBKCMP>, DBKCMP=P, DBKCMP<>P, DBKCMP>P, DBKCMP>P

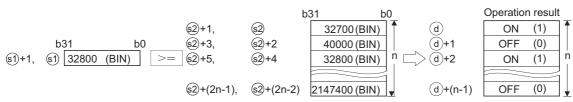
■Executing condition

Instruction	Executing condition
DBKCMP	


■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Data to be compared, or start number of the device that stores data to be compared	ANY32
	s2	Start number of the device that stores comparison data	ANY32
	n	Number of data to be compared	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the operation result	Bit

Setting	Internal dev	rice	R, ZR	JD/D			Constant	Others	
data	Bit	Word		Bit	Word			К, Н	
(s1)	-	0	0	—				0	_
(s2)	-	0	0	—				—	—
n	-	0	0	0				0	—
(d)	0	-	0	—				—	—


Processing details

- Compares the 32-bit BIN data n points from the device number specified for (s1) with the 32-bit BIN data n points from the device number specified for (s2), and stores the operation result to the device specified for (d) and the following devices.
- \bullet If the comparison condition has been met, the corresponding device of (d) turns ON.
- If the comparison condition has not been met, the corresponding device of (d) turns OFF.

159

- The comparison operation is performed in units of 32 bits.
- The constant can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s1).

• (d) is specified in the device range other than n points from (s1) and n points from (s2).

• The results of the comparison operations for each instruction are as follows.

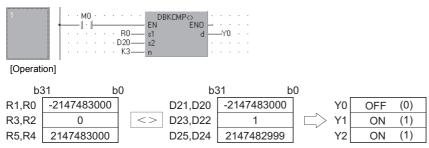
Instruction symbol	Condition	Comparison result	Condition	Comparison result
DBKCMP=(P)	(s1)=(s2)	ON (1)	(s1)≠(s2)	OFF (0)
DBKCMP<>(P)	(s1)≠(s2)		(s1)=(s2)	
DBKCMP<=(P)	(s1)≤(s2)		(s1)>(s2)	
DBKCMP<(P)	(s1)<(s2)		(s1)≥(s2)	
DBKCMP>=(P)	(s1)≥(s2)		(s1)<(s2)	
DBKCMP>(P)	(s1)>(s2)		(s1)≤(s2)	

• If all comparison results stored to devices n points from (d) are ON (1), or any of the result is OFF (0), the following special relays turn ON/OFF according to the condition. For the standby type programs, special relays based on the call source program are turned ON/OFF.

No.	Special	All comparison re	sults are ON (1)		Any of the comparison result is OFF (0)			
	relay	Initial execution/ scan	Interrupt (other than I45)/fixed scan execution	Interrupt (I45)	Initial execution/ scan	Interrupt (other than I45)/fixed scan execution	Interrupt (I45)	
1	SM704	ON	ON	ON	OFF	OFF	OFF	
2	SM716	ON	—	—	OFF	—	—	
3	SM717	—	ON	—	—	OFF	—	
4	SM718	—	—	ON	—	—	OFF	

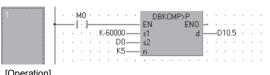
• No processing is performed if the value specified for n is 0.

Operation error

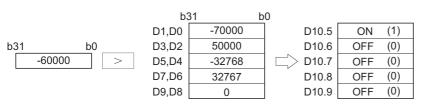

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	A negative value is specified for n.	-	-	-	—	0	0
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The range of n points from the device specified for (s1) overlaps with the range of n points from the device specified for (d). The range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (d).	_	_	_	_	0	0

Program example

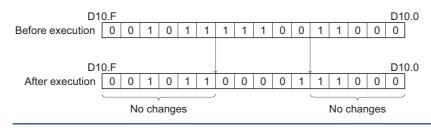

• In the following program, the data stored in R0 to R5 are compared with the data stored in D20 to D25 when M0 turns ON, and the results are stored to Y0 to Y2.

[Structured ladder/FBD]

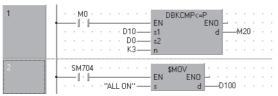


• In the following program, the constant is compared with the data stored in D0 to D9 when M0 turns ON, and the results are stored to D10.5 to D10.9.

[Structured ladder/FBD]



[Operation]


Point P

When bits of word device are specified, only the specified bit devices that store the operation results are changed.

• In the following scan program, the data in D0 to D5 are compared with the data in D10 to D15 when M0 turns ON, and the results are stored to M20 to M22. The character string data "ALL ON" are transferred to D100 and the following devices when all devices of M20 to M22 turn ON.

[Structured ladder/FBD]

[Operation]

b3	31 b	0	b	31 b	0	
D1,D0	-2147483000		D11,D10	-2147483000]	M20
D3,D2	60000	<=	D13,D12	60001		M21
D5,D4	-900000		D15,D14	-899999		M22
					-	

When all results are ON (1), special relays correspond to each program turn ON (1). (Since this program example is a scan program, SM704 and SM716 turn ON (1) and SM717 and SM718 do not change.)

>	M21	ON	(1)	
	M22	ON	(1)	
			7	
SI	M704	ON	(1)	
SI	M716	ON	(1)	
SI	M717	OFF	(0)	
SM718		OFF	(0)	1

ON

(1)

6.2 Arithmetic Operation Instructions

16-bit BIN data addition and subtraction

+(P), -(P)			
Basic High Process Redundant Universal	LCPU		
Structured ladder/FBD	CT.		
	ST		
	Not supported		

Any of the following instruction can go in the dotted squares. +, +P, -, -P

■Executing condition

Instruction	Executing condition
+ -	
+P -P	

Input/output argument	Name		Descript	ion		Data type		
Input argument EN			Executing condition			Bit		
s1			Data to be added or subtracted, or start number of the device that stores data to be added or subtracted			ANY16		
	s2		Start number of the device that stores the operation result			ANY16		
Output argument	ENO		Execution result			Bit		
d			Start number of the device that stores the operation result			ANY16		
Setting Interr	al device	R.	ZR	JD/D		Zn	Constant	Others

Setting	Internal dev	vice	R, ZR J□\□		UD\GD	Zn	Constant	Others	
data	Bit	Word		Bit	Word			К, Н	
(s1)	0	0						0	-
(s2)	0	0						0	-
(d)	0 –						—	—	

■+(P)

• Adds 16-bit BIN data specified for (s1) to 16-bit BIN data specified for (s2) and stores the result of the addition to the variable specified for (d).

<u>s</u>			<u>d</u>
b15b0	+	b15b0	b15b0
5678 (BIN)		1234 (BIN) □⊃	6912 (BIN)

- Values can be specified between -32768 and 32767 (BIN 16 bits) for (s1) and (s2).
- The judgment of whether the value is positive or negative is made by the most significant bit (b15).
- 0: Positive
- 1: Negative
- The following is the result when an underflow or overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

· 32767 (7FFFн)		► —32767 ····· (8001н)	Since bit 15 value is "1", result of operation takes a negative value.
	+—2 ———	► 32766 ······	·Since bit 15 value is "0",
	(FFFEн)	(7FFЕн)	result of operation takes a positive value.

■-(P)

• Subtracts 16-bit BIN data specified for (s1) from 16-bit BIN data for (s2) and stores the result of the subtraction to the variable specified for (d).

<u>st</u>	62	<u> </u>
<u>b15b0</u>	b15b0	b15b0
5678 (BIN)	— 1234 (BIN)	> 4444 (BIN)

- Values can be specified between -32768 and 32767 (BIN 16 bits) for (s1) and (s2).
- The judgment of whether the value is positive or negative is made by the most significant bit (b15).
- 0: Positive
- 1: Negative
- The following is the result when an underflow or overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

· —32768	—2	→ 32766 ······	Since bit 15 value is "0",
(8000н)	(0002н)	(7FFЕн)	result of operation takes a positive value.
	— —2	—▶ —32767 ····	 Since bit 15 value is "1",
	(FFFEн)	(8001н)	result of operation takes a negative value.

Operation error

• There is no operation error.

Program example

 In the following program, the value in Var_D3 is added to the value in Var_D0 when X5 turns ON, and outputs the result to Var_D3.

[Structured ladder/FBD]

	·	· >	<5 ·					·		+P		.				
	-	-1	·	_				_	EN		ENO	\vdash	÷		÷	
	·		· ·		· Va	ar_D	00-	_	s1		d1	<u> </u>	_\	'ar_	D3	
	· ·		• •		· Ve	ar_D	01 —	_	s2			·	·	·	·	·

32-bit BIN data addition and subtraction

D+(P), D-(P)	
Basic High Process Redundant U	niversal
Structured ladder/FBD	ST
D+	
EN ENO	Not supported

Any of the following instruction can go in the dotted squares. D+, D+P, D-, D-P

■Executing condition

Instruction	Executing condition
D+ D-	
D+P	
D-P	

Input/output Name argument				Description					Data type			
Input argument EN				xecuting c	condition			Bit				
				Data to be added or subtracted, or start number of the device that stores data to be added or subtracted					ANY32			
		s2	Sta	Start number of the device that stores the operation result					ANY32			
Output argume	ent	ENO	Ex	Execution result					Bit			
d		Sta	Start number of the device that stores the operation result				ANY32					
Setting Internal		device	R, ZR	2	10/0		UD\GD	Zn	Constant	Others		
data Dit Mond					D:4	Mand.			К. Н			

data	Bit	Word	Bit	Word		К, Н	
(s1)	0					0	—
(s2)	0					0	—
(d)	0					—	—

■D+(P)

 Adds 32-bit BIN data specified for (s1) to 32-bit BIN data specified for (s2), and stores the result of the addition to the variable specified for (d).

<u>(s1</u>		<u>(s2</u>	d
b31 b16 b15 b0	+	b31b16 b15b0	b31b16 b15b0
567890 (BIN)		123456 (BIN)	691346 (BIN)

- Values can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s1) and (s2).
- Judgment of whether the value is positive or negative is made on the basis of the most significant bit (b31).
- 0: Positive
- 1: Negative
- The following is the result when an underflow or overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

· 2147483647 (7FFFFFFFн)	+2 (0000002н)	Since bit 31 value is "1", result of operation takes a negative value.
	+-2 (FFFFFFEH)	•Since bit 31 value is "0", result of operation takes a positive value.

■D-(P)

• Subtracts 32-bit BIN data specified for (s1) from 32-bit BIN data specified for (s2) and stores the result of the subtraction to the variable specified for (d).

<u>st</u>		<u>(\$2)</u>	<u> </u>
b31b16 b15b0		<u>b31b16 b15b0</u>	<u>b31b16 b15b0</u>
567890 (BIN)	_	123456 (BIN)	> 444434 (BIN)

• Values can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s1) and (s2).

- Judgment of whether the value is positive or negative is made on the basis of the most significant bit (b31).
- 0: Positive
- 1: Negative
- The following is the result when an underflow or overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

 $\begin{array}{c} \cdot -2147483648 - 2 \longrightarrow 2147483646 \cdots \text{Since bit 31 value is "0",} \\ (80000000H) & (0000002H) & (7FFFFFEH) & result of operation takes a positive value. \\ \cdot 2147483647 & -2 \longrightarrow -2147483647 \cdots \text{Since bit 31 value is "1",} \\ (7FFFFFFFH) & (FFFFFFEH) & (8000001H) & result of operation takes a negative value. \end{array}$

Operation error

· There is no operation error.

Program example

 In the following program, the value in Var_D0 is added to the value in Var_D2 when X0 turns ON, and the result is stored to Var D10.

[Structured ladder/FBD]

 In the following program, the value in Var_D2 is subtracted from the value in Var_D0 when X0B turns ON, and the result is stored to Var_D10.

[Structured ladder/FBD]

1	· · ×0B · · · · · ·	D-P
	•] ·] EN	
	· · · · · · Var_D0 s1	d1Var_D10
	•••••••• Var_D2— <u>s2</u>	

16-bit BIN data multiplication and division

*(P), /(P)	
Basic High performance Process Redundant	Universal LCPU
Structured ladder/FBD	ST
*	
= EN ENO = = s1 d =	Not supported
s2	

Any of the following instruction can go in the dotted squares. *, *P, /, /P

■Executing condition

Instruction	Executing condition
*	
1	
*P	A
/P	

Input/output Name I argument				Description				Data type	Data type			
Input argumen	ıt	EN		Executing	condition			Bit				
		s1		Multiplicand or dividend data, or start number of the device that stores multiplicand or dividend data				ANY16	ANY16			
s2					or divisor data, o tiplier or divisor	r start number o data	ANY16	ANY16				
Output argume	ent	ENO		Execution	result		Bit	Bit				
		d		Start number or the array of the device that stores the operation result				Array of ANY	Array of ANY16/32 (12)			
Setting	Internal	nternal device		ternal device		R, ZR J□\□		UD/GD		Zn	Constant	Others
data	Bit	Word			Bit	Word			К, Н			
(s1)	0								0	-		
(s2) O									0	-		
(d)	0							—	—			

■*(P)

• Multiplies 16-bit BIN data specified for (s1) and 16-bit BIN data specified for (s2), and stores the result to the variable specified for (d).

(s1)	<u>s2</u>	d
b15b0	b15b0	b31b16 b15b0
5678 (BIN)	× 1234 (BIN)	7006652 (BIN)

• When (d) is a bit device, specification is made from the lower bits.

Ex.

K1 ··· Lower 4 bits (b0 to b3)

K4 ... Lower 16 bits (b0 to b15)

K8 \cdots 32 bits (b0 to b31)

- Values can be specified between -32768 and 32767 (BIN 16 bits) for (s1) and (s2).
- Judgments whether (s1), (s2), and (d) are positive or negative are made on the basis of the most significant bit (b15 for (s1) and (s2), and b31 for (d)).

• 0: Positive

• 1: Negative

■/(P)

• Divides 16-bit BIN data specified for (s1) and 16-bit BIN data specified for (s2), and stores the result to the variable specified for (d).

				Quotient	Remainder
(s1)		(s2)		(d)[0]	(d[1]
		ĭ	_		
b15b0		b15	b0	b15b0	b15b0
5678 (BIN)	/	1234 (BIN)	$\Box \Box >$	4 (BIN)	742 (BIN)

- Quotient and remainder of the division result are stored in 32-bit data.
- Quotient: Stored to (d)[0] (16 bits).
- Remainder: Stored to (d)[1] (16 bits).
- Values can be specified between -32768 and 32767 (BIN 16 bits) for (s1) and (s2).
- Judgment whether values for (s1), (s2), (d)[0], and (d)[1] are positive or negative is made on the basis of the most significant bit (b15). (Sign is attached to both the quotient and remainder.)
- 0: Positive
- 1: Negative

Operation error

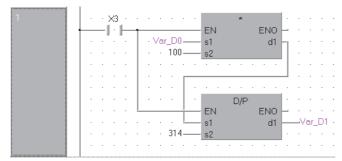
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	Divisor (s2) is 0.	0	0	0	0	0	0

Program example

• In the following program, the BIN value 5678 is multiplied by the BIN value 1234 when X5 turns ON, and the result is stored to Var_D3.

[Structured ladder/FBD]


1							·	·				*P				· ·					
		 -1	· .	⊢	 _				E١	1				ΕN	0	F.					
	· ·		•	- ·		567	'8 —		s1					0	11	⊢	<u> </u>	/ar_	_D3	1.1	
	·					123	84—		s2							· .					
	·			•	•			•	•	•	•	•	•	•	•						

• In the following program, the BIN value in Var_D0 is multiplied by the BIN value in Var_D1, and the result is stored to Var_D2.

[Structured ladder/FBD]

			Sł	//40)2									*							
			 -	$ \cdot $	⊢						E١	J			ΕN	0	_	÷	÷	÷	
		•		·	·	·	Va	r_D	0-		s1				(11		_\	′ar_	D2	·
		•				·	Va	r_D	1-		s2						÷	÷	÷		
		•		·	÷	·	·	·	•	·	·	÷	÷				·	÷	÷	÷	

• In the following program, the value in Var_D0 is divided by 3.14 when X3 turns ON, and the result is stored to Var_D1. [Structured ladder/FBD]

32-bit BIN data multiplication and division

D*(P), D/(P)	
Basic High performance Process Redundant Un	iversal
Structured ladder/FBD	ST
- EN ENO	Not supported
s2	

Any of the following instruction can go in the dotted squares. D*, D*P, D/, D/P

■Executing condition

Instruction	Executing condition
D* D/	
D*P D/P	

Input/outpu argument	ıt	Name		Descript	ion			Data type				
Input argume	nt	EN		Executing	condition			Bit				
		s1				lata, or start num r dividend data	ber of the device	ANY32				
		s2			or divisor data, Itiplier or diviso		of the device that	ANY32				
Output argum	ent	ENO		Execution	result			Bit				
		d		Start numl operation		of the device th	at stores the	Array of ANY	′32 (12)			
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Word			К, Н			
(s1)	0				0				—			
(s2)	0				0				-			
(d)	0				—					-		

■D*(P)

 Multiplies the 32-bit BIN data specified for (s1) by the 32-bit BIN data specified for (s2), and stores the result to the variable specified for (d).

s1)	(s2)	(d)[1]	(d)[0]
b31b16 b15b0	b31b16 b15b0	b63b48 b47b32	2 b31b16 b15b0
567890 (BIN)	× 123456 (BIN)		7840 (BIN)

• If (d) is a bit device, only the lower 32 bits of the multiplication result is considered, and the upper 32 bits cannot be specified.

Ex.

K1 ··· Lower 4 bits (b0 to b3)

K4 ··· Lower 16 bits (b0 to b15)

K8 \cdots Lower 32 bits (b0 to b31)

If the upper 32 bits of the bit device are required for the result of the multiplication operation, first temporarily store the data in a word device, then transfer the word device data to the bit device by designating ((d)2) and ((d)3) data.

- Values can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s1) and (s2).
- Judgments whether (s1), (s2), and (d) are positive or negative are made on the basis of the most significant bit (b31 for (s1) and (s2), and b63 for (d)).

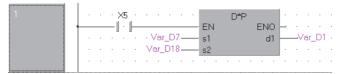
■D/(P)

• Divides the 32-bit BIN data specified for (s1) by the 32-bit BIN data specified for (s2), and stores the result to the variable specified for (d).

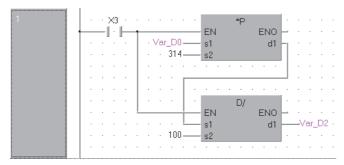
				Quotient	Remainder
s1)		(s2)		(d)[0]	(d)[1]
b31b16b15b0		b31b16b15b0		b31b16b15b0	b31b16b15b0
567890 (BIN)	/	123456 (BIN)	\Box	4 (BIN)	74066 (BIN)

- · Quotient and remainder of the division result are stored in 64-bit data.
- Quotient: Stored to (d)[0] (32 bits).
- Remainder: Stored to (d)[1] (32 bits).
- Values can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s1) and (s2).
- Judgment whether values for (s1), (s2), (d)[0], and (d)[1] are positive or negative is made on the basis of the most significant bit (b31). (Sign is attached to both the quotient and remainder.)
- 0: Positive
- 1: Negative

Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	Divisor (s2) is 0.	0	0	0	0	0	0


Program example

• In the following program, the BIN value in Var_D7 is multiplied by the BIN value in Var_D18 when X5 turns ON, and the result is stored to Var_D1.

[Structured ladder/FBD]

• In the following program, the value in Var_D0 is multiplied by 3.14 when X3 turns ON, and the result is stored to Var_D2. [Structured ladder/FBD]

4-digit BCD data addition and subtraction

B+(P), B-(P)	
Basic High performance Process Redundant Universal	LCPU
Structured ladder/FBD	ST
B+	
- EN ENO - s1 d -	Not supported
s2	

Any of the following instruction can go in the dotted squares. B+, B+P, B-, B-P

■Executing condition

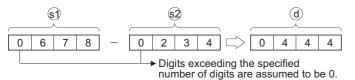
Instruction	Executing condition
B+ B-	
B+P B-P	

Input/output argument	t	Name	Descrij	Description				Data type			
Input argument EN			Executin	Executing condition				Bit			
				Data to be added or subtracted, or start number of the device that stores data to be added or subtracted				ANY16			
s2			Start nur	Start number of the device that stores the operation result				ANY16			
Output argument ENO			Executio	Execution result				Bit			
d			Start nur	Start number of the device that stores the operation result				ANY16			
Setting data	Internal	device	R, ZR	JD\D		UD\GD	Zn	Constant K H	Others		

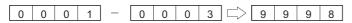
	Bit Word Bit Word							
data						К, Н		
(s1)	0						0	—
(s2)	0						0	—
(d)	0						—	—

■B+(P)

 Adds the 4-digit BCD data specified for (s1) and the 4-digit BCD data specified for (s2), and stores the result of the addition to the variable specified for (d).



- Values can be specified between 0 and 9999 (4-digit BCD) for (s1), (s2) and (d).
- If the result of the addition operation exceeds 9999, the higher bits are ignored. The carry flag (SM700) in this case does not turn ON.

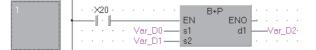


■B-(P)

• Subtracts the 4-digit BCD data specified for (s1) and the 4-digit BCD data specified for (s2), and stores the result of the subtraction to the variable specified for (d).

- Values can be specified between 0 and 9999 (4-digit BCD) for (s1), (s2) and (d).
- The following is the result when an underflow is generated by the subtraction operation. The carry flag (SM700) in this case does not turn ON.

Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The (s1) or (s2) BCD value is outside the range of 0 to 9999.	0	0	0	0	0	0

Program example

 In the following program, the BCD value in Var_D0 is added to the BCD value in Var_D1 when X20 turns ON, and the result is stored to Var_D2.

[Structured ladder/FBD]

 In the following program, the BCD value in Var_D20 is subtracted from the BCD value in Var_D10 when X20 turns ON, and the result is stored to Var_D30.

[Structured ladder/FBD]

1		. >	×20						B-P		.				
		-1	·	⊢				EN		ENO	-				
						Var_D1	0	s1		d1	<u> </u>	V	ar_	D3	0
						Var_D2	0	s2							
	•	÷			·	• • •	• •	• •		• •		·	·	·	·

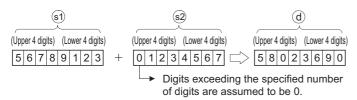
8-digit BCD data addition and subtraction

DB+(P), DB-(P)

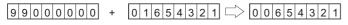
Basic	High performance Process Re	dundant Ur	niversal
Stru	ctured ladder/f	BD	ST
_	EN ENO s1 d	_	Not supported
]	

Any of the following instruction can go in the dotted squares. DB+, DB+P, DB-, DB-P

■Executing condition


Instruction	Executing condition
DB+ DB-	
DB+P DB-P	

Input/output Name argument			Descript	tion	Data type	Data type			
Input argument EN			Executing	condition	Bit				
s1				e added or subtracted, or start nu at stores data to be added or sub	ANY32				
s2				r subtraction data, or start numb s addition or subtraction data	ANY32				
Output argument ENO		Execution	result	Bit					
d			Start num	ber of the device that stores the	ANY32				
Setting	Internal	device	R, ZR	JD/D	UD\GD	Zn	Constant	Others	


data	Bit	Word	Bit Word				К, Н	
(s1)	0						0	—
(s2)	0						0	—
(d)	0						—	—

■DB+(P)

 Adds the 8-digit BCD data specified for (s1) and the 8-digit BCD data specified for (s2), and stores the result of the addition to the variable specified for (d).

- · Values can be specified between 0 and 999999999 (8-digit BCD) for (s1) and (s2).
- If the result of the addition operation exceeds 99999999, the upper bits will be ignored. The carry flag (SM700) in this case does not turn ON.

■DB-(P)

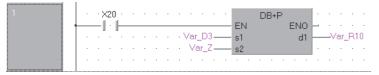
• Subtracts the 8-digit BCD data specified for (s1) and the 8-digit BCD data specified for (s2), and stores the result of the subtraction to the variable specified for (d).

(s1)	s2	<u>d</u>			
(Upper 4 digits) (Lower 4 digits)	(Upper 4 digits) (Lower 4 digits)	(Upper 4 digits) (Lower 4 digits)			
56789123 -	0 1 2 3 4 5 6 7	5 5 5 5 4 5 5 6			
	 Digits exceeding the of digits are assumed. 	•			

- Values can be specified between 0 and 999999999 (8-digit BCD) for (s1) and (s2).
- The following is the result when an underflow is generated by the subtraction operation. The carry flag (SM700) in this case does not turn ON.

12345678 - 12345679 - 999999999			
	12345678	- 12345679	99999999

Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The (s1) or (s2) BCD value is outside the range of 0 to 999999999.	0	0	0	0	0	0

Program example

 In the following program, the BCD value in Var_D3 is added to the BCD value in Var_Z when X20 turns ON, and the result is stored to Var_R10.

[Structured ladder/FBD]

 In the following program, the BCD data in Var_Z is subtracted from the BCD data in Var_D3 when X20 turns ON, and the result is stored to Var_R10.

[Structured ladder/FBD]

1	· · ×20)		DB-P	
			· · · · Var_D3—		1
			· · · · Var_Z —	- <u>s2</u>	

4-digit BCD data multiplication and division

B*(P), B/(P)				
Basic High Process	Redundant	Universal LCPU		
Structured ladde	r/FBD		ST	
=B*			Not supporte	d
- s1 - s2	d —			

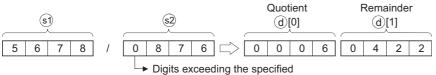
Any of the following instruction can go in the dotted squares. B*, B*P, B/, B/P

■Executing condition

Instruction	Executing condition
B* B/	
B*P B/P	

Input/output Name argument			Description				Data type					
Input argument		EN		Executing condition				Bit	Bit			
		s1		Multiplicand or dividend data, or start number of the device that stores multiplicand or dividend data				ANY16				
		s2		Multiplier or divisor data, or start number of the device that stores multiplier or divisor data			ANY16					
Output argument		ENO		Execution	ecution result			Bit				
		d		Start number or the array of the device that stores the operation result			Array of ANY	Array of ANY16/32 (12)				
Setting	Internal	nternal device		R, ZR J⊡\□			Zn	Constant	Others			
data	Bit	Word			Bit	Word			К, Н			
(s1)	0							0	-			
(s2)	0						0	-				
(d)	0							—	—			

■B*(P)


• Multiplies BCD data specified for (s1) and BCD data specified for (s2), and stores the result to the variable specified for (d).

• Values can be specified between 0 and 9999 (4-digit BCD) for (s1) and (s2).

■B/(P)

• Divides BCD data specified for (s1) by BCD data specified for (s2), and stores the result to the variable specified for (d).

number of digits are assumed to be 0.

- Quotient and remainder of the division result are stored in 32-bit data.
- Quotient (4-digit BCD): Stored to (d)[0] (16 bits).
- Remainder (4-digit BCD): Stored to (d)[1] (16 bits).

Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

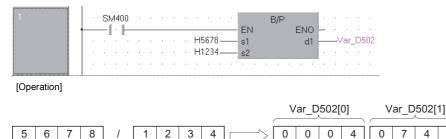
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The (s1) or (s2) BCD value is outside the range of 0 to 9999. Divisor (s2) is 0.	0	0	0	0	0	0

Program example

• In the following program, the BCD value in Var_D7 is multiplied by the BCD value in Var_D8 when X20 turns ON, and the result is stored to Var_D0.

[Structured ladder/FBD]

[Operation]



• In the following program, the BCD value 5678 is divided by the BCD value 1234, and the result is stored to Var_D502. [Structured ladder/FBD]

Quotient

2

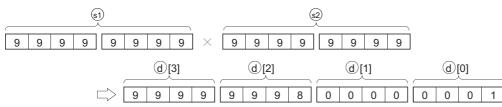
Remainder

8-digit BCD data multiplication and division

DB*(P), DB/(P)

Basic	High performance	Process Redundant	Universal LCPU
Stru	ictured	ladder/FBD	ST
	C	DB*	
	EN s1		Not supported
_	s2		
			1

Any of the following instruction can go in the dotted squares. DB*, DB*P, DB/, DB/P


■Executing condition

Instruction	Executing condition
DB* DB/	
DB*P DB/P	

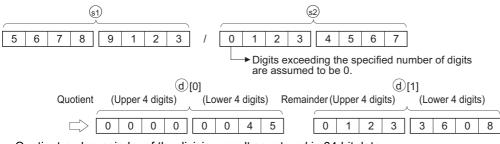
Input/outpu argument	t	Name	Description					Data type				
Input argument EN				Executing	condition			Bit				
		s1			Multiplicand or dividend data, or start number of the device that stores multiplicand or dividend data				ANY32			
s2				Multiplier or divisor data, or start number of the device that stores multiplier or divisor data				ANY32	ANY32			
Output argume	ent	ENO		Execution result				Bit	Bit			
		d		Start number or the array of the device that store operation result		nat stores the	Array of AN	(16 (14), array	of ANY32 (12)			
Setting	Internal	ternal device		ZR	JD/D		UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Word			К, Н			
(s1)	0				0					—		
(s2)	0	C			0					—		
(d)	0				-					—		

■DB*(P)

• Multiplies the 8-digit BCD data specified for (s1) and the 8-digit BCD data specified for (s2), and stores the product to the variable specified for (d).

• If (d) is a bit device, the lower 8 digits (lower 32 bits) of the multiplication result is considered, and the upper 8 digits (upper 32 bits) cannot be specified.

K1 ··· Lower 1 bits (b0 to b3)


K4 ... Lower 4 bits (b0 to b15)

K8 ... Lower 8 bits (b0 to b31)

• Values can be specified between 0 and 999999999 (8-digit BCD) for (s1) and (s2).

■DB/(P)

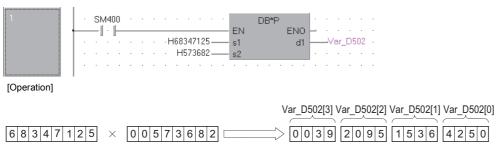
• Divides 8-digit BCD data specified for (s1) by 8-digit BCD data specified for (s2), and stores the result to the variable specified for (d).

· Quotient and remainder of the division result are stored in 64-bit data.

Quotient (8-digit BCD): Stored to (d)[0] (32 bits).

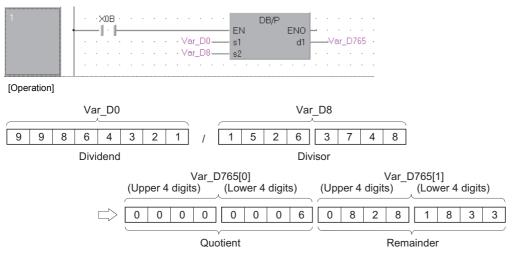
Remainder (8-digit BCD): Stored to (d)[1] (32 bits).

Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The (s1) or (s2) BCD value is outside the range of 0 to 99999999. Divisor (s2) is 0.	0	0	0	0	0	0

Program example


• In the following program, the BCD value 68347125 is multiplied by the BCD value 573682, and the result is stored to Var_D502.

[Structured ladder/FBD]

• In the following program, the BCD value in Var_D0 is divided by the BCD value in Var_D8 when X0B turns ON, and the result is stored to Var_D765.

[Structured ladder/FBD]

6

Floating-point data addition and subtraction (single precision)

E+(P), E-(P)

· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Stru	ictured	ladder/F	BD	ST
		E+		
_	EN	ENO	—	Not supported
_	s1	d	—	
_	s2			

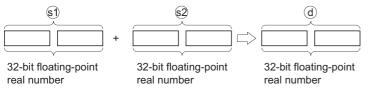
Any of the following instruction can go in the dotted squares.

E+, E+P, E-, E-P

■Executing condition

Instruction	Executing condition
E+ E-	
E+P E-P	

■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Data to be added or subtracted, or start number of the device that stores data to be added or subtracted	Single-precision real
	s2	Addition or subtraction data, or start number of the device that stores addition or subtraction data	Single-precision real
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the operation result	Single-precision real

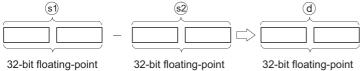
Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word		Bit Word				E		
(s1)	—	0		—	0		—	0	—	
(s2)	—	0	0		0		—	0	—	
(d)	—	0	0		0		—	0	—	

Processing details

■E+(P)

• Adds the 32-bit floating-point real number specified for (s1) and the 32-bit floating-point real number specified for (s2), and stores the sum to the variable specified for (d).

• Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:


0, $2^{\text{-}126} \leq$ | specified value (storing value) | < 2^{128}

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

■E-(P)

• Subtracts the 32-bit floating-point real number specified for (s1) and the 32-bit floating-point real number specified for (s2), and stores the result to the variable specified for (d).

real number

real number

g-point 32-bit floatin real number

• Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:

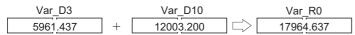
0, $2^{\text{-}126} \leq$ | specified value (storing value) | < 2^{128}

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

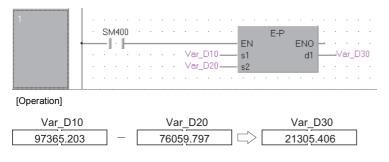
Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

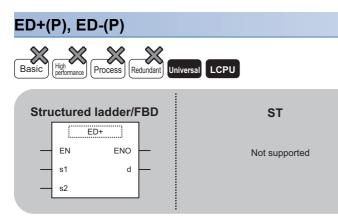

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is outside the following range. 0, $2^{-126} \le $ value of the specified device $ < 2^{128}$ The value of the specified device is -0. ^{*1}	0	0	0	0	—	_
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq $ operation result $ $	—	-	—	—	0	0
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	—	—	_	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Program example


In the following program, the floating-point real number Var_D3 is added to the floating-point real number Var_D10 when X20 turns ON, and the result is stored to Var_R0.
 [Structured ladder/FBD]

[Operation]



 In the following program, the floating-point real number Var_D20 is subtracted from the floating-point real number Var_D10, and the result is stored to Var_D30.

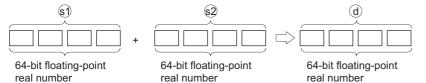
[Structured ladder/FBD]

Floating-point data addition and subtraction (double precision)

Any of the following instruction can go in the dotted squares. ED+, ED+P, ED-, ED-P

■Executing condition

Instruction	Executing condition
ED+ ED-	
ED+P ED-P	


■Argument

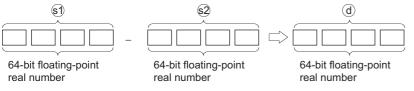
Input/outpu argument	ıt	Name		Descript	ion			Data type			
Input argument EN			Executing	condition			Bit				
		s1			Data to be added or subtracted, or start number of the device that stores data to be added or subtracted				Double-precision real		
s2				Addition or subtraction data, or start number of the device that stores addition or subtraction data				Double-precision real			
Output argum	ent	ENO		Execution result			Bit				
		d		Start number of the device that stores the operation result			operation result	Double-precision real			
Setting	Internal	ternal device		ZR	JD/D			Zn	Constant	Others	
data	Bit	Word			Bit	Word			E		
(s1)	-	0			—				0	—	
(s2)	-	0			—	_			0	—	
(d)	-	0	0			_			—	—	

Processing details

■ED+(P)

• Adds the 64-bit floating-point real number specified for (s1) and the 64-bit floating-point real number specified for (s2), and stores the sum to the variable specified for (d).

• Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:


0, $2^{-1022} \le |$ specified value (storing value) | < 2^{1024}

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

■ED-(P)

• Subtracts the 64-bit floating-point real number specified for (s1) from the 64-bit floating-point real number specified for (s2), and stores the result to (d).

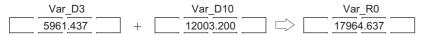
- Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:
- 0, $2^{\text{-}1022} \leq |$ specified value (storing value) | < 2^{1024}
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error

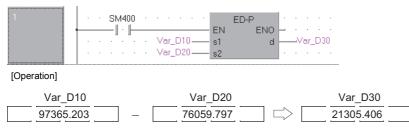
 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le $ value of the specified device $ < 2^{1024}$ The value of the specified device is -0.	—	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq $ operation result	—	—	—	_	0	0


Program example

• In the following program, the 64-bit floating-point real number Var_D3 is added to the 64-bit floating-point real number Var_D10 when X20 turns ON, and the result is stored to Var_R0.

[Structured ladder/FBD]



[Operation]

• In the following program, the 64-bit floating-point real number Var_D20 is subtracted from the 64-bit floating-point real number Var_D10, and the result is stored to Var_D30.

[Structured ladder/FBD]

Floating-point data multiplication and division (single precision)

E*(P), E/(P)

· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Stru	ictured	adder/FBD	ST
	E	*	
_	EN	ENO -	Not supported
_	s1	d -	
_	s2		

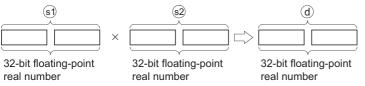
Any of the following instruction can go in the dotted squares.

E*, E*P, E/, E/P

■Executing condition

Instruction	Executing condition
E* E/	
E*P E/P	

■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Multiplicand or dividend data, or start number of the device that stores multiplicand or dividend data	Single-precision real
	s2	Multiplier or divisor data, or start number of the device that stores multiplier or divisor data	Single-precision real
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the operation result	Single-precision real

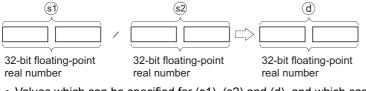
Setting	Internal device		R, ZR	10/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			E	
(s1)	-	0		—	0		—	0	_
(s2)	-	0		—	0		—	0	—
(d)	-	0		—	0		—	—	—

Processing details

■E*(P)

• Multiplies the 32-bit floating-point real number specified for (s1) by the 32-bit floating-point real number specified for (s2) and stores the operation result to the variable specified for (d).

• Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:


0, $2^{\text{-}126} \leq$ | specified value (storing value) | < 2^{128}

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

■E/(P)

• Divides the 32-bit floating-point real number specified for (s1) by the 32-bit floating-point real number specified for (s2) and stores the operation result to the variable specified for (d).

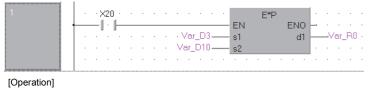
• Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:

0, $2^{-126} \le |$ specified value (storing value) $| < 2^{128}$

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error

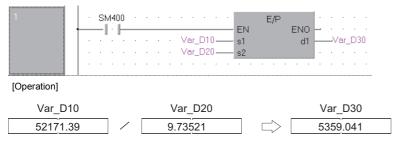

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is outside the following range. $0, 2^{-126} \le $ value of the specified device $ < 2^{128}$ The value of the specified device is -0.	0	0	0	0	—	_
	Divisor (s2) is 0.	0	0	0	0	0	—
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq $ operation result $ $	—	—	—	_	0	0
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	—	—	—	0	0

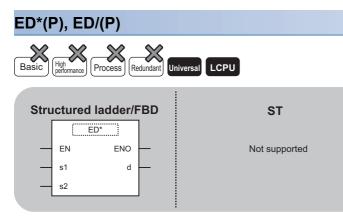
Program example

• In the following program, the 32-bit floating-point real number in Var_D3 is multiplied by the 32-bit floating-point real number in Var_D10, and the result is stored to Var_R0.

[Structured ladder/FBD]



 Var_D3
 Var_D10
 Var_R0


 36.7896
 ×
 11.9278
 >
 438.8190

• In the following program, the 32-bit floating-point real number in Var_D10 is divided by the 32-bit floating-point real number in Var_D20, and the result is stored to Var_D30.

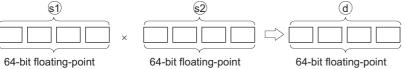
[Structured ladder/FBD]

Floating-point data multiplication and division (double precision)

Any of the following instruction can go in the dotted squares. ED*, ED*P, ED/, ED/P

■Executing condition

Instruction	Executing condition
ED* ED/	
ED*P ED/P	


■Argument

Input/outpu argument	ıt	Name		Descript	ion			Data type			
Input argume	nt	EN		Executing	condition			Bit			
		s1		•	Aultiplicand or dividend data, or start number of the device hat stores multiplicand or dividend data			Double-precision real			
s2				Multiplier or divisor data, or start number of the device that stores multiplier or divisor data				Double-precision real			
Output argum	ent	ENO		Execution	result			Bit			
		d Start nu			number of the device that stores the operation result			Double-precision real			
Setting	Internal	iternal device		ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			E		
(s1)	-	0			—				0	-	
(s2)	—	0			_				0	-	
(d)	—	0			—				—	-	

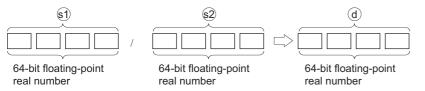
Processing details

■ED*(P)

• Multiplies the 64-bit floating-point real number specified for (s1) and the 64-bit floating-point real number specified for (s2), and stores the result to the variable specified for (d).

real number

real number


- Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:
- 0, $2^{-1022} \le |$ specified value (storing value) | < 2^{1024}
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

real number

■ED/(P)

• Divides the 64-bit floating-point real number specified for (s1) by the 64-bit floating-point real number specified for (s2), and stores the result to (d).

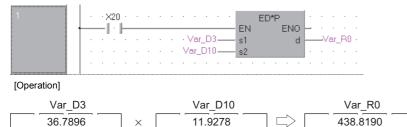
• Values which can be specified for (s1), (s2) and (d), and which can be stored, are as follows:

0, $2^{-1022} \le |$ specified value (storing value) | < 2^{1024}

- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

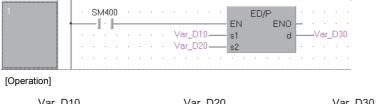
MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. $0, 2^{-1022} \le $ value of the specified device $ < 2^{1024}$ The value of the specified device is -0.	—	—	—	_	0	0
4100	Divisor (s2) is 0.	—	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq \mid$ operation result \mid	—	—	—	—	0	0

Program example


• In the following program, the 64-bit floating-point real number in Var_D3 is multiplied by the 64-bit floating-point real number in Var_D10, and the result is stored to Var_R0.


[Structured ladder/FBD]

• In the following program, the 64-bit floating-point real number in Var_D10 is divided by the 64-bit floating-point real number in Var_D20, and the result is stored to Var_D30.

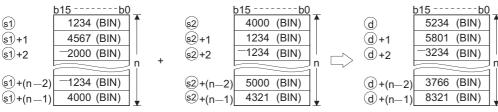
[Structured ladder/FBD]

16-bit BIN block data addition and subtraction

BK+(P), BK-(P)	
Basic High Process Redundant	Universal
Structured ladder/FBD	ST Not supported
- s1 d - s2 - n	Not supported

Any of the following instruction can go in the dotted squares. BK+, BK+P, BK-, BK-P

■Executing condition


Instruction	Executing condition
BK+ BK-	
BK+P BK-P	

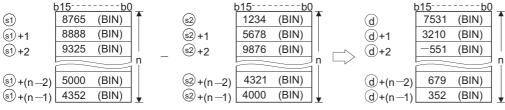
Input/output argument		Name	Descript	ion		Data type			
Input argument	t	EN	Executing	condition		Bit			
s1 s2				Start number of the device that stores data to be added or subtracted			ANY16		
				Addition or subtraction data, or start number of the device that stores addition or subtraction data			ANY16		
		n	Number o	Number of addition or subtraction data			ANY16		
Output argume	nt	ENO	Execution	Execution result			Bit		
d		Start num	Start number of the device that stores the operation result			ANY16			
Setting	Internal	device	R, ZR	JD/D	UD\GD	Zn	Constant	Others	

Setting	internal dev	ice	к, 2к				Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(s1)	—	0		—				—	—
(s2)	—	0		—				0	—
n	—	0		0				0	—
(d)	—	0		—				—	—

■BK+(P)

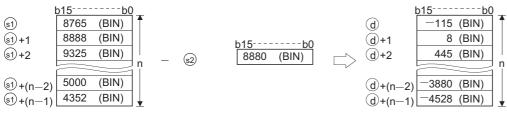
 Adds BIN data n points from the device specified for (s1) and BIN data n points from the device specified for (s2), and stores the results to (d) and the following devices.

- · Block addition is performed in units of 16 bits.
- The constant can be specified between -32768 and 32767 (BIN 16 bits) for (s2).



 The following is the result when an underflow or overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

	+2 — (0002н)	
·—32767 (8001н)	+—2 — (FFFEн)	


■BK-(P)

• Subtracts BIN data n points from the device specified for (s1) from BIN data n points from the device specified for (s2), and stores the results to (d) and the following devices.

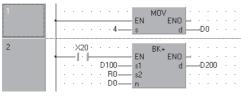
· Block subtraction is performed in units of 16 bits.

The constant can be specified between -32768 and 32767 (BIN 16 bits) for (s2).

 The following is the result when an underflow or overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

· — 32768	—2	→32766
(8000н)	(0002н)	(7FFEн)
· 32767 (7FFFн)	— — 2 — (FFFEн)	

Operation error

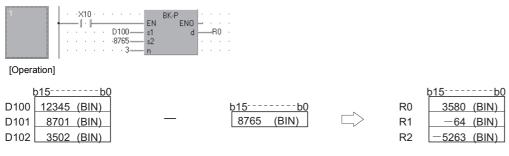

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The range of n points from the device specified for (s1) overlaps with the range of n points from the device specified for (d). (Except when the same device is assigned to (s1) and (d)) The range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (d). (Except when the same device is specified for (s2) and (d))	0	0	0	0	0	0

Program example

• In the following program, the data stored in D100 to D103 are added to the data stored in R0 to R3 when X20 turns ON, and the results are stored to D200 and the following devices.

[Structured ladder/FBD]



[Operation]

<u>b15b0</u>			<u>b15b0</u>	ł	þ15	b0
D100 <u>6789 (BIN)</u>		R0	1234 (BIN)	D200	8023	(BIN)
D101 7821 (BIN)	+	R1	2032 (BIN)	D201	9853	(BIN)
D102 <u>5432 (BIN)</u>		R2	-3252 (BIN)	D202	2180	(BIN)
D103 <u>3520 (BIN)</u>		R3	-1000 (BIN)	D203	2520	(BIN)
D0 4						

• In the following program, the constant 8765 is subtracted from the data in D100 to D102 when X1C is turned ON, and the results are stored to R0 and the following devices.

[Structured ladder/FBD]

32-bit BIN block data addition and subtraction

DBK+(P), DBK-(P)

• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Stru	ctured lac	dder/FBD	ST
	DBK+ EN s1 s2	ENO —	Not supported
-	n		

Any of the following instruction can go in the dotted squares. DBK+, DBK+P, DBK-, DBK-P

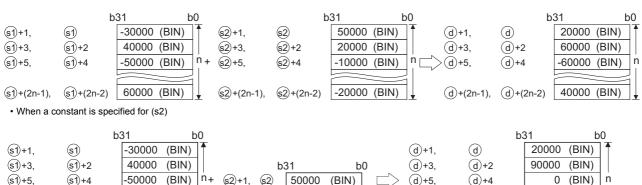
■Executing condition

Instruction	Executing condition
DBK+ DBK-	
DBK+P DBK-P	

Input/output argument	Name		Description	Data type			
Input argument	EN		Executing condition		Bit		
	s1		Start number of the device that stores data subtracted	or ANY32			
	s2		Addition or subtraction data, or start number that stores addition or subtraction data	ANY32			
	n		Number of addition or subtraction data		ANY16		
Output argument	ENO		Execution result	Bit			
	d		Start number of the device that stores the	ANY32			
Setting Interr	al dovico	P	7P IO\O		Zn	Constant	Othors

Setting	Internal dev	ice	R, ZR	JD\D		U⊟\G⊟	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(s1)	-	0		—				—	—
(s2)	-	0		—				0	-
n	0	0		0				0	-
(d)	—	0		—				—	—

■DBK+(P)


(s1)+5,

(s1)+(2n-1),

- Adds 32-bit BIN data n points from the device specified for (s1) and 32-bit BIN data n points from the device specified for (s2) or a constant, and stores the results to (d) and the following devices.
- · When a device is specified for (s2)

s1)+4

(s1)+(2n-2)

· Block addition is performed in units of 32 bits.

-50000

60000

• The constant can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s2).

(s2)+1, (s2)

· No processing is performed if the value specified for n is 0.

(BIN)

(BIN)

• The following is the result when an overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.

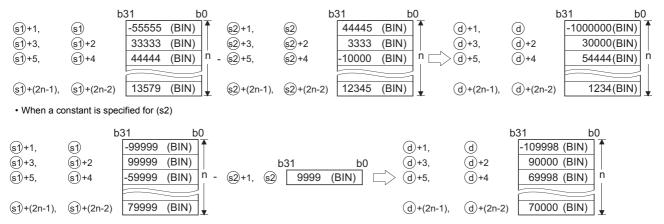
(d)+5,

(d)+(2n-1),

(d)+4

(d)+(2n-2)

(BIN) 0


110000 (BIN)

n

- · K2147483647+K2-K-2147483647 (7FFFFFFH) (0000002н) (8000001н)
- K2147483647 K-2147483647 +K-2-(80000001H) (FFFFFFEH)(7FFFFFFH)

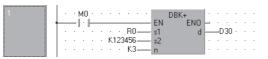
DBK-(P)

- · Subtracts 32-bit BIN data n points from the device specified for (s1), or a constant from 32-bit BIN data n points from the device specified for (s2), and stores the results to (d) and the following devices.
- · When a device is specified for (s2)

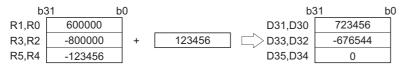
- · Block subtraction is performed in units of 32 bits.
- The constant can be specified between -2147483648 and 2147483647 (BIN 32 bits) for (s2).
- No processing is performed if the value specified for n is 0.
- (d) is specified in the device range other than n points from (s1) and n points from (s2). Note that a same device can be specified for (s1) and (s2).

- The following is the result when an overflow is generated by the operation. The carry flag (SM700) in this case does not turn ON.
- · K2147483647 -K-2 → K-2147483647 (7FFFFFFн) (0000002н) (8000001н)
- · К-2147483647 -К2 → К2147483647 (80000001н) (FFFFFEн) (7FFFFFFн)

Operation error

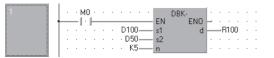

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	A negative value is specified for n.	-	-	-	—	0	0
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The range of n points from the device specified for (s1) overlaps with the range of n points from the device specified for (d). (Except when the same device is assigned to (s1) and (d)) The range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (s2) overlaps with the range of n points from the device specified for (d). (Except when the same device is specified for (s2) and (d))	_	_	_	_	0	0


Program example

 In the following program, the data stored in R0 to R5 are added to the constant when M0 turns ON, and the results are stored to D30 to D35.

[Structured ladder/FBD]



[Operation]

• In the following program, the data stored in D50 to D59 are subtracted from the data in D100 to D109 when M0 turns ON, and the results are stored to R100 to R109.

[Structured ladder/FBD]

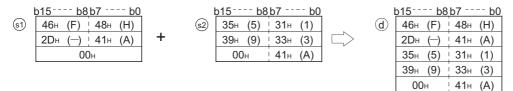
[Operation]

b3	31 b	0 b3	31 k	b0 b3	b0 b0
D101,D100	12345	D51,D50	11111	R101,R100	1234
D103,D102	54321	D53,D52	-11111	>R103,R102	65432
D105,D104	-12345	— D55,D54	22222	R105,R104	-34567
D107,D106	-54321	D57,D56	-22222	R107,R106	-32099
D109,D108	99999	D59,D58	33333	R109,R108	66666

Character string data concatenation

\$+(P)	
Basic High performance Process Redundant	Universal LCPU
Structured ladder/FBD	ST
\$+	
EN ENO	Not supported
s1d	
s2	

Any of the following instruction can go in the dotted squares.


\$+, \$+P

■Executing condition

Instruction	Executing condition
\$+	
\$+P	

Input/outpu argument	t	Name		Descript	ion	Data type							
Input argumen	ıt	EN		Executing	condition		Bit						
		s1		Connectio connectior									
		s2		Data to be connected, or start number of the device that String stores data to be connected									
Output argume	ent	ENO		Execution									
		d		Start numb	per of the device	e that stores the	operation result	String					
Setting	Internal	device	R,	ZR	10/D		UE\GE	Zn	Constant	Others			
data	Bit	Word			Bit	Word		\$					
(s1)	-	0			—				0	-			
(s2)	-	0			—				0	-			
(d)	-	0			—				—	-			

• Connects the character string data specified for (s2) after the character string data specified for (s1) and stores the result to the variable specified for (d).

• This instruction ignores the 00H which indicates the end of character string data specified for (s1), and connects the character string specified for (s2) is appended to the last character of the (s1) string.

Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The number of device points starting from the device specified in (d) is insufficient to store all character strings. The device numbers specified by (s2) and (d) overlap. The character string of (s1), (s2) and (d) exceeds 16383 characters.	—	0	0	0	0	0

Program example

 In the following program, the character string "ABCD" is connected to the character string stored in Var_D10 when X0 turns ON, and the results are stored to Var_D100 and the following devices.
 [Structured ladder/FBD]

			· · · · · · · · · · · · · · · · · · ·
1	· · ×0 · · ·		
	I ·	EN	ENO - · · · · ·
		• • Var_D10 — s1	d1
		· · · "ABCD" — s2	
			• • • • • • •

16-bit BIN data increment and decrement

INC(P), DEC(P)

Basic High performance Process Redundant Ur	niversal
Structured ladder/FBD	ST
	ENO:= INC (EN, d);

Any of the following instruction can go in the dotted squares. INC, INCP, DEC, DECP

■Executing condition

Instruction	Executing condition
INC DEC	
INCP DECP	

■Argument

Input/output argument	t	Name		Descript	ion			Data type					
Input argumen	ıt	EN		Executing									
Output argume	ent	ENO		Execution result Bit									
		d		Start numb		(16-bit data) to	ANY16	ANY16					
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others			
data	Bit	Word			Bit Word								
(d)	O —												

Processing details

■INC(P)

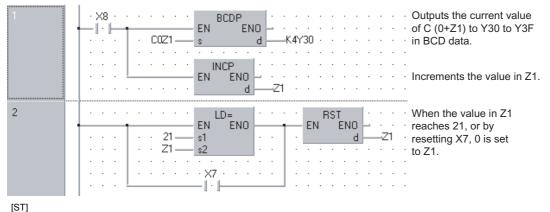
• Adds 1 to the variable (16-bit data) specified for (d).

• When the instruction is executed with the variable specified for (d), which value is 32767, the value -32768 is stored to the variable specified for (d).

■DEC(P)

• Adds -1 to the variable (16-bit data) specified for (d).

• When the instruction is executed with the variable specified for (d), which value is -32768, the value 32767 is stored to the device specified for (d).


Operation error

• There is no operation error.

Program example

• In the following program, the current values from the counter C0 to C20 are output to Y30 to Y3F in BCD data each time X8 turns ON. (When current value is less than 9999)

[Structured ladder/FBD]

BCDP(X8,C0Z1,K4Y30); INCP(X8,Z1); IF Z1=21 OR X7 THEN RST(TRUE,Z1); END_IF;

.....

• The following is a down-counter program. [Structured ladder/FBD]

1		ŀŀ		· ·		10		•	EN s		ENO d		 D8	
2		×8 •⊪ •		-17	ŀ			•	EN	DECP	- C d	D8	 } .	
3		•	•						EN	LD= EN(•	·M:		•
						_	0- 8-			EN				•

Transfers 100 to D8 when X7 turns ON.

When M38 is OFF, decrements the value in D8 each time X8 turns from OFF to ON.

M38 turns ON when the value in D8 reaches 0.

[ST] MOVP(X7,100,D8); IF X8 AND NOT(M38) THEN DECP(TRUE,D8); END_IF; OUT(D8=0,M38); 6

32-bit BIN data increment and decrement

DINC(P), DDEC(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD DINC EN ENO d COMPACE ENO:= DINC (EN, d);

Any of the following instruction can go in the dotted squares. DINC, DINCP, DDEC, DDECP

■Executing condition

Instruction	Executing condition
DINC DDEC	
DINCP DDECP	

■Argument

Input/outpu argument	t	Name		Descript	ion			Data type					
Input argumen	ıt	EN		Executing condition Bit									
Output argume	ent	ENO		Execution result Bit									
		d		Start numb	per of the device ented by 1	e (32-bit data) to	ANY32	ANY32					
Setting	Internal	device	R, 2	ZR	JD/D		UD\GD	Zn	Constant	Others			
data	Bit	Word			Bit								
(d)	0 -												

Processing details

■DINC(P)

• Adds 1 to the variable (32-bit data) specified for (d).

• When the instruction is executed with the variable specified for (d), which value is 2147483647, the value -2147483648 is stored to the variable specified for (d).

■DDEC(P)

• Adds -1 to the variable (32-bit data) specified for (d).

• When the instruction is executed with the variable specified for (d), which value is 0, the value -1 is stored to the variable specified for (d).

Operation error

· There is no operation error.

Program example

• In the following program, 1 is added to the data in Var_D0 when X0 turns ON. [Structured ladder/FBD]

[ST]

DINCP(X0,Var_D0);

• In the following program, 1 is added to the data set in Var_D0 when X0 turns ON, and the result is stored to Var_D3. [Structured ladder/FBD]

1	•	•	- í	×0								E		МС) ENI			:	•	•	•
				-			Va	ar_	DO	_			ų				d j		_\/	ar_	D3	
	· ·	·	·	·	·	·				•	•	•	•	÷	•	-	•	·	·	·	·	·
	· ·		·	·	•	·			•	•			DI	NC	Ρ.	_			•	•	•	•
	· ·										_	Eľ	1	ł	ΞN	-	_			no	•	•
			÷							Ċ	÷					d			ar_	D3		÷

[ST]

DMOVP(X0,Var_D0,Var_D3); DINCP(X0,Var_D3);

• In the following program, -1 is added to the data in Var_D0 when X0 turns ON. [Structured ladder/FBD]

[ST]

DDECP(X0,Var_D0);

• In the following program, -1 is added to the data set in Var_D0 when X0 turns ON, and the result is stored to Var_D3. [Structured ladder/FBD]

1		· ×	30 ·							•
	·				/ar	_D()—		s d Var_D3	•
	1									
	·	•		• •		·		·		•

[ST] DMOVP(X0,Var_D0,Var_D3); DDECP(X0,Var_D3);

6.3 Data Conversion Instructions

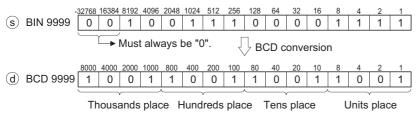
BIN data to 4-/8-digit BCD data conversion

BCD(P), DBCD(P)

Basic High performance Process Redundant Un	niversal LCPU
Structured ladder/FBD	ST
EN ENO s d	ENO:= BCD (EN, s, d);

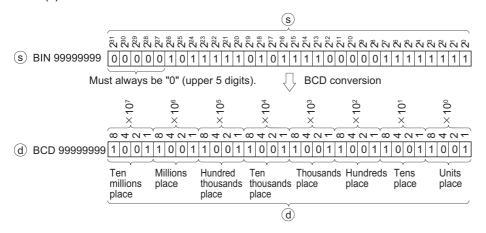
Any of the following instruction can go in the dotted squares. BCD, BCDP, DBCD, DBCDP

■Executing condition


Instruction	Executing condition
BCD DBCD	
BCDP DBCDP	

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Start number of the device that stores BIN data	ANY16/32
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores BCD data after conversion	ANY16/32

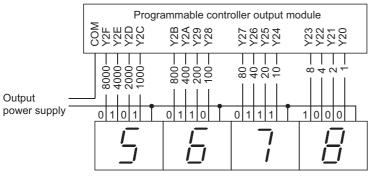
Setting	Internal dev	ice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(S)	0						0	_	
(d)	0					—	_		


■BCD(P)

• Converts BIN data (0 to 9999) in the device specified for (s) to BCD data, and stores the result to the device specified for (d).

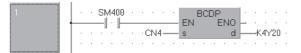
■DBCD(P)

• Converts BIN data (0 to 99999999) in the device specified for (s) to BCD data, and stores the result to the device specified for (d).


Operation error

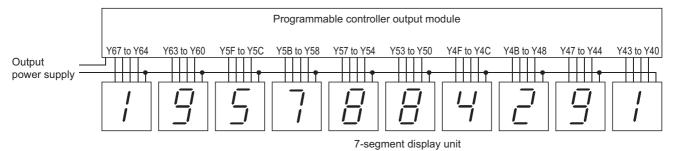
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

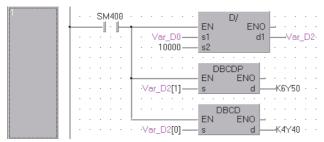
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The data of (s) is other than 0 to 9999 at the execution of the BCD(P) instruction.	0	0	0	0	0	0
	The data of (s)+1 and (s) is other than 0 to 99999999 at the execution of the DBCD(P) instruction.	0	0	0	0	0	0


Program example

• In the following program, the current value of C4 from Y20 to Y2F is output to the BCD display device.

7-segment display unit


[Structured ladder/FBD]


[ST]

BCDP(SM400,CN4,K4Y20);

• In the following program, 32-bit data from D0 to D1 are output to devices from Y40 to Y67.

[Structured ladder/FBD]

[ST]

IF SM400 THEN

Var_D2[0]:=Var_D0/10000; DBCDP(TRUE,Var_D2[1],K6Y50); DBCD(TRUE,Var_D2[0],K4Y40);

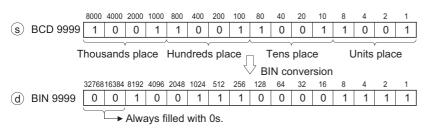
END_IF;

4-/8-digit BCD data to BIN data conversion

BIN(P), DBIN(P)

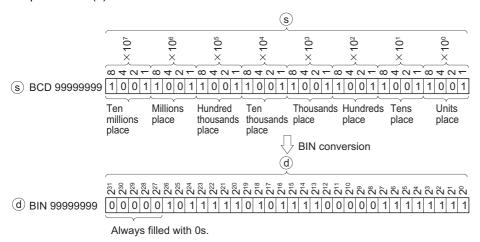
Basic High process Process Redundant Universal LCPU Structured ladder/FBD ST EN ENO s d

Any of the following instruction can go in the dotted squares. BIN, BINP, DBIN, DBINP


■Executing condition

Instruction	Executing condition
BIN DBIN	
BINP DBINP	

Input/output argument	t	Name		Description				Data type		
Input argumen	it EN			Executing condition			Bit	Bit		
		s		Start numb	per of the device	e that stores BIN	data	ANY16/32		
Output argume	ent	ENO		Execution	Execution result Bit					
	d			Start number of the device that stores BCD data after conversion			ANY16/32			
Setting	Internal	device	R,	ZR	JO/O UO		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word			К, Н	
(s)	0	раница и страна и стр О							0	—
(d)	0									


■BIN(P)

• Converts the BCD data (0 to 9999) in the device specified for (s) to the BIN data, and stores the result to the device specified for (d).

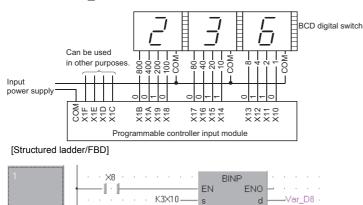
■DBIN(P)

• Converts the BCD data (0 to 99999999) in the device specified for (s) to the BIN data, and stores the result to the device specified for (d).

Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	Values other than 0 to 9 are specified for each digit of (S).	0	0	0	0	0	0


The error above can be suppressed by turning ON SM722.

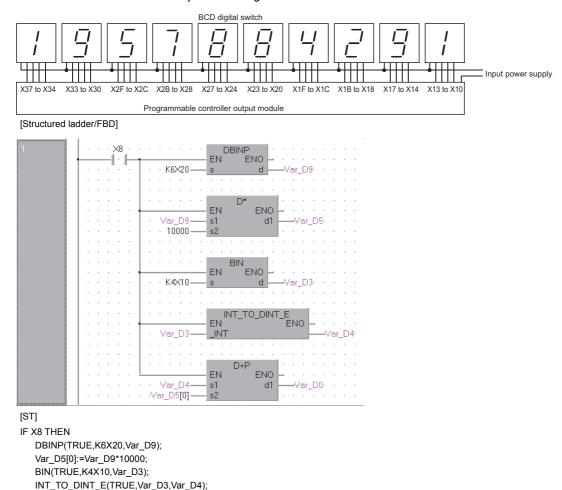
However, the instruction is not executed regardless of whether SM722 is turned ON or OFF if the specified value is out of the available range.

For the BINP and DBINP instruction, the next operation will not be performed until the command (executing condition) is turned from OFF to ON regardless of the presence or absence of an error.

Program example

• In the following program, the BCD data in X10 to X1B are converted to the BIN data when X8 turns ON, and the result is stored to Var D8.

s


[ST]

BINP(X8,K3X10,Var_D8);

Var_D0:=Var_D4+Var_D5[0];

END IF;

• In the following program, the BCD data in X10 to X37 are converted to BIN data when X8 turns ON, and the result is stored to Var D0. (Addition of the BCD data in X20 to X37 converted to BIN data and the BCD data in X10 to X1F converted to BIN data.) However, when BCD value exceeding 2147483647 is specified in X10 to X37, Var_D0 becomes a negative value because the value is beyond the range a 32-bit device can handle.

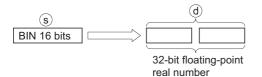
6

16-/32-bit BIN data to floating-point data conversion (single precision)

FLT(P), DFLT(P)

· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

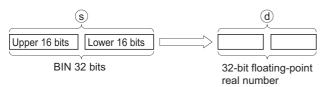
Any of the following instruction can go in the dotted squares. FLT, FLTP, DFLT, DFLTP

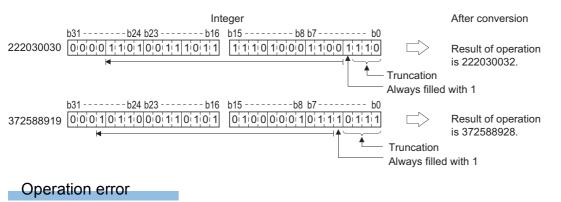

■Executing condition

Instruction	Executing condition
FLT DFLT	
FLTP DFLTP	

Input/outpu argument	t	Name		Description				Data type		
Input argumen	nt	EN		Executing condition				Bit		
		S	0			Integer data to be converted to 32-bit floating-point data, or start number of the device that stores integer data				
Output argume	ent	ENO		Execution result				Bit		
	d			Start number of the device that stores converted 32-bit floating-point data				Single-precision real		
Setting	Internal	device	R, 1	ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word			К, Н	
(s)	0	0			0	0		0		-
(d)	—	0			—	0		_		—

■FLT(P)

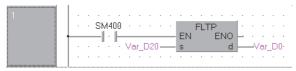

• Converts 16-bit BIN data specified for (s) to the 32-bit floating-point real number, and stores the result to the device specified for (d).


• BIN values between -32768 and 32767 can be specified for (s).

■DFLT(P)

• Converts 32-bit BIN data specified for (s) to the 32-bit floating-point real number, and stores the result to the device specified for (d).

- BIN values between -2147483648 and 2147483647 can be specified for (s).
- Due to the fact that 32-bit floating-point real numbers are processed by 32-bit single precision, the number of significant figures is 24 bits if the display is binary and approximately 7 digits if the display is decimal. For this reason, if the integer value exceeds the range of -16777216 to 16777215 (24-bit BIN value), errors can be generated in the conversion value. As for the conversion result, the 25th bit from the highest bit of the integer value is rounded off and the 26th bit and later are truncated.



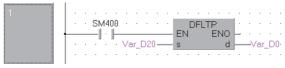
· There is no operation error.

Program example

• In the following program, the 16-bit BIN value in Var_D20 is converted to the 32-bit floating-point real number, and the result is stored to Var_D0.

[Structured ladder/FBD]

[ST]

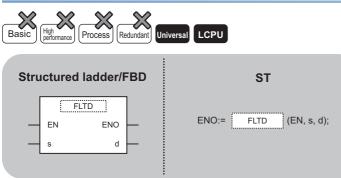

FLTP(SM400,Var_D20,Var_D0);

[Operation]

Var_D20	Integer conversion	Var_D0
15923		15923
BIN value		32-bit floating-point real number

• In the following program, the 32-bit BIN value in Var_D20 is converted to the 32-bit floating point real number, and the result is stored to Var_D0.

[Structured ladder/FBD]


[ST]

DFLTP(SM400,Var_D20,Var_D0); [Operation]

Var_D20	Integer conversion	Var_D0 16543521
BIN value		32-bit floating-point
Var_D20 173963112 BIN value	Integer conversion	real number An error is generated in operation results since the number of significant figures is "7" (The integer value exceeded the range of -16777216 to 16777215 (24-bit BIN value)). Var_D0 173963120
		32-bit floating-point real number

16-/32-bit BIN data to floating-point data conversion (double precision)

FLTD(P), DFLTD(P)

Any of the following instruction can go in the dotted squares. FLTD, FLTDP, DFLTD, DFLTDP

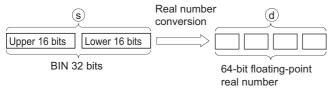
■Executing condition


Instruction	Executing condition
FLTD DFLTD	
FLTDP DFLTDP	

Input/output argument	Name	Description Data type
Input argument	EN	Executing condition Bit
	S	Integer data to be converted to 64-bit floating-point data, or start number of the device that stores integer data Word [signed]/double word [signed]
Output argument	ENO	Execution result Bit
d		Start number of the device that stores converted 64-bit Double-precision real floating-point data Double-precision real
Setting Interr	al device	R.ZR JD\D UD\GD Zn Constant Others

Setting data	Internal device		R, ZR	JO/O		UD\GD	Zn	Constant	Others
	Bit	Word		Bit	Word			К, Н	
(S)	—	0		-		0		—	
(d)	-	0		_		-		—	

■FLTD(P)

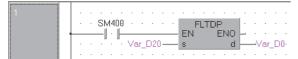

• Converts 16-bit BIN data specified for (s) to a 64-bit floating-point real number, and stores the result to the device specified for (d).

• BIN values between -32768 and 32767 can be specified for (s).

DFLTD(P)

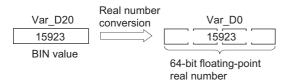
· Converts 32-bit BIN data specified for (s) to a 64-bit floating-point real number, and stores the result to (d).

• BIN values between -2147483648 and 2147483647 can be specified for (s), (s) + 1.

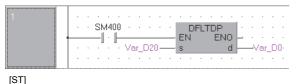

Operation error

• There is no operation error.

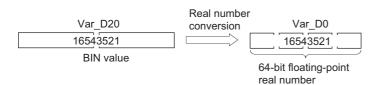
Program example


• In the following program, the 16-bit BIN value in Var_D20 is converted to the 64-bit floating-point real number, and the result is stored to Var_D0.

[Structured ladder/FBD]


[ST]

FLTDP(SM400,Var_D20,Var_D0); [Operation]



 In the following program, the 64-bit BIN value in Var_D20 is converted to the 32-bit floating point real number, and the result is stored to Var_D0.

[Structured ladder/FBD]

DFLTDP(SM400,Var_D20,Var_D0); [Operation]

Floating-point data to 16-/32-bit BIN data conversion (single precision)

INT(P), DINT(P)

• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Any of the following instruction can go in the dotted squares. INT, INTP, DINT, DINTP

■Executing condition

Instruction	Executing condition
INT DINT	
INTP DINTP	

Input/output argument	t	Name	Descrip	tion		Data type			
Input argument EN			Executing	condition	Bit				
S			01	point data to be converted to BIN f the device that stores floating-p	Single-precision real				
Output argument ENO		ENO	Execution	Execution result			Bit		
d		Start num	Start number of the device that stores converted BIN value			ANY16/32			
Setting Internal device R,		R, ZR	JD/D	UEI\GE	Zn	Constant	Others		

	ung	Internal device		Λ, Ζ Λ	J 🗆 🖒		211	Constant	Others
data		Bit	Word		Bit	Word		E	
(s))	—	0		—	0	—	0	_
(d)	0	0		0	0	0	—	—

■INT(P)

• Converts the 32-bit floating-point real number specified for (s) to 16-bit BIN data and stores the result to the device specified for (d).

32-bit floating-point

real number

- 32-bit floating-point real numbers between -32768 and 32767 can be specified for (s).
- The integer value stored in (d) is stored as 16-bit BIN values.
- After conversion, the first digit from the decimal point of real number is rounded off.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

■DINT(P)

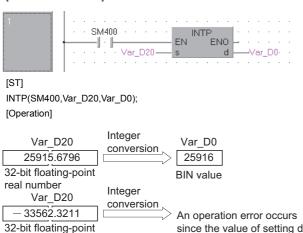
• Converts the 32-bit floating-point real number specified for (s) to 32-bit BIN data and stores the result to the device specified for (d).

32-bit floating-point real number

- 32-bit floating-point real numbers between -2147483648 and 2147483647 can be specified for (s).
- The integer value stored in (d) is stored as BIN 32 bits.
- After conversion, the first digit from the decimal point of real number is rounded off.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le $ value of the specified device $ < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$.	_	_	_	_	0	0
4100	The 32-bit floating-point data specified for (s) is outside the range of -32768 to 32767 for the INT instruction.	0	0	0	0	0	0
	The 32-bit floating-point data specified for (s) is outside the range of -2147483648 to 2147483647 for the DINT instruction.	0	0	0	0	0	0

Program example

• In the following program, the 32-bit floating-point real number in Var_D20 is converted to the 16-bit BIN value, and the result is stored to Var_D0.

[Structured ladder/FBD]

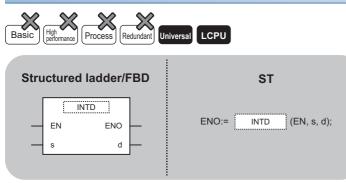

since the value of setting data is smaller than -32768.

• In the following program, the 32-bit floating-point real number in Var_D20 is converted to the 32-bit BIN value, and the

result is stored to Var_D0.

[Structured ladder/FBD]

real number


[ST]

DINTP(SM400,Var_D20,Var_D0); [Operation]

Var_D20	Integer conversion	Var_D0 574968
32-bit floating-point		BIN value
real number Var_D20	Integer conversion	
2147483649.22		An operation error occurs
32-bit floating-point real number		since the value of setting data is larger than 2147483647.

Floating-point data to 16-bit/32-bit BIN data conversion (double precision)

INTD(P), DINTD(P)

Any of the following instruction can go in the dotted squares. INTD, INTDP, DINTD, DINTDP

■Executing condition

Instruction	Executing condition
INTD DINTD	
INTDP DINTDP	

Input/output argument	Name	Description		Data type					
Input argument	EN	Executing condition		Bit					
	S	0.	64-bit floating-point data to be converted to BIN value, or start number of the device that stores 64-bit floating-point data						
Output argument	ENO	Execution result		Bit					
	d	Start number of the device that	stores converted BIN value	ANY16/32					
Setting Internal device R. ZR JD\D UD\GD Zn Cons									

Setting	Internal dev	ice	R, ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word		Bit	Sit Word			E		
(S)	—	0		_			—	0	—	
(d)	—	0		—			0	—	—	

■INTD(P)

• Converts the 64-bit floating-point real number specified for (s) to 16-bit BIN data and stores the result to the device specified for (d).

64-bit floating-point real number

- 64-bit floating-point real numbers between -32768.0 and 32767.0 can be specified for (s) + 3, (s) + 2, (s) + 1 or (s).
- The integer value stored in (d) is stored as 16-bit BIN values.
- After conversion, the first digit from the decimal point of the 64-bit floating-point real number is rounded off.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

■DINTD(P)

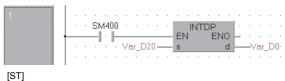
• Converts the 64-bit floating-point real number specified for (s) to 32-bit BIN data and stores the result to the device specified for (d).

real number

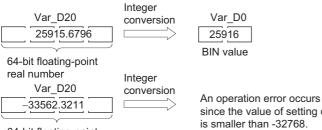
- 64-bit floating-point real numbers between -2147483648.0 and 2147483647.0 can be specified for (s) + 3, (s) + 2, (s) + 1 or (s).
- The integer value stored in (d) + 1 and (d) is stored as BIN 32 bits.
- After conversion, the first digit from the decimal point of the 64-bit floating-point real number is rounded off.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

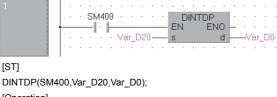
Error code	Description	Q00J/ Q00/Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	$ \begin{array}{l} \mbox{The value of the specified device is outside the following range.}\\ 0, \ 2^{-1022} \le \ value \ of the \ specified \ device \ < 2^{1024}\\ \mbox{The value of the specified \ device \ is -0, \ unnormalized \ number, \ nonnumeric, \ or \ \pm\infty. \end{array} $	—	_	_	_	0	0
4100	The 64-bit floating-point data set for (s) is outside the range of - 32768 to 32767 for the INTD instruction.	-	_	-	_	0	0
	The 64-bit floating-point data set for (s) is outside the range of - 2147483648 to 2147483647 for the DINTD instruction.	-	—	-	—	0	0


Program example

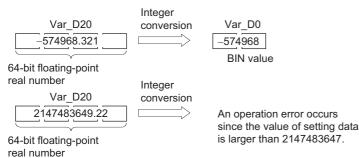
• In the following program, the 64-bit floating-point real number in Var D20 is converted to the 16-bit BIN value, and the result is stored to Var D0.

[Structured ladder/FBD]

INTDP(SM400,Var_D20,Var_D0); [Operation]



since the value of setting data is smaller than -32768.


64-bit floating-point real number

• In the following program, the 64-bit floating-point real number in Var_D20 is converted to the 32-bit BIN value, and the result is stored to Var D0.

[Structured ladder/FBD]

[Operation]

16-bit BIN data to 32-bit BIN data conversion

Any of the following instruction can go in the dotted squares. DBL, DBLP

■Executing condition

Instruction	Executing condition
DBL	
DBLP	

Input/output argument	t	Name		Descript	ion		Data type	Data type					
Input argumen	ıt	EN		Executing condition Bit									
		S		16-bit BIN 16-bit BIN	,	mber of the dev	ANY16	ANY16					
Output argume	ent	ENO		Execution	result		Bit						
d				Start numb data	per of the device	that stores conv	ANY32	ANY32					
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others			
data	Bit	Word			Bit	Word			К, Н				
(S)	0								0	-			
(d)	0	o – –											

• Converts 16-bit BIN data in the device specified for (s) to 32-bit BIN data with a sign, and stores the result to the device specified for (d).

Operation error

• There is no operation error.

Program example

• In the following program, the 16-bit BIN value in Var_D100 is converted to the 32-bit BIN value when X20 turns ON, and the result is stored to Var_R100.

[Structured ladder/FBD]

11													•							
				×θ	÷			÷				DBI	LP		ŀ.					
		 	-1	•	⊢				_	_	ΕN	1	E	NO	F.	·		·	·	
		÷		•	·\	/ar	_D	100) —	_	s			d	H	-\	′ar_	R	100).
<u>.</u>		·		·		·	·	·	•	·		• •	·		•	·	·	·	•	·

[ST]

DBLP(X20,Var_D100,Var_R100); [Operation]

Var_D100	
FB2EH	FFFFB2EH
(—1234)	(—1234)

32-bit BIN data to 16-bit BIN data conversion

WORD(P)

Basic	High performance Process	Redundant Un	iversal
Stru	ctured ladder	/FBD	ST
_	EN ENO		ENO:= WORD (EN, s, d);

Any of the following instruction can go in the dotted squares. WORD, WORDP

■Executing condition

Instruction	Executing condition
WORD	
WORDP	

Input/output argument	t	Name		Descript	ion								
Input argumen	t	EN		Executing	condition								
		S		32-bit BIN 32-bit BIN	,	Imber of the dev	ANY32	ANY32					
Output argume	ent	ENO		Execution	result		Bit						
	d		Start number of the device that stores converted 16-bit BIN A data					ANY16					
Setting	Internal	nternal device		ZR	JD/D		UD\GD	Zn	Constant	Others			
data	Bit	Word			Bit	Word			К, Н				
(S)	0								0	-			
(d)	0	C											

- Converts 32-bit BIN data in the device specified for (s) to 16-bit BIN data with a sign, and stores the result to the device specified for (d).
- Devices can be specified in the range from -32768 to 32767.

32-bit BIN data

Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the device specified for (s) is outside the range of -32768 to 32767.	0	0	0	0	0	0

Program example

• In the following program, the 32-bit BIN value in Var_R100 is converted to the 16-bit BIN value when X20 turns ON, and the result is stored to Var_D100.

[Structured ladder/FBD]

1		· ·
	WORDP · · · · · · WORDP · · · · ·	· ·
		· ·
	Var_D1	00.
		• •

[ST]

WORDP(X20,Var_R100,Var_D100); [Operation]

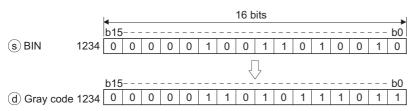
Var_R100	Var_D100
FFFF8253H	8253н
(—32173)	(—32173)

16-/32-bit BIN data to Gray code conversion

GRY(P), DGRY(P)

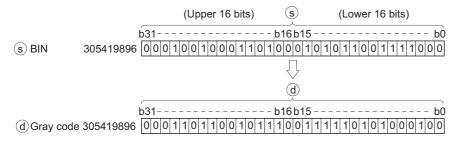
Basic High performance Process Redundant U	niversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= (EN, s, d);

Any of the following instruction can go in the dotted squares. GRY, GRYP, DGRY, DGRYP


■Executing condition

Instruction	Executing condition
GRY DGRY	
GRYP DGRYP	

Input/output Name argument			Description				Data type	Data type			
Input argument		EN		Executing condition				Bit			
		s		BIN data, or start number of the device			t stores BIN data	ANY16/32			
Output argument		ENO		Execution	xecution result			Bit			
		d		Start number of the device that stores converted Gray code			ANY16/32				
Setting	Internal	nternal device		ZR	JO/O		UD\GD	Zn	Constant	Others	
data	Bit	Word	1		Bit	Word			К, Н		
(s)	0 –					-					
(d)	0								—	—	

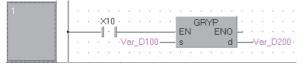

■GRY(P)

Converts 16-bit BIN data in the device specified for (s) to Gray code, and stores the result to the device specified for (d).
 Negative values cannot be specified for (S).

■DGRY(P)

• Converts 32-bit BIN data in the device specified for (s) to Gray code, and stores the result to the device specified for (d). Negative values cannot be specified for (S).

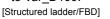
Operation error

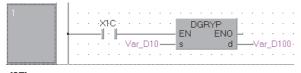

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of (s) is a negative number.	0	0	0	0	0	0

Program example

• In the following program, the BIN value in Var_D100 is converted to Gray code when X10 turns ON, and the result is stored to Var_D200.


[Structured ladder/FBD]



[ST]

GRYP(X10,Var_D100,Var_D200);

• In the following program, the BIN value in Var_D10 is converted to Gray code when X1C turns ON, and the result is stored to Var_D100.

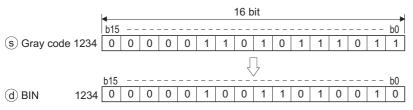
[ST] DGRYP(X1C,Var_D10,Var_D100);

Gray code to 16-/32-bit BIN data conversion

GBIN(P), DGBIN(P)

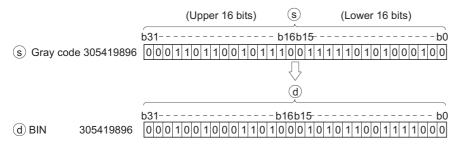
Basic High performance Process Redundant U	niversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= GBIN (EN, s, d);

Any of the following instruction can go in the dotted squares. GBIN, GBINP, DGBIN, DGBINP


■Executing condition

Instruction	Executing condition
GBIN DGBIN	
GBINP DGBINP	

Input/output Name argument			Description				Data type			
Input argumer	ıt	EN		Executing	condition			Bit		
		S		Gray code data, or start number of the device that stores Gray code data			ANY16/32			
Output argument		ENO		Execution result				Bit		
		d		Start numb	Start number of the device that stores converted BIN data			ANY16/32		
Setting	Internal	ernal device		ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word			К, Н	
(S)	0	I							0	—
(d)	0								—	—

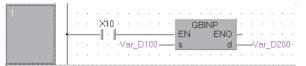

■GBIN(P)

• Converts Gray code data in the device specified for (S) to 16-bit BIN data and stores the result to the device specified for (d).

■DGBIN(P)

• Converts Gray code data in the device specified for (S) to 32-bit BIN data and stores the result to the device specified for (d).

Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of (s) is outside the range of 0 to 32767 for the GBIN(P) instruction.	0	0	0	0	0	0
	The value of (s) is outside the range of 0 to 2147483647 for the DGBIN(P) instruction.	0	0	0	0	0	0

Program example

 In the following program, the Gray code in Var_D100 is converted to the BIN value when X10 turns ON, and the result is stored to Var_D200.

[Structured ladder/FBD]

[ST]

GBINP(X10,Var_D100,Var_D200);

 In the following program, the Gray code in Var_D10 is converted to the BIN value when X1C turns ON, and the result is stored to Var_D0.

[Structured ladder/FBD]

1		
	· · · X1C · · · · · DGBINP	· ·
	EN ENO - · ·	
		_D0-
		• •

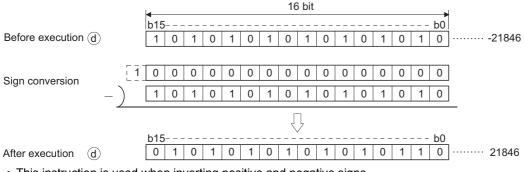
[ST] DGBINP(X1C,Var_D10,Var_D0);

Two's complement of 16-/32-bit BIN data (sign inversion)

NEG(P), DNEG(P)

Basic High performance Process Redundant Ur	niversal
Structured ladder/FBD	ST
EN ENO	ENO:= <u>NEG</u> (EN, d);

Any of the following instruction can go in the dotted squares. NEG, NEGP, DNEG, DNEGP


■Executing condition

Instruction	Executing condition
NEG DNEG	
NEGP DNEGP	

Input/output argument	t	Name		Descripti	ion		Data type	Data type			
Input argumen	t	EN		Executing	condition		Bit				
Output argument ENO Execution				Execution result				Bit			
		d			Start number of the device that stores data to be converted by the two's complement						
Setting	Internal	device	R	, ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word					
(d)	0								—		

■NEG(P)

• Inverts the sign of the 16-bit device specified for (d) and stores the result to the device specified for (d).

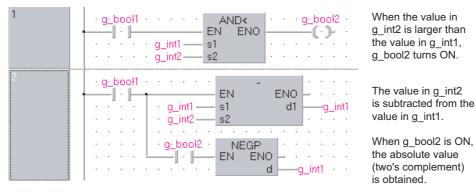
· This instruction is used when inverting positive and negative signs.

■DNEG(P)

• Inverts the sign of the 32-bit device specified for (d) and stores the result to the device specified for (d).

							;	32 bit								I	
Before	b31														b0		
execution (d)	1	1	1	1	1	1	1		0	1	0	0	1	0	0		-218460
<u>[1</u>]	0	0	0	0	0	0	0		0	0	0	0	0	0	0		
Sign conversion -	1	1	1	1	1	1	1		0	1	0	0	1	0	0]	
								\int									
After execution (d)	b31 0	0	0	0	0	0	0		1	0	1	1	1	0	b0 0]	218460

· This instruction is used when inverting positive and negative signs.


Operation error

• There is no operation error.

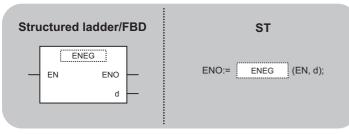
Program example

• In the following program, the value in g_int2 is subtracted from the value in g_int1 when g_bool1 turns ON, and if the result is negative, the absolute value is defined.

[Structured ladder/FBD]

[ST]

IF g_bool1 THEN OUT(g_int1<g_int2,g_bool2); g_int1:=g_int1-g_int2; NEGP(g_bool2,g_int1); END_IF;


228 ⁶ BASIC INSTRUCTIONS 6.3 Data Conversion Instructions

Sign inversion of floating-point data (single precision)

ENEG(P)

• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Any of the following instruction can go in the dotted squares. ENEG, ENEGP

■Executing condition

Instruction	Executing condition
ENEG	
ENEGP	

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores 32-bit floating-point data whose sign to be inverted	Single-precision real

Setting	Internal dev	ice	R, ZR	JD/D		U⊟\G□	Zn	Constant	Others
data	Bit	Word		Bit	Word				
(d)	-	0		—	0		—		

- Inverts the sign of the 32-bit floating-point real number data specified for (d), and stores the result to the device specified for (d).
- This instruction is used when inverting positive and negative signs.

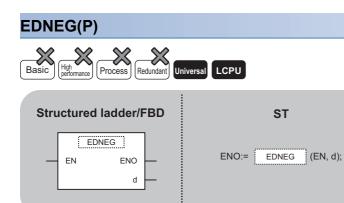
Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le $ value of the specified device $ < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$.	_	_	_	_	0	0

Program example

• In the following program, the sign of the 32-bit floating-point real number in Var_D100 is inverted when X20 turns ON, and the result is stored to Var_D100.


[Structured ladder/FBD]

[ST] ENEGP(X20,Var_D100); [Operation]

Var_D100	Var_D100	00
1.2345	-1.2345	5

Sign inversion of floating-point data (double precision)

Any of the following instruction can go in the dotted squares. EDNEG, EDNEGP

■Executing condition

Instruction	Executing condition
EDNEG	
EDNEGP	

Input/output argument	t	Name		Descript	ion		Data type	Data type				
Input argumen	nput argument EN		Executing	condition			Bit					
Output argument ENO Ex				Execution	Execution result				Bit			
		d			Start number of the device that stores 64-bit floating-point data whose sign to be inverted				Double-precision real			
Setting	Internal	device		R, ZR	JD/D		U⊟\G□	Zn	Constant	Others		
data	Bit	Word			Bit	Word						
(d)	—	0			—							

- Inverts the sign of the 64-bit floating-point real number data specified for (d), and stores the result to the device specified for (d).
- This instruction is used when inverting positive and negative signs.

Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. $0, 2^{-1022} \le $ value of the specified device $ < 2^{1024}$ The value of the specified device is -0.	—	—	—	—	0	0

Program example

• In the following program, the sign of the 64-bit floating-point real number in Var_D0 is inverted when X20 turns ON, and the result is stored to Var_D0.

[Structured ladder/FBD]

[ST]

EDNEGP(X20,Var_D0); [Operation]

Operation

16-bit BIN block data to 4-digit BCD block data conversion

BKBCD(P) Basic Heft Process Redundant Universal LCPU Structured ladder/FBD BKBCD BKBCD ST ENO = BKBCD (EN, s, n, d);

Any of the following instruction can go in the dotted squares. BKBCD, BKBCDP

■Executing condition

Instruction	Executing condition
BKBCD	
BKBCDP	

Input/outpu argument	t	Name	De	scription	ı			Data type	Data type				
Input argument EN			Exe	ecuting cor	ndition		Bit						
		s	Star	irt number	of the device	that stores BIN	ANY16						
	n				nverted data		ANY16						
Output argum	ent	ENO	Exe	ecution res	ult		Bit						
d				nt number	of the device	that stores BCE	ANY16						
Setting	Internal	device	R, ZR	J			UD\GD	Zn	Constant	Others			
data	data Bit Word				it	Word			К, Н				

data	Bit	Word	Bit	Word		К, Н	
(s)	—	0	—				—
n	0	0	0				—
(d)	—	0	—				—

 Converts the BIN data (0 to 9999) n points from the device specified for (s) to the BCD data, and stores the results to the device specified for (d) and the following devices.

Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The data n points from the device specified for (s) is outside the range of 0 to 9999.	0	0	0	0	0	0
4101	The range of n points from the device specified for (s), (d) exceeds the corresponding device. The device ranges of (s) and (d) overlap.	0	0	0	0	0	0

Program example

 In the following program, the BIN values in D100 to D102 are converted to the BCD values when X20 turns ON, and the results are stored to D200 and the following devices.

[Structured ladder/FBD]

1	
	EN ENO
2	· · · X20 · · · · · ВКВСДР · · · · · ·
	EN ENO - · · · · ·
	D100 s dD200 · . Var D0 n
	· · · · · Var_DU — n · · · · · ·

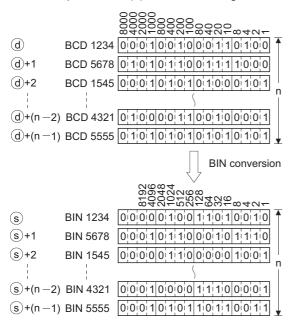
[ST] Var_D0:=3; BKBCDP(X20,D100,Var_D0,D200);

[Operation]

8422-732-7266-8427- 600000 82012284200 820288 842
D100 BIN 5432 000010101001001100000
D101 BIN 4444 000010000001001001011000
D102 BIN 3210 00001110011000100100010
BCD Var_D0 3 conversion
00000000000000000000000000000000000000
<u>840</u> + <u>840</u> + <u>840</u> + <u>840</u> +
ૹૻૻ ⁴ 전 든 ळ 북 전 든 ळ 북 전 든 ∞ 4 전 두 D200 BCD 5432 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0

4-digit BCD block data to 16-bit BIN block data conversion

BKBIN(P) Basic Heteromance Process Redundant Universal LCPU Structured ladder/FBD ST ENN ENO s d n (EN, s, n, d);


Any of the following instruction can go in the dotted squares. BKBIN, BKBINP

■Executing condition

Instruction	Executing condition
BKBIN	
BKBINP	

Input/outpu argument	t	Name		Descript	ion			Data type						
Input argument EN				Executing	Executing condition Bit									
		s		Start numb	per of the device	e that stores BCE) data	ANY16						
n				Number of	f converted data		ANY16							
Output argument ENO				Execution	result		Bit							
		d		Start numb	per of the device	e that stores conv	ANY16							
Setting	Internal			ZR	JD/D			Zn	Constant	Others				
data	Bit				Bit	Word			К, Н					
(s)	—	0			—					—				
n	0	0			0					—				
(d)	—	0			—					—				

 Converts the BCD data (0 to 9999) n points from the device specified for (s) to the BIN data, and stores the results to the device specified for (d) and the following devices.

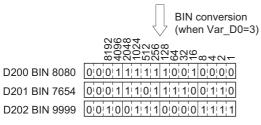
Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

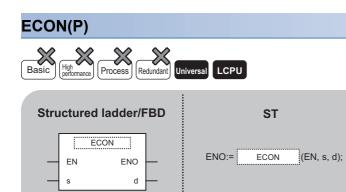
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The data n points from the device specified for (s) is outside the range of 0 to 9999.	0	0	0	0	0	0
4101	The range of n points from the device specified for (s), (d) exceeds the corresponding device. The device ranges of (s) and (d) overlap.	0	0	0	0	0	0

Program example

 In the following program, the BCD values in D100 to D102 are converted to the BIN values when X20 turns ON, and the results are stored to D200 and the following devices.


[Structured ladder/FBD]

1	·				÷	÷	÷	÷	÷	÷	· ·		•		. •	÷		÷	·	÷
	·					÷	·	÷		÷		MO	V.		1×.	÷			·	
	+										EN		Eľ	NO	F.	÷		÷	·	÷
	·				÷	÷	·	• 3	3—	_	s			d	H	-\	′ar_	D	D-	÷
	·					÷	·	÷		÷	• •		•		•	÷			·	
·····																				
2	·		\rightarrow	<20							E	вкві	NP		<u>۱</u> ۰					
2	Ŀ	•	·> —	<20 ·	i. H	•	•	•	•	•	EN	3KBI	NP El	NO	Ŀ	:	÷	:	:	Ì
2	·	•	<۔ —	<20 ·	ŀ	•	D	10) —	•		3KBI	NP El	NO d	Ŀ	C)20	0	•	
2			·> — ·		Ļ	•	D D	10) —) —		EN	3KBI	NP El	NO d)20	0	•	- - -


[ST] Var_D0:=3;

BKBINP(X20,D100,Var_D0,D200); [Operation]

0000		
	~~~~	
0000		
	000000	
m401-	$\omega \leftrightarrow \omega \leftarrow \omega \checkmark$	$+ \alpha - \alpha + \alpha$



# Single-precision to double-precision conversion



Any of the following instruction can go in the dotted squares. ECON, ECONP

### ■Executing condition



Input/output argument	t	Name		Descript	ion		Data type				
Input argumen	t	EN		Executing	condition		Bit				
		S			n source data, o version source o	r start number of data	Single-precision real				
Output argument ENO				Execution	result		Bit	Bit			
		d		Start numb	per of the device	that stores conv	Double-precision real				
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			E		
(s)	—	0			—				0	-	
(d)	—	0			_				—	-	

• Converts 32-bit floating-point real number specified for (s) to 64-bit floating-point real number, and stores the conversion result to the device specified for (d).

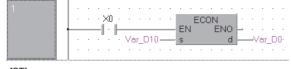


32-bit floating-point real number

64-bit floating-point real number

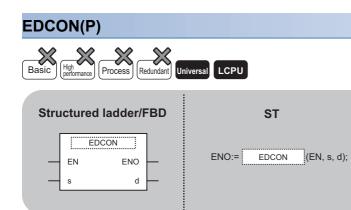
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le  $ value of the specified device $  < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$ .	_	—	_	_	0	0

### Program example


• In the following program, the 32-bit floating-point real number in Var_D10 is converted to 64-bit floating-point real number when X0 turns ON, and the result is output to Var_D0.

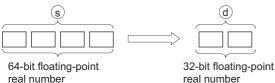
[Structured ladder/FBD]



[ST] ECON(X0,Var_D10,Var_D0);

# **Double-precision to single-precision conversion**




Any of the following instruction can go in the dotted squares. EDCON, EDCONP

### ■Executing condition

Instruction	Executing condition
EDCON	
EDCONP	

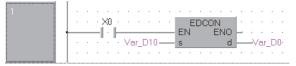
Input/output argument	t	Name		Descript	ion		Data type				
Input argumen	t	EN		Executing	condition		Bit				
		S			n source data, o version source o	r start number o data	Double-precision real				
Output argume	ent	ENO		Execution	result		Bit				
		d		Start numb	per of the device	that stores conv	Single-precision real				
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			E		
(s)	—	0			-			_	0	—	
(d)	—	0			-			0	—	—	

· Converts 64-bit floating-point real number specified for (s) to 32-bit floating-point real number, and stores the conversion result to the device specified for (d).



- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### **Operation error**


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	—	—	_	0	0
4141	The conversion result exceeds the following range (An overflow occurs.) $2^{128} \leq   \mbox{ conversion result }  $	-	-	—	—	0	0

#### Program example

• In the following program, the 64-bit floating-point real number in Var_D10 is converted to 32-bit floating-point real number when X0 turns ON, and the result is output to Var_D0.

[Structured ladder/FBD]





# 6.4 Data Transfer Instructions

### 16-/32-bit data transfer

### MOV(P), DMOV(P)

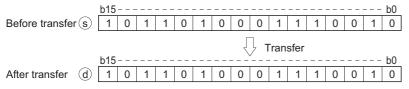
Basic High Process Redundant Uni	iversal LCPU
Structured ladder/FBD	ST
EN ENO s d	ENO:= MOV (EN, s, d);

Any of the following instruction can go in the dotted squares. MOV, MOVP, DMOV, DMOVP

### ■Executing condition

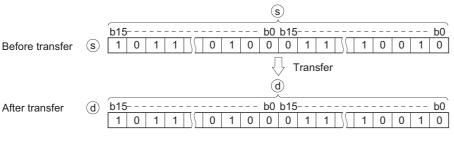
Instruction	Executing condition
MOV DMOV	
MOVP DMOVP	

### ■Argument


Input/outpu argument	t	Name		Descript	ion		Data type				
Input argumen	t	EN		Executing	condition	Bit					
		s			transferred, or s to be transferre	ANY16/32	ANY16/32				
Output argume	ent	ENO		Execution	result		Bit	Bit			
		d		Transfer d	estination of the	device numbe	ANY16/32	ANY16/32			
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			К, Н		
(s)	0								0	-	
(d)	0	0 – –									



When BL, S, TR, BL\S, or BL\TR is used, refer to SFC control instructions of the MELSEC-Q/L/QnA Programming Manual (SFC).


### ■MOV(P)

• Transfers the 16-bit data in the device specified for (s) to the device specified for (d).



#### ■DMOV(P)

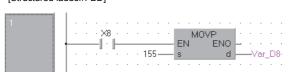
• Transfers the 32-bit data in the device specified for (s) to the device specified for (d).



#### **Operation error**

• There is no operation error.

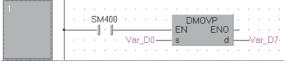
#### Program example


• In the following program, the input data in the devices from X0 to XB are transferred to Var_D8. [Structured ladder/FBD]

1																			
		÷		SŅ	1400	·	÷	÷	•		МО	VP			÷	·	÷	·	÷
	⊢	_	_	-1	· E	 			_	EN		E	EN(	D h	_	·			÷
		÷	·		· - ·	К	3×1	)—	_	s				d	_	-1	ar_	D	8-
		÷	·		· ·	÷		÷	·	• •				•	÷	·	÷	·	
	.l					 													

[ST]

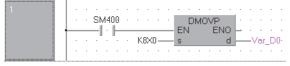
MOVP(SM400,K3X0,Var_D8);


• In the following program, 155 is transferred to Var_D8 when X8 turns ON. [Structured ladder/FBD]



[ST]

MOVP(X8,155,Var_D8);


• In the following program, the data in Var_D0 are transferred to Var_D7. [Structured ladder/FBD]



[ST]

DMOVP(SM400,Var_D0,Var_D7);

• In the following program, the data in the devices from X0 to X1F are transferred to Var_D0. [Structured ladder/FBD]



[ST]

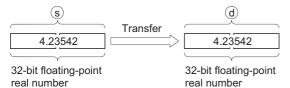
DMOVP(SM400,K8X0,Var_D0);

### EMOV(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Structured ladder/FBD	ST
EN ENO s d	ENO:= EMOV (EN, s, d);


Any of the following instruction can go in the dotted squares. EMOV, EMOVP

### ■Executing condition

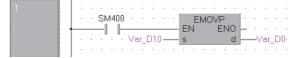
Instruction	Executing condition
EMOV	
EMOVP	

Input/output argument	t	Name		Descript	ion		Data type				
Input argumen	ıt	EN		Executing	condition		Bit				
		S			transferred, or a to be transferr	start number of t ed	Single-precision real				
Output argume	ent	ENO		Execution	result		Bit				
d				Start numb of data	per of the device	e that stores tran	Single-precision real				
Setting	Internal	device	R, 2	ZR	JD/D		UEI\GE	Zn	Constant	Others	
data	Bit	Word			Bit	Word			E		
(s)	-	0			- 0			_	0	-	
(d)	-	0	0			0		_	—	-	

• Transfers the 32-bit floating-point real number data in the device specified for (s) to the device specified for (d).



• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error

· There is no operation error.

#### Program example

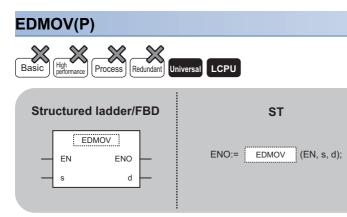
• In the following program, the real number in Var_D10 is transferred to Var_D0. [Structured ladder/FBD]



[ST] EMOVP(SM400,Var_D10,Var_D0); [Operation]

scrationj

Var_D10	Var_D0
36.475	36.475


• In the following program, the real number -1.23 is transferred to Var_D10 when X8 turns ON. [Structured ladder/FBD]

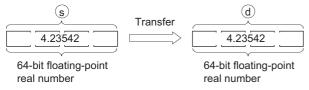


[ST] EMOVP(X8,-1.23,Var_D10); [Operation]

	Var_D10
-1.23	]

# Floating-point data transfer (double precision)




Any of the following instruction can go in the dotted squares. EDMOV, EDMOVP

### ■Executing condition

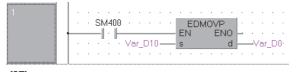
Instruction	Executing condition
EDMOV	
EDMOVP	

Input/output argument	t	Name		Descrip	otion		Data type	a type				
Input argument EN Executing condition								Bit				
		s			e transferred, or ata to be transfer	start number of tred	Double-preci	cision real				
Output argument ENO				Executio	Execution result				Bit			
				Start nur of data	Start number of the device that stores transfer destination of data				Double-precision real			
Setting	Internal	nal device		device R, ZR		R, ZR	JD\D UD\GD			Zn	Constant	Others
data	Bit	Word			Bit	Word			E			
(s)	—	0			-			-	0	-		
(d)	—	0			—	_				-		

• Transfers the 64-bit floating-point real number specified for (s) to the device specified for (d).



• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### **Operation error**

• There is no operation error.

### Program example

• In the following program, the 64-bit floating-point real number in Var_D10 is transferred to Var_D0. [Structured ladder/FBD]



[ST] EDMOVP(SM400,Var_D10,Var_D0);

[Operation]

Var_D10	Var_D0
36.475	36.475

• In the following program, the real number -1.23 is transferred to Var_D10 when X8 turns ON. [Structured ladder/FBD]

1																						
		•	•	-	×8	ċ	•	•	•	÷	·	FI	ED	M		'P ENi		Ŀ	÷	÷	÷	÷
	Γ								1.23	3—	_		4			.1 40	d			'ar_	D	10
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

[ST] EDMOVP(X8,-1.23,Var_D10); [Operation]

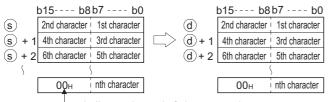


# Character string data transfer

### \$MOV(P)

Basic High performance Process Redundant Un	iiversal LCPU
Structured ladder/FBD	ST
EN ENO s d	Not supported

Any of the following instruction can go in the dotted squares. \$MOV, \$MOVP

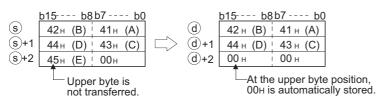

### ■Executing condition

Instruction	Executing condition
\$MOV	
\$MOVP	

Input/output argument	t	Name	Descri	ption			Data type				
Input argumen	t	EN	Executi	Executing condition Bit							
		S	length:	er string data to b 32 characters), or haracter string da	start number of t	String					
Output argume	ent	ENO	Executi	on result		Bit	Bit				
		d		mber of the device	e that stores char	String					
Setting data	Internal	device	R, ZR			UD\GD	Zn	Constant \$	Others		

Sett	-	Internal dev	rice	R, ZR	1 <u>0/</u> 0		UD\GD	Zn	Constant	Others	
data	a	Bit	Word		Bit	Word			\$		
(S)		-	0		-				0	—	
(d)		-	0		_				—	—	

• Transfers the character string data specified for (s) to the device specified for (d) and the following devices. Transfers the character string data with double quotation (") specified for or the character string data from the specified device number to the device number that stores 00H at once.



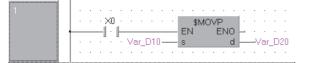

Indicates the end of character string.

• Processing will be performed without error even in cases where the range for the devices storing the character string data to be transferred ((s) to (s)+n) overlaps with the range of the devices which will store the character string data after it has been transferred ((d) to (d)+n). The following occurs when the character string data that had been stored in D10 to D13 is transferred to D11 to D14:

ł	o15 b8	b7 b0		I	b15 b8		
D10	32н (2)	31н (1)		- D10	32н (2)	31н (1)	···Character string before
D11	34н (4)	33н (3)		D11	32н (2)	31н (1)	transfer is remained.
D12	36н (6)	35н (5)	$\square$	D12	34н (4)	33н (3)	
D13	00	Эн		D13	36н (6)	35н (5)	
D14				- D14	00	Эн	

If the 00H code is being stored to lower bytes of (s)+n, 00H will be stored to both the upper bytes and the lower bytes of (d)+n.




### **Operation error**

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	There is no 00H code stored between the device number specified for (s) and the corresponding device. The entire character string linked from the device number specified for (d) to the final device number of the corresponding device cannot be stored. The character string of (s) exceeds 16383 characters.	0	0	0	0	0	0

## Program example

• In the following program, the character string data in Var_D10 are transferred to Var_D20 when X0 turns ON. [Structured ladder/FBD]



[Operation]

t	015  b8b7	7 b0	k	o15  b8	b7 b0
Var_D10	4Dн (M) 2	2Ан (*)	Var_D20	4Dн (M)	2Ан (*)
_	45н (E) 4	45н (E)		45н (E)	45н (E)
	00н			00	)н

• In the following program, the character string "ABCD" is transferred to Var_D20 when X0 turns ON. [Structured ladder/FBD]

1		
	•••••×X0•••••••••••••••••••••••••••••••	
	ABCD" EN ENO	0

## 16-/32-bit data negation transfer

### CML(P), DCML(P)

Basic High performance Process Redundant Un	niversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= <u>CML</u> (EN, s, d);

Any of the following instruction can go in the dotted squares. CML, CMLP, DCML, DCMLP

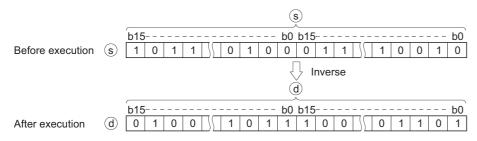
#### ■Executing condition

Instruction	Executing condition
CML DCML	
CMLP DCMLP	

#### ■Argument

Input/outpu argument	t	Name		Descript	ion		Data type	ita type						
Input argumen	ıt	EN		Executing	Executing condition Bit									
		S			inverted, or sta a to be inverted									
Output argument ENO				Execution	result		Bit	Bit						
		d		Start numb	per of the device	that stores inve	ANY16/32	ANY16/32						
Setting	Internal	device	R,	ZR					Constant	Others				
data Bit Word					Bit	Word		К, Н						
(s)	0								0	-				
(d)	0								—	-				

#### **Processing details**

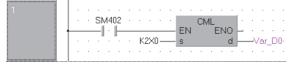

#### ■CML(P)

• Inverts 16-bit data specified for (s) bit by bit, and transfers the result to the device specified for (d).

0
00
1

#### ■DCML(P)

• Inverts 32-bit data specified for (s) bit by bit, and transfers the result to the device specified for (d).




#### **Operation error**

· There is no operation error.

#### Program example

• In the following program, the data in the devices from X0 to X7 are inverted, and the results are transferred to Var_D0. [Structured ladder/FBD]



[ST]

CML(SM402,K2X0,Var_D0); [Operation]

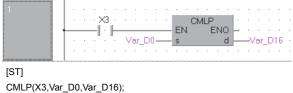
If the number of bits of s is smaller than the number of bits of d

These bits are all regarded as 0.  $\rightarrow$  b15-----b8 b7-----b0 Var_D0 111111111110001011111

• In the following program, the data in the devices from M16 to M23 are inverted, and the results are transferred to the devices from Y40 to Y47.

[Structured ladder/FBD]

[ST]


CML(SM402,K2M16,K3Y40);

[Operation]

If the number of bits of (s) is smaller than the number of bits of (d)

These bits are all regarded as 0. 
$$\rightarrow$$
  $\begin{bmatrix} M23 - - - - - M16 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\$ 

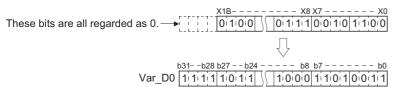
• In the following program, the data in Var_D0 are inverted when X3 turns ON, and the result is transferred to Var_D16. [Structured ladder/FBD]



[Operation]

	o15						
Var_D0	1 1 0 1	10	0 1	10	10	1	1 1 1
			Ł	7			
	o <u>15</u>						
Var_D16	0 0 1 0	01	10	01	01	0	000

• In the following program, the data in the devices from X0 to X1F are inverted, and the results are transferred to Var_D0. [Structured ladder/FBD]


1																					
		•	•	S	V140	2	·	·	·	·	÷		_	СМ	L		·	÷	·	÷	·
	- 1			-	$ \cdot $	⊢					_	EN	1		EN	10	-	·	·		
		•	•		•	•	·	К	8XI	) —	_	s				d	-	-\/	′ar_	D	0.
					•	•		•	•		·	•		• •	•		•		·		•

[ST]

DCML(SM402,K8X0,Var_D0);

[Operation]

If the number of bits of s is smaller than the number of bits of d



• In the following program, the data in the devices from M16 to M35 are inverted, and the results are transferred to the devices from Y40 to Y63.

[Structured ladder/FBD]



[ST] DCML(SM402,K5M16,K6Y40);

[Operation]

If the number of bits of (s) is smaller than the number of bits of (d)

• In the following program, the data in Var_D0 are inverted when X3 turns ON, and the result is transferred to Var_D16. [Structured ladder/FBD]

1	•
[ST] DCMLP(X3,Var_D0,Var_D16); [Operation]	
b31b24b8b7b0 Var_D0 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	
b <u>31b</u> 24b8b7b0 Var_D16 111111101111	

## 16-bit block data transfer

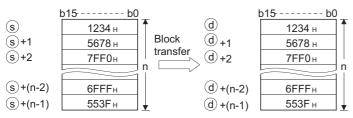
### BMOV(P)

Basic High	rmance Process Re	edundant Uni	iversal
Struct	ured ladder/l	FBD	ST
El s	BMOV N ENO d		ENO:= BMOV (EN, s, n, d);

Any of the following instruction can go in the dotted squares. BMOV, BMOVP

#### ■Executing condition

Instruction	Executing condition
BMOV	
BMOVP	


### ■Argument

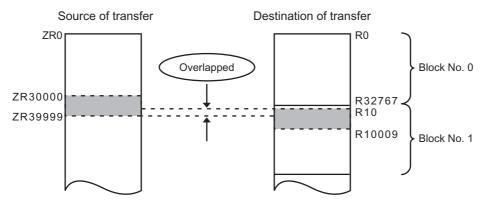
Input/outpu argument	t	Name		Descript	ion		Data type					
Input argumer	nt	EN		Executing	condition			Bit				
s				Start numb	Start number of the device that stores data to be transferred ANY_SIMPLE							
		n		Number of	f transfers			ANY16				
Output argum	ent	ENO		Execution	result		Bit					
d				Start numb	per of the device	e at the transfer o	ANY_SIMP	ANY_SIMPLE				
Setting	Internal	device	R,	ZR	JD/D		Zn	Constant	Others			
data	Bit	Word			Bit	Word			К, Н			
(s)	0							_		-		
n	0							0		-		
(d)	0							_		-		

Point P

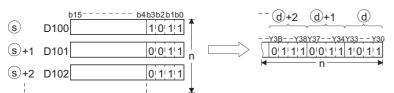
When BL, S, TR, BL\S, or BL\TR is used, refer to SFC control instructions of the MELSEC-Q/L/QnA Programming Manual (SFC).

• Batch transfers the 16-bit data n points from the device specified for (s) to the n points of devices from the one specified for (d).




- Transfers can be accomplished even in cases where there is an overlap between the source and destination device. In the case of transmission to the smaller device number, transmission is from (s); for transmission to the larger device number, transmission is from (s) + (n-1). However, as shown in the example below, when transferring data from R to ZR, or from ZR to R, the range to be transferred and the range of destination must not overlap. Transfer from R to R, or from ZR to ZR can be performed without any problem.
- ZR transfer range ((specified start number of ZR) to (specified start number of ZR + the number of transfers -1))
- R transfer range ((specified start number of R + file register block number × 32768) to (specified start number of R + file register block number × 32768 + the number of transfers -1))




Transfer ranges of ZR and R overlap when transferring 10000 blocks of data from ZR30000 (source) to R10 (block No.1 of the destination).

- range  $\rightarrow$  (32778) to (42777)

Therefore, the range 32778 to 39999 overlaps and the data are not correctly transferred.



• When (s) is a word device and (d) is a bit device, the target for the word device will be the number of bits specified for digitspecified bit device. If K1Y30 has been specified for (d), the lower four bits of the word device specified for (s) will become the object.



- If bit device has been specified for (s) and (d), then (s) and (d) should always have the same number of digits.
- When using a link direct device and an intelligent function module device for (s) and (d), only either of (s) or (d) can be used.
- Whether to disable or enable the device range check at the execution of the BMOV instruction can be selected by the device range check disable flag (SM237). (Only when the subset condition is satisfied) The device range check for the devices (s) to (s) + (n-1) and (d) to (d) + (n-1) is not performed when SM237 is ON.

#### Precautions

Do not perform the following accesses when SM 237 is ON.

- An access in which the index setting exceeds the device range.
- An access in which devices from (d) to (d) + (n-1) cross over the boundary of the device range.*1
- An access to file registers without setting file registers.
- An access to the area which does not contain multiple CPU high speed transmission area devices. (For QCPU (Q mode) only)

*1 Refer to the DFMOV instruction.

Point P

SM237 can be used for the following CPU modules only.

- Universal model QCPU with a serial number whose first five digits are '10012' or higher
- LCPU

### Operation error

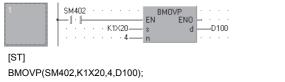
 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device range of n points from (s) or (d) exceeds the corresponding device range. The link direct device and the unit access device are specified in both (s) and (d).	0	0	0	0	0	0

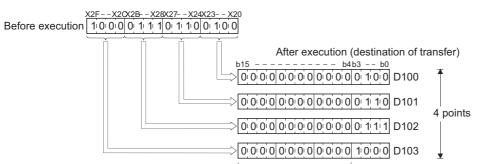
#### Program example

In the following program, the lower 4-bit data in the devices from D66 to D69 are transferred to the devices from Y30 to Y3F in units of 4 points.

[Structured ladder/FBD]




[ST] BMOVP(SM402,D66,4,K1Y30); [Operation]


									After execution					
	(source					(de	(destination of transfer)							
ł	<u> 15 I</u>	o4b	3-		b									
D66		1 1	1	0	1	1		1	0	1	Y33 to Y30			
D67		00	0	0	0	0	(	0	0	0	Y37 to Y34			
D68		10	0	1	1	0	(	0	1	1	Y3B to Y38			
D69		0 1	1	0	1	1		1	0	1	Y3F to Y3C			
											,			
	Ignored	1							]					

• In the following program, the data in the devices from X20 to X2F are transferred to the devices from D100 to D103 in units of 4 points.

[Structured ladder/FBD]



[Operation]



Filled with 0s.

## Identical 16-bit block data transfer

## FMOV(P)

Basic	High performance	Process Redund	ant Universal	LCPU
-		d ladder/FBD MOV ENO d		ST ENO:= FMOV (EN, s, n, d);

Any of the following instruction can go in the dotted squares. FMOV, FMOVP

## ■Executing condition

0

Instruction	Executing condition
FMOV	
FMOVP	

## ■Argument

(d)

Input/output Name argument				Description				Data type			
Input argument EN			E	Executing	condition		Bit	Bit			
		S			transferred, or s to be transferre	start number of t ed	ANY16				
n			1	Number of transfers				ANY16			
Output argume	ent	ENO	E	Execution result				Bit			
		d	5	Start number of the device at the transfer destination				ANY			
Setting	Internal	device	R, Z	'R	JD/D		UE\GE	Zn	Constant	Others	
data Bit Word					Bit	Word			К, Н		
(s)	0	*						0	—		
n	0						0	—			

• Transfers the 16-bit data from the device specified for (s) to the n points of devices from the one specified for (d).



• When (s) is a word device and (d) is a bit device, the target for the word device specified for (s) will be the number of bits specified for digit-specified bit device. If K1Y30 is specified for (d), the lower 4 bits of the word device specified for (s) becomes a target.



- If bit device has been specified for (s) and (d), then (s) and (d) should always have the same number of digits.
- Whether to disable or enable the device range check at the execution of the FMOV instruction can be selected by the device range check disable flag (SM237). (Only when the subset condition is satisfied) The device range check for the devices (d) to (d)+(n-1) is not performed when SM237 is ON.

#### Precautions

Do not perform the following accesses when SM 237 is ON.

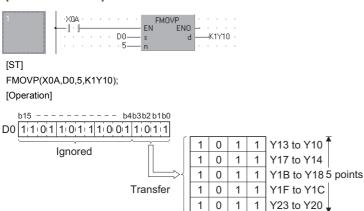
- An access in which the index setting exceeds the device range.
- An access in which devices from (d) to (d) + (n-1) cross over the boundary of the device range.*1
- · An access to file registers without setting file registers.
- An access to the area which does not contain multiple CPU high speed transmission area devices. (For QCPU (Q mode) only)
- *1 Refer to the DFMOV instruction.

Point /

SM237 can be used for the following CPU modules only.

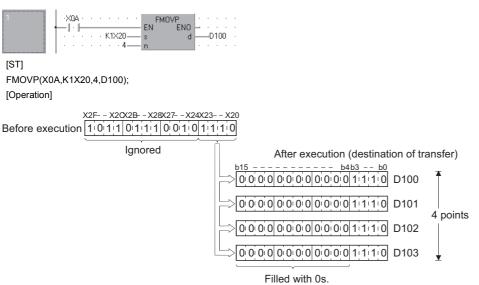
- Universal model QCPU with a serial number whose first five digits are '10012' or higher
- LCPU

#### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device range of n points from (d) exceeds the corresponding device range.	0	0	0	0	0	0

#### Program example


 In the following program, the lower 4-bit data in D0 are transferred to the devices from Y10 to Y23 in units of 4 bits when X0A turns ON.

[Structured ladder/FBD]



 In the following program, the data in the devices from X20 to X23 are transferred to the devices from D100 to D103 when X0A turns ON.

[Structured ladder/FBD]



## Identical 32-bit block data transfer

## DFMOV(P)



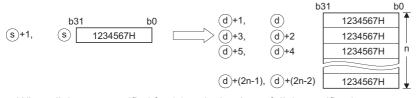
• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported



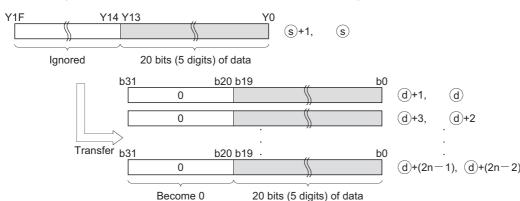
Any of the following instruction can go in the dotted squares. DFMOV, DFMOVP

#### ■Executing condition

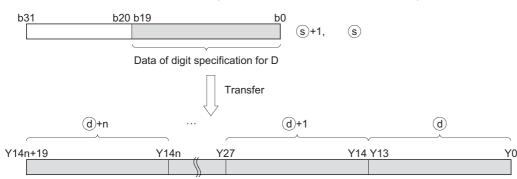
Instruction	Executing condition
DFMOV	
DFMOVP	


#### ■Argument

Input/outpu argument	t	Name		Descript	ion		Data type				
Input argumen	ıt	EN		Executing condition				Bit			
		S			transferred, or s to be transferre	start number of t ed	he device that	ANY32			
n			Number of transfers				ANY16				
Output argume	ent	ENO		Execution result				Bit			
		d		Start number of the device at the transfer destination				ANY32			
Setting	Internal	device	R, 2	ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			К, Н		
(s)	0						0 –				
n	0						0	—			


0

(d)


• Transfers the 32-bit data n points from the device specified for (s) to the n points of devices from the one specified for (d).



• When digits are specified for (s), only the data of digit specification are transferred. If K5Y0 is specified for (s), the lower 20 bits (5 digits) of the word device specified for (s) become the targets.



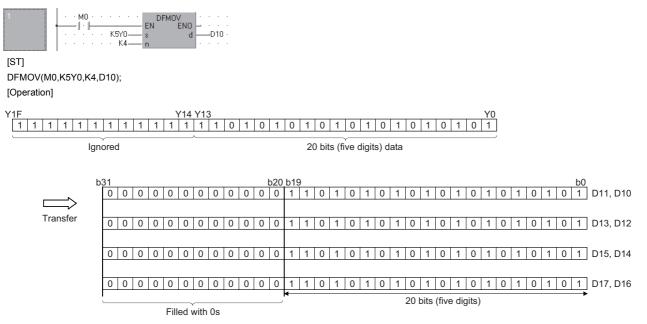
• When digits are specified for (d), the data of digit specification for (d) are transferred. If K5Y0 is specified for (d), the lower 20 bits of the word device specified for (s) become the targets. If digits are specified for both (s) and (d), the data of digit specification for (d) are transferred regardless of the number of specified digits.



• No processing is performed if the value specified for n is 0.

 Whether to disable or enable the device range check at the execution of the DFMOV instruction can be selected by the device range check disable flag (SM237). (Only when the subset condition is satisfied)

#### Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	A negative value is specified for n.	—	—	—	-	0	0
4101	n points of data to be transferred exceed the device range of (d).	—	—	—	_	0	0

### Program example

• In the following program, the data in the devices from Y0 to Y13 (20 bits) are stored to the devices from D10 to D17 when M0 turns ON.

[Structured ladder/FBD]



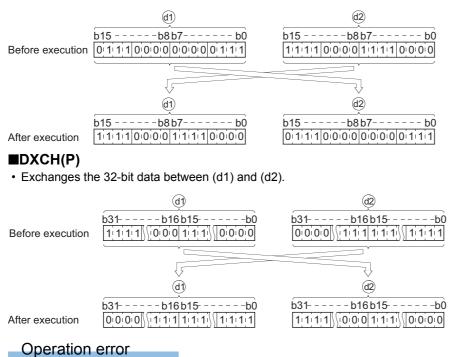
## 16-/32-bit data exchange

## XCH(P), DXCH(P)

Basic High performance Process Redundant U	niversal LCPU
Structured ladder/FBD	ST
EN ENO d1 d2	ENO:= XCH (EN, d1, d2);

Any of the following instruction can go in the dotted squares. XCH, XCHP, DXCH, DXCHP

### ■Executing condition


Instruction	Executing condition
XCH DXCH	
XCHP DXCHP	

## ■Argument

Input/output argument	t	Name		Descript	ion		Data type	Data type				
Input argument EN				Executing condition B					Bit			
Output argument ENO				Execution result I					Bit			
d1, d2				Start numb	Start number of the device that stores data to be exchanged ANY16/32							
Setting	Internal	device	R,	2, ZR J□\□			UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Word						
(d1)	0								—			
(d2)	0				-							

#### ■XCH(P)

• Exchanges the 16-bit data between (d1) and (d2).



• There is no operation error.

#### Program example

• In the following program, the current value of T0 and the value of Var_D0 are exchanged when X8 turns ON. [Structured ladder/FBD]

1												
												XCHP · · · · ·
	- 1			-1	·	F						EN ENO
												d1TN0 · · ·
						·			·	·	·	d2Var_D0-
		•	·	·	·	÷	·	·	·	÷	·	

[ST]

XCHP(X8,TN0,Var_D0);

• In the following program, the data in Var_D0 and the data in the devices from M16 to M31 are exchanged when X10 turns ON.

[Structured ladder/FBD]

1																				
		•	->	<10	1.	·	•	•	•	·	E	XC	HF	» МО		:	÷	÷	÷	
	]											IN .		d1	F	_`.	′ar,	_D	o.	
		•		•	•	•	•		•	•				d2	-	—K	.4M	116		

[ST]

XCHP(X10,Var_D0,K4M16);

 In the following program, the data in Var_D0 and the data in the devices from M16 to M47 are exchanged when X10 turns ON.

[Structured ladder/FBD]

1		
	····X10······ DXCHP · EN ENO -	
		-Var_D0-
	· · · · · · · · · · d2	K8M16 ·

[ST]

DXCHP(X10,Var_D0,K8M16);

• In the following program, the data in Var_D0 and the data in Var_D9 are exchanged when M0 turns ON. [Structured ladder/FBD]

1	.																		
	·	·	$[\cdot]$	Vł0	÷	÷	·	÷	·	·	DXC	CHP			·	÷	·	÷	·
	-		-	$ \cdot $	⊢						EN	EN	D -	-					÷
	·						÷					d	1 -	_	-1	ar_		).	
	·				·							d	2			ar	D	з.	

[ST]

DXCHP(M0,Var_D0,Var_D9);

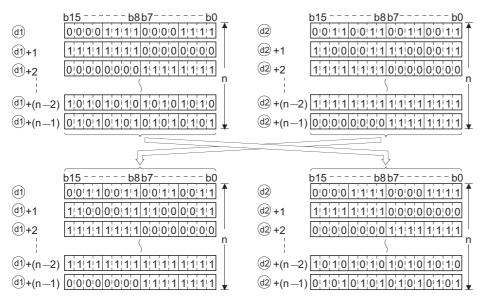
## 16-bit block data exchange

## BXCH(P)

Basic High performance Process Redundant Universal LCPU										
Structured ladder/FBD	ST									
	ENO:= BXCH (EN, n, d1, d2);									
n d1 d2										

Any of the following instruction can go in the dotted squares. BXCH, BXCHP

### ■Executing condition


Instruction	Executing condition
BXCH	
BXCHP	

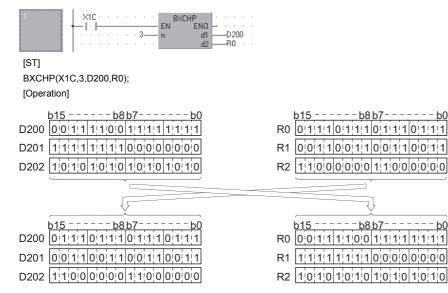
### ■Argument

Input/output argument	t	Name		Descript	ion		Data type				
Input argumen	ıt	EN		Executing	condition		Bit	Bit			
		n		Number of	Number of exchanges ANY16						
Output argume	ent	ENO		Execution	Execution result Bit						
		d1, d2		Start numb	art number of the device that stores data to be exchanged						
Setting	Internal	device	R,	ZR	JD/D			Zn	Constant	Others	
data	Bit	Word			Bit	Word			К, Н		

			,							
data	Bit	Word		Bit	Word			К, Н		
n	0	0		0					-	
(d1)	—	0	0		-					
(d2)	—	0		—					—	

• Exchanges the 16-bit data n points from the device specified for (d1) and the 16-bit data n points from the device specified for (d2).




#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device range of n points from the device specified for (d1), (d2) exceeds the corresponding device. The (d1) and (d2) devices overlap.	0	0	0	0	0	0

#### Program example

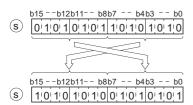
• In the following program, the data 3 points from D200 and the data 3 points from R0 are exchanged when X1C turns ON. [Structured ladder/FBD]



## Upper and lower bytes exchange

## SWAP(P) Basic High process Redundant Universal LCPU Structured ladder/FBD ST UNIVERSAL ENO:= SWAP (EN, s); SWAP

Any of the following instruction can go in the dotted squares. SWAP, SWAPP

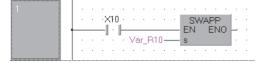

#### ■Executing condition

Instruction	Executing condition
SWAP	
SWAPP	

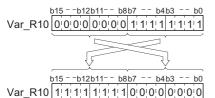
#### ■Argument

Input/output argument	t	Name	D	Description Data type													
Input argumen	t	EN	E	Executing condition Bit													
		s	S	Start number of the device that stores data to be exchanged ANY16							Start number of the device that stores data to be exchanged ANY16						
Output argume	ent	ENO	E	Execution result Bit													
Setting	Internal	device	R, ZF	R	JD/D		UD\GD	Zn	Constant	Others							
data	Bit	Word		Bit Word													
(S)	0								—								

• Exchanges the higher 8 bits and lower 8 bits of the device specified for (s).




#### **Operation error**


• There is no operation error.

#### Program example

• In the following program, the higher 8 bits and the lower 8 bits in Var_R10 are exchanged when X10 turns ON. [Structured ladder/FBD]



[ST] SWAPP(X10,Var_R10); [Operation]



# 6.5 Program Branch Instructions

## **Pointer branch**

## CJ, SCJ, JMP

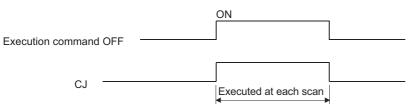
Basic High performance Process Redundant Univ	LCPU
Structured ladder/FBD	ST
EN ENO	Not supported

Any of the following instruction can go in the dotted squares.

CJ, SCJ, JMP

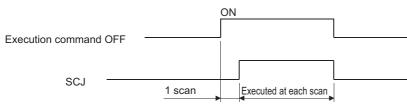
#### ■Executing condition

Instruction	Executing condition
CJ, SCJ	
JMP	Non-conditional execution


#### ■Argument

Input/output argument	t	Name		Descript	Description Data type					
Input argumen	t	EN		Executing	ecuting condition Bit					
		р		Pointer nu	nter number or ladder block label of the jump destination ANY16					
Output argume	ent	ENO		Execution	Execution result Bit					
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word			Bit	Word				P
р	—	•								0

#### Processing details

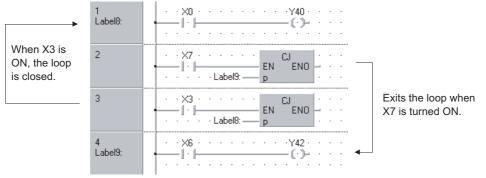

#### ∎CJ

- Executes the program of the specified pointer number or ladder block label when the execution command is ON.
- When the execution command is OFF, the program at the next step is executed.



#### ∎SCJ

- Executes the program of the specified pointer number or ladder block label from the next scan after the execution command turns from OFF to ON.
- · Executes the program in the next step when the execution command is OFF or turns from ON to OFF.




#### ∎JMP

• Unconditionally executes the program of the specified pointer number or ladder block label.

## Point P

- Note the following points when using the CJ, SCJ, and JMP instructions.
- After the timer coil has turned ON, accurate measurements cannot be made if there is an attempt to jump the timer of a coil that has been turned ON using the CJ, SCJ or JMP instruction.
- Scan time is shortened if the CJ, SCJ or JMP instruction is used to force a jump to the OUT instruction.
- Scan time is shortened if the CJ, SCJ or JMP instruction is used to force a jump to the rear.
- The CJ, SCJ, and JMP instructions can be used to jump to a step prior to the step currently being executed. However, it is necessary to consider methods to get out of the loop so that the watchdog timer does not time out in the process.



• The device to which a jump has been made with the CJ, SCJ or JMP instruction does not change.

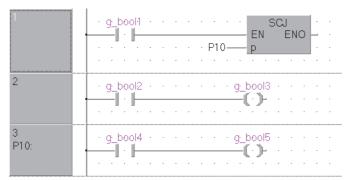
2	· · · XB · · · · · · · · CU · · · · · Label19: p · · ·	Jumps to when XE
3	· · XC · · · · · · · · · · · · · · · · ·	Y43 and unchang
4	· · ×D · · · · · · · · · · · · · · · · ·	turned O executio
5 Label19:	· · ×9 · · · · · · · · · · · · · · · · ·	

Jumps to label P19 when XB turns ON. Y43 and Y49 remain unchanged regardless of whether XB and XC are turned ON/OFF during the execution of CJ instruction.

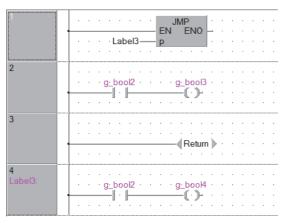
• The jumping ranges of CJ, SCJ, and JMP instructions are different according to the pointer type specified for p. The pointer number can jump to pointer numbers within the same program file. The ladder block label can jump to the ladder block labels within the same POU.

## Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4210	The pointer number which is not used as a label in the same program is specified. The common pointer number in another program is specified	0	0	0	0	0	0

#### Program example


• The following program jumps to P10 when g_bool1 turns ON. [Structured ladder/FBD]

1	
	· · · · · · · · · · · P10 p · ·
2	· <u>g_bool2</u> · · · · · · · <u>g_bool3</u> · · · · ·
3 P10:	· g_bool4 · · · · · · · g_bool5 · · · · · ·

• The following program jumps to P10 from the next scan after g_bool1 is turned ON. [Structured ladder/FBD]



• The following program jumps to Label3. [Structured ladder/FBD]



Precautions

• For Universal model QCPU and LCPU, AND SM400 needs to be inserted directly prior to the SCJ instruction.

Ex. [Program example 1] [Structured ladder/FBD]

1																				
	.	MO			SN	/140	00								2	SC.	J			
		· .	H		-	·	H							Е	N	E	ĒΝ	0	_	
	· '	•	-	·		•													·	
2	 ·		•••••							•••••	•••••	•••••		•••••		•••••			•••••	
۷	·			·	•	·	·	1	·		·	·			·	·	·	·	·	·
	.																			
	Ι.																			
	· ·																			
	· ·	•	•		•		•	1	•		•		•	•	•	•		•		•

Ex.

[Program example 2] [Structured ladder/FBD]

	.	vi0			•	•	•	•	•	•	•	•		Y0		•	•	•
	- 1	÷	.															
		÷		SM	ЛАГ	י חח	÷	÷	:	÷		•		SC.	•	•		
				_	.	Ĥ						E		_	, ENI	0		
					•						_	_					•	•
2																		
	•	•	• •	·	·	•	ľ	·	·	•	·	·	•	·	•	·	·	•
						(	-					-	-	-	-	-	-	

## Jump to END processing

#### GOEND

Basic High Process Redundant U	Jniversal LCPU
Structured ladder/FBD	ST
	ENO:= <u>GOEND</u> (EN);

The following instruction can go in the dotted squares. GOEND

#### ■Executing condition

Instruction	Executing condition
GOEND	

#### ■Argument

Input/output argument	t	Name		Descript	ion		Data type	Data type				
Input argumen	t	EN		Executing	ecuting condition Bit							
Output argume	ent	ENO		Execution	Execution result Bit							
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Word						
_	—	·						•	•			

## Processing details

• Jumps to the FEND instruction or END processing in the same program file.

### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4200	The GOEND instruction has been executed after the execution of the FOR instruction, and prior to the execution of the NEXT instruction.	0	0	0	0	0	0
4211	The GOEND instruction has been executed after the execution of the CALL instruction, and prior to the execution of the RET instruction.	0	0	0	0	0	0
4221	The GOEND instruction has been executed during an interrupt program, and prior to the execution of the IRET instruction.	0	0	0	0	0	0
4230	The GOEND instruction was executed within the CHKCIR to CHKEND instruction loop.	0	0	0	0	0	0

## Program example

• In the following program, execution of the program file is terminated if Var_D0 holds a negative number. [Structured ladder/FBD]



[ST] GOEND(Var_D0<0);

# 6.6 Program Execution Control Instructions

## Interrupt disable/enable, interrupt program mask

## DI, EI, IMASK



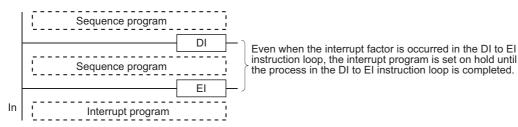
Structured ladder/FBD	ST					
EN ENO	ENO:= DI (EN);					
IMASK EN ENO s	ENO:=IMASK(EN, s);					

Any of the following instruction can go in the dotted squares. DI, EI

#### ■Executing condition

Instruction	Executing condition
DI, EI, IMASK	Non-conditional execution

#### ■Argument


Input/outpu argument	t	Na	me		Descript	ion			Data type	)		
Input argumen	ıt	EN			Executing	condition			Bit			
Output orgum	ont	s	2		Interrupt mask data, or start number or the array of the device that stores interrupt mask data (when using the IMASK instruction)       Array of ANY16 (015)         Execution result       Bit							
Output argume	ent	EIN	5		Execution	result			ы			
Setting	Internal	devi	се	R, 2	ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit		Word			Bit	Word					
(S)	—		0		-							

#### ∎DI

- Disables the execution of an interrupt program until the EI instruction has been executed, even if a start cause for the interrupt program occurs.
- A DI status is entered when power is turned ON or when the CPU module is reset.

#### EI

 Releases the disable interrupt status of the DI instruction, and enables the execution of the interrupt program with the interrupt pointer number which is allowed by the IMASK instruction. When the IMASK instruction is not executed, I32 to I47 are disabled.



#### **■IMASK**

- Enables/disables the execution of the interrupt program marked by the specified interrupt pointer by using the bit pattern of 8 points from the device specified for (s).
- 1(ON) --- Interrupt program execution enabled
- 0(OFF) ··· Interrupt program execution disabled
- · The interrupt pointer numbers corresponding to each bit are as shown below.

	b15 b14														
(s)[0]	115 114	113	112	111	110	19	18	17	16	15	14	13	12	11	10

J					1	1		1	1	1	1	1	1		
$\frown$					1									1	
(s)[1]	13113	0 1 120	1 128	1 127	1 126	125	124	123	122	121	120	1119	118	117	116
(5/111	1 131 13	0 128	120	121	120	123	124	123	122	121	120	119	110	117	011

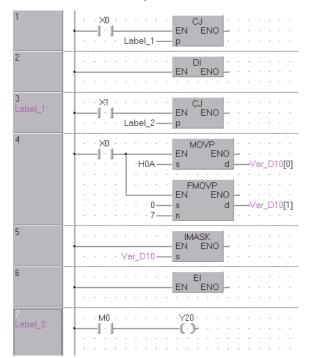
(s) [2] | 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 | 139 | 138 | 137 | 136 | 135 | 134 | 133 | 132

- (s)[3] 163 | 162 | 161 | 160 | 159 | 158 | 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | 149 | 148
- (s)[4] 179 | 178 | 177 | 176 | 175 | 174 | 173 | 172 | 171 | 170 | 169 | 168 | 167 | 166 | 165 | 164
- (s)[5] | 195 | 194 | 193 | 192 | 191 | 190 | 189 | 188 | 187 | 186 | 185 | 184 | 183 | 182 | 181 | 180
- (s)[6] [1111111011091108110711061105110411031102110111001199119811971196
- (s) [7] [1127/1126/1125/1124/1123/1122/1121/1120/1119/1118/1117/1116/1115/1114/1113/1112
- When the power is turned ON or when the CPU module has been reset, the execution of interrupt programs I0 to I31, I48 to I127 is enabled, and the execution of interrupt programs I32 to I47 is disabled.
- The status of devices (s)[0] to (s)[7] are stored to SD715 to SD717 and SD781 to SD785 (storage area for the IMASK instruction mask pattern).
- Although the special registers are separated as SD715 to SD717 and SD781 to SD785, device numbers should be specified as (s)[0] to (s)[7] successively.

Point P

- For information on interrupt conditions, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.
- The DI status (interrupt disabled) is active during the execution of an interrupt program. Do not insert the EI instructions in interrupt programs to attempt the execution of multiple interrupts, with interrupt programs running inside interrupt programs.
- If there are the EI and DI instructions within a master control, these instructions will be executed regardless of the execution or non-execution status of the MC instruction.

#### Operation error


• There is no operation error.

#### Program example

• In the following program, the interrupt programs with the interrupt pointer number 11 and 13 are set in the enable execution status while X0 is ON.

[Structured ladder/FBD]

• Task_01 [Always] --- interrupt enable program The FEND instruction is not required.



• Task_Interrupt No1 [Event] --- I1 interrupt program The IRET instruction is not required.

1		M	10	.		•	•	•	•	•	•	•	•	•		 МС	DVF	>		•	•	•	•	-
					•	•	•	•	•	•	•	1	0 —		S				d	-\v	'ar_	_D1	00	

• Task_Interrupt No3 [Event]  $\cdots$  I3 interrupt program The IRET instruction is not required.

1	·																								
	·	$\times 0$	÷	÷	·	÷	·	÷	÷	÷	÷	÷	÷				+			•		÷	·		·
	+	 • •	⊢		_		_	_					_	E	N			E	INC		·	÷			
	·	•	•	·	·	·	·	- \	√ar	_D	10	0 —	_	s1					d1	Ŀ		/ar	_D;	200	J+ -
	·		·		·	÷	·	-\	Var	_D	20	0 —	_	s2	2					1		÷	÷		
	·			·		·		·		·	·	·				·		•			·	·	·		·

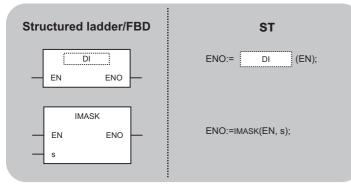
[ST]

-----

 Task_01 [Always] --- interrupt enable program IF (X0=FALSE) THEN DI(TRUE); END_IF; IF (X1=FALSE) THEN IF X0 THEN MOVP(TRUE,H0A,Var_D10[0]); FMOVP(TRUE,0,7,Var_D10[1])); END_IF; IMASK(TRUE,Var_D10); EI(TRUE); END IF; OUT(M0,Y20); • Task_Interrupt No1 [Event] --- I1 interrupt program MOVP(M10,10,Var_D100); Task_Interrupt No3 [Event] --- I3 interrupt program IF M11 THEN Var_D200 := Var_D100 + Var_D200; END_IF;



For interrupt programs, create multiple tasks to register interrupt enable programs and interrupt programs.


🗄 🚰 MAIN 🛨 🔚 Task_01 ..... Interrupt enable program 🗄 🔚 Task_InterruptNo1 ..... Interrupt I1 program 🗄 🔚 Task_InterruptNo3 ..... Interrupt I3 program

Task_Interrupt No1 [Always] to [Event] --- Change to a interrupt program. Task_Interrupt No3 [Always] to [Event] --- Change to a interrupt program. [Property setting]

Property 🔀	
Detail	
Attributes	
Event II	
Interval 0	Enter the device I1 or I3.
Priority 31	
Data Name Task_InterruptNo1	
Iitle	
Timer/ <u>O</u> utput Control	
Last Change 6/5/2008 5:45:28 PM	
OK Cancel	

## DI, EI, IMASK

## ■For High Performance model QCPU, Universal model QCPU, and LCPU



Any of the following instruction can go in the dotted squares. DI, EI  $% \left( {{\rm{D}}{\rm{I}}} \right)$ 

#### ■Executing condition

Instruction	Executing condition
DI, EI, IMASK	Non-conditional execution

#### ■Argument

Input/outpu argument	t	Nai	me		Descript	ion			Data type				
Input argumen	ıt	EN			Executing	condition			Bit				
		s			Interrupt mask data, or start number or the array of the Array of ANY16 (015) device that stores interrupt mask data (when using the IMASK instruction)								
Output argume	ent	ENG	C		Execution								
Setting	Internal	devi	се	R, 2	ZR	JD/D		UD\GD	Zn	Constant	Others		
data	Bit		Word			Bit	Word						
(s)	-		0			_		•					

#### ∎DI

- Disables the execution of an interrupt program until the EI instruction has been executed, even if a start cause for the interrupt program occurs.
- A DI status is entered when power is turned ON or when the CPU module is reset.

#### ∎EI

• Releases the disable interrupt status of the DI instruction, and enables the execution of the interrupt program with the interrupt pointer number which is allowed by the IMASK instruction and the fixed scan execution type program. When the IMASK instruction is not executed, I32 to I47 are disabled.



Even when the interrupt factor is occurred in the DI to EI instruction loop, the interrupt program is set on hold until the process in the DI to EI instruction loop is completed.

## ∎IMASK

- Enables/disables the execution of the interrupt program marked by the specified interrupt pointer by using the bit pattern of 16 points from the device specified for (s).
- 1(ON) --- Interrupt program execution enabled
- 0(OFF) ··· Interrupt program execution disabled
- · The interrupt pointer numbers corresponding to each bit are as shown below.

_	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
s[0]	I15	114	113	112	111	I10	19	18	17	16	15	14	13	12	11	10
s[1]	131	130	129	128	127	126	125	124	123	122	I21	120	119	118	117	I16
<b>s</b> [2]	147	146	145	144	143	l42	141	140	139	138	137	136	135	134	133	132
<b>s</b> [3]	163	162	l61	160	159	158	157	156	155	154	153	152	151	150	149	148
<b>s</b> [4]	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164
s[5]	195	194	193	192	191	190	189	188	187	186	185	184	183	182	181	180
<b>s</b> [6]	1111	1110	1109	1108	1107	1106	1105	1104	1103	1102	1101	1100	199	198	197	196
<b>s</b> [7]	1127	1126	1125	1124	1123	1122	1121	1120	1119	1118	1117	1116	1115	1114	1113	1112
<b>s</b> [8]	I143	1142	1141	1140	1139	1138	1137	1136	1135	1134	1133	1132	1131	1130	1129	1128
s[9]	1159	1158	1157	1156	1155	1154	1153	1152	1151	1150	1149	1148	1147	1146	1145	1144
s[10]	1175	1174	1173	1172	1171	1170	1169	1168	1167	1166	1165	1164	1163	1162	1161	1160
s[11]	1191	1190	1189	1188	1187	1186	1185	1184	1183	1182	1181	1180	1179	1178	1177	1176
s[12]	1207	1206	1205	1204	1203	1202	1201	1200	1199	1198	1197	1196	1195	1194	1193	1192
s[13]	1223	1222	1221	1220	1219	1218	1217	1216	1215	1214	1213	1212	1211	1210	1209	1208
s[14]	1239	1238	1237	1236	1235	1234	1233	1232	1231	1230	1229	1228	1227	1226	1225	1224
s[15]	1255	1254	1253	1252	1251	1250	1249	1248	1247	1246	1245	1244	1243	1242	1241	1240

• The following are the results when the power is turned ON or when the CPU module has been reset.

CPU module	Description
For High Performance model QCPU	The execution of interrupt programs I0 to I31, I48 to I255 is enabled, and the execution of interrupt programs I32 to I47 is disabled.
For Universal model QCPU and LCPU	The execution of interrupt programs I0 to I31, I45 to I255 is enabled, and the execution of interrupt programs I32 to I44 is disabled.

The status of devices (s)[0] to (s)[15] are stored to SD715 to SD717 and SD781 to SD793 (storage area for the IMASK instruction mask pattern).

 Although the special registers are separated as SD715 to SD717 and SD781 to SD793, device numbers should be specified as (s)[0] to (s)[15] successively.



- For information on interrupt conditions, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.
- The DI status (interrupt disabled) is active during the execution of an interrupt program. Do not insert the EI instructions in interrupt programs to attempt the execution of multiple interrupts, with interrupt programs running inside interrupt programs.
- If there are the EI and DI instructions within a master control, these instructions will be executed regardless of the execution or non-execution status of the MC instruction.

#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

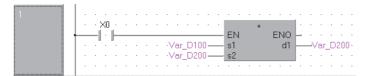
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	—	0	0

### Program example

• In the following program, the interrupt programs with the interrupt pointer number I1 and I3 are set in the enable execution status while X0 is ON.

[Structured ladder/FBD]

• Task_01 [Always] --- interrupt enable program The FEND instruction is not required.


1	
2	
3 Label_1:	CJ
4	
5	IMASK         IMASK           EN         ENO           S         -
6	
7 Label_2:	

• Task_Interrupt No1 [Event] ··· I1 interrupt program

The IRET instruction is not required.

1		
	······································	

- Task_Interrupt No3 [Event]  $\cdots$  I3 interrupt program The IRET instruction is not required.



```
[ST]
• Task_01 [Always] ... interrupt enable program
IF (X0=FALSE) THEN
   DI(TRUE);
END_IF;
IF (X1=FALSE) THEN
   IF X0 THEN
     MOVP(TRUE,H0A,Var_D10[0]);
     FMOVP(TRUE,0,15,Var_D10[1]);
   END_IF;
   IMASK(TRUE,Var_D10);
   EI(TRUE);
END_IF;
OUT(M0,Y20);

    Task_Interrupt No1 [Event] - I1 interrupt program

MOVP(M10,10,Var_D100);

    Task_Interrupt No3 [Event] --- I3 interrupt program

IF M11 THEN
   Var_D200 := Var_D100 + Var_D200;
END_IF;
```



For interrupt programs, create multiple tasks to register interrupt enable programs and interrupt programs.

🗄 🚰 MAIN						
🔃 🔚 Task_01	Interrupt enable program					
🗄 🔚 Task_InterruptNo1	Interrupt I1 program					
🗄 🔚 Task_InterruptNo3	Interrupt I3 program					

Task_Interrupt No1 [Always] to [Event] ··· Change to a interrupt program. Task_Interrupt No3 [Always] to [Event] ··· Change to a interrupt program. [Property setting]

Property 🛛 🔀	
Detail Comment	
Attributes	
Event II	
Interval 0	Enter the device 11 or 13.
Priority 31	
Data Name Task_InterruptNo1	
Iitle	
Timer/Output Control	
Last Change 6/5/2008 5:45:28 PM	
OK Cancel	

### **Recovery from interrupt programs**

IRET	
Basic High Performance Process Redundant	Universal LCPU
Structured ladder/FBD	ST
	Not supported

The following instruction can go in the dotted squares. IRET

#### ■Executing condition

Instruction	Executing condition
IRET	Non-conditional execution

#### ■Argument

Input/output argument	t	Name		Description				Data type	Data type				
Input argumen	t	EN		Executing	Executing condition				Bit				
Output argume	ent	ENO		Execution	Execution result				Bit				
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others			
data	Bit	Word			Bit Word								
	—	I								1			

#### Processing details

- · Used to end the interrupt program processing forcedly.
- Do not use when execute the interrupt program processing completely.

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4220	A pointer corresponding to the interrupt number does not exist.	0	0	0	0	0	0
4221	The FEND, GOEND or STOP instruction was executed after the interruption and before the IRET instruction execution.	0	0	0	0	0	0
4223	The IRET instruction was executed before executing the interrupt program.	0	0	0	0	0	0
	The IRET instruction was executed in the fixed scan execution type program.	—	—	—	—	0	0

#### Program example

• In the following program, 1 is subtracted from Var_D0 if g_bool1 is ON, and 1 is added to Var_D0 if g_bool1 is OFF when the interrupt of No.3 occurs.

[Structured ladder/FBD]

• Task_01 [Always] --- interrupt program The FEND instruction is not required.

1	SM408
	EN ENO s ds ds
	EN ENO 
2	
	••••••••••••••••••••••••••••••••••••••
3	
4	

Task_Interrupt No3 [Event] --- interrupt program

1			g:	bo	oł1	•										Na	ahe	=11
				1	•												•	
2		·			•	•		•	•				•	•	•	•	•	•
					•				E		NC E		0		Ì	:		:
		·	•		•	•	•	•					d			′ar		0.
3			•	•	·	·	÷	·			RET E	Г EN II	_	÷	÷	·	÷	·
					•				•	•	•	•	•					
4 label1:										C	)EC	2						
iuben.	1								EN		V ENO d		_	_\	· ′ar	D	0.	
		·				÷	·	·	•	•	•	÷	•		·		•	



For interrupt programs, create multiple tasks to register interrupt enable programs and interrupt programs.

MAIN
 Task_01
 Interrupt enable program
 Task_InterruptNo3

Task_Interrupt No3 [Always] to [Event] --- Change to a interrupt program. [Property setting]

Property	
Detail Comme	nt
Attributes	
Event	13
Interval	0
Priority	31
Data Name Title	InterruptNo3
nue	Timer/Output Control
Last Change	6/24/2008 1:32:43 PM
	OK Cancel

Enter the device I3.

# 6.7 I/O Refresh Instructions

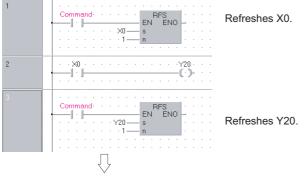
### I/O refresh

RFS(P)		
Basic High performance	Process Redund	t Universal LCPU
	d ladder/FBI	ST
	ENO	

Any of the following instruction can go in the dotted squares. RFS, RFSP

#### ■Executing condition

Instruction	Executing condition
RFS	
RFSP	


#### ■Argument

n

Input/output argument	t	Name		Descript	ion	Data typ	a type					
Input argumen	ıt	EN		Executing	euting condition Bit							
		s		Start numb	Start number of the device that executes the refresh function Bit							
		n		Number of refreshes AN					ANY16			
Output argume	ent	ENO		Execution	result			Bit	Bit			
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Word			К, Н			
(s)	О (X, Y о	nly) —								-		
n	0	0								-		

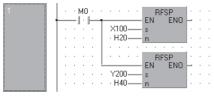
- Refreshes only the device being scanned during a scan, and functions to fetch external input or to output data to an output module.
- Fetching of input from or sending output to an external source is conducted in batch only after the END processing in the program is executed, so it is not possible to output a pulse signal to an outside source during the execution of a scan. When the I/O refresh instruction is executed, the inputs (X) or outputs (Y) of the corresponding device numbers are refreshed forcibly midway through program execution. Therefore, a pulse signal can be output to an external source during a scan.
- Use direct access inputs (DX) or direct access outputs (DY) to refresh inputs (X) or outputs (Y) in units of 1 point.

[Program based on the RFS instruction]



[Program based on direct access input and direct access output]




#### **Operation error**

 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s) exceeds the proximate I/O range.	0	0	0	0	0	—

#### Program example

• In the following program, the devices from X100 to X11F, and from Y200 to Y23F are refreshed when M0 turns ON. [Structured ladder/FBD]



[ST] RFSP(M0,X100,H20); RFSP(M0,Y200,H40);

## 6.8 Other Convenient Instructions

### Single-phase input up/down counter

# UDCNT1 Basic High Process Redundant Universal LCPU Structured ladder/FBD ST ENO:= UDCNT1 (EN,s, n, d);

The following instruction can go in the dotted squares. UDCNT1

#### ■Executing condition

Instruction	Executing condition
UDCNT1	

#### ■Argument

n

Input/outpu argument	t	Nam	Ie	Description				Data type			
Input argumen	t	EN			Executing	condition			Bit		
		S			s[1]:For se • OFF: Up	number for the o etting the up/dov p-counter wn-counter			Array of bit (12)		
n				Set value				ANY16			
Output argume	ent	t ENO			Execution result				Bit		
d				Counter number that starts counting by the UDCNT1 instruction			ANY16				
Setting	Internal	nal device R,			ZR	JD\D UD\GD		UD\GD	Zn	Constant	Others
data	Bit	١	Nord			Bit	Word			К, Н	
(s)	⊖(X only)	*1 _	-						—		

*1 Specify the array in which X is set as a device for global label. X devices can be used only in the range of I/O points (accessible points to the actual I/O module).

*2 Local devices and file registers per program cannot be used as setting data.

∆*2

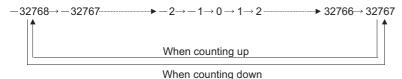
 $\triangle^{*2}(C \text{ only})$ 

∆*2

_

0

_


∆*2

____

n

(d)

- When the input specified for (s)[0] turns from OFF to ON, the current value of the counter specified for (d) will be updated.
- The direction of the count is determined by the ON/OFF status of the input specified for (s)[1].
- OFF: Up counter (counts by adding to the current value)
- ON: Down counter (counts by subtracting from the current value)
- When the count is going up, the counter contact specified for (d) turns ON when the current value becomes identical with the setting value specified for n. However, the current value count will continue even when the contact of the counter specified for (d) turns ON. (Refer to Program Example)
- When the count is going down, the counter for the contact specified for (d) turns OFF when the current value reaches the setting value 1. (Refer to Program Example)
- The counter specified for (d) is a ring counter. If it is counting up when the current value is 32767, the current value will become -32768. Further, if it is counting down when the current value is -32768, the current value will become 32767. The count processing performed on the current value is as shown below.



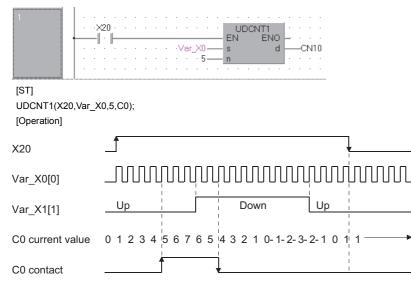
• The UDCNT1 instruction triggers counting when the execution command is turned from OFF to ON and suspends counting when the execution command is turned from ON to OFF. When the execution command is turned from OFF to ON again, the counting resumes from the suspended value.

• The RST instruction clears the current value of the counter specified for (d) and turns the contact OFF.

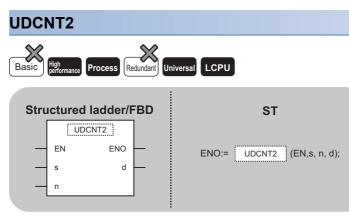
Point P

- With the UDCNT1 instruction, the argument device data are registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch from STOP to RUN.) For this reason, the pulses that can be counted must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of the CPU module is 1ms.
- The setting value cannot be changed during counting directed by the UDCNT1 instruction (while the execution command is ON). To change the setting value, turn OFF the execution command.
- Counters which have been specified by the UDCNT1 instruction cannot be used by other instructions. If they are used by other instructions, they will not be capable of returning an accurate count.
- The UDCNT1 instruction can be used as many as 6 times within all the programs being executed. The seventh and the subsequent UDCNT1 instructions are not processed.

#### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (s) exceeds the corresponding device range.	—	0	0	_	0	0


#### Program example

• In the following program, the number of turns from OFF to ON in Var_X0 are counted using C0 (up/down counter) after X20 has turned ON.

[Structured ladder/FBD]



### Two-phase input up/down counter



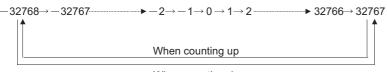
The following instruction can go in the dotted squares. UDCNT2

#### ■Executing condition

Instruction	Executing condition
UDCNT2	

#### ■Argument

(d)


Input/output argument	•			Desc	escription				Data type			
Input argument EN			Execut	Executing condition								
S				s[0]:Input number for the counter input (A-phase pulse) s[1]:Input number for the counter input (B-phase pulse)					Array of bit (12)			
n			Set va	Set value				ANY16				
Output argume	gument ENO			Execut	Execution result			Bit				
d				Counter number that starts counting by the UDCNT2 instruction		ANY16						
Setting	Internal	devi	ce	R, ZR	R, ZR JD\D			UD\GD	Zn	Constant	Others	
data	Bit		Word		Bit Word			К, Н				
(S)	O(X only)	*1	-	_					-			
n	∆*2		∆*²	∆* <b>2</b>	0					—		

*1 Specify the array in which X is set as a device for global label. X devices can be used only in the range of I/O points (accessible points to the actual I/O module).

*2 Local devices and file registers per program cannot be used as setting data.

 $\triangle^{*2}(C \text{ only})$ 

- The current value of the counter specified for (d) is updated depending on the status of the input specified for (s)[0] (A-phase pulse) and the status of the input specified for (s)[1] (B-phase pulse).
- Direction of the count is determined in the following manner.
- When (s)[0] is ON, if (s)[1] turns from OFF to ON, count-up operation is performed. (Values are added to the current value of the counter.)
- When (s)[0] is ON, if (s)[1] turns from ON to OFF, count-down operation is performed. (Values are subtracted from the current value of the counter.)
- No count operation is performed if (s)[0] is OFF.
- When the count is going up, the counter contact specified for (d) turns ON when the current value becomes identical with the setting value specified for n. However, the current value count will continue even when the contact of the counter specified for (d) turns ON. (Refer to Program Example)
- When the count is going down, the counter for the contact specified for (d) turns OFF when the current value reaches the setting value 1. (Refer to Program Example)
- The counter specified for (d) is a ring counter. If it is counting up when the current value is 32767, the current value will become -32768. Further, if it is counting down when the current value is -32768, the current value will become 32767. The count processing performed on the current value is as shown below.



When counting down

- Count processing conducted according to the UDCNT2 instruction begins when the execution command is turned from OFF to ON, and is suspended when it is turned from ON to OFF. When the execution command is turned from OFF to ON again, the counting resumes from the suspended value.
- The RST instruction clears the current value of the counter specified for (d) and turns the contact OFF.

#### Point P

- With the UDCNT2 instruction, the argument device data are registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch from STOP to RUN.) For this reason, the pulses that can be counted must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of the CPU module is 1ms.
- The setting value cannot be changed during counting directed by the UDCNT2 instruction (while the execution command is ON). To change the setting value, turn OFF the execution command.
- Counters which have been specified by the UDCNT2 instruction cannot be used by other instructions. If they are used by other instructions, they will not be capable of returning an accurate count.
- The UDCNT2 instruction can be used as many as 5 times within all the programs being executed. The sixth and the subsequent UDCNT2 instructions are not processed.

#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (s) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example

• In the following program, the status of Var_X0[0] and Var_X0[1] are counted by C0 (up/down counter) after X20 has turned ON.

[Structured ladder/FBD]

	UDCNT2 UDCNT2 EN ENO s d CN0 CN0
[ST]	
UDCNT2(X20,Var_X0	3,CN0);
[Operation]	
X20	
Var_X0[0]	
Var_X0[1]	
COM current value	0 1 2 3 4 5 4 3 2 1 0 -1 -2 -1 -1
C0 contact	

### **Teaching timer**

TTMR			
Basic High performance Process Redundant U	niversal		
Structured ladder/FBD	ST		
EN ENO n d	ENO:= TTMR (EN, n, d);		

The following instruction can go in the dotted squares. TTMR

#### ■Executing condition

Instruction	Executing condition
TTMR	

#### ■Argument

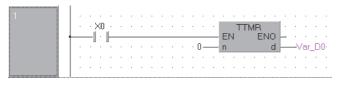
Input/output Name argument				Description				Data ty	Data type			
Input argument		EN		Executing	condition			Bit				
		n	n Multi			Multiplier of the measurement value				ANY16		
Output argum	ENO		Execution	result	esult			Bit				
d		d				Measurement value storage device For CPU module system use				Array of ANY16 (12)		
Setting	Internal	rnal device		R, ZR J⊡\□			UD\GD	Zn	Constant	Others		
data Bit		Word			Bit	Word			К, Н			
n	—	0			0					—		
(d)	-	0			-					—		

- Measures the time while the execution command is ON in units of seconds, multiplies by the multiplier specified for n, and stores the result to the device specified for (d).
- Clears the device specified for (d)[0] or (d)[1] when the execution command is turned from OFF to ON.
- The multipliers that can be specified for n are as shown below.

n	Multiplier
0	1
1	10
2	100

#### Point *P*

- Time measurements are conducted when the TTMR instruction is executed. Using the JMP or similar instruction to jump the TTMR instruction will make it impossible to get an accurate measurement.
- Do not change the multiplier specified for n while the TTMR instruction is being executed. Changing this multiplier will result in an inaccurate value being returned.
- The TTMR instruction can also be used in low-speed execution type programs.
- The device specified for (d)[1] is used by the system of the CPU module, so users should not change its value. If users change this value, the value stored to the device specified for (d)[0] will no longer be accurate.
- No processing is performed when the value specified for n is other than 0 to 2.


#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example

• In the following program, amount of time when X0 is ON is stored to Var_D0. [Structured ladder/FBD]



[ST] TTMR(X0,0,Var_D0);

### Special function timer

STMR		
Basic High performance Process Redundant Univer	sal	
Structured ladder/FBD	ST ENO:= STMR (EN,s, n, d);	

The following instruction can go in the dotted squares. STMR

#### ■Executing condition

Instruction	Executing condition
STMR	Non-conditional execution

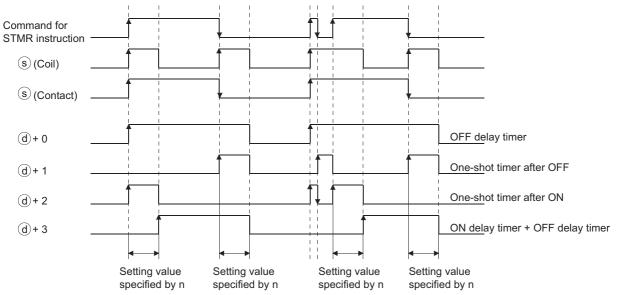
#### ■Argument

Input/output argument	Name	Description		Data type				
Input argument	EN	Executing condition		Bit				
	s	Timer number	Timer number			ANY16		
	n	Set value	Set value			ANY16		
Output argument	ENO	Execution result		Bit				
	d	d[0]:Off-delay timer output d[1]:One-shot timer output after OFF d[2]:One-shot timer output after ON d[3]:On-delay and off-delay timer output		Array of bit (	(14)			

Setting	Internal dev	ice	R, ZR	JD/D		UE\GE Zn			Others
data	Bit	Word		Bit	Word			К, Н	
(s)	-	∆ ^{*1}	—	—					—
n	0	0	0	0					—
(d)	0	-	—	—					—

*1 Only for timers (T)

• The STMR instruction uses the 4 points from the device specified for (d) to perform four types of timer output.


Item	Description
OFF-delay timer output ((d)[0])	Turns ON at the rising edge command of the STMR instruction, and after the falling edge command, turns OFF when the amount of time specified for n has passed.
One-shot timer output after OFF ((d)[1])	Turns ON at the falling edge command of the STMR instruction, and turns OFF when the amount of time specified for n has passed.
One-shot timer output after ON ((d)[2])	Turns ON at the rising edge the command for the STMR instruction, and turns OFF either when the amount of time specified for n has passed, or when the command of the STMR instruction turns OFF.
ON-delay and OFF-delay timer output ((d)[3])	Turns ON at the falling edge of the timer coil, and after the falling edge command of the STMR instruction, turns OFF when the amount of time specified for n has passed.

 The timer coil specified for (s) turns ON at the rising edge and falling edge command of the STMR instruction, and starts measurement of the current value.

The timer coil measures to the point where the value reaches the setting value specified for n, then enters a time up status and turns OFF.
If the command of the STMR instruction turns OFF before the timer coil reaches the time up status, it will remain ON. Timer measurement is continued at this

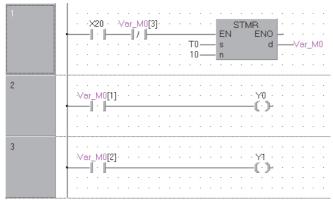
time. When the STMR instruction command turns ON once again, the current value will be cleared to 0 and measurement will begin once again.
The timer contact turns ON at the rising edge command of the STMR instruction, and after the falling edge is reached, the

 The timer contact turns ON at the rising edge command of the STMR instruction, and after the failing edge is reached, the timer coil turns OFF at the falling edge command of the STMR instruction. The timer contact is used by the CPU module system, and cannot be used by the user.



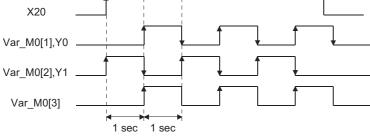
- Measurement of the current value of the timer specified in the STMR instruction is conducted regardless of ON/OFF status of the STMR instruction. If the STMR instruction is jumped with the JMP or similar instruction, it will not be possible to get accurate measurement.
- Measurement unit for the timer specified for (d) is identical to the low-speed timer.
- Values between 0 and 32767 can be set for n. No processing is performed when the value specified for n is other than 0 to 32767.
- The timer specified for (s) cannot be used in the OUT instruction. If the STMR instruction and the OUT instruction use the same timer number, accurate operation will not be conducted.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example


• In the following program, Y0 and Y1 are turned ON and OFF every second (flicker) when X20 turns ON. (Uses 100ms timer)

[Structured ladder/FBD]



[ST]

STMR(X20 AND NOT(Var_M0[3]),T0,10,Var_M0); OUT(Var_M0[1],Y0); OUT(Var_M0[2],Y1); [Timing chart]



#### Precautions

Note that the STMR instruction operates when the instruction is used within the range written data by the online program change. For details, refer to the User's Manual (Function Explanation, Program Fundamentals) for the CPU module used.

### Rotary table shortest direction control

ROTC	
Basic High performance Process Redundant Ur	iversal
Structured ladder/FBD	ST
EN ENO	ENO:= ROTC (EN, s, n1, n2, d)

The following instruction can go in the dotted squares. ROTC

#### ■Executing condition

Instruction	Executing condition
ROTC	

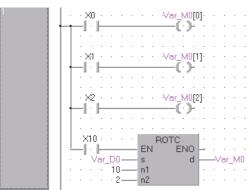
#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	s[0]: For measuring the number of table rotations (for system) s[1]: Call station number s[2]: Call item number	Array of ANY16 (13)
	n1	Number of table divisions (2 to 32767)	ANY16
	n2	Number of low-speed sections (value from 0 to n1)	ANY16
Output argument	ENO	Execution result	Bit
	d	d[0]:A-phase input signal d[1]:B-phase input signal d[2]:0 point detection input signal d[3]:High-speed forward rotation output signal (for system) d[4]:Low-speed forward rotation output signal (for system) d[5]:Stop output signal (for system) d[6]:Low-speed reverse rotation output signal (for system) d[7]:High-speed reverse rotation output signal (for system)	Array of bit (18)

Setting	Internal dev	ice R, ZR		JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(S)	-	0		—					—
n1	0	0		0					—
n2	0	0		0					—
(d)	0	—		—					—

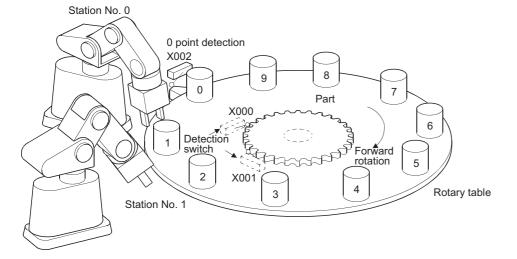
- This control functions to enable shortest direction control of the rotary table to the position of the station number specified for (s)[1] in order to remove or deposit an item whose number has been specified for (s)[2] on a rotary table with equal divisions of the value specified for n1.
- The item number and station number are controlled as items allocated by counterclockwise rotation.
- The system uses (s)[0] as a counter to instruct it as to what item is at which number counting from station number 0. Do not rewrite the sequence program data. Accurate controls will not be possible in cases where users have rewritten the data.
- The value of n2 should be less than the number of table divisions that were specified for n1.
- (d)[0] and (d)[1] are A and B phase input signals that are used to detect whether the direction of the rotary table rotation is forward or reverse. The direction of rotation is judged by whether the B-phase pulse is at its rising or falling pulse when the A-phase pulse is ON.
- When the B-phase is at the rising edge: Forward rotation (clockwise rotation)
- When the B-phase is at the falling edge: Reverse rotation (counterclockwise rotation)
- (d)[2] is the 0 point detection signal that turns ON when item number 0 has arrived at the station No. 0. When the device specified for (d)[2] turns ON while the ROTC instruction is being executed, (s)[0] is cleared. It is best to perform this clear operation first, then to begin shortest direction control with the ROTC instruction.
- The data from (d)[3] to (d)[7] consists of output signals needed to control the table's operation. The output signal of one of the devices from (d)[3] to (d)[7] will turn ON in response to the execution results of the ROTC instruction.
- If the command for the ROTC instruction is OFF, clears all (d)[3] to (d)[7] without performing shortest direction control.
- The ROTC instruction can be used only one time in all programs where it is executed. Attempts to use it more than one time will result in inaccurate operations.
- No processing is performed when the value of (s)[0] to (s)[2], or the value of n2 is greater than n1.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (s) or (d) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example


• In the following program, item at section Var_D0[2] on a 10-division rotary table is taken in and out at section Var_D0[1], and the rotation direction and the control speed of the motor are determined by two sections ahead and behind of the item when the table is rotated at low speed.

[Structured ladder/FBD]



[ST]

OUT(X0,Var_M0[0]); OUT(X1,Var_M0[1]); OUT(X2,Var_M0[2]); ROTC(X10,Var_D0,10,2,Var_M0);



6

### Ramp signal

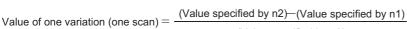
RAM	Р		
Basic	High performance	Process Redundant U	niversal LCPU
Stru	uctured	l ladder/FBD	ST
	R	AMP	
	EN		
_	n1	d1 -	ENO:= RAMP (EN, n1, n2, ,n3, d1, d2
	n2	d2	
_	n3		

The following instruction can go in the dotted squares. RAMP

#### ■Executing condition

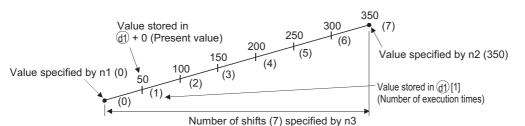
Instruction	Executing condition
RAMP	

#### ■Argument


Input/output argument	Name	Description	Data type
Input argument EN		Executing condition	Bit
	n1	Initial value	ANY16
	n2	Final value	ANY16
	n3	Number of transitions	ANY16
Output argument	ENO	Execution result	Bit
	d1	d1[0]:Current value d1[1]:Number of executions	Array of ANY16 (12)
	d2	d2[0]:Completion device d2[1]:Bit for selecting data retainment at completion	Array of bit (12)

Setting	Internal dev	ice	R, ZR	R, ZR J□\□		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Bit Word			К, Н	
n1	0	0		0	-				
n2	0	0							-
n3	0	0						0	-
(d1)	0	0	о — — — — — — — — — — — — — — — — — — —						-
(d2)	0	—						—	—

6


#### **Processing details**

- · When the execution command is ON, the following processing is executed.
- Shifts from the value specified for n1 to the value specified for n2 in the number of times specified for n3.
- For n3, specify the number of scans (number of shifts) required for shift from n1 to n2. No processing is performed when the value specified for n3 is other than 0 to 32768.
- The system uses (d1)[1] to store the number of times the instruction has been executed.
- The value of one variation (one scan) is obtained by the expression below.



#### Ex.

0 is varied to 350 in seven scans as shown below.

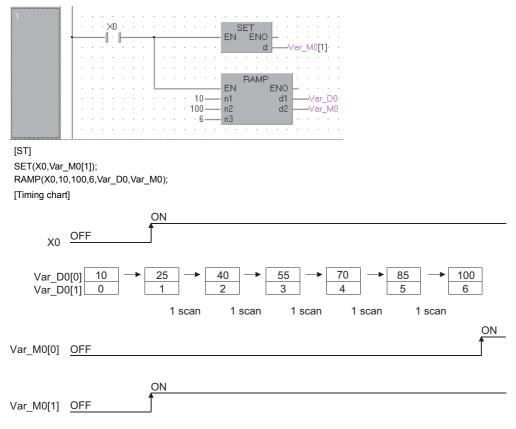


When the calculated one variation is indivisible, compensation is made to achieve the value specified for n2 by the number of shifts specified for n3.

Hence, a linear ramp may not be made.

- If the scan is performed for the number of moves specified for n3, the completion device specified for (d2)[0] will turn ON.
   The ON/OFF status of the completion device and the value of (d1)[0] are determined by the ON/OFF status of the device specified for (d2)[1].
- When (d2)[1] is OFF, (d2)[0] will turn OFF at the next scan, and the RAMP instruction will begin a new transition operation from the initial value.
- ${\boldsymbol \cdot}$  When (d2)[1] is ON, (d2)[0] will remain ON, and the value of (d1)[0] will not change.
- When the command is turned OFF during the execution of this instruction, the value of (d1)[0] will not change following this. When the command turns ON again, the RAMP instruction will begin a new transition from the initial value.
- Do not change the values of n1 and n2 before the completion device specified for (d2)[0] turns ON. Since the same expression is used every scan to calculate the value stored in (d1)[1], changing n1/n2 may cause a sudden variation.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d1) or (d2) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example

• In the following program, the value of Var_D0 is changed from 10 to 100 in a total of 6 scans, and the value of Var_D0 is saved when the transition has been completed.

[Structured ladder/FBD]



### Pulse density measurement

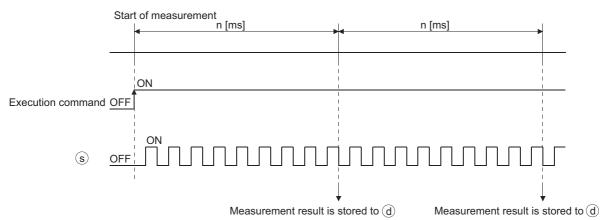
SPD	
Basic High performance Process Redundant Univ	versal LCPU
Structured ladder/FBD	ST
EN ENO	ENO:= SPD (EN, s, n, d);

The following instruction can go in the dotted squares. SPD

#### ■Executing condition

Instruction	Executing condition
SPD	

#### ■Argument


(d)

Input/output argument	t	Nar	ne		Descript	on				Data type			
Input argumen	Input argument EN				Executing	condition				Bit			
s				Pulse input I				Bit					
		n			Measurement time (unit: ms)				ANY16				
Output argume	Output argument ENO				Execution result					Bit			
		d			Start number of the device that stores the measurement result			ANY16					
Setting	Internal	devi	ce	R, 2	ZR .	JD/D		UE\GE Z			Constant	Others	
data	Bit		Word			Bit	Word				К, Н		
(s)	O(X only)		_			_						—	
n	∆ ^{*1}		(		0					-			

*1 Local devices and file registers per program cannot be used as setting data.

∆*1

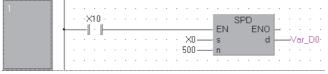
• The number of turning from OFF to ON input from the device specified for (s) is counted for just the amount of time specified for n, and results of the count are stored to the device specified for (d).



• When the measurement directed by the SPD instruction has been completed, the measurement is executed again from 0. Turn OFF the execution command to stop the measurement directed by the SPD instruction.

- Point P
- With the SPD instruction, the argument device data are registered in the work area of the CPU module and counting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch from STOP to RUN.) For this reason, the pulses that can be counted must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of the CPU module is 1ms.
- When the High Performance model QCPU is used and n = 0, the instruction is not processed.
- The SPD instruction can be used as many as 6 times within all the programs being executed. The seventh and the subsequent SPD instructions are not processed.
- While the measurement is in execution (while the command input is ON) by the SPD instruction, the setting value cannot be changed. Turn OFF the command input before changing the setting value.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (s) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example

 In the following program, the pulses input to X0 are measured for a period of 500ms when X10 turns ON, and the result is stored to Var_D0.

[Structured ladder/FBD]



[ST] SPD(X10,X0,500,Var_D0);

### Fixed cycle pulse output

PLSY								
Basic	ligh berformance	Process R	edundant U	niversal LC	PU			
	performance							
Strue	cture	d ladder/l	FBD			ST		
Γ	<u> </u>	PLSY						
-	EN	ENO	<u> </u>	ENO	= PLS	Y (EN	N, n1, n2,	, d);
_	n1	d	-					
	n2							

The following instruction can go in the dotted squares. PLSY

#### ■Executing condition

Instruction	Executing condition
PLSY	

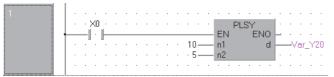
#### ■Argument

Input/outpu argument	ıt	Name		Descript	ion		Data type	Data type			
Input argument EN				Executing	Executing condition Bit						
n1				Frequency	Frequency, or device number that stores frequency ANY16						
n2				Output cou	ints, or device r	number that sto	res output counts	ANY16			
Output argument ENO				Execution result Bit							
d				Device number that generates pulse outputs				Bit	Bit		
Setting	Internal	device		ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			К, Н		
n1	0	0				-				—	
n2	0	0								—	
(d)	△(Y only)	—								—	

- Outputs a pulse at a frequency specified for n1 in the number of times specified for n2, to the output module with the output signal (Y) specified for (d).
- Frequency of n1 can be set between 1 and 100Hz. If n1 is other than 1 to 100Hz, the PLSY instruction will not be executed.
- The number of outputs that can be specified for n2 is between 0 and 65535 (0000H to 0FFFFH). If n2 is set to 0, pulses are continuously output.
- Only an output number corresponding to the output module can be specified for pulse output (d).
- Pulse output commences with the rising edge command of the PLSY instruction. Pulse output is suspended when the PLSY instruction command turns OFF.

#### Point P

- With the PLSY instruction, the argument device data are registered in the work area of the CPU module and outputting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch from STOP to RUN.) For this reason, the pulses that can be output must have longer ON and OFF times than the interrupt interval of the CPU module. The interrupt interval of the CPU module is 1ms.
- Do not change the argument for the PLSY instruction during pulse output directed by the PLSY instruction (while the execution command is ON). To change the argument, turn OFF the execution command.
- The PLSY instruction can be used only once in all programs executed by the CPU module. The second and the subsequent PLSY instructions are not processed.


#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	0	0	—	0	0

#### Program example

• In the following program, 10Hz pulse is output for 5 times to Var_Y20 when X0 turns ON. [Structured ladder/FBD]



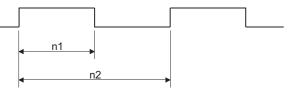
[ST]

PLSY(X0,10,5,Var_Y20);

### Pulse width modulation

РѠМ	
Basic High performance Process Redundant Un	iversal
Structured ladder/FBD	ST
EN ENO	ENO:= (EN, n1, n2, d);
n1 d	

The following instruction can go in the dotted squares. PWM


#### ■Executing condition

Instruction	Executing condition
PWM	

#### ■Argument

Input/outpu argument	ıt	Name		Descript	ion		Data type				
Input argumer	nt	EN		Executing	Executing condition Bit						
n1			ON-time, or device number that stores ON-times					ANY16			
n2				Cycle, or d	Cycle, or device number that stores cycles ANY16						
Output argument ENO				Execution result Bit				Bit	it		
		d		Device number that generates pulse outputs				Bit	Bit		
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word			Bit	Word			К, Н		
n1	0	0								-	
n2	0	0								-	
(d)	△(Y only)	—								-	

• Outputs the ON-time specified for n1 and the pulse of the cycle specified for n2 to an output module specified for (d).



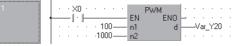
• The setting ranges for n1 and n2 are shown below.

CPU module model	Setting range for n1 and n2 [ms] ^{*1}
High Performance model QCPU, Process CPU, Universal model QCPU, LCPU	1 to 65535 (0001 to 0FFFF)

*1 The value specified for n1 should be less than the value specified for n2.

Point P

- With the PWM instruction, the argument device data are registered in the work area of the CPU module and outputting operation is processed as a system interrupt. (The device data registered in the work area is cleared by turning the execution command OFF, or turning the STOP/RUN switch from STOP to RUN.) The interrupt interval of the CPU module (interrupt interval of n1, n2) is 1ms. For this reason, the PWM instruction can be used only once within all the programs being executed by the CPU module.
- When both n1 and n2 are 0, n1≥n2, or the PWM instruction is executed twice or more, the instruction is not processed.
- Do not change the argument for the PWM instruction during pulse output directed by the PWM instruction (while the execution command is ON). To change the argument, turn OFF the execution command.


#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	0	0	_	0	0

#### Program example

• In the following program, 100ms pulse is output for every second to Var_Y20 when X0 turns ON. [Structured ladder/FBD]



[ST]

PWM(X0,100,1000,Var_Y20);

### Matrix input

MTR						
Basic	High performance	cess Red	dundant Un	iversal LC	PU	
Stru	Ictured la		BD		ST	
_	EN	ENO ·	—	ENO:=	MTR	(EN,s, n, d1, d2
_	s n	d1 - d2 -	_			

The following instruction can go in the dotted squares. MTR

#### ■Executing condition

Instruction	Executing condition
MTR	

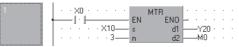
#### ■Argument

Input/output argument	:	Name	Descript	ion		Data type				
Input argument	t	EN	Executing	condition		Bit				
		S	Start device	ce for data input	Bit					
		n	Number of input rows				ANY16			
Output argume	nt	ENO	Execution	Execution result			Bit			
		d1	Start device	ce for data output		Bit				
d2		Start num	ber of the device that stores mat	Bit						
Setting	Internal	device	R, ZR	JD/D	UD\GD	Zn	Constant	Others		

Setting	internal dev	ice	Γ, ΖΓ			211	Constant	Others
data	Bit	Word		Bit	Word		К, Н	
(s)	O(X only)	—						-
n	0	0						-
(d1)	O(Y only)	-						-
(d2)	0	—						-

- It reads the input from 16 points × n rows from the input number specified for (s), then stores fetched input data to the device specified for (d2) and the following devices.
- One row (16 points) can be fetched in 1 scan.
- · Fetching from the first to the nth row is repeated.
- The first through the 16th points store the first row of data and the next 16 points store the second row of data at the devices following the device specified for (d2). For this reason, the space of 16 × n points from the device specified for (d2) are occupied by the MTR instruction.
- (d1) is the output needed to select the row which will be fetched, and the system automatically turns it ON and OFF. It uses the n points from the device specified for (d1).
- Only device numbers divisible by 16 can be specified for (s), (d1) and (d2).
- For n, a value in the range from 2 to 8 can be assigned.
- No processing is performed in any of the following cases.
- The device number specified for (s), (d1), or (d2) is not a multiple of 16.
- The device specified for (s) is outside of the actual input range.
- The device specified for (d1) is outside of the actual output range.
- The space 16  $\times$  n points following the device specified for (d2) exceeds the corresponding device range.
- The value for n is not between 2 and 8.

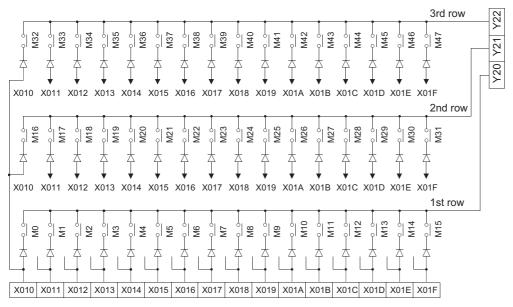
#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device other than the input (X) was specified for (s). The device other than the output (Y) was specified for (d1).	—	0	0	—	0	0

#### Program example

• In the following program, the 16 points  $\times$  3 matrix from X10 and the following devices are fetched when X0 turns ON, and the matrix is stored to M0 and the following devices.


[Structured ladder/FBD]



[ST]

MTR(X0,X10,3,Y20,M0);

[Operation]

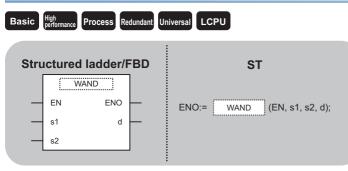


6 BASIC INSTRUCTIONS

#### Precautions

- Note that the MTR instruction directly operates on actual input and output. The output (d1) that had been turned ON by the MTR instruction does not turn OFF when the MTR command turns OFF. Turn OFF the specified output (d1) in the sequence program.
- The MTR instruction execution interval must be longer than the total of response time of input and output modules. If the set interval is shorter than the value indicated above, an input cannot be read correctly. If the scan time in a sequence program is short, select the constant scan and set the scan time longer than the total of response time.
- When using the MTR instruction, do not branch a line from (d2). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to F Page 63 Precautions on Programming.

# **7** APPLICATION INSTRUCTIONS


# 7.1 Logical Operation Instructions

The logical operation instructions perform logical OR, logical AND or other logical operations in unit of 1 bit.

Operation	Description	Formula for	Example		
		Operation	Α	В	Y
Logical AND (AND)	A bit is set to 1 only	Y=A/B	0	0	0
	when both input A and input B are 1, otherwise set to 0		0	1	0
			1	0	0
			1	1	1
Logical OR (OR)	A bit is set to 0 only	Y=A+B	0	0	0
	when both input A and input B are 0, otherwise set to 1		0	1	1
			1	0	1
			1	1	1
Exclusive OR (XOR)	A bit is set to 0 when	Y=AB+AB	0	0	0
	input A and input B are equal, otherwise set to		0	1	1
	1		1	0	1
			1	1	0
Exclusive NOR (XNR)	A bit is set to 1 when	$Y=(\overline{A}+B)(A+\overline{B})$	0	0	1
	input A and input B are		0	1	0
	equal, otherwise set to 0		1	0	0
			1	1	1

### Logical AND operation on 16-/32-bit data

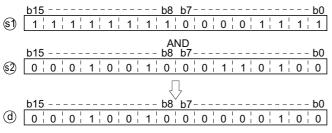
#### WAND(P), DAND(P)



Any of the following instruction can go in the dotted squares. WAND, WANDP, DAND, DANDP

#### ■Executing condition

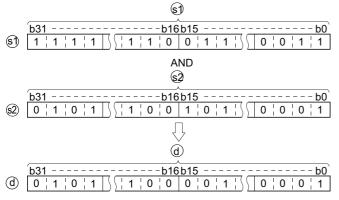
Instruction	Executing condition
WAND, DAND	
WANDP, DANDP	


#### ■Argument

Input/outpu argument	t	Name		Description Data type							
Input argumer	nt	EN		Executir	Executing condition Bit						
s1, s2 Data on which the logical AND operation is performed, or si number of the device that stores data					or start	ANY16/32					
Output argument ENO				Execution result				Bit			
		d		Start number of the device that stores operation result ANY16/32							
Setting	Internal d	levice	vice R, Z		JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word				К, Н	
(s1)	0									0	-
(s2)	0									0	-
(d)	0									—	-

#### Processing details

#### ■WAND(P)


• Performs a logical AND operation on each bit of the 16-bit data of the device specified for (s1) and the 16-bit data of the device specified for (s2), and the results are stored to the device specified for (d).



• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices. (Refer to Program Example)

#### ■DAND(P)

• Performs a logical AND operation on each bit of the 32-bit data for the device specified for (s1) and the 32-bit data for the device specified for (s2), and stores the results to the device specified for (d).



• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices. (Refer to Program Example)

#### Operation error

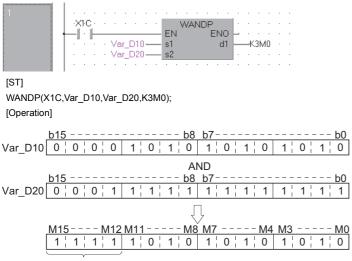
• There is no operation error.

#### Program example

• In the following program, the logical AND operation is performed on the data from X10 to X1B and the data in Var_D33 when X0A turns ON, and the results are stored to Var_D40.

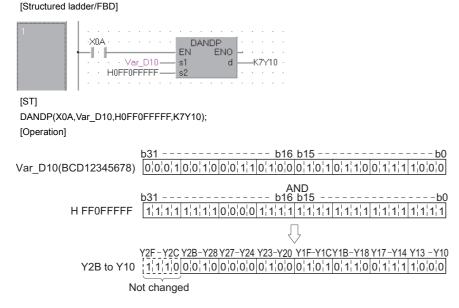
[Structured ladder/FBD]

																·						
	·		٠X	0A	÷.				÷		$\sim$	NA	NE	DΡ				÷		÷		
	-	_	-1		⊢					 E١	1			E	ΕN	o	_			·		
	- I		• -				K3	X1	0 —	 s1					d	1		-\	′ar_	D	40	
	·					Va	ar_l	D3	3-	 s2							·					
	L .																					


[ST]

WANDP(X0A,K3X10,Var_D33,Var_D40); [Operation]

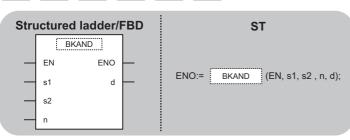
	X1BX18X17 X13X10
X1B to X10 0 0 0	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Regarded as	0s.
0	AND
b15	b8 b7b0
Var_D33 0   1   0   1	1   1   0   1   1   1   1   0   0   0
	Д
L4C	
<u>b15</u>	<u> b8 b7 b0</u>
Var_D40 0 0 0	1 0 0 0 1 0 0 0 0 0


 In the following program, the logical AND operation is performed on the data in Var_D10 and Var_D20 when X1C turns ON, and the results are stored to the devices from M0 to M11.

[Structured ladder/FBD]



Not changed


• In the following program, the digit in the hundred-thousands place of the 8-digit BCD value in Var_D10 (sixth digit from the end) is masked to 0 when X0A turns ON, and the results are stored to the devices from Y10 to Y2B.



### Logical AND operation on block data

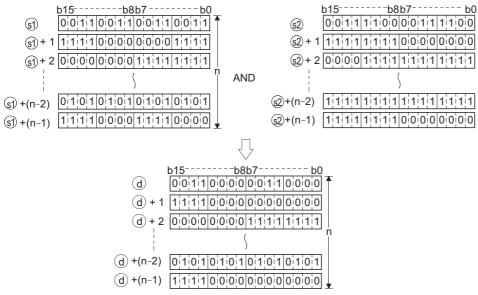
#### **BKAND(P)**

#### Basic High performance Process Redundant Universal LCPU

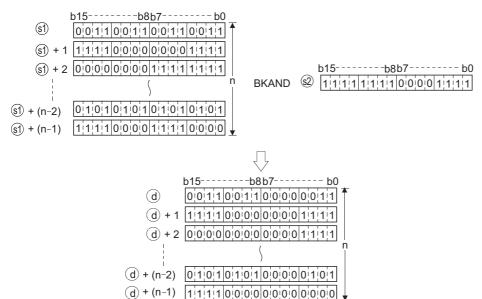


Any of the following instruction can go in the dotted squares. BKAND, BKANDP

#### ■Executing condition


Instruction	Executing condition
BKAND	
BKANDP	

#### ■Argument


Input/output argument		Name		Descri	ption	Data type							
Input argume	ent	EN		Executi	ng condition				Bit				
		s1			mber of the devertion is perform	ANY16							
		s2		Logical stores c	AND operation	ANY16							
		n		Number	of operation da	ANY16							
Output argun	nent	ENO		Execution result						Bit			
		d		Start nu	Start number of the device that stores the operation result					ANY16			
Setting	Internal c	ernal device		R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word	-			К, Н			
$\begin{array}{c c} (s1)^{*1} & - \\ \hline (s2)^{*1} & - \\ \hline n & \bigcirc \\ \hline (d)^{*1} & - \\ \end{array}$		0	0		—					—	-		
		0			- 0					0	-		
		0								0	-		
		0		-						—	—		

*1 Same device numbers can be specified for (s1) and (d), or (s2) and (d).

• Performs a logical AND operation on the data n points from the device specified for (s1), and the data n points from the device specified for (s2), and stores the results to the device specified for (d) and the following devices.



• The constant can be specified for (s2) between -32768 and 32767 (16-bit BIN data).



#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The device range of n points from the device specified for (s1) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s1) and (d)) The device range of n points from the device specified for (s2) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s2) and (d))	0	0	0	0	0	0

• In the following program, the logical AND operation is performed on the data in the devices from D100 to D102 and the data in the devices from R0 to R2 when X20 turns ON, and the results are stored to D200 and the following devices. [Structured ladder/FBD]

1		
		_D0· ·
2		· · ·
	· · · · [*] · [*] D100 s1 d	-D200
	· · · · · · R0 — s2 · · · · · · Var_D0 — n ·	

[ST]

Var_D0:=K3 BKANDP(X20,D100,R0,Var_D0,D200);

[Operation]

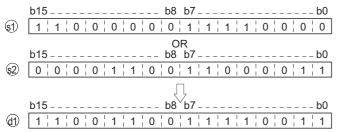
b15b8b7b0 D100 11111000001111111111 D101 1111111110000000000	BKAND R0 1111111110000000000 R1 0000111110000000000
	$\overline{\Box}$
b15	b8b7 b0
D200 111100	0 0 0 0 0 0 0 0 0 0 0 Var_D0 3
D201 000011	1 1 1 0 0 0 0 0 0 0 0
D202	0001111111111

#### WOR(P), DOR(P)

# Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST EN ENO \$1 d1 \$2 (EN, \$1, \$2, d1);

Any of the following instruction can go in the dotted squares. WOR, WORP, DOR, DORP

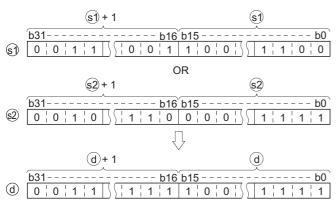
#### ■Executing condition


Instruction	Executing condition
WOR, DOR	
WORP, DORP	

#### ■Argument

Input/outpu argument	t	Name		Descri	Description Data type						
Input argumen	t	EN		Executing condition Bit							
		s1, s2:		Data on which the logical OR operation is performed, or start number of the device that stores data       ANY16/32							
Output argume	ent	ENO		Execution result Bit							
		d1		Start number of the device that stores operation result ANY16/32							
Setting	Internal d	evice	R, Z	R	JD/D		UD\DG	Zn		Constant	Others
data	Bit	Word			Bit	Word				К, Н	
(s1)	0		0					0	-		
(s2)	0			0 –						-	
(d1)	0									-	

#### ■WOR (P)


• Performs a logical OR operation on each bit of the 16-bit data of the device specified for (s1) and the 16-bit data of the device specified for (s2), and stores the results to the device specified for (d1).

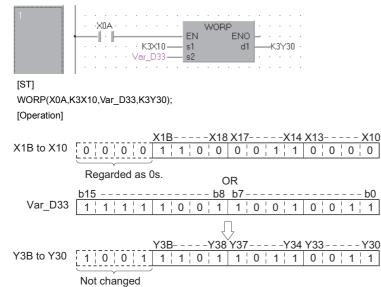


• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices. (Refer to Program Example)

#### ■DOR(P)

• Performs a logical OR operation on each bit of the 32-bit data of the device specified for (s1) and the 32-bit data of the device specified for (s2), and stores the results to the device specified for (d).




• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices. (Refer to Program Example)

#### Operation error

• There is no operation error.

 In the following program, the logical OR operation is performed on the data from X10 to X1B, and the data in Var_D33 when X0A turns ON, and the results are output to Y30 to Y3B.

[Structured ladder/FBD]



• In the following program, the logical OR operation is performed on the 32-bit data in Var_D0, and the 24-bit data from X20 to X37 when M8 turns ON, and the results are stored to Var_D23.

[Structured ladder/FBD]

1	.																					
												E	00	RP	>		.					
		-								_	E	N			-1.9	~					·	·
																d	_	-\	′ar_	D	23	•
	·		·		·	÷	К6	X2	0 —		_s2	2					·	÷	·	÷	·	•
	·	·	·	·	·	÷	·	÷	·	÷	·	÷	·	1	÷	÷	·	÷	·		·	•
	- ·																					

[ST]

DORP(M8,Var_D0,K6X20,Var_D23);

[Operation]



# Logical OR operation on block data

#### BKOR(P)

# Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST BKOR EN ENO s1 d ENO:= s2 n

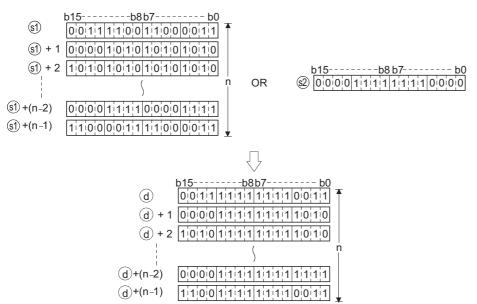
Any of the following instruction can go in the dotted squares. BKOR, BKORP

#### ■Executing condition

Instruction	Executing condition
BKOR	
BKORP	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Start number of the device that stores data on which the logical OR operation is performed	ANY16
	s2	Logical OR operation data, or start number of the device that stores data	ANY16
	n	Number of operation data	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the Logical OR operation result	ANY16


Setting	Internal dev	ice	R, ZR	JD/D	UD\GD		Zn	Constant	Others	
data	Bit	Word		Bit	Word			К, Н		
(s1) ^{*1}	-	0		—				—	_	
(s2) ^{*1}	-	0		_				0	—	
n	0	0		0				0	—	
(d) ^{*1}	-	0		_				—	—	

*1 Same device numbers can be specified for (s1) and (d), or (s2) and (d).

• Performs a logical OR operation on the data n points from the device specified for (s1), and the data n points from the device specified for (s2), and stores the results to the device specified for (d) and the following devices.

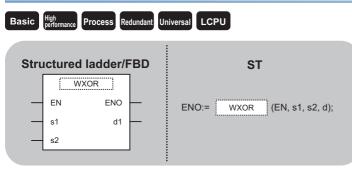


• The constant can be specified for (s2) between -32768 and 32767 (16-bit BIN data).



#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The device range of n points from the device specified for (s1) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s1) and (d)) The device range of n points from the device specified for (s2) overlaps with the device range of n points from the device specified for (s2) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s2) and (d))	0	0	0	0	0	0

• In the following program, the logical OR operation is performed on the data in the devices from D100 to D102 and the data in the devices from R0 to R2 when X20 turns ON, and the results are stored to D200 and the following devices. [Structured ladder/FBD]

$1 \qquad \qquad$
2 · · ×20 · · · · BKORP EN ENO · · · · · R0 · · · · · R0 · · · · · R0 n
Var_D0:=K3; BKORP(X20,D100,R0,Var_D0,D200);
[Operation]
b15b8b7b0 D100 000010101010101010 R0 0001110000000000
D101 0011001100011000111 R1 0000111111111
D102 111000000000111111000 R2 00001111111000 1111111000
$\overline{\Box}$
b15b8b7b0 D200001111010010110100100
D201 001111111111111000111
D202 11100 1111100011111111 Var_D0 3

## Exclusive OR operation on 16-/32-bit data

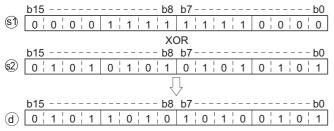
#### WXOR(P), DXOR(P)



Any of the following instruction can go in the dotted squares. WXOR, WXORP, DXOR, DXORP

#### ■Executing condition

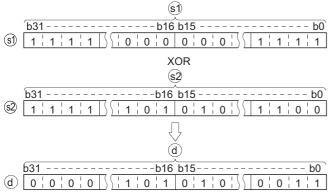
Instruction	Executing condition
WXOR, DXOR	
WXORP, DXORP	


#### ■Argument

Input/output argument	t	Name		Descri	ption				Data	Data type			
Input argumen	ment EN				Executing condition Bi						Bit		
		s1, s2:			Data on which the exclusive OR operation is performed, or start ANY number of the device that stores data				ANY16/32				
Output argume	ent ENO Execution result		ENO E		Execution result E				Bit				
		d1		Start nu result	mber of the dev	vice that stores e	xclusive OR ope	eration	ANY	16/32			
Setting	Internal d	levice	R, Z	R	JD/D		U⊟\G□	Zn		Constant	Others		
data	Bit	Word	1		Bit	Word				К, Н			
(s1)	0									0	-		
(s2)	0									0	-		
(d1)	0									—	—		

#### Processing details

#### ■WXOR(P)


• Performs an exclusive OR operation on each bit of the 32-bit data of the device specified for (s1) and the 32-bit data of the device specified for (s2), and stores the results to the device specified for (d).



• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices. (Refer to Program Example)

#### ■DXOR(P)

• Performs an exclusive OR operation on each bit of the 32-bit data of the device specified for (s1) and the 32-bit data of the device specified for (s2), and stores the results to the device specified for (d1).

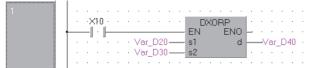


• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices.

#### Operation error

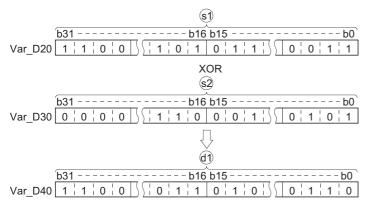
• There is no operation error.

#### Program example


• In the following program, the exclusive OR operation is performed on the data from X10 to X1B and the data in Var_D33 when X10 turns ON, and the results are output to Y30 to Y3B.

[Structured ladder/FBD]

1	······     DXORP       ······     EN       ······     Var_D20       s1     d       ······     Var_D30       s2     ······
[ST]	
WXORP(X10 [Operation]	,K3X10,Var_D33,K3Y30);
X1B to X10	X1BX18 X17X14 X13X10
	Regarded as 0s. XOR
Var_D33	b15b8 b7b0 1 ' 1 ' 1 ' 1 0 ' 0 ' 1 ' 1 0 ' 0 ' 1 ' 1
Y3B to Y30	Y3BY38Y37Y34Y33Y30 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0
	Not changed


• In the following program, the exclusive OR operation is performed on the data in Var_D20 and the data in Var_D30 when X10 turns ON, and the results are stored to Var_D40.

[Structured ladder/FBD]



[ST]

DXORP(X10,Var_D20,Var_D30,Var_D40); [Operation]



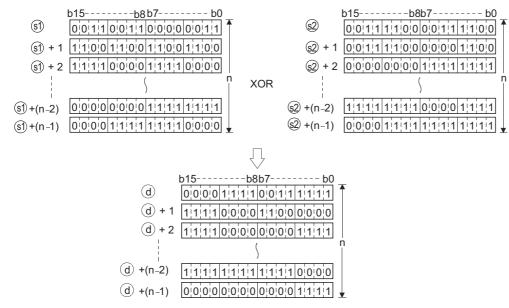
# Exclusive OR operation on block data

#### **BKXOR(P)**

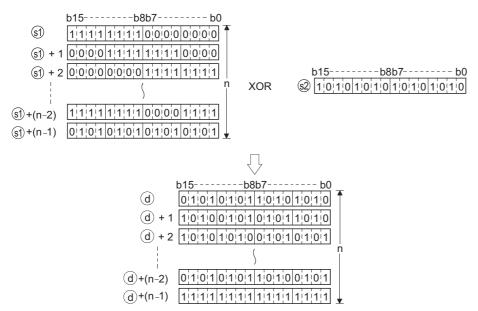
# Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST BKXOR EN ENO S1 d s2 n ENO:= BKXOR (EN, s1, s2, n, d);

Any of the following instruction can go in the dotted squares. BKXOR, BKXORP

#### ■Executing condition


Instruction	Executing condition
BKXOR	
BKXORP	

#### ■Argument


Input/outp argument	ut	Name		Descri	ption				Data	Data type				
Input argume	nput argument EN				ng condition				Bit					
s1				Start number of the device that stores data on which the exclusive OR operation is performed				ANY	NY16					
		s2		Exclusiv stores d		n data, or start n	umber of the dev	vice that	ANY	ANY16				
		n		Number of operation data				ANY	ANY16					
Output argur	nent	ENO		Executio	on result				Bit					
		d		Start nu	mber of the dev	vice that stores t	he operation res	ult	ANY	16				
Setting	Internal	device	R, ZI	R	JD/D		UD\GD	Zn		Constant	Others			
data	Bit	Word			Bit	Word				К, Н				
(s1) ^{*1}	-	0			—					—	-			
(s2) ^{*1}	—	0			—					0	—			
า	0	0		0					0	—				
(d) ^{*1}	—	0			—					—	—			

*1 Same device numbers can be specified for (s1) and (d), or (s2) and (d).

• Performs an exclusive OR operation on the data n points from the device specified for (s1), and the data n points from the device specified for (s2), and stores the results to the device specified for (d) and the following devices.

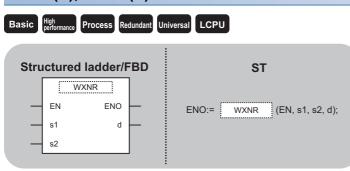


• The constant can be specified for (s2) between -32768 and 32767 (16-bit BIN data).



#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The device range of n points from the device specified for (s1) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s1) and (d)) The device range of n points from the device specified for (s2) overlaps with the device range of n points from the device specified for (s2) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s2) and (d))	0	0	0	0	0	0

• In the following program, the exclusive OR operation is performed on the data in the devices from D100 to D102 and the data in the devices from R0 to R2 when X20 turns ON, and the results are stored to D200 and the following devices. [Structured ladder/FBD]

1	EN ENO Var_D0
2	X20     BKXORP       Image: Big to the state sta
[ST] Var_D0:=3; BKXORP(X20 [Operation]	),D100,R0,Var_D0,D200);
D100 0 1 0 D101 0 0 0	bbb7bbbb7bbbb7bbbb7
	$\overline{\nabla}$
	b15b8b7b0 D200 1010101010101010101 D201 000011111100000111111 D202 011010000000000000011011111 D202 0110100000000000001001001

# Exclusive NOR operation on 16-/32-bit data

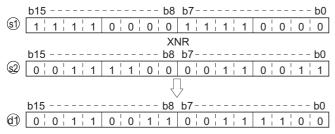
## WXNR(P), DXNR(P)



Any of the following instruction can go in the dotted squares. WXNR, WXNRP, DXNR, DXNRP

#### ■Executing condition

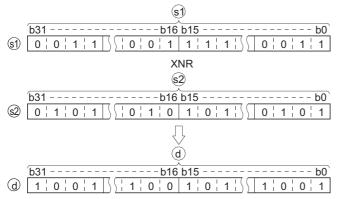
Instruction	Executing condition
WXNR, DXNR	
WXNRP, DXNRP	


#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1, s2	Data on which the exclusive NOR operation is performed, or start number of the device that stores data	ANY16/32
Output argument	ENO	Execution result	Bit
	d1	Start number of the device that stores exclusive NOR operation result	ANY16/32

Setting	Internal dev	vice	R, ZR J□\□				U⊡\G⊡ Zn		Others
data	Bit	Word		Bit Word			К, Н		
(s1)	0							0	-
(s2)	0							0	-
(d1)	0							—	-

#### ■WXNR(P)

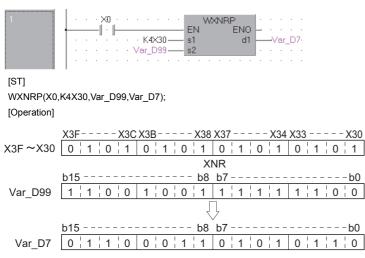

• Performs an exclusive NOR operation on the 16-bit data of the device specified for (s1)and the 16-bit data of the device specified for (s2), and stores the results to the device specified for (d1).



• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices.

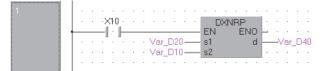
#### DXNR(P)

• Performs an exclusive NOR operation on the 32-bit data of the device specified for (s1) and the 32-bit data of the device specified for (s2), and stores the results to the device specified for (d).



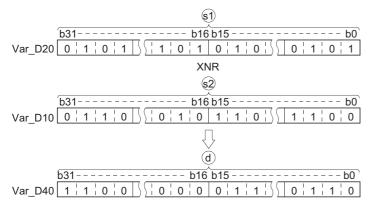

• For bit devices, the operation is performed as 0s are stored to the bit devices which follow the digit-specified bit devices.

#### Operation error


• There is no operation error.

 In the following program, the exclusive NOR operation is performed on the 16-bit data from X30 to X3F and the data in Var_D99 when X0 turns ON, and the results are stored to Var_D7.
 [Structured ladder/FBD]




• In the following program, the exclusive NOR operation is performed on the 32-bit data in Var_D20 and the data in Var_D10 when X10 turns ON, and the results are stored to Var_D40.

[Structured ladder/FBD]



[ST]

DXNRP(X10,Var_D20,Var_D10,Var_D40); [Operation]



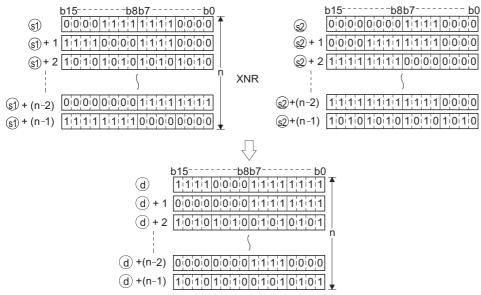
# Exclusive NOR operation on block data

#### BKXNR(P)

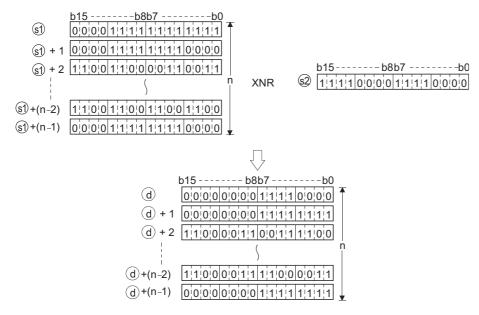
# Basic High Beformance Process Redundant Universal LCPU Structured ladder/FBD ST BKXNR ENO ST S1 d ENO:= S2 n

Any of the following instruction can go in the dotted squares. BKXNR, BKXNRP

#### ■Executing condition


Instruction	Executing condition
BKXNR	
BKXNRP	

#### ■Argument

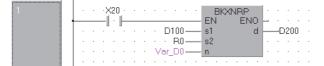

Input/outp argument	ut	Name		Descri	ption				Data	Data type				
Input argume	nput argument EN				ng condition				Bit					
s1				Start number of the device that stores data on which the exclusive NOR operation is performed				ANY	ANY16					
		s2		Exclusiv stores d	•	on data, or start	number of the de	evice that	ANY	ANY16				
		n	Numb		Number of operation data				ANY16					
Output argur	nent	ENO		Executio	on result				Bit					
		d		Start nu	mber of the dev	vice that stores t	he operation res	sult	ANY	16				
Setting	Internal	device	R, ZI	R	JD/D		UD\GD	Zn		Constant	Others			
data	Bit	Word			Bit	Word				К, Н				
(s1) ^{*1}	-	0			—					—	-			
(s2) ^{*1}	—	0			—	_				0	-			
า	0	0		0					0	-				
(d) ^{*1}	—	0			—					—	—			

*1 Same device numbers can be specified for (s1) and (d), or (s2) and (d).

• Performs an exclusive NOR operation on the data n points from the device specified for (s1), and the data n points from the device specified for (s2), and stores the results to the device specified for (d) and the following devices.

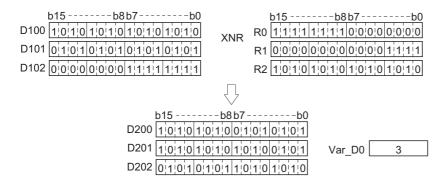


• The constant can be specified for (s2) between -32768 and 32767 (16-bit BIN data).




#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s1), (s2) or (d) exceeds the corresponding device. The device range of n points from the device specified for (s1) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s1) and (d)) The device range of n points from the device specified for (s2) overlaps with the device range of n points from the device specified for (d). (Except when the same device is specified for (s2) and (d))	0	0	0	0	0	0

• In the following program, the exclusive NOR operation is executed on the data in the devices from D100 to D102 and the data in the devices from R0 to R2 when X20 turns ON, and the results are stored to D200 and the following devices. [Structured ladder/FBD]



[ST]

BKXNRP(X20,D100,R0,Var_D0,D200); [Operation]



# 7.2 Rotation Instructions

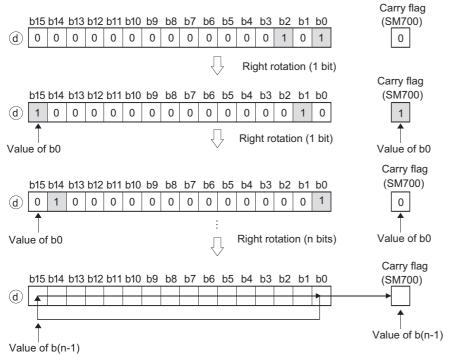
# Right rotation of 16-bit data

#### ROR(P), RCR(P)

Structured ladder/FBD	ST
EN ENO n d	ENO:= ROR (EN, n, d);

Any of the following instruction can go in the dotted squares. ROR, RORP, RCR, RCRP

#### ■Executing condition

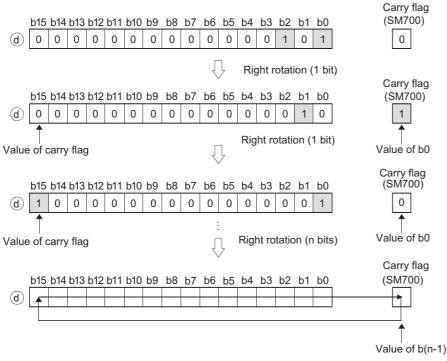

Instruction	Executing condition
ROR, RCR	
RORP, RCRP	

#### ■Argument

Input/output argument	t	Name		Description					Data type			
Input argument EN				Executing condition 1						Bit		
n				Number of rotations (0 to 15)					ANY	ANY16		
Output argument ENO				Execution result					Bit			
		d		Start number of the device to be rotated					ANY16			
Setting	Internal d	levice	R, Z	R JO/O			U⊟\G□	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word	1			К, Н		
n	0									0	-	
(d)	0									—	-	

#### ■ROR(P)

• Rotates 16-bit data of the device specified for (d), not including the carry flag, n bits to the right. The carry flag is ON or OFF depending on the status prior to the execution of the ROR instruction.

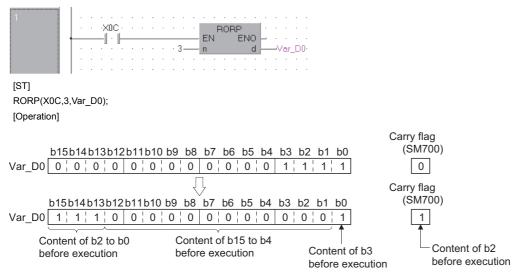



When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 15 and 'number of bits specified by digit specification' = 12 bits, the remainder of 15 ÷ 12 = 1 is 3, thus the data are rotated 3 bits.

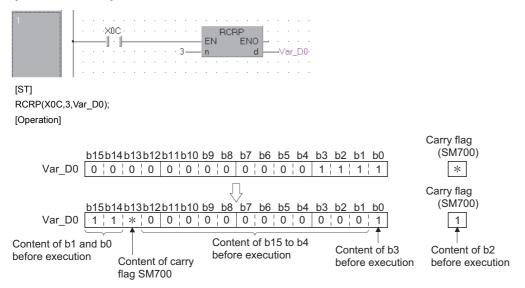
• Specify any of 0 to 15 for n. If the value specified for n is 16 or higher, the remainder of n divided by 16 is used for rotation. For example, when n = 18, the remainder of  $18 \div 16 = 1$  is 2, thus the data are rotated 2 bits to the right.

#### ■RCR(P)

• Rotates 16-bit data of the device specified for (d), including the carry flag, n bits to the right. The carry flag is ON or OFF depending on the status prior to the execution of the RCR instruction.




- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 15 and 'number of bits specified by digit specification' = 12 bits, the remainder of 15 ÷ 12 = 1 is 3, thus the data are rotated 3 bits.
- Specify any of 0 to 15 for n. If the value specified for n is 16 or higher, the remainder of n divided by 16 is used for rotation. For example, when n = 18, the remainder of  $18 \div 16 = 1$  is 2, thus the data are rotated 2 bits to the right.


#### Operation error

There is no operation error.

• In the following program, the data in Var_D0 are rotated, not including the carry flag, 3 bits to the right, when X0C turns ON. [Structured ladder/FBD]



• In the following program, the data in Var_D0 are rotated, including the carry flag, 3 bits to the right, when X0C turns ON. [Structured ladder/FBD]



* ON/OFF status of the carry flag depends on its status before the execution of RCR instruction.

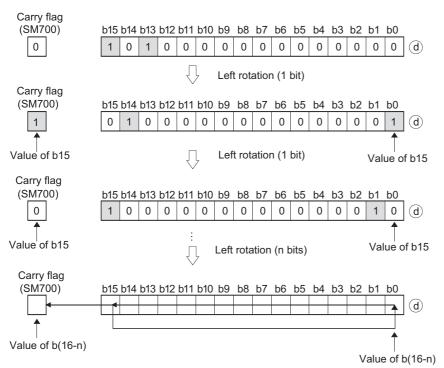
# Left rotation of 16-bit data

### ROL(P), RCL(P)

Basic High performance Process Redundant Ur	niversal LCPU
Structured ladder/FBD	ST
EN ENO	ENO:= (EN, n, d);

Any of the following instruction can go in the dotted squares. ROL, ROLP, RCL, RCLP

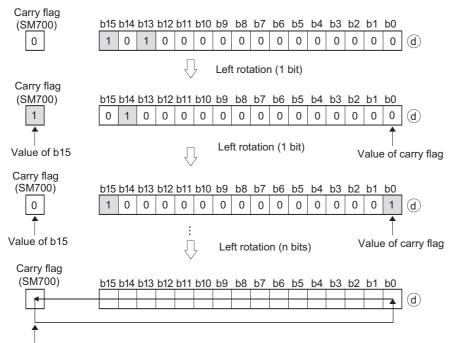
#### ■Executing condition


Instruction	Executing condition
ROL, RCL	
ROLP, RCLP	

#### ■Argument

Input/output argument	t	Name		Description Dat				Data	ata type			
Input argument EN				Executing condition Bit						it		
n				Number of rotations (0 to 15) Al					ANY	ANY16		
Output argument ENO				Execution result E					Bit	Bit		
d				Start number of the device to be rotated					ANY	ANY16		
Setting	Internal d	levice	R, Z	R	JD/D		U⊟\G⊡ Zn			Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
n	0									0	—	
(d)	0									—	—	

#### ■ROL(P)


• Rotates 16-bit data of the device specified for (d), not including the carry flag, n bits to the left. The carry flag turns ON or OFF depending on its status prior to the execution of the ROL instruction.



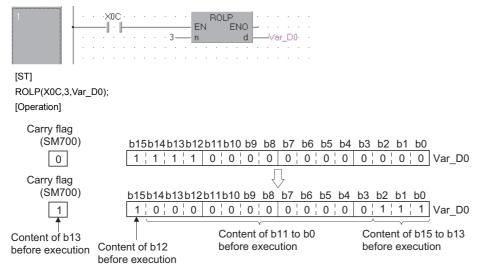
- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 15 and 'number of bits specified by digit specification' = 12 bits, the remainder of 15 ÷ 12 = 1 is 3, thus the data are rotated 3 bits.
- Specify any of 0 to 15 for n. If the value specified for n is 16 or higher, the remainder of n divided by 16 is used for rotation. For example, when n = 18, the remainder of  $18 \div 16 = 1$  is 2, thus the data are rotated 2 bits to the left.

#### ■RCL(P)

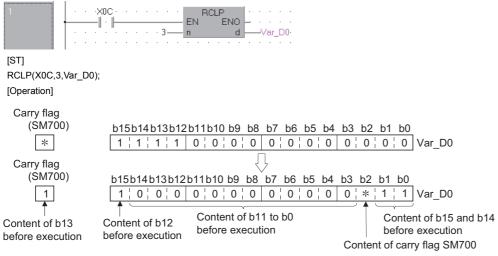
• Rotates 16-bit data of the device specified for (d), including the carry flag, n bits to the left. The carry flag turns ON or OFF depending on its status prior to the execution of the RCL instruction.



Value of b(16-n)


- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 15 and 'number of bits specified by digit specification' = 12 bits, the remainder of 15 ÷ 12 = 1 is 3, thus the data are rotated 3 bits.
- Specify any of 0 to 15 for n. If the value specified for n is 16 or higher, the remainder of n divided by 16 is used for rotation. For example, when n = 18, the remainder of  $18 \div 16 = 1$  is 2, thus the data are rotated 2 bits to the left.

#### **Operation error**


· There is no operation error.

#### Program example

• In the following program, the data in Var_D0 are rotated, not including the carry flag, 3 bits to the left, when X0C turns ON. [Structured ladder/FBD]



• In the following program, the data in Var_D0 are rotated, including the carry flag, 3 bits to the left, when X0C turns ON. [Structured ladder/FBD]



*ON/OFF status of the carry flag depends on its status before the execution of RCL instruction.

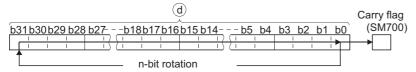
# Right rotation of 32-bit data

#### DROR(P), DRCR(P) Basic High Process Redundant Universal LCPU Structured ladder/FBD DROR EN ENO n d ENO:= DROR (EN, n, d);

Any of the following instruction can go in the dotted squares. DROR, DRORP, DRCR, DRCRP

#### ■Executing condition

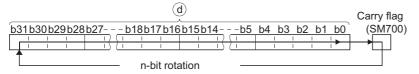
Instruction	Executing condition
DROR, DRCR	
DRORP, DRCRP	


#### ■Argument

Input/output argument	t	Name		Description D				Data	Data type			
Input argument EN				Executing condition Bi					Bit	it		
n				Number of rotations (0 to 31) At					ANY	ANY16		
Output argume	Output argument ENO				Execution result					Bit		
d				Start number of the device to be rotated					ANY32			
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
n	0									0	-	
(d)	0									—	—	

#### Processing details

#### ■DROR(P)


• Rotates 32-bit data of the device specified for (d), not including the carry flag, n bits to the right. The carry flag turns ON or OFF depending on its status prior to the execution of the DROR instruction.

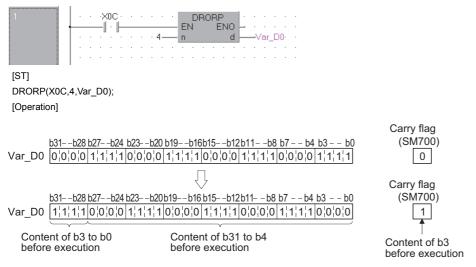


- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 31 and 'number of bits specified by digit specification' = 24 bits, the remainder of 31 ÷ 24 = 1 is 7, thus the data are rotated 7 bits.
- Specify any of 0 to 31 for n. If the value specified for n is 32 or higher, the remainder of n divided by 32 is used for rotation. For example, when n = 34, the remainder of  $34 \div 32 = 1$  is 2, thus the data are rotated 2 bits to the right.

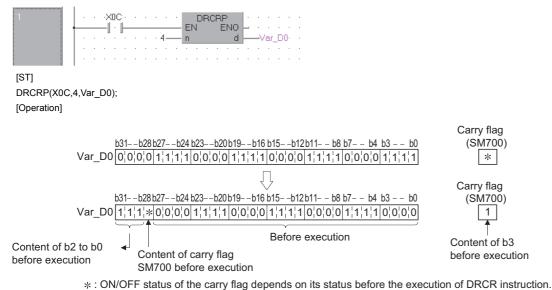
#### ■DRCR(P)

• Rotates 32-bit data of the device specified for (d), including the carry flag, n bits to the right. The carry flag turns ON or OFF depending on its status prior to the execution of the DRCR instruction.




- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 31 and 'number of bits specified by digit specification' = 24 bits, the remainder of 31 ÷ 24 = 1 is 7, thus the data are rotated 7 bits.
- Specify any of 0 to 31 for n. If the value specified for n is 32 or higher, the remainder of n divided by 32 is used for rotation. For example, when n = 34, the remainder of  $34 \div 32 = 1$  is 2, thus the data are rotated 2 bits to the right.

#### **Operation error**


• There is no operation error.

#### Program example

• In the following program, the data in Var_D0 are rotated, not including the carry flag, 4 bits to the right, when X0C turns ON. [Structured ladder/FBD]



• In the following program, the data in Var_D0 are rotated, including the carry flag, 4 bits to the right, when X0C turns ON. [Structured ladder/FBD]



# Left rotation of 32-bit data

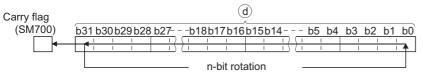
#### DROL(P), DRCL(P)

Basic High performance Process Redundant Un	niversal
Structured ladder/FBD	ST
EN ENO	ENO:= DROL (EN, n, d);

Any of the following instruction can go in the dotted squares. DROL, DROLP, DRCL, DRCLP

#### ■Executing condition

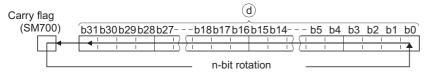
Instruction	Executing condition
DROL, DRCL	
DROLP, DRCLP	


#### ■Argument

Input/output argument	t	Name		Description D					Data	Data type		
Input argument EN				Executing condition Bit					Bit	lit		
	n				Number of rotations (0 to 31) Al					ANY16		
Output argume	Output argument ENO				Execution result					Bit		
d				Start number of the device to be rotated A					ANY	ANY32		
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
n	0									0	-	
(d)	0									—	—	

#### Processing details

#### ■DROL(P)


• Rotates 32-bit data of the device specified for (d), not including the carry flag, n bits to the left. The carry flag turns ON or OFF depending on its status prior to the execution of the DROL instruction.



- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 31 and 'number of bits specified by digit specification' = 24 bits, the remainder of 31 ÷ 24 = 1 is 7, thus the data are rotated 7 bits.
- Specify any of 0 to 31 for n. If the value specified for n is 32 or higher, the remainder of n divided by 32 is used for rotation. For example, when n = 34, the remainder of  $34 \div 32 = 1$  is 2, thus the data are rotated 2 bits to the left.

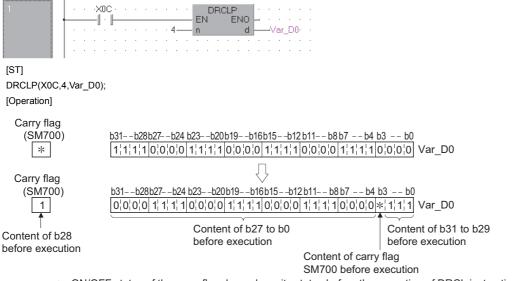
#### ■DRCL(P)

Rotates 32-bit data of the device specified for (d), including the carry flag, n bits to the left. The carry flag turns ON or OFF
depending on its status prior to the execution of the DRCL instruction.



- When a bit device is specified for (d), a rotation is performed within the device range set by digit specification. The number of bits that rotate is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 31 and 'number of bits specified by digit specification' = 24 bits, the remainder of 31 ÷ 24 = 1 is 7, thus the data are rotated 7 bits.
- Specify any of 0 to 31 for n. If the value specified for n is 32 or higher, the remainder of n divided by 32 is used for rotation. For example, when n = 34, the remainder of  $34 \div 321$  is 2, the data are rotated 2 bits to the left.

#### **Operation error**


• There is no operation error.

#### Program example

• In the following program, the data in Var_D0 are rotated, not including the carry flag, 4 bits to the left, when X0C turns ON. [Structured ladder/FBD]

	C DROLP EN ENO Var_D0	
[ST]		
DROLP(X0C,4,Var_D0);		
[Operation]		
Carry flag (SM700)	b31b28b27b24b23b20b19b16b15b12b11b8 [1', 1', 1', 1] 0', 0', 0', 0] 1', 1', 1', 1] 0', 0', 0', 0] 1', 1', 1', 1] 0', 0', 0', 0]	
Carry flag	$\Box$	
(SM700) 1 ↑		b7 b4 b3 b0 0',0',0',0 1',1',1',1' Var_D0
Content of b28 before execution	Content of b27 to b0 before execution	Content of b31 to b28 before execution

• In the following program, the data in Var_D0 are rotated, including the carry flag, 4 bits to the left, when X0C turns ON. [Structured ladder/FBD]



*: ON/OFF status of the carry flag depends on its status before the execution of DRCL instruction.

# 7.3 Shift Instructions

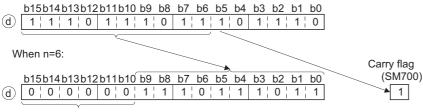
# n-bit right/left shift of 16-bit data

#### SFR(P), SFL(P)

Basic Process Redundant Un	iversal LCPU
Structured ladder/FBD	ST
EN ENO	ENO:= SFR (EN, n, d);

Any of the following instruction can go in the dotted squares. SFR, SFRP, SFL, SFLP

#### ■Executing condition


Instruction	Executing condition
SFR, SFL	
SFRP, SFLP	

#### ■Argument

Input/output Name argument				Description						Data type		
Input argumen	EN		Executing condition					Bit				
n				Number of shifts (0 to 15)						ANY16		
Output argument ENO				Execution result					Bit			
d		d		Start nu	Start number of the device that stores data to be shifted					ANY16		
Setting	Internal d	device R,		R	10/D		U⊟\G□	Zn		Constant	Others	
data	Bit	Word			Bit	Word			К, Н			
n	0									0	-	
(d)	0									_	—	

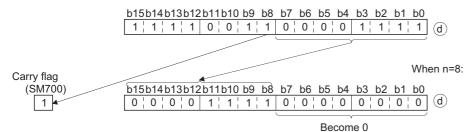
#### ■SFR(P)

• Shifts to the right by n bits of the 16-bit data in the device specified for (d). The n bits from the most significant bit become 0.

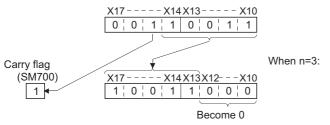


Become 0

• When a bit device is specified for (d), a right shift is performed within the device range of points by digit specification.


	Y1BY18	Y17Y14	<u>Y13Y10</u>	
		1 0 1 1 0	1 0 1 1 0	
		$\langle \rangle$		
۱۸/۴	nen n = 4:			
001	ien n – 4.			Carry flag
		X47 X44		
	<u>Y1BY18</u>	Y17Y14	<u>Y13Y10</u>	(S <u>M7</u> 00)
	0 0 0 0	1 0 1 0	1 0 1 0	→ 1

Become 0


• Specify any of 0 to 15 for n. The number of bits that shift is the remainder of n divided by 'number of bits specified by digit specification'. For example, when n = 15 and 'number of bits specified by digit specification' = 8 bits, the remainder of 18 ÷ 16 = 1 is 2, thus the data are shifted 7 bits.

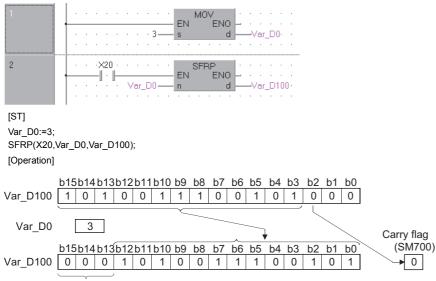
#### ■SFL(P)

• Shifts 16-bit data in the device specified for (d) n bits to the left. The n bits from the lowest bit become 0.



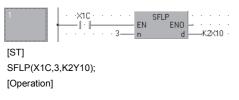
• When a bit device is specified for (d), a left shift is performed within the device range set by digit specification.

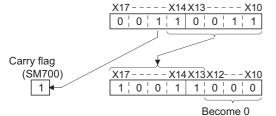



• Specify any of 0 to 15 for n. If the value specified for n is 16 or higher, the remainder of n divided by 16 is used for left shift. For example, when n = 18, the remainder of  $18 \div 16 = 1$  is 2, thus the data are shifted 2 bits to the left.

#### **Operation error**

• There is no operation error.


• In the following program, the data in Var_D0 are shifted to the right by the number of bits specified for Var_D100 when X20 turns ON.


[Structured ladder/FBD]



Become 0

• In the following program, the data in the devices from X10 to X17 are shifted 3 bits to the left when X1C turns ON. [Structured ladder/FBD]





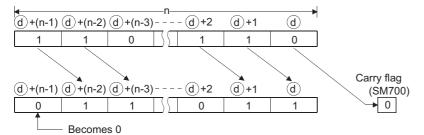
# 1-bit right/left shift of n-bit data

# BSFR(P), BSFL(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD Structured ladder/FBD EN ENO n d ENO:= BSFR (EN, n, d);

Any of the following instruction can go in the dotted squares. BSFR, BSFRP, BSFL, BSFLP

#### ■Executing condition

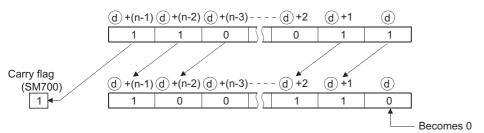
Instruction	Executing condition
BSFR, BSFL	
BSFRP, BSFLP	


#### ■Argument

Input/output Name argument			Description						Data type			
Input argument EN			Executing condition					Bit				
n				Number of devices to be shifted						ANY16		
Output argument ENO d			Execution result					Bit				
		d		Start number of the device to be shifted					Bit			
Setting data	Internal device		R, Z	R	10/D		UD\GD	Zn		Constant	Others	
	Bit	Word			Bit	Word				К, Н		
n	0	0									—	
(d)	0	—									—	

#### Processing details

#### ■BSFR(P)


• Shifts the data n points from the device specified for (d) to the right by 1 bit.



• The device specified for (d) + (n - 1) becomes 0.

# ■BSFL(P)

• Shifts the data n points from the device specified for (d) to the left by 1 bit.



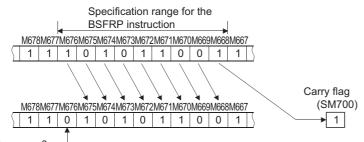
• The device specified for (d) becomes 0.

#### **Operation error**

 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

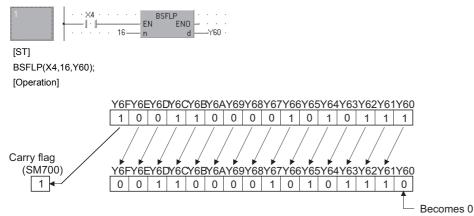
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (d) exceeds the corresponding device.	0	0	0	0	0	0

### Program example


• In the following program, the data in the devices from M668 to M676 are shifted to the right when X8F turns ON. [Structured ladder/FBD]



#### [ST]


BSFRP(X8F,9,M668);

[Operation]



Becomes 0 -

• In the following program, the data in the devices from Y60 to Y6F are shifted to the left when X4 turns ON. [Structured ladder/FBD]



7

# Precautions

When using the BSFR/BSFL instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

# n-bit right/left shift of n-bit data

# SFTBR(P), SFTBL(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

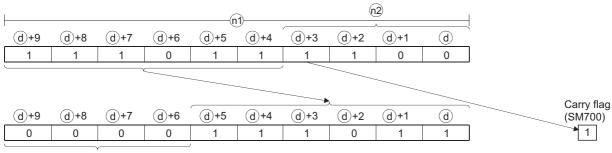
Structured	ladder/FBD	ST
=	ENO d	ENO:= SFTBR (EN, n1, n2, d);

Any of the following instruction can go in the dotted squares. SFTBR, SFTBRP, SFTBL, SFTBLP

#### ■Executing condition

Instruction	Executing condition
SFTBR, SFTBL	
SFTBRP, SFTBLP	

### ■Argument


Input/outpu argument	t	Name		Descri	Description Data						Data type		
Input argument EN				Executi	Executing condition Bit								
n1 n2				Numbe	r of devices to b	ANY	'16						
				Number of shifts						ANY16			
Output argument ENO				Execution result Bit									
		d		Start number of the device to be shifted					Bit				
Setting	Internal d	al device R		R	۲ JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word			К, Н				
n1	—	0	0		0						—		
n2	—	0	0		0					—			
(d)	O*1	—	0		—						—		

*1 T, C, ST, or S device cannot be used.

# Processing details

### ■SFTBR(P)

• Shifts the n1-bit data from the device specified for (d) to the right by n2 bit. When n1 = 10, n2 = 4



Become 0

• n1 and n2 are specified as n1 > n2. When n1  $\leq$  n2, bits are shifted by the amount of the remainder obtained from dividing n2 by n1. However, no processing is performed if the value of the remainder obtained from dividing n2 by n1 is 0.

- n1 is specified within the range from 1 to 64.
- The n2 bits from the most significant bit become 0. When n1 < n2, the bits equal to the amount of the remainder obtained from dividing n2 by n1 become 0.
- No processing is performed if 0 is specified for n1 or n2.

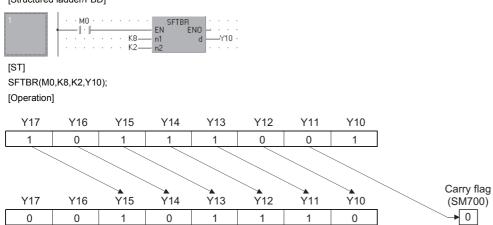
# ■SFTBL(P)

• Shifts the n1-bit data from the device specified for (d) to the left by n2 bit. When n1 = 10, n2 = 4

	<u> </u>	(1	12)						
	(d)+8	(d)+7		(d)+5	d+4	(d)+3	(d)+2	(d)+1	d
	1	1	0	1	1	1	1	0	1
		_					Y		
Carry flag			-						
(SM700)	(d)+8	(d)+7	(d)+6	(d)+5	(d)+4	d+3	(d)+2	(d)+1	d
1	1	1	1	0	1	0	0	0	0
				-		, v	v	0	v

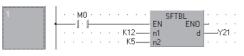
- n1 and n2 are specified as n1 > n2. When n1 ≤ n2, bits are shifted by the amount of the remainder obtained from dividing n2 by n1. However, no processing is performed if the value of the remainder obtained from dividing n2 by n1 is 0.
- n1 is specified within the range from 1 to 64.
- The n2 bits from the lowest bit become 0. When n1 < n2, the bits equal to the amount of the remainder obtained from dividing n2 by n1 become 0.
- No processing is performed if 0 is specified for n1 or n2.

#### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for n1 is not within 0 to 64. A negative value is specified for n2.	—	—	—	—	0	0
4101	The device points specified for n1 exceed the device range specified for (d).	—	—	—	—	0	0

# Program example


• In the following program, the data in the devices from Y10 to Y17 (8 bits) specified for (d) are shifted to the right by 2 bits (n2) when M0 turns ON.

[Structured ladder/FBD]



• In the following program, the data in the devices from Y21 to Y2C (12 bits) specified for (d) are shifted to the left by 5 bits (n2) when M0 turns ON.

[Structured ladder/FBD]



#### [ST] SFTBL(M0,K12,K5,Y21); [Operation]

	Y2C	Y2B	Y2A	Y29	Y28	Y27	Y26	Y25	Y24	Y23	Y22	Y21
	1	0	1	1	0	1	0	1	1	0	0	1
Carry flag (SM700)												
0	Y2C	Y2B	Y2A	Y29	Y28	Y27	Y26	Y25	Y24	Y23	Y22	Y21
	1	0	1	1	0	0	1	0	0	0	0	0

#### Precautions

When using the SFTBR/SFTBL instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

# 1-word right/left shift of n-word data

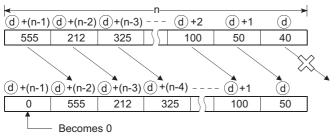
# DSFR(P), DSFL(P)

Basic High performance Process Redundant Un	niversal
Structured ladder/FBD	ST
EN ENO	ENO:= DSFR (EN, n, d);

Any of the following instruction can go in the dotted squares. DSFR, DSFRP, DSFL, DSFLP

### ■Executing condition

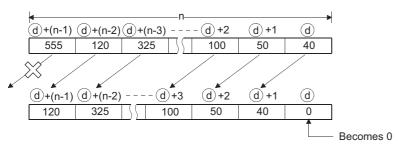
Instruction	Executing condition
DSFR, DSFL	
DSFRP, DSFLP	


### ■Argument

Input/outpu argument	t	Name		Description I						Data type			
Input argument EN				Executing condition						Bit			
n				Number of devices to be shifted						ANY16			
Output argument ENO				Execution result						Bit			
d				Start number of the device to be shifted					ANY16				
Setting	Internal d	rnal device R,		R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
n	0	0			0						-		
(d)	—	0			-						-		

# Processing details

### ■DSFR(P)


• Shifts the data n points from the device specified for (d) to the right by 1 word.



• The device specified for (d) + (n - 1) becomes 0.

# ■DSFL(P)

• Shifts the data n points from the device specified for (d) to the left by 1 word.

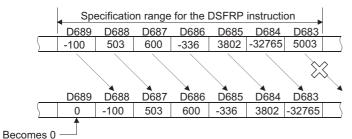


· The device specified for (d) becomes 0.

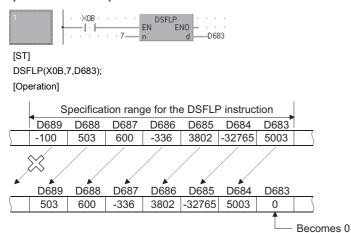
# **Operation error**

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (d) exceeds the corresponding device.	0	0	0	0	0	0


### Program example

• In the following program, the data from D683 to D689 are shifted to the right when X0B turns ON. [Structured ladder/FBD]


#### [ST]

DSFRP(X0B,7,D683);

[Operation]



• In the following program, the data from D683 to D689 are shifted to the left when X0B turns ON. [Structured ladder/FBD]



# Precautions

When using the DSFR/DSFL instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to F Page 63 Precautions on Programming.

# n-word right/left shift of n-word data

# SFTWR(P), SFTWL(P)



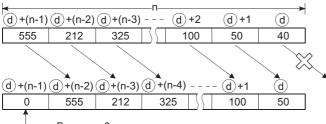
• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Structured la	adder/FBD	ST
= SFTV = EN = n1 = n2	ENO - d	ENO:= SFTWR (EN, n1, n2, d);

Any of the following instruction can go in the dotted squares. SFTWR, SFTWRP, SFTWL, SFTWLP

### ■Executing condition

Instruction	Executing condition
SFTWR, SFTWL	
SFTWRP, SFTWLP	


### ■Argument

Input/outpu argument	ıt	Name		Description						Data type		
Input argumer	nt	EN		Executi	ng condition				Bit			
n1				Number	Number of words to be shifted AN					ANY16		
n2				Number	r of words				ANY16			
Output argument ENO				Execution result Bit					Bit	Bit		
	d		Start nu	Start number of the device to be shifted					ANY16			
Setting	Internal d	device R		, ZR J⊡\□			UD\GD	Zn	Constant	Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
n1	—	0	0		0						—	
n2	—	0	0		0						—	
(d)	—	0	0		—						—	

# Processing details

### ■SFTWR(P)

- Shifts the n1-word data from the device specified for (d) to the right by n2 word. When n1 = 9, n2 = 4



— Becomes 0

• The n2 words from the most significant word become 0.

• No processing is performed if 0 is specified for n1 or n2.

• When  $n1 \le n2$ , all n1-word data from the device specified for (d) become 0.

#### ■SFTWL(P)

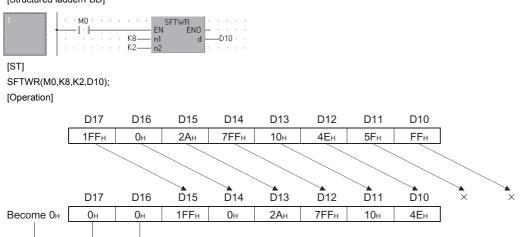
• Shifts the n1-word data from the device specified for (d) to the right by n2 word. When n1 = 9, n2 = 4

	n	2		—(n1)—				
(d)+8		d+6	(d)+5	d+4	(d)+3	(d)+2	(d)+1	d
1FFн	10н	0н	7FFH	ЗАн	1Fн	30н	0н	FFн
		4						
(d)+8	(d)+7	(d)+6		(d)+4	d+3	(d)+2	(d)+1	d
(d)+8 ЗАн	(d)+7 1Fн	(d)+6 30н	(d)+5 Он	(d)+4 FFн	 0н	(d)+2 Он	(d)+1 Он	<u>(</u> Он

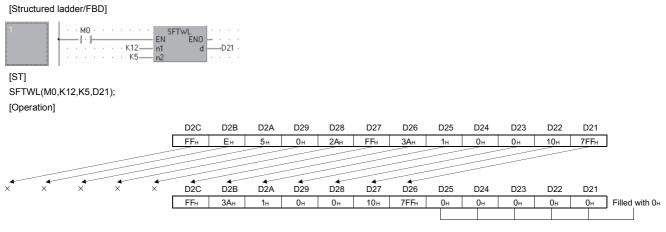
• The n2 words from the lowest word becomes 0.

- No processing is performed if 0 is specified for n1 or n2.
- When  $n1 \le n2$ , all n1-word data from the device specified for (d) become 0.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	A negative value is specified for n1 or n2.	—	—	—	—	0	0
4101	The device points specified for n1 exceed the device range specified for (d).	—	—	—	—	0	0


# Program example

• In the following program, the 8-word data (n1) from D10 specified for (d) are shifted to the right by 2 words (n2) when M0 turns ON.

[Structured ladder/FBD]



• In the following program, the 12-word data (n1) from D21 specified for (d) are shifted to the left by 5 words (n2) when M0 turns ON.



# Precautions

When using the SFTWR/SFTWL instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

# 7.4 Bit Processing Instructions

# Bit set and reset of word devices

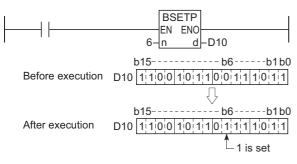
# BSET(P), BRST(P)

Basic performance Process Redundant Un	ICPU
Structured ladder/FBD	ST
EN ENO	ENO:= BSET (EN, n, d);

Any of the following instruction can go in the dotted squares. BSET, BSETP, BRST, BRSTP

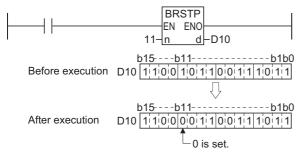
# ■Executing condition

Instruction	Executing condition
BSET, BRST	
BSETP, BRSTP	


# ■Argument

Input/outpu argument	t	Name	Description						Data	a type		
Input argumen	t	EN		Executing condition						Bit		
	n				Bit number to be set or reset (0 to 15)					ANY16		
Output argument ENO				Execution result					Bit			
d				Device number whose bit is set or reset					ANY16			
Setting	Internal device		R, Z	R, ZR J□\□			UD\GD			Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
n	0		0 -						-			
(d)	0									—	—	

### Processing details


### ■BSET(P)

- Sets (to 1) the nth bit of the word device specified for (d).
- If n exceeds 15, bit set/reset is performed with the lower 4 bits of the data.



# ■BRST(P)

- Resets (to 0) the nth bit of the word device specified for (d).
- If n exceeds 15, bit set/reset is performed with the lower 4 bits of the data.



# Operation error

• There is no operation error.

### Program example

• In the following program, the 8th bit (b8) of Var_D8 is reset to 0 when X0B turns OFF, and the 3rd bit (b3) of Var_D8 is set to 1 when X0B turns ON.

[Structured ladder/FBD]

1	BRSTP     EN     EN     EN       I / I     EN     EN     A       N     N     A     A
2	Sets b3 of Var_D8.
[ST] BRSTP(NOT(X0B BSETP(X0B,3,Var [Operation]	
Before executior	b15 b8 b3 b0 Var_D8 $0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1$ When X0B turns OFF. b15 b8 b3 b0
After execution	Var_D8
Point	
	Bit set or reset of word devices can also be performed by bit specification of word device.
	For details on bit specification of word device, refer to the User's Manual (Functions Explanation, Program
	Fundamentals) of the CPU module to be used.
	The processing of the program example would be performed as shown below with the bit specification of word
	device.
	X0B RST EN ENO d D8.8 Specification of b8 of D8
	X0B EN ENO d-D8.3
	Specification of b3 of D8

# Bit test

TEST(P), DTEST(P)										
Basic	High performance Proc	ess Redundant	Universal LCPU							
Stru	ctured lac	lder/FBD	ST							
-	EN s1 s2	ENO —	ENO:= [ (EN, s1, s2, d);							

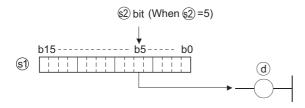
Any of the following instruction can go in the dotted squares. TEST, TESTP, DTEST, DTESTP

# ■Executing condition

Instruction	Executing condition
TEST, DTEST	
TESTP, DTESTP	

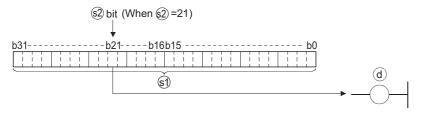
# ■Argument

Input/outpu argument	t	Name		Description					Data type		
Input argumen	nt	EN		Executi	ng condition				Bit		
	s1		Start device number of the device that stores bit data to be extracted						ANY16/32		
s2				Position of bit data to be extracted (0 to 15 (TEST)/0 to 31 (DTEST))					ANY16		
Output argume	ent	ENO		Execution result					Bit		
		d		Bit device number that stores extracted bit data					Bit		
Setting	Internal of	al device R		२	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word				К, Н	
(s1)	0							0		—	—
(s2)	0							0		0	—


# Processing details

0

### ■TEST(P)


(d)

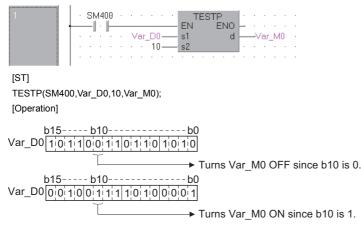
- Fetches bit data from the location specified for (s2) within the word device specified for (s1), and writes it to the bit device specified for (d).
- The bit device specified for (d) is turned OFF when the corresponding bit is 0 and ON when it is 1.
- The position specified for (s2) specifies the position of each bit in a 1-word data block (0 to 15). When 16 or higher value is specified for (s2), the target is the bit data at the position indicated by the remainder of n divided by 16. For example, when n = 18, the remainder of 18 ÷ 16 1 is 2, thus the target is the data of b2.



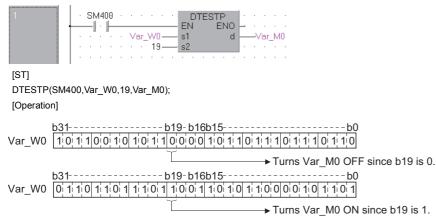
# ■DTEST(P)

- Fetches bit data from the location specified for (s2) within the 2-word device specified for (s1), and writes it to the bit device specified for (d).
- The bit device specified for (d) is turned OFF when the corresponding bit is 0 and ON when it is 1. If (n) exceeds 15, the instruction sets lower 4 bits of data.
- The position specified for (s2) specifies the position of each bit in a 2-word data block (0 to 31). When 32 or higher value is specified for (s2), the target is the bit data at the position indicated by the remainder of n divided by 32. For example, when n = 34, the remainder of 34 ÷ 32 1 is 2, thus the target is the data of b2.



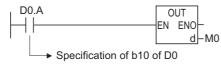

### **Operation error**

• There is no operation error.


#### Program example

• In the following program, Var_M0 is turned ON or OFF depending on the status of the 10th bit of the 1-word data block (Var D0).

[Structured ladder/FBD]




• In the following program, Var_M0 is turned ON or OFF, depending on the status of the 19th bit of the 2-word data (Var_W0). [Structured ladder/FBD]





Programs using the bit test instruction can be rewritten as programs using bit specification of word device. If the program were changed to use bit specification of word device, it would appear as follows.



M0 turns ON/OFF depending on the ON/OFF status of b10 of D0 (D0.A).

# Batch reset of bit devices

# **BKRST(P)**

Basic High performance Process Red	undant Universal	LCPU
Structured ladder/F	BD	ST
	-	ENO:= BKRST (EN, s, n);
s		

Any of the following instruction can go in the dotted squares. BKRST, BKRSTP

### ■Executing condition

Instruction	Executing condition
BKRST	
BKRSTP	

# ■Argument

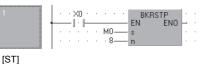
Input/outpu argument	t	Name		Descri	Description Data type					a type		
Input argument EN				Executing condition					Bit			
s n				Start nu	Start number of the device to be reset					Bit		
				Number of devices to be reset				ANY16				
Output argument ENO E			Execution result					Bit				
Setting	Internal d	device R, Z		R	JD/D		UD\GD	Zn	Constant	Others		
data	Bit	Word			Bit	Word			К, Н	К, Н		
(s)	0				-					•	-	
n	0				0						—	

# Processing details

• Resets bit devices n points from the bit device specified for (s).

Device	Status
Annunciator (F)	<ul> <li>Turns OFF bit devices n points from annunciator (F) number specified for (s).</li> <li>Deletes annunciator number turned OFF from SD64 to SD79 and compresses remaining data forward.</li> <li>Stores annunciators stored in SD64 to SD79, to SD63.</li> </ul>
Timer (T) Counter (C)	Sets 0 for the current value n points from the timer (T) or counter (C) number specified for (s), and turns the coil or contact OFF.
Bit devices other than the above	Turns OFF coil or contact n points from the device specified for (s).

• If the specified device is OFF, the device status will not change.

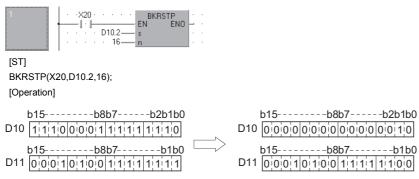

### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (d) exceeds the corresponding device.	0	0	0	0	0	0

### Program example

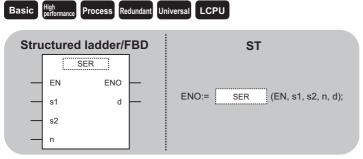
• In the following program, the devices from M0 to M7 are turned OFF when X0 turns ON. [Structured ladder/FBD]




BKRSTP(X0,M0,8); [Operation]

M9M8M7M4M3M0		M9M8M7M4M3M0
1110011100	$\square$	11000000000

Not changed


• In the following program, the data from 2nd bit (b2) of D10 to 1st bit (b1) of D11 are set to 0 when X20 turns ON. [Structured ladder/FBD]



# 7.5 Data Processing Instructions

# 16-/32-bit data search

# SER(P), DSER(P)

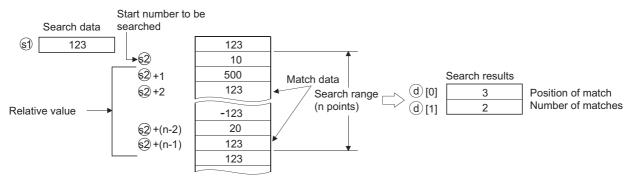


Any of the following instruction can go in the dotted squares. SER, SERP, DSER, DSERP

### ■Executing condition

Instruction	Executing condition	
SER, DSER		
SERP, DSERP		

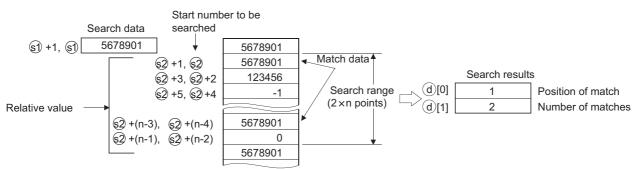
### ■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Search data	ANY16/32
	s2	Data to be searched	ANY16/32
	n	Number of searches	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the search result	Array of ANY16 (01)

Setting	Internal dev	I device R, ZR		nal device R, ZR J□\□		UD\GD	Zn	Constant	Others
data	Bit	Word Bit	Word	К, Н					
(s1)	0	0		0	0			0	-
(s2)	-	0	0		—			—	-
n	0	0	0		0			0	-
(d)	-	0		—	0			-	-

# Processing details

### ■SER(P)


• Searches n points from the 16-bit data of the device specified for (s2), regarding 16-bit data of the device specified for (s1) as a keyword. Then, the number of matches with the keyword is stored to the device specified for (d)[1], and the relative value from (s2) to the first matched device number is stored to the device specified for (d)[0].



- No processing is performed if n is 0 or a negative value.
- If no matches are found in the search, the device specified for (d) becomes 0.

### ■DSER(P)

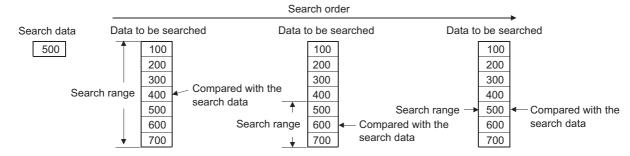
Searches n points from the device specified for (s2) in units of 32 bits (2 × n points in units of 16 bits) regarding 32-bit data of the device specified for (s1) as a keyword. Then, the number of matches with the keyword is stored to the device specified for (d)[1], and the relative value from (s2)to the first matched device number is stored to the device specified for (d)[0].



· No processing is performed if n is 0 or a negative value.

• If no matches are found in the search, the device specified for (d) becomes 0.




If the data to be searched using the SER(P) or DSER(P) instruction is sorted in the ascending order, searches can be accelerated by the use of the binary search method, which is activated by turning SM702 ^{*1} ON. However, correct search results are not obtained if SM702 is turned ON when the data to be searched are not sorted in the ascending order.

#### *1 SM702 is the special relay for setting the search method.

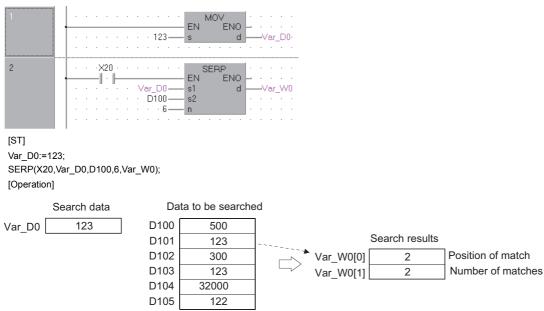
SM702 OFF: Linear search method (linear search method)

(Comparison with the search data starts from the beginning of the data to be searched.) • SM702 ON: Binary search method

(Obtains the center value of the sorted array and decides if the obtained value is larger or smaller than the search value, then, chooses the area for search between the larger and smaller value divisions. By repeating this process, the area for search is narrowed down.)



# Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The n points from the device (s2) exceeds the specified device range.	0	0	0	0	0	0
	The device specified for (d) exceeds the corresponding device range.	-	-	—	—	0	0

# Program example

• In the following program, the devices from D100 to D105 are searched by the data in Var_D0 when X20 turns ON, and the results are stored to Var W0.

[Structured ladder/FBD]



• In the following program, the devices from D100 to D111 are searched by the data in Var_D10 when X20 turns ON, and the results are stored to Var_W0.

[Structured ladder/FBD]

1	· · · · · · · · · · · · · · · · · · ·	•
		•
2		•
	s1 d	·
	· · · · · · · D100 — s2 · · · · · · · · · · · · · · · · · ·	Ì

[ST]

Var_D10:=56789051;

DSERP(X20,Var_D10,D100,6,Var_W0);

[Operation]

	Search data	Da	ta to be searche	d		
Var_D10	56789051	D101,D100	200000			
		D103,D102	56789051		Search results	_
		D105,D104	56789051	Var_W0[0]	2	Position of match
		D107,D106	-30000	Var W0[1]	3	Number of matches
		D109,D108	56789051			
		D111,D110	30000			

# 16-/32-bit data bit check

# SUM(P), DSUM(P)

Basic High performance Process Redundant Ur	liversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= SUM (EN, s, d);

Any of the following instruction can go in the dotted squares. SUM, SUMP, DSUM, DSUMP

### ■Executing condition

Instruction	Executing condition
SUM, DSUM	
SUMP, DSUMP	

# ■Argument

Input/output argument	t	Name		Description [					Data	Data type			
Input argumen	t	EN		Executing condition Bit						Bit			
s				Data whose total number of bits set to 1 is counted ANY					ANY	NY16/32			
Output argument ENO				Execution result Bi					Bit	Bit			
		d		Start number of the device that stores the total number of bits					ANY16				
Setting	Internal d	evice	R, Z	R	R JD\D UD\GD Zn				Constant	Others			
data	Bit	Word			Bit	Word				К, Н			
(S)	0		0 -								-		
(d)	0									—	—		

### Processing details

### ■SUM(P)

• From the 16-bit data in the device specified for (s), stores the total number of bits set to 1, to the device specified for (d).

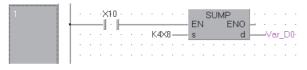
Stores the total number of bits where 1 is set in BIN data. (There are 8 bits where 1 is set in the example.)

### ■DSUM(P)

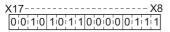
• From the 32-bit data in the device specified for (s), stores the total number of bits where 1 is set, to the device specified for (d).



(There are 16 bits where 1 is set in the example.)


#### Operation error

· There is no operation error.

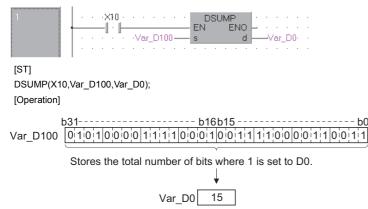

#### Program example

• In the following program, the number of bits which are turned ON in the devices from X8 to X17 are stored to Var_D0 when X10 turns ON.

[Structured ladder/FBD]



[ST] SUMP(X10,K4X8,D0); [Operation]




Stores the total number of bits where 1 is set to Var_D0.



• In the following program, the number of bits which are turned ON in Var D100 are stored to Var D0 when X10 turns ON. [Structured ladder/FBD]

- b0



# Decoding from 8 to 256 bits

# DECO(P)

Basic	High performance Process	Redundant U	niversal
Stru	ctured ladde	r/FBD	ST
-	DECO EN EN s n	d	ENO:= DECO (EN, s, n, d);

Any of the following instruction can go in the dotted squares. DECO, DECOP

### ■Executing condition

Instruction	Executing condition
DECO	
DECOP	

### ■Argument

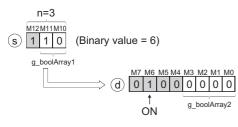
Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Decoding data, or start number of the device that stores decoding data	ANY_SIMPLE
	n	Valid bit length (1 to 8), no processing on 0	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores decoding result	ANY_SIMPLE

Setting	Internal device R, ZR		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Bit Word		Bit	Word			К, Н	
(s)	0			0				0	—
n	0	0		0			0	—	
(d)	0			_				—	—

#### Processing details

• Turns ON the bit position of (d), which corresponds to the binary value specified by the lower n bits of (s).

(s) 
$$1 1 0$$
 (Binary value = 6)  
(d)  $7 6 5 4 3 2 1 0$   
(d)  $0 1 0 0 0 0 0 0$   
ON


- The value of n can be specified between 1 and 8.
- If n = 0, there will be no operation, and the content of (d) will not change.
- Bit devices are treated as 1 bit, and word devices as 16 bits.
- More than n bits are required for (s). When using a label, specify the data type of n bits, or array type label of n bits.
- More than 2ⁿ bits are required for (d). When using a label, specify the data type of 2ⁿ bits, or array type label of 2ⁿ bits.

### Precautions

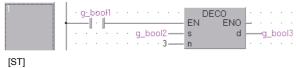
The devices set as array type labels specified for (s) and (d) are used for the operation regardless of whether the required device points are reserved or not. Therefore, when the devices which are out of the range of device points set as array type labels are used for another operation, an operation error occurs and it may cause malfunction of the CPU module.

Ex.						
	Class	Label Name	Data Type		Constant	Device
1	VAR_GLOBAL	g_bool1	Bit			M10
2	VAR_GLOBAL	g_boolArray1	Bit(01)			MO
3	VAR_GLOBAL	g_boolArray2	Bit(03)			M6
1		0EN g_boolArray1[0]s 	ECO ENO d 	 oolA	rray2 <b>[0]</b>	
2		ofi · · · · · · · · · · · · · · · · · · ·		- ·		

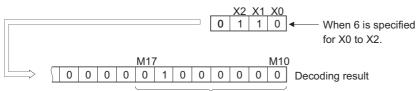
As shown above, the binary value including the devices of the 3rd bit (M12) is used because 3 bits are required for (s). The next device and the following devices (M4 to M7) are used for the 4th bit to the 7th because 8 bits are required for (d). When 6 is specified for the binary value used for (s) as shown below, g_bool1 turns ON because M6 turns ON.



# Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value for n is not between 0 and 8.	0	0	0	0	0	0
4101	The range of 2 ⁿ bits from (d) exceeds the corresponding device. The range of n bits from (s) exceeds the each setting area of the corresponding device.	0	0	0	0	0	0

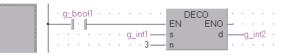

# Program example

• In the following program, the 3 bits from g_bool2 (X0) are decoded when g_bool1 turns ON, and the results are stored to g_bool3 (M10) and the following devices.

[Structured ladder/FBD]



DECOP(g_bool1,g_bool2,3,g_bool3); [Operation]



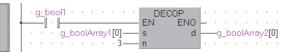

If 3 bits are specified as significant bits, 8 points are occupied.

• In the following program, the lower 3 bits of g_int1 (D0) are decoded when g_bool1 turns ON, and the results are stored to

g_int2 (D10) and the following devices.

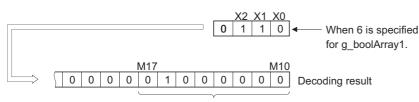
[Structured ladder/FBD]




[ST] DECOP(g_bool1,g_int1,3,g_int2); [Operation]

If 3 bits are specified as significant bits, 8 points are occupied.

• In the following program, the 3 bits from g_boolArray1[0] are decoded when g_bool1 turns ON, and the results are stored to g_boolArray2[0] and the following devices. The array label settings are as follows.


Class	Label	Data type	Device
VAR_GLOBAL	g_boolArray1	Bit(02)	X0
VAR_GLOBAL	g_boolArray2	Bit(07)	M10

[Structured ladder/FBD]



[ST]

DECOP(g_bool1,g_boolArray1[0],3,g_boolArray2[0]); [Operation]



If 3 bits are specified as significant bits, 8 points are occupied.

# Encoding from 256 to 8 bits

# ENCO(P)

Basic High	rmance Process Re	dundant Ur	niversal LCPU
Struct	ured ladder/F	BD	ST
— El — s — n	ENCO N ENO d		ENO:= ENCO (EN, s, n, d);

Any of the following instruction can go in the dotted squares. ENCO, ENCOP

### ■Executing condition

Instruction	Executing condition
ENCO	
ENCOP	

# ■Argument

Input/outpu argument	ıt	Name		Descri	iption				Data type			
Input argument EN				Executi	ng condition				Bit			
	s		Start nu	Start number of the device that stores encoding data				ANY_SIMPLE				
n				Valid bit length (1 to 8), no processing on 0						ANY16		
Output argument ENO			Execution result				Bit					
		d		Start nu	start number of the device that stores encoding result				ANY16			
Setting	Internal c	rnal device		R	10/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
(s)	0				<u> </u>				—	—		
n	0				0					0	—	
(d)	0				0					—	—	

### Processing details

• Stores the binary value corresponding to the bits set to 1 in the 2ⁿ-bit data of (s) to (d).

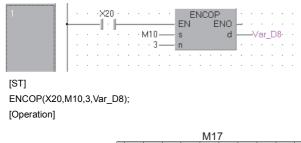
8 7 6 5 4 3 2 1 0 0 0 1 0 0 0 0 0 0 (s)

 $\Rightarrow$  d 1 1 0 (Binary value = 6)

- The value of n can be specified between 1 and 8.
- If n = 0, there will be no operation, and the content of (d) will not change.
- Bit devices are treated as 1 bit, and word devices as 16 bits.
- If more than 1 bit is set to 1, processing will be performed at the upper bit position.

• More than 2ⁿ bits are required for (s). When using a label, use the data type that can reserve 2ⁿ bits, or reserve 2ⁿ bits or more for (d) or later devices by using array. For data type that can be used for (s) and the number of array elements by the value of n, refer to the following table.

Value	Data type	s that can	be specifie	ed for (s) and numb	er of array elem	ient			
specified n	Bit	Word (signed)	Double word (signed)	Word (unsigned)/ 16-bit string	Double word (unsigned)/ 32-bit string	Single- precision real	Double- precision real	String (32 characters)	Time
1	1 point	1 point	1 point	1 point	1 point	1 point	1 point	1 point	1 point
2	4 points	1 point	1 point	1 point	1 point	1 point	1 point	1 point	1 point
3	8 points	1 point	1 point	1 point	1 point	1 point	1 point	1 point	1 point
4	16 points	1 point	1 point	1 point	1 point	1 point	1 point	1 point	1 point
5	32 points	2 points	1 point	2 points	1 point	1 point	1 point	1 point	1 point
6	64 points	4 points	2 points	4 points	2 points	2 points	1 point	1 point	2 points
7	128 points	8 points	4 points	8 points	4 points	4 points	2 points	1 point	4 points
8	256 points	16 points	8 points	16 points	8 points	8 points	4 points	2 points	8 points


# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value for n is not between 0 and 8. All data of 2 ⁿ bits from (s) are 0.	0	0	0	0	0	0
4101	The range of 2 ⁿ bits from (s) exceeds the corresponding device.	0	0	0	0	0	0

# Program example

• In the following program, the 3 bits from M10 are encoded when X20 turns ON, and the results are stored to Var_D8. [Structured ladder/FBD]



				Σ	0	0	0	0	0	0	0	0	1	0	0	0	
		lf	3 bit	ts ar	e sp	ecif	ied a	as si	gnif	can	t bits	5, 8	poin	ts ai	e oo	cup	ied.
							St	orag	je de	evice	e Va	r_D	8				
$\sqsubseteq >$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	Encoding result

The location of the ON bit, counted from M10, is stored in BIN data.

 The 3 bits from L_ArrayENCO_S[0] are encoded when X20 turns ON, and the results are stored to L_ENCO_D. Example of the program using an array label

M10

[Structured ladder/FBD]

· · L_Array_ENCO_S[0] s d L_ENCO_D · ·	

[ST]

ENCOP(X20,L_ArrayENCO_S[0],3,L_ENCO_D);

The lower 3 bits of L_WORD1 are encoded when X20 turns ON, and the results are stored to L_WORD2. Example of the
program using a label

[Structured ladder/FBD]

•		•	•	•	· ·X20	) I	ENC		Ŀ				• •	
					L_WOR	D1 —	S	d		-L	.w	ÖF	RD2	
•	·	÷	·	•	• • •	· 3 —	n		•	÷	·	•	•	•

[ST]

ENCOP(X20,L_WORD1,3,L_WORD2);

# 7-segment decode

# SEG(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST SEG EN ENO s d ENO:= SEG (EN, s, d);

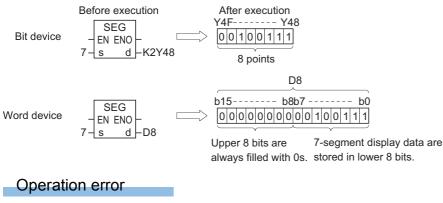
Any of the following instruction can go in the dotted squares.  $\ensuremath{\mathsf{SEGP}}$ 

# ■Executing condition

Instruction	Executing condition
SEG	
SEGP	

# ■Argument

Input/output argument	t	Name		Descri	ption				Data	a type				
Input argumen	t	EN		Executi	ng condition				Bit	Bit				
	s				Decoding data, or start number of the device that stores decoding data						ANY16			
Output argume	Output argument ENO				Execution result						Bit			
		d		Start number of the device that stores the decoding result					ANY	ANY16				
Setting	Internal d	evice	R, Z	R	R JO/O UO/GO Zi			Zn		Constant	Others			
data	Bit	Word			Bit	Word				К, Н				
(S)	0	·								0	-			
(d)	0									—	—			


# Processing details

• Decodes the data from 0 to F specified for the lower 4 bits of (s) to 7-segment display data, and stores to (d).

(s)		Configuration of 7	(d)										
Hexadecimal	Bit pattern	segments	B7	<b>B6</b>	B5	B4	B3	B2	B1	B0 ^{*1}			
0	0000	BO	0	0	1	1	1	1	1	1	0		
1	0001	B5 B1	0	0	0	0	0	1	1	0	-		
2	0010	B6	0	1	0	1	1	0	1	1	2		
3	0011	B4 B2	0	1	0	0	1	1	1	1	3		
4	0100	B3	0	1	1	0	0	1	1	0	Ч		
5	0101		0	1	1	0	1	1	0	1	5		
6	0110		0	1	1	1	1	1	0	1	8		
7	0111		0	0	1	0	0	1	1	1	ŋ		
8	1000		0	1	1	1	1	1	1	1	8		
9	1001		0	1	1	0	1	1	1	1	9		
A	1010		0	1	1	1	0	1	1	1	8		
В	1011		0	1	1	1	1	1	0	0	6		
С	1100		0	0	1	1	1	0	0	1	5		
D	1101		0	1	0	1	1	1	1	0	6		
E	1110		0	1	1	1	1	0	0	1	8		
F	1111		0	1	1	1	0	0	0	1	F		

*1 Start number of bit device, or the lowest bit of word device

• If (d) is a bit device, indicates the start number of the devices storing the 7-segment display data, and if it is a word device, indicates the number of the device storing the data.



• There is no operation error.

# Program example

• In the following program, the data from XC to XF are converted to 7-segment display data and the results are output to the devices from Y38 to Y3F when X0 turns ON.

[Structured ladder/FBD]

[ST]	
SEGP(X0,K1X0C,K2Y38);	
[Timing chart]	
xo	
Y38 to Y3F ¹	

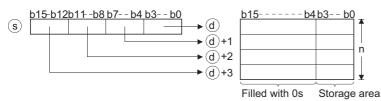
*1: The data Y38 to Y3F will not change until the next data are output.

# 4-bit separation of 16-bit data

DIS(F	<b>?</b> )						
Basic	High performance	Process	Redundant	Universal	LCPU		
Stru		l ladde	r/FBD			ST	
	EN s n	EN	- C d -		ENO:=	DIS	(EN, s, n, d)

Any of the following instruction can go in the dotted squares. DIS, DISP

# ■Executing condition


Instruction	Executing condition
DIS	
DISP	

# ■Argument

Input/outpu argument	t	Name		Descri	ption				Data	a type					
Input argumer	nt	EN		Executi	ng condition				Bit	ANY16 ANY16 Bit					
		s		Start nu	mber of the dev	ice that stores d	ata to be separa	ted	Bit ANY16 ANY16 Bit ANY16 Constant Other						
n				Number	Number of separations (1 to 4), no processing on 0 ANY16										
Output argum	ent	ENO		Execution result					Bit				Bit		
		d		Start number of the device that stores separated data					ANY	ANY16					
Setting	Internal d	evice	R, Z	, ZR J□\□			UD\GD	Zn		Constant	Others				
data	Bit	Word			Bit	Word				К, Н					
(s)	0	0			0						-				
n	0	0			0						—				
(d)	-	0	-								-				

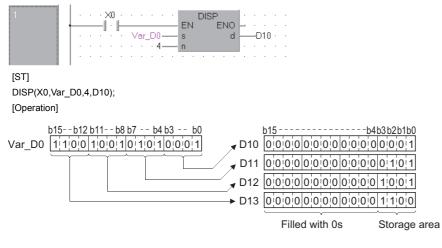
### Processing details

• Stores the lower n digits (1 digit is 4 bits) of the 16-bit data specified for (s) to the lower 4 bits n points from the device specified for (d).



- The upper 12 bits n points from the device specified for (d) become 0.
- The value of n can be specified between 1 and 4. When 0 is specified, no processing will be performed and the content of (d) will not change.
- If n = 0, there will be no processing, and the content of n points from (d) will not change.

# Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value for n is not between 0 and 4.	0	0	0	0	0	0
4101	The range of n points from the device specified for (d) exceeds the corresponding device.	0	0	0	0	0	0

### Program example

• In the following program, the 16-bit data in Var_D0 are separated into 4-bit groups, and the results are stored to the devices from D10 to D13 when X0 turns ON.

[Structured ladder/FBD]



#### Precautions

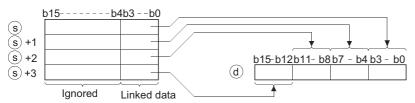
When using the DIS instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to F Page 63 Precautions on Programming.

# 4-bit connection of 16-bit data

# UNI(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST ENN ENO s d n (EN, s, n, d);

Any of the following instruction can go in the dotted squares. UNI, UNIP

# ■Executing condition


Instruction	Executing condition						
UNI							
UNIP							

# ■Argument

Input/output argument		Name		Description					Data type			
Input argument		EN		Executing condition					Bit			
		s		Start number of the device that stores data to be connected					ANY16			
		n Nu			Number of connections (1 to 4), no processing on 0				ANY16			
Output argument		ENO Exec			Execution result					Bit		
		d		Start number of the device that stores connected data					ANY16			
Setting	Internal d	nal device		R	JD/D		□U\□G	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
(s)	—	0			—					—	—	
n	0	0			0				0	—		
(d)	0	0			0					—	—	

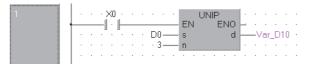
### Processing details

· Connects lower 4 bits of 16-bit data n points from device specified for (s) to 16-bit device specified for (d).



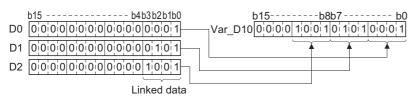
- The bits of the upper (4 n.) digits of the device specified for (d) become 0.
- The value of n can be specified between 1 and 4.
- If n = 0, there will be no processing, and the content of device (d) will not change.

### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

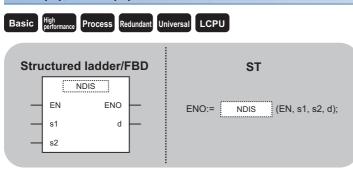
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value for n is not between 0 and 4.	0	0	0	0	0	0
4101	The range of n points from the device specified for (s) exceeds the corresponding device.	0	0	0	0	0	0

#### Program example


• In the following program, the lower 4 bits of the devices from D0 to D2 are connected when X0 turns ON, and they are stored to Var D10.

[Structured ladder/FBD]




[ST] UNIP(X0,D0,3,Var_D10);

[Operation]



# Separation and connection of random data

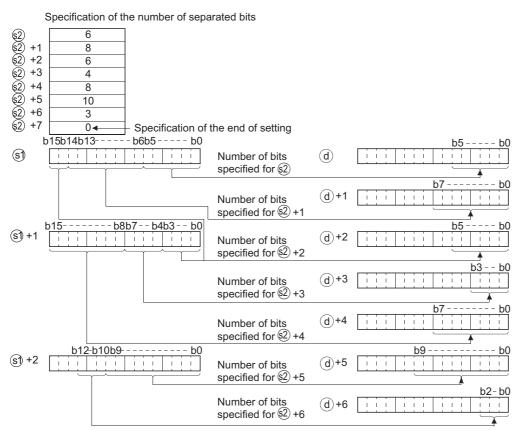
# NDIS(P), NUNI(P)



Any of the following instruction can go in the dotted squares. NDIS, NDISP, NUNI, NUNIP

#### ■Executing condition

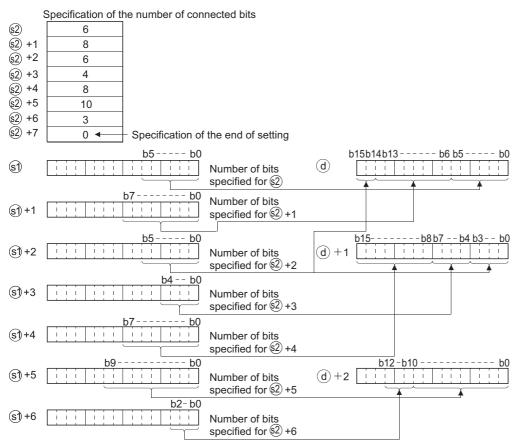
Instruction	Executing condition
NDIS, NUNI	
NDISP, NUNIP	


#### ■Argument

Input/outpu argument					Description					Data type			
Input argumer	nt	EN		Executi	ng condition				Bit				
		s1		Start number of the device that stores data to be separated or connected					ANY16				
s2				Start number of the device that stores units of separations and connections				ANY16					
Output argument ENO				Executi	Execution result								
		d		Start number of the device that stores separated or connected data					ANY16				
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word	1		Bit	Word							
(s1)	—	0			—								
(s2)	—	0			—								
(d)	—	0			_								

#### Processing details

#### ■NDIS(P)


• Separates each bit of data stored in the device number specified for (s1) and the following devices in blocks whose numbers of bits are specified for (s2), and stores the data to the device number specified for (d) and the following devices.



- The number of separated bits specified for (s2) can be specified within a range of 1 to 16 bits.
- Bits from the device number specified for (s2) to the device number where 0 is stored are processed as separated bits.
- Do not overlap the device range for data to be separated ((s1) to end range of (s1)) with the device range which stores the separated data ((d) to end range of (d)). If overlapped, the correct operation result may not be obtained.
- Do not specify the same device number for (s1), (s2), and (d). If the same device is specified for (s1), (s2), and (d), the operation does not perform correctly.

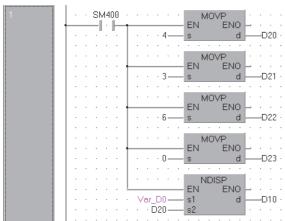
#### ■NUNI(P)

• Connects each bit of data stored in the device number specified for (s1) and the following devices in blocks whose numbers of bits are specified for (s2), and stores them to the device number specified for (d) and the following devices.



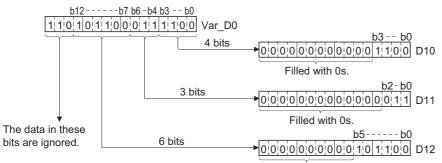
- The number of connected bits specified for (s2) can be within a range of from 1 to 16 bits.
- Processing will be performed on the number of bits to be connected from the device number specified for (s2) to the device number storing 0.
- Do not overlap the device range for data to be connected ((s1) to end range of (s1)) with the device range which stores the connected data ((d) to end range of (d)). If overlapped, the correct operation result may not be obtained.
- Do not specify the same device number for (s1), (s2), and (d). If the same device is specified for (s1), (s2), and (d), the operation does not perform correctly.

#### Operation error


• n any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The number of separated or connected bits specified for (s2) is not set within the range from 1 to 16 bits.	0	0	0	0	0	0
4101	The device use range specified for (s1) or (d) exceeds the final device number of their respective devices because of the number of separated or connected bits specified for (s2).	0	0	0	0	0	0

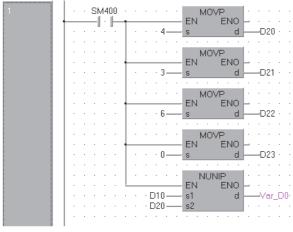
#### Program example


• In the following program, the data of 4, 3, and 6 bits respectively from the lower bits of Var_D0 are separated, and they are stored to the devices from D10 to D12.

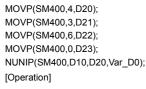
[Structured ladder/FBD]

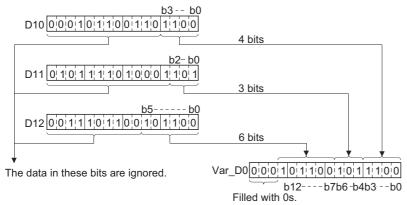


[ST]


MOVP(SM400,4,D20); MOVP(SM400,3,D21); MOVP(SM400,6,D22); MOVP(SM400,0,D23); NDISP(SM400,Var_D0,D20,D10); [Operation]




Filled with 0s.


• In the following program, the lower 4 bits of data in D10, the lower 3 bits of data in D11, and the lower 6 bits of data in D12 are connected, and they are stored to Var_D0.

[Structured ladder/FBD]



[ST]





# Separation and connection of data in units of bytes

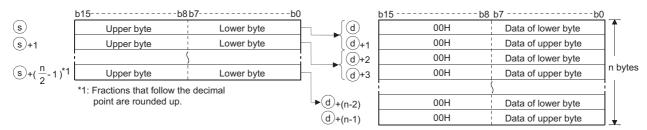
# WTOB(P), BTOW(P) Basic Hefformance Process Redundant Universal LCPU Structured ladder/FBD ST EN ENO s d n (EN, s, n, d);

Any of the following instruction can go in the dotted squares. WTOB, WTOBP, BTOW, BTOWP

#### ■Executing condition

Instruction	Executing condition
WTOB, BTOW	
WTOBP, BTOWP	

#### ■Argument


Input/outpu argument	t	Name			ption				Data type			
Input argumen	ıt	EN		Executing condition					Bit	Bit		
		S			mber of the dev ed in unit of byt	ANY16						
	n			Number of byte data to be separated or connected					ANY16			
Output argume	ent	ENO		Execution	on result		Bit					
		d			Start number of the device that stores the separation or connection result in unit of bytes				ANY16			
Setting	Internal of	Internal device R		R	JD\D		UD\GD	Zn	<u>.</u>	Constant	Others	
data Rit		Word			Dit	Word				К, Н		

Setting data	Internal device		R, ZR J⊡\□			UD\GD	Zn	Constant	Others
	Bit	Word		Bit	Word			К, Н	
(s)	-	0		-					_
n	0	0		0					-
(d)	-	0		-					-

### Processing details

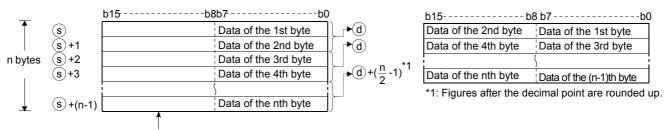
#### ■WTOB(P)

• Separates n bytes of the 16-bit data stored in the device specified for (s) and the following devices, and stores them to the device specified for (d) and the following devices.



For example, if n = 5, data through the lower 8 bits of (s) to ((s)+2) would be stored to (d) to ((d)+4).

	b15b8b	7bC	)	-	b15b8 b	7b0	
s	12н	39н		ď	00н	39н	1
(s) +1	56н	78н		(d)+1	00н	12н	
(s) +2	FEн	DСн		(d)+2	00н	/ <del>8</del> H	When n=5 bvtes
C	· · · · · · · · · · · · · · · · · · ·			(d)+3	00н	56н	Dytes
	Ignored when n=5			(d)+4	00н	DСн	Ţ


- Setting the number of bytes with n automatically determines the range of the 16-bit data specified for (s) and the range of the devices to store the byte data specified for (d).
- No processing will be performed when the number of bytes specified for n is 0.
- The 00H code will automatically be stored to the upper 8 bits of the byte storage device specified for (d).

b	15b8 b7	b(	)	b15b8	b7b0
D12	32н	31н	D1	1 00н	31н
D13	34н	33н		00	32н
D14	36н	35н		00	33н
				00	34н
				00	35н
				00	36н
				Stores 00н.	

• Separation is correctly processed even when the device range ((s) to (s) + (n-1)) where the data to be separated is stored overlaps with the device range ((d) to (d) + (n/2)-1)) where the separated data will be stored.

#### ■BTOW(P)

Connects the lower 8 bits of the 16-bit data in n words stored in the device specified for (s) and the following devices in units
of 1-word and stores it to the device specified for (d) and the following devices. The upper 8 bits of n-word data stored in the
device specified for (s) and the following devices will be ignored. Further, if n is an odd number, 0 is stored to the upper 8
bits of the device where the nth byte data are stored.



Upper bytes are ignored.

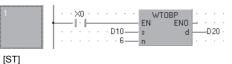
For example, if n = 5, the lower 8-bit data from (s) to ((s)+4) are connected and stored to (d) to ((d)+2).

- 1	b15b8	b7b0	b	)15I	b8 b7b0
<b>S</b>	00н	12н	l∫→@	34н	12н
s+1	00н	34н	∫ →d)+1	78н	56н
lf n = 5 s +2	00н	56н	]d)+2	00н	FEн
s+3	00н	78н			
s+4	00н	FEн		00н is set.	

- Setting the number of bytes with n automatically determines the range of the byte data specified for (s) and the range of the devices to store the connected data specified for (d).
- No processing will be performed when the number of bytes specified for n is 0.
- The upper 8 bits of the byte data storage device specified for (s) are ignored, and the lower 8 bits are used.
- Connection is correctly processed even when the device range ((s) to (s)+(n-1)) where the data to be connected is stored overlaps with the device range ((d) to (d)+((n/2)-1)) where the connected data will be stored. For example, the following will take place in a case where the lower 8 bits of D11 to D16 are to be stored to D12 to D14.

b	015 b8 b	7 b0		b15k	98 b7b0
D11	00н	31н	D11	00н	31н
D12	00н	32н	∫►D12	32н	31н
D13	00н	33н	〕►D13	34н	33н
D14	00н	34н	∫ D14	36н	35н
D15	00н	35н	D15	00н	35н
D16	00н	36н	∫ D16	00н	36н

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of the number of bytes specified for n following the device number specified for (s) exceeds the corresponding device range. The range of the number of bytes specified for n following the device number specified for (d) exceeds the corresponding device range.	0	0	0	0	0	0

### Program example

• In the following program, the data from D10 to D12 are separated in units of bytes when X0 turns ON, and they are stored to the devices from D20 to D25.

[Structured ladder/FBD]



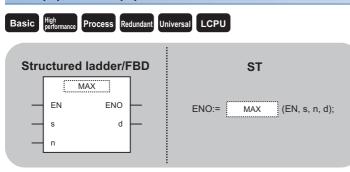

WTOBP(X0,D10,6,D20); [Operation]

b	15b8 k	07	b0	b15-	b8 b	)7k	o0
D10	FDн	58н		∫D20	00н	58н	
D11	57н	Е2н		D21	00н	FDн	
D12	34н	44 _H		_∫D22	00н	E2H	
				D23	00н	<b>57</b> н	6 bytes
				_∫D24	00н	44 _H	
				D25	00н	34н	

 In the following program, the lower 8-bit data from D20 to D25 are connected when X0 turns ON, and they are stored to the devices from D10 to D12.

[Structured ladder/FBD]




[ST] BTOWP(X0,D20,6,D10); [Operation]

operation

b15	b8 k	07b0	b15	b8 k	p7b0
D20	00н	78н	〕 <b>▶</b> D10	12н	78н
D21	31н	12н	∫►D11	55н	49н
D22	36н	49н	D12	31н	67н
6 bytes D23	44 _H	55н			
D24	48 _H	67н	)		
D25	49н	31н			
	<b>^</b>		-		

Upper byte is ignored.

#### MAX(P), DMAX(P)



Any of the following instruction can go in the dotted squares. MAX, MAXP, DMAX, DMAXP

#### ■Executing condition

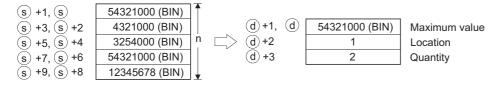
Instruction	Executing condition
MAX, DMAX	
MAXP, DMAXP	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument EN Executing condition		Executing condition	Bit
	S	Start number of the device in which the maximum value is searched	ANY16/32
	n	Number of search data	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the search result of the maximum value	ANY16/32

Setting	Internal dev	ice	R, ZR	JD/D		U⊟\G□	UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н		
(s)	—	0		—					—	
n	0	0		0					—	
(d)	—	0		—					—	

#### Processing details


#### ■MAX(P)

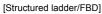
Searches for the maximum value from the n points of 16-bit BIN data in the device specified for (s), and stores the searched
maximum value to the device specified for (d). Searches from the device specified for (s) and counted from (s), stores the
location of device number which is stored in the maximum value of the first search to (d)+1 and stores the number of
maximum values to (d)+2.

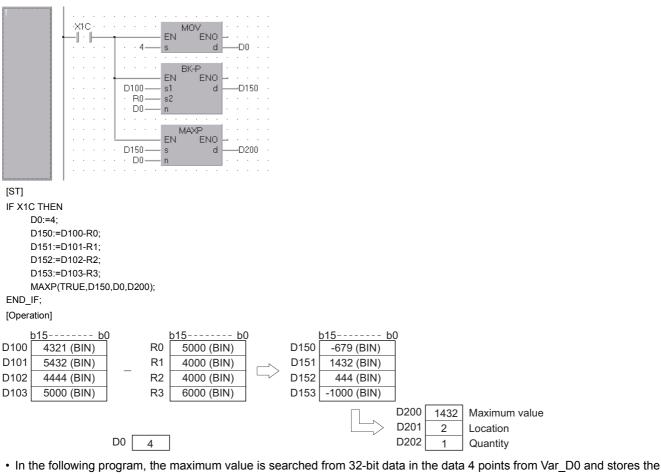


#### ■DMAX(P)

Searches for the maximum value in the n points of 32-bit BIN data, from the device specified for (s), and stores the searched maximum value to the device specified for (d) and (d)+1. Searches from the device specified for (s) and counted from (s), stores the location of device number which is stored in the maximum value of the first search to (d)+2 and stores the number of maximum values to (d)+3.

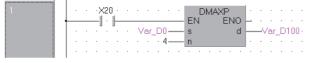



#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s) exceeds the corresponding device.	0	0	0	0	0	0
4101	The device specified for (d) exceeds the corresponding device range.	-	—	—	—	0	0

#### Program example

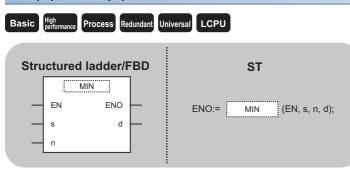

 n the following program, the data from D100 to D103 are subtracted from the data from R0 to R3 when X1C turns ON, and the maximum value is searched in the subtraction results, then the search results are stored to the devices from D200 to D202.





result to Var_D100 when X20 turns ON.

[Structured ladder/FBD]




[ST] DMAXP(X20,Var_D0,4,Var_D100);

[Operation]



# MIN(P), DMIN(P)



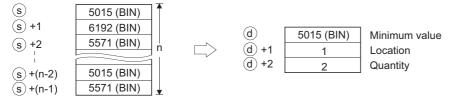
Any of the following instruction can go in the dotted squares. MIN, MINP, DMIN, DMINP

#### ■Executing condition

Instruction	Executing condition
MIN, DMIN	
MINP, DMINP	

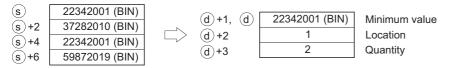
### ■Argument

Input/outpu argument	t	Name		Descri	Description Data type							
Input argumen	t	EN		Executir	xecuting condition					Bit		
S				Start number of the device in which the minimum value is searched					ANY16/32			
n				Number of search data				ANY16				
Output argume	ent	ENO		Execution result					Bit			
d				Start number of the device that stores the search result of the minimum value			ANY16/32					
Setting	Internal o	device	R, ZI	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		


Setting	Internal device					Constant	Onlers	
data	Bit	Word		Bit	Word		К, Н	
(S)	—	0		—				—
n	0	0		0				—
(d)	—	0		—				—

# 7

#### Processing details


#### ■MIN(P)

Searches for the minimum value in the n points of 16-bit BIN data, from the device specified for (s), and stores searched
minimum value to the device specified for (d). Searches from the device specified for (s) and counted from (s), stores the
location of device number which is stored in the minimum value of the first search to (d)+1 and stores the number of
minimum values to (d)+2.

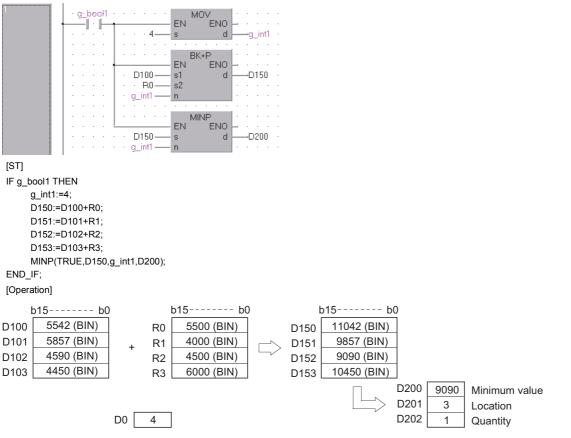


#### ■DMIN(P)

• Searches for the minimum value in the n points of 32-bit BIN data, from the device specified for (s), and stores searched minimum value to the devices specified for (d) and (d)+1. Searches from the device specified for (s) and counted from (s), stores the location of the device number which is stored in the minimum value of the first search to (d)+2 and stores the number of minimum values to (d)+3.

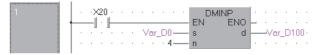


#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s) exceeds the corresponding device.	—	—	—	—	0	0
	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0




#### Program example

• In the following program, the data from D100 to D103 and the data from R0 to R3 are added when g_bool1 turns ON, and the minimum value is searched in the addition result, then the search results are stored to the devices from D200 to D202. [Structured ladder/FBD]



 In the following program, the minimum value is searched from 32-bit data in the data 4 points from Var_D0 (D0) and stores the result to Var_D100 (D100) when X20 turns ON.

[Structured ladder/FBD]



[ST] DMINP(X20,Var_D0,4,Var_D100); [Operation]

Var_D0	57020175 (BIN)	Var_D100	-69386
	2070166 (BIN)		4
	3596045 (BIN)		1
	-69386 (BIN)		

# Sorting 16-/32-bit data

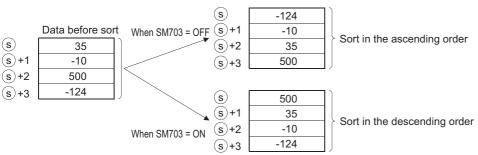
# SORT, DSORT

Basic	High performance Pro	ocess Re	dundant Uni	ICPU					
Structured ladder/FBD ST									
	EN s1 n s2	ENO d1 d2	  	ENO:= SORT (EN, s1, n, s2, d1, d2);					

Any of the following instruction can go in the dotted squares. SORT, DSORT

# ■Executing condition

Instruction	Executing condition
SORT, DSORT	


#### ■Argument

Input/outpo argument	ut	Name		Descri	ption				Data type			
Input argume	ent	EN		Executir	ng condition	Bit	Bit					
		s1		Start nu	mber of table to	be sorted			ANY16/32			
		n		Number	of sort data				ANY	16		
		s2		Number	of data to be co	ompared in one	sort execution		ANY	16		
Output argun	nent	ENO		Execution result Bit								
d1				Bit device number to be turned on at sort completion Bit								
		d2		Device f	e for system use					16		
Setting	Internal of	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word	]			К, Н		
(s1)	-	0			_						-	
n	0	0			0						-	
(s2)	0	0			0						-	
(d1)	0	—			_						-	
(d2)	—	0			_						—	

### Processing details

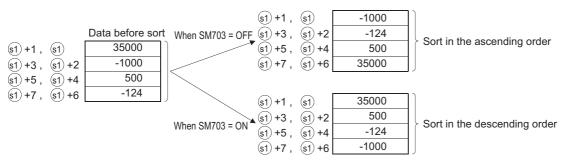
#### SORT

- Sorts 16-bit BIN data n points from (s1) in ascending or descending order. Sort order is specified by the ON or OFF status
  of SM703.
- When SM703 is OFF: Sorts in ascending order
- When SM703 is ON: Sorts in descending order



- Several scans are required for sorts performed by the SORT instruction. The number of scans executed until completion is the value obtained by dividing the maximum number of times executed until the completion of the sort by the number of data blocks compared at one execution specified for (s2). (Fractional part is rounded up.) When the value of (s2) is increased, the number of scans until completion of the sort is reduced, but the amount of time per scan is lengthened.
- The maximum number of executions until completion of the sort should be calculated according to the following equation.

#### Ex.


Maximum number of executions until completion = (n)  $\times$  (n - 1)  $\div$  2 [times executed] When n = 10, the number of executions is obtained as 10  $\times$  (10 - 1)  $\div$  2 = 45 [times executed]. If (s2) = 2, then the number of

scans until the completion of sort is calculated as  $45 \div 2 = 22.5 \rightarrow 23$  [scans].

- The device specified for (d1) (the completion device) is turned OFF by the execution of the SORT instruction, and turned ON when the sort is completed. Because the device specified for (d1) is retained in the ON state after the completion of the sort, the user must turn it OFF if required.
- The 2 points from the device specified for (d2) are used by the system during the execution of the SORT instruction. These 2 points from the device specified for (d2) should therefore not be used by the user. Changing these points may cause an error code to be returned. (Error code: 4100)
- If the value of n is changed during the execution of the SORT instruction, the sort will be performed in accordance with the number of sort data blocks after the change.
- If the execution command is turned OFF during the execution of the SORT instruction, the sort is suspended. The sort resumes from the beginning when the execution command is turned ON again.
- To execute another sort operation immediately after the completion of the previous sort, turn OFF the execution command once, then turn it ON.

#### DSORT

- Sorts 32-bit BIN data n points from (s1) in ascending or descending order. Sort order is specified by the ON or OFF status of SM703.
- When SM703 is OFF: Sorts in ascending order
- When SM703 is ON: Sorts in descending order



- Several scans are required for sorts performed by the DSORT instruction. The number of scans executed until completion
  is the value obtained by dividing the maximum number of times executed until the completion of the sort by the number of
  data blocks compared at one execution specified for (s2). (Fractional part is rounded up.) When the value of (s2) is
  increased, the number of scans until completion of the sort is reduced, but the amount of time per scan is lengthened.
- The maximum number of executions until completion of the sort should be calculated according to the following equation.

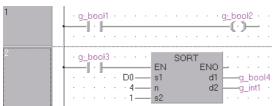
### Ex.

Maximum number of executions until completion = (n)  $\times$  (n - 1)  $\div$  2 [times executed]

When n = 10, the number of executions is obtained as  $10 \times (10 - 1) \div 2 = 45$  [times executed]. If (s2) = 2, then the number of scans until the completion of sort is calculated as  $45 \div 2 = 22.5 \rightarrow 23$  [scans].

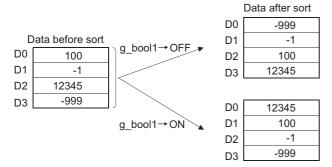
- The device specified for (d1) (the completion device) is turned OFF by the execution of the DSORT instruction, and turned ON when the sort is completed. Because the device specified for (d1) is retained in the ON state after the completion of the sort, the user must turn it OFF if required.
- The 2 points from the device specified for (d2) are used by the system during the execution of a DSORT instruction. These 2 points from the device specified for (d2) should therefore not be used by the user. Changing these points may cause an error code to be returned. (Error code: 4100)
- If the value of n is changed during the execution of the DSORT instruction, the sort will be performed in accordance with the number of sort data blocks after the change.
- If the execution command is turned OFF during the execution of the DSORT instruction, the sort is suspended. The sort resumes from the beginning when the execution command is turned ON again.
- To execute another sort operation immediately after the completion of the previous sort, turn OFF the execution command once, then turn it ON.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	<ul> <li>(s2) is 0 or a negative value.</li> <li>In the second and subsequent scan, the value of (d2) to be used in the system is n or more.</li> <li>In the second and subsequent scan, the value of (d2) to be used in the system is (d2) &lt; (d2) + 1.</li> </ul>	0	0	0	0	0	0
4101	The device range of (n) points from the device specified by (s1) and the device range of two points from the device specified by (d2) are overlapping.	0	0	0	0	0	0
	For the SORT(P) instruction, the range of n points from (s1) exceeds the corresponding device range.	0	0	0	0	0	0
	For the DSORT(P) instruction, the range of $2 \times n$ points from (s1) exceeds the corresponding device range.	0	0	0	0	0	0

### Program example


• In the following program, the 16-bit BIN data from D0 to D3 are sorted in the ascending or descending order when g_bool1 turns ON.

[Structured ladder/FBD]



[ST]

OUT(g_bool1,g_bool2); SORT(g_boo3,D0.4,1,g_bool4,g_int1); [Operation]



• In the following program, the 32-bit BIN data from D0 to D9 are sorted in the ascending or descending order when g_bool1 turns ON.

[Structured ladder/FBD]

1	•	g:	bo   · ·	o F1 	•	•	•	•	•			_bo -((_)			•	•		•	
2		g <u>:</u>	bo   •	ol3 		•	D( . !	0 — 5 — 1 —		EN s1 n s2	D	SOI	RT	EN( d d	) 1 2	 -g -g	_b _in	00 t1	14

[ST]

OUT(g_bool1,g_bool2); DSORT(g_boo3,D0.5,1,g_bool4,g_int1); [Operation]

			Data after sort
		D1, D0	-99999
D	ata before sort	g_bool1→OFF D3, D2	-1111
D1, D0	456789	<u>g_bool1=0FF</u> D5, D4	1
D3, D2	-1111	D7, D6	5000
D5, D4	5000	D9, D8	456789
D7, D6	-1	D1, D0	456789
D9, D8	-99999		
20,20		$g_{bool1} \rightarrow ON $ D3, D2	5000
		D5, D4	1
		D7, D6	-1111
		D9, D8	-99999

# Total calculation of 16-bit data

### WSUM(P)

Basic	High performance Process R	edundant Ur	niversal
Stru	ictured ladder/	FBD	ST
_	EN ENO	_	ENO:= WSUM (EN, s, n, d);
-	n		

Any of the following instruction can go in the dotted squares. WSUM, WSUMP

#### ■Executing condition

Instruction	Executing condition
WSUM	
WSUMP	

### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	ANY16	
	n	Number of data	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the total value	ANY32

Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	ata Bit W			Bit	Word			К, Н	
(S)	-	0		—			—	—	
n	0	0		0				0	—
(d)	0	0		0				—	_

#### Processing details

• Adds all 16-bit BIN data of n points from the device specified for (s), and stores the result to the device specified for (d).

	b15····b0	)
s	4444 (BIN)	]1
(s) + 1	3333 (BIN)	
(s) + 2	1234 (BIN)	
(s) + 3	-5426 (BIN)	
(s) + 4	329 (BIN)	
(s) + 5	10000 (BIN)	<b>.</b>

b31....b0 (d) 13914 (BIN)

### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

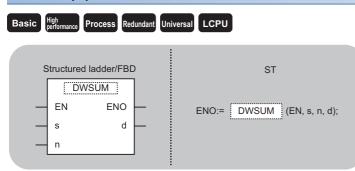
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s) exceeds the corresponding device.	0	0	0	0	0	0

#### Program example

• In the following program, the 16-bit BIN data from D10 to D14 are added when X1C turns ON, and the result is stored to Var_D100.

[Structured ladder/FBD]

1			.c.				- EN	SUMP ENO	Ŀ					
						· D10-	- s	d	H	Va	ar_	D1	00	
	·	•		·	·	· · 5—	- n		Ŀ					
	·	•	• •	÷	1	• • •		• • • •	1					


[ST]

WSUMP(X1C,D10,5,Var_D100); [Operation]



# Total calculation of 32-bit data

### DWSUM(P)



Any of the following instruction can go in the dotted squares. DWSUM, DWSUMP

#### ■Executing condition

Instruction	Executing condition
DWSUM	
DWSUMP	

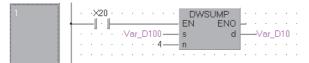
#### ■Argument

Input/output argument	t	Name		Descri	Description				Data type			
Input argument	t	EN		Executi	Executing condition				Bit			
		s		Start nu evaluate	art number of the device that stores data whose total value is ANY32 valuated				32			
		n		Number	of data				ANY	ANY16		
Output argume	ent	ENO		Execution	on result				Bit			
		d		Start number or the array of the device that stores the total value Array			y of ANY16 (03	)				
Setting	Internal c	levice R, ZR		R					Constant Others			

Setting	Internal dev	vice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(s)	-	0		-				—	—
n	0	0			0			0	—
(d)	0	0		—			—	—	

#### Processing details

• Adds all 32-bit BIN data n points from the device specified for (s), and stores the result to the 4 points of devices (4 words) from the one specified for (d).


### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The range of n points from the device specified for (s) exceeds the corresponding device.	0	0	0	0	0	0
	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

#### Program example

• In the following program, the 32-bit BIN data in Var_D100 are added when X20 turns ON, and stores the result to Var_D10. [Structured ladder/FBD]



[ST]

DWSUMP(X20,Var_D100,4,Var_D10); [Operation]

Var_D100 11245600 (BIN) 27543200 (BIN) 558800 (BIN) -15675000 (BIN)

#### MEAN(P), DMEAN(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

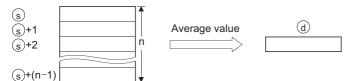


Any of the following instruction can go in the dotted squares. MEAN, MEANP, DMEAN, DMEANP

#### ■Executing condition

Instruction	Executing condition
MEAN, DMEAN	
MEANP, DMEANP	

#### ■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Start number of the device that stores data whose average value is evaluated	ANY16/32
	n	Number of data, or device number that stores the number of data. (Setting range: 1 to 32767)	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the average value	ANY16/32

Setting	Internal dev	ice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(s)	—	0	0	—				—	—
n	—	0	0	0				0	-
(d)	—	0	0	—				—	—

# Processing details

#### ■MEAN(P)

• Evaluates the average value of n points (16-bit BIN data) from the device specified for (s), and stores the result to the device specified for (d).



- If the result is not an integer value, the fractional part is rounded up.
- No processing is performed if the value specified for n is 0.

#### ■DMEAN(P)

• Evaluates the average value of n points (32-bit BIN data) from the device specified for (s), and stores the result to the device specified for (d).

(s)+1, ()+2	s +2	<b></b>	Average value	(d)+1, (d)
(s)+3,	(s)+2	'n		
(s)+2n−1,	(s)+2n−2	<b>↓</b>		

- · If the result is not an integer value, the fractional part is rounded up.
- No processing is performed if the value specified for n is 0.

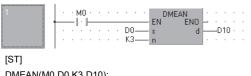
#### **Operation error**

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for n is not within 0 to 32767.	—	—	—	—	0	0
4101	The n points of device specified for (s) exceed the specified device range.	—	—	—	—	0	0

#### Program example

• In the following program, the average value of 16-bit BIN data in D0 to D2 is evaluated when M0 turns ON, and the result is stored to D10.


[Structured ladder/FBD]

1		• M0 • 		· ·	D0	EN s n	MEAN ENO d	 D1	0 .
[ST]									
MEAN(M0,	D0,ł	<3,D1	0);						
[Operation]									

D0	105	(BIN)			
D1	555	(BIN)	D10	550	(BIN)
D2	990	(BIN)			

• In the following program, the average value of 32-bit BIN data in D0 to D5 is evaluated when M0 turns ON, and the result is stored to D10, D11.

[Structured ladder/FBD]



DMEAN(M0,D0,K3,D10); [Operation]



# 7.6 Structured Instructions

# FOR to NEXT instruction loop

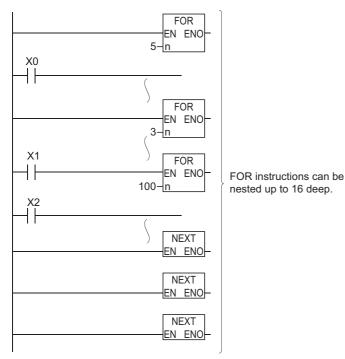
# FOR, NEXT

# Basic High Process Redundant Universal LCPU

Structured ladder/FBD	ST
EN ENO	Not supported
EN ENO	Not supported

Any of the following instruction can go in the dotted squares. FOR, NEXT

#### ■Executing condition


Instruction	Executing condition
FOR, NEXT	Non-conditional execution

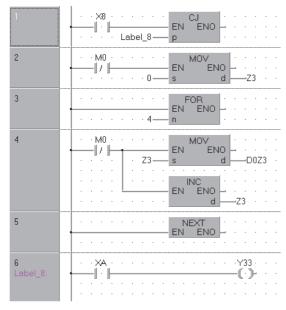
#### ■Argument

Input/output argument	t	Name		Description					Data type				
Input argumen	t	EN		Executing condition						Bit			
		n		Number 32767)	Number of repeats of the FOR to NEXT instruction loop (1 to 32767)					ANY16			
Output argume	ent	ENO		Execution	on result				Bit				
Setting	Internal d	evice R, ZR		s lov			UD\GD	Zn		Constant Others	Others		
data	Bit	Word			Bit	Word	-			К, Н			
n	0										—		

# Processing details

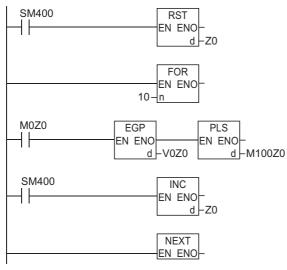
- Executes the processing of the next step of the NEXT instruction, when the process of the FOR to NEXT instruction loop is executed n times without conditions.
- The value of n can be specified with the value between 1 and 32767. If it is specified in the range from -32768 to 0, executes the same processing as n = 1.
- If you do not desire to execute the process of the FOR to NEXT instruction loop, use the CJ or SCJ instruction to jump.
- Up to 16 nesting levels are applicable for the FOR instruction.




#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4200	The FEND or GOEND instruction was executed before the execution of the NEXT instruction and after the execution of the FOR instruction. The STOP instruction has been inserted between the FOR and NEXT instructions.	0	0	0	0	0	0
4201	The NEXT instruction is executed prior to the execution of the FOR instruction.	0	0	0	0	0	0
4202	The 17th FOR instruction is executed when FOR instructions have been nested.	0	0	0	0	0	0


#### Program example

• In the following program, the FOR to NEXT instruction loop is executed when X8 is OFF, and not executed when X8 is ON. [Structured ladder/FBD]



Point P

- To force an end to the repetitious execution of the FOR to NEXT instruction loop, insert the BREAK instruction. For details on the BREAK instruction, refer to Page 424 Forced termination of FOR to NEXT instruction loop.
- Use the EGP or EGF instruction to perform the pulse operation of an indexed program in the FOR to NEXT instruction loop. Note, however, that rise and fall instructions are not available on the operation output side. For details on the EGP and EGF instructions, refer to SP Page 101 Pulse conversion of edge relay operation result. The program samples are shown below.



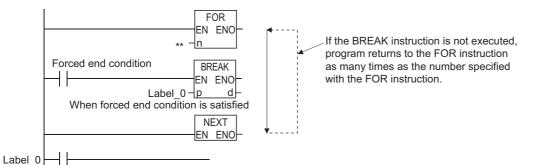
• Branching into the FOR to NEXT instruction loop using the JMP instruction or other branch instructions are not applicable from the outside of the FOR to NEXT instruction loop.

# Forced termination of FOR to NEXT instruction loop

BREAK(P)	
Basic High Process Redundant U	Iniversal LCPU
Structured ladder/FBD	ST
EN ENO	Not supported

Any of the following instruction can go in the dotted squares. BREAK, BREAKP

#### ■Executing condition


Instruction	Executing condition
BREAK	
BREAKP	

#### ■Argument

Input/output argument	t	Name		Description					Data type			
Input argument EN				Executi	Executing condition					Bit		
p					Pointer number of branch destination when the repeat process is forcibly terminated					ANY16		
Output argument ENO				Execution result					Bit			
		d:		Device	Device number that stores the remaining numbers of repeats				ANY16			
Setting	Internal d	device		R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word					Р	
р	—	·								—	0	
(d)	0									—	—	

#### Processing details

• Forces an end to the FOR to NEXT instruction loop and shifts the operation to the pointer specified for Pn. Only a pointer within the same program file can be assigned to Pn. If a pointer of the other program file is used, an operation error will be returned.



- The remaining number of the FOR to NEXT instruction loops is stored to (d) at the time of forced termination. Note that the remaining number includes the operation when the BREAK(P) instruction is executed.
- The BREAK(P) instruction can be used only in the FOR to NEXT instruction loop.
- The BREAK(P) instruction can be used only when there is only one level of nesting. When termination is forced to the multiple nesting levels, execute the same number of the BREAK(P) instructions for the nesting levels.

### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4203	The BREAK(P) instruction is used in a case other than with the FOR to NEXT instruction loop.	0	0	0	0	0	0
4210	The jump destination for the pointer specified for p does not exist. The pointer of another program file is specified for p.	0	0	0	0	0	0

#### Program example

In the following program, the forced termination is executed on the processes in the FOR to NEXT instruction loop when the value of Var_D0 reaches 30 (when the FOR to NEXT instruction loop has been executed 30 times).
 [Structured ladder/FBD]

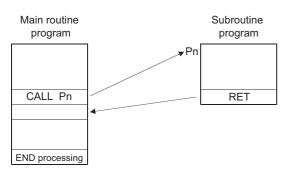
1	• SM400     • · · · · · · · · · · · · · · · · · · ·
2	FOR EN ENO 
3	· SM400         · · · · · · · · · · · · · · · · · · ·
4	LD=         BREAKP           Var_D0         s1
4	LD=         BREAKP           EN         EN           Var_D0         s1

# Subroutine program call

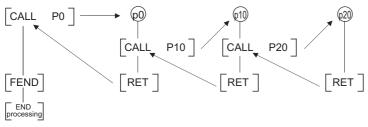
CALL(P)	
Basic High performance Process Redundant U	niversal LCPU
Structured ladder/FBD	ST
EN ENO	Not supported

Any of the following instruction can go in the dotted squares. CALL, CALLP

# ■Executing condition


Instruction	Executing condition
CALL	
CALLP	

### ■Argument


Input/output argument	t	Name		Descri	escription					Data type			
Input argumen	t	EN		Executi	Executing condition					Bit			
		р		Start pointer number of the subroutine program					ANY16				
Output argume	ent	ENO		Execution	on result				Bit	t			
Setting	Internal d	evice	R, ZR		JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н	Р		
р	—	-			—						0		

#### Processing details

- When the CALL(P) instruction is executed, executes the subroutine program of the program specified for Pn.
- The CALL(P) instruction can execute subroutine programs specified for a pointer within the same program file and subroutine programs specified for a common pointer.



- Up to 16 nesting levels are applicable for the CALL(P) instruction.
- The remaining number of the FOR to NEXT instruction loops is stored to (d) at the time of forced termination. Note that the remaining number includes the operation when the BREAK(P) instruction is executed.



• Devices which are turned ON within subroutine programs will be latched even if the subroutine program is not executed.

#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4210	There is no subroutine program for the pointer specified in the CALL(P) instruction.	0	0	0	0	0	0
4211	The FEND, GOEND, or STOP instruction is executed after the execution of the CALL(P) instruction, and prior to the execution of the RET instruction.	0	0	0	0	0	0
4212	The RET instruction is executed prior to the execution of the CALL(P) instruction.	0	0	0	0	0	0
4213	The 17th nesting level is executed.	0	0	0	0	0	0

# Program example

• In the following program, the subroutine program is executed when X20 turns ON. [Structured ladder/FBD]

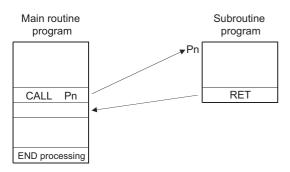
1	AND
2	· · · M2     · · · · · · · · · · · · · · · · · · ·
3	FEND EN ENO
4 Label1:	· · · M1 · · · · · · · · · · · · · · · ·
5	EN ENO

# Return from subroutine program

RET	
Basic High performance Process Redundant	Universal
Structured ladder/FBD	ST
EN ENO	Not supported

Any of the following instruction can go in the dotted squares. RET

#### ■Executing condition


Instruction	Executing condition
RET	Non-conditional execution

#### ■Argument

Input/output argument	t	Name		Description						Data type			
Input argumen	t	EN		Executing condition						Bit			
Output argument ENO				Execution result					Bit				
Setting	Internal device		R, Z	R, ZR J□\□			UD\GD		Zn	Constant	Constant	Others	
data	Bit	Word			Bit	Word							
_	—	I				1	I				1	1	

#### Processing details

- · Indicates the end of the subroutine program.
- When the RET instruction is executed, returns to the next step of the CALL(P) instruction which called the subroutine program.



#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4211	The FEND, GOEND or STOP instruction is executed after the execution of the CALL(P) instruction, and prior to the execution of the RET instruction.	0	0	0	0	0	0
4212	The RET instruction is executed prior to the execution of the CALL(P) instruction.	0	0	0	0	0	0

# Refresh

#### СОМ

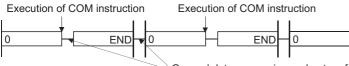


For the COM instruction of the following CPU modules, refer to 🖙 Page 433 Selection of refresh(COM).

- · Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later
- High Performance model QCPU: Supported if first 5 digits of the serial number are "04012" or later
- Process CPU: Supported if first 5 digits of the serial number are "07032" or later
- Redundant CPU
- Universal model QCPU
- LCPU



Any of the following instruction can go in the dotted squares. COM

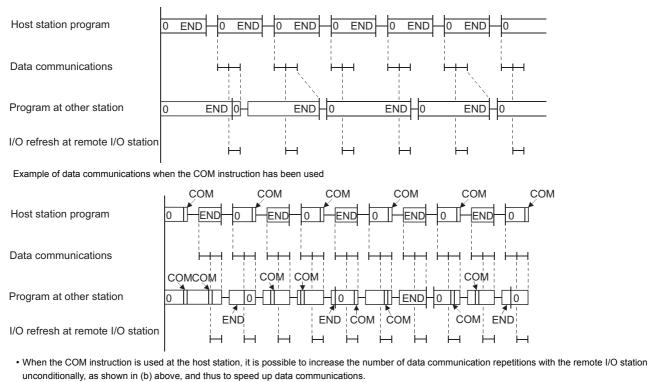

#### ■Executing condition

Instruction	Executing condition
СОМ	Non-conditional execution

#### ■Argument

Input/output argument	t	Name		Description						Data type			
Input argumen	t	EN		Executing condition						Bit			
Output argume	ent	ENO		Execution result					Bit				
Setting	ng Internal device R, ZR J⊡\□					U	U⊟\G⊟ Zn			Constant	Others		
data	Bit	Word			Bit	Word							
_	_												

- Use the COM instruction in any of the following cases.
- · For increasing the speed of transmission/reception processing to/from the remote I/O stations.
- · For ensuring reliable data transmission/reception with other stations that use different scan times during the execution of the data link.
- The processing of the COM instruction differs depending on whether the special relay SM775 is ON or OFF.
- When SM775 is OFF: Performs auto refresh and service processing*1*2
- When SM775 is ON: Performs service processing only*
- *1 The following processes are performed in service processing. · Monitor processing of other station
  - · Read processing by the serial communications module of the buffer memory of another intelligent function module
- *2 The auto refresh includes the following processes.
  - Refresh of MELSECNET/10 and MELSECNET/H
  - CC-Link refresh
  - · Auto refresh of intelligent function modules.
- At the point of the execution of the COM instruction, the CPU module temporarily stops the processing of the sequence program, and performs the same operation as ordinary data processing as well as auto refresh of intelligent function modules (including link refreshes) at the END processing. However, the low speed cyclic refresh of MELSECNET/10 or MELSECNET/H is not performed.




General data processing and auto refresh (including link refresh) of intelligent function module

. The COM instruction can be used in a sequence program any number of times. However, note that the scan time of the sequence program will be lengthened by the time taken for service processing and the auto refresh (including the link refresh) of the intelligent function modules.

· Data communications using the COM instruction

Example of data communications when the COM instruction is not used



- In cases where the remote station scan time is longer than the scan time of the host station, the COM instruction used at the remote station side can avoid the occurrence of timing failure in which the data cannot be fetched, as shown in (a).
- . When the COM instruction has been used at the other station, a link refresh will be performed each time that station receives a command from the host station.
- $\sim$ COM instruction · Step 0 Link refresh can be performed
- $\cdot$  COM instruction  $\sim$ COM instruction

 $\cdot$  COM instruction  $\sim$ END

once in each of these intervals.

**7 APPLICATION INSTRUCTIONS** 431 7.6 Structured Instructions

- If the scan time from the linked station is longer than the sequence program scan time at the host station, specifying the COM instruction at the host station will not increase the speed of data communications.
- Step 0 ~COM instruction
   COM instruction ~COM instruction
   COM instruction ~END
   Link refresh can be performed once in each of these intervals.

Point *P* 

The programs in which the COM instruction cannot be used are shown below.

- Low-speed execution type programs
- Interrupt programs
- Fixed scan execution type programs

#### **Operation error**

• There is no operation error.

0	0	ν.
	( )	VI.
v	$\mathbf{v}$	

- Ver. Ver. Basic High performance Process Redundant Universal LCPU
- Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later
- High Performance model QCPU: Supported if first 5 digits of the serial number are "04012" or later

· Process CPU: Supported if first 5 digits of the serial number are "07032" or later

- For the COM instruction of the following CPU modules, refer to I Page 430 Refresh.
- Basic model QCPU: Supported if first 5 digits of the serial number are "04121" or earlier
- High Performance model QCPU: Supported if first 5 digits of the serial number are "04011" or earlier
- · Process CPU: Supported if first 5 digits of the serial number are "07031" or earlier

Structured ladder/FBD	ST
EN ENO	ENO:= COM (EN);

Any of the following instruction can go in the dotted squares. COM

#### ■Executing condition

Instruction	Executing condition
СОМ	Non-conditional execution

#### ■Argument

Input/output argument	t	Name		Description					Data type		
Input argumen	t	EN		Executing condition				Bit	Bit		
Output argume	ent	ENO		Execution result Bit							
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant Ot	Others
data	Bit	Word			Bit	Word					
_	_										

- The COM instruction is used to perform processing such as I/O refresh at any time during execution of the sequence program.
- When the COM instruction is executed, the following processing can be performed

Description	QCPU (Q mode)	LCPU
I/O refresh	0	0
CC-Link refresh	0	0
CC-Link IE Controller Network refresh	0	×
CC-Link IE Field Network refresh	O*1	O*2
MELSECNET/H refresh	0	×
Auto refresh of intelligent function modules	0	0
Auto refresh using the QCPU standard area of the multiple CPU system	0	×
Importing input/output data from CPUs that are not within the multiple CPU system	0	×
Auto refresh using the multiple CPU high speed transmission area of the multiple CPU system	0	×
Communication with display module	×	0
Service processing (communication with programming tool, GOT or other peripherals)	0	0

*1 CPU modules with a serial number whose first 5 digits are '12012' or higher are supported.

*2 CPU modules with a serial number whose first 5 digits are '13012' or higher are supported.

# Point P

The following processes are performed in service processing.

- Monitor processing of other station
- Read process of another intelligent function module buffer memory by the serial communication module
- Turning OFF SM775 executes all processing except for I/O refresh.

#### · When selecting refresh items

• Select the processing by SD778, and turn SM775 ON. The following table shows the refresh items when SM775 is ON or OFF, and the processing that can be specified for SD778.

Description	QCPU (Q mode)		LCPU			
	When SM775 is OFF	When SM775 is ON	When SM775 is OFF	When SM775 is ON		
I/O refresh	Not executed	Whether to be executed or	Not executed	Whether to be executed or		
CC-Link refresh	Executed	not can be selected	Executed	not can be selected.		
CC-Link IE Controller Network refresh			-	-		
CC-Link IE Field Network refresh			Executed	Whether to be executed or not can be selected		
MELSECNET/H refresh	1		-	-		
Auto refresh of intelligent function modules			Executed	Whether to be executed or not can be selected		
Auto refresh using the QCPU standard area of the multiple CPU system			-	-		
Importing input/output data from CPUs that are not within the multiple CPU system			-	-		
Auto refresh using the multiple CPU high speed transmission area of the multiple CPU system			-	-		
Communication with display module	-	-	Executed	Whether to be executed or not can be selected		
ervice processing Executed ommunication with ogramming tool, GOT or her peripherals)		Whether to be executed or not can be selected				

Select whether to execute the processing or not using the bits of SD778. Whether to execute each bit of SD778 or not can be specified as shown below.

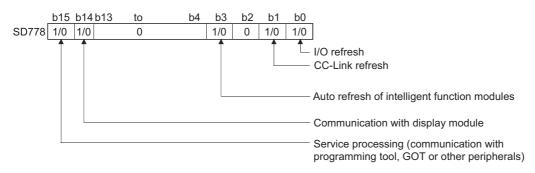
#### QCPU (Q mode)

Bit of SD778	Executed	Not executed
b0 to b6	1	0
b15	0	1

b15	b14 to b7	b6	b5 b4	b3	b2	b1	b0	_
SD778 1/0	0	1/0	1/0 1/0	1/0	1/0	1/0	1/0	
								I/O refresh CC-Link refresh CC-Link IE Controller Network, MELSECNET/H refresh Auto refresh of intelligent function module Auto refresh using the QCPU standard area of the multiple CPU system Importing input/output data from CPUs that are not within the multiple CPU system
								Auto refresh using the multiple CPU high speed transmission area of the multiple CPU system CC-Link IE Field Network refresh Service processing (communication with programming tool, GOT or other peripherals)

Ex.

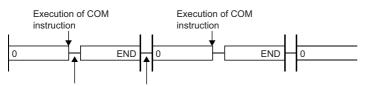
To make only the send/receive processing with the remote I/O station faster, specify the MELSECNET/H refresh only. (Set only b2 and b15 of SD778 to 1 (SD778: 8004H).)




Refresh between the multiple CPUs by the COM instruction is performed under the following conditions.

- Receive operation from other CPUs: When b4 of SD778 (auto refresh of CPU shared memory) is 1.
- end operation from host CPU: When b15 of SD778 (execution/non-execution of service processing) is 0

#### LCPU


Bit of SD778	Executed	Not executed
0 to b3	1	0
b14	1	0



#### Ex.

To make only the display module processing faster, specify the Communication with display module only. (Set b14 and b15 of SD778 to 1 (SD778: C000H).)

• The COM instruction can be used in a sequence program any number of times.



Specified processing Specified processing

- The COM instruction can be used in a sequence program any number of times. However, note that the sequence program scan time will be lengthened by the time taken for the processing selected for SD778.
- For Universal model QCPU and LCPU, an interrupt is permitted during the execution of the COM instruction. However, note that the data may be separated if the refresh data are used in an interrupt program.
- For Built-in Ethernet port QCPU, Built-in Ethernet port LCPU, and LCPU, when the service processing is performed using the COM instruction with the Ethernet connected, the processing time may be extended.

#### Point 🏸

The programs in which the COM instruction cannot be used are shown below:

- · Low-speed execution type programs
- Interrupt programs

· Fixed scan execution type programs

For the redundant CPU, there are restrictions on use of the COM instruction. For details on the restrictions, refer to the following manual.

QnPRHCPU User's Manual (Redundant System)

#### Operation error

• There is no operation error.

# Selection of refresh(CCOM(P))

#### CCOM(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported



Any of the following instruction can go in the dotted squares. CCOM, CCOMP

#### ■Executing condition

Instruction	Executing condition
ССОМ	
CCOMP	

#### ■Argument

Input/output argument	t	Name		Description						Data type			
Input argumen	t	EN		Executi	ng condition	Bit							
Output argume	ent	ENO		Execution result				Bit					
Setting	Internal d	levice	R, Z	R	۶ JD/D		UD\GD	U⊡\G⊡ Zn		Constant	Others		
data	Bit Word Bit Word		Word			К, Н							
_	—												

#### Processing details

For details of the functions, refer to IP Page 433 Selection of refresh(COM).

#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The CCOM(P) instruction was executed in the QnU(D)(H)CPU whose serial number (first five digits) is "10101" or earlier.	—	—	—	—	0	-

#### Program example

• The program in which the execution of refresh instruction can be switched by turning M0 ON/OFF. [Structured ladder/FBD]

1	• SM402 • • • • • • • • • • • • • • • • • • •
	····· · H8004sSD778 · ·
	EN ENOSM775 · · ·
2	

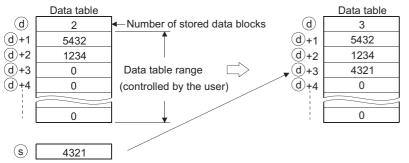
# 7.7 Data Table Operation Instructions

# Writing data to data table

#### FIFW(P)

Basic High Process Redundant Un	iversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= FIFW (EN, s, d);

Any of the following instruction can go in the dotted squares. FIFW, FIFWP


#### ■Executing condition

Instruction	Executing condition	
FIFW		
FIFWP		

#### ■Argument

Input/outpu argument	t	Name		Descri	Description Da						Data type		
Input argumer	nt	EN		Executi	ng condition				Bit	Bit			
		s		Write da	ata to the table,	or start device r	number that store	es data	ANY	16			
Output argum	ent	ENO		Execution	n result Bit								
		d		Start number of the table					ANY16				
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word		Bit		Word				К, Н			
(s)	0	0			0				0	—			
(d)	-	0			—					—	—		

• Stores the 16-bit data specified for (s) to the data table specified for (d). The number of data blocks stored in the table is stored to (d), and the data specified for (s) are stored to (d)+1 and the following devices.

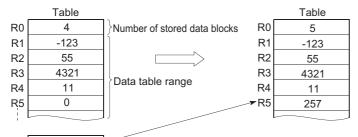


- When the FIFW(P) instruction is executed for the first time, any values specified for (d) should be cleared.
- The number of data blocks to be written in the data table and the data table range should be managed by a user. (Refer to Program Example)

#### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The FIFW(P) instruction is executed when the value of (d) is FFFFH.	0	0	0	0	0	0
4101	The data table range exceeds the corresponding device range when the FIFW(P) instruction is executed.	0	0	0	0	0	0


#### Program example

• In the following program, the data in Var_D0 are stored to the data table from R0 when X10 turns ON. [Structured ladder/FBD]



[ST]

FIFWP(X10,Var_D0,R0); [Operation]



Var_D0 _____257

 In the following program, the data from X20 to X2F are stored to the data table from D38 to D44 when X1B turns ON, and if there are more than 6 data blocks to be stored, Y60 is turned ON and the FIFW(P) instruction is disabled.
 [Structured ladder/FBD]

1	· · · · · · · · · D38—	LD>=
2	×18 · · · Y60 · · · · · · · · · · · · · · · · · · ·	- FIFWP - · · · · · · · · · · · · · · · · · ·

[ST]

OUT(D38>=6,Y60); FIFWP(X1B AND NOT(Y60),K4X20,D38); [Operation]

4444

	Table			Table
D38	5	}Number of stored data blocks	D38	6
D39	1000	Ĵ	D39	1000
D40	8100		D40	8100
D41	4321	Data table range	D41	4321
D42	1234		D42	1234
D43	-123		D43	-123
D44	0		<b>D</b> 44	4444
D45	0		D45	0

X20 to X2F

#### Precautions

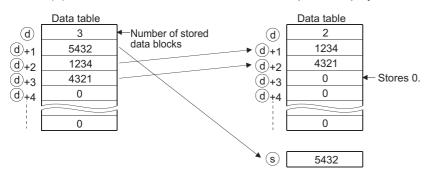
When using the FIFW instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to F Page 63 Precautions on Programming.

# Reading oldest data from data table

### FIFR(P) Basic High process Redundant Universal LCPU Structured ladder/FBD ST FIFR EN ENO s d ENO:= FIFR (EN, s, d);

Any of the following instruction can go in the dotted squares. FIFR, FIFRP

#### ■Executing condition


Instruction	Executing condition
FIFR	
FIFRP	

#### ■Argument

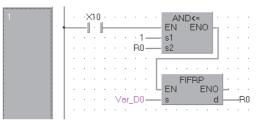
Input/outpu argument	t	Name		Description						Data type		
Input argumer	ıt	EN		Executi	ng condition				Bit	Bit		
		s		Start number of the device that stores read data from the table				ANY16				
Output argum	ent	ENO		Execution result Bit						Bit		
d				Start number of the table					ANY16			
Setting	Internal o	levice	R, Z	R	JD\D UD\GD Z			Zn		Constant	Others	
data	Bit	Word			Bit	Word	_					
(s)	0	0			0				—			
(d)	—	0			—				—			

#### Processing details

• Stores the oldest data ((d)+1) input to the table specified for (d) to the device specified for (s). After the execution of the FIFR(P) instruction, the data in the table are all compressed up by one block.



• Set the interlock to avoid executing the FIFR(P) instruction if the value stored in (d) is 0. (Refer to Program Example)

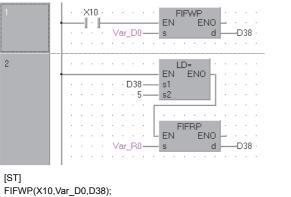

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The FIFR(P) instruction is executed when the value of (d) is 0.	0	0	0	0	0	0
4101	The data table range exceeds the corresponding device range when the FIFR(P) instruction is executed.	0	0	0	0	0	0

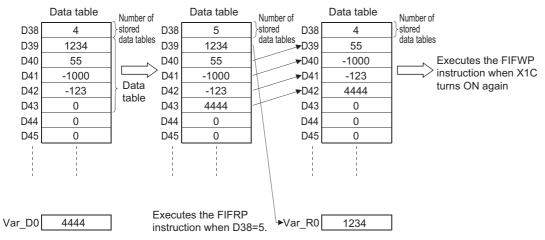
#### Program example

• In the following program, the data in R1 from the data table R0 to R7 are stored to Var_D0 when X10 turns ON. [Structured ladder/FBD]




[ST]

FIFRP(X10 AND R0>=1,Var_D0,R0); [Operation]


	Data table		Data	a table	
R0	5	}Number of stored data blocks R	)	4	}Number of stored data blocks
R1	-123	► R	1	55	)
R2	55	→ R2	2 4	321	
R3	4321	→ R	3	123	
R4	123	R	+ -	234	Data table
R5	-234	R	5	0	
R6	0	R	6	0	
R7	0		7	0	
		Var_D0	-1	23	

• In the following program, the data in Var_D0 are stored to the data table D38 to D43 when X10 turns ON, and when the number of stored data reaches 5, the last-stored data in D39 of the data table are stored to Var_R0. [Structured ladder/FBD]



FIFWP(X10,Var_D0,D38); FIFRP(D38=5,Var_R0,D38);

[Operation]



#### Precautions

When using the FIFR instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to F Page 63 Precautions on Programming.

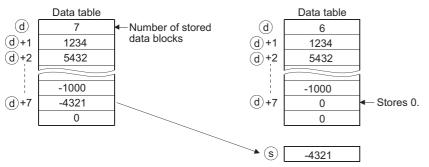
## Reading newest data from data table

#### FPOP(P)

Basic High performance Process Redundant Ur	niversal LCPU
Structured ladder/FBD	ST
EN ENO s d	ENO:= FPOP (EN, s, d);

Any of the following instruction can go in the dotted squares. FPOP, FPOPP

#### ■Executing condition


Instruction	Executing condition
FPOP	
FPOPP	

#### ■Argument

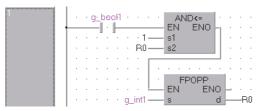
Input/output Name argument			Description					Data type			
Input argument EN				Executing condition				Bit			
s				Start number of the device that stores read data from the table					ANY16		
Output argument ENO				Execution result					Bit		
d			Start number of the table				ANY16				
Setting	Internal c	nal device R,		R	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word					
(S)	0	0			0					—	
(d)	—	0			—					—	

#### Processing details

• Stores the newest data input to the table specified for (d) to the device specified for (s). After the execution of the FPOP(P) instruction, the device storing the data read by the FPOP(P) instruction becomes 0.

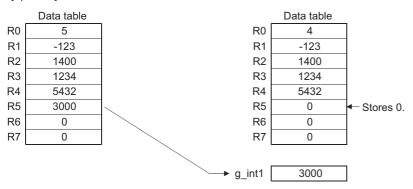


• Set the interlock to avoid executing the FPOP(P) instruction when the value stored in (d) is 0. (Refer to Program Example)

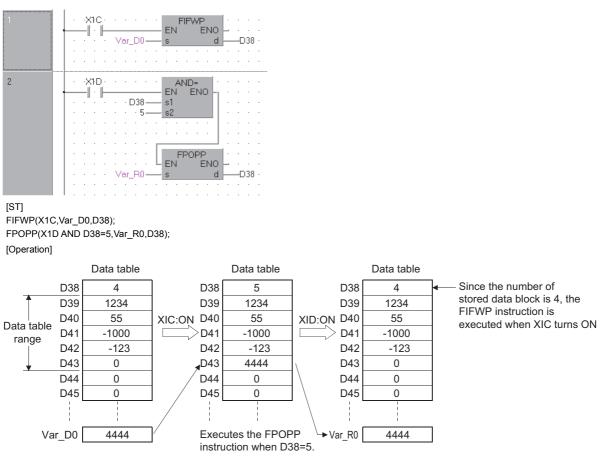

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The FPOP(P) instruction is executed when the value of (d) is 0.	0	0	0	0	0	0
4101	The data table range exceeds the corresponding device range when the FPOP(P) instruction is executed.	0	0	0	0	0	0


#### Program example

• In the following program, the last-stored data in the data table R0 to R7 are stored to g_int1 when g_bool1 turns ON. [Structured ladder/FBD]




[ST]

FPOPP(g_bool1 AND R0>=1,g_int1,R0); [Operation]



• In the following program, the data in Var_D0 are stored to the data table D38 to D43 when X1C turns ON, and when the number of stored data reaches 5, and X1D turns ON, the last-stored data in the data table are stored to Var_R0. [Structured ladder/FBD]



#### Precautions

When using the FPOP instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to FP Page 63 Precautions on Programming.

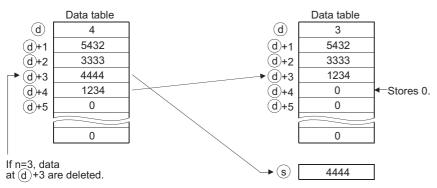
# Deleting/inserting data from/to data table

# FDEL(P), FINS(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST FDEL ENO ST EN ENO FDEL (EN, s, n, d); n ... ... ...

Any of the following instruction can go in the dotted squares. FDEL, FDELP, FINS, FINSP

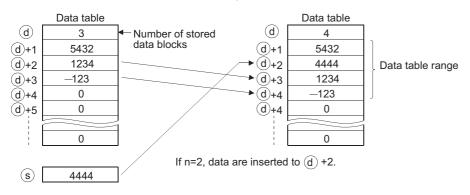
#### ■Executing condition

Instruction	Executing condition
FDEL, FINS	
FDELP, FINSP	


#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Start number of the device which stores insert data or the device which stores delete data.	ANY16
	n	Position of the table where data are inserted or deleted	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the table	ANY16

Setting data	Internal device		R, ZR J□\□	10/D		UD\GD		Constant	Others
	Bit	Word		Bit	Word			К, Н	
(S)	0	0		0				—	-
n	0	0	0		0			0	-
(d)	—	0	0					—	—


#### ■FDEL(P)

• Deletes the nth block of data from the data table specified for (d), and stores the deleted data to the device specified for (s). After the execution of the FDEL(P) instruction, (n+1)th data and the following data in the table are compressed forward by one block.



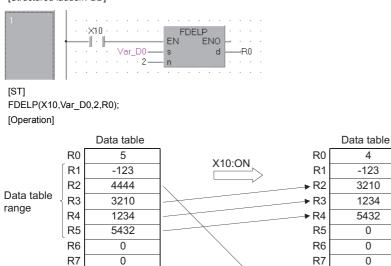
#### ■FINS(P)

• Inserts the 16-bit data specified for (s) in the nth block of the data table specified for (d). After the execution of the FINS(P) instruction, the data in the table following the inserted block are all dropped one position.



#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The FDEL(P) or FINS(P) instruction is executed when n = 0. The FDEL(P) instruction is executed when the value of (d) is 0. The FINS(P) instruction is executed when the value of (d) is FFFFH.	0	0	0	0	0	0
4101	The nth position from (d) is larger than the data storage number at the execution of the FDEL(P) instruction. The nth position from (d) is larger than the "data storage number + 1" at the execution of the FINS(P) instruction. The value of n exceeds the device range of the table (D) at the execution of the FDEL(P) or FINS(P) instruction. The data table range exceeds the corresponding device range when the FDEL(P) or FINS(P) instruction is executed.	0	0	0	0	0	0

449

#### Program example

 In the following program, the second data from the table R0 to R7 are deleted when X10 turns ON, and the deleted data are stored to Var_D0.

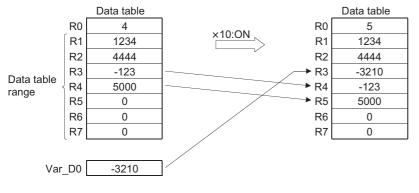
[Structured ladder/FBD]



• In the following program, the data in Var_D0 are inserted to the third position of the data table R0 to R7 when X10 turns ON. [Structured ladder/FBD]

► Var_D0

4444


Data table

range

· · · · · · · · 3 — n · · · · ·	

[ST]

FINSP(X10,Var_D0,3,R0); [Operation]



#### Precautions

When using the FDEL/FINS instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to FP Page 63 Precautions on Programming.

# 7.8 Buffer Memory Access Instructions

# Reading 1-/2-word data from intelligent function module

#### FROM(P), DFRO(P)



· Universal model QCPU: Not supported for Q00UJCPU

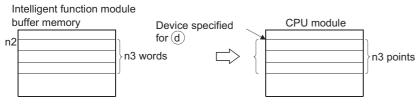
Stru	uctured ladd	er/FBD	ST
	FROM E EN E n1 n2 n3	NO	ENO:= FROM (EN, n1, n2, n3, d);

Any of the following instruction can go in the dotted squares. FROM, FROMP, DFRO, DFROP

#### ■Executing condition

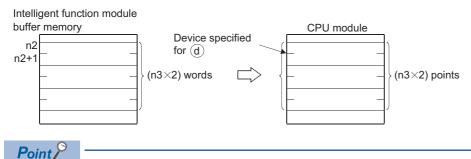
Instruction	Executing condition
FROM, DFRO	
FROMP, FROP	

#### ■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	Start I/O number of the intelligent function module*1	ANY16
	n2	Start address of data to be read	ANY16
	n3	Number of data to be read	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores read data	ANY16/32

*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.

Setting	Internal device		R, ZR	10/0		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit Word			К, Н	U	
n1	0		0			0	0		
n2	0		0				0	—	
n3	0		0			0	—		
(d)	0		_				—	—	


#### ■FROM(P)

• Reads the data in n3 words from the buffer memory address specified for n2 of the intelligent function module specified for n1, and stores the data to the device specified for (d) and the following devices.

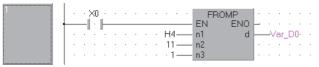


#### ■DFRO(P)

• Reads the data in (n3  $\times$  2) words from the buffer memory address specified for n2 of the intelligent function module specified for n1, and stores the data to the device specified for (d) and the following devices.



Data read from intelligent function modules is also possible with the use of intelligent function module devices. For the intelligent function module device, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
1402	An error has been detected in the intelligent function module at the execution of the instruction.	0	0	0	0	0	0
1412	There has been no exchange of signals with the intelligent function module at the execution of the instruction.	0	0	0	0	0	0
2110	The I/O number specified for n1 is not for the intelligent function module.	0	0	0	0	0	0
4101	The range of n3 points (2 $\times$ n3 points for the DFRO(P) instruction) from the device specified for (d) exceeds the specified device range. The address specified for n2 is outside the buffer memory range.	0	0	0	0	0	0

#### Program example

 In the following program, the CH1 digital output value of the Q68ADV mounted with I/O numbers 040 to 05F is read to Var_D0 when X0 turned ON. (Reads 1 word of data from address 11 of the buffer memory.) [Structured ladder/FBD]



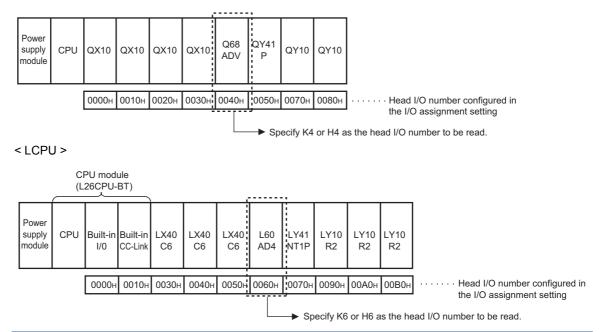
[ST]

FROMP(X0,H4,11,1,Var_D0);

• In the following program, the 1-axis current feed value of the QD75P4 mounted at the I/O numbers 040 to 05F is read to Var_D0, when X0 turns ON. (Reads data in 2 words from the address 800 and 801 of the buffer memory.)

[Structured ladder/FBD]

1		1.00	a						OP ENO						
	.		÷.				H4	n1	LINC						
1							800			Ŀ	·	·	·	•	÷
	·					1	· 1 ——	nj		1					Ĵ


[ST]

DFROP(X0,H4,800,1,Var_D0);



The value of n1 is specified by the upper 3 digits of hexadecimal 4-digit representation of the start I/O number of the slot in which the intelligent function module is mounted.

< QCPU (Q mode) >



# Writing 1-/2-word data to intelligent function module

#### TO(P), DTO(P)

# Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST EN ENO s n1 n2 n3

Any of the following instruction can go in the dotted squares. TO, TOP, DTO, DTOP

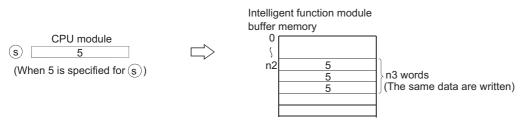
#### ■Executing condition

Instruction	Executing condition
ΤΟ, DΤΟ	
TOP, DTOP	

#### ■Argument

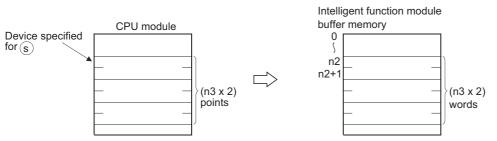
Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Data to be written or device start number that stores data to be written	ANY16/32
	n1	Start I/O number of the intelligent function module ^{*1}	ANY16
	n2	Start address of the buffer memory where the data to be written	ANY16
	n3	Number of data to be written	ANY16
Output argument	ENO	Execution result	Bit

*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.

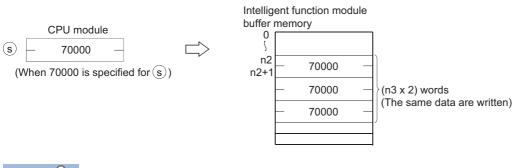

Setting	Internal dev	rice	R, ZR	10/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	U
(s)	0		—		0	-			
n1	0		0				0	0	
n2	0		0			0	-		
n3	0		0				0	—	

#### ■TO(P)

• Writes the data stored in n3 words following the device specified for (s) to the buffer memory address specified for n2 and the following addresses of the intelligent function module specified for n1.




• When a constant is specified for (s), writes the same data (value specified for (s)) to the area of n3 words following the specified buffer memory. ((s) can be specified in the following range: -32768 to 32767 or 0H to FFFFH.)




#### ■DTO(P)

• Writes the data stored in (n3 × 2) words following the device specified for (s) to the buffer memory address specified by n2 and the following addresses of the intelligent function module specified for n1.



• When a constant is specified for (s), writes the same data (value specified for (s)) to the area of (n3  $\times$  2) words following the specified buffer memory. ((s) can be specified in the following range: -2147483648 to 2147483647 or 0H to FFFFFFFH.)



Point P

Data write to intelligent function modules is also possible with the use of intelligent function module devices. For the intelligent function module device, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
1402	An error has been detected in the intelligent function module at the execution of the instruction.	0	0	0	0	0	0
1412	There has been no exchange of signals with the intelligent function module at the execution of the instruction.	0	0	0	0	0	0
2110	The I/O number specified for n1 is not for the intelligent function module.	0	0	0	0	0	0
4101	The n3 points (2 $\times$ n3 points for the DTO(P) instruction) of the device specified for (s) exceed the specified device range. The address specified for n2 is outside the buffer memory range.	0	0	0	0	0	0

#### Program example

In the following program, the CH1 and CH2 of the Q68ADV with the I/O numbers X/Y040 to X/Y04F are set to the "Disable A/D conversion" mode, when X0 turns ON. (Writes 3 to the buffer memory address 0.)
 [Structured ladder/FBD]

1 TOP 1 TOP 1 F. TOP 1

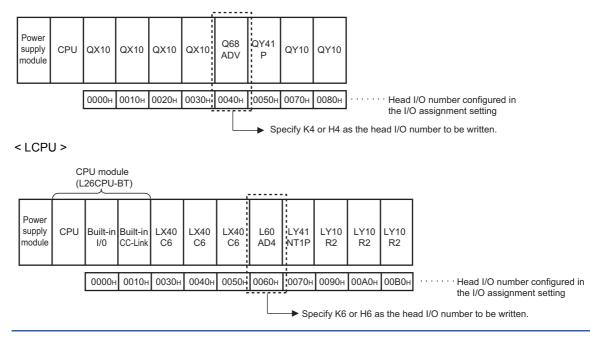
[ST]

TOP(X0,3,H4,0,1);

• In the following program, the 1-axis positioning address/movement amount of the QD75P4 with the I/O numbers X/Y040 to X/Y05F is set to 0 when X0 turns ON. (Writes 0 to buffer memory addresses 2006 and 2007.)

[Structured ladder/FBD]

- 1


n3

[ST] DTOP(X0,0,U4,2006,1);



The value of n1 is specified by the upper 3 digits of hexadecimal 4-digit representation of the start I/O number of the slot in which the intelligent function module is mounted.

< QCPU (Q mode) >



# 7.9 Display Instructions

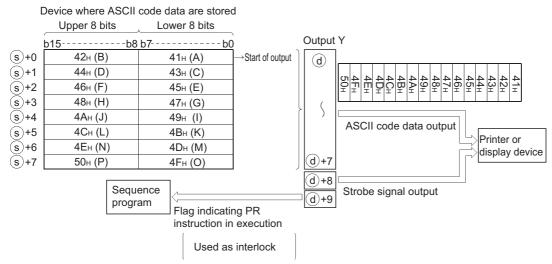
# **Printing ASCII code**

ersal LCPU
ST
ENO:= PR (EN, s, d);

Any of the following instruction can go in the dotted squares.  $\ensuremath{\mathsf{PR}}$ 

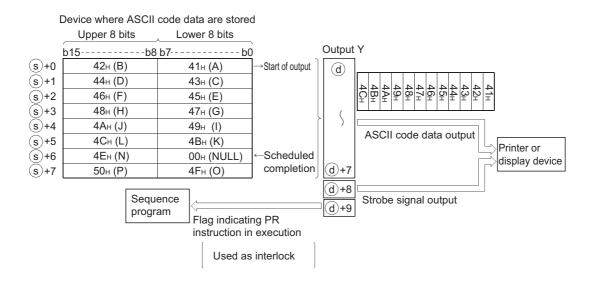
#### ■Executing condition

Instruction	Executing condition
PR	f

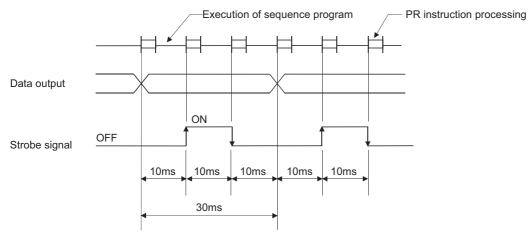

#### ■Argument

Input/output argument	:	Name		Descri	ption	Data type							
Input argument	t argument EN				Executing condition						Bit		
S				ASCII code, or start number of the device that stores ASCII code					ANY16/string				
Output argume	nt	ENO		Execution result					Bit				
d			tart num	ber of the output modul	Bit								
Setting Internal device R. ZR			R	JD/D			Zn		Constant	Others			

Setting	Internal dev	ice	R, ZR			UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			\$	
(s)	—	∆ ^{*1}		—			0	0	_
(d)	O(Y only)	—		—			0	—	_


*1 Local devices and file registers per program cannot be used as setting data.

• Outputs ASCII code data stored in the device specified for (s) or ASCII code data stored in the specified device number and the following devices to the output module specified for (d). The number of characters output differs according to the ON or OFF status of SM701 (For switching the number of output characters).




• If SM701 is ON, characters 8 points (16 characters) from the device specified for (s) will be the target of the operation.

• If SM701 is OFF, everything from the device specified for (s) to the 00H code will be the target of the operation.

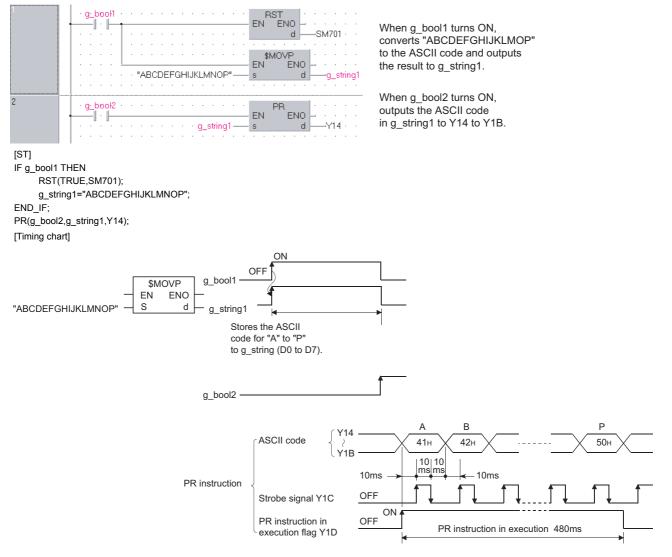


- The number of points used by the output module is 10 points from the Y address specified for (d).
- Output signals from the output module are transmitted at the rate of 30ms per character. For this reason, the time required to complete the transmission of the specified number of characters (n) will be 30ms × n (ms). At 10ms interrupt intervals, the PR instruction executes data output, strobe signal ON, and strobe signal OFF. The other instructions are executed continuously during a period between the above processes.



- In addition to the ASCII code data, the output module also outputs a strobe signal (10ms ON, 20ms OFF) from the (d) + 8 device.
- Following the execution of the PR instruction, the PR instruction execution flag ((d) + 9 device) remains ON until the completion of the transmission of the number of specified characters.
- The PR and PRC instructions can be used multiple times, but it is preferable to set the interlock with the PR instruction execution flag ((d) + 9 device) so that they will not be ON simultaneously.
- If the content of the device in which ASCII code data are stored are changed during the ASCII code data output, the modified data after change will be output.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	There is no 00H code within the range of the device specified for (s) when SM701 is OFF.	—	0	0	_	—	_

#### Program example

 In the following program, the string data "ABCDEFGHIJKLMNOP" is converted to ASCII code data when g_bool1 turns ON and the result is stored to g_string1 (D0), and then the stored ASCII code data in g_string1 (D0) are output to Y14 to Y1B when g_bool2 turns ON. (When SM701 is OFF)

[Structured ladder/FBD]

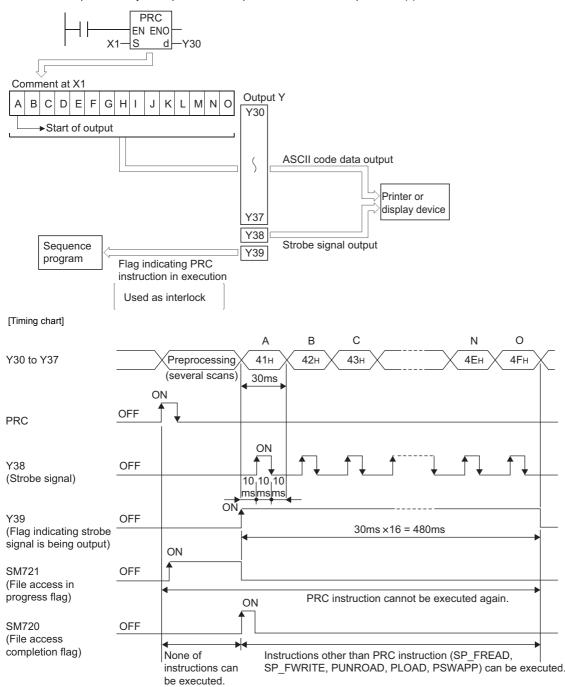


7

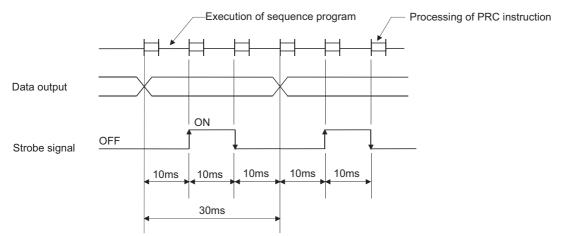
# **Printing comments**

PRC	
Basic High Process Redundant U	niversal LCPU
Structured ladder/FBD	ST
EN ENO	ENO:= PRC (EN, s, d);

The following instruction can go in the dotted squares. PRC


#### ■Executing condition

Instruction	Executing condition						
PRC							


#### ■Argument

Input/output Name argument				Description					Data type			
Input argument EN				Executing condition					Bit			
		S		Start nu	umber of the device whose comments are printed				ANY_SIMPLE			
Output argument ENC		ENO		Execution	tion result				Bit			
		d		Start number of the output module that outputs comments					Bit			
Setting	Internal d	levice R,		R	JD/D		U⊟\G□	Zn		Constant	Others	
data	Bit	Word			Bit	Word					P,I,J,U	
(s)	0	0			0			-		—	0	
(d)	O(Y only)	—			—			-		—	—	

- Outputs comment data (ASCII code data) in the device specified for (s) to output module specified for (d). The number of characters output differs according to the ON or OFF status of SM701.
- When SM701 is OFF:Comments in 32 characters
- When SM701 is ON:Comments of upper 16 characters
- The number of points used by the output module is 10 points from the Y address specified for (d).



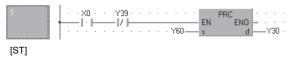
• Output signals from the output module are transmitted at the rate of 30ms per character. For this reason, the time required to complete the transmission of the number of specified characters will be 30ms × n (ms). At 10ms interrupt intervals, the PRC instruction executes data output, strobe signal ON, and strobe signal OFF. The other instructions are executed continuously during a period between the above processes.



- In addition to the ASCII code data, the output module also outputs a strobe signal (10ms ON, 20ms OFF) from the (d) + 8 device.
- Following the execution of the PRC instruction, the PRC instruction execution flag ((d) + 9 device) remains ON until the completion of the transmission of the number of specified characters.
- The PRC instruction can be used multiple times, but it is preferable to set the interlock with the PRC instruction execution flag ((d) + 9 device) so that they will not be ON simultaneously.
- If no comments have been registered to the device specified for (s), processing will not be performed.
- When a comment is read, SM720 turns ON for one scan after the instruction is completed. SM721 turns ON during the execution of the instruction. The PRC instruction cannot be executed while SM721 is ON. If an attempt is made, no processing is performed.

#### Point P

- For device comments used in the PRC instruction, use comment files stored in the memory card or standard ROM. Comment files stored in the internal memory cannot be used.
- The comment file used in the PRC instruction can be set at the <<PLC File>> tab in the PLC parameter. If no comment file has been set for use by the PLC file setting, it will not be possible to output device comments with the PRC instruction.
- Do not execute the PRC instruction during an interrupt program. Otherwise, malfunction may occur.
- An error occurs when a device with no device comment is specified. Note that no error occurs even if a device with no device comment is specified when the range of device comments is set in advance with a programming tool ("Device Comment Detail Setting" on "Online Data Operation" window for writing data to the CPU module), and the device is within the range.


#### Operation error

• In the following case, an operation error occurs and the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The PRC instruction is executed while device comments are written during online program change.	—	0	0	—	—	-
	A device with no device comment is specified.	—	0	0	—	_	-

#### Program example

• In the following program, the comment data in Y60 are output to Y30 to Y39 when X0 turns ON. [Structured ladder/FBD]



PRC(X0 AND NOT(Y39), Y60, Y30);

# Resetting error display or annunciator

LEDR	
Basic High performance Process Redundant Un	iversal
Structured ladder/FBD	ST
EN ENO	ENO:= LEDR (EN);

The following instruction can go in the dotted squares. LEDR

#### ■Executing condition

Instruction	Executing condition
LEDR	

#### ■Argument

Input/output Name argument			Description					Data type				
Input argument EN				Executing condition					Bit			
Output argument ENO		ENO		Execution result				Bit				
Setting	Internal device		R, ZR		JD/D		U⊟\G□	Zn	C	Constant	Others	
data	Bit	Word			Bit	Word						
_	—										•	

#### Processing details

Resets the self-diagnostics error display so that annunciator display or operation can be continued. With one execution of this instruction, either error display or annunciator is reset.

#### ■Operation when self-diagnostics errors occur.

- When the LEDR instruction is executed, the "ERR." LED is reset. It is necessary to reset SM0, SM1, and SD0 by the user program, because they are not reset automatically. Since the cause of the self-diagnostics error being displayed has a higher priority over annunciator, no action for resetting the annunciator is taken.
- If the LEDR instruction is executed after the battery is replaced, the "BAT." LED is reset. SM51 is also turned OFF at this time.

### ■Operations when annunciators (F) are ON.

The following operations are performed when the LEDR instruction is executed.

- "USER" LED flickers, and is turned OFF.
- The annunciators (F) stored in SD62 and SD64 are reset, and the F numbers of SD65 to SD79 are moved up.
- The data newly stored in SD64 are transmitted to SD62.
- The value in SD63 is decremented by 1. However, if SD63 is 0, it remains 0.

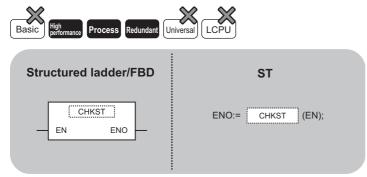


• The defaults for the error item numbers set in special registers SD207 to SD209 and order of priority are given in the table below.

Priority	Factor number (Hexadecimal)	Description	Remarks
1	1	AC DOWN	Power off
	SINGLE PS. DOWN SINGLE PS. ERROR		Redundant base unit power supply voltage drop (QCPU (Q mode) only) Redundant power supply module fault.(QCPU (Q mode) only)
2	2	UNIT VERIFY ERR. FUSE BREAK OFF SP. UNIT ERROR SP. UNIT DOWN	I/O module verify error (QCPU (Q mode) only) Blown fuse (QCPU (Q mode) only) Special function module verify error Intelligent function module verification error (QCPU (Q mode) only) Intelligent function module error (LCPU only)
3	3	OPERATION ERROR LINK PARA. ERROR SFCP OPE. ERROR SFCP EXE. ERROR REMOTE PASS. FAIL SNTP OPE. ERROR	Operation error Link parameter error (QCPU (Q mode) only) SFC instruction operation error (PU (Q mode) only) SFC program execution error (QCPU (Q mode) only) Remote password error (QCPU (Q mode) only) SNTP error (LCPU only)
4	4	ICM. OPE. ERROR FILE OPE. ERROR EXTEND INST. ERROR OPE. MODE DIFF. CAN'T EXE. MODE TRK.TRANS. ERR. TRK.SIZE ERROR TRK.DISCONNECT FLASH ROM ERROR	Memory card operation error File access error Extended instruction error (QCPU (Q mode) only) Operation status, switch mismatch (QCPU (Q mode) only) Current mode-time function execution disabled (QCPU (Q mode) only) Tracking data transmission error (QCPU (Q mode) only) Tracking capacity excess error (QCPU (Q mode) only) Tracking cable not connected, failure (QCPU (Q mode) only) Flash ROM access count exceeded error (LCPU only)
5	5	PRG.TIME OVER	Constant scan setting time over error Low speed execution monitoring time over error (QCPU (Q mode) only)
6	6	CHK instruction	-
7	7	Annunciators	-
8	8	LED instruction	-
9	9	BATTERY ERR.	-
10	A	Clock data	-
11	В	CAN'T SWITCH STANDBY SYS. DOWN MEM. COPY EXE.	System switching error (QCPU (Q mode) only) Standby system not started/stop error (QCPU (Q mode) only) Memory copy function executed (QCPU (Q mode) only)
12	С	DISPLAY ERROR	Display unit error (LCPU only)

• If the highest priority is given to the annunciator, it can be reset with priority by the LEDR instruction. (For Basic model QCPU, High Performance model QCPU, Process CPU, and Redundant CPU)

#### **Operation error**


· There is no operation error.



# 7.10 Debug/Error Diagnostics Instructions

# Special format error check

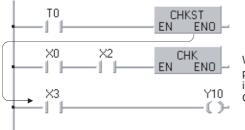
# CHKST, CHK



Any of the following instruction can go in the dotted squares. CHKST, CHK

#### ■Executing condition

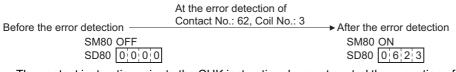
Instruction	Executing condition
CHKST, CHK	Non-conditional execution


# ■Argument

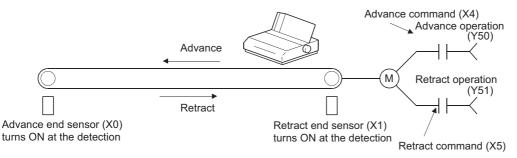
Input/output argument	: I	Name	Descri	ption	Data type							
Input argumen	t í	EN	Executir	Executing condition					Bit			
Output argume	ent E	ENO	Executio	Execution result					Bit			
Setting	Internal de	ternal device	R, ZR	۶ JD/D			Zn		Constant	Others		
data	Bit	t Word		Bit								
•			R, ZR		Word	UD\GD	Zn		Constant	C		

#### Processing details

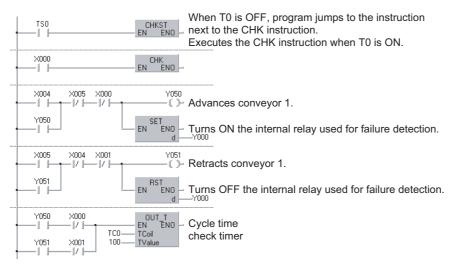
#### ■CHKST


- The CHKST instruction is the instruction that starts the CHK instruction.
- If the command for the CHKST instruction is OFF, execution jumps from the CHK instruction to the next instruction.
- If the command for the CHKST instruction is ON, the CHK instruction is executed.

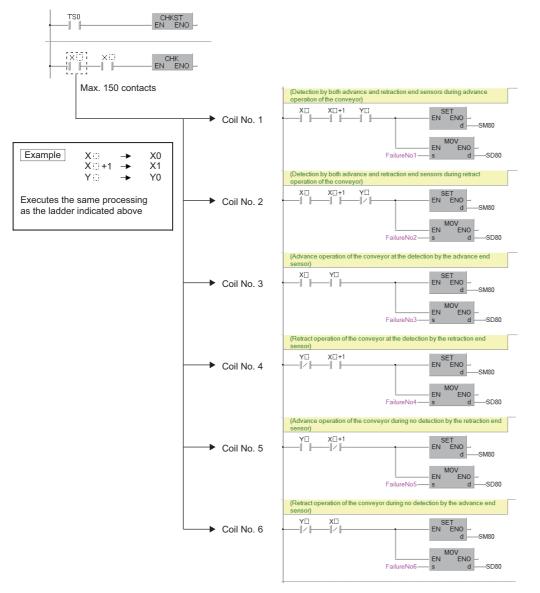



When T0 is OFF, program jumps to the instruction next to the CHK instruction.

#### ■CHK


• The CHK instruction is the instruction used for the bidirectional operation as shown below to confirm the nature of the system error. When the CHK instruction is executed, an error diagnostic check is performed with the specified check conditions, and if a failure is detected, SM80 is turned ON, and the failure number is stored to SD80 as a BCD value. The error code "9010" will be returned if an error is detected. The contact number where the error was discovered is stored to the upper 3 digits of SD80 (refer to (3)), and the coil number where the error was detected (refer to (2)) is stored to the lower 1 digit of SD80.




• The contact instruction prior to the CHK instruction does not control the execution of the CHK instruction, but rather sets the check conditions.



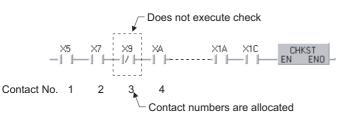
· A ladder such as the one shown below can be created to perform a cycle time-out check for the system shown above.



- The following points should be taken into consideration when creating a ladder using the CHK instruction.
- The contact numbers for the advance edge sensor and the retract edge sensor (XD) must always be in serial. Further, the contact number (XD) for the advance edge sensor should be lower than that for the retract edge.
- Controls for the advance edge sensor contact number (XD) and output with the identical number (YD) so that the output turns on when the advance operation is in progress and turns off when the retract operation is in progress. Output (YD) is treated as an internal relay, and cannot be output to an external device.
- Depending on the specified contact, the CHK instruction undergoes processing identical to that shown for the ladder below.
   A coil number (1 to 6) that is detected by error detection is stored in lower one digit of SD80.



• Numbers 1 to 150 from the left base line have been assigned as contact numbers during error detection.


X5	X7	X9	X1A	X1C	СНК	
-l  -	-1 1-			-1	EN ENO	ŀ

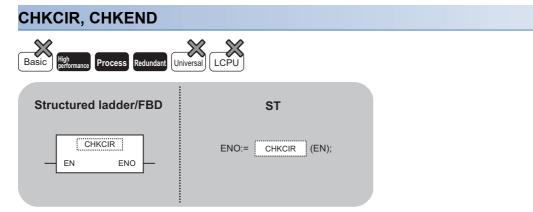
 $Contact \ \text{No.} \rightarrow \ 1 \qquad 2 \qquad 3 \qquad ----- \qquad 149 \qquad 150$ 

- Reset SM80 and SD80 prior to forcing the execution of the CHK instruction. After the execution of the CHK instruction, it cannot be performed once again until SM80 and SD80 have been reset. (The content of SM80 and SD80 will be preserved until they are reset by user.)
- The CHKST instruction must be placed before the CHK instruction. An error is returned if an instruction other than the LD, LDI, AND or ANI instruction is used between the CHK instruction and the CHKST instruction. (Error code: 4235)
- The CHK instruction can be written at any step of the program. However, there is a limit in the number of uses of the CHK instruction. An error is returned if the CHK instruction is used exceeding the number of uses specified as follows. (Error code: 4235)
- Can be used up to two places in all program files being executed.

• Can be used only one place in a single program file.

• Place LD and AND instructions prior to the CHK instruction to establish a check condition. Check conditions cannot be set using other contact instructions. If a check condition has been set with the LDI or ANI instruction, the processing for the check condition they specify will not be performed. However, contact numbers during error detection can also be assigned to the LDI and ANI instructions.




- The error detection method differs according to whether SM710 is ON or OFF.
- If SM710 is OFF, checks are performed on coil numbers 1 through 6 in order of contact number. When the CHK instruction is executed, checks are performed on coils of contact No.1 in order from coil No.1 through coil No.6, then move on to contact No. 2 and check the coils in order from coil No.1 through coil No.6. The CHK instruction is completed when coil No. 6 of contact No. n is checked.
- If SM710 is ON, checks are performed on contact numbers 1 through n in order of coil number. When the CHK instruction is executed, checks are performed on the ladder with coil No. 1 in order from contact No. 1 through contact No. n, then move on to the ladder with coil No. 2 and checks the ladder in order from contact No. 1 through contact No. 1 through contact No. n, then move on to the ladder with coil No. 2 and checks the ladder in order from contact No. 1 through contact No. n of coil No. 6 is checked.
- If more than one error is detected, the number of the first error detected is stored. Error numbers detected after this are ignored.
- The CHK instruction cannot be used in a low speed execution type program. If a low speed execution type program is set in a program file containing the CHK instruction, an operation error is returned, and the CPU module operation is suspended.

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4235	There is a parallel ladder. There are more than 150 contact instructions. The CHK instruction is not executed following the CHKST instruction. The CHK instruction is executed when no CHKST instruction has been executed. The CHKST and CHK instructions are used in a low speed execution type program. There is a instruction other than the LD, LDI, AND or ANI instruction between the CHK instruction and the CHKST instruction. The CHK instruction is used at three places or more in all program files being executed. The CHK instruction is used at two places or more in a single program file.	_	0	0	0	—	—

# Changing check format of the CHK instruction



Any of the following instruction can go in the dotted squares. CHKCIR, CHKEND

#### ■Executing condition

Instruction	Executing condition
CHKCIR, CHKEND	Non-conditional execution

#### ■Argument

Input/output Name argument				Description					Data type			
Input argument EN Executing condition							Bit					
Output argument ENO				Execution result			Bit	Bit				
Setting	tting Internal device R, ZR J□\□			UD\GD	Zn	Zn Constant		Others				
data	Bit	Word	1		Bit	Word				К, Н		
_	_											

#### Processing details

- The check ladder pattern that is used in the CHK instruction can be updated to any format desired. The actual error checks are performed with the CHKST and CHK instructions.
- Error checks are performed according to the check conditions specified by the CHK instruction and the ladder pattern described between the CHKCIR and CHKEND instructions.

# Point P

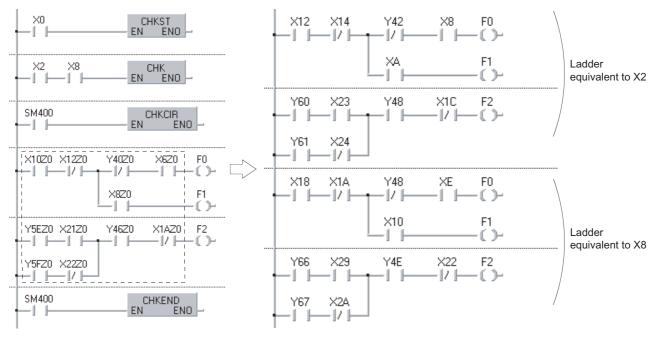
For details on the CHKST and CHK instructions, refer to  $\square$  Page 468 Special format error check. To change the check format of the CHK instruction using the CHKCIR to CHKEND instruction loop, create a ladder with index setting (Z0).

- The device numbers indicated at check conditions (X2 and X8 in the figure below) are index setting values for each device number (with the exception of annunciators (F)) described in the ladder patterns. For example, the device number of X10Z0 on the ladder pattern is handled as X12 when the check condition is specified to X2, and X18 when the check condition is specified to X8.
- However, the order in which error detection is executed differs depending on whether SM710 is ON or OFF.

If SM710 is OFF, checks are performed on coil numbers 1 through the end in order of contact number.

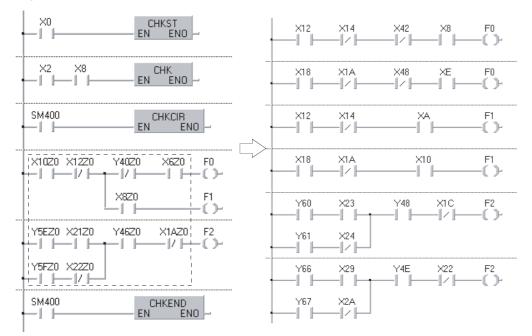
The contact number 1 is checked with the ladder pattern from the coil number 1 to n. After that, the contact number 2 is checked with the same ladder pattern from the coil number 1 to n.

If SM710 is ON, checks are performed on contact numbers 1 through the end in order of coil number.


With the ladder pattern of the coil number 1, the contact numbers from 1 to n are checked. After that, with the ladder pattern of the coil number 2, the contact numbers from 1 to n are checked.

# Ex.

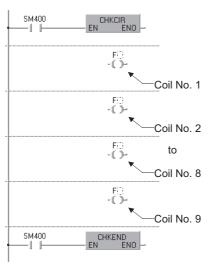
Following is the example when SM710 is OFF.


[Left: Specified ladder between CHKCIR and CHKEND instructions]

[Right: Order of check in CPU module]



# Ex.


Following is the example when SM710 is ON. [Left: Specified ladder between CHKCIR and CHKEND instructions] [Right: Order of check in CPU module]



- Error check checks the ON/OFF status of OUT F by using the ladder pattern in the various check conditions. In all check conditions, SM80 is turned ON if even one of the OUT F is ON in a ladder pattern. Further, the error numbers (contact numbers and coil numbers) corresponding to the OUT F which are turned ON are stored to SD80 in BCD order.
- The instructions that can be used in ladder patterns are as follows.

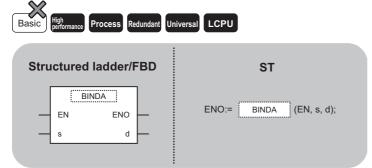
Туре	Instruction
Contacts	LD, LDI, AND, ANI, OR, ORI, ANB, ORB, MPS, MPP, MRD, and comparison operation instructions
Coil	OUT F

- The devices can be used for ladder pattern contacts are input (X) and output (Y).
- Only annunciators (F) can be used in ladder pattern coils. However, since annunciators (F) are used as a dummy, any value can be set for an annunciator (F). Further, they can overlap with no difficulties.
- ON/OFF controls can be performed without error if an annunciator (F) used during the execution of the CHK instruction has the same number as an annunciator (F) used in some other context than the CHK instruction. They are treated differently during the CHK instruction than they are in the different context.
- Since the annunciators (F) used in the CHK instruction do not turn ON/OFF actually, they are turned ON/OFF if monitored by a peripheral.
- A ladder pattern can be created up to 256 steps. Further, OUT FD can use up to 9 coils.
- Coil numbers for ladders specified within the CHKCIR to CHKEND instruction loop are assigned with coil numbers from 1 to 9, from top to bottom.



- The CHKCIR and CHKEND instructions can be written at any step in the program desired. It can be used in up to two locations in all program files being executed. However, the CHKCIR and CHKEND instructions cannot be used in more than 1 location in a single program file.
- The CHKCIR and CHKEND instructions cannot be used in low speed execution type programs. If a program file in which the CHKCIR or CHKEND instruction is described is set as a low speed execution type program, an operation error occurs, and the High Performance model QCPU operation is suspended.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4230	The CHKEND instruction is not executed following the execution of the CHKCIR instruction. The CHKEND instruction is executed although no CHKCIR instruction has been executed.	—	0	0	0	_	-
4235	The CHKCIR to CHKEND instruction loop is set three or more times in all program files. The CHKCIR or CHKEND instruction loop is set two or more times in a single program file. The CHKST and CHK instructions are used in a low speed execution type program. There are 10 or more F instances in a ladder pattern. A ladder pattern has 257 or more steps. A device has been encountered which cannot be used in a ladder pattern. The index setting has been performed on a ladder pattern device.	_	0	0	0	_	_

# 7.11 String Processing Instructions

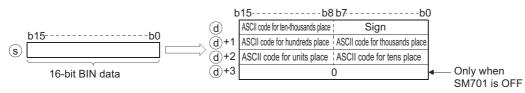
# 16-/32-bit BIN data to decimal ASCII data conversion

# BINDA(P), DBINDA(P)

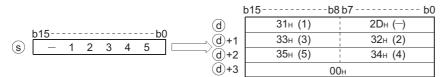


Any of the following instruction can go in the dotted squares. BINDA, BINDAP, DBINDA, DBINDAP

#### ■Executing condition


Instruction	Executing condition
BINDA, DBINDA	
BINDAP, DBINDAP	

### ■Argument


Input/output Name argument					ption	Data type						
Input argument EN				Executi	Executing condition Bit							
s				BIN dat	BIN data to be converted to ASCII code data ANY16/32							
Output argument ENO				Executi	Execution result Bit							
		d		Start nu	Start number of the device that stores conversion result					String (8)/(12)		
Setting	Internal d	levice R, ZF		R	JD/D		UD\GD	Zn		Constant Other	Others	
data	Bit	Word			Bit Word					К, Н		
(s)	0	0			0						-	
(d)	—	0			_						-	

#### ■BINDA(P)

Converts each digit number of decimal notation of the 16-bit BIN data specified for (s) to ASCII code data, and stores the
results to the device specified for (d) and the following devices.



For example, if -12345 is specified for (s), the results are stored to the devices from (d) as shown below.



• BIN value between -32768 and 32767 can be specified for (s).

· The operation results stored to (d) are as follows.

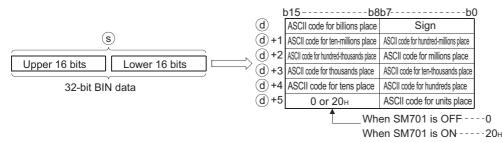
• The sign 20H is stored if the BIN value is positive, and the sign 2DH is stored if it is negative.

• The sign 20H is stored for the leading zeros of significant figures. (Zero suppression is performed.)

#### 00325

Number of significant figures

20н is set


• The storage of data in devices specified for (d)+3 differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).

When SM701 is OFFStores 0

When SM701 is ONDoes not change

#### ■DBINDA(P)

Converts each digit number of decimal notation of the 32-bit BIN data specified for (s) to ASCII code data, and stores the
results to the device specified for (d) and the following devices.



For example, if the value -12345678 has been specified for (s), the results will be stored to the devices from (d) as shown below.

	b	)15b8	3b7b0
	d	20н (space)	2Dн (-)
$(\mathbf{s})$	(d)+1	31н (1)	20н (space)
	(d)+2	33н (3)	32н (2)
-1234 5678	(d)+3	35н (5)	34н (4)
	(d)+4	37н (7)	36н (6)
	(d)+5	0 or 20н	38н (8)

• BIN value between -2147483648 and 2147483647 can be specified for (s).

• The operation results stored to (d) are stored in the following way.

- The sign 20H is stored if the BIN value is positive, and the sign 2DH is stored if it is negative.
- The sign 20H is stored for the leading zeros of significant figures. (Zero suppression is performed.)

0012034560

20_H is set Number of

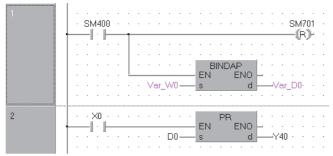
significant figures

• The data stored in the upper 8 bits of the device specified for (d)+5 differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).

When SM701 is OFFStores 0

• When SM701 is ONStores 20H

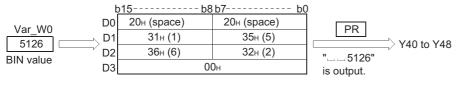
#### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

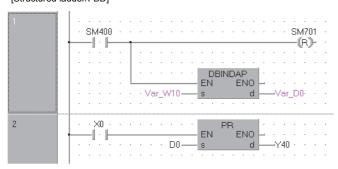
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

#### Program example

 In the following program, the 16-bit BIN data in Var_W0 are converted to the decimal ASCII code data, and the results are output to Y40 to Y48 by the PR instruction. (Global label Var_D0 is assigned to device D0.)


[Structured ladder/FBD]




[ST]

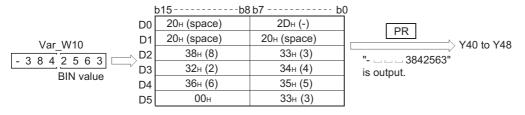
RST(SM400,SM701); BINDAP(SM400,Var_W0,Var_D0); PR(X0,D0,Y40); [Operation] The ASCII code data are output to Y

The ASCII code data are output to Y40 to Y48 by the execution of the PR instruction when X0 turns ON. Since SM701 is OFF, the PR instruction outputs ASCII code data up to 00H.



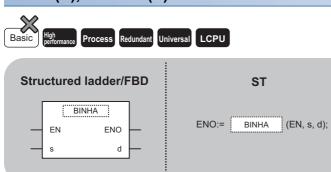
 In the following program, the 32-bit BIN data in Var_W10 are converted to the decimal ASCII code data, and the results are output to Y40 to Y48 by the PR instruction. (Global label Var_D0 is assigned to device D0.) [Structured ladder/FBD]




[ST]

RST(SM400,SM701); DBINDAP(SM400,Var_W10,Var_D0);

PR(X0,D0,Y40);


[Operation]

The ASCII code data are output to Y40 to Y48 by the execution of the PR instruction when X0 turns ON. Since SM701 is OFF, the PR instruction outputs ASCII code data up to 00H.



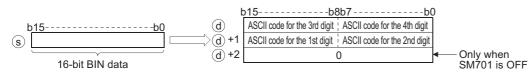
# 16-/32-bit BIN data to hexadecimal ASCII data conversion

# BINHA(P), DBINHA(P)

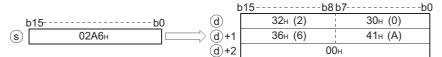


Any of the following instruction can go in the dotted squares. BINHA, BINHAP, DBINHA, DBINHAP

#### ■Executing condition


Instruction	Executing condition
BINHA, DBINHA	
BINHAP, DBINHAP	

#### ■Argument

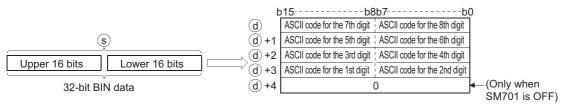

Input/output argument	t	Name		Descri	ption	ata type								
Input argumen	t	EN		Executi	ng condition		Bit							
		S		BIN dat	BIN data to be converted to ASCII code data ANY16/32									
Output argume	ent	ENO		Execution	on result	Bit								
		d		Start nu	mber of the dev	ice that stores co	String (6)/(10)							
Setting	Internal device		R, Z	R	JD/D		UD\GD	Zn		Constant	Others			
data	Bit	Word	1		Bit	Word				К, Н				
(S)	0	0	0		0						-			
(d)	—	0			_		—							

### ■BINHA(P)

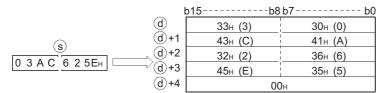
• Converts each digit number of hexadecimal notation of the 16-bit BIN data specified for (s) to ASCII code data, and stores the results to the device specified for (d) and the following devices.



For example, if 02A6H is specified for (s), the results are stored to the devices from (d) as shown below.




- The BIN data specified for (s) can be in the range from 0H to FFFFH.
- The operation results stored to (d) are processed as 4-digit hexadecimal values. For this reason, zeros which are significant figures on the left side of the value are processed as 0. (No zero suppression is performed.)
- The data to be stored to the device specified for (d)+2 differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).


When SM701 is OFFStores 0 When SM701 is ONDoes not change

### ■DBINHA(P)

• Converts each digit number of hexadecimal notation of the 32-bit BIN data specified for (s) to ASCII code data, and stores the results to the device specified for (d) and the following devices.



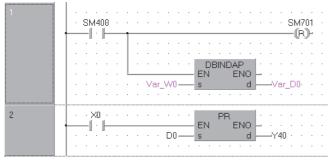
For example, if the value 03AC625EH is specified for (s), the results are stored to the devices from (d) as shown below.



- The BIN data specified for (s) can be in the range from 0H to FFFFFFFH.
- The operation results stored to (d) are processed as 8-digit hexadecimal values. For this reason, zeros which are significant figures on the left side of the value are processed as 0. (No zero suppression is performed.)
- The data to be stored to the device specified for (d)+4 differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).
- When SM701 is OFFStores 0

 $\ensuremath{\cdot}$  When SM701 is ONDoes not change

#### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

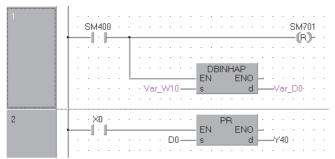
## Program example

• In the following program, the 16-bit BIN data in Var W0 are converted to the hexadecimal ASCII code data, and the results are output to Y40 to Y48 by the PR instruction. (Global label Var_D0 is assigned to device D0.) [Structured ladder/FBD]





[ST]


RST(SM400,SM701); BINHAP(SM400,Var_W0,Var_D0); PR(X0,D0,Y40); [Operation]

The ASCII code data are output to Y40 to Y48 by the execution of the PR instruction when X0 turns ON. Since SM701 is OFF, the PR instruction outputs ASCII code data up to 00H.

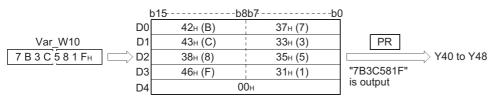
	b15b8	3b7b(	)
Var_W0 D0	43н (C)	39н (9)	PR
9С06н 🗁 D1	36н (6)	30н (0)	Y40 to Y48
BIN value D2	0	0н	"9C06" is output

• In the following program, the 32-bit BIN data in Var_W10 are converted to the hexadecimal ASCII code data, and the results are output to Y40 to Y48 by the PR instruction. (Global label Var D0 is assigned to device D0.)

[Structured ladder/FBD]

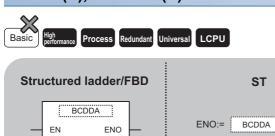


[ST]


RST(SM400,SM701);

DBINHAP(SM400,Var_W10,Var_D0);

PR(X0,D0,Y40);


[Operation]

The ASCII code data are output to Y40 to Y48 by the execution of the PR instruction when X0 turns ON. Since SM701 is OFF, the PR instruction outputs ASCII code data up to 00H.



# 4-/8-digit BCD data to decimal ASCII data conversion

# BCDDA(P), DBCDDA(P)



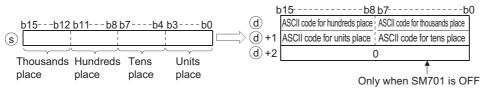
d

Any of the following instruction can go in the dotted squares. BCDDA, BCDDAP, DBCDDA, DBCDDAP

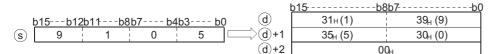
#### ■Executing condition

Instruction	Executing condition
BCDDA, DBCDDA	
BCDDAP, DBCDDAP	

(EN, s, d);


#### ■Argument

s


Input/outpu argument	t	Name		Descri	ption	Data type								
Input argumer	nt	EN		Executi	ng condition		Bit							
		s		BCD da	BCD data to be converted to ASCII code data ANY16/32									
Output argum	ent	ENO		Execution result Bit										
		d		Start number of the device that stores conversion result String (6)/(10)										
Setting	Internal c	ernal device R, ZF			JD/D		n Constant		Others					
data	Bit	Word			Bit	Word				К, Н				
(s)	0	0	0		0						-			
(d)	-	0			—						_			

#### ■BCDDA(P)

 Converts each digit number of hexadecimal notation of the 4-digit BCD data specified for (s) to ASCII code data, and stores the results to the device specified for (d) and the following devices.



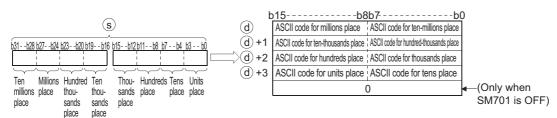
For example, if the value 9105 is specified for (s), the results are stored to the devices from (d) as shown below.



- The BCD data specified for (s) can be in the range of from 0 to 9999.
- For the results of calculation stored to the device (d), all zeros on the left side of the significant figures are zero-suppressed.

0050

Number of significant figures


- —20н is set
- The data to be stored to the device specified for (d)+2 differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).

• When SM701 is OFFStores 0

When SM701 is ONDoes not change

#### ■DBCDDA(P)

• Converts each digit number of hexadecimal notation of the 8-digit BCD data specified for (s) to ASCII code data, and stores the results to the device specified for (d) and the following devices.



For example, if the value 01234056 is specified for (s), the result are stored to the devices from (d) as shown below.

	b <u>15b</u> 8	3b7b0
d	31н (1)	20н
b31b28b27b24b23b20b19b16 b15b12b11 b8b7 b4b3 b0 (d)+1	33н (3)	32н (2)
0 1 2 3 4 0 5 6 d+2	30н (0)	34н (4)
(d)+3	36н (6)	35н (5)
(s) (d)+4	00	Он

- The BCD data specified for (s) can be in the range of 0 to 99999999.
- For the results of calculation stored to the device (d), all zeros on the left side of the significant figures are zero-suppressed.

#### 000,12098

Number of significant figures

20н is set

- The data to be stored to the device specified for (d)+4 differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).
- When SM701 is OFFStores 0

When SM701 is ONDoes not change

### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The data of (s) during the operation of the BCDDA(P) instruction is outside the range of from 0 to 9999. The data of (s) during the operation of the DBCDDA(P) instruction is outside the range of 0 to 99999999.	—	0	0	0	0	0
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

#### Program example

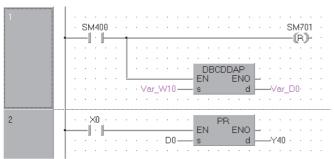
 In the following program, the 4-digit BCD data in Var_W0 are converted to the decimal ASCII code data, and the results are output to Y40 to Y48 by the PR instruction. (Global label Var_D0 is assigned to device D0.) [Structured ladder/FBD]

		1.	Ĩ	°			•	•	•	•	•	•		•						•	SM 	1701 21-	
	•	Ì	Î		:		:	•	:	:	:	•	:	:	:		· ·	•	•	:		ľ	•
	•				:		•		•	•	•	•	E	۹ BC	D	DAF El	> NO	Ŀ	:	÷	:		
	•				:	:	:	Y	ar_	W	0 —		s				d	ŀ	-//	ar,	_D0	· ·	•
2 ·		×	0										E		PF	2	NO	Ŀ	•	•			
	•	1	. 1	•	•	÷	•	÷	•	D	0 —	_		ч			d	Ļ	_Y	'40			

[ST]

RST(SM400,SM701); BCDDAP(SM400,Var_W0,Var_D0); PR(X0,D0,Y40);

[Operation]


The ASCII code data are output to Y40 to Y48 by the execution of the PR instruction when X0 turns ON.

Since SM701 is OFF, The PR instruction outputs ASCII code data up to 00H.

	b	<u>15b8</u>	3b7b	0
Var_W0	D0	32н (2)	31н (1)	PR
1 2 9 5	>D1	35н (5)	39н (9)	Y40 to Y48
BCD value	D2	0	0н	"1295" is output

• In the following program, the 8-digit BCD data in Var_W10 are converted to the decimal ASCII code data, and the results are output to Y40 to Y48 by the PR instruction. (Global label Var_D0 is assigned to device D0.)

[Structured ladder/FBD]



[ST]

RST(SM400,SM701); DBCDDAP(SM400,Var_W10,Var_D0); PR(X0,D0,Y40);

[Operation] The ASCII code data are output to Y40 to Y48 by the execution of the PR instruction when X0 turns ON. Since SM701 is OFF, The PR instruction outputs ASCII code data up to 00H.

D0 $35_{H}(5)$ $33_{H}(3)$		b	<u>15b8</u>	b7b	<u>0</u>	
		D0	35н (5)	33н (3)		
$Var_VV10$ D1 $37_{\rm H}(7)$ $34_{\rm H}(4)$ PR	Var_W10	D1	37н (7)	34н (4)	PR	
3 5 4 7 8 3 5 2 2 2 33 _H (3) 38 _H (8) 440 to Y48	3 5 4 7 8 3 5 2	D2	33н (3)	38н (8)	Y40 to Y48	
BCD value D3 32н (2) 35н (5) "35478352"	BCD value	D3	32н (2)	35н (5)		
D4 00H is output		D4	00	Он	is output	

# Decimal ASCII data to 16-/32-bit BIN data conversion

# DABIN(P), DDABIN(P)

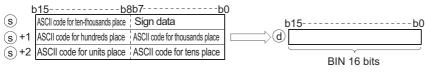


DABIN ENO:= DABIN (EN, s, d); ENO ΕN d

Any of the following instruction can go in the dotted squares. DABIN, DABINP, DDABIN, DDABINP

#### ■Executing condition

Instruction	Executing condition
DABIN, DDABIN	
DABINP, DDABINP	


#### ■Argument

s

Input/outpu argument	t	Name		Description					Data type			
Input argumer	nt	EN		Executi	ng condition				Bit	Bit		
		S			SCII data to be converted to BIN value, or start number of the String (6)/(11) levice that stores ASCII data							
Output argum	ent	ENO		Execution	Execution result Bit					Bit		
		d		Start nu	mber of the dev	vice that stores	conversion result		ANY	16/32		
Setting	Internal d	levice	R, Z	R	JD\D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				\$		
(S)	-	0			—					0	—	
(d)	0	0			0 –				—	—		

#### ■DABIN(P)

 Converts decimal ASCII data stored in the device specified for (s) and the following devices to 16-bit BIN data, and stores the results to the device specified for (d).



For example, if the ASCII code "-25108" is specified for the devices following (s), the results will be stored to (d) as shown below.

ł	o15b	8b7k	0					
s	32н (2)	2Dн ()	] ,	o15				b0
s+1	31н (1)	35н (5)		- :	25	1	0	8
(s)+2	38н (8)	30н (0)						

- The ASCII data specified for (s) to (s)+2 can be in the range of -32768 to 32767.
- The sign 20H will be stored if the BIN value is positive, and the sign 2DH will be stored if it is negative. (If other than 20H or 2DH is set, it will be processed as positive data.)
- ASCII code can be set for each position within the range from 30H to 39H.
- If the ASCII code set for each position is 20H or 00H, it will be processed as 30H.

#### ■DDABIN(P)

 Converts decimal ASCII data stored in the device specified for (s) and the following devices to 32-bit BIN data, and stores the results to the device specified for (d).



For example, if the ASCII code -1234543210 is specified for the devices following (s), the result will be stored to (d) as shown below.

b	)15b8	b7l	20
s	31н (1)	2Dн ()	
(s)+1	33н (3)	32н (2)	(d)
(s)+2	35н (5)	34н (4)	
(s)+3	33н (3)	34н (4)	
<u>s</u> +4	31н (1)	32н (2)	
s +5		30н (0)	

- The ASCII data specified for (s) to (s)+5 can be in the range of -2147483648 to 2147483647. Further, data stored in the upper bytes of (s)+5 will be ignored.
- The sign 20H will be stored if the BIN value is positive, and the sign 2DH will be stored if it is negative. (If other than 20H or 2DH is set, it will be processed as positive data.)
- ASCII code can be set for each position within the range from 30H to 39H.
- If the ASCII code set for each position is 20H or 00H, it will be processed as 30H.

## **Operation error**

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The ASCII code specified for (s) to (s)+5 for each number is other than 30H to 39H, 20H, or 00H. The ASCII data specified for (s) to (s)+5 is outside the ranges shown below. • When DABIN(P) instruction is used: -32768 to 32767 • When DDABIN(P) instruction is used: -2147483648 to 2147483647	_	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	-	-	-	—	0	0

#### Program example

• In the following program, the 5-digit decimal ASCII data and the signs set in Var_D20 are converted to BIN value, and the result is stored to Var_D0.

[Structured ladder/FBD]



[ST]

DABINP(SM400,Var_D20,Var_D0); [Operation]

• • •			
ł	b15	-b8b7	b0
Var_D20	20н (space)	2Dн (-)	

b	)15b8	lb7	<u>b0</u> v	′ar D0
Var_D20	20н (space)	2Dн (-)		-276
Var_D20+1	32н (2)	20н (space)		
Var_D20+2	36н (6)	37н (7)	(Regarded as -00270) BI	N value
	" 276"			

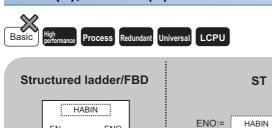
• In the following program, the 10-digit decimal ASCII data and the signs set in Var_D20 are converted to BIN value, and the result is stored to Var_D10.

[Structured ladder/FBD]



[ST]

DDABINP(SM400,Var_D20,Var_D10); [Operation]


b	15b	8b7b	Q	
Var_D20	20н (space)	20н (space)		
Var_D20+1	20н (space)	20н (space)	Var D10	
Var_D20+2	39н (9)	33н (3)		0
Var_D20+3	<b>38</b> н (8)	36н (6)		0
Var_D20+4	37н (7)	33н (3)	(Regarded as +0003968370) BIN value	
Var_D20+5		30н (0)		

"____3968370"

# Hexadecimal ASCII data to 16-/32-bit BIN data conversion

(EN, s, d);

# HABIN(P), DHABIN(P)



ENO

d

Any of the following instruction can go in the dotted squares. HABIN, HABINP, DHABIN, DHABINP

#### ■Executing condition

ΕN

s

Instruction	Executing condition
HABIN, DHABIN	
HABINP, DHABINP	

#### ■Argument

Input/outpu argument	t	Name		Descri	Description				Data	a type	
Input argumer	nt	EN		Executi	ng condition				Bit		
		S			SCII data to be converted to BIN value, or start number of the         String (4)/(8)           vice that stores ASCII data         String (4)/(8)					g (4)/(8)	
Output argum	ent	ENO		Execution result				Bit			
		d		Start nu	mber of the dev	vice that stores of	conversion result		ANY	16/32	
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word				\$	
(S)	—	0			—					0	—
(d)	0	0			0				—	—	

#### ■HABIN(P)

• Converts hexadecimal ASCII data stored in the device specified for (s) and the following devices to 16-bit BIN data, and stores the results to the device specified for (d).



For example, if the ASCII code 5A8DH is specified for the devices following (s), the result will be stored to (d) as shown below.

	b15	-b8 b7	b0	15 10
s	41н (A)	35н (5		549D.
(s)+1	44 _H (D)	38н (8		5A6DH

• The ASCII data specified for (s) to (s)+1 can be in the range of 0000H to FFFFH.

• The ASCII code can be in the range of 30H to 39H and 41H to 46H.

#### ■DHABIN(P)

• Converts hexadecimal ASCII data stored in the device specified for (s) and the following devices to 32-bit BIN data, and stores the results to the device specified for (d).

I	b15b8	3b7b0	(d)
s	ASCII code for the 7th digit	ASCII code for the 8th digit	
s+1	ASCII code for the 5th digit	ASCII code for the 6th digit	b31b16 b15b0
s+2	ASCII code for the 3rd digit	ASCII code for the 4th digit	Upper 16 bits Lower 16 bits
(s)+3	ASCII code for the 1st digit	ASCII code for the 2nd digit	BIN 32 bits

For example, if the ASCII code 5CB807E1H is specified for the devices following (s), the result will be stored to (d)+1 and (d) as shown below.

t	o15b8	b7b0	(d)
s	43н (C)	35н (5)	
(s)+1	38н (8)	42н (B)	b31b16 b15b0
(s)+2	37н (7)	30н (0)	5СВ8н 07Е1н
(s)+3	31н (1)	45н (E)	

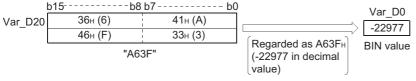
- The ASCII data specified for (s) to (s)+3 can be in the range of 00000000H to FFFFFFFH.
- The ASCII code can be in the range of 30H to 39H and 41H to 46H.

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The ASCII code for each digit specified for (s) to (s)+3 are outside the range of 30H to 39H and 41H to 46H.	—	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	—	0	0

# Program example


 In the following program, the 4-digit hexadecimal ASCII data set in Var_D20 are converted to BIN value, and the results are stored to Var_D0.

[Structured ladder/FBD]



[ST]

HABINP(SM400,Var_D20,Var_D0); [Operation]



• In the following program, the 8-digit hexadecimal ASCII data set in Var_D20 are converted to BIN value, and the results are stored to Var_D10.

[Structured ladder/FBD]

1		
	SM400 · · · · · DHABINP · · · · ·	
•		
	····Var_D20 <b>──sd</b> ──Var_D10	

[ST]

DHABINP(SM400,Var_D20,Var_D10); [Operation]

[Operation]

l	b15b8	3b7 b(	2	
Var_D20	46н (F)	34н (4)		Var D10
Var_D20+1	32н (2)	44н (D)		13391 97264
Var_D20+2	37н (7)	38н (8)		
Var_D20+3	30н (0)	35н (5)	Regarded as 4FD28750н (1339197264 in decimal	BIN value
"4FD28750"			value)	

# Decimal ASCII data to 4-/8-digit BCD data conversion

# DABCD(P), DDABCD(P)



ENO

d

ST ENO:= DABCD (EN, s, d);

Any of the following instruction can go in the dotted squares. DABCD, DABCDP, DDABCD, DDABCDP

#### ■Executing condition

ΕN

s

Instruction	Executing condition
DABCD, DDABCD	
DABCDP, DDABCDP	

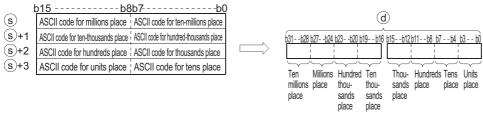
#### ■Argument

Input/outpu argument	t	Name		Description				Data type			
Input argument EN			Executi	Executing condition				Bit	Bit		
S			ASCII data to be converted to BCD value, or start number of the device that stores ASCII data			String (4)/(8)					
Output argument ENO				Execution result				Bit			
		d		Start nu	Start number of the device that stores conversion result				ANY16/32		
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word				\$	
(S)	-	0			—	—				0	—
(d)	0	0			0					—	—

#### ■DABCD(P)

 Converts decimal ASCII data stored in the device specified for (s) and the following devices to 4-digit BCD data, and stores the results to the device specified for (d).




For example, if the ASCII code 8765 is specified for the devices following (s), the results will be stored to (d) as shown below.

	b15b8	b7	<u>b0</u>	h15 h10	L11 L0	b7 b4	b3b0
s	37 _H (7)	38 _H (8)		D10C12	00110	0704	0300
0+1	25 (5)	36 (6)	/d)	8	7	6	5
(5/+1	35H (5)	JOH (D)	-				

- The ASCII data specified for (s) to (s)+1 can be in the range of 0 to 9999.
- The ASCII code set at each digit can be in the range of 30H to 39H.
- If ASCII code for each digit is 20H or 00H, it is processed as 30H.

#### ■DDABCD(P)

• Converts decimal ASCII data stored in the device specified for (s) and the following devices to 8-digit BCD data, and stores the results to the device specified for (d) and the following devices.



For example, if the ASCII code 87654321 is specified for the devices following (s), the results will be stored to (d) as shown below.

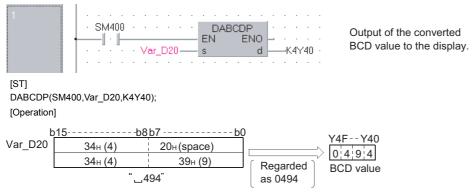
#### b15----- b8 b7 ----- b

s	37н (7)	38H (8)		
(s)+1	35н (5)	36 _H (6)	b31 b28b27 b24b23 b20	b19b16 b15b12b11b8b7b4b3b0
s+2	33н (3)	34н (4)	8 7 6	5 4 3 2 1
(s)+3	31н (1)	32н (2)		
				(d)

- The ASCII data specified for (s) to (s)+3 can be in the range of 0 to 99999999.
- The ASCII code set at each digit can be in the range of 30H to 39H.
- If ASCII code for each digit is from 20H to 00H, it is processed as 30H.

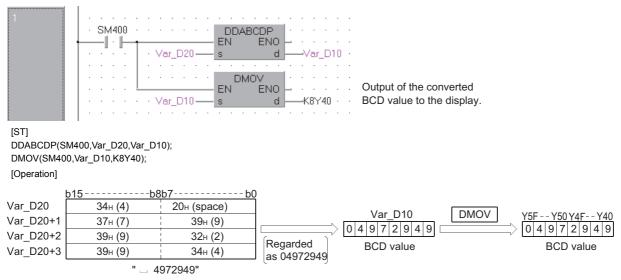
#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	There are characters within the data of (s) that are outside the range of 0 to 9.	—	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	—	0	0

493

# Program example


 In the following program, the decimal ASCII data set in Var_D20 are converted to the 4-digit BCD data, and the result is output to Y40 to Y4F.

[Structured ladder/FBD]



 In the following program, the hexadecimal ASCII data set in Var_D20 are converted to 8-digit BCD data, and the result is stored to Var_D10, and also they are output to Y40 to Y5F.

[Structured ladder/FBD]

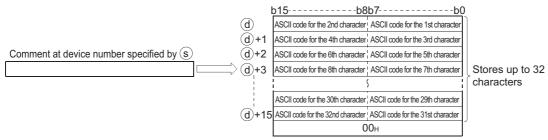


# Reading device comment data

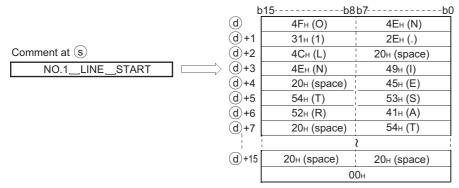
COMRD(P)	
Basic High performance Process Redundant U	niversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= COMRD (EN, s, d);

Any of the following instruction can go in the dotted squares. COMRD, COMRDP

#### ■Executing condition


Instruction	Executing condition
COMRD	
COMRDP	

#### ■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Start number of the device that stores comment to be read	ANY_SIMPLE
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores read comments	String (32)

Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word				(BL\S, BL\TR, BL, P, I, J, U)
(S)	0	0	0		0		—		0
(d)	—	0	C		_		-		-

• Reads the comment data in the device specified for (s), and stores it as ASCII code data to the device specified for (d) and the following devices.



For example, if the comment in the device specified for (s) is "NO.1 LINE START ", its data will be stored to the devices following (d) as shown below.

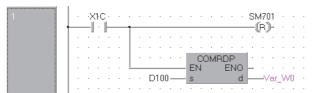


- If the comment range is set for the device number specified for (s), and no comment is registered, all of the characters for the comment would be processed as 20H (space).
- The operation in the area following the device number where the final character of (d) is stored differs depending on the ON/OFF status of SM701 (signal for switching the number of output characters).
- When SM701 is OFF: Does not change
- When SM701 is ON: Stores 0
- When a comment is read, SM720 turns ON for one scan after the instruction is completed. SM721 turns ON during the execution of the instruction. While SM721 is ON, the COMRD(P) instruction cannot be executed. If the attempt is made, no processing is performed.

Point P

- For device comments used with the COMRD(P) instruction, use comment files stored in the standard RAM, memory card or SD memory card. Comment files stored in the program memory cannot be used.
- Set the comment file used for the COMRD(P) instruction can be set in <<PLC file>> tab in the PLC parameter. If the used comment file has not been set in the PLC file setting, device comments cannot be output with the COMRD(P) instruction.
- Do not execute the COMRD(P) instruction in an interrupt program. Doing so will cause a malfunction.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The comment is not registered to the device number specified for (s).	—	0	0	0	0	0
4101	The device number specified for (d) is not a word device.	—	0	0	0	0	0
	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

### Program example

 In the following program, the comment set in D100 is stored as ASCII code data in Var_W0 and the following devices when X1C turns ON.

[Structured ladder/FBD]



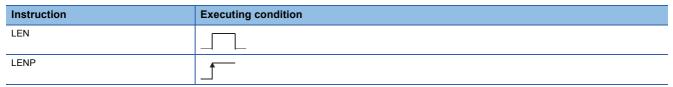
[ST] RST(X1C,SM701); COMRDP(X1C,D100,Var_W0); [Operation]

	b	b15b8b7				
	Var_W0	49н (I)	4Cн (L)			
	Var_W0+1	45н (E)	4Eн (N)			
Comment at D100	Var_W0+2	41н (A)	20н (space)			
LINE_A_TARGET	> Var_W0+3	54н (T)	20н (space)			
	Var_W0+4	52н (R)	41н (A)			
	Var_W0+5	45н (E)	47н (G)			
	Var_W0+6	20н (space)	54н (T)			
	Var_W0+7	20н (space)	20н (space)			
			2			
	Var_W0+15	20н (space)	20н (space)			
	Var_W0+16	0	0н			

#### Precautions

- · The processing completes after several scans.
- The COMRD(P) or PRC instruction is not executed if the start signal (execution command) of the COMRD(P) or PRC instruction is turned ON before completion of the instruction (while SM721 is ON). Execute the COMRD(P) or PRC instruction when SM721 is OFF.
- Two or more file comments cannot be accessed simultaneously.
- The following instructions cannot be executed simultaneously because they use SM721 in common.

Instruction name	ON during instruction execution	ON for one scan after the completion	ON at completion with an error		
SP_FREAD SP_FWRITE	SM721	Specified by instruction	(Device specified by instruction) + 1		
PRC COMRD(P)		SM720	None		

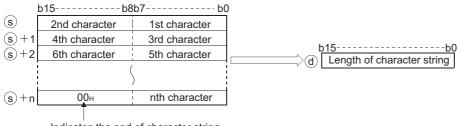

• For High-speed Universal model QCPU, Universal model Process CPU, and LCPU, when comment files stored in the SD memory card are used, this instruction will not be executed while SM606 (SD memory card forced disable instruction) is ON. If executed, no processing is performed.

# **Character string length detection**

LEN(P)	
Basic High performance Process Redundant Ur	niversal
Structured ladder/FBD	ST
	ENO:= LEN (EN, s, d);
s d	

Any of the following instruction can go in the dotted squares. LEN, LENP

#### ■Executing condition




#### ■Argument

Input/output argument	Input/output Name argument				ption	Data type						
Input argument EN				Executing condition						Bit		
S				Character string, or start number of the device that stores character string						String		
Output argume	ent	ENO		Execution result					Bit			
d				Device number that stores the detected character string length						ANY16		
Setting	Internal d	levice R, ZF		R	JD/D		UD\GD	Zn		Constant	Others	
data Dit		10/ and			Dif	Mand.				\$		

Setting	Internal device		R, ZR	JD\D		U⊟\G⊡	Zn	Constant	Others
data	Bit	Word		Bit	Word			\$	
(S)	-	0		_				0	—
(d)	0	0		0				—	—

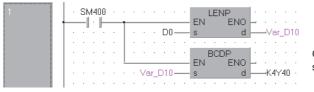
• Detects length of character string specified for (s) and stores to the device specified for (d) and the following devices. Processes the data from the device specified for (s) to the device storing 00H as a character string.



Indicates the end of character string

For example, when the value "ABCDEFGHI" is stored to the devices following (s), the value 9 is stored to (d).

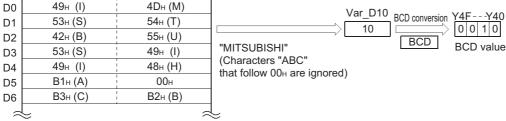
b	o15b8	b7b0	)	
s	42н (B)	41н (A)		
s+1	44н (D)	43н (C)	"ABCDEFGHI" _ <u>b15</u>	-b0
s)+2	46н (F)	45н (E)		
s)+3	48н (H)	47н (G)		
s)+4	00н	49н (I)		


#### Operation error

 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	There is no 00H set within the corresponding device range following the device specified for (s).	—	0	0	0	0	0

### Program example


• In the following program, the length of the character string from D0 is output to Y40 to Y4F as 4-digit BCD values. [Structured ladder/FBD]



Outputs the length of character string to a display device.

[ST] LENP(SM400,D0,Var_D10); BCDP(SM400,Var_D10,K4Y40); [Operation]

# b15-----b8b7-----b0






# STR(P), DSTR(P)



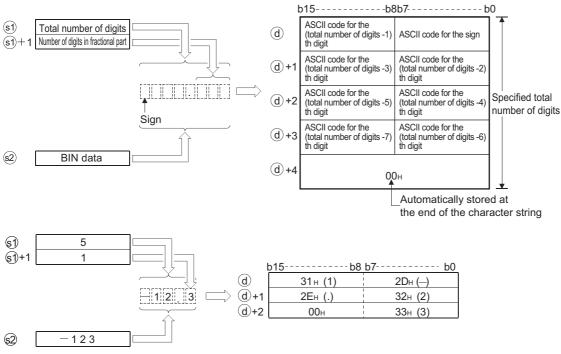
• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. STR, STRP, DSTR, DSTRP

#### ■Executing condition

Instruction	Executing condition
STR, DSTR	
STRP, DSTRP	


#### ■Argument

Input/output Name argument				Description					Data type			
Input argumen	ıt	EN		Executing condition						Bit		
s1				Start number of the device that stores number of digits for placing a decimal to the value to be converted						ANY32		
		s2		BIN data to be converted					ANY16/32			
Output argume	ent	ENO		Execution result					Bit			
	d		Start number of the device that stores converted character string data					String (9)/(14)				
Setting	Internal d	levice R, Zi		र	JD/D		UD\GD	Zn		Constant	Others	

	Setting	Internal device		IX, <b>Z</b> IX	30.0		211	Constant	Outers
d	data	Bit	Word		Bit	Word		К, Н	
	(s1)	0	0		0			—	-
	(s2)	0	0		0			0	—
	(d)	—	0		—			—	-

#### ■STR(P)

• Adds a decimal point at the position specified for (s1), to the 16-bit BIN data specified for (s2), converts the data to character string data, and stores the results to the device specified for (d) and the following devices.



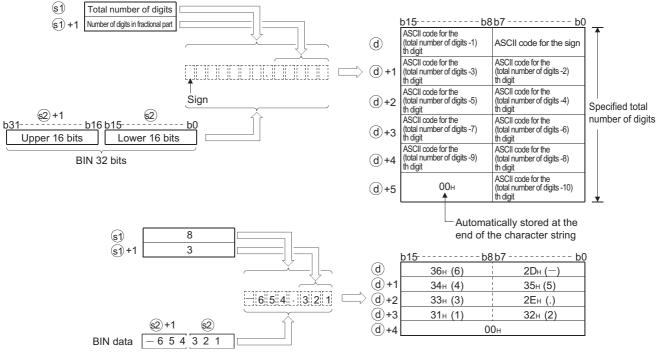
- The total number of digits that can be specified for (s1) is from 2 to 8 digits.
- The number of digits in the fractional part that can be specified for (s1)+1 is from 0 to 5 digits. However, the number of digits in the fractional part must be smaller than or equal to the total number of digits minus 3.
- BIN values between -32768 and 32767 can be specified for (s2).
- After conversion, character string data are stored to the devices following (d) as indicated below.
- The sign 20H (space) will be stored if the BIN value is positive, and the sign 2DH (minus sign) will be stored if it is negative.
- If the setting for the number of digits in the fractional part is anything other than 0, 2EH (.) will automatically be stored at the position before the first of the specified number of digits.

Total number of digits	6	
Number of digits in fractional part	2	ک <b>ٍ ⊥ 1 2</b>
BIN data	1234	Number of digits in fractional part
		Automatically added

If the number of digits in the fractional part is 0, the ASCII code 2EH (. ) will not be stored.

• If the total number of digits in the fractional part is greater than the number of BIN data digits, a zero will be added automatically and the number converted by shifting to the right, so that it would become 0.

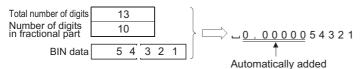
Total number of digits	6	
Number of digits in fractional part	3	
BIN data	12	


- $\int \frac{0 \cdot 0}{12}$ Automatically added
- If the total number of digits excluding the sign and the decimal point is greater than the number of BIN data digits, 20H (space) will be stored between the sign and the numeric value. If the number of BIN digits is greater, an error will be returned.



• The value 00H is automatically stored at the end of the converted character string.

### ■DSTR(P)


• Adds a decimal point at the position specified for (s1)to the 32-bit BIN data specified for (s2), converts the data to character string data, and stores the results to the device specified for (d) and the following devices.



- The total number of digits that can be specified for (s1) is from 2 to 13 digits.
- The number of digits in the fractional part that can be specified for (s1)+1 is from 0 to 10 digits. However, the number of digits following the decimal point must be smaller than or equal to the total number of digits minus 3.
- BIN values between -2147483648 and 2147483647 can be specified for (s2).
- After conversion, character string data are stored to the device numbers following (d) as indicated below.
- The sign 20H (space) will be stored if the BIN value is positive, and the sign 2DH (minus sign) will be stored if it is negative.
- If the setting for the number of digits in the fractional part is anything other than 0, 2EH (.) will automatically be stored at the position before the first of the specified number of digits. If the number of digits in the fractional part is 0, the ASCII code 2EH (.) will not be stored.



• If the total number of digits in the fractional part is greater than the number of BIN data digits, a zero will be added automatically and the number converted by shifting to the right, so that it would become 0



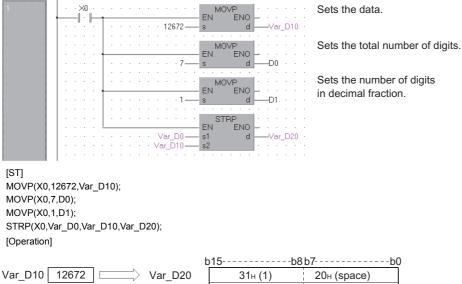
• If the total number of digits excluding the sign and the decimal point is greater than the number of BIN data digits, 20H (space) will be stored between the sign and the numeric value.

Total number of digits	13		]
Number of digits in fractional part	2		├────────────────────────────────────
BIN data	- 5 4 3	2 1 0	Filled with 20H (space) codes

If the number of BIN digits is greater, an error will be returned.

• The value 00H is automatically stored at the end of the converted character string.

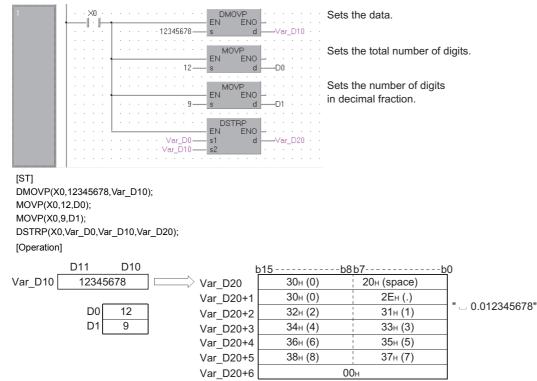
#### **Operation error**


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	<ul> <li>The total number of digits specified for (s1) is outside of the ranges shown below.</li> <li>When the STR(P) instruction is in use: 2 to 8 digits</li> <li>When the DSTR(P) instruction is in use: 2 to 13 digits</li> <li>The number of digits in the fractional part specified for (s1)+1 is outside of the range shown below.</li> <li>When the STR(P) instruction is in use: 0 to 5 digits</li> <li>When the STR(P) instruction is in use: 0 to 10 digits</li> <li>The relationship between the total number of digits specified for (s1) and the number of digits in the fractional part specified for (s1)+1 is not as shown below.</li> <li>Total number of digits minus 3 is equal to or larger than the number of digits in the fractional part.</li> <li>The number of digits specified for (s1) is smaller than 2 + number of digits of the BIN data specified for (s2).</li> <li>(Number of digits in (s1) &lt; Number of digits of the BIN data in (s2) without a sign + Number of digits for a sign (+ or -) + Number of digits for decimal point (.))</li> </ul>	0	0	0	0	0	0
4101	The device range where the character string specified for (d) will be stored exceeds the corresponding device range.	0	0	0	0	0	0

#### Program example

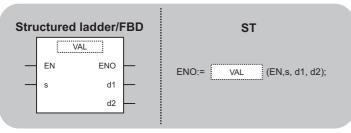
• In the following program, the 16-bit BIN data stored in Var_D10 are converted to character string data in accordance with the digit specification of D0 and D1 when X0 turns ON, and stores the result to Var_D20. (Var_D0 is declared as a global variable assigned with D0 and D1.)


[Structured ladder/FBD]



Var_D10	12672	└────────────────────────────────────	31н (1)	20н (space)	
		Var_D20+1	36н (6)	32н (2)	" 4007.0"
D0	7	Var_D20+2	2Ен (.)	37н (7)	" 1267.2"
D1	1	Var_D20+3	00н	32н (2)	

• In the following program, the 32-bit BIN data stored in Var_D10 are converted to character string data in accordance with the digit specification of D0 and D1 when X0 turns ON, and stores the result to Var_D20. (Var_D0 is declared as a global variable assigned with D0 and D1.)


[Structured ladder/FBD]



#### VAL(P), DVAL(P)



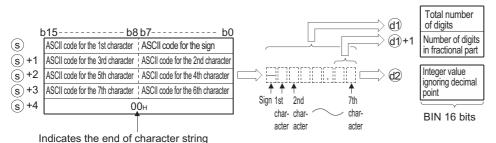
• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



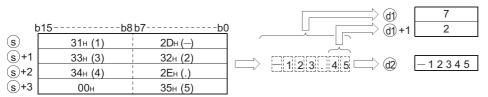
Any of the following instruction can go in the dotted squares. VAL, VALP, DVAL, DVALP

#### ■Executing condition

Instruction	Executing condition
VAL, DVAL	
VALP DVALP	


#### ■Argument

Input/outpu argument	t	Name		Description				Data	Data type		
Input argumer	nt	EN		Executi	ng condition				Bit		
S			Character string data to be converted to BIN data, or start number of the device that stores character string data				String (8)/(13)				
Output argument ENO			Execution result				Bit				
		d1		Start number of the device that stores number of digits of the converted BIN data					ANY32		
		d2		Start number of the device that stores converted BIN data				ANY	16/32		
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word				\$	
(S)	—	0			—					0	-
(d1)	0	0			-				—	-	
(d2)	0	0			0					—	-


#### Processing details

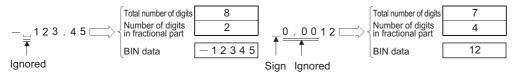
#### ■VAL(P)

• Converts character string data stored in the device specified for (s) and the following devices to 16-bit BIN data, and stores the number of digits and BIN data to (d1) and (d2). For converting character string data to BIN data, all data from the device specified for (s) to the device where 00H is stored will be processed as character string data.



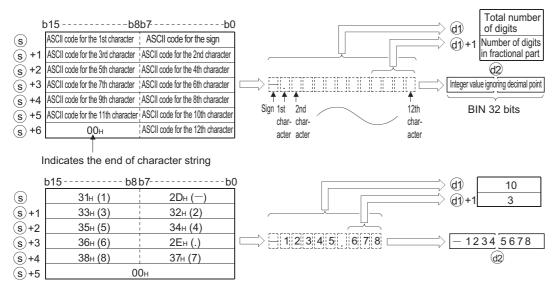
For example, if the character string -123.45 is specified for the devices following (s), the result would be stored to (d1) and (d2) as shown below.



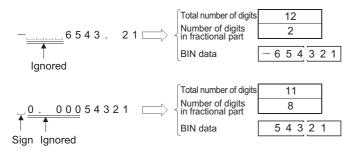

- The total number of characters that can be specified as a character string for (s) is from 2 to 8 characters.
- From 0 to 5 characters from the character string specified for (s) can become the fractional part. However, this number must not exceed the total number of digits minus 3.
- The range of the numeric character string that can be converted to BIN value is from -32768 to 32767, ignoring a decimal point. Numeric value character strings, excluding the sign and the decimal point, can be specified only within the range from 30H to 39H.

The value ignoring a decimal point means:

#### Ex.


-12345.6 → -123456

- The sign 20H will be stored if the numeric value is positive, and the sign 2DH will be stored if it is negative.
- 2EH is set for the decimal point.
- The total number of digits stored to (d1) is the total number of characters that represent numeric values including a sign and decimal point. The number of digits in the fractional part stored to (d1)+1 is the number of characters that represent fractional part separated by 2EH (.). The BIN data stored to (d2) is the character string ignoring the decimal point that has been converted to BIN value.
- In cases where the character string specified for (s) contains 20H (space) or 30H (0) between the sign and the first numeric value other than 0, these 20H and 30H are ignored in the conversion to BIN value.




#### ■DVAL(P)

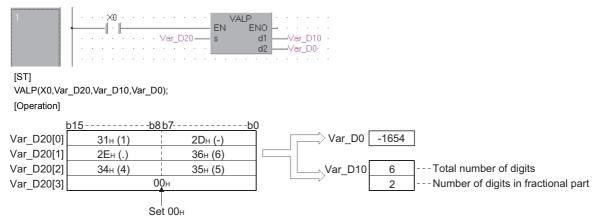
• Converts the character string data stored in the device specified for (s) and the following devices to 32-bit BIN data, and stores the digits numbers and BIN data to (d1) and (d2). For converting character string data to BIN data, all data from the device specified for (s) to the device where 00H is stored will be processed as character strings.



- The total number of characters in the character string specified for (s) is from 2 to 13 characters.
- From 0 to 10 characters in the character string specified for (s) can be the fractional part. However, this number must not exceed the total number of digits minus 3.
- The range of the numeric character string that can be converted to BIN value is from -2147483648 to 2147483647, excluding the decimal point. Numeric value character strings, excluding the sign and the decimal point, can be specified only within the range from 30H to 39H.
- The sign 20H will be stored if the numeric value is positive, and the sign 2DH will be stored if it is negative.
- 2EH is set for the decimal point.
- The total number of digits stored to (d1) is the total number of characters that represent numeric values including a sign and decimal point. The number of digits in the fractional part stored to (d1)+1 is the number of characters that represent fractional part separated by 2EH (.). The BIN data stored to (d2) is the character string ignoring the decimal point that has been converted to BIN value.
- In cases where the character string specified for (s) contains 20H (space) or 30H (0) between the sign and the first numeric value other than 0, these 20H and 30H are ignored in the conversion to BIN value.



#### **Operation error**

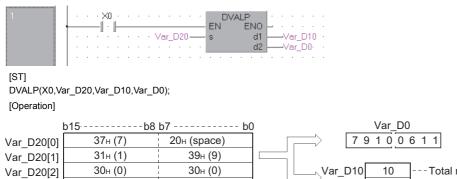

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The number of characters in the character string specified for (s) is outside of the ranges shown below. • When VAL(P) instruction is in use: 2 to 8 characters • When DVAL(P) instruction is in use: 2 to 13 characters The number of characters in the fractional part of the character string specified for (s) is outside the ranges shown below. • When VAL(P) instruction is in use: 0 to 5 characters • When DVAL(P) instruction is in use: 0 to 10 characters • When DVAL(P) instruction is in use: 0 to 10 characters • When DVAL(P) instruction is in use: 0 to 10 characters The total number of characters of the character string specified for (s) and the number of characters in the fractional part stand in a relationship that is outside of the range indicated below. Total number of characters minus 3 is equal to or greater than the number of characters in the fractional part. ASCII code other than 20H or 2DH has been set for the sign. ASCII code other than from 30H to 39H or 2EH (decimal point) has been set for digits of each number. There has been more than one decimal point set in the value. The value of the converted BIN value exceeds the following ranges. • When VAL(P) instruction is in use: -32768 to 32767 • When DVAL(P) instruction is in use: -2147483648 to 2147483647	0	0	0	0	0	0
4101	No 00H is set within the range from the device number specified for (s) to the last device number of the corresponding device.	0	0	0	0	0	0

#### Program example

• In the following program, the character string data in Var_D20 are read as an integer value and converted to the BIN value when X0 turns ON, and the result is stored to Var_D0.

[Structured ladder/FBD]




 In the following program, the character string data in Var_D20 are read as an integer value and converted to the BIN value when X0 turns ON, and the result is stored to Var_D0.

[Structured ladder/FBD]

Var_D20[3]

Var_D20[4] Var_D20[5]



2Ен (.)

31н (1)

00н Set 00н

36н (6)

31н (1)

---Total number of digits ---Number of digits in fractional part

3

509

# Floating-point data to character string data conversion

#### ESTR(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

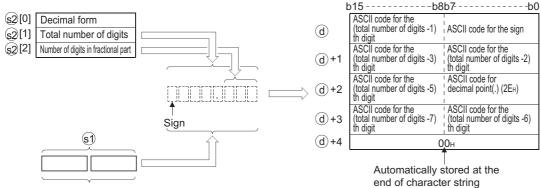


Any of the following instruction can go in the dotted squares. ESTR, ESTRP

#### ■Executing condition

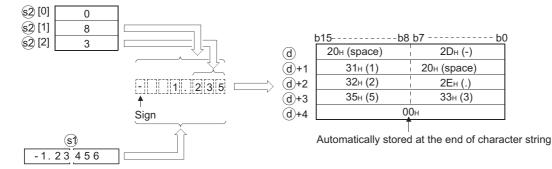
Instruction	Executing condition
ESTR	
ESTRP	

#### ■Argument


Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	32-bit floating-point data to be converted, or start number of the device that stores data	Single-precision real
	s2	Start number or the array of the device that stores display specification of numeric values to be converted	Array of ANY16 (02)
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores converted character string data	String

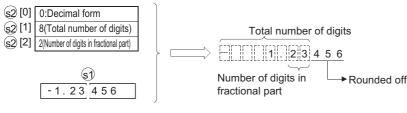
Setting	-		R, ZR	R, ZR J⊡\⊡		UD\GD		UD\GD		Constant	Others
data	Bit	Word		Bit	Word			E			
(s1)	—	0		—	0		0	0	—		
(s2)	—	0		—	—		—	—	—		
(d)	—	0		—	—		—	—	—		

#### Processing details

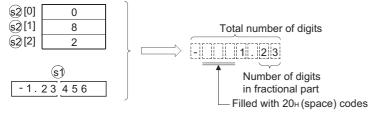

- Converts the 32-bit floating-point real number data specified for (s1) to a character string data according to the display specification specified for (s2), and stores the result to the device specified for (d) and the following devices.
- The post-conversion data differs depending on the display specification specified for (s2).

#### ■When using decimal form



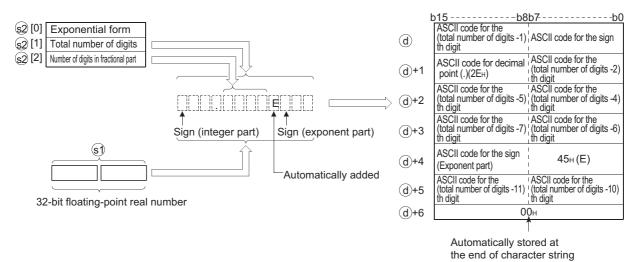

32-bit floating-point real number

For example, when the total number of digits is 8, the number of digits in the fractional part is 3, and -1.23456 is specified, the operation result would be stored to the devices following (d) as shown below.

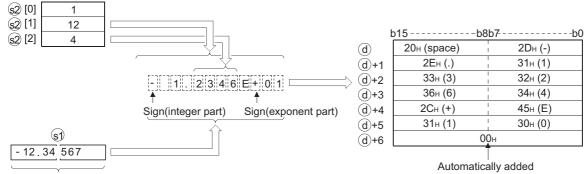



32-bit floating-point real number

- The total number of digits that can be specified for (s2)+1 is as shown below.
- When the number of digits in the fractional part is 0  $\cdots$  Number of digits (max.: 24)  $\ge$  2
- When the number of digits in the fractional part is other than  $0 \cdots$  Number of digits (max.: 24)  $\geq$  (Number of digits in the fractional part + 3)
- The number of digits in the fractional part that can be specified for (s2)+2 is from 0 to 7. However, the number of digits in the fractional part must be smaller than or equal to the total number of digits minus 3.
- The converted character string data are stored to the devices following (d) as indicated below.
- For the sign of integer part, the sign 20H (space) will be stored if the 32-bit floating-point real number is positive, and the sign 2DH (minus sign) will be stored if it is negative.
- If the fractional part of a 32-bit floating-point real number is out of the range of the digits in the fractional part, the lower decimal values will be rounded off.




- If the total number of digits, excluding the sign, the decimal point and the fractional part, is greater than the integer part of the 32-bit floating-point real number data, 20H (space) will be stored between the sign and the integer part. If the number of digits in the fractional part is 0, the ASCII code 2EH (.) will not be stored.
- If the total number of digits, excluding the sign, the decimal point and the fractional part, is greater than the integer part of the 32-bit floating-point real number data, 20H (space) will be stored between the sign and the integer part.



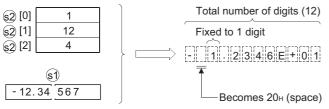

• The value 00H is automatically stored at the end of the converted character string.

#### ■When using exponential form

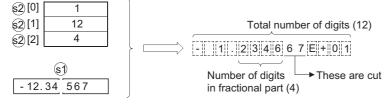


For example, when the total number of digits is 12, the number of digits in the fractional part is 4, and -12.34567 is specified, the operation results would be stored to the devices following (d) as shown below.

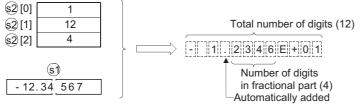



32-bit floating-point real number

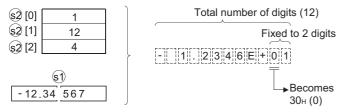
• The total number of digits that can be specified for (s2)+1 is as shown below.


- When the number of digits in the fractional part is 0Number of digits (max.: 24)  $\geq$  2

- When the number of digits in the fractional part is other than 0Number of digits (max.: 24)  $\geq$  (Number of digits in the fractional part + 7)
- The number of digits in the fractional part that can be specified for (s2)+2 is from 0 to 7. However, the number of digits in the fractional part should be equal to or less than the total number of digits minus 7.


- The converted character string data are stored to the devices following (d) as indicated below.
- If the 32-bit floating-point real number is positive in value, the sign before the integer part will be stored as ASCII code 20H (space), and if it is a negative value, the sign will be stored as 2DH (-).
- The integer part is fixed to one digit. 20H (space) will be stored between the integer part and the sign.




• If the fractional part of the 32-bit floating-point real number is out of the range of the digits in the fractional part, the lower decimal values will be rounded off.



• If the number of digits in the fractional part has been set at any value other than 0, 2EH (.) will automatically be stored at the position before the first of the specified number of digits. If the number of digits in the fractional part of the number is 0, the ASCII code 2EH (.) will not be stored.



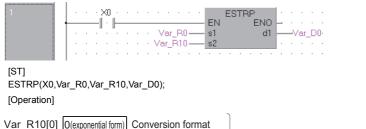
- The ASCII code 2CH (+) will be stored as the sign for the exponent part of the value if the exponent is positive in value, and the code 2DH (-) will be stored if the exponent is a negative value.
- The exponent part is fixed at 2 digits. If the exponent part is only 1 digit, the ASCII code 30H (0) will be stored between the sign and the exponent part of the number.



• The value 00H is automatically stored at the end of the converted character string.

 If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

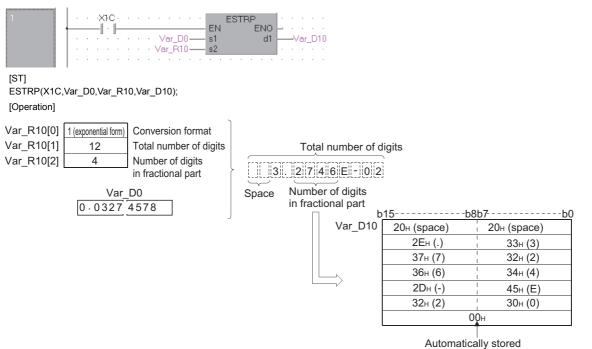
MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The (s1) value is not within the range indicated below. 0, $2^{-126} \le  (s1)  < 2^{-128}$ The format specified for (s2) was neither 0 nor 1. The total number of digits specified for (s2) + 1 is outside the ranges shown below. When using decimal form • When the number of digits in the fractional part is 0: total number of digits $\ge 2$ • When the number of digits in the fractional part is other than 0: total number of digits $\ge (number of digits in the fractional part + 3)$ When using exponential form • When the number of digits in the fractional part is 0: total number of digits $\ge 6$ • When the number of digits in the fractional part is 0: total number of digits $\ge 6$ • When the number of digits in the fractional part is other than 0: total number of digits specified in the fractional part +7) The number of digits specified in the fractional part of the value for (s2)+2 was outside the ranges shown below. • When using the decimal form: number of digits in the fractional part $\le (total number of digits - 3)$ • When using the exponential form: number of digits in the fractional part $\le (total number of digits - 7)$ When the total number of digits exceeds the value "24".	0	0	0	0	_	
4101	The device range to store the character string data specified for (d) exceeds the corresponding device range.	0	0	0	0	0	0
	The device specified for (s2) exceeds the corresponding device range.	-	—	-	-	0	0
4140	(s1) is out of the following range. 0, $2^{-126} \le  (s1)  < 2^{-128}$ The value of the specified device is - 0, unnormalized number, nonnumeric or $\pm \infty$ .	_	-	_	_	0	0

#### Program example


• In the following program, the 32-bit floating-point real number data in Var_R0 is converted in accordance with the conversion specification stored in Var_R10 when X0 turns ON, and the result is stored to Var_D0 and the following devices. [Structured ladder/FBD]

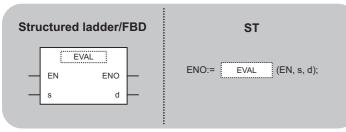


Var R10[0] O(exponential form)	Conversion format		b	15	-b8b7
Var R10[1] 7		Tatal succession of disits	Var D0	20н (space)	20н (space)
	Total number of digits	Total number of digits	_	2Ен (.)	30н (0)
Var_R10[2] 3	Number of digits in fractional part	0.033	$\Rightarrow$	33н (3)	30н (0)
N/ 50	in naoionai part		, i i	00н	33н (3)
Var_R0 0.0327 457		Space Number of digit in fractional par		Automatio	cally stored

 In the following program, the 32-bit floating-point real number data in Var_D0 is converted in accordance with the conversion specification stored in Var_R10 when X1C turns ON, and the result is stored to Var_D10 and the following devices.

[Structured ladder/FBD]




-b0

# Character string data to floating-point data conversion

#### EVAL(P)



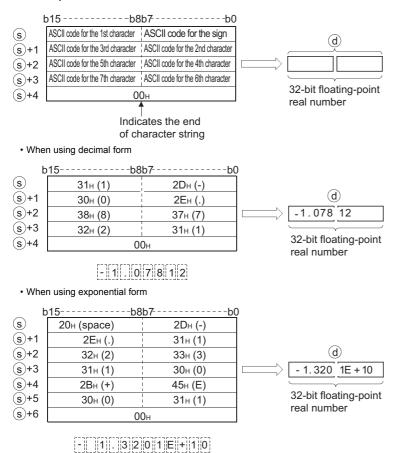
• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares.  $\ensuremath{\mathsf{EVALP}}$ 

#### ■Executing condition

Instruction	Executing condition
EVAL	
EVALP	

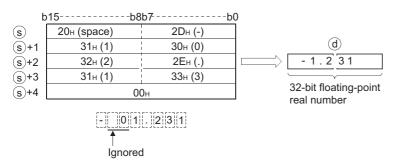

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Character string data to be converted to 32-bit floating-point real number data, or start number of the device that stores character string data	String (24)
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores converted 32-bit floating- point real number data	Single-precision real

Setting	Internal dev	ice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			\$	
(S)	-	0		—	—		—	0	_
(d)	-	0		—	0		—	—	-

#### Processing details

- Converts character string data stored in the device specified for (s) and the following devices to 32-bit floating-point real number data, and stores the result to the device specified for (d).
- The specified character string data can be converted to 32-bit floating-point real number data either in the decimal form or the exponential form.




• Excluding the sign, decimal point, and exponent part of the result, 6 digits of the character string data specified for (s) to be converted to a 32-bit floating-point real number data will be effective; the 7th digit and later digit will be cut from the result.

<ul> <li>When using</li> </ul>	decimal form
--------------------------------	--------------

b	015b8	b7b	0
s	20н (space)	2Dн (-)	
(s)+1	31н (1)	20н (space)	_
(s)+2	33н (3)	2Ен (.)	(d)
(s)+3	31н (1)	30н (0)	- 1. 30 156
(s)+4	36н (6)	35н (5)	
<u>s</u> +5	31н (1)	38н (8)	32-bit floating-point
	00н	32н (2)	real number
	[-][][1][.]3][	0[1]5]6] <u>8]1]2]</u> ↑ These digits a	are cut
• Whe	n using exponential for	n	
b	15b8	b7b(	)
s	20н (space)	2Dн (-)	
(s)+1	2Ен (.)	31н (1)	
s+2	35н (5)	33н (3)	d
s+3	33н (3)	30н (0)	- 1.350 34E-2
s+4	31н (1)	34н (4)	
s+5	45н (E)	32н (2)	32-bit floating-point
s+6	30н (0)	2Dн (-)	real number
(s)+7	00н	32н (2)	
	-   1  . 3 5 0	3 4  <u>1 2</u>  E - 0 2 ↑ These digits are	cut

- In the decimal form, if 2BH (+) is specified for the sign or if the specification of sign is omitted, conversion is made assuming a positive value. If 2DH (-) is specified for the sign, the character string data are converted as a negative value.
- In the exponential form, if 2BH (+) is specified for the sign in the exponent part or if the specification of sign is omitted, conversion is made assuming a positive value. If 2DH (-) is specified for the sign in the exponent part, the character string data are converted as a negative value.
- When the ASCII code 20H (space) or 30H (0) exists between numbers not including the initial zero in a character string data specified for (s), it will be ignored when the conversion is performed.



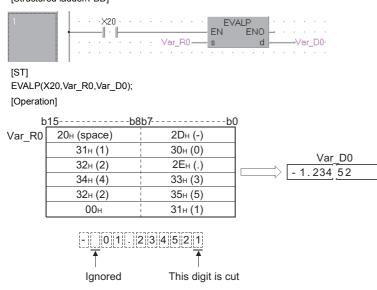
• When the ASCII code 30H (0) exists between the character "E" and a number in the exponential form character string, the 30H would be ignored when the conversion is performed.

b	15	b8b7	b0
	20н (space)	2Dн (-)	
	2Ен (.)	31н (1)	
	34н (4)	30н (0)	(d)
	33н (3)	35н (5)	- 1.04 53E+3
	2Вн (+)	45н (E)	
	33н (3)	30н (0)	
		00н	
			—

|-|| ||1||. ||0||4||5||3||E||+||0||3| ↑

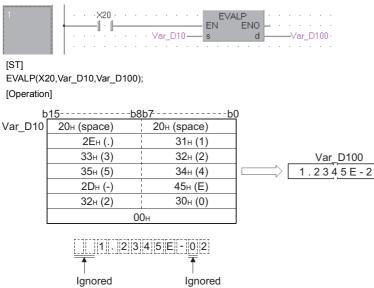
Ignored

- If the 20H (space) code is contained in the character string, the code is ignored in the conversion.
- Up to 24 characters can be set for a character string. The codes 20H (space) and 30H (0) contained in the character string are also counted as a character.


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	<ul> <li>The improper data as shown below, which cannot be converted into (s), have been set.</li> <li>The characters other than "30H"(0) to "39H"(9) exist in the integral part or decimal part.</li> <li>Two or more "2EH"(.) exist in the character string.</li> <li>The characters other than "45H"(E), "65H" (e), "2BH" (+), "2DH" (-) exist in the character string.</li> <li>The multiple exponents of "45H" (E), "65H" (e) exist in the character string.</li> <li>Three digits or more numeric values are described on the exponents in the character string.</li> <li>Multiple codes exist on the exponent of "2BH"(+), "2DH(-)" in the character string.</li> <li>Multiple codes of "2BH"(+), "2DH(-)" exist in the positive number part of the character string in a decimal point format; in the mantissa part of the character string in an exponential format.</li> <li>The number of characters in the character string following (s) is either 0 or more than 24.</li> </ul>	0	0	0	0	0	0
4101	The code 00H does not appear within the range from (s) to the corresponding device.	0	0	0	0	0	0
4141	The operation result exceeds the following range. (An overflow occurs.)  Data after conversion  < 2 ¹²⁸	-	-	-	_	0	0


#### Program example

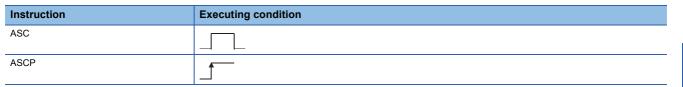
 In the following program, the character string data in Var_R0 and the following devices are converted to the 32-bit floatingpoint real number data when X20 turns ON, and the result is stored to Var_D0.
 [Structured ladder/FBD]



• In the following program, the character string data in Var_D10 and the following devices are converted to the 32-bit floatingpoint real number data when X20 turns ON, and the result is stored to Var_D100.

[Structured ladder/FBD]



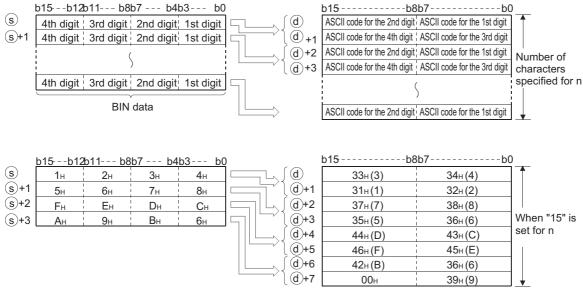

# Hexadecimal BIN data to ASCII data conversion

ASC(P)					
Basic High performance	Process	Redundant	Universal	LCPU	
Structures	lladda	~/EDD			



Any of the following instruction can go in the dotted squares. ASC, ASCP

#### ■Executing condition

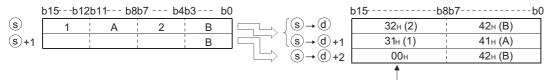



#### ■Argument

Input/outpu argument	t	Name		Descri	Description					Data type		
Input argumer	nt	EN		Executi	ng condition				Bit			
S				Start number of the device that stores BIN data to be converted to character string data					ANY16			
		n		Execution	on result				ANY16			
Output argum	ent	ENO		Execution	Execution result				Bit			
		d		Start nu data	mber of the devi	ice that stores co	onverted charact	ter string	g String			
Setting	Internal d	evice	R, Z	R J <u>D</u> \D			UD\GD	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word				К, Н		
(s)	—	0			—						-	
n	0	0			0					—		
(d)	-	0			—						—	

#### Processing details

• Converts the 16-bit BIN data stored in the device specified for (s) and the following devices to ASCII data by treating the BIN data in hexadecimal representation. Then, stores the converted data to the device specified for (d) and the following devices, for the number of characters specified for n.




- The use of n to set the number of characters causes the BIN data range specified for (s) and the character string storage device range specified for (d) to be set automatically.
- Processing will be performed accurately even if the device range where BIN data to be converted is being stored overlaps with the device range where the converted ASCII data will be stored.

	b15b12	b11b8	3b7 b4	b3 b(	) t	o15b	8b7b0
D11	4 _H	3н	2н	1н	]∫D10	32н	31н
D12	8н	7н	6н	5н		34н	33н
D13		1	AH	9н	D12	36н	35н
					D13	38н	37н
					└─────────────────────── D14	41н	39н

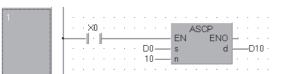
• If an odd number of characters has been specified for n, the ASCII code 00H will be automatically stored in the upper 8 bits of the final device in the range where the character string is to be stored.

When 5 characters have been specified for n.



Stored automatically

• If the number of characters specified for n is 0, conversion processing will not be performed.


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The character numbers designated by n are those other than 0 to 16383.	-	0	0	0	0	0
4101	The range of the number of characters specified for n following the device number specified for (s) exceeds the corresponding device range. The range of the number of characters specified for n following the device number specified for (d) exceeds the corresponding device range.	_	0	0	0	0	0

#### Program example

 In the following program, the BIN data in D0 are read as a hexadecimal value, and converted to the character string data when X0 turns ON, and the results are stored to the devices from D10 to D14.
 [Structured ladder/FBD]



[ST] ASCP(X0,D0,10,D10); [Operation]

b15--b12b11---b8b7----b4b3----b0 D0 Сн 7н 2н 9н D1 Fн 0н 5н Ан D2 0н 0н 2н 2н

	b15b	8b7b0
∫D10	32н (2)	<b>39</b> н (9)
(D11	43н (C)	37н (7)
L, ∫D12	41н (A)	46н (F)
	30н (0)	35н (5)
> D14	32н (2)	32н (2)

# ASCII data to hexadecimal BIN data conversion

HEX(P)			
Basic High performance Process Redundant U	niversal		
Structured ladder/FBD	ST		
	ENO:= HEX (EN,s, n, d);		
s d			

Any of the following instruction can go in the dotted squares. HEX, HEXP

#### ■Executing condition

—

0

____

0

0

0

Instruction	Executing condition
HEX	
HEXP	

#### ■Argument

(s)

n

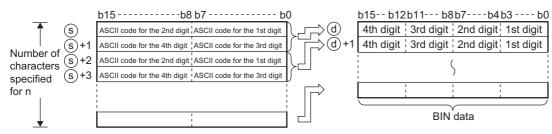
(d)

Input/output argument	t	Name		Descri	ption				Data	a type	
Input argument EN				Executing condition				Bit			
S				Start number of the device that stores character string data to be converted to BIN data					String		
		n		Number of characters to be stored				ANY16			
Output argume	ent	ENO		Execution result				Bit			
	d			Start number of the device that stores converted BIN data					ANY16		
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others
data Bit		Word			Bit	Word				К, Н	

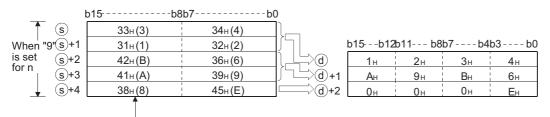
—

_

_


—

0


_

#### Processing details

• Converts the n characters of hexadecimal ASCII data in the device specified for (s) and the following devices to the BIN value and stores the results to the device specified for (d) and the following devices.



For example, if the number 9 has been specified for n, the operation will be as shown below.



Code "38H" remains unchanged since the specified number of characters is "9".

- When the number of characters is specified for n, the range of characters specified for (s) as well as the device range specified for (d) in which the BIN data will be stored are automatically decided.
- Accurate processing will be performed even in cases where the range of devices where the ASCII data to be converted is being stored overlaps with the range of devices that will store the converted BIN data.

b	15b	8b7	-b0	l	b15 b12	2b11b8	8b7b4	4b3 b0
D10	32н (2)	31н (1)		≕>D11	4 _H	3н	2н	1н
D11	34н (4)	33н (3)		)∕D12	8н	7н	6н	5н
D12	36н (6)	35н (5)		⊟∕D13	0н	0н	Ан	9н
D13	38н (8)	37н (7)						
D14	41н (A)	39 _H (9)						

• If the number of characters specified for n is not divisible by 4, 0 will be automatically stored after the specified number of characters to the final device number of the devices which are storing the converted BIN value.

	b15b	8b7	b0	b15b12	b11b8	b7b4	b3b0
s	32н(2)	42н(B)		1	А	2	В
s+1	31н(1)	41н(A)	( <b>d</b> +1	0	0	0	8
s+2	43н (C)	38H(8)		na	Y		,
				Value "0	" is autom	atically st	ored to

Value "0" is automatically stored to the area outside the range of the specified number of characters.

- If the number of characters specified for n is 0, conversion processing will not be performed.
- ASCII code that can be specified for (s) is within the range of 30H to 39H and 41H to 46H.

#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	Characters outside the hexadecimal character string (characters that are not within the range of 30H to 39H, or 41H to 46H) have been set for (s). The character numbers designated by n are those other than 0 to 16383.	—	0	0	0	0	0
4101	The range of the number of characters specified for n following the device number specified for (s) exceeds the corresponding device range. The range of the number of characters specified for n following the device number specified for (d) exceeds the corresponding device range. The number of characters specified for n is a negative value.	_	0	0	0	0	0

#### Program example

• In the following program, the character string data in D0 to D4 are converted to the BIN data when X0 turns ON, and the results are stored to the devices from D10 to D14.

[Structured ladder/FBD]



[ST] HEXP(X0,D0,10,D10); [Operation]

b	15b8	b7b0	)	b15 b12	2b11b8	b7b4	4b3 b0
D0	42н (B)	36н (6)	〕>D10	2н	5н	Вн	6н
D1	32н (2)	35н (5)	∫ D11	3н	1н	7н	Ан
D2	37н (7)	41н (A)		0н	0н	9н	7н
D3	33н (3)	31н (1)	<u></u>				
D4	39н (9)	37н (7)					

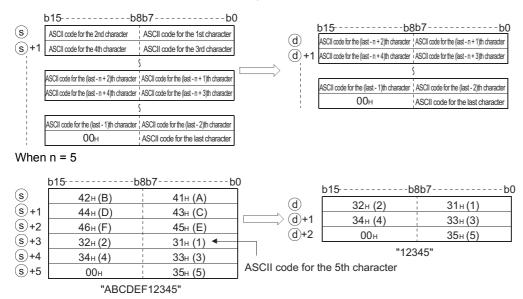
# Extraction of character string data from right/left

# RIGHT(P), LEFT(P) $\overrightarrow{Basic}$ High Process Redundant Universal LCPU Structured ladder/FBD Structured ladder/FBD Structured ladder/FBD RIGHT EN Structured ladder/FBD RIGHT EN a n

Any of the following instruction can go in the dotted squares. RIGHT, RIGHTP, LEFT, LEFTP

#### ■Executing condition

Instruction	Executing condition
RIGHT LEFT	
RIGHTP, LEFTP	


#### ■Argument

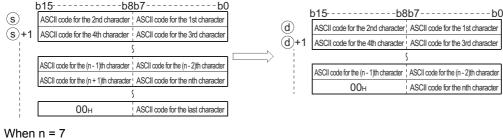
Input/outp argument	ut	Name			Description				Data type				
Input argume	ent	EN	EN			ion				Bit			
					Character string data, or start number of the device that stores character string data						String		
	n			Number of characters to be extracted					ANY16				
Output argument ENO			Execution result				Bit						
	d				Start number of the device that stores character string data consist of n characters from right or left of s					String			
Setting	Internal de	al device R, ZR			JD/D		UD\GD	Zn	Со	Constant		Others	
data	Bit	Word			Bit	Word			К, І	ł	\$		
(S)	—	0			_				—		0	-	
n	0	0	)		0 0				0		—	—	
(d)	—	0			– –				—		—	—	

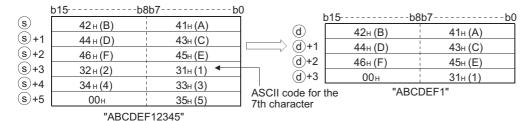
#### Processing details

#### ■RIGHT(P)

 Stores n characters from the right side of the character string data (the end of the character string data) which is stored in the device specified for (s) and the following devices, to the device specified for (d) and the following devices.




• The NULL code (00H) indicating the end of the character string is automatically appended at the end of the character string data. For the format of the character string data, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

• If the number of characters specified for n is 0, the NULL code (00H) will be stored to (d).

#### ■LEFT(P)

 Stores n characters from the left side of the character string data (the beginning of the character string data) which is stored in the device specified for (s) and the following devices, to the device specified for (d) and the following devices.

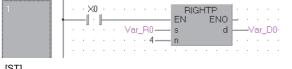




• The NULL code (00H) indicating the end of the character string is automatically appended to the end of the character string data. For the format of the character string data, refer to the following.

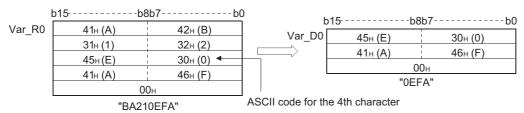
MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

If the number of characters specified for n is 0, the NULL code (00H) will be stored to (d).


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The character number of character string designated by (s) is "0".	—	0	0	0	0	0
4101	The value of n exceeds the number of characters specified for (s). The range of n characters from (d) exceeds the corresponding device.	_	0	0	0	0	0


#### Program example

• In the following program, the 4 characters of data from the rightmost of the character string data stored in Var_R0 and the following devices are extracted and stored to Var_D0 and the following devices when X0 turns ON. [Structured ladder/FBD]



[ST]

RIGHTP(X0,Var_R0,4,Var_D0); [Operation]



 In the following program, the number of characters corresponding to the value being stored in Var_D0 from the leftmost of the character string data in Var_D100 are extracted and stored to Var_R10 and the following devices when X1C turns ON. [Structured ladder/FBD]

1	· · · · · · · · · · · · · · · · · · ·	EN ENO	Var_D0-			
2		- EN ENO -	–Var_R10 ·			
[ST]						
Var_D0:=6;						
LEFTP(X1C	,Var_D100,Var_D0,Var	_R10);				
[Operation]						
	15b8		) I b	15	-b8b7	b0
Var_D100	51н (Q)	53н (S)	Var_R10	51н (Q)	53н (S)	$\neg$
	4Eн (N)	4Fн (O)				
f	→ 44н (D)	48н (H)		4Eн (N)	4Fн (O)	
	42 _H (B)	41н (A)		44н (D)	48н (H)	
	00	( )			00н	
l				"S	QONHD"	
	"SQOI	NHDAB" Var	D0 6			
ASC	CII code for the 6th o					

# Random selection and replacement in character string data

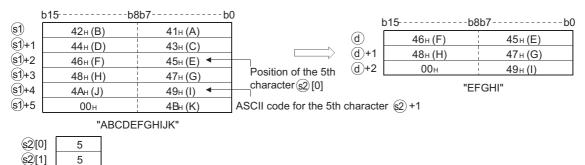
# MIDR(P), MIDW(P) Basic Process Redundant Universal LCPU Structured ladder/FBD Structured ladder/FBD EN ENO s1 d s2 (EN,s1, s2, d);

Any of the following instruction can go in the dotted squares. MIDR, MIDRP, MIDW, MIDWP

#### ■Executing condition

Instruction	Executing condition
MIDR, MIDW	
MIDRP, MIDWP	

#### ■Argument

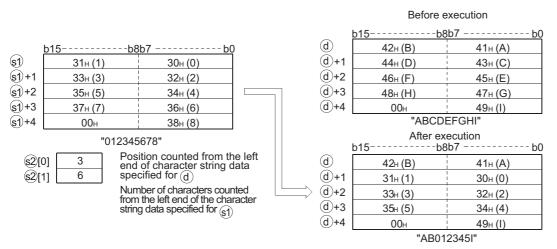

Input/output argument	Name	Description	Data type	
Input argument	EN	Executing condition	Bit	
	s1	Character string data, or start number of the device that stores character string data	String	
	s2	Start number or the array of the device that stores positions of first character and number of characters • s2[0]: Position of first character • s2[1]: Number of characters	Array of ANY16 (12)	
Output argument	ENO	Execution result	Bit	
	d	Character string data from operation result	String	

Setting	Internal device		R, ZR	JD/D		U⊟\G⊟	Zn	Constant	Others
data	Bit	Word		Bit	Word			\$	
(s1)	—	0	0 -			0	—		
(s2)	0	0	0		0			—	—
(d)	—	0			—			—	—

#### Processing details

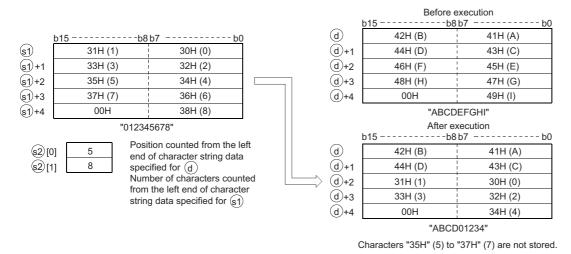
#### ■MIDR(P)

• Extracts the character string data of (s)[1] characters, from the position specified for (s2)[0], counted from the left end of the character string data specified for (s1), and stores the extracted data to the device specified for (d) and the following devices.

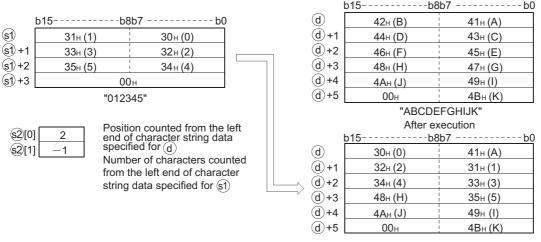



- The NULL code (00H) indicating the end of the character string is automatically appended to the end of the character string data. For the format of the character string data, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)
- If the number of characters specified for (s2)[1] is 0, the NULL code (00H) is stored in the top of (d).
- If the number of characters specified for (s2)[1] is -1, stores the data up to the final character specified for (s1) to the device specified for (d) and the following devices.

			00 T	t	015	-b8b7b0
s1	42н (B)	41н (A)	_	d	46 _H (F)	45н (E)
s1+1	44н (D)	43н (C)		(d)+1	48н (H)	47н (G)
s1+2	46н (F)	45н (E) 🚽		=		
s1+3	48⊦ (H)	47н (G)	Position of	(d)+2	<u>4Ан (J)</u>	49н (I)
s1+4	4Ан (J)	49н (I)	the 5th character (\$2)[0]	(d)+3	00н	4Bн (K)
s1)+5	00н	4Bн (K)			"	EFGHIJK"
	"ABCDE	EFGHIJK"				
<u>\$2</u> [0]	5					
s2[1]	-1					


#### ■MIDW(P)

• Extracts the character string data of (s2)[1] characters, from the left end of the character string data specified for (s1), and stores the extracted data to the character string data specified for (d) to the devices starting from the position specified for (s2)[0] from the left end.




- The NULL code (00H) indicating the end of the character string is automatically appended to the end of the character string data. For the format of the character string data, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)
- If the number of characters specified for (s2)[1] is 0, the NULL code (00H) is stored in the top of (d).

• If the number of characters specified for (s2)[1] exceeds the final character from the character string data specified for (d), data will be stored up to the final character.



• If the number of characters specified for (s2)[1] is -1, stores the data up to the final character specified for (s1) to the device specified for (d) and the following devices.



"A012345HIJK"

Before execution

### Operation error

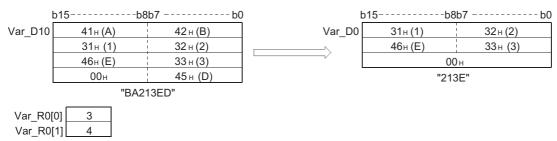
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

#### For MIDR(P) instruction

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The value of (s2)[0] exceeds the number of characters specified for (s1). The value that is added (s2)[0] and (s2)[1] exceeds the number of characters specified for (s1). The (s2)[1] number of characters from position (d) exceeds the device range of (d). When the value (s2)[0] is 0. The values of (s2)[1] are those other than the effective values (-1, 0, 1 or over). 00H does not exist within the specified device range following the devices specified for (s1).	—	0	0	0	0	0

#### For MIDW(P) instruction

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The value of (s2)[0] exceeds the number of characters specified for (d).         The value that is added (s2)[0] and (s2)[1] exceeds the number of characters specified for (s1).         The (s2)[1] value exceeds the number of characters in (s1).         When the value (s2)[0] is 0.         The values of (s2)[1] are those other than the effective values (-1, 0, 1 or over).         00H does not exist within the specified device range following the devices specified for (s1).	—	0	0	0	0	0

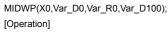

#### Program example

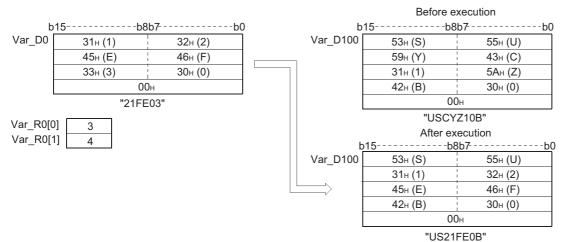
 In the following program, the 3rd character through the 6th character from the left of the character string data stored in Var_D10 and the following devices are extracted and stored to Var_D0 and the following devices when X0 turns ON.
 [Structured ladder/FBD]



[ST]

MIDRP(X0,Var_D10,Var_R0,Var_D0); [Operation]





• In the following program, the 4 characters of the character string data stored in Var_D0 and the following devices are extracted and stored to the devices from the 3rd character from the left of the character string data in Var_D100 and the following devices when X0 turns ON.

[Structured ladder/FBD]



[ST]





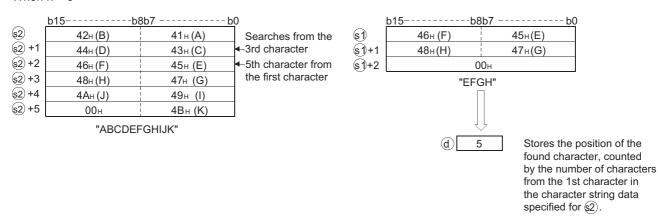
# Character string data search

INST	R(P)		
Basic	High performance F	Process Redundant Ur	liversal
Stru	Ictured	adder/FBD	ST
_	EN s1	ENO	ENO:= INSTR (EN,s1, s2, n, d
_	s2 n		

Any of the following instruction can go in the dotted squares. INSTR, NSTRP

## ■Executing condition

Instruction	Executing condition
INSTR	
INSTRP	


#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Character string data to be searched, or start number of the device that stores character string data to be searched	String
	s2	Character string data in which character string data are searched, or start number of the device that stores character string data in which character string data are searched	String
	n	Search start position	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores the search result	ANY16

Setting	Internal de	vice	R, ZR	JD/D		UD\GD	Zn	Constant	Others	
data	Bit	Word		Bit	Word			К, Н	\$	
(s1)	-	0		—				—	0	—
(s2)	—	0		—				—	0	—
n	0	0		0				0	—	—
(d)	0	0		0				—	—	—

#### Processing details

• Searches for the character string data specified for (s1) in the devices from the nth character from the left of the character string data specified for (s2) and stores the result to the device specified for (d). As the result of search, the location of match, counted in the number of characters from the first character of the character string data specified for (s2), is stored. When n = 3



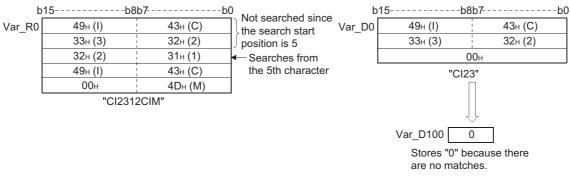
• If there is no matching character string data, stores 0 to (d).

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of n exceeds the number of characters in (s2). The number of character specified by (s1) is 0. 00H (NULL) does not exist within the corresponding device range following the devices specified for (s1) and (s2). When n is a negative value or 0.	_	0	0	0	0	0

#### Program example

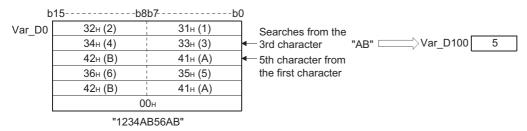

• In the following program, the character string data stored in Var_D0 and the following devices are searched from the 5th character from the left of the character string data stored in Var_R0 and the following devices when X0 turns ON, and the result is stored to Var_D100.

[Structured ladder/FBD]

1					·		·				INS	TR	P		•	·		·	·	·
•	 -1	- 1	_						_	EN		1	ΕN	0	-					
		•		·	V	′arj	D	0—	_	s1				d		-//	′ar_	D	100	) - I
	·			·	V	'arj	R	0-	_	s2						·		·	·	
			•	÷	÷	÷	÷	5—	_	n						÷		÷	·	

[ST]

INSTRP(X0,Var_D0,Var_R0,5,Var_D100); [Operation]

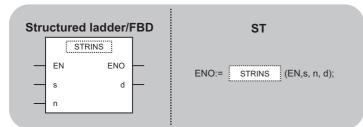



• In the following program, the character string data "AB" is searched from the 3rd character from the left of the character string data stored in Var_D0 and the following devices when X1C turns ON, and the result is stored to Var_D100. [Structured ladder/FBD]

1		•	−×	(1-C	÷		·				· .		INS	STR	RР		- E		·		·	
			-1									E١				NO.						
	1														-	<b>1U</b>						
								- ",	AB	"—	_	s1				d	-	-\	′ar	_D'	100	) - I
							V	'ar	D	0 —	_	s2					· .					
				÷	÷	÷	÷	·		3—	_	n					- I	÷	·	÷	·	·
		•	÷		÷	÷	÷	·	·	÷			•				÷		÷	1	·	1

[ST]

INSTRP(X0,"AB",Var_D0,3,Var_D100); [Operation]




# Character string data insert

#### STRINS(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported



Any of the following instruction can go in the dotted squares. STRINS, STRINSP

#### ■Executing condition

Instruction	Executing condition
STRINS	
STRINSP	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Character string data to be inserted, or start number of the device in which character string data are stored	String
	n	Insert position (Setting range $1 \le n \le 16383$ )	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores character string data	String

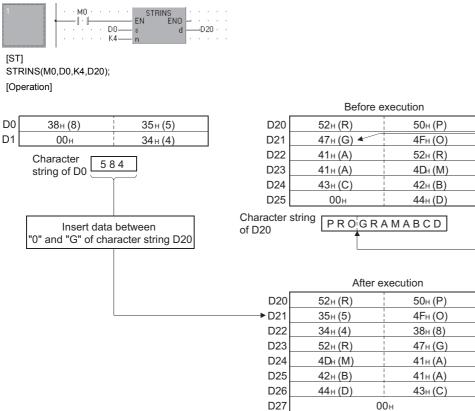
Setting	Internal device		R, ZR	10/0		UD\GD	Zn	Constant		Others
data	Bit	Word		Bit	Word			К, Н	\$	
(s)	—	0		-				—	0	—
n	—	0		0				0	—	-
(d)	—	0		—				—	—	—

• Inserts the character string data specified for (s) to the nth character (insert position) from the start of the character string data specified for (d).

When the insert position n = 3

b	15b8	8 b7 b0					
s	31H (1)	30H (0)	Shifts the character string from	ł	o15b8	b7	b0
s+1	33H (3)	32H (2)	the 3rd character to the left for the number of characters of	(d)	42H (B)	41H (A)	
(s)+2	00H	34H (4)	(s), and inserts the character		31H (1)	30H (0)	(S)
			string data of (s).	(d)+2	33H (3)	32H (2)	(((s)+1))
h	45 6	3b7b0	X	(d)+3	43H (C)	34H (4)	((\$+2)
d [	42H (B)	3b7b0 41H (A)		(d)+4	45H (E)	44H (D)	
(d)+1	42H (B)	41H (A) 43H (C) ◀	Insert position at	(d)+5	47H (G)	46H (F)	
(d)+2	44H (D) 46H (F)	45H (E)	the 3rd character	+6	00H	48H (H)	
(d)+2	48H (H)	47H (G)		+7	66H (f)	65H (e)	
d+4	( )	0H		~ .		(	
(d)+5	62H (b)	61H (a)			d+5 and the follo		
(d)+6	64H (d)	63H (c)			the number of data over written.	to be inserted are	
(d)+7	66H (f)	65H (e)			over written.		
$\mathbf{O}$	(1)	(0)					

- If the number of characters inserted ((s) + (d)) is an even number, the NULL code (00H) is stored to the device (1 word) after the last device of the character string data.
- If the number of characters inserted ((s) + (d)) is an odd number, the NULL code (00H) is stored to the last device (upper 8 bits) of the character string data.
- If the number of characters of (d) + 1 is specified for n, the character string (s) is connected to the last of the character string (d).


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The number of characters of the character string (s), the character string (d) or the inserted character string ((s) + (d)) exceeds 16383. n is not within the range. $(1 \le n \le 16383)$ The value specified for n exceeds the number of characters of the character string (d) + 1.	_	_	_	_	0	0
4101	Any device of character string (s) and the character string (d) overlaps. The inserted character string data $((s) + (d))$ exceed the range of the specified device. The NULL code (00H) does not exist within the specified device range following the devices specified for (s) and (d). The inserted character string data $((s) + (d))$ overlap with the device that stores the character string (s).	_	_	_	_	0	0

• In the following program, the character string data stored in D0 and the following devices are inserted to the 4th character from the start of the character string data of device D20, when M0 turns ON.

[Structured ladder/FBD]



Character string PRO584GRAMABCD of D20 4th character

from the left (Insert position)

# Character string data delete

# STRDEL(P)

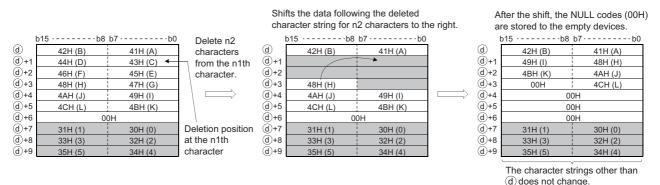


• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Structured ladder/FBD	ST
EN ENO n1 d n2	ENO:= STRDEL (EN, n1, n2, d);

Any of the following instruction can go in the dotted squares. STRDEL, STRDELP

#### ■Executing condition


Instruction	Executing condition
STRDEL	
STRDELP	

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	Deletion start position (Setting range $1 \le n \le 16383$ )	ANY16
	n2	Number of characters to be deleted (Setting range 0 $\leq$ n2 $\leq$ 16384 - n1)	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores character string data to be deleted	String

Setting	Internal dev	ice	R, ZR	10/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
n1	—	0		0				0	—
n2	—	0	0		0			0	—
(d)	—	0		—				—	—

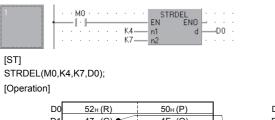
• Deletes n2 characters from n1th character (deletion start position) from the start of the character string data specified for (d).

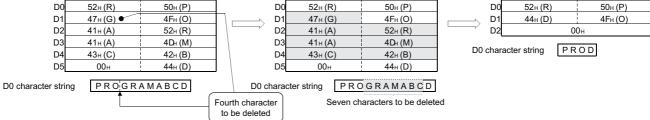
Device position where character string data to be deleted: n1=3 Number of characters to be deleted: n2=5



- After the deletion, if the character string (d) is an even number, the NULL code (00H) is stored to the device (1 word) after the last device of the character string data.
- After the deletion, if the character string (d) is an odd number, the NULL code (00H) is stored to the last device (upper 8 bits) of the character string data.
- After shifting the data following the deleted character string for n2 characters to the right, the NULL codes (00H) are stored to the empty devices.

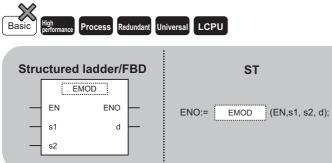
### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The number of characters of the character string (d) exceeds 16383. n1 is not within the range. $(1 \le n1 \le 16383)$ The value specified for n1 exceeds the number of characters of the character string (d). The value specified for n2 exceeds the number of characters from n1 to the last character of the character string (d). A negative value is specified for n2.	_	_	_	_	0	0

#### Program example

 In the following program, the character string data stored in D0 and the following devices are deleted from the 4th character for 7 characters, when M0 turns ON.


[Structured ladder/FBD]

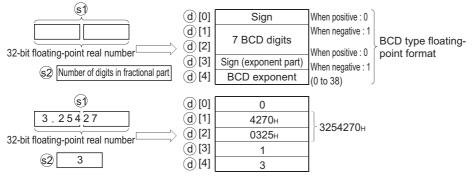




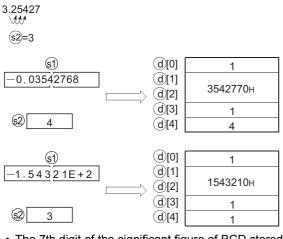
# Floating-point data to BCD format conversion

# EMOD(P)

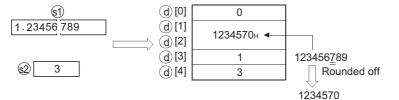



Any of the following instruction can go in the dotted squares. EMOD, EMODP

#### ■Executing condition


Instruction	Executing condition
EMOD	
EMODP	

Input/output Name argument				Description				Data type				
Input argum	ent	EN		Executing co	ondition				Bit			
		s1			32-bit floating-point real number data, or start number of the device that stores 32-bit floating-point real number data					Single-precision real		
		s2		Fractional pa	Fractional part data					ANY16		
Output argui	ment	ENO		Execution result					Bit			
		d			Start number or the array of the device that stores data converted to BCD format				Array of ANY16 (15)			
Setting	Internal d	levice	R, ZR	JO/O		UD\GD	Zn	Co	onstant Other		Others	
data	Bit	Word	_	Bit	Word				H	E		
(s1)	—	0	0		0		—			0	—	
(s2)	0	0	0		0	0		0		—	—	
(d)	—	0		-	—					—	—	


• Converts the 32-bit floating-point real number data specified for (s1) to 32-bit floating-point data in BCD format based on the fractional part digits specified for (s2), and stores the result to the device specified for (d) and the following devices.



• (s2) specifies the fractional part digits of the 32-bit floating-point real number data (s1) as shown below. Values between 0 and 7 can be specified for (s2). In the example above, a decimal fraction digit is designated as shown below:

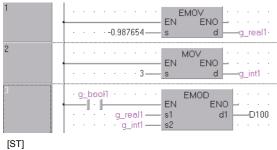


• The 7th digit of the significant figure of BCD stored in (d)[1] and (d)[2] is rounded off to make a 6-digit number.



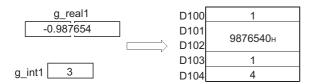
• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The fractional part digits specified for (s2) is outside the range of 0 to 7. The 32-bit floating-point real number specified for (s1) is outside the following range. $0, 2^{-126} \le  $ value of the specified device $  < 2^{128}$	_	0	0	0	0	0
4101	The device range specified for (d) exceeds the range of the corresponding device.	—	0	0	0	0	0
	The device specified for (d) exceeds the corresponding device range.	—	-	—	—	0	0
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	—	—	—	0	0


• In the following program, the 32-bit floating-point real number data in g_real1 is converted to BCD format according to the fractional part digits as specified for g_int1 when g_bool1 turns ON, and stores the results to D100 and the following devices.

[Structured ladder/FBD]



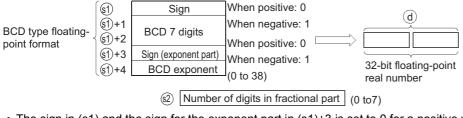
g_real1:=-0.987654; g_int1:=3;

EMOD(g_bool1,g_real1,g_int1,D100); [Operation]

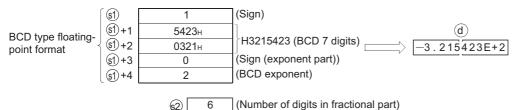


# BCD format to floating-point data conversion

EREX	(P(P)		
Basic	High performance Proces	s Redundant U	niversal
Stru	ictured ladd	er/FBD	ST
_	EREXP EN E	NO - ON	ENO:= EREXP (EN,s1, s2, d);
-	· s2		


Any of the following instruction can go in the dotted squares. EREXP, EREXPP

#### ■Executing condition


Instruction	Executing condition
EREXP	
EREXPP	

Input/outpu argument	it	Name		Descri	iption		Data type					
Input argume	nt	EN		Executi	ng condition		Bit					
		s1		Start nu format	mber of the dev	ANY	ANY16					
		s2		Fraction	nal part data	ANY16						
Output argum	ent	ENO		Execution result					Bit			
		d		Start number of the device that stores 32-bit floating-point real number data					Single-precision real			
Setting	Internal d	evice	R, Z	R	JO/O		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word			К, Н			
(s1)	-	0	0		—	—	_				—	
(s2)	0	0	0		0	0	0			-		
(d)	-	0			—	0 –		-			-	

• Converts the 32-bit floating-point data in BCD format specified for (s1) to the floating-point real number data according to the fractional part digits specified for (s2), and stores the result to the device specified for (d) and the following devices.



- The sign in (s1) and the sign for the exponent part in (s1)+3 is set to 0 for a positive value and to 1 for a negative value.
- 0 to 38 can be set for the BCD exponent of (s1)+4.
- 0 to 7 can be set for the fractional part digits of (s2).

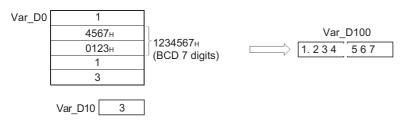


#### **Operation error**


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The format specified for $(s1)$ is neither 0 nor 1. Values other than 0 to 9 are specified for each digit of $(s1)+1$ and $(s1)+2$ . The format specification specified for $(s1) + 3$ is other than 0 or 1. The exponent data specified for $(s1)+4$ is outside the range of 0 to 38. The fractional part digits specified for $(s2)$ is outside the range of 0 to 7.	_	0	0	0	0	0
4101	The device specified for (s1) exceeds the corresponding device range.	—	—	—	—	0	0

#### Program example


• In the following program, the 32-bit floating-point data in BCD format stored in Var_D0 and the following devices are converted to the floating-point real number data based on the fractional part digits stored in Var_D10 when X0 turns ON, and the result is stored to Var_D100.

[Structured ladder/FBD]



[ST]

EREXPP(X0,Var_D0,Var_D10,Var_D100); [Operation]



# 7.12 Special Function Instructions

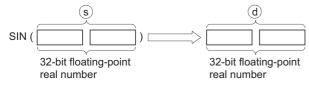
# SIN operation on floating-point data (single precision)

# SIN(P)



· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Structured ladder/FBD	ST
EN ENO s d	ENO:= SIN (EN, s, d);


Any of the following instruction can go in the dotted squares. SIN, SINP

#### ■Executing condition

Instruction	Executing condition
SIN	
SINP	

Input/outpu argument	t	Name		Descri	ption	Data type							
Input argumer	nt	EN		Executi	ng condition	Bit							
		S		Angle data on which the sine function is evaluated, or start number of the device that stores angle data						Single-precision real			
Output argument ENO				Execution result						Bit			
		d		Start nu	Start number of the device that stores the operation result					Single-precision real			
Setting	Internal d	evice	R, Z	R				Zn		Constant	Others		
data	Bit Word			Bit	Word		E						
(s)	-	0			—	0		—		0	—		
(d)	-	0	0		—	0 –		-	—		—		

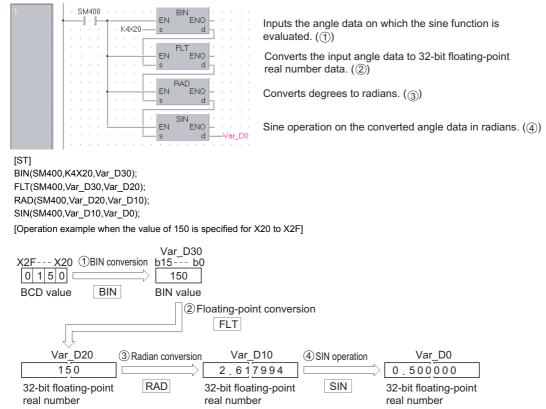
• Evaluates the sine function on the angle specified for (s), and stores the result to the device specified for (d).



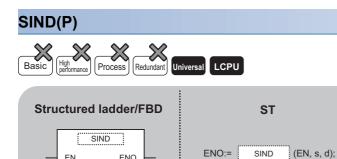
- The angle specified for (s) is set in radians (degrees  $\times \pi \div 180$ ). For conversion between degrees and radians, refer to the RAD(P) and DEG(P) instructions.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is -0. ^{*1}	0	0	0	0	—	—
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	_	_	_	_	0	0


*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

 In the following program, the sine function is evaluated on the angle set in BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 32-bit floating-point real number.

[Structured ladder/FBD]



# SIN operation on floating-point data (double precision)



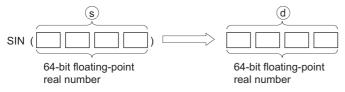
ENO d

Any of the following instruction can go in the dotted squares. SIND, SINDP

#### ■Executing condition

ΕN

s




#### ■Argument

Input/output argument	t	Name		Descri	ption	Data type					
Input argumen	t	EN		Executi	ng condition	Bit					
		S			ngle data on which the sine function is evaluated, or start mber of the device that stores angle data				Double-precision real		
Output argument ENO				Execution result					Bit		
		d		Start nu	Start number of the device that stores the operation result				Double-precision real		
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word	1		Bit	Word				E	
(s)	—	0			-			0 .		—	
(d)	—	0			-					—	—

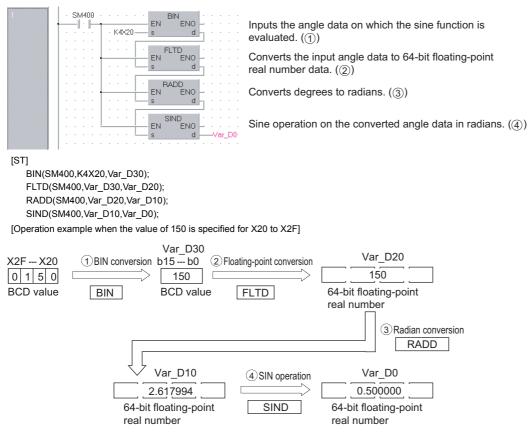
#### Processing details

• Evaluates the sine function on the angle specified for (s), and stores the result to the device specified for (d).



- The angle specified for (s) is set in radians (degrees  $\times \pi \div$  180). For conversion between degrees and radians, refer to the RADD(P) and DEGD(P) instructions.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

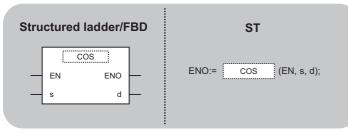

### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	_	_	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \le  $ operation result	_	_	_	_	0	0

#### Program example

- In the following program, the sine function is evaluated on the angle set in BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 64-bit floating-point real number.
- [Structured ladder/FBD]




# COS operation on floating-point data (single precision)

# COS(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

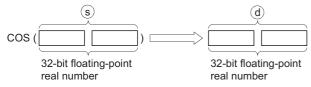


Any of the following instruction can go in the dotted squares. COS, COSP

0

#### ■Executing condition

Instruction	Executing condition
COS	
COSP	


# ■Argument

(d)

Input/output argument	t	Name		Description					Data type			
Input argumen	ıt	EN		Executing condition								
		S		Angle data on which the cosine function is evaluated, or start number of the device that stores angle data					Single-precision real			
Output argume	ent	ENO		Execution result					Bit			
		d		Start nu	Start number of the device that stores the operation result					Single-precision real		
Setting	Internal d	evice	R, Z	۶ JD/D			UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				E		
(S)	-	0			-	0		—		0	—	

0

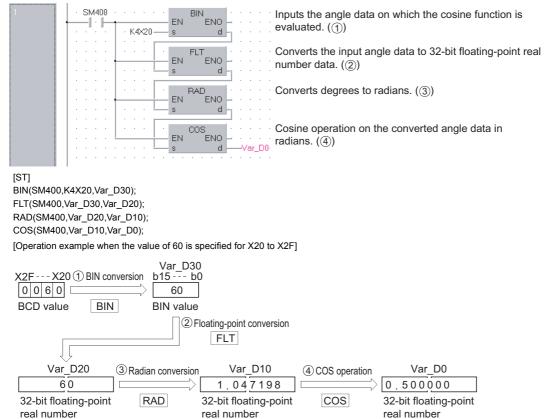
• Evaluates the cosine function on the angle specified for (s), and stores the result to the device specified for (d).



- The angle specified for (s) is set in radians (degrees  $\times \pi \div 180$ ). For conversion between degrees and radians, refer to the RAD(P) and DEG(P) instructions.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is -0. ^{*1}	0	0	0	0	—	—
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	—	—	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	—		—	—	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following.

• In the following program, the cosine function is evaluated on the angle set in BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 32-bit floating-point real number.

[Structured ladder/FBD]



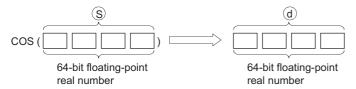
# COS operation on floating-point data (double precision)



d

**ST** ENO:= <u>COSD</u> (EN, s, d);

Any of the following instruction can go in the dotted squares. COSD, COSDP


#### ■Executing condition

s

Instruction	Executing condition
COSD	
COSDP	

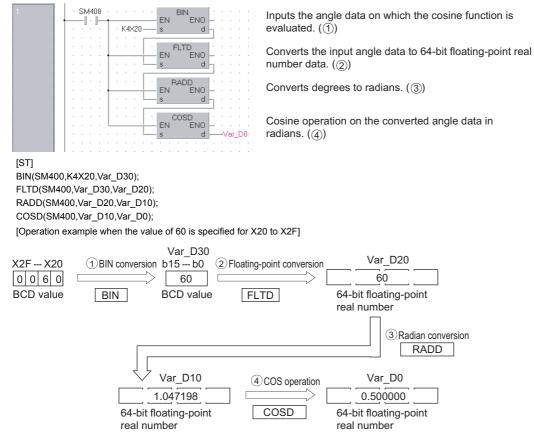
Input/outpu argument	t	Name		Descri	ption	Data type							
Input argumen	t	EN		Executi	ting condition								
		S				ta on which the cosine function is evaluated, or start of the device that stores angle data				Double-precision real			
Output argume	ent	ENO		Executi	ecution result					Bit			
		d		Start nu	Start number of the device that stores the operation result					Double-precision real			
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				E			
(s)	—	0			—					0	-		
(d)	—	0			—					—	—		

• Evaluates the cosine function on the angle specified for (s), and stores the result to the device specified for (d).



- The angle specified for (s) is set in radians (degrees  $\times \pi \div 180$ ). For conversion between degrees and radians, refer to the RADD(P) and DEGD(P) instructions.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

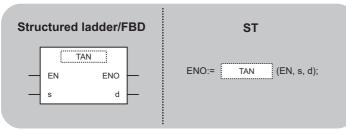

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	_	_	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	_		_	_	0	0

• In the following program, the cosine function is evaluated on the angle set in BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 64-bit floating-point real number.

[Structured ladder/FBD]




# TAN operation on floating-point data (single precision)

# TAN(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

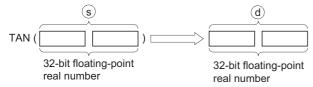


Any of the following instruction can go in the dotted squares. TAN, TANP

0

#### ■Executing condition

Instruction	Executing condition
TAN	
TANP	


# ■Argument

(d)

Input/output argument				Description					Data type			
Input argument EN				Executing condition					Bit			
		S		-	gle data on which the tangent function is evaluated, or start mber of the device that stores angle data					Single-precision real		
Output argume	Output argument ENO			Execution result					Bit			
		d		Start nu	Start number of the device that stores the operation result				Single-precision real			
Setting	Internal d	device		२	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word				E		
(S)	—	0			-	0	0			0	—	

0

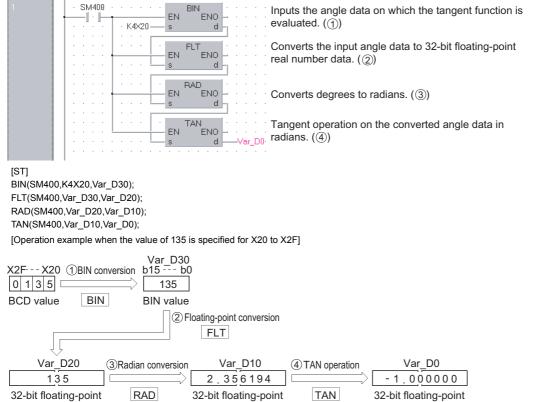
• Evaluates the tangent function on the angle specified for (s), and stores the result to the device specified for (d).



- The angle specified for (s) is set in radians (degrees  $\times \pi \div 180$ ). For conversion between degrees and radians, refer to the RAD(P) and DEG(P) instructions.
- When the angle specified for (s) is  $\pi/2$  radians, or  $(3/2)\pi$  radians, evaluation differences are generated for the radian value, but it does not cause an operation error.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error

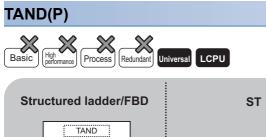

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is outside the following range. 0, $2^{\cdot 126} \le  \text{operation result}  < 2^{128}$ The value of the specified device is -0. ^{*1}	0	0	0	0	—	_
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty.$	—	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) 2 ¹²⁸ ≤  operation result	_	_	_	_	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

• In the following program, the tangent function is evaluated on the angle set in BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 32-bit floating-point real number.

[Structured ladder/FBD]




real number

real number

32-bit floating-point real number

# TAN operation on floating-point data (double precision)



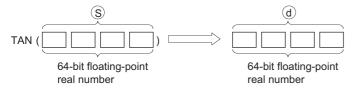
ENO

d

ENO:= TAND (EN, s, d);

Any of the following instruction can go in the dotted squares. TAND, TANDP

#### ■Executing condition


ΕN

s

Instruction	Executing condition
TAND	
TANDP	

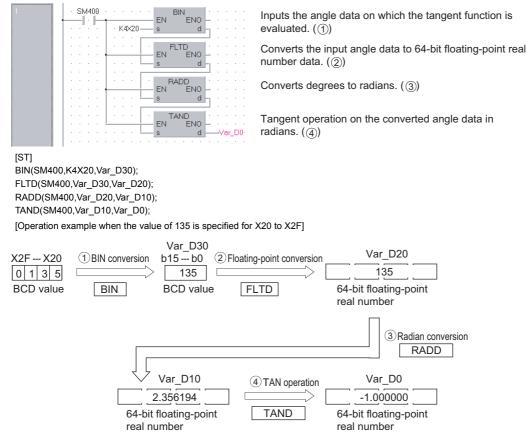
Input/outpu argument	t	Name		Descri	ption	Data type						
Input argumen	t	EN		Executing condition I				Bit	Bit			
		S		Angle data on which the tangent function is evaluated, or start number of the device that stores angle data				Doul	Double-precision real			
Output argume	ent	ENO		Executi	cution result					Bit		
		d		Start nu	Start number of the device that stores the operation result				Double-precision real			
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				E		
(s)	—	0			—					0	—	
(d)	—	0			—					—	—	

• Evaluates the tangent function on the angle specified for (s), and stores the result to the device specified for (d).



- The angle specified for (s) is set in radians (degrees  $\times \pi \div 180$ ). For conversion between degrees and radians, refer to the RADD(P) and DEGD(P) instructions.
- When the angle specified for (s) is  $\pi/2$  radians, or  $(3/2)\pi$  radians, evaluation differences are generated for the radian value, but it does not cause an operation error.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified data $  < 2^{1024}$ The value of the specified data is -0.	-	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	_	_	_	_	0	0

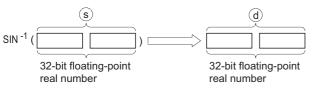
• In the following program, the tangent function is evaluated on the angle set in BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 64-bit floating-point real number.

[Structured ladder/FBD]



# SIN⁻¹ operation on floating-point data (single precision)

ASIN(P)		
Basic High Process Redundant Un	iversal LCPU	
Structured ladder/FBD	ST	
EN ENO s d	ENO:= ASIN (EN, s, d);	


Any of the following instruction can go in the dotted squares. ASIN, ASINP

# ■Executing condition

Instruction	Executing condition
ASIN	
ASINP	

Input/output argument	t	Name			ption	otion					Data type			
Input argumen	t	EN		Executi	ng condition				Bit					
		S			Sine values on which the arcsine function is evaluated, or start number of the device that stores sine values				Single-precision real					
Output argume	ent	ENO		Execution result										
		d		Start nu	Start number of the device that stores the operation result					Single-precision real				
Setting	Internal d	evice	e R, ZR				UD\GD	Zn		Constant	Others			
data	Bit	Word			Bit	Word				E				
(s)	—	0			—	0	-	-		0	-			
(d)	—	0			—	0 –		-		—	-			

• Evaluates the arcsine function on the value specified for (s) to define an angle, and stores the result to the device specified for (d).



- The SIN value specified for (s) can be in the range from -1.0 to 1.0.
- The angle (operation result) stored to (d) is stored in radians. For more information on the conversion between radians and degrees, refer to the DEG(P) and RAD(P) instructions.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

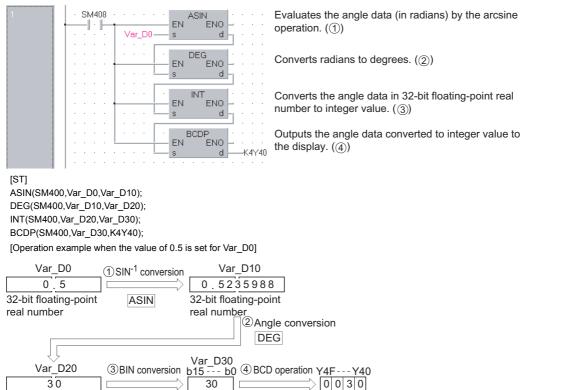
#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is outside the range of -1.0 to 1.0.	—	0	0	0	0	0
	The value of the specified device is -0.*1	—	0	0	0	—	-
4140	The value of the specified device is outside the following range. 0, $2^{\cdot 126} \leq  $ value of the specified device $  < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$ .				_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	—	—	—	—	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following.

• In the following program, the arcsine function is evaluated on the 32-bit floating-point real number in Var_D0, and its angle is output to Y40 to Y4F in BCD 4 digits.


[Structured ladder/FBD]

32-bit floating-point

real number

INT

**BIN** value

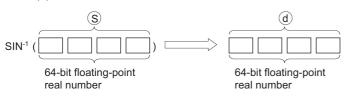


BCD

BCD value

# SIN⁻¹ operation on floating-point data (double precision)

ASIND(P)	
Basic High Process Redundant Uni	versal LCPU
Structured ladder/FBD	ST
EN ENO s d	ENO:= ASIND (EN, s, d);


Any of the following instruction can go in the dotted squares. ASIND, ASINDP

#### ■Executing condition

Instruction	Executing condition
ASIND	
ASINDP	

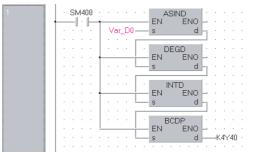
Input/output argument	t	Name		Descri	ption	Data type						
Input argument EN				Executi	ng condition				Bit			
S				Sine values on which the arcsine function is evaluated, or start number of the device that stores sine values						Double-precision real		
Output argument ENO				Execution result					Bit			
		d		Start nu	Start number of the device that stores the operation result					Double-precision real		
Setting	Internal d	levice R, ZR		R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				E		
(s)	—	0			—	' '					-	
(d)	—	0			—					—	-	

• Evaluates the arcsine function on the value specified for (s) to define an angle, and stores the result to the device specified for (d).



- The SIN value specified for (s) can be in the range from -1.0 to 1.0.
- The angle (operation result) stored to (d) is stored in radians. For more information on the conversion between radians and degrees, refer to the DEGD(P) and RADD(P) instructions.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is within the double-precision floating-point range and outside the range of -1.0 to 1.0.	—	—	—	—	0	0
4140	The value of the specified device is outside the following range. $0, 2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	—	—	—	—	0	0

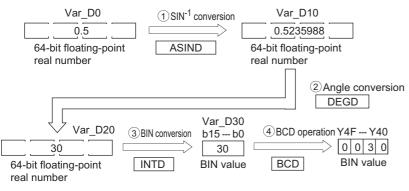
• In the following program, the arcsine function is evaluated on the 64-bit floating-point real number in Var_D0, and its angle is output to Y40 to Y4F in BCD 4 digits.

[Structured ladder/FBD]



Evaluates the angle data (in radians) by the arcsine operation. ()

Converts radians to degrees. (2)


Converts the angle data in 64-bit floating-point real number to integer value. ((3))

Outputs the angle data converted to integer value to the display. (a)

[ST]

ASIND(SM400,Var_D0,Var_D10); DEGD(SM400,Var_D10,Var_D20); INTD(SM400,Var_D20,Var_D30); BCDP(SM400,Var_D30,K4Y40);

[Operation example when the value of 0.5 is set for Var_D0]



# COS⁻¹ operation on floating-point data (single precision)

(EN, s, d);

# ACOS(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST

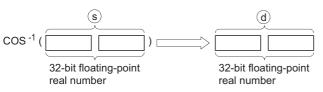
ENO

Any of the following instruction can go in the dotted squares.

ENO:=

ACOS

ACOS, ACOSP


EN

#### ■Executing condition



Input/outpu argument	t	Name		Description						Data type			
Input argument EN				Executi	ng condition				Bit				
	S		Cosine values on which the arccosine function is evaluated, or start number of the device that stores cosine values						Single-precision real				
Output argument ENO				Execution result						Bit			
		d		Start nu	Start number of the device that stores the operation result					Single-precision real			
Setting	Internal d	l device R, ZR		R	JO/O		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				E			
(S)	—	0			—	0		-		0	-		
(d)	—	0			—	0		—		—	—		

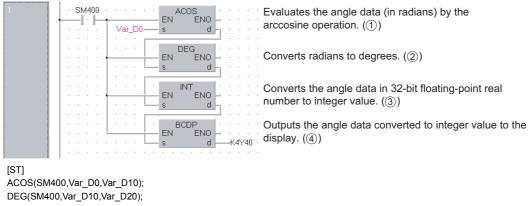
• Evaluates the arccosine function on the value specified for (s) to define an angle, and stores the result to the device specified for (d).



- The COS value specified for (s) can be in the range from -1.0 to 1.0.
- The angle (operation result) stored to (d) is stored in radians. For more information on the conversion between radians and degrees, refer to the DEG(P) and RAD(P) instructions.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

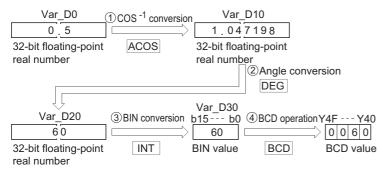
MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### Operation error

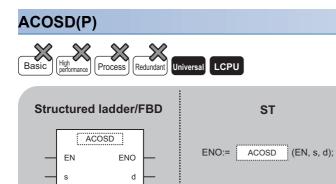

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is outside the range of -1.0 to 1.0.	—	0	0	0	0	0
	The value of the specified device is -0.*1	—	0	0	0	—	—
4140	The value of the specified device is outside the following range. 0, $2^{\cdot 126} \leq  $ value of the specified device $  < 2^{128}$ The specified device value is -0, unnormalized number, nonnumeric, and $\pm \infty$ .	_	—	—	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result		—	—	_	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


 In the following program, the arccosine function is evaluated on the 32-bit floating-point real number in Var_D0, and its angle is output to Y40 to Y4F in BCD 4 digits.

[Structured ladder/FBD]



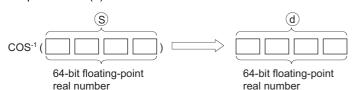

INT(SM400,Var_D20,Var_D30); BCDP(SM400,Var_D30,K4Y40);

[Operation example when the value of 0.5 is set for Var_D0]



# COS⁻¹ operation on floating-point data (double precision)




Any of the following instruction can go in the dotted squares. ACOSD, ACOSDP

#### ■Executing condition

Instruction	Executing condition
ACOSD	
ACOSDP	

Input/outpu argument	t	Name		Descri	iption	Data type						
Input argument EN				Executi	ng condition				Bit			
		S			values on which mber of the devi	Double-precision real						
Output argument ENO				Execution result						Bit		
		d		Start number of the device that stores the operation result					Double-precision real			
Setting	Internal device R, Z		R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				E		
(s)	-	0			—					0	—	
(d)	—	0			—					—	—	

• Evaluates the arccosine function on the value specified for (s) to define an angle, and stores the result to the device specified for (d).



- The COS value specified for (s) can be in the range from -1.0 to 1.0.
- The angle (operation result) stored in (d) is stored in radians. For more information on the conversion between radians and degrees, refer to the DEGD(P) and RADD(P) instructions.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is within the double-precision floating-point range and outside the range of -1.0 to 1.0.	—	—	—	—	0	0
4140	The value of the specified device is outside the following range. $0, 2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	_	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	—	—	—	—	0	0

Var_D20

60

64-bit floating-point


real number

 $\textcircled{3}{BIN} \text{ conversion}$ 

INTD

• In the following program, the arccosine function is evaluated on the 64-bit floating-point real number in Var_D0, and its angle is output to Y40 to Y4F in BCD 4 digits.

[Structured ladder/FBD]



(4) BCD operation

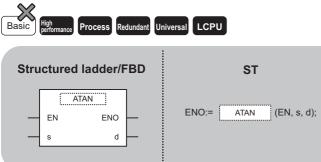
BCD

Y4F --- Y40

0 0 6 0

BCD value

Var_D30


b15 --- b0

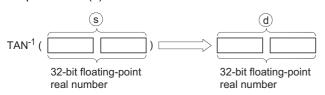
60

**BIN** value

## TAN⁻¹ operation on floating-point data (single precision)

## ATAN(P)




Any of the following instruction can go in the dotted squares. ATAN, ATANP

## ■Executing condition



Input/outpu argument	t	Name		Descri	Description					Data type			
Input argumer	nt	EN		Executi	ng condition	Bit							
s					Tangent values on which the arctangent function is evaluated, or start number of the device that stores tangent values					Single-precision real			
Output argument ENO				Execution result					Bit				
		d		Start nu	Start number of the device that stores the operation result					Single-precision real			
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word	1		Bit	Word				E			
(S)	-	0			- 0			-	0		-		
(d)	—	0			—	0 –				—	—		

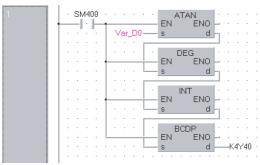
• Evaluates the arctangent function on the value specified for (s) to define an angle, and stores the result to the device specified for (d).



- The angle (operation result) stored to (d) is stored in radians. For more information on the conversion between radians and degrees, refer to the DEG(P) and RAD(P) instructions.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is -0.*1	—	0	0	0	—	—
4140	The value of the specified device is outside the following range. 0, $2^{-126} \leq  $ value of the specified device $  < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$ .	_	—	_	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	_	—	—		0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

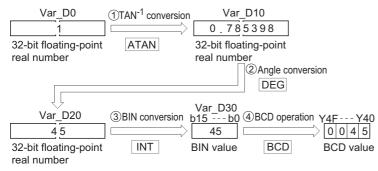
• In the following program, the arctangent function is evaluated on the 32-bit floating-point real number in Var_D0, and its angle is output to Y40 to Y4F in BCD 4 digits.

[Structured ladder/FBD]

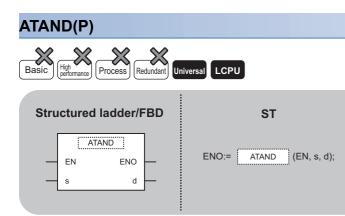


Evaluates the angle data (in radians) by the arctangent operation. (1)

Converts radians to degrees. (2)


Converts the angle data in 32-bit floating-point real number to integer value. (3)

Outputs the angle data converted to integer value to the display. (4)


[ST]

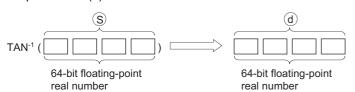
ATAN(SM400,Var_D0,Var_D10); DEG(SM400,Var_D10,Var_D20); INT(SM400,Var_D20,Var_D30); BCDP(SM400,Var_D30,K4Y40);

[Operation example when the value of 1 is set for Var_D0]



## TAN⁻¹ operation on floating-point data (double precision)




Any of the following instruction can go in the dotted squares. ATAND, ATANDP

## ■Executing condition

Instruction	Executing condition
ATAND	
ATANDP	

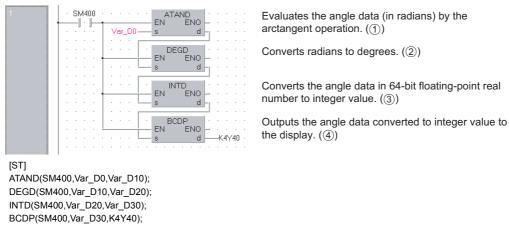
Input/output argument	t	Name	ame Description						Data type			
Input argumen	t	EN		Executi	Executing condition Bit							
S					Tangent values on which the arctangent function is evaluated, or start number of the device that stores tangent values					Double-precision real		
Output argument ENO				Execution result					Bit			
		d		Start nu	Start number of the device that stores the operation result					Double-precision real		
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word	-			E		
(S)	—	0			—					0	-	
(d)	—	0	0			-				—	-	

• Evaluates the arctangent function on the value specified for (s) to define an angle, and stores the result to the device specified for (d).

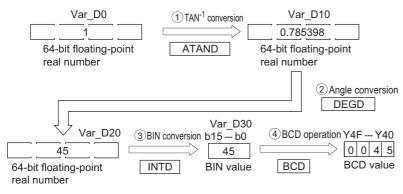


- The angle (operation result) stored to (d) is stored in radians. For more information on the conversion between radians and degree, refer to the DEGD(P) and RADD(P) instructions.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


## Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

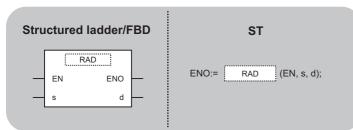

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. $0, 2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	_	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	—	—	—	—	0	0

• In the following program, the arctangent function is evaluated on the 64-bit floating-point real number in Var_D0, and its angle is output to Y40 to Y4F in BCD 4 digits.

[Structured ladder/FBD]



[Operation example when the value of 1 is set for Var_D0]




# Degree to radian conversion on floating-point data (single precision)

## RAD(P)

Ver.	)				
Basic	High performance	Process	Redundant	Universal	LCPU

· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. RAD, RADP

## ■Executing condition

Instruction	Executing condition
RAD	
RADP	

Input/outpu argument	t	Name		Description					Data type			
Input argumer	ıt	EN		Executi	ng condition	Bit						
S					ata whose unit is mber of the devi	Single-precision real						
Output argument ENO				Execution result						Bit		
		d		Start nu	Start number of the device that stores converted value in radians					Single-precision real		
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word	-			E		
(s)	—	0			—	0		-		0	-	
(d)		0			_	0 -		_		_		

· Converts the unit of angle from degrees specified for (s) to radians, and stores the result to the device specified for (d).



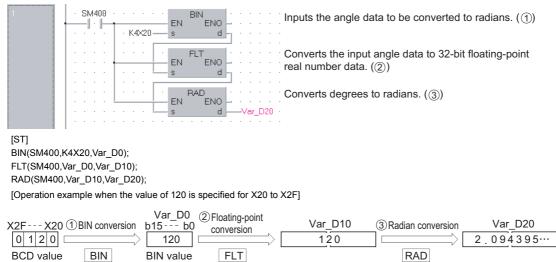
· Conversion from degrees to radians is performed according to the following equation.

Radians = Degrees x  $\frac{\pi}{180}$ 

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is -0. ^{*1}	0	0	0	0	—	—
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le  $ value of the specified device $  < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$ .	_	—	—	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result		—	—		0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

• In the following program, the angle (in degrees) set in BCD 4 digits in the devices from X20 to X2F is converted to radians, and the result is stored to Var_D20 as a floating-point real number.

[Structured ladder/FBD]

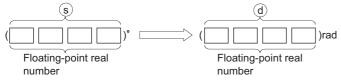


# Degree to radian conversion on floating-point data (double precision)

## RADD(P)

Basic	High performance Process Redundan	Universal LCPU
Stru	ictured ladder/FBD	ST
_	EN ENO s d	ENO:= RADD (EN, s, d);

Any of the following instruction can go in the dotted squares.


RADD, RADDP

## ■Executing condition

Instruction	Executing condition
RADD	
RADDP	

Input/output argument	t	Name		Descri	scription					Data type			
Input argumen	ıt	EN		Executi	Executing condition Bit								
S				Angle data whose unit is converted from degrees to radians, or start number of the device that stores angle data						Double-precision real			
Output argume	Output argument ENO			Execution	Execution result Bit								
		d		Start number of the device that stores converted value in radians					Double-precision real				
Setting	Internal d	evice	R, ZR		JO/O		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				E			
(S)	-	0								0	—		
(d)	—	0	-			-				—	_		

· Converts the unit of angle from degrees specified for (s) to radians, and stores the result to the device specified for (d).



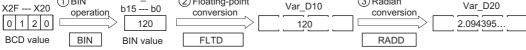
· Conversion from degrees to radians is performed according to the following equation.

Radians = Degrees x  $\frac{\pi}{180}$ 

- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### Operation error

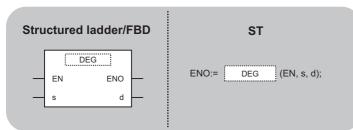

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	—	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq   \text{ operation result }  $		_	_	_	0	0

• In the following program, the angle (in degrees) set in BCD 4 digits in the devices from X20 to X2F is converted to radians, and the result is stored to Var_D20 as a 64-bit floating-point real number.

[Structured ladder/FBD]






# Radian to degree conversion on floating-point data (single precision)

## DEG(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. DEG, DEGP

## ■Executing condition

Instruction	Executing condition
DEG	
DEGP	

Input/output argument	t	Name		Descri	ption					Data type			
Input argumen	t	EN		Executing condition					Bit				
S				•	Ingle data whose unit is converted from radians to degrees, orSingle-precision realtart number of the device that stores radians angle								
Output argume	ENO		Execution result Bit										
		d		Start number of the device that stores converted value in degrees					Single-precision real				
Setting	Internal d	device R, ZR		۶ JD/D			UD\GD	Zn		Constant	Others		
data	data Bit Word				Bit	Word				E			
(S)	—	0			—	0		-		0	—		
(d)	—	0			—	0 –		-		—	-		

• Converts the unit of angle from radians specified for (s) to degrees, and stores the result to the device specified for (d).



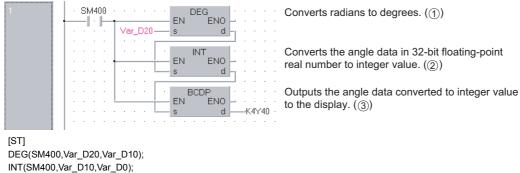
• The conversion from radians to degrees is performed according to the following equation.

Degrees = Radians x  $\frac{180}{\pi}$ 

• If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value of the specified device is -0. ^{*1}	0	0	0	0	—	—
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	-	—	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	_	—	_	_	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following.

• In the following program, the radian value set as a 32-bit floating-point real number in Var_D20 is converted to degrees, and the result is output to Y40 to Y4F as a BCD value.

[Structured ladder/FBD]



BCDP(SM400,Var_D0,K4Y40);

[Operation example when the value of 1.435792 is set for Var_D20]

Var_D20	①Angle conversion	Var_D10	2 BIN conversion	Var_D0 b15 b0 ③	BCD conversi	ion Y4F Y40
1.435792		82.26482	]	82		
32-bit floating-point real number	DEG	32-bit floating-point real number	INT	BIN value	BCD	BCD value

# Radian to degree conversion on floating-point data (double precision)

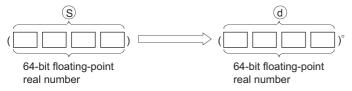
# DEGD(P)

dder/FBD ST

Any of the following instruction can go in the dotted squares.

DEGD, DEGDP

ΕN


s

## ■Executing condition

Instruction	Executing condition
DEGD	
DEGDP	

Input/output argument	t	Name		Descri	Description					Data type			
Input argument EN				Executi	Executing condition Bit								
	S				Ingle data whose unit is converted from radians to degrees, or Double-precision real tart number of the device that stores radians angle						I		
Output argument ENO				Execution result Bit						Bit			
		d			Start number of the device that stores converted value in degrees					Double-precision real			
Setting	Internal d	evice R, ZR		R	JD/D		UEI\GE	Zn		Constant	Others		
data	Bit	Word			Bit	Word				E			
(S)	—	0			-					0	—		
(d)	—	0								—	—		

• Converts the unit of angle from radians specified for (s) to degrees, and stores the result to the device specified for (d).

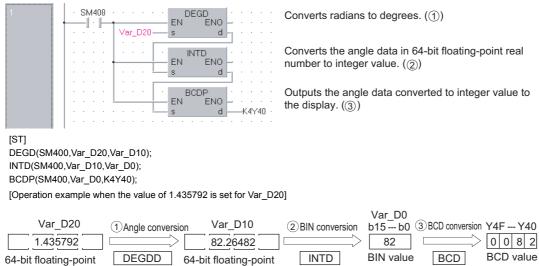


• The conversion from radians to degrees is performed according to the following equation.

Degrees = Radians x  $\frac{180}{\pi}$ 

- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)


## Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	_	_	_	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq   \text{ operation result }  $	_		_		0	0

• In the following program, the radian value set as a 64-bit floating-point real number in Var D20 is converted to degrees, and the result is output to Y40 to Y4F as a BCD value.

[Structured ladder/FBD]



real number

64-bit floating-point real number

## Exponentiation on floating-point data (single precision)

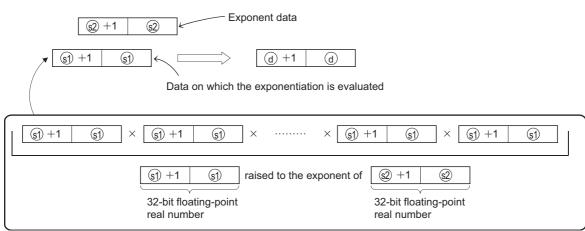
## POW(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Structured	adder/FBD	ST
PO EN s1 s2	ENOd	ENO:= POW (EN, s1, s2, d);

Any of the following instruction can go in the dotted squares. POW, POWP


## ■Executing condition

Instruction	Executing condition
POW	
POWP	

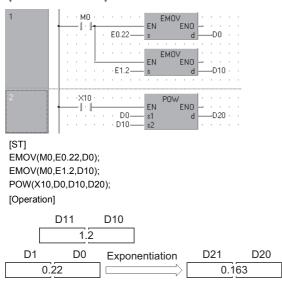
Input/output argument		Name	De	escription				Data type			
Input argument		EN	Exe	ecuting condition				Bit			
		s1	the	Data on which the exponentiation is evaluated, or start numbe the device that stores data on which the exponentiation is evaluated					Single-precision real		
		s2	Exp	Exponent data, or start number of the device that stores the data					Single-precision real		
Output argumer	nt	ENO	Exe	Execution result					Bit		
		d	Sta	Start number of the device that stores the operation result					Single-precision real		
Setting	Internal d	levice	R, ZR	JD/D		UD\GD	Zn		Constant	Others	
data									F		

Setting	Internal dev	rice	R, ZR	10/0		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			E	
(s1)	-	0		—	0			0	-
(s2)	-	0	0		0			0	-
(d)	-	0	0 -		0			—	-

• Evaluates the exponentiation on the 32-bit floating-point real number specified for (s1) and 32-bit floating-point real number specified for (s2), and stores the result to the device specified for (d).



- Values which can be specified for (s1) and (s2), and can be stored, are as follows:
- 0,  $2^{-126} \le |$  specified value (storing value)  $| < 2^{128}$
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value specified for (s1) or (s2) is not within the following range. 0, $2^{\cdot 126} \le  $ specified value (storing value) $  < 2^{\cdot 128}$ The value specified for (s1) or (s2) is -0.	-	-	—	_	0	0
4141	The operation result is within the following range. (An overflow occurs.) $2^{128} \le  $ operation result	—	—			0	0

• In the following program, the exponentiation is evaluated on the 32-bit floating-point real number in D0, D1 and the 32-bit floating-point real number in D10, D11 when X10 turns ON, and the result is stored to D20, D21. [Structured ladder/FBD]



## Exponentiation on floating-point data (double precision)

## POWD(P)



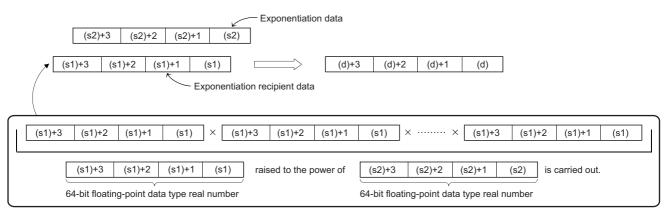
• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Structured ladder/FBD	ST
POWD EN ENO s1 d s2	ENO:= POWD (EN, s1, s2, d);

Any of the following instruction can go in the dotted squares. POWD, POWDP

0

## ■Executing condition


Instruction	Executing condition
POWD	
POWDP	

#### ■Argument

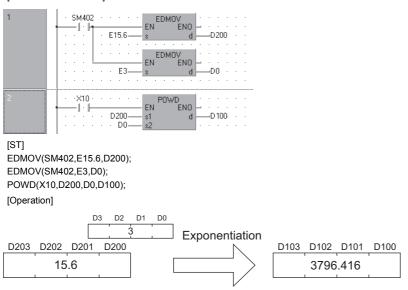
(d)

Input/outpu argument	t	Name		Description				Data	Data type			
Input argumen	ıt	EN		Executi	ng condition				Bit			
		s1		the devi	Data on which the exponentiation is evaluated, or start number of the device that stores data on which the exponentiation is evaluated					Double-precision real		
		s2		Expone	Exponent data, or start number of the device that stores the data					Double-precision real		
Output argume	ent	ENO		Execution	on result				Bit			
		d		Start nu	mber of the dev	vice that stores th	e operation resu	ult	Double-precision real			
Setting	Internal d	evice	R, Z	२	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word	-		Bit	Word				E		
(s1)	—	0			-					0	—	
(s2)	—	0			—				0	—		

• Evaluates the exponentiation on the 64-bit floating-point real number specified for (s1) and 64-bit floating-point real number specified for (s2), and stores the result to the device specified for (d).



- Values which can be specified for (s1) and (s2), and can be stored, are as follows:
- 0,  $2^{-1022} \le |$  specified value (storing value)  $| < 2^{1024}$
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

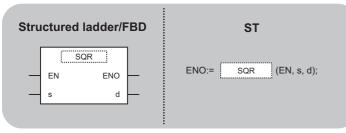

## Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value specified for (s1) or (s2) is not within the following range. 0, $2^{\cdot 1022} \le  $ specified value (storing value) $  < 2^{1024}$ The value specified for (s1) or (s2) is -0.	—	—	—	—	0	0
4141	The operation result is within the following range. (An overflow occurs.) $2^{1024} \leq   \text{ operation result }  $	—	—	—	—	0	0

599

• In the following program, the exponentiation is evaluated on the 64-bit floating-point real number in D200 to D203 and the 64-bit floating-point real number in D0 to D3 when X10 turns ON, and the result is stored to D100 to D103. [Structured ladder/FBD]




## Square root operation on floating-point data (single precision)

## SQR(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. SQR, SQRP

0

0

## ■Executing condition

Instruction	Executing condition
SQR	
SQRP	

## ■Argument

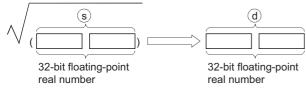
(s)

(d)

Input/output argument	t	Name		Description			Data type					
Input argumen	t	EN		Executir	Executing condition E				Bit			
		S			Data on which the square root function is evaluated, or start number of the device that stores data					Single-precision real		
Output argume	ent	ENO		Executio	on result				Bit			
		d		Start nu	Start number of the device that stores the operation result				Single-precision real			
Setting	Internal de	evice	R, ZI	R	l 10/0		UD\GD	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word				E		

0

0


____

0

_

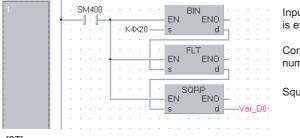
____

• Evaluates the square root function on the value specified for (s), and stores the result to the device specified for (d).



- Only positive values can be specified for (s). (Operation cannot be performed on negative numbers.)
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.
- MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is a negative number.	0	0	0	0	0	0
	The value of the specified device is -0.*1	0	0	0	0	—	—
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le  $ value of the specified device $  < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$ .		_	_	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	—	-	_	—	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following. MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

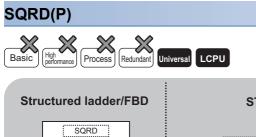
• In the following program, the square root function is evaluated on the value set in the BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 32-bit floating-point real number.

[Structured ladder/FBD]



Inputs the data on which the square root function is evaluated. ()

Converts the input data to 32-bit floating-point real number data. ((2))


Square root operation (③)

[ST] BIN(SM400,K4X20,Var_D20); FLT(SM400,Var_D20,Var_D10); SQRP(SM400,Var_D10,Var_D0);

[Operation example when the value of 650 is specified for X20 to X2F]

Var_D20 ②Floating-point real X2FX20 ①BIN conversion <u>b15b0</u> number	Var_D10 ③SQR operation Var_D0	
	650 25.4951	
BCD value BIN BIN value FLT	SQR	

## Square root operation on floating-point data (double precision)



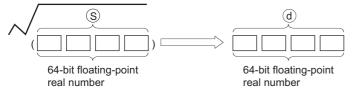
ENO

d

	ST	
ENO:=	SQRD	(EN, s, d);

Any of the following instruction can go in the dotted squares. SQRD, SQRDP

## ■Executing condition


ΕN

s

Instruction	Executing condition
SQRD	
SQRDP	

Input/output Name I argument				Description						Data type			
Input argument		EN		Executi	ng condition	Bit							
		S		Data on which the square root function is evaluated, or start number of the device that stores data						Double-precision real			
Output argument		ENO		Execution result						Bit			
		d		Start nu	Start number of the device that stores the operation result					Double-precision real			
Setting	Internal d	device F		R, ZR		10/D		Zn		Constant	Others		
data	Bit	Word	1		Bit	Word				E			
(s)	—	0			—	0		—					
(d)	—	0			-					—	—		

• Evaluates the square root function on the value specified for (s), and stores the result to the device specified for (d).



- Only positive values can be specified for (s). (Operation cannot be performed on negative numbers.)
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error

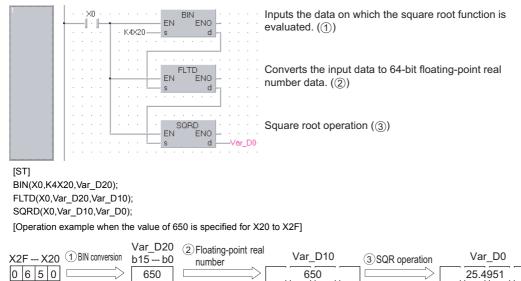
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is a negative number.	—	-	—	—	0	0
4140	The value of the specified device is outside the following range. $0, 2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	—	_	—	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	_	—	_	—	0	0

605

• In the following program, the square root function is evaluated on the value set in the BCD 4 digits in the devices from X20 to X2F, and the result is stored to Var_D0 as a 64-bit floating-point real number.

SQRD

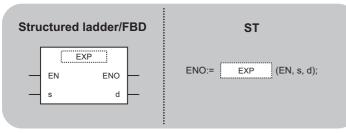

[Structured ladder/FBD]

BCD value

BIN

**BIN** value

FLTD




## Exponential operation on floating-point data (single precision)

## EXP(P)



• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. EXP, EXPP

0

0

## ■Executing condition

____

Instruction	Executing condition
EXP	
EXPP	

## ■Argument

(s)

(d)

Input/output Name argument				Description						Data type			
Input argument		EN		Executing condition						Bit			
		S		Data on which the exponential function is evaluated, or start number of the device that stores data						Single-precision real			
Output argume	ent	ENO		Execution result						Bit			
		d		Start number of the device that stores the operation result					Single-precision real				
Setting	Internal device		R, ZI	R, ZR J¤\□			UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				E			

0

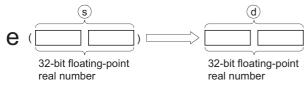
0

____

____

607

0


_

_

_

_

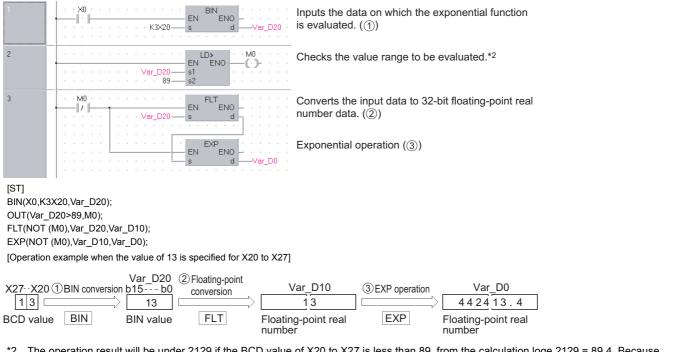
• Evaluates the exponential function on the value specified for (s), and stores the result to the device specified for (d).



- Exponential operation is evaluated taking the base (e) as 2.71828.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

## Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The operation result is not within the following range. $2^{\text{-}126} \leq  $ operation result $  \leq 2^{128}$	-	0	-	-	—	—
	The operation result is not within the following range: $2^{-126} \le  $ operation result $  < 2^{128}$	0	-	0	0	_	_
	The value of the specified device is -0.*1	0	0	0	0	—	—
4140	The value of the specified device is -0, unnormalized number, nonnumeric or $\pm\infty.$	—	-	—	-	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	—	-	—	—	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following.

• In the following program, the exponential function is evaluated on the value set in BCD 2 digits in the devices from X20 to X27, and the result is stored to Var_D0 as a 32-bit floating-point real number.

[Structured ladder/FBD]



*2 The operation result will be under 2129 if the BCD value of X20 to X27 is less than 89, from the calculation loge 2129 = 89.4. Because setting a value of over 90 will return an operation error, turn M0 ON if a value of over 90 has been set to avoid the error.

Point P

Conversion from natural logarithm to common logarithm

In the CPU module, a natural logarithm operation is performed.

To obtain a common logarithm value, enter a common logarithm value divided by 0.43429 in (s).

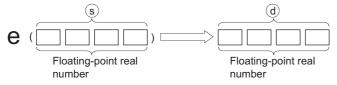
 $10^{x} = e^{\frac{x}{0.43429}}$ 

609

## Exponential operation on floating-point data (double precision)






Any of the following instruction can go in the dotted squares. EXPD, EXPDP

## ■Executing condition

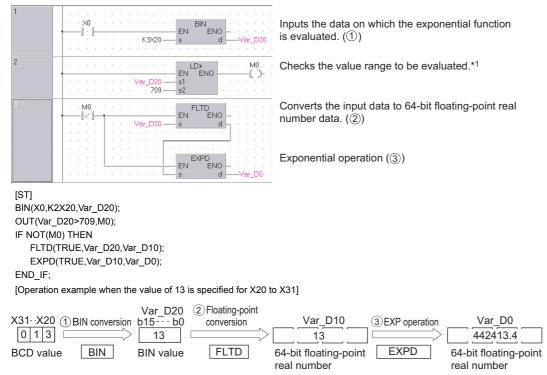


Input/output Name I argument				Description						Data type			
Input argument		EN		Executi	ng condition	Bit	Bit						
		S		Data on which the exponential function is evaluated, or start number of the device that stores data						Double-precision real			
Output argument		ENO		Execution result						Bit			
		d		Start nu	Start number of the device that stores the operation result					Double-precision real			
Setting	Internal d	device		ice R, ZR		JD/D		Zn		Constant	Others		
data	Bit	Word	1		Bit	Word				E			
(s)	-	0			—	0		-					
(d)	—	0			_					—	—		

• Evaluates the exponential function on the value specified for (s), and stores the result to the device specified for (d).



- Exponential operation is evaluated taking the base (e) as 2.71828.
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4140	The value of the specified device is outside the following range. 0, $2^{\cdot 1022} \leq  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	-	-	—	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	_	-	-	_	0	0

• In the following program, the exponential function is evaluated on the value set in BCD 2 digits in the devices from X20 to X31, and the result is stored to Var_D0 as a 64-bit floating-point real number.

[Structured ladder/FBD]



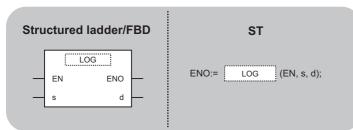
*1 The operation result will be under 2129 if the BCD value of X20 to X31 is less than 89, from the calculation loge 2129 = 89.4. Because setting a value of over 90 will return an operation error, turn M0 ON if a value of over 90 has been set to avoid the error.

Point P

Conversion from natural logarithm to common logarithm

In the CPU module, a natural logarithm operation is performed.

To obtain a common logarithm value, enter a common logarithm value divided by 0.43429 in (s).


 $10^{x} = e^{\frac{x}{0.43429}}$ 

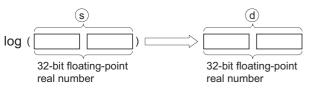
# Natural logarithm operation on floating-point data (single precision)

### LOG(P)



· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later




Any of the following instruction can go in the dotted squares. LOG, LOGP

### ■Executing condition

Instruction	Executing condition
LOG	
LOGP	

Input/output argument	· · ·		Descri	ption	tion					Data type		
Input argument		EN		Executi	ng condition			Bit	Bit			
		S		Data on which the natural logarithm function is evaluated, or start number of the device that stores data					Single-precision real			
Output argume	ent	ENO		Execution result Bit								
		d		Start number of the device that stores the o			e operation resu	ult	Single-precision real			
Setting	Internal d	evice R, ZR		R JO\O		UD\GD		Zn		Constant	Others	
data	Bit	Word	-		Bit	Word				E		
(s)	—	0			—	0		—		0	—	
(d)	—	0	0		—	0		—		—	_	

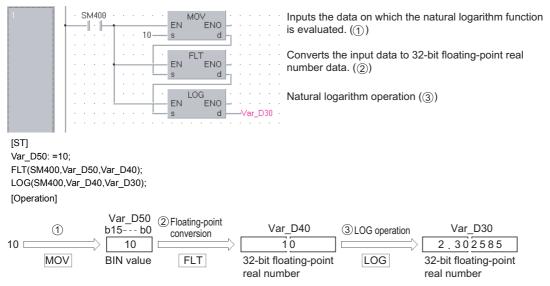
• Evaluates the natural logarithm function on the value specified for (s) taking (e) as a base, and stores the result to the device specified for (d).



- Only positive values can be specified for (s). (Operation cannot be performed on negative numbers.)
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is negative. The value specified for (s) is 0.	0	0	0	0	0	0
	The value of the specified device is -0.*1	0	0	0	0	—	-
4140	The value of the specified device is outside the following range. 0, $2^{-126} \le  $ value of the specified device $  < 2^{128}$ The value of the specified device is -0, unnormalized number, nonnumeric or $\pm \infty$ .	_	_	_	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{128} \leq  $ operation result	—	-	—	—	0	0

*1 There are CPU modules that do not result in any operation error when -0 is specified. For details, refer to the following.

• In the following program, the natural logarithm function is evaluated on the value 10 set in D50, and the result is stored to Var_D30.

[Structured ladder/FBD]

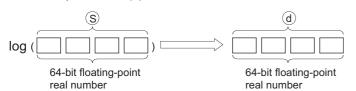


# Natural logarithm operation on floating-point data (double precision)

### LOGD(P)

Basic	High performance Process Rec	dundant Univ	versal
Stru	ctured ladder/F	BD	ST
_	EN ENO s d	_	ENO:= LOGD (EN, s, d);

Any of the following instruction can go in the dotted squares.


LOGD, LOGDP

### ■Executing condition

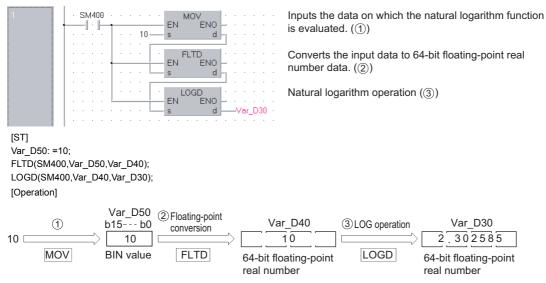
Instruction	Executing condition
LOGD	
LOGDP	

Input/outpu argument	t	Name		Descri	ription				Data type			
Input argument EN		EN		Executi	Executing condition E				Bit	Bit		
		S			n which the natural logarithm function is evaluated, or start er of the device that stores data				Double-precision real			
Output argument		ENO		Execution	Execution result					Bit		
		d		Start nu	tart number of the device that stores the operation result				Double-precision real			
Setting	Internal d	device l		R, ZR			UD\GD	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word				E		
(s)	-	0			—				0	—		
(d)	-	0	0		-					—	—	

• Evaluates the natural logarithm function on the value specified for (s) taking (e) as a base, and stores the result to the device specified for (d).



- Only positive values can be specified for (s). (Operation cannot be performed on negative numbers.)
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is negative. The value specified for (s) is 0.	—	—	—	—	0	0
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value of the specified device is -0.	—	—	—	_	0	0
4141	The operation result exceeds the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	_				0	0

• In the following program, the natural logarithm function is evaluated on the value 10 set in D50, and the result is stored to Var_D30.

[Structured ladder/FBD]



# Common logarithm operation on floating-point data (single precision)

### LOG10(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

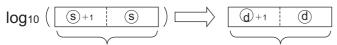
Structured I	adder/FBD	ST
EN s	ENO	ENO:= LOG10 (EN, s, d);

Any of the following instruction can go in the dotted squares. LOG10, LOG10P

0

### ■Executing condition

Instruction	Executing condition
LOG10	
LOG10P	


### ■Argument

(d)

U											
Input/output Name argument			Description				Data	Data type			
Input argument	Input argument EN				ng condition				Bit		
		s			Data on which the common logarithm function is evaluated, or tart number of the device that stores data				Single-precision real		
Output argume	ent	ENO		Execution result					Bit		
		d		Start number of the device that stores the operation			ne operation res	ult	Single-precision real		
Setting	Internal c	levice	evice R, ZR Word		JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word				E	
(S)	—	0			—	0		-		0	-

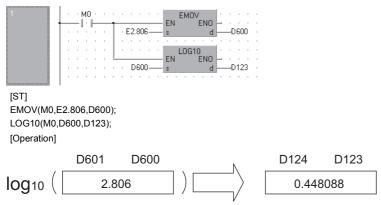
0

• Evaluates the common logarithm function on the value specified for (s) taking 10 as a base, and stores the result to the device specified for (d).



32-bit floating-point real number 32-bit floating-point real number

- Only positive values can be specified for (s). (Operation cannot be performed on negative numbers.)
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.


MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is negative. The value specified for (s) is 0.	-	-	-	-	0	0
4140	The value of the specified device is outside the following range. $0, 2^{-126} \le  $ value of the specified device $  < 2^{128}$ The value specified for (s) is -0.	-	-	—	—	0	0
4141	The operation result is within the following range. (An overflow occurs.) $2^{128} \le  $ operation result	-	—	—	—	0	0

 In the following program, the common logarithm function is evaluated on the 32-bit floating-point real number stored in D600 and D601 when M0 turns ON, and the result is stored to D123 and D124.

[Structured ladder/FBD]



# Common logarithm operation on floating-point data (double precision)

### LOG10D(P)



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Stru	ictured	ladder/FBD	ST
	EN s	G10D ENO d	ENO:= LOG10D (EN, s, d);

Any of the following instruction can go in the dotted squares. LOG10D, LOG10DP

### ■Executing condition

Instruction	Executing condition
LOG10D	
LOG10DP	

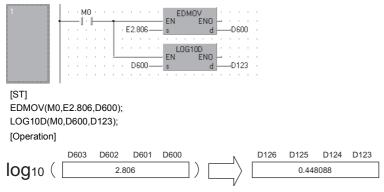
Input/outpu argument	t	Name		Descri	ption				Data type			
Input argumen	t	EN		Executi	ng condition	Bit						
		S			which the com mber of the dev	ted, or	Double-precision real					
Output argume	ent	ENO		Executi	on result	Bit						
		d		Start number of the device that stores the operation result					Dout	le-precision rea	I	
Setting	Internal d	levice	R, Z	२	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				E		
(s)	—	0			—	—	—			0	—	
(d)	_	0			_	_			_			

• Evaluates the common logarithm function on the value specified for (s) taking 10 as a base, and stores the result to the device specified for (d).



64-bit floating-point real number 64-bit floating-point real number

- Only positive values can be specified for (s). (Operation cannot be performed on negative numbers.)
- When the operation results in -0 or an underflow, the result is processed as 0.
- If an input value is set using a programming tool, a rounding error may occur. For precautions when setting an input value using a programming tool, refer to the following.

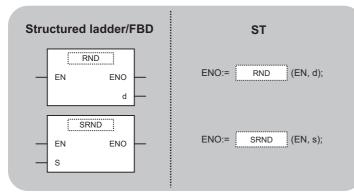

MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is negative. The value specified for (s) is 0.	—	-	—	—	0	0
4140	The value of the specified device is outside the following range. 0, $2^{-1022} \le  $ value of the specified device $  < 2^{1024}$ The value specified for (s) is -0.	—	—	—	—	0	0
4141	The operation result is within the following range. (An overflow occurs.) $2^{1024} \leq  $ operation result	—	—	—	—	0	0

 In the following program, the common logarithm function is evaluated on the 32-bit floating-point real number stored in D600 to D603 when M0 turns ON, and the result is stored to D123 to D126.

[Structured ladder/FBD]




### RND(P), SRND(P)



### Basic High Process Redundant Universal LCPU

• Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. RND, RNDP , SRND, SRNDP

### ■Executing condition

Instruction	Executing condition
RND, SRND	
RNDP, SRNDP	

Input/output argument	t	Name		Descri	ption				Data	Data type			
Input argumen	t	EN		Executir	ng condition	Bit							
		S			n number series andom number : on)	ANY16							
Output argume	ent	ENO		Execution result									
		d		Start number of the device that stores random numbers (When using the RND instruction)					ANY16				
Setting	Internal d	levice	R, ZI	R J0\0			UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
(S)	0									0	—		
(d)	0	0 –											

• The random number generation instruction generates random numbers conforming to a certain calculation formula. In the calculation using the formula, the result of previous calculation is used as a coefficient. The random series update instruction can change the random number generation pattern.

### ■RND(P)

• Generates random numbers from 0 to 32767, and stores them to the device specified for (d).

### ■SRND(P)

• Updates random number series according to the 16-bit BIN data stored in the device specified for (s).

### Operation error

• There is no operation error.

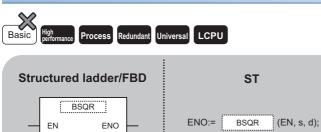
### Program example

• In the following program, the random number is stored to Var_D100 when X10 turns ON. [Structured ladder/FBD]



[ST]

RND(X10,Var_D100);


• In the following program, the random number series is updated according to the value of Var_D0 when X10 turns ON. [Structured ladder/FBD]

	·>	(10					FI	SF	RN	D ENI	2		·
				V				4		_14		<b>.</b>	
·	•		•	•	•	•	•	•	•	•		•	•

[ST] SRND(X10,Var_D0);

### Square root operation on 4-/8-digit BCD data

### BSQR(P), BDSQR(P)



d

Any of the following instruction can go in the dotted squares. BSQR, BSQRP, BDSQR, BDSQRP

### ■Executing condition

Instruction	Executing condition
BSQR, BDSQR	
BSQRP, BDSQRP	

#### ■Argument

s

Input/outpu argument	t	Name		Descri	ption				Data	Data type			
Input argument EN					ng condition	Bit							
S					Data on which the square root function is evaluated, or start number of the device that stores data								
Output argument ENO				Execution result						Bit			
		d		Start number of the device that stores the operation result						ANY32			
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
(S)	0										-		
(d)	0		0 – – –										

### ■BSQR(P)

• Evaluates the square root function on the value specified for (s), and stores the result to the device specified for (d).

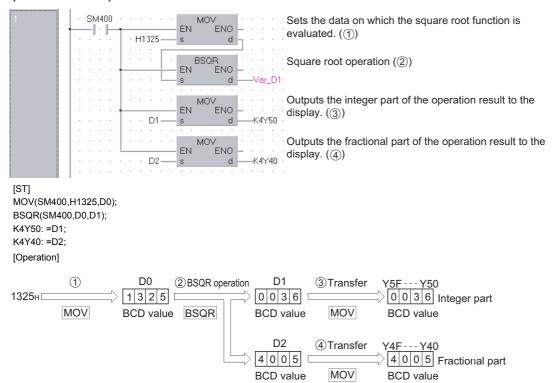


- Values that can be specified for (s) are BCD values with a maximum of 4 digits (from 0 to 9999).
- The operation results of (d) and (d)+1 are stored as their respective BCD values between 0 and 9999.
- The value of the operation result is rounded off at the fifth digit of fractional part. For this reason, the fourth digit of fractional part has an error of ±1.

#### ■BDSQR(P)

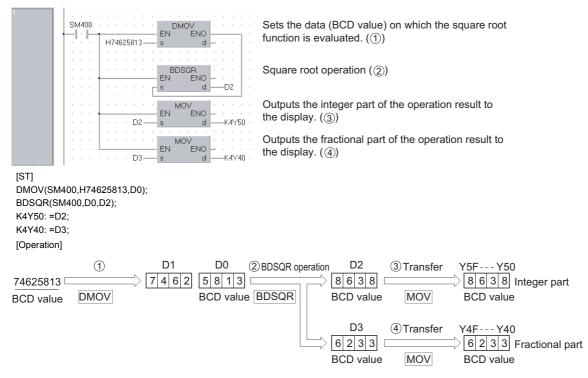
Evaluates the square root function on the values specified for (s) and (s)+1 and stores the results to the device specified for (d).

$$\sqrt{(\underline{s+1} \underline{s})} = \underline{(d)} \underline{(d)+1}$$
  
Fractional part


2-word data

- BCD value of a maximum of 8 digits (0 to 99999999) can be specified for (s) and (s)+1.
- The operation results of (d) and (d)+1 are stored as their respective BCD values between 0 and 9999.
- The value of the operation result is rounded off at the fifth digit of fractional part. For this reason, the fourth digit of fractional part has an error of ±1.

### Operation error


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value.	—	0	0	0	0	0

• In the following program, the square root function is evaluated on 1325 in BCD value, and the integer part is output in BCD 4 digits to the devices from Y50 to Y5F, and the fractional part is output in BCD 4 digits to the devices from Y40 to Y4F. [Structured ladder/FBD]



• In the following program, the square root function is evaluated on 74625813 in BCD value, and the integer part of the result is output in BCD 4 digits to the devices from Y50 to Y5F, and the fractional part is output in BCD 4 digits to the devices from Y40 to Y4F.

[Structured ladder/FBD]



629

### SIN operation on data in BCD format

### BSIN(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST

_____ENO:= ______(EN, s, d);

Any of the following instruction can go in the dotted squares. BSIN, BSINP

### ■Executing condition

BSIN

EN

s

ENO

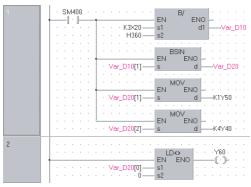
d

Instruction	Executing condition
BSIN	
BSINP	

Input/output argument	t	Name		Descri	ption		Data type				
Input argumen	t	EN		Executir	ng condition		Bit				
		s			which the sine	e function is evalu data	ANY	ANY16			
Output argume	ent	ENO		Executio	on result		Bit				
	d		Start number or the array of the device that stores the operation result						Array of ANY16 (13)		
Setting data	Internal o	levice	R	JD\D	M/ a mal	UD\GD	Zn		Constant K. H	Others	

j					 				
data	Bit	Word		Bit	Word		К, Н		
(s)	0	0					0	—	
(d)	—	0		—			—	-	

• Evaluates the sine function on the value (angle) specified for (s), and stores the sign of the operation result to the device specified for (d)[0], and the operation result to the devices specified for (d)[1] and (d)[2].


	(d)[0]	(d)[1]	(d)[2]
SIN (s) =	Sign	Integer part	Fractional part

- The value specified for (s) is a BCD value which can be between 0 and 360 degrees (in degrees).
- The sign for the operation result stored to (d)[0] will be 0 if the result is a positive value, and 1 if the result is a negative value.
- The operation results stored to (d)[0], (d)[1], and (d)[2] are BCD values between -1.0000 and 1.0000.
- The value of the operation result is rounded off at the fifth digit of fractional part.

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value. The value specified for (s) is not in the range of 0 to 360.	—	0	0	0	0	0
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

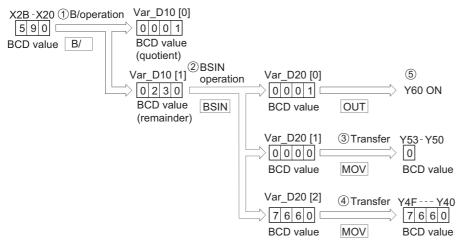
In the following program, the sine function is evaluated on the data specified as BCD 3 digits in X20 to X2B, and the integer
part of the result is output in BCD 1 digit to the devices from Y50 to Y53, and the fractional part is output in BCD 4 digits to
the devices from Y40 to Y4F. Y60 is turned ON if the operation result is negative. (If a value has been set for X20 to X2F
that is greater than 360, it will be adjusted to be in the range from 0 to 360 degrees.)
[Structured ladder/FBD]



Adjusts the input angle data to be in the range of 0 to 360 degrees. (

Evaluates the sine function. (2)

Outputs the integer part of the operation result to the display. (3)


Outputs the fractional part of the operation result to the display. (4)

Outputs the sign of the operation result by turning the coil ON or OFF. ( $\mathfrak{F}$ )

[ST]

BINP(SM400,K3X20,Var_D50); BINP(SM400,H360,Var_D51); BCDP(SM400,Var_D50 MOD Var_D51,Var_D10); BSIN(SM400,Var_D10,Var_D20); K1Y50: =Var_D20[1]; K4Y40: =Var_D20[2]; OUT(Var_D20[0]<>0,Y60);

[Operation example when the value 590 is specified for X20 to X2B]

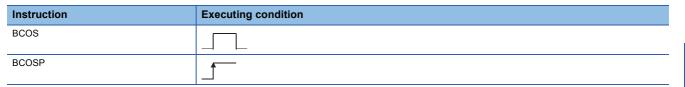


### COS operation on data in BCD format

ENO:=

BCOS

## BCOS(P) Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST


ENO

Any of the following instruction can go in the dotted squares.

BCOS, BCOSP

EN

### ■Executing condition



(EN, s, d);

Input/output argument	t	Name		Descri	ption			Data type			
Input argumen	t	EN		Executing condition				Bit	Bit		
		S	which the cosine function is eva evice that stores data	e cosine function is evaluated, or start number ANY16 t stores data							
Output argume	ent	ENO		Execution result					Bit		
		d		Start number or the array of the device that stores the operation result				Array of ANY16 (13)			
Setting Internal device		R, ZF	र	JO/O	UD\GD	Zn		Constant	Others		

Setting	Internal dev	Internal device		JU/U			Zn	Constant	Others	
data	Bit	Word		Bit	Word			К, Н		
(S)	0	0	0		)					
(d)	—	0		-					—	

• Evaluates the cosine function on the value (angle) specified for (s), then stores the sign of the operation result to the word device specified for (d)[0], and the operation result to the word device specified for (d)[1] and (d)[2].

	(D](b)	(d)[1]	(d)[2]
COS(s) =	Sign	Integer part	Fractional part

- The value specified for (s) is a BCD value which can be between 0 and 360 degrees (in degrees).
- The sign for the operation result stored to (d)[0] will be 0 if the result is a positive value, and 1 if the result is a negative value.
- The operation results stored to (d)[0], (d)[1], and (d)[2] are BCD values between -1.0000 and 1.0000.
- The value of the operation result is rounded off at the fifth digit of fractional part.

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value. The value specified for (s) is not in the range of 0 to 360.	-	0	0	0	0	0
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	_	0	0

In the following program, the cosine function is evaluated on the data specified as BCD 3 digits in X20 to X2B, and the integer part of the result is output in BCD 1 digit to the devices from Y50 to Y53, and the fractional part is output in BCD 4 digits to the devices from Y40 to Y4F. Y60 is turned ON if the operation result is negative.
 [Structured ladder/FBD]

1	- SM400
	•••••• H360— <u>s2</u> •••••
	BCOS EN ENO
	······ Var_D10[1] — s d — Var_D20 ·
	····· Var_D20[1] — s d — K1Y50 · ·
	••••••••••••••••••••••••••••••••••••••
2	
	LD↔ ····································
	s1 s1 s2

Adjusts the input angle data to be in the range of 0 to 360 degrees. ((1))

Evaluates the cosine function. ((2))

Outputs the integer part of the operation result to the display.  $(\Im)$ 

Outputs the fractional part of the operation result to the display. (4)

Outputs the sign of the operation result by turning the coil ON or OFF. (§)

Y60 ON

[ST] BINP(SM400,K3X20,Var_D50);

7

BINP(SM400,H360,Var_D51); BCDP(SM400,Var_D50 MOD Var_D51,Var_D11); BCOS(SM400,Var D11,Var D20); K1Y50: =Var_D20[1]; K4Y40: =Var_D20[2]; OUT(Var_D20[0]<>0,Y60); [Operation example when the value 430 is specified for X20 to X2B] X2B-X20 ①B/operation Var_D10 [0] 0001 4 3 0 🗆 BCD value BCD value B/ (quotient) Var_D10 [1]^②BCOS Var_D20 [0] (5) operation 0070 0000 BCD value OUT

BCD value BCOS (remainder)

Var_D20 [1] ③ Transfer Y53 - Y50 0 0 0 0 BCD value MOV BCD value Var_D20 [2] ④ Transfer Y4F--- Y40 3 4 2 0 BCD value MOV BCD value

### TAN operation on data in BCD format

### BTAN(P)





Any of the following instruction can go in the dotted squares. BTAN, BTANP

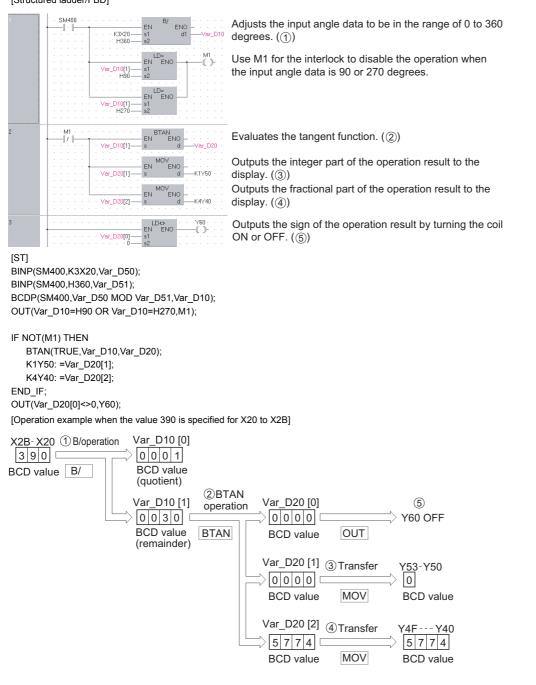
### ■Executing condition

Instruction	Executing condition
BTAN	
BTANP	

Input/output Name argument					Description					Data type			
Input argumen	EN	Executing condition				Bit	Bit						
S				Data on which the tangent function is evaluated, or start number of the device that stores data					ANY16				
Output argume	ent	ENO		Execution result E					Bit				
		d		Start nu result	Start number or the array of the device that stores the operation result					Array of ANY16 (13)			
Setting Internal		levice	R, Z	R	JD\D		UD\GD	Zn		Constant K. H	Others		

Setting	Internal ue	internal device		30.0			211	Constant	Others	
data	Bit	Word		Bit	Word			К, Н		
(S)	0	0	0							
(d)	—	0		-					—	

• Evaluates the tangent function on the value (angle) specified for (s), and stores the sign of the operation result to the word device specified for (d)[0], and the operation result to the word device specified for (d)[1] and (d)[2].


$$\begin{array}{c|c} \hline & \hline & \hline \\ \hline & \hline \\ TAN(s) = & \hline \\ Sign & \hline \\ \hline \\ Integer part & \hline \\ \hline \\ Fractional part & \\ \hline \end{array}$$

- The value specified for (s) is a BCD value which can be between 0 and 360 degrees (in degrees).
- The sign for the operation result stored to (d)[0] will be 0 if the result is a positive value, and 1 if the result is a negative value.
- The operation results stored to (d)[0], (d)[1], and (d)[2] are BCD values between -57.2901 and 57.2902.
- The value of the operation result is rounded off at the fifth digit of fractional part.

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value. The value specified for (s) is not in the range of 0 to 360. The value specified for (s) is 90 or 270.	—	0	0	0	0	0
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

In the following program, the tangent function is evaluated on the data specified as BCD 3 digits in X20 to X2B, and the integer part of the result is output in the BCD 4 digits to the devices from Y50 to Y53, and the fractional part is output in BCD 4 digits to the devices from Y40 to Y4F. Y60 is turned ON if the operation result is negative.



## SIN⁻¹ operation on data in BCD format

BASIN(P)	
Basic High performance Process Redundant Un	iversal
Structured ladder/FBD	ST
EN ENO s d	ENO:= BASIN (EN, s, d);

Any of the following instruction can go in the dotted squares. BASIN, BASINP

### ■Executing condition

Instruction	Executing condition
BASIN	
BASINP	

Input/outpu argument	t	Name		Descri	ption		Data type					
Input argumen	ıt	EN		Executi	ng condition				Bit	Bit		
S					Data on which the arcsine function is evaluated, or start number of the device that stores data					Array of ANY16 (13)		
Output argument ENO				Execution result					Bit			
		d		Start nu	Start number of the device that stores the operation result				ANY16			
Setting	Internal d	levice	R, Z	R	J_1_ U_\G_ Zn			n Constant Other		Others		
data	Bit	Word			Bit Word							
(s)	—	0			—			•		—		
(d)	0	0			0 –					—		

• Evaluates the arcsine function on the value specified for (s) and stores the operation result (angle) to the device specified for (d).

	<b>(s)</b> [0]	<b>s</b> [1]	<b>s</b> [2]	
SIN ⁻¹ =(	Sign	Integer part	Fractional part	) = (d

- A sign of the data to be evaluated is set for (s)[0]. If the evaluation value is a positive value, it stores 0, and if it is a negative value, it stores 1.
- The integer part and fractional part are stored in (s)[1] and (s)[2] respectively in BCD values. (Values between 0 and 1.0000 can be set.)
- Operation results stored to (d) are BCD values between 0 and 90 degrees, and 270 and 360 degrees (in degrees).
- The fractional part is rounded off for the operation result.

### Operation error

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value. The value specified for (s) is not in the range of -1.0000 and 1.0000.	—	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	—	0	0

BCD value MOV

X2F---X20 ③Transfer

Г

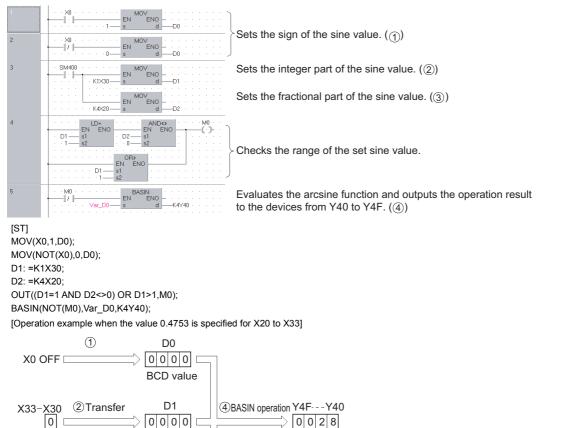
MOV

4 7 5 3

BCD value

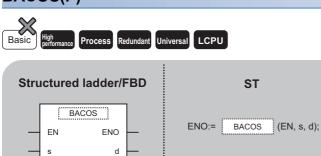
BCD value

D2


4753

BCD value

BASIN


BCD value

In the following program, the arcsine function is evaluated on the data in which X0 with positive and negative signs (positive when X0 is OFF, and negative when X0 is ON), the integer part in BCD 1 digit from X30 to X33 and the fractional part in BCD 4 digits from X20 to X2F, and the evaluated angle is output in BCD 4 digits to the devices from Y40 to Y4F.
 [Structured ladder/FBD]



## COS⁻¹ operation on data in BCD format

### BACOS(P)



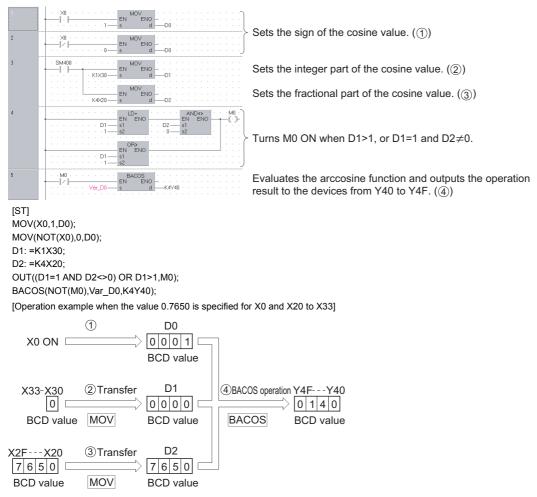
Any of the following instruction can go in the dotted squares. BACOS, BACOSP

### ■Executing condition

Instruction	Executing condition
BACOS	
BACOSP	

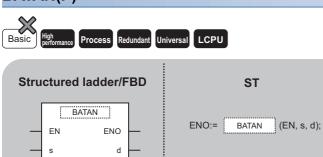
Input/outpu argument	t	Name		Descri	ption	Data type					
Input argumer	nt	EN		Executi	Recuting condition Bit						
S					which the arcco of the device the		evaluated, or st	art	Array of ANY16 (13)		
Output argument ENO				Execution result					Bit		
		d		Start nu	Start number of the device that stores the operation result				ANY	16	
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others
data	Bit	Word			Bit	Word	-				
(s)	—	0								—	—
(d)	0	0			0	0				—	—

• Evaluates the arccosine function on the value specified for (s), and stores operation result (angle) to the device specified for (d).


	<b>s</b> [0]	<b>(s)</b> [1]	<b>s</b> [2]	
COS ⁻¹ (	Sign	Integer part	Fractional part	])=(d)

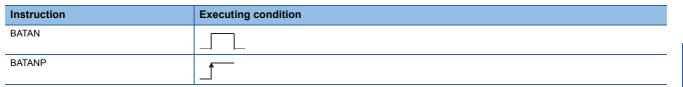
- A sign of the data to be evaluated is set for (s)[0]. If the evaluation value is a positive value, it stores 0, and if it is a negative value, it stores 1.
- The integer part and fractional part are stored in (s)[1] and (s)[2] respectively in BCD values. (Values between 0 and 1.0000 can be set.)
- The operation results stored to (d) are BCD values between 0 and 180 degrees (in degrees).
- The fractional part is rounded off for the operation result.

### Operation error


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value. The value specified for (s) is not in the range of -1.0000 and 1.0000.	—	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	—	0	0

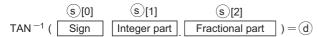
• In the following program, the arccosine function is evaluated on the data in which X0 with positive and negative signs (positive when X0 is OFF, and negative when X0 is ON), the integer part in BCD 1 digit from X30 to X33 and the fractional part in BCD 4 digits from X20 to X2F, and the evaluated angle is output in BCD 4 digits to the devices from Y40 to Y4F. [Structured ladder/FBD]




## TAN⁻¹ operation on data in BCD format

### BATAN(P)




Any of the following instruction can go in the dotted squares. BATAN, BATANP

### ■Executing condition

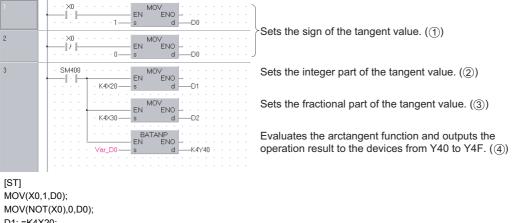


Input/outpu argument	ıt	Name		Descri	Description					Data type			
Input argume	nt	EN		Executi	ng condition				Bit	Bit			
					which the arcta of the device th	•	n is evaluated, or	start	Array of ANY16 (13)				
Output argument ENO				Execution result					Bit				
		d		Start nu	Start number of the device that stores the operation result					ANY16			
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit Word								
(S)	-	0								—	-		
(d)	0	0			0					—	-		

• Evaluates the arctangent function on the value specified for (s) and stores the operation result (angle) to the device specified for (d).



- A sign of the data to be evaluated is set for (s)[0]. If the evaluation value is a positive value, it stores 0, and if it is a negative value, it stores 1.
- The integer part and fractional part are stored in (s)[1] and (s)[2] respectively in BCD values. (Values between 0 and 9999.9999 can be set.)
- Operation results stored to (d) are BCD values between 0 and 90 degrees, and 270 to 360 degrees (in degrees).
- · The fractional part is rounded off for the operation result.

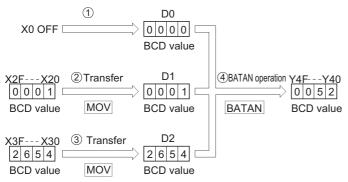

### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value specified for (s) is not a BCD value.	—	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	_	0	0

#### Program example

• In the following program, the arctangent function is evaluated on the data in which X0 with positive and negative signs (positive when X0 is OFF, and negative when X0 is ON), the integer part in BCD 4 digits from X20 to X2F and the fractional part in BCD 4 digits from X30 to X3F, and the evaluated angle is output in BCD 4 digits to the devices from Y40 to Y4F. [Structured ladder/FBD]

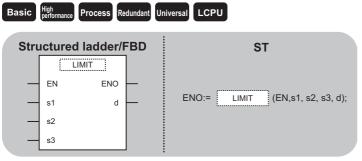



D1: =K4X20;

D2: =K4X30;

BATANP(TRUE,Var_D0,K4Y40);

[Operation example when the value 1.2654X0 is specified for X0 and X20 to X2F]




7.12 Special Function Instructions

# 7.13 Data Control Instructions

# Upper and lower limit controls of 16-/32-bit BIN data

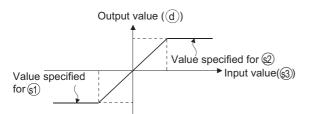
# LIMIT(_P), DLIMIT(_P)



Any of the following instruction can go in the dotted squares. LIMIT, LIMITP, DLIMIT, DLIMITP

# ■Executing condition

Instruction	Executing condition
LIMIT, DLIMIT	
LIMITP, DLIMITP	

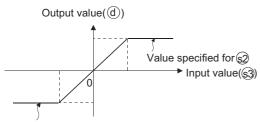

Input/output argument	Name		Description			Data	type	
Input argument	EN		Executing condition			Bit		
	s1		Lower limit value (minimum ou	ower limit value (minimum output threshold value) ANY16/32				
	s2		Upper limit value (maximum output threshold value) ANY16/32				16/32	
	s3		Input value that controls the output value by upper and lower limit ANY16/32 values					
Output argument	ENO		Execution result Bit					
	d		Output value controlled by the upper and lower limit values ANY16/32					
Setting Intern	al device	R 7	R .IU/U		Zn		Constant	Others

Setting	Internal	device	R, ZR	R, ZR J□\□		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Bit Word			К, Н	
(s1)	0	'						0	-
(s2)	0						0	-	
(s3)	0						0	-	
(d)	0							—	—

#### ■LIMIT(P)

• Controls the output value to be stored to the device specified for (d) by checking the input value (BIN 16 bits) specified for (s3) is within the range of upper and lower limit values specified for (s1) and (s2). Output value is controlled in the way shown below.

Condition	Result
Lower limit value (s1) > Input value (s3)	Lower limit value (s1) $\rightarrow$ Output value (d)
Upper limit value (s2) < Input value (s3)	Upper limit value (s2) $\rightarrow$ Output value (d)
Lower limit value (s1) $\leq$ Input value (s3) $\leq$ Upper limit value (s2)	Input value (s3) $\rightarrow$ Output value (d)




- Values between -32768 and 32767 can be specified for (s1), (s2), and (s3).
- To perform controls based only on the upper limit value, set the lower limit value specified for (s1) to -32678.
- To perform controls based only on the lower limit value, set the upper limit value specified for (s2) to 32767.

#### ■DLIMIT(P)

 Controls the output value to be stored to the device specified for (d)by checking the input value (BIN 32 bits) specified for (s1)and (s2) is within the range of upper and lower limit values specified for (s3).

Condition	Result
Lower limit value ((s1)+1, (s1)) > Input value ((s3)+1, (s3))	Lower limit value ((s1)+1, (s1)) $\rightarrow$ Output value ((d)+1, (d))
Upper limit value ((s2)+1, (s2)) < Input value ((s3)+1, (s3))	Upper limit value ((s2)+1, (s2)) $\rightarrow$ Output value ((d)+1, (d))
Lower limit value $((s1)+1, (s1)) \le$ Input value $((s3)+1, (s3)) \le$ Upper limit value $((s2)+1, (s2))$	Input value ((s3)+1, (s3)) $\rightarrow$ Output value ((d)+1, (d))



Value specified for s1

- Values between -2147483648 and 2147483647 can be specified for (s1), (s2), and (s3).
- To perform controls based only on the upper limit value, set the lower limit value specified for (s1) to -2147483648.
- To perform controls based only on the lower limit value, set the upper limit value specified for (s2) to 2147483647.

#### Operation error

 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The lower limit value specified for (s1) is larger than the upper limit value specified for (s2).	0	0	0	0	0	0

## Program example

In the following program, the limit control from 500 to 5000 is performed on the data set in BCD values from X20 to X2F when X0 turns ON, and the result is stored to Var_D1.

[Structured ladder/FBD]

1		
	······ · K4X20 s d	Var_D0+ →
	LIMITP · ·	
	EN ENO	
	· · · · · · · · 500 — s1 d — →	Var_D1· · ·
	· · · · · · · · · · · · · · · · · · ·	
	•••••• Var_D0 s3 •••	

[ST]

BINP(X0,K4X20,Var_D0);

LIMITP(X0,500,5000,Var_D0,Var_D1);

[Operation]

- Var_D1 becomes 500 if Var_D0 < 500. Example Var_D0 =  $400 \rightarrow Var_D1 = 500$
- Var_D1 becomes the value of Var_D0 when  $500 \le$  Var_D0  $\le$  5000. Example Var_D0 = 1300  $\rightarrow$  Var_D1 = 1300
- + Var_D1 becomes 5000 when 5000 < Var_D0. Example Var_D0 = 9600  $\rightarrow$  Var_D1 = 5000
- In the following program, the limit control from 10000 to 1000000 is performed on the data set in BCD values from X20 to

X3F when X0 turns ON, and the result is stored to Var_D10.

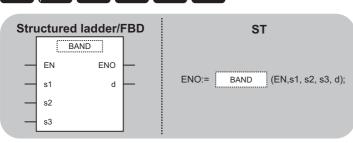
[Structured ladder/FBD]

1	· · ×0 · · · · · · ·	
	· · · · · K8×20	s d War_D0···
		<u> </u>
		DLIMIT
	· · · · L	EN ENO
	· · · · · · 10000	s1 d
	· · · · · 100000	
	· · · · · Var_D0	s3 · · · · ·
		· · · · · · · ·

[ST]

DBINP(X0,K8X20,Var_D0);

DLIMIT(X0,10000,1000000,Var_D0,Var_D10);


[Operation]

- Var_D10 becomes 10000 if Var_D0 are less than 10000. Example Var_D0 = 400  $\rightarrow$  Var_D10 = 10000
- Var_D10 becomes the value of Var_D0 if 10000  $\leq$  Var_D0  $\leq$  1000000. Example Var_D0 = 345678  $\rightarrow$  Var_D10 = 345678
- Var_D10 becomes 1000000 if 1000000 < Var_D0. Example Var_D0 = 9876543  $\rightarrow$  Var_D10 = 1000000

# Dead band control of 16-/32-bit BIN data

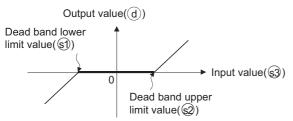
# BAND(P), DBAND(P)

# Basic High Process Redundant Universal LCPU



Any of the following instruction can go in the dotted squares. BAND, BANDP, DBAND, DBANDP

#### ■Executing condition


Instruction	Executing condition					
BAND, DBAND						
BANDP, DBANDP						

Input/outpu argument	t	Name		Description D					Data type				
Input argumer	nt	EN		Executi	Executing condition					Bit			
		s1		Lower li	mit value of the	dead band (No d	output band)		ANY	16/32			
		s2		Upper li	mit value of the	dead band (No	output band)		ANY	16/32			
		s3		Input value that controls the output value by the dead band ANY16/32 control values									
Output argum	ent	ENO		Execution result Bit									
		d		Output	value controlled	by the dead ban	d control values	3	ANY	16/32			
Setting	Internal d	levice	R, Z	R	JD/D			Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
(s1)	0	0 -											
(s2)	0								0	-			
(s3)	0									0	-		
(d)	0									—	-		

#### ■BAND(P)

• Controls the output value to be stored to the device specified for (d) by checking the input value (BIN 16 bits) specified for (s3) is within the range of dead band upper and lower limit values specified for (s1) and (s2). Output value is controlled in the way shown below.

Condition	Result
Lower limit value (s1) > Input value (s3)	Input value (s3) - Lower limit value (s1) $\rightarrow$ Output value (d)
Upper limit value (s2) < Input value (s3)	Input value (s3) - Upper limit value (s2) $\rightarrow$ Output value (d)
When Lower limit value (s1) $\leq$ Input value (s3) $\leq$ Upper limit value (s2)	$0 \rightarrow \text{Output value (d)}$



- Values between -32768 and 32767 can be specified for (s1), (s2), and (s3).
- The output value stored to (d) is a signed 16-bit BIN value. Therefore, if the operation results exceed the range of -32768 to 32767, the following will take place.

# Ex.

When the dead band lower limit value (s1) is 10 and the input value (s3) is -32768: Output value = -32768 - 10 = 8000H - AH - 7FF6H = 32758

#### ■DBAND(P)

• Controls the output value to be stored to the device specified for (d) by checking the input value (BIN 32 bits) specified for (s3) is within the range of dead band upper and lower limit values specified for (s1) and (s2). Output value is controlled in the way shown below.

Condition	Result
Lower limit value ((s1)+1, (s1)) > Input value ((s3)+1, (s3))	Input value ((s3)+1, (s3)) - Lower limit value ((s1)+1, (s1)) $\rightarrow$ Output value ((d)+1, (d))
Upper limit value ((s2)+1, (s2)) < Input value ((s3)+1, (s3))	Input value ((s3)+1, (s3)) - Upper limit value ((s2)+1, (s2)) $\rightarrow$ Output value ((d)+1, (d))
Lower limit value $((s1)+1, (s1)) \leq$ Input value $((s3)+1, (s3)) \leq$ Upper limit value $((s2)+1, (s2))$	$0 \rightarrow Output value ((d)+1, (d))$



- Values between -2147483648 and 2147483647 can be specified for (s1), (s2), and (s3).
- The output value stored to (d) is a signed 32-bit BIN value. Therefore, if the operation results exceed the range of 2147483648 to 2147483647, the following takes place.

# Ex.

When the dead band lower limit value ((s1), (s1)+1) is 1000 and the input value ((s3), (s3)+1) is -2147483648Output value = -2147483648 - 1000 = 80000000H-000003E8H = 7FFFFC18H = 2147482648

## Operation error

 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The lower limit value specified for (s1) is greater than the upper limit value specified for (s2).	0	0	0	0	0	0

#### Program example

 In the following program, the dead band control applying the lower and upper limits from 0 to 1000 is performed on the data set in BCD value at X20 to X2F when X0 turns ON, and the result is stored to Var_D1.
 [Structured ladder/FBD]

	I	
1	BINP · · · · · · BINP	
	• EN EN · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	BANDP · · · · ·	
	· · · · · · · · 0 s1 dVar_D1· ·	
	••••••••••••••••••••••••••••••••••••••	
	••••• Var_D0 s3 ••••••	

[ST]

BINP(X0,K4X20,Var_D0);

BANDP(X0,0,1000,Var_D0,Var_D1);

[Operation]

- 0 is stored to Var_D1 if 0  $\leq$  Var_D0  $\leq$  1000. Example Var_D0 = 500  $\rightarrow$  Var_D1 = 0
- The value of (Var_D0) 1000 is stored to Var_D1 if 1000 < Var_D0. Example Var_D0 = 7000 → Var_D1 = 6000
- In the following program, the dead band control applying the lower and upper limits from -10000 to 10000 is performed on the data set in BCD value at Var_D0 when X0 turns ON, and the result is stored to Var_D10.

[Structured ladder/FBD]

	•	- 10	×0	ċ	•	•	•	•	•	EN	~ -	3AN		P Nr			•	÷	•	:	•
I						-10	1001	0 —	_	s1	· ·				-			'ar	D	10	
						10	1001	0 —	_	s2											
		·	·	·	V	'ar		0—	_	s3						·	·	·	·	·	·
		·				•				·	•	•	•	•	•		·				•

[ST]

DBANDP(X0,-10000,10000,Var_D0,Var_D10);

[Operation]

- The value Var_D0 (-10000) is stored to Var_D10 if Var_D0 < (10000). Example Var_D0 =  $-12345 \rightarrow$  Var_D10 = -2345
- The value 0 is stored to Var_D10 if -10000  $\leq$  Var_D0  $\leq$  10000. Example Var_D0 = 6789  $\rightarrow$  Var_D10 = 0
- The value Var_D0 10000 is stored to Var_D10 if 10000 < Var_D0. Example Var_D0 = 50000 → Var_D10 = 40000

# Zone control of 16-/32-bit BIN data

# ZONE(P), DZONE(P)

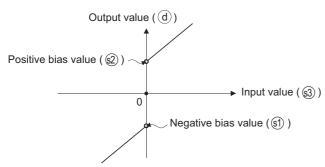
# Basic High performance Process Redundant Universal LCPU



Any of the following instruction can go in the dotted squares. ZONE, ZONEP, DZONE, DZONEP

#### ■Executing condition

Instruction	Executing condition
ZONE, DZONE	
ZONEP, DZONEP	


Input/output argument	t	Name		Descri	ption	Data type					
Input argumen	t	EN		Executir	ng condition	Bit	Bit				
		s1		Negativ	e bias value that is added to the	ANY16/32					
		s2		Positive	Positive bias value that is added to the input value ANY16/32						
		s3		Input value for executing the zone control					ANY16/32		
Output argume	ent	ENO		Execution	on result	Bit					
		d		Output	value controlled by the zone con	ANY	NY16/32				
Setting Internal device R, Z				R JOIO UOIGO Zn					Constant	Others	

Setting	Internal dev	rice	Zn	Constant	Others			
data	Bit	Word	Bit	Word			К, Н	
(s1)	0						0	—
(s2)	0						0	—
(s3)	0						0	—
(d)	0						—	—

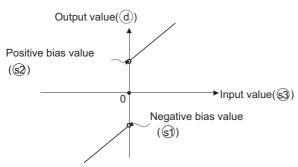
#### ■ZONE(P)

• Adds a bias value specified for (s1) or (s2) to an input value specified for (s3), and stores the result to the device specified for (d). Bias values are calculated in the way shown below.

Condition	Result
Input value (s3) < 0	Input value (s3) + Negative bias value (s1) $\rightarrow$ Output value (d)
Input value (s3) = 0	$0 \rightarrow \text{Output value (d)}$
Input value (s3) > 0	Input value (s3) + Positive bias value (s2) $\rightarrow$ Output value (d)



- Values between 32768 and 32767 can be specified for (s1), (s2), and (s3).
- The output value stored to (d) is a signed 16-bit BIN value. Therefore, if the operation results exceed the range of 32768 to 32767, the following will take place.


#### Ex.

When negative bias value (s1) is -100 and input value (s3) is -32768 Output value = -32768 + (-100) = 8000H + FF9C = 7F9CH = 32668

#### ■DZONE(P)

• Adds a bias value specified for (s1) or (s2) to an input value specified for (s3), and stores the result to the device specified for (d). Addition of the bias value is performed in the way shown below.

Condition	Result
Input value ((s3)+1, (s3)) < 0	Input value ((s3)+1, (s3)) + Negative bias value ((s1)+1, (s1)) $\rightarrow$ Output value ((d)+1, (d))
Input value ((s3)+1, (s3)) = 0	$0 \rightarrow \text{Output value ((d)+1, (d))}$
Input value ((s3)+1, (s3)) > 0	Input value ((s3)+1, (s3)) + Positive bias value ((s2)+1, (s2)) $\rightarrow$ Output value ((d)+1, (d))



- Values between 2147483648 and 2147483647 can be specified for (s1), (s2), and (s3).
- The value stored to (d) is a signed 32-bit BIN value. Therefore, if the operation results exceed the range of -2147483648 to 2147483647, the following takes place.

### Ex.

When negative bias value ((s1), (s1)+1) is -1000 and input value ((s3), (s3)+1) is -2147483648 Output value -2147483648 + (-1000) = 80000000H + FFFFFC18H = 7FFFFC18 = 2147482648

#### **Operation error**

· There is no operation error.

### Program example

• In the following program, the zone control applying negative and positive bias values of -100 to 100 is performed on the data set for Var_D0 when X0 turns ON, and the result is stored to Var_D1.

[Structured ladder/FBD]

	•	·	×0					÷						ZC	DNI	EΡ		11		·		·
		-	· .	⊢				_				_	ΕN	1		EI	NO.	Ŀ.				•
1			•							-10	0 —	_	s1				d	H	-~	′ar_	_D'	1-
										10	0 —	_	s2					1.1				
							·	N	/ar	_D	0 —	_	s3					1 × 1				
	· ·	·	÷	·	·	·	·	·	·		·		•					•	÷	·	÷	

[ST]

ZONEP(X0,-100,100,Var_D0,Var_D1);

[Operation]

- The value Var_D0 + (-100) is stored to Var_D1 if Var_D0 < 0. Example Var_D0 = -200  $\rightarrow$  Var_D1 = -300
- The value 0 is stored to Var_D1 if Var_D0 = 0.
- The value of Var_D0 + 100 is stored to Var_D1 if 0 < Var_D0. Example Var_D0 = 700  $\rightarrow$  Var_D1 = 800
- In the following program, the zone control applying negative and positive bias values of -10000 to 10000 is performed on

the data set for Var_D0 when X1 turns ON, and the result is stored to Var_D10.

[Structured ladder/FBD]

 1	Ŀ		×0	10.00	•	•	•		
			۰.	۰.				•••-10000	
	·							· · 10000 — s2 · · · · · ·	
	·					·		Var_D0	
	·	•		·		·			

[ST]

DZONEP(X1,-10000,10000,Var_D0,Var_D10);

[Operation]

• The value Var_D1 + (-10000) is stored to Var_D10 if Var_D0 < 0. Example Var_D0 = -12345  $\rightarrow$  Var_D10 = -22345

• The value 0 is stored to Var_D10 if Var_D0 = 0.


• The value Var_D0 + 10000 is stored to Var_D10 if 0 < Var_D0. Example Var_D0 = 50000 → Var_D10 = 60000

# Scaling (coordinate by point data)

# SCL(P), DSCL(P)

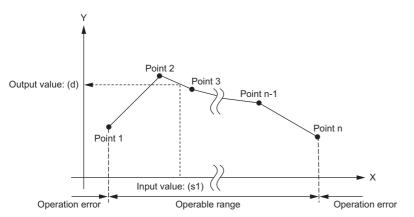


• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported



Any of the following instruction can go in the dotted squares. SCL, SCLP, DSCL, DSCLP

#### ■Executing condition

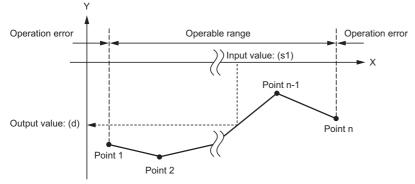

Instruction	Executing condition
SCL, DSCL	
SCLP, DSCLP	

Input/outpu argument	t	Name		Descr	iption		Data type						
Input argumer	nt	EN		Executi	ng condition		Bit						
		s1		· ·	alue used for sca he input value	ANY	ANY16/32						
		s2		Start nu scaling	Imber of the dev	ANY	ANY16/32						
Output argum	ent	ENO		Executi	on result			Bit					
		d			Start number of the device that stores the output value controlled by the scaling					ANY16/32			
Setting	Internal d	levice	R, Z	R	₹ ]□\□ U□\G□					Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
(s1) — O O			0	0						0	—		
(s2)	—	0	o 0		—			-		—	-		
(d)	—	0	0	0 – –							-		

#### ■SCL(P)

• Processes the scaling on the conversion data (unit of 16-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in accordance with the conversion data for scaling stored in (s2) and the following devices.

Setting item (n indicates the coordinate po	Device assignment				
Coordinate points		(s2)			
Point 1	X coordinate	(s2)+1			
	Y coordinate	(s2)+2			
Point 2	X coordinate	(s2)+3			
	Y coordinate	(s2)+4			
:					
Point n	X coordinate	(s2)+2n-1			
	Y coordinate	(s2)+2n			




- If the result is not an integer value, the fractional part is rounded up.
- Set the X coordinate data of the conversion data for scaling in the ascending order.
- Set (s1) within the range of the conversion data for scaling (device value of (s2)).
- If the same X coordinate is specified by the multiple points, the value of Y coordinate with the highest point number is output. Set the number of coordinate points of the conversion data for scaling within 1 to 32767.

#### ■DSCL(P)

• Processes the scaling on the conversion data (unit of 32-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in accordance with the conversion data for scaling stored in (s2) and the following devices.

Setting item (n indicates the co	Device assignment	
Coordinate points		(s2)+1, (s2)
Point 1	X coordinate	(s2)+3, (s2)+2
	Y coordinate	(s2)+5, (s2)+4
Point 2	X coordinate	(s2)+7, (s2)+6
	Y coordinate	(s2)+9, (s2)+8
:		
Point n	X coordinate	(s2)+4n-1, (s2)+4n-2
	Y coordinate	(s2)+4n+1, (s2)+4n



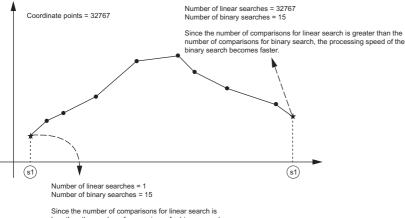
- If the result is not an integer value, the fractional part is rounded up.
- Set the X coordinate data of the conversion data for scaling in the ascending order.
- Set (s1) within the range of the conversion data for scaling (device value of (s2), (s2) +1).
- If the same X coordinate is specified by the multiple points, the value of Y coordinate with the highest point number is output.
- Set the number of coordinate points of the conversion data for scaling within 1 to 32767.

#### Precautions

• The search method differs by the ON/OFF status of SM750.

SM750	Search method	Range for number of searches
OFF	Linear search	$1 \leq$ number of comparisons $\leq 32767$
ON	Binary search	$1 \le$ number of comparisons $\le 15$

• When the conversion data for scaling are sorted in the ascending order, the search method differs by the SM750 status,


and thus the processing speed also differs. The processing speed is fixed according to the number of comparisons, and the less comparison results faster processing speed.

• Faster processing speed for the linear search

With the maximum number of coordinate points, when (s1) is set between the coordinate points 1 and 15, the number of comparisons for linear search becomes less than/equal to 15, and thus the processing speed of the linear search becomes faster.

· Faster processing speed for the binary search

Since the maximum number of comparisons is 15, when (s1) is set to the coordinate point higher than 16, the number of comparisons for binary search becomes less than/equal to the number of comparisons for linear search, and thus the processing speed of the binary search becomes faster.



Since the number of comparisons for linear search is less than the number of comparisons for binary search, the processing speed of the linear search becomes faster

# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The X coordinate data at the point in front of the conversion data for scaling (s1) are not set in the ascending order. (However, when SM750 is ON, this error is not detected.) The input value specified for (s1) is outside the range of set conversion data for scaling. The coordinate points from the device (s2) is outside the range of 1 to 32767.	_	_			0	0
4101	The coordinate points from the device (s2) is outside of the specified device range.	—	-	—	—	0	0

# Program example

• In the following program, the scaling is processed on the conversion data set to D100 and the following devices with the input value specified for D0 when M0 turns ON, and the result is output to D20.

[Structured ladder/FBD]

		ма	Ŀ					 EM	SCL	ENIO	Ŀ	÷		
Γ		Ľ,					DO	 s1		d	F	_D	20	÷
	÷	÷	÷		·	D	100	 s2			ŀ	·	÷	•

[ST]

SCL(M0,D0,D100,D20);

#### [Operation]

Configuration	on of con	version da	ata for scali	ng					
Setting	item	Device	Setting content						
Coordinate	e points	D100	K5	٢	Y			Point 5	
Point 1	X coordinate	D101	K5	4	†			(25, 22)	
FOILT	Y coordinate	D102	K13						
Point 2	X coordinate	D103	K10		Point 1	Point 2 (10, 15)	Point 3		
FOIL 2	Y coordinate	D104	K15		(5, 13)		(17, 13)		
Point 3	X coordinate	D105	K17	D20=11 (Output value)				/	
	Y coordinate	D106	K13				<u>\</u>		
Point 4	X coordinate	D107	K20				i	Point 4 (20, 8)	
1 01111 4	Y coordinate	D108	K8						
Point 5	X coordinate	D109	K25				; D0=18	3	→ X
	Y coordinate	D110	K22				(Input val	ue)	

# SCL2(P), DSCL2(P)

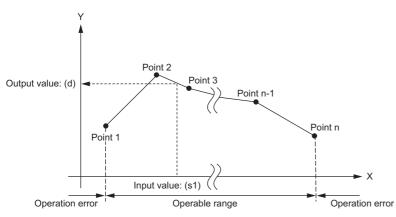


• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported



Any of the following instruction can go in the dotted squares. SCL2, SCL2P, DSCL2, DSCL2P

### ■Executing condition

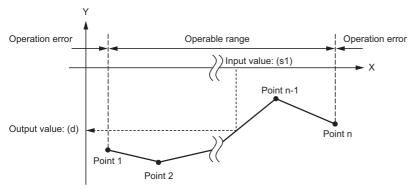

Instruction	Executing condition
SCL2, DSCL2	
SCL2P, DSCL2P	

Input/outpu argument	t	Name		Descri	iption		Data	Data type				
Input argumer	nt	EN		Executi	ng condition				Bit			
		s1			nput value used for scaling, or start number of the device that ANY16/32 tores the input value							
		s2		Start nu scaling	Start number of the device that stores the conversion data for ANY16/32 scaling							
Output argum	ent	ENO		Executi	on result				Bit	Bit		
		d		Start nu by the s		ice that stores th	e output value c	ontrolled	ANY	16/32		
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word	1			К, Н		
(s1)	-	0	0		0					0	—	
(s2)	—	0	0		—				—	—		
(d)	-	0	0		0					—	-	

# ■SCL2(P)

• Processes the scaling on the conversion data (unit of 16-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in accordance with the conversion data for scaling stored in (s2) and the following devices.

Setting item (n indicates the co	Device assignment	
Coordinate points	(s2)	
X coordinate	Point 1	(s2)+1
	Point 2	(s2)+2
	:	:
	Point n	(s2)+n
Y coordinate	Point 1	(s2)+n+1
	Point 2	(s2)+n+2
	:	:
	Point n	(s2)+2n




- If the result is not an integer value, the fractional part is rounded up.
- Set the X coordinate data of the conversion data for scaling in the ascending order.
- Set (s1) within the range of the conversion data for scaling (device value of (s2)).
- If the same X coordinate is specified by the multiple points, the value of Y coordinate with the highest point number is output.

# ■DSCL2(P)

• Processes the scaling on the conversion data (unit of 32-bit data) specified for (s2) with the input value specified for (s1), and stores the result to the device specified for (d). The scaling conversion is processed in accordance with the conversion data for scaling stored in (s2) and the following devices.

Setting item (n indicates the	e coordinate point specified for (s2).)	Device assignment				
Coordinate points		(s2)+1, (s2)				
X coordinate	Point 1	(s2)+3, (s2)+2				
	Point 2	(s2)+5, (s2)+4				
	:	:				
	Point n	(s2)+2n+1, (s2)+2n				
Y coordinate	Point 1	(s2)+2n+3, (s2)+2n+2				
	Point 2	(s2)+2n+5, (s2)+2n+4				
	:	:				
	Point n	(s2)+4n+1, (s2)+4n				



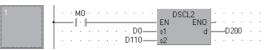
- If the result is not an integer value, the fractional part is rounded up.
- Set the X coordinate data of the conversion data for scaling in the ascending order.
- Set (s1) within the range of the conversion data for scaling (device value of (s2), (s2) +1).
- If the same X coordinate is specified by the multiple points, the value of Y coordinate with the highest point number is output.
- Set the number of coordinate points of the conversion data for scaling within 1 to 32767.

#### Point P

When the conversion data for scaling are sorted in the ascending order, the search method differs by the SM750 status, and thus the processing speed also differs.

For details, refer to 🖙 Page 656 Scaling (coordinate by point data).

#### Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The X coordinate data are not set in the ascending order. The input value specified for (s1) is outside the range of set conversion data for scaling. The coordinate points specified for (s2) is outside the range of 1 to 32767.	_	_	_	_	0	0
4101	The coordinate points from the device (s2) exceeds the specified device range.	—	—	—	—	0	0

# Program example

• In the following program, the scaling is processed on the conversion data set to D110 and the following devices with the input value specified for D0 when M0 turns ON, and the result is output to D200.

[Structured ladder/FBD]



[ST] DSCL2(M0,D0,D110,D200);

[Operation]

Configuration of conversion data for scaling Setting item Device Setting conten Coordinate points D110 K5 K7 Point 1 D111 D0=11 Input value Point 2 D112 K13 ► X Х Point 3 D113 K15 oordina Point 2 (13, -7) Point 4 D114 K18 Point 4 (18, -11) D115 K20 Point 5 Point 3 (15, -9) D200=-9 • D116 K-14 Point 5 (20, -13) Point 1 Output value Point 2 D117 K-7 Point 1 (7, -14) Y K-15 D118 Point 3 oordinat D119 K-11 Point 4 Point 5 D120 K-18

# 7.14 File Register Switching Instructions

# Switching file register block numbers

# RSET(P)

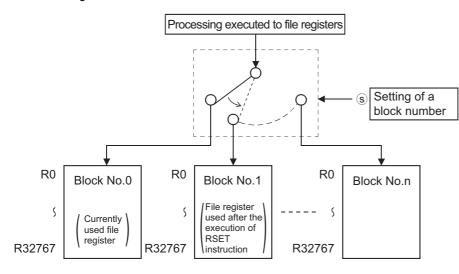


- Q00JCPU: Not supported
- Universal model QCPU: Not supported for Q00UJCPU



Any of the following instruction can go in the dotted squares. RSET, RSETP

#### ■Executing condition


Instruction	Executing condition
RSET	
RSETP	

Input/output Name argument					Description					Data type		
Input argumen	t	EN		Executir	ng condition				Bit	it		
	s		Block number data to be switched, or start device number that ANY16 stores block number data						6			
Output argume	ent	ENO		Execution result					Bit			
Setting	Internal c	levice	R, Z	R, ZR J□\□			UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
(s)	0										-	

Changes the file register block number used in the program to the block number stored in the device specified for (s).
 Following the block number change, all file registers used in the sequence program are processed to the file register of the block number after the change.

# Ex.

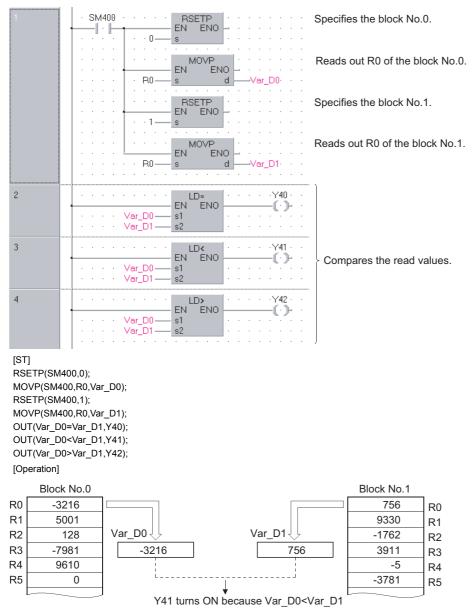
When switching block number from block No. 0 to block No. 1



Point P

Be cautious when a file register (R) is refreshed and the block No. of the file register is switched with the RSET instruction.

For the restrictions on file registers, refer to 🖙 Page 78 Precautions on Using File Registers.

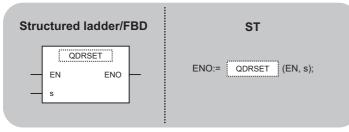

#### **Operation error**

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The block number specified for (s) does not exist.	0	0	0	0	0	0
4101	There is no file register.	0	0	0	0	0	0

# Program example

• In the following program, R0 of the block number 0 and the block number 1 are compared. [Structured ladder/FBD]




# Setting file register files

# QDRSET(P)

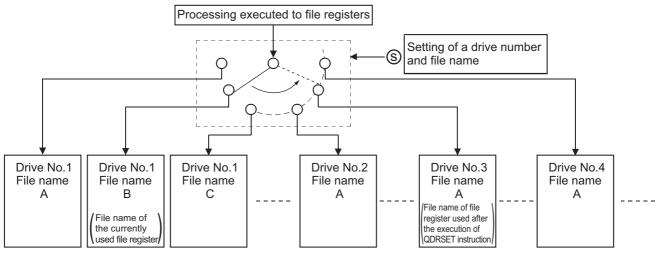
Basic High performance Process Redundant Universal LCPU

Universal model QCPU: Not supported for Q00UJCPU



Any of the following instruction can go in the dotted squares. QDRSET, QDRSETP

#### ■Executing condition


Instruction	Executing condition
QDRSET	
QDRSETP	

Input/output Name argument					Description					Data type			
Input argumen	EN	Executing condition					Bit	Bit					
S				Character string data to be set with the driver number file name of file register, or start number of the device that stores character string data					String				
Output argume	ent	ENO		Execution result					Bit	Bit			
Setting Internal device R, Z				R	10/D	UD\GD	Zn		Constant	Others			
data	Bit	Word			Bit	Word				\$			
(S)	-	0			—					0	-		

• Changes the file name of the file register used in the program to the file name being stored in the device specified for (s). After the file names have been changed, all the file registers being used by the sequence program process the file register of the block number 0 of the renamed file. Block number switch is performed by the RSET(P) instruction.

## Ex.

When switching from Drive No. 1/File name B to Drive No. 3/File name A



- Drive number can be specified from 1 to 4. The drive number cannot be specified as drive 0 (program memory/internal memory).
- It is not necessary to specify the extension (.QDR) with the file name.
- A file name setting can be deleted by specifying the NULL character (00H) for the file name.
- File names specified with this instruction will be given priority even if a drive number and file name have been specified in the parameters.

## Point P

- If the file name is changed by the QDRSET(P) instruction, the file name returns to the name specified by the parameter when the CPU module is switched from STOP to RUN. To maintain the file name even after the CPU mode is changed from STOP to RUN, execute the QDRSET(P) instruction with the SM402 special relay, which turns ON during one scan when the CPU enters from STOP to RUN mode.
- Do not change the file name of the file register with the QDRSET(P) instruction when the file register is specified as the refresh device. For the restrictions on file registers, refer to F Page 78 Precautions on Using File Registers.

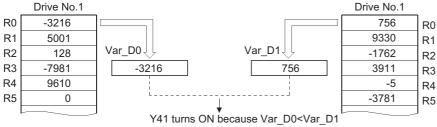
# Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	File name does not exist in the drive number specified for (s).	—	0	0	0	0	—
4100	The number other than 1 or 3 is specified into the drive No.	—	—	—	—	O*1	—
	The character string designated by (s) is only the drive No.	—	—	—	—	O*1	—
4101	The character string designated by (s) exceeds 16383 characters. "00H" does not exist at the device number or later designated by (s) in the range of the corresponding device.	—	—	—	—	O ^{*1}	—

*1 QnUDVCPU and QnUDPVCPU only

# Program example


• In the following program, R0 of the drive number 1 "ABC" and the file name of the drive number 1 "DEF.QDR" are compared.

[Structured ladder/FBD]

1	
	· · · · · "1:ABC"— s
	· · · · · · · · · · · · · · · · · · ·
	1:DEF"s
	· · · · · · · · · · · · · · · · · · ·
	MOVP
	EN ENO - · · · · · · · · · · · · · · · · · ·
2	EN ENO
	Var_D0 s1
	••••• Var_D1 — <u>s2</u> •••••••
3	LD<
	•••••• Var_D1 — s2
4	LD>
	s1 Var_D0 — s1
	-

[ST]

QDRSETP(X0,"1:ABC"); MOVP(X0,R0,Var_D0); QDRSETP(X0,"1:DEF"); MOVP(X0,R0,Var_D1); OUT(Var_D0=Var_D1,Y40); OUT(Var_D0=Var_D1,Y41); OUT(Var_D0>Var_D1,Y42); [Operation]



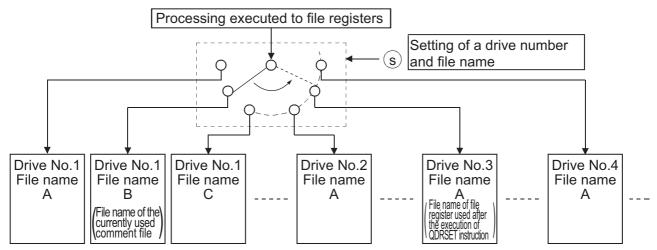
669

# Setting files for comments

#### 

Any of the following instruction can go in the dotted squares. QCDSET, QCDSETP

### ■Executing condition


Instruction	Executing condition
QCDSET	
QCDSETP	

Input/output Name argument				Description					Data type		
Input argument EN				Executing condition					Bit		
S				Character string data to be changed with the driver number file name of comment file, or start number of the device that stores character string data					String		
Output argum	ent	ENO		Execution result					Bit		
Setting	Internal d	evice	R, Z	R	JO/O		UD\GD	Zn		Constant	Others
data	Bit	Word	-		Bit	Word	-			\$	
(S)	-	0								0	-

• Changes the file name of the file register used in the program to the file name being stored in the device specified for (s). After the file name change, comment data being used by the sequence program perform processing in relation to the comment data of the file name after the change.

# Ex.

When switching from Drive No. 1/File name B to Drive No. 3/File name A



- Drive number can be specified from 1 to 4. The drive number cannot be specified as drive 0 (program memory/internal memory). Drives that can be specified are different according to the CPU module. Check the drives that can be specified in the manual of the CPU module to be used.
- It is not necessary to specify the extension (.QCD) with the file name.
- A file name setting can be deleted by specifying the NULL character (00H) for the file name.
- File names specified with this instruction will be given priority even if a drive number and file name have been specified in the parameters.

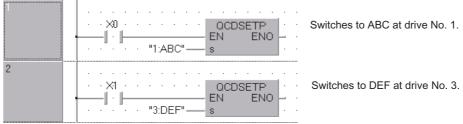
### Point P

If the file name is changed by the QCDSET(P) instruction, the file name returns to the name specified by the parameter when the CPU module is switched from STOP to RUN.

To maintain the file name even after the CPU mode is changed from STOP to RUN, execute the QCDSET(P) instruction with the SM402 special relay, which turns ON during one scan when the CPU enters from STOP to RUN mode.

### Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	File name does not exist in the drive number specified for (s).	—	0	0	0	0	—

### Precautions

- For Universal model QCPU and LCPU, this instruction is not executed while SM721 (File access in progress) is ON even when the execution command of this instruction is turned ON. Execute this instruction when SM721 is OFF.
- For High-speed Universal model QCPU, Universal model Process CPU, and LCPU, when specifying drive 2 (SD memory card) as drive No., this instruction will not be executed while SM606 (SD memory card forced disable instruction) is on. If executed, no processing is performed.

# Program example

• In the following program, the object file of the comments are switched to the file names "ABC.QCD" in the drive number 1 when X0 turns ON, and to the file names "DEF.QCD" in the drive number 3 when X1 turns ON. [Structured ladder/FBD]



[ST] OCDSET

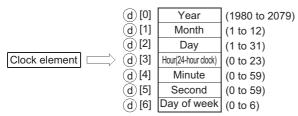
QCDSETP(X0,"1:ABC"); QCDSETP(X1,"3:DEF");

# 7.15 Clock Instructions

# Reading clock data

# DATERD(P)

Basic High Process Redundant Un	iversal
Structured ladder/FBD	ST
EN ENO	ENO:= DATERD (EN, d);


Any of the following instruction can go in the dotted squares. DATERD, DATERDP

### ■Executing condition

Instruction	Executing condition
DATERD	
DATERDP	

Input/output Name argument				Description						Data type			
Input argument EN				Executing condition						Bit			
Output argument ENO				Execution result					Bit				
d				Clock data that are read, or start number or the array of the device that stores clock data					Array of ANY16 (17)				
Setting	Internal d	device R		R, ZR JO\C		JD/D		Zn		Constant	Others		
data	Bit	Word			Bit	Word							
(d)	- 0				—								

• Reads year, month, day, minute, second, and day of week from the clock element of the CPU module and stores them in (d) and the following devices in BIN value.

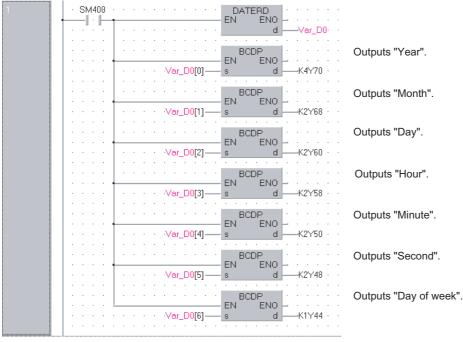


- The year in (d)[0] is stored as 4-digit year indication.
- The day of week in (d)[6] is stored as 0 to 6 to represent the days from Sunday to Saturday.

Day of week	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Stored data	0	1	2	3	4	5	6

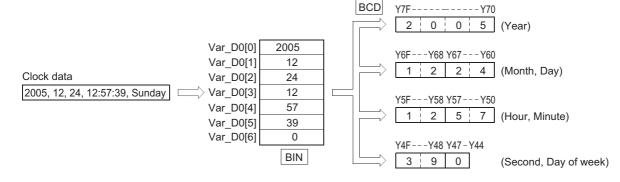
· Compensation is made automatically for leap years.

#### Operation error


• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

# Program example


- In the following program, the following clock data are output in BCD values.
- YearY70 to Y7F
- MonthY68 to Y6F
- DayY60 to Y67
- HourY58 to Y5F
- MinuteY50 to Y57
- · SecondY48 to Y4F
- Day of weekY44 to Y47

#### [Structured ladder/FBD]



[ST]

DATERD(SM400,Var_D0); BCDP(SM400,Var_D0[0],K4Y70); BCDP(SM400,Var_D0[1],K2Y68); BCDP(SM400,Var_D0[2],K2Y60); BCDP(SM400,Var_D0[3],K2Y58); BCDP(SM400,Var_D0[4],K2Y50); BCDP(SM400,Var_D0[5],K2Y48); BCDP(SM400,Var_D0[6],K1Y44); [Operation]



# Writing clock data

DATE	WR(P)			
Basic	High performance Process	Redundant	Universal	LCPU
Stru	ctured ladde	r/FBD		ST
-	EN EN	10		ENO:= DATEWR (EN, s);

Any of the following instruction can go in the dotted squares. DATEWR, DATEWRP

# ■Executing condition

Instruction	Executing condition
DATEWR	
DATEWRP	

Input/output argument	t	Name		Descri	scription					Data type		
Input argumen	t	EN		Executing condition				Bit				
		S			Start number or the array of the device where the clock data to be written to the clock element is stored					Array of ANY16 (17)		
Output argume	ent	ENO		Execution result				Bit				
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD Zn			Constant	Others	
data	Bit	Word			Bit	Word						
(s)	—	0			—							

• Writes clock data stored in (s) and the following devices to the clock element of the CPU module.

$\sim$		
( <u>s</u> )[0]	Year	
( <u>s</u> )[1]	Month	
(s)[2]	Day	
s[3]	Hour	Clock element
<b>s</b> [4]	Minute	
s[5]	Second	
<b>s</b> [6]	Day of week	

- Each item is set in BIN value.
- The year for (s)[0] is specified in 4-digit values between 1980 and 2079. (If a particular era name is used for year settings, leap years cannot be automatically adjusted.)
- (s)[1] specifies the month in values from 1 to 12 (January to December).
- (s)[2] specifies the day in values from 1 to 31.
- (s)[3] specifies the hour in values from 0 to 23 (using 24-hour clock, from 0 hours to 23 hundred hours). (Uses the 24-hour clock.)
- (s)[4] specifies the minute in values from 0 to 59.
- (s)[5] specifies the second in values from 0 to 59.
- (s)[6] specifies the day of week in values from 0 to 6 (Sunday to Saturday).

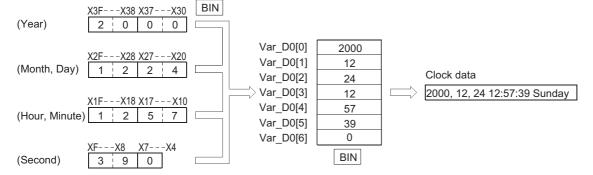
Day of week	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Stored data	0	1	2	3	4	5	6

## Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	Each item of data have been set outside the setting range.	0	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	-	—	—	—	0	0

# Program example


- In the following program, the following clock data entered in BCD value are written to the clock element when X40 turns ON.
- YearX30 to X3F
- HourX18 to X1F
- MonthX28 to X2F
- MinuteX10 to X17
- DayX20 to X27
- SecondX8 to XF
- Day of weekX4 to X7
- [Structured ladder/FBD]

1	BIN EN EN	Sets "Year".
	■ · · · · · · · · · · · · · · · · · · ·	Sets "Month".
	s d	Sets "Day".
	· · · · ·         · · · · · · · · · · · · · · · · · · ·	Sets "Hour".
	EN ENO 	Sets "Minute".
		Sets "Second".
	EN ENO K2X8 s d Var_D0[5].	
	EN BIN ENO 	Sets "Day of week".
	DATEWRP EN ENO s	Writes the clock data (Var_D0 to Var_D6) to the clock element.

#### [ST]

BIN(X40,K4X30,Var_D0[0]); BIN(X40,K2X28,Var_D0[1]); BIN(X40,K2X20,Var_D0[2]); BIN(X40,K2X18,Var_D0[3]); BIN(X40,K2X10,Var_D0[4]); BIN(X40,K2X8,Var_D0[5]); BIN(X40,K1X4,Var_D0[6]); DATEWRP(X40,Var_D0); [Operation]

1



# **Clock data addition**

DATE	E+(P)					
Basic	High performance Process	Redundant	Universal	LCPU		
5	Structured ladder	'FBD			ST	
	DATE+	]				
_	EN EN				Not supported	
	s1 s2	d –				

Any of the following instruction can go in the dotted squares.  $\ensuremath{\mathsf{DATE}}\xspace+, \ensuremath{\mathsf{DATE}}\xspace+\ensuremath{\mathsf{P}}\xspace$ 

# ■Executing condition

Instruction	Executing condition
DATE+	
DATE+P	

## ■Argument

Input/outpu argument	t	Name		Descri	escription					Data type		
Input argumer	nt	EN		Executi	ng condition				Bit			
		s1			tart number or the array of the device that stores clock (time) ata to be added				Array of ANY16 (13)			
s2				Start number or the array of the device that stores added time data					Array of ANY16 (13)			
Output argument ENO				Execution result					Bit			
		d			Start number or the array of the device that stores clock (time) data of the addition result				Array of ANY16 (13)			
Setting	Internal of	levice	R, Z	R	10/0		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word						
(s1)	—	0			—							
(s2)	—	0			—							
(d)	—	0			—							

# Processing details

• Adds the time data specified for (s2) to the clock data specified for (s1), and stores the result to (d) and the following devices.

		Data range	Э			Data range	Data range		
st [0]	Hour	(0 to 23)	(	s2 [0]	Hour	(0 to 23)	(d) [0]	Hour	(0 to 23)
s] [1]	Minute	(0 to 59)	+ (	<u>©</u> [1]	Minute	(0 to 59)	> ⓓ [1]	Minute	(0 to 59)
SJ [2]	Second	(0 to 59)	(	<u>s</u> 2 [2]	Second	(0 to 59)	(d) [2]	Second	(0 to 59)

For example, adding the time 7:48:10 to 6:32:40 would result in the following operation.

s] [0]	Hour: 6		<u>s</u> 2 [0]	Hour: 7	(d) [0]	Hour: 14	
st [1]	Minute: 32	+	s2[1]	Minute: 48	(d)[1]	Minute: 20	
st [2]	Second: 40		<u>s</u> 2[2]	Second: 10	(d)[2]	Second: 50	

• If the addition result of time exceeds 24 hours, 24 hours will be subtracted from the sum to make the final operation result. For example, if the time 20:20:20 were added to 14:20:30, the result would not be 34:40:50, but would instead be 10:40:50.

s1[0]	Hour: 14		<u>s</u> 2[0]	ŀ
§1[1]	Minute: 20	+	<u>s</u> 2[1]	Μ
s1)[2]	Second: 30		\$2][2]	Se

Hour: 20 /linute: 20 Second: 20

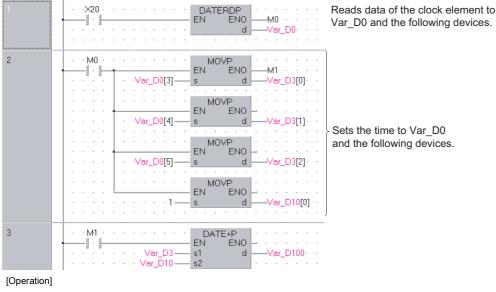
(d)[0]	Hour: 10
(d)[1]	Minute: 40
(d)[2]	Second: 50

Point P

For further information regarding the data that can be set for hours, minutes, and seconds, refer to 🖙 Page 676 Writing clock data.

# **Operation error**

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value set for (s1) and (s2) is outside of the setting range.	0	0	0	0	0	0
4101	The device specified for (s1), (s2) or (d) exceeds the corresponding device range.	—	—	—	_	0	0

# Program example

• In the following program, 1 hour is added to the clock data read from the clock element when X20 turns ON, and the result is stored to Var D100 and the following devices.

[Structured ladder/FBD]

Clock element



· Clock data read by the DATERDP instruction.

-				
t	$\square$	Var_D0[0]	1995	Year
		Var_D0[1]	5	Month
		Var_D0[2]	15	Day
		Var_D0[3]	10	Hour
		Var_D0[4]	23	Minute Fime data
		Var_D0[5]	41	Second
		Var_D0[6]	2	Day of week

· Addition by the DATE+P instruction.

Var_D3[3]	Hour: 10		Var_D10[0]	Hour: 1	Var_D100[0]	Hour: 11	
Var_D3[4]	Minute: 23	+	Var_D10[1]	Minute: 0	└────────────────────────────────────	Minute: 23	
Var_D3[5]	Second: 41		Var_D10[2]	Second: 0	Var_D100[2]	Second: 41	

# **Clock data subtraction**

DATE	E-(P)				
Basic	High performance	Process	Redundant	Universal	LCPU
Stru 	2	I ladde			ST Not supported

Any of the following instruction can go in the dotted squares. DATE-, DATE-P

# ■Executing condition

Instruction	Executing condition
DATE-	
DATE-P	

Input/outpu argument	ıt	Name		Descri	cription Data t							
Input argume	nt	EN		Executi	ng condition				Bit			
s1					Start number or the array of the device that stores clock (time)       Array of ANY16 (13)         data to be subtracted       Array of ANY16 (13)							
s2				Start nu time da		ay of the device t	that stores subtr	acted	Array of ANY16 (13)			
Output argument ENO				Execution result Bit								
d				Start number or the array of the device that stores clock (time) data of the subtraction result					Array of ANY16 (13)			
Setting	Internal of	device	R, ZI	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word						
(s1)	-	0			—							
(s2)	-	0			—							
(d)	—	0			—							

• Subtracts the time data specified for (s2) from the clock data specified for (s1), and stores the result to (d) and the following devices.

		Data range			Data range	Data range		
st [0]	Hour	(0 to 23)	<u>s</u> 2 [0]	Hour	(0 to 23)	(d) [0]	Hour	(0 to 23)
s1 [1]	Minute	(0 to 59) -	<u>s</u> 2 [1]	Minute	(0 to 59)	(d) [1]	Minute	(0 to 59)
st [2]	Second	(0 to 59)	<u>s</u> 2 [2]	Second	(0 to 59)	(d) [2]	Second	(0 to 59)

For example, if the clock time 3:50:10 were subtracted from the clock time 10:40:20, the operation would be performed as follows.

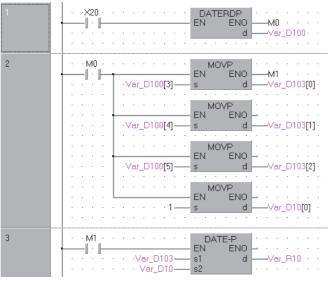
s1 [0]	Hour: 10		s2 [0]	Hour: 3		(d) [0]	Hour: 6
s1 [1]	Minute: 40	_	<u>s</u> 2 [1]	Minute: 50	$\square$	(d)[1]	Minute: 50
s1 [2]	Second: 20		<u>s</u> 2 [2]	Second: 10		(d)[2]	Second: 10

• If the operation results in a negative number, 24 will be added to the result to make a final operation result. For example, if the clock time 10:42:12 were subtracted from 4:50:32, the result would not be -6:8:20, but rather would be 18:8:20.

s1[0]	Hour: 4		s2[0]	Hour: 10		(d)[0]	Hour: 18
s1[1]	Minute: 50	_	s2[1]	Minute: 42	$\square$	(d)[1]	Minute: 8
s1[2]	Second: 32		s2[2]	Second: 12		(d)[2]	Second: 20

# Point P

For further information regarding the data that can be set for hours, minutes, and seconds, refer to Second Page 676 Writing clock data.

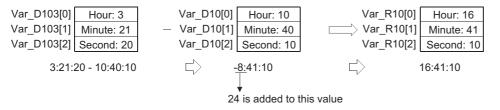

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value set for (s1) and (s2) is outside of the setting range.	0	0	0	0	0	0
4101	The device specified for (s1), (s2) or (d) exceeds the corresponding device range.	_	—	—	—	0	0

### Program example

• In the following program, the time data stored in Var_D10 and the following devices are subtracted from the clock data read from the clock element when X1C turns ON, and the result is stored to Var_R10 and the following devices. [Structured ladder/FBD]




[Operation]

· Clock data read by the DATERDP instruction.

		-	
Clock element Var_D100[0]	1995	Year	
Var_D100[1]	4	Month	
Var_D100[2]	20	Day	
Var_D100[3]	3	Hour	
Var_D100[4]	21	Minute	Time data
Var_D100[5]	20	Second	
Var_D100[6]	1	Day of w	/eek

• Subtraction by the DATE- P instruction (when 10 hours, 40 minutes, and 10 seconds have been specified for Var_D10).



# Time data conversion (hour/minute/second format to seconds)

### SECOND(P) Basic Heft Process Redundant Universal LCPU Structured ladder/FBD SECOND EN SECOND EN SECOND EN SECOND (EN, s, d);

Any of the following instruction can go in the dotted squares. SECOND, SECONDP

### ■Executing condition

Instruction	Executing condition
SECOND	
SECONDP	

### ■Argument

Input/output argument	t	Name		Descri	Description					Data type			
Input argumen	t	EN		Executir	Executing condition				Bit				
		s			Start number or the array of the device that stores clock data before the conversion					Array of ANY16 (13)			
Output argume	ent	ENO		Execution	on result				Bit				
		d		Start number of the device that stores clock data after the conversion				ANY32					
Setting	Internal c	levice	R, Z	R	JD/D	U⊡\G⊡ Zn			Constant	Others			
data	Dit	Word	1		Di4	Word							

ocumy	internal act		···, <b>-</b> ··					oonstant	Outors
data	Bit	Word		Bit	Word				
(s)	-	0		—	-			—	
(d)	0	0		0				—	

### Processing details

• Converts the time data stored in (s) and the following devices to the data in seconds and stores the conversion result to the device specified for (d).



For example, if the value were 4 hours, 29 minutes and 31 seconds, the conversion operation would be performed as follows.



### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value set for (s) is outside of the setting range.	0	0	0	0	0	0
4101	The device specified for (s) exceeds the corresponding device range.	—	—	—	—	0	0

### Program example

• In the following program, the clock data read from the clock element are converted to the data in seconds when X20 turns ON, and the result is stored to Var_D100.

[Structured ladder/FBD

1	··········         DATERDP         ············           I··II·······         EN         ENO         M0 ·······           ··········         d         Var_D10 ·····         Var_D10 ·····
2	• M0       • M0VP         • Var_D10[3]       • S         • Var_D10[4]       • M0VP         • Var_D10[4]       • M0VP         • Var_D10[4]       • M0VP         • Var_D10[5]       • M0VP         • Var_D10[5]       • M0VP         • Var_D10[5]       • M0VP         • Var_D10[5]       • M0VP
3	M1         SECONDP           EN         EN           Var_D13         s           d         Var_D100

[ST]

DATERDP(X20,Var_D10); MOVP(X20,Var_D10[3],Var_D13[0]); MOVP(X20,Var_D10[4],Var_D13[1]); MOVP(X20,Var_D10[5],Var_D13[2]); SECONDP(X20,Var_D13,Var_D100);

[Operation]

Clock data read by the DATERDP instruction.

Clock element Var_D10[0]	1995	Year
 Var_D10[1]	4	Month
Var_D10[2]	20	Day
Var_D10[3]	20	Hour
Var_D10[4]	21	Minute Time data
Var_D10[5]	23	Second
Var_D10[6]	5	Day of week

Conversion to seconds by the SECONDP instruction.

Var_D13[0]	20		
Var_D13[1]	21	└──────────────────────────────	78238
Var_D13[2]	23		

# Time data conversion (seconds to hour/minute/second format)

HOUI	R(P)					
Basic	High performance Pro	ocess Redund	ant Univers			
Stru	ctured la	dder/FBI	D		ST	
-	HOU EN s	ENO d		ENO:=	HOUR (E	N, s, d);

Any of the following instruction can go in the dotted squares. HOUR, HOURP

### ■Executing condition

Instruction	Executing condition
HOUR	
HOURP	

### ■Argument

Input/output argument	t	Name	Description					Data type			
Input argument	t	EN	Exec	cuting condition			Bit				
		S		t number of the device that stores version	ANY32						
Output argume	ent	ENO	Exec	cution result	Bit						
d				Start number or the array of the device that stores clock data after the conversion			Array of ANY16 (13)				
Setting	Setting Internal device R, Z		R, ZR	JD/D	UD\GD	Zn		Constant	Others		

Setting	Internal dev	ice	R, ZR			ULI/GL	J Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
(s)	0	0		0				0	—
(d)	—	0		—				—	—

### Processing details

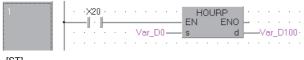
• Converts the data in seconds stored in the device specified for (s) to an hour/minute/second format, and stores the conversion result to (d) and the following devices.



For example, if 45325 seconds were the value specified, the conversion operation would be performed as follows.



### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The value set for (s) is outside of the setting range.	0	0	0	0	0	0
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

### Program example

• In the following program, the value in seconds stored in Var_D0 is converted to Hour/Minute/Second format when X20 turns ON, and the result is stored to Var_D100 and the following devices.

[Structured ladder/FBD]



[ST]

HOURP(X20,Var_D0,Var_D100); [Operation]

• Conversion to Hour/Minute/Second format by the HOURP instruction (when the value 40000 seconds has been specified for Var_D0).



# Date data comparison

### LDDTD, ANDDTD ORDTD



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

S	Structured ladder/FBD	ST
	LDDT=	
_	EN ENO	—
_	s1	Not supported
_	s2	
_	n	

Any of the following instruction can go in the dotted squares.

LDDT=, ANDDT=, ORDT=, LDDT<>, ANDDT<>, ORDT<>, LDDT<=, ANDDT<=, ORDT<=, LDDT<, ANDDT<, ORDT<, LDDT>=, ANDDT>=, ORDT>=, LDDT>, ANDDT>, ORDT>

### ■Executing condition

Instruction	Executing condition
LDDTD, ANDDTD, ORDTD	Non-conditional execution

### ■Argument

Input/output argument	t	Name		Descri	ption				Data	a type		
Input argumen	ıt	EN		Executir	ng condition				Bit			
	s1				mber of the dev	ice that stores th	ne data to be co	mpared	ANY	16		
s2				Start nu	Start number of the device that stores the data to be compared					ANY16		
Output argume	Output argument ENO			Executio	Execution result				Bit			
n					Value to indicate the comparison target, or number of data to which the comparison target is stored				ANY16			
Setting Internal d data Bit		evice	R, ZF	R, ZR J□\□		JD\D UD\GD Zn			Constant	Others		
		Word	1		Bit	Word				К, Н		

Setting	Internal dev	ce R, ZR		Internal device		s lovo		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit Word	Word			К, Н			
(s1)	-	0		—				—	—		
(s2)	-	0		—				—	—		
n	-	0		0				0	—		

### Processing details

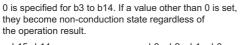
• Compares the date data specified for (s1) and (s2), or compares the date data specified for (s1) and the current date data. The comparison target can be selected by specifying n.

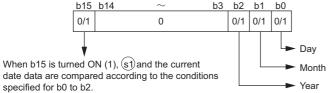
Comparing with the specified date data

Compares the date data specified for (s1) and the date data specified for (s2) as a normally open contact according to the condition of n.



· Comparing with the current date data


Compares the date data specified for (s1) and the current date data as a normally open contact according to the condition of n.


		Data range				
<b>(s1</b> )	Year	(1980~2079)			Ν	
<b>(\$1</b> ) +1	Month	(1~12)	Comparison operator	Current date (year/month/day)	$\square$	Comparison result
<b>(\$1</b> ) +2	Day	(1~31)			V	

Point P

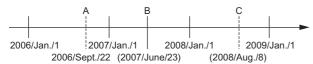
When comparing with the specified date data or the current date data, if any of the following conditions apply to the setting of (s1) and (s2), an operation error (error code: 4101) or malfunction may occur.

- The index setting is specified exceeding the device range.
- A file register is specified without setting file registers.
- Each item is set in BIN value.
- The year for (s1) and (s2) is specified in 4-digit values between 1980 and 2079.
- The month for (s1) +1 and (s2) +1 is specified in values between 1 and 12 (January to December).
- The day for (s1) +2 and (s2) +2 is specified in values between 1 and 31.
- The comparison target can be specified in detail by specifying following values as shown below. The following shows the bit configuration of n.





- · Comparison target date (b0 to b2)
- 0: No comparison is performed with the comparison target date data (year/month/day).
- 1: Compares with the comparison target date data (year/month/day).
- Comparison target (b15)
- 0: Compares the date data specified for (s1) and the date data specified for (s2).
- 1: Compares the date data specified for (s1) and the current date data. The date data specified for (s2) are ignored.
- The following table shows the bit processing of the comparison target.


The value of n for the comparison with the specified date data	The value of n for the comparison with the current date data	Comparison target date	Description
0001H	8001H	Day	Compares the day ((s1)+2) only.
0002H	8002H	Month	Compares the month ((s1)+1) only.
0003H	8003H	Month, Day	Compares the month ((s1)+1) and the day ((s1)+2).
0004H	8004H	Year	Compares the year ((s1)) only.
0005H	8005H	Year, Day	Compares the year ((s1)) and the day ((s1)+2).
0006H	8006H	Year, Month	Compares the year ((s1)) and the month ((s1)+1).
0007H	8007H Year, Month		Compares the year ((s1)), the month ((s1)+1), and the day ((s1)+2).
Other than 0001H to 0007H, 8001H to 8007H		None	No comparison operation on the year $((s1))$ , the month $((s1)+1)$ , and the day $((s1)+2)$ . (non-conduction state)

If the data stored in the comparison target device are not recognized as date data, SM709 turns ON after the instruction execution and the device becomes a non-conduction state. Even when the date are not recognized as date data, if they are within the setting rage, SM709 does not turn ON. In addition, when the value of (s1) to (s1) +2 or (s2) to (s2) +2 exceeds the specified device range, SM709 turns ON and it becomes a non-conduction state. Note that, once SM709 turns ON, it stays ON until the reset or power OFF of CPU. Turn it OFF as required.

•	The following ta	able shows th	ne comparison	result of each	instruction.
---	------------------	---------------	---------------	----------------	--------------

Instruction symbol	Condition	Comparison result	Condition	Comparison result
LDDT=, ANDDT=, ORDT=	(s1) = (s2)	Conduction state	(s1) ≠ (s2)	Non-conduction state
LDDT<>, ANDDT<>, ORDT<>	(s1) ≠ (s2)		(s1) = (s2)	
LDDT>, ANDDT>, ORDT>	(s1) > (s2)		(s1)≤(s2)	
LDDT<=, ANDDT<=, ORDT<=	(s1)≤(s2)		(s1) > (s2)	
LDDT<, ANDDT<, ORDT<	(s1) < (s2)	]	(s1)≥(s2)	
LDDT>=, ANDDT>=, ORDT>=	(s1)≥(s2)		(s1) < (s2)	

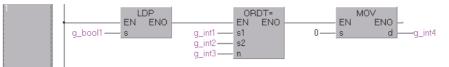
• The following shows the comparison example of date.



The following table shows the comparison result of date A, B, and C indicated above. Even when the data are compared under the same condition, the comparison result changes according to the specified comparison target.

Comparison target	Comparison cond	Comparison condition							
	A < B	B < C	A < C						
Day	0	×	×						
Month	×	0	×						
Year, Day	×	0	×						
Year	0	0	0						
Year, Day	0	0	0						
Year, Month	0	0	0						
Year, Month, Day	0	0	0						
None	×	×	×						
O: Conduction state X: Non-co	onduction state		•						

• With the date that do not actually exist, if they are settable date, they are compared according to the following conditions. Date A: 2006/02/30 (The date does not actually exist, but it can be set.)


Date A. 2006/02/30 (The date does not actually exist, but it

Date B: 2007/03/29

Date C: 2008/02/31 (The date does not actually exist, but it can be set.)

B < C	A < C O × O O
× × ×	× 0
×	0
0	0
0	0
0	0
0	0
x	×

The ORDT=, ORDT<>, ORDT<=, ORDT<, ORDT>=, or ORDT> instruction performs the OR operation between the
operation result of (s1), (s2) and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly,
or using the bit device to be always set to ON like SM400. When using the ORDT=, ORDT<>, ORDT<=, ORDT<, ORDT>=,
or ORDT> instruction, connect EN and ENO in series as shown below.



### **Operation error**

• There is no operation error.

### Program example

• In the following program, the data in D0 and the data in D10 (year/month/day) are compared, and Y33 turns ON if they are matched.

[Structured ladder/FBD]

1									
	· · · · LDDT=								
	EN ENO					_	-(	·)-	
	0 01			• •	·	·	·	• •	·
	·D10-s2   ·	• •		• •			·	• •	
	· K7 — n ·		•		•	÷	•	• •	•

• In the following program, the data in D0 and the current date data (year/month) are compared when M0 turns ON, and Y33 turns ON if they are not matched.

[Structured ladder/FBD]

EN ENO 		ŀ			Y33		
		ŀ			~ ×		
H8006 n	· · · D10 — s2   · · H8006 — n		÷				

• In the following program, the data in D0 and the data in D10 (year/day) are compared when M0 turns ON, and Y33 turns ON if the value of data in D10 is less than the value of data in D0.

[Structured ladder/FBD]

1	ŀ	•	•		<u> </u>	LDDT>					/33 · [•]]	
				0—			•	·	·		· ·	
				0— 5—		s2	÷					
	·			J—		n		Ċ	Ċ		• •	

 In the following program, the data in D0 and the current date data (year) are compared, and Y33 turns ON if the value of current date data is equal to/higher than the value of data in D0.
 [Structured ladder/FBD]

······ LDDT<=	ŀ				->	1.12	Ŀ	÷	
· · · D0 — s1						9			
· · · D10 — s2	ŀ.	÷	·	÷	·	÷	·	÷	·
· · H8004 — n	1 · · ·		•		•		•		•

# Time data comparison

### LDTMD, ANDTMD, ORTMD



• QnU(D)(H)CPU and QnUDE(H)CPU with a serial number (first five digits) of "10102" or later, Q00UJCPU, Q00UCPU, Q01UCPU, QnUDVCPU, and QnUDPVCPU: Supported

Structured la	dder/FBD	ST	
LDTM:			
— EN	ENO -		
— s1		Not supported	
— s2			
n			

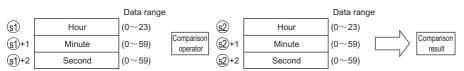
Any of the following instruction can go in the dotted squares.

LDTM=, ANDTM=, ORTM=, LDTM<>, ANDTM<>, ORTM<>, LDTM<=, ANDTM<=, ORTM<=, LDTM<, ANDTM<, ORTM<, LDTM>=, ANDTM>=, ORTM>=, LDTM>, ANDTM>, ORTM>

### ■Executing condition

Instruction	Executing condition
LDTMD, ANDTMD, ORTMD	Non-conditional execution

### ■Argument


Input/outpu argument	t	Name		Descri	ption		Data type							
Input argumer	nt	EN		Executi	Executing condition						Bit			
s1			Start nu	Start number of the device that stores the data to be compared					16					
s2			Start nu	Start number of the device that stores the data to be compared A					ANY16					
Output argument ENO			Execution result E					Bit	Bit					
n				Value to indicate the comparison target, or number of data to which the comparison target is stored					ANY	ANY16				
Setting	Internal of	device	R, Z	R	JD/D			Zn	Constant		Others			
data Bit		Word			Bit	Word			К, Н					
(s1)	—	0			—					—	-			
(s2)	—	0			—					—	-			
n	—	0			0					0	-			

### Processing details

• Compares the time data specified for (s1) and (s2), or compares the time data specified for (s1) and the current time data. The comparison target can be selected by specifying n.

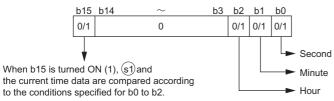
Comparing with the specified time data

Compares the time data specified for (s1) and the time data specified for (s2) as a normally open contact according to the condition of n.



· Comparing with the current time data

Compares the time data specified for (s1) and the current time data as a normally open contact according to the condition of n. The time data specified for (s2) are treated as dummy data and ignored.


		Data range				
(s1)	Hour	(0~23)		1	Ν	
(s1)+1	Minute	(0~59)	Comparison operator	Current time (hour/minute/second)	$\square$	Comparison result
(s1)+2	Second	(0~59)			V	

### Point P

When comparing with the specified time data or the current time data, if any of the following conditions apply to the setting of (s1) and (s2), an operation error (error code: 4101) or malfunction may occur.

- The index setting is specified exceeding the device range.
- A file register is specified without setting file registers.
- Each item is set in BIN value.
- The hour for (s1) and (s2) is specified in values between 0 and 23. (In the 24-hour clock)
- The minute for (s1) + 1 and (s2) + 1 is specified in values between 0 and 59.
- The second for (s1) + 2 and (s2) + 2 is specified in values between 0 and 59.
- The comparison target can be specified in detail by specifying following values as shown below. The following shows the bit configuration of n.

0 is specified for b3 to b14. If a value other than 0 is set, they become non-conduction state regardless of the operation result.



Comparison target time (b0 to b2)

0: No comparison is performed with the comparison target time data (hour/minute/second).

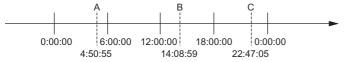
- 1: Compares with the comparison target time data (hour/minute/second).
- Comparison target (b15)

0: Compares the time data specified for (s1) and the time data specified for (s2).

1: Compares the time data specified for (s1) and the current time data. The time data specified for (s2) are ignored.

• The following table shows the bit processing of the comparison target.

The value of n for the comparison with the specified time data	The value of n for the comparison with the current time data	Comparison target time	Description
0001H	8001H	Second	Compares the second ((s1)+2) only.
0002H	8002H	Minute	Compares the minute ((s1)+1) only.
0003H	8003H	Minute, Second	Compares the minute ((s1)+1) and the second ((s1)+2).
0004H	8004H	Hour	Compares the hour ((s1)) only.
0005H	8005H	Hour, Second	Compares the hour ((s1)) and the second ((s1)+2).
0006H	8006H	Hour, Minute	Compares the hour ((s1)) and the minute ((s1)+1).
0007H	8007H	Hour, Minute, Second	Compares the hour ((s1)), the minute ((s1)+1), and the second ((s1)+2).
Other than 0001H to 0007H, 8001H to 8007H		None	No comparison operation on the hour ((s1)), the minute ((s1)+1), and the second ((s1)+2). (non-conduction state)


693

 If the data stored in the comparison target device are not recognized as time data, SM709 turns ON after the instruction execution and the device becomes a non-conduction state. In addition, when the value of (s1) to (s1)+2 or (s2) to (s2)+2 exceeds the specified device range, SM709 turns ON and it becomes a non-conduction state. Note that, once SM709 turns ON, it stays ON until the reset or power OFF of CPU. Turn it OFF as required.

· The following table shows the compari	ison result of each instruction.
-----------------------------------------	----------------------------------

Instruction symbol	Condition	Comparison result	Condition	Comparison result
LDTM=, ANDTM=, ORTM=	(s1) = (s2)	Conduction state	(s1) ≠ (s2)	Non-conduction state
LDTM<>, ANDTM<>, ORTM<>	(s1) ≠ (s2)		(s1) = (s2)	
LDTM>, ANDTM>, ORTM>	(s1) > (s2)		(s1)≤(s2)	
LDTM<=, ANDTM<=, ORTM<=	(s1)≤(s2)		(s1) > (s2)	
LDTM<, ANDTM<, ORTM<	(s1) < (s2)		(s1)≥(s2)	
LDTM>=, ANDTM>=, ORTM>=	(s1)≥(s2)	1	(s1) < (s2)	

• The following shows the comparison example of time.

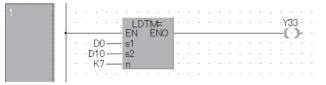


The following table shows the comparison result of time A, B, and C indicated above. Even when the data are compared under the same condition, the comparison result changes according to the specified comparison target.

Comparison target	Comparison condition							
	A < B	B < C	A < C					
Second	0	×	×					
Minute	×	0	×					
Minute, Second	×	0	×					
Hour	0	0	0					
Hour, Second	0	0	0					
Hour, Minute	0	0	0					
Hour, Minute, Second	0	0	0					
None	×	×	×					
O: Conduction state X: Non-conduc	O: Conduction state ×: Non-conduction state							

 The ORTM=, ORTM<>, ORTM<=, ORTM<, ORTM>=, or ORTM> instruction performs OR operation between the operation result of "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the ORTM=, ORTM<>, ORTM<=, ORTM<, ORTM>=, or ORTM> instruction, connect EN and ENO in series as shown below.




Operation error

There is no operation error.

### Program example

• In the following program, the data in D0 and the data in D10 (hour/minute/second) are compared, and Y33 turns ON if they are matched.

[Structured ladder/FBD]



• In the following program, the data in D0 and the current time data (hour/minute) are compared, and Y33 turns ON if they are not matched.

[Structured ladder/FBD]

1	·····Y33··· EN ENΩ	
	· · · D0 s1 · · · · · · · · · · · · · · · · · ·	
	• • H8006 — n • • • • • • • • • • • • • • • • • •	

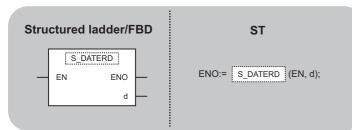
• In the following program, the data in D0 and the data in D10 (hour/second) are compared, and Y33 turns ON if the value of data in D10 is less than the value of data in D0.

[Structured ladder/FBD]

1					LD FN	TM>							733 [11]		•
				D0		LING							Ľ,	Γ.	
	.			D10	s2										
	·	·		К5 ——	n		·	•	·		·	•	·		
	·		•	• • •	• •	• • •		·		·		·		·	

• In the following program, the data in D0 and the current date data (hour) are compared, and Y33 turns ON if the value of current time data is equal to/higher than the value of data in D0. [Structured ladder/FBD]

1						·	LD FN	= NO							/33 1.1		·
		_	_	_	_	_	EN	AO.		_	_	_	_	—ų		۳.	•
		·		D	) —	_	s1		· ·	÷	÷	÷	÷		•	÷	÷
	· ·	·		D10	) —	_	s2		- I	÷	÷	÷	÷		÷	÷	÷
	· ·	·	H8	004	1—	_	n		·	·		·	·	·	·	·	•
	· ·	·		·			• •	 • •	·	÷	·	÷	·		·	÷	·


# 7.16 Extended Clock Instructions

# Read extended clock data

### S(P)_DATERD



- High Performance model QCPU: Supported if first 5 digits of the serial number are "07032" or later
- · Process CPU: Supported if first 5 digits of the serial number are "07032" or later
- Redundant CPU: Supported if first 5 digits of the serial number are "07032" or later



Any of the following instruction can go in the dotted squares.  $\ensuremath{\mathsf{S}_DATERD}$  ,  $\ensuremath{\mathsf{S}P_DATERD}$ 

### ■Executing condition

Instruction	Executing condition
S_DATERD	
SP_DATERD	

### ■Argument

Input/output argument	t	Name		Descri	ption		Data type						
Input argumen	t	EN		Executing condition						Bit			
Output argume	ent	ENO		Execution result					Bit				
		d		Start nu	mber of device	that stores the re	ead clock data		ANY	16(07)			
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word							
(d)	—	0			—	•	•				-		

### Processing details

• Reads year, month, day, minute, second, day of week, and millisecond from the clock element of the CPU module and stores them in (d) and the following devices in BIN value.

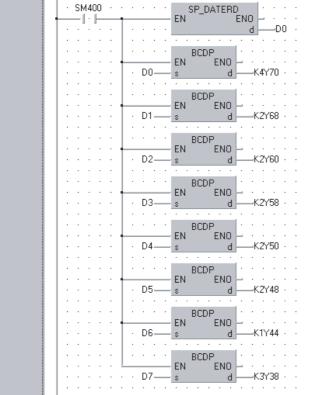
		(d) [0]	Year	(1980~2079)	
		d [1]	Month	(1~12)	
			d [2]	Day	(1~31)
Clock elements		d [3]	Hour (24-hour clock)	(0~23)	
CIUCK Elements	L/	d [4]	Minute	(0~59)	
		d [5]	Second	(0~59)	
		(d) [6]	Day of week	(0~6)	
		(d) [7]	Millisecond	(0~999)	

- The year in (d)[0] is stored as 4-digit year indication.
- The day of week in (d)[6] is stored as 0 to 6 to represent the days from Sunday to Saturday.

Day of week	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Stored data	0	1	2	3	4	5	6

· Compensation is made automatically for leap years.

### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

### Program example

- In the following program, the following clock data are output in BCD values.
- Year:Y70 to Y7F
- Month:Y68 to Y6F
- Day:Y60 to Y67
- Hour:Y58 to Y5F
- Minute:Y50 to Y57
- Second:Y48 to Y4F
- · Day of week:Y44 to Y47
- Millisecond:Y38 to Y43

[Structured ladder/FBD]



Output of year

Output of month

Output of day

Output of hour

Output of minute

Output of second


Output of day of week

Output of millisecond

[ST]

SP_DATERD(SM400,D0); BCDP(SM400,D0,K4Y70); BCDP(SM400,D1,K2Y68); BCDP(SM400,D2,K2Y60); BCDP(SM400,D3,K2Y58); BCDP(SM400,D4,K2Y50); BCDP(SM400,D5,K2Y48); BCDP(SM400,D6,K1Y44); BCDP(SM400,D7,K3Y38);

[Operation]



### Precautions

- Even when the incorrect clock data are set in the CPU module, this instruction reads the data and stores them to the devices. (Example: February 30) When setting clock data using the DATEWR instruction or GX Works2, set the correct clock data.
- The difference of data when reading the millisecond clock data is 2ms maximum. (The difference between the data stored at the clock element in the CPU and data read by this instruction.)
- Digit specification of bit devices can be used when the following conditions (a) and (b) are satisfied. If the following conditions are not satisfied, an INSTRCT CODE ERR. (error code: 4004) occurs.
- Digit specification: K4
- Start device: multiple of 16

699

# Addition of extended clock data

### S(P)_DATE+

- Basic High performance Process Redundant Universal LCPU
- · High Performance model QCPU: Supported if first 5 digits of the serial number are "07032" or later
- · Process CPU: Supported if first 5 digits of the serial number are "07032" or later
- Redundant CPU: Supported if first 5 digits of the serial number are "07032" or later

Structured ladder/FBD	ST
S_DATE+	
- EN ENO	Not supported
— s1 d —	
s2	

Any of the following instruction can go in the dotted squares. S_DATE+, SP_DATE+

### ■Executing condition

Instruction	Executing condition
S_DATE+	
SP_DATE+	

### ■Argument

Input/output argument	:	Name		Descri	ption	Data type				
Input argument	:	EN		Executir	ng condition	Bit				
		s1		Start nu	mber of the device that stores th	ANY16(04)				
		s2		Start nu	mber of the device that stores th	ANY	16(04)			
Output argume	nt	ENO		Executio	on result			Bit		
		d		Start nu addition	mber of the device that stores th result	ANY16(04)				
Setting	Internal device R, Z		R JD\D UD\GD Zn					Constant	Others	

Setting	Internal dev	ice	R, ZR	R, ZR J□\□		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word				
(s1)	-	0		—					
(s2)	-	0		—					
(d)	—	0		—					

### Processing details

 Adds the clock data specified for (s2) to the clock data specified for (s1), and stores the result to (d) and the following devices.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Setting data           (2)         [0]           Hour         (0~23)           (2)         [1]           Minute         (0~59)           (2)         [2]           Second         (0~59)           (2)         [3]           -         (0~999)           7:48:10:500 to 6:32:40:875 result	$ \begin{array}{c c} & \text{Setting data} \\ \hline (0 & Hour & (0 \sim 23) \\ \hline (0 & 1) & Minute & (0 \sim 59) \\ \hline (0 & 3) & - & \\ \hline (0 & 4) & Millisecond & (0 \sim 999) \\ \hline (0 & 999) \\$
(a)       [0]       Hour: 6         (a)       [1]       Minute: 32         (a)       [2]       Second: 40       +         (a)       [3]       -         (a)       [4]       875	⁽²⁾	
example, if the time 20:20:: (a) [0] Hour: 14 (b) [1] Minute: 20 (c) [2] Second: 30 (c) [3] - (c) [4] 875 + + + + + + + + + + + + + + + + + + +	20:500 is added to 14:20:30:875, 1 <ul> <li>(a) [1]</li> <li>(bur: 20)</li> <li>(c) [2]</li> <li>(c) [2]</li> <li>(c) [3]</li> <li>(c) [4]</li> <li>(c) [4]</li> </ul>	the result becomes 10:40:51:375 instead of 34:40:51:375. (d [0] Hour: 10 (d [1] Minute: 40 (d [2] Second: 51 (d [3] - (d [4] 375
When the data the data of day that store the d Since the data	3], (s2)[3], and (d)[3] are not used a read by the S(P)_DATERD can d [0] d [1] d [2] d [3] d [4] Hour Minute Second Day of week Millisecond are read by the S(P)_DATERD instruction of week are stored between the devided that of second and millisecond.	be added as they are.

### Operation error

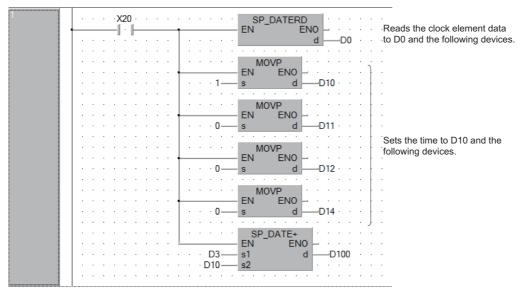
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The values set for (s1) and (s2) are outside of the setting range. ( $\ensuremath{\mathbb{C}}$ Processing details)	—	0	0	0	0	0
4101	The device specified for (s1), (s2) or (d) exceeds the corresponding device range.	—	—	—	—	0	0

### Precautions

• Digit specification of bit devices can be used when the following conditions are satisfied. If the following conditions are not satisfied, an INSTRCT CODE ERR. (error code: 4004) occurs.

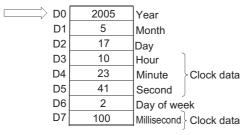
Digit specification: K4


Start device: multiple of 16

7

### Program example

• In the following program, 1 hour is added to the clock data read from the clock element when X20 turns ON, and the result is stored to D100 and the following devices.


[Structured ladder/FBD]



[Operation]

Clock elements

Clock data read by the SP_DATERD instruction.



• Addition by the SP_DATE+ instruction.

4

D3	
D4	Minute: 23
D5	Second: 41
D6	2(Tuesday)
D7	100

D10	Hour: 1
D11	Minute: 0
D12	Second: 0
D13	-
D14	0

	D100	
	D101	Minute: 23
>	D102	Second: 41
	D103	_
	D104	100

# Subtraction of extended clock data

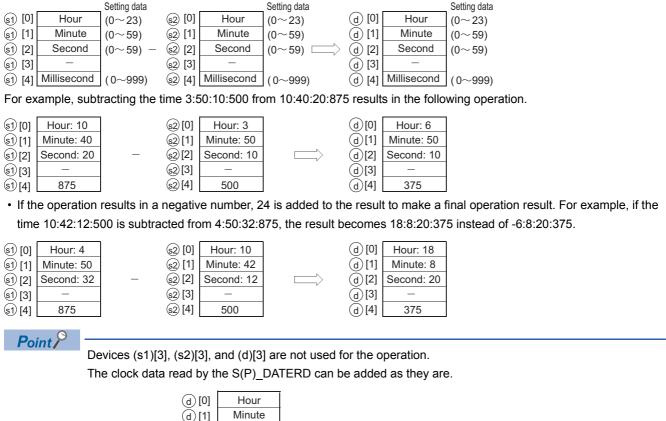
## S(P)_DATE-

- Basic High Process Redundant Universal LCPU
- · High Performance model QCPU: Supported if first 5 digits of the serial number are "07032" or later
- · Process CPU: Supported if first 5 digits of the serial number are "07032" or later
- Redundant CPU: Supported if first 5 digits of the serial number are "07032" or later

Structured ladder/	FBD	ST
EN EN s1 s2		Not supported

Any of the following instruction can go in the dotted squares. S_DATE-, SP_DATE-

### ■Executing condition


Instruction	Executing condition
S_DATE-	
SP_DATE-	

### ■Argument

Input/output Name argument				Description					Data type			
Input argume	nt	EN		Executi	ng condition				Bit			
		s1		Start nu	mber of the dev	ice that stores th	ne clock data		ANY16(04)			
		s2			art number of the device that stores the clock data to be btracted					ANY16(04)		
Output argum	ent	ENO	Execution result					Bit				
		d			Start number of the device that stores the clock data of the subtraction result					ANY16(04)		
Setting	Internal of	device R,		R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word						
(s1)	-	0			—							
(s2)	-	0			—							
(d)	-	0			—							

### Processing details

• Subtracts the clock data specified for (s2) from the clock data specified for (s1), and stores the result to (d) and the following devices.





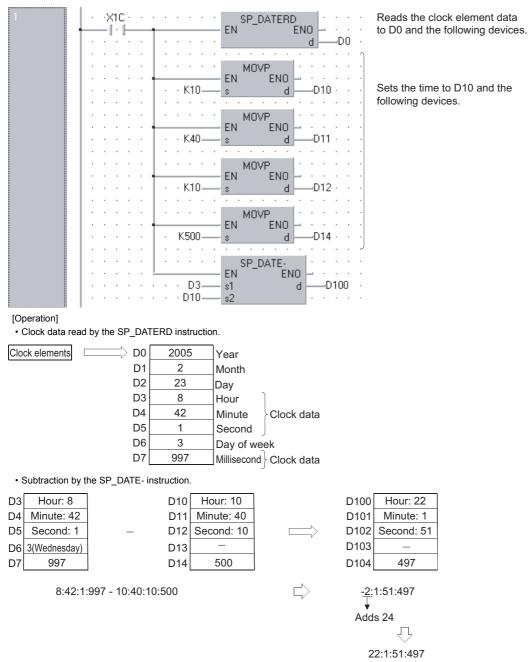
When the data are read by the S(P)_DATERD instruction, the data of day of week are stored between the devices that store the data of second and millisecond. Since the data of day of week are not operated in the S(P)_DATE- instruction, the data can be added as they are.

### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The values set for (s1) and (s2) are outside of the setting range. ( $\ensuremath{\mathbb{I}}$ Processing details)	—	0	0	0	0	0
4101	The device specified for (s1), (s2) or (d) exceeds the corresponding device range.	—	—	—	—	0	0

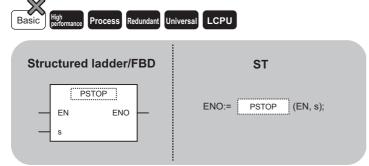
### Precautions


• Digit specification of bit devices can be used when the following conditions are satisfied. If the following conditions are not satisfied, an INSTRCT CODE ERR. (error code: 4004) occurs.

Digit specification: K4

Start device: multiple of 16

### Program example


• In the following program, the clock data stored in D10 and the following devices are subtracted from the clock data read from the clock element when X1C turns ON, and the result is stored to D100 and the following devices. [Structured ladder/FBD]



# 7.17 Program Control Instructions

# **Program standby**

### PSTOP(P)



Any of the following instruction can go in the dotted squares. PSTOP, PSTOPP

### ■Executing condition

Instruction	Executing condition
PSTOP	
PSTOPP	

### ■Argument

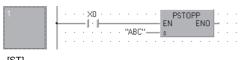
Input/output Name argument				Description					Data type			
Input argument EN				Executing condition E					Bit	Bit		
S				Character string data of the file name whose program is set to the standby type, or start number of the device that stores character string data					String			
Output argume	ent	ENO		Execution result				Bit				
Setting	Internal d	ernal device		R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				\$		
(S)	—	0			—		-			0	-	

### Processing details

- Places the program whose file name is stored in the device specified for (s) in a standby type.
- Only the programs stored in the drive number 0 (program memory/built-in RAM) can be set as the standby type.
- The specified program is placed in a standby type when END processing is performed.
- This instruction will be given priority even in cases when a program execution type has been specified in the parameters.
- It is not necessary to specify the extension (.QPG) with the file name. (Only .QPG files will be acted on.)

### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The program with the file name specified for (s) does not exist.	—	0	0	0	0	0
2412	The program type of the file name specified for (s) is the SFC program.	—	0	0	0	0	0
4101	The file name target device (s) exceeds the corresponding device range.	—	0	0	0	0	0

7 APPLICATION INSTRUCTIONS

7.17 Program Control Instructions

### Program example

• In the following program, the program with the file name ABC is set in a standby type when X0 turns ON. [Structured ladder/FBD]



[ST] PSTOPP(X0,"ABC");

# Program output OFF standby

POFF(P)				
Basic High performance	Process	Redundant	Universal	LCPU



Any of the following instruction can go in the dotted squares. POFF, POFFP

### ■Executing condition

Instruction	Executing condition
POFF	
POFFP	

### ■Argument

Input/outpu argument	t	Name		Description Data type						a type		
Input argumen	nt	EN		Executing condition Bit					Bit			
S					File name whose program is set to the standby type by turning OFF the output, or start number of the device that stores file name					ng		
Output argume	ent	ENO		Execution	on result				Bit			
Setting	Internal d	evice	R, ZI	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit		\$					
(S)	-	0								0	—	

### Processing details

- · Changes the execution type of the program whose file name stored in the device specified for (s).
- Scan execution type:Turns OFF outputs at the next scan (Non-execution processing). Programs are set as the standby type after the subsequent scan.
  Low speed execution type:Stops the execution of the low speed execution type program and turns OFF outputs at the next scan. Programs are set as the standby type after the subsequent scan.
- Only the programs stored in the drive number 0 (program memory/built-in RAM) can be set as the standby type.
- This instruction will be given priority even in cases when a program execution type has been specified in the parameters.
- It is not necessary to specify the extension (.QPG) with the file name. (Only .QPG files will be acted on.)

### Operation error

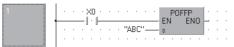
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The program with the file name specified for (s) does not exist.	—	0	0	0	0	0
2411	The program with the file name specified for (s) is not registered in the parameters.	—	0	0	0	0	0
4101	The file name target device (s) exceeds the corresponding device range.	—	0	0	0	0	0

### Point P

Non-execution processing is identical to the processing that is performed when the condition settings for each coil instruction are in the OFF state.

The operation results for each coil instruction following non-execution processing will be as follows,


regardless of the ON/OFF status of the condition settings.

- OUT instruction: Forced OFF
- SET instruction, RST instruction, SFT instruction, Basic instruction, Application instruction: Maintains status
- PLS instruction, Pulse generation instruction (DP): Processing identical to when condition contacts are OFF
- Current value of low speed/high speed timer: 0
- Current value of retentive timer, Current value of counter: Preserves

### Program example

• In the following program, the program with the file name ABC is set in the nonexecutable and the standby type when X0 turns ON.

[Structured ladder/FBD]



[ST] POFFP(X0,"ABC");

# Registering program as scan execution type

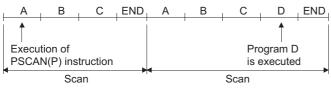
# PSCAN(P)

Any of the following instruction can go in the dotted squares. PSCAN, PSCANP

### ■Executing condition

Instruction	Executing condition
PSCAN	
PSCANP	

### ■Argument


Input/output argument	t	Name		Descri	Description					Data type			
Input argumen	t	EN		Executing condition B						Bit			
	S		File name whose program is set to the scan execution type, or start number of the device that stores file name					String					
Output argume	ent	ENO		Execution	on result				Bit				
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				\$			
(s)	—	0			-					0	—		

### Processing details

- Sets the program whose file name is stored in the device specified for (s) in the scan execution type.
- Only the programs stored in the drive number 0 (program memory/built-in RAM) can be set in the scan execution type.
- · Specified programs assume the scan execution type with END processing.

### Ex.

When programs A, B, and C exist and program A performs the PSCAN(P) instruction of program D.



- This instruction will be given priority even in cases when a program execution type has been specified in the parameters.
- It is not necessary to specify the extension (.QPG) with the file name. (Only .QPG files will be acted on.)

### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The program with the file name specified for (s) does not exist.	-	0	0	0	0	0
2411	The program with the file name specified for (s) is not registered in the parameters.	-	0	0	0	0	0
2504	The specified file name is the SFC program, and the SFC program for the other file name has been already started. (Dual activation error of the SFC program)	—	0	0	0		—
4101	The file name target device (s) exceeds the corresponding device range.	-	0	0	0	0	0
4131	The SFC program file name is specified while the SFC program with another file name is already operating. (Double SFC program activation error)	-	_	—	—	0	0

### Program example

• In the following program, the program with the file name ABC is set in the scan execution type when X0 turns ON. [Structured ladder/FBD]



[ST] PSCANP(X0,"ABC");

# Registering program as low-speed execution type

PLOW(P)	
Basic High performance Process Redundant	Universal LCPU
Structured ladder/FBD	ST
PLOW	

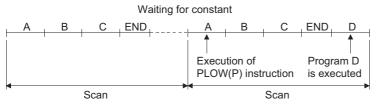
EN ENO ENO:= PLOW (EN, s);

Any of the following instruction can go in the dotted squares. PLOW, PLOWP

### ■Executing condition

Instruction	Executing condition
PLOW	
PLOWP	

### ■Argument


Input/output argument	t	Name		Descri	ption			Data type					
Input argumen	t	EN		Executing condition Bit									
S					File name whose program is set to the low-speed execution type, Stri or start number of the device that stores file name						tring		
Output argume	ent	ENO		Execution	on result				Bit				
Setting	Internal device R, ZR		R				Zn		Constant	Others			
data	Bit	Word	-		Bit	Word				\$			
(s)	—	0			-				0	—			

### Processing details

- Sets the program whose file name is stored in the device specified for (s) in the low-speed execution type.
- Only the programs stored in the drive number 0 (program memory/built-in RAM) can be set in the low-speed execution type.
- · Specified programs assume the low-speed execution type with END processing.

### Ex.

When programs A, B, and C exist and program A performs the PLOW(P) instruction of program D. (Assume that the constant scan has been set.)



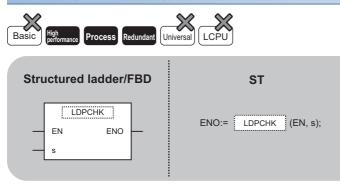
- This instruction will be given priority even in cases when a program execution type has been specified in the parameters.
- It is not necessary to specify the extension (.QPG) with the file name. (Only .QPG files will be acted on.)

### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The program with the specified file name does not exist.	—	0	0	—	—	—
4235	The CHK instruction exists within the program whose file name has been specified.	_	0	0	—	—	_

### Program example


• In the following program, the program with the file name ABC is set in the low-speed execution type when X0 turns ON. [Structured ladder/FBD]



[ST] PLOWP(X0,"ABC");

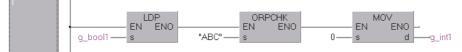
# Checking program execution status

### LDPCHK, ANDPCHK, ORPCHK



Any of the following instruction can go in the dotted squares. LDPCHK, ANDPCHK, ORPCHK

### ■Executing condition


Instruction	Executing condition
LDPCHK, ANDPCHK, ORPCHK	Non-conditional execution

### ■Argument

Input/output argument	t	Name	ne Description				C				Data type		
Input argumen	t	EN		Executing condition						Bit			
S					Start device number that stores file name of a program whose execution status is checked						String		
Output argume	ent	ENO		Execution	xecution result					Bit			
Setting	Internal d	evice	R, Z	२	JO\O UO\GO Zn			Zn		Constant	Others		
data	Bit	Word			Bit	Word				\$			
(S)	—	÷								0	-		

### Processing details

- · Checks whether the program of the specified file name is in execution or not (non-execution).
- The instruction is in conduction state when the program of the specified file name is in execution, and the instruction is in non-conduction state when the program is in non-execution status.
- Specify the file name without an extension (.QPG). For example, specify "ABC" when the file name is ABC.QPG.
- The ORPCHK instruction performs OR operation between the operation result of "(s1), (s2)" and EN. Therefore, ENO always outputs ON when connecting EN to the left base line directly, or using the bit device to be always set to ON like SM400. When using the ORPCHK instruction, connect EN and ENO in series as shown below.



• Non-execution indicates that the program execution type is a stand-by type. Execution indicates that the program execution type is a scan execution type (including during output OFF (during non-execution processing)), low speed execution type or fixed scan execution type.

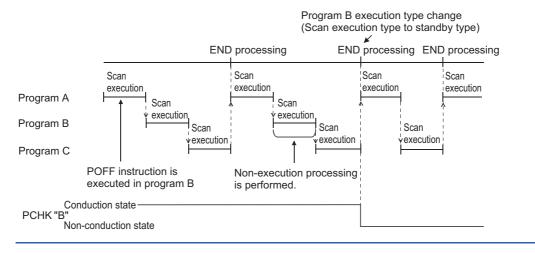
### Operation error

 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The program with the specified file name does not exist.	—	0	0	0	—	—

### Program example

• In the following program, Y10 is turned ON when the program file "ABC.QPG" is in execution. [Structured ladder/FBD]


1	•	•	÷	•	•	•	•	•	•	•	LDPCH			CH	K ENI		•		"10	•
							"A	вс	"_	_	d	14			.1.47					
		•		•	1	•				•	1		1			•	•	•	•	•

[ST]

Y10: = LDPCHK(TRUE,"ABC");

Point P

- The checking program execution status instruction (PCHK) is in conduction state when the program of the specified file name (target program) is in execution, and the instruction is in non-conduction state when the program is in non-execution.
- When the target program is set to non-execution (standby type) with the POFF(P) instruction, the PCHK instruction is in conduction state while the non-execution processing of the target program is being performed.
- At the END processing of the scan where the non-execution processing is completed, the target program is put into non-execution (standby type), and the PCHK instruction is brought into non-conduction state. Therefore, note that if the PCHK instruction is executed for the program where the non-execution processing has been completed by the POFF(P) instruction, the PCHK instruction may be brought into conduction state.
- The following chart shows the operation performed when program A executes the POFF(P) instruction of program B and program C executes the PCHK instruction of program B with the programs being executed in order of program A, program B and program C.



# 7.18 Other Instructions

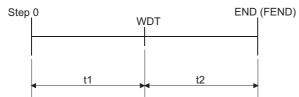
## **Resetting watchdog timer**

### WDT(P)

Basic High performance Process Redundant	Universal
Structured ladder/FBD	ST
EN ENO	ENO:= WDT (EN);

Any of the following instruction can go in the dotted squares. WDT, WDTP

### ■Executing condition


Instruction	Executing condition
WDT	
WDTP	

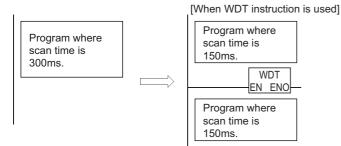
### ■Argument

Input/output Name argument					ption	Data type							
Input argument EN				Executii	ng condition	Bit							
Output argument ENO				Execution result						Bit			
Setting Internal		device F		R	10/0		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word							
_	—												

### Processing details

- Resets a watchdog timer during the execution of a sequence program.
- Used in cases where the scan time exceeds the value set for the watchdog timer due to prevailing conditions. If the scan time exceeds the watchdog timer setting value on every scan, change the watchdog timer settings on parameter settings of the programming tool.
- Make sure that the setting for t1 from step 0 to the WDT(P) instruction and the setting for t2 from the WDT(P) instruction to the END processing and FEND instruction not to exceed the setting value of the watchdog timer.




- The WDT(P) instruction can be used two or more times during a single scan, but a care should be taken in such cases, because longer time is required for turning OFF the output at the error occurrence.
- Scan time values stored in the special register will not be cleared even if the WDT(P) instruction is executed. Accordingly, there are times when the value for the scan time for the special register is greater than the value of the watchdog timer set in the parameters.

### **Operation error**

• There is no operation error.

### Program example

• The program which prevents occurrence of the watchdog timer error when the watchdog timer is set to 200ms, and the scan time from step 0 to the END processing is 300ms.



# Timing pulse generation

# DUTY Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST ST ENO Image: Comparison of the structure o

The following instruction can go in the dotted squares. DUTY

### ■Executing condition

Instruction	Executing condition
DUTY	

### ■Argument

Input/output Name argument				Descri	iption	Data type							
Input argument EN n1				Executi	Executing condition Bit								
				Number of scans to be turned ON							ANY16		
n2				Number	r of scans to be	ANY	ANY16						
Output argun	ent	ENO		Execution									
d				User tin	ning clock (SM4	Bit							
Setting	Internal	ernal device		R	JD/D		UD\GD	Zn	C	Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
n1	0	0									—		
n2	0	0									-		
(d)	O*1	_									—		

*1 Only for devices SM420 to SM424 and SM430 to SM434.

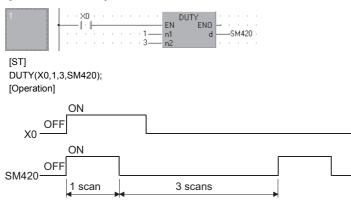
### Processing details

• Turns ON the user timing clock (SM420 to SM424, SM430 to M434) specified for (d), for the duration equivalent to the number of scans specified for n1, and turns OFF for the duration equivalent to the number of scans specified for n2.

		ON		_	
SM420 to SM424	OFF				
SM430 to SM434		n1 scans	n2 scan	s 🖕	

- Scan execution type programs use from SM420 to SM424, and low-speed execution type programs use from SM430 to SM434.
- The following will take place if both n1 and n2 have been set to 0.
- n10, n2  $\geq$  0 from SM420 to SM424 and from SM430 to SM434 stays OFF.
- n1 > 0, n2 = 0 from SM420 to SM424 and from SM430 to SM434 stays ON.
- The data specified for n1, n2, and (d) is registered to the system when the DUTY instruction is executed, and the timing pulse is turned ON and OFF by the END processing.

# Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The values of n1 and n2 are less than 0.	0	0	0	0	0	0
4101	The device specified for (d) is not from SM420 to SM424 or from SM430 to SM434.	0	0	0	0	0	0

#### Program example

• In the following program, SM420 is turned ON for 1 scan, and OFF for 3 scans when X0 turns ON.

[Structured ladder/FBD]



# **Time check**

# ТІМСНК



· Basic model QCPU: Supported if first 5 digits of the serial number are "04122" or later

Stru	ctured ladder/l	BD	ST
	TIMCHK EN ENO s1 d s2		ENO:= TIMCHK (EN,s1, s2, d);

The following instruction can go in the dotted squares. TIMCHK

#### ■Executing condition

Instruction	Executing condition
ТІМСНК	

### ■Argument

Input/outpu argument	t	Name		Descri	ption				Data	a type		
Input argumer	ıt	EN		Executi	xecuting condition Bit							
s1				Device	Device that stores the measured current value ANY16							
s2				Device	Device that stores the set value for measurement ANY16							
Output argument ENO				Execution result Bit								
		d		Device to be turned ON at the end of the process					Bit			
Setting	Internal d	nternal device R,		R	JD/D		UD\GD	Zn		Constant C	Others	
data	Bit	Word	1		Bit	Word				К, Н		
s1	—	0			—						-	
s2	0	0	0		0						-	
(d)	0	—			—						—	

#### Processing details

- Measures the ON time of the device used as a condition, and turns ON the device specified for (s2) if the condition device remains ON for longer than the time set to the device specified for (d).
- The current value of the device specified for (s1) is cleared to 0 and the device specified for (d) is turned OFF at the rising edge of the execution command. The current value of the device specified for (s1) and the ON status of the device specified for (d) are retained after the execution command turns OFF.
- Set the setting value of measurement in unit of 100ms.
- When the value other than 0 to 32767 is specified for (s2), (d) turns ON at the scan that is after the execution command has turned ON.

# Operation error

• In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	When the device which cannot be specified is specified	—	—	—	—	0	0

## Program example

• In the following program, the ON time of X0 is set to 5 seconds, the current value storage device is set to D0 and the device that will turn ON at time out is set to Y10.

[Structured ladder/FBD]



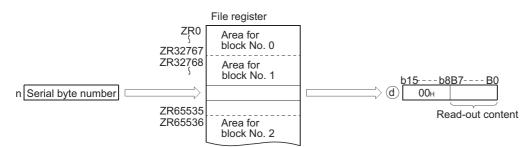
[ST] TIMCHK(X0,D0,50,Y10);

# Reading 1 byte directly from file register

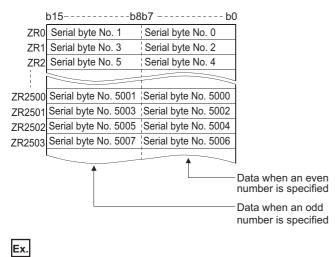
# ZRRDB(P)

Basic High Process Redundant Uni	versal LCPU
Structured ladder/FBD	ST
EN ENO n d	ENO:= ZRRDB (EN, n, d);

Any of the following instruction can go in the dotted squares. ZRRDB, ZRRDBP


# ■Executing condition

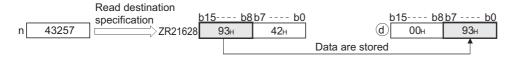
Instruction	Executing condition
ZRRDB	
ZRRDBP	


# ■Argument

Input/output argument	•				Description I					Data type		
Input argumen	t	EN		Executi	Executing condition Bit							
n				Serial byte number whose file register is read ANY						NY32		
Output argument ENO				Execution result E					Bit			
	d			Start nu	Start number of the device that stores read data ANY16							
Setting	Internal d	ernal device		R, ZR J□\□			UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word			К, Н			
n	0									0	—	
(d)	0								—	—		

• Reads the serial byte number specified for n that does not signify a block number, and stores to the lower 8 bits of the device specified for (d). The upper 8 bits specified for (d) will become 00H.




· File register numbers correspond to serial byte numbers are as indicated below.



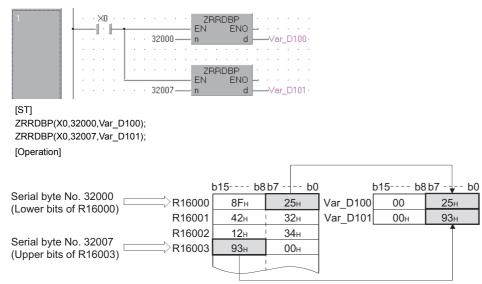
If n = 23560 is specified, the data at the lower 8 bits of ZR11780 will be read.



If n = 43257 is specified, the data at the upper 8 bits of ZR21628 will be read.



#### Operation error


 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	A device number (serial byte number) that exceeds the allowable specification range has been specified.	—	—	—	—	0	0

# Program example

• In the following program, the lower bits of ZR16000 and the upper bits of R16003 are read when X0 turns ON, and the results are stored to Var_D100 and Var_D101.

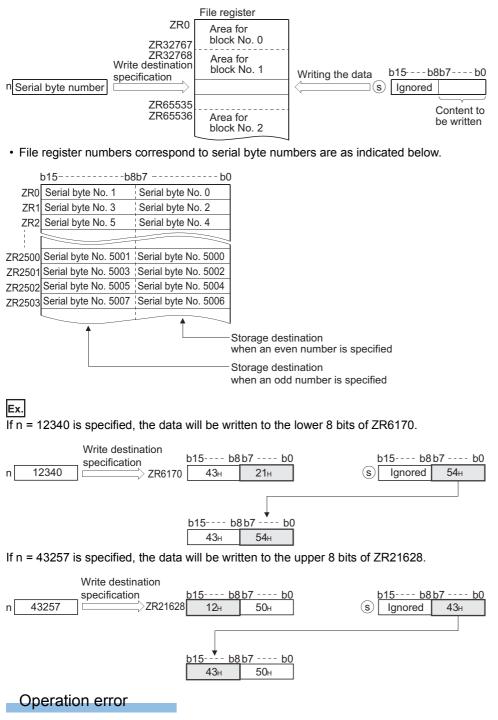
[Structured ladder/FBD]



# Writing 1 byte directly to file register

#### 

Any of the following instruction can go in the dotted squares. ZRWRB, ZRWRBP


## ■Executing condition

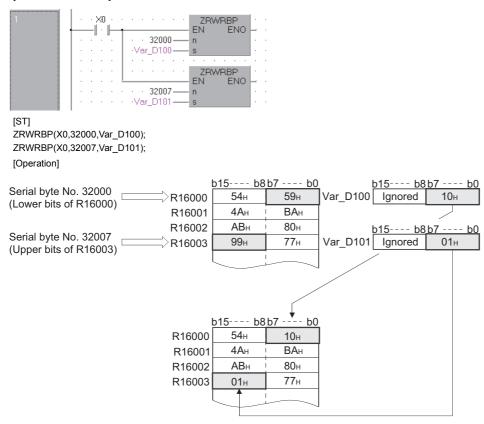
Instruction	Executing condition
ZRWRB	
ZRWRBP	

# ■Argument

Input/output argument	t	Name		Descri	ption				Dat	Data type			
Input argumen	t	EN		Executi	vecuting condition Bit								
	n		Serial b	erial byte number whose file register is written ANY32									
S				Start number of the device that stores data to be written ANY16						16			
Output argume	ent	ENO		Execution	xecution result Bit								
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word		Bit Word					К, Н				
n	0										-		
(S)	0										-		

• Writes the lower bits of data stored in the device specified for (s) that does not signify a block number to the file register of the serial byte number specified for n. The upper 8 bits of data in the device specified for (s) are ignored.




 In the following case, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	A device number (serial byte number) that exceeds the allowable specification range has been specified.	—	—	—	—	0	0

# Program example

 In the following program, the data at the lower bits of Var_D101 are written to the lower bits of ZR16000 and the upper bits of R16003 when X0 turns ON.

[Structured ladder/FBD]



# **Reading indirect address**

# ADRSET(P)

Basic	High performance Process R	edundant Ur	niversal LCPU
Stru	uctured ladder/	FBD	ST
_	ADRSET EN ENO s d	] 	ENO:= ADRSET (EN, s, d);

Any of the following instruction can go in the dotted squares. ADRSET, ADRSETP

# ■Executing condition

Instruction	Executing condition
ADRSET	
ADRSETP	

# ■Argument

Input/outpu argument	t	Name		Descri	cription					Data type		
Input argument EN				Executi	ng condition				Bit			
n				Device	Device that reads out indirect address					ANY_SIMPLE		
Output argument ENO			Executi	Execution result					Bit			
d				Start number of the device that stores indirect address of the device specified for s					ANY32			
Setting	Internal d	levice	R, Z	R	JD\D UD\GD Zn					Constant	Others	
data	Bit	Word	1		Bit	Word						
(s)	0				—							
(d)	0			—								

# Processing details

• Stores the indirect address of the device specified for (s) in (d). The address stored in the device specified for (d) is used when an indirect device address is performed by the sequence program.

- Digit specification of bit devices cannot be set for (s).
- Indirect address specification (@D0) cannot be set. To use indirect address specification, use a ladder program.

## Operation error

• There is no operation error.

# Numeric input from keyboard

KEY			
Basic	High performance Process	Redundant U	niversal LCPU
Stru	ctured ladde	r/FBD	ST
	KEY		
_	EN EN	>  -	ENO:= KEY (EN, s, n, d1, d2);
_	s d	1 -	·
_	n d	2 -	

The following instruction can go in the dotted squares. KEY

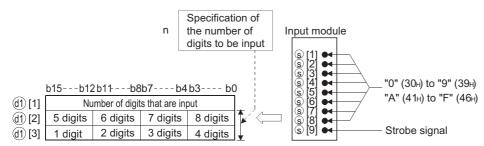
# ■Executing condition

Ο

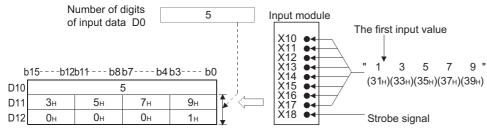
(d2)

Instruction	Executing condition
KEY	

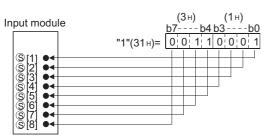
#### ■Argument


Input/outpu argument	t	Name		Descri	Description					Data type		
Input argumer	nt	EN		Executi	ng condition				Bit			
S					Start number or the array of the device of (X) to which a numeral is input					Array of bit (19)		
n				Number	of numeric dig	its to be input			ANY	16		
Output argument ENO			Execution result					Bit				
d1					Start number or the array of the device where the input numeral to be stored					Array of ANY16 (13)		
	-	d2		Bit devi	Bit device number to be turned ON at the input completion				Bit			
Setting	Internal de	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
(s)	⊖(X only) ^{*1}	—			_			—			—	
n	0	0			0 0			0			—	
(d1)	—	0	0					—	-		-	

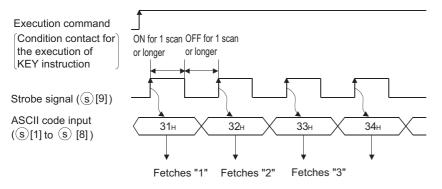
 $^{\circ}$ 


*1 Specify the array in which X is set as a device for global label.

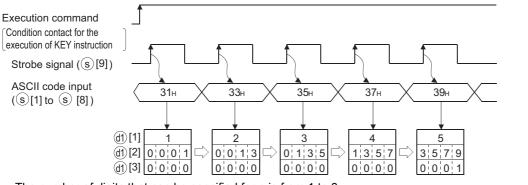
Ο


 Fetches ASCII data from the 8 points of input (X) specified for (s), converts it to hexadecimal values and stores the result to (d1) and the following devices.




For example, in a case where the number of digits (n) has been set to 5, and the values "31", "33", "35", "37" and "39" have been input through X10 to X18 of the input module, the following will take place.

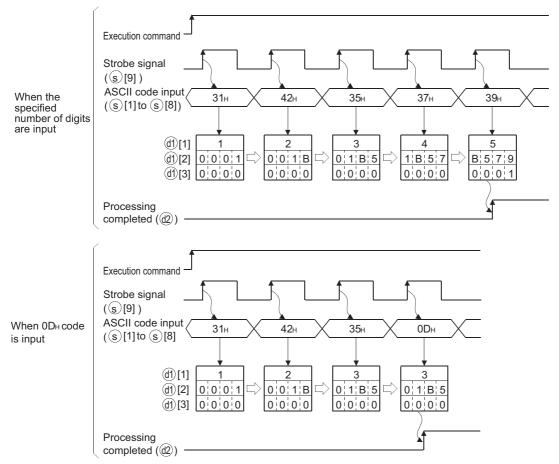



• Numeric input to input (X) specified for undergoes bit development and inputs to (s)[1] through (s)[8] as the ASCII code corresponding to the numbers. ASCII code which can be input is from 30H (0) to 39H (9), and from 41H (A) to 46H (F).



• After ASCII code is input to (s)[1] through (s)[8], the strobe signal at (s)[9] turns ON to incorporate the specified numbers internally. The strobe signal should be held at its ON or OFF status for more than one scan of the sequence program. If this time is less than 1 scan, there will be cases when the data are correctly incorporated.




- Be sure to keep the execution command (condition contact for the KEY instruction execution) ON until the specified number of digits has been input. The KEY instruction cannot be executed if the execution command turns OFF.
- The digits for the numbers actually fetched to (d)[1] will be stored to the device specified for (d1), and the ASCII code data input to (d1)[2] and (d1)[3] are converted to hexadecimal BIN values, and stored.



- The number of digits that can be specified for n is from 1 to 8.
- Fetching of the input data is completed when any of the inputs shown below has been made. At the completion, the bit device specified for (d2) is turned ON.
- When the number of digits specified for n has been input

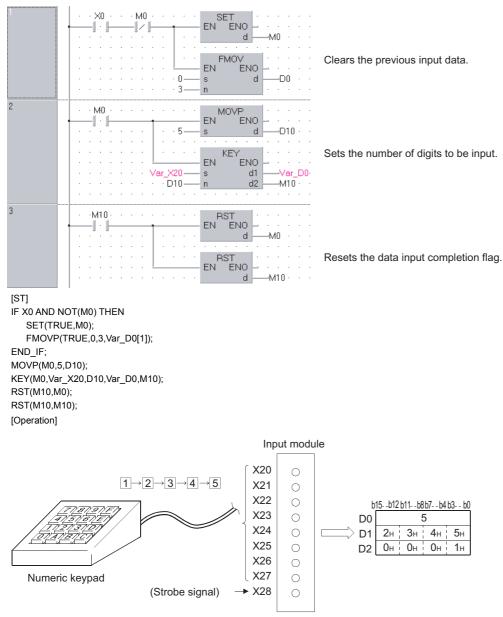
• When the "0DH" code has been input

For example, the operations at the location specified if n = 5 will be as indicated below.



• To perform input processing for a second time, clear the number of input digits and input data stored in (d1), and turn off the specified device for (d2) at the user program. If (d1) is not cleared and (d2) not turned OFF, the next input processing cannot be performed.

## Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The device specified for (s) is not an input (X) device. The number of digits specified for n is outside the range of 1 to 8.	—	0	0	—	—	—

### Program example

• In the following program, the data of the 5 or fewer digits are fetched from the numeric keypad connected to the devices from Var_X20 (X20) and the following devices when X0 turns ON, and they are stored to Var_D0 (D0) and the following devices.

[Structured ladder/FBD]



# Batch save and recovery of index registers

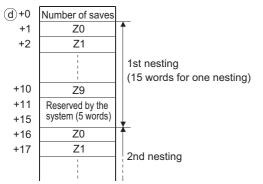
# 

Any of the following instruction can go in the dotted squares. ZPUSH, ZPUSHP, ZPOP, ZPOPP

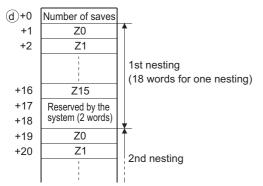
## ■Executing condition

Instruction	Executing condition
ZPUSH, ZPOP	
ZPUSHP, ZPOPP	

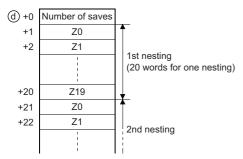
# ■Argument


Input/output argument	•				escription					Data type			
Input argumen	nput argument EN Ex				ng condition				Bit	Bit			
Output argument ENO				Execution result					Bit				
d					Start number of the device whose index registers are saved or recovered				ANY16				
Setting	Internal d	evice	R, Z	R	JD/D		U🗖\G🗖 Zn			Constant	Others		
data	Bit	Word			Bit Word					К, Н			
(d)	—	0			—	•				-			

#### ■ZPUSH(P)


- Saves the content of the following index registers to (d) and the following devices. (When content of an index register are saved, (d) + 0 (the number of saves made) is increased by 1.)
- Basic model QCPU Z0 to Z9
   High Performance model QCPU. Process CPU. Redundant CPU Z0 to Z15
- High Performance model QCPU, Process CPU, Redundant CPU
   Universal model QCPU, LCPU
- The ZPOP(P) instruction is used for data recovery. The ZPUSH(P) and ZPOP(P) instructions are used as a pair and can be nested.

Z0 to Z19


- If nesting has been done, each time the ZPUSH(P) instruction is executed, the field used following (d) will be added, so a field large enough to accommodate the number of times the instruction will be used should be reserved from the beginning.
- The composition of the field used following (d) is as shown below.
- When using Basic model QCPU



• When using High Performance model QCPU, Process CPU, and Redundant CPU

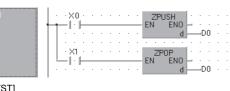


When using Universal model QCPU and LCPU



#### ■ZPOP(P)

• Recovers the contents saved in (d) and the following devices to the index register. (When the saved content is read out to the index register, (d) + 0 (the number of saves made) is decreased by 1.)


# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The content of (d)+ 0 (number of saves) is 0 in the ZPOP(P) instruction.	0	0	0	0	0	0
4101	The range for the number of points to be used for (d) and later by the ZPUSH(P) instruction exceeds the corresponding device range.	0	0	0	0	0	0

### Program example

• In the following program, the data of the index register which is prior to call the subroutine program are saved to D0 and the following devices, when using the index registers within the subroutine program following P0. [Structured ladder/FBD]



[ST] ZPUSH(X0,D0); ZPOP(X1,D0);

#### Precautions

When using the ZPUSH/ZPOP instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

# Reading module information

# UNIRD(P)

Basic	High performance Process Re	edundant Ur	niversal
Stru	ictured ladder/l	FBD	ST
_	EN ENO	_	ENO:= UNIRD (EN, n1, n2, d);
_	n1 d n2		

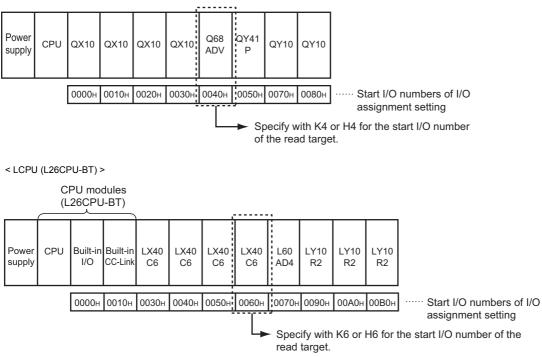
Any of the following instruction can go in the dotted squares. UNIRD, UNIRDP

# ■Executing condition

Instruction	Executing condition
UNIRD	
UNIRDP	

# ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	The value obtained by dividing "the start I/O number of the module information read source module" by 16 (0 to FFn)	ANY16
	n2	Number of read data (0 to 256)	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores module information	ANY16


Setting	Internal dev	ice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
n1	0	0		—				0	—
n2	0	0		_				0	—
(d)	—	0		—				—	—

- Reads the module information whose amount is specified for n2 from the module specified for n1, and stores the information to (d) and the following devices. (Reads the status of the actually mounted modules instead of the module type specified by I/O assignment.)
- The details of the module information are described as follows.

Bit b15 b14 b13 b ² Each module information	12 b11 b10 b9 b8 b7 b6 b5 b	4 b3 b2 b1 b0				
Bit	Item	Description				
		QCPU (Q mode)	LCPU			
b0	Number of I/O points	000: 16 points				
b1		001: 32 points 010: 48 points				
b2		011: 64 points				
		100: 128 points				
		101: 256 points				
		110: 512 points 111: 1024 points				
b3	Module type	000: Input module	000: Input module			
b4	1	001: Output module	001: Output module			
b5	1	010: I/O mixed module 011: Intelligent function module	011: Intelligent function module 111: CPU built-in I/O			
b6	External supply power status (For	1: External supply power is	0: Fixed			
50	future expansion)	connected.	0. Tixed			
		0: External supply power is not				
		connected.				
b7	Presence/absence of fuse blown	1: Module's fuse is blown. 0: Normal	0: Fixed			
b8	Online module change status/	1: An attempt to read module	0: Fixed			
	execution from the standby system	information on the extension base unit during online module change or				
		from the CPU module of standby				
		system in the redundant system.*1				
		0: Other than the above				
b9	Minor/medium error status	1: Minor/medium error occurred 0: Normal				
b10	Module error status	00: No module error				
b11		10: Medium error 01: Minor error				
		11: Serious error				
b12	Module standby status	1: Normal				
		0: Module error occurred				
b13	Empty	0: Fixed				
b14	Series type	0: Q series module 0: Fixed				
b15	Module mounting status	1: Module is mounted.				
		0: No module is mounted.				

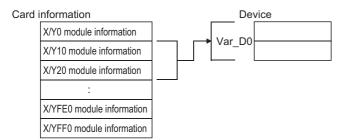
*1 The Universal model QCPU used in the multiple CPU system is turned ON during the online module change of the module controlled by the other CPU.

- The value of n1 is specified by the higher 3 digits of the start I/O number of the slot from which the module information is read, when it is expressed in 4 digits in hexadecimal.
- < QCPU (Q mode) >

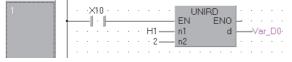


# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.


Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	When n1 is other than 0 to FFH. When n2 is other than 0 to 256. When a total of n1 and n2 is equal to or greater than 257.	—	0	0	0	0	O*2
	When n1 is other than 0 to 3FH. When n2 is other than 0 to 64. When a total of n1 and n2 is equal to or greater than 65.	Q00/ Q01	-	—	-	_	O ^{*3}
	When n1 is other than 0 to FH. When n2 is other than 0 to 16. When a total of n1 and n2 is equal to or greater than 17.	Q00J	-	-	-	—	-
4101	For the device number specified for (d) and later, the range whose amount is specified for n2 exceeds the corresponding device range.	0	0	0	0	0	0

*2 For only L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT

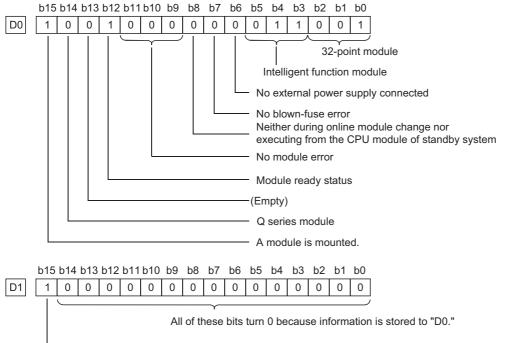

*3 For only L02SCPU, L02SCPU-P, L02CPU, and L02CPU-P

# Program example

 In the following program, the module information of I/O numbers 10H to 20H is stored to Var_D0 and the following devices when X10 turns ON.



#### [Structured ladder/FBD]




[ST]

UNIRD(X10,H1,2,Var_D0);

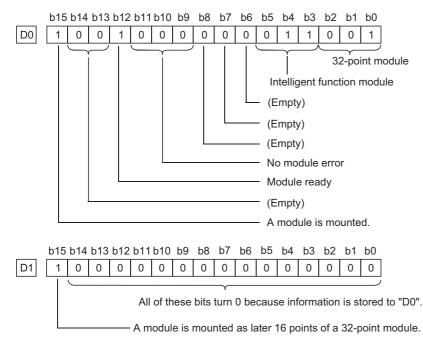
Readout result (When read to D0)

#### · 32-point intelligent function module for Q series



----- A module is mounted as latter 16 points of a 32-point module.

• With a 48- or 64-point module, the same content as those of D1 are stored to D2 or D2 and D3 respectively.


#### • 32-point module for A series

D0	5 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	For an A series module, all of these bits turn 0 because information is not stored.	
	A module is mounted.	
	A module is mounted.	
D1	5 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	All of these bits turn 0 because information is stored to "D0."	
	A module is mounted as latter 16 points of a 32-point module.	
<ul> <li>With</li> </ul>	3- or 64-point module, the same contents as those of D1 are stored to D2 or D2 and D3 respectively.	
• Em	slot	
	b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0	
D0		
	For an empty slot, all of these bits turn 0.	
• Onl	module change	
D0	b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0	
DU		
	Online module change in process	
• Mod	e information on the extension base unit is tried to be read from the standby system of the redundant system i	in
sep	te mode	
	b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0	

 D0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Execution from the standby system (Module information on the extension base unit is tried to be read from the standby system of the redundant system in separate mode.)

#### · 32-point intelligent function module for L series




# Reading module type

# TYPERD(P)



• Universal model QCPU: Supported if first 5 digits of the serial number are "11043" or later



Any of the following instruction can go in the dotted squares. TYPER, TYPERDP

### ■Executing condition

Instruction	Executing condition
TYPERD	
TYPERDP	

### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n	Start I/O number of the module whose module type is read ^{*1}	ANY16
Output argument	ENO	Execution result	Bit
	d	Instruction execution result and module type • d[0]: instruction execution result • d[1] to d[9]: module type	ANY16(09)

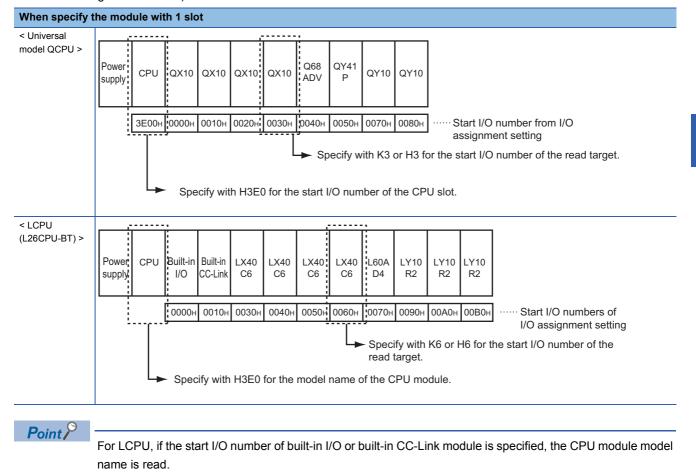
*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.

Setting	Internal dev	rice	R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
n	-	0	0					0	—
(d)	—	0		—		—	—		

## Setting data

Setting data	Description		Setting range	Setting side	Data type
n	The value obtained by di number of the module wh read" by 16	•	0 to FFH, 3E0 to 3E3H ^{*1}	User	BIN 16 bits
(d)	[0](b) (t		Within device range	System	BIN 16 bits
	(d)[1] : (d)[9]	Module type			String

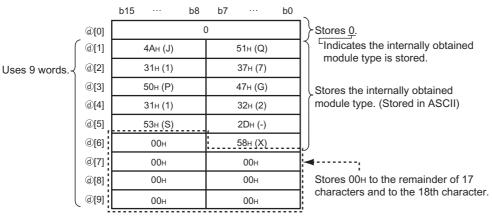
*1 For Universal model QCPU only


• Reads the module type of the slot specified for n, and stores data to (d) and the following devices.

For Universal model QCPU, the target modules are the following six types.

- CPU module
- Input module
- Output module
- I/O combined module
- Intelligent function module
  GOT (when bus is connected)

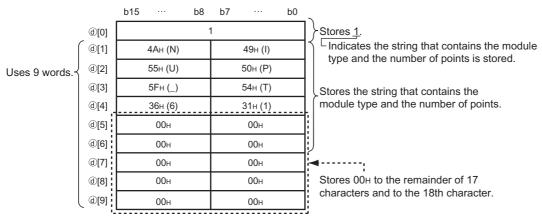
For LCPU, the target modules are the following four types.


- CPU module
- CPU module
- Input module
- Intelligent function module
- Apply the upper 3 digits of the start I/O number of the module where a module type is read (when the start I/O number is written in 4 digit hexadecimal) for n.



Specifying a m	Specifying a module that occupies two slots										
The start I/O numb For the I/O start nu Specify the upper	umber to	be spec	ified, re	fer to the	e manua	I for the	module				
When specifying QJ71GP21S-SX	The star	L CPU TOU/ 16PZ15-5XTEMOIVTEMOIVTEMOIVTEMOIVTEMOIVT									
Reading CPU module type for	Specify	the upp	er 3 dig	its of the	e start I/C	) numbe	er of eac	h CPU e	expresse	ed in 4-d	igit hexadecimal.
multiple CPU system configuration	Power supply			Q20UDH CPU	Q20UDH CPU	QY41 P	Q68 ADV	QY41 P	QY10	QY10	
	ľ			<u> </u>	3E30H	Spec	ify with	H3E3		start I/C	<ul> <li>Start I/O number from I/O assignment setting</li> <li>D number of the read target.</li> <li>controlled by the other CPU.</li> </ul>

• Stores instruction execution result to (d)[0], and module type to (d)[1] to (d)[9]. The following shows the values to be stored to (d).


• When the read target module obtains its module type internally (Ex. QJ71GP21-SX)



The following table shows the module type example to be stored to (d)[1] to (d)[9].

Target module	Module type example
CPU module	Q06UDEHCPU
Intelligent function module	QJ71GP21-SX
GOT	GOT1000

• When the read target module does not obtain its module type internally (Ex. QX40)



In (d)[1] to (d)[9], the string that contains the module type and the number of points is stored.

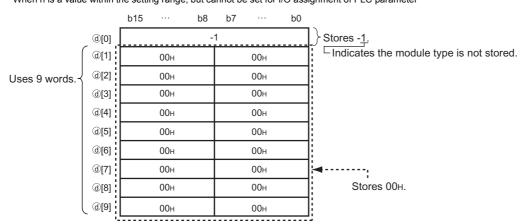
[Strings that indicate module type]

- · Input module: INPUT
- Output module: OUTPUT
- · I/O combined module: MIXED

· Intelligent function module (includes the QI60 and GOT): INTELLIGENT

#### [Strings that indicate the number of points]

- 16 points: _16
- 32 points: _32
- 64 points: _64
- 128 points: _128
- 256 points: _256
- 512 points: _512
- 1024 points: _1024


The following table shows the string example to be stored to (d)[1] to (d)[9].

Target module	Stored model name
Input module	INPUT_16
Output module	OUTPUT_32
I/O combined module	MIXED_64
Intelligent function module	INTELLIGENT_128

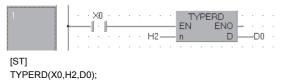
#### Others

For an empty slot, or when performing the online program change function When n is not a start I/O number of module

When n is a value within the setting range, but cannot be set for I/O assignment of PLC parameter



# Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2110	When the read target module cannot be communicated because of the failure.	-	-	—	—	0	0
4101	When exceeding the device range of 10 words from the device specified for (d).	-	-	—	—	0	0
	When specifying a value other than 0 to FFH, 3E0H to 3E3H for n.	-	-	—	—	0	—
	When specifying a value other than 0 to FFH, 3E0H for n.	-	-	—	—	—	0

## Program example

• In the following program, the module type of the module mounted to the slot with the start I/O number 0020H is stored to D0 and the following devices when X10 turns ON.

[Structured ladder/FBD]



# Trace set/reset

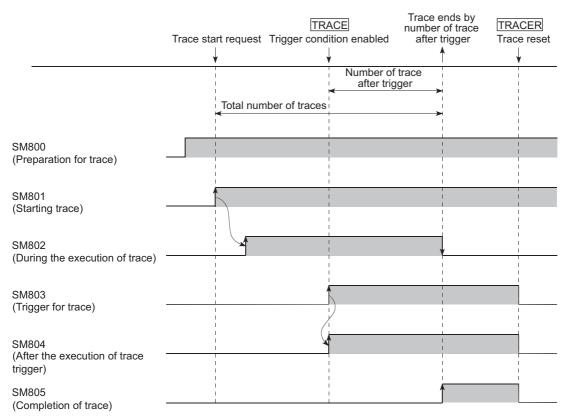
# TRACE, TRACER



• Universal model QCPU: Not supported for Q00UJCPU

Structured ladder/FBD	ST
	ENO:= TRACE (EN);

Any of the following instruction can go in the dotted squares. TRACE, TRACER


# ■Executing condition

Instruction	Executing condition
TRACE, TRACER	

# ■Argument

Input/output Name argument		Description					Data type				
Input argument EN		Executing condition					Bit				
Output argument ENO		ENO		Execution result			Bit	Bit			
Setting Internal device R,		R, Z	R	2 JD\D UD\GD Zn				Constant	Others		
data	Bit	Word			Bit	Word					
_	—										•

- The sampling trace function collects the specified device data of a CPU module consecutively.
- To execute the sampling trace, turn on SM801 while SM800 is turned on.



#### ■TRACE

- The TRACE instruction turns on SM803. In addition, the instruction stops the sampling trace by latching the sampling trace result, after sampling the number of the sampling trace (of after the set TRACE instruction is executed).
- The sampling is stopped if SM801 turns OFF during the trace execution.
- After the TRACE instruction is executed and the sampling trace is stopped, SM805 is turned on.
- Once the TRACE instruction is executed, the second and the subsequent TRACE instructions are ignored. When the TRACER instruction is executed, the TRACE instruction is enabled again.

#### **TRACER**

- The TRACER instruction resets the TRACE instruction. When the TRACER instruction is executed, the TRACE instruction is enabled again.
- · When the TRACER instruction is executed, SM803 to SM805 are turned OFF.

# Point P

- The target devices for the sampling trace and its timing can be set with a programming tool. For details of the sampling trace, refer to the user's manual (Function Explanation, Program Fundamentals) for the CPU module used.
- The sampling trace can be executed with a programming tool. For sampling trace execution with a programming tool, refer to the operating manual for the programming tool used.

## Operation error

• There is no operation error.

# Program example

• In the following program, the TRACE instruction is executed when X0 turns ON, and the TRACE instruction is reset with the TRACER instruction when X1 turns ON.

[Structured ladder/FBD]



[ST] TRACE(X0); TRACER(X1);

# Writing data to specified file

# **SP FWRITE**



- Universal model QCPU: Not supported for Q00UJCPU, Q00UCPU, and Q01UCPU
- Built-in Ethernet port LCPU: Supported
- LCPU: Not supported for L02SCPU and L02SCPU-P

Stru	ctured ladd	er/FBD	ST
	SP_FWRITE		
	EN E		ENO:= SP_FWRITE (EN,s0,s1,s2,d0,d1);
_	s1	d1	
-	s2		

The following instruction can go in the dotted squares. SP_FWRITE

## ■Executing condition

Instruction	Executing condition
SP_FWRITE	

### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s0	Drive specification	ANY16
	s1	File name	String
	s2	Number of data to request writing	ANY16
Output argument	ENO	Execution result	Bit
	d0	Control data	Array of ANY16 (07)
	d1	Array to be turned ON at the process completion	Array of bit (01)

Setting	Internal de	vice	R, ZR	R, ZR J□\□		UD\GD Z	Zn	Constant		Others
data	Bit	Word		Bit	Word			К, Н	\$	
(s0)	0	0		—				0	—	-
(s1)	—	0		—				—	—	-
(s2)	—	∆ ^{*1}		—				—	0	-
(d0)	—	∆*2		—				—	—	-
(d1)	∆ ^{*2}	∆*2		—				—	—	—

*1 For the Universal model QCPU and LCPU, only when the number of request write data exceeds 1024, local devices and file registers set in each program cannot be used.

*2 Local devices and file registers per program cannot be used as setting data.

# Setting data

Setting data	Description			Setting range	Setting side	Data type
(s0)	Drive specificati	on		2	User	BIN 16 bits
(s1)	Start number of	the device that stor	es data. Written data are expressed as follows.			
	Device	Item	Content/Setting data	Setting range	Setting side	
	(s1) to (s1)+□	File name character string	<ul> <li>Specify the character string of a file name.</li> <li>When omitting an extension, also omit the "." (Period).</li> <li>Limit the file name within 8 characters + period + 3 characters.</li> <li>When 9 or more characters are used, the extension is ignored regardless of its presence, and "BIN" or "CSV" is automatically assigned as an extension.</li> </ul>	Character string	User	
(s2)	Start number of	the device that stor	es a file name. A file name is expressed as follow	vs.		1
	Device	Item	Content/Setting data	Setting range	Setting side	
	(s2)	Number of request write data	Specify the number of data to request writing. (Unit: word) This data should be set in unit of word even when byte is specified for (d0)[7].	1 to 480 1 to 32707 ^{*3}	User	
	(s2)+1 to (s2)+□	Write data	Data to request writing.	0000H to FFFFH		
(d0)	Start number of	the device that stor	es control data. The following control data are re	quired.		BIN 16 bits
	Device	Item	Content/Setting data	Setting range	Setting side	
	(d0)[0]	Execution/ completion type	Specify the execution type. 0000H: Write binary data 0100H: Write data after CSV format conversion	0000H 0100H	User	
	(d0)[1]	(Not used)	Used by system	—	System	
	(d0)[2]	Writing result (number of written data)	Contains the number of actually written data against the data specified for (s2) [7]. The unit for the value is determined by the data type specification.	_	System	
	(d0)[3]	(Not used)	—	—	—	1
	(d0)[4] (d0)[5]	File position	<ul> <li>When binary data write is specified for (d0)[0]</li> <li>Set the file position.</li> <li>0000000H: Start of the file.</li> <li>0000001H to FFFFFFEH: From the specified position The unit for the value is determined by the data type specification.</li> <li>FFFFFFFH: Addition starts from the end of the file.</li> <li>When CSV format write is specified for (d0)[0]</li> <li>For the High Performance model QCPU of which the first 5 digits of the serial number are '01111' or earlier, always set the beginning (0H) of the file.</li> <li>For the High Performance model QCPU/ Process CPU/Redundant CPU/Universal model QCPU/LCPU of which the first 5 digits of the serial number are '01112' or later, set the file position.</li> <li>00000000H to FFFFFFEH: Start of the file FFFFFFH: Addition from the end of the file</li> </ul>	00000000H to FFFFFFFH	User	
	(d0)[6]	Number of columns specification	<ul> <li>When binary write is specified for (d0)[0], always set 0.</li> <li>When CSV format write is specified for (d0)[0], set the number of columns where data will be written.</li> <li>0: No columns. Regarded as one row.</li> <li>Other than 0: Set to the specified number of columns.</li> </ul>	0H to FFFFH (0 to 65535)	User	
	(d0)[7]	Data type specification	0: Word 1: Byte	0,1	User	

Setting data	Description	I	Setting range Setting sid		Data type	
(d1)	Bit device that	ion.)	Bit			
	Device	Item	Content/Setting Data	Setting range	Setting side	
	(d1)[0]	Completion signal	Indicates the completion of the processing. ON: Completed OFF: Not completed	_	System	
	(d1)[1]	Error completion signal	Indicates whether the processing is normally completed or abnormally completed. ON: Error completion OFF: Normal completion	-		

*3 Indicates the range applicable for Universal model QCPU and LCPU.

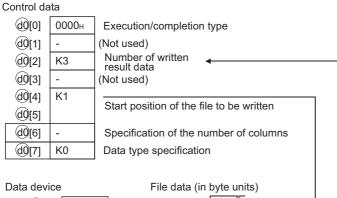
#### Precautions

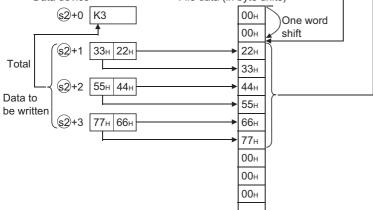
- For QCPU (Q mode), only the ATA card drive (2) can be set for (s0) (drive specification). Note that when the Flash card is
  installed, the SP_FWRITE instruction cannot be used to perform writing. The SRAM card, standard RAM or standard ROM
  drive cannot be set. For High-speed Universal model QCPU, Universal model Process CPU, and LCPU, only the SD
  memory card drive (2) can be set for (s0) (drive specification).
- · For CSV setting, the data written are decimal values.

# Ex.

#### Character "A" (41H) $\rightarrow$ 65 is written

Handling range: -32768 to 32767


- For binary write, the setting range of the file position with word specification is 00000000H to 7FFFFFFH and FFFFFFFH.
- For High-speed Universal model QCPU, Universal model Process CPU, and LCPU, this instruction will not be executed while SM606 (SD memory card forced disable instruction) is on. If executed, no processing is performed.


#### Processing details

- The specified number of data is written to the specified file. Set the execution/completion type in the control data to specify whether to write binary data without any conversion or to convert binary data to CSV format data before writing it. (The writing target is the ATA card only for QCPU (Q mode), and the SD memory card only for High-speed Universal model QCPU, Universal model Process CPU, and LCPU.)
- The execution completion bit device (d1) is automatically turned on at the END processing after the completion of the instruction is detected. The bit device is turned off at the END processing in the next scan.
- When this instruction is completed abnormally, the error completion device (d1)[1] is turned ON/OFF in synchronization with the processing complete (d1)[0] device. Use this device as the error completion flag for this instruction.
- SM721 is turned ON during the execution of the instruction. This instruction cannot be executed while SM721 is ON. (If an attempt is made, no processing is performed.)
- When an error is detected at the execution of the instruction (before SM721 is turned ON), the processing complete device (d1)[0], the error completion device (d)[1], and SM721 are not turned ON.
- Be sure to use units of word to specify the number of request write data (s2), and the file position ((d0)[4] and (d0)[5]).

#### When writing binary data

- If the extension of the target file is omitted, ".BIN" is used as an extension.
- When the specified file does not exist, a new file is created and the data are additionally saved from the beginning of the file. The attributes of this new file are set using the archive attributes.
- When the size of the data exceeds that of the existing area in the file during the writing, the excess data are additionally saved.
- If the file position specified is greater than the existing file size:
- The High Performance model QCPU of which the first 5 digits of the serial number are '01111' or lower results in an error.
- The High Performance model QCPU, Process CPU, Redundant CPU, and Universal model QCPU of which the first 5 digits of the serial number are "01112" or later performs writing at point 0 and is completed normally.
- An error occurs when the saving space becomes full while data are additionally saved. In such a case, the data that are additionally saved successfully remains in the medium. The error completion is indicated after additionally saving the data as much as possible.
- The following shows the method for writing binary data when No. of request write data and file position are specified.



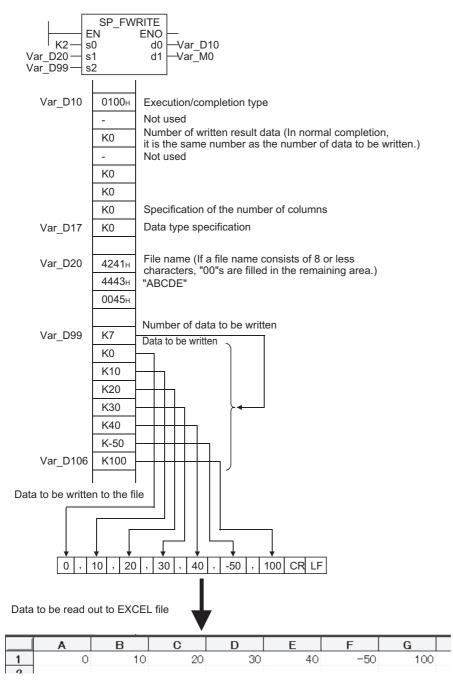


#### When writing data after CSV format conversion

- If the extension is omitted, ".CSV" is used as an extension.
- · When the existing file is specified:

[High Performance model QCPU of which the first 5 digits of the serial number are '01111' or lower]

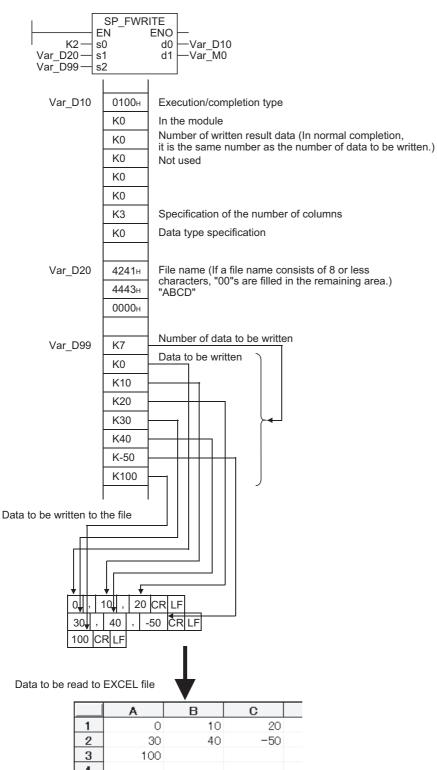
File content are all deleted and data are saved from the beginning of the file.


[High Performance model QCPU and Universal model QCPU, Process CPU, Redundant CPU, and LCPU of which the first 5 digits of the serial number are "01112" or later]

- When other than FFFFFFFH is set at ((d0)[4], (d0)[5]), file content are all deleted and data are saved from the beginning of the file.
- When FFFFFFFH is set at ((d0)[4], (d0)[5]), data are saved from the end of the file.
- When the specified file does not exist, a new file is created and the data are additionally saved from the beginning of the file. The attributes of this new file are set using the archive attributes.
- An error occurs when the saving space becomes full while data are additionally saved. In such a case, the data that are additionally saved successfully remains in the medium. The error completion is indicated after additionally saving the data as much as possible.

• When the specified number of columns is 0, the data are stored as single-column data in CSV format file.

Ex.


When data are written after CSV format conversion and the specified number of columns is 0.



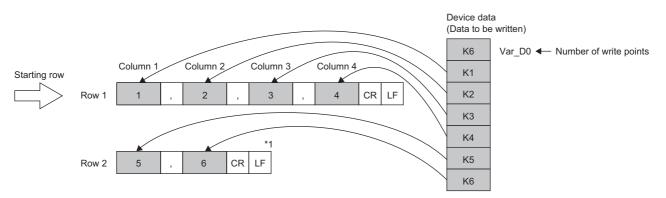
• When data are written after CSV format conversion and the specified number of columns is other than 0, the data are stored as table data with specified number of columns in a CSV format file.

## Ex.

When data are written after CSV format conversion and the specified number of columns is other than 0.



• When data are added by the High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU, and LCPU of which the first 5 digits of the serial number are "01112" or later.


Example when data are added by the High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU, and LCPU with a serial number (first five digits) of "01112" or later

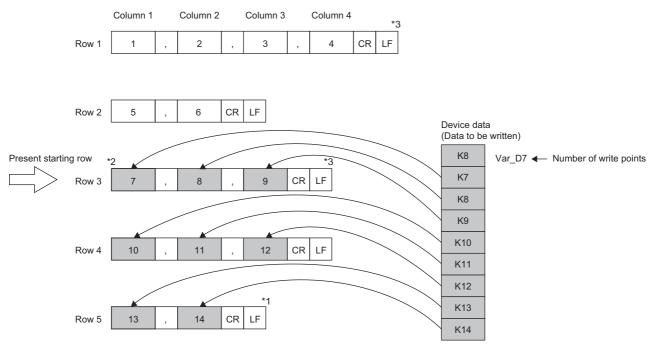
[First write]

#### Writing VAR_D0 data to a CSV file with the following setting

Argument	Description	Set value			
(s2)	Number of request write data	6H	6 points ^{*1}		
Control data	Description	Set value			
(d0)[0]	Execution/completion type	0100H	Writing data after CSV format conversion		
(d0)[4] (d0)[5]	File position	ОН	Writing data from the start of a file		
(d0)[6]	Number of columns specification	4H	4 columns ^{*1*3}		
(d0)[7]	Data type specification	0	Word		

The following figure shows the operation when the SP_FWRITE instruction is executed.




Ex.

#### [Second write]

#### Writing VAR_D7 data to a CSV file with the following setting

Argument	Description	Set value			
(s2)	Number of request write data	8H	8 points ^{*1}		
Control data	Description	Set value			
(d0)[0]	Execution/completion type	0100H	Data write after CSV format conversion		
(d0)[4] (d0)[5]	File position	FFFFFFFH	Adding data from the end of a file		
(d0)[6]	Number of columns specification	ЗН	3 columns ^{*1*3}		
(d0)[7]	Data type specification	0	Word		

The following figure shows the operation when the SP_FWRITE instruction is executed.



- *1 Unless the "number of write points" is set to an integral multiple of "column specification", the column numbers will be random.
- *2 Since the last datum is always followed by the row feed code, addition normally starts at the beginning of the new row in the addition mode.

*3 If, in the addition mode, "column specification" is changed from that in the previous writing, the column numbers are shifted.

• Do not execute the SP_FWRITE instruction in an interrupt program. (Otherwise, a malfunction may result.)

• The following shows the calculation method of the file size (total bytes) when writing CSV format file to ATA card. Total bytes = total bytes except the last line + number of bytes of the last line

(Number of bytes of each line = number of columns^{*4} + 1 + total bytes of each data value in a line^{*5})

*4 Lines except the last line are specified number of columns. The number of columns of the last line may differ from the number of columns specified in the number of data to be written, therefore, calculated as follows.

(1) Calculate lines except the last line. Lines except the last line = required number of data to be written ÷ number of columns (reminder is rounded down)

(2) Calculate the number of columns of the last line. Number of columns of the last line = required number of data to be written - (lines except the last line  $\times$  number of columns)

*5 The number of bytes of each data value is calculated as follows.

Sign of data value	Number of bytes of each data value	Range of number of bytes	Example
Positive	Number of digits	1 to 5 (When word is specified) 1 to 3 (When byte is specified)	123455 bytes 672 bytes
Negative	Digits+1	2 to 6 (When word is specified) 2 to 4 (When byte is specified)	-123456 bytes -673 bytes

# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4004	When the device which cannot be specified is specified	-	0	0	0	0	0
4100	Values specified for control data (d0) and the following devices are out of the setting range. No free space is found when an attempt is made to create a new file. An unusable value is set for a file name (s1). The attribute of a file name (s1) is "read only".	_	0	0	0	0	0
	Drive specified for drive specification device (s0) contains the medium other than the ATA card. Empty space in the ATA card is insufficient. Access error occurred in the ATA card.	—	0	0	0	0	—
	Drive specified for drive specification device (s0) contains the medium other than the SD memory card. Empty space in the SD memory card is insufficient. Access error occurred in the SD memory card.	_	-	_	_	0	0
	The file being used other functions is accessed by the SP_FWRITE instruction.	—	—	-	-	0	0
	Data are written to the SD memory card by the SP_FWRITE instruction, when the write-protect switch on the card is set to lock (write inhibited).	-	-	-	-	0	0
4101	Value specified for "number of request write data" (s2) is out of the setting range, or exceeds the device range specified for (s2)+1 and the following devices.	—	0	0	0	0	0
	The device specified for (d0) or (d1) exceeds the corresponding device range.	—	-	-	-	0	0

# Program example

• In the following program, 4 bytes of binary data (00H, 01H, 02H, and 03H) are added to the file "ABCD.BIN" in the memory card inserted to drive 2 when X10 turns ON.

Assume that 8 points from (d0) are reserved for the control data devices.
[Structured ladder/FBD]

1	. X0
•	EN ENO
	EN ENO
	EN ENO · · · · · · · · · · · · · · · · · · ·
	EN ENO Var_D10
	EN ^{MOVE} NO ····································
	NOVP MOVP
	EN ENO 
	MOVP         MOVP           EN         EN
	EN ENO 
	MOVP         MOVP           EN         EN           War_D20[3]         S
	MOVP         MOVP           EN         EN           S         d
	EN EN du
	SP_FWRITE         Nar_D0.           S0         d0         Var_D0.           Var_D20[0]         s2         s2
2	Var_M0[0]· · · Var_M0[1]· · · · · · · SET
1	EN ENO - · · · · · · · · · · · · · · · · · ·
	BRST CONTRACTOR
	EN ENO - · · · · · · · · · · · · · · · · · ·
	RST
	Y10

```
[ST]
IF X10 THEN
  MOVP(TRUE,H0,Var_D0[0]);
  MOVP(TRUE,HFFFF,Var_D0[4]);
  MOVP(TRUE,HFFFF,Var_D0[5]);
  Var_D10:="ABCD";
  MOVP(TRUE,4,Var_D20[0]);
  MOVP(TRUE,0,Var_D20[1]);
  MOVP(TRUE,1,Var_D20[2]);
  MOVP(TRUE,2,Var_D20[3]);
  MOVP(TRUE,3,Var_D20[4]);
  SP_FWRITE(TRUE,2,Var_D10,Var_D20[0],Var_D0,Var_M0);
END_IF;
IF Var_M0[0] THEN
  IF(Var_M0[1]=FALSE)THEN
    SET(TRUE, Y10);
    RST(TRUE, Y11);
  ELSE
    SET(TRUE, Y11);
    RST(TRUE, Y10);
  END_IF;
END_IF;
```

• In the following program, 4 bytes of data (00H, 01H, 02H, and 03H) are created as a file name "ABCD.CSV" in the memory card inserted to drive 2 as two-column table data in CSV format, when X10 turns ON.

Assume that 8 points from (d0) are reserved for the control data devices.
[Structured ladder/FBD]

	1
1	· X0 · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	MOVP
	ENO - · · · · · · · · · · · · · · · · · ·
	NOVD
	EN ENO - · · · · ·
	ENO ENO - · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	SMOVP CONTRACTOR
	EN EN EN CALL CONTRACT
	EN ENO - · · · · ·
	····· d
	· · · · · · · · · · · · · · · · · · ·
	MOVP
	EN EN EN CONTRACTOR
	• • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
	MOVP
	ENO
	MOVP
	····· Var_D20[4] ·
	SP_FWRITE
	EN EN EN AU
	· · · · · · · · · · · · · · Var_D10 — s1 d1 — Var_M0
	••••••••••••••••••••••••••••••••••••••
2	
	-Var_M0[0]· · · ·Var_M0[1]· · · · · · · · SET
	· · · · · · · · · · · · · · · · · · ·
	RST PROFESSION
	· · · · · ·   · · · · · · · · · · · · ·
	· · · · · · · Var_M0[1]· · · · · · · · SET · · · · · · · ·
	Y11 · · · · · dY11 · · · · ·
	RST EN ENO

[ST]			
IF X10 T	HEN		
MOV	P(TRUE,H0,Var_D0	[0]);	
	P(TRUE,2,Var_D0[6		
	P(TRUE,1,Var_D0[7	]);	
_	D10:="ABCD";		
	P(TRUE,4,Var_D20[		
	P(TRUE,0,Var_D20[		
	P(TRUE,1,Var_D20[		
	P(TRUE,2,Var_D20[		
	P(TRUE,3,Var_D20[		
_	WRITE(TRUE,2,Var	r_D10,Var_D20[0],V	ar_D0,Var_M0);
END_IF;			
_	10[0] THEN		
	r_M0[1]=FALSE)TH	EN	
	T(TRUE, Y10);		
ELSE	ST(TRUE, Y11); =		
	= T(TRUE, Y11);		
	ST(TRUE, Y10);		
END			
END IF;	_" ,		
_ '	ritten file is displayed	as follows	
·			
0,	1 , CR LF	Content of the file	e to be written
2,	3 , CR LF		
L	Data to be read t	o the EXCEL file	
	Α	В	
1	0	1	
0	0		
2	2	J	
_			

# Reading data from specified file

# SP_FREAD



- Universal model QCPU: Not supported for Q00UJCPU, Q00UCPU, and Q01UCPU
- Built-in Ethernet port LCPU: Supported
- LCPU: Not supported for L02SCPU and L02SCPU-P

Stru	uctured	l ladder/F	BD	ST
	SP_	FREAD		
_	EN	ENO	_	
	s0	d0		ENO:= <u>SP_FREAD</u> (EN,s0,s1,d0,d1,d2);
	s1	d1		
		d2		

The following instruction can go in the dotted squares. SP_FREAD

# ■Executing condition

Instruction	Executing condition
SP_FREAD	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s0	Drive specification	ANY16
	s1	File name	String
Output argument	ENO	Execution result	Bit
	d0	Control data	Array of ANY16 (07)
	d1	Start number of the device that stores read data	ANY16
	d2	Array to be turned ON at the process completion	Array of bit (01)

Setting	Internal of	device	R, ZR	JD/D		JD/D		U⊡\G⊡ Zn	Constant		Others
data	Bit	Word		Bit	Word			К, Н	\$	]	
(s0)	0	0	•	-				0	-	-	
(s1)	—	0		-				—	0	-	
(d0)	—	0		-				—	-	-	
(d1)	—	∆*1		-				-	-	-	
(d2)	∆*1	∆*1		-				-	-	-	

*1 Local devices and file registers per program cannot be used as setting data.

# Setting data

Setting data	Description			Setting range	Setting side	Data type
(s0)	Drive specificatio	n		2	User	BIN 16 bits
(s1)	Start number of the	he device that store	s a file name. A file name is expressed as follow	vs.		
	Device	Item	Content/Setting data	Setting range	Setting side	
	(s1) to (s1)+□	File name character string	<ul> <li>Specify the character string of a file name.</li> <li>When omitting an extension, also omit the "." (Period).</li> <li>Limit the file name within 8 characters + period + 3 characters.</li> <li>When 9 or more characters are used, the extension is ignored regardless of its presence, and "BIN" or "CSV" is automatically assigned as an extension.</li> </ul>	Character string	User	

Setting data	Description			Setting range	Setting side	Data type
(d0)	Start number of t	he device that store	es control data The following control data are red	quired.		BIN 16 bits
	Device	Item	Content/Setting data	Setting range	Setting side	
	(d0)[0]	Execution/ completion type	Specify the execution type. 0000H: Read binary data 0100H: Read data after CSV format conversion	0000H, 0100H	User	
	(d0)[1]	(Not used)	Used by system	—	System	1
re		Number of request read data	Specify the number of data to request reading. (Unit: word) This data should be set in unit of word even when byte is specified for (d0)[7].	1 to 480 1 to 32767 ^{*2}	User	
	(d0)[3]	(Not used)	—	—	-	1
	(d0)[4] (d0)[5]	File position	<ul> <li>When binary data read is specified for (d0)[0]</li> <li>Set the file position.</li> <li>0000000H: Start of the file</li> <li>0000000H to FFFFFFEH: From the specified position The unit for the value is determined by the data type specification.</li> <li>FFFFFFFH: Setting disabled</li> <li>When CSV format read is specified for (d0)[0]</li> <li>For the High Performance model QCPU of which the first 5 digits of the serial number are '01111' or lower, always set the beginning (0H) of the file.</li> <li>For the High Performance model QCPU/Process CPU/Redundant CPU/Universal model QCPU/LCPU of which the first 5 digits of the serial number are '01112' or later, set the file position (Row).</li> <li>0000000H: Read from the beginning of the file.</li> <li>00000001H to FFFFFFEH: Read from the specified row.</li> <li>FFFFFFFH: Read continues from the previous read position.</li> </ul>	0000000H to FFFFFFH	User	
(d0)[6]	Number of columns specification	When binary read is specified for (d0)[0], always set 0. When CSV format read is specified for (d0)[0], set the number of columns from where data will be read. 0: No columns. Regarded as one row. Other than 0: Regarded as the specified number of columns.	0H to FFFFH (0 to 65535)	User	-	
	(d0)[7]	Data type specification	0: Word 1: Byte	0,1	User	-
(d1)	Start number of t	he device for storin	g the read data			
	Device	Item	Content/Setting data	Setting range	Setting side	
(d1)		Reading result (number of read data)	Contains the number of actually read data against the data specified for (d0)[2]. The unit for the value is determined by the data type specification.	_	System	
	(d1)[1] to (d1)+□	Reading data	Read data	—	System	
(d2)	Bit device that tu	rned ON at the com	pletion of the processing ((d2)[1] is also turned	ON at error comple	tion.)	Bit
	Device	Item	Content/Setting Data	Setting range	Setting side	
	(d2)[0]	Completion signal	Indicates the completion of the processing. ON: Completed OFF: Not completed	_	System	
	(d2)[1]	Error completion signal	Indicates whether the processing is normally completed or abnormally completed. ON: Error completion OFF: Normal completion	_		

*2 Indicates the range applicable for Universal model QCPU and LCPU.

7

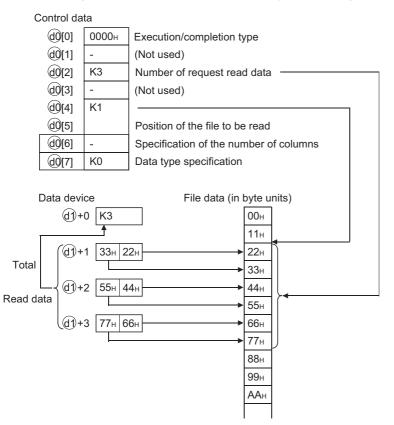
#### Precautions

- For QCPU (Q mode), only the ATA card drive (2) can be set for (s0) (drive specification). Note that when the Flash card is
  installed, the SP_FREAD instruction cannot be used to perform reading. The SRAM card, standard RAM or standard ROM
  drive cannot be set. For High-speed Universal model QCPU, Universal model Process CPU, and LCPU, only the SD
  memory card drive (2) can be set for (s0) (drive specification).
- · For CSV setting, the data written are decimal values.



 $\overline{\text{Character}}$  "A" (41H)  $\rightarrow$  65 is written.

Handling range: -32768 to 32767


- For binary read, the setting range of the file position with word specification is 00000000H to 7FFFFFFH.
- For High-speed Universal model QCPU, Universal model Process CPU, and LCPU, this instruction will not be executed while SM606 (SD memory card forced disable instruction) is on. If executed, no processing is performed.

#### Processing details

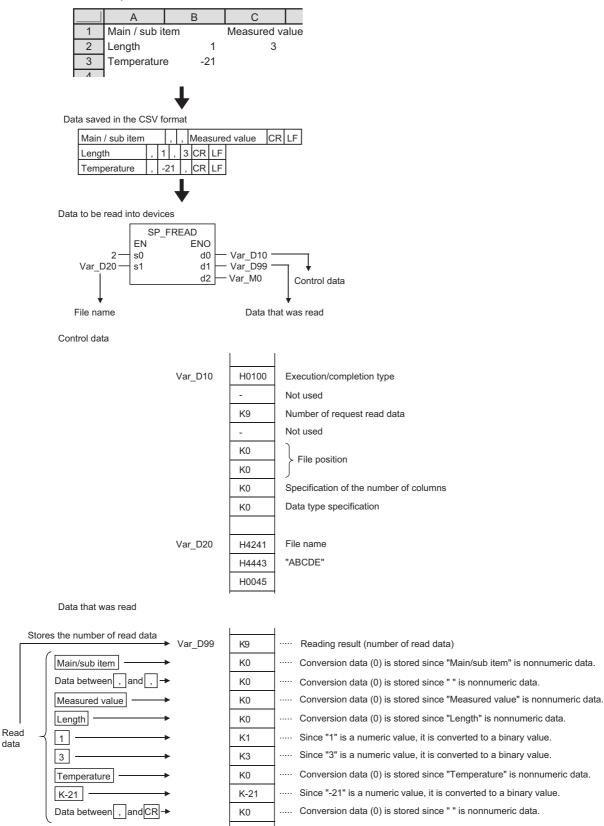
- Data are read from the specified file. Set the execution/completion type in the control data to specify whether to read binary data without any conversion or to convert binary data to CSV format data before reading it. (The reading target is the ATA card only for QCPU (Q mode), and the SD memory card only for High-speed Universal model QCPU, Universal model Process CPU, and LCPU.)
- The execution completion bit device (d2) is automatically turned on at the END processing after the completion of the instruction is detected. The bit device is turned off at the END processing in the next scan.
- When this instruction is completed abnormally, the error completion device (d2)[1] is turned ON/OFF in synchronization with the execution completion (d2)[0] device. Use this device as the error completion flag for this instruction.
- SM721 is turned ON during the execution of the instruction. This instruction cannot be executed while SM721 is ON. (If an attempt is made, no processing is performed.)
- When an error is detected at the execution of the instruction (before SM721 is turned ON), the processing complete device (d1)[0], the error completion device (d)[1], and SM721 are not turned ON.
- Be sure to use units of word to specify the number of request read data (d0)[2], file position ((d0)[4], (d0)[5]), and read data device size (d1).

# ■When reading binary data

- If the extension of the target file is omitted, ".BIN" is used as an extension.
- · When the specified file does not exist, an error occurs.
- If the position specified is greater than the existing file size:
- The High Performance model QCPU of which the first 5 digits of the serial number are '01111' or lower results in an error.
- The High Performance model QCPU, Universal model QCPU, Process CPU, Redundant CPU, and LCPU of which the first 5 digits of the serial number are "01112" or later performs reading at point 0 and is completed normally.
- The following shows how the data is read in binary data reading operation.



## ■When reading data after CSV format conversion


- The elements in CSV format file (cells for EXCEL) are read by each row. The numeric values and character strings are converted to binary data and stored to the device.
- If the extension is omitted, ".CSV" is used as an extension.
- When the specified file does not exist, an error occurs.
- The elements specified by the number of request read data (d0)[2] are read from the beginning of the file. When the last datum of the file is reached before the specified number of data are read:
- The High Performance model QCPU of which the first 5 digits of the serial number are '01111' or lower results in an error.
- The High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU, and LCPU of which the first 5 digits of the serial number are "01112" or later reads the data up to the point where the reading is possible.

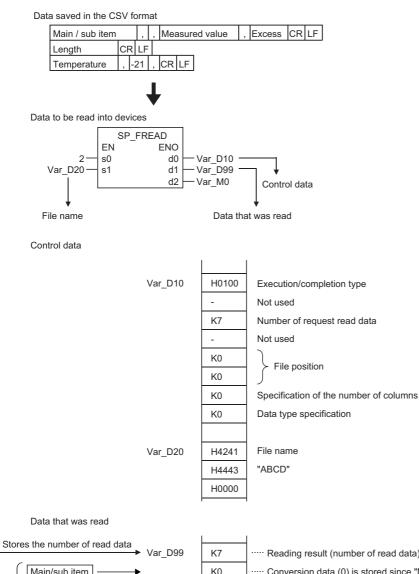
• When the specified number of columns is 0, the data are read by ignoring the rows in CSV format file.

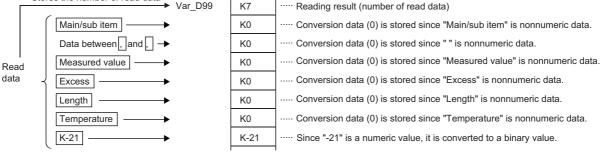
When data are read after CSV format conversion and the specified number of columns is 0.

Data created by EXCEL

Ex.




• If the number of columns varies in each row, the data are also read by ignoring the rows.


Point P

#### Such file cannot be created using EXCEL. This happens when CSV file is modified by a user.

Ex.

When the number of columns varies in each row when the data are read.





• When data are read after CSV format conversion and the specified number of columns is other than 0, the data are read as the table with specified number of columns in CSV format file. The elements outside of the specified columns are ignored.

Ex.

When data are read after CSV format conversion and the specified number of columns is other than 0.


Data created by EXCEL В С A Main / sub item Measured value 1 2 Length 1 3 -21 3 Temperature Data saved in the CSV format CR LF Main / sub item , Measured value 1 , 3 CR LF Length -21 , CR LF Temperature Elements outside the specified number of columns are ignored. Data to be read into devices SP_FREAD ΕN ENO 2 s0 d0 Var_D10 Var_D20s1 d1 - Var_D99 d2 - Var_M0 Control data File name Data that was read Control data Var_D10 H0100 Execution/completion type Not used K6 Number of request read data Not used _ K0 File position K0 K2 Specification of the number of columns K0 Data type specification Var_D20 H4241 File name "ABCD" H4443 H0000

Data that was read

Sto	res the number of read data		
	Var_D99	K6	····· Reading result (number of read data)
	Main/sub item	К0	····· Conversion data (0) is stored since "Main/sub item" is nonnumeric data.
	Data between , and , -	K0	····· Conversion data (0) is stored since " " is nonnumeric data.
Read	Length	К0	····· Conversion data (0) is stored since "Length" is nonnumeric data.
data	〕 1 ───	K1	····· Since "1" is a numeric value, it is converted to a binary value.
	Temperature	К0	····· Conversion data (0) is stored since "Temperature" is nonnumeric data.
	K-21 →	K-21	Since "-21" is a numeric value, it is converted to a binary value.

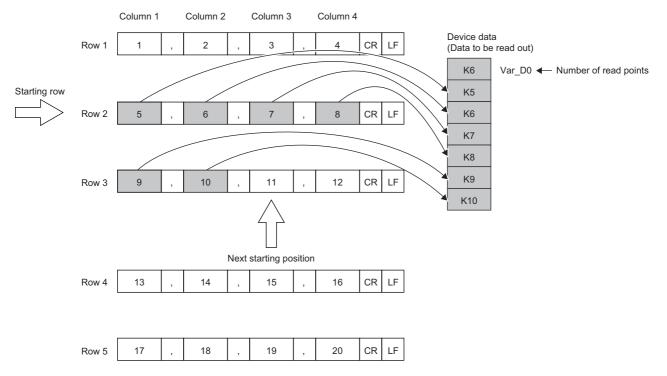
• If the number of columns varies in each row, the elements outside of the specified columns are ignored and "0" is added to the places where elements do not exist.

#### Ex. When the number of columns varies in each row when the data are read.



• With the High Performance model QCPU, Process CPU/Redundant CPU, Universal model QCPU, and LCPU whose first 5 digits of the serial number are "01112" or later, they divides read operation into multiple times.

Ex. When a CSV file as follows is read by multiple read operations


	A	В	С	D	
1	1	2	3	4	
2	5	6	7	8	
3	9	10	11	12	
4	13	14	15	16	
5	17	18	19	20	

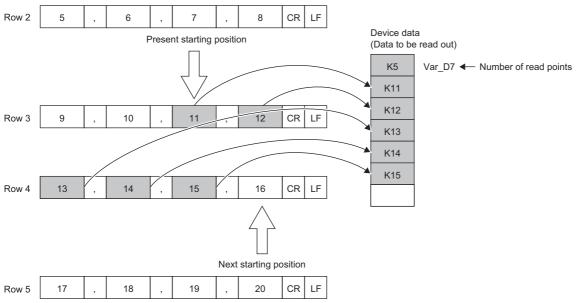
#### [First read]

# Reading VAR_D0 data with the following setting

Control data	Description	Set value							
(d0)[0]	Execution/completion type	0100H	CSV format						
(d0)[2]	Number of request read data	6	6 words						
(d0)[4] (d0)[5]	File position	2Н	Reading data from the second row						
(d0)[6]	Number of columns specification	4H	4 columns						
(d0)[7]	Data type specification	0	Word						

The following figure shows the operation when the SP_FREAD instruction is executed.




#### [Second read]

#### Reading VAR_D7 data with the following setting

Control data	Description	Set value							
[0](0b)	Execution/completion type	0100H	CSV format						
(d0)[2]	Number of request read data	5	5 words						
(d0)[4] (d0)[5]	File position	FFFFFFFH	Continuing read from the end of the previous read position						
(d0)[6]	Number of columns specification	4H	4 columns						
(d0)[7]	Data type specification	0	Word						

The following figure shows the operation when the SP_FREAD instruction is executed.

	Column 1		Column 2		Column 3		Column 4		
Row 1	1	,	2	,	3	,	4	CR	LF



• When read is performed in the continuation mode, the previous addition cannot be made normally if the 'execution type', 'column specification' and 'data type specification' settings differ from those at the previous time.

• The previous addition cannot be made normally if the SP_FREAD instruction or SP_FWRITE instruction with another setting is executed while data are being read continuously in the continuation mode.

- When data are read after CSV format conversion, the numeric values that are out of range or the elements other than numeric values in the CSV format file to be read are converted to 0H.
- When data are read after CSV format conversion, numeric values are read and converted as follows.

n CSV format		-32768 to -1	0 to 32767	32768 to 65535
Word device	Without a sign	32768 to 65535	0 to 32767	32768 to 65535
	With a sign	-32768 to -1	0 to 32767	-32768 to -1

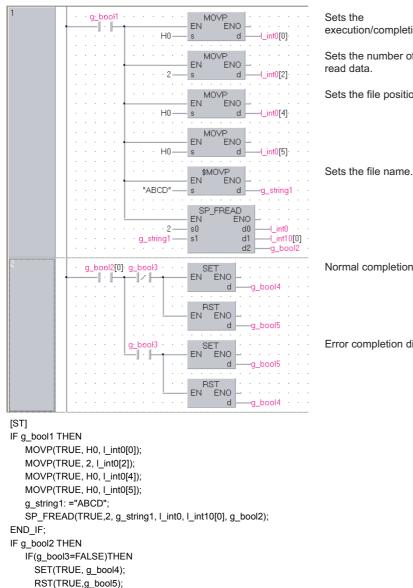
• Do not execute this instruction in an interrupt program. (Otherwise, a malfunction may result.)

# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	File name specified for file name character string (s1) and the following devices does not exist in the specified drive.	—	0	0	0	0	0
4004	When the device which cannot be specified is specified	—	0	0	0	0	0
4100	Values specified for control data (d0) and the following devices are out of the setting range. (Excluding (d0)+2)	—	0	0	0	0	0
	Drive specified for drive specification device (s0) contains the medium other than the ATA card. Access error occurred in the ATA card.	—	0	0	0	0	_
	When binary data are read, the number of data in the file is less than the size specified for the number of request read data (d0)+2	—	0	-	-	—	-
	Drive specified for drive specification device (s0) contains the medium other than the SD memory card. Access error occurred in the SD memory card.	—	—	-	-	0	0
4101	Value specified for number of data blocks to be read (d0)+2 is out of the setting range. Size of read data exceeds the size of reading device.	—	0	0	0	0	0
	The device specified for (d0) or (d1) exceeds the corresponding device range.	—	—	—	-	0	0

# Program example


ELSE

END_IF; END_IF;

SET(TRUE, g_bool5); RST(TRUE, g_bool4);

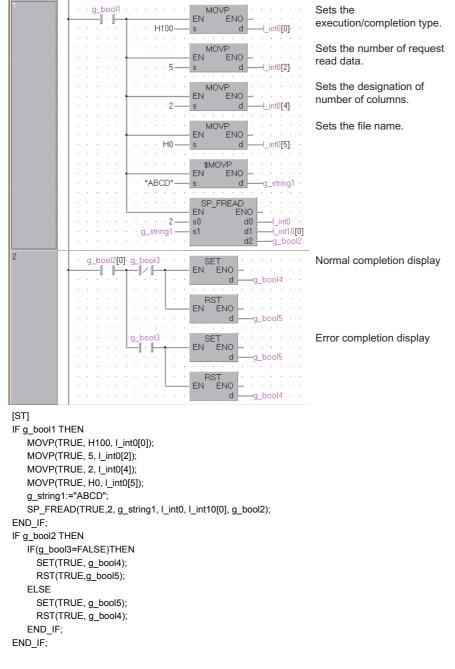
- In the following program, 4 bytes of binary data are read from the beginning of the file "ABCD.BIN" in the memory card inserted to drive 2 when g bool1 turns ON.
- · Assume that 8 points from I_int0 are reserved for the control data devices.

• Assume that 100 bytes from I_int10[0] are reserved for the reading devices. [Structured ladder/FBD]



execution/completion type.

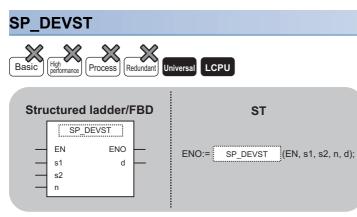
Sets the number of request


Sets the file position.

Normal completion display

Error completion display

- In the following program, the file "ABCD.CSV" is read to the PC card inserted to slot 0 as two-column table data in CSV format when g_bool1 turns ON.
- ${\boldsymbol{\cdot}}$  Assume that 8 points from I_int0 are reserved for the control data devices.
- Assume that 100 bytes from I_int10[0] are reserved for the reading devices.
- Assume that the target CSV format file contains numeric values only.


[Structured ladder/FBD]



#### Precautions

When using the SP_FREAD instruction, do not branch a line from (d1). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

# Writing data to standard ROM



The following instruction can go in the dotted squares.

SP_DEVST

#### ■Executing condition

Instruction	Executing condition
SP_DEVST	↑ T

#### ■Argument

n

(d)

Input/output argument	t	Name		Descri	ption		Data	Data type						
Input argumen	t	EN		Executi	ng condition				Bit					
		s1			fset of the devic ed in unit of 16 b	ANY	32							
		s2		Start nu	mber of the dev	ice to be written	to the standard	ROM	ANY	16				
		n		Number	of device points	ANY	IY16							
Output argume	ent	ENO		Executi	on result	Bit								
		d		• d[0]:	be turned ON a Completion Error completion		completion		Array	Array of bit (01)				
Setting	Internal of	levice	R, Z	R	JD/D		UD\GD	Zn	Constant O		Others			
data	data Bit Word				Bit	Word			К, Н					
(s1)	—	0	0		—					0	-			
(s2)	—	0	0		—			—	-					

*1 Local devices and file registers per program cannot be used as setting data.

0

 $riangle^{*1}$ 

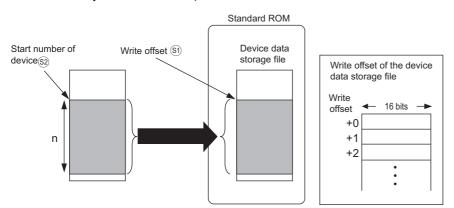
_

0

_

 $riangle^{*1}$ 

0


_

_

_

# Processing details

• Writes n points of device data specified for (s2) to the write offset specified for (s1) of the device data storage file in the standard ROM. (s1) is the offset from the start of device data storage file and specified by word offset (in unit that increments by 1 for each 16 bits).



- Since the device data write position completion (d)[0] in the standard ROM automatically turns on at execution of the END processing, which detects the completion of this instruction, and turns off at the END processing of next scan, it is used as an execution completion flag of this instruction.
- When this instruction is completed in error, the error completion (d)[1] turns ON/OFF at the same timing with the completion (d)[0]. This is used as an error completion flag of this instruction.
- SM721 turns ON during execution of this instruction. When SM721 has already turned ON, this instruction cannot be executed. (If executed, no processing is performed.)
- When an error is detected at execution of this instruction, the completion (d)[0], error completion (d)[1], and SM721 do not turn ON.

# Operation error

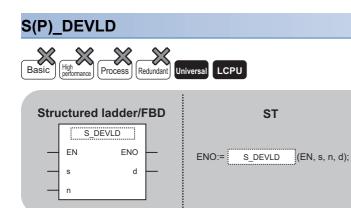
• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
1610	The write frequency into standard ROM exceeds 100,000 times during execution of SP_DEVST instruction.	—	—	—	—	0	0
2410	The device data storage file is not set in the PLC file setting of the PLC parameter.	—	-	-	-	0	0
4100	The write offset specified for (s1) is out of the device data storage file range. The n2 points from the write offset specified for (s1) is out of the device data storage file range. The value specified for n is 0 or a negative number.	_	—	—	_	0	0
4101	The range of n points from the device specified for (s2) exceeds the corresponding device range. The device specified for (d) exceeds the corresponding device range.		—	_		0	0
4113	The value out of the range is specified in the SD695 during execution of SP_DEVST instruction. The write frequency into standard ROM at the current day exceeds the value specified by the SD695 during execution of SP_DEVST instruction.	—	—	—	—	0	0

# Program example

• In the following program, 10 points of data from Var_D100 are written to the device data storage file in the standard ROM when M0 turns ON.

[Structured ladder/FBD]


1				√ł0  .								·	S EN	P_[	DE/	r NO						
			- 1		÷.,					· 3	-	-	s1			d	H		/ar	M	1	
			·	÷	·	·	1	√ar	_D	100	—	-	s2				$ \cdot $				·	
			÷	÷	÷	÷				10	I —	-	n				$ \cdot $		÷		·	
	•	•	•		•				·	•	•	•	• •			• •	•	•	•		•	•

[ST] SP_DEVST(M0,3,Var_D100,10,Var_M1);

#### Precautions

- The value written to the standard ROM is the value at execution of this instruction.
- The standard ROM data write count (SD687, SD688) increases by the execution of the SP_DEVST instruction. If the standard ROM data write count exceeds 100,000, a FLASH ROM ERROR occurs. (Error code: 1610)
- In order to prevent the increase of the standard ROM data write count by the improper instruction execution, set an
  instruction execution count for the standard ROM data write (SD695) to limit the number of times that data are written to the
  standard ROM in a day. If the set data write count (default: 36) is exceeded, an OPERATION ERROR occurs (Error code:
  4113).

# Reading data from standard ROM

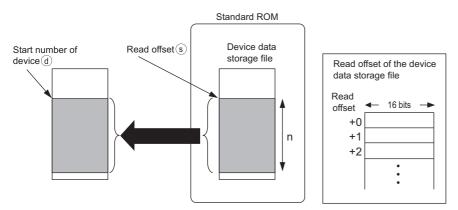


Any of the following instruction can go in the dotted squares.

S_DEVLD, SP_DEVLD

## ■Executing condition

Instruction	Executing condition
S_DEVLD	
SP_DEVLD	


#### ■Argument

Input/outpu argument	t	Name		Descri	Description					Data type		
Input argumer	nt	EN		Executir	Executing condition				Bit			
		s			Read offset of the device data storage file (Specified in unit of 16 bits per point)					ANY	32	
		n		The nur	nber of read p	points				ANY16		
Output argume	ent	ENO	O Execution result					Bit				
		d		Start nu	Start number of the device to be read from the standard ROM					ANY	16	
Setting data	Internal of	device	R, ZI	२	JD/D			UD\GD	Zn		Constant K H	Others

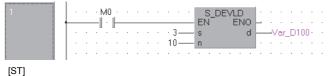
octang	internal act	100				oonstant	Ouncro	
data	Bit	Word		Bit	Word		К, Н	
(S)	-	0		—			0	—
n	-	0		—			0	-
(d)	-	0		—			—	-

# Processing details

- Reads n points of device data from read offset specified for (s) of the device data storage file in the standard ROM, and stores the data to the device specified for (d).
- (s) is the offset from the start of device data storage file and specified by word offset (in unit that increments by 1 for each 16 bits).



#### Operation error

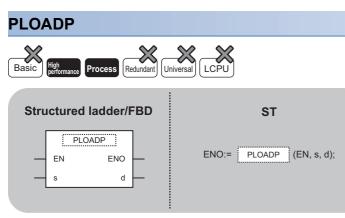

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The device data storage file is not set in the PLC file setting of the PLC parameter.	—	—	—	—	0	0
4100	The address specified for (s) is out of the standard ROM range. The n2 points from the address specified for (s) is out of the standard ROM range. The value specified for n is 0 or a negative number.	_	_	_	_	0	0
4101	The range of n points from the device specified for (d) exceeds the corresponding device range.	—	—	—	—	0	0

## Program example

 In the following program, 10 points of device data are read from the device data storage file in the standard ROM to from Var_D100 when M0 turns ON.

[Structured ladder/FBD]




S_DEVLD(M0,3,10,Var_D100);

#### Precautions

When using the SP_DEVLD instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to Page 63 Precautions on Programming.

# Program load from memory card



The following instruction can go in the dotted squares. PLOADP

#### ■Executing condition

Instruction	Executing condition
PLOADP	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	S	Character string data of the driver number file name that stores programs to be loaded, or start number of the device that stores character string data ^{*1}	String
Output argument	ENO	Execution result	Bit
	d	Device to be turned ON for one scan at the instruction completion	Bit

*1 Specified by "<Drive number>:<File Name>". Example 1: MAIN

Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			\$	
(S)	-	0		—				0	_
(d)	∆* ²	—	—					—	—

*2 Local devices cannot be used.

# Processing details

- The program stored in the memory card or standard ROM is transferred to the program memory (drive 0). If the transferred program is not registered to the program setting of the PLC parameter dialog box, its program setting in the CPU module is set to the standby type. At this time, the program setting of the PLC parameter dialog box does not change. (To transfer a program with the PLOADP instruction, consecutive free spaces are required in the program memory.)
- The program added using the PLOADP instruction is assigned by the lowest number among the unused program numbers. (To assign a program number manually, store the program number to be assigned to SD720.)

The following example shows when "MAIN6" is added by the PLOADP instruction.

• When the program numbers have been set consecutively, the new program is added at the end of the preset program numbers.

When programs number 1 to 5 have been set, a new program is added as program number 6.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	
2	MAIN2	Adds"MAIN6"by the	2	MAIN2	
3	MAIN3	PLOADP instruction.	3	MAIN3	
4	MAIN4		4	MAIN4	
5	MAIN5		5	MAIN5	
	•		6	MAIN6	← Added at th

• When there are multiple open program numbers, the program specified by the PLOADP instruction is added to the lowest number among them to be added. (The empty program numbers are made when programs are deleted by the PUNLOADP instruction.)

When programs number 2 and 4 are empty, a new program is added as program number 2.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	1
2	Empty	Adds"MAIN6"by the	2	MAIN6	] •
3	MAIN3	PLOADP instruction.	3	MAIN3	1
4	Empty		4	Empty	
5	MAIN5		5	MAIN5	

Added to the smallest program number which is empty.

• Drive numbers 1, 2, and 4 can be specified. (Drive 3 cannot be specified.)

Drive 1: Memory card (RAM)

Drive 2: Memory card (ROM)

Drive 4: Standard ROM

- · An extension (.QPG) does not need to be specified for the file name.
- The bit device specified for (d) is turned ON during the END processing of the scan where this instruction is completed. The bit device is turned OFF at the next END processing.

#### ■The PLC file settings of the loaded program are set as follows.

File usage for each program

All the usage of file registers, device initial values, comments, and local devices of the program transferred by this instruction are set based on PLC file settings. However, an error will be returned if both of the conditions below are met when the program is transferred using this instruction.

· Setting is made so that local devices are used in the PLC file setting.

• The number of programs in the program memory exceeds the number of programs set in the parameters.

To use local devices in the program transferred by this instruction, register a dummy program file in the parameter, delete the dummy file with the PUNLOADP instruction, and then load the program with the PLOADP instruction.

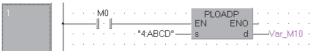
· I/O refresh setting

No settings are applied to both input and output data of the I/O refresh setting for the program transferred by this instruction.

# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2401	The file size of the local devices cannot be reserved.	—	0	0	-	—	-
2410	File name does not exist at the drive number specified for (s). The program file which has the same name as the program file to be loaded already exists.	—	0	0	—	—	-
2413	There is not enough memory to load the specified program in drive 0.	—	0	0	—	—	-
4100	The drive number specified for (s) is invalid.	—	0	0	—	—	-
4101	The number of files indicated in the table below are registered in the program memory. The program number stored in SD720 is already used, or larger than the largest program number shown in the table below.	—	0	0	—	_	-


The following table lists the number of files and the largest program number of each CPU module.

CPU model name	Program memory (number of files)	Largest program No.
Q02(H)CPU, Q02PHCPU	28	28
Q06HCPU, Q06PHCPU	60	60
Q12HCPU	124	124
Q25HCPU	124	124
Q12PHCPU	124	124
Q25PHCPU	124	124

#### Program example

• In the following program, "ABCD.QPG" stored in the drive 4 is transferred to drive 0 and set the program in standby type when M0 turns ON.

[Structured ladder/FBD]



[ST]

PLOADP(Var_M0,"4:ABCD",Var_M10);

## Precautions

- The PLOADP, PUNLOADP and PSWAPP instructions cannot be executed simultaneously. If two or more of the above instructions are executed simultaneously, the instruction executed later will not be executed. When using the above instructions, provide interlocks manually to avoid simultaneous execution.
- Do not execute this instruction in an interrupt program. (Otherwise, a malfunction may result.)
- To execute the program that was transferred to the program memory with the PLOADP instruction, execute the scan execution type with the PSCAN instruction (See Page 710 Registering program as scan execution type).
- The "PLOADP instruction" and "Write during RUN" processing cannot be executed simultaneously.
- When a write during RUN request is given during processing of the PLOADP instruction, write during RUN is delayed. Write during RUN is started after the processing of the PLOADP instruction is completed.
- When the PLOADP instruction is executed during write during RUN, the processing of the PLOADP instruction is delayed. The processing of the PLOADP instruction is started after completion of write during RUN.
- Do not execute "Read from PLC" or "Verify with PLC" and the instruction simultaneously. If the instruction is executed, "Read from PLC" or "Verify with PLC" is not complete normally because the program file status stored in the program memory is changed. If executed, execute "Read from PLC" or "Verify with PLC" again after the instruction completion.

# Program unload from program memory

# PUNLOADP Basic High performance Process Redundant Universal LCPU Structured ladder/FBD ST PUNLOADP ENO = Structured eno = PUNLOADP ENO = PUNLOADP (EN, s, d);

The following instruction can go in the dotted squares. PUNLOADP

#### ■Executing condition

Instruction	Executing condition
PUNLOADP	↑

# ■Argument

Input/output Name argument			Description				Data type					
Input argumen	t	EN	Executi	Executing condition					Bit			
		S			Character string data of the program file name to be unloaded, or start number of the device that stores character string data				String			
Output argume	ent	ENO Execut			Execution result					Bit		
		d		Device to be turned ON for one scan at the instruction completion				Bit				
Setting	Internal d	evice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word	1		Bit	Word				\$		
(S)	—	0			—		-			0	—	
(d)	∆*1	—			—					—	-	

*1 Local devices cannot be used.

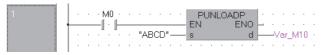
# Processing details

- The standby type program stored in the program memory (drive 0) is deleted from the program memory. (The program set as the 'scan execution type' with the PSCAN instruction or the program set as the 'low speed execution type' with the PLOW instruction cannot be deleted.)
- The program number deleted by the PUNLOADP instruction becomes 'Empty'. When programs number 1 to 5 have been set in the program setting of the PLC parameter dialog box, deleting program number 2 with this instruction makes program number 2 empty.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	
2	MAIN2	Deletes"MAIN2"by the	2	Empty	← Program No.2
3	MAIN3	PUNLOADP instruction	3	MAIN3	is deleted.
4	MAIN4		4	MAIN4	
5	MAIN5		5	MAIN5	

• An extension (.QPG) does not need to be specified for the file name.

- The bit device specified for (d) is turned ON during the END processing of the scan where this instruction is completed. The bit device is turned OFF at the next END processing.
- When the programmable controller CPU is powered ON or the CPU module is reset after execution of the PUNLOADP instruction, the following operation is performed.
- When boot setting has been set in the PLC parameter dialog box, the program where the boot setting has been set is transferred to the program memory. When the program deleted by the PUNLOADP instruction is not to be executed, delete the corresponding program name from the boot setting and program setting of the PLC parameter dialog box.
- When boot setting has not been set in the PLC parameter dialog box, "FILE SET ERROR (error code: 2400)" occurs. When the program deleted by the PUNLOADP instruction is not to be executed, delete the corresponding program name from the program setting of the PLC parameter dialog box. When the program deleted by the PUNLOADP instruction is to be executed again, write the corresponding program to the CPU module.


# Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The file name specified for (s) does not exist.	—	0	0	_	—	—
4101	The program specified for (s) is not a standby program, or is a program in execution.	_	0	0	—	—	—

#### Program example

• In the following program, "ABCD.QPG" stored in the drive 0 is deleted from the memory when M0 turns from OFF to ON. [Structured ladder/FBD]



[ST] PUNLOADP(M0,"ABCD",Var_M10);

## Precautions

- The PLOADP, PUNLOADP and PSWAPP instructions cannot be executed simultaneously. If two or more of the above instructions are executed simultaneously, the instruction executed later will not be executed. When using the above instructions, provide interlocks manually to avoid simultaneous execution.
- · Do not execute this instruction in an interrupt program. (Otherwise, a malfunction may result.)
- The program to be deleted from the program memory by this instruction should be set to the "standby execution type" with the PSTOP instruction beforehand. (
- The "PUNLOADP instruction" and "Write during RUN" processing cannot be executed simultaneously.
- When a write during RUN request is given during processing of the PUNLOADP instruction, write during RUN is delayed. Write during RUN is started after the processing of the PUNLOADP instruction is completed.
- When the PUNLOADP instruction is executed during write during RUN, the processing of the PUNLOADP instruction is delayed. The processing of the PUNLOADP instruction is started after completion of write during RUN.
- Do not execute "Read from PLC" or "Verify with PLC" and the instruction simultaneously. If the instruction is executed, "Read from PLC" or "Verify with PLC" is not complete normally because the program file status stored in the program memory is changed. If executed, execute "Read from PLC" or "Verify with PLC" again after the instruction completion.

# Load and unload

PSWA	<b>APP</b>		
Basic	tigh performance	cess Redundant	Universal LCPU
s 	tructured lad PSWAF EN s1 s2		ST ENO:= PSWAPP (EN, s1, s2, d

The following instruction can go in the dotted squares. PSWAPP

# ■Executing condition

Instruction	Executing condition
PSWAPP	

# ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Character string data of the program file name to be unloaded, or start number of the device that stores character string data	String
	s2	Character string data of the driver number file name that stores programs to be loaded, or start number of the device that stores character string data ^{*1}	String
Output argument	ENO	Execution result	Bit
	d	Device to be turned ON for one scan at the instruction completion	Bit

*1 Specified by "<Drive number>:<File Name>". Example 1: MAIN

Setting	Internal device		R, ZR J⊡\□			UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			\$	
(s1)	—	0		-				0	-
(s2)	—	0	0		_			0	-
(d)	* <b>2</b>	—		—				—	—

*2 Local devices cannot be used.

# Processing details

- The standby type program stored in the program memory (drive 0) specified for (s1) is deleted from the program memory, and at the same time, the program stored in the memory card or standard ROM specified for (s2) is transferred to the program memory and placed in standby type. (When the program is transferred to the program memory, the program must have a continuous free space.)
- The program set as the 'scan execution type' with the PSCAN instruction or the program set as the 'low speed execution type' with the PLOW instruction cannot be deleted.
- The program to be transferred to the program memory by the PSWAPP instruction will have the program number of the program to be deleted from the program memory. (If there is an empty program number before the program to be deleted from the program memory, the program to be transferred to the program memory will not have the empty program number.)
- When program number 2 is "Empty", the program transferred to the program memory is registered as program number 3 by the program swapping of program number with this instruction.

Program No.	Program name		Program No.	Program name	
1	MAIN1	N	1	MAIN1	
2	Empty	Swaps"MAIN3"with"MAIN6"	2	Empty	
3	MAIN3	by the PSWAPP instruction.	3	MAIN6	←MAIN6 enters
4	MAIN4		4	MAIN4	
5	MAIN5		5	MAIN5	

- Drive numbers 1, 2, and 4 can be specified. (Drive 3 cannot be specified.)
- Drive 1: Memory card (RAM)
- Drive 2: Memory card (ROM)
- Drive 4: Standard ROM
- An extension (.QPG) does not need to be specified for the file name.
- The bit device specified for (d) is turned ON during the END processing of the scan where this instruction is completed. The bit device is turned OFF at the next END processing.
- When the programmable controller CPU is powered ON or the CPU module is reset after execution of the PSWAPP instruction, the following operation is performed.
- When boot setting has been set in the PLC parameter dialog box, the program where the boot setting has been set is transferred to the program memory. When the program replaced by the PSWAPP instruction is to be executed, change the boot setting and program setting of the PLC parameter dialog box for the corresponding program name.
- When boot setting has not been set in the PLC parameter dialog box, "FILE SET ERROR (error code: 2400)" occurs. When the program replaced by the PSWAPP instruction is to be executed, change the program setting of the PLC parameter dialog box for the corresponding program name. To execute the program set in the program setting of the PLC parameter dialog box, write the corresponding program to the CPU module again.
- The PLC file settings of the program on which the PSWAPP instruction has been executed are set as follows.
- File usage for each program

All the usage of file register, device initial value, comment, and local device of the program after the execution of the PSWAPP instruction are set based on PLC file settings.

I/O refresh setting

No settings are applied to both input and output data of the I/O refresh setting for the program after the PSWAPP instruction has been executed.

# **Operation error**

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2410	The drive number or the file name specified for (s1) or (s2) does not exist.	—	0	0	—	—	—
2413	There is not enough memory to load the specified program in drive 0.	—	0	0	—	—	—
4100	The drive number specified for (s1) is invalid.	—	0	0	—	—	_
4101	The program specified for (s1) is not a standby program, or is a program in execution.	_	0	0	_	_	_

# Program example

 In the following program, as "EFGH.QPG" stored in drive 0 is deleted from the memory, "ABCD.QPG" stored in drive 4 is transferred to drive 0, and set the program in standby type when M0 turns from OFF to ON. [Structured ladder/FBD]

1		
	••••••••••••••••••••••••••••••••••••••	

[ST]

PSWAPP(M0,"EFGH","4:ABCD",Var_M10);

#### Precautions

- The PLOADP, PUNLOADP and PSWAPP instructions cannot be executed simultaneously. When using the above instructions, provide interlocks manually to avoid simultaneous execution. If two or more of the above instructions are executed simultaneously, the instruction executed later will not be executed.
- Do not execute this instruction in an interrupt program. (Execution of this instruction in an interrupt program can cause a malfunction.)
- The "PSWAPP instruction" and "Write during RUN" processing cannot be executed simultaneously.
- When a write during RUN request is given during processing of the PSWAPP instruction, write during RUN is delayed. Write during RUN is started after the processing of the PSWAPP instruction is completed.
- When the PSWAPP instruction is executed during write during RUN, the processing of the PSWAPP instruction is delayed. The processing of the PSWAPP instruction is started after completion of write during RUN.
- Do not execute "Read from PLC" or "Verify with PLC" and the instruction simultaneously. If the instruction is executed, "Read from PLC" or "Verify with PLC" is not complete normally because the program file status stored in the program memory is changed. If executed, execute "Read from PLC" or "Verify with PLC" again after the instruction completion.

# File register high-speed block transfer

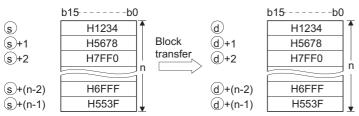
#### RBMOV(P)



Universal model QCPU: Not supported for Q00UJCPU

Stru	uctured	ladder/FBD	ST
	EN s n	ENO	ENO:= (EN, s, n, d);

Any of the following instruction can go in the dotted squares. RBMOV, RBMOVP


#### ■Executing condition

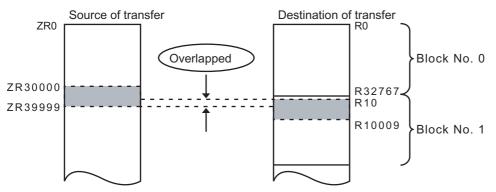
Instruction	Executing condition
RBMOV	
RBMOVP	

#### ■Argument

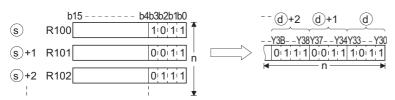
Input/outpu argument	t	Name		Descri	ption					Data type			
Input argumen	ıt	EN		Executing condition Bit									
		s		Start number of the device that stores data to be transferre					ANY16				
	n				Number of transfers					ANY16			
Output argument ENO				Execution result					Bit				
		d		Start number of the device at the transfer destination					ANY16				
Setting	Internal d	levice	R, Z	R	JD/D		UD\GD	Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
(s)	0							_			-		
n	0						0			-			
(d)	0						-			—			

• Batch transfers the 16-bit data n points from the device specified for (s) to the n points of devices from the one specified for (d).




- Transfers can be accomplished even in cases where there is an overlap between the source and destination device. For the transmission to the smaller number of device, the data are transferred from (s). For the transmission to the larger number of device, the data are transferred from (s)+(n-1). However, as shown in the example below, when transferring data from R to ZR, or from ZR to R, the range to be transferred and the range of destination must not overlap.
- ZR transfer range ((specified start number of ZR) to (specified start number of ZR + the number of transfers -1))
- R transfer range ((specified start number of R + file register block number × 32768) to (specified start number of R + file register block number × 32768 + the number of transfers -1))

#### Ex.


Transfer ranges of ZR and R overlap when transferring 10000 points of data from ZR30000 (source) to R10 (block No. 1 of the destination).

- ZR transfer range  $\rightarrow$  (30000) to (30000+10000-1) (30000) to (39999)
- R transfer range  $\rightarrow$  (10 + (1 × 32768)) to (10 + (1 × 32768) + 10000 1)  $\rightarrow$  (32778) to (42777)

Therefore, the range from 32778 to 39999 overlaps.



• When (s) is a word device and (d) is a bit device, the target for the word device will be the number of bits specified for digitspecified bit device. If K1Y30 has been specified for (d), the lower four bits of the word device specified for (s) will become the object.



 The RBMOV(P) instruction is useful when batch transferring a large quantity of file register data with QnHCPU/QnPHCPU/ QnPRHCPU. With QnUCPU, processing speed is equivalent to the BMOV instruction. The comparison of processing speed with the BMOV instruction is as follows.

# Transferring data from file registers to internal devices or from internal devices to file registers

CPU	Instruction	Target memory where	1 word		1000 word	ls	10000 wor	ds		
		file register is stored	Min	Мах	Min	Max	Min	Max		
QnHCPU	RBMOV	Standard RAM	20.0µs	_	91.0µs		775.0µs			
		SRAM card	22.0µs		305.0μs		2900.0µs			
QnPRHCPU		Flash card ^{*1}	22.5µs		405.0μs	405.0µs				
	BMOV	Standard RAM	7.5µs		76.2µs	76.2µs		720.0µs		
		SRAM card	8.0µs		384.0μs		3900.0µs			
		Flash card ^{*1}	1		418.0μs		4250.0μs			
QnCPU	RBMOV	Standard RAM	45.5µs		215.0µs		1850.0µs	1850.0μs		
		SRAM card	49.5µs		540.0μs		5150.0µs	5150.0μs		
		Flash card ^{*1}	1							
	BMOV	Standard RAM	17.5µs		177.0μs		1700.0μs			
		SRAM card	18.0µs		500.0μs		5050.0μs			
		Flash card ^{*1}	1		572.0μs		5800.0µs			
Q00UCPU	RBMOV	Standard RAM	12.2µs	34.9µs	121.5µs	145.1μs	1111.5µs	1135.1µs		
Q01UCPU		SRAM card ^{*2}	-	—	-	-	—	-		
		Flash card ^{*2}	-	—	-	-	-	—		
	BMOV	Standard RAM	7.3µs	13.8µs	116.5µs	124.2µs	1106.5µs	1114.2µs		
		SRAM card ^{*2}	—	—	—	—	—	—		
		Flash card ^{*2}	-	_	_	_	_	—		
Q02UCPU	RBMOV	Standard RAM	9.4µs	31.3µs	118.5µs	141.3μs	1108.5µs	1131.3µs		
		SRAM card	9.4µs	31.4µs	178.5μs	201.3µs	1708.5µs	1731.3µs		
		Flash card ^{*1}	9.4µs	32.1µs	278.5µs	301.3μs	2708.5µs	2731.3µ		
	BMOV	Standard RAM	5μs	11.6µs	114.5µs	122.3µs	1104.5µs	1112.3µs		
		SRAM card	5.1µs	11.7µs	174.5μs	182.3µs	1704.5µs	1712.3µ		
		Flash card ^{*1}	5μs	11.6µs	274.5μs	282.3µs	2704.5µs	2712.3µ		
Q03UD(E)CPU	RBMOV	Standard RAM	11.3µs	16.8µs	120.7μs	127.1µs	1110.7µs	1117.1µs		
		SRAM card	11.2µs	16.7µs	180.7μs	187.1µs	1710.7μs	1717.1µ		
		Flash card ^{*1}	11.3µs	16.8µs	280.7µs	287.1µs	2710.7µs	2717.1µ		
	BMOV	Standard RAM	4.8µs	6.6µs	114.7μs	117.1μs	1104.7µs	1107.1µs		
		SRAM card	4.8µs	6.6µs	174.7μs	177.1μs	1704.7μs	1707.1µs		
		Flash card ^{*1}	4.8µs	6.5µs	274.7μs	277.1µs	2704.7μs	2707.1µs		
Q04UD(E)HCPU	RBMOV	Standard RAM	9.2µs	15.1µs	61.0µs	68.6µs	531.0µs	538.6µs		
Q06UD(E)HCPU		SRAM card	9.4µs	15.6µs	165.0μs	172.6μs	1576.0μs	1583.6µs		
Q10UD(E)HCPU Q13UD(E)HCPU		Flash card ^{*1}	9.4µs	15.7μs	260.0μs	267.6µs	2526.0µs	2533.6µs		
Q20UD(E)HCPU	BMOV	Standard RAM	4.1µs	5.6µs	56.0µs	58.6µs	526.0µs	528.6µs		
		SRAM card	4.5µs	6.1µs	160.0μs	162.6µs	1571.0μs	1573.6µ		
Q50UDEHCPU Q100UDEHCPU		Flash card ^{*1}	4.3µs	6.2µs	255.0μs	257.6µs	2521.0μs	2523.6µs		
Q03UDVCPU	RBMOV	Standard RAM	3.7µs	21.0µs	80.6µs	89.3µs	822.2µs	831.4μs		
		Extended SRAM cassette	3.7µs	21.0µs	102.6µs	118.1µs	1056.4µs	1072.0µ		
	BMOV	Standard RAM	1.9μs	7.9μs	79.5μs	82.0μs	820.6μs	823.1μs		
		Extended SRAM cassette	1.9µs	7.9μs	102.6µs	107.9µs	1055.5µs	1057.5µs		
Q04UDVCPU,	RBMOV	Standard RAM	3.7µs	21.0µs	42.1µs	57.7µs	413.0µs	428.6μs		
Q04UDPVCPU,		Extended SRAM cassette	3.7µs	21.0µs	102.6µs	118.1µs	1056.4µs	1072.0µs		
	BMOV	Standard RAM	1.9µs	7.9μs	41.0µs	47.1µs	411.6µs	417.7μs		
Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU		Extended SRAM cassette	1.9µs	7.9µs	102.6µs	107.9µs	1055.4µs	1060.9µs		

*1 When file registers are stored in the Flash card, no processing is performed for transfer from internal devices to file registers

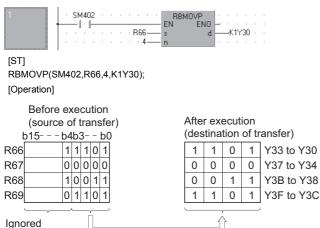
*2 Memory card cannot be used on Q00UCPU and Q01UCPU.

#### ■Transferring data from file registers to file registers

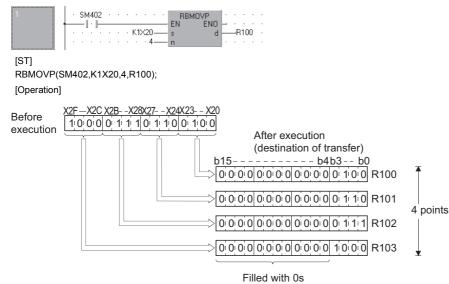
CPU	Instruction	Target memory	1 word		1000 word	ls	10000 wor	10000 words		
		where file register is stored	Min	Мах	Min	Мах	Min	Max		
QnHCPU	RBMOV	Standard RAM	20.0µs		91.0µs		775.0µs			
		SRAM card	22.5µs		545.0μs		5300.0µs			
QnPRHCPU	BMOV	Standard RAM	7.5µs		77.0μs		720.0µs			
		SRAM card	8.5µs		692.0μs		7050.0μs			
QnCPU	RBMOV	Standard RAM	45.5µs	45.5µs 2			1850.0µs			
		SRAM card	50.0µs		870.0μs		8350.0μs	8350.0μs 1700.0μs		
	BMOV	Standard RAM	17.5µs		179.0μs		1700.0μs			
		SRAM card	18.5µs		839.0μs		8600.0μs			
Q00UCPU	RBMOV	Standard RAM	12.6µs	35.3µs	232.5µs	256.1µs	2211.5µs	2235.1µs		
Q01UCPU		SRAM card ^{*1}	-	—	-	-	-	-		
	BMOV	Standard RAM	7.7µs	14.2µs	227.5µs	234.2µs	2206.5µs	2214.2µs		
		SRAM card ^{*1}	-	—	-	-	-	-		
Q02UCPU	RBMOV	Standard RAM	9.6µs	31.5µs	228.5µs	252.3µs	2208.5µs	2231.3µs		
		SRAM card	9.6µs	31.5µs	378.5µs	401.3µs	3708.5µs	3731.3μs		
	BMOV	Standard RAM	5.2µs	11.8µs	224.5µs	232.3µs	2204.5µs	2212.3µs		
		SRAM card	5.2µs	11.8µs	374.5μs	382.3µs	3704.5μs	3712.3μs		
Q03UD(E)CPU	RBMOV	Standard RAM	11.2µs	16.7µs	230.7µs	237.1µs	2210.7μs	2217.1μs		
		SRAM card	11.6µs	16.7µs	380.7µs	387.1µs	3710.7μs	3717.1μs		
	BMOV	Standard RAM	4.9µs	6.7µs	224.7μs	227.1µs	2204.7μs	2207.1μs		
		SRAM card	5.2µs	6.7µs	374.7μs	377.1μs	3704.7μs	3707.1μs		
Q04UD(E)HCPU	RBMOV	Standard RAM	9.3µs	15.5µs	118.0µs	124.6µs	1102.0µs	1107.6µs		
		SRAM card	9.7µs	15.5µs	365.0μs	371.6μs	3571.0μs	3578.6µs		
Q10UD(E)HCPU Q13UD(E)HCPU	BMOV	Standard RAM	4.3µs	6.2µs	113.0μs	115.6µs	1096.0µs	1098.6µs		
Q20UD(E)HCPU Q26UD(E)HCPU Q50UDEHCPU Q100UDEHCPU		SRAM card	4.5μs	6.1µs	360.0μs	362.6µs	3566.0μs	3568.6µs		
Q03UDVCPU	RBMOV	Standard RAM	3.7µs	20.7µs	162.0μs	171.2μs	1637.7μs	1646.4μs		
		Extended SRAM cassette	3.7µs	20.7µs	216.7µs	232.1µs	2197.4µs	2212.5µs		
	BMOV	Standard RAM	1.9µs	8.0µs	161.1μs	163.7μs	1636.2μs	1638.8µs		
		Extended SRAM cassette	1.9µs	8.3µs	216.4µs	221.7µs	2197.4µs	2201.7µs		
Q04UDVCPU,	RBMOV	Standard RAM	3.5µs	20.7µs	84.6µs	99.5µs	836.3μs	851.7μs		
Q04UDPVCPU, Q06UDVCPU, Q06UDPVCPU,		Extended SRAM cassette	3.6µs	20.7µs	216.7µs	232.1µs	2197.4µs	2212.5µs		
QUBUDPVCPU, Q13UDVCPU,	BMOV	Standard RAM	1.8µs	8.0µs	83.1µs	89.0µs	835.0μs	840.9μs		
Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU		Extended SRAM cassette	1.8µs	8.3µs	216.4µs	221.7µs	2197.4µs	2201.7μs		

*1 Memory card cannot be used on Q00UCPU and Q01UCPU.

#### Operation error


 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4101	The device range of n points from (s) or (d) exceeds the corresponding device range. The file register is not specified for either (s) or (d).	_	0	0	0	0	_


#### Program example

• In the following program, the lower 4 bits of data in R66 to R69 are output to the devices from Y30 to Y3F in units of 4 points.

[Structured ladder/FBD]



• In the following program, the data in X20 to X2F are output to the devices from R100 to R103 in units of 4 points. [Structured ladder/FBD]



#### Precautions

• When using the RBMOV instruction, do not branch a line from (d). If branched, the operation result is not output to the devices or labels of branch destination correctly. For details of branch point of line from destination, refer to F Page 63 Precautions on Programming.

# User message

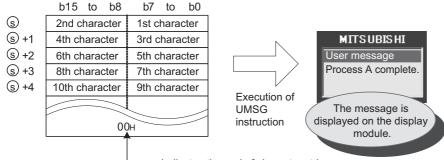
#### UMSG



- Built-in Ethernet port LCPU: Supported
- LCPU: Not supported for L02SCPU and L02SCPU-P



The following instruction can go in the dotted squares. UMSG


#### ■Executing condition

Instruction	Executing condition
UMSG	

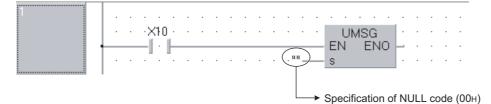
#### ■Argument

Input/output argument	t	Name		Description					Data type				
Input argumen	t	EN		Executing condition						Bit			
S				Character string data to be displayed on the display module, or start number of the device that stores character string data						String			
Output argume	ent	ENO		Execution result						Bit			
Setting	Internal d	evice	R, Z	R	2. JD\D UD\GD Zn					Constant	Others		
data	Bit	Word			Bit	Word				\$			
(s)	—	0							0	-			

• Character string data specified for (s) are displayed on the display module as a user message. Character string data directly specified for (s) (specified by enclosing with " " (double quotation)), or character string data between the device number specified for (s) and the device number that stores 00H are displayed.



------ Indicates the end of character string.


• Up to 128 characters can be displayed on the display module.



The upper bytes and the lower bytes are reversed when character string data are stored to devices by using the character string data transfer instruction (\$MOV).

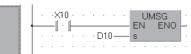
For the \$MOV instruction, refer to F Page 249 Character string data transfer.

- The user message is displayed at the rising edge of the UMSG instruction command. If the character string data are changed while the command is ON, the changed user message is displayed on the display module.
- The specified character string data for the UMSG instruction are displayed at the END processing. When the multiple UMSG instructions are executed, the UMSG instruction executed directly prior to the End processing is validated. When the multiple programs are running, the UMSG instruction executed at last is validated.
- No processing is performed if the instruction is executed without the display module mounted.
- Press "ESC" on the display module to clear the displayed message. Execute "User Message" on the menu screen of the display module to redisplay the message.
- The displayed message is cleared if the NULL code (00H) is specified for the argument of the instruction. The following explains the method for specifying a NULL code (00H) for the argument of the instruction.



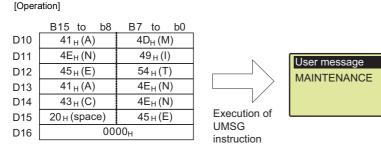
· For details on the display unit, refer to the following.

MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals)


#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4100	The number of characters of (s) exceeds 128 characters.	—	—	—	—	—	0
4101	The NULL code (00H) does not exist within the specified range of the devices following the device number specified for (s).	—	—	_	_	_	0

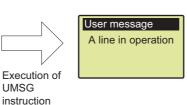

#### Program example

• In the following program, the character string data in D10 and the following devices are displayed when X10 turns ON. [Structured ladder/FBD]



[ST]

UMSG(X10,D10);




• In the following program, "A line in operation" is displayed when M0 turns ON. [Structured ladder/FBD]



[ST] UMSG(M0,"A line in operation"); [Operation]

B15 to b8	B7 to b0						
20 _н (space)	41 _Н (А)						
69 _H (i)	6С _Н (I)						
65н(е)	6Е _Н (n)						
69 _Н (i)	20 _н (space)						
20 _н (space)	6E _H (n)						
70 _н (р)	6Fн (о)						
72 _H (r)	65 _н (е)						
74 _H (t)	61 _н (a)						
6F _Н (о)	69 _н (i)						
20 _н (space)	6E _H (n)						
00	00 _H						



# **8** DATA LINK INSTRUCTIONS

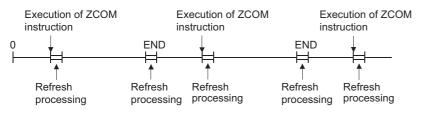
# 8.1 Network Refresh Instructions

# **Refresh instruction for specified module**

#### S(P)_ZCOM_J, S(P)_ZCOM_U

# Basic High percess Redundant Universal LCPU Structured ladder/FBD ST $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ <

Any of the following instruction can go in the dotted squares. S_ZCOM_J, S_ZCOM_U, SP_ZCOM_J, SP_ZCOM_U


#### ■Executing condition

Instruction	Executing condition
S_ZCOM_J S_ZCOM_U	
SP_ZCOM_J SP_ZCOM_U	

#### ■Argument

Input/output argument	Nai	ne		Description						Data type				
Input argumen	Input argument EN					condition	Bit							
Jn				Network number of the host station (For QCPU (Q mode) only)						ANY16				
Un				Start I/O number of the network module of the host station (00 to FE: Higher two digits when expressing the I/O number in three digits)					ANY16					
Output argume	ent	ENG	)		Execution result					Bit	Bit			
Setting	Internal	rnal device R,		<b>R</b> , 1	ZR	10/0	JD/D		Zn		Constant	Others		
data	Bit		Word		Bit		Word				К, Н			
_	-													

- The ZCOM instruction is used to perform refresh at any timing during execution of a sequence program. The targets of
  refresh performed by the ZCOM instruction are indicated below.
- Refresh of CC-Link IE Controller Network (when refresh parameters are set) (For QCPU (Q mode) only)
- Refresh of CC-Link IE Field Network (when refresh parameters are set) (For Universal model QCPU with a serial number whose first five digits are '12012' or higher and LCPU with a serial number whose first five digits are '13012' or higher only)
- Refresh of MELSECNET/H (when refresh parameters are set) (For QCPU (Q mode) only)
- Auto refresh of CC-Link (when refresh device is set)
- Auto refresh of intelligent function module (when auto refresh is set)
- When the ZCOM instruction is executed, the CPU module temporarily suspends processing of the sequence program and conducts refresh processing of the network modules specified by Jn/Un. (For LCPU with a serial number whose first five digits are "13011" or lower, a module cannot be specified by Jn.)



- · The ZCOM instruction does not perform the following processing.
- Communication processing between CPU module and programming tool
- Monitor processing of other station
- Read processing of buffer memory of other intelligent function module by serial communication module
- Low-speed cyclic data transmission of MELSECNET/H
- The ZCOM instruction can be used as many times as desired in sequence programs. However, note that each execution of a refresh operation will lengthen the sequence program scan time by the amount of time required for the refresh operation.
- Designating "Un" in the argument enables the target designation of the intelligent function as well as the network modules. In this case, the auto refresh is performed for the buffer memory of the intelligent function modules. (It replaces the FROM/ TO instructions.)
- For Universal model QCPU and LCPU, an interrupt is permitted during the execution of the ZCOM instruction. However, note that the data may be separated if the refresh data are used in an interrupt program.

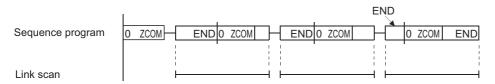
#### ■CC-Link IE Controller Network and MELSECNET/H (PLC to PLC network)

When the scan time for the sequence program of host station is longer than the scan time for the other station, the ZCOM instruction is used to ensure the data reception from the other station.

· Example of data communications when the ZCOM instruction is not used

ZCOM

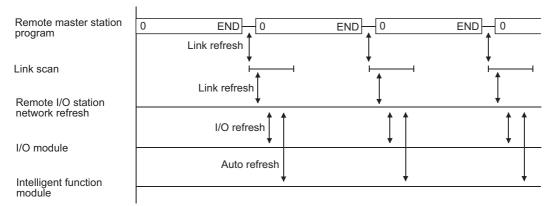
ZCOM


Control station program	0 END 0 END 0 END
Link scan	┝╶╽└╶╢└╌╢┝┻╡╞┻╡╞┯╣┝┹╎┝╌┤┝╌
Normal station program	
Example of data cor	mmunications when the ZCOM instruction is used
Control station program	
Link scan	
Normal station program	

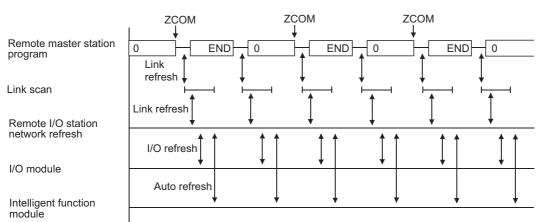
ZCOM

For details of the transmission delay time on the CC-Link IE Controller Network and MELSECNET/H (PLC to PLC network), refer to the following manuals.

- CC-Link IE Controller Network Reference Manual
- Q Corresponding MELSECNET/H Network System Reference Manual (PLC to PLC network)


When the link scan time is longer than the sequence program scan time, data communications will not be faster even if the ZCOM instruction is used.




#### ■MELSECNET/H (remote I/O network)

The link refresh of the remote master station is performed by the "END processing" of the CPU module. Since link scan is performed at completion of link refresh, link scan 'synchronizes' with the program of the CPU module. When the ZCOM instruction is used at the remote master station, link refresh is performed at the point of ZCOM instruction execution, and link scan is performed at completion of link refresh. Hence, use of the ZCOM instruction at the remote master station speeds up send/receive processing to/from the remote I/O station.

• When the ZCOM instruction is not used



#### • When the ZCOM instruction is used



For details of the transmission delay time on the MELSECNET/H (remote I/O network), refer to the following manual. • Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O network)

Point P

- The ZCOM instruction cannot be used in a fixed cycle execution type program or interrupt program.
- For Redundant CPU, there are restrictions on the use of ZCOM instruction. For details on the restrictions, refer to the QnPRHCPU User's Manual (Redundant System).

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2111	When the module specified with the start I/O number is not a network module or intelligent function module.	0	0	0	0	_	—
4102	When the specified network number is not connected to the host station.	0	0	0	0	0	O*1
	When the module specified with the start I/O number is not a network module or intelligent function module.	—	—	—	_	0	0

*1 Modules with serial number (first five digits) is "13012" or later

Point P

To conduct only service processing, use the COM instruction. (Refer to 🖙 Page 430 Refresh and Page 433 Selection of refresh(COM).)

#### Program example

• In the following program, a link refresh is executed on the network module of network No. 6 while X0 is ON. [Structured ladder/FBD]

LJ ENO



[ST]

S_ZCOM_J(X0,6);

 In the following program, a link refresh is executed on the network module mounted to the position whose start I/O number is X/Y30 to X/Y4F while X0 is ON.

[Structured ladder/FBD]



[ST] S_ZCOM_U(X0,3);

# 8.2 Reading/Registering Routing Information

# **Reading routing information**

#### S(P)_RTREAD



· LCPU: Supported if first 5 digits of the serial number are "13012" or later

Structured ladder/FBD	ST
EN ENO n d	ENO:= <u>S_RTREAD</u> (EN, n, d);

Any of the following instruction can go in the dotted squares.  $\ensuremath{\mathsf{S}_\mathsf{R}\mathsf{TREAD}}$  ,  $\ensuremath{\mathsf{S}_\mathsf{R}\mathsf{TREAD}}$ 

#### ■Executing condition

Instruction	Executing condition
S_RTREAD	
SP_RTREAD	

#### ■Argument

Input/output argument	t	Name		Descrip	Description Dat					ata type			
Input argumen	t	EN		Executing	Executing condition Bit								
		n		Transfer of	Transfer destination network number (1 to 239) ANY16					<i>'</i> 16			
Output argume	ent	ENO		Execution result Bit									
		d		Start num	Start number or the array of the device that stores the read data A				Array	Array of ANY16 (02)			
Setting	Internal	device	R,	ZR	JD/D		UE\GE	Zn		Constant	Others		
data	Bit	Word			Bit	Word				К, Н			
n	0	0			-			0	—				
(d)	—	0			—				—	—			

- Reads data from transfer destination network number specified for n, using routing information set by the routing parameters, and stores it to (d) and the following devices.
- If no data for the transfer destination network number specified for n is set at the routing parameters, stores 0 to (d) and the following devices.
- The content of the data stored in the area starting from (d) is as indicated below.

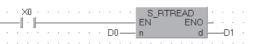
#### (Data ranges)

	Relay network number	(1 to 239)
(d)[1]	Relay station number	Refer to the following table
(d) [2]	Dummy	

#### [Relay station number]

Network Type	Specified range
MELSECNET/H	1 to 64
CC-Link IE Controller Network	1 to 120
CC-Link IE Field Network	Master Station: 125 Fixed (Fixed value is stored) Local station: 1 to 120 (Station number is stored)

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4004	When the device which cannot be used the argument is specified	—	0	0	0	0	0
4100	When data specified for n is other than 1 to 239.	—	0	0	0	0	0
4101	The device specified for n and (d) exceeds the range of the corresponding device.	—	—	—	_	0	0

#### Program example

• In the following program, the routing information of the network number specified for D0 is read when X0 turns ON. [Structured ladder/FBD]





#### [ST]

S_RTREAD(X0,D0,D1);

[Operation] [Setting details of routing parameter]

D0	1		Transfer destination network number	Relay network number	Relay station number
D1	10		1	10	3
D2	3	<b>▲</b> ──┤	2	10	2
D3	Dummy	•	3	10	1

# **Registering routing information**

#### S(P)_RTWRITE



· LCPU: Supported if first 5 digits of the serial number are "13012" or later



Any of the following instruction can go in the dotted squares. S_RTWRITE, SP_RTWRITE

#### ■Executing condition

Instruction	Executing condition					
S_RTWRITE						
SP_RTWRITE						

#### ■Argument

Input/output argument	t	Name		Description					Data type			
Input argumen	t	EN		Executing	condition				Bit			
		n		Transfer of	Transfer destination network number (1 to 239) ANY16							
		s		Start num written	Start number or the array of the device that stores the data to be written Array of ANY16 (02)					)		
Output argume	ent	ENO		Execution	Execution result Bit							
Setting	Internal	device	R,	ZR	JD/D		UD\GD	Zn		Constant	Others	
data	Bit	Word			Bit	Word				К, Н		
n	0	0			-				0	-		
(s)	—	0							—	—		

• Registers routing data of (s) and the following devices in the area for the transfer destination network number specified for n in the routing parameters.

CPU module	Registerable data
The High Performance model QCPU, Process CPU, Redundant CPU, Universal model QCPU whose serial number (first five digits) is "14111" or earlier, High-speed Universal model QCPU whose serial number (first five digits) is "15041" or earlier, Universal model Process CPU and LCPU	Up to 64
<ul> <li>The Universal model QCPU whose serial number (first five digits) is "14112" or later, (except the High-speed Universal model QCPU and Universal model Process CPU)</li> <li>High-speed Universal model QCPU whose serial number (first five digits) is "15042" or later</li> </ul>	Up to 238

• The following shows the content of data to be set for (s) and the following devices.

(Data ranges) number (1 to 239)

 (s) [0]
 Relay network number
 (1 to 239)

 (s) [1]
 Relay station number
 Refer to the following table.

 (s) [2]
 Dummy
 Compared to the following table.

#### [Relay station number]

Network Type	Specified range
MELSECNET/H	1 to 64
CC-Link IE Controller Network	1 to 120
CC-Link IE Field Network	Master Station: 125 Fixed (Fixed value is stored) Local station: 1 to 120 (Station number is stored)

• If data of the transfer destination network number specified for n are set in the routing parameters, they are changed to the data in (s) and the following devices.

• When data in both of (s) + 0 and (s) + 1 are 0, the data of the transfer destination network number specified for n is deleted from the routing parameters.

#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4004	When the device which cannot be used the argument is specified	—	0	0	0	0	0
4100	When data specified for n is other than 1 to 239. When the data of (s) and the following devices exceed each setting ranges. When the total number of routing data registered in the routing parameter of the network parameters and routing data registered with the RTWRITE instruction exceeds the maximum number of registerable data. When the transfer destination network number which is not registered in the routing parameter is attempted to delete.	_	0	0	0	0	0
4101	The device specified for n and (s) exceeds the range of the corresponding device.	—	-	—	—	0	0

#### Program example

• In the following program, the routing information specified for D1 to D3 is written to the network module whose network number is specified for D0 when X0 turns ON.

[Structured ladder/FBD]

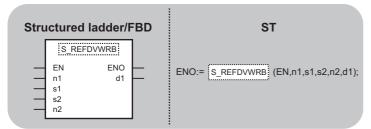


[ST]

S_RTWRITE(X0,D0,D1);

D0[	1	Transfer destination network number	Relay network number	Relay station number
D1	20	1	20	1
D2	1	 2	10	2
D3	Dummy	3	10	1

#### 8.3 **Refresh Device Write/Read Instruction**


### Refresh device write (in 1-bit units)

Ver.

#### S(P) REFDVWRB



- QnUD(H)CPU and QnUDE(H)CPU: Supported if first 5 digits of the serial number are "14072" or later
- · Built-in Ethernet port LCPU: Supported
- Not supported for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, QnUDVCPU, QnUDPVCPU, L02SCPU, and L02SCPU-Р



Any of the following instruction can go in the dotted squares. S_REFDVWRB, SP_REFDVWRB

#### ■Executing condition

Instruction	Executing condition
S_REFDVWRB	
SP_REFDVWRB	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
		Start I/O number (0H to FEH) (BIN 16-bit) ^{*1} 1 of the master station controlling the station assigned the refresh device which writes data	ANY16
\$1		Start number or the array of the device stored control data (device name)	Array of ANY16 (03)
	s2 Start number of the device stored write data to the refresh device assigned the device specified in (s1)+0 and (s1)+1 (device name)		Bit
	n2	Number of write points (1 to 2147483647)	ANY32
Output argument	ENO	Execution result	Bit
	d1	Start number or the array of the bit device which turns on for 1 scan by the instruction completion. (d1)+1 also turns on at the error completion (bit).	Array of Bit (01)

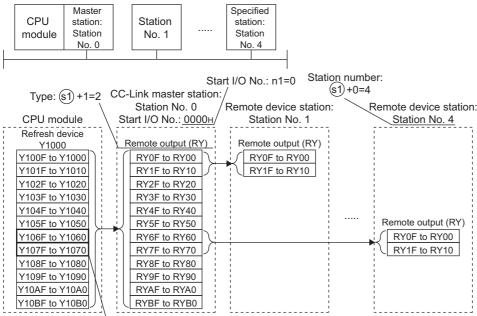
Setting	Internal dev	vice	R, ZR	J□\□         U□\G□           Bit         Word			Zn	Constant	Others
data	Bit	Word	1					К, Н	
n1	-	0		-				0	—
(s1)	-	0		_				—	—
(s2)	∆*2	-		-				—	—
n2	-	0		-		-		0	—
(d1)	∆*2	-		-				—	—

*1 The first 3 digits of the hexadecimal 4 digits which represent the start I/O number.

*2 Local devices and file registers per program cannot be used as setting data.

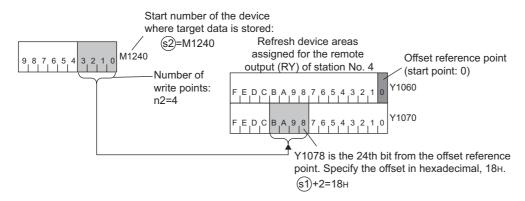
• The contents of the data stored in the area starting from (s1) are as indicated below.

Device	Item	Setting contents	Setting range
(s1)+0	Station number	Station number for the station assigned the refresh device which writes data. When the link special relay (SB) is specified as type of (s1)+1, the setting is disabled.	1 to 120
(s1)+1	Туре	Type of the refresh device which writes data • 1: Remote input (RX) • 2: Remote output (RY) • 3: Link special relay (SB)	1 to 3
(s1)+2 (s1)+3	Offset	Offset from the head of the refresh device assigned the device specified in (s1)+0 and (s1)+1	0 to 2147483647


· Instruction execution possibility of an execution type for each program.

· Enabled: Initial program and scan execution type program

Disabled: Fixed scan execution type program and interrupt program


- To write data to a refresh device, the data reflection to the station number specified by the instruction is executed at the timing for the auto refresh.
- Number of points specified in n2 is written from the device specified in (s2) to the offset specified in (s1)+2 of the refresh device assigned for the device specified in (s1)+1 of the target station specified in n1 and (s1)+0.

[Structure]



Refresh device areas assigned for station No. 4

At the above configuration, number of points specified in n2 is written from the device specified in (s2) to the offset (Y1078) specified in (s1)+2 of the device assigned for the station number 4.



Point P

When a refresh range per station is assigned in transfer settings, specify number of write points so that the range written data from the specified offset is within the range assigned in the same transfer setting. An error occurs if the number of write points over the range assigned in each transfer setting is specified.

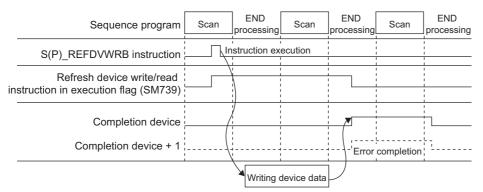
#### • The station type which can and cannot specify with the start I/O number is as follows.

Specification possibility	Station type
Enabled	CC-Link master station, CC-Link master station (compatible with redundant function), CC-Link IE Field Network master station
Disabled	CC-Link local station, CC-Link standby master station, CC-Link IE Field Network local station, CC-Link IE Field Network submaster station

• Because the available range of the station number is 1 to 120, the station number for the master station in n1 cannot be specified to (s1)+0. If the station number is specified, the "OPERATION ERROR" (error code: 4102) occurs.

- SM739 (Refresh device write/read instruction in execution flag) turns on during the instruction execution. When SM739 is
  on, the following instructions cannot be executed. If these instructions are executed, no processing is performed. When an
  error is detected at the instruction execution (before SM739 turns on), the completion device ((d1)+0), the completion
  device ((d1)+1), and SM739 do not turn on.
- S(P) REFDVWRB
- S(P)_REFDVWRW
- S(P)_REFDVRDB
- S(P)_REFDVRDW

• The instruction completion can be checked in the completion device ((d1)+0 and (d1)+1).


Completion device ((d1)+0)

The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing. • Completion device ((d1)+1)

The device turns on or off by the status when the instruction is completed.

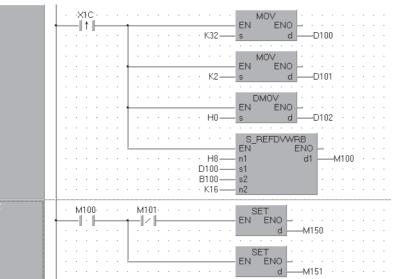
Normal completion: No change from off

Error completion: The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing.



- A module set parameters by the dedicated instruction and a CC-Link module operating by the automatic CC-Link startup cannot be specified with the instruction.
- The write source (points in n2 from (s2)) and write destination (points in n2 from a device specified in control data) are overlapped, data can be written. Write data starting from (s2) when data are written to the smaller device number. Write data starting from (s2)+((n2)-1) when data are written to the larger device number.

#### **Operation error**


• In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4002	When the instruction is used for the CPU module that is supported.	—	-	-	-	0	0
	When the module cannot be specified the start I/O number in n1						
4004	When the device which cannot be specified is specified	—	-	-	-	0	0
4101	When the specified device exceeds the range of the number of device points	—	-	-	-	0	0
	When the start I/O number in n1 is out of the specified range						
	When the device type number in (s1)+1 is out of the specified range						
	When the write offset in (s1)+2 is out of the specified range						
	When the number of write points in n2 is out of the specified range						
	When the number of write points in n2 exceeds the range of the number of device points						
4102	When the station number in (s1)+0 is out of the specified range	—	-	-	-	0	0
	When the station number in (s1)+0 does not exist						
	When the station number in (s1)+0 is the master station specified in n1						
4150	When the start I/O number in n1 is the station type which cannot be specified	—	-	-	-	0	0
	When the start I/O number in n1 does not exist in the network parameter						
4151	When the device in (s1)+1 of the station number specified in (s1)+0 is not assigned the refresh device	—	—	—	-	0	0
	When the write offset in (s1)+2 exceeds the refresh device range assigned for the device in (s1)+1 of the station number specified in (s1)+0						
	When the number of write points in n2 exceeds the assignment range of the setting for one transfer from the write offset in (s1)+2						

#### Program example

• The following program writes 16 device values in B100 to the head of the refresh device (offset: 0) assigned for the remote output (RY) in the remote I/O station on the station number 32 controlled by the CC-Link master station of the start I/O number 0080H when X1C is turned on.

[Structured ladder/FBD]



[ST]

MOV(LDP(TRUE, X1C), K32, D100); MOV(LDP(TRUE, X1C), K2, D101); DMOV(LDP(TRUE, X1C), H0, D102); SP_REFDVWRB(LDP(TRUE, X1C), H8, D100, B100, K16,M100); IF M100=TRUE THEN IF M101=FALSE THEN SET(TRUE, M150); ELSE SET(TRUE, M151); END_IF; END_IF;

#### Precautions

- · Do not execute the instruction in an interrupt program. If the instruction is executed, no processing is performed. In addition, the completion device ((d1)+0), the completion device ((d1)+1), and SM739 do not turn on. If the instruction is executed in a fixed scan execution type program, they also do not turn on.
- When the instruction is executed, do not rewrite the device data in (s2) until the completion device turns on.

# Refresh device write (in 16-bit units)

#### S(P)_REFDVWRW



- QnUD(H)CPU and QnUDE(H)CPU: Supported if first 5 digits of the serial number are "14072" or later
- · Built-in Ethernet port LCPU: Supported
- Not supported for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, QnUDVCPU, QnUDPVCPU, L02SCPU, and L02SCPU-Ρ

Stru	uctured ladder/	FBD	ST
	S_REFDVWRW!           EN         ENO           n1         d1           s1         s2           n2		ENO:= S_REFDVWRW (EN,n1,s1,s2,n2,d1);

Any of the following instruction can go in the dotted squares. S_REFDVWRW, SP_REFDVWRW

#### ■Executing condition

Instruction	Executing condition	_
S_REFDVWRW		
SP_REFDVWRW		

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument EN Executing condition		Executing condition	Bit
	n1 Start I/O number (0H to FEH) (BIN 16-bit) ^{*1} 1 of the master station controlling the station assigned the refresh device which writes data		ANY16
	s1	Start number or the array of the device stored control data (device name)	Array of ANY16 (03)
	s2 Start number of the device stored write data to the refresh device assigned the device specified in (s1)+0 and (s1)+1 (device name)		ANY16
	n2	Number of write points (1 to 2147483647)	ANY32
Output argument	ENO	Execution result	Bit
	d1	Start number or the array of the bit device which turns on for 1 scan by the instruction completion. (d1)+1 also turns on at the error completion (bit).	Array of Bit (01)

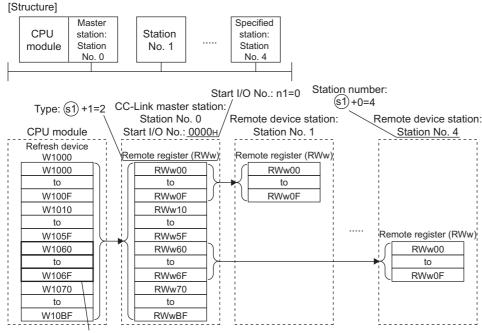
Setting	Internal device		R, ZR	JD/D			Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
n1	-	0		—				0	-
(s1)	—	0	0		-			—	—
(s2)	—	∆*2	∆ ^{*2}		—			—	-
n2	—	0		-		0	—		
(d1)	∆*2	-		—				—	-

*1 The first 3 digits of the hexadecimal 4 digits which represent the start I/O number.

*2 Local devices and file registers per program cannot be used as setting data.

8

• The contents of the data stored in the area starting from (s1) are as indicated below.


Device	Item	Setting contents	Setting range
(s1)+0	Station number	Station number for the station assigned the refresh device which writes data. When the link special register (SW) is specified as type of (s1)+1, the setting is disabled.	1 to 120
(s1)+1	Туре	Type of the refresh device which writes data • 1: Remote register (RWr) • 2: Remote register (RWw) • 3: Link special register (SW)	1 to 3
(s1)+2 (s1)+3	Offset	Offset from the head of the refresh device assigned the device specified in (s1)+0 and (s1)+1	0 to 2147483647

· Instruction execution possibility of an execution type for each program.

• Enabled: Initial program and scan execution type program

Disabled: Fixed scan execution type program and interrupt program

- To write data to a refresh device, the data reflection to the station number specified by the instruction is executed at the timing for the auto refresh.
- Number of points specified in n2 is written from the device specified in (s2) to the offset specified in (s1)+2 of the refresh device assigned for the device specified in (s1)+1 of the target station specified in n1 and (s1)+0.



Refresh device areas assigned for station No. 4

At the above configuration, number of points specified in n2 is written from the device specified in (s2) to the offset (W1063) specified in (s1)+2 of the device assigned for the station number 4.

D1240	is stored: 2=D1240 Re ass	fresh device ard igned for the rer r (RWw) of stati	note
D1241 D1242 D1243	Write area size: n2=4	W1060           W1061           W1062           W1063           W1064           W1065           W1066           W1067           W1068           W1069           to           W106F	<ul> <li>Offset reference point (start point: 0)</li> <li>W1063 is the 3rd word from the offset reference point. Specify the offset in hexadecimal, 3н. (s1)+2=Зн</li> </ul>

Point P

When a refresh range per station is assigned in transfer settings, specify number of write points so that the range written data from the specified offset is within the range assigned in the same transfer setting. An error occurs if the number of write points over the range assigned in each transfer setting is specified.

• The station type which can and cannot specify with the start I/O number is as follows.

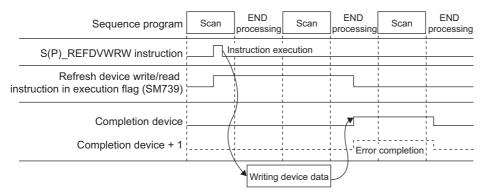
Specification possibility	Station type
Enabled	CC-Link master station, CC-Link master station (compatible with redundant function), CC-Link IE Field Network master station
Disabled	CC-Link local station, CC-Link standby master station, CC-Link IE Field Network local station, CC-Link IE Field Network submaster station

• Because the available range of the station number is 1 to 120, the station number for the master station in n1 cannot be specified to (s1)+0. If the station number is specified, the "OPERATION ERROR" (error code: 4102) occurs.

- SM739 (Refresh device write/read instruction in execution flag) turns on during the instruction execution. When SM739 is
  on, the following instructions cannot be executed. If these instructions are executed, no processing is performed. When an
  error is detected at the instruction execution (before SM739 turns on), the completion device ((d1)+0), the completion
  device ((d1)+1), and SM739 do not turn on.
- S(P)_REFDVWRB
- S(P)_REFDVWRW
- S(P)_REFDVRDB
- S(P)_REFDVRDW

• The instruction completion can be checked in the completion device ((d1)+0 and (d1)+1).

Completion device ((d1)+0)


The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing.

Completion device ((d1)+1)

The device turns on or off by the status when the instruction is completed.

Normal completion: No change from off

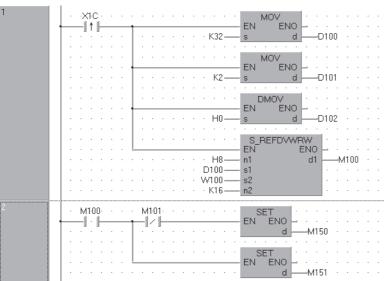
Error completion: The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing.



8

- A module set parameters by the dedicated instruction and a CC-Link module operating by the automatic CC-Link startup cannot be specified with the instruction.
- The write source (points in n2 from (s2)) and write destination (points in n2 from a device specified in control data) are overlapped, data can be written. Write data starting from (s2) when data are written to the smaller device number. Write data starting from (s2)+((n2)-1) when data are written to the larger device number.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) turns on, and an error code is stored into SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4002	When the instruction is used for the CPU module that is supported.	—	-	—	—	0	0
	When the module cannot be specified the start I/O number in n1						
4004	When the device which cannot be specified is specified	—	-	—	—	0	0
4101	When the specified device exceeds the range of the number of device points	—	—	—	—	0	0
	When the start I/O number in n1 is out of the specified range						
	When the device type number in (s1)+1 is out of the specified range						
	When the write offset in (s1)+2 is out of the specified range						
	When the number of write points in n2 is out of the specified range						
	When the number of write points in n2 exceeds the range of the number of device points						
4102	When the station number in (s1)+0 is out of the specified range	—	—	—	—	0	0
	When the station number in (s1)+0 does not exist						
	When the station number in (s1)+0 is the master station specified in n1						
4150	When the start I/O number in n1 is the station type which cannot be specified	—	—	—	—	0	0
	When the start I/O number in n1 does not exist in the network parameter						
4151	When the device in (s1)+1 of the station number specified in (s1)+0 is not assigned the refresh device	—	-	-	-	0	0
	When the write offset in $(s1)+2$ exceeds the refresh device range assigned for the device in $(s1)+1$ of the station number specified in $(s1)+0$						
	When the number of write points in n2 exceeds the assignment range of the setting for one transfer from the write offset in (s1)+2						

#### Program example

• The following program writes 16 device values in W100 to the head of the refresh device (offset: 0) assigned for the remote register (RWw) in the remote device station on the station number 32 controlled by the CC-Link master station of the start I/ O number 0080H when X1C is turned on.

[Structured ladder/FBD]



[ST]

MOV(LDP(TRUE, X1C), K32, D100); MOV(LDP(TRUE, X1C), K2, D101); DMOV(LDP(TRUE, X1C), H0, D102); S_REFDVWRW(LDP(TRUE, X1C), H8, D100, W100, K16, M100); IF M100=TRUE THEN IF M101=FALSE THEN SET(TRUE, M150); ELSE SET(TRUE, M151); END_IF; END_IF;

#### Precautions

- · Do not execute the instruction in an interrupt program. If the instruction is executed, no processing is performed. In addition, the completion device ((d1)+0), the completion device ((d1)+1), and SM739 do not turn on. If the instruction is executed in a fixed scan execution type program, they also do not turn on.
- When the instruction is executed, do not rewrite the device data in (s2) until the completion device turns on.
- Specifying digit for the bit device can be used only when the following conditions (a) and (b) are met.
- · Digit specification: K4
- · Head of device: multiple of 16

When the above conditions (a) and (b) are not met, INSTRCT CODE ERR. (error code: 4004) will occur.

# Refresh device read (in 1-bit units)

#### S(P)_REFDVRDB



- QnUD(H)CPU and QnUDE(H)CPU: Supported if first 5 digits of the serial number are "14072" or later
- Built-in Ethernet port LCPU: Supported
- Not supported for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, QnUDVCPU, QnUDPVCPU, L02SCPU, and L02SCPU-P

Structured ladder/F	BD	ST
EN ENO n1 d2 s1 d1 n2	=	ENO:= S_REFDVRDB (EN,n1,s1,d1,n2,d2);

Any of the following instruction can go in the dotted squares. S_REFDVRDB, SP_REFDVRDB

#### ■Executing condition

Instruction	Executing condition
S_REFDVRDB	
SP_REFDVRDB	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	Start I/O number (0H to FEH) (BIN 16-bit) ^{*1} 1 of the master station controlling the station assigned the refresh device which reads data	ANY16
	s1	Start number or the array of the device stored control data (device name)	Array of ANY16 (03)
	d1	Start number of the device stored read data to the refresh device assigned the device specified in (s1)+0 and (s1)+1 (device name)	Bit
	n2	Number of read points (1 to 2147483647)	ANY32
Output argument	ENO	Execution result	Bit
	d2	Start number or the array of the bit device which turns on for 1 scan by the instruction completion. (d1)+1 also turns on at the error completion (bit).	Array of Bit (01)

Setting	Internal dev	ice	e R, ZR J⊡\⊡		U⊡\G⊡ Zn	Zn	Constant	Others	
data	Bit	Word		Bit	Word			К, Н	
n1	-	0		—				0	-
(s1)	-	0			-			—	-
(d1)	∆* ²	-		-			—	-	
n2	—	0		-		0	—		
(d2)	∆*2	—		—				—	—

*1 The first 3 digits of the hexadecimal 4 digits which represent the start I/O number.

*2 Local devices and file registers per program cannot be used as setting data.

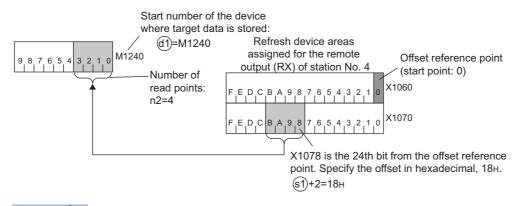
• The contents of the data stored in the area starting from (s1) are as indicated below.

Device	ltem	Setting contents	Setting range
(\$1)+0	Station number	Station number for the station assigned the refresh device which reads data. When the link special relay (SB) is specified as type of (s1)+1, the setting is disabled.	1 to 120
(s1)+1	Туре	Type of the refresh device which reads data • 1: Remote input (RX) • 2: Remote output (RY) • 3: Link special relay (SB)	1 to 3
(s1)+2 (s1)+3	Offset	Offset from the head of the refresh device assigned the device specified in (s1)+0 and (s1)+1	0 to 2147483647

· Instruction execution possibility of an execution type for each program.

• Enabled: Initial program and scan execution type program

Disabled: Fixed scan execution type program and interrupt program


- To read data to a refresh device, the data reflection to the station number specified by the instruction is executed at the timing for the auto refresh.
- Number of points specified in n2 is read from the device specified in (s2) to the offset specified in (s1)+2 of the refresh device assigned for the device specified in (s1)+1 of the target station specified in n1 and (s1)+0.

[Structure]

	-						
1	CPU module	Master station: Station No. 0	Station No. 1		Specified station: Station No. 4		
	Туре: 🤅	s1)+1=1 C	C-Link master Station No.	station:/	t I/O No.: n1=0 St	ation numb s1+0=4 on:	
	CPU mod	dule 🔪 :	Start I/O No.: 0	- / ·	Station No. 1		Station No. 4
	Refresh de           X100F to X           X101F to X           X101F to X           X102F to X           X103F to X           X104F to X           X105F to X           X106F to X           X107F to X           X108F to X           X109F to X           X109F to X           X109F to X           X104F to X           X104F to X           X104F to X	evice (1000 (1010 (1020 (1030 (1030 (1040 (1050 (1060 (1070 (1080 (1040) (1040) (1040) (1040) (1040) (1040) (1040) (1040) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (1050) (	Remote input ( RX0F to RX1 RX1F to RX RX2F to RX2 RX3F to RX2 RX3F to RX2 RX4F to RX4 RX5F to RX4 RX5F to RX4 RX5F to RX4 RX7F to RX4 RX8F to RX4 RX9F to RX4 RX4F to RX4 RX4	(RX) 00 10 20 30 40 50 60 70 80 90 A0	Remote input (RX) RX0F to RX00 RX1F to RX10		Remote input (RX)

Refresh device areas assigned for station No. 4

At the above configuration, number of points specified in n2 is read starting from the offset (X1078) specified in (s1)+2 of the device assigned for the station number 4, then the number of points is read to devices starting from the device specified in (d1).



Point P

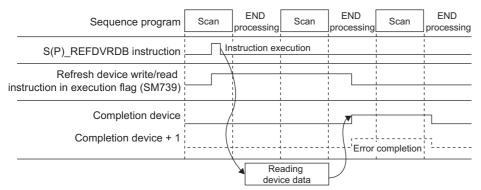
When a refresh range per station is assigned in transfer settings, specify number of read points so that the range read data from the specified offset is within the range assigned in the same transfer setting. An error occurs if the number of read points over the range assigned in each transfer setting is specified.

#### • The station type which can and cannot specify with the start I/O number is as follows.

Specification possibility	Station type
Enabled	CC-Link master station, CC-Link master station (compatible with redundant function), CC-Link IE Field Network master station
Disabled	CC-Link local station, CC-Link standby master station, CC-Link IE Field Network local station, CC-Link IE Field Network submaster station

- Because the available range of the station number is 1 to 120, the station number for the master station in n1 cannot be specified to (s1)+0. If the station number is specified, the "OPERATION ERROR" (error code: 4102) occurs.
- SM739 (Refresh device write/read instruction in execution flag) turns on during the instruction execution. When SM739 is on, the following instructions cannot be executed. If these instructions are executed, no processing is performed. When an error is detected at the instruction execution (before SM739 turns on), the completion device ((d2)+0), the completion device ((d2)+1), and SM739 do not turn on.
- S(P)_REFDVWRB
- S(P)_REFDVWRW
- S(P)_REFDVRDB
- S(P)_REFDVRDW

• The instruction completion can be checked in the completion device ((d2)+0 and (d2)+1).


Completion device ((d2)+0)

The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing. • Completion device ((d2)+1)

The device turns on or off by the status when the instruction is completed.

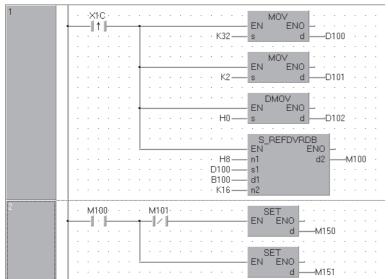
Normal completion: No change from off

Error completion: The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing.



- A module set parameters by the dedicated instruction and a CC-Link module operating by the automatic CC-Link startup cannot be specified with the instruction.
- The read source (points in n2 from a device specified in control data) and read destination (points in n2 from (d1)) are overlapped, data can be read. Read data starting from a device specified in control data when data are read to the smaller device number. Read data starting from a device specified in control data (d1)+ ((n2)-1) when data are read to the larger device number.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4002	When the instruction is used for the CPU module that is supported.	—	-	-	-	0	0
	When the module cannot be specified the start I/O number in n1						
4004	When the device which cannot be specified is specified	—	-	-	-	0	0
4101	When the specified device exceeds the range of the number of device points	—	-	-	-	0	0
	When the start I/O number in n1 is out of the specified range						
	When the device type number in (s1)+1 is out of the specified range	-					
	When the read offset in (s1)+2 is out of the specified range						
	When the number of read points in n2 is out of the specified range						
	When the number of read points in n2 exceeds the range of the number of device points						
4102	When the station number in (s1)+0 is out of the specified range	—	—	-	-	0	0
	When the station number in (s1)+0 does not exist						
	When the station number in (s1)+0 is the master station specified in n1						
4150	When the start I/O number in n1 is the station type which cannot be specified	—	—	-	-	0	0
	When the start I/O number in n1 does not exist in the network parameter						
4151	When the device in (s1)+1 of the station number specified in (s1)+0 is not assigned the refresh device	—	—	—	-	0	0
	When the read offset in (s1)+2 exceeds the refresh device range assigned for the device in (s1)+1 of the station number specified in (s1)+0						
	When the number of read points in n2 exceeds the assignment range of the setting for one transfer from the read offset in (s1)+2						

#### Program example

• The following program reads 16 device values from the head of the refresh device (offset: 0) assigned for the remote input (RX) in the remote I/O station on the station number 32 controlled by the CC-Link master station of the start I/O number 0080H to B100 when X1C is turned on.

[Structured ladder/FBD]



[ST]

MOV(LDP(TRUE, X1C), K32, D100); MOV(LDP(TRUE, X1C), K1, D101); DMOV(LDP(TRUE, X1C), H0, D102); S_REFDVRDB(LDP(TRUE, X1C), H8, D100, B100, K16, M100); IF M100=TRUE THEN IF M101=FALSE THEN SET(TRUE, M150); ELSE SET(TRUE, M151); END_IF; END_IF;

#### Precautions

· Do not execute the instruction in an interrupt program. If the instruction is executed, no processing is performed. In addition, the completion device ((d2)+0), the completion device ((d2)+1), and SM739 do not turn on. If the instruction is executed in a fixed scan execution type program, they also do not turn on.

#### S(P)_REFDVRDW



- QnUD(H)CPU and QnUDE(H)CPU: Supported if first 5 digits of the serial number are "14072" or later
- Built-in Ethernet port LCPU: Supported
- Not supported for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, QnUDVCPU, QnUDPVCPU, L02SCPU, and L02SCPU-

Structured ladder/FBD	ST
EN ENO n1 d2 s1 d1 n2	ENO:= S_REFDVRDW (EN,n1,s1,d1,n2,d2);

Any of the following instruction can go in the dotted squares. S_REFDVRDW, SP_REFDVRDW

#### ■Executing condition

Instruction	Executing condition	
S_REFDVRDW		
SP_REFDVRDW		

#### ■Argument

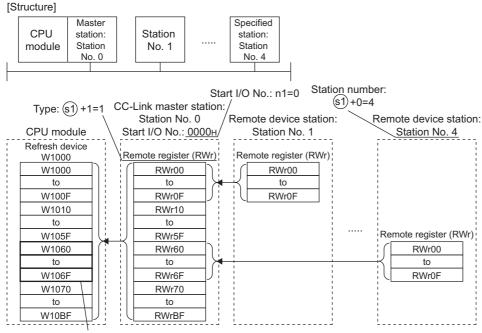
Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	Start I/O number (0H to FEH) (BIN 16-bit) ^{*1} 1 of the master station controlling the station assigned the refresh device which reads data	ANY16
	s1	Start number or the array of the device stored control data (device name)	Array of ANY16 (03)
	d1	Start number of the device stored read data to the refresh device assigned the device specified in (s1)+0 and (s1)+1 (device name)	ANY16
	n2	Number of read points (1 to 2147483647)	ANY32
Output argument	ENO	Execution result	Bit
	d2	Start number or the array of the bit device which turns on for 1 scan by the instruction completion. (d2)+1 also turns on at the error completion (bit).	Array of Bit (01)

Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word			К, Н	
n1	-	0		—				0	_
(s1)	-	0		-				—	—
(d1)	-	∆* ²		—				—	—
n2	-	0		-				0	—
(d2)	∆ ^{*2}	—		—				—	—

*1 The first 3 digits of the hexadecimal 4 digits which represent the start I/O number.

*2 Local devices and file registers per program cannot be used as setting data.

• The contents of the data stored in the area starting from (s1) are as indicated below.


Device	ltem	Setting contents	Setting range
(\$1)+0	Station number	Station number for the station assigned the refresh device which reads data. When the link special register (SW) is specified as type of (s1)+1, the setting is disabled.	1 to 120
(s1)+1	Туре	Type of the refresh device which reads data • 1: Remote register (RWr) • 2: Remote register (RWw) • 3: Link special register (SW)	1 to 3
(s1)+2 (s1)+3	Offset	Offset from the head of the refresh device assigned the device specified in (s1)+0 and (s1)+1.	0 to 2147483647

· Instruction execution possibility of an execution type for each program.

• Enabled: Initial program and scan execution type program

• Disabled: Fixed scan execution type program and interrupt program

- To read data to a refresh device, the data reflection to the station number specified by the instruction is executed at the timing for the auto refresh.
- Number of points specified in n2 is read from the device specified in (s2) to the offset specified in (s1)+2 of the refresh device assigned for the device specified in (s1)+1 of the target station specified in n1 and (s1)+0.



Refresh device areas assigned for station No. 4

At the above configuration, number of points specified in n2 is read starting from the offset (W1063) specified in (s1)+2 of the device assigned for the station number 4, then the number of points is read to devices starting from the device specified in (d1).

Start number of the where target data i	s stored: )=D1240 Re ass	efresh device ar igned for the rei er (RWr) of statio	note
D1241 D1242 D1243	Read area size: n2=4	W1060           W1061           W1062           W1063           W1064           W1065           W1066           W1067           W1068           W1069           to           W106F	<ul> <li>Offset reference point (start point: 0)</li> <li>W1063 is the 3rd word from the offset reference point. Specify the offset in hexadecimal, 3H.</li> <li>(s1)+2=3H</li> </ul>

Point P

When a refresh range per station is assigned in transfer settings, specify number of read points so that the range read data from the specified offset is within the range assigned in the same transfer setting. An error occurs if the number of read points over the range assigned in each transfer setting is specified.

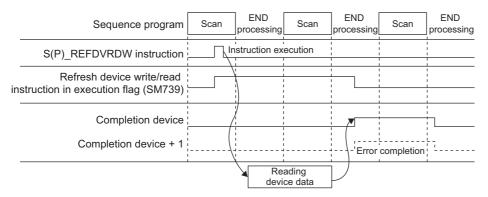
• The station type which can and cannot specify with the start I/O number is as follows.

Specification possibility	Station type
Enabled	CC-Link master station, CC-Link master station (compatible with redundant function), CC-Link IE Field Network master station
Disabled	CC-Link local station, CC-Link standby master station, CC-Link IE Field Network local station, CC-Link IE Field Network submaster station

• Because the available range of the station number is 1 to 120, the station number for the master station in n1 cannot be specified to (s1)+0. If the station number is specified, the "OPERATION ERROR" (error code: 4102) occurs.

- SM739 (Refresh device write/read instruction in execution flag) turns on during the instruction execution. When SM739 is
  on, the following instructions cannot be executed. If these instructions are executed, no processing is performed. When an
  error is detected at the instruction execution (before SM739 turns on), the completion device ((d2)+0), the completion
  device ((d2)+1), and SM739 do not turn on.
- S(P)_REFDVWRB
- S(P)_REFDVWRW
- S(P)_REFDVRDB
- S(P)_REFDVRDW

• The instruction completion can be checked in the completion device ((d2)+0 and (d2)+1).


Completion device ((d2)+0)

The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing.

 ${\,\cdot\,}$  Completion device ((d2)+1) The device turns on or off by the status when the instruction is completed.

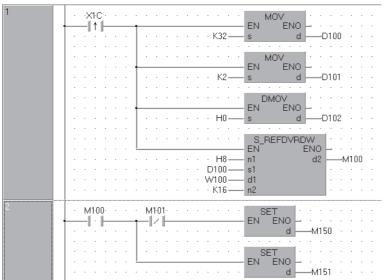
Normal completion: No change from off

Error completion: The device turns on at the END processing in a scan where the instruction is completed and turns off at the next END processing.



- A module set parameters by the dedicated instruction and a CC-Link module operating by the automatic CC-Link startup cannot be specified with the instruction.
- The read source (points in n2 from a device specified in control data) and read destination (points in n2 from (d1)) are overlapped, data can be read. Read data starting from a device specified in control data when data are read to the smaller device number. Read data starting from a device specified in control data (d1)+ ((n2)-1) when data are read to the larger device number.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4002	When the instruction is used for the CPU module that is supported.	—	-	-	—	0	0
	When the module cannot be specified the start I/O number in n1						
4004	When the device which cannot be specified is specified	—	—	—	—	0	0
4101	When the specified device exceeds the range of the number of device points	—	—	—	—	0	0
	When the start I/O number in n1 is out of the specified range						
	When the device type number in (s1)+1 is out of the specified range						
	When the read offset in (s1)+2 is out of the specified range	-					
	When the number of read points in n2 is out of the specified range						
	When the number of read points in n2 exceeds the range of the number of device points						
4102	When the station number in (s1)+0 is out of the specified range	—	—	—	—	0	0
	When the station number in (s1)+0 does not exist						
	When the station number in (s1)+0 is the master station specified in n1						
4150	When the start I/O number in n1 is the station type which cannot be specified	—	—	—	—	0	0
	When the start I/O number in n1 does not exist in the network parameter						
4151	When the device in (s1)+1 of the station number specified in (s1)+0 is not assigned the refresh device	—	-	-	-	0	0
	When the read offset in (s1)+2 exceeds the refresh device range assigned for the device in (s1)+1 of the station number specified in (s1)+0						
	When the number of read points in n2 exceeds the assignment range of the setting for one transfer from the read offset in (s1)+2						

#### Program example

• The following program reads 16 device values from the head of the refresh device (offset: 0) assigned for the remote register (RWr) in the remote device station on the station number 32 controlled by the CC-Link master station of the start I/ O number 0080H to W100 when X1C is turned on.

[Structured ladder/FBD]



[ST]

MOV(LDP(TRUE, X1C), K32, D100); MOV(LDP(TRUE, X1C), K1, D101); DMOV(LDP(TRUE, X1C), H0, D102); S_REFDVRDW(LDP(TRUE, X1C), H8, D100, W100, K16, M100); IF M100=TRUE THEN IF M101=FALSE THEN SET(TRUE, M150); ELSE SET(TRUE, M151); END_IF; END_IF;

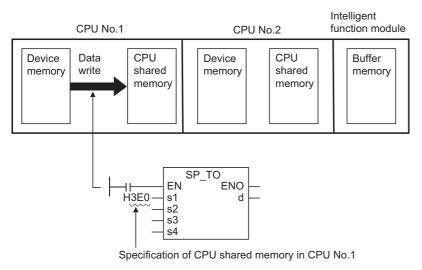
#### Precautions

- · Do not execute the instruction in an interrupt program. If the instruction is executed, no processing is performed. In addition, the completion device ((d2)+0), the completion device ((d2)+1), and SM739 do not turn on. If the instruction is executed in a fixed scan execution type program, they also do not turn on.
- Specifying digit for the bit device can be used only when the following conditions (a) and (b) are met.
- · Digit specification: K4
- · Head of device: multiple of 16

When the above conditions (a) and (b) are not met, INSTRCT CODE ERR. (error code: 4004) will occur.

## **9** MULTIPLE CPU DEDICATED INSTRUCTIONS

## 9.1 Writing Data to Host CPU Shared Memory

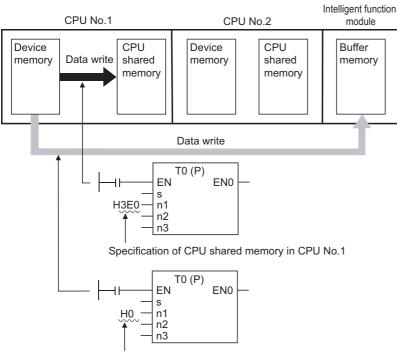

The S(P)_TO or TO(P) instruction is used to write to the host CPU shared memory in the multiple CPU system. The following table indicates the usability of the S(P)_TO and TO(P) instructions.

CPU module model		S(P) TO instruction	TO(P) instruction
Basic model QCPU	Q00JCPU	Unusable	Unusable
	Q00CPU and Q01CPU	Usable	Usable
High Performance model QCPU	Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU	Usable	Unusable
Process CPU Q02PHCPU, Q06PHCPU, Q12PHCPU and Q25PHCPU		Usable	Unusable
Redundant CPU Q12PRHCPU and Q25PRHCPU		Unusable	Unusable
Universal model QCPU	Q00UJCPU	Unusable	Unusable
	Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDPVCPU, Q26UDVCPU, Q26UDPVCPU, Q100UDEHCPU	Usable	Usable
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT	Unusable	Unusable

#### Operation of S(P)_TO instruction

The S(P)_TO instruction can write data to the CPU shared memory of the host CPU module.

The following figure shows the processing performed when the  $S(P)_TO$  instruction is executed in CPU No. 1.




#### **Operation of TO(P) instruction**

The TO(P) instruction can write device memory data to the following memory.

- · CPU shared memory of the host CPU module
- · Buffer memory of the intelligent function module

The following figure shows the processing performed when the TO(P) instruction is executed in CPU No. 1.



Specification of intelligent function module



For Basic model QCPU (Q00CPU, Q01CPU) and Universal model QCPU, both S(P)_TO and TO(P) instructions can be used to write data to the CPU shared memory. However, use of the TO(P) instruction is recommended in order to reduce the number of steps and shorten the processing time for writing data to the host CPU shared memory.

For writing to the buffer memory of the intelligent function module by the TO instruction, refer to the following. Page 454 Writing 1-/2-word data to intelligent function module

#### S(P)_TO



- Q00CPU and Q01CPU: Supported if first 5 digits of the serial number are "04122" or later
- High Performance model QCPU: Supported if the function version B or later

Stru	ictured	ladder/FBD	ST
		<u>S_TO</u>	
_	EN	ENO -	
_	s1	d 🗕	ENO:= S_TO (EN, s1, s2, s3, s4, d);
	s2		······································
	s3		
-	s4		

Any of the following instruction can go in the dotted squares. S_TO, SP_TO

#### ■Executing condition

Instruction	Executing condition
S_TO	
SP_TO	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s1	Start I/O number of the host CPU*1	ANY16
	s2	Host CPU shared memory addresses of the write destination (BIN 16 bits) Basic model QCPU: 0 to 511 High Performance model QCPU, Process CPU, and Universal model QCPU: 0 to 4095	ANY16
	s3	Start number of the device that stores write data	ANY16
	s4	Number of write points Basic model QCPU: 1 to 320 High Performance model QCPU, Process CPU: 1 to 255 Universal model QCPU: 1 to 2048	ANY16
Output argument	ENO	Execution result	Bit
	d	Host CPU device to be turned ON for one scan at the write completion	Bit

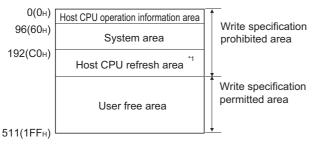
*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.

Setting	Internal dev	/ice	R, ZR	JD/D	ם/םנ		i🛛 Zn	Constant	Others		
data	Bit	Word		Bit	Word	Word		1		К, Н	
(s1)	-	0		-				0	—		
(s2)	-	0	-		-			0	-		
(s3)	-	0		-				-	-		
(s4)	-	0		-		-			0	-	
(d)	0	0		-				—	—		


The (s1) is specified by the first 3 digits of the hexadecimal 4 digits which represent the start I/O number of the slot on which the CPU module is mounted.

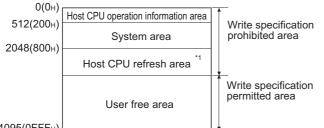
Slot No.	Start I/O number	(s1)
CPU Slot	3E00	3E0
Slot 0	3E10	3E1
Slot 1	3E20	3E2
Slot 2	3E30	3E3

#### **Processing details**


• Writes (s4) words of device data from host CPU module (s3) to the CPU shared memory address specified for (s2) and the following addresses of host CPU module. When writing is completed, the completion bit specified for (d) turns ON.

Host CPU




· CPU shared memory address of the Basic model QCPU

CPU shared memory address



• CPU shared memory address of the High Performance model QCPU, Process CPU, and Universal model QCPU*2

CPU shared memory address



4095(0FFFн)

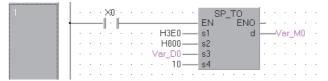
- *1 Usable as a user setting area when auto refresh setting is not set. In addition, even when auto refresh setting is set, the auto refresh send range or later is usable as a user setting area.
- *2 Data cannot be written to the multiple CPU high speed transmission area of the Universal model QCPU using the S(P)_TO instruction.
- When the number of write points is 0, no processing is performed and the completion device does not turn ON.
- The S(P) TO instruction can be executed once per one scan for each CPU. When execution condition is established at two or more places at the same time, the S(P)_TO instruction executed later is not processed since handshake is established automatically.
- · The number of data that can be written varies depending on the target CPU module

CPU module	Number of write points
Basic model QCPU	1 to 320
High Performance model QCPU, Process CPU	1 to 256
Universal model QCPU	1 to 2048



Data Write to CPU shared memory can be performed using the intelligent function module device. For the intelligent function module device, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.

#### Operation error


• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2107	When the start I/O number (s1) of the host CPU is other than that of the host CPU.	-	0	0	-	—	-
2110	The CPU module does not exist in the position specified by the start I/O number of the CPU module.	0	0	0	_	0	-
4002	When the specified instruction is improper.	0	0	0	—	0	—
4003	When the specified number of devices is wrong.	0	0	0	—	0	—
4004	When the unusable device is specified.		0	0	—	0	—
4100	When the start I/O number (s1) of the host CPU is other than 3E0H, 3E1H, 3E2H or 3E3H.		0	0	—	0	—
4101	When the host CPU operation information area, restricted system area or host CPU refresh area is specified to the CPU shared memory address (s2) of the write destination.	-	0	0	-	—	—
	<ul> <li>When the number of write points (s4) is outside the specified range of set data.</li> <li>When the start of the CPU shared memory address (s2) of the write destination host CPU exceeds the CPU shared memory address range.</li> <li>When the CPU shared memory address (s2) + the number of write points (s4) exceeds the CPU shared memory address range.</li> <li>When the start number of the devices (s3) where the data to be written is stored + the number of write points (s4) exceeds the device range.</li> </ul>	0	0	0	_	0	_
4111	When the host CPU operation information area, restricted system area or host CPU refresh area is specified to the CPU shared memory address (s2) of the write destination.		-	-	-	0	—
4112	When the start I/O number (s1) of the host CPU is other than that of the host CPU.	0	-	-	-	0	—

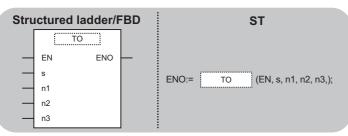
#### Program example

• In the following program, 10 points of data from Var_D0 are stored to the address 800H of the CPU shared memory of CPU No. 1 when X0 turns ON.

[Structured ladder/FBD]



[ST]


SP_TO(X0,H3E0,H800,Var_D0,10,Var_M0);

### Writing data to host CPU shared memory(TO(P), DTO(P))

#### TO(P), DTO(P)



• Q00CPU and Q01CPU: Supported if first 5 digits of the serial number are "04122" or later



Any of the following instruction can go in the dotted squares. TO, TOP, DTO, DTOP

10, 101, 210, 2101

#### ■Executing condition

Instruction	Executing condition
TO, DTO	
TOP, DTOP	

#### ■Argument

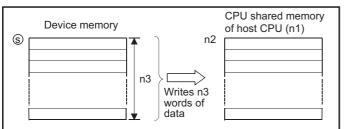
Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	s	Write data, or start number of the device that stores write data	ANY16/32
	n1	Start I/O number of the host CPU ^{*1} Basic model QCPU: 3E0H Universal model QCPU: 3E0H to 3E3H	ANY16
	n2	Host CPU shared memory address of the write destination Basic model QCPU: 192 to 511 Universal model QCPU: 2048 to 4095, 10000 to 24335 ^{*2}	ANY16
	n3	Number of write points 1 to 320 Basic model QCPU: FROM(P): 1 to 512, DFRO(P): 1 to 256 Universal model QCPU: FROM(P): 1 to 14336 ^{*2} , DFRO(P): 1 to 7168 ^{*2}	ANY16
Output argument	ENO	Execution result	Bit

*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.

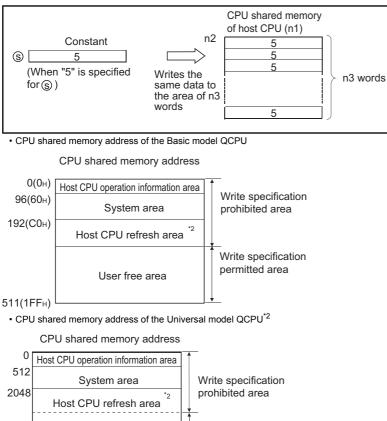
*2 The setting range varies depending on the auto refresh setting range of the multiple CPU high speed transmission function.

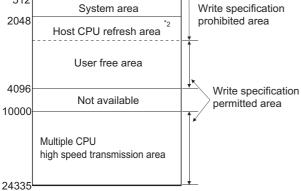
Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word		Bit	Word	Vord		К, Н	U
(s)	0		—			0	—		
n1	0		0		0	0			
n2	0		0		0	—			
n3	0			0				0	—

The n1 is specified by the first 3 digits of the hexadecimal 4 digits which represent the start I/O number of the slot on which the CPU module is mounted.


	CPU Slot	Slot 0	Slot 1	Slot 2
Start I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3

#### Processing details


#### ■TO


• Writes n3 words of device data from host CPU module (s) to the CPU shared memory address specified for n2 and the following addresses of host CPU module.

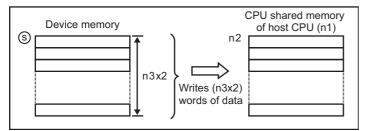
Host CPU



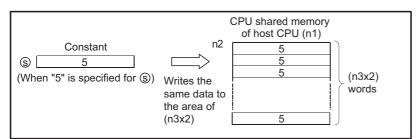
• When a constant is specified for (s), writes the same data (value specified for (s)) to the area of n3 words from the specified CPU shared memory.






- *1 Usable as a user setting area when auto refresh setting is not set. In addition, even when auto refresh setting is set, the auto refresh send range or later is usable as a user setting area.
- *2 With Q02UCPU, data cannot be written to the multiple CPU high speed transmission area.

- No processing is performed when the number of write points is 0.
- The number of data that can be written varies depending on the target CPU module.


CPU module	Number of write points
Basic model QCPU	1 to 320
Universal model QCPU	1 to 14336

#### **■**DTO

• Writes  $(n3 \times 2)$  words of device data from host CPU module (s) to the CPU shared memory address specified for n2 and the following addresses of host CPU module.



When a constant is specified for (s), writes the same data (value specified for (s)) to the area of (n3 × 2) words from the specified CPU shared memory.



• No processing is performed when the number of write points is 0.

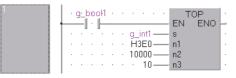
• The number of data that can be written varies depending on the target CPU module

CPU module	Number of write points
Basic model QCPU	1 to 160
Universal model QCPU	1 to 7168

#### Point P

Data Write to CPU shared memory can be performed using the intelligent function module device. For the intelligent function module device, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.

#### Operation error

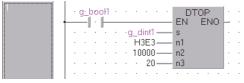

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2110	The CPU module does not exist in the position specified by the start I/O number of the CPU module.	0	-	-	-	0	-
4101	<ul> <li>When the number of write points (n3) is outside the specified range of set data.</li> <li>When the CPU shared memory address (n2) of the write destination host CPU + the number of write points (n3) exceeds the CPU shared memory range.</li> <li>When the start number of the devices that stores the data to be written (s) + the number of write points (n3) exceeds the device range.</li> <li>When the value that exceeds the write specification permitted area is specified for the start CPU shared memory address (n2) of the write destination.</li> </ul>	0	—	—	—	0	—
4111	When the value for the start of the CPU shared memory address (n2) of the write destination is not valid.	0	-	_	_	0	_
4112	When the I/O number specified for (n1) is other than that of the host station. (Except when the multiple CPU high speed transmission area of the other station is specified.)	0	—	—	—	0	-

#### Program example

 In the following program, 10 points of data from g_int1 are stored to the address 10000 of the CPU shared memory of CPU No. 1 when g_bool1 turns ON.

[Structured ladder/FBD]




[ST]

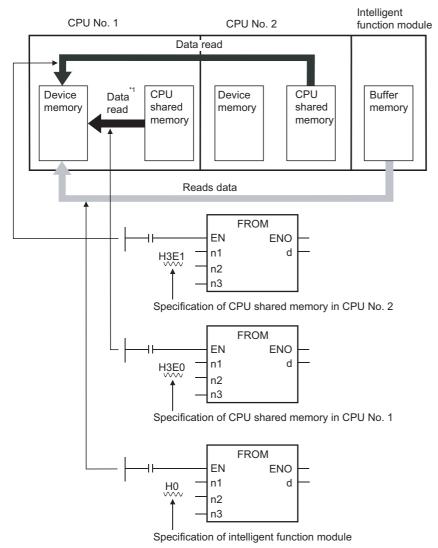
TOP(g_bool1, g_int1, H3E0, 10000, 10);

• In the following program, 20 points of data from g_dint1 are stored to the address 10000 or later of the CPU shared memory of CPU No. 4 when g_bool1 turns ON.

[Structured ladder/FBD]



[ST]


DTOP(g_bool1, g_dint1, H3E3, 10000, 20);

## 9.2 Reading data from other CPU shared memory

Data can be read using the FROM(P)/DFRO(P) instruction of multiple CPU system from the following memories.

- · Buffer memory of the intelligent function module
- · CPU shared memory of other CPU module
- CPU shared memory of host CPU module (Executable in the Basic model QCPU and the Universal model QCPU)

The following figure shows the processing performed when the FROM(P) instruction is executed in CPU No. 1.

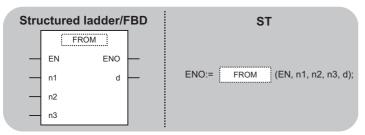


*1 Can be executed in the Basic model QCPU and the Universal model QCPU.

#### Point P

For reading the buffer memory of the intelligent function module with the FROM(P)/DFRO(P) instruction, refer to the following.

Page 451 Reading 1-/2-word data from intelligent function module


#### Reading data from other CPU shared memory

#### FROM(P), DFRO(P)



- · Q00CPU and Q01CPU: Supported if first 5 digits of the serial number are "04122" or later
- · High Performance model QCPU: Supported if the function version B or later

#### ■For Basic model QCPU and Universal model QCPU



Any of the following instruction can go in the dotted squares. FROM, FROMP, DFRO, DFROP

#### ■Executing condition

Instruction	Executing condition
FROM, DFRO	
FROMP, DFROP	

#### ■Argument

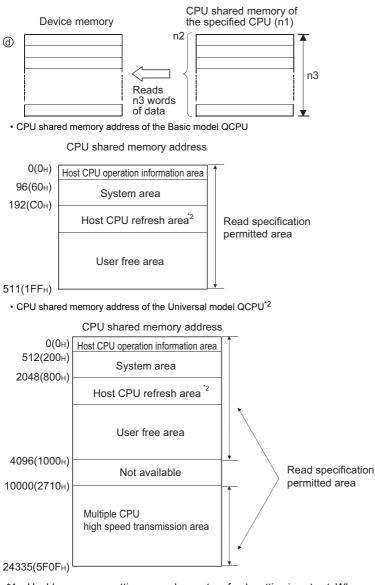
Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	Start I/O number of the read target CPU module ^{*1} Basic model QCPU: 3E0H to 3E2H Universal model QCPU: 3E0H to 3E2H	ANY16
	n2	CPU shared memory address of the read destination Basic model QCPU: 0 to 511 Universal model QCPU: 0 to 4095, 10000 to 24335 ^{*2}	ANY16
	n3	Number of data to be read Basic model QCPU: FROM(P): 1 to 512, DFRO(P): 1 to 256 Universal model QCPU: FROM(P): 1 to 14336 ^{*2} , DFRO(P): 1 to 7168 ^{*2}	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores read data	ANY16/32

*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.

*2 The setting range varies depending on the auto refresh setting range of the multiple CPU high speed transmission function.

Setting	Internal dev	ice	R, ZR	JD/D		UD\GD	Zn	Constant	Others (U)
data	Bit	Word		Bit	Word			К, Н	
n1	—	0		0				0	0
n2	—	0		0				0	—
n3	—	0		0				0	—
(d)	—	0		-				—	—

The n1 is specified by the first 3 digits of the hexadecimal 4 digits which represent the start I/O number of the slot on which the CPU module is mounted.

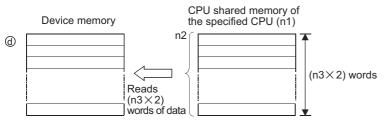

	CPU Slot	Slot 0	Slot 1	Slot 2
Start I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3

839

#### Processing details

#### FROM

• Reads n3 words of data from the CPU shared memory address specified for n2 of the CPU module specified for n1, and stores the data to (d) and the following devices.




- *1 Usable as a user setting area when auto refresh setting is not set. When auto refresh setting is set, the auto refresh send range and later are usable as a user setting area.
- *2 With Q02UCPU, data cannot be read from the multiple CPU high speed transmission area.
- When 0 is specified for n3 as the number of data to be read, no processing is performed.
- The number of data that can be read varies depending on the target CPU module.

CPU module	Number of read points
Basic model QCPU	1 to 512
Universal model QCPU	1 to 14336

#### ■DFRO

 Reads (n3 × 2) words of data from the CPU shared memory address specified for n2 of the CPU module specified for n1, and stores the data to (d) and the following devices.



- No processing is performed when read data n3 is 0.
- The number of data that can be read varies depending on the target CPU module.

CPU module	Number of read points
Basic model QCPU	1 to 256
Universal model QCPU	1 to 7168

#### Point P

Data read from the CPU shared memory can also be performed using the intelligent function module devices. For the intelligent function module device, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.

#### Operation error

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2110	The CPU module does not exist in the position specified by the start I/O number of the CPU module.	0	-	-	-	0	-
4101	The head of the CPU shared memory address (n2) which performs reading is outside the CPU shared memory range. The address of the CPU shared memory (n2) from which data are read plus the number of read points (n3) is outside of the CPU shared memory range. The read data storage device number (d) plus the number of read points (n3) is outside of the specified device range. When the start of the CPU shared memory address (n2) which performs reading is an invalid value. (4097 to 9999)	0	_	_	_	0	_

#### Program example

• In the following program, 10 points of data from the address 800H of the CPU shared memory of CPU No. 2 are stored to Var_D0 and the following devices when X0 turns ON.

[Structured ladder/FBD]

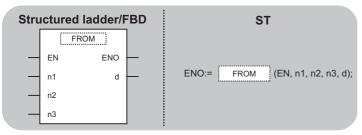
1		
	····· H3E1 n1 dVar_D0··	
	· · · · · · H800 — n2 · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	

[ST]

FROM(X0,H3E1,H800,10,Var_D0);

• In the following program, 20 points of data from the address 10000 of the CPU shared memory of CPU No. 4 are stored to D0 and the following devices when X0 turns ON.

[Structured ladder/FBD]


1		·
	H3E3 n1 d D0	
	· · · · · · · · K10000 — n2 · · · ·	
	· · · · · · · 20— n3 · · ·	÷
		•

[ST]

DFROP(X0,H3E3,K10000,20,D0);

#### FROM(P)

#### ■For High Performance model QCPU and Process CPU



Any of the following instruction can go in the dotted squares. FROM, FROMP

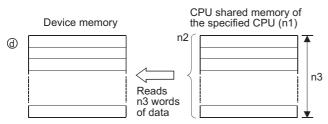
#### ■Executing condition

Instruction	Executing condition
FROM	
FROMP	

#### ■Argument

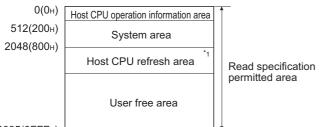
Input/output argument	Name	Description	Data type
Input argument	EN	Executing condition	Bit
	n1	Start I/O number of the read target CPU module ^{*1} 3E0H to 3E3H	ANY16
	n2	CPU shared memory address of the read destination 0 to 4095	ANY16
	n3	Number of data to be read 1 to 4096	ANY16
Output argument	ENO	Execution result	Bit
	d	Start number of the device that stores read data	ANY16

*1 Specified by the upper 3 digits of start I/O number expressed in 4-digit hexadecimal.


Setting	Internal device		R, ZR	JD/D		UD\GD Zn		UE\GE Zn		Constant	Others (U)
data	Bit	Word		Bit	Word			К, Н			
n1	—	0		0		0	0				
n2	—	0		0			0	_			
n3	—	0		0				0	_		
(d)	—	0		-				—	—		

The n1 is specified by the first 3 digits of the hexadecimal 4 digits which represent the start I/O number of the slot on which the CPU module is mounted.

	CPU Slot	Slot 0	Slot 1	Slot 2
Start I/O number	3E00	3E10	3E20	3E30
n1	3E0	3E1	3E2	3E3


#### Processing details

 Reads n3 words of data from the CPU shared memory address specified for n2 of the CPU module specified for n1, and stores the data to (d) and the following devices.



CPU shared memory address of the High Performance model QCPU and Process CPU

CPU shared memory address



4095(0FFFн)

- *1 Usable as a user setting area when auto refresh setting is not set. When auto refresh setting is set, the auto refresh send range and later are usable as a user setting area.
- When 0 is specified for n3 as the number of data to be read, no processing is performed.
- The number of data that can be read varies depending on the target CPU module.

CPU module	Number of read points
High Performance model QCPU Process CPU	1 to 4096

#### Point P

Data read from the CPU shared memory can also be performed using the intelligent function module devices. For the intelligent function module device, refer to the User's Manual (Functions Explanation, Program Fundamentals) of the CPU module to be used.

#### **Operation error**

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

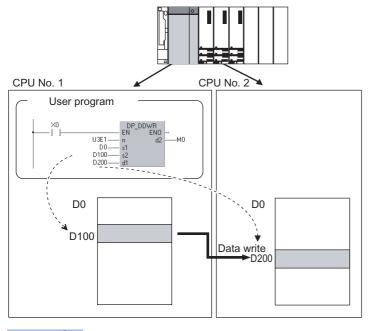
Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
2110	The CPU module does not exist in the position specified by the start I/O number of the CPU module.	—	0	0	-	—	-
4101	The head of the CPU shared memory address (n2) which performs reading is outside the CPU shared memory range. The address of the CPU shared memory (n2) from which data are read plus the number of read points (n3) is outside of the CPU shared memory range. The read data storage device number (d) plus the number of read points (n3) is outside of the specified device range. When the start of the CPU shared memory address (n2) which performs reading is an invalid value. (4097 to 9999)	_	0	0	_	_	_

#### Program example

 In the following program, 10 points of data from the address 800H of the CPU shared memory of CPU No. 2 are stored to Var_D0 and the following devices when X0 turns ON.
 [Structured ladder/FBD]

[Structured ladder/FBD]

- 8	:	- 1																						
	1			÷	×Ο	÷	÷	·		·		•		F	RC	M			·	·	÷	·	·	·
		- +		-	·	F	_	_			_	_	E١	1		E	INC	)  -	-	÷	÷	÷	÷	
					•		·	·	НX	3E1	_	_	n1				0	ł		-\/	'arj	D	0.	
				÷	÷	·	÷	·	Н	800	_	_	n2						÷	·	÷	÷	÷	·
				÷		·	÷	·		10	_	_	n3						÷	·	÷	·	÷	÷
			·	·	·	·	·	·	÷		•	•	•	•	•	•	•		•	·	·	·	·	·


[ST] FROM(X0,H3E1,H800,10,Var_D0);

# **10** MULTIPLE CPU HIGH SPEED TRANSMISSION DEDICATED INSTRUCTIONS

## 10.1 Overview

The multiple CPU high speed transmission dedicated instruction is an instruction used to read and write device data between the multiple Universal model QCPUs.

The following figure shows the operation when the data are read from the CPU No. 1 and written to the CPU No. 2 using the multiple CPU high speed transmission dedicated instruction.



Point P

This instruction can be used for the following CPU modules only, including the ones used as host CPU and other CPU (target CPU for instruction execution).

- Q3UDCPU, Q4UDHCPU or Q06UDHCPU with a serial number whose first five digits are '10012' or higher
- Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU
- QnUDVCPU
- QnUDPVCPU
- QnUDE(H)CPU

#### System configuration and parameter settings for executing the instruction

This instruction can be executed under the following system configuration and parameter settings.

- QnUD(H)CPU, QnUDVCPU, QnUDPVCPU, or QnUDE(H)CPU is used as the CPU No.1.
- Multiple CPU high speed main base unit (Q3 DB) is used.
- "Multiple CPU High Speed Transmission Area Setting is valid." is selected in the multiple CPU setting of the PLC parameter.

#### Devices that can be written/read

#### ■Names of devices that can be written/read

The following table shows the devices that can be written to/read from the other Universal model QCPUs using the multiple CPU high transmission dedicated instruction.

Classification	Туре	Device name	Target device applicable/not applicable (○: Applicable, △: Applicable with required conditions)	Remarks
Internal user device	Bit device	X, Y, M, L, B, F, SB	Δ	Required conditions at the setting • Digit specification of bit devices (K4/16 bits). • The start number of bit device is a multiple of 16 (10H).
	Word device	T, ST, C, D, W, SW	0	-
Internal system device	Bit device	SM	Δ	Required conditions at the setting • Digit specification of bit devices (K4/16 bits). • The start number of bit device is a multiple of 16 (10H).
	Word device	SD	0	-
File register	Word device	R, ZR	0	-

#### Point P

Devices SB, SW, SM, and SD contain the system information area.

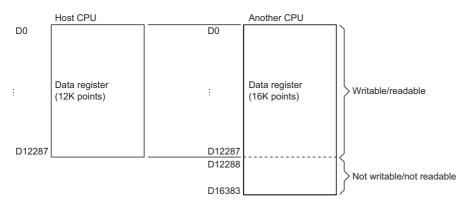
When writing data to devices described above using the multiple CPU high speed transmission dedicated instruction D(P)_DDWR, be careful not to destroy the system information.

#### Device specification method and applicable device range for writing/reading data

The device specification and character string specification are the two types of device specification method for other CPUs. The applicable device range for writing/reading data to/from the other CPU is different between the device specification and character string specification.

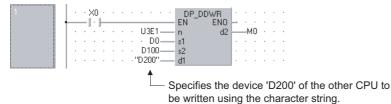
#### ■Device specification

The device specification is a method for specifying devices of the other CPU directly. Device specification of the DP_DDWR instruction



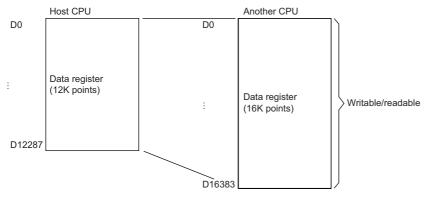

of the other CPU to be written.

By using the device specification method, data can be written/read within the device range of the host CPU.


For example, when the data register of the host CPU is 12K points, and the data register of other CPU is 16K points, data of 12K points can be written/read from the start of the data register of the other CPU.

The range for writing/reading data when the device is specified




#### Character string specification

The character string specification is a method for specifying devices of the other CPU using the character string. Character string specification of the DP_DDWR instruction



By using the character string specification method, data can be written/read within the whole device range of the other CPU. For example, when the data register of the host CPU is 12K points, and the data register of other CPU is 16K points, data of 16K points can be written/read from the start of the data register of the other CPU.

The range for writing/reading data when the character string is specified



Point P

The following describes the precautions on the character string specification.

- Up to 32 characters can be specified.
- Any 0s which are appended to upper digits of device number are ignored. The devices with the same lower digits are processed as the same device. For example, 'D1' and 'D0001' are processed as 'D1'.
- Devices specified with uppercase and lowercase of the same letter are processed as a same device. For example, 'D1' and 'd1' are processed as 'D1'.
- If devices that do not exist in other CPUs are specified by the character string, the instruction completes with an error.

#### Managing the multiple CPU high speed transmission area

The multiple CPU high speed transmission area is managed in blocks and each block contains minimum of 16 words. The following table shows the number of blocks that can be used in each CPU and the number of blocks used for the instruction.

Number of CPUs	System area ^{*1}						
	1K point	2K point					
2	46	110					
3	22	54					
4	14	35					

*1 For details of the system area settings, refer to QCPU User's Manual (Multiple CPU System).

#### The following figure shows the configuration of the multiple CPU high speed transmission area when the system area size is 1k word in the configuration of multiple CPU system with three CPU modules.

Multiple CPU high speed transmission area of CPU No. 1	Multiple CPU high speed transmission area of CPU No. 2	Multiple CPU high speed transmission area of CPU No. 3
The area that the data are	Receive area:	
22 blocks CPU No. 3		Receive area: from CPU No. 1
22 Receive area: blocks from CPU No. 2	Send area: to CPU No. 2 to CPL Send area: to CPU No. 1 block Send area: to CPU No. 3	
22 blocks from CPU No. 3 ↓	22 Receive area:	U No. 1 and 2. Send area: to CPU No. 1 Send area: to CPU No. 2 blocks 22 blocks 22 blocks 22 blocks

#### Number of blocks used for the instruction

The number of blocks used for the instruction differs by the points to be written.

The following table shows the number of blocks used for the instruction.

Number of write/read points specified by the instruction	D(P)_DDWR instruction	D(P)_DDRD instruction
1 to 4	1	1
5 to 20	2	
21 to 36	3	
37 to 52	4	
53 to 68	5	
69 to 84	6	
85 to 100	7	

#### Number of instructions that can be executed simultaneously

For Universal model QCPU, the multiple CPU high speed transmission dedicated instructions can be executed simultaneously within the following range.

Number of blocks that can be used for each CPU  $\geq$ 

Total of blocks used by the simultaneously executed instructions

By executing the multiple CPU high speed transmission dedicated instruction, if the number of blocks used by the multiple CPU high speed transmission dedicated instruction exceeds the total number of blocks of the multiple CPU high speed transmission area, this instruction is not executed (not processed) in the scan but it is executed again in the next scan. Note that, if the number of empty blocks of the multiple CPU high speed transmission area is fewer than the set value of the special registers SD796 to SD799 (for setting the maximum number of blocks for the multiple CPU high speed transmission dedicated instruction), this instruction completes with an error.

849

The following table shows the instruction execution applicability by the amount of blocks used for the multiple CPU high speed transmission dedicated instruction, and when the number of empty blocks of multiple CPU high speed transmission area is fewer than the set value of the special registers SD796 to SD799.

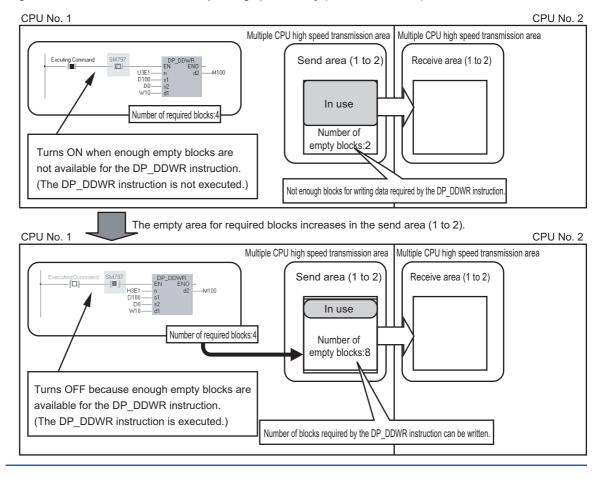
Relations between the SD set value and the number of empty blocks	Relation between the number of blocks us empty blocks	Relation between the number of blocks used by the instruction ^{*1} and the number of empty blocks							
	Number of blocks used by the instruction $^{*1} \leq$ Number of empty blocks *2	Number of blocks used by the instruction ^{*1} > Number of empty blocks ^{*2}							
SD set value $^{*3} \leq$ Number of empty blocks *2	Executed	Not executed (not processed)							
SD set value ^{*3} > Number of empty blocks ^{*2}	Completes with an error								

*1 Number of blocks used by the multiple CPU high speed transmission dedicated instruction

*2 Number of empty blocks of the multiple CPU high speed transmission area

*3 Set value of the special registers SD796 to SD799

#### Interlocks when the instruction is used


The special relays SM796 to SM799 (information of blocks used for the multiple CPU high speed transmission dedicated instruction) can be used as the interlocks for the multiple CPU high speed transmission dedicated instruction. When executing two or more multiple CPU high speed transmission dedicated instructions simultaneously, use the special

relays SM796 to SM799 as the interlocks for the instruction.

Point P

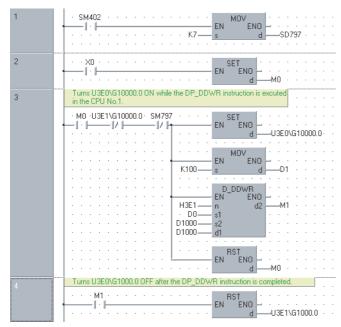
When using the special relays SM796 to SM799, set the maximum number of blocks for the instruction used in each CPU to the special registers SD796 to SD799. (For example, when the maximum number of blocks for the multiple CPU high speed transmission dedicated instruction that is executed to CPU No. 3 is 5, set 5 to SD798.)

If the multiple CPU high speed transmission area becomes less than the number of blocks set in the special registers SD796 to SD799, the corresponding special relay (SM796 to SM799) turns ON.

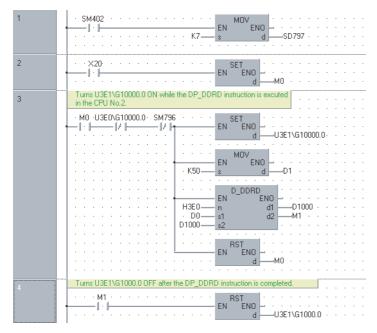


#### ■Program example when the special relays SM796 to SM799 are used as the interlocks

In the following program, the D_DDWR instruction is executed to the CPU No. 2 at the rising edge of X0, and to the CPU No. 3 at the rising edge of X1.


	Set the number of blocks used for the multiple CPU high speed transmission
1	dedicated instruction.
	•••• •••• ••• • • • • • • • • • • • •
	EN ENO
2	SM402 · · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • •
	EN ENO
3	The D_DDWR instruction is excuted to the CPU No.2 at the rising pulse of X0.
	· X0 · · · · · · · · · · · · · · · · · ·
4	· M0 · · SM797 · · · · · D DDWB · · · · · · · ·
	EN END
	······································
	2R0 s2 · · · · · · · · · · · · · · · · · ·
	MO · · · · · ·
5	The D_DDWR instruction is excuted to the CPU No.3 at the rising pulse of X1.
	×10 mang parts of A1.
6	• M3 • SM798 • • • • • • D_DDWR
	EN EN CONTRACTOR CONTR
	· · · · · ·         · · D2— s1         · · · · · · · ·           · · · · · · ·         ZR1000— s2         · · · · · · · · · · ·
	2R1000 <u>d1</u>
	BST
	EN ENO
	d

## ■Program example when the multiple CPU high speed transmission dedicated instructions are executed from one CPU to another CPU between the multiple CPU modules


When executing the multiple CPU high speed transmission dedicated instructions from one CPU to another CPU between the Universal model QCPUs, set the interlocks to avoid the instructions to be executed simultaneously. The cyclic transmission area devices (from U3En/G10000) are used as the interlocks.

In the following program, the multiple CPU high speed transmission dedicated instructions are executed from one CPU to another CPU between the CPU No. 1 and CPU No. 2.

• Program example when the multiple CPU high speed transmission dedicated instruction is executed in the CPU No. 1



• Program example when the multiple CPU high speed transmission dedicated instruction is executed in the CPU No. 2



## ■Program example when data exceeding 100 words are written/read by the multiple CPU high speed transmission dedicated instruction

Up to 100 words of data can be used for the multiple CPU high speed transmission dedicated instruction. In order to write/ read data exceeding 100 words, execute the instruction multiple times.

Note that the D(P)_DDWR instruction of the multiple CPU high speed transmission dedicated instruction is used in the following program examples, however, the same program configuration can be used for the D(P)_DDRD instruction.

• Program example in which only one D(P)_DDWR instruction is executed

In the following program, data in the devices ZR0 to ZR999 (1000 points) of the CPU No. 1 are written to the devices ZR0 to ZR999 of the CPU No.2 using the D_DDWR instruction. Only one D_DDWR instruction is executed in order to start the next D_DDWR instruction by turning ON the completion device (M2) of the D_DDWR instruction.

• Program example in which only one D(P)_DDWR instruction is executed

$4$ $4$ $Excutes the D_DDWR instruction EN = EN O = SET O = $	1	Set the maximum number of blocks used for the multiple CPU high speed transmission
Image: State writing data at the rising pulse of the write command/x00         States writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data at the rising pulse of the write command/x00         X0       M0         Image: State writing data       EN         State writing data       EN         Image: State writing da		
2     Stats witing data at the ising pulse of the write command/x0]       2     Stats writing data at the ising pulse of the write command/x0]       3		
2       Stats writing data at the rising pulse of the write command(x0)         2       Stats writing data at the rising pulse of the write command(x0)         3       M0         1       I         M0       EN         EN       END         M1       SET         M2       M1         M1       SM797         I       H3E1         N0       Stats writing data         M1       SM797         I       H3E1         N0       Stats         I       H3E1         N0       Stats         Excutes the D_DDWR instruction.         I       H3E1         N1       SM797         I       H3E1         N0       Stats         If the D_DDWR instruction completes with an error, turns DN         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       <		
2       Stats writing data at the rising pulse of the write command(x0)         2       Stats writing data at the rising pulse of the write command(x0)         3       M0         1       I         M0       EN         EN       END         M1       SET         M2       M1         M1       SM797         I       H3E1         N0       Stats writing data         M1       SM797         I       H3E1         N0       Stats         I       H3E1         N0       Stats         Excutes the D_DDWR instruction.         I       H3E1         N1       SM797         I       H3E1         N0       Stats         If the D_DDWR instruction completes with an error, turns DN         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       <		
2     Stats withing data at the rising pulse of the wite command(X)       X0     M0       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I       I     I		EN EN EN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c}                                     $	2	Starts writing data at the rising pulse of the write command[X0].
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
3       M0       EN       EN       EN       M0         3       M0       EN       EN       EN       M1         4       Excutes the D_DDWR instruction.       M1       SM797       EN       EN       EN         4       Excutes the D_DDWR instruction.       H3E1       n       d       M2       M2         5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.       EN       ENO       M1         5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.       EN       ENO       F0         6       Requests writing the next data after completing the D_DDWR instruction normally.       M2       M3       EN       EN       ENO       M0         6       Requests writing the next data after completing the D_DDWR instruction normally.       EN		
3       M0       EN       EN       EN       M0         3       M0       EN       EN       EN       M1         4       Excutes the D_DDWR instruction.       M1       SM797       EN       EN       EN         4       Excutes the D_DDWR instruction.       H3E1       n       d       M2       M2         5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.       EN       ENO       M1         5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.       EN       ENO       F0         6       Requests writing the next data after completing the D_DDWR instruction normally.       M2       M3       EN       EN       ENO       M0         6       Requests writing the next data after completing the D_DDWR instruction normally.       EN		
3       M0       EN       EN       EN       M1         4       Excutes the D_DDWR instruction.       M1       M1       M2       M2         4       Excutes the D_DDWR instruction.       EN       EN       END       M2         5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.       EN       EN       END       M1         5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.       EN       EN       EN       F0         6       Requests writing the next data after completing the D_DDWR instruction normally.       M2       M3       EN       EN       M0         6       Requests writing the next data after completing the D_DDWR instruction normally.       EN       EN       EN       M0         6       Requests writing the next data after completing the D_DDWR instruction normally.       EN		
4       Excutes the D_DDWR instruction.         4       Excutes the D_DDWR instruction.         M1       SM797         M1       SM797         M1       J/J         M1       SM797         M1       J/J         M2       M2         M3       EN         EN       EN         M2       M3         M3       EN         EN       EN         M2       M3         M3       EN         EN       EN         M3       EN         EN       END         M4       M3         EN       EN         EN       EN         M3       EN         EN       EN         M3       EN         EN       EN         M3       EN         EN       EN         M3       EN         EN       EN </th <th></th> <th>b</th>		b
4       Excutes the D_DDWR instruction.         4       Excutes the D_DDWR instruction.         M1       SM797         D0       s1         2R022       s2         2R022       s2         2R022       s2         2R022       s1         S       If the D_DDWR instruction completes with an error, turns ON and stops writing data.         M2       M3         EN       EN         EN       EN         EN       EN         M3       EN         EN       EN	3	• M0 • • • • • • • • • • • • • • • • • •
4       Excutes the D_DDWR instruction.         M1       SM797         I I I I SM797       II I I SM797         I I I I SM797       II I I I I I I I I I I I I I I I I I I		•EN ENO - · · · · · · · · · · · · · · · · · ·
4       Excutes the D_DDWR instruction.         M1       SM797         I       I/I         III       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
M1 SM797     M1 SM797     PDDWR     EN     EN     EN     EN     EN     CO     S1     S2     CR022     S2     CR02     S2     CR02     S2     CR02     S2     CR02     S2     CR02     S2     CR0     CR     EN     EN     EN     CN		
5       If the D_DDWR instruction completes with an error, turns DN and stops writing data.         M2       M3         M2       M3         EN       EN         EN       EN         EN       EN         EN       EN         M2       M3         EN       EN         EN       EN         EN       EN         EN       EN         M3       EN         EN	4	Excutes the D_DDWR instruction.
5       If the D_DDWR instruction completes with an error, turns DN and stops writing data.         M2       M3         M2       M3         EN       EN         EN       EN         EN       EN         EN       EN         M2       M3         EN       EN         EN       EN         EN       EN         EN       EN         M3       EN         EN		
5     If the D_DDWR instruction completes with an error, turns ON d       5     If the D_DDWR instruction completes with an error, turns ON d       6     Requests writing the next data after completing the D_DDWR instruction normally.       6     Requests writing the next data after completing the D_DDWR instruction normally.       7     If the D_DDWR instruction completes with an error, turns ON d		D_DDWII
5     If the D_DDWR instruction completes with an error, turns ON and stops writing data.       5     If the D_DDWR instruction completes with an error, turns ON and stops writing data.       •M2 • M3 • • • • • • • • • • • • • • • • •		••••••••••••••••••••••••••••••••••••••
5     If the D_DDWR instruction completes with an error, turns ON and stops writing data.       5     If the D_DDWR instruction completes with an error, turns ON and stops writing data.       6     Requests writing the next data after completing the D_DDWR instruction normally.       6     Requests writing the next data after completing the D_DDWR instruction normally.       6     Requests writing the next data after completing the D_DDWR instruction normally.       7     M3       8     K100       9     K100		
5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.         M2       M3         M2       M3         EN       EN         EN       EN         EN       EN         EN       EN         EN       EN         EN       EN         M2       M3         EN       EN         EN       EN         M3       EN         EN		••••••••••••••••••••••••••••••••••••••
5       If the D_DDWR instruction completes with an error, turns ON         5       and stops writing data.         ····································		
5       If the D_DDWR instruction completes with an error, turns ON and stops writing data.         ·M2 · M3 · · · · · · · · · · · · · · · · ·		EN ENO
and stops writing data.         M2       M3         I       I/I         I       I/I </th <th></th> <th></th>		
6          M2       M3       EN       EN       EN       F0         EN       EN       EN       EN       F0         EN       EN       EN       M0       M0         6       Requests writing the next data after completing the D_DDWR instruction normally.          M2       M3       EN       EN       EN         M2       M3            M3              M3              M2              M3	5	
6 Requests writing the next data after completing the D_DDWR instruction normally. M2 M3 K100 s1 d M2 K20 s2 K200 s		
6 Requests writing the next data after completing the D_DDWR instruction normally. M2 M3 Frequests writing the next data after completing the D_DDWR instruction normally. M2 M3 Frequests writing the next data after completing the D_DDWR instruction normally. M2 M3 Frequests writing the next data after completing the D_DDWR instruction normally. M2 M3 Frequests writing the next data after completing the D_DDWR instruction normally. M2 M3 Frequests writing the next data after completing the D_DDWR instruction normally. M2 M3 Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing the next data after completing the D_DDWR instruction normally. Frequests writing		←_ ·  / + EN [™] ENO · · · · · · · · · · · · · ·
6     Requests writing the next data after completing the D_DDWR instruction normally.       M2     M3       M2     K100       S1     M1       Z2     S1       MDK       EN        EN       E		
6     Requests writing the next data after completing the D_DDWR instruction normally.       M2     M3       M2     M3       M3     K100       S1     d1       Z2     S1       MD       EN		RST
6 Requests writing the next data after completing the D_DDWR instruction normally.		
•     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     • <th></th> <th></th>		
Image: Market	6	
AND         PLS           EN         EN           EN         EN           MAD         MAD		
EN ENO EN ENO MANA		
EN ENO ENO HA		<u><u><u>s</u></u><u><u>s</u><u></u><u>s</u><u></u><u>s</u><u></u><u>s</u><u></u><u>s</u><u></u><u>s</u><u></u><u></u></u></u>

· Program example in which two or more D(P)_DDWR instructions are executed simultaneously

In the following program, data in the devices ZR0 to ZR999 (1000 points) of the CPU No. 1 are written to the devices ZR0 to ZR999 of the CPU No.2 using the D_DDWR instruction.

Two or more instructions to write/read devices between the multiple CPUs can be executed simultaneously as shown in the following program example.

When executing two or more multiple CPU high speed transmission dedicated instructions simultaneously to write/read devices, the higher total number of blocks of the multiple CPU high speed transmission area (send area) shortens the processing time of the instruction.

1	Set the maximum number of blocks used for the multiple CPU high speed transmission dedicated instruction in the CPU No.2.
	• SM402 • • • • • • • • • • • • • • • • • • •
	s d
	EN ENO
	· · · ·   · · · · · · · · · · · · · ·
	HOV HOV EN ENO → → → → → → → → → → → → → → → → → → →
	Starts writing data at the rising pulse of the write command[X0].
2	· · X0 · · · M0 · · · · · · · · · · · · · · ·
	EN SET
3	First D_DDWR instruction and second D_DDWR instruction.
	EN ENO
4	Excutes the second D_DDWR instruction.
	····································
	□ · · · · · · · · D0 s1 · · · · · · · · · · · · · · · · · ·
	di
	RST              EN         ENO
	Excutes the second D_DDWR instruction.
5	•••M2••••SM797••••••• D_DDWR
	EN ENO
	· · · · · · · · · · · · · · · · · · ·
	BST
	EN END - · · · · · · · · · · · · · · · · · ·
6	If the D_DDWR instruction completes with an error, turns annunciator ON and stops writing data.
	NS
	dM0     Requests writing the next data after completing the second D_DD\/R
7	instruction normally.
	+ K200− s1 − − − − − − + − − − − + − − − − + − − − − − − + − − − − − − − − − − − − − − − − − − − −
	· · · · · · Z2s1 · · · · dM7 · · · · K1000s2 · · · · · · · · · · · · · · · · · · ·
	AND= •••• BST •••••
	EN ENO EN ENO MO · · ·
	s2 · · · · · · · · · · · · · · · · · · ·

• Program example in which two or more D(P)_DDWR instructions are executed simultaneously

#### D(P)_DDWR

- Basic High performance Process Redundant Universal LCPU
- · Universal model QCPU: Supported if first 5 digits of the serial number are "10012" or later
- Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU: Not supported

Stru	ctured	ladder/FBD	ST
	D_E EN n* s1 s2 d1	ENO	ENO:= (EN, n*, s1, s2, d1, d2);

Any of the following instruction can go in the dotted squares. D_DDWR, DP_DDWR

#### ■Executing condition

Instruction	Executing condition
D_DDWR	
DP_DDWR	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	n	Start I/O number of the other CPU divided by 16 CPU No. 1: 3E0H CPU No. 2: 3E1H CPU No. 3: 3E2H CPU No. 4: 3E3H	ANY16
	s1	Start number or arrays of device in the host CPU that stores control data	Array of ANY16 (01)
	s2	Start number of device in the host CPU that stores data to be written	ANY16
	d1	Start number of device in the other CPU that stores data to be written	ANY ^{*1} String ^{*2, *3}
Output argument	d2	A bit device that turns on when the process is completed	Array of bit (01)

*1 When file registers (R, ZR) are specified, data that are outside the range in the host CPU can be written to devices of the other CPUs.

*2 By specifying the start device as a character string " ", data that are outside the range in the host CPU can be written to devices of the other CPUs.

*3 Device that indexed cannot be specified. (Example: D0Z0, etc.)

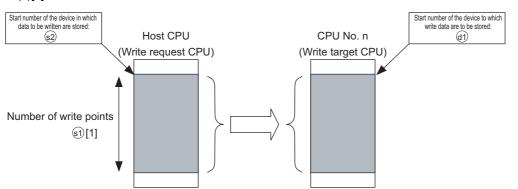
Setting	Internal dev	ice	R, ZR	10/0		U⊟\G⊟ Zn		Constant	Others
data	Bit	Word ^{*7}		Bit	Word			К, Н	
n*4	-	0	0	—				0	_
(s1) ^{*5}	-	∆ ^{*6}	∆ ^{*6}	—	-				—
(s2) ^{*5}	-	0	0	—	-				—
(d1) ^{*5}	—	0	0	-				—	—
(d2) ^{*5}	∆ ^{*8}	-	∆ ^{*6}	—				—	—

*4 Indexes cannot be set to the setting data n.

*5 Indexes can be set to the setting data s1 to d2.

*6 Local devices and file registers per program cannot be used as setting data.

*7 FD cannot be used.


*8 FX and FY cannot be used.

Setting data

Device	Item	Setting data	Setting range	Setting side
(s1)[0]	Completion status	Execution result of the instruction completion is stored. 0000(H):No error (normal completion) Other than 0000(H):Error code (error completion)	_	System
(s1)[1]	Number of data to be written	Set the number of data to be written in unit of word.	1 to 100	User

#### **Processing details**

• Writes data stored in the device (d1) and the following devices specified in the host CPU at the time of multiple CPU system configuration, to the device (s2) and the following devices specified in the CPU No. n for the number of points specified for (s)[1].



• The status of the D(P)_DDWR instruction completion can be checked by the completion device ((d2)[0]) and the completion status display device ((d2)[1]).

Completion device ((d2)[0])

Turns ON at the END process of the scan in which the instruction is completed, and turns OFF at the next END process.

Completion status display device ((d2)[1])

Turns ON/OFF by the status of the instruction completion. Normal completion: OFF

Error completion: Turns ON at the END process of the scan in which the instruction is completed, and turns OFF at the next END process. (The error code is stored to the control data (((s1)[0]): completion status) at the error completion.)

• The number of blocks used for the instruction is specified by the number of data to be written. ( Page 846 Overview) The following table shows the number of blocks used for the instruction.

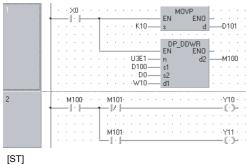
Write points to be specified in the instruction	D(P)_DDWR instruction
1 to 4	1
5 to 20	2
21 to 36	3
37 to 52	4
53 to 68	5
69 to 84	6
85 to 100	7

• When empty blocks are not available in the multiple CPU high speed transmission area, the instruction completes with an error. This error completion is prevented by setting the number of blocks used for the instruction to the special registers (SD796 to SD799), and using the special relays (SM796 to SM799) as the interlocks. ( Page 846 Overview)

#### **Operation error**

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4350	<ul> <li>When the specified other CPU is wrong, or when the settings are not set correctly to use the multiple CPU high speed transmission instruction.</li> <li>A reserved CPU is specified.</li> <li>A CPU number that is not mounted is specified.</li> <li>The value, start I/O number of the other CPU divided by 16n, is outside the range of 3E0H to 3E3H.</li> <li>The instruction was executed when the module is set to "Do not use multiple CPU high speed transmission".</li> <li>The instruction was executed with the CPU module that cannot use this instruction.</li> <li>The host CPU is specified.</li> <li>The CPU module where the instruction cannot be executed has been specified.</li> </ul>	_	_	_	_	0	—
4351	The instruction is not supported by the other CPU.	-	—	—	—	0	—
4352	The number of devices specified is incorrect.	-	—	—	—	0	—
4353	A device that cannot be used is specified.	—	—	—	—	0	—
4354	A device is specified with the character string that is not applicable.	—	—	—	—	0	—
4355	Number of data to be written ((s1)+1) is outside the range of 0 to 100.	-	—	—	—	0	—


• In any of the following cases, an error completion occurs, and the error code is stored to the device specified for the completion status storing device ((s1)+0).

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
0010H	The amount of instruction requests to a target CPU is exceeding the allowable value. (Empty blocks are not available in the multiple CPU high speed transmission area.)	—	—	—	—	0	_
1001H	The device of the other CPU specified for (d1) is a device that cannot be used for the other CPU, or the device is out of the range.	-	-	—	—	0	—
1003H	The response of the instruction cannot be returned from the other CPU module. (Empty blocks are not available in the multiple CPU high speed transmission area.)	—	—			0	
1080H	The number of data to be written set for the D(P)_DDWR instruction is 0.	—	—	—	—	0	—

#### Program example

 In the following program, 10 words of data from D0 in the host CPU are written to W10 and the following devices in the CPU No. 2 when X0 turns ON.

[Structured ladder/FBD]



The number of write data '10' is stored to the write data points storing device of control data D101 (((1)[1]).

Data from D0 to D9 in the host CPU are stored to W10 to W19 in the CPU No. 2.

[ST] MOVP(X0,10,D101); D_DDWR(X0,H3E1,D100,D0,W10,M100); IF M100=TRUE THEN IF M101=FALSE THEN Y10:=TRUE; ELSE Y11:=TRUE; END_IF; END_IF;

#### Precautions

- Digit specification of bit devices can be set for n, (s2) and (d1). However, the following conditions need to be satisfied when the digit specification of bit devices is set for (s2) and (d1).
- Digit specification of bit devices (K4/16 bits)
- The start number of bit device is a multiple of 16 (10H).
- Execute this instruction as the write target CPU is powered ON. If the write target CPU is not powered ON and this instruction is executed, the instruction is not processed.
- After the execution of this instruction, data stored by the system (completion status, completion device) cannot be stored normally, if the range of the device specified for the setting data is changed before the completion device turns ON.
- Devices SB, SW, SM, and SD contain the system information area. When writing data to devices described above using the multiple CPU high speed transmission dedicated instruction D(P)_DDWR, be careful not to destroy the system information.

#### 10.3 **Reading Device Data from Other CPUs**

#### D(P)_DDRD



- · Universal model QCPU: Supported if first 5 digits of the serial number are "10012" or later
- Q00UJCPU, Q00UCPU, Q01UCPU, and Q02UCPU: Not supported

Stru	ctured I	adder/F	BD	ST
	D_DI	ORD		
_	EN	ENO	<u> </u>	
_	n*	d1	<u> </u>	ENO:= D_DDRD (EN, n*, s1, s2, d1, d2);
_	s1	d2	<u> </u>	
-	s2			

Any of the following instruction can go in the dotted squares. D_DDRD, DP_DDRD

#### ■Executing condition

Instruction	Executing condition
D_DDRD	
DP_DDRD	

#### ■Argument

Input/output argument	Name	Description	Data type
Input argument	n	Start I/O number of the other CPU divided by 16 CPU No. 1: 3E0H, CPU No. 2: 3E1H, CPU No. 3: 3E2H, CPU No. 4: 3E3H	ANY16
	s1	Start number or arrays of device in the host CPU that stores control data	Array of ANY16 (01)
	s2	Start number of device in the other CPU that stores data to be read	ANY ^{*1} String ^{*2, *3}
Output argument	d1	Start number of device in the host CPU that stores data to be read	ANY16
	d2	A bit device that turns on when the process is completed	Array of bit (01)

*1 When file registers (R, ZR) are specified, data that are outside the range in the host CPU can be written to devices of the other CPUs.

*2 By specifying the start device as a character string ", data that are outside the range in the host CPU can be read to devices of the other CPUs.

*3 Device that indexed cannot be specified. (Example: D0Z
-----------------------------------------------------------

Setting	Internal device		R, ZR	JD/D		UD\GD	Zn	Constant	Others
data	Bit	Word ^{*7}		Bit	Word			К, Н	
n ^{*4}	-	0	0	—				0	_
(s1) ^{*5}	-	∆ ^{*6}	∆*6	—				—	—
(s2) ^{*5}	-	0	0	-				—	—
(d1) ^{*5}	—	0	0	_				—	—
(d2) ^{*5}	∆ ^{*8}	—	∆ ^{*6}	—				—	—

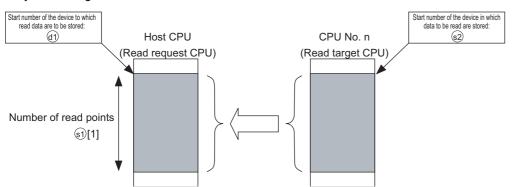
*4 Indexes cannot be set to the setting data n.

*5 Indexes can be set to the setting data s1 to d2.

*6 Local devices and file registers per program cannot be used as setting data.

*7 FD cannot be used.

*8 FX and FY cannot be used.


10

Setting data

Device	Item	Setting data	Setting range	Setting side
(s1)[0]	Completion status	Execution result of the instruction completion is stored. 0000(H):No error (normal completion) Other than 0000(H):Error code (error completion)	-	System
(s1)[1]	Number of data to be read	Set the number of data to be read in unit of word.	1 to 100	User

#### Processing details

• Stores data read from the device (s2) and the following devices specified in the CPU No. n for the number of points specified for (s1)[1], to the device (d1) and the following devices specified in the host CPU at the time of multiple CPU system configuration.



• The status of the D(P)_DDRD instruction completion can be checked by the completion device ((d2)[0]) and the completion status display device ((d2)[1]).

Completion device ((d2)[0])

Turns ON at the END process of the scan in which the instruction is completed, and turns OFF at the next END process.

Completion status display device ((d2)[1])

Turns ON/OFF by the status of the instruction completion. Normal completion: OFF Error completion: Turns ON at the END process of the sca

 $\label{eq:completion: Turns ON at the END process of the scan in which the instruction is completed, and turns OFF at the next END process. (The error code is stored to the control data (((s1)[0]): completion status) at the error completion.)$ 

• The number of blocks used for the instruction is specified by the number of data to be read. ( Page 846 Overview) The following table shows the number of blocks used for the instruction.

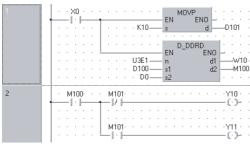
Read points to be specified in the instruction	D(P)_DDRD instruction
1 to 100	1

• When empty blocks are not available in the multiple CPU high speed transmission area, the instruction completes with an error. This error completion is prevented by setting the number of blocks used for the instruction to the special registers (SD796 to SD799), and using the special relays (SM796 to SM799) as the interlocks. ( I Page 846 Overview)

#### **Operation error**

• In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4350	<ul> <li>When the specified other CPU is wrong, or when the settings are not set correctly to use the multiple CPU high speed transmission instruction.</li> <li>A reserved CPU is specified.</li> <li>A CPU number that is not mounted is specified.</li> <li>The value, start I/O number of the other CPU divided by 16n, is outside the range of 3E0H to 3E3H.</li> <li>The instruction was executed when the module is set to "Do not use multiple CPU high speed transmission".</li> <li>The instruction was executed with the CPU module that cannot use this instruction.</li> <li>The host CPU is specified.</li> <li>The CPU where the instruction cannot be executed has been specified.</li> </ul>	—	—	—	—	0	_
4351	The instruction is not supported by the other CPU.	—	-	-	-	0	-
4352	The number of devices specified is incorrect.	—	-	-	—	0	-
4353	A device that cannot be used is specified.	—	-	-	-	0	-
4354	A device is specified with the character string that is not applicable.	—	-	-	-	0	-
4355	Number of data to be read ((s1)+1) is outside the range of 0 to 100.	—	-	-	-	0	-


## • In any of the following cases, an error completion occurs, and the error code is stored to the device specified for the completion status storing device ((s1)+0).

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
0010H	The amount of instruction requests to a target CPU is exceeding the allowable value. (Empty blocks are not available in the multiple CPU high speed transmission area.)	—	—	—	—	0	—
1001H	The device of the other CPU specified for (s2) is a device that cannot be used for the other CPU, or the device is out of the range.	—	—	—	-	0	-
1003H	The response of the instruction cannot be returned from the other CPU module. (Empty blocks are not available in the multiple CPU high speed transmission area.)				—	0	
1081H	The number of data to be read set for the D(P)_DDRD instruction is 0.	—	—	—	-	0	-

#### Program example

 In the following program, 10 words of data from D0 in the CPU No. 2 are read and stored to W10 and the following devices in the host CPU when X0 turns ON.

[Structured ladder/FBD]



The number of read data '10' is stored to the read data points storing device of control data D101 (s()[1]).

Data from D0 to D9 in the CPU No. 2 are stored to W10 to W19 in the host CPU.

[ST] MOVP(X0,10,D101); D_DDRD(X0,H3E1,D100,D0,W10,M100); IF M100=TRUE THEN IF M101=FALSE THEN Y10:=TRUE; ELSE Y11:=TRUE; END_IF; END_IF;

#### Precautions

- Digit specification of bit devices can be set for n, (s2) and (d1). However, the following conditions need to be satisfied when the digit specification of bit devices is set for (s2) and (d1).
- Digit specification of bit devices (K4/16 bits)
- The start number of bit device is a multiple of 16 (10H).
- Execute this instruction as the read target CPU is powered ON. If the read target CPU is not powered ON and this instruction is executed, the instruction is not processed.
- After the execution of this instruction, data stored by the system (completion status, completion device) cannot be stored normally, if the range of the device specified for the setting data is changed before the completion device turns ON.

# **11** REDUNDANT SYSTEM INSTRUCTIONS (FOR REDUNDANT CPU)

# 11.1 System Switching

#### SP_CONTSW



Structured ladder/FB	D	ST
EN ENO s d	-	ENO:= SP_CONTSW (EN,s,d);

The following instruction can go in the dotted squares. SP_CONTSW

#### ■Executing condition

Instruction	Executing condition
SP_CONTSW	f

#### ■Argument

Input/output Name argument				Descript	escription				Data type		
Input argument EN				Executing condition				Bit	Bit		
S				Value other than 0 and used to identify the processing that issued the system switching request				ANY16	ANY16		
Output argument ENO				Execution result			Bit	Bit			
d			Error completion device number		Bit						
Setting	Internal	device	R, 2	ZR	JD/D		UD\GD	Zn	Constant	Others	
data Bit Word				Bit	Word			К, Н			
(s)	—	0			—		·		0	—	
(d)	0	O*1			_				_	—	

*1 The bit specification for the word device is available.

#### Processing details

- Switches between the control system and standby system at the END processing of the scan executed with the SP_CONTSW instruction.
- When using the SP_CONTSW instruction for system switching, the "manual switching enable flag (SM1592)" must have been turned on (enabled) in advance.
- (s) is provided to identify the processing block of the program where system switching occurred when multiple SP_CONTSW instructions are used.
- At (s), specify a value within the ranges -32768 to -1 and 1 to 32767 (1_H to FFF_H).
- The (s) value specified by the SP_CONTSW instruction is stored into the "system switching instruction argument (SD6)" of the error common information when the system switching is normally completed.^{*2} When multiple SP_CONTSW instructions are executed during the same scan, the argument of the SP_CONTSW instruction executed first is stored into the system switching instruction argument (SD6).
- *2 The value (s) specified for the SP_CONTSW instruction can be confirmed in the error common information of the PLC diagnostics dialog box on GX Works2.
- The (s) value specified by the SP_CONTSW instruction is stored into the "system switching instruction argument (SD1602)" of the new control system CPU module when system switching is normally completed.^{*3} By reading the SD1602 value from the new control system CPU module, which the SP_CONTSW instruction was used for system switching can be confirmed.
- *3 The new control system CPU module means the CPU module that was switched from the standby system to the control system by the SP_CONTSW instruction.
- The error completion device is turned on by the control system CPU module when system switching by the SP_CONTSW instruction was unsuccessful.
- When OPERATION ERROR is detected due to any of the following reasons at the execution of the SP_CONTSW
  instruction, the error completion device is turned on during the instruction execution.
- 0 is specified at (s) of the executed SP_CONTSW instruction.
- The "manual switching enable flag (SM1592)" is off.
- $\bullet$  The SP_CONTSW instruction was executed by the standby system in the separate mode.
- The SP_CONTSW instruction was executed in the debug mode.
- If systems could not be switched due to any of the reasons given in the following table, the error completion device turns on when system switching is executed in the END processing.

Reason No.	Reason for System Switching Failure
0	Normally completed
1	Tracking cable is disconnected or faulty.
2	Hardware fault, power-off, reset or watchdog timer error occurred in the standby system.
3	Watchdog timer error occurred in the control system.
4	Preparations being made for tracking transfer.
5	Communication time-out.
6	Stop error occurred in the standby system. (Excluding watchdog timer error)
7	Operating status different between the control system and standby system.
8	Memory copy being executed from the control system to the standby system.
9	Write during RUN being executed.
10	Network fault detected by the standby system.

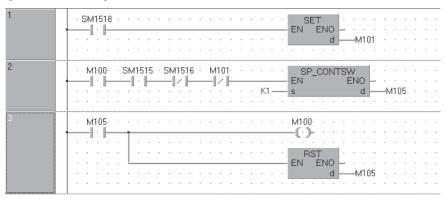
When the error completion device was turned on due to unsuccessful system switching, 16 is stored into the "reason(s) for system switching (SD1588)" and the reason No. of the above table into the "reason(s) for system switching failure (SD1589)".

Use a user program or GX Works2 to turn off the error completion bit that has turned on. If normal system switching is
performed by the execution of the SP_CONTSW instruction with the error completion device on, the error completion
device of the new standby system CPU module is also turned off. When system switching is performed due to a factor other
than the SP_CONTSW instruction, however, the error completion device is not turned off.

#### Operation error

 In any of the following cases, an operation error occurs, the error flag (SM0) is turned ON, and the corresponding error code is stored to SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
4110	The value specified in (s) is 0 at execution of the SP_CONTSW instruction.	—	-	—	0	-	-
4120	The manual switching enable flag (SM1592) is off (disabled) at the execution of the SP_CONTSW instruction.	—	-	—	0	—	-
4121	The SP_CONTSW instruction was executed by the standby system CPU module in the separate mode. The SP_CONTSW instruction was executed in the debug mode.	—	-	—	0	—	—


If system switching was unsuccessful, the error flag (SM0) is turned on and an error code is stored into SD0.

Error code	Description	Q00J/ Q00/ Q01	QnH	QnPH	QnPRH	QnU	LCPU
6220	The tracking cable is disconnected or faulty. Hardware fault, power-off, reset or watchdog timer error occurred in the standby system. Watchdog timer error occurred in the control system. Preparations are being made for tracking transfer. Communication time-out occurred. A stop error, excluding watchdog timer error, occurred in the standby system. The operating status differs between the control system and standby system. Memory copy is being executed from the control system to the standby system. Write during RUN is being executed. Network fault was detected by the standby system.	_	—	—	0	—	—

#### Program example

• The following program executes system switching on the leading edge of the system switching command (M100). If the system switching command (M100) remains on, the SP_CONTSW instruction is also executed by the new control system CPU module after system switching. Therefore, M101 is added to the execution conditions as a consecutive switching prevention flag.

[Structured ladder/FBD]



[ST]

SET(LDP( TRUE , SM1518 ) , M101 ); IF M100 AND SM1515 AND NOT(1516) AND NOT(M101) THEN SP_CONTSW( TRUE , K1 , M105 ); END_IF; OUT( M105 , M100 ); RST( M105 , M105 );

# APPENDIX

# Appendix 1 Added/Changed Instructions with Version Upgrade of GX Works2

The following table shows instructions added/changed with version upgrade of GX Works2.

Version	Instruction name	Addition/change	Reference	
Version 1.15R	LDP	Symbolic description is added for	Page 86 Edge operation start, edge	
	LDF	structured ladder.	series connection, edge parallel	
	ANDP		connection	
	ANDF			
	ORP			
	ORF			
	LDPI	Added for structured ladder and	Page 89 Negated edge operation	
	LDFI	ST.	start, negated edge series	
	ANDPI		connection, negated edge pulse parallel connection	
	ANDFI			
	ORPI			
	ORFI			
Version 1.24A	UMSG	Added for structured ladder and ST.	Page 796 User message	
Version 1.91V	S_REFDVWRB	Added for structured ladder and	Page 808 Refresh device write (in 1-	
	SP_REFDVWRB	ST.	bit units)	
	S_REFDVWRW		Page 813 Refresh device write (in 16-	
	SP_REFDVWRW		bit units)	
	S_REFDVRDB		Page 818 Refresh device read (in 1-	
	SP_REFDVRDB		bit units)	
	S_REFDVRDW		Page 823 Refresh device read (in 16-	
	SP_REFDVRDW		bit units)	
	SP_CONTSW	Added for ST.	Page 863 System Switching	
Version 1.98C	SP_CONTSW	Added for structured ladder	Page 863 System Switching	

867

# **INDEX**

<u>A</u>	
Application function       Application Instructions tables         Application Instructions tables       Arithmetic operation instructions table	. 36

### В

Basic instructions tables	23
Basic model QCPU	13
Bit processing instructions table	39
Bond instructions table	20
Buffer memory access instructions table	43
Built-in Ethernet port LCPU	13
Built-in Ethernet port QCPU	13

# С

CC-Link IE	13
Clock instructions table	52
Common instruction	13
Comparison operation instructions table	23
Configuration of instructions	61
Contact instructions table	19
CPU module	13

### D

Data control instructions table	51
Data conversion instructions table	31
Data link instructions	58
Data processing instructions table	40
Data table operation instructions table	42
Data transfer instructions table	33
Debug and error diagnostics instructions table	43
Device range check	
Display instructions table	43

E	
End instructions	
Extended clock instructions 55	-

### F

File register switching instructions	52
G	
GX Works2	13
н	
Link Barfamanan na dal OOPI I	10

I	High Performance model QCPU       High-speed Universal model QCPU         High-speed Universal model QCPU       How to read instruction tables         How to read instruction tables       How to read instruction tables	13
	I/O refresh instructions.	34

### L

LCPU	3
Logical operation instructions table	6

#### М

Master control instructions	
Multiple CPU dedicated instructions	
Multiple CPU high-speed transmission dedicated	
instructions	

# 0

Other convenient instructions table	35
	.00
Other instructions	22
	. 22
	50
Other instructions table	.56
Output instructions	21
	. ∠ ।

#### Ρ

Personal computer
Precautions on programming
Process CPU
Program branch instructions table
Program control instructions table
Program execution control instructions table34

### Q

QCPU (Q mode)
QnCPU
QnHCPU
QnPHCPU
QnPRHCPU
QnU(D)(H)CPU13
QnUCPU
QnUD(H)CPU
QnUDE(H)CPU
QnUDPVCPU
QnUDVCPU

#### R

Redundant CPU
Redundant system instruction (for redundant CPU)
Rotation instructions table

# S

Sequence instructions tables	
Special instruction	

U	
Universal model Process CPU	

# **INSTRUCTION INDEX**

#### Symbols

-(P)	163
*(P)	167
/(P)	167
+(P)	163
\$+(P)	196
\$MOV(P)	249

# A

-	
ACOS(P)	
ACOSD(P)	
ADRSET(P) 72	8
ANB 9	
AND	
AND< 13	
AND<=	-
AND<> 13	-
AND=	
AND> 13	9
AND>=	
AND\$<	-
AND\$<=	
AND\$<>	
AND\$=	
AND\$>	
AND\$>=	
ANDDT<	
ANDDT<=	-
ANDDT<>	-
ANDDT=	-
ANDDT>	-
ANDDT>=	
ANDE<	-
ANDE< 14	-
ANDE <>	-
ANDE=	-
ANDE> 14	-
ANDE>=	-
ANDE> 14 ANDED< 14	•
ANDED< 14 ANDED<= 14	-
ANDED<> 14 ANDED<> 14	-
ANDED14ANDED=14	-
ANDED 14 ANDED> 14	-
ANDED>=	
ANDED>=	
ANDF	-
ANDP	0 1
ANDPI	9
ANDTM<	
ANDTM<=	
ANDTM<> 69	
ANDTM=	
ANDTM>	
ANDTM>=	
ANI	
ASC(P)	
ASIN(P)	
ASIND(P)	
ATAN(P) 57	1

# В

	_
B-(P)	 3
B/(P)	 7
BACOS(P)	 -2
BAND(P)	 0
BASIN(P)	 9
BATAN(P)	 -5
BCD(P)	 2
BDSQR(P)	 27
BIN(P)	 15
BINDA(P)	 5
BKAND(P)	 2
BKBCD(P)	 3
BKBIN(P)	 6
BKCMP<(P)	 6
BKCMP<=(P)	 6
BKCMP<>(P)	 6
BKCMP=(P)	 6
BKCMP>(P)	 6
BKOR(P)	 8
BKRST(P)	 5
BKXNR(P)	 0
BKXOR(P)	 4
BMOV(P)	 5
BRST(P)	 0
BSET(P)	 0
BSFL(P)	 8
BSFR(P)	 8
BSIN(P)	 60
BTAN(P)	 6

### С

CALL (D) 406
CALL(P)
CCOM(P)
СНК
CHKCIR
CHKEND
CHKST
CJ
CML(P)
COM
COMRD(P)
COS(P)
COSD(P)556

D-(P)		
D(P)_DDRD		
D(P)_DDWR		
D*(P)		
D/(P)		
D+(P)		
DABCD(P)		
DABIN(F)		
DATE-(P)		
DATE+(P)		
DATERD(P)		. 673
DATEWR(P)		. 676
DB-(P)		
DB*(P)		
DB/(P)		
DB+(P)		
DBAND(P)		
DBCD(P)		
DBCDDA(P)		
DBIN(P)		
DBINDA(P)		
DBINHA(P)		
DBK-(P)		
DBK+(P)	•	. 193 . 159
DBKCMP<(P)	•	
DBKCMP<>(P)		
DBKCMP=(P)		
DBKCMP>(P)	•	. 159
DBKCMP>=(P)	•	. 159
DBL(P)		
DCML(P)		-
DDABCD(P)		
DDABIN(P)		. 486
DDEC(P)		
DEC(P)		. 198
DECO(P)		
DEG(P)		
DEGD(P)		
DELTA(P)		
DFLT(P)		
DFLTD(P)		
DFRO(P)		
DGBIN(P).		
DGRY(P)		
DHABIN(P)		
DI	27	8,282
DINC(P)		
DINT(P)		
DINTD(P)		. 216
DIS(P)		
DLIMIT(P)		
DMAX(P)		
DMEAN(P)		
DMIN(P)		
DMOV(P)		
DNEG(P)		
DOR(P)		
DRCL(P)		
DROL(P)		
DROR(P)		
DSCL(P)		
	•	

DSCL2(P)
DSER(P)
DSFL(P)
DSFR(P)
DSORT
DSTR(P)
DSUM(P)
DTEST(P)
DTO(P)
DUTY
DVAL(P)
DWSUM(P)
DXCH(P)
DXNR(P)
DXOR(P)
DZONE(P)

# Ε

E-(P)
E*(P)
E/(P)
E+(P)
ECON(P)
ED-(P)
ED*(P)
ED/(P)
ED+(P)
EDCON(P)
EDMOV(P)
EDNEG(P)
EGF
EGP
EI
EMOD(P)
EMOV(P)
ENCO(P)
ENEG(P)
EREXP(P)
ESTR(P)
EVAL(P)
EXP(P)
EXPD(P)
EXFU(F)

### F

FDEL(P)
FEND
FF123
FIFR(P)
FIFW(P)
FINS(P)
FLT(P)
FLTD(P)
FMOV(P)
FOR
FPOP(P)
FROM(P)451,839,843

# G

GBIN(P)															.2	25
GOEND.															.2	76
GRY(P).															.2	23

Η

HABIN(P)	489
HEX(P)	
HOUR(P)	686

#### L

IMASK	
INC(P)	
INSTR(P) 535	
INT(P)	
INTD(P) 216	
INV	
IRET	

JMP..... 272

### ĸ

KEY	729
L	
LD	. 83
LD<	139
LD<=	139
LD<>	139
LD=	139
LD>	139
LD>=	139
LD\$<	152
LD\$<=	152
LD\$<>	152
LD\$=	152
LD\$>	152
LD\$>=	152
LDD<	142
LDD<=	142
LDD<>	142
LDD=	142
LDD>	142
LDD>=	142
LDDT<	688
LDDT<=	688
LDDT<>	688
LDDT=	688
LDDT>	688
LDDT>=	688
LDE<	145
LDE<=	145
LDE<>	145
LDE=	145
LDE>	145
LDE>=	145
LDED<	148
LDED<=	148 148
LDED<>	148
LDED=	140
LDED>	148
LDED>= LDF	
LDF	
	~~
LDI	. 00

LDP
LDPCHK
LDPI
LDTM<
LDTM<=
LDTM<>
LDTM=
LDTM>
LDTM>=
LEDR
LEFT(P)
LEN(P)
LIMIT(P)
LOG(P)
LOG10(P)
LOG10D(P)
LOGD(P)

### Μ

 -
MAX(P)
MC
MCR
MEAN(P)
MEF
MEP
MIDR(P)
MIDW(P)
MIN(P)
MOV(P)
MPP
MPS
MRD
MTR

#### Ν

NDIS(P)	6
NEG(P)	7
NEXT	
NUNI(P)	6

# 0

OR
OR<
OR<>
OR=
OR>
OR>=
OR\$<
OR\$<=
OR\$<>152
OR\$=
OR\$>
OR\$>=
ORB
ORD<142
ORD<=
ORD<>
ORD=
ORD>
ORD>=
ORDT<
ORDT<=
URD1>

ORDT       688         ORDT=       688         ORDT>       688         ORDT>=       688         ORDT>=       688         ORE       145
ORE<=
ORE<>
ORE> 145
ORE>=
ORED< 148
ORED<= 148
ORED<> 148
ORED=
ORED>
ORF
ORFI
ORI
ORP
ORPCHK
ORPI
ORTM<
ORTM<=
ORTM=
ORTM> 692
ORTM>=
OUTH_T

Р
PLF
PLOADP
PLOW(P)
PLS
PLSY
POFF(P) 708
POW(P) 595
POWD(P)
PR 458
PRC 462
PSCAN(P)
PSTOP(P)
PSWAPP
PUNLOADP
PWM

Q	
QCDSET(P)	

R	
RAD(P)	
RAMP	
RBMOV(P)	
RCL(P)	
RCR(P)	
RET	
RFS(P)	

RIGHT(P)	_
ROL(P)	_
ROR(P)	-
ROTC	
RSET(P)	
RST 115,11	(

### S

S(P)_DATE	703
S(P) DATE+	
S(P)_DATERD	
S(P)_DEVLD	
S(P)_REFDVRDB	
S(P)_REFDVRDW	
S(P)_REFDVWRB	
S(P)_REFDVWRW	
S(P)_RTREAD	.803
S(P)_RTWRITE	.805
S(P)_TO	
S(P)_ZCOM_J	.799
S(P)_ZCOM_U	799
SCJ	
SCL(P)	
SCL2(P)	
SECOND(P)	
SEG(P)	.389
SER(P)	
SET 113	
SFL(P)	
SFR(P)	.355
SFT(P)	. 127
SFTBL(P)	.361
SFTBR(P)	
SFTWL(P)	
SFTWR(P)	
SIN(P)	548
SIND(P)	
SORT	.411
SP_CONTSW	
SPD	
SP_DEVST	
SP_FREAD	
SP_FWRITE	.750
SQR(P)	.601
SQRD(P)	
SRND(P)	
STMR	
STOP	
STR(P)	
STRDEL(P)	520
STRINS(P)	
SUM(P)	
SWAP(P)	.270

٦	r
	TAN(P)
	TAND(P)
	TEST(P)
	ТІМСНК
	TO(P)
	TRACE
	TRACER
	TTMR

TYPERD(P)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7	74	2

# U

# W_____

WAND(P)	19
WDT(P)	
WOR (P)	
WORD(P)	
WSUM(P)	
WTOB(P)	)1
WXNR(P)	
WXOR(P)	31

X	
XCH(P) 2	65

### Ζ_____

ZONE(P)	3
ZPOP(P) 73	
ZPUSH(P)	3
ZRRDB(P)	2
ZRWRB(P)	5

# REVISIONS

The manual number is written at the bottom left of the back cover.

Revision date	Manual number	Revision
Jul., 2008	SH(NA)-080783ENG-A	Due to the transition to the e-Manual, the details of revision have been deleted.
:	:	
Sep., 2013	SH(NA)-080783ENG-N	
Dec., 2016	SH(NA)-080783ENG-O	Complete revision (layout change)
September 2018	SH(NA)-080783ENG-P	Descriptions regarding the QnUDPVCPU is added.

Japanese manual version SH-080736-T

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2008 MITSUBISHI ELECTRIC CORPORATION

# WARRANTY

Please confirm the following product warranty details before using this product.

#### 1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

#### [Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
  - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
  - 2. Failure caused by unapproved modifications, etc., to the product by the user.
  - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
  - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
  - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
  - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
  - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

#### 2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

#### 3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

#### 4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:

- (1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
- (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
- (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
- (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

#### 5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

# TRADEMARKS

Microsoft, Microsoft Access, Excel, SQL Server, Visual Basic, Visual C++, Visual Studio, Windows, Windows NT, Windows Server, Windows Vista, and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Celeron, Intel, and Pentium are either registered trademarks or trademarks of Intel Corporation in the United States and/or other countries.

Ethernet is a registered trademark of Fuji Xerox Co., Ltd. in Japan.

The SD and SDHC logos are trademarks of SD-3C, LLC.

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.





 SH(NA)-080783ENG-P(1809)KWIX

 MODEL:
 Q-KP-KM-E

 MODEL CODE:
 13JW07

# MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.