# MITSUBISHI ELECTRIC 

Programmable Controller


MELSEC-L LD75P/LD75D Positioning Module User's Manual

## OSAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.
In this manual, the safety precautions are classified into two levels: " $\uparrow$ WARNING" and " $!$ CAUTION".


## © CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " 1 CAUTION" may lead to serious consequences.
Observe the precautions of both levels because they are important for personal and system safety. Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

## [Design Precautions]

## WARNING

Configure safety circuits external to the programmable controller to ensure that the entire system operates safely even when a fault occurs in the external power supply or the programmable controller. Failure to do so may result in an accident due to an incorrect output or malfunction.
(1) Emergency stop circuits, protection circuits, and protective interlock circuits for conflicting operations (such as forward/reverse rotations or upper/lower limit positioning) must be configured external to the programmable controller.
(2) Machine OPR (Original Point Return) is controlled by two kinds of data: an OPR direction and an OPR speed. Deceleration starts when the near-point dog signal turns on. If an incorrect OPR direction is set, motion control may continue without deceleration. To prevent machine damage caused by this, configure an interlock circuit external to the programmable controller.
(3) When the positioning module detects an error, the motion slows down and stops or the motion suddenly stops, depending on the stop group setting in parameter. Set the parameter according to the positioning system specifications. In addition, set the OPR parameter and positioning data within the parameter setting range.
(4) Outputs may remain on or off, or be undefined due to a failure of a component such as an insulated element or transistor in an output circuit, where the CPU module cannot detect any error. Configure an external circuit for monitoring output signals in a system where an incorrect output could cause a serious accident.

## [Design Precautions]


#### Abstract

WARNING Do not write any data to the "system area" of the buffer memory in the intelligent function module. Also, do not use any "use prohibited" signals as an output signal from the CPU module to the intelligent function module. Doing so may cause malfunction of the programmable controller system. - An absolute position restoration by the positioning function may turn off the servo-on signal (servo off) for approximately $60 \mathrm{~ms}+$ scan time, and the motor may run unexpectedly. If this causes a problem, provide an electromagnetic brake to lock the motor during absolute position restoration.


## [Design Precautions]

| Do not install the control lines or communication cables together with the main circuit lines or power |
| :--- |
| cables. |
| Keep a distance of 100 mm or more between them. |
| Failure to do so may result in malfunction due to noise. |

## [Installation Precautions]

## WARNING

Shut off the external power supply (all phases) used in the system before mounting or removing a module. Failure to do so may result in electric shock or cause the module to fail or malfunction.

## [Installation Precautions]

$$
\begin{aligned}
& \text { - Use the programmable controller in an environment that meets the general specifications in the Safety } \\
& \text { Guidelines provided with the CPU module or head module. Failure to do so may result in electric } \\
& \text { shock, fire, malfunction, or damage to or deterioration of the product. } \\
& \text { - To interconnect modules, engage the respective connectors and securely lock the module joint levers } \\
& \text { until they click. Incorrect interconnection may cause malfunction, failure, or drop of the module. }
\end{aligned}
$$

## [Wiring Precautions]

## WARNING

Check the terminal layout before wiring to the module, and connect the cables correctly.

## [Wiring Precautions]

## CAUTION

Use applicable solderless terminals.
Failure to do so may result in malfunction or damage to the module or cables.

- Tighten the connector screws within the specified torque range.

Undertightening can cause short circuit, fire, or malfunction.
Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.

- Connectors for external devices must be crimped with the tool specified by the manufacturer or must be correctly soldered. Incomplete connections may cause short circuit, fire, or malfunction.
- Place the cables in a duct or clamp them.

If not, dangling cable may swing or inadvertently be pulled, resulting in damage to the module or cables or malfunction due to poor contact.

- When disconnecting the cable from the module, do not pull the cable by the cable part.

For the cable with connector, hold the connector part of the cable.
Pulling the cable connected to the module may result in malfunction or damage to the module or cable.

- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.


## [Startup and Maintenance Precautions]

## WARNING

Shut off the external power supply (all phases) used in the system before cleaning the module or retightening the connector screws. Failure to do so may result in electric shock.

## [Startup and Maintenance Precautions]

## CAUTION

- Do not disassemble or modify the module. Doing so may cause failure, malfunction, injury, or a fire.
- Shut off the external power supply (all phases) used in the system before mounting or removing a module. Failure to do so may cause the module to fail or malfunction.
- After the first use of the product (module, display unit, and terminal block), the number of connections/disconnections is limited to 50 times (in accordance with IEC 61131-2). Exceeding the limit may cause malfunction.
- Before testing the operation, set a low speed value for the speed limit parameter so that the operation can be stopped immediately upon occurrence of a hazardous condition.
- Before handling the module, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.


## [Operating Precautions]

## CAUTION

- When changing data and operating status, and modifying program of the running programmable controller from an external device such as a personal computer connected to an intelligent function module, read relevant manuals carefully and ensure the safety before operation. Incorrect change or modification may cause system malfunction, damage to the machines, or accidents.
- Note that when the reference axis speed is specified for interpolation operation, the speed of the partner axis (2nd, 3rd, or 4th axis) may be faster than the set speed (may exceed the speed limit).


## [Disposal Precautions]

$\square$
CAUTION
When disposing of this product, treat it as industrial waste.

## CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

## ("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.
Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.


## INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC-L series programmable controllers.
This manual describes the functions and programming of the positioning module.
Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the MELSEC-L series programmable controller to handle the product correctly. When applying the program examples introduced in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.
Please make sure that the end users read this manual.

## Point ${ }^{\rho}$

- Unless otherwise specified, this manual describes the program examples in which the I/O numbers of $\mathrm{X} / \mathrm{Y} 00$ to $\mathrm{X} / \mathrm{Y} 1 \mathrm{~F}$ are assigned for an $L$ series positioning module. I/O numbers must be assigned to apply the program examples introduced in this manual to an actual system. For I/O number assignment, refer to the following. []. MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals)
- Operating procedures are explained using GX Works2. When using GX Developer, refer to Fage 767, Appendix 7 .


## COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES

## (1) For programmable controller system

To ensure that Mitsubishi Electric programmable controllers maintain EMC and Low Voltage Directives when incorporated into other machinery or equipment, certain measures may be necessary. Please refer to one of the following manuals.

- $\square]$ MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
- $\square]$ MELSEC-L CC-Link IE Field Network Head Module User's Manual
- $\square$ Safety Guidelines (This manual is included with the CPU module or head module.)

The CE mark on the side of the programmable controller indicates compliance with EMC and Low Voltage Directives.

## (2) For the product

To ensure that this product maintains EMC and Low Voltage Directives, please refer to $\leftrightarrows$ Page 84, Section 4.3.1.

## RELEVANT MANUALS

(1) CPU module user's manual

| <manual name <br> number (model code)> | Description |
| :--- | :--- |
| MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and <br> Inspection) <br> <SH-080890ENG, 13JZ36> | Specifications of the CPU modules, power supply modules, display unit, <br> branch module, extension module, SD memory cards, and batteries, <br> information on how to establish a system, maintenance and inspection, and <br> troubleshooting (Sold separately) |
| MELSEC-L CPU Module User's Manual (Function Explanation, Program <br> Fundamentals) <br> <SH-080889ENG, 13JZ35> | Functions and devices of the CPU module, and programming (Sold <br> separately) |

## (2) Head module User's Manual

| Manual name <br> <manual number (model code)> | Description |
| :--- | :--- |
| MELSEC-L CC-Link IE Field Network Head Module User's Manual <br> <SH-080919ENG, 13JZ48> | Specifications, procedures before operation, system configuration, installation, <br> wiring, settings, and troubleshooting of the head module (Sold separately) |
| MELSEC-Q CC-Link IE Field Network Master/Local Module User's Manual | Overview of the CC-Link IE Field Network, and specifications, procedures <br> before operation, system configuration, installation, settings, functions, <br> programming, and troubleshooting of the CC-Link IE Field Network <br> master/local module (Sold separately) |

(3) Operating manual

| Manual name <br> <manual number (model code)> | Description |
| :--- | :--- |
| GX Works2 Version 1 Operating Manual (Common) <br> <SH-080779ENG, 13JU63> | System configuration, parameter settings, and online operations of GX <br> Works2, which are common to Simple projects and Structured projects (Sold <br> separately) |
| GX Works2 Version 1 Operating Manual (Intelligent Function Module) <br> <SH-080921ENG, 13JU69> | Parameter settings, monitoring, and operations of the pre-defined protocol <br> support function of intelligent function modules, using GX Works2 (Sold <br> separately) |
| GX Developer Version 8 Operating Manual <br> <SH-080373E, 13JU41> | Operating methods of GX Developer, such as programming, printing, <br> monitoring, and debugging (Sold separately) |
| GX Configurator-QP Version 2 Operating Manual | Data creation (such as parameters and positioning data) and operations of <br> transferring data to modules, positioning monitor, and tests using GX <br> <SH-080172, 13JU19> |

*1 The manual is included in the CD-ROM of the software package in a PDF-format file.
Printed manuals are sold separately. To order manuals, please provide the manual number (model code) listed in the table above.

Memo
SAFETY PRECAUTIONS ..... 1
CONDITIONS OF USE FOR THE PRODUCT ..... 5
INTRODUCTION ..... 6
COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES ..... 7
RELEVANT MANUALS ..... 8
MANUAL PAGE ORGANIZATION. ..... 17
TERMS ..... 18
PACKING LIST ..... 19
PART 1 PRODUCT SPECIFICATIONS AND HANDLING
CHAPTER 1 PRODUCT OUTLINE ..... 22
1.1 Positioning Control ..... 22
1.1.1 Features of LD75 ..... 22
1.1.2 Purpose and applications of positioning control ..... 24
1.1.3 Mechanism of positioning control. ..... 27
1.1.4 Outline design of positioning system ..... 29
1.1.5 Communicating signals between LD75 and each module ..... 32
1.2 Flow of System Operation ..... 35
1.2.1 Flow of all processes ..... 35
1.2.2 Outline of starting ..... 37
1.2.3 Outline of stopping ..... 39
1.2.4 Outline of restarting ..... 42
1.3 Restrictions on Using a Stepping Motor ..... 43
CHAPTER 2 SYSTEM CONFIGURATION ..... 44
2.1 General Image of System ..... 44
2.2 Configuration List ..... 47
2.3 Applicable System ..... 48
2.4 Checking Serial Number and Function Version ..... 48
2.5 Restrictions When the LD75 Is Connected to Head Module ..... 48
CHAPTER 3 SPECIFICATIONS AND FUNCTIONS ..... 49
3.1 Performance Specifications ..... 49
3.2 List of Functions ..... 51
3.2.1 LD75 control functions ..... 51
3.2.2 LD75 main functions ..... 53
3.2.3 LD75 sub functions and common functions ..... 55
3.2.4 Combination of LD75 main functions and operation pattern ..... 58
3.2.5 Combination of LD75 main functions and sub functions ..... 59
3.3 Specifications of Input/Output Signals with CPU Module ..... 66
3.3.1 List of input/output signals with CPU module. ..... 66
3.3.2 Details of input signals (LD75 to CPU module) ..... 67
3.3.3 Details of output signals (CPU module to LD75) ..... 68
3.4 Specifications of Input/Output Interfaces with External Devices ..... 69
3.4.1 Electrical specifications of input/output signals ..... 69
3.4.2 Signal layout for external device connection connector ..... 73
3.4.3 List of input/output signal details ..... 74
3.4.4 Input/output interface internal circuit ..... 76
CHAPTER 4 INSTALLATION, WIRING, AND MAINTENANCE OF PRODUCT ..... 79
4.1 Outline of Installation, Wiring, and Maintenance ..... 79
4.1.1 Installation, wiring and, maintenance procedures ..... 79
4.1.2 Names of each part ..... 80
4.1.3 Handling precautions ..... 82
4.2 Installation ..... 83
4.2.1 Installation precautions ..... 83
4.3 Wiring ..... 84
4.3.1 Wiring precautions ..... 84
4.3.2 Wiring of the differential driver common terminal ..... 89
4.4 Checking Installation and Wiring ..... 91
4.4.1 Items to check when installation and wiring are completed ..... 91
4.5 Maintenance ..... 92
4.5.1 Maintenance precautions ..... 92
4.5.2 Disposal precautions ..... 92
CHAPTER 5 DATA USED FOR POSITIONING CONTROL ..... 93
5.1 Types of Data ..... 93
5.1.1 Parameters and data required for control ..... 93
5.1.2 Setting items for positioning parameters ..... 96
5.1.3 Setting items for OPR parameters ..... 108
5.1.4 Setting items for positioning data ..... 109
5.1.5 Setting items for block start data ..... 112
5.1.6 Setting items for condition data ..... 113
5.1.7 Types and roles of monitor data ..... 114
5.1.8 Types and roles of control data ..... 116
5.2 List of Parameters. ..... 118
5.2.1 Basic parameters 1 ..... 118
5.2.2 Basic parameters 2 ..... 125
5.2.3 Detailed parameters 1 ..... 126
5.2.4 Detailed parameters 2 ..... 133
5.2.5 OPR basic parameters. ..... 140
5.2.6 OPR detailed parameters. ..... 148
5.3 List of Positioning Data ..... 152
5.4 List of Block Start Data ..... 171
5.5 List of Condition Data ..... 176
5.6 List of Monitor Data. ..... 182
5.6.1 System monitor data ..... 182
5.6.2 Axis monitor data ..... 193
5.7 List of Control Data ..... 211
5.7.1 System control data ..... 211
5.7.2 Axis control data ..... 213
CHAPTER 6 PROGRAM USED FOR POSITIONING CONTROL ..... 235
6.1 Precautions for Creating Program ..... 235
6.2 List of Devices Used ..... 239
6.3 Creating a Program ..... 256
6.3.1 General configuration of program ..... 257
6.3.2 Positioning control operation program ..... 258
6.4 Positioning Program Examples ..... 261
6.4.1 When using the LD75 in a standard system configuration ..... 261
6.4.2 When the LD75 is connected to head module ..... 272
6.5 Program Details ..... 286
6.5.1 Initialization program ..... 286
6.5.2 Start details setting program ..... 287
6.5.3 Start program ..... 288
6.5.4 Continuous operation interrupt program ..... 296
6.5.5 Restart program ..... 298
6.5.6 Stop program ..... 301
CHAPTER 7 MEMORY CONFIGURATION AND DATA PROCESS ..... 305
7.1 Configuration and Roles of LD75 Memory ..... 305
7.1.1 Configuration and roles of LD75 memory ..... 305
7.1.2 Buffer memory area configuration ..... 307
7.2 Data Transmission Process ..... 308
PART 2 CONTROL DETAILS AND SETTING
CHAPTER 8 OPR CONTROL ..... 316
8.1 Outline of OPR Control ..... 316
8.1.1 Two types of OPR control ..... 316
8.2 Machine OPR ..... 318
8.2.1 Outline of the machine OPR operation ..... 318
8.2.2 Machine OPR method ..... 319
8.2.3 OPR method (1): Near-point dog method ..... 321
8.2.4 OPR method (2): Stopper method 1) ..... 323
8.2.5 OPR method (3): Stopper method 2) ..... 327
8.2.6 OPR method (4): Stopper method 3) ..... 330
8.2.7 OPR method (5): Count method 1) ..... 332
8.2.8 OPR method (6): Count method 2) ..... 335
8.3 Fast OPR ..... 337
8.3.1 Outline of the fast OPR operation ..... 337
CHAPTER 9 MAJOR POSITIONING CONTROL ..... 339
9.1 Outline of Major Positioning Controls ..... 339
9.1.1 Data required for major positioning control ..... 341
9.1.2 Operation patterns of major positioning controls ..... 342
9.1.3 Designating the positioning address ..... 352
9.1.4 Confirming the current value ..... 353
9.1.5 Control unit "degree" handling ..... 355
9.1.6 Interpolation control ..... 359
9.2 Setting the Positioning Data ..... 364
9.2.1 Relation between each control and positioning data ..... 364
9.2.2 1-axis linear control ..... 366
9.2.3 2-axis linear interpolation control ..... 368
9.2.4 3-axis linear interpolation control ..... 372
9.2.5 4-axis linear interpolation control ..... 376
9.2.6 1-axis fixed-feed control ..... 379
9.2.7 2-axis fixed-feed control (interpolation) ..... 381
9.2.8 3 -axis fixed-feed control (interpolation) ..... 384
9.2.9 4-axis fixed-feed control (interpolation) ..... 388
9.2.10 2-axis circular interpolation control with sub point designation ..... 391
9.2.11 2-axis circular interpolation control with center point designation ..... 395
9.2.12 3-axis helical interpolation control with sub point designation ..... 402
9.2.13 3-axis helical interpolation control with center point designation ..... 408
9.2.14 1-axis speed control ..... 416
9.2.15 2-axis speed control ..... 419
9.2.16 3 -axis speed control ..... 422
9.2.17 4-axis speed control ..... 425
9.2.18 Speed-position switching control (INC mode) ..... 428
9.2.19 Speed-position switching control (ABS mode) ..... 435
9.2.20 Position-speed switching control ..... 441
9.2.21 Current value changing ..... 447
9.2.22 NOP instruction ..... 451
9.2.23 JUMP instruction ..... 452
9.2.24 LOOP ..... 454
9.2.25 LEND ..... 455
CHAPTER 10 HIGH-LEVEL POSITIONING CONTROL ..... 456
10.1 Outline of High-Level Positioning Control. ..... 456
10.1.1 Data required for high-level positioning control ..... 457
10.1.2 "Block start data" and "condition data" configuration ..... 458
10.2 High-Level Positioning Control Execution Procedure ..... 460
10.3 Setting the Block Start Data ..... 461
10.3.1 Relation between various controls and block start data ..... 461
10.3.2 Block start (Normal start) ..... 462
10.3.3 Condition start ..... 464
10.3.4 Wait start ..... 465
10.3.5 Simultaneous start ..... 466
10.3.6 Repeated start (FOR loop) ..... 467
10.3.7 Repeated start (FOR condition) ..... 468
10.3.8 Restrictions when using the NEXT start ..... 469
10.4 Setting the Condition Data ..... 470
10.4.1 Relation between various controls and the condition data ..... 470
10.4.2 Condition data setting examples ..... 472
10.5 Multiple Axes Simultaneous Start Control. ..... 473
10.6 Start Program for High-Level Positioning Control ..... 475
10.6.1 Starting high-level positioning control. ..... 475
10.6.2 Example of a start program for high-level positioning control ..... 476
CHAPTER 11 MANUAL CONTROL ..... 479
11.1 Outline of Manual Control ..... 479
11.1.1 Three manual control methods ..... 479
11.2 JOG Operation ..... 481
11.2.1 Outline of JOG operation ..... 481
11.2.2 JOG operation execution procedure ..... 484
11.2.3 Setting the required parameters for JOG operation ..... 485
11.2.4 Creating start programs for JOG operation ..... 486
11.2.5 JOG operation example ..... 488
11.3 Inching Operation ..... 491
11.3.1 Outline of inching operation ..... 491
11.3.2 Inching operation execution procedure ..... 494
11.3.3 Setting the required parameters for inching operation ..... 495
11.3.4 Creating a program to enable/disable the inching operation ..... 496
11.3.5 Inching operation example ..... 498
11.4 Manual Pulse Generator Operation ..... 499
11.4.1 Outline of manual pulse generator operation ..... 499
11.4.2 Manual pulse generator operation execution procedure ..... 503
11.4.3 Setting the required parameters for manual pulse generator operation. ..... 504
11.4.4 Creating a program to enable/disable the manual pulse generator operation ..... 505
CHAPTER 12 CONTROL SUB FUNCTIONS ..... 507
12.1 Outline of Sub Functions ..... 507
12.1.1 Outline of sub functions ..... 508
12.2 Sub Functions Specifically for Machine OPR ..... 510
12.2.1 OPR retry function ..... 510
12.2.2 OP shift function ..... 515
12.3 Functions for Compensating the Control ..... 518
12.3.1 Backlash compensation function ..... 518
12.3.2 Electronic gear function ..... 520
12.3.3 Near pass function ..... 525
12.3.4 Output timing selection of near pass control ..... 527
12.4 Functions to Limit the Control ..... 530
12.4.1 Speed limit function ..... 530
12.4.2 Torque limit function ..... 532
12.4.3 Software stroke limit function ..... 535
12.4.4 Hardware stroke limit function ..... 541
12.5 Functions to Change the Control Details ..... 543
12.5.1 Speed change function ..... 543
12.5.2 Override function ..... 550
12.5.3 Acceleration/deceleration time change function ..... 553
12.5.4 Torque change function ..... 557
12.5.5 Target position change function ..... 559
12.6 Absolute Position Restoration Function ..... 563
12.7 Other Functions ..... 572
12.7.1 Step function ..... 572
12.7.2 Skip function ..... 577
12.7.3 M code output function ..... 580
12.7.4 Teaching function ..... 586
12.7.5 Command in-position function ..... 593
12.7.6 Acceleration/deceleration processing function ..... 596
12.7.7 Pre-reading start function. ..... 598
12.7.8 Deceleration start flag function ..... 602
12.7.9 Stop command processing for deceleration stop function ..... 606
CHAPTER 13 COMMON FUNCTIONS ..... 609
13.1 Outline of Common Functions ..... 609
13.2 Parameter Initialization Function ..... 610
13.3 Execution Data Backup Function ..... 612
13.4 External I/O Signal Logic Switching Function ..... 614
13.5 External I/O Signal Monitor Function ..... 615
13.6 History Monitor Function ..... 616
13.7 Module Error Collection Function ..... 618
CHAPTER 14 DEDICATED INSTRUCTIONS ..... 619
14.1 List of Dedicated Instructions ..... 619
14.2 Interlock During Dedicated Instruction Is Executed ..... 619
14.3 Z.ABRST1, Z.ABRST2, Z.ABRST3, Z.ABRST4 ..... 620
14.4 ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, ZP.PSTRT4 ..... 625
14.5 ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, ZP.TEACH4 ..... 629
14.6 ZP.PFWRT ..... 633
14.7 ZP.PINIT ..... 637
CHAPTER 15 TROUBLESHOOTING ..... 640
15.1 Checking Errors Using GX Works2 ..... 640
15.2 Checking Errors Using a Display Unit. ..... 643
15.3 Troubleshooting ..... 644
15.4 Error and Warning Details ..... 647
15.4.1 Errors ..... 647
15.4.2 Warnings ..... 648
15.4.3 Resetting errors and warnings ..... 649
15.4.4 Checking the warning details ..... 649
15.5 List of Errors ..... 650
15.6 List of Warnings ..... 676
APPENDICES ..... 682
Appendix 1 Function Update ..... 682
Appendix 1.1 Function comparison ..... 682
Appendix 2 Format Sheets ..... 684
Appendix 2.1 Positioning module operation chart ..... 684
Appendix 2.2 Parameter setting value entry table ..... 686
Appendix 3 Positioning Data (No. 1 to 600) List of Buffer Memory Addresses ..... 693
Appendix 4 Connection Examples ..... 725
Appendix 4.1 Connection examples with servo amplifiers manufactured by MITSUBISHI Electric Corporation ..... 725
Appendix 4.2 Connection examples with stepping motors manufactured by ORIENTALMOTOR Co., Ltd. ..... 729
Appendix 4.3 Connection examples with servo amplifiers manufactured by Panasonic Corporation ..... 731
Appendix 4.4 Connection examples with servo amplifiers manufactured by SANYO DENKI Co., Ltd. ..... 733
Appendix 4.5 Connection examples with servo amplifiers manufacturedby YASKAWA Electric Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
Appendix 5 Differences with Q Series ..... 735
Appendix 6 When Using GX Works2 ..... 737
Appendix 6.1 Adding a module ..... 738
Appendix 6.2 Parameter setting ..... 739
Appendix 6.3 Setting auto refresh ..... 745
Appendix 6.4 Positioning monitor ..... 746
Appendix 6.5 Positioning test. ..... 756
Appendix 6.6 Wave trace ..... 763
Appendix 6.7 Location trace ..... 765
Appendix 7 When Using GX Developer or GX Configurator-QP ..... 767
Appendix 7.1 Operation of GX Developer ..... 767
Appendix 7.2 Operation of GX Configurator-QP ..... 768
Appendix 8 MELSEC Explanation of Positioning Terms ..... 769
Appendix 9 Positioning Control Troubleshooting ..... 789
Appendix 10List of Buffer Memory Addresses ..... 793
Appendix 11 External Dimension Drawing ..... 802
INDEX ..... 805
REVISIONS ..... 812
WARRANTY ..... 813
TRADEMARKS ..... 814

## MANUAL PAGE ORGANIZATION

The following manuals are also related to this product.
The following symbols represent the buffer memories supported for axis 1 to 4 .
(A serial No. is inserted in the "*" mark.)

| Symbol |  | Description |
| :---: | :--- | :---: | Reference |  |
| :---: |
| $[$ Pr. *] |
| $\left[\right.$ Sa. $\left.{ }^{*}\right]$ |

Representation of numerical values used in this manual.

- Buffer memory addresses, error codes and warning codes are represented in decimal.
- X/Y devices are represented in hexadecimal.
- Setting data and monitor data are represented in decimal or hexadecimal. Data ended by "H" are represented in hexadecimal.

Ex. $10 \cdots$ Decimal
10H ... Hexadecimal

## TERMS

Unless otherwise specified, this manual uses the following terms.
For the unique terms of the positioning module, refer to Page 769, Appendix 8.

| Term |  |
| :--- | :--- |
| CPU module | The abbreviation for the MELSEC-L series CPU module |
| GX Configurator-QP | A setting and monitoring tool (for positioning modules) |
| GX Developer | The product name of the software package for the MELSEC programmable controllers |
| GX Works2 |  |
| LCPU | Another term for the MELSEC-L series positioning module |
| LD75 | Generic term for positioning module LD75D1, LD75D2, LD75D4 |
| LD75D口 | Generic term for positioning module LD75P1, LD75P2, LD75P4 |
| LD75P口 | A MELSEC-Q/L series module that has functions other than input or output, such as A/D converter module and D/A <br> converter module |
| Intelligent function module | A unit used to amplify the power and control the motor in the operation by the positioning function since the signals, <br> such as pulses, that are output from the positioning function of the CPU module or from the positioning module, are low <br> voltage and small current. The unit, also called a servo amplifier, is provided with a servomotor and step motor. |
| Drive unit (servo amplifier) | A generic term for GX Works2 and GX Developer |
| Programming tool | The Abbreviation for the LJ72GF15-T2 CC-Link IE Field Network head module |
| Head module | Abbreviation for the QJ71GF11-T2 CC-Link IE Field Network master/local module |
| Master/local module |  |

## PACKING LIST

The following items are included in the package of this product. Before use, check that all the items are included.
(1) LD75P1


LD75P1


Before Using the Product
(2) LD75P2


LD75P2


Before Using the Product

## (3) LD75P4



Before Using the Product
(4) LD75D1


LD75D1


Before Using the Product

## (5) LD75D2


(6) LD75D4


Before Using the Product

Part 1 consists of the following chapters.
CHAPTER 1 PRODUCT OUTLINE ..... 22
CHAPTER 2 SYSTEM CONFIGURATION ..... 44
CHAPTER 3 SPECIFICATIONS AND FUNCTIONS ..... 49
CHAPTER 4 INSTALLATION, WIRING, AND MAINTENANCE OF PRODUCT ..... 79
CHAPTER 5 DATA USED FOR POSITIONING CONTROL ..... 93
CHAPTER 6 PROGRAM USED FOR POSITIONING CONTROL ..... 235
CHAPTER 7 MEMORY CONFIGURATION AND DATA PROCESS ..... 305

## 1.1 <br> Positioning Control

### 1.1.1 Features of LD75

The LD75 has the following features.

## (1) Selection of modules

The pulse output types of the available modules are either the open collector output system or the differential driver output system. A module can be selected from the following depending on the drive unit type and the number of axes.

- Open collector output system: LD75P1/LD75P2/LD75P4
- Differential driver output system: LD75D1/LD75D2/LD75D4


## (2) High-speed start time

High-speed start time (1.5ms for 1-axis linear control) during positioning control is achieved.

## (3) High-speed pulse output

The modules with a differential driver (LD75DC) incorporate the improvements in pulse output speed and maximum distance to the drive unit.

- LD75Dロ: 4Mpulse/s, 10 m max.


## (4) Wide variety of positioning control functions

The main functions (such as OPR control, positioning control, and manual control) which are required for any positioning system and the sub functions which limit and add functions to those controls are supported.
(a) Enhanced OPR control

- Additional features of OPR control Six machine OPR methods are provided: one near-point dog method, three stopper methods, and two count methods. Select an applicable method according to the system.
- OPR retry function The OPR retry function is provided so that the machine OPR control can be performed from any position, regardless of the machine stop position when the system is powered on.
(b) Wide variety of control methods

Twenty kinds of positioning controls, such as position control, speed control, speed-position switching control, position-speed switching control, and other controls, are provided.

- Independent control of each axis Controls, such as position control and speed control, can be performed independently for each axis at any given timing.
- Interpolation control

Interpolation controls using multiple axes can be performed. (2- to 4-axis linear control, 2-axis circular interpolation control, 2- to 4-axis speed control, 3-axis helical interpolation control)
(c) Large amount of data

Up to 600 positioning data (combinations of data, such as control system, positioning address, and command speed) per axis can be set.
(d) Continuous processing of multiple positioning data

Multiple positioning data can be processed continuously within one positioning operation.
Continuous positioning control can be executed over multiple blocks, where each block consists of multiple positioning data.
This reduces the number of executions of positioning, management of execution status, and others.
(e) Acceleration/deceleration processing

Two acceleration/deceleration processing methods are provided: trapezoidal acceleration/deceleration and Scurve acceleration/deceleration. The acceleration/deceleration curve can be selected according to the machine characteristic. (Note that there is a restriction on executing the S-curve acceleration/deceleration for the system using stepping motors. (

## (5) High maintainability

Maintainability is enhanced in the LD75.
(a) Data retention without battery

Data such as the positioning data and parameters can be stored in the flash ROM inside the LD75. This feature allows the module to retain the data without a battery.
(b) Module error collection function

Like the QD75, the LD75 stores 16 error logs. Also the LD75 notifies error details to the CPU module when an error occurs. Storing the error information in the CPU module allows the user to check the error from the programming tool even after the module is powered off or reset.
(6) Support of intelligent function module dedicated instructions

Dedicated instructions such as the absolute position restoration instruction, positioning start instruction, and teaching instruction are provided.
The use of such dedicated instructions simplifies programs.

## (7) Setting, monitoring, and testing through GX Works2

Parameters and positioning data for the LD75 can be set using GX Works2.
Moreover, using the test function of GX Works2, users can check the wiring status and the validity of the preset parameters and positioning data by performing test operation before creating a program for positioning control. The control monitor function of GX Works2 allows user to debug programs efficiently.

### 1.1.2 Purpose and applications of positioning control

"Positioning" refers to moving a moving body, such as a workpiece or tool (hereinafter, generically called "workpiece") at a designated speed, and accurately stopping it at the target position.
The main application examples are shown below.

## (1) Punch press (X, Y feed positioning)



- To punch insulation material or leather, etc., as the same shape at a high yield, positioning is carried out with the X axis and Y axis servos.
- After positioning the table with the X axis servo, the press head is positioned with the Y axis servo, and is then punched with the press.
- When the material type or shape changes, the press head die is changed, and the positioning pattern is changed.


## (2) Palletizer



- Using the servo for one axis, the palletizer is positioned at a high accuracy.
- The amount to lower the palletizer according to the material thickness is saved.

- The ATC tool magazine for a compact machining center is positioned.
- The relation of the magazine's current value and target value is calculated, and positioning is carried out with forward run or reverse run to achieve the shortest access time.


## (4) Lifter (Storage of Braun tubes onto aging rack)



- During the aging process of braun tubes, storage onto the rack is carried out by positioning with the AC servo.
- The up/down positioning of the lifter is carried out with the 1-axis servo, and the horizontal position of the aging rack is positioned with the 2-axis servo.


## (5) Index table (High-accuracy indexing of angle)



- The index table is positioned at a high accuracy using the 1 -axis servo.


## (6) Inner surface grinder



- The grinding of the workpiece's inner surface is controlled with the servo and inverter.
- The rotation of the workpiece is controlled with the 1 -axis inverter, and the rotation of the grinding stone is controlled with the 2 -axis inverter. The workpiece is fed and ground with the 3 -axis servo.


### 1.1.3 Mechanism of positioning control

Positioning control using the LD75 is carried out with "pulse signals". (The LD75 is a module that generates pulses). In the positioning system using the LD75, various software and devices are used for the following roles. The LD75 realizes complicated positioning control when it reads in various signals, parameters and data and is controlled with the CPU module.


The principle of "position control" and "speed control" operation is shown below.

## (1) Position control

The total No. of pulses required to move the designated distance is obtained in the following manner.
$\left[\begin{array}{l}\text { Total No. of pulses } \\ \text { required to move } \\ \text { designated distance }\end{array}\right]=\left[\begin{array}{l}\left.\frac{\text { Designated distance }}{\begin{array}{l}\text { Movement amount of machine (load) } \\ \text { side when motor rotates once }\end{array}}\right] \times\left[\begin{array}{l}\text { No. of pulses } \\ \text { required for motor to } \\ \text { rotate once }\end{array}\right]\end{array}\right.$
*The No. of pulses required for the motor to rotate once is the "encoder resolution" described in the motor catalog specification list.

When this total No. of pulses is issued from the LD75 to the servo amplifier, control to move the designated distance can be executed.

The machine side movement amount when one pulse is issued to the servo amplifier is called the "movement amount per pulse". This value is the min. value for the workpiece to move, and is also the electrical positioning precision.

## (2) Speed control

The "Total No. of pulses" mentioned above is invariably required for controlling the distance. For positioning or speed control, the speed must be controlled as well.
The speed is determined by the frequency of pulses sent from the LD75 to the drive unit.


## Point ${ }^{8}$

The LD75 controls the position with the "total No. of pulses", and the speed with the "pulse frequency".

### 1.1.4 Outline design of positioning system

The outline of the positioning system operation and design, using the LD75, is shown below.

## (1) Positioning system using LD75


(a) Positioning operation by the LD75

1. The LD75 output is a pulse train.

The pulse train output by the LD75 is counted by and stored in the deviation counter in the drive unit. The D/A converter outputs an analog DC current proportionate to the count maintained by the deviation counter (called "pulse droop"). The analog DC current serves as the servomotor speed control signal.
2. The motor rotation is controlled by the speed control signal from the drive unit.

As the motor rotates, the pulse encoder (PLG) attached to the motor generates feedback pulses, the frequency of which is proportionate to the rotation speed.
The feedback pulses are fed back to the drive unit and decrements the pulse droop, the pulse count maintained by the deviation counter.
The motor keeps on rotating as the pulse droop is maintained at a certain level.
3. When the LD75 terminates the output of a pulse train, the motor decelerates as the pulse droop decreases and stops when the count drops to zero.
Thus, the motor rotation speed is proportionate to the pulse frequency, while the overall motor rotation angle is proportionate to the total number of pulses output by the LD75.
Therefore, when a movement amount per pulse is given, the overall movement amount can be determined by the number of pulses in the pulse train.
The pulse frequency, on the other hand, determines the motor rotation speed (feed speed).
(b) Pulse train output from the LD75

1. As shown in the figure below, the pulse frequency increases as the motor accelerates. The pulses are sparse when the motor starts and more frequent when the motor speed comes close to the target speed.
2. The pulse frequency stabilizes when the motor speed equals the target speed.
3. The LD75 decreases the pulse frequency (sparser pulses) to decelerate the motor before it finally stops the output.
There will be a little difference in timing between the decrease in the pulse frequency and the actual deceleration and stopping of the motor.
This difference, called "the stop settling time", is required for gaining a stopping accuracy.


## (2) Movement amount and speed in a system using worm gears



A: Movement amount per pulse ( $\mathrm{mm} / \mathrm{pulse}$ )
Vs: Command pulse frequency (pulse/s)
n : Pulse encoder resolution (pulse/rev)
L: Worm gear lead ( $\mathrm{mm} / \mathrm{rev}$ )
R : Deceleration ratio
V : Movable section speed ( $\mathrm{mm} / \mathrm{s}$ )
N : Motor speed ( $\mathrm{r} / \mathrm{min}$ )
K: Position loop gain (1/s)
$\varepsilon$ : Deviation counter droop pulse amount
PO: OP (pulse)
P : Address (pulse)

## (a) Calculations of the movement amount per pulse, command pulse frequency, and the

 deviation counter droop pulse amountThe movement amount per pulse, command pulse frequency, and the deviation counter droop pulse amount are determined as follows:
(1) Movement amount per pulse

The movement amount per pulse is determined by the worm gear lead, deceleration ratio, and the pulse encoder resolution.
The movement amount, therefore, is given as follows: (Number of pulses output) $\times$ (Movement amount per pulse).

$$
A=\frac{\mathrm{L}}{\mathrm{R} \times \mathrm{n}}[\mathrm{~mm} / \text { pulse }]
$$

(2) Command pulse frequency

The command pulse frequency is determined by the speed of the moving part and movement amount per pulse:

$$
V_{s}=\frac{V}{A} \text { [pulse/s] }
$$

(3) Deviation counter droop pulse amount

The deviation counter droop pulse amount is determined by the command pulse frequency and position loop gain.

$$
\varepsilon=\frac{\mathrm{Vs}}{\mathrm{~K}} \text { [pulse] }
$$

## (b) Selection of unit for positioning is possible from mm, inch, degree, pulse

The LD75 allows the user to select from the following four units as the unit used by positioning commands to any of the axes ( 1 to 4 , if the module supports four axes): mm, inch, degree, and pulse. The unit selected for one axis may differ from the unit selected for another axis.
When such data as the acceleration/deceleration time, positioning speed, and positioning address are correctly set in consideration of the chosen unit, the LD75 can calculate the number of pulses required for a movement amount to the target positioning address and execute the positioning by outputting a pulse train that includes the calculated number of pulses.

### 1.1.5 Communicating signals between LD75 and each module

The outline of the signal communication between the LD75 and CPU module, GX Works2 and drive unit, etc., is shown below. (GX Works2 communicates with the LD75 via the CPU module to which it is connected.)

(1) LD75 $\leftrightarrow$ CPU module

The LD75 and CPU module communicate the following data.

| Communication | Direction |  |
| :---: | :---: | :---: |
|  | LD75 $\rightarrow$ CPU module | CPU module $\rightarrow$ LD75 |
| Control signal* ${ }^{*}$ | Signal indicating LD75 state <br> - LD75 READY signal <br> - BUSY signal | Signals related to commands <br> - PLC READY signal <br> - Various start signals <br> - Stop signal |
| Data (read/write) | - Parameter <br> - Positioning data <br> - Block start data <br> - Control data <br> - Monitor data | - Parameter <br> - Positioning data <br> - Block start data <br> - Control data |

## (2) LD75 $\leftrightarrow$ GX Works2

The LD75 and GX Works2 communicate the following data via the CPU module:

| Communication | LD75 $\rightarrow$ GX Works2 | Direction |
| :--- | :--- | :--- |
|  | GX Works2 $\rightarrow$ LD75 |  |

## (3) LD75 $\leftrightarrow$ Drive unit

The LD75 and drive unit communicate the following data via the external device connection connector.

| Communication | Direction |  |
| :--- | :--- | :---: |
|  | LD75 $\rightarrow$ Drive unit | Drive unit $\rightarrow$ LD75 |
| Control signal | Signals related to commands <br> $\bullet$ Deviation counter clear signal | Signals indicating drive unit state <br> • Drive unit READY signal |
| Pulse train | • Pulse train output | - |

## (4) LD75 $\leftrightarrow$ Manual pulse generator

The LD75 and manual pulse generator communicate the following data via the external device connection connector.
(The manual pulse generator should be connected to an external device connection connector for axis 1 or for axes 1 and 2.)

| Communication | Direction |  |
| :--- | :---: | :--- |
|  | LD75 $\rightarrow$ Manual pulse generator | Manual pulse generator $\rightarrow$ LD75 |
| Pulse signal | - | Manual pulse generator A-phase |

## (5) LD75 $\leftrightarrow$ External signal

The LD75 and external signal communicate the following data via the external device connection connector.

| Communication | Direction |  |
| :---: | :---: | :---: |
|  | LD75 $\rightarrow$ External signal | External signal $\rightarrow$ LD75 |
| Control signal | - | Signals from detector <br> - Near-point dog signal <br> - Upper/lower limit signal <br> - Zero signal <br> Control signals from external device <br> - Stop signal <br> - External command signal |

1.2 Flow of System Operation

### 1.2.1 Flow of all processes

The positioning control processes, using the LD75, are shown below.


| No. | Details | Reference |
| :---: | :---: | :---: |
| 1) | Understand the product functions and usage methods, the configuration devices and specifications required for positioning control, and design the system. | - Page 22, CHAPTER 1 <br> - Page 44, CHAPTER 2 <br> - Page 49, CHAPTER 3 <br> - Page 316, CHAPTER 8 to Page 609, CHAPTER 13 |
| 2) | Connect the LD75 to the CPU module, wire the LD75 and external connection devices (drive unit, etc.), connect the CPU module and GX Works2. | - Page 79, CHAPTER 4 |
| 3) | Using GX Works2, set the parameters, positioning data, block start data and condition data required for the positioning control to be executed. | - Page 93, CHAPTER 5 <br> - Page 316, CHAPTER 8 to Page 609, CHAPTER 13 <br> - Page 737, Appendix 6 <br> - L] GX Works2 Version 1 Operating Manual (Intelligent Function Module) |
| 4) | Using GX Works2, create the program required for positioning operation. (When not setting using GX Works2, also create the program for setting data.) | - Page 235, CHAPTER 6 <br> - [] GX Works2 Version 1 Operating Manual (Common) |
| 5) | Write the parameters and positioning data, etc., created with GX Works2 into the LD75. | - Page 305, CHAPTER 7 <br> - [] GX Works2 Version 1 Operating Manual (Common) |
| 6) | Using GX Works2, write the created program into the CPU module. (When not setting using GX Works2, also write in the program for setting data.) | - Page 305, CHAPTER 7 <br> - [] GX Works2 Version 1 Operating Manual (Common) |
| 7) | Carry out test operation and adjustments in the test function to check the connection with the LD75 and external connection device, and to confirm that the designated positioning operation is executed correctly. (Debug the set "parameters" and "positioning data", etc.) | - Page 737, Appendix 6 <br> - [] GX Works2 Version 1 Operating Manual (Intelligent Function Module) <br> - Page 609, CHAPTER 13 |
| 8) | Carry out test operation and adjustment to confirm that the designated positioning operation is executed correctly. (Debug the created program. When not setting using GX Works2, also debug the set data.) | - Page 737, Appendix 6 <br> - [] GX Works2 Version 1 Operating Manual (Intelligent Function Module) |
| 9) | Actually operate the positioning operation. At this time, monitor the operation state as required. If an error or warning occurs, remedy. | - Page 93, CHAPTER 5 <br> - Page 640, CHAPTER 15 <br> - [] GX Works2 Version 1 Operating Manual (Intelligent Function Module) |
| 10) | Service the LD75 as required. | - Page 79, CHAPTER 4 |
| 11) | Dispose of the LD75. | - Page 79, CHAPTER 4 |

### 1.2.2 Outline of starting

The outline for starting each control is shown with the following flowchart. It is assumed that each module is installed, and the required system configuration, etc., has been prepared.


## Setting method

$\square$ : Indicates programs that must be created.


### 1.2.3 Outline of stopping

Each control is stopped in the following cases.

- When each control is completed normally.
- When the drive unit READY signal is turned OFF.
- When a CPU module error occurs
- When the PLC READY signal is turned OFF.
- When an error occurs in the LD75.
- When control is intentionally stopped (Stop signal from CPU module turned ON, stop signal from an external device, etc.)
The outline for the stopping process in these cases is shown below. (Excluding when each control is completed normally.)


## (1) OPR control

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status ([Md.26]) after stopping | Stop process |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Machine OPR control |  |  | Fast OPR control |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop |  |
| Fatal stop <br> (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence | Each axis | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.37] Stop group 1 sudden stop selection".) |  |
| Emergency stop <br> (Stop group 2) | CPU module error occurrence <br> PLC READY signal OFF <br> Error in test function | All axes | No change <br> Turns OFF <br> No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.38] Stop group 2 sudden stop selection".) |  |
| Relatively safe stop <br> (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) | Each axis | No change | Error |  |  |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source <br> "Axis stop signal" ON from CPU module <br> "Stop signal" from GX Works2 ${ }^{* 1}$ | Each axis | No change | Stopped <br> (Standby) | Deceleration stop/sudde (Select with "[Pr.39] Stop selection".) | up 3 sudden stop |

*1 This means the stop using a stop button on the positioning test dialog box when using the positioning test function of GX Works2.

## (2) Positioning control

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status ([Md.26]) after stopping | Stop process |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Major positioning control |  |  | High-level positioning control |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop |  |
| Fatal stop <br> (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence | Each axis | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.37] Stop group 1 sudden stop selection".) |  |
| Emergency stop <br> (Stop group 2) | CPU module error occurrence | All axes | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.38] Stop group 2 sudden stop selection".) |  |
|  | PLC READY signal OFF |  | Turns OFF |  |  |  |
|  | Error in test function |  | No change |  |  |  |
| Relatively safe stop <br> (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) ${ }^{* 1}$ | Each axis | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.39] Stop group 3 sudden stop selection".) |  |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source | Each axis | No change | Stopped (Standby) |  |  |
|  | "Axis stop signal" ON from CPU module |  |  |  |  |  |
|  | "Stop signal" from GX Works2*2 |  |  |  |  |  |

*1 When multiple positioning data is executed by the continuous positioning control and there is invalid setting value in a positioning data, an error occurs and deceleration is performed at the previous positioning data. In this case, sudden stop is not performed even when it is set for the stop group 3. If any of the following error occurs, the operation is immediately stopped after executing up to previous positioning data of the positioning data where an error occurred.

- No command speed (error code: 503)
- Outside linear movement amount range (error code: 504)
- Large arc error deviation (error code: 506)
- Software stroke limit + (error code: 507)
- Software stroke limit - (error code: 508)
- Sub point setting error (error code: 525)
- End point setting error (error code: 526)
- Center point setting error (error code: 527)
- Outside radius range (error code: 544)
- Illegal setting of ABS direction in unit of degree (error code: 546)
*2 This means the stop using a stop button on the positioning test dialog box when using the positioning test function of GX Works2.
(3) Manual control

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status ([Md.26]) after stopping | Stop process |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | JOG operation Inching operation |  |  | Manual pulse generator operation |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop | Deceleration stop |
| Fatal stop (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence | Each axis | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.37] Stop group 1 sudden stop selection".) | Deceleration stop |
| Emergency stop <br> (Stop group 2) | CPU module error occurrence | All axes | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.38] Stop group 2 sudden stop selection".) | Deceleration stop |
|  | PLC READY signal OFF |  | Turns OFF |  |  |  |
|  | Error in test function |  | No change |  |  |  |
| Relatively safe stop <br> (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) | Each axis | No change | Error | Deceleration <br> stop/sudden stop <br> (Select with "[Pr.39] <br> Stop group 3 sudden <br> stop selection".) | Deceleration stop |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source | Each axis | No change | Stopped <br> (Standby) |  |  |
|  | "Axis stop signal" ON from CPU module |  |  |  |  |  |
|  | "Stop signal" from GX Works2 ${ }^{* 1}$ |  |  |  |  |  |

*1 This means the stop using a stop button on the positioning test dialog box when using the positioning test function of GX Works2.

When a stop cause has occurred during operation with position control causing the axis to stop, positioning to the end point of the positioning data can be restarted from the stopped position by using the "[Cd.6] Restart command". If issued during a continuous positioning or continuous path control operation, the restart command will cause the positioning to be re-executed using the current position (pointed by the positioning data No. associated with the moment when the movement was interrupted) as the start point.

## (1) When "[Cd.6] Restart command" is ON

- If the "[Md.26] Axis operation status" is "Stopped", positioning to the end point of the positioning data will be restarted from the stopped position regardless of the absolute system or incremental system.
- When "[Md.26] Axis operation status" is not "Stopped", the warning "Restart not possible" (warning code: 104) will be applied, and the restart command will be ignored.
(a) Example for incremental system

The restart operation when the axis 1 movement amount is 300 , and the axis 2 movement amount is 600 is shown below.


## (2) Reference

If the positioning start signal [Y10 to Y 13$] /$ external command signal ${ }^{* 1}$ is turned ON while the "[Md.26] Axis operation status" is "Standby" or "Stopped", positioning will be restarted from the start of the positioning start data regardless of the absolute system or incremental system.
(Same as normal positioning.)
*1 When the external command signal is set to "External positioning start"
(a) Example for incremental system

The positioning start operation when the axis 1 movement amount is 300 and the axis 2 movement amount is 600 is shown below.


Note the following restrictions on using a stepping motor:

- For an axis where a stepping motor is connected, executing the S-curve acceleration/deceleration may cause step-out. Before using the S-curve acceleration/deceleration, confirm that step-out does not occur.
- The circular interpolation control and 3-axis helical interpolation control cannot be used for an axis where a stepping motor is connected. Although setting the bias speed at start is required by the characteristics of the stepping motor, the setting of the bias speed at start is disabled for circular interpolation control. Ensure to use a servomotor for all axes where interpolation controls are carried out when the circular interpolation control or 3-axis helical interpolation control is carried out.
- The backlash compensation function cannot be used for an axis where a stepping motor is connected. If the function is used, the motor may lose steps.


## CHAPTER 2

### 2.1 General Image of System

The general image of the system, including the LD75, CPU module and peripheral devices is shown below.
(Refer to Page 47, Section 2.2 and Page 48, Section 2.3 for the devices in the illustration.)

## (1) When connected to a CPU module



## (2) When connected to a head module



### 2.2 Configuration List

The positioning system using the LD75 is configured of the following devices.

| No. | Product name | Model name | Remarks |
| :---: | :---: | :---: | :---: |
| 1 | Positioning module | LD75P1 <br> LD75P2 <br> LD75P4 <br> LD75D1 <br> LD75D2 <br> LD75D4 |  |
| 2 | GX Works2 | - | For details, refer to $\square]$ GX Works2 Version 1 Operating Manual (Common). |
| 3 | Personal computer | Personal computer which supports Windows ${ }^{\circledR}$ | (Prepared by user) <br> For details, refer to $\square \square$ GX Works2 Version 1 Operating Manual (Common). |
| 4 | USB cable | - | (Prepared by user) <br> A USB cable is needed for connecting the CPU module with a personal computer. For details, refer to $[\square]$ GX Works2 Version 1 Operating Manual (Common). |
| 5 | Ethernet cable | - | (Prepared by user) <br> An Ethernet cable is needed for connecting the CPU module with a personal computer. |
| 6 | Drive unit | - | (Prepared by user) |
| 7 | Manual pulse generator | - | (Prepared by user) <br> Recommended: MR-HDP01 (Mitsubishi Electric) |

(1) Specifications of recommended manual pulse generator

| Item | Specifications |
| :--- | :---: |
| Model name | MR-HDP01 |
| Pulse resolution | 25pulse/rev (100 pulse/rev after magnification by 4) |
| Output method | Voltage-output (power supply voltage -1V or more), Output current = Max. 20mA |
| Power supply voltage | 4.5 to $13.2 \mathrm{VDC}{ }^{* 1}$ |
| Current consumption | 60 mA |
| Output level | "H" level: power supply voltage ${ }^{* 1}-1 \mathrm{~V}$ or more (in no-load) |
| "L" level: 0.5 V or less (with maximum leading-in) |  |

*1 Use the stabilized power supply of 4.5 to 6.1 VDC for the power supply of the manual pulse generator.

### 2.3 Applicable System

## (1) Connectable module

(a) Number of connectable modules

The LD75 is regarded as two modules by the CPU module or head module. Therefore, the number of connectable modules is the half of that of other modules.
For the number of connectable modules, refer to the following.

- [] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
- [] MELSEC-L CC-Link IE Field Network Head Module User's Manual
(b) Restriction by the serial number

The LD75 cannot be used depending on the serial number of the head module. For the applicable serial number, refer to the following.

- [] MELSEC-L CC-Link IE Field Network Head Module User's Manual


## (2) Applicable software versions

For the applicable software versions, refer to the following.

- C$]$ MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
- [] MELSEC-L CC-Link IE Field Network Head Module User's Manual


### 2.4 Checking Serial Number and Function Version

For how to check the serial number and function version of the LD75, refer to the following.

- $\square \square$ MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)
- []] MELSEC-L CC-Link IE Field Network Head Module User's Manual


## 2.5 Restrictions When the LD75 Is Connected to Head Module

The following describes the restriction when the LD75 is connected to a head module.

- Dedicated instruction cannot be used.

CHAPTER 3 sPECIFICATIONS AND FUNCTIONS

### 3.1 Performance Specifications

| Item |  | Model |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | LD75P1/LD75D1*1 | LD75P2/LD75D2*1 | LD75P4/LD75D4*1 |
| No. of control axes |  | 1 axis | 2 axes | 4 axes |
| Interpolation function |  | None | 2-axis linear interpolation 2-axis circular interpolation | 2-, 3-, or 4-axis linear interpolation 2-axis circular interpolation 3 -axis helical interpolation |
| Control system |  | PTP (Point To Point) control, path control (all of linear, circular, and helical can be set), speed control, speed-position switching control, position-speed switching control |  |  |
| Control unit |  | mm, inch, degree, pulse |  |  |
| Positioning data |  | 600 data/axis <br> (Can be set with GX Works2 or program.) |  |  |
| Backup |  | Parameters, positioning data, and block start data can be saved on flash ROM (battery-less backup) |  |  |
| Positioning | Positioning system | [PTP control: Incremental system/absolute system] <br> Speed-position switching control: Incremental system/absolute system ${ }^{* 2}$ <br> Position-speed switching control: Incremental system <br> Path control: Incremental system/absolute system |  |  |
|  | Positioning range | [In absolute system] <br> - -214748364.8 to 21474836 <br> - -21474.83648 to 21474.836 <br> - 0 to 359.99999 (degree) <br> - -2147483648 to 2147483647 <br> [In incremental system] <br> - -214748364.8 to 21474836 <br> - -21474.83648 to 21474.836 <br> - -21474.83648 to 21474.836 <br> - -2147483648 to 214748364 <br> [In speed-position switching <br> - 0 to 214748364.7 ( $\mu \mathrm{m}$ ) <br> - 0 to 21474.83647 (inch) <br> - 0 to 21474.83647 (degree) <br> - 0 to 2147483647 (pulse) <br> [n speed-position switching co <br> - 0 to 359.99999 (degree) | )/ position-speed switching $\left.e)^{* 2}\right]$ |  |
|  | Speed command | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ <br> 0.001 to 2000000.000 (inch $/ \mathrm{m}$ <br> 0.001 to 2000000.000 (degre <br> 1 to 4000000 (pulse/s) |  |  |
|  | Acceleration/decele ration process | Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration |  |  |
|  | Acceleration/decele ration time | 1 to 8388608 (ms) <br> Four patterns can be set for each of acceleration time and deceleration time |  |  |
|  | Sudden stop deceleration time | 1 to 8388608 (ms) |  |  |


| Item | Model |  |
| :---: | :---: | :---: |
|  | LD75P1/LD75D1*1 ${ }^{\text {* }}$ LD75P2/LD75D2*1 | LD75P4/LD75D4*1 |
| Starting time ${ }^{* 3}$ | 1-axis linear control: 1.5 ms <br> 1 -axis speed control: 1.5 ms <br> 2-axis linear interpolation control (Composite speed): 1.5 ms <br> 2-axis linear interpolation control (Reference axis speed): 1.5 ms <br> 2-axis circular interpolation control: 2.0 ms <br> 2-axis speed control: 1.5 ms <br> 3 -axis linear interpolation control (Composite speed): 1.7 ms <br> 3 -axis linear interpolation control (Reference axis speed): 1.7 ms <br> 3 -axis helical interpolation control: 2.6 ms <br> 3 -axis speed control: 1.7 ms <br> 4 -axis linear interpolation control: 1.8 ms <br> 4 -axis speed control: 1.8 ms <br> Factors in starting time extension <br> The following times will be added to the starting time in the described conditions: <br> - S-curve acceleration/deceleration is selected: 0.1 ms <br> - Other axis is in operation: 0.5 ms <br> - During continuous positioning control: 0.3 ms <br> - During continuous path control: 0.3 ms |  |

*1 LD75Pロ represents the open collector output system, and LD75Dロ represents the differential driver output system.
*2 In speed-position switching control (ABS mode), the control unit available is "degree" only.
(For details, refer to $\leftrightarrows$ Page 435, Section 9.2.19.)
*3 Using the "Pre-reading start function", the virtual start time can be shortened.
(For details, refer to $\longmapsto$ Page 598, Section 12.7.7.)

| Item | Model |  |  |
| :---: | :---: | :---: | :---: |
|  | LD75P1/LD75D1*4 | LD75P2/LD75D2*4 | LD75P4/LD75D4*4 |
| External wiring connection system | 40-pin connector |  |  |
| Applicable wire size | $0.3 \mathrm{~mm}^{2}$ (AWG22) (for A6CON1 or A6CON4), 0.088 to $0.24 \mathrm{~mm}^{2}$ (28 to 24AWG) (for A6CON2) |  |  |
| Applicable connector for external device | A6CON1, A6CON2, A6CON4 (sold separately) |  |  |
| Max. output pulse | LD75P1, LD75P2, LD75P4: 200kpulse/s LD75D1, LD75D2, LD75D4: 4Mpulse/s |  |  |
| Max. connection distance between servos | LD75P1, LD75P2, LD75P4: 2m LD75D1, LD75D2, LD75D4: 10m |  |  |
| Internal current consumption (5VDC) | $\begin{aligned} & \text { LD75P1: } 0.44 \mathrm{~A} \\ & \text { LD75D1: } 0.51 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \hline \text { LD75P2: 0.48A } \\ & \text { LD75D2: } 0.62 \mathrm{~A} \end{aligned}$ | LD75P4: 0.55A <br> LD75D4: 0.76A |
| Flash ROM write count | Max. 100000 times |  |  |
| No. of occupied I/O points | 32 points (I/O assignment: intelligent 32 points) |  |  |
| No. of occupied module | 2 |  |  |
| Outline dimensions | $90.0(\mathrm{H}) \times 45.0(\mathrm{~W}) \times 95.0$ (D) mm |  |  |
| Weight | 0.18 kg |  |  |

(1) Differential driver common terminal specifications (LD75DD only)

- Applicable wire size: 0.3 to $1.25 \mathrm{~mm}^{2}$ ( 22 to 16AWG)

Applicable solderless terminal (bar solderless terminal): $\Im$ Page 89, Section 4.3.2

### 3.2 List of Functions

### 3.2.1 LD75 control functions

The LD75 has several functions. In this manual, the LD75 functions are categorized and explained as follows.

## (1) Main functions

## (a) OPR control

"OPR control" is a function that established the start point for carrying out positioning control, and carries out positioning toward that start point. This is used to return a workpiece, located at a position other than the OP when the power is turned ON or after positioning stop, to the OP. The "OPR control" is preregistered in the LD75 as the "Positioning start data No. 9001 (Machine OPR)", and "Positioning start data No. 9002 (Fast OPR). ( $\hookleftarrow$ Page 316, CHAPTER 8)

## (b) Major positioning control

This control is carried out using the "Positioning data" stored in the LD75. Positioning control, such as position control and speed control, is executed by setting the required items in this "positioning data" and starting that positioning data. An "operation pattern" can be set in this "positioning data", and with this whether to carry out control with continuous positioning data (ex.: positioning data No. 1, No. 2, No. 3, ...) can be set. ( $\mathfrak{\xi}$ Page 339, CHAPTER 9)
(c) High-level positioning control

This control executes the "positioning data" stored in the LD75 using the "block start data". The following types of applied positioning control can be carried out.

- Random blocks, handling several continuing positioning data items as "blocks", can be executed in the designated order.
- "Condition judgment" can be added to position control and speed control.
- The operation of the designated positioning data No. that is set for multiple axes can be started simultaneously. (Pulses are output simultaneously to multiple servos.)
- The designated positioning data can be executed repeatedly,
etc., ( $\Im$ Page 456, CHAPTER 10)
(d) Manual control

By inputting a signal into the LD75 from an external source, the LD75 will output a random pulse train and carry out control. Use this manual control to move the workpiece to a random position (JOG operation), and to finely adjust the positioning (inching operation, manual pulse generator operation), etc. ( 11)

## (2) Sub functions

When executing the main functions, control compensation, limits and functions can be added. ( $\curvearrowleft$ Page 507, CHAPTER 12)

## (3) Common functions

Common control using the LD75 for "parameter initialization" or "backup of execution data" can be carried out. (ङ Page 609, CHAPTER 13)


### 3.2.2 LD75 main functions

The outline of the main functions for positioning control with the LD75 is described below.
(Refer to PART 2 for details on each function.)

| Main functions |  |  | Details | Reference |
| :---: | :---: | :---: | :---: | :---: |
| OPR control | Machine OPR control |  | Mechanically establishes the positioning start point using a nearpoint dog or stopper. <br> (Positioning start No. 9001) | Page 318, Section 8.2 |
|  | Fast OPR control |  | Positions a target to the OP address ([Md.21] Machine feed value) stored in the LD75 using machine OPR. (Positioning start No. 9002) | Page 337, Section 8.3 |
| Major positioning control | Position control | Linear control <br> (1-axis linear control) <br> (2-axis linear interpolation control) <br> (3-axis linear interpolation control) <br> (4-axis linear interpolation control) | Positions a target using a linear path to the address set in the positioning data or to the position designated with the movement amount. | Page 366, Section 9.2.2 <br> Page 368, Section 9.2.3 <br> Page 372, Section 9.2.4 <br> Page 376, Section 9.2.5 |
|  |  | Fixed-feed control (1-axis fixed-feed control) (2-axis fixed-feed control) (3-axis fixed-feed control) (4-axis fixed-feed control) | Positions a target by the movement amount designated with the amount set in the positioning data. <br> (With fixed-feed control, the "[Md.20] Current feed value" is set to " 0 " when the control is started. With 2 -, 3 -, or 4 -axis fixed-feed control, the fixed-feed is fed along a linear path obtained by interpolation.) | Page 379, Section 9.2.6 <br> Page 381, Section 9.2.7 <br> Page 384, Section 9.2.8 <br> Page 388, Section 9.2.9 |
|  |  | 2-axis circular interpolation control | Positions a target using an arc path to the address set in the positioning data, or to the position designated with the movement amount, sub point or center point. | Page 391, Section 9.2.10 <br> Page 395, Section 9.2.11 |
|  |  | 3-axis helical interpolation control | Positions a target using a helical path to a position specified with the address, movement amount, sub point, or center point set in the positioning data. | Page 402, Section 9.2.12 <br> Page 408, Section 9.2.13 |
|  | Speed control | Speed control <br> (1-axis speed control) <br> (2-axis speed control) <br> (3-axis speed control) <br> (4-axis speed control) | Continuously outputs the pulses corresponding to the command speed set in the positioning data. | Page 416, Section 9.2.14 <br> Page 419, Section 9.2.15 <br> Page 422, Section 9.2.16 <br> Page 425, Section 9.2.17 |
|  | Speed-position switching control |  | First, carries out speed control, and then carries out position control (positioning with designated address or movement amount) by turning the "speed-position switching signal" ON. | Page 428, Section 9.2.18 <br> Page 435, Section 9.2.19 |
|  | Position-speed switching control |  | First, carries out position control, and then carries out speed control (continuous output of the pulses corresponding to the designated command speed) by turning the "position-speed switching signal" ON. | Page 441, Section 9.2.20 |
|  | Other control | Current value changing | Changes the Current feed value ([Md.20]) to the address set in the positioning data. <br> The following two methods can be used. <br> (The machine feed value cannot be changed.) <br> - Current value changing using positioning data <br> - Current value changing using current value changing start No. (No. 9003) | Page 447, Section 9.2.21 |
|  |  | NOP instruction | No execution control system. When NOP instruction is set, this instruction is not executed and the operation of the next data is started. | Page 451, Section 9.2.22 |
|  |  | JUMP instruction | Unconditionally or conditionally jumps to designated positioning data No. | Page 452, Section 9.2.23 |
|  |  | LOOP | Carries out loop control with repeated LOOP to LEND. | Page 454, Section 9.2.24 |
|  |  | LEND | Returns to the beginning of the loop control with repeated LOOP to LEND. | Page 455, Section 9.2.25 |


| Main functions |  | Details | Reference |
| :---: | :---: | :---: | :---: |
| High-level positioning control | Block start (Normal start) | With one start, executes the positioning data in a random block with the set order. | Page 462, Section 10.3.2 |
|  | Condition start | Carries out condition judgment set in the "condition data" for the designated positioning data, and then executes the "block start data". <br> When the condition is established, the "block start data" is executed. When not established, that "block start data" is ignored, and the next point's "block start data" is executed. | Page 464, Section 10.3.3 |
|  | Wait start | Carries out condition judgment set in the "condition data" for the designated positioning data, and then executes the "block start data". <br> When the condition is established, the "block start data" is executed. When not established, stops the control until the condition is established. (Waits.) | Page 465, Section 10.3.4 |
|  | Simultaneous start | Simultaneously executes the positioning data having the No. for the axis designated with the "condition data". (Outputs pulses at the same timing.) | Page 466, Section 10.3.5 |
|  | Repeated start (FOR loop) | Repeats the program from the block start data set with the "FOR loop" to the block start data set in "NEXT" for the designated No. of times. | Page 467, Section 10.3.6 |
|  | Repeated start (FOR condition) | Repeats the program from the block start data set with the "FOR condition" to the block start data set in "NEXT" until the conditions set in the "condition data" are established. | Page 468, Section 10.3.7 |
|  | Multiple axes simultaneous start control | Starts the operation of multiple axes simultaneously according to the pulse output level. <br> (Positioning start No. 9004, same as the "simultaneous start" above) | Page 473, Section 10.5 |
| Manual control | JOG operation | Outputs a pulse to drive unit while the JOG start signal is ON. | Page 481, Section 11.2 |
|  | Inching operation | Outputs pulses corresponding to minute movement amount by manual operation to drive unit. <br> (Performs fine adjustment with the JOG start signal.) | Page 491, Section 11.3 |
|  | Manual pulse generator operation | Outputs pulses commanded with the manual pulse generator to drive unit. (Carry out fine adjustment, etc., at the pulse level.) | Page 499, Section 11.4 |

With the "major positioning control" ("high-level positioning control"), whether or not to continuously execute the positioning data can be set with the "operation pattern". Outlines of the "operation patterns" are given below.

| [Da.1] Operation pattern |  | Reference |
| :--- | :--- | :---: |
| Independent positioning control <br> (Positioning complete) | When "independent positioning control" is set for the operation pattern of the started <br> positioning data, only the designated positioning data will be executed, and then the <br> positioning will end. | R |
| Continuous positioning control | When "continuous positioning control" is set for the operation pattern of the started positioning <br> data, after the designated positioning data is executed, the program will stop once, and then <br> the next following positioning data will be executed. | Page 342, Section 9.1.2 |
| Continuous path control | When "continuous path control" is set for the operation pattern of the started positioning data, <br> the designated positioning data will be executed, and then without decelerating, the next <br> following positioning data will be executed. |  |

### 3.2.3 LD75 sub functions and common functions

## (1) Sub functions

The functions that assist positioning control using the LD75 are described below. (Refer to PART 2 for details on each function.)

| Sub function |  |  |  |  |  |  |  |  | Details | Reference |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Functions characteristic <br> to machine OPR | OPR retry function | This function retries the machine OPR with the upper/lower limit <br> switches during machine OPR. This allows machine OPR to be <br> carried out even if the axis is not returned to before the near-point <br> dog with JOG operation, etc. | Page 510, Section 12.2.1 |  |  |  |  |  |  |  |


| Sub function |  | Details | Reference |
| :--- | :--- | :--- | :--- |
|  | Step function | This function temporarily stops the operation to confirm the <br> positioning operation during debugging, etc. <br> The operation can be stopped at each "automatic deceleration" or <br> "positioning data". | Page 572, Section 12.7.1 |

*1 The near pass function is featured as standard and is valid only for position control. It cannot be set to be invalid with parameters.
*2 Using "Torque limit function" requires a "D/A conversion module" and a "drive unit capable of torque limit command with analog voltage".
*3 An I/O module (or general-purpose I/O function of LCPU) with arbitrary number of points and "the drive unit capable of configuring an absolute position detection system, which is a Mitsubishi Electric General-Purpose AC Servo and has an absolute position detection function (absolute position data transference protocol) equivalent to that of MR-J3-ロA," are required to execute the "absolute position restoration function".

## (2) Common functions

The outline of the functions executed as necessary are described below.
(Refer to PART 2 for details on each function.)

| Common functions | Details | Reference |
| :---: | :---: | :---: |
| Parameter initialization function | This function returns the "parameters" stored in the LD75 buffer memory and flash ROM to the default values. <br> The following two methods can be used. <br> - Method using program <br> - Method using GX Works2 | Page 610, Section 13.2 |
| Execution data backup function | This functions stores the "setting data", currently being executed, into the flash ROM. <br> The following two methods can be used. <br> - Method using program <br> - Method using GX Works2 | Page 612, Section 13.3 |
| External I/O signal logic switching function | This function switches I/O signal logic according to externally connected devices. <br> This function enables the use of the system that does not use b (N.C.)-contact signals, such as Drive unit READY or Upper/lower limit signal, by setting parameters to positive logic. | Page 614, Section 13.4 |
| External I/O signal monitor function | This function monitors the external I/O signal monitor information in the module's detailed information which can be displayed on the system monitor of GX Works2 | Page 615, Section 13.5 |
| History monitoring function | This function monitors errors, warnings, and start history of all axes. | Page 616, Section 13.6 |
| Module error collection function | This function collects errors occurred in the LD75 in the CPU module. Holding the error contents in the CPU module, this function enables to check the error history even after the CPU module is powered off or reset. | Page 618, Section 13.7 |

### 3.2.4 Combination of LD75 main functions and operation pattern

With positioning control using the LD75, the main functions and operation pattern can be combined and used as necessary. A list of the main function and operation pattern combinations is given below.
$\bigcirc$ : Combination possible, $\triangle$ : Combination limited, $\times$ : Combination not possible

| Main functions |  |  | Combination with operation pattern ${ }^{* 1}$. |
| :---: | :---: | :---: | :---: |
| OPR control | Machine OPR control |  | $\times$ |
|  | Fast OPR control |  | $\times$ |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\bigcirc$ |
|  |  | 1-axis fixed-feed control | $\triangle$ (Continuous path control cannot be set) |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\triangle$ (Continuous path control cannot be set) |
|  |  | 2-axis circular interpolation control | $\bigcirc$ |
|  |  | 3-axis helical interpolation control | $\bigcirc$ |
|  | Speed control (1- to 4-axis) |  | $\triangle$ (Only independent positioning control can be set) |
|  | Speed-position switching control |  | $\triangle$ (Continuous path control cannot be set) |
|  | Position-speed switching control |  | $\triangle$ (Only independent positioning control can be set) |
|  | Other control | Current value changing | $\triangle$ (Continuous path control cannot be set) |
|  |  | NOP instruction | $\times$ |
|  |  | JUMP instruction |  |
|  |  | LOOP to LEND | $\times$ |
| Manual control | JOG operation, inching operation |  | $\times$ |
|  | Manual pulse generator operation |  | $\times$ |

*1 The operation pattern is one of the "positioning data" setting items.

### 3.2.5 Combination of LD75 main functions and sub functions

With positioning control using the LD75, the main functions and sub functions can be combined and used as necessary. A list of the main function and sub function combinations is given below.
(1) Combination with OPR retry function
$\bigcirc$ : Combination possible, $\times$ : Combination not possible

| Main functions |  |  | OPR retry function |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | OPR retry function | OP shift function |
| OPR control | Machine OPR control |  | $\bigcirc$ | $\bigcirc$ |
|  | Fast OPR control |  | $\times$ | $\times$ |
| Major positioning control | Position control | 1-axis linear control | $\times$ | $\times$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\times$ | $\times$ |
|  |  | 1-axis fixed-feed control | $\times$ | $\times$ |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\times$ | $\times$ |
|  |  | 2-axis circular interpolation control | $\times$ | $\times$ |
|  |  | 3-axis helical interpolation control | $\times$ | $\times$ |
|  | Speed control (1- to 4-axis) |  | $\times$ | $\times$ |
|  | Speed-position switching control |  |  |  |
|  | Position-speed switching control |  | $\times$ |  |
|  | Other control | Current value changing | $\times$ | $\times$ |
|  |  | NOP instruction |  |  |
|  |  | JUMP instruction | $\times$ | $\times$ |
|  |  | LOOP to LEND |  |  |
| Manual control | JOG operation, inching operation |  | $\times$ | $\times$ |
|  | Manual pulse generator operation |  | $\times$ | $\times$ |

## (2) Combination with functions that compensate control

$\bigcirc$ : Combination possible, $\times$ : Combination not possible

| Main functions |  |  | Functions that compensate control |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Backlash compensation function | Electronic gear function | Near pass function | Output timing selection of near pass control |
| OPR control | Machine OPR control |  | $\bigcirc$ | $\bigcirc$ | *1 | $\times$ |
|  | Fast OPR control |  | $\bigcirc$ | $\bigcirc$ |  | $\times$ |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ |
|  |  | 1-axis fixed-feed control | $\bigcirc$ | $\bigcirc$ |  | $\times$ |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\bigcirc$ | $\bigcirc$ |  | $\times$ |
|  |  | 2-axis circular interpolation control | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ |
|  |  | 3-axis helical interpolation control | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ |
|  | Speed control (1 | to 4-axis) | $\bigcirc$ | $\bigcirc$ |  | $\times$ |
|  | Speed-position s | witching control | $\bigcirc$ | , |  | x |
|  | Position-speed s | witching control | O | O |  |  |
|  |  | Current value changing | $\times$ | $\times$ |  | $\times$ |
|  | Other control | NOP instruction |  |  |  |  |
|  | Other control | JUMP instruction |  |  |  |  |
|  |  | LOOP to LEND | $\times$ | $\times$ |  | $\times$ |
| Manual control | JOG operation, inching operation |  | $\bigcirc$ | $\bigcirc$ |  | $\times$ |
|  | Manual pulse generator operation |  | $\bigcirc$ | $\bigcirc$ |  | $\times$ |

*1 The near pass function is featured as standard and is valid only for setting continuous path control for position control.

## (3) Combination with functions to limit the control

$\bigcirc$ : Always combine, $\bigcirc$ : Combination possible, $\times$ : Combination not possible

|  |  |  | Functions that limit control |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main functions |  |  | Speed limit function | Torque limit function | Software stroke limit function | Hardware stroke limit function |
| OPR control | Machine OPR control |  | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ |
|  | Fast OPR control |  | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | © |
|  |  | 1-axis fixed-feed control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | © |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-axis circular interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 3-axis helical interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Speed control (1- to 4-axis) |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | © |
|  | Speed-position switching control |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Position-speed switching control |  |  |  |  |  |
|  | Other control | Current value changing | $\times$ | $\times$ | $\times$ | $\bigcirc$ |
|  |  | NOP instruction |  |  |  |  |
|  |  | JUMP instruction | $\times$ | $\times$ | $\times$ | $\bigcirc$ |
|  |  | LOOP to LEND |  |  |  |  |
| Manual control | JOG operation, inching operation |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Manual pulse generator operation |  | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

## (4) Combination with functions to change the restrictions

$\bigcirc$ : Combination possible, $\triangle$ : Combination limited, $\times$ : Combination not possible

| Main functions |  |  | Functions that change control details |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Speed change function | Override function | Acceleration/dece leration time change function | Torque change function |
| OPR control | Machine OPR control |  | $\triangle^{* 1}$ | $\triangle^{* 1}$ | $\triangle^{* 1}$ | $\bigcirc$ |
|  | Fast OPR control |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 1-axis fixed-feed control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-axis circular interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 3-axis helical interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Speed control (1- to 4-axis) |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Speed-position switching control |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Position-speed switching control |  |  |  |  |  |
|  | Other control | Current value changing | $\times$ | $\times$ | $\times$ | $\times$ |
|  |  | NOP instruction |  |  |  |  |
|  |  | JUMP instruction | $\times$ | $\times$ | $\times$ | $\times$ |
|  |  | LOOP to LEND |  |  |  |  |
| Manual control | JOG operation, inching operation |  | $\triangle^{* 2}$ | $\triangle^{* 2}$ | $\triangle^{* 2}$ | $\bigcirc$ |
|  | Manual pulse generator operation |  | $\times$ | $\times$ | $\times$ | $\bigcirc$ |

*1 Invalid during creep speed.
*2 Combination with the inching operation is not available. (Inching operation does not perform acceleration/deceleration processing.)

## (5) Combination with functions to change other functions

(a) For step, skip, $M$ code output, and teaching function
$\bigcirc$ : Combination possible, $\triangle$ : Combination limited, $\times$ : Combination not possible

| Main functions |  |  | Other Functions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Step function | Skip function | M code output function | Teaching function |
| OPR control | Machine OPR control |  | $\times$ | $\times$ | $\times$ | $\times$ |
|  | Fast OPR control |  | $\times$ | $\times$ | $\times$ | $\times$ |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  |  | 1-axis fixed-feed control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  |  | 2-axis circular interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  |  | 3-axis helical interpolation control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  | Speed control (1- to 4-axis) |  | $\times$ | $\times$ | $\bigcirc$ | $\times$ |
|  | Speed-position switching control |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
|  | Position-speed switching control |  |  | $\times$ |  |  |
|  | Other control | Current value changing | $\bigcirc$ | $\times$ | $\triangle^{* 1}$ | $\times$ |
|  |  | NOP instruction | $\times$ |  | $\times$ |  |
|  |  | JUMP instruction | $\times$ | $\times$ | $\times$ | $\times$ |
|  |  | LOOP to LEND |  |  |  |  |
| Manual control | JOG operation, inching operation |  | $\times$ | $\times$ | $\times$ | $\bigcirc$ |
|  | Manual pulse generator operation |  | $\times$ | $\times$ | $\times$ | $\bigcirc$ |

*1 Valid when using the positioning data but invalid when using the positioning start No. 9003.
(b) For target position change, command in-position, acceleration/deceleration processing, and pre-reading start function
$\bigcirc$ : Combination possible, $\triangle$ : Combination limited, $\times$ : Combination not possible

| Main functions |  |  | Other Functions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Target position change function | Command inposition function | Acceleration/dece leration process function | Pre-reading start function |
| OPR control | Machine OPR control |  | $\times$ | $\times$ | $\bigcirc$ | $\times$ |
|  | Fast OPR control |  | $\times$ | $\times$ | $\bigcirc$ | $\times$ |
| Major positioning control | Position control | 1-axis linear control | $\triangle^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 1-axis fixed-feed control | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-axis circular interpolation control | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | 3-axis helical interpolation control | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Speed control (1- to 4-axis) |  | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
|  | Speed-position switching control |  | $\times$ | $\bigcirc$ | O | $\bigcirc$ |
|  | Position-speed switching control |  |  | $\bigcirc$ | O | O |
|  | Other control | Current value changing | $\times$ | $\times$ | $\times$ | $\times$ |
|  |  | NOP instruction |  |  |  |  |
|  |  | JUMP instruction | $\times$ | $\times$ | $\times$ | $\times$ |
|  |  | LOOP to LEND |  |  |  |  |
| Manual control | JOG operation, inching operation |  | $\times$ | $\times$ | $\triangle^{* 2}$ | $\times$ |
|  | Manual pulse generator operation |  | $\times$ | $\times$ | $\times$ | $\times$ |

*1 Invalid during continuous path control.
*2 Combination with the inching operation is not available. (Inching operation does not perform acceleration/deceleration processing.)

## (c) For deceleration start flag and stop command processing for deceleration stop function

$\bigcirc$ : Combination possible, $\triangle$ : Combination limited, $\times$ : Combination not possible

|  |  |  | Other Functions |  |
| :---: | :---: | :---: | :---: | :---: |
| Main functions |  |  | Deceleration start flag function | Stop command processing for deceleration stop function |
| OPR control | Machine OPR control |  | $\times$ | $\bigcirc$ |
|  | Fast OPR control |  | $\times$ | $\bigcirc$ |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis linear interpolation control | $\triangle^{* 1}$ | $\bigcirc$ |
|  |  | 1-axis fixed-feed control | $\bigcirc$ | $\bigcirc$ |
|  |  | 2-, 3-, or 4-axis fixed-feed control (interpolation) | $\triangle{ }^{* 1}$ | $\bigcirc$ |
|  |  | 2-axis circular interpolation control | $\times$ | $\bigcirc$ |
|  |  | 3-axis helical interpolation control | $\times$ | $\bigcirc$ |
|  | Speed control (1- to 4-axis) |  | $\times$ | $\bigcirc$ |
|  | Speed-position switching control |  | $\triangle^{* 2}$ | $\bigcirc$ |
|  | Position-speed switching control |  |  |  |
|  | Other control | Current value changing | $\times$ | $\times$ |
|  |  | NOP instruction |  |  |
|  |  | JUMP instruction | $\times$ | $\times$ |
|  |  | LOOP to LEND |  |  |
| Manual control | JOG operation, inching operation |  | $\times$ | $\times$ |
|  | Manual pulse generator operation |  | $\times$ | $\times$ |

*1 Valid for the reference axis only.
*2 Valid for only the case where a deceleration start is made during position control.

### 3.3.1 List of input/output signals with CPU module

The LD75 uses 32 input points and 32 output points for exchanging data with the CPU module.
The input/output signals when theLD75 is mounted to the CPU module and is assigned to the I/O numbers X/Y00 to X/Y1F are shown below. Device X refers to the signals input from the LD75 to the CPU module, and device Y refers to the signals output from the CPU module to the LD75.

| Signal direction: LD75 $\rightarrow$ CPU module |  |  | Signal direction: CPU module $\rightarrow$ LD75 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Device No. |  | Signal name | Device No. |  | Signal name |
| X0 |  | LD75 READY | Y0 |  | PLC READY |
| X1 |  | Synchronization flag | Y1 |  | Use prohibited |
| X2 | Use prohibited |  | Y2 |  |  |
| X3 |  |  | Y3 |  |  |
| X4 | Axis 1 | M code ON | Y4 | Axis 1 | Axis stop |
| X5 | Axis 2 |  | Y5 | Axis 2 |  |
| X6 | Axis 3 |  | Y6 | Axis 3 |  |
| X7 | Axis 4 |  | Y7 | Axis 4 |  |
| X8 | Axis 1 | Error detection | Y8 | Axis 1 | Forward run JOG start |
| X9 | Axis 2 |  | Y9 | Axis 1 | Reverse run JOG start |
| XA | Axis 3 |  | YA | Axis 2 | Forward run JOG start |
| XB | Axis 4 |  | YB | Axis 2 | Reverse run JOG start |
| XC | Axis 1 | BUSY | YC | Axis 3 | Forward run JOG start |
| XD | Axis 2 |  | YD | Axis 3 | Reverse run JOG start |
| XE | Axis 3 |  | YE | Axis 4 | Forward run JOG start |
| XF | Axis 4 |  | YF | Axis 4 | Reverse run JOG start |
| X10 | Axis 1 | Start complete | Y10 | Axis 1 | Positioning start |
| X11 | Axis 2 |  | Y11 | Axis 2 |  |
| X12 | Axis 3 |  | Y12 | Axis 3 |  |
| X13 | Axis 4 |  | Y13 | Axis 4 |  |
| X14 | Axis 1 | Positioning complete | Y14 | Axis 1 | Execution prohibition flag |
| X15 | Axis 2 |  | Y15 | Axis 2 |  |
| X16 | Axis 3 |  | Y16 | Axis 3 |  |
| X17 | Axis 4 |  | Y17 | Axis 4 |  |
| X18 | Use prohibited |  | Y18 |  | Use prohibited |
| X19 |  |  | Y19 |  |  |
| X1A |  |  | Y1A |  |  |
| X1B |  |  | Y1B |  |  |
| X1C |  |  | Y1C |  |  |
| X1D |  |  | Y1D |  |  |
| X1E |  |  | Y1E |  |  |
| X1F |  |  | Y1F |  |  |

## Point ${ }^{\rho}$

[Y1 to Y3], [Y18 to Y1F], [X2, X3], and [X18 to X1F] are used by the system, and cannot be used by the user. If these devices are used, the operation of the LD75 will not be guaranteed.

The ON/OFF timing and conditions of the input signals are shown below.

| Device No. | Signal name |  |  | Details |
| :---: | :---: | :---: | :---: | :---: |
| X0 | LD75 RE |  | ON: READY <br> OFF: Not <br> READY/Watch dog timer error | - When the PLC READY signal [Y0] turns from OFF to ON, the parameter setting range is checked. If no error is found, this signal turns ON . <br> - When the PLC READY signal [Y0] turns OFF, this signal turns OFF. <br> - When watch dog timer error occurs, this signal turns OFF. <br> - This signal is used for interlock in a program, etc. |
| X1 | Synchro | ation flag | OFF: Module access disabled <br> ON: Module access enabled | - After the programmable controller is turned ON or the CPU module is reset, this signal turns ON if the access from the CPU module to the LD75 is possible. <br> - When "Asynchronous" is selected in the module synchronization setting of the CPU module, this signal can be used as interlock for the access from a program to the LD 75. |
| $\begin{aligned} & \mathrm{X} 4 \\ & \text { X5 } \\ & \text { X6 } \\ & \text { X7 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | M code ON | OFF: M code is not set ON: M code is set | - In the WITH mode, this signal turns ON when the positioning data operation is started. In the AFTER mode, this signal turns ON when the positioning data operation is completed. <br> - This signal turns OFF with the "[Cd.7] M code OFF request". <br> - When $M$ code is not designated (when "[Da.10] $M$ code" is " 0 "), this signal will remain OFF. <br> - With using continuous path control for the positioning operation, the positioning will continue even when this signal does not turn OFF. However, the warning "M CODE ON SIGNAL START" (warning code: 503) will occur. <br> - When the PLC READY signal [Y0] turns OFF, the M code ON signal will also turn OFF. <br> - If the operation is started while the M code is ON , the error "M CODE ON SIGNAL START" (error code: 536) will occur. |
| $\begin{aligned} & \text { X8 } \\ & \text { X9 } \\ & \text { XA } \\ & \text { XB } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Error detection | OFF: No error <br> ON: Error occurrence | - This signal turns ON when an error listed in Page 647, Section 15.4, and turns OFF when the error is reset on "[Cd.5] Axis error rest". |
| $\begin{aligned} & \text { XC } \\ & \text { XD } \\ & \text { XE } \\ & \text { XF } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | BUSY*1 | OFF: Not BUSY <br> ON: BUSY | - This signal turns ON at the start of positioning, OPR or JOG operation. It turns OFF when the "[Da.9] Dwell time" has passed after positioning stops. (This signal remains ON during positioning.) This signal turns OFF when the positioning is stopped with step operation. <br> - During manual pulse generator operation, this signal turns ON while the "[Cd.21] Manual pulse generator enable flag" is ON . <br> - This signal turns OFF at error completion or positioning stop. |
| $\begin{aligned} & \text { X10 } \\ & \text { X11 } \\ & \text { X12 } \\ & \text { X13 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Start complete | OFF: Start incomplete <br> ON: Start complete | - This signal turns ON when the positioning start signal turns ON and the LD75 starts the positioning process. (The start complete signal also turns ON during OPR control.) |
| $\begin{aligned} & \text { X14 } \\ & \text { X15 } \\ & \text { X16 } \\ & \text { X17 } \end{aligned}$ | Axis 1 <br> Axis 2 <br> Axis 3 <br> Axis 4 | Positioning complete ${ }^{*}$ | OFF: Positioning incomplete <br> ON: Positioning complete | - This signal turns ON for the time set in "[Pr.40] Positioning complete signal output time" from the instant when the positioning control for each positioning data No. is completed. For the interpolation control, the positioning completed signal of interpolation axis turns ON during the time set to the reference axis. (It does not turn ON when "[Pr.40] Positioning complete signal output time" is "0".) <br> - If positioning (including OPR), JOG/Inching operation, or manual pulse generator operation is started while this signal is ON, the signal will turn OFF. <br> - This signal will not turn ON when speed control or positioning is canceled midway. |

## Point ${ }^{\rho}$

*1 The BUSY signal turns ON even when position control of movement amount 0 is executed. However, since the ON time is short, the ON status may not be detected in the program.
*2 "Positioning complete" of the LD75 refers to the point when the pulse output from LD75 is completed. Thus, even if the LD75's positioning complete signal turns ON, the system may continue operation.

### 3.3.3 Details of output signals (CPU module to LD75)

The ON/OFF timing and conditions of the output signals are shown below.

| Device <br> No. | Signal name |  |  |
| :--- | :--- | :--- | :--- |

## 3.4 <br> Specifications of Input/Output Interfaces with External Devices

### 3.4.1 Electrical specifications of input/output signals

## (1) Input specifications

| Signal name | Rated input voltage/current | Working voltage range | ON voltage/current | OFF voltage/current | Input resistance | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive unit READY (READY) <br> Stop signal (STOP) <br> Upper limit signal (FLS) <br> Lower limit signal (RLS) | 24VDC/5mA | 19.2 to 26.4VDC | 17.5VDC or more $/ 3.5 \mathrm{~mA}$ or more | 7VDC or less/1.7mA or less | Approx. $4.7 \mathrm{k} \Omega$ | 4 ms or less |
| Zero signal (PG05/PG024) | 5VDC/5mA | 4.5 to 6.1VDC | 2VDC or more/2mA or more | $\begin{aligned} & \hline 0.5 \mathrm{VDC} \text { or } \\ & \text { less } / 0.5 \mathrm{~mA} \text { or } \\ & \text { less } \end{aligned}$ | Approx. $620 \Omega$ | 1 ms or less |
|  | 24VDC/5mA | 12 to 26.4VDC | 10VDC or more/3mA or more | $\begin{gathered} \text { 3VDC or } \\ \text { less } / 0.2 \mathrm{~mA} \text { or } \\ \text { less } \end{gathered}$ | Approx. $4.7 \mathrm{k} \Omega$ | 1 ms or less |
|  |  |  |  |  |  |  |
|  | Differential receiver equivalent to AM26LS32 (ON/OFF level ON: 1.8 V or more, OFF: 0.6 V or less) |  |  |  |  |  |
| Manual pulse generator A phase (PULSER A) <br> Manual pulse generator $B$ phase (PULSER B) | 5VDC/5mA | 4.5 to 6.1VDC | 2.5 VDC or more/2mA or more | $\begin{gathered} 1 \mathrm{VDC} \text { or } \\ \text { less } / 0.1 \mathrm{~mA} \text { or } \\ \text { less } \end{gathered}$ | Approx. 1.1k $\Omega$ | 1 ms or less |
|  | Pulse width |  | Duty ratio: 50\% |  | — |  |
|  | Phase difference <br> When the A phase | eads the $B$ phase, | e positioning add | s or more <br> (current value) in | reases. |  |
| Near-point dog signal (DOG) | 24VDC/5mA | 19.2 to 26.4 VDC | 17.5VDC or more $/ 3.5 \mathrm{~mA}$ or more | $\begin{gathered} 7 \mathrm{VDC} \text { or } \\ \text { less } / 1.7 \mathrm{~mA} \text { or } \\ \text { less } \end{gathered}$ | Approx. $4.3 \mathrm{k} \Omega$ | 1 ms or less |
| External command signal (CHG) | 24VDC/5mA | 19.2 to 26.4VDC | $\begin{aligned} & 10 \mathrm{VDC} \text { or } \\ & \text { more } / 2.7 \mathrm{~mA} \text { or } \\ & \text { more } \end{aligned}$ | $\begin{aligned} & \hline 7 \mathrm{VDC} \text { or } \\ & \text { less/ } 0.8 \mathrm{~mA} \text { or } \\ & \text { less } \end{aligned}$ | Approx. $7.7 \mathrm{k} \Omega$ | 1 ms or less |

## (2) Output specifications

| Signal name | Rated load voltage | Operating load voltage range | Max. load current/inrush current | Max. voltage drop at ON | Leakage current at OFF | Response time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deviation counter clear (CLEAR) | 5 to 24VDC | 4.75 to 30VDC | $0.1 \mathrm{~A} / 1$ point/ 0.4 A 10 ms or less | $\begin{gathered} \text { 1VDC (TYP) } \\ 2.5 \mathrm{VDC}(\mathrm{MAX}) \end{gathered}$ | $\begin{gathered} 0.1 \mathrm{~mA} \text { or } \\ \text { less } \end{gathered}$ | 2 ms or less (resistance load) |
| LD75Pロ <br> Pulse output F (PULSE F) <br> Pulse output R (PULSE R) | 5 to 24VDC | 4.75 to 30VDC | 50mA/1 point/200mA 10 ms or less | 0.5VDC (TYP) | $\begin{gathered} 0.1 \mathrm{~mA} \text { or } \\ \text { less } \end{gathered}$ | - |
| LD75D <br> Pulse output F (+/-) (PULSE F+/-) <br> Pulse output R (+/-) (PULSE R+/-) | Differential driver equivalent to AM26C31 |  |  |  |  |  |

Select the PULSE/SIGN type, CW/CCW type, and A phase/B phase type using the parameter ([Pr.5] Pulse output mode) according to the drive unit specifications.

The relation of the pulse output with the "[Pr.5] Pulse output mode" and "[Pr.23] Output signal logic selection" is shown below:

- Open collector connection (LD75PD)

The voltage of a terminal having the PULSE COM terminal as a reference is shown. (Ю Page 78, Section 3.4.4 (2)) (The transistor output becomes OFF to High and ON to Low.)

| "[Pr.5] Pulse output mode"*1 | Terminal name | "[Pr.23] Output signal logic selection" (bit0) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Positive logic | Negative logic |  |
|  |  | Forward run $\quad$ Reverse run | Forward run | Reverse run |
| PULSE | PULSE F | High <br> Low <br> $\square \square \square$ $\square$ $\square$ <br> $\square \square$ | $\begin{aligned} & \text { High } \\ & \text { Low } \\ & \square \\ & \square \\ & \end{aligned}$ |  |
| SIGN | PULSE R | High Low | High Low |  |
| CW | PULSE F | $\begin{aligned} & \text { High } \\ & \text { Low } \\ & \square \end{aligned}$ | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned} \square \square \square \square$ |  |
| CCW | PULSE R | High <br> Low <br> $\longrightarrow \square \square \square$ | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$ | $\longmapsto \square \square \longleftarrow$ |
| A phase | PULSE F | $\begin{aligned} & \text { High } \\ & \text { Low } \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$ |  |
| B phase | PULSE R | $\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned} \square \square \square \square \square$ | High <br> Low $\qquad$ |  |

- Differential driver connection (LD75Dロ)
- The voltage of a terminal having the differential driver common terminal as a reference is shown. ( Page 78, Section 3.4.4 (3))
- For the differential driver common terminal, refer to Page 89, Section 4.3.2.

| "[Pr.5] Pulse output mode"*1 | Terminal name | "[Pr.23] Output signal logic selection" (bit0) |  |
| :---: | :---: | :---: | :---: |
|  |  | Positive logic | Negative logic |
|  |  | Forward run $\quad$ Reverse run | Forward run $\quad$ Reverse run |
| PULSE | PULSE F+ PULSE F- | High $\square \square \square \square \square$ Low High Low $-\square \square \square \square \square \square$ |  |
| SIGN | PULSE R+ PULSE R- |  |  |
| CW | PULSE F+ PULSE F- | High $\square \square \square \square \square$ $\left.\begin{array}{l}\text { Low } \\ \text { High } \\ \text { Low } \\ \square\end{array}\right)$ | $\begin{aligned} & \text { High }-\square \square \square \square \\ & \text { Low } \left.\quad \begin{array}{l} \text { High } \\ \text { Low } \end{array}\right) \square \square \square \square \end{aligned}$ |
| CCW | PULSE R+ <br> PULSE R- |  |  |
| A phase | PULSE F+ PULSE F- |  |  |
| B phase | PULSE R+ <br> PULSE R- |  |  |

*1 For details on "[Pr.5] Pulse output mode", refer to Page 118, Section 5.2.1.

## Point ${ }^{\rho}$

Set the parameters，＂［Pr．5］Pulse output mode＂and＂［Pr．23］Output signal logic selection＂，in accordance with the specifications of a connected servo amplifier．If not，the motor may rotate in the opposite direction or may not rotate at all． Connection examples with a MELSERVO－J3 series servo amplifier are shown below．
－Open collector connection（LD75P口）


| ［Pr．5］Pulse output mode | LD75Pロ <br> （［Pr．23］Output signal logic selection <br> （bit0）） | Servo amplifier <br> Logic of MR－J3－पA servo amplifier |
| :--- | :---: | :---: |
|  | Negative logic | Negative logic |
| PULSE／SIGN | Positive logic | Positive logic |
|  | Negative logic | Negative logic |
| A phase／B phase | Positive logic | Positive logic |
|  | Negative logic | Negative logic |
|  | Negative logic | Positive logic |

－Differential driver connection（LD75D口）


| ［Pr．5］Pulse output mode | LD75Dロ <br> （［Pr．23］Output signal logic selection <br> （bit0）） | Servo amplifier <br> Logic of MR－J3－ロA servo amplifier |
| :--- | :---: | :---: |
|  | Negative logic | Positive logic |
| PULSE／SIGN | Positive logic | Negative logic |
|  | Negative logic | Positive logic |
| A phase／B phase | Positive logic | Negative logic |
|  | Negative logic | Negative logic |

## 3．4．2 Signal layout for external device connection connector

The specifications of the connector section，which is the input／output interface for the LD75 and external device，are shown below．
The signal layout for the LD75 external device connection connector is shown．



[^0]
### 3.4.3

The details of each LD75 external device connection connector are shown below:

| Signal name | Pin No. |  |  |  | Signal details (Negative logic is selected by external I/O signal logic selection) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AX1 | AX2 | AX3 | AX4 |  |
| Manual pulse generator Aphase <br> (PULSER A+) <br> Manual pulse generator Bphase <br> (PULSER B+) | $\begin{aligned} & \text { 1A19 } \\ & \text { 1A20 } \end{aligned}$ |  |  |  | - Input the pulse signal from the manual pulse generator $A$ phase and $B$ phase. <br> - If the $A$ phase leads the $B$ phase, the positioning address will increase at the rising and falling edges of each phase. <br> - If the B phase leads the A phase, the positioning address will decrease at the rising and falling edges of each phase. |
| Manual pulse generator $A$ common <br> (PULSER A-) <br> Manual pulse generator $B$ common <br> (PULSER B-) | $\begin{aligned} & \text { 1B19 } \\ & \text { 1B20 } \end{aligned}$ |  | - |  |  |
| Zero signal (+24V) (PG024) | 1A8 | 1B8 | 2A8 | 2B8 | - Input the zero signal for machine OPR. Use the pulse encoder's zero signal and so on. <br> - Also use this signal when the machine OPR method is the stopper method and the OPR complete is input from an external source. <br> - The zero signal is detected at turning from OFF to ON. |
| Zero signal (+5V) (PG05) | 1A9 | $1 \mathrm{B9}$ | 2A9 | 2B9 |  |
| Zero signal common (PGOCOM) | 1A10 | 1B10 | 2A10 | 2B10 | - Common for zero signal (+5V) and zero signal (+24V). |
| ```Pulse output F (+) (PULSE F+ Pulse output F (-) (PULSE F-)``` | $\begin{aligned} & \text { 1A15 } \\ & \text { 1A16 } \end{aligned}$ | $\begin{aligned} & \text { 1B15 } \\ & \text { 1B16 } \end{aligned}$ | $\begin{aligned} & \text { 2A15 } \\ & \text { 2A16 } \end{aligned}$ | $\begin{aligned} & \text { 2B15 } \\ & \text { 2B16 } \end{aligned}$ | - Output the positioning pulses and pulse sign for the differential driver output system compatible drive unit. (LD75DD only) |
| ```Pulse output R (+) (PULSE R+) Pulse output R (-) (PULSE R-)``` | $\begin{aligned} & \text { 1A17 } \\ & \text { 1A18 } \end{aligned}$ | $\begin{aligned} & \text { 1B17 } \\ & \text { 1B18 } \end{aligned}$ | $\begin{aligned} & \text { 2A17 } \\ & \text { 2A18 } \end{aligned}$ | $\begin{aligned} & \text { 2B17 } \\ & \text { 2B18 } \end{aligned}$ |  |
| Pulse output $F$ (PULSE F) <br> Pulse output $F$ common (PULSE COM) | $\begin{aligned} & \text { 1A15 } \\ & \text { 1A16 } \end{aligned}$ | $\begin{aligned} & \text { 1B15 } \\ & \text { 1B16 } \end{aligned}$ | $\begin{aligned} & \text { 2A15 } \\ & \text { 2A16 } \end{aligned}$ | $\begin{aligned} & \text { 2B15 } \\ & \text { 2B16 } \end{aligned}$ | - Output the positioning pulses and pulse sign for the open collector output system compatible drive unit. (LD75Pロ only) |
| Pulse output R (PULSE R) <br> Pulse output R common (PULSE COM) | $\begin{aligned} & \text { 1A17 } \\ & \text { 1A18 } \end{aligned}$ | $\begin{aligned} & \text { 1B17 } \\ & \text { 1B18 } \end{aligned}$ | $\begin{aligned} & \text { 2A17 } \\ & \text { 2A18 } \end{aligned}$ | $\begin{aligned} & \text { 2B17 } \\ & \text { 2B18 } \end{aligned}$ |  |
| Upper limit signal (FLS) | 1A1 | 1B1 | 2A1 | 2B1 | - This signal is input from the limit switch installed at the upper limit position of the stroke. <br> - Positioning will stop when this signal turns OFF. <br> - When OPR retry function is valid, this will be the upper limit for finding the near-point dog signal. |
| Lower limit signal (RLS) | 1A2 | 1B2 | 2A2 | 2B2 | - This signal is input from the limit switch installed at the lower limit position of the stroke. <br> - Positioning will stop when this signal turns OFF. <br> - When OPR retry function is valid, this will be the lower limit for finding the near-point dog signal. |
| Near-point dog signal (DOG) | 1A3 | 1B3 | 2A3 | 2B3 | - This signal is used for detecting the near-point dog during OPR. <br> - The near-point dog signal is detected at turning from OFF to ON. |
| Stop signal (STOP) | 1A4 | 1B4 | 2A4 | 2B4 | - Input this signal to stop positioning. <br> - When this signal turns ON, the LD75 will stop the positioning being executed. After that, even if this signal is turned from ON to OFF, the system will not start. |
| External command signal (CHG) | 1A5 | 1B5 | 2A5 | 2B5 | - Input a control switching signal during speed-position or position-speed switching control. <br> - Use this signal as the input signal of positioning start, speed change request, and skip request from an external source. Set the function to use this signal in "[Pr.42] External command function selection". |
| Common (COM) | $\begin{aligned} & \text { 1A6 } \\ & 1 \mathrm{~A} 7 \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~B} 6 \\ & 1 \mathrm{~B} 7 \end{aligned}$ | $\begin{aligned} & \text { 2A6 } \\ & 2 A 7 \end{aligned}$ | $\begin{aligned} & \text { 2B6 } \\ & \text { 2B7 } \end{aligned}$ | - Common for upper/lower limit, near-point dog, stop, and external command signals. |


| Signal name | Pin No. |  |  |  | Signal details (Negative logic is selected by external I/O signal logic selection) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AX1 | AX2 | AX3 | AX4 |  |
| Drive unit READY (READY) | 1A11 | 1B11 | 2A11 | 2B11 | - This signal turns ON when the drive unit is normal and can accept the feed pulse. <br> - The LD75 checks the drive unit READY signal, and outputs the OPR request if the system is not in the READY state. <br> - When the drive unit is inoperable, such as if an error occurs in the drive unit's control power supply, this signal will turn OFF. <br> - If this signal is turned OFF during positioning, the system will stop. The system will not start even if this signal is turned ON again. <br> - When this signal turns OFF, the OPR complete signal will also turn OFF. |
| Drive unit READY common (RDYCOM) | 1A12 | 1B12 | 2A12 | 2B12 | - Common for drive unit READY signal. |
| Deviation counter clear (CLEAR) | 1A13 | 1B13 | 2A13 | 2B13 | - This signal is output during machine OPR. (Note that it is not output during the count method 2).) <br> (Example) When machine OPR is carried out in the stopper 2) method. <br> After feed pulse output stops <br> - The output time of the deviation counter clear signal is set in "[Pr.55] Deviation counter clear signal output time". <br> - Use the drive unit that can reset the droop pulse amount in the internal deviation counter when the LD75 turns this signal ON. <br> (Note) The deviation counter clear is a signal output by the LD75 during machine OPR. It cannot be output randomly by the user. |
| Deviation counter clear common (CLRCOM) | 1A14 | 1B14 | 2A14 | 2B14 | - Common for deviation counter clear signal |

LD75P1/LD75D1 external device connection interface are shown below.
(1) Input (Common to LD75P1 and LD75D1)

*1 The symbols in Need for wiring column indicate the following meanings:

- $O$ : Wiring is necessary for positioning.
- $\triangle$ : Wiring is necessary depending on the situation.
*2 Either polarity can be connected to the common (COM).


## (a) Input signal ON/OFF status

The input signal ON/OFF status is defied by the external wiring and logic setting.
This is explained below with the example of near-point dog signal (DOG).
(The other input signals also perform the same operations as the near-point dog signal (DOG).)

| Logic setting ${ }^{* 1 * 2}$ | External wiring ${ }^{*}{ }^{2}$ | ON/OFF status of near-point dog signal (DOG) as seen from LD75 |
| :---: | :---: | :---: |
| Negative logic (Initial value) | (Voltage not applied) | OFF |
|  | (Voltage applied) | ON |
| Positive logic | (Voltage not applied) | ON |
|  |  | OFF |

*1 Set the logic setting using "[Pr.22] Input signal logic selection". For details on the setting items, refer to Page 126, Section 5.2.3 and Page 614, Section 13.4.
*2 When using the upper limit signal (FLS) or lower limit signal (RLS), always wire it as a "b" (normally closed) contact in the negative logic setting.
The signal will turn OFF to stop positioning.

## (b) About logic setting and internal circuit

In the LD75, the case where the internal circuit (photocoupler) is OFF in the negative logic setting is defined as "input signal OFF".
Reversely, the case where the internal circuit (photocoupler) is OFF in the positive logic setting is defined as "input signal ON".
<Photocoupler ON/OFF status>

- When voltage is not applied: Photocoupler OFF
- When voltage is applied: Photocoupler ON


## (2) Output (For LD75P1)

| External wiring | Pin No. | Internal circuit | Signal name |  | Need for wiring*1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { Load }}{ }$ | 1A13 | $\dot{x}$ | Deviation counter clear | CLEAR | $\triangle$ |
| - | 1A14 |  | Common | CLEAR COM |  |
| $\stackrel{\text { Load }}{ }$ | 1A15 | $x-0 \square=7$ | CW | PULSE F | O |
|  | 1A16 |  | PULSE | PULSE COM |  |
| to 24 VDC <br> $+$ | 1A17 | $x-0 \square \neq$ | ccW <br> B phase SIGN | PULSE R |  |
|  | 1A18 |  |  | PULSE COM |  |

*1 The symbols in Need for wiring column indicate the following meanings:

- $\bigcirc$ : Wiring is necessary for positioning.
- $\triangle$ : Wiring is necessary depending on the situation.


## (3) Output (For LD75D1)

| External wiring | Pin No. | Internal circuit | Signal name |  | Need for wiring*1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \text { to } 24 \mathrm{VDC}$ | 1A13 |  | Deviation counter clear | CLEAR |  |
|  | 1 A 14 |  | Common | CLEAR COM |  |
|  | 1A15 | $\pm 7$ | CW | PULSE F+ | $\bigcirc$ |
|  | 1A16 |  | PULSE | PULSE F- |  |
|  | 1A17 | $5000=5$ | CCW | PULSE R+ |  |
|  | 1 A 18 |  | SIGN | PULSE R- |  |
|  | *2 | m | Differential driver | PULSE COM | $\triangle$ |
| H | *2 |  | terminal |  |  |

*1 The symbols in Need for wiring column indicate the following meanings:

- $\bigcirc$ : Wiring is necessary for positioning.
- $\triangle$ : Wiring is necessary depending on the situation.
*2 A terminal block at the lower front of the module (Refer to Section 4.1.2) ( 5 Page 80, Section 4.1.2)


## CHAPTER 4 <br> INSTALLATION, WIRING, AND MAINTENANCE OF PRODUCT

### 4.1 Outline of Installation, Wiring, and Maintenance

### 4.1.1 Installation, wiring and, maintenance procedures

The outline and procedures for LD75 installation, wiring and maintenance are shown below.

(1) に Page 83, Section 4.2
(2) $\lessgtr$ Page 84, Section 4.3
(3) $\longmapsto$ Page 91, Section 4.4
(4) Page 739, Appendix 6.2, Page 745, Appendix 6.3
(5) $ङ$ Page 235, CHAPTER 6
(6) Ю Page 92, Section 4.5

### 4.1.2 Names of each part

## (1) Names of each part

The part names of the LD75 are shown below:


LD75P4


LD75D4

| No. | Name | Description |
| :---: | :---: | :---: |
| 1) | RUN indicator LED, ERR. indicator LED | Refer to $\longmapsto$ Page 81, Section 4.1.2 (2). |
| 2) | Axis display LED (AX1 to AX4) |  |
| 3) | External device connector | Connector for connection with the drive unit, mechanical system input or manual pulse generator. (40-pin connector) <br> AX1: Axis 1, AX2: Axis 2, AX3: Axis 3, AX4: Axis 4 <br> For details, refer to Page 73, Section 3.4.2. |
| 4) | Differential driver common terminal (Differential driver output system (the LD75D口) only) | Terminal connected to the differential receiver common of the drive unit. For details, refer to $\leftrightarrows$ Page 89, Section 4.3.2. |
| 5) | Serial number plate | Indicates the serial number of the LD75. |

## （2）LED display and axis operation status

The LED display indicates the following operation statuses of the LD75 and axes．


The symbols in the Display column indicate the following statuses：
$\square$ ：Turns OFF．■：Illuminates．$\diamond$ ：Flashes．

| Display |  | Attention point | Description |
| :---: | :---: | :---: | :---: |
| RUN <br> ERR． $\square$ | AX1ロ <br> AX2口 <br> AX3口 <br> AX4 $\square$ | RUN：Off | Hardware failure，watch dog timer error． |
| RUN <br> ERR． <br> ㅁ | AX1ロ <br> AX2口 <br> AX3口 <br> AX4 $\square$ | RUN：On ERR．：Off | The module operates normally． |
| RUN <br> ERR． | AX1ロ <br> AX2口 <br> AX3口 <br> AX4 $\square$ | ERR．：On | System error． |
| RUN <br> ERR． <br> $\square$ | AX1ロ <br> AX2 $\square$ <br> AX3口 <br> AX4 $\square$ | AX1 to AX4 are off． | The axes are stopped or on standby． |
| RUN <br> ERR． <br> $\square$ | $\begin{aligned} & \hline \frac{A X 1 \square}{A X 2 \square} \\ & A X 3 \square \\ & A X 4 \square \end{aligned}$ | AX1：On （or other axis）illuminates． | The corresponding axis is in operation． |
| RUN <br> ERR． <br> $\diamond$ | AX1 $\diamond$ <br> AX2 $\square$ <br> AX3口 <br> AX4 $\square$ | ERR．：Flashing AX1：Flashing （or other axis）flashes． | An error occurs on the corresponding axis． |
| RUN <br> ERR． | AX1 <br> AX2 <br> AX3 <br> AX4 | All LEDs：On | Hardware failure |

（3）Interface
The interface of each LD75 is as shown below．


### 4.1.3

Pay full attention to the following precautions to handle the LD75 and cables correctly.

## (1) Handling precautions

## CAUTION

- Use the programmable controller in an environment that meets the general specifications in the manual "Safety Guidelines", the manual supplied with the CPU module or head module. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.
- Do not directly touch any conductive parts and electronic components of the module. Doing so can cause malfunction or failure of the module.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- Do not disassemble or modify the modules. Doing so may cause failure, malfunction, injury, or a fire.


## (2) Other precautions

(a) Main body

- The main body case is made of plastic. Take care not to drop or apply strong impacts onto the case.
- Do not remove the LD75 PCB from the case. Failure to observe this could lead to faults.
(b) Cable
- Do not press on the cable with a sharp object.
- Do not twist the cable with force.
- Do not forcibly pull on the cable.
- Do not step on the cable.
- Do not place objects on the cable.
- Do not damage the cable sheath.
(c) Installation environment

Do not install the module in the following type of environment.

- Where the ambient temperature exceeds the 0 to $55^{\circ} \mathrm{C}$ range.
- Where the ambient humidity exceeds the 5 to $95 \%$ RH range.
- Where there is sudden temperature changes, or where dew condenses.
- Where there is corrosive gas or flammable gas.
- Where there are high levels of dust, conductive powder, such as iron chips, oil mist, salt or organic solvents.
- Where the module will be subject to direct sunlight.
- Where there are strong electric fields or magnetic fields.
- Where vibration or impact could be directly applied onto the main body.


### 4.2 Installation

### 4.2.1 Installation precautions

The precautions for installing the LD75 are given below. Refer to this section as well as Page 82, Section 4.1.3 when carrying out the work.
(1) Installation precautions

Shut off the external power supply for the system in all phases before mounting or removing a module. Failure to do so may result in electric shock or cause the module to fail or malfunction.

## CAUTION

- Do not disassemble or modify the modules. Doing so may cause failure, malfunction, injury, or a fire.
- Shut off the external power supply for the system in all phases before mounting or removing a module. Failure to do so may cause the module to fail or malfunction.
- After the first use of the module, the number of connections/disconnections is limited to 50 times (in accordance with IEC 61131-2). Exceeding the limit may cause malfunction.
- Use the programmable controller in an environment that meets the general specifications in the manual "Safety Guidelines", the manual supplied with the CPU module or head module. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.
- To interconnect modules, engage the respective connectors and securely lock the module joint levers until they click. Incorrect interconnection may cause malfunction, failure, or drop of the module.

The precautions for wiring the LD75 are given below. Refer to this section as well as Page 82, Section 4.1.3 when carrying out the work.

### 4.3.1 Wiring precautions

(1) Check the terminal layout before wiring to the LD75, and connect the cables correctly.
For the terminal layout, refer to Page 73, Section 3.4.2.
(2) Connectors for external devices must be crimped with the tool specified by the manufacturer, or must be correctly soldered. Incomplete connections may cause short circuit, fire, or malfunction.
(3) Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
(4) A protective film is attached to the top of the LD75 to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.
(5) Tighten the connector screws within the specified torque range. Undertightening can cause short circuit, fire, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.
(6) When disconnecting the cable from the LD75 or the drive unit, do not pull the cable by the cable part. Hold the connector part of the cable. Pulling the cable connected to the LD75 or the drive unit may result in malfunction or damage to the module, drive unit, or cable.
(7) Do not install the external I/O signal lines of the LD75 or connection cable to the drive unit together with the main circuit line, power line, or load line other than that for the programmable controller. Keep a distance of 100 mm or more between them. Failure to do so may result in malfunction due to noise, surge, or induction.
(8) Place the cables in a duct or clamp them. If not, dangling cable may swing or inadvertently be pulled, resulting in damage to the LD75, drive unit, or cables, or malfunction due to poor contact.
(9) If the cable connected to the LD75 and the power line must be adjacently laid (less than 100 mm ), use a shielded cable. Ground the shield of the cable securely to the control panel on the LD75 side.
[Applicable connectors]
The table below shows applicable connectors for external devices. When wiring, use applicable wires and an appropriate tightening torque.

| Mitsubishi Electric 40-pin connector |  | Wire |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Tightening torque | Wire diameter | Type | Material | Temperature rating |
| A6CON1 | 0.20 to 0.29 Nm | $0.3 \mathrm{~mm}^{2}$ (AWG22) | Stranded | Copper | $75^{\circ} \mathrm{C}$ or more |
| A6CON2 |  | 0.088 to $0.24 \mathrm{~mm}^{2}$ (28 to 24AWG) |  |  |  |
| A6CON4 |  | $0.3 \mathrm{~mm}^{2}$ (AWG22) |  |  |  |

[Wiring example of shielded cable]
The following shows a wiring example for noise reduction in the case where the connector A6CON1 is used.


## [Processing example of shielded cables]

Connect a cable with the FG wire and bind all shielded cables as shown below.


## Assembling of connector (A6CON1)



## (10)For compliance with the EMC and Low Voltage Directives, satisfy the following requirements.

The cable connecting the drive unit and the LD75 must be the length below.

- LD75Pロ: 2 m or shorter
- LD75PD: 10m or shorter

Use shielded twisted pair cables and an AD75CK type cable clamp (manufactured by Mitsubishi Electric) to ground the cables to the control box.
Even when compliance with the EMC Directive is not required, attaching an AD75CK type cable clamp to the cable connected to the LD75 may reduce the influence of external noise.


For details on AD75CK, refer to the following.
[] AD75CK-type Cable Clamping Instruction Manual
[Wiring examples using duct (incorrect example and corrected example)]

(11)The influence of noise may be reduced by installing ferrite cores to the cable connected to the LD75 as a noise reduction technique. For the noise reduction techniques related to connection with the servo amplifier, also refer to the instruction manual of the servo amplifier.

### 4.3.2 Wiring of the differential driver common terminal

When the differential driver output system (LD75DC) is used, a potential difference between commons may occur between the differential driver common terminal and the differential receiver common terminal of the drive unit. To remove the potential difference between commons, connect the differential driver common terminal of the LD75Dロ and the differential receiver common terminal of the drive unit.
When the common terminal of the drive unit is photocoupler-connected, the wiring to the differential driver common terminal of the LD75D $\square$ is not needed since a potential difference between commons does not exist.
(For the drive unit specifications, refer to the $\square \square]$ manual of the used drive unit.)

## (1) List of applicable wires and recommended products

To wire the differential driver common terminal, use the wire applied to the following table.

| Wire diameter | Type | Material | Temperature rating |
| :---: | :---: | :---: | :---: |
| 0.3 to $1.25 \mathrm{~mm}^{2}$ <br> $(22$ to 16 AWG$)$ | Stranded wire/single wire | Copper | $75^{\circ} \mathrm{C}$ or more |

The following table shows the recommended applicable solderless terminals and crimp-contact tools.

| No. | Product name | Model | Manufacturer | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Bar solderless terminal | FA-VTC125T9 | Mitsubishi Electric Engineering Co., Ltd. | Terminal for 0.3 to $1.65 \mathrm{~mm}^{2}$ |
|  | Tool dedicated for bar solderless terminal | FA-NH65A |  | - |
| 2 | Bar solderless terminal | AI0.5-10WH | Phoenix Contact | Terminal for $0.5 \mathrm{~mm}^{2}$ |
|  |  | AI0.75-10GY |  | Terminal for $0.75 \mathrm{~mm}^{2}$ |
|  | Tool dedicated for bar solderless terminal | CRIMPFOX UD6-4 |  | - |
| 3 | Bar solderless terminal | TE0.5-10 | NICHIFU terminal industries Co. Itd. | Terminal for 0.3 to $0.5 \mathrm{~mm}^{2}$ |
|  |  | TE0.75-10 |  | Terminal for $0.75 \mathrm{~mm}^{2}$ |
|  | Tool dedicated for bar solderless terminal | NH-79 |  | - |

The following shows an example of wiring to the differential driver common terminal of the LD75DD.
For the precautions for bar solderless terminals, refer to the following.
[] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)


## (2) Connecting and disconnecting cables

(a) When a bar solderless terminal is used

- Connection

A flathead screwdriver is not required. Directly insert a cable with a bar solderless terminal into the slot so that the crimp side faces to the external device connector (faces to the left when viewed from the insertion direction).

- Disconnection

Open the slot using a flathead screwdriver and disconnect the cable from the slot. When two cables are connected, disconnect the cable of the upper slot first.

## (b) When a bar solderless terminal is not used

- Connection

Open the slot using a flathead screwdriver and insert a cable to the slot. When two cables are to be used, connect a cable to the lower slot first.

- Disconnection

Open the slot using a flathead screwdriver and disconnect the cable from the slot. When two cables are connected, disconnect the cable of the upper slot first.

## (3) Operating the open/close lever

The following shows how to operate the open/close lever of the differential driver common terminal. For operation, use a commercially available small flathead screwdriver.


## Point ${ }^{\rho}$

When a bar solderless terminal is not used, strip the cable jacket 8 to 11 mm . If the length is too short, a secure connection may not be obtained.

### 4.4 Checking Installation and Wiring

### 4.4.1 Items to check when installation and wiring are completed

Check the following points when completed with the LD75 installation and wiring.

- Is the module correctly wired?

With GX Works2, the following three points are confirmed using the positioning test function.

- Are the LD75 and servo amplifier correctly connected?
- Are the servo amplifier and servomotor correctly connected?
- Are the LD75 and external device (input/output signal) correctly connected?

With this function, "whether the direction that the LD75 recognizes as forward run matches the address increment direction in the actual positioning work", and "whether the LD75 recognizes the external input/output signals such as the near-point dog signal and stop signal" can be checked.
For details on the positioning test, refer to Page 756, Appendix 6.5.

## Point ${ }^{\circ}$

If the LD75 is faulty, or when the required signals such as the near-point dog signal and stop signal are not recognized, unexpected accidents such as "not decelerating at the near-point dog during machine OPR and colliding with the stopper", or "not being able to stop with the stop signal" may occur.
The connection confirmation by the positioning test must be carried out not only when structuring the positioning system, but also when the system has been changed with module replacement or rewiring, etc.

### 4.5.1 Maintenance precautions

The precautions for servicing the LD75 are given below. Refer to this section as well as Page 82, Section 4.1.3 when carrying out the work.

## WARNING

Shut off the external power supply for the system in all phases before cleaning the module or retightening the connector screws. Failure to do so may result in electric shock.

## 4. CAUTION

- Do not disassemble or modify the modules. Doing so may cause failure, malfunction, injury, or a fire.
- Shut off the external power supply for the system in all phases before mounting or removing a module. Failure to do so may cause the module to fail or malfunction.


### 4.5.2 Disposal precautions

## CAUTION

When disposing of the product, handle it as industrial waste.

## CHAPTER 5 dATA USED FOR POSItIoning CONTROL

### 5.1 Types of Data

### 5.1.1 Parameters and data required for control

The parameters and data required to carry out control with the LD75 include the "setting data", "monitor data" and "control data" shown below.

## (1) Setting data

## Setting data



## (a) Data setting method

The following methods are available for data setting:

- Create the program for data setting using GX Works2 and execute it.
- Set using GX Works2.

In this manual, the method using GX Works2 will be explained.

## Point ${ }^{\rho}$

- The "setting data" is created for each axis.
- The "setting data" parameters have determined default values, and are set to the default values before shipment from the factory. (Parameters related to axes that are not used are left at the default value.)
- The "setting data" can be initialized with GX Works2 or the program.
- It is recommended to set the "setting data" with GX Works2. The program for data setting is complicated and many devices must be used. This will increase the scan time.


## (b) Enabling setting data

The basic parameters 1, detailed parameters 1, and OPR parameters become valid when the PLC READY signal [Y0] turns from OFF to ON. Note, however, that the only valid value of the "[Pr.5] Pulse output mode" is the value at the moment when the PLC READY signal [Y0] turns from OFF to ON for the first time after the power is switched ON or the CPU module is reset.

Once the PLC READY signal [Y0] has been turned ON, the value will not be reset even if another value is set to the parameter and the PLC READY signal [Y0] is turned from OFF to ON.

## (c) Changing data

Even when the PLC READY signal [YO] is ON, the values or contents of the following can be changed: basic parameters 2, detailed parameters 2, positioning data, and block start data.
(d) Valid data

The only valid data assigned to basic parameters 2 , detailed parameters 2 , positioning data, or block start data are the data read at the moment when a positioning or JOG operation is started. Once the operation has started, any modification to the data is ignored.
Exceptionally, however, modifications to the following are valid even when they are made during a positioning operation: acceleration time 0 to 3 , deceleration time 0 to 3 , and external start command.

- For acceleration time 0 to 3 and deceleration time 0 to 3 , modifications become valid from the data 4 steps ahead of that in execution by pre-reading and pre-analyzing positioning data.
- For external command function selection, the value at the time of detection is valid.


## (2) Monitor data

Monitor data (Data that indicates the control state. Stored in the buffer memory, and monitors as necessary.)

$$
\begin{array}{|c|}
\hline \text { Md. } 1 \text { to Md. } 48, ~ M d .50 \text { to } \mathrm{Md.} 52 \\
\hline
\end{array}
$$



Axis monitor data
Monitors the data related to the operating axis, such as the current position and speed.

$$
\text { (Md. } 20 \text { to Md. } 48 \text { ) }
$$

(a) Method of data monitoring

The following methods are available for data monitoring:

- Create the program for monitoring using GX Works2 and execute it.
- Set using GX Works2.

In this manual, the method using GX Works2 will be explained.

## (3) Control data


(a) Control using control data

Control using the control data is carried out with the program.
"[Cd.41] Deceleration start flag valid" is valid for only the value at the time when the PLC READY signal [Y0] turns from OFF to ON.

### 5.1.2 Setting items for positioning parameters

The table below lists items set to the positioning parameters. Setting of positioning parameters is similarly done for individual axes for all controls achieved by the LD75.
For details on each control, refer to CONTROL DETAILS AND SETTING (PART 2). For details on each setting item, refer to List of Parameters (

## (1) OPR control

©: Setting always required, $\bigcirc$ : Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Positioning parameter |  |  | OPR control |
| :---: | :---: | :---: | :---: |
| Basic parameters 1 | [Pr.1] | Unit setting | $\bigcirc$ |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ |
|  | [Pr.3] | Movement amount per rotation (Al) | $\bigcirc$ |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ |
|  | [Pr.6] | Rotation direction setting | $\bigcirc$ |
|  | [Pr.7] | Bias speed at start | $\bigcirc$ |
| Basic parameters 2 | [Pr.8] | Speed limit value | $\bigcirc$ |
|  | [Pr.9] | Acceleration time 0 | $\bigcirc$ |
|  | [Pr.10] | Deceleration time 0 | $\bigcirc$ |
| Detailed parameters 1 | [Pr.11] | Backlash compensation amount | $\bigcirc$ |
|  | [Pr.12] | Software stroke limit upper limit value | - |
|  | [Pr.13] | Software stroke limit lower limit value | - |
|  | [Pr.14] | Software stroke limit selection | - |
|  | [Pr.15] | Software stroke limit valid/invalid setting | - |
|  | [Pr.16] | Command in-position width | - |
|  | [Pr.17] | Torque limit setting value | $\triangle$ |
|  | [Pr.18] | M code ON signal output timing | - |
|  | [Pr.19] | Speed switching mode | - |
|  | [Pr.20] | Interpolation speed designation method | - |
|  | [Pr.21] | Current feed value during speed control | - |
|  | [Pr.22] | Input signal logic selection | $\bigcirc$ |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ |
|  | [Pr.24] | Manual pulse generator input selection | - |
|  | [Pr.150] | Speed-position function selection | - |
|  | [Pr.70] | Positioning option valid/invalid setting | - |


| Positioning parameter |  |  | OPR control |
| :---: | :---: | :---: | :---: |
| Detailed parameters 2 | [Pr.25] | Acceleration time 1 | $\bigcirc$ |
|  | [Pr.26] | Acceleration time 2 | $\bigcirc$ |
|  | [Pr.27] | Acceleration time 3 | $\bigcirc$ |
|  | [Pr.28] | Deceleration time 1 | $\bigcirc$ |
|  | [Pr.29] | Deceleration time 2 | $\bigcirc$ |
|  | [Pr.30] | Deceleration time 3 | $\bigcirc$ |
|  | [Pr.31] | JOG speed limit value | - |
|  | [Pr.32] | JOG operation acceleration time selection | - |
|  | [Pr.33] | JOG operation deceleration time selection | - |
|  | [Pr.34] | Acceleration/deceleration process selection | $\bigcirc$ |
|  | [Pr.35] | S-curve ratio | $\bigcirc$ |
|  | [Pr.36] | Sudden stop deceleration time | $\bigcirc$ |
|  | [Pr.37] | Stop group 1 sudden stop selection | $\bigcirc$ |
|  | [Pr.38] | Stop group 2 sudden stop selection | $\bigcirc$ |
|  | [Pr.39] | Stop group 3 sudden stop selection | $\bigcirc$ |
|  | [Pr.40] | Positioning complete signal output time | - |
|  | [Pr.41] | Allowable circular interpolation error width | - |
|  | [Pr.42] | External command function selection | $\bigcirc$ |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (2) Major positioning control

(a) Position control
© : Setting always required, $\bigcirc$ : Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Positioning parameter |  |  | Position control |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-axis linear control 2-axis linear interpolation control <br> 3-axis linear interpolation control <br> 4-axis linear interpolation control | 1-axis fixed-feed control 2-axis fixed-feed control 3-axis fixed-feed control 4-axis fixed-feed control | 2-axis circular interpolation control 3-axis helical interpolation control |
| Basic parameters 1 | [Pr.1] | Unit setting | $\bigcirc$ | $\bigcirc$ | $\triangle$ |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ | $\bigcirc$ | © |
|  | [Pr.3] | Movement amount per rotation (AI) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.6] | Rotation direction setting | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.7] | Bias speed at start | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Basic parameters 2 | [Pr.8] | Speed limit value | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.9] | Acceleration time 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.10] | Deceleration time 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| Detailed parameters 1 | [Pr.11] | Backlash compensation amount | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.12] | Software stroke limit upper limit value | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.13] | Software stroke limit lower limit value | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.14] | Software stroke limit selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.15] | Software stroke limit valid/invalid setting | - | - | - |
|  | [Pr.16] | Command in-position width | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.17] | Torque limit setting value | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.18] | M code ON signal output timing | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.19] | Speed switching mode | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.20] | Interpolation speed designation method | $\triangle$ | $\triangle$ | $\triangle$ |
|  | [Pr.21] | Current feed value during speed control | - | - | - |
|  | [Pr.22] | Input signal logic selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.24] | Manual pulse generator input selection | - | - | - |
|  | [Pr.150] | Speed-position function selection | - | - | - |
|  | [Pr.70] | Positioning option valid/invalid setting | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |


| Positioning parameter |  |  | Position control |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-axis linear control 2-axis linear interpolation control <br> 3-axis linear interpolation control <br> 4-axis linear interpolation control | 1-axis fixed-feed control 2-axis fixed-feed control 3-axis fixed-feed control 4-axis fixed-feed control | 2-axis circular interpolation control 3-axis helical interpolation control |
| Detailed parameters 2 | [Pr.25] | Acceleration time 1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.26] | Acceleration time 2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.27] | Acceleration time 3 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.28] | Deceleration time 1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.29] | Deceleration time 2 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.30] | Deceleration time 3 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.31] | JOG speed limit value | - | - | - |
|  | [Pr.32] | JOG operation acceleration time selection | - | - | - |
|  | [Pr.33] | JOG operation deceleration time selection | - | - | - |
|  | [Pr.34] | Acceleration/deceleration process selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.35] | S-curve ratio | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.36] | Sudden stop deceleration time | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.37] | Stop group 1 sudden stop selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.38] | Stop group 2 sudden stop selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.39] | Stop group 3 sudden stop selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.40] | Positioning complete signal output time | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.41] | Allowable circular interpolation error width | - | - | $\bigcirc$ |
|  | [Pr.42] | External command function selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.
(b) Speed control, speed-position switching control, position-speed switching control
$\bigcirc$ : Setting always required, $\bigcirc$ : Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Positioning parameter |  |  | 1- to 4-axis speed control | Speed-position switching control Position-speed switching control |
| :---: | :---: | :---: | :---: | :---: |
| Basic parameters 1 | [Pr.1] | Unit setting | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ | © |
|  | [Pr.3] | Movement amount per rotation (Al) | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.6] | Rotation direction setting | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.7] | Bias speed at start | $\bigcirc$ | $\bigcirc$ |
| Basic parameters 2 | [Pr.8] | Speed limit value | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.9] | Acceleration time 0 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.10] | Deceleration time 0 | $\bigcirc$ | $\bigcirc$ |
| Detailed parameters 1 | [Pr.11] | Backlash compensation amount | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.12] | Software stroke limit upper limit value | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.13] | Software stroke limit lower limit value | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.14] | Software stroke limit selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.15] | Software stroke limit valid/invalid setting | - | - |
|  | [Pr.16] | Command in-position width | - | $\bigcirc$ |
|  | [Pr.17] | Torque limit setting value | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.18] | M code ON signal output timing | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.19] | Speed switching mode | - | - |
|  | [Pr.20] | Interpolation speed designation method | $\triangle$ | - |
|  | [Pr.21] | Current feed value during speed control | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.22] | Input signal logic selection | $\bigcirc$ | © |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.24] | Manual pulse generator input selection | - | - |
|  | [Pr.150] | Speed-position function selection | - | $\bigcirc$ |
|  | [Pr.70] | Positioning option valid/invalid setting | $\bigcirc$ | $\bigcirc$ |


| Positioning parameter |  |  | 1- to 4-axis speed control | Speed-position switching control Position-speed switching control |
| :---: | :---: | :---: | :---: | :---: |
| Detailed parameters 2 | [Pr.25] | Acceleration time 1 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.26] | Acceleration time 2 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.27] | Acceleration time 3 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.28] | Deceleration time 1 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.29] | Deceleration time 2 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.30] | Deceleration time 3 | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.31] | JOG speed limit value | - | - |
|  | [Pr.32] | JOG operation acceleration time selection | - | - |
|  | [Pr.33] | JOG operation deceleration time selection | - | - |
|  | [Pr.34] | Acceleration/deceleration process selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.35] | S-curve ratio | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.36] | Sudden stop deceleration time | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.37] | Stop group 1 sudden stop selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.38] | Stop group 2 sudden stop selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.39] | Stop group 3 sudden stop selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.40] | Positioning complete signal output time | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.41] | Allowable circular interpolation error width | - | - |
|  | [Pr.42] | External command function selection | $\bigcirc$ | $\bigcirc$ |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (c) Other control

$\bigcirc$ : Setting always required, $\bigcirc$ : Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Positioning parameter |  |  | Current value changing | JUMP instruction NOP instruction LOOP to LEND |
| :---: | :---: | :---: | :---: | :---: |
| Basic parameters 1 | [Pr.1] | Unit setting |  |  |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ | © |
|  | [Pr.3] | Movement amount per rotation (Al) | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.6] | Rotation direction setting | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.7] | Bias speed at start | - | - |
| Basic parameters 2 | [Pr.8] | Speed limit value | - | - |
|  | [Pr.9] | Acceleration time 0 | - | - |
|  | [Pr.10] | Deceleration time 0 | - | - |
| Detailed parameters 1 | [Pr.11] | Backlash compensation amount | - | - |
|  | [Pr.12] | Software stroke limit upper limit value | - | - |
|  | [Pr.13] | Software stroke limit lower limit value | - | - |
|  | [Pr.14] | Software stroke limit selection | - | - |
|  | [Pr.15] | Software stroke limit valid/invalid setting | $\bigcirc$ | - |
|  | [Pr.16] | Command in-position width | - | - |
|  | [Pr.17] | Torque limit setting value | - | - |
|  | [Pr.18] | M code ON signal output timing | $\bigcirc$ | - |
|  | [Pr.19] | Speed switching mode | - | - |
|  | [Pr.20] | Interpolation speed designation method | - | - |
|  | [Pr.21] | Current feed value during speed control | - | - |
|  | [Pr.22] | Input signal logic selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.24] | Manual pulse generator input selection | - | - |
|  | [Pr.150] | Speed-position function selection | - | - |
|  | [Pr.70] | Positioning option valid/invalid setting | $\bigcirc$ | - |


| Positioning parameter |  |  | Current value changing | JUMP instruction NOP instruction LOOP to LEND <br> - |
| :---: | :---: | :---: | :---: | :---: |
| Detailed parameters 2 | [Pr.25] | Acceleration time 1 |  |  |
|  | [Pr.26] | Acceleration time 2 | - | - |
|  | [Pr.27] | Acceleration time 3 | - | - |
|  | [Pr.28] | Deceleration time 1 | - | - |
|  | [Pr.29] | Deceleration time 2 | - | - |
|  | [Pr.30] | Deceleration time 3 | - | - |
|  | [Pr.31] | JOG speed limit value | - | - |
|  | [Pr.32] | JOG operation acceleration time selection | - | - |
|  | [Pr.33] | JOG operation deceleration time selection | - | - |
|  | [Pr.34] | Acceleration/deceleration process selection | - | - |
|  | [Pr.35] | S-curve ratio | - | - |
|  | [Pr.36] | Sudden stop deceleration time | - | - |
|  | [Pr.37] | Stop group 1 sudden stop selection | - | - |
|  | [Pr.38] | Stop group 2 sudden stop selection | - | - |
|  | [Pr.39] | Stop group 3 sudden stop selection | - | - |
|  | [Pr.40] | Positioning complete signal output time | $\bigcirc$ | - |
|  | [Pr.41] | Allowable circular interpolation error width | - | - |
|  | [Pr.42] | External command function selection | $\bigcirc$ | - |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (3) Manual control

$\bigcirc$ : Setting always required, $\bigcirc$ : Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Positioning parameter |  |  | Manual pulse generator operation | JOG operation Inching operation |
| :---: | :---: | :---: | :---: | :---: |
| Basic parameters 1 | [Pr.1] | Unit setting | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | O | © |
|  | [Pr.3] | Movement amount per rotation (Al) | $\bigcirc$ | © |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.6] | Rotation direction setting | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.7] | Bias speed at start | - | $\bigcirc$ |
| Basic parameters 2 | [Pr.8] | Speed limit value | - | $\bigcirc$ |
|  | [Pr.9] | Acceleration time 0 | - | $\bigcirc$ |
|  | [Pr.10] | Deceleration time 0 | - | $\bigcirc$ |
| Detailed parameters 1 | [Pr.11] | Backlash compensation amount | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.12] | Software stroke limit upper limit value | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.13] | Software stroke limit lower limit value | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.14] | Software stroke limit selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.15] | Software stroke limit valid/invalid setting | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.16] | Command in-position width | - | - |
|  | [Pr.17] | Torque limit setting value | $\triangle$ | $\triangle$ |
|  | [Pr.18] | M code ON signal output timing | - | - |
|  | [Pr.19] | Speed switching mode | - | - |
|  | [Pr.20] | Interpolation speed designation method | - | - |
|  | [Pr.21] | Current feed value during speed control | - | - |
|  | [Pr.22] | Input signal logic selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | $\bigcirc$ |
|  | [Pr.24] | Manual pulse generator input selection | $\bigcirc$ | - |
|  | [Pr.150] | Speed-position function selection | - | - |
|  | [Pr.70] | Positioning option valid/invalid setting | - | - |


| Positioning parameter |  |  | Manual pulse generator operation | JOG operation Inching operation |
| :---: | :---: | :---: | :---: | :---: |
| Detailed parameters 2 | [Pr.25] | Acceleration time 1 | - | $\bigcirc$ |
|  | [Pr.26] | Acceleration time 2 | - | $\bigcirc$ |
|  | [Pr.27] | Acceleration time 3 | - | $\bigcirc$ |
|  | [Pr.28] | Deceleration time 1 | - | $\bigcirc$ |
|  | [Pr.29] | Deceleration time 2 | - | $\bigcirc$ |
|  | [Pr.30] | Deceleration time 3 | - | $\bigcirc$ |
|  | [Pr.31] | JOG speed limit value | - | $\bigcirc$ |
|  | [Pr.32] | JOG operation acceleration time selection | - | $\bigcirc$ |
|  | [Pr.33] | JOG operation deceleration time selection | - | $\bigcirc$ |
|  | [Pr.34] | Acceleration/deceleration process selection | - | $\bigcirc$ |
|  | [Pr.35] | S-curve ratio | - | $\bigcirc$ |
|  | [Pr.36] | Sudden stop deceleration time | - | $\bigcirc$ |
|  | [Pr.37] | Stop group 1 sudden stop selection | - | $\bigcirc$ |
|  | [Pr.38] | Stop group 2 sudden stop selection | - | $\bigcirc$ |
|  | [Pr.39] | Stop group 3 sudden stop selection | - | $\bigcirc$ |
|  | [Pr.40] | Positioning complete signal output time | - | - |
|  | [Pr.41] | Allowable circular interpolation error width | - | - |
|  | [Pr.42] | External command function selection | - | $\bigcirc$ |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.
(4) Related sub function

| Positioning parameter |  |  | Related sub function |
| :---: | :---: | :---: | :---: |
| Basic parameters 1 | [Pr.1] | Unit setting | - |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\longmapsto$ Page 520, Section 12.3.2 |
|  | [Pr.3] | Movement amount per rotation (Al) |  |
|  | [Pr.4] | Unit magnification (Am) |  |
|  | [Pr.5] | Pulse output mode | - |
|  | [Pr.6] | Rotation direction setting | - |
|  | [Pr.7] | Bias speed at start | - |
| Basic parameters 2 | [Pr.8] | Speed limit value | $\cdots$ Page 530, Section 12.4.1 |
|  | [Pr.9] | Acceleration time 0 | $\longmapsto$ Page 598, Section 12.7.7 |
|  | [Pr.10] | Deceleration time 0 |  |
| Detailed parameters 1 | [Pr.11] | Backlash compensation amount | Page 518, Section 12.3.1 |
|  | [Pr.12] | Software stroke limit upper limit value | $\longmapsto$ Page 535, Section 12.4.3 |
|  | [Pr.13] | Software stroke limit lower limit value |  |
|  | [Pr.14] | Software stroke limit selection |  |
|  | [Pr.15] | Software stroke limit valid/invalid setting |  |
|  | [Pr.16] | Command in-position width | Page 596, Section 12.7.6 |
|  | [Pr.17] | Torque limit setting value | $\longmapsto$ Page 532, Section 12.4.2 |
|  | [Pr.18] | M code ON signal output timing | $\longmapsto$ Page 580, Section 12.7.3 |
|  | [Pr.19] | Speed switching mode | - |
|  | [Pr.20] | Interpolation speed designation method | - |
|  | [Pr.21] | Current feed value during speed control | - |
|  | [Pr.22] | Input signal logic selection | - |
|  | [Pr.23] | Output signal logic selection | - |
|  | [Pr.24] | Manual pulse generator input selection | - |
|  | [Pr.150] | Speed-position function selection | - |
|  | [Pr.70] | Positioning option valid/invalid setting | - |
| Detailed parameters 2 | [Pr.25] | Acceleration time 1 | $\longmapsto$ Page 598, Section 12.7.7 |
|  | [Pr.26] | Acceleration time 2 |  |
|  | [Pr.27] | Acceleration time 3 |  |
|  | [Pr.28] | Deceleration time 1 |  |
|  | [Pr.29] | Deceleration time 2 |  |
|  | [Pr.30] | Deceleration time 3 |  |
|  | [Pr.31] | JOG speed limit value | $\cdots$ Page 530, Section 12.4.1 |
|  | [Pr.32] | JOG operation acceleration time selection | - |
|  | [Pr.33] | JOG operation deceleration time selection | - |
|  | [Pr.34] | Acceleration/deceleration process selection | $\longmapsto$ Page 598, Section 12.7.7 |
|  | [Pr.35] | S-curve ratio |  |
|  | [Pr.36] | Sudden stop deceleration time |  |
|  | [Pr.37] | Stop group 1 sudden stop selection | - |
|  | [Pr.38] | Stop group 2 sudden stop selection | - |
|  | [Pr.39] | Stop group 3 sudden stop selection | - |
|  | [Pr.40] | Positioning complete signal output time | - |
|  | [Pr.41] | Allowable circular interpolation error width | - |
|  | [Pr.42] | External command function selection | $\begin{aligned} & \lessgtr \text { Page 543, Section 12.5.1 } \\ & \text { Page 577, Section 12.7.2 } \end{aligned}$ |

## (a) Checking the positioning parameters

[Pr.1] to [Pr.42] are checked with the following timings.

- When the "PLC READY signal [Y0]" output from the CPU module to the LD75 changes from OFF to ON
- When the test operation button is turned ON in the test function using GX Works2


## Remark

"High-level positioning control" is carried out in combination with the "major positioning control". Refer to the "major positioning control" parameter settings for details on the parameters required for "high-level positioning control".

### 5.1.3 Setting items for OPR parameters

When carrying out "OPR control", the "OPR parameters" must be set. The setting items for the "OPR parameters" are shown below.
The "OPR parameters" are set commonly for each axis.
For details on the "OPR control", refer to OPR CONTROL ( $\Im$ Page 316, CHAPTER 8). For details on each setting item, refer to List of Parameters ( $\Im$ Page 316, CHAPTER 8).
© : Setting always required, $\bigcirc$ : Parameters set for machine OPR control are used, 一: Setting not required ${ }^{* 1}$.
R: Set when using the OPR retry function. ( $\Im$ Page 510, Section 12.2.1)
S: Set when using the OP shift function. (
C: Set the deviation counter clear signal output time.

| OPR parameters |  |  | Machine OPR control |  |  |  |  |  | Fast OPR control |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OPR basic parameters | [Pr.43] | OPR method | Near-point dog method | Stopper method 1) | Stopper method 2) | Stopper method 3) | Count method 1) | Count method 2) | $\bigcirc$ |
|  | [Pr.44] | OPR direction | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|  | [Pr.45] | OP address | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|  | [Pr.46] | OPR speed | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|  | [Pr.47] | Creep speed | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|  | [Pr.48] | OPR retry | R | R | R | - | R | R |  |
| OPR detailed parameters | [Pr.49] | OPR dwell time | - | $\bigcirc$ | - | - | - | - |  |
|  | [Pr.50] | Setting for the movement amount after near-point dog ON | - | - | - | - | © | $\bigcirc$ |  |
|  | [Pr.51] | OPR acceleration time selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|  | [Pr.52] | OPR deceleration time selection | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|  | [Pr.53] | OP shift amount | S | S | S | S | S | S |  |
|  | [Pr.54] | OPR torque limit value | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | - |  |
|  | [Pr.55] | Deviation counter clear signal output time | C | C | C | C | C | - |  |
|  | [Pr.56] | Speed designation during OP shift | S | S | S | S | S | S |  |
|  | [Pr.57] | Dwell time during OPR retry | R | R | R | - | R | R |  |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (1) Checking the OPR parameters.

[Pr.43] to [Pr.57] are checked with the following timings.

- When the "PLC READY signal [YO]" output from the CPU module to the LD75 changes from OFF to ON
- When the test operation button is turned ON in the test function using GX Works2


### 5.1.4 Setting items for positioning data

Positioning data must be set for carrying out any "major positioning control". The table below lists the items to be set for producing the positioning data.
One to 600 positioning data items can be set for each axis.
For details on the "major positioning control", refer to MAJOR POSITIONING CONTROL (ছ Page 339, CHAPTER 9). For details on each setting item, refer to List of Positioning Data ( $\leqslant$ Page 152, Section 5.3).
(1) Position control
©: Setting always required, $\bigcirc$ : Set according to requirements, $\times$ : Setting not possible, 一: Setting not required*1

| Positioning data |  |  | Position control |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-axis linear control 2-axis linear interpolation control 3-axis linear interpolation control 4-axis linear interpolation control | 1-axis fixed-feed control <br> 2-axis fixed-feed control <br> 3-axis fixed-feed control <br> 4-axis fixed-feed control | 2-axis circular interpolation control | 3-axis helical interpolation control |
| [Da.1] | Operation pattern | Independent positioning control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | Continuous positioning control | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  |  | Continuous path control | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| [Da.2] | Control system |  | Linear $1^{* 2}$ <br> Linear 2*2 <br> Linear 3*2 <br> Linear $4^{* 2}$ | Fixed- feed 1 <br> Fixed- feed 2 <br> Fixed- feed 3 <br> Fixed- feed 4 | Circular sub ${ }^{* 2}$ <br> Circular right ${ }^{*}{ }^{2}$ <br> Circular left ${ }^{*}{ }^{2}$ | Helical sub*2 <br> Helical right ${ }^{*}{ }^{2}$ <br> Helical left ${ }^{*}$ |
| [Da.3] | Acceleration time No. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.4] | Deceleration time No. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.5] | Axis to be interpolated |  | ©: 2-axis interpolation control, 3-axis helical interpolation control <br> -: 1-axis control, 3-axis interpolation control, 4-axis interpolation control |  |  |  |
| [Da.6] | Positioning address/movement amount |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.7] | Arc address |  | - | - | $\bigcirc$ | $\bigcirc$ |
| [Da.8] | Command speed |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.9] | Dwell time |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.10] | M code |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc^{* 3}$ |
| [Da.27] | M code ON signal output timing |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.28] | ABS direction in degrees |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.29] | Interpolation speed designation method |  | —: 1-axis control2-axis interpolation control, 3-axis interpolation control, 4-axis interpolation control |  |  |  |
| *1 This is an irrelevant item, there is no problem. |  |  | the set value will be | ed. If the value is | default value or with | the setting range, |
| *2 Two control systems are <br> *3 Set the M code for the ref |  |  | able: the absolute (A | system and incr | ntal (INC) system. |  |
|  |  |  | ce axis and the num | fitch for the li | interpolation axis. |  |

## (2) Speed control, speed-position switching control, position-speed switching control

©: Setting always required, $\bigcirc$ : Set according to requirements, $\times$ : Setting not possible, 一: Setting not required ${ }^{* 1}$

| Positioning data |  |  | 1- to 4-axis speed control | Speed-position switching control | Position-speed switching control |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [Da.1] | Operation pattern | Independent positioning control | $\bigcirc$ | © | © |
|  |  | Continuous positioning control | $\times$ | © | $\times$ |
|  |  | Continuous path control | $\times$ | $\times$ | $\times$ |
| [Da.2] | Control system |  | Forward run speed 1 Reverse run speed 1 Forward run speed 2 Reverse run speed 2 Forward run speed 3 Reverse run speed 3 Forward run speed 4 Reverse run speed 4 | Forward run speed/position <br> Reverse run speed/position | Forward run position/speed Reverse run position/speed |
| [Da.3] | Acceleration time No. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.4] | Deceleration time No. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.5] | Axis to be interpolated |  | ©: 2-axis interpolation control, 3-axis helical interpolation control <br> -: 1-axis control, 3-axis interpolation control, 4-axis interpolation control | - | - |
| [Da.6] | Positioning address/movement amount |  | - | $\bigcirc$ | $\bigcirc$ |
| [Da.7] | Arc address |  | - | - | - |
| [Da.8] | Command speed |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.9] | Dwell time |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.10] | M code |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.27] | M code ON signal output timing |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.28] | ABS direction in degrees |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.29] | Interpolation speed designation method |  | -: 1-axis control <br> O: 2-axis interpolation control, 3-axis interpolation control, 4axis interpolation control | - | - |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.
(3) Other control
$\bigcirc$ : Setting always required, $\bigcirc$ : Set according to requirements, $\times$ : Setting not possible, - : Setting not required ${ }^{* 1}$

| Positioning data |  |  | Other control |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NOP instruction | Current value | JUMP | LOOP | LEND |
| [Da.1] | Operation pattern | Independent positioning control | - | ( | - | - | - |
|  |  | Continuous positioning control | - | ( ) | - | - | - |
|  |  | Continuous path control | - | $\times$ | - | - | - |
| [Da.2] | Control system |  | NOP instruction | Current value changing | JUMP instruction | LOOP | LEND |
| [Da.3] | Acceleration time No. |  | - | - | - | - | - |
| [Da.4] | Deceleration time No. |  | - | - | - | - | - |
| [Da.5] | Axis to be interpolated | $\begin{aligned} & \text { O: } 2 \text { axis } \\ & \text { 一: } 1 / 3 / 4 \text { axes } \end{aligned}$ | - | - | - | - | - |
| [Da.6] | Positioning address/movement amount |  | - | New address | - | - | - |
| [Da.7] | Arc address |  | - | - | - | - | - |
| [Da.8] | Command speed |  | - | - | - | - | - |
| [Da.9] | Dwell time |  | - | - | JUMP destination positioning data No. | - | - |
| [Da.10] | M code |  | - | $\bigcirc$ | Condition data No. at JUMP | No. of repetition | - |
| [Da.27] | M code ON signal output timing |  | - | $\bigcirc$ | - | - | - |
| [Da.28] | ABS direction in degrees |  | - | - | - | - | - |
| [Da.29] | Interpolation speed designation method |  | - | - | - | - | - |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (4) Checking the positioning data

The items [Da.1] to [Da.10] are checked at the following timing:

- Startup of a positioning operation


### 5.1.5 Setting items for block start data

The "block start data" must be set when carrying out "high-level positioning control". The setting items for the "block start data" are shown below.
Up to 50 points of "block start data" can be set for each axis.
For details on the "high-level positioning control", refer to HIGH-LEVEL POSITIONING CONTROL (以 Page 456, CHAPTER 10). For details on each setting item, refer to List of Block Start Data ( $\leftrightarrows$ Page 171, Section 5.4).

O: Set according to requirements, 一: Setting not required* ${ }^{*}$

| Block start data |  | Block start (Normal start) | Condition start | Wait start | Simultaneous start | Repeated start (FOR loop) | Repeated start (FOR condition) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Da.11] | Shape (end/continue) | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.12] | Start data No. | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.13] | Special start instruction | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.14] | Parameter | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (1) Checking the block start data

[Da.11] to [Da.14] are checked with the following timing.

- When the "Block start data" starts


### 5.1.6 Setting items for condition data

When carrying out "high-level positioning control" or using the JUMP instruction in the "major positioning control", the "condition data" must be set as required. The setting items for the "condition data" are shown below.
Up to 10 "condition data" items can be set for each axis.
For the "high-level positioning control", JUMP instruction, and setting items, refer to the following.

- High-level positioning control: $\longmapsto$ Page 456, CHAPTER 10
- JUMP instruction: $\longmapsto$ Page 452, Section 9.2.23
- Setting items: $\longmapsto$ Page 176, Section 5.5

O: Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Condition data |  | Major positioning control |  | High-level positioning control |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Other than <br> JUMP instruction | JUMP instruction | Block start (Normal start) | Condition start | Wait start | Simultaneous start | ```Repeated start (FOR loop)``` | Repeated start (FOR condition) |
| [Da.15] | Condition target | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
| [Da.16] | Condition operator | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
| [Da.17] | Address | - | $\triangle$ | - | $\triangle$ | $\triangle$ | - | - | $\triangle$ |
| [Da.18] | Parameter 1 | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\triangle$ | - | $\bigcirc$ |
| [Da.19] | Parameter 2 | - | $\triangle$ | - | $\triangle$ | $\triangle$ | $\triangle$ | - | $\triangle$ |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.

## (1) Checking the condition data

[Da.15] to [Da.19] are checked with the following timings.

- When the "Block start data" starts
- When "JUMP instruction" starts


### 5.1.7 Types and roles of monitor data

The monitor data area in the buffer memory stores data relating to the operating state of the positioning system, which are monitored as required while the positioning system is operating.
The following data are available for monitoring.

- System monitoring: Monitoring of the LD75 configuration and operation history (through the system monitor data [Md.1] through [Md.19], [Md.50] through [Md.52])
- Axis operation monitoring: Monitoring of the current position and speed, and other data related to the movements of axes (through the axis monitor data ${ }^{* 1}$ [Md.20] through [Md.48])
*1 The axis monitor data are refreshed every 0.9 ms . Also, "[Md.23] Valid $M$ code", is updated when the " $M$ code $O N$ signal [X4, X5, X6, X7]" turns ON.


## (1) Monitoring the system

(a) Monitoring the positioning system operation history

| Monitoring details |  |  | Corresponding item |
| :---: | :---: | :---: | :---: |
| Whether the system is in the test function or not |  |  | [Md.1] In test mode flag |
| History of data that started an operation | Start information |  | [Md.3] Start information |
|  | Start No. |  | [Md.4] Start No. |
|  | Start | Year:month | [Md.50] Start (Year:month) |
|  |  | Day:hour | [Md.5] Start (Day:hour) |
|  |  | Minute:second | [Md.6] Start (Minute:second) |
|  | Error upon starting |  | [Md.7] Error judgment |
|  | Pointer No. next to the pointer No. where the latest history is stored |  | [Md.8] Start history pointer |
| History of all errors | Axis in which the error occurred |  | [Md.9] Axis in which the error occurred |
|  | Axis error No. |  | [Md.10] Axis error No. |
|  | Axis error occurrence | Year:month | [Md.51] Axis error occurrence (Year:month) |
|  |  | Day:hour | [Md.11] Axis error occurrence (Day:hour) |
|  |  | Minute:second | [Md.12] Axis error occurrence (Minute:second) |
|  | Pointer No. next to the pointer No. where the latest history is stored |  | [Md.13] Error history pointer |
| History of all warnings | Axis in which the warning occurred |  | [Md.14] Axis in which the warning occurred |
|  | Axis warning No. |  | [Md.15] Axis warning No. |
|  | Axis warning occurrence | Year:month | [Md.52] Axis warning occurrence (Year:month) |
|  |  | Day:hour | [Md.16] Axis warning occurrence (Day:hour) |
|  |  | Minute:second | [Md.17] Axis warning occurrence (Minute:second) |
|  | Pointer No. next to the pointer No. where the latest history is stored |  | [Md.18] Warning history pointer |
| Number of write accesses to the flash ROM after the power is switched ON | Number of write accesses to flash ROM |  | [Md.19] No. of write accesses to flash ROM |

## (2) Monitoring the axis operation state

(a) Monitoring the position

| Monitoring details | Corresponding item |
| :--- | :--- |
| Monitor the current machine feed value | $[\mathrm{Md.21]}$ Machine feed value |
| Monitor the current "current feed value" | $[\mathrm{Md.20]}$ Current feed value |
| Monitor the current target value | $[\mathrm{Md.32]}$ Target value |

(b) Monitoring the speed

| Monitoring details |  |  |  | Corresponding item |
| :---: | :---: | :---: | :---: | :---: |
| Monitor the current speed | During independent axis control |  | Indicates the speed of each axis | [Md.22] Feedrate |
|  | During interpola-tion control | When "0: Composite speed" is set for "[Pr.20] Interpolation speed designation method" | Indicates the composite speed |  |
|  |  | When "1: Reference axis speed" is set for "[Pr.20] Interpolation speed designation method" | Indicates the reference axis speed |  |
|  | Constantly indicates the speed of each axis |  |  | [Md.28] Axis feedrate |
| Monitor the current target speed |  |  |  | [Md.33] Target speed |

(c) Monitoring the state

| Monitoring details | Corresponding item |
| :---: | :---: |
| Monitor the axis operation state | [Md.26] Axis operation status |
| Monitor the latest error code that occurred with the axis | [Md.23] Axis error No. |
| Monitor the latest warning code that occurred with the axis | [Md.24] Axis warning No. |
| Monitor the external input/output signal and flag | [Md.30] External input/output signal [Md.31] Status |
| Monitor the valid M codes | [Md.25] Valid M code |
| Monitor whether the speed is being limited | [Md.39] In speed limit flag |
| Monitor whether the speed is being changed | [Md.40] In speed change processing flag |
| Monitor the "start data" point currently being executed | [Md.43] Start data pointer being executed |
| Monitor the "positioning data No." currently being executed | [Md.44] Positioning data No. being executed |
| Monitor the remaining No. of repetitions (special start) | [Md.41] Special start repetition counter |
| Monitor the remaining No. of repetitions (control system) | [Md.42] Control system repetition counter |
| Monitor the block No. | [Md.45] Block No. being executed |
| Monitor the current torque limit value | [Md.35] Torque limit stored value |
| Monitor the "instruction code" of the special start data when using special start | [Md.36] Special start data instruction code setting value |
| Monitor the "instruction parameter" of the special start data when using special start | [Md.37] Special start data instruction parameter setting value |
| Monitor the "start data No." of the special start data when using special start | [Md.38] Start positioning data No. setting value |
| Monitor the "positioning data No." executed last | [Md.46] Last executed positioning data No. |
| Monitor the positioning data currently being executed | [Md.47] Positioning data being executed |
| Monitor the movement amount after the current position control switching when using "speed-position switching control (INC mode)" | [Md.29] Speed-position switching control positioning amount |
| Monitor switching from the constant speed status or acceleration status to the deceleration status during position control whose operation pattern is "Positioning complete" | [Md.48] Deceleration start flag |

### 5.1.8 Types and roles of control data

Operation of the positioning system is achieved through the execution of necessary controls. (Data required for controls are given through the default values when the power is switched ON, which can be modified as required by the program.)
Controls are performed over system data or machine operation.

- Controlling the system data: Performs write/initialization, etc. of the LD75 "setting data". (the system control data [Cd.1], [Cd.2])
- Controlling the operation: Setting operation parameters, changing speed during operation, interrupting or restarting operation (the system control data [Cd.41] and [Cd.42], and the axis control data [Cd.3] to [Cd.40])


## (1) Controlling the system data

(a) Setting and resetting the setting data

| Control details | Corresponding item |
| :--- | :--- |
| Write setting data from buffer memory to flash ROM | [Cd.1] Flash ROM write request |
| Reset (initialize) parameters | [Cd.2] Parameter initialization request |

## (2) Controlling the operation

(a) Controlling the operation

| Control details | Corresponding item |
| :--- | :--- |
| Set which positioning to execute (start No.) | [Cd.3] Positioning start No. |
| Clear (reset) the axis error ([Md.23]) and warning ([Md.24]) | [Cd.5] Axis error reset |
| Issue instruction to restart (When axis operation is stopped) | [Cd.6] Restart command |
| End current positioning (deceleration stop), and start next positioning | [Cd.37] Skip command |
| Set start point No. for executing block start | [Cd.4] Positioning starting point No. |
| Stop continuous control | [Cd.18] Continuous operation interrupt request |
|  | [Cd.30] Simultaneous starting axis start data No. (axis <br> 1 start data No.) |
| [Cd.31] Simultaneous starting axis start data No. (axis |  |
| 2 start data No.) |  |
| Set start data Nos. for axes that start up simultaneously | [Cd.32] Simultaneous starting axis start data No. (axis <br>  <br>  <br> Start data No.) |
| [Cd.33] Simultaneous starting axis start data No. (axis |  |
| Specify write destination for teaching results | [Cd.38] Teaching data selection |
| Specify data to be taught | [Cd.39] Teaching positioning data No. |

## (b) Controlling operation per step

| Control details | Corresponding item |
| :--- | :--- |
| Stop positioning operation after each operation | [Cd.35] Step valid flag |
| Set unit to carry out step | [Cd.34] Step mode |
| Issue instruction to continue operation after a step is finished | [Cd.36] Step start information |

## (c) Controlling the speed

| Control details | Corresponding item |
| :--- | :--- |
| Set new speed when changing speed during operation | [Cd.14] New speed value |
| Issue instruction to change speed in operation to [Cd.14] value <br> (Only during positioning operation and JOG operation) | [Cd.15] Speed change request |
| Change positioning operation speed between 1 and 300\% range | [Cd.13] Positioning operation speed override |
| Set inching movement amount | [Cd.16] Inching movement amount |
| Set JOG speed | [Cd.17] JOG speed |
| When changing acceleration time during speed change, set new acceleration time | [Cd.10] New acceleration time value |
| When changing deceleration time during speed change, set new deceleration time | [Cd.11] New deceleration time value |
| Set acceleration/deceleration time validity during speed change | [Cd.12] Acceleration/deceleration time change during <br> speed change, enable/disable selection |

## (d) Making settings related to operation

| Control details | Corresponding item |
| :--- | :--- |
| Turn M code ON signal OFF | [Cd.7] M code OFF request |
| Set new value when changing current value | [Cd.9] New current value |
| Validate speed-position switching signal from external source | [Cd.24] Speed-position switching enable flag |
| Change movement amount for position control during speed-position switching control (INC mode) | [Cd.23] Speed-position switching control movement <br> amount change register |
| Validate external position-speed switching signal | [Cd.26] Position-speed switching enable flag |
| Change speed for speed control during position-speed switching control | [Cd.25] Position-speed switching control speed <br> change register |
| Set up a flag when target position is changed during positioning | [Cd.29] Target position change request flag |
| Set new positioning address when changing target position during positioning | [Cd.27] Target position change value (new address) |
| Set new speed when changing target position during positioning | [Cd.28] Target position change value (new speed) |
| Set absolute (ABS) moving direction in degrees | [Cd.40] ABS direction in degrees |
| Set manual pulse generator operation validity | [Cd.20] Manual pulse generator 1 pulse input <br> magnification |
| Set scale per pulse of No. of input pulses from manual pulse generator | [Cd.19] OPR request flag OFF request |
| Change OPR request flag from "ON to OFF" | [Cd.8] External command valid |
| Validate external command signal | [Cd.22] New torque value |
| Change "[Md.35] Torque limit stored value" Deceleration start flag valid |  |
| Set whether "[Md.48] Deceleration start flag" is valid or invalid | [Cd.42] Stop command processing for deceleration <br> stop selection |
| Set the stop command processing for deceleration stop function (deceleration curve re- |  |
| processing/deceleration curve continuation) |  |

### 5.2.1 <br> Basic parameters 1

| Item |  | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.1] Unit setting |  | 0: mm | 0 | 3 | 0 | 150 | 300 | 450 |
|  |  | 1: inch | 1 |  |  |  |  |  |
|  |  | 2: degree | 2 |  |  |  |  |  |
|  |  | 3: pulse | 3 |  |  |  |  |  |
| Movement amount per pulse | [Pr.2] No. of pulses per rotation (Ap) (Unit: pulse) | 1 to 65535 | 1 to $65535^{* 1}$ | 20000 | 1 | 151 | 301 | 451 |
|  | [Pr.3] Movement amount per rotation (Al) | The setting range differs depending on the "[Pr.1] Unit setting". <br> (W Page 119, Section 5.2 .1 (2) (a)) |  | 20000 | 2 | 152 | 302 | 452 |
|  | [Pr.4] Unit magnification (Am) | 1: 1-fold | 1 | 1 | 3 | 153 | 303 | 453 |
|  |  | 10: 10-fold | 10 |  |  |  |  |  |
|  |  | 100: 100-fold | 100 |  |  |  |  |  |
|  |  | 1000: 1000-fold | 1000 |  |  |  |  |  |
|  | 1 to 32767: S 32768 to 6553 | s a decimal Convert into hexadecimal |  |  |  |  |  |  |

## (1) [Pr.1] Unit setting

Set the unit used for defining positioning operations. Choose from the following units depending on the type of the control target: mm, inch, degree, or pulse. Different units can be defined for different axes (axis 1 to 4 ). ${ }^{* 1}$

Ex. Different units ( mm , inch, degree, and pulse) are applicable to different systems:

- mm or inch: X-Y table, conveyor (Select mm or inch depending on the machine specifications.)
- degree: Rotating body (360 degrees/rotation)
- pulse: X-Y table, conveyor
*1 When you change the unit, note that the values of other parameters and data will not be changed automatically. After changing the unit, check if the parameter and data values are within the allowable range. Set "degree" to exercise speed-position switching control (ABS mode).


## (2) [Pr.2] to [Pr.4] Movement amount per pulse

These parameters define the amount of movement achieved by each single pulse within a pulse train output by the LD75.

The following paragraphs explain how to set the individual parameters [Pr.2], [Pr.3], and [Pr.4]. *1 (assuming that the unit " mm " is selected with [Pr.1].)

The movement amount per pulse is given by the following expression:

- Movement amount per pulse = Movement amount per rotation (AI) / No. of pulses per rotation (Ap)
*1 Due to the mechanical tolerance, the actual movement amount may differ slightly from the instructed movement amount. The error can be compensated by adjusting the movement amount per pulse defined here. ( $\Im$ Page 520, Section 12.3.2)


## Point ${ }^{P}$

If the movement amount per pulse is less than 1, command frequency variations will occur.
Smaller setting will increase variations and may cause machine vibration.
If the movement amount per pulse becomes less than 1, also use the electronic gear function of the drive unit and make setting so that the movement amount per pulse is 1 or greater.
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) ${ }^{* 1}$ |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.1 to $6553.5(\mu \mathrm{~m})$ | 1 to $65535\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | 0.00001 to 0.65535 (inch) | 1 to $65535\left(\times 10^{-5}\right.$ inch) |
| 2: degree | 0.00001 to 0.65535 (degree) | 1 to $65535\left(\times 10^{-5}\right.$ degree) |
| 3: pulse | 1 to 65535 (pulse) | 1 to 65535 (pulse) |

*1 1 to 32767: Set as a decimal
32768 to 65535: Convert into hexadecimal and set

## (3) [Pr.2] No. of pulses per rotation (Ap)

Set the number of pulses required for a complete rotation of the motor shaft.
If you are using the Mitsubishi Electric servo amplifier, set the value given as the "resolution per servomotor rotation" in the speed/position detector specifications. *1

- No. of pulses per rotation (Ap) = Resolution per servomotor rotation
*1 When the "Resolution per servomotor revolution" of Mitsubishi Electric servo amplifier exceeds 65535 pulses, make setting after referring to the Servo Amplifier Instruction Manual.


## (4) [Pr.3] Movement amount per rotation (AI), [Pr.4] Unit magnification (Am)

The amount how the workpiece moves with one motor rotation is determined by the mechanical structure. If the worm gear lead ( $\mathrm{mm} / \mathrm{rev}$ ) is PB and the deceleration rate is $1 / \mathrm{n}$, then

- Movement amount per rotation (AI) $=P B \times 1 / n$

However, the maximum value that can be set for this "movement amount per rotation (AI)" parameter is $6553.5 \mu \mathrm{~m}$ (approx. 6.5 mm ). Set the "movement amount per rotation (AI)" as shown below so that the "movement amount per rotation (AI)" does not exceed this maximum value.

- Movement amount per rotation $(A I)=P B \times 1 / n=$ Movement amount per rotation $(A I) \times$ Unit magnification (Am) ${ }^{*}$
*1 The unit magnification (Am) is a value of $1,10,100$ or 1000 . If the " $\mathrm{PB} \times 1 / \mathrm{n}$ " value exceeds $6553.5 \mu \mathrm{~m}$, adjust with the unit magnification so that the "movement amount per rotation (Al)" does not exceed $6553.5 \mu \mathrm{~m}$.

Ex. When movement amount per rotation (AI) $=\mathrm{PB} \times 1 / \mathrm{n}=6000.0 \mu \mathrm{~m}(=6 \mathrm{~mm})$
Movement amount per rotation $(\mathrm{Al})=$ Movement amount per rotation $(\mathrm{Al}) \times$ Unit magnification $(\mathrm{Am})=$ $6000.0 \mu \mathrm{~m} \times 1$ times

Ex. When movement amount per rotation (AI) $=\mathrm{PB} \times 1 / \mathrm{n}=60000.0 \mu \mathrm{~m}(=60 \mathrm{~mm})$
Movement amount per rotation $(\mathrm{Al})=$ Movement amount per rotation $(\mathrm{Al}) \times$ Unit magnification $(\mathrm{Am})=$ $6000.0 \mu \mathrm{~m} \times 10$ times


Movement amount per pulse $\Delta \ell$
$\Delta \ell=\frac{\mathrm{PB}}{\mathrm{Pf}} \times \frac{1}{\mathrm{n}}[\mathrm{mm} /$ pulse $]$
PB: Worm gear lead (mm/rev)
1/n: Deceleration ratio
Pf: Number of pulses from encoder (pulse/rev)

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.5] Pulse output mode | 0: PULSE/SIGN mode | 0 | 1 | 4 | 154 | 304 | 454 |
|  | 1: CW/CCW mode | 1 |  |  |  |  |  |
|  | 2: A phase/B phase (multiple of 4) | 2 |  |  |  |  |  |
|  | 3: A phase/B phase (multiple of 1) | 3 |  |  |  |  |  |
| [Pr.6] Rotation direction setting | 0 : Current value increment with forward run pulse output | 0 | 0 | 5 | 155 | 305 | 455 |
|  | 1: Current value increment with reverse run pulse output | 1 |  |  |  |  |  |

## (5) [Pr.5] Pulse output mode

Set the pulse output mode to match the servo amplifier being used.

## Point 8

$\qquad$
The only valid value of the "[Pr.5] Pulse output mode" is the value at the moment when the PLC READY signal [Y0] turns from OFF to ON for the first time after the power is switched ON or the CPU module is reset. Once the PLC READY signal [YO] has been turned ON, the value will not be reset even if another value is set to the parameter and the PLC READY signal [YO] is turned from OFF to ON.

Use "[Pr.23] Output signal logic selection" to choose between the positive logic (pulse rising edge detection) and negative logic (pulse falling edge detection). For the output specifications of each pulse output mode, refer to $\longmapsto$ Page 69, Section 3.4.1.
An example of the pulse output mode for positive and negative logic is shown below.
(a) PULSE/SIGN mode

| Positive logic | Negative logic |
| :---: | :---: |
| Forward run and reverse run are controlled with the ON/OFF of the direction sign (SIGN). <br> The motor will forward run when the direction sign is HIGH. <br> The motor will reverse run when the direction sign is LOW. | Forward run and reverse run are controlled with the ON/OFF of the direction sign (SIGN). <br> The motor will forward run when the direction sign is LOW. <br> The motor will reverse run when the direction sign is HIGH. |
| PULSE | $\text { PULSE } \downarrow \downarrow \downarrow \downarrow \downarrow \text { tปปtป }$ |
| SIGN $\quad \square$ | $\text { SIGN } \square \square \sqrt{ }$ |
|  |  |
| The moving direction is + direction for forward run. <br> The moving direction is - direction for reverse run. | The moving direction is + direction for forward run. The moving direction is - direction for reverse run. |

## (b) CW/CCW mode

During forward run, the forward run feed pulse (PULSE F) will be output.
During reverse run, the reverse run feed pulse (PULSE R) will be output.

(c) A phase/B phase mode

Forward run and reverse run are controlled with the phase difference of the A phase $(A \phi)$ and $B$ phase $(B \phi)$.

- When the $B$ phase is $90^{\circ}$ behind the $A$ phase, the motor will forward run.
- When the B phase is $90^{\circ}$ ahead of the A phase, the motor will reverse run.

Ex. For multiple of 1 setting, when the command 1 pulse output is 1 pulse/s, the pulse rises and falls by four times per second.

| Positive logic | Negative logic |
| :---: | :---: |
|  |  |

Ex. For multiple of 4 setting, when the command 1 pulse output is 1 pulse/s, the pulse rises and falls by one times per second.


## (6) [Pr.6] Rotation direction setting

Set the relation of the positioning direction ([Md.20] Current feed value increment direction/decrement direction) and the pulse output. For the relation of "Forward run pulse output, Reverse run pulse output" and "CW/A phase/PULSE signal, CCW/B phase/SIGN signal", refer to "[Pr.5] Pulse output mode".

Ex. The following figure shows the pulse outputs of when "[Pr.5] Pulse output mode" is set to CW/CCW mode and the positioning with current feed value (increment direction)/(decrement direction) is executed.


## Point ${ }^{P}$

When [Pr.6] has been changed from "0" to "1", check if the upper/lower limit switches operate properly by JOG operation. If any malfunction is identified, check and correct the wiring.

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.7] Bias speed at start | The setting range differs depending on the "[Pr.1] Unit setting". (Ю Page 124, Section 5.2.1 (7) (a)) |  | 0 | $\begin{aligned} & 6 \\ & 7 \end{aligned}$ | $\begin{aligned} & 156 \\ & 157 \end{aligned}$ | $\begin{aligned} & 306 \\ & 307 \end{aligned}$ | $\begin{aligned} & 456 \\ & 457 \end{aligned}$ |

## (7) [Pr.7] Bias speed at start

Set the bias speed (minimum speed) upon starting. The bias speed has to be defined to allow the motor to start smoothly especially when a stepping motor is used. (A stepping motor will not start smoothly if a low rotation speed is instructed at the beginning.)
The specified "bias speed at start" will be valid during the following operations:

- Positioning operation
- OPR operation
- JOG operation

Note that the bias speed should not exceed "[Pr.8] Speed limit value".
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| 0: mm | 0 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ | 0 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0 to $2000000.000(\mathrm{inch} / \mathrm{min})$ | 0 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0 to $2000000.000(\mathrm{degree} / \mathrm{min})$ | 0 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

(b) Precautions for using a stepping motor

- For the system that uses a stepping motor, executing the S-curve acceleration/deceleration may cause stepout. Before using the S-curve acceleration/deceleration, confirm that step-out does not occur.
- In the system that uses a stepping motor, the circular interpolation control cannot be carried out. Although setting the bias speed at start is required by the characteristics of the stepping motor, the setting of the bias speed at start is disabled for circular interpolation control. Ensure to use a servomotor for both 2 axes when the circular interpolation control is carried out.


### 5.2.2 Basic parameters 2

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.8] Speed limit value | The setting range differs depending on the "[Pr.1] Unit setting". ( $\longmapsto$ Page 125, Section 5.2.2 (1) (a)) |  | 200000 | $\begin{aligned} & 10 \\ & 11 \end{aligned}$ | $\begin{aligned} & 160 \\ & 161 \end{aligned}$ | $\begin{aligned} & 310 \\ & 311 \end{aligned}$ | $\begin{aligned} & 460 \\ & 461 \end{aligned}$ |
| [Pr.9] Acceleration time 0 | 1 to 8388608 (ms) | 1 to 8388608 (ms) | 1000 | $\begin{aligned} & 12 \\ & 13 \end{aligned}$ | $\begin{aligned} & 162 \\ & 163 \end{aligned}$ | $\begin{aligned} & 312 \\ & 313 \end{aligned}$ | $\begin{aligned} & 462 \\ & 463 \end{aligned}$ |
| [Pr.10] Deceleration time 0 | 1 to 8388608 (ms) | 1 to 8388608 (ms) | 1000 | $\begin{aligned} & 14 \\ & 15 \end{aligned}$ | $\begin{aligned} & 164 \\ & 165 \end{aligned}$ | $\begin{aligned} & 314 \\ & 315 \end{aligned}$ | $\begin{aligned} & 464 \\ & 465 \end{aligned}$ |

## (1) [Pr.8] Speed limit value

Set the maximum speed during positioning and OPR operations. If the specified speed exceeds speed limit value, positioning will be limited at the speed limit value.
Set the speed limit value within the range of the following formula. If the speed limit value exceeds the range, the error "Outside speed limit value range" (error code: 910) will occur.

- The command pulse frequency converted from the speed limit value $\leq$ Max. output pulse *1
*1 LD75PD: 200kpulse/s
LD75DD: 4Mpulse/s
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0.001 to $2000000.000(\mathrm{inch} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3} \mathrm{inch} / \mathrm{min}\right)$ |
| 2: degree | 0.001 to $2000000.000($ degree $/ \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 1 to $4000000($ pulse $/ \mathrm{s})$ | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

## (2) [Pr.9] Acceleration time 0, [Pr.10] Deceleration time 0

"[Pr.9] Acceleration time 0" specifies the time for the speed to increase from zero to the "[Pr.8] Speed limit value" (When in the JOG operation control, to the "[Pr.31] JOG speed limit value".)
"[Pr.10] Deceleration time 0" specifies the time for the speed to decrease from the "[Pr.8] Speed limit value" (When in the JOG operation control, from the "[Pr.31] JOG speed limit value".)


- If the positioning speed is set lower than the parameter-defined speed limit value, the actual acceleration/deceleration time will be relatively short. Thus, set the maximum positioning speed equal to or only a little lower than the parameter-defined speed limit value.
- These settings are valid for OPR, positioning and JOG operations.
- When the positioning involves interpolation, the acceleration/deceleration time defined for the reference axis is valid.


### 5.2.3 Detailed parameters 1

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.11] Backlash compensation amount | The setting value range differs depending on the "[Pr.1] Unit setting". ( $\longmapsto$ Page 127, Section 5.2.3 (1) (a)) |  | 0 | 17 | 167 | 317 | 467 |
| [Pr. 12] Software stroke limit upper limit value | The setting value range differs depending on the "[Pr.1] Unit setting". ( 5 Page 127, Section 5.2.3 (3) (a)) |  | 2147483647 | $\begin{aligned} & \hline 18 \\ & 19 \end{aligned}$ | $\begin{aligned} & 168 \\ & 169 \end{aligned}$ | $\begin{aligned} & 318 \\ & 319 \end{aligned}$ | $\begin{aligned} & 468 \\ & 469 \end{aligned}$ |
| [Pr.13] Software stroke limit lower limit value |  |  | -2147483648 | $\begin{aligned} & 20 \\ & 21 \end{aligned}$ | $\begin{aligned} & 170 \\ & 171 \end{aligned}$ | $\begin{aligned} & 320 \\ & 321 \end{aligned}$ | $\begin{aligned} & 470 \\ & 471 \end{aligned}$ |
| [Pr.14] Software stroke limit selection | 0 : Apply software stroke limit on current feed value | 0 | 0 | 22 | 172 | 322 | 472 |
|  | 1: Apply software stroke limit on machine feed value | 1 |  |  |  |  |  |
| [Pr.15] Software stroke <br> limit valid/invalid setting | 0: Software stroke limit valid during JOG operation, inching operation, and manual pulse generator operation | 0 | 0 | 23 | 173 | 323 | 473 |
|  | 1: Software stroke limit invalid during JOG operation, inching operation, and manual pulse generator operation | 1 |  |  |  |  |  |

## (1) [Pr.11] Backlash compensation amount

The error that occurs due to backlash when moving the machine via gears can be compensated.
When the backlash compensation amount is set, pulses equivalent to the compensation amount will be output each time the direction changes during positioning.


- The backlash compensation is valid after machine OPR. Thus, if the backlash compensation amount is set or changed, always carry out machine OPR once.
- The backlash compensation amount setting range is 0 to 65535 , but it should be set to 255 or less by using the following expression.

$$
0 \leq \frac{\text { Backlash compensation amount }}{\text { Movement amount per pulse }} \leq 255
$$

(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) ${ }^{* 1}$ |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0 to $6553.5(\mu \mathrm{~m})$ | 0 to $65535\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | 0 to 0.65535 (inch) | 0 to $65535\left(\times 10^{-5}\right.$ inch) |
| 2: degree | 0 to 0.65535 (degree) | 0 to $65535\left(\times 10^{-5}\right.$ degree) |
| 3: pulse | 0 to 65535 (pulse) | 0 to 65535 (pulse) |

*1 1 to 32767: Set as a decimal
32768 to 65535 : Convert into hexadecimal and set

## (2) [Pr.12] Software stroke limit upper limit value

Set the upper limit for the machine's movement range during positioning control.

## (3) [Pr.13] Software stroke limit lower limit value

Set the lower limit for the machine's movement range during positioning control.


- Generally, the OP is set at the lower limit or upper limit of the stroke limit.
- By setting the upper limit value or lower limit value of the software stroke limit, overrun can be prevented in the software. However, an emergency stop limit switch must be installed nearby outside the range.
- To invalidate the software stroke limit, set the setting value to "upper limit value = lower limit value". (If it is within the setting range, the setting value can be anything.)
- When the unit is "degree", the software stroke limit check is invalid during speed control (including speedposition switching control, position-speed switching control) or during manual control.
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | -214748364.8 to $214748364.7(\mu \mathrm{~m})$ | -2147483648 to $2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | -21474.83648 to 21474.83647 (inch) | -2147483648 to $2147483647\left(\times 10^{-5} \mathrm{inch}\right)$ |
| 2: degree | 0 to 359.99999 (degree) | 0 to $35999999\left(\times 10^{-5}\right.$ degree $)$ |
| 3: pulse | -2147483648 to 2147483647 (pulse) | -2147483648 to 2147483647 (pulse) |

## (4) [Pr.14] Software stroke limit selection

Set whether to apply the software stroke limit on the "current feed value" or the "machine feed value". The software stroke limit will be validated according to the set value.

## (5) [Pr.15] Software stroke limit valid/invalid setting

Set whether to validate the software stroke limit during JOG/Inching operation and manual pulse generator operation.

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.16] Command inposition width | The setting range differs depending on the "[Pr. 1] Unit setting". ( 5 Page 128, Section 5.2 .3 (6) (a)) |  | 100 | $\begin{aligned} & 24 \\ & 25 \end{aligned}$ | $\begin{aligned} & 174 \\ & 175 \end{aligned}$ | $\begin{aligned} & 324 \\ & 325 \end{aligned}$ | $\begin{aligned} & 474 \\ & 475 \end{aligned}$ |
| [Pr.17] Torque limit setting value | 1 to 500 (\%) | 1 to 500 (\%) | 300 | 26 | 176 | 326 | 476 |
| [Pr.18] M code ON signal output timing | 0: WITH mode | 0 | 0 | 27 | 177 | 327 | 477 |
|  | 1: AFTER mode | 1 |  |  |  |  |  |

## (6) [Pr.16] Command in-position width

Set the remaining distance that turns the command in-position ON. The command in-position signal is used as a front-loading signal of the positioning complete signal. When positioning control is started, the "command inposition flag" (3rd flag from right) in "[Md.31] Status" turns OFF, and the "command in-position flag" turns ON at the set position of the command in-position signal.

(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.1 to $214748364.7(\mu \mathrm{~m})$ | 1 to $2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | 0.00001 to 21474.83647 (inch) | 1 to $2147483647\left(\times 10^{-5} \mathrm{inch}\right)$ |
| 2: degree | 0.00001 to 21474.83647 (degree) | 1 to $2147483647\left(\times 10^{-5}\right.$ degree) |
| 3: pulse | 1 to 2147483647 (pulse) | 1 to 2147483647 (pulse) |

## (7) [Pr.17] Torque limit setting value

Set the maximum value of the torque generated by the servomotor as a percentage between 1 and $500 \%$.
The torque limit function limits the torque generated by the servomotor within the set range.
If the torque required for control exceeds the torque limit value, it is controlled with the set torque limit value.

## Point ${ }^{8}$

Limits for pulse train output type

- A drive unit that can issue a torque limit command with the analog voltage is required.
- The D/A conversion module and the D/A conversion module and drive unit must be wired.
- The set "[Pr. 17] Torque limit setting value" is set in the buffer memory "[Md.35] Torque limit stored value", so transmit that "[Md.35] Torque limit stored value" to the D/A conversion module with the program.


## (8) [Pr.18] M code ON signal output timing

This parameter sets the M code ON signal output timing.
Choose either WITH mode or AFTER mode as the M code ON signal output timing.


An M code ([Da.10]) is a number between 0 and 65535 that can be assigned to each positioning data.
If AFTER mode is used with speed control, an M code will not be output and the $M$ code $O N$ signal will not be turned ON.

The program can be coded to read an M code from the buffer memory address specified by "[Md.25] Valid M code" whenever the $M$ code ON signal $[X 4, X 5, X 6, X 7]$ turns $O N$ so that a command for the sub work (e.g. clamping, drilling, tool change) associated with the $M$ code can be issued.
The M code ON signal output timing can be set for each positioning data with the positioning option ("[Da.27] M code ON signal output timing") of the positioning data.

| Item | Setting value, setting range |  |  |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 |  |  | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.19] Speed switching mode | 0: Standard speed switching mode |  |  | $\frac{0}{1}$ | 0 | 28 | 178 | 328 | 478 |
|  | 1: Front-loading speed switching mode |  |  |  |  |  |  |  |  |
| [Pr.20] <br> Interpolation speed designation method | 0: Composite speed |  |  | 1 | 0 | 29 | 179 | 329 | 479 |
|  | 1: Reference axis speed |  |  |  |  |  |  |  |  |
| [Pr.21] Current feed value during speed control | 0: Do not update current feed value |  |  | 0 | 0 | 30 | 180 | 330 | 480 |
|  | 1: Update current feed value |  |  | 1 |  |  |  |  |  |
|  | 2: Clear current feed value to zero |  |  | 2 |  |  |  |  |  |
| [Pr.22] Input signal logic selection | b0 | Lower limit | 0: Negative logic <br> 1: Positive logic |  | 0 | 31 | 181 | 331 | 481 |
|  | b1 | Upper limit |  |  |  |  |  |  |  |
|  | b2 | Drive unit READY |  |  |  |  |  |  |  |
|  | b3 | Stop signal |  |  |  |  |  |  |  |
|  | b4 | External command |  |  |  |  |  |  |  |
|  | b5 | Zero signal |  |  |  |  |  |  |  |
|  | b6 | Near-point dog signal |  |  |  |  |  |  |  |
|  | b7 | Not used |  |  |  |  |  |  |  |
|  | b8 | Manual pulse generator input |  |  |  |  |  |  |  |
|  | b9 to b15 | Not used |  |  |  |  |  |  |  |
|  | b0 | Command pulse signal |  | T] |  |  |  |  |  |
|  | b1 | Not used |  |  |  |  |  |  |  |
| [Pr.23] Output | b2 | Not used | logic |  | 0 | 32 | 182 | 332 | 482 |
| selection | b3 | Not used | 1: Positive | Always "0" is set to the part not used. | 0 | 32 | 182 | 332 | 2 |
|  | b4 | Deviation counter clear |  |  |  |  |  |  |  |
|  | b5 to b15 | Not used |  |  |  |  |  |  |  |
|  | 0: A-ph | e/B-phase m | iplied by 4 | 0 |  |  |  |  |  |
| [Pr.24] Manual | 1: A-ph | se/B-phase m | iplied by 2 | 1 | 0 | 33 | - | - | - |
| input selection | 2: A-ph | se/B-phase m | iplied by 1 | 2 | 0 | 33 | - | - |  |
|  | 3: PULS | E/SIGN |  | 3 |  |  |  |  |  |
| [Pr.150] Speed- | $\begin{array}{ll} \text { 0: } & \text { Spee } \\ & \text { mode } \end{array}$ | -position switc | ing control (INC | 0 | 0 | 34 | 184 | 334 | 484 |
| selection |  | -position swit mode) | ing control | 2 |  |  |  |  |  |
| [Pr.70] Positioning | 0: Invalid |  |  | 0 |  |  |  |  |  |
| setting | 1: Valid |  |  | 1 |  |  |  |  |  |

## (9) [Pr.19] Speed switching mode

Set whether to switch the speed switching mode with the standard switching or front-loading switching mode.
0 : Standard switching $\ldots$ Switch the speed when executing the next positioning data.
1: Front-loading switching ... The speed switches at the end of the positioning data currently being executed.
For standard switching

## (10)[Pr.20] Interpolation speed designation method

When carrying out linear interpolation/circular interpolation, set whether to designate the composite speed or reference axis speed.
0 : Composite speed $\ldots$ The movement speed for the control target is designated, and the speed for each axis is calculated by the LD75.
1: Reference axis speed $\ldots$ The axis speed set for the reference axis is designated, and the speed for the other axis carrying out interpolation is calculated by the LD75.
When Composite speed is set

Note) Always specify the reference axis speed if the 4-axis linear interpolation or 2 to 4 axis speed control has to be performed. If the composite speed is specified instead, the error "Interpolation mode error" (error code: 523) will be output when the positioning operation is attempted. For a positioning operation that involves the circular interpolation or 3-axis helical interpolation control, specify the composite speed. The interpolation speed designation method can be set for each positioning data with the positioning option ("[Da.29] Interpolation speed designation method") of the positioning data.

## (11)[Pr.21] Current feed value during speed control

Specify whether you wish to enable or disable the update of "[Md.20] Current feed value" while operations are performed under the speed control (including the speed-position and position-speed switching control).
0 : Do not update current feed value ... The current feed value will not change. (The value at the beginning of the speed control will be kept.)
1: Update current feed value ... The current feed value will be updated. (The current feed value will change from the initial.)
2: The current feed value is cleared to zero ... The current feed value will be set to zero and will not be updated. Note 1) When the speed control is performed over two to four axes, the choice between enabling and disabling the update of "[Md.20] Current feed value" depends on how the reference axis is set.
Note 2) Set "1" to exercise speed-position switching control (ABS mode).

## (12)[Pr.22] Input signal logic selection, [Pr.23] Output signal logic selection

Set the I/O signal logic that matches the signaling specification of the connected external device.
Note 1) A mismatch in the signal logic will disable normal operation. Be careful of this when you change from the default value.

Note 2) Set the manual pulse generator input logic selection (b8) to axis 1 . (Setting of any of axes 2 to 4 is invalid.)

## (13)[Pr.24] Manual pulse generator input selection

Set the manual pulse generator input pulse mode. (Only the value specified against the axis 1 is valid.)
0 : A-phase/B-phase multiplied by 4
1: A-phase/B-phase multiplied by 2
2: A-phase/B-phase multiplied by 1
3: PULSE/SIGN

## (14)[Pr.150] Speed-position function selection

Select the mode of speed-position switching control.
0 : INC mode
2: ABS mode
Note) If the set value is other than 0 and 2 , it is regarded as 0 and operation is performed in the INC mode.

## (15)[Pr.70] Positioning option valid/invalid setting

Enable or disable the data set in the positioning option ("[Da.27] M code ON signal output timing", "[Da.28] ABS direction in degrees", and "[Da.29] Interpolation speed designation method") of the positioning data.

Setting this parameter to "1: Valid" carries out a positioning control according to the data set in the positioning option.
0 : Invalid
1: Valid
Note 1) If a value other than 0 and 1 is set, the set value is regarded as 0 and the data is disabled.
Note 2) If " 0 : Invalid" is set, the setting is ignored even though the positioning option of the positioning data is set.
Note 3) [Pr.70] Positioning option valid/invalid setting can be set only with GX Works2 (Version 1.540 N or later) or programs.

### 5.2.4 Detailed parameters 2

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.25] Acceleration time 1 | 1 to 8388608 (ms) | 1 to 8388608 (ms) | 1000 | $\begin{aligned} & 36 \\ & 37 \end{aligned}$ | $\begin{aligned} & 186 \\ & 187 \end{aligned}$ | $\begin{aligned} & 336 \\ & 337 \end{aligned}$ | $\begin{aligned} & 486 \\ & 487 \end{aligned}$ |
| [Pr.26] Acceleration time 2 |  |  |  | $\begin{aligned} & 38 \\ & 39 \end{aligned}$ | $\begin{aligned} & \hline 188 \\ & 189 \end{aligned}$ | $\begin{aligned} & 338 \\ & 339 \end{aligned}$ | $\begin{aligned} & 488 \\ & 489 \end{aligned}$ |
| [Pr.27] Acceleration time 3 |  |  |  | $\begin{aligned} & 40 \\ & 41 \end{aligned}$ | $\begin{aligned} & 190 \\ & 191 \end{aligned}$ | $\begin{aligned} & 340 \\ & 341 \end{aligned}$ | $\begin{aligned} & 490 \\ & 491 \end{aligned}$ |
| [Pr.28] Deceleration time 1 |  |  |  | $\begin{aligned} & 42 \\ & 43 \end{aligned}$ | $\begin{aligned} & 192 \\ & 193 \end{aligned}$ | $\begin{aligned} & 342 \\ & 343 \end{aligned}$ | $\begin{aligned} & 492 \\ & 493 \end{aligned}$ |
| [Pr.29] Deceleration time 2 |  |  |  | $\begin{aligned} & 44 \\ & 45 \end{aligned}$ | $\begin{aligned} & 194 \\ & 195 \end{aligned}$ | $\begin{aligned} & 344 \\ & 345 \end{aligned}$ | $\begin{aligned} & 494 \\ & 495 \end{aligned}$ |
| [Pr.30] Deceleration time 3 |  |  |  | $\begin{aligned} & \hline 46 \\ & 47 \end{aligned}$ | $\begin{aligned} & 196 \\ & 197 \end{aligned}$ | $\begin{aligned} & 346 \\ & 347 \end{aligned}$ | $\begin{aligned} & 496 \\ & 497 \end{aligned}$ |
| [Pr.31] JOG speed limit value | The setting range differs depend ( | on the "[Pr.1] Unit setting". | 20000 | $\begin{aligned} & 48 \\ & 49 \end{aligned}$ | $\begin{aligned} & 198 \\ & 199 \end{aligned}$ | $\begin{aligned} & \hline 348 \\ & 349 \end{aligned}$ | $\begin{aligned} & 498 \\ & 499 \end{aligned}$ |
| [Pr.32] JOG operation acceleration time selection | 0: [Pr.9] Acceleration time 0 | 0 | 0 | 50 | 200 | 350 | 500 |
|  | 1: [Pr.25] Acceleration time 1 | 1 |  |  |  |  |  |
|  | 2: [Pr.26] Acceleration time 2 | 2 |  |  |  |  |  |
|  | 3: [Pr.27] Acceleration time 3 | 3 |  |  |  |  |  |
| [Pr.33] JOG operation deceleration time selection | 0: [Pr.10] Deceleration time 0 | 0 | 0 | 51 | 201 | 351 | 501 |
|  | 1: [Pr.28] Deceleration time 1 | 1 |  |  |  |  |  |
|  | 2: [Pr.29] Deceleration time 2 | 2 |  |  |  |  |  |
|  | 3: [Pr.30] Deceleration time 3 | 3 |  |  |  |  |  |

## (1) [Pr.25] Acceleration time 1 to [Pr.27] Acceleration time 3

These parameters set the time for the speed to increase from zero to the "[Pr.8] Speed limit value" (When in the JOG operation control, from the "[Pr.31] JOG speed limit value".) during a positioning operation.

## (2) [Pr.28] Deceleration time 1 to [Pr.30] Deceleration time 3

These parameters set the time for the speed to decrease from the "[Pr.8] Speed limit value" (When in the JOG operation control, from the "[Pr.31] JOG speed limit value".) to zero during a positioning operation.

## (3) [Pr.31] JOG speed limit value

Set the maximum speed for JOG operation.
Set the "JOG speed limit value" to less than "[Pr.8] Speed limit value". If the "speed limit value" is exceeded, the error "JOG speed limit value error" (error code: 956) will occur.
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0.001 to $2000000.000(\mathrm{inch} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3} \mathrm{inch} / \mathrm{min}\right)$ |
| 2: degree | 0.001 to $2000000.000($ degree $/ \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 1 to $4000000($ pulse $/ \mathrm{s})$ | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

## (4) [Pr.32] JOG operation acceleration time selection

Set which of "acceleration time 0 to 3 " to use for the acceleration time during JOG operation.
0 : Use the value set in "[Pr.9] Acceleration time 0".
1: Use the value set in "[Pr.25] Acceleration time 1".
2: Use the value set in "[Pr.26] Acceleration time 2".
3: Use the value set in "[Pr.27] Acceleration time 3".

## (5) [Pr.33] JOG operation deceleration time selection

Set which of "deceleration time 0 to 3 " to use for the deceleration time during JOG operation.
0 : Use the value set in "[Pr.10] Deceleration time 0".
1: Use the value set in "[Pr.28] Deceleration time 1".
2: Use the value set in "[Pr.29] Deceleration time 2".
3: Use the value set in "[Pr.30] Deceleration time 3".

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.34] <br> Acceleration/deceleration process selection | 0: Trapezoidal acceleration/deceleration processing | 0 | 0 | 52 | 202 | 352 | 502 |
|  | 1: S-curve acceleration/deceleration processing | 1 |  |  |  |  |  |
| [Pr.35] S-curve ratio | 1 to 100 (\%) | 1 to 100 (\%) | 100 | 53 | 203 | 353 | 503 |
| [Pr.36] Sudden stop deceleration time | 1 to 8388608 (ms) | 1 to 8388608 (ms) | 1000 | $\begin{aligned} & 54 \\ & 55 \end{aligned}$ | $\begin{aligned} & 204 \\ & 205 \end{aligned}$ | $\begin{aligned} & 354 \\ & 355 \end{aligned}$ | $\begin{aligned} & 504 \\ & 505 \end{aligned}$ |
| [Pr.37] Stop group 1 sudden stop selection | 0: Normal deceleration stop | 0 | 0 | 56 | 206 | 356 | 506 |
|  | 1: Sudden stop | 1 |  |  |  |  |  |
| [Pr.38] Stop group 2 sudden stop selection | 0: Normal deceleration stop | 0 | 0 | 57 | 207 | 357 | 507 |
|  | 1: Sudden stop | 1 |  |  |  |  |  |
| [Pr.39] Stop group 3 sudden stop selection | 0: Normal deceleration stop | 0 | 0 | 58 | 208 | 358 | 508 |
|  | 1: Sudden stop | 1 |  |  |  |  |  |

## (6) [Pr.34] Acceleration/deceleration process selection

Set whether to use trapezoid acceleration/deceleration or S-curve acceleration/deceleration for the acceleration/deceleration process.
(Refer to 5 Page 596, Section 12.7.6 for details.)


For the system that uses a stepping motor, executing the S-curve acceleration/deceleration may cause step-out. Before using the S-curve acceleration/deceleration, confirm that step-out does not occur.

## (7) [Pr.35] S-curve ratio

Set the S-curve ratio (1 to 100\%) for carrying out the S-curve acceleration/deceleration process.
The S-curve ratio indicates where to draw the acceleration/deceleration curve using the sine curve as shown below.


## (8) [Pr.36] Sudden stop deceleration time

Set the time to reach speed 0 from "[Pr.8] Speed limit value" (When in the JOG operation control, from the "[Pr.31] JOG speed limit value".) during the sudden stop. The illustration below shows the relationships with other parameters.


Set the method to stop when the stop causes in the following stop groups occur.

- Stop group 1: Stop with hardware stroke limit
- Stop group 2: CPU module error occurrence, PLC READY signal [Y0] OFF, Fault in test function
- Stop group 3: External stop signal (Stop signal from CPU module, Stop signal from GX Works2, Error occurrence (excludes errors in stop groups 1 and 2 : includes only the software stroke limit errors during JOG operation, speed control, speed-position switching control, and position-speed switching control))
The methods of stopping include " 0 : Normal deceleration stop" and "1: Sudden stop".
If "1: Sudden stop" is selected, the axis will suddenly decelerate to a stop when the stop cause occurs.

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.40] Positioning complete signal output time | 0 to 65535 (ms) | 0 to $65535(\mathrm{~ms})^{* 1}$ | 300 | 59 | 209 | 359 | 509 |
| [Pr.41] Allowable circular interpolation error width | The setting range differs depending on the "[Pr.1] Unit setting". ( |  | 100 | $\begin{aligned} & 60 \\ & 61 \end{aligned}$ | $\begin{aligned} & 210 \\ & 211 \end{aligned}$ | $\begin{aligned} & 360 \\ & 361 \end{aligned}$ | $\begin{aligned} & 510 \\ & 511 \end{aligned}$ |
| [Pr.42] External command function selection | 0: External positioning start | 0 | 0 | 62 | 212 | 362 | 512 |
|  | 1: External speed change request | 1 |  |  |  |  |  |
|  | 2: Speed-position, positionspeed switching request | 2 |  |  |  |  |  |
|  | 3: Skip request | 3 |  |  |  |  |  |

*1 0 to 32767: Set as a decimal
32768 to 65535: Convert into hexadecimal and set

## (10)[Pr.40] Positioning complete signal output time

Set the output time of the positioning complete signal [X14, X15, X16, X17] output from the LD75. A positioning completes when the specified dwell time has passed after the LD75 had terminated the output. For the interpolation control, the positioning completed signal of interpolation axis is output only during the time set to the reference axis.


## (11)[Pr.41] Allowable circular interpolation error width

With the "allowable circular interpolation error width", the allowable error range of the calculated arc path and end point address is set. ${ }^{* 1}$
If the error of the calculated arc path and end point address is within the set range, circular interpolation will be carried out to the set end point address while compensating the error with spiral interpolation.
The allowable circular interpolation error width is set in the following axis buffer memory addresses.

- If axis 1 is the reference axis, set in the axis 1 buffer memory address [60, 61].
- If axis 2 is the reference axis, set in the axis 2 buffer memory address [210, 211].
- If axis 3 is the reference axis, set in the axis 3 buffer memory address [360, 361].
- If axis 4 is the reference axis, set in the axis 4 buffer memory address [510, 511].

*1 With circular interpolation control using the center point designation, the arc path calculated with the start point address and center point address and the end point address may deviate.
(a) Setting range

| [Pr.1] setting value |  | Value set with GX Works2 (unit) |
| :--- | :--- | :--- |
| $0: \quad \mathrm{mm}$ | 0 to $10000.0(\mu \mathrm{~m})$ | Value set with program (unit) |
| 1: | inch | 0 to $1.00000($ inch $)$ |
| $2:$ | degree | 0 to $1.000000($ degree $)$ |
| $3:$ | pulse | 0 to 100000 (pulse) $100000\left(\times 10^{-5} \mu \mathrm{mech}\right)$ |

## (12)[Pr.42] External command function selection

Select a command with which the external command signal should be associated.

| [Pr.42] External command <br> function selection |  | Description |
| :--- | :--- | :--- |
| $0:$ | External positioning start | The external command signal input is used to start a positioning operation. |
| $1:$ | External speed change <br> request | The external command signal input is used to change the speed in the current positioning operation. The new <br> speed should be set in the "[Cd.14] New speed value" |
| $2:$ | Speed-position, position- <br> speed switching request | The external command signal input is used to switch from the speed control to the position control while in the <br> speed-position switching control mode, or from the position control to the speed control while in the position- <br> speed switching control mode. <br> To enable the speed-position switching control, set the "[Cd.24] Speed-position switching enable flag" to "1". <br> To enable the position-speed switching control, set the "[Cd.26] Position-speed switching enable flag" to "1". |
| $3:$ | Skip request | The external command signal input is used skip the current positioning operation. |

## Point ${ }^{8}$

To enable the external command signal, set the "[Cd.8] External command enable" to "1".

### 5.2.5 OPR basic parameters

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.43] OPR method | 0: Near-point dog method | 0 | 0 | 70 | 220 | 370 | 520 |
|  | 1: Stopper method 1) | 1 |  |  |  |  |  |
|  | 2: Stopper method 2) | 2 |  |  |  |  |  |
|  | 3: Stopper method 3) | 3 |  |  |  |  |  |
|  | 4: Count method 1) | 4 |  |  |  |  |  |
|  | 5: Count method 2) | 5 |  |  |  |  |  |

## (1) [Pr.43] OPR method

Set the "OPR method" for carrying out machine OPR.

| Selection of [Pr.43] OPR <br> method | OPR operation |
| :--- | :--- |
| 0: Near-point dog method | After decelerating at the near-point dog ON, stop at the zero signal and complete the machine OPR. |
| 1: Stopper method 1) | After decelerating at the near-point dog ON, stop with the stopper, and complete the machine OPR after the <br> dwell time has passed. |
| 2: Stopper method 2) | After decelerating at the near-point dog ON, stop with the stopper, and complete the machine OPR with the <br> zero signal. |
| 3: Stopper method 3) | After starting with the creep speed, stop with the stopper, and complete the machine OPR with the zero <br> signal. |
| 4: Count method 1) | After decelerating at the near-point dog ON, move the designated distance, and complete the machine OPR <br> with the zero signal. |
| 5: Count method 2) | After decelerating at the near-point dog ON, move the designated distance, and complete the machine OPR. |

Refer to Page 318, Section 8.2 for details on the OPR methods.

## (2) OPR method

## (a) 0: Near-point dog method



1. Start machine OPR. (Start movement at the "[Pr.46] OPR speed" in the "[Pr.44] OPR direction".)
2. The machine begins decelerating when the near-point dog $O N$ is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed. (At this time, the near-point dog must be ON. If the near-point dog is OFF, the machine will decelerate to a stop.)
4. At the first zero signal (one pulse output at one motor revolution) after the near-point dog OFF, the pulse output from the LD75 stops, and the machine OPR is completed.

## (b) 1: Stopper method 1)



1. Start machine OPR. (Start movement at the "[Pr.46] OPR speed" in the "[Pr.44] OPR direction".)
2. The machine begins decelerating when the near-point dog ON is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed. (At this time "[Pr.54] OPR torque limit value" is required. If the torque is not limited, the servomotor could be damaged in step 4.)
4. The machine contacts against the stopper at "[Pr.47] Creep speed", and then stops.
5. When the near-point dog turns $O N$ and the "[Pr.49] OPR dwell time" is passed, the pulse output from the LD75 stops, and the machine OPR is completed.
(c) 2: Stopper method 2)

6. Start machine OPR. (Start movement at the "[Pr.46] OPR speed" in the "[Pr.44] OPR direction".)
7. The machine begins decelerating when the near-point dog $O N$ is detected.
8. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed. (At this time "[Pr.54] OPR torque limit value" is required. If the torque is not limited, the servomotor could be damaged in step 4.)
9. The machine contacts against the stopper at "[Pr.47] Creep speed", and then stops.
10. After stopping, the pulse output from the LD75 stops with the zero signal (signal that is output on detection of contact with the stopper. Input externally), and the machine OPR is completed.

## (d) 3: Stopper method 3)



1. Start machine OPR. (Start movement at the "[Pr.47] Creep speed" in the "[Pr.44] OPR direction". At this time "[Pr.54] OPR torque limit value" is required. If the torque is not limited, the servomotor could be damaged in step 2.)
2. The machine contacts against the stopper at " $[$ Pr. 47] Creep speed", and then stops.
3. After stopping, the pulse output from the LD75 stops with the zero signal (signal that is output on detection of contact with the stopper. Input externally), and the machine OPR is completed.
(e) 4: Count method 1)

4. Start machine OPR. (Start movement at the "[Pr.46] OPR speed" in the "[Pr.44] OPR direction".)
5. The machine begins decelerating when the near-point $\operatorname{dog} O N$ is detected.
6. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed.
7. After the near-point dog turns ON and the movement amount set in "[Pr.50] Setting for the movement amount after near-point dog ON" has passed, the pulse output from the LD75 stops with the first zero signal (one pulse output at one motor revolution), and the machine OPR is completed.

## (f) 5: Count method 2)



1. Start machine OPR. (Start movement at the "[Pr.46] OPR speed" in the "[Pr.44] OPR direction".)
2. The machine begins decelerating when the near-point dog $O N$ is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed.
4. After the near-point dog turns ON and the movement amount set in "[Pr.50] Setting for the movement amount after near-point dog ON" has passed, the pulse output from the LD75 stops with the first zero signal, and the machine OPR is completed.

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Pr.44] OPR | 0: Positive direction (address increment direction) | 0 | 0 | 71 | 221 | 371 | 521 |
| [Pr.44] | 1: Negative direction (address decrement direction) | 1 |  |  |  |  |  |
| [Pr.45] OP address | The setting range differs depending on the "[Pr.1] Unit setting". ( $\leftrightarrows$ Page 145, Section 5.2.5 (4) (a)) |  | 0 | $\begin{aligned} & 72 \\ & 73 \end{aligned}$ | $\begin{aligned} & 222 \\ & 223 \end{aligned}$ | $\begin{aligned} & 372 \\ & 373 \end{aligned}$ | $\begin{aligned} & 522 \\ & 523 \end{aligned}$ |
| [Pr.46] OPR speed | The setting range differs depending on the "[Pr.1] Unit setting". ( 5 Page 145, Section 5.2.5 (5) (a)) |  | 1 | $\begin{aligned} & 74 \\ & 75 \end{aligned}$ | $\begin{aligned} & 224 \\ & 225 \end{aligned}$ | $\begin{aligned} & 374 \\ & 375 \end{aligned}$ | $\begin{aligned} & 524 \\ & 525 \end{aligned}$ |

## (3) [Pr.44] OPR direction

Set the direction to start movement when starting machine OPR.

| Selection of [Pr.44] OPR direction |  | Operation description |
| :--- | :--- | :--- |
| $0:$ | Positive direction (address <br> increment direction) | Moves in the direction that the address increments. (Arrow 2)) |
| 1: | Negative direction (address <br> decrement direction) | Moves in the direction that the address decrements. (Arrow 1)) |

Normally, the OP is set near the lower limit or the upper limit, so "[Pr.44] OPR direction" is set as shown below.


## (4) [Pr.45] OP address

Set the address used as the reference point for positioning control (ABS system).
(When the machine OPR is completed, the stop position address is changed to the address set in "[Pr.45] OP address". At the same time, the "[Pr.45] OP address" is stored in "[Md.20] Current feed value" and "[Md.21] Machine feed value".)
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| 0: mm | -214748364.8 to $214748364.7(\mu \mathrm{~m})$ | -2147483648 to $2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | -21474.83648 to 21474.83647 (inch) | -2147483648 to $2147483647\left(\times 10^{-5} \mathrm{inch}\right)$ |
| 2: degree | 0 to 359.99999 (degree) | 0 to $35999999\left(\times 10^{-5}\right.$ degree) |
| 3: pulse | -2147483648 to 2147483647 (pulse) | -2147483648 to 2147483647 (pulse) |

## (5) [Pr.46] OPR speed

Set the speed for OPR.
Note) Set the "OPR speed" to less than "[Pr.8] Speed limit value". If the "speed limit value" is exceeded, the error "Outside speed limit value range" (error code: 910) occurs and OPR is not performed. The "OPR speed" should be equal to or faster than the "[Pr.7] Bias speed at start" and "[Pr.47] Creep speed".
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0.001 to $2000000.000(\mathrm{inch} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0.001 to $2000000.000($ degree $/ \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3}\right.$ degree $\left./ \mathrm{min}\right)$ |
| 3: pulse | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ |


| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.47] Creep speed | The setting range differs depending on the "[Pr.1] Unit setting". ( $\leftrightarrows$ Page 146, Section 5.2 .5 (6) (a)) |  | 1 | $\begin{aligned} & 76 \\ & 77 \end{aligned}$ | $\begin{aligned} & 226 \\ & 227 \end{aligned}$ | $\begin{aligned} & 376 \\ & 377 \end{aligned}$ | $\begin{aligned} & 526 \\ & 527 \end{aligned}$ |
| [Pr.48] OPR retry | 0 : Do not retry OPR with limit switch | 0 | 0 | 78 | 228 | 378 | 528 |
|  | 1: Retry OPR with limit switch | 1 |  |  |  |  |  |

## (6) [Pr.47] Creep speed

Set the creep speed after near-point dog ON (the low speed just before stopping after decelerating from the OPR speed).
The creep speed is set within the following range.

- ([Pr.46] OPR speed $) \geq$ ([Pr.47] Creep speed) $\geq$ ([Pr.7] Bias speed at start)

The creep speed is related to the detection error when using the OPR method with zero signal, and the size of the collision if a collision occurs during OPR method using the stopper method.

(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0.001 to $2000000.000(\mathrm{inch} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0.001 to $2000000.000($ degree $/ \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

## (7) [Pr.48] OPR retry

Set whether to carry out OPR retry.
When the OPR retry function is validated and the machine OPR is started, first the axis will move in the OPR direction (1)). If the upper/lower limit signal turns OFF before the near-point dog signal ON is detected (2)), the axis will decelerate to a stop, and then will move in the direction opposite to the specified OPR direction (3)). If the falling edge of the near-point dog signal is detected during movement in the opposite direction, the axis will decelerate to a stop (4)), and will carry out machine OPR again (5)), (6)).

[Operation for OPR retry function]

1) Movement in the OPR direction starts with the machine OPR start.
2) The axis decelerates when the limit signal OFF is detected.
3) After stopping at detection of the limit switch signal OFF, the axis moves at the OPR speed in the direction opposite to the specified OPR direction.
4) The axis decelerates when the near-point dog signal turns OFF.
5) After stopping with the near-point dog signal OFF, start machine OPR in the OPR direction.
6) The machine begins decelerating when the near-point dog $O N$ is detected and completes machine ORR.

### 5.2.6 OPR detailed parameters

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.49] OPR dwell time | 0 to 65535 (ms) | 0 to 65535 (ms) ${ }^{* 1}$ | 0 | 79 | 229 | 379 | 529 |
| [Pr.50] Setting for the movement amount after near-point dog ON | The setting range differs depending on the "[Pr.1] Unit setting". ( $\longmapsto$ Page 149, Section 5.2.6 (2) (a)) |  | 0 | $\begin{aligned} & 80 \\ & 81 \end{aligned}$ | $\begin{aligned} & 230 \\ & 231 \end{aligned}$ | $\begin{aligned} & 380 \\ & 381 \end{aligned}$ | $\begin{aligned} & 530 \\ & 531 \end{aligned}$ |
| [Pr.51] OPR acceleration time selection | 0: [Pr.9] Acceleration time 0 | 0 | 0 | 82 | 232 | 382 | 532 |
|  | 1: [Pr.25] Acceleration time 1 | 1 |  |  |  |  |  |
|  | 2: [Pr.26] Acceleration time 2 | 2 |  |  |  |  |  |
|  | 3: [Pr.27] Acceleration time 3 | 3 |  |  |  |  |  |
| [Pr.52] OPR deceleration time selection | 0: [Pr.10] Deceleration time 0 | 0 | 0 | 83 | 233 | 383 | 533 |
|  | 1: [Pr.28] Deceleration time 1 | 1 |  |  |  |  |  |
|  | 2: [Pr.29] Deceleration time 2 | 2 |  |  |  |  |  |
|  | 3: [Pr.30] Deceleration time 3 | 3 |  |  |  |  |  |

*1 0 to 32767: Set as a decimal
32768 to 65535: Convert into hexadecimal and set

## (1) [Pr.49] OPR dwell time

When stopper method 1) is set for "[Pr.43] OPR method", set the time for the machine OPR to complete after the near-point dog signal turns ON.
The setting value must be longer than the movement time from the near-point dog signal ON to stopping with the stopper.
(If the OPR method is not "stopper method 1)", the "[Pr.49] OPR dwell time" value is irrelevant.)

## (2) [Pr.50] Setting for the movement amount after near-point dog ON

When using the count method 1) or 2), set the movement amount to the OP after the near-point dog signal turns ON.
(The movement amount after near-point dog ON should be equal to or greater than the sum of the "distance covered by the deceleration from the OPR speed to the creep speed" and "distance of movement in 10 ms at the OPR speed".)
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0 to $214748364.7(\mu \mathrm{~m})$ | 0 to $2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | 0 to 21474.83647 (inch) | 0 to $2147483647\left(\times 10^{-5 \mathrm{inch})}\right.$ |
| 2: degree | 0 to 21474.83647 (degree) | 0 to $2147483647\left(\times 10^{-5} \mathrm{degree}\right)$ |
| 3: pulse | 0 to 2147483647 (pulse) | 0 to 2147483647 (pulse) |



## (3) [Pr.51] OPR acceleration time selection

Set which of "acceleration time 0 to 3 " to use for the acceleration time during OPR.
0 : Use the value set in "[Pr.9] Acceleration time 0".
1: Use the value set in "[Pr.25] Acceleration time 1".
2: Use the value set in "[Pr.26] Acceleration time 2".
3: Use the value set in "[Pr.27] Acceleration time 3".

## (4) [Pr.52] OPR deceleration time selection

Set which of "deceleration time 0 to 3 " to use for the deceleration time during OPR.
0 : Use the value set in "[Pr.10] Deceleration time 0".
1: Use the value set in "[Pr.28] Deceleration time 1".
2: Use the value set in "[Pr.29] Deceleration time 2".
3: Use the value set in "[Pr.30] Deceleration time 3".

| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.53] OP shift amount | The setting range differs depending on the "[Pr.1] Unit setting". ( 5 Page 150, Section 5.2.6 (5) (a)) |  | 0 | $\begin{aligned} & 84 \\ & 85 \end{aligned}$ | $\begin{aligned} & 234 \\ & 235 \end{aligned}$ | $\begin{aligned} & 384 \\ & 385 \end{aligned}$ | $\begin{aligned} & 534 \\ & 535 \end{aligned}$ |
| [Pr.54] OPR torque limit value | 1 to 300 (\%) | 1 to 300 (\%) | 300 | 86 | 236 | 386 | 536 |
| [Pr.55] Deviation counter clear signal output time | 1 to 65535 (ms) | 1 to $65535(\mathrm{~ms})^{* 1}$ | 11 | 87 | 237 | 387 | 537 |
| [Pr.56] Speed designation during $O P$ shift | 0: OPR speed | 0 | 0 | 88 | 238 | 388 | 538 |
|  | 1: Creep speed | 1 |  |  |  |  |  |
| [Pr.57] Dwell time during OPR retry | 0 to 65535 (ms) | 0 to 65535 (ms) ${ }^{* 1}$ | 0 | 89 | 239 | 389 | 539 |

*1 0 to 32767: Set as a decimal
32768 to 65535: Convert into hexadecimal and set

## (5) [Pr.53] OP shift amount

Set the amount to shift (move) from the position stopped at with machine OPR.
The OP shift function is used to compensate the OP position stopped at with machine OPR.
If there is a physical limit to the OP position, due to the relation of the near-point dog installation position, use this function to compensate the OP to an optimum position.

(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | -214748364.8 to $214748364.7(\mu \mathrm{~m})$ | -2147483648 to $2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | -21474.83648 to 21474.83647 (inch) | -2147483648 to $2147483647\left(\times 10^{-5} \mathrm{inch}\right)$ |
| 2: degree | -21474.83648 to 21474.83647 (degree) | -2147483648 to $2147483647\left(\times 10^{-5}\right.$ degree) |
| 3: pulse | -2147483648 to 2147483647 (pulse) | -2147483648 to 2147483647 (pulse) |

## (6) [Pr.54] OPR torque limit value

Set the value to limit the servomotor torque after reaching the creep speed during machine OPR.
Refer to Page 532, Section 12.4.2 for details on the torque limits.

## (7) [Pr.55] Deviation counter clear signal output time

Set the duration of the deviation counter clear signal output during a machine OPR operation using any of the following methods: the near-point dog method, stopper methods 1) to 3), and count method 1). (For details, refer to [] your drive unit manual.)

## (8) [Pr.56] Speed designation during OP shift

Set the operation speed for when a value other than "0" is set for "[Pr.53] OP shift amount". Select the setting from "[Pr.46] OPR speed" or "[Pr.47] Creep speed".
0 : Designate "[Pr.46] OPR speed" as the setting value.
1: Designate "[Pr.47] Creep speed" as the setting value.

## (9) [Pr.57] Dwell time during OPR retry

When OPR retry is validated (when "1" is set for [Pr.48]), set the stop time after decelerating in 2 ) and 4 ) in the following drawing.


## 5.3 List of Positioning Data

Before the explanation on the positioning data setting items [Da.1] to [Da.10] and [Da.27] to [Da.29], the configuration of the positioning data will be shown below.
The positioning data stored in the LD75 buffer memory has the following type of configuration.



The pages that follow explain the positioning data setting items ([Da.1] to [Da.10], [Da.27] to [Da.29]). (The buffer memory addresses shown are those of the "positioning data No. 1" for the axes 1 to 4 .)

## (1) Positioning identifier configuration

The positioning identifier consists of "[Da.1] Operation pattern" to "[Da.5] Axis to be interpolated". The set values of those data are stored in one buffer memory address. Consider the positioning identifier configuration in the figure below when setting "[Da.1] Operation pattern" to "[Da.5] Axis to be interpolated".


The following table lists the setting range and default value of each buffer memory area of the positioning identifier.

| Item |  | Setting value | Value set with program | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Value set with GX Works2 |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Positioning identifier | [Da.1] <br> Operation pattern | 00: Positioning complete | 00 | 0000H | 2000 | 8000 | 14000 | 20000 |
|  |  | 01: Continuous positioning control | 01 |  |  |  |  |  |
|  |  | 11: Continuous path control | 11 |  |  |  |  |  |
|  | [Da.2] Control system | ABS1: 1-axis linear control (ABS) | 01H |  |  |  |  |  |
|  |  | INC1: 1-axis linear control (INC) | 02H |  |  |  |  |  |
|  |  | FEED1: 1-axis fixed-feed control | 03H |  |  |  |  |  |
|  |  | VF1: 1-axis speed control (forward run) | 04H |  |  |  |  |  |
|  |  | VR1: 1-axis speed control (reverse run) | 05H |  |  |  |  |  |
|  |  | VPF: Speed-position switching control (forward run) | 06H |  |  |  |  |  |
|  |  | VPR: Speed-position switching control (reverse run) | 07H |  |  |  |  |  |
|  |  | PVF: Position-speed switching control (forward run) | 08H |  |  |  |  |  |
|  |  | PVR: Position-speed switching control (reverse run) | 09H |  |  |  |  |  |
|  |  | ABS2: 2-axis linear interpolation control (ABS) | OAH |  |  |  |  |  |
|  |  | INC2: 2-axis linear interpolation control (INC) | OBH |  |  |  |  |  |
|  |  | FEED2: 2-axis fixed-feed control with linear interpolation | OCH |  |  |  |  |  |
|  |  | $A B S \frown$ : Circular interpolation control with sub point designation (ABS) | ODH |  |  |  |  |  |
|  |  | INC $\frown^{\text {: Circular interpolation control with sub point designation }}$ (INC) | OEH |  |  |  |  |  |
|  |  | ABS .: Circular interpolation control with center point designation (ABS, CW) | OFH |  |  |  |  |  |
|  |  | ABS .: Circular interpolation control with center point designation (ABS, CCW) | 10H |  |  |  |  |  |
|  |  | INC .: Circular interpolation control with center point designation (INC, CW) | 11H |  |  |  |  |  |
|  |  | INC .: Circular interpolation control with center point designation (INC, CCW) | 12H |  |  |  |  |  |
|  |  | VF2: 2-axis speed control (forward run) | 13H |  |  |  |  |  |
|  |  | VR2: 2-axis speed control (reverse run) | 14H |  |  |  |  |  |
|  |  | ABS3: 3-axis linear interpolation control (ABS) | 15H |  |  |  |  |  |
|  |  | INC3: 3-axis linear interpolation control (INC) | 16H |  |  |  |  |  |
|  |  | FEED3: 3-axis fixed-feed control with linear interpolation | 17H |  |  |  |  |  |
|  |  | VF3: 3-axis speed control (forward run) | 18H |  |  |  |  |  |
|  |  | VR3: 3-axis speed control (reverse run) | 19H |  |  |  |  |  |
|  |  | ABSH $\frown$ : Helical interpolation control with sub point designation (ABS) | 20 H |  |  |  |  |  |
|  |  | $\mathrm{INCH} \frown$ : Helical interpolation control with sub point designation (INC) | 21H |  |  |  |  |  |
|  |  | ABSH .: Helical interpolation control with center point designation (ABS, CW) | 22 H |  |  |  |  |  |
|  |  | ABSH .: Helical interpolation control with center point designation (ABS, CCW) | 23H |  |  |  |  |  |
|  |  | INCH .: Helical interpolation control with center point designation (INC, CW) | 24H |  |  |  |  |  |
|  |  | INCH .: Helical interpolation control with center point designation (INC, CCW) | 25H |  |  |  |  |  |
|  |  | ABS4: 4-axis linear interpolation control (ABS) | 1AH |  |  |  |  |  |
|  |  | INC4: 4-axis linear interpolation control (INC) | 1BH |  |  |  |  |  |
|  |  | FEED4: 4-axis fixed-feed control with linear interpolation | 1 CH |  |  |  |  |  |
|  |  | VF4: 4-axis speed control (forward run) | 1DH |  |  |  |  |  |


| Item |  | Setting value | Value set with program | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Value set with GX Works2 |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Positioning identifier | [Da.2] Control system | VR4: 4-axis speed control (reverse run) | 1EH | 0000H | 2000 | 8000 | 14000 | 20000 |
|  |  | NOP: NOP instruction | 80H |  |  |  |  |  |
|  |  | POS: Current value changing | 81H |  |  |  |  |  |
|  |  | JUMP: JUMP instruction | 82H |  |  |  |  |  |
|  |  | LOOP: Start of LOOP to LEND | 83H |  |  |  |  |  |
|  |  | LEND: End of LOOP to LEND | 84H |  |  |  |  |  |
|  | [Da.3] <br> Acceleration time No. | 0: [Pr.9] Acceleration time 0 | 00 |  |  |  |  |  |
|  |  | 1: [Pr.25] Acceleration time 1 | 01 |  |  |  |  |  |
|  |  | 2: [Pr.26] Acceleration time 2 | 10 |  |  |  |  |  |
|  |  | 3: [Pr.27] Acceleration time 3 | 11 |  |  |  |  |  |
|  | [Da.4] Deceleration time No. | 0: [Pr.10] Deceleration time 0 | 00 |  |  |  |  |  |
|  |  | 1: [Pr.28] Deceleration time 1 | 01 |  |  |  |  |  |
|  |  | 2: [Pr.29] Deceleration time 2 | 10 |  |  |  |  |  |
|  |  | 3: [Pr.30] Deceleration time 3 | 11 |  |  |  |  |  |
|  | [Da.5] <br> Axis to be interpolated | 0 : Axis 1 designation | 00 |  |  |  |  |  |
|  |  | 1: Axis 2 designation | 01 |  |  |  |  |  |
|  |  | 2: Axis 3 designation | 10 |  |  |  |  |  |
|  |  | 3: Axis 4 designation | 11 |  |  |  |  |  |

## (2) [Da.1] Operation pattern

The operation pattern designates whether positioning of a certain data No. is to be ended with just that data, or whether the positioning for the next data No. is to be carried out in succession.
[Operation pattern]


- Positioning complete is set to execute positioning to the designated address, and then complete positioning.
- With Continuous positioning control, positioning is carried out successively in order of data Nos. with one start signal. The operation halts at each position indicated by a positioning data.
- With Continuous path control, positioning is carried out successively in order of data Nos. with one start signal. The operation does not stop at each positioning data.


## (3) [Da.2] Control system

Set the "control system" for carrying out positioning control.
Note 1) When "JUMP instruction" is set for the control system, the "[Da.9]Dwell time" and "[Da.10] M code" setting details will differ.
Note 2) In case you selected "LOOP" as the control system, the "[Da.10]M code" should be set differently from other cases.
Note 3) Refer to Page 339, CHAPTER 9 for details on the control systems.
Note 4) If "degree" is set for "[Pr.1] Unit setting", circular interpolation control cannot be carried out. The error "Circular interpolation not possible" (error code: 535) will occur when executed.
Note 5) The 3-axis helical interpolation control can be set only for the LD75 with a serial number (first five digits) of "17102" or later. If the 3-axis helical interpolation control is set for an LD75 with a serial number (first five digits) earlier than "17102", the error "Control system setting error" (error code: 524) will occur.

## (4) [Da.3] Acceleration time No.

Set which of "acceleration time 0 to 3 " to use for the acceleration time during positioning.
0 : Use the value set in "[Pr.9] Acceleration time 0".
1: Use the value set in "[Pr.25] Acceleration time 1".
2: Use the value set in "[Pr.26] Acceleration time 2".
3: Use the value set in "[Pr.27] Acceleration time 3".

## (5) [Da.4] Deceleration time No.

Set which of "deceleration time 0 to 3 " to use for the deceleration time during positioning.
0 : Use the value set in "[Pr.10] Deceleration time 0".
1: Use the value set in "[Pr.28] Deceleration time 1".
2: Use the value set in "[Pr.29] Deceleration time 2".
3: Use the value set in "[Pr.30] Deceleration time 3".

## (6) [Da.5] Axis to be interpolated

Set the target axis (partner axis) for operations under the 2-axis interpolation control, and the circular interpolation axis for operations under the 3 -axis helical interpolation control.
0 : Selects the axis 1 as the target axis (partner axis).
1: Selects the axis 2 as the target axis (partner axis).
2: Selects the axis 3 as the target axis (partner axis).
3: Selects the axis 4 as the target axis (partner axis).
Note 1) Do not specify the own axis number or any number except the above. The error "Illegal interpolation description command" (error code: 521) will occur when executed.
Note 2) For 3-axis interpolation other than 3-axis helical interpolation or 4-axis interpolation, this item does not need to be set.
Note 3) The following table lists the target axes for the 3-axis helical interpolation control.

| Reference axis |  | Circular interpolation axis |
| :--- | :--- | :--- |
| Axis 1 | Axis 2 | Linear interpolation axis |
|  | Axis 3 | Axis 3 |
| Axis 2 | Axis 3 | Axis 2 |
|  | Axis 4 | Axis 3 |
| Axis 3 | Axis 4 | Axis 1 |
|  | Axis 1 | Axis 4 |
| Axis 4 | Axis 1 | Axis 2 |
|  | Axis 2 | Axis 1 |


| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Da.6] Positioning address/movement amount | The setting value range differs according to the "[Da.2] Control system". ( $\longmapsto$ Page 160, Section 5.2.6 (7) (e)) |  | 0 | $\begin{aligned} & 2006 \\ & 2007 \end{aligned}$ | $\begin{aligned} & 8006 \\ & 8007 \end{aligned}$ | $\begin{aligned} & 14006 \\ & 14007 \end{aligned}$ | $\begin{aligned} & 20006 \\ & 20007 \end{aligned}$ |

## (7) [Da.6] Positioning address/movement amount

Set the address to be used as the target value for positioning control.
The setting value range differs according to the "[Da.2] Control system".

## (a) Absolute (ABS) system, current value changing

The setting value (positioning address) for the ABS system and current value changing is set with an absolute address (address from OP).

(b) Incremental (INC) system, fixed-feed 1, fixed-feed 2, fixed-feed 3, fixed-feed 4

The setting value (movement amount) for the INC system is set as a movement amount with sign.

- When movement amount is positive: Moves in the positive direction (address increment direction)
- When movement amount is negative: Moves in the negative direction (address decrement direction)



## (c) Speed-position switching control

- INC mode: Set the amount of movement after the switching from speed control to position control.
- ABS mode: Set the absolute address which will be the target value after speed control is switched to position control. (The unit is "degree" only)



## (d) Position-speed switching control

- Set the amount of movement before the switching from position control to speed control.


## (e) Setting range

- The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges when "[Pr.1] Unit setting" is "mm". (With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)

| [Da.2] setting value | Value set with GX Works2 ( $\mu \mathrm{m}$ ) | Value set with program ${ }^{* 1}\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| :---: | :---: | :---: |
| ABS Linear 1: 01H <br> ABS Linear 2: OAH <br> ABS Linear 3: 15 H <br> ABS Linear 4: 1AH <br> Current value changing: 81H | ■Set the address -214748364.8 to 214748364.7 | $\begin{aligned} & \text { ESet the address } \\ & -2147483648 \text { to } 2147483647 \end{aligned}$ |
| INC Linear 1: 02H <br> INC Linear 2: OBH <br> INC Linear 3: 16H <br> INC Linear 4: 1BH <br> Fixed-feed 1: 03H <br> Fixed-feed 2: 0 OH <br> Fixed-feed 3: 17H <br> Fixed-feed 4: 1CH | ■Set the movement amount -214748364.8 to 214748364.7 | ■ Set the movement amount -2147483648 to 2147483647 |
| Forward run speed/position: 06H <br> Reverse run speed/position: 07H <br> Forward run position/speed: 08H <br> Reverse run position/speed: 09H | ■Set the movement amount 0 to 214748364.7 | ■ Set the movement amount <br> 0 to 2147483647 |
| ABS circular sub: ODH ABS circular right: OFH ABS circular left: 10H | ■Set the address -214748364.8 to 214748364.7 | ■ Set the address <br> -2147483648 to 2147483647 |
| INC circular sub: OEH INC circular right: 11 H INC circular left: 12H | ■Set the movement amount -214748364.8 to 214748364.7 | ■ Set the movement amount <br> -2147483648 to 2147483647 |
| ABS helical sub: 20 H ABS helical right: 22 H ABS helical left: 23 H | ■Set the address -214748364.8 to 214748364.7 | ■ Set the address <br> -2147483648 to 2147483647 |
| INC helical sub: 21 H INC helical right: 24 H INC helical left: 25 H | © Set the movement amount -214748364.8 to 214748364.7 | ■ Set the movement amount <br> -2147483648 to 2147483647 |

- The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges when "[Pr.1] Unit setting" is "degree". (With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)

| [Da.2] setting value | Value set with GX Works2 (degree) | Value set with program ${ }^{*}$ ( $\times 10^{-5}$ degree) |
| :---: | :---: | :---: |
| ABS Linear 1: 01H <br> ABS Linear 2: OAH <br> ABS Linear 3: 15 H <br> ABS Linear 4: 1AH <br> Current value changing: 81H | - Set the address <br> 0 to 359.99999 | ■ Set the address <br> 0 to 35999999 |
| INC Linear 1: 02H <br> INC Linear 2: OBH <br> INC Linear 3: 16 H <br> INC Linear 4: 1BH <br> Fixed-feed 1: 03H <br> Fixed-feed 2: 0 OH <br> Fixed-feed 3: 17H <br> Fixed-feed 4: 1CH | ■Set the movement amount -21474.83648 to 21474.83647 | ■ Set the movement amount -2147483648 to 2147483647 |
| ABS helical sub: $20 \mathrm{H}^{* 3}$ <br> ABS helical right: $22 \mathrm{H}^{* 3}$ <br> ABS helical left: $23 H^{* 3}$ | ■Set the address 0 to 359.99999 | ■Set the address <br> 0 to 35999999 |
| INC helical sub: $21 \mathrm{H}^{* 3}$ <br> INC helical right: $24 \mathrm{H}^{* 3}$ <br> INC helical left: $25 \mathrm{H}^{* 3}$ | ■Set the movement amount -21474.83648 to 21474.83647 | ■ Set the movement amount -2147483648 to 2147483647 |
| Forward run speed/position: 06H Reverse run speed/position: 07H | In INC mode <br> ■Set the movement amount 0 to 21474.83647 <br> In ABS mode <br> - Set the address <br> 0 to 359.99999 | In INC mode <br> ■Set the movement amount <br> 0 to 2147483647 <br> In ABS mode <br> ■Set the address <br> 0 to 35999999 |
| Forward run position/speed: 08 H Reverse run position/speed: 09H | ■Set the movement amount 0 to 21474.83647 | ESet the movement amount 0 to 2147483647 |

*2 Set an integer because the program cannot handle fractions. (The value will be converted properly within the system.)
*3 In the 3-axis helical interpolation control, "degree" can be set only for the linear interpolation axis.

- The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges when "[Pr.1] Unit setting" is "pulse". (With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)

| [Da.2] setting value | Value set with GX Works2 (pulse) | Value set with program (pulse) |
| :---: | :---: | :---: |
| ABS Linear 1: 01H <br> ABS Linear 2: OAH <br> ABS Linear 3: 15 H <br> ABS Linear 4: 1AH <br> Current value changing: 81 H | ■Set the address -2147483648 to 2147483647 | ■ Set the address <br> -2147483648 to 2147483647 |
| INC Linear 1: 02H <br> INC Linear 2: OBH <br> INC Linear 3: 16 H <br> INC Linear 4: 1BH <br> Fixed-feed 1: 03H <br> Fixed-feed 2: 0 CH <br> Fixed-feed 3: 17H <br> Fixed-feed 4: 1CH | ■Set the movement amount -2147483648 to 2147483647 | © Set the movement amount -2147483648 to 2147483647 |
| Forward run speed/position: 06H <br> Reverse run speed/position: 07H <br> Forward run position/speed: 08H <br> Reverse run position/speed: 09H | ■Set the movement amount <br> 0 to 2147483647 | ■Set the movement amount <br> 0 to 2147483647 |
| ABS circular sub: ODH ABS circular right: OFH ABS circular left: 10H | $\begin{aligned} & \text { ■Set the address } \\ & -2147483648 \text { to } 2147483647 \end{aligned}$ | ■ Set the address <br> -2147483648 to 2147483647 |
| INC circular sub: OEH INC circular right: 11 H INC circular left: 12 H | ■Set the movement amount -2147483648 to 2147483647 | ■Set the movement amount -2147483648 to 2147483647 |
| ABS helical sub: 20 H ABS helical right: 22 H ABS helical left: 23 H | $\begin{aligned} & \text { ■Set the address } \\ & -2147483648 \text { to } 2147483647 \end{aligned}$ | ■ Set the address <br> -2147483648 to 2147483647 |
| INC helical sub: 21 H INC helical right: 24 H INC helical left: 25 H | ■Set the movement amount -2147483648 to 2147483647 | ■Set the movement amount -2147483648 to 2147483647 |

- The table below lists the control systems that require the setting of the positioning address or movement amount and the associated setting ranges when "[Pr.1] Unit setting" is "inch". (With any control system excluded from the table below, neither the positioning address nor the movement amount needs to be set.)

| [Da.2] setting value | Value set with GX Works2 (inch) | Value set with program ${ }^{*}$ ( $\times 10^{-5}$ inch) |
| :---: | :---: | :---: |
| ABS Linear 1: 01H <br> ABS Linear 2: OAH <br> ABS Linear 3: 15 H <br> ABS Linear 4: 1AH <br> Current value changing: 81H | ■Set the address -21474.83648 to 21474.83647 | ■Set the address <br> -2147483648 to 2147483647 |
| INC Linear 1: 02H <br> INC Linear 2: OBH <br> INC Linear 3: 16H <br> INC Linear 4: 1BH <br> Fixed-feed 1: 03H <br> Fixed-feed 2: 0 OH <br> Fixed-feed 3: 17H <br> Fixed-feed 4: 1CH | ■Set the movement amount -21474.83648 to 21474.83647 | ■Set the movement amount <br> -2147483648 to 2147483647 |
| Forward run speed/position: 06H <br> Reverse run speed/position: 07H <br> Forward run position/speed: 08H <br> Reverse run position/speed: 09H | ■Set the movement amount 0 to 21474.83647 | ■Set the movement amount <br> 0 to 2147483647 |
| ABS circular sub: ODH ABS circular right: OFH ABS circular left: 10 H | ■Set the address -21474.83648 to 21474.83647 | ■ Set the address <br> -2147483648 to 2147483647 |
| INC circular sub: 0EH INC circular right: 11 H INC circular left: 12 H | ■Set the movement amount -21474.83648 to 21474.83647 | ■Set the movement amount -2147483648 to 2147483647 |
| ABS helical sub: 20 H ABS helical right: 22 H ABS helical left: 23 H | ■Set the address -21474.83648 to 21474.83647 | ■Set the address <br> -2147483648 to 2147483647 |
| INC helical sub: 21 H INC helical right: 24 H INC helical left: 25 H | ■Set the movement amount -21474.83648 to 21474.83647 | ■Set the movement amount <br> -2147483648 to 2147483647 |


| Item | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Da.7] Arc address | The setting value range differs according to the "[Da.2] Control system". Here, the value within the [Table 1] range is set. ( $\leftrightarrows$ Page 164, Section 5.3 (8) (a)) |  | 0 | $\begin{aligned} & 2008 \\ & 2009 \end{aligned}$ | $\begin{aligned} & 8008 \\ & 8009 \end{aligned}$ | $\begin{aligned} & 14008 \\ & 14009 \end{aligned}$ | $\begin{aligned} & 20008 \\ & 20009 \end{aligned}$ |

## (8) [Da.7] Arc address

The arc address is data required only when the circular interpolation control or 3-axis helical interpolation control is carried out.

- When carrying out circular interpolation with sub point designation, set the sub point (passing point) address as the arc address.
- When carrying out circular interpolation with center point designation, set the center point address of the arc as the arc address.
$\xrightarrow{\text { Circular interpolation with sub point designation }}$

When the circular interpolation control or 3-axis helical interpolation control is not carried out, the value set in "[Da.7] Arc address" will be invalid.

## (a) Setting range

- The table below lists the control systems that require the setting of the arc address and the associated setting ranges when "[Pr.1] Unit setting" is "mm". (With any control system excluded from the table below, the arc address does not need to be set.)

| [Da.2] setting value | Value set with GX Works2 ( $\mu \mathrm{m}$ ) | Value set with program ${ }^{* 1}\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| :---: | :---: | :---: |
| ABS circular sub: ODH ABS circular right: OFH ABS circular left: 10H | ■Set the address -214748364.8 to 214748364.7 | ■Set the address $-2147483648 \text { to } 2147483647$ |
| INC circular sub: 0EH INC circular right: 11 H INC circular left: 12 H | ■ Set the movement amount $-214748364.8 \text { to } 214748364.7^{* 2}$ | ■Set the movement amount -2147483648 to $2147483647^{* 2}$ |
| ABS helical sub: 20 H ABS helical right: 22 H ABS helical left: 23 H | ■Set the address -214748364.8 to 214748364.7 | ■Set the address -2147483648 to 2147483647 |
| INC helical sub: 21 H INC helical right: 24 H INC helical left: 25 H | ■Set the movement amount $-214748364.8 \text { to } 214748364.7^{* 2}$ | ■Set the movement amount -2147483648 to $2147483647^{* 2}$ |
| *1 Set an integer because the program cannot handle fractions. (The value will be converted properly within the system.) <br> *2 Note that the maximum radius that circular interpolation control is possible is 536870912 , although the setting value can be input within the range shown in the above table, as an arc address. |  |  |

- No control system requires the setting of the arc address when "[Pr.1] Unit setting" is "degree".
- The table below lists the control systems that require the setting of the arc address and the associated setting ranges when "[Pr.1] Unit setting" is "pulse". (With any control system excluded from the table below, the arc address does not need to be set.)

| [Da.2] setting value | Value set with GX Works2 (pulse) | Value set with program (pulse) |
| :---: | :---: | :---: |
| ABS circular sub: 0DH ABS circular right: OFH ABS circular left: 10 H | - Set the address <br> -2147483648 to 2147483647 | ■ Set the address <br> -2147483648 to 2147483647 |
| INC circular sub: OEH INC circular right: 11 H INC circular left: 12H | ■Set the movement amount -2147483648 to $2147483647^{* 3}$ | ■Set the movement amount -2147483648 to $2147483647^{* 3}$ |
| ABS helical sub: 20 H ABS helical right: 22 H ABS helical left: 23 H | $\begin{aligned} & \text { ■Set the address } \\ & -2147483648 \text { to } 2147483647 \end{aligned}$ | ■Set the address -2147483648 to 2147483647 |
| INC helical sub: 21 H INC helical right: 24 H INC helical left: 25 H | ■Set the movement amount -2147483648 to $2147483647^{* 3}$ | ■Set the movement amount -2147483648 to $2147483647^{* 3}$ |

*3 Note that the maximum radius that circular interpolation control is possible is 536870912 , although the setting value can be input within the range shown in the above table, as an arc address.

- The table below lists the control systems that require the setting of the arc address and the associated setting ranges when "[Pr.1] Unit setting" is "inch". (With any control system excluded from the table below, the arc address does not need to be set.)

| [Da.2] setting value | Value set with GX Works2 (inch) | Value set with program ${ }^{*}$ ( $\times 10^{-5} \mathrm{inch}$ ) |
| :---: | :---: | :---: |
| ABS circular sub: ODH ABS circular right: OFH ABS circular left: 10 H | ■Set the address <br> -21474.83648 to 21474.83647 | ■Set the address -2147483648 to 2147483647 |
| INC circular sub: OEH INC circular right: 11 H INC circular left: 12H | ■Set the movement amount <br> -21474.83648 to $21474.83647^{* 5}$ | ■Set the movement amount -2147483648 to $2147483647^{* 5}$ |
| ABS helical sub: 20 H ABS helical right: 22 H ABS helical left: 23 H | ■Set the address -21474.83648 to 21474.83647 | $\begin{aligned} & \text {-Set the address } \\ & -2147483648 \text { to } 2147483647 \end{aligned}$ |
| INC helical sub: 21H INC helical right: 24 H INC helical left: 25 H | ■Set the movement amount $-21474.83648 \text { to } 21474.83647^{* 5}$ | ■Set the movement amount -2147483648 to $2147483647^{* 5}$ |

*4 Set an integer because the program cannot handle fractions. (The value will be converted properly within the system.)
*5 Note that the maximum radius that circular interpolation control is possible is 536870912 , although the setting value can be input within the range shown in the above table, as an arc address.

| Item |  | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Da.8] Command speed |  | The setting range differs depending on the "[Pr.1] Unit setting". <br> ( $\Im$ Page 167, Section 5.3 (9) (a)) |  | 0 | 2004 | 8004 | 14004 | 20004 |
|  |  | -1: Current speed (Speed set for previous positioning data No.) | -1 |  | 2005 | 8005 | 14005 | 20005 |
| [Da.9] Dwell time | Dwell time <br> JUMP <br> destination <br> positioning data <br> No. | The setting value range differs according to the "[Da.2] Control system". <br> (ङ Page 168, Section 5.3 (10) (a)) |  | 0 | 2002 | 8002 | 14002 | 20002 |
| [Da.10] M code | M code <br> Condition data No. <br> No. of LOOP to LEND repetitions | The setting value range differs according to the "[Da.2] Control system". <br> ( $\mathfrak{F}$ Page 169, Section 5.3 (11) (a)) |  | 0 | 2001 | 8001 | 14001 | 20001 |

## (9) [Da.8] Command speed

Set the command speed for positioning.

- If the set command speed exceeds "[Pr.8] Speed limit value", positioning will be carried out at the speed limit value.
- If "-1" is set for the command speed, the current speed (speed set for previous positioning data No.) will be used for positioning control. Use the current speed for uniform speed control, etc. If "-1" is set for continuing positioning data, and the speed is changed, the following speed will also change. (Note that when starting positioning, if the "-1" speed is set for the positioning data that carries out positioning control first, the error "No command speed" (error code: 503) will occur, and the positioning will not start. Refer to $\longmapsto$ Page 650, Section 15.5 for details on the errors.
(a) Setting range

| [Pr.1] setting value | Value set with GX Works2 (unit) | Value set with program (unit) |
| :--- | :--- | :--- |
| $0: \mathrm{mm}$ | 0.01 to $20000000.00(\mathrm{~mm} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0.001 to $2000000.000(\mathrm{inch} / \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0.001 to $2000000.000($ degree $/ \mathrm{min})$ | 1 to $2000000000\left(\times 10^{-3}\right.$ degree $\left./ \mathrm{min}\right)$ |
| 3: pulse | 1 to $4000000($ pulse $/ \mathrm{s})$ | 1 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

## (10)[Da.9] Dwell time (JUMP destination positioning data No.)

Set the "dwell time" or "positioning data No." corresponding to the "[Da.2] Control system".

- When a method other than "JUMP instruction " is set for "[Da.2] Control system": Set the "dwell time".
- When "JUMP instruction " is set for "[Da.2] Control system": Set the "positioning data No." for the JUMP destination.
When the "dwell time" is set, the setting details of the "dwell time" will be as follows according to "[Da.1] Operation pattern".

(a) Setting range

| [Da.2] setting value | Setting item | Value set with GX Works2 | Value set with program |
| :--- | :--- | :--- | :--- |
| JUMP instruction: 82 H | Positioning data No. | 1 to 600 | 1 to 600 |
| Other than JUMP instruction | Dwell time | 0 to $65535(\mathrm{~ms})$ | 0 to $65535(\mathrm{~ms})$ |

## (11)[Da.10] M code (or condition data No./No. of LOOP to LEND repetitions)

Set an "M code", a "condition data No.", or the "number of LOOP to LEND repetitions" depending on how the "[Da.2] Control system" is set. *1

- If a method other than "JUMP instruction" and "LOOP" is selected as the "[Da.2] Control system": Set an "M code". If no "M code" needs to be output, set " 0 " (default value).
- If "3-axis helical interpolation control" is selected as the "[Da.2] Control system": Set the number of pitch for the linear interpolation axis. Set the rotation speed of the circular interpolation as the number of pitch.
- If "JUMP instruction" is selected as the "[Da.2] Control system": Set the "condition data No." for JUMP.
- If "LOOP" is selected as the "[Da.2] Control system": Set the number of LOOP to LEND repetitions by a number other than " 0 ". The error "Control system LOOP setting error" (error code: 545) will occur if " 0 " is specified.
*1 The condition data No. specifies the condition for the JUMP instruction to be executed. (A JUMP will take place when the condition is satisfied.)
- 0: Unconditional JUMP to the positioning data specified by [Da.9].
- 1 to 10: JUMP performed according to the condition data No. specified (a number between 1 and 10).


## (a) Setting range

| [Da.2] setting value | Setting item | Value set with GX Works2 | Value set with program |
| :--- | :--- | :--- | :--- |
| JUMP instruction: 82 H | Condition data No. | to 10 | 0 to 10 |
| LOOP: 83 H | Repetition count | 1 to 65535 | 1 to 65535 |
| Helical interpolation: 20 H to 25 H | Number of pitch | 0 to 999 | 0 to 999 |
| Other than the above | M code | 0 to 65535 | 0 to 65535 |


| Item |  | Setting value, setting range |  | Default value | Setting value buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Value set with GX Works2 | Value set with program |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Positioning option | [Da.27] M code ON signal output timing | 0 : Use the set value in "[Pr.18] M code ON signal output timing". | 0 | 0 | 2003 | 8003 | 14003 | 20003 |
|  |  | 1: WITH mode | 1 |  |  |  |  |  |
|  |  | 2: AFTER mode | 2 |  |  |  |  |  |
|  | [Da.28] ABS direction in degrees | 0 : Use the set value in "[Cd.40] ABS direction in degrees". | 0 | 0 |  |  |  |  |
|  |  | 1: ABS clockwise | 1 |  |  |  |  |  |
|  |  | 2: ABS counterclockwise | 2 |  |  |  |  |  |
|  |  | 3: Shortcut (direction setting ignored) | 3 |  |  |  |  |  |
|  | [Da.29] <br> Interpolation <br> speed <br> designation <br> method | 0 : Use the set value in "[Pr.20] Interpolation speed designation method". | 0 | 0 |  |  |  |  |
|  |  | 1: Composite speed | 1 |  |  |  |  |  |
|  |  | 2: Reference axis speed | 2 |  |  |  |  |  |

## (12)Positioning option configuration

The positioning option consists of "[Da.27] M code ON signal output timing" to "[Da.29] Interpolation speed designation method". The set values of those data are stored in one buffer memory address. Consider the positioning option configuration in the figure below when setting "[Da.27] M code ON signal output timing" to "[Da.29] Interpolation speed designation method".


## (13)[Da.27] M code ON signal output timing

Set the $M$ code $O N$ signal output timing for each positioning data.

## (14)[Da.28] ABS direction in degrees

Set the ABS moving direction when "degree" is selected as the unit for each positioning data.

## (15)[Da.29] Interpolation speed designation method

Set the interpolation speed designation method for each positioning data.

## Point ${ }^{\rho}$

- To use the positioning option, set "1: Valid" in [Pr.70] Positioning option valid/invalid setting.
- The positioning option can be set only with GX Works2 (Version 1.540 N or later) or programs.
- The positioning option can be set only for the LD75 with a serial number (first five digits) of "17102" or later. If a value is set for the positioning option of the LD75 with a serial number (first five digits) earlier than "17102" and a positioning control is started, the value set in the positioning option is ignored.


### 5.4 List of Block Start Data

The illustrations below show the organization of the block start data stored in the LD75 buffer memory. The block start data setting items [Da.11] to [Da.14] are explained in the pages that follow.

*1 For information on the organization of the buffer memory addresses assigned to the start blocks 1 to 4 , refer to Page 793, Appendix 10.



The pages that follow explain the block start data setting items ([Da.11] to [Da.14]).
(The buffer memory addresses shown are those of the "1st point block start data (block No. 7000)" for the axes 1 to 4.)

## Remark

To perform an high-level positioning control using block start data, set a number between 7000 and 7004 to the "[Cd.3] Positioning start No." and use the "[Cd.4] Positioning starting point No." to specify a point number between 1 and 50, a position counted from the beginning of the block.
The number between 7000 and 7004 specified here is called the "block No.".
With the LD75, up to 50 "block start data" points and up to 10 "condition data" items can be assigned to each "block No.".

| Block No. ${ }^{*}$ | Axis | Block start data | Condition | Buffer memory | GX Works2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7000 | Axis 1 | Start block 0 | Condition data (1 to 10) | Supports the settings | Supports the settings |
|  | Axis 2 |  | Condition data (1 to 10) |  |  |
|  | Axis 3 |  | Condition data (1 to 10) |  |  |
|  | Axis 4 |  | Condition data (1 to 10) |  |  |
| 7001 | Axis 1 | Start block 1 | Condition data (1 to 10) |  |  |
|  | Axis 2 |  | Condition data (1 to 10) |  |  |
|  | Axis 3 |  | Condition data (1 to 10) |  |  |
|  | Axis 4 |  | Condition data (1 to 10) |  |  |
| 7002 | Axis 1 | Start block 2 | Condition data (1 to 10) |  |  |
|  | Axis 2 |  | Condition data (1 to 10) |  |  |
|  | Axis 3 |  | Condition data (1 to 10) |  |  |
|  | Axis 4 |  | Condition data ( 1 to 10) |  |  |
| 7003 | Axis 1 | Start block 3 | Condition data (1 to 10) |  |  |
|  | Axis 2 |  | Condition data (1 to 10) |  |  |
|  | Axis 3 |  | Condition data (1 to 10) |  |  |
|  | Axis 4 |  | Condition data (1 to 10) |  |  |
| 7004 | Axis 1 | Start block 4 | Condition data (1 to 10) |  |  |
|  | Axis 2 |  | Condition data (1 to 10) |  |  |
|  | Axis 3 |  | Condition data (1 to 10) |  |  |
|  | Axis 4 |  | Condition data (1 to 10) |  |  |

*2 Setting cannot be made when the "Pre-reading start function" is used. If any of Nos. 7000 to 7004 is set and the Prereading start function is performed, the error "Outside start No. range" (error code: 543) will occur. (For details, refer to $\leftrightarrows$ Page 598, Section 12.7.7.)


## (1) [Da.11] Shape

Set whether to carry out only the local "block start data" and then end control, or to execute the "block start data" set in the next point.

| Setting value | Setting details |
| :--- | :--- |
| 0: End | Execute the designated point's "block start data", and then complete the control. |
| 1: Continue | Execute the designated point's "block start data", and after completing control, execute the next point's <br> "block start data". |

## (2) [Da.12] Start data No.

Set the "positioning data No." designated with the "block start data".

## (3) [Da.13] Special start instruction

Set the "special start instruction " for using "high-level positioning control". (Set how to start the positioning data set in "[Da.12] Start data No.".)

| Setting value |  |
| :--- | :--- |
| 00H: Block start (normal start) | Execute the random block positioning data in the set order with one start. |
| 01H: Condition start | Carry out the condition judgment set in "condition data" for the designated positioning data, and when <br> the conditions are established, execute the "block start data". If not established, ignore that "block start <br> data", and then execute the next point's "block start data". |
| 02H: Wait start | Carry out the condition judgment set in "condition data" for the designated positioning data, and when <br> the conditions are established, execute the "block start data". If not established, stop the control (wait) <br> until the conditions are established. |
| 03H: Simultaneous start | Simultaneously executes the positioning data having the No. for the axis designated with the "condition <br> data". (Outputs pulses at the same timing.) Up to four axes can start simultaneously. |
| 04H: Repeated start (FOR loop) | Repeats the program from the block start data set with the "FOR loop" to the block start data set in <br> "NEXT" for the designated No. of times. |
| 05H: Repeated start (FOR | Repeat the program from the block start data with the "FOR condition" to the block start data with <br> condition) |
| "NEXT" until the conditions set in the "condition data" are established. |  |

Refer to $\leftrightarrows$ Page 456, CHAPTER 10 for details on the control.

## (4) [Da.14] Parameter

Set the value as required for "[Da.13] Special start instruction".

| [Da.13] Special start instruction | Setting value | Setting details |
| :--- | :---: | :--- |
| Block start (Normal start) | - | Not used. (No need to be set.) |
| Condition start | 1 to 10 | Set the condition data No. (No. of "condition data" set to perform condition <br> judgment) <br> (For details on the condition data, refer to |
| Simultaneous start Page 176, Section 5.5.) |  |  |

### 5.5 List of Condition Data

The illustrations below show the organization of the condition data stored in the LD75 buffer memory. The condition data setting items [Da.15] to [Da.19] are explained in the pages that follow.

*1 For information on the organization of the buffer memory addresses assigned to the start blocks 1 to 4, refer to に Page 793, Appendix 10.



The pages that follow explain the condition data setting items ([Da.15] to [Da.19]).
(The buffer memory addresses shown are those of the "condition data No. 1 (block No. 7000)" for the axes 1 to 4.)

## Remark

To perform an high-level positioning control using block start data, set a number between 7000 and 7004 to the "[Cd.3] Positioning start No." and use the "[Da.4] Positioning starting point No." to specify a point number between 1 and 50 , a position counted from the beginning of the block.
The number between 7000 and 7004 specified here is called the "block No.".
With the LD75, up to 50 "block start data" points and up to 10 "condition data" items can be assigned to each "block No."

| 7000 | Block No. ${ }^{*}$ | Axis | Block start data | Condition | Buffer memory |
| :---: | :---: | :---: | :---: | :---: | :---: | GX Works2

*2 Setting cannot be made when the "Pre-reading start function" is used. If any of Nos. 7000 to 7004 is set and the Prereading start function is performed, the error "Outside start No. range" (error code: 543) will occur. (For details, refer to $\leqslant$ Page 598, Section 12.7.7.)


## (1) [Da.15] Condition target

Set the condition target as required for each control.

| Setting value | Setting details |
| :--- | :--- |
| 01H: Device $X$ | Set the input/output signal ON/OFF of the LD75 as the conditions. |
| 02H: Device Y | Set the value stored in the buffer memory as the condition. <br> 03H: The target buffer memory is "1-word (16 bits)" <br> 03Hfer memory (1-word) <br> 04H: The target buffer memory is "2-word (32 bits)" |
| 04H: Buffer memory (2 words) | Select only for "simultaneous start". |
| 05H: Positioning data No. |  |

## (2) [Da.16] Condition operator

Set the condition operator as required for the "[Da.15] Condition target".

| [Da.15] Condition target | Setting value | Setting details |
| :---: | :---: | :---: |
| 01H: Device $X$ 02H: Device $Y$ | 07H: DEV=ON | The state (ON/OFF) of an I/O signal is defined as the condition. Select ON or OFF as the trigger. |
|  | 08H: DEV=OFF |  |
| 03H: Buffer memory (1-word) <br> 04H: Buffer memory (2 words) | 01H: ** $=$ P1 | Select how to use the value ( ${ }^{(* *)}$ in the buffer memory as a part of the condition. |
|  | 02H: ** $\neq$ P1 |  |
|  | 03H: ** $\leq$ P1 |  |
|  | 04H: ** $\geq$ P1 |  |
|  | 05H: P1 ${ }^{* * \leq P 2 ~}$ |  |
|  | 06H: ** $\leq$ P1, P2 ${ }^{* *}$ |  |
| 05H: Positioning data No. | 10H: Axis 1 designation | If "simultaneous start" is specified, select the axis (or axes) that should start simultaneously. |
|  | 20 H : Axis 2 designation |  |
|  | 30 H : Axis 1 and 2 designation |  |
|  | 40H: Axis 3 selected |  |
|  | 50H: Axes 1 and 3 designation |  |
|  | 60H: Axes 2 and 3 designation |  |
|  | 70H: Axes 1, 2, and 3 designation |  |
|  | 80 H : Axis 4 designation |  |
|  | 90H: Axes 1 and 4 designation |  |
|  | AOH: Axes 2 and 4 designation |  |
|  | B0H: Axes 1, 2, and 4 designation |  |
|  | COH: Axes 3 and 4 designation |  |
|  | DOH: Axes 1, 3, and 4 designation |  |
|  | EOH: Axes 2, 3, and 4 designation |  |

## (3) [Da.17] Address

Set the address as required for the "[Da.15] Condition target".

| [Da.15] Condition target | Setting value | Setting details |
| :---: | :---: | :---: |
| 01H: Device X | - | Not used. (No need to be set.) |
| 02H: Device $Y$ |  |  |
| 03H: Buffer memory (1-word) | Value <br> (Buffer memory address) | Set the target "buffer memory address". <br> (For 2 word, set the low-order buffer memory address.) |
| 04H: Buffer memory (2 words) |  |  |
| 05H: Positioning data No. | - | Not used. (No need to be set.) |

## (4) [Da.18] Parameter 1

Set the parameters as required for the "[Da.16] Condition operator".

| [Da.16] Condition operator | Setting value | Setting details |
| :---: | :---: | :---: |
| 01H: ** $=$ P1 | Value | The value of P 1 should be equal to or smaller than the value of P 2 . $(\mathrm{P} 1 \leq \mathrm{P} 2)$ <br> If P 1 is greater than P 2 ( $\mathrm{P} 1>\mathrm{P} 2$ ), the error "Condition data error" (error code: 533) will occur. |
| 02H: ** $\neq$ P1 |  |  |
| 03H: ** $\leq$ P1 |  |  |
| 04H: ** $\geq$ P1 |  |  |
| 05H: P1 ${ }^{* *} \leq$ P2 |  |  |
| 06H: ** $\leq$ P1, P2 ${ }^{* *}$ |  |  |
| 07H: DEV=ON | Value (bit No.) | Set the device bit No. <br> $\mathrm{X}: 0 \mathrm{H}$ to $1 \mathrm{H}, 4 \mathrm{H}$ to 17 H Y: $0,4 \mathrm{H}$ to 17 H |
| 08H: DEV=OFF |  |  |
| 10H: Axis 1 designation | Value (positioning data No.) | Set the positioning data No. for starting axis 1 and/or axis 2. Low-order 16-bit: Axis 1 positioning data No. 1 to 600 ( 01 H to 258 H ) High-order 16-bit: Axis 2 positioning data No. 1 to 600 ( 01 H to 258H) |
| $\vdots$ |  |  |
| EOH: Axes 2, 3, and 4 selected |  |  |

## (5) [Da.19] Parameter 2

Set the parameters as required for the "[Da.16] Condition operator".

| [Da.16] Condition operator | Setting value | Setting details |
| :---: | :---: | :---: |
| 01H: ** $=$ P1 |  |  |
| 02H: ** $\neq \mathrm{P} 1$ |  |  |
| 03H: ** $\leq$ P1 | - | Not used. (No need to be set.) |
| 04H: ** $\geq$ P1 |  |  |
| 05H: P1 ${ }^{* * \leq P 2 ~}$ |  | The value of P2 should be equal to or greater than the value of P1. |
| 06H: **<P1, P2 ** $^{\text {c }}$ | Value | $(\mathrm{P} \leq \mathrm{P} 2)$ <br> If P 1 is greater than P 2 ( $\mathrm{P} 1>\mathrm{P} 2$ ), the error "Condition data error" (error code: 533) will occur. |
| 07H: DEV=ON |  |  |
| 08H: DEV=OFF |  |  |
| 10H: Axis 1 designation | - | Not used. (No need to be set.) |
| 20 H : Axis 2 designation |  |  |
| 30 H : Axis 1 and 2 designation |  |  |
| 40H: Axis 3 selected | Value (positioning data No.) | Set the positioning data No. for starting axis 3 and/or axis 4. <br> - Low-order 16-bit: Axis 3 positioning data No. 1 to 600 ( 01 H to 258H) <br> - High-order 16-bit: Axis 4 positioning data No. 1 to 600 ( 01 H to 258H) |
| 50H: Axes 1 and 3 designation |  |  |
| 60 H : Axes 2 and 3 designation |  |  |
| 70 H : Axes 1, 2, and 3 designation |  |  |
| 80 H : Axis 4 designation |  |  |
| 90H: Axes 1 and 4 designation |  |  |
| AOH : Axes 2 and 4 designation |  |  |
| BOH: Axes 1, 2, and 4 designation |  |  |
| COH : Axes 3 and 4 designation |  |  |
| DOH: Axes 1, 3, and 4 designation |  |  |
| E0H: Axes 2, 3, and 4 designation |  |  |

## 5.6 <br> List of Monitor Data

### 5.6.1 System monitor data

Unless noted in particular, the monitor value is saved as binary data.
(1) [Md.1] In test mode flag

| Item | Description |
| :---: | :---: |
| Storage details | Whether the test mode is used from GX Works2 or not is stored. <br> - When the test function is not used: OFF <br> - When the test function is used: ON |
| Reading the monitor value | -Monitoring is carried out with a decimal display. <br> Monitor <br> Storage value value <br> 0 : Test function is not being used <br> 1: Test function is being used |
| Default value | 0 |
| Storage buffer memory address <br> (Common to axes 1 to 4 ) | 1200 |

## (2) Starting history configuration

Information related to the start are stored in Starting history with pointers 0 to 15 . Starting history is configured as shown below.

(a) [Md.3] Start information

(b) [Md.4] Start No.


## (c) [Md.50] Start (Year:month)

| Item | Description |
| :---: | :---: |
| Storage details | The starting time (Year:month) is stored. |
| Reading the monitor value | Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\curvearrowleft$ Page 183, Section 5.6.1 (2) |

(d) [Md.5] Start (Day:hour)

| Item | Description |
| :---: | :---: |
| Storage details | The starting time (Day:hour) is stored. |
| Reading the monitor value | Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. W Page 183, Section 5.6.1 (2) |

## Point ${ }^{8}$

If a start signal is issued against an operating axis, a record relating to this event may be output before a record relating to an earlier start signal is output.
(e) [Md.6] Start (Minute:second)

| Item | Description |
| :---: | :---: |
| Storage details | The starting time (Minute: second) is stored. |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 183, Section 5.6.1 (2) |

## (f) [Md.7] Error judgment

| Item | Description |
| :---: | :---: |
| Storage details | This area stores the following results of the error judgment performed upon starting: <br> - BUSY start warning flag <br> - Error flag <br> - Error No. |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 183, Section 5.6.1 (2) |

## (g) [Md.8] Start history pointer

| Item | Description |
| :--- | :--- |
| Storage details | Indicates a pointer No. that is next to the Pointer No. assigned to the latest of the existing starting history records. |
|  | Monitoring is carried out with a decimal display. |
| Reading the monitor <br> value | 0 |
| Default value |  |
| Storage buffer memory <br> address <br> (Common to axes 1 to 4) | 1292 |

## (3) Error history configuration

Information related to an error are stored in Error history with pointers 0 to 15. Error history is configured as shown below.


- Each history record is assigned a pointer No. in the range between 0 and 15. If the pointer No. 15 has been assigned to a new record, the next record will be assigned the pointer number 0 .
(A new record replaces an older record when a pointer No. is reassigned.)
(a) [Md.9] Axis in which the error occurred

| Item | Description |
| :---: | :---: |
| Storage details | Stores a number (Axis No.) that indicates the axis that encountered an error. |
| Reading the monitor value | Monitoring is carried out with a decimal display. <br> Monitor value |
| Default value | 0 |
| Storage buffer memory address <br> (Common to axes 1 to 4 ) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 187, Section 5.6.1 (3) |

(b) [Md.10] Axis error No.

| Item | Description |
| :---: | :---: |
| Storage details | Stores an axis error No. |
| Reading the monitor value | Monitoring is carried out with a decimal display. <br> For details on error No. (error codes), refer to the following. $\longmapsto$ Page 650, Section 15.5 |
| Default value | 0 |
| Storage buffer memory address (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\curvearrowleft$ Page 187, Section 5.6.1 (3) |

(c) [Md.51] Axis error occurrence (Year:month)

| Item | Description |
| :---: | :---: |
| Storage details | Stores the time (Year:month) at which an axis error was detected. |
| Reading the monitor value | -Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 187, Section 5.6.1 (3) |

(d) [Md.11] Axis error occurrence (Day:hour)

| Item | Description |
| :---: | :---: |
| Storage details | Stores the time (Day:hour) at which an axis error was detected. |
| Reading the monitor value | -Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 187, Section 5.6.1 (3) |

(e) [Md.12] Axis error occurrence (Minute:second)

| Item | Description |
| :---: | :---: |
| Storage details | Stores the time (Minute:second) at which an axis error was detected. |
| Reading the monitor value | Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\curvearrowleft$ Page 187, Section 5.6.1 (3) |

(f) [Md.13] Error history pointer

| Item | Description |
| :--- | :--- |
| Storage details | Indicates a pointer No. that is next to the Pointer No. assigned to the latest of the existing records. |

## (4) Warning history

Information related to an warning are stored in Warning history with pointers 0 to 15 . Warning history is configured as shown below.

(a) [Md.14] Axis in which the warning occurred

| Item | Description |
| :---: | :---: |
| Storage details | Stores a number (Axis No.) that indicates the axis that encountered a warning. |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. <br> Monitor value |
| Default value | 0 |
| Storage buffer memory address <br> (Common to axes 1 to 4 ) | For details on the storage buffer memory, refer to the following. $\rightsquigarrow$ Page 190, Section 5.6.1 (4) |

## (b) [Md.15] Axis warning No.

| Item | Description |
| :---: | :---: |
| Storage details | Stores an axis warning No. |
| Reading the monitor value | Monitoring is carried out with a decimal display. <br> Monitor value <br> For details on warning No. (warning codes), refer to the following. $\mapsto$ Page 676, Section 15.6 |
| Default value | 0 |
| Storage buffer memory address (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 190, Section 5.6.1 (4) |

(c) [Md.52] Axis warning occurrence (Year:month)

| Item | Description |
| :---: | :---: |
| Storage details | Stores the time (Year:month) at which an axis warning was detected. |
| Reading the monitor value | Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\longmapsto$ Page 190, Section 5.6.1 (4) |

(d) [Md.16] Axis warning occurrence (Day:hour)

| Item | Description |
| :---: | :---: |
| Storage details | Stores the time at which an axis warning was detected. |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address <br> (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\leftrightarrows$ Page 190, Section 5.6.1 (4) |

(e) [Md.17] Axis warning occurrence (Minute:second)

| Item | Description |
| :---: | :---: |
| Storage details | Stores the time at which an axis warning was detected. |
| Reading the monitor value | -Monitoring is carried out with a hexadecimal display. <br> Buffer memory (stored with BCD code) |
| Default value | 0000H |
| Storage buffer memory address (Common to axes 1 to 4) | For details on the storage buffer memory, refer to the following. $\mapsto$ Page 190, Section 5.6.1 (4) |

## (f) [Md.18] Warning history pointer

| Item | Description |  |
| :--- | :--- | :--- |
| Storage details | Indicates a pointer No. that is next to the Pointer No. assigned to the latest of the existing records. |  |
| Reading the monitor <br> value | Monitor value |  |
| Default value | 0 |  |
| Storage buffer memory <br> address <br> (Common to axes 1 to 4) | 1422 |  |

(5) [Md.19] No. of write accesses to flash ROM

| Item | Description |
| :---: | :---: |
| Storage details | - Stores the number of write accesses to the flash ROM after the power is switched ON. <br> - The count is cleared to " 0 " when the number of write accesses reach 26 and an error reset operation is performed. |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. <br> Monitor value |
| Default value | 0 |
| Storage buffer memory address (Common to axes 1 to 4) | 1424, 1425 |

5.6.2 Axis monitor data

## (1) [Md.20] Current feed value



## (2) [Md.21] Machine feed value

| Item | Description |
| :---: | :---: |
| Storage details | The address of the current position according to the machine coordinates will be stored. (Different from the actual motor position during operation) <br> Note that the current value changing function will not change the machine feed value. <br> Under the speed control mode, the machine feed value is constantly updated always, irrespective of the parameter setting. <br> The value will not be cleared to " 0 " at the beginning of fixed-feed control. <br> Even if "degree" is selected as the unit, the addresses will not have a ring structure for values between 0 and 359.99999 degrees. <br> - Machine coordinates: Characteristic coordinates determined with machine <br> - Update timing: 0.9 ms |
| Reading the monitor value | -Monitoring is carried out with a hexadecimal display. |
| Default value | 0000H |
| Storage buffer memory address | Axis 1: 802, 803 <br> Axis 2: 902, 903 <br> Axis 3: 1002, 1003 <br> Axis 4: 1102, 1103 |

## (3) [Md.22] Feedrate

| Item | Description |
| :---: | :---: |
| Storage details | The command output speed of the operating workpiece is stored. <br> (May be different from the actual motor speed during operation) <br> During interpolation operation, the speed is stored in the following manner. <br> - Reference axis: Composite speed or reference axis speed (Set with [Pr.20]) <br> - Interpolation axis: 0 <br> Update timing: 0.9ms |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. |
| Default value | 0000H |
| Storage buffer memory address | Axis 1: 804, 805 <br> Axis 2: 904, 905 <br> Axis 3: 1004, 1005 <br> Axis 4: 1104, 1105 |

(4) [Md.23] Axis error No.

| Item | Description |
| :---: | :---: |
| Storage details | When an axis error is detected, the error code corresponding to the error details is stored. <br> - The latest error code is always stored. (When a new axis error occurs, the error code is overwritten.) <br> - When "[Cd.5] Axis error reset" (axis control data) turns ON, the axis error No. is cleared (set to 0). |
| Reading the monitor value | -Monitoring is carried out with a decimal display. <br> For details on error No. (error codes), refer to the following. <br> $\omega$ Page 650, Section 15.5 |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 806 <br> Axis 2: 906 <br> Axis 3: 1006 <br> Axis 4: 1106 |

## (5) [Md.24] Axis warning No.

| Item | Description |
| :--- | :--- |
| Storage details | Whenever an axis warning is reported, a related warning code is stored. <br> - This area stores the latest warning code always. (Whenever an axis warning is reported, a new warning code replaces the stored <br> warning code.) <br> - When the "[Cd.5] Axis error reset" (axis control data) is set to ON, the axis warning No. is cleared to "0". |
| Reading the monitor <br> value | Monitor <br> value |
| For details on warning No. (warning codes), refer to the following. |  |
| Default value mith a decimal display. |  |

## (6) [Md.25] Valid M code

| Item | Description |
| :--- | :--- |
| Storage details | This area stores an M code that is currently active (i.e. set to the positioning data relating to the current operation). <br> - Update timing: turning ON of the M code ON signal <br> When the PLC READY signal (YO) goes OFF, the value is set to "0". |
| Reading the monitor <br> value | Monitor <br> value |
|  | Monitoring is carried out with a decimal display. |
| Default value | Axis 1: 808 <br> Axis 2: 908 <br> Axis 3: 1008 <br> Axis 4: 1108 |

## (7) [Md.26] Axis operation status

| Item | Description |
| :---: | :---: |
| Storage details | This area stores the axis operation status. |
| Reading the monitor value | Monitoring is carried out with a decimal display. <br> Monitor value |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 809 <br> Axis 2: 909 <br> Axis 3: 1009 <br> Axis 4: 1109 |

## (8) [Md.27] Current speed

| Item | Description |
| :---: | :---: |
| Storage details | "[Da.8] Command speed" of the positioning data currently in execution is stored. <br> - When "[Da.8] Command speed" is set to "-1": This area stores the command speed set by the positioning data used one step earlier. <br> - When "[Da.8] Command speed" is set to a value other than " -1 ": This area stores the command speed set by the current positioning data. <br> - If the speed change function is executed, "[Cd.14] New speed value" is stored. (For details on the speed change function, refer to $\longmapsto$ Page 543, Section 12.5.1.) |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 810,811 <br> Axis 2: 910, 911 <br> Axis 3: 1010, 1011 <br> Axis 4: 1110, 1111 |

## (9) [Md.28] Axis feedrate

| Item | Description |
| :---: | :---: |
| Storage details | - The speed which is actually output as a command at that time in each axis is stored. (May be different from the actual motor speed) <br> - "0" is stored when the axis is at a stop. <br> - Update timing: 0.9 ms |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. |
| Default value | 0000H |
| Storage buffer memory address | Axis 1: 812, 813 <br> Axis 2: 912, 913 <br> Axis 3: 1012, 1013 <br> Axis 4: 1112, 1113 |

(10)[Md.29] Speed-position switching control positioning amount

(11)[Md.30] External input/output signal


## (12)[Md.31] Status



## (13)[Md.32] Target value

| Item | Description |
| :---: | :---: |
| Storage details | This area stores the target value ([Da.6] Positioning address/movement amount) for a positioning operation. <br> - At the beginning of position control and current value changing: Stores the value of "[Da.6] Positioning address/movement amount". <br> - At the OP shift operation of OPR control: Stores the value of OP shift amount. <br> - At other times: Stores "0". |
| Reading the monitor value | -Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 818,819 <br> Axis 2: 918, 919 <br> Axis 3: 1018, 1019 <br> Axis 4: 1118, 1119 |

## (14)[Md.33] Target speed

| Item | Description |
| :---: | :---: |
| Storage details | - During operation with positioning data: The actual target speed, considering the override and speed limit value, etc., is stored. " 0 " is stored when positioning is completed. <br> - During interpolation of position control: The composite speed or reference axis speed is stored in the reference axis address, and " 0 " is stored in the interpolation axis address. <br> - During interpolation of speed control: The target speeds of each axis are stored in the monitor of the reference axis and interpolation axis. <br> - During JOG operation: The actual target speed, considering the JOG speed limit value for the JOG speed, is stored. <br> - During manual pulse generator operation: "0" is stored. |
| Reading the monitor value | -Monitoring is carried out with a hexadecimal display. |
| Default value | 0000H |
| Storage buffer memory address | Axis 1: 820, 821 <br> Axis 2: 920, 921 <br> Axis 3: 1020, 1021 <br> Axis 4: 1120, 1121 |

(15)[Md.34] Movement amount after near-point dog ON


## (16)[Md.35] Torque limit stored value

| Item | Description |
| :--- | :--- |
| Storage details | • The "[Pr.17] Torque limit setting value" or "[Cd.22] New torque value" is stored. <br> - During positioning start, JOG operation start, manual pulse generator operation...The "[Pr.17] Torque limit setting value" is <br> stored. <br> • When a value other than 0 is set to "[Cd.22] New torque value": The "[Cd.22] New torque value" is stored. |
| Reading the monitor <br> value | Monitor <br> value |
| Default value | 0 |

## (17)[Md.36] Special start data instruction code setting value

| Item | Description |
| :---: | :---: |
| Storage details | The " instruction code" used with special start and indicated by the start data pointer currently being executed is stored. |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 827 <br> Axis 2: 927 <br> Axis 3: 1027 <br> Axis 4: 1127 |

## (18)[Md.37] Special start data instruction parameter setting value


(19)[Md.38] Start positioning data No. setting value

| Item | Description |
| :---: | :---: |
| Storage details | The "positioning data No." indicated by the start data pointer currently being executed is stored. |
|  | ■Monitoring is carried out with a decimal display. |
| Reading the monitor value |  |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 829 <br> Axis 2: 929 <br> Axis 3: 1029 <br> Axis 4: 1129 |

(20)[Md.39] In speed limit flag

| Item | Description |
| :---: | :---: |
| Storage details | - If the speed exceeds the "[Pr.8] Speed limit value" due to a speed change or override, the speed limit functions, and the in speed limit flag turns ON. <br> - When the speed drops to less than "[Pr.8] Speed limit value", or when the axis stops, the in speed limit flag turns OFF. |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 830 <br> Axis 2: 930 <br> Axis 3: 1030 <br> Axis 4: 1130 |

## (21)[Md.40] In speed change processing flag

| Item | Description |
| :---: | :---: |
| Storage details | - The speed change process flag turns ON when the speed is changed during positioning control. <br> - After the speed change process is completed or when deceleration starts with the stop signal during the speed change process, the in speed change process flag turns OFF. |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 831 <br> Axis 2: 931 <br> Axis 3: 1031 <br> Axis 4: 1131 |

## (22)[Md.41] Special start repetition counter

| Item | Description |
| :--- | :--- |
| Storage details | • This area stores the remaining number of repetitions during "repetitions" specific to special starting. <br> - The count is decremented by one $(-1)$ at the loop end. <br> - The control comes out of the loop when the count reaches " 0 ". <br> - This area stores "0" within an infinite loop. |
| Reading the monitor <br> value | Monitor value |
| Default value | 0 |

## (23)[Md.42] Control system repetition counter

| Item | Description |
| :---: | :---: |
| Storage details | - This area stores the remaining number of repetitions during "repetitions" specific to control system. <br> - The count is decremented by one (-1) at the loop start. <br> - The loop is terminated with the positioning data of the control method "LEND", after the counter becomes " 0 ". |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. <br> Storage value <br> Monitor value 0 to FFFF |
| Default value | 0000H |
| Storage buffer memory address | Axis 1: 833 <br> Axis 2: 933 <br> Axis 3: 1033 <br> Axis 4: 1133 |

(24)[Md.43] Start data pointer being executed

| Item | $\quad$ Description |
| :--- | :--- |
| Storage details | - This area stores a point No. (1 to 50) attached to the start data currently being executed. <br> - This area stores "0" after completion of a positioning operation. |
| Reading the monitor <br> value | Monitoring is carried out with a decimal display. |
| Mefault value value | 0 |

(25)[Md.44] Positioning data No. being executed

| Item | Description |
| :---: | :---: |
| Storage details | - This area stores a positioning data No. attached to the positioning data currently being executed. <br> - This area stores " 0 " after completion of a positioning operation. <br> - This area stores " 0 " when the JOG/inching operation is executed. |
| Reading the monitor value | ■Monitoring is carried out with a hexadecimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 835 <br> Axis 2: 935 <br> Axis 3: 1035 <br> Axis 4: 1135 |

(26)[Md.45] Block No. being executed

| Item | Description |
| :---: | :---: |
| Storage details | - When the operation is controlled by "block start data", this area stores a block number (7000 to 7004) attached to the block currently being executed. <br> - At other times, this area stores " 0 ". <br> - This area stores " 0 " after completion of a positioning operation. |
| Reading the monitor value | ■Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 836 <br> Axis 2: 936 <br> Axis 3: 1036 <br> Axis 4: 1136 |

(27)[Md.46] Last executed positioning data No.

| Item | Description |
| :---: | :---: |
| Storage details | - This area stores the positioning data No. attached to the positioning data that was executed last time. <br> - The value is retained until a new positioning operation is executed. <br> - This area stores " 0 " when the JOG/inching operation is executed. |
| Reading the monitor value | -Monitoring is carried out with a decimal display. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 837 <br> Axis 2: 937 <br> Axis 3: 1037 <br> Axis 4: 1137 |

(28)[Md.47] Positioning data being executed


## (29)[Md.48] Deceleration start flag

| Item | Description |
| :---: | :---: |
| Storage details | - "1" is stored when the constant speed status or acceleration status switches to the deceleration status during position control whose operation pattern is "Positioning complete". <br> - " 0 " is stored at the next operation start or manual pulse generator operation enable. |
| Reading the monitor value | -Monitoring is carried out with a decimal display. <br> Storage value <br> Monitor value <br> 0 : Status other than below <br> 1: Status from deceleration start to next operation start or manual pulse generator operation enable |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 899 <br> Axis 2: 999 <br> Axis 3: 1099 <br> Axis 4: 1199 |

### 5.7 List of Control Data

### 5.7.1 System control data

(1) [Cd.1] Flash ROM write request

| Item | Description |  |
| :--- | :--- | :--- |
| Setting details | Setting <br> value |  |
| Sequests writing of data from the buffer memory to the flash ROM. (Parameters, positioning data, and block start data) |  |  |

(2) [Cd.2] Parameter initialization request

| Item | Description |
| :---: | :---: |
| Setting details | Requests initialization of setting data. <br> Initialization ... Resetting of setting data to default values <br> Note) After completing the initialization of setting data, reset the CPU module or reboot the power for the programmable controller. <br> Initialized setting data <br> - Parameters ([Pr.1] to [Pr.57], [Pr. 150]) <br> - Positioning data (No. 1 to No.600) <br> - Block start data (No. 7000 to 7004) |
| Setting value | ■Set with a decimal. <br> Setting value <br> Parameter initialization request <br> 1: Requests parameter initialization. <br> The LD75 resets the value to "0" automatically when the initialization completes. (This indicates the completion of parameter) |
| Default value | 0 |
| Storage buffer memory address <br> (Common to axes 1 to 4) | 1901 |

(3) [Cd.41] Deceleration start flag valid

| Item | Description |
| :--- | :--- |
| Storage details | Set whether "[Md.48] Deceleration start flag" is made valid or invalid. |
|  | Setting <br> value |
| Setting value |  |

(4) [Cd.42] Stop command processing for deceleration stop selection

| Item | Description |
| :--- | :--- |
| Storage details | Set the stop command processing for deceleration stop function (deceleration curve re-processing/deceleration curve <br> continuation). |
|  | Setting <br> value |
| Setting value |  |

(5) [Cd.43] Output timing selection of near pass control

| Item | Description |
| :---: | :---: |
| Storage details | Select the timing to output the difference ( $\Delta I$ ) between the actual and the set positioning end addresses in continuous path control, in which the difference ( $\Delta I$ ) is output during the execution of the next positioning data. |
| Setting value | ■Set with a decimal. <br> Setting value |
| Default value | 0 |
| Storage buffer memory address (Common to axes 1 to 4 ) | 1934 |

5.7.2 Axis control data
(1) [Cd.3] Positioning start No.

| Item | Description |
| :---: | :---: |
| Setting details | Set the positioning start No. (Only 1 to 600 for the Pre-reading start function. (Ю Page 598, Section 12.7.7)) |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1500 <br> Axis 2: 1600 <br> Axis 3: 1700 <br> Axis 4: 1800 |

(2) [Cd.4] Positioning starting point No.

| Item | Description |
| :---: | :---: |
| Setting details | Set a "starting point No." (1 to 50) if block start data is used for positioning. (Handled as "1" if the value of other than 1 to 50 is set.) |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1501 <br> Axis 2: 1601 <br> Axis 3: 1701 <br> Axis 4: 1801 |

## (3) [Cd.5] Axis error reset

| Item | Description |
| :---: | :---: |
| Setting details | - Clears the axis error detection, axis error No., axis warning detection and axis warning No. <br> - When the LD75 axis operation state is "Error", the error is cleared and the LD75 is returned to the "Standby" state. |
| Setting value | ■Set with a decimal. <br> After the axis error reset is completed, " 0 " is stored by the LD75 automatically. (Indicates that the axis error reset is completed.) |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1502 <br> Axis 2: 1602 <br> Axis 3: 1702 <br> Axis 4: 1802 |

(4) [Cd.6] Restart command

| Item | Description |
| :---: | :---: |
| Setting details | When positioning is stopped for any reason (when axis operation state is "Stopped"), set "1" in [Cd.6] Positioning will be carried out again from the stopped position to the end point of the stopped positioning data. |
| Setting value | ■Set with a decimal. <br> Setting value <br> After restart acceptance is completed, " 0 " is stored by the LD75 automatically. (Indicates that the restart acceptance is completed.) |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1503 <br> Axis 2: 1603 <br> Axis 3: 1703 <br> Axis 4: 1803 |

(5) [Cd.7] M code OFF request

| Item | Description |
| :---: | :---: |
| Setting details | The M code ON signal turns OFF. |
| Setting value | Set with a decimal. <br> After the M code ON signal turns OFF, " 0 " is stored by the LD75 automatically. (Indicates that the OFF request is completed.) |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1504 <br> Axis 2: 1604 <br> Axis 3: 1704 <br> Axis 4: 1804 |

## (6) [Cd.8] External command valid

| Item | Description |
| :--- | :--- |
| Setting details | Vetidates or in validates external command signals. |
|  | Set with a decimal. |
| Setting value |  |

(7) [Cd.9] New current value

| Item | Description |  |  |
| :---: | :---: | :---: | :---: |
| Setting details | When changing the "current feed value" using the start No. "9003", use this data item to specify a new feed value. (ฒ Page 216, Section 5.7.2 (7) (a)) |  |  |
| Setting value | -Set with a decimal. <br> Actual value Cd. 9 $\square$ New current value Conversion into an integer value $\longrightarrow \text { Unit conversion table (Cd.9) }$ |  |  |
| Default value | 0 |  |  |
| Storage buffer memory address | Axis 1: 1506, 1507 <br> Axis 2: 1606, 1607 <br> Axis 3: 1706, 1707 <br> Axis 4: 1806, 1807 |  |  |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| $0: \mathrm{mm}$ | -2147483648 to $2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | -2147483648 to $2147483647\left(\times 10^{-5} \mathrm{inch}\right)$ |
| 2: degree | 0 to $35999999\left(\times 10^{-5}\right.$ degree $)$ |
| 3: pulse | -2147483648 to 2147483647 (pulse $)$ |

## (8) [Cd.10] New acceleration time value

| Item | Description |
| :---: | :---: |
| Setting details | - When changing the acceleration time during a speed change, use this data item to specify a new acceleration time. <br> - [Cd.10] setting range (unit): 0 to 8388608 (ms) |
| Setting value | ■Set with a decimal. <br> Setting value <br> Example: When the "Cd. 10 New acceleration time value" is set as " 60000 ms ", the buffer memory stores "60000". |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1508, 1509 <br> Axis 2: 1608, 1609 <br> Axis 3: 1708, 1709 <br> Axis 4: 1808, 1809 |

(9) [Cd.11] New deceleration time value

| Item | Description |
| :---: | :---: |
| Setting details | - When changing the deceleration time during a speed change, use this data item to specify a new deceleration time. <br> - [Cd.11] setting range (unit): 0 to 8388608 (ms) |
| Setting value | Set with a decimal. <br> Setting value <br> Cd. 11 New deceleration time value $\square$ <br> Example: When the "Cd. 11 New deceleration time value" is set as " 60000 ms ", the buffer memory stores "60000". |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1510, 1511 <br> Axis 2: 1610, 1611 <br> Axis 3: 1710, 1711 <br> Axis 4: 1810, 1811 |

(10)[Cd.12] Acceleration/deceleration time change during speed change, enable/disable selection

| Item | Description |
| :---: | :---: |
| Setting details | Enables or disables modifications to the acceleration/deceleration time during a speed change. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1512 <br> Axis 2: 1612 <br> Axis 3: 1712 <br> Axis 4: 1812 |

(11)[Cd.13] Positioning operation speed override

| Item | Description |
| :---: | :---: |
| Setting details | - To use the positioning operation speed override function, use this data item to specify an "override" value. <br> - For details on "override", refer to $\longmapsto$ Page 550, Section 12.5.2. <br> - If the speed becomes lower than the minimum unit due to override $1 \%$ or others, it is raised to the minimum unit. At this time, the warning "Less than minimum speed" (warning code: 110) will occur. |
| Setting value | ■Set with a decimal. <br> Setting value |
| Default value | 100 |
| Storage buffer memory address | Axis 1: 1513 <br> Axis 2: 1613 <br> Axis 3: 1713 <br> Axis 4: 1813 |

## (12)[Cd.14] New speed value

| Item | Description |
| :---: | :---: |
| Setting details | - When changing the speed, use this data item to specify a new speed. (Ю Page 219, Section 5.7 .2 (12) (a)) <br> - The operation halts if you specify " 0 ". |
| Setting value | ■Set with a decimal. <br> Example: When the "Cd. 14 New speed value" is set as " 20000.00 mm /min", the buffer memory stores "2000000". |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1514, 1515 <br> Axis 2: 1614, 1615 <br> Axis 3: 1714, 1715 <br> Axis 4: 1814, 1815 |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| $0: \mathrm{mm}$ | 0 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

(13)[Cd.15] Speed change request

| Item | Description |
| :---: | :---: |
| Setting details | After setting "[Cd.14] New speed value", set this data item to "1" to execute the speed change (through validating the new speed value). |
| Setting value | ■Set with a decimal. <br> The LD75 resets the value to "0" automatically when the speed change request has been processed. (This indicates the completion of speed change request.) |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1516 <br> Axis 2: 1616 <br> Axis 3: 1716 <br> Axis 4: 1816 |

(14)[Cd.16] Inching movement amount

| Item | Description |  |  |
| :---: | :---: | :---: | :---: |
| Setting details | - Use this data item to set the amount of movement by inching. (Ю Page 220, Section 5.7.2 (14) (a)) <br> - The machine performs a JOG operation if " 0 " is set. |  |  |
| Setting value | ■Set with a decimal. <br> Example: When the "Cd. 16 Inching movement amount" is set as " $1.0 \mu \mathrm{~m}$ ", the buffer memory stores "10". | $\begin{aligned} & \text { con } \\ & \hline \mathrm{n} \\ & \hline-1 \\ & \hline-5 \\ & \hline-5 \\ & \hline 0 \end{aligned}$ | table (Cd.16) |
| Default value | 0 |  |  |
| Storage buffer memory address | Axis 1: 1517 <br> Axis 2: 1617 <br> Axis 3: 1717 <br> Axis 4: 1817 |  |  |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| 0: mm | 0 to $65535\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | 0 to $65535\left(\times 10^{-5} \mathrm{inch}\right)$ |
| 2: degree | 0 to $65535\left(\times 10^{-5}\right.$ degree $)$ |
| 3: pulse | 0 to 65535 (pulse) |

(15)[Cd.17] JOG speed

| Item | Description |  |  |
| :---: | :---: | :---: | :---: |
| Setting details | Use this data item to set the JOG speed. (5 Page 221, Section 5.7.2 (15) (a)) |  |  |
| Setting value | ■Set with a decimal. <br> Example: When the "Cd. 17 JOG speed" is set as " 20000.00 mm /min", the buffer memory stores "2000000". | $\begin{gathered} \text { cor } \\ \hline \mathrm{n} \\ \hline-2 \\ \hline-3 \\ \hline-3 \\ \hline 0 \end{gathered}$ | n table (Cd.17) |
| Default value | 0 |  |  |
| Storage buffer memory address | Axis 1: 1518, 1519 <br> Axis 2: 1618, 1619 <br> Axis 3: 1718, 1719 <br> Axis 4: 1818, 1819 |  |  |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| $0: \mathrm{mm}$ | 0 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

(16)[Cd.18] Continuous operation interrupt request

| Item | Description |
| :---: | :---: |
| Setting details | - To interrupt a continuous operation, set "1" to this data item. <br> - After processing the interruption request ("1"), the LD75 automatically resets the value to "0". |
| Setting value | ■Set with a decimal. <br> Setting value <br> Interruption request continuous operation <br> 1: Interrupts continuous operation control or continuous path control. <br> The LD75 resets the value to " 0 " automatically when the continuous operation interrupt request is processed. (This indicates the completion of continuous operation interruption request.) |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1520 <br> Axis 2: 1620 <br> Axis 3: 1720 <br> Axis 4: 1820 |

(17)[Cd.19] OPR request flag OFF request

| Item | Description |
| :--- | :--- | :--- |
| Setting details | The program can use this data item to forcibly turn the OPR request flag from ON to OFF. |
|  | Setting <br> value |
| Setting value |  |

(18)[Cd.20] Manual pulse generator 1 pulse input magnification

| Item | Description |
| :---: | :---: |
| Setting details | This data item determines the factor by which the number of pulses from the manual pulse generator is magnified. <br> - Value "0": read as "1". <br> - Value "1001" or less: read as "1000". |
| Setting value | ■Set with a decimal. |
| Default value | 1 |
| Storage buffer memory address | Axis 1: 1522, 1523 <br> Axis 2: 1622, 1623 <br> Axis 3: 1722, 1723 <br> Axis 4: 1822, 1823 |

(19)[Cd.21] Manual pulse generator enable flag

| Item | Description |
| :--- | :--- |
| Setting details | This data item enables or disables operations using a manual pulse generator. |
|  | Setting value |
| Setting value |  |
|  |  |

## (20)[Cd.22] New torque value

| Item | Description |
| :---: | :---: |
| Setting details | - When changing the "[Md.35] Torque limit stored value", use this data item to specify a new torque limit stored value. <br> - Set a value within the allowable range of the "[Pr.17] Torque limit setting value". |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1525 <br> Axis 2: 1625 <br> Axis 3: 1725 <br> Axis 4: 1825 |

(21)[Cd.23] Speed-position switching control movement amount change register

| Item | Description |
| :---: | :---: |
| Setting details | - During the speed control stage of the speed-position switching control (INC mode), it is possible to change the specification of the movement amount during the position control stage. For that, use this data item to specify a new movement amount. ( $\square^{3}$ Page 224, Section 5.7.2 (21) (a)) <br> - The new movement amount has to be set during the speed control stage of the speed-position switching control (INC mode). <br> - The value is reset to " 0 " when the next operation starts. |
| Setting value | ■Set with a decimal. <br> Example: If "Cd. 23 Speed-position switching control movement amount change register" is set as " $20000.0 \mu \mathrm{~m}$ ", the buffer memory stores "200000". |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1526, 1527 <br> Axis 2: 1626, 1627 <br> Axis 3: 1726, 1727 <br> Axis 4: 1826, 1827 |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| $0: \mathrm{mm}$ | 0 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

(22)[Cd.24] Speed-position switching enable flag

| Item | Description |
| :---: | :---: |
| Setting details | Set whether the external control signal (external command signal [CHG]: "speed-position, position-speed switching request" is selected) is enabled or not. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1528 <br> Axis 2: 1628 <br> Axis 3: 1728 <br> Axis 4: 1828 |

## (23)[Cd.25] Position-speed switching control speed change register

| Item | Description |
| :---: | :---: |
| Setting details | - During the position control stage of the position-speed switching control, it is possible to change the specification of the speed during the speed control stage. For that, use this data item to specify a new speed. ( $\leftrightarrows$ Page 226, Section 5.7.2 (23) (a)) <br> - The new speed has to be set during the position control stage of the position-speed switching control. <br> - The value is reset to "0" when the next operation starts. |
| Setting value | ■Set with a decimal. <br> Example: If "Cd. 25 Position-speed switching control speed change register" is set as " $2000.00 \mathrm{~mm} / \mathrm{min}$ ", the buffer memory stores "200000". |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1530, 1531 <br> Axis 2: 1630, 1631 <br> Axis 3: 1730, 1731 <br> Axis 4: 1830, 1831 |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| 0: mm | 0 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

(24)[Cd.26] Position-speed switching enable flag

| Item | Description |
| :---: | :---: |
| Setting details | Set whether the external control signal (external command signal [CHG]: "speed-position, position-speed switching request" is selected) is enabled or not. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1532 <br> Axis 2: 1632 <br> Axis 3: 1732 <br> Axis 4: 1832 |

## (25)[Cd.27] Target position change value (new address)


(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| $0: \mathrm{mm}$ | ■ABS, INC |
|  | -2147483648 to $+2147483647\left(\times 10^{-1} \mu \mathrm{~m}\right)$ |
| 1: inch | ■ABS, INC |
|  | -2147483648 to $+2147483647\left(\times 10^{-5} \mathrm{inch}\right)$ |
|  | ■ABS |
| 2: degree | 0 to $35999999\left(\times 10^{-5}\right.$ degree $)$ |
|  | ■NC |
|  | -2147483648 to $+2147483647\left(\times 10^{-5}\right.$ degree $)$ |
| 3: pulse | ■ABS, INC |
|  | -2147483648 to $+2147483647($ pulse $)$ |

(26)[Cd.28] Target position change value (new speed)

| Item | Description |  |  |
| :---: | :---: | :---: | :---: |
| Setting details | - When changing the target position during a positioning operation, use this data item to specify a new speed. ( $W$ Page 228, Section 5.7.2 (26) (a)) <br> - The speed will not change if " 0 " is set. |  |  |
| Setting value | ■Set with a decimal. <br> $\diamond$ Conversion into an integer value $\times 10^{n}$ <br> Setting value (Decimal) <br> R <br> Example: "Cd. 28 Target position change value (speed)" is set as "10000.00", the buffer memory stores "1000000". | $\begin{aligned} & \text { it co } \\ & \hline \mathrm{n} \\ & \hline-2 \\ & \hline-3 \\ & \hline-3 \\ & \hline 0 \end{aligned}$ | sion table ( Cd.28) |
| Default value | 0 |  |  |
| Storage buffer memory address | Axis 1: 1536, 1537 <br> Axis 2: 1636, 1637 <br> Axis 3: 1736, 1737 <br> Axis 4: 1836, 1837 |  |  |

(a) Setting range

| [Pr.1] Unit setting | Setting range |
| :--- | :--- |
| 0: mm | 0 to $2000000000\left(\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right)$ |
| 1: inch | 0 to $2000000000\left(\times 10^{-3 \mathrm{inch} / \mathrm{min})}\right.$ |
| 2: degree | 0 to $2000000000\left(\times 10^{-3} \mathrm{degree} / \mathrm{min}\right)$ |
| 3: pulse | 0 to $4000000(\mathrm{pulse} / \mathrm{s})$ |

## (27)[Cd.29] Target position change request flag

| Item | Description |
| :---: | :---: |
| Setting details | Requests the target position change during a positioning operation. |
| Setting value | -Set with a decimal. <br> The LD75 resets the value to "0" automatically when the new target position value has been written. (This indicates the completion of target position change request.) |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1538 <br> Axis 2: 1638 <br> Axis 3: 1738 <br> Axis 4: 1838 |

(28)[Cd.30] Simultaneous starting axis start data No. (axis 1 start data No.)

| Item | Description |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Setting details | •Use these data items to specify a start data No. for each axis that has to start simultaneously. <br> • Set "0" to any axis that should not start simultaneously. |  |  |  |  |  |
|  | Setting <br> value |  |  |  |  |  |
| Setting value |  |  |  |  |  |  |

(29)[Cd.31] Simultaneous starting axis start data No. (axis 2 start data No.)

| Item | Description |
| :---: | :---: |
| Setting details | - Use these data items to specify a start data No. for each axis that has to start simultaneously. <br> - Set " 0 " to any axis that should not start simultaneously. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1541 <br> Axis 2: 1641 <br> Axis 3: 1741 <br> Axis 4: 1841 |

(30)[Cd.32] Simultaneous starting axis start data No. (axis 3 start data No.)

| Item | Description |
| :---: | :---: |
| Setting details | - Use these data items to specify a start data No. for each axis that has to start simultaneously. <br> - Set "0" to any axis that should not start simultaneously. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1542 <br> Axis 2: 1642 <br> Axis 3: 1742 <br> Axis 4: 1842 |

(31)[Cd.33] Simultaneous starting axis start data No. (axis 4 start data No.)

| Item | Description |
| :---: | :---: |
| Setting details | - Use these data items to specify a start data No. for each axis that has to start simultaneously. <br> - Set " 0 " to any axis that should not start simultaneously. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1543 <br> Axis 2: 1643 <br> Axis 3: 1743 <br> Axis 4: 1843 |

(32)[Cd.34] Step mode

| Item | Description |
| :--- | :--- |
| Setting details | To perform a step operation, use this data item to specify the units by which the stepping should be performed. |
| Setting value | value |
|  |  |

(33)[Cd.35] Step valid flag

| Item | This data item validates or invalidates step operations. |
| :--- | :--- |
| Setting details | Setting |
| value |  |
| Setting value |  |
|  |  |

(34)[Cd.36] Step start information

| Item | Description |
| :---: | :---: |
| Setting details | To continue the step operation when the step function is used, set "1" in this data item. |
| Setting value | ■Set with a decimal. <br> Setting value <br> The LD75 resets the value to " 0 " automatically when processing of the step start request completes. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1546 <br> Axis 2: 1646 <br> Axis 3: 1746 <br> Axis 4: 1846 |

## (35)[Cd.37] Skip command

| Item | Description |
| :---: | :---: |
| Setting details | To skip the current positioning operation, set "1" in this data item. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1547 <br> Axis 2: 1647 <br> Axis 3: 1747 <br> Axis 4: 1847 |

(36)[Cd.38] Teaching data selection

| Item | Description |
| :---: | :---: |
| Setting details | - This data item specifies the teaching result write destination. <br> - Data are cleared to " 0 " when the teaching ends. |
| Setting value | Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1548 <br> Axis 2: 1648 <br> Axis 3: 1748 <br> Axis 4: 1848 |

(37)[Cd.39] Teaching positioning data No.

| Item | Description |
| :---: | :---: |
| Setting details | - This data item specifies data to be produced by teaching. <br> - If a value ( 1 to 600 ) is set, a teaching operation is done. <br> - The value is cleared to "0" when the LD75 is initialized, when a teaching operation completes, and when an illegal value ( 601 or higher) is entered. |
| Setting value | ■Set with a decimal. <br> Setting value <br> Teaching positioning data No. 1 to 600 |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1549 <br> Axis 2: 1649 <br> Axis 3: 1749 <br> Axis 4: 1849 |

(38)[Cd.40] ABS direction in degrees

| Item | Description |
| :---: | :---: |
| Setting details | This data item specifies the ABS moving direction carrying out the position control when "degree" is selected as the unit. |
| Setting value | ■Set with a decimal. |
| Default value | 0 |
| Storage buffer memory address | Axis 1: 1550 <br> Axis 2: 1650 <br> Axis 3: 1750 <br> Axis 4: 1850 |

## CHAPTER 6 PRogram used for positioning CONTROL

### 6.1 Precautions for Creating Program

The common precautions to be taken when writing data from the CPU module to the LD75 buffer memory are described below.

When diverting any of the program examples introduced in this manual to the actual system, fully verify that there are no problems in the controllability of the target system.

## (1) Reading/writing the data

Setting the data explained in this chapter (various parameters, positioning data, block start data) should be set using GX Works2.
When set with the program, many programs and devices must be used. This will not only complicate the program, but will also increase the scan time.
When rewriting the positioning data during continuous path control or continuous positioning control, rewrite the data four positioning data items before the actual execution.
If the positioning data is not rewritten before the positioning data four items earlier is executed, the process will be carried out as if the data was not rewritten.

## (2) Restrictions to speed change execution interval

Provide an interval of 100 ms or more when changing the speed or performing override function with the LD75.

## (3) Process during overrun

Overrun is prevented by the setting of the upper/lower stroke limits with the detail parameter 1.
However, this applies only when the LD75 is operating correctly.
It is recommended to create an external circuit including a boundary limit switch to ensure the whole system safety as follows: the external circuit powers OFF the motor when the boundary limit switch operates.

## (4) System configuration

Unless particularly designated, the program for the following system is shown in this chapter and subsequent. In the program, the unit of " $0(\mathrm{~mm}$ )" is set for the basic parameter 1.
Refer to Page 239, Section 6.2 for the application of the devices to be used.
(a) When using the LD75 in a standard system configuration

| Module name and model of modules used |  |
| :--- | :--- |
| Power supply module (L61P) | Input module (LX41C4, LX40C6) |
| CPU module (L26CPU-BT) | Output module (LY41NT1P) |
| Positioning module (LD75P4) | END cover (L6EC) |


(b) When the LD75 is connected to head module

| Module name and model of modules used |  |
| :--- | :--- |
| Master station | Intelligent device station |
| Power supply module (L62P) | Power supply module (L61P) |
| CPU module (Q10UDHCPU) | Head module (LJ71GF15-T2) |
| Master/local module (QJ71GF11-T2) | Positioning module (LD75P4) |
| Input module (QX41, QX40) | END cover (L6EC) |



Network No. 1

## (5) Communication with LD75

There are two methods for communication with LD75 using the program: a method using an "intelligent function device" and a method using a FROM/TO instruction.
In the program in this chapter and subsequent, the program example using the "intelligent function device" is shown without using an FROM/TO instruction for communication with LD75.
When using the FROM/TO instruction for communication with LD75, change the circuit incorporating the "intelligent function device" as follows.

- When the circuit uses the "intelligent function device" on the destination (D) side of a MOV instruction, change the instruction to a TO instruction.

- When the circuit uses the "intelligent function device" on the source (S) side and the destination (D) side of a MOV instruction, change the instruction to a FROM instruction and a TO instruction.

- When the circuit uses the "intelligent function device" for a comparison instruction, change the instruction to a FROM instruction and a comparison instruction.

- When the circuit uses the "intelligent function device" for a WAND instruction, change the instruction to a FROM instruction and a WAND instruction.



## Remark

Refer to [] MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals) for the intelligent function devices.
Refer to [] MELSEC-Q/L Programming Manual (Common Instruction) for detail instructions used in those programs shown in this chapter and subsequent.

### 6.2 List of Devices Used

In the program examples shown in this chapter and subsequent, the application of the devices used are as follows.
(1) When using the LD75 in a standard system configuration
(a) Inputs/outputs, external inputs/external outputs, and internal relays of LD75

| Device name |  | Device |  |  |  | Application | Details when ON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |
| Inputs/outputs of LD75 | Input | X0 |  |  |  | LD75 READY signal | Preparation completed |
|  |  | X1 |  |  |  | Synchronization flag | LD75 buffer memory accessible |
|  |  | X4 | X5 | X6 | X7 | M code ON signal | M code outputting |
|  |  | X8 | X9 | XA | XB | Error detection signal | Error detected |
|  |  | XC | XD | XE | XF | BUSY signal | BUSY (operating) |
|  |  | X10 | X11 | X12 | X13 | Start complete signal | Start completed |
|  |  | X14 | X15 | X16 | X17 | Positioning complete signal | Positioning completed |
|  | Out-put | Y0 |  |  |  | PLC READY signal | CPU module preparation completed |
|  |  | Y4 | Y5 | Y6 | Y7 | Axis stop signal | Requesting stop |
|  |  | Y8 | YA | YC | YE | Forward run JOG start signal | Starting forward run JOG |
|  |  | Y9 | YB | YD | YF | Reverse run JOG start signal | Starting reverse run JOG |
|  |  | Y10 | Y11 | Y12 | Y13 | Positioning start signal | Requesting start |




| Device name | Device |  |  |  | Application | Details when ON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |
| Internal relay | M27 |  |  |  | Flash ROM write command storage | Flash ROM write command held |
|  | M28 | - |  |  | Error reset | Error reset completed |
|  | M29 |  |  |  | Stop command pulse | Stop commanded |
|  | M30 |  |  |  | Target position change command pulse | Target position change commanded |
|  | M31 |  |  |  | Target position change command storage | Target position change command held |
|  | M32 |  |  |  | ZP.PSTRT1 instruction complete device | ZP.PSTRT1 instruction completed |
|  | M33 |  |  |  | ZP.PSTRT1 instruction failure device | ZP.PSTRT1 instruction failed |
|  | M34 |  |  |  | ZP.TEACH1 instruction complete device | ZP.TEACH1 instruction completed |
|  | M35 |  |  |  | ZP.TEACH1 instruction failure device | ZP.TEACH1 instruction failed |
|  | M36 |  |  |  | ZP.PINIT instruction complete device | ZP.PINIT instruction completed |
|  | M37 |  |  |  | ZP.PINIT instruction failure device | ZP.PINIT instruction failed |
|  | M38 |  |  |  | ZP.PFWRT instruction complete device | ZP.PFWRT instruction completed |
|  | M39 |  |  |  | ZP.PFWRT instruction failure device | ZP.PFWRT instruction failed |
|  | M40 |  |  |  | Absolute position restoration instruction pulse | Absolute position restoration commanded |
|  | M41 |  |  |  | Absolute position restoration instruction storage | Absolute position restoration instruction held |
|  | M42 |  |  |  | Z.ABRST instruction complete device | Z.ABRST instruction completed |
|  | M43 |  |  |  | Z.ABRST instruction failure device | Z.ABRST instruction failed |
|  | M50 |  |  |  | Basic parameter 1 setting complete device | Basic parameter 1 setting completed |
|  | M51 |  |  |  | OPR basic parameter setting complete device | OPR basic parameter setting completed |

## (b) Data registers and timers





## (2) When the LD75 is connected to head module

(a) Inputs/outputs, external inputs/external outputs, and internal relays of LD75

| Device name |  | Device |  |  |  | Application | Details when ON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |
| Inputs/outputs of LD75 | Input | X1000 |  |  |  | LD75 READY signal | Preparation completed |
|  |  | X1001 |  |  |  | Synchronization flag | LD75 buffer memory accessible |
|  |  | X1004 | X1005 | X1006 | X1007 | M code ON signal | M code outputting |
|  |  | X1008 | X1009 | X100A | X100B | Error detection signal | Error detected |
|  |  | X100C | X100D | X100E | X100F | BUSY signal | BUSY (operating) |
|  |  | X1010 | X1011 | X1012 | X1013 | Start complete signal | Start completed |
|  |  | X1014 | X1015 | X1016 | X1017 | Positioning complete signal | Positioning completed |
|  | Out-put | Y1000 |  |  |  | PLC READY signal | CPU module preparation completed |
|  |  | Y1004 | Y1005 | Y1006 | Y1007 | Axis stop signal | Requesting stop |
|  |  | Y1008 | Y100A | Y100C | Y100E | Forward run JOG start signal | Starting forward run JOG |
|  |  | Y1009 | Y100B | Y100D | Y100F | Reverse run JOG start signal | Starting reverse run JOG |
|  |  | Y1010 | Y1011 | Y1012 | Y1013 | Positioning start signal | Requesting start |
| Inputs of master/local module |  | X00 |  |  |  | Module failure | Module failure |
|  |  | X01 |  |  |  | Own station data link status | Data link in progress |
|  |  | X03 |  |  |  | Other stations data link status | Faulty station found |
|  |  | X0F |  |  |  | Module ready | Available for module operation |






(b) Data registers, timers, and nesting



（c）Link special relays and link special registers of master／local module

| Device name | Device |  |  |  | Application | Details when ON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |
| Link Special Relay | SB0047 | － |  |  | Baton pass status（own station） | Baton pass status（own station） failed |
|  | SB0049 |  |  |  | Data link status（own station） | Data link status（own station）failed |
| Link Special Register | SW00A0 to SWOOA7 | － |  |  | Baton pass status（each station） | Baton pass status（each station） failed |
|  | SWOOB0 to SW00B7 |  |  |  | Data link status（each station） | Data link status（each station）failed |

## 6.3 Creating a Program

The "positioning control operation program" actually used is explained in this chapter. The functions and programs explained in PART 2 are assembled into the "positioning control operation program" explained here. (To monitor the control, add the required monitor program that matches the system. Refer to Page 182, Section 5.6 for details on the monitor items.)

### 6.3.1 General configuration of program

The general configuration of the "positioning control operation program" is shown below.


### 6.3.2 Positioning control operation program

The various programs that configure the "positioning control operation program" are shown below. When creating the program, refer to the explanation of each program and positioning program examples ( $\leftrightarrows$ Page 261, Section 6.4), and create an operation program that matches the positioning system. (Numbers are assigned to the following programs. Configuring the program in the order of these numbers is recommended.)

(1) F Page 286, Section 6.5.1 (1)
(2) Fage 286, Section 6.5.1 (2)



| (8) | W | Page 543, Section 12.5.1 | (13) | $\longmapsto$ | Page 586, Section 12.7.4 | (18) | Page 610, Section 13.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (9) | $\square$ | Page 550, Section 12.5.2 | (14) | $\square$ | Page 296, Section 6.5.4 | (19) 叩 | Page 612, Section 13.3 |
| (10) | $\longmapsto$ | Page 553, Section 12.5.3 | (15) | ए | Page 559, Section 12.5.5 | (20) | Page 301, Section 6.5.6 |
| (11) | $\longmapsto$ | Page 572, Section 12.7.1 | (16) | $\longmapsto$ | Page 620, Section 14.3 |  |  |
| (12) | $\longmapsto$ | Page 577, Section 12.7.2 | (17) | W | Page 298, Section 6.5.5 |  |  |

*1 This program cannot be executed by a dedicated instruction when the LD75 is connected to head module.
*2 This program cannot be used when the LD75 is connected to head module.

### 6.4 Positioning Program Examples

### 6.4.1 When using the LD75 in a standard system configuration

## (1) Program example

An example of the "Axis 1" positioning program is given in this section.
[No.1] to [No.3] parameter and data setting program

- When setting the parameters or data with the program, set them in the LD75 using the TO instruction from the CPU module. (Carry out the settings while the
PLC READY signal [Y0] is OFF.)
- When setting the parameters or data with GX Works2, the [No.1] to [No.3] program is not necessary.

* Parameter setting program for speed-position switching control (ABS mode)
* <For axis 1>
* (Not needed when speed-position switching control (ABS mode) is not executed)
* <X4D turns ON before startup>

| 35 |  | [TOP | HO | K0 | K2 | K1 |  | <Setting of unit setting (2: degree)> |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | [DTOP | H0 | K18 | K0 | K1 |  | <Software stroke limit upper limit = 0> |
|  |  | [DTOP | H0 | K20 | KO | K1 | - | <Software stroke limit lower limit = 0> |
|  |  | [TOP | HO | K30 | K1 | K1 | - | < Current feed value during speed control = 1> |
|  |  | [TOP | H0 | K34 | K2 | K1 |  | <Speed-position function selection (ABS mode)> |

No. 2 Positioning data setting program
(For positioning data No. 1 <axis 1>)
<Positioning identifier>
Operation pattern: Positioning complete
Control system: 1-axis linear control (ABS)
Acceleration time No.: 1, deceleration time No.: 2


* Positioning option enable/disable parameter setting program
(The program is not required when positioning option is not used.)


U0\

* No. 2 Positioning data setting program
* (For using positioning option)
* (For positioning data No. 1 <axis 1>)
* <Positioning identifier>
* Operation pattern: Positioning complete
* Control system: 1-axis linear control (ABS)

Acceleration time No.: 1, deceleration time No.: 2
<Positioning option>

* M code ON signal output timing: WITH mode (1)
* ABS direction in degrees: 0
* Interpolation speed designation method: 0


Positioning option enable setting

Setting of positioning identifier
Setting of M code (9843)

Setting of dwell time (300ms)

Setting of positioning option

Setting of command speed (180.00mm/min)

Setting of positioning address $(412.6 \mu \mathrm{~m})$

Setting of arc address ( $0.0 \mu \mathrm{~m}$ )

Setting of positioning data No. 1 to the LD75

## 6

* No. 3 Block start data setting program

Block start data of start block 0 (axis 1)
For setting of points 1 to 5
(Conditions)
Shape: Continued at points 1 to 4 , ended at point 5
Special start instruction: Normal start at all of points 1 to 5
<Positioning data are already preset>
[Setting of shape and start data No.]

*

* [Setting of special start instruction to normal start]

<Setting of normal start>

(7) Fast OPR command and fast OPR command storage OFF (Not required when fast OPR is not used)

<Fast OPR command OFF>
* (2) When positioning start signal (Y10) is used
(When fast OPR is not made, contacts of M3 and M4 are not needed.)
(When M code is not used, contact of X04 is not needed.)
(When JOG operation/inching operation is not performed, contact of M7 is not needed.)






* No. 21 Target position change program

* No. 22 Absolute position restoration program
* (1) Absolute position restoration command acceptance

(2) Setting of transmit data to servo-amplifier and confirmation of absolute position restoration completion ABRST1 instruction completed when M42 is ON and M43 is OFF Absolute position data restoration completed when status $=0$.

$*$
$*$
$*$
(3) ABS data setting and ABRST1 instruction execution


[^1]

### 6.4.2 When the LD75 is connected to head module

When the LD75 is connected to head module, settings described in (1) and (2) is required.

## (1) Setting on master station

(a) Create a project on GX Works2.

Select "QCPU (Q mode)" for "PLC Series" and select "Q10UDH" for "PLC Type".
(1) Project window $\Rightarrow$ [New Project]

| New Project |  |
| :--- | :--- |
| Project Type: | C Use Label |
| Simple Project |  |
| PLC Series: |  |
| QCPU (Q mode) |  |
| PLC Iype: |  |
| Q10UDH |  |
| Language: |  |

(b) Display the network parameter setting screen and configure the setting as follows.

2 Project window $\Rightarrow$ [Parameter] $\Rightarrow$ [Network Parameter $] \Rightarrow$ [Ethernet/CC IE/MELSECNET]

(c) Display the Network Configuration Setting screen and configure the setting as follows.

Project window $\Rightarrow[$ Parameter $] \Rightarrow[$ Network Parameter $] \Rightarrow[$ Ethernet/CC IE/MELSECNET $] \Rightarrow$ [Network Configuration Setting] button

(d) Display the Refresh Parameter setting screen and configure the setting as follows.
(1) Project window $\Rightarrow$ [Parameter] $\Rightarrow$ [Network Parameter $] \Rightarrow$ [Ethernet/CC IE/MELSECNET] $\Rightarrow$ [Refresh Parameters] button

(e) Write the set parameter to the CPU module of the master station and reset the CPU module, or turn off and then on the programmable controller power supply.
(Online] $\Rightarrow$ [Write to PLC]


## (2) Setting on intelligent device station

(a) Create a project on GX Works2.

Select "LCPU" for "PLC Series" and select "LJ72GF15-T2" for "PLC Type".[Project] $\Rightarrow$ [New Project]

(b) Display the PLC Parameter setting screen and configure the setting as follows.

7 Project window $\Rightarrow$ [Parameter] $\Rightarrow$ [PLC Parameter] $\Rightarrow$ "Communication Head Setting"


## (3) Program example

An example of the "Axis 1" positioning program is given in this section.
[No.1] to [No.3] parameter and data setting program

- When setting the parameters or data with the program, set them in the LD75 using the TO instruction from the CPU module. (Carry out the settings while the PLC READY signal [YO] is OFF.)
- When setting the parameters or data with GX Works2, the [No.1] to [No.3] program is not necessary.
* Master station status check program

```
* No. 1 Parameter setting program
* (1) For basic parameter 1 〈axis 1 〉
```


${ }^{*}$（2）For OPR basic parameters 〈axis 1〉


D200
＜Setting of near－point dog method to OPR method＞
＜Setting of foward direction to OPR direction＞
＜Setting of 0 to OP address＞
＜Setting of $50.00 \mathrm{~mm} / \mathrm{min}$ to OPR speed＞
＜Setting of $15.00 \mathrm{~mm} / \mathrm{min}$ to creep speed＞
＜Setting OPR retry so that it may be performed＞
＜Writing of OPR basic parameters to LD75＞
＜OPR basic parameter setting completion＞
＜Speed－position switching control（ABS） parameter setting command ON＞
＜OPR basic parameter setting command OFF＞
＊
＊Parameter setting program for speed－position switchin
＊control（ABS mode）＜For axis 1〉
＊（Not needed when speed－position switching control
＊（ABS mode）is not executed）＜X4D turns ON before starup＞



${ }^{*}$＊No．
＊No． 2 Positioning data setting program
＊（For positioning data No． 1 〈axis 1＞）
＊〈Positioning identifier〉
＊Operation pattern：Positioning complete
＊Control system：1－axis linear control（ABS）
＊Acceleration time No．： 1 ，deceleration time No．： 2


| 〈Setting of M code（9843）＞ <br> ＜Setting of dwell time（ 300 ms ）＞ <br> 〈（Dummy data）＞ <br> 〈Setting of command speed（ $180.00 \mathrm{~mm} / \mathrm{min}$ ）＞ <br> ＜Positioning address（ $412.6 \mu \mathrm{~m}$ ）setting＞ <br> $\langle$ Setting of arc address $(0.0 \mu \mathrm{~m})\rangle$ <br> ＜Writing of positioning data No．1＞ <br> 〈Block start data setting command ON 〉 <br> ＜Positioning data setting command OFF＞ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

＊
＊No． 3 Block start data setting program
＊Block start data of start block 0 （axis 1）
＊For setting of points 1 to 5
＊（Conditions）
＊Shape：Continued at points 1 to 4，ended at point 5
＊Special start instruction：Normal start at all of points 1 to 5
＊〈Positioning data are already preset〉
＊［Setting of shape and start data No ．］


D69
D70

D71

D72

M5040

M105

M104
＜Setting of continue and start data No．1＞
＜Setting of continue and start data No．2＞
＜Setting of continue and start data No．5＞
＜Setting of continue and start data No．10＞
＜Setting of end and start data No．15＞
＜Writing of block start data to LD75＞
Block start（special start）setting command ON＞
＜Block start data setting command OFF＞
*

* [Setting of special start instruction to normal start]

${ }_{*}^{*}$
* No. 4 OPR request OFF program


| M5100 | ] | <Status reading> |
| :---: | :---: | :---: |
| D0 | 1 | <OPR request flag ON/OFF extraction> |
| mo | 1 | <OPR request OFF command ON > |
| M2 | 1 | <OPR request OFF command storage 0FF> |
| D81 | 1 | 〈OPR request flag 0FF setting> |
| M5110 | 1 | <Writing of OPR request flag OFF setting> |
| мо | 1 | <OPR request OFF command OFF> |
| M60 | 1 | <OPR request OFF command monitoring pulse ON> |
| M5120 | 1 | <Status reading> |
| M60 | 7 | <OPR request OFF command monitoring pulse OFF> |
| M60 | ] | <OPR request OFF command monitoring pulse ON> |

* No. 5 External command function valid setting program

* (2) Fast OPR

* 
* 4 )
* (4) Speed-position switching operation (positioning data No. 2)
* (In the ABS mode, writing of new movement amount is not needed)

|  |  |  |  |  |  |  | [MOVP | K2 | D32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 577 | $\times 27$ |  |  |  |  |  |  |  |  |
|  | [ZP.REMTO | "J1" | K2 | K1 | но | K1528 | D86 | K1 | M5140 |
| 599 | $\stackrel{\times 28}{1}$ |  |  |  |  |  | [MOVP | ко | D86 |
|  | [ZP.REMTO | "J1" | K3 | K1 | H0 | K1528 | D86 | K1 | M5140 |
| 621 |  | "J1" | K4 | K1 | HO | K1526 | D3 | K2 | M5150 |

＊
＊（5）Position－speed switching operation（positioning data No．3）

＊（6）High－level positioning control

＊（Not required when fast OPR is not used）

＜Fast OPR command OFF〉

〈Fast OPR command storage OFF〉
＊No． 8 Positioning start prorgam
＊When positioning start signal（ Y 1010 ）is used
＊（When fast OPR is not used，M3 and M4 contacts are not needed．）
$*$（When M code is not used，X1004 contact is not needed．）
＊（When JOG operation／inching operation is not used．
＊M7 contact is not needed）
＊（When manual pulse generator is not used，M3 is not needed．）

M5
M6

M5180
Y1010
M6
Y1010
］＜Positioning start command pulse＞
＊
＊No． 9 M code OFF program
＊（Not required when $M$ code is not used）
（205
D90
＜M code OFF request setting〉
＜Writing of $M$ code OFF request＞
＊
＊No． 10 JOG operation setting program

＊
No． 11 Inching operation setting program

＊
＊No． 12 JOG operation／inching operation execution program

＜JOG operation speed（ $100.00 \mathrm{~mm} / \mathrm{min}$ ）setting＞
〈Setting of 0 for inching movement amount〉
〈Writing of data for JOG operation＞

〈Inching movement amount（ $1.0 \mu \mathrm{~m}$ ）setting〉
〈Writing of inching movement amount＞

〈JOG／inching operating flag ON＞

〈JOG／inching operation completed＞
＜Forward run JOG／inching operation execution＞
＜Reverse run JOG／inching operation execution＞
＊
No． 13 Manual pulse generator operation program

| 884 | $1$ |  |  |  |  |  | ［PLS |  | M8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 890 | $\stackrel{\text { M8 }}{1 /)_{1}^{\mathrm{x} 1000}}$ |  |  |  |  |  | ［DMOVP <br> ［MOVP | K1 <br> K1 | D8 |
|  |  |  |  |  |  |  |  |  | D10 |
|  |  |  |  |  |  |  |  |  | －Ko |
|  |  |  |  |  |  |  |  | ［SET | M9 |
|  | －ко $\rightarrow$［ZP．REMTO | ＂ 11 ＂ | K1 | K1 | но | K1522 | D8 | K3 | M5230 |
| 918 | $\stackrel{x 31}{-}$ |  |  |  |  |  |  | PLS | M10 |

＜Manual pulse generator operation command
pulse＞
＜Manual pulse generator 1 pulse input
magnification setting＞
＜Manual pulse generator operation enable write＞
＜Manual pulse generator operating flag ON＞
＜Writing of data for manual pulse generator＞
＜Manual pulse generator operation disable
command pulse＞



＊No． 20 Continuous operation interrupt program

＊No

＜Skip command pulse〉

〈Skip command ON storage〉

〈Skip command setting〉

〈Writing of skip command setting〉
〈Skip command storage OFF〉
〈Skip command monitoring ON 〉
＜Reading of skip command setting＞
＜Skip command monitoring OFF〉

〈Skip command monitoring ON〉

## 6

＜Continuous operation interrupt command pulse＞
＜Continuous operation interrupt reques setting＞
＜Writing of continuous operation interrupt request setting＞

＜Target position change command pulse＞
＜Target position change command storage＞
＜Setting of target position address to $300 \mu \mathrm{m>}$
${ }_{*}^{*}$ No
*No. 23 Restart program

*
*
$*$

<Parameter initialization command pulse>
<Parameter initialization command storage>
<Standby for PLC READY output to LD75>
<Parameter initialization command setting>
<Writing of parameter initialization command>
<Parameter initialization command monitoring
pulse ON>
<Reading of parameter initialization command
setting>
<Parameter initialization command monitoring
pulse OFF>
<Parameter initialization command storage OFF>
<Parameter initialization command monitoring
pulse ON>

## *

* No. 26 Error reset program

] 〈Reading of error code>



## (1) OPR request OFF program

This program forcibly turns OFF the "OPR request flag" ([Md.31] Status: b3) which is ON.
When using a system that does not require OPR, assemble the program to cancel the "OPR request" made by the LD75 when the power is turned ON, etc.
(a) Data required to be set

Set the following data to use the OPR request flag OFF request.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.19] | OPR request flag OFF request |  | 1 | Set to "1: Turn OPR request flag OFF". | 1521 | 1621 | 1721 | 1821 |

Refer to Page 211, Section 5.7 for the information on detail settings.
(b) Time chart for OPR request OFF


## (2) External command function valid setting program

This program is used to validate the "external command signal" beforehand when using the external command functions (external start, speed change, speed-position switching, position-speed switching, skip). (Set which function to use beforehand in "[Pr.42] External command function selection".)
Set the following data to validate the "external command signal".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.8] | External command valid |  | 1 | Set to "1: Validate external command". | 1505 | 1605 | 1705 | 1805 |

Refer to Page 211, Section 5.7 for the information on detail settings.

### 6.5.2 Start details setting program

This program sets which control, out of "OPR", "major positioning control" or "high-level positioning control" to execute. For "high-level positioning control", "fast OPR", "speed-position switching control" and "position-speed switching control", add the respectively required program.
(Refer to Page 456, CHAPTER 10 for details on starting the "high-level positioning control".)

## (1) Procedures for setting the starting details

1. Set the "positioning start No." corresponding to the control to be started in "[Cd.3] Positioning start No.".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.3] | Positioning start No. |  | $\rightarrow$ | 1 to 600: Positioning data No. <br> 9001: Machine OPR <br> 9002: Fast OPR <br> 9003: Current value changing <br> 9004: Simultaneous start <br> 7000 to 7004: Block No. (For "high-level positioning control") | 1500 | 1600 | 1700 | 1800 |

Refer to Page 211, Section 5.7 for the information on detail settings.
2. For "high-level positioning control", set the "positioning start point No." of the block to be started in "[Cd.4] Positioning start pointing No.".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.4] | Positioning start pointing No. |  | $\rightarrow$ | 1 to 50: Point No. of block start data | 1501 | 1601 | 1701 | 1801 |

Refer to Page 211, Section 5.7 for the information on detail settings.
3. Set the following control data for "speed-position switching control (INC mode)".

Set "[Cd.23] Speed-position switching control movement amount change register" as required. Setting is not required in the ABS mode.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.23] | Speed-position switching control movement amount change register |  | $\rightarrow$ | Set the new value when the position control's movement amount is to be changed during speed control. | $\begin{aligned} & 1526 \\ & 1527 \end{aligned}$ | $\begin{aligned} & 1626 \\ & 1627 \end{aligned}$ | $\begin{aligned} & 1726 \\ & 1727 \end{aligned}$ | $\begin{aligned} & 1826 \\ & 1827 \end{aligned}$ |
| [Cd.24] | Speed-position switching enable flag | 1 | When "1" is set, the speed-position switching signal will be validated. | 1528 | 1628 | 1728 | 1828 |

Refer to Page 211, Section 5.7 for the information on detail settings.
4. For "position-speed switching control", set the control data shown below.

As required, set the "[Cd.25] Position-speed switching control speed change register".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.25] | Position-speed switching control speed change register |  | $\rightarrow$ | Used to set a new value when speed is changed during positioning control. | $\begin{aligned} & 1530 \\ & 1531 \end{aligned}$ | $\begin{aligned} & 1630 \\ & 1631 \end{aligned}$ | $\begin{aligned} & 1730 \\ & 1731 \end{aligned}$ | $\begin{aligned} & 1830 \\ & 1831 \end{aligned}$ |
| [Cd.26] | Position-speed switching enable flag | 1 | To validate position-speed switching signal, this is set to 1. | 1532 | 1632 | 1732 | 1832 |

Refer to Page 211, Section 5.7 for the information on detail settings.

### 6.5.3

This program is used to start the control with start commands.
The control can be started with the following two methods.

- Starting by inputting positioning start signal [Y10, Y11, Y12, Y13]
- Starting by inputting external command signal


1) Set the "positioning start No." corresponding to the control to be started in "[Cd.3] Positioning start No.". (In the above example, set positioning data No. "1".)
2) Input the positioning start signal [Y10] or the external command signal.
3) The positioning data No. "1" will start.
[Starting conditions]
To start the control, the following conditions must be satisfied.
The necessary start conditions must be incorporated in the program so that the control is not started when the conditions are not satisfied.

*1 When the synchronous setting of the CPU module is made in the nonsynchronous mode, this must be provided as an interlock.
If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation.

## (1) Starting by inputting positioning start signal

## (a) Operation when starting

- When the positioning start signal turns ON, the start complete signal and BUSY signal turn ON, and the positioning operation starts. It can be seen that the axis is operating when the BUSY signal is ON.
- When the positioning start signal turns OFF, the start complete signal also turns OFF. If the positioning start signal is ON even after positioning is completed, the start complete signal will remain ON.
- If the positioning start signal turns ON again while the BUSY signal is ON, the warning "Start during operation (warning code: 100)" will occur.
- The process taken when positioning is completed will differ depending on cases below.

■When next positioning is not to be carried out

- If a dwell time is set, the system will wait for the set time to pass, and then positioning will be completed.
- When positioning is completed, the BUSY signal will turn OFF and the positioning complete signal will turn ON. However, when using speed control or when the positioning complete signal ON time is " 0 ", the signal will not turn ON.
- When the positioning complete signal ON time is passed, the positioning complete signal will turn OFF.

■When next positioning is to be carried out

- If a dwell time is set, the system will wait for the set time to pass.
- When the set dwell time is passed, the next positioning will start.



## Point ${ }^{\circ}$

The BUSY signal [XC, XD, XE, XF] turns ON even when position control of movement amount 0 is executed. However, since the ON time is short, the ON status may not be detected in the program.
(The ON status of the start complete signal [X10, X11, X12, X13], positioning complete signal [X14, X15, X16, X17] and M code ON signal [ $\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7$ ] can be detected in the program.)

## (b) Starting time chart

The time chart for starting each control is shown below.

- Time chart for starting "machine OPR"

- Time chart for starting "fast OPR"

- Time chart for starting "major positioning control"

- Time chart for starting "speed-position switching control"

- Time chart for starting "position-speed switching control"

(c) Machine OPR operation timing and process time

[Normal timing time]

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ |
| :---: | :---: | :---: | :---: |
| 0.2 to 1.1 ms | 0.4 to 1.3 ms | 0 to 0.9 ms | 0 to 0.9 ms |

- The t 1 timing time could be delayed depending on the operating conditions of the other axis.
(d) Position control operation timing and process time

*1 When the positioning start signal turns ON, if the positioning complete signal is already ON, the positioning complete signal will turn OFF when the positioning start signal turns ON.
[Normal timing time]

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ | $\mathbf{t 5}$ | $\mathbf{t 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 to 1.6 ms | 0 to 0.9 ms | 0 to 0.9 ms | 0.4 to 1.3 ms | 0 to 0.9 ms | Follows parameters |

- The t 1 timing time could be delayed depending on the operating conditions of the other axis.


## (2) Starting by inputting external command signal

When starting positioning control by inputting the external command signal, the start command can be directly input into the LD75. This allows the variation time equivalent to one scan time of the CPU module to be eliminated. This is an effective procedure when operation is to be started as quickly as possible with the start command or when the starting variation time is to be suppressed. To start positioning control by inputting the external command signal, set the "data required to be set" and then turn ON the external command signal.

## (a) Restrictions

When starting by inputting the external command signal, the start complete signal [ $\mathrm{X} 10, \mathrm{X} 11, \mathrm{X} 12, \mathrm{X} 13]$ will not turn ON.
(b) Data required to be set

To execute positioning start with the external command signal, set parameter ([Pr.42]) beforehand, and validate the "external command signal" with the "External command function valid setting program (program No. 5)".

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | Set to "0: External positioning start". | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.42] | External command function <br> selection | 1 | Set to "1: Validate external command". | 62 | 212 | 362 | 512 |
| [Cd.8] | External command valid | 1505 | 1605 | 1705 | 1805 |  |  |

Refer to Page 93, CHAPTER 5 for the information on detail settings.

## (c) Starting time chart



### 6.5.4 Continuous operation interrupt program

During positioning control, the control can be interrupted during continuous positioning control and continuous path control (continuous operation interrupt function). When "continuous operation interruption" is execution, the control will stop when the operation of the positioning data being executed ends. To execute continuous operation interruption, set "1: Continuous operation interrupt request" for "[Cd.18] Continuous operation interrupt request".

## (1) Operation during continuous operation interruption



## (2) Restrictions

(a) When the "continuous operation interrupt request" is executed, the positioning will end. Thus, after stopping, the operation cannot be "restarted". When "[Cd.6] Restart command" is issued, a warning "Restart not possible" (warning code: 104) will occur.
(b) Even if the stop command is turned ON after executing the "continuous operation interrupt request", the "continuous operation interrupt request" cannot be canceled. Thus, if "restart" is executed after stopping by turning the stop command ON, the operation will stop when the positioning data No. where "continuous operation interrupt request" was executed is completed.

(c) If the operation cannot be decelerated to a stop because the remaining distance is insufficient when "continuous operation interrupt request" is executed with continuous path control, the interruption of the continuous operation will be postponed until the positioning data shown below.

- Positioning data No. have sufficient remaining distance
- Positioning data No. for positioning complete (pattern: 00)
- Positioning data No. for continuous positioning control (pattern: 01)

(d) When operation is not performed (BUSY signal [XC, XD, XE, XF] is OFF), the interrupt request during continuous operation is not accepted. It is cleared to 0 at a start or restart.
(3) Control data requiring settings

Set the following data to interrupt continuous operation.

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axd. 18 ] | Continuous operation interrupt <br> request | 1 | Set "1: Continuous operation interrupt request". | Axis 2 | Axis 3 | Axis 4 |

Refer to Page 211, Section 5.7 for the information on detail settings.

When a stop factor occurs during position control and the operation stops, the positioning can be restarted from the stopped position to the position control end point by using the "restart command" ([Cd.6] Restart command).
("Restarting" is not possible when "continuous operation is interrupted.") This instruction is efficient when performing the remaining positioning from the stopped position during position control of incremental system such as the INC
Linear 1. (Calculation of remaining distance is not required.)

## (1) Restart operation

After a deceleration stop by the stop command is completed, write "1" to the "[Cd.6] Restart command" with "[Md.26] Axis operation status" is "Stopped" and the positioning restarts.


## (2) Restrictions

- Restarting can be executed only when the "[Md.26] Axis operation status" is "Stopped (the deceleration stop by stop command is completed)". If the axis operation is not "stopped", restarting is not possible. In this case, a warning "Restart not possible" (warning code: 104) will occur, and the process at that time will be continued.
- Restarting can be executed even while the positioning start signal is ON. However, make sure that the positioning start signal does not change from OFF to ON while "[Md.26] Axis operation status" is "Stopped". If the signal is changed from OFF to ON while "[Md.26] Axis operation status" is "Stopped", the normal positioning (the positioning data set in "[Cd.3] Positioning start signal") is started.
- If the PLC READY signal is turned ON from OFF while "[Md.26] Axis operation status" is "Stopped", the positioning cannot be restarted. If restart is requested, a warning "Restart not possible" (warning code: 104) will occur.
- Do not execute restart while the stop command is ON. If restart is executed while stopped, an error "Stop signal ON at start" (error code: 106) will occur, and the "[Md.26] Axis operation status" will change to "Error". Thus, even if the error is reset, the operation cannot be restarted.
- If positioning is ended with the continuous operation interrupt request, the operation cannot be restarted. If restart is requested, a warning "Restart not possible" (warning code: 104) will occur.
- When stopped with interpolation operation, write "1: Restarts" into "[Cd.6] Restart command" for the reference axis, and then restart.
- If any of reference partner axes executes the positioning operation once, a warning "Restart not possible" (warning code: 104) will occur, and the positioning cannot restarts.
- When the machine OPR and fast OPR is stopped, an error "OPR restart not possible" (error code: 209) will occur and the positioning cannot restarts.


## (3) Control data requiring settings

Set the following data to execute restart.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.6] | Restart command |  | 1 | Set "1: Restarts". | 1503 | 1603 | 1703 | 1803 |

Refer to $\longmapsto$ Page 211, Section 5.7 for the information on detail settings.
(4) Starting conditions

The following conditions must be satisfied when restarting. (Assemble the required conditions into the program as an interlock.)

## (a) Operation state

"[Md.26] Axis operation status" is "1: Stopped"
(b) Signal state

|  | Signal name | Signal state |  | Device |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Interface signal | PLC READY signal | ON | CPU module preparation completed | YO |  |  |  |
|  | LD75 READY signal | ON | LD75 preparation completed | X0 |  |  |  |
|  | Synchronization flag*1 | ON | LD75 buffer memory accessible | X1 |  |  |  |
|  | Axis stop signal | OFF | Axis stop signal is OFF. | Y4 | Y5 | Y6 | Y7 |
|  | M code ON signal | OFF | M code ON signal is OFF. | X4 | X5 | X6 | X7 |
|  | Error detection signal | OFF | No error is present | X8 | X9 | XA | XB |
|  | BUSY signal | OFF | BUSY signal is OFF. | XC | XD | XE | XF |
|  | Start complete signal | OFF | Start complete signal is OFF. | X10 | X11 | X12 | X13 |
| External signal | Drive unit READY signal | ON | Drive unit preparation completed | - |  |  |  |
|  | Stop signal | OFF | Stop signal is OFF. | - |  |  |  |
|  | Upper limit (FLS) | ON | Within limit range | - |  |  |  |
|  | Lower limit (RLS) | ON | Within limit range | - |  |  |  |

*1 When the synchronous setting of the CPU module is made in the nonsynchronous mode, this must be provided as an interlock.
When it is made in the synchronous mode, no interlock must be provided in the program because the flag is turned ON when calculation is run on the CPU module.

## (5) Time chart for restarting



### 6.5.6 Stop program

The axis stop signal [Y4, Y5, Y6, Y7] or a stop signal from an external source is used to stop the control.
Create a program to turn ON the axis stop signal $[\mathrm{Y} 4, \mathrm{Y} 5, \mathrm{Y} 6, \mathrm{Y} 7]$ as the stop program.
The process for stopping control is explained below. Each control is stopped in the following cases.

- When each control is completed normally.
- When the drive unit READY signal is turned OFF.
- When a CPU module error occurs
- When the PLC READY signal is turned OFF.
- When an error occurs in the LD75.
- When control is intentionally stopped (Stop signal from CPU module turned ON, stop signal from an external device, etc.)
The stop process for the above cases is shown below. (Excluding the case when control is completed normally.)


## (1) Stop process

(a) OPR control

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status ([Md.26]) after stopping | Stop process |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Machine OPR control |  |  | Fast OPR control |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop |  |
| Fatal stop (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence | Each axis | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.37] Stop group 1 sudden stop selection".) |  |
| Emergency stop <br> (Stop group 2) | CPU module error occurrence | All axes | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.38] Stop group 2 sudden stop selection".) |  |
|  | PLC READY signal OFF |  | Turns OFF |  |  |  |
|  | Error in test function |  | No change |  |  |  |
| Relatively safe stop <br> (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) | Each axis | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.39] Stop group 3 sudden stop selection".) |  |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source | Each axis | No change | Stopped <br> (Standby) |  |  |
|  | "Axis stop signal" ON from CPU module |  |  |  |  |  |
|  | "Stop signal" from GX Works2 |  |  |  |  |  |

(b) Positioning control

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status ([Md.26]) after stopping | Stop process |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Major positioning control |  |  | High-level positioning control |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop |  |
| Fatal stop (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence | Each axis | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.37] Stop group 1 sudden stop selection".) |  |
| Emergency stop <br> (Stop group 2) | CPU module error occurrence | All axes | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.38] Stop group 2 sudden stop selection".) |  |
|  | PLC READY signal OFF |  | Turns OFF |  |  |  |
|  | Error in test function |  | No change |  |  |  |
| Relatively safe stop <br> (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) | Each axis | No change | Error | Deceleration stop/sudden stop <br> (Select with "[Pr.39] Stop group 3 sudden stop selection".) |  |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source | Each axis | No change | Stopped (Standby) |  |  |
|  | "Axis stop signal" ON from CPU module |  |  |  |  |  |
|  | "Stop signal" from GX Works2 |  |  |  |  |  |

(c) Manual control

| Stop cause |  | Stop axis | M code ON signal after stop | Axis operation status ([Md.26]) after stopping | Stop process |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | JOG operation Inching operation |  |  | Manual pulse generator operation |
| Forced stop | Drive unit READY signal OFF |  | Each axis | No change | Error | Immediate stop | Deceleration stop |
| Fatal stop (Stop group 1) | Hardware stroke limit upper/lower limit error occurrence | Each axis | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.37] Stop group 1 sudden stop selection".) | Deceleration stop |
| Emergency stop <br> (Stop group 2) | CPU module error occurrence | All axes | No change | Error | Deceleration stop/sudden stop (Select with "[Pr.38] Stop group 2 sudden stop selection".) | Deceleration stop |
|  | PLC READY signal OFF |  | Turns OFF |  |  |  |
|  | Error in test function |  | No change |  |  |  |
| Relatively safe stop <br> (Stop group 3) | Axis error detection (Error other than stop group 1 or 2) | Each axis | No change | Error | Deceleration <br> stop/sudden stop <br> (Select with "[Pr.39] <br> Stop group 3 sudden <br> stop selection".) | Deceleration stop |
| Intentional stop <br> (Stop group 3) | "Stop signal" ON from external source | Each axis | No change | Stopped (Standby) |  |  |
|  | "Axis stop signal" ON from CPU module |  |  |  |  |  |
|  | "Stop signal" from GX Works2 |  |  |  |  |  |

## (2) Types of stop processes

The operation can be stopped with deceleration stop, sudden stop or immediate stop.

## (a) Deceleration stop

The operation stops with "deceleration time 0 to 3" ([Pr.10], [Pr.28], [Pr.29], [Pr.30]).
Which time from "deceleration time 0 to 3 " to use for control is set in positioning data ([Da.4]).
(b) Sudden stop

The operation stops with "[Pr.36] Sudden stop deceleration time".
(c) Immediate stop

The operation does not decelerate.
The LD75 immediately stops the pulse output, but the operation will coast for the droop pulses accumulated in the drive unit's deviation counter.

| (a) Deceleration stop | (b) Sudden stop | (c) Immediate stop |
| :---: | :---: | :---: |
| Pr. 8 Speed limit value | Pr. 8 Speed limit value |  |
|  |  |  |
|  | Positioning speed |  |
| Actual deceleration time | Actual sudden stop deceleration time |  |
|  |  | Coast for the droop pulses accumulated in the drive unit's deviation counter. |

## Remark

"Deceleration stop" and "sudden stop" are selected with the details parameter 2 "stop group 1 to 3 sudden stop selection". (The default setting is "deceleration stop".)

## (3) Order of priority for stop process

The order of priority for the LD75 stop process is as follows.
Deceleration stop < Sudden stop < Immediate stop
If the deceleration stop command ON (stop signal ON) or deceleration stop cause occurs during deceleration to speed 0 (including automatic deceleration), operation changes depending on the setting of "[Cd.42] Stop command processing for deceleration stop selection".
(Refer to Page 606, Section 12.7.9 for details.)
[Manual control]

- Independently of the [Cd.42] setting, a deceleration curve is re-processed from the speed at stop cause occurrence.
[OPR control, positioning control]
- When [Cd.42] = 0 (deceleration curve re-processing): A deceleration curve is re-processed from the speed at stop cause occurrence.
- When [Cd.42] = 1 (deceleration curve continuation): The current deceleration curve is continued after stop cause occurrence.
If the stop signal ON or stop cause specified for a sudden stop occurs during deceleration, sudden stop process will start at that point. However, if the sudden stop deceleration time is longer than the deceleration time, the deceleration stop process will be continued even if a sudden stop cause occurs during the deceleration stop process.

Ex. The process when a sudden stop cause occurs during deceleration stop is shown below.


Operation will stop immediately if the target reaches the positioning address specified in the currently executed positioning data during deceleration of position control.

### 7.1 Configuration and Roles of LD75 Memory

### 7.1.1 Configuration and roles of LD75 memory

The LD75 is configured of the following two memories.

- Buffer memory: Area that can be directly accessed with program from CPU module
- Flash ROM: Area for backing up data required for positioning

O: Setting and storage area provided, 一: Setting and storage area not provided
Possible: Data is held even when power is turned OFF, Not possible: Data is lost when power is turned OFF

| Memory <br> configuration | Parameter area | Monitor data <br> area | Control data <br> area | Positioning data <br> area (No.1 to <br> $\mathbf{6 0 0})$ | Block start data <br> area (No.7000 to <br> 7004) | PLC CPU memo <br> area | Backup |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $O$ | Not pos-sible |
| Flash ROM | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ | - | Possible |

## (1) Details of areas

- Parameter area: Area where parameters, such as positioning parameters and OPR parameters, required for positioning control are set and stored. (Set the items indicated with [Pr.1] to [Pr.57], [Pr.70], and [Pr.150] for each axis.)
- Monitor data area: Area where positioning system or LD75 operation state is stored. (Set the items indicated with [Md.1] to [Md.48], [Md.50] to [Md.52].)
- Control data area: Area where data for operating and controlling positioning system is set and stored. (Set the items indicated with [Cd.1] to [Cd.42].)
- Positioning data area (No. 1 to 600): Area where positioning data No. 1 to 600 is set and stored. (Set the items indicated with [Da.1] to [Da.10] and [Da.27] to [Da.29] for each positioning data.)
- Block start data area (No. 7000 to 7004): Area where information required only when carrying out block No. 7000 to 7004 high-level positioning is set and stored. (Set the items indicated with [Da.11] to [Da.19].)
- PLC CPU memo area: Area where condition judgment values required for special positioning, etc., are set and stored.



### 7.1.2 Buffer memory area configuration

The LD75 buffer memory is configured of the following types of areas.

| Buffer memory area configuration |  | Buffer memory address |  |  |  | Writing possibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| Parameter area | Basic parameter area | 0 to 15 | 150 to 165 | 300 to 315 | 450 to 465 | Possible |
|  | Detailed parameter area | 17 to 62 | 167 to 212 | 317 to 362 | 467 to 512 |  |
|  |  | 140 |  |  |  |  |
|  | OPR basic parameter area | 70 to 78 | 220 to 228 | 370 to 378 | 520 to 528 |  |
|  | OPR detailed parameter area | 79 to 89 | 229 to 239 | 379 to 389 | 529 to 539 |  |
| Monitor data area | System monitor area | 1200 to 1425,1440 to 1487 |  |  |  | Not possible |
|  | Axis monitor area | 800 to 847,899 | 900 to 947, 999 | 1000 to 1047, 1099 | 1100 to 1147, 1199 |  |
| Control data area | System control data area | 1900, 1901, 1905, 1907 |  |  |  | Possible |
|  | Axis control data area | 1500 to 1550 | 1600 to 1650 | 1700 to 1750 | 1800 to 1850 |  |
| Positioning data area (No. 1 to 600) | Positioning data area | 2000 to 7999 | 8000 to 13999 | 14000 to 19999 | 20000 to 25999 | Possible |
| Block start data area (No.7000) | Block start data area | 26000 to 26049 | 27000 to 27049 | 28000 to 28049 | 29000 to 29049 |  |
|  |  | 26050 to 26099 | 27050 to 27099 | 28050 to 28099 | 29050 to 29099 |  |
|  | Condition data area | 26100 to 26199 | 27100 to 27199 | 28100 to 28199 | 29100 to 29199 |  |
| Block start data area (No.7001) | Block start data area | 26200 to 26249 | 27200 to 27249 | 28200 to 28249 | 29200 to 29249 |  |
|  |  | 26250 to 26299 | 27250 to 27299 | 28250 to 28299 | 29250 to 29299 |  |
|  | Condition data area | 26300 to 26399 | 27300 to 27399 | 28300 to 28399 | 29300 to 29399 |  |
| Block start data area (No.7002) | Block start data area | 26400 to 26449 | 27400 to 27449 | 28400 to 28449 | 29400 to 29449 |  |
|  |  | 26450 to 26499 | 27450 to 27499 | 28450 to 28499 | 29450 to 29499 |  |
|  | Condition data area | 26500 to 26599 | 27500 to 27599 | 28500 to 28599 | 29500 to 29599 |  |
| Block start data area (No.7003) | Block start data area | 26600 to 26649 | 27600 to 27649 | 28600 to 28649 | 29600 to 29649 |  |
|  |  | 26650 to 26699 | 27650 to 27699 | 28650 to 28699 | 29650 to 29699 |  |
|  | Condition data area | 26700 to 26799 | 27700 to 27799 | 28700 to 28799 | 29700 to 29799 |  |
| Block start data area (No.7004) | Block start data area | 26800 to 26849 | 27800 to 27849 | 28800 to 28849 | 29800 to 29849 |  |
|  |  | 26850 to 26899 | 27850 to 27899 | 28850 to 28899 | 29850 to 29899 |  |
|  | Condition data area | 26900 to 26999 | 27900 to 27999 | 28900 to 28999 | 29900 to 29999 |  |
| PLC CPU memo area | PLC CPU memo area | 30000 to 30099 |  |  |  | Possible |

*1 Use of address Nos. skipped above is prohibited. If used, the system may not operate correctly.

The data is transmitted between the LD75 memories with steps (1) to (8) shown below.
The data transmission patterns numbered (1) to (8) of the descriptions correspond to the numbers (1) to (8) of the illustration.

## CPU module



## (1) Transmitting data when power is turned ON or CPU module is reset ( <br> When the power is turned ON or the CPU module is reset, the "parameters", "positioning data" and "block start data" stored (backed up) in the flash ROM is transmitted to the buffer memory.

## (2) Transmitting data with TO instruction from CPU module ( <br> 

The parameters or data is written from the CPU module to the buffer memory using the TO instruction. At this time, when the "parameter area (b) ${ }^{* 1}$ ", "positioning data (No. 1 to 600)", "block start data (No. 7000 to 7004)", "control data" and "PLC CPU memo area" are written into the buffer memory with the TO instruction, it is simultaneously valid.
*1 Parameter area (b): Parameters validated with the next each positioning control is started. ([Pr.8] to [Pr.10], [Pr.25] to [Pr.42])

## (3) Validate parameters when PLC READY signal [Y0] changes from OFF to ON

When the PLC READY signal [Y0] changes from OFF to ON, the data stored in the buffer memory's "parameter area $(\mathrm{a})^{* 1} 1 \mathrm{n}$ is validated.
For [Pr.5], however, only the data obtained first after the PLC READY signal [Y0] changes from OFF to ON when the power is turned ON or CPU module is reset becomes validate.
(Refer to Page 118, Section 5.2 for details.)
*1 Parameter area (a): Parameters validated when PLC READY signal [Y0] changes from OFF to ON. ([Pr.1] to [Pr.7], [Pr.11] to [Pr.24], [Pr.43] to [Pr.57], [Pr.70], [Pr.150])

## Point ${ }^{8}$

The setting values of the parameters that correspond to parameter area (b) are valid when written into the buffer memory with the TO instruction. However, the setting values of the parameters that correspond to parameter area (a) are not validated until the PLC READY signal [Y0] changes from OFF to ON.

## (4) Accessing with FROM instruction from CPU module ( $N 1 /$ )

The data is read from the buffer memory to the CPU module using the FROM instruction.

(6) Flash ROM write request


## (5) Flash ROM write ( $\quad$ )

The following transmission process is carried out by setting "1" in "[Cd.1] Flash ROM write request" (buffer memory [1900]).

- The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the buffer memory area are transmitted to the flash ROM.
The writing to the flash ROM may also be carried out using a dedicated instruction "ZP.PFWRT". (Refer to Page 619, CHAPTER 14 for details.)


## (6) Flash ROM write request ( )

The following transmission processes are carried out with [flash ROM write request] from GX Works2.

- The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the buffer memory area are transmitted to the flash ROM. (This transmission process is the same as (5) above.)
For details on [flash ROM write request] using GX Works2, refer to the following.
[] GX Works2 Version 1 Operating Manual (Intelligent Function Module)


## Point ${ }^{P}$

> CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.

- Do not write the data to the buffer memory before writing to the flash ROM is completed.
- The number of writes to the flash ROM with the program is 25 max. while the power is turned ON. Writing to the flash ROM beyond 25 times will cause the error "Flash ROM write number error" (error code: 805). Refer to Page 650, Section 15.5 for details.



## (7) Reading data from buffer memory to GX Works2 ( $\quad \rightarrow$ )

The following transmission processes are carried out with the [Read from PLC] from GX Works2.

- The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in the buffer memory area are transmitted to GX Works2 via the CPU module.

The following transmission processes are carried out with the [monitor] from GX Works2.

- The "monitor data" in the buffer memory area is transmitted to GX Works2 via the CPU module.


## (8) Writing data from GX Works2 to buffer memory ( <br> 

The following transmission processes are carried out with the [Write to PLC] from GX Works2.

- The "parameters", "positioning data (No. 1 to 600)" and "block start data (No. 7000 to 7004)" in GX Works2 area transmitted to the buffer memory via the CPU module.
At this time, when [Flash ROM write] is set with GX Works2, the transmission processes indicated with (5) Flash ROM write are carried out.
The data transmission is carried out as shown in the previous pages, but the main method of using this data process is shown below.

Ex. Setting the positioning data
The following methods can be used to set the positioning data.


Memo

## PART 2 <br> CONTROL DETAILS AND SETTING

## Part 2 consists of the following chapters.

CHAPTER 8 OPR CONTROL ..... 316
CHAPTER 9 MAJOR POSITIONING CONTROL ..... 339
CHAPTER 10 HIGH-LEVEL POSITIONING CONTROL ..... 456
CHAPTER 11 MANUAL CONTROL ..... 479
CHAPTER 12 CONTROL SUB FUNCTIONS ..... 507
CHAPTER 13 COMMON FUNCTIONS ..... 609
CHAPTER 14 DEDICATED INSTRUCTIONS ..... 619
CHAPTER 15 TROUBLESHOOTING ..... 640

## CHAPTER 8 opr control

### 8.1 Outline of OPR Control

### 8.1.1 Two types of OPR control

In "OPR control" a position is established as the starting point (or "OP") when carrying out positioning control, and positioning is carried out toward that starting point.
It is used to return a machine system at any position other than the OP to the OP when the LD75 issues a "OPR request" ${ }^{* 1}$ with the power turned ON or others, or after a positioning stop.
In the LD75, the two types of controls shown below are defined as "OPR control", following the flow of the OPR work. These two types of OPR control can be executed by setting the "OPR parameters", setting "Positioning start No. 9001" and "Positioning start No. 9002" prepared beforehand in the LD75 to "[Cd.3] Positioning start No.", and turning ON the positioning start signal.
The ZP.PSTRTD start numbers of the dedicated instruction can also be set to 9001 or 9002 to execute the OPR control.
(Refer to Page 619, CHAPTER 14 for details.)

- Establish a positioning control OP — "Machine OPR" (positioning start No. 9001)
- Carry out positioning toward the OP — "Fast OPR" (positioning start No. 9002).

The "machine OPR" must always be carried out before executing the "fast OPR".
*1 The "OPR request flag" ([Md.31] Status: b3) must be turned ON in the LD75, and a machine OPR must be executed in the following cases.

- When the power is turned ON
- At the ON $\rightarrow$ OFF of the drive unit READY signal ([Md.30] External input/output signal: b2).
- When the PLC READY signal [YO] turns from OFF to ON.

The address information stored in the LD75 cannot be guaranteed while the "OPR request flag" is ON. The "OPR request flag" turns OFF and the "OPR complete flag" ([Md.31] Status: b4) turns ON if the machine OPR is executed and is completed normally.

## (1) OPR sub functions

Refer to Page 59, Section 3.2.5 for details on "sub functions" that can be combined with OPR control. Also refer to Page 507, CHAPTER 12 for details on each sub function.
[Reference]
The following two sub functions are only related to machine OPR.
$\bigcirc$ : Combination possible, $\triangle$ : Restricted, $\times$ : Combination not possible

| Sub function name | Machine OPR | Fast OPR | Reference |
| :--- | :---: | :---: | :---: |
| OPR retry function | $\triangle$ | $\times$ | Page 510, Section 12.2.1 |
| OP shift function | $\bigcirc$ | $\times$ | Page 515, Section 12.2.2 |

## (2) When an OPR is not required

Control can be carried out ignoring the "OPR request flag" ([Md.31] Status: b3) in systems that do not require an OPR.
In this case, the "OPR parameters ([Pr.43] to [Pr.57])" must all be set to their initial values or a value at which an error does not occur.

## (3) OPR from GX Works2

"Machine OPR" and "fast OPR" can be executed by the test function of GX Works2.
Refer to Page 756, Appendix 6.5 for details on OPR by GX Works2.

### 8.2.1 Outline of the machine OPR operation

## Point ${ }^{\circ}$

Use the OPR retry function when the OP position is not always in the same direction from the workpiece operation area (when the OP is not set near the upper or lower limit of the machine).
The machine OPR may not complete unless the OPR retry function is used.

## (1) Machine OPR operation

In a machine OPR, a machine OP is established.
None of the address information stored in the LD75, CPU module, or servo is used at this time.
The position mechanically established after the machine OPR is regarded as the "OP" to be the starting point for positioning control.
The method for establishing an "OP" by a machine OPR differs according to the method set in "[Pr.43] OPR method".
The following shows the operation when starting a machine OPR.

1. The machine OPR is started.
2. The operation starts according to the speed and direction set in the OPR parameters ([Pr.43] to [Pr.57]).
3. The "OP" is established by the method set in "[Pr.43] OPR method", and the machine stops. ( Page 319, Section 8.2.2 to Page 335, Section 8.2.8)
4. If "a" is set as "[Pr.45] OP address", "a" will be stored as the current position in the "[Md.20] Current feed value" and "[Md.21] Machine feed value" which are monitoring the position.
5. The machine OPR is completed.

The "[Pr.45] OP address" is a fixed value set by the user.


### 8.2.2 Machine OPR method

The method by which the machine OP is established (method for judging the OP position and machine OPR completion) is designated in the machine OPR according to the configuration and application of the positioning method.
The following table shows the six methods that can be used for this OPR method. (The OPR method is one of the items set in the OPR parameters. It is set in "[Pr.43] OPR method" of the basic parameters for OPR.)

| [Pr.43] OPR method |  |
| :--- | :--- |
| Near-point dog method | Deceleration starts by the OFF $\rightarrow$ ON of the near-point dog. (Speed is reduced to "[Pr.47] Creep speed".) <br> The operation stops at the first zero signal" 1 after the near-point dog turns from ON $\rightarrow$ OFF. <br> When a "deviation counter clear output" is completed, the machine OPR is completed. |
| Stopper method 1) | The stopper position is regarded as the OP. <br> After the deceleration starts by the OFF $\rightarrow$ ON of the near-point dog, the machine presses against the stopper at the <br> "[Pr.47] Creep speed" and stops. <br> The machine OPR is regarded as completed on completion of the deviation counter clear output provided after "[Pr.49] <br> OPR dwell time" passed after stoppage. |
| Stopper method 2) | The stopper position is regarded as the OP. <br> After the deceleration starts by the OFF $\rightarrow$ ON of the near-point dog, the machine presses against the stopper at the <br> "[Pr.47] Creep speed" and stops. <br> The machine OPR is regarded as completed on completion of the deviation counter clear output provided after the zero <br> signal ${ }^{* 1}$ is detected after stoppage. |
| Stopper method 3) | The stopper position is regarded as the OP. <br> The machine starts at the "[Pr.47] Creep speed" from the beginning, then presses against the stopper at the "[Pr.47] <br> Creep speed" and stops. <br> The machine OPR is regarded as completed on completion of the deviation counter clear output provided after the zero <br> Count method 1) |

## Remark

- Creep speed

The stopping accuracy is poor when the machine suddenly stops from fast speeds. To improve the machine's stopping accuracy, its must change over to a slow speed before stopping. This speed is set in the "[Pr.47] Creep speed".

### 8.2.3 OPR method (1): Near-point dog method

The following shows an operation outline of the "near-point dog method" OPR method.

## (1) Operation chart

1. The machine OPR is started. (The machine begins the acceleration designated in "[Pr.51] OPR acceleration time selection", in the direction designated in "[Pr.44] OPR direction". It then moves at the "[Pr.46] OPR speed" when the acceleration is completed.)
2. The machine begins decelerating when the near-point dog ON is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed. (At this time, the near-point dog must be ON. The workpiece will continue decelerating and stop if the near-point dog is OFF.)
4. After the near-point dog turns OFF, the pulse output from the LD75 will stop at the first zero signal, outputting a "deviation counter clear signal" to the drive unit. (A "deviation counter clear signal output time" is set in [Pr.55].)
5. After a "deviation counter clear signal" is output to the drive unit, the OPR complete flag ([Md.31] Status: b4) turns from OFF to ON and the OPR request flag ([Md.31] Status: b3) turns from ON to OFF.


## (2) Restrictions

A pulse generator with a zero signal is required. When using a pulse generator without a zero signal, generate a zero signal using an external signal.

## (3) Precautions during operation

- An error "Start at OP (error code: 201)" will occur if another machine OPR is attempted after a machine OPR completion when the OPR retry function is not set ("0" is set in "[Pr.48] OPR retry").
- Machine OPR carried out from the near-point dog ON position will start at the "[Pr.47] Creep speed".
- The near-point dog must be ON during deceleration from the OPR speed "[Pr.47] Creep speed". The workpiece will continue decelerating and stop if the near-point dog is turned OFF before it has decelerated to the creep speed, thus causing an error "Dog detection timing fault (error code: 203)".

- When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.


### 8.2.4 OPR method (2): Stopper method 1)

The following shows an operation outline of the "stopper method 1)" OPR method.

## (1) Operation chart

1. The machine OPR is started. (The machine begins the acceleration designated in "[Pr.51] OPR acceleration time selection", in the direction designated in "[Pr.44] OPR direction". It then moves at the "[Pr.46] OPR speed" when the acceleration is completed.)
2. The machine begins decelerating when the near-point dog ON is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed. (Torque limiting is required at this time. If the torque is not limited, the servomotor may fail in step 4).)
4. The machine presses against the stopper at the creep speed and stops.
5. The pulse output from the LD75 will stop when the "[Pr.49] OPR dwell time" has elapsed after the near-point dog turns ON, outputting the "deviation counter clear output" to the drive unit. (A "deviation counter clear signal output time" is set in [Pr.55].)
6. After a "deviation counter clear signal" is output to the drive unit, the OPR complete flag ([Md.31] Status: b4) turns from OFF to ON and the OPR request flag ([Md.31] Status: b3) turns from ON to OFF.


## (2) Restrictions

Always limit the servomotor torque after the "[Pr.47] Creep speed" is reached.
If the torque is not limited, the servomotor may fail when the machine presses against the stopper. (For details, refer to Torque limit function (5 Page 532, Section 12.4.2).)

## (3) Precautions during operation

- Set a value in the "[Pr.49] OPR dwell time" that is equal to or higher than the movement time from the nearpoint dog ON to the time the machine presses against the stopper.
- The workpiece will continue decelerating and stop if the "[Pr.49] OPR dwell time" elapses during deceleration from the "[Pr.46] OPR speed", thus causing an error "Dwell time fault (error code: 205)".

- If the "[Pr.49] OPR dwell time" elapses before the stop at the stopper, the workpiece will stop at that position, and that position will be regarded as the OP. At this time, an error will not occur.

- The near-point dog must be turned ON until it presses against the stopper. If any range that the near-point is turned OFF exists until it presses against the stopper, executing the machine OPR from the area leads it to be pressed against the stopper at ORR speed.
- Machine OPR started while the near-point dog is ON will start at the "[Pr.47] Creep speed".
- When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.


### 8.2.5 OPR method (3): Stopper method 2)

The following shows an operation outline of the "stopper method 2)" OPR method.

## (1) Operation chart

1. The machine OPR is started. (The machine begins the acceleration designated in " $[\mathrm{Pr} .51]$ OPR acceleration time selection", in the direction designated in "[Pr.44] OPR direction". It then moves at the "[Pr.46] OPR speed" when the acceleration is completed.)
2. The machine begins decelerating when the near-point dog ON is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed. (Torque limiting is required at this time. If the torque is not limited, the servomotor may fail in step 4).)
4. The machine presses against the stopper at the creep speed and stops.
5. The pulse output from the LD75 will stop at the zero signal after the machine stops, outputting the "deviation counter clear output" to the drive unit. (A "deviation counter clear signal output time" is set in [Pr.55].)
6. After a "deviation counter clear signal" is output to the drive unit, the OPR complete flag ([Md.31] Status: b4) turns from OFF to ON and the OPR request flag ([Md.31] Status: b3) turns from ON to OFF.


## (2) Restrictions

- Always limit the servomotor torque after the "[Pr.47] Creep speed" is reached. If the torque is not limited, the servomotor may fail when the machine presses against the stopper. (For details, refer to Torque limit function ( $\Im$ Page 532, Section 12.4.2).)
- Use an external input signal as the zero signal.


## (3) Precautions during operation

- Input a zero signal from an external source after the machine presses against the stopper. The workpiece will continue decelerating and stop if a zero signal is input before deceleration to the "[Pr.47] Creep speed". An error "OP detection timing fault (error code: 204)" will occur after the machine stops.

- If the zero signal is input before the workpiece stops at the stopper, the workpiece will stop at that position, and that position will become the OP. At this time, an error will not occur.

- The near-point dog must be turned ON until it presses against the stopper. If any range that the near-point is turned OFF exists until it presses against the stopper, executing the machine OPR from the area leads it to be pressed against the stopper at ORR speed.
- Machine OPR started while the near-point dog is ON will start at the "[Pr.47] Creep speed".
- When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.


### 8.2.6 OPR method (4): Stopper method 3)

The following shows an operation outline of the "stopper method 3)" OPR method.
The "stopper method 3)" method is effective when a near-point dog has not been installed. (Note that the operation is carried out from the start at the "[Pr.47] Creep speed", so it will take some time until the machine OPR completion.)

## (1) Operation chart

1. The machine OPR is started. (The machine moves at the "[Pr.47] Creep speed", in the direction designated in "[Pr.44] OPR direction". Torque limiting is required at this time. If the torque is not limited, the servomotor may fail when the machine presses against the stopper in step 2.)
2. The machine presses against the stopper at the "[Pr.47] Creep speed" and stops.
3. The pulse output from the LD75 will stop at the zero signal after the machine stops, outputting the "deviation counter clear output" to the drive unit. (A "deviation counter clear signal output time" is set in [Pr.55].)
4. After a "deviation counter clear signal" is output to the drive unit, the OPR complete flag ([Md.31] Status: b4) turns from OFF to ON and the OPR request flag ([Md.31] Status: b3) turns from ON to OFF.


## (2) Restrictions

- Always limit the servomotor torque after the "[Pr.47] Creep speed" is reached. If the torque is not limited, the servomotor may fail when the machine presses against the stopper. (For details, refer to Torque limit function (Ю Page 532, Section 12.4.2).)
- Use an external input signal as the zero signal.
- The OPR retry function cannot be used in "stopper stop method 3)".


## (3) Precautions during operation

- If the zero signal is input before the workpiece stops at the stopper, the workpiece will stop at that position, and that position will become the OP. At this time, an error will not occur.


The following shows an operation outline of the "count method 1)" OPR method.
In the "count method 1)", machine OPR can be performed even in the following situations:

- when near-point dog is ON
- after completion of a machine OPR


## (1) Operation chart

1. The machine OPR is started. (The machine begins the acceleration designated in "[Pr.51] OPR acceleration time selection", in the direction designated in "[Pr.44] OPR direction". It then moves at the "[Pr.46] OPR speed" when the acceleration is completed.)
2. The machine begins decelerating when the near-point dog ON is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed.
4. On detection of the first zero signal after the axis has traveled the movement amount set in "[Pr.50] Setting for the movement amount after near-point dog ON" after near-point dog ON, the pulse output from the LD75 stops and the "deviation counter clear output" is output to the drive unit. (A "deviation counter clear signal output time" is set in [Pr.55].)
5. After a "deviation counter clear signal" is output to the drive unit, the OPR complete flag ([Md.31] Status: b4) turns from OFF to ON and the OPR request flag ([Md.31] Status: b3) turns from ON to OFF.


## (2) Restrictions

A pulse generator with a zero signal is required. When using a pulse generator without a zero signal, generate a zero signal using an external signal.

## (3) Precautions during operation

- An error "Count method movement amount fault (error code: 206)" will occur and the operation will not start if the "[Pr.50] Setting for the movement amount after near-point dog ON" is smaller than the deceleration distance from the "[Pr.46] OPR speed" to "[Pr.47] Creep speed".
- If the speed is changed to a speed faster than "[Pr.46] OPR speed" by the speed change function (refer to $\leftrightarrows$ Page 543, Section 12.5.1.) during a machine OPR, the distance to decelerate to "[Pr.47] Creep speed" may not be ensured, depending on the setting value of "[Pr.50] Setting for the movement amount after nearpoint dog ON". In this case, the error "Count method movement amount fault" (error code: 206) occurs and the Machine OPR is stopped.
- The following shows the operation when a machine OPR is started while the near-point dog is ON.

[Operation when a machine OPR is started at the near-point dog ON position]

1. A machine OPR is started.
2. The machine moves at the OPR speed in the opposite direction of an OPR.
3. Deceleration processing is carried out by "[Pr.39] Stop group 3 sudden stop selection" when the near-point dog OFF is detected.
4. After the machine stops, a machine OPR is carried out in the OPR direction.
5. The machine OPR is completed after the deviation counter clear output is provided on detection of the first zero signal after the travel of the movement amount set to "[Pr.50] Setting for the movement amount after near-point dog ON" on detection of the near-point dog signal ON.

- Turn OFF the near-point dog at a sufficient distance from the OP. Although there is no harm in operation if the near-point dog is turned OFF during a machine OPR, it is recommended to leave a sufficient distance from the OP when the near-point dog is turned OFF for the following reason. If machine OPRs are performed consecutively after the near-point dog is turned OFF at the time of machine OPR completion, operation will be performed at the OPR speed until the hardware stroke limit (upper/lower limit) is reached. If a sufficient distance cannot be kept, consider the use of the OPR retry function.
- When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.


### 8.2.8 OPR method (6): Count method 2)

The following shows an operation outline of the "count method 2)" OPR method.
The "count method 2)" method is effective when a "zero signal" cannot be received. (Note that compared to the "count method 1)" method, using this method will result in more deviation in the stop position during machine OPR.) In the "count method 2)", as well as in the "count method 1)", machine OPR can be performed even in the following situations:

- when near-point dog is ON
- after completion of a machine OPR


## (1) Operation chart

1. The machine OPR is started. (The machine begins the acceleration designated in "[Pr.51] OPR acceleration time selection", in the direction designated in "[Pr.44] OPR direction". It then moves at the "[Pr.46] OPR speed" when the acceleration is completed.)
2. The machine begins decelerating when the near-point dog $O N$ is detected.
3. The machine decelerates to the "[Pr.47] Creep speed", and subsequently moves at that speed.
4. The pulse output from the LD75 will stop and the machine OPR will be completed when the machine moves the movement amount set in "[Pr.50] Setting for the movement amount after nearpoint dog ON " from the near-point dog ON position.


## (2) Restrictions

When this method is used, a deviation will occur in the stop position (OP) compared to other OPR methods because an error of about 1 ms occurs in taking in the near-point dog ON .

## (3) Precautions during operation

- An error "Count method movement amount fault (error code: 206)" will occur and the operation will not start if the "[Pr.50] Setting for the movement amount after near-point dog ON" is smaller than the deceleration distance from the "[Pr.46] OPR speed" to "[Pr.47] Creep speed".
- If the speed is changed to a speed faster than "[Pr.46] OPR speed" by the speed change function (refer to $\longmapsto$ Page 543, Section 12.5.1.) during a machine OPR, the distance to decelerate to "[Pr.47] Creep speed" may not be ensured, depending on the setting value of "[Pr.50] Setting for the movement amount after nearpoint dog ON". In this case, the error "Count method movement amount fault" (error code: 206) occurs and the Machine OPR is stopped.
- The following shows the operation when a machine OPR is started while the near-point dog is ON.

[Operation when a machine OPR is started at the near-point dog ON position]

1. A machine OPR is started.
2. The machine moves at the OPR speed in the opposite direction of an OPR.
3. Deceleration processing is carried out by "[Pr.39] Stop group 3 sudden stop selection" when the near-point dog OFF is detected.
4. After the machine stops, a machine OPR is carried out in the OPR direction.
5. The machine OPR is completed after moving the movement amount set in the "[Pr.50] Setting for the movement amount after near-point dog ON".

- Turn OFF the near-point dog at a sufficient distance from the OP. Although there is no harm in operation if the near-point dog is turned OFF during a machine OPR, it is recommended to leave a sufficient distance from the OP when the near-point dog is turned OFF for the following reason. If machine OPRs are performed consecutively after the near-point dog is turned OFF at the time of machine OPR completion, operation will be performed at the OPR speed until the hardware stroke limit (upper/lower limit) is reached. If a sufficient distance cannot be kept, consider the use of the OPR retry function.
- When a machine OPR is stopped with the stop signal, perform a machine OPR again. If the restart command is turned ON after a stop with the stop signal, an error "OPR restart not possible" (error code: 209) occurs.


### 8.3 Fast OPR

### 8.3.1 Outline of the fast OPR operation

## (1) Fast OPR operation

After establishing OP position by a machine OPR, positioning control to the OP position is executed without using a near-point dog or a zero signal
The following shows the operation during a fast OPR start.

## 1. The fast OPR is started.

2. Positioning control to the OP position established by a machine OPR begins at the speed set in the OPR parameters ([Pr.43] to [Pr.57]).
3. The fast OPR is completed.



Positioning to the OP

## (2) Operation timing and processing time of fast OPR

The following shows details about the operation timing and time during fast OPR.


Normal timing time

| $\mathbf{t 1}$ | t2 | t3 |
| :--- | :--- | :--- |
| 0.2 to 1.1 ms | 0.4 to 1.3 ms | 0 to 0.9 ms |

- The t 1 timing time could be delayed by the operation state of other axes.


## (3) Precautions during operation

- The fast OPR can only be executed after the OP position is established by executing the Machine OPR. If not, the error "OPR request ON" (error code: 207) will occur. (OPR request flag ([Md.31] Status: b3) must be turned OFF.)
- If the fraction pulse is cleared to zero using current value changing or fixed-feed control, execute the fast OPR and an error will occur by a cleared amount.
- When unlimited length feed is executed by speed control and the current machine feed value overflows or underflows once, the fast OPR cannot be executed normally.
- The OPR complete flag ([Md.31] Status: b4) is not turned ON.
- The axis operation status during fast OPR is "Position control".


### 9.1 Outline of Major Positioning Controls

"Major positioning controls" are carried out using the "positioning data" stored in the LD75.
The basic controls such as position control and speed control are executed by setting the required items in this "positioning data", and then starting that positioning data.
The control system for the "major positioning controls" is set in setting item "[Da.2] Control system" of the positioning data.
Control defined as a "major positioning control" carries out the following types of control according to the "[Da.2] Control system" setting.

| MAJOR POSITIONING CONTROL |  | [Da.2] Control <br> system | Description |
| :--- | :--- | :--- | :--- |


| MAJOR POSITIONING CONTROL |  | [Da.2] Control system | Description |
| :---: | :---: | :---: | :---: |
| Speed control | 1-axis speed control | Forward run speed 1 <br> Reverse run speed 1 | The speed control of the designated 1 axis is carried out. |
|  | 2-axis speed control ${ }^{* 1}$ | Forward run speed 2 <br> Reverse run speed 2 | The speed control of the designated 2 axis is carried out. |
|  | 3 -axis speed control ${ }^{* 1}$ | Forward run speed 3 <br> Reverse run speed 3 | The speed control of the designated 3 axis is carried out. |
|  | 4-axis speed control ${ }^{* 1}$ | Forward run speed 4 <br> Reverse run speed 4 | The speed control of the 4 axes is carried out. |
| Speed-position switching control |  | Forward run speed/position Reverse run speed/position | The control is continued as position control (positioning for the designated address or movement amount) by turning ON the "speed-position switching signal" after first carrying out speed control. |
| Position-speed switching control |  | Forward run position/speed Reverse run position/speed | The control is continued as speed control by turning ON the "position-speed switching signal" after first carrying out position control. |
| Other control | NOP instruction | NOP instruction | A nonexecutable control system. When this instruction is set, the operation is transferred to the next data operation, and the instruction is not executed. |
|  | Current value changing | Current value changing | The current feed value ([Md.20]) is changed to an address set in the positioning data. <br> This can be carried out by either of the following 2 methods. <br> (The machine feed value cannot be changed.) <br> - Current value changing using the control system <br> - Current value changing using the current value changing start No. (No. 9003). |
|  | JUMP instruction | JUMP instruction | An unconditional or conditional JUMP is carried out to a designated positioning data No. |
|  | LOOP | LOOP | A repeat control is carried out by repeat LOOP to LEND. |
|  | LEND | LEND | Control is returned to the top of the repeat control by repeat LOOP to LEND. After the repeat operation is completed specified times, the next positioning data is run. |

*1 In "2-axis linear interpolation control", "3-axis linear interpolation control", "4-axis linear interpolation control", "2-axis fixed-feed control", "3-axis fixed-feed control", "4-axis fixed-feed control", "2-axis circular interpolation control", "3-axis helical interpolation control", "2-axis speed control", "3-axis speed control", and "4-axis speed control", control is carried out so that linear and arc paths are drawn using a motor set in two or more axis directions.
This kind of control is called "interpolation control". ( 5 Page 359, Section 9.1.6)

### 9.1.1 <br> Data required for major positioning control

The following table shows an outline of the "positioning data" configuration and setting details required to carry out the "major positioning controls".

| Setting item |  |  | Setting details |
| :---: | :---: | :---: | :---: |
| Positioning data | [Da.1] | Operation pattern | Set the method by which the continuous positioning data (Ex: positioning data No. 1, No. 2, No. $3 \ldots$ ) will be controlled. ( 5 Page 342, Section 9.1.2) |
|  | [Da.2] | Control system | Set the control system defined as a "major positioning control". ( $\ddagger$ Page 339, Section 9.1) |
|  | [Da.3] | Acceleration time No. | Select and set the acceleration time at control start. (Select one of the four values set in [Pr.9], [Pr.25], [Pr.26], and [Pr.27] for the acceleration time.) |
|  | [Da.4] | Deceleration time No. | Select and set the deceleration time at control stop. (Select one of the four values set in [Pr.10], [Pr.28], [Pr.29], and [Pr.30] for the deceleration time.) |
|  | [Da.5] | Axis to be interpolated | Set an axis to be interpolated (partner axis) during the 2-axis interpolation operation and a circular interpolation axis during the 3 -axis helical interpolation control. <br> ( $\leftrightarrows$ Page 359, Section 9.1.6) |
|  | [Da.6] | Positioning address/movement amount | Set the target value during position control. ( Page 352, Section 9.1.3) |
|  | [Da.7] | Arc address | Set the sub point or center point address during circular interpolation control. |
|  | [Da.8] | Command speed | Set the speed during the control execution. |
|  | [Da.9] | Dwell time | The time between the command pulse output is completed to the positioning completed signal is turned ON. Set it for absorbing the delay of the mechanical system to the instruction, such as the delay of the servo system (deviation). |
|  | [Da.10] | M code | Set this item when carrying out sub work (clamp and drill stops, tool replacement, etc.) corresponding to the code No. related to the positioning data execution. |
|  | [Da.27] | M code ON signal output timing | Set the M code ON signal output timing for each positioning data. |
|  | [Da.28] | ABS direction in degrees | Set the ABS direction in degrees for each positioning data. |
|  | [Da.29] | Interpolation speed designation method | Set the interpolation speed designation method for each positioning data. |

The settings and setting requirement for the setting details of [Da.1] to [Da.10] and [Da.27] to [Da.29] differ according to the "[Da.2] Control system". ( $\longmapsto$ Page 364, Section 9.2)

## (1) Major positioning control sub functions

Refer to Page 59, Section 3.2.5 for details on "sub functions" that can be combined with the major positioning control.
Also refer to Page 507, CHAPTER 12 for details on each sub function.

## (2) Major positioning control from GX Works2

"Major positioning control" can be executed by test function of GX Works2.
Refer to Page 756, Appendix 6.5 for details on carrying out major positioning control from GX Works2.


600 positioning data (positioning data No. 1 to 600) items can be set per axis.

In "major positioning control" (high-level positioning control), "[Da.1] Operation pattern" can be set to designate whether to continue executing positioning data after the started positioning data. The "operation pattern" includes the following 3 types ((1) to (3)).


The following shows examples of operation patterns when "1-axis linear control (ABS linear 1)" is set in positioning data No. 1 to No. 6 of axis 1.
< Operation example when "1-axis linear positioning" is set in the positioning data of axis 1 >

| Positioning data No. 1 | (Setting details) |  |
| :---: | :---: | :---: |
|  | Positioning to address [A] at command speed [a] | Operation pattern = 11: Continuous path control |
| No. 2 | Positioning to address [B] at command speed [b] | Operation pattern = 11: Continuous path control |
| No. 3 | Positioning to address [C] at command speed [a] | Operation pattern $=01$ : Continuous positioning control |
| No. 4 | Positioning to address [D] at command speed [b] | Operation pattern $=01$ : Continuous positioning control |
| No. 5 | Positioning to address [E] at command speed [a] | Operation pattern $=00$ : Independent positioning control (Positioning complete) |
| No. 6 | Positioning to address [F] at command speed [a] | Operation pattern = 11: Continuous path control |


(One motor is driven, and positioning is carried out to an addresses designated in one direction.)

## Point ${ }^{\rho}$

The BUSY signal [XC, XD, XE, XF] turns ON even when position control of movement amount 0 is executed. However, since the ON time is short, the ON status may not be detected in the program.

## (1) Independent positioning control (Positioning complete)

This control is set when executing only one designated data item of positioning. If a dwell time is designated, the positioning will complete after the designated time elapses. This data (operation pattern [00] data) becomes the end of block data when carrying out block positioning. (The positioning stops after this data is executed.)


## (2) Continuous positioning control

- The machine always automatically decelerates each time the positioning is completed. Acceleration is then carried out after the LD75 command speed reaches 0 to carry out the next positioning data operation. If a dwell time is designated, the acceleration is carried out after the designated time elapses.
- In operation by continuous positioning control (operation pattern "01"), the next positioning No. is automatically executed. Always set operation pattern " 00 " in the last positioning data to complete the positioning. If the operation pattern is set to positioning continue ("01" or "11"), the operation will continue until operation pattern " 00 " is found. If the operation pattern " 00 " cannot be found, the operation may be carried out until the positioning data No. 600. If the operation pattern of the positioning data No. 600 is not completed, the operation will be started again from the positioning data No. 1.



## (3) Continuous path control

(a) Continuous path control

- The speed is changed without deceleration stop between the command speed of the positioning data currently being run and the speed of the positioning data that will be run next. The speed is not changed if the current speed and the next speed are equal.

- The speed will become the speed used in the previous positioning operation if the command speed is set to "-1".
- Dwell time will be ignored, even if set.
- The next positioning No. is executed automatically in operations by continuous path control (operation pattern "11"). Always complete the positioning by setting operation pattern " 00 " in the last positioning data. If the operation pattern is set to positioning continue (" 01 " or "11"), the operation will continue until operation pattern " 00 " is found. If the operation pattern " 00 " cannot be found, the operation may be carried out until the positioning data No. 600. If the operation pattern of the positioning data No. 600 is not completed, the operation will be started again from the positioning data No. 1.
- The speed switching patterns include the "front-loading speed switching pattern" in which the speed is changed at the end of the current positioning side, and the "standard speed switching pattern" in which the speed is at the start of the next positioning side. (↔ Page 131, Section 5.2.3 (9))

Continuous path control $\quad$ Standard speed switching mode

- In continuous path control, the positioning may be completed before the set address/movement amount by the distance $\Delta l$, and the data may switch to the "positioning data that will run next". The value of the distance $\Delta l$ is as follows:
$0 \leq \Delta l<$ (Moving distance in 0.9 ms at the command speed)


The distance $\Delta l$ is output when the next positioning data is running at the specified speed. Therefore, the execution time of the next positioning data may be longer than the set execution time. ${ }^{* 1}$ If this causes a control problem, take one of the following measures.
Use the function "output timing selection of near pass control".

- By selecting "At deceleration" as an output timing, the positioning execution time of the next positioning data remains the same as it was set. (以 Page 527, Section 12.3.4)
Use the "speed change function".
- Change speed using the speed change function instead of continuous path control. ( 5 Page 543, Section 12.5.1)
*1 When the command speed V 1 of a positioning data and the command speed V 2 of the next positioning data is different significantly, and V1 > V2

For positioning data in which automatic deceleration is set, the positioning is completed at the set address. Therefore, in continuous path control, the address where a positioning is completed may be different from the set address. However, the address will be the specified one on completion of automatic deceleration for continuous positioning control (01) or positioning complete (00).

## Point ${ }^{\rho}$

In the continuous path control, a speed variation will not occur using the near-pass function when the positioning data No. is switched. ( ${ }^{3}$ Page 525, Section 12.3.3)

## (b) Deceleration stop conditions during continuous path control

Deceleration stops are basically not carried out in continuous path control, but the machine will carry out a deceleration stop to speed " 0 " in the following cases (a) to (c).

- When the operation pattern of the positioning data currently being executed is "continuous path control: 11", and the movement direction of the positioning data currently being executed differs from that of the next positioning data. (Only for 1-axis positioning control.)

- During operation by step operation. (5 Page 572, Section 12.7.1)
- When there is an error in the positioning data to carry out the next operation.


## Point ${ }^{\rho}$

- The movement direction is not checked during interpolation operations. Thus, automatic deceleration to a stop will not be carried out even if the movement direction is changed. ( $\Im$ Figures below) Because of this, the interpolation axis may suddenly reverse direction.
To avoid this sudden direction reversal in the interpolation axis, set the pass point to continuous positioning control "01" instead of setting it to continuous path control "11".


## ■Interpolation axis operation



■ [Reference axis operation]


■Interpolation axis operation


- When the interpolation axis reveres direction suddenly, the command pulses from LD75 are output as shown in the figure below.


The $t 1$ and $t 2$ are calculated using the following expressions, where a command frequency is $f[p u l s e / s]$.

- $\mathrm{t} 1=1 / 2 \mathrm{f}[\mathrm{s}]$
- $\mathrm{t} 2=1 / \mathrm{f}[\mathrm{s}]$

A time of t 1 must be maintained by the drive unit for a specified period $\mathrm{T}[\mathrm{s}]$ or longer.
( $T$ depends on the drive unit specifications.)
If t 1 cannot be maintained for T or longer, lower the "[Da.8] Command speed" of the positioning data.

- When a "0" is set in the "[Da.6] Positioning address/movement amount" of the continuous path control positioning data, the command speed of about 0.9 ms is reduced to 0 .
When a " 0 " is set in the "[Da.6] Positioning address/movement amount" to increase the number of speed change points in the future, change the "[Da.2] Control system" to the "NOP instruction" to make the control nonexecutable. (Ю Page 451, Section 9.2.22)
- In the continuous path control positioning data, assure a movement distance so that the execution time with that data is 100 ms or longer, or lower the command speed.


## (c) Speed handling

- Continuous path control command speeds are set with each positioning data. The LD75 then carries out the positioning at the speed designated with each positioning data.
- The command speed can be set to "-1" in continuous path control. The control will be carried out at the speed used in the previous positioning data No. if the command speed is set to "-1". (The "current speed" will be displayed in the command speed when the positioning data is set with GX Works2. The current speed is the speed of the positioning control being executed currently.)
$\diamond$ The speed does not need to be set in each positioning data when carrying out uniform speed control if " -1 " is set beforehand in the command speed.
$\diamond$ If the speed is changed or the override function is executed in the previous positioning data when "-1" is set in the command speed, the operation can be continued at the new speed.
$\diamond$ An error "no command speed" (error code: 503) occurs and positioning cannot be started if "-1" is set in the command speed of the first positioning data at start.
[Relation between the command speed and current speed]



## Point ${ }^{\circ}$

- In the continuous path control, a speed variation will not occur using the near-pass function when the positioning data is switched. (Ђ Page 525, Section 12.3.3)
- The LD75 holds the command speed set with the positioning data, and the latest value of the speed set with the speed change request as the "[Md.27] Current speed". It controls the operation at the "current speed" when " -1 " is set in the command speed. (Depending on the relation between the movement amount and the speed, the feedrate may not reach the command speed value, but even then the current speed will be updated.)
- When the address for speed change is identified beforehand, generate and execute the positioning data for speed change by the continuous path control to carry out the speed change without requesting the speed change with a program.


## (d) Changing the speed (以 Page 131, Section 5.2.3 (9))

The two modes for changing the speed are shown below.

- Standard switching ... Switch the speed when executing the next positioning data.
- Front-loading switching ... The speed switches at the end of the positioning data currently being executed.
[Standard speed switching mode]
- If the respective command speeds differ in the "positioning data currently being executed" and the "positioning data to carry out the next operation", the machine will accelerate or decelerate after reaching the positioning point set in the "positioning data currently being executed" and the speed will change over to the speed set in the "positioning data to carry out the next operation".
- The parameters used in acceleration/deceleration to the command speed set in the "positioning data to carry out the next operation" are those of the positioning data to carry out acceleration/deceleration. Speed switching will not be carried out if the command speeds are the same.

- Speed switching condition

If the movement amount is small in regard to the target speed, the current speed may not reach the target speed even if acceleration/deceleration is carried out. In this case, the machine is accelerated/decelerated so that it nears the target speed.
If the movement amount will be exceeded when automatic deceleration is required (Ex. Operation patterns " 00 ", " 01 "), the machine will immediately stop at the designated positioning address, and a warning "Insufficient movement distance" (warning code: 513) will occur.

| When the speed cannot be changed over in P 2 |  |  |
| :--- | :--- | :--- |
| When the relation of the speeds is $\mathrm{P} 1=\mathrm{P} 4, \mathrm{P} 2=\mathrm{P} 3, \mathrm{P} 1<\mathrm{P} 2$. | When the movement amount is small during automatic deceleration <br> The movement amount required to carry out the automatic deceleration cannot <br> be secured, so the machine immediately stops in a speed $\neq 0$ status. |  |

## [Front-loading speed switching mode]

- If the respective command speeds differ in the "positioning data currently being executed" and the "positioning data to carry out the next operation", the speed will change over to the speed set in the "positioning data to carry out the next operation" at the end of the "positioning data currently being executed".
- The parameters used in acceleration/deceleration to the command speed set in the "positioning data to carry out the next operation" are those of the positioning data to carry out acceleration/deceleration. Speed switching will not be carried out if the command speeds are the same.

- Speed switching condition If the movement amount is small in regard to the target speed, the current speed may not reach the target speed even if acceleration/deceleration is carried out. In this case, the machine is accelerated/decelerated so that it nears the target speed.

If the movement amount will be exceeded when automatic deceleration is required (Ex. Operation patterns "00", "01"), the machine will immediately stop at the designated positioning address, and a warning "Insufficient movement distance" (warning code: 513) will occur.

| When the speed cannot be changed over to the P2 speed in P1 |  |  |  |  |  |  |  |  | When the movement amount is small during automatic deceleration |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| When the relation of the speeds is $\mathrm{P} 1=\mathrm{P} 4, \mathrm{P} 2=\mathrm{P} 3, \mathrm{P} 1<\mathrm{P} 2$. | The movement amount required to carry out the automatic deceleration cannot <br> be secured, so the machine immediately stops in a speed $\neq 0$ status. |  |  |  |  |  |  |  |  |

9.1.3 Designating the positioning address

The following shows the two methods for commanding the position in control using positioning data.

## (1) Absolute system

Positioning is carried out to a designated position (absolute address) having the OP as a reference. This address is regarded as the positioning address. (The start point can be anywhere.)


## (2) Incremental system

The position where the machine is currently stopped is regarded as the start point, and positioning is carried out for a designated movement amount in a designated movement direction.


### 9.1.4

## (1) Values showing the current value

The following two types of addresses are used as values to show the position in the LD75.
These addresses ("current feed value" and "machine feed value") are stored in the monitor data area, and used in monitoring the current value display, etc.

## (a) Current feed value

- This is the value stored in "[Md.20] Current feed value".
- This value has an address established with a "machine OPR" as a reference, but the address can be changed by changing the current value to a new value.
- This value is updated every 0.9 ms .


## (b) Machine feed value

- This is the value stored in "[Md.21] Machine feed value".
- This value always has an address established with a "machine OPR" as a reference. The address cannot be changed, even if the current value is changed to a new value.
- This value is updated every 0.9 ms .

The "current feed value" and "machine feed value" are used in monitoring the current value display, etc.


## (2) Restrictions

A 0.9 ms error will occur in the current value update timing when the stored "current feed value" is used in the control. A 0.9 ms error will occur in the current value update timing when the stored "machine feed value" is used in the control.

## (3) Monitoring the current value

The "current feed value" and "machine feed value" are stored in the following buffer memory addresses, and can be read using a "DFRO $(P)$ instruction" or "DMOV $(P)$ instruction" from the CPU module.

|  | Buffer memory address |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Md.20] Current feed value | 800,801 | 900,901 | 1000,1001 | 1100,1101 |
| [Md.21] Machine feed value | 802,803 | 902,903 | 1002,1003 | 1102,1103 |

(a) The following shows the examples of programs to read out the current feed value of the axis 1 to D104 and D105 when X40 is turned ON.

- For the $\operatorname{DFRO}(P)$ instruction

- For the $\operatorname{DMOV}(P)$ instruction



### 9.1.5 Control unit "degree" handling

When the control unit is set to "degree", the following items differ from when other control units are set.

## (1) Current feed value and machine feed value addresses

The "[Md.20] Current feed value" address is a ring address between 0 and $359.99999^{\circ}$.
But the address of "[Md.21] Machine feed value" doesn't become a ring address.


## (2) Software stroke limit valid/invalid setting

With the control unit set to "degree", the software stroke limit upper/lower limit values are 0 to $359.99999^{\circ}$.
(a) Setting to validate software stroke limit

To validate the software stroke limit, set the software stroke limit lower limit value and the upper limit value in a clockwise direction.


To set the movement range A , set as follows.

- Software stroke limit lower limit value … $315.00000^{\circ}$
- Software stroke limit upper limit value ... $90.00000^{\circ}$

To set the movement range $B$, set as follows.

- Software stroke limit lower limit value ... $90.00000^{\circ}$
- Software stroke limit upper limit value $\cdot .315 .00000^{\circ}$
(b) Setting to invalidate software stroke limit

To invalidate the software stroke limit, set the software stroke limit lower limit value equal to the software stroke limit upper limit value. The control can be carried out irrespective of the setting of the software stroke limit.

## (3) Positioning control method when the control unit is set to "degree"

(a) When the software stroke limit is invalid in absolute system

Positioning is carried out in the nearest direction to the designated address, using the current value as a reference.
(This is called "shortcut control".)
(Examples)

1) Positioning is carried out in a clockwise direction when the current value is moved from 315 to $45^{\circ}$.
2) Positioning is carried out in a counterclockwise direction when the current value is moved from 45 to $315^{\circ}$.

| Moved from 315 to $45^{\circ}$ | Moved from 45 to $315^{\circ}$ |
| :---: | :---: |
|  |  |

- To specify the positioning direction (not carrying out the shortcut control), use "[Cd.40] ABS direction in degrees" or "[Da.28] ABS direction in degrees". This function can be performed when the software stroke limit is invalid. When the software stroke limit is valid, an error "Illegal setting of ABS direction in unit of degree" (error code: 546) occurs and positioning is not started. In "[Cd.40] ABS direction in degrees" or "[Da.28] ABS direction in degrees", the set value for the reference axis is applied to both the reference axis and interpolation axis. Even if a unit other than degree is set for the reference axis, the setting of the reference axis is applied to the interpolation axis as shown below (for 3-axis linear interpolation control (ABS3)).

| Axis | Unit setting | [Cd.40] ABS direction in degrees | Rotation direction of the axis <br> with degree setting |
| :--- | :--- | :---: | :---: |
| Reference axis | pulse | 1: ABS clockwise | 0 |
| Interpolation axis 1 | degree | - | 1: ABS clockwise |
| Interpolation axis 2 | degree | - | 1: ABS clockwise |

- To specify the rotation direction in degrees for each positioning data when multiple positioning data is processed continuously within one positioning operation in continuous positioning control or continuous path control, use "[Da.28] ABS direction in degrees".
- To set the same rotation direction for all positioning data, setting "[Cd.40] ABS direction in degrees" enables batch specification of the rotation direction for each positioning data. To use "[Cd.40] ABS direction in degrees", set "0" in "[Da.28] ABS direction in degrees". When a value other than " 0 " is set, the setting of "[Da.28] ABS direction in degrees" becomes valid. The set value in "[Cd.40] ABS direction in degrees" becomes valid only when the positioning control is started. In the continuous positioning control or continuous path control, the operation is continued with the setting made at a start if the setting is changed during the operation.

| Name | Function | Buffer memory address |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Cd.40] ABS direction in degrees | Set the ABS moving direction in position control when "degree" is selected as the unit. <br> 0 : Shortcut (direction setting ignored) <br> 1: ABS clockwise <br> 2: ABS counterclockwise | 1550 | 1650 | 1750 | 1850 | 0 |
| [Da.28] ABS direction in degrees | Set "ABS direction in degrees" for each positioning data. <br> 0 : Use the set value in "[Cd.40] ABS direction in degrees". <br> 1: ABS clockwise <br> 2: ABS counterclockwise <br> 3: Shortcut (direction setting ignored) | $\begin{gathered} 2003+\mathrm{N}^{* 1} \\ \text { (b2 to b3) } \end{gathered}$ | $\begin{gathered} 8003+N^{* 1} \\ (\mathrm{~b} 2 \text { to b3) } \end{gathered}$ | $\begin{gathered} 14003+\mathrm{N}^{* 1} \\ \text { (b2 to b3) } \end{gathered}$ | $\begin{gathered} 20003+\mathrm{N}^{\star 1} \\ (\mathrm{~b} 2 \text { to b3) } \end{gathered}$ | 0 |

*1 N indicates the offset address of each positioning data.
$\mathrm{N}=(($ Positioning data No. $)-1) \times 10$

## (b) When the software stroke limit is valid in absolute system

The positioning is carried out in a clockwise/counterclockwise direction depending on the software stroke limit range setting method.
Because of this, positioning with "shortcut control" may not be possible.

Ex. When the current value is moved from 0 to $315^{\circ}$, positioning is carried out in the clockwise direction if the software stroke limit lower limit value is $0^{\circ}$ and the upper limit value is $345^{\circ}$.


## Point ${ }^{8}$

Positioning addresses are within a range of 0 to $359.99999^{\circ}$.
Use the incremental system to carry out positioning of one rotation or more.

## (c) Incremental system

Positioning is carried out for a designated movement amount in a designated movement direction when in the incremental system of positioning.
The movement direction is determined by the sign (,+- ) of the movement amount.

- For a positive (+) movement direction ... Clockwise
- For a negative (-) movement direction ... Counterclockwise


## Point ${ }^{\rho}$

Positioning of $360^{\circ}$ or more can be carried out with the incremental system.
At this time, set as shown below to invalidate the software stroke limit.
(Set the value with in the setting range ( 0 to $359.99999^{\circ}$ ).)
[Software stroke limit upper limit value = Software stroke limit lower limit value]

## (1) Meaning of interpolation control

In "2-axis linear interpolation control", "3-axis linear interpolation control", "4-axis linear interpolation control", "2axis fixed-feed control", "3-axis fixed-feed control", "4-axis fixed-feed control", "2-axis speed control", "3-axis speed control", "4-axis speed control", "2-axis circular interpolation control", and "3-axis helical interpolation control", control is carried out so that specified paths (linear, arc, and helical paths) are drawn using a motor set in two to four axis directions. This kind of control is called "interpolation control".
In interpolation control, the axis in which the control system is set is defined as the "reference axis", and the other axis is defined as the "interpolation axis".
The LD75 controls the "reference axis" following the positioning data set in the "reference axis", and controls the "interpolation axis" corresponding to the reference axis control so that a linear or arc path is drawn.
The following table shows the reference axis and interpolation axis combinations.

| Axis set to interpolation control in "[Da.2] Control method" | Reference axis | Interpolation axis |
| :---: | :---: | :---: |
| 2-axis linear interpolation control, "2-axis fixed-feed control, <br> 2-axis circular interpolation control, 2-axis speed control | Any of axes 1, 2, 3, and 4 | "Axes to be interpolated" set in reference axis |
| 3-axis linear interpolation control, "3-axis fixed-feed control, 3 -axis speed control | Axis 1 | Axis 2, Axis 3 |
|  | Axis 2 | Axis 3, Axis 4 |
|  | Axis 3 | Axis 4, Axis 1 |
|  | Axis 4 | Axis 1, Axis 2 |
| 4-axis linear interpolation control, "4-axis fixed-feed control, 4-axis speed control | Axis 1 | Axis 2, Axis 3, Axis 4 |
|  | Axis 2 | Axis 3 , Axis 4, Axis 1 |
|  | Axis 3 | Axis 4, Axis 1, Axis 2 |
|  | Axis 4 | Axis 1, Axis 2, Axis 3 |

The available axis combinations in the 3 -axis helical interpolation control are the same as the ones in the " 3 -axis linear interpolation control", "3-axis fixed-feed control", and "3-axis speed control". However, the circular interpolation axis can be specified with "[Da.5] Axis to be interpolated" of the reference axis. The following table lists the combinations of the reference axis, circular interpolation axis, and linear interpolation axis for the 3-axis helical interpolation control.

| Axis set to interpolation control in "[Da.2] Control method" | Reference axis | Circular interpolation axis ${ }^{* 1}$ | Linear interpolation axis ${ }^{* 2}$ |
| :---: | :---: | :---: | :---: |
| 3 -axis helical interpolation control | Axis 1 | Axis 2 | Axis 3 |
|  |  | Axis 3 | Axis 2 |
|  | Axis 2 | Axis 3 | Axis 4 |
|  |  | Axis 4 | Axis 3 |
|  | Axis 3 | Axis 4 | Axis 1 |
|  |  | Axis 1 | Axis 4 |
|  | Axis 4 | Axis 1 | Axis 2 |
|  |  | Axis 2 | Axis 1 |

*1 Specify with "[Da.5] Axis to be interpolated" of the reference axis.
*2 An axis which is not specified with "[Da.5] Axis to be interpolated" of the reference axis is automatically assigned.

## (2) Setting the positioning data during interpolation control

When carrying out interpolation control, the same positioning data Nos. are set for the "reference axis" and the "interpolation axis". The following table shows the "positioning data" setting items for the reference axis and interpolation axis.
© : Setting always required, $\bigcirc$ : Set according to requirements, $\triangle$ : Setting restrictions exist, 一: Setting not required ${ }^{* 1}$

| Setting item |  |  | Reference axis setting item | Interpolation axis setting item |
| :---: | :---: | :---: | :---: | :---: |
| Same positioning data Nos | [Da.1] | Operation pattern | $\bigcirc$ | - |
|  | [Da.2] | Control system | Linear 2, 3, 4 <br> Fixed-feed 2, 3, 4 <br> Circular sub, Circular right, Circular left Helical sub, helical right, helical left Forward run speed 2, 3, 4 <br> Reverse run speed 2, 3, 4 | - |
|  | [Da.3] | Acceleration time No. | $\bigcirc$ | - |
|  | [Da.4] | Deceleration time No. | $\bigcirc$ | - |
|  | [Da.5] | Axis to be interpolated | ${ }^{*}{ }^{2}$ | - |
|  | [Da.6] | Positioning address/movement amount | Forward run speed 2, 3, and 4. Reverse run speed 2,3 , and 4 not required. | Forward run speed 2, 3, and 4. Reverse run speed 2, 3, and 4 not required. |
|  | [Da.7] | Arc address | (Only for circular sub, circular right, circular left, helical sub, helical right, and helical left) | (Only for circular sub, circular right, circular left, helical sub, helical right, and helical left) |
|  | [Da.8] | Command speed | © | Only during forward run speed 2, 3, 4 and reverse run speed $2,3,4$. |
|  | [Da.9] | Dwell time | $\bigcirc$ | - |
|  | [Da.10] | M code | $\bigcirc$ | Only for helical sub, helical right, and helical left, set the number of pitch for the linear interpolation axis. |
|  | [Da.27] | M code ON signal output timing | $\bigcirc$ | - |
|  | [Da.28] | ABS direction in degrees | $\bigcirc$ | - |
|  | [Da.29] | Interpolation speed designation method | $\bigcirc$ | - |

*1 This is an irrelevant item, so the set value will be ignored. If the value is the default value or within the setting range, there is no problem.
*2 For 2-axis interpolation, the partner axis is set. If the self-axis is set, the error "Illegal interpolation description command" (error code: 521) will occur. For 3-axis interpolation other than 3-axis helical interpolation or 4-axis interpolation, this item does not need to be set. For 3-axis helical interpolation, refer to the following for the reference axis and interpolation axis combinations.
$\longmapsto$ Page 359, Section 9.1.6 (1)
If axes are set in a combination other than the ones mentioned above, the error "Illegal interpolation description command" (error code: 521) will occur.
Refer to $\longmapsto$ Page 152, Section 5.3 for information on the setting details.

## (3) Starting the interpolation control

The positioning data Nos. of the reference axis (axis in which interpolation control was set in "[Da.2] Control system") are started when starting the interpolation control. (Starting of the interpolation axis is not required.) The following errors or warnings will occur and the positioning will not start if both reference axis and the interpolation axis are started.

- Reference axis: The error "Interpolation while interpolation axis BUSY" (error code: 519)
- Interpolation axis: The error "Control system setting error" (error code: 524), The warning "Start during operation" (warning code: 100)


## (4) Interpolation control continuous positioning

When carrying out interpolation control in which "continuous positioning control" and "continuous path control" are designated in the operation pattern, the positioning method for all positioning data from the started positioning data to the positioning data in which "positioning complete" is set must be set to interpolation control. The number of the interpolation axes and axes to be interpolated cannot be changed from the intermediate positioning data. The error "Control system setting error" (error code: 524) will occur and the positioning will stop if setting, which changes the number of the interpolation axes and axes to be interpolated, is carried out.

## (5) Speed during interpolation control

Either the "composite speed" or "reference axis speed" can be designated as the speed during interpolation control.
([Pr.20] Interpolation speed designation method)
Only the "Reference axis speed" can be designated in the following interpolation control.
When a "composite speed" is set and positioning is started, the error "Interpolation mode error" (error code: 523) occurs, and the system will not start.

- 4-axis linear interpolation
- 2-axis speed control
- 3-axis speed control
- 4-axis speed control


## (6) Cautions in interpolation control

- If a stepping motor is used, the circular interpolation control and 3-axis helical interpolation control cannot be carried out. Make sure to use a servomotor when the circular interpolation control or 3-axis helical interpolation control is carried out.
- If either of the axes exceeds the "[Pr.8] Speed limit value" in the 2-to 4 -axis speed control, the axis which exceeded the speed limit value is controlled by the speed limit value. For the other axes which perform interpolation, the speed can be suppressed by the ratio of a command speed.
- If any axis exceeds "[Pr.8] Speed limit value" during 2- to 4-axis linear interpolation control, 2- to 4 -axis fixedfeed control, 2-axis circular interpolation control, or 3-axis helical interpolation control, the axis exceeding the speed limit value is controlled at the speed limit value. For the other axes performing interpolation, the speed can be suppressed by the ratio of a movement distance.
- In 2- to 4-axis linear interpolation control or 2- to 4-axis fixed-feed control, the speed limit value for the interpolation axis may not function under the following condition: "1: Reference axis speed" is set in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method", and the reference axis is the minor axis and the interpolation axis is the major axis.
- In 3-axis helical interpolation control, control the composite speed of the circular interpolation axis or the speed of the linear interpolation axis so that the speeds do not exceed "[Pr.8] Speed limit value".
- In 2-axis interpolation, you cannot change the combination of interpolated axes midway through operation.


## Point ${ }^{P}$

When the "reference axis speed" is set during interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".

## (7) Interpolation speed designation method

To perform interpolation control, set the composite speed or reference axis speed in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method" of the reference axis.

- 0: Composite speed: The movement speed for the control target is designated, and the speed for each axis is calculated by the LD75.
- 1: Reference axis speed: The axis speed set for the reference axis is designated, and the speed for the other axis carrying out interpolation is calculated by the LD75.

- To designate interpolation speed for each positioning data, use "[Da.29] Interpolation speed designation method".
- To set the same interpolation speed in all the positioning data, setting "[Pr.20] Interpolation speed designation method" enables batch designation of the interpolation speed designation method for each positioning data. To use "[Pr.20] Interpolation speed designation method", set 0 in "[Da.29] Interpolation speed designation method". When a value other than 0 is set, "[Da.29] Interpolation speed designation method" will be valid.

| Name | Function | Buffer memory address |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Pr.20] Interpolation speed designation method | When carrying out linear interpolation/circular interpolation, set whether to designate the composite speed or reference axis speed. <br> 0: Composite speed <br> 1: Reference axis speed | 29 | 179 | 329 | 479 | 0 |
| [Da.29] Interpolation <br> speed designation method | Set the interpolation speed designation method for each positioning data. <br> 0 : Use the set value in "[Pr.20] Interpolation speed designation method". <br> 1: Composite speed <br> 2: Reference axis speed | $\begin{gathered} 2003+\mathrm{N}^{* 1} \\ (\mathrm{~b} 4 \text { to } 66) \end{gathered}$ | $\begin{gathered} 8003+N^{* 1} \\ (b 4 \text { to b6) } \end{gathered}$ | $\begin{gathered} 14003+\mathrm{N}^{* 1} \\ \text { (b4 to b6) } \end{gathered}$ | $\begin{gathered} 20003+\mathrm{N}^{* 1} \\ \text { (b4 to b6) } \end{gathered}$ | 0 |

*1 $N$ indicates the offset address of each positioning data.
$\mathrm{N}=(($ Positioning data No. $)-1) \times 10$

## (8) Limits to interpolation control

There are limits to the interpolation control that can be executed and speed ([Pr.20] Interpolation speed designation method) that can be set, depending on the "[Pr.1] Unit setting" of the reference axis and interpolation axis. (For example, circular interpolation control cannot be executed if the reference axis and interpolation axis units differ.)
The following table shows the interpolation control and speed designation limits.
$\bigcirc$ : Setting possible, $\times$ : Setting not possible.

| "[Da.2] Control system" interpolation control | [Pr.20] Interpolation speed designation method or [Da.29] Interpolation speed designation method ${ }^{* 5 *}$ | [Pr.1] Unit setting ${ }^{* 1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Reference axis and interpolation axis units are the same, or a combination of "mm" and "inch". *3 | Reference axis and interpolation axis units differ ${ }^{* 3}$ |
| Linear 2 (ABS, INC) Fixed-feed 2 | Composite speed | $\bigcirc$ | $\times$ |
|  | Reference axis speed | $\bigcirc$ | $\bigcirc$ |
| Circular sub (ABS, INC) Circular right (ABS, INC) Circular left (ABS, INC) | Composite speed | ${ }^{*}{ }^{2}$ | $\times$ |
|  | Reference axis speed | $\times$ | $\times$ |
| Linear 3 (ABS, INC) Fixed-feed 3 | Composite speed | $\bigcirc$ | $\times$ |
|  | Reference axis speed | $\bigcirc$ | $\bigcirc$ |
| Helical sub (ABS, INC) Helical right (ABS, INC) Helical left (ABS, INC) | Composite speed | $0^{*}$ | ${ }^{*} 4$ |
|  | Reference axis speed | $\times$ | $\times$ |
| Linear 4 (ABS, INC) Fixed-feed 4 | Composite speed | $\times$ | $\times$ |
|  | Reference axis speed | $\bigcirc$ | $\bigcirc$ |

*1 "mm" and "inch" unit mix possible.
*2 "degree" setting not possible.
The error "Circular interpolation not possible" (error code: 535) will occur and the positioning cannot be started if circular interpolation control or 3-axis helical interpolation control is set when the unit is "degree".
The machine will immediately stop if "degree" is set during positioning control.
*3 The unit set in the reference axis will be used for the speed unit during control if the units differ or if "mm" and "inch" are combined.
*4 Only for the linear interpolation axis, a unit different from the one set for the reference axis can be used.
*5 When a "composite speed" is set and positioning is started in the 2- to 3-axis speed control or 4-axis linear interpolation control, the error "Interpolation mode error" (error code: 523) will occur.
*6 When a "reference axis speed" is set and positioning is started in the circular interpolation control or 3-axis helical interpolation control, the error "Interpolation mode error" (error code: 523) will occur.

## (9) Axis operation status during interpolation control

"Interpolation" will be stored in the "[Md.26] Axis operation status" during interpolation control. "Standby" will be stored when the interpolation operation is terminated. Both the reference axis and interpolation axis will carry out a deceleration stop if an error occurs during control, and "error occurring" will be stored in the operation status.

## 9.2 <br> Setting the Positioning Data

### 9.2.1 Relation between each control and positioning data

The setting requirements and details for the setting items of the positioning data to be set differ according to the "[Da.2] Control system".
The following table shows the positioning data setting items corresponding to the different types of control. Details and settings for the operation of each control are shown in Page 366, Section 9.2.2 and subsequent sections.
(In this section, it is assumed that the positioning data setting is carried out using GX Works2.)
© : Setting always required, $O$ : Set according to requirements, $\times$ : Setting not possible ${ }^{* 1}, ~ 一$ : Setting not required ${ }^{* 2}$

| Setting items for positioning data |  |  | Position control |  |  |  | Speed control | Speedposition switching control |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-axis linear control 2-axis linear interpolation control 3-axis linear interpolation control 4-axis linear interpolation control | 1-axis fixed-feed control <br> 2-axis fixed-feed control <br> 3-axis fixed-feed control <br> 4-axis fixed-feed control | 2-axis circular interpolation control | 3-axis helical interpolation control | 1-axis speed control 2-axis speed control 3-axis speed control 4-axis speed control |  |
| [Da.1] | Operation pattern | Independent <br> positioning control (Positioning complete) | $\bigcirc$ | $\bigcirc$ | © | © | $\bigcirc$ | © |
|  |  | Continuous positioning control | © | $\bigcirc$ | © | © | $\times$ | © |
|  |  | Continuous path control | © | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ |
| [Da.2] | Control system |  | Linear 1 <br> Linear 2 <br> Linear 3 <br> Linear 4 <br> *3 | Fixed-feed 1 <br> Fixed-feed 2 <br> Fixed-feed 3 <br> Fixed-feed 4 | Circular sub <br> Circular right <br> Circular left *3 | Helical sub <br> Helical right <br> Helical left <br> *3 | Forward run speed 1 <br> Reverse run speed 1 <br> Forward run speed 2 <br> Reverse run speed 2 <br> Forward run speed 3 <br> Reverse run speed 3 <br> Forward run speed 4 <br> Reverse run speed 4 | Forward run speed/position <br> Reverse run speed/position *3 |
| [Da.3] | Acceleration time No. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.4] | Deceleration time No. |  | $\bigcirc$ | $\bigcirc$ | O | © | $\bigcirc$ | $\bigcirc$ |
| [Da.5] | Axis to be interpolated |  | : 2-axis interpolation control, 3-axis helical interpolation control <br> -: 1-axis control, 3-axis interpolation control, 4-axis interpolation control |  |  |  |  | - |
| [Da.6] | Positioning address/movement amount |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | - | © |
| [Da.7] | Arc address |  | - | - | $\bigcirc$ | $\bigcirc$ | - | - |
| [Da.8] | Command speed |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.9] | Dwell time |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
| [Da.10] | M code |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\begin{aligned} & \mathrm{O} \\ & { }_{*} \end{aligned}$ | $\bigcirc$ | $\bigcirc$ |
| [Da.27] | M code ON signal output timing |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.28] | ABS direction in degrees |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.29] | Interpolation speed designation method |  | -: 1-axis control, ○: 2-axis interpolation control, 3-axis interpolation control, 4-axis interpolation control |  |  |  |  |  |

*1 If the item is set, the error "Continuous path control not possible" (error code: 516) or "New current value not possible" (error code: 515) will occur at a start.
*2 Setting value invalid Use the initial value or a value within the setting range.
*3 Two control systems are available: the absolute (ABS) system and incremental (INC) system.
*4 Set the $M$ code for the reference axis and the number of pitch for the linear interpolation axis.

## Remark

It is recommended that the "positioning data" be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.
$\bigcirc$ : Setting always required, $\bigcirc$ : Set according to requirements, $\times$ : Setting not possible ${ }^{* 5}$, , Setting not required ${ }^{*} 6$

| Setting items for positioning data |  |  | Positionspeed switching control | Other control |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NOP | Current value | JUMP instruction | LOOP | LEND |
| [Da.1] | Operation pattern | Independent positioning control (Positioning complete) |  | $\bigcirc$ | - | © | - | - | - |
|  |  | Continuous positioning control | $\times$ | - | $\bigcirc$ | - | - | - |
|  |  | Continuous path control | $\times$ | - | $\times$ | - | - | - |
| [Da.2] | Control system |  | Forward run speed/position <br> Reverse run speed/position | NOP <br> instruction | Current value changing | JUMP instruction | LOOP instruction | LEND instruction |
| [Da.3] | Acceleration time No. |  | $\bigcirc$ | - | - | - | - | - |
| [Da.4] | Deceleration time No. |  | $\bigcirc$ | - | - | - | - | - |
| [Da.5] | Axis to be interpolated |  | - | - | - | - | - | - |
| [Da.6] | Positioning address/movement amount |  | $\bigcirc$ | - | Change destination address | - | - | - |
| [Da.7] | Arc address |  | - | - | - | - | - | - |
| [Da.8] | Command speed |  | $\bigcirc$ | - | - | - | - | - |
| [Da.9] | Dwell time |  | $\bigcirc$ | - | - | JUMP destination positioning data No. | - | - |
| [Da.10] | M code |  | $\bigcirc$ | - | $\bigcirc$ | Condition data No. at JUMP | No. of repetition | - |
| [Da.27] | M code ON signal output timing |  | $\bigcirc$ | - | $\bigcirc$ | - | - | - |
| [Da.28] | ABS direction in degrees |  | $\bigcirc$ | - | - | - | - | - |
| [Da.29] | Interpolation speed designation method |  | - | - | - | - | - | - |

9.2 Setting the Positioning Data
*5 If the item is set, the error "Continuous path control not possible" (error code: 516) or "New current value not possible" (error code: 515) will occur at a start.
*6 Setting value invalid Use the initial value or a value within the setting range.

In "1-axis linear control" ("[Da.2] Control system" = ABS linear 1, INC linear 1), one motor is used to carry out position control in a set axis direction.

## (1) 1-axis linear control (ABS linear 1)

(a) Operation chart

In absolute system 1-axis linear control, positioning is carried out from the current stop position (start point address) to the address (end point address) set in "[Da.6] Positioning address/movement amount".

Ex. When the start point address (current stop position) is 1000, and the end point address (positioning address) is 8000 , positioning is carried out in the positive direction for a movement amount of 7000 (80001000).

(b) Positioning data setting example

The following table shows setting examples when "1-axis linear control (ABS linear 1)" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS linear 1 | Set absolute system 1-axis linear control. |
|  | [Da.3] | Acceleration time No. | 1 | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | Set the positioning address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | Set the speed during movement to the positioning address. |
|  | [Da.9] | Dwell time | 500 ms | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## (2) 1-axis linear control (INC linear 1)

## (a) Operation chart

In incremental system 1-axis linear control, positioning of movement amount set in "[Da.6] Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.


Ex. When the start point address is 5000 , and the movement amount is -7000 , positioning is carried out to the -2000 position.


## (b) Positioning data setting example

The following table shows setting examples when "1-axis linear control (INC linear 1)" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :--- | :--- | :--- | :---: | :--- |
|  | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data will not <br> be executed. |
|  | [Da.2] | Control system | INC linear 1 | Set incremental system 1-axis linear control. |
|  | [Da.3] | Acceleration time No. | 1 | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration <br> time at start. |
| Axis 1 positioning <br> data No. 1 | [Da.4] | Deceleration time No. | 0 |  |
|  | [Da.5] | Axis to be interpolated | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration <br> time at deceleration. |
|  | Positioning <br> address/movement <br> amount | $-7000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |  |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.3 2-axis linear interpolation control

In "2-axis linear interpolation control" ("[Da.2] Control system" = ABS linear 2, INC linear 2), two motors are used to carry out position control in a linear path while carrying out interpolation for the axis directions set in each axis. (Refer to $\leftrightarrows$ Page 359, Section 9.1.6 for details on interpolation control.)

## (1) 2-axis linear interpolation control (ABS linear 2)

(a) Operation chart

In absolute system 2-axis linear interpolation control, specified two axes are used to perform linear interpolation positioning from the current stop position (start point address) to the address set in the "[Da.6] Positioning address/movement amount" (end point address).


Ex. When the start point address (current stop position) is $(1000,1000)$ and the end point address (positioning address) is $(10000,4000)$, positioning is carried out as follows.


## (b) Restrictions

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- If the movement amount of each axis exceeds "1073741824 $\left(=2^{30}\right)$ " when " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method"*1
*1 The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start. (The maximum movement amount that can be set in "[Da.6] Positioning address/movement amount" is "1073741824 (=2 ${ }^{30}$ )".)
(c) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2, respectively.)
The following table shows setting examples when "2-axis linear interpolation control (ABS linear 2)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2.)

| Setting item |  | Axis 1 (reference <br> axis) setting <br> example | Axis 2 <br> (interpolation axis) <br> setting example | Setting details |
| :--- | :--- | :--- | :---: | :---: | :--- |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\rho}$

When the "reference axis speed" is set during 2-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".

## (2) 2-axis linear interpolation control (INC linear 2)

## (a) Operation chart

In incremental system 2-axis linear interpolation control, designated 2 axes are used. Linear interpolation positioning of movement amount set in "[Da.6] Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.


Ex. When the axis 1 movement amount is 9000 and the axis 2 movement amount is -3000 , positioning is carried out as follows.


## (b) Restrictions

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- If the movement amount of each axis exceeds "1073741824 $\left(=2^{30}\right)$ " when " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method"*1
*1 The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start. (The maximum movement amount that can be set in "[Da.6] Positioning address/movement amount" is "1073741824 (=2 $\left.2^{30}\right)$ ".)
(c) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.)

The following table shows setting examples when "2-axis linear interpolation control (INC linear 2)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 .)

| Setting item |  | Axis 1 (reference <br> axis) setting <br> example | Axis 2 <br> (interpolation axis) <br> setting example | Setting details |
| :--- | :--- | :--- | :---: | :---: | :--- |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\rho}$

When the "reference axis speed" is set during 2-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".

### 9.2.4 3-axis linear interpolation control

In "3-axis linear interpolation control" ("[Da.2] Control system" = ABS linear 3, INC linear 3), three motors are used to carry out position control in a linear path while carrying out interpolation for the axis directions set in each axis. (Refer to $\$$ Page 359, Section 9.1.6 for details on interpolation control.)

## (1) 3-axis linear interpolation control (ABS linear 3)

(a) Operation chart

In absolute system 3-axis linear interpolation control, 3 axes are used. Linear interpolation positioning is carried out from the current stop position (start point address) to the address (end point address) set in "[Da.6] Positioning address/movement amount".


Ex. When the start point address (current stop position) is $(1000,2000,1000)$ and the end point address (positioning address) is $(4000,8000,4000)$, positioning is carried out as follows.


## (b) Restrictions

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- If the movement amount of each axis exceeds "1073741824 $\left(=2^{30}\right)$ " when " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method"*1
*1 The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start. (The maximum movement amount that can be set in "[Da.6] Positioning address/movement amount" is "1073741824 (=20)".)
(c) Positioning data setting example (Reference axis is designated as axis 1.)

The following table shows setting examples when " 3 -axis linear interpolation control (ABS linear 3)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 and axis 3 .)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 <br> (interpolation axis) setting example | Axis 3 (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS linear 3 | - | - | Set absolute system 3-axis linear interpolation control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | Setting not required. (Setting value will be ignored.) <br> When axis 1 is used as a reference axis, the interpolation axes are axes 2 and 3 . |
|  | [Da.6] | Positioning address/movement amount | $4000.0 \mu \mathrm{~m}$ | $8000.0 \mu \mathrm{~m}$ | $4000.0 \mu \mathrm{~m}$ | Set the end point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement to the end point address. |
|  | [Da.9] | Dwell time | 500ms | - | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\rho}$

- When the "reference axis speed" is set during 3 -axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
- Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.


## (2) 3-axis linear interpolation control (INC linear 3)

## (a) Operation chart

In incremental system 3-axis linear interpolation control, designated 3 axes are used. Linear interpolation positioning of movement amount set in "[Da.6] Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount.


Ex. When the axis 1 movement amount is 10000 , the axis 2 movement amount is 5000 and the axis 3 movement amount is 6000 , positioning is carried out as follows.


## (b) Restrictions

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- If the movement amount of each axis exceeds "1073741824 $\left(=2^{30}\right)$ " when " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method"*1
*1 The error "Outside linear movement amount range" (error code: 504) occurs at a positioning start. (The maximum movement amount that can be set in "[Da.6] Positioning address/movement amount" is "1073741824 (=20)".)
(c) Positioning data setting example (Reference axis is designated as axis 1.)

The following table shows setting examples when "3-axis linear interpolation control (INC linear 3)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 and axis 3 .)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 <br> (interpolation axis) setting example | Axis 3 <br> (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | INC linear 3 | - | - | Set incremental system 3-axis linear interpolation control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | Setting not required. (Setting value will be ignored.) <br> When axis 1 is used as a reference axis, the interpolation axes are axes 2 and 3 . |
|  | [Da.6] | Positioning address/movement amount | 10000.0رm | $5000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement. |
|  | [Da.9] | Dwell time | 500 ms | - | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{P}$

- When the "reference axis speed" is set during 3-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
- Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.

In "4-axis linear interpolation control" ("[Da.2] Control system" = ABS linear 4, INC linear 4), four motors are used to carry out position control in a linear path while carrying out interpolation for the axis directions set in each axis.
(Refer to Page 359, Section 9.1.6 for details on interpolation control.)

## (1) 4-axis linear interpolation control (ABS linear 4)

In absolute system 4-axis linear interpolation control, 4 axes are used. Linear interpolation positioning is carried out from the current stop position (start point address) to the address (end point address) set in "[Da.6] Positioning address/movement amount".
(a) Positioning data setting example (Reference axis is designated as axis 1.)

The following table shows setting examples when "4-axis linear interpolation control (ABS linear 4)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2, axis 3 and axis 4.)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (interpolation axis) setting example | Axis 3 (interpolation axis) setting example | Axis 4 (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS linear 4 | - | - | - | Set absolute system 4-axis linear interpolation control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | - | Setting not required. (Setting value will be ignored.) <br> When axis 1 is used as a reference axis, the interpolation axes are axes 2,3 and 4. |
|  | [Da.6] | Positioning address/movement amount | $4000.0 \mu \mathrm{~m}$ | $8000.0 \mu \mathrm{~m}$ | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the end point address. <br> (Assuming "mm" is set in "[Pr.1] <br> Unit setting".) |
|  | [Da.7] | Arc address | - | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | - | Set the speed during movement to the end point address. |
|  | [Da.9] | Dwell time | 500 ms | - | - | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

- When the "reference axis speed" is set during 4-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
- Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.


## (2) 4-axis linear interpolation control (INC linear 4)

In incremental system 4-axis linear interpolation control, designated 4 axes are used. Linear interpolation positioning of movement amount set in "[Da.6] Positioning address/movement amount" is carried out from the current stop position (start point address). The movement direction is determined by the sign of the movement amount
(a) Positioning data setting example (Reference axis is designated as axis 1.)

The following table shows setting examples when "4-axis linear interpolation control (INC linear 4)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 , axis 3 and axis 4.)

| Setting item |  |  | Axis 1 (referenceaxis) setting example | Axis 2 (interpolation axis) setting example | Axis 3 (interpolation axis) setting example | Axis 4 (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | INC linear 4 | - | - | - | Set incremental system 4-axis linear interpolation control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | - | Setting not required. (Setting value will be ignored.) <br> When axis 1 is used as a reference axis, the interpolation axes are axes 2,3 and 4. |
|  | [Da.6] | Positioning address/moveme nt amount | $4000.0 \mu \mathrm{~m}$ | $8000.0 \mu \mathrm{~m}$ | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | - | Set the speed during movement. |
|  | [Da.9] | Dwell time | 500ms | - | - | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\rho}$

- When the "reference axis speed" is set during 4-axis linear interpolation control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
- Refer to $\longmapsto$ Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.


### 9.2.6

In "1-axis fixed-feed control" ("[Da.2] Control system" = fixed-feed 1), one motor is used to carry out fixed-feed control in a set axis direction.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.

## (1) Operation chart

In 1-axis fixed-feed control, the address ([Md.20] Current feed value) of the current stop position (start point address) is set to " 0 ". Positioning is then carried out to a position at the end of the movement amount set in "[Da.6] Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.


## (2) Restrictions

- The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous path control" cannot be set in fixed-feed control.)
- "Fixed-feed" cannot be set in "[Da.2] Control system" in the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.


## Point ${ }^{P}$

- When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the LD75 and reflected at the next positioning. For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.

【Accumulation/cutoff for fractional pulses】
When movement amount per pulse is $1.0 \mu \mathrm{~m}$ and movement for $2.5 \mu \mathrm{~m}$ is executed two times; $\Rightarrow$ Conversion to output pulses: $2.5[\mu \mathrm{~m}] \div 1.0=2.5$ pulses


## (3) Positioning data setting example

The following table shows setting examples when "1-axis fixed-feed control (fixed-feed 1 )" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | Fixed-feed 1 | Set 1-axis fixed-feed control. |
|  | [Da.3] | Acceleration time No. | 1 | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | Set the speed during movement. |
|  | [Da.9] | Dwell time | 500 ms | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.7 2-axis fixed-feed control (interpolation)

In "2-axis fixed-feed control" ("[Da.2] Control system" = fixed-feed 2), two motors are used to carry out fixed-feed control in a linear path while carrying out interpolation for the axis directions set in each axis.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.
(Refer to Page 359, Section 9.1.6 for details on interpolation control.)

## (1) Operation chart

In incremental system 2-axis fixed-feed control, the addresses ([Md.20] Current feed value) of the current stop position (start addresses) of both axes are set to "0". Linear interpolation positioning is then carried out from that position to a position at the end of the movement amount set in "[Da.6] Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.


## (2) Restrictions

- The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous path control" cannot be set in fixed-feed control.)
- If the movement amount of each axis exceeds "1073741824 ( $\left.=2^{30}\right)^{\prime \prime}$ when " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method", the error "Outside linear movement amount range" (error code: 504) occurs at a positioning start and positioning cannot be started. (The maximum movement amount that can be set in "[Da.6] Positioning address/movement amount" is "1073741824 (=2 $\left.{ }^{30}\right)$ ".)
- "Fixed-feed" cannot be set in "[Da.2] Control system" in the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.


## (3) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2, respectively.)

The following table shows setting examples when "2-axis fixed-feed control (fixed-feed 2)" is set in positioning data No. 4 of axis 1. (The required values are also set in positioning data No. 1 of axis 2.)

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | Fixed-feed 2 | - | Set 2-axis fixed-feed control. |
|  | [Da.3] | Acceleration time No. | 1 | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | Set the axis to be interpolated (partner axis). If the selfaxis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming " mm " is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | Set the speed during movement. (Designate the composite speed of reference axis speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500 ms | - | Positioning stops. Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

Point ${ }^{P}$

- When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the LD75 and reflected at the next positioning. For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.

【Accumulation/cutoff for fractional pulses】

When movement amount per pulse is $1.0 \mu \mathrm{~m}$ and movement for $2.5 \mu \mathrm{~m}$ is executed two times; $\Rightarrow$ Conversion to output pulses: $2.5[\mu \mathrm{~m}] \div 1.0=2.5$ pulses


- When the "reference axis speed" is set during 2-axis fixed-feed control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
- Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.


### 9.2.8 3-axis fixed-feed control (interpolation)

In "3-axis fixed-feed control" ("[Da.2] Control system" = fixed-feed 3), three motors are used to carry out fixed-feed control in a linear path while carrying out interpolation for the axis directions set in each axis.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.
(Refer to 5 Page 359, Section 9.1.6 for details on interpolation control.)

## (1) Operation chart

In incremental system 3-axis fixed-feed control, the addresses ([Md.20] Current feed value) of the current stop position (start addresses) of every axes are set to "0". Linear interpolation positioning is then carried out from that position to a position at the end of the movement amount set in "[Da.6] Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.


## (2) Restrictions

- The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous path control" cannot be set in fixed-feed control.)
- If the movement amount of each axis exceeds "1073741824 ( $\left.=2^{30}\right)^{\prime}$ when " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method", the error "Outside linear movement amount range" (error code: 504) occurs at a positioning start and positioning cannot be started. (The maximum movement amount that can be set in "[Da.6] Positioning address/movement amount" is "1073741824 (=2 $\left.{ }^{30}\right)$ ".)
- "Fixed-feed" cannot be set in "[Da.2] Control system" in the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.


## (3) Positioning data setting example (Reference axis is designated as axis 1.)

The following table shows setting examples when "3-axis fixed-feed control (fixed-feed 3 )" is set in positioning data No. 4 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 and axis 3.)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 <br> (interpolation axis) setting example | Axis 3 (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | Fixed-feed 3 | - | - | Set 3-axis fixed-feed control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Designate the value set in "[Pr.25] Acceleration time 1 " as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Designate the value set in "[Pr.10] Deceleration time $0 "$ as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | Setting not required. (Setting value will be ignored.) When axis 1 is used as a reference axis, the interpolation axes are axes 2 and 3 . |
|  | [Da.6] | Positioning address/movement amount | 10000.0رm | $5000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement. |
|  | [Da.9] | Dwell time | 500 ms | - | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

Point ${ }^{P}$

- When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the LD75 and reflected at the next positioning. For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.

【Accumulation/cutoff for fractional pulses】

When movement amount per pulse is $1.0 \mu \mathrm{~m}$ and movement for $2.5 \mu \mathrm{~m}$ is executed two times; $\Rightarrow$ Conversion to output pulses: $2.5[\mu \mathrm{~m}] \div 1.0=2.5$ pulses


- When the "reference axis speed" is set during 3-axis fixed-feed control, set so the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
- Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.


### 9.2.9 4-axis fixed-feed control (interpolation)

In "4-axis fixed-feed control" ("[Da.2] Control system" = fixed-feed 4), four motors are used to carry out fixed-feed control in a linear path while carrying out interpolation for the axis directions set in each axis.
In fixed-feed control, any remainder of the movement amount designated in the positioning data is rounded down if less than that required for control accuracy to output the same amount of pulses.
(Refer to Page 359, Section 9.1.6 for details on interpolation control.)

## (1) Operation chart

In incremental system 4-axis fixed-feed control, the addresses ([Md.20] Current feed value) of the current stop position (start addresses) of every axes are set to " 0 ". Linear interpolation positioning is then carried out from that position to a position at the end of the movement amount set in "[Da.6] Positioning address/movement amount". The movement direction is determined by the sign of the movement amount.

## (2) Restrictions

- The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous path control" cannot be set in fixed-feed control.)
- For 4-axis fixed-feed control, set "1: Reference axis speed" in "[Pr.20] Interpolation speed designation method". The error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if "0: Composite speed" is set.
- "Fixed-feed" cannot be set in "[Da.2] Control system" in the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", fixed-feed control cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.


## (3) Positioning data setting example (Reference axis is designated as axis 1.)

The following table shows setting examples when "4-axis fixed-feed control (fixed-feed 4)" is set in positioning data No. 4 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 , axis 3 and axis 4 .)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (interpolation axis) setting example | Axis 3 <br> (interpolation axis) setting example | Axis 4 (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | Fixed-feed 4 | - | - | - | Set 4-axis fixed-feed control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | - | Setting not required. (Setting value will be ignored.) When axis 1 is used as a reference axis, the interpolation axes are axes 2, 3 and 4. |
|  | [Da.6] | Positioning address/movement amount | $4000.0 \mu \mathrm{~m}$ | $8000.0 \mu \mathrm{~m}$ | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | 6000.00 <br> mm/min | - | - | - | Set the speed during movement. |
|  | [Da.9] | Dwell time | 500 ms | - | - | - | Positioning stops. Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\rho}$

- When the movement amount is converted to the actual number of output pulses, a fraction appears after the decimal point, according to the movement amount per pulse. This fraction is normally retained in the LD75 and reflected at the next positioning. For the fixed-feed control, since the movement distance is maintained constant (= the output number of pulses is maintained constant), the control is carried out after the fractional pulse is cleared to zero at start.

【Accumulation/cutoff for fractional pulses】
When movement amount per pulse is $1.0 \mu \mathrm{~m}$ and movement for $2.5 \mu \mathrm{~m}$ is executed two times;
$\Rightarrow$ Conversion to output pulses: $2.5[\mu \mathrm{~m}] \div 1.0=2.5$ pulses


- For 4-axis fixed-feed control, set the "reference axis speed" and make setting so that the major axis side becomes the reference axis. If the minor axis side is set as the reference axis, the major axis side speed may exceed the "[Pr.8] Speed limit value".
Refer to Page 359, Section 9.1 .6 for the combination of the reference axis with the interpolation axis.


### 9.2.10 2-axis circular interpolation control with sub point designation

In "2-axis circular interpolation control" (" Da. 2 Control system" = ABS circular sub, INC circular sub), two motors are used to carry out position control in an arc path passing through designated sub points, while carrying out interpolation for the axis directions set in each axis. (Refer to $\longmapsto$ Page 359, Section 9.1.6 for details on interpolation control.)

## (1) 2-axis circular interpolation control with sub point designation (ABS circular sub)

## (a) Operation chart

In the absolute system, 2-axis circular interpolation control with sub point designation, positioning is carried out from the current stop position (start point address) to the address (end point address) set in "Da. 6 Positioning address/movement amount" in an arc path that passes through the sub point address set in " Da. 7 Arc address".
The resulting control path is an arc having as its center the intersection point of perpendicular bisectors of a straight line between the start point address (current stop position) and sub point address (arc address), and a straight line between the sub point address (arc address) and end point address (positioning address).


## (b) Restrictions

2-axis circular interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting"
- When the units set in "[Pr.1] Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in "[Pr.20] Interpolation speed designation method"

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- When the radius exceeds " $536870912\left(=2^{29}\right)$ ". (The maximum radius for which circular interpolation control is possible is " $536870912\left(=2^{29}\right)$ " ... An error "Outside radius range" (error code: 544) will occur at positioning start.
- When the center point address is outside the range of "-2147483648 $\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ ": The error "Sub point setting error" (error code: 525) will occur at a positioning start.
- When the start point address is the same as the end point address ... The error "End point setting error" (error code: 526) will occur.
- When the start point address is the same as the sub point address ... The error "Sub point setting error" (error code: 525) will occur.
- When the end point address is the same as the sub point address ... The error "Sub point setting error" (error code: 525) will occur.
- When the start point address, sub point address, and end point address are in a straight line: The error "Sub point setting error" (error code: 525) will occur.
(c) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.)

The following table shows setting examples when "2-axis circular interpolation control with sub point designation (ABS circular sub)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2.)

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS circular sub | - | Set absolute system, 2-axis circular interpolation control with sub point designation. |
|  | [Da.3] | Acceleration time No. | 1 | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | Set the axis to be interpolated (partner axis). If the selfaxis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the end point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the sub point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | Set the speed during movement to the end point address. (Designate the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500 ms | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\circ}$

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

## (2) 2-axis circular interpolation control with sub point designation (INC circular sub)

## (a) Operation chart

In the incremental system, 2-axis circular interpolation control with sub point designation, positioning is carried out from the current stop position (start point address) to a position at the end of the movement amount set in " Da. 6 Positioning address/movement amount" in an arc path that passes through the sub point address set in " Da. 7 Arc address". The movement direction is determined by the sign of the movement amount.
The resulting control path is an arc having as its center the intersection point of perpendicular bisectors of the straight line between the start point address (current stop position) and sub point address (arc address) calculated from the movement amount to the sub point, and a straight line between the sub point address (arc address) and end point address (positioning address) calculated from the movement amount to the end point.


## (b) Restrictions

2-axis circular interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting"
- When the units set in "[Pr.1] Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in "[Pr.20] Interpolation speed designation method"

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- When the radius exceeds "536870912 $\left(=2^{29}\right)$ ". (The maximum radius for which circular interpolation control is possible is " $536870912\left(=2^{29}\right)$ " $\ldots$ An error "Outside radius range" (error code: 544 ) will occur at positioning start.
- When the auxiliary point address is outside the range of $-2147483648\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ : An error 525 will occur.
- When the end point address is outside the range of $-2147483648\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ : An error 526 will occur.
- When the auxiliary point address, center point address is outside the range of "-2147483648 $\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ ": The error "Sub point setting error" (error code: 525 ) will occur at a positioning start.
- When the start point address is the same as the end point address ... The error "End point setting error" (error code: 526) will occur.
- When the start point address is the same as the sub point address ... The error "Sub point setting error" (error code: 525) will occur.
- When the end point address is the same as the sub point address ... The error "Sub point setting error" (error code: 525) will occur.
- When the start point address, sub point address, and end point address are in a straight line: The error "Sub point setting error" (error code: 525) will occur.


## (c) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.)

The following table shows setting examples when "2-axis circular interpolation control with sub point designation (INC circular sub)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | INC circular sub | - | Set incremental system, 2-axis circular interpolation control with sub point designation. |
|  | [Da.3] | Acceleration time No. | 1 | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | Set the axis to be interpolated (partner axis). If the selfaxis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $-3000.0 \mu \mathrm{~m}$ | Set the sub point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | Set the speed during movement. (Designate the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500 ms | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to $\longmapsto$ Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{\rho}$

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

### 9.2.11 <br> 2-axis circular interpolation control with center point designation

In "2-axis circular interpolation control" (" Da. 2 Control system" = ABS circular right, INC circular right, ABS circular left, INC circular left), two motors are used to carry out position control in an arc path having an arc address as a center point, while carrying out interpolation for the axis directions set in each axis. (Refer to Page 359, Section 9.1 .6 for details on interpolation control.)
The following table shows the rotation directions, arc center angles that can be controlled, and positioning paths for the different control systems.

| Control system | Rotation direction | Arc center angle that can be controlled | Positioning path |
| :---: | :---: | :---: | :---: |
| ABS circular right |  | $0^{\circ}<\theta \leq 360^{\circ}$ |  |
| INC circular right | Clockwise |  |  |
| ABS circular left |  |  |  |
| INC circular left | Counterclockwise |  |  |

## (1) Circular interpolation error compensation

In circular interpolation control with center point designation, the arc path calculated from the start point address and center point address may deviate from the position of the end point address set in " Da. 6 Positioning address/movement amount". (
(a) Calculated error $\leq$ "[Pr.41] Allowable circular interpolation error width"

Circular interpolation control to the set end point address is carried out while the error compensation is carried out.
(This is called "spiral interpolation".)


In circular interpolation control with center point designation, an angular velocity is calculated on the assumption that operation is carried out at a command speed on the arc using the radius calculated from the start point address and center point address, and the radius is compensated in proportion to the angular velocity deviated from that at the start point. Thus, when there is a difference (error) between a radius calculated from the start point address and center point address (start point radius) and a radius calculated from the end point address and center point address (end point radius), the composite speed differs from the command speed as follows.

- Start point radius > End point radius: As compared with the speed without error, the speed becomes slower as end point address is reached.
- Start point radius < End point radius: As compared with the speed without error, the speed becomes faster as end point address is reached.


## (b) Calculated error > "[Pr.41] Allowable circular interpolation error width"

At the positioning start, the error "Large arc error deviation" (error code: 506) will occur and the control will not start.

The machine will immediately stop if the error is detected during positioning control.

## (2) 2-axis circular interpolation control with center point designation (ABS circular right, ABS circular left)

## (a) Operation chart

In the absolute system, 2-axis circular interpolation control with center point designation, positioning is carried out from the current stop position (start point address) to the address (end point address) set in " Da. 6 Positioning address/movement amount" in an arc path having as its center the address (arc address) of the center point set in " Da. 7 Arc address".


Positioning of a complete round with a radius from the start point address to the arc center point can be carried out by setting the end point address (positioning address) to the same address as the start point address.


In circular interpolation control with center point designation, an angular velocity is calculated on the assumption that operation is carried out at a command speed on the arc using the radius calculated from the start point address and center point address, and the radius is compensated in proportion to the angular velocity deviated from that at the start point. Thus, when there is a difference (error) between a radius calculated from the start point address and center point address (start point radius) and a radius calculated from the end point address and center point address (end point radius), the composite speed differs from the command speed as follows.

- Start point radius > End point radius: As compared with the speed without error, the speed becomes slower as end point address is reached.
- Start point radius < End point radius: As compared with the speed without error, the speed becomes faster as end point address is reached.


## (b) Restrictions

2-axis circular interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting"
- When the units set in "[Pr.1] Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in "[Pr.20] Interpolation speed designation method"

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- When the radius exceeds "536870912 $\left(=2^{29}\right)$ ". (The maximum radius for which circular interpolation control is possible is "536870912 (=29)" ... An error "Outside radius range" (error code: 544) will occur at positioning start.
- When the start point address is the same as the center point address ... The error "Center point setting error" (error code: 527) will occur.
- When the end point address is the same as the center point address ... The error "Center point setting error" (error code: 527) will occur.
- When the center point address is outside the range of $-2147483648\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ : The error "Center point setting error" (error code: 527) will occur.
(c) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2 , respectively.)

The following table shows setting examples when "2-axis circular interpolation control with center point designation (ABS circular right, ABS circular left)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2.)

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS circular right/ABS circular left | - | Set absolute system, 2-axis circular interpolation control with center point designation. (Select clockwise or counterclockwise according to the control.) |
|  | [Da.3] | Acceleration time No. | 1 | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | Set the axis to be interpolated (partner axis). If the selfaxis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the end point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the arc address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | Set the speed during movement to the end point address. (Designate the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500ms | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

## (3) 2-axis circular interpolation control with center point designation (INC circular right, INC circular left)

## (a) Operation chart

In the incremental system, 2-axis circular interpolation control with center point designation, positioning is carried out from the current stop position (start point address) to a position at the end of the movement amount set in " Da. 6 Positioning address/movement amount" in an arc path having as its center the address (arc address) of the center point set in " Da. 7 Arc address".


Positioning of a complete round with a radius of the distance from the start point address to the arc center point can be carried out by setting the movement amount to " 0 ".


In circular interpolation control with center point designation, an angular velocity is calculated on the assumption that operation is carried out at a command speed on the arc using the radius calculated from the start point address and center point address, and the radius is compensated in proportion to the angular velocity deviated from that at the start point. Thus, when there is a difference (error) between a radius calculated from the start point address and center point address (start point radius) and a radius calculated from the end point address and center point address (end point radius), the composite speed differs from the command speed as follows.

- Start point radius > End point radius: As compared with the speed without error, the speed becomes slower as end point address is reached.
- Start point radius < End point radius: As compared with the speed without error, the speed becomes faster as end point address is reached.


## (b) Restrictions

2-axis circular interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting"
- When the units set in "[Pr.1] Unit setting" are different for the reference axis and interpolation axis. ("mm" and "inch" combinations are possible.)
- When "reference axis speed" is set in "[Pr.20] Interpolation speed designation method"

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

- When the radius exceeds " $536870912\left(=2^{29}\right)$ ". (The maximum radius for which circular interpolation control is possible is " $536870912\left(=2^{29}\right)$ " ... An error "Outside radius range" (error code: 544 ) will occur at positioning start.
- When the end point address is outside the range of $-2147483648\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ : The error "End point setting error" (error code: 526) will occur.
- When the start point address is the same as the center point address ... The error "Center point setting error" (error code: 527) will occur.
- When the end point address is the same as the center point address ... The error "Center point setting error" (error code: 527) will occur.
- When the center point address is outside the range of $-2147483648\left(-2^{31}\right)$ to $2147483647\left(2^{31}-1\right)$ : The error "Center point setting error" (error code: 527) will occur.
(c) Positioning data setting example (Reference axis and interpolation axis are designated as axis 1 and axis 2, respectively.)

The following table shows setting examples when " 2 -axis circular interpolation control with center point designation (INC circular right, INC circular left)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2.)

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | INC circular right/INC circular left | - | Set incremental system, 2-axis circular interpolation control with center point designation. (Select clockwise or counterclockwise according to the control.) |
|  | [Da.3] | Acceleration time No. | 1 | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | Set the axis to be interpolated (partner axis). If the selfaxis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming " mm " is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the arc address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | Set the speed during movement. (Designate the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500 ms | - | Set the time the machine dwells after the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## Point ${ }^{8}$

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

### 9.2.12 3-axis helical interpolation control with sub point designation

In the 3-axis helical interpolation control, circular interpolation control is carried out with two of the three axes. The other axis tracks the movement of the circular interpolation control to carry out "helical control "or "tangential control". (Refer to Page 359, Section 9.1.6 for details on interpolation control.)
Control details

X-axis: Reference axis, Y-axis: Circular interpolation axis, Z-axis: Linear interpolation axis

## (1) Helical interpolation control speed

The command speed of the 3-axis helical interpolation control is the same as the speed of circular interpolation control (composite speed of reference axis and circular interpolation axis).


When " 0 : Composite speed" is set in "[Pr.20] Interpolation speed designation method", the command speed of ABS3/INC3 is the same as the composite speed of the 3 axes ( $x$ axis $-y$ axis $-z$ axis). The command speed of 3 -axis helical interpolation control is the same as the composite speed of the circular interpolation axis (x axis - y axis). When continuous path control is carried out in ABS3/INC3 and 3-axis helical interpolation control, adjust the command speed to prevent the workpiece from moving unsteadily because the workpiece movement speed may change when positioning data is switched.
(2) Rotation angle of the circular interpolation axis ( X axis - Y axis)

The following shows the rotation angle of the circular interpolation axis in 3-axis helical interpolation control.


A true circle can be set only when the start point equals to the end point in 3-axis helical interpolation (ABS/INC, center point).

## Point ${ }^{\circ}$

When "degree" is set for the unit setting in the absolute system, the positioning range is 0 to $359.99999^{\circ}$. When the axis rotates $360^{\circ}$ or more in circular interpolation control ( $x$ axis - y axis), the tangential/normal control cannot be carried out because a degree of $360^{\circ}$ or more cannot be set in linear control (z axis: degree). To carry out tangential/normal control in which the axis rotates $360^{\circ}$ or more, use 3 -axis helical interpolation control (INC).

## (3) Rotation direction when the unit for the linear axis ( $\mathbf{z}$ axis) is degree

When "[Pr.1] Unit setting" for the linear axis is "degree", the rotation direction is determined according to the axis control data "[Cd.40] ABS direction in degrees" of the reference axis. To set the rotation direction for each positioning data, set the position data "[Da.28] ABS direction in degrees".

## (4) 3-axis helical interpolation control with sub point designation (ABS helical sub)

## (a) Operation chart

In this control, positioning is carried out from the current stop position ( $\mathrm{XO}, \mathrm{YO}, \mathrm{ZO}$ ) to the circular end address (X1, Y1) and linear axis end address (Z1) set in "[Da.6] Positioning address/movement amount". Circular interpolation where the arc path passes through the address of the sub point (sub point address) set in "[Da.7] Arc address" is carried out. Simultaneously, linear interpolation is carried out with the other linear axis. The control path is helically rotated for the number of pitch set in "[Da.10] M code" of the linear axis to complete the positioning to the specified position.
The resulting control path is an arc having its center as the intersection point of perpendicular bisectors of a straight line between the start point address (current stop position) and sub point address (arc address), and a straight line between the sub point address (arc address) and end point address (positioning address).

(b) Restrictions

3-axis helical interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting" for the reference axis and circular interpolation axis
- When the units set in "[Pr.1] Unit setting" are different between the reference axis and circular interpolation axis. ("mm" and "inch" combinations are possible.)
- When a method other than "composite speed" is set in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method"

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

| Error cause | Error code |
| :--- | :--- |
| When the radius exceeds "536870912 $\left(=2^{29}\right)$ ". (The maximum radius for <br> which circular interpolation control is possible is "536870912 $\left(=2^{29}\right)$ ".) | An error "Outside radius range" (error code: 544) will occur at positioning start. |
| Center point address is outside the range of $-2147483648\left(-2^{31}\right)$ to <br> $2147483647\left(2^{31}-1\right)$. | An error "Sub point setting error" (error code: 525) will occur at positioning <br> start. |
| Start point address = End point address | Error "End point setting error" (error code: 526) |
| Start point address = Sub point address | Error "Sub point setting error" (error code: 525) |
| End point address = Sub point address | Error "Sub point setting error" (error code: 525) |
| When the start point address, end point address, and sub point address are in <br> a straight line | Error "Sub point setting error" (error code: 525) |

## (c) Positioning data setting example

- Reference axis, circular interpolation axis, and linear interpolation axis are specified as axis 1 , axis 2 , and axis 3 , respectively.
The following table shows setting examples when "helical interpolation control with sub point designation (ABS)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 and axis 3.)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (circular interpolation axis) setting example | Axis 3 (linear interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS helical sub | - | - | Set absolute system, 3-axis helical interpolation control with sub point designation. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Specify the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Specify the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | - | Set the axis to be interpolated (partner axis). <br> If the self-axis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the end point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | - | Set the sub point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement to the end point address. (Set the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500ms | - | - | Set the time the machine dwells from the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | 50 | Set this item when other sub operation commands are issued in combination with the No. 1 positioning data. <br> Set the number of pitch for the linear interpolation axis. |

*1 Refer to "List of Positioning Data (5 Page 152, Section 5.3)" for information on the setting details.

## Point ${ }^{9}$

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

## (5) 3-axis helical interpolation control with sub point designation (INC helical sub)

## (a) Operation chart

In this control, positioning is carried out from the current stop position ( $\mathrm{XO}, \mathrm{YO}, \mathrm{ZO}$ ) to the movement amount position (X1, Y1, Z1) set in "[Da.6] Positioning address/movement amount". Circular interpolation where the arc path passes through the address of the sub point (sub point address) set in "[Da.7] Arc address" is carried out. Simultaneously, linear interpolation is carried out with the other linear axis. The control path is helically rotated for the number of pitch set in "[Da.10] M code" of the linear axis to complete the positioning to the specified position. The movement direction is determined by the sign of the movement amount.
The resulting control path is an arc having its center as the intersection point of perpendicular bisectors of a straight line between the start point address (current stop position) and sub point address (arc address), and a straight line between the sub point address (arc address) and end point address (positioning address).

(b) Restrictions

3-axis helical interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting" for the reference axis and circular interpolation axis
- When the units set in "[Pr.1] Unit setting" are different between the reference axis and circular interpolation axis. ("mm" and "inch" combinations are possible.)
- When a method other than "composite speed" is set in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method"
An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

| Error cause | Error code |
| :--- | :--- |
| When the radius exceeds "536870912 $\left(=2^{29}\right)$ ". (The maximum radius for <br> which circular interpolation control is possible is " $\left.536870912\left(=2^{29}\right) ".\right)$ | An error "Outside radius range" (error code: 544) will occur at positioning start. |
| Sub point address is outside the range of $-2147483648\left(-2^{31}\right)$ to 2147483647 <br> $\left(2^{31}-1\right)$. | An error "Sub point setting error" (error code: 525) will occur at positioning <br> start. |
| End point address is outside the range of $-2147483648\left(-2^{31}\right)$ to 2147483647 <br> $\left(2^{31}-1\right)$. | An error "End point setting error" (error code: 526$)$ will occur at positioning <br> start. |
| Center point address is outside the range of $-2147483648\left(-2^{31}\right)$ to <br> $2147483647\left(2^{31}-1\right)$. | An error "Sub point setting error" (error code: 525$)$ will occur at positioning <br> start. |
| Start point address = End point address | Error "End point setting error" (error code: 526) |
| Start point address = Sub point address | Error "Sub point setting error" (error code: 525) |
| End point address = Sub point address | Error "Sub point setting error" (error code: 525) |
| When the start point address, end point address, and sub point address are in | Error "Sub point setting error" (error code: 525) |
| a straight line |  |

## (c) Positioning data setting example

- Reference axis, circular interpolation axis, and linear interpolation axis are specified as axis 1 , axis 2 , and axis 3 , respectively.
The following table shows setting examples when "helical interpolation control with sub point designation (INC)" is set in positioning data No. 1 of axis 1. (The required values are also set in positioning data No. 1 of axis 2 and axis 3 .)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (circular interpolation axis) setting example | Axis 3 (linear interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | INC helical sub | - | - | Set incremental system, 3-axis helical interpolation control with sub point designation. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Specify the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Specify the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | - | Set the axis to be interpolated (partner axis). <br> If the self-axis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $-3000.0 \mu \mathrm{~m}$ | - | Set the sub point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement. (Set the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500ms | - | - | Set the time the machine dwells from the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | 50 | Set this item when other sub operation commands are issued in combination with the No. 1 positioning data. <br> Set the number of pitch for the linear interpolation axis. |

*1 Refer to "List of Positioning Data ( 5 Page 152, Section 5.3)" for information on the setting details.

## Point ${ }^{\rho}$

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

### 9.2.13 3-axis helical interpolation control with center point designation

In the 3-axis helical interpolation control, circular interpolation control is carried out with two of the three axes. The other axis tracks the movement of the circular interpolation control to carry out "helical control "or "tangential control". Refer to Interpolation control ( $\longmapsto$ Page 359, Section 9.1.6) for details on interpolation control.
Control details

X-axis: Reference axis, Y-axis: Circular interpolation axis, Z-axis: Linear interpolation axis

## (1) Helical interpolation control speed

The command speed of the 3-axis helical interpolation control is the same as the speed of circular interpolation control (composite speed of reference axis and circular interpolation axis).


Point ${ }^{\rho}$
(2) Rotation angle of the circular interpolation axis ( X axis - Y axis)

The following shows the rotation angle of the circular interpolation axis in 3-axis helical interpolation control.


A true circle can be set only when the start point equals to the end point in 3-axis helical interpolation (ABS/INC, center point).


#### Abstract

When "0: Composite speed" is set in "[Pr.20] Interpolation speed designation method", the command speed of ABS3/INC3 is the same as the composite speed of the 3 axes ( $x$ axis $-y$ axis $-z$ axis). The command speed of 3 -axis helical interpolation control is the same as the composite speed of the circular interpolation axis ( x axis -y axis). When continuous path control is carried out in ABS3/INC3 and 3-axis helical interpolation control, adjust the command speed to prevent the workpiece from moving unsteadily because the workpiece movement speed may change when positioning data is switched.


## Point ${ }^{P}$

When "degree" is set for the unit setting in the absolute system, the positioning range is 0 to $359.99999^{\circ}$. When the axis rotates $360^{\circ}$ or more in circular interpolation control ( $x$ axis - y axis), the tangential/normal control cannot be carried out because a degree of $360^{\circ}$ or more cannot be set in linear control (z axis: degree). To carry out tangential/normal control in which the axis rotates $360^{\circ}$ or more, use 3 -axis helical interpolation control (INC).

## (3) Error compensation for circular interpolation control

In 3-axis helical interpolation control, "[Pr.41] Allowable circular interpolation error width" is made valid as well as in circular interpolation control ( 2 axes.) When a circular interpolation error occurs, the path of the circular interpolation control ( $x$ axis -y axis) forms a spiral as shown below.


## (4) Rotation direction when the unit for the linear axis ( $\mathbf{z}$ axis) is degree

When "[Pr.1] Unit setting" for the linear axis is "degree", the rotation direction is determined according to the axis control data "[Cd.40] ABS direction in degrees" of the reference axis. To set the rotation direction for each positioning data, set the position data "[Da.28] ABS direction in degrees".

## (5) 3-axis helical interpolation control with center point designation (ABS helical right, ABS helical left)

(a) Operation chart

In this control, positioning is carried out from the current stop position ( $\mathrm{XO}, \mathrm{YO}, \mathrm{ZO}$ ) to the circular end address (X1, Y1) and linear axis end address (Z1) set in "[Da.6] Positioning address/movement amount". Circular interpolation with an arc path having its center as the address of the center point (arc address) set in "[Da.7] Arc address" is carried out. Simultaneously, linear interpolation is carried out with the other linear axis. The control path is helically rotated for the number of pitch set in "[Da.10] M code" of the linear axis to complete the positioning to the specified position.


Positioning of a true circle with a radius of the distance from the start point address to the arc center point can be carried out by setting the end point address (positioning address) of the circular interpolation axis to the same address as the start point address.
Operation chart

## (b) Restrictions

3-axis helical interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting" for the reference axis and circular interpolation axis
- When the units set in "[Pr.1] Unit setting" are different between the reference axis and circular interpolation axis. ("mm" and "inch" combinations are possible.)
- When the "reference axis speed" is set in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method".
An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

| Error cause | Error code |
| :--- | :--- |
| When the radius exceeds "536870912 $\left(=2^{29}\right)$ ". (The maximum radius for <br> which circular interpolation control is possible is "536870912 $\left(=2^{29}\right)$ ".) | An error "Outside radius range" (error code: 544) will occur at positioning start. |
| Start point address = Center point address | Error "Center point setting error" (error code: 527) |
| End point address = Center point address | Error "Center point setting error" (error code: 527) |
| Center point address is outside the range of $-2147483648 ~$ <br> $2147483647\left(2^{31}-1\right)$. | Error "Center point setting error" (error code: 527) |

## (c) Positioning data setting example

- Reference axis, circular interpolation axis, and linear interpolation axis are specified as axis 1 , axis 2 , and axis 3 , respectively.
The following table shows setting examples when "helical interpolation control with center point designation (ABS helical right, ABS helical left)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 and axis 3.)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (circular interpolation axis) setting example | Axis 3 (linear interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | ABS helical right ABS helical left | - | - | Set absolute system, 3-axis helical interpolation control with center point designation. (Select clockwise or counterclockwise according to the control.) |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Specify the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Specify the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | - | Set the axis to be interpolated (partner axis). <br> If the self-axis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the end point address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | - | Set the arc address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement to the end point address. (Set the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500ms | - | - | Set the time the machine dwells from the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | 50 | Set this item when other sub operation commands are issued in combination with the No. 1 positioning data. Set the number of pitch for the linear interpolation axis. |

*1 Refer to "List of Positioning Data (Æ Page 152, Section 5.3)" for information on the setting details.

## Point ${ }^{\circ}$

Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

## (6) 3-axis helical interpolation control with center point designation (INC helical right, INC helical left)

(a) Operation chart

In this control, positioning is carried out from the current stop position ( $\mathrm{XO}, \mathrm{YO}, \mathrm{ZO}$ ) to the movement amount position (X1, Y1, Z1) set in "[Da.6] Positioning address/movement amount". Circular interpolation with an arc path having its center as the address of the center point (arc address) set in "[Da.7] Arc address" is carried out. Simultaneously, linear interpolation is carried out with the other linear axis. The control path is helically rotated for the number of pitch set in "[Da.10] M code" of the linear axis to complete the positioning to the specified position.


Positioning of a true circle with a radius of the distance from the start point address to the arc center point can be carried out by setting the movement amount of the circular interpolation axis to "0".
Operation chart

## (b) Restrictions

3-axis helical interpolation control cannot be set in the following cases.

- When "degree" is set in "[Pr.1] Unit setting" for the reference axis and circular interpolation axis
- When the units set in "[Pr.1] Unit setting" are different between the reference axis and circular interpolation axis. ("mm" and "inch" combinations are possible.)
- When a method other than "reference axis speed" is set in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method"

An error will occur and the positioning will not start in the following cases. The machine will immediately stop if the error is detected during positioning control.

| Error cause | Error code |
| :--- | :--- |
| When the radius exceeds "536870912 $\left(=2^{29}\right)$ ". (The maximum radius for <br> which circular interpolation control is possible is "536870912 $\left(=2^{29}\right)$ ".) | An error "Outside radius range" (error code: 544) will occur at positioning start. |
| End point address is outside the range of $-2147483648\left(-2^{31}\right)$ to 2147483647 <br> $\left(2^{31}-1\right)$. | An error "End point setting error" (error code: 526) will occur at positioning <br> start. |
| Start point address = Center point address | Error "Center point setting error" (error code: 527) |
| End point address = Center point address | Error "Center point setting error" (error code: 527) |
| Center point address is outside the range of $-2147483648\left(-2^{31}\right)$ to <br> $2147483647\left(2^{31}-1\right)$. | Error "Center point setting error" (error code: 527) |

## (c) Positioning data setting example

- Reference axis, circular interpolation axis, and linear interpolation axis are specified as axis 1 , axis 2 , and axis 3 , respectively.
The following table shows setting examples when "helical interpolation control with sub point designation (INC helical right, INC helical left)" is set in positioning data No. 1 of axis 1 . (The required values are also set in positioning data No. 1 of axis 2 and axis 3 .)

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (circular interpolation axis) setting example | Axis 3 (linear interpolationaxis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Set "Positioning complete" assuming that the next positioning data will not be executed. |
|  | [Da.2] | Control system | INC helical right INC helical left | - | - | Set incremental system, 3-axis helical interpolation control with center point designation. (Select clockwise or counterclockwise according to the control.) |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Specify the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Specify the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | - | Set the axis to be interpolated (partner axis). <br> If the self-axis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | $8000.0 \mu \mathrm{~m}$ | $6000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | Set the movement amount. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | $4000.0 \mu \mathrm{~m}$ | $3000.0 \mu \mathrm{~m}$ | - | Set the arc address. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | - | - | Set the speed during movement. (Set the composite speed in "[Pr.20] Interpolation speed designation method".) |
|  | [Da.9] | Dwell time | 500 ms | - | - | Set the time the machine dwells from the positioning stop (pulse output stop) to the output of the positioning complete signal. |
|  | [Da.10] | M code | 10 | - | 50 | Set this item when other sub operation commands are issued in combination with the No. 1 positioning data. Set the number of pitch for the linear interpolation axis. |

*1 Refer to "List of Positioning Data ( $\lessgtr$ Page 152, Section 5.3)" for information on the setting details.

Point ${ }^{P}$
Set a value in "[Da.8] Command speed" so that the speed of each axis does not exceed the "[Pr.8] Speed limit value". (The speed limit does not function for the speed calculated by the LD75 during interpolation control.)

### 9.2.14 1 -axis speed control

In "1-axis speed control" ("[Da.2] Control system" = Forward run: speed 1, Reverse run: speed 1), control is carried out in the axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in "[Da.8] Command speed" until the input of a stop command.
The two types of 1 -axis speed control are "Forward run: speed 1" in which the control starts in the forward run direction, and "Reverse run: speed 1 " in which control starts in the reverse run direction.

## (1) Operation chart

The following chart shows the operation timing for 1 -axis speed control with axis 1 as the reference axis. The "in speed control" flag ([Md.31] Status: b0) is turned ON during speed control.
The "positioning complete signal" is not turned ON.


## (2) Current feed value during 1-axis speed control

The following table shows the "[Md.20] Current feed value" during 1-axis speed control corresponding to the "[Pr.21] Current feed value during speed control" settings.

| "[Pr.21] Current feed value during speed control" setting | [Md.20] Current feed value |
| :--- | :--- |
| 0: Do not update current feed value | The current feed value at speed control start is maintained. |
| 1: Update current feed value | The current feed value is updated. |
| 2: Zero clear current feed value | The current feed value is fixed at 0. |



## (3) Restrictions

- Set "Positioning complete" in "[Da.1] Operation pattern". The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
- Set the WITH mode in "[Pr.18] M code ON signal output timing" when using an M code. The M code will not be output, and the M code ON signal will not turn ON if the AFTER mode is set.
- The error "No command speed" (error code: 503) will occur if "current speed (-1)" is set in "[Da.8] Command speed".
- The software stroke limit check will not carried out if the control unit is set to "degree".


## (4) Positioning data setting example

The following table shows the setting examples when "1-axis speed control (forward run: speed 1 )" is set in the positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | Setting other than "Positioning complete" is not possible in speed control. |
|  | [Da.2] | Control system | Forward run speed 1 | Set 1-axis speed control. |
|  | [Da.3] | Acceleration time No. | 1 | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | Set the speed to be commanded. |
|  | [Da.9] | Dwell time | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | 10 | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. ("[Pr.18] M code ON signal output timing" setting only possible in the WITH mode.) |

Refer to $\mathfrak{F}$ Page 152, Section 5.3 for information on the setting details.

### 9.2.15 <br> 2-axis speed control

In "2-axis speed control" ("[Da.2] Control system" = Forward run: speed 2, Reverse run: speed 2), control is carried out in the 2-axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in "[Da.8] Command speed" until the input of a stop command.
The two types of 2-axis speed control are "Forward run: speed 2" in which the control starts in the forward run direction, and "Reverse run: speed 2 " in which control starts in the reverse run direction.
(Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.)

## (1) Operation chart

The following chart shows the operation timing for 2-axis (axes 1 and 2 ) speed control with axis 1 as the reference axis.
The "in speed control" flag ([Md.31] Status: b0) is turned ON during speed control.
The "positioning complete signal" is not turned ON.


## (2) Current feed value during 2-axis speed control

The following table shows the "[Md.20] Current feed value" during 2-axis speed control corresponding to the "[Pr.21] Current feed value during speed control" settings. (Note that the reference axis setting values are used for parameters.)

| "[Pr.21] Current feed value during speed control" setting | [Md.20] Current feed value |
| :--- | :--- |
| 0: Do not update current feed value | The current feed value at speed control start is maintained. |
| 1: Update current feed value | The current feed value is updated. |
| 2: Zero clear current feed value | The current feed value is fixed at 0. |



## (3) Restrictions

- Set "Positioning complete" in "[Da.1] Operation pattern". The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
- Set the WITH mode in "[Pr.18] M code ON signal output timing" when using an M code. The M code will not be output, and the M code ON signal will not turn ON if the AFTER mode is set.
- Set the "reference axis speed" in "[Pr.20] Interpolation speed designation method". The error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if a composite speed is set.
- When either of two axes exceeds the speed limit, that axis is controlled with the speed limit value. The speeds of the other axes are limited at the ratios of "[Da.8] Command speed".
(Examples)

| Setting item |  | Axis 1 setting | Axis 2 setting |
| :---: | :--- | :---: | :---: |
| $[$ Pr.8] | Speed limit value | $4000.00 \mathrm{~mm} / \mathrm{min}$ | $5000.00 \mathrm{~mm} / \mathrm{min}$ |
| $[$ Da.8] | Command speed | $8000.00 \mathrm{~mm} / \mathrm{min}$ | $6000.00 \mathrm{~mm} / \mathrm{min}$ |

With the settings shown above, the operation speed in speed control is as follows.
Axis 1: $4000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited by [Pr.8]).
Axis 2: $3000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited at an ratio of an axis 1 command speed to an axis 2 command speed). Note: Operation runs at speed 1 when a reference axis speed is less than 1 as a result of speed limit. In addition, when a bias speed is set, it will be the minimum speed.

- The error "No command speed" (error code: 503) will occur if "current speed (-1)" is set in "[Da.8] Command speed".
- The software stroke limit check is not carried out when the control unit is set to "degree".


## (4) Positioning data setting example

The following table shows the setting examples when "2-axis speed control (forward run: speed 2)" is set in the positioning data No. 1 of axis 1 (reference axis).

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | Setting other than "Positioning complete" is not possible in speed control. |
|  | [Da.2] | Control system | Forward run speed 2 | - | Set 2-axis speed control. |
|  | [Da.3] | Acceleration time No. | 1 | - | Designate the value set in "[Pr.25] Acceleration time 1 " as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | Designate the value set in "[Pr.10] Deceleration time $0 "$ as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | Axis 2 | - | Set the axis to be interpolated (partner axis). If the self-axis is set, an error will occur. |
|  | [Da.6] | Positioning address/movement amount | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | $3000.00 \mathrm{~mm} / \mathrm{min}$ | Set the speed to be commanded. |
|  | [Da.9] | Dwell time | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | 10 | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. ("[Pr.18] M code ON signal output timing" setting only possible in the WITH mode.) |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.16 3 -axis speed control

In "3-axis speed control" ("[Da.2] Control system" = Forward run: speed 3, Reverse run: speed 3), control is carried out in the 3-axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in "[Da.8] Command speed" until the input of a stop command.
The two types of 3-axis speed control are "Forward run: speed 3" in which the control starts in the forward run direction, and "Reverse run: speed 3 " in which control starts in the reverse run direction.
(Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.)

## (1) Operation chart

The following chart shows the operation timing for 3 -axis (axes 1, 2, and 3) speed control with axis 1 as the reference axis.
The "in speed control" flag ([Md.31] Status: b0) is turned ON during speed control.
The "positioning complete signal" is not turned ON.


## (2) Current feed value during 3-axis speed control

The following table shows the "[Md.20] Current feed value" during 3-axis speed control corresponding to the "[Pr.21] Current feed value during speed control" settings. (Note that the reference axis setting values are used for parameters.)

| "[Pr.21] Current feed value during speed control" setting | [Md.20] Current feed value |
| :--- | :--- |
| 0: Do not update current feed value | The current feed value at speed control start is maintained. |
| 1: Update current feed value | The current feed value is updated. |
| 2: Zero clear current feed value | The current feed value is fixed at 0. |


(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

## (3) Restrictions

- Set "Positioning complete" in "[Da.1] Operation pattern". The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
- Set the WITH mode in "[Pr.18] M code ON signal output timing" when using an M code. The M code will not be output, and the M code ON signal will not turn ON if the AFTER mode is set.
- Set the "reference axis speed" in "[Pr.20] Interpolation speed designation method". The error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if a composite speed is set.
- When either of three axes exceeds the speed limit, that axis is controlled with the speed limit value. The speeds of the other axes are limited at the ratios of "[Da.8] Command speed".
(Examples)

| Setting item |  | Axis 1 setting | Axis 2 setting | Axis 3 setting |
| :---: | :--- | :---: | :---: | :---: |
| $[$ Pr.8] | Speed limit value | $4000.00 \mathrm{~mm} / \mathrm{min}$ | $5000.00 \mathrm{~mm} / \mathrm{min}$ | $6000.00 \mathrm{~mm} / \mathrm{min}$ |
| $[$ Da.8] | Command speed | $8000.00 \mathrm{~mm} / \mathrm{min}$ | $6000.00 \mathrm{~mm} / \mathrm{min}$ | $4000.00 \mathrm{~mm} / \mathrm{min}$ |

With the settings shown above, the operation speed in speed control is as follows.
Axis 1: $4000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited by [Pr.8]).
Axis 2: $3000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited at ratios in axes 1, 2, and 3 command speeds).
Axis 3: $2000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited at ratios in axes 1, 2, and 3 command speeds).
Note: Operation runs at speed 1 when a reference axis speed is less than 1 as a result of speed limit. In addition, when a bias speed is set, it will be the minimum speed.

- An error "No command speed" (error code: 503) will occur if a current speed (-1) is set in "[Da.8] Command speed".
- The software stroke limit check is not carried out when the control unit is set to "degree".


## (4) Positioning data setting example

The following table shows the setting examples when "3-axis speed control (forward run: speed 3 )" is set in the positioning data No. 1 of axis 1 (reference axis).

| Setting item |  |  | Axis 1 (reference axis) setting | Axis 2 (interpolation axis) | Axis 3 (interpolation axis) | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | Setting other than "Positioning complete" is not possible in speed control. |
|  | [Da.2] | Control system | Forward run speed 3 | - | - | Set 3-axis speed control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | Setting not required. (Setting value will be ignored.) When axis 1 is used as a reference axis, the interpolation axes are axes 2 and 3 . |
|  | [Da.6] | Positioning address/movement amount | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | $3000.00 \mathrm{~mm} / \mathrm{min}$ | $2000.00 \mathrm{~mm} / \mathrm{min}$ | Set the speed to be commanded. |
|  | [Da.9] | Dwell time | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | 10 | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. ("[Pr.18] M code ON signal output timing" setting only possible in the WITH mode.) |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.17 <br> 4-axis speed control

In "4-axis speed control" ("[Da.2] Control system" = Forward run: speed 4, Reverse run: speed 4), control is carried out in the 4 -axis direction in which the positioning data has been set by continuously outputting pulses for the speed set in "[Da.8] Command speed" until the input of a stop command.
The two types of 4 -axis speed control are "Forward run: speed 4" in which the control starts in the forward run direction, and "Reverse run: speed 4" in which control starts in the reverse run direction.
(Refer to Page 359, Section 9.1.6 for the combination of the reference axis with the interpolation axis.)

## (1) Operation chart

The following chart shows the operation timing for 4 -axis speed control with axis 1 as the reference axis. The "in speed control" flag ([Md.31] Status: b0) is turned ON during speed control.
The "positioning complete signal" is not turned ON.


## (2) Current feed value during 4-axis speed control

The following table shows the "[Md.20] Current feed value" during 4-axis speed control corresponding to the "[Pr.21] Current feed value during speed control" settings. (Note that the reference axis setting values are used for parameters.)

| "[Pr.21] Current feed value during speed control" setting | $\quad$ [Md.20] Current feed value |
| :--- | :--- |
| 0: Do not update current feed value | The current feed value at speed control start is maintained. |
| 1: Update current feed value | The current feed value is updated. |
| 2: Zero clear current feed value | The current feed value is fixed at 0. |


(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

## (3) Restrictions

- Set "Positioning complete" in "[Da.1] Operation pattern". The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous positioning control" and "continuous path control" cannot be set in speed control.)
- Set the WITH mode in "[Pr.18] M code ON signal output timing" when using an M code. The M code will not be output, and the M code ON signal will not turn ON if the AFTER mode is set.
- Set the "reference axis speed" in "[Pr.20] Interpolation speed designation method". The error "Interpolation mode error" (error code: 523) will occur and the operation cannot start if a composite speed is set.
- When either of four axes exceeds the speed limit, that axis is controlled with the speed limit value. The speeds of the other axes are limited at the ratios of "[Da.8] Command speed".
(Examples)

| Setting item |  | Axis 1 setting | Axis 2 setting | Axis 3 setting | Axis 4 setting |
| :---: | :--- | :---: | :---: | :---: | :---: |
| [Pr.8] | Speed limit value | $4000.00 \mathrm{~mm} / \mathrm{min}$ | $5000.00 \mathrm{~mm} / \mathrm{min}$ | $6000.00 \mathrm{~mm} / \mathrm{min}$ | $8000.00 \mathrm{~mm} / \mathrm{min}$ |
| [Da.8] | Command speed | $8000.00 \mathrm{~mm} / \mathrm{min}$ | $6000.00 \mathrm{~mm} / \mathrm{min}$ | $4000.00 \mathrm{~mm} / \mathrm{min}$ | $1500.00 \mathrm{~mm} / \mathrm{min}$ |

With the settings shown above, the operation speed in speed control is as follows.
Axis 1: $4000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited by [Pr.8]).
Axis 2: $3000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited at ratios in axes 1, 2, 3 and 4 command speeds).
Axis 3: $2000.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited at ratios in axes 1, 2, 3 and 4 command speeds).
Axis 4: $750.00 \mathrm{~mm} / \mathrm{min}$ (Speed is limited at ratios in axes 1, 2, 3 and 4 command speeds).
Note: Operation runs at speed 1 when a reference axis speed is less than 1 as a result of speed limit. In addition, when a bias speed is set, it will be the minimum speed.

- The error "No command speed" (error code: 503) will occur if "current speed (-1)" is set in "[Da.8] Command speed".
- The software stroke limit check is not carried out when the control unit is set to "degree".


## (4) Positioning data setting example

The following table shows the setting examples when "4-axis speed control (forward run: speed 4)" is set in the positioning data No. 1 of axis 1 (reference axis).

| Setting item |  |  | Axis 1 (reference axis) setting example | Axis 2 (interpolation axis) setting example | Axis 3 (interpolation axis) setting example | Axis 4 (interpolation axis) setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | - | - | - | Setting other than "Positioning complete" is not possible in speed control. |
|  | [Da.2] | Control system | Forward run speed 4 | - | - | - | Set 4-axis speed control. |
|  | [Da.3] | Acceleration time No. | 1 | - | - | - | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | - | - | - | Designate the value set in "[Pr.10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | - | - | - | Setting not required. (Setting value will be ignored.) When axis 1 is used as a reference axis, the interpolation axes are axes 2,3 and 4 . |
|  | [Da.6] | Positioning address/movement amount | - | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} /$ min | $3000.00 \mathrm{~mm} /$ min | $\begin{gathered} 2000.00 \mathrm{~mm} / \\ \mathrm{min} \end{gathered}$ | $\begin{gathered} 1000.00 \mathrm{~mm} / \\ \mathrm{min} \end{gathered}$ | Set the speed to be commanded. |
|  | [Da.9] | Dwell time | - | - | - | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | 10 | - | - | - | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. ("[Pr.18] M code ON signal output timing" setting only possible in the WITH mode.) |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.18 Speed-position switching control (INC mode)

In "speed-position switching control (INC mode)" ("[Da.2] Control system" = Forward run: speed/position, Reverse run: speed/position), the pulses of the speed set in "[Da.8] Command speed" are kept output on the axial direction set to the positioning data. When the "speed-position switching signal" is input, position control of the movement amount set in "[Da.6] Positioning address/movement amount" is exercised.
"Speed-position switching control (INC mode)" is available in two different types: "forward run: speed/position" which starts the axis in the forward run direction and "reverse run: speed/position" which starts the axis in the reverse run direction.

Use the detailed parameter 1 "[Pr.150] Speed-position function selection" with regard to the choice for "speed-position switching control (INC mode)".

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 |  | Axis 3 | Axis 4 |  |  |  |
| [Pr.150] | Speed-position <br> function selection |  | Speed-position switching control (INC mode) | 34 | 184 | 334 | 484 |

If the set value is other than 0 and 2 , it is regarded as 0 and operation is performed in the INC mode.
Refer to Page 118, Section 5.2 for the information on detail settings.

## (1) Switching over from speed control to position control

- The control is switched over from speed control to position control by executing the external command signal set in "speed-position switching signal".
- Besides setting the positioning data, the "[Cd.24] Speed-position switching enable flag" must also be turned ON to switch over from speed control to position control. (If the "[Cd.24] Speed-position switching enable flag" turns ON after the speed-position switching signal turns ON, the control will continue as speed control without switching over to position control. The control will be switched over from speed control to position control when the speed-position switching signal turns from OFF to ON again. Only position control will be carried out when the "[Cd.24] Speed-position switching enable flag" and speed-position switching signal are ON at the operation start.)

| Setting item |  | Setting <br> value | Setting details |  |  | Buffer memory address |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [Cd.24] | Speed-position <br> switching enable <br> flag | 1 | Set "1: Switch from speed control to position <br> control when the external command signal <br> [CHG] turns ON.". | 1528 | 1628 | 1728 | Axis 2 |  | Axis 3 | Axis 4 |
| :---: |

## (2) Speed-position switching signal setting

The following table shows the items that must be set to use the external command signals (CHG) as speedposition switching signals.

| Setting item |  | Setting <br> value |  | Setting details | Buffer memory address |  |  |  |
| :---: | :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| [Pr.42] | External command <br> function selection | 2 | Set the "2: speed-position and position-speed <br> switching requests". | 62 | 212 | 362 | 512 |  |
| [Cd.8] | External command <br> valid | 1 | Set "1: Validate external command". | 1505 | 1605 | 1705 | 1805 |  |

[^2]
## (3) Operation chart

The following chart shows the operation timing for speed-position switching control (INC mode).
The "in speed control flag" ([Md.31] Status: b0) is turned ON during speed control of speed-position switching control (INC mode)


## (a) [Operation example]

The following operation assumes that the speed-position switching signal is input at the position of the current feed value of 90.00000 [degree] during execution of "[Da.2] Control system" "Forward run: speed/position" at "[Pr.1] Unit setting" of "2: degree" and "[Pr.21] Current feed value during speed control" setting of "1: Update current feed value". (The value set in "[Da.6] Positioning address/movement amount" is 270.00000 [degree])

(4) Operation timing and processing time during speed-position switching control (INC mode)


Normal timing time

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ | $\mathbf{t 5}$ | $\mathbf{t 6}$ | $\mathbf{t 7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 to 1.1 ms | 0 to 0.9 ms | 0 to 0.9 ms | 0.4 to 1.3 ms | 0 to 0.9 ms | 1.0 ms | Follows parameters |

- The t 1 timing time could be delayed by the operating status of other axes.


## (5) Current feed value during speed-position switching control (INC mode)

The following table shows the "[Md.20] Current feed value" during speed-position switching control (INC mode) corresponding to the "[Pr.21] Current feed value during speed control" settings.

| "[Pr.21] Current feed value during speed control" setting | [Md.20] Current feed value |
| :--- | :--- |
| 0: Do not update current feed value | The current feed value at control start is maintained during speed <br> control, and updated from the switching to position control. |
| 1: Update current feed value | The current feed value is updated during speed control and position <br> control. |
| 2: Zero clear current feed value | The current feed value is cleared (set to "0") at control start, and <br> updated from the switching to position control. |


(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

## (6) Switching time from speed control to position control

There is 1 ms from the time the speed-position switching signal is turned ON to the time the speed-position switching latch flag ([Md.31] Status: b1) turns ON.


## (7) Changing the position control movement amount

In "speed-position switching control (INC mode)", the position control movement amount can be changed during the speed control section.

- The "new movement amount" is stored in "[Cd.23] Speed-position switching control movement amount change register" by the program during speed control. When the speed-position switching signal is turned ON, the movement amount for position control is stored in "[Cd.23] Speed-position switching control movement amount change register".
- The movement amount is stored in the "[Md.29] Speed-position switching control positioning amount" of the axis monitor area from the point where the control changes to position control by the input of a speedposition switching signal from an external source.



## Point ${ }^{\rho}$

- The machine recognizes the presence of a movement amount change request when the data is written to "[Cd.23] Speed-position switching control movement amount change register" with the program.
- The new movement amount is validated after execution of the speed-position switching control (INC mode), before the input of the speed-position switching signal.
- The movement amount change can be enable/disable with the interlock function in position control using the "speedposition switching latch flag" ([Md.31] Status: b1) of the axis monitor area.


## (8) Restrictions

(a) The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous path control" is set in "[Da.1] Operation pattern".
(b) "Speed-position switching control" cannot be set in "[Da.2] Control system" of the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "speed-position switching control" cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
(c) The error "No command speed" (error code: 503) will occur if "current speed (-1)" is set in "[Da.8] Command speed".
(d) The software stroke limit range check during speed control is made only when the following are satisfied:

- When "[Pr.21] Current feed value during speed control" is "1: Update current feed value" If the movement amount exceeds the software stroke limit range during speed control in cases of settings other than the one above, the error "Software stroke limit+" (error code: 507) or "Software stroke limit-" (error code: 508) will occur as soon as speed control is changed to position control, and the axis will decelerate to a stop.
- When "[Pr.1] Unit setting" is other than "2: degree" If the unit is "degree", the software stroke limit range check is not performed.
(e) If the value set in "[Da.6] Positioning address/movement amount" is negative, the error "Outside address range" (error code: 530) will occur.
(f) Deceleration processing is carried out from the point where the speed-position switching signal is input if the position control movement amount set in "[Da.6] Positioning address/movement amount" is smaller than the deceleration distance from the "[Da.8] Command speed".
(g) Turn ON the speed-position switching signal in the speed stabilization region (constant speed status). The warning "Speed-position switching (during acceleration) signal ON" (warning code: 508) will occur because of large deviation in the droop pulse amount if the signal is turned ON during acceleration. During use of the servomotor, the actual movement amount after switching of speed control to position control is the "preset movement amount + droop pulse amount". If the signal is turned ON during acceleration/deceleration, the stop position will vary due to large variation of the droop pulse amount. Even though "[Md.29] Speed-position switching control positioning amount" is the same, the stop position will change due to a change in droop pulse amount when "[Da.8] Command speed" is different.


## (9) Positioning data setting example

The following table shows setting examples when "speed-position switching control (INC mode) by forward run" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data will not be executed. ("Continuous path control" cannot be set in "speedposition switching control (INC mode)".) |
|  | [Da.2] | Control system | Forward run speed/position | Set speed-position switching control by forward run. |
|  | [Da.3] | Acceleration time No. | 1 | Designate the value set in "[Pr.25] Acceleration time 1" as the acceleration time at start. |
|  | [Da.4] | Deceleration time No. | 0 | Designate the value set in "[Pr. 10] Deceleration time 0" as the deceleration time at deceleration. |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | 10000.0رm | INC mode ([Pr.150] = 0). Set the movement amount after the switching to position control. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | $6000.00 \mathrm{~mm} / \mathrm{min}$ | Set the speed to be commanded. |
|  | [Da.9] | Dwell time | 500ms | Set a time from the positioning stop (pulse output stop) by position control until the positioning complete signal is output. When the system is stopped by speed control, ignore the setting value. |
|  | [Da.10] | M code | 10 | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to $\ddagger$ Page 152, Section 5.3 for information on the setting details.

### 9.2.19 Speed-position switching control (ABS mode)

In case of "speed-position switching control (ABS mode)" ("[Da.2] Control system" = Forward run: speed/position, Reverse run: speed/position), the pulses of the speed set in "[Da.8] Command speed" are kept output in the axial direction set to the positioning data. When the "speed-position switching signal" is input, position control to the address set in "[Da.6] Positioning address/movement amount" is exercised.
"Speed-position switching control (ABS mode)" is available in two different types: "forward run: speed/position" which starts the axis in the forward run direction and "reverse run: speed/position" which starts the axis in the reverse run direction.
"Speed-position switching control (ABS mode)" is valid only when "[Pr.1] Unit setting" is "2: degree".
$\bigcirc$ : Setting possible, $\times$ : Setting not possible ${ }^{* 1}$

| Speed-position function selection | [Pr.1] Unit setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{m m}$ | inch | degree | pulse |
| INC mode | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| ABS mode | $\times$ | $\times$ | $\bigcirc$ | $\times$ |

*1 If setting is made, the error "Speed-position function selection error" (error code: 935) will occur when the PLC READY signal (YO) turns ON.

Use the detailed parameter 1 "[Pr.150] Speed-position function selection" to choose "speed-position switching control (ABS mode)".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Pr.150] | Speed-position function selection |  | 2 | Speed-position switching control (ABS mode) | 34 | 184 | 334 | 484 |

If the set value is other than 0 and 2 , it is regarded as 0 and operation is performed in the INC mode.
Refer to Page 118, Section 5.2 for the information on detail settings.

## (1) Switching over from speed control to position control

- The control is switched over from speed control to position control by executing the external command signal set in "speed-position switching signal".
- Besides setting the positioning data, the "[Cd.24] Speed-position switching enable flag" must also be turned ON to switch over from speed control to position control. (If the "[Cd.24] Speed-position switching enable flag" turns ON after the speed-position switching signal turns ON, the control will continue as speed control without switching over to position control. The control will be switched over from speed control to position control when the speed-position switching signal turns from OFF to ON again. Only position control will be carried out when the "[Cd.24] Speed-position switching enable flag" and speed-position switching signal are ON at the operation start.)

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.24] | Speed-position switching enable flag |  | 1 | Set "1: Switch from speed control to position control when the external command signal [CHG] turns ON.". | 1528 | 1628 | 1728 | 1828 |

## (2) Speed-position switching signal setting

The following table shows the items that must be set to use the external command signals (CHG) as speedposition switching signals.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Pr.42] | External command function selection |  | 2 | Set the "2: speed-position and positionspeed switching requests". | 62 | 212 | 362 | 512 |
| [Cd.8] | External command valid | 1 | Set "1: Validate external command". | 1505 | 1605 | 1705 | 1805 |

Refer to Page 118, Section 5.2 and Page 211, Section 5.7 for the information on detail settings.

## (3) Operation chart

The following chart shows the operation timing for speed-position switching control (ABS mode). The "in speed control flag" ([Md.31] Status: b0) is turned ON during speed control of speed-position switching control (ABS mode).


## (a) Operation example

The following operation assumes that the speed-position switching signal is input at the position of the current feed value of 90.00000 [degree] during execution of "[Da.2] Control system" "Forward run: speed/position" at "[Pr.1] Unit setting" of "2: degree" and "[Pr.21] Current feed value during speed control" setting of "1: Update current feed value".
(The value set in "[Da.6] Positioning address/movement amount" is 270.00000 [degree])


## (4) Operation timing and processing time during speed-position switching control (ABS mode)



Normal timing time

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ | $\mathbf{t 5}$ | $\mathbf{t 6}$ | $\mathbf{t 7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 to 1.1 ms | 0 to 0.9 ms | 0 to 0.9 ms | 0.4 to 1.3 ms | 0 to 0.9 ms | 1.0 ms | Follows parameters |

- The t 1 timing time could be delayed by the operating status of other axes.


## (5) Current feed value during speed-position switching control (ABS mode)

The following table shows the "[Md.20] Current feed value" during speed-position switching control (ABS mode) corresponding to the "[Pr.21] Current feed value during speed control" settings.

| "[Pr.21] Current feed value during speed control" setting | [Md.20] Current feed value |
| :--- | :--- |
| 1: Update current feed value | The current feed value is updated during speed control and position <br> control. |

Only "1: Update current feed value" is valid for the setting of "[Pr.21] Current feed value during speed control" in speed-position switching control (ABS mode).
The error "Speed-position function selection error" (error code: 935) will occur if the "[Pr.21] Current feed value during speed control" setting is other than 1.


Current feed value updated

## (6) Switching time from speed control to position control

There is 1 ms from the time the speed-position switching signal is turned ON to the time the speed-position switching latch flag ([Md.31] Status: b1) turns ON.


## (7) Restrictions

(a) The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in "[Da.1] Operation pattern".
(b) "Speed-position switching control" cannot be set in "[Da.2] Control system" of the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "speed-position switching control" cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
(c) The error "No command speed" (error code: 503) will occur if "current speed (-1)" is set in "[Da.8] Command speed".
(d) If the value set in "[Da.6] Positioning address/movement amount" is negative, the error "Outside address range" (error code: 530) will occur.
(e) Even though the axis control data "[Cd.23] Speed-position switching control movement amount change register" was set in speed-position switching control (ABS mode), it would not function. The set value is ignored.
(f) To exercise speed-position switching control (ABS mode), the following conditions must be satisfied:

- "[Pr.1] Unit setting" is "2: degree"
- The software stroke limit function is invalid (upper limit value = lower limit value)
- When "[Pr.21] Current feed value during speed control" is "1: Update current feed value"
- The setting range of "[Da.6] Positioning address/movement amount" is within 0 to 359.99999 (degree) (If the value is outside of the range, the error "Outside address range" (error code: 530) will occur at the start.)
- The "[Pr.150] Speed-position function selection" setting is "2: Speed-position switching control (ABS mode)".
(g) With speed-position switching control (ABS mode) and the "[Pr.150] Speed-position function selection" being set to "2: Speed-position switching control (ABS mode)", if the conditions ("[Pr.1] Unit setting" set to "2: degree", software stroke limit function invalid (upper limit value = lower limit value), "[Pr.21] Current feed value during speed control" set to "1: Update current feed value) are not satisfied, the error "Speed-position function selection error" (error code: 935) will occur when the PLC READY signal [Y0] turns from OFF to ON.
(h) If the axis reaches the positioning address midway through deceleration after automatic deceleration started at the input of the speed-position switching signal, the axis will not stop immediately at the positioning address. The axis will stop at the positioning address after $\mathbf{N}$ revolutions so that automatic deceleration can always be made. ( $\mathrm{N}: ~ N a t u r a l ~ n u m b e r) ~$

In the following example, since making deceleration in the path of dotted line will cause the axis to exceed the positioning addresses twice, the axis will decelerate to a stop at the third positioning address.


## (8) Positioning data setting example

The following table shows setting examples when "speed-position switching control (ABS mode) by forward run" is set in positioning data No. 1 of axis 1.

| Setting item |  |  |  |  |  |  |  | Setting example | Setting details |
| :---: | :---: | :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data <br> will not be executed. ("Continuous path control" cannot be set in <br> "speed-position switching control (ABS mode)".) |  |  |  |  |  |
|  | [Da.2] | Control system | Forward run <br> speed/position | Set speed-position switching control by forward run. |  |  |  |  |  |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.20 Position-speed switching control

In "position-speed switching control" ("[Da.2] Control system" = Forward run: position/speed, Reverse run: position/speed), before the position-speed switching signal is input, position control is carried out for the movement amount set in "[Da.6] Positioning address/movement amount" in the axis direction in which the positioning data has been set. When the position-speed switching signal is input, the position control is carried out by continuously outputting the pulses for the speed set in "[Da.8] Command speed" until the input of a stop command.
The two types of position-speed switching control are "Forward run: position/speed" in which the control starts in the forward run direction, and "Reverse run: position/speed" in which control starts in the reverse run direction.

## (1) Switching over from position control to speed control

- The control is switched over from position control to speed control by executing the external command signal set in "position-speed switching signal".
- Besides setting the positioning data, the "[Cd.26] Position-speed switching enable flag" must also be turned ON to switch over from position control to speed control. (If the "[Cd.26] Position-speed switching enable flag" turns ON after the position-speed switching signal turns ON, the control will continue as position control without switching over to speed control. The control will be switched over from position control to speed control when the position-speed switching signal turns from OFF to ON again. Only speed control will be carried out when the "[Cd.26] Position-speed switching enable flag" and position-speed switching signal are ON at the operation start.)

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |  |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| [Cd.26] | Position-speed switching <br> enable flag | 1 |  | 1532 | 1632 | 1732 | 1832 |

## (2) Position-speed switching signal setting

The following table shows the items that must be set to use the external command signals (CHG) as positionspeed switching signals.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Pr.42] | External command function selection |  | 2 | Set the "2: speed-position and positionspeed switching requests". | 62 | 212 | 362 | 512 |
| [Cd.8] | External command valid | 1 | Set "1: Validate external command". | 1505 | 1605 | 1705 | 1805 |

Refer to $\longmapsto$ Page 118, Section 5.2 and Page 211, Section 5.7 for the information on detail settings.

## (3) Operation chart

The following chart shows the operation timing for position-speed switching control.
The "in speed control" flag ([Md.31] Status: b0) is turned ON during speed control of position-speed switching control.

(4) Operation timing and processing time during position-speed switching control


Normal timing time

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ | $\mathbf{t 5}$ | $\mathbf{t 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 to 1.1 ms | 0 to 0.9 ms | 0 to 0.9 ms | 0.4 to 1.3 ms | - | 1.0 ms |

- The t 1 timing time could be delayed by the operation state of other axes.


## (5) Current feed value during position-speed switching control

The following table shows the "[Md.20] Current feed value" during position-speed switching control corresponding to the "[Pr.21] Current feed value during speed control" settings.

| "[Pr.21] Current feed value during speed control" setting | $\quad$ [Md.20] Current feed value |
| :--- | :--- |
| 0: Do not update current feed value | The current feed value is updated during position control, and the <br> current feed value at the time of switching is maintained as soon as <br> position control is switched to speed control. |
| 1: Update current feed value | The current feed value is updated during position control and speed <br> control. |
| 2: Zero clear current feed value | The current feed value is updated during positioning control, and the <br> current feed value is cleared (to "0") as soon as position control is <br> switched to speed control. |


(a) Current feed value not updated

(b) Current feed value updated

(c) Current feed value zero cleared

## (6) Switching time from position control to speed control

There is 1 ms from the time the position-speed switching signal is turned ON to the time the position-speed switching latch flag ([Md.31] Status: b5) turns ON.


## (7) Changing the speed control command speed

In "position-speed switching control", the speed control command speed can be changed during the position control.

- The speed control command speed can be changed during the position control of position-speed switching control. A command speed change request will be ignored unless issued during the position control of the position-speed switching control.
- The "new command speed" is stored in "[Cd.25] Position-speed switching control speed change register" by the program during position control. This value then becomes the speed control command speed when the position-speed switching signal turns ON.



## Point ${ }^{\circ}$

- The machine recognizes the presence of a command speed change request when the data is written to "[Cd.25] Positionspeed switching control speed change register" with the program.
- The new command speed is validated after execution of the position-speed switching control before the input of the position-speed switching signal.
- The command speed change can be enabled/disabled with the interlock function in speed control using the "positionspeed switching latch flag" ([Md.31] Status: b5) of the axis monitor area


## (8) Restrictions

- The axis error "Continuous path control not possible" (error code: 516) will occur and the operation cannot start if "continuous positioning control" or "continuous path control" is set in "[Da.1] Operation pattern".
- "Position-speed switching control" cannot be set in "[Da.2] Control system" of the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "position-speed switching control" cannot be set in positioning data No. 2.) The axis error "Continuous path control not possible" (error code: 516 ) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
- The software stroke limit range is only checked during speed control if the "1: Update current feed value" is set in "[Pr.21] Current feed value during speed control". The software stroke limit range is not checked when the control unit is set to "degree".
- The error "Software stroke limit+" or "Software stroke limit-" (error code: 507 or 508 ) will occur and the operation cannot start if the start point address or end point address for position control exceeds the software stroke limit range.
- Deceleration stop will be carried out if the position-speed switching signal is not input before the machine is moved by a specified movement amount. When the position-speed switching signal is input during automatic deceleration by positioning control, acceleration is carried out again to the command speed to continue speed control. When the position-speed switching signal is input during deceleration to a stop with the stop signal, the control is switched to the speed control to stop the machine. Restart is carried out by speed control using the restart command.
- The warning "Speed limit value over" (warning code: 501) will occur and control is continued by "[Pr.8] Speed limit value" if a new speed exceeds "[Pr.8] Speed limit value" at the time of change of the command speed.
- If the value set in "[Da.6] Positioning address/movement amount" is negative, the error "Outside address range" (error code: 530) will occur.


## (9) Positioning data setting example

The following table shows setting examples when "position-speed switching control (forward run: position/speed)" is set in positioning data No. 1 of axis 1.

| Setting item |  | Setting example | Setting details |  |
| :--- | :---: | :--- | :---: | :--- |
|  | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data will <br> not be executed. ("Continuous positioning control" and "Continuous <br> path control" cannot be set in "position/speed changeover control".) |
|  | [Da.2] | Control system | Forward run <br> position/speed | Set position-speed switching control. |

Refer to Page 152, Section 5.3 for information on the setting details.

### 9.2.21 Current value changing

When the current value is changed to a new value, control is carried out in which the "[Md.20] Current feed value" of the stopped axis is changed to a random address set by the user. (The "[Md.21] Machine feed value" is not changed when the current value is changed.)
The two methods for changing the current value are shown below.

- Changing to a new current value using the positioning data*1
- Changing to a new current value using the start No. (No. 9003) for a current value changing
*1 This current value changing method is used during continuous positioning of multiple blocks


## (1) Changing to a new current value using the positioning data

## (a) Operation chart

The following chart shows the operation timing for a current value changing. The "[Md.20] Current feed value" is changed to the value set in "[Da.6] Positioning address/movement amount" when the positioning start signal turns ON.


## (b) Restrictions

- The axis error "New current value not possible" (error code: 515) will occur and the operation cannot start if "continuous path control" is set in "[Da.1] Operation pattern". ("Continuous path control" cannot be set in current value changing.)
- "Current value changing" cannot be set in "[Da.2] Control system" of the positioning data when "continuous path control" has been set in "[Da.1] Operation pattern" of the immediately prior positioning data. (For example, if the operation pattern of positioning data No. 1 is "continuous path control", "current value changing" cannot be set in positioning data No. 2.) The axis error "New current value not possible" (error code: 515) will occur and the machine will carry out a deceleration stop if this type of setting is carried out.
- The axis error "Outside new current value range" (error code: 514) will occur and the operation cannot start if "degree" is set in "[Pr.1] Unit setting" and the value set in "[Da.6] Positioning address/movement amount" is outside the setting range ( 0 to 359.99999 [degree]).
- If the value set in "[Da.6] Positioning address/movement amount" is outside the software stroke limit ([Pr.12], [Pr.13]) setting range, the error "Software stroke limit +" or "Software stroke limit -" (error code: 507 or 508) will occur at the positioning start, and the operation will not start.


## (c) Positioning data setting example

The following table shows the setting examples when " current value changing" is set in the positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | Positioning complete | Set "Positioning complete" assuming that the next positioning data will not be executed. ("Continuous path control" cannot be set by current value change.) |
|  | [Da.2] | Control system | Current value changing | Set the current value changing. |
|  | [Da.3] | Acceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.4] | Deceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | 10000.0رm | Set the address to which address change is desired. (Assuming "mm" is set in "[Pr.1] Unit setting".) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.9] | Dwell time | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | 10 | Set this when other sub operation commands are issued in combination with the No. 1 positioning data. |

Refer to Page 152, Section 5.3 for information on the setting details.

## (2) Changing to a new current value using the start No. (No. 9003) for a current value changing

## (a) Operation chart

The current value is changed by setting the new current value in the current value changing buffer memory "[Cd.9] Current value changing", setting "9003" in the "[Cd.3] Positioning start No.", and turning ON the positioning start signal.


## (b) Restrictions

- The axis error "Outside new current value range" (error code: 514) will occur if the designated value is outside the setting range when "degree" is set in "Unit setting".
- The error "Software stroke limit +" or "Software stroke limit -" (error code: 507 or 508 ) will occur if the designated value is outside the software stroke limit range.
- The current value cannot be changed during stop commands and while the M code ON signal is ON .
- The M code output function is made invalid.


## (3) Current value changing procedure

The following shows the procedure for changing the current value to a new value.


## (4) Setting method for the current value changing function

The following shows an example of a program and data setting to change the current value to a new value with the positioning start signal. (The "[Md.20] Current feed value is changed to " $5000.0 \mu \mathrm{~m}$ " in the example shown.)
(a) Set the following data.
(Use the start time chart shown in section (b) below as a reference, and set data using the program shown in section (c).)

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.3] | Positioning start No. |  | 9003 | Set the start No. "9003" for the new current value. | 1500 | 1600 | 1700 | 1800 |
| [Cd.9] | Current value changing | 50000 | Set the new "[Md.20] Current feed value". | $\begin{aligned} & 1506 \\ & 1507 \end{aligned}$ | $\begin{aligned} & 1606 \\ & 1607 \end{aligned}$ | $\begin{aligned} & 1706 \\ & 1707 \end{aligned}$ | $\begin{aligned} & 1806 \\ & 1807 \end{aligned}$ |

Refer to Page 211, Section 5.7 for information on the setting details.
(b) The following shows a start time chart.

(c) Add the following program to the control program, and write it to the CPU module.


### 9.2.22 NOP instruction

The NOP instruction is used for the nonexecutable control system.

## (1) Operation

The positioning data No. to which the NOP instruction is set transfers, without any processing, to the operation for the next positioning data No.

## (2) Positioning data setting example

The following table shows the setting examples when "NOP instruction" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.2] | Control system | NOP instruction | Set the NOP instruction |
|  | [Da.3] | Acceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.4] | Deceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.9] | Dwell time | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | - | Setting not required. (Setting value will be ignored.) |

Refer to $\longmapsto$ Page 152, Section 5.3 for information on the setting details.

## (3) Restrictions

The error "Control system setting error" (error code: 524) will occur if the "NOP instruction" is set for the control system of the positioning data No. 600.

## Point ${ }^{9}$

<Use example of NOP instruction>
If there is a possibility of speed switching or temporary stop (automatic deceleration) at a point between two points during positioning, that data can be reserved with the NOP instruction to change the data merely by the replacement of the identifier.

The JUMP instruction is used to control the operation so it jumps to a positioning data No. set in the positioning data during "continuous positioning control" or "continuous path control". JUMP instruction include the following two types of JUMP.

1. Unconditional JUMP

When no execution conditions are set for the JUMP instruction (When " 0 " is set as the condition data No.)
2. Conditional JUMP

When execution conditions are set for the JUMP instruction
(The conditions are set in the "condition data" used with "high-level positioning control".) Using the JUMP instruction enables repeating of the same positioning control, or selection of positioning data by the execution conditions during "continuous positioning control" or "continuous path control".

## (1) Operation

(a) Unconditional JUMP

The JUMP instruction is unconditionally executed. The operation jumps to the positioning data No. set in "[Da.9] Dwell time".
(b) Conditional JUMP

The block start condition data is used as the JUMP instruction execution conditions.

- When block positioning data No. 7000 to 7004 is started, each block condition data is used.
- When positioning data No. 1 to 600 is started, start block 0 condition data is used.
- When the execution conditions set in "[Da.10] M code" of the JUMP instruction have been established: the JUMP instruction is executed to jump the operation to the positioning data No. set in "[Da.9] Dwell time".
- When the execution conditions set in "[Da.10] M code" of the JUMP instruction have not been established: the JUMP instruction is ignored, and the next positioning data No.is executed.


## (2) Restrictions

- When using a conditional JUMP instruction, establish the JUMP instruction execution conditions by the 4th positioning data No. before the JUMP instruction positioning data No. If the JUMP instruction execution conditions are not established by the time the 4th positioning control is carried out before the JUMP instruction positioning data No., the operation will be processed as an operation without established JUMP instruction execution conditions. (During execution of continuous path control/continuous positioning control, the LD75 calculates the positioning data of the positioning data No. four items ahead of the current positioning data.)
- Positioning control such as loops cannot be executed by conditional JUMP instructions alone until the conditions have been established. As the target of the JUMP instruction, specify a positioning data that is controlled by other than JUMP and NOP instructions.


## (3) Positioning data setting example

The following table shows setting examples when "JUMP instruction" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.2] | Control system | JUMP instruction | Set the JUMP instruction. |
|  | [Da.3] | Acceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.4] | Deceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.9] | Dwell time | 500 | Set the positioning data No. 1 to 600 for the JUMP destination. (The positioning data No. of the JUMP instruction cannot be set.) Setting its own positioning data No. will result in an error "Illegal data No." (error code: 502). |
|  | [Da.10] | M code | 1 | Set the JUMP instruction execution conditions with the condition data No. <br> 0 : Unconditional JUMP <br> 1 to 10: Condition data No. ("Simultaneous start" condition data cannot be set.) |

Refer to Page 152, Section 5.3 for information on the setting details.

The LOOP is used for loop control by the repetition of LOOP to LEND.

## (1) Operation

The LOOP to LEND loop is repeated by set repeat cycles.

## (2) Positioning data setting example

The following table shows the setting examples when "LOOP" is set in positioning data No. 1 of axis 1.

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 1 | [Da.1] | Operation pattern | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.2] | Control system | LOOP | Set the LOOP. |
|  | [Da.3] | Acceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.4] | Deceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.9] | Dwell time | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | 5 | Set the LOOP to LEND repeat cycles. |

Refer to Page 152, Section 5.3 for information on the setting details.

## (3) Restrictions

- The error "Control system LOOP setting error" (error code: 545) will occur if " 0 " is set for the repeat cycles.
- Even if LEND is absent after LOOP, no error will occur, but repeat processing will not be carried out.
- Nesting is not allowed between LOOP-LEND's. If such setting is made, only the inner LOOP-LEND is processed repeatedly.


## Point ${ }^{8}$

The setting by this control system is easier than that by the special start "FOR loop" of "High-level Positioning Control" (以 Page 456, CHAPTER 10).
<Setting data>

- For special start: Positioning start data, special start data, condition data, and positioning data
- For control system: Positioning data

For the special start FOR to NEXT, the positioning data is required for each of FOR and NEXT points. For the control system, loop can be executed even only by one data.
Also, nesting is enabled by using the control system LOOP to LEND in combination with the special start FOR to NEXT. However LOOP to LEND cannot be set across block. Always set LOOP to LEND so that the processing ends within one block. Refer to Page 456, Section 10.1 for details of the "block".

### 9.2.25 LEND

The LEND is used to return the operation to the top of the repeat (LOOP to LEND) loop.

## (1) Operation

When the repeat cycle designated by the LOOP becomes 0 , the loop is terminated, and the next positioning data No. processing is started. (The operation pattern, if set to "Positioning complete", will be ignored.)
When the operation is stopped after the repeat operation is executed by designated cycles, the dummy positioning data (for example, incremental positioning without movement amount) is set next to LEND.
The operation for the case when Positioning complete (00) is set to LOOP or LEND is shown below.

| Positioning data No. | Operation pattern | Control system | Condition | Operation |
| :---: | :--- | :---: | :---: | :---: |
| 1 | Continuous control | ABS2 |  | Executed in the order of <br> the positioning data No. 1 |
| 2 | Positioning complete | LOOP | Number of loop cycles: 2 | $\rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow$ |
| 3 | Continuous path control | ABS2 |  | (The operation patterns of <br> (The |
| 4 | Continuous control | ABS2 |  | the positioning data Nos. |
| 2 2and 5 are ignored.) |  |  |  |  |

## (2) Positioning data setting example

The following table shows the setting examples when "LEND" is set in positioning data No. 8 of axis 1

| Setting item |  |  | Setting example | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Axis 1 positioning data No. 8 | [Da.1] | Operation pattern | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.2] | Control system | LEND | Set the LEND. |
|  | [Da.3] | Acceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.4] | Deceleration time No. | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.5] | Axis to be interpolated | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.6] | Positioning address/movement amount | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.7] | Arc address | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.8] | Command speed | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.9] | Dwell time | - | Setting not required. (Setting value will be ignored.) |
|  | [Da.10] | M code | - | Setting not required. (Setting value will be ignored.) |

Refer to Page 152, Section 5.3 for information on the setting details.

## (3) Restrictions

- Ignore the "LEND" before the "LOOP" is executed.


## CHAPTER 10 high-Level positioning CONTROL

### 10.1 Outline of High-Level Positioning Control

In "high-level positioning control" the execution order and execution conditions of the "positioning data" are set to carry out more applied positioning. (The execution order and execution conditions are set in the "block start data" and "condition data".)
The following applied positioning controls can be carried out with "high-level positioning control".

| High-level positioning control | Details |
| :---: | :---: |
| Block*1 ${ }^{*}$ start (Normal start) | With one start, executes the positioning data in a random block with the set order. |
| Condition start | Carries out condition judgment set in the "condition data" for the designated positioning data, and then executes the "block start data". <br> - When the condition is established, the "block start data" is executed. <br> - When not established, that "block start data" is ignored, and the next point's " block start data" is executed. |
| Wait start | Carries out condition judgment set in the "condition data" for the designated positioning data, and then executes the "block start data". <br> - When the condition is established, the "block start data" is executed. <br> - When not established, stops the control until the condition is established. (Waits.) |
| Simultaneous start ${ }^{*}{ }^{2}$ | Simultaneously executes the positioning data having the No. for the axis designated with the "condition data". (Outputs pulses at the same timing.) |
| Repeated start (FOR loop) | Repeats the program from the "block start data" set with the "FOR loop" to the "block start data" set in "NEXT" for the designated No. of times. |
| Repeated start (FOR condition) | Repeats the program from the "block start data" set with the "FOR condition" to the "block start data" set in "NEXT" until the conditions set in the "condition data" are established. |
| *1 "1 block" is defined as all the data continuing from the positioning data in which "continuous positioning control" or "continuous path control" is set in the operation pattern ([Da.1]) to the positioning data in which "independent positioning control (Positioning complete)" is set. <br> *2 Besides the simultaneous start of "block start data" system, the "simultaneous starts" include the "multiple axes simultaneous start control" of control system. Refer to $\omega$ Page 473, Section 10.5 for details. |  |

(1) High-level positioning control sub functions
"High-level positioning control" uses the "positioning data" set with the "major positioning control". Refer to Page 58, Section 3.2.4 for details on sub functions that can be combined with the major positioning control. Note that the pre-reading start function ( -3 Page 598, Section 12.7.7) cannot be used together with "high-level positioning control".
(2) High-level positioning control from GX Works2
"High-level positioning control" (start of the "block start data") can be executed from GX Works2 test function. Refer to $\leqslant$ Page 756, Appendix 6.5 for details on starting of the "block start data" from GX Works2.

### 10.1.1 Data required for high-level positioning control

"High-level positioning control" is executed by setting the required items in the "block start data" and "condition data", then starting that "block start data". Judgment about whether execution is possible, etc., is carried out at execution using the "condition data" designated in the "block start data".
"Block start data" can be set for each No. from 7000 to 7004 (called "block Nos."), and up to 50 points can be set for each axis. (This data is controlled with Nos. called "points" to distinguish it from the positioning data. For example, the 1st block start data item is called the "1st point block start data" or "point No. 1 block start data".)
"Condition data" can be set for each No. from 7000 to 7004 (called "block Nos."), and up to 10 data items can be set for each block No.
The " block start data" and "condition data" are set as 1 set for each block No.
The following table shows an outline of the "block start data" and "condition data" stored in the LD75.

| Setting item |  |  |  |
| :--- | :--- | :--- | :--- |
| Block start <br> data | [Da.11] | Shape | Set whether to end the control after executing only the "block start data" of the shape itself, or continue <br> executing the "block start data" set in the next point. |
|  | [Da.12] | Start data No. | Set the "positioning data No." to be executed. |
|  | [Da.13] | Special start <br> instruction | Set the method by which the positioning data set in [Da.12] will be started. |
|  | [Da.14] | Parameter | Set the conditions by which the start will be executed according to the commands set in [Da.13]. <br> (Designate the "condition data No." and "No. of repetitions".) |
| Condition <br> data | [Da.15] | Condition target | Designate the "device", "buffer memory storage details", and "positioning data No." elements for which the <br> conditions are set. |
|  | [Da.16] | Condition <br> operator | Set the judgment method carried out for the target set in [Da.15]. |
|  | [Da.17] | Address | Set the buffer memory address in which condition judgment is carried out (only when the details set in <br> [Da.15] are "buffer memory storage details"). |
|  | [Da.18] | Parameter 1 | Set the required conditions according to the details set in [Da.15] and [Da.16]. |
|  | [Da.19] | Parameter 2 | Set the required conditions according to the details set in [Da.15] and [Da.16]. |

### 10.1.2 "Block start data" and "condition data" configuration

The "block start data" and "condition data" corresponding to "block No. 7000 " can be stored in the buffer memory. (The following drawing shows an example for axis 1.)

(Same for axis 2, axis 3 and axis 4.)


Set in the LD75 with a program or GX Works2.

Set in LD75 the " block start data" and "condition data" corresponding to the following "block Nos. 7001 to 7004 " using GX Works2. (The following drawing shows an example for axis 1.)


### 10.2 High-Level Positioning Control Execution Procedure

High-level positioning control is carried out using the following procedure.

(1) Page 339, CHAPTER 9
(2) Page 461, Section 10.3
(3) Page 470, Section 10.4
(4) $\longmapsto$ Page 475, Section 10.6
(5) Page 235, CHAPTER 6
(6) W Page 288, Section 6.5.3
(7) $\longmapsto$ Page 301, Section 6.5.6
*1 Five sets of "block start data ( 50 points)" and "condition data ( 10 items) corresponding to " 7000 " to " 7004 " are set with a program.
Five sets of data from "7000" to "7004" can be set when GX Works2 is used. If GX Works2 is used to set the "block start data" and "condition data" corresponding to "7000" to "7004" and write the data to the LD75, "7000" to "7004" can be set in "[Cd.3] Positioning start No." in STEP 4.

### 10.3 Setting the Block Start Data

### 10.3.1 Relation between various controls and block start data

The "block start data" must be set to carry out "high-level positioning control".
The setting requirements and details of each "block start data" item to be set differ according to the "[Da.13] Special start instruction" setting.
The following shows the "block start data" setting items corresponding to various control systems. The operation details of each control type are explained starting in Block start (normal start) ( $F$ Page 462, Section 10.3.2). Also refer to $\longmapsto$ Page 470, Section 10.4 for details on "condition data" with which control execution is judged.
(The "block start data" settings in this chapter are assumed to be carried out using GX Works2.)
©: One of the two setting items must be set, $\times$ : Setting not possible, 一: Setting not required ${ }^{* 1}$

| Block start data setting items |  |  | High-level positioning control |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Block start (Normal start) | Condition start | Wait start | Simultaneous start | Repeated start (FOR loop) | Repeated start (FOR condition) | $\begin{aligned} & \text { NEXT } \\ & \text { start }^{*} \end{aligned}$ |
| [Da.11] | Shape | 0: End | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ |
|  |  | 1: Continue | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| [Da.12] | Start data No. |  | 1 to 600 |  |  |  |  |  |  |
| [Da.13] | Special start instruction |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| [Da.14] | Parameter |  | - | Condition data No. |  |  | No. of repetitions | Condition data No. | - |

*1 Setting value invalid Use the initial value or a value within the setting range.
*2 The "NEXT start" instruction is used in combination with "repeated start (FOR loop)" and "repeated start (FOR condition)". Control using only the "NEXT start" will not be carried out.

## Remark

It is recommended that the "block start data" be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.

In a "block start (normal start)", the positioning data groups of a block are continuously executed in a set sequence starting from the positioning data set in "[Da.12] Start data No." by one start.
Section (2) shows a control example where the " block start data" and "positioning data" are set as shown in section (1).

## (1) Setting examples

(a) Block start data setting example

| Axis 1 block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | 0: Block start | - |
| 2nd point | 1: Continue | 2 | 0: Block start | - |
| 3rd point | 1: Continue | 5 | 0: Block start | - |
| 4th point | 1: Continue | 10 | 0: Block start | - |
| 5th point | 0: End | 15 | 0: Block start | - |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern | Remarks |
| :---: | :---: | :---: |
| 1 | 00: Positioning complete |  |
| 2 | 11: Continuous path control | $1 \text { bock }^{* 1}$ |
| 3 | 01: Continuous positioning control |  |
| 4 | 00: Positioning complete |  |
| 5 | 11: Continuous path control | 1 bock $^{* 1}$ |
| 6 | 00: Positioning complete |  |
| $\vdots$ | ! |  |
| 10 | 00: Positioning complete |  |
| ! | $\vdots$ |  |
| 15 | 00: Positioning complete |  |
| ! | ! |  |

*1 "1 block" is defined as all the data continuing from the positioning data in which "continuous positioning control" or "continuous path control" is set in the operation pattern ([Da.1])to the positioning data in which "independent positioning control (Positioning complete)" is set.

## (2) Control examples

The following shows the control executed when the "block start data" of the 1st point of axis 1 is set as shown in section (1) and started

Ex. The positioning data is executed in the following order before stopping. Axis 1 positioning data No. $1 \rightarrow 2$ $\rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 10 \rightarrow 15$.


In a "condition start", the "condition data" conditional judgment designated in "[Da.14] Parameter" is carried out for the positioning data set in "[Da.12] Start data No.". If the conditions have been established, the " block start data" set in "1: condition start" is executed. If the conditions have not been established, that " block start data" will be ignored, and the "block start data" of the next point will be executed.
Section (2) shows a control example where the " block start data" and "positioning data" are set as shown in section (1).

## (1) Setting examples

(a) Block start data setting example

| Axis 1 block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | 1: Condition start | 1 |
| 2nd point | 1: Continue | 10 | 1: Condition start | 2 |
| 3rd point | 0: End | 50 | 0: Block start | - |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

The "condition data Nos." have been set in "[Da.14] Parameter".
(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | 01: Continuous positioning control |
| 2 | 01: Continuous positioning control |
| 3 | 00: Positioning complete |
| $\vdots$ | $\vdots$ |
| 10 | 11: Continuous path control |
| 11 | 11: Continuous path control |
| 12 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |
| 50 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |

## (2) Control examples

The following shows the control executed when the "block start data" of the 1 st point of axis 1 is set as shown in section (1) and started.

1. The conditional judgment set in "condition data No. 1 " is carried out before execution of the axis 1 "positioning data No. 1".

- Conditions established $\rightarrow$ Execute positioning data No. 1, 2, and $3 \rightarrow$ Go to "2".
- Conditions not established $\rightarrow$ Go to "2".

2. The conditional judgment set in "condition data No. 2 " is carried out before execution of the axis 1 "positioning data No. 10".

- Conditions established $\rightarrow$ Execute positioning data No. 10, 11, and 12. Go to "3".
- Conditions not established $\rightarrow$ Go to "3".

3. Execute axis 1 "positioning data No. 50" and stop the control.

### 10.3.4 Wait start

In a "wait start", the "condition data" conditional judgment designated in "[Da.14] Parameter" is carried out for the positioning data set in "[Da.12] Start data No.". If the conditions have been established, the " block start data" is executed. If the conditions have not been established, the control stops (waits) until the conditions are established. Section (2) shows a control example where the " block start data" and "positioning data" are set as shown in section (1).

## (1) Setting examples

(a) Block start data setting example

| Axis 1 block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | 2: Wait start | 3 |
| 2nd point | 1: Continue | 10 | $0:$ Block start | - |
| 3rd point | $0:$ End | 50 | $0:$ Block start | - |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

The "condition data Nos." have been set in "[Da.14] Parameter".
(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | 01: Continuous positioning control |
| 2 | 01: Continuous positioning control |
| 3 | 00: Positioning complete |
| $\vdots$ | $\vdots$ |
| 10 | 11: Continuous path control |
| 11 | 11: Continuous path control |
| 12 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |
| 50 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |

## (2) Control examples

The following shows the control executed when the "block start data" of the 1 st point of axis 1 is set as shown in section (1) and started.

1. The conditional judgment set in "condition data No. 3 " is carried out before execution of the axis 1 "positioning data No. 1".

- Conditions established $\rightarrow$ Execute positioning data No. 1, 2, and $3 \rightarrow$ Go to "2".
- Conditions not established $\rightarrow$ Control stops (waits) until conditions are established $\rightarrow$ Go to "1".

2. Execute the axis 1 "positioning data No. 10, 11, 12, and 50" and stop the control.

In a "simultaneous start", the positioning data set in the "[Da.12] Start data No." and positioning data of other axes set in the "condition data" are simultaneously executed (pulses are output with the same timing).
(The "condition data" is designated with "[Da.14] Parameter".)
Section (2) shows a control example where the " block start data" and "positioning data" are set as shown in section (1).

## (1) Setting examples

(a) Block start data setting example

| Axis 1 block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | $0:$ End | 1 | $3:$ Simultaneous start | 4 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

It is assumed that the "axis 2 positioning data" for simultaneous starting is set in the "condition data" designated with "[Da.14] Parameter".
(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | 01: Continuous positioning control |
| 2 | 01: Continuous positioning control |
| 3 | 00: Positioning complete |
| $\vdots$ | $\vdots$ |

## (2) Control examples

The following shows the control executed when the "block start data" of the 1 st point of axis 1 is set as shown in section (1) and started.

1. Check the axis operation status of axis 2 which is regarded as the simultaneously started axis.

- Axis 2 is standing by. $\rightarrow$ Go to " 2 ".
- Axis 2 is carrying out positioning. $\rightarrow$ An error occurs and simultaneous start will not be carried out.

2. Simultaneously start the axis 1 "positioning data No. 1" and axis 2 positioning data set in "condition data No. 4".

## (3) Precautions

Positioning data No. executed by simultaneously started axes is set to condition data ("[Da.18] Parameter 1", "[Da.19] Parameter 2", but the setting value of start axis (the axis which carries out positioning start) should be " 0 ". If the setting value is set to other than " 0 ", the positioning data set in "[Da.18] Parameter 1", "[Da.19] Parameter 2" is given priority to be executed rather than "[Da.12] Start data No.".
(Refer to Page 176, Section 5.5 for details.)

### 10.3.6 Repeated start (FOR loop)

In a "repeated start (FOR loop)", the data between the " block start data" in which "4: FOR loop" is set in "[Da.13] Special start instruction" and the "block start data" in which "6: NEXT start" is set in "[Da.13] Special start instruction " is repeatedly executed for the No. of times set in "[Da.14] Parameter". An endless loop will result if the No. of repetitions is set to " 0 ".
(The No. of repetitions is set in "[Da.14] Parameter" of the " block start data" in which "4: FOR loop" is set in "[Da.13] Special start instruction".)
Section (2) shows a control example where the " block start data" and "positioning data" are set as shown in section (1).

## (1) Setting examples

(a) Block start data setting example

| Axis 1 block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | 4: FOR loop | 2 |
| 2nd point | 1: Continue | 10 | $0:$ Block start | - |
| 3rd point | $0:$ End | 50 | $6:$ NEXT start | - |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

The "condition data Nos." have been set in "[Da.14] Parameter".
(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | 01: Continuous positioning control |
| 2 | 01: Continuous positioning control |
| 3 | 00: Positioning complete |
| $\vdots$ | $\vdots$ |
| 10 | 11: Continuous path control |
| 11 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |
| 50 | 01: Continuous positioning control |
| 51 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |

## (2) Control examples

The following shows the control executed when the "block start data" of the 1 st point of axis 1 is set as shown in section (1) and started.

1. Execute the axis 1 "positioning data No. $1,2,3,10,11,50$, and 51 ".
2. Return to the axis 1 " 1 st point block start data". Again execute the axis 1 "positioning data No. 1, 2, 3, 10, 11, 50 and 51", and then stop the control. (Repeat for the No. of times (2 times) set in [Da.14].)

In a "repeated start (FOR condition)", the data between the " block start data" in which " 5 : FOR condition" is set in "[Da.13] Special start instruction" and the " block start data" in which "6: NEXT start" is set in "[Da.13] Special start instruction" is repeatedly executed until the establishment of the conditions set in the "condition data".
Conditional judgment is carried out as soon as switching to the point of "6: NEXT start" (before positioning of NEXT start point).
(The "condition data" designation is set in "[Da.14] Parameter" of the " block start data" in which "5: FOR condition" is set in "[Da.13] Special start instruction".)
Section (2) shows a control example where the " block start data" and "positioning data" are set as shown in section (1).

## (1) Setting examples

(a) Block start data setting example

| Axis $\mathbf{1}$ block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | 5: FOR condition | 5 |
| 2nd point | 1: Continue | 10 | $0:$ Block start | - |
| 3rd point | $0:$ End | 50 | 6: NEXT start | - |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

The "condition data Nos." have been set in "[Da.14] Parameter".
(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | 01: Continuous positioning control |
| 2 | 01: Continuous positioning control |
| 3 | 00: Positioning complete |
| $\vdots$ | $\vdots$ |
| 10 | 11: Continuous path control |
| 11 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |
| 50 | $01:$ Continuous positioning control |
| 51 | $00:$ Positioning complete |
| $\vdots$ |  |

## (2) Control examples

The following shows the control executed when the "block start data" of the 1st point of axis 1 is set as shown in section (1) and started.

1. Execute axis 1 "Positioning data No. 1, 2, 3, 10, 11".
2. Execute the conditional judgment set in axis 1 "Condition data No.5". *1

- Conditions not established $\rightarrow$ Execute "Positioning data No. 50, 51". Go to "1"
- Conditions established $\rightarrow$ Execute "Positioning data No.50, 51" and complete the positioning.
*1 Conditional judgment is carried out as soon as switching to NEXT start point (before positioning of NEXT start point).


### 10.3.8 Restrictions when using the NEXT start

The "NEXT start" is a instruction indicating the end of the repetitions when executing repeated start (FOR loop) ( Page 467, Section 10.3.6) and repeated start (FOR condition) (以 Page 468, Section 10.3.7).
The following shows the restrictions when setting "6: NEXT start" in the " block start data".

- The processing when "6: NEXT start" is set before execution of "4: FOR loop" or "5: FOR condition" is the same as that for a "0: block start".
- Repeated processing will not be carried out if there is no "6: NEXT start" instruction after the "4: FOR loop" or "5: FOR condition" instruction. (Note that an "error" will not occur.)
- Nesting is not possible between "4: FOR loop" and "6: NEXT start", or between "5: FOR condition" and "6: NEXT start". A warning "FOR to NEXT nest construction (warning code: 506)" will occur if nesting is attempted.

| When nest construction is not configured |  | When nest construction is configured |  |
| :---: | :---: | :---: | :---: |
| Start block data | Da. 13 Special start command | Start block data | Da. 13 Special start command |
| 1st point | Normal start | 1st point | Normal start |
| 2nd point | FOR | 2nd point | FOR |
| 3rd point | Normal start | 3rd point | Normal start |
| 4th point | NEXT | 4th point | FOR |
| 5th point | Normal start | 5th point | Normal start |
| 6 th point | Normal start | 6 th point | Normal start |
| 7th point | FOR | 7th point | NEXT |
| 8th point | Normal start | 8th point | Normal start |
| 9th point | NEXT | 9th point | NEXT |
| - |  | - |  |
| - |  | - |  |
|  |  | A warning occurs when "FOR Then, destination of jump by "NEXT" of 9th point is proce | h point is executed. <br> " of 7th point is changed to 4th point and "Normal execution". |

### 10.4 Setting the Condition Data

### 10.4.1 Relation between various controls and the condition data

"Condition data" is set in the following cases.

- When setting conditions during execution of JUMP instruction (↔ Page 452, Section 9.2.23) (major positioning control)
- When setting conditions during execution of "high-level positioning control"

The "condition data" to be set includes the 5 setting items from [Da.15] to [Da.19], but the setting requirements and details differ according to the control system and setting conditions.
The following shows the "condition data" "[Da.15] Condition target" corresponding to the different types of control.
(The "condition data" settings in this chapter are assumed to be carried out using GX Works2.)
©: One of the setting items must be set, $\times$ : Setting not possible

| [Da.15]Setting item | High-level positioning control |  |  |  | Major positioning <br> control |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Condition start | Wait start | Simultaneous start | Repeated start (FOR condition) | JUMP instruction |
| 01: Device $X^{* 1}$ | © | $\bigcirc$ | $\times$ | $\bigcirc$ | © |
| 02: Device $Y^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 03: Buffer memory (1 word) | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | © |
| 04: Buffer memory (2 word) | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 05: Positioning data No. | $\times$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ |

*1 Refers to buffer memories and devices $X / Y$ which belongs to LD75.

## Remark

It is recommended that the "condition data" be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.

The setting requirements and details of the following "condition data"[Da.16] to [Da.19] setting items differ according to the "[Da.15] Condition target" setting.
The following shows the [Da.16] to [Da.19] setting items corresponding to the "[Da.15] Condition target".
—: Setting not required ${ }^{* 2}$, **: Value stored in buffer memory designated in [Da.17]

*2 Setting value invalid Use the initial value or a value within the setting range.
*3 Comparison of $\leq$ and $\geq$ is judged as signed values.
Refer to $\curvearrowleft$ Page 176, Section 5.5 for information on the setting details.
*4 The setting value of start axis (the axis which executes positioning start) should be "0". If the setting value is set to other than " 0 ", the positioning data set in [Da.18] Parameter 1 and [Da.19] Parameter 2 is given priority to be executed rather than "[Da.12] Start data No.".
Judgment whether the condition operator is " $=$ " or " $\neq$ " at the wait start:
Judgment on data is carried out for each control cycle of the LD75. Thus, in the judgment on the data such as current feed value which varies continuously, the operator "=" may not be detected. If this occurs, use a range operator.

## Remark

The "PLC CPU memo area" can be designated as the buffer memory address to be designated in [Da.17]. ( $\wp$ Page 305, Section 7.1.1)

|  | LD75 buffer memory |
| :---: | :---: |
| Address30000 |  |
|  |  |
| 30001 |  |
|  |  |
| 30099 |  |

### 10.4.2 Condition data setting examples

The following shows setting examples for "condition data".
(1) Setting the device ON/OFF as a condition
[Condition] Device "XC" (= Axis 1 BUSY signal) is OFF

| $[\mathrm{Da.15]}$ <br> Condition target | [Da.16] <br> Condition operator | [Da.17] <br> Address | [Da.18] <br> Parameter 1 | [Da.19] <br> Parameter 2 |
| :---: | :---: | :---: | :---: | :---: |
| 01 H : Device X | $08 \mathrm{H}:$ DEV=OFF | - | 0 CH | - |

(2) Setting the numeric value stored in the "buffer memory" as a condition
[Condition]
The value stored in buffer memory addresses "800, 801" (= "[Md.20] Current feed value") is "1000" or larger.

| [Da.15] <br> Condition target | [Da.16] <br> Condition operator | [Da.17] <br> Address | [Da.18] <br> Parameter 1 | [Da.19] <br> Parameter 2 |
| :---: | :---: | :---: | :---: | :---: |
| $04 \mathrm{H}:$ Buffer memory $(2$ <br> words $)$ | $04 \mathrm{H}: * * \mathrm{P} 1$ | 800 | 1000 | - |

(3) Designating the axis and positioning data No. to be simultaneously started in "simultaneous start"
[Condition] Simultaneously starting "axis 2 positioning data No.3"

| $[\mathrm{Da.15]}$ <br> Condition target | [Da.16] <br> Condition operator | [Da.17] <br> Address | [Da.18] <br> Parameter 1 | [Da.19] <br> Parameter 2 |
| :---: | :---: | :---: | :---: | :---: |
| 05 H : Positioning data No. | 20 H : Axis 2 designation | - | High-order 16 bits "0003H"*1 | $-{ }^{* 1}$ |

*1 The setting value of start axis (the axis which executes positioning start) should be " 0000 H ".

### 10.5 Multiple Axes Simultaneous Start Control

The "multiple axes simultaneous start control" starts and controls the multiple axes simultaneously by outputting pulses to the axis to be started at the same timing as the start axis. The maximum of four axes can be started simultaneously.

## (1) Control details

Multiple axes simultaneous start control is executed as follows. Set the start data No. to the buffer memory areas "[Cd.30] to [Cd.33] Simultaneous starting axis start data No. (axis 1 to 4 start data No.)". Set "9004" to "[Cd.3] Positioning start No." of the start axis. Turn ON the positioning start signal.

## (2) Restrictions

- The error "Error before simultaneous start" (error code: 501) will occur and all simultaneously started axes will not start if the simultaneously started axis start data No. is not set to the axis control data on the start axis or set outside the setting range.
- The error "Error before simultaneous start" (error code: 501) will occur and all simultaneously started axes will not start if either of the simultaneously started axes is BUSY.
- The error "Error before simultaneous start" (error code: 501) will occur and all simultaneously started axes will not start if an error occurs during the analysis of the positioning data on the simultaneously started axes.
- No error or warning will occur if only the start axis is the simultaneously started axis.
- This function cannot be used with the pre-reading start function ( $\longmapsto$ Page 598, Section 12.7.7).


## (3) Multiple axes simultaneous start control procedure

The procedure for multiple axes simultaneous start control is as follows.
1)


## (4) Multiple axes simultaneous start control function setting method

The following shows the setting of the data used to execute the multiple axes simultaneous start control with positioning start signals. (The axis control data on the start axis is set.)

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.3] | Positioning start No. |  | 9004 | Set the multiple axes simultaneous start control start No. "9004". | 1500 | 1600 | 1700 | 1800 |
| [Cd.30] | Simultaneous starting axis start data No. (Axis 1 start data No.) | Set the simultaneously started axis start data No. Set a " 0 " for the axis other than the simultaneously started axes. |  | 1540 | 1640 | 1740 | 1840 |
| [Cd.31] | Simultaneous starting axis start data No. (Axis 2 start data No.) |  |  | 1541 | 1641 | 1741 | 1841 |
| [Cd.32] | Simultaneous starting axis start data No. (Axis 3 start data No.) |  |  | 1542 | 1642 | 1742 | 1842 |
| [Cd.33] | Simultaneous starting axis start data No. (Axis 4 start data No.) |  |  | 1543 | 1643 | 1743 | 1843 |

Refer to Page 211, Section 5.7 for information on the setting details.

## (5) Setting examples

The following shows the setting examples in which the axis 1 is used as the start axis and the simultaneously started axes are used as the axes 2 and 4.

| Setting item |  | Setting <br> value | Setting details | Buffer memory <br> address (Axis 1) |
| :--- | :--- | :---: | :--- | :---: |
| [Cd.3] | Positioning start No. | 9004 | Set the multiple axes simultaneous start control start No. <br> "9004". | 1500 |
| [Cd.30] | Simultaneous starting axis start <br> data No. (Axis 1 start data No.) | 100 | The axis 1 starts the positioning data No. 100. | 1540 |
| [Cd.31] | Simultaneous starting axis start <br> data No. (Axis 2 start data No.) | 200 | Immediately after the start of the axis 1, the axis 2 starts the <br> axis 2 positioning data No. 200. | 1541 |
| [Cd.32] | Simultaneous starting axis start <br> data No. (Axis 3 start data No.) | 0 | Will not start simultaneously. | 1542 |
| [Cd.33] | Simultaneous starting axis start <br> data No. (Axis 4 start data No.) | 300 | Immediately after the start of the axis 1, the axis 4 starts the <br> axis 4 positioning data No. 300. | 1543 |

## Point ${ }^{\circ}$

- The "multiple axes simultaneous start control" carries out an operation equivalent to the "simultaneous start" using the "block start data".
- The setting of the "multiple axes simultaneous start control" is easier than that of the "simultaneous start" using the "block start data".
- Setting items for "simultaneous start" using "block start data": Positioning start data, block start data, condition data, and positioning data
- Setting items for "multiple axes simultaneous start control": Positioning data and axis control data


### 10.6 Start Program for High-Level Positioning Control

### 10.6.1 Starting high-level positioning control

To execute high-level positioning control, a program must be created to start the control in the same method as for major positioning control.
The following shows the procedure for starting the "1st point block start data" (regarded as block No. 7000) set in axis 1.


1. Set "7000" in "[Cd.3] Positioning start No.". (This establishes that the control as "high-level positioning control" using block start data.)
2. Set the point No. of the "block start data" to be started. (In this case "1".)
3. Turn ON the start signal.
4. The positioning data set in the "1st point block start data" is started.

### 10.6.2

The following shows an example of a start program for high-level positioning control in which the 1st point " block start data" of axis 1 is started. (The block No. is regarded as "7000".)

## (1) Control data that require setting

The following control data must be set to execute high-level positioning control. The setting is carried out using a program.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.3] | Positioning start No. |  | 7000 | Set "7000" to indicate control using " block start data". | 1500 | 1600 | 1700 | 1800 |
| [Cd.4] | Positioning starting point No. | 1 | Set the point No. of the " block start data" to be started. | 1501 | 1601 | 1701 | 1801 |

Refer to Page 211, Section 5.7 for the information on detail settings.
(2) Start conditions

The following conditions must be fulfilled when starting the control. The required conditions must also be integrated into the program, and configured so the control does not start unless the conditions are fulfilled.

| Signal name |  | Signal state |  | Device |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Interface signal | PLC READY signal |  |  | ON | CPU module preparation completed | Y0 |  |  |  |
|  | LD75 READY signal | ON | LD75 preparation completed | X0 |  |  |  |
|  | Synchronization flag | ON | Accessible to LD75 buffer memory | X1 |  |  |  |
|  | Axis stop signal | OFF | Axis stop signal is OFF. | Y4 | Y5 | Y6 | Y7 |
|  | Start complete signal | OFF | Start complete signal is OFF. | X10 | X11 | X12 | X13 |
|  | BUSY signal | OFF | BUSY signal is OFF. | XC | XD | XE | XF |
|  | Error detection signal | OFF | There is no error. | X8 | X9 | XA | XB |
|  | M code ON signal | OFF | M code ON signal is OFF. | X4 | X5 | X6 | X7 |
| External signal | Drive unit READY signal | ON | Drive unit preparation completed | - |  |  |  |
|  | Stop signal | OFF | Stop signal is OFF. | - |  |  |  |
|  | Upper limit (FLS) | ON | Within limit range | - |  |  |  |
|  | Lower limit (RLS) | ON | Within limit range | - |  |  |  |

## (3) Start time chart

The following chart shows a time chart in which the positioning data No. 1, 2, 10, 11, and 12 of axis 1 are continuously executed as an example.
(a) Block start data setting example

| Axis 1 block start data | [Da.11] <br> Shape | [Da.12] <br> Start data No. | [Da.13] <br> Special start instruction | [Da.14] <br> Parameter |
| :---: | :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | $0:$ Block start | - |
| 2nd point | $0:$ End | 10 | $0:$ Block start | - |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |

(b) Positioning data setting example

| Axis 1 positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | 11: Continuous path control |
| 2 | 00: Positioning complete |
| $\vdots$ | $\vdots$ |
| 10 | 11: Continuous path control |
| 11 | 11: Continuous path control |
| 12 | $00:$ Positioning complete |
| $\vdots$ | $\vdots$ |

(c) Start time chart


## (4) Creating the program



## CHAPTER 11 mANUAL CONTROL

### 11.1 Outline of Manual Control

### 11.1.1 Three manual control methods

"Manual control" refers to control in which positioning data is not used, and a positioning operation is carried out in response to signal input from an external source.
The three types of this "manual control" are explained below.

## (1) Manual control classification

## (a) JOG operation

"JOG operation" is a control method in which the machine is moved by only a movement amount (pulses are continuously outputted while the JOG start signal is ON). This operation is used to move the workpiece in the direction in which the limit signal is ON, when the operation is stopped by turning the limit signal OFF to confirm the positioning system connection and obtain the positioning data address ( 5 Page 586, Section 12.7.4).


JOG start signal

(b) Inching operation
"Inching operation" is a control method in which a minute movement amount of pulses is output manually at 1.8 ms . When the "inching movement amount" of the axis control data is set by JOG operation, the workpiece is moved by a set movement amount. (When the "inching movement amount" is set to " 0 ", the operation is performed as the JOG operation.)


## (c) Manual pulse generator operation

"Manual pulse generator operation" is a control method in which positioning is carried out in response to the No. of pulses input from a manual pulse generator (the No. of input pulses is output). This operation is used for manual fine adjustment, etc., when carrying out accurate positioning to obtain the positioning address.


## (2) Manual control sub functions

Refer to Page 58, Section 3.2.4 for details on "sub functions" that can be combined with manual control. Also refer to Page 507, CHAPTER 12 for details on each sub function.

## (3) Carrying out manual control from GX Works2

"JOG operation", "Inching operation" and enabling/disabling of the "manual pulse generator operation" can be executed with the test functions of GX Works2.
Refer to $\xi$ Page 756, Appendix 6.5 for details on manual control from GX Works2.

## (4) Monitoring manual control

Refer to Page 182, Section 5.6 when directly monitoring the buffer memory using GX Works2.
Also refer to Page 756, Appendix 6.5 when monitoring with the monitor functions of GX Works2.

### 11.2 JOG Operation

### 11.2.1 Outline of JOG operation

## Point ${ }^{P}$

Use the hardware stroke limit function when carrying out JOG operation near the upper or lower limits. (以 Page 541, Section 12.4.4)
If the hardware stroke limit function is not used, the workpiece may exceed the movement range, and an accident may result.

## (1) JOG operation

In JOG operation, the Forward run JOG start signal [Y8, YA, YC, YE] or Reverse run JOG start signal [Y9, YB, YD, YF] turns ON, causing pulses to be output to the drive unit from the LD75 while the signal is ON. The workpiece is then moved in the designated direction.
The following shows examples of JOG operation.

1. When the JOG start signal turns $O N$, acceleration begins in the direction designated by the JOG start signal, and continues for the acceleration time designated in "[Pr.32] JOG operation acceleration time selection". At this time, the BUSY signal changes from OFF to ON.
2. When the workpiece being accelerated reaches the speed set in "[Cd.17] JOG speed", the movement continues at this speed. The constant speed movement takes place at 2 and 3.
3. When the JOG start signal is turned OFF, deceleration begins from the speed set in "[Cd.17] JOG speed", and continues for the deceleration time designated in "[Pr.33] JOG operation deceleration time selection".
4. The operation stops when the speed becomes " 0 ". At this time, the BUSY signal changes from ON to OFF.


## (2) Precautions during operation

- For safety, first set "[Cd.17] JOG speed" to a smaller value and check the movement. Then gradually increase the value.
- The axis error "Outside JOG speed range" (error code: 300) will occur and the operation will not start if the "JOG speed" is outside the setting range or 0 at the JOG start.
- The axis error "JOG speed limit value error" (error code: 956) will occur and the operation will not start if "[Pr.31] JOG speed limit value" is set to a value larger than "[Pr.8] Speed limit value".
- If "[Cd.17] JOG speed" exceeds the speed set in "[Pr.31] JOG speed limit value", the workpiece will move at the "[Pr.31] JOG speed limit value" and the warning "JOG speed limit value" (warning code: 301) will occur in the LD75.
- The JOG operation can be continued even if an "Axis warning" has occurred.
- Set a " 0 " in "[Cd.16] Inching movement amount". If a value other than " 0 " is set, the operation will become an inching operation. (5 Page 491, Section 11.3)


## (3) Operations when stroke limit error occurs

When the operation is stopped by hardware stroke limit error or software stroke limit error, the JOG operation can execute in an opposite way (direction within normal limits) after an error reset. (An error will occur again if JOG start signal is turned ON in a direction to outside the stroke limit.)


## (4) JOG operation timing and processing time

The following drawing shows details of the JOG operation timing and processing time.


Normal timing times

| t1 | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ |
| :---: | :---: | :---: | :---: |
| 1.0 to 3.0 ms | 0 to 0.9 ms | 1.3 to 2.2 ms | 0 to 0.9 ms |

- Delays may occur in the t 1 timing time due to the operation status of other axes.

The JOG operation is carried out by the following procedure.


## Remark

- Mechanical elements such as limit switches are considered as already installed.
- Parameter settings work in common for all control using the LD75.


### 11.2.3 Setting the required parameters for JOG operation

The "Parameters" must be set to carry out JOG operation.
The following table shows the setting items of the required parameters for carrying out JOG operation. When only JOG operation will be carried out, no parameters other than those shown below need to be set. (Use the initial values or setting values within a range where no error occurs for trouble-free operation.)
©: Setting always required, $\bigcirc$ : Set according to requirements ${ }^{* 1}$

| Setting item |  |  | Setting requirement | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Parameters | [Pr.1] | Unit setting | $\bigcirc$ | 3 (pulse) |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ | 20000 |
|  | [Pr.3] | Movement amount per rotation (AI) (Unit: pulse) | $\bigcirc$ | 20000 |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | 1 (1-fold) |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | 1 (CW/CCW mode) |
|  | [Pr.6] | Rotation direction setting | $\bigcirc$ | 0 (current value increases by forward run pulse output) |
|  | [Pr.7] | Bias speed at start (Unit: pulse/s) | $\bigcirc$ | 0 |
|  | [Pr.8] | Speed limit value (Unit: pulse/s) | $\bigcirc$ | 200000 |
|  | [Pr.9] | Acceleration time 0 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.10] | Deceleration time 0 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.11] | Backlash compensation amount (Unit: pulse) | $\bigcirc$ | 0 |
|  | [Pr.12] | Software stroke limit upper limit value (Unit: pulse) | $\bigcirc$ | 2147483647 |
|  | [Pr.13] | Software stroke limit lower limit value (Unit: pulse) | $\bigcirc$ | -2147483648 |
|  | [Pr.14] | Software stroke limit selection | $\bigcirc$ | 0 (current feed value) |
|  | [Pr.15] | Software stroke limit valid/invalid setting | $\bigcirc$ | 0 (valid) |
|  | [Pr.17] | Torque limit setting value (Unit: \%) | $\bigcirc$ | 300 |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | 0 (Pulse output to drive unit is negative logic.) |
|  | [Pr.25] | Acceleration time 1 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.26] | Acceleration time 2 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.27] | Acceleration time 3 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.28] | Deceleration time 1 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.29] | Deceleration time 2 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.30] | Deceleration time 3 (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.31] | JOG speed limit value (Unit: pulse/s) | $\bigcirc$ | 20000 |
|  | [Pr.32] | JOG operation acceleration time selection | $\bigcirc$ | 0 (acceleration time 0) |
|  | [Pr.33] | JOG operation deceleration time selection | $\bigcirc$ | 0 (deceleration time 0) |
|  | [Pr.34] | Acceleration/deceleration process selection | $\bigcirc$ | 0 (trapezoidal acceleration/ deceleration processing) |
|  | [Pr.35] | S-curve ratio (Unit: \%) | $\bigcirc$ | 100 |
|  | [Pr.36] | Sudden stop deceleration time (Unit: ms) | $\bigcirc$ | 1000 |
|  | [Pr.37] | Stop group 1 sudden stop selection | $\bigcirc$ | 0 (deceleration stop) |
|  | [Pr.38] | Stop group 2 sudden stop selection | $\bigcirc$ | 0 (deceleration stop) |
|  | [Pr.39] | Stop group 3 sudden stop selection | $\bigcirc$ | 0 (deceleration stop) |

*1 Leave it set to the initial value when not used.

- Parameter settings work in common for all control using the LD75. When carrying out other controls ("major positioning control", "high-level positioning control", and "OPR positioning control"), the respective setting items must also be set.
- Parameters are set for each axis.
- Refer to Page 93, CHAPTER 5 for the information on detail settings.


### 11.2.4 Creating start programs for JOG operation

A program must be created to execute a JOG operation. Consider the "required control data setting", "start conditions" and "start time chart" when creating the program.
The following shows an example when a JOG operation is started for axis 1. ("[Cd.17] JOG speed" is set to " $100.00 \mathrm{~mm} / \mathrm{min}$ " in the example shown.)

## (1) Required control data setting

The control data shown below must be set to execute a JOG operation. The setting is carried out with the program.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.16] | Inching movement amount |  | 0 | Set "0". | 1517 | 1617 | 1717 | 1817 |
| [Cd.17] | JOG speed | 10000 | Set a value equal to or above the "[Pr.7] Bias speed at start" and equal to or below the "[Pr.31] JOG speed limit value". | $\begin{aligned} & 1518 \\ & 1519 \end{aligned}$ | $\begin{aligned} & 1618 \\ & 1619 \end{aligned}$ | $\begin{aligned} & 1718 \\ & 1719 \end{aligned}$ | $\begin{aligned} & 1818 \\ & 1819 \end{aligned}$ |

Refer to Page 211, Section 5.7 for the information on detail settings.

## (2) Start conditions

The following conditions must be fulfilled when starting. The required conditions must also be assembled in the program, and the program must be configured so the operation will not start if the conditions are not fulfilled.

| Signal name |  | Signal state |  | Device |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Interface signal | PLC READY signal |  |  | ON | CPU module preparation completed | Y0 |  |  |  |
|  | LD75 READY signal | ON | LD75 preparation completed | X0 |  |  |  |
|  | Synchronization flag*1 | ON | LD75 buffer memory accessible | X1 |  |  |  |
|  | Axis stop signal | OFF | Axis stop signal is OFF. | Y4 | Y5 | Y6 | Y7 |
|  | Start complete signal | OFF | Start complete signal is OFF. | X10 | X11 | X12 | X13 |
|  | BUSY signal | OFF | LD75 is not operating | XC | XD | XE | XF |
|  | Error detection signal | OFF | There is no error | X8 | X9 | XA | XB |
|  | M code ON signal | OFF | M code ON signal is OFF. | X4 | X5 | X6 | X7 |
| External signal | Drive unit READY signal | ON | Drive unit preparation completed | - |  |  |  |
|  | Stop signal | OFF | Stop signal is OFF. | - |  |  |  |
|  | Upper limit (FLS) | ON | Within limit range | - |  |  |  |
|  | Lower limit (RLS) | ON | Within limit range | - |  |  |  |

*1 If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation.
(3) Start time chart


## (4) Creating the program



## (1) When the "stop signal" is turned ON during JOG operation

When the "stop signal" is turned ON during JOG operation, the JOG operation will stop by the "deceleration stop" method.
The error "Stop signal ON at start" (error code: 106) will occur if the JOG start signal is turned ON while the stop signal is ON.
The operation can be started by turning the stop signal OFF, and turning the JOG start signal from OFF to ON again.


## （2）When both the＂Forward run JOG start signal＂and＂Reverse run JOG start signal＂are turned ON simultaneously for one axis

When both the＂Forward run JOG start signal＂and＂Reverse run JOG start signal＂are turned ON simultaneously for one axis，the＂Forward run JOG start signal＂is given priority．In this case，the＂Reverse run JOG start signal＂ is validated when the LD75 BUSY signal is turned OFF．If the forward run JOG operation is stopped due to stop or axis error by a stop signal，the reverse run JOG operation will not be executed even if the＂Reverse run JOG start signal＂turns ON．

(3) When the "JOG start signal" is turned ON again during deceleration caused by the ON $\rightarrow$ OFF of the "JOG start signal"
When the "JOG start signal" is turned ON again during deceleration caused by the ON $\rightarrow$ OFF of the "JOG start signal", the JOG operation will be carried out from the time the "JOG start signal" is turned ON.

(4) When "JOG start signal" is turned ON while the test function of GX Works2 is used
When the "JOG start signal" is turned ON while the test function is used, it will be ignored and the JOG operation will not be carried out.


### 11.3 Inching Operation

### 11.3.1 Outline of inching operation

## Point ${ }^{P}$

When the inching operation is carried out near the upper or lower limit, use the hardware stroke limit function. (Ю Page 541, Section 12.4.4)
If the hardware stroke limit function is not used, the workpiece may exceed the movement range, and an accident may result.

## (1) Inching operation

In inching operation, pulses are input to the drive unit at 1.8 ms to move the workpiece by a designated movement amount after the Forward run JOG start signal [Y8, YA, YC, YE] or Reverse JOG start signal [Y9, YB, YD, YF] is turned ON.

The following shows the example of inching operation.

1. When the start signal is turned $O N$, inching operation is carried out in the direction designated by the start signal. At this time, the BUSY signal changes from OFF to ON.
2. The workpiece is moved by a movement amount set in "[Cd.16] Inching movement amount".
3. The workpiece movement stops when the speed becomes " 0 ". In this case, BUSY signal is turned from ON to OFF. The positioning complete signal is turned from OFF to ON.
4. The positioning complete signal is turned from ON to OFF after a time set in "[Pr.40] Positioning complete signal output time" has been elapsed.


## (2) Precautions during operation

(a) Acceleration/deceleration processing during inching operation

Acceleration/deceleration processing is not carried out during inching operation.
(Pulses corresponding to the designated inching movement amount are output at 1.8 ms . The movement direction of inching operation is reversed and, when backlash compensation is carried out, first pulses corresponding to the backlash amount are output at 1.8 ms and then pulses corresponding to the designated inching movement amount are output in the next 1.8 ms .)
The "[Cd.17] JOG speed" is ignored even if it is set. However, the error "Inching movement amount error" (error code: 301) will occur in the following cases:

- ([Cd.16] Inching movement amount) $\times(\mathrm{A})>([\mathrm{Pr} .31] \mathrm{JOG}$ speed limit value $)$

Where (A) is as follows.

- When the unit is pulse: 562.5
- When the unit is other than pulse: 337.5
(b) Setting of "[Cd.16] Inching movement amount"

Set a value other than a " 0 " in "[Cd.16] Inching movement amount".
If a "0" is set, the operation will become JOG operation. (Ю Page 481, Section 11.2)

## (3) Operations when stroke limit error occurs

When the operation is stopped by hardware stroke limit error or software stroke limit error, the inching operation can be performed in an opposite way (direction within normal limits) after an error reset. (An error will occur again if JOG start signal is turned ON in a direction to outside the stroke limit.)


## (4) Inching operation timing and processing times

The following drawing shows the details of the inching operation timing and processing time.


Normal timing times

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ |
| :---: | :---: | :---: | :---: |
| 1.0 to 3.0 ms | 1.3 to 2.2 ms | 0 to 0.9 ms | Follows parameters |

- Delays may occur in the $t 1$ timing time due to the operation status of other axes.

The inching operation is carried out by the following procedure.


Remark

- Mechanical elements such as limit switches are considered as already installed.
- Parameter settings work in common for all control using the LD75.


### 11.3.3 Setting the required parameters for inching operation

The "Parameters" must be set to carry out inching operation.
The following table shows the setting items of the required parameters for carrying out inching operation. When only inching operation will be carried out, no parameters other than those shown below need to be set. (Use the initial values or setting values within a range where no error occurs for trouble-free operation.)
©: Setting always required, $\bigcirc$ : Set according to requirements*1

| Setting item |  |  | Setting requirement | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Parameters | [Pr.1] | Unit setting | $\bigcirc$ | 3 (pulse) |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ | 20000 |
|  | [Pr.3] | Movement amount per rotation (AI) (Unit: pulse) | $\bigcirc$ | 20000 |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | 1 (1-fold) |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | 1 (CW/CCW mode) |
|  | [Pr.6] | Rotation direction setting | © | 0 (current value increases by forward run pulse output) |
|  | [Pr.11] | Backlash compensation amount (Unit: pulse) | $\bigcirc$ | 0 |
|  | [Pr.12] | Software stroke limit upper limit value (Unit: pulse) | $\bigcirc$ | 2147483647 |
|  | [Pr.13] | Software stroke limit lower limit value (Unit: pulse) | $\bigcirc$ | -2147483648 |
|  | [Pr.14] | Software stroke limit selection | $\bigcirc$ | 0 (current feed value) |
|  | [Pr.15] | Software stroke limit valid/invalid setting | $\bigcirc$ | 0 (valid) |
|  | [Pr.17] | Torque limit setting value (Unit: \%) | $\bigcirc$ | 300 |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | 0 (Pulse output to drive unit is negative logic.) |
|  | [Pr.31] | JOG speed limit value (Unit: pulse/s) | $\bigcirc$ | 20000 |

*1 Leave it set to the initial value when not used.

## Remark

- Parameter settings work in common for all control using the LD75. When carrying out other controls ("major positioning control", "high-level positioning control", and "OPR positioning control"), the respective setting items must also be set.
- Parameters are set for each axis.
- Refer to Page 93, CHAPTER 5 for the information on detail settings.

A program must be created to execute an inching operation. Consider the "required control data setting", "start conditions", and "start time chart" when creating the program.
The following shows an example when an inching operation is started for axis 1. (The example shows the inching operation when a " $10.0 \mu \mathrm{~m}$ " is set in "[Cd.16] Inching movement amount".)

## (1) Required control data setting

The control data shown below must be set to execute an inching operation. The setting is carried out with the program.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.16] | Inching <br> movement amount |  | 100 | Set the setting value so that the command pulse is not increased larger than the maximum output pulse. <br> (The max. output pulse <br> LD75DD: 4Mpulse/s <br> LD75PD: 200kpulse/s) | 1517 | 1617 | 1717 | 1817 |

Refer to Page 211, Section 5.7 for the information on detail settings.

## (2) Start conditions

The following conditions must be fulfilled when starting. The required conditions must also be assembled in the program, and the program must be configured so the operation will not start if the conditions are not fulfilled.

|  | Signal name | Signal state |  | Device |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Interface signal | PLC READY signal | ON | CPU module preparation completed | Y0 |  |  |  |
|  | LD75 READY signal | ON | LD75 preparation completed | X0 |  |  |  |
|  | Synchronization flag*1 | ON | LD75 buffer memory accessible | X1 |  |  |  |
|  | Axis stop signal | OFF | Axis stop signal is OFF. | Y4 | Y5 | Y6 | Y7 |
|  | Start complete signal | OFF | Start complete signal is OFF. | X10 | X11 | X12 | X13 |
|  | BUSY signal | OFF | LD75 is not operating | XC | XD | XE | XF |
|  | Positioning complete signal | OFF | Positioning complete signal is OFF | X14 | X15 | X16 | X17 |
|  | Error detection signal | OFF | There is no error | X8 | X9 | XA | XB |
|  | M code ON signal | OFF | M code ON signal is OFF. | X4 | X5 | X6 | X7 |
| External signal | Drive unit READY signal | ON | Drive unit preparation completed | - |  |  |  |
|  | Stop signal | OFF | Stop signal is OFF. | - |  |  |  |
|  | Upper limit (FLS) | ON | Within limit range | - |  |  |  |
|  | Lower limit (RLS) | ON | Within limit range | - |  |  |  |

*1 If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation.
(3) Start time chart


## (4) Creating the program



## (1) When executing inching operation while stop signal is turned ON:

The error "Stop signal ON at start" (error code: 106) will occur if the JOG start signal is turned ON while the stop signal is ON .
The operation can be started by turning the stop signal OFF, and turning the JOG start signal from OFF to ON again.


## (2) When "JOG start signal" is turned ON while the test function of GX Works2 is used

When the "JOG start signal" is turned ON while the test function is used, it will be ignored and the inching operation will not be carried out.


### 11.4 Manual Pulse Generator Operation

### 11.4.1 Outline of manual pulse generator operation

## Point ${ }^{P}$

Create the program so that "[Cd.21] Manual pulse generator enable flag" is always set to " 0 " (disabled) when a manual pulse generator operation is not carried out.
Mistakenly touching the manual pulse generator when the manual pulse generator enable flag is set to "1" (enable) can cause accidents or incorrect positioning

## (1) Manual pulse generator operation

In manual pulse generator operations, pulses are input to the LD75 from the manual pulse generator. This causes the same No. of input pulses to be output from the LD75 to the servo amplifier, and the workpiece is moved in the designated direction.

The following shows an example of manual pulse generator operation.

1. When the "[Cd.21] Manual pulse generator enable flag" is set to " 1 ", the BUSY signal turns ON and the manual pulse generator operation is enabled.
2. The workpiece is moved corresponding to the No. of pulses input from the manual pulse generator.
3. The workpiece movement stops when no more pulses are input from the manual pulse generator.
4. When the "[Cd.21] Manual pulse generator enable flag" is set to " 0 ", the BUSY signal turns OFF and the manual pulse generator operation is disabled.

*1 If the input from the manual pulse generator stops, the machine will decelerate to a stop within 90 ms .
*2 The start complete signal does not turn ON in manual pulse generator operation.

## (2) Restrictions

A manual pulse generator is required to carry out manual pulse generator operation.

## (3) Precautions during operation

The following details must be understood before carrying out manual pulse generator operation.

- The speed during manual pulse generator operation is not limited by the "[Pr.8] Speed limit value".
- If the "[Cd.21] Manual pulse generator enable flag" is turned ON while the LD75 is BUSY (BUSY signal ON), the warning "Start during operation" (warning code: 100) will occur.
- If a stop factor occurs during manual pulse generator operation, the operation will stop, and the BUSY signal will turn OFF. At this time, the "[Cd.21] Manual pulse generator enable flag" will be left ON, but manual pulse generator operation will not be possible. To carry out manual pulse generator operation again, measures must be carried out to eliminate the stop factor. Once eliminated, the operation can be carried out again by turning the "[Cd.21] Manual pulse generator enable flag" ON $\rightarrow$ OFF $\rightarrow$ ON. (Note that this excludes when hardware/software stroke limit error occurs.)
- Pulses will not be output if an error occurs when the manual pulse generator operation starts.


## Remark

- One LD75 module can be connected to one manual pulse generator.
- The LD75 module can simultaneously output pulses to the axis 1 to axis 4 drive units by one manual pulse generator. (1to 4-axis simultaneous operation is possible.)


## (4) Operations when stroke limit error occurs

When the hardware stroke limit error or the software stroke limit error is detected during operation, the operation will decelerate to a stop. However, "[Md.26] Axis operation status" will keep the status "Manual pulse generator operation" in that case. ${ }^{* 1}$ After stopping, manual pulse generator input pulses to the outside direction of the limit range are not accepted, but operation can be executed within the range.
*1 Only when the current feed value or the current machine feed value overflows or underflows during deceleration, the manual pulse generator operation will terminate as "[Md.26] Axis operation status" is changed to "Error". To carry out manual pulse generator operation again, "[Cd.21] Manual pulse generator enable flag" must be turned OFF once and turn ON.


## (5) Manual pulse generator operation timing and processing time

The following drawing shows details of the manual pulse generator operation timing and processing time.


Normal timing times

| $\mathbf{t 1}$ | $\mathbf{t 2}$ | $\mathbf{t 3}$ | $\mathbf{t 4}$ |
| :---: | :---: | :---: | :---: |
| 0 to 0.9 ms | 1.7 to 30.2 ms | 58.6 to 87.6 ms | 28.4 to 57.2 ms |

- Delays may occur in the t 1 timing time due to the operation status of other axes.


## (6) Position control by manual pulse generator operation

In manual pulse generator operation, the position is moved by a "manual pulse generator 1 pulse movement amount" per pulse.
The current feed value in the positioning control by manual pulse generator operation can be calculated using the expression shown below.
Current feed value $=$ Number of input pulses $\times$ [Cd.20] Manual pulse generator 1 pulse input magnification $\times$ Manual pulse generator 1 pulse movement amount

| [Pr.1] Unit setting | mm | inch | degree | pulse |
| :---: | :---: | :---: | :---: | :---: |
| Manual pulse generator 1 pulse <br> movement amount | $0.1 \mu \mathrm{~m}$ | 0.00001 inch | 0.00001 degree | 1 pulse |

For example, when " Pr. 1 Unit setting" is mm and "[Cd.20] Manual pulse generator 1 pulse input magnification" is 2 , and 100 pulses are input from the manual pulse generator, the current feed value is as follows: $100 \times 2 \times 0.1=$ 20 [ $\mu \mathrm{m}$ ] = 200 [Current feed value]
The number of pulses output actually to the drive unit is "Manual pulse generator 1 pulse movement amount/movement amount per pulse ${ }^{* 1 "}$. For example, when "[Pr.1] Unit setting" is mm and the movement amount per pulse is $1 \mu \mathrm{~m}, 0.1 / 1=1 / 10$, i.e., the output to the drive unit per pulse from the manual pulse generator is $1 / 10$ pulse. Thus, the LD75 outputs 1 pulse to the drive unit after receiving 10 pulses from the manual pulse generator.
*1

$$
\text { Movement amount per pulse }=\frac{\begin{array}{|rr}
\text { Pr. } 3 & \text { Movement amount per rotation } \\
\operatorname{Pr} .2 & \text { No. of pulses per rotation }
\end{array} \operatorname{Pr} .4 \text { Unit magnification }}{}
$$

## (7) Speed control by manual pulse generation operation

The speed during positioning control by manual pulse generator operation is a speed corresponding to the No. of input pulses per unit time, and can be obtained using the following equation.
Output command frequency $=$ Input frequency $\times$ [Cd.20] Manual pulse generator 1 pulse input magnification

### 11.4.2 Manual pulse generator operation execution procedure

The manual pulse generator operation is carried out by the following procedure.


### 11.4.3 <br> Setting the required parameters for manual pulse generator operation

The "Parameters" must be set to carry out manual pulse generator operation.
The following table shows the setting items of the required parameters for carrying out manual pulse generator operation.
When only manual pulse generator operation will be carried out, no parameters other than those shown below need to be set. (Use the initial values or setting values within a range where no error occurs for trouble-free operation.)
© : Setting always required, $\bigcirc$ : Set according to requirements ${ }^{* 1}$

| Setting item |  |  | Setting requirement | Setting details |
| :---: | :---: | :---: | :---: | :---: |
| Parameters | [Pr.1] | Unit setting | $\bigcirc$ | 3 (pulse) |
|  | [Pr.2] | No. of pulses per rotation (Ap) (Unit: pulse) | $\bigcirc$ | 20000 |
|  | [Pr.3] | Movement amount per rotation (AI) (Unit: pulse) | $\bigcirc$ | 20000 |
|  | [Pr.4] | Unit magnification (Am) | $\bigcirc$ | 1 (1-fold) |
|  | [Pr.5] | Pulse output mode | $\bigcirc$ | 1 (CW/CCW mode) |
|  | [Pr.6] | Rotation direction setting | © | 0 (current value increases by forward run pulse output) |
|  | [Pr.11] | Backlash compensation amount (Unit: pulse) | $\bigcirc$ | 0 |
|  | [Pr.12] | Software stroke limit upper limit value (Unit: pulse) | $\bigcirc$ | 2147483647 |
|  | [Pr.13] | Software stroke limit lower limit value (Unit: pulse) | $\bigcirc$ | -2147483648 |
|  | [Pr.14] | Software stroke limit selection | $\bigcirc$ | 0 (current feed value) |
|  | [Pr.15] | Software stroke limit valid/invalid setting | $\bigcirc$ | 0 (valid) |
|  | [Pr.17] | Torque limit setting value (Unit: \%) | $\bigcirc$ | 300 |
|  | [Pr.22] | Input signal logic selection | $\bigcirc$ | 0 (Manual pulse generator input is negative logic.) |
|  | [Pr.23] | Output signal logic selection | $\bigcirc$ | 0 (Pulse output to drive unit is negative logic.) |
|  | [Pr.24] | Manual pulse generator input selection | $\bigcirc$ | 0 (4 times multiplication of A phase/B phase) |

*1 Leave it set to the initial value when not used.

## Remark

- Parameter settings work in common for all control using the LD75. When carrying out other control ("major positioning control", "high-level positioning control", "OPR positioning control"), the respective setting items must also be matched and set.
- Parameters are set for each axis. But [Pr.22] Manual pulse generator input logic (b8), [Pr.24] is set only for axis 1. (The setting for axes 2,3 , and 4 is ignored.)
- Refer to Page 93, CHAPTER 5 for the information on detail settings.


### 11.4.4 <br> Creating a program to enable/disable the manual pulse generator operation

A program must be created to execute a manual pulse generator operation. Consider the "required control data setting", "start conditions" and "start time chart" when creating the program.

The following shows an example when a manual pulse generator operation is started for axis 1.

## (1) Required control data setting

The control data shown below must be set to execute a manual pulse generator operation. The setting is carried out with the program.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.20] | Manual pulse generator 1 pulse input magnification |  | 1 | Set the manual pulse generator 1 pulse input magnification. <br> ( 1 to 1000 times) | $\begin{aligned} & 1522 \\ & 1523 \end{aligned}$ | $\begin{aligned} & 1622 \\ & 1623 \end{aligned}$ | $\begin{aligned} & 1722 \\ & 1723 \end{aligned}$ | $\begin{aligned} & 1822 \\ & 1823 \end{aligned}$ |
| [Cd.21] | Manual pulse generator enable flag | 1 (0) | Set "1: Enable manual pulse generator operation". (Set "0: Disable manual pulse generator operation" when finished with the manual pulse generator operation.) | 1524 | 1624 | 1724 | 1824 |

Refer to $\longmapsto$ Page 211, Section 5.7 for the information on detail settings.
(2) Start conditions

The following conditions must be fulfilled when starting. The required conditions must also be assembled in the program, and the program must be configured so the operation will not start if the conditions are not fulfilled.

|  | Signal name | Signal state |  | Device |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| Interface signal | PLC READY signal | ON | CPU module preparation completed | YO |  |  |  |
|  | LD75 READY signal | ON | LD75 preparation completed | X0 |  |  |  |
|  | Synchronization flag* ${ }^{* 1}$ | ON | LD75 buffer memory accessible | X1 |  |  |  |
|  | Axis stop signal | OFF | Axis stop signal is OFF. | Y4 | Y5 | Y6 | Y7 |
|  | Start complete signal | OFF | Start complete signal is OFF. | X10 | X11 | X12 | X13 |
|  | BUSY signal | OFF | LD75 is not operating | XC | XD | XE | XF |
|  | Error detection signal | OFF | There is no error | X8 | X9 | XA | XB |
|  | M code ON signal | OFF | M code ON signal is OFF. | X4 | X5 | X6 | X7 |
| External signal | Drive unit READY signal | ON | Drive unit preparation completed | - |  |  |  |
|  | Stop signal | OFF | Stop signal is OFF. | - |  |  |  |
|  | Upper limit (FLS) | ON | Within limit range | - |  |  |  |
|  | Lower limit (RLS) | ON | Within limit range | - |  |  |  |
| *1 If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation. | If the CPU module is set to the asynchronous mode in the synchronization setting, this must be inserted in the program for interlocking. If it is set to the synchronous mode, it must not be inserted in the program for interlocking because it is turned ON when the CPU module executes calculation. |  |  |  |  |  |  |

## (3) Start time chart



## (4) Creating the program



## CHAPTER 12 control sub functions

### 12.1 Outline of Sub Functions

"Sub functions" are functions that compensate, limit, add functions, etc., to the control when the main functions are executed. These sub functions are executed by parameter settings, commands from GX Works2, sub function programs, etc.

The following table shows the types of sub functions available.

| Sub function |  | Details |
| :---: | :---: | :---: |
| Sub functions specifically for machine OPR | OPR retry function | This function retries the machine OPR with the upper/lower limit switches during machine OPR. This allows machine OPR to be carried out even if the axis is not returned to before the nearpoint dog with JOG operation, etc. |
|  | OP shift function | After returning to the machine OP, this function offsets the position by the designated distance from the machine OP position and sets that position as the OP address. |
| Functions for compensating the control | Backlash compensation function | This function compensates the mechanical backlash. Feed pulses equivalent to the set backlash amount are output each time the movement direction changes. |
|  | Electronic gear function | By setting the movement amount per pulse, this function can freely change the machine movement amount per commanded pulse. <br> A flexible positioning system that matches the machine system can be structured with this function. |
|  | Near pass function*1 | This function suppresses the machine vibration when the positioning data is switched during continuous path control in the interpolation control. |
|  | Output timing selection of near pass control | This function allows the user to select the timing to output the difference ( $\Delta \mathrm{l}$ ) between the actual and the set positioning end addresses in continuous path control, in which the difference ( $\Delta \mathrm{l}$ ) is output during the execution of the next positioning data. |
| Functions to limit the control | Speed limit function | If the command speed exceeds "[Pr.8] Speed limit value" during control, this function limits the commanded speed to within the "[Pr.8] Speed limit value" setting range. |
|  | Torque limit function ${ }^{*}{ }^{2}$ | If the torque generated by the servomotor exceeds "[Pr.17] Torque limit setting value" during control, this function limits the generated torque to within the "[Pr.17] Torque limit setting value" setting range. |
|  | Software stroke limit function | If a command outside of the upper/lower limit stroke limit setting range, set in the parameters, is issued, this function will not execute positioning for that command. |
|  | Hardware stroke limit function | This function carries out deceleration stop with the limit switch connected to the LD75 external device connector. |
| Functions to change the control details | Speed change function | This function changes the speed during positioning. <br> Set the changed speed in the speed change buffer memory ([Cd.14] New speed value), and change the speed with the speed change request ([Cd.15] Speed change request). |
|  | Override function | This function changes the speed within a percentage of 1 to $300 \%$ during positioning. This is executed using "[Cd.13] Positioning operation speed override". |
|  | Acceleration/deceleration time change function | This function changes the acceleration/deceleration time during speed change. (function added to the speed change function and override function) |
|  | Torque change function | This function changes the "torque limit value" during control. |
|  | Target position change function | This function changes the target position during the execution of positioning. At the same time, this also can change the speed. |
| Absolute position restoration function ${ }^{* 3}$ |  | This function restores the absolute position of designated axis. By this function, the OPR after power ON from OFF is not required once the OPR is executed when the system operation is started. |


| Sub function |  | Details |
| :---: | :---: | :---: |
| Other Functions | Step function | This function temporarily stops the operation to confirm the positioning operation during debugging, etc. <br> The operation can be stopped at each "automatic deceleration" or "positioning data". |
|  | Skip function | This function stops the positioning being executed (decelerates to a stop) when the skip signal is input, and carries out the next positioning. |
|  | M code output function | This function issues a sub work (clamp or drill stop, tool change, etc.) according to the code No. ( 0 to 65535) set for each positioning data. |
|  | Teaching function | This function stores the address positioned with manual control into the positioning address (Da. 6 Positioning address/movement amount) having the designated positioning data No. |
|  | Command in-position function | At each automatic deceleration, this function calculates the remaining distance for the LD75 to reach the positioning stop position, and when the value is less than the set value, sets the "command in-position flag" to 1. <br> When using another sub work before ending the control, use this function as a trigger for the sub work. |
|  | Acceleration/deceleration processing function | This function adjusts the control acceleration/deceleration (acceleration/deceleration time and curve). |
|  | Pre-reading start function | This function shortens the virtual start time. |
|  | Deceleration start flag function | Function that turns ON the flag when the constant speed status or acceleration status switches to the deceleration status during position control, whose operation pattern is "Positioning complete", to make the stop timing known. |
|  | Stop command processing for deceleration stop function | Function that selects a deceleration curve when a stop cause occurs during deceleration stop processing to speed 0 . |

*1 The near pass function is validated only when the machine of the standard specification carries out the position control with the continuous path control mode. It cannot be invalidated with parameters.
*2 To carry out "torque limit", the "D/A conversion module" and a "drive unit capable of the torque limit command with an analog voltage" must be prepared.
*3 An I/O module (or general-purpose I/O function of LCPU) with arbitrary number of points and "the drive unit capable of configuring an absolute position detection system, which is a Mitsubishi Electric General-Purpose AC Servo and has an absolute position detection function (absolute position data transference protocol) equivalent to that of MR-J3-ロA," are required to execute the "absolute position restoration function".

### 12.2 Sub Functions Specifically for Machine OPR

The sub functions specifically for machine OPR include the "OPR retry function" and "OP shift function". Each function is executed by parameter setting.

### 12.2.1 OPR retry function

When the workpiece goes past the OP without stopping during positioning control, it may not move back in the direction of the OP although a machine OPR is commanded, depending on the workpiece position. This normally means the workpiece has to be moved to a position before the near-point dog by a JOG operation, etc., to start the machine OPR again. However, by using the OPR retry function, a machine OPR can be carried out regardless of the workpiece position.
The details shown below explain about the "OPR retry function".

- Control details
- Control precautions
- Setting method


## (1) Control details

The following drawing shows the operation of the OPR retry function.
(a) OPR retry point return retry operation when the workpiece is within the range between the upper/lower limits.

1. The movement starts in the "[Pr.44] OPR direction" by a machine OPR start.
2. The operation decelerates when the limit signal OFF is detected.
3. After stopping at detection of the limit signal OFF, the operation moves at the "[Pr.46] OPR speed" in the direction opposite to the "[Pr.44] OPR direction".
4. The operation decelerates when the near-point dog turns OFF.
5. After stopping due to the near-point dog OFF, a machine OPR is carried out in the "[Pr.44] OPR direction".
6. Machine OPR completion

(b) OPR retry operation when the workpiece is outside the range between the upper/lower limits.
The OPR retry operations below are examples where "[Pr.44] OPR direction" is set to "0: Positive direction".

- When the direction from the workpiece to the OP is the same as the "[Pr.44] OPR direction", a normal machine OPR is carried out.

- When the direction from the workpiece to the OP is the opposite direction from the "[Pr.44] OPR direction", the operation carries out a deceleration stop when the near-point dog turns OFF, and then carries out a machine OPR in the direction set in "[Pr.44] OPR direction".



## Point ${ }^{\rho}$

When "0: Positive direction" is set in [Pr.44] check that the limit switch placed in the OPR direction acts as the upper limit. When "1: Negative direction" is set in [Pr.44], check that the limit switch placed in the OPR direction acts as the lower limit. Incorrect wiring of these limit switches may cause improper OPR retry operation.
If any malfunction is identified, check and correct "[Pr.6] Rotation direction setting" and the wiring.

## (c) Setting the dwell time during an OPR retry

The OPR retry function can perform such function as the dwell time using "[Pr.57] Dwell time at OPR retry" when the reverse run operation is carried out due to detection by the limit signal for upper/lower limits and when the machine OPR is executed after the near point dog is turned OFF to stop the operation. "[Pr.57] Dwell time during OPR" is validated when the operation stops at the "A" and "B" positions in the following drawing. (The dwell time is the same value at both positions "A" and "B".)


## (2) Control precautions

- The following table shows whether the OPR retry function may be executed by the "[Pr.43] OPR method".

| [Pr.43] OPR method | Execution status of OPR retry function |
| :--- | :--- |
| Near-point dog method | O: Execution possible |
| Stopper method 1) | ○: Execution possible ${ }^{* 1}$ |
| Stopper method 2) | ○: Execution possible |

- Always establish upper/lower limit switches at the upper/lower limit positions of the machine, and connect them to the LD75. If the OPR retry function is used without hardware stroke limit switches, the motor will continue rotation until a hardware stroke limit signal is detected.
- Do not configure a system so that the drive unit power turns OFF by the upper/lower limit switches connected to the LD75. If the drive unit power is turned OFF, the OPR retry cannot be carried out.


## (3) Setting method

To use the "OPR retry function", set the required details in the parameters shown in the following table, and write them to the LD75.

When the parameters are set, the OPR retry function will be added to the machine OPR control. The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0]. (Set "[Pr.57] Dwell time during OPR retry" according to the user's requirements.)

| Setting item |  | Setting <br> value | Setting details | Factory-set initial value |
| :--- | :--- | :---: | :--- | :---: |
| $[$ Pr.48] | OPR retry | 1 | Set "1: Carry out OPR retry by limit switch". | 0 |
| $[$ Pr.57] | Dwell time during OPR <br> retry | $\rightarrow$ | Set the deceleration stop time during OPR retry. <br> (Random value between 0 and $65535(\mathrm{~ms}))$ | 0 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.


### 12.2.2 OP shift function

When a machine OPR is carried out, the OP is normally established using the near-point dog, stopper, and zero signal. However, by using the OP shift function, the machine can be moved a designated movement amount from the position where the zero signal was detected. A mechanically established OP can then be interpreted at that point.
The OP shift function can be used without relation to "[Pr.43] OPR method".
The details shown below explain about the "OP shift function".

- Control details
- Setting range for the OP shift amount
- Movement speed during OP shift
- Control precautions
- Setting method


## (1) Control details

The following drawing shows the operation of the OP shift function.


## (2) Setting range for the OP shift amount

Set the OP shift amount within the range from the detected zero signal to the upper/lower limit switches.


## (3) Movement speed during OP shift

When using the OP shift function, the movement speed during the OP shift is set in "[Pr.56] Speed designation during OP shift". The movement speed during the OP shift is selected from either the "[Pr.46] OPR speed" or the "[Pr.47] Creep speed". Set the speed in "[Pr.56] Speed designation during OP shift".
The following drawings show the movement speed during the OP shift when a mechanical OPR is carried out by the near-point dog method.
(a) OP shift operation at the "[Pr.46] OPR speed" (When "[Pr.56] Speed designation during OP shift" is 0 )

(b) OP shift operation at the "[Pr.47] Creep speed" (When "[Pr.56] Speed designation during OP shift" is 1 )


## (4) Control precautions

(a) The following data are set after the OP shift amount is complete.

- OPR complete flag ("[Md.31] Status: b4)
- [Md.20] Current feed value
- [Md.21] Machine feed value
- [Md.26] Axis operation status OPR request flag ([Md.31] Status: b3) is reset after completion of the OP shift.
(b) "[Pr.53] OP shift amount" is not added to "[Md.34] Movement amount after nearpoint dog ON". The movement amount immediately before the OP shift operation, considering near-point dog ON as " 0 ", is stored. For the stopper method (1) 2) 3 )), the movement amount is not changed from " 0 ".
(c) When using the OP shift function with the stopper method (1) 2) 3)) selected for the OPR method, configure the OP shift operation in the opposite direction of the OPR direction. It cannot shift to the OPR direction due to a mechanical stopper in the OPR direction.


## (5) Setting method

To use the "OP shift function", set the required details in the parameters shown in the following table, and write them to the LD75.
When the parameters are set, the OP shift function will be added to the machine OPR control. The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].

| Setting item |  | Setting <br> value | Setting details | Factory-set initial value |
| :--- | :--- | :---: | :--- | :---: |
| $[$ Pr.53] | OP shift amount | $\rightarrow$ | Set the shift amount during the OP shift. | 0 |
| $[$ Pr.56] | Speed designation <br> during OP shift | $\rightarrow$ | Select the speed during the OP shift <br> $0:[P r .46]$ OPR speed <br> $1:[P r .47]$ Creep speed | 0 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.

The sub functions for compensating the control include the "backlash compensation function", "electronic gear function", "near pass function" and "Output timing selection of near pass control". Each function is executed by parameter setting or program creation and writing.

### 12.3.1 Backlash compensation function

The "backlash compensation function" compensates the backlash amount in the mechanical system.
When the backlash compensation amount is set, an extra amount of pulses equivalent to the set backlash amount is output every time the movement direction changes.
The details shown below explain about the "backlash compensation function".

- Control details
- Control precautions
- Setting method


## (1) Control details

The following drawing shows the operation of the backlash compensation function.


## (2) Control precautions

- The feed pulses of the backlash compensation amount are not added to the "[Md.20] Current feed value" or "[Md.21] Machine feed value".
- Always carry out a machine OPR before starting the control when using the backlash compensation function (when "[Pr.11] Backlash compensation amount" is set). The backlash in the mechanical system cannot be correctly compensated if a machine OPR is not carried out.
- Set the No. of pulses output in one backlash compensation (value in which the "[Pr.11] Backlash compensation amount" is divided by the "movement amount per pulse") to a value of 255 or lower. The error "Backlash compensation amount error" (error code: 920) will occur if a value over 255 is set. (Depending on the connected servo, tracking may not be possible if a large amount of pulses is output at once.)

$$
0 \leq \frac{\text { Backlash compensation amount }}{\text { Movement amount per pulse }} \leq 255
$$

(Omit values after the decimal point.)

- Backlash compensation, which includes the movement amount and "[Pr.11] Backlash compensation amount", is output the moment at the moving direction changes.
- The backlash compensation function cannot be used for an axis where a stepping motor is connected. Set 0 (initial value) in "[Pr.11] Backlash compensation amount".


## (3) Setting method

To use the "backlash compensation function", set the "backlash compensation amount" in the parameter shown in the following table, and write it to the LD75.
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].

| Setting item |  | Setting <br> value | Setting details | Factory-set initial <br> value |
| :--- | :--- | :---: | :--- | :---: |
| [Pr.11] | Backlash <br> compensation <br> amount | $\rightarrow$ | Set the backlash compensation amount. | 0 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.

The "electronic gear function" adjusts the pulses calculated and output according to the parameters set in the LD75 with the actual machine movement amount.
The "electronic gear function" has the following four functions.
[A] The function converts the command value (speed, movement amount from the start point to the end point), which is set in mm units, to pulse units, and determines the pulse frequency and number of the command pulse.

*1 Unit specified with "[Pr.1] Unit setting" (mm, inch, degree, pulse)
[B] If values less than one pulse are generated by converting the movement amount from the start point to the end point to pulse units, the values are not output and the machine stops at the front side of the positioning direction. The function accumulates values less than one pulse that were not output in the LD75 and outputs one pulse when the total cumulative value has reached one pulse or more.
[C] When machine OPR is completed, current value changing is completed, speed control is started (except when current feed value change is present), or fixed-feed control is started, the function clears to " 0 " the cumulative values of less than one pulse which could not be output. (If the cumulative value is cleared, an error will occur by a cleared amount in the feed machine value. Control can be constantly carried out at the same machine movement amount, even when the fixed-feed control is continued.)
[D] The function compensates the mechanical system error of the command movement amount and actual movement amount by adjusting the "movement amount per pulse". (The "movement amount per pulse" value is defined by "[Pr.2] No. of pulses per rotation (Ap)", "[Pr.3] Movement amount per rotation (Al)", and "[Pr.4] Unit magnification (Am)".)
The LD75 automatically carries out the processing for [A] to [C].
The details shown below explain about the "electronic gear function", including the method for compensating the error in [D] above, etc.

- Movement amount per pulse
- Error compensation method
- Control precautions


## (1) Movement amount per pulse

"[Pr.2] No. of pulses per rotation (Ap)", "[Pr.3] Movement amount per rotation (AI)", and "[Pr.4] Unit magnification (Am)" are the items for determining how many rotations (equivalent to how many pulses) a motor should operate to move a machine for movement amount set in a program.
The drive unit controls the motor with the pulse number.
The following shows the details of control of the LD75.

*1 The upper limits of the command pulse frequency are as follows: LD75P口: 200kpulse/s, LD75Dロ: 4Mpulse/s
*2 For a drive unit without electronic gear function, or when not using electronic gear function, this value is 1 (single).

Consider a system with the motor connected to a ball screw, such as the figure above.
1 is set to the electronic gear of the drive unit.

The movement amount of the machine is in mm or inch unit. Set the command value in mm or inch units to the LD75 for the CPU module program.
The motor is controlled by the drive unit in pulse number units. Consequently, since the command value in mm or inch units is converted to pulse units, set Ap, AI, and Am so that the following relational expressions are satisfied.

- Number of pulses per rotation of motor $=A p$
- Machine movement amount per rotation of motor $=\mathrm{Al} \times \mathrm{Am}$

In this case, the machine movement amount for the command 1 pulse output from the LD75 is calculated by the following expression.

$$
\text { Movement amount per pulse }(A)=\frac{\mathrm{Al} \times \mathrm{Am}}{\mathrm{Ap}}
$$

## Point ${ }^{8}$

The command frequency from the LD75 is limited by a ceiling. If the command frequency exceeds the upper limit, increase the "Movement amount per pulse (A)" greater ( N times) to decrease the command frequency. In this case, the electronic gear on the drive unit must be increased by N times as well.
The command pulse from the LD75 is changes to $1 / \mathrm{N}$ times. Therefore, multiply it by N on the drive unit side to keep the number of motor rotations.
Since the "movement amount per pulse (A)" is increased, the position accuracy (command resolution) for the command 1 pulse from the LD75 decreases.
Consider to decrease the command speed when the position accuracy is required.
(a) Setting range of Ap, AI, Am

Determined setting ranges are available for $\mathrm{Ap}, \mathrm{Al}$, and Am . The following shows the setting ranges.


Ex. Movement amount per pulse (A) when "[Pr.1] Unit setting" is " $0: \mathrm{mm}$ "
"[Pr.2] No. of pulses per rotation": 20000
"[Pr.3] Movement amount per rotation": 40000
"[Pr.4] Unit magnification": 1

$$
\text { Movement amount per pulse }(A)=\frac{40000 \times 10^{-1}}{20000} \times 1=0.2 \mu \mathrm{~m}
$$

If the value is beyond the setting range, setting values of each parameter can be decreased by canceling the numerator and denominator with the movement amount per pulse (A) kept.

## (2) Error compensation method

When position control is carried out by the "movement amount per pulse" set in the LD75 parameters, an error sometimes occurs between the command movement amount (L) and the actual movement amount (L').
That error is compensated in the LD75 by adjusting the values in "[Pr.2] No. of pulses per rotation (Ap)", "[Pr.3] Movement amount per rotation (AI)", and "[Pr.4] Unit magnification (Am)". (When "[Pr.1] Unit setting" is "0: mm")

## (a) Definition

The "error compensation amount" used to carry out the error compensation is defined as follows.

$$
\text { Error compensation amount }=\frac{\text { Actual movement amount }\left(\mathrm{L}^{\prime}\right)}{\text { Designated movement amount }(\mathrm{L})}
$$

The LD75 "movement amount per pulse" is calculated with the following equation.
Movement amount per pulse is "A", "[Pr.2] No. of pulses per rotation" is (Ap), "[Pr.3] Movement amount per rotation" is (AI), and "[Pr.4] Unit magnification" is (Am).

$$
A=\frac{A l}{A p} \times A m
$$

## (b) Procedure

1. Set the "command movement amount (L)", and carry out positioning.
(Set the "movement amount per pulse (A)" according to List of Parameters (
2. After positioning, measure the "actual movement amount (L')".
3. Calculate the "error compensation amount".

$$
\text { Error compensation amount }=\frac{\mathrm{L}^{\prime}}{\mathrm{L}}
$$

4. Calculate the post-compensation "[Pr.2] No. of pulses per rotation (Ap')", "[Pr.3] Movement amount per rotation (AI')", and "[Pr.4] Unit magnification (Am')" from the "post-compensation movement amount per pulse ( $A^{\prime}$ )".

$$
\begin{aligned}
A^{\prime} & =A \times \text { Error compensation amount } \\
& =\frac{A l}{A p} \times A m \times \frac{L^{\prime}}{L} \\
& =\frac{A l^{\prime}}{A p^{\prime}} \times A m^{\prime}
\end{aligned}
$$

(Adjust with Am' so that $\mathrm{Al}^{\prime}$ and $\mathrm{Ap}^{\prime}$ do not exceed the setting range.)
(Examples)

| Item | Setting |
| :---: | :---: |
| Condition | Movement amount per rotation: 5000 ( $\mu \mathrm{m} / \mathrm{rev}$ ) No. of pulses per rotation: 12000 (pulse/rev) Unit magnification: 1 |
| Positioning result | Command movement amount: 100 mm Actual movement amount: 101 mm |
| Compensation value | $\frac{A L^{\prime}}{A P^{\prime}}=\frac{5 \times 10^{3}}{12000} \times \frac{101 \times 10^{3}}{100 \times 10^{3}}=\frac{5050}{12000}=\frac{101}{240}$ <br> Movement amount per rotation: 101 ( $\mu \mathrm{m} / \mathrm{rev}$ ) (set in [Pr.3]) <br> No. of pulses per rotation: 240 (pulse/rev) (set in [Pr.2]) <br> Unit magnification: 1 (set in [Pr.4]) |

5. Set the post-compensation "[Pr.2] No. of pulses per rotation (Ap')", "[Pr.3] Movement amount per rotation (AI')", and "[Pr.4] Unit magnification (Am')" in the parameters, and write them to the LD75. The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [YO].

| Setting item |  | Setting value | Setting details | Pre-compensation value |
| :---: | :---: | :---: | :---: | :---: |
| [Pr.2] | No. of pulses per rotation | Ap' | Set the post-compensation value. | Ap |
| [Pr.3] | Movement amount per rotation | Al' | Set the post-compensation value. | AI |
| [Pr.4] | Unit magnification | Am' | Set the post-compensation value. | Am |

Refer to Page 118, Section 5.2 for the information on detail settings.

## (3) Control precautions

If values less than one pulse are generated by converting the movement amount from the start point to the end point to pulse units with the electronic gear function, the values are not output and the machine stops at the front side of the positioning direction.
The function accumulates values less than one pulse that were not pulse output in the LD75 and outputs one pulse when the total cumulative value has reached one pulse or more.


To prevent values less than one pulse from being generated, set the positioning address so that the value, which is calculated by multiplying the movement amount to the end point by the inverse number of "movement amount per pulse (A)", becomes an integer.
It is recommended that the "movement amount per pulse (A)" be set to a value close to "1" for the following reasons. The "movement amount per pulse" of "1" means the minimum value in each "[Pr.1] Unit setting". (0.1 [ $\mu \mathrm{m}$ ] for the unit [ mm ])

- When the setting of the movement amount per pulse is decreased, the command frequency may increase. Be careful when changing the setting.
- If the setting of the movement amount per pulse is less than 1 , the mechanical system may oscillate. Be sure to use the movement amount per pulse among the range indicated below.

Movement amount per pulse $(A) \geq \frac{1}{500}$

If the mechanical system oscillates, also use the electronic gear function of the drive unit and make the movement amount per pulse greater.

- Set the movement amount per pulse so that the pulse output frequency for the drive unit becomes a value in the following table.

|  | LD75Pロ | LD75D口 |
| :--- | :--- | :--- |
| Pulse output frequency for drive unit | 200kpulse/s or less | 4Mpulse/s or less |

If the setting of pulse output frequency for the drive unit exceeds a value in the table, the LD75 may not operate correctly.

In the LD75, the general term for the functions in this section is defined as the "electronic gear function". Refer to the [D] User's Manual for the servomotor for the definition of the "electronic gear" on the servomotor side.

### 12.3.3 Near pass function

When continuous pass control is carried out using interpolation control, the near pass function is carried out. The "near pass function" is a function to suppress the mechanical vibration occurring at the time of switching the positioning data when continuous pass control is carried out using interpolation control.
[Near pass]
The extra movement amount occurring at the end of each positioning data unit being continuously executed is carried over to the next positioning data unit. Alignment is not carried out, and thus the output speed drops are eliminated, and the mechanical vibration occurring during speed changes can be suppressed.
Because alignment is not carried out, the operation is controlled on a path that passes near the position set in " Da. 6
Positioning address/movement amount".
The details shown below explain about the "near pass function".

- Control details
- Control precautions


## (1) Control details

The following drawing shows the path of the continuous path control by the 2-axis linear interpolation control. [The path of the near pass]


## (2) Control precautions

- If the movement amount designated by the positioning data is small when the continuous path control is executed, the output speed may not reach the designated speed.
- The movement direction is not checked during interpolation operation. Therefore, a deceleration stops are not carried out even the movement direction changes. For this reason, the output will suddenly reverse when the reference axis movement direction changes. To prevent the sudden output reversal, assign not the continuous path control " 11 ", but the continuous positioning control " 01 " to the positioning data of the passing point.

■[Operation of reference axis]

■ [Positioning by interpolation]



■[Operation of partner axis for interpolation]


### 12.3.4 Output timing selection of near pass control

The function "output timing selection of near pass control" allows the user to select the timing to output the difference $(\Delta I)$ between the actual and the set positioning end addresses in continuous path control, in which the difference $(\Delta I)$ is output during the execution of the next positioning data.
The details shown below explain about the function "output timing selection of near pass control".

- Control details
- Control precautions
- Setting method


## (1) Control details

There are two options for an output timing of near pass control: "At constant speed" and "At deceleration".

- At constant speed: The distance $\Delta l$ is output when the next positioning data is executed in constant speed.
- At deceleration: The distance $\Delta$ l is output when the next positioning speed decelerates from V1 to V2.

When "At constant speed" is selected in a condition where the specified speed of positioning data No. 1 and No. 2 are " $\mathrm{V} 1>\mathrm{V}$ ", the distance $\Delta l$ is output when the next positioning data is executed in constant speed; therefore, the positioning execution time is extended.
When "At deceleration" is selected, the positioning execution time is not extended and remains the same as it was set.

The following drawing shows the operation of the function "output timing selection of near pass control".
[Acceleration and deceleration as in a setting]

[Actual acceleration and deceleration through the near pass function]


## (2) Control precautions

When command speed V 1 and V 2 are in the condition 1) or 2) below, the command output is that of "At constant speed" even though "At deceleration" was selected.

1) When "V1 $\leq$ V2"
2) When "(Speed value converted from distance $\Delta I)^{* 1} \leq V 2<V 1$ "
*1 The height of the grey area in the graph on the bottom right
3) When "V1 $\leq$ V2"

4) When "(Speed value converted from distance $\Delta \mathrm{I}) \leq \mathrm{V} 2<\mathrm{V} 1$ "


## (3) Setting method

To use the function "output timing selection of near pass control", set the following control data in a program.
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |
| :--- | :--- | :---: | :--- | :---: |
| [Cd.43] | Output timing <br> selection of near <br> pass control | $\rightarrow$ | Select the timing to output the difference ( $\Delta l)$ between the actual <br> and the set positioning end addresses in continuous path control, <br> in which the difference ( $\Delta I)$ is output during the execution of the <br> next positioning data. <br> $\cdot 0:$ At constant speed <br> $-1:$ At deceleration | 1934 |

Refer to Page 211, Section 5.7 for the information on detail settings.

Functions to limit the control include the "speed limit function", "torque limit function", "software stroke limit", and "hardware stroke limit". Each function is executed by parameter setting or program creation and writing.

### 12.4.1 Speed limit function

The "speed limit function" limits the command speed to a value within the "speed limit value" setting range when the command speed during control exceeds the "speed limit value".
The details shown below explain about the "speed limit function".

- Relation between the speed limit function and various controls
- Control precautions
- Setting method


## (1) Relation between the speed limit function and various controls

The following table shows the relation of the "speed limit function" and various controls.
©: Setting always required, 一: Setting not required* ${ }^{* 1}$

| Control type |  |  | Speed limit function | Speed limit value |
| :---: | :---: | :---: | :---: | :---: |
| OPR control | Machine OPR control |  | $\bigcirc$ | [Pr.8] Speed limit value |
|  | Fast OPR control |  | $\bigcirc$ |  |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ |  |
|  |  | 2- to 4-axis linear interpolation control | $\bigcirc$ |  |
|  |  | 1-axis fixed-feed control | $\bigcirc$ |  |
|  |  | 2- to 4-axis fixed-feed control (interpolation) | $\bigcirc$ |  |
|  |  | 2-axis circular interpolation control | $\bigcirc$ |  |
|  |  | 3-axis helical interpolation control | $\bigcirc$ |  |
|  | 1- to 4-axis speed control |  | $\bigcirc$ |  |
|  | Speed-position switching control, Position-speed switching control |  | $\bigcirc$ |  |
|  | Other control | Current value changing | - | Setting value invalid |
|  |  | JUMP instruction, NOP instruction, LOOP to LEND | - |  |
| Manual control | JOG operation, inching operation |  | $\bigcirc$ | [Pr.31] JOG speed limit value |
|  | Manual pulse generator operation |  | - | Setting value invalid |

[^3]
## (2) Control precautions

- If any axis exceeds "[Pr.8] Speed limit value" during 2- to 4 -axis speed control, the axis in excess of the speed limit value is controlled at the speed limit value. For the other axes which perform interpolation, the speed can be suppressed by the ratio of a command speed.
- If any axis exceeds "[Pr.8] Speed limit value" during 2- to 4-axis linear interpolation control, 2- to 4 -axis fixedfeed control, 2-axis circular interpolation control, or 3-axis helical interpolation control, the axis exceeding the speed limit value is controlled at the speed limit value. For the other axes performing interpolation, the speed can be suppressed by the ratio of a movement distance.
- In 2- to 4-axis linear interpolation control or 2- to 4-axis fixed-feed control, the speed limit value for the interpolation axis may not function under the following condition: "1: Reference axis speed" is set in "[Pr.20] Interpolation speed designation method" or "[Da.29] Interpolation speed designation method", and the reference axis is the minor axis and the interpolation axis is the major axis.
- In 3-axis helical interpolation control, control the composite speed of the circular interpolation axis or the speed of the linear interpolation axis so that the speeds do not exceed "[Pr.8] Speed limit value".


## (3) Setting method

To use the "speed limit function", set the "speed limit value" in the parameters shown in the following table, and write them to the LD75.
The set details are validated when written to the LD75.

| Setting item |  | Setting <br> value | Setting details | Factory-set initial <br> value |
| :--- | :--- | :---: | :--- | :---: |
| $[$ Pr.8] | Speed limit value | $\rightarrow$ | Set the speed limit value (max. speed during control). | 200000 |
| [Pr.31] | JOG speed limit <br> value | $\rightarrow$ | Set the speed limit value during JOG operation (max. speed during control). <br> (Note that "[Pr.31] JOG speed limit value" shall be less than or equal to " Pr. 8 <br> Speed limit value".) | 20000 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## Remark

Parameters are set for each axis.

- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.

The "torque limit function" limits the generated torque to a value within the "torque limit value" setting range when the torque generated in the servomotor exceeds the "torque limit value".
The "torque limit function" protects the deceleration function, limits the power of the operation pressing against the stopper, etc. It controls the operation so that unnecessary force is not applied to the load and machine.
The LD75 does not carry out the torque limit of servo motor directly with this function. The torque limit command to servo amplifier is carried out by the D/A converter module.
The details shown below explain about the "torque limit function".

- System configuration for carrying out the torque limit
- Relation between the torque limit function and various controls
- Control details
- Control precautions
- Setting method


## (1) System configuration for carrying out the torque limit

Carry out the torque limit in the configuration in the figure below. (The following modules are required.)

- D/A converter module
- Drive unit capable of torque limit control by analog voltage input


1. Read out the "[Md.35] Torque limit stored value".
2. Write the value read into the D/A converter module. (The value must be converted according to the specifications of D/A converter module.)
3. The drive unit carries out the torque limit according to the voltage input from the D/A converter module.

## Point ${ }^{\rho}$

The LD75 monitors the creep speed reach during the OPR control and updates the "[Md.35] Torque limit stored value" to the "[Pr.54] OPR torque limit value". Monitoring this value prevents the need to monitor the creep speed reach by the program. If all controls of torque limit value are carried out by the program ("1. Reading data by the FROM instruction" in the figure), this function must not be used.
(2) Relation between the torque limit function and various controls

The following table shows the relation of the "torque limit function" and various controls.

O: Set according to requirements, 一: Setting not required ${ }^{* 1}$

| Control type |  | Torque limit <br> function | (Torque limit value *2 |  |
| :--- | :--- | :--- | :--- | :--- |

*1 Setting value is invalid. Use the initial values or setting values within a range where no error occurs.
*2 Shows the torque limit value when "[Cd.22] New torque value" is set to " 0 ".

## (3) Control details

The following drawing shows the operation of the torque limit function.


## (4) Control precautions

- When limiting the torque at the "[Pr.17] Torque limit setting value", confirm that "[Cd.22] New torque value" is set to " 0 ". If this parameter is set to a value besides " 0 ", the "[Cd.22] New torque value" will be validated, and the torque will be limited at that value. (Refer to Page 557, Section 12.5.4 for details about the "new torque value".)
- When "[Pr.54] OPR shift amount" exceeds "[Pr.17] Torque limit setting value", the error "OPR torque limit value error" (error code: 995) will occur.
- When the operation is stopped by torque limiting, the droop pulse will remain in the deviation counter. If a "deviation counter clear" is carried out by issuing an external signal at this time, positional deviation will occur when the operation is continued. If the load torque is eliminated, operation for the amount of droop pulses will be carried out.


## (5) Setting method

- To use the "torque limit function", set the "torque limit value" in the parameters shown in the following table, and write them to the LD75. The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].

| Setting item |  | Setting <br> value | Setting details | Factory-set initial value |
| :--- | :--- | :---: | :--- | :---: |
| $[$ Pr.17] | Torque limit setting <br> value | $\rightarrow$ | Set the torque limit value as a percentage. | 300 |
| $[$ Pr.54] | OPR torque limit <br> value | $\rightarrow$ | Set the torque limit value after the "[Pr.47] Creep speed" is reached. <br> Set as a percentage. | 300 |

Refer to Page 118, Section 5.2 for the information on detail settings.
The following table shows the "[Md.35] Torque limit stored value" of the buffer memory address.

| Monitor item |  | Monitor value | Storage details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Md.35] | Torque limit stored value |  | $\rightarrow$ | The "torque limit value" valid at that time is stored. ([Pr.17] or [Pr.54] or [Cd.22]) | 826 | 926 | 1026 | 1126 |

Refer to Page 182, Section 5.6 for the information on detail settings.

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.


### 12.4.3 Software stroke limit function

In the "software stroke limit function" the address established by a machine OPR is used to set the upper/lower limits of the moveable range of the workpiece. Movement commands issued to addresses outside that setting range will not be executed.
In the LD75, the "current feed value" and "machine feed value" are used as the addresses indicating the current position. However, in the "software stroke limit function", the address used to carry out the limit check is designated in the "[Pr.14] Software stroke limit selection". (Refer to $\lessgtr$ Page 353, Section 9.1 .4 for details on the "current feed value" and "machine feed value".)
The upper/lower limits of the moveable range of the workpiece are set in "[Pr.12] Software stroke limit upper limit value"/ "[Pr.13] Software stroke limit lower limit value".
The details shown below explain about the "software stroke limit function".

- Differences in the moveable range when "current feed value" and "machine feed value" are selected.
- Software stroke limit check details
- Relation between the software stroke limit function and various controls
- Precautions during software stroke limit check
- Setting method
- Invalidating the software stroke limit
- Setting when the control unit is "degree"


## (1) Differences in the moveable range when "current feed value" and "machine feed value" are selected.

The following drawing shows the moveable range of the workpiece when the software stroke limit function is used.


The following drawing shows the differences in the operation when "[Md.20] Current feed value" and "[Md.21] Machine feed value" are used in the moveable range limit check.
[Condition]
Assume the current stop position is 2000, and the upper stroke limit is set to 5000 .


## [Current value changing]

When the current value is changed by a new current value command from 2000 to 1000 , the current value will change to 1000, but the machine feed value will stay the same at 2000.

- When the machine feed value is set at the limit, the machine feed value of 5000 (current feed value: 4000 ) becomes the upper stroke limit.

- When the current feed value is set at the limit, the current feed value of 5000 (machine feed value: 6000 ) becomes the upper stroke limit.



## Point ${ }^{9}$

When "machine feed value" is set in "[Pr.14] Software stroke limit selection", the moveable range becomes an absolute range referenced on the OP. When "current feed value" is set, the moveable range is the relative range from the "current feed value".

## (2) Software stroke limit check details

| Check details |  | Processing whenan error occurs |
| :---: | :--- | :--- |
| 1) | An error shall occur if the current value ${ }^{* 1}$ is outside the software stroke limit range ${ }^{* 2}$. <br> (Check "[Md.20] Current feed value" or "[Md.21] Machine feed value".) | An "axis error" will occur <br> (The error "Software stroke limit +" or |
| 2$)$ | An error shall occur if the command address is outside the software stroke limit range. <br> (Check " Da.6 Positioning address/movement amount".) | "Software stroke limit -" (error code: 507 or <br> $508)$ |

*1 Check whether the "[Md.20] Current feed value" or "[Md.21] Machine feed value" is set in "[Pr.14] Software stroke limit selection".
*2 Moveable range from the "[Pr.12] Software stroke limit upper limit value" to the "[Pr.13] Software stroke limit lower limit value".
(3) Relation between the software stroke limit function and various controls
$\bigcirc$ : Check valid, $\bigcirc$ : Limited during speed control ${ }^{* 1}, \triangle$ : Valid only when a certain setting is configured ${ }^{*}$, 一: Check not carried out

| Control type |  |  | Limit check | Processing at check |
| :---: | :---: | :---: | :---: | :---: |
| OPR control | Machine OPR control |  | - | Check not carried out. |
|  | Fast OPR control |  | - |  |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | Checks 1) and 2) in Page 536, Section 12.4.3 <br> (2) are carried out. <br> For speed control: The axis decelerates to a stop when it exceeds the software stroke limit range. <br> For position control: The axis comes to an immediate stop when it exceeds the software stroke limit range. |
|  |  | 2- to 4-axis linear interpolation control | $\bigcirc$ |  |
|  |  | 1-axis fixed-feed control | $\bigcirc$ |  |
|  |  | 2- to 4-axis fixed-feed control (interpolation) | $\bigcirc$ |  |
|  |  | 2-axis circular interpolation control | $\bigcirc$ |  |
|  |  | 3-axis helical interpolation control | () |  |
|  | 1- to 4-axis speed control |  | $0^{* 3 * 4}$ |  |
|  | Speed-position switching control, Position-speed switching control |  | $\bigcirc{ }^{* 3 * 4}$ |  |
|  | Other control | Current value changing | O | The current value will not be changed if the new current value is outside the software stroke limit range. |
|  |  | JUMP instruction, NOP instruction, LOOP to LEND | - | Check not carried out. |
| Manual control | JOG operation, inching operation |  | $\triangle^{* 5}$ | Check 1) in Page 536, Section 12.4.3 (2) is carried out. <br> The machine will carry out a deceleration stop when the software stroke limit range is exceeded. If the address falls out of the software stroke limit range, the operation can be started only toward the movable range. |
|  | Manual Pulse Generator Operation |  | $\triangle^{* 5}$ |  |
| *1 | Check is not made when the current feed value is not updated (下 Page 132, Section 5.2 .3 (11)) at the setting of "current feed value" in "[Pr.14] Software stroke limit selection" during speed control. |  |  |  |
| *2 | Valid only when "1:valid" is set in the "[Pr.15] Software stroke limit valid/invalid setting". |  |  |  |
| *3 | The value in "[Md.20] Current feed value" will differ according to the "[Pr.21] Current feed value during speed control" setting. |  |  |  |
| *4 | When the unit is "degree", check is not made during speed control. When the unit is "degree", check is not carried out. |  |  |  |
| *5 |  |  |  |  |  |

## (4) Precautions during software stroke limit check

- A machine OPR must be executed beforehand for the "software stroke limit function" to function properly.
- During interpolation control, a stroke limit check is carried out for the every current value of both the reference axis and the interpolation axis. Every axis will not start if an error occurs, even if it only occurs in one axis.
- During circular interpolation control, the "[Pr.12] Software stroke limit upper limit value"/"[Pr.13] Software stroke limit lower limit value" may be exceeded. In this case, a deceleration stop will not be carried out even if the stroke limit is exceeded. Always install an external limit switch if there is a possibility the stroke limit will be exceeded.

- If an error is detected during continuous path control, the axis stops immediately on completion of execution of the positioning data located right before the positioning data in error.

- During simultaneous start, a stroke limit check is carried out for the current values of every axis to be started. Every axis will not start if an error occurs, even if it only occurs in one axis.


## (5) Setting method

To use the "software stroke limit function", set the required values in the parameters shown in the following table, and write them to the LD75.
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [YO].

| Setting item |  | Setting <br> value | Setting details | Factory-set initial value |
| :--- | :--- | :---: | :--- | :---: |
| [Pr.12] | Software stroke limit upper <br> limit value | $\rightarrow$ | Set the upper limit value of the moveable range. | 2147483647 |
| [Pr.13] | Software stroke limit lower <br> limit value | $\rightarrow$ | Set the lower limit value of the moveable range. | -2147483648 |
| [Pr.14] | Software stroke limit <br> selection | $\rightarrow$ | Set whether to use the "[Md.20] Current feed value" or "[Md.21] <br> Machine feed value" as the "current value". | 0: Current feed value |
| [Pr.15] | Software stroke limit <br> valid/invalid setting | $0:$ Valid | Set whether the software stroke limit is validated or invalidated <br> during manual control (JOG operation, Inching operation, manual <br> pulse generator operation). | $0:$ Valid |

Refer to Page 118, Section 5.2 for the information on detail settings.

## (6) Invalidating the software stroke limit

To invalidate the software stroke limit, set the following parameters as shown, and write them to the LD75. (Set the value within the setting range.)
[Pr.12] Software stroke limit upper limit value $=$ [Pr.13] Software stroke limit lower limit value
To invalidate only the manual operation, set " 0 : software stroke limit invalid" in the "[Pr.15] Software stroke limit valid/invalid setting".
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].
When the unit is "degree", the software stroke limit check is not performed during speed control (including speed control in speed-position switching control or position-speed switching control) or during manual control, independently of the values set in [Pr.12], [Pr.13] and [Pr.15].

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.


## (7) Setting when the control unit is "degree"

(a) Current value address

The "[Md.20] Current feed value" address is a ring address between 0 and $359.99999^{\circ}$.

(b) Setting the software stroke limit

The upper limit value/lower limit value of the software stroke limit is a value between 0 and $359.99999^{\circ}$. When the software stroke limit is to be validated, set the upper limit value in a clockwise direction from the lower limit value.


- Set the movement range of section A as follows.

Software stroke limit lower limit value ... $315.00000^{\circ}$
Software stroke limit upper limit value. $.90 .00000^{\circ}$

- Set the movement range of section B as follows.

Software stroke limit lower limit value … $90.00000^{\circ}$
Software stroke limit upper limit value $\ldots 315.00000^{\circ}$

## WARNING

When the hardware stroke limit is required to be wired, ensure to wire it in the negative logic using $b$ contact. If it is set in positive logic using a-contact, a serious accident may occur.

In the "hardware stroke limit function", limit switches are set at the upper/lower limit of the physical moveable range, and the control is stopped (by deceleration stop) by the input of a signal from the limit switch.
Damage to the machine can be prevented by stopping the control before the upper/lower limit of the physical moveable range is reached.
Hardware stroke limit switches are normally installed "inside the stroke limit/stroke end on the drive unit side", and the control is stopped before the stroke limit/stoke end on the drive unit side is reached.
The details shown below explain about the "hardware stroke limit function".

- Control details
- Wiring the hardware stroke limit
- Control precautions
- When the hardware stroke limit is not used


## (1) Control details

The following drawing shows the operation of the hardware stroke limit function.


## (2) Wiring the hardware stroke limit

When using the hardware stroke limit function, wire the terminals of the LD75 upper/lower limit stroke limit as shown in the following drawing. (When "[Pr.22] Input signal logic selection" is set to the initial value)


## Point ${ }^{\circ}$

Connect the upper/lower limit switches to the directions of increasing and decreasing current feed values respectively. When these switches are connected in wrong directions, the hardware stroke limit function does not operate properly and the motor does not stop.
For " $[$ Pr.6] Rotation direction setting", refer to $\longmapsto$ Page 118, Section 5.2.1.

## (3) Control precautions

- If the machine is stopped outside the LD75 control range (outside the upper/lower limit switches), or if stopped by hardware stroke limit detection, the "OPR control", "major positioning control", and "high-level positioning control" cannot start.
To carry out these types of control again, return the workpiece to the LD75 control range by a "JOG operation", "inching operation" or "manual pulse generator operation".
- When "[Pr.22] Input signal logic selection" is set to the initial value, the LD75 cannot carry out the positioning control if FLS (upper limit signal) is separated from COM or RLS (lower limit signal) is separated from COM (including when wiring is not carried out).


## (4) When the hardware stroke limit function is not used

When not using the hardware stroke limit function, wire the terminals of the LD75 upper/lower limit stroke limit as shown in the following drawing.
When the logic of FLS and RLS is set to "positive logic" using "[Pr.22] Input signal logic selection", positioning control can be carried out even if FLS and RLS are not wired.
(Refer to Page 614, Section 13.4 for details.)


### 12.5 Functions to Change the Control Details

Functions to change the control details include the "speed change function", "override function",
"acceleration/deceleration time change function" and "torque change function". Each function is executed by parameter setting or program creation and writing.
Both the "speed change function" or "override function" change the speed, but the differences between the functions are shown below. Use the function that corresponds to the application.

## (1) Speed change function

- The speed is changed at any time, only in the control being executed.
- The new speed is directly set.


## (2) Override function

- The speed is changed for all control to be executed. (Note that this excludes manual pulse generator operation.)
- The new speed is set as a percent (\%) of the command speed.


### 12.5.1 Speed change function

The "Speed change function" is used to change the speed during control to a newly designated speed at any time. The new speed is directly set in the buffer memory, and the speed is changed by a speed change command ([Cd.15] Speed change request) or external command signal.
During the machine OPR, a speed change to the creep speed cannot be carried out after deceleration start because the near point dog ON is detected.
The details shown below explain about the "speed change function".

- Control details
- Control precautions
- Setting the speed change function from the CPU module
- Setting the speed change function using an external command signal


## (1) Control details

The following drawing shows the operation during a speed change.


## (2) Control precautions

(a) Control is carried out as follows at the speed change during continuous path control.

- When no speed designation (current speed) is provided in the next positioning data [a], the next positioning data is controlled at the "[Cd.14] New speed value".
- When a speed designation is provided in the next positioning data [b], the next positioning data is controlled at its command speed ([Da.8]).

(b) When changing the speed during continuous path control, the speed change will be ignored if there is not enough distance remaining to carry out the change.
(c) When the speed is changed by setting "[Cd.14] New speed value" to " 0 ", the operation is carried out as follows.

When "[Cd.15] Speed change request" is turned ON, the speed change 0 flag ([Md.31] Status: b10) turns ON. (During interpolation control, the speed change 0 flag on the reference axis side turns ON.)
The axis stops, but "[Md.26] Axis operation status" does not change, and the BUSY signal remains ON. (If a stop signal is input, the BUSY signal will turn OFF, and "[Md.26] Axis operation status" will change to "Stopped".)
In this case, setting the "[Cd.14] New speed value" to a value besides " 0 " will turn OFF the speed change 0 flag (Md. 31 Status: b10), and enable continued operation.

(d) A warning "Deceleration/stop speed change (warning code: 500)" occurs and the speed cannot be changed in the following cases.

- During deceleration by a stop command
- During automatic deceleration during positioning control
(e) A warning "Speed limit value over (warning code: 501)" occurs and the speed is controlled at the "[Pr.8] Speed limit value" when the value set in "[Pr.14] New speed value" exceeds the "[Pr.8] Speed limit value".
(f) When the speed is changed during interpolation control, the required speed is set in the reference axis.
(g) When carrying out consecutive speed changes, be sure there is an interval between the speed changes of 100 ms or more.
(If the interval between speed changes is short, the LD75 will not be able to track, and it may become impossible to carry out commands correctly.)
(h) When a speed change is requested simultaneously for multiple axes, change the speed one by one. Therefore, the start timing of speed change is different for each axis.
(i) The speed cannot be changed to 0 during the machine OPR.

The speed change request is ignored.
(j) When deceleration is started by the speed change function, the deceleration start flag does not turn ON

## (3) Setting the speed change function from the CPU module

The following shows the data settings and program example for changing the control speed of axis 1 from the CPU module. (In this example, the control speed is changed to " $20.00 \mathrm{~mm} / \mathrm{min} "$.)
(a) Set the following data.
(Use the start time chart shown in section (b) below as a reference, and set data using the program shown in section (c).)

| Setting item |  | Setting value | Setting details |  |  | Buffer memory address |  |  |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |
| [Cd.14] | New speed <br> value | 2000 | Set the new speed. | 1514 | 1614 | 1714 | 1814 |  |
| [Cd.15] | Speed change <br> request | 1 | Set "1: Change the speed". | 1515 | 1615 | 1715 | 1815 |  |

Refer to Page 211, Section 5.7 for the information on detail settings.
(b) The following shows the speed change time chart.

(c) Add the following program to the control program, and write it to the CPU module.

(4) Setting the speed change function using an external command signal

The speed can also be changed using an "external command signal".
The following shows the data settings and program example for changing the control speed of axis 1 using an "external command signal". (In this example, the control speed is changed to "10000.00mm/min".)
(a) Set the following data to change the speed using an external command signal.
(Use the start time chart shown in section (b) below as a reference, and set data using the program shown in section (c).)

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 3 | Axis 2 | Axis 4 |
| [Pr.42] | External command function selection |  | 1 | Set "1: External speed change request". | 62 | 212 | 362 | 512 |
| [Cd.8] | External command valid | 1 | Set "1: Validate external command". | 1505 | 1605 | 1705 | 1805 |
| [Cd.14] | New speed value | 1000000 | Set the new speed. | $\begin{aligned} & 1514 \\ & 1515 \end{aligned}$ | $\begin{aligned} & \hline 1614 \\ & 1615 \end{aligned}$ | $\begin{aligned} & 1714 \\ & 1715 \end{aligned}$ | $\begin{aligned} & 1814 \\ & 1815 \end{aligned}$ |

Refer to Page 211, Section 5.7 for the information on detail settings.
(b) The following shows the speed change time chart.

(c) Add the following program to the control program, and write it to the CPU module.


### 12.5.2

The "override function" changes the command speed by a designated percentage ( 1 to $300 \%$ ) for all control to be executed.
The speed can be changed by setting the percentage (\%) by which the speed is changed in "[Cd.13] Positioning operation speed override".

- Control details
- Control precautions
- Setting method


## (1) Control details

The following shows that operation of the override function.

- A value changed by the override function is monitored by "[Md.22] Feedrate".
- If "[Cd.13] Positioning operation speed override" is set to $100 \%$, the speed will not change.
- If "[Cd.13] Positioning operation speed override" is set a value $100 \%$ or less, the warning "Less than minimum speed (warning code: 110)" is generated, and control will be carried out at speed unit "1" at the time " Feedrate" becomes a value of "1" or less.
- If there is not enough remaining distance to change the speed by the "override function" during the "position control" or position control by the "speed-position switching control" or "position-speed switching control", the operation will be carried out at the possible speed for the distance.
- If the speed changed by the "override function" is greater than the "[Pr.8] Speed limit value", a warning "Speed limit value over (warning code: 501)" will occur and the speed will be controlled at the "[Pr.8] Speed limit value". The "[Md.39] In speed limit flag" will turn ON.



## (2) Control precautions

- When changing the speed by the "override function" during continuous path control, the speed change will be ignored if there is not enough distance remaining to carry out the change.
- A warning "Deceleration/stop speed change (warning code: 500)" occurs and the speed cannot be changed by the "override function" in the following cases. (The value set in "[Cd.13] Positioning operation speed override" is validated after a deceleration stop.)
During deceleration by a stop command
During automatic deceleration during positioning control
- When the speed is changed by the "override function" during interpolation control, the required speed is set in the reference axis.
- When carrying out consecutive speed changes by the "override function", be sure there is an interval between the speed changes of 100 ms or more.
(If the interval between speed changes is short, the LD75 will not be able to track, and it may become impossible to carry out commands correctly.)
- When a machine OPR is performed, the speed change by the "override function" cannot be carried out after a deceleration start to the creep speed following the detection of near-point dog ON. In this case, a request for speed change is ignored.
- When deceleration is started by the override function, the deceleration start flag does not turn ON.


## (3) Setting method

The following shows the data settings and program example for setting the override value of axis 1 to " $200 \%$ ".
(a) Set the following data.
(Use the start time chart shown in section (b) below as a reference, and set data using the program shown in section (c).)

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.13] | Positioning operation speed override |  | 200 | Set the new speed as a percentage (\%). | 1513 | 1613 | 1713 | 1813 |

Refer to Page 211, Section 5.7 for the information on detail settings.
(b) The following shows a time chart for changing the speed using the override function.

(c) Add the following program to the control program, and write it to the CPU module.


### 12.5.3 Acceleration/deceleration time change function

The "acceleration/deceleration time change function" is used to change the acceleration/deceleration time during a speed change to a random value when carrying out the speed change by the "speed change function" and "override function".
In a normal speed change (when the acceleration/deceleration time is not changed), the acceleration/deceleration time previously set in the parameters ([Pr.9], [Pr.10], and [Pr.25] to [Pr.30] values) is set in the positioning parameter data items [Da.3] and [Da.4], and control is carried out with that acceleration/deceleration time. However, by setting the new acceleration/deceleration time ([Cd.10], [Cd.11]) in the control data, and issuing an acceleration/deceleration time change enable command ([Cd.12] Acceleration/deceleration time change during speed change, enable/disable selection) to change the speed when the acceleration/deceleration time change is enabled, the speed will be changed with the new acceleration/deceleration time ([Cd.10], [Cd.11]).
The details shown below explain about the "acceleration/deceleration time change function".

- Control details
- Control precautions
- Setting method


## (1) Control details

After setting the following two items, carry out the speed change to change the acceleration/deceleration time during the speed change.

- Set change value of the acceleration/deceleration time ("[Cd.10] New acceleration time value", "[Cd.11] New deceleration time value")
- Setting acceleration/deceleration time change to enable ("[Cd.12] Acceleration/deceleration time change during speed change, enable/disable selection")
The following drawing shows the operation during an acceleration/deceleration time change.
[For an acceleration/deceleration time change disable setting]

[For an acceleration/deceleration time change enable setting]



## (2) Control precautions

- When "0" is set in "[Cd.10] New acceleration time value" and "[Cd.11] New deceleration time value", the acceleration/deceleration time will not be changed even if the speed is changed. In this case, the operation will be controlled at the acceleration/deceleration time previously set in the parameters.
- The "new acceleration/deceleration time" is valid during execution of the positioning data for which the speed was changed. In continuous positioning control and continuous path control, the speed is changed and control is carried out with the previously set acceleration/deceleration time at the changeover to the next positioning data, even if the acceleration/deceleration time is changed to the "new acceleration/deceleration time ([Cd.10], [Cd.11])".
- Even if the acceleration/deceleration time change is set to disable after the "new acceleration/deceleration time" is validated, the positioning data for which the "new acceleration/deceleration time" was validated will continue to be controlled with that value. (The next positioning data will be controlled with the previously set acceleration/deceleration time.)

- If the "new acceleration/deceleration time" is set to " 0 " and the speed is changed after the "new acceleration/deceleration time" is validated, the operation will be controlled with the previous "new acceleration/deceleration time".



## Point ${ }^{8}$

If the speed is changed when an acceleration/deceleration change is enabled, the "new acceleration/deceleration time" will become the acceleration/deceleration time of the positioning data being executed. The "new acceleration/deceleration time" remains valid until the changeover to the next positioning data. (The automatic deceleration processing at the completion of the positioning will also be controlled by the "new acceleration/deceleration time".)

## (3) Setting method

To use the "acceleration/deceleration time change function", write the data shown in the following table to the LD75 using the program.

The set details are validated when a speed change is executed after the details are written to the LD75.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.10] | New acceleration time value |  | $\rightarrow$ | Set the new acceleration time. | $\begin{aligned} & 1508 \\ & 1509 \end{aligned}$ | $\begin{aligned} & \hline 1608 \\ & 1609 \end{aligned}$ | $\begin{aligned} & 1708 \\ & 1709 \end{aligned}$ | $\begin{aligned} & 1808 \\ & 1809 \end{aligned}$ |
| [Cd.11] | New deceleration time value | $\rightarrow$ | Set the new deceleration time. | $\begin{aligned} & 1510 \\ & 1511 \end{aligned}$ | $\begin{aligned} & 1610 \\ & 1611 \end{aligned}$ | $\begin{aligned} & 1710 \\ & 1711 \end{aligned}$ | $\begin{aligned} & 1810 \\ & 1811 \end{aligned}$ |
| [Cd.12] | Acceleration/ deceleration time change during speed change, enable/disable selection | 1 | Set "1: Acceleration/deceleration time change enable". | 1512 | 1612 | 1712 | 1812 |

Refer to Page 211, Section 5.7 for the information on detail settings.

## Example-

* No. 16 Acceleration/deceleration time change program
* 



### 12.5.4 Torque change function

The "torque change function" is used to change the torque limit value during torque limiting.
The torque limit value during torque limiting is normally the value set in the " Pr. 17 Torque limit setting value" that was previously set in the parameters. However, by setting the new torque limit value in the axis control data "[Cd.22] New torque value", and writing it to the LD75, the torque generated by the servomotor during control can be limited with the new torque value.
(The "[Cd.22] New torque value" is validated when written to the LD75.)
The details shown below explain about the "torque change function".

- Control details
- Control precautions
- Setting method


## (1) Control details

The torque value of the axis control data can be changed at all times. The torque can be limited with a new torque value from the time the new torque value has been written to the LD75. (a torque change is made only during operation.)
The toque limiting is not carried out from the time the power supply is turned ON to the time the PLC READY signal [Y0] is turned ON.
The torque setting range is from 0 to "[Pr.17] Torque limit setting value".
When the new torque value is 0 , a torque change is considered not to be carried out.
The torque change range is 1 to "[Pr.17] Torque limit setting value".
The following drawing shows the torque change operation.


## (2) Control precautions

- If a value besides "0" is set in the "[Cd.22] New torque value", the torque generated by the servomotor will be limited by that value. To limit the torque with the value set in " Pr. 17 Torque limit setting value", set the "[Cd.22] New torque value" to "0".
- The "[Cd.22] New torque value" is validated when written to the LD75. Note that it is not validated from the time the power supply is turned ON to the time the PLC READY signal [Y0] is turned ON.
- If the setting value is outside the setting range, the axis warning "Outside new torque value range" (warning code: 113) will occur and the torque will not be changed.
- If the time to hold the new torque value is not more than 100 ms , a torque change may not be executed.


## (3) Setting method

To use the "torque change function", write the data shown in the following table to the LD75 using the program. The set details are validated when written to the LD75.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Axis 2 | Axis 3 | Axis 4 |  |
| [Cd.22] | New torque <br> value | $\rightarrow$ |  | 1525 | 1625 | 1725 | 1825 |

Refer to Page 211, Section 5.7 for the information on detail settings.

### 12.5.5 Target position change function

The "target position change function" is a function to change a target position during the position control (1-axis linear control) to a newly designated target position at any timing. A command speed can also be changed simultaneously.
The target position and command speed changed are set directly in the buffer memory, and the target position change is executed by turning ON "[Cd.29] Target position change request flag".
The following shows the details of the "target position change function".

- Control details
- Control precautions
- Setting method


## (1) Control details

The following charts show the details of control of the target position change function.
(a) When the address after change is positioned away from the start point more than the positioning address:

(b) When the speed is changed simultaneously with changing the address:

(c) When the direction of the operation is changed:


Target position change
request $\qquad$ $\uparrow$

## (2) Control precautions

(a) If the positioning movement direction from the stop position to a new target position is reversed, stop the operation once and then position to the new target position.
(b) If a command speed exceeding the speed limit value is set to change the command speed, the warning "Speed limit value over" (warning code: 501) will occur, and the new command speed will be the speed limit value. Also, if the command speed change disables the remaining distance to the target value from being assured, the warning "Insufficient remaining distance" (warning code: 509) will occur.
(c) In the following cases, the target position change request is ignored, and the warning "Target position change not possible" (warning code: 518) will occur.

- During interpolation control
- A new target position value (address) is outside the software stroke limit range.
- The axis is decelerating to a stop by a stop cause.
- While the positioning data whose operation pattern is continuous path control is executed.
- When the speed change 0 flag ([Md.31] Status: b10) is ON.
(d) When a command speed is changed, the current speed is also changed. When the next positioning speed uses the current speed in the continuous positioning, the next positioning operation is carried out at the new speed value. When the speed is set with the next positioning data, that speed becomes the current speed and the operation is carried out at the current speed.
(e) When a target position change request is given during automatic deceleration in position control, positioning control to a new position is exercised after the axis has stopped once if the moving direction is reversed. If the moving direction is not reversed, the axis is accelerated to the command speed again and positioned to the new position.
(f) If the constant speed status is regained or the output is reversed by a target position change made while "[Md.48] Deceleration start flag" is ON, the deceleration start flag remains ON. (Refer to Page 602, Section 12.7.8 for details.)
(g) Carrying out the target position change to the ABS linear 1 in degrees may carry out the positioning to the new target position after the operation decelerates to stop once, even the movement direction is not is reversed.


## Point ${ }^{P}$

When carrying out the target position change continuously, take an interval of 100 ms or longer between the times of the target position changes. Also, take an interval of 100 ms or longer when the speed change and override is carried out after changing the target position or the target position change is carried out after the speed change and override.

## (3) Setting method

The following table and chart show the example of a data setting and program used to change the target position of the axis 1 by the command from CPU module, respectively." (Example in which the target position value and command speed are changed to a new target position of " $300.0 \mu \mathrm{~m}$ " and a new command speed of "10000.00mm/min".)
(a) Set the following data.
(Use the start time chart shown in section (b) below as a reference, and set data using the program shown in section (c).)

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.27] | Target position change value (new address) |  | 3000 | Set the new address. | $\begin{aligned} & 1534 \\ & 1535 \end{aligned}$ | $\begin{aligned} & 1634 \\ & 1635 \end{aligned}$ | $\begin{aligned} & 1734 \\ & 1735 \end{aligned}$ | $\begin{aligned} & 1834 \\ & 1835 \end{aligned}$ |
| [Cd.28] | Target position change value (new speed) | 1000000 | Set the new speed. | $\begin{aligned} & 1536 \\ & 1537 \end{aligned}$ | $\begin{aligned} & 1636 \\ & 1637 \end{aligned}$ | $\begin{aligned} & 1736 \\ & 1737 \end{aligned}$ | $\begin{aligned} & 1836 \\ & 1837 \end{aligned}$ |
| [Cd.29] | Target position change request flag | 1 | Set "1: Carry out speed change". | 1538 | 1638 | 1738 | 1838 |

Refer to Page 211, Section 5.7 for the information on detail settings.
(b) The following shows the time chart for target position change.

(c) The following program is added to the control program, and written to the CPU module.


### 12.6 Absolute Position Restoration Function

## CAUTION

An absolute position restoration by the positioning function may turn off the servo-on signal (servo off) for approximately $60 \mathrm{~ms}+$ scan time, and the motor may run unexpectedly. If this causes a problem, provide an electromagnetic brake to lock the motor during absolute position restoration.

The "absolute position restoration function" is a function to restore the absolute position of the designated axis by the absolute position detection system. By this function, the OPR after power OFF such as instantaneous power interruption and emergency stop is not required, and the restoration operation at site can be carried out easily. The details of the "absolute position restoration function" are described below.

- Configuration and preparation of absolute position detection system
- Outline of absolute position detection data communication
- Absolute position signal transmission procedure
- Control precautions


## (1) Configuration and preparation of absolute position detection system

(a) Configuration

The following drawing shows the configuration of the absolute position detection system.


[^4](b) Preparation

Prepare the absolute position detection system taking care of the following.

| Component | Details |
| :---: | :---: |
| 1) Servo amplifier | - Use a Mitsubishi Electric General-Purpose AC Servo which has an absolute position detection function (absolute position data transference protocol) equivalent to that of MR-J3-पA). <br> - Install the battery to the servo amplifier. <br> - Validate the absolute position detection function of the servo amplifier. <br> Refer to the $\mathbb{C} \backslash$ servo amplifier manual for details. |
| 2) Servomotor | - Use a servomotor with absolute position detector. Refer to the $[\square$ servomotor manual for details. |
| 3) Detector cable | - Add a battery power connection cable (BAT/LG signal) for wiring the incremental detector cable. Refer to the [D]cable operation manual for details. |
| 4) Programmable controller system | - Carry out the transmission and receiving of the absolute position detection data by the I/O modules (input 3 points/output 3 points). <br> - As input/output modules, use I/O modules of required number of I/O points or the general-purpose I/O function of the LCPU. <br> - Place the 3 points of input signals so that the $\square \square$ is the same among the input number $\square \square 0$ to पロF. The same for the 3 points of output signals. |

## (2) Outline of absolute position detection data communication

As shown in the figure below (System block diagram), the detector comprises an encoder for detecting its position in one rotation in addition to the $\mathrm{A}, \mathrm{B}, \mathrm{Z}$ phase signal for position control in normal operation and a cumulative rotation counter for detecting the number of rotations.
The absolute position detection system detects the absolute position of the machine constantly and stores it with the backup of the battery irrespective of whether the programmable controller system power is turned ON/OFF. Thus, once the OP initial setting is carried out at the time of installation of the machine, the OPR is not required even when the power is later turned ON. The restoration can be carried out easily when an instantaneous power interruption or emergency stop occurs.
In addition, because the absolute position data is backed up by a super condenser built in the detector, the absolute position data will be stored for a specified time even if the cable is disconnected or broken.


## (3) Absolute position signal transmission procedure

- The figure below shows the outline of the absolute position signal transmission procedure between the servo amplifier and the programmable controller system (CPU module, LD75, I/O module).
Refer to the $[\square$ loperation manual of the servo amplifier for details on the communication between the servo amplifier and the programmable controller system.
- Errors during communication

If the system expires during communication, an error "ABS transmission time" (error code: 213) will occur.
If the transmission data causes a sum error, an error "ABS transmission SUM" (error code: 214) will occur.
Refer to Page 650, Section 15.5 for the remedial method to be taken when an error occurs.


- Connection example

The following diagram shows the example of connection between the programmable controller system and the Mitsubishi Electric servo amplifier (MR-J3-A).

*2 The X and Y devices can be set arbitrarily with the program.

- Details of servo amplifier connector pins

The following table shows the pins for setting the "absolute position detection system".

| Signal name | Abbreviation | Pin No. | Function and application |
| :--- | :---: | :---: | :--- |
| ABS transfer mode | ABSM | $17^{* 3}$ | While the ABSM is turned ON, the servo amplifier is in the ABS transfer mode, and <br> the CN1-22 $23 \cdot 25$ functions are as shown in this table. |
| ABS request | ABSR | $18^{* 3}$ | The ABSR is turned ON when ABS data is requested in the ABS transfer mode. |
| ABS transmission data bit 0 | ABSB0 | 22 | This indicates the lower order bit among 2 bits of ABS data to be transferred from the <br> servo amplifier to the programmable controller system in the ABS transfer mode. The <br> ABSB0 turns ON when this signal occurs. |
| ABS transmission data bit 1 | ABSB1 | 23 | This indicates the upper order bit among 2 bits of ABS data to be transferred from the <br> servo amplifier to the programmable controller system in the ABS transfer mode. The <br> ABSB1 turns ON when this signal occurs. |
| ABS transmission data ready | ABST | 25 | This indicates the ABS transmission data preparation completed in the ABS transfer <br> mode. When the preparation is completed, the ABST is turned ON. |

*3 When "use in the absolute position detection system" is selected in the parameter No. PA03, the pin 17 is the ABS transfer mode (ABSM), and the pin 18 is the $A B S$ request ( $A B S R$ ). The signals do not return to the original signal even after the data transfer is completed.

Remark
For details on signals of the pin 17 and 18 when the ABS transfer mode is off and I/O interface, refer to the manual of the servo amplifier (MR-J3-A).

- The following drawing shows an operation when data is transferred to the servo amplifier.


1. The BUSY signal is turned $O N$ and the axis operation status is set to "Analyzing" by the dedicated instruction "ABRSTロ". At this time, the signal is controlled to turn OFF the servo amplifier. The servo is powered OFF in $60 \mathrm{~ms}+$ scan time.
2. When the servo is turned $O N$, the $A B S$ transfer mode is simultaneously turned ON. After receiving the ABS transfer mode, detecting the absolute position and calculating the absolute position, the servo amplifier will turn ON the ABS transmission data ready (ABST) and answer back to LD75 notifying that the send data is ready.
3. After recognizing that the ABS transmission data ready (ABST) turned ON, LD75 turns ON the ABS request (ABSR).
4. The servo amplifier outputs the ABS lower 2 bits and ABS transmission data ready (ABST) OFF by the ABS request (ABSR).
5. After recognizing that the ABS transmission data ready (ABST) turned OFF (the ABS2bit data is output), LD75 reads the lower 2bits of ABS and turns OFF the ABS request (ABSR).
6. The servo amplifier turns $O N$ the ABS transmission data ready (ABST) and prepares for the next transmission. After that, procedures 3. to 6 . are repeated until the data corresponding to 32bits and the checksum corresponding to 6bits are sent.
7. After the sum check, the LD75 turns OFF the ABS transfer mode (ABSM). If the ABS transfer mode (ABSM) is turned OFF during the data transmission, the ABS transfer mode will be interrupted.

## (4) Control precautions

- When an absolute position detection system is constructed, absolute position restoration must be made at least once after power supply on or resetting. Also, the servo amplifier does not switch on unless the absolute position restoration is completed.
- For use of positioning in an absolute position detection system, the following controls cannot be carried out: Limitless-feed control which exercises control only in the fixed direction, e.g. turntable
Control where the movement amount from the OP address exceeds the range of the following conditions 1 and 2
When performing positioning in an absolute position detection system, use it in the range which satisfies Conditions 1 and 2 given below.
In the range which does not satisfy Conditions 1 and 2, positioning cannot be used in the absolute position detection system since the normal current value cannot be provided during absolute position restoration.


## (a) Condition 1. Number of output pulses

- Indicates the number of pulses that may be output to a servo amplifier when an axis is to be positioned from the OP in an absolute position detection system.
In the absolute position detection system, pulses within the range of the following expression can be output to the servo amplifier.
[-32768 $\times$ (Number of feedback pulses)] $\leq$ [Number of output pulses]
[Number of output pulses] $\leq[32768 \times$ (Number of feedback pulses) - 1]
- Pulses are positive in the address increasing direction from the OP, and negative in the address decreasing direction from the OP.

- The number of output pulses varies with the number of feedback pulses as indicated below:
$\diamond$ When the number of feedback pulses is 8192 (pulse): -268435456 to 268435455 (pulse)
$\diamond$ When the number of feedback pulses is 16384 (pulse): -536870912 to 536870911 (pulse) When the electronic gear of the servo amplifier is used, the electronic gear ratio must be considered. The actual range of the number of output pulses is the value of the range of output pulses above multiplied by the inverse number of the electronic gear ratio.


## (b) Condition 2. Positioning address

The following positioning addresses can be specified on the LD75:

- When the unit is $\mathrm{mm}:-214748364.8$ to 214748364.7 ( $\mu \mathrm{m}$ )
- When the unit is inch: -21474.83648 to 21474.83647 (inch)
- When the unit is pulse: -2147483648 to 2147483647 (pulse)
- When the unit is degree: 0 to $359.99999^{\circ}$


## (c) Calculation of positioning address and concept of absolute position detection system

Use the following expression to calculate the positioning address.
(Positioning address) $=($ Movement amount per pulse) $\times$ (Number of output pulses) + (OP address) $\ldots$
Expression 1
(d) Concept for the unit of mm , inch or pulse

The range which satisfies Conditions 1 and 2 can be used as the positioning address of the absolute position detection system.
The range which does not satisfy Conditions 1 and 2 cannot be used as the positioning address of the absolute position detection system.
The concepts of the positioning addresses in mm , inch and pulse are identical, the following examples provide those of the mm unit.

Ex. 1

- There are the following conditions to calculate the positioning address:
$\diamond$ Movement amount per pulse: $0.1(\mu \mathrm{~m})$
$\diamond$ OP address: $0.0(\mu \mathrm{~m})$
$\diamond$ Feedback pulses = 8192 (pulse)
- Calculate the upper/lower limit values of the positioning address which can be specified from the output pulse count using range in Condition 1 and the positioning address calculation expression (Expression 1).
$\diamond$ Lower limit value of positioning address (the number of negative pulses in Condition 1 is used for calculation)
(Positioning address)
$=$ (Movement amount per pulse) $\times$ (Number of output pulses) + (OP address)
$=0.1 \times(-268435456)+0.0$
$=-26843545.6(\mu \mathrm{~m})$
$\diamond$ Upper limit value of positioning address (the number of positive pulses in Condition 1 is used for calculation) (Positioning address)
$=($ Movement amount per pulse $) \times$ (Number of output pulses) + (OP address)
$=0.1 \times 268435455+0.0$
$=26843545.5(\mu \mathrm{~m})$
- The upper/lower limit values of the positioning address calculated are within the range of Condition 2. Hence, the positioning range [-26843545.6 to $26843545.5(\mu \mathrm{~m})$ ] calculated in Condition 1 can be used in the absolute position detection system.
Positioning outside of the range - 26843545.6 to 26843545.5 ( $\mu \mathrm{m}$ ) cannot be used in the absolute position detection system.


Ex. 2

- Using Expression 1, calculate the positioning address which can be specified in the system where the OP address in Example 1 is $214740000.0(\mu \mathrm{~m})$.
$\diamond$ Lower limit value of positioning address $($ Positioning address $)=0.1 \times(-268435456)+214740000.0=187896454.4(\mu \mathrm{~m})$
$\diamond$ Upper limit value of positioning address $($ Positioning address $)=0.1 \times 268435455+214740000.0=241583545.5(\mu \mathrm{~m})$
- Since the lower limit value of the positioning address calculated is within the range of Condition 2 , the calculated address $187896454.4(\mu \mathrm{~m})$ is the lower limit for positioning in the absolute position detection system.
Since the upper limit of the positioning address calculated is outside of the range of Condition 2, the upper limit value $214748364.7(\mu \mathrm{~m})$ is the upper limit for positioning in the absolute position detection system.
In the absolute position detection system, use the positioning address within the range 187896454.4 to 214748364.7 ( $\mu \mathrm{m}$ ).

Positioning in excess of $187896454.4(\mu \mathrm{~m})$ cannot be used in the absolute position detection system.


Ex. 3

- There are the following conditions to calculate the positioning address:
$\diamond$ Movement amount per pulse: $0.9(\mu \mathrm{~m})$
$\diamond$ OP address: $0.0(\mu \mathrm{~m})$
$\diamond$ Feedback pulses $=8192$ (pulse)
- Calculate the positioning address from the output pulse count using range in Condition 1 and the positioning address calculation expression (Expression 1).
$\diamond$ Lower limit value of positioning address (the number of negative pulses in Condition 1 is used for calculation) (Positioning address)
$=$ (Movement amount per pulse) $\times$ (Number of output pulses) + (OP address)
$=0.9 \times(-268435456)+0.0$ $=-241591910.4(\mu \mathrm{~m})$
$\diamond$ Upper limit value of positioning address (the number of positive pulses in Condition 1 is used for calculation) (Positioning address)
$=($ Movement amount per pulse $) \times$ (Number of output pulses) + (OP address)
$=0.9 \times 268435455+0.0$
$=241591909.5(\mu \mathrm{~m})$
- Since the upper/lower limit values of the positioning address calculated are outside of the range of Condition 2, use the positioning address within the positioning range of Condition 2 ( -214748364.8 to $214748364.7(\mu \mathrm{~m})$ ).



## (e) Concept for the unit of degree

- The positioning address is within the range 0 to $359.99999^{\circ}$ at the position to which a machine OPR was made. When the OP position is not $0^{\circ}$, the range is also 0 to $359.99999^{\circ}$.
- For positioning in the same direction, control from maximum to minimum (for address increase: $359.99999^{\circ}$ to $0^{\circ} /$ for address decrease: $0^{\circ}$ to $359.99999^{\circ}$ ) cannot be exercised. ( $\leftrightarrows$ Figures below)

- When positioning is to be used in the absolute position detection system, set the upper/lower limit values of the software stroke limit within the range 0 to $359.99999^{\circ}$.


## 12.7 Other Functions

Other functions include the "step function", "skip function", "M code output function", "teaching function", "command inposition function", "acceleration/deceleration processing function", "pre-reading start function", "deceleration start flag function" and "stop command processing for deceleration stop function". Each function is executed by parameter setting or program creation and writing.
12.7.1 Step function

The "step function" is used to confirm each operation of the positioning control one by one.
It is used in debugging work for major positioning control, etc.
A positioning operation in which a "step function" is used is called a "step operation".
In step operations, the timing for stopping the control can be set. (This is called the "step mode".) Control stopped by a step operation can be continued by setting "step continue" (to continue the control) in the "step start information".
The details shown below explain about the "step function".

- Relation between the step function and various controls
- Step mode
- Step start information
- Using the step operation
- Control details
- Control precautions
- Setting method


## (1) Relation between the step function and various controls

The following table shows the relation between the "step function" and various controls.
$\bigcirc$ : Set when required. $\times$ : Setting not possible

| Control type |  |  | Step function | Step applicability |
| :---: | :---: | :---: | :---: | :---: |
| OPR control | Machine OPR control |  | $\times$ | Step operation not possible |
|  | Fast OPR control |  | $\times$ |  |
| Major positioning control | Position control | 1-axis linear control | $\bigcirc$ | Step operation possible |
|  |  | 2- to 4-axis linear interpolation control | $\bigcirc$ |  |
|  |  | 1-axis fixed-feed control | $\bigcirc$ |  |
|  |  | 2- to 4-axis fixed-feed control (interpolation) | $\bigcirc$ |  |
|  |  | 2-axis circular interpolation control | $\bigcirc$ |  |
|  |  | 3-axis helical interpolation control | $\bigcirc$ |  |
|  | 1- to 4-axis speed control |  | $\times$ | Step operation not possible |
|  | Speed-position switching control, Position-speed switching control |  | $\bigcirc$ | Step operation possible |
|  | Other control | Current value changing | $\bigcirc$ |  |
|  |  | JUMP instruction, NOP instruction, LOOP to LEND | $\times$ | Step operation not possible |
| Manual control | JOG operation, inching operation |  | $\times$ | Step operation not possible |
|  | Manual pulse generator operation |  | $\times$ |  |

## (2) Step mode

In step operations, the timing for stopping the control can be set. This is called the "step mode". (The "step mode" is set in the control data "[Cd.34] Step mode".)
The following shows the two types of "step mode" functions.

## (a) Deceleration unit step

The operation stops at positioning data requiring automatic deceleration. (A normal operation will be carried out until the positioning data requiring automatic deceleration is found. Once found, that positioning data will be executed, and the operation will then automatically decelerate and stop.)

## (b) Data No. unit step

The operation automatically decelerates and stops for each positioning data. (Even in continuous path control, an automatic deceleration and stop will be forcibly carried out.)

## (3) Step start information

Control stopped by a step operation can be continued by setting "step continue" (to continue the control) in the "step start information". (The "step start information" is set in the control data "[Cd.36] Step start information".)
The following table shows the results of starts using the "step start information" during step operation.

| Stop status in the step operation | [Md.26] Axis operation <br> status | [Cd.36] Step start <br> information | Step start results |
| :--- | :--- | :--- | :--- |
| 1 step of positioning stopped normally | Step standby | 1 Step continue | The next positioning data will be executed. |

The warnings "Step not possible (warning code: 511)" will occur and the step operation will not be continued if the "[Md.26] Axis operation status" is other than "Step standby" or the step valid flag is OFF when step start information is set.

## (4) Using the step operation

The following shows the procedure for checking positioning data using the step operation.


## (5) Control details

- The following drawing shows a step operation during a "deceleration unit step".


No positioning data No. unit, so operation pattern becomes one step of unit for carrying out automatic deceleration.

- The following drawing shows a step operation during a "data No. unit step".


Operation pattern becomes one step of positioning data No. unit, regardless of continuous path control (11).

## (6) Control precautions

- When step operation is carried out using interpolation control positioning data, the step function settings are carried out for the reference axis.
- When the step valid flag is ON, the step operation will start from the beginning if the positioning start signal is turned ON while "[Md.26] Axis operation status" is "Step standby". (The step operation will be carried out from the positioning data set in "[Cd.3] Positioning start No.".)


## (7) Setting method

To use the "step function", write the data shown in the following table to the LD75 using the program. Refer to $\longmapsto$ Page 574, Section 12.7 .1 (4) for the timing of the settings.
The set details are validated when written to the LD75.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.34] | Step mode |  | $\rightarrow$ | Set "0: Deceleration unit step" or "1: Data No. unit step". | 1544 | 1644 | 1744 | 1844 |
| [Cd.35] | Step valid flag | 1 | Set "1: Carry out step operation". | 1545 | 1645 | 1745 | 1845 |
| [Cd.36] | Step start information | $\rightarrow$ | Set "1: Step continue", depending on the stop status. | 1546 | 1646 | 1746 | 1846 |

Refer to Page 211, Section 5.7 for the information on detail settings.

### 12.7.2 Skip function

The "skip function" is used to stop (deceleration stop) the control of the positioning data being executed at the time of the skip signal input, and execute the next positioning data.
A skip is executed by a skip command ([Cd.37] Skip command) or external command signal.
The "skip function" can be used during control in which positioning data is used.
The details shown below explain about the "skip function".

- Control details
- Control precautions
- Setting the skip function from the CPU module
- Setting the skip function using an external command signal


## (1) Control details

The following drawing shows the skip function operation.


## (2) Control precautions

- If the skip signal is turned ON at the last of an operation, a deceleration stop will occur and the operation will be terminated.
- When a control is skipped (when the skip signal is turned ON during a control), the positioning complete signals [ $\mathrm{X} 14, \mathrm{X} 15, \mathrm{X} 16, \mathrm{X} 17$ ] will not turn ON .
- When the skip signal is turned ON during the dwell time, the remaining dwell time will be ignored, and the next positioning data will be executed.
- When a control is skipped during interpolation control, the reference axis skip signal is turned ON. When the reference axis skip signal is turned ON, a deceleration stop will be carried out for every axis, and the next reference axis positioning data will be executed.
- The M code ON signals [ $\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7$ ] will not turn ON when the M code output is set to the AFTER mode (when "1: AFTER mode" is set in "[Pr.18] M code ON signal output timing"). (In this case, the M code will not be stored in "[Md.25] Valid M code".)
- The skip cannot be carried out by the speed control and position-speed switching control.
- If the skip signal is turned $O N$ with the $M$ code signal turned $O N$, the transition to the next data is not carried out until the M code signal is turned OFF.


## (3) Setting the skip function from the CPU module

The following shows the settings and program example for skipping the control being executed in axis 1 with a command from the CPU module.

## 1. Set the following data.

(The setting is carried out using the program shown below in section 2.).

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.37] | Skip command |  | 1 | Set "1: Skip request". | 1547 | 1647 | 1747 | 1847 |

Refer to Page 211, Section 5.7 for the information on detail settings.
2. Add the following program to the control program, and write it to the CPU module.

When the "skip command" is input, the value "1" (skip request) set in "[Cd.37] Skip command" is written to the LD75 buffer memory [1547].


## （4）Setting the skip function using an external command signal

The skip function can also be executed using an＂external command signal＂．
The following shows the settings and program example for skipping the control being executed in axis 1 using an ＂external command signal＂．

1．Set the following data to execute the skip function using an external command signal． （The setting is carried out using the program shown below in section 2．）．

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| ［Pr．42］ | External command function selection |  | 3 | Set＂3：Skip request＂． | 62 | 212 | 362 | 512 |
| ［Cd．8］ | External command valid | 1 | Set＂1：Validate external command＂． | 1505 | 1605 | 1705 | 1805 |

Refer to Page 211，Section 5.7 for the information on detail settings．
2．Add the following program to the control program，and write it to the CPU module．


The "M code output function" is used to command sub work (clamping, drill rotation, tool replacement, etc.) related to the positioning data being executed.
When the M code ON signal $[\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7$ ] is turned ON during positioning execution, a No. called the M code is stored in "[Md.25] Valid M code".
These "[Md.25] Valid M code" are read from the CPU module, and used to command auxiliary work. M codes can be set for each positioning data. (Set in setting item "[Da.10] M code" of the positioning data.)
The timing for outputting (storing) the M codes can also be set in the "M code output function".

The details shown below explain about the "M code output function".

- M code ON signal output timing
- M code OFF request
- Control precautions
- Setting method
- Reading M codes


## (1) $M$ code ON signal output timing

The timing for outputting (storing) the $M$ codes can be set in the " M code output function". (The M code is stored in "[Md.25] Valid M code" when the M code ON signal is turned ON.)
The following shows the two types of timing for outputting M codes: the "WITH" mode and the "AFTER" mode.
(a) WITH mode

The $M$ code $O N$ signal $[X 4, X 5, X 6, X 7]$ is turned $O N$ at the positioning start, and the $M$ code is stored in "[Md.25] Valid M code".


## (b) AFTER mode

The $M$ code $O N$ signal $[X 4, X 5, X 6, X 7]$ is turned $O N$ at the positioning completion, and the $M$ code is stored in "[Md.25] Valid M code".


## (2) M code OFF request

When the M code ON signal $[\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7$ ] is ON , it must be turned OFF by the program.
To turn OFF the M code ON signal, set "1" (turn OFF the M code signal) in "[Cd.7] M code OFF request".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.7] | M code OFF request |  | 1 | Set "1: Turn OFF the M code ON signal". | 1504 | 1604 | 1704 | 1804 |

Refer to Page 211, Section 5.7 for the information on detail settings.
The next positioning data will be processed as follows if the M code ON signal is not turned OFF. (The processing differs according to the "[Da.1] Operation pattern".)

| [Da.1] Operation pattern |  |  |
| :---: | :--- | :--- |
| 00 | Independent positioning control <br> (Positioning complete) | Processing |
| 01 | Continuous positioning control |  |
| 11 | Continuous path control | The next positioning data will be executed. If the $M$ code is set to the next positioning data, a warning <br> "M code ON signal ON start" (warning code: 503$)$ will occur. |



## Point ${ }^{P}$

If the $M$ code output function is not required, set a " 0 " in setting item "[Da.10] $M$ code" of the positioning data.

## (3) Control precautions

- During interpolation control, the reference axis M code ON signal is turned ON.
- The M code ON signal will not turn ON if " 0 " is set in "[Da.10] M code". (The M code will not be output, and the previously output value will be held in "[Md.25] Valid M code".)
- If the $M$ code $O N$ signal is $O N$ at the positioning start, an error "M code $O N$ signal start (error code: 536 )" will occur, and the positioning will not start.
- If the PLC READY signal [Y0] is turned OFF, the M code ON signal will turn OFF and "0" will be stored in "[Md.25] Valid M code".
- If the positioning operation time is short during continuous path control, there will not be enough time to turn OFF the M code ON signal, and a warning "M code ON signal ON (warning code: 503)" may occur. In this case, to avoid the warning, set " 0 " in the "[Da.10] M code" of that section's positioning data so that the M code is not to be output.
- In the AFTER mode during speed control, the M code is not output and the M code ON signal does not turn ON.
- If current value changing where " 9003 " has been set to "[Cd.3] Positioning start No." is performed, the M code output function is made invalid


## (4) Setting method

(a) To specify the $M$ code $O N$ signal output timing for each positioning data

Use "[Da.27] M code ON signal output timing". The following shows the settings to use "[Da.27] M code ON signal output timing".

- Set the $M$ code No. in the positioning data "[Da.10] M code".
- Set the timing to output the M code ON signal [ $\mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7$ ] in the positioning data "[Da.27] M code ON signal output timing".


## (b) To set the same $M$ code $O N$ signal output timing for all positioning data

Setting "[Pr.18] M code ON signal output timing" enables batch specification of M code ON signal output timing for each positioning data. Set 0 in "[Da.27] M code ON signal output timing" when using "[Pr.18] M code ON signal output timing". When a value other than 0 is set, "[Da.27] M code ON signal output timing" will be valid. (The setting in "[Pr.18] M code ON signal output timing" becomes valid on the rising edge (OFF to ON) of PLC READY signal [Y0].)
The following shows the settings to use "[Pr.18] M code ON signal output timing".

- Set the M code No. in the positioning data "[Da.10] M code".
- Set "0: Use the set value in "[Pr.18] M code ON signal output timing"." (initial value) in the positioning data "[Da.27] M code ON signal output timing".
- Set the timing to output the $M$ code $O N$ signal $[X 4, X 5, X 6, X 7]$ in the detailed parameter "[Pr.18] M code ON signal output timing".

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Pr.18] | M code ON signal output timing |  | $\rightarrow$ | Set the timing to output the M code ON signal. <br> 0 : WITH mode <br> 1: AFTER mode | 27 | 177 | 327 | 477 |
| [Da.27] | M code ON signal output timing | $\rightarrow$ | Set the M code ON signal output timing for each positioning data. <br> 0 : Use the set value in "[Pr.18] M code ON signal output timing". <br> 1: WITH mode <br> 2: AFTER mode | $\begin{gathered} 2003+N^{* 1} \\ (b 4 \text { to } 66) \end{gathered}$ | $\begin{gathered} 8003+\mathrm{N}^{* 1} \\ (\mathrm{~b} 4 \text { to } 66 \text { ) } \end{gathered}$ | $\begin{gathered} 14003+\mathrm{N}^{* 1} \\ \text { (b4 to b6) } \end{gathered}$ | $\begin{gathered} 20003+\mathrm{N}^{* 1} \\ (\mathrm{~b} 4 \text { to } 66 \text { ) } \end{gathered}$ |

*1 $\quad \mathrm{N}$ indicates the offset address of each positioning data.
$N=(($ Positioning data No.) -1$) \times 10$
Refer to Page 118, Section 5.2 for the information on detail settings.

## (5) Reading M codes

"M codes" are stored in the following buffer memory when the M code ON signal turns ON

| Monitor item |  | Monitor <br> value | Storage details | Buffer memory address |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 3 | Axis 4 |  |  |
| [Md.25] | Valid M code | $\rightarrow$ |  | 808 | 908 | 1008 | 1108 |

Refer to Page 182, Section 5.6 for information on the storage details.
The following shows a program example for reading the "[Md.25] Valid M code" to the CPU module data register [D110]. (The read value is used to command the sub work.)
Read M codes not as "rising edge commands", but as "ON execution commands".


The "teaching function" is used to set addresses aligned using the manual control (JOG operation, inching operation, and manual pulse generator operation) in the positioning data addresses ("[Da.6] Positioning address/movement amount", "[Da.7] Arc address").
The details shown below explain about the "teaching function".

- Control details
- Control precautions
- Data used in teaching
- Teaching procedure
- Teaching program example


## (1) Control details

(a) Teaching timing

Teaching is executed using the program when the BUSY signal [XC, XD, XE, XF] is OFF. (During manual control, teaching can be carried out as long as the axis is not BUSY, even when an error or warning has occurred.)
(b) Addresses for which teaching is possible

The addresses for which teaching is possible are "current feed values" ([Md.20] Current feed value) having the OP as a reference. The settings of the "movement amount" used in incremental system positioning cannot be used. In the teaching function, these "current feed values" are set in the "[Da.6] Positioning address/movement amount" or "[Da.7] Arc address".

| Positions aligned by manual control |  | Positioning data |
| :--- | :--- | :--- |
| "Current feed value" A | $\rightarrow$ | [Da.6] Positioning address/movement amount |
| "Current feed value" B | $\rightarrow$ | [Da.7] Arc address |

(c) Dedicated instructions "ZP.TEACH 1, ZP.TEACH 2, ZP.TEACH 3, ZP.TEACH 4, ZP.PFWRT"
When the dedicated instructions "ZP.TEACH 1, ZP.TEACH 2, ZP.TEACH 3, ZP.TEACH 4, ZP.PFWRT" are used to execute the teaching function, the programming becomes easier. Refer to Page 619, CHAPTER 14 for details.

## (2) Control precautions

- Before teaching, a "machine OPR" must be carried out to establish the OP. (When a current value changing, etc., is carried out, "[Md.20] Current feed value" may not show absolute addresses having the OP as a reference.)
- Teaching cannot be carried out for positions to which movement cannot be executed by manual control (positions to which the workpiece cannot physically move). (During center point designation circular interpolation control, etc., teaching of "[Da.7] Arc address" cannot be carried out if the center point of the arc is not within the moveable range of the workpiece.)
- Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible. (Assured value is up to 100,000 times.) If the error "Flash ROM write number error" (error code: 805) occurs when writing to the flash ROM has been completed, check whether or not the program is created so as to write continuously to the flash ROM.


## (3) Data used in teaching

The following control data is used in teaching.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.1] | Flash ROM write request |  | 1 | Write the set details to the flash ROM (backup the changed data). | 1900 |  |  |  |
| [Cd.38] | Teaching data selection | $\rightarrow$ | Sets to which "current feed value" is written. <br> 0: Written to "[Da.6] Positioning address/movement amount". <br> 1: Written to "[Da.7] Arc address". | 1548 | 1648 | 1748 | 1848 |
| [Cd.39] | Teaching positioning data No. | $\rightarrow$ | Designates the data to be taught. <br> (Teaching is carried out when the setting value is 1 to 600 .) When teaching has been completed, this data is cleared to zero. | 1549 | 1649 | 1749 | 1849 |

Refer to $\longmapsto$ Page 211, Section 5.7 for the information on detail settings.

## (4) Teaching procedure

The following shows the procedure for a teaching operation.
(a) Example of the teaching on axis 1

When teaching to the "[Da.6] Positioning address/movement amount"

(b) Example of the teaching for 2-axis circular interpolation control with sub point designation on axes 1 and 2

The following procedure is for entering teaching data into "[Da.7] Arc address" and then into "[Da.6] Positioning address/movement amount".



- Operation chart



## (5) Teaching program example

The following shows a program example for setting (writing) the positioning data obtained with the teaching function to the LD75.

## (a) Setting conditions

- When setting the current feed value as the positioning address, write it when the BUSY signal is OFF.
(b) Program example
- The following example shows a program to carry out the teaching of axis 1 by the dedicated instruction "ZP.TEACH 1".

1. Move the workpiece to the target position using a JOG operation (or an inching operation, a manual pulse generator operation).


## 2. Carry out the teaching operation with the following program.



## Point ${ }^{8}$

- Confirm the teaching function and teaching procedure before setting the positioning data.
- The positioning addresses that are written are absolute address (ABS) values.
- If the positioning operation is correctly completed with the written positioning data, it is recommended that the positioning data be registered in the LD75 flash ROM.


### 12.7.5 Command in-position function

The "command in-position function" checks the remaining distance to the stop position during the automatic deceleration of positioning control, and set a flag to 1 . This flag is called the "command in-position flag". The command in-position flag is used as a front-loading signal indicating beforehand the completion of the position control. The details shown below explain about the "command in-position function".

- Control details
- Control precautions
- Setting method
- Confirming the command in-position flag


## (1) Control details

The following shows control details of the command in-position function.
(a) When the remaining distance to the stop position during the automatic deceleration of positioning control becomes equal to or less than the value set in "[Pr.16] Command in-position width", "1" is stored in the command in-position flag ([Md.31] Status: b2).
[Command in-position width check]
Remaining distance $\leq$ "[Pr. 16] Command in-position width" setting value

(b) A command in-position width check is carried out every 0.9 ms .

## (2) Control precautions

(a) A command in-position width check will not be carried out in the following cases.

- During speed control
- During speed control in speed-position switching control
- During speed control in position-speed switching control

(b) The command in-position flag will be turned OFF in the following cases.
("0" will be stored in "[Md.31] Status: b2".)
- At the positioning control start
- At the speed control start
- At the speed-position switching control, position-speed switching control start
- At the OPR control start
- At the JOG operation start
- At the inching operation start
- When the manual pulse generator operation is enabled.
(c) The "[Pr.16] Command in-position width" and command in-position flag ([Md.31] Status: b2) of the reference axis are used during interpolation control. When the "[Pr.20] Interpolation speed designation method" is "Composite speed", the command in-position width check is carried out in the remaining distance on the composite axis (line/arc connecting the start point address and end point address).


## (3) Setting method

To use the "command in-position function", set the required value in the parameter shown in the following table, and write it to the LD75.
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].

| Setting item |  | Setting value | Setting details | Factory-set initial value |
| :--- | :--- | :---: | :---: | :---: |
| [Pr.16] | Command in-position <br> width | $\rightarrow$ | Turn ON the command in-position flag, and set the remaining <br> distance to the stop position of the position control. | 100 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## (4) Confirming the command in-position flag

The "command in-position flag" is stored in the following buffer memory.

|  | Monitor item | Monitor value | Storage details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Md.31] | Status | $\rightarrow$ | The command in-position flag is stored in the "b2" position. | 817 | 917 | 1017 | 1117 |

Refer to Page 182, Section 5.6 for information on the storage details.

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.


### 12.7.6 Acceleration/deceleration processing function

The "acceleration/deceleration processing function" adjusts the acceleration/deceleration of each control to the acceleration/deceleration curve suitable for devices.
Setting the acceleration/deceleration time changes the slope of the acceleration/deceleration curve.
The following two methods can be selected for the acceleration/deceleration curve:

- Trapezoidal acceleration/deceleration
- S-curve acceleration/deceleration

The details shown below explain about the "acceleration/deceleration processing function".

- "Acceleration/deceleration time 0 to 3 " control details and setting
- "Acceleration/deceleration method setting" control details and setting


## (1) "Acceleration/deceleration time 0 to 3 " control details and setting

In the LD75, four types each of acceleration time and deceleration time can be set. By using separate acceleration/deceleration times, control can be carried out with different acceleration/deceleration times for positioning control, JOG operation, OPR, etc.
Set the required values for the acceleration/deceleration time in the parameters shown in the following table, and write them to the LD75. The set details are validated when written to the LD75.

| Setting item |  | Setting value | Setting details | Factory-set initial value |
| :---: | :---: | :---: | :---: | :---: |
| [Pr.9] | Acceleration time 0 | $\rightarrow$ | Set the acceleration time at a value within the range of 1 to 8388608 ms . | 1000 |
| [Pr.25] | Acceleration time 1 | $\rightarrow$ |  | 1000 |
| [Pr.26] | Acceleration time 2 | $\rightarrow$ |  | 1000 |
| [Pr.28] | Acceleration time 3 | $\rightarrow$ |  | 1000 |
| [Pr.10] | Deceleration time 0 | $\rightarrow$ | Set the deceleration time at a value within the range of 1 to 8388608 ms . | 1000 |
| [Pr.28] | Deceleration time 1 | $\rightarrow$ |  | 1000 |
| [Pr.29] | Deceleration time 2 | $\rightarrow$ |  | 1000 |
| [Pr.30] | Deceleration time 3 | $\rightarrow$ |  | 1000 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## (2) "Acceleration/deceleration method setting" control details and setting

In the "acceleration/deceleration method setting", the acceleration/deceleration processing method is selected and set. The set acceleration/deceleration processing is applied to all acceleration/deceleration. (except for inching operation and manual pulse generator operation.)
The two types of "acceleration/deceleration method setting" are shown below.
(a) Trapezoidal acceleration/deceleration processing method

This is a method in which linear acceleration/deceleration is carried out based on the acceleration time, deceleration time, and speed limit value set by the user.


## (b) S-curve acceleration/deceleration processing method

In this method, the motor burden is reduced during starting and stopping.
This is a method in which acceleration/deceleration is carried out gradually, based on the acceleration time, deceleration time, speed limit value, and "[Pr.35] S-curve ratio" (1 to 100\%) set by the user.
When the stepping motor is used, the acceleration around the inflection point on the s shape is faster compared with the trapezoidal acceleration/deceleration. This may cause step-out. *1
In this case, adjust the acceleration/deceleration time to decrease the acceleration around the inflection point, or use a servo motor.
*1 When comparing the trapezoidal acceleration/deceleration and S-curve acceleration/deceleration processing method in the same acceleration/deceleration time.


When a speed change request or override request is given during S-curve acceleration/deceleration processing, S-curve acceleration/deceleration processing begins at the start of a speed change request or an override request.


Set the required values for the "acceleration/deceleration method setting" in the parameters shown in the following table, and write them to the LD75.
The set details are validated when written to the LD75.

| Setting item |  | Setting value | Setting details | Factory-set initial value |
| :--- | :--- | :---: | :--- | :---: |
| [Pr.34] | Acceleration/ <br> deceleration process <br> selection | $\rightarrow$ | Set the acceleration/deceleration method. <br> $0:$ Trapezoidal acceleration/deceleration processing <br> $1:$ S-curve acceleration/deceleration processing |  |
| [Pr.35] | S-curve ratio | $\rightarrow$ | Set the acceleration/deceleration curve when "1" is set in "[Pr.34] <br> Acceleration/deceleration processing selection". | 100 |

Refer to Page 118, Section 5.2 for the information on detail settings.

## Remark

- Parameters are set for each axis.
- It is recommended that the parameters be set whenever possible with GX Works2. Execution by program uses many programs and devices. The execution becomes complicated, and the scan times will increase.

The "pre-reading start function" does not output pulses while the execution prohibition flag is ON if a positioning start request is given with the execution prohibition flag ON, and starts outputting pulses within 1.3 ms after OFF of the execution prohibition flag is detected. The positioning start request is given when the axis is in a standby status, and the execution prohibition flag is turned OFF at the axis operating timing. This shortens the virtual start time. The LD75 normally takes 1.5 to 2.0 ms from when it receives a positioning start request until it starts pulse output (start time).
Some systems often need the start time to be shortened. This "pre-reading start function" can improve the tact time of the system.
The "pre-reading start function" will be explained below.

- Control details
- Control precautions
- Program example


## (1) Control details

The pre-reading start function is performed by turning ON the positioning start signal [Y10, Y11, Y12, Y13] with the execution prohibition flag [Y14, Y15, Y16, Y17] ON, or by executing the dedicated instruction (ZP.PSTRT1, ZP.PSTRT2, ZP.PSTRT3, ZP.PSTRT4). However, if positioning is started with the execution prohibition flag ON, the positioning data is analyzed but pulse output is not provided. While the execution prohibition flag is ON, "[Md.26] Axis operation status" remains unchanged from " 5 : Analyzing". Pulse output starts within 1.3 ms after the execution prohibition flag [Y14, Y15, Y16, Y17] has turned OFF, and "[Md.26] Axis operation status" changes to the status (e.g. "Position control", "Speed control") that matches the control system.


The pre-reading start function is effective for the system as shown below.


The figure above shows an example of the system which repeats:

## 1. Feeding a stock with a feed shaft (1)); and

## 2. Cutting it with a cutter (2)

to cut the stock to fixed size. The operations of the feed shaft and cutter shaft are represented as shown in the figure below.


The cutter shaft starts from the moment the feed shaft has completed feeding the stock $\mathbf{1}$, and the feed shaft starts from the moment the cutter shaft has returned to the standby position (2. Actually, however, there is a delay of start time Ts ( 1.5 to 2.0 ms ) from when the LD75 receives a start request until it outputs pulses. The system's tact time can be reduced by the shortening of this delay with the Pre-reading start function.
The feed shaft stands by during the stop time Tw.
Hence, pre-reading of the next data starts during the stop time Tw. If Tw is a certain period of time, the analysis of the next data is completed during that period, and the system is placed in an execution prohibition flag OFF waiting status. Therefore, replacing the positioning start timing at 2 with the execution prohibition flag OFF allows the time from when the axis operation request turns ON until pulse output starts to be reduced to within 1.3 ms in the program.

## (2) Control precautions

- The time required to analyze the positioning data is up to 7 ms .
- After positioning data analysis, the system is put in an execution prohibition flag OFF waiting status. Any change made to the positioning data in the execution prohibition flag OFF waiting status is not reflected on the positioning data. Change the positioning data before turning ON the positioning start signal.
- The pre-reading start function is invalid if the execution prohibition flag is turned OFF between when the positioning start signal has turned ON and when positioning data analysis is completed ( $\mathrm{Ta}<$ start time, Ta :

Page 598, Section 12.7.7 (1)).

- The data No. which can be executed positioning start using "[Cd.3]Positioning start No." with the pre-reading start function are No. 1 to 600 only. Performing the pre-reading start function at the setting of No. 7000 to 7004 or 9001 to 9004 will result in the error "Outside start No. range" (error code: 543).
- Always turn ON the execution prohibition flag at the same time or before turning ON the positioning start signal. Pre-reading may not be started if the execution prohibition flag is turned ON during Ta after the positioning start signal is turned ON. The pre-reading start function is invalid if the execution prohibition flag is turned ON after positioning start (pulse output) with the execution prohibition flag OFF. (It is made valid at the next positioning start.)


## (3) Program example

```
*
* Pre-reading start function (when positioning start signal Y10 is used)
```

* 


]<Pre-reading start command pulse>
[ < Sets 1 to positioning start No.>
<Turns ON execution prohibition flag> $<$ <Turns ON positioning start signal>
[ <Turns OFF execution prohibition flag>
*

* Pre-reading start function (when dedicated instruction PSTRT1 is used)
* 



### 12.7.8 Deceleration start flag function

The "deceleration start flag function" turns ON the flag when the constant speed status or acceleration status switches to the deceleration status during position control whose operation pattern is "Positioning complete". This function can be used as a signal to start the operation to be performed by other equipment at each end of position control or to perform preparatory operation, etc. for the next position control.
For the "deceleration start flag function", the following will be explained.

- Control details
- Control precautions
- Setting method
- Checking of deceleration start flag


## (1) Control details

When deceleration for a stop is started in the position control whose operation pattern is "Positioning complete", " 1 " is stored into "[Md.48] Deceleration start flag". When the next operation start is made or the manual pulse generator operation enable status is gained, " 0 " is stored.
(a) Start made with positioning data No. specified


## (b) Block start

At a block start, this function is valid for only the position control whose operation pattern is "Positioning complete" at the point whose shape has been set to "End".
The following table indicates the operation of the deceleration start flag in the case of the following block start data and positioning data.

- Setting the block start data

| [Dack start data | [Da.11] Shape | [Da.12] Start data No. | [Da.13] Special start instruction |
| :---: | :---: | :---: | :---: |
| 1st point | 1: Continue | 1 | $0:$ Block start |
| 2nd point | 1: Continue | 3 | $0:$ Block start |
| 3rd point | 0: End | 4 | 0: Block start |
| $\vdots$ |  |  |  |

- Setting the positioning data

| Positioning data No. | [Da.1] Operation pattern |
| :---: | :---: |
| 1 | $01:$ Continuous positioning control |
| 2 | $00:$ Positioning complete |
| 3 | $00:$ Positioning complete |
| 4 | $11:$ Continuous path control |
| 5 | $00:$ Positioning complete |
| $\vdots$ |  |

- Operation of deceleration start flag



## (2) Control precautions

- The deceleration start flag function is valid for the control system of "1-axis linear control", "2-axis linear interpolation control", "3-axis linear interpolation control", "4-axis linear interpolation control", "speed-position switching control" or "position-speed switching control". (In the case of linear interpolation control, the function is valid for only the reference axis.) Refer to Page 58, Section 3.2.4.
- The deceleration start flag does not turn ON when the operation pattern is "continuous positioning control" or "continuous path control".
- The deceleration start flag function is invalid for an OPR, JOG operation, inching operation, manual pulse generator operation, and deceleration made with a stop signal.
- The deceleration start flag does not turn ON when a speed change or override is used to make deceleration.
- If a target position change is made while the deceleration start flag is ON, the deceleration start flag remains ON.

- When the movement direction is reversed by a target position change, the deceleration start flag turns ON.

- During position control of position-speed switching control, the deceleration start flag is turned ON by automatic deceleration. The deceleration start flag remains ON if position control is switched to speed control by the position-speed switching signal after the deceleration start flag has turned ON.
- If the condition start of a block start is not made since the condition is not satisfied, the deceleration start flag turns ON when the shape is "End".
- When a continuous operation interrupt request is is issued, the deceleration start flag turns ON at a start of deceleration in the positioning data being executed.


## (3) Setting method

To use the "deceleration start flag function", set "1" to the following control data using a program.
The set data is made valid on the rising edge (OFF to ON) of the PLC READY signal [Y0].

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |
| :--- | :--- | :---: | :--- | :---: |
| [Cd.41] | Deceleration start <br> flag valid | $\rightarrow$ | Set whether the deceleration start flag function is made valid or <br> invalid. <br> 0: Deceleration start flag invalid <br> 1: Deceleration start flag valid |  |

Refer to Page 211, Section 5.7 for the information on detail settings.

## (4) Checking of deceleration start flag

The "deceleration start flag" is stored into the following buffer memory addresses.

| Monitor item |  | Monitor value | Storage details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Md.48] | Deceleration start flag |  | $\rightarrow$ | 0: Status other than below <br> 1: Status from deceleration start to next operation start | 899 | 999 | 1099 | 1199 |

Refer to Page 182, Section 5.6 for information on the storage details.

### 12.7.9 Stop command processing for deceleration stop function

The "stop command processing for deceleration stop function" is provided to set the deceleration curve if a stop cause occurs during deceleration stop processing (including automatic deceleration).
This function is valid for both trapezoidal and S-curve acceleration/deceleration processing methods.
(Refer to $\longmapsto$ Page 39, Section 1.2.3 for the stop cause.)
The "stop command processing for deceleration stop function" performs the following two operations:

- Deceleration curve re-processing A deceleration curve is re-processed starting from the speed at stop cause occurrence to stop, according to the preset deceleration time.
- Deceleration curve continuation The current deceleration curve is continued after a stop cause has occurred.
This section explains the "stop command processing for deceleration stop function" as follows:
- Control details
- Control precautions
- Setting method


## (1) Control details

The operation of "stop command processing for deceleration stop function" is explained below.
(a) Deceleration curve re-processing

A deceleration curve is re-processed starting from the speed at stop cause occurrence to stop, according to the preset deceleration time.
If a stop cause occurs during automatic deceleration of position control, the deceleration stop processing stops as soon as the target has reached the positioning address specified in the positioning data that is currently executed.


## (b) Deceleration curve continuation

The current deceleration curve is continued after a stop cause has occurred.
If a stop cause occurs during automatic deceleration of position control, the deceleration stop processing may be complete before the target has reached the positioning address specified in the positioning data that is currently executed.


## (2) Control precautions

- In manual control (JOG operation, inching operation, manual pulse generator operation), the stop command processing for deceleration stop function is invalid.
- The stop command processing for deceleration stop function is valid when " 0 : Normal deceleration stop" is set in "[Pr.37] Stop group 1 sudden stop selection" to "[Pr.39] Stop group 3 sudden stop selection" as the stopping method for stop cause occurrence.
- The stop command processing for deceleration stop function is invalid when "1: Sudden stop" is set in "[Pr.37] Stop group 1 sudden stop selection" to "[Pr.39] Stop group 3 sudden stop selection". (A deceleration curve is re-processed, according to the "[Pr.36] Sudden stop deceleration time" (starting from the speed at stop cause occurrence to a stop))
In the position control (including position control of speed/position changeover control or position/speed changeover control) mode, positioning may stop immediately depending on the stop cause occurrence timing and "[Pr.36] Sudden stop deceleration time" setting.

(Sudden stop in front of the specified positioning address)

(Immediate stop at the specified positioning address)


## (3) Setting method

To use the "stop command processing for deceleration stop function", set the following control data in a program. The set data are made valid as soon as they are written to the buffer memory. The PLC READY signal [Y0] is irrelevant.

| Setting item |  | Setting <br> value | Setting details | Buffer memory address |
| :--- | :--- | :---: | :--- | :---: |
| [Cd.42] | Stop command <br> processing for <br> deceleration stop <br> selection | $\rightarrow$ | Set the stop command processing for <br> deceleration stop function. <br> 0: Deceleration curve re-processing <br> 1: Deceleration curve continuation | 1907 |

Refer to Page 211, Section 5.7 for the information on detail settings.

## CHAPTER 13 common functions

### 13.1 Outline of Common Functions

"Common functions" are executed according to the user's requirements, regardless of the control system, etc. These common functions are executed by GX Works2 or using programs.
The following table shows the functions included in the "common functions".

| Common function | Details | Means |  |
| :---: | :---: | :---: | :---: |
|  |  | Program | GX Works2 |
| Parameter Initialization Function | This function returns the parameter stored in the LD75 buffer memory and flash ROM to the factory-set initial value. | $\bigcirc$ | $\bigcirc$ |
| Execution data backup function | This function writes the "execution data", currently being used for control, to the flash ROM. | $\bigcirc$ | $\bigcirc$ |
| External I/O signal logic switching function | This function switches I/O signal logic according to the equipment connected to the LD75. <br> For the system in which drive unit READY with b-contact, upper limit switch, and lower limit switch are not used, the parameter logic setting can be controlled without wiring if it is changed to a "positive logic". | $\bigcirc$ | $\bigcirc$ |
| External I/O signal monitor function | This function monitors the external I/O signal monitor information in the module's detailed information which can be displayed on the system monitor of GX Works2. | - | - |
| History monitor function | This function monitors error history, warning history, and starting history of all axes. | - | $\bigcirc$ |
| Module error collection function | This function collects errors occurred in the LD75 in the CPU module. Holding the error contents in the CPU module, this function enables to check the error history even after the CPU module is powered off or reset. | - | $\bigcirc$ |

## 13.2 <br> Parameter Initialization Function

The "parameter initialization function" is used to return the setting data set in the LD75 buffer memory and flash ROM to their factory-set initial values.
The details shown below explain about the "parameter initialization function".

- Parameter initialization means
- Control details
- Control precautions
- Parameter initialization method


## (1) Parameter initialization means

- Initialization is executed with a program.
- Initialization is executed by GX Works2.

Refer to [] GX Works2 Version 1 Operating Manual (Intelligent Function Module) for the execution method by GX Works2.

## (2) Control details

The following table shows the setting data initialized by the "parameter initialization function".
(The data initialized are "buffer memory" and " flash ROM " setting data.)

|  |
| :--- |
| Basic parameters ([Pr.1] to [Pr.10]) |
| Detailed parameters ([Pr.11] to [Pr.42], [Pr.70], [Pr.150]) |
| OPR basic parameters ([Pr.43] to [Pr.48]) |
| OPR detailed parameters ([Pr.49] to [Pr.57]) |
| Positioning data (No. 1 to No. 600) |
| Block start data (No. 7000 to No.7004) |

## (3) Control precautions

- Parameter initialization is only executed when the positioning control is not carried out (when the PLC READY signal [Y0] is OFF). The warning "In PLC READY (warning code: 111)" will occur if executed when the PLC READY signal [Y0] is ON.
- Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible, and the error "Flash ROM write error" (error code: 801) will occur.
- A "CPU module reset" or "CPU module power restart" must be carried out after the parameters are initialized.
- If an error occurs on the parameter set in the LD75 when the PLC READY signal [Y0] is turned ON, the LD75 READY signal [ XO ] will not be turned ON and the control cannot be carried out.


## Point ${ }^{\circ}$

Parameter initialization takes about 10 seconds. (Up to 30 seconds are sometimes required.)
Do not turn the power ON/OFF; reset the CPU module, etc., during parameter initialization. If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.

## (4) Parameter initialization method

- Parameter initialization is carried out using the dedicated instruction "ZP.PINIT". (Refer to Page 619, CHAPTER 14 for details.)
- Parameter initialization can also be carried out by the writing of the data shown in the table below to the buffer memory using the TO instruction /intelligent function device.
The initialization of the parameter is executed at the time point the data is written to the LD75 buffer memory.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.2] | Parameter initialization request |  | 1 | Set "1" (parameter initialization request). | 1901 |  |  |  |

Refer to Page 211, Section 5.7 for the information on detail settings.
When the initialization is complete, "0" will be set in "[Cd.2] Parameter initialization request" by the LD75 automatically.

When the LD75 buffer memory data is rewritten from the CPU module, "the data backed up in the LD75 flash ROM" may differ from "the data (buffer memory data) for which control is being executed". In cases like these, the data being executed will be lost when the programmable controller power is turned OFF. ( 5 Page 305, CHAPTER 7) In cases like these, the "execution data backup function" backs up the data being executed by writing it to the flash ROM. The data that was backed up is then written to the buffer memory when the power is turned ON next. The details shown below explain about the "execution data backup function".

- Execution data backup means
- Control details
- Control precautions
- Execution data backup method


## (1) Execution data backup (written to flash ROM) means

- The backup is executed with a program.
- The backup is executed by GX Works2.

Refer to $\square \square$ GX Works2 Version 1 Operating Manual (Common) for execution data backup method by GX Works2.

## (2) Control details

The following shows the data that can be written to the flash ROM using the "execution data backup function".

| Buffer memory |  | Flash ROM |
| :---: | :---: | :---: |
| Parameters ([Pr.1] to [Pr.57], [Pr.70], [Pr.150]) | $\rightarrow$ | Parameters ([Pr.1] to [Pr.57], [Pr.70], [Pr.150]) |
| Positioning data (No. 1 to No.600) |  | Positioning data (No. 1 to No. 600) |
| Block start data (No. 7000 to 7004) |  | Block start data (No. 7000 to 7004) |

## (3) Control precautions

- Parameter initialization is only executed when the positioning control is not carried out (when the PLC READY signal [Y0] is OFF). The warning "In PLC READY (warning code: 111)" will occur if executed when the PLC READY signal [Y0] is ON.
- Writing to the flash ROM can be executed up to 100,000 times. If writing to the flash ROM exceeds 100,000 times, the writing may become impossible, and the error "Flash ROM write error" (error code: 801) will occur.
- After one power ON/CPU module reset operation, writing to the flash ROM using a program is limited to up to 25 times.
If the 26th writing is executed, the error "Flash ROM write number error" (error code: 805) will occur. If this error occurs, carry out the power OFF $\rightarrow$ ON/CPU module reset operation again.
Refer to [Md.19] of Page 114, Section 5.1.7 for details.


## Point ${ }^{\circ}$

Do not turn the power ON/OFF; reset the CPU module, etc., while writing to the flash ROM.
If the power is turned OFF or the CPU module is reset to forcibly end the process, the data backed up in the flash ROM will be lost.

## (4) Execution data backup method

- Execution data backup (writing to the flash ROM) is carried out using the dedicated instruction "ZP.PFWRT". (Refer to Page 619, CHAPTER 14 for details.)
- Refer to Page 308, Section 7.2 for the data transmission processing at the backup of the execution data.
- Execution data backup can also be carried out by the writing of the data shown in the table below to the LD75 buffer memory using the TO instruction /intelligent function device.
The writing to the flash ROM is executed at the time point the data is written to the LD75 buffer memory.

| Setting item |  | Setting value | Setting details | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 |  | Axis 2 | Axis 3 | Axis 4 |
| [Cd.1] | Flash ROM write request |  | 1 | Set "1" (flash ROM write request). | 1900 |  |  |  |

Refer to $\longmapsto$ Page 211, Section 5.7 for the information on detail settings.
When the writing to the flash ROM is complete, " 0 " will be set in "[Cd.1] Flash ROM write request" by the LD75 automatically.

## 13.4 <br> External I/O Signal Logic Switching Function

This function switches the signal logic according to the external equipment connected to the LD75.
For the system in which drive unit READY with b-contact, upper limit switch, and lower limit switch are not used, the parameter logic setting can be controlled without wiring if it is changed to a "positive logic".
When the drive unit READY, upper limit switch, and lower limit switch are used, ensure to use them with b-contact.
The details shown below explain about the "external I/O signal logic switching function".

- Parameter setting details
- Precautions on parameter setting


## (1) Parameter setting details

To use the "external I/O signal logic switching function", set the parameters shown in the following table.

| Setting item |  | Setting details |  |  | Factory-set initial value | Buffer memory address |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Axis 1 | Axis 2 | Axis 3 |  | Axis 4 |
| [Pr.22] | Input signal logic selection |  |  |  | - Selection of logic of signals input from external source to LD75 |  |  | 0 | 31 | 181 | 331 | 481 |
|  |  | b0 | Lower limit | 0: Negative logic <br> 1: Positive logic |  |  |  |  |  |  |
|  |  | b1 | Upper limit |  |  |  |  |  |  |  |
|  |  | b2 | Drive unit READY |  |  |  |  |  |  |  |
|  |  | b3 | Stop signal |  |  |  |  |  |  |  |
|  |  | b4 | External command signal |  |  |  |  |  |  |  |
|  |  | b5 | Zero signal |  |  |  |  |  |  |  |
|  |  | b6 | Near-point dog signal |  |  |  |  |  |  |  |
|  |  | b7 | Unused | Set "0". |  |  |  |  |  |  |
|  |  | b8 | Manual pulse generator input | 0 : Negative logic <br> 1: Positive logic |  |  |  |  |  |  |
|  |  | b9 to b15 | Unused | Set "0". |  |  |  |  |  |  |
| [Pr.23] | Output signal logic selection | - Selection of logic of signals output from LD75 to external source |  |  | 0 | 32 | 182 | 332 | 482 |  |  |  |
|  |  | b0 | Command pulse signal | 0: Negative logic <br> 1: Positive logic |  |  |  |  |  |  |  |  |
|  |  | b1 to b3 | Unused | Set "0". |  |  |  |  |  |  |  |  |
|  |  | b4 | Deviation counter clear signal | 0: Negative logic <br> 1: Positive logic |  |  |  |  |  |  |  |  |
|  |  | b5 to b15 | Unused | Set "0". |  |  |  |  |  |  |  |  |

Refer to Page 118, Section 5.2 for the information on detail settings.

## (2) Precautions on parameter setting

- The external I/O signal logic switching parameters are validated when the PLC READY signal [Y0] is turned OFF to ON. (The logic is negative right after power-on.)
- If each signal logic is set erroneously, the operation may not be carried out correctly. Before setting, check the specifications of the equipment to be used.


### 13.5 External I/O Signal Monitor Function

The "external I/O signal monitor function" monitors the module's information and external I/O signal statuses in the module's detailed information which can be displayed on the system monitor of GX Works2.
The information that can be monitored are the module's information (same as the LD75 front "RUN", "ERR" LED indicators) and the following external I/O signals.
(Set the logic of the external I/O signals in "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection".)


Refer to the following manual for the system monitor of GX Works2.
$\square]$ GX Works2 Version 1 Operating Manual (Common)

### 13.6 History Monitor Function

This function monitors starting history, error history, and warning history stored in the buffer memory of LD75 during operation.

## (1) Starting history

Sixteen starting history logs of operations such as positioning operation, JOG operation, and manual pulse generator operation can be monitored. When the number of logs exceeds 16, the latest log overwrites the oldest $\log$ so that the latest 16 logs can be monitored all the time. This function allows users to check the operation sequence (whether the operations have been started in a predetermined sequence) at system start-up.

| Intelligent Function Module Monitor 4(0000:LD75P4) - Detai... $x$ |  |  |
| :---: | :---: | :---: |
| Starting History Error History | Warning History\| |  |
| Start Information Restart Flag | Start Information Start Origin | Start Informat A |
| OFF | Peripherals | Axis \#1 |
| OFF | PLC | Axis \#1 |
| ¢ |  | Arinn+1 ${ }^{\text {a }}$ |
|  | Detail Display Unpdate | Close |

To monitor the starting history, register the LD75 to the "Intelligent Function Module Monitor Window". For details on the registration method and monitoring method, refer to the following.
[] GX Works2 Version 1 Operating Manual (Intelligent Function Module)

## (2) Error history, warning history

Sixteen error history logs and sixteen warning history logs can be monitored. When the number of logs exceeds 16 , the latest log overwrites the oldest log so that the latest 16 logs can be monitored all the time.


To monitor the error history and warning history, register the LD75 to the "Intelligent Function Module Monitor Window".
For details on the registration method and monitoring method, refer to the following.
[] GX Works2 Version 1 Operating Manual (Intelligent Function Module)

### 13.7 Module Error Collection Function

This function collects errors and alarms occurred in the LD75 in the CPU module. Those errors and alarms are stored in a memory (latch area) of the CPU module as module error logs. The stored error logs are retained even when the CPU module is powered off or reset.


For details on the module error collection function, refer to Page 640, Section 15.1.

## CHAPTER 14 dedicated instructions

### 14.1 List of Dedicated Instructions

The dedicated instructions explained in this Chapter are listed in the following table.

| Application | Dedicated instruction | Outline of functions | Reference |
| :---: | :---: | :---: | :---: |
| Absolute position restoration | Z.ABRST1 | This function restores the absolute position of the designated axis of the LD75. | Page 620, Section 14.3 |
|  | Z.ABRST2 |  |  |
|  | Z.ABRST3 |  |  |
|  | Z.ABRST4 |  |  |
| Positioning start | ZP.PSTRT1 | This function starts the positioning control of the designated axis of the LD75. | Page 625, Section 14.4 |
|  | ZP.PSTRT2 |  |  |
|  | ZP.PSTRT3 |  |  |
|  | ZP.PSTRT4 |  |  |
| Teaching | ZP.TEACH1 | This function carries out teaching the designated axis of the LD75. | Page 629, Section 14.5 |
|  | ZP.TEACH2 |  |  |
|  | ZP.TEACH3 |  |  |
|  | ZP.TEACH4 |  |  |
| Writing to flash ROM | ZP.PFWRT | This function writes the buffer memory parameters, positioning data and block start data to the flash ROM. | Page 633, Section 14.6 |
| Parameter initialization | ZP.PINIT | This function initializes the buffer memory and flash ROM setting data to the factory-set data (initial values). | Page 637, Section 14.7 |

### 14.2 Interlock During Dedicated Instruction Is Executed

The absolute position restoration instruction (Z.ABRSTD), positioning start instruction (ZP.PSTRTD) and teaching instruction (ZP.TEACHD) cannot be executed simultaneously in each axis. If they are executed at the same time, the second and later instructions are ignored by an internal interlock (no error will occur).
The timing of the positioning start dedicated instruction (ZP.PSTRTロ) is as shown below.


## 14.3 <br> Z．ABRST1，Z．ABRST2，Z．ABRST3，Z．ABRST4

These dedicated instructions restore the absolute position of the designated axis．

| Setting data | Usable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device JロIロ |  | Intelligent function module UपIGロ | Index register Zn | Constant | Others |
|  | Bit | Word |  | Bit | Word |  |  | K，H |  |
| （S） | － | $\bigcirc$ |  | － |  |  |  | － | － |
| （D） | $\bigcirc$ | $\bigcirc$ | － | － |  |  |  | － | － |

［Instruction symbol］
Z．ABecution condition］
Z．ABRST1
Z．ABRST2
Z．ABRST3
Z．ABRST4

When Z．ABRST1，Z．ABRST2，Z．ABRST3，and Z．ABRST4 are common to each other，they are designated as＂ Z．ABRSTロ＂．

## （1）Setting data

| Setting data＊1 | Setting details | Setting side＊2 | Data type |
| :---: | :--- | :---: | :---: |
| ＂Un＂ | LD75 head I／O number <br> （00 to FE：High－order two digits of I／O number expressed in three digits） | User | BIN 16 bits |
| （S） | Head number of a device in which control data is stored | - | Device name |
| （D） | Head number of a bit device which turns ON the operation by one scan at the time of <br> completion of the instruction． <br> If the instruction is completed abnormally，（（D）＋1）will also be turned ON． | System | Bit |

＊1 The file register of each of the local device and the program cannot be used as a device for setting data．
＊2 The data on the setting side is as follows．
－User：Data before the execution of dedicated instructions is stored by user．
－System：Data after the execution of dedicated instruction is stored by CPU module．
(2) Control data

| Device | Item | Setting data | Setting range | Setting side*1 |
| :---: | :---: | :---: | :---: | :---: |
| (S) +0 | System area | - | - | - |
| (S)+1 | Complete status | The state at the time of completion is stored. <br> 0 : Normal completion <br> Other than 0: Abnormal completion (error code) ${ }^{*}{ }^{2}$ | - | System |
| (S)+2 | Signal received from servo amplifier | The following signal states taken in from the servo amplifier to the input module are written. <br> b0: ABS data bit 0 <br> b1: ABS data bit 1 <br> b2: Transmission data READY flag | b0: 0/1 <br> b1: 0/1 <br> b2: 0/1 | User |
| (S)+3 | Signal transmitted to servo amplifier | The ON/OFF states of the following data which are calculated using the dedicated instructions by the "signals received from the servo amplifier" and output to the servo amplifier are stored. <br> b0: Servo amplifier ON <br> b1: ABS transfer mode <br> b2: ABS request flag | - | System |
| (S)+4 | Status | Status of communication with servo amplifier <br> 0: Communication completed (Set by user at communication start) Other than 0: During communication (System stores) | 0 | User/system |
| (S)+5 to (S)+7 | System area | - | - | - |

*1 The data on the setting side is as follows.

- User: Data before the execution of dedicated instructions is stored by user.
- System: Data after the execution of dedicated instruction is stored by CPU module.
*2 Refer to Page 650, Section 15.5 for error codes at abnormal completion.


## (3) Functions

(a) The positioning data is read from the servo amplifier capable of processing the absolute positions of the axes to be set, and the values converted with respect to a unit are stored in "[Md.20] Current feed value" and "[Md.21] Machine feed value" area of the LD75.

- Z.ABRST1: Axis 1
- Z.ABRST2: Axis 2
- Z.ABRST3: Axis 3
- Z.ABRST4: Axis 4

For absolute position detection system, carry out the absolute position restoration operation each time the power is turned ON or CPU module is reset.
(b) An I/O module is used for communication (data read/write) with the servo amplifier capable of processing the absolute positions.

When using the Z.ABRSTD, prepare the input/output with the following number of points, for each axis, for communication with the servo amplifier.

- Input: 3 points
- Output: 3 points

Refer to Page 563, Section 12.6 for wiring of I/O signals.
(c) The Z.ABRSTD instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).
Complete device ((D)+0): This device is turned ON by the END processing of the scan for which Z.ABRSTD instruction is completed, and turned OFF by the next END processing.
Complete state display device ((D)+1): This device is turned ON and OFF according to the state in which Z.ABRSTD instruction is completed.

- When completed normally: Kept unchanged at OFF.
- When completed abnormally: This device is turned ON by the END processing of the scan for which Z.ABRSTD instruction is completed, and turned OFF by the next END processing. (same ON/OFF operation as complete device).


The completion of absolute position restoration can be confirmed using the ((S)+4) "status".
(d) Using the Z.ABRSTD instruction, the absolute position restoration is carried out in the following procedure.


## (4) Errors

(a) When a dedicated instruction is completed abnormally, the error complete signal $((D)+1)$ is turned ON , and the error code is stored in the complete status ((S)+1). Check and take measures against the error referring to Page 650, Section 15.5.

## (5) Precautions

(a) After the absolute position detection system is configured, the absolute position restoration must be carried out at least once after the power is turned ON or reset. Unless the absolute position restoration of the LD75 is completed, the servo amplifier will not be turned ON.
(b) Execute absolute position restoration when the PLC READY signal [Y0] is OFF.
(c) The restoration of the absolute position (Z.ABRSTD instruction execution) can also be carried out when the servo amplifier is turned ON.
If this is carried out, however, the servo ON signal is turned OFF for approx. $60 \mathrm{~ms}+$ scan time (servo OFF) and the motor may move. When carrying out the absolute position restoration during servo OFF, install an electromagnetic brake and output the Z.ABRST instruction to that brake during the Z.ABRSTD instruction execution.
(d) The following dedicated instructions cannot be executed simultaneously for the same axis. (Can be executed simultaneously for different axes.)

- Positioning start instructions (ZP.PSTRT1 to ZP.PSTRT4)
- Absolute position restoration instructions (Z.ABRST1 to Z.ABRST4)
- Teaching instructions (ZP.TEACH1 to ZP.TEACH4)
(e) If the Z.ABRSTD instruction is executed in the following cases, an error "Dedicated instruction error" (error code: 804) will occur and absolute position restoration cannot be carried out.
- Any value other than 0 is set to "Status" (device: $(\mathrm{S})+4$ ) of the control data (at communication start with servo amplifier).
- The instruction for a non-existent axis is specified. (Example: The Z.ABRST2 instruction is specified when the LD75P1 is used.)
- "Status" (device: $(\mathrm{S})+4)$ of the control data is changed during absolute position restoration (during communication with servo amplifier).


## (6) Program example

(a) Program to restore the absolute position of axis 1.

The X 47 to X 49 and Y 50 to Y 52 are used for communication with the servo amplifier.
X47: ABS data bit 0
X48: ABS data bit 1
X49: Transmission data READY flag
Y50: Servo ON signal
Y51: ABS transfer mode
Y52: ABS request flag


## 14.4

## ZP．PSTRT1，ZP．PSTRT2，ZP．PSTRT3，ZP．PSTRT4

These dedicated instructions are used to start the positioning of the designated axis．

| Setting data | Usable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device JロIロ |  | Intelligent function module UपIGロ | Index register Zn | Constant | Others |
|  | Bit | Word |  | Bit | Word |  |  | K，H |  |
| （S） | － |  | $\bigcirc$ |  |  | － |  | － | － |
| （D） | $\bigcirc$ | $\bigcirc$ | － |  |  | － |  | － | － |

［Instruction symbol］
［Execution condition］
ZP．PSTRT1



When ZP．PSTRT1，ZP．PSTRT2，ZP．PSTRT3，and ZP．PSTRT4 are common to each other，they are designated as＂ ZP．PSTRTロ＂．

## （1）Setting data

| Setting data＊1 | Setting details | Setting side ${ }^{* 2}$ | Data type |
| :---: | :--- | :---: | :---: |
| ＂Un＂ | LD75 head I／O number <br> （00 to FE：High－order two digits of I／O number expressed in three digits） | User | BIN 16 bits |
| （S） | Head number of a device in which control data is stored | - | Device name |
| （D） | Head number of a bit device which turns ON the operation by one scan at the time of <br> completion of the instruction． <br> If the instruction is completed abnormally，（（D）＋1）will also be turned ON． | System | Bit |

＊1 The file register of each of the local device and the program cannot be used as a device for setting data．
＊2 The data on the setting side is as follows．
－User：Data before the execution of dedicated instructions is stored by user．
－System：Data after the execution of dedicated instruction is stored by CPU module．
(2) Control data

| Device | Item | Setting data | Setting range | Setting side ${ }^{* 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| (S) +0 | System area | - | - | - |
| (S)+1 | Complete status | The state at the time of completion is stored. <br> - 0 : Normal completion <br> - Other than 0 : Abnormal completion (error code) ${ }^{*}{ }^{2}$ | - | System |
| (S)+2 | Start No. | The following data Nos. to be started by the ZP.PSTRTD instruction are designated. <br> - Positioning data No.: 1 to 600 <br> - Block start: 7000 to 7004 <br> - Machine OPR: 9001 <br> - Fast OPR: 9002 <br> - Current value changing: 9003 <br> - Multiple axes simultaneous start: 9004 | 1 to 600 7000 to 7004 9001 to 9004 | User |
| *1 The data on the setting side is as follows. <br> - User: Data before the execution of dedicated instructions is stored by user. <br> - System: Data after the execution of dedicated instruction is stored by CPU module. *2 Refer to Page 650, Section 15.5 for error codes at abnormal completion. |  |  |  |  |

## (3) Functions

(a) The positioning start of the axes to be processed is carried out.

- ZP.PSTRT1: Axis 1
- ZP.PSTRT2: Axis 2
- ZP.PSTRT3: Axis 3
- ZP.PSTRT4: Axis 4
(b) The block start, OPR start, current value changing, and multiple axes simultaneous start can be carried out by the setting of "start number" 7000 to 7004/9001 to 9004 in ((S)+2).
(c) The ZP.PSTRTD instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).
Complete device ((D)+0): This device is turned ON by the END processing of the scan for which ZP.PSTRTD instruction is completed, and turned OFF by the next END processing.
Complete state display device ((D)+1): This device is turned ON by the END processing of the scan for which ZP.PSTRTD instruction is completed, and turned OFF by the next END processing. (same ON/OFF operation as complete device).
- When completed normally: Kept unchanged at OFF.
- When completed abnormally: This device is turned ON by the END processing of the scan for which ZP.PSTRTD instruction is completed, and turned OFF by the next END processing. (same ON/OFF operation as complete device).

(4) Errors
(a) When an ZP.PSTRTD instruction is completed abnormally, the error complete signal $((D)+1)$ is turned $O N$, and the error code is stored in the complete status ((S)+1). Check and take measures against the error referring to $\$$ Page 650, Section 15.5.
(5) Precautions
(a) When positioning is started by the ZP.PSTRTD instruction, the positioning start signals (Y10 to Y13) will not turn ON. Therefore, the start complete signal (X10 to X13) cannot be used for confirming completion of start of positioning. To confirm that positioning control is being executed, use the ZP.PSTRTD start command or BUSY signals (XC to XF).
(b) If, after positioning has been started by the ZP.PSTRTD instruction, a stop command is input before positioning is complete, the complete device (D) turns ON one scan and the execution of the ZP.PSTRT $\square$ instruction is completed.
(c) The following dedicated instructions cannot be executed simultaneously for the same axis. (Can be executed simultaneously for different axes.)
- Positioning start instructions (ZP.PSTRT1 to ZP.PSTRT4)
- Absolute position restoration instructions (Z.ABRST1 to Z.ABRST4)
- Teaching instructions (ZP.TEACH1 to ZP.TEACH4)
(d) The ZP.PSTRTD instruction can only be executed when the LD75 READY signal (X0) is turned ON. Even if the ZP.PSTRTD instruction execution request is given when the LD75 READY signal is turned OFF, the ZP.PSTRTD instruction will not be executed. (not processed.)
Before executing the ZP.PSTRTD instruction, turn ON the PLC READY signal (Y0), and turn ON the LD75 READY signal (X0).
(e) If the ZP.PSTRTD instruction is executed in the following case, an error "Dedicated instruction error" (error code: 804) will occur and positioning cannot be started.
- Any value other than 1 to 600,7000 to 7004 , and 9001 to 9004 is set to "Starting number" (device: (S)+2) of the control data.
- The instruction for a non-existent axis is specified. (Example: The ZP.PSTRT2 instruction is specified when the LD75P1 is used.)
(f) When the multiple axes simultaneous start is executed by ZP.PSTRTD instruction, the completion device (D) will turn ON when the positioning of the axes executed by ZP.PSTRTD instructions is completed. (When the instructions is ZP.PSTRT1, the axis will be axis 1 .)


## (6) Program example

The following program executes the positioning start of positioning data No. 1 when X100 turns ON. Use D30 to D32 as the control data devices of positioning data No. 1, and M32 and M33 as the completion devices.
(a) Positioning start program

(b) Positioning start program (when the dedicated instruction is not used)


M150 Positioning start command pulse
Y1500 Positioning start No. 1 setting
Y10 Positioning start execution
Y10 Positioning start signal OFF

## 14.5

ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, ZP.TEACH4

This dedicated instruction is used to teach the designated axis.

| Setting data | Usable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device J밈 |  | Intelligent function module UपIGロ | Index register Zn | Constant | Others |
|  | Bit | Word |  | Bit | Word |  |  | K, H |  |
| (S) | - | $\bigcirc$ |  | - |  |  |  | - | - |
| (D) | $\bigcirc$ | $\bigcirc$ | - | - |  |  |  | - | - |



When ZP.TEACH1, ZP.TEACH2, ZP.TEACH3, and ZP.TEACH4 are common to each other, they are designated as "ZP.TEACH口".

## (1) Setting data

| Setting data*1 | Setting details | Setting side ${ }^{* 2}$ | Data type |
| :---: | :--- | :---: | :---: |
| "Un" | LD75 head I/O number <br> (00 to FE: High-order two digits of I/O number expressed in three digits) | User | BIN 16 bits |
| (S) | Head number of a device in which control data is stored | - | Device name |
| (D) | Head number of a bit device which turns ON the operation by one scan at the time of <br> completion of the instruction. <br> If the instruction is completed abnormally, ((D)+1) will also be turned ON. | System | Bit |

*1 The file register of each of the local device and the program cannot be used as a device for setting data.
*2 The data on the setting side is as follows.

- User: Data before the execution of dedicated instructions is stored by user.
- System: Data after the execution of dedicated instruction is stored by CPU module.
(2) Control data

| Device | Item | Setting data | Setting range | Setting side ${ }^{*}$ |
| :--- | :--- | :--- | :---: | :---: |
| $(\mathrm{~S})+0$ | System area | - | - | - |
| $(\mathrm{S})+1$ | Complete status | The state at the time of completion is stored. <br> $0:$ Normal completion <br> Other than 0: Abnormal completion (error code) ${ }^{* 2}$ |  |  |
| $(\mathrm{~S})+2$ | Teaching data <br> selection | The address (positioning address/arc address) to which the <br> current feed value is written is set. <br> $0:$ Current feed value is written to positioning address. <br> $1:$ Current feed value is written to arc address. | - | System |
| $(\mathrm{S})+3$ | Positioning data No. | The positioning data No. for which teaching is carried out is <br> set. | 1 to 600 | User |

*1 The data on the setting side is as follows.

- User: Data before the execution of dedicated instructions is stored by user.
- System: Data after the execution of dedicated instruction is stored by CPU module.
*2 Refer to Page 650, Section 15.5 for error codes at abnormal completion.
(3) Functions
(a) The "current feed value" of the axes to be set is set in the positioning address or arc address.
The positioning data other than the positioning addresses and arc addresses are set by GX Works2 or using a program.
- ZP.TEACH1: Axis 1
- ZP.TEACH2: Axis 2
- ZP.TEACH3: Axis 3
- ZP.TEACH4: Axis 4
(b) Teaching can be carried out for the positioning data No. 1 to 600.
(c) The movement of the machine to the address (position) set in the positioning address/arc address of the positioning data is carried out by the JOG operation, inching operation, or manual pulse generator operation.
(d) The ZP.TEACHD instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).
Complete device ((D)+0): This device is turned ON by the END processing of the scan for which ZP.TEACHロ instruction is completed, and turned OFF by the next END processing.
Complete state display device ((D)+1): This device is turned ON and OFF according to the state in which ZP.TEACH $\square$ instruction is completed.
- When completed normally: Kept unchanged at OFF.
- When completed abnormally: This device is turned ON by the END processing of the scan for which ZP.TEACH $\square$ instruction is completed, and turned OFF by the next END processing. (same ON/OFF operation as complete device).



## (4) Errors

(a) When a ZP.TEACH $\square$ instruction is completed abnormally, the error complete signal $((\mathrm{D})+1)$ is turned ON , and the error code is stored in the complete status (S)+1. Check and take measures against the error referring to $\$$ Page 650, Section 15.5.

## (5) Precautions

(a) The following dedicated instructions cannot be executed simultaneously for the same axis. (Can be executed simultaneously for different axes.)

- Positioning start instructions (ZP.PSTRT1 to ZP.PSTRT4)
- Absolute position restoration instructions (Z.ABRST1 to Z.ABRST4)
- Teaching instructions (ZP.TEACH1 to ZP.TEACH4)
(b) The ZP.TEACHD instruction can only be executed when the BUSY signal (XC, XD, XE, XF) is turned OFF. When the BUSY signal is turned ON, the ZP.TEACHD instruction will not be executed. (not processed.) Before executing the ZP.TEACHD instruction, make sure that the BUSY signal for the axis to be processed is turned OFF.
(c) If the ZP.TEACHD instruction is executed in any of the following cases, an error "Dedicated instruction error" (error code: 804) will occur and teaching cannot be performed.
- Any value other than 0 and 1 is set to "Teaching selection" (device: (S)+2) of the control data.
- Any value other than 1 to 600 is set to "Positioning No." (device: (S)+3) of the control data.
- The instruction for a non-existent axis is specified. (Example: The ZP.TEACH2 instruction is specified when the LD75P1 is used.)


## (6) Program example

Program to execute the teaching of the positioning data No. 3 of the axis 1 when X 39 is turned ON.
(a) Teaching program

Positioning is carried out for a target position by manual operation.

(b) Teaching program (when the dedicated instruction is not used)

Positioning is carried out for a target position by manual operation.


[^5]
### 14.6 ZP.PFWRT

These dedicated instructions are used to write the LD75 parameters, positioning data and block start data to the flash ROM.

| Setting data | Usable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device JロID |  | Intelligent function module UDIGロ | Index register Zn | Constant | Others |
|  | Bit | Word |  | Bit | Word |  |  | K, H |  |
| (S) | - |  | $\bigcirc$ |  |  | - |  | - | - |
| (D) | $\bigcirc$ | $\bigcirc$ | - |  |  | - |  | - | - |

[Instruction symbol]
[Execution condition] ZP.PFWRT


## (1) Setting data

| Setting data ${ }^{* 1}$ | Setting details | ${\text { Setting side }{ }^{* 2}}^{\text {Data type }}$ |  |
| :---: | :--- | :---: | :---: |
| "Un" | LD75 head I/O number <br> (00 to FE: High-order two digits of I/O number expressed in three digits) | User | BIN 16 bits |
| (S) | Head number of a device in which control data is stored | - | Device name |
| (D) | Head number of a bit device which turns ON the operation by one scan at the time of <br> completion of the instruction. <br> If the instruction is completed abnormally, ((D)+1) will also be turned ON. | System | Bit |

*1 The file register of each of the local device and the program cannot be used as a device for setting data.
*2 The data on the setting side is as follows.

- User: Data before the execution of dedicated instructions is stored by user.
- System: Data after the execution of dedicated instruction is stored by CPU module.


## (2) Control data

| Device | Item | Setting data | Setting range | Setting side ${ }^{* 1}$ |
| :--- | :--- | :--- | :---: | :---: |
| $(\mathrm{~S})+0$ | System area |  |  |  |
| $(\mathrm{S})+1$ | Complete status | The state at the time of completion is stored. <br> 0: Normal completion <br> Other than 0: Abnormal completion (error code) ${ }^{* 2}$ | - | - |

*1 The data on the setting side is as follows.

- User: Data before the execution of dedicated instructions is stored by user.
- System: Data after the execution of dedicated instruction is stored by CPU module.
*2 Refer to Page 650, Section 15.5 for error codes at abnormal completion.


## (3) Functions

(a) The ZP.PFWRT instruction completion can be confirmed using the complete devices ((D)+0) and ((D)+1).

Complete device ((D)+0): This device is turned ON by the END processing of the scan for which ZP.PFWRT instruction is completed, and turned OFF by the next END processing.
Complete state display device ((D)+1): This device is turned ON and OFF according to the state in which ZP.PFWRT instruction is completed.

- When completed normally: Kept unchanged at OFF.
- When completed abnormally: This device is turned ON by the END processing of the scan for which ZP.PFWRT instruction is completed, and turned OFF by the next END processing. (same ON/OFF operation as complete device).




## (4) Errors

(a) When a dedicated instruction is completed abnormally, the error complete signal $((D)+1)$ is turned $O N$, and the error code is stored in the complete status ((S)+1). Check and take measures against the error referring to

## (5) Precautions

(a) Do not turn ON the power and reset the CPU module while parameters, positioning data and block start data are written to the flash ROM using the ZP.PFWRT instruction.

A parameter error will occur or normal positioning start will become impossible because the parameters, positioning data and block start data are not written normally to the flash ROM. If this occurs, restart the operation by the method shown below.

- For GX Works2, write the parameters, positioning data and block start data again to the flash ROM.
- For a program, write the parameters, positioning data and block start data to the LD75 after initializing the parameters (ZP.PINIT instruction execution and others). Then execute the ZP.PFWRT instruction again.
(b) Writing to the flash ROM can be executed up to 100,000 times.

If writing to the flash ROM exceeds 100,000 times, the writing may become impossible.
(c) After the power ON and CPU module reset operation, writing to the flash ROM using a program is limited to up to 25 times. (Not limited to up to $\mathbf{2 5}$ times when writing to the flash ROM is carried out by GX Works2.)
If the 26th writing is requested after the power ON/CPU module reset operation, the error "Flash ROM write number error" (error code: 805) will occur, and the writing will be disabled.
If a flash ROM write error occurs by one writing to the flash ROM, check and correct the flash ROM writing program.
Then reset the error or turn ON the power and reset the CPU module again.
(d) The ZP.PFWRT instruction can only be executed when the LD75 READY signal (X0) is turned OFF.

When the LD75 READY signal is turned ON, the ZP.PFWRT instruction cannot be executed.
Before executing the ZP.PFWRT instruction, turn OFF the PLC READY signal (Y0) and then turn OFF the LD75 READY signal.

## (6) Program example

Program used to write the parameters and positioning data stored in the buffer memory to the flash ROM when X3D is turned ON .
(a) Flash ROM write program

(b) Flash ROM write program (when the dedicated instruction is not used)


This dedicated instruction is used to initialize the setting data of the LD75．

| Setting data | Usable device |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Internal device |  | File register | Link direct device JロI口 |  | Intelligent function module UपIGロ | Index register Zn | Constant | Others |
|  | Bit | Word |  | Bit | Word |  |  | K，H |  |
| （S） | － |  | $\bigcirc$ |  |  | － |  | － | － |
| （D） | $\bigcirc$ | $\bigcirc$ | － |  |  | － |  | － | － |

［Instruction symbol］
［Execution condition］
ZP．PINIT

（1）Setting data

| Setting data＊ | Setting details | Setting side ${ }^{* 2}$ | Data type |
| :---: | :--- | :---: | :---: |
| ＂Un＂ | LD75 head I／O number <br> （00 to FE：High－order two digits of I／O number expressed in three digits） | User | BIN 16 bits |
| （S） | Head number of a device in which control data is stored | - | Device name |
| （D） | Head number of a bit device which turns ON the operation by one scan at the time of <br> （completion of the instruction． <br> If the instruction is completed abnormally，（（D）＋1）will also be turned ON． | System | Bit |

＊1 The file register of each of the local device and the program cannot be used as a device for setting data．
＊2 The data on the setting side is as follows．
－User：Data before the execution of dedicated instructions is stored by user．
－System：Data after the execution of dedicated instruction is stored by CPU module．

## （2）Control data

| Device | Item | Setting data | Setting range | Setting side ${ }^{* 1}$ |
| :--- | :--- | :--- | :---: | :---: |
| $(\mathrm{~S})+0$ | System area |  |  |  |
| $(\mathrm{S})+1$ | Complete status | The state at the time of completion is stored． <br> 0：Normal completion <br> Other than 0：Abnormal completion（error code）${ }^{* 2}$ | - | - |

＊1 The data on the setting side is as follows．
－User：Data before the execution of dedicated instructions is stored by user．
－System：Data after the execution of dedicated instruction is stored by CPU module．
＊2 Refer to Page 650，Section 15.5 for error codes at abnormal completion．

## (3) Functions

(a) This dedicated instruction is used to return the setting data set in the LD75 buffer memory and flash ROM to their factory-set data (initial values).

|  | Initialized setting data |
| :--- | :--- |
| Parameters ([Pr.1] to [Pr.57], [Pr.70], [Pr.150]) |  |
| Positioning data (No. 1 to No. 600) |  |
| Block start data (No. 7000 to 7004) |  |

(b) The ZP.PINIT instruction completion can be confirmed using the complete devices $((D)+0)$ and ((D)+1).

Complete device ((D)+0): This device is turned ON by the END processing of the scan for which ZP.PINIT instruction is completed, and turned OFF by the next END processing.
Complete state display device ((D)+1): This device is turned ON and OFF according to the state in which ZP.PINIT instruction is completed.

- When completed normally: Kept unchanged at OFF.
- When completed abnormally: This device is turned ON by the END processing of the scan for which ZP.PINIT instruction is completed, and turned OFF by the next END processing. (same ON/OFF operation as complete device).



## (4) Errors

(a) When a dedicated instruction is completed abnormally, the error complete signal $((\mathrm{D})+1)$ is turned ON , and the error code is stored in the complete status ((S)+1).
Check and take measures against the error referring to $\leqslant$ Page 650, Section 15.5.

## (5) Precautions

(a) The ZP.PINIT instruction can only be executed when the LD75 READY signal (X0) is turned OFF.

When the LD75 READY signal is turned ON, the ZP.PINIT instruction cannot be executed.
Before executing the ZP.PINIT instruction, turn OFF the PLC READY signal (Y0) and then turn OFF the LD75 READY signal.
(b) Writing to the flash ROM can be executed up to $\mathbf{1 0 0 , 0 0 0}$ times.

If writing to the flash ROM exceeds 100,000 times, the writing may become impossible.
(c) After the power ON and CPU module reset operation, writing to the flash ROM using a program is limited to up to 25 times. (Not limited to up to 25 times when writing to the flash ROM is carried out by GX Works2.)

If the 26th writing is requested after the power ON/CPU module reset operation, the error "Flash ROM write number error" (error code: 805) will occur, and the writing will be disabled.
If a flash ROM write error occurs by one writing to the flash ROM, check and correct the flash ROM writing program.
Then reset the error or turn ON the power and reset the CPU module again.
(6) Program example

The following program initializes the parameters in buffer memory and flash ROM when X3C turns ON.
(a) Parameter initialization program

(b) Parameter initialization program (when the dedicated instruction is not used)


## CHAPTER 15 troubleshooting

### 15.1 Checking Errors Using GX Works2

Error codes corresponding to the errors occurred in the LD75 can be checked either on the following screen of GX Works2.

Select the screen according to the purpose and usage.

- "Module's Detailed Information" screen.
- "Error History" screen.


## (1) Checking errors on the "Module's Detailed Information" screen

Select [Diagnostics] $\Rightarrow$ [System Monitor] on GX Works2.
Select "LD75" for "Main block" and click the [Detailed information] button.
The "Module's Detailed Information" screen for the LD75 appears and the error code, error details, and corrective actions can be checked.


## (2) Checking errors on the "Error History" screen.

On the "Error History" screen, the error logs of the LD75 are displayed in a list together with the error logs of other modules. The logs can be output to a CSV format file. The error codes and the time of error occurrence can be checked even after the CPU module is powered off and then on or reset.
Select [Diagnostics] $\Rightarrow$ [System Monitor] $\Rightarrow$ [System Error History] button on GX Works2.


## (a) Error History List

Module error logs are displayed in a list.
(b) Error and Solution, Intelligent Module Information

- Error and Solution: Details of the error selected in the "Error History List" and its corrective action are displayed.
- Intelligent Module Information: The LD75 status when the error selected in the "Error History List" occurred is displayed.
For the LD75, the following contents are displayed.

| Item | Description |
| :---: | :---: |
| Start axis | The axis No. requested to start is stored. |
| Positioning start No. | The positioning start No. is stored. |
| Axis in which the error occurred | The axis No. in which the error occurred is stored. |
| Axis error occurrence (Data No.) | The data No. in which the error occurred is stored. |
| Current feed value | The current feed value (at the time of error) of the error axis is stored. |
| State of the input signal ( $\mathrm{X0} 0$ to XF ) | The status of input signals ( X 0 to XF) (at the time of error) is stored (in hexadecimal). |
| State of the input signal (X10 to X1F) | The status of input signals (X10 to X1F) (at the time of error) is stored (in hexadecimal). |
| State of the output signal (Y0 to YF) | The status of output signals ( Y 0 to YF ) (at the time of error) is stored (in hexadecimal). |
| State of the output signal (Y10 to Y1F) | The status of output signals (Y10 to Y1F) (at the time of error) is stored (in hexadecimal). |
| - Axis 1 drive unit READY signal <br> - Axis 1 upper limit signal <br> - Axis 1 lower limit signal <br> - Axis 1 stop signal <br> - Axis 1 external command signal <br> - Axis 1 near-point dog signal <br> - Axis 1 zero signal | The status of axis 1 external input signals (at the time of error) is stored. |
| - Axis 2 drive unit READY signal <br> - Axis 2 upper limit signal <br> - Axis 2 lower limit signal <br> - Axis 2 stop signal <br> - Axis 2 external command signal <br> - Axis 2 near-point dog signal <br> - Axis 2 zero signal | The status of axis 2 external input signals (at the time of error) is stored. |
| - Axis 3 drive unit READY signal <br> - Axis 3 upper limit signal <br> - Axis 3 lower limit signal <br> - Axis 3 stop signal <br> - Axis 3 external command signal <br> - Axis 3 near-point dog signal <br> - Axis 3 zero signal | The status of axis 3 external input signals (at the time of error) is stored. |
| - Axis 4 drive unit READY signal <br> - Axis 4 upper limit signal <br> - Axis 4 lower limit signal <br> - Axis 4 stop signal <br> - Axis 4 external command signal <br> - Axis 4 near-point dog signal <br> - Axis 4 zero signal | The status of axis 4 external input signals (at the time of error) is stored. |

## (c) [Create CSV File] button

The module error logs are output to a CSV format file.

## Point ${ }^{P}$

If errors frequently occur in the LD75, "*HST.LOSS*" (instead of an actual error code) may be displayed in the Error Code column.
(Display example)

| No. 7 | Error Code | Date and Time | Model Name | Start 1/O | $\triangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | 68 | 2009,01,05 22:45:40 | LD75D4 | 0030 |  |
| 103 | 69 | 2009/01/05 22:40:01 | LD75D4 | 0030 |  |
| 102 | *HST.LOSS* | 2009:01:05 22:39:20 | LD75D4 | 0030 |  |
| 101 | E173 | 200901/05 21:54:36 | L.J61日111 | U010 |  |
| 1 กn | 7104 | 20n9m1 ins $21 \cdot 30 \cdot 20$ | 1.171 ¢ 24 | กก7ก |  |

If " "HST.LOSS ${ }^{*}$ " is frequently displayed, set a larger value for the number of errors collected per scan in the PLC RAS tab of the PLC Parameter dialog box.
For the setting, refer to the following.
[ M MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals)
If the error occurred at the simultaneous start, the axis No. in which the error is detected is stored in the "Starting axis" in Error History.

### 15.2 Checking Errors Using a Display Unit

The buffer memory monitor/test function of a display unit allows users to check the errors in the LD75 without using the software package.
For the operation methods of a display unit and display contents, refer to the following.
[] MELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals)

## (1) Troubleshooting using the LEDs

Check items and corrective actions for troubleshooting using the indicator LEDs of the LD75 are described below.
(a) When the RUN LED turns off

| Check item | Action |
| :--- | :--- |
| Is the power supplied? | Check that the voltage supplied to the power supply module is within the rated range. |
| Is the power supply capacity sufficient? | Calculate the total current consumption of the connected modules (CPU module, I/O modules, and <br> intelligent function modules) and check that the power supply capacity is not insufficient. |
| Is the module connected correctly? | • Check that the connector on the side of the module is properly inserted. <br> - Check that the module joint levers are locked. |

If there is no problem on the above check items, a watchdog timer error may have occurred. Reset the CPU module and check that the RUN LED turns on.

If not, the possible cause is a hardware failure. Please consult your local Mitsubishi representative.
(b) When the ERR. LED turns on

| Check item | Action |
| :--- | :--- |
| Is there a system error? | An error may have occurred in the CPU module. Check the error and take a corrective action. |

(c) When the ERR. LED and axis LED flash

| Check item | Action |
| :--- | :--- |
| Is there an axis error? | Check the error code and take the action described in the following. (5 Page 650, Section 15.5) |

(d) When all LEDs turn on

Reset the CPU module and check that the module is in the normal status.
If all LEDs still turn on, the possible cause is a hardware failure. Please consult your local Mitsubishi representative.

## (2) Troubleshooting when a motor does not rotate

Check items and corrective actions for troubleshooting when a motor does not rotate are described below.

## Point ${ }^{\rho}$

The following signals must be ON for the LD75 to operate (excluding when the positioning test function of GX Works2 is used).

- LD75 READY signal (X0)
- Drive unit READY signal
- Upper limit signal and Lower limit signal

The status of the drive unit READY signal and upper/lower limit signals can be checked in b0 to b2 of "[Md.30] External I/O signal".

| Check item | Action |
| :--- | :--- |
| Are the LD75 READY signal (X0), drive unit READY <br> signal, and upper/lower limit signals ON? | Review and correct the program and wiring so that all the LD75 READY signal (X0), drive unit READY <br> signal, and upper/lower limit signals turn ON. |
| Is there an error in the LD75? (ERR. LED is on or <br> flashing) | Check the error code and take a corrective action. |
| Is the drive unit powered ON? | Power on the drive unit. |
| Is there an error in the drive unit? | Check the error code of the drive unit and take a corrective action. |
| Is the wiring between the LD75 and drive unit correct? | Check the wiring between the LD75 and drive unit, and correct it. |
| Is the wiring between the drive unit and motor <br> correct? | Check the wiring between the drive unit and motor, and correct it. |
| Is the value in "[Md.20] Current feed value" changed <br> after positioning control is performed? | Review the start program. |
| Is the number of the input pulses for monitoring <br> changed after positioning control is performed? |  |
| Isn't the value in "[Md.26] Axis operation status" "1: <br> Stopped"? | Refer to the drive unit operating manual and check that the function to suppress the motor rotation is <br> not working. |
| Does the setting of the pulse output mode meet the <br> specifications of the drive unit? | Set "[Pr.5] Pulse output mode" so that it satisfies the specifications of the drive unit. |
| Does the output logic setting of the command pulse <br> signal meet the specifications of the drive unit? | Set the value of the logic selection of the command pulse signal ([Pr.23] Output signal logic selection: <br> b0) so that it satisfies the specifications of the drive unit. |

*1 This check item applies only for the drive unit having a monitor function for the number of input pulses.

If a motor does not rotate even after the above items are checked, the possible cause is a hardware failure. Please consult your local Mitsubishi representative.

## (3) Troubleshooting when a motor does not rotate as intended.

Check items and corrective actions for troubleshooting when a motor does not rotate as intended are described below.
(a) When a motor rotates only in one direction

| Check item | Action |
| :--- | :--- |
| Is the wiring correct? | Check that the signal line of the pulse output (for axis 1, connector pin No. "1A15 to 18") is correctly <br> wired or not disconnected. |
| Does the setting of the pulse output mode meet the <br> specifications of the drive unit? | Set "[Pr.5] Pulse output mode" so that it satisfies the specifications of the drive unit. |

(b) When a motor rotates in the opposite direction

| Check item | Action |
| :--- | :--- |
| Is the wiring correct? | Check that the signal line of the pulse output (for axis 1, connector pin No. "1A15 to 18") is wired <br> correctly. (CW and CCW or phase A and phase B should be correctly wired.) |
| Do the values in "[Pr.6] Rotation direction setting" and <br> "[Pr.23] Output signal logic selection (b0: Command <br> pulse signal) " match the settings of the drive unit?Check that the values in "[Pr.6] Rotation direction setting" and "[Pr.23] Output signal logic selection <br> (b0: Command pulse signal)" match the settings of the drive unit. |  |

## (c) When a motor does not rotate at the set speed

| Check item | Action |
| :---: | :---: |
|  | When "[Md.28] Axis feedrate" indicates the set speed <br> - Check that the values in "[Pr.2] No. of pulses per rotation", "[Pr.3] Movement amount per rotation", and "[Pr.4] Unit magnification" meet the system. <br> - When the drive unit has the electronic gear function, check that the settings meet the system. |
| Does the value in "[Md.28] Axis feedrate" indicate the set speed? | When "[Md.28] Axis feedrate" does not indicate the set speed <br> - Check that the speed is not limited by the value in "[Pr.8] Speed limit value". <br> - In the JOG operation, Check that the speed is not limited by the value in "[Pr.31] JOG speed limit value". <br> - In the JOG operation, check that Forward/Reverse run JOG start signals (Y8 to YF) do not repeatedly turn ON and OFF. |

(d) When the set position is not reached

| Check item | Action |
| :---: | :---: |
| Does the value in "[Md.20] Current feed value" indicate the intended position when the motor stops? | When "[Md.20] Current feed value" reaches the set position <br> - Check that the values in "[Pr.2] No. of pulses per rotation", "[Pr.3] Movement amount per rotation", and "[Pr.4] Unit magnification" meet the system. <br> - When the drive unit has the electronic gear function, check that the settings meet the system. |
|  | When "[Md.20] Current feed value" does not reach the set position <br> - Check that the motor is not stopped by Axis stop signals (Y4 to Y7) or a stop signal (STOP). If a motor is stopped by them, the value "1: Stopped" is stored in "[Md.26] Axis operation status". |

### 15.4 Error and Warning Details

### 15.4.1 Errors

## (1) Types of errors

Errors detected by the LD75 include parameter setting range errors and errors at the operation start or during operation.

## (a) Parameter setting range errors

The parameters are checked when the power is turned ON and at the rising edge (OFF $\rightarrow \mathrm{ON}$ ) of the PLC READY signal [YO]. An error will occur if there is a mistake in the parameter setting details at that time. When this kind of error occurs, the LD75 READY signal does not turn ON.
To cancel this kind of error, set the correct value in the parameter for which the error occurred, and then turn ON the PLC READY signal [Y0].

## (b) Errors at the operation start or during operation

These are errors that occur at the operation start or during operation when the positioning control, JOG operation, or inching operation is used. If an axis error occurs during interpolation operation, the error No. will be stored in both the reference axis and the interpolation axis.
Note that, in the following cases, the axis error No. will be stored only in the reference axis during analysis of the positioning data set in each point of the positioning start data table.

- When the interpolation axis is BUSY.
- When the error occurred in positioning data or parameters unrelated to interpolation control.

If the error occurred at the simultaneous start of a positioning operation, the axis error storage details will differ depending on whether the error occurred before or after the simultaneous start.

- If the error occurred before the simultaneous start (illegal axis No., other axis BUSY, etc.), the error "Error before simultaneous start" (error code: 501) will occur.
- If the error occurred after the simultaneous start (positioning data error, software stroke limit error, etc.), an error code corresponding to the axis in which the error occurred will be stored. In this case, because a simultaneous start cannot be carried out, the error code of the error "Simultaneous start not possible" (error code: 532) will be stored in all axes in which the error has not occurred.
The axis operation status will be displayed as "error occurring" for axes in which an error occurred.
If an error occurs during operation, any moving axes will deceleration stop, and their operation status will be displayed as "error occurring".
All axes will decelerate to a stop during interpolation operations, even if the error occurs in only one axis.
(c) Types of error codes

| Error code | Error type |
| :--- | :--- |
| 001 to 009 | Fatal error |
| 100 to 199 | Common error |
| 200 to 299 | Error at OPR or absolute position restoration |
| 300 to 399 | Error during JOG operation or during inching operation |
| 500 to 599 | Error during positioning operation |
| 800 to 899 | I/F (Interface) error |
| 900 to 999 | Error during parameter setting range check |

## (2) Error storage

When an error occurs, the error detection signal turns ON, and the error code corresponding to the error details is stored in the following buffer memory address ([Md.23] Axis error No.) for axis error No. storage.

| Axis No. | Error detection signal | Buffer memory address |
| :---: | :---: | :---: |
| 1 | X8 | 806 |
| 2 | X9 | 906 |
| 3 | XA | 1006 |
| 4 | XB | 1106 |

A new error code is stored in the buffer memory address ([Md.23] Axis error No.) for axis error storage every time an error occurs.

## Point ${ }^{\rho}$

When any of the following errors is detected, it is stored in the axis error No. of axis 1.
Error code: 001, 002, 107, 800, 801, 802, 805

### 15.4.2 Warnings

## (1) Types of warnings

Warnings include system warnings and axis warnings.
(a) System warning

The types of system warnings are shown below.

- System control data setting warnings: An axis warning for axis 1 will occur.
- Positioning data setting warnings: An axis warning for each axis will occur. Note that a warning will occur for the reference axis when an interpolation designation or axis setting warning occurs.
(b) Axis warning

Axis warnings occur due to setting warnings from operations such as positioning operations, JOG operations, manual pulse generator operations, or system errors. They can be canceled by turning ON the "[Cd.5] Axis error reset".
Note that some warnings cannot be canceled unless the cause of the warning is eliminated.
The axis operation status does not change even if an axis warning occurs.
(c) Types of warning codes

| Warning code | Classification of warnings |
| :---: | :--- |
| 100 to 199 | Common warning |
| 300 to 399 | Warning during JOG operation |
| 400 to 499 | Warning during manual pulse generator operation |
| 500 to 599 | Warning during positioning operation |

## (2) Warning storage

When an axis warning occurs, the warning code corresponding to the warning details is stored in the following buffer memory ([Md.24] Axis warning No.) for axis warning No. storage.

| Axis No. | Buffer memory address |
| :---: | :---: |
| 1 | 807 |
| 2 | 907 |
| 3 | 1007 |
| 4 | 1107 |

When an axis warning occurs in a positioning operation, etc., "1" is set in bit 9 (b9) of the following buffer memory ([Md.31] Status) for axis status storage.

| Axis No. | Buffer memory address |
| :---: | :---: | :---: |
| 1 | 817 |
| 2 | 917 |
| 3 | 1017 |
| 4 | 1117 |

### 15.4.3 Resetting errors and warnings

Remove the cause of error or warning following the actions described in Page 650, Section 15.5 and Page 676, Section 15.6.
After that, clear an error or warning state by resetting the error.

## (1) How to clear errors or warnings

An error or warning state is cleared after the following processing has been carried out by setting "1" in the address [1502 (for axis 1)], [1602 (for axis 2)], [1702 (for axis 3)], and [1802 (for axis 4)] of the buffer memory for axis error resetting ([Cd.5] Axis error reset).

- Axis error detection signal turned OFF
- "[Md.23] Axis error No." cleared
- "[Md.24] Axis warning No." cleared
- Changing of "[Md.26] Operation status" from "Error" to "Standby".
- Axis warning detection "( [Md.31] Status : b9)" turned OFF
15.4.4 Checking the warning details

The warning details can be confirmed with the warning codes. ( Page 676, Section 15.6)
Confirming them requires GX Works2. For details, refer to the following.
[] GX Works2 Version 1 Operating Manual (Intelligent Function Module)

The following table shows the error details and corrective actions to be taken when an error occurs.

| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| - | 000 | (Normal status) | -Description <br> - <br> ©Operation status at error occurrence | ■Action |
| Fatal errors | 001 | Faults | ■Description <br> Hardware is faulty. <br> ■Operation status at error occurrence <br> The system stops. | ■Action <br> Check that there is no influence from noise. |
|  | 002 | Internal circuit fault |  |  |
| Common | 101 | PLC READY OFF during operation | -Description <br> A PLC READY signal (Y0) is turned OFF during operation. <br> -Operation status at error occurrence The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 2). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Review the program which turns ON/OFF PLC READY signal (YO). |
|  |  |  | ■Description <br> The drive unit READY signal is turned OFF during operation. <br> -Operation status at error occurrence <br> The system stops immediately. | ■Action <br> Check the power supply status of the drive unit, wiring to the drive unit, and the connection status of the connector. |
|  | 102 | Drive unit READY OFF | -Description <br> The start of an operation is requested when the drive unit READY signal is OFF. <br> ■Operation status at error occurrence The system does not start. | ■Action <br> - Check the power supply status of the drive unit, wiring to the drive unit, and the connection status of the connector. <br> - Check the values in [Pr.22] Input signal logic selection. <br> - When a drive unit without READY signal output is used, wire the system so that the drive unit READY signal input of the LD75 is always ON. |
|  | 103 | Test mode faults during operation | ■Description <br> The personal computer cannot communicate with the CPU module. <br> ■Operation status at error occurrence <br> The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 2). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> - Check that there is no error on the personal computer side I/F to which a cable is connected. <br> - Because communication takes a long time between the personal computer and a CPU module, ensure high-speed communication by setting the transmission speed to high at the transfer setup of GX Configurator-QP or GX Works2, or connecting the personal computer directly to the communication I/F of the CPU module. <br> - Reduce the load of communication by stopping the access to a CPU module from GX Developer or GX Works2 (such as monitor function). |


| Classification of errors | $\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$ | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Common | 104 | Hardware stroke limit (+) | ■Description <br> The upper limit signal (FLS) turned OFF during operation. <br> ■Operation status at error occurrence <br> The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 1). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Reset an axis error. (5 Page 649, Section 15.4.3) <br> After that, perform manual control operation to move the axis to the position where the upper limit signal (FLS) will not turn OFF. ( $\leftrightarrows$ Page 479, CHAPTER 11) |
|  |  |  | ■Description <br> The start of an operation is requested when the hardware stroke limit (upper limit signal FLS) is OFF. <br> ■Operation status at error occurrence The system does not start. | ■Action <br> - Check the wiring of the upper limit signal (FLS). <br> - Check that the limit switch specifications meet the setting of "[Pr.22] Input signal logic selection". <br> - In a system which does not require a hardware stroke limit (limit switch), wire the system so that the upper limit signal (FLS) input of the LD75 is always ON. |
|  | 105 | Hardware stroke limit (-) | ■Description <br> The lower limit signal (RLS) turned OFF during operation. <br> ■Operation status at error occurrence <br> The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 1). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Reset an axis error. (5 Page 649, Section 15.4.3) <br> After that, perform manual control operation to move the axis to the position where the lower limit signal (RLS) will not turn OFF. (Ю Page 479, CHAPTER 11) |
|  |  |  | -Description <br> The start of an operation is requested when the hardware stroke limit (lower limit signal RLS) is OFF. <br> ■Operation status at error occurrence The system does not start. | ■Action <br> - Check the wiring of the lower limit signal (RLS). <br> - Check that the limit switch specifications meet the setting of "[Pr.22] Input signal logic selection". <br> - In a system which does not require a hardware stroke limit (limit switch), wire the system so that the lower limit signal (RLS) input of the LD75 is always ON. |
|  | 106 | Stop signal ON at start | ■Description <br> The start of an operation is requested when the stop signal is ON. <br> ■Operation status at error occurrence <br> The system does not start. | ■Action <br> The start timing is reviewed so that the operation starts after the stop command is reset. <br> Output signals to LD75 $\rightarrow$ Axis 1: Y4, Axis 2: Y5, <br> Axis 3: Y6, Axis 4: Y7 <br> External input $\rightarrow$ Connectors for external devices: <br> Stop signals (STOP) |
|  | 107 | READY OFF $\rightarrow$ ON during BUSY | -Description <br> The PLC READY signal is turned from OFF to ON when BUSY signal is turned ON. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> Turn ON the PLC READY signal (Y0) with the BUSY signals of all axes OFF. |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| OPR | 201 | Start at OP | -Description <br> When the OPR retry invalid is set, the near-point dog machine OPR is started with the OPR complete flag turned ON. <br> ■Operation status at error occurrence The machine OPR does not start. | ■Action <br> - Validate the OPR retry function (set value: 1 ). ( $\hookleftarrow$ Page 510, Section 12.2.1) <br> - Move the workpiece from the current position (on OP) using the manual control operation (以 Page 479, CHAPTER 11), then carry out a machine OPR again. <br> Buffer memory address <br> Axis 1: 78 <br> Axis 2: 228 <br> Axis 3: 378 <br> Axis 4: 528 <br> ■Setting range <br> OPR retry: 0, 1 |
|  | 203 | Dog detection timing fault | Description <br> The near-point dog signal is turned OFF during the deceleration from an OPR speed to a creep speed by the near-point dog machine OPR. <br> ■Operation status at error occurrence <br> The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> - Lower the OPR speed. <br> - Increase the dog signal input time. (↔ Page 321, Section 8.2.3) <br> ■Buffer memory address <br> Axis 1: 74, 75 <br> Axis 2: 224, 225 <br> Axis 3: 374,375 <br> Axis 4: 524,525 <br> ■Setting range <br> OPR speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |
|  | 204 | OP detection timing fault | -Description <br> The zero signal is turned OFF during the deceleration from an OPR speed to a creep speed by the stopper method 2 )-OPR. <br> ■Operation status at error occurrence <br> The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> - Lower the OPR speed. <br> - Input external zero signals during the movement at a creep speed. ( $\wp$ Page 327, Section 8.2.5) <br> MBuffer memory address <br> Axis 1: 74, 75 <br> Axis 2: 224, 225 <br> Axis $3: 374,375$ <br> Axis 4: 524,525 <br> ■Setting range <br> OPR speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |
|  | 205 | Dwell time fault | -Description <br> A dwell time is passed during the deceleration from a creep speed to a OPR speed by the stopper method 1)-OPR. <br> ■Operation status at error occurrence <br> The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Lower the OPR speed. <br> ■Buffer memory address <br> Axis 1: 74, 75 <br> Axis 2: 224, 225 <br> Axis 3: 374,375 <br> Axis 4: 524,525 <br> ■Setting range <br> OPR speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |
|  |  |  |  | ■Action <br> Increase the OPR dwell time. ( 5 Page 323, Section 8.2.4) <br> ■Buffer memory address <br> Axis 1: 79 <br> Axis 2: 229 <br> Axis 3: 379 <br> Axis 4: 529 <br> ■Setting range <br> OPR dwell time: 0 to 65535 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| OPR | 206 | Count method movement amount fault | ■Description <br> In the count method 1 and 2 machine OPR, a parameter "Setting of movement amount after nearpoint dog ON" is smaller than a distance necessary for deceleration stop from an OPR speed. <br> ■Operation status at error occurrence The machine OPR does not start. | -Action <br> - Calculate the movement distance using a speed limit, OPR speed, and deceleration time, and set the movement amount after near-point dog ON so that the distance becomes a deceleration distance or longer. <br> - Adjust the near-point dog position so that the movement amount after near-point dog ON becomes longer. ( $\Im$ Page 332, Section 8.2.7, Page 335, Section 8.2.8) <br> ■Buffer memory address <br> Axis 1: 80, 81 <br> Axis 2: 230, 231 <br> Axis 3: 380,381 <br> Axis 4: 530, 531 <br> - Setting range <br> Setting for the movement amount after near-point dog ON: 0 to 2147483647 |
|  |  |  |  | - Action <br> Lower the OPR speed. <br> ■Buffer memory address <br> Axis 1: 74, 75 <br> Axis 2: 224, 225 <br> Axis 3: 374,375 <br> Axis 4: 524, 525 <br> ■Setting range <br> OPR speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |
|  | 207 | OPR request ON | ■Description <br> The OPR request flag is turned ON when a fastOPR is started (positioning start No. 9002). <br> ■Operation status at error occurrence The fast OPR is not started. | -Action <br> Execute the machine OPR (positioning No. 9001). <br> ( $\ddagger$ Page 318, Section 8.2) <br> ■Buffer memory address <br> Axis 1: 1500 <br> Axis 2: 1600 <br> Axis 3: 1700 <br> Axis 4: 1800 <br> ■Setting range <br> Positioning start No.: 1 to 600, 7000 to 7004, 9001 to 9004 |
|  | 209 | OPR restart not possible | mescription <br> The restart command is turned ON after the machine OPR is stopped using a stop signal. <br> OOperation status at error occurrence The restart is not carried out. | -Action <br> Start the machine OPR (positioning start No. 9001) again. (W Page 318, Section 8.2) <br> -Buffer memory address <br> Axis 1: 1500 <br> Axis 2: 1600 <br> Axis 3: 1700 <br> Axis 4: 1800 <br> - Setting range <br> Positioning start No.: 1 to 600, 7000 to 7004, 9001 to 9004 |
|  | 213 | ABS transmission time | -Description <br> Communication cannot be carried out with the | ■Action <br> - Review the wiring. (Ю Page 563, Section 12.6) <br> - Review the program. |
|  | 214 | ABS transmission SUM | servo-amplifier using an absolute position restoration instruction. <br> ■Operation status at error occurrence <br> The absolute position restoration is not carried out. | -Action <br> - Review the wiring. (↔ Page 563, Section 12.6) <br> - Review the program. <br> - Review the dedicated instruction parameters. (以 Page 620, Section 14.3) |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| JOG inching | 300 | Outside JOG speed range | -Description <br> At the time of JOG starting, the JOG speed comes out of a specified range. <br> ■Operation status at error occurrence <br> The JOG operation is not carried out when the JOG speed is outside the setting range at the time of JOG start. | ■Action <br> Bring the JOG speed into the setting range. ( <br> Page 481, Section 11.2) <br> ■Buffer memory address <br> Axis 1: 1518, 1519 <br> Axis 2: 1618, 1619 <br> Axis 3: 1718, 1719 <br> Axis 4: 1818, 1819 <br> ■Setting range JOG speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |
|  | 301 | Inching movement amount error | Description <br> The inching movement amount does not meet the setting condition. (The setting value is larger.) <br> Setting condition: "Inching movement amount $\times(A)$ $\leq$ JOG speed limit value" <br> (A): 562.5 for when the setting unit is pulse, 337.5 for when the setting unit is other than pulse <br> ■Operation status at error occurrence The inching operation is not carried out. | EAction <br> Reduce the inching movement amount to satisfy setting conditions. ( $\longmapsto$ Page 491, Section 11.3) <br> ■Buffer memory address <br> Axis 1: 1517 <br> Axis 2: 1617 <br> Axis 3: 1717 <br> Axis 4: 1817 <br> ■Setting range <br> Inching movement amount: 0 to 65535 |
| Positioning operation | 500 | Illegal condition data No. | -Description <br> The condition data No. is outside the setting range when a block using the condition data is started by a special starting (conditional start, wait start, simultaneous start, FOR (condition)). <br> ( $1 \leq$ Condition data No. $\leq 10$ ) <br> ■Operation status at error occurrence The system stops operation. | ■Action <br> Review the condition data No. ( Page 175, Section 5.4 (4)) <br> © Buffer memory address <br> $\longmapsto$ Page 171, Section 5.4 <br> ■Setting range <br> Condition data No.: 1 to 10 |
|  | 501 | Error before simultaneous start | -Description <br> When blocks are started simultaneously <br> - The partner axis of simultaneous start is BUSY. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops operation. | ■Action <br> Normalize the condition operators. ( $\leftrightarrows$ Page 180, Section 5.5 (2)) <br> ■Buffer memory address <br> $\longmapsto$ Page 176, Section 5.5 <br> ■Setting range <br> - Condition operator <br> Axis designation: $10 \mathrm{H}, 20 \mathrm{H}, 30 \mathrm{H}, 40 \mathrm{H}, 50 \mathrm{H}, 60 \mathrm{H}$, <br> $70 \mathrm{H}, 80 \mathrm{H}, 90 \mathrm{H}, \mathrm{AOH}, \mathrm{BOH}, \mathrm{COH}, \mathrm{DOH}, \mathrm{EOH}$ |
|  |  |  | Description <br> When multiple axes are started and controlled simultaneously <br> - The partner axis of simultaneous start is BUSY. <br> - The "Simultaneous start axis start data No." of the start axis is 0 or is outside the setting range. <br> - The "Simultaneous start axis start data No." of those axes other than the start axis is outside the setting range. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops operation. | ■Action <br> Normalize the simultaneous starting axis start data No. (ছ Page 473, Section 10.5) <br> ■Buffer memory address <br> Axis 1: 1540, 1541, 1542, 1543 <br> Axis 2: 1640, 1641, 1642, 1643 <br> Axis 3: 1740, 1741, 1742, 1743 <br> Axis 4: 1840, 1841, 1842, 1843 <br> ■Setting range <br> Simultaneous starting axis start data No. (Axis 1 start data No., Axis 2 start data No., Axis 3 start data No., Axis 4 start data No.): 0 to 600 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 502 | Illegal data No. | -Description <br> - The positioning data No. tried to be executed is outside the ranges of 1 to 600,7000 to 7004 , and 9001 to 9004. <br> - The designation of a JUMP destination is executed currently. <br> - The designation of a JUMP destination is outside the ranges of 1 to 600 . <br> ■Operation status at error occurrence <br> The positioning data is not executed. | ■Action <br> Normalize the positioning start No., positioning start data (in block start). <br> ■Buffer memory address <br> Axis 1: 1500 <br> Axis 2: 1600 <br> Axis 3: 1700 <br> Axis 4: 1800 <br> ■Setting range <br> Positioning start No.: 1 to 600, 7000 to 7004, 9001 to 9004 |
|  |  |  |  | ■Action <br> Normalize the positioning data (in JUMP instruction). <br> ■Buffer memory address <br> 5 Page 152, Section 5.3 <br> ■Setting range <br> JUMP destination: 1 to 600 |
|  | 503 | No command speed | -Description <br> - At the start of positioning, a current speed (-1) is set for the command speed of the positioning data to be initially executed. <br> - The current speed is set by speed control. <br> - The current speed is set for speed-position switching control or position-speed switching control. <br> ■Operation status at error occurrence <br> At the start of positioning, operation does not start. | ■Action <br> Normalize the positioning data. <br> ■Buffer memory address <br> $\mapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Command speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |
|  | 504 | Outside linear movement amount range | -Description <br> - When the "composite speed" has been set in "Interpolation speed designation method" of the parameter or positioning data and a linear interpolation control is performed, the axis movement amount set for each positioning data exceeds $1073741824\left(2^{30}\right)$. <br> - The positioning address is -360.00000 or less or 360.00000 or more using INC instruction, where the control unit is set to "degree" and software stroke limit upper limit is not equal to the software stroke limit lower limit. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops immediately. | EAction <br> Review the positioning address. <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Positioning address/movement amount <br> - ABS <br> Unit [mm] [pulse] [inch]: -2147483648 to 2147483647 <br> Unit [degree]: 0 to 35999999 <br> - INC <br> (When the software stroke limit is valid) <br> Unit [degree]: -35999999 to 35999999 <br> Unit [mm] [pulse] [inch]: -2147483648 to 2147483647 <br> (When the software stroke limit is invalid) <br> -2147483648 to 2147483647 <br> - Speed-position switching <br> INC mode: 0 to 2147483647 <br> ABS mode: 0 to 35999999 <br> - Position-speed switching <br> 0 to 2147483647 <br> Arc address: -2147483648 to 2147483647 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
|  | 506 | Large arc error deviation | -Description <br> When an arc or helix is interpolated by the designation of the center point, a difference between a radius of start point-center point and a radius of end point-center point exceeds the parameter "Allowable circular interpolation error width". <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system will stop immediately. | -Action <br> - Correct the center point address (arc address). <br> - Correct the end point address (positioning address). <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Positioning address/movement amount <br> - ABS <br> Unit [mm] [pulse] [inch]: -2147483648 to 2147483647 <br> Unit [degree]: 0 to 35999999 <br> - INC <br> (When the software stroke limit is valid) <br> Unit [degree]: -35999999 to 35999999 <br> Unit [mm] [pulse] [inch]: -2147483648 to 2147483647 <br> (When the software stroke limit is invalid) -2147483648 to 2147483647 <br> - Speed-position switching <br> INC mode: 0 to 2147483647 <br> ABS mode: 0 to 35999999 <br> - Position-speed switching <br> 0 to 2147483647 <br> Arc address: -2147483648 to 2147483647 |
| Positioning operation | 507 | Software stroke limit+ | -Description <br> - Positioning is carried out at a position beyond the software stroke limit upper limit. <br> - The positioning address and new current value exceed the software stroke limit upper limit. <br> - The sub point exceeds the software stroke limit upper limit in the circular interpolation or helical interpolation with sub point designation. <br> ■Operation status at error occurrence <br> At operation start: The system will not operate. <br> At current value changing analysis: The current value is not changed. <br> During operation: <br> - When the positioning address exceeds the software stroke limit range and the control is switched to the one for the out-of-range data during a position control (including the position control in speed-position switching control and position-speed switching control), the system will stop immediately. <br> - When the current feed value or machine feed value during speed control (including speedposition and position-speed switching control) or manual control exceeds the software stroke limit range, the system will stop with the setting (deceleration stop only) of the detailed parameter 2 Sudden stop selection (stop group 3). | ■Action <br> At operation start: <br> - Bring the current feed value into the software stroke limit using the manual control operation. ( $\ddagger$ Page 479, CHAPTER 11) <br> - Correct the positioning address. (Also check the arc address in the circular interpolation or helical interpolation with sub point designation.) <br> Current value changing: Set the new current value within the software stroke limit range. (以 Page 447, Section 9.2.21) <br> During operation: Correct the positioning address. <br> (For the positioning and arc addresses, refer to <br> $\longmapsto$ Page 159, Section 5.3 (7) and Page 164, <br> Section 5.3 (8).) <br> ■Buffer memory address <br> - New current value <br> Axis 1: 1506, 1507 <br> Axis 2: 1606, 1607 <br> Axis 3: 1706, 1707 <br> Axis 4: 1806, 1807 <br> - Software stroke limit upper limit <br> Axis 1: 18, 19 <br> Axis 2: 168, 169 <br> Axis 3: 318, 319 <br> Axis 4: 468, 469 <br> - Setting range <br> New current value, software stroke limit upper <br> limit value <br> - [mm] [inch] [pulse]: -2147483648 to 2147483647 <br> - [degree]: 0 to 35999999 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 508 | Software stroke limit- | -Description <br> - Positioning is carried out at a position beyond the software stroke limit lower limit. <br> - The positioning address and new current value exceed the software stroke limit lower limit. <br> - The sub point exceeds the software stroke limit lower limit in the circular interpolation or helical interpolation with sub point designation. <br> ■Operation status at error occurrence <br> At operation start: The system will not operate. <br> At current value changing analysis: The current value is not changed. <br> During operation: <br> - When the positioning address exceeds the software stroke limit range and the control is switched to the one for the out-of-range data during a position control (including the position control in speed-position switching control and position-speed switching control), the system will stop immediately. <br> - When the current feed value or machine feed value during speed control (including speedposition and position-speed switching control) or manual control exceeds the software stroke limit range, the system will stop with the setting (deceleration stop only) of the detailed parameter 2 Sudden stop selection (stop group 3). | ■Action <br> At operation start: <br> - Bring the current feed value into the software stroke limit using the manual control operation. <br> ( $\ddagger$ Page 479, CHAPTER 11) <br> - Correct the positioning address. (Also check the arc address in the circular interpolation or helical interpolation with sub point designation.) <br> Current value changing: Set the new current value within the software stroke limit range. ( Page 447, Section 9.2.21) <br> During operation: Correct the positioning address. (For the positioning and arc addresses, refer to $\leftrightarrows$ Page 159, Section 5.3 (7), W Page 164, Section 5.3 (8)) <br> ■Buffer memory address <br> - New current value <br> Axis 1: 1506, 1507 <br> Axis 2: 1606, 1607 <br> Axis 3: 1706, 1707 <br> Axis 4: 1806, 1807 <br> - Software stroke limit lower limit <br> Axis 1: 20, 21 <br> Axis 2: 170, 171 <br> Axis 3: 320, 321 <br> Axis 4: 470, 471 <br> ■Setting range <br> New current value, software stroke limit lower limit value <br> - [mm] [inch] [pulse]: -2147483648 to 2147483647 <br> - [degree]: 0 to 35999999 |
|  | 514 | Outside new current value range | Description <br> The new current address is outside the ranges of 0 to 359.99999 , where the control unit is set to "degree". <br> ■Operation status at error occurrence The current value is not changed. | ■Action <br> Bring the new current value into the setting range. <br> ( 5 Page 447, Section 9.2.21) <br> ■Buffer memory address <br> Axis 1: 1506, 1507 <br> Axis 2: 1606, 1607 <br> Axis 3: 1706, 1707 <br> Axis 4: 1806, 1807 <br> - Setting range <br> New current value <br> [degree]: 0 to 35999999 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
|  | 515 | New current value not possible | Description <br> - The operation pattern "continuous path control" is set in the positioning data in which the control system "current value changing" is set. <br> - The control system "current value changing" is set in the positioning data following the positioning data in which the operation pattern "continuous path control" is set. <br> ■Operation status at error occurrence The current value is not changed. | ■Action <br> - Do not designate the "continuous path control" using the "current value changing". <br> - Do not designate the "current value changing" using the positioning data following the positioning data that the "continuous path control" is designated. ( 5 Page 447, Section 9.2.21) <br> ■Buffer memory address <br> $\leftrightarrows$ Page 152, Section 5.3 <br> ■Setting range <br> Control system: 01 H to $1 \mathrm{EH}, 80 \mathrm{H}$ to 84 H <br> - $03 \mathrm{H}, 0 \mathrm{CH}, 17 \mathrm{H}, 1 \mathrm{CH}: 1$ to 4 axis fixed-feed control <br> - 04H, 05H, 13H, 14H, 18H, 19H, 1DH, 1EH: 1 to 4 axis speed control <br> - 81 H : current value changing <br> - Speed-position switching control: 06H, 07H <br> - Position-speed switching control: $08 \mathrm{H}, 09 \mathrm{H}$ <br> Operation pattern: 00, 01, 11 <br> - 01: Continuous positioning control <br> - 11: Continuous path control |
| Positioning operation | 516 | Continuous path control not possible | Description <br> - The continuous path control is designated using a control system which is not allowed to use for continuous path control such as speed control, speed-position switching control, position-speed switching control, fixed-feed, and current value change. <br> - The previous data such as those on speed control, speed-position switching control, position-speed switching control, fixed-feed, and current value change shows a continuous path control. <br> - The continuous positioning control is designated for speed control or position-speed switching control. <br> ■Operation status at error occurrence <br> At start: The system will not operate. | ■Action <br> - Do not designate a speed control, fixed-feed, speed-position switching control, positionspeed switching control, and current value change using the positioning data following the continuous path control data. <br> - Do not carry out the fixed-feed, speed control, speed-position switching control, positionspeed switching control, and current value change using the continuous path control operation pattern. <br> - Do not carry out the speed control and positionspeed switching control using the continuous path control operation pattern. (↔ Page 339, CHAPTER 9) <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Control system: 01 H to $1 \mathrm{EH}, 80 \mathrm{H}$ to 84 H <br> - $03 \mathrm{H}, 0 \mathrm{CH}, 17 \mathrm{H}, 1 \mathrm{CH}: 1$ to 4 axis fixed-feed control <br> - 04H, $05 \mathrm{H}, 13 \mathrm{H}, 14 \mathrm{H}, 18 \mathrm{H}, 19 \mathrm{H}, 1 \mathrm{DH}, 1 \mathrm{EH}: 1$ to 4 axis speed control <br> - 81 H : current value changing <br> - Speed-position switching control: 06H, 07H <br> - Position-speed switching control: 08H, 09H <br> Operation pattern: 00, 01, 11 <br> - 01: Continuous positioning control <br> - 11: Continuous path control |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 518 | Outside operation pattern range | ■Description <br> The operation pattern set value is 2 . <br> -Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Correct the operation pattern. (↔ Page 157, Section 5.3 (2)) <br> ■Buffer memory address <br> $\omega$ Page 152, Section 5.3 <br> - Setting range <br> Same as error code 515 to 516. |
|  | 519 | Interpolation while interpolation axis BUSY | -Description <br> Interpolation is started during the operation of the interpolation axis. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Correct the control system. ( $\Im$ Page 157, Section 5.3 (3)) <br> ■Buffer memory address <br> 5 Page 152, Section 5.3 <br> ■Setting range <br> Same as error code 515 to 516 . |
|  | 520 | Unit group unmatched | ■Description <br> When the "composite speed" has been set in "Interpolation speed designation method" of the parameter or positioning data, the units of the reference axis and interpolation axis differ. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Correct the positioning data or change the parameter "Unit setting" of the axis to be interpolated. ( $\ddagger$ Page 359, Section 9.1.6) <br> ■Buffer memory address <br> Axis 1: 0 <br> Axis 2: 150 <br> Axis 3: 300 <br> Axis 4: 450 <br> - Setting range <br> Unit setting: 0, 1, 2, 3 |
|  | 521 | Illegal interpolation description command | -Description <br> The self axis or a non-existent axis is set as the axis to be interpolated in the 2-axis interpolation or helical interpolation. <br> Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> - Correct the control system. ( $\curvearrowleft$ Page 157, Section 5.3 (3)) <br> - Correct the axis to be interpolated. (↔ Page 158, Section 5.3 (6)) <br> -Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Same as error code 515 to 516. |
|  | 522 | Command speed setting error | -Description <br> The command speed is outside the setting range. Linear interpolation, circular interpolation, helical interpolation: The speed of the reference axis is outside the setting range. <br> Speed control interpolation: Either of reference axis and interpolation axis is outside the speed range. <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Correct the command speed. ( $W$ Page 167, Section 5.3 (9)) <br> -Buffer memory address <br> Command speed storage addresses of positioning data No. 1 to 600 <br> ■Setting range <br> Command speed: 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2} \mathrm{~mm} / \mathrm{min}\right.$ or other] |



| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 526 | End point setting error | -Description <br> - The start point is equal to the end point in circular interpolation or helical interpolation with sub point designation. <br> - End point address is outside the range of 2147483648 to 2147483647 in the circular interpolation with sub point designation and center point designation. <br> - The end point address is outside the range of 2147483648 to 2147483647 in circular interpolation or helical interpolation with sub point designation or center point designation. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system will stop immediately. | ■Action <br> Correct the end point address (positioning address). ( $\Im$ Page 391, Section 9.2.10) <br> -Buffer memory address <br> $\omega$ Page 152, Section 5.3 <br> ■Setting range <br> Same as error code 525 |
|  | 527 | Center point setting error | ■Description <br> One of the following settings is configured in circular interpolation or helical interpolation with center point designation. <br> - Start point = Center point <br> - End point = Center point <br> - Center point address is outside the range of 2147483648 to 2147483647. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system will stop immediately. | ■Action <br> Correct the center point address (arc address). <br> (Ю Page 395, Section 9.2.11) <br> ■Buffer memory address <br> $\omega$ Page 152, Section 5.3 <br> ■Setting range <br> Same as error code 525 |
|  | 530 | Outside address range | ■Description <br> - In the speed-position switching control and the position-speed switching control, the setting value of a positioning address is negative. <br> - In the 1-axis linear control (ABS), 2- to 4-axis linear interpolation control (ABS), or helical interpolation control (ABS), the setting value of a positioning address is outside the range of 0 to 359.99999 [degree]. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Correct the positioning address. ( $\leftrightarrows$ Page 428, Section 9.2.18, Page 435, Section 9.2.19, Page 441, Section 9.2.20) <br> -Buffer memory address <br> $\omega$ Page 152, Section 5.3 <br> ■Setting range <br> Same as in error codes 504, 506. |
|  | 532 | Simultaneous start not possible | ■Description <br> Among the axes to be started simultaneously, there is an axis on which an error other than this error occurs. <br> ■Operation status at error occurrence At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> In the error history, check the axis where the error other than this error occurred, and remove the error factor. Correct the block start data and positioning data. <br> ■Buffer memory address <br> $\leftrightarrows$ Page 152, Section 5.3 <br> $\longmapsto$ Page 171, Section 5.4 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 533 | Condition data error | -Description <br> - The condition setting values are not set or outside the setting range. <br> - The condition operator setting values are not set or outside the setting range. <br> - The condition operator is a bit operator, and the parameter 1 is 32 or more. <br> - An unusable condition operator is set for the set condition. <br> - The conditional operator has been [parameter 1 $>$ parameter 2] with 05 H (P1 $\leq$ ** $\leq \mathrm{P} 2$ ). <br> - The value in 'address' is out of the setting range when the condition target is set to 'Buffer memory (1-word/2-word)'. (1-word: 0 to 32767, 2-word: 0 to 32766) <br> ■Operation status at error occurrence <br> The system stops operation. | ■Action <br> Normalize the block start data. <br> ■Buffer memory address <br> $\mapsto$ Page 171, Section 5.4 |
|  | 534 | Special start instruction error | -Description <br> No applicable special start instruction is present. <br> ■Operation status at error occurrence <br> The system stops operation. | EAction <br> Correct the special start instruction code. ( <br> Page 175, Section 5.4 (3)) <br> ■Buffer memory address <br> $\longmapsto$ Page 171, Section 5.4 <br> ■Setting range <br> <Special start instruction> <br> 00 H to 06 H |
|  | 535 | Circular interpolation not possible | -Description <br> The circular interpolation or helical interpolation is carried out for the axis with the "degree" unit setting. <br> ■Operation status at error occurrence The system stops operation. | ■Action <br> Correct the control system. (以 Page 157, Section 5.3 (3)) <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 |
|  | 536 | M code ON signal ON start | -Description <br> The positioning start is carried out when an M code ON signal ( X 4 to X 7 ) is turned ON . <br> ■Operation status at error occurrence <br> At start: The system will not operate. | ■Action <br> After turning OFF the M code ON signal, start the system. (Ю Page 580, Section 12.7.3) <br> -Buffer memory address <br> Axis 1: 1504 <br> Axis 2: 1604 <br> Axis 3: 1704 <br> Axis 4: 1804 <br> - Setting range <br> M code OFF request <br> 1: The M code ON signal turns OFF. |
|  | 537 | PLC READY OFF start | ■Description <br> The positioning start is carried out when the PLC READY signal (YO) is turned OFF. <br> ■Operation status at error occurrence At start: The system will not operate. | ■Action <br> Check the program which turns ON/OFF the PLC READY signal (YO), and turn ON the PLC READY signal. Then start the system. |
|  | 538 | READY OFF start | -Description <br> The positioning start is carried out when the LD75 READY signal (XO) is turned OFF. <br> ■Operation status at error occurrence At start: The system will not operate. | ■Action Check the LD75 READY ON signal, and then start the system. ( $\curvearrowleft$ Page 67, Section 3.3.2) |
|  | 543 | Outside start No. range | Description <br> - At the start of positioning, the setting value of the "positioning start No." of the axis control data is outside the ranges of 1 to 600,7000 to 7004 , and 9001 to 9004. <br> - At a Pre-reading start, the "positioning start No." setting of the axis control data is other than 1 to 600. <br> ■Operation status at error occurrence <br> At start: The system will not operate. | ■Action <br> Normalize the positioning start No. ( $\leftrightarrows$ Page 598, Section 12.7.7) <br> ■Buffer memory address <br> Axis 1: 1500 <br> Axis 2: 1600 <br> Axis 3: 1700 <br> Axis 4: 1800 <br> - Setting range <br> Positioning start No.: 1 to 600, 7000 to 7004, 9001 to 9004 |


| Classification of errors | Error <br> code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 544 | Outside radius range | ■Description <br> The arc radius exceeds 536870912 . <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system will stop immediately. | ■Action <br> Correct the positioning data. ( $\ddagger$ Page 391, Section 9.2.10, Page 395, Section 9.2.11) <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Maximum radius: 536870912 |
|  | 545 | Control system LOOP setting error | Description <br> A " 0 " is set for number of repetitions of the control system "LOOP". <br> ■Operation status at error occurrence <br> The system stops operation. | ■Action <br> Set 1 to 65535 for number of repetitions of the <br> "LOOP". ( <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> LOOP to LEND: 1 to 65535 |
|  | 546 | Illegal setting of ABS direction in unit of degree | -Description <br> The setting value of ABS direction in the unit of degree is as follows. <br> - Set outside the setting range. <br> - A figure other than " 0 " is set when the software stroke limit is valid. <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system decelerates to a stop. (Note that, in the continuous positioning control and continuous path control, the system continues operating with the setting set at the time of start even if the setting is changed during the operation.) | ■Action <br> - Set the ABS setting direction in the unit of degree within the setting range. <br> - Set " 0 " when the software stroke limits are valid. (Ю Page 355, Section 9.1.5) <br> -Buffer memory address <br> - ABS setting direction in the unit of degree <br> Axis 1: 1550 <br> Axis 2: 1650 <br> Axis 3: 1750 <br> Axis 4: 1850 <br> - Setting range <br> 0: Shortcut <br> 1: ABS clockwise <br> 2: ABS counterclockwise |
|  |  |  |  | ■Action <br> - Invalidate the software stroke limit. (To invalidate, set the software stroke limit upper limit value to be equal to the software stroke limit lower limit value.) ( $\leftrightarrows$ Page 355, Section 9.1.5) <br> ■Buffer memory address <br> - Software stroke limit upper limit <br> Axis 1: 18, 19 <br> Axis 2: 168, 169 <br> Axis 3 : 318,319 <br> Axis 4: 468, 469 <br> - Software stroke limit lower limit <br> Axis 1: 20, 21 <br> Axis 2: 170, 171 <br> Axis 3: 320, 321 <br> Axis 4: 470, 471 <br> ■Setting range <br> - [mm] [inch] [pulse]: -2147483648 to 2147483647 <br> - [degree]: 0 to 35999999 |
|  | 553 | M code ON timing error | Description <br> The setting value of the positioning data " M code ON signal output timing" is outside the range. <br> ■Operation status at error occurrence At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). | ■Action <br> Correct the positioning data "M code ON signal output timing" to 0 to 2 . <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> metting range <br> 0 : Use the set value in "[Pr.18] M code ON signal output timing". <br> 1: WITH mode <br> 2: AFTER mode |
|  | 554 | Interpolation speed designation method error | ■Description <br> The setting value of the positioning data "Interpolation speed designation method" is outside the range. <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). | ■Action <br> Correct the positioning data "Interpolation speed designation method" to 0 to 2 . <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> 0 : Use the set value in "[Pr.20] Interpolation speed designation method". <br> 1: Composite speed <br> 2: Reference axis speed |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 555 | Outside range of the number of pitches | -Description <br> In the helical interpolation, the number of pitches set in the positioning data " M code" of the linear interpolation axis is outside the range. <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). | ■Action <br> Correct the number of pitches set in the positioning data " M code" of the linear interpolation axis to 0 to 999 . <br> -Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 <br> ■Setting range <br> Number of pitches: 0 to 999 |
| I/F | 800 | Hold error | -Description <br> In the CPU module parameter "Output at error stop", the setting for LD75 is "Hold". <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action Clear the setting of the CPU module parameter "Output at error stop". |
|  | 801 | Flash ROM write error | -Description <br> Data is not written to the flash ROM. <br> -Operation status at error occurrence <br> At start: The system will not operate. | ■Action <br> The flash ROM is expected to be at the end of its writable life. Replace the flash ROM with a new one. |
|  | 802 | Flash ROM sum check error | -Description <br> While data is written to the flash ROM, the power is turned OFF. <br> ■Operation status at error occurrence <br> At start: The system will not operate. | ■Action <br> Return the parameter to that set at the time of delivery from the plant. ( $\longmapsto$ Page 610, Section 13.2) <br> - Buffer memory address <br> Common to axes 1 to 4: 1901 <br> ■Setting range <br> Parameter initialization request <br> 1: Parameter initialization is requested |
|  | 803 | PLC CPU error | -Description <br> The CPU module resulted in an error. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 sudden stop selection (stop group 2). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> Check the code of the error that occurred in the CPU module and refer to the following. <br> [] MELSEC-L CPU Module User's Manual |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action／Related buffer memory address／Set range（Setting with program） |
| :---: | :---: | :---: | :---: | :---: |
| 1／F | 804 | Dedicated instruction error | ■Description <br> －The Z．ABRSTD instruction is executed with the status set to other than 0 （at the start of communication with the servo－amplifier）． <br> －The status of the Z．ABRSTD instruction is changed during absolute position restoration （during communication with the servo－amplifier）． <br> －The ZP．PSTRTD instruction is executed with the start No．set to other than 1 to 600， 7000 to 7004 and 9001 to 9004. <br> －The ZP．TEACH $\square$ instruction is executed with the teaching data selection set to other than 0 and 1. <br> －The ZP．TEACH $\square$ instruction is executed with the positioning data No．set to other than 1 to 600. <br> －The instruction of a non－existent axis is specified by the Z．ABRSTロ，ZP．PSTRTD or ZP．TEACHD instruction． <br> ■Operation status at error occurrence <br> The function corresponding to the instruction is not executed． | ■Action <br> －When executing the Z．ABRSTD instruction，set the status to 0 （ $\leftrightarrows$ Page 620，Section 14．3） <br> －Do not change the status during absolute position restoration by the Z．ABRSTD instruction． <br> －When executing the ZP．PSTRTD instruction， set the start No．to within the setting range （ 5 Page 625，Section 14．4） <br> －When executing the ZP．TEACHロ instruction， set the teaching data selection and positioning data No．to within the setting range（ $\curvearrowleft$ Page 629，Section 14．5） <br> －Do not specify the instruction of a non－existent axis by the Z．ABRSTロ，ZP．PSTRTD and ZP．TEACHD instructions．（ $\wp$ Page 620， Section 14.3 to Page 629，Section 14．5） <br> ■Setting range <br> Z．ABRSTD status <br> 0 ：Communication complete（received from the servo amplifier） <br> ZP．PSTRTD start No．： 1 to 600， 7000 to 7004， 9001 to 9004 <br> ZP．TEACHD teaching data selection <br> 0 ：The current feed value is written to the positioning address． <br> 1：The current feed value is written to the arc address． <br> ZP．TEACHD positioning data No．： 1 to 600 |
|  | 805 | Flash ROM write number error | －Description <br> Data is written to the flash ROM continuously 25 times or more from the program． <br> ■Operation status at error occurrence At start：The system will not operate． | －Action <br> Review the program so that data is not written continuously to the flash ROM．（Using［Md．19］in system monitor data（ $\leftrightarrows$ Page 182，Section 5．6．1），the number of flash ROM write times can be monitored．） <br> （If this error has occurred in a proper using method，writing is enabled by resetting the error， switching power OFF，then ON，or resetting the CPU module．） |
|  | 806 | Dedicated instruction I／F error | ■Description <br> Mismatching occurs between the CPU module and LD75． <br> ■Operation status at error occurrence <br> At start：The system will not operate． | ■Action <br> A trouble occurs．Repair． |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 900 | Outside unit setting range | Description <br> The set value of the basic parameter 1 "Unit setting" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 0 <br> Axis 2: 150 <br> Axis 3: 300 <br> Axis 4: 450 <br> © Setting range <br> $0,1,2,3$ |
|  | 901 | Outside pulse number per rotation range | -Description <br> The set value of the basic parameter 1 "No. of pulses per rotation" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 1 <br> Axis 2: 151 <br> Axis 3: 301 <br> Axis 4: 451 <br> ■Setting range <br> 1 to 65535 |
|  | 902 | Outside movement amount per rotation range | -Description <br> The set value of the basic parameter 1 "Movement amount per rotation" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 2 <br> Axis 2: 152 <br> Axis 3: 302 <br> Axis 4: 452 <br> - Setting range <br> 1 to 65535 |
|  | 903 | Outside unit magnification range | -Description <br> The set value of the basic parameter 1 "Unit magnification" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 3 <br> Axis 2: 153 <br> Axis 3: 303 <br> Axis 4: 453 <br> © Setting range <br> 1, 10, 100, 1000 |
|  | 904 | Pulse output mode error | -Description <br> The set value of the basic parameter 1 "Pulse output mode" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 4 <br> Axis 2: 154 <br> Axis 3: 304 <br> Axis 4: 454 <br> © Setting range $0,1,2,3$ |




| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 925 | Command in-position width | mescription <br> The set value of the detailed parameter 1 "Command in-position width" is outside the setting range. <br> -Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 24,25 <br> Axis 2: 174, 175 <br> Axis 3: 324,325 <br> Axis 4: 474, 475 <br> ■Setting range <br> 1 to 2147483647 |
|  | 926 | Illegal torque limit setting value | -Description <br> The set value of the detailed parameter 1 "Torque limit setting value" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 26 <br> Axis 2: 176 <br> Axis 3: 326 <br> Axis 4: 476 <br> ■Setting range <br> 1 to 500 |
|  | 927 | M code ON timing error | ■Description <br> The set value of the detailed parameter 1 " M code ON signal output timing" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 27 <br> Axis 2: 177 <br> Axis 3: 327 <br> Axis 4: 477 <br> © Setting range <br> 0, 1 |
|  | 928 | Speed changeover mode error | -Description <br> The set value of the detailed parameter 1 "Speed changeover mode" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 28 <br> Axis 2: 178 <br> Axis 3: 328 <br> Axis 4: 478 <br> © Setting range <br> 0,1 |
|  | 929 | Interpolation speed designation method error | ■Description <br> The set value of the detailed parameter 1 "Interpolation speed designation method" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 29 <br> Axis 2: 179 <br> Axis 3: 329 <br> Axis 4: 479 <br> © Setting range <br> 0,1 |
|  | 930 | Current value update request error | -Description <br> The set value of the detailed parameter 1 "Current feed value during speed control" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 30 <br> Axis 2: 180 <br> Axis 3: 330 <br> Axis 4: 480 <br> - Setting range <br> 0, 1, 2 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 932 | Manual pulse generator input mode error | -Description <br> The set range of the detailed parameter 1 "Manual pulse generator input selection" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 33 <br> ©Setting range $0,1,2,3$ |
|  | 935 | Speed-position function selection error | -Description <br> The detailed parameter 1 "speed-position function selection" is preset to 2 and the following three conditions are not satisfied: <br> - Unit is "degree". <br> - Software stroke limits are invalid. <br> - Update current feed value. <br> ©Operation status at error occurrence <br> The LD75 READY signal (X0) does not turns ON. | Action <br> For speed-position switching control (ABS mode), configure settings so that the three conditions on the left are satisfied. When speed-position switching control (ABS mode) is not to be exercised, set 0 to speed-position function selection and turn the PLC READY signal (YO) from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 34 <br> Axis 2: 184 <br> Axis 3: 334 <br> Axis 4: 484 <br> © Setting range <br> 0, 2 |
|  | 950 | Acceleration time 1 setting error | ■Description <br> The set value of the detailed parameter 2 <br> "Acceleration time 1 " is outside the setting range. <br> -Operation status at error occurrence <br> At start: The system does not start. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 36,37 <br> Axis 2: 186, 187 <br> Axis 3: 336,337 <br> Axis 4: 486, 487 <br> ©Setting range <br> 1 to 8388608 |
|  | 951 | Acceleration time 2 setting error | ■Description <br> The set value of the detailed parameter 2 <br> "Acceleration time 2" is outside the setting range. <br> -Operation status at error occurrence <br> At start: The system does not start. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 38, 39 <br> Axis 2: 188, 189 <br> Axis 3: 338, 339 <br> Axis 4: 488, 489 <br> metting range <br> 1 to 8388608 |
|  | 952 | Acceleration time 3 setting error | ■Description <br> The set value of the detailed parameter 2 <br> "Acceleration time 3 " is outside the setting range. <br> ■Operation status at error occurrence <br> At start: The system does not start. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 40, 41 <br> Axis 2: 190, 191 <br> Axis 3: 340,341 <br> Axis 4: 490, 491 <br> ESetting range <br> 1 to 8388608 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 953 | Deceleration time 1 setting error | ■Description <br> The set value of the detailed parameter 2 <br> "Deceleration time 1 " is outside the setting range. <br> ■Operation status at error occurrence <br> At start: The system does not start. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 42, 43 <br> Axis 2: 192, 193 <br> Axis 3: 342,343 <br> Axis 4: 492, 493 <br> ESetting range <br> 1 to 8388608 |
|  | 954 | Deceleration time 2 setting error | ■Description <br> The set value of the detailed parameter 2 "Deceleration time 2" is outside the setting range. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 44, 45 <br> Axis 2: 194, 195 <br> Axis 3: 344,345 <br> Axis 4: 494, 495 <br> ■Setting range <br> 1 to 8388608 |
|  | 955 | Deceleration time 3 setting error | ■Description <br> The set value of the detailed parameter 2 <br> "Deceleration time 3 " is outside the setting range. <br> -Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 46, 47 <br> Axis 2: 196, 197 <br> Axis $3: 346,347$ <br> Axis 4: 496, 497 <br> ■Setting range <br> 1 to 8388608 |
|  | 956 | JOG speed limit value error | -Description <br> - The set value of the detailed parameter 2 "JOG speed limit value" is outside the setting range. <br> - The set value of the detailed parameter 2 "JOG speed limit value" exceeds the speed limit. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | Action <br> - With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> - Bring the setting into the speed limit value or below. <br> -Buffer memory address <br> Axis 1: 48, 49 <br> Axis 2: 198, 199 <br> Axis 3: 348,349 <br> Axis 4: 498, 499 <br> ■Setting range <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ $\mathrm{mm} / \mathrm{min}$ or other] |
|  | 957 | JOG acceleration time selection setting error | -Description <br> The set value of the detailed parameter 2 "JOG acceleration time selection setting" is outside the setting range. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 50 <br> Axis 2: 200 <br> Axis 3: 350 <br> Axis 4: 500 <br> ■Setting range <br> $0,1,2,3$ |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 958 | JOG deceleration time selection setting error | -Description <br> The set value of the detailed parameter 2 "JOG deceleration time selection setting" is outside the setting range. <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 51 <br> Axis 2: 201 <br> Axis 3: 351 <br> Axis 4: 501 <br> © Setting range $0,1,2,3$ |
|  | 959 | Acceleration/deceleration process selection setting error | -Description <br> The set value of the detailed parameter 2 "Acceleration/deceleration process selection setting" is outside the setting range. <br> ©Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> -Buffer memory address <br> Axis 1: 52 <br> Axis 2: 202 <br> Axis 3: 352 <br> Axis 4: 502 <br> © Setting range <br> 0,1 |
|  | 960 | S-curve ratio setting error | ■Description <br> The set value of the detailed parameter 2 " S -curve ratio" is outside the setting range. <br> ■Operation status at error occurrence At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 53 <br> Axis 2: 203 <br> Axis 3: 353 <br> Axis 4: 503 <br> ©Setting range <br> 1 to 100 |
|  | 961 | Illegal sudden stop deceleration time | ■Description <br> The set value of the detailed parameter 2 "Sudden stop deceleration time" is outside the setting range. <br> ■Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 54, 55 <br> Axis 2: 204, 205 <br> Axis 3: 354, 355 <br> Axis 4: 504, 505 <br> © Setting range <br> 1 to 8388608 |
|  | 962 | Stop group 1 sudden stop selection error | ■Description <br> The set value of the detailed parameter 2 "Stop group 1 sudden stop selection" is outside the setting range. <br> -Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 56 <br> Axis 2: 206 <br> Axis 3: 356 <br> Axis 4: 506 <br> ©Setting range <br> 0,1 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 963 | Stop group 2 sudden stop selection error | ■Description <br> The set value of the detailed parameter 2 "Stop group 2 sudden stop selection" is outside the setting range. <br> ■Operation status at error occurrence At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ©Buffer memory address <br> Axis 1: 57 <br> Axis 2: 207 <br> Axis 3: 357 <br> Axis 4: 507 <br> ■Setting range <br> 0, 1 |
|  | 964 | Stop group 3 sudden stop selection error | ■Description <br> The set value of the detailed parameter 2 "Stop group 3 sudden stop selection" is outside the setting range. <br> Operation status at error occurrence <br> At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 58 <br> Axis 2: 208 <br> Axis 3: 358 <br> Axis 4: 508 <br> ■Setting range <br> 0,1 |
|  | 966 | Outside allowance circular interpolation error width | ■Description <br> The set value of the detailed parameter 2 <br> "Allowance circular interpolation error width" is outside the setting range. <br> ■Operation status at error occurrence At start: The system will not operate. During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 60, 61 <br> Axis 2: 210, 211 <br> Axis $3: 360,361$ <br> Axis 4: 510,511 <br> ■Setting range <br> 0 to 10000 |
|  | 967 | External command function selection error | ■Description <br> The set value of the detailed parameter 2 "External command function selection" is outside the setting range. <br> ■Operation status at error occurrence At start: The system will not operate. <br> During operation: The system stops with the setting (deceleration stop/sudden stop) of the detailed parameter 2 Sudden stop selection (stop group 3). (Note that the deceleration stop only occurs during the manual pulse generator operation.) | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> Buffer memory address <br> Axis 1: 62 <br> Axis 2: 212 <br> Axis 3: 362 <br> Axis 4: 512 <br> ESetting range <br> 0, 1, 2, 3 |
|  | 980 | OPR method error | ■Description <br> The set value of the OPR basic parameter "OPR method" is outside the setting range. <br> ■Operation status at error occurrence <br> The LD75 READY signal (X0) does not turns ON. | Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> -Buffer memory address <br> Axis 1: 70 <br> Axis 2: 220 <br> Axis 3: 370 <br> Axis 4: 520 <br> ■Setting range <br> $0,1,2,3,4,5$ |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 981 | OPR direction error | -Description <br> The set value of the OPR basic parameter "OPR direction" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 71 <br> Axis 2: 221 <br> Axis 3: 371 <br> Axis 4: 521 <br> -Setting range <br> 0,1 |
|  | 982 | OP address setting error | Description <br> The set value of the OPR basic parameter "OP address" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | EAction <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 72, 73 <br> Axis 2: 222, 223 <br> Axis 3: 372,373 <br> Axis 4: 522, 523 <br> ■Setting range <br> - [mm] [inch] [pulse]: -2147483648 to 2147483647 <br> - [degree]: 0 to 35999999 |
|  | 983 | OPR speed error | -Description <br> - The set value of the OPR basic parameter "OPR speed" is outside the setting range. <br> - The set value of the OPR basic parameter "OPR speed" is smaller than the bias speed at start. <br> -Operation status at error occurrence <br> The LD75 READY signal (X0) does not turns ON. | ■Action <br> - Set the value within the setting range. <br> - Set the speed to the bias speed at start or higher. ( $\leftrightarrows$ Page 140, Section 5.2.5) <br> ■Buffer memory address <br> Axis 1: 74, 75 <br> Axis 2: 224, 225 <br> Axis 3: 374,375 <br> Axis 4: 524,525 <br> ■Setting range <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ $\mathrm{mm} / \mathrm{min}$ or other] |
|  | 984 | Creep speed error | -Description <br> - The set value of the OPR basic parameter "Creep speed" is outside the setting range. <br> - The set value of the OPR basic parameter "Creep speed" is larger than the OPR speed. <br> - The set value of the OPR basic parameter "Creep speed" is smaller than the bias speed at start. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> - Set the value within the setting range. <br> - Set the speed to that below the OPR speed. <br> - Set the value to the bias speed at start or higher. ( $\leftrightarrows$ Page 140, Section 5.2.5) <br> ■Buffer memory address <br> Axis 1: 76, 77 <br> Axis 2: 226, 227 <br> Axis 3: 376,377 <br> Axis 4: 526, 527 <br> - Setting range <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ <br> $\mathrm{mm} / \mathrm{min}$ or other] |
|  | 985 | OPR retry error | -Description <br> The set value of the OPR basic parameter "OPR retry" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 78 <br> Axis 2: 228 <br> Axis 3: 378 <br> Axis 4: 528 <br> © Setting range <br> 0,1 |


| Classification of errors | Error code | Error name | Operation status at error occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | 991 | Setting for the movement amount after near-point dog ON error | mescription <br> The set value of the OPR detailed parameter "Setting for the movement amount after near-point dog ON" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 80, 81 <br> Axis 2: 230, 231 <br> Axis 3: 380, 381 <br> Axis 4: 530, 531 <br> - Setting range <br> 0 to 2147483647 |
|  | 992 | OPR acceleration time selection error | -Description <br> The set value of the OPR detailed parameter "OPR acceleration time selection" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 82 <br> Axis 2: 232 <br> Axis 3: 382 <br> Axis 4: 532 <br> © Setting range <br> 0, 1, 2, 3 |
|  | 993 | OPR deceleration time selection error | ■Description <br> The set value of the OPR detailed parameter "OPR deceleration time selection" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [Y0] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 83 <br> Axis 2: 233 <br> Axis 3: 383 <br> Axis 4: 533 <br> - Setting range $0,1,2,3$ |
|  | 995 | OPR torque limit value error | -Description <br> - The set value of the OPR detailed parameter "OPR torque limit value" is outside the setting range. <br> - The OPR detailed parameter "OPR torque limit value" has exceeded the detailed parameter 1 "Torque limit setting value". <br> ■Operation status at error occurrence <br> The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 86 <br> Axis 2: 236 <br> Axis 3: 386 <br> Axis 4: 536 <br> ■Setting range <br> 1 to 300 |
|  | 996 | Deviation counter clear signal output time setting error | Description <br> The set value of the OPR detailed parameter "Deviation counter clear signal output time" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | ■Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 87 <br> Axis 2: 237 <br> Axis 3: 387 <br> Axis 4: 537 <br> - Setting range <br> 1 to 65535 |
|  | 997 | Speed designation during OP shift error | -Description <br> The set value of the OPR detailed parameter "Speed designation during OP shift" is outside the setting range. <br> ■Operation status at error occurrence The LD75 READY signal (X0) does not turns ON. | -Action <br> With the setting brought into the setting range, turn the PLC READY signal [YO] from OFF to ON. <br> ■Buffer memory address <br> Axis 1: 88 <br> Axis 2: 238 <br> Axis 3: 388 <br> Axis 4: 538 <br> © Setting range <br> 0,1 |

### 15.6 List of Warnings

The following table shows the warning details and remedies to be taken when a warning occurs.

| Classification of warnings | Warning code | Warning name | Operation status at warning occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| - | 000 | (Normal status) | ■Description <br> ©Operation status at warning occurrence | - Action |
| Common | 100 | Start during operation | ■Description <br> The start request is issued while the axis is BUSY. <br> ■Operation status at warning occurrence The operation is continued. | ■Action <br> Normalize the start request ON timing. |
|  | 102 | Deviation counter clear request | ■Description <br> The deviation counter clear request is issued while the axis is BUSY. <br> ©Operation status at warning occurrence <br> The deviation counter clear request is ignored. | ■Action <br> Do not carry out the deviation counter clear while the axis is running. (以 Page 316, CHAPTER 8) |
|  | 104 | Restart not possible | ■Description <br> The restart command is issued when the axis operation status is not "Stopped". <br> ■Operation status at warning occurrence The operation is continued. | EAction <br> Normalize the start request ON timing. ( 298, Section 6.5.5) <br> (Do not issue the restart command when the axis operation is not stopped.) <br> ■Buffer memory address <br> Axis 1: 1503 <br> Axis 2: 1603 <br> Axis 3: 1703 <br> Axis 4: 1803 <br> ■Setting range <br> Restart command <br> 1: Restart |
|  | 109 | Teaching in BUSY | ■Description <br> The teaching request is issued while the axis is BUSY. <br> ■Operation status at warning occurrence The warning is issued for the axis designated at the time of the teaching request. | ■Action <br> Carry out the teaching request when the axis is not <br> BUSY. ( $\leftrightarrows$ Page 586, Section 12.7.4) <br> ©Buffer memory address <br> Axis 1: 1548, 1549 <br> Axis 2: 1648, 1649 <br> Axis 3: 1748, 1749 <br> Axis 4: 1848, 1849 <br> ■Setting range <br> Teaching data selection: 0, 1 <br> Teaching positioning data No.: 1 to 600 |
|  | 110 | Less than minimum speed | -Description <br> The overridden speed becomes "0". <br> חOperation status at warning occurrence <br> The system is controlled with the currently executing unit of 1 . | ■Action <br> Prevent the overridden speed from being reduced to <br> 0. (ङ Page 550, Section 12.5.2) <br> ■Buffer memory address <br> Axis 1: 1513 <br> Axis 2: 1613 <br> Axis 3: 1713 <br> Axis 4: 1813 <br> ■Setting range <br> Positioning operation speed override: 1 to 300 |


| Classification of warnings | Warning code | Warning name | Operation status at warning occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
|  | 111 | In PLC READY | ■Description <br> The request for writing to the flash ROM is issued when the PLC READY is turned ON. <br> ■Operation status at warning occurrence The warning for axis 1 is issued. | Action <br> Issue a write request when PLC READY signal (YO) is OFF. <br> ■Buffer memory address <br> Common to axes 1 to 4: 1900, 1901 <br> ■Setting range <br> Flash ROM write request <br> 1: Flash ROM write request <br> Parameter initialization request <br> 1: Parameter initialization request |
|  | 112 | Illegal override value | - Description <br> A value other than 1 to 300 is set for the override value. <br> ■Operation status at warning occurrence <br> - Controlled at a setting value of 0: 100. <br> - Controlled at a setting value of 301 or over : 300 . | -Action <br> Set a value within the setting range. <br> Buffer memory address <br> Axis 1: 1513 <br> Axis 2: 1613 <br> Axis 3: 1713 <br> Axis 4: 1813 <br> ■Setting range <br> Positioning operation speed override: 1 to 300 |
| Common | 113 | Outside new torque value range | ■Description <br> The new torque value exceeds the torque limit setting value. <br> ■Operation status at warning occurrence Set a value smaller than the torque limit setting value to the new torque value. | Action <br> Set a value smaller than the torque limit setting value to the new torque value. <br> -Buffer memory address <br> Axis 1: 1525 <br> Axis 2: 1625 <br> Axis 3: 1725 <br> Axis 4: 1825 <br> ■Setting range <br> New torque value: 1 to [Torque limit setting value] |
|  |  |  |  | Action <br> Set a value smaller than the torque limit setting value to the new torque value. <br> -Buffer memory address <br> Axis 1: 26 <br> Axis 2: 176 <br> Axis 3: 326 <br> Axis 4: 476 <br> ■Setting range <br> Torque limit setting value: 1 to 500 |
|  | 114 | Below bias speed | mescription <br> The command speed is below the bias speed at start. <br> ■Operation status at warning occurrence Operate by the bias speed at start. | ■Action <br> Re-set the command speed/bias speed at start so that the command speed is equal to or larger than the bias speed at start. <br> ■Buffer memory address <br> Command speed is shown in Page 152, Section 5.3. <br> Setting range <br> Command speed: <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ $\mathrm{mm} / \mathrm{min}$ or other] |
|  |  |  |  | Action <br> Re-set the command speed/bias speed at start so that the command speed is equal to or larger than the bias speed at start. <br> ■Buffer memory address <br> Bias speed at start <br> Axis 1: 6, 7 <br> Axis 2: 156, 157 <br> Axis 3: 306, 307 <br> Axis 4: 456,457 <br> ■Setting range <br> Bias speed at start: <br> 0 to 4000000 [pulse/s], 0 to 2000000000 [ $\times 10^{-2}$ $\mathrm{mm} / \mathrm{min}$ or other] |


| Classification of warnings | Warning code | Warning name | Operation status at warning occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| JOG | 300 | Speed change during deceleration | ■Description <br> The speed change request is issued during deceleration stop with JOG start signal OFF. <br> -Operation status at warning occurrence The speed change is not carried out. | ■Action <br> Do not carry out the JOG speed change during deceleration with the JOG start signal OFF. <br> ■Buffer memory address <br> Axis 1: 1516 <br> Axis 2: 1616 <br> Axis 3: 1716 <br> Axis 4: 1816 <br> ■Setting range <br> Speed change request <br> 1: Request the speed change. |
|  | 301 | JOG speed limit value | -Description <br> - The JOG speed exceeds the JOG speed limit value at the JOG start. <br> - The new speed value exceeds the JOG speed limit value when the speed is changed during operation. <br> -Operation status at warning occurrence <br> - When the speed exceeds the JOG speed limit, the JOG operation is carried out with the JOG speed limit value. <br> - While the speed is limited by the JOG speed limit value, the "Speed limiting flag" is turned ON. | ■Action <br> Set the value within the setting range. <br> ■Buffer memory address <br> - New speed value <br> Axis 1: 1514, 1515 <br> Axis 2: 1614, 1615 <br> Axis 3: 1714, 1715 <br> Axis 4: 1814, 1815 <br> ■Setting range <br> 0 to 4000000 [pulse/s], 0 to $2000000000\left[\times 10^{-2}\right.$ <br> $\mathrm{mm} / \mathrm{min}$ or other] |
|  |  |  |  | ■Action <br> Set the value within the setting range. <br> ■Buffer memory address <br> - JOG speed limit value <br> Axis 1: 48, 49 <br> Axis 2: 198, 199 <br> Axis 3: 348,349 <br> Axis 4: 498, 499 <br> ■Setting range <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ $\mathrm{mm} / \mathrm{min}$ or other] |
| Manual pulse generator | 401 | Outside manual pulse generator input magnification range | ■Description <br> The manual pulse generator 1 pulse input magnification is set at 0 or 1001 or higher. <br> ■Operation status at warning occurrence <br> - When input magnification is set at 1001 or higher: Re-set to 1000. <br> - When input magnification is set at 0 : Re-set to 1 . | ■Action <br> Set the manual pulse generator 1 pulse input magnification to within the setting range. <br> ©Buffer memory address <br> Axis 1: 1522, 1523 <br> Axis 2: 1622, 1623 <br> Axis 3: 1722, 1723 <br> Axis 4: 1822, 1823 <br> ■Setting range <br> Manual pulse generator 1 pulse input magnification: <br> 1 to 1000 |
| Positioning operation | 500 | Deceleration/stop speed change | ■Description <br> The speed change request is issued during deceleration stop. <br> ■Operation status at warning occurrence The speed change is not carried out. | ■Action <br> Do not carry out the speed change during deceleration with a stop command, during stoppage, or during automatic deceleration with position control. <br> ■Buffer memory address <br> Axis 1: 1516 <br> Axis 2: 1616 <br> Axis 3: 1716 <br> Axis 4: 1816 <br> ■Setting range <br> Speed change request <br> 1: Request the speed change. |


| Classification of warnings | Warning code | Warning name | Operation status at warning occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 501 | Speed limit value over | -Description <br> The new value exceeds the speed limit value when the speed is changed during operation. <br> חOperation status at warning occurrence <br> - The speed is controlled with the speed limit value. <br> - The "speed limiting flag" is turned ON. | ■Action <br> Set the new speed within the range of 0 to the speed limit value. <br> ■Buffer memory address <br> - New speed value <br> Axis 1: 1514, 1515 <br> Axis 2: 1614, 1615 <br> Axis 3: 1714, 1715 <br> Axis 4: 1814, 1815 <br> ■Setting range <br> 0 to 4000000 [pulse/s], 0 to $2000000000\left[\times 10^{-2}\right.$ <br> $\mathrm{mm} / \mathrm{min}$ or other] |
|  |  |  |  | Action <br> Set the new speed within the range of 0 to the speed limit value. <br> ■Buffer memory address <br> - Speed limit value <br> Axis 1: 10, 11 <br> Axis 2: 160, 161 <br> Axis 3: 310,311 <br> Axis 4: 460, 461 <br> ■ Setting range <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ $\mathrm{mm} / \mathrm{min}$ or other] |
|  | 503 | M code ON signal ON start | -Description <br> The M code ON signal is turned ON when the positioning data is executed. <br> חOperation status at warning occurrence Continue executing the positioning data. | -Action <br> Normalize the ON and OFF timings of the "M code <br> OFF request". ( $\longmapsto$ Page 580, Section 12.7.3) <br> -Buffer memory address <br> Axis 1: 1504 <br> Axis 2: 1604 <br> Axis 3: 1704 <br> Axis 4: 1804 <br> ■Setting range <br> M code OFF request <br> 1: The $M$ code ON signal turns OFF. |
|  | 505 | No operation termination setting | Description <br> In the positioning by block starting, the 50th point of the positioning start data is set to CONTINUE. <br> -Operation status at warning occurrence The system stops operation. | ■Action <br> Set the operation termination to the 50th point. ( <br> Page 456, CHAPTER 10) <br> -Buffer memory address <br> $\backsim$ Page 152, Section 5.3 <br> ■Setting range <br> Operation pattern <br> 00: Positioning complete <br> 01: Continuous positioning control <br> 11: Continuous path control |
|  | 506 | FOR to NEXT nest construction | -Description <br> FOR to NEXT is nested. <br> ■Operation status at warning occurrence <br> The operation is continued. | ■Action <br> Make 1 nest construction for FOR to NEXT. ( Page 469, Section 10.3.8) |
|  | 508 | Speed-position switching (during acceleration) signal ON | ■Description <br> The switching signal for speed-position switching control (INC mode) is turned ON during acceleration. <br> חOperation status at warning occurrence The operation is continued. | ■Action <br> Do not turn ON the speed-position switching signal during acceleration. ( $\leftrightarrows$ Page 428, Section 9.2.18) |


| Classification of warnings | Warning code | Warning name | Operation status at warning occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 509 | Insufficient <br> remaining <br> distance | ■Description <br> - At a continuous operation interrupt request, the distance required deceleration stop is not long enough. <br> - At a speed change request, the remaining distance is shorter than the distance required for speed change. <br> ■Operation status at warning occurrence <br> - When a command speed is changed: Change to a value as near a new speed value as possible. <br> - When a target position is changed: Adjust the speed to a value as near the command speed as possible, and then change to a target position. <br> (When the operation pattern is a continuous path control, ignore the operations stated above.) | ■Action <br> Give a request at the position where there is an enough remaining distance. |
|  | 511 | Step not possible | -Description <br> Code 1 is set for the step start information when the step is outside standby. <br> ■Operation status at warning occurrence The step will not start. | ■Action <br> Do not set a "1" to the step start information when the step is not in standby state. <br> (Ю Page 572, Section 12.7.1) <br> ■Buffer memory address <br> Axis 1: 1546 <br> Axis 2: 1646 <br> Axis 3: 1746 <br> Axis 4: 1846 <br> ©Setting range <br> Step start information <br> 1: Step is continued <br> 2: Re-start is carried out |
|  | 512 | Illegal external command function | Description <br> The detailed parameter 2 "External command function selection" setting range is exceeded. <br> ■Operation status at warning occurrence Even if the external command signal is turned ON, the system will not perform anything. | ■Action <br> Set the detailed parameter 2 "External command function selection" to within the setting range. <br> ■Buffer memory address <br> Axis 1: 62 <br> Axis 2: 212 <br> Axis 3: 362 <br> Axis 4: 512 <br> ■Setting range <br> External command function selection: 0, 1, 2, 3 |
|  | 513 | Insufficient movement amount | Description <br> The movement amount is not large enough for automatic deceleration. <br> -Operation status at warning occurrence The system stops immediately after it reaches the positioning address. | ■Action <br> Set a decelerating address or a movement amount to the positioning data. <br> ■Buffer memory address <br> $\longmapsto$ Page 152, Section 5.3 |
|  | 514 | Outside command speed range | -Description <br> The command speed exceeds the speed limit. <br> חOperation status at warning occurrence <br> - The command speed is controlled at the "speed limit value". <br> - The "speed limiting flag" turns ON. | ■Action <br> Set the command speed to within the setting range. <br> ■Buffer memory address <br> - Refer to Page 152, Section 5.3 for the command speed. <br> Speed limit value <br> Axis 1: 10, 11 <br> Axis 2: 160, 161 <br> Axis 3: 310, 311 <br> Axis 4: 460, 461 <br> © Setting range <br> 1 to 4000000 [pulse/s], 1 to $2000000000\left[\times 10^{-2}\right.$ <br> $\mathrm{mm} / \mathrm{min}$ or other] |


| Classification of warnings | Warning code | Warning name | Operation status at warning occurrence | Action/Related buffer memory address/Set range (Setting with program) |
| :---: | :---: | :---: | :---: | :---: |
| Positioning operation | 516 | Illegal teaching data No. | ■Description <br> The positioning data No. is set outside the setting range. <br> ■Operation status at warning occurrence Teaching is not carried out when the set value is 0 or 601 or more. <br> (A " 0 " is canceled by the LD75 automatically even when a " 0 " or " 601 " or more is set.) | ■Action <br> Set the positioning data No. to within the setting range. <br> ■Buffer memory address <br> Axis 1: 1549 <br> Axis 2: 1649 <br> Axis 3: 1749 <br> Axis 4: 1849 <br> - Setting range <br> Teaching positioning data No.: 1 to 600 |
|  | 517 | Illegal teaching data selection | ■Description <br> The teaching data selection set value is outside the setting range. <br> ■Operation status at warning occurrence Teaching is not carried out. | ■Action <br> Set the teaching data selection set value to within the setting range. <br> -Buffer memory address <br> Axis 1: 1548 <br> Axis 2: 1648 <br> Axis 3: 1748 <br> Axis 4: 1848 <br> - Setting range <br> Teaching data selection: 0,1 |
|  | 518 | Target position change not possible | -Description <br> - A target position change request was given for the control system other than ABS1 and INC1. <br> - The target position change request is turned ON during continuous path control. <br> - A new target position address is outside the software stroke limit range. <br> - A target position change request was given during deceleration to a stop. <br> - A target position change request is given while the speed change 0 flag ([Md.31] Status: b10) is ON. <br> ■Operation status at warning occurrence <br> The target position change is not carried out. | ■Action <br> - An operating pattern "continuous path control" is used. <br> - A control system other than ABS1 and INC1 is used <br> - During deceleration stop <br> -When the speed change 0 flag ([Md.31] Status: b 10 ) is ON . <br> When the target position change address is outside the software stroke limit, correct the target position change address. ( 5 Page 559, Section 12.5.5) <br> ■Buffer memory address <br> Axis 1: 1538 <br> Axis 2: 1638 <br> Axis 3: 1738 <br> Axis 4: 1838 <br> © Setting range <br> Target position change request flag <br> 1: Target position change request |

## APPENDICES

## Appendix 1 Function Update

## Appendix 1.1

Function comparison

This section describes the function comparison of the LD75 and an additional buffer memory area.

## (1) Function comparison

| Item | First five digits of the LD75 serial number | Reference |
| :--- | :---: | :---: |
| Output timing selection of near pass control | $" 14092 "$ or later | Page 527, Section 12.3.4 |
| 3-axis helical interpolation control* | "17102" or later | Page 402, Section 9.2 .12 <br> Page 408, Section 9.2.13 |
| Positioning option ${ }^{* 1}$ | $" 17102 "$ or later | Page 152, Section 5.3 |

*1 GX Configurator-QP does not support these functions. Only GX Works2 (Version 1.540N or later) supports the functions.

## (2) Additional buffer memory area

| Buffer memory address | Name | Relevant function |
| :---: | :--- | :--- |
| 1934 | Output timing selection of near pass control | Output timing selection of near pass control |
| 140 | Positioning option valid/invalid setting |  |
| 2003 (Axis 1) | M code ON signal output timing | Positioning option <br> 8003 (Axis 2) |
| 14003 (Axis 3) | ABS direction in degrees |  |
| 20003 (Axis 4) | Interpolation speed designation method |  |

*1 The listed buffer memory addresses are those of the positioning data No. 1 of each axis. For the buffer memory addresses of the other positioning data numbers, refer to Positioning Data (No. 1 to 600) List of Buffer Memory Addresses (Ю Page 693, Appendix 3).

## Appendix 2 Format Sheets

Appendix 2.1 Positioning module operation chart


Axis address
mm, inch, degree, pulse

Axis address
mm, inch, degree, pulse


Axis address
mm , inch, degree, pulse

Axis address
mm, inch, degree, pulse

## Appendix 2.2 <br> Parameter setting value entry table

## (1) Basic parameters 1

(a) Setting range

| Item | Setting range |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch | degree | pulse |  |
| [Pr.1] Unit setting | 0 | 1 | 2 | 3 | 3 |
| [Pr.2] No. of pulses per rotation | 1 to 65535 pulse |  |  |  | 20000 |
| [Pr.3] Movement amount per rotation | 1 to $65535 \quad \times 10^{-1} \mu \mathrm{~m}$ | 1 to 65535 $\times 10^{-5} \text { inch }$ | 1 to 65535 $\times 10^{-5} \text { degree }$ | 1 to 65535 <br> pulse | 20000 |
| [Pr.4] Unit magnification | 1: 1-fold, 10: 10-fold, 100: 100-fold, 1000: 1000-fold |  |  |  | 1 |
| [Pr.5] Pulse output mode | 0: PULSE/SIGN mode, 1: CW/CCW mode, 2: A phase/B phase (multiple of 4), <br> 3: A phase/B phase (multiple of 1) |  |  |  | 1 |
| [Pr.6] Rotation direction setting | 0 : Current value increment with forward run pulse output <br> 1: Current value increment with reverse run pulse output |  |  |  | 0 |
| [Pr.7] Bias speed at start | 0 to 2000000000 $\times 10^{-2} \mathrm{~mm} / \mathrm{min}$ | 0 to 2000000000 $\times 10^{-3} \mathrm{inch} / \mathrm{min}$ | 0 to 2000000000 $\times 10^{-3}$ degree $/ \mathrm{min}$ | 0 to 4000000 <br> pulse/s | 0 |

(b) Setting

| Item | Setting value |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Pr.1] Unit setting |  |  |  |  |  |
| [Pr.2] No. of pulses per rotation |  |  |  |  |  |
| [Pr.3] Movement amount per rotation |  |  |  |  |  |
| [Pr.4] Unit magnification |  |  |  |  |  |
| [Pr.5] Pulse output mode |  |  |  |  |  |
| [Pr.6] Rotation direction setting |  |  |  |  |  |
| [Pr.7] Bias speed at start |  |  |  |  |  |

## (2) Basic parameters 2

(a) Setting range

| Item | Setting range |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch | degree | pulse |  |
| [Pr.8] Speed limit value | $\begin{aligned} & 1 \text { to } 2000000000 \\ & \times 10^{-2} \mathrm{~mm} / \mathrm{min} \end{aligned}$ | 1 to 2000000000 $\times 10^{-3} \mathrm{inch} / \mathrm{min}$ | 1 to 2000000000 $\times 10^{-3}$ degree $/ \mathrm{min}$ | 1 to 4000000 <br> pulse/s | 200000 |
| [Pr.9] Acceleration time 0 | 1 to 8388608 ms |  |  |  | 1000 |
| [Pr.10] Deceleration time 0 |  |  |  |  | 1000 |

(b) Setting

| Item | Setting value |  |  |  | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Pr.8] Speed limit value |  |  |  |  |  |
| [Pr.9] Acceleration time 0 |  |  |  |  |  |
| [Pr.10] Deceleration time 0 |  |  |  |  |  |

(3) Detailed parameters 1
(a) Setting range

| Item | Setting range |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch | degree | pulse |  |
| [Pr.11] Backlash compensation amount | 0 to $65535 \times 10^{-1} \mu \mathrm{~m}$ | 0 to $65535 \times 10^{-5}$ inch | 0 to 65535 $\times 10^{-5}$ degree | 0 to 65535 pulse | 0 |
| [Pr.12] Software stroke limit upper limit value | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \\ & \times 10^{-1} \mu \mathrm{~m} \end{aligned}$ | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \quad \times 10^{-5} \text { inch } \end{aligned}$ | 0 to 35999999 $\times 10^{-5}$ degree | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \end{aligned}$ <br> pulse | 2147483647 |
| [Pr.13] Software stroke limit lower limit value |  |  |  |  | -2147483648 |
| [Pr. 14] Software stroke limit selection | 0 : Apply software stroke limit on current feed value <br> 1: Apply software stroke limit on machine feed value |  |  |  | 0 |
| [Pr.15] Software stroke limit valid/invalid setting | 0 : Software stroke limit valid during JOG operation, inching operation, and manual pulse generator operation <br> 1: Software stroke limit invalid during JOG operation, inching operation, and manual pulse generator operation |  |  |  | 0 |
| [Pr.16] Command inposition width | $\begin{aligned} & 1 \text { to } 2147483647 \\ & \times 10^{-1} \mu \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 1 \text { to } 2147483647 \\ & \times 10^{-5} \text { inch } \end{aligned}$ | $\begin{aligned} & 1 \text { to } 2147483647 \\ & \times 10^{-5} \text { degree } \end{aligned}$ | $1 \text { to } 2147483647$ <br> pulse | 100 |
| [Pr.17] Torque limit setting value | 1 to 500\% |  |  |  | 300 |
| [Pr.18] M code ON signal output timing | 0 : WITH mode <br> 1: AFTER mode |  |  |  | 0 |
| [Pr.19] Speed switching mode | 0 : Standard speed switching mode <br> 1: Front-loading speed switching mode |  |  |  | 0 |
| [Pr.20] Interpolation speed designation method | 0 : Composite speed <br> 1: Reference axis speed |  |  |  | 0 |
| [Pr.21] Current feed value during speed control | 0: Do not update current feed value <br> 1: Update current feed value <br> 2: Clear current feed value |  |  |  | 0 |
| [Pr.22] Input signal logic selection | b0: Lower limit <br> b1: Upper limit <br> b2: Drive unit READY <br> b3: Stop signal <br> b4: External command <br> b5: Zero signal <br> b6: Near-point dog signal <br> b7: Unused <br> b8: Manual pulse generator input <br> b9 to b15: Unused <br> Setting of each bit value 0: Negative logic, 1: Positive logic ("0" is set for unused bit.) |  |  |  | 0 |
| [Pr.23] Output signal logic selection | b0: Command pulse signal <br> b1: Unused <br> b2: Unused <br> b3: Unused <br> b4: Deviation counter clear <br> b5 to b15: Unused <br> Setting of each bit value 0 : Negative logic, 1: Positive logic ("0" is set for unused bit.) |  |  |  | 0 |
| [Pr.24] Manual pulse generator input selection | 0 : A-phase/B-phase; multiplied by 4 <br> 1: A-phase/B-phase; multiplied by 2 <br> 2: A-phase/B-phase; multiplied by 1 <br> 3: PULSE/SIGN mode |  |  |  | 0 |
| [Pr.70] Positioning option valid/invalid setting | 0: Invalid <br> 1: Valid |  |  |  | 0 |
| [Pr.150] Speed-position function selection | 0 : Speed-position switching control (INC mode) <br> 2: Speed-position switching control (ABS mode) |  |  |  | 0 |

(b) Setting

| Item | Setting value |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Pr.11] Backlash compensation amount |  |  |  |  |  |
| [Pr.12] Software stroke limit upper limit value |  |  |  |  |  |
| [Pr.13] Software stroke limit lower limit value |  |  |  |  |  |
| [Pr.14] Software stroke limit selection |  |  |  |  |  |
| [Pr.15] Software stroke limit valid/invalid setting |  |  |  |  |  |
| [Pr.16] Command inposition width |  |  |  |  |  |
| [Pr.17] Torque limit setting value |  |  |  |  |  |
| [Pr. 18] M code ON signal output timing |  |  |  |  |  |
| [Pr.19] Speed switching mode |  |  |  |  |  |
| [Pr.20] Interpolation speed designation method |  |  |  |  |  |
| [Pr.21] Current feed value during speed control |  |  |  |  |  |
| [Pr.22] Input signal logic selection |  |  |  |  |  |
| [Pr.23] Output signal logic selection |  |  |  |  |  |
| [Pr.24] Manual pulse generator input selection |  |  |  |  |  |
| [Pr.70] Positioning option valid/invalid setting |  |  |  |  |  |
| [Pr.150] Speed-position function selection |  |  |  |  |  |

(4) Detailed parameters 2

## (a) Setting range

| Item | Setting range |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch | degree | pulse |  |
| [Pr.25] Acceleration time 1 | 1 to 8388608 ms |  |  |  | 1000 |
| [Pr.26] Acceleration time 2 |  |  |  |  | 1000 |
| [Pr.27] Acceleration time 3 |  |  |  |  | 1000 |
| [Pr.28] Deceleration time 1 |  |  |  |  | 1000 |
| [Pr.29] Deceleration time 2 |  |  |  |  | 1000 |
| [Pr.30] Deceleration time 3 |  |  |  |  | 1000 |
| [Pr.31] JOG speed limit value | $\begin{aligned} & 1 \text { to } 2000000000 \\ & \times 10^{-2} \mathrm{~mm} / \mathrm{min} \end{aligned}$ | 1 to 2000000000 $\times 10^{-3} \mathrm{inch} / \mathrm{min}$ | 1 to 2000000000 $\times 10^{-3}$ degree $/$ min | 1 to 4000000 <br> pulse/s | 200000 |
| [Pr.32] JOG operation acceleration time selection | 0 to 3 |  |  |  | 0 |
| [Pr.33] JOG operation deceleration time selection |  |  |  |  | 0 |
| [Pr.34] <br> Acceleration/deceleration process selection | 0: Trapezoidal acceleration/deceleration processing <br> 1: S-curve acceleration/deceleration processing |  |  |  | 0 |
| [Pr.35] S-curve ratio | 1 to 100\% |  |  |  | 100 |
| [Pr.36] Sudden stop deceleration time | 1 to 8388608 ms |  |  |  | 1000 |
| [Pr.37] Stop group 1 sudden stop selection | 0: Normal deceleration stop <br> 1: Sudden stop |  |  |  | 0 |
| [Pr.38] Stop group 2 sudden stop selection |  |  |  |  | 0 |
| [Pr.39] Stop group 3 sudden stop selection |  |  |  |  | 0 |
| [Pr.40] Positioning complete signal output time | 0 to 65535 ms |  |  |  | 300 |
| [Pr.41] Allowable circular interpolation error width | 0 to 100000 $\times 10^{-1} \mu \mathrm{~m}$ | 0 to 100000 $\times 10^{-5} \text { inch }$ | 0 to 100000 $\times 10^{-5}$ degree | 0 to 100000 pulse | 100 |
| [Pr.42] External command function selection | 0: External positioning start <br> 1: External speed change request <br> 2: Speed-position, position-speed switching request <br> 3: Skip request |  |  |  | 0 |

## (b) Setting

| Item | Setting value |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Pr.25] Acceleration time 1 |  |  |  |  |  |
| [Pr.26] Acceleration time 2 |  |  |  |  |  |
| [Pr.27] Acceleration time 3 |  |  |  |  |  |
| [Pr.28] Deceleration time 1 |  |  |  |  |  |
| [Pr.29] Deceleration time 2 |  |  |  |  |  |
| [Pr.30] Deceleration time 3 |  |  |  |  |  |
| [Pr.31] JOG speed limit value |  |  |  |  |  |
| [Pr.32] JOG operation acceleration time selection |  |  |  |  |  |
| [Pr.33] JOG operation deceleration time selection |  |  |  |  |  |
| [Pr.34] <br> Acceleration/deceleration process selection |  |  |  |  |  |
| [Pr.35] S-curve ratio |  |  |  |  |  |
| [Pr.36] Sudden stop deceleration time |  |  |  |  |  |
| [Pr.37] Stop group 1 sudden stop selection |  |  |  |  |  |
| [Pr.38] Stop group 2 sudden stop selection |  |  |  |  |  |
| [Pr.39] Stop group 3 sudden stop selection |  |  |  |  |  |
| [Pr.40] Positioning complete signal output time |  |  |  |  |  |
| [Pr.41] Allowable circular interpolation error width |  |  |  |  |  |
| [Pr.42] External command function selection |  |  |  |  |  |

## (5) OPR basic parameters

(a) Setting range

| Item | Setting range |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch | degree | pulse |  |
| [Pr.43] OPR method | 0: Near-point dog method <br> 1: Stopper method 1) (By dwell time elapse) <br> 2: Stopper method 2) (By OP signal when stopper is hit) <br> 3: Stopper method 3) (Without near-point dog method) <br> 4: Count method 1) (Use zero signal) <br> 5: Count method 2) (Do not use zero signal) |  |  |  | 0 |
| [Pr.44] OPR direction | 0 : Positive direction (address increment direction) <br> 1: Negative direction (address decrement direction) |  |  |  | 0 |
| [Pr.45] OP address | $\begin{array}{ll} \hline-2147483648 \text { to } & \\ 2147483647 \\ & \times 10^{-1} \mu \mathrm{~m} \end{array}$ | $\begin{aligned} & \hline-2147483648 \text { to } \\ & 2147483647 \\ & \quad \times 10^{-5} \mathrm{inch} \end{aligned}$ | $\begin{aligned} & 0 \text { to } 35999999 \\ & \times 10^{-5} \text { degree } \end{aligned}$ | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \end{aligned}$ <br> pulse | 0 |
| [Pr.46] OPR speed | 1 to 2000000000 | 1 to 2000000000 | 1 to 2000000000 | 1 to 4000000 | 1 |
| [Pr.47] Creep speed | $\times 10^{-2} \mathrm{~mm} / \mathrm{min}$ | $\times 10^{-3} \mathrm{inch} / \mathrm{min}$ | $\times 10^{-3}$ degree/min | pulse/s | 1 |
| [Pr.48] OPR retry | 0 : Do not retry OPR with upper/lower limit switch <br> 1: Retry OPR with upper/lower limit switch |  |  |  | 0 |

(b) Setting

| Item | Setting value |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
| [Pr.43] OPR method |  |  |  |  |
| [Pr.44] OPR direction |  |  |  |  |
| [Pr.45] OP address |  |  |  |  |
| [Pr.46] OPR speed |  |  |  |  |
| [Pr.47] Creep speed |  |  |  |  |
| [Pr.48] OPR retry |  |  |  |  |

(6) OPR detailed parameters
(a) Setting range

| Item | Setting range |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | mm | inch | degree | pulse |  |
| [Pr.49] OPR dwell time | 0 to 65535 ms |  |  |  | 0 |
| [Pr.50] Setting for the movement amount after near-point dog ON | $\begin{aligned} & 0 \text { to } 2147483647 \\ & \times 10^{-1} \mu \mathrm{~m} \end{aligned}$ | $\begin{array}{r} 0 \text { to } 2147483647 \\ \times 10^{-5} \mathrm{inch} \end{array}$ | 0 to 2147483647 $\times 10^{-5}$ degree | 0 to 2147483647 <br> pulse | 0 |
| [Pr.51] OPR acceleration time selection | 0 to 3 |  |  |  | 0 |
| [Pr.52] OPR deceleration time selection |  |  |  |  | 0 |
| [Pr.53] OP shift amount | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \quad \times 10^{-1} \mu \mathrm{~m} \end{aligned}$ | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \quad \times 10^{-5} \text { inch } \end{aligned}$ | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \quad \times 10^{-5} \text { degree } \end{aligned}$ | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \end{aligned}$ <br> pulse | 0 |
| [Pr.54] OPR torque limit value | 1 to 300\% |  |  |  | 300 |
| [Pr.55] Deviation counter clear signal output time | 1 to 65535 ms |  |  |  | 11 |
| [Pr.56] Speed designation during OP shift | 0: OPR speed <br> 1: Creep speed |  |  |  | 0 |
| [Pr.57] Dwell time during OPR retry | 0 to 65535ms |  |  |  | 0 |

(b) Setting

| Item | Setting value |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| [Pr.49] OPR dwell time |  |  |  |  |  |
| [Pr.50] Setting for the movement amount after near-point dog ON |  |  |  |  |  |
| [Pr.51] OPR acceleration time selection |  |  |  |  |  |
| [Pr.52] OPR deceleration time selection |  |  |  |  |  |
| [Pr.53] OP shitt amount |  |  |  |  |  |
| [Pr.54] OPR torque limit value |  |  |  |  |  |
| [Pr.55] Deviation counter clear signal output time |  |  |  |  |  |
| [Pr.56] Speed designation during OP shift |  |  |  |  |  |
| [Pr.57] Dwell time during OPR retry |  |  |  |  |  |

# Appendix 3 Positioning Data (No. 1 to 600) List of Buffer Memory Addresses 

## (1) For axis 1

| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{array}{\|c\|} \hline \text { High- } \\ \text { order } \\ \hline \end{array}$ | Loworder | Highorder | $\begin{array}{l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | High- |
| 1 | 2000 | 2001 | 2002 | 2004 | 2005 | 2006 | 2007 | 2008 | 9 |
| 2 | 2010 | 2011 | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| 3 | 2020 | 2021 | 2022 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 |
| 4 | 2030 | 2031 | 2032 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 |
| 5 | 2040 | 2041 | 2042 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 |
| 6 | 50 | 205 | 2052 | 2054 | 2055 | 2056 | 2057 | 2058 | 9 |
| 7 | 2060 | 2061 | 2062 | 2064 | 2065 | 2066 | 2067 | 2068 | 2069 |
| 8 | 2070 | 2071 | 2072 | 2074 | 2075 | 2076 | 2077 | 2078 | 2079 |
| 9 | 2080 | 2081 | 2082 | 2084 | 2085 | 2086 | 2087 | 2088 | 2089 |
| 10 | 2090 | 2091 | 2092 | 2094 | 2095 | 2096 | 2097 | 2098 | 2099 |
| 11 | 2100 | 2101 | 2102 | 2104 | 2105 | 2106 | 2107 | 2108 | 2109 |
| 12 | 2110 | 211 | 2112 | 2114 | 2115 | 2116 | 2117 | 2118 | 9 |
| 13 | 2120 | 2121 | 2122 | 2124 | 2125 | 2126 | 2127 | 2128 | 2129 |
| 14 | 2130 | 2131 | 2132 | 2134 | 2135 | 2136 | 2137 | 2138 | 39 |
| 15 | 2140 | 2141 | 2142 | 2144 | 2145 | 2146 | 2147 | 2148 | 21 |
| 16 | 2150 | 2151 | 2152 | 2154 | 2155 | 2156 | 2157 | 2158 | 159 |
| 17 | 216 | 2161 | 2162 | 2164 | 2165 | 2166 | 2167 | 2168 | 9 |
| 18 | 2170 | 2171 | 2172 | 2174 | 2175 | 2176 | 2177 | 2178 | 2179 |
| 19 | 218 | 2181 | 2182 | 2184 | 2185 | 2186 | 2187 | 2188 | 89 |
| 20 | 2190 | 2191 | 2192 | 2194 | 2195 | 2196 | 2197 | 2198 | 2100 |
| 21 | 2200 | 2201 | 2202 | 2204 | 2205 | 2206 | 2207 | 2208 | 2209 |
| 22 | 22 | 22 | 221 | 221 | 22 | 2216 | 2217 | 2218 | 2219 |
| 23 | 2220 | 2221 | 2222 | 2224 | 2225 | 2226 | 2227 | 2228 | 2229 |
| 24 | 223 | 2231 | 223 | 223 | 2235 | 2236 | 2237 | 2238 | 2239 |
| 25 | 2240 | 2241 | 2242 | 2244 | 2245 | 2246 | 2247 | 2248 | 2249 |
| 26 | 2250 | 225 | 2252 | 2254 | 2255 | 2256 | 2257 | 2258 | 2259 |
| 27 | 226 | 226 | 2262 | 226 | 2265 | 2266 | 2267 | 2268 | 2269 |
| 28 | 2270 | 227 | 2272 | 2274 | 2275 | 2276 | 2277 | 2278 | 2279 |
| 29 | 228 | 2281 | 2282 | 2284 | 2285 | 2286 | 2287 | 2288 | 9 |
| 30 | 2290 | 2291 | 2292 | 2294 | 2295 | 2296 | 2297 | 2298 | 2299 |
| 31 | 2300 | 2301 | 2302 | 2304 | 2305 | 2306 | 2307 | 2308 | 2309 |
| 32 | 2310 | 2311 | 2312 | 2314 | 2315 | 2316 | 2317 | 2318 | 2319 |
| 33 | 2320 | 2321 | 2322 | 2324 | 2325 | 2326 | 2327 | 2328 | 2329 |
| 34 | 2330 | 2331 | 2332 | 2334 | 2335 | 2336 | 2337 | 2338 | 2339 |
| 35 | 2340 | 2341 | 2342 | 2344 | 2345 | 2346 | 2347 | 2348 | 2349 |
| 36 | 2350 | 2351 | 2352 | 2354 | 2355 | 2356 | 2357 | 2358 | 2359 |
| 37 | 2360 | 2361 | 2362 | 2364 | 2365 | 2366 | 2367 | 2368 | 2369 |
| 38 | 2370 | 2371 | 2372 | 2374 | 2375 | 2376 | 2377 | 2378 | 2379 |
| 39 | 2380 | 2381 | 2382 | 2384 | 2385 | 2386 | 2387 | 2388 | 2389 |
| 40 | 239 | 2391 | 2392 | 239 | 2395 | 2396 | 2397 | 2398 | 239 |
| 41 | 2400 | 2401 | 2402 | 2404 | 2405 | 2406 | 2407 | 2408 | 2409 |
| 42 | 2410 | 2411 | 2412 | 2414 | 2415 | 2416 | 2417 | 2418 | 2419 |
| 43 | 2420 | 2421 | 2422 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 |
| 44 | 2430 | 2431 | 2432 | 2434 | 2435 | 2436 | 2437 | 2438 | 2439 |
| 45 | 2440 | 2441 | 2442 | 2444 | 2445 | 2446 | 2447 | 2448 | 2449 |
| 46 | 2450 | 2451 | 2452 | 2454 | 2455 | 2456 | 2457 | 2458 | 2459 |
| 47 | 2460 | 2461 | 2462 | 2464 | 2465 | 2466 | 2467 | 2468 | 2469 |
| 48 | 2470 | 2471 | 2472 | 2474 | 2475 | 2476 | 2477 | 2478 | 2479 |
| 49 | 2480 | 2481 | 2482 | 2484 | 2485 | 2486 | 2487 | 2488 | 2489 |
| 50 | 2490 | 2491 | 2492 | 2494 | 2495 | 2496 | 2497 | 2498 | 2499 |


|  | Positioning identifier | $\begin{array}{\|c} \mathrm{M} \\ \text { code } \end{array}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 2500 |  |  |  | 25 |  | 2507 |  |  |
|  |  | 2511 | 2512 | 2514 | 2515 | 2516 | 2517 | 2518 |  |
|  |  | 2521 | 2522 | 2524 | 2525 | 2526 | 2527 |  |  |
|  |  | 2531 | 2532 |  | 2535 | 2536 | 2537 | 8 | 2539 |
| 55 |  |  | 2542 |  | 25 | 2546 | 2547 |  |  |
|  | 2550 | 2551 | 2552 | 2554 | 2555 | 2556 | 2557 | 2558 |  |
|  |  | 2 | 2562 | 2564 | 2565 | 2566 | 2567 | 2568 | 2569 |
|  |  |  |  |  | 2575 | 2576 | 2577 |  |  |
| 59 |  |  |  |  |  |  |  |  |  |
| 60 |  |  | 25 |  |  | 2596 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 6 | 2630 | 2 | 26 | 2634 | 26 | 26 | 2637 | 8 | 2639 |
| 65 |  |  |  |  | 26 |  |  | 8 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 68 |  |  |  |  |  |  |  |  |  |
| 69 |  | 2 | 26 | 2684 |  | 2 | 2687 |  |  |
| 70 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 73 |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |
| 75 |  |  |  |  |  |  |  |  |  |
| 76 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 78 |  |  |  |  |  |  |  |  |  |
| 79 |  |  |  |  |  |  |  |  |  |
| 80 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 83 |  |  | 2 |  |  | 2 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 85 | 2840 | 28 | 28 | 28 | 28 | 28 | 2 | 8 |  |
|  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |
| 88 |  |  |  |  |  | 2876 |  |  |  |
| 89 |  |  |  |  |  |  |  |  |  |
| 90 |  | 28 | 28 |  | 28 | 28 | 2897 | 8 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 93 |  |  | 2922 |  |  | 2926 |  |  |  |
| 94 |  |  | 2 |  | 29 | 29 | 2 | 2938 |  |
| 95 | 2940 | 2 | 29 | 2944 | 29 | 29 | 2947 | 29 | 2949 |
| 96 |  |  |  |  |  |  |  |  |  |
| 97 |  | 29 | 2962 | 64 | 65 | 2966 | 2 |  |  |
| 98 | 2 | 2 | 297 | 2974 | 2975 | 297 | 297 |  | 2979 |
| 99 | 2980 | 2981 | 2982 | 2984 | 2985 | 2986 | 2987 | 2988 | 2989 |
| 100 | 2990 | 299 | 2992 | 2994 | 2995 | 2996 | 299 | 29 | 2999 |


| $\begin{aligned} & \text { Data } \\ & \text { No. } \end{aligned}$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \end{array}$ | $\begin{gathered} M \\ \text { code } \end{gathered}$ | Dwelltime | Command speed |  | Positioning address |  | Arc dat |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ |
|  | 3000 | 3001 | 3002 | 3004 | 3005 | 3006 | 3007 | 3008 | 09 |
| 102 | 3010 | 3011 | 3012 | 3014 | 3015 | 3016 | 3017 | 3018 | 3019 |
| 103 | 3020 | 3021 | 3022 | 3024 | 3025 | 3026 | 302 | 3028 | 29 |
| 104 | 3030 | 3031 | 3032 | 3034 | 3035 | 30 | 3037 | 3038 | 3039 |
| 105 | 3040 | 3041 | 3042 | 3044 | 3045 | 3046 | 3047 | 3048 | 9 |
| 106 | 3050 | 3051 | 3052 | 3054 | 3055 | 3056 | 3057 | 3058 | 3059 |
| 107 | 3060 | 3061 | 3062 | 3064 | 30 | 3066 | 3067 | 3068 | 69 |
| 108 | 307 | 30 | 3072 | 3074 | 3075 | 3076 | 3077 | 3078 | 79 |
| 10 | 3080 | 3081 | 3082 | 3084 | 3085 | 3086 | 3087 | 3088 | 3089 |
| 110 | 3090 | 3091 | 3092 | 3094 | 3095 | 3096 | 3097 | 3098 | 9 |
| 111 | 310 | 3101 | 02 | 31 | 31 | 06 | 3107 | 08 | 09 |
| 112 | 31 | 3111 | 12 | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 |
| 113 | 3120 | 31 | 3122 | 3124 | 3125 | 3126 | 3127 | 28 | 129 |
| 114 | 313 | 31 | 3132 | 3134 | 3135 | 3136 | 3137 | 3138 | 3139 |
| 11 | 3140 | 3141 | 3142 | 3144 | 3145 | 3146 | 3147 | 31 | 9 |
| 116 | 31 | 3151 | 3152 | 15 | 3155 | 15 | 3157 | 3158 | 59 |
| 117 | 31 | 3161 | 3162 | 31 | 3165 | 3166 | 3167 | 3168 | 3169 |
| 118 | 317 | 317 | 3172 | 31 | 3175 | 3176 | 317 | 3178 | 79 |
| 11 | 318 | 3181 | 3182 | 318 | 318 | 3186 | 31 | 3188 | 3189 |
| 120 | 3190 | 3191 | 3192 | 3194 | 3195 | 3196 | 3197 | 3198 | 31 |
| 121 | 3200 | 3201 | 3202 | 3204 | 3205 | 3206 | 3207 | 3208 | 3209 |
| 122 | 3210 | 3211 | 3212 | 3214 | 3215 | 3216 | 32 | 32 | 19 |
| 123 | 3220 | 3221 | 3222 | 3224 | 3225 | 3226 | 322 | 32 | 3229 |
| 124 | 3230 | 3231 | 3232 | 3234 | 3235 | 323 | 323 | 32 | 3239 |
| 125 | 3240 | 3241 | 3242 | 3244 | 3245 | 3246 | 3247 | 3248 | 3249 |
|  |  | 3251 | 3252 |  |  | 3256 |  |  |  |
| 127 | 3260 | 3261 | 3262 | 3264 | 3265 | 326 | 3267 | 3268 | 3269 |
| 12 | 3270 | 3271 | 3272 | 3274 | 3275 | 3276 | 32 | 32 | 79 |
| 129 | 3280 | 3281 | 3282 | 328 | 3285 | 3286 | 32 | 32 | 3289 |
| 130 | 3290 | 329 | 3292 | 3294 | 329 | 3296 | 3297 | 32 | 3299 |
| 13 | 33 | 3301 | 3302 | 33 | 33 | 3306 | 3307 | 3308 | 3309 |
| 132 | 33 | 3311 | 3312 | 3314 | 3315 | 3316 | 331 | 33 | 3319 |
| 133 | 332 | 3321 | 3322 | 24 | 3325 | 26 | 3327 | 2388 | 3329 |
| 134 | 3330 | 3331 | 3332 | 3334 | 3335 | 3336 | 3337 | 3338 | 3339 |
| 135 | 3340 | 3341 | 3342 | 3344 | 3345 | 3346 | 3347 | 33 | 3349 |
| 136 | 335 | 3351 | 3352 | 33 | 3355 | 56 | 3357 | 3358 | 3359 |
| 137 | 336 | 336 | 3362 | 33 | 336 | 33 | 33 | 33 | 33 |
| 13 | 337 | 33 | 3372 | 3374 | 3375 | 3376 | 33 | 3378 | 79 |
| 13 | 3380 | 3381 | 3382 | 3384 | 3385 | 3386 | 3387 | 3388 | 3389 |
| 140 | 3390 | 3391 | 3392 | 3394 | 3395 | 3396 | 3397 | 3398 | 33 |
| 141 | 3400 | 3401 | 3402 | 340 | 3405 | 3406 | 34 | 3408 | 3409 |
| 142 | 3410 | 3411 | 3412 | 3414 | 3415 | 3416 | 3417 | 3418 | 3419 |
| 143 | 342 | 34 | 342 | 342 | 3425 | 342 | 342 | 34 | 34 |
| 144 | 343 | 34 | 3432 | 3434 | 343 | 343 | 343 | 34 | 39 |
| 14 | 3440 | 3441 | 3442 | 344 | 34 | 3446 | 3447 | 34 | 3449 |
| 146 | 3450 | 3451 | 3452 | 345 | 34 | 3456 | 345 | 3458 | 3459 |
| 147 | 3460 | 3461 | 3462 | 3464 | 3465 | 3466 | 3467 | 3468 | 3469 |
| 148 | 3470 | 3471 | 3472 | 3474 | 3475 | 3476 | 347 | 34 | 3479 |
| 49 | 3480 | 3481 | 3482 | 3484 | 3485 | 3486 | 34 | 34 | 3489 |
| 150 | 3490 | 3491 | 3492 | 3494 | 3495 | 3496 | 349 | 3498 | 3499 |


| $\begin{array}{\|l\|l} \text { Data } \\ \text { No. } \end{array}$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell | Command speed |  | Positioning address |  | Arc dat |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Low- | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { High- } \\ \text { order } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { Low- } \\ & \text { order } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { High- } \\ \text { order } \\ \hline \end{array} \\ \hline \end{array}$ | $\begin{array}{\|l\|l} \hline \text { Low- } \\ \text { order } \end{array}$ | Hige |
|  | 35 | 3501 | 3502 | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 |
|  | 3510 | 3511 | 12 | 3514 | 3515 | 3516 | 35 | 3518 | 3519 |
| 153 | 352 | 35 | 352 | 352 | 35 | 3526 | 3527 | 3528 | 3529 |
| 154 | 353 | 35 | 35 | 35 | 3535 | 3536 | 3537 | 3538 | 3539 |
| 155 | 3540 | 3541 | 42 | 35 | 35 | 3546 | 3547 | 3548 | 3549 |
| 156 | 3550 | 3551 | 3552 | 3554 | 3555 | 3556 | 3557 | 3558 |  |
| 157 | 3560 | 3561 | 3562 | 3564 | 3565 | 3566 | 3567 | 3568 | 3569 |
| 158 | 3570 | 35 | 3572 | 3574 | 3575 | 3576 | 3577 | 3578 | 3579 |
| 159 | 358 | 3581 | 3582 | 3584 | 358 | 3586 | 7 | 588 |  |
| 160 | 3590 | 3591 | 3592 | 3594 | 3595 | 3596 | 359 | 3598 |  |
| 161 | 3600 | 3601 | 3602 | 3604 |  |  | 3607 | 3608 |  |
| 162 | 3610 | 3611 | 3612 | 3614 | 3615 | 3616 | 3617 | 3618 |  |
| 163 | 3620 | 3621 | 3622 | 3624 | 3625 | 3626 | 3627 | 3628 | 3629 |
| 164 | 3630 | 3631 | 3632 | 3634 | 3635 | 3636 | 3637 | 3638 | 3639 |
| 165 | 36 | 36 | 3642 | 3644 | 364 | 36 | 647 | 3648 |  |
| 16 | 3650 | 3651 | 3652 | 654 | 3655 | 3656 | 3657 | 3658 |  |
| 167 | 3660 | 3661 | 3662 | 3664 | 3665 | 3666 | 3667 | 3668 |  |
| 168 | 36 | 36 | 3672 | 3674 | 3675 | 36 | 3677 | 3678 |  |
| 16 | 3680 | 3681 | 36 | 36 | 3685 | 36 | 3687 | 3688 |  |
| 170 | 369 | 36 | 3692 | 3694 | 3695 | 3696 | 3697 | 3698 |  |
| 171 | 3700 | 3701 | 3702 | 3704 | 3705 | 3706 | 3707 | 3708 |  |
| 17 | 37 | 37 | 3712 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 |
| 17 | 372 | 37 | 37 | 3724 | 3725 | 3726 | 3727 | 3728 |  |
| 17 | 373 | 373 | 3732 | 3734 | 373 | 37 | 3737 | 3738 |  |
| 175 | 3740 | 3741 | 3742 | 3744 | 3745 | 3746 | 3747 | 374 |  |
|  |  |  |  |  |  |  | 3757 |  |  |
| 177 | 3760 | 3761 | 3762 | 3764 | 3765 | 3766 | 3767 | 3768 |  |
| 178 | 3770 | 37 | 37 | 3774 | 3775 | 3776 | 3777 | 3778 |  |
| 17 | 37 | 37 | 3782 | 3784 | 3785 | 3786 | 3787 | 3788 |  |
| 180 | 379 | 37 | 3792 | 3794 | 37 | 3796 | 3797 | 3798 |  |
| 181 | 38 |  |  |  |  |  | 3807 | 3808 |  |
| 182 | 3810 |  |  |  |  | 3816 | 3817 | 3818 |  |
| 18 | 3820 | 38 | 3822 | 3824 | 3825 | 3826 | 3827 | 3828 |  |
| 18 | 38 | 38 | 3832 | 3834 | 3835 | 3836 | 3837 | 3838 |  |
| 18 | 3840 | 38 | 3842 | 38 | 38 | 3846 | 38 | 38 |  |
| 186 | 3850 | 3851 |  |  |  |  |  |  |  |
| 187 | 38 | 38 | 386 | 38 | 38 | 38 | 3867 | 3868 | 3869 |
| 18 | 38 | 38 | 3872 | 3874 | 38 | 38 | 3877 | 3878 | 3879 |
| 189 | 388 | 388 | 3882 | 3884 | 388 | 3886 | 388 | 3888 | 3889 |
| 190 | 3890 | 3891 | 3892 | 389 | 389 | 3896 | 3897 | 389 |  |
| 19 |  |  |  |  |  |  |  | 3908 |  |
| 192 | 3910 | 39 | 3912 | 3914 | 3915 | 3916 | 3917 | 3918 | 3919 |
| 193 | 39 | 39 | 39 | 3924 | 39 | 39 | 3927 | 39 | 3929 |
| 19 | 39 | 39 | 39 | 3934 | 39 | 3936 | 3937 | 393 | 3939 |
| 195 | 3940 | 3941 | 3942 | 394 | 394 | 3946 | 394 | 3948 | 3949 |
| 19 | 395 | 3951 | 3952 | 3954 | 395 | 39 | 3957 | 3958 | 3959 |
| 197 | 3960 | 39 | 3962 | 3964 | 3965 | 3966 | 3967 | 396 |  |
| 198 | 397 | 39 | 3972 | 397 | 397 | 39 | 397 | 397 | 397 |
| 199 | 39 | 398 | 398 | 398 | 398 | 39 | 398 | 39 | 3989 |
| 200 | 399 | 399 | 3992 | 399 | 3995 | 399 | 399 | 399 | 3999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \\ & \hline \end{aligned}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | High- order |
| 201 | 4000 | 4001 | 4002 | 4004 | 4005 | 4006 | 4007 | 4008 | 09 |
| 202 | 4010 | 4011 | 4012 | 4014 | 4015 | 4016 | 4017 | 4018 | 4019 |
| 203 | 4020 | 4021 | 4022 | 4024 | 4025 | 4026 | 4027 | 4028 | 4029 |
| 204 | 4030 | 4031 | 4032 | 4034 | 4035 | 4036 | 4037 | 4038 | 4039 |
| 205 | 4040 | 4041 | 4042 | 4044 | 4045 | 4046 | 4047 | 4048 | 4049 |
| 206 | 4050 | 4051 | 4052 | 4054 | 4055 | 4056 | 4057 | 5 | 9 |
| 207 | 4060 | 4061 | 4062 | 4064 | 4065 | 4066 | 4067 | 4068 | 4069 |
| 208 | 4070 | 4071 | 4072 | 4074 | 4075 | 4076 | 4077 | 4078 | 4079 |
| 209 | 4080 | 4081 | 4082 | 4084 | 4085 | 4086 | 4087 | 4088 | 4089 |
| 210 | 4090 | 4091 | 4092 | 4094 | 4095 | 4096 | 4097 | 4098 | 4099 |
| 21 | 4100 | 41 | 41 | 41 | 41 | 4106 | 4107 | 4108 | 4109 |
| 212 | 4110 | 4111 | 4112 | 4114 | 4115 | 4116 | 4117 | 4118 | 4119 |
| 213 | 4120 | 4121 | 4122 | 4124 | 4125 | 4126 | 4127 | 4128 | 4129 |
| 214 | 4130 | 4131 | 4132 | 4134 | 4135 | 4136 | 4137 | 4138 | 9 |
| 21 | 41 | 414 | 414 | 414 | 414 | 4146 | 4147 | 4148 | 析 |
| 2 | 4150 | 41 | 41 | 41 | 41 | 4156 | 4157 | 8 | 4159 |
| 217 | 4160 | 4161 | 4162 | 4164 | 4165 | 4166 | 4167 | 4168 | 4169 |
| 218 | 4170 | 4171 | 4172 | 4174 | 4175 | 4176 | 4177 | 4178 | 4179 |
| 21 | 4180 | 41 | 418 | 41 | 41 | 4186 | 4187 | 4188 | 9 |
| 220 | 4190 | 419 | 419 | 419 | 4195 | 4196 | 4197 | 4198 |  |
| 22 | 4200 | 420 | 420 | 420 | 420 | 4206 | 4207 | 4208 | 4209 |
| 222 | 4210 | 4211 | 4212 | 4214 | 4215 | 4216 | 4217 | 4218 | 4219 |
| 223 | 4220 | 4221 | 4222 | 4224 | 4225 | 4226 | 4227 | 4228 | 4229 |
| 22 | 4230 | 423 | 4232 | 423 | 4235 | 4236 | 4237 | 4238 | 4239 |
| 225 | 4240 | 4241 | 4242 | 4244 | 4245 | 4246 | 4247 | 4248 | 4249 |
| 226 | 4250 | 4251 | 4252 | 4254 | 4255 | 4256 | 4257 | 4258 | 9 |
| 227 | 4260 | 4261 | 4262 | 4264 | 4265 | 4266 | 4267 | 4268 | 4269 |
| 228 | 4270 | 427 | 4272 | 427 | 4275 | 4276 | 4277 | 4278 | 4279 |
| 229 | 4280 | 428 | 428 | 428 | 4285 | 4286 | 4287 | 4288 | 4289 |
| 230 | 4290 | 4291 | 4292 | 4294 | 4295 | 4296 | 4297 | 4298 | 4299 |
| 231 | 4300 | 4301 | 4302 | 4304 | 4305 | 4306 | 4307 | 4308 | 4309 |
| 232 | 4310 | 4311 | 4312 | 4314 | 4315 | 4316 | 4317 | 4318 | 4319 |
| 233 | 4320 | 4321 | 4322 | 4324 | 4325 | 4326 | 4327 | 4328 | 4329 |
| 23 | 4330 | 433 | 4332 | 433 | 4335 | 4336 | 4337 | 4338 | 4339 |
| 235 | 4340 | 4341 | 4342 | 4344 | 4345 | 4346 | 4347 | 4348 | 4349 |
| 236 | 4350 | 4351 | 4352 | 4354 | 4355 | 4356 | 4357 | 4358 | 4359 |
| 237 | 4360 | 4361 | 4362 | 4364 | 4365 | 4366 | 4367 | 4368 | 4369 |
| 238 | 4370 | 4371 | 4372 | 4374 | 4375 | 4376 | 4377 | 4378 | 4379 |
| 239 | 4380 | 4381 | 4382 | 438 | 4385 | 4386 | 4387 | 4388 | 4389 |
| 240 | 4390 | 4391 | 4392 | 4394 | 4395 | 4396 | 4397 | 4398 | 4399 |
| 241 | 4400 | 4401 | 4402 | 4404 | 4405 | 4406 | 4407 | 4408 | 4409 |
| 242 | 4410 | 4411 | 4412 | 4414 | 4415 | 4416 | 4417 | 4418 | 4419 |
| 243 | 4420 | 4421 | 4422 | 4424 | 4425 | 4426 | 4427 | 4428 | 4429 |
| 244 | 4430 | 4431 | 4432 | 4434 | 4435 | 4436 | 4437 | 4438 | 4439 |
| 245 | 4440 | 4441 | 4442 | 4444 | 4445 | 4446 | 4447 | 4448 | 4449 |
| 246 | 4450 | 4451 | 4452 | 4454 | 4455 | 4456 | 4457 | 4458 | 4459 |
| 247 | 4460 | 4461 | 4462 | 4464 | 4465 | 4466 | 4467 | 4468 | 4469 |
| 248 | 4470 | 4471 | 4472 | 4474 | 4475 | 4476 | 4477 | 4478 | 4479 |
| 249 | 4480 | 4481 | 4482 | 4484 | 4485 | 4486 | 4487 | 4488 | 4489 |
| 250 | 4490 | 4491 | 4492 | 4494 | 4495 | 4496 | 4497 | 4498 | 4499 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | High- order | Loworder | $\begin{array}{\|l\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ |
| 251 | 4500 | 4501 | 4502 | 4504 | 4505 | 4506 | 4507 | 4508 | 4509 |
| 252 | 4510 | 4511 | 4512 | 4514 | 4515 | 4516 | 4517 | 4518 | 4519 |
| 253 | 4520 | 4521 | 4522 | 4524 | 4525 | 4526 | 4527 | 4528 | 4529 |
| 254 | 4530 | 4531 | 4532 | 4534 | 4535 | 4536 | 4537 | 4538 | 4539 |
| 255 | 4540 | 4541 | 4542 | 4544 | 4545 | 4546 | 4547 | 4548 | 4549 |
| 256 | 4550 | 4551 | 4552 | 4554 | 4555 | 4556 | 4557 | 4558 | 9 |
| 257 | 4560 | 4561 | 4562 | 4564 | 4565 | 4566 | 4567 | 4568 | 4569 |
| 258 | 4570 | 4571 | 4572 | 4574 | 4575 | 4576 | 4577 | 4578 | 4579 |
| 259 | 4580 | 4581 | 4582 | 4584 | 4585 | 4586 | 4587 | 4588 | 9 |
| 260 | 4590 | 4591 | 4592 | 4594 | 4595 | 4596 | 4597 | 4598 | 9 |
| 26 | 4600 | 4601 | 4602 | 4604 | 4605 | 4606 | 4607 | 4608 | 9 |
| 262 | 4610 | 4611 | 4612 | 4614 | 4615 | 4616 | 4617 | 4618 | 4619 |
| 263 | 4620 | 4621 | 4622 | 4624 | 4625 | 4626 | 4627 | 4628 | 4629 |
| 26 | 46 | 46 | 46 | 46 | 46 | 4636 | 4637 | 4638 | 3 |
| 265 | 46 | 4641 | 46 | 46 | 46 | 4646 | 4647 | 4648 | 4649 |
| 26 | 4650 | 46 | 4652 | 465 | 465 | 4656 | 4657 | 4658 | 4659 |
| 267 | 4660 | 4661 | 4662 | 4664 | 4665 | 4666 | 4667 | 4668 | 4669 |
| 268 | 4670 | 4671 | 4672 | 4674 | 4675 | 4676 | 4677 | 4678 | 4679 |
| 26 | 468 | 468 | 468 | 468 | 4685 | 4686 | 4687 | 4688 | 89 |
| 270 | 4690 | 4691 | 4692 | 469 | 4695 | 4696 | 4697 | 4698 | 4699 |
| 27 | 4700 | 4701 | 4702 | 4704 | 4705 | 4706 | 4707 | 4708 | 9 |
| 272 | 4710 | 4711 | 4712 | 4714 | 4715 | 4716 | 4717 | 4718 | 4719 |
| 273 | 4720 | 4721 | 4722 | 4724 | 4725 | 4726 | 4727 | 4728 | 4729 |
| 274 | 4730 | 4731 | 4732 | 4734 | 4735 | 4736 | 4737 | 4738 | 4739 |
| 275 | 4740 | 4741 | 4742 | 4744 | 4745 | 4746 | 4747 | 4748 | 4749 |
| 276 | 4750 | 4751 | 4752 | 4754 | 4755 | 4756 | 4757 | 4758 | 9 |
| 277 | 4760 | 4761 | 4762 | 4764 | 4765 | 4766 | 4767 | 4768 | 4769 |
| 278 | 4770 | 4771 | 4772 | 477 | 4775 | 4776 | 4777 | 4778 | 4779 |
| 279 | 4780 | 478 | 4782 | 478 | 4785 | 4786 | 4787 | 4788 | 4789 |
| 280 | 4790 | 4791 | 4792 | 4794 | 4795 | 4796 | 4797 | 4798 | 4799 |
| 281 | 4800 | 4801 | 4802 | 4804 | 4805 | 4806 | 4807 | 4808 | 4809 |
| 282 | 4810 | 4811 | 4812 | 4814 | 4815 | 4816 | 4817 | 4818 | 4819 |
| 283 | 4820 | 4821 | 4822 | 4824 | 4825 | 4826 | 4827 | 4828 | 4829 |
| 284 | 4830 | 4831 | 4832 | 4834 | 4835 | 4836 | 4837 | 4838 | 4839 |
| 285 | 4840 | 4841 | 4842 | 4844 | 4845 | 4846 | 4847 | 4848 | 4849 |
| 286 | 4850 | 4851 | 4852 | 4854 | 4855 | 4856 | 4857 | 4858 | 4859 |
| 287 | 4860 | 4861 | 4862 | 4864 | 4865 | 4866 | 4867 | 4868 | 4869 |
| 288 | 4870 | 4871 | 4872 | 4874 | 4875 | 4876 | 4877 | 4878 | 4879 |
| 289 | 4880 | 4881 | 4882 | 488 | 4885 | 4886 | 4887 | 4888 | 4889 |
| 290 | 4890 | 4891 | 4892 | 4894 | 4895 | 4896 | 4897 | 4898 | 4899 |
| 291 | 4900 | 4901 | 4902 | 4904 | 4905 | 4906 | 4907 | 4908 | 4909 |
| 292 | 4910 | 4911 | 4912 | 4914 | 4915 | 4916 | 4917 | 4918 | 4919 |
| 293 | 4920 | 4921 | 4922 | 4924 | 4925 | 4926 | 4927 | 4928 | 4929 |
| 294 | 4930 | 4931 | 4932 | 4934 | 4935 | 4936 | 4937 | 4938 | 4939 |
| 295 | 4940 | 4941 | 4942 | 4944 | 4945 | 4946 | 4947 | 4948 | 4949 |
| 296 | 4950 | 4951 | 4952 | 4954 | 4955 | 4956 | 4957 | 4958 | 4959 |
| 297 | 4960 | 4961 | 4962 | 4964 | 4965 | 4966 | 4967 | 4968 | 4969 |
| 298 | 4970 | 4971 | 4972 | 4974 | 4975 | 4976 | 4977 | 4978 | 4979 |
| 299 | 4980 | 4981 | 4982 | 4984 | 4985 | 4986 | 4987 | 4988 | 4989 |
| 300 | 4990 | 4991 | 4992 | 4994 | 4995 | 4996 | 4997 | 4998 | 4999 |


| $\begin{aligned} & \text { Data } \\ & \text { No } \end{aligned}$ | Posi- <br> tioning <br> identi- <br> fier <br> 5000 | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | $\begin{aligned} & \mathrm{w}-1 \\ & \text { der } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { gh- } \\ & \text { der } \end{aligned}$ |
|  | 5000 | 5001 | 5002 | 5004 | 5005 | 5006 | 5007 | 5008 | 5009 |
|  | 5010 | 5011 | 5012 | 5014 | 5015 | 5016 | 5017 | 5018 | 5019 |
|  | 5020 | 5021 | 5022 | 5024 | 5025 | 5026 | 5027 | 5028 | 29 |
| 304 | 5030 | 5031 | 5032 | 5034 | 5035 | 5036 | 5037 | 5038 | 5039 |
| 305 | 50 | 5041 | 5042 | 5044 | 5045 | 5046 | 5047 | 50 | 9 |
| 306 | 5050 | 5051 | 5052 | 5054 | 5055 | 5056 | 5057 | 5058 | 5059 |
|  | 50 | 5061 | 5062 |  | 5065 | 5066 | 5067 |  |  |
| 308 | 5070 | 5071 | 5072 | 5074 | 5075 | 5076 | 5077 | 5078 | 5079 |
| 309 | 5080 | 5081 | 5082 | 5084 | 5085 | 5086 | 5087 | 5088 | 5089 |
| 310 | 50 | 5091 | 50 | 50 | 5095 | 5096 | 5097 | 5098 | 5099 |
| 311 | 5100 | 5101 | 5102 | 5104 | 5105 | 5106 | 5107 | 5108 | 5109 |
| 312 | 5110 | 5111 | 5112 | 5114 | 5115 | 5116 | 5117 |  |  |
| 313 | 5120 | 5121 | 5122 | 5124 | 5125 | 5126 | 5127 | 5128 | 29 |
| 314 | 51 | 5131 | 5132 | 5134 | 51 | 5136 | 5137 | 5138 | 5139 |
| 315 | 514 | 5141 | 5142 | 51 | 51 | 5146 | 5147 | 5148 | 5149 |
| 316 |  | 5151 | 5152 | 5154 |  |  |  |  |  |
| 317 | 5160 | 5161 | 5162 | 5164 | 5165 | 5166 | 5167 | 5168 | 69 |
| 318 | 51 | 5171 | 51 | 5174 | 51 | 5176 | 5177 | 5178 | 5179 |
| 319 | 51 | 5181 | 5182 | 5184 | 51 | 5186 | 5187 | 5188 | 5189 |
| 320 | 5190 | 51 | 5192 | 519 | 519 | 196 | 519 | 5198 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  | 5212 |  | 5215 | 5216 | 5217 | 5218 |  |
| 323 | 52 | 5221 | 5222 | 5224 | 52 | 5226 | 5227 | 5228 | 5229 |
| 32 | 523 | 52 | 523 | 52 | 52 | 52 | 5237 | 5238 | 5239 |
| 32 | 5240 | 5241 | 5242 | 524 | 52 | 52 | 52 | 52 |  |
| 326 | 5250 | 5251 | 5252 | 5254 | 5255 | 5256 | 5257 | 5258 | 5259 |
| 327 | 526 | 5261 | 52 | 5264 | 52 | 5266 | 5267 | 5268 | 5269 |
|  | 5270 |  |  |  | 5275 | 5276 | 5277 |  |  |
| 329 | 52 | 5281 | 5282 | 5284 | 52 | 86 | 5287 | 5288 | 89 |
| 330 | 5290 | 5291 | 5292 | 5294 | 5295 | 5296 | 529 | 52 |  |
| 331 | 5300 | 5301 | 5302 | 5304 | 5305 | 5306 |  |  |  |
| 332 | 53 | 5311 | 5312 | 5314 | 53 | 5316 | 5317 | 5318 | 5319 |
| 333 | 532 | 532 | 532 | 53 | 53 | 53 | 5327 | 53 | 5329 |
| 334 | 5330 |  | 5332 | 53 | 53 | 5336 | 5337 | 5338 | 5339 |
| 33 | 534 | 5341 | 5342 | 53 | 53 | 5346 | 5347 | 53 | 534 |
|  |  |  |  |  |  |  |  |  |  |
| 337 | 5360 | 5361 | 2 | 5364 | 5365 | 66 | 5367 |  |  |
| 338 | 53 | 5371 | 53 | 5374 | 53 | 5376 | 5377 | 5378 |  |
| 339 | 538 | 53 | 538 | 53 | 53 | 53 | 5387 | 53 | 5389 |
| 340 | 53 | 5391 | 539 | 53 | 5395 | 5396 | 5397 | 5398 | 5399 |
|  |  |  |  |  |  |  |  |  | 5409 |
| 342 | 54 |  | 5412 | 5414 | 5415 | 5416 | 54 | 5418 | 5419 |
| 343 | 542 | 5421 | 5422 | 5424 | 54 | 54 | 5427 | 5428 | 5429 |
| 344 | 543 | 5431 | 5432 | 54 | 5435 | 5436 | 5437 | 5438 | 5439 |
| 345 | 5440 | 5441 | 5442 | 5444 | 5445 | 5446 | 5447 | 5448 | 5449 |
| 346 |  |  |  |  |  |  |  |  | 5459 |
| 347 | 5460 | 54 | 5462 | 546 | 54 | 5466 | 546 | 54 | 5469 |
| 348 | 5470 | 5471 | 5472 | 547 | 547 | 5476 | 547 | 547 | 5479 |
| 349 | 5480 | 5481 | 5482 | 5484 | 5485 | 5486 | 548 | 5488 | 54 |
| 350 | 549 | 54 | 5492 | 54 | 5495 | 5496 | 5497 | 5498 | 5499 |


|  | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \text { Dwell } \\ \text { time } \end{array}$ | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & n-2 \\ & \text { ner } \end{aligned}$ |
| 351 | 5500 | 5501 | 5502 | 5504 | 5505 | 5506 | 5507 | 5508 | 5509 |
|  | 5510 |  | 5512 |  | 5515 |  | 5517 | 5518 | 5519 |
|  | 5520 |  | 5522 |  | 5525 | 5526 |  | 5528 | 5529 |
|  |  |  | 5532 | 5534 | 5535 | 5536 | 5537 | 5538 | 39 |
| 355 | 5540 | 55 | 5542 | 5544 | 5545 | 5546 | 5547 | 48 |  |
| 356 | 5550 | 5551 | 5552 | 5554 | 5555 | 5556 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  | 5572 |  | 5575 |  | 5577 | 5578 | 579 |
| 359 |  |  | 5582 | 5584 | 5585 | 5586 | 5587 | 5588 | 5589 |
| 36 | 5590 | 5591 | 5592 | 5594 | 5595 | 5596 | 5597 | 5598 | 5599 |
| 36 | 5600 | 5601 | 5602 | 5604 | 5605 | 5606 |  | 5608 | 5609 |
| 36 |  |  | 5612 |  | 5615 |  | 5617 | 5618 | 5619 |
|  |  |  | 5622 |  | 5625 | 5626 | 5627 | 5628 |  |
|  |  |  | 5632 |  | 5635 |  | 5637 | 5638 | 5639 |
| 365 | 5640 | 56 | 56 |  | 5645 | 56 | 5647 | 5648 | 5649 |
|  |  |  |  |  | 5655 |  |  |  |  |
| 367 | 5660 | 566 | 5662 | 5664 | 5665 | 5666 | 5667 | 5668 | 5669 |
| 36 | 5670 |  | 56 | 5674 | 5675 | 5676 | 5677 | 5678 | 5679 |
| 36 | 5680 | 56 | 5682 |  | 5685 |  |  |  |  |
| 370 | 5690 | 56 | 569 |  | 5695 | 5696 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 37 | 5720 | 5721 | 5722 |  | 5725 |  | 5727 | 5728 | 5729 |
| 37 | 5730 | 5731 | 57 | 5734 | 5735 | 5736 | 5737 | 5738 | 5739 |
| 37 | 5740 | 57 | 57 | 5744 | 5745 | 5746 | 5747 | 5748 |  |
| 376 |  |  |  |  |  |  |  |  |  |
| 37 |  |  | 5762 |  |  |  | 5767 | 5768 | 5769 |
|  |  |  |  |  |  |  |  | 5778 |  |
|  |  |  |  | 5784 | 5785 |  | 5787 | 5788 | 5789 |
| 380 | 90 | 57 | 5792 | 5794 | 57 | 57 | 5797 | 98 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 5818 | 5819 |
| 383 | 5820 | 58 | 58 | 5824 |  |  |  | 5828 | 5829 |
|  |  |  |  |  |  |  |  |  | 5839 |
| 385 | 5840 | 584 | 58 | 58 | 584 | 58 | 58 | 5848 | 5849 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  | 5872 |  |  |  | 5877 | 5878 | 5879 |
| 389 | 5880 | 58 |  |  | 5885 |  | 5887 | 5888 | 5889 |
| 39 | 5890 | 58 | 5892 | 5894 | 5895 | 5896 | 5897 | 5898 | 5899 |
|  |  |  |  |  |  |  |  |  | 509 |
| 392 | 5910 |  |  |  | 59 |  |  | 5918 | 5919 |
| 393 |  |  | 5922 |  | 5925 |  |  | 5928 | 5929 |
| 394 |  | 5931 | 5932 |  |  |  |  | 38 | 5939 |
| 395 | 5940 | 59 | 59 |  | 5945 | 59 | 5947 | 5948 | 59 |
|  |  |  |  |  |  |  |  |  | 959 |
| 397 | 5960 | 59 | 59 | 5964 | 5965 |  | 5967 | 5968 | 59 |
| 398 | 5970 | 597 | 5972 | 597 | 597 | 59 | 5977 | 5978 | 597 |
| 399 | 980 | 598 | 5982 | 598 | 5985 | 598 | 59 | 5988 | 598 |
| 40 | 5990 | 59 | 5992 | 59 | 5995 | 5996 | 5997 | 5998 | 5999 |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | High- order |
| 401 | 6000 | 6001 | 6002 | 6004 | 6005 | 6006 | 6007 | 6008 | 6009 |
| 402 | 6010 | 6011 | 6012 | 6014 | 6015 | 6016 | 6017 | 6018 | 6019 |
| 403 | 6020 | 6021 | 6022 | 6024 | 6025 | 6026 | 6027 | 6028 | 6029 |
| 404 | 6030 | 6031 | 6032 | 6034 | 6035 | 6036 | 6037 | 6038 | 6039 |
| 405 | 6040 | 6041 | 6042 | 6044 | 6045 | 6046 | 6047 | 6048 | 6049 |
| 406 | 6050 | 6051 | 6052 | 6054 | 6055 | 6056 | 6057 | 6058 | 6059 |
| 407 | 6060 | 6061 | 6062 | 6064 | 6065 | 6066 | 6067 | 6068 | 6069 |
| 408 | 6070 | 6071 | 6072 | 6074 | 6075 | 6076 | 6077 | 6078 | 79 |
| 409 | 6080 | 6081 | 6082 | 6084 | 6085 | 6086 | 6087 | 6088 | 89 |
| 410 | 6090 | 6091 | 6092 | 6094 | 6095 | 6096 | 6097 | 6098 | 6099 |
| 411 | 6100 | 6101 | 6102 | 6104 | 6105 | 6106 | 6107 | 6108 | 6109 |
| 412 | 6110 | 6111 | 6112 | 6114 | 6115 | 6116 | 6117 | 6118 | 6119 |
| 413 | 6120 | 6121 | 6122 | 6124 | 6125 | 6126 | 6127 | 6128 | 29 |
| 414 | 6130 | 6131 | 6132 | 6134 | 6135 | 6136 | 6137 | 6138 | 6139 |
| 415 | 6140 | 6141 | 6142 | 6144 | 6145 | 6146 | 6147 | 6148 | 6149 |
| 416 | 6150 | 6151 | 6152 | 6154 | 6155 | 6156 | 6157 | 6158 | 6159 |
| 417 | 6160 | 6161 | 6162 | 6164 | 6165 | 6166 | 6167 | 6168 | 6169 |
| 418 | 6170 | 617 | 617 | 617 | 6175 | 6176 | 6177 | 6178 | 6179 |
| 419 | 6180 | 6181 | 6182 | 6184 | 6185 | 6186 | 6187 | 6188 | 6189 |
| 420 | 6190 | 6191 | 6192 | 6194 | 6195 | 6196 | 6197 | 6198 | 6199 |
| 421 | 6200 | 6201 | 6202 | 6204 | 6205 | 6206 | 6207 | 6208 | 6209 |
| 422 | 6210 | 621 | 6212 | 62 | 62 | 6216 | 6217 | 6218 | 9 |
| 423 | 6220 | 6221 | 6222 | 6224 | 6225 | 6226 | 6227 | 6228 | 6229 |
| 424 | 6230 | 6231 | 6232 | 6234 | 6235 | 6236 | 6237 | 6238 | 6239 |
| 425 | 6240 | 6241 | 6242 | 6244 | 6245 | 6246 | 6247 | 6248 | 6249 |
| 426 | 6250 | 6251 | 6252 | 6254 | 6255 | 6256 | 6257 | 6258 | 59 |
| 427 | 6260 | 626 | 6262 | 626 | 6265 | 6266 | 6267 | 6268 | 6269 |
| 428 | 6270 | 6271 | 6272 | 6274 | 6275 | 6276 | 6277 | 6278 | 6279 |
| 429 | 6280 | 6281 | 6282 | 6284 | 6285 | 6286 | 6287 | 6288 | 6289 |
| 430 | 6290 | 6291 | 6292 | 6294 | 6295 | 6296 | 6297 | 6298 | 6299 |
| 431 | 6300 | 6301 | 6302 | 6304 | 6305 | 6306 | 6307 | 6308 | 6309 |
| 432 | 6310 | 6311 | 6312 | 631 | 6315 | 6316 | 6317 | 6318 | 6319 |
| 433 | 6320 | 6321 | 6322 | 6324 | 6325 | 6326 | 6327 | 6328 | 6329 |
| 434 | 6330 | 6331 | 6332 | 6334 | 6335 | 6336 | 6337 | 6338 | 6339 |
| 435 | 6340 | 6341 | 6342 | 6344 | 6345 | 6346 | 6347 | 6348 | 6349 |
| 436 | 6350 | 6351 | 6352 | 6354 | 6355 | 6356 | 6357 | 6358 | 6359 |
| 437 | 6360 | 6361 | 6362 | 6364 | 6365 | 6366 | 6367 | 6368 | 6369 |
| 438 | 6370 | 6371 | 6372 | 6374 | 6375 | 6376 | 6377 | 6378 | 6379 |
| 439 | 6380 | 6381 | 6382 | 6384 | 6385 | 6386 | 6387 | 6388 | 6389 |
| 440 | 6390 | 6391 | 6392 | 6394 | 6395 | 6396 | 6397 | 6398 | 6399 |
| 441 | 6400 | 6401 | 6402 | 6404 | 6405 | 6406 | 6407 | 6408 | 6409 |
| 442 | 6410 | 6411 | 6412 | 6414 | 6415 | 6416 | 6417 | 6418 | 6419 |
| 443 | 6420 | 6421 | 6422 | 6424 | 6425 | 6426 | 6427 | 6428 | 6429 |
| 444 | 6430 | 6431 | 6432 | 6434 | 6435 | 6436 | 6437 | 6438 | 6439 |
| 445 | 6440 | 6441 | 6442 | 6444 | 6445 | 6446 | 6447 | 6448 | 6449 |
| 446 | 6450 | 6451 | 6452 | 6454 | 6455 | 6456 | 6457 | 6458 | 6459 |
| 447 | 6460 | 6461 | 6462 | 6464 | 6465 | 6466 | 6467 | 6468 | 6469 |
| 448 | 6470 | 6471 | 6472 | 6474 | 6475 | 6476 | 6477 | 6478 | 6479 |
| 449 | 6480 | 6481 | 6482 | 6484 | 6485 | 6486 | 6487 | 6488 | 6489 |
| 450 | 6490 | 6491 | 6492 | 6494 | 6495 | 6496 | 6497 | 6498 | 6499 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{gathered} \text { High- } \\ \text { order } \end{gathered}$ | Loworder | Highorder | Loworder | Highorder |
| 451 | 6500 | 6501 | 6502 | 6504 | 6505 | 6506 | 6507 | 6508 | 6509 |
| 452 | 6510 | 6511 | 6512 | 6514 | 6515 | 6516 | 6517 | 6518 | 6519 |
| 453 | 6520 | 6521 | 6522 | 6524 | 6525 | 6526 | 6527 | 6528 | 6529 |
| 454 | 6530 | 6531 | 6532 | 6534 | 6535 | 6536 | 6537 | 6538 | 6539 |
| 455 | 6540 | 6541 | 6542 | 6544 | 6545 | 6546 | 6547 | 6548 | 6549 |
| 456 | 6550 | 6551 | 6552 | 6554 | 6555 | 6556 | 6557 | 6558 | 6559 |
| 457 | 6560 | 6561 | 6562 | 6564 | 6565 | 6566 | 6567 | 6568 | 6569 |
| 458 | 6570 | 6571 | 6572 | 6574 | 6575 | 6576 | 6577 | 6578 | 6579 |
| 459 | 6580 | 6581 | 6582 | 6584 | 6585 | 6586 | 6587 | 6588 | 9 |
| 460 | 6590 | 6591 | 6592 | 6594 | 6595 | 6596 | 6597 | 6598 | 6599 |
| 46 | 6600 | 6601 | 6602 | 6604 | 6605 | 6606 | 6607 | 6608 | 6609 |
| 462 | 6610 | 6611 | 6612 | 6614 | 6615 | 6616 | 6617 | 6618 | 6619 |
| 463 | 6620 | 6621 | 6622 | 6624 | 6625 | 6626 | 6627 | 6628 | 6629 |
| 46 | 66 | 66 | 66 | 66 | 66 | 66 | 6637 | 6638 | 9 |
| 465 | 6640 | 664 | 6642 | 66 | 66 | 6646 | 6647 | 6648 | 66 |
| 466 | 6650 | 6651 | 6652 | 66 | 665 | 6656 | 6657 | 6658 | 6659 |
| 467 | 6660 | 6661 | 6662 | 6664 | 6665 | 6666 | 6667 | 6668 | 6669 |
| 468 | 6670 | 6671 | 6672 | 6674 | 6675 | 6676 | 6677 | 6678 | 6679 |
| 46 | 668 | 66 | 6682 | 66 | 66 | 6686 | 6687 | 6688 | 6689 |
| 470 | 6690 | 6691 | 6692 | 6694 | 6695 | 6696 | 6697 | 6698 | 6699 |
| 47 | 6700 | 6701 | 6702 | 6704 | 6705 | 6706 | 6707 | 6708 | 6709 |
| 472 | 6710 | 6711 | 6712 | 6714 | 6715 | 6716 | 6717 | 6718 | 6719 |
| 473 | 6720 | 6721 | 6722 | 6724 | 6725 | 6726 | 6727 | 6728 | 6729 |
| 47 | 6730 | 6731 | 6732 | 6734 | 6735 | 6736 | 6737 | 6738 | 6739 |
| 475 | 6740 | 6741 | 6742 | 6744 | 6745 | 6746 | 6747 | 6748 | 6749 |
| 476 | 6750 | 6751 | 6752 | 6754 | 6755 | 6756 | 6757 | 6758 | 6759 |
| 477 | 6760 | 6761 | 6762 | 6764 | 6765 | 6766 | 6767 | 6768 | 6769 |
| 478 | 6770 | 6771 | 6772 | 6774 | 6775 | 6776 | 6777 | 6778 | 6779 |
| 479 | 6780 | 678 | 6782 | 6784 | 6785 | 6786 | 6787 | 6788 | 6789 |
| 480 | 6790 | 6791 | 6792 | 6794 | 6795 | 6796 | 6797 | 6798 | 6799 |
| 481 | 6800 | 6801 | 6802 | 6804 | 6805 | 6806 | 6807 | 6808 | 6809 |
| 482 | 6810 | 6811 | 6812 | 6814 | 6815 | 6816 | 6817 | 6818 | 6819 |
| 483 | 6820 | 6821 | 6822 | 6824 | 6825 | 6826 | 6827 | 6828 | 6829 |
| 484 | 6830 | 6831 | 6832 | 6834 | 6835 | 6836 | 6837 | 6838 | 6839 |
| 485 | 6840 | 6841 | 6842 | 6844 | 6845 | 6846 | 6847 | 6848 | 6849 |
| 486 | 6850 | 6851 | 6852 | 6854 | 6855 | 6856 | 6857 | 6858 | 6859 |
| 487 | 6860 | 6861 | 6862 | 6864 | 6865 | 6866 | 6867 | 6868 | 6869 |
| 488 | 6870 | 6871 | 6872 | 6874 | 6875 | 6876 | 6877 | 6878 | 6879 |
| 489 | 6880 | 6881 | 6882 | 6884 | 6885 | 6886 | 6887 | 6888 | 6889 |
| 490 | 6890 | 6891 | 6892 | 6894 | 6895 | 6896 | 6897 | 6898 | 6899 |
| 491 | 6900 | 6901 | 6902 | 6904 | 6905 | 6906 | 6907 | 6908 | 6909 |
| 492 | 6910 | 6911 | 6912 | 6914 | 6915 | 6916 | 6917 | 6918 | 6919 |
| 493 | 6920 | 6921 | 6922 | 6924 | 6925 | 6926 | 6927 | 6928 | 6929 |
| 494 | 6930 | 6931 | 6932 | 6934 | 6935 | 6936 | 6937 | 6938 | 6939 |
| 495 | 6940 | 6941 | 6942 | 6944 | 6945 | 6946 | 6947 | 6948 | 6949 |
| 496 | 6950 | 6951 | 6952 | 6954 | 6955 | 6956 | 6957 | 6958 | 6959 |
| 497 | 6960 | 6961 | 6962 | 6964 | 6965 | 6966 | 6967 | 6968 | 6969 |
| 498 | 6970 | 6971 | 6972 | 6974 | 6975 | 6976 | 6977 | 6978 | 6979 |
| 499 | 6980 | 6981 | 6982 | 6984 | 6985 | 6986 | 6987 | 6988 | 6989 |
| 500 | 6990 | 6991 | 6992 | 6994 | 6995 | 6996 | 6997 | 6998 | 6999 |


| $\begin{aligned} & \text { Data } \\ & \text { No. } \end{aligned}$ | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \text { Dwell } \\ \text { time } \end{array}$ | $\begin{gathered} \text { Command } \\ \text { speed } \\ \hline \end{gathered}$ |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 7000 | 7001 | 7002 | 7004 | 7005 | 7006 | 7007 | 7008 | 7009 |
| 502 | 7010 | 7011 | 7012 | 7014 | 7015 | 7016 | 7017 | 7018 | 7019 |
| 503 | 7020 | 7021 | 7022 |  | 7025 | 7026 | 7027 | 7028 | 7029 |
|  | 7030 | 7031 | 7032 | 7034 | 7035 | 7036 | 7037 |  | 7039 |
|  | 7040 | 7041 | 7042 | 7044 | 7045 | 46 | 7047 | 7048 |  |
| 506 | 7050 | 7051 | 7052 | 7054 | 7055 | 7056 | 7057 |  |  |
|  |  | 7061 |  |  | 7065 |  |  |  |  |
|  | 7070 | 7071 | 7072 | 7074 | 7075 | 7076 | 7077 | 88 | 7079 |
| 509 | 70 | 7081 | 7082 | 7084 | 7085 | 7086 | 7087 | 7088 | 7089 |
| 510 | 7090 | 7091 | 7092 | 7094 | 7095 | 7096 | 7097 | 7098 | 7099 |
| 511 | 7100 | 7101 | 7102 |  | 7105 | 7106 | 7107 | 108 |  |
| 512 | 7110 | 7111 | 7112 |  | 7115 | 7116 | 7117 | 7118 |  |
|  | 7120 | 7121 | 7122 |  | 7125 | 7126 | 7127 |  |  |
|  | 7130 | 7131 |  | 7134 | 7135 | 7136 | 7137 | 7138 |  |
| 515 | 7140 |  |  | 7144 | 7145 | 7146 | 7147 |  | 7149 |
| 516 | 7150 | 7151 | 7152 |  |  |  |  |  |  |
| 517 | 7160 | 7161 | 7162 | 7164 | 7165 | 7166 | 7167 | 8 | 7169 |
| 518 | 7170 | 7171 | 7172 | 7174 | 7175 | 7176 | 7177 | 7178 | 7179 |
| 519 | 7180 | 7181 | 7182 | 7184 | 7185 | 7186 | 7187 | 7188 |  |
| 520 | 7190 | 191 | 7192 | 719 | 7195 | 7196 | 719 | 7198 |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 7210 |  |  |  |  | 7216 |  |  |  |
| 523 | 7220 | 7221 | 7222 | 7224 | 7225 | 7226 | 7227 | 828 | 7229 |
| 524 | 72 | 7231 | 7232 | 7234 | 7235 | 7236 | 7237 | 7238 | 7239 |
| 525 | 7240 | 7241 | 7242 | 72 | 724 | 7246 | 7247 | 7248 |  |
| 526 |  | 7251 |  |  |  | 7256 |  |  |  |
|  | 7260 | 7261 | 7262 | 7264 | 7265 | 7266 | 7267 | 7268 |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 7280 | 7281 | 7282 |  | 7285 | 7286 | 7287 | 88 | 7289 |
| 530 | 7290 | 7291 | 7292 | 7294 | 7295 | 7296 | 7297 | 7298 |  |
| 531 | 7300 | 7301 |  |  |  |  |  |  |  |
|  | 7310 | 7311 | 7312 | 7314 | 7315 | 7316 | 7317 | 7318 |  |
|  | 73 | 73 | 73 | 7324 | 7325 | 7326 | 7327 | 7328 | 7329 |
|  |  | 7331 | 7332 | 73 | 73 | 73 | 73 | 8 | 7339 |
| 535 | 7340 | 734 | 734 | 73 | 73 | 7346 | 73 | 7348 | 7349 |
|  |  |  |  |  |  |  |  |  |  |
|  | 7360 | 7361 | 7362 |  | 65 |  | 7367 |  |  |
|  | 73 | 7371 | 7372 | 7374 | 7375 | 7376 | 7377 | 7378 |  |
| 539 | 7380 | 7381 | 73 | 73 | 7385 | 7386 | 7387 | 7388 | 7389 |
| 540 | 7390 | 7391 | 7392 | 7394 | 7395 | 7396 | 7397 | 7398 | 7399 |
|  |  |  |  |  |  |  |  |  |  |
|  | 7410 | 7411 | 7412 |  | 7415 | 7416 | 7417 | 7418 | 419 |
|  | 74 | 7421 | 7422 | 74 | 7425 | 7426 | 7427 | 7428 | 7429 |
|  | 7430 | 7431 | 7432 | 74 | 743 | 743 | 7437 | 7438 | 7439 |
| 545 | 7440 | 7441 | 7442 | 7444 | 7445 | 7446 | 7447 |  | 7449 |
|  |  | 7451 | 7452 |  | 7455 | 7456 |  |  |  |
|  | 7460 | 74 | 746 | 74 | 7465 | 7466 | 74 | 7468 | 7469 |
| 548 | 7470 | 7471 | 7472 | 747 | 747 | 7476 | 74 | 7478 | 7479 |
| 549 | 7480 | 7481 | 7482 | 7484 | 7485 | 7486 | 748 | 7488 | 7489 |
| 550 | 7490 | 7491 | 7492 | 7494 | 7495 | 7496 | 7497 | 7498 | 749 |


|  |  | $\begin{gathered} M \\ \text { code } \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { Dwell } \\ \text { time } \end{array}$ | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 7500 | 7501 | 7502 | 7504 | 7505 | 7506 | 7507 | 7508 | 7509 |
|  |  |  |  |  |  |  |  |  | 7519 |
|  |  |  |  |  | 7525 |  | 7527 | 28 | 7529 |
|  |  | 7531 | 7532 |  | 7535 | 7536 | 7537 | 7538 | 7539 |
| 555 | 7540 | 754 | 7542 | 75 | 7545 | 75 | 75 | 48 |  |
| 556 | 7550 | 7551 |  |  | 7555 |  |  |  |  |
| 557 | 7560 |  |  |  | 7565 |  | 7567 | 688 | 569 |
| 558 | 7570 | 7571 | 7572 | 7574 | 7575 | 7576 | 7577 |  | 7579 |
| 559 | 7580 | 7581 | 7582 | 7584 | 7585 | 7586 | 7587 | 7588 | 7589 |
| 56 | 7590 | 75 | 7592 | 7594 | 7595 | 7596 | 7597 | 7598 | 7599 |
| 561 | 7600 | 7601 |  |  | 7605 |  |  |  | 7609 |
| 562 | 7610 | 76 |  |  | 7615 |  | 7617 | 18 | 7619 |
| 563 | 7620 | 7621 | 7622 | 7624 | 7625 | 7626 | 7627 | 28 |  |
| 564 | 7630 | 7631 | 7632 | 7634 | 7635 | 7636 | 7637 | 极 | 7639 |
| 565 | 7640 | 76 | 76 | 7644 | 76 | 7646 | 7647 | 7648 | 7649 |
| 566 |  | 7651 |  |  | 7655 |  | 7657 |  |  |
| 567 | 7660 | 7661 | 7662 | 7664 | 7665 | 7666 | 7667 | 7668 | 7669 |
| 568 | 7670 | 76 | 7672 | 7674 | 76 | 7676 | 7677 | 7678 | 7679 |
| 569 | 7680 | 7681 | 7682 | 7684 | 7685 | 7686 |  |  |  |
| 570 | 7690 | 769 | 769 | 7694 | 769 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 573 | 7720 | 7721 |  |  | 7725 |  |  | 7728 |  |
| 574 | 7730 | 7731 | 7732 | 7734 | 7735 | 7736 | 7737 | 7738 | 7739 |
| 575 | 7740 | 774 | 7742 | 7744 | 7745 | 7746 | 7747 |  |  |
| 576 |  |  |  |  |  |  |  |  |  |
| 577 |  |  |  |  |  |  |  |  | 7769 |
|  |  |  |  |  |  |  |  |  |  |
| 579 | 7780 | 7781 |  |  | 7785 |  |  |  | 7789 |
| 580 | 7790 | 779 | 7792 | 7794 | 779 | 779 | 7797 | 7798 |  |
| 581 |  |  |  |  |  |  |  |  |  |
| 582 | 7810 |  |  |  | 7815 |  |  | 7818 | 7819 |
| 583 | 7820 | 78 | 7822 | 7824 | 78 | 7826 | 7827 | 7828 | 7829 |
| 58 |  |  |  |  | 7835 |  |  |  |  |
| 585 | 7840 | 784 | 78 | 78 | 78 | 78 | 78 | 7848 | 7849 |
| 586 |  |  |  |  |  |  |  |  |  |
| 58 |  |  |  |  |  |  |  |  |  |
| 588 | 7870 | 78 | 7872 |  | 7875 |  |  |  | 7879 |
| 58 | 7880 | 78 | 78 | 78 | 78 | 7886 | 7887 | 7888 | 7889 |
| 590 | 7890 | 7891 | 7892 | 7894 | 7895 | 7896 | 7897 | 7898 | 7899 |
|  |  |  |  |  |  |  |  |  | 909 |
| 592 | 7910 |  |  |  | 7915 | 7916 |  | 7918 | 7919 |
| 593 | 79 | 79 | 79 | 79 | 79 |  |  |  | 7929 |
| 594 |  |  | 7932 |  | 7935 |  |  |  | 7939 |
| 595 | 7940 | 79 | 7942 |  | 7945 | 7946 | 7947 | 7948 | 7949 |
| 596 |  |  |  |  |  |  |  |  | 7959 |
| 597 | 7960 |  | 7962 |  | 7965 |  |  | 7968 | 7969 |
| 598 | 7970 | 797 | 7972 | 797 | 797 | 79 | 797 | 79 | 797 |
| 599 | 7980 | 7981 | 7982 | 7984 | 7985 | 798 | 7987 | 7988 | 798 |
| 600 | 7990 | 799 | 7992 | 799 | 7995 | 7996 | 7997 | 7998 |  |

(a) For axis 1 (positioning option)

| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2003 | 51 | 2503 | 101 | 3003 | 151 | 3503 | 201 | 4003 | 251 | 4503 |
| 2 | 2013 | 52 | 2513 | 102 | 3013 | 152 | 3513 | 202 | 4013 | 252 | 4513 |
| 3 | 2023 | 53 | 2523 | 103 | 3023 | 153 | 3523 | 203 | 4023 | 253 | 4523 |
| 4 | 2033 | 54 | 2533 | 104 | 3033 | 154 | 3533 | 204 | 4033 | 254 | 4533 |
| 5 | 2043 | 55 | 2543 | 105 | 3043 | 155 | 3543 | 205 | 4043 | 255 | 4543 |
| 6 | 2053 | 56 | 2553 | 106 | 3053 | 156 | 3553 | 206 | 4053 | 256 | 4553 |
| 7 | 2063 | 57 | 2563 | 107 | 3063 | 157 | 3563 | 207 | 4063 | 257 | 4563 |
| 8 | 2073 | 58 | 2573 | 108 | 3073 | 158 | 3573 | 208 | 4073 | 258 | 4573 |
| 9 | 2083 | 59 | 2583 | 109 | 3083 | 159 | 3583 | 209 | 4083 | 259 | 4583 |
| 10 | 2093 | 60 | 2593 | 110 | 3093 | 160 | 3593 | 210 | 4093 | 260 | 4593 |
| 11 | 2103 | 61 | 2603 | 111 | 3103 | 161 | 3603 | 211 | 4103 | 261 | 4603 |
| 12 | 2113 | 62 | 2613 | 112 | 3113 | 162 | 3613 | 212 | 4113 | 262 | 4613 |
| 13 | 2123 | 63 | 2623 | 113 | 3123 | 163 | 3623 | 213 | 4123 | 263 | 4623 |
| 14 | 2133 | 64 | 2633 | 114 | 3133 | 164 | 3633 | 214 | 4133 | 264 | 4633 |
| 15 | 2143 | 65 | 2643 | 115 | 3143 | 165 | 3643 | 215 | 4143 | 265 | 4643 |
| 16 | 2153 | 66 | 2653 | 116 | 3153 | 166 | 3653 | 216 | 4153 | 266 | 4653 |
| 17 | 2163 | 67 | 2663 | 117 | 3163 | 167 | 3663 | 217 | 4163 | 267 | 4663 |
| 18 | 2173 | 68 | 2673 | 118 | 3173 | 168 | 3673 | 218 | 4173 | 268 | 4673 |
| 19 | 2183 | 69 | 2683 | 119 | 3183 | 169 | 3683 | 219 | 4183 | 269 | 4683 |
| 20 | 2193 | 70 | 2693 | 120 | 3193 | 170 | 3693 | 220 | 4193 | 270 | 4693 |
| 21 | 2203 | 71 | 2703 | 121 | 3203 | 171 | 3703 | 221 | 4203 | 271 | 4703 |
| 22 | 2213 | 72 | 2713 | 122 | 3213 | 172 | 3713 | 222 | 4213 | 272 | 4713 |
| 23 | 2223 | 73 | 2723 | 123 | 3223 | 173 | 3723 | 223 | 4223 | 273 | 4723 |
| 24 | 2233 | 74 | 2733 | 124 | 3233 | 174 | 3733 | 224 | 4233 | 274 | 4733 |
| 25 | 2243 | 75 | 2743 | 125 | 3243 | 175 | 3743 | 225 | 4243 | 275 | 4743 |
| 26 | 2253 | 76 | 2753 | 126 | 3253 | 176 | 3753 | 226 | 4253 | 276 | 4753 |
| 27 | 2263 | 77 | 2763 | 127 | 3263 | 177 | 3763 | 227 | 4263 | 277 | 4763 |
| 28 | 2273 | 78 | 2773 | 128 | 3273 | 178 | 3773 | 228 | 4273 | 278 | 4773 |
| 29 | 2283 | 79 | 2783 | 129 | 3283 | 179 | 3783 | 229 | 4283 | 279 | 4783 |
| 30 | 2293 | 80 | 2793 | 130 | 3293 | 180 | 3793 | 230 | 4293 | 280 | 4793 |
| 31 | 2303 | 81 | 2803 | 131 | 3303 | 181 | 3803 | 231 | 4303 | 281 | 4803 |
| 32 | 2313 | 82 | 2813 | 132 | 3313 | 182 | 3813 | 232 | 4313 | 282 | 4813 |
| 33 | 2323 | 83 | 2823 | 133 | 3323 | 183 | 3823 | 233 | 4323 | 283 | 4823 |
| 34 | 2333 | 84 | 2833 | 134 | 3333 | 184 | 3833 | 234 | 4333 | 284 | 4833 |
| 35 | 2343 | 85 | 2843 | 135 | 3343 | 185 | 3843 | 235 | 4343 | 285 | 4843 |
| 36 | 2353 | 86 | 2853 | 136 | 3353 | 186 | 3853 | 236 | 4353 | 286 | 4853 |
| 37 | 2363 | 87 | 2863 | 137 | 3363 | 187 | 3863 | 237 | 4363 | 287 | 4863 |
| 38 | 2373 | 88 | 2873 | 138 | 3373 | 188 | 3873 | 238 | 4373 | 288 | 4873 |
| 39 | 2383 | 89 | 2883 | 139 | 3383 | 189 | 3883 | 239 | 4383 | 289 | 4883 |
| 40 | 2393 | 90 | 2893 | 140 | 3393 | 190 | 3893 | 240 | 4393 | 290 | 4893 |
| 41 | 2403 | 91 | 2903 | 141 | 3403 | 191 | 3903 | 241 | 4403 | 291 | 4903 |
| 42 | 2413 | 92 | 2913 | 142 | 3413 | 192 | 3913 | 242 | 4413 | 292 | 4913 |
| 43 | 2423 | 93 | 2923 | 143 | 3423 | 193 | 3923 | 243 | 4423 | 293 | 4923 |
| 44 | 2433 | 94 | 2933 | 144 | 3433 | 194 | 3933 | 244 | 4433 | 294 | 4933 |
| 45 | 2443 | 95 | 2943 | 145 | 3443 | 195 | 3943 | 245 | 4443 | 295 | 4943 |
| 46 | 2453 | 96 | 2953 | 146 | 3453 | 196 | 3953 | 246 | 4453 | 296 | 4953 |
| 47 | 2463 | 97 | 2963 | 147 | 3463 | 197 | 3963 | 247 | 4463 | 297 | 4963 |
| 48 | 2473 | 98 | 2973 | 148 | 3473 | 198 | 3973 | 248 | 4473 | 298 | 4973 |
| 49 | 2483 | 99 | 2983 | 149 | 3483 | 199 | 3983 | 249 | 4483 | 299 | 4983 |
| 50 | 2493 | 100 | 2993 | 150 | 3493 | 200 | 3993 | 250 | 4493 | 300 | 4993 |


| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | 5003 | 351 | 5503 | 401 | 6003 | 451 | 6503 | 501 | 7003 | 551 | 7503 |
| 302 | 5013 | 352 | 5513 | 402 | 6013 | 452 | 6513 | 502 | 7013 | 552 | 7513 |
| 303 | 5023 | 353 | 5523 | 403 | 6023 | 453 | 6523 | 503 | 7023 | 553 | 7523 |
| 304 | 5033 | 354 | 5533 | 404 | 6033 | 454 | 6533 | 504 | 7033 | 554 | 7533 |
| 305 | 5043 | 355 | 5543 | 405 | 6043 | 455 | 6543 | 505 | 7043 | 555 | 7543 |
| 306 | 5053 | 356 | 5553 | 406 | 6053 | 456 | 6553 | 506 | 7053 | 556 | 7553 |
| 307 | 5063 | 357 | 5563 | 407 | 6063 | 457 | 6563 | 507 | 7063 | 557 | 7563 |
| 308 | 5073 | 358 | 5573 | 408 | 6073 | 458 | 6573 | 508 | 7073 | 558 | 7573 |
| 309 | 5083 | 359 | 5583 | 409 | 6083 | 459 | 6583 | 509 | 7083 | 559 | 7583 |
| 310 | 5093 | 360 | 5593 | 410 | 6093 | 460 | 6593 | 510 | 7093 | 560 | 7593 |
| 311 | 5103 | 361 | 5603 | 411 | 6103 | 461 | 6603 | 511 | 7103 | 561 | 7603 |
| 312 | 5113 | 362 | 5613 | 412 | 6113 | 462 | 6613 | 512 | 7113 | 562 | 7613 |
| 313 | 5123 | 363 | 5623 | 413 | 6123 | 463 | 6623 | 513 | 7123 | 563 | 7623 |
| 314 | 5133 | 364 | 5633 | 414 | 6133 | 464 | 6633 | 514 | 7133 | 564 | 7633 |
| 315 | 5143 | 365 | 5643 | 415 | 6143 | 465 | 6643 | 515 | 7143 | 565 | 7643 |
| 316 | 5153 | 366 | 5653 | 416 | 6153 | 466 | 6653 | 516 | 7153 | 566 | 7653 |
| 317 | 5163 | 367 | 5663 | 417 | 6163 | 467 | 6663 | 517 | 7163 | 567 | 7663 |
| 318 | 5173 | 368 | 5673 | 418 | 6173 | 468 | 6673 | 518 | 7173 | 568 | 7673 |
| 319 | 5183 | 369 | 5683 | 419 | 6183 | 469 | 6683 | 519 | 7183 | 569 | 7683 |
| 320 | 5193 | 370 | 5693 | 420 | 6193 | 470 | 6693 | 520 | 7193 | 570 | 7693 |
| 321 | 5203 | 371 | 5703 | 421 | 6203 | 471 | 6703 | 521 | 7203 | 571 | 7703 |
| 322 | 5213 | 372 | 5713 | 422 | 6213 | 472 | 6713 | 522 | 7213 | 572 | 7713 |
| 323 | 5223 | 373 | 5723 | 423 | 6223 | 473 | 6723 | 523 | 7223 | 573 | 7723 |
| 324 | 5233 | 374 | 5733 | 424 | 6233 | 474 | 6733 | 524 | 7233 | 574 | 7733 |
| 325 | 5243 | 375 | 5743 | 425 | 6243 | 475 | 6743 | 525 | 7243 | 575 | 7743 |
| 326 | 5253 | 376 | 5753 | 426 | 6253 | 476 | 6753 | 526 | 7253 | 576 | 7753 |
| 327 | 5263 | 377 | 5763 | 427 | 6263 | 477 | 6763 | 527 | 7263 | 577 | 7763 |
| 328 | 5273 | 378 | 5773 | 428 | 6273 | 478 | 6773 | 528 | 7273 | 578 | 7773 |
| 329 | 5283 | 379 | 5783 | 429 | 6283 | 479 | 6783 | 529 | 7283 | 579 | 7783 |
| 330 | 5293 | 380 | 5793 | 430 | 6293 | 480 | 6793 | 530 | 7293 | 580 | 7793 |
| 331 | 5303 | 381 | 5803 | 431 | 6303 | 481 | 6803 | 531 | 7303 | 581 | 7803 |
| 332 | 5313 | 382 | 5813 | 432 | 6313 | 482 | 6813 | 532 | 7313 | 582 | 7813 |
| 333 | 5323 | 383 | 5823 | 433 | 6323 | 483 | 6823 | 533 | 7323 | 583 | 7823 |
| 334 | 5333 | 384 | 5833 | 434 | 6333 | 484 | 6833 | 534 | 7333 | 584 | 7833 |
| 335 | 5343 | 385 | 5843 | 435 | 6343 | 485 | 6843 | 535 | 7343 | 585 | 7843 |
| 336 | 5353 | 386 | 5853 | 436 | 6353 | 486 | 6853 | 536 | 7353 | 586 | 7853 |
| 337 | 5363 | 387 | 5863 | 437 | 6363 | 487 | 6863 | 537 | 7363 | 587 | 7863 |
| 338 | 5373 | 388 | 5873 | 438 | 6373 | 488 | 6873 | 538 | 7373 | 588 | 7873 |
| 339 | 5383 | 389 | 5883 | 439 | 6383 | 489 | 6883 | 539 | 7383 | 589 | 7883 |
| 340 | 5393 | 390 | 5893 | 440 | 6393 | 490 | 6893 | 540 | 7393 | 590 | 7893 |
| 341 | 5403 | 391 | 5903 | 441 | 6403 | 491 | 6903 | 541 | 7403 | 591 | 7903 |
| 342 | 5413 | 392 | 5913 | 442 | 6413 | 492 | 6913 | 542 | 7413 | 592 | 7913 |
| 343 | 5423 | 393 | 5923 | 443 | 6423 | 493 | 6923 | 543 | 7423 | 593 | 7923 |
| 344 | 5433 | 394 | 5933 | 444 | 6433 | 494 | 6933 | 544 | 7433 | 594 | 7933 |
| 345 | 5443 | 395 | 5943 | 445 | 6443 | 495 | 6943 | 545 | 7443 | 595 | 7943 |
| 346 | 5453 | 396 | 5953 | 446 | 6453 | 496 | 6953 | 546 | 7453 | 596 | 7953 |
| 347 | 5463 | 397 | 5963 | 447 | 6463 | 497 | 6963 | 547 | 7463 | 597 | 7963 |
| 348 | 5473 | 398 | 5973 | 448 | 6473 | 498 | 6973 | 548 | 7473 | 598 | 7973 |
| 349 | 5483 | 399 | 5983 | 449 | 6483 | 499 | 6983 | 549 | 7483 | 599 | 7983 |
| 350 | 5493 | 400 | 5993 | 450 | 6493 | 500 | 6993 | 550 | 7493 | 600 | 7993 |


| $\begin{aligned} & \text { Data } \\ & \text { No. } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwelltime | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Low- | High- order | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \\ \hline \end{array}$ |  | $\begin{aligned} & \text { High- } \\ & \hline \text { and } \end{aligned}$ |
|  | 8000 | 8001 | 8002 | 8004 | 8005 | 8006 | 8007 | 8008 |  |
| 2 |  |  | 8012 |  | 8015 | 8016 | 8017 | 8018 | 19 |
| 3 |  | 8021 | 8022 |  | 8025 | 26 | 027 | 28 | 8029 |
| 4 | 8030 | 8031 | 80 | 8034 | 8035 | 36 | 8037 | 8038 | 39 |
| 5 | 8040 | 8041 | 8042 | 80 | 80 | 46 | 804 | 8048 | 8049 |
| 6 | 8050 | 8051 | 8052 | 8054 | 8055 | 8056 | 8057 | 8058 | 8059 |
| 7 |  | 8061 | 8062 | 8064 | 8065 | 8066 | 8067 | 8068 | 8069 |
| 8 | 8070 | 8071 | 8072 | 8074 | 8075 | 8076 | 8077 | 8078 | 8079 |
| 9 | 8080 | 8081 | 8082 | 8084 | 8085 | 8086 | 87 | 8088 | 89 |
| 10 | 80 | 91 | 092 | 94 | 8095 | 8096 | 097 | 8098 | 8099 |
| 11 | 8100 | 8101 | 8102 | 8104 | 8105 | 8106 | 8107 |  | 9 |
| 12 | 8110 |  | 8112 |  | 8115 | 8116 | 8117 |  | 19 |
| 13 | 8120 | 81 | 8122 | 8 | 81 | 8126 | 8127 | 8128 | 29 |
| 14 | 8130 | 8131 | 8132 | 8134 | 8135 | 8136 | 8137 | 8138 | 39 |
| 15 | 81 | 81 | 8142 | 81 | 81 | 814 | 814 | 81 | 8149 |
| 16 | 8150 | 8151 | 8152 | 8154 | 8155 | 8156 | 8157 | 8158 | 8159 |
| 17 | 8160 | 8161 | 8162 |  | 8165 | 8166 | 8167 | 8168 | 69 |
| 18 | 8170 | 8171 | 8172 |  | 8175 | 8176 | 8177 |  | 79 |
| 19 | 8180 | 8181 | 8182 | 8184 | 8185 |  | 8187 | 8188 | 89 |
| 20 | 819 | 81 | 8192 | 81 | 81 | 81 | 819 | 818 |  |
| 21 |  |  |  |  |  |  | 8207 |  |  |
| 22 | 8210 | 8211 | 8212 | 8214 | 8215 | 8216 | 8217 | 8218 | 8219 |
| 23 | 8220 | 8221 | 8222 | 8224 | 8225 | 8226 | 8227 | 8228 | 8229 |
| 24 | 8230 | 8231 | 8232 | 8234 | 82 | 8236 | 8237 | 8238 | 8239 |
| 25 | 8240 | 82 | 8242 | 8244 | 82 | 82 | 247 | 82 | 8249 |
| 26 |  |  |  |  |  |  |  |  |  |
| 27 | 8260 | 8261 | 8262 | 8264 | 8265 | 8266 | 8267 | 8268 | 8269 |
| 28 | 8270 | 8271 | 82 | 8274 | 82 | 8276 | 8277 | 8278 | 79 |
| 29 | 82 | 8281 | 82 | 8284 | 82 | 82 | 8287 | 8288 | 8289 |
| 30 | 829 | 8291 | 8292 | 829 | 829 | 82 | 829 | 82 | 8299 |
| 31 |  |  |  |  |  |  |  |  | 8309 |
| 32 | 8310 |  | 8312 |  | 8315 | 8316 | 8317 | 8318 | 8319 |
| 33 | 83 | 8321 | 8322 |  | 8325 | 26 | 8327 | 8328 | 29 |
| 34 |  | 8331 | 8332 | 8334 | 83 | 8336 | 8337 | 8338 | 8339 |
| 35 | 8340 | 8341 | 8342 | 83 | 8345 | 8346 | 834 | 83 | 83 |
| 36 |  |  |  |  |  |  |  |  |  |
| 37 | 8360 | 8361 | 8362 | 8364 | 8365 | 8366 | 8367 | 8368 | 8369 |
| 38 |  |  | 8372 |  | 8375 | 8376 | 83 | 83 | 8379 |
| 39 | 83 | 83 | 8382 | 8384 | 83 | 8386 | 8387 | 83 | 8389 |
| 40 | 839 | 8391 | 8392 | 839 | 839 | 8396 | 839 | 839 | 83 |
| 41 | 8400 |  | 8402 |  |  |  |  |  | 409 |
| 42 | 8410 | 8411 | 8412 | 8414 | 8415 | 84 | 84 | 8418 | 19 |
| 43 | 8420 | 8421 | 8422 | 8424 | 8425 | 8426 | 8427 | 8428 | 842 |
| 44 | 8430 | 8431 | 8432 | 8434 | 84 | 84 | 84 | 8438 | 8439 |
| 45 | 84 | 84 | 844 | 84 | 84 | 84 | 844 | 84 | 84 |
| 46 |  | 8451 | 8452 |  |  | 8456 | 8457 | 458 | 8459 |
| 47 | 846 | 84 | 8462 | 84 | 84 | 8466 | 8467 | 8468 | 8469 |
| 48 | 847 | 8471 | 8472 | 8474 | 8475 | 8476 | 8477 | 847 | 8479 |
| 49 | 8480 | 8481 | 8482 | 8484 | 8485 | 848 | 848 | 84 | 8489 |
| 50 | 849 | 84 | 8492 | 84 | 84 | 849 | 849 | 84 | 8499 |


| $\begin{aligned} & \text { Data } \\ & \text { No. } \end{aligned}$ | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \text { Dwell } \\ \text { time } \end{array}$ | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ |
| 51 | 8500 | 8501 | 8502 | 8504 | 8505 | 8506 | 8507 | 8508 | 8509 |
| 52 |  |  | 8512 |  | 8515 | 8516 | 8517 | 8518 | 8519 |
|  |  | 8521 | 8522 | 8524 | 8525 | 8526 | 8527 | 8528 | 8529 |
|  |  | 8531 | 8532 |  | 8535 | 8536 | 8537 | 38 | 8539 |
| 55 | 85 | 8541 | 85 |  | 8545 | 8546 | 85 | 48 | 8549 |
| 56 | 8550 | 8551 | 8552 | 8554 | 8555 | 8556 | 8557 | 8558 |  |
| 57 |  | 8561 | 8562 |  | 8565 | 8566 | 8567 | 568 | 569 |
| 58 | 8570 | 8571 | 85 | 8574 | 8575 | 8576 | 8577 | 8578 | 8579 |
| 59 | 8580 | 8581 | 85 | 8584 | 8585 | 8586 | 8587 | 8588 | 8589 |
| 60 | 8590 | 8591 | 85 | 8594 | 8595 | 859 | 85 | 8598 | 8599 |
| 61 | 8600 | 8601 | 8602 | 8604 | 8605 | 8606 | 8607 | 8608 |  |
| 62 |  |  |  |  | 8615 | 8616 |  |  |  |
| 63 | 8620 |  | 8622 |  | 8625 | 8626 | 8627 |  | 69 |
| 64 | 8630 | 8631 | 8632 | 8634 | 8635 | 8636 | 8637 | 8638 | 8639 |
| 65 | 8640 | 8641 | 86 | 8644 | 86 | 46 | 8647 | 48 | 8649 |
| 66 |  | 8651 | 8652 |  | 8655 | 8656 | 8657 | 8658 |  |
| 67 | 8660 | 8661 | 8662 | 8664 | 8665 | 8666 | 8667 | 8668 | 8669 |
| 68 |  |  | 8672 |  | 8675 | 8676 | 8677 |  | 8679 |
| 69 |  |  | 8682 | 8684 | 8685 |  |  |  |  |
| 70 | 86 | 8691 | 869 | 86 | 869 | 8696 | 8697 | 8 |  |
| 71 |  |  |  |  |  |  |  |  |  |
| 72 |  |  | 8712 |  | 8715 | 8716 | 8717 | 8 | 8719 |
| 73 | 8720 | 8721 | 8722 | 8724 | 8725 | 8726 | 8727 | 8 | 8729 |
| 74 | 8730 | 8731 | 8732 | 8734 | 8735 | 8736 | 8737 | 8738 | 873 |
| 75 | 87 | 8741 | 87 | 87 | 8745 | 8746 | 87 | 8748 |  |
| 76 |  |  |  |  |  |  |  |  |  |
| 77 |  |  | 8762 |  | 8765 | 8766 | 8767 |  |  |
| 78 |  |  | 8772 |  | 8775 | 76 | 8777 | 78 | 8779 |
| 79 | 87 | 8781 | 878 | 87 | 8785 | 8786 | 8787 | 8 | 8789 |
| 80 | 87 | 87 | 8792 | 8794 | 8795 | 8796 | 8797 | 8798 |  |
| 81 |  |  |  |  |  | 8806 |  |  |  |
| 82 |  |  | 8812 | 8814 | 8815 | 8816 | 8817 | 8818 | 8819 |
| 83 |  |  | 8822 |  | 8825 | 8826 |  |  | 8829 |
| 84 |  |  | 8832 |  | 35 | 36 | 8837 | 8838 | 8839 |
| 85 | 8840 | 8841 | 8842 | 88 | 8845 | 8846 | 8847 | 8848 | 8849 |
| 86 |  |  |  |  |  |  |  |  |  |
| 87 |  |  | 8862 |  | 8865 | 8866 | 8867 | 8868 |  |
| 88 |  |  | 8872 | 8874 | 8875 | 8876 | 8877 | 8878 | 8879 |
| 89 |  |  | 88 | 88 | 88 | 8886 | 88 | 8888 | 8889 |
| 90 | 88 | 889 | 88 | 88 | 88 | 88 | 88 | 8898 | 8899 |
| 91 |  |  |  |  |  |  |  |  | 星 |
| 92 | 89 | 8911 | 8912 |  | 15 | 16 | 8917 | 8918 | 19 |
| 93 | 89 | 8921 | 892 | 89 | 8925 | 89 | 8927 | 8928 | 8929 |
| 94 | 8930 | 8931 | 89 | 8934 | 8935 | 8936 | 89 | 8938 | 8939 |
| 95 | 89 | 89 | 89 | 8944 | 8945 | 8946 | 89 | 89 | 8949 |
| 96 |  |  |  |  | 8955 |  |  |  | 8959 |
| 97 | 89 | 89 | 89 | 89 | 8965 | 89 | 8967 | 8968 | 8969 |
| 98 | 8970 | 8971 | 8972 | 89 | 8975 | 897 | 89 | 8978 | 8979 |
| 99 | 8980 | 8981 | 8982 | 8984 | 8985 | 8986 | 898 | 898 | 898 |
| 100 | 899 | 899 | 89 | 8994 | 8995 | 8996 | 8997 | 8998 | 8999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 101 | 9000 | 9001 | 9002 | 9004 | 9005 | 9006 | 9007 | 9008 | 9009 |
| 102 | 9010 | 9011 | 9012 | 9014 | 9015 | 9016 | 9017 | 9018 | 9019 |
| 103 | 9020 | 9021 | 9022 | 9024 | 9025 | 9026 | 9027 | 9028 | 9029 |
| 104 | 9030 | 9031 | 9032 | 9034 | 9035 | 9036 | 9037 | 9038 | 9039 |
| 105 | 9040 | 9041 | 9042 | 9044 | 9045 | 9046 | 9047 | 9048 | 9049 |
| 106 | 9050 | 9051 | 9052 | 9054 | 9055 | 9056 | 9057 | 9058 | 9059 |
| 107 | 9060 | 9061 | 9062 | 9064 | 9065 | 9066 | 9067 | 9068 | 9069 |
| 108 | 9070 | 9071 | 9072 | 9074 | 9075 | 9076 | 9077 | 9078 | 9079 |
| 109 | 9080 | 9081 | 9082 | 9084 | 9085 | 9086 | 9087 | 9088 | 9089 |
| 110 | 9090 | 9091 | 9092 | 9094 | 9095 | 9096 | 9097 | 9098 | 9099 |
| 111 | 9100 | 9101 | 9102 | 9104 | 9105 | 9106 | 9107 | 9108 | 9109 |
| 112 | 9110 | 9111 | 9112 | 9114 | 9115 | 9116 | 9117 | 9118 | 19 |
| 113 | 9120 | 912 | 9122 | 9124 | 9125 | 9126 | 9127 | 9128 | 9129 |
| 114 | 913 | 9131 | 9132 | 9134 | 9135 | 9136 | 9137 | 9138 | 9139 |
| 115 | 9140 | 9141 | 9142 | 9144 | 9145 | 9146 | 9147 | 9148 | 9149 |
| 116 | 9150 | 9151 | 9152 | 9154 | 9155 | 9156 | 9157 | 9158 | 9159 |
| 117 | 9160 | 916 | 9162 | 9164 | 9165 | 9166 | 9167 | 9168 | 9169 |
| 118 | 9170 | 917 | 9172 | 9174 | 9175 | 9176 | 9177 | 9178 | 9179 |
| 119 | 9180 | 9181 | 9182 | 9184 | 9185 | 9186 | 9187 | 9188 | 9189 |
| 120 | 9190 | 9191 | 9192 | 9194 | 9195 | 9196 | 9197 | 9198 | 9199 |
| 121 | 9200 | 9201 | 9202 | 9204 | 9205 | 9206 | 9207 | 9208 | 9209 |
| 122 | 921 | 921 | 9212 | 9214 | 9215 | 9216 | 9217 | 9218 | 9219 |
| 123 | 9220 | 9221 | 9222 | 9224 | 9225 | 9226 | 9227 | 9228 | 9229 |
| 124 | 9230 | 9231 | 9232 | 9234 | 9235 | 9236 | 9237 | 9238 | 9239 |
| 125 | 9240 | 9241 | 9242 | 9244 | 9245 | 9246 | 9247 | 9248 | 9249 |
| 126 | 9250 | 925 | 9252 | 9254 | 9255 | 9256 | 9257 | 9258 | 9259 |
| 127 | 926 | 926 | 9262 | 9264 | 9265 | 9266 | 9267 | 9268 | 9269 |
| 128 | 9270 | 927 | 9272 | 9274 | 9275 | 9276 | 9277 | 9278 | 9279 |
| 129 | 9280 | 9281 | 9282 | 9284 | 9285 | 9286 | 9287 | 9288 | 9289 |
| 130 | 9290 | 9291 | 9292 | 9294 | 9295 | 9296 | 9297 | 9298 | 9299 |
| 131 | 9300 | 9301 | 9302 | 9304 | 9305 | 9306 | 9307 | 9308 | 9309 |
| 132 | 9310 | 931 | 9312 | 9314 | 9315 | 9316 | 9317 | 9318 | 9319 |
| 133 | 9320 | 9321 | 9322 | 9324 | 9325 | 9326 | 9327 | 9328 | 9329 |
| 134 | 9330 | 9331 | 9332 | 9334 | 9335 | 9336 | 9337 | 9338 | 9339 |
| 135 | 9340 | 9341 | 9342 | 9344 | 9345 | 9346 | 9347 | 9348 | 9349 |
| 136 | 9350 | 9351 | 9352 | 9354 | 9355 | 9356 | 9357 | 9358 | 93 |
| 137 | 9360 | 9361 | 9362 | 9364 | 9365 | 9366 | 9367 | 9368 | 9369 |
| 138 | 9370 | 9371 | 9372 | 9374 | 9375 | 9376 | 9377 | 9378 | 9379 |
| 139 | 9380 | 9381 | 9382 | 9384 | 9385 | 9386 | 9387 | 9388 | 9389 |
| 140 | 9390 | 9391 | 9392 | 9394 | 9395 | 9396 | 9397 | 9398 | 9399 |
| 141 | 9400 | 9401 | 9402 | 9404 | 9405 | 9406 | 9407 | 9408 | 9409 |
| 142 | 9410 | 9411 | 9412 | 9414 | 9415 | 9416 | 9417 | 9418 | 9419 |
| 143 | 9420 | 9421 | 9422 | 9424 | 9425 | 9426 | 9427 | 9428 | 9429 |
| 144 | 9430 | 9431 | 9432 | 9434 | 9435 | 9436 | 9437 | 9438 | 9439 |
| 145 | 9440 | 9441 | 9442 | 9444 | 9445 | 9446 | 9447 | 9448 | 9449 |
| 146 | 9450 | 9451 | 9452 | 9454 | 9455 | 9456 | 9457 | 9458 | 9459 |
| 147 | 9460 | 9461 | 9462 | 9464 | 9465 | 9466 | 9467 | 9468 | 9469 |
| 148 | 9470 | 9471 | 9472 | 9474 | 9475 | 9476 | 9477 | 9478 | 9479 |
| 149 | 9480 | 9481 | 9482 | 9484 | 9485 | 9486 | 9487 | 9488 | 9489 |
| 150 | 9490 | 9491 | 9492 | 9494 | 9495 | 9496 | 9497 | 9498 | 9499 |


| Data | Posi-tioningidenti-fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{l\|} \hline \text { Low- } \\ \text { order } \end{array}$ | Highorder | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { High- } \\ \text { order } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \end{array}$ | High- order |
| 151 | 9500 | 9501 | 9502 | 9504 | 9505 | 9506 | 9507 | 9508 | 09 |
| 152 | 9510 | 9511 | 9512 | 9514 | 9515 | 9516 | 9517 | 9518 | 9519 |
| 153 | 9520 | 9521 | 9522 | 9524 | 9525 | 9526 | 9527 | 9528 | 9529 |
| 154 | 9530 | 9531 | 9532 | 9534 | 9535 | 9536 | 9537 | 9538 | 9539 |
| 155 | 9540 | 9541 | 9542 | 9544 | 9545 | 9546 | 9547 | 9548 | 9549 |
| 156 | 9550 | 9551 | 9552 | 9554 | 9555 | 9556 | 9557 | 9558 | 9559 |
| 157 | 9560 | 9561 | 9562 | 9564 | 9565 | 9566 | 9567 | 9568 | 9569 |
| 158 | 9570 | 9571 | 9572 | 9574 | 9575 | 9576 | 9577 | 9578 | 9579 |
| 159 | 9580 | 9581 | 9582 | 9584 | 9585 | 9586 | 9587 | 9588 | 9589 |
| 160 | 9590 | 9591 | 9592 | 9594 | 9595 | 9596 | 9597 | 9598 | 9599 |
| 161 | 9600 | 9601 | 9602 | 9604 | 9605 | 9606 | 9607 | 9608 | 9609 |
| 162 | 9610 | 9611 | 9612 | 9614 | 9615 | 9616 | 9617 | 9618 | 9619 |
| 163 | 9620 | 9621 | 9622 | 9624 | 9625 | 9626 | 9627 | 9628 | 9629 |
| 164 | 9630 | 9631 | 9632 | 9634 | 9635 | 9636 | 9637 | 9638 | 9639 |
| 165 | 9640 | 9641 | 9642 | 9644 | 9645 | 9646 | 9647 | 9648 | 49 |
| 166 | 9650 | 9651 | 9652 | 9654 | 9655 | 9656 | 9657 | 9658 | 9 |
| 167 | 9660 | 9661 | 9662 | 9664 | 9665 | 9666 | 9667 | 9668 | 9669 |
| 168 | 9670 | 9671 | 9672 | 9674 | 9675 | 9676 | 9677 | 9678 | 9679 |
| 169 | 9680 | 9681 | 9682 | 968 | 9685 | 9686 | 9687 | 9688 | 9689 |
| 170 | 9690 | 9691 | 9692 | 9694 | 9695 | 9696 | 9697 | 9698 | 96 |
| 171 | 9700 | 9701 | 9702 | 9704 | 9705 | 9706 | 9707 | 9708 | 9 |
| 172 | 9710 | 9711 | 9712 | 9714 | 9715 | 9716 | 9717 | 9718 | 9719 |
| 173 | 9720 | 9721 | 9722 | 9724 | 9725 | 9726 | 9727 | 9728 | 9729 |
| 174 | 9730 | 9731 | 9732 | 9734 | 9735 | 9736 | 9737 | 9738 | 9739 |
| 175 | 9740 | 9741 | 9742 | 9744 | 9745 | 9746 | 9747 | 9748 | 9749 |
| 176 | 9750 | 9751 | 9752 | 9754 | 9755 | 9756 | 9757 | 9758 | 9759 |
| 177 | 9760 | 9761 | 9762 | 9764 | 9765 | 9766 | 9767 | 9768 | 9769 |
| 178 | 9770 | 9771 | 9772 | 9774 | 9775 | 9776 | 9777 | 9778 | 9779 |
| 179 | 9780 | 9781 | 9782 | 9784 | 9785 | 9786 | 9787 | 9788 | 9789 |
| 180 | 9790 | 9791 | 9792 | 9794 | 9795 | 9796 | 9797 | 9798 | 9799 |
| 181 | 9800 | 9801 | 9802 | 9804 | 9805 | 9806 | 9807 | 9808 | 9809 |
| 182 | 9810 | 9811 | 9812 | 9814 | 9815 | 9816 | 9817 | 9818 | 9819 |
| 183 | 9820 | 9821 | 9822 | 9824 | 9825 | 9826 | 9827 | 9828 | 9829 |
| 184 | 9830 | 9831 | 9832 | 9834 | 9835 | 9836 | 9837 | 9838 | 9839 |
| 185 | 9840 | 9841 | 9842 | 9844 | 9845 | 9846 | 9847 | 9848 | 9849 |
| 186 | 9850 | 9851 | 9852 | 9854 | 9855 | 9856 | 9857 | 9858 | 9859 |
| 187 | 9860 | 9861 | 9862 | 9864 | 9865 | 9866 | 9867 | 9868 | 9869 |
| 188 | 9870 | 9871 | 9872 | 9874 | 9875 | 9876 | 9877 | 9878 | 9879 |
| 189 | 9880 | 9881 | 9882 | 9884 | 9885 | 9886 | 9887 | 9888 | 9889 |
| 190 | 9890 | 9891 | 9892 | 9894 | 9895 | 9896 | 9897 | 888 | 9 |
| 191 | 9900 | 9901 | 9902 | 9904 | 9905 | 9906 | 9907 | 99 | 09 |
| 192 | 9910 | 9911 | 9912 | 9914 | 9915 | 9916 | 9917 | 9918 | 9919 |
| 193 | 9920 | 9921 | 9922 | 9924 | 9925 | 9926 | 9927 | 9928 | 9929 |
| 194 | 9930 | 9931 | 9932 | 9934 | 9935 | 9936 | 9937 | 9938 | 9939 |
| 195 | 9940 | 9941 | 9942 | 9944 | 9945 | 9946 | 9947 | 9948 | 9949 |
| 196 | 9950 | 9951 | 9952 | 9954 | 9955 | 9956 | 9957 | 9958 | 9959 |
| 197 | 9960 | 9961 | 9962 | 9964 | 9965 | 9966 | 9967 | 9968 | 9969 |
| 198 | 9970 | 9971 | 9972 | 9974 | 9975 | 9976 | 9977 | 9978 | 9979 |
| 199 | 9980 | 9981 | 9982 | 9984 | 9985 | 9986 | 9987 | 9988 | 9989 |
| 200 | 9990 | 9991 | 9992 | 9994 | 9995 | 9996 | 999 | 998 | 999 |


| $\begin{array}{\|l} \text { Data } \\ \text { No. } \end{array}$ | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{gathered} \hline \text { Positioning } \\ \text { address } \\ \hline \end{gathered}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 10000 | 10001 | 10002 |  | 10005 |  |  |  |  |
|  |  |  |  |  |  |  |  | 10018 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 206 |  |  |  | 10054 | 1005 | 10056 |  |  |  |
|  |  |  |  | 10064 | 1006 |  |  |  |  |
|  |  | 10071 |  | 10074 | 10075 |  |  |  |  |
| 209 |  |  |  |  |  |  |  |  |  |
| 210 |  |  | 10092 | 10094 | 10095 |  |  |  |  |
| 211 | 10100 |  | 10102 | 10104 | 10105 | 10106 | 10107 |  |  |
| 21 |  |  |  |  |  |  |  |  |  |
| 21 | 10120 |  |  | 10124 | 10125 |  | 10127 | 10128 |  |
|  |  |  |  |  |  |  |  |  |  |
| 215 | 10140 | 1014 | 1014 | 10144 | 10145 | 101 |  | 10148 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 10165 |  |  |  |  |
| 218 |  |  |  |  | 10175 |  | 10177 |  |  |
| 21 |  |  | 10182 | 10184 | 10185 |  | 10187 | 10188 |  |
| 220 | 10190 | 10191 | 10192 | 10194 | 10195 | 10196 | 10197 | 10198 |  |
| 22 |  |  |  | 10204 | 10205 |  |  |  |  |
| 22 |  |  |  |  | 10215 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 224 |  |  |  | 10234 | 10235 |  |  |  |  |
| 22 | 102 |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  | 102 |  |  |  |  |
| 22 |  |  |  |  | 10275 |  |  | 10278 | 10279 |
| 22 |  |  |  |  |  |  |  |  |  |
| 230 | 10290 | 10291 | 10292 | 10294 | 10295 | 10296 |  | 10298 |  |
|  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  | 103 |  |  |  |  |
|  |  |  |  |  | 103 |  |  |  |  |
|  |  |  |  |  | 10335 |  |  |  |  |
| 235 |  | 10341 | 10342 | 10344 | 10345 |  | 10347 | 10348 | 10349 |
|  |  |  |  |  |  |  |  |  |  |
| 237 |  |  |  |  |  |  |  |  |  |
| 238 |  |  |  |  |  |  |  | 10378 |  |
|  |  |  |  |  |  |  |  |  |  |
| 240 | 10390 | 10391 | 103 | 10394 | 103 | 103 | 10397 | 10398 |  |
| 24 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 243 |  |  |  |  |  |  |  |  |  |
| 244 |  |  |  |  |  |  |  |  |  |
| 245 | 440 | 441 | 10442 | 10444 | 45 | 104 | 10447 | 10448 | 10449 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 10475 |  | 10477 |  | 10479 |
| 249 |  |  |  |  | 10485 |  |  | 10488 |  |
| 25 | 10490 | 104 | 10492 |  | 10495 |  |  |  |  |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} M \\ \text { code } \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \text { Dwell } \\ \text { time } \end{array}$ | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 10500 | 10501 |  | 10504 | 10505 | 10506 | 10507 |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 10524 |  |  | 10527 | 10528 | 10529 |
| 254 |  |  |  |  |  |  |  |  | 10539 |
| 255 |  |  |  |  |  | 10546 |  |  | 054 |
| 256 |  | 10551 | 10552 |  | 10555 | 10556 | 10557 |  | 55 |
|  |  | 1056 | 1056 |  |  | 10566 | 10567 |  |  |
|  | 10570 |  | 10572 |  |  | 10576 |  |  |  |
| 259 |  |  |  |  |  | 10586 |  |  |  |
| 260 |  |  |  |  |  | 10596 |  |  | 10599 |
| 261 | 10600 | 10601 | 10602 | 10604 | 10605 | 10606 | 10607 | 10608 |  |
| 262 |  | 10611 |  |  | 10615 | 10616 | 10617 | 10618 | 10619 |
|  |  |  |  |  |  | 10626 | 10627 |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 265 | 10640 | 10641 | 42 | 106 | 10645 | 10646 | 10647 | 10648 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 10676 | 10677 |  |  |
|  |  |  |  |  |  | 10686 |  |  |  |
| 270 | 10690 | 1069 | 10692 | 10694 | 10695 | 10696 | 10697 | 10698 |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 10740 |  | 10742 |  |  |  |  |  |  |
| 276 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 10779 |
|  |  |  |  |  |  |  |  |  |  |
|  | 10790 | 10791 | 10792 | 10794 |  | 1079 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 1081 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 10836 |  |  | 1083 |
|  |  | 10841 | 10842 | 10844 | 10845 | 10846 | 10847 | 10848 | 10849 |
|  |  |  |  |  |  | 10856 |  |  |  |
|  |  |  |  |  |  | 10866 |  |  | 10869 |
|  |  |  |  |  | 10875 | 10876 |  |  | 10879 |
|  |  |  |  |  |  |  |  |  |  |
| 290 | 10890 | 10891 | 10892 | 1089 | 1089 | 10896 | 108 | 10898 | 1089 |
| 291 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 10915 | 10916 | 10917 |  | 1091 |
| 293 |  |  |  |  | 10925 | 10926 |  |  | 10929 |
| 294 |  |  |  |  |  | 10936 |  |  | 㖪 |
| 295 | 10940 | 10941 | 1094 | 10944 | 10945 | 10946 | 10947 | 10948 | 10949 |
| 296 |  |  |  |  |  |  |  |  |  |
|  |  | 10961 | 10962 | 10964 | 10965 | 10966 | 10967 |  |  |
| 298 |  |  | 10972 |  | 10975 | 10976 | 10977 |  | 10979 |
| 299 |  |  | 10982 |  | 10985 | 109 | 10 | 10988 | 10989 |
| 300 | 109 | 10991 | 10992 | 10994 | 10995 | 10996 | 10997 |  |  |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{gathered} \text { Positioning } \\ \text { address } \end{gathered}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | Highorder |
| 301 | 11000 | 11001 | 11002 | 11004 | 11005 | 11006 | 11007 | 11008 | 11009 |
| 302 | 11010 | 11011 | 11012 | 11014 | 11015 | 11016 | 11017 | 11018 | 11019 |
| 303 | 11020 | 11021 | 11022 | 11024 | 11025 | 11026 | 11027 | 11028 | 11029 |
| 30 | 11030 | 110 | 11032 | 11034 | 11035 | 11036 | 11037 | 11038 | 11039 |
| 305 | 11040 | 11041 | 11042 | 11044 | 11045 | 11046 | 11047 | 11048 | 11049 |
| 306 | 11050 | 11051 | 11052 | 11054 | 11055 | 11056 | 11057 | 11058 | 11059 |
| 307 | 11060 | 11061 | 11062 | 11064 | 11065 | 11066 | 11067 | 11068 | 11069 |
| 308 | 11070 | 1107 | 11072 | 11074 | 11075 | 11076 | 11077 | 11078 | 79 |
| 309 | 11080 | 11081 | 11082 | 11084 | 11085 | 11086 | 11087 | 11088 | 11089 |
| 310 | 11090 | 11091 | 11092 | 11094 | 11095 | 11096 | 11097 | 11098 | 11099 |
| 311 | 11100 | 11101 | 11102 | 11104 | 11105 | 11106 | 11107 | 11108 | 11109 |
| 312 | 11110 | 11111 | 11112 | 11114 | 11115 | 11116 | 11117 | 11118 | 11119 |
| 313 | 11120 | 111 | 1112 | 11124 | 11125 | 11126 | 11127 | 11128 | 11129 |
| 314 | 11130 | 11131 | 11132 | 11134 | 11135 | 11136 | 11137 | 11138 | 11139 |
| 315 | 11140 | 11141 | 11142 | 11144 | 11145 | 11146 | 11147 | 11148 | 11149 |
| 316 | 11150 | 11151 | 11152 | 11154 | 11155 | 11156 | 11157 | 11158 | 11159 |
| 317 | 11160 | 111 | 111 | 11 | 11 | 11166 | 11167 | 11168 | 11169 |
| 318 | 11170 | 1117 | 11172 | 11174 | 11175 | 11176 | 11177 | 11178 | 11179 |
| 319 | 11180 | 1118 | 11182 | 11184 | 11185 | 11186 | 11187 | 11188 | 11189 |
| 320 | 11190 | 11191 | 11192 | 11194 | 11195 | 11196 | 11197 | 11198 | 1119 |
| 321 | 11200 | 1120 | 11202 | 11204 | 11205 | 11206 | 11207 | 11208 | 11209 |
| 322 | 1121 | 1121 | 11212 | 112 | 11215 | 11216 | 11217 | 11218 | 11 |
| 323 | 11220 | 11221 | 11222 | 11224 | 11225 | 11226 | 11227 | 11228 | 11229 |
| 324 | 11230 | 11231 | 11232 | 11234 | 11235 | 11236 | 11237 | 11238 | 11239 |
| 325 | 11240 | 11241 | 11242 | 11244 | 11245 | 11246 | 11247 | 11248 | 11249 |
| 326 | 11250 | 11251 | 11252 | 1125 | 11255 | 11256 | 11257 | 11258 | 11 |
| 327 | 11260 | 11261 | 11262 | 1126 | 11265 | 11266 | 11267 | 11268 | 11269 |
| 328 | 11270 | 11271 | 11272 | 11274 | 11275 | 11276 | 11277 | 11278 | 11279 |
| 329 | 11280 | 11281 | 11282 | 11284 | 11285 | 11286 | 11287 | 11288 | 11289 |
| 330 | 11290 | 11291 | 11292 | 11294 | 11295 | 11296 | 11297 | 11298 | 11 |
| 331 | 11300 | 11301 | 11302 | 1130 | 11305 | 11306 | 11307 | 11308 | 113 |
| 332 | 11310 | 11311 | 11312 | 11314 | 11315 | 11316 | 11317 | 11318 | 11319 |
| 333 | 11320 | 11321 | 11322 | 11324 | 11325 | 11326 | 11327 | 11328 | 11329 |
| 33 | 11330 | 11331 | 11332 | 11334 | 11335 | 11336 | 11337 | 11338 | 11339 |
| 335 | 11340 | 11341 | 11342 | 11344 | 11345 | 11346 | 11347 | 11348 | 11349 |
| 336 | 11350 | 11351 | 11352 | 11354 | 11355 | 11356 | 11357 | 11358 | 113 |
| 33 | 11360 | 11361 | 11362 | 11364 | 11365 | 11366 | 11367 | 11368 | 11369 |
| 338 | 11370 | 11371 | 11372 | 11374 | 11375 | 11376 | 11377 | 11378 | 11379 |
| 339 | 11380 | 11381 | 11382 | 11384 | 11385 | 11386 | 11387 | 11388 | 11389 |
| 340 | 11390 | 11391 | 11392 | 11394 | 11395 | 11396 | 11397 | 11398 | 11399 |
| 341 | 11400 | 11401 | 11402 | 11404 | 11405 | 11406 | 11407 | 11408 | 11409 |
| 342 | 11410 | 11411 | 11412 | 11414 | 11415 | 11416 | 11417 | 11418 | 11419 |
| 343 | 11420 | 11421 | 11422 | 11424 | 11425 | 11426 | 11427 | 11428 | 11429 |
| 344 | 11430 | 11431 | 11432 | 11434 | 11435 | 11436 | 11437 | 11438 | 11439 |
| 345 | 11440 | 11441 | 11442 | 11444 | 11445 | 11446 | 11447 | 11448 | 11449 |
| 346 | 11450 | 11451 | 11452 | 11454 | 11455 | 11456 | 11457 | 11458 | 11459 |
| 347 | 11460 | 11461 | 11462 | 11464 | 11465 | 11466 | 11467 | 11468 | 11469 |
| 348 | 11470 | 11471 | 11472 | 11474 | 11475 | 11476 | 11477 | 11478 | 11479 |
| 349 | 11480 | 11481 | 11482 | 11484 | 11485 | 11486 | 11487 | 11488 | 11489 |
| 350 | 11490 | 11491 | 11492 | 11494 | 11495 | 11496 | 11497 | 11498 | 11499 |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | Highorder |
| 351 | 11500 | 11501 | 11502 | 11504 | 11505 | 11506 | 11507 | 11508 | 11509 |
| 352 | 11510 | 11511 | 11512 | 11514 | 11515 | 11516 | 11517 | 11518 | 11519 |
| 353 | 11520 | 11521 | 11522 | 11524 | 11525 | 11526 | 11527 | 11528 | 11529 |
| 35 | 11530 | 11531 | 11532 | 11534 | 11535 | 11536 | 11537 | 11538 | 11539 |
| 355 | 11540 | 11541 | 11542 | 11544 | 11545 | 11546 | 11547 | 11548 | 11549 |
| 356 | 11550 | 11551 | 11552 | 11554 | 11555 | 11556 | 11557 | 11558 | 11559 |
| 357 | 11560 | 11561 | 11562 | 11564 | 11565 | 11566 | 11567 | 11568 | 11569 |
| 358 | 11570 | 11571 | 11572 | 11574 | 11575 | 11576 | 11577 | 11578 | 79 |
| 359 | 11580 | 11581 | 11582 | 11584 | 11585 | 11586 | 11587 | 11588 | 11589 |
| 360 | 11590 | 11591 | 11592 | 11594 | 11595 | 11596 | 11597 | 11598 | 11599 |
| 361 | 11600 | 11601 | 11602 | 11604 | 11605 | 11606 | 11607 | 11608 | 11609 |
| 362 | 11610 | 11611 | 11612 | 11614 | 11615 | 11616 | 11617 | 11618 | 11619 |
| 363 | 11620 | 11621 | 11622 | 11624 | 11625 | 11626 | 11627 | 11628 | 11629 |
| 364 | 11630 | 11631 | 11632 | 11634 | 11635 | 11636 | 11637 | 11638 | 11639 |
| 365 | 11640 | 11641 | 11642 | 11644 | 11645 | 11646 | 11647 | 11648 | 11649 |
| 366 | 11650 | 11651 | 11652 | 11654 | 11655 | 11656 | 11657 | 11658 | 11659 |
| 367 | 11660 | 11661 | 11662 | 11664 | 11665 | 11666 | 11667 | 11668 | 69 |
| 368 | 11670 | 11671 | 11672 | 11674 | 11675 | 11676 | 11677 | 11678 | 11679 |
| 369 | 11680 | 11681 | 11682 | 11684 | 11685 | 11686 | 11687 | 11688 | 11689 |
| 370 | 11690 | 11691 | 11692 | 11694 | 11695 | 11696 | 11697 | 11698 | 11699 |
| 371 | 11700 | 11701 | 11702 | 11704 | 11705 | 11706 | 11707 | 11708 | 709 |
| 372 | 11710 | 1171 | 11712 | 11714 | 11715 | 11716 | 11717 | 11718 | 11719 |
| 373 | 11720 | 11721 | 11722 | 11724 | 11725 | 11726 | 11727 | 11728 | 11729 |
| 374 | 11730 | 11731 | 11732 | 11734 | 11735 | 11736 | 11737 | 11738 | 11739 |
| 375 | 11740 | 11741 | 11742 | 11744 | 11745 | 11746 | 11747 | 11748 | 9 |
| 376 | 11750 | 11751 | 11752 | 11754 | 11755 | 11756 | 11757 | 11758 | 11759 |
| 377 | 11760 | 11761 | 11762 | 11764 | 11765 | 11766 | 11767 | 11768 | 11769 |
| 378 | 11770 | 11771 | 11772 | 11774 | 11775 | 11776 | 11777 | 11778 | 11779 |
| 379 | 11780 | 11781 | 11782 | 11784 | 11785 | 11786 | 11787 | 11788 | 11789 |
| 380 | 11790 | 11791 | 11792 | 11794 | 11795 | 11796 | 11797 | 11798 | 11799 |
| 381 | 11800 | 11801 | 11802 | 11804 | 11805 | 11806 | 11807 | 11808 | 11809 |
| 382 | 11810 | 11811 | 11812 | 11814 | 11815 | 11816 | 11817 | 11818 | 11819 |
| 383 | 11820 | 11821 | 11822 | 11824 | 11825 | 11826 | 11827 | 11828 | 11829 |
| 384 | 11830 | 11831 | 11832 | 11834 | 11835 | 11836 | 11837 | 11838 | 11839 |
| 385 | 11840 | 11841 | 11842 | 11844 | 11845 | 11846 | 11847 | 11848 | 11849 |
| 386 | 11850 | 1185 | 11852 | 11854 | 11855 | 11856 | 11857 | 11858 | 859 |
| 387 | 11860 | 11861 | 11862 | 11864 | 11865 | 11866 | 11867 | 11868 | 11869 |
| 388 | 11870 | 11871 | 11872 | 11874 | 11875 | 11876 | 11877 | 11878 | 11879 |
| 389 | 11880 | 11881 | 11882 | 11884 | 11885 | 11886 | 11887 | 11888 | 11889 |
| 390 | 11890 | 11891 | 11892 | 11894 | 11895 | 11896 | 11897 | 11898 | 11899 |
| 391 | 11900 | 11901 | 11902 | 11904 | 11905 | 11906 | 11907 | 11908 | 11909 |
| 392 | 11910 | 11911 | 11912 | 11914 | 11915 | 11916 | 11917 | 11918 | 11919 |
| 393 | 11920 | 11921 | 11922 | 11924 | 11925 | 11926 | 11927 | 11928 | 11929 |
| 394 | 11930 | 11931 | 11932 | 11934 | 11935 | 11936 | 11937 | 11938 | 11939 |
| 395 | 11940 | 11941 | 11942 | 11944 | 11945 | 11946 | 11947 | 11948 | 11949 |
| 396 | 11950 | 11951 | 11952 | 11954 | 11955 | 11956 | 11957 | 11958 | 11959 |
| 397 | 11960 | 11961 | 11962 | 11964 | 11965 | 11966 | 11967 | 11968 | 11969 |
| 398 | 11970 | 11971 | 11972 | 11974 | 11975 | 11976 | 11977 | 11978 | 11979 |
| 399 | 11980 | 11981 | 11982 | 11984 | 11985 | 11986 | 11987 | 11988 | 11989 |
| 400 | 11990 | 11991 | 11992 | 11994 | 11995 | 11996 | 11997 | 11998 | 11999 |


| Da | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioningaddress |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 401 | 12000 | 12001 | 12002 | 12004 | 12005 | 12006 | 12007 | 12008 | 12009 |
| 402 | 12010 | 12011 | 12012 | 12014 | 12015 | 12016 | 12017 | 12018 | 12019 |
| 403 | 12020 | 12021 | 12022 | 12024 | 12025 | 12026 | 12027 | 12028 | 12029 |
| 404 | 12030 | 12031 | 12032 | 12034 | 12035 | 12036 | 12037 | 12038 | 12039 |
| 405 | 12040 | 12041 | 12042 | 12044 | 12045 | 12046 | 12047 | 12048 | 12049 |
| 406 | 12050 | 12051 | 12052 | 12054 | 12055 | 12056 | 12057 | 12058 | 12059 |
| 407 | 12060 | 12061 | 12062 | 12064 | 12065 | 12066 | 12067 | 12068 | 12069 |
| 408 | 12070 | 12071 | 12072 | 12074 | 12075 | 12076 | 12077 | 12078 | 12079 |
| 409 | 12080 | 12081 | 12082 | 12084 | 12085 | 12086 | 12087 | 12088 | 12089 |
| 410 | 12090 | 12091 | 12092 | 12094 | 12095 | 12096 | 12097 | 12098 | 12099 |
| 411 | 12100 | 12101 | 12102 | 12104 | 12105 | 12106 | 12107 | 12108 | 12109 |
| 412 | 12110 | 12111 | 12112 | 12114 | 12115 | 12116 | 12117 | 12118 | 12119 |
| 413 | 12120 | 12121 | 12122 | 12124 | 12125 | 12126 | 12127 | 12128 | 12129 |
| 414 | 12130 | 12131 | 12132 | 12134 | 12135 | 12136 | 12137 | 12138 | 12139 |
| 415 | 12140 | 12141 | 12142 | 12144 | 12145 | 12146 | 12147 | 12148 | 12149 |
| 416 | 12150 | 12151 | 12152 | 12154 | 12155 | 12156 | 12157 | 12158 | 12159 |
| 417 | 12160 | 12161 | 12162 | 12164 | 12165 | 12166 | 12167 | 12168 | 12169 |
| 41 | 12170 | 12171 | 12172 | 12174 | 12175 | 12176 | 12177 | 12178 | 12179 |
| 419 | 12180 | 12181 | 12182 | 12184 | 12185 | 12186 | 12187 | 12188 | 12189 |
| 420 | 12190 | 12191 | 12192 | 12194 | 12195 | 12196 | 12197 | 12198 | 12199 |
| 421 | 12200 | 12201 | 12202 | 12204 | 12205 | 12206 | 12207 | 12208 | 12209 |
| 42 | 12210 | 12211 | 12212 | 12214 | 12215 | 12216 | 12217 | 12218 | 12219 |
| 423 | 12220 | 12221 | 12222 | 12224 | 12225 | 12226 | 12227 | 12228 | 12229 |
| 424 | 12230 | 12231 | 12232 | 12234 | 12235 | 12236 | 12237 | 12238 | 12239 |
| 425 | 12240 | 12241 | 12242 | 12244 | 12245 | 12246 | 12247 | 12248 | 12249 |
| 426 | 12250 | 12251 | 12252 | 12254 | 12255 | 12256 | 12257 | 12258 | 12259 |
| 427 | 12260 | 12261 | 12262 | 12264 | 12265 | 12266 | 12267 | 12268 | 12269 |
| 428 | 12270 | 12271 | 12272 | 12274 | 12275 | 12276 | 12277 | 12278 | 12279 |
| 429 | 12280 | 12281 | 12282 | 12284 | 12285 | 12286 | 12287 | 12288 | 12289 |
| 430 | 12290 | 12291 | 12292 | 12294 | 12295 | 12296 | 12297 | 12298 | 12299 |
| 431 | 12300 | 12301 | 12302 | 12304 | 12305 | 12306 | 12307 | 12308 | 12309 |
| 432 | 12310 | 12311 | 12312 | 12314 | 12315 | 12316 | 12317 | 12318 | 12319 |
| 433 | 12320 | 12321 | 12322 | 12324 | 12325 | 12326 | 12327 | 12328 | 12329 |
| 434 | 12330 | 12331 | 12332 | 12334 | 12335 | 12336 | 12337 | 12338 | 12339 |
| 435 | 12340 | 12341 | 12342 | 12344 | 12345 | 12346 | 12347 | 12348 | 12349 |
| 436 | 12350 | 12351 | 12352 | 12354 | 12355 | 12356 | 12357 | 12358 | 12359 |
| 437 | 12360 | 12361 | 12362 | 12364 | 12365 | 12366 | 12367 | 12368 | 12369 |
| 438 | 12370 | 12371 | 12372 | 12374 | 12375 | 12376 | 12377 | 12378 | 12379 |
| 439 | 12380 | 12381 | 12382 | 12384 | 12385 | 12386 | 12387 | 12388 | 12389 |
| 440 | 12390 | 12391 | 12392 | 12394 | 12395 | 12396 | 12397 | 12398 | 12399 |
| 441 | 12400 | 12401 | 12402 | 12404 | 12405 | 12406 | 12407 | 12408 | 12409 |
| 442 | 12410 | 12411 | 12412 | 12414 | 12415 | 12416 | 12417 | 12418 | 12419 |
| 443 | 12420 | 12421 | 12422 | 12424 | 12425 | 12426 | 12427 | 12428 | 12429 |
| 444 | 12430 | 12431 | 12432 | 12434 | 12435 | 12436 | 12437 | 12438 | 12439 |
| 445 | 12440 | 12441 | 12442 | 12444 | 12445 | 12446 | 12447 | 12448 | 12449 |
| 446 | 12450 | 12451 | 12452 | 12454 | 12455 | 12456 | 12457 | 12458 | 12459 |
| 447 | 12460 | 12461 | 12462 | 12464 | 12465 | 12466 | 12467 | 12468 | 12469 |
| 448 | 12470 | 12471 | 12472 | 12474 | 12475 | 12476 | 12477 | 12478 | 12479 |
| 449 | 12480 | 12481 | 12482 | 12484 | 12485 | 12486 | 12487 | 12488 | 12489 |
| 450 | 12490 | 12491 | 12492 | 12494 | 12495 | 12496 | 12497 | 12498 | 12499 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Loworder | Highorder | Loworder | Highorder |
| 451 | 12500 | 12501 | 12502 | 12504 | 12505 | 12506 | 12507 | 12508 | 12509 |
| 452 | 12510 | 12511 | 12512 | 12514 | 12515 | 12516 | 12517 | 12518 | 12519 |
| 453 | 12520 | 12521 | 12522 | 12524 | 12525 | 12526 | 12527 | 12528 | 12529 |
| 454 | 12530 | 12531 | 12532 | 12534 | 12535 | 12536 | 12537 | 12538 | 12539 |
| 455 | 12540 | 12541 | 12542 | 12544 | 12545 | 12546 | 12547 | 12548 | 12549 |
| 456 | 12550 | 12551 | 12552 | 12554 | 12555 | 12556 | 12557 | 12558 | 12559 |
| 457 | 12560 | 12561 | 12562 | 12564 | 12565 | 12566 | 12567 | 12568 | 12569 |
| 458 | 12570 | 12571 | 12572 | 12574 | 12575 | 12576 | 12577 | 12578 | 12579 |
| 459 | 12580 | 12581 | 12582 | 12584 | 12585 | 12586 | 12587 | 12588 | 12589 |
| 460 | 12590 | 12591 | 12592 | 12594 | 12595 | 12596 | 12597 | 12598 | 12599 |
| 461 | 12600 | 12601 | 12602 | 12604 | 12605 | 12606 | 12607 | 12608 | 12609 |
| 462 | 12610 | 12611 | 12612 | 12614 | 12615 | 12616 | 12617 | 12618 | 12619 |
| 463 | 12620 | 12621 | 12622 | 12624 | 12625 | 12626 | 12627 | 12628 | 12629 |
| 464 | 12630 | 12631 | 12632 | 12634 | 12635 | 12636 | 12637 | 12638 | 12639 |
| 465 | 12640 | 12641 | 12642 | 12644 | 12645 | 12646 | 12647 | 12648 | 12649 |
| 466 | 12650 | 12651 | 12652 | 12654 | 12655 | 12656 | 12657 | 12658 | 12659 |
| 467 | 12660 | 1266 | 12662 | 12664 | 12665 | 12666 | 12667 | 12668 | 12669 |
| 468 | 12670 | 12671 | 12672 | 12674 | 12675 | 12676 | 12677 | 12678 | 12679 |
| 469 | 12680 | 12681 | 12682 | 12684 | 12685 | 12686 | 12687 | 12688 | 12689 |
| 470 | 12690 | 12691 | 12692 | 12694 | 12695 | 12696 | 12697 | 12698 | 12699 |
| 471 | 12700 | 12701 | 12702 | 12704 | 12705 | 12706 | 12707 | 12708 | 9 |
| 472 | 12710 | 12711 | 12712 | 12714 | 12715 | 12716 | 12717 | 12718 | 12719 |
| 473 | 12720 | 12721 | 12722 | 12724 | 12725 | 12726 | 12727 | 12728 | 12729 |
| 474 | 12730 | 12731 | 12732 | 12734 | 12735 | 12736 | 12737 | 12738 | 12739 |
| 475 | 12740 | 12741 | 12742 | 12744 | 12745 | 12746 | 12747 | 12748 | 12749 |
| 476 | 12750 | 12751 | 12752 | 12754 | 12755 | 12756 | 12757 | 12758 | 12759 |
| 477 | 12760 | 12761 | 12762 | 12764 | 12765 | 12766 | 12767 | 12768 | 12769 |
| 478 | 12770 | 12771 | 12772 | 12774 | 12775 | 12776 | 12777 | 12778 | 12779 |
| 479 | 12780 | 1278 | 12782 | 1278 | 12785 | 12786 | 12787 | 12788 | 12789 |
| 480 | 12790 | 12791 | 12792 | 12794 | 12795 | 12796 | 12797 | 12798 | 12799 |
| 481 | 12800 | 12801 | 12802 | 12804 | 12805 | 12806 | 12807 | 12808 | 12809 |
| 482 | 12810 | 12811 | 12812 | 12814 | 12815 | 12816 | 12817 | 12818 | 12819 |
| 483 | 12820 | 12821 | 12822 | 12824 | 12825 | 12826 | 12827 | 12828 | 12829 |
| 484 | 12830 | 12831 | 12832 | 12834 | 12835 | 12836 | 12837 | 12838 | 12839 |
| 485 | 12840 | 12841 | 12842 | 12844 | 12845 | 12846 | 12847 | 12848 | 12849 |
| 486 | 12850 | 12851 | 12852 | 12854 | 12855 | 12856 | 12857 | 12858 | 12859 |
| 487 | 12860 | 12861 | 12862 | 12864 | 12865 | 12866 | 12867 | 12868 | 12869 |
| 488 | 12870 | 12871 | 12872 | 12874 | 12875 | 12876 | 12877 | 12878 | 12879 |
| 489 | 12880 | 12881 | 12882 | 12884 | 12885 | 12886 | 12887 | 12888 | 12889 |
| 490 | 12890 | 12891 | 12892 | 12894 | 12895 | 12896 | 12897 | 12898 | 12899 |
| 491 | 12900 | 12901 | 12902 | 12904 | 12905 | 12906 | 12907 | 12908 | 12909 |
| 492 | 12910 | 12911 | 12912 | 12914 | 12915 | 12916 | 12917 | 12918 | 12919 |
| 493 | 12920 | 12921 | 12922 | 12924 | 12925 | 12926 | 12927 | 12928 | 12929 |
| 494 | 12930 | 12931 | 12932 | 12934 | 12935 | 12936 | 12937 | 12938 | 12939 |
| 495 | 12940 | 12941 | 12942 | 12944 | 12945 | 12946 | 12947 | 12948 | 12949 |
| 496 | 12950 | 12951 | 12952 | 12954 | 12955 | 12956 | 12957 | 12958 | 12959 |
| 497 | 12960 | 12961 | 12962 | 12964 | 12965 | 12966 | 12967 | 12968 | 12969 |
| 498 | 12970 | 12971 | 12972 | 12974 | 12975 | 12976 | 12977 | 12978 | 12979 |
| 499 | 12980 | 12981 | 12982 | 12984 | 12985 | 12986 | 12987 | 12988 | 12989 |
| 500 | 12990 | 12991 | 12992 | 12994 | 12995 | 12996 | 12997 | 12998 | 12999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioningaddress |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | High- order | Loworder | Highorder |
| 501 | 13000 | 13001 | 13002 | 13004 | 13005 | 13006 | 13007 | 13008 | 13009 |
| 502 | 13010 | 13011 | 13012 | 13014 | 13015 | 13016 | 13017 | 13018 | 13019 |
| 503 | 13020 | 13021 | 13022 | 13024 | 13025 | 13026 | 13027 | 13028 | 13029 |
| 504 | 13030 | 13031 | 13032 | 13034 | 13035 | 13036 | 13037 | 13038 | 13039 |
| 505 | 13040 | 13041 | 13042 | 13044 | 13045 | 13046 | 13047 | 13048 | 13049 |
| 506 | 13050 | 13051 | 13052 | 13054 | 13055 | 13056 | 13057 | 13058 | 13059 |
| 507 | 13060 | 13061 | 13062 | 13064 | 13065 | 13066 | 13067 | 13068 | 13069 |
| 508 | 13070 | 13071 | 13072 | 13074 | 13075 | 13076 | 13077 | 13078 | 13079 |
| 509 | 13080 | 13081 | 13082 | 13084 | 13085 | 13086 | 13087 | 13088 | 13089 |
| 510 | 13090 | 13091 | 13092 | 13094 | 13095 | 13096 | 13097 | 13098 | 13099 |
| 511 | 13100 | 13101 | 13102 | 13104 | 13105 | 13106 | 13107 | 13108 | 13109 |
| 512 | 13110 | 13111 | 13112 | 13114 | 13115 | 13116 | 13117 | 13118 | 13119 |
| 513 | 13120 | 13121 | 13122 | 13124 | 13125 | 13126 | 13127 | 13128 | 13129 |
| 514 | 13130 | 13131 | 13132 | 13134 | 13135 | 13136 | 13137 | 13138 | 13139 |
| 515 | 13140 | 13141 | 13142 | 13144 | 13145 | 13146 | 13147 | 13148 | 13149 |
| 516 | 13150 | 13151 | 13152 | 13154 | 13155 | 13156 | 13157 | 13158 | 13159 |
| 517 | 13160 | 13161 | 13162 | 13164 | 13165 | 13166 | 13167 | 13168 | 13169 |
| 518 | 13170 | 13171 | 13172 | 13174 | 13175 | 13176 | 13177 | 13178 | 13179 |
| 519 | 13180 | 13181 | 13182 | 13184 | 13185 | 13186 | 13187 | 13188 | 13189 |
| 520 | 13190 | 13191 | 13192 | 13194 | 13195 | 13196 | 13197 | 13198 | 13199 |
| 521 | 13200 | 13201 | 13202 | 13204 | 13205 | 13206 | 13207 | 13208 | 13209 |
| 522 | 13210 | 1321 | 13212 | 13214 | 13215 | 13216 | 13217 | 13218 | 13219 |
| 523 | 13220 | 13221 | 13222 | 13224 | 13225 | 13226 | 13227 | 13228 | 13229 |
| 524 | 13230 | 13231 | 13232 | 13234 | 13235 | 13236 | 13237 | 13238 | 13239 |
| 525 | 13240 | 13241 | 13242 | 13244 | 13245 | 13246 | 13247 | 13248 | 1324 |
| 526 | 13250 | 13251 | 13252 | 13254 | 13255 | 13256 | 13257 | 13258 | 132 |
| 527 | 13260 | 13261 | 13262 | 13264 | 13265 | 13266 | 13267 | 13268 | 132 |
| 528 | 13270 | 13271 | 13272 | 13274 | 13275 | 13276 | 13277 | 13278 | 13279 |
| 529 | 13280 | 13281 | 13282 | 13284 | 13285 | 13286 | 13287 | 13288 | 13289 |
| 530 | 13290 | 13291 | 13292 | 13294 | 13295 | 13296 | 13297 | 13298 | 13299 |
| 531 | 13300 | 13301 | 13302 | 13304 | 13305 | 13306 | 13307 | 13308 | 1330 |
| 532 | 13310 | 13311 | 13312 | 13314 | 13315 | 13316 | 13317 | 13318 | 13319 |
| 533 | 13320 | 13321 | 13322 | 13324 | 13325 | 13326 | 13327 | 13328 | 13329 |
| 534 | 13330 | 13331 | 13332 | 13334 | 13335 | 13336 | 13337 | 13338 | 13339 |
| 535 | 13340 | 13341 | 13342 | 13344 | 13345 | 13346 | 13347 | 13348 | 13349 |
| 536 | 13350 | 13351 | 13352 | 13354 | 13355 | 13356 | 13357 | 13358 | 1335 |
| 537 | 13360 | 13361 | 13362 | 13364 | 13365 | 13366 | 13367 | 13368 | 13369 |
| 538 | 13370 | 13371 | 13372 | 13374 | 13375 | 13376 | 13377 | 13378 | 13379 |
| 539 | 13380 | 13381 | 13382 | 13384 | 13385 | 13386 | 13387 | 13388 | 13389 |
| 540 | 13390 | 13391 | 13392 | 13394 | 13395 | 13396 | 13397 | 13398 | 13399 |
| 541 | 13400 | 13401 | 13402 | 13404 | 13405 | 13406 | 13407 | 13408 | 13409 |
| 542 | 13410 | 13411 | 13412 | 13414 | 13415 | 13416 | 13417 | 13418 | 13419 |
| 543 | 13420 | 13421 | 13422 | 13424 | 13425 | 13426 | 13427 | 13428 | 13429 |
| 544 | 13430 | 13431 | 13432 | 13434 | 13435 | 13436 | 13437 | 13438 | 13439 |
| 545 | 13440 | 13441 | 13442 | 13444 | 13445 | 13446 | 13447 | 13448 | 13449 |
| 546 | 13450 | 13451 | 13452 | 13454 | 13455 | 13456 | 13457 | 13458 | 13459 |
| 547 | 13460 | 13461 | 13462 | 13464 | 13465 | 13466 | 13467 | 13468 | 13469 |
| 548 | 13470 | 13471 | 13472 | 13474 | 13475 | 13476 | 13477 | 13478 | 13479 |
| 549 | 13480 | 13481 | 13482 | 13484 | 13485 | 13486 | 13487 | 13488 | 13489 |
| 550 | 13490 | 13491 | 13492 | 13494 | 13495 | 13496 | 13497 | 13498 | 13499 |


|  | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioningaddress |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  |  |  | Loworder | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Low- order | Highorder | Loworder | Highorder |
| 551 | 13500 | 13501 | 13502 | 13504 | 13505 | 13506 | 13507 | 13508 | 13509 |
| 552 | 13510 | 13511 | 13512 | 13514 | 13515 | 13516 | 13517 | 13518 | 13519 |
| 553 | 13520 | 13521 | 13522 | 13524 | 13525 | 13526 | 13527 | 13528 | 13529 |
| 55 | 13530 | 13531 | 13532 | 13534 | 13535 | 13536 | 13537 | 13538 | 13539 |
| 555 | 13540 | 13541 | 13542 | 13544 | 13545 | 13546 | 13547 | 13548 | 13549 |
| 556 | 13550 | 13551 | 13552 | 13554 | 13555 | 13556 | 13557 | 13558 | 13559 |
| 557 | 13560 | 13561 | 13562 | 13564 | 13565 | 13566 | 13567 | 13568 | 13569 |
| 558 | 13570 | 13571 | 13572 | 13574 | 13575 | 13576 | 13577 | 13578 | 13579 |
| 559 | 13580 | 13581 | 13582 | 13584 | 13585 | 13586 | 13587 | 13588 | 13589 |
| 560 | 13590 | 13591 | 13592 | 13594 | 13595 | 13596 | 13597 | 13598 | 13599 |
| 561 | 13600 | 13601 | 13602 | 13604 | 13605 | 13606 | 13607 | 13608 | 13609 |
| 562 | 13610 | 13611 | 13612 | 13614 | 13615 | 13616 | 13617 | 13618 | 13619 |
| 563 | 13620 | 13621 | 13622 | 13624 | 13625 | 13626 | 13627 | 13628 | 13629 |
| 564 | 13630 | 13631 | 13632 | 13634 | 13635 | 13636 | 13637 | 13638 | 13639 |
| 565 | 13640 | 13641 | 13642 | 13644 | 13645 | 13646 | 13647 | 13648 | 13649 |
| 566 | 13650 | 13651 | 13652 | 13654 | 13655 | 13656 | 13657 | 13658 | 59 |
| 567 | 13660 | 13661 | 1366 | 1366 | 13665 | 13666 | 13667 | 13668 | 9 |
| 568 | 13670 | 13671 | 13672 | 13674 | 13675 | 13676 | 13677 | 13678 | 13679 |
| 569 | 13680 | 13681 | 13682 | 13684 | 13685 | 13686 | 13687 | 13688 | 13689 |
| 570 | 13690 | 13691 | 13692 | 13694 | 13695 | 13696 | 13697 | 13698 | 13699 |
| 571 | 13700 | 13701 | 13702 | 13704 | 13705 | 13706 | 13707 | 13708 | 13709 |
| 572 | 13710 | 1371 | 1371 | 13714 | 13715 | 13716 | 13717 | 13718 | 13719 |
| 573 | 13720 | 13721 | 13722 | 13724 | 13725 | 13726 | 13727 | 13728 | 13729 |
| 574 | 13730 | 13731 | 13732 | 13734 | 13735 | 13736 | 13737 | 13738 | 13739 |
| 575 | 13740 | 13741 | 13742 | 13744 | 13745 | 13746 | 13747 | 13748 | 13749 |
| 576 | 13750 | 13751 | 13752 | 13754 | 13755 | 13756 | 13757 | 13758 | 13759 |
| 577 | 13760 | 13761 | 13762 | 13764 | 13765 | 13766 | 13767 | 13768 | 13769 |
| 578 | 13770 | 13771 | 13772 | 13774 | 13775 | 13776 | 13777 | 13778 | 13779 |
| 579 | 13780 | 13781 | 13782 | 13784 | 13785 | 13786 | 13787 | 13788 | 13789 |
| 580 | 13790 | 13791 | 13792 | 13794 | 13795 | 13796 | 13797 | 13798 | 13799 |
| 581 | 13800 | 13801 | 13802 | 13804 | 13805 | 13806 | 13807 | 13808 | 13809 |
| 582 | 13810 | 13811 | 13812 | 13814 | 13815 | 13816 | 13817 | 13818 | 13819 |
| 583 | 13820 | 13821 | 13822 | 13824 | 13825 | 13826 | 13827 | 13828 | 13829 |
| 584 | 13830 | 13831 | 13832 | 13834 | 13835 | 13836 | 13837 | 13838 | 13839 |
| 585 | 13840 | 13841 | 13842 | 13844 | 13845 | 13846 | 13847 | 13848 | 13849 |
| 586 | 13850 | 13851 | 13852 | 13854 | 13855 | 13856 | 13857 | 13858 | 13859 |
| 587 | 13860 | 13861 | 13862 | 13864 | 13865 | 13866 | 13867 | 13868 | 13869 |
| 588 | 13870 | 13871 | 13872 | 13874 | 13875 | 13876 | 13877 | 13878 | 13879 |
| 589 | 13880 | 13881 | 13882 | 13884 | 13885 | 13886 | 13887 | 13888 | 13889 |
| 590 | 13890 | 13891 | 13892 | 13894 | 13895 | 13896 | 13897 | 13898 | 13899 |
| 591 | 13900 | 13901 | 13902 | 13904 | 13905 | 13906 | 13907 | 13908 | 13909 |
| 592 | 13910 | 13911 | 13912 | 13914 | 13915 | 13916 | 13917 | 13918 | 13919 |
| 593 | 13920 | 13921 | 13922 | 13924 | 13925 | 13926 | 13927 | 13928 | 13929 |
| 594 | 13930 | 13931 | 13932 | 13934 | 13935 | 13936 | 13937 | 13938 | 13939 |
| 595 | 13940 | 13941 | 13942 | 13944 | 13945 | 13946 | 13947 | 13948 | 13949 |
| 596 | 13950 | 13951 | 13952 | 13954 | 13955 | 13956 | 13957 | 13958 | 13959 |
| 597 | 13960 | 13961 | 13962 | 13964 | 13965 | 13966 | 13967 | 13968 | 13969 |
| 598 | 13970 | 13971 | 13972 | 13974 | 13975 | 13976 | 13977 | 13978 | 13979 |
| 599 | 13980 | 13981 | 13982 | 13984 | 13985 | 13986 | 13987 | 13988 | 13989 |
| 600 | 13990 | 13991 | 13992 | 13994 | 13995 | 13996 | 13997 | 13998 | 13999 |

(a) For axis 2 (positioning option)

| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8003 | 51 | 8503 | 101 | 9003 | 151 | 9503 | 201 | 10003 | 251 | 10503 |
| 2 | 8013 | 52 | 8513 | 102 | 9013 | 152 | 9513 | 202 | 10013 | 252 | 10513 |
| 3 | 8023 | 53 | 8523 | 103 | 9023 | 153 | 9523 | 203 | 10023 | 253 | 10523 |
| 4 | 8033 | 54 | 8533 | 104 | 9033 | 154 | 9533 | 204 | 10033 | 254 | 10533 |
| 5 | 8043 | 55 | 8543 | 105 | 9043 | 155 | 9543 | 205 | 10043 | 255 | 10543 |
| 6 | 8053 | 56 | 8553 | 106 | 9053 | 156 | 9553 | 206 | 10053 | 256 | 10553 |
| 7 | 8063 | 57 | 8563 | 107 | 9063 | 157 | 9563 | 207 | 10063 | 257 | 10563 |
| 8 | 8073 | 58 | 8573 | 108 | 9073 | 158 | 9573 | 208 | 10073 | 258 | 10573 |
| 9 | 8083 | 59 | 8583 | 109 | 9083 | 159 | 9583 | 209 | 10083 | 259 | 10583 |
| 10 | 8093 | 60 | 8593 | 110 | 9093 | 160 | 9593 | 210 | 10093 | 260 | 10593 |
| 11 | 8103 | 61 | 8603 | 111 | 9103 | 161 | 9603 | 211 | 10103 | 261 | 10603 |
| 12 | 8113 | 62 | 8613 | 112 | 9113 | 162 | 9613 | 212 | 10113 | 262 | 10613 |
| 13 | 8123 | 63 | 8623 | 113 | 9123 | 163 | 9623 | 213 | 10123 | 263 | 10623 |
| 14 | 8133 | 64 | 8633 | 114 | 9133 | 164 | 9633 | 214 | 10133 | 264 | 10633 |
| 15 | 8143 | 65 | 8643 | 115 | 9143 | 165 | 9643 | 215 | 10143 | 265 | 10643 |
| 16 | 8153 | 66 | 8653 | 116 | 9153 | 166 | 9653 | 216 | 10153 | 266 | 10653 |
| 17 | 8163 | 67 | 8663 | 117 | 9163 | 167 | 9663 | 217 | 10163 | 267 | 10663 |
| 18 | 8173 | 68 | 8673 | 118 | 9173 | 168 | 9673 | 218 | 10173 | 268 | 10673 |
| 19 | 8183 | 69 | 8683 | 119 | 9183 | 169 | 9683 | 219 | 10183 | 269 | 10683 |
| 20 | 8193 | 70 | 8693 | 120 | 9193 | 170 | 9693 | 220 | 10193 | 270 | 10693 |
| 21 | 8203 | 71 | 8703 | 121 | 9203 | 171 | 9703 | 221 | 10203 | 271 | 10703 |
| 22 | 8213 | 72 | 8713 | 122 | 9213 | 172 | 9713 | 222 | 10213 | 272 | 10713 |
| 23 | 8223 | 73 | 8723 | 123 | 9223 | 173 | 9723 | 223 | 10223 | 273 | 10723 |
| 24 | 8233 | 74 | 8733 | 124 | 9233 | 174 | 9733 | 224 | 10233 | 274 | 10733 |
| 25 | 8243 | 75 | 8743 | 125 | 9243 | 175 | 9743 | 225 | 10243 | 275 | 10743 |
| 26 | 8253 | 76 | 8753 | 126 | 9253 | 176 | 9753 | 226 | 10253 | 276 | 10753 |
| 27 | 8263 | 77 | 8763 | 127 | 9263 | 177 | 9763 | 227 | 10263 | 277 | 10763 |
| 28 | 8273 | 78 | 8773 | 128 | 9273 | 178 | 9773 | 228 | 10273 | 278 | 10773 |
| 29 | 8283 | 79 | 8783 | 129 | 9283 | 179 | 9783 | 229 | 10283 | 279 | 10783 |
| 30 | 8293 | 80 | 8793 | 130 | 9293 | 180 | 9793 | 230 | 10293 | 280 | 10793 |
| 31 | 8303 | 81 | 8803 | 131 | 9303 | 181 | 9803 | 231 | 10303 | 281 | 10803 |
| 32 | 8313 | 82 | 8813 | 132 | 9313 | 182 | 9813 | 232 | 10313 | 282 | 10813 |
| 33 | 8323 | 83 | 8823 | 133 | 9323 | 183 | 9823 | 233 | 10323 | 283 | 10823 |
| 34 | 8333 | 84 | 8833 | 134 | 9333 | 184 | 9833 | 234 | 10333 | 284 | 10833 |
| 35 | 8343 | 85 | 8843 | 135 | 9343 | 185 | 9843 | 235 | 10343 | 285 | 10843 |
| 36 | 8353 | 86 | 8853 | 136 | 9353 | 186 | 9853 | 236 | 10353 | 286 | 10853 |
| 37 | 8363 | 87 | 8863 | 137 | 9363 | 187 | 9863 | 237 | 10363 | 287 | 10863 |
| 38 | 8373 | 88 | 8873 | 138 | 9373 | 188 | 9873 | 238 | 10373 | 288 | 10873 |
| 39 | 8383 | 89 | 8883 | 139 | 9383 | 189 | 9883 | 239 | 10383 | 289 | 10883 |
| 40 | 8393 | 90 | 8893 | 140 | 9393 | 190 | 9893 | 240 | 10393 | 290 | 10893 |
| 41 | 8403 | 91 | 8903 | 141 | 9403 | 191 | 9903 | 241 | 10403 | 291 | 10903 |
| 42 | 8413 | 92 | 8913 | 142 | 9413 | 192 | 9913 | 242 | 10413 | 292 | 10913 |
| 43 | 8423 | 93 | 8923 | 143 | 9423 | 193 | 9923 | 243 | 10423 | 293 | 10923 |
| 44 | 8433 | 94 | 8933 | 144 | 9433 | 194 | 9933 | 244 | 10433 | 294 | 10933 |
| 45 | 8443 | 95 | 8943 | 145 | 9443 | 195 | 9943 | 245 | 10443 | 295 | 10943 |
| 46 | 8453 | 96 | 8953 | 146 | 9453 | 196 | 9953 | 246 | 10453 | 296 | 10953 |
| 47 | 8463 | 97 | 8963 | 147 | 9463 | 197 | 9963 | 247 | 10463 | 297 | 10963 |
| 48 | 8473 | 98 | 8973 | 148 | 9473 | 198 | 9973 | 248 | 10473 | 298 | 10973 |
| 49 | 8483 | 99 | 8983 | 149 | 9483 | 199 | 9983 | 249 | 10483 | 299 | 10983 |
| 50 | 8493 | 100 | 8993 | 150 | 9493 | 200 | 9993 | 250 | 10493 | 300 | 10993 |


| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | 11003 | 351 | 11503 | 401 | 12003 | 451 | 12503 | 501 | 13003 | 551 | 13503 |
| 302 | 11013 | 352 | 11513 | 402 | 12013 | 452 | 12513 | 502 | 13013 | 552 | 13513 |
| 303 | 11023 | 353 | 11523 | 403 | 12023 | 453 | 12523 | 503 | 13023 | 553 | 13523 |
| 304 | 11033 | 354 | 11533 | 404 | 12033 | 454 | 12533 | 504 | 13033 | 554 | 13533 |
| 305 | 11043 | 355 | 11543 | 405 | 12043 | 455 | 12543 | 505 | 13043 | 555 | 13543 |
| 306 | 11053 | 356 | 11553 | 406 | 12053 | 456 | 12553 | 506 | 13053 | 556 | 13553 |
| 307 | 11063 | 357 | 11563 | 407 | 12063 | 457 | 12563 | 507 | 13063 | 557 | 13563 |
| 308 | 11073 | 358 | 11573 | 408 | 12073 | 458 | 12573 | 508 | 13073 | 558 | 13573 |
| 309 | 11083 | 359 | 11583 | 409 | 12083 | 459 | 12583 | 509 | 13083 | 559 | 13583 |
| 310 | 11093 | 360 | 11593 | 410 | 12093 | 460 | 12593 | 510 | 13093 | 560 | 13593 |
| 311 | 11103 | 361 | 11603 | 411 | 12103 | 461 | 12603 | 511 | 13103 | 561 | 13603 |
| 312 | 11113 | 362 | 11613 | 412 | 12113 | 462 | 12613 | 512 | 13113 | 562 | 13613 |
| 313 | 11123 | 363 | 11623 | 413 | 12123 | 463 | 12623 | 513 | 13123 | 563 | 13623 |
| 314 | 11133 | 364 | 11633 | 414 | 12133 | 464 | 12633 | 514 | 13133 | 564 | 13633 |
| 315 | 11143 | 365 | 11643 | 415 | 12143 | 465 | 12643 | 515 | 13143 | 565 | 13643 |
| 316 | 11153 | 366 | 11653 | 416 | 12153 | 466 | 12653 | 516 | 13153 | 566 | 13653 |
| 317 | 11163 | 367 | 11663 | 417 | 12163 | 467 | 12663 | 517 | 13163 | 567 | 13663 |
| 318 | 11173 | 368 | 11673 | 418 | 12173 | 468 | 12673 | 518 | 13173 | 568 | 13673 |
| 319 | 11183 | 369 | 11683 | 419 | 12183 | 469 | 12683 | 519 | 13183 | 569 | 13683 |
| 320 | 11193 | 370 | 11693 | 420 | 12193 | 470 | 12693 | 520 | 13193 | 570 | 13693 |
| 321 | 11203 | 371 | 11703 | 421 | 12203 | 471 | 12703 | 521 | 13203 | 571 | 13703 |
| 322 | 11213 | 372 | 11713 | 422 | 12213 | 472 | 12713 | 522 | 13213 | 572 | 13713 |
| 323 | 11223 | 373 | 11723 | 423 | 12223 | 473 | 12723 | 523 | 13223 | 573 | 13723 |
| 324 | 11233 | 374 | 11733 | 424 | 12233 | 474 | 12733 | 524 | 13233 | 574 | 13733 |
| 325 | 11243 | 375 | 11743 | 425 | 12243 | 475 | 12743 | 525 | 13243 | 575 | 13743 |
| 326 | 11253 | 376 | 11753 | 426 | 12253 | 476 | 12753 | 526 | 13253 | 576 | 13753 |
| 327 | 11263 | 377 | 11763 | 427 | 12263 | 477 | 12763 | 527 | 13263 | 577 | 13763 |
| 328 | 11273 | 378 | 11773 | 428 | 12273 | 478 | 12773 | 528 | 13273 | 578 | 13773 |
| 329 | 11283 | 379 | 11783 | 429 | 12283 | 479 | 12783 | 529 | 13283 | 579 | 13783 |
| 330 | 11293 | 380 | 11793 | 430 | 12293 | 480 | 12793 | 530 | 13293 | 580 | 13793 |
| 331 | 11303 | 381 | 11803 | 431 | 12303 | 481 | 12803 | 531 | 13303 | 581 | 13803 |
| 332 | 11313 | 382 | 11813 | 432 | 12313 | 482 | 12813 | 532 | 13313 | 582 | 13813 |
| 333 | 11323 | 383 | 11823 | 433 | 12323 | 483 | 12823 | 533 | 13323 | 583 | 13823 |
| 334 | 11333 | 384 | 11833 | 434 | 12333 | 484 | 12833 | 534 | 13333 | 584 | 13833 |
| 335 | 11343 | 385 | 11843 | 435 | 12343 | 485 | 12843 | 535 | 13343 | 585 | 13843 |
| 336 | 11353 | 386 | 11853 | 436 | 12353 | 486 | 12853 | 536 | 13353 | 586 | 13853 |
| 337 | 11363 | 387 | 11863 | 437 | 12363 | 487 | 12863 | 537 | 13363 | 587 | 13863 |
| 338 | 11373 | 388 | 11873 | 438 | 12373 | 488 | 12873 | 538 | 13373 | 588 | 13873 |
| 339 | 11383 | 389 | 11883 | 439 | 12383 | 489 | 12883 | 539 | 13383 | 589 | 13883 |
| 340 | 11393 | 390 | 11893 | 440 | 12393 | 490 | 12893 | 540 | 13393 | 590 | 13893 |
| 341 | 11403 | 391 | 11903 | 441 | 12403 | 491 | 12903 | 541 | 13403 | 591 | 13903 |
| 342 | 11413 | 392 | 11913 | 442 | 12413 | 492 | 12913 | 542 | 13413 | 592 | 13913 |
| 343 | 11423 | 393 | 11923 | 443 | 12423 | 493 | 12923 | 543 | 13423 | 593 | 13923 |
| 344 | 11433 | 394 | 11933 | 444 | 12433 | 494 | 12933 | 544 | 13433 | 594 | 13933 |
| 345 | 11443 | 395 | 11943 | 445 | 12443 | 495 | 12943 | 545 | 13443 | 595 | 13943 |
| 346 | 11453 | 396 | 11953 | 446 | 12453 | 496 | 12953 | 546 | 13453 | 596 | 13953 |
| 347 | 11463 | 397 | 11963 | 447 | 12463 | 497 | 12963 | 547 | 13463 | 597 | 13963 |
| 348 | 11473 | 398 | 11973 | 448 | 12473 | 498 | 12973 | 548 | 13473 | 598 | 13973 |
| 349 | 11483 | 399 | 11983 | 449 | 12483 | 499 | 12983 | 549 | 13483 | 599 | 13983 |
| 350 | 11493 | 400 | 11993 | 450 | 12493 | 500 | 12993 | 550 | 13493 | 600 | 13993 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  | Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder |  | Highorder |  | Highorder |  |  |  |  | Loworder | High- order | Loworder | $\begin{gathered} \text { High- } \\ \text { order } \end{gathered}$ | Loworder | Highorder |
| 1 | 14000 | 14001 | 14 | 14004 | 14005 | 14006 | 14007 | 14008 | 14009 | 51 | 500 | 14501 | 14502 | 14504 | 14505 | 14506 | 14507 | 14508 | 14509 |
| 2 | 1401 | 140 | 1401 | 14 | 140 | 14016 | 14017 | 14018 | 14019 | 52 | 14510 | 14511 | 14512 | 14514 | 14515 | 14516 | 14517 | 14518 | 14519 |
| 3 | 14020 | 14021 | 14022 | 14024 | 14025 | 14026 | 14027 | 14028 | 14029 | 53 | 520 | 14521 | 14522 | 14524 | 14525 | 14526 | 14527 | 14528 | 14529 |
| 4 | 14 | 14 | 14 | 14 | 14 | 14036 | 14037 | 14038 | 14039 | 54 | 530 | 14531 | 14532 | 14534 | 14535 | 14536 | 14537 | 14538 | 14539 |
| 5 | 14040 | 14041 | 14 | 14 | 14045 | 14046 | 14047 | 14048 | 14 | 55 | 40 | 14541 | 14542 | 14544 | 14545 | 14546 | 14547 | 14548 | 14549 |
| 6 | 14 | 14 | 14 | 14 | 14 | 14056 | 14 | 14058 | 14 | 56 | 50 | 14551 | 14552 | 14554 | 14555 | 14556 | 14557 | 558 | 14559 |
| 7 | 14060 | 14061 | 14062 | 14064 | 14065 | 14066 | 14067 | 14068 | 14069 | 57 | 560 | 14561 | 14562 | 14564 | 14565 | 14566 | 14567 | 14568 | 14569 |
| 8 | 140 | 1407 | 1407 | 14 | 1407 | 14076 | 1407 | 14 | 14 | 58 | 14570 | 14571 | 14572 | 14574 | 14575 | 14576 | 14577 | 14578 | 79 |
| 9 | 14080 | 14 | 14 | 14 | 14 | 14 | 14 | 14088 | 14 | 59 | 14580 | 1 | 14 | 84 | 14585 | 586 | 14587 | 588 | 89 |
| 10 | 140 | 14091 | 14092 | 14094 | 14095 | 14096 | 14097 | 14098 | 14 | 60 | 90 | 14591 | 14592 | 14594 | 14595 | 14596 | 14597 | 14598 | 14599 |
| 11 | 14100 | 14101 | 14102 | 14104 | 14105 | 14106 | 14107 | 14108 | 14109 | 61 | 600 | 14601 | 14602 | 604 | 14605 | 14606 | 14607 | 4608 | 609 |
| 12 | 14 | 141 | 1411 | 14 | 1411 | 14116 | 1411 | 14118 | 14 | 62 | 10 | 14611 | 14612 | 14614 | 14615 | 14616 | 14617 | 14618 | 14619 |
| 13 | 14 | 141 | 14 | 14 | 14 | 14 | 14127 | 1412 | 14 | 63 | 14620 | 14621 | 14622 | 14624 | 14625 | 14626 | 14627 | 14628 | 14629 |
| 14 | 14130 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 64 | 14630 | 14631 | 14 | 14634 | 35 | 36 | 637 | 638 | 39 |
| 15 | 14140 | 14141 | 14142 | 14144 | 14145 | 14146 | 14147 | 14148 | 14 | 65 | 40 | 14641 | 14642 | 14644 | 14645 | 14646 | 14647 | 14648 | 14649 |
| 16 | 14 | 14 | 14 | 14 | 14155 | 14156 | 14157 | 14158 | 14 | 66 | 50 | 14651 | 2 | 54 | 55 | 56 | 57 | 58 | 59 |
| 17 | 14 | 141 | 14 | 14 | 14 | 14166 | 14 | 14 | 14 | 67 | 14660 | 14661 | 14 | 14 | 14665 | 14666 | 14667 | 14668 | 9 |
| 18 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 68 | 14670 | 14671 | 14 | 14674 | 14675 | 14676 | 14677 | 14678 | 14679 |
| 19 | 14180 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14189 | 69 | 14680 | 14681 | 14682 | 14684 | 14685 | 4686 | 14687 | 688 | 689 |
| 20 | 14190 | 141 | 14 | 14 | 14195 | 14196 | 14197 | 14198 | 14 | 70 | 0 | 14 | 14692 | 14694 | 14695 | 14696 | 14697 | 14698 | 14699 |
| 21 | 14 | 14 | 14 | 14 | 14205 | 14206 | 14207 | 14208 | 14 | 71 | 14700 | 14701 | 2 | 4 | 14705 | 06 | 7 | 08 | 9 |
| 22 | 142 | 142 | 1421 | 1421 | 1421 | 14216 | 14217 | 14218 | 14 | 72 | 14710 |  | 14712 | 14714 | 14715 | 14716 | 14717 | 718 | 19 |
| 23 | 14 | 1422 | 14 | 14 | 14 | 14226 | 14227 | 14228 | 14 | 73 | 14720 | 14721 | 14722 | 4 | 14725 | 726 | 14727 | 728 | 9 |
| 24 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 74 | 14730 | 14731 | 14732 | 14734 | 14735 | 6 | 14737 | 88 | 39 |
| 25 | 14240 | 14241 | 14242 | 14244 | 14245 | 14246 | 14247 | 14248 | 14 | 75 | 0 | 41 | 14742 | 14744 | 14745 | 4746 | 14747 | 14748 | 14749 |
| 26 | 14250 | 142 | 14 | 14 | 14255 | 14256 | 14 | 14258 | 14259 | 76 |  |  | 14752 | 14754 | 55 | 756 | 57 | 758 | 14759 |
| 27 | 14 | 142 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 77 | 14760 | 1 | 14762 | 4 | 14765 | 766 | 14767 | 768 | 14769 |
| 28 | 14 | 142 | 14 | 14 | 14 | 14 | 14 | 14 | 14279 | 78 | 14770 | 14771 | 14 | 14774 | 14775 | 76 | 7 | 78 | 7 |
| 29 |  | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 79 |  | 14781 | 14782 | 14784 | 14785 | 14786 | 14787 | 8 | 89 |
| 30 | 14290 | 14291 | 14292 | 14294 | 14295 | 14296 | 14297 | 14298 | 14 | 80 | 90 | 14791 | 14792 | 14794 | 14795 | 14796 | 14797 | 14798 | 79 |
| 31 |  |  |  |  |  |  |  |  |  | 81 |  |  |  |  |  |  | 07 | 8 | 809 |
| 32 | 143 | 1431 | 1431 | 1431 | 14315 | 14316 | 1431 | 14318 | 14 | 82 | 810 | 14811 | 14812 | 14814 | 14815 | 14816 | 14817 | 14818 | 14819 |
| 33 | 14 | 1432 | 14 | 14324 | 14325 | 14326 | 14327 | 14328 | 14 | 83 |  | 14821 | 14 | 14824 | 14825 | 4826 | 14827 | 4828 | 148 |
| 34 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 84 |  |  | 14 | 334 | 14835 | 836 | 837 | 838 | 14839 |
| 35 | 14340 | 14341 | 14342 | 14344 | 14345 | 14346 | 14347 | 14348 | 14 | 85 | 840 | 14841 | 14842 | 14844 | 14845 | 14846 | 14847 | 14848 | 1484 |
| 36 |  |  |  |  |  |  | 14 | 14 | 14 | 86 |  |  | 2 | 54 | 855 | 856 | 857 | 858 | 14859 |
| 37 | 14 | 1436 | 14 | 14364 | 14 | 14 | 14 | 14368 | 14 | 87 |  |  | 14 | 14 | 14865 | 66 | 14867 | 14868 | 14 |
| 38 |  | 14 | 14 | 14 | 14 | 14 | 14 | 14378 | 14 | 88 | 14870 | 14 | 14872 | 1487 | 14875 | 14876 | 14877 | 14878 | 1487 |
| 39 |  | 14 | 14 | 14 | 14 | 14 | 14 |  | 14 | 89 |  |  | 14 | 14884 | 85 | 886 | 887 | 888 | 14889 |
| 40 | 14390 | 14391 | 14392 | 14394 | 14395 | 14396 | 14397 | 14398 | 14 | 90 | 14890 | 14891 | 14892 | 14894 | 14895 | 14896 | 14897 | 14898 | 14899 |
| 41 | 14400 | 14401 | 14 | 14404 | 14405 | 14406 | 14 | 14408 | 14 | 91 | 14900 |  | 14902 | 14904 | 5 | 6 | 07 | 908 | 14909 |
| 42 |  | 14 | 14 | 14 | 14 | 14416 | 14 | 14418 | 14 | 92 |  | 14 | 14912 | 14914 | 14915 | 14916 | 14917 | 14918 | 14919 |
| 43 |  | 14 | 14 | 14 | 14425 | 14426 | 14427 | 14428 | 14429 | 93 | 20 | 14921 | 14922 | 14924 | 14925 | 14926 | 14927 | 14928 | 14929 |
| 44 | 14 | 14431 | 14 | 14434 | 14435 | 14436 | 14437 | 14438 | 14439 | 94 | 30 | 31 | 14932 | 14934 | 14935 | 14936 | 14937 | 14938 | 14939 |
| 45 | 14440 | 14441 | 14442 | 14444 | 14445 | 14446 | 14447 | 14448 | 14449 | 95 | 14940 | 14941 | 14942 | 14944 | 14945 | 14946 | 14947 | 14948 | 14949 |
| 46 | 14450 | 14451 | 14 | 14 | 14455 | 14456 | 14 | 14 | 14 | 96 | 14950 | 14951 | 14952 | 54 | 955 | 956 | 14957 | 958 | 9 |
| 47 | 14460 | 14461 | 1446 | 1446 | 1446 | 14466 | 14467 | 14468 | 14469 | 97 | 60 | 14961 | 14962 | 14964 | 14965 | 14966 | 14967 | 14968 | 14969 |
| 48 | 14470 | 14471 | 14472 | 14474 | 14475 | 14476 | 14477 | 14478 | 14479 | 98 | 70 | 14971 | 14972 | 14974 | 14975 | 14976 | 14977 | 14978 | 14979 |
| 49 | 14480 | 14481 | 14482 | 14484 | 14485 | 14486 | 14487 | 14488 | 14489 | 99 | 980 | 14981 | 14982 | 14984 | 14985 | 14986 | 14987 | 14988 | 14989 |
| 50 | 14490 | 1449 | 14492 | 1449 | 14495 | 14496 | 14497 | 14498 | 14499 | 100 | 14990 | 14991 | 14992 | 14994 | 14995 | 14996 | 14997 | 14998 | 14999 |


| Data No. | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{aligned} & \text { Positioning } \\ & \text { address } \end{aligned}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | Highorder |
| 101 | 15000 | 15001 | 15002 | 15004 | 15005 | 15006 | 15007 | 15008 | 15009 |
| 102 | 15010 | 15011 | 15012 | 15014 | 15015 | 15016 | 15017 | 15018 | 15019 |
| 103 | 15020 | 15021 | 15022 | 15024 | 15025 | 15026 | 15027 | 15028 | 15029 |
| 10 | 15030 | 150 | 15032 | 15034 | 15035 | 15036 | 15037 | 15038 | 15039 |
| 105 | 15040 | 15041 | 15042 | 15044 | 15045 | 15046 | 15047 | 15048 | 15049 |
| 106 | 15050 | 15051 | 15052 | 15054 | 15055 | 15056 | 15057 | 15058 | 15059 |
| 107 | 15060 | 15061 | 15062 | 15064 | 15065 | 15066 | 15067 | 15068 | 15069 |
| 108 | 15070 | 15071 | 15072 | 15074 | 15075 | 15076 | 15077 | 15078 | 79 |
| 109 | 15080 | 15081 | 15082 | 15084 | 15085 | 15086 | 15087 | 15088 | 15089 |
| 110 | 15090 | 15091 | 15092 | 15094 | 15095 | 15096 | 15097 | 15098 | 15099 |
| 111 | 15100 | 15101 | 15102 | 15104 | 15105 | 15106 | 15107 | 15108 | 15109 |
| 112 | 15110 | 15111 | 15112 | 15114 | 15115 | 15116 | 15117 | 15118 | 15119 |
| 11 | 15120 | 15121 | 15122 | 15124 | 15125 | 15126 | 15127 | 15128 | 15129 |
| 114 | 15130 | 15131 | 15132 | 15134 | 15135 | 15136 | 15137 | 15138 | 15139 |
| 115 | 15140 | 15141 | 15142 | 15144 | 15145 | 15146 | 15147 | 15148 | 15149 |
| 116 | 15150 | 15151 | 15152 | 15154 | 15155 | 15156 | 15157 | 15158 | 15159 |
| 117 | 15160 | 151 | 1516 | 15 | 15 | 15166 | 15167 | 15168 | 15169 |
| 118 | 15170 | 15171 | 15172 | 15174 | 15175 | 15176 | 15177 | 15178 | 15179 |
| 119 | 15180 | 15181 | 15182 | 15184 | 15185 | 15186 | 15187 | 15188 | 15189 |
| 120 | 15190 | 15191 | 15192 | 15194 | 15195 | 15196 | 15197 | 15198 | 15199 |
| 121 | 15200 | 15201 | 15202 | 15204 | 15205 | 15206 | 15207 | 15208 | 15209 |
| 122 | 152 | 1521 | 1521 | 15214 | 15215 | 15216 | 15217 | 15218 | 15 |
| 123 | 15220 | 15221 | 15222 | 15224 | 15225 | 15226 | 15227 | 15228 | 15229 |
| 124 | 15230 | 15231 | 15232 | 15234 | 15235 | 15236 | 15237 | 15238 | 15239 |
| 125 | 15240 | 15241 | 15242 | 15244 | 15245 | 15246 | 15247 | 15248 | 15249 |
| 126 | 15250 | 1525 | 15252 | 15254 | 15255 | 15256 | 15257 | 15258 | 15 |
| 127 | 15260 | 15261 | 15262 | 15264 | 15265 | 15266 | 15267 | 15268 | 15 |
| 128 | 15270 | 15271 | 15272 | 15274 | 15275 | 15276 | 15277 | 15278 | 15279 |
| 129 | 15280 | 15281 | 15282 | 15284 | 15285 | 15286 | 15287 | 15288 | 15289 |
| 130 | 15290 | 15291 | 15292 | 15294 | 15295 | 15296 | 15297 | 15298 | 1529 |
| 131 | 15300 | 15301 | 15302 | 15304 | 15305 | 15306 | 15307 | 15308 | 153 |
| 132 | 15310 | 15311 | 15312 | 15314 | 15315 | 15316 | 15317 | 15318 | 15319 |
| 133 | 15320 | 15321 | 15322 | 15324 | 15325 | 15326 | 15327 | 15328 | 15329 |
| 134 | 15330 | 15331 | 15332 | 15334 | 15335 | 15336 | 15337 | 15338 | 15339 |
| 135 | 15340 | 15341 | 15342 | 15344 | 15345 | 15346 | 15347 | 15348 | 1534 |
| 136 | 15350 | 15351 | 15352 | 15354 | 15355 | 15356 | 15357 | 15358 | 15 |
| 137 | 15360 | 15361 | 15362 | 15364 | 15365 | 15366 | 15367 | 15368 | 15369 |
| 13 | 15370 | 15371 | 15372 | 15374 | 15375 | 15376 | 15377 | 15378 | 15379 |
| 139 | 15380 | 15381 | 15382 | 15384 | 15385 | 15386 | 15387 | 15388 | 15389 |
| 140 | 15390 | 15391 | 15392 | 15394 | 15395 | 15396 | 15397 | 15398 | 15399 |
| 141 | 15400 | 15401 | 15402 | 15404 | 15405 | 15406 | 15407 | 15408 | 15409 |
| 142 | 15410 | 15411 | 15412 | 15414 | 15415 | 15416 | 15417 | 15418 | 15419 |
| 143 | 15420 | 15421 | 15422 | 15424 | 15425 | 15426 | 15427 | 15428 | 15429 |
| 144 | 15430 | 15431 | 15432 | 15434 | 15435 | 15436 | 15437 | 15438 | 15439 |
| 145 | 15440 | 15441 | 15442 | 15444 | 15445 | 15446 | 15447 | 15448 | 15449 |
| 146 | 15450 | 15451 | 15452 | 15454 | 15455 | 15456 | 15457 | 15458 | 15459 |
| 147 | 15460 | 15461 | 15462 | 15464 | 15465 | 15466 | 15467 | 15468 | 15469 |
| 148 | 15470 | 15471 | 15472 | 15474 | 15475 | 15476 | 15477 | 15478 | 15479 |
| 149 | 15480 | 15481 | 15482 | 15484 | 15485 | 15486 | 15487 | 15488 | 15489 |
| 150 | 15490 | 15491 | 15492 | 15494 | 15495 | 15496 | 15497 | 15498 | 15499 |


| Data No. | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \text { M } \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{gathered} \text { Positioning } \\ \text { address } \end{gathered}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | Highorder |
| 151 | 15500 | 15501 | 15502 | 15504 | 15505 | 15506 | 15507 | 15508 | 15509 |
| 152 | 15510 | 15511 | 15512 | 15514 | 15515 | 15516 | 15517 | 15518 | 15519 |
| 153 | 15520 | 15521 | 15522 | 15524 | 15525 | 15526 | 15527 | 15528 | 15529 |
| 15 | 15530 | 15 | 15532 | 15534 | 15535 | 15536 | 15537 | 15538 | 15539 |
| 155 | 15540 | 15541 | 15542 | 15544 | 15545 | 15546 | 15547 | 15548 | 15549 |
| 156 | 15550 | 15551 | 15552 | 15554 | 15555 | 15556 | 15557 | 15558 | 15559 |
| 157 | 15560 | 15561 | 15562 | 15564 | 15565 | 15566 | 15567 | 15568 | 15569 |
| 15 | 15570 | 155 | 15572 | 15574 | 15575 | 15576 | 15577 | 15578 | 79 |
| 159 | 15580 | 1558 | 15582 | 15584 | 15585 | 15586 | 15587 | 15588 | 15589 |
| 160 | 15590 | 15591 | 15592 | 15594 | 15595 | 15596 | 15597 | 15598 | 15599 |
| 161 | 15600 | 15601 | 15602 | 15604 | 15605 | 15606 | 15607 | 15608 | 09 |
| 162 | 15610 | 1561 | 15612 | 15614 | 15615 | 15616 | 15617 | 15618 | 15619 |
| 163 | 15620 | 1562 | 15622 | 15624 | 15625 | 15626 | 15627 | 15628 | 15629 |
| 164 | 15630 | 15631 | 15632 | 15634 | 15635 | 15636 | 15637 | 15638 | 15639 |
| 165 | 15640 | 15641 | 15642 | 15644 | 15645 | 15646 | 15647 | 15648 | 15649 |
| 166 | 15650 | 15 | 15652 | 15654 | 15655 | 15656 | 15657 | 15658 | 59 |
| 16 | 15 | 15 | 15 | 15 | 15665 | 15666 | 15667 | 15668 | 15669 |
| 168 | 15670 | 156 | 15672 | 15 | 15675 | 15676 | 15677 | 15678 | 15679 |
| 169 | 15680 | 156 | 15682 | 15684 | 15685 | 15686 | 15687 | 15688 | 15689 |
| 170 | 15690 | 1569 | 15692 | 15694 | 15695 | 15696 | 15697 | 15698 | 9 |
| 17 | 15700 | 157 | 15702 | 15704 | 15705 | 15706 | 15707 | 15708 |  |
| 17 | 15710 | 157 | 157 | 157 | 15715 | 15716 | 15717 | 15718 | 15 |
| 173 | 15720 | 15721 | 15722 | 15724 | 15725 | 15726 | 15727 | 15728 | 15729 |
| 17 | 15 | 15 | 15732 | 15734 | 15735 | 15736 | 15737 | 15738 | 15739 |
| 17 | 15740 | 15741 | 15742 | 15 | 15745 | 15746 | 15747 | 15748 | 15749 |
| 176 | 15750 | 157 | 1575 | 157 | 15755 | 15756 | 15757 | 15758 | 15759 |
| 177 | 15760 | 1576 | 15762 | 1576 | 15765 | 15766 | 15767 | 15768 | 15769 |
| 178 | 15770 | 15771 | 15772 | 15774 | 15775 | 15776 | 15777 | 15778 | 15779 |
| 179 | 15780 | 15781 | 15782 | 15784 | 15785 | 15786 | 15787 | 15788 | 15789 |
| 180 | 15790 | 15791 | 15792 | 15794 | 15795 | 15796 | 15797 | 15798 | 157 |
| 181 | 15800 | 1580 | 15802 | 1580 | 15805 | 15806 | 15807 | 15808 | 15 |
| 182 | 15810 | 1581 | 1581 | 1581 | 15815 | 15816 | 15817 | 15818 | 15819 |
| 183 | 15820 | 1582 | 15822 | 15824 | 15825 | 15826 | 15827 | 15828 | 15829 |
| 18 | 15830 | 1583 | 15832 | 15834 | 15835 | 15836 | 15837 | 15838 | 15839 |
| 185 | 15840 | 15841 | 15842 | 15844 | 15845 | 15846 | 15847 | 15848 | 15849 |
| 186 | 15850 | 15 | 15852 | 15854 | 15855 | 15856 | 15857 | 15858 | 15859 |
| 187 | 15860 | 15861 | 15862 | 15864 | 15865 | 15866 | 15867 | 15868 | 15869 |
| 188 | 15870 | 15871 | 15872 | 15874 | 15875 | 15876 | 15877 | 15878 | 15879 |
| 189 | 15880 | 15 | 15 | 15884 | 15885 | 15886 | 15887 | 15888 | 15889 |
| 190 | 15890 | 15891 | 15892 | 15894 | 15895 | 15896 | 15897 | 15898 | 15899 |
| 191 | 15900 | 15901 | 15902 | 15904 | 15905 | 15906 | 15907 | 15908 | 15909 |
| 192 | 15910 | 15911 | 15912 | 15914 | 15915 | 15916 | 15917 | 15918 | 15919 |
| 193 | 15920 | 15921 | 15922 | 15924 | 15925 | 15926 | 15927 | 15928 | 15929 |
| 194 | 15930 | 15931 | 15932 | 15934 | 15935 | 15936 | 15937 | 15938 | 15939 |
| 195 | 15940 | 15941 | 15942 | 15944 | 15945 | 15946 | 15947 | 15948 | 15949 |
| 196 | 15950 | 15951 | 15952 | 15954 | 15955 | 15956 | 15957 | 15958 | 15959 |
| 197 | 15960 | 15961 | 15962 | 15964 | 15965 | 15966 | 15967 | 15968 | 15969 |
| 198 | 15970 | 15971 | 15972 | 15974 | 15975 | 15976 | 15977 | 15978 | 15979 |
| 199 | 15980 | 15981 | 15982 | 15984 | 15985 | 15986 | 15987 | 15988 | 15989 |
| 200 | 15990 | 15991 | 15992 | 15994 | 15995 | 15996 | 15997 | 15998 | 15999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 201 | 16000 | 16001 | 16002 | 16004 | 16005 | 16006 | 16007 | 16008 | 16009 |
| 202 | 16010 | 16011 | 16012 | 16014 | 16015 | 16016 | 16017 | 16018 | 16019 |
| 203 | 16020 | 16021 | 16022 | 16024 | 16025 | 16026 | 16027 | 16028 | 16029 |
| 204 | 16030 | 16031 | 16032 | 16034 | 16035 | 16036 | 16037 | 16038 | 16039 |
| 205 | 16040 | 16041 | 16042 | 16044 | 16045 | 16046 | 16047 | 16048 | 16049 |
| 206 | 16050 | 16051 | 16052 | 16054 | 16055 | 16056 | 16057 | 16058 | 16059 |
| 207 | 16060 | 16061 | 16062 | 16064 | 16065 | 16066 | 16067 | 16068 | 16069 |
| 208 | 16070 | 16071 | 16072 | 16074 | 16075 | 16076 | 16077 | 16078 | 16079 |
| 209 | 16080 | 16081 | 16082 | 16084 | 16085 | 16086 | 16087 | 16088 | 16089 |
| 210 | 16090 | 16091 | 16092 | 16094 | 16095 | 16096 | 16097 | 16098 | 16099 |
| 211 | 16100 | 16101 | 16102 | 16104 | 16105 | 16106 | 16107 | 16108 | 16109 |
| 212 | 16110 | 16111 | 16112 | 16114 | 16115 | 16116 | 16117 | 16118 | 16119 |
| 213 | 16120 | 16121 | 16122 | 16124 | 16125 | 16126 | 16127 | 16128 | 16129 |
| 214 | 16 | 16131 | 16132 | 16134 | 16135 | 16136 | 16137 | 16138 | 16139 |
| 215 | 16140 | 16141 | 16142 | 16144 | 16145 | 16146 | 16147 | 16148 | 16149 |
| 216 | 16150 | 16151 | 16152 | 16154 | 16155 | 16156 | 16157 | 16158 | 16159 |
| 217 | 16160 | 16161 | 16162 | 16164 | 16165 | 16166 | 16167 | 16168 | 16169 |
| 218 | 16170 | 16171 | 16172 | 16174 | 16175 | 16176 | 16177 | 16178 | 16179 |
| 219 | 16180 | 16181 | 16182 | 16184 | 16185 | 16186 | 16187 | 16188 | 16189 |
| 220 | 16190 | 16191 | 16192 | 16194 | 16195 | 16196 | 16197 | 16198 | 16199 |
| 221 | 16200 | 16201 | 16202 | 16204 | 16205 | 16206 | 16207 | 16208 | 16209 |
| 222 | 16210 | 16211 | 16212 | 16214 | 16215 | 16216 | 16217 | 16218 | 162 |
| 223 | 16220 | 16221 | 16222 | 16224 | 16225 | 16226 | 16227 | 16228 | 16229 |
| 224 | 16230 | 16231 | 16232 | 16234 | 16235 | 16236 | 16237 | 16238 | 16239 |
| 225 | 16240 | 16241 | 16242 | 16244 | 16245 | 16246 | 16247 | 16248 | 162 |
| 226 | 16250 | 16251 | 16252 | 16254 | 16255 | 16256 | 16257 | 16258 | 16259 |
| 227 | 16260 | 16261 | 16262 | 16264 | 16265 | 16266 | 16267 | 16268 | 16269 |
| 228 | 16270 | 16271 | 16272 | 16274 | 16275 | 16276 | 16277 | 16278 | 16279 |
| 229 | 16280 | 16281 | 16282 | 16284 | 16285 | 16286 | 16287 | 16288 | 16289 |
| 230 | 16290 | 16291 | 16292 | 16294 | 16295 | 16296 | 16297 | 16298 | 1629 |
| 231 | 16300 | 16301 | 16302 | 16304 | 16305 | 16306 | 16307 | 16308 | 1630 |
| 232 | 16310 | 16311 | 16312 | 16314 | 16315 | 16316 | 16317 | 16318 | 16319 |
| 233 | 16320 | 16321 | 16322 | 16324 | 16325 | 16326 | 16327 | 16328 | 16329 |
| 234 | 16330 | 16331 | 16332 | 16334 | 16335 | 16336 | 16337 | 16338 | 16339 |
| 235 | 16340 | 16341 | 16342 | 16344 | 16345 | 16346 | 16347 | 16348 | 16349 |
| 236 | 16350 | 16351 | 16352 | 16354 | 16355 | 16356 | 16357 | 16358 | 16359 |
| 237 | 16360 | 16361 | 16362 | 16364 | 16365 | 16366 | 16367 | 16368 | 16369 |
| 238 | 16370 | 16371 | 16372 | 16374 | 16375 | 16376 | 16377 | 16378 | 16379 |
| 239 | 16380 | 16381 | 16382 | 16384 | 16385 | 16386 | 16387 | 16388 | 16389 |
| 240 | 16390 | 16391 | 16392 | 16394 | 16395 | 16396 | 16397 | 16398 | 16399 |
| 241 | 16400 | 16401 | 16402 | 16404 | 16405 | 16406 | 16407 | 16408 | 16409 |
| 242 | 16410 | 16411 | 16412 | 16414 | 16415 | 16416 | 16417 | 16418 | 16419 |
| 243 | 16420 | 16421 | 16422 | 16424 | 16425 | 16426 | 16427 | 16428 | 16429 |
| 244 | 16430 | 16431 | 16432 | 16434 | 16435 | 16436 | 16437 | 16438 | 16439 |
| 245 | 16440 | 16441 | 16442 | 16444 | 16445 | 16446 | 16447 | 16448 | 16449 |
| 246 | 16450 | 16451 | 16452 | 16454 | 16455 | 16456 | 16457 | 16458 | 16459 |
| 247 | 16460 | 16461 | 16462 | 16464 | 16465 | 16466 | 16467 | 16468 | 16469 |
| 248 | 16470 | 16471 | 16472 | 16474 | 16475 | 16476 | 16477 | 16478 | 16479 |
| 249 | 16480 | 16481 | 16482 | 16484 | 16485 | 16486 | 16487 | 16488 | 16489 |
| 250 | 16490 | 16491 | 16492 | 16494 | 16495 | 16496 | 16497 | 16498 | 16499 |


| Data No. | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{aligned} & \hline \text { Positioning } \\ & \text { address } \end{aligned}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \\ & \hline \end{aligned}$ | Loworder | $\begin{gathered} \text { High- } \\ \text { order } \\ \hline \end{gathered}$ | Loworder | Highorder |
| 251 | 16500 | 16501 | 16502 | 16504 | 16505 | 16506 | 16507 | 16508 | 16509 |
| 252 | 16510 | 16511 | 16512 | 16514 | 16515 | 16516 | 16517 | 16518 | 16519 |
| 253 | 16520 | 16521 | 16522 | 16524 | 16525 | 16526 | 16527 | 16528 | 16529 |
| 25 | 16530 | 16531 | 16532 | 16534 | 16535 | 16536 | 16537 | 16538 | 16539 |
| 255 | 16540 | 16541 | 16542 | 16544 | 16545 | 16546 | 16547 | 16548 | 16549 |
| 256 | 16550 | 16551 | 16552 | 16554 | 16555 | 16556 | 16557 | 16558 | 16559 |
| 257 | 16560 | 16561 | 16562 | 16564 | 16565 | 16566 | 16567 | 16568 | 16569 |
| 258 | 16570 | 16571 | 16572 | 16574 | 16575 | 16576 | 16577 | 16578 | 16579 |
| 259 | 16580 | 16581 | 16582 | 16584 | 16585 | 16586 | 16587 | 16588 | 16589 |
| 260 | 16590 | 16591 | 16592 | 16594 | 16595 | 16596 | 16597 | 16598 | 16599 |
| 261 | 16600 | 16601 | 16602 | 16604 | 16605 | 16606 | 16607 | 16608 | 16609 |
| 262 | 16610 | 16611 | 16612 | 16614 | 16615 | 16616 | 16617 | 16618 | 16619 |
| 263 | 16620 | 16621 | 16622 | 16624 | 16625 | 16626 | 16627 | 16628 | 16629 |
| 264 | 16630 | 16631 | 16632 | 16634 | 16635 | 16636 | 16637 | 16638 | 16639 |
| 265 | 16640 | 16641 | 16642 | 16644 | 16645 | 16646 | 16647 | 16648 | 16649 |
| 266 | 16650 | 16651 | 16652 | 16654 | 16655 | 16656 | 16657 | 16658 |  |
| 267 | 16660 | 166 | 1666 | 1666 | 16665 | 16666 | 16667 | 16668 | 16669 |
| 268 | 16670 | 16671 | 16672 | 16674 | 16675 | 16676 | 16677 | 16678 | 16679 |
| 269 | 16680 | 16681 | 16682 | 16684 | 16685 | 16686 | 16687 | 16688 | 16689 |
| 270 | 16690 | 16691 | 16692 | 16694 | 16695 | 16696 | 16697 | 16698 | 16699 |
| 271 | 16700 | 16701 | 16702 | 16704 | 16705 | 16706 | 16707 | 16708 | 9 |
| 272 | 16710 | 1671 | 16712 | 1671 | 16715 | 16716 | 16717 | 16718 | 16 |
| 273 | 16720 | 16721 | 16722 | 16724 | 16725 | 16726 | 16727 | 16728 | 16729 |
| 274 | 16730 | 16731 | 16732 | 16734 | 16735 | 16736 | 16737 | 16738 | 16739 |
| 275 | 16740 | 16741 | 16742 | 16744 | 16745 | 16746 | 16747 | 16748 | 16749 |
| 276 | 16750 | 16751 | 16752 | 16754 | 16755 | 16756 | 16757 | 16758 | 16 |
| 277 | 16760 | 16761 | 16762 | 16764 | 16765 | 16766 | 16767 | 16768 | 16 |
| 278 | 16770 | 16771 | 16772 | 16774 | 16775 | 16776 | 16777 | 16778 | 16779 |
| 279 | 16780 | 16781 | 16782 | 16784 | 16785 | 16786 | 16787 | 16788 | 16789 |
| 280 | 16790 | 16791 | 16792 | 16794 | 16795 | 16796 | 16797 | 16798 | 1679 |
| 281 | 16800 | 16801 | 16802 | 16804 | 16805 | 16806 | 16807 | 16808 | 168 |
| 282 | 16810 | 16811 | 16812 | 16814 | 16815 | 16816 | 16817 | 16818 | 1681 |
| 283 | 16820 | 16821 | 16822 | 16824 | 16825 | 16826 | 16827 | 16828 | 16829 |
| 284 | 16830 | 16831 | 16832 | 16834 | 16835 | 16836 | 16837 | 16838 | 16839 |
| 285 | 16840 | 16841 | 16842 | 16844 | 16845 | 16846 | 16847 | 16848 | 16849 |
| 286 | 16850 | 16851 | 16852 | 1685 | 16855 | 16856 | 16857 | 16858 | 16 |
| 287 | 16860 | 16861 | 16862 | 16864 | 16865 | 16866 | 16867 | 16868 | 16869 |
| 288 | 16870 | 16871 | 16872 | 16874 | 16875 | 16876 | 16877 | 16878 | 16879 |
| 289 | 16880 | 16881 | 16882 | 16884 | 16885 | 16886 | 16887 | 16888 | 16889 |
| 290 | 16890 | 16891 | 16892 | 16894 | 16895 | 16896 | 16897 | 16898 | 16899 |
| 291 | 16900 | 16901 | 16902 | 16904 | 16905 | 16906 | 16907 | 16908 | 16909 |
| 292 | 16910 | 16911 | 16912 | 16914 | 16915 | 16916 | 16917 | 16918 | 16919 |
| 293 | 16920 | 16921 | 16922 | 16924 | 16925 | 16926 | 16927 | 16928 | 16929 |
| 294 | 16930 | 16931 | 16932 | 16934 | 16935 | 16936 | 16937 | 16938 | 16939 |
| 295 | 16940 | 16941 | 16942 | 16944 | 16945 | 16946 | 16947 | 16948 | 1694 |
| 296 | 16950 | 16951 | 16952 | 16954 | 16955 | 16956 | 16957 | 16958 | 16959 |
| 297 | 16960 | 16961 | 16962 | 16964 | 16965 | 16966 | 16967 | 16968 | 16969 |
| 298 | 16970 | 16971 | 16972 | 16974 | 16975 | 16976 | 16977 | 16978 | 16979 |
| 299 | 16980 | 16981 | 16982 | 16984 | 16985 | 16986 | 16987 | 16988 | 16989 |
| 300 | 16990 | 16991 | 16992 | 16994 | 16995 | 16996 | 16997 | 16998 | 16999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{gathered} \text { Positioning } \\ \text { address } \end{gathered}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \\ \hline \end{array}$ | Loworder | Highorder |
| 301 | 17000 | 17001 | 17002 | 17004 | 17005 | 17006 | 17007 | 17008 | 17009 |
| 302 | 17010 | 17011 | 17012 | 17014 | 17015 | 17016 | 17017 | 17018 | 17019 |
| 303 | 17020 | 17021 | 17022 | 17024 | 17025 | 17026 | 17027 | 17028 | 17029 |
| 30 | 17030 | 17031 | 17032 | 17034 | 17035 | 17036 | 17037 | 17038 | 17039 |
| 305 | 17040 | 17041 | 17042 | 17044 | 17045 | 17046 | 17047 | 17048 | 17049 |
| 306 | 17050 | 17051 | 17052 | 17054 | 17055 | 17056 | 17057 | 17058 | 17059 |
| 307 | 17060 | 17061 | 17062 | 17064 | 17065 | 17066 | 17067 | 17068 | 17069 |
| 308 | 17070 | 17071 | 17072 | 17074 | 17075 | 17076 | 17077 | 17078 | 17079 |
| 309 | 17080 | 17081 | 17082 | 17084 | 17085 | 17086 | 17087 | 17088 | 17089 |
| 310 | 17090 | 17091 | 17092 | 17094 | 17095 | 17096 | 17097 | 17098 | 17099 |
| 311 | 17100 | 17101 | 17102 | 17104 | 17105 | 17106 | 17107 | 17108 | 17109 |
| 312 | 17110 | 17111 | 17112 | 17114 | 17115 | 17116 | 17117 | 17118 | 17119 |
| 313 | 17120 | 17121 | 17122 | 17124 | 17125 | 17126 | 17127 | 17128 | 17129 |
| 314 | 17130 | 17131 | 17132 | 17134 | 17135 | 17136 | 17137 | 17138 | 17139 |
| 315 | 17140 | 17141 | 17142 | 17144 | 17145 | 17146 | 17147 | 17148 | 17149 |
| 316 | 17150 | 17151 | 17152 | 17154 | 17155 | 17156 | 17157 | 17158 | 17159 |
| 317 | 17160 | 17161 | 17162 | 17164 | 17165 | 17166 | 17167 | 17168 | 17169 |
| 318 | 17170 | 17171 | 17172 | 17174 | 17175 | 17176 | 17177 | 17178 | 17179 |
| 319 | 17180 | 17181 | 17182 | 17184 | 17185 | 17186 | 17187 | 17188 | 17189 |
| 320 | 17190 | 17191 | 17192 | 17194 | 17195 | 17196 | 17197 | 17198 | 17199 |
| 321 | 17200 | 17201 | 17202 | 17204 | 17205 | 17206 | 17207 | 17208 | 17209 |
| 322 | 17210 | 17211 | 17212 | 17214 | 17215 | 17216 | 17217 | 17218 | 17219 |
| 323 | 17220 | 17221 | 17222 | 17224 | 17225 | 17226 | 17227 | 17228 | 17229 |
| 324 | 17230 | 17231 | 17232 | 17234 | 17235 | 17236 | 17237 | 17238 | 17239 |
| 325 | 17240 | 17241 | 17242 | 17244 | 17245 | 17246 | 17247 | 17248 | 17249 |
| 326 | 17250 | 17251 | 17252 | 17254 | 17255 | 17256 | 17257 | 17258 | 172 |
| 327 | 17260 | 17261 | 17262 | 17264 | 17265 | 17266 | 17267 | 17268 | 17269 |
| 328 | 17270 | 17271 | 17272 | 17274 | 17275 | 17276 | 17277 | 17278 | 17279 |
| 329 | 17280 | 17281 | 17282 | 17284 | 17285 | 17286 | 17287 | 17288 | 17289 |
| 330 | 17290 | 17291 | 17292 | 17294 | 17295 | 17296 | 17297 | 17298 | 17299 |
| 331 | 17300 | 17301 | 17302 | 17304 | 17305 | 17306 | 17307 | 17308 | 17309 |
| 332 | 17310 | 17311 | 17312 | 17314 | 17315 | 17316 | 17317 | 17318 | 17319 |
| 333 | 17320 | 17321 | 17322 | 17324 | 17325 | 17326 | 17327 | 17328 | 17329 |
| 334 | 17330 | 17331 | 17332 | 17334 | 17335 | 17336 | 17337 | 17338 | 17339 |
| 335 | 17340 | 17341 | 17342 | 17344 | 17345 | 17346 | 17347 | 17348 | 17349 |
| 336 | 17350 | 17351 | 17352 | 17354 | 17355 | 17356 | 17357 | 17358 | 17359 |
| 337 | 17360 | 17361 | 17362 | 17364 | 17365 | 17366 | 17367 | 17368 | 17369 |
| 338 | 17370 | 17371 | 17372 | 17374 | 17375 | 17376 | 17377 | 17378 | 17379 |
| 339 | 17380 | 17381 | 17382 | 17384 | 17385 | 17386 | 17387 | 17388 | 17389 |
| 340 | 17390 | 17391 | 17392 | 17394 | 17395 | 17396 | 17397 | 17398 | 17399 |
| 341 | 17400 | 17401 | 17402 | 17404 | 17405 | 17406 | 17407 | 17408 | 17409 |
| 342 | 17410 | 17411 | 17412 | 17414 | 17415 | 17416 | 17417 | 17418 | 17419 |
| 343 | 17420 | 17421 | 17422 | 17424 | 17425 | 17426 | 17427 | 17428 | 17429 |
| 344 | 17430 | 17431 | 17432 | 17434 | 17435 | 17436 | 17437 | 17438 | 17439 |
| 345 | 17440 | 17441 | 17442 | 17444 | 17445 | 17446 | 17447 | 17448 | 17449 |
| 346 | 17450 | 17451 | 17452 | 17454 | 17455 | 17456 | 17457 | 17458 | 17459 |
| 347 | 17460 | 17461 | 17462 | 17464 | 17465 | 17466 | 17467 | 17468 | 17469 |
| 348 | 17470 | 17471 | 17472 | 17474 | 17475 | 17476 | 17477 | 17478 | 17479 |
| 349 | 17480 | 17481 | 17482 | 17484 | 17485 | 17486 | 17487 | 17488 | 17489 |
| 350 | 17490 | 17491 | 17492 | 17494 | 17495 | 17496 | 17497 | 17498 | 17499 |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | Highorder |
| 351 | 17500 | 17501 | 17502 | 17504 | 17505 | 17506 | 17507 | 17508 | 17509 |
| 352 | 17510 | 17511 | 17512 | 17514 | 17515 | 17516 | 17517 | 17518 | 17519 |
| 353 | 17520 | 17521 | 17522 | 17524 | 17525 | 17526 | 17527 | 17528 | 17529 |
| 35 | 17530 | 17531 | 17532 | 17534 | 17535 | 17536 | 17537 | 17538 | 17539 |
| 355 | 17540 | 17541 | 17542 | 17544 | 17545 | 17546 | 17547 | 17548 | 17549 |
| 356 | 17550 | 17551 | 17552 | 17554 | 17555 | 17556 | 17557 | 17558 | 17559 |
| 357 | 17560 | 17561 | 17562 | 17564 | 17565 | 17566 | 17567 | 17568 | 17569 |
| 358 | 17570 | 17571 | 17572 | 17574 | 17575 | 17576 | 17577 | 17578 | 17579 |
| 359 | 17580 | 17581 | 17582 | 17584 | 17585 | 17586 | 17587 | 17588 | 17589 |
| 360 | 17590 | 17591 | 17592 | 17594 | 17595 | 17596 | 17597 | 17598 | 17599 |
| 361 | 17600 | 17601 | 17602 | 17604 | 17605 | 17606 | 17607 | 17608 | 17609 |
| 362 | 17610 | 17611 | 17612 | 17614 | 17615 | 17616 | 17617 | 17618 | 17619 |
| 363 | 17620 | 17621 | 17622 | 17624 | 17625 | 17626 | 17627 | 17628 | 17629 |
| 364 | 17630 | 17631 | 17632 | 17634 | 17635 | 17636 | 17637 | 17638 | 17639 |
| 365 | 17640 | 17641 | 17642 | 17644 | 17645 | 17646 | 17647 | 17648 | 17649 |
| 366 | 17650 | 17651 | 17652 | 17654 | 17655 | 17656 | 17657 | 17658 | 17659 |
| 367 | 17660 | 17661 | 17662 | 17664 | 17665 | 17666 | 17667 | 17668 | 17669 |
| 368 | 17670 | 17671 | 17672 | 17674 | 17675 | 17676 | 17677 | 17678 | 17679 |
| 369 | 17680 | 17681 | 17682 | 17684 | 17685 | 17686 | 17687 | 17688 | 17689 |
| 370 | 17690 | 17691 | 17692 | 17694 | 17695 | 17696 | 17697 | 17698 | 17699 |
| 371 | 17700 | 17701 | 17702 | 17704 | 17705 | 17706 | 17707 | 17708 | 17709 |
| 372 | 17710 | 17711 | 17712 | 17714 | 17715 | 17716 | 17717 | 17718 | 17719 |
| 373 | 17720 | 17721 | 17722 | 17724 | 17725 | 17726 | 17727 | 17728 | 17729 |
| 374 | 17730 | 17731 | 17732 | 17734 | 17735 | 17736 | 17737 | 17738 | 17739 |
| 375 | 17740 | 17741 | 17742 | 17744 | 17745 | 17746 | 17747 | 17748 | 17749 |
| 376 | 17750 | 17751 | 17752 | 17754 | 17755 | 17756 | 17757 | 17758 | 17759 |
| 377 | 17760 | 17761 | 17762 | 17764 | 17765 | 17766 | 17767 | 17768 | 17769 |
| 378 | 17770 | 17771 | 17772 | 17774 | 17775 | 17776 | 17777 | 17778 | 17779 |
| 379 | 17780 | 17781 | 17782 | 17784 | 17785 | 17786 | 17787 | 17788 | 17789 |
| 380 | 17790 | 17791 | 17792 | 17794 | 17795 | 17796 | 17797 | 17798 | 7799 |
| 381 | 17800 | 17801 | 17802 | 17804 | 17805 | 17806 | 17807 | 17808 | 17809 |
| 382 | 17810 | 17811 | 17812 | 17814 | 17815 | 17816 | 17817 | 17818 | 17819 |
| 383 | 17820 | 17821 | 17822 | 17824 | 17825 | 17826 | 17827 | 17828 | 17829 |
| 384 | 17830 | 17831 | 17832 | 17834 | 17835 | 17836 | 17837 | 17838 | 17839 |
| 385 | 17840 | 17841 | 17842 | 17844 | 17845 | 17846 | 17847 | 17848 | 17849 |
| 386 | 17850 | 17851 | 17852 | 17854 | 17855 | 17856 | 17857 | 17858 | 17859 |
| 387 | 17860 | 17861 | 17862 | 17864 | 17865 | 17866 | 17867 | 17868 | 17869 |
| 388 | 17870 | 17871 | 17872 | 17874 | 17875 | 17876 | 17877 | 17878 | 17879 |
| 389 | 17880 | 17881 | 17882 | 17884 | 17885 | 17886 | 17887 | 17888 | 17889 |
| 390 | 17890 | 17891 | 17892 | 17894 | 17895 | 17896 | 17897 | 17898 | 17899 |
| 391 | 17900 | 17901 | 17902 | 17904 | 17905 | 17906 | 17907 | 17908 | 17909 |
| 392 | 17910 | 17911 | 17912 | 17914 | 17915 | 17916 | 17917 | 17918 | 17919 |
| 393 | 17920 | 17921 | 17922 | 17924 | 17925 | 17926 | 17927 | 17928 | 17929 |
| 394 | 17930 | 17931 | 17932 | 17934 | 17935 | 17936 | 17937 | 17938 | 17939 |
| 395 | 17940 | 17941 | 17942 | 17944 | 17945 | 17946 | 17947 | 17948 | 17949 |
| 396 | 17950 | 17951 | 17952 | 17954 | 17955 | 17956 | 17957 | 17958 | 17959 |
| 397 | 17960 | 17961 | 17962 | 17964 | 17965 | 17966 | 17967 | 17968 | 17969 |
| 398 | 17970 | 17971 | 17972 | 17974 | 17975 | 17976 | 17977 | 17978 | 17979 |
| 399 | 17980 | 17981 | 17982 | 17984 | 17985 | 17986 | 17987 | 17988 | 17989 |
| 400 | 17990 | 17991 | 17992 | 17994 | 17995 | 17996 | 17997 | 17998 | 17999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | $\begin{aligned} & \hline \text { Low- } \\ & \text { order } \\ & \hline \end{aligned}$ | Highorder | Loworder | Highorder |
| 401 | 18000 | 18001 | 18002 | 18004 | 18005 | 18006 | 18007 | 18008 | 18009 |
| 402 | 18010 | 18011 | 18012 | 18014 | 18015 | 18016 | 18017 | 18018 | 18019 |
| 403 | 18020 | 18021 | 18022 | 18024 | 18025 | 18026 | 18027 | 18028 | 18029 |
| 404 | 18030 | 18031 | 18032 | 18034 | 18035 | 18036 | 18037 | 18038 | 18039 |
| 405 | 18040 | 18041 | 18042 | 18044 | 18045 | 18046 | 18047 | 18048 | 18049 |
| 406 | 18050 | 18051 | 18052 | 18054 | 18055 | 18056 | 18057 | 18058 | 8059 |
| 407 | 18060 | 18061 | 18062 | 18064 | 18065 | 18066 | 18067 | 18068 | 18069 |
| 408 | 18070 | 18071 | 18072 | 18074 | 18075 | 18076 | 18077 | 18078 | 18079 |
| 409 | 18080 | 18081 | 18082 | 18084 | 18085 | 18086 | 18087 | 18088 | 18089 |
| 410 | 18090 | 18091 | 18092 | 18094 | 18095 | 18096 | 18097 | 18098 | 18099 |
| 411 | 18100 | 18101 | 18102 | 18104 | 18105 | 18106 | 18107 | 18108 | 18109 |
| 412 | 18110 | 18111 | 18112 | 18114 | 18115 | 18116 | 18117 | 18118 | 18119 |
| 413 | 18120 | 18121 | 18122 | 18124 | 18125 | 18126 | 18127 | 18128 | 18129 |
| 414 | 181 | 18131 | 18132 | 18134 | 18135 | 18136 | 18137 | 18138 | 18139 |
| 415 | 18140 | 18141 | 18142 | 18144 | 18145 | 18146 | 18147 | 18148 | 18149 |
| 416 | 18150 | 18151 | 18152 | 18154 | 18155 | 18156 | 18157 | 18158 | 18159 |
| 417 | 18160 | 18161 | 18162 | 18164 | 18165 | 18166 | 18167 | 18168 | 18169 |
| 418 | 18170 | 18171 | 18172 | 18174 | 18175 | 18176 | 18177 | 18178 | 18179 |
| 419 | 18180 | 18181 | 18182 | 18184 | 18185 | 18186 | 18187 | 18188 | 18189 |
| 420 | 18190 | 18191 | 18192 | 18194 | 18195 | 18196 | 18197 | 18198 | 18199 |
| 421 | 18200 | 18201 | 18202 | 18204 | 18205 | 18206 | 18207 | 18208 | 18209 |
| 422 | 18210 | 18211 | 18212 | 18214 | 18215 | 18216 | 18217 | 18218 | 182 |
| 423 | 1822 | 18221 | 18222 | 18224 | 18225 | 18226 | 18227 | 18228 | 18229 |
| 424 | 18230 | 18231 | 18232 | 18234 | 18235 | 18236 | 18237 | 18238 | 18239 |
| 425 | 18240 | 18241 | 18242 | 18244 | 18245 | 18246 | 18247 | 18248 | 182 |
| 426 | 18250 | 18251 | 18252 | 18254 | 18255 | 18256 | 18257 | 18258 | 1825 |
| 427 | 18260 | 18261 | 18262 | 18264 | 18265 | 18266 | 18267 | 18268 | 18269 |
| 428 | 18270 | 18271 | 18272 | 18274 | 18275 | 18276 | 18277 | 18278 | 18279 |
| 429 | 18280 | 18281 | 18282 | 18284 | 18285 | 18286 | 18287 | 18288 | 18289 |
| 430 | 18290 | 18291 | 18292 | 18294 | 18295 | 18296 | 18297 | 18298 | 1829 |
| 431 | 18300 | 18301 | 18302 | 18304 | 18305 | 18306 | 18307 | 18308 | 1830 |
| 432 | 18310 | 18311 | 18312 | 18314 | 18315 | 18316 | 18317 | 18318 | 18319 |
| 433 | 18320 | 18321 | 18322 | 18324 | 18325 | 18326 | 18327 | 18328 | 18329 |
| 434 | 18330 | 18331 | 18332 | 18334 | 18335 | 18336 | 18337 | 18338 | 18339 |
| 435 | 18340 | 18341 | 18342 | 18344 | 18345 | 18346 | 18347 | 18348 | 18349 |
| 436 | 18350 | 18351 | 18352 | 18354 | 18355 | 18356 | 18357 | 18358 | 18359 |
| 437 | 18360 | 18361 | 18362 | 18364 | 18365 | 18366 | 18367 | 18368 | 18369 |
| 438 | 18370 | 18371 | 18372 | 18374 | 18375 | 18376 | 18377 | 18378 | 18379 |
| 439 | 18380 | 18381 | 18382 | 18384 | 18385 | 18386 | 18387 | 18388 | 18389 |
| 440 | 18390 | 18391 | 18392 | 18394 | 18395 | 18396 | 18397 | 18398 | 18399 |
| 441 | 18400 | 18401 | 18402 | 18404 | 18405 | 18406 | 18407 | 18408 | 18409 |
| 442 | 18410 | 18411 | 18412 | 18414 | 18415 | 18416 | 18417 | 18418 | 18419 |
| 443 | 18420 | 18421 | 18422 | 18424 | 18425 | 18426 | 18427 | 18428 | 18429 |
| 444 | 18430 | 18431 | 18432 | 18434 | 18435 | 18436 | 18437 | 18438 | 18439 |
| 445 | 18440 | 18441 | 18442 | 18444 | 18445 | 18446 | 18447 | 18448 | 18449 |
| 446 | 18450 | 18451 | 18452 | 18454 | 18455 | 18456 | 18457 | 18458 | 18459 |
| 447 | 18460 | 18461 | 18462 | 18464 | 18465 | 18466 | 18467 | 18468 | 18469 |
| 448 | 18470 | 18471 | 18472 | 18474 | 18475 | 18476 | 18477 | 18478 | 18479 |
| 449 | 18480 | 18481 | 18482 | 18484 | 18485 | 18486 | 18487 | 18488 | 18489 |
| 450 | 18490 | 18491 | 18492 | 18494 | 18495 | 18496 | 18497 | 18498 | 18499 |


| Data No. | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | $\begin{aligned} & \hline \text { Positioning } \\ & \text { address } \end{aligned}$ |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { High- } \\ \text { order } \end{array} \\ \hline \end{array}$ | Loworder | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Loworder | Highorder |
| 451 | 18500 | 18501 | 18502 | 18504 | 18505 | 18506 | 18507 | 18508 | 18509 |
| 452 | 18510 | 18511 | 18512 | 18514 | 18515 | 18516 | 18517 | 18518 | 18519 |
| 453 | 18520 | 18521 | 18522 | 18524 | 18525 | 18526 | 18527 | 18528 | 18529 |
| 454 | 18530 | 18531 | 18532 | 18534 | 18535 | 18536 | 18537 | 18538 | 18539 |
| 455 | 18540 | 18541 | 18542 | 18544 | 18545 | 18546 | 18547 | 18548 | 18549 |
| 456 | 18550 | 18551 | 18552 | 18554 | 18555 | 18556 | 18557 | 18558 | 18559 |
| 457 | 18560 | 18561 | 18562 | 18564 | 18565 | 18566 | 18567 | 18568 | 18569 |
| 458 | 18570 | 18571 | 18572 | 18574 | 18575 | 18576 | 18577 | 18578 | 18579 |
| 459 | 18580 | 18581 | 18582 | 18584 | 18585 | 18586 | 18587 | 18588 | 18589 |
| 460 | 18590 | 18591 | 18592 | 18594 | 18595 | 18596 | 18597 | 18598 | 18599 |
| 461 | 18600 | 18601 | 18602 | 18604 | 18605 | 18606 | 18607 | 18608 | 18609 |
| 462 | 18610 | 18611 | 18612 | 18614 | 18615 | 18616 | 18617 | 18618 | 18619 |
| 463 | 18620 | 18621 | 18622 | 18624 | 18625 | 18626 | 18627 | 18628 | 18629 |
| 464 | 18630 | 18631 | 18632 | 18634 | 18635 | 18636 | 18637 | 18638 | 18639 |
| 465 | 18640 | 18641 | 18642 | 18644 | 18645 | 18646 | 18647 | 18648 | 18649 |
| 466 | 18650 | 18651 | 18652 | 18654 | 18655 | 18656 | 18657 | 18658 |  |
| 467 | 18660 | 1866 | 1866 | 1866 | 18665 | 18666 | 18667 | 18668 | 9 |
| 468 | 18670 | 18671 | 18672 | 18674 | 18675 | 18676 | 18677 | 18678 | 18679 |
| 469 | 18680 | 18681 | 18682 | 18684 | 18685 | 18686 | 18687 | 18688 | 18689 |
| 470 | 18690 | 18691 | 18692 | 18694 | 18695 | 18696 | 18697 | 18698 | 18699 |
| 471 | 18700 | 18701 | 18702 | 18704 | 18705 | 18706 | 18707 | 18708 | 9 |
| 472 | 18710 | 1871 | 18712 | 1871 | 18715 | 18716 | 18717 | 18718 | 18 |
| 473 | 18720 | 18721 | 18722 | 18724 | 18725 | 18726 | 18727 | 18728 | 18729 |
| 474 | 18730 | 18731 | 18732 | 18734 | 18735 | 18736 | 18737 | 18738 | 18739 |
| 475 | 18740 | 18741 | 18742 | 18744 | 18745 | 18746 | 18747 | 18748 | 18749 |
| 476 | 18750 | 18751 | 18752 | 18754 | 18755 | 18756 | 18757 | 18758 | 18 |
| 477 | 18760 | 18761 | 18762 | 18764 | 18765 | 18766 | 18767 | 18768 | 18 |
| 478 | 18770 | 18771 | 18772 | 18774 | 18775 | 18776 | 18777 | 18778 | 18779 |
| 479 | 18780 | 18781 | 18782 | 18784 | 18785 | 18786 | 18787 | 18788 | 18789 |
| 480 | 18790 | 18791 | 18792 | 18794 | 18795 | 18796 | 18797 | 18798 | 1879 |
| 481 | 18800 | 18801 | 18802 | 18804 | 18805 | 18806 | 18807 | 18808 | 188 |
| 482 | 18810 | 18811 | 18812 | 18814 | 18815 | 18816 | 18817 | 18818 | 18819 |
| 483 | 18820 | 18821 | 18822 | 18824 | 18825 | 18826 | 18827 | 18828 | 18829 |
| 484 | 18830 | 18831 | 18832 | 18834 | 18835 | 18836 | 18837 | 18838 | 18839 |
| 485 | 18840 | 18841 | 18842 | 18844 | 18845 | 18846 | 18847 | 18848 | 18849 |
| 486 | 18850 | 18851 | 18852 | 1885 | 18855 | 18856 | 18857 | 18858 | 18 |
| 487 | 18860 | 18861 | 18862 | 18864 | 18865 | 18866 | 18867 | 18868 | 18869 |
| 488 | 18870 | 18871 | 18872 | 18874 | 18875 | 18876 | 18877 | 18878 | 18879 |
| 489 | 18880 | 18881 | 18882 | 18884 | 18885 | 18886 | 18887 | 18888 | 18889 |
| 490 | 18890 | 18891 | 18892 | 18894 | 18895 | 18896 | 18897 | 18898 | 18899 |
| 491 | 18900 | 18901 | 18902 | 18904 | 18905 | 18906 | 18907 | 18908 | 18909 |
| 492 | 18910 | 18911 | 18912 | 18914 | 18915 | 18916 | 18917 | 18918 | 18919 |
| 493 | 18920 | 18921 | 18922 | 18924 | 18925 | 18926 | 18927 | 18928 | 18929 |
| 494 | 18930 | 18931 | 18932 | 18934 | 18935 | 18936 | 18937 | 18938 | 18939 |
| 495 | 18940 | 18941 | 18942 | 18944 | 18945 | 18946 | 18947 | 18948 | 1894 |
| 496 | 18950 | 18951 | 18952 | 18954 | 18955 | 18956 | 18957 | 18958 | 18959 |
| 497 | 18960 | 18961 | 18962 | 18964 | 18965 | 18966 | 18967 | 18968 | 18969 |
| 498 | 18970 | 18971 | 18972 | 18974 | 18975 | 18976 | 18977 | 18978 | 18979 |
| 499 | 18980 | 18981 | 18982 | 18984 | 18985 | 18986 | 18987 | 18988 | 18989 |
| 500 | 18990 | 18991 | 18992 | 18994 | 18995 | 18996 | 18997 | 18998 | 18999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioningaddress |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | $\begin{array}{l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Loworder | Highorder |
| 501 | 19000 | 19001 | 19002 | 19004 | 19005 | 19006 | 19007 | 19008 | 19009 |
| 502 | 19010 | 19011 | 19012 | 19014 | 19015 | 19016 | 19017 | 19018 | 19019 |
| 503 | 19020 | 19021 | 19022 | 19024 | 19025 | 19026 | 19027 | 19028 | 19029 |
| 50 | 19030 | 19031 | 19032 | 19034 | 19035 | 19036 | 19037 | 19038 | 19039 |
| 505 | 19040 | 19041 | 19042 | 19044 | 19045 | 19046 | 19047 | 19048 | 19049 |
| 506 | 19050 | 19051 | 19052 | 19054 | 19055 | 19056 | 19057 | 19058 | 19059 |
| 507 | 19060 | 19061 | 19062 | 19064 | 19065 | 19066 | 19067 | 19068 | 19069 |
| 508 | 19070 | 19071 | 19072 | 19074 | 19075 | 19076 | 19077 | 19078 | 19079 |
| 50 | 19080 | 19081 | 19082 | 19084 | 19085 | 19086 | 19087 | 19088 | 19089 |
| 510 | 19090 | 19091 | 19092 | 19094 | 19095 | 19096 | 19097 | 19098 | 19099 |
| 511 | 19100 | 19101 | 19102 | 19104 | 19105 | 19106 | 19107 | 19108 | 19109 |
| 512 | 19110 | 19111 | 19112 | 19114 | 19115 | 19116 | 19117 | 19118 | 19119 |
| 51 | 19120 | 19121 | 19122 | 19124 | 19125 | 19126 | 19127 | 19128 | 19129 |
| 514 | 19130 | 19131 | 19132 | 19134 | 19135 | 19136 | 19137 | 19138 | 19139 |
| 515 | 19140 | 19141 | 19142 | 19144 | 19145 | 19146 | 19147 | 19148 | 19149 |
| 516 | 19150 | 19151 | 19152 | 19154 | 19155 | 19156 | 19157 | 19158 | 19159 |
| 517 | 19160 | 19161 | 19162 | 19164 | 19165 | 19166 | 19167 | 19168 | 19169 |
| 518 | 19170 | 19171 | 19172 | 19174 | 19175 | 19176 | 19177 | 19178 | 19179 |
| 519 | 19180 | 19181 | 19182 | 19184 | 19185 | 19186 | 19187 | 19188 | 19189 |
| 520 | 19190 | 19191 | 19192 | 19194 | 19195 | 19196 | 19197 | 19198 | 19199 |
| 521 | 19200 | 19201 | 19202 | 19204 | 19205 | 19206 | 19207 | 19208 | 19209 |
| 522 | 19210 | 19211 | 19212 | 19214 | 19215 | 19216 | 19217 | 19218 | 19219 |
| 523 | 19220 | 19221 | 19222 | 19224 | 19225 | 19226 | 19227 | 19228 | 19229 |
| 524 | 19230 | 19231 | 19232 | 19234 | 19235 | 19236 | 19237 | 19238 | 19239 |
| 525 | 19240 | 19241 | 19242 | 19244 | 19245 | 19246 | 19247 | 19248 | 19249 |
| 526 | 19250 | 19251 | 19252 | 19254 | 19255 | 19256 | 19257 | 19258 | 19259 |
| 527 | 19260 | 19261 | 19262 | 19264 | 19265 | 19266 | 19267 | 19268 | 19269 |
| 528 | 19270 | 19271 | 19272 | 19274 | 19275 | 19276 | 19277 | 19278 | 19279 |
| 529 | 19280 | 19281 | 19282 | 19284 | 19285 | 19286 | 19287 | 19288 | 19289 |
| 530 | 19290 | 19291 | 19292 | 19294 | 19295 | 19296 | 19297 | 19298 | 19299 |
| 531 | 19300 | 19301 | 19302 | 19304 | 19305 | 19306 | 19307 | 19308 | 19309 |
| 532 | 19310 | 19311 | 19312 | 19314 | 19315 | 19316 | 19317 | 19318 | 19319 |
| 533 | 19320 | 19321 | 19322 | 19324 | 19325 | 19326 | 19327 | 19328 | 19329 |
| 534 | 19330 | 19331 | 19332 | 19334 | 19335 | 19336 | 19337 | 19338 | 19339 |
| 535 | 19340 | 19341 | 19342 | 19344 | 19345 | 19346 | 19347 | 19348 | 19349 |
| 536 | 19350 | 19351 | 19352 | 19354 | 19355 | 19356 | 19357 | 19358 | 19359 |
| 537 | 19360 | 19361 | 19362 | 19364 | 19365 | 19366 | 19367 | 19368 | 19369 |
| 538 | 19370 | 19371 | 19372 | 19374 | 19375 | 19376 | 19377 | 19378 | 19379 |
| 539 | 19380 | 19381 | 19382 | 19384 | 19385 | 19386 | 19387 | 19388 | 19389 |
| 540 | 19390 | 19391 | 19392 | 19394 | 19395 | 19396 | 19397 | 19398 | 19399 |
| 541 | 19400 | 19401 | 19402 | 19404 | 19405 | 19406 | 19407 | 19408 | 19409 |
| 542 | 19410 | 19411 | 19412 | 19414 | 19415 | 19416 | 19417 | 19418 | 19419 |
| 543 | 19420 | 19421 | 19422 | 19424 | 19425 | 19426 | 19427 | 19428 | 19429 |
| 544 | 19430 | 19431 | 19432 | 19434 | 19435 | 19436 | 19437 | 19438 | 19439 |
| 545 | 19440 | 19441 | 19442 | 19444 | 19445 | 19446 | 19447 | 19448 | 19449 |
| 546 | 19450 | 19451 | 19452 | 19454 | 19455 | 19456 | 19457 | 19458 | 19459 |
| 547 | 19460 | 19461 | 19462 | 19464 | 19465 | 19466 | 19467 | 19468 | 19469 |
| 548 | 19470 | 19471 | 19472 | 19474 | 19475 | 19476 | 19477 | 19478 | 19479 |
| 549 | 19480 | 19481 | 19482 | 19484 | 19485 | 19486 | 19487 | 19488 | 19489 |
| 550 | 19490 | 19491 | 19492 | 19494 | 19495 | 19496 | 19497 | 19498 | 19499 |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | Highorder |
| 551 | 19500 | 19501 | 19502 | 19504 | 19505 | 19506 | 19507 | 19508 | 19509 |
| 552 | 19510 | 19511 | 19512 | 19514 | 19515 | 19516 | 19517 | 19518 | 19519 |
| 553 | 19520 | 19521 | 19522 | 19524 | 19525 | 19526 | 19527 | 19528 | 19529 |
| 55 | 19530 | 19531 | 19532 | 19534 | 19535 | 19536 | 19537 | 19538 | 19539 |
| 555 | 19540 | 19541 | 19542 | 19544 | 19545 | 19546 | 19547 | 19548 | 19549 |
| 556 | 19550 | 19551 | 19552 | 19554 | 19555 | 19556 | 19557 | 19558 | 19559 |
| 557 | 19560 | 19561 | 19562 | 19564 | 19565 | 19566 | 19567 | 19568 | 19569 |
| 55 | 19570 | 19571 | 19572 | 19574 | 19575 | 19576 | 19577 | 19578 | 19579 |
| 559 | 19580 | 19581 | 19582 | 19584 | 19585 | 19586 | 19587 | 19588 | 19589 |
| 560 | 19590 | 19591 | 19592 | 19594 | 19595 | 19596 | 19597 | 19598 | 19599 |
| 561 | 19600 | 19601 | 19602 | 19604 | 19605 | 19606 | 19607 | 19608 | 19609 |
| 562 | 19610 | 19611 | 19612 | 19614 | 19615 | 19616 | 19617 | 19618 | 19619 |
| 563 | 19620 | 19621 | 19622 | 19624 | 19625 | 19626 | 19627 | 19628 | 19629 |
| 564 | 19630 | 19631 | 19632 | 19634 | 19635 | 19636 | 19637 | 19638 | 19639 |
| 565 | 19640 | 19641 | 19642 | 19644 | 19645 | 19646 | 19647 | 19648 | 19649 |
| 566 | 19650 | 19651 | 19652 | 19654 | 19655 | 19656 | 19657 | 19658 | 19659 |
| 56 | 19660 | 1966 | 19662 | 19664 | 19665 | 19666 | 19667 | 19668 | 19669 |
| 568 | 19670 | 19671 | 19672 | 19674 | 19675 | 19676 | 19677 | 19678 | 19679 |
| 569 | 19680 | 19681 | 19682 | 19684 | 19685 | 19686 | 19687 | 19688 | 19689 |
| 570 | 19690 | 19691 | 19692 | 19694 | 19695 | 19696 | 19697 | 19698 | 19699 |
| 57 | 19700 | 19701 | 19702 | 19704 | 19705 | 19706 | 19707 | 19708 | 19709 |
| 572 | 19710 | 19711 | 19712 | 19714 | 19715 | 19716 | 19717 | 19718 | 19719 |
| 573 | 19720 | 19721 | 19722 | 19724 | 19725 | 19726 | 19727 | 19728 | 19729 |
| 574 | 19730 | 19731 | 19732 | 19734 | 19735 | 19736 | 19737 | 19738 | 19739 |
| 575 | 19740 | 1974 | 19742 | 19744 | 19745 | 19746 | 19747 | 19748 | 19749 |
| 576 | 19750 | 19751 | 19752 | 19754 | 19755 | 19756 | 19757 | 19758 | 19759 |
| 577 | 19760 | 19761 | 19762 | 19764 | 19765 | 19766 | 19767 | 19768 | 19769 |
| 578 | 19770 | 19771 | 19772 | 19774 | 19775 | 19776 | 19777 | 19778 | 19779 |
| 579 | 19780 | 19781 | 19782 | 19784 | 19785 | 19786 | 19787 | 19788 | 19789 |
| 580 | 19790 | 19791 | 19792 | 19794 | 19795 | 19796 | 19797 | 19798 | 19799 |
| 581 | 19800 | 19801 | 19802 | 19804 | 19805 | 19806 | 19807 | 19808 | 19809 |
| 582 | 19810 | 19811 | 19812 | 19814 | 19815 | 19816 | 19817 | 19818 | 19819 |
| 583 | 19820 | 19821 | 19822 | 19824 | 19825 | 19826 | 19827 | 19828 | 19829 |
| 584 | 19830 | 19831 | 19832 | 19834 | 19835 | 19836 | 19837 | 19838 | 19839 |
| 585 | 19840 | 19841 | 19842 | 19844 | 19845 | 19846 | 19847 | 19848 | 19849 |
| 586 | 19850 | 1985 | 19852 | 19854 | 19855 | 19856 | 19857 | 19858 | 19859 |
| 587 | 19860 | 19861 | 19862 | 19864 | 19865 | 19866 | 19867 | 19868 | 19869 |
| 588 | 19870 | 19871 | 19872 | 19874 | 19875 | 19876 | 19877 | 19878 | 19879 |
| 589 | 19880 | 19881 | 19882 | 19884 | 19885 | 19886 | 19887 | 19888 | 19889 |
| 590 | 19890 | 19891 | 19892 | 19894 | 19895 | 19896 | 19897 | 19898 | 19899 |
| 591 | 19900 | 19901 | 19902 | 19904 | 19905 | 19906 | 19907 | 19908 | 19909 |
| 592 | 19910 | 19911 | 19912 | 19914 | 19915 | 19916 | 19917 | 19918 | 19919 |
| 593 | 19920 | 19921 | 19922 | 19924 | 19925 | 19926 | 19927 | 19928 | 19929 |
| 594 | 19930 | 19931 | 19932 | 19934 | 19935 | 19936 | 19937 | 19938 | 19939 |
| 595 | 19940 | 19941 | 19942 | 19944 | 19945 | 19946 | 19947 | 19948 | 19949 |
| 596 | 19950 | 19951 | 19952 | 19954 | 19955 | 19956 | 19957 | 19958 | 19959 |
| 597 | 19960 | 19961 | 19962 | 19964 | 19965 | 19966 | 19967 | 19968 | 19969 |
| 598 | 19970 | 19971 | 19972 | 19974 | 19975 | 19976 | 19977 | 19978 | 19979 |
| 599 | 19980 | 19981 | 19982 | 19984 | 19985 | 19986 | 19987 | 19988 | 19989 |
| 600 | 19990 | 19991 | 19992 | 19994 | 19995 | 19996 | 19997 | 19998 | 19999 |

(a) For axis 3 (positioning option)

| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14003 | 51 | 14503 | 101 | 15003 | 151 | 15503 | 201 | 16003 | 251 | 16503 |
| 2 | 14013 | 52 | 14513 | 102 | 15013 | 152 | 15513 | 202 | 16013 | 252 | 16513 |
| 3 | 14023 | 53 | 14523 | 103 | 15023 | 153 | 15523 | 203 | 16023 | 253 | 16523 |
| 4 | 14033 | 54 | 14533 | 104 | 15033 | 154 | 15533 | 204 | 16033 | 254 | 16533 |
| 5 | 14043 | 55 | 14543 | 105 | 15043 | 155 | 15543 | 205 | 16043 | 255 | 16543 |
| 6 | 14053 | 56 | 14553 | 106 | 15053 | 156 | 15553 | 206 | 16053 | 256 | 16553 |
| 7 | 14063 | 57 | 14563 | 107 | 15063 | 157 | 15563 | 207 | 16063 | 257 | 16563 |
| 8 | 14073 | 58 | 14573 | 108 | 15073 | 158 | 15573 | 208 | 16073 | 258 | 16573 |
| 9 | 14083 | 59 | 14583 | 109 | 15083 | 159 | 15583 | 209 | 16083 | 259 | 16583 |
| 10 | 14093 | 60 | 14593 | 110 | 15093 | 160 | 15593 | 210 | 16093 | 260 | 16593 |
| 11 | 14103 | 61 | 14603 | 111 | 15103 | 161 | 15603 | 211 | 16103 | 261 | 16603 |
| 12 | 14113 | 62 | 14613 | 112 | 15113 | 162 | 15613 | 212 | 16113 | 262 | 16613 |
| 13 | 14123 | 63 | 14623 | 113 | 15123 | 163 | 15623 | 213 | 16123 | 263 | 16623 |
| 14 | 14133 | 64 | 14633 | 114 | 15133 | 164 | 15633 | 214 | 16133 | 264 | 16633 |
| 15 | 14143 | 65 | 14643 | 115 | 15143 | 165 | 15643 | 215 | 16143 | 265 | 16643 |
| 16 | 14153 | 66 | 14653 | 116 | 15153 | 166 | 15653 | 216 | 16153 | 266 | 16653 |
| 17 | 14163 | 67 | 14663 | 117 | 15163 | 167 | 15663 | 217 | 16163 | 267 | 16663 |
| 18 | 14173 | 68 | 14673 | 118 | 15173 | 168 | 15673 | 218 | 16173 | 268 | 16673 |
| 19 | 14183 | 69 | 14683 | 119 | 15183 | 169 | 15683 | 219 | 16183 | 269 | 16683 |
| 20 | 14193 | 70 | 14693 | 120 | 15193 | 170 | 15693 | 220 | 16193 | 270 | 16693 |
| 21 | 14203 | 71 | 14703 | 121 | 15203 | 171 | 15703 | 221 | 16203 | 271 | 16703 |
| 22 | 14213 | 72 | 14713 | 122 | 15213 | 172 | 15713 | 222 | 16213 | 272 | 16713 |
| 23 | 14223 | 73 | 14723 | 123 | 15223 | 173 | 15723 | 223 | 16223 | 273 | 16723 |
| 24 | 14233 | 74 | 14733 | 124 | 15233 | 174 | 15733 | 224 | 16233 | 274 | 16733 |
| 25 | 14243 | 75 | 14743 | 125 | 15243 | 175 | 15743 | 225 | 16243 | 275 | 16743 |
| 26 | 14253 | 76 | 14753 | 126 | 15253 | 176 | 15753 | 226 | 16253 | 276 | 16753 |
| 27 | 14263 | 77 | 14763 | 127 | 15263 | 177 | 15763 | 227 | 16263 | 277 | 16763 |
| 28 | 14273 | 78 | 14773 | 128 | 15273 | 178 | 15773 | 228 | 16273 | 278 | 16773 |
| 29 | 14283 | 79 | 14783 | 129 | 15283 | 179 | 15783 | 229 | 16283 | 279 | 16783 |
| 30 | 14293 | 80 | 14793 | 130 | 15293 | 180 | 15793 | 230 | 16293 | 280 | 16793 |
| 31 | 14303 | 81 | 14803 | 131 | 15303 | 181 | 15803 | 231 | 16303 | 281 | 16803 |
| 32 | 14313 | 82 | 14813 | 132 | 15313 | 182 | 15813 | 232 | 16313 | 282 | 16813 |
| 33 | 14323 | 83 | 14823 | 133 | 15323 | 183 | 15823 | 233 | 16323 | 283 | 16823 |
| 34 | 14333 | 84 | 14833 | 134 | 15333 | 184 | 15833 | 234 | 16333 | 284 | 16833 |
| 35 | 14343 | 85 | 14843 | 135 | 15343 | 185 | 15843 | 235 | 16343 | 285 | 16843 |
| 36 | 14353 | 86 | 14853 | 136 | 15353 | 186 | 15853 | 236 | 16353 | 286 | 16853 |
| 37 | 14363 | 87 | 14863 | 137 | 15363 | 187 | 15863 | 237 | 16363 | 287 | 16863 |
| 38 | 14373 | 88 | 14873 | 138 | 15373 | 188 | 15873 | 238 | 16373 | 288 | 16873 |
| 39 | 14383 | 89 | 14883 | 139 | 15383 | 189 | 15883 | 239 | 16383 | 289 | 16883 |
| 40 | 14393 | 90 | 14893 | 140 | 15393 | 190 | 15893 | 240 | 16393 | 290 | 16893 |
| 41 | 14403 | 91 | 14903 | 141 | 15403 | 191 | 15903 | 241 | 16403 | 291 | 16903 |
| 42 | 14413 | 92 | 14913 | 142 | 15413 | 192 | 15913 | 242 | 16413 | 292 | 16913 |
| 43 | 14423 | 93 | 14923 | 143 | 15423 | 193 | 15923 | 243 | 16423 | 293 | 16923 |
| 44 | 14433 | 94 | 14933 | 144 | 15433 | 194 | 15933 | 244 | 16433 | 294 | 16933 |
| 45 | 14443 | 95 | 14943 | 145 | 15443 | 195 | 15943 | 245 | 16443 | 295 | 16943 |
| 46 | 14453 | 96 | 14953 | 146 | 15453 | 196 | 15953 | 246 | 16453 | 296 | 16953 |
| 47 | 14463 | 97 | 14963 | 147 | 15463 | 197 | 15963 | 247 | 16463 | 297 | 16963 |
| 48 | 14473 | 98 | 14973 | 148 | 15473 | 198 | 15973 | 248 | 16473 | 298 | 16973 |
| 49 | 14483 | 99 | 14983 | 149 | 15483 | 199 | 15983 | 249 | 16483 | 299 | 16983 |
| 50 | 14493 | 100 | 14993 | 150 | 15493 | 200 | 15993 | 250 | 16493 | 300 | 16993 |


| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | 17003 | 351 | 17503 | 401 | 18003 | 451 | 18503 | 501 | 19003 | 551 | 19503 |
| 302 | 17013 | 352 | 17513 | 402 | 18013 | 452 | 18513 | 502 | 19013 | 552 | 19513 |
| 303 | 17023 | 353 | 17523 | 403 | 18023 | 453 | 18523 | 503 | 19023 | 553 | 19523 |
| 304 | 17033 | 354 | 17533 | 404 | 18033 | 454 | 18533 | 504 | 19033 | 554 | 19533 |
| 305 | 17043 | 355 | 17543 | 405 | 18043 | 455 | 18543 | 505 | 19043 | 555 | 19543 |
| 306 | 17053 | 356 | 17553 | 406 | 18053 | 456 | 18553 | 506 | 19053 | 556 | 19553 |
| 307 | 17063 | 357 | 17563 | 407 | 18063 | 457 | 18563 | 507 | 19063 | 557 | 19563 |
| 308 | 17073 | 358 | 17573 | 408 | 18073 | 458 | 18573 | 508 | 19073 | 558 | 19573 |
| 309 | 17083 | 359 | 17583 | 409 | 18083 | 459 | 18583 | 509 | 19083 | 559 | 19583 |
| 310 | 17093 | 360 | 17593 | 410 | 18093 | 460 | 18593 | 510 | 19093 | 560 | 19593 |
| 311 | 17103 | 361 | 17603 | 411 | 18103 | 461 | 18603 | 511 | 19103 | 561 | 19603 |
| 312 | 17113 | 362 | 17613 | 412 | 18113 | 462 | 18613 | 512 | 19113 | 562 | 19613 |
| 313 | 17123 | 363 | 17623 | 413 | 18123 | 463 | 18623 | 513 | 19123 | 563 | 19623 |
| 314 | 17133 | 364 | 17633 | 414 | 18133 | 464 | 18633 | 514 | 19133 | 564 | 19633 |
| 315 | 17143 | 365 | 17643 | 415 | 18143 | 465 | 18643 | 515 | 19143 | 565 | 19643 |
| 316 | 17153 | 366 | 17653 | 416 | 18153 | 466 | 18653 | 516 | 19153 | 566 | 19653 |
| 317 | 17163 | 367 | 17663 | 417 | 18163 | 467 | 18663 | 517 | 19163 | 567 | 19663 |
| 318 | 17173 | 368 | 17673 | 418 | 18173 | 468 | 18673 | 518 | 19173 | 568 | 19673 |
| 319 | 17183 | 369 | 17683 | 419 | 18183 | 469 | 18683 | 519 | 19183 | 569 | 19683 |
| 320 | 17193 | 370 | 17693 | 420 | 18193 | 470 | 18693 | 520 | 19193 | 570 | 19693 |
| 321 | 17203 | 371 | 17703 | 421 | 18203 | 471 | 18703 | 521 | 19203 | 571 | 19703 |
| 322 | 17213 | 372 | 17713 | 422 | 18213 | 472 | 18713 | 522 | 19213 | 572 | 19713 |
| 323 | 17223 | 373 | 17723 | 423 | 18223 | 473 | 18723 | 523 | 19223 | 573 | 19723 |
| 324 | 17233 | 374 | 17733 | 424 | 18233 | 474 | 18733 | 524 | 19233 | 574 | 19733 |
| 325 | 17243 | 375 | 17743 | 425 | 18243 | 475 | 18743 | 525 | 19243 | 575 | 19743 |
| 326 | 17253 | 376 | 17753 | 426 | 18253 | 476 | 18753 | 526 | 19253 | 576 | 19753 |
| 327 | 17263 | 377 | 17763 | 427 | 18263 | 477 | 18763 | 527 | 19263 | 577 | 19763 |
| 328 | 17273 | 378 | 17773 | 428 | 18273 | 478 | 18773 | 528 | 19273 | 578 | 19773 |
| 329 | 17283 | 379 | 17783 | 429 | 18283 | 479 | 18783 | 529 | 19283 | 579 | 19783 |
| 330 | 17293 | 380 | 17793 | 430 | 18293 | 480 | 18793 | 530 | 19293 | 580 | 19793 |
| 331 | 17303 | 381 | 17803 | 431 | 18303 | 481 | 18803 | 531 | 19303 | 581 | 19803 |
| 332 | 17313 | 382 | 17813 | 432 | 18313 | 482 | 18813 | 532 | 19313 | 582 | 19813 |
| 333 | 17323 | 383 | 17823 | 433 | 18323 | 483 | 18823 | 533 | 19323 | 583 | 19823 |
| 334 | 17333 | 384 | 17833 | 434 | 18333 | 484 | 18833 | 534 | 19333 | 584 | 19833 |
| 335 | 17343 | 385 | 17843 | 435 | 18343 | 485 | 18843 | 535 | 19343 | 585 | 19843 |
| 336 | 17353 | 386 | 17853 | 436 | 18353 | 486 | 18853 | 536 | 19353 | 586 | 19853 |
| 337 | 17363 | 387 | 17863 | 437 | 18363 | 487 | 18863 | 537 | 19363 | 587 | 19863 |
| 338 | 17373 | 388 | 17873 | 438 | 18373 | 488 | 18873 | 538 | 19373 | 588 | 19873 |
| 339 | 17383 | 389 | 17883 | 439 | 18383 | 489 | 18883 | 539 | 19383 | 589 | 19883 |
| 340 | 17393 | 390 | 17893 | 440 | 18393 | 490 | 18893 | 540 | 19393 | 590 | 19893 |
| 341 | 17403 | 391 | 17903 | 441 | 18403 | 491 | 18903 | 541 | 19403 | 591 | 19903 |
| 342 | 17413 | 392 | 17913 | 442 | 18413 | 492 | 18913 | 542 | 19413 | 592 | 19913 |
| 343 | 17423 | 393 | 17923 | 443 | 18423 | 493 | 18923 | 543 | 19423 | 593 | 19923 |
| 344 | 17433 | 394 | 17933 | 444 | 18433 | 494 | 18933 | 544 | 19433 | 594 | 19933 |
| 345 | 17443 | 395 | 17943 | 445 | 18443 | 495 | 18943 | 545 | 19443 | 595 | 19943 |
| 346 | 17453 | 396 | 17953 | 446 | 18453 | 496 | 18953 | 546 | 19453 | 596 | 19953 |
| 347 | 17463 | 397 | 17963 | 447 | 18463 | 497 | 18963 | 547 | 19463 | 597 | 19963 |
| 348 | 17473 | 398 | 17973 | 448 | 18473 | 498 | 18973 | 548 | 19473 | 598 | 19973 |
| 349 | 17483 | 399 | 17983 | 449 | 18483 | 499 | 18983 | 549 | 19483 | 599 | 19983 |
| 350 | 17493 | 400 | 17993 | 450 | 18493 | 500 | 18993 | 550 | 19493 | 600 | 19993 |


| $\begin{array}{\|l\|l\|} \hline \text { Data } \\ \text { No. } \end{array}$ | Posi-tioningidenti-fier | $\begin{gathered} M \\ \text { code } \end{gathered}$ | $\begin{aligned} & \text { Dwell } \\ & \text { time } \end{aligned}$ | Command speed |  | Positioning address |  | Arc data |  | $\begin{aligned} & \text { Data } \\ & \text { No. } \end{aligned}$ | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | $\begin{array}{\|l\|} \text { Dwell } \\ \text { time } \end{array}$ | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Low- } \\ & \text { order } \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { High- } \\ \text { order } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{array}{\|l\|l} \begin{array}{l} \text { High- } \\ \text { order } \\ \hline \end{array} \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|l\|l} \hline \text { Low- } \\ \text { order } \end{array}$ | $\begin{array}{\|l\|l} \hline \begin{array}{l} \text { High- } \\ \text { order } \end{array} \\ \hline \end{array}$ |  |  |  |  | $\begin{aligned} & \text { Low } \\ & \text { order } \\ & \hline \end{aligned}$ | High- order | $\begin{aligned} & \text { Low- } \\ & \text { order } \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { High- } \\ \text { order } \end{array} \\ & \hline \end{aligned}$ | $\begin{array}{l\|} \hline \text { Low- } \\ \text { order } \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { High- } \\ & \text { order } \\ & \hline \end{aligned}$ |
| 1 | 20000 | 20001 | 20002 | 200 | 20005 | 20006 | 20007 | 20008 | 20009 | 51 | 20500 | 20501 | 20502 | 20504 | 20505 | 20506 | 20507 | 20508 | 20509 |
| 2 |  |  | 20012 | 20014 |  | 20016 | 20017 |  |  | 52 |  | 20511 | 20512 | 20514 | 20515 | 20516 | 20517 | 20518 | 20519 |
| 3 | 20020 | 20021 | 20022 | 20024 | 20025 | 20026 | 20027 | 20028 | 20029 |  | 20520 | 20521 | 20522 | 20524 | 20525 | 20526 | 20527 | 20528 | 20529 |
| 4 |  |  | 20032 | 20034 | 20035 | 20036 | 20037 |  |  |  |  | 20531 | 20532 | 20534 | 20535 | 20536 | 20537 | 20538 | 20539 |
| 5 | 20040 | 20041 | 20042 | 20044 | 20045 | 20046 | 20047 | 20048 | 20049 | 55 | 20540 | 20541 | 20542 | 20544 | 20545 | 205 | 20547 | 20548 |  |
| 6 | 20050 | 20051 | 20052 | 20054 | 55 | 20056 | 20057 | 58 | 20059 |  | 20550 | 20551 | 20552 | 20554 | 20555 | 05 | 20557 | 20558 | 20559 |
| 7 | 20060 | 20061 | 20062 | 200 | 20065 | 20066 | 20 | 20068 | 20069 |  | 20560 | 2 | 20562 | 4 | 20565 | 20566 | 20567 | 20568 | 20 |
| 8 | 20070 | 20071 | 20072 | 20 | 20075 | 20076 | 20077 | 20078 | 20079 | 58 | 20570 | 20571 | 20572 | 20574 | 20575 | 20576 | 20577 | 20578 | 20579 |
| 9 | 20080 | 20081 | 20082 | 20 | 20085 | 20086 | 20087 |  | 20089 | 59 | 20580 | 20581 | 20582 | 20584 | 20585 | 20586 | 20587 | 20588 | 20589 |
| 10 | 20090 | 20091 | 20092 | 20094 | 20095 | 20096 | 20097 | 20098 | 20099 | 60 | 20590 | 20591 | 20592 | 4 | 20595 | 20596 | 20597 | 20598 | 20599 |
| 11 | 20100 | 20101 | 20102 | 20104 | 20105 | 20106 | 20107 | 20108 | 20109 | 61 | 20600 | 20601 | 20602 | 04 | 20605 | 20606 | 20607 | 20608 | 20609 |
| 12 | 20110 | 20111 | 20112 | 20114 | 20115 | 20116 | 20117 | 20118 | 2011 | 62 | 20610 | 20611 | 20612 | 20614 | 20615 | 20616 | 20617 | 20618 | 20619 |
| 13 | 20 | 20121 | 20122 | 20 | 20125 | 20126 | 20127 | 20128 | 2012 |  |  | 2 | 20622 | 20624 | 20625 | 20626 | 20627 | 20628 | 20629 |
| 14 | 20 |  |  | 20134 | 20135 |  | 20137 |  |  |  | 20630 | 20631 | 20632 | 20634 | 20635 | 20636 | 20637 | 20638 | 20639 |
| 15 | 40 | 20141 | 20142 | 20144 | 45 | 20146 | 20147 | 8 |  | 65 | 20640 | 20641 | 642 | 20644 | 20645 | 064 | 20647 | 20648 |  |
| 16 | 20150 | 20151 | 20152 | 20154 | 20155 | 20156 | 20157 |  |  |  | 20650 | 20651 | 20652 | 4 | 20655 | 20656 | 20657 |  |  |
| 17 | 20160 | 20161 | 20162 | 20164 | 20165 | 20166 | 20167 | 20168 |  | 67 | 20660 | 20661 | 20662 | 4 | 20665 | 20666 | 20667 | 20668 | 20669 |
| 18 | 20170 | 20 | 20172 | 2017 | 20175 | 20176 | 20 | 20178 | 20179 | 68 | 20670 | 20671 | 20672 | 4 | 20675 | 20676 | 20677 | 20678 | 20679 |
| 19 |  |  | 20182 | 20184 | 20185 | 20186 | 20187 | 20188 | 2018 |  |  | 20681 | 20682 | 20684 | 20685 | 20686 | 20687 | 20688 |  |
| 20 | 20190 | 20191 | 2019 | 20194 | 20195 | 01 | 2019 | 20198 | 20 | 70 | 90 | 206 | 20692 | 206 | 20695 | 206 | 20697 | 20698 | 20699 |
| 21 | 20200 | 20201 | 20 | 20 | 20205 | 20206 | 20207 | 8 |  |  |  | 20701 | 20702 | 04 | 20705 | 20706 |  |  |  |
| 22 | 20210 | 20211 | 20212 | 20 | 20215 | 20216 | 20217 | 20218 |  |  | 0 | 20711 | 12 | 14 | 15 | 20716 | 20717 | 20718 |  |
| 23 | 20 | 20 | 202 | 202 | 20225 | 20226 | 20 | 20228 | 20229 | 73 | 20720 | 20721 | 20722 | 4 | 20725 | 20726 | 20727 | 20728 | 20729 |
| 24 |  |  | 20232 | 20 | 20235 | 20236 | 20237 | 20238 | 2023 | 74 |  | 20731 | 20732 | 20734 | 20735 | 20736 | 20737 | 20738 |  |
| 25 | 20240 | 2024 | 202 | 20244 | 20245 | 20246 | 20247 | 20248 | 2024 | 75 | 20740 | 20741 | 20742 | 20744 | 20745 | 20746 | 20747 | 20748 | 20749 |
| 26 | 20250 | 2025 | 20 | 20 | 20255 | 20256 | 20257 |  | 2025 | 76 |  |  | 20752 | 4 | 20755 | 20756 |  | 20758 | 20759 |
| 27 | 20260 | 20261 | 202 | 202 | 20265 | 20266 | 202 | 20268 | 2026 | 77 | 20760 | 20761 | 20762 | 20764 | 20765 | 20766 | 20767 | 20768 | 20769 |
| 28 | 20270 | 20271 |  | 20 | 20275 | 20276 |  |  |  |  |  |  |  | 4 | 75 | 20776 | 20777 | 20778 |  |
| 29 |  | 20 | 20282 | 20 |  | 20286 | 20287 |  |  | 79 |  | 20781 | 20782 | 4 | 20785 | 20786 | 20787 | 20788 |  |
| 30 | 20 | 2029 | 2029 | 20294 | 20295 | 2029 | 0297 | 98 | 202 | 80 | 20790 | 2079 | 2079 | 20794 | 20795 | 2079 | 0797 | 07 |  |
| 31 |  | 20301 | 20 | 20304 | 20305 | 20306 | 20307 |  |  | 8 | 20800 | 20801 | 20802 |  | 20805 | 20806 | 20807 | 20808 | 20809 |
| 32 | 2031 | 20311 | 20312 | 20314 | 20315 | 20316 | 20317 | 20318 | 2031 | 82 | 20810 | 20811 | 20812 | 20814 | 20815 | 20816 | 20817 | 20818 | 20819 |
| 33 | 20320 | 20321 | 20322 | 20324 |  | 20326 | 20327 | 20328 | 20329 | 83 | 20820 | 20821 | 20822 | 20824 | 20825 | 20826 | 20827 | 20828 | 20829 |
| 34 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 20835 | 20836 | 20837 | 20838 | 20839 |
| 35 | 2034 | 2034 | 2034 | 20344 | 20345 | 20346 | 203 | 20348 | 20349 | 85 | 20840 | 2084 | 20842 | 20844 | 20845 | 208 | 2084 | 20848 | 20849 |
| 36 | 20350 | 20 | 20352 | 20354 |  | 20 | 20357 |  |  | 86 |  |  |  |  | 20855 | 20856 |  | 0858 | 20859 |
| 37 | 20 | 20 | 20 | 20 | 20365 | 20 | 20 | 68 | 203 | 87 | 20860 | 20861 | 62 | 20864 | 20865 | 20866 | 20867 | 20868 | 20869 |
| 38 | 20370 | 20371 | 20372 | 20374 | 20375 | 20376 | 20377 | 20378 | 20379 | 88 | 20870 | 20871 | 20872 | 20874 | 20875 | 20876 | 20877 | 20878 | 20879 |
| 39 | 20380 | 20381 | 20382 | 20384 |  | 20386 | 20387 | 20388 | 20389 | 89 | 20880 | 20881 | 20882 | 20884 | 20885 | 20886 | 20887 | 20888 | 20889 |
| 40 | 20390 | 20391 | 20392 | 20394 | 20395 | 20396 | 20397 | 20398 | 20399 | 90 | 20890 | 20891 | 92 | 4 | 20895 | 20896 | 20897 | 20898 | 20899 |
| 41 |  |  |  |  |  |  |  |  |  | 91 |  |  |  |  | 20905 |  |  | 0908 | 20909 |
| 42 | 20410 | 20 | 20 | 20414 | 20415 | 20416 | 20417 |  |  | 92 |  | 20911 | 20912 | 20914 | 20915 | 20916 | 20917 | 20918 | 20919 |
| 43 |  | 20 | 20 | 20 |  | 20426 | 20427 |  | 20429 | 93 | 20920 | 20921 | 20922 | 20924 | 20925 | 209 | 20927 | 20928 | 20929 |
| 44 |  | 20431 | 20432 | 20434 |  | 2043 | 20437 |  |  | 94 |  |  | 20932 | 20934 | 20935 | 20936 | 20937 | 20938 | 20939 |
| 45 | 20440 | 20441 | 20442 | 20444 | 20445 | 20446 | 20447 | 20448 | 20449 | 95 | 20940 | 209 | 20942 | 20944 | 20945 | 20946 | 20947 | 20948 | 20949 |
| 46 |  |  |  |  |  | 20456 | 20457 |  |  | 96 |  |  |  |  |  | 20956 | 20957 | 20958 | 20959 |
| 47 | 20460 | 20461 | 20462 | 20464 |  | 20466 | 20 | 20 | 2046 | 97 |  | 20961 | 20962 | 20964 | 20965 | 20966 | 20967 | 20968 | 20969 |
| 48 | 20470 | 20471 | 20 | 20 | 20475 | 20 | 20477 | 8 | 20479 | 98 |  | 20971 | 20972 | 20974 | 20975 | 209 | 2097 | 20978 | 209 |
| 49 |  | 20481 | 20 |  | 20485 | 20486 | 20487 | 20488 |  | 99 |  | 20981 | 20982 | 20984 | 20985 | 20986 | 20987 | 20988 | 209 |
| 50 | 20490 | 20491 | 20492 | 20494 | 20495 | 20496 | 20497 | 20498 | 20499 | 100 | 20990 | 20991 | 20992 | 20994 | 20995 | 20996 | 20997 | 20998 | 20999 |


| Data No. | Positioning identifier | $\begin{gathered} \text { M } \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | High- order |
| 101 | 21000 | 21001 | 21002 | 21004 | 21005 | 21006 | 21007 | 21008 | 21009 |
| 102 | 21010 | 21011 | 21012 | 21014 | 21015 | 21016 | 21017 | 21018 | 21019 |
| 103 | 21020 | 21021 | 21022 | 21024 | 21025 | 21026 | 21027 | 21028 | 21029 |
| 104 | 21030 | 21031 | 21032 | 21034 | 21035 | 21036 | 21037 | 21038 | 21039 |
| 105 | 21040 | 21041 | 21042 | 21044 | 21045 | 21046 | 21047 | 21048 | 21049 |
| 106 | 21050 | 21051 | 21052 | 21054 | 21055 | 21056 | 21057 | 21058 | 21059 |
| 107 | 21060 | 21061 | 21062 | 21064 | 21065 | 21066 | 21067 | 21068 | 21069 |
| 108 | 21070 | 21071 | 21072 | 21074 | 21075 | 21076 | 21077 | 21078 | 21079 |
| 109 | 21080 | 21081 | 21082 | 21084 | 21085 | 21086 | 21087 | 21088 | 21089 |
| 110 | 21090 | 21091 | 21092 | 21094 | 21095 | 21096 | 21097 | 21098 | 21099 |
| 111 | 21100 | 21101 | 21102 | 21104 | 21105 | 21106 | 21107 | 21108 | 21109 |
| 112 | 21110 | 21111 | 21112 | 21114 | 21115 | 21116 | 21117 | 21118 | 21119 |
| 113 | 21120 | 2112 | 21122 | 21124 | 21125 | 21126 | 21127 | 21128 | 21129 |
| 114 | 21130 | 21131 | 21132 | 21134 | 21135 | 21136 | 21137 | 21138 | 21139 |
| 115 | 21140 | 21141 | 21142 | 21144 | 21145 | 21146 | 21147 | 21148 | 21149 |
| 116 | 21150 | 21151 | 21152 | 21154 | 21155 | 21156 | 21157 | 21158 | 21159 |
| 117 | 21160 | 21161 | 21162 | 21164 | 21165 | 21166 | 21167 | 21168 | 21169 |
| 118 | 211 | 2117 | 21172 | 21 | 21175 | 21176 | 21177 | 21178 | 21 |
| 119 | 21180 | 21181 | 21182 | 21184 | 21185 | 21186 | 21187 | 21188 | 21189 |
| 120 | 21190 | 21191 | 21192 | 21194 | 21195 | 21196 | 21197 | 21198 | 21199 |
| 121 | 21200 | 21201 | 21202 | 21204 | 21205 | 21206 | 21207 | 21208 | 21209 |
| 122 | 21210 | 2121 | 21212 | 21214 | 21215 | 21216 | 21217 | 21218 | 21 |
| 123 | 21220 | 21221 | 21222 | 21224 | 21225 | 21226 | 21227 | 21228 | 21229 |
| 124 | 21230 | 21231 | 21232 | 21234 | 21235 | 21236 | 21237 | 21238 | 21239 |
| 125 | 21240 | 21241 | 21242 | 21244 | 21245 | 21246 | 21247 | 21248 | 2124 |
| 126 | 21250 | 21251 | 21252 | 21254 | 21255 | 21256 | 21257 | 21258 | 212 |
| 127 | 21260 | 21261 | 21262 | 21264 | 21265 | 21266 | 21267 | 21268 | 21269 |
| 128 | 21270 | 21271 | 21272 | 21274 | 21275 | 21276 | 21277 | 21278 | 21279 |
| 129 | 21280 | 21281 | 21282 | 21284 | 21285 | 21286 | 21287 | 21288 | 21289 |
| 130 | 21290 | 21291 | 21292 | 21294 | 21295 | 21296 | 21297 | 21298 | 9 |
| 131 | 21300 | 21301 | 21302 | 21304 | 21305 | 21306 | 21307 | 21308 | 2130 |
| 132 | 21310 | 21311 | 21312 | 21314 | 21315 | 21316 | 21317 | 21318 | 21319 |
| 133 | 21320 | 21321 | 21322 | 21324 | 21325 | 21326 | 21327 | 21328 | 21329 |
| 13 | 21330 | 21331 | 21332 | 21334 | 21335 | 21336 | 21337 | 21338 | 21339 |
| 135 | 21340 | 21341 | 21342 | 21344 | 21345 | 21346 | 21347 | 21348 | 21349 |
| 136 | 21350 | 21351 | 21352 | 21354 | 21355 | 21356 | 21357 | 21358 | 21359 |
| 137 | 21360 | 21361 | 21362 | 21364 | 21365 | 21366 | 21367 | 21368 | 21369 |
| 138 | 21370 | 21371 | 21372 | 21374 | 21375 | 21376 | 21377 | 21378 | 21379 |
| 139 | 21380 | 21381 | 21382 | 21384 | 21385 | 21386 | 21387 | 21388 | 21389 |
| 140 | 21390 | 21391 | 21392 | 21394 | 21395 | 21396 | 21397 | 21398 | 21399 |
| 141 | 21400 | 21401 | 21402 | 21404 | 21405 | 21406 | 21407 | 21408 | 21409 |
| 142 | 21410 | 21411 | 21412 | 21414 | 21415 | 21416 | 21417 | 21418 | 21419 |
| 143 | 21420 | 21421 | 21422 | 21424 | 21425 | 21426 | 21427 | 21428 | 21429 |
| 144 | 21430 | 21431 | 21432 | 21434 | 21435 | 21436 | 21437 | 21438 | 21439 |
| 145 | 21440 | 21441 | 21442 | 21444 | 21445 | 21446 | 21447 | 21448 | 21449 |
| 146 | 21450 | 21451 | 21452 | 21454 | 21455 | 21456 | 21457 | 21458 | 21459 |
| 147 | 21460 | 21461 | 21462 | 21464 | 21465 | 21466 | 21467 | 21468 | 21469 |
| 148 | 21470 | 21471 | 21472 | 21474 | 21475 | 21476 | 21477 | 21478 | 21479 |
| 149 | 21480 | 21481 | 21482 | 21484 | 21485 | 21486 | 21487 | 21488 | 21489 |
| 150 | 21490 | 21491 | 21492 | 21494 | 21495 | 21496 | 21497 | 21498 | 21499 |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \text { M } \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 151 | 21500 | 21501 | 21502 | 21504 | 21505 | 21506 | 21507 | 21508 | 21509 |
| 152 | 21510 | 21511 | 21512 | 21514 | 21515 | 21516 | 21517 | 21518 | 21519 |
| 15 | 21520 | 21521 | 21522 | 21524 | 21525 | 21526 | 21527 | 21528 | 21529 |
| 15 | 21530 | 21531 | 21532 | 21534 | 21535 | 21536 | 21537 | 21538 | 21539 |
| 155 | 21540 | 21541 | 21542 | 21544 | 21545 | 21546 | 21547 | 21548 | 21549 |
| 156 | 21550 | 21551 | 21552 | 21554 | 21555 | 21556 | 21557 | 21558 | 21559 |
| 157 | 21560 | 21561 | 21562 | 21564 | 21565 | 21566 | 21567 | 21568 | 21569 |
| 158 | 2157 | 2157 | 21572 | 21574 | 21575 | 21576 | 21577 | 21578 | 79 |
| 159 | 21580 | 2158 | 21582 | 21584 | 21585 | 21586 | 21587 | 21588 | 21589 |
| 160 | 21590 | 21591 | 21592 | 21594 | 21595 | 21596 | 21597 | 21598 | 21599 |
| 161 | 21600 | 21601 | 21602 | 21604 | 21605 | 21606 | 21607 | 21608 | 21609 |
| 162 | 21610 | 2161 | 21612 | 21614 | 21615 | 21616 | 21617 | 21618 | 21619 |
| 163 | 21620 | 21621 | 21622 | 21624 | 21625 | 21626 | 21627 | 21628 | 21629 |
| 164 | 21630 | 21631 | 21632 | 21634 | 21635 | 21636 | 21637 | 21638 | 21639 |
| 165 | 21640 | 21641 | 21642 | 21644 | 21645 | 21646 | 21647 | 21648 | 21649 |
| 166 | 21650 | 21651 | 21652 | 21654 | 21655 | 21656 | 21657 | 21658 | 21659 |
| 167 | 21660 | 2166 | 2166 | 21664 | 21665 | 21666 | 21667 | 21668 | 21669 |
| 168 | 21670 | 2167 | 21672 | 21674 | 21675 | 21676 | 21677 | 21678 | 21679 |
| 169 | 21680 | 21681 | 21682 | 21684 | 21685 | 21686 | 21687 | 21688 | 21689 |
| 170 | 21690 | 21691 | 21692 | 21694 | 21695 | 21696 | 21697 | 21698 | 21699 |
| 17 | 21700 | 2170 | 21702 | 21704 | 21705 | 21706 | 21707 | 21708 | 21709 |
| 17 | 21710 | 2171 | 2171 | 217 | 21715 | 21716 | 21717 | 21718 | 217 |
| 173 | 21720 | 21721 | 21722 | 21724 | 21725 | 21726 | 21727 | 21728 | 21729 |
| 174 | 21730 | 21731 | 21732 | 21734 | 21735 | 21736 | 21737 | 21738 | 21739 |
| 175 | 21740 | 21741 | 21742 | 21744 | 21745 | 21746 | 21747 | 21748 | 21 |
| 176 | 21750 | 2175 | 21752 | 21754 | 21755 | 21756 | 21757 | 21758 | 21759 |
| 177 | 21760 | 21761 | 21762 | 21764 | 21765 | 21766 | 21767 | 21768 | 21769 |
| 178 | 21770 | 21771 | 21772 | 21774 | 21775 | 21776 | 21777 | 21778 | 21779 |
| 17 | 21780 | 2178 | 21782 | 21784 | 21785 | 21786 | 21787 | 21788 | 21789 |
| 180 | 21790 | 21791 | 21792 | 21794 | 21795 | 21796 | 21797 | 21798 | 21799 |
| 181 | 21800 | 21801 | 21802 | 21804 | 21805 | 21806 | 21807 | 21808 | 21809 |
| 182 | 21810 | 2181 | 21812 | 21814 | 21815 | 21816 | 21817 | 21818 | 21819 |
| 18 | 21820 | 21821 | 21822 | 21824 | 21825 | 21826 | 21827 | 21828 | 21829 |
| 18 | 21830 | 2183 | 21832 | 21834 | 21835 | 21836 | 21837 | 21838 | 21839 |
| 185 | 21840 | 21841 | 21842 | 21844 | 21845 | 21846 | 21847 | 21848 | 21849 |
| 186 | 21850 | 21851 | 21852 | 21854 | 21855 | 21856 | 21857 | 21858 | 21859 |
| 187 | 21860 | 2186 | 21862 | 21864 | 21865 | 21866 | 21867 | 21868 | 21869 |
| 18 | 21870 | 21871 | 21872 | 21874 | 21875 | 21876 | 21877 | 21878 | 21879 |
| 189 | 21880 | 2188 | 21882 | 21884 | 21885 | 21886 | 21887 | 21888 | 21889 |
| 190 | 21890 | 21891 | 21892 | 21894 | 21895 | 21896 | 21897 | 21898 | 21899 |
| 191 | 21900 | 21901 | 21902 | 21904 | 21905 | 21906 | 21907 | 21908 | 21909 |
| 192 | 21910 | 21911 | 21912 | 21914 | 21915 | 21916 | 21917 | 21918 | 21919 |
| 193 | 21920 | 21921 | 21922 | 21924 | 21925 | 21926 | 21927 | 21928 | 21929 |
| 194 | 21930 | 21931 | 21932 | 21934 | 21935 | 21936 | 21937 | 21938 | 21939 |
| 195 | 21940 | 21941 | 21942 | 21944 | 21945 | 21946 | 21947 | 21948 | 21949 |
| 196 | 21950 | 21951 | 21952 | 21954 | 21955 | 21956 | 21957 | 21958 | 21959 |
| 197 | 21960 | 21961 | 21962 | 21964 | 21965 | 21966 | 21967 | 21968 | 21969 |
| 198 | 21970 | 21971 | 21972 | 21974 | 21975 | 21976 | 21977 | 21978 | 21979 |
| 199 | 21980 | 21981 | 21982 | 21984 | 21985 | 21986 | 21987 | 21988 | 21989 |
| 200 | 21990 | 21991 | 21992 | 21994 | 21995 | 21996 | 21997 | 21998 | 21999 |


| Data No. | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | $\begin{aligned} & \text { Low- } \\ & \text { order } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Loworder | Highorder |
| 201 | 22000 | 22001 | 22002 | 22004 | 22005 | 22006 | 22007 | 22008 | 22009 |
| 20 | 22010 | 22011 | 22012 | 22014 | 22015 | 22016 | 22017 | 22018 | 22019 |
| 203 | 22020 | 22021 | 22022 | 22024 | 22025 | 22026 | 22027 | 22028 | 22029 |
| 204 | 22030 | 22031 | 22032 | 22034 | 22035 | 22036 | 22037 | 22038 | 22039 |
| 205 | 22040 | 22041 | 22042 | 22044 | 22045 | 22046 | 22047 | 22048 | 22049 |
| 206 | 22050 | 22051 | 22052 | 22054 | 22055 | 22056 | 22057 | 22058 | 22059 |
| 207 | 22060 | 22061 | 22062 | 22064 | 22065 | 22066 | 22067 | 22068 | 22069 |
| 208 | 22070 | 22071 | 22072 | 22074 | 22075 | 22076 | 22077 | 22078 | 22079 |
| 209 | 22080 | 22081 | 22082 | 22084 | 22085 | 22086 | 22087 | 22088 | 22089 |
| 210 | 22090 | 22091 | 22092 | 22094 | 22095 | 22096 | 22097 | 22098 | 22099 |
| 211 | 22100 | 22101 | 22102 | 22104 | 22105 | 22106 | 22107 | 22108 | 22109 |
| 212 | 22110 | 22111 | 22112 | 22114 | 22115 | 22116 | 22117 | 22118 | 22119 |
| 213 | 22120 | 22121 | 22122 | 22124 | 22125 | 22126 | 22127 | 22128 | 22129 |
| 214 | 22130 | 22131 | 22132 | 22 | 22135 | 22136 | 22137 | 22138 | 39 |
| 215 | 22140 | 22141 | 22142 | 22144 | 22145 | 22146 | 22147 | 22148 | 22149 |
| 216 | 22150 | 22151 | 22152 | 22154 | 22155 | 22156 | 22157 | 22158 | 22159 |
| 217 | 22160 | 22161 | 22162 | 22164 | 22165 | 22166 | 22167 | 22168 | 22169 |
| 218 | 22170 | 22171 | 22172 | 22174 | 22175 | 22176 | 22177 | 22178 | 22179 |
| 219 | 22180 | 22181 | 22182 | 22184 | 22185 | 22186 | 22187 | 22188 | 22189 |
| 220 | 22190 | 22191 | 22192 | 22194 | 22195 | 22196 | 22197 | 22198 | 22199 |
| 221 | 22200 | 22201 | 22202 | 22204 | 22205 | 22206 | 22207 | 22208 | 222 |
| 222 | 22210 | 2221 | 22212 | 22214 | 22215 | 22216 | 22217 | 22218 | 222 |
| 223 | 22220 | 22221 | 22222 | 22224 | 22225 | 22226 | 22227 | 22228 | 22 |
| 224 | 22230 | 22231 | 22232 | 22234 | 22235 | 22236 | 22237 | 22238 | 22239 |
| 225 | 22240 | 22241 | 22242 | 22244 | 22245 | 22246 | 22247 | 22248 | 222 |
| 226 | 22250 | 22251 | 22252 | 22254 | 22255 | 22256 | 22257 | 22258 | 222 |
| 227 | 22260 | 2226 | 2226 | 222 | 22265 | 22266 | 22267 | 22268 | 222 |
| 228 | 22270 | 22271 | 22272 | 22274 | 22275 | 22276 | 22277 | 22278 | 22279 |
| 229 | 22280 | 22281 | 22282 | 22284 | 22285 | 22286 | 22287 | 22288 | 22289 |
| 230 | 22290 | 22291 | 22292 | 22294 | 22295 | 22296 | 22297 | 22298 | 22299 |
| 231 | 22300 | 22301 | 22302 | 22304 | 22305 | 22306 | 22307 | 22308 | 22309 |
| 232 | 22310 | 22311 | 22312 | 22314 | 22315 | 22316 | 22317 | 22318 | 22319 |
| 233 | 22320 | 22321 | 22322 | 22324 | 22325 | 22326 | 22327 | 22328 | 22329 |
| 234 | 22330 | 22331 | 22332 | 22334 | 22335 | 22336 | 22337 | 22338 | 22339 |
| 235 | 22340 | 22341 | 22342 | 22344 | 22345 | 22346 | 22347 | 22348 | 22349 |
| 236 | 22350 | 22351 | 22352 | 22354 | 22355 | 22356 | 22357 | 22358 | 2235 |
| 237 | 22360 | 22361 | 22362 | 22364 | 22365 | 22366 | 22367 | 22368 | 22369 |
| 238 | 22370 | 22371 | 22372 | 22374 | 22375 | 22376 | 22377 | 22378 | 2237 |
| 239 | 22380 | 22381 | 22382 | 22384 | 22385 | 22386 | 22387 | 22388 | 22389 |
| 240 | 22390 | 22391 | 22392 | 22394 | 22395 | 22396 | 22397 | 22398 | 22399 |
| 241 | 22400 | 22401 | 22402 | 22404 | 22405 | 22406 | 22407 | 22408 | 22409 |
| 242 | 22410 | 22411 | 22412 | 22414 | 22415 | 22416 | 22417 | 22418 | 2241 |
| 243 | 22420 | 22421 | 22422 | 22424 | 22425 | 22426 | 22427 | 22428 | 22429 |
| 244 | 22430 | 22431 | 22432 | 22434 | 22435 | 22436 | 22437 | 22438 | 22439 |
| 245 | 22440 | 22441 | 22442 | 22444 | 22445 | 22446 | 22447 | 22448 | 22449 |
| 246 | 22450 | 22451 | 22452 | 22454 | 22455 | 22456 | 22457 | 22458 | 22459 |
| 247 | 22460 | 22461 | 22462 | 22464 | 22465 | 22466 | 22467 | 22468 | 22469 |
| 248 | 22470 | 22471 | 22472 | 22474 | 22475 | 22476 | 22477 | 22478 | 22479 |
| 249 | 22480 | 22481 | 22482 | 22484 | 22485 | 22486 | 22487 | 22488 | 22489 |
| 250 | 22490 | 22491 | 22492 | 22494 | 22495 | 22496 | 22497 | 2249 | 22499 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioningaddress |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 301 | 23000 | 23001 | 23002 | 23004 | 23005 | 23006 | 23007 | 23008 | 23009 |
| 302 | 23010 | 23011 | 23012 | 23014 | 23015 | 23016 | 23017 | 23018 | 23019 |
| 303 | 23020 | 23021 | 23022 | 23024 | 23025 | 23026 | 23027 | 23028 | 23029 |
| 304 | 23030 | 23031 | 23032 | 23034 | 23035 | 23036 | 23037 | 23038 | 23039 |
| 305 | 23040 | 23041 | 23042 | 23044 | 23045 | 23046 | 23047 | 23048 | 23049 |
| 306 | 23050 | 23051 | 23052 | 23054 | 23055 | 23056 | 23057 | 23058 | 23059 |
| 307 | 23060 | 23061 | 23062 | 23064 | 23065 | 23066 | 23067 | 23068 | 23069 |
| 308 | 23070 | 23071 | 23072 | 23074 | 23075 | 23076 | 23077 | 23078 | 23079 |
| 309 | 23080 | 2308 | 23082 | 23084 | 23085 | 23086 | 23087 | 23088 | 23089 |
| 310 | 23090 | 23091 | 23092 | 23094 | 23095 | 23096 | 23097 | 23098 | 23099 |
| 311 | 23100 | 23101 | 23102 | 23104 | 23105 | 23106 | 23107 | 23108 | 23109 |
| 312 | 23110 | 23111 | 23112 | 23114 | 23115 | 23116 | 23117 | 23118 | 23119 |
| 313 | 23120 | 2312 | 23122 | 23124 | 23125 | 23126 | 23127 | 23128 | 23129 |
| 31 | 23130 | 2313 | 23132 | 23134 | 23135 | 23136 | 23137 | 23138 | 23139 |
| 315 | 23140 | 23141 | 23142 | 23144 | 23145 | 23146 | 23147 | 23148 | 23149 |
| 316 | 23150 | 23151 | 23152 | 23154 | 23155 | 23156 | 23157 | 23158 | 23159 |
| 317 | 23160 | 23161 | 23162 | 23164 | 23165 | 23166 | 23167 | 23168 | 23169 |
| 318 | 23170 | 2317 | 2317 | 2317 | 23175 | 23176 | 23177 | 23178 | 23179 |
| 319 | 23180 | 23181 | 23182 | 23184 | 23185 | 23186 | 23187 | 23188 | 23189 |
| 320 | 23190 | 23191 | 23192 | 23194 | 23195 | 23196 | 23197 | 23198 | 23199 |
| 321 | 23200 | 23201 | 23202 | 23204 | 23205 | 23206 | 23207 | 23208 | 23209 |
| 322 | 23210 | 2321 | 2321 | 23214 | 23215 | 23216 | 23217 | 23218 | 232 |
| 323 | 23220 | 23221 | 23222 | 23224 | 23225 | 23226 | 23227 | 23228 | 23229 |
| 324 | 23230 | 23231 | 23232 | 23234 | 23235 | 23236 | 23237 | 23238 | 23239 |
| 325 | 23240 | 23241 | 23242 | 23244 | 23245 | 23246 | 23247 | 23248 | 2324 |
| 326 | 23250 | 23251 | 23252 | 23254 | 23255 | 23256 | 23257 | 23258 | 23259 |
| 327 | 23260 | 23261 | 23262 | 23264 | 23265 | 23266 | 23267 | 23268 | 232 |
| 328 | 23270 | 23271 | 23272 | 23274 | 23275 | 23276 | 23277 | 23278 | 23279 |
| 329 | 23280 | 23281 | 23282 | 23284 | 23285 | 23286 | 23287 | 23288 | 23289 |
| 330 | 23290 | 23291 | 23292 | 23294 | 23295 | 23296 | 23297 | 23298 | 23299 |
| 331 | 23300 | 23301 | 23302 | 23304 | 23305 | 23306 | 23307 | 23308 | 23309 |
| 332 | 23310 | 23311 | 23312 | 23314 | 23315 | 23316 | 23317 | 23318 | 23319 |
| 333 | 23320 | 23321 | 23322 | 23324 | 23325 | 23326 | 23327 | 23328 | 23329 |
| 33 | 23330 | 2333 | 23332 | 23334 | 23335 | 23336 | 23337 | 23338 | 23339 |
| 335 | 23340 | 23341 | 23342 | 23344 | 23345 | 23346 | 23347 | 23348 | 23349 |
| 336 | 23350 | 23351 | 23352 | 23354 | 23355 | 23356 | 23357 | 23358 | 23359 |
| 337 | 23360 | 23361 | 23362 | 23364 | 23365 | 23366 | 23367 | 23368 | 23369 |
| 338 | 23370 | 23371 | 23372 | 23374 | 23375 | 23376 | 23377 | 23378 | 23379 |
| 339 | 23380 | 23381 | 23382 | 23384 | 23385 | 23386 | 23387 | 23388 | 23389 |
| 340 | 23390 | 23391 | 23392 | 23394 | 23395 | 23396 | 23397 | 23398 | 23399 |
| 341 | 23400 | 23401 | 23402 | 23404 | 23405 | 23406 | 23407 | 23408 | 23409 |
| 342 | 23410 | 23411 | 23412 | 23414 | 23415 | 23416 | 23417 | 23418 | 23419 |
| 343 | 23420 | 23421 | 23422 | 23424 | 23425 | 23426 | 23427 | 23428 | 23429 |
| 344 | 23430 | 23431 | 23432 | 23434 | 23435 | 23436 | 23437 | 23438 | 23439 |
| 345 | 23440 | 23441 | 23442 | 23444 | 23445 | 23446 | 23447 | 23448 | 23449 |
| 346 | 23450 | 23451 | 23452 | 23454 | 23455 | 23456 | 23457 | 23458 | 23459 |
| 347 | 23460 | 23461 | 23462 | 23464 | 23465 | 23466 | 23467 | 23468 | 23469 |
| 348 | 23470 | 23471 | 23472 | 23474 | 23475 | 23476 | 23477 | 23478 | 23479 |
| 349 | 23480 | 23481 | 23482 | 23484 | 23485 | 23486 | 23487 | 23488 | 23489 |
| 350 | 23490 | 23491 | 23492 | 23494 | 23495 | 23496 | 23497 | 23498 | 23499 |


| Data No. | Posi- <br> tioning <br> identi- <br> fier | $\begin{gathered} \text { M } \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 351 | 23500 | 23501 | 23502 | 23504 | 23505 | 23506 | 23507 | 23508 | 23509 |
| 352 | 23510 | 23511 | 23512 | 23514 | 23515 | 23516 | 23517 | 23518 | 23519 |
| 353 | 23520 | 23521 | 23522 | 23524 | 23525 | 23526 | 23527 | 23528 | 23529 |
| 35 | 23530 | 23531 | 23532 | 23534 | 23535 | 23536 | 23537 | 23538 | 23539 |
| 355 | 23540 | 23541 | 23542 | 23544 | 23545 | 23546 | 23547 | 23548 | 23549 |
| 356 | 23550 | 23551 | 23552 | 23554 | 23555 | 23556 | 23557 | 23558 | 23559 |
| 357 | 23560 | 23561 | 23562 | 23564 | 23565 | 23566 | 23567 | 23568 | 23569 |
| 358 | 23570 | 2357 | 23572 | 23574 | 23575 | 23576 | 23577 | 23578 | 79 |
| 359 | 23580 | 23581 | 23582 | 23584 | 23585 | 23586 | 23587 | 23588 | 23589 |
| 360 | 23590 | 23591 | 23592 | 23594 | 23595 | 23596 | 23597 | 23598 | 23599 |
| 361 | 23600 | 23601 | 23602 | 23604 | 23605 | 23606 | 23607 | 23608 | 23609 |
| 362 | 23610 | 23611 | 23612 | 23614 | 23615 | 23616 | 23617 | 23618 | 23619 |
| 363 | 23620 | 23621 | 23622 | 23624 | 23625 | 23626 | 23627 | 23628 | 23629 |
| 364 | 23630 | 23631 | 23632 | 23634 | 23635 | 23636 | 23637 | 23638 | 23639 |
| 365 | 23640 | 23641 | 23642 | 23644 | 23645 | 23646 | 23647 | 23648 | 23649 |
| 366 | 23650 | 23651 | 23652 | 23654 | 23655 | 23656 | 23657 | 23658 | 23659 |
| 367 | 23660 | 2366 | 23662 | 23664 | 23665 | 23666 | 23667 | 23668 | 23669 |
| 368 | 23670 | 23671 | 23672 | 23674 | 23675 | 23676 | 23677 | 23678 | 23679 |
| 369 | 23680 | 23681 | 23682 | 23684 | 23685 | 23686 | 23687 | 23688 | 23689 |
| 370 | 23690 | 23691 | 23692 | 23694 | 23695 | 23696 | 23697 | 23698 | 23699 |
| 371 | 23700 | 2370 | 23702 | 23704 | 23705 | 23706 | 23707 | 23708 | 23709 |
| 372 | 23710 | 2371 | 2371 | 2371 | 23715 | 23716 | 23717 | 23718 | 237 |
| 373 | 23720 | 23721 | 23722 | 23724 | 23725 | 23726 | 23727 | 23728 | 23729 |
| 374 | 23730 | 23731 | 23732 | 23734 | 23735 | 23736 | 23737 | 23738 | 23739 |
| 375 | 23740 | 23741 | 23742 | 23744 | 23745 | 23746 | 23747 | 23748 | 23749 |
| 376 | 23750 | 2375 | 23752 | 2375 | 23755 | 23756 | 23757 | 23758 | 237 |
| 377 | 23760 | 23761 | 23762 | 23764 | 23765 | 23766 | 23767 | 23768 | 23769 |
| 378 | 23770 | 23771 | 23772 | 23774 | 23775 | 23776 | 23777 | 23778 | 23779 |
| 379 | 23780 | 23781 | 23782 | 23784 | 23785 | 23786 | 23787 | 23788 | 23789 |
| 380 | 23790 | 23791 | 23792 | 23794 | 23795 | 23796 | 23797 | 23798 | 23799 |
| 381 | 23800 | 23801 | 23802 | 23804 | 23805 | 23806 | 23807 | 23808 | 23809 |
| 382 | 23810 | 23811 | 23812 | 23814 | 23815 | 23816 | 23817 | 23818 | 23819 |
| 383 | 23820 | 23821 | 23822 | 23824 | 23825 | 23826 | 23827 | 23828 | 23829 |
| 38 | 23830 | 23831 | 23832 | 23834 | 23835 | 23836 | 23837 | 23838 | 23839 |
| 385 | 23840 | 23841 | 23842 | 23844 | 23845 | 23846 | 23847 | 23848 | 23849 |
| 386 | 23850 | 23851 | 23852 | 23854 | 23855 | 23856 | 23857 | 23858 | 23859 |
| 387 | 23860 | 23861 | 23862 | 23864 | 23865 | 23866 | 23867 | 23868 | 23869 |
| 388 | 23870 | 23871 | 23872 | 23874 | 23875 | 23876 | 23877 | 23878 | 23879 |
| 389 | 23880 | 2388 | 23882 | 23884 | 23885 | 23886 | 23887 | 23888 | 23889 |
| 390 | 23890 | 23891 | 23892 | 23894 | 23895 | 23896 | 23897 | 23898 | 23899 |
| 391 | 23900 | 23901 | 23902 | 23904 | 23905 | 23906 | 23907 | 23908 | 23909 |
| 392 | 23910 | 23911 | 23912 | 23914 | 23915 | 23916 | 23917 | 23918 | 23919 |
| 393 | 23920 | 23921 | 23922 | 23924 | 23925 | 23926 | 23927 | 23928 | 23929 |
| 394 | 23930 | 23931 | 23932 | 23934 | 23935 | 23936 | 23937 | 23938 | 23939 |
| 395 | 23940 | 23941 | 23942 | 23944 | 23945 | 23946 | 23947 | 23948 | 23949 |
| 396 | 23950 | 23951 | 23952 | 23954 | 23955 | 23956 | 23957 | 23958 | 23959 |
| 397 | 23960 | 23961 | 23962 | 23964 | 23965 | 23966 | 23967 | 23968 | 23969 |
| 398 | 23970 | 23971 | 23972 | 23974 | 23975 | 23976 | 23977 | 23978 | 23979 |
| 399 | 23980 | 23981 | 23982 | 23984 | 23985 | 23986 | 23987 | 23988 | 23989 |
| 400 | 23990 | 23991 | 23992 | 23994 | 23995 | 23996 | 23997 | 23998 | 23999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | High- order | Loworder | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Loworder | Highorder |
| 401 | 24000 | 24001 | 24002 | 24004 | 24005 | 24006 | 24007 | 24008 | 24009 |
| 402 | 24010 | 24011 | 24012 | 24014 | 24015 | 24016 | 24017 | 24018 | 24019 |
| 403 | 24020 | 24021 | 24022 | 24024 | 24025 | 24026 | 24027 | 24028 | 24029 |
| 404 | 24030 | 24031 | 24032 | 24034 | 24035 | 24036 | 24037 | 24038 | 24039 |
| 405 | 24040 | 24041 | 24042 | 24044 | 24045 | 24046 | 24047 | 24048 | 24049 |
| 406 | 24050 | 24051 | 24052 | 24054 | 24055 | 24056 | 24057 | 24058 | 24059 |
| 407 | 24060 | 24061 | 24062 | 24064 | 24065 | 24066 | 24067 | 24068 | 24069 |
| 408 | 24070 | 24071 | 24072 | 24074 | 24075 | 24076 | 24077 | 24078 | 24079 |
| 409 | 24080 | 24081 | 24082 | 24084 | 24085 | 24086 | 24087 | 24088 | 24089 |
| 410 | 24090 | 24091 | 24092 | 24094 | 24095 | 24096 | 24097 | 24098 | 24099 |
| 411 | 24100 | 24101 | 24102 | 24104 | 24105 | 24106 | 24107 | 24108 | 24109 |
| 412 | 24110 | 24111 | 24112 | 24114 | 24115 | 24116 | 24117 | 24118 | 24119 |
| 413 | 24120 | 24121 | 24122 | 24124 | 24125 | 24126 | 24127 | 24128 | 24129 |
| 41 | 24 | 24131 | 24132 | 24134 | 24135 | 24136 | 24137 | 24138 | 24139 |
| 415 | 24140 | 24141 | 24142 | 24144 | 24145 | 24146 | 24147 | 24148 | 24149 |
| 416 | 24150 | 24151 | 24152 | 24154 | 24155 | 24156 | 24157 | 24158 | 24159 |
| 417 | 24160 | 24161 | 24162 | 24164 | 24165 | 24166 | 24167 | 24168 | 24169 |
| 418 | 24170 | 24171 | 24172 | 24174 | 24175 | 24176 | 24177 | 24178 | 24179 |
| 419 | 24180 | 24181 | 24182 | 24184 | 24185 | 24186 | 24187 | 24188 | 89 |
| 420 | 24190 | 24191 | 24192 | 24194 | 24195 | 24196 | 24197 | 24198 | 24199 |
| 421 | 24200 | 24201 | 24202 | 24204 | 24205 | 24206 | 24207 | 24208 | 24209 |
| 422 | 24210 | 24211 | 24212 | 24214 | 24215 | 24216 | 24217 | 24218 | 24219 |
| 423 | 24220 | 24221 | 24222 | 24224 | 24225 | 24226 | 24227 | 24228 | 24229 |
| 424 | 24230 | 24231 | 24232 | 24234 | 24235 | 24236 | 24237 | 24238 | 24239 |
| 425 | 24240 | 24241 | 24242 | 24244 | 24245 | 24246 | 24247 | 24248 | 24249 |
| 426 | 24250 | 24251 | 24252 | 24254 | 24255 | 24256 | 24257 | 24258 | 24259 |
| 427 | 24260 | 24261 | 24262 | 24264 | 24265 | 24266 | 24267 | 24268 | 24269 |
| 428 | 24270 | 24271 | 24272 | 24274 | 24275 | 24276 | 24277 | 24278 | 24279 |
| 429 | 24280 | 24281 | 24282 | 24284 | 24285 | 24286 | 24287 | 24288 | 24289 |
| 430 | 24290 | 24291 | 24292 | 24294 | 24295 | 24296 | 24297 | 24298 | 24299 |
| 431 | 24300 | 24301 | 24302 | 24304 | 24305 | 24306 | 24307 | 24308 | 24309 |
| 432 | 24310 | 24311 | 24312 | 24314 | 24315 | 24316 | 24317 | 24318 | 24319 |
| 433 | 24320 | 24321 | 24322 | 24324 | 24325 | 24326 | 24327 | 24328 | 24329 |
| 434 | 24330 | 24331 | 24332 | 24334 | 24335 | 24336 | 24337 | 24338 | 24339 |
| 435 | 24340 | 24341 | 24342 | 24344 | 24345 | 24346 | 24347 | 24348 | 24349 |
| 436 | 24350 | 24351 | 24352 | 24354 | 24355 | 24356 | 24357 | 24358 | 24359 |
| 437 | 24360 | 24361 | 24362 | 24364 | 24365 | 24366 | 24367 | 24368 | 24369 |
| 438 | 24370 | 24371 | 24372 | 24374 | 24375 | 24376 | 24377 | 24378 | 24379 |
| 439 | 24380 | 24381 | 24382 | 24384 | 24385 | 24386 | 24387 | 24388 | 24389 |
| 440 | 24390 | 24391 | 24392 | 24394 | 24395 | 24396 | 24397 | 24398 | 24399 |
| 441 | 24400 | 24401 | 24402 | 24404 | 24405 | 24406 | 24407 | 24408 | 24409 |
| 442 | 24410 | 24411 | 24412 | 24414 | 24415 | 24416 | 24417 | 24418 | 24419 |
| 443 | 24420 | 24421 | 24422 | 24424 | 24425 | 24426 | 24427 | 24428 | 24429 |
| 444 | 24430 | 24431 | 24432 | 24434 | 24435 | 24436 | 24437 | 24438 | 24439 |
| 445 | 24440 | 24441 | 24442 | 24444 | 24445 | 24446 | 24447 | 24448 | 24449 |
| 446 | 24450 | 24451 | 24452 | 24454 | 24455 | 24456 | 24457 | 24458 | 24459 |
| 447 | 24460 | 24461 | 24462 | 24464 | 24465 | 24466 | 24467 | 24468 | 24469 |
| 448 | 24470 | 24471 | 24472 | 24474 | 24475 | 24476 | 24477 | 24478 | 24479 |
| 449 | 24480 | 24481 | 24482 | 24484 | 24485 | 24486 | 24487 | 24488 | 24489 |
| 450 | 24490 | 24491 | 24492 | 24494 | 24495 | 24496 | 24497 | 24498 | 24499 |


| Data No. | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Posi- } \\ \text { tioning } \\ \text { identi- } \\ \text { fier } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | Command speed |  | Positioningaddress |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | Loworder | Highorder | Loworder | Highorder |
| 451 | 24500 | 24501 | 24502 | 24504 | 24505 | 24506 | 24507 | 24508 | 24509 |
| 452 | 24510 | 24511 | 24512 | 24514 | 24515 | 24516 | 24517 | 24518 | 24519 |
| 453 | 24520 | 24521 | 24522 | 24524 | 24525 | 24526 | 24527 | 24528 | 24529 |
| 454 | 24530 | 24531 | 24532 | 24534 | 24535 | 24536 | 24537 | 24538 | 24539 |
| 455 | 24540 | 24541 | 24542 | 24544 | 24545 | 24546 | 24547 | 24548 | 24549 |
| 456 | 24550 | 24551 | 24552 | 24554 | 24555 | 24556 | 24557 | 24558 | 24559 |
| 457 | 24560 | 24561 | 24562 | 24564 | 24565 | 24566 | 24567 | 24568 | 24569 |
| 458 | 24570 | 2457 | 24572 | 2457 | 24575 | 24576 | 24577 | 24578 | 24579 |
| 459 | 24580 | 24581 | 24582 | 24584 | 24585 | 24586 | 24587 | 24588 | 24589 |
| 460 | 24590 | 24591 | 24592 | 24594 | 24595 | 24596 | 24597 | 24598 | 24599 |
| 461 | 24600 | 24601 | 24602 | 24604 | 24605 | 24606 | 24607 | 24608 | 24609 |
| 462 | 24610 | 2461 | 24612 | 2461 | 24615 | 24616 | 24617 | 24618 | 24619 |
| 463 | 24620 | 24621 | 24622 | 24624 | 24625 | 24626 | 24627 | 24628 | 24629 |
| 464 | 24630 | 24631 | 24632 | 24634 | 24635 | 24636 | 24637 | 24638 | 24639 |
| 465 | 24640 | 24641 | 24642 | 24644 | 24645 | 24646 | 24647 | 24648 | 24649 |
| 466 | 24650 | 24651 | 24652 | 24654 | 24655 | 24656 | 24657 | 24658 | 24659 |
| 467 | 2466 | 2466 | 24662 | 2466 | 24665 | 24666 | 24667 | 24668 | 24669 |
| 468 | 24670 | 24671 | 24672 | 24674 | 24675 | 24676 | 24677 | 24678 | 24679 |
| 469 | 24680 | 24681 | 24682 | 24684 | 24685 | 24686 | 24687 | 24688 | 24689 |
| 470 | 24690 | 24691 | 24692 | 24694 | 24695 | 24696 | 24697 | 24698 | 9 |
| 471 | 24700 | 2470 | 24702 | 2470 | 24705 | 24706 | 24707 | 24708 | 24709 |
| 472 | 24710 | 24711 | 24712 | 24714 | 24715 | 24716 | 24717 | 24718 | 24719 |
| 473 | 24720 | 24721 | 24722 | 24724 | 24725 | 24726 | 24727 | 24728 | 24729 |
| 474 | 24730 | 24 | 24732 | 2473 | 24735 | 24736 | 24737 | 24738 | 24739 |
| 475 | 24740 | 24741 | 24742 | 24744 | 24745 | 24746 | 24747 | 24748 | 24749 |
| 476 | 24750 | 24751 | 24752 | 24754 | 24755 | 24756 | 24757 | 24758 | 24759 |
| 477 | 24760 | 24761 | 24762 | 24764 | 24765 | 24766 | 24767 | 24768 | 24769 |
| 478 | 24770 | 24771 | 24772 | 24774 | 24775 | 24776 | 24777 | 24778 | 24779 |
| 479 | 24780 | 2478 | 24782 | 2478 | 24785 | 24786 | 24787 | 24788 | 24789 |
| 480 | 24790 | 24791 | 24792 | 24794 | 24795 | 24796 | 24797 | 24798 | 24799 |
| 481 | 24800 | 24801 | 24802 | 24804 | 24805 | 24806 | 24807 | 24808 | 24809 |
| 482 | 24810 | 24811 | 24812 | 24814 | 24815 | 24816 | 24817 | 24818 | 24819 |
| 483 | 24820 | 24821 | 24822 | 24824 | 24825 | 24826 | 24827 | 24828 | 24829 |
| 484 | 24830 | 2483 | 24832 | 2483 | 24835 | 24836 | 24837 | 24838 | 24839 |
| 485 | 24840 | 24841 | 24842 | 24844 | 24845 | 24846 | 24847 | 24848 | 24849 |
| 486 | 24850 | 24851 | 24852 | 24854 | 24855 | 24856 | 24857 | 24858 | 24859 |
| 487 | 24860 | 24861 | 24862 | 24864 | 24865 | 24866 | 24867 | 24868 | 24869 |
| 488 | 24870 | 24871 | 24872 | 24874 | 24875 | 24876 | 24877 | 24878 | 24879 |
| 489 | 24880 | 24881 | 24882 | 24884 | 24885 | 24886 | 24887 | 24888 | 24889 |
| 490 | 24890 | 24891 | 24892 | 24894 | 24895 | 24896 | 24897 | 24898 | 24899 |
| 491 | 24900 | 24901 | 24902 | 24904 | 24905 | 24906 | 24907 | 24908 | 24909 |
| 492 | 24910 | 24911 | 24912 | 24914 | 24915 | 24916 | 24917 | 24918 | 24919 |
| 493 | 24920 | 24921 | 24922 | 24924 | 24925 | 24926 | 24927 | 24928 | 24929 |
| 494 | 24930 | 24931 | 24932 | 24934 | 24935 | 24936 | 24937 | 24938 | 24939 |
| 495 | 24940 | 24941 | 24942 | 24944 | 24945 | 24946 | 24947 | 24948 | 24949 |
| 496 | 24950 | 24951 | 24952 | 24954 | 24955 | 24956 | 24957 | 24958 | 24959 |
| 497 | 24960 | 24961 | 24962 | 24964 | 24965 | 24966 | 24967 | 24968 | 24969 |
| 498 | 24970 | 24971 | 24972 | 24974 | 24975 | 24976 | 24977 | 24978 | 24979 |
| 499 | 24980 | 24981 | 24982 | 24984 | 24985 | 24986 | 24987 | 24988 | 24989 |
| 500 | 24990 | 24991 | 24992 | 24994 | 24995 | 24996 | 24997 | 24998 | 24999 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwelltime | Command speed |  | Positioning address |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | Highorder | $\begin{aligned} & \text { Low- } \\ & \text { order } \end{aligned}$ | $\begin{array}{l\|} \hline \text { High- } \\ \text { order } \end{array}$ | Loworder | Highorder |
| 501 | 25000 | 25001 | 25002 | 25004 | 25005 | 25006 | 25007 | 25008 | 25009 |
| 502 | 25010 | 25011 | 25012 | 25014 | 25015 | 25016 | 25017 | 25018 | 25019 |
| 503 | 25020 | 25021 | 25022 | 25024 | 25025 | 25026 | 25027 | 25028 | 25029 |
| 504 | 25030 | 25031 | 25032 | 25034 | 25035 | 25036 | 25037 | 25038 | 25039 |
| 505 | 25040 | 25041 | 25042 | 25044 | 25045 | 25046 | 25047 | 25048 | 25049 |
| 506 | 25050 | 25051 | 25052 | 25054 | 25055 | 25056 | 25057 | 25058 | 25059 |
| 507 | 25060 | 25061 | 25062 | 25064 | 25065 | 25066 | 25067 | 25068 | 25069 |
| 508 | 25070 | 25071 | 25072 | 25074 | 25075 | 25076 | 25077 | 25078 | 25079 |
| 509 | 25080 | 25081 | 25082 | 25084 | 25085 | 25086 | 25087 | 25088 | 25089 |
| 510 | 25090 | 25091 | 25092 | 25094 | 25095 | 25096 | 25097 | 25098 | 25099 |
| 511 | 25100 | 25101 | 25102 | 25104 | 25105 | 25106 | 25107 | 25108 | 25109 |
| 512 | 25110 | 25111 | 25112 | 25114 | 25115 | 25116 | 25117 | 25118 | 25119 |
| 513 | 25120 | 25121 | 25122 | 25124 | 25125 | 25126 | 25127 | 25128 | 25129 |
| 514 | 25130 | 25131 | 25132 | 25134 | 25135 | 25136 | 25137 | 25138 | 25139 |
| 515 | 25140 | 25141 | 25142 | 25144 | 25145 | 25146 | 25147 | 25148 | 49 |
| 516 | 25150 | 25151 | 25152 | 25154 | 25155 | 25156 | 25157 | 25158 | 25159 |
| 517 | 25160 | 25161 | 25162 | 25164 | 25165 | 25166 | 25167 | 25168 | 25169 |
| 518 | 25170 | 25171 | 25172 | 25174 | 25175 | 25176 | 25177 | 25178 | 25179 |
| 519 | 25180 | 25181 | 25182 | 25184 | 25185 | 25186 | 25187 | 25188 | 25189 |
| 520 | 25190 | 25191 | 25192 | 25194 | 25195 | 25196 | 25197 | 25198 | 25199 |
| 521 | 25200 | 25201 | 25202 | 25204 | 25205 | 25206 | 25207 | 25208 | 25209 |
| 522 | 25210 | 25211 | 25212 | 25214 | 25215 | 25216 | 25217 | 25218 | 25219 |
| 523 | 25220 | 25221 | 25222 | 25224 | 25225 | 25226 | 25227 | 25228 | 25229 |
| 524 | 25230 | 25231 | 25232 | 25234 | 25235 | 25236 | 25237 | 25238 | 25239 |
| 525 | 25240 | 25241 | 25242 | 25244 | 25245 | 25246 | 25247 | 25248 | 25249 |
| 526 | 25250 | 25251 | 25252 | 25254 | 25255 | 25256 | 25257 | 25258 | 25259 |
| 527 | 25260 | 25261 | 25262 | 25264 | 25265 | 25266 | 25267 | 25268 | 25269 |
| 528 | 25270 | 25271 | 25272 | 25274 | 25275 | 25276 | 25277 | 25278 | 25279 |
| 529 | 25280 | 25281 | 25282 | 25284 | 25285 | 25286 | 25287 | 25288 | 25289 |
| 530 | 25290 | 25291 | 25292 | 25294 | 25295 | 25296 | 25297 | 25298 | 25299 |
| 531 | 25300 | 25301 | 25302 | 25304 | 25305 | 25306 | 25307 | 25308 | 25309 |
| 532 | 25310 | 25311 | 25312 | 25314 | 25315 | 25316 | 25317 | 25318 | 25319 |
| 533 | 25320 | 25321 | 25322 | 25324 | 25325 | 25326 | 25327 | 25328 | 25329 |
| 534 | 25330 | 25331 | 25332 | 25334 | 25335 | 25336 | 25337 | 25338 | 25339 |
| 535 | 25340 | 25341 | 25342 | 25344 | 25345 | 25346 | 25347 | 25348 | 25349 |
| 536 | 25350 | 25351 | 25352 | 25354 | 25355 | 25356 | 25357 | 25358 | 25359 |
| 537 | 25360 | 25361 | 25362 | 25364 | 25365 | 25366 | 25367 | 25368 | 25369 |
| 538 | 25370 | 25371 | 25372 | 25374 | 25375 | 25376 | 25377 | 25378 | 25379 |
| 539 | 25380 | 25381 | 25382 | 25384 | 25385 | 25386 | 25387 | 25388 | 25389 |
| 540 | 25390 | 25391 | 25392 | 25394 | 25395 | 25396 | 25397 | 25398 | 25399 |
| 541 | 25400 | 25401 | 25402 | 25404 | 25405 | 25406 | 25407 | 25408 | 25409 |
| 542 | 25410 | 25411 | 25412 | 25414 | 25415 | 25416 | 25417 | 25418 | 25419 |
| 543 | 25420 | 25421 | 25422 | 25424 | 25425 | 25426 | 25427 | 25428 | 25429 |
| 544 | 25430 | 25431 | 25432 | 25434 | 25435 | 25436 | 25437 | 25438 | 25439 |
| 545 | 25440 | 25441 | 25442 | 25444 | 25445 | 25446 | 25447 | 25448 | 25449 |
| 546 | 25450 | 25451 | 25452 | 25454 | 25455 | 25456 | 25457 | 25458 | 25459 |
| 547 | 25460 | 25461 | 25462 | 25464 | 25465 | 25466 | 25467 | 25468 | 25469 |
| 548 | 25470 | 25471 | 25472 | 25474 | 25475 | 25476 | 25477 | 25478 | 25479 |
| 549 | 25480 | 25481 | 25482 | 25484 | 25485 | 25486 | 25487 | 25488 | 25489 |
| 550 | 25490 | 25491 | 25492 | 25494 | 25495 | 25496 | 25497 | 25498 | 25499 |


| Data No. | Positioning identifier | $\begin{gathered} \mathrm{M} \\ \text { code } \end{gathered}$ | Dwell time | $\begin{gathered} \text { Command } \\ \text { speed } \end{gathered}$ |  | Positioning |  | Arc data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Loworder | $\begin{array}{\|l\|} \hline \text { High- } \\ \text { order } \\ \hline \end{array}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \end{aligned}$ | Loworder | $\begin{aligned} & \text { High- } \\ & \text { order } \\ & \hline \end{aligned}$ |
| 551 | 25500 | 25501 | 25502 | 25504 | 25505 | 25506 | 25507 | 25508 | 25509 |
| 552 | 25510 | 25511 | 25512 | 25514 | 25515 | 25516 | 25517 | 25518 | 25519 |
| 553 | 25520 | 25521 | 25522 | 25524 | 25525 | 25526 | 25527 | 25528 | 25529 |
| 55 | 25530 | 2553 | 25532 | 25534 | 25535 | 25536 | 25537 | 25538 | 25539 |
| 555 | 25540 | 25541 | 25542 | 25544 | 25545 | 25546 | 25547 | 25548 | 25549 |
| 556 | 25550 | 25551 | 25552 | 25554 | 25555 | 25556 | 25557 | 25558 | 25559 |
| 557 | 25560 | 25561 | 25562 | 25564 | 25565 | 25566 | 25567 | 25568 | 25569 |
| 558 | 25570 | 2557 | 25572 | 25574 | 25575 | 25576 | 25577 | 25578 | 25579 |
| 559 | 25580 | 25581 | 25582 | 25584 | 25585 | 25586 | 25587 | 25588 | 25589 |
| 560 | 25590 | 25591 | 25592 | 25594 | 25595 | 25596 | 25597 | 25598 | 25599 |
| 561 | 25600 | 25601 | 25602 | 25604 | 25605 | 25606 | 25607 | 25608 | 25609 |
| 562 | 25610 | 25611 | 25612 | 25614 | 25615 | 25616 | 25617 | 25618 | 25619 |
| 563 | 25620 | 25621 | 25622 | 25624 | 25625 | 25626 | 25627 | 25628 | 25629 |
| 564 | 25630 | 25631 | 25632 | 25634 | 25635 | 25636 | 25637 | 25638 | 25639 |
| 565 | 25640 | 25641 | 25642 | 25644 | 25645 | 25646 | 25647 | 25648 | 25649 |
| 566 | 25650 | 2565 | 25652 | 25654 | 25655 | 25656 | 25657 | 25658 | 25659 |
| 567 | 2566 | 256 | 25 | 25664 | 25665 | 25 | 25667 | 25668 | 69 |
| 568 | 25670 | 2567 | 25672 | 25674 | 25675 | 25676 | 25677 | 25678 | 25679 |
| 569 | 25680 | 2568 | 25682 | 25684 | 25685 | 25686 | 25687 | 25688 | 25689 |
| 570 | 25690 | 25691 | 25692 | 25694 | 25695 | 25696 | 25697 | 25698 | 25699 |
| 571 | 25700 | 2570 | 25702 | 25704 | 25705 | 25706 | 25707 | 25708 | 25709 |
| 572 | 2571 | 2571 | 25712 | 25714 | 25715 | 25716 | 25717 | 25718 | 25719 |
| 573 | 25720 | 25721 | 25722 | 25724 | 25725 | 25726 | 25727 | 25728 | 25729 |
| 574 | 25730 | 2573 | 25732 | 25734 | 25735 | 25736 | 25737 | 25738 | 25739 |
| 575 | 25740 | 25741 | 25742 | 25744 | 25745 | 25746 | 25747 | 25748 | 25749 |
| 57 | 2575 | 2575 | 25752 | 25754 | 25755 | 25756 | 25757 | 25758 | 25759 |
| 577 | 25760 | 25761 | 25762 | 25764 | 25765 | 25766 | 25767 | 25768 | 25769 |
| 578 | 25770 | 25771 | 25772 | 25774 | 25775 | 25776 | 25777 | 25778 | 25779 |
| 57 | 25780 | 2578 | 25782 | 25784 | 25785 | 25786 | 25787 | 25788 | 25789 |
| 580 | 25790 | 25791 | 25792 | 25794 | 25795 | 25796 | 25797 | 25798 | 25799 |
| 581 | 25800 | 2580 | 25802 | 25804 | 25805 | 25806 | 25807 | 25808 | 25809 |
| 582 | 25810 | 2581 | 25812 | 25814 | 25815 | 25816 | 25817 | 25818 | 25819 |
| 583 | 25820 | 25821 | 25822 | 25824 | 25825 | 25826 | 25827 | 25828 | 25829 |
| 584 | 25830 | 2583 | 25832 | 25834 | 25835 | 25836 | 25837 | 25838 | 25839 |
| 585 | 25840 | 25841 | 25842 | 25844 | 25845 | 25846 | 25847 | 25848 | 25849 |
| 586 | 25850 | 2585 | 25852 | 25854 | 25855 | 25856 | 25857 | 25858 | 25859 |
| 587 | 25860 | 25861 | 25862 | 25864 | 25865 | 25866 | 25867 | 25868 | 25869 |
| 588 | 25870 | 25871 | 25872 | 25874 | 25875 | 25876 | 25877 | 25878 | 25879 |
| 589 | 25880 | 25881 | 25882 | 25884 | 25885 | 25886 | 25887 | 25888 | 25889 |
| 590 | 25890 | 25891 | 25892 | 25894 | 25895 | 25896 | 25897 | 25898 | 25899 |
| 591 | 25900 | 25901 | 25902 | 25904 | 25905 | 25906 | 25907 | 25908 | 25909 |
| 592 | 25910 | 2591 | 25912 | 25914 | 25915 | 25916 | 25917 | 25918 | 25919 |
| 593 | 25920 | 25921 | 25922 | 25924 | 25925 | 25926 | 25927 | 25928 | 25929 |
| 594 | 25930 | 25931 | 25932 | 25934 | 25935 | 25936 | 25937 | 25938 | 25939 |
| 595 | 25940 | 25941 | 25942 | 25944 | 25945 | 25946 | 25947 | 25948 | 25949 |
| 596 | 25950 | 25951 | 25952 | 25954 | 25955 | 25956 | 25957 | 25958 | 25959 |
| 597 | 25960 | 25961 | 25962 | 25964 | 25965 | 25966 | 25967 | 25968 | 25969 |
| 598 | 25970 | 25971 | 25972 | 25974 | 25975 | 25976 | 25977 | 25978 | 25979 |
| 599 | 25980 | 25981 | 25982 | 25984 | 25985 | 25986 | 25987 | 25988 | 25989 |
| 600 | 25990 | 25991 | 25992 | 25994 | 25995 | 25996 | 25997 | 25998 | 25999 |

(a) For axis 4 (positioning option)

| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 20003 | 51 | 20503 | 101 | 21003 | 151 | 21503 | 201 | 22003 | 251 | 22503 |
| 2 | 20013 | 52 | 20513 | 102 | 21013 | 152 | 21513 | 202 | 22013 | 252 | 22513 |
| 3 | 20023 | 53 | 20523 | 103 | 21023 | 153 | 21523 | 203 | 22023 | 253 | 22523 |
| 4 | 20033 | 54 | 20533 | 104 | 21033 | 154 | 21533 | 204 | 22033 | 254 | 22533 |
| 5 | 20043 | 55 | 20543 | 105 | 21043 | 155 | 21543 | 205 | 22043 | 255 | 22543 |
| 6 | 20053 | 56 | 20553 | 106 | 21053 | 156 | 21553 | 206 | 22053 | 256 | 22553 |
| 7 | 20063 | 57 | 20563 | 107 | 21063 | 157 | 21563 | 207 | 22063 | 257 | 22563 |
| 8 | 20073 | 58 | 20573 | 108 | 21073 | 158 | 21573 | 208 | 22073 | 258 | 22573 |
| 9 | 20083 | 59 | 20583 | 109 | 21083 | 159 | 21583 | 209 | 22083 | 259 | 22583 |
| 10 | 20093 | 60 | 20593 | 110 | 21093 | 160 | 21593 | 210 | 22093 | 260 | 22593 |
| 11 | 20103 | 61 | 20603 | 111 | 21103 | 161 | 21603 | 211 | 22103 | 261 | 22603 |
| 12 | 20113 | 62 | 20613 | 112 | 21113 | 162 | 21613 | 212 | 22113 | 262 | 22613 |
| 13 | 20123 | 63 | 20623 | 113 | 21123 | 163 | 21623 | 213 | 22123 | 263 | 22623 |
| 14 | 20133 | 64 | 20633 | 114 | 21133 | 164 | 21633 | 214 | 22133 | 264 | 22633 |
| 15 | 20143 | 65 | 20643 | 115 | 21143 | 165 | 21643 | 215 | 22143 | 265 | 22643 |
| 16 | 20153 | 66 | 20653 | 116 | 21153 | 166 | 21653 | 216 | 22153 | 266 | 22653 |
| 17 | 20163 | 67 | 20663 | 117 | 21163 | 167 | 21663 | 217 | 22163 | 267 | 22663 |
| 18 | 20173 | 68 | 20673 | 118 | 21173 | 168 | 21673 | 218 | 22173 | 268 | 22673 |
| 19 | 20183 | 69 | 20683 | 119 | 21183 | 169 | 21683 | 219 | 22183 | 269 | 22683 |
| 20 | 20193 | 70 | 20693 | 120 | 21193 | 170 | 21693 | 220 | 22193 | 270 | 22693 |
| 21 | 20203 | 71 | 20703 | 121 | 21203 | 171 | 21703 | 221 | 22203 | 271 | 22703 |
| 22 | 20213 | 72 | 20713 | 122 | 21213 | 172 | 21713 | 222 | 22213 | 272 | 22713 |
| 23 | 20223 | 73 | 20723 | 123 | 21223 | 173 | 21723 | 223 | 22223 | 273 | 22723 |
| 24 | 20233 | 74 | 20733 | 124 | 21233 | 174 | 21733 | 224 | 22233 | 274 | 22733 |
| 25 | 20243 | 75 | 20743 | 125 | 21243 | 175 | 21743 | 225 | 22243 | 275 | 22743 |
| 26 | 20253 | 76 | 20753 | 126 | 21253 | 176 | 21753 | 226 | 22253 | 276 | 22753 |
| 27 | 20263 | 77 | 20763 | 127 | 21263 | 177 | 21763 | 227 | 22263 | 277 | 22763 |
| 28 | 20273 | 78 | 20773 | 128 | 21273 | 178 | 21773 | 228 | 22273 | 278 | 22773 |
| 29 | 20283 | 79 | 20783 | 129 | 21283 | 179 | 21783 | 229 | 22283 | 279 | 22783 |
| 30 | 20293 | 80 | 20793 | 130 | 21293 | 180 | 21793 | 230 | 22293 | 280 | 22793 |
| 31 | 20303 | 81 | 20803 | 131 | 21303 | 181 | 21803 | 231 | 22303 | 281 | 22803 |
| 32 | 20313 | 82 | 20813 | 132 | 21313 | 182 | 21813 | 232 | 22313 | 282 | 22813 |
| 33 | 20323 | 83 | 20823 | 133 | 21323 | 183 | 21823 | 233 | 22323 | 283 | 22823 |
| 34 | 20333 | 84 | 20833 | 134 | 21333 | 184 | 21833 | 234 | 22333 | 284 | 22833 |
| 35 | 20343 | 85 | 20843 | 135 | 21343 | 185 | 21843 | 235 | 22343 | 285 | 22843 |
| 36 | 20353 | 86 | 20853 | 136 | 21353 | 186 | 21853 | 236 | 22353 | 286 | 22853 |
| 37 | 20363 | 87 | 20863 | 137 | 21363 | 187 | 21863 | 237 | 22363 | 287 | 22863 |
| 38 | 20373 | 88 | 20873 | 138 | 21373 | 188 | 21873 | 238 | 22373 | 288 | 22873 |
| 39 | 20383 | 89 | 20883 | 139 | 21383 | 189 | 21883 | 239 | 22383 | 289 | 22883 |
| 40 | 20393 | 90 | 20893 | 140 | 21393 | 190 | 21893 | 240 | 22393 | 290 | 22893 |
| 41 | 20403 | 91 | 20903 | 141 | 21403 | 191 | 21903 | 241 | 22403 | 291 | 22903 |
| 42 | 20413 | 92 | 20913 | 142 | 21413 | 192 | 21913 | 242 | 22413 | 292 | 22913 |
| 43 | 20423 | 93 | 20923 | 143 | 21423 | 193 | 21923 | 243 | 22423 | 293 | 22923 |
| 44 | 20433 | 94 | 20933 | 144 | 21433 | 194 | 21933 | 244 | 22433 | 294 | 22933 |
| 45 | 20443 | 95 | 20943 | 145 | 21443 | 195 | 21943 | 245 | 22443 | 295 | 22943 |
| 46 | 20453 | 96 | 20953 | 146 | 21453 | 196 | 21953 | 246 | 22453 | 296 | 22953 |
| 47 | 20463 | 97 | 20963 | 147 | 21463 | 197 | 21963 | 247 | 22463 | 297 | 22963 |
| 48 | 20473 | 98 | 20973 | 148 | 21473 | 198 | 21973 | 248 | 22473 | 298 | 22973 |
| 49 | 20483 | 99 | 20983 | 149 | 21483 | 199 | 21983 | 249 | 22483 | 299 | 22983 |
| 50 | 20493 | 100 | 20993 | 150 | 21493 | 200 | 21993 | 250 | 22493 | 300 | 22993 |


| Data No. | Positioning option |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | 23003 | 351 | 23503 | 401 | 24003 | 451 | 24503 | 501 | 25003 | 551 | 25503 |
| 302 | 23013 | 352 | 23513 | 402 | 24013 | 452 | 24513 | 502 | 25013 | 552 | 25513 |
| 303 | 23023 | 353 | 23523 | 403 | 24023 | 453 | 24523 | 503 | 25023 | 553 | 25523 |
| 304 | 23033 | 354 | 23533 | 404 | 24033 | 454 | 24533 | 504 | 25033 | 554 | 25533 |
| 305 | 23043 | 355 | 23543 | 405 | 24043 | 455 | 24543 | 505 | 25043 | 555 | 25543 |
| 306 | 23053 | 356 | 23553 | 406 | 24053 | 456 | 24553 | 506 | 25053 | 556 | 25553 |
| 307 | 23063 | 357 | 23563 | 407 | 24063 | 457 | 24563 | 507 | 25063 | 557 | 25563 |
| 308 | 23073 | 358 | 23573 | 408 | 24073 | 458 | 24573 | 508 | 25073 | 558 | 25573 |
| 309 | 23083 | 359 | 23583 | 409 | 24083 | 459 | 24583 | 509 | 25083 | 559 | 25583 |
| 310 | 23093 | 360 | 23593 | 410 | 24093 | 460 | 24593 | 510 | 25093 | 560 | 25593 |
| 311 | 23103 | 361 | 23603 | 411 | 24103 | 461 | 24603 | 511 | 25103 | 561 | 25603 |
| 312 | 23113 | 362 | 23613 | 412 | 24113 | 462 | 24613 | 512 | 25113 | 562 | 25613 |
| 313 | 23123 | 363 | 23623 | 413 | 24123 | 463 | 24623 | 513 | 25123 | 563 | 25623 |
| 314 | 23133 | 364 | 23633 | 414 | 24133 | 464 | 24633 | 514 | 25133 | 564 | 25633 |
| 315 | 23143 | 365 | 23643 | 415 | 24143 | 465 | 24643 | 515 | 25143 | 565 | 25643 |
| 316 | 23153 | 366 | 23653 | 416 | 24153 | 466 | 24653 | 516 | 25153 | 566 | 25653 |
| 317 | 23163 | 367 | 23663 | 417 | 24163 | 467 | 24663 | 517 | 25163 | 567 | 25663 |
| 318 | 23173 | 368 | 23673 | 418 | 24173 | 468 | 24673 | 518 | 25173 | 568 | 25673 |
| 319 | 23183 | 369 | 23683 | 419 | 24183 | 469 | 24683 | 519 | 25183 | 569 | 25683 |
| 320 | 23193 | 370 | 23693 | 420 | 24193 | 470 | 24693 | 520 | 25193 | 570 | 25693 |
| 321 | 23203 | 371 | 23703 | 421 | 24203 | 471 | 24703 | 521 | 25203 | 571 | 25703 |
| 322 | 23213 | 372 | 23713 | 422 | 24213 | 472 | 24713 | 522 | 25213 | 572 | 25713 |
| 323 | 23223 | 373 | 23723 | 423 | 24223 | 473 | 24723 | 523 | 25223 | 573 | 25723 |
| 324 | 23233 | 374 | 23733 | 424 | 24233 | 474 | 24733 | 524 | 25233 | 574 | 25733 |
| 325 | 23243 | 375 | 23743 | 425 | 24243 | 475 | 24743 | 525 | 25243 | 575 | 25743 |
| 326 | 23253 | 376 | 23753 | 426 | 24253 | 476 | 24753 | 526 | 25253 | 576 | 25753 |
| 327 | 23263 | 377 | 23763 | 427 | 24263 | 477 | 24763 | 527 | 25263 | 577 | 25763 |
| 328 | 23273 | 378 | 23773 | 428 | 24273 | 478 | 24773 | 528 | 25273 | 578 | 25773 |
| 329 | 23283 | 379 | 23783 | 429 | 24283 | 479 | 24783 | 529 | 25283 | 579 | 25783 |
| 330 | 23293 | 380 | 23793 | 430 | 24293 | 480 | 24793 | 530 | 25293 | 580 | 25793 |
| 331 | 23303 | 381 | 23803 | 431 | 24303 | 481 | 24803 | 531 | 25303 | 581 | 25803 |
| 332 | 23313 | 382 | 23813 | 432 | 24313 | 482 | 24813 | 532 | 25313 | 582 | 25813 |
| 333 | 23323 | 383 | 23823 | 433 | 24323 | 483 | 24823 | 533 | 25323 | 583 | 25823 |
| 334 | 23333 | 384 | 23833 | 434 | 24333 | 484 | 24833 | 534 | 25333 | 584 | 25833 |
| 335 | 23343 | 385 | 23843 | 435 | 24343 | 485 | 24843 | 535 | 25343 | 585 | 25843 |
| 336 | 23353 | 386 | 23853 | 436 | 24353 | 486 | 24853 | 536 | 25353 | 586 | 25853 |
| 337 | 23363 | 387 | 23863 | 437 | 24363 | 487 | 24863 | 537 | 25363 | 587 | 25863 |
| 338 | 23373 | 388 | 23873 | 438 | 24373 | 488 | 24873 | 538 | 25373 | 588 | 25873 |
| 339 | 23383 | 389 | 23883 | 439 | 24383 | 489 | 24883 | 539 | 25383 | 589 | 25883 |
| 340 | 23393 | 390 | 23893 | 440 | 24393 | 490 | 24893 | 540 | 25393 | 590 | 25893 |
| 341 | 23403 | 391 | 23903 | 441 | 24403 | 491 | 24903 | 541 | 25403 | 591 | 25903 |
| 342 | 23413 | 392 | 23913 | 442 | 24413 | 492 | 24913 | 542 | 25413 | 592 | 25913 |
| 343 | 23423 | 393 | 23923 | 443 | 24423 | 493 | 24923 | 543 | 25423 | 593 | 25923 |
| 344 | 23433 | 394 | 23933 | 444 | 24433 | 494 | 24933 | 544 | 25433 | 594 | 25933 |
| 345 | 23443 | 395 | 23943 | 445 | 24443 | 495 | 24943 | 545 | 25443 | 595 | 25943 |
| 346 | 23453 | 396 | 23953 | 446 | 24453 | 496 | 24953 | 546 | 25453 | 596 | 25953 |
| 347 | 23463 | 397 | 23963 | 447 | 24463 | 497 | 24963 | 547 | 25463 | 597 | 25963 |
| 348 | 23473 | 398 | 23973 | 448 | 24473 | 498 | 24973 | 548 | 25473 | 598 | 25973 |
| 349 | 23483 | 399 | 23983 | 449 | 24483 | 499 | 24983 | 549 | 25483 | 599 | 25983 |
| 350 | 23493 | 400 | 23993 | 450 | 24493 | 500 | 24993 | 550 | 25493 | 600 | 25993 |

## Appendix 4 Connection Examples

## Appendix 4.1

Connection examples with servo amplifiers manufactured by MITSUBISHI Electric Corporation
(1) Connection example of LD75DD and MR-J3-DA (Differential driver*5)

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
*2 The LD75D upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
*3 These are limit switches for the servo (for stop).
*4 This indicates the distance between the LD75D and servo amplifier.
*5 Check the logic for the LD75Dロ and servo amplifier in Page 69, Section 3.4.1. The LD75D is initially set to negative logic.

## Remark

- It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max. output pulse and max. connection distance between servos. (
- "FA-CBLQ75M2J3(-P) cable" can be used for connecting the LD75Dロ and MR-J3-ロA. (
........................................................................................


## (2) Connection example of LD75DD and MR-J3-■A (Differential driver) ${ }^{* 5}$


*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
*2 The LD75D upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
*3 These are limit switches for the servo (for stop).
*4 This indicates the distance between the LD75Dロ and servo amplifier.
*5 Use the same logic (positive logic/negative logic) for the LD75D and servo amplifier. The LD75DD is initially set to negative logic.

## Remark

It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max. output pulse and max. connection distance between servos. (

## （3）Connection example of LD75Dロ and MR－J3－םA（Differential driver）＊5


＊1 The logic for each I／O terminal can be changed with＂［Pr．22］Input signal logic selection＂and＂［Pr．23］Output signal logic selection＂in detailed parameters 1．（Negative logic is used for all terminals in the example above．）
＊2 The LD75D $u$ upper limit（FLS）and lower limit（RLS）are used in the OPR retry function．Set these signals inside the servo amplifier limit switches．
＊3 These are limit switches for the servo（for stop）．
＊4 This indicates the distance between the LD75D $\square$ and servo amplifier．
＊5 Use the same logic（positive logic／negative logic）for the LD75D and servo amplifier．The LD75DD is initially set to negative logic．

Remark
－It is recommended to make differential driver connection since differential driver connection is more excellent than open collector connection in max．output pulse and max．connection distance between servos．（5 Page 49，Section 3．1）
－＂FA－CBLQ75M2J2（－P）cable＂can be used for connecting the LD75Dロ and MR－J2S－ロA．（以 Page 47，Section 2．2）

## Appendix 4.2 <br> Connection examples with stepping motors manufactured by ORIENTALMOTOR Co., Ltd.

(1) Connection example of LD75PD and RK series (Open collector)* ${ }^{*}$

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.) The LD75D upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
*3 Refer to the manual of the stepping motor drive for information on the stepping motor drive side wiring and various signal wire shields not shown above.
*4 Use the same logic (positive logic/negative logic) for the LD75P $\square$ and stepping motor. The LD75Pロ is initially set to negative logic.
*5 This indicates the distance between the LD75Pロ and RK series.

## （2）Connection example of LD75PD and AR series（Open collector）${ }^{*} 4$


＊1 The logic for each I／O terminal can be changed with＂［Pr．22］Input signal logic selection＂and＂［Pr．23］Output signal logic selection＂in detailed parameters 1．（Negative logic is used for all terminals in the example above．）
＊2 The LD75P口 upper limit（FLS）and lower limit（RLS）are used in the OPR retry function．
＊3 Refer to the $\square \square$ manual of the stepping motor drive for information on the stepping motor drive side wiring and various signal wire shields not shown above．
＊4 Use the same logic（positive logic／negative logic）for the LD75P口 and stepping motor．The LD75Pロ is initially set to negative logic．
＊5 This indicates the distance between the LD75P $\square$ and AR series．

## Appendix 4.3 <br> Connection examples with servo amplifiers manufactured by Panasonic Corporation

(1) Connection example of LD75Dロ and MINAS-A4 series (Differential driver) ${ }^{*} 4$

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
*2 The LD75D upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
*3 Refer to the manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above.
*4 Use the same logic (positive logic/negative logic) for the LD75D and servo amplifier. The LD75DD is initially set to negative logic.
*5 This indicates the distance between the LD75D $\square$ and MINAS-A4 series.

## (2) Connection example of LD75DD and MINAS-E series (Differential driver) ${ }^{*} 4$


*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
*2 The LD75D upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
*3 Refer to the $\square]$ manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above
*4 Use the same logic (positive logic/negative logic) for the LD75Dロ and servo amplifier. The LD75DD is initially set to negative logic.
*5 This indicates the distance between the LD75D and MINAS-E series.

## Appendix 4.4

Connection examples with servo amplifiers manufactured by SANYO DENKI Co., Ltd.
(1) Connection example of LD75D $\square$ and $R$ series (Differential driver) ${ }^{*} 4$

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1 . (Negative logic is used for all terminals in the example above.)
*2 The LD75D servo amplifier limit switches.
*3 Refer to the manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above.
*4 Use the same logic (positive logic/negative logic) for the LD75DD and servo amplifier. The LD75DD is initially set to negative logic.
*5 This indicates the distance between the LD75DD and R series.
(1) Connection example of LD75Dロ and $\Sigma-\mathrm{V}$ series (Differential driver) ${ }^{*} 4$

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the example above.)
*2 The LD75D upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set these signals inside the servo amplifier limit switches.
*3 Refer to the manual of the servo amplifier for information on the servo amplifier side wiring and various signal wire shields not shown above.
*4 Use the same logic (positive logic/negative logic) for the LD75D and servo amplifier. The LD75Dロ is initially set to negative logic.
*5 This indicates the distance between the LD75DD and $\Sigma-\mathrm{V}$ series.

## Appendix 5 Differences with Q Series

## （1）Specification comparison

The following table compares specifications of the LD75 and QD75．Specifications not listed below are the same as the QD75．Recognized programs for the QD75 or external interfaces（cables）can be used for the LD75．

| Item |  | QD75Pロ／Dロ | QD75PロN／DIN | LD75 |
| :---: | :---: | :---: | :---: | :---: |
| Max．output pulse |  | 1Mpulse／s（differential） | 4Mpulse／s（differential） | 4Mpulse／s（differential） |
| Speed command（unit：pulse） |  | 1 to 1000000pulse／s | 1 to 4000000pulse／s | 1 to 4000000pulse／s |
| Starting time（1－axis linear control） |  | Trapezoidal acceleration／deceleration：6ms S－curve acceleration／deceleration： 6.5 ms | Trapezoidal acceleration／deceleration： 1.5 ms S－curve acceleration／deceleration： 1.6 ms | Trapezoidal acceleration／deceleration： 1.5 ms S－curve acceleration／deceleration： 1.6 ms |
| Monitor data refreshing cycle | Current feed value | 1.8 ms | 0.9 ms | 0.9 ms |
|  | Other axis monitors （except external I／O signals） | 56.8 ms | 0．9ms | 0.9 ms |
| Manual pulse generator 1 pulse input magnification |  | 1 to 100 | 1 to 1000 | 1 to 1000 |
| Applicable wire size for differential driver common terminal |  | 0.24 to $2.5 \mathrm{~mm}^{2}$ （24 to 12AWG） | 0.24 to $2.5 \mathrm{~mm}^{2}$ （ 24 to 12AWG） | 0.3 to $1.25 \mathrm{~mm}^{2}$ （22 to 16AWG） |

## （2）Precautions for utilizing programs

For utilizing programs which have been used in $Q$ series systems in the $L$ series，refer to the precautions when utilizing programs，described in the following manual．
［］MELSEC－L CPU Module User＇s Manual（Function Explanation，Program Fundamentals）

Memo

## Appendix 6 When Using GX Works2

The following shows the procedure for positioning operation when GX Works2 is used.

(1) $\square]$ GX Works2 Version 1 Operating Manual (Common)
(2) LD GX Works2 Version 1 Operating Manual (Common)
(3) $\Im$ Page 738, Appendix 6.1
(4) Ю Page 739, Appendix 6.2, Page 745, Appendix 6.3
(5) ๗ Page 235, CHAPTER 6
(6) Fage 235, CHAPTER 6
(7) 凸 Page 612, Section 13.3
(8) Page 756, Appendix 6.5, Page 763, Appendix 6.6, Page 765, Appendix 6.7
(9) ङ Page 746, Appendix 6.4

For details on the operation method of GX Works2, refer to the following.
[] GX Works2 Version 1 Operating Manual (Common)

## Appendix 6.1 <br> Adding a module

Add the model name of the positioning module to be used in the project.

## (1) Operating procedure

1. Open the "New Module..." dialog box.

2 Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ Right-click $\Rightarrow$ "New Module..."

2. Configure settings.

Set the following items.

| Item |  |  |
| :--- | :--- | :--- |
| Module Selection | Module Type | Select "LD75 Type Positioning Module". |
|  | Module Name | Select the model name of the module to be connected. |
| Mount Position | Mounted Slot No. | Select the number of the slot where the module is mounted. |
|  | Specify start X/Y address | The start I/O number (hexadecimal) of the module to be mounted on the slot set in <br> "Mounted Slot No." is displayed. The value can be changed. |
|  | Title | Enter a title. |

## Appendix 6.2 Parameter setting

Set parameters for the positioning module.
By setting parameters, the parameter setting by program is not needed.

## (1) Parameter setting

(a) Operating procedure

1. Open the "Parameter" window.

Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ Module name $\Rightarrow$ "Parameter"

2. Configure settings.

Double-click the setting-target item and select or enter a value.

- Items with a pull-down list

Double-click the item and select an item in the displayed pull-down list.

- Items without a pull-down list

Double-click the item and enter a value.
For details on the setting items, refer to the following.

| Item | Reference |
| :--- | :--- |
| Basic parameters 1 | Page 118, Section 5.2.1 |
| Basic parameters 2 | Page 125, Section 5.2.2 |
| Detailed parameters 1 | Page 126, Section 5.2.3 |
| Detailed parameters 2 | Page 133, Section 5.2.4 |
| OPR basic parameters | Page 140, Section 5.2.5 |
| OPR detailed parameters | Page 148, Section 5.2.6 |

## (2) Setting positioning data

## (a) Operating procedure

## 1. Open the "Parameter" window.

(2) Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ Module name $\Rightarrow$ "Positioning_Axis_\#口_Data"

2. Configure settings.

Double-click the setting-target item and select or enter a value.

- Items with a pull-down list

Double-click the item and select an item in the displayed pull-down list.

- Items without a pull-down list

Double-click the item and enter a value.

## Point ${ }^{\rho}$

In the default status, the data displayed on "Positioning_Axis_ロ_Data" are only No. 1 to No. 100 of positioning data. To display the data No. 101 and later, change the display range under "Display Specification of Positioning data".
[Tool] $\Rightarrow$ [Options...] $\Rightarrow$ "QD75/LD75 Type Positioning"
(Example) To display No. 1 to No. 120 of positioning data

```
Display Specification of Positioning Data
    CData No. }1\mathrm{ to }10
    - Specified Range Start No. 1 # -- End No. }120\mathrm{ #
```


## (b) Sub-function

- Offline Simulation

The locus and waveform of configured positioning data can be checked.


- Automatic Command Speed Calculation

Constant speed is automatically calculated by setting the time for positioning from the starting position to the target position.


## - Automatic Sub Arc Calculation

The circular interpolation control data for two positioning data interpolation is automatically created, by selecting two positioning data and setting the radius.


- M Code Comment Edit Set and display M code comments of the positioning module.


For details on each function, refer to the $[\square$ GX Works2 Version 1 Operating Manual (Intelligent Function Module)

## (3) Setting block starting data

## (a) Operating procedure

1. Open the "Parameter" window.

2 Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ Module name $\Rightarrow$ "Block_Starting_Data_Axis_\#口"

| 20000:LD75P4[]-Block_Starting_Data_Axis_\#1 |  |  |  |  | $\square \square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Display Filter | Block No. 0 | $\square$ |  |  |  |  |
| Point No. | Shape | Positioning start data | Special start instruction | Parameter | Condition data | A |
| 1 | 0:Exit | 200 | 00h:Normal Start | 0 |  |  |
| 2 | 0:Exit | 201 | 01h:Condition Start | 1 | O(Buffer Memory) $=$ |  |
| 3 | 0:Exit | 202 | 02h:Wait Start | 6 |  |  |
| 4 | 1:Continue | 203 | 03h:Simultaneous Start | 1 | 0 (Buffer Memory) $=$ |  |
| 5 | 1:Continue | 204 | 04h:FOR Loop | 0 | Repetition Count |  |
| 6 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |
| 11 |  |  |  |  |  | $\checkmark$ |
| 1 |  |  |  |  |  | - 11 |

2. Configure settings.

Double-click the setting-target item and select or enter a value.

- Items with a pull-down list

Double-click the item and select an item in the displayed pull-down list.

- Items without a pull-down list

Double-click the item and enter a value.
For details on the setting items, refer to Page 171, Section 5.4.

## Appendix 6.3 Setting auto refresh

Transfer data in the buffer memory of the positioning module to specified devices in the CPU module. By setting auto refresh, reading by program is not needed.

## (1) Operating procedure

## 1. Open the "Auto_Refresh" window.

2 Project window $\Rightarrow$ [Intelligent Function Module] $\Rightarrow$ Module name $\Rightarrow$ "Auto_Refresh"

2. Enter devices.

Click the text box of the item to be set, and enter the auto refresh target device.

## Point ${ }^{\rho}$

To validate the auto refresh data after writing them into the CPU module, power off and then on or reset the CPU module.

## Appendix 6.4

With the positioning monitor function, the LD75 operating status can be confirmed, and debugging can be performed. The following five types of monitors are available in this function:

- Axis Monitor: The actual status of each axis can be monitored.
- Starting History: 16 starting history logs of operations such as positioning operation, JOG operation, and manual pulse generator operation can be monitored.
- Error History: 16 error history logs can be monitored.
- Warning History: 16 warning history logs can be monitored.
- Module Information List: Signals and flag ON/OFF status of each axis can be monitored.


## (1) Axis Monitor

## (a) Operating procedure

1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 POSITIONING MODULE] $\Rightarrow$ [Positioning Monitor]


By default, the "Axis Monitor" window is displayed. When displaying the "Axis Monitor" window from the status which another window is selected, proceed according to the 2 . below.
2. Switching to the "Axis Monitor" window

Click the "Axis Monitor" button ( $\mathrm{Ead}_{\mathrm{d}}^{\mathrm{d}}$ ) on the toolbar.
The display switches to the "Axis Monitor" window.

3. Selecting the monitor type

Select the monitor type from the pull-down menu of "Monitor type".

- "Operation monitor"
- "Operation monitor (Axis control)"
- "Operation monitor (Speed-position switching control)"
- "Operation monitor (Position-speed switching control)"
- "Operation monitor (OPR monitor)"
- "Operation monitor (JOG/manual pulse)"



## 4. Selecting the monitor axis and monitor item

- Click the [Monitor Item Selection] button. The "Monitor Item Selection" window is displayed.

- Select the $\square$ of the axes and items to be monitored. The following shows the selectable monitor items for each monitor type.
- For "Operation monitor":

| Monitor item | Symbol of reference buffer memory | Reference |
| :---: | :---: | :---: |
| Current feed value | [Md.20] | Page 193, Section 5.6.2 |
| Axis feed speed | [Md.28] |  |
| Axis operation status | [Md.26] |  |
| Positioning data No. being executed | [Md.44] |  |
| Positioning data being executed running pattern | [Md.47] |  |
| Positioning data being executed control method |  |  |
| Positioning data being executed axis to be interpolated |  |  |
| Positioning data being executed acceleration time No. |  |  |
| Positioning data being executed deceleration time No. |  |  |
| Axis error No. ... | [Md.23] |  |
| Axis warning No. ... | [Md.24] |  |
| Valid M code | [Md.25] |  |

- For "Operation monitor (Axis control)":

| Monitor item | Symbol of reference buffer memory | Reference |
| :---: | :---: | :---: |
| Current feed value | [Md.20] | Page 193, Section 5.6.2 |
| Axis feed speed | [Md.28] |  |
| Axis operation status | [Md.26] |  |
| Target value | [Md.32] |  |
| Machine feed value | [Md.21] |  |
| New current value | [Cd.9] | Page 213, Section 5.7.2 |
| New speed value | [Cd.14] |  |
| Positioning operation speed override | [Cd.13] |  |
| Step mode | [Cd.34] |  |
| Step valid flag | [Cd.35] |  |
| Speed change being processed flag | [Md.40] | Page 193, Section 5.6.2 |
| Status speed change 0 flag | [Md.31] |  |
| External command valid | [Cd.8] | Page 213, Section 5.7.2 |
| Skip command | [Cd.37] |  |

- For "Operation monitor (Speed-position switching control)":

| Monitor item | Symbol of reference buffer memory | Reference |
| :---: | :---: | :---: |
| Current feed value | [Md.20] | Page 193, Section 5.6.2 |
| Axis feed speed | [Md.28] |  |
| Axis operation status | [Md.26] |  |
| Target speed | [Md.33] |  |
| Feedrate | [Md.22] |  |
| Current speed | [Md.27] |  |
| Positioning amount of speed and position switch control | [Md.29] |  |
| Speed-position switching control movement amount change register | [Cd.23] | Page 213, Section 5.7.2 |
| Status speed and position change latch flag | [Md.31] | Page 193, Section 5.6.2 |
| Speed-position switching enable flag | [Cd.24] | Page 213, Section 5.7.2 |
| Status speed controlling flag | [Md.31] | Page 193, Section 5.6.2 |

- For "Operation monitor (Position-speed switching control)":

| Monitor item | Symbol of reference buffer memory | Reference |
| :--- | :--- | :--- |
| Current feed value | $[\mathrm{Md.20}]$ |  |
| Axis feed speed | $[\mathrm{Md.28]}$ |  |
| Axis operation status | $[\mathrm{Md.26]}$ |  |
| Target speed | $[\mathrm{Md.33]}$ |  |
| Feedrate | $[\mathrm{Md.22]}$ |  |
| Current speed | $[\mathrm{Md.27}]$ | Page 213, Section 5.7.2 |
| Position-speed switching control speed <br> change register | $[\mathrm{Cd.25]}$ | Page 193, Section 5.6.2 |
| Status position and speed change latch flag | $[\mathrm{Md.31]}$ | Page 213, Section 5.7.2 |
| Position-speed switching enable flag | $[\mathrm{Cd.26]}$ | Page 193, Section 5.6.2 |
| Status speed controlling flag | $[\mathrm{Md.31]}$ |  |

- For "Operation monitor (OPR monitor)":

| Monitor item | Symbol of reference buffer memory | Reference |
| :---: | :---: | :---: |
| Current feed value | [Md.20] | Page 193, Section 5.6.2 |
| Axis feed speed | [Md.28] |  |
| Axis operation status | [Md.26] |  |
| Movement amount after near-point dog ON | [Md.34] |  |
| Torque limit stored value | [Md.35] |  |
| Status command in-position flag |  |  |
| Status OPR request flag | [Md.31] |  |
| Status OPR complete flag |  |  |
| External I/O signal lower limit | [Md.30] |  |
| External I/O signal upper limit |  |  |
| External I/O signal zero signal |  |  |
| External I/O signal near-point dog signal |  |  |
| External I/O signal deviation counter clear |  |  |

- For "Operation monitor (JOG/manual pulse)":

| Monitor item | Symbol of reference buffer memory or device No. of the output signal |  |  |  | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| Current feed value | [Md.20] |  |  |  | Page 193, Section 5.6.2 |
| Axis feed speed | [Md.28] |  |  |  |  |
| Axis operation status | [Md.26] |  |  |  |  |
| Forward JOG start | Y8 | YA | YC | YE | Page 68, Section 3.3.3 |
| Reverse JOG start | Y9 | YB | YD | YF |  |
| JOG speed | [Cd.17] |  |  |  | Page 213, Section 5.7.2 |
| JOG speed limit value | [Pr.31] |  |  |  | Page 133, Section 5.2.4 |
| JOG acceleration time | [Pr.32] |  |  |  |  |
| JOG deceleration time | [Pr.33] |  |  |  |  |
| Manual pulse generator enable flag | [Cd.21] |  |  |  | Page 213, Section 5.7.2 |
| Manual pulse generator input selection | [Pr.24] |  |  |  | Page 126, Section 5.2.3 |
| Manual pulse generator 1 pulse input magnification | [Cd.20] |  |  |  | Page 213, Section 5.7.2 |

- Click the [OK] button to close the "Monitor Item Selection" window. The selected items are reflected to the "Axis Monitor" window.

| 0000:LD75P4 - Axis Monitor |  |  | $\square \square$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Axis Monitor Monitor type: | Operation monitor $\quad$ - |  | Module Information List |  |  |  |  |  |  |  |
|  | Axis \#1 | Axis \#2 |  | READY( $\times 0$ ) |  |  |  |  |  | 슬 |
| Current feed value | 0 pulse | 0 pulse |  | ronization | flag |  |  |  |  |  |
| Axis feed speed | 0 pulse/s | 0 pulse/s |  | ON |  |  |  |  |  |  |
| Axis operation status | Standby | Standby |  | Axis No. | 1 | 2 | 3 | 4 |  |  |
| Valid M code | 0 | 0 | < | Axis No. | 1 | 2 | 3 | 4 |  | $v$ |

## (2) Starting History

(a) Operating procedure

1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 POSITIONING MODULE] $\Rightarrow$ [Positioning Monitor]

| -0000:LD75P4 - Axis Monitor |  |  |  |  | $\square \times$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Axis Monitor Monitor type: | Operation monitor |  | Font Size: 9 9pt $\quad$ Monitor Item Selection |  | Module Information List |  |  |  |  |  |  |  |
|  | Axis \#1 | Axis \#2 | Axis \#3 | Axis \#4 |  | READY(X0) |  |  |  |  |  |  |
| Current feed value | 0 pulse <br> Standly <br> Positioning complete | 0 pulse | 0 pulse | 0 pulse | - Synchronization flag(X1) |  |  |  |  |  |  |  |
| Axis operation status |  | Standby | Standby | Standby | M code ON |  |  |  |  |  |  |  |
| Positioning data being exe... |  | Positioning complete | Positioning complete | Positioning complete |  | Axis No. $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ |  |  |  |  |  |  |
| Positioning data being exe... | - |  | - - |  |  |  |  |  |  |  |  |  |
| Positioning data being exe... | - | - | - - |  |  | Error detection |  |  |  |  |  |  |
| Positioning data being exe... | 0:1000 | 0:1000 | 0:1000 0:1000 |  |  | Axis No. | 1 | 2 | 3 |  |  |  |
| Positioning data being exe... | 0:1000 | 0:1000 | 0:1000 0:1000 |  |  | BUSY |  |  |  |  |  |  |  |
| Axis error No. ... | 0 | 0 | 00 |  |  |  |  |  |  |  |  |  |  |
| Axis warning No. ... | 0 | 0 | 0 0 |  |  | Axis No. | 1 | 2 | 3 | 4 |  |  |
| Valid M code | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| < |  | III |  | $\rangle$ | $<$ | complete |  |  |  |  |  | $v$ |

## 2. Switching to the "Starting History" window

Click the "Starting History" button ( $\sqrt{\infty}$ ) on the toolbar.
The display switches to the "Starting History" window.


When the number of logs exceeds 16 , the latest log overwrites the oldest log so that the latest 16 starting histories can be monitored all the time.
Also, the error details can be confirmed by clicking the error number.
For details on the starting history, refer to Page 182, Section 5.6.1.

## (3) Error History

(a) Operating procedure

1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 POSITIONING MODULE] $\Rightarrow$ [Positioning Monitor]


## 2. Switching to the "Error History" window


The display switches to the "Error History" window.


When the number of logs exceeds 16 , the latest log overwrites the oldest log so that the latest 16 error histories can be monitored all the time.
Also, the error details can be confirmed by clicking the axis error No.

## (a) Operating procedure

## 1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 POSITIONING MODULE] $\Rightarrow$ [Positioning Monitor]

2. Switching to the "Warning History" window

Click the "Warning History" button ( 国 ) on the toolbar. $^{2}$
The display switches to the "Warning History" window.


When the number of logs exceeds 16, the latest log overwrites the oldest log so that the latest 16 warning histories can be monitored all the time.
Also, the error details can be confirmed by clicking the axis warning No.

## (5) Module Information List

## (a) Operating procedure

1. Starting the "Positioning Monitor" window

Display the "Positioning Monitor" window.
© [Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 POSITIONING MODULE] $\Rightarrow$ [Positioning Monitor]


The status by each axis of the following items is displayed in the "Module Information List" window.

| Monitor item | Device No. of the I/O signal device or symbol of the buffer memory to be referred |  |  |  | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |
| LD75 READY (X0) | X0 |  |  |  |  |
| Synchronization flag (X1) | X1 |  |  |  |  |
| M code ON | X4 | X5 | X6 | X7 |  |

Page 67, Section 3.3.2


Page 68, Section 3.3.3

| Forard JOG start | \% | , | , | YE | Page 68, Section 3.3.3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reverse JOG start | Y9 | YB | YD | YF |  |
| Positioning start | Y10 | Y11 | Y12 | Y13 |  |
| Execution prohibition flag | Y14 | Y15 | Y16 | Y17 |  |


| External I/O signal lower limit |  |  |
| :--- | :--- | :--- | :--- |
| External I/O signal upper limit |  |  |
| External I/O signal drive unit ready |  |  |

External I/O signal stop signal [Md.30] $\quad$ Page 193, Section 5.6.2

| External I/O signal external command |  |  |
| :--- | :--- | :--- |
| External I/O signal zero signal |  |  |
| External I/O signal near-point dog signal |  |  |
| External I/O signal deviation counter clear |  | Page 213, Section 5.7.2 |
| External command valid |  |  |
| Status speed controlling flag |  | Page 193, Section 5.6.2 |
| Status speed and position change latch flag |  |  |
| Status command in-position flag |  |  |
| Status OPR request flag |  |  |
| Status OPR complete flag |  |  |
| Status position and speed change latch flag |  |  |
| Status axis warning detection |  |  |

Statuses turned ON are displayed in green by each axis.


Also, at error occurrence, the axis in which the error occurred ("Error detection") is displayed in red. At occurrence of warning, the axis in which the warning occurred ("Status axis warning detection") is displayed in orange.

## Appendix 6.5

This function allows users to perform the following tests while monitoring the current status of the LD75.

- Positioning start test
- JOG/manual pulse generator/OPR test
- Speed change test
- Current value change test


## (1) Positioning start test

Test operation is performed by specifying the positioning data No. or point No. of the block start data.
(a) Operating procedure

1. Open the "Positioning Test" dialog box.

Display the "Positioning Test" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 Positioning Module] $\Rightarrow$ [Positioning/Test]

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".

## 3. Select the function.

Select "Positioning start signal" from the pull-down menu of "Select Function".


## 4. Perform positioning start test.

- Select "Positioning Start Signal", "Block Start", or "Multiple Axes Simultaneous Start" for "Start Type".
- Set positioning start data according to the setting for "Start Type".

Positioning Start Signal:
Set the positioning data No.
■Block Start:
Set the block No. and point No.
■Multiple Axes Simultaneous Start:
Set the multiple axes simultaneous start data No.
Set "Step" and "External Command" as needed.
Step:
To perform test operation by step start, check the "Start step" checkbox, select a step mode from the pull-down list, and click the [Continue] button.
External Command:
To enable external commands or control switch, select the corresponding item and click the [Set] button.

- Click the [Starting] button to perform test operation.


## (2) JOG/manual pulse generator/OPR test

The following test can be performed when positioning control is debugged by the JOG operation test or manual pulse operation test

- Direction check (forward run or reverse run)
- On/off status check of external input signals, such as upper/lower limit switches, zero signal, or near-point dog signal
- Operation test of speed and acceleration/deceleration
- Measurement of backlash compensation amount for forward/reverse rotation
- Accurate address check and movement amount measurement

In addition, the OP is established and the OPR basic and detailed parameters are corrected by the OPR test.
(a) Operating procedure

## 1. Open the "Positioning Test" dialog box.

Display the "Positioning Test" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 Positioning Module] $\Rightarrow$ [Positioning/Test]


## 2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".

## 3. Select the function.

Select "JOG/Manual Pulse Generator/OPR" from the pull-down menu of "Select Function".


- Perform each operation.
-JOG operation:
Set "JOG speed" to "1" or more, "Inching Movement Amount" to "0" and click the [Forward RUN] or [Reverse RUN] button.
Manual pulse generator operation:
Set "Manual pulse generator 1 pulse input magnification", select "Manual pulse generator enable flag" and use the manual pulse generator.
-OPR operation:
Select the OPR method from "Machine OPR" and "Fast OPR", and click the [OPR] button.


## (3) Speed change test

The appropriate speed and acceleration/deceleration time can be checked by changing speed or acceleration/deceleration time or by performing override to the axis where the positioning start test, OPR test, or JOG operation test is performed.

## (a) Operating procedure

## 1. Open the "Positioning Test" dialog box.

Display the "Positioning Test" window.$[$ Tool $] \Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 Positioning Module] $\Rightarrow$ [Positioning/Test]

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".
3. Select the function.

Select "New Speed" from the pull-down menu of "Select Function ".

4. Execute the speed change test.

Execute the speed change function.
■New Speed:
Enter the new speed value during the startup of positioning start test or OPR test, and click the [New Speed] button.
■Override:
Enter the speed override value and click the [Speed Override Change] button.
■Acceleration/Deceleration Time Change:
Check the "Acceleration/deceleration time change enable" checkbox, set the acceleration time and deceleration time values, and click the [New Speed] button.

## (4) Current value change test

The current feed value of the LD75 can be changed to the specified address.

## (a) Operating procedure

## 1. Open the "Positioning Test" dialog box.

Display the "Positioning Test" window.
[Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 Positioning Module] $\Rightarrow$ [Positioning/Test $]$

2. Select the test target axis.

Select the test target axis from the pull-down menu of "Target Axis".
3. Select the function.

Select "Current Value Changing" from the pull-down menu of "Select Function".


- Enter the new current value and click the [Current Value Changing] button.


## Appendix 6.6 Wave trace

This function displays the speed command (axis speed) in positioning operation in waveform data.

## (1) Operating procedure

## 1. Open the "Wave Trace" dialog box.

(Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 Positioning Module] $\Rightarrow$ [Wave Trace]

2. Select the module.

Click the [Module Selection] button.
Select the positioning module to trace waves and click the [OK] button.


## 3. Set conditions.

Click the [Condition Setting] button.
Read the displayed description, set each condition, and click the [OK] button.

4. Start trace and display trace results.

Click the [Start Trace] button to start trace.
The trace result at that point can be displayed by clicking the [Display Current Trace Result] button during trace, even if the trace completion conditions are not met.
When the completion conditions are met and the trace is completed, the trace result is displayed.


## Appendix 6.7 Location trace

This function displays 2-axis interpolation control and simultaneous start (2-axes) in locus data.

## (1) Operating procedure

1. Open the "Location Trace" dialog box.
(Tool] $\Rightarrow$ [Intelligent Function Module Tool] $\Rightarrow$ [QD75/LD75 Positioning Module] $\Rightarrow$ [Location Trace]

2. Select the module.

Click the [Module Selection] button.
Select the positioning module to trace locations and click the [OK] button.


## 3. Set conditions.

Click the [Condition Setting] button.
Read the displayed description, set each condition, and click the [OK] button.

4. Start trace and display trace results.

Click the [Start Trace] button to start trace.
The trace result at that point can be displayed by clicking the [Display Current Trace Result] button during trace, even if the trace completion conditions are not met.
When the completion conditions are met and the trace is completed, the trace result is displayed.


## Appendix 7 When Using GX Developer or GX Configurator-QP

This section describes the operation method when GX Developer or GX Configurator-QP is used.

## (1) Applicable software version

For applicable software versions, refer to the following.
[] MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)

## Appendix 7.1 Operation of GX Developer

With GX Developer, set the type of the module to be connected and the I/O signal range in the I/O assignment tab of the PLC parameter dialog box.

## (1) I/O assignment tab

(a) Operating procedure

1. Open the "L Parameter" dialog box.

Parameter $\Rightarrow$ [PLC parameter] $\Rightarrow$ [I/O assignment]

2. Configure settings.

Set the following items.

| Item |  |
| :---: | :--- |
| Type | Select "Intelli.". |
| Model | Enter the module model name. |
| Points | Select "32point". |
| Start XY | Enter the start I/O number for the positioning module. |

## Appendix 7.2 Operation of GX Configurator-QP

GX Configurator-QP supports the LD75P4 and LD75D4. (The LD75P1, LD75P2, LD75D1, and LD75D2 are not supported.)
For the functions and operation method of GX Configurator-QP, refer to the following.
[] GX Configurator-QP Version 2 Operating Manual

## Appendix 8 meLsec Explanation of Positioning Terms

| Term | Description |
| :---: | :---: |
| 1-2 PHASE EXCITATION SYSTEM | This is one system for exciting each stepping motor coil in a determined order. In this system, one phase and two phases are alternately excited. |
| MOVEMENT AMOUNT PER PULSE | When using mm , inch, or degree units, the movement amount is calculated and output from the machine side showing how much the motor shaft moves per pulse. Positioning accuracy in smaller units is not possible. <br> On the motor side, the movement amount per axis rotation is normally designed as a reference, so it is calculated as follows. <br> Movement amount per pulse = $\square$ <br> Amount the motor moves (travel) per pulse. |
| 2-PHASE PULSE | An A phase and B phase double pulse. There is a phase difference between the two phases, so that difference can be automatically added and subtracted in the pulse count. The standard phase difference is a $90^{\circ}$ electrical angle. <br> If the $B$ phase were to lag behind the $A$ phase in a forward run ( $B$ phase turns $O N$ after the $A$ phase), the $A$ phase would lag behind the B phase in a reverse run (A phase turns ON after the B phase). In this way the forward and reverse run (addition and subtraction) can be automatically carried out. |


| Term | Description |
| :---: | :---: |
| 2-PHASE EXCITATION SYSTEM | This is one system for exciting each stepping motor coil in a determined order. In this system, a current constantly flows to 2 phases to carry out step feed. |
| 2-SPEED TRAPEZOIDAL CONTROL | In this positioning control method, the positioning pattern, positioning addresses (P1, P2), and positioning speeds (V1, V2) are set in the program. Positioning is carried out to positioning address P1 by issuing the 1st positioning start command. When P1 is reached, the positioning then automatically changes to positioning at the V2 speed. |
| AFTER mode | This is the mode that outputs the $M$ code after positioning is complete (after stopping). Clamping can be commanded, drilling dimensions can be selected, etc., with this mode. |
| BUSY | The device is doing some other work. It is in a positioning operation or in dwell time. |
| CCW (Counterclockwise) | Rotation in the counterclockwise direction. In the motor, this is determined looking from the shaft end side. Also refer to the term "CW". |
| CHANGE signal | The CHANGE signal is an external signal used to switch the speed-position control from the speed control being executed to position control. |
| CP CONTROL (Continuous Path Control) | Continuous path is a control method in which a path is followed without interrupting such as in uniform speed control. |
| CW (Clockwise) | Rotation in the clockwise direction. Rotation in the clockwise direction looking from the motor shaft end side. |
| D/A CONVERTER (Digital-to-Analog converter) | A device having a function to convert the digital value expressing the No. of pulses to an analog value expressing the voltage (or current). |
| DOG SIGNAL | The near-point dog of the OPR. |
| F | In the LD75, F is a status where the module itself has a fault. [HOLD] |
| FLS SIGNAL (forward limit signal) | This is the input signal that notifies the user that the limit switch (b contact configuration, normally ON) installed at the upper limit of the positioning control enabled range has been activated. <br> The positioning operation stops when the FLS signal turns OFF (non-continuity). |
| $G D^{2}$ | The inertia moment. The sum total of the mass (dm) of each small area configuring an object multiplied by the square of the distance ( $r$ ) of each of those areas from a given straight line. The relation with $\mathrm{I}=\mathrm{fr}^{2} \mathrm{dm} \mathrm{GD}^{2}$ is given by 4 gl , with " g " being gravitational acceleration. |


| Term | Description |
| :---: | :---: |
| G CODE | These are standardized (coded) 2-digit numerical values (00 to 99) designating various control functions of the NC module. Also called G functions. <br> Example: <br> - G01 Linear interpolation <br> - G02 Circular interpolation CW (clockwise) <br> - G04 Dwell <br> - G28 OPR <br> - G50 Max. spindle speed setting |
| JOG | Jog. This refers to moving the tool little by little. Inching. Parameter setting is required to carry out JOG operation. |
| k pulse/s | Kilopulses per second. <br> 80kpulse/s equals 80,000 pulses per second. |
| M CODE (Machine Code) | These are sub functions that interlock with the positioning operation to replace drills, tighten and loosen clamps, raise and lower welding electrodes, display various data, etc. <br> Either of two modes can be entered when the machine code turns ON: AFTER or WITH. <br> The machine does not move to the next positioning when the machine code is ON. M codes are turned OFF by the program. <br> Code Nos. from 1 to 65535 assigned by the user and used (1: Clamp, 2: Loosen, etc.). Comments can be written after 50 of the M codes, and they can be monitored using GX Works2 or displayed on an external display. <br> Refer to the term "AFTER MODE". <br> Refer to the term "WITH MODE". |
| NC LANGUAGE (Numerical Control Language) | This is the language punched into the paper tape that instructs the machining to the NC module. The NC language consists of EIA codes (EIA language), ISO codes (ISO standards), and JIS codes (JIS standards). |
| PG0 (Pulse Generator Zero) | Pronounced "pee-jee-zero". Refer to the term "ZERO SIGNAL". |
| PTP Control (Point To Point Control) | This is a type of positioning control. <br> With this control method, the points to be passed are designated at random locations on the path. <br> Movement only to a given target positioning is requested. Path control is not required during movement from a given point to the next value. |
| P RATE (Pulse Rate) | A coefficient that magnifies the feedback pulses per motor shaft rotation by 2-fold, 3-fold, 1/2 or 1/3. It is the ratio of the feed pulses and feedback pulses. <br> For example, when the No. of pulses per motor shaft rotation is set to 2400 pulses, and the P rate is set to 2 , the result will be equivalent to 1200 pulses. The rotation per pulse is $0.15^{\circ}$ when 2400 pulses per rotation are set, but this becomes $0.3^{\circ}$ when 1200 pulses. The positioning accuracy drops as the P rate is increased. |
| READY | This means that preparation is complete. |
| RLS SIGNAL (reverse limit signal) | This is the input signal that notifies the user that the limit switch (b contact configuration, normally ON) installed at the lower limit of the positioning control enabled range is activated. <br> The positioning operation stops when the RLS signal turns OFF (non-continuity). |
| SFC (Sequential Function Chart) | A sequential function chart is a programming method optimally structured for running a machine's automatic control in sequence with the programmable controller. |
| STOP SIGNAL | In positioning control, this is the input signal that directly stops the operation from an external source. The operation stops when the external stop signal (a-contact) turns ON (continuity). |


| Term | Description |
| :---: | :---: |
| S-CURVE <br> ACCELERATION/DECELERATION | In this pattern, the acceleration and deceleration follow a sine curve, and the movement is smooth. The S-curve ratio can be set from 1 to $100 \%$. |
| WITH MODE | This is the mode that outputs the M code before the start of the positioning. This mode turns ON at the positioning start, enabling voltage to be applied to the welding electrodes, display of positioning speeds, etc. Refer to the term "AFTER MODE". |
| XY TABLE | This is a device that moves a table in the X (latitudinal) and Y (longitudinal) directions so that positioning can be carried out easily. There are also commercially available products. |
| Z PHASE | Also called "PG zero". <br> Refer to the term "ZERO SIGNAL". |
| ADDRESS | - This is a numerical value to express the positioning position, designated in mm, inch, angle, or No. of pulse units. <br> - The memory address. Many addresses are stored in the memory. An address is read or written after it is designated. |
| ABSOLUTE ENCODER | This is a detector that enables the angle data within 1 motor rotation to be output to an external destination. Absolute encoders are generally able to output $360^{\circ}$ in 8 to 12 bits. <br> Incremental encoders have a disadvantage in that the axis position is lost when a power failure occurs. However, with absolute encoders, the axis position is not lost even when a power failure occurs. <br> Various codes such as a binary code and BCD code can be output. Absolute encoders are more expensive, more accurate, and larger than incremental encoders. Refer to the term "ENCODER". |
| ABSOLUTE SYSTEM | This is one system for expressing a positioning address. <br> Absolute address system. <br> This system uses 0 as a reference, and expresses the address as the distance from 0 . The direction is automatically determined, even when it is not designated. The other address system is the increment system. |
| INERTIA | The property of an object, when not being affected by external forces, where it tries to maintain its current condition. The inertia moment. |


| Term | $\left.\begin{array}{l}\text { A device that simply outputs ON/OFF pulses by the rotation of the axis. 1-phase types output only } \mathrm{A} \text { pulses, and } \\ \text { do not indicate the axis rotation direction. 2-phase types output both } \mathrm{A} \text { and } \mathrm{B} \text { pulse trains, and can judge the } \\ \text { rotation direction. The direction is judged to be forward if the } \mathrm{B} \text { pulse train turns ON when } \mathrm{A} \text { is } \mathrm{ON} \text {, and judged to } \\ \text { be reverse if } \mathrm{A} \text { turns ON when } \mathrm{B} \text { is ON. There is also another type of incremental encoder with a zero signal. The } \\ \text { most commonly used incremental encoders output between } 100 \text { and 10,000 pulses per axis rotation. Refer to the } \\ \text { term "ENCODER". } \\ \text { INCREMENTAL ENCODER }\end{array}\right]$ |
| :--- | :--- | :--- |


| Term | Description |
| :---: | :---: |
| ENCODER | This device turns the input data into a binary code of 1 (ON) and 0 (OFF). A type of pulse generator. <br> Linear encoder |
| AUTO TUNING (Automatic Tuning) | Properties such as responsiveness and stability of machines driven with a servomotor are affected by changes in the inertia moment and rigidity due to changes in the machine load, etc. <br> This function automatically adjusts the speed loop gain and position loop gain to match the machine state, so the machine's performance can be maintained at its optimum state. <br> A real time automatic tuning function should be used for machines having large load fluctuations. |
| OVERRIDE FUNCTION | With this function, the speed during positioning operations (current speed) can be varied between 1 and $300 \%$. The speed can also be changed by the same variable rate for continuous positioning with differing designated speeds. |
| CREEP SPEED | A speed at which the machine moves very slowly. It is difficult for the machine to stop accurately when running at high speed, so the movement must first be changed to the creep speed before stopping. <br> Refer to the term "NEAR-POINT DOG". |
| GAIN | The changing of the ratio between two values having a proportional relation. Seen on a graph, the changing of the incline of the characteristics. <br> For example, when 10 is output for an input of 10 , the output can be changed to 12,5 , etc., by changing the gain. |
| SERVO AMPLIFIER | Refer to the term "DRIVE UNIT". |


| Term | Description |
| :--- | :--- | :--- |
| SERVO ON | The servo amplifier will not operate if the servo amplifier is in a normal state and this servo ON signal is OFF. |
| SERVOMOTOR | A motor that rotates true to the command. <br> Servomotors are highly responsive, and can carry out frequent high-speed and high-accuracy starts and stops. <br> DC and AC types are available, as well as large-capacity motors. A pulse generator accessory for speed <br> detection is common, and feedback control is often carried out. |
| SER positioning using a servomotor, stepping motor, etc., working power is required to hold the machine at the stop |  |
| position. |  |
| (The position will be lost if the machine is moved by external power.) |  |
| This kind of state is called servo lock or servo lock torque. |  |


| Term | Description |
| :---: | :---: |
| STEPPING MOTOR | A motor that rotates a given angle (example: $0.15^{\circ}$ ) when 1 pulse is generated. <br> For that reason, a rotation proportional to the No. of pulses can be obtained. 2-phase to 5 -phase stepping motors are available. In the 3-phase type, the rotor rotates in order from $A$ to $C$ when a voltage is applied. Often found in compact motors, stepping motors rotate accurately without feedback. Be careful of step out when overloaded. <br> 1) First, the A phase is excited by a pulse. <br> 3) The nearest tooth to the B phase is attracted, and the rotation stops. <br> 2) When the B phase is then excited, the force works in the direction shown by the arrows. <br> 4) As the excitation phase is continuously changed, the rotor rotates in a clockwise direction. |
| STEP FUNCTION | When the operation is designed so that several positioning data Nos. are consecutively run, this function can be used to carry out a test operation for 1 data item at a time. |
| STOP WITH STOPPER | This is one machine OPR method. With this method, a stopper is established at the OP, and the operation is stopped when the machine presses against it. Motor burning would occur or the stopper would be damaged if the machine were left in that state. <br> There are two methods to prevent this; a timer can be used to shut OFF the motor after a fixed time, or the motor can be stopped by limiting sudden increase in the motor torque when the machine presses against the stopper. |
| STROKE | The stroke is the variation in the operation by the distance from a stopped state to the next stopped state after a movement. |
| STROKE LIMIT | This is the range in which a positioning operation is possible, or the range in which the machine can be moved without damage occurring. (Movement outside this range is possible in the manual operation.) For operations using a worm gear, the stroke limit is determined by the length of the screw. For operations using a fixed-feed, it is determined by the max. dimension to be cut. <br> The upper/lower limits are set in the parameters, but a separate limit switch should be established and an emergency stop circuit outside the programmable controller should be created. Refer to the term "LIMIT SWITCH". |


| Term | Description |
| :---: | :---: |
| SLAVE AXIS | During interpolation operation, the positioning data is partially ignored on this side. This axis is moved by the master axis data. |
| TURNTABLE | A rotating table, which is turned using power. The table is used divided from one $360^{\circ}$ rotation into the required locations for work. <br> The positioning control unit is "degree". <br> Rotated by the motor |
| DYNAMIC BRAKE | When protection circuits operate due to power failures, emergency stops (EMG signal) etc., this function is used to short-circuit between servomotor terminals via a resistor, thermally consume the rotation energy, and cause a sudden stop without allowing coasting of the motor. <br> Braking power is generated by electromagnetic brakes only when running motors with which a large brake torque can be obtained. Because electromagnetic brakes have no holding power, they are used in combination with mechanical brakes to prevent dropping of the vertical axis. |
| DATA NO. | To carry out positioning to 2 or more addresses, each position is assigned a sequence No. such as No. 1, No. 2, No. 3, etc. The positioning is then carried out following this sequence. The LD75 is capable of positioning up to No. 600. |
| TEACHING | When the positioning address is uncertain, or gauging is required, this function is used by the user to search for and teach the position to the machine. <br> For example, complex addresses such as drawings can be taught by tracing a model, and the positioning operation can be reproduced. |
| DIGITAL BUS CONNECTION | Commands are generally output from the positioning module to the servo amplifier as a pulse train. Recently, however, devices are being digitalized. Accompanying that, a connection method has appeared in which the bus lines of both the positioning module and the servo amplifier CPUs are connected. This has enabled the construction of higher-accuracy, higher-speed systems. <br> The MELSEC A70D, AD774M, A171SCPU, A273UCPU etc., models employ this digital bus connection. |
| DWELL TIME | This is the time taken immediately after the positioning is completed to adjust for the droop pulses in the deviation counter. The positioning will not be accurate if this time is too short. |
| DRIVE UNIT | The commands output from the positioning module are low-voltage, low-current commands with insufficient energy to run the motor. <br> The drive unit increases the width of these commands so the motor can be run. It is an accessory on servomotors and stepping motors. Also called a servo amplifier. |
| DRIVE UNIT READY | This signal is output when the drive unit for the motor is in a READY state. This signal remains OFF when the drive unit power is OFF, or during faults, etc. |
| TRACKING FUNCTION | In this function, positioning is carried out at a speed relative to a moving target object by inputting the movement amount from an external encoder and adding it to the servo command value. |
| TORQUE RIPPLE | Torque width variations, deviations in the torque. |
| TORQUE LOOP MODE | Also called the current loop mode. Refer to the term "POSITION LOOP MODE". |

TORQUE CONTROL

| Term | Description |
| :---: | :---: |
| BUFFER MEMORY | Memory used to temporarily store data. Before writing external data to the CPU module data memory, it is first temporarily stored in the buffer memory to be used for operation by the program. The buffer memory is used by the positioning module because the latest data can be read and written. |
| PARAMETER | This is the basic data used in positioning. Parameters are determined by the machine side design, so subsequent changes of parameters must be accompanied by changes in the machine design. <br> Data cannot be written during positioning. <br> The initial parameter values are written by the maker. |
| PULSE | The turning ON and OFF of the current (voltage) for short periods. <br> A pulse train is a series of pulses. <br> The LD75 is the module that generates the pulses. |
| PULSE GENERATOR | This is a device that generates pulses. Examples include devices installed on the motor shaft that create pulses when the shaft rotates, and digital devices. <br> 1-phase types output one pulse train. 2-phase types output two pulse trains with a phase difference. From 600 to $1,000,000$ pulses can be output per shaft rotation. Generators with a ZERO signal function to output 1 or 2 pulses per shaft rotation. Abbreviated as PLG. <br> Refer to the term "ENCODER". |
| PULSE OUTPUT MODE | There are two methods used to issue forward run and reverse run commands to the servomotor. The type used differs according to the machine maker. In type A, the forward run pulses and reverse run pulses are output from separate terminals. <br> In type B, the forward run pulses and reverse run pulses are output from the same terminal, and a forward/reverse run identification signal is output from another terminal. |
| FEEDBACK PULSE | This is a method of using a returning pulse train to confirm whether the machine faithfully operated according to the commands issued in automatic control. If the machine did not faithfully operate according to the commands, a correction command is issued. For example, if a command is issued for 10,000 pulses, and a feedback pulse of 10,000 pulses is returned, then the balance becomes 0 and it can be judged that the command was faithfully followed. <br> Refer to the term "DEVIATION COUNTER". |
| FEED PULSE | This is a pulse issued from the positioning module to a servomotor or stepping motor. Also called a command pulse. |
| FLASH MEMORY | This battery-less memory can be used to store parameters and positioning data for backup. Because it is battery-less, battery maintenance is not required. |
| FLAT TYPE MOTOR (PANCAKE MOTOR) | About 100 mm shorter in axial dimension than the standard motor. Used when the servomotor is installed in a small space. |


| Term | Description |
| :---: | :---: |
| BALL SCREW | This is a type of screw, with balls lined up in the threads like ball bearings. This reduces backlash, and enables rotation with little force. <br> Female thread |
| MASTER AXIS | When carrying out interpolation operations, this is the side on which the positioning data is executed in priority. For example, when positioning with the X axis and Y axis, the side with the largest movement distance will become the master axis, and the speed will follow that axis. The slave axis speed will be ignored. |
| REAL-TIME AUTO TUNING | Refer to the term "AUTO TUNING". |
| LIMIT SWITCH | This is a switch set to stop a moving object at both ends, etc., of a movement device for safety reasons. A circuit is created in which the moving body itself presses against the switch to activate the contact and forcibly shut the power OFF. For example, pressing on the actuator in the drawing below activates the internal microswitch. There are various other types. |
| RESOLVER | This device detects the angle by resolving the two voltages of the analog input. <br> Also called a 2-phase synchro. For a 1-phase voltage input, the axis rotation angle is converted into a perpendicular 2-phase voltage (analog voltage) and output. |
| WARNING | A warning is output as a warning code in when an abnormality is detected that is not serious enough to require cancellation or stoppage of the positioning operation. Warnings are handled differently than errors. |
| POSITION LOOP GAIN | This is the ratio of the deviation counter droop pulses to the command pulse frequency. $\begin{aligned} & \text { Position } \\ & \text { loop gain } \end{aligned}=\frac{\text { Command pulse frequency }}{\text { Droop pulses }}(1 / \mathrm{s})$ <br> The position loop gain can be set with the drive unit. Raise the gain to improve the stopping accuracy. However, overshooting will occur if the position loop gain is raised too far, and the operation will become unstable. If the position loop gain is lowered too far, the machine will stop more smoothly but the stopping error will increase. |


| Term | Description |
| :---: | :---: |
| POSITION LOOP MODE | This is one servo control mode used in positioning. It is a mode for carrying out position control. The other servo control modes are the speed loop mode for carrying out speed control, and the torque loop mode for carrying out torque control (current control). |
| POSITIONING | Accurately moving the machine from a point to a determined point. The distance, direction, speed, etc., for that movement are designated by the user. <br> Positioning is used in operations such as cutting sheets, drilling holes in plates, mounting parts on a PCB, and welding. Positioning is also used with robots. |
| POSITIONING DATA | This is data for the user to carry out positioning. The No. of points to which positioning is carried out (the No. of addresses) is designated by the user. In the LD75, these are 600 points. As a principle, positioning is executed in the order of the data Nos. |
| POSITIONING COMPLETE | Refer to the term "OPERATION PATTERN". |
| POSITIONING COMPLETE SIGNAL | This is a signal that occurs when the positioning is complete. A timer set beforehand starts when this signal is output, and the machine movement stops for that time. <br> When this signal turns ON, the positioning start signal turns OFF. |
| POSITIONING START | This refers the act of designating a target data No. and starting the positioning. The operation after the positioning is complete for that data No. is determined by the data No.'s positioning pattern. |
| POSITIONING CONTINUED | Refer to the term "OPERATION PATTERN". |
| POSITIONING PARAMETER | This is basic data for carrying out positioning control. Types of data include control unit, movement amount per pulse, speed limit value, upper/lower stroke limit values, acceleration/deceleration time, positioning system, etc. Parameters have an initial value, so that value is changed to match the control conditions. |
| POSITION DETECTION MODULE | This is an abridged version of positioning. There are two types on MELSEC, the A1S62LS. This module has positioning and limit switch functions, and can use a total of 16 channels. The following drawing shows an example for 5 channels. A resolver is used in the positioning detection. |
| POSITION CONTROL | This is mainly the control of position and dimension, such as in fixed-feed, positioning, numerical control, etc. This is always controlled with feed pulses. There is also speed control. Drive units may differ, even when the same motor is used. |


| Term | Description |
| :---: | :---: |
| OPERATION PATTERN | The kind of operation to be carried out after executing the positioning data is determined. <br> - If "POSITIONING COMPLETE" is selected, the operation will stop after the positioning is complete. <br> - If "CONTINUOUS POSITIONING CONTROL" is selected, the next data No. will be automatically executed after the positioning is complete. <br> - If "CONTINUOUS PATH CONTROL" is selected, the positioning will not be completed. Only the speed will be automatically changed, and the next data No. will be executed. |
| CIRCULAR INTERPOLATION | Automatic operation in which the machine path makes a circle when positioning is carried out by simultaneously operating both the longitudinal feed and latitudinal feed motors. <br> The normal unit is $90^{\circ}$. Round shapes can be created with this type of interpolation, and obstacles in the machine path can also be avoided. <br> Refer to the terms "INTERPOLATION OPERATION" and "LINEAR INTERPOLATION". |
| ACCELERATION TIME | The parameter acceleration time refers to the time from a stopped state to the time the speed limit value is reached, so it becomes proportionally shorter as the setting speed decreases. The acceleration time is determined by factors such as machine inertia, motor torque, and load resistance torque. |
| REGENERATIVE BRAKE OPTION | This function is an option. It is used when carrying out highly repetitive acceleration/deceleration. Refer to the term "EXTERNAL REGENERATIVE BRAKE RESISTOR". |
| ROTARY TABLE | A round table on which the workpiece is placed. Positioning control is carried out while rotating the workpiece in a $360^{\circ}$ range. |
| EXTERNAL REGENERATIVE BRAKE RESISTOR | This is also called the regenerative brake. <br> When a machine is moved with a motor, power is normally supplied to the motor from an amplifier. However, the rotation energy in the motor and machine counterflows (regenerates) to the amplifier when the motor is decelerating or when driving a descending load. <br> The external regenerative resistor consumes this regeneration energy with resistance, obtains the regenerative brake torque, and enables the full capacity of the regeneration system during stopping. <br> It is used when carrying out highly repetitive acceleration/deceleration. |
| REFERENCE AXIS SPEED | This is the speed of the reference axis during interpolation operations. |


| Term | Description |
| :---: | :---: |
| SUDDEN STOP | A stop carried out in a shorter time than the deceleration time designated in the parameters. <br> Full speed |
| NEAR-POINT DOG | This is a switch placed before the OP. When this switch turns ON, the feedrate is changed to the creep speed. Because of that, the time that this switch is ON must be long enough to allow for the time required for deceleration from the feedrate to the creep speed. |
| OP | This is the reference position for positioning. Positioning cannot start without a reference point. The OP is normally set to the upper or lower stroke limit. <br> This point is the reference. <br> OP |
| OP SHIFT FUNCTION | The OP position can be shifted in the positive or negative direction by executing a machine OPR and determining the shift amount from the machine OPR complete position. <br> An OP can be set at a position besides the OP position, or outside the dog switch. |
| OPR METHOD | The OPR methods are shown below. The method used depends on the machine structure, stopping accuracy, etc. <br> OPR can be carried out when the OPR parameters are written. <br> - Near-point dog method <br> - Stopper method <br> - Count method |
| OPR PARAMETER | This parameter is required when returning to the OP. It is determined by the machine side design, so subsequent changes of this parameter must be accompanied by changes in the machine design. <br> The OP is the reference for positioning operations, so if the OP is lost due to a power failure during positioning, or because the power is turned OFF and the machine is moved manually, etc., it can be restored by carrying out an OPR. When a machine OPR command is issued, the machine will move in search of the near-point dog regardless of the current value, and will stop at the OP. At this time, the current value will be rewritten to the OP address. Data cannot be written during positioning. With the LD75, data is always written for all axes (from 1 to 4 axes). <br> Refer to the term "NEAR-POINT DOG". |
| OPR REQUEST | This signal turns ON when there is an error with the LD75. It will turn ON in the following situations. <br> - When the power is turned ON <br> - When the PLC READY signal turns from OFF to ON <br> - When the machine OPR starts <br> - When the drive unit READY signal turns from ON to OFF <br> The user judges whether to carry out a machine OPR in the above situations. |


| Term | Description |
| :---: | :---: |
| DECELERATION TIME | The parameter deceleration time is the same value as the acceleration time. Deceleration time refers to the time from the speed limit value to a stopped state, so it becomes proportionally shorter as the setting speed decreases. |
| DECELERATION RATIO | A ratio used when the machine is decelerated using a toothed gear. This ratio is a numeral larger than 1. $\begin{aligned} & \text { Deceleration }=\frac{\text { Input gear speed }}{\text { Output gear speed }} \\ & \text { ratio } \end{aligned}$ |
| CURRENT VALUE | This is the current address (position) when stopped or during positioning. |
| CURRENT VALUE CHANGING | The LD75 has no way of knowing the current value when the machine is assembled and the positioning module is connected, so this function is used to teach it a temporary approximate value as the current value. This function can also be used to write a temporary current value when the current value has been lost due to accidents, etc. If an OPR is carried out after that, the positioning module will recognize the zero point. To prevent the accumulated value from exceeding the stroke limit in fixed-feed, etc., rewrite the current value to 0 after the fixed-feed. The current value can be changed during a positioning stop. |
| ERROR CORRECTION | If a dimension error occurs in the machine, and that error is actually smaller or larger than 1 m (3.28feet) in spite of a 1 m ( 3.28 feet) command being issued from the LD75, that error amount will be compensated. For example, when the error is actually smaller than 1 m ( 3.28 feet), the remaining distance to 1 m ( 3.28 feet) is fed, and the correct 1 m ( 3.28 feet) of positioning is carried out. |
| FAST OPR | The axis returns to the machine OP at the OPR speed without detecting the near-point dog. (This is not validated unless a machine OPR has been carried out first.) <br> OPR speed <br> OP <br> Near-point dog switch |
| COMPOSITE SPEED | The movement speed for the target control during interpolation operations. |


| Term | Description |
| :---: | :---: |
| DIFFERENTIAL OUTPUT TYPE | This is one type of encoder feedback pulse output. When one signal is output with this method, a companion signal having the reverse polarity is simultaneously output. This method enables high-frequency transfer, and is resistant to noise, etc., so it is also used in high-speed signal transfer such as inputting and outputting of pulse trains. In general, the transmission side is called the driver, the reception side is called the receiver, and a dedicated IC is used. |
| START COMPLETE | This signal gives an immediate response notifying the user that the LD75 that was started is now in a normal state and can start positioning. |
| BIAS SPEED AT START | A large amount of torque is required when the machine starts moving, but the torque may be unstable at speed 0 with stepping motors. Therefore, movement can be smoothly carried out by starting the movement at a given speed from the beginning. The bias speed at start is the speed set at that start. |
| STARTING AXIS | One of the LD75 axis system axes (axis 1, axis 2, axis 3, or axis 4) or the reference axis for the interpolation operation is designated as the starting axis. |
| COMMAND PULSE | Refer to the term "FEED PULSE". |
| MANUAL PULSE GENERATOR | The handle of this device is manually rotated to generate pulses. This device is used when manually carrying out accurate positioning. <br> Made by Mitsubishi Electric Corp. <br> (model: MR-HDP01) |
| OUTPUT TERMINAL | This is a pin connector for outputting data from the LD75 to an external source. It is connected to the motor drive unit. This terminal is used to output the following. <br> - Feed pulses for both forward run and reverse run <br> - Deviation counter clear <br> The terminal Nos. are determined for each axis. <br> The output No. Yn is not directly related to the program, so it is not used. |
| CONTROL UNIT | This is one type of positioning reference data. The unit to be used is designated as mm, inch, degree, or pulse. |
| SETTING UNIT | This is one setting item of the positioning reference parameters. The unit to be used is designated as mm, inch, degree, or pulse. |
| ABSOLUTE POSITION DETECTION SYSTEM | In the absolute position detection system, once an OPR is carried out at the system startup, the system stores the machine position in the memory and retains the current position even when the power is turned OFF. Mechanical deviation will be compensated, so that the OPR is not required after the power is turned ON next time. Configuring this system requires a motor with an absolute position detector and a servo amplifier and positioning module compatible with an absolute position detection system. |


| Term | Description |
| :---: | :---: |
| FEED SCREW | This is the basic screw in mechanisms that position using screw rotation. Ball screws are often used to reduce backlash and dimension error. |
| MACHINE FEED VALUE | The OP address at the completion of the machine OPR is stored. <br> The current position of the machine coordinates determined by a machine having the OP address as a reference. <br> Even if the current value is changed, this value will not change. |
| CURRENT FEED VALUE | The OP address at the completion of the machine OPR is stored. The position currently being executed is stored. <br> This value changes when the current value is changed. |
| SPEED-POSITION SWITCHING CONTROL MODE | This is one method used for positioning. It is an application for operations such as high-speed movement to a point unrelated to positioning, then set dimension movement from the switching signal activation point. |
| SPEED LOOP GAIN | This is one item in the parameters of the servo amplifier, and expresses the speed of the control response during speed control. <br> When the load inertia moment ratio increases, the control system speed response decreases and the operation may become unstable. If this happens, the operation can be improved by raising this setting value. <br> The overshoot will become larger if the speed loop gain is raised too far, and motor vibration noise will occur during operation and when stopped. |
| SPEED LOOP MODE | This is one servo control mode used in positioning. It is a mode for carrying out speed control. Refer to the term "POSITION LOOP MODE". |
| SPEED LIMIT VALUE | This is the max. speed for positioning. Even if other data is mistakenly set to a higher speed than this, the positioning will be carried out at this speed limit value when it is set in the parameters. The acceleration time becomes the time to accelerate from a stopped state to the speed limit value, and the deceleration time becomes the time to decelerate from the speed limit value to a stopped state. |
| SPEED CONTROL | Speed control is mainly carried out with the servomotor. It is an application for grindstone rotation, welding speed, feedrate, etc. Speed control differs from position control in that the current position (address) is not controlled. Drive units may differ, even when the same motor is used. |
| SPEED INTEGRAL COMPENSATION | This is one item in the parameters of the servo amplifier, and is used to raise the frequency response during speed control to improve transient characteristics. <br> When adjusting the speed loop gain, raising this value is effective if the overshooting during acceleration/deceleration remains large. <br> This compensation is set in ms units. |
| SPEED-POSITION SWITCHING CONTROL | With this control, positioning is carried out to the end point of the movement amount while changing the speed at the speed switching point during positioning control. |
| MULTI-PHASE PULSE | A combination of pulses in which 2 or more phases differ. <br> 2-phase pulses, etc. |


| Term | Description |
| :---: | :---: |
| TRAPEZOIDAL ACCELERATION/DECELERATION | An operation in which a graph of the time and speed takes a trapezoidal shape. |
| STEP OUT | Stepping motors rotate in proportion to the No. of pulses (frequency), but the motor's rotation will deviate if the load is too large for the motor. This is called step out. If step out occurs, the motor must be replaced by one with a larger torque. Step out causes the positioning error to increase. |
| UNIT SETTING | This is the setting of the unit for the actual address to which positioning is required, or for the movement amount. The following units can be set: mm, inch, degree and pulse. <br> The initial value in the parameters is a pulse unit. |
| LINEAR INTERPOLATION | This automatic operation simultaneously operates two motors for the latitudinal ( X ) feed and longitudinal ( Y ) feed to move a target in a diagonal line for positioning. Three or four motors can also be operated simultaneously. The LD75 combines the operation of axis 1 through 4 for the linear interpolation. The same positioning data No. must be used for the setting. Refer to the term "INTERPOLATION OPERATION". |
| LOW-INERTIA MOTOR | This is a motor used when frequent acceleration/deceleration is repeated. <br> Low-inertia motors are longitudinally longer, to decrease the rotor diameter and cover the torque. This enables their inertia moment to be reduced up to $1 / 3$ that of standard motors. <br> The ideal load inertia ratio is 1 or less. |
| FIXED-FEED | This is the feeding of a set dimension for cutting sheet and bar workpieces into the designated dimensions. Incremental system positioning is often used. The current value is not incremented, even when the feed operation is repeated. |
| MULTIPLYING RATE SETTING | The P rate. <br> Refer to the term "P RATE". |
| ELECTRONIC GEAR | This function electrically increases/decreases the command pulses from the pulse command module by $1 / 50$ to 50 -fold. Thus, the positioning speed and movement amount can be controlled by the electronic gear ratio magnification. |
| ELECTROMAGNETIC BRAKE | This function is supplied on motors with electromagnetic brakes. Electromagnetic brakes are used to prevent slipping during power failures and faults when driving a vertical axis, or as a protective function when the machine is stopped. <br> These brakes are activated when not excited. |
| CURRENT LOOP MODE | One of the servo control modes in positioning. Mode which uses current for torque control. Also called the torque loop mode. <br> Refer to the term "POSITION LOOP MODE". |
| INPUT TERMINAL | This is a pin connector wired by the user for inputting data to the LD75 from an external source. It is connected to the motor drive unit or machine side. This terminal is used to output the following. <br> - DRIVE UNIT READY signal <br> - START signal <br> - STOP signal , etc. <br> The input No. Xn is not directly related to the program, so it is not used. |


| Term | Description |
| :---: | :---: |
| EMERGENCY STOP | Emergency stops cannot be carried out by the LD75, so a method of shutting OFF the servo side power supply from outside the programmable controller, etc., must be considered. |
| LOAD INERTIA RATIO | $\mathrm{GDL}^{2} / \mathrm{GDM}^{2}$ <br> Refer to the term " $G D^{2}$ ". |
| DEVIATION COUNTER | Deviation counters have the following two functions. <br> - To count the command pulses issued from the LD75, and transmit the count value to the D/A converter. <br> - To subtract the feedback pulses from the command pulses, and run the motor by the deviation value (droop pulse) of the command pulses and feedback pulses until the command pulses reaches 0 . |
| INTERPOLATION OPERATION | The simultaneous operation of multiple motors to carry out a composite operation. Each motor can be freely set with the positioning distance, acceleration/deceleration time, speed, and other factors, which are combined to move a target in a straight line, circle, etc. Linear interpolation and circular interpolation are available. (The circular interpolation uses two motors.) |
|  | Because of inertia (GD2) in the machine, it will lag behind and not be able to track if the positioning module speed commands are issued in their normal state. <br> Thus, for a servomotor, a method is used in which the speed command pulses are delayed by accumulation in a deviation counter. These accumulated pulses are called the droop pulse. <br> The deviation counter emits all pulses and returns to 0 when the machine stops. |
| DROOP PULSE |  |
| ZERO SIGNAL | This refers to PG0 of the pulse generator (encoder) (one detection per shaft rotation). It also called "Z phase". Refer to the term "PULSE GENERATOR". |

## Appendix 9 Positioning Control Troubleshooting

| Trouble type | Questions/Trouble | Remedy | No. |
| :---: | :---: | :---: | :---: |
| Parameter | Display reads "FFFFH" when a parameter is read with GX Works2. | The CPU module power was turned OFF or the CPU module was reset, etc., during flash ROM writing, which deleted the data in the flash ROM. <br> Initialize the parameters, and reset the required parameters. <br> ( $\leftrightarrows$ Page 610, Section 13.2) | 1 |
|  | How can the parameters be returned to their initial values (default values)? | Set the "[Cd.2] Parameter initialization request" to "1". ( 5 Page 610, Section 13.2) | 2 |
|  | A parameter error occurred although the parameter was set correctly by GX Works2. | The parameter may have been overwritten in the program. Review the program. | 3 |
| Hardware stroke limit | The machine overruns if operating at high speeds when the hardware stroke limit range is exceeded. | In the LD75, deceleration stops are executed after the machine exceeds hardware stroke limit range. Because of this, more time is required for the deceleration stop as the speed increases, and the overrun becomes larger. <br> (The deceleration time becomes shorter at lower speeds, so the overrun becomes smaller.) | 4 |
|  | When the machine exceeded the hardware stroke limit range, positioning toward inside the range was started, but the machine did not start. | Use a "JOG operation", " Inching operation" or "Manual pulse generator operation" to return the machine to inside the hardware stroke limit range. <br> (When the hardware stroke limit range is exceeded, positioning will not start toward inside the range even when so commanded. Once the range is exceeded, a return to inside the range can only be executed using a "JOG operation", "Inching operation" or "Manual pulse generator operation".) | 5 |
| degree | Exactly one rotation is required, but the setting range for a "degree" unit setting is "0 to $359.999 \ldots$..." Won't the rotation deviate by " $0.00 \cdots 1$ "? | Designate " 360.000 " in the INC control. <br> The motor will make exactly one rotation. | 6 |
| Movement amount per pulse | If the "movement amount per pulse" is calculated as written in the manual, settings smaller than the basic parameter setting range cannot be carried out. | Set "movement amount per pulse" in the LD75 using the three parameter values of [Pr.2] to [Pr.4]. <br> Try setting the values following the explanations for each parameter. | 7 |
| Override | Will an override setting value written before starting be valid? | It will be valid. | 8 |
|  | During path control, will the override still be valid after the point is passed? | It will still be valid. | 9 |
|  | How can the override be canceled? | Set the "[Cd.13] Positioning operation speed override" to "100". | 10 |
| Acceleration/deceleration time | How can the deceleration stop time during stopping be shortened using the hardware stroke limit? | Set "1: Sudden stop" in the "[Pr.37] Stop group 1 sudden stop selection", and reduce the setting value of "[Pr.36] Sudden stop deceleration time". | 11 |
|  | The motor does not operate at " 60000 ms " although the acceleration/deceleration time is set to " 60000 ms ". | The value set for the acceleration/deceleration time is the time required for the machine to accelerate from speed "0" to the value set in "[Pr.8] Speed limit value". Because of that, the acceleration/deceleration time will also be shorter than " 60000 ms " if the command speed value is smaller than the "[Pr.8] Speed limit value". ( $\ddagger$ Page 125, Section 5.2.2 (2)) | 12 |
|  | Can each acceleration/ deceleration time be individually set to trapezoidal or S-curve acceleration/deceleration? | The trapezoidal and S-curve acceleration/deceleration processing is a common setting for all acceleration/deceleration times, so individual setting is not possible. ( Page 596, Section 12.7.6) | 13 |
|  | The machine starts and stops suddenly when carrying out JOG operations and positioning operations. <br> (Using an MR-J2S servo amplifier.) | Review the parameter settings for acceleration/ deceleration time, speed limit value, JOG speed limit value, JOG acceleration/deceleration time, etc. | 14 |
| Simplified absolute position detection system | Are simplified absolute position detection systems possible in the LD75 Positional deviation models? | They are possible if the models are used in combination with a Mitsubishi Electric "AC Servo". <br> (Refer to [] "AC servo User's Manual" for details.) | 15 |
| Positional deviation | The physical position position detection system from the commanded position, although the positioning is complete (and the monitored current position is correct). | If the deviation counter value is not " 0 ", the servo side is still moving. Increase the torque. | 16 |


| Trouble type | Questions/Trouble | Remedy | No. |
| :---: | :---: | :---: | :---: |
| Electronic gear | A setting of " $1 \mu \mathrm{~m}=1$ pulse" is required in the following system. <br> - Ball screw pitch $=10 \mathrm{~mm}$ <br> - Feedback pulses $=8192$ pulse | In this case, the following values will result. <br> - No. of pulses per rotation $=8192$ <br> - Movement amount per rotation = 10000 <br> - Unit magnification = 10 <br> Therefore, the "Movement amount per pulse" will become " $1.2207 \mu \mathrm{~m} "$. <br> This value is fixed by the machine system, so it cannot be changed. <br> Thus, the setting " $1 \mu \mathrm{~m}=1$ pulse" cannot be achieved. | 17 |
| Error compensation | The machine only moves to "10081230", although positioning with a command value of "10081234" carried out. <br> How can the error be compensated? <br> The following values are currently set. <br> - [Pr.2] No. of pulses per rotation $=8192$ <br> - [Pr.3] Movement amount per rotation $=8000$ | Reset [Pr.3] and [Pr.2] in the following order. <br> 1) Calculate " $8192 / 8000 \times 10081230 / 10081234$ ". <br> 2) Obtain the reduced value. <br> 3) Set the numerator in "[Pr.3] Movement amount per rotation", and the denominator in "[Pr.2] No. of pulses per rotation". | 18 |
| OPR | When carrying out a count method machine OPR, the message "Leave Sufficient Distance From The OP Position To The Near-Point Dog OFF." appears. Is there a problem if the distance is short? | The near-point dog must be set to turn OFF at a position after the OP is passed. <br> (When the machine OPR is started on the near-point dog on in a count-method machine OPR, the machine enters a normal machine OPR operation after returning to the near-point dog OFF region.) <br> (If the near-point dog is turned OFF before the OP, and the machine OPR is started between the near-point dog OFF position and the OP, the machine will mistakenly interpret that its current position is before the near-point dog ON position, and it will pass over the OP and continue moving.) | 19 |
|  | In the near-point dog method machine OPR, the stop positions are not uniform. | Carry out the following measures. <br> 1) Separate the near-point dog signal and zero signal detection positions. <br> 2) Lower the values in "[Pr.46] OPR speed" and "[Pr.47] Creep speed". <br> 3) Confirm whether the zero signal and near-point dog signal turn ON normally. <br> 4) Check that there is no play (backlash) in the machine system. | 20 |
|  | Can the machine OPR be carried out with the OPR retry function when it is started with the near-point dog ON and the upper/lower limit OFF? | A "Hardware stroke limit error" will occur and the operation will not be carried out. <br> (The machine will interpret any position where the near-point dog is ON as being within the working range, and that the upper/lower limit is ON .) | 21 |
|  | Are ABS and INC positioning possible without carrying out an OPR? | They are possible. <br> In this case, the position where the power is turned ON is handled as the current feed value " 0 ". | 22 |
|  | After an OPR, the OPR request flag sometimes turns ON for no apparent reason. | The OPR request flag turns ON in the following cases. <br> 1) When the power is turned $O N$. <br> 2) When the PLC READY signal [YO] turns from OFF to ON. <br> 3) When an OPR is carried out. <br> 4) When the servo amplifier power is turned OFF. <br> If no problem is found when the above are checked, then it is possible that the communication is being interrupted by "a fault in the bus cable", "noise influence", etc. | 23 |
|  | The OPR complete flag ([Md.31] Status: b4) sometimes turns ON when it shouldn't be ON. | Check whether the drive unit READY signal is weak or the power supply is unstable. | 24 |
| Start | The positioning start signal [Y10] is kept ON until the BUSY signal is OFF, but is there any problem with turning it OFF before the BUSY signal turns OFF? | After the BUSY signal turns ON, there is no problem with turning [Y10] OFF before the BUSY signal turns OFF. <br> (The LD75 detects the rising edge (OFF $\rightarrow \mathrm{ON}$ ) of the positioning start signal [Y10].) | 25 |
|  | The operation will not start even when the start signal is turned ON. | Check the "[Md.26] Axis operation status" and "[Md.23] Axis error No.". | 26 |


| Trouble type | Questions/Trouble | Remedy | No. |
| :---: | :---: | :---: | :---: |
| Stop | How many milliseconds should the axis stop signal [ Y 4 ] be turned ON for? | The signal should be turned ON at 4 ms or more. <br> (If possible, set the signal so it does not turn ON only momentarily, but instead stays ON until the BUSY signal turns OFF. This will keep the stop signal from skipping.) | 27 |
|  | How can a sudden stop be selected? | Set "1: Sudden stop" in the parameter from [Pr.37] to [Pr.39] corresponding to the stop group, and reduce the setting value of "[Pr.36] Sudden stop deceleration time". | 28 |
|  | "Normal deceleration stop" was selected in "[Pr.39] Stop group 3 sudden stop", and $Y$ stop was turned ON. If the [Pr.39] setting is changed to "sudden stop" during a deceleration stop, and the $Y$ stop signal turns from OFF to ON, will the operation change to a sudden stop from that point? | The operation will not change. <br> Even if the same stop factor is input again during the deceleration stop, it will be ignored. <br> The same deceleration stop process used when the stop signal was first input will be continued. <br> (This also applies for [Pr.37] and [Pr.38].) | 29 |
| Circular interpolation | ABS system circular interpolation operates normally, but a vertically oblong circle results when INC system circular interpolation is carried out. | The address designation may be incorrect. When carrying out INC system circular interpolation, designate the relative addresses from the starting point of both the center point and end point. | 30 |
| Speed-position switching control | Can the speed be changed during speed control and position control by speed-position switching control? | No. The speed for the speed control and position control cannot be set differently. | 31 |
| JOG operation | Even if the JOG start signal is turned ON, the response until it turns ON is sometimes slow. | Either of the following is possible. <br> 1) The program may be incorrect. Check by creating a test program in which the JOG start signal is turned ON only. <br> 2) If the machine is hitting something when the torque setting is low, it may be trying to move by JOG operation in the opposite direction. In this case, the machine will start moving only after the internal droop pulses have been reached 0 in the counter, even if the JOG start signal has been turned ON. This makes it seem that the response is slow. | 32 |
|  | The operation is not carried out at the set JOG speed, although the speed limit value has not been reached. | Either of the following is possible. <br> 1) The JOG start signal may be chattering. Monitor the JOG start signal to confirm whether it is chattering. <br> (When using the "BUSY signal" in the JOG operation start circuit, check the position of the BUSY signal.) <br> 2) The "[Pr.31] JOG speed limit value" may not be appropriate. Review the setting value and carry out the JOG operation again. | 33 |
|  | When a JOG operation is attempted, an error results and the machine does not move. | The "[Pr.31] JOG speed limit value" may be larger than the "[Pr.8] Speed limit value". <br> Review the parameters and carry out the JOG operation again. | 34 |
|  | Why does the positioning complete signal turns ON during the JOG operation? | If a value other than " 0 " is set for "[Cd.16] Inching movement amount", the inching operation is carried out and the positioning complete signal turns ON. <br> Confirm that the "[Cd.16] Inching movement amount" is set to "0". | 35 |
| Manual pulse generator operation | Is it possible to count the pulses when the $B$ phase is set to " 1 ", and only A phase pulses are input? | Not possible. <br> (The LD75 counts 1, 0, 1, 0.) | 36 |
|  | Can a manual pulse generator other than the Mitsubishi Electric MR-HDP01 be used? | Other manual pulse generators can be used if they conform to "Specifications of Input/Output Interfaces with External Devices" ( | 37 |
|  | Can one manual pulse generator be operated connected to several LD75 modules? | This is possible if the system conforms to the electrical specifications. | 38 |
| Current value changing | The BUSY signal is not canceled by the current value changing. How can it be canceled? | The BUSY signal may remain if the scan time is long. Use a complete signal to check whether the current value changing has been executed. | 39 |
| LD75 READY signal | The LD75 READY signal does not turn ON even when the PLC READY signal [Y0] is turned ON. | "A parameter error" has occurred. Confirm the error No. in the error history, and correct the parameter. | 40 |
| M code ON signal | Is there any problem with setting an M code ON signal OFF request in the next scan after the $M$ code ON signal ON? | The LD75 checks the M code ON signal OFF request every " 1.8 ms ", so there is a possibility that the M code ON signal OFF may be delayed by a maximum of " 1.8 ms " after the M code ON signal ON, even if an M code ON signal OFF request is set. | 41 |


| Trouble type | Questions/Trouble | Remedy | No. |
| :---: | :---: | :---: | :---: |
| Deviation counter clear | How long is the output time for the deviation counter clear signal? | The time set in "[Pr.55] Deviation counter clear signal output time". (Initial value: 11ms) | 42 |
|  | Is a deviation counter clear signal output when the positioning is complete? | A signal is not output. <br> The only time the LD75 outputs a deviation counter clear signal is for a machine OPR. | 43 |
|  | How can a deviation counter clear signal be output? | The LD75 does not output a deviation counter clear signal except for machine OPR. | 44 |
| Module | The error "PLC READY OFF start" (error code: 537) occurs after the LD75 is replaced. <br> (The program is the same.) | The internal parameters of the LD75 may be different. <br> Check if the LD75 READY signal [X0] turns ON when the PLC READY signal [Y0] turns ON. <br> When the PLC READY signal is ON but the LD75 READY signal is OFF, the parameter error has occurred. <br> Check the error code and modify the parameter with the error. | 45 |
| Motor | The motor only rotates in one direction. | The parameter settings on the LD75 side may not match those on the servo side. <br> Check the parameter settings. | 46 |
|  | Can the current motor speed be monitored? | The speed shown on the LD75 monitor is calculated from the number of pulses output from the module. Thus, the actual motor speed cannot be monitored. <br> ("[Md.22] Feedrate" monitors the commanded speed. It does not show the actual motor speed.) | 47 |
| Error/warning | The error "Backlash compensation amount error" (error code: 920) occurs even when the backlash compensation value is set to " 1 ". | $0 \leq \frac{\text { Backlash compensation amount }}{\text { Movement amount per pulse }} \leq 255$ <br> Setting is not possible if the above equation is not satisfied. Adjust by setting "[Pr.4] Unit magnification" to 10-fold (or 100-fold, or 1000 -fold), and setting "[Pr.3] Movement amount per rotation" to 1/10 (or $1 / 100$, or $1 / 1000$ ). | 48 |
|  | When a JOG operation is attempted, errors such as "Hardware stroke limit (+)" or "Hardware stroke limit $(-)$ " (error code: 104 or 105) occur and the machine does not move. | The hardware stroke limit wiring has probably not been carried out. <br> Refer to Page 541, Section 12.4.4 for details, and wire accordingly. | 49 |
|  | The error "Speed designation during OP shift error" (error code: 997) appears when the PLC READY signal [Y0] turns from OFF to ON. | A value besides " 0 " or "1" may be set in the "[Pr.56] Speed designation during OP shift". <br> Review the set program, and reset the correct parameters. | 50 |
|  | When the start signal was turned ON immediately after the stop signal ON, the warning "Start during operation" (warning code: 100) was detected, and the start was ignored. | The LD75 starts the deceleration stop process when the stop signal ON is detected. Thus, the machine interprets that "positioning is still being executed" immediately after the stop signal ON. Even if the start signal is turned ON at that time, the start request will be ignored and the warning "Start during operation" (warning code: 100) will occur. | 51 |
|  | Does the warning "Deceleration/stop speed change" (warning code: 500) occur only during "stop deceleration" and "automatically deceleration"? <br> Is there any problem if the operation is continued in that state without resetting the error? | The warning occurs only at those times mentioned at the left. Because this is a warning, there is no problem if the operation can be continued without resetting the error. <br> (When the speed is changed using the override, the new value will not be reflected on the data being executed, but will be reflected from the next start.) | 52 |
| Positioning complete signal | Position control was executed but the positioning complete signal does not turn ON. | Depending on the stop occurrence factor, positioning may have not been completed normally. <br> Check the axis monitor "[Md.26] Axis operation status" after the BUSY signal has turned OFF. <br> Stop: The stop signal has turned ON during positioning. <br> Check the condition under which the stop signal ( Y stop, external stop) turns ON. <br> Error: An error has occurred during positioning. <br> Check the error occurrence factor from "[Md.23] Axis error No.". | 53 |
|  |  | The setting value of the detailed parameter 2 "Positioning complete signal output time" is 0 or shorter than the scan time. Using the program, set the time when the signal can be detected securely. | 54 |

## Appendix 10 List of Buffer Memory Addresses

The following shows the relation between the buffer memory addresses and the various items.
(Do not use any address other than listed below. If used, the system may not operate correctly.)

| Buffer memory address |  |  |  | Item | Memory area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |  |
| 0 | 150 | 300 | 450 | [Pr.1] Unit setting | Basic parameters 1 | Positioning parameters |
| 1 | 151 | 301 | 451 | [Pr.2] No. of pulses per rotation (Ap) |  |  |
| 2 | 152 | 302 | 452 | [Pr.3] Movement amount per rotation (Al) |  |  |
| 3 | 153 | 303 | 453 | [Pr.4] Unit magnification (Am) |  |  |
| 4 | 154 | 304 | 454 | [Pr.5] Pulse output mode |  |  |
| 5 | 155 | 305 | 455 | [Pr.6] Rotation direction setting |  |  |
| 6 | 156 | 306 | 456 | [Pr.7] Bias speed at start |  |  |
| 7 | 157 | 307 | 457 |  |  |  |
| 8 | 158 | 308 | 458 | Not used | Basic parameters 2 |  |
| 9 | 159 | 309 | 459 |  |  |  |
| 10 | 160 | 310 | 460 | [Pr.8] Speed limit value |  |  |
| 11 | 161 | 311 | 461 |  |  |  |
| 12 | 162 | 312 | 462 | [Pr.9] Acceleration time 0 |  |  |
| 13 | 163 | 313 | 463 |  |  |  |
| 14 | 164 | 314 | 464 |  |  |  |
| 15 | 165 | 315 | 465 | [Pr.10] Deceleration time 0 |  |  |
| 17 | 167 | 317 | 467 | [Pr.11] Backlash compensation amount | parameters 1 |  |
| 18 | 168 | 318 | 468 | [Pr 12] Software stroke limit upper limit value |  |  |
| 19 | 169 | 319 | 469 | [Pr.12] Software stroke limit upper limit value |  |  |
| 20 | 170 | 320 | 470 |  |  |  |
| 21 | 171 | 321 | 471 | [Pr.13] Software stroke limit lower limit value |  |  |
| 22 | 172 | 322 | 472 | [Pr.14] Software stroke limit selection |  |  |
| 23 | 173 | 323 | 473 | [Pr.15] Software stroke limit valid/invalid setting |  |  |
| 24 | 174 | 324 | 474 |  |  |  |
| 25 | 175 | 325 | 475 | [Pr.16] Command in-position width |  |  |
| 26 | 176 | 326 | 476 | [Pr.17] Torque limit setting value |  |  |
| 27 | 177 | 327 | 477 | [Pr.18] M code ON signal output timing |  |  |
| 28 | 178 | 328 | 478 | [Pr.19] Speed switching mode |  |  |
| 29 | 179 | 329 | 479 | [Pr.20] Interpolation speed designation method |  |  |
| 30 | 180 | 330 | 480 | [Pr.21] Current feed value during speed control |  |  |
| 31 | 181 | 331 | 481 | [Pr.22] Input signal logic selection |  |  |
| 32 | 182 | 332 | 482 | [Pr.23] Output signal logic selection |  |  |
| 33 | - | - | - | [Pr.24] Manual pulse generator input selection |  |  |
| 34 | 184 | 334 | 484 | [Pr.150] Speed-position function selection |  |  |
| 35 | 185 | 335 | 485 | Not used | Detailed parameters 2 |  |
| 36 | 186 | 336 | 486 |  |  |  |
| 37 | 187 | 337 | 487 | [Pr.25] Acceleration time 1 |  |  |
| 38 | 188 | 338 | 488 | [Pr.26] Acceleration time 2 |  |  |
| 39 | 189 | 339 | 489 |  |  |  |


| Buffer memory address |  |  |  | Item | Memory area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |  |
| 40 | 190 | 340 | 490 | [Pr.27] Acceleration time 3 | Detailed parameters 2 | Positioning parameters |
| 41 | 191 | 341 | 491 |  |  |  |
| 42 | 192 | 342 | 492 | [Pr.28] Deceleration time 1 |  |  |
| 43 | 193 | 343 | 493 |  |  |  |
| 44 | 194 | 344 | 494 | [Pr.29] Deceleration time 2 |  |  |
| 45 | 195 | 345 | 495 |  |  |  |
| 46 | 196 | 346 | 496 | [Pr.30] Deceleration time 3 |  |  |
| 47 | 197 | 347 | 497 |  |  |  |
| 48 | 198 | 348 | 498 | [Pr.31] JOG speed limit value |  |  |
| 49 | 199 | 349 | 499 |  |  |  |
| 50 | 200 | 350 | 500 | [Pr.32] JOG operation acceleration time selection |  |  |
| 51 | 201 | 351 | 501 | [Pr.33] JOG operation deceleration time selection |  |  |
| 52 | 202 | 352 | 502 | [Pr.34] Acceleration/deceleration process selection |  |  |
| 53 | 203 | 353 | 503 | [Pr.35] S-curve ratio |  |  |
| 54 | 204 | 354 | 504 |  |  |  |
| 55 | 205 | 355 | 505 | [Pr.36] Sudden stop deceleration time |  |  |
| 56 | 206 | 356 | 506 | [Pr.37] Stop group 1 sudden stop selection |  |  |
| 57 | 207 | 357 | 507 | [Pr.38] Stop group 2 sudden stop selection |  |  |
| 58 | 208 | 358 | 508 | [Pr.39] Stop group 3 sudden stop selection |  |  |
| 59 | 209 | 359 | 509 | [Pr.40] Positioning complete signal output time |  |  |
| 60 | 210 | 360 | 510 |  |  |  |
| 61 | 211 | 361 | 511 | [Pr.41] Allowable circular interpolation error wid |  |  |
| 62 | 212 | 362 | 512 | [Pr.42] External command function selection |  |  |
| 70 | 220 | 370 | 520 | [Pr.43] OPR method | OPR basic parameters | OPR parameters |
| 71 | 221 | 371 | 521 | [Pr.44] OPR direction |  |  |
| 72 | 222 | 372 | 522 | Pr.45] OP addros |  |  |
| 73 | 223 | 373 | 523 | [Pr.45] OP address |  |  |
| 74 | 224 | 374 | 524 |  |  |  |
| 75 | 225 | 375 | 525 | [Pr.46] OPR speed |  |  |
| 76 | 226 | 376 | 526 | [Pr.47] Creep speed |  |  |
| 77 | 227 | 377 | 527 | [Pr.47] Creep speed |  |  |
| 78 | 228 | 378 | 528 | [Pr.48] OPR retry |  |  |
| 79 | 229 | 379 | 529 | [Pr.49] OPR dwell time | OPR detailed parameters |  |
| 80 | 230 | 380 | 530 | [Pr.50] Setting for the movement amount after near- |  |  |
| 81 | 231 | 381 | 531 | point dog ON |  |  |
| 82 | 232 | 382 | 532 | [Pr.51] OPR acceleration time selection |  |  |
| 83 | 233 | 383 | 533 | [Pr.52] OPR deceleration time selection |  |  |
| 84 | 234 | 384 | 534 | [Pr.53] OP shift amount |  |  |
| 85 | 235 | 385 | 535 |  |  |  |
| 86 | 236 | 386 | 536 | [Pr.54] OPR torque limit value |  |  |
| 87 | 237 | 387 | 537 | [Pr.55] Deviation counter clear signal output time |  |  |
| 88 | 238 | 388 | 538 | [Pr.56] Speed designation during OP shift |  |  |
| 89 | 239 | 389 | 539 | [Pr.57] Dwell time during OPR retry |  |  |
| 140 | - | - | - | [Pr.70] Positioning option valid/invalid setting | Detailed parameters 1 | Positioning parameters |



| Buffer memory address |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Item |  | Memory area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Common to axes 1, 2, 3, and 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1200 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | [Md.1] In test moder | flag | System monitor data | Monitor data |
|  |  |  |  |  |  |  | 1201 120 12 120 120 12 12 12 12 120 12 12 12 |  |  |  |  |  |  |  |  | Not used |  |  |  |
| (0) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (Pointer No.) | Start <br> History |  |  |
| 1212 | 1217 | 1222 | 1227 | 1232 | 1237 | 1242 | 1247 | 1252 | 1257 | 1262 | 1267 | 1272 | 1277 | 1282 | 1287 | [Md.3] Start information |  |  |  |
| 1213 | 1218 | 1223 | 1228 | 1233 | 1238 | 1243 | 1248 | 1253 | 1258 | 1263 | 1268 | 1273 | 1278 | 1283 | 1288 | [Md.4] Start No. |  |  |  |
| 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 1455 | [Md.50] Start (Year:month) |  |  |  |
| 1214 | 1219 | 1224 | 1229 | 1234 | 1239 | 1244 | 1249 | 1254 | 1259 | 1264 | 1269 | 1274 | 1279 | 1284 | 1289 | [Md.5] Start (Day:hour) |  |  |  |
| 1215 | 1220 | 1225 | 1230 | 1235 | 1240 | 1245 | 1250 | 1255 | 1260 | 1265 | 1270 | 1275 | 1280 | 1285 | 1290 | [Md.6] Start <br> (Minute:second) |  |  |  |
| 1216 | 1221 | 1226 | 1231 | 1236 | 1241 | 1246 | 1251 | 1256 | 1261 | 1266 | 1271 | 1276 | 1281 | 1286 | 1291 | [Md.7] Error judgment |  |  |  |
|  |  |  |  |  |  |  | 12 |  |  |  |  |  |  |  |  | [Md.8] Start history pointer |  |  |  |
| (0) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (Pointer No.) |  |  |  |
| 1293 | 1297 | 1301 | 1305 | 1309 | 1313 | 1317 | 1321 | 1325 | 1329 | 1333 | 1337 | 1341 | 1345 | 1349 | 1353 | [Md.9] Axis in which the error occurred |  |  |  |
| 1294 | 1298 | 1302 | 1306 | 1310 | 1314 | 1318 | 1322 | 1326 | 1330 | 1334 | 1338 | 1342 | 1346 | 1350 | 1354 | [Md.10] Axis error No. |  |  |  |
| 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | [Md.51] Axis error occurrence (Year:month) | Error |  |  |
| 1295 | 1299 | 1303 | 1307 | 1311 | 1315 | 1319 | 1323 | 1327 | 1331 | 1335 | 1339 | 1343 | 1347 | 1351 | 1355 | [Md.11] Axis error occurrence (Day:hour) | History |  |  |
| 1296 | 1300 | 1304 | 1308 | 1312 | 1316 | 1320 | 1324 | 1328 | 1332 | 1336 | 1340 | 1344 | 1348 | 1352 | 1356 | [Md.12] Axis error occurrence (Minute:second) |  |  |  |
| 1357 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | [Md.13] Error history pointer |  |  |  |



| Buffer memory address |  |  |  | Item | Memory area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |  |
| 1500 | 1600 | 1700 | 1800 | [Cd.3] Positioning start No. | Axis control data | Control data |
| 1501 | 1601 | 1701 | 1801 | [Cd.4] Positioning starting point No. |  |  |
| 1502 | 1602 | 1702 | 1802 | [Cd.5] Axis error reset |  |  |
| 1503 | 1603 | 1703 | 1803 | [Cd.6] Restart command |  |  |
| 1504 | 1604 | 1704 | 1804 | [Cd.7] M code OFF request |  |  |
| 1505 | 1605 | 1705 | 1805 | [Cd.8] External command valid |  |  |
| 1506 | 1606 | 1706 | 1806 |  |  |  |
| 1507 | 1607 | 1707 | 1807 | [Cd.9] New current value |  |  |
| 1508 | 1608 | 1708 | 1808 | [Cd.10] New |  |  |
| 1509 | 1609 | 1709 | 1809 | acceleration time value |  |  |
| 1510 | 1610 | 1710 | 1810 | [Cd.11] New |  |  |
| 1511 | 1611 | 1711 | 1811 | deceleration time value |  |  |
| 1512 | 1612 | 1712 | 1812 | [Cd.12] <br> Acceleration/deceleratio <br> n time change during <br> speed change, <br> enable/disable selection |  |  |
| 1513 | 1613 | 1713 | 1813 | [Cd.13] Positioning operation speed override |  |  |
| 1514 | 1614 | 1714 | 1814 | [Cd.14] New speed |  |  |
| 1515 | 1615 | 1715 | 1815 | value |  |  |
| 1516 | 1616 | 1716 | 1816 | [Cd.15] Speed change request |  |  |
| 1517 | 1617 | 1717 | 1817 | [Cd.16] Inching movement amount |  |  |
| 1518 | 1618 | 1718 | 1818 |  |  |  |
| 1519 | 1619 | 1719 | 1819 | .17]JOG speed |  |  |
| 1520 | 1620 | 1720 | 1820 | [Cd. 18] Continuous operation interrupt request |  |  |
| 1521 | 1621 | 1721 | 1821 | [Cd.19] OPR request flag OFF request |  |  |
| $\begin{aligned} & 1522 \\ & 1523 \end{aligned}$ | $\begin{aligned} & 1622 \\ & 1623 \end{aligned}$ | $\begin{aligned} & 1722 \\ & 1723 \end{aligned}$ | $\begin{aligned} & 1822 \\ & 1823 \end{aligned}$ | [Cd.20] Manual pulse generator 1 pulse input magnification |  |  |
| 1524 | 1624 | 1724 | 1824 | [Cd.21] Manual pulse generator enable flag |  |  |
| 1525 | 1625 | 1725 | 1825 | [Cd.22] New torque value |  |  |
| $\begin{aligned} & 1526 \\ & 1527 \end{aligned}$ | $\begin{aligned} & 1626 \\ & 1627 \end{aligned}$ | $\begin{aligned} & 1726 \\ & 1727 \end{aligned}$ | $\begin{aligned} & 1826 \\ & 1827 \end{aligned}$ | [Cd.23] Speed-position switching control movement amount change register |  |  |
| 1528 | 1628 | 1728 | 1828 | [Cd.24] Speed-position switching enable flag |  |  |
| 1529 | 1629 | 1729 | 1829 | Not used |  |  |
| 1530 1531 | $\begin{aligned} & 1630 \\ & 1631 \end{aligned}$ | $\begin{aligned} & 1730 \\ & 1731 \end{aligned}$ | $\begin{aligned} & 1830 \\ & 1831 \end{aligned}$ | [Cd.25] Position-speed switching control speed change register |  |  |
| 1532 | 1632 | 1732 | 1832 | [Cd.26] Position-speed switching enable flag |  |  |
| 1533 | 1633 | 1733 | 1833 | Not used |  |  |



| Buffer memory address |  |  |  | Item |  | Memory area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axis 1 | Axis 2 | Axis 3 | Axis 4 |  |  |  |  |
| 2000 | 8000 | 14000 | 20000 | [Da.1] Operation pattern <br> [Da.2] Control system <br> [Da.3] Acceleration time No. <br> [Da.4] Deceleration time No. <br> [Da.5] Axis to be interpolated | No. 1 | $\begin{aligned} & \text { Positioning } \\ & \text { data } \end{aligned}$ | Positioning data |
| 2001 | 8001 | 14001 | 20001 | [Da.10]M code/condition data No./No. of LOOP to LEND repetitions |  |  |  |
| 2002 | 8002 | 14002 | 20002 | [Da.9] Dwell time/JUMP destination positioning data No. |  |  |  |
| 2003 | 8003 | 14003 | 20003 | [Da.27] M code ON signal output timing [Da.28] ABS direction in degrees [Da.29] Interpolation speed designation method |  |  |  |
| $\begin{aligned} & 2004 \\ & 2005 \end{aligned}$ | $\begin{aligned} & 8004 \\ & 8005 \end{aligned}$ | $\begin{aligned} & 14004 \\ & 14005 \end{aligned}$ | $\begin{aligned} & 20004 \\ & 20005 \end{aligned}$ | [Da.8] Command speed |  |  |  |
| $\begin{aligned} & 2006 \\ & 2007 \end{aligned}$ | $\begin{aligned} & 8006 \\ & 8007 \end{aligned}$ | $\begin{aligned} & 14006 \\ & 14007 \end{aligned}$ | $\begin{aligned} & 20006 \\ & 20007 \end{aligned}$ | [Da.6] Positioning address/movement amount |  |  |  |
| $\begin{aligned} & \hline 2008 \\ & 2009 \end{aligned}$ | $\begin{aligned} & 8008 \\ & 8009 \end{aligned}$ | $\begin{aligned} & \hline 14008 \\ & 14009 \end{aligned}$ | $\begin{aligned} & 20008 \\ & 20009 \end{aligned}$ | [Da.7] Arc address |  |  |  |
| 2010 | 8010 | 14010 | 20010 | No. 2 |  |  |  |
| ! | ! | ! | ! |  |  |  |  |  |
| 2019 | 8019 | 14019 | 20019 |  |  |  |  |  |
| 2020 | 8020 | 14020 | 20020 | No. 3 |  |  |  |
| $\vdots$ | ! | $\vdots$ | ! |  |  |  |  |  |
| 2029 | 8029 | 14029 | 20029 |  |  |  |  |  |
| ! | : | ! | $\vdots$ |  |  |  |  |
| 7990 | 13990 | 19990 | 25990 | No. 600 |  |  |  |
| $\vdots$ | ! | ! | ! |  |  |  |  |  |
| 7999 | 13999 | 19999 | 25999 |  |  |  |  |  |


| Buffer memory address |  |  |  |  |  |  |  | Item | Memory area |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axis 1 |  | Axis 2 |  | Axis 3 |  | Axis 4 |  |  |  |  |  |  |
| 26000 | 26050 | 27000 | 27050 | 28000 | 28050 | 29000 | 29050 | [Da.11] Shape <br> [Da.12] Start data No. <br> [Da.13] Special start instruction <br> [Da.14] Parameter | 1st point | Block start data | Starting block 0 | Positioning data (Starting block data) |
| 26001 | 26051 | 27001 | 27051 | 28001 | 28051 | 29001 | 29051 | 2nd point |  |  |  |  |
| 26002 | 26052 | 27002 | 27052 | 28002 | 28052 | 29002 | 29052 | 3rd point |  |  |  |  |
| : |  | ! |  | ! |  | ! |  | $\vdots$ |  |  |  |  |
| 26049 | 26099 | 27049 | 27099 | 28049 | 28099 | 29049 | 29099 | 50th point |  |  |  |  |
| 26100 |  | 27100 |  | 28100 |  | 29100 |  | [Da.15] Condition target | No. 1 | Condition data |  |  |
|  |  | [Da.16] Condition operator |  |  |  |  |  |  |  |  |  |
| 2610226103 |  |  |  | $\begin{aligned} & 27102 \\ & 27103 \end{aligned}$ |  | $\begin{aligned} & 28102 \\ & 28103 \end{aligned}$ |  | $\begin{aligned} & 29102 \\ & 29103 \end{aligned}$ |  |  |  |  | [Da.17] Address |
|  |  | $\begin{aligned} & 27104 \\ & 27105 \end{aligned}$ |  | $\begin{aligned} & 28104 \\ & 28105 \end{aligned}$ |  | $\begin{aligned} & 29104 \\ & 29105 \end{aligned}$ |  | [Da.18] Parameter 1 |  |  |  |  |
|  |  | $\begin{aligned} & 27106 \\ & 27107 \end{aligned}$ |  | 2810628107 |  | 29106 |  | [Da.19] Parameter 2 |  |  |  |  |
| 26110 to 26119 |  | 27110 to 27119 |  | 28110 to 28119 |  | 29110 to 29119 |  | No. 2 |  |  |  |  |
| 26120 to 26129 |  | 27120 to 27129 |  | 28120 to 28129 |  | 29120 to 29129 |  | No. 3 |  |  |  |  |
| $\vdots$ |  | $\vdots$ |  | : |  | ! |  | ! |  |  |  |  |
| 26190 to 26199 |  | 27190 to 27199 |  | 28190 to 28199 |  | 29190 to 29199 |  | No. 10 |  |  |  |  |
| 26200 to 26299 |  | 27200 to 27299 |  | 28200 to 28299 |  | 29200 to 29299 |  | Block start data |  |  | Starting block 1 |  |
| 26300 to 26399 |  | 27300 to 27399 |  | $28300 \text { to } 28399$ |  | $29300 \text { to } 29399$ |  | Condition data |  |  |  |  |
| 26400 to 26499 |  | $27400 \text { to } 27499$ |  | $28400 \text { to } 28499$ |  | $29400 \text { to } 29499$ |  | Block start data |  |  | Starting block 2 |  |
| 26500 to 26599 |  | 27500 to 27599 |  | 28500 to 28599 |  | 29500 to 29599 |  | Condition data |  |  |  |  |
| 26600 to 26699 |  | 27600 to 27699 |  | 28600 to 28699 |  | 29600 to 29699 |  | Block start data |  |  | Starting block 3 |  |
| 26700 to 26799 |  | 27700 to 27799 |  | 28700 to 28799 |  | $29700 \text { to } 29799$ |  | Condition data |  |  |  |  |
| 26800 to 26899 |  | 27800 to 27899 |  | 28800 to 28899 |  | 29800 to 29899 |  | Block start data |  |  | Starting block 4 |  |
| 26900 to 26999 |  | 27900 to 27999 |  | 28900 to 28999 |  | $29900 \text { to } 29999$ |  | Condition data |  |  |  |  |
| $30000$ |  |  |  |  |  |  |  | Condition judgement target data of the condition data |  | PLC CPU memo area |  | Positioning data |  |
| : |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $30099$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Appendix 11 External Dimension Drawing

(1) LD75P1

(Unit: mm)
(2) LD75P2

(Unit: mm)
(3) LD75P4

(4) LD75D1


(Unit: mm)

(5) LD75D2

(Unit: mm)
(6) LD75D4


(Unit: mm)
0 to 9
1-2 phase excitation system. ..... 769
1-axis fixed-feed control. ..... 379
1-axis linear control (ABS linear 1) ..... 366
1 -axis linear control (INC linear 1) ..... 367
1-axis speed control ..... 416
2-axis circular interpolation control with center point designation (ABS circular right, ABS circular left) . . 3972-axis circular interpolation control with center pointdesignation (INC circular right, INC circular left) . . . 3992-axis circular interpolation control with sub pointdesignation (ABS circular sub)391
2-axis circular interpolation control with sub point designation (INC circular sub) ..... 393
2-axis fixed-feed control (interpolation) ..... 381
2-axis linear interpolation control (ABS linear 2) ..... 368
2-axis linear interpolation control (INC linear 2) ..... 370
2-axis speed control ..... 419
2-phase excitation system ..... 770
2-phase pulse ..... 769
2-speed trapezoidal control ..... 770
3-axis fixed-feed control (interpolation) ..... 384
3-axis helical interpolation control with center point designation (ABS helical right, ABS helical left) . . . 4103-axis helical interpolation control with center pointdesignation (INC helical right, INC helical left)413
3-axis helical interpolation control with sub point designation (ABS helical sub) ..... 404
3 -axis helical interpolation control with sub point designation (INC helical sub) ..... 406
3-axis linear interpolation control (ABS linear 3) ..... 372
3 -axis linear interpolation control (INC linear 3 ) ..... 374
3-axis speed control ..... 422
4-axis fixed-feed control (interpolation) ..... 388
4-axis linear interpolation control (ABS linear 4). ..... 376
4-axis linear interpolation control (INC linear 4) ..... 377
4 -axis speed control ..... 425
A
A phase/B phase mode ..... 122
ABS direction in degrees ([Cd.40]) ..... 234
ABS direction in degrees ([Da.28]) ..... 170
Absolute encoder ..... 772
Absolute position detection system ..... 785
Absolute position restoration function ..... 563
Absolute system ..... 352,772
Acceleration time ..... 782
Acceleration time 0 ([Pr.9]). ..... 125
Acceleration time 1 ([Pr.25]) ..... 133
Acceleration time 2 ([Pr.26]) ..... 133
Acceleration time 3 ([Pr.27]). ..... 133
Acceleration time No. ([Da.3]) ..... 157
Acceleration/deceleration process selection ([Pr.34]) ..... 135
Acceleration/deceleration processing function ..... 596
Acceleration/deceleration time change during speedchange, enable/disable selection ([Cd.12]).217
Acceleration/deceleration time change function ..... 553
Actual acceleration/deceleration time ..... 125
Adding a module ..... 738
Address ..... 772
Address ([Da.17]) ..... 180
AFTER mode ..... 581,770
Allowable circular interpolation error width ([Pr.41])139
Applicable system ..... 48
Applicable wire size ..... 50
Arc address ([Da.7]) ..... 164
Auto tuning ..... 774
Automatic Command Speed Calculation ..... 742
Automatic Sub Arc Calculation. ..... 743
Axis display LED ..... 80
Axis error No. ([Md.10], [Md.23]). ..... 188,196
Axis error occurrence (Day:hour) ([Md.11]) ..... 188
Axis error occurrence (Minute:second) ([Md.12]) ..... 189
Axis error occurrence (Year:month) ([Md.51]) ..... 188
Axis error reset ([Cd.5]) ..... 214
Axis feedrate ([Md.28]) ..... 198
Axis in which the error occurred ([Md.9]) ..... 187
Axis in which the warning occurred ([Md.14]) ..... 190
Axis Monitor ..... 746
Axis monitor data ..... 193
Axis operation status ([Md.26]) ..... 197
Axis stop signal ..... 68
Axis to be interpolated ([Da.5]) ..... 158
Axis warning detection flag ..... 201
Axis warning No. ([Md.15], [Md.24]) ..... 191,196
Axis warning occurrence (Day:hour) ([Md.16]) ..... 191
Axis warning occurrence (Minute:second) ([Md.17])192
Axis warning occurrence (Year:month) ([Md.52]) ..... 191
B
Backlash compensation. ..... 778
Backlash compensation amount ([Pr.11]) ..... 126
Backlash compensation function ..... 518
Backup function ..... 778
Ball screw ..... 780
Basic parameters 1 ..... 118
Basic parameters 2 ..... 125
Bias speed at start ..... 785
Bias speed at start ([Pr.7]) ..... 124
Bipolar drive constant-current system ..... 778
Block. ..... 456
Block No. being executed ([Md.45]) ..... 208
Block start (normal start) ..... 456
Block start data ..... 461
Block start data area (No. 7000 to 7004) ..... 306
Buffer memory ..... 305,779
Buffer memory area configuration. ..... 307
BUSY ..... 770
BUSY signal ..... 67

## C

Cable clamp ..... 87
CCW ..... 770
CHANGE signal ..... 770
Checking installation and wiring ..... 91
Circular interpolation ..... 782
Combination of main functions and sub functions ..... 59
Command in-position flag ..... 201
Command in-position function ..... 593
Command in-position width ([Pr.16]). ..... 128
Command pulse ..... 785
Command pulse frequency ..... 31
Command speed ([Da.8]) ..... 167
Common functions ..... 57,609
Communicating signals between LD75 and eachmodule32
Composite speed ..... 131,784
Condition data ..... 470
Condition operator ..... 471
Condition operator ([Da.16]) ..... 180
Condition start ..... 464
Condition target ([Da.15]) ..... 179
Conditional JUMP ..... 452
Configuration and roles of LD75 memory ..... 305
Configuration list ..... 47
Confirming the current value ..... 353
Connector ..... 80
Continuous operation interrupt program ..... 296
Continuous operation interrupt request ([Cd.18]) ..... 222
Continuous path control ..... 345
Continuous positioning control ..... 344
Control data area ..... 306
Control system ([Da.2]) ..... 157
Control system repetition counter ([Md.42]) ..... 207
Control unit ..... 785
CP control ..... 770
CPU module ..... 48
Creep speed ..... 774
Creep speed ([Pr.47]) ..... 146
Current feed value ..... 353,786
Current feed value ([Md.20]) ..... 193
Current feed value during speed control ([Pr.21]). ..... 132
Current loop mode ..... 787
Current speed ([Md.27]) ..... 197
Current value ..... 784
Current value change test ..... 762
Current value changing ..... 447
CW. ..... 770
CW/CCW mode ..... 122
D
D/A converter ..... 770
Data No ..... 777
Data transmission process ..... 308
Deceleration curve ..... 606
Deceleration curve continuation ..... 606
Deceleration curve re-processing ..... 606
Deceleration ratio. ..... 784
Deceleration start flag ([Md.48]) ..... 210
Deceleration start flag valid ([Cd.41]) ..... 212
Deceleration stop ..... 303
Deceleration time ..... 784
Deceleration time 0 ([Pr.10]) ..... 125
Deceleration time 1 ([Pr.28]) ..... 133
Deceleration time 2 ([Pr.29]) ..... 133
Deceleration time 3 ([Pr.30]) ..... 133
Deceleration time No. ([Da.4]) ..... 157
Detailed parameters 1 ..... 126
Detailed parameters 2 ..... 133
Details of input signals (LD75 to CPU module) ..... 67
Details of output signals (CPU module to LD75) ..... 68
Deviation counter. ..... 788
Deviation counter clear. ..... 75
Deviation counter clear signal output time ([Pr.55])151
Deviation counter droop pulse amount ..... 31
Differential driver common terminal ..... 89
Differential output type ..... 785
Digital bus connection ..... 777
Disposal precautions ..... 92
DOG signal ..... 770
Drive unit ..... 777
Drive unit (servo amplifier) ..... 18
Drive unit READY ..... 75,777
Droop pulse ..... 788
Dwell time ..... 777
Dwell time (JUMP destination positioning data No.) ([Da.9]) ..... 168
Dwell time during OPR retry ([Pr.57]) ..... 151
Dynamic brake ..... 777
E
Electrical specifications ..... 69
Electromagnetic brake ..... 787
Electronic gear ..... 787
Electronic gear function ..... 520
Emergency stop ..... 39,301,302,788
Encoder ..... 774
Error and warning details ..... 647
Error compensation method ..... 522
Error correction ..... 784
Error detection signal ..... 67
Error history ..... 617,752
Error history pointer ([Md.13]) ..... 189
Error judgment ([Md.7]) ..... 186
Error reset ..... 773
Execution data backup function. ..... 612
Execution prohibition flag ..... 68
Existing records. ..... 189
Existing starting history records. ..... 186,616,750
External command function selection ([Pr.42]) ..... 139
External command signal ..... 74
External command valid ([Cd.8]) ..... 215
External device connector. ..... 80
External dimension drawing ..... 802
External I/O signal logic switching function ..... 614
External I/O signal monitor function ..... 615
External input/output signal ([Md.30]) ..... 200
External regenerative brake resistor ..... 782
F
F770
Fast OPR ..... 337,784
Fatal stop ..... 39,301,302
Features of LD75 ..... 22
Feed pulse ..... 779
Feed screw ..... 786
Feedback pulse ..... 779
Feedrate ([Md.22]) ..... 195
Fixed-feed ..... 787
Flash memory ..... 779
Flash ROM ..... 305
Flash ROM write request ([Cd.1]) ..... 211
Flat type motor ..... 779
Flow of all processes ..... 35
Flow of system operation ..... 35
FLS signal ..... 770
Forced stop ..... 39,301,302
Front-loading speed switching mode ..... 351
Function combinations ..... 59
Function version ..... 48
Functions for compensating the control ..... 518
Functions to change the control details ..... 543
Functions to limit the control ..... 530

## G

G code. ..... 771
Gain ..... 774
GD ${ }^{2}$ ..... 770
General configuration of program ..... 257
General image of system ..... 44
GX Configurator-QP ..... 18,768
GX Developer ..... 18,767
GX Works2 ..... 18,737
H
Handling precautions ..... 82
Hardware stroke limit function ..... 541
Head module ..... 18
High-level positioning control ..... 456
History monitor function ..... 616
Immediate stop ..... 39,303
In speed change processing flag ([Md.40]) ..... 207
In speed control flag ..... 201
In speed limit flag ([Md.39]) ..... 206
In test mode flag ([Md.1]) ..... 182
Inching movement amount ([Cd.16]) ..... 220
Inching operation ..... 491
Inching operation timing and processing times ..... 493
Incremental encoder ..... 773
Incremental system ..... 352,773
Independent positioning control ..... 343
Inertia ..... 772
Initialization program ..... 286
Input signal logic selection ([Pr.22]) ..... 132
Input terminal ..... 787
Input/output interface internal circuit ..... 76
Installation precautions ..... 83
Intentional stop .....  39,301,302
Interlock ..... 619,773
Internal circuit ..... 76
Internal current consumption ..... 50
Interpolation axis. ..... 359
Interpolation control ..... 359
Interpolation operation. ..... 788
Interpolation speed designation method ([Da.29]) ..... 170
Interpolation speed designation method ([Pr.20]) ..... 131
Inverter ..... 773
J
JOG ..... 771
JOG operation ..... 481
JOG operation acceleration time selection ([Pr.32])134
JOG operation deceleration time selection ([Pr.33]) ..... 134
JOG operation timing and processing time ..... 483
JOG speed ([Cd.17]) ..... 221
JOG speed limit value ([Pr.31]) ..... 133
JOG start signal ..... 68
JOG/manual pulse generator/OPR test ..... 758
JUMP instruction ..... 452
L
Last executed positioning data No. ([Md.46]) ..... 209
LD75. ..... 18
LD75 READY ..... 67
LEND ..... 455
Limit switch ..... 780
Linear interpolation ..... 787
List of block start data ..... 171
List of condition data ..... 176
List of control data ..... 211
List of dedicated instructions ..... 619
List of devices ..... 239
List of errors ..... 650
List of functions ..... 51
List of input/output signal details. ..... 74
List of input/output signals ..... 66
List of monitor data ..... 182
List of parameters ..... 118
List of positioning data ..... 152
List of warnings ..... 676
Load inertia ratio. ..... 788
Location trace ..... 765
LOOP ..... 454
Lower limit signal ..... 74
Low-inertia motor ..... 787
M
M code ..... 771
M code (or condition data No./No. of LOOP to LENDrepetitions) ([Da.10])169
M Code Comment Edit ..... 743
M code OFF request ..... 582
M code OFF request ([Cd.7]) ..... 215
M code ON signal ..... 67
M code ON signal output timing ..... 580
M code ON signal output timing ([Da.27]) ..... 170
M code ON signal output timing ([Pr. 18]) ..... 129
M code output function ..... 580
Machine feed value ..... 353,786
Machine feed value ([Md.21]) ..... 194
Machine OPR ..... 318
Machine OPR in count method 1) ..... 332
Machine OPR in count method 2) ..... 335
Machine OPR in near-point dog method ..... 321
Machine OPR operation timing and process time. ..... 293
Main functions ..... 53
Maintenance precautions ..... 92
Major positioning control ..... 339
Manual control ..... 479
Manual pulse generator ..... 47,785
Manual pulse generator 1 pulse input magnification ([Cd.20]) ..... 223
Manual pulse generator enable flag ([Cd.21]) ..... 223
Manual pulse generator input selection ([Pr.24]) ..... 132
Manual pulse generator operation ..... 499
Manual pulse generator operation timing and processing time ..... 501
Master axis ..... 780
Master/local module ..... 18
Max. connection distance ..... 50
Max. output pulse. ..... 50
Mechanism of positioning control ..... 27
Module error collection function ..... 618
Module error logs ..... 618
Module's Detailed Information ..... 640
Monitor data area. ..... 306
Movement amount after near-point dog ON ([Md.34])204
Movement amount per pulse ..... 769
Movement amount per pulse ([Pr.2] to [Pr.4]) ..... 119
Movement amount per rotation ([Pr.3]) ..... 120
Multi-phase pulse. ..... 786
Multiple axes simultaneous start control ..... 473
Multiplying rate setting ..... 787

## N

Names of each part ..... 80
NC language ..... 771
Near pass ..... 525
Near pass function ..... 525
Near-point dog ..... 783
Near-point dog signal ..... 74
New acceleration time value ([Cd.10]) ..... 216
New current value ..... 784
New current value ([Cd.9]) ..... 216
New deceleration time value ([Cd.11]) ..... 217
New speed value ([Cd.14]) ..... 218
New torque value ([Cd.22]) ..... 223
NEXT start ..... 469
No. of control axes ..... 49
No. of occupied I/O points. ..... 50
No. of pulses per rotation ([Pr.2]) ..... 119
No. of write accesses to flash ROM ([Md.19]) ..... 192
NOP instruction ..... 451
Normal start ..... 462
Number of connectable modules ..... 48

## 0

Offline Simulation ..... 741
OP ..... 783
OP address ([Pr.45]) ..... 145
OP shift amount ([Pr.53]) ..... 150
OP shift function ..... 515,783
Operation pattern ([Da.1]) ..... 157
Operation patterns ..... 342,782
Operation principle ..... 28
Operation timing and processing time during position- speed switching control ..... 443
Operation timing and processing time during speed-position switching control (ABS mode)437
Operation timing and processing time during speed-position switching control (INC mode)430
Operation timing and processing time of fast OPR338
OPR acceleration time selection ([Pr.51]) ..... 149
OPR basic parameters ..... 140
OPR complete flag ..... 201
OPR deceleration time selection ([Pr.52]) ..... 149
OPR detailed parameters ..... 148
OPR direction ([Pr.44]) ..... 144
OPR dwell time ([Pr.49]) ..... 148
OPR method ..... 319,783
OPR method ([Pr.43]) ..... 140
OPR method (1): Near-point dog method ..... 321
OPR method (2): Stopper method 1) ..... 323
OPR method (3): Stopper method 2) ..... 327
OPR method (4): Stopper method 3) ..... 330
OPR method (5): Count method 1) ..... 332
OPR method (6): Count method 2) ..... 335
OPR parameter ..... 783
OPR request ..... 316,783
OPR request flag ..... 201
OPR request flag OFF request ([Cd.19]) ..... 222
OPR retry ([Pr.48]) ..... 147
OPR retry function ..... 510
OPR speed ([Pr.46]) ..... 145
OPR torque limit value ([Pr.54]) ..... 151
Order of priority for stop process ..... 304
Outline design of positioning system ..... 29
Outline of installation, wiring, and maintenance ..... 79
Outline of OPR control ..... 316
Outline of restarting ..... 42
Outline of starting ..... 37
Outline of stopping. ..... 39
Output signal logic selection ([Pr.23]) ..... 132
Output terminal ..... 785
Output timing selection of near pass control ..... 527
Override function ..... 550,774
P
P rate ..... 771
Parameter ..... 779
Parameter ([Da.14]) ..... 175
Parameter 1 ([Da.18]) ..... 181
Parameter 2 ([Da.19]) ..... 181
Parameter area ..... 306
Parameter initialization request ([Cd.2]) ..... 211
Parameter setting ..... 739
Performance specifications ..... 49
Peripheral devices ..... 44
Personal computer ..... 47
PG0. ..... 771
PLC CPU memo area ..... 306
PLC READY signal ..... 68
Position control ..... 781
Position control operation timing and process time294
Position detection module ..... 781
Position loop gain ..... 780
Position loop mode ..... 781
Positioning ..... 781
Positioning address/movement amount ([Da.6]) ..... 159
Positioning complete ..... 343,781
Positioning complete signal ..... 67,781
Positioning complete signal output time ([Pr.40]) ..... 138
Positioning continued ..... 781
Positioning control operation program ..... 258
Positioning data ..... 781
Positioning data area (No. 1 to 600) ..... 306
Positioning data being executed ([Md.47]) ..... 209
Positioning data No. being executed ([Md.44]) ..... 208
Positioning monitor ..... 746
Positioning operation speed override ([Cd.13]) ..... 218
Positioning option valid/invalid setting ([Pr.70]) ..... 132
Positioning parameter ..... 781
Positioning program examples ..... 261
Positioning start ..... 781
Positioning start No. ([Cd.3]) ..... 213
Positioning start signal ..... 68
Positioning start test ..... 756
Positioning starting point No. ([Cd.4]) ..... 213
Positioning test ..... 756
Position-speed switching control ..... 441
Position-speed switching control speed change register ([Cd.25]) ..... 225
Position-speed switching enable flag ([Cd.26]) ..... 226
Position-speed switching latch flag ..... 201
Position-speed switching signal ..... 53
Precautions for creating program ..... 235
Pre-reading start function ..... 598
Program details ..... 286
PTP control ..... 771
Pulse. ..... 779
Pulse generator ..... 779
Pulse output mode ..... 779
Pulse output mode ([Pr.5]) ..... 121
PULSE/SIGN mode ..... 121
Purpose and applications of positioning control ..... 24

## R

READY ..... 771
Real-time auto tuning ..... 780
Reference axis ..... 359
Reference axis speed ..... 131,782
Regenerative brake option ..... 782
Relatively safe stop ..... 39,301,302
Repeated start (FOR condition) ..... 468
Repeated start (FOR loop) ..... 467
Resolver ..... 780
Restart command ([Cd.6]) ..... 214
Restart operation ..... 298
Restart program ..... 298
Restrictions on using a stepping motor ..... 43
RLS signal ..... 771
Rotary table ..... 782
Rotation direction setting ([Pr.6]) ..... 123
S-curve acceleration/deceleration. ..... 772
S-curve acceleration/deceleration processing method597
S-curve ratio ([Pr.35]) ..... 136
Serial number ..... 48
Servo amplifier ..... 774
Servo lock ..... 775
Servo ON. ..... 775
Servomotor ..... 775
Setting auto refresh ..... 745
Setting block starting data ..... 744
Setting data ..... 93
Setting for the movement amount after near-point dog ON ([Pr.50]) ..... 149
Setting items for block start data ..... 112
Setting items for condition data ..... 113
Setting items for OPR parameters ..... 108
Setting items for positioning data ..... 109
Setting items for positioning parameters ..... 96
Setting method ..... 534
Setting positioning data ..... 740
Setting the positioning data ..... 364
Setting unit ..... 785
SFC ..... 771
Shape ([Da.11]) ..... 175
Signal layout for connector ..... 73
Signal name. ..... 66
Simultaneous start ..... 466
Simultaneous starting axis start data No. (axis 1 start data No.) ([Cd.30]) ..... 229
Simultaneous starting axis start data No.
(axis 2 start data No.) ([Cd.31]) ..... 230
Simultaneous starting axis start data No. (axis 3 start data No.) ([Cd.32]) ..... 230
Simultaneous starting axis start data No. (axis 4 start data No.) ([Cd.33]) ..... 231
Skip command ([Cd.37]) ..... 232
Skip function ..... 577,775
Slave axis ..... 777
Software stroke limit lower limit value ([Pr.13]) ..... 127
Software stroke limit selection ([Pr.14]) ..... 127
Software stroke limit upper limit value ([Pr.12]). ..... 127
Software stroke limit valid/invalid setting ([Pr.15]). ..... 127
Special start data instruction code setting value([Md.36])205
Special start data instruction parameter setting value ([Md.37])206
Special start instruction ([Da.13]) ..... 175
Special start repetition counter ([Md.41]) ..... 207
Specifications of input/output interfaces ..... 69
Specifications of input/output signals ..... 66
Speed change 0 flag ..... 201
Speed change function ..... 543
Speed change request ([Cd.15]) ..... 219
Speed change test ..... 760
Speed control ..... 786
Speed designation during OP shift ([Pr.56]) ..... 151
Speed integral compensation ..... 786
Speed limit function ..... 530
Speed limit value ..... 786
Speed limit value ([Pr.8]) ..... 125
Speed loop gain ..... 786
Speed loop mode ..... 786
Speed switching mode ([Pr.19]) ..... 131
Speed-position function selection ([Pr.150]) ..... 132
Speed-position switching control ..... 786
Speed-position switching control (ABS mode) ..... 435
Speed-position switching control (INC mode) ..... 428
Speed-position switching control mode. ..... 786
Speed-position switching control movement amount change register ([Cd.23]) ..... 224
Speed-position switching control positioning amount([Md.29])199
Speed-position switching enable flag ([Cd.24]) ..... 225
Speed-position switching latch flag ..... 201
Spiral interpolation ..... 396
Standard speed switching mode ..... 350
Start (Day:hour) ([Md.5]) ..... 185
Start (Minute:second) ([Md.6]) ..... 185
Start (Year:month) ([Md.50]) ..... 185
Start complete ..... 785
Start complete signal ..... 67
Start data No. ([Da.12]) ..... 175
Start data pointer being executed ([Md.43]) ..... 208
Start details setting program ..... 287
Start history pointer ([Md.8]) ..... 186
Start information ([Md.3]) ..... 184
Start No. ([Md.4]) ..... 184
Start positioning data No. setting value ([Md.38]). ..... 206
Start program ..... 288
Starting axis ..... 785
Starting high-level positioning control ..... 475
Status. ..... 775
Status ([Md.31]) ..... 201
Step function ..... 572,776
Step mode ..... 573
Step mode ([Cd.34]) ..... 231
Step out ..... 787
Step start information ..... 573
Step start information ([Cd.36]) ..... 232
Step valid flag ([Cd.35]) ..... 231
Stepping motor ..... 776
Stop cause ..... 301,302
Stop command processing for deceleration stop function. ..... 606
Stop command processing for deceleration stop selection ([Cd.42]) ..... 212
Stop group 1 sudden stop selection ([Pr.37]). ..... 137
Stop group 2 sudden stop selection ([Pr.38]). ..... 135
Stop group 3 sudden stop selection ([Pr.39]). ..... 137
Stop process ..... 301
Stop program. ..... 301
STOP signal ..... 771
Stop signal ..... 74
Stop with stopper ..... 776
Stroke. ..... 776
Stroke limit ..... 776
Sub functions ..... 507
Sub functions specifically for machine OPR ..... 510
Sudden stop ..... 303,783
Sudden stop deceleration time ([Pr.36]) ..... 137
Synchronization flag ..... 67
System control data ..... 211
System Error History ..... 641
System monitor data ..... 182
Target position change function. ..... 559
Target position change request flag ([Cd.29]) ..... 229
Target position change value (new address) ([Cd.27])227
Target position change value (new speed) ([Cd.28])228
Target speed ([Md.33]) ..... 203
Target value ([Md.32]) ..... 202
Teaching ..... 777
Teaching data selection ([Cd.38]) ..... 233
Teaching function ..... 586
Teaching positioning data No. ([Cd.39]) ..... 233
Time chart for restarting ..... 300
Time chart for speed change from the CPU module ..... 546
Time chart for speed change from the external command signal ..... 548
Time chart for speed change using the override function ..... 552
Time chart for starting by the external command signal ..... 295
Time chart for starting fast OPR ..... 291
Time chart for starting inching operation. ..... 497
Time chart for starting JOG operation ..... 487
Time chart for starting machine OPR ..... 290
Time chart for starting major positioning control ..... 291
Time chart for starting manual pulse generator operation ..... 506
Time chart for starting position-speed switching control ..... 292
Time chart for starting speed-position switching control ..... 292
Torque change function ..... 557
Torque control. ..... 778
Torque limit function ..... 532
Torque limit setting value ([Pr.17]) ..... 128
Torque limit stored value ([Md.35]) ..... 205
Torque loop mode ..... 777
Torque ripple. ..... 777
Tracking function ..... 777
Trapezoidal acceleration/deceleration processing method ..... 596
Troubleshooting. ..... 644
Turntable ..... 777
Types and roles of control data ..... 116
Types and roles of monitor data ..... 114
Types of data ..... 93
Types of errors ..... 647
Types of stop processes. ..... 303
Types of warnings ..... 648
U
Unconditional JUMP ..... 452
Unit magnification ([Pr.4]) ..... 120
Unit setting ..... 787
Unit setting ([Pr.1]) ..... 118
Upper limit signal ..... 74

V

[^6]W
Wait start ..... 465
Warning ..... 780
Warning history ..... 190,617,753
Warning history pointer ([Md.18]) ..... 192
Wave trace ..... 763
Wiring precautions ..... 84
WITH mode ..... 580,772
Written to flash ROM ..... 612
X
X0 (LD75 READY) ..... 67
X1 (Synchronization flag) ..... 67
XY table ..... 772

## Z

Z phase ..... 772
Z.ABRST1 ..... 620
Z.ABRST2 ..... 620
Z.ABRST3 ..... 620
Z.ABRST4 ..... 620
Zero signal ..... 788
ZP.PFWRT ..... 633
ZP.PINIT ..... 637
ZP.PSTRT1 ..... 625
ZP.PSTRT2 ..... 625
ZP.PSTRT3 ..... 625
ZP.PSTRT4 ..... 625
ZP.TEACH1 ..... 629
ZP.TEACH2 ..... 629
ZP.TEACH3 ..... 629
ZP.TEACH4 ..... 629
*The manual number is given on the bottom left of the back cover.

| Print date | *Manual number | Revision |
| :---: | :---: | :---: |
| April 2010 | SH(NA)-080911ENG-A | First edition |
| September 2010 | SH(NA)-080911ENG-B | [Partial corrections] <br> SAFETY PRECAUTIONS, COMPLIANCE WITH THE EMC AND LOW VOLTAGE DIRECTIVES, RELEVANT MANUALS, TERMS, Section 1.2.1, 1.2.3, Section 2.1 to 2.3, Section 3.4.4, Section 4.1.3, 4.2.1, 4.3.1, 4.4.1, Section 5.1 .1 to $5.1 .6,5.1 .8,5.2 .1,5.2 .4,5.3,5.6 .2,5.7 .2$, Section 6.1, 6.2, 6.3.2, 6.5 .1 to $6.5 .3,6.5 .5,6.5 .6$, Section 7.2, Section 8.1.1, 8.2.3 to 8.2.8, 8.3.1, Section 9.1.1, 9.1.2, 9.1.5, $9.1 .6,9.2 .1,9.2 .3$ to $9.2 .5,9.2 .7$ to $9.2 .9,9.2 .13,9.2 .16,9.2 .18$, Section 10.1, 10.1.1, 10.3.1, 10.3.8, Section 11.1.1, 11.2.3, 11.2.5, 11.3.4, 11.3.5, 11.4.1, Section 12.1.1, 12.2.2, 12.3.1 to 12.3.3, 12.4.1 to 12.4.4, 12.5.1 to 12.5.5, 12.6, 12.7, 12.7.1 to 12.7.9, Section 13.2 to 13.4, 13.6.7, Section 14.3, 14.4,14.7, Section 15.1, 15.4 to 15.6, Appendix 3.1 to 3.5, Appendix 5, 5.2 to 5.6, Appendix 7, Appendix 9 <br> [Additions] <br> Section 2.5, Section 6.5.2 |
| April 2011 | SH(NA)-080911ENG-C | [Partial corrections] <br> Section 4.3.1, Section 5.2.1, 5.7.2, Section 6.2, 6.4.1, 6.4.2, Section 7.2, Section 8.2.7, 8.2.8, Section 9.2.3, 9.2.16, 9.2.18, Section 10.5, Section 11.2.1, Section 12.4.2, 12.6, 12.7.4, Section 13.2, 13.3, <br> 13.5, Section 14.3, Appendix 2, Appendix 5, 5.2 <br> [Additions] <br> Appendix 5.4 <br> [Changed item numbers] <br> Appendix 5.4 to $5.6 \rightarrow$ Appendix 5.5 to 5.7 |
| May 2012 | SH(NA)-080911ENG-D | [Addition model] <br> LD75P1, LD75P2, LD75D1, LD75D2 <br> [Partial corrections] <br> COMPLIANCE WITH THE EMC AND LOW VOLTAGE DIRECTIVES, RELEVANT MANUALS, TERMS, <br> PACKING LIST, Section 1.1.1, 1.2.3, Section 2.2, Section 3.1, 3.2.4, 3.3.3, 3.4.1 to 3.4.4, Section 4.1.2, <br> 4.3.1, 4.3.2, Section $5.1 .7,5.2 .1$ to $5.2 .5,5.3$ to 5.5 , Section $6.2 .4,6.5 .3,6.5 .6$, Section 8.2.5, 8.3.1, <br> Section 9.1.2, 9.1.4, 9.1.6, 9.2.1, 9.2.3, 9.2.4, 9.2.6 to 9.2.20, 9.2.22, Section 10.5, Section 11.2.1, <br> 11.2.5, 11.3.1, 11.3.4, 11.3.5, 11.4.1, Section 12.3.1, 12.3.2, 12.4.3, 12.5.4, 12.6, 12.7.3, 12.7.7, 13.2, <br> 13.3, Section 14.3 to 14.7, Section 15.4 to 15.6, Appendix 1.2, Appendix 3.1 to 3.5 , Appendix 4 , <br> Appendix 5.2, 5.4, Appendix 6.2, Appendix 7, Appendix 8, Appendix 9, Appendix 10 |
| March 2014 | SH(NA)-080911ENG-E | [Partial corrections] <br> Section 1.1.1, 1.2.3, Section 3.1, 3.2.1, 3.2.3, 3.2.4, 3.4.1, 3.4.4, Section 5.2.1, 5.7.1, Section 9.1.2, <br> Chapter 12, Section 12.1.1, 12.3, Section 15.5, Appendix 4.2, Appendix 10 <br> [Additions] <br> Section 12.3.4, Appendix 1, 1.1 <br> [Changed item numbers] <br> Appendix 1 to $10 \rightarrow$ Appendix 2 to 11 |
| July 2014 | SH(NA)-080911ENG-F | [Partial corrections] <br> Section 1.3, Section 9.2.19, Section 9.2.21, Section 12.3.1 |
| September 2015 | SH(NA)-080911ENG-G | Complete revision (layout change) |
| January 2016 | SH(NA)-080911ENG-H | [Partial corrections] <br> Section 1.1.1, 1.3, Section 3.1, 3.2.1, 3.2.2, 3.2.4, 3.2.5, Section 5.1.1, 5.1.2, 5.1.4, 5.2.3, 5.3, 5.6.2, <br> Section 6.2, 6.4.1, Section 7.1.1, 7.2, Section 9.1, 9.1.1, 9.1.5, 9.1.6, 9.2.1, Section 12.4.1, 12.4.2, <br> 12.4.3, 12.7.1, Section 13.2, 13.3, Section 14.7, Section 15.5, Appendix 1.1, Appendix 2.2, Appendix 3, <br> Appendix 10 <br> [Additions] <br> Section 1.3, Section 9.2.12, Section 9.2.13, Section 12.3.1 <br> [Deletions] <br> Appendix 2.3 |
| May 2017 | SH(NA)-080911ENG-I | [Partial corrections] <br> Section 15.5, Appendix 4.2 |

Japanese manual version SH-080910-J
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

## WARRANTY

Please confirm the following product warranty details before using this product.

## 1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.
8. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

## 3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.
4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

## 5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

## TRADEMARKS

Ethernet is a registered trademark of Fuji Xerox Co., Ltd. in Japan.
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.
The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.
In some cases, trademark symbols such as ${ }^{\text {'TM }}$ or ${ }^{\text {Br }}$ are not specified in this manual.

## MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

[^7]
[^0]:    ＊1 Pin No．＂1ロロロ＂indicates the pin No．for the right connector．Pin No．＂2ロロロ＂indicates the pin No．for the left connector．
    ＊2 When a 1－axis module is used，pin Nos．1B1 to 1B18 are＂vacant＂．
    ＊3 The upper line indicates the signal name for the LD75Pロ，and the lower line indicates the signal name for the LD75D口．

[^1]:    <ABS data bit 0 ON/OFF>
    <ABS data bit 1 ON/OFF>
    <Transmission data preparation complete flag ON/OFF>
    <Z.ABRST1 instruction execution>

[^2]:    Refer to Page 118, Section 5.2 and Page 211, Section 5.7 for the information on detail settings.

[^3]:    *1 Setting value is invalid. Use the initial values or setting values within a range where no error occurs.

[^4]:    Servomotor with absolute position detector

[^5]:    M19
    $\square$
    U0
    G1548
    U0
    5449
    Teaching command pulse
    Teaching command hold
    Teaching positioning address
    Turns OFF teaching command storage

[^6]:    Valid M code ([Md.25])196

[^7]:    When exported from Japan, this manual does not require application to the
    Ministry of Economy, Trade and Industry for service transaction permission

