


# Mitsubishi Programmable Controller



# MELSEC-Q Current Transformer Input Module User's Manual

-Q68CT





(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.

The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.

In this manual, the safety precautions are classified into two levels: "\_MWARNING" and "\_MCAUTION".



Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.



Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under "\_\_\_\_\_CAUTION" may lead to serious consequences.

Observe the precautions of both levels because they are important for personal and system safety.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

## [Design Precautions]

## **WARNING**

Do not write any data to the "system area" and "write-protect area" of the buffer memory in the intelligent function module. Also, do not use any "use prohibited" signal as an output signal from the CPU module to the intelligent function module. Doing so may cause malfunction of the programmable controller system.

## **!** CAUTION

 Do not install the control lines or communication cables together with the main circuit lines or power cables. Failure to do so may result in malfunction due to noise.

## [Installation Precautions]

## **!** CAUTION

- Use the programmable controller in an environment that meets the general specifications in the user's manual for the CPU module used. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.
- To mount the module, while pressing the module mounting lever located in the lower part of the module, fully insert the module fixing projection(s) into the hole(s) in the base unit and press the module until it snaps into place. Incorrect interconnection may cause malfunction, failure, or drop of the module. When using the programmable controller in an environment of frequent vibrations, fix the module with a screw.
- Tighten the screws within the specified torque range. Undertightening can cause drop of the screw, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may result in damage to the product. A module can be replaced online (while power is on) on any MELSECNET/H remote I/O station or in the system where a CPU module supporting the online module change function is used. Note that there are restrictions on the modules that can be replaced online, and each module has its predetermined replacement procedure. For details, refer to the relevant chapter in this manual.
- Do not directly touch any conductive parts and electronic components of the module. Doing so can cause malfunction or failure of the module.

## [Wiring Precautions]

## **WARNING**

 After installation and wiring, attach the included terminal cover to the module before turning it on for operation. Failure to do so may result in electric shock.

## **!** CAUTION

- Individually ground the FG terminal of the programmable controller with a ground resistance of 100Ω or less. Failure to do so may result in electric shock or malfunction.
- Tighten the terminal screws within the specified torque range. Undertightening can cause short circuit, fire, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.

## [Startup and Maintenance Precautions]

### **WARNING**

- Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.
- Shut off the external power supply (all phases) used in the system before cleaning the module or retightening the terminal screws or module fixing screws. Failure to do so may result in electric shock or cause the module to fail or malfunction. Undertightening can cause drop of the screw, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.

## **CAUTION**

- Do not disassemble or modify the modules.
   Doing so may cause failure, malfunction, injury, or a fire.
- Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may cause the module to fail or malfunction. A module can be replaced online (while power is on) on any MELSECNET/H remote I/O station or in the system where a CPU module supporting the online module change function is used. Note that there are restrictions on the modules that can be replaced online, and each module has its predetermined replacement procedure. For details, refer to the relevant chapter in this manual.
- After the first use of the product, do not mount/remove the module to/from the base unit, and the terminal block to/from the module more than 50 times (IEC 61131-2 compliant) respectively.
   Exceeding the limit of 50 times may cause malfunction.
- Before handling the module, touch a grounded metal object to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.

## [Disposal Precautions]

## **!** CAUTION

When disposing of this product, treat it as industrial waste.

## CONDITIONS OF USE FOR THE PRODUCT

- (1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
  - i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident: and
  - ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
- (2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT. ("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any
  other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as
  Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation,
  Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or
  Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a
  significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

### INTRODUCTION

Thank you for purchasing the Mitsubishi MELSEC-Q series programmable controllers.

This manual describes the operating procedure, system configuration, parameter settings, functions, programming, and troubleshooting of the Q68CT current transformer input module (hereafter abbreviated as CT input module).

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the MELSEC-Q series programmable controller to handle the product correctly. When applying the program examples introduced in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.

■Relevant module: Q68CT



- Unless otherwise specified, this manual describes the program examples in which the I/O numbers of X/Y00 to X/Y0F are assigned for a CT input module.
  - For I/O number assignment, refer to the following manuals.
  - QnUCPU User's Manual (Function Explanation, Program Fundamentals)
  - Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals)
- Operating procedures are explained using GX Works2. When using GX Developer, refer to the following.
  - When using GX Developer (FF Page 244, Appendix 2)

# COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES

#### (1) Method of ensuring compliance

To ensure that Mitsubishi programmable controllers maintain EMC and Low Voltage Directives when incorporated into other machinery or equipment, certain measures may be necessary. Please refer to one of the following manuals.

- QCPU User's Manual (Hardware Design, Maintenance and Inspection)
- · Safety Guidelines

(This manual is included with the CPU module or base unit.)

The CE mark on the side of the programmable controller indicates compliance with EMC and Low Voltage Directives.

#### (2) Additional measures

No additional measures are necessary for the compliance of this product with EMC and Low Voltage Directives.

# **RELEVANT MANUALS**

## (1) CPU module user's manual

| Manual name<br><manual (model="" code)="" number=""></manual> | Description                                                         |
|---------------------------------------------------------------|---------------------------------------------------------------------|
| QCPU User's Manual (Hardware Design, Maintenance and          | Specifications of the hardware (CPU modules, power supply modules,  |
| Inspection)                                                   | base units, extension cables, and memory cards), system maintenance |
| <sh-080483eng, 13jr73=""></sh-080483eng,>                     | and inspection, troubleshooting, and error codes                    |
| QnUCPU Users Manual (Function Explanation, Program            |                                                                     |
| Fundamentals)                                                 |                                                                     |
| <sh-080807eng, 13jz27=""></sh-080807eng,>                     | Functions, methods, and devices for programming                     |
| Qn(H)/QnPH/QnPRHCPU User's Manual (Function                   | Tranctions, methods, and devices for programming                    |
| Explanation, Program Fundamentals)                            |                                                                     |
| <sh-080808eng, 13jz28=""></sh-080808eng,>                     |                                                                     |

## (2) Programming manual

| Manual name<br><manual (model="" code)="" number=""></manual>                                   | Description                                                     |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| MELSEC-Q/L Programming Manual (Common Instruction)<br><sh-080809eng, 13jw10=""></sh-080809eng,> | Detailed description and usage of instructions used in programs |  |

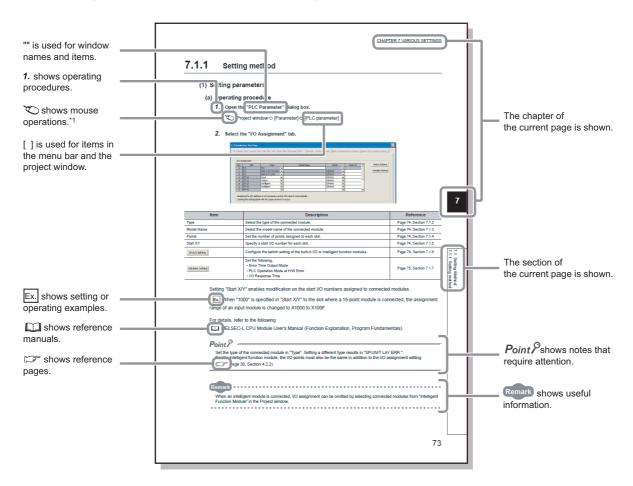
## (3) Operating manual

| Manual name<br><manual (model="" code)="" number=""></manual>                          | Description                                                                                                                    |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| GX Works2 Version1 Operating Manual (Common) <sh-080779eng, 13ju63=""></sh-080779eng,> | System configuration, parameter settings, and online operations (common to Simple project and Structured project) of GX Works2 |
| GX Developer Version 8 Operating Manual<br><sh-080373e, 13ju41=""></sh-080373e,>       | Operating methods of GX Developer, such as programming, printing, monitoring, and debugging                                    |

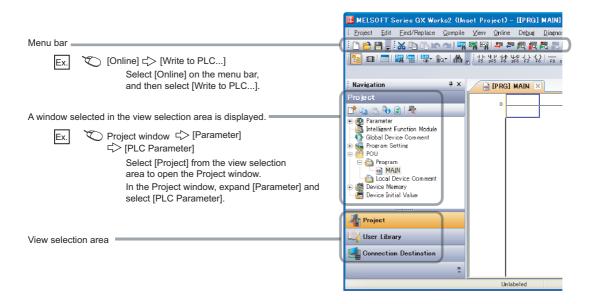
| M | е | m | 0 |
|---|---|---|---|
|---|---|---|---|

# CONTENTS

| CONDITION INTRODUC COMPLIAN RELEVANT MANUAL P. TERM PACKING L             | RECAUTIONS US OF USE FOR THE PRODUCT TION CE WITH EMC AND LOW VOLTAGE DIRECTIVES MANUALS AGE ORGANIZATION UST  1 OVERVIEW                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>5<br>6<br>11                                                                      |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.1                                                                       | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |
| CHAPTER                                                                   | 2 SYSTEM CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                     |
| 2.1                                                                       | Applicable Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                     |
| 2.2                                                                       | How to Check the Function Version and Serial Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |
| CHAPTER                                                                   | 3 SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                     |
| 3.1                                                                       | General Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                     |
| 3.2                                                                       | Performance Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                     |
|                                                                           | 3.2.1 Performance specifications list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                     |
|                                                                           | 3.2.2 I/O conversion characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                     |
|                                                                           | 3.2.3 Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29                                                                                     |
|                                                                           | 3.2.4 Number of parameter settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                     |
| 3.3                                                                       | Function list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31                                                                                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |
| CHAPTER                                                                   | 4 FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                     |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |
| 4.1                                                                       | Processing Each Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                     |
| 4.1                                                                       | Processing Each Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
|                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34                                                                                     |
| 4.2                                                                       | Input Range Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                     |
| 4.2<br>4.3                                                                | Input Range Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                     |
| 4.2<br>4.3<br>4.4                                                         | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34<br>35<br>35<br>36                                                                   |
| 4.2<br>4.3<br>4.4                                                         | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method                                                                                                                                                                                                                                                                                                                                                                                                          | 34<br>35<br>35<br>36<br>36                                                             |
| 4.2<br>4.3<br>4.4                                                         | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods                                                                                                                                                                                                                                                                                                                                                          | 34<br>35<br>36<br>36<br>41                                                             |
| 4.2<br>4.3<br>4.4<br>4.5                                                  | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods  4.5.2 Setting procedures for digital conversion methods                                                                                                                                                                                                                                                                                                 | 34<br>35<br>36<br>36<br>41<br>42                                                       |
| 4.2<br>4.3<br>4.4<br>4.5                                                  | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods  4.5.2 Setting procedures for digital conversion methods  Input Signal Error Detection Function                                                                                                                                                                                                                                                          | 34<br>35<br>36<br>36<br>36<br>41<br>42                                                 |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7                                    | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods  4.5.2 Setting procedures for digital conversion methods  Input Signal Error Detection Function  Peak Current Detection Function                                                                                                                                                                                                                         | 34<br>35<br>36<br>36<br>41<br>42<br>44                                                 |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8                             | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods  4.5.2 Setting procedures for digital conversion methods  Input Signal Error Detection Function.  Peak Current Detection Function  Dropout Function  Scaling Function                                                                                                                                                                                    | 34<br>35<br>36<br>36<br>36<br>41<br>42<br>44<br>47                                     |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9                      | Input Range Setting Conversion Enable/Disable Function Sampling Cycle Switching Function Digital Conversion Method 4.5.1 Operations of digital conversion methods 4.5.2 Setting procedures for digital conversion methods Input Signal Error Detection Function Peak Current Detection Function Dropout Function Scaling Function Warning Output Function                                                                                                                                                                      | 34<br>35<br>36<br>36<br>41<br>42<br>44<br>47<br>48                                     |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9<br>4.1               | Input Range Setting Conversion Enable/Disable Function Sampling Cycle Switching Function Digital Conversion Method 4.5.1 Operations of digital conversion methods 4.5.2 Setting procedures for digital conversion methods Input Signal Error Detection Function. Peak Current Detection Function Dropout Function Scaling Function Warning Output Function Maximum Value/Minimum Value Hold Function                                                                                                                           | 34<br>35<br>36<br>36<br>41<br>42<br>44<br>47<br>48<br>51                               |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9<br>4.1               | Input Range Setting Conversion Enable/Disable Function Sampling Cycle Switching Function Digital Conversion Method 4.5.1 Operations of digital conversion methods 4.5.2 Setting procedures for digital conversion methods Input Signal Error Detection Function Peak Current Detection Function Dropout Function Scaling Function Warning Output Function Maximum Value/Minimum Value Hold Function Logging Function Logging Function                                                                                          | 34<br>35<br>36<br>36<br>41<br>42<br>44<br>47<br>48<br>51<br>57                         |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9<br>4.1<br>4.1        | Input Range Setting Conversion Enable/Disable Function Sampling Cycle Switching Function Digital Conversion Method 4.5.1 Operations of digital conversion methods 4.5.2 Setting procedures for digital conversion methods Input Signal Error Detection Function. Peak Current Detection Function Dropout Function Scaling Function Warning Output Function Maximum Value/Minimum Value Hold Function Logging Function Set Value Backup Function.                                                                               | 34<br>35<br>36<br>36<br>36<br>41<br>42<br>44<br>47<br>48<br>51<br>57<br>58             |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9<br>4.1<br>4.1<br>4.1 | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods  4.5.2 Setting procedures for digital conversion methods  Input Signal Error Detection Function.  Peak Current Detection Function  Dropout Function  Scaling Function  Warning Output Function  Maximum Value/Minimum Value Hold Function  Logging Function  Set Value Backup Function.  Default Setting Registration Function                           | 34<br>35<br>36<br>36<br>36<br>41<br>42<br>44<br>47<br>48<br>51<br>57<br>57             |
| 4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9<br>4.1<br>4.1<br>4.1 | Input Range Setting  Conversion Enable/Disable Function  Sampling Cycle Switching Function  Digital Conversion Method  4.5.1 Operations of digital conversion methods  4.5.2 Setting procedures for digital conversion methods  Input Signal Error Detection Function.  Peak Current Detection Function  Dropout Function  Scaling Function  Warning Output Function  Maximum Value/Minimum Value Hold Function  2 Logging Function  Set Value Backup Function  Default Setting Registration Function  Error History Function. | 34<br>35<br>36<br>36<br>36<br>41<br>42<br>44<br>47<br>48<br>51<br>57<br>58<br>70<br>71 |

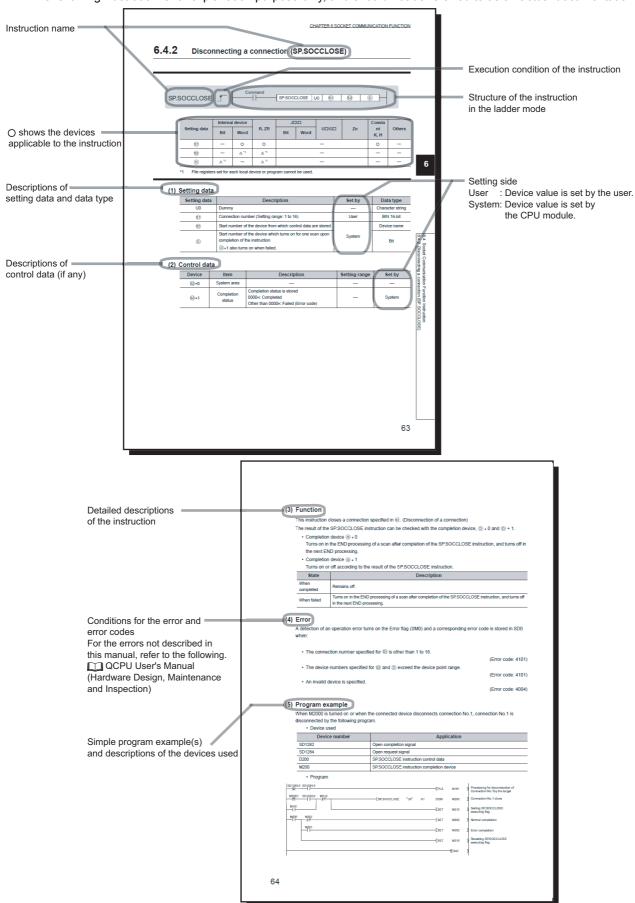

| CHAPTER 5 I/O SIGNALS ASSIGNED TO THE CPU MODULE                                   | 77  |
|------------------------------------------------------------------------------------|-----|
| 5.1 I/O Signal List                                                                | 77  |
| 5.2 Details of I/O Signals                                                         | 78  |
| 5.2.1 Input signal                                                                 | 78  |
| 5.2.2 Output signal                                                                | 87  |
| CHAPTER 6 BUFFER MEMORY                                                            | 89  |
| 6.1 List of Buffer Memory Addresses                                                | 89  |
| 6.2 Details of Buffer Memory Addresses                                             | 104 |
| CHAPTER 7 SETTINGS AND THE PROCEDURE BEFORE OPERATION                              | 136 |
| 7.1 Handling Precautions                                                           | 136 |
| 7.2 Settings and the Procedure Before Operation                                    | 137 |
| 7.3 Part Names                                                                     | 138 |
| 7.4 Wiring                                                                         | 140 |
| 7.4.1 Wiring precautions                                                           | 140 |
| 7.4.2 External wiring                                                              | 141 |
| CHAPTER 8 VARIOUS SETTINGS                                                         | 142 |
| 8.1 Adding a Module                                                                | 142 |
| 8.2 Switch Setting                                                                 | 143 |
| 8.3 Parameter Setting                                                              |     |
| 8.4 Auto Refresh                                                                   | 147 |
| 8.5 Offset/gain Setting                                                            | 148 |
| 8.5.1 Setting from "Offset/Gain Setting" of GX Works2                              |     |
| 8.5.2 Setting from a program                                                       |     |
| CHAPTER 9 PROGRAMMING                                                              | 155 |
| 9.1 Programming Procedure                                                          | 155 |
| 9.2 When Using the Module in a Standard System Configuration                       | 156 |
| 9.2.1 Program example when using parameters of the intelligent function module     | 158 |
| 9.2.2 Program example when not using parameters of the intelligent function module | 162 |
| 9.3 When Using the Module on the Remote I/O Network                                | 165 |
| 9.3.1 Program example when using parameters of the intelligent function module     | 173 |
| 9.3.2 Program example when not using parameters of the intelligent function module | 175 |
| CHAPTER 10 ONLINE MODULE CHANGE                                                    | 180 |
| 10.1 Precautions on Online Module Change                                           | 180 |
| 10.2 Conditions for Online Module Change                                           |     |
| 10.3 Online Module Change Operations                                               |     |
| 10.4 Online Module Change Procedure                                                | 183 |

| 10.0      | When a Factory Default Range Is Used and Parameters Are Set Using the Configuration |      |
|-----------|-------------------------------------------------------------------------------------|------|
| 10.6      | When a Factory Default Range Is Used and Parameters Are Set Using a Sequence        | ŭ    |
| 10.7      | When a User Range Is Used and Parameters Are Set Using the Configuration Func       | tion |
|           | (with Another System)                                                               | 196  |
| 10.8      | When a User Range Is Used and Parameters Are Set Using a Sequence Program           |      |
|           | (with Another System)                                                               | 201  |
| 10.9      | When a User Range Is Used and Parameters Are Set Using the Configuration Func       | tion |
|           | (without Another System)                                                            | 207  |
| 10.1      | 0 When a User Range Is Used and Parameters Are Set Using a Sequence Program         |      |
|           | (without Another System)                                                            | 213  |
| 10.1      | 11 Range Reference Table                                                            | 220  |
| CHAPTER ' | 11 TROUBLESHOOTING                                                                  | 221  |
| 11.1      | Error Code List                                                                     | 221  |
| 11.2      | 2 Alarm Code List                                                                   | 228  |
| 11.3      | 3 Troubleshooting                                                                   | 229  |
|           | 11.3.1 When the RUN LED flashes or turns off                                        | 229  |
|           | 11.3.2 When the ERR. LED turns on or flashes                                        | 229  |
|           | 11.3.3 When the ALM LED turns on or flashes                                         | 230  |
|           | 11.3.4 When a digital output value cannot be read                                   | 230  |
|           | 11.3.5 When Conversion completed flag does not turn on in the normal mode           | 231  |
| 11.4      | Checking the CT Input Module Status on GX Works2 System Monitor                     | 232  |
| APPENDIC  | ES                                                                                  | 233  |
| Арр       | endix 1 Dedicated Instruction                                                       | 233  |
|           | Appendix 1.1 G(P).OFFGAN                                                            | 234  |
|           | Appendix 1.2 G(P).OGLOAD                                                            | 236  |
|           | Appendix 1.3 G(P).OGSTOR                                                            | 240  |
| Арр       | endix 2 When Using GX Developer                                                     | 244  |
|           | Appendix 2.1 Operation of GX Developer                                              | 244  |
|           |                                                                                     | 0.40 |
| Арр       | endix 3 External Dimensions                                                         | 246  |


## MANUAL PAGE ORGANIZATION

In this manual, pages are organized and the symbols are used as shown below.

The following illustration is for explanation purpose only, and should not be referred to as an actual documentation.




\*1 The mouse operation example is provided below.



Pages describing instructions are organized as shown below.

The following illustration is for explanation purpose only, and should not be referred to as an actual documentation.



• Instructions can be executed under the following conditions.

| Execution condition | Any time  | During on | On the rising edge | During off | On the falling edge |
|---------------------|-----------|-----------|--------------------|------------|---------------------|
| Symbol              | No symbol |           |                    |            |                     |

• The following devices can be used.

| Setting             |                                                 | l device<br>n, user)                    | Link direct device |     | Intelligent Index function register | Constant               | Others |             |                                                      |
|---------------------|-------------------------------------------------|-----------------------------------------|--------------------|-----|-------------------------------------|------------------------|--------|-------------|------------------------------------------------------|
| data                | Bit                                             | Word                                    | register           | Bit | Word                                | module device<br>U□\G□ | Zn     | *3          | *3                                                   |
| Applicable device*1 | X, Y, M, L,<br>SM, F, B,<br>SB, FX,<br>FY<br>*2 | T, ST, C, D,<br>W, SD,<br>SW, FD,<br>@□ | R, ZR              |     | -                                   | U=\G=                  | Z      | K, H, E, \$ | P, I, J, U,<br>D, X, DY,<br>N, BL,<br>TR, BL\S,<br>V |

- \*1 For details on each device, refer to the following.
  - QnUCPU User's Manual (Function Explanation, Program Fundamentals)
  - Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program Fundamentals)
- \*2 FX and FY can be used for bit data only, and FD for word data only.
- \*3 In the "Constant" and "Others" columns, a device(s) that can be set for each instruction is shown.
  - The following data types can be used.

| Data type        | Description                                                  |
|------------------|--------------------------------------------------------------|
| Bit              | Bit data or the start number of bit data                     |
| BIN 16-bit       | 16-bit binary data or the start number of word device        |
| BIN 32-bit       | 32-bit binary data or the start number of double-word device |
| BCD 4-digit      | Four-digit binary-coded decimal data                         |
| BCD 8-digit      | Eight-digit binary-coded decimal data                        |
| Real number      | Floating-point data                                          |
| Character string | Character string data                                        |
| Device name      | Device name data                                             |

# **TERM**

Unless otherwise specified, this manual uses the following terms.

| Term                  | Description                                                                                                                                        |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CT input module       | The abbreviation for the Q68CT current transformer input module                                                                                    |  |  |  |
| СТ                    | Another term for a current transformer                                                                                                             |  |  |  |
| QCPU                  | Another term for the MELSEC-Q series CPU module                                                                                                    |  |  |  |
| Process CPU           | A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU                                                                                  |  |  |  |
| Redundant CPU         | A generic term for the Q12PRHCPU and Q25PRHCPU                                                                                                     |  |  |  |
| GX Works2             | Product name of the software package for the MELSEC programmable                                                                                   |  |  |  |
| GX Developer          | controllers                                                                                                                                        |  |  |  |
| Programming tool      | Generic term for GX Works2 and GX Developer                                                                                                        |  |  |  |
| CT input value        | An alternating current value measured using a CT. This manual describes a primary current value as a CT input value.                               |  |  |  |
| Factory default range | A generic term for factory-default input ranges (0 to 5AAC, 0 to 50AAC, 0 to 100AAC, 0 to 200AAC, 0 to 400AAC, and 0 to 600AAC)                    |  |  |  |
| User range            | A generic term for user-defined input ranges (0 to 5AAC, 0 to 50AAC, 0 to 100AAC, 0 to 200AAC, 0 to 400AAC, and 0 to 600AAC)                       |  |  |  |
| Buffer memory         | The memory of an intelligent function module used to store data (such as setting values and monitored values) for communication with a CPU module. |  |  |  |

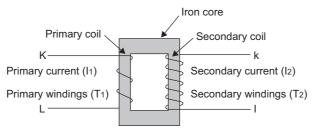
# **PACKING LIST**

The product package contains the following.

| Model | Product                                | Quantity |
|-------|----------------------------------------|----------|
| Q68CT | Q68CT current transformer input module | 1        |
| -     | Before Using the Product (BCN-P5901)   | 1        |

# **CHAPTER 1** OVERVIEW

#### (1) CT


A CT means "Current Transformer" and is a current sensor which is necessary to measure an alternating current. A CT is used for the following purposes widely.

- To control a load or monitor an operation of equipment and devices
- · To control or monitor of an electric power system

When a high current is measured in an electric power receiving facility, measurement devices cannot be wired directly. A CT is used for such a situation.

#### (a) Mechanism of a CT

A CT utilizes characteristics of an alternating current.



Primary and secondary coils winded an iron core are isolated electrically. When a primary current (I1) is applied to the iron core, a secondary current (I2) can be extracted depending on the turn ratio (current transformation ratio).

The following shows the relationship of a primary current, a secondary current, and windings

Primary current (I1)  $\times$  Windings (T1) = Secondary current (I2)  $\times$  Windings (T2)

$$\begin{pmatrix} \text{Current transformation} \\ \text{ratio (CT ratio)} \end{pmatrix} = \frac{\text{Primary current (I1)}}{\text{Secondary current (I2)}} \\ \stackrel{\text{Expression}}{=} \frac{\text{Secondary windings (T2)}}{\text{Primary windings (T1)}}$$

There are two CT types: the contact type and noncontact type. The noncontact type is classified into the window-type and split-type which is easy to be retrofitted.

#### (2) Operation of a CT input module

A CT input module measures an alternating current by converting a secondary current input from a CT to a digital value after carrying out an effective value operation.

The above flows are defined as "digital conversion" in this manual.

## 1.1 Features

# (1) Alternating current measurement of eight points (eight channels) by one module

One module can measure an alternating current with eight points (eight channels).

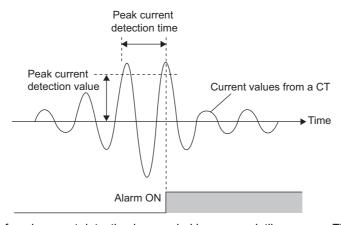


A CT input range can be selected for each channel.

#### (2) Reliability by high accuracy

A CT input module can achieve the high accuracy of  $\pm 0.5\%$  (when the ambient temperature is  $25 \pm 5^{\circ}$ C) and  $\pm 1.0\%$  (when the ambient temperature is 0 to  $55^{\circ}$ C) at the maximum digital output value.

#### (3) Operation of a digital output value by the scaling function


The scaling function can represent a digital output value in an easily understandable value depending on a purpose.

#### (4) Monitoring of a measured target

By using the input signal error detection function, warning output function, or dropout function, the status of a measured target can be monitored easily.

#### (5) Detection of the peak current

By setting the peak current detection value and peak current detection time, the peak current occurred
excessively at a system start-up or an overload of devices can be detected. Doing so improves
maintainability of devices and the failure diagnosis for a measured target.



 The number of peak current detection is recorded in a non-volatile memory. Therefore the number of peak current detection is not cleared after turning off the power supply or resetting the CPU module.

#### (6) Logging function

5000 data can be collected for each channel. The analysis of the collected data can improve maintainability of the system used.

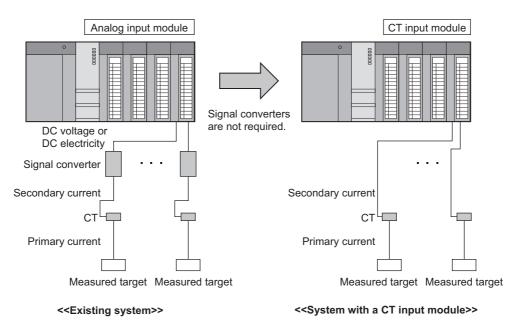
#### (7) Backup of a set value to a non-volatile memory

Initial settings in the buffer memory can be backed up to a non-volatile memory. Initial settings do not need to be reset when the power supply is turned on or the CPU module is reset.

#### (8) Changeable slope of I/O conversion characteristics

A slope of I/O conversion characteristics can be changed by configuring the offset/gain settings.

#### (9) Easy setting with GX Works2


Sequence programming is reduced since initial settings or an auto refresh setting can be configured on the screen. In addition, setting status and operating status of modules can be checked easily.

#### (10)Online module change

This module can be replaced without stopping the system.

#### (11)Reduced man-hours and costs (A signal converter is not needed.)

A CT can be connected to a programmable controller directory using a CT input module; as a result, a signal converter installed outside is not required. Therefore man-hours and costs are reduced.



# CHAPTER 2 SYSTEM CONFIGURATION

This chapter describes the system configuration of the CT input module.

# 2.1 Applicable Systems

This section describes applicable systems.

#### (1) Applicable CPU modules and base units, and number of mountable modules

#### (a) When mounted with a CPU module

For the CPU modules, the number of modules, and base units applicable to the Q68CT, refer to the user's manual for the CPU module used.

Note the following when the Q68CT is mounted with a CPU module.

- Depending on the combination with other modules or the number of mounted modules, power supply
  capacity may be insufficient. Pay attention to the power supply capacity before mounting modules, and if
  the power supply capacity is insufficient, change the combination of the modules.
- Mount a module within the number of I/O points for the CPU module. If the number of slots is within the available range, the module can be mounted on any slot.



To use a C Controller module with the CT input module, refer to the C Controller Module User's Manual.

#### (b) When mounted on MELSECNET/H remote I/O station

For the MELSECNET/H remote I/O station, the number of modules, and base units applicable to the Q68CT, refer to the Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O network).

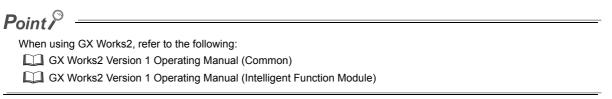
#### (2) For multiple CPU system

When using the CT input module in a multiple CPU system, refer to the following.

QCPU User's Manual (Multiple CPU System)

#### (3) For online module change

The CT input module supports online module change. For details on online module change, refer to the following.


ONLINE MODULE CHANGE (Frage 180, CHAPTER 10)

#### (4) Applicable software packages

The following table lists systems that use a CT input module and applicable software packages. A programming tool is required to use a CT input module.

| Item                           |                                                  |                                  | Software version                    |                                                      |                        |                        |  |
|--------------------------------|--------------------------------------------------|----------------------------------|-------------------------------------|------------------------------------------------------|------------------------|------------------------|--|
|                                |                                                  | GX Developer*1                   | GX Works2                           | PX Developer                                         |                        |                        |  |
| Q00J/Q00/Q01CPU                | Single CPU system                                | Version 7 or later               |                                     |                                                      |                        |                        |  |
| Q003/Q00/Q0TCF0                | Multiple CPU system                              | Version 8 or later               |                                     |                                                      |                        |                        |  |
| Q02/Q02H/Q06H/Q12H/Q25H        | Single CPU system                                | Version 4 or later               |                                     |                                                      |                        |                        |  |
| CPU                            | Multiple CPU system                              | Version 6 or later               |                                     |                                                      |                        |                        |  |
| Q02PH/Q06PHCPU                 | Single CPU system                                | Version 8.68W or later           |                                     |                                                      |                        |                        |  |
| QU2PH/QU0PHCPU                 | Multiple CPU system                              | - Version 6.660V or later        |                                     |                                                      |                        |                        |  |
| Q12PH/Q25PHCPU                 | Single CPU system                                | Version 7.10L or later           |                                     |                                                      |                        |                        |  |
| Q12PH/Q25PHCPU                 | Multiple CPU system                              | - Version 7. Tot of later        |                                     |                                                      |                        |                        |  |
| Q12PRH/Q25PRHCPU               | Redundant system                                 | Version 8.45X or later           |                                     |                                                      |                        |                        |  |
| Q00UJ/Q00U/Q01UCPU             | Single CPU system                                | Varaian 9.76E or later           | Version 9.76F er leter              | Varaion 9.76E or later                               | Version 8.76E or later | Varsian 9.76E or later |  |
| Q0003/Q000/Q010CF0             | Multiple CPU system                              | Version 6.76E or later           | 5 ( )   0)                          | Refer to the PX Developer Version 1 Operating Manual |                        |                        |  |
| Q02U/Q03UD/Q04UDH/Q06U         | Single CPU system                                | Version 8.48A or later           | Refer to the GX<br>Works2 Version 1 |                                                      |                        |                        |  |
| DHCPU                          | Multiple CPU system                              | Version 6.46A or later           | Operating Manual                    |                                                      |                        |                        |  |
| Q10UDH/Q20UDHCPU               | Single CPU system                                | Version 8.76E or later (Common). | (Programming Tool).                 |                                                      |                        |                        |  |
| Q100DH/Q200DHCP0               | Multiple CPU system                              | Version 6.76E or later           |                                     |                                                      |                        |                        |  |
| Q13UDH/Q26UDHCPU               | Single CPU system                                | Marajar 0.000 an latar           | Version 8.62Q or later              |                                                      |                        |                        |  |
| Q 130DH/Q200DHCP0              | Multiple CPU system                              | Version 6.02Q or later           |                                     |                                                      |                        |                        |  |
| Q03UDE/Q04UDEH/                | Single CPU system                                |                                  |                                     |                                                      |                        |                        |  |
| Q06UDEH/Q13UDEH/<br>Q26UDEHCPU | JDEH/ Multiple CPU system Version 8.68           |                                  |                                     |                                                      |                        |                        |  |
| Q10UDEH/                       | Single CPU system                                | Version 8.76E or later           |                                     |                                                      |                        |                        |  |
| Q20UDEHCPU                     | Multiple CPU system                              | version 6.76E or later           |                                     |                                                      |                        |                        |  |
| CPU modules other than         | Single CPU system                                | N/A                              |                                     |                                                      |                        |                        |  |
| above                          | Multiple CPU system                              | IN/A                             |                                     |                                                      |                        |                        |  |
| If installed in a MELSECNET/H  | If installed in a MELSECNET/H remote I/O station |                                  |                                     |                                                      |                        |                        |  |

<sup>\*1</sup> When using GX Developer, create a sequence program for initial settings and auto refresh setting.



#### (5) Products prepared by user

#### (a) CT

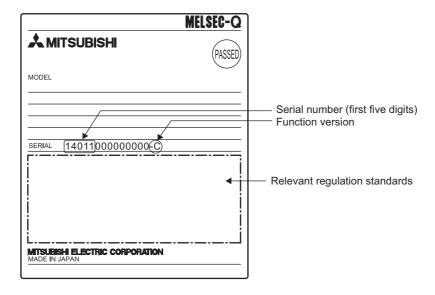
| Manufacturer                    | Model name                                      | Input range           | Secondary winding |
|---------------------------------|-------------------------------------------------|-----------------------|-------------------|
|                                 | EMU-CT50                                        | 0 to 50AAC            | 3000 turns        |
| Mitaubiahi Elaatria Carparation | EMU-CT100                                       | 0 to 100AAC           | 3000 turns        |
| Mitsubishi Electric Corporation | EMU-CT400                                       | 0 to 400AAC           | 6000 turns        |
|                                 | EMU-CT600                                       | 0 to 600AAC           | 9000 turns        |
|                                 | CTF-5A                                          | 0 to 5AAC             | 3000 turns        |
|                                 | CTF-50A                                         | 0 to 50AAC            | 3000 turns        |
| Multi Measuring Instruments     | CTF-100A                                        | 0 to 100AAC           | 3000 turns        |
| Sales Co., Ltd.                 | CTF-200A                                        | 0 to 200AAC           | 3000 turns        |
|                                 | CTF-400A                                        | 0 to 400AAC           | 6000 turns        |
|                                 | CTF-600A                                        | 0 to 600AAC           | 9000 turns        |
|                                 | CTL-10-3FC*1                                    | 0 to 5AAC, 0 to 50AAC | 3000 turns        |
|                                 | CTL-16-3FC*1                                    | 0 to 100AAC           | 3000 turns        |
| U.R.D.,LTD.                     | CTL-24-3FC*1                                    | 0 to 200AAC           | 3000 turns        |
|                                 | CTL-36-6SC*1                                    | 0 to 400AAC           | 6000 turns        |
|                                 | CTT-36-9SC                                      | 0 to 600AAC           | 9000 turns        |
|                                 | HA-D050-16 <sup>*1</sup>                        | 0 to 5AAC             | 3000 turns        |
|                                 | (discontinued product)                          | 0 to 50AAC            | 3000 turns        |
| Kohshin Electric Corporation    | HA-E100-33 <sup>*1</sup> (discontinued product) | 0 to 100AAC           | 3000 turns        |
|                                 | HA-12SP050-16KM                                 | 0 to 5AAC, 0 to 50AAC | 3000 turns        |
|                                 | HA-16SP100-33KM                                 | 0 to 100AAC           | 3000 turns        |

<sup>\*1</sup> The following connection cable is available for a connection with the CT input module.

| Manufacturer                  | CT model   | Applicable cable                   |  |
|-------------------------------|------------|------------------------------------|--|
|                               | CTL-10-3FC |                                    |  |
| U.R.D.,LTD.                   | CTL-16-3FC | CABLE-4                            |  |
| U.N.D.,LID.                   | CTL-24-3FC | GABLE-4                            |  |
|                               | CTL-36-6SC |                                    |  |
| Kohshin Electric Corporation  | HA-D050-16 | HA-CB-3M (discontinued product)    |  |
| Nonshiri Liectric Corporation | HA-E100-33 | TIA-OB-SIVI (discontinued product) |  |

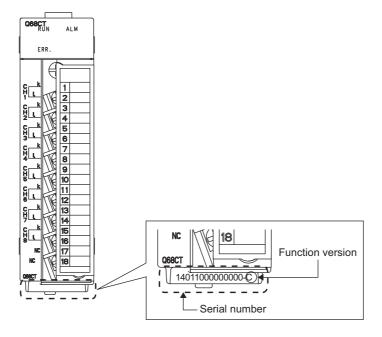
#### (b) Connection cable

Use a shielded twisted pair cable for a connection between the CT input module and CT. The shielded twisted pair cable must satisfy the input specifications described in the performance specifications.


Performance Specifications (Page 25, Section 3.2)

# 2.2 How to Check the Function Version and Serial Number

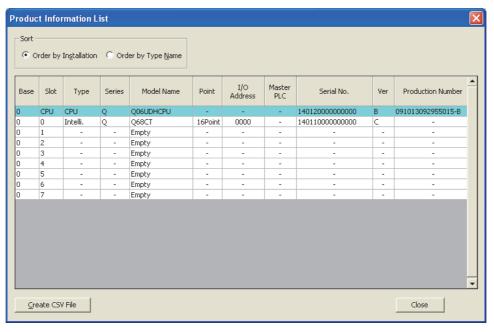
The function version and serial number of a CT input module can be checked on the rating plate, front part of the module, or system monitor of the programming tool.


#### (1) Checking on the rating plate

The rating plate is on the side of the CT input module.



#### (2) Checking on the front part (bottom part) of module


The function version and serial number on the rating plate are also shown on the front part (bottom part) of the module.



#### (3) Checking on the system monitor

The function version and serial number can be checked on the "Product Information List" window.





#### (a) Displaying product number

For the CT input module, "-" is displayed since the product number display is not supported.



The serial number displayed on the product information list of a programming tool may differ from that on the rating plate and on the front part of the module.

- The serial number on the rating plate and front part of the module indicates the management information of the product.
- The serial number displayed on the product information list of a programming tool indicates the function information of the product. The function information of the product is updated when a new function is added.

# **CHAPTER 3** SPECIFICATIONS

This chapter describes general specifications, performance specifications, I/O conversion characteristics, accuracy, and functions.

# 3.1 General Specifications

For the general specifications of the CT input module, refer to the following.

QCPU User's Manual (Hardware Design, Maintenance and Inspection)

# **3.2** Performance Specifications

This section describes the performance specifications of the CT input module.

# 3.2.1 Performance specifications list

The following table lists the performance specifications of the CT input module.

| Item                              |                               | Specifications                                                                                                          |                             |                             |
|-----------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| Number of input channels          |                               | 8 channels                                                                                                              |                             |                             |
| Operation method                  |                               | Effective value operation                                                                                               |                             |                             |
|                                   |                               | 0 to 5AAC                                                                                                               | 0 to 50AAC                  | 0 to 100AAC                 |
| Input range                       |                               | 0 to 200AAC                                                                                                             | 0 to 400AAC                 | 0 to 600AAC                 |
|                                   | Converted                     |                                                                                                                         | 0 to 12000                  |                             |
| Digital output                    | current value                 |                                                                                                                         |                             |                             |
|                                   | Scaling value                 |                                                                                                                         | -32768 to 32767             |                             |
| Input frequency                   |                               |                                                                                                                         | 50/60Hz                     |                             |
| Excessive input                   |                               | 200%                                                                                                                    | for 1 minute, 150% for co   |                             |
|                                   |                               | Input range                                                                                                             | Digital output valu         | e Maximum resolution        |
|                                   |                               | 0 to 5AAC                                                                                                               |                             | 0.5mA                       |
| I/O characteristics,              | maximum                       | 0 to 50AAC                                                                                                              |                             | 5mA                         |
| resolution                        | , maximum                     | 0 to 100AAC                                                                                                             | 0 to 10000                  | 10mA                        |
| 10001411011                       |                               | 0 to 200AAC                                                                                                             | 0 10 10000                  | 20mA                        |
|                                   |                               | 0 to 400AAC                                                                                                             |                             | 40mA                        |
|                                   |                               | 0 to 600AAC                                                                                                             |                             | 60mA                        |
| Accuracy (accuracy for the        | Ambient temperature 25 ± 5°C  | Within ± 0.5% (±50 digits)                                                                                              |                             |                             |
| maximum digital output value)*1*2 | Ambient temperature 0 to 55°C | Within ± 1.0% (±100 digits)                                                                                             |                             |                             |
| Sampling cycle*3                  | <u>I</u>                      | 10ms/8CH                                                                                                                | 20ms/8CH 50ms/              | 8CH 100ms/8CH               |
| Response time*4                   |                               | 0.4s or less                                                                                                            |                             |                             |
| Number of access memory           | to the non-volatile           | Up to 10 <sup>12</sup> times                                                                                            |                             |                             |
| Isolation method                  |                               | Between input terminals and the programmable controller power supply: Transformer  Between input channels: No isolation |                             |                             |
| Dielectric withstand voltage      |                               | Between I/O terminals and the programmable controller power supply: 1500VACrms for 1 minute                             |                             |                             |
| Insulation resistance             |                               | Between I/O terminals and the programmable controller power supply: $500VDC\ 10M\Omega$ or higher                       |                             |                             |
| Number of occupied I/O points     |                               | 16 points (I/O assignment: 16 points for intelligent)                                                                   |                             |                             |
| External interface                |                               | 18-point terminal block                                                                                                 |                             |                             |
| Applicable wire siz               | e                             | 0.3 to 0.75mm <sup>2</sup>                                                                                              |                             |                             |
| Applicable solderle               | ess terminal                  | R1.25-3 (Do not u                                                                                                       | use a solderless terminal w | vith an insulation sleeve.) |
| Internal current cor              | nsumption (5VDC)              | 0.35A                                                                                                                   |                             |                             |
| Weight                            |                               | 0.19kg                                                                                                                  |                             |                             |

- \*1 Except in case when the CT input module is influenced by noise
- \*2 The accuracy when a CT is connected is a sum of the CT input module's accuracy and the CT's accuracy.

The following is the formula to calculate accuracy.

(Accuracy) = (Accuracy of the CT input module) + (Accuracy of the CT to be used)

For the accuracy of the CT to be used, contact its manufacturer.

- \*3 The default value is 10ms/8CH.
- \*4 Response time complies with IEC 60688.

The larger one of the following

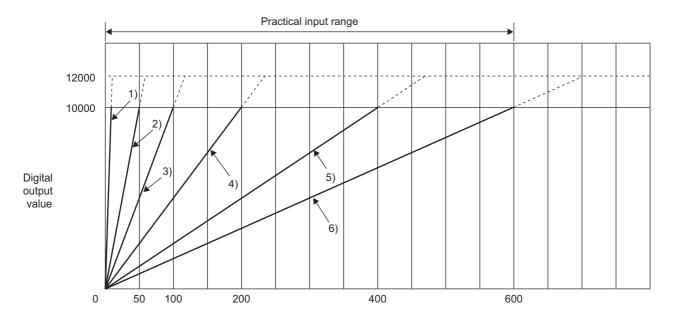
- The time from when the CT input changes from 0 to 90% till when the converted digital value reaches 90%  $\pm$  1%
- The time from when the CT input changes from 100 to 10% till when the converted digital value reaches 10%  $\pm$  1%

3.2 Performance Specifications
3.2.2 I/O conversion characteristics

## 3.2.2 I/O conversion characteristics

An I/O conversion characteristic is expressed with the slope of the line connecting an offset value and gain value when a CT input value (current) is converted to a digital value.

#### (1) Offset value


This is the CT input value (current) converted to the digital output value of 0.

#### (2) Gain value

This is the CT input value (current) converted to the digital output value of 10000.

#### (3) I/O conversion characteristics

The following graph shows the I/O conversion characteristics.



CT input value (A)

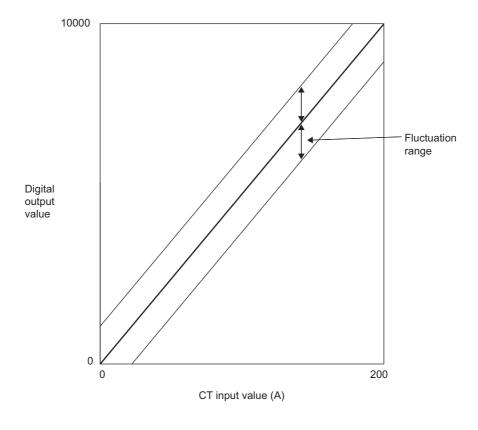
| No. | Input range setting | Offset value | Gain value | Digital output value <sup>*1</sup> | Maximum resolution |
|-----|---------------------|--------------|------------|------------------------------------|--------------------|
| 1)  | 0 to 5AAC           | 0A           | 5A         |                                    | 0.5mA              |
| 2)  | 0 to 50AAC          | 0A           | 50A        |                                    | 5mA                |
| 3)  | 0 to 100AAC         | 0A           | 100A       | 0 to 10000                         | 10mA               |
| 4)  | 0 to 200AAC         | 0A           | 200A       |                                    | 20mA               |
| 5)  | 0 to 400AAC         | 0A           | 400A       |                                    | 40mA               |
| 6)  | 0 to 600AAC         | 0A           | 600A       |                                    | 60mA               |

<sup>\*1</sup> If an analog value is input exceeding the digital output range, the digital output value is fixed to the maximum (12000) or minimum (0).



- Use the CT input module so that the input and output are within the specified practical ranges. If a value is out of the range, the maximum resolution and accuracy may not fall within the range described in performance specifications. (Avoid values on the dotted line region in the graph of I/O conversion characteristics.)
- For each input range, avoid inputting a value that exceeds the one in the following table to the CT. (Avoid inputting the value that is 150% or more over the maximum input range.) Elements may be damaged.

| Input range setting | CT input value (primary current value of a CT) |  |
|---------------------|------------------------------------------------|--|
| 0 to 5AAC           | 7.5A or more                                   |  |
| 0 to 50AAC          | 75A or more                                    |  |
| 0 to 100AAC         | 150A or more                                   |  |
| 0 to 200AAC         | 300A or more                                   |  |
| 0 to 400AAC         | 600A or more                                   |  |
| 0 to 600AAC         | 900A or more                                   |  |


# 3.2.3 Accuracy

The accuracy of the CT input module is measured for the maximum digital output value.

Even if the offset/gain setting or input range was changed to change input characteristics, the accuracy remains the same, and is kept within the range described in performance specifications.

The following graph shows the fluctuation range of accuracy when the range of 0 to 200AAC is selected.

The accuracy is  $\pm 0.5\%$  ( $\pm 50$  digits) when the ambient temperature is  $25 \pm 5^{\circ}$ C, and  $\pm 1.0\%$  ( $\pm 100$  digits) when the ambient temperature is 0 to  $55^{\circ}$ C (excluding the case under noise effect).



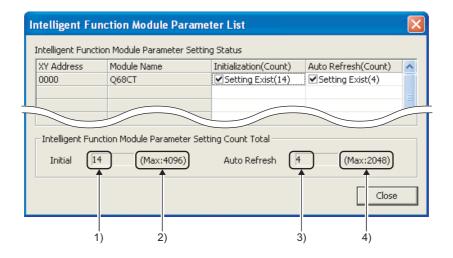
# 3.2.4 Number of parameter settings

Set initial settings and auto refresh settings of the CT input module so that the number of parameters, including those of other intelligent function modules, does not exceed the number of parameters that can be set in the CPU module. For the maximum number of parameters that can be set in the CPU module, refer to the following.

QCPU User's Manual (Hardware Design, Maintenance and Inspection)

#### (1) Number of CT input module parameters

For a CT input module, the following number of parameters can be set.


| Model | Initial setting | Auto refresh setting |
|-------|-----------------|----------------------|
| Q68CT | 14              | 89 (maximum)         |

#### (2) Checking method

The maximum number of parameter settings and the number of parameter settings set for the intelligent function module can be checked on the following.

Project window⇔[Intelligent Function Module]⇔Right-click

□ [Intelligent Function Module Parameter List...]



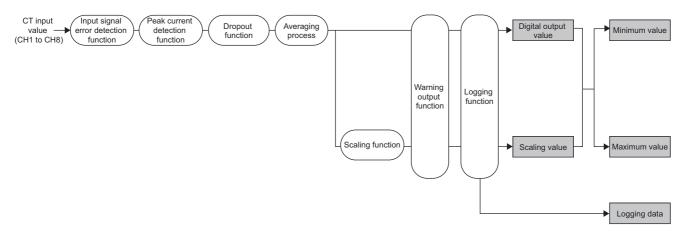
| No. | Description                                                                      |  |  |  |
|-----|----------------------------------------------------------------------------------|--|--|--|
| 1)  | The total number of parameters in initial settings checked on the window         |  |  |  |
| 2)  | The maximum number of parameter settings in initial settings                     |  |  |  |
| 3)  | The total number of parameters in the auto refresh setting checked on the window |  |  |  |
| 4)  | The maximum number of parameter settings in the auto refresh setting             |  |  |  |

# 3.3 Function list

The following is the function list of the CT input module.

| Item                                  |                      |                 | Description                                                                                                                                                                                                                                                                                                        | Reference                            |
|---------------------------------------|----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Input range setting                   |                      |                 | An input range can be selected for each channel depending on a measured target from the following ranges.  • Factory default ranges (0 to 5AAC, 0 to 50AAC, 0 to 100AAC, 0 to 200AAC, 0 to 400AAC, and 0 to 600AAC)  • User ranges (0 to 5AAC, 0 to 50AAC, 0 to 100AAC, 0 to 200AAC, 0 to 400AAC, and 0 to 600AAC) | Page 34,<br>Section 4.2              |
| Conversion er                         | nable/disable fu     | nction          | Digital conversion can be enabled or disabled for each channel.                                                                                                                                                                                                                                                    | Page 35,<br>Section 4.3              |
| Sampling cycl                         | e switching fun      | ction           | A sampling cycle can be selected from 10ms/8CH, 20ms/8CH, 50ms/8CH, or 100ms/8CH.                                                                                                                                                                                                                                  | Page 35,<br>Section 4.4              |
|                                       | Sampling pr          | ocessing        | CT input values are converted to digital values in each sampling cycle. The converted values are stored as digital output values in the buffer memory.                                                                                                                                                             | Page 36,<br>Section 4.5.1 (1)        |
|                                       |                      | Time<br>average | Digital conversion is performed for a set time, and a sum of the converted values except the maximum and minimum values is averaged. The averaged values are stored in the buffer memory.                                                                                                                          | Page 37,<br>Section 4.5.1 (2)<br>(a) |
| Digital<br>conversion<br>method       | Averaging process    | Count average   | Digital conversion is performed the set number of times, and a sum of the converted values except the maximum and minimum values is averaged. The averaged values are stored in the buffer memory.                                                                                                                 | Page 37,<br>Section 4.5.1 (2)<br>(b) |
|                                       |                      | Moving average  | Digital output values for the specified number of times are averaged in each sampling cycle. The averaged values are stored in the buffer memory.                                                                                                                                                                  | Page 38,<br>Section 4.5.1 (2)<br>(c) |
|                                       | Primary delay filter |                 | Depending on the set time constant, digital output values with smoothed noise can be obtained.                                                                                                                                                                                                                     | Page 39,<br>Section 4.5.1 (3)        |
| Input signal error detection function |                      | nction          | Overrange of a CT input value (excess of a peak value) can be detected. Since a CT input module can detect that a high current out of range flew through a measured target, an error on the measured target is monitored easily.                                                                                   | Page 42,<br>Section 4.6              |
| Peak current of                       | detection function   | on              | When digital output values exceed the set peak current detection value consecutively for the duration of the peak current detection time set in advance, an error can be detected.                                                                                                                                 | Page 44,<br>Section 4.7              |
| Dropout functi                        | on                   |                 | When an input current is around 0A, a CT's conversion accuracy is low. To avoid digital output of such an unstable CT input value, digital output values within the set value can be dropped to 0 forcibly.                                                                                                        | Page 47,<br>Section 4.8              |
| Scaling function                      |                      |                 | A digital output value can be scaled into a value within the range of the set scaling upper limit value to lower limit value.  The sequence programming for scale conversion can be omitted.                                                                                                                       | Page 48,<br>Section 4.9              |
| Warning output function Rate alarm    |                      | rm              | When a digital output value enters the alert output range set in advance, an alert is output.                                                                                                                                                                                                                      | Page 51,<br>Section 4.10 (1)         |
|                                       |                      |                 | When a change rate of a digital output value is equal to or more than the rate alarm upper limit value (%/s) or that is equal to or less than the rate alarm lower limit value (%/s), an alert is output.                                                                                                          | Page 53,<br>Section 4.10 (2)         |
| Maximum valu                          | ue/minimum val       | ue hold         | The maximum and minimum of digital output values or scaling values are stored to the buffer memory for each channel.                                                                                                                                                                                               | Page 57,<br>Section 4.11             |
| Logging function                      |                      |                 | A digital output value or scaling value can be logged. 5000 data can be logged for each channel.                                                                                                                                                                                                                   | Page 58,<br>Section 4.12             |

| Item                                  | Description                                                                                                                                                                                                                          | Reference                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Set value backup function             | Set values in the buffer memory can be backed up into the non-volatile memory. Since backup data are restored at the next start-up, programs for initial settings are not required after the set value backup function was executed. | Page 70,<br>Section 4.13 |
| Default setting registration function | Values in the buffer memory can be changed back to the default.                                                                                                                                                                      | Page 71,<br>Section 4.14 |
| Offset/gain setting                   | A slope of I/O conversion characteristics can be changed.                                                                                                                                                                            | Page 148,<br>Section 8.5 |
| Error history function                | Errors and alarms occurred in the CT input module are stored up to the latest 16 records in the buffer memory.                                                                                                                       | Page 72,<br>Section 4.15 |
| Module error collection function      | Errors and alarms occurred in the CT input module can be collected into the CPU module.                                                                                                                                              | Page 75,<br>Section 4.16 |
| Error clear function                  | When an error occurs, the error can be cleared on the system monitor.                                                                                                                                                                | Page 76,<br>Section 4.17 |
| Online module change                  | A module can be replaced without stopping the system.                                                                                                                                                                                | Page 180,<br>CHAPTER 10  |


# **CHAPTER 4** FUNCTIONS

This chapter describes the details of the CT input module's function, and the setting procedures for the functions. For details on I/O signals and the buffer memory, refer to the following.

- Details of I/O Signals (Page 78, Section 5.2)
- Details of Buffer Memory Addresses (FP Page 104, Section 6.2)

# 4.1 Processing Each Function

A CT input value and digital value are processed in the following order. If multiple functions are enabled, the output of the first-processed function is used as the input for the next function.



#### (1) CT input value

This is an alternating current value measured using a CT. This is a primary current which a CT imports.

#### (2) Digital output value

A digital value after the sampling processing or an averaging process was performed.

#### (3) Scaling value

This is a digital output value which was performed scale conversion.

#### (4) Maximum and minimum values

Either of the following are stored.

- The maximum and minimum digital output values (when the scaling function is disabled.)
- The maximum and minimum scaling values (when the scaling function is enabled.)

#### (5) Logging data

A digital output value or scaling value is collected.

# 4.2 Input Range Setting

An input range can be selected for each channel depending on the CT to be connected.

Select a factory default range normally. If the slope of I/O conversion characteristics is changed, select a user range and configure the offset/gain setting.

### Point P

- Select an input range depending on the CT to be connected. In case of excessive input, safety problems such as heat generation may occur.
- If a set input value is not supported by the CT to be connected, and Operating condition setting request (Y9) is turned on then off, an input signal error may occur.

If an input signal error occurs, check if the input range setting is supported by the connected CT. If the input range setting is incorrect, reset the setting.

For details on the input signal error detection function, refer to the following.

• Input Signal Error Detection Function ( Page 42, Section 4.6)

#### (1) Setting procedure

#### Set values to CH□ Input range setting (Un\G150 to Un\G157) depending on the CT to be connected.

|                          | Input range | Setting value     |
|--------------------------|-------------|-------------------|
|                          | 0 to 5AAC   | 0000 <sub>H</sub> |
|                          | 0 to 50AAC  | 0001 <sub>H</sub> |
| Contour, defectly warmen | 0 to 100AAC | 0002 <sub>H</sub> |
| Factory default range    | 0 to 200AAC | 0003 <sub>H</sub> |
|                          | 0 to 400AAC | 0004 <sub>H</sub> |
|                          | 0 to 600AAC | 0005 <sub>H</sub> |
|                          | 0 to 5AAC   | 0010 <sub>H</sub> |
|                          | 0 to 50AAC  | 0011 <sub>H</sub> |
| Heer range               | 0 to 100AAC | 0012 <sub>H</sub> |
| User range               | 0 to 200AAC | 0013 <sub>H</sub> |
|                          | 0 to 400AAC | 0014 <sub>H</sub> |
|                          | 0 to 600AAC | 0015 <sub>H</sub> |

2. Turn on then off Operating condition setting request (Y9).

#### (2) When using a user range

- Set 0010<sub>H</sub> to 0015<sub>H</sub> to CH□ Input range setting (Un\G150 to Un\G157) depending on the CT to be connected.
- Configure the offset/gain setting. For the offset/gain setting, refer to Page 148, Section 8.5.
- One offset value and one gain value are saved in the CT input value as the user range setting for each
  channel. When connecting a new CT to a channel where a user range was set with a different CT before,
  configure the offset/gain setting again.

# 4.3 Conversion Enable/Disable Function

# 4.3 Conversion Enable/Disable Function

Set whether to enable or disable the digital conversion for each channel.

#### (1) Setting procedure

- 1. Set Enable (0) or Disable (1) to Conversion enable/disable setting (Un\G0).
- 2. Turn on then off Operating condition setting request (Y9).

# **4.4** Sampling Cycle Switching Function

A sampling cycle can be selected from one of the following.

- 10ms/8CH
- 20ms/8CH
- 50ms/8CH
- 100ms/8CH

#### (1) Setting procedure

1. Set a sampling cycle to Sampling cycle setting (Un\G26).

| Item                              | Setting         |
|-----------------------------------|-----------------|
|                                   | • 10ms/8CH (0)  |
| Compling avala potting (LIN)(C26) | • 20ms/8CH (1)  |
| Sampling cycle setting (Un\G26)   | • 50ms/8CH (2)  |
|                                   | • 100ms/8CH (3) |

2. Turn on then off Operating condition setting request (Y9).



Digital conversion is performed in the set sampling cycle regardless of the number of conversion enabled channels.

# 4.5 Digital Conversion Method

One of the following digital conversion methods can be set for each channel.

- · Sampling processing
- · Averaging process
- · Primary delay filter

For the operation of each digital conversion method, refer to the following.

• Operations of digital conversion methods (Page 36, Section 4.5.1)

For the setting procedure for each digital conversion method, refer to the following.

• Setting procedures for digital conversion methods (Page 41, Section 4.5.2)

# 4.5.1 Operations of digital conversion methods

#### (1) Sampling processing

CT input values are converted to digital values in each set sampling cycle. The converted values are stored as digital output values in the buffer memory.

#### (2) Averaging process

Digital output values are averaged for each channel. The averaged values are stored as digital output values in the buffer memory.

There are three types of averaging process as follows:

- · Time average
- · Count average
- · Moving average

# 4.5 Digital Conversion Method4.5.1 Operations of digital conversion methods

#### (a) Time average

Digital conversion is performed for the duration of the set time, and a sum of the converted values except the maximum and minimum values is averaged. The averaged value is stored in the buffer memory.

The number of processing within the duration of the set time varies depending on the set time and sampling cycle.

Ex. The number of processing is as follows in case of the settings below.

| Item           | Setting  |
|----------------|----------|
| Sampling cycle | 50ms/8CH |
| Set time       | 380ms    |

$$\frac{380}{50}$$
 = 7.6 (times) · · · Figures after the decimal point are omit.

 $\rightarrow$  Conversion is processed seven times to output the average value.



The valid lower limit setting value for a time average is calculated as: "(Minimum 4 times) × (Sampling cycle)".

Ex. When the sampling cycle is 50ms/8CH:

 $4 \times 50 = 200$ ms

If the number of processing is less than four due to the set time, the error (error code:  $20\square$ ) occurs and the digital output value becomes 0.

#### (b) Count average

Digital conversion is performed the set number of times, and a sum of the converted values except the maximum and minimum values is averaged. The averaged value is stored in the buffer memory.

The processing time that takes to store the averaged value of count average in the buffer memory varies depending on the sampling cycle.

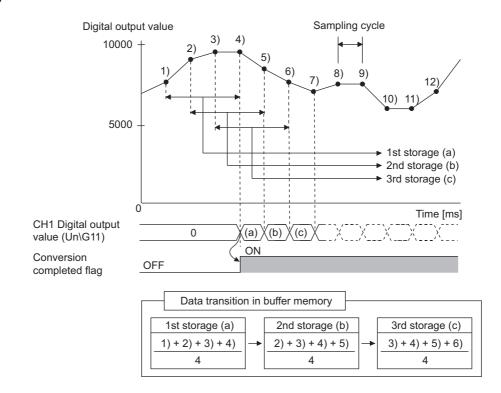
Processing time = Set number of times X Sampling cycle

**Ex.** The processing time is as follows in case of the settings below.

| Item                | Setting  |
|---------------------|----------|
| Sampling cycle      | 50ms/8CH |
| Set number of times | 20 times |

 $20 \times 50 = 1000 \text{ (ms)} \rightarrow \text{The averaged value is output in each } 1000 \text{ms}.$ 




Since the count average requires a sum of at least two digital conversions besides the maximum and minimum values, the set number of times must be four or more.

#### (c) Moving average

Digital output values of the number of specified times are averaged in each sampling cycle. The averaged values are stored in the buffer memory.

Digital output values to be averaged move one by one in each sampling cycle as below.

Ex. Moving average processing of when the set number of times is four



#### (3) Primary delay filter

Depending on the set time constant, digital output values with smoothed noise can be obtained. A smoothing degree varies by setting the time constant.

The following are the relational expressions of time constants and digital output values.

$$[n = 1]^{*1}$$

$$Y_n = 0$$

$$[n = 2]$$

$$Y_n = y_{n-1} + \frac{\Delta t}{\Delta t + TA} (y_n - y_{n-1})$$

[n ≥ 3]

$$Y_n = Y_{n-1} + \frac{\Delta t}{\Delta t + TA} (y_n - Y_{n-1})$$

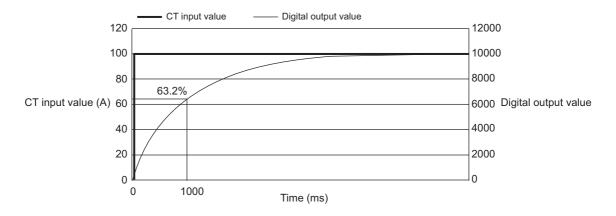
 $Y_n$  : Present digital output value  $y_n$  : Digital output value before smoothing

 $Y_{n-1}$  : Last digital output value  $y_{n-1}$  : Last digital output value before smoothing

Number of sampling  $\Delta t$  : Sampling cycle processing

TA: Time constant\*2 (ms)

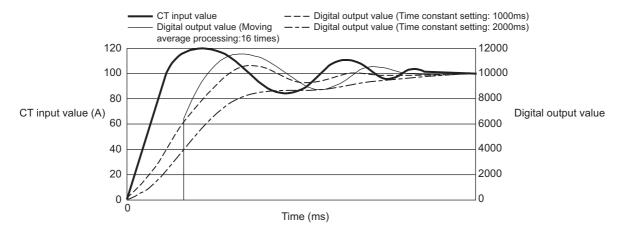
- \*1 When n is 2 or larger, Conversion completed (1) is stored in Conversion completed flag (Un\G10).
- \*2 Set a value which is equal to or larger than the sampling cycle. If the time constant is smaller than the sampling cycle, the error (error code: 32□) occurs, and the digital output value becomes 0.


Ex. 1: Change of digital output values under the following conditions

Input range: 0 to 100AACSampling cycle: 10ms/8CH

• Time constant setting: 1000ms (1s)

• CT input value: changed from 0A to 100A


When 1000ms passes after the CT input value reaches 100A, the digital output value with a primary delay filter reaches 63.2% of the digital output value in the sampling process.



Ex. 2: When CT input values form a ringing waveform, change of digital output values in the following conditions

Time constant setting: 2000ms (2s)Time constant setting: 1000ms (1s)

· Moving average processing: 16 times



# 4.5.2 Setting procedures for digital conversion methods

#### (1) Sampling processing

- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Sampling processing (0) to Averaging process setting (Un\G24, Un\G25).
- 3. Turn on then off Operating condition setting request (Y9).

#### (2) Averaging process and primary delay filter

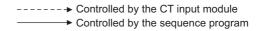
- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set digital conversion methods to Averaging process setting (Un\G24, Un\G25).

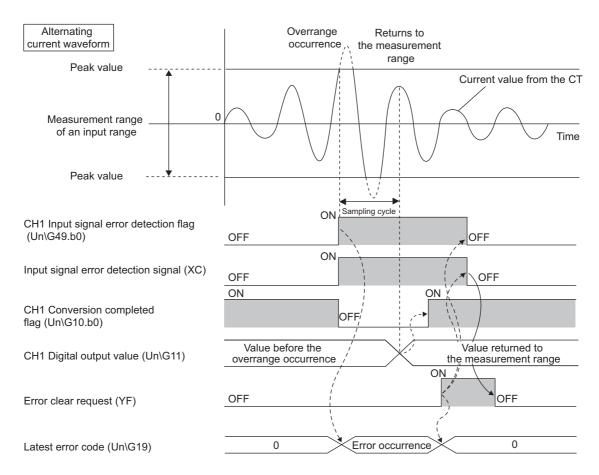
| Item                                       | Setting                  |
|--------------------------------------------|--------------------------|
| Averaging process setting (Un\G24, Un\G25) | Time average (1)         |
|                                            | Count average (2)        |
|                                            | Moving average (3)       |
|                                            | Primary delay filter (4) |

# 3. Set values to CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)

| Item                                                                                            | Processing           | Setting range      |
|-------------------------------------------------------------------------------------------------|----------------------|--------------------|
| CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) | Time average         | 40 to 5000 (ms)*1  |
|                                                                                                 | Count average        | 4 to 500 (times)   |
|                                                                                                 | Moving average       | 2 to 1000 (times)  |
|                                                                                                 | Primary delay filter | 10 to 10000 (ms)*1 |

Set an integral multiple of the sampling cycle. If not, digital output values are averaged in the maximum cycle that satisfies both of the following.


- Duration of the set time or less
- Integral multiple of the sampling cycle


In addition, set a value per 10ms unit. A value per 1ms unit is rounded off.

4. Turn on then off Operating condition setting request (Y9).

# 4.6 Input Signal Error Detection Function

Overrange of a CT input value (excess of a peak value) can be detected. Since a CT input module can detect that a high current out of range flew through a measured target, an error on the measured target is monitored easily.





#### (1) Detection level of Input signal errors

The level of current that is detected as an input signal error depends on the input range setting. The current level is about 125% of the gain value for the input range.

| Input range setting                                      | Detection level       |
|----------------------------------------------------------|-----------------------|
| Factory default range 0 to 5AAC User range 0 to 5AAC     | Approximately 6.25AAC |
| Factory default range 0 to 50AAC User range 0 to 50AAC   | Approximately 62.5AAC |
| Factory default range 0 to 100AAC User range 0 to 100AAC | Approximately 125AAC  |
| Factory default range 0 to 200AAC User range 0 to 200AAC | Approximately 250AAC  |
| Factory default range 0 to 400AAC User range 0 to 400AAC | Approximately 500AAC  |
| Factory default range 0 to 600AAC User range 0 to 600AAC | Approximately 750AAC  |

#### (2) Notifying an input signal error

When a CT input value exceeds the input range, an input signal error is notified as follows.

- Input signal error (1) is stored in Input signal error detection flag (Un\G49).
- Input signal error detection signal (XC) turns on.
- The ALM LED flashes.
- Alarm code 110□ is stored in Latest error code (Un\G19).
   Alarm codes are stored as below.



#### (3) Operation of the input signal error detection function

In addition, Converting or unused (0) is stored in Conversion completed flag (Un\G10) on the corresponding channel, and Conversion completed flag (XE) turns off.

When the CT input value returns within the input range, the digital conversion resumes regardless of reset of Input signal error detection flag (Un\G49) and Input signal error detection signal (XC). Conversion completed (1) is stored in Conversion completed flag (Un\G10) on the corresponding channel after the first update of a digital output value. (The ALM LED is flashing.)

#### (4) Detection cycle

This function is executed in each sampling cycle.

#### (5) Clearing the input signal error detection

After the CT input value returns within the input range, turn on then off Error clear request (YF).

When the input signal error is cleared, the CT input module results in the following states:

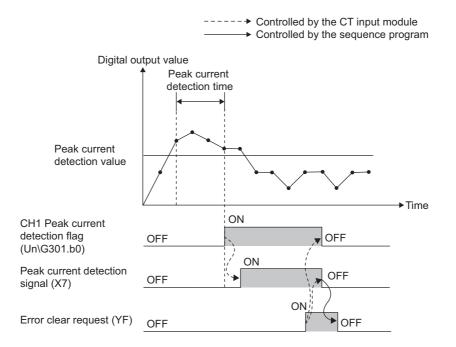
- Input signal error detection flag (Un\G49) is cleared.
- · Input signal error detection signal (XC) turns off.
- · The ALM LED turns off.
- The alarm code 110□ which is stored in Latest error code (Un\G19) is cleared.

#### (6) Setting procedure

- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to Input signal error detection setting (Un\G47).
- 3. Turn on then off Operating condition setting request (Y9).

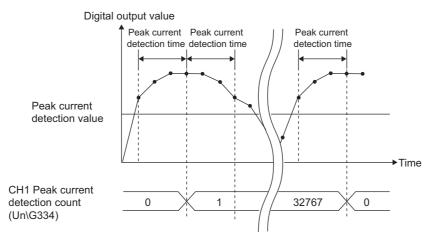
### 4.7 Peak Current Detection Function

An abnormal current value from a CT can be detected. The peak current occurred excessively at a system start-up or an overload of devices can be detected using the peak current detection function. Doing so improves maintainability of devices and the failure diagnosis for a measured target.


#### (1) Notifying the peak current detection

When CH Digital output value (Un\G11 to Un\G18) exceeds set CH Peak current detection value (Un\G326 to Un\G333) consecutively for the duration of set CH Peak current detection time (Un\G318 to Un\G325), an error is notified as follows.

- Peak current detected (1) is stored in Peak current detection flag (Un\G301).
- Peak current detection signal (X7) turns on.
- The ALM LED flashes.
- Alarm code 120□ is stored in Latest error code (Un\G19).
   Alarm codes are stored as below.

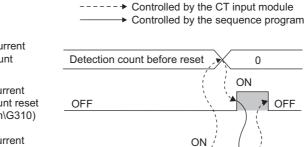



However, digital conversion on the channel where an error is notified was held.



#### (2) Counting the peak current detection

- The number of peak current detection is stored in CH Peak current detection count (Un\G334 to Un\G341).
- When a peak current is detected, 1 is added in CH Peak current detection count (Un\G334 to Un\G341). However, next addition is not performed unless a digital output value falls below the peak current detection value once
- CH□ Peak current detection count (Un\G334 to Un\G341) is saved automatically in the non-volatile memory in the CT input module. When the module starts up by turning off then on, or resetting the CPU module, the saved detection count is read in CH□ Peak current detection count (Un\G334 to Un\G341). Therefore, the number of peak current detection is not cleared even after the power supply was turned off then on, or the CPU module was reset.
- The count range of CH□ Peak current detection count (Un\G334 to Un\G341) is 0 to 32767. When the number of peak current detection exceeds the upper limit of the count range, the number returns to 0.






When a digital output value has exceeded the peak current detection value at power on, the number of peak current detection is added 1.

#### (a) Resetting the number of peak current detection

To reset the number of peak current detection, store Reset requested (1) in CH $\square$  Peak current detection count reset request (Un\G302 to Un\G309). 0 is stored in CH $\square$  Peak current detection count (Un\G334 to Un\G341). After the reset was completed, Reset request completed (1) is stored in CH $\square$  Peak current detection count reset complete (Un\G310 to Un\G317).



OFF

OFF

CH1 Peak current detection count (Un\G334)

CH1 Peak current detection count reset complete (Un\G310)

CH1 Peak current detection count reset request (Un\G302)

#### (3) Peak current detection time

The setting range of CH□ Peak current detection time (Un\G318 to Un\G325) is 10 to 10000ms.

Set CH□ Peak current detection time (Un\G318 to Un\G325) to an integral multiple of the sampling cycle.

When CH $\square$  Peak current detection time (Un\G318 to Un\G325) is not set as the integral multiple of the sampling cycle, the peak current is detected in the maximum cycle that satisfy both of the following.

- · Peak current detection time or less
- · Integral multiple of the sampling cycle
- When the sampling cycle setting and peak current detection time is set to 100ms/8CH and 950ms, the peak current is detected in 900ms intervals (integral multiple of 100ms).

#### (4) Clearing the notification of the peak current detection

Check that a digital output value is the peak current detection value or less, and turn on then off Error clear request (YF).

When the notification of the peak current detection is cleared, the CT input module results in the following states:

- Peak current detection flag (Un\G301) is cleared.
- · Peak current detection signal (X7) turns off.
- · The ALM LED turns off.
- The alarm code 120□ which is stored in Latest error code (Un\G19) is cleared.



When Error clear request (YF) is turned on then off in the condition where a digital output value exceeds the peak current detection value, the peak current detection is notified again after a lapse of the peak current detection time.

#### (5) Detection target

CH□ Digital output value (Un\G11 to Un\G18) is a target regardless of the use of the scaling function.

#### (6) Setting procedure

- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to Peak current detection setting (Un\G300).
- 3. Set values to CH□ Peak current detection time (Un\G318 to Un\G325) and CH□ Peak current detection value (Un\G326 to Un\G333).

| Item                                                  | Setting range      |
|-------------------------------------------------------|--------------------|
| CH□ Peak current detection time (Un\G318 to Un\G325)  | 10 to 10000 (ms)*1 |
| CH□ Peak current detection value (Un\G326 to Un\G333) | 0 to 11999         |

<sup>\*1</sup> Set an integral multiple of the sampling cycle. If not, the peak current is detected in the maximum cycle that satisfies both of the following.

- Peak current detection time or less
- · Integral multiple of the sampling cycle

In addition, set a value per 10ms unit. A value per 1ms unit is rounded off.

#### 4. Turn on then off Operating condition setting request (Y9).

# 4.8 Dropout Function

# 4.8 Dropout Function

When an input current is around 0A, a CT's conversion accuracy is low. To avoid digital output of such an unstable CT input value, digital output values within the set value can be dropped to 0 forcibly.

#### (1) Operation of the dropout function

When the value in CH $\square$  Digital output value (Un\G11 to Un\G18) is equal to or less than the set value in CH $\square$  Dropout value (Un\G162 to Un\G169) in advance, 0 is stored in CH $\square$  Digital output value (Un\G11 to Un\G18).

#### (2) Setting procedure

- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to Dropout detection setting (Un\G160).
- 3. Set values to CH□ Dropout value (Un\G162 to Un\G169).

| Item                                   | Setting range |
|----------------------------------------|---------------|
| CH□ Dropout value (Un\G162 to Un\G169) | 1 to 10000    |

4. Turn on then off Operating condition setting request (Y9).



To check whether the dropout function is enabled or disabled, refer to the following.

Dropout status flag (Un\G161) (FPage 119, Section 6.2 (23))

# 4.9 Scaling Function

A digital output value can be scaled into a value within the range of the set scaling upper limit value to lower limit value.

The sequence programming for scale conversion can be omitted.

The scale-converted values are stored in CH Scaling value (Un\G54 to Un\G61).

#### (1) Concept of scaling setting

Set values corresponding to the lower limit value (0) of the input range to CH $\square$  Scaling lower limit value (Un\G62, Un\G64, Un\G66, Un\G68, Un\G70, Un\G72, Un\G74, Un\G76).

Set values corresponding to the upper limit value (10000) of the input range to CH□ Scaling upper limit value (Un\G63, Un\G65, Un\G65, Un\G69, Un\G71, Un\G73, Un\G75, Un\G77).

#### (2) Calculation method for a scaling value

A value is performed scale conversion using the following formula. The scaled values after the decimal point are rounded off.

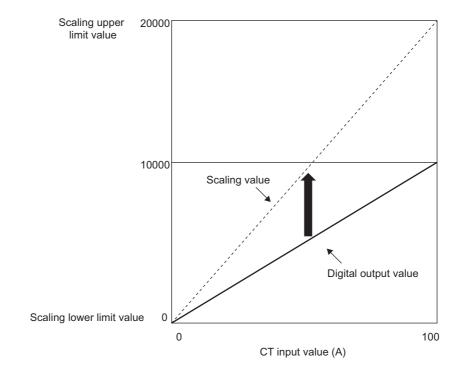
Scaling value = 
$$\frac{Dx \times (SH - SL)}{DMax}$$
 + SL

| Item | Description                                                   |
|------|---------------------------------------------------------------|
| Dx   | Digital output value                                          |
| DMax | Maximum digital output value for the used input range (10000) |
| Sh   | Scaling upper limit value                                     |
| SL   | Scaling lower limit value                                     |

#### (3) Setting procedure

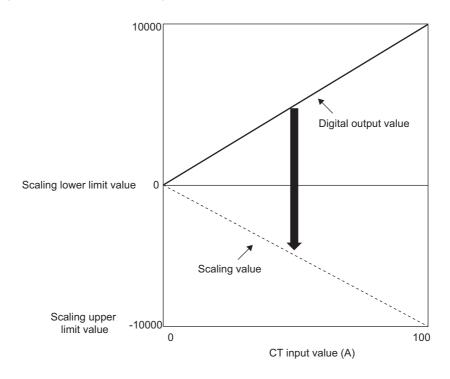
- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to Scaling enable/disable setting (Un\G53).
- 3. Set values to CH1 Scaling lower limit value (Un\G62) to CH8 Scaling upper limit value (Un\G77).

| Item                                                                                           | Setting range   |
|------------------------------------------------------------------------------------------------|-----------------|
| CH□ Scaling lower limit value (Un\G62, Un\G64, Un\G66, Un\G68, Un\G70, Un\G72, Un\G74, Un\G76) | -32000 to 32000 |
| CH□ Scaling upper limit value (Un\G63, Un\G65, Un\G67, Un\G69, Un\G71, Un\G73, Un\G75, Un\G77) | -52000 to 52000 |


#### 4. Turn on then off Operating condition setting request (Y9).

#### Point P

- The maximum resolution does not change regardless of the scaling upper limit value and the scaling lower limit value to be set.
  - Performance specifications (Page 25, Section 3.2.1)
- Digital output values can be scaled in a negative slope so that the values become as follows: Scaling lower limit value > Scaling upper limit value

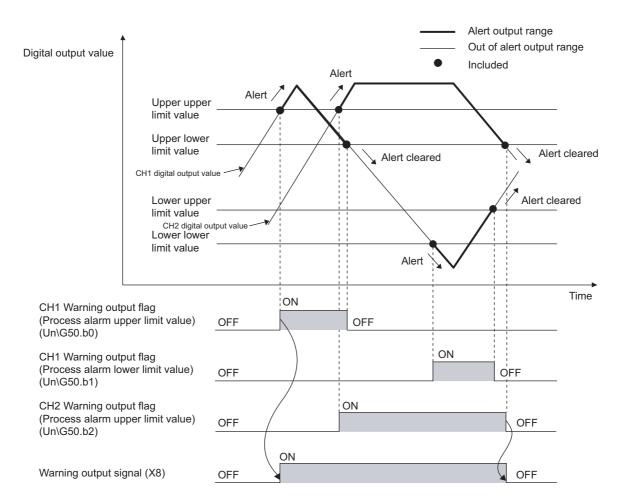

#### (4) Example settings of the scaling

- **Ex.** 1: Setting values as: Scaling upper limit value > Scaling lower limit value
  - Input range: 0 to 100AAC
  - CH□ Scaling upper limit value (Un\G63, Un\G65, Un\G67, Un\G69, Un\G71, Un\G73, Un\G75, Un\G77): 20000
- CH□ Scaling lower limit value (Un\G62, Un\G64, Un\G66, Un\G68, Un\G70, Un\G72, Un\G74, Un\G76): 0 The digital output values and scaling values are as follows:



| CT input value (A) | Digital output value | Scaling values |
|--------------------|----------------------|----------------|
| 0                  | 0                    | 0              |
| 25                 | 2500                 | 5000           |
| 50                 | 5000                 | 10000          |
| 75                 | 7500                 | 15000          |
| 100                | 10000                | 20000          |

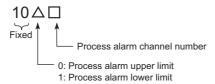
- Ex. 2: Setting values as: Scaling upper limit value lower < Scaling lower limit value
  - Input range: 0 to 100AAC
  - CH□ Scaling upper limit value (Un\G63, Un\G65, Un\G67, Un\G69, Un\G71, Un\G73, Un\G75, Un\G77): -10000
- CH□ Scaling lower limit value (Un\G62, Un\G64, Un\G66, Un\G68, Un\G70, Un\G72, Un\G74, Un\G76): 0 The digital output values and scaling values are as follows:




| CT input value (A) | Digital output value | Scaling values |
|--------------------|----------------------|----------------|
| 0                  | 0                    | 0              |
| 25                 | 2500                 | -2500          |
| 50                 | 5000                 | -5000          |
| 75                 | 7500                 | -7500          |
| 100                | 10000                | -10000         |

# 4.10 Warning Output Function

#### (1) Process alarm


When a digital output value enters the alert output range set in advance, an alert is output. When the scaling function is enabled, scaling values are applied to the warning detection.



#### (a) Operation of warning output

If a digital output value enters the alert output range (process alarm upper upper limit value or more, or process alarm lower lower limit value or less), an alert is output as follows.

- Alarm ON (1) is stored in Warning output flag (Process alarm) (Un\G50).
- Warning output signal (X8) turns on.
- The ALM LED turns on.
- Alarm code 10 △ □ is stored in Latest error code (Un\G19).
   Alarm codes are stored as below.



However, the digital conversion continues on the channel where an alert was output.

#### (b) Operation after an alert was output

After an alert was output, when a digital output value is less than the process alarm upper lower limit value or more than process alarm lower upper limit value, Normal (0) is stored in the corresponding bit of Warning output flag (Process alarm) (Un\G50) for the channel.

When digital output values in all channels are within the setting range, Warning output signal (X8) turns off, and the ALM LED turns off.

However, the alarm code  $10\triangle\Box$  which is stored in Latest error code (Un\G19) is not cleared. Clear the alarm code  $10\triangle\Box$  by turning on then off.

#### (c) Warning detection period

When time average is specified, the function is executed per set average time. When count average is specified, the function is executed per set average count.

For other digital conversion methods, the function is executed in each sampling cycle.

#### (d) Warning detection target

When the scaling function is enabled, CH $\square$  Scaling value (Un\G54 to Un\G61) is applied to the warning detection.

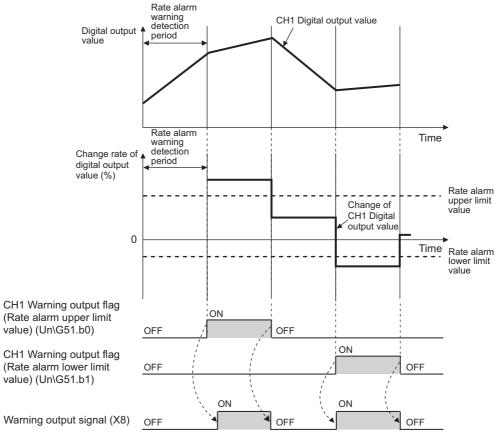
For CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117), set values considering the scale conversion.

#### (e) Setting procedure

- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to Warning output setting (Un\G48).
- 3. Set values in CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117).

| Item                                                                                                            | Setting range   |
|-----------------------------------------------------------------------------------------------------------------|-----------------|
| CH□ Process alarm upper upper limit value (Un\G89, Un\G93, Un\G97, Un\G101, Un\G105, Un\G109, Un\G113, Un\G117) |                 |
| CH□ Process alarm upper lower limit value (Un\G88, Un\G92, Un\G96, Un\G100, Un\G104, Un\G108, Un\G112, Un\G116) | -32768 to 32767 |
| CH□ Process alarm lower upper limit value (Un\G87, Un\G91, Un\G95, Un\G99, Un\G103, Un\G107, Un\G111, Un\G115)  | -32/00 10 32/0/ |
| CH□ Process alarm lower lower limit value (Un\G86, Un\G90, Un\G94, Un\G98, Un\G102, Un\G106, Un\G110, Un\G114)  |                 |

#### 4. Turn on then off Operating condition setting request (Y9).

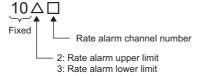



Set the warning output setting as follows:

Process alarm upper limit value  $\geq$  Process alarm upper lower limit value  $\geq$  Process alarm lower upper limit value  $\geq$  Process alarm lower lower limit value

#### (2) Rate alarm

When a change rate of a digital output value is equal to or more than the rate alarm upper limit value (%/s) or that is equal to or less than the rate alarm lower limit value (%/s), an alert is output.




----- Executed by the CT input module

#### (a) Operation of warning output

Digital output values are monitored in each set rate alarm warning detection period. A change rate of the digital output value compared to the previous value is equal to or more than the rate alarm upper limit value (%/s) or that equal to or less than the rate alarm lower limit value (%/s), an alert is output as follows.

- Alarm ON (1) is stored in Warning output flag (Rate alarm) (Un\G51).
- Warning output signal (X8) turns on.
- The ALM LED turns on.
- Alarm code 10 △ □ is stored in Latest error code (Un\G19).
   Alarm codes are stored as below.



However, the digital conversion continues on the channel where an alert was output.

#### (b) Operation after an alert was output

When a digital output value is less than the rate alarm upper limit value or more than the rate alarm lower limit value, Normal (0) is stored in the corresponding bit of Warning output flag (Rate alarm) (Un\G51) for the channel after an alert was output.

When digital output values in all channels are within the setting range, Warning output signal (X8) turns off, and the ALM LED turns off.

However, the alarm code  $10\triangle\Box$  which is stored in Latest error code (Un\G19) is not cleared. Clear the alarm code  $10\triangle\Box$  by turning on then off.

#### (c) Warning detection period

Set a rate alarm warning detection period to CH $\square$  Rate alarm warning detection period (Un\G118 to Un\G125). Set an integral multiple of the conversion cycle as the rate alarm warning detection period for each digital conversion method. If not, change rates are detected in the maximum cycle that satisfies both of the following.

- · Rate alarm warning detection period or less
- · Integral multiple of the conversion cycle
- Ex. Rate alarm warning detection period in case of the following conditions
  - Digital conversion method: Count average
  - · Average times: 10
  - Sampling cycle: 100ms/8CH
  - · Rate alarm warning detection period: 4500ms

The conversion cycle is 1000ms (10 (times) × 100 (ms)), and a digital output value is compared in 4000ms intervals to check the change rate.

#### (d) Judgement of rate alarm

A change rate is judged that the rate alarm upper limit value and the rate alarm lower limit value are converted to digital values per rate alarm warning detection period. Set a rate alarm upper limit value and rate alarm lower limit value to the following buffer memory areas.

- CH□ Rate alarm upper limit value (Un\G126, Un\G128, Un\G130, Un\G132, Un\G134, Un\G136, Un\G138, Un\G138, Un\G140)
- CH□ Rate alarm lower limit value (Un\G127, Un\G129, Un\G131, Un\G133, Un\G135, Un\G137, Un\G139, Un\G141)

Conversion formula of judgement value for the rate alarm is as follows:

Judgement value for rate alarm detection (digit) = 
$$\left(\frac{RH \text{ or } RL}{1000}\right) \times D_{Max} \times \left(\frac{\Delta t}{1000}\right)$$

| Item Description |                                                        |  |
|------------------|--------------------------------------------------------|--|
| Rн               | Rate alarm upper limit value (Unit: 0.1%/s)            |  |
| RL               | Rate alarm lower limit value (Unit: 0.1%/s)            |  |
| Dмаx             | Maximum digital output value of the input range: 10000 |  |
| Δt               | Rate alarm warning detection period (Unit: ms)         |  |

4.10 Warning Output Function

- Ex. Judgement value in case of the following conditions
  - Sampling cycle: 10ms/8CH
  - Rate alarm warning detection period: 10 (10ms)
  - Rate alarm upper limit value: 300 (30%/s)

$$\left(\frac{300}{1000}\right) \times 10000 \times \left(\frac{10}{1000}\right) = 30 \text{ [digit]}$$

The present value is compared to the previous value in 10ms intervals, and is checked if the value increased by 30 digits (0.3%).

#### (e) Warning detection target

CH□ Digital output value (Un\G11 to Un\G18) is a target regardless of the use of the scaling function.

#### (f) Setting procedure

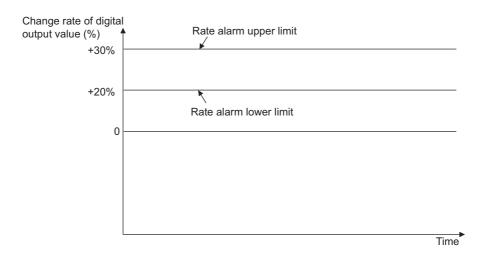
- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to Warning output setting (Un\G48).
- 3. Set values to CH□ Rate alarm warning detection period (Un\G118 to Un\G125).

| Item                                                         | Setting range     |
|--------------------------------------------------------------|-------------------|
| CH□ Rate alarm warning detection period (Un\G118 to Un\G125) | 10 to 5000 (ms)*1 |

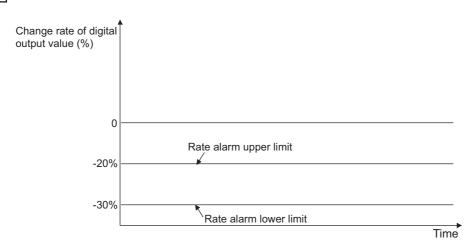
- \*1 Set an integral multiple of the conversion cycle for each digital conversion method. If not, change rates are detected in the maximum cycle that satisfies both of the following.
  - · Rate alarm warning detection period or less
  - · Integral multiple of the conversion cycle

In addition, set a value per 10ms unit. A value per 1ms unit is rounded off.

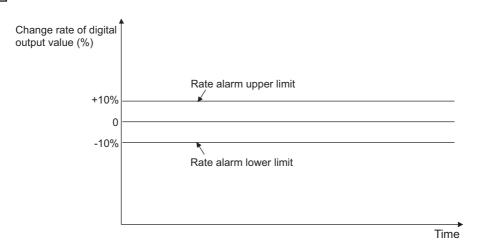
# 4. Set values to CH1 Rate alarm upper limit value (Un\G126) to CH8 Rate alarm lower limit value (Un\G141).


| Item                                                                                                      | Setting range                  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------|
| CH□ Rate alarm upper limit value (Un\G126, Un\G128, Un\G130, Un\G132, Un\G134, Un\G136, Un\G138, Un\G140) | -32768 to 32767 (-3276.8%/s to |
| CH□ Rate alarm lower limit value (Un\G127, Un\G129, Un\G131, Un\G133, Un\G135, Un\G137, Un\G139, Un\G141) | 3276.7%/s)                     |

5. Turn on then off Operating condition setting request (Y9).


#### (g) Examples to use a rate alarm

The change rate of digital output values in a limited range can be monitored easily as follows:


Ex. 1: To monitor that a rising rate of a digital output value is within the specified range



Ex. 2: To monitor a drop rate of a digital output value is within the specified range



Ex. 3: To monitor a change rate of a digital output value is within the specified range



# 4.11 Maximum Value/Minimum Value Hold Function

# 4.11 Maximum Value/Minimum Value Hold Function

The maximum and minimum of digital output values or scaling values are stored in the buffer memory for each channel.

When time average or count average is specified as the averaging process, the values are updated in each averaging process cycle. For other digital conversion methods, the values are updated in each sampling cycle.

For buffer memory addresses where the values are stored, refer to the following.

• List of Buffer Memory Addresses (FP Page 89, Section 6.1)

#### (1) Resetting maximum and minimum values

The maximum and minimum values are updated to the present value when Maximum value/minimum value reset request (YD) or Operating condition setting request (Y9) is turned on then off.

#### (2) Corresponding maximum and minimum values

When the scaling function is enabled, the maximum and minimum of scaling values are stored. For details on the scaling function, refer to the following.

• Scaling Function (Page 48, Section 4.9)

# 4.12 Logging Function

Data can be collected consecutively in a set cycle and stored in the buffer memory. Using the data stored in the buffer memory, debugging can be performed and data variation can be checked periodically.

In addition, the time-series data that are imported as logs can be checked easily.

#### (1) Logging function

#### (a) Collectable data

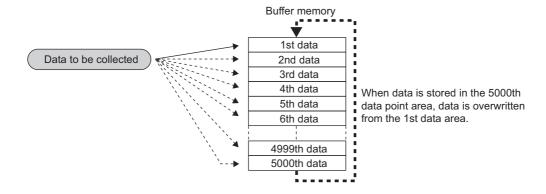
The following types of data can be collected.

- · Digital output value
- · Scaling value

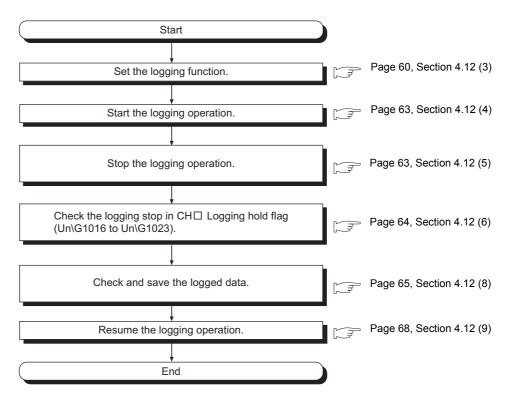
#### (b) Number of collectable data

The maximum 5000 logging data can be stored for each channel.

#### (c) Collection cycle


The data can be collected in 10ms at the minimum and in 3600s at the maximum intervals.

For details on the collection cycle, refer to the following.


• Setting procedure (Page 60, Section 4.12 (3))

#### (d) Storing the collected data

Logging data are stored orderly in the logging data storage area of the buffer memory, starting from the head area.



#### (2) Logging procedure



Point P

Logging data can also be checked without stopping logging. For details, refer to the following.

• To check logging data without stopping logging (Page 69, Section 4.12 (10))

#### (3) Setting procedure

Follow the procedure below.

- 1. Set Enable (0) to Conversion enable/disable setting (Un\G0).
- 2. Set Enable (0) to CH□ Logging enable/disable setting (Un\G1000 to Un\G1007).
- 3. Set the type of data to be logged to CH□ Logging data setting (Un\G1024 to Un\G1031).

| Item                                            | Setting value                                  |
|-------------------------------------------------|------------------------------------------------|
| CH□ Logging data setting (Un\G1024 to Un\G1031) | Digital output value (0)     Scaling value (1) |

- **4.** Set the cycle in which logging data are stored to CH□ Logging cycle setting value (Un\G1032 to Un\G1039).
- 5. Set the unit of the logging cycle in CH Logging cycle unit setting (Un\G1040 to Un\G1047).

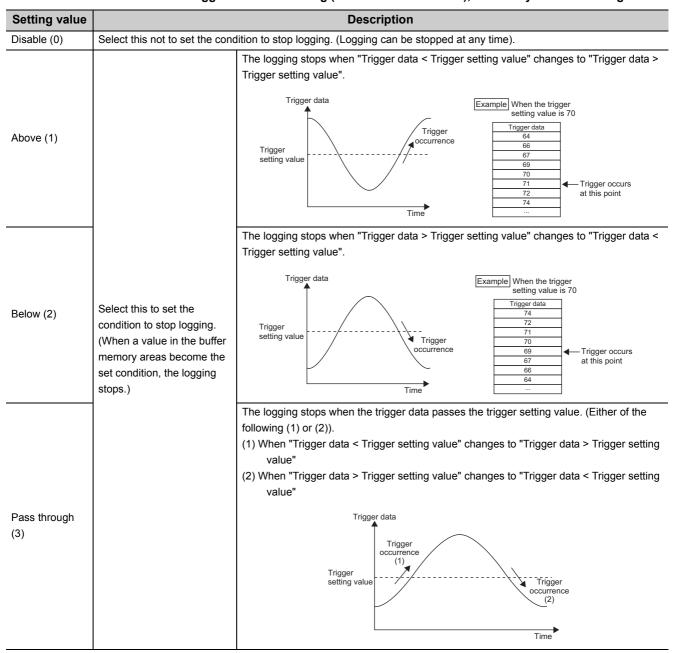
| Logging cycle unit | Setting value of CH□ Logging cycle unit setting (Un\G1040 to Un\G1047) | Setting range of CH□ Logging cycle setting value (Un\G1032 to Un\G1039) |
|--------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Update cycle       | 0                                                                      | The value is ignored.                                                   |
| ms                 | 1                                                                      | 10 to 32767                                                             |
| S                  | 2                                                                      | 1 to 3600                                                               |

The actual logging cycle is an integral multiple of the conversion cycle for each conversion method. The following table lists the conversion cycle for each conversion method.

| Conversion method    | Conversion cycle                                                                                                                               |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling processing  | Sampling cycle                                                                                                                                 |
| Time average         | Time set to CH□ Average time/Average number of times/ Moving average/Time constant settings (Un\G1 to Un\G8)  Sampling cycle  × Sampling cycle |
| Count average        | (Setting of CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) × Sampling cycle)                  |
| Moving average       | Sampling cycle                                                                                                                                 |
| Primary delay filter | Sampling cycle                                                                                                                                 |

<sup>\*1</sup> The value after the decimal point is rounded off.

If the set logging cycle is not an integral multiple of the conversion cycle shown above, the logging function operates in the maximum cycle of an integral multiple within the set range.


- Ex. 1: When setting as below in CH1 to CH8:
  - Averaging process setting (Un\G24, Un\G25): Sampling processing (0)
  - Sampling cycle setting (Un\G26): 100ms/8CH (3)
  - CH□ Logging data setting (Un\G1024 to Un\G1031): Digital output value (0)
  - CH□ Logging cycle setting value (Un\G1032 to Un\G1039): 1950
  - CH□ Logging cycle unit setting (Un\G1040 to Un\G1047): ms (1)

The conversion cycle is 100ms. The actual logging cycle is 1900ms (an integral multiple of 100ms).

6. In CH Logging points after trigger (Un\G1048 to Un\G1055), set the number of data to be collected from when the logging stop request (hold trigger) occurs until the logging stops. The setting range of CH Logging points after trigger (Un\G1048 to Un\G1055) is as below.

| Item                                                    | Setting range |
|---------------------------------------------------------|---------------|
| CH□ Logging points after trigger (Un\G1048 to Un\G1055) | 1 to 5000     |

7. In CH Level trigger condition setting (Un\G1056 to Un\G1063), select any of the following.



# 8. When a setting value other than Disable (0) is selected in CH□ Level trigger condition setting (Un\G1056 to Un\G1063), set a logging stop condition to CH□ Trigger data (Un\G1064 to Un\G1071) and CH□ Trigger setting value (Un\G1082 to Un\G1089).

| Item                                             | Description                                                                         | Setting range   |
|--------------------------------------------------|-------------------------------------------------------------------------------------|-----------------|
| CH□ Trigger data (Un\G1064 to Un\G1071)          | Set a buffer memory address monitored as an occurrence condition to stop logging.*1 | 0 to 4999       |
| CH□ Trigger setting value (Un\G1082 to Un\G1089) | Set a value of the buffer memory to stop logging.                                   | -32768 to 32767 |

<sup>\*1</sup> By setting Level data ☐ (Un\G1072 to Un\G1081) as a monitoring target, a device value of a CPU module can be set as trigger data.

For details on the level data, refer to the following.

- Level data ☐ ( Page 130, Section 6.2 (41))
- 9. Turn on then off Operating condition setting request (Y9).



- If CH□ Logging cycle setting value (Un\G1032 to Un\G1039) and the logging cycle set in CH□ Logging cycle unit setting (Un\G1040 to Un\G1047) is shorter CH□ Digital output value (Un\G11 to Un\G18) and the conversion cycle of CH□ Scaling value (Un\G54 to Un\G61), the error (error code: 202□) occurs and the logging cannot be performed.
- When the logging function turns invalid
   When any of the following error occurs after the logging function is enabled and Operating condition setting request (Y9) is turned on then off, the logging function turns disabled.
  - Error code (20□): Setting error of CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)
  - Error code (30□): Setting error of CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)
  - Error code (31□): Setting error of CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)
  - Error code (32□): Setting error of CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)
  - Error code (350): Setting error of Sampling cycle setting (Un\G26)
  - Error code (200□ to 206□): Setting error of a parameter setting item for the logging function

#### (4) Starting logging

Turn on then off Operating condition setting request (Y9). Data is logged in set logging cycle.

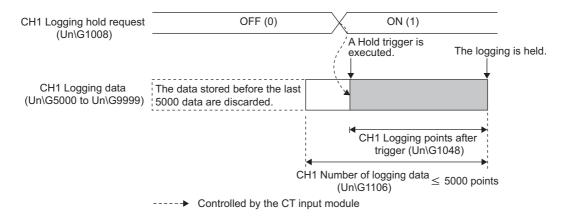
#### (5) Stopping logging

Use a hold trigger to stop logging. When the hold trigger is detected, the CT input module stops logging after the number of logging data set in advance were collected.

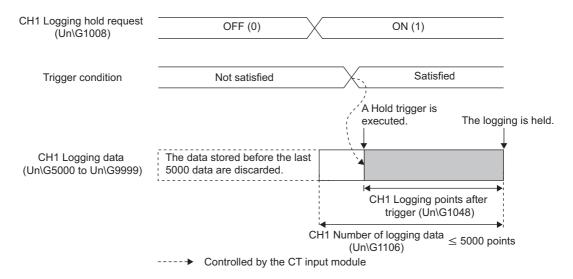
The logging stopping method is as below.

#### 1. Set ON (1) to CH□ Logging hold request (Un\G1008 to Un\G1015).

When Disable (0) is set to CH $\square$  Level trigger condition setting (Un\G1056 to Un\G1063), the set number of logging data are collected and the logging stops.


When CH□ Level trigger condition setting (Un\G1056 to Un\G1063) is set to Above (1), Below (2), or Pass through (3), the set number of logging data are collected after the conditions of CH□ Trigger data (Un\G1064 to Un\G1071) and CH□ Trigger setting value (Un\G1082 to Un\G1089) are satisfied, and the logging stops.

# Point P


- When Operating condition setting request (Y9) is turned on, the logging stops regardless of ON or OFF of the hold trigger.
   All the logging data stored before Operating condition setting request (Y9) is turned on are cleared.
- Check that CH□ Logging hold flag (Un\G1016 to Un\G1023) turned ON (1), and set OFF (0) to CH□ Logging hold request (Un\G1008 to Un\G1015). If CH□ Logging hold request (Un\G1008 to Un\G1015) is set OFF (0) before hold, the logging does not stop.
- After CH□ Logging hold request (Un\G1008 to Un\G1015) is set ON (1), the following delay occurs at the maximum until
  the CT input module receives a hold trigger.

Trigger delay = Logging cycle (Cycle at which the logging is actually performed) + Scan time of CPU module

Ex. When CH□ Level trigger condition setting (Un\G1056 to Un\G1063) is set to Disable (0) and CH1 Digital output value (Un\G11) is logged



Ex. When CH□ Level trigger condition setting (Un\G1056 to Un\G1063) is set to a value other than Disable (0) and CH1 Digital output value (Un\G11) is logged



#### (6) Checking the stop of the logging

Check that CH□ Logging hold flag (Un\G1016 to Un\G1023) turns ON (1).

#### (7) Checking trigger detection time

The time at that the hold trigger was detected can be checked in the buffer memory.\*1

Even when the logging cycle is set as less than 1s, the minimum time unit recorded in CH□ Trigger detection time (Un\G1154 to Un\G1185) is second. Use trigger detection time as an indication to refer to the logging data.

\*1 When the hold trigger is detected as soon as turning on the programmable controller, the CT input module may not obtain the time in the CPU module. If the module could not obtain the time, the trigger detection time is recorded "0:0:0 on January 1st, 2000".

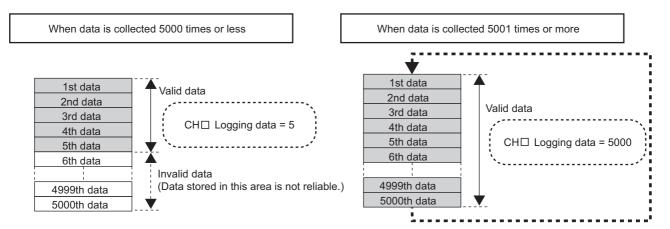
Trigger detection time is stored in the following buffer memory areas.

| Channel | Address for trigger detection time                |
|---------|---------------------------------------------------|
| CH1     | CH1 Trigger detection time (Un\G1154 to Un\G1157) |
| CH2     | CH2 Trigger detection time (Un\G1158 to Un\G1161) |
| CH3     | CH3 Trigger detection time (Un\G1162 to Un\G1165) |
| CH4     | CH4 Trigger detection time (Un\G1166 to Un\G1169) |
| CH5     | CH5 Trigger detection time (Un\G1170 to Un\G1173) |
| CH6     | CH6 Trigger detection time (Un\G1174 to Un\G1177) |
| CH7     | CH7 Trigger detection time (Un\G1178 to Un\G1181) |
| CH8     | CH8 Trigger detection time (Un\G1182 to Un\G1185) |

Ex. For CH1 Trigger detection time (Un\G1154 to Un\G1157)

|          | b15     | to                 | b8  | b7 | to                          | b0 |
|----------|---------|--------------------|-----|----|-----------------------------|----|
| Un\G1154 | First t | wo digits of the y | ear |    | Last two digits of the year |    |
| Un\G1155 |         | Month              |     |    | Day                         |    |
| Un\G1156 |         | Hour               |     |    | Minute                      |    |
| Un\G1157 |         | Second             |     |    | Day of the week             |    |

| Item                                                     |                           | Storage<br>example <sup>*1</sup>                |                   |
|----------------------------------------------------------|---------------------------|-------------------------------------------------|-------------------|
| First two digits of the year/Last two digits of the year |                           |                                                 | 2011 <sub>H</sub> |
| Month/Day                                                | Stored in BCD code.       | 329 <sub>H</sub>                                |                   |
| Hour/Minute                                              |                           | 1035 <sub>H</sub>                               |                   |
| Second                                                   |                           |                                                 | 40 <sub>H</sub>   |
|                                                          | The value that correspond | s to the day of the week is stored in BCD code. |                   |
|                                                          | • Sunday: 00              | Monday: 01                                      |                   |
| Day of the week                                          | Tuesday: 02               | • Wednesday: 03                                 | 02 <sub>H</sub>   |
|                                                          | Thursday: 04              | • Friday: 05                                    |                   |
|                                                          | Saturday: 06              |                                                 |                   |

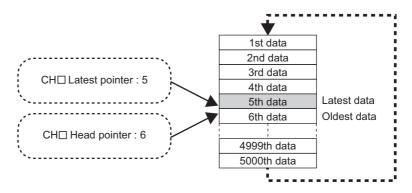

<sup>\*1</sup> Those are values when a hold trigger was detected at 10:35:40 on Tuesday, March 29th, 2011.

### (8) Checking logging data

Logging data are stored in the following buffer memory areas.

| Channel | Collectable data           |                             | Storage area of logging data |                        |
|---------|----------------------------|-----------------------------|------------------------------|------------------------|
|         | Buffer memory name         | Buffer<br>memory<br>address | Buffer memory name           | Buffer memory address  |
| CH1     |                            | Un\G11                      | - CH□ Logging data           | Un\G5000 to Un\G9999   |
| CH2     | - CH□ Digital output value | Un\G12                      |                              | Un\G10000 to Un\G14999 |
| CH3     |                            | Un\G13                      |                              | Un\G15000 to Un\G19999 |
| CH4     |                            | Un\G14                      |                              | Un\G20000 to Un\G24999 |
| CH5     |                            | Un\G15                      |                              | Un\G25000 to Un\G29999 |
| CH6     |                            | Un\G16                      |                              | Un\G30000 to Un\G34999 |
| CH7     |                            | Un\G17                      |                              | Un\G35000 to Un\G39999 |
| CH8     | 1                          | Un\G18                      |                              | Un\G40000 to Un\G44999 |
| CH1     |                            | Un\G54                      |                              | Un\G5000 to Un\G9999   |
| CH2     | - CH□ Scaling value        | Un\G55                      |                              | Un\G10000 to Un\G14999 |
| CH3     |                            | Un\G56                      |                              | Un\G15000 to Un\G19999 |
| CH4     |                            | Un\G57                      |                              | Un\G20000 to Un\G24999 |
| CH5     |                            | Un\G58                      |                              | Un\G25000 to Un\G29999 |
| CH6     |                            | Un\G59                      |                              | Un\G30000 to Un\G34999 |
| CH7     |                            | Un\G60                      |                              | Un\G35000 to Un\G39999 |
| CH8     | 1                          | Un\G61                      | ]                            | Un\G40000 to Un\G44999 |

#### 1. Check the number of valid logging data with CH Number of logging data (Un\G1106 to Un\G1113).



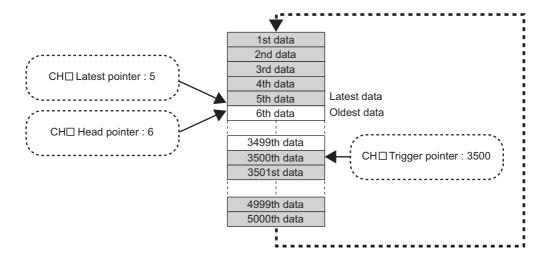

#### 2. Check where the latest data and the oldest data are stored.

The places can be checked in the following buffer memory areas.

- CH□ Head pointer (Un\G1090 to Un\G1097) ([☐ Page 131, Section 6.2 (43))
- CHI Latest pointer (Un\G1098 to Un\G1105) (FP Page 132, Section 6.2 (44))

#### Ex. When data was collected 5001 times or more




# 3. Check the storage place of when the logging stopped in CH□ Trigger pointer (Un\G1114 to Un\G1121).

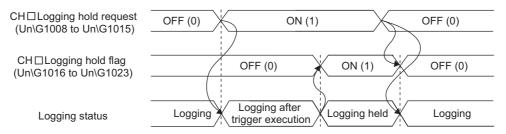
Ex. When the logging stopped under the following conditions

CH□ Logging points after trigger (Un\G1048 to Un\G1055): 1505 points

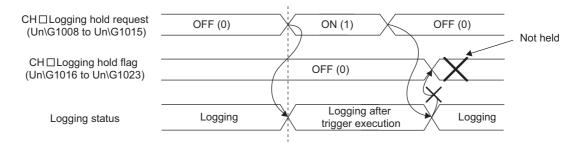
Logging hold request: At the 3500th data

(The hold place is determined as the 5th data.)




#### (9) Resuming the logging

To resume the logging, set OFF (0) to CH $\square$  Logging hold request (Un\G1008 to Un\G1015). The logging resumes from the head of the logging data storage area.


At this time, the head pointer, latest pointer, number of logging data, and trigger pointer are cleared, and OFF (0) is stored in CH $\square$  Logging hold flag (Un\G1016 to Un\G1023).

#### (a) Precautions

It may take some time from when ON (1) is stored in CH□ Logging hold request (Un\G1008 to Un\G1015) till when ON (1) is set to CH□ Logging hold flag (Un\G1016 to Un\G1023). To resume the logging, set OFF (0) to CH□ Logging hold request (Un\G1008 to Un\G1015) after checking ON (1) is stored in CH□ Logging hold flag (Un\G1016 to Un\G1023).



• When OFF (0) is set to CH□ Logging hold request (Un\G1008 to Un\G1015) before ON (1) is stored in CH□ Logging hold flag (Un\G1016 to Un\G1023), the logging does not stop.



#### (b) Each buffer memory when logging resumes

When the logging resumes, the value in each buffer memory area is as below.

| Buffer memory                                     | Value status                                           |  |
|---------------------------------------------------|--------------------------------------------------------|--|
| CH□ Head pointer (Un\G1090 to Un\G1097)           |                                                        |  |
| CH□ Latest pointer (Un\G1098 to Un\G1105)         | Values are initialized (Initial value: 0).             |  |
| CH□ Number of logging data (Un\G1106 to Un\G1113) |                                                        |  |
| CH□ Trigger pointer (Un\G1114 to Un\G1121)        |                                                        |  |
| CH□ Logging data (Un\G5000 to Un\G44999)          | The values before the logging resumption are stored.*1 |  |

<sup>\*1</sup> After the logging resumed, values are stored starting from the head area of the logging data storage area. The values before the logging resumption are stored in CH□ Logging data (Un\G5000 to Un\G44999). To refer to the logging data, check the valid data with CH□ Number of logging data (Un\G1106 to Un\G1113).

#### (10)To check logging data without stopping logging

Logging data can be checked during the logging. When checking the logging data on a display device, the data can be checked easily by monitoring the buffer memory without stopping logging on the display device.

To check the logging data, adjust the logging cycle to prevent the logging data from being updated during read.

#### (a) Checking method

Read the logging data monitoring the storage places of the latest data and the oldest data in the following buffer memory areas.

| Buffer memory                                     | Description                                                                                            | Reference                        |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|
| CH□ Head pointer (Un\G1090 to Un\G1097)           | Check where the oldest data is stored counting from the head address in the logging data storage area. | Page 131,<br>Section 6.2<br>(43) |
| CH□ Latest pointer (Un\G1098 to Un\G1105)         | Check where the latest data is stored counting from the head address in the logging data storage area. | Page 132,<br>Section 6.2<br>(44) |
| CH□ Number of logging data (Un\G1106 to Un\G1113) | Check the number of data stored in the logging data storage area.                                      | Page 132,<br>Section 6.2<br>(45) |

#### (b) Precautions

- Set CHI Logging cycle setting value (Un\G1032 to Un\G1039) so that the data can be checked and read before the logging data are updated. If the logging cycle is short, logging data may be updated while the data are checked or read.
- After the necessary data are logged, monitor the change of the head pointer and the number of logging data, and obtain logging data after the stored value changes.
- If the update of the data and the data being checked do not synchronize due to the logging cycle and the scan time of the CPU module, adjust the logging cycle.
- To check data regardless of the logging cycle, use the logging hold.

# 4.13 Set Value Backup Function

Set values in the buffer memory can be backed up into the non-volatile memory.

The backup data are restored to the buffer memory when the power is turned off then on or when the CPU module is reset. Therefore, the Initial setting program does not need to be reset.

#### (1) Condition

Use the set value backup function in a condition where no digital conversion is performed; set Disable (1) to Conversion enable/disable setting (Un\G0) for all channels.

Check that digital conversion is disabled by confirming Converting or unused (0) is stored in Conversion completed flag (Un\G10).

If the set value backup function is used when digital conversion is in process in even one channel, the error code (115) is stored in Latest error code (Un\G19), and Error flag (XF) turns on. In this case, the set values are not backed up.

#### (2) Corresponding buffer memory data

Buffer memory areas that correspond to this function are marked with O in the list of buffer memory addresses (Page 89, Section 6.1).

#### (3) How to use

- 1. Set Disable (1) to Conversion enable/disable setting (Un\G0) for all channels.
- 2. Turn on then off Operating condition setting request (Y9).
- 3. Turn on then off Set value backup request (Y6).

For details on Set value backup request (Y6), refer to the following.

• Output signal (Page 87, Section 5.2.2)

#### (4) Precautions after executing the set value backup function

After the set value backup function was executed, the data restored to the buffer memory when the power was turned off then on or when the CPU module was reset, are overwritten if the parameter settings on GX Works2 are changed.

Do not change parameter settings on GX Works2 after executing the set value backup function.

#### 4.14 Default Setting Registration Function

Values in the buffer memory can be changed back to the default.

#### (1) Condition

Use the default setting registration function in a condition where no digital conversion is performed; set Disable (1) to Conversion enable/disable setting (Un\G0) for all channels.

Check that digital conversion is disabled by confirming Converting or unused (0) is stored in Conversion completed flag (Un\G10).

If the default setting registration function is used when digital conversion is in process in even one channel, the error code (116) is stored in Latest error code (Un\G19), and Error flag (XF) turns on. In this case, the values in the buffer memory do not change back to the default.

#### (2) Corresponding buffer memory data and default values

Buffer memory areas that correspond to this function are marked with O in the list of buffer memory addresses (Page 89, Section 6.1); the corresponding data are the same as those for the set value backup function. Also, the default values are listed in the same table.

#### (3) How to use

- 1. Set Disable (1) to Conversion enable/disable setting (Un\G0) for all channels.
- 2. Turn on then off Operating condition setting request (Y9).
- 3. Turn on then off Default setting request (Y5). (This operation reads default values to the buffer memory.)
- 4. Change values in the buffer memory if necessary.
- 5. Activate the set data by turning on then off Operating condition setting request (Y9).

For details on Default setting request (Y5), refer to the following.

• Output signal (Page 87, Section 5.2.2)

#### 4.15 Error History Function

Errors and alarms that occurred in the CT input module are stored in the buffer memory (Un\G1810 to Un\G1969) as a history.

The maximum of 16 errors and alarms can be stored.

#### (1) Process of the error history function

The error code and the error time are stored in the buffer memory area, starting from Error history No.1 (start address: Un\G1810) in order. Error time is stored as follows.

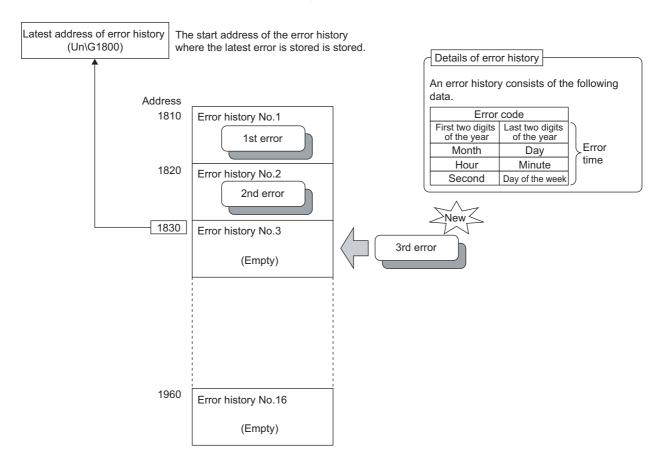
#### Ex. For error history No. 1

|          | b15 | to                                                       | b8 | b7     | to              | b0 |  |
|----------|-----|----------------------------------------------------------|----|--------|-----------------|----|--|
| Un\G1810 |     | Error code                                               |    |        |                 |    |  |
| Un\G1811 | F   | First two digits of the year Last two digits of the year |    |        |                 |    |  |
| Un\G1812 |     | Month                                                    |    | Day    |                 |    |  |
| Un\G1813 |     | Hour                                                     |    | Minute |                 |    |  |
| Un\G1814 |     | Second                                                   |    |        | Day of the week |    |  |
| Un\G1815 |     |                                                          |    |        |                 |    |  |
| :        |     | System area                                              |    |        |                 |    |  |
| Un\G1819 |     | •                                                        |    |        |                 |    |  |

| Item                                                     | Stored data                         |                                         | Example*1         |
|----------------------------------------------------------|-------------------------------------|-----------------------------------------|-------------------|
| First two digits of the year/Last two digits of the year | Stored in BCD code.                 |                                         | 2011 <sub>H</sub> |
| Month/Day                                                |                                     |                                         | 329 <sub>H</sub>  |
| Hour/Minute                                              |                                     |                                         | 1035 <sub>H</sub> |
| Second                                                   |                                     |                                         | 40 <sub>H</sub>   |
|                                                          | The value that correspond BCD code. | nds to the day of the week is stored in |                   |
| Day of the week                                          | • Sunday: 00                        | • Monday: 01                            | 02 <sub>H</sub>   |
| Day of the week                                          | Tuesday: 02                         | • Wednesday: 03                         | UZ <sub>H</sub>   |
|                                                          | Thursday: 04                        | • Friday: 05                            |                   |
|                                                          | Saturday: 06                        |                                         |                   |

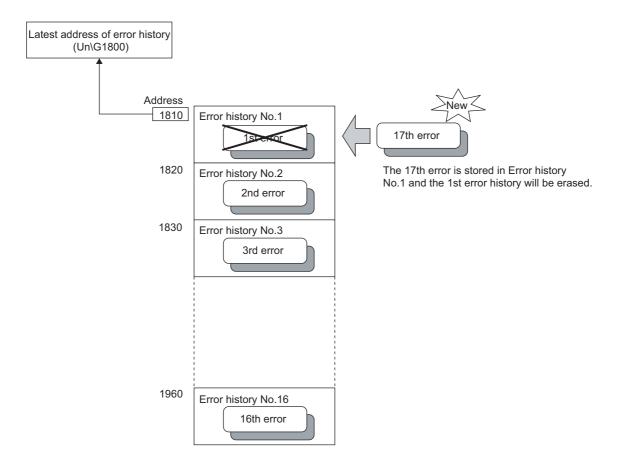
<sup>\*1</sup> This is the example of error occurrence at 10:35:40 on Tuesday, March 29th, 2011.

#### Point P


- The process for an alarm is the same as the one for an error.
- Once the error history storage is full, existing data are overwritten, starting from those in Error history No.1 (Un\G1810 to Un\G1819) in order; a new error history replaces existing one.
- The stored error history is cleared when the power is turned off or the CPU module is reset.

#### (2) Checking the error history

The start address of the latest error history can be checked in Latest address of error history (Un\G1800).


Ex. 1: When the third error occurred

The third error is stored in Error history No.3, and the value "1830" (start address of error history No.3) is stored in Latest address of error history (Un\G1800).



#### Ex. 2: When the 17th error occurred

The 17th error is stored in Error history No.1, and the value "1810" (start address of error history No.1) is stored in Latest address of error history (Un\G1800).



#### 4.16 Module Error Collection Function

Errors and alarms occurred in the CT input module can be collected into the CPU module.

The error information of the CT input module can be held in a CPU module memory as a module error history, even when the power is turned off or the CPU module is reset.





For details on the module error collection function, refer to the following.

QnUCPU Module User's Manual (Function Explanation, Program Fundamentals)

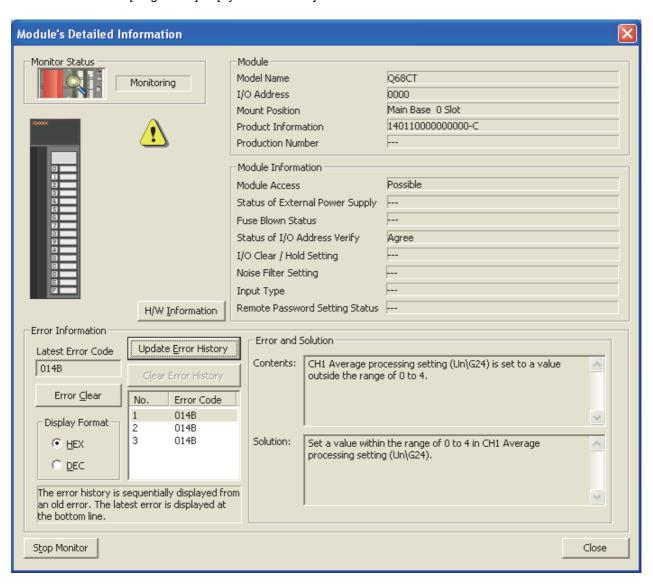
#### (1) Compatible version

The following table lists the versions of CPU modules and GX Works2 compatible with the module error collection function.

| Item       | Version                                                                           |
|------------|-----------------------------------------------------------------------------------|
| CPU module | Universal model QCPU with a serial number (first five digits) of "11043" or later |
| GX Works2  | Version 1.09K or later                                                            |

#### 4.17 Error Clear Function

When an error occurs, the error can be cleared on the system monitor.


By clicking the Error Clear button in the system monitor, the latest error code stored in Latest error code (Un\G19) is cleared, and the ERR. LED turns off. This operation is the same as the one that uses Error clear request (YF).

However, the error history cannot be cleared with the button.

For the error clearing method using Error clear request (YF), refer to the following.

• Error clear request (YF) (FP Page 88, Section 5.2.2 (7))

Compare the property of th



## 5.1 I/O Signal List

### CHAPTER 5 I/O SIGNALS ASSIGNED TO THE CPU MODULE

This chapter describes the CT input module I/O signals assigned to the CPU module.

#### 5.1 I/O Signal List

The following shows the list of the CT input module I/O signals.

The device numbers (X/Y) in the following table show the case that the start I/O number of the CT input module is set to 0.

For the details of I/O signals, refer to the following.

• Details of I/O Signals (Page 78, Section 5.2)

|               | Input signal                                     |               | Output signal                             |
|---------------|--------------------------------------------------|---------------|-------------------------------------------|
| Device number | Signal name                                      | Device number | Signal name                               |
| X0            | Module READY                                     | Y0            |                                           |
| X1            |                                                  | Y1            | 7                                         |
| X2            |                                                  | Y2            | Use prohibited                            |
| X3            | Use prohibited                                   | Y3            | 7                                         |
| X4            |                                                  | Y4            | 7                                         |
| X5            | Default setting completed flag                   | Y5            | Default setting request                   |
| X6            | Set value backup completed flag                  | Y6            | Set value backup request                  |
| X7            | Peak current detection signal                    | Y7            | Line prohibited                           |
| X8            | Warning output signal                            | Y8            | Use prohibited                            |
| X9            | Operating condition setting completed flag       | Y9            | Operating condition setting request       |
| XA            | Offset/gain setting mode flag                    | YA            | User range write request                  |
| XB            | Channel change completed flag                    | YB            | Channel change request                    |
| XC            | Input signal error detection signal              | YC            | Use prohibited                            |
| XD            | Maximum value/minimum value reset completed flag | YD            | Maximum value/minimum value reset request |
| XE            | Conversion completed flag                        | YE            | Use prohibited                            |
| XF            | Error flag                                       | YF            | Error clear request                       |

#### **5.2** Details of I/O Signals

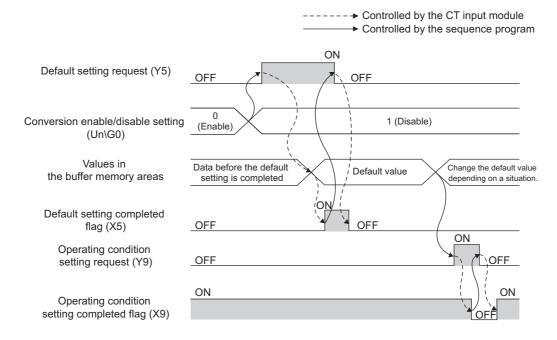
The following describes the details of the CT input module I/O signals assigned to the CPU modules.

The I/O numbers (X/Y) described below show the case that the start I/O number of the CT input module is set to 0.

#### 5.2.1 Input signal

#### (1) Module READY (X0)

Module READY (X0) turns on to indicate the preparation for the digital conversion is completed at the power-on or reset operation of the CPU module.


Module READY (X0) turns off in the following cases.

- When the offset/gain setting mode is set (The digital conversion processing is executed.)
- When a watchdog timer error occurs in the CT input module (The digital conversion processing is not executed.)

#### (2) Default setting completed flag (X5)

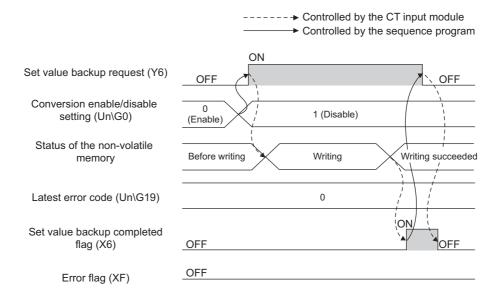
Use Default setting completed flag (X5) as an interlock condition to turn on then off Default setting request (Y5). When the buffer memory settings return to the default by turning on Default setting request (Y5), Default setting completed flag (X5) turns on. When Default setting request (Y5) is turned off, Default setting completed flag (X5) also turns off.

The buffer memory areas which return to the default value are with O in the "Set value backup area" in the List of Buffer Memory Addresses (Page 89, Section 6.1).





The setting of buffer memory areas whose default value is read becomes valid by changing the value as necessary and turning on then off Operating condition setting request (Y9).

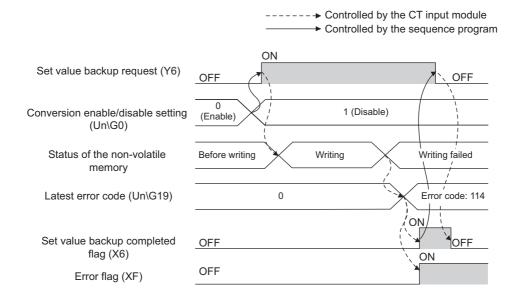

#### (3) Set value backup completed flag (X6)

Use Set value backup completed flag (X6) as an interlock condition to turn on then off Set value backup request (Y6).

The buffer memory areas whose set values are backed up are with O in "Set value backup area" in the List of Buffer Memory Addresses (Page 89, Section 6.1).

#### (a) When writing succeeded

When the set value of each buffer memory area is written to the non-volatile memory by turning on Set value backup request (Y6), Set value backup completed flag (X6) turns on. When Set value backup request (Y6) is turned off, Set value backup completed flag (X6) also turns off.




#### (b) When writing fails

When writing the set value of each buffer memory area failed by turning on Set value backup request (Y6), the error (error code: 114) occurs and the CT input module operates as follows.

- · Set value backup completed flag (X6) turns on.
- · Error flag (XF) turns on.
- · The ERR. LED turns on.

When Set value backup request (Y6) is turned off, Set value backup completed flag (X6) also turns off.

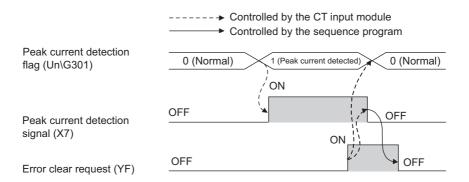


#### (4) Peak current detection signal (X7)

Peak current detection signal (X7) turns on when a peak current is detected.

A peak current is detected only when the peak current detection function is enabled.

For details on the peak current detection function, refer to the following.


• Peak Current Detection Function ( Page 44, Section 4.7)

#### (a) Turning on Peak current detection signal (X7)

When digital output values exceed the set peak current detection value consecutively for the duration of the peak current detection time set in advance, Peak current detection signal (X7) turns on. The ALM LED also flashes.

#### (b) Turning off Peak current detection signal (X7)

Peak current detection signal (X7) turns off by turning on then off Error clear request (YF). In addition, Latest error code (Un\G19) is cleared and the ALM LED turns off.

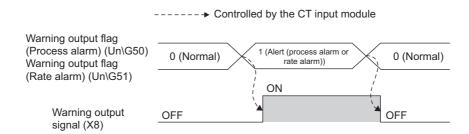


#### (5) Warning output signal (X8)

Warning output signal (X8) turns on when the process alarm or rate alarm has been detected.

The process alarm and rate alarm can be detected only when the warning output function is enabled.

For details on the warning output function, refer to the following.


Warning Output Function (Page 51, Section 4.10)

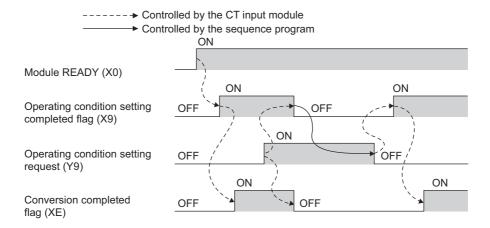
#### (a) Process alarm

- Warning output signal (X8) turns on when a digital output value exceeds the set range for CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117). The ALM LED also turns on along with the on of the signal.
- Warning output signal (X8) turns off when the digital output value falls within the setting range for all the digital conversion enabled channels. The ALM LED also turns off.

#### (b) Rate alarm

- Warning output signal (X8) turns on when a digital output value exceeds the change rate of CH1 Rate alarm upper limit value (Un\G126) to CH8 Rate alarm lower limit value (Un\G141). The ALM LED also turns on.
- Warning output function turns off when the change of the digital output value falls within the setting range for all the digital conversion enabled channels. The ALM LED also turns off.



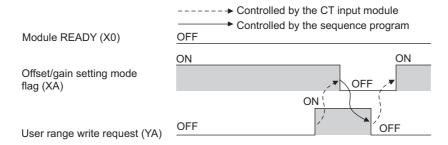

#### (6) Operating condition setting completed flag (X9)

When changing the following settings, use Operating condition setting completed flag (X9) as an interlock condition to turn on then off Operating condition setting request (Y9).

- Conversion enable/disable setting (Un\G0)
- CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)
- Averaging process setting (Un\G24, Un\G25)
- Sampling cycle setting (Un\G26)
- Input signal error detection setting (Un\G47)
- Warning output setting (Un\G48)
- Scaling enable/disable setting (Un\G53)
- CH□ Scaling lower limit value (Un\G62, Un\G64, Un\G66, Un\G68, Un\G70, Un\G72, Un\G74, Un\G76)
- CH Scaling upper limit value (Un\G63, Un\G65, Un\G67, Un\G69, Un\G71, Un\G73, Un\G75, Un\G77)
- CH□ Process alarm lower lower limit value (Un\G86, Un\G90, Un\G94, Un\G98, Un\G102, Un\G106, Un\G110, Un\G114)
- CH□ Process alarm lower upper limit value (Un\G87, Un\G91, Un\G95, Un\G99, Un\G103, Un\G107, Un\G111, Un\G115)
- CH□ Process alarm upper lower limit value (Un\G88, Un\G92, Un\G96, Un\G100, Un\G104, Un\G108, Un\G112, Un\G116)
- CH□ Process alarm upper upper limit value (Un\G89, Un\G93, Un\G97, Un\G101, Un\G105, Un\G109, Un\G113, Un\G117)
- CH□ Rate alarm warning detection period (Un\G118 to Un\G125)
- CH□ Rate alarm upper limit value (Un\G126, Un\G128, Un\G130, Un\G132, Un\G134, Un\G136, Un\G138, Un\G140)
- CH□ Rate alarm lower limit value (Un\G127, Un\G129, Un\G131, Un\G133, Un\G135, Un\G137, Un\G139, Un\G141)
- CH□ Input range setting (Un\G150 to Un\G157)
- Mode switching setting (Un\G158, Un\G159)
- Dropout detection setting (Un\G160)
- CH□ Dropout value (Un\G162 to Un\G169)
- Peak current detection setting (Un\G300)
- CH□ Peak current detection time (Un\G318 to Un\G325)
- CH□ Peak current detection value (Un\G326 to Un\G333)
- CH□ Logging enable/disable setting (Un\G1000 to Un\G1007)
- CH□ Logging data setting (Un\G1024 to Un\G1031)
- CH□ Logging cycle setting value (Un\G1032 to Un\G1039)
- CH□ Logging cycle unit setting (Un\G1040 to Un\G1047)
- CH□ Logging points after trigger (Un\G1048 to Un\G1055)
- CH□ Level trigger condition setting (Un\G1056 to Un\G1063)
- CH□ Trigger data (Un\G1064 to Un\G1071)
- CH□ Trigger setting value (Un\G1082 to Un\G1089)

When Operating condition setting completed flag (X9) is off, the digital conversion processing is not executed. Operating condition setting completed flag (X9) turns off in the following status.

• When Operating condition setting request (Y9) is on

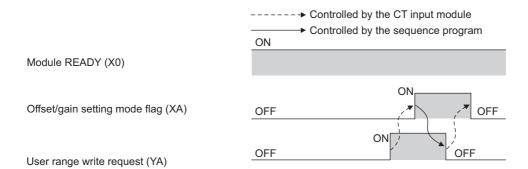



#### (7) Offset/gain setting mode flag (XA)

#### (a) Offset/gain setting mode

When registering the value which was adjusted with the offset/gain setting to the module, use Offset/gain setting mode flag (XA) as an interlock condition to turn on then off User range write request (YA). For the offset/gain setting, refer to the following.

• Offset/gain Setting (Page 148, Section 8.5)




#### (b) Normal mode

At the user range setting restoration, use Offset/gain setting mode flag (XA) as an interlock condition to turn on then off User range write request (YA).

For the user range setting restoration, refer to the following.


• ONLINE MODULE CHANGE ( Page 180, CHAPTER 10)



#### (8) Channel change completed flag (XB)

When changing a channel to perform the offset/gain setting, use Channel change completed flag (XB) as an interlock condition to turn on then off Channel change request (YB). For the offset/gain setting, refer to the following.

• Offset/gain Setting (Page 148, Section 8.5)



#### (9) Input signal error detection signal (XC)

Input signal error detection signal (XC) turns on when an input signal error is detected.

An input signal error is detected only when the input signal error detection function is enabled.

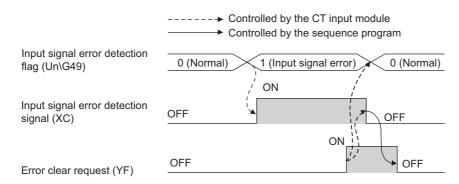
For details on the input signal error detection function, refer to the following.

• Input Signal Error Detection Function ( Page 42, Section 4.6)

#### (a) Turning on Input signal error detection signal (XC)

Input signal error detection signal (XC) turns on when the CT input value exceeds the input range.

The CT input module results in the following states:


- Converting or unused (0) is stored in Conversion completed flag (Un\G10) in the corresponding channel.
- For the error detected channel, the digital output value just before the error detection is held in the buffer memory.
- · ALM LED flashes.

#### (b) Turning off Input signal error detection signal (XC)

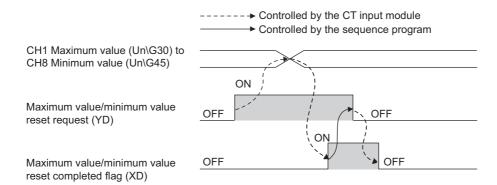
When the CT input value falls within the input range, turn on then off Error clear request (YF) to turn off Input signal error detection signal (XC).

The CT input module results in the following states:

- · ALM LED turns off.
- · Latest error code (Un\G19) is cleared.





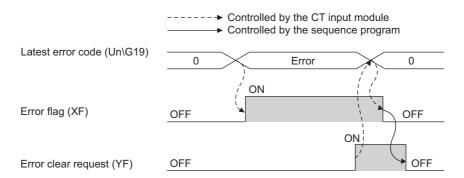

When the CT input value falls within the input range, the digital conversion resumes regardless of the status of Input signal error detection flag (Un\G49) and Input signal error detection signal (XC). After the first update of the digital output value, Conversion completed (1) is stored in Conversion completed flag (Un\G10) in the corresponding channel. (ALM LED remains flashing.)

Averaging processing starts over after the digital conversion resumed.

#### (10)Maximum value/minimum value reset completed flag (XD)

Maximum value/minimum value reset completed flag (XD) turns on after the maximum or minimum values stored in the following buffer memory areas by turning on then off Maximum value/minimum value reset request (YD).

- CH
   — Maximum value (Un\G30, Un\G32, Un\G34, Un\G36, Un\G38, Un\G40, Un\G42, Un\G44)
- CH Minimum value (Un\G31, Un\G33, Un\G35, Un\G37, Un\G39, Un\G41, Un\G43, Un\G45)




#### (11)Conversion completed flag (XE)

Conversion completed flag (XE) turns on when the first digital conversion is completed in all conversion enabled channels.

#### (12)Error flag (XF)

Error flag (XF) turns on when an error occurs.



#### (a) Clearing the latest error code and Error flag (XF)

Turn on then off Error clear request (YF).

## 5.2 Details of I/O Signals5.2.2 Output signal

#### **5.2.2** Output signal

#### (1) Default setting request (Y5)

Turn on then off Default setting request (Y5) to return the present set value of buffer memory areas to the default value.

For the buffer memory areas which return to the default value, refer to the following.

• List of Buffer Memory Addresses ( Page 89, Section 6.1)

For the timing of turning on then off the signal, refer to the following.

• Default setting completed flag (X5) (FP Page 78, Section 5.2.1 (2))

When turning off then on Default setting request (Y5), set Disable (1) to the setting values of Conversion enable/disable setting (Un\G0) in all the channels and confirm that the digital conversion of the CT input module stops in all channels.

At stopping the digital conversion, confirm if Converting or unused (0) is stored in Conversion completed flag (Un\G10).

If Default setting request (Y5) is turned off then on for any of the channels while the digital conversion is performed, the error code (116) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The present set values of the buffer memory areas do not return to the default value.

#### (2) Set value backup request (Y6)

Turn on then off Set value backup request (Y6) to backup the present set value of the buffer memory areas to the non-volatile memory.

For the buffer memory areas in which the set value is backed up, refer to the following.

List of Buffer Memory Addresses (Fig. Page 89, Section 6.1)

For the timing of turning on then off the signal, refer to the following.

• Set value backup completed flag (X6) (Page 79, Section 5.2.1 (3))

When turning off then on Set value backup request (Y6), set Disable (1) to the setting values of Conversion enable/disable setting (Un\G0) in all the channels and confirm that the digital conversion of the CT input module stops in all channels.

At stopping the digital conversion, confirm if Converting or unused (0) is stored in Conversion completed flag (Un\G10).

If Set value backup request (Y6) is turned off then on for any of the channels while the digital conversion is performed, the error code (115) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The set value is not backed up.

#### (3) Operating condition setting request (Y9)

To enable the initial settings of the CT input module, turn on then off Operating condition setting request (Y9).

For the contents of the initial settings to be enabled and the timing of turning on then off the signal, refer to the following.

• Operating condition setting completed flag (X9) (FP Page 82, Section 5.2.1 (6))

#### (4) User range write request (YA)

#### (a) Offset/gain setting mode

Turn on then off User range write request (YA) to register the adjusted offset/gain values in the CT input module.

The data is written to the non-volatile memory at the timing when this signal is turned off then on.

For the timing of turning on then off the signal, refer to the following.

• Offset/gain setting mode flag (XA) ( Page 83, Section 5.2.1 (7))

#### (b) Normal mode

Turn on then off User range write request (YA) to perform the user range restoration.

For the timing of turning on then off the signal, refer to the following.

• Offset/gain setting mode flag (XA) ( Page 83, Section 5.2.1 (7))

#### (5) Channel change request (YB)

Turn on then off Channel change request (YB) to change a channel for which the offset/gain setting is set. For the timing of turning on then off the signal, refer to the following.

• Channel change completed flag (XB) (FP Page 84, Section 5.2.1 (8))

#### (6) Maximum value/minimum value reset request (YD)

Turn on then off Maximum value/minimum value reset request (YD) to clear the values of the following buffer memory areas.

- CH□ Maximum value (Un\G30, Un\G32, Un\G34, Un\G36, Un\G38, Un\G40, Un\G42, Un\G44)
- CH□ Minimum value (Un\G31, Un\G33, Un\G35, Un\G37, Un\G39, Un\G41, Un\G43, Un\G45)

For the timing of turning on then off the signal, refer to the following.

• Maximum value/minimum value reset completed flag (XD) (FP Page 86, Section 5.2.1 (10))

#### (7) Error clear request (YF)

To clear the following contents, turn on then off Error clear request (YF).

- Peak current detection signal (X7)
- Input signal error detection signal (XC)
- Error flag (XF)
- · Latest error code (Un\G19)

For the timing to clear the contents, refer to the following.

- Peak current detection signal (X7) (Page 80, Section 5.2.1 (4))
- Input signal error detection signal (XC) ( Page 85, Section 5.2.1 (9))
- Error flag (XF) ( Page 86, Section 5.2.1 (12))
- Latest error code (Un\G19) (Page 86, Section 5.2.1 (12))

# 6.1 List of Buffer Memory Addresses

#### CHAPTER 6 BUFFER MEMORY

This chapter describes the buffer memory of the CT input module.

#### **6.1** List of Buffer Memory Addresses

The following shows the list of the CT input module buffer memory addresses.

For details of buffer memory addresses, refer to the following.

• Details of Buffer Memory Addresses (Page 104, Section 6.2)



Do not write data to the system area and the area where the data cannot be written from the sequence program in the buffer memory.

Writing data to those areas may lead the module to malfunction.

#### (1) Un\G0 to Un\G1799

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                                                                           | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area<br>*3 |
|----------------------|--------------------------|--------------------------------------------------------------------------------|--------------------------------|------------|--------------------------------|
| 0                    | 0 <sub>H</sub>           | Conversion enable/disable setting                                              | 00FF <sub>H</sub>              | R/W        | _                              |
| 1                    | 1 <sub>H</sub>           | CH1 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 2                    | 2 <sub>H</sub>           | CH2 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 3                    | 3 <sub>H</sub>           | CH3 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 4                    | 4 <sub>H</sub>           | CH4 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 5                    | 5 <sub>H</sub>           | CH5 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 6                    | 6 <sub>H</sub>           | CH6 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 7                    | 7 <sub>H</sub>           | CH7 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 8                    | 8 <sub>H</sub>           | CH8 Average time/Average number of times/Moving average/Time constant settings | 0                              | R/W        | 0                              |
| 9                    | 9 <sub>H</sub>           | System area                                                                    | _                              | _          | _                              |
| 10                   | A <sub>H</sub>           | Conversion completed flag                                                      | 0000 <sub>H</sub>              | R          | _                              |
| 11                   | B <sub>H</sub>           | CH1 Digital output value                                                       | 0                              | R          | _                              |
| 12                   | C <sub>H</sub>           | CH2 Digital output value                                                       | 0                              | R          | _                              |
| 13                   | D <sub>H</sub>           | CH3 Digital output value                                                       | 0                              | R          | _                              |
| 14                   | E <sub>H</sub>           | CH4 Digital output value                                                       | 0                              | R          | _                              |
| 15                   | F <sub>H</sub>           | CH5 Digital output value                                                       | 0                              | R          | _                              |
| 16                   | 10 <sub>H</sub>          | CH6 Digital output value                                                       | 0                              | R          | _                              |
| 17                   | 11 <sub>H</sub>          | CH7 Digital output value                                                       | 0                              | R          | _                              |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                                          | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area |
|----------------------|--------------------------|-----------------------------------------------|--------------------------------|------------|--------------------------|
| 18                   | 12 <sub>H</sub>          | CH8 Digital output value                      | 0                              | R          | _                        |
| 19                   | 13 <sub>H</sub>          | Latest error code                             | 0                              | R          | _                        |
| 20                   | 14 <sub>H</sub>          | Custom and                                    |                                |            |                          |
| 21                   | 15 <sub>H</sub>          | System area                                   | _                              | _          | _                        |
| 22                   | 16 <sub>H</sub>          | Offset/gain setting mode Offset specification | 0000 <sub>H</sub>              | R/W        | _                        |
| 23                   | 17 <sub>H</sub>          | Offset/gain setting mode Gain specification   | 0000 <sub>H</sub>              | R/W        | _                        |
| 24                   | 18 <sub>H</sub>          | Averaging process setting (CH1 to CH4)        | 0000 <sub>H</sub>              | R/W        | 0                        |
| 25                   | 19 <sub>H</sub>          | Averaging process setting (CH5 to CH8)        | 0000 <sub>H</sub>              | R/W        | 0                        |
| 26                   | 1A <sub>H</sub>          | Sampling cycle setting                        | 0000 <sub>H</sub>              | R/W        | 0                        |
| 27                   | 1B <sub>H</sub>          |                                               |                                |            |                          |
| to                   | to                       | System area                                   | _                              | _          | _                        |
| 29                   | 1D <sub>H</sub>          |                                               |                                |            |                          |
| 30                   | 1E <sub>H</sub>          | CH1 Maximum value                             | 0                              | R          | _                        |
| 31                   | 1F <sub>H</sub>          | CH1 Minimum value                             | 0                              | R          | _                        |
| 32                   | 20 <sub>H</sub>          | CH2 Maximum value                             | 0                              | R          | _                        |
| 33                   | 21 <sub>H</sub>          | CH2 Minimum value                             | 0                              | R          | _                        |
| 34                   | 22 <sub>H</sub>          | CH3 Maximum value                             | 0                              | R          | _                        |
| 35                   | 23 <sub>H</sub>          | CH3 Minimum value                             | 0                              | R          | _                        |
| 36                   | 24 <sub>H</sub>          | CH4 Maximum value                             | 0                              | R          | _                        |
| 37                   | 25 <sub>H</sub>          | CH4 Minimum value                             | 0                              | R          | _                        |
| 38                   | 26 <sub>H</sub>          | CH5 Maximum value                             | 0                              | R          | _                        |
| 39                   | 27 <sub>H</sub>          | CH5 Minimum value                             | 0                              | R          | _                        |
| 40                   | 28 <sub>H</sub>          | CH6 Maximum value                             | 0                              | R          | _                        |
| 41                   | 29 <sub>H</sub>          | CH6 Minimum value                             | 0                              | R          | _                        |
| 42                   | 2A <sub>H</sub>          | CH7 Maximum value                             | 0                              | R          | _                        |
| 43                   | 2B <sub>H</sub>          | CH7 Minimum value                             | 0                              | R          | _                        |
| 44                   | 2C <sub>H</sub>          | CH8 Maximum value                             | 0                              | R          | _                        |
| 45                   | 2D <sub>H</sub>          | CH8 Minimum value                             | 0                              | R          | _                        |
| 46                   | 2E <sub>H</sub>          | System area                                   | _                              | _          | _                        |
| 47                   | 2F <sub>H</sub>          | Input signal error detection setting          | 00FF <sub>H</sub>              | R/W        | 0                        |
| 48                   | 30 <sub>H</sub>          | Warning output setting                        | FFFF <sub>H</sub>              | R/W        | 0                        |
| 49                   | 31 <sub>H</sub>          | Input signal error detection flag             | 0000 <sub>H</sub>              | R          | _                        |
| 50                   | 32 <sub>H</sub>          | Warning output flag (Process alarm)           | 0000 <sub>H</sub>              | R          | _                        |
| 51                   | 33 <sub>H</sub>          | Warning output flag (Rate alarm)              | 0000 <sub>H</sub>              | R          | _                        |
| 52                   | 34 <sub>H</sub>          | System area                                   | _                              | _          | _                        |
| 53                   | 35 <sub>H</sub>          | Scaling enable/disable setting                | 00FF <sub>H</sub>              | R/W        | 0                        |
| 54                   | 36 <sub>H</sub>          | CH1 Scaling value                             | 0                              | R          | _                        |
| 55                   | 37 <sub>H</sub>          | CH2 Scaling value                             | 0                              | R          | _                        |
| 56                   | 38 <sub>H</sub>          | CH3 Scaling value                             | 0                              | R          | _                        |
| 57                   | 39 <sub>H</sub>          | CH4 Scaling value                             | 0                              | R          | _                        |
| 58                   | 3A <sub>H</sub>          | CH5 Scaling value                             | 0                              | R          | _                        |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                                      | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area |
|----------------------|--------------------------|-------------------------------------------|--------------------------------|------------|--------------------------|
| 59                   | 3B <sub>H</sub>          | CH6 Scaling value                         | 0                              | R          | _                        |
| 60                   | 3C <sub>H</sub>          | CH7 Scaling value                         | 0                              | R          | _                        |
| 61                   | 3D <sub>H</sub>          | CH8 Scaling value                         | 0                              | R          | _                        |
| 62                   | 3E <sub>H</sub>          | CH1 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 63                   | 3F <sub>H</sub>          | CH1 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 64                   | 40 <sub>H</sub>          | CH2 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 65                   | 41 <sub>H</sub>          | CH2 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 66                   | 42 <sub>H</sub>          | CH3 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 67                   | 43 <sub>H</sub>          | CH3 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 68                   | 44 <sub>H</sub>          | CH4 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 69                   | 45 <sub>H</sub>          | CH4 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 70                   | 46 <sub>H</sub>          | CH5 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 71                   | 47 <sub>H</sub>          | CH5 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 72                   | 48 <sub>H</sub>          | CH6 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 73                   | 49 <sub>H</sub>          | CH6 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 74                   | 4A <sub>H</sub>          | CH7 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 75                   | 4B <sub>H</sub>          | CH7 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 76                   | 4C <sub>H</sub>          | CH8 Scaling lower limit value             | 0                              | R/W        | 0                        |
| 77                   | 4D <sub>H</sub>          | CH8 Scaling upper limit value             | 0                              | R/W        | 0                        |
| 78                   | 4E <sub>H</sub>          |                                           |                                |            |                          |
| to                   | to                       | System area                               | _                              | _          | _                        |
| 85                   | 55 <sub>H</sub>          |                                           |                                |            |                          |
| 86                   | 56 <sub>H</sub>          | CH1 Process alarm lower lower limit value | 0                              | R/W        | 0                        |
| 87                   | 57 <sub>H</sub>          | CH1 Process alarm lower upper limit value | 0                              | R/W        | 0                        |
| 88                   | 58 <sub>H</sub>          | CH1 Process alarm upper lower limit value | 0                              | R/W        | 0                        |
| 89                   | 59 <sub>H</sub>          | CH1 Process alarm upper upper limit value | 0                              | R/W        | 0                        |
| 90                   | 5A <sub>H</sub>          | CH2 Process alarm lower lower limit value | 0                              | R/W        | 0                        |
| 91                   | 5B <sub>H</sub>          | CH2 Process alarm lower upper limit value | 0                              | R/W        | 0                        |
| 92                   | 5C <sub>H</sub>          | CH2 Process alarm upper lower limit value | 0                              | R/W        | 0                        |
| 93                   | 5D <sub>H</sub>          | CH2 Process alarm upper upper limit value | 0                              | R/W        | 0                        |
| 94                   | 5E <sub>H</sub>          | CH3 Process alarm lower lower limit value | 0                              | R/W        | 0                        |
| 95                   | 5F <sub>H</sub>          | CH3 Process alarm lower upper limit value | 0                              | R/W        | 0                        |
| 96                   | 60 <sub>H</sub>          | CH3 Process alarm upper lower limit value | 0                              | R/W        | 0                        |
| 97                   | 61 <sub>H</sub>          | CH3 Process alarm upper upper limit value | 0                              | R/W        | 0                        |
| 98                   | 62 <sub>H</sub>          | CH4 Process alarm lower lower limit value | 0                              | R/W        | 0                        |
| 99                   | 63 <sub>H</sub>          | CH4 Process alarm lower upper limit value | 0                              | R/W        | 0                        |
| 100                  | 64 <sub>H</sub>          | CH4 Process alarm upper lower limit value | 0                              | R/W        | 0                        |
| 101                  | 65 <sub>H</sub>          | CH4 Process alarm upper upper limit value | 0                              | R/W        | 0                        |
| 102                  | 66 <sub>H</sub>          | CH5 Process alarm lower lower limit value | 0                              | R/W        | 0                        |
| 103                  | 67 <sub>H</sub>          | CH5 Process alarm lower upper limit value | 0                              | R/W        | 0                        |
| 104                  | 68 <sub>H</sub>          | CH5 Process alarm upper lower limit value | 0                              | R/W        | 0                        |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                                      | Default value*1   | Read/Write | Set value<br>backup area |
|----------------------|--------------------------|-------------------------------------------|-------------------|------------|--------------------------|
| 105                  | 69 <sub>H</sub>          | CH5 Process alarm upper upper limit value | 0                 | R/W        | 0                        |
| 106                  | 6A <sub>H</sub>          | CH6 Process alarm lower lower limit value | 0                 | R/W        | 0                        |
| 107                  | 6B <sub>H</sub>          | CH6 Process alarm lower upper limit value | 0                 | R/W        | 0                        |
| 108                  | 6C <sub>H</sub>          | CH6 Process alarm upper lower limit value | 0                 | R/W        | 0                        |
| 109                  | 6D <sub>H</sub>          | CH6 Process alarm upper upper limit value | 0                 | R/W        | 0                        |
| 110                  | 6E <sub>H</sub>          | CH7 Process alarm lower lower limit value | 0                 | R/W        | 0                        |
| 111                  | 6F <sub>H</sub>          | CH7 Process alarm lower upper limit value | 0                 | R/W        | 0                        |
| 112                  | 70 <sub>H</sub>          | CH7 Process alarm upper lower limit value | 0                 | R/W        | 0                        |
| 113                  | 71 <sub>H</sub>          | CH7 Process alarm upper upper limit value | 0                 | R/W        | 0                        |
| 114                  | 72 <sub>H</sub>          | CH8 Process alarm lower lower limit value | 0                 | R/W        | 0                        |
| 115                  | 73 <sub>H</sub>          | CH8 Process alarm lower upper limit value | 0                 | R/W        | 0                        |
| 116                  | 74 <sub>H</sub>          | CH8 Process alarm upper lower limit value | 0                 | R/W        | 0                        |
| 117                  | 75 <sub>H</sub>          | CH8 Process alarm upper upper limit value | 0                 | R/W        | 0                        |
| 118                  | 76 <sub>H</sub>          | CH1 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 119                  | 77 <sub>H</sub>          | CH2 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 120                  | 78 <sub>H</sub>          | CH3 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 121                  | 79 <sub>H</sub>          | CH4 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 122                  | 7A <sub>H</sub>          | CH5 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 123                  | 7B <sub>H</sub>          | CH6 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 124                  | 7C <sub>H</sub>          | CH7 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 125                  | 7D <sub>H</sub>          | CH8 Rate alarm warning detection period   | 0                 | R/W        | 0                        |
| 126                  | 7E <sub>H</sub>          | CH1 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 127                  | 7F <sub>H</sub>          | CH1 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 128                  | 80 <sub>H</sub>          | CH2 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 129                  | 81 <sub>H</sub>          | CH2 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 130                  | 82 <sub>H</sub>          | CH3 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 131                  | 83 <sub>H</sub>          | CH3 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 132                  | 84 <sub>H</sub>          | CH4 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 133                  | 85 <sub>H</sub>          | CH4 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 134                  | 86 <sub>H</sub>          | CH5 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 135                  | 87 <sub>H</sub>          | CH5 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 136                  | 88 <sub>H</sub>          | CH6 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 137                  | 89 <sub>H</sub>          | CH6 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 138                  | 8A <sub>H</sub>          | CH7 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 139                  | 8B <sub>H</sub>          | CH7 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 140                  | 8C <sub>H</sub>          | CH8 Rate alarm upper limit value          | 0                 | R/W        | 0                        |
| 141                  | 8D <sub>H</sub>          | CH8 Rate alarm lower limit value          | 0                 | R/W        | 0                        |
| 142                  | 8E <sub>H</sub>          |                                           |                   |            |                          |
| to                   | to                       | System area                               | _                 | _          | _                        |
| 149                  | 95 <sub>H</sub>          |                                           |                   |            |                          |
| 150                  | 96 <sub>H</sub>          | CH1 Input range setting                   | 0000 <sub>H</sub> | R/W        | 0                        |

| Address   | Address         | Name                                     | Default           | Read/Write | Set value backup area |
|-----------|-----------------|------------------------------------------|-------------------|------------|-----------------------|
| (decimal) | (hexadecimal)   | Name                                     | value*1           | *2         | *3                    |
| 151       | 97 <sub>H</sub> | CH2 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 152       | 98 <sub>H</sub> | CH3 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 153       | 99 <sub>H</sub> | CH4 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 154       | 9A <sub>H</sub> | CH5 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 155       | 9B <sub>H</sub> | CH6 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 156       | 9C <sub>H</sub> | CH7 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 157       | 9D <sub>H</sub> | CH8 Input range setting                  | 0000 <sub>H</sub> | R/W        | 0                     |
| 158       | 9E <sub>H</sub> |                                          |                   | 5.11       |                       |
| 159       | 9F <sub>H</sub> | Mode switching setting                   | 0                 | R/W        |                       |
| 160       | A0 <sub>H</sub> | Dropout detection setting                | 00FF <sub>H</sub> | R/W        | 0                     |
| 161       | A1 <sub>H</sub> | Dropout status flag                      | 0000 <sub>H</sub> | R          | _                     |
| 162       | A2 <sub>H</sub> | CH1 Dropout value                        | 50                | R/W        | 0                     |
| 163       | A3 <sub>H</sub> | CH2 Dropout value                        | 50                | R/W        | 0                     |
| 164       | A4 <sub>H</sub> | CH3 Dropout value                        | 50                | R/W        | 0                     |
| 165       | A5 <sub>H</sub> | CH4 Dropout value                        | 50                | R/W        | 0                     |
| 166       | A6 <sub>H</sub> | CH5 Dropout value                        | 50                | R/W        | 0                     |
| 167       | A7 <sub>H</sub> | CH6 Dropout value                        | 50                | R/W        | 0                     |
| 168       | A8 <sub>H</sub> | CH7 Dropout value                        | 50                | R/W        | 0                     |
| 169       | A9 <sub>H</sub> | CH8 Dropout value                        | 50                | R/W        | 0                     |
| 170       | AA <sub>H</sub> |                                          |                   |            |                       |
| to        | to              | System area                              | _                 | _          | _                     |
| 201       | C9 <sub>H</sub> |                                          |                   |            |                       |
| 202       | CA <sub>H</sub> | CH1 Factory default setting offset value | 0                 | R/W        | _                     |
| 203       | CB <sub>H</sub> | CH1 Factory default setting gain value   | 0                 | R/W        | _                     |
| 204       | CCH             | CH2 Factory default setting offset value | 0                 | R/W        | _                     |
| 205       | CD <sub>H</sub> | CH2 Factory default setting gain value   | 0                 | R/W        | _                     |
| 206       | CE <sub>H</sub> | CH3 Factory default setting offset value | 0                 | R/W        | _                     |
| 207       | CF <sub>H</sub> | CH3 Factory default setting gain value   | 0                 | R/W        | _                     |
| 208       | D0 <sub>H</sub> | CH4 Factory default setting offset value | 0                 | R/W        | _                     |
| 209       | D1 <sub>H</sub> | CH4 Factory default setting gain value   | 0                 | R/W        | _                     |
| 210       | D2 <sub>H</sub> | CH5 Factory default setting offset value | 0                 | R/W        | _                     |
| 211       | D3 <sub>H</sub> | CH5 Factory default setting gain value   | 0                 | R/W        | _                     |
| 212       | D4 <sub>H</sub> | CH6 Factory default setting offset value | 0                 | R/W        | _                     |
| 213       | D5 <sub>H</sub> | CH6 Factory default setting gain value   | 0                 | R/W        | _                     |
| 214       | D6 <sub>H</sub> | CH7 Factory default setting offset value | 0                 | R/W        | _                     |
| 215       | D7 <sub>H</sub> | CH7 Factory default setting gain value   | 0                 | R/W        | _                     |
| 216       | D8 <sub>H</sub> | CH8 Factory default setting offset value | 0                 | R/W        | _                     |
| 217       | D9 <sub>H</sub> | CH8 Factory default setting gain value   | 0                 | R/W        | _                     |
| 218       | DA <sub>H</sub> | CH1 User range setting offset value      | 0                 | R/W        | _                     |
| 219       | DB <sub>H</sub> | CH1 User range setting gain value        | 0                 | R/W        | _                     |
| 220       | DC <sub>H</sub> | CH2 User range setting offset value      | 0                 | R/W        | _                     |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                                            | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area |
|----------------------|--------------------------|-------------------------------------------------|--------------------------------|------------|--------------------------|
| 221                  | DD <sub>H</sub>          | CH2 User range setting gain value               | 0                              | R/W        | _                        |
| 222                  | DE <sub>H</sub>          | CH3 User range setting offset value             | 0                              | R/W        | _                        |
| 223                  | DF <sub>H</sub>          | CH3 User range setting gain value               | 0                              | R/W        | _                        |
| 224                  | E0 <sub>H</sub>          | CH4 User range setting offset value             | 0                              | R/W        | _                        |
| 225                  | E1 <sub>H</sub>          | CH4 User range setting gain value               | 0                              | R/W        | _                        |
| 226                  | E2 <sub>H</sub>          | CH5 User range setting offset value             | 0                              | R/W        | _                        |
| 227                  | E3 <sub>H</sub>          | CH5 User range setting gain value               | 0                              | R/W        | _                        |
| 228                  | E4 <sub>H</sub>          | CH6 User range setting offset value             | 0                              | R/W        | _                        |
| 229                  | E5 <sub>H</sub>          | CH6 User range setting gain value               | 0                              | R/W        | _                        |
| 230                  | E6 <sub>H</sub>          | CH7 User range setting offset value             | 0                              | R/W        | _                        |
| 231                  | E7 <sub>H</sub>          | CH7 User range setting gain value               | 0                              | R/W        | _                        |
| 232                  | E8 <sub>H</sub>          | CH8 User range setting offset value             | 0                              | R/W        | _                        |
| 233                  | E9 <sub>H</sub>          | CH8 User range setting gain value               | 0                              | R/W        | _                        |
| 234                  | EA <sub>H</sub>          |                                                 |                                |            |                          |
| to                   | to                       | System area                                     | _                              | _          | _                        |
| 299                  | 12B <sub>H</sub>         |                                                 |                                |            |                          |
| 300                  | 12C <sub>H</sub>         | Peak current detection setting                  | 00FF <sub>H</sub>              | R/W        | 0                        |
| 301                  | 12D <sub>H</sub>         | Peak current detection flag                     | 0000 <sub>H</sub>              | R          | _                        |
| 302                  | 12E <sub>H</sub>         | CH1 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 303                  | 12F <sub>H</sub>         | CH2 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 304                  | 130 <sub>H</sub>         | CH3 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 305                  | 131 <sub>H</sub>         | CH4 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 306                  | 132 <sub>H</sub>         | CH5 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 307                  | 133 <sub>H</sub>         | CH6 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 308                  | 134 <sub>H</sub>         | CH7 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 309                  | 135 <sub>H</sub>         | CH8 Peak current detection count reset request  | 0                              | R/W        | _                        |
| 310                  | 136 <sub>H</sub>         | CH1 Peak current detection count reset complete | 0                              | R          | _                        |
| 311                  | 137 <sub>H</sub>         | CH2 Peak current detection count reset complete | 0                              | R          | _                        |
| 312                  | 138 <sub>H</sub>         | CH3 Peak current detection count reset complete | 0                              | R          | _                        |
| 313                  | 139 <sub>H</sub>         | CH4 Peak current detection count reset complete | 0                              | R          | _                        |
| 314                  | 13A <sub>H</sub>         | CH5 Peak current detection count reset complete | 0                              | R          | _                        |
| 315                  | 13B <sub>H</sub>         | CH6 Peak current detection count reset complete | 0                              | R          | _                        |
| 316                  | 13C <sub>H</sub>         | CH7 Peak current detection count reset complete | 0                              | R          | _                        |
| 317                  | 13D <sub>H</sub>         | CH8 Peak current detection count reset complete | 0                              | R          | _                        |
| 318                  | 13E <sub>H</sub>         | CH1 Peak current detection time                 | 1000                           | R/W        | 0                        |
| 319                  | 13F <sub>H</sub>         | CH2 Peak current detection time                 | 1000                           | R/W        | 0                        |
| 320                  | 140 <sub>H</sub>         | CH3 Peak current detection time                 | 1000                           | R/W        | 0                        |
| 321                  | 141 <sub>H</sub>         | CH4 Peak current detection time                 | 1000                           | R/W        | 0                        |
| 322                  | 142 <sub>H</sub>         | CH5 Peak current detection time                 | 1000                           | R/W        | 0                        |
| 323                  | 143 <sub>H</sub>         | CH6 Peak current detection time                 | 1000                           | R/W        | 0                        |
| 324                  | 144 <sub>H</sub>         | CH7 Peak current detection time                 | 1000                           | R/W        | 0                        |

| Address   | Address          | Nome                               | Default             | Read/Write | Set value   |
|-----------|------------------|------------------------------------|---------------------|------------|-------------|
| (decimal) | (hexadecimal)    | Name                               | value <sup>*1</sup> | *2         | backup area |
| 325       | 145 <sub>H</sub> | CH8 Peak current detection time    | 1000                | R/W        | 0           |
| 326       | 146 <sub>H</sub> | CH1 Peak current detection value   | 0                   | R/W        | 0           |
| 327       | 147 <sub>H</sub> | CH2 Peak current detection value   | 0                   | R/W        | 0           |
| 328       | 148 <sub>H</sub> | CH3 Peak current detection value   | 0                   | R/W        | 0           |
| 329       | 149 <sub>H</sub> | CH4 Peak current detection value   | 0                   | R/W        | 0           |
| 330       | 14A <sub>H</sub> | CH5 Peak current detection value   | 0                   | R/W        | 0           |
| 331       | 14B <sub>H</sub> | CH6 Peak current detection value   | 0                   | R/W        | 0           |
| 332       | 14C <sub>H</sub> | CH7 Peak current detection value   | 0                   | R/W        | 0           |
| 333       | 14D <sub>H</sub> | CH8 Peak current detection value   | 0                   | R/W        | 0           |
| 334       | 14E <sub>H</sub> | CH1 Peak current detection count   | 0                   | R          | _           |
| 335       | 14F <sub>H</sub> | CH2 Peak current detection count   | 0                   | R          | _           |
| 336       | 150 <sub>H</sub> | CH3 Peak current detection count   | 0                   | R          | _           |
| 337       | 151 <sub>H</sub> | CH4 Peak current detection count   | 0                   | R          | _           |
| 338       | 152 <sub>H</sub> | CH5 Peak current detection count   | 0                   | R          | _           |
| 339       | 153 <sub>H</sub> | CH6 Peak current detection count   | 0                   | R          | _           |
| 340       | 154 <sub>H</sub> | CH7 Peak current detection count   | 0                   | R          | _           |
| 341       | 155 <sub>H</sub> | CH8 Peak current detection count   | 0                   | R          | _           |
| 342       | 156 <sub>H</sub> |                                    |                     |            |             |
| to        | to               | System area                        | _                   | _          | _           |
| 999       | 3E7 <sub>H</sub> |                                    |                     |            |             |
| 1000      | 3E8 <sub>H</sub> | CH1 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1001      | 3E9 <sub>H</sub> | CH2 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1002      | 3EA <sub>H</sub> | CH3 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1003      | 3EB <sub>H</sub> | CH4 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1004      | 3EC <sub>H</sub> | CH5 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1005      | 3ED <sub>H</sub> | CH6 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1006      | 3EE <sub>H</sub> | CH7 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1007      | 3EF <sub>H</sub> | CH8 Logging enable/disable setting | 1                   | R/W        | 0           |
| 1008      | 3F0 <sub>H</sub> | CH1 Logging hold request           | 0                   | R/W        | _           |
| 1009      | 3F1 <sub>H</sub> | CH2 Logging hold request           | 0                   | R/W        | _           |
| 1010      | 3F2 <sub>H</sub> | CH3 Logging hold request           | 0                   | R/W        | _           |
| 1011      | 3F3 <sub>H</sub> | CH4 Logging hold request           | 0                   | R/W        | _           |
| 1012      | 3F4 <sub>H</sub> | CH5 Logging hold request           | 0                   | R/W        | _           |
| 1013      | 3F5 <sub>H</sub> | CH6 Logging hold request           | 0                   | R/W        | _           |
| 1014      | 3F6 <sub>H</sub> | CH7 Logging hold request           | 0                   | R/W        | _           |
| 1015      | 3F7 <sub>H</sub> | CH8 Logging hold request           | 0                   | R/W        | _           |
| 1016      | 3F8 <sub>H</sub> | CH1 Logging hold flag              | 0                   | R          |             |
| 1017      | 3F9 <sub>H</sub> | CH2 Logging hold flag              | 0                   | R          | _           |
| 1018      | 3FA <sub>H</sub> | CH3 Logging hold flag              | 0                   | R          | _           |
| 1019      | 3FB <sub>H</sub> | CH4 Logging hold flag              | 0                   | R          | _           |
| 1020      | 3FC <sub>H</sub> | CH5 Logging hold flag              | 0                   | R          | _           |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                                | Default value*1 | Read/Write | Set value<br>backup area |
|----------------------|--------------------------|-------------------------------------|-----------------|------------|--------------------------|
| 1021                 | 3FD <sub>H</sub>         | CH6 Logging hold flag               | 0               | R          | _                        |
| 1022                 | 3FE <sub>H</sub>         | CH7 Logging hold flag               | 0               | R          | _                        |
| 1023                 | 3FF <sub>H</sub>         | CH8 Logging hold flag               | 0               | R          | _                        |
| 1024                 | 400 <sub>H</sub>         | CH1 Logging data setting            | 1               | R/W        | 0                        |
| 1025                 | 401 <sub>H</sub>         | CH2 Logging data setting            | 1               | R/W        | 0                        |
| 1026                 | 402 <sub>H</sub>         | CH3 Logging data setting            | 1               | R/W        | 0                        |
| 1027                 | 403 <sub>H</sub>         | CH4 Logging data setting            | 1               | R/W        | 0                        |
| 1028                 | 404 <sub>H</sub>         | CH5 Logging data setting            | 1               | R/W        | 0                        |
| 1029                 | 405 <sub>H</sub>         | CH6 Logging data setting            | 1               | R/W        | 0                        |
| 1030                 | 406 <sub>H</sub>         | CH7 Logging data setting            | 1               | R/W        | 0                        |
| 1031                 | 407 <sub>H</sub>         | CH8 Logging data setting            | 1               | R/W        | 0                        |
| 1032                 | 408 <sub>H</sub>         | CH1 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1033                 | 409 <sub>H</sub>         | CH2 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1034                 | 40A <sub>H</sub>         | CH3 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1035                 | 40B <sub>H</sub>         | CH4 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1036                 | 40C <sub>H</sub>         | CH5 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1037                 | 40D <sub>H</sub>         | CH6 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1038                 | 40E <sub>H</sub>         | CH7 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1039                 | 40F <sub>H</sub>         | CH8 Logging cycle setting value     | 300             | R/W        | 0                        |
| 1040                 | 410 <sub>H</sub>         | CH1 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1041                 | 411 <sub>H</sub>         | CH2 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1042                 | 412 <sub>H</sub>         | CH3 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1043                 | 413 <sub>H</sub>         | CH4 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1044                 | 414 <sub>H</sub>         | CH5 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1045                 | 415 <sub>H</sub>         | CH6 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1046                 | 416 <sub>H</sub>         | CH7 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1047                 | 417 <sub>H</sub>         | CH8 Logging cycle unit setting      | 0               | R/W        | 0                        |
| 1048                 | 418 <sub>H</sub>         | CH1 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1049                 | 419 <sub>H</sub>         | CH2 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1050                 | 41A <sub>H</sub>         | CH3 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1051                 | 41B <sub>H</sub>         | CH4 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1052                 | 41C <sub>H</sub>         | CH5 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1053                 | 41D <sub>H</sub>         | CH6 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1054                 | 41E <sub>H</sub>         | CH7 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1055                 | 41F <sub>H</sub>         | CH8 Logging points after trigger    | 2500            | R/W        | 0                        |
| 1056                 | 420 <sub>H</sub>         | CH1 Level trigger condition setting | 0               | R/W        | 0                        |
| 1057                 | 421 <sub>H</sub>         | CH2 Level trigger condition setting | 0               | R/W        | 0                        |
| 1058                 | 422 <sub>H</sub>         | CH3 Level trigger condition setting | 0               | R/W        | 0                        |
| 1059                 | 423 <sub>H</sub>         | CH4 Level trigger condition setting | 0               | R/W        | 0                        |
| 1060                 | 424 <sub>H</sub>         | CH5 Level trigger condition setting | 0               | R/W        | 0                        |

| Address   | Address          | Name                                | Default | Read/Write | Set value backup area |
|-----------|------------------|-------------------------------------|---------|------------|-----------------------|
| (decimal) | (hexadecimal)    |                                     | value*1 | *2         | *3                    |
| 1061      | 425 <sub>H</sub> | CH6 Level trigger condition setting | 0       | R/W        | 0                     |
| 1062      | 426 <sub>H</sub> | CH7 Level trigger condition setting | 0       | R/W        | 0                     |
| 1063      | 427 <sub>H</sub> | CH8 Level trigger condition setting | 0       | R/W        | 0                     |
| 1064      | 428 <sub>H</sub> | CH1 Trigger data                    | 54      | R/W        | 0                     |
| 1065      | 429 <sub>H</sub> | CH2 Trigger data                    | 55      | R/W        | 0                     |
| 1066      | 42A <sub>H</sub> | CH3 Trigger data                    | 56      | R/W        | 0                     |
| 1067      | 42B <sub>H</sub> | CH4 Trigger data                    | 57      | R/W        | 0                     |
| 1068      | 42C <sub>H</sub> | CH5 Trigger data                    | 58      | R/W        | 0                     |
| 1069      | 42D <sub>H</sub> | CH6 Trigger data                    | 59      | R/W        | 0                     |
| 1070      | 42E <sub>H</sub> | CH7 Trigger data                    | 60      | R/W        | 0                     |
| 1071      | 42F <sub>H</sub> | CH8 Trigger data                    | 61      | R/W        | 0                     |
| 1072      | 430 <sub>H</sub> | Level data 0                        | 0       | R/W        | 0                     |
| 1073      | 431 <sub>H</sub> | Level data 1                        | 0       | R/W        | 0                     |
| 1074      | 432 <sub>H</sub> | Level data 2                        | 0       | R/W        | 0                     |
| 1075      | 433 <sub>H</sub> | Level data 3                        | 0       | R/W        | 0                     |
| 1076      | 434 <sub>H</sub> | Level data 4                        | 0       | R/W        | 0                     |
| 1077      | 435 <sub>H</sub> | Level data 5                        | 0       | R/W        | 0                     |
| 1078      | 436 <sub>H</sub> | Level data 6                        | 0       | R/W        | 0                     |
| 1079      | 437 <sub>H</sub> | Level data 7                        | 0       | R/W        | 0                     |
| 1080      | 438 <sub>H</sub> | Level data 8                        | 0       | R/W        | 0                     |
| 1081      | 439 <sub>H</sub> | Level data 9                        | 0       | R/W        | 0                     |
| 1082      | 43A <sub>H</sub> | CH1 Trigger setting value           | 0       | R/W        | 0                     |
| 1083      | 43B <sub>H</sub> | CH2 Trigger setting value           | 0       | R/W        | 0                     |
| 1084      | 43C <sub>H</sub> | CH3 Trigger setting value           | 0       | R/W        | 0                     |
| 1085      | 43D <sub>H</sub> | CH4 Trigger setting value           | 0       | R/W        | 0                     |
| 1086      | 43E <sub>H</sub> | CH5 Trigger setting value           | 0       | R/W        | 0                     |
| 1087      | 43F <sub>H</sub> | CH6 Trigger setting value           | 0       | R/W        | 0                     |
| 1088      | 440 <sub>H</sub> | CH7 Trigger setting value           | 0       | R/W        | 0                     |
| 1089      | 441 <sub>H</sub> | CH8 Trigger setting value           | 0       | R/W        | 0                     |
| 1090      | 442 <sub>H</sub> | CH1 Head pointer                    | 0       | R          | _                     |
| 1091      | 443 <sub>H</sub> | CH2 Head pointer                    | 0       | R          | _                     |
| 1092      | 444 <sub>H</sub> | CH3 Head pointer                    | 0       | R          | _                     |
| 1093      | 445 <sub>H</sub> | CH4 Head pointer                    | 0       | R          | _                     |
| 1094      | 446 <sub>H</sub> | CH5 Head pointer                    | 0       | R          | _                     |
| 1095      | 447 <sub>H</sub> | CH6 Head pointer                    | 0       | R          | _                     |
| 1096      | 448 <sub>H</sub> | CH7 Head pointer                    | 0       | R          | _                     |
| 1097      | 449 <sub>H</sub> | CH8 Head pointer                    | 0       | R          | _                     |
| 1098      | 44A <sub>H</sub> | CH1 Latest pointer                  | 0       | R          | _                     |
| 1099      | 44B <sub>H</sub> | CH2 Latest pointer                  | 0       | R          | _                     |
| 1100      | 44C <sub>H</sub> | CH3 Latest pointer                  | 0       | R          | _                     |
| 1101      | 44D <sub>H</sub> | CH4 Latest pointer                  | 0       | R          | _                     |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                               | Default<br>value*1  | Read/Write | Set value<br>backup area |   |
|----------------------|--------------------------|------------------------------------|---------------------|------------|--------------------------|---|
| 1102                 | 44E <sub>H</sub>         | CH5 Latest pointer                 | 0                   | R          | _                        |   |
| 1103                 | 44F <sub>H</sub>         | CH6 Latest pointer                 |                     | 0          | R                        | _ |
| 1104                 | 450 <sub>H</sub>         | CH7 Latest pointer                 |                     | 0          | R                        | _ |
| 1105                 | 451 <sub>H</sub>         | CH8 Latest pointer                 |                     | 0          | R                        | _ |
| 1106                 | 452 <sub>H</sub>         | CH1 Number of logging data         |                     | 0          | R                        | _ |
| 1107                 | 453 <sub>H</sub>         | CH2 Number of logging data         |                     | 0          | R                        | _ |
| 1108                 | 454 <sub>H</sub>         | CH3 Number of logging data         |                     | 0          | R                        | _ |
| 1109                 | 455 <sub>H</sub>         | CH4 Number of logging data         |                     | 0          | R                        | _ |
| 1110                 | 456 <sub>H</sub>         | CH5 Number of logging data         |                     | 0          | R                        | _ |
| 1111                 | 457 <sub>H</sub>         | CH6 Number of logging data         |                     | 0          | R                        | _ |
| 1112                 | 458 <sub>H</sub>         | CH7 Number of logging data         |                     | 0          | R                        | _ |
| 1113                 | 459 <sub>H</sub>         | CH8 Number of logging data         |                     | 0          | R                        | _ |
| 1114                 | 45A <sub>H</sub>         | CH1 Trigger pointer                |                     | 0          | R                        | _ |
| 1115                 | 45B <sub>H</sub>         | CH2 Trigger pointer                |                     | 0          | R                        | _ |
| 1116                 | 45C <sub>H</sub>         | CH3 Trigger pointer                |                     | 0          | R                        | _ |
| 1117                 | 45D <sub>H</sub>         | CH4 Trigger pointer                | CH4 Trigger pointer |            | R                        | _ |
| 1118                 | 45E <sub>H</sub>         | CH5 Trigger pointer                |                     | 0          | R                        | _ |
| 1119                 | 45F <sub>H</sub>         | CH6 Trigger pointer                | 0                   | R          | _                        |   |
| 1120                 | 460 <sub>H</sub>         | CH7 Trigger pointer                | 0                   | R          | _                        |   |
| 1121                 | 461 <sub>H</sub>         | CH8 Trigger pointer                | 0                   | R          | _                        |   |
| 1122                 | 462 <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1123                 | 463 <sub>H</sub>         | CH1 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1124                 | 464 <sub>H</sub>         | Value                              | (µs)                | 0          | R                        | _ |
| 1125                 | 465 <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1126                 | 466 <sub>H</sub>         | CH2 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1127                 | 467 <sub>H</sub>         | Value                              | (µs)                | 0          | R                        | _ |
| 1128                 | 468 <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1129                 | 469 <sub>H</sub>         | CH3 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1130                 | 46A <sub>H</sub>         | Value                              | (µs)                | 0          | R                        | _ |
| 1131                 | 46B <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1132                 | 46C <sub>H</sub>         | CH4 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1133                 | 46D <sub>H</sub>         | Value                              | (µs)                | 0          | R                        | _ |
| 1134                 | 46E <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1135                 | 46F <sub>H</sub>         | CH5 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1136                 | 470 <sub>H</sub>         | Value                              | (µs)                | 0          | R                        | _ |
| 1137                 | 471 <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1138                 | 472 <sub>H</sub>         | CH6 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1139                 | 473 <sub>H</sub>         |                                    | (µs)                | 0          | R                        | _ |
| 1140                 | 474 <sub>H</sub>         |                                    | (s)                 | 0          | R                        | _ |
| 1141                 | 475 <sub>H</sub>         | CH7 Logging cycle monitoring value | (ms)                | 0          | R                        | _ |
| 1142                 | 476 <sub>H</sub>         | 14.40                              | (µs)                | 0          | R                        | _ |

| Address<br>(decimal) | Address<br>(hexadecimal) |                               | Name                         |                             | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area |
|----------------------|--------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------------|------------|--------------------------|
| 1143                 | 477 <sub>H</sub>         |                               |                              | (s)                         | 0                              | R          |                          |
| 1144                 | 478 <sub>H</sub>         | CH8 Logging cyc               | ele monitoring               | (ms)                        | 0                              | R          | _                        |
| 1145                 | 479 <sub>H</sub>         |                               |                              | (µs)                        | 0                              | R          | _                        |
| 1146                 | 47A <sub>H</sub>         |                               |                              |                             |                                |            |                          |
| to                   | to                       | System area                   |                              |                             | _                              | _          | _                        |
| 1153                 | 481 <sub>H</sub>         |                               |                              |                             |                                |            |                          |
| 1154                 | 482 <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1155                 | 483 <sub>H</sub>         | CH1 Trigger                   | Month                        | Day                         | 0                              | R          | _                        |
| 1156                 | 484 <sub>H</sub>         | detection time                | Hour                         | Minute                      | 0                              | R          | _                        |
| 1157                 | 485 <sub>H</sub>         |                               | Second                       | Day of the week             | 0                              | R          | _                        |
| 1158                 | 486 <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1159                 | 487 <sub>H</sub>         | CH2 Trigger                   | Month                        | Day                         | 0                              | R          | _                        |
| 1160                 | 488 <sub>H</sub>         | detection time                | Hour                         | Minute                      | 0                              | R          | _                        |
| 1161                 | 489 <sub>H</sub>         |                               | Second                       | Day of the week             | 0                              | R          | _                        |
| 1162                 | 48A <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1163                 | 48B <sub>H</sub>         | CH3 Trigger<br>detection time | Month                        | Day                         | 0                              | R          | _                        |
| 1164                 | 48C <sub>H</sub>         |                               | Hour                         | Minute                      | 0                              | R          | _                        |
| 1165                 | 48D <sub>H</sub>         |                               | Second                       | Day of the week             | 0                              | R          | _                        |
| 1166                 | 48E <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1167                 | 48F <sub>H</sub>         | CH4 Trigger                   | Month                        | Day                         | 0                              | R          | _                        |
| 1168                 | 490 <sub>H</sub>         | detection time                | Hour                         | Minute                      | 0                              | R          | _                        |
| 1169                 | 491 <sub>H</sub>         |                               | Second                       | Day of the week             | 0                              | R          | _                        |
| 1170                 | 492 <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1171                 | 493 <sub>H</sub>         | CH5 Trigger                   | Month                        | Day                         | 0                              | R          | _                        |
| 1172                 | 494 <sub>H</sub>         | detection time                | Hour                         | Minute                      | 0                              | R          | _                        |
| 1173                 | 495 <sub>H</sub>         | -                             | Second                       | Day of the week             | 0                              | R          | _                        |
| 1174                 | 496 <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1175                 | 497 <sub>H</sub>         | CH6 Trigger                   | Month                        | Day                         | 0                              | R          | _                        |
| 1176                 | 498 <sub>H</sub>         | detection time                | Hour                         | Minute                      | 0                              | R          | _                        |
| 1177                 | 499 <sub>H</sub>         |                               | Second                       | Day of the week             | 0                              | R          | _                        |
| 1178                 | 49A <sub>H</sub>         |                               | First two digits of the year | Last two digits of the year | 0                              | R          | _                        |
| 1179                 | 49B <sub>H</sub>         | CH7 Trigger                   | Month                        | Day                         | 0                              | R          | _                        |
| 1180                 | 49C <sub>H</sub>         | detection time                | Hour                         | Minute                      | 0                              | R          | _                        |
| 1181                 | 49D <sub>H</sub>         |                               | Second                       | Day of the week             | 0                              | R          | _                        |

| Address<br>(decimal) | Address<br>(hexadecimal) | Name           |                              |                             | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area<br>*3 |
|----------------------|--------------------------|----------------|------------------------------|-----------------------------|--------------------------------|------------|--------------------------------|
| 1182                 | 49E <sub>H</sub>         |                | First two digits of the year | Last two digits of the year | 0                              | R          | _                              |
| 1183                 | 49F <sub>H</sub>         | CH8 Trigger    | Month                        | Day                         | 0                              | R          | _                              |
| 1184                 | 4A0 <sub>H</sub>         | detection time | Hour                         | Minute                      | 0                              | R          | _                              |
| 1185                 | 4A1 <sub>H</sub>         |                | Second                       | Day of the week             | 0                              | R          | _                              |
| 1186                 | 4A2 <sub>H</sub>         |                |                              |                             |                                |            |                                |
| to                   | to                       | System area    |                              |                             | _                              | _          | _                              |
| 1799                 | 707 <sub>H</sub>         |                |                              |                             |                                |            |                                |

<sup>\*1</sup> Default value set at factory shipment

R: Readable W: Writable

\*3 This shows that whether write to the non-volatile memory by the set value backup function and read by the default setting registration function is possible.

O: Writable and readable —: Unwritable and unreadable

For details on the set value backup function, refer to Page 70, Section 4.13.

For details on the default setting registration function, refer to  $\fill \fill \fi$ 

<sup>\*2</sup> This shows whether read or write from sequence program is possible.

#### (2) Un\G1800 to Un\G4999 (Error history)

| Address<br>(decimal) | Address<br>(hexadecimal) | Name                            |               |                              | Default<br>value <sup>*1</sup> | Read/Write | Set value<br>backup area |   |
|----------------------|--------------------------|---------------------------------|---------------|------------------------------|--------------------------------|------------|--------------------------|---|
| 1800                 | 708 <sub>H</sub>         | Latest address of error history |               |                              | 0                              | R          | _                        |   |
| 1801                 | 709 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | System area                     | 1             |                              |                                | _          | _                        | _ |
| 1809                 | 711 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1810                 | 712 <sub>H</sub>         |                                 | Error code    |                              |                                | 0          | R                        | _ |
| 1811                 | 713 <sub>H</sub>         |                                 |               | First two digits of the year | Last two digits of the year    | 0          | R                        | _ |
| 1812                 | 714 <sub>H</sub>         |                                 | Error time    | Month                        | Day                            | 0          | R                        | _ |
| 1813                 | 715 <sub>H</sub>         | No. 1                           |               | Hour                         | Minute                         | 0          | R                        | _ |
| 1814                 | 716 <sub>H</sub>         |                                 |               | Second                       | Day of the week                | 0          | R                        | _ |
| 1815                 | 717 <sub>H</sub>         |                                 |               | •                            | •                              |            |                          |   |
| to                   | to                       |                                 | System area   | a                            |                                | _          | _                        | _ |
| 1819                 | 71B <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1820                 | 71C <sub>H</sub>         |                                 |               |                              |                                |            | •                        |   |
| to                   | to                       | No. 2                           | Same as No    | o. 1                         |                                |            |                          |   |
| 1829                 | 725 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1830                 | 726 <sub>H</sub>         |                                 | Same as No. 1 |                              |                                |            |                          |   |
| to                   | to                       | No. 3                           |               |                              |                                |            |                          |   |
| 1839                 | 72F <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1840                 | 730 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | No. 4                           | Same as No. 1 |                              |                                |            |                          |   |
| 1849                 | 739 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1850                 | 73A <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | No. 5                           | Same as No. 1 |                              |                                |            |                          |   |
| 1859                 | 743 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1860                 | 744 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | No. 6                           | Same as No    | o. 1                         |                                |            |                          |   |
| 1869                 | 74D <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1870                 | 74E <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | No. 7                           | Same as No    | o. 1                         |                                |            |                          |   |
| 1879                 | 757 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1880                 | 758 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | No. 8                           | Same as No    | o. 1                         |                                |            |                          |   |
| 1889                 | 761 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| 1890                 | 762 <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |
| to                   | to                       | No. 9                           | Same as No. 1 |                              |                                |            |                          |   |
| 1899                 | 76B <sub>H</sub>         |                                 |               |                              |                                |            |                          |   |

| Address<br>(decimal) | Address<br>(hexadecimal) |             | Name          |   | Read/Write | Set value<br>backup area<br>*3 |
|----------------------|--------------------------|-------------|---------------|---|------------|--------------------------------|
| 1900                 | 76C <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 10      | Same as No. 1 |   |            |                                |
| 1909                 | 775 <sub>H</sub>         |             |               |   |            |                                |
| 1910                 | 776 <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 11      | Same as No. 1 |   |            |                                |
| 1919                 | 77F <sub>H</sub>         |             |               |   |            |                                |
| 1920                 | 780 <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 12      | Same as No. 1 |   |            |                                |
| 1929                 | 789 <sub>H</sub>         |             |               |   |            |                                |
| 1930                 | 78A <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 13      | Same as No. 1 |   |            |                                |
| 1939                 | 793 <sub>H</sub>         |             |               |   |            |                                |
| 1940                 | 794 <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 14      | Same as No. 1 |   |            |                                |
| 1949                 | 79D <sub>H</sub>         |             |               |   |            |                                |
| 1950                 | 79E <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 15      | Same as No. 1 |   |            |                                |
| 1959                 | 7A7 <sub>H</sub>         |             |               |   |            |                                |
| 1960                 | 7A8 <sub>H</sub>         |             |               |   |            |                                |
| to                   | to                       | No. 16      | Same as No. 1 |   |            |                                |
| 1969                 | 7B1 <sub>H</sub>         |             |               |   |            |                                |
| 1970                 | 7B2 <sub>H</sub>         |             | •             |   |            |                                |
| to                   | to                       | System area | ı             | _ | _          | _                              |
| 4999                 | 1387 <sub>H</sub>        |             |               |   |            |                                |

<sup>\*1</sup> Default value set at factory shipment

R: Readable

W: Writable

O: Writable and readable

—: Unwritable and unreadable

For details on the set value backup function, refer to  $\fill \fill \fi$ 

For details on the default setting registration function, refer to  $\fill \fill \fi$ 

<sup>\*2</sup> This shows whether read or write from sequence program is possible.

<sup>\*3</sup> This shows that whether write to the non-volatile memory by the set value backup function and read by the default setting registration function is possible.

#### (3) Un\G5000 to Un\G44999 (Logging section)

| Address<br>(decimal) | Address<br>(hexadecimal) | Name             | Default<br>value <sup>*1</sup> | Read/Write<br>*2 | Set value<br>backup area<br>*3 |
|----------------------|--------------------------|------------------|--------------------------------|------------------|--------------------------------|
| 5000                 | 1388 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH1 Logging data | 0                              | R                | _                              |
| 9999                 | 270F <sub>H</sub>        |                  |                                |                  |                                |
| 10000                | 2710 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH2 Logging data | 0                              | R                | _                              |
| 14999                | 3A97 <sub>H</sub>        |                  |                                |                  |                                |
| 15000                | 3A98 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH3 Logging data | 0                              | R                | _                              |
| 19999                | 4E1F <sub>H</sub>        |                  |                                |                  |                                |
| 20000                | 4E20 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH4 Logging data | 0                              | R                | _                              |
| 24999                | 61A7 <sub>H</sub>        |                  |                                |                  |                                |
| 25000                | 61A8 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH5 Logging data | 0                              | R                | _                              |
| 29999                | 752F <sub>H</sub>        |                  |                                |                  |                                |
| 30000                | 7530 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH6 Logging data | 0                              | R                | _                              |
| 34999                | 88B7 <sub>H</sub>        |                  |                                |                  |                                |
| 35000                | 88B8 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH7 Logging data | 0                              | R                | _                              |
| 39999                | 9C3F <sub>H</sub>        |                  |                                |                  |                                |
| 40000                | 9C40 <sub>H</sub>        |                  |                                |                  |                                |
| to                   | to                       | CH8 Logging data | 0                              | R                | _                              |
| 44999                | AFC7 <sub>H</sub>        |                  |                                |                  |                                |

<sup>\*1</sup> Default value set at factory shipment

R: Readable

W: Writable

O: Writable and readable

-: Unwritable and unreadable

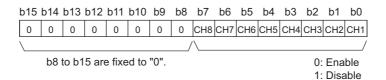
For details on the set value backup function, refer to Page 70, Section 4.13.

For details on the default setting registration function, refer to Page 71, Section 4.14.

<sup>\*2</sup> This shows whether read or write from sequence program is possible.

<sup>\*3</sup> This shows that whether write to the non-volatile memory by the set value backup function and read by the default setting registration function is possible.

#### 6.2 Details of Buffer Memory Addresses


The following describes the details of buffer memory addresses.

#### (1) Conversion enable/disable setting (Un\G0)

Set whether to enable or disable the conversion for each channel.

After setting CH $\square$  Input range setting (Un\G150 to Un\G157) depending on the CT connected, set Enable (0). For details on the conversion enable/disable function, refer to the following.

• Conversion Enable/Disable Function (FP Page 35, Section 4.3)



#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

All channels are set to Disable (1).

#### (2) CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)

Set the time average, count average, moving average, and time constant of the primary delay filter for each channel for which the averaging processing is specified.

For details on the digital conversion method, refer to the following.

- Digital Conversion Method (Page 36, Section 4.5)
- · The following shows the setting range.

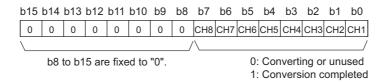
| Digital conversion method | Setting range      |
|---------------------------|--------------------|
| Time average              | 40 to 5000 (ms)*1  |
| Count average             | 4 to 500 (times)   |
| Moving average            | 2 to 1000 (times)  |
| Primary delay filter      | 10 to 10000 (ms)*1 |

- \*1 Set an integral multiple of the sampling cycle. If the time average and primary delay filter are not set as the integral multiple, the time average and Primary delay filter are averaged at the maximum cycle satisfying "the set time or less and the integral multiple of the sampling cycle". In addition, configure per 10ms unit. A value per 1ms unit is rounded off.
- When the value out of the setting range above is written in a channel, an error occurs in the channel. The error code (20□, 30□, 31□, or 32□) corresponding to Latest error code (Un\G19) is stored, and Error flag (XF) turns on. The conversion processing is performed based on the setting before the error occurs.
- · When a value is set to the channel for which the sampling processing is specified, the set value is ignored.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value


All channels are set to 0.

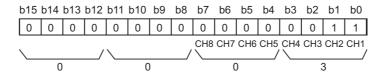


Since 0 is set as the default value, change the setting value depending on the digital conversion method.

#### (3) Conversion completed flag (Un\G10)

The conversion status can be checked with this flag for each channel.




#### (a) Conversion completion

When the first digital conversion is completed for the channel for which Enable is set, Conversion completed (1) is stored.

Conversion completed flag (XE) turns on when the digital conversion of all the channels for which Enable is set is completed.

When Operating condition setting request (Y9) is turned on then off, Converting or unused (0), which is the default setting, is stored. When the first digital conversion is completed, Conversion completed (1) is stored again.

Ex. When CH1 and CH2 are set to Enable and the conversion of CH1 and CH2 is completed, 0003<sub>H</sub>(3) is stored in Conversion completed flag (Un\G10), as shown below.



#### (4) CH□ Digital output value (Un\G11 to Un\G18)

The digital output value after digital conversion is stored in each channel.

#### (a) Updating cycle

When the average processing is performed, the value is updated in each specified averaging process cycle. When the average processing is not performed, the value is updated in each sampling cycle.

#### (5) Latest error code (Un\G19)

The latest error code or alarm code detected by the CT input module is stored.

For details on the error code and alarm code, refer to the following.

- Error Code List (Page 221, Section 11.1)
- Alarm Code List (FP Page 228, Section 11.2)

#### (a) Clearing an error

Turn on then off Error clear request (YF).

# 6.2 Details of Buffer Memory Addresses

# (6) Offset/gain setting mode Offset specification (Un\G22), Offset/gain setting mode Gain specification (Un\G23)

Specify the channel to adjust the offset/gain setting.

- Offset/gain setting mode Offset specification (Un\G22): channel to adjust the offset
- Offset/gain setting mode Gain specification (Un\G23): channel to adjust the gain

Offset/gain setting mode Offset specification (Un\G22) Offset/gain setting mode Gain specification (Un\G23)

| b15 | b14 | b13 | b12 | b11 | b10 | b9 | b8 | b7  | b6  | b5  | b4  | b3  | b2  | b1  | b0  |
|-----|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | CH8 | CH7 | СН6 | CH5 | CH4 | СНЗ | CH2 | CH1 |
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | CH8 | CH7 | СН6 | CH5 | CH4 | СНЗ | CH2 | CH1 |
|     |     |     |     |     |     |    |    |     |     |     |     |     |     |     |     |

b8 to b15 are fixed to "0".

0: Not specified
1: Specified channel

#### (a) Default value

All channels are set to Not specified (0).



- Multiple channels can be simultaneously set. In that case, set Not specified (0) to either of Offset/gain setting mode Offset specification (Un\G22) and Offset/gain setting mode Gain specification (Un\G23). When the settings for both of them are configured at the same time, the offset/gain setting mode error (error code: 500) occurs.
- If the user range is not used in CH□ Input range setting (Un\G150 to Un\G157) when the offset/gain setting is set, the error (error code: 51□) occurs.
- For details on the offset/gain setting, refer to the following.
  - Offset/gain Setting (Page 148, Section 8.5)

#### (7) Averaging process setting (Un\G24, Un\G25)

Set these areas when selecting sampling or averaging processing for each channel.

Averaging processing includes time average, count average, moving average, and primary delay filter.

For details on the digital conversion method, refer to the following.

• Digital Conversion Method (Page 36, Section 4.5)

Averaging process setting (CH1 to CH4) (Un\G24) Averaging process setting (CH5 to CH8) (Un\G25)

| b15 | to  | b12 | b11 | to  | b8 | b7 | to  | b4 | b3 | to  | b0 |
|-----|-----|-----|-----|-----|----|----|-----|----|----|-----|----|
|     | CH4 |     |     | CH3 |    |    | CH2 |    |    | CH1 |    |
|     | CH8 |     |     | CH7 |    |    | CH6 |    |    | CH5 |    |

| Digital conversion method | Setting value  |
|---------------------------|----------------|
| Sampling processing       | 0 <sub>H</sub> |
| Time average              | 1 <sub>H</sub> |
| Count average             | 2 <sub>H</sub> |
| Moving average            | 3 <sub>H</sub> |
| Primary delay filter      | 4 <sub>H</sub> |

When the value out of the setting range above is written in a channel, an error occurs in the channel. The
error code (33□) is stored in Latest error code (Un\G19), and Error flag (XF) turns on. The conversion
processing is performed based on the setting before the error occurs.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

All channels are set to Sampling processing (0<sub>H</sub>).

#### (8) Sampling cycle setting (Un\G26)

Set the sampling cycle shared by all the channels.

For details on the sampling cycle switching function, refer to the following.

• Sampling Cycle Switching Function ( Page 35, Section 4.4)

| Sampling cycle | Setting value  |
|----------------|----------------|
| 10ms/8CH       | 0 <sub>H</sub> |
| 20ms/8CH       | 1 <sub>H</sub> |
| 50ms/8CH       | 2 <sub>H</sub> |
| 100ms/8CH      | 3 <sub>H</sub> |

• When the value out of the setting range above is written in a channel, an error occurs in the channel. The error code (350) is stored in Latest error code (Un\G19), and Error flag (XF) turns on. The sampling cycle performs in the setting before the error occurs.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

10ms/8CH (0) is set as the default value.

#### (9) CH1 Maximum value (Un\G30) to CH8 Minimum value (Un\G45)

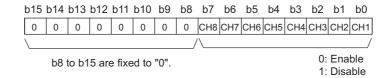
The maximum and minimum values of the digital value digital-converted for each channel are stored as signed 16-bit binary.

For details on the maximum and minimum values hold function, refer to the following.

• Maximum Value and Minimum Values Hold Function (Page 57, Section 4.11)

CH1 Maximum value (Un\G30) to CH8 Minimum value (Un\G45) are updated to the present value when either of the following operations is performed:

- · When the setting is changed after Operating condition setting request (Y9) is turned on then off
- · When Maximum value/minimum value reset request (YD) is turned on then off


#### Point P

- When the time average method is specified, the maximum and minimum values are stored in each average time specified. When the count average method is specified, the maximum and minimum values are stored in each count average specified. When one of other digital conversion methods is specified, the maximum and minimum values are stored in each sampling cycle.
- When the scaling function is used, the maximum and minimum values after scale conversion are stored.

#### (10)Input signal error detection setting (Un\G47)

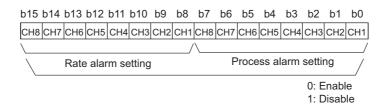
Set whether to enable or disable the input signal error detection for each channel. For details on the input signal error detection function, refer to the following.

• Input Signal Error Detection Function ( Page 42, Section 4.6)



#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.


#### (b) Default value

All channels are set to Disable (1).

#### (11)Warning output setting (Un\G48)

Set whether to enable or disable the warning output (process alarm and rate alarm) for each channel. For details on the warning output function, refer to the following.

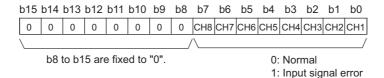
Warning Output Function ( Page 51, Section 4.10)



#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value


All channels are set to Disable (1).

#### (12)Input signal error detection flag (Un\G49)

Input signal status can be checked with this flag for each channel.

For details on the input signal error detection function, refer to the following.

• Input Signal Error Detection Function (Page 42, Section 4.6)



#### (a) Input signal error detection flag (Un\G49) status

- When a CT input value out of the input range is detected, Input signal error detection flag (Un\G49) corresponding to each channel turns to Input signal error (1).
- When an error is detected in any channels in which the digital conversion or input signal error detection is enabled, Input signal error detection signal (XC) turns on.

#### (b) Clearing Input signal error detection flag (Un\G49)

To clear Input signal error detection flag (Un\G49), turn on then off Error clear request (YF) when the CT input value is within the measurement range.

Input signal error detection flag (Un\G49) is also cleared by turning on then off Operating condition setting request (Y9).

# (13)Warning output flag (Process alarm) (Un\G50), Warning output flag (Rate alarm) (Un\G51)

The process alarm and rate alarm can be checked whether the alarm is the upper limit alarm or lower limit alarm for each channel.

For details on the warning output function, refer to the following.

• Warning Output Function (FP Page 51, Section 4.10)

Warning output flag (Process alarm) (Un\G50)

Warning output flag (Rate alarm) (Un\G51)

| טוט         | 014         | 013         | DIZ         | ווט         | טוט         | มอ          | DO          | D1          | DO          | bS          | 04          | D3          | DΖ          | υī          | DU          |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CH8 Lower   | CH8 Upper   | CH7 Lower   | CH7 Upper   | CH6 Lower   | CH6 Upper   | CH5 Lower   | CH5 Upper   | CH4 Lower   | CH4 Upper   | CH3 Lower   | CH3 Upper   | CH2 Lower   | CH2 Upper   | CH1 Lower   | CH1 Upper   |
| limit value |
| CH8 Lower   | CH8 Upper   | CH7 Lower   | CH7 Upper   | CH6 Lower   | CH6 Upper   | CH5 Lower   | CH5 Upper   | CH4 Lower   | CH4 Upper   | CH3 Lower   | CH3 Upper   | CH2 Lower   | CH2 Upper   | CH1 Lower   | CH1 Upper   |
| limit value | Iimit value | limit value |

0: Normal 1: Alarm ON

# (a) Status of Warning output flag (Process alarm) (Un\G50) and Warning output flag (Rate alarm) (Un\G51)

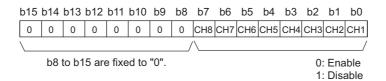
When an alarm is detected due to any of the following, Alarm ON (1) is stored in Warning output flag corresponding to each channel.

- The digital output value exceeds the setting range of CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117).
- The digital output value exceeds the change rate of CH1 Rate alarm upper limit value (Un\G126) to CH8 Rate alarm lower limit value (Un\G141).

When an error is detected in any channels in which the digital conversion or input signal error detection is enabled, Warning output signal (X8) turns on.

# (b) Clearing Warning output flag (Process alarm) (Un\G50) and Warning output flag (Rate alarm) (Un\G51)

The alarms are cleared by any of the following.


- The digital output value or the change rate of the digital output value returns within the setting range.
- Turn on then off Operating condition setting request (Y9)

#### (14)Scaling enable/disable setting (Un\G53)

Set whether the scaling is enabled or disabled for each channel.

For details on scaling function, refer to the following.

• Scaling Function (Page 48, Section 4.9)

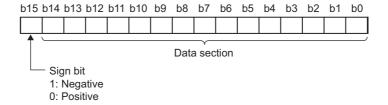


Point P

When Scaling enable/disable setting (Un\G53) is disabled, 0 is stored in CH□ Scaling value (Un\G54 to Un\G61).

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.


#### (b) Default value

All channels are set to Disable (1).

#### (15)CH□ Scaling value (Un\G54 to Un\G61)

The digital output values after scale conversion by the scaling function are stored for each channel.

The scaling values are stored with 16-bit signed binary.



# 6.2 Details of Buffer Memory Addresses

# (16)CH1 Scaling lower limit value (Un\G62) to CH8 Scaling upper limit value (Un\G77)

Set the range of scale conversion for each channel.

For details on scaling function, refer to the following.

• Scaling Function (Page 48, Section 4.9)

#### (a) Setting range

- Setting range: -32000 to 32000
- In the channel where a value other than the above is set, an error occurs. The error code (90□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The scaling upper limit value and scaling lower limit value in the channel for which an error occurred operate in the setting before the error occurs.
- When Disable (1) is set to Scaling enable/disable setting (Un\G53), the setting for CH1 Scaling lower limit value (Un\G62) to CH8 Scaling upper limit value (Un\G77) is ignored.
- Setting the scaling lower limit value more than the scaling upper limit value allows scale conversion with a negative slope.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 0.



Since 0 is set as the default value, change the set value to use the scaling function.

# (17)CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117)

Set the alert output range of the digital output value for each channel. Configure the 4-step setting of process alarm upper limit value, process alarm upper limit value, process alarm lower limit value and process alarm lower limit value.

For details on the warning output function (process alarm), refer to the following.

• Warning Output Function (Process Alarm) (Process Alarm) (Process Alarm)

#### (a) Setting range

- Setting range: -32768 to 32767
- The setting must satisfy the following condition: process alarm upper upper limit value ≥ process alarm upper lower limit value ≥ process alarm lower upper limit value ≥ process alarm lower limit value. In the channel where the condition is not satisfied, an error occurs. The error code (6 △ □) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The process alarm operates in the setting before the error occurs.
- When using the scaling function, set values considering the scale conversion. For details on the scaling function, refer to the following.

Scaling Function (Page 48, Section 4.9)

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 0.

| Point P -      |                                                                      |
|----------------|----------------------------------------------------------------------|
| Since 0 is set | as the default value, change the set value to use the process alarm. |

#### (18)CH□ Rate alarm warning detection period (Un\G118 to Un\G125)

Set the cycle for checking the change rate of digital output values for each channel.

For details on the warning output function (rate alarm), refer to the following.

• Warning Output Function (Rate Alarm) ( Page 53, Section 4.10 (2))

#### (a) Setting range

- · Setting range: 10 to 5000ms
- Configure per 10ms unit. A value per 1ms unit is rounded off.
- In the channel where a setting value other than the above is set, an error occurs. The error code (70□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The time average, count average, and rate alarm operate in the setting before the error occurs.
- Set an integral multiple of the conversion cycle on each digital conversion method. If these areas are not set as the integral multiple, an alert is output at the maximum cycle satisfying the rate alarm warning detection period or less and the integral multiple of the conversion cycle.

Ex. Rate alarm warning detection period for the following condition

· Digital conversion method: Count average

Count average: 10 timesSampling cycle: 100ms/8CH

The conversion cycle is 1000ms (10 (times) × 100 (ms)). Therefore, set an integral multiple of 1000ms, such as 1000ms or 2000ms for the rate alarm warning detection period.



When a small value is set for the rate alarm upper limit value or the rate alarm lower limit value, even a slight disturbance may cause the alert output to turn on. To prevent this, set a long rate alarm warning detection period.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 0.



Since 0 is set as the default value, change the set value to use the rate alarm.

# (19)CH1 Rate alarm upper limit value (Un\G126) to CH8 Rate alarm lower limit value (Un\G141)

Set the change rate range of the digital output value for each channel.

For details on the warning output function (rate alarm), refer to the following.

• Warning Output Function (Rate Alarm) (Fage 53, Section 4.10 (2))

#### (a) Setting range

- Setting range: -32768 to 32767 (-3276.8 to 3276.7%/s) (Set in 0.1%/s)
- Ex. To set the rate alarm upper limit value to 30%/s, store 300 in the buffer memory.
- The range must satisfy the following condition: rate alarm upper limit value ≥ rate alarm lower limit value. In the channel where the condition is not satisfied, an error occurs. The error code (34□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The rate alarm operates in the setting before the error occurs.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 0.



Since 0 is set as the default value, change the set value to use the rate alarm.

#### (20)CH□ Input range setting (Un\G150 to Un\G157)

Set the CT input range for each channel.

For details on the input range setting, refer to the following.

• Input Range Setting (Page 34, Section 4.2)

| Inp                   | out range   | Setting value     |
|-----------------------|-------------|-------------------|
|                       | 0 to 5AAC   | 0000 <sub>H</sub> |
|                       | 0 to 50AAC  | 0001 <sub>H</sub> |
| Factory default range | 0 to 100AAC | 0002 <sub>H</sub> |
| Factory default range | 0 to 200AAC | 0003 <sub>H</sub> |
|                       | 0 to 400AAC | 0004 <sub>H</sub> |
|                       | 0 to 600AAC | 0005 <sub>H</sub> |
|                       | 0 to 5AAC   | 0010 <sub>H</sub> |
|                       | 0 to 50AAC  | 0011 <sub>H</sub> |
| Haar range            | 0 to 100AAC | 0012 <sub>H</sub> |
| User range            | 0 to 200AAC | 0013 <sub>H</sub> |
|                       | 0 to 400AAC | 0014 <sub>H</sub> |
|                       | 0 to 600AAC | 0015 <sub>H</sub> |

<sup>•</sup> In the channel where a setting value other than the above is set, an error occurs. The error code (10□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The setting range before the error occurs is applied.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

All channels are set to 0 to 5AAC (factory default range)  $(0000_{H})$ .



Since 0 to 5AAC (factory default range)  $(0000_{H})$  is set as the default value, change the setting depending on the connected CT.

#### (21)Mode switching setting (Un\G158, Un\G159)

Set the value for the mode to be switched to.

| Mode                     | Setting value     |                   |  |  |  |
|--------------------------|-------------------|-------------------|--|--|--|
| iviode                   | Un\G158           | Un\G159           |  |  |  |
| Normal mode              | 0964 <sub>H</sub> | 4144 <sub>H</sub> |  |  |  |
| Offset/gain setting mode | 4144 <sub>H</sub> | 0964 <sub>H</sub> |  |  |  |



When a value out of the setting range above is written, the mode is not switched and only the operating condition is changed.

#### (a) Mode switching

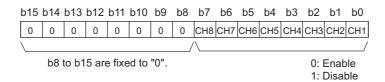
To perform the mode switching, turn off then on Operating condition setting request (Y9).

#### (b) After the mode is switched

When the mode is switched, these areas are cleared and Operating condition setting completed flag (X9) turns off.

After checking that Operating condition setting completed flag (X9) is off, turn off Operating condition setting request (Y9).

#### (c) Default value


The default value is set to 0.

#### (22)Dropout detection setting (Un\G160)

Set whether to enable or disable the dropout detection for each channel.

For details on the dropout function, refer to the following.

• Dropout Function ( Page 47, Section 4.8)



#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value


All channels are set to Disable (1).

#### (23)Dropout status flag (Un\G161)

The setting status of the dropout function can be checked for each channel.

For details on the dropout function, refer to the following.

• Dropout Function ( Page 47, Section 4.8)



#### (a) Dropout status flag (Un\G161) status

- When the dropout function is enabled, Dropout enabled (1) is stored in Dropout status flag (Un\G161).
- When the dropout function is disabled, Dropout disabled (0) is stored in Dropout status flag (Un\G161).

#### (24)CH□ Dropout value (Un\G162 to Un\G169)

Set the digital output value which is dropped out for each channel.

For details on the dropout function, refer to the following.

• Dropout Function ( Page 47, Section 4.8)

#### (a) Setting range

- Setting range: 1 to 10000
- When the value after digital conversion is the dropout value or less, 0 is stored in CH□ Digital output value (Un\G11 to Un\G18).

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 50.

# (25)CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233)

These are the areas for restoring the offset/gain setting value in the user range.

Data for restoring the offset/gain setting value of the user range is stored (saved) at operations below.

- · Writing the initial setting by a programming tool
- Turning off then on Operating condition setting request (Y9)<sup>\*1</sup>
- Turning off then on User range write request (YA) (in offset/gain setting mode)
- \*1 The data is not saved when the setting value is written to Mode switching setting (Un\G158, Un\G159).

When restoring the offset/gain setting value in the user range, set the data saved in these areas to the same area in the CT input module where the data is restored.

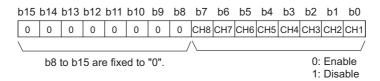
#### (a) Procedure for saving offset/gain values into the buffer memory area

- 1. Turn off then on Operating condition setting request (Y9).
- 2. Compare CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233) with the values in the range reference table. For the range reference table, refer to the following.
  - Range Reference Table ( Page 220, Section 10.11)
- 3. If the values are proper, save the values in CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233).

For setting procedure of the offset/gain values, refer to the following.

• Offset/gain Setting (Page 148, Section 8.5)

#### (b) Default value


All channels are set to 0.

#### (26)Peak current detection setting (Un\G300)

Set whether to enable or disable the peak current detection for each channel.

For details on the peak current detection function, refer to the following.

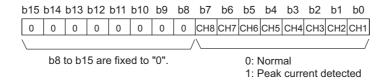
Peak Current Detection Function (Page 44, Section 4.7)



#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value


All channels are set to Disable (1).

#### (27)Peak current detection flag (Un\G301)

The peak current status can be checked with this flag for each channel.

For details on the peak current detection function, refer to the following.

Peak Current Detection Function (Page 44, Section 4.7)



#### (a) Peak current detection flag (Un\G301) status

- When CH□ Digital output value (Un\G11 to Un\G18) exceeds set CH□ Peak current detection value (Un\G326 to Un\G333) consecutively for the duration of CH□ Peak current detection time (Un\G318 to Un\G325) set in advance, Peak current detected (1) is stored in Peak current detection flag (Un\G301) of the corresponding channel.
- When a peak current is detected in even one of the channels for which the digital conversion or peak current detection are enabled, Peak current detection signal (X7) turns on.

#### (b) Clearing Peak current detection flag (Un\G301)

To clear Peak current detection flag (Un\G301), turn on then off Error clear request (YF) when the digital output value is the peak current detection value or less.

Peak current detection flag (Un\G301) is also cleared by turning on then off Operating condition setting request (Y9).

#### (28)CH□ Peak current detection count reset request (Un\G302 to Un\G309)

To set the number of peak current detection to 0, set Reset requested (1) for each channel. For details on the peak current detection function, refer to the following.

• Peak Current Detection Function (Page 44, Section 4.7)

| Peak current detection count reset request | Setting value |
|--------------------------------------------|---------------|
| Reset not requested                        | 0             |
| Reset requested                            | 1             |

#### (a) Default value

All channels are set to Reset not requested (0).

#### (29)CH□ Peak current detection count reset complete (Un\G310 to Un\G317)

The number of peak current detection can be checked for completion for each channel. For details on the peak current detection function, refer to the following.

• Peak Current Detection Function ( Page 44, Section 4.7)

When Reset requested (1) is set to CH Peak current detection count reset request (Un\G302 to Un\G309) and Peak current detection count (Un\G334 to Un\G341) is reset, Reset request completed (1) is stored in Peak current detection count reset complete (Un\G310 to Un\G317).

When Reset not requested (0) is set to CH $\square$  Peak current detection count reset request (Un\G302 to Un\G309), Reset not requested (0) is stored in CH $\square$  Peak current detection count reset complete (Un\G310 to Un\G317).

#### (30)CH□ Peak current detection time (Un\G318 to Un\G325)

Set the unit time (in ms) for peak current detection for each channel.

For details on the peak current detection function, refer to the following.

• Peak Current Detection function ( Page 44, Section 4.7)

#### (a) Setting range

- · Setting range: 10 to 10000ms
- · Configure per 10ms unit. A value per 1ms unit is rounded off.
- Set an integral multiple of the sampling cycle. If these areas are not set as the integral multiple, the peak current is detected at the maximum cycle satisfying "the peak current detection time or less and the integral multiple of the sampling cycle".

Ex. The actual peak current detection time for the following setting is 900ms (integral multiple of 100ms).

- Sampling cycle setting: 100ms/8CH
- · Peak current detection time: 950ms
- In the channel where a value of the sampling cycle or lower is set, an error occurs. The error code (36□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. The peak current detection time before the error occurs is applied.
- When Disable (1) is set to Peak current detection setting (Un\G300), the setting of CH□ Peak current detection time (Un\G318 to Un\G325) is ignored.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 1000 (ms).

#### (31)CH□ Peak current detection value (Un\G326 to Un\G333)

Set the digital output value detected as peak current for each channel.

For details on the peak current detection function, refer to the following.

• Peak Current Detection Function ( Page 44, Section 4.7)

#### (a) Setting range

- Setting range: 0 to 11999
- When Disable (1) is set to Peak current detection setting (Un\G300), the setting of CH□ Peak current detection value (Un\G326 to Un\G333) is ignored.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 0.



Since 0 is set as the default value, change the set value to use the peak current detection function.

#### (32)CH□ Peak current detection count (Un\G334 to Un\G341)

These are the areas for storing the number of peak current detection for each channel.

For details on the peak current detection function, refer to the following.

• Peak Current Detection Function (Page 44, Section 4.7)

#### (a) Counting the number of peak current detection

- When a digital output value exceeds set CH
   Peak current detection value (Un\G326 to Un\G333)
   consecutively for the duration of CH
   Peak current detection time (Un\G318 to Un\G325) set in advance,
   1 is added to CH
   Peak current detection count (Un\G334 to Un\G341). However, after the addition to the
   peak current detection count, 1 is not added unless the digital output value becomes less than the peak
   current detection value.
- The number of peak current detection is stored automatically in the non-volatile memory in the CT input module. The number of peak current detection continues to be counted until the reset of the number of the detection.

#### (b) Resetting the number of peak current detection

By setting Reset requested (1) to CH $\square$  Peak current detection count reset request (Un\G302 to Un\G309), 0 is stored in CH $\square$  Peak current detection count (Un\G334 to Un\G341).

#### (c) Measurement range of the number of peak current detection

· Measurement range: 0 to 32767

When the upper limit of the measurement range is exceeded, 0 is set again.

#### (33)CH□ Logging enable/disable setting (Un\G1000 to Un\G1007)

Set whether to enable or disable the logging function for each channel.

For details on the logging function, refer to the following.

• Logging Function (Page 58, Section 4.12)

| Logging enable/disable setting | Setting value |
|--------------------------------|---------------|
| Enable                         | 0             |
| Disable                        | 1             |

In the channel where a setting value other than the above is set, an error occurs. The error code (200 $\square$ ) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

All channels are set to Disable (1).

#### (34)CH□ Logging hold request (Un\G1008 to Un\G1015)

Use Logging hold request (Un\G1008 to Un\G1015) as a trigger to hold (stop) the logging at any timing during the logging for each channel.

For details on the logging function, refer to the following.

• Logging Function (Page 58, Section 4.12)

| Logging hold request | Setting value |
|----------------------|---------------|
| OFF                  | 0             |
| ON                   | 1             |

- In the channel where a setting value other than the above is set, an error occurs. The error code (207□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. However, the logging continues.
- When Disable (1) is set to CH□ Logging enable/disable setting (Un\G1000 to Un\G1007), the setting for CH□ Logging hold request (Un\G1008 to Un\G1015) is ignored.

#### (a) Operation of the logging hold processing

When Disable (0) is set to CH□ Level trigger condition setting (Un\G1056 to Un\G1063)

 When ON (1) is set to CH□ Logging hold request (Un\G1008 to Un\G1015), the logging hold processing starts.

When Above (1), Below (2), or Pass through (3) is set to CH□ Level trigger condition setting (Un\G1056 to Un\G1063)

When the trigger condition is satisfied after ON (1) is set to CH
 Logging hold request (Un\G1008 to
 Un\G1015), the logging hold processing starts. When the level trigger is enabled, use Logging hold
 request (Un\G1008 to Un\G1015) as an interlock to generate the level trigger.

If CH Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0), the hold status (stop) is cleared. Also, the logging resumes.

#### (b) Default value

All channels are set to OFF (0).

#### (35)CH□ Logging hold flag (Un\G1016 to Un\G1023)

Logging hold status can be checked with this flag for each channel.

For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

| Logging hold status | Stored value |
|---------------------|--------------|
| OFF                 | 0            |
| ON                  | 1            |

- When the logging status changes to the stop (hold) from the execution, ON (1) is stored.
- When the logging is resumed, OFF (0) is stored.

#### (36)CH□ Logging data setting (Un\G1024 to Un\G1031)

Set whether the logging target is the digital output value or the scaling value for each channel. For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

| Logging target       | Setting value |
|----------------------|---------------|
| Digital output value | 0             |
| Scaling value        | 1             |

- In the channel where a setting value other than the above is set, an error occurs. The error code (203 ) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.
- When Disable (1) is set to CH□ Logging enable/disable setting (Un\G1000 to Un\G1007), the setting for CH□ Logging data setting (Un\G1024 to Un\G1031) is ignored.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

All channels are set to Scaling value (1).

# (37)CH□ Logging cycle setting value (Un\G1032 to Un\G1039), CH□ Logging cycle unit setting (Un\G1040 to Un\G1047)

Set the cycle of storing the logging data for each channel.

Set a value for one cycle in CH□ Logging cycle setting value (Un\G1032 to Un\G1039).

Set a unit of one cycle in CHI Logging cycle unit setting (Un\G1040 to Un\G1047).

For details on the logging function, refer to the following.

• Logging Function (Page 58, Section 4.12)

#### (a) Setting range

 The setting range of CH□ Logging cycle setting value (Un\G1032 to Un\G1039) depends on the setting for CH□ Logging cycle unit setting (Un\G1040 to Un\G1047).

| Logging cycle | Setting value of CH□ Logging cycle  | Setting range of CH□ Logging cycle   |
|---------------|-------------------------------------|--------------------------------------|
| unit          | unit setting (Un\G1040 to Un\G1047) | setting value (Un\G1032 to Un\G1039) |
| Update cycle  | 0                                   | The setting is ignored.              |
| ms            | 1                                   | 10 to 32767                          |
| s             | 2                                   | 1 to 3600                            |

- If a setting above is outside the setting range, an error occurs. The error code (201□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.
- If the set logging cycle is shorter than the update cycle of the data to be logged, an error occurs. The error code (202□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.
- When Disable (1) is set to CH□ Logging enable/disable setting (Un\G1000 to Un\G1007), the setting value is ignored.

#### (b) Actual logging cycle

The actual logging cycle is an integral multiple of the conversion cycle of digital output value or scaling value. The conversion cycle of each conversion method is as follows.

| Digital<br>conversion<br>method | Conversion cycle                                                                                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling processing             | Sampling cycle                                                                                                                                     |
| Time average                    | Time set to CH□ Average time/Average number of times/ Moving average/Time constant settings (Un\G1 to Un\G8)  Sampling cycle  *1  × Sampling cycle |
| Count average                   | (Times set in (CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8)) × Sampling cycle                   |
| Moving average                  | Sampling cycle                                                                                                                                     |
| Primary delay filter            | Sampling cycle                                                                                                                                     |

<sup>\*1</sup> The value after the decimal point is rounded off.

If the set logging cycle is not an integral multiple of the conversion cycle, the logging function operates in the maximum cycle of an integral multiple within the setting range.

Ex. The processing time for the following settings is calculated below:

- Averaging process setting (Un\G24, Un\G25): Sampling processing (0)
- Sampling cycle setting (Un\G26): 100ms/8CH (3)
- CH□ Logging data setting (Un\G1024 to Un\G1031): Digital output value (0)
- CH□ Logging cycle setting value (Un\G1032 to Un\G1039): 1950
- CH□ Logging cycle unit setting (Un\G1040 to Un\G1047): ms (1)

The conversion cycle is 100ms. The actual logging cycle is 1900ms (an integral multiple of 100ms).



When Update cycle (0) is set to Logging cycle unit setting, the logging is performed in the conversion cycle of the logging target data. In this case, the setting of CH $\square$  Logging cycle setting value (Un\G1032 to Un\G1039) is ignored.

#### (c) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (d) Default value

- For CH Logging cycle setting value (Un\G1032 to Un\G1039), all channels are set to 300.
- For CHI Logging cycle unit setting (Un\G1040 to Un\G1047), all channels are set to Update cycle (0).

#### (38)CH□ Logging points after trigger (Un\G1048 to Un\G1055)

Set the data points recorded from hold trigger occurs until logging holds (stops) for each channel. For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

#### (a) Setting range

- Setting range: 1 to 5000
- In the channel where a setting value out of the above setting range is set, an error occurs. Then the error code (204

  ) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.
- When Disable (1) is set to CH□ Logging enable/disable setting (Un\G1000 to Un\G1007), the setting for CH□ Logging points after trigger (Un\G1048 to Un\G1055) is ignored.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 2500.

#### (39)CH□ Level trigger condition setting (Un\G1056 to Un\G1063)

When the level trigger is used with the logging function, set the occurrence condition of the hold trigger for each channel.

For details on the logging function, refer to the following.

Logging Function ( Page 58, Section 4.12)

| Setting      | Setting value |
|--------------|---------------|
| Disable      | 0             |
| Above        | 1             |
| Below        | 2             |
| Pass through | 3             |

- In the channel where a setting value other than the above is set, an error occurs. The error code (205□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.
- When Disable (1) is set to CH□ Logging enable/disable setting (Un\G1000 to Un\G1007), the setting for CH□ Level trigger condition setting (Un\G1056 to Un\G1063) is ignored.

#### (a) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (b) Default value

All channels are set to Disable (0).

#### (40)CH□ Trigger data (Un\G1064 to Un\G1071)

Set a buffer memory address monitored for the occurrence condition of level trigger.

For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

#### (a) Setting range

- Setting range: 0 to 4999
- In the channel where a setting value other than the above is set, an error occurs. The error code (206□) is stored in Latest error code (Un\G19) and Error flag (XF) turns on. Also, logging cannot be performed.



Set the following buffer memory addresses in the trigger data.

- CH□ Digital output value (Un\G11 to Un\G18): 11 to 18
- CH□ Scaling value (Un\G54 to Un\G61): 54 to 61
- Level data ☐ (Un\G1072 to Un\G1081): 1072 to 1081
- Buffer memory address with "R" in List of Buffer Memory Addresses For details on the buffer memory address, refer to the following.

List of Buffer Memory Addresses (FP Page 89, Section 6.1)

Do not set the buffer memory addresses with "R/W" or "W" or system area in List of Buffer Memory Addresses. If they are set, the normal operation of the CT input module may not be ensured.

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

| Channel | Default value | Buffer memory to be monitored |
|---------|---------------|-------------------------------|
| CH1     | 54            | CH1 Scaling value (Un\G54)    |
| CH2     | 55            | CH2 Scaling value (Un\G55)    |
| CH3     | 56            | CH3 Scaling value (Un\G56)    |
| CH4     | 57            | CH4 Scaling value (Un\G57)    |
| CH5     | 58            | CH5 Scaling value (Un\G58)    |
| CH6     | 59            | CH6 Scaling value (Un\G59)    |
| CH7     | 60            | CH7 Scaling value (Un\G60)    |
| CH8     | 61            | CH8 Scaling value (Un\G61)    |

#### (41)Level data ☐ (Un\G1072 to Un\G1081)

These are the areas for storing the data to be monitored when the level trigger of the logging function is used. 10 types of data are available: Level data 0 (Un\G1072) to Level data 9 (Un\G1081)

Use Level data □ to monitor device values in other than the CT input module such as the CPU module.

For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

#### (a) Setting range

Setting range: -32768 to 32767

#### (b) Default value

All are set to 0.

#### (c) Example of use

To monitor data register D100 in the CPU module and generate the level trigger in CH1, create a program as follows.

- 1. Set 1073 (Level data 1) to CH1 Trigger data (Un\G1064) (When Level data 1 is used).
- 2. Store the storage data of D100 in the program in Level data 1 (Un\G1073) as needed. (The start I/O number is set to 0<sub>H</sub> in the following program example.)



#### (42)CH□ Trigger setting value (Un\G1082 to Un\G1089)

Set a value where a level trigger is generated for each channel in the logging function.

For details on the logging function, refer to the following.

• Logging Function ( Page 58, Section 4.12)

#### (a) Setting range

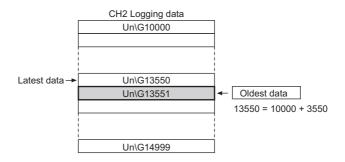
Setting range: -32768 to 32767

#### (b) Enabling the setting

Turn on then off Operating condition setting request (Y9) to enable the setting.

#### (c) Default value

All channels are set to 0.


#### (43)CH□ Head pointer (Un\G1090 to Un\G1097)

The buffer memory address where the oldest data is stored can be checked in CH $\square$  Logging data (Un\G5000 to Un\G44999) for each channel. The difference between the buffer memory address where the oldest data is stored and the start address in CH $\square$  Logging data (Un\G5000 to Un\G44999) is stored.

For details on the logging function, refer to the following.

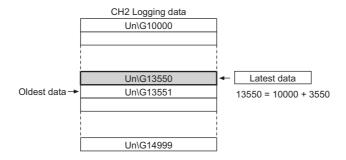
Logging Function (Page 58, Section 4.12)

Ex. When the value of CH2 Head pointer (Un\G1091) is 3551



#### Point P

- The oldest data is stored in the start address of CH□ Logging data (Un\G5000 to Un\G44999) while the first 5000 data is logged from when the logging is started. Therefore, the value in CH□ Head pointer (Un\G1090 to Un\G1097) is fixed to 0. After the 5001st data, the place of CH□ Head pointer (Un\G1090 to Un\G1097) moves one by one.
- When CH□ Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0), CH□ Head pointer (Un\G1090 to Un\G1097) is cleared.


#### (44)CH□ Latest pointer (Un\G1098 to Un\G1105)

The buffer memory address where the latest data is stored can be checked in CH $\square$  Logging data (Un\G5000 to Un\G44999) for each channel. The difference between the buffer memory address where the latest data is stored and the start address in CH $\square$  Logging data (Un\G5000 to Un\G44999) is stored.

For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

Ex. When the value of CH2 Latest pointer (Un\G1099) is 3550



### Point P

- CH□ Latest pointer (Un\G1098 to Un\G1105) moves one by one each time data is stored from when the logging starts.
- When CH□ Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0), CH□ Latest pointer (Un\G1098 to Un\G1105) is cleared.

#### (45)CH□ Number of logging data (Un\G1106 to Un\G1113)

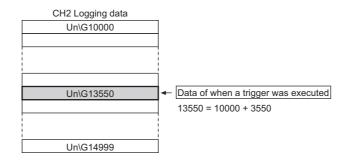
The number of data stored in the logging data storage area can be checked for each channel during the logging. For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

## Point P

- The number of logging data is added one by one each time data is stored from when the logging starts.
- When the 5000 data is stored in the logging data storage area, the value is overwritten from the head again. Therefore,
   CH□ Number of logging data (Un\G1106 to Un\G1113) is fixed to 5000.
- When CH□ Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0), CH□ Number of logging data (Un\G1106 to Un\G1113) is cleared.

#### (46)CH□ Trigger pointer (Un\G1114 to Un\G1121)


The address of buffer memory which stores the data of when a hold trigger was generated can be checked in CH $\square$  Logging data (Un\G5000 to Un\G44999) for each channel.

The difference between the address of buffer memory which stores the data of when a hold trigger was executed and the start address in CHI Logging data (Un\G5000 to Un\G44999) is stored.

For details on the logging function, refer to the following.

Logging Function (FP Page 58, Section 4.12)

Ex. When the value of CH2 Trigger pointer (Un\G1115) is 3550





When CH Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0), CH Trigger pointer (Un\G1114 to Un\G1121) is cleared.

#### (47)CH□ Logging cycle monitoring value (Un\G1122 to Un\G1145)

These are the areas for storing the actual logging cycle for each channel. The actual logging cycle is calculated from the update cycle of data to be logged.

When Operating condition setting request (Y9) is turned on then off, the logging cycle is stored in CH Logging cycle monitoring value (Un\G1122 to Un\G1145) in the corresponding channel where the logging function is enabled.

For details on the logging function, refer to the following.

Logging Function (Page 58, Section 4.12)

|          | b15 | to   | b0 |
|----------|-----|------|----|
| Un\G1122 |     | (s)  |    |
| Un\G1123 |     | (ms) |    |
| Un\G1124 |     | (µs) |    |

Ex. When the calculated value of logging cycle in CH1 is 6960ms

| Buffer memory address | Stored value |
|-----------------------|--------------|
| Un\G1122              | 6(s)         |
| Un\G1123              | 960(ms)      |
| Un\G1124              | 0(µs)        |

#### (48)CH□ Trigger detection time (Un\G1154 to Un\G1185)

The time that the hold trigger occurred is recorded for each channel.

For details on the logging function, refer to the following.

• Logging Function (Page 58, Section 4.12)

|          | b15      | to                   | b8 | b7 | to                          | b0 |
|----------|----------|----------------------|----|----|-----------------------------|----|
| Un\G1154 | First tv | o digits of the year |    |    | Last two digits of the year |    |
| Un\G1155 |          | Month                |    |    | Day                         |    |
| Un\G1156 |          | Hour                 |    |    | Minute                      |    |
| Un\G1157 |          | Second               |    |    | Day of the week             |    |

| Item                                                     |                            | Storage<br>example <sup>*1</sup> |                   |
|----------------------------------------------------------|----------------------------|----------------------------------|-------------------|
| First two digits of the year/Last two digits of the year |                            |                                  | 2011 <sub>H</sub> |
| Month/Day                                                | Stored in BCD code.        | 329 <sub>H</sub>                 |                   |
| Hour/Minute                                              |                            | 1035 <sub>H</sub>                |                   |
| Second                                                   |                            |                                  | 40 <sub>H</sub>   |
|                                                          | One of the following value |                                  |                   |
|                                                          | Sunday: 00                 | • Monday: 01                     |                   |
| Day of the week                                          | Tuesday: 02                | Wednesday: 03                    | 02 <sub>H</sub>   |
|                                                          | Thursday: 04               | • Friday: 05                     |                   |
|                                                          | Saturday: 06               |                                  |                   |

<sup>\*1</sup> Those are values when a hold trigger is detected at 10:35:40 on Tuesday, March 29th, 2011.

## Point P

- Time units shorter than one second are not recorded.
- When CH□ Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0), CH□ Trigger detection time (Un\G1154 to Un\G1185) is cleared.

#### (49)Latest address of error history (Un\G1800)

The start address of the latest error history is stored.

For details on the error history function, refer to the following.

• Error History Function (Page 72, Section 4.15)

#### (50)Error history No. □ (Un\G1810 to Un\G1969)

Up to 16 errors occurred in the module are recorded.

For details on the error history function, refer to the following.

• Error History Function (Page 72, Section 4.15)

|          | b15 | to                           | b8     | b7     | to                          | b0 |
|----------|-----|------------------------------|--------|--------|-----------------------------|----|
| Un\G1810 |     | Error code                   |        |        |                             |    |
| Un\G1811 |     | First two digits of the year |        |        | Last two digits of the year |    |
| Un\G1812 |     | Month                        |        |        | Day                         |    |
| Un\G1813 |     | Hour                         |        | Minute |                             |    |
| Un\G1814 |     | Second                       |        |        | Day of the week             |    |
| Un\G1815 |     |                              |        |        |                             |    |
| :        |     |                              | Syster | n area | a                           |    |
| Un\G1819 |     |                              |        |        |                             |    |

| Item                                                     | :                                                                           | Storage<br>example <sup>*1</sup>  |                   |  |  |
|----------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-------------------|--|--|
| First two digits of the year/Last two digits of the year |                                                                             |                                   | 2011 <sub>H</sub> |  |  |
| Month/Day                                                | Stored in BCD code.                                                         | Stored in BCD code.               |                   |  |  |
| Hour/Minute                                              |                                                                             | 1035 <sub>H</sub>                 |                   |  |  |
| Second                                                   |                                                                             |                                   | 40 <sub>H</sub>   |  |  |
|                                                          | One of the following values is stored for each day of the week in BCD code. |                                   |                   |  |  |
| Day of the week                                          | Sunday: 00                                                                  | • Monday: 01                      | 02 <sub>H</sub>   |  |  |
|                                                          | Tuesday: 02                                                                 | <ul> <li>Wednesday: 03</li> </ul> | 02 <sub>H</sub>   |  |  |
|                                                          | Thursday: 04                                                                | • Friday: 05                      |                   |  |  |
|                                                          | Saturday: 06                                                                |                                   |                   |  |  |

<sup>\*1</sup> Those are values when an error occurs at 10:35:40 on Tuesday, March 29th, 2011.

#### (51)CH□ Logging data (Un\G5000 to Un\G44999)

These are the areas for storing the logged data for each channel. Up to 5000 data can be stored per channel. After the 5001st data for CH $\square$  Logging data (Un\G5000 to Un\G44999) for each channel, the logging is continued with the data overwritten from the head.

For details on the logging function, refer to the following.

• Logging Function (Page 58, Section 4.12)

### Point P

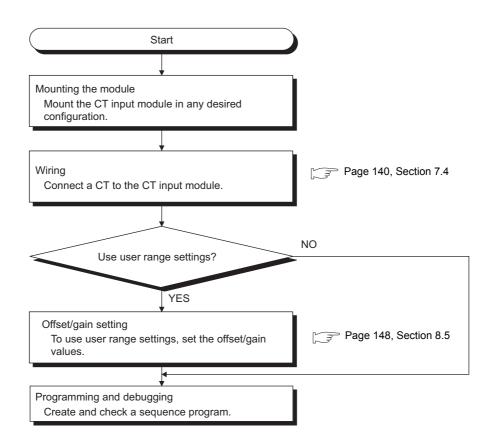
- When Operating condition setting request (Y9) is turned on then off, the logging data in all the channels are cleared.
- Even if CH□ Logging hold request (Un\G1008 to Un\G1015) is turned OFF (0) and the logging resumes, the logged data is not cleared.

# CHAPTER 7 SETTINGS AND THE PROCEDURE **BEFORE OPERATION**

This chapter describes the procedure prior to a CT input module operation, the name of each part of a CT input module, and wiring method.

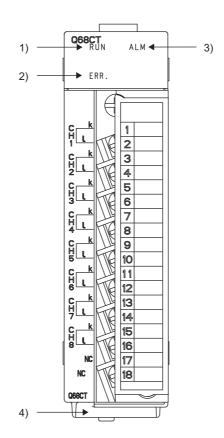
#### 7.1 **Handling Precautions**

This section describes the handling precautions for a CT input module.


- · Do not drop the module case, or do not subject it to strong impact.
- · Do not remove the printed-circuit board from the case. Doing so can cause module failure.
- · Do not disassemble the module. Doing so can cause module failure.
- · Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.
- Tighten the screws such as a module fixing screw within the specified torque range. Undertightening the screws can cause short circuit or malfunction. Overtightening can damage the screws and/or module, resulting in short circuit or malfunction.

| Screw                                | Tightening torque range |
|--------------------------------------|-------------------------|
| Module fixing screw (M3 screw)*1     | 0.36 to 0.48N • m       |
| Terminal block terminal screw (M3)   | 0.42 to 0.58N • m       |
| Terminal block mounting screw (M3.5) | 0.66 to 0.89N • m       |

The module can be easily fixed onto the base unit using the hook at the top of the module. However, it is recommended to secure the module with the module fixing screw if the module is subject to significant vibration.


- To mount the module, while pressing the module mounting lever located in the lower part of the module, fully insert the module fixing projection into the hole in the base unit and press the module until it snaps into place. Incorrect mounting may cause malfunction, failure or drop of the module.
- · Before handling the module, touch a grounded metal object to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.

# 7.2 Settings and the Procedure Before Operation



## 7.3 Part Names

This section describes the part names of a CT input module.



#### (1) Part names

The following table lists the part names of a CT input module.

| Number | Name                  | Description                                             |                                                                                         |  |
|--------|-----------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| 1)     | RUN LED (green)       | Indicates the operating status of the CT input module.  |                                                                                         |  |
|        |                       | On:                                                     | The module is operating normally.                                                       |  |
|        |                       | Flashing:                                               | In the offset/gain setting mode                                                         |  |
|        |                       | Off:                                                    | The 5V power off or watchdog timer error has occurred, or online module change enabled. |  |
| 2)     | ERR. LED (red)        | Indicates the errors and status of the CT input module. |                                                                                         |  |
|        |                       | On:                                                     | An error has occurred except for error code: 112*1                                      |  |
|        |                       | Flashing:                                               | Error code: 112 is occurring.*1                                                         |  |
|        |                       | Off:                                                    | The module is operating normally.                                                       |  |
| 3)     | ALM LED (red)         | Indicates the alarm status of the CT input module.      |                                                                                         |  |
|        |                       | On:                                                     | Alarm (process alarm/rate alarm) is occurring.*2                                        |  |
|        |                       | Flashing:                                               | Input signal error detection/ peak current detection is occurring.*2                    |  |
|        |                       | Off:                                                    | The module is operating normally.                                                       |  |
| 4)     | Serial number display | Displays the serial number printed on the rating plate. |                                                                                         |  |

<sup>\*1</sup> Error Code List ( Page 221, Section 11.1)

<sup>\*2</sup> Alarm Code List (FP Page 228, Section 11.2)

#### (2) Signal names of the terminal block

The following shows signal names of the terminal block.

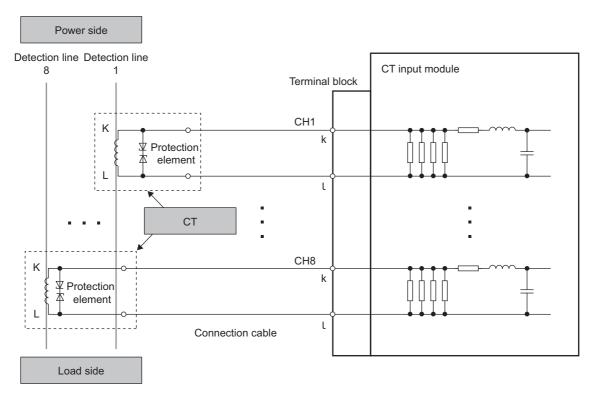
| CH1      | CH1<br>k |
|----------|----------|
| l        | CH2      |
| CH2<br>l | k<br>CH3 |
| CH3      | k        |
| CH4      | CH4<br>k |
| l        | CH5      |
| CH5<br>l | k        |
| CH6      | CH6<br>k |
| l        | CH7      |
| CH7<br>l | CH8      |
| CH8      | k        |
| ι        | NC       |
| NC       |          |

| Pin number |        | Signal name |
|------------|--------|-------------|
| 1          | CH1    | k           |
| 2          | - 0111 | l           |
| 3          | CH2    | k           |
| 4          | - CHZ  | l           |
| 5          | CH3    | k           |
| 6          | - 0113 | l           |
| 7          | - CH4  | k           |
| 8          | 0114   | l           |
| 9          | CH5    | k           |
| 10         | 0113   | l           |
| 11         | CH6    | k           |
| 12         | - 0110 | l           |
| 13         | CH7    | k           |
| 14         | - 0117 | l           |
| 15         | CH8    | k           |
| 16         | - Спо  | l           |
| 17         | NC     |             |
| 18         | NC     |             |

## 7.4 Wiring

This section describes the wiring precautions and module connection examples of a CT input module.

## **7.4.1** Wiring precautions


External wiring that is less likely to be affected by noise is one of the conditions for a highly reliable system that fully utilizes the CT input module.

This section describes the precautions on external wiring.

- Use separate cables for the AC control circuit and the CT input module's external I/O signals to avoid influence of AC side surges and induction.
- Do not locate external wires near the main circuit line, high-voltage circuit lines, and load circuit lines of devices other than programmable controllers. Also, do not bunch external wires with these lines. Otherwise, the external wires are more likely to be affected by noise, surges, and induction.
- · Ground shielded cables at one end.
- A solderless terminal with an insulation sleeve cannot be used on the terminal block. It is recommended to put a mark tube or an insulation tube on the wire connection part of a solderless terminal.

## 7.4.2 External wiring

The following describes the external wiring.



## Point P

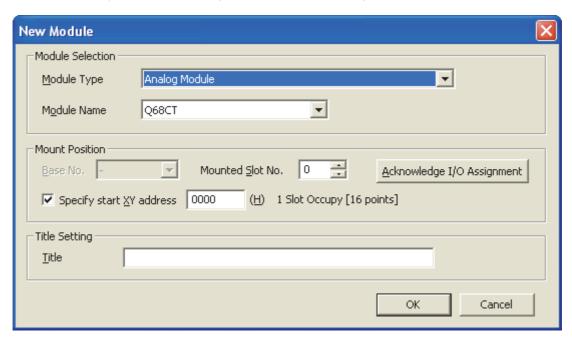
- Set Disable (1) to Conversion enable/disable setting (Un\G0) for unused channels. If Enable (0) is set to Conversion
  enable/disable setting (Un\G0) and the circuit between two terminals is kept open, an undefined digital value may be
  output.
- To replace a CT for a channel using a user range, set the offset/gain setting again.

# **CHAPTER 8** VARIOUS SETTINGS

This chapter describes the setting procedures of the CT input module.

#### Point P

- After writing the contents of the new module, parameter settings, and auto refresh settings into the CPU module, reset
  the CPU module and switch its status as STOP → RUN → STOP → RUN, or turn off and on the power supply to activate
  the settings.
- After writing the contents of the switch settings, reset the CPU module or turn off and on the power supply to activate the settings.


## 8.1 Adding a Module

Add the model name of the CT input module to use on the project.

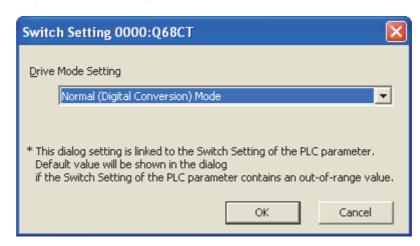
#### (1) Addition procedure

Open the "New Module" window.

Project window☆[Intelligent Function Module]⇔Right-click❖[New Module...]



| Item             |                  | Description                                                                  |
|------------------|------------------|------------------------------------------------------------------------------|
| Module Selection | Module Type      | Set [Analog Module].                                                         |
| Module Selection | Module Name      | Set the name of the module to mount.                                         |
|                  | Base No.         | Set the base No. where the module is mounted.                                |
| Mount Position   | Mounted Slot No. | Set the slot No. where the module is mounted.                                |
| Would Footboll   | Specify start XY | The start I/O number (hexadecimal) of the target module is set, according to |
|                  | address          | the mounted slot No. Any start I/O number can be set.                        |
| Title Setting    | Title            | Set any title.                                                               |


# 8.2 Switch Setting

Set the operation mode.

# (1) Setting procedure

Open the "Switch Setting" window.

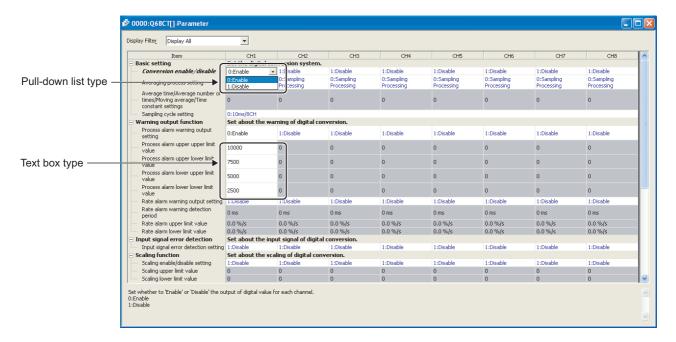
Project window⇔[Intelligent Function Module]⇔Module name⇔[Switch Setting]



| Item       | Description                            | Setting value                    |
|------------|----------------------------------------|----------------------------------|
| Drive Mode | Set the operation mode of the CT input | Normal (Digital Conversion) Mode |
| Setting    | module.                                | Offset-Gain Setting Mode         |

# 8.3 Parameter Setting

Set the parameters for each channel.


Setting parameters on the screen omits the parameter setting in a program.

#### (1) Setting procedure

Open the "Parameter" window.

#### 1. Start "Parameter".

Project window⇔[Intelligent Function Module]⇔Module name⇔[Parameter]

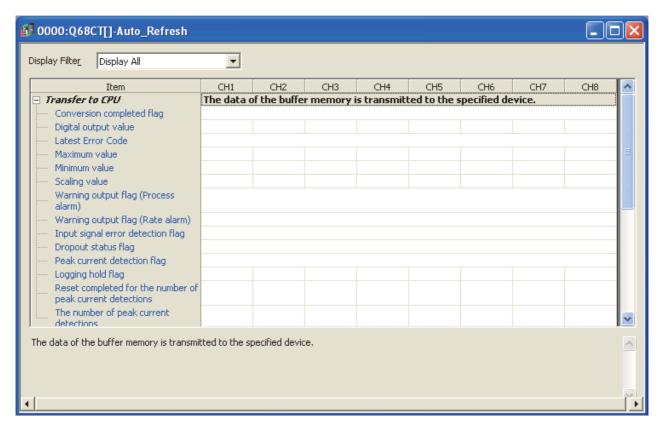


- 2. Double-click the item to change the setting, and input the setting value.
  - Items to input from the pull-down list
     Double-click the item to set to display the pull-down list. Select the item.
  - Items to input from the text box
     Double-click the item to set, and input the setting value.
- 3. For setting CH2 to CH8, follow the operation of the Step 2.

|                                         | Item                                                              |                                                                                                                                   | Setting value                                                                                                                                                                                                                            | Reference                |
|-----------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                         | Conversion enable/disable setting                                 | 0: Enable<br>1: Disable (d                                                                                                        | lefault value)                                                                                                                                                                                                                           | Page 35,<br>Section 4.3  |
|                                         | Averaging process setting                                         | 0: Sampling Processing (default value) 1: Time Average 2: Count Average 3: Moving Average 4: Primary Delay Filter                 |                                                                                                                                                                                                                                          | Page 36,                 |
|                                         |                                                                   | Time Average 40 to 5000ms (default value: 0)                                                                                      |                                                                                                                                                                                                                                          |                          |
| Basic setting                           | Average time/Average number of times/Moving average/Time constant | Count<br>Average                                                                                                                  | 4 to 500 Times (default value: 0)                                                                                                                                                                                                        | Section 4.5              |
|                                         | settings                                                          | Moving<br>Average                                                                                                                 | 2 to 1000 Times (default value: 0)                                                                                                                                                                                                       |                          |
|                                         |                                                                   | Primary<br>Delay Filter                                                                                                           | 10 to 10000ms (default value: 0)                                                                                                                                                                                                         |                          |
|                                         | Sampling cycle setting                                            | 0: 10ms/8CH (default value) 1: 20ms/8CH 2: 50ms/8CH 3: 100ms/8CH                                                                  |                                                                                                                                                                                                                                          | Page 35,<br>Section 4.4  |
|                                         | Process alarm warning output setting                              | 0: Enable<br>1: Disable (default value)                                                                                           |                                                                                                                                                                                                                                          |                          |
|                                         | Process alarm upper upper limit value                             | -32768 to 32767 (default value: 0)                                                                                                |                                                                                                                                                                                                                                          | Page 51,<br>Section 4.10 |
|                                         | Process alarm upper lower limit value                             | -32768 to 32767 (default value: 0)                                                                                                |                                                                                                                                                                                                                                          |                          |
|                                         | Process alarm lower upper limit value                             | -32768 to 32767 (default value: 0)                                                                                                |                                                                                                                                                                                                                                          |                          |
| Warning output function                 | Process alarm lower lower limit value                             | -32768 to 32767 (default value: 0)                                                                                                |                                                                                                                                                                                                                                          |                          |
| Turiction                               | Rate alarm warning output setting                                 | 0: Enable<br>1: Disable (default value)                                                                                           |                                                                                                                                                                                                                                          | Page 53,                 |
|                                         | Rate alarm warning detection period                               | 10 to 5000m                                                                                                                       | s (default value: 0)                                                                                                                                                                                                                     | Section 4.10             |
|                                         | Rate alarm upper limit value                                      | -3276.8 to 3276.7%/s (default value: 0)                                                                                           |                                                                                                                                                                                                                                          | (2)                      |
|                                         | Rate alarm lower limit value                                      | -3276.8 to 3276.7%/s (default value: 0)                                                                                           |                                                                                                                                                                                                                                          |                          |
| Input signal error detection            | Input signal error detection setting                              | 0: Enable<br>1: Disable (default value)                                                                                           |                                                                                                                                                                                                                                          | Page 42,<br>Section 4.6  |
|                                         | Scaling enable/disable setting                                    | 0: Enable<br>1: Disable (default value)                                                                                           |                                                                                                                                                                                                                                          | Page 48,<br>Section 4.9  |
| Scaling function                        | Scaling upper limit value                                         | -32000 to 32000 (default value: 0)                                                                                                |                                                                                                                                                                                                                                          |                          |
|                                         | Scaling lower limit value                                         | -32000 to 32000 (default value: 0)                                                                                                |                                                                                                                                                                                                                                          |                          |
| Input range setting Input range setting |                                                                   | 1: Factory Do<br>2: Factory Do<br>3: Factory Do<br>4: Factory Do<br>5: Factory Do<br>16: User Rar<br>17: User Rar<br>18: User Rar | efault Range 0 to 5AAC (default value) efault Range 0 to 50AAC efault Range 0 to 100AAC efault Range 0 to 200AAC efault Range 0 to 400AAC efault Range 0 to 600AAC efault Range 0 to 600AAC nge 0 to 5AAC nge 0 to 50AAC nge 0 to 100AAC | Page 34,<br>Section 4.2  |
| Dropout setting                         | Dropout detection setting                                         | 20: User Range 0 to 400AAC 21: User Range 0 to 600AAC  0: Enable 1: Disable (default value)                                       |                                                                                                                                                                                                                                          | Page 47,                 |
|                                         | Dropout value                                                     | 1 to 10000 (default value: 50)                                                                                                    |                                                                                                                                                                                                                                          | Section 4.8              |

| Item              |                                 | Setting value                                                                                                                                                                                             | Reference                |
|-------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Peak current      | Peak current detection setting  | 0: Enable<br>1: Disable (default value)                                                                                                                                                                   | Page 44,                 |
| detection setting | Peak current detection time     | 10 to 10000ms (default value: 1000)                                                                                                                                                                       | Section 4.7              |
|                   | Peak current detection value    | 0 to 11999 (default value: 0)                                                                                                                                                                             |                          |
|                   | Logging enable/disable setting  | 0: Enable<br>1: Disable (default value)                                                                                                                                                                   |                          |
|                   | Logging cycle setting value     | ms: 10 to 32767 (default value: 300)<br>s: 1 to 3600 (default value: 300)                                                                                                                                 |                          |
|                   | Logging cycle unit setting      | 0: Update Cycle (default value) 1: ms 2: s                                                                                                                                                                |                          |
|                   | Logging data setting            | Digital Output Value     Scaling Value (default value)                                                                                                                                                    |                          |
|                   | Logging points after trigger    | 1 to 5000 (default value: 2500)                                                                                                                                                                           |                          |
| Logging function  | Level trigger condition setting | 0: Disable (default value) 1: Above 2: Below 3: Pass Through                                                                                                                                              | Page 58,<br>Section 4.12 |
|                   | Trigger data                    | 0 to 4999 (CH1 default value: 54) (CH2 default value: 55) (CH3 default value: 56) (CH4 default value: 57) (CH5 default value: 58) (CH6 default value: 59) (CH7 default value: 60) (CH8 default value: 61) |                          |
|                   | Trigger setting value           | -32768 to 32767 (default value: 0)                                                                                                                                                                        |                          |

# 8.4 Auto Refresh


This function transfers data in the buffer memory to specified devices.

Programming of reading/writing data is unnecessary.

#### (1) Setting procedure

Open the "Auto\_Refresh" window.

- 1. Start "Auto\_Refresh".
  - Project window [Intelligent Function Module] Module Name [Auto\_Refresh]
- 2. Click the item to set, and input the destination device for auto refresh.





Available devices are X, Y, M, L, B, T, C, ST, D, W, R, and ZR.

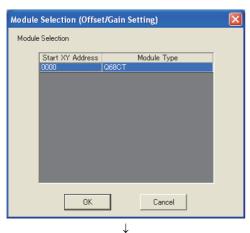
When a bit device X, Y, M, L, or B is used, set a number that is divisible by 16 points (example: X10, Y120, M16). Data in the buffer memory are stored in 16 points of devices starting from the set device No. (Example: When X10 is set, the data are stored in X10 to X1F).

# 8.5 Offset/gain Setting

When using a user range, configure the offset/gain setting with the following operations.

When using a factory default range, the offset/gain setting is not required.

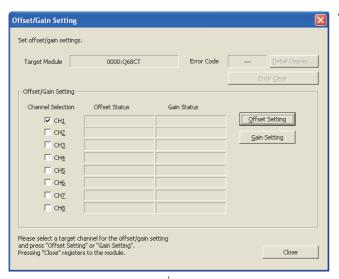
The offset/gain setting can be configured from the following two types of operations.


- · Setting from "Offset/Gain Setting" of GX Works2
- · Setting from a program

# 8.5.1 Setting from "Offset/Gain Setting" of GX Works2

#### (1) Setting procedure

Open the "Offset/Gain Setting" window.

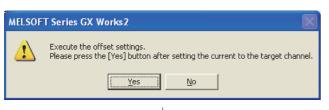

🏷 [Tool]➪[Intelligent Function Module Tool]➪[Analog Module]➪[Offset/Gain Setting...]



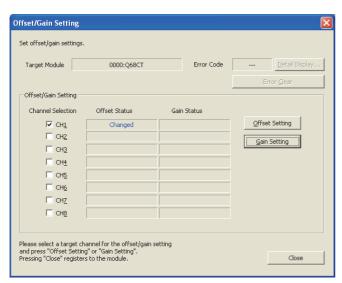

1. Select the module to configure the offset/gain setting, and click the OK button.



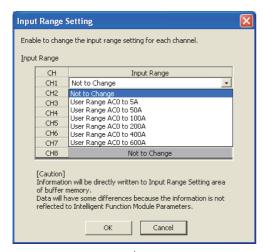
2. Click the Yes button.




Select the channel to use the offset/gain setting, and click the Offset Setting button.

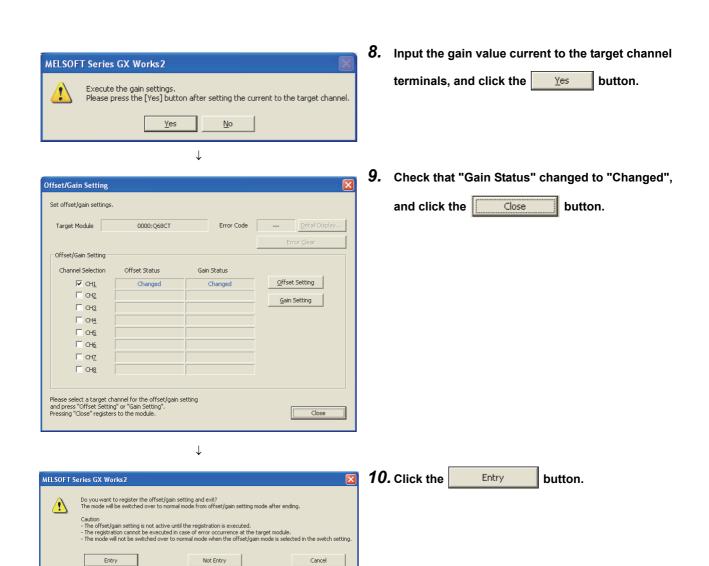



4. Select a user range according to the type of the CT to be connected, and click the OK button.


To use the input range set at the beginning of "Offset/Gain Setting", select "Not to Change" and click the OK button.



Input the offset value current to the target channel terminals, and click the Yes button.



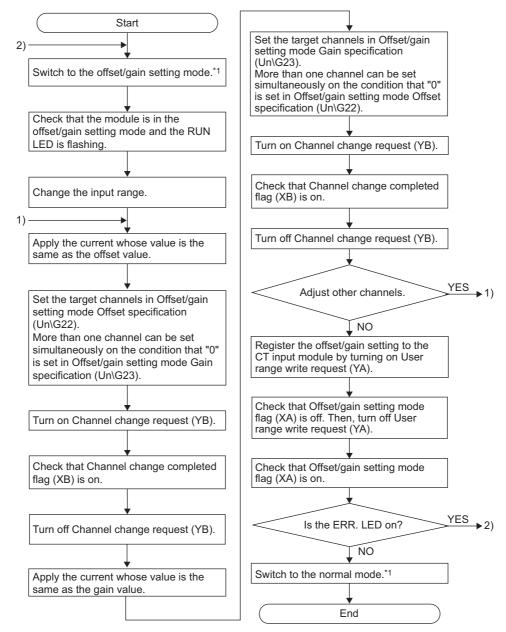

6. Check that "Offset Status" changed to "Changed", and click the Gain Setting button.



7. Select "Not to Change", and click the button.\*1

\*1 When setting a gain only, set an input range according to the Step 4.




↓ End

The same input range must be selected for an offset setting and gain setting for the same channel.

# **8.5.2** Setting from a program

## (1) Setting procedure

The following is the procedure to configure the offset/gain setting using a sequence program.



- \*1 The following are the methods to switch modes (normal mode → offset/gain setting mode → normal mode).
  - Dedicated Instruction (G(P).OFFGAN (FP Page 234, Appendix 1.1))
  - Setting Mode switching setting (Un\G158, Un\G159) and turning on then off Operating condition setting request (Y9) (Page 118, Section 6.2 (21))
  - Intelligent Function Module Switch Setting (Page 143, Section 8.2)

# Point P

- Configure the offset/gain setting in accordance with the actual use situation.
- Offset and gain values are recorded in the non-volatile memory in the CT input module by turning on then off User range write request (YA). The values are not deleted even after the power is turned off. If the values are written 26 times in succession, an error (error code: 162) occurs and the error code is stored in Latest error code (Un\G19) to prevent an improper write to non-volatile memory.
- Configure the offset/gain setting in the range satisfying the condition described in the following section. If a setting is out
  of the specified range, the maximum resolution and accuracy of the module may not fall within the range described in the
  performance specifications list.
  - I/O conversion characteristics (Page 27, Section 3.2.2)
- The offset/gain setting can be configured for multiple channels at the same time; however, the offset setting and gain setting must be configured separately. If the settings are configured at the same time, an error (error code: 500) occurs and the ERR. LED turns on.
- When User range write request (YA) is turned on, the integrity of the offset and gain values are checked. If an error (error code: 40□) occurs in even one channel, the offset and gain values are not written to the module. Check the value in Latest error code (Un\G19), and take the action described in the following section to start over the offset/gain setting.
  - Error Code List ( Page 221, Section 11.1)
- When the mode is switched from the offset/gain setting mode to the normal mode by the setting of the dedicated instruction (G(P).OFFGAN) or Mode switching setting (Un\G158, Un\G159), Module READY (X0) turns on. Note that initial settings are processed at this timing if any sequence program is set to configure initial settings when Module READY (X0) turns on.
- To activate the intelligent function module switch setting after writing the setting to the CPU module, reset the CPU module or turn off then on the power supply.
- If a user range is not set in CH□ Input range setting (Un\G150 to Un\G157), an error (error code: 511) occurs.
- When the mode is switched from the offset/gain setting mode to the normal mode, the stored value of the buffer memory
  is restored to the status before the switching. The CT input module operates with the restored buffer memory values.
- If a gain setting is configured for input whose digital value exceeds 10000, the accuracy of digital values cannot be guaranteed. Configure an offset/gain setting so that the digital values are within 0 to 10000.
- When the mode is switched using the dedicated instruction (G(P).OFFGAN) or Mode switching setting (Un\G158, Un\G159), the digital conversion stops. To resume the digital conversion, turn on then off Operating condition setting request (Y9) after switching the mode to the normal mode.

### (2) Program example

#### (a) Device

Ex. The I/O numbers of the CT input module are X/Y00 to 0F.


The following table lists the devices used in the program example.

| Device | Function                                                                        |  |
|--------|---------------------------------------------------------------------------------|--|
| M0     | Channel selection                                                               |  |
| M1     | Offset setting                                                                  |  |
| M2     | Gain setting                                                                    |  |
| M3     | Channel change command                                                          |  |
| M4     | Command to write offset/gain setting values to the module                       |  |
| M5     | Mode switching                                                                  |  |
| M10    | Input range change command                                                      |  |
| D0     | Channel-specified storage device                                                |  |
| D1     | Storage device for the setting value of the dedicated instruction (G(P).OFFGAN) |  |

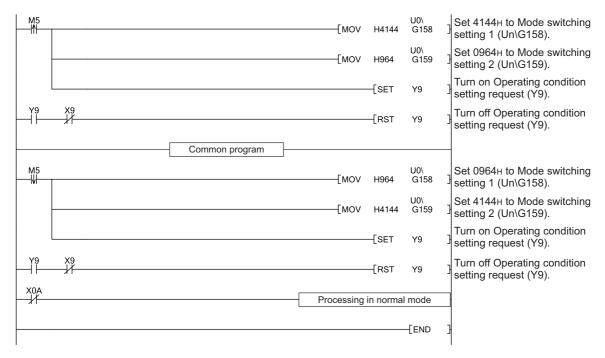
#### (b) Switching the mode using the dedicated instruction (G(P).OFFGAN)

This sequence program executes the following operations.

- Switching the mode from the normal mode to the offset/gain setting mode using the dedicated instruction (G(P).OFFGAN)
- · Switching the channels for which the offset/gain settings are configured
- Writing the offset/gain values to the CT input module
- Switching the mode from the offset/gain setting mode back to the normal mode using the dedicated instruction (G(P).OFFGAN)



- \*1 Set one of the following values (input range) according to the specifications of the CT to be connected.
  - 0 to 5AAC (0010<sub>H</sub>)
- 0 to 50AAC (0011<sub>H</sub>)
- 0 to 100AAC (0012<sub>H</sub>)
- 0 to 200AAC (0013<sub>H</sub>)


- 0 to 400AAC (0014<sub>H</sub>)
- 0 to 600AAC (0015<sub>H</sub>)

# Point P

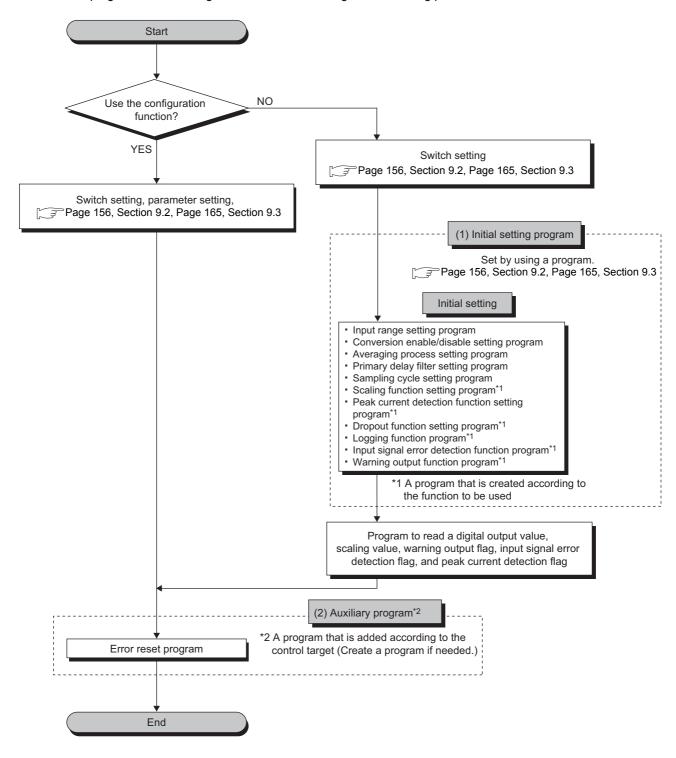
The program enclosed by the dotted line is the common programs among the following three programs.

- Switching the mode using the dedicated instruction (G(P).OFFGAN)
- Switching the mode by setting Mode switching setting (Un\G158, Un\G159) and using Operating condition setting request (Y9)
- · Switching the mode using the intelligent function module switch setting

# (c) Switching the mode by setting Mode switching setting (Un\G158, Un\G159) and using Operating condition setting request (Y9)



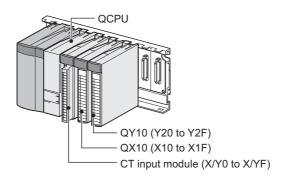
#### (d) Switching the mode using the intelligent function module switch setting


The programs other than the common program are not necessary.

# CHAPTER 9 PROGRAMMING

This chapter describes the programming procedure and basic programs for the CT input module.

# 9.1 Programming Procedure


Create a program to execute digital conversion, according to the following procedure.



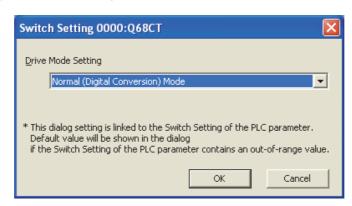
# 9.2 When Using the Module in a Standard System Configuration

This section introduces program examples where the following system configuration and conditions apply.

#### (1) System configuration



#### (2) Programming condition


Digital output values are read in the following conditions.

- · Used channel: CH1 to CH3
- Input range: Factory default range 0 to 5AAC
- · Digital conversion method in CH1: Sampling processing
- Digital conversion method in CH2: Count average processing (50 times)
- Digital conversion method in CH3: Primary delay filter (Time constant: 100ms)
- If an error occurs in the module, an error code is displayed in BCD notation

#### (3) Switch setting

Set the operation mode.

Project window [Intelligent Function Module] [Q68CT] [Switch Setting]

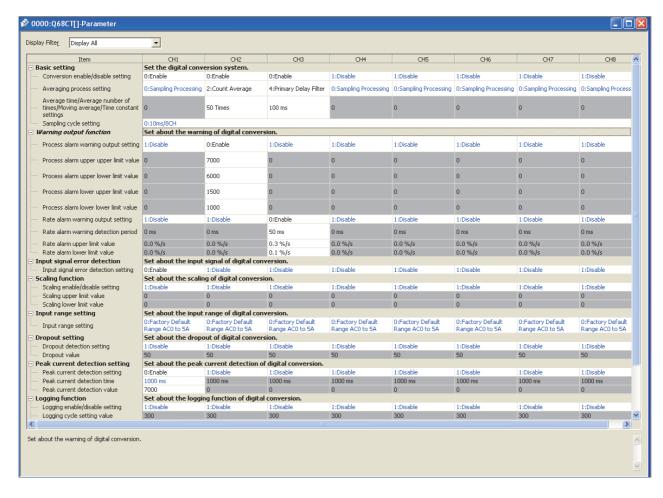


# (4) Initial setting

# (a) Channel setting

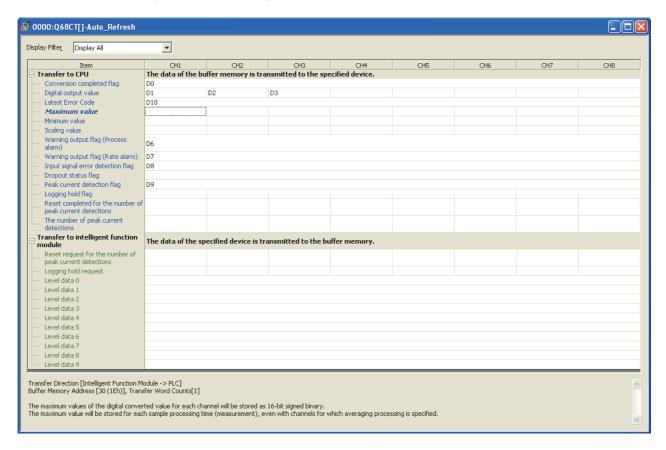
| Item                                                                       | Setting                            |                                    |                                    |                                    |
|----------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| item                                                                       | CH1                                | CH2                                | CH3                                | CH4 to CH8                         |
| Conversion enable/disable setting                                          | Enable                             | Enable                             | Enable                             | Disable                            |
| Averaging process setting                                                  | Sampling<br>Processing             | Count Average                      | Primary Delay<br>Filter            | Sampling<br>Processing             |
| Average time/Average number of times/Moving average/Time constant settings | 0                                  | 50 Times                           | 100ms                              | 0                                  |
| Sampling cycle setting                                                     | 10ms/8CH                           |                                    |                                    |                                    |
| Process alarm warning output setting                                       | Disable                            | Enable                             | Disable                            | Disable                            |
| Process alarm upper upper limit value                                      | 0                                  | 7000                               | 0                                  | 0                                  |
| Process alarm upper lower limit value                                      | 0                                  | 6000                               | 0                                  | 0                                  |
| Process alarm lower upper limit value                                      | 0                                  | 1500                               | 0                                  | 0                                  |
| Process alarm lower lower limit value                                      | 0                                  | 1000                               | 0                                  | 0                                  |
| Rate alarm warning output setting                                          | Disable                            | Disable                            | Enable                             | Disable                            |
| Rate alarm warning detection period                                        | 0                                  | 0                                  | 50ms                               | 0                                  |
| Rate alarm upper limit value                                               | 0                                  | 0                                  | 0.3%/s                             | 0                                  |
| Rate alarm lower limit value                                               | 0                                  | 0                                  | 0.1%/s                             | 0                                  |
| Input signal error detection setting                                       | Enable                             | Disable                            | Disable                            | Disable                            |
| Input range setting                                                        | Factory Default<br>Range 0 to 5AAC |
| Peak current detection setting                                             | Enable                             | Disable                            | Disable                            | Disable                            |
| Peak current detection time                                                | 1000ms                             | 1000ms                             | 1000ms                             | 1000ms                             |
| Peak current detection value                                               | 7000                               | 0                                  | 0                                  | 0                                  |

# 9.2.1 Program example when using parameters of the intelligent function module


# (1) Device for user

| Device     | Description                                    |                          |  |
|------------|------------------------------------------------|--------------------------|--|
| D0         | Conversion completed flag                      |                          |  |
| D1 (D11)   | CH1 Digital output value                       |                          |  |
| D2 (D12)   | CH2 Digital output value                       |                          |  |
| D3 (D13)   | CH3 Digital output value                       |                          |  |
| D6         | Warning output flag (Process alarm)            |                          |  |
| D7         | Warning output flag (Rate alarm)               |                          |  |
| D8         | Input signal error detection flag              |                          |  |
| D9         | Peak current detection flag                    |                          |  |
| D10        | Latest error code                              |                          |  |
| MO         | CH1 Conversion completed flag                  |                          |  |
| M1         | CH2 Conversion completed flag                  |                          |  |
| M2         | CH3 Conversion completed flag                  |                          |  |
| M10 to M25 | Warning output flag (Process alarm)            |                          |  |
| M30 to M45 | Warning output flag (Rate alarm)               |                          |  |
| M50 to M57 | Input signal error detection flag              |                          |  |
| M70 to M77 | Peak current detection flag                    |                          |  |
| X0         | Module READY                                   |                          |  |
| XC         | Input signal error detection signal            |                          |  |
| XE         | Conversion completed flag                      | CT input module (X/Y0 to |  |
| XF         | Error flag                                     | X/YF)                    |  |
| Y9         | Operating condition setting request            |                          |  |
| YF         | Error clear request                            |                          |  |
| X10        | Digital output value read command input signal |                          |  |
| X13        | Input signal error detection reset signal      | QX10 (X10 to X1F)        |  |
| X14        | Error reset signal                             | ]                        |  |
| Y20 to Y2F | Error code display (BCD 4 digits)              | QY10 (Y20 to Y2F)        |  |

#### (2) Parameter setting


Set the contents of initial settings to the parameters.

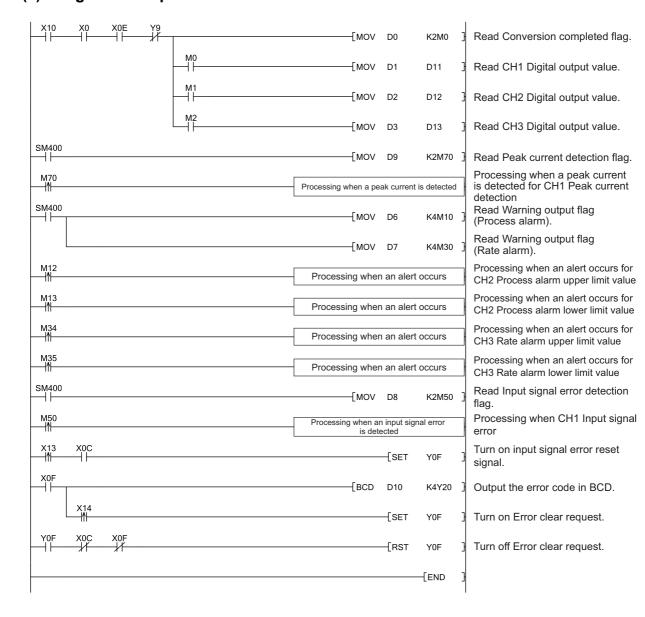
Project window⇔ [Intelligent Function Module]⇔ [Q68CT]⇔ [Parameter]



# (3) Auto refresh setting

Project window⇔ [Intelligent Function Module]⇔ [Q68CT]⇔ [Auto\_Refresh]



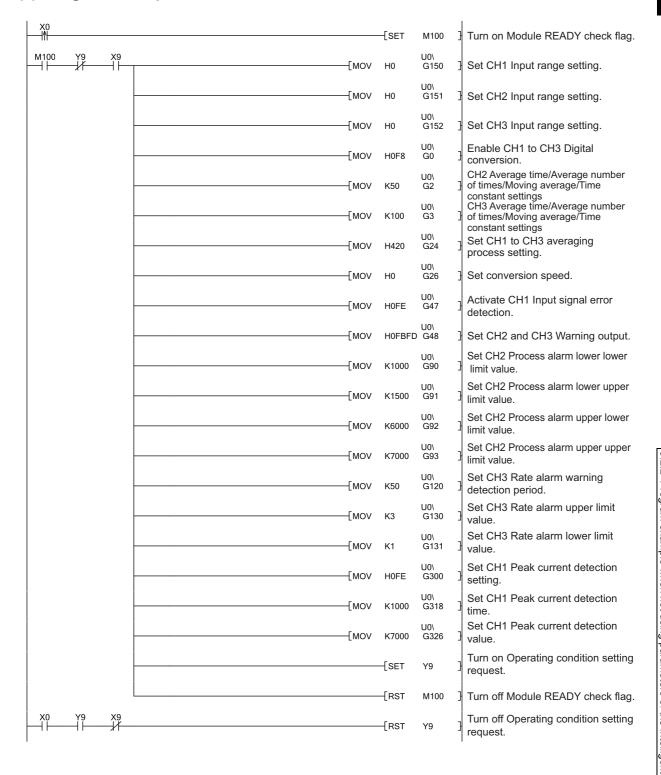

## (4) Writing the parameters of intelligent function module

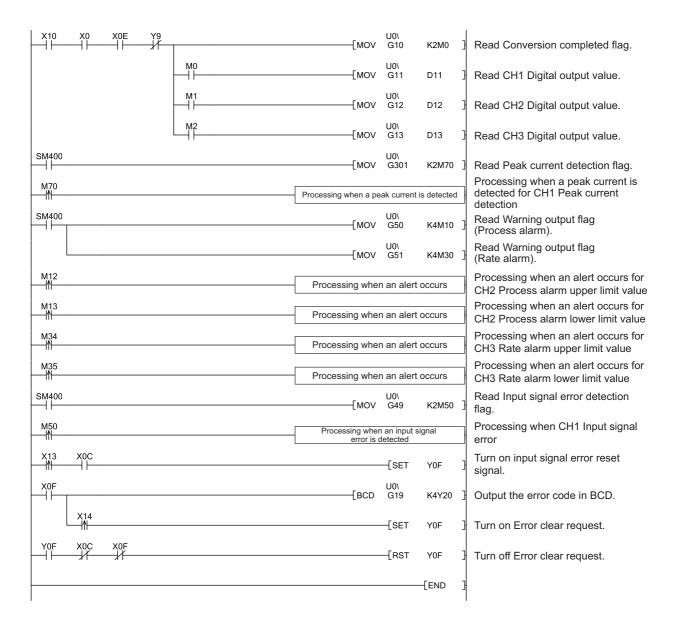
Write the set parameters to the CPU module, and reset the CPU module or turn off then on the programmable controller power supply.

(Online) (Write to PLC...)



## (5) Program example





# 9.2.2 Program example when not using parameters of the intelligent function module

# (1) Device for user

| Device     | Description                                    |                                |  |  |
|------------|------------------------------------------------|--------------------------------|--|--|
| D11        | CH1 Digital output value                       |                                |  |  |
| D12        | CH2 Digital output value                       | CH2 Digital output value       |  |  |
| D13        | CH3 Digital output value                       |                                |  |  |
| M0         | CH1 Conversion completed flag                  |                                |  |  |
| M1         | CH2 Conversion completed flag                  |                                |  |  |
| M2         | CH3 Conversion completed flag                  |                                |  |  |
| M10 to M25 | Warning output flag (Process alarm)            |                                |  |  |
| M30 to M45 | Warning output flag (Rate alarm)               |                                |  |  |
| M50 to M57 | Input signal error detection flag              |                                |  |  |
| M70 to M77 | Peak current detection flag                    | Peak current detection flag    |  |  |
| M100       | Module READY check flag                        |                                |  |  |
| X0         | Module READY                                   |                                |  |  |
| X9         | Operating condition setting completed flag     |                                |  |  |
| XC         | Input signal error detection signal            | CT in a standard (VAVA to      |  |  |
| XE         | Conversion completed flag                      | CT input module (X/Y0 to X/YF) |  |  |
| XF         | Error flag                                     | 7011)                          |  |  |
| Y9         | Operating condition setting request            |                                |  |  |
| YF         | Error clear request                            |                                |  |  |
| X10        | Digital output value read command input signal |                                |  |  |
| X13        | Input signal error detection reset signal      | QX10 (X10 to X1F)              |  |  |
| X14        | Error reset signal                             |                                |  |  |
| Y20 to Y2F | Error code display (BCD 4 digits)              | QY10 (Y20 to Y2F)              |  |  |

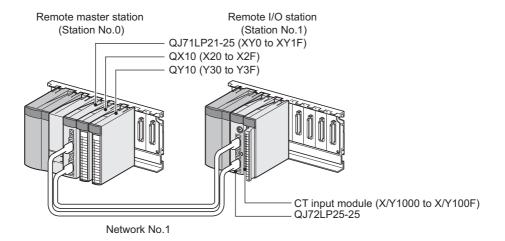
#### (2) Program example





# 9.3 When Using the Module on the Remote I/O Network

# 9.3 When Using the Module on the Remote I/O Network


This section describes the system configuration and program examples of when the CT input module is used on a remote I/O network.



For details on the MELSECNET/H remote I/O network, refer to the following.

Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O network)

#### (1) System configuration



## (2) Programming condition

Digital output values are read in the following conditions.

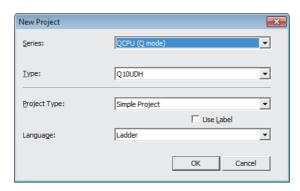
- · Used channel: CH1 to CH3
- · Input range: Factory default range 0 to 5AAC
- · Digital conversion method in CH1: Sampling processing
- Digital conversion method in CH2: Count average processing (50 times)
- Digital conversion method in CH3: Primary delay filter (Time constant: 100ms)
- If an error occurs in the module, an error code is displayed in BCD notation

# (3) Switch setting

For the switch setting, refer to the procedure described in the following section. Page 169, Section 9.3 (6)

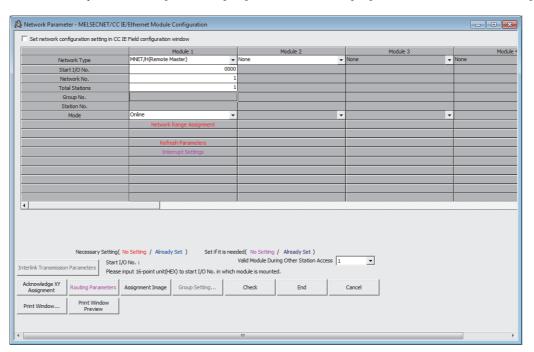
# (4) Initial setting

# (a) Channel setting


| Item                                                                       | Setting                            |                                    |                                    |                                    |
|----------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| item                                                                       | CH1                                | CH2                                | CH3                                | CH4 to CH8                         |
| Conversion enable/disable setting                                          | Enable                             | Enable                             | Enable                             | Disable                            |
| Averaging process setting                                                  | Sampling<br>Processing             | Count Average                      | Primary Delay<br>Filter            | Sampling<br>Processing             |
| Average time/Average number of times/Moving average/Time constant settings | 0                                  | 50 Times                           | 100ms                              | 0                                  |
| Sampling cycle setting                                                     | 10ms/8CH                           |                                    |                                    |                                    |
| Process alarm warning output setting                                       | Disable                            | Enable                             | Disable                            | Disable                            |
| Process alarm upper upper limit value                                      | 0                                  | 7000                               | 0                                  | 0                                  |
| Process alarm upper lower limit value                                      | 0                                  | 6000                               | 0                                  | 0                                  |
| Process alarm lower upper limit value                                      | 0                                  | 1500                               | 0                                  | 0                                  |
| Process alarm lower lower limit value                                      | 0                                  | 1000                               | 0                                  | 0                                  |
| Rate alarm warning output setting                                          | Disable                            | Disable                            | Enable                             | Disable                            |
| Rate alarm warning detection period                                        | 0                                  | 0                                  | 50ms                               | 0                                  |
| Rate alarm upper limit value                                               | 0                                  | 0                                  | 0.3%/s                             | 0                                  |
| Rate alarm lower limit value                                               | 0                                  | 0                                  | 0.1%/s                             | 0                                  |
| Input signal error detection setting                                       | Enable                             | Disable                            | Disable                            | Disable                            |
| Input range setting                                                        | Factory Default<br>Range 0 to 5AAC |
| Peak current detection setting                                             | Enable                             | Disable                            | Disable                            | Disable                            |
| Peak current detection time                                                | 1000ms                             | 1000ms                             | 1000ms                             | 1000ms                             |
| Peak current detection value                                               | 7000                               | 0                                  | 0                                  | 0                                  |

# (5) Setting on the master station

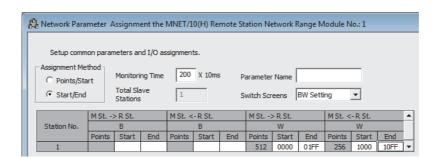
1. Create a project on GX Works2.


Select "QCPU (Q mode)" for "Series", and select the CPU module used for "Type".

[Project]
[New...]

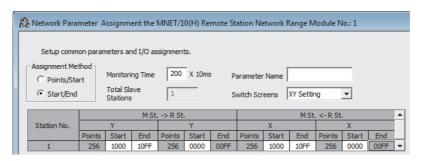


2. Display the network parameter setting window, and configure the setting as follows.


Project window⇔ [Parameter] ⇔ [Network Parameter] ⇒ [Ethernet/CC IE/MELSECNET]

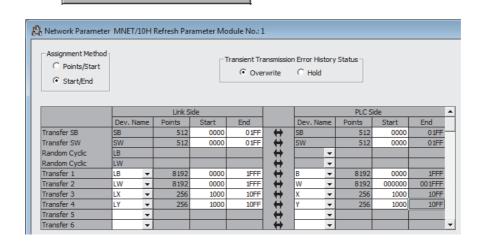


3. Display the network range assignment setting window, and configure the setting as follows.


Project window ⇒ [Parameter] ⇒ [Network Parameter] ⇒ [Ethernet/CC IE/MELSECNET]

⇒ Network Range Assignment button




Project window⇔ [Parameter] ⇔ [Network Parameter] ⇔ [Ethernet/CC IE/MELSECNET]





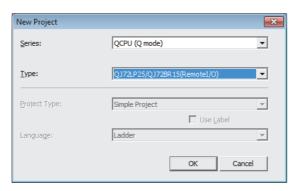
4. Display the refresh parameter setting window, and configure the setting as follows.





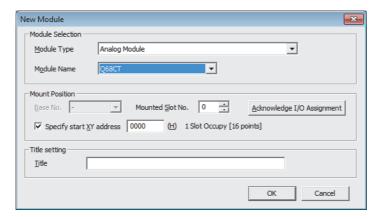
**5.** Write the set parameters to the CPU module on the master station. Then reset the CPU module or turn off and on the power supply of the programmable controller.

[Online]
[Write to PLC...]

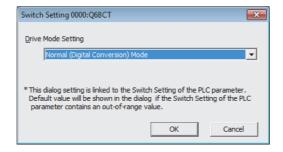



#### (6) Setting on the remote I/O station

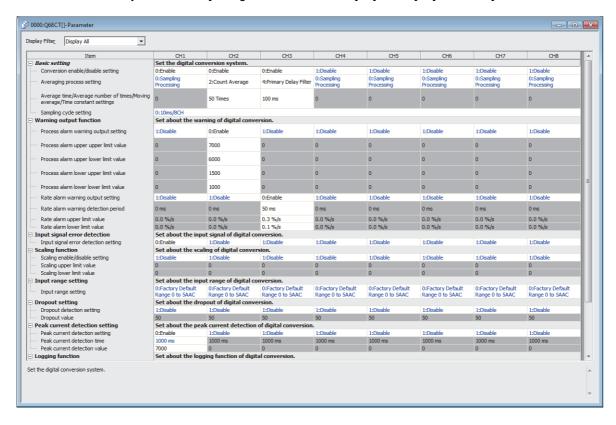
1. Create a project on GX Works2.


Select "QCPU (Q mode)" for "Series", and select "QJ72LP25/QJ72BR15 (Remotel/O)" for "Type".

[Project]
[New...]

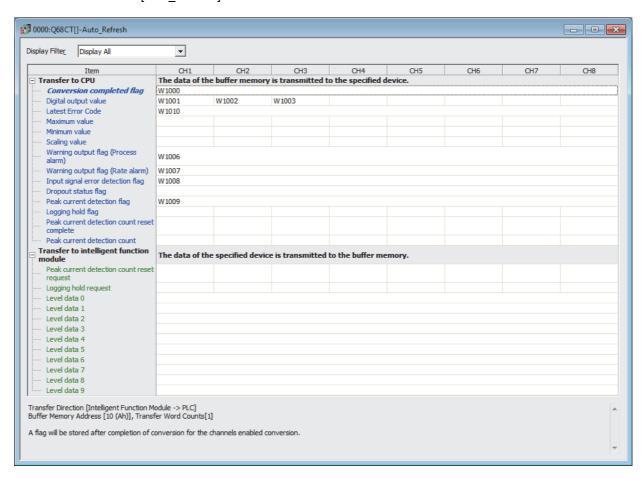



## 2. Add the Q68CT to the project on GX Works2.


Project window [Intelligent Function Module] Right-click [New Module...]



- 3. Display the Q68CT "Switch Setting" window, and configure the setting as follows.
  - Project window [Intelligent Function Module] [Q68CT] [Switch Setting]




- **4.** Display the Q68CT initial setting window, and configure the setting as follows. When creating a program without using parameters of an intelligent function module, skip this procedure.
  - Project window[Intelligent Function Module]
    □ [Q68CT]
    □ [Parameter]



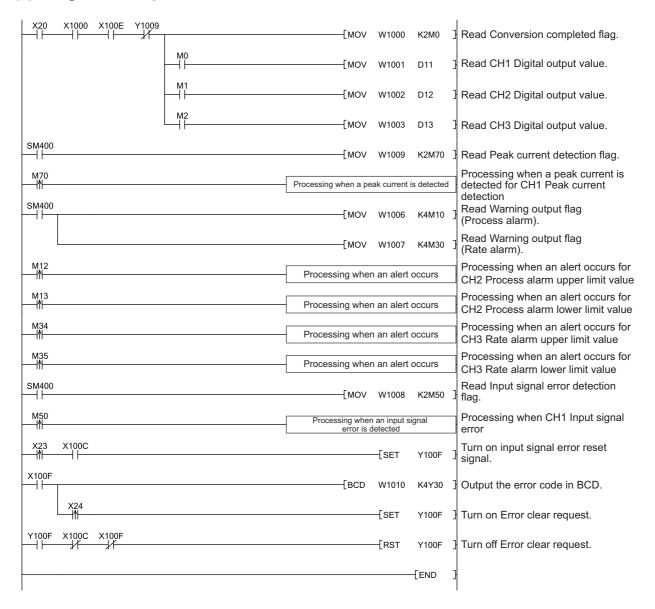
5. Display the Q68CT auto refresh setting window, and configure the setting as follows. When creating a program without using parameters of an intelligent function module, skip this procedure.

Project window ⇒ [Intelligent Function Module] ⇒ [Q68CT]
⇒ [Auto Refresh]



6. Write the set parameters to the remote I/O module, and reset the remote I/O module.

(Online) (Write to PLC...)



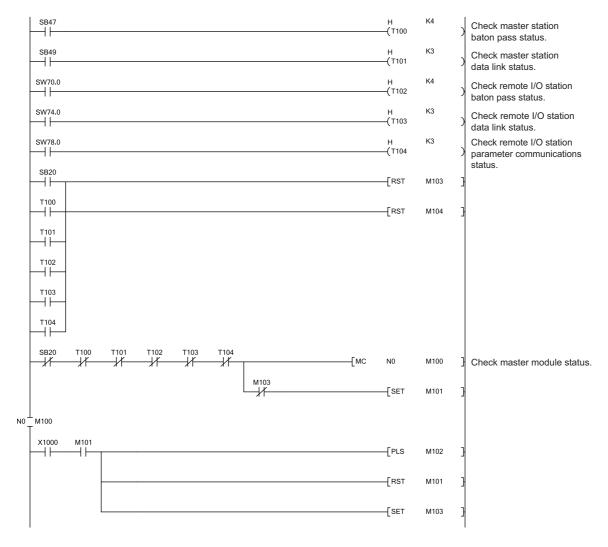

# **9.3.1** Program example when using parameters of the intelligent function module

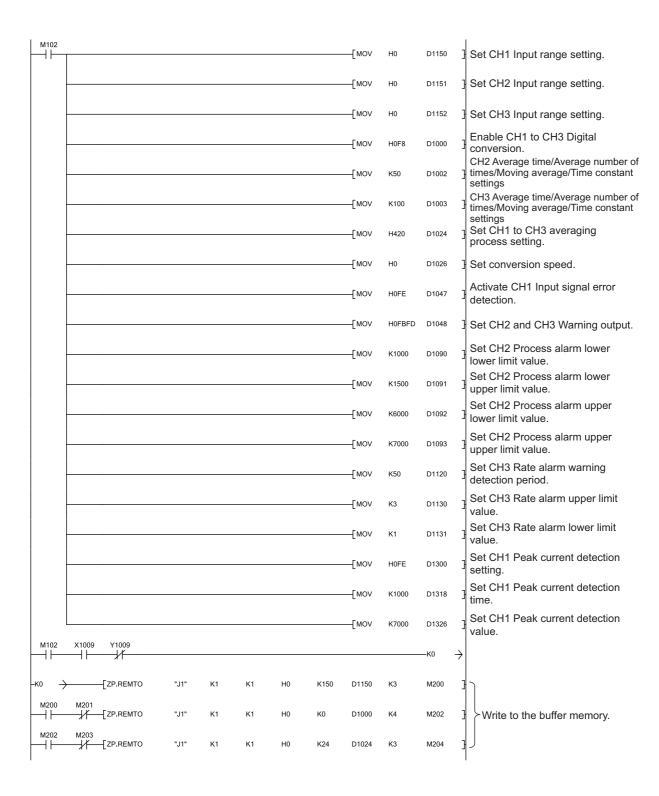
# (1) Device for user

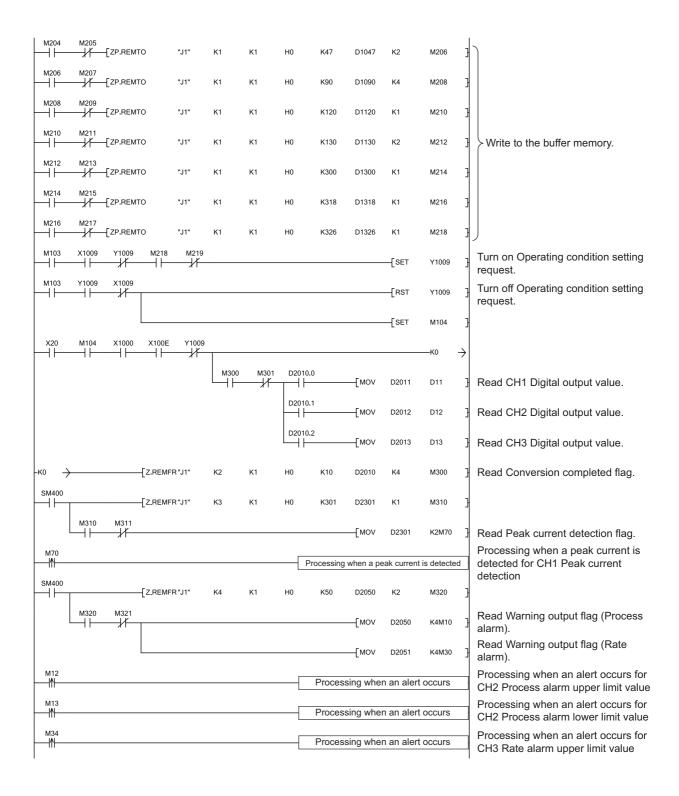
| Device      | Description                                    | Description                       |  |  |
|-------------|------------------------------------------------|-----------------------------------|--|--|
| W1000       | Conversion completed flag                      | Conversion completed flag         |  |  |
| W1001 (D11) | CH1 Digital output value                       | CH1 Digital output value          |  |  |
| W1002 (D12) | CH2 Digital output value                       |                                   |  |  |
| W1003 (D13) | CH3 Digital output value                       |                                   |  |  |
| W1006       | Warning output flag (Process alarm)            |                                   |  |  |
| W1007       | Warning output flag (Rate alarm)               |                                   |  |  |
| W1008       | Input signal error detection flag              |                                   |  |  |
| W1009       | Peak current detection flag                    |                                   |  |  |
| W1010       | Latest error code                              |                                   |  |  |
| M0          | CH1 Conversion completed flag                  |                                   |  |  |
| M1          | CH2 Conversion completed flag                  |                                   |  |  |
| M2          | CH3 Conversion completed flag                  | CH3 Conversion completed flag     |  |  |
| M10 to M25  | Warning output flag (Process alarm)            |                                   |  |  |
| M30 to M45  | Warning output flag (Rate alarm)               | Warning output flag (Rate alarm)  |  |  |
| M50 to M57  | Input signal error detection flag              | Input signal error detection flag |  |  |
| M70 to M77  | Peak current detection flag                    |                                   |  |  |
| X1000       | Module READY                                   |                                   |  |  |
| X100C       | Input signal error detection signal            |                                   |  |  |
| X100E       | Conversion completed flag                      | CT input module                   |  |  |
| X100F       | Error flag                                     | (X/Y1000 to X/Y100F)              |  |  |
| Y1009       | Operating condition setting request            |                                   |  |  |
| Y100F       | Error clear request                            |                                   |  |  |
| X20         | Digital output value read command input signal |                                   |  |  |
| X23         | Input signal error detection reset signal      | QX10 (X20 to X2F)                 |  |  |
| X24         | Error reset signal                             |                                   |  |  |
| Y30 to Y3F  | Error code display (BCD 4 digits)              | QY10 (Y30 to Y3F)                 |  |  |

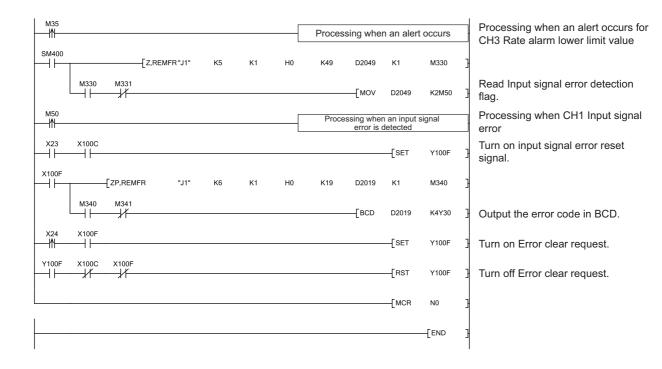
## (2) Program example




# 9.3.2 Program example when not using parameters of the intelligent function module


# (1) Device for user


| Device         | Description                                                        |                                                                 |  |  |
|----------------|--------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| D1000 to D1326 | Device for initial value setting                                   |                                                                 |  |  |
| D2010          | Conversion completed flag                                          |                                                                 |  |  |
| D2011 (D11)    | CH1 Digital output value                                           |                                                                 |  |  |
| D2012 (D12)    | CH2 Digital output value                                           |                                                                 |  |  |
| D2013 (D13)    | CH3 Digital output value                                           |                                                                 |  |  |
| D2019          | Latest error code                                                  |                                                                 |  |  |
| D2049          | Input signal error detection flag                                  |                                                                 |  |  |
| D2050          | Warning output flag (Process alarm)                                |                                                                 |  |  |
| D2051          | Warning output flag (Rate alarm)                                   |                                                                 |  |  |
| D2301          | Peak current detection flag                                        |                                                                 |  |  |
| M10 to M25     | Warning output flag (Process alarm)                                |                                                                 |  |  |
| M30 to M45     | Warning output flag (Rate alarm)                                   |                                                                 |  |  |
| M50 to M57     | Input signal error detection flag                                  |                                                                 |  |  |
| M70 to M77     | Peak current detection flag                                        |                                                                 |  |  |
| M100           | Master station status check flag                                   |                                                                 |  |  |
| M101           | Initial setting start trigger                                      |                                                                 |  |  |
| M102           | Initial setting start flag                                         |                                                                 |  |  |
| M103           | During initial setting flag                                        |                                                                 |  |  |
| M104           | Initial setting completed flag                                     |                                                                 |  |  |
| M200 to M219   |                                                                    |                                                                 |  |  |
| M300, M301     |                                                                    | †                                                               |  |  |
| M310, M311     | 7/D) DEMTO and 7/D) DEMED instructions accordation (result desire) |                                                                 |  |  |
| M320, M321     | Z(P).REMTO and Z(P).REMFR Instructions completi                    | Z(P).REMTO and Z(P).REMFR instructions completion/result device |  |  |
| M330, M331     |                                                                    |                                                                 |  |  |
| M340, M341     |                                                                    |                                                                 |  |  |
| X1000          | Module READY                                                       |                                                                 |  |  |
| X1009          | Operating condition setting completed flag                         |                                                                 |  |  |
| X100C          | Input signal error detection signal                                | OT: ( )                                                         |  |  |
| X100E          | Conversion completed flag                                          | CT input module (X/Y1000 to X/Y100F)                            |  |  |
| X100F          | Error flag                                                         | (X 1 1000 to X 1 1001 )                                         |  |  |
| Y1009          | Operating condition setting request                                |                                                                 |  |  |
| Y100F          | Error clear request                                                |                                                                 |  |  |
| X20            | Digital output value read command input signal                     |                                                                 |  |  |
| X23            | Input signal error detection reset signal                          | QX10 (X20 to X2F)                                               |  |  |
| X24            | Error reset signal                                                 |                                                                 |  |  |
| Y30 to Y3F     | Error code display (BCD 4 digits)                                  | QY10 (Y30 to Y3F)                                               |  |  |
| SB20           | Module status                                                      | •                                                               |  |  |
| SB47           | Baton pass status of own station                                   |                                                                 |  |  |
| SB49           | Data link status (own station)                                     |                                                                 |  |  |
| SW70           | Baton pass status of each station                                  |                                                                 |  |  |
| SW74           | Cyclic transmission status of each station                         |                                                                 |  |  |
|                |                                                                    |                                                                 |  |  |


| Device       | Description                                    |
|--------------|------------------------------------------------|
| SW78         | Parameter communication status of each station |
| T100 to T104 | Interlock for own station and other stations   |

# (2) Program example









# **CHAPTER 10** ONLINE MODULE CHANGE

This chapter describes the online module change procedure. In this manual, the procedure is explained using GX Works2

When performing an online module change, carefully read the following.

• QCPU User's Manual (Hardware Design, Maintenance and Inspection)

# **10.1** Precautions on Online Module Change

This section lists precautions on an online module change.

- Always perform an online module change in the correct procedure (Page 183, Section 10.4). A failure to do so can cause a malfunction or failure.
- Perform an online module change after making sure that the system outside the programmable controller will
  not malfunction.
- Provide means such as switches for powering off each of the external power supply and external devices
  connected to the module to be replaced online. Failure to do so may cause an electric shock and
  malfunction of operating modules.
- After the module has failed, the buffer memory data may not be saved properly. Prerecord the data to be saved
- It is recommended to perform an online module change in the actual system in advance to ensure that it would not affect the other modules. For the operational verification, check the following:
  - · Means of cutting off the connection to external devices and its configuration are correct.
  - Switching on/off does not bring any undesirable effect.
- After the first use of the product, do not mount/remove the module to/from the base unit, and the terminal block to/from the module more than 50 times (IEC 61131-2 compliant) respectively. Exceeding the limit may cause malfunction.



Dedicated instructions cannot be executed during an online module change. Save and restore the offset/gain setting values in the user range using a dedicated instruction in another system.

Precautions for using other systems are as follows:

- To change a module mounted on the remote I/O station online, save and restore the offset/gain setting values in the user range using a dedicated instruction, in another system mounted on the main base unit.
- The offset/gain setting values cannot be saved and restored using a dedicated instruction in another system mounted on the remote I/O station.

If no other systems are available, restore the values by writing them to the buffer memory.

10.2 Conditions for Online Module Change

## 10.2 Conditions for Online Module Change

To perform an online module change, satisfy the following conditions.



The function version of the first released CT input module is C, and the CT input module supports the online module change.

### (1) CPU module

A Process CPU or Redundant CPU is required.

For the precautions on the multiple CPU system configuration, refer to the following.

• QCPU User's Manual (Multiple CPU System)

For the precautions on the redundant system configuration, refer to the following.

• QnPRHCPU User's Manual (Redundant System)

### (2) Function version of MELSECNET/H remote I/O module

A module of function version D or later is necessary.

### (3) Compatible version of programming tools

| Programming tool | System configuration | Software version       |
|------------------|----------------------|------------------------|
| GX Works2        | Normal system        | Version 1.87R or later |
|                  | Remote I/O station   | Version 1.40S or later |
| GX Developer     | Normal system        | Version 7.10L or later |
|                  | Remote I/O station   | Version 8.17T or later |

### (4) Restrictions of base unit

When the module is mounted on any of the following base units, an online module change cannot be performed.

- Slim type main base unit (Q3□SB)
- Extension base unit (Q5□B) which does not require the power supply module (An online module change cannot be performed for all modules on the base unit.)

# 10.3 Online Module Change Operations

The following table explains the operations for an online module change.

O: Executed x: Not executed

|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                             |                        | O. LA                 | eculeu ^. i    | NOI EXECUTED      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------------|----------------|-------------------|
|                                                                                                                                                                                                                                                                             | Operation of the CT input module                                                                                                                                                                                                                                     | Operation of the CPU module |                        |                       |                |                   |
| User operation                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      | X/Y<br>refresh              | FROM/TO instructions*1 | Dedicated instruction | Device<br>test | Parameter setting |
| (1) Stop the operation.  Turn off all of the Y signals turned on using the sequence program.                                                                                                                                                                                | The module is operating normally.                                                                                                                                                                                                                                    | 0                           | 0                      | 0                     | 0              | ×                 |
| (2) Remove the module.  Start the online module change using GX Works2.  Click the Executor button on GX Works2 to enable the module to be removed.  Remove the module.                                                                                                     | The operation of the module stops. The RUN LED turns off. Conversion disabled.                                                                                                                                                                                       | ×                           | ×                      | ×                     | ×              | ×                 |
| (3) Mount a new module.  Mount a new module.  After mounting the module, click the button on GX Works2.  Check the operation before the control starts.                                                                                                                     | The X/Y refresh restarts and the module starts up.  The RUN LED turns on. Default operation starts. (Module READY (X0) remains off.)  When there are initial setting parameters, the module starts to operate based on the initial setting parameters at this point. | 0                           | ×                      | ×                     | ×              | 0                 |
| (4) Check the operation.  Click the button on GX Works2 to turn off the online mode.  On "Device test" on GX Works2, test the operation of the module.  Restore the user range settings by writing of buffer memory addresses at this point.  Operation check is completed. | The module operates based on the test operation. 2                                                                                                                                                                                                                   | 0                           | ×                      | ×                     | 0              | ×                 |
| (5) Resume the control.   Restart the online module change using GX Works2.  Click the button to resume the control.                                                                                                                                                        | Module READY (X0) turns on.  The module operates based on the initial setting sequence program which runs when Module READY (X0) turns on.  **Text                                                                                                                   | 0                           | 0                      | 0                     | 0              | ×                 |

<sup>\*1</sup> An access to Intelligent function module device (U□\G□) is included.

<sup>\*2</sup> In the absence of the operation marked \*2, the operation of the intelligent function module is the operation performed prior to that.

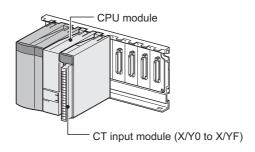
# 10.4 Online Module Change Procedure

This section and the following sections describe two online module change procedures: setting parameters using the configuration function and setting parameters using a sequence program. The same procedures are applied to GX Developer.

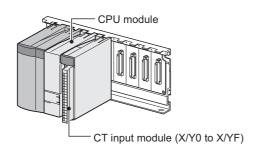
· When using GX Works2

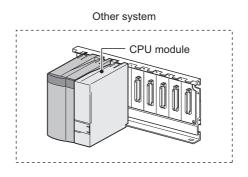
| Range setting         | Parameter setting      | Another system*1 | Reference               |
|-----------------------|------------------------|------------------|-------------------------|
| Factory default range | Configuration function | _                | Page 185, Section 10.5  |
|                       | Sequence program       | _                | Page 190, Section 10.6  |
| User range            | Configuration function | Present          | Page 196, Section 10.7  |
|                       |                        | Absent           | Page 207, Section 10.9  |
|                       | Sequence program       | Present          | Page 201, Section 10.8  |
|                       | Sequence program       | Absent           | Page 213, Section 10.10 |

### · When using GX Developer


| Range setting         | Another system*1 | Reference               |
|-----------------------|------------------|-------------------------|
| Factory default range | _                | Page 190, Section 10.6  |
| User range            | Present          | Page 201, Section 10.8  |
|                       | Absent           | Page 213, Section 10.10 |

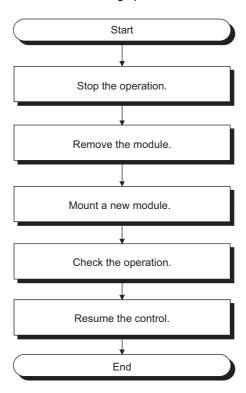
<sup>\*1 &</sup>quot;Another system" is a programmable controller system which does not have the CT input module to be replaced, and is composed of modules such as a power supply module and a CPU module. "Another system" has power supply which can be turned on and off and modules which can be removed and mounted.


### (1) System configuration


The following system configuration is used to explain the online module change procedure.

### (a) Without another system



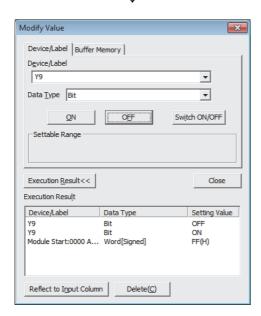

### (b) With another system





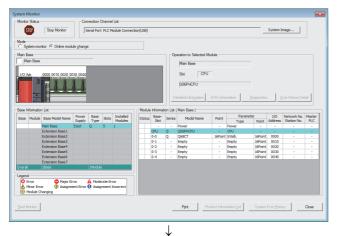
### (2) Procedure

The following flow shows the online module change procedure.




# 10.5 When a Factory Default Range Is Used and Parameters Are Set Using the Configuration Function

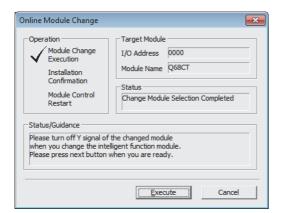
# 10.5 When a Factory Default Range Is Used and Parameters Are Set Using the Configuration Function


### (1) Stopping operation



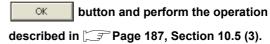


- Open the "Device/Buffer Memory Batch Monitor" window.
  - [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]
- Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).
- 3. Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels.
- 4. Turn on Operating condition setting request (Y9).
- Confirm that the digital conversion has stopped with Conversion completed flag (Un\G10).
- 6. After checking Conversion completed flag (Un\G10), check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).


### (2) Removing a module



1. Open the "System Monitor" window.


[Diagnostics] 🗢 [Online Module Change...]

Select "Online module change" under the "Mode" field and double-click the module name to be changed online.

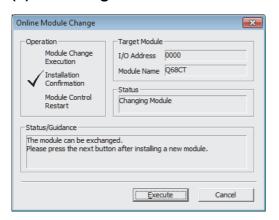


3. Click the Execute button to enable a module change.

4. When the following error window appears, click the



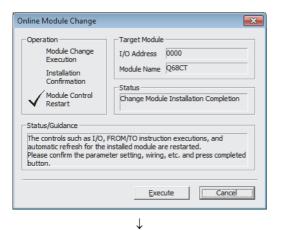



- After confirming that the RUN LED of the module has turned off, remove the terminal block.
- 6. Remove the module.

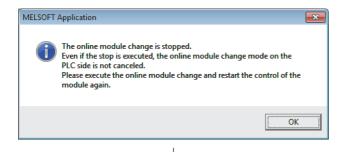


Always remove the module. If mounting confirmation is made without the module being removed, the module will not start properly and the RUN LED will not be lit.

# 10.5 When a Factory Default Range Is Used and Parameters Are Set Using the Configuration Function


### (3) Mounting a new module

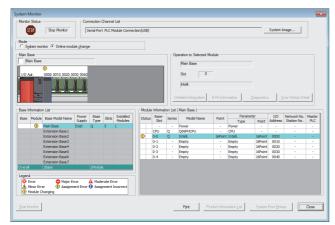



- Mount a new module in the same slot and install the terminal block.
- 2. After mounting the module, click the Execute button and make sure that the RUN LED is lit.

  Module READY (X0) remains off.

### (4) Checking operation




1. To check the operation, click the Cancel button to cancel the control start.

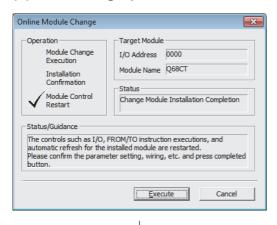


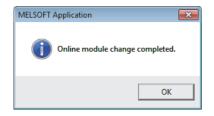
2. Click the OK button to leave the "Online Module Change" mode.

(To the next page)

### (From the previous page)




3. Click the Cose button to close the "System Monitor" window.



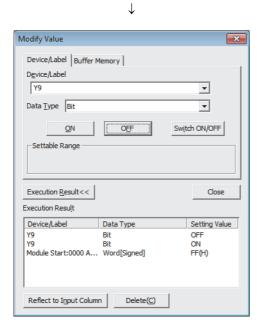

 $\downarrow$ 

- Open the "Device/Buffer Memory Batch Monitor" window.
  - [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]
- Monitor Conversion enable/disable setting (Un\G0) to check if the channel to be used is set to Enable (0).
- 6. Monitor CH□ Digital output value (Un\G11 to Un\G18) to check if the digital conversion is performed properly.
- 7. Before starting the control, check the CT input module for the following. If an error occurs, refer to TROUBLESHOOTING (Page 221, CHAPTER 11) and take a corrective action.
  - If the RUN LED is on.
  - If the ERR. LED is off.
  - If Error flag (XF) is off.

### (5) Resuming operation






- 1. Open the "Online Module Change" window again.
  - [Diagnostics] [Online Module Change...]
- 2. Click the <u>Execute</u> button on the appeared window to resume control. Module READY (X0) turns on.

3. The online module change is complete.

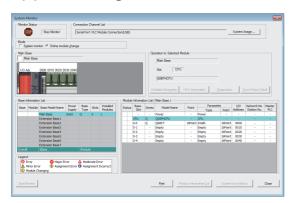
# 10.6 When a Factory Default Range Is Used and Parameters Are Set Using a Sequence Program

### (1) Stopping operation





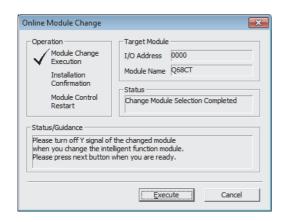
 Open the "Device/Buffer Memory Batch Monitor" window.


© [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]

When using GX Developer, open the "Device test" window.

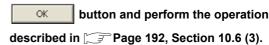
- (Online) ⇔ [Debug] ⇔ [Device test...]
- 2. Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).
- 3. Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels.
- 4. Turn on Operating condition setting request (Y9).
- Confirm that the digital conversion has stopped with Conversion completed flag (Un\G10).
- 6. After checking Conversion completed flag (Un\G10), check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).

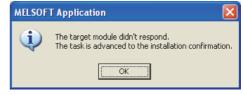
# 10.6 When a Factory Default Range Is Used and Parameters Are Set Using a Sequence Program


### (2) Removing a module



1. Open the "System Monitor" window.


[Diagnostics] ⇒ [Online Module Change...]

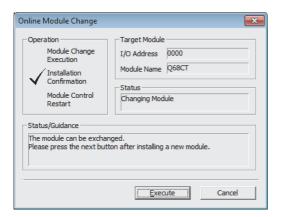

2. Select "Online Module Change" under the "Mode" field and double-click the module name to be changed online.



3. Click the Execute button to enable a module change.

4. When the following error window appears, click the

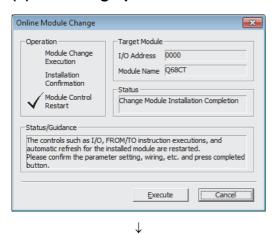




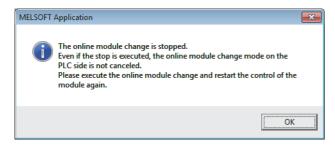

- After confirming that the RUN LED of the module has turned off, remove the terminal block.
- 6. Remove the module.



Always remove the module. If mounting confirmation is made without the module being removed, the module will not start properly and the RUN LED will not be lit.


### (3) Mounting a new module

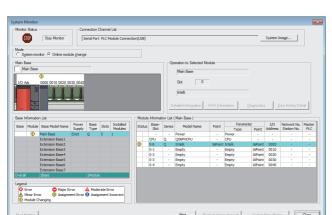



- Mount a new module in the same slot and install the terminal block.
- 2. After mounting the module, click the Execute button and make sure that the RUN LED is lit.

  Module READY (X0) remains off.

### (4) Checking operation




1. To check the operation, click the Cancel button to cancel the control start.



2. Click the OK button to leave the "Online Module Change" mode.

↓
(To the next page)

(From the previous page)

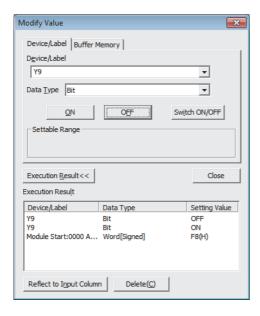


3. Click the Close button to close the "System Monitor" window.



Open the "Device/Buffer Memory Batch Monitor" window.

When using GX Developer, open the "Device test" window.


Conline] ⇒ [Debug] ⇒ [Device test...]

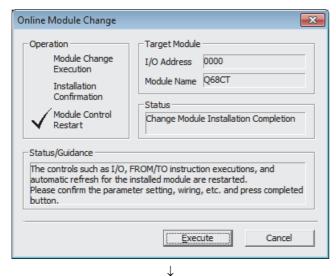
5. Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).

(To the next page)

10.6 When a Factory Default Range Is Used and Parameters Are Set Using a Sequence Program

# (From the previous page) $\downarrow$

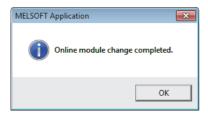



- **6.** Set Conversion enable/disable setting (Un\G0) to Enable (0) for the channel used.
- 7. Turn on Operating condition setting request (Y9).
- **8.** Check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).
- Monitor CH□ Digital output value (Un\G11 to Un\G18) to check if the digital conversion is performed properly.

- **10.** Before starting the control, check the CT input module for the following. If an error occurs, refer to TROUBLESHOOTING (Page 221, CHAPTER 11) and take a corrective action.
  - If the RUN LED is on.
  - If the ERR. LED is off.
  - If Error flag (XF) is off.
- 11. Since the new module is in the default status, initial settings must be configured using a sequence program after the control resumed. Before configuring the initial settings, check that the initial setting program is proper, satisfying the following. Normal system configuration
  - Create a sequence program that sets the initial settings when Module READY (X0) of the CT input module turns on.
  - Do not create a sequence program which sets the initial settings for only one scan after RUN. In this case, the initial settings are not set.

When used on remote I/O network

- Insert a user device where the initial setting will be set at any timing (initial setting request signal) into the sequence program.
- Do not create a sequence program which sets the initial setting only one scan after a data link start of the remote I/O network. In this case, the initial setting is not set.


### (5) Resuming operation



1. Open the "Online Module Change" window again.

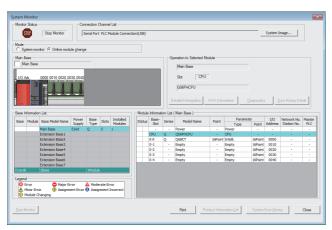
[Diagnostics] [Online Module Change...]

2. Click the <u>Execute</u> button on the appeared window to resume control. Module READY (X0) turns on.



3. The online module change is complete.

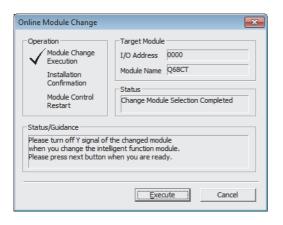
# 10.7 When a User Range Is Used and Parameters Are Set Using the Configuration Function (with Another System)


### (1) Stopping operation





- Open the "Device/Buffer Memory Batch Monitor" window.
  - [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory
- 2. Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).
- 3. Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels.
- 4. Turn on Operating condition setting request (Y9).
- Confirm that the digital conversion has stopped with Conversion completed flag (Un\G10).
- 6. After checking Conversion completed flag (Un\G10), check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).


### (2) Removing a module



1. Open the "System Monitor" window.

[Diagnostics] ⇒ [Online Module Change...]

Select "Online Module Change" under the "Mode" field and double-click the module name to be changed online.

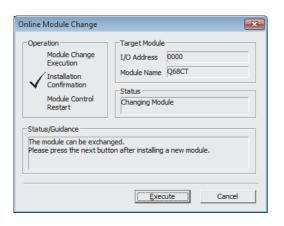


3. Click the Execute button to enable a module change.

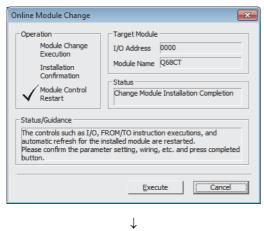
4. When the following error window appears, click the

button and perform the operation described in Page 198, Section 10.7 (3).




- After confirming that the RUN LED of the module has turned off, remove the terminal block.
- **6.** Remove the module.



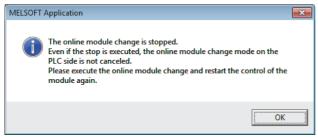

Always remove the module. If mounting confirmation is made without the module being removed, the module will not start properly and the RUN LED will not be lit.

### (3) Mounting a new module

- Mount the removed module and new module to the other system.
- 2. Using the G(P).OGLOAD instruction, save the offset/gain setting values in the user range from the removed module to the CPU device. Refer to Page 236, Appendix 1.2 for the G(P).OGLOAD instruction.
- 3. Using the G(P).OGSTOR instruction, restore the offset/gain setting values in the user range to a new module. Refer to Page 240, Appendix 1.3 for the G(P).OGSTOR instruction.
- 4. Remove the new module from the other system, mount it to the slot from where the old module was removed in the original system, and install the terminal block.
- After mounting the module, click the Execute button and make sure that the RUN LED is lit.
   Module READY (X0) remains off.

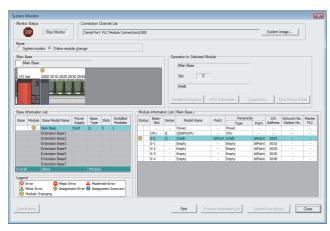


### (4) Checking operation




(To the next page)

1. To check the operation, click the Cancel button to cancel the control start.

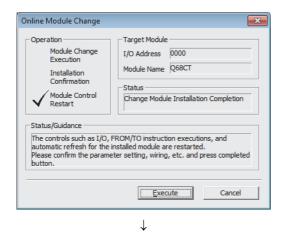

### (From the previous page)

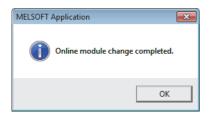




2. Click the OK button to leave the "Online Module Change" mode.







3. Click the Close button to close the "System Monitor" window.



- Open the "Device/Buffer Memory Batch Monitor" window.
  - [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]
- Monitor Conversion enable/disable setting (Un\G0)
  to check if the channel to be used is set to Enable
  (0).
- 6. Monitor CH□ Digital output value (Un\G11 to Un\G18) to check if the digital conversion is performed properly.
- 7. Before starting the control, check the CT input module for the following. If an error occurs, refer to TROUBLESHOOTING (Page 221, CHAPTER 11) and take a corrective action.
  - If the RUN LED is on.
  - If the ERR. LED is off.
  - If Error flag (XF) is off.

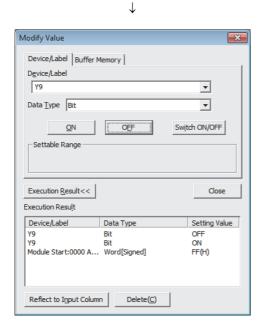
### (5) Resuming operation





1. Open the "Online Module Change" window again.

[Diagnostics]  $\Leftrightarrow$  [Online Module Change...]


2. Click the Execute button on the appeared window to resume control. Module READY (X0) turns on.

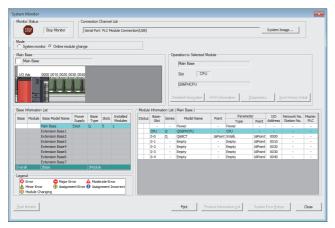
3. The online module change is complete.

# 10.8 When a User Range Is Used and Parameters Are Set Using a Sequence Program (with Another System)

### (1) Stopping operation



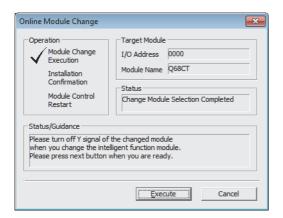



 Open the "Device/Buffer Memory Batch Monitor" window.

When using GX Developer, open the "Device test" window.

(Online) ⇔ [Debug] ⇔ [Device test...]

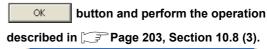
- 2. Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).
- 3. Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels.
- 4. Turn on Operating condition setting request (Y9).
- 5. Confirm that the digital conversion has stopped with Conversion completed flag (Un\G10).
- 6. After checking Conversion completed flag (Un\G10), check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).


### (2) Removing a module



1. Open the "System Monitor" window.

[Diagnostics] ⇒ [Online Module Change...]


Select "Online Module Change" under the "Mode" field and double-click the module name to be changed online.

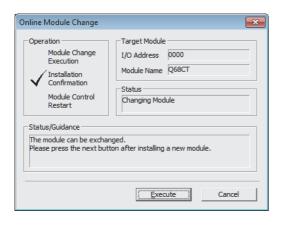


 $\downarrow$ 

3. Click the Execute button to enable a module change.

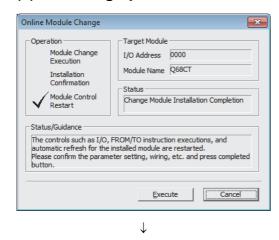
4. When the following error window appears, click the





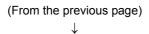

- After confirming that the RUN LED of the module has turned off, remove the terminal block.
- 6. Remove the module.

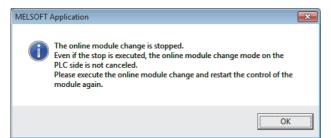



Always remove the module. If mounting confirmation is made without the module being removed, the module will not start properly and the RUN LED will not be lit.

### (3) Mounting a new module

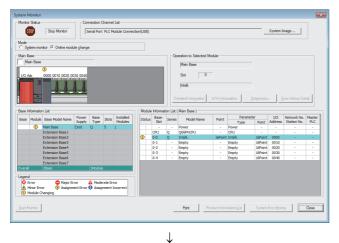



- Mount the removed module and new module to the other system.
- 2. Using the G(P).OGLOAD instruction, save the offset/gain setting values in the user range from the removed module to the CPU device. Refer to Page 236, Appendix 1.2 for the G(P).OGLOAD instruction.
- **3.** Using the G(P).OGSTOR instruction, restore the offset/gain setting values in the user range to a new module. Refer to Page 240, Appendix 1.3 for the G(P).OGSTOR instruction.
- 4. Remove the new module from the other system, mount it to the slot from where the old module was removed in the original system, and install the terminal block.
- After mounting the module, click the Execute button and make sure that the RUN LED is lit.
   Module READY (X0) remains off.


### (4) Checking operation



(To the next page)


1. To check the operation, click the Cancel button to cancel the control start.






 $\downarrow$ 

2. Click the OK button to leave the "Online Module Change" mode.

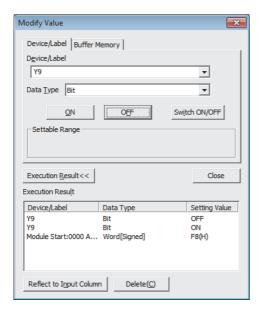


3. Click the Close button to close the "System Monitor" window.



Open the "Device/Buffer Memory Batch Monitor" window.

Conline] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]


When using GX Developer, open the "Device test" window.

Conline] ⇔ [Debug] ⇔ [Device test...]

Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).

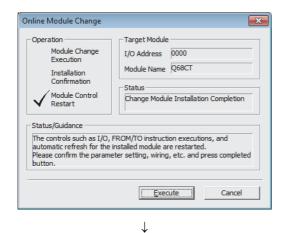
↓
(To the next page)

## (From the previous page)



- 6. Set Conversion enable/disable setting (Un\G0) to Enable (0) for the channel used.
- 7. Turn on Operating condition setting request (Y9).
- **8.** Check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).
- Monitor CH□ Digital output value (Un\G11 to Un\G18) to check if the digital conversion is performed properly.

- **10.** Before starting the control, check the CT input module for the following. If an error occurs, refer to TROUBLESHOOTING (FP Page 221, CHAPTER 11) and take a corrective action.
  - If the RUN LED is on.
  - If the ERR. LED is off.
  - If Error flag (XF) is off.
- 11. Since the new module is in the default status, initial settings must be configured using a sequence program after the control resumed. Before the initial setting, check if the initial setting program is proper, satisfying the following.


Normal system configuration


- Create a sequence program that sets the initial settings when Module READY (X0) of the CT input module turns on.
- Do not create a sequence program which sets the initial settings for only one scan after RUN. In this case, the initial settings are not set.

When used on remote I/O network

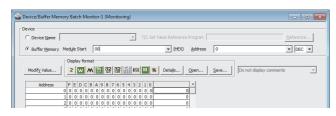
- Insert a user device where the initial setting will be set at any timing (initial setting request signal) into the sequence program.
- Do not create a sequence program which sets the initial setting only one scan after a data link start of the remote I/O network. In this case, the initial setting is not set.

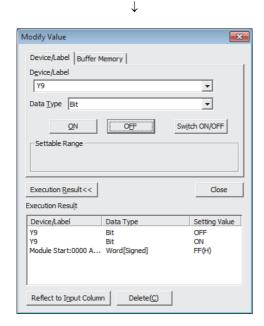
### (5) Resuming operation





1. Open the "Online Module Change" window again.


[Diagnostics]  $\Leftrightarrow$  [Online Module Change...]


2. Click the Execute button on the appeared window to resume control. Module READY (X0) turns on.

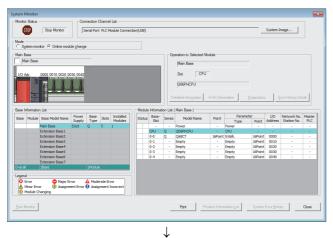
3. The online module change is complete.

# 10.9 When a User Range Is Used and Parameters Are Set Using the Configuration Function (without Another System)

### (1) Stopping operation



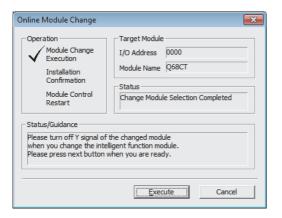



- Open the "Device/Buffer Memory Batch Monitor" window.
  - [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]
- Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).
- 3. Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels.
- 4. Turn on Operating condition setting request (Y9).
- Confirm that the digital conversion has stopped with Conversion completed flag (Un\G10).
- 6. After checking Conversion completed flag (Un\G10), check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).

- 7. If the buffer memory data are not recorded, follow the procedures 8 and 9.
- 8. Compare the values in CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233) with the values in Range Reference Table (FF Page 220, Section 10.11).
- 9. If the values are proper, save the values in CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233).

### Point P

- If the buffer memory values are improper compared to the reference table, the offset/gain values cannot be saved and restored. Before resuming the control, configure an offset/gain setting according to the flowchart (FF Page 151, Section 8.5.2). Note that if module control is resumed without offset/gain setting being made, operation will be performed with the default values.
- Switch the mode by setting Mode switching setting (Un\G158, Un\G159) and turning on Operating condition setting request (Y9).


### (2) Removing a module



1. Open the "System Monitor" window.

[Diagnostics] ⇒ [Online Module Change...]

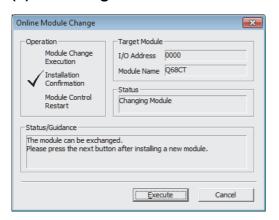
Select "Online Module Change" under the "Mode" field and double-click the module name to be changed online.



3. Click the Execute button to enable a module change.

**4.** When the following error window appears, click the button and perform the operation

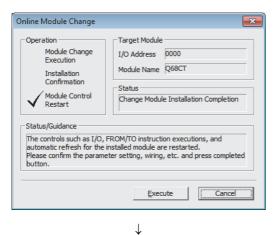
described in Page 209, Section 10.9 (3).




- After confirming that the RUN LED of the module has turned off, remove the terminal block.
- 6. Remove the module.



Always remove the module. If mounting confirmation is made without the module being removed, the module will not start properly and the RUN LED will not be lit.

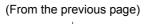

### (3) Mounting a new module

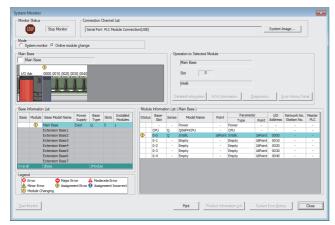


- Mount a new module in the same slot and install the terminal block.
- 2. After mounting the module, click the Execute button and make sure that the RUN LED is lit.

  Module READY (X0) remains off.

### (4) Checking operation



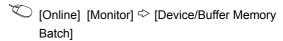


1. To check the operation, click the Cancel button to cancel the control start.



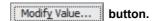
2. Click the OK button to leave the "Online Module Change" mode.

(To the next page)



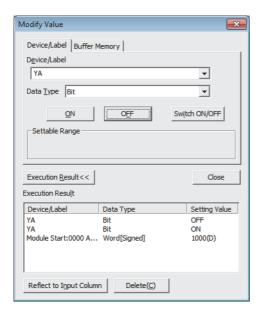



3. Click the Close button to close the "System Monitor" window.




 $\downarrow$ 

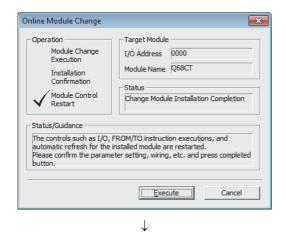
Open the "Device/Buffer Memory Batch Monitor" window.

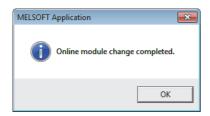



Display the address of the prerecorded buffer memory area and select it. Then click the



 $\downarrow$  (To the next page)


# (From the previous page) $\downarrow$




- 6. Set the prerecorded data to the buffer memory.
- 7. Turn User range write request (YA) from off to on to restore the offset/gain setting value in the user range to the module.
- **8.** After confirming that Offset/gain setting mode flag (XA) is on, turn off User range write request (YA).
- 9. Monitor CH□ Digital output value (Un\G11 to Un\G18) to check if the digital conversion is performed properly.

- 10. Before starting the control, check the CT input module for the following. If an error occurs, refer to TROUBLESHOOTING (Page 221, CHAPTER 11) and take a corrective action.
  - If the RUN LED is on.
  - If the ERR. LED is off.
  - If Error flag (XF) is off.

### (5) Resuming operation





1. Open the "Online Module Change" window again.

[Diagnostics]  $\Rightarrow$  [Online Module Change...]

2. Click the Execute button on the appeared window to resume control. Module READY (X0) turns on.

3. The online module change is complete.

# 10.10 When a User Range Is Used and Parameters Are Set Using a Sequence Program (without Another System)

### (1) Stopping operation



 $\downarrow$ 

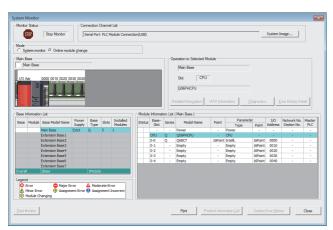
Modify Value Device/Label Buffer Memory Device/Label Y9 Ŧ T Data Type Bit Switch ON/OFF ON Settable Range Execution  $\underline{R}$ esult << Close Execution Result Device/Label Data Type Setting Value Bit ON Module Start:0000 A... Word[Signed] FF(H) Delete(C) Reflect to Input Column

 Open the "Device/Buffer Memory Batch Monitor" window.

Conline continuity (Continuity) (Continuity) (Continuity) (Monitor) (Continuity) (Continuity

When using GX Developer, open the "Device test" window.

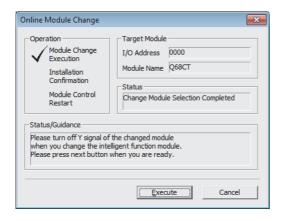
[Online] <> [Debug] <> [Device test...]


- Enter and display the buffer memory address of Conversion enable/disable setting (Un\G0).
- 3. Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels.
- 4. Turn on Operating condition setting request (Y9).
- 5. Confirm that the digital conversion has stopped with Conversion completed flag (Un\G10).
- 6. After checking Conversion completed flag (Un\G10), check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).

- 7. If the buffer memory data are not recorded, follow the procedures 8 and 9.
- 8. Compare the values in CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233) with the values in Range Reference Table (FF Page 220, Section 10.11).
- If the values are proper, save the values in CH1
   Factory default setting offset value (Un\G202) to
   CH8 User range setting gain value (Un\G233).

## Point P

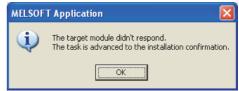
- If the buffer memory values are improper compared to the reference table, the offset/gain values cannot be saved and restored. Before resuming the control, configure an offset/gain setting according to the flowchart ( Page 151, Section 8.5.2). Note that if module control is resumed without offset/gain setting being made, operation will be performed with the default values.
- Switch the mode by setting Mode switching setting (Un\G158, Un\G159) and turning on Operating condition setting request (Y9).


#### (2) Removing a module



1. Open the "System Monitor" window.

[Diagnostics] ⇒ [Online Module Change...]

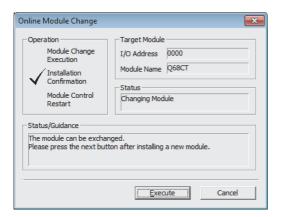

Select "Online Module Change" under the "Mode" field and double-click the module name to be changed online.



3. Click the Execute button to enable a module change.

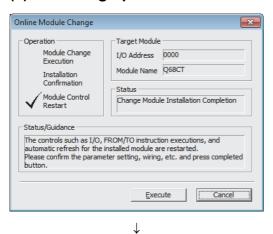
4. When the following error window appears, click the

button and perform the operation described in Page 216, Section 10.10 (3).

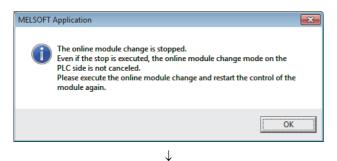



- 5. After confirming that the RUN LED of the module has turned off, remove the terminal block.
- 6. Remove the module.




Always remove the module. If mounting confirmation is made without the module being removed, the module will not start properly and the RUN LED will not be lit.

#### (3) Mounting a new module

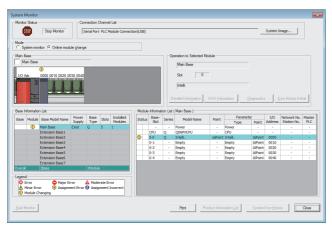



- Mount a new module in the same slot and install the terminal block.
- 2. After mounting the module, click the Execute
  button and make sure that the RUN LED is lit.
  Module READY (X0) remains off.

#### (4) Checking operation



1. To check the operation, click the Cancel button to cancel the control start.




2. Click the OK button to leave the "Online Module Change" mode.

(To the next page)

10.10 When a User Range Is Used and Parameters Are Set Using a Sequence Program (without Another System)

#### (From the previous page)

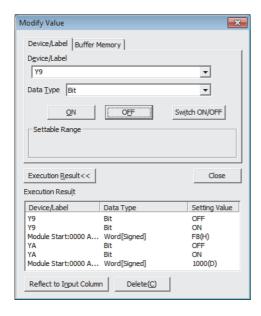


3. Click the Cose button to close the "System Monitor" window.



Open the "Device/Buffer Memory Batch Monitor" window.

© [Online] ⇔ [Monitor] ⇔ [Device/Buffer Memory Batch]


When using GX Developer, open the "Device test" window.

- Conline] ⇔ [Debug] ⇔ [Device test...]
- **5.** Display the address of the prerecorded buffer memory area and select it. Then click the

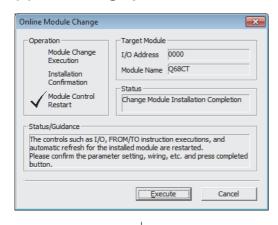


↓ (To the next page)

# (From the previous page) $\downarrow$



- 6. Set the prerecorded data to the buffer memory.
- Turn User range write request (YA) from off to on to restore the offset/gain setting value in the user range to the module.
- **8.** After confirming that Offset/gain setting mode flag (XA) is on, turn off User range write request (YA).
- **9.** Set Conversion enable/disable setting (Un\G0) to Enable (0) for the channel used.
- **10.** Turn on Operating condition setting request (Y9).
- 11. Check that Operating condition setting completed flag (X9) turns off, then turn off Operating condition setting request (Y9).
- 12. Monitor CH□ Digital output value (Un\G11 to Un\G18) to check if the digital conversion is performed properly.
- 13. Before starting the control, check the CT input module for the following. If an error occurs, refer to TROUBLESHOOTING ( Page 221, CHAPTER 11) and take a corrective action.
  - If the RUN LED is on.
  - If the ERR. LED is off.
  - If Error flag (XF) is off.
- 14. Since the new module is in the default status, initial settings must be configured using a sequence program after the control resumed. Before the initial setting, check if the initial setting program is proper, satisfying the following.


Normal system configuration


- Create a sequence program that sets the initial settings when Module READY (X0) of the CT input module turns on.
- Do not create a sequence program which sets the initial settings for only one scan after RUN. In this case, the initial settings are not set.

When used on remote I/O network

- Insert a user device where the initial setting will be set at any timing (initial setting request signal) into the sequence program.
- Do not create a sequence program which sets the initial setting only one scan after a data link start of the remote I/O network. In this case, the initial setting is not set.

#### (5) Resuming operation





- 1. Open the "Online Module Change" window again.
  - [Diagnostics] [Online Module Change...]
- 2. Click the <u>Execute</u> button on the appeared window to resume control. Module READY (X0) turns on.

3. The online module change is complete.

# **10.11** Range Reference Table

This section lists range reference used for an online module change.

# (1) CH1 Factory default setting offset value (Un\G202) to CH8 User range setting gain value (Un\G233)

| Address (Decimal) |     |     |     |     |     |     |     | Reference                            |                       |
|-------------------|-----|-----|-----|-----|-----|-----|-----|--------------------------------------|-----------------------|
| CH1               | CH2 | СНЗ | CH4 | CH5 | СН6 | CH7 | CH8 | Description                          | value                 |
| СПІ               | CHZ | СПЗ | СП4 | СПЭ | СПО | СП  | СПО |                                      | (Hexadecimal)         |
| 202               | 204 | 206 | 208 | 210 | 212 | 214 | 216 | Factory default setting offset value | 00000000 <sub>H</sub> |
| 203               | 205 | 207 | 209 | 211 | 213 | 215 | 217 | Factory default setting gain value   | 00002710 <sub>H</sub> |
| 218               | 220 | 222 | 224 | 226 | 228 | 230 | 232 | User range setting offset value      | 00000000 <sub>H</sub> |
| 219               | 221 | 223 | 225 | 227 | 229 | 231 | 233 | User range setting gain value        | 00002710 <sub>H</sub> |

11.1 Error Code List

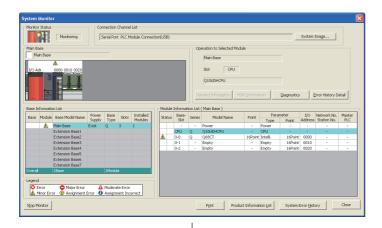
# **CHAPTER 11** TROUBLESHOOTING

This chapter describes errors that may occur in a CT input module and troubleshooting for them.

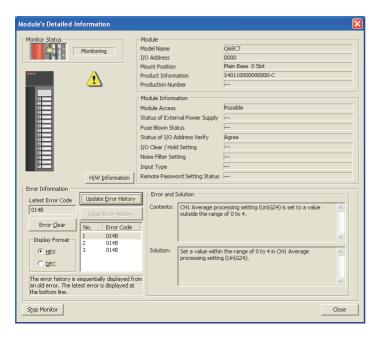
#### 11.1 Error Code List

This section describes error codes that occur in a CT input module.

#### (1) Error code checking method


The error codes that occur in a CT input module can be checked by the following. Choose a method depending on the purpose and application.

- Checking on the "Module's Detailed Information" window (Page 222, Section 11.1 (1) (a))
- Checking in Latest error code (Un\G19) (Page 222, Section 11.1 (1) (b))
- Checking through the module error collection function (FP Page 223, Section 11.1 (1) (c))

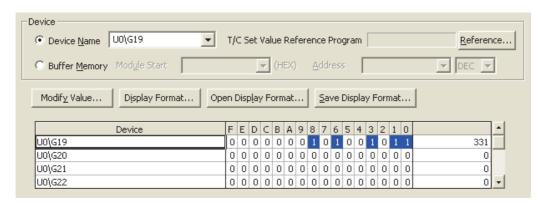

#### (a) Checking on the "Module's Detailed Information" window

Follow the following procedure.

C [Diagnostics] ⇒ [System Monitor...]



 Select the CT input module in "Main Base", and click the Detailed Information button.



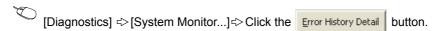

2. "Module's Detailed Information" of the CT input module is displayed.

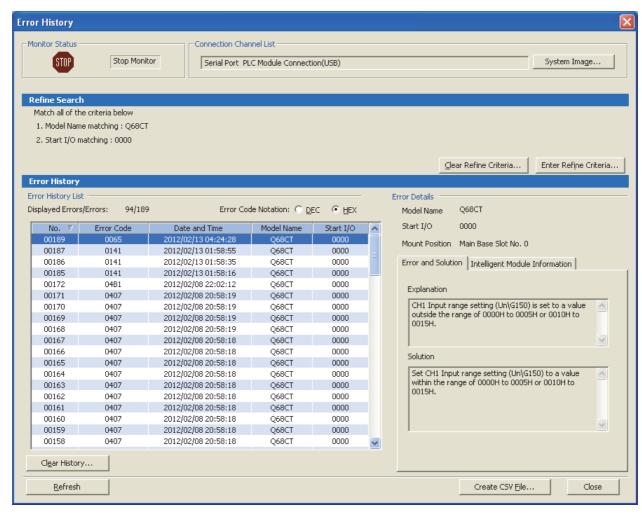
#### (b) Checking in Latest error code (Un\G19)

Follow the following procedure.

(Online) ⇒ [Monitor] ⇒ [Device/Buffer Memory Batch]




#### (c) Checking through the module error collection function


The errors occurred in a CT input module are saved in the CPU module through the module error collection function.

Therefore, the error details are kept unerased even if the power is turned off or the CPU module is reset.

· Checking procedure

The CT input module's errors that were collected by the CPU module can be checked on the "Error History" window.





· Errors to be collected

The contents under Error code list (FP Page 224, Section 11.1 (2)) are reported to the CPU module.

#### (2) Error code list

If the following errors occur on the CT input module while data is written to or read from the CPU module, the corresponding error code below is stored in Latest error code (Un\G19).

The error is reported to the CPU module also.

| Error code (decimal) | Description and the error cause                                                                                                                                                                                            | Action                                                                                                                                                                                                                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10□*1                | CH□ Input range setting (Un\G150 to Un\G157) is set to a value outside the range of 0000 <sub>H</sub> to 0005 <sub>H</sub> or 0010 <sub>H</sub> to 0015 <sub>H</sub> . The channel where the error has occurred fits in □. | Set CH□ Input range setting (Un\G150 to Un\G157) to a value within the range of 0000 <sub>H</sub> to 0005 <sub>H</sub> or 0010 <sub>H</sub> to 0015 <sub>H</sub> .                                                                                                                                          |
| 111                  | A hardware failure has occurred on the module.                                                                                                                                                                             | Turn the power off then on.  If the error occurs again, a failure might have occurred on the module. Please consult your local Mitsubishi system service, service center, or representative, explaining a detailed description of the problem.                                                              |
| 112                  | A value other than 0 is set to Switch 5 on the intelligent function module switch setting.                                                                                                                                 | Set 0 to Switch 5 on the intelligent function module switch setting in the parameter setting.                                                                                                                                                                                                               |
| 113 <sup>*1</sup>    | The backup data has a problem.                                                                                                                                                                                             | Check the digital output value.  If there is a problem of the digital output value, please consult your local Mitsubishi system service, service center, or representative, explaining a detailed description of the problem.                                                                               |
| 114 <sup>*1</sup>    | The writing of backup data went wrong.                                                                                                                                                                                     | Write the backup data.  If the error occurs again, a failure might have occurred on the module. Please consult your local Mitsubishi system service, service center, or representative, explaining a detailed description of the problem.                                                                   |
| 115 <sup>*1</sup>    | Since Conversion enable/disable setting (Un\G0) has a channel of conversion enable, the backup data cannot be written.                                                                                                     | Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels, then write the backup data.                                                                                                                                                                                                  |
| 116 <sup>*1</sup>    | Since Conversion enable/disable setting (Un\G0) has a channel of conversion enable, the values of buffer memories cannot be restored to default settings.                                                                  | Set Conversion enable/disable setting (Un\G0) to Disable (1) for all channels, then execute the default setting registration function.                                                                                                                                                                      |
| 120 <sup>*1</sup>    | An invalid value is set to the offset/gain setting. The channel where the error has occurred cannot be identified.                                                                                                         | Start over the offset/gain setting of all channels where the user range setting is used.  If the error occurs again, a failure might have occurred on the module. Please consult your local Mitsubishi system service, service center, or representative, explaining a detailed description of the problem. |
| 12□ <sup>*1</sup>    | An invalid value is set to offset/gain setting.  The channel where the error has occurred fits in □.                                                                                                                       | Start over the offset/gain setting of the channel where the error has occurred.  If the error occurs again, a failure might have occurred on the module. Please consult your local Mitsubishi system service, service center, or representative, explaining a detailed description of the problem.          |
| 161 <sup>*2</sup>    | The G(P).OGSTOR instruction was executed in the offset/gain setting mode.                                                                                                                                                  | Do not execute the G(P).OGSTOR instruction in the offset/gain setting mode.                                                                                                                                                                                                                                 |
| 162 <sup>*1</sup>    | <ul> <li>The G(P).OGSTOR instruction has been consecutively executed.</li> <li>For the offset/gain setting, a setting value has been consecutively written to the non-volatile memory more than 25 times.</li> </ul>       | <ul> <li>Execute the G(P).OGSTOR instruction only once per module.</li> <li>Write the setting value into the non-volatile memory only once for each offset/gain setting.</li> </ul>                                                                                                                         |

| Error code (decimal) | Description and the error cause                                                                                                                                                                                                                                                                                                                                                                                                         | Action                                                                                                                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 163 <sup>*1</sup>    | <ul> <li>The G(P).OGSTOR instruction has been executed toward a module different from the one on which the G(P).OGLOAD instruction was executed.</li> <li>The G(P).OGSTOR instruction has been executed ahead of the G(P).OGLOAD instruction.</li> </ul>                                                                                                                                                                                | <ul> <li>Execute the G(P).OGLOAD and G(P).OGSTOR instructions to the same module.</li> <li>After executing the G(P).OGLOAD instruction on the module from where data is restored, execute the G(P).OGSTOR instruction on the module to where the data is restored.</li> </ul> |
| 20□ <sup>*1</sup>    | <ul> <li>The averaging time value set in CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) is outside the range of 40 to 5000ms.</li> <li>The averaging time value set in CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) is less than "4 × sampling cycle" (ms).</li> <li>The channel where the error has occurred fits in □.</li> </ul> | <ul> <li>Set the averaging time to a value in the range of 40 to 5000ms.</li> <li>Set the averaging time to a value equal to or more than "4 × sampling cycle" (ms).</li> </ul>                                                                                               |
| 30□*1                | The averaging count value set in CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) is outside the range of 4 to 500. The channel where the error has occurred fits in □.                                                                                                                                                                                                                  | Set the averaging count to a value in the range of 4 to 500.                                                                                                                                                                                                                  |
| 31□ <sup>*1</sup>    | The moving average count value set in CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) is outside the range of 2 to 1000. The channel where the error has occurred fits in □.                                                                                                                                                                                                            | Set the moving average count to a value in the range of 2 to 1000.                                                                                                                                                                                                            |
| 32□ <sup>*1</sup>    | The time constant value set in CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) is outside the range of 10 to 10000ms.  The time constant value set in CH□ Average time/Average number of times/Moving average/Time constant settings (Un\G1 to Un\G8) is less than sampling cycle (ms). The channel where the error has occurred fits in □.                                             | Set the time constant to a value in the range of 10 to 10000ms.  Set the time constant to a value equal to or more than sampling cycle (ms).                                                                                                                                  |
| 33□ <sup>*1</sup>    | Averaging process setting (Un\G24, Un\G25) is set to a value outside the range of 0 to 4.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                          | Set a value within the range of 0 to 4 in Averaging process setting (Un\G24, Un\G25).                                                                                                                                                                                         |
| 34□ <sup>*1</sup>    | In CH1 Rate alarm upper limit value (Un\G126) to CH8 Rate alarm lower limit value (Un\G141), the lower limit is equal to or greater than the upper limit.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                          | Set CH1 Rate alarm upper limit value (Un\G126) to CH8 Rate alarm lower limit value (Un\G141) so that the lower limit value is smaller than the upper limit value.                                                                                                             |
| 350 <sup>*1</sup>    | The value set in Sampling cycle setting (Un\G26) is outside the range of 0 to 3.                                                                                                                                                                                                                                                                                                                                                        | Set one of the following values in Sampling cycle setting (Un\G26).  • 10ms/8CH (0)  • 20ms/8CH (1)  • 50ms/8CH (2)  • 100ms/8CH (3)                                                                                                                                          |
| 36□*1                | CH□ Peak current detection time (Un\G318 to Un\G325) is outside the range of 10 to 10000ms.  CH□ Peak current detection time (Un\G318 to Un\G325) is less than sampling cycle(ms).  The channel where the error has occurred fits in □.                                                                                                                                                                                                 | Set CH□ Peak current detection time (Un\G318 to Un\G325) in the range of 10 to 10000ms.     Set CH□ Peak current detection time (Un\G318 to Un\G325) to a value equal to or more than sampling cycle(ms).                                                                     |
| 37□ <sup>*1</sup>    | CH□ Peak current detection value (Un\G326 to Un\G333) is outside the range of 0 to 11999.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                          | Set CH□ Peak current detection value in the range of 0 to 11999ms.                                                                                                                                                                                                            |
| 38□*1                | CH□ Peak current detection count reset request (Un\G302 to Un\G309) is set to a value other than 0 and 1.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                          | Set Enable (0) or Disable (1) in CH□ Peak current detection count reset request (Un\G302 to Un\G309).                                                                                                                                                                         |

| Error code<br>(decimal) | Description and the error cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Action                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39□ <sup>*1</sup>       | CH□ Dropout value (Un\G162 to Un\G169) is outside the range of 1 to 10000.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                                                                                                                     | Set CH□ Dropout value (Un\G162 to Un\G169) in the range of 1 to 10000.                                                                                                                                                                                                                                                                                                  |
| 40□ <sup>*1</sup>       | When a user range is set or restored, the offset value is equal to or greater than the gain value.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                                                                                             | Set values so that they meet the following condition: Offset value < Gain value                                                                                                                                                                                                                                                                                         |
| 500 <sup>*1</sup>       | When the offset/gain setting is configured, channels or 0s are set simultaneously in both Offset/gain setting mode Offset specification (Un\G22) and Offset/gain setting mode Gain specification (Un\G23).                                                                                                                                                                                                                                                                                                          | Correct the settings in Offset/gain setting mode Offset specification (Un\G22) and Offset/gain setting mode Gain specification (Un\G23).                                                                                                                                                                                                                                |
| 51□ <sup>*1</sup>       | When the offset/gain setting is configured, CH□ Input range setting (Un\G150 to Un\G157) is set to a value outside the range of 0010 <sub>H</sub> to 0015 <sub>H</sub> .  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                       | Set one of the following values in CH□ Input range setting (Un\G150 to Un\G157).  • User range 0 to 5AAC (0010 <sub>H</sub> )  • User range 0 to 50AAC (0011 <sub>H</sub> )  • User range 0 to 100AAC (0012 <sub>H</sub> )  • User range 0 to 200AAC (0013 <sub>H</sub> )  • User range 0 to 400AAC (0014 <sub>H</sub> )  • User range 0 to 600AAC (0015 <sub>H</sub> ) |
| 6△□*1                   | The settings in CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117) are invalid.  The channel where the error has occurred fits in □.  A value fits in △ indicates that the alarm status is as follows:  2: Process alarm lower lower limit value > Process alarm lower upper limit value  3: Process alarm lower upper limit value > Process alarm upper lower limit value  4: Process alarm upper lower limit value > Process alarm upper upper limit value | Correct the settings in CH1 Process alarm lower lower limit value (Un\G86) to CH8 Process alarm upper upper limit value (Un\G117).                                                                                                                                                                                                                                      |
| 70□ <sup>*1</sup>       | CH□ Rate alarm warning detection period (Un\G118 to Un\G125) is outside the range of 10 to 5000ms.  CH□ Rate alarm warning detection period (Un\G118 to Un\G125) is less than conversion cycle of CH□ digital output value (ms).  The channel where the error has occurred fits in □.                                                                                                                                                                                                                               | Set CH□ Rate alarm warning detection period (Un\G118 to Un\G125) to within 10 to 5000ms.     Set CH□ Rate alarm warning detection period (Un\G118 to Un\G125) to a value equal to or multiple of conversion cycle of CH□ digital output value (ms).                                                                                                                     |
| 90□ <sup>*1</sup>       | The values set in CH1 Scaling lower limit value (Un\G62) to CH8 Scaling upper limit value (Un\G77) are outside the range of -32000 to 32000.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                                                   | Set a value within the range of -32000 to 32000 in CH1 Scaling lower limit value (Un\G62) to CH8 Scaling upper limit value (Un\G77).                                                                                                                                                                                                                                    |
| 200□*1                  | CH□ Logging enable/disable setting (Un\G1000 to Un\G1007) is set to a value other than 0 and 1.  The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                                                                                                | Set Enable (0) or Disable (1) in CH□ Logging enable/disable setting (Un\G1000 to Un\G1007).                                                                                                                                                                                                                                                                             |
| 201□ <sup>*1</sup>      | A value outside the setting range is set in one or both of CH Logging cycle setting value (Un\G1032 to Un\G1039) or/and CH Logging cycle unit setting (Un\G1040 to Un\G1047). The channel where the error has occurred fits in □.                                                                                                                                                                                                                                                                                   | Set a value within the setting range in one or both of CH□ Logging cycle setting value (Un\G1032 to Un\G1039) or/and CH□ Logging cycle unit setting (Un\G1040 to Un\G1047).  For the setting procedure of a logging cycle, refer to the following.  • Logging Function (□ Page 58, Section 4.12)                                                                        |

| Error code (decimal) | Description and the error cause                                                                                                                                          | Action                                                                                                                                                                                                                                                                                                                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 202□* <sup>1</sup>   | The set logging cycle is shorter than the update cycle of the logged value (digital output value or scaling value).  The channel where the error has occurred fits in □. | Set CH□ Logging cycle setting value (Un\G1032 to Un\G1039) and CH□ Logging cycle unit setting (Un\G1040 to Un\G1047) so that the logging cycle is equal to or longer than the update cycle of the logged value.  For the setting procedure of a logging cycle, refer to the following.  • Logging Function (□ Page 58, Section 4.12) |
| 203□ <sup>*1</sup>   | CH□ Logging data setting (Un\G1024 to Un\G1031) is set to a value other than 0 and 1.  The channel where the error has occurred fits in □.                               | Set Digital output value (0) or Scaling value (1) in CH□ Logging data setting (Un\G1024 to Un\G1031).                                                                                                                                                                                                                                |
| 204□ <sup>*1</sup>   | CH□ Logging points after trigger (Un\G1048 to Un\G1055) is set to a value outside the range of 1 to 5000.  The channel where the error has occurred fits in □.           | Set a value within the range of 1 to 5000 in CH□ Logging points after trigger (Un\G1048 to Un\G1055).                                                                                                                                                                                                                                |
| 205□ <sup>*1</sup>   | CH□ Level trigger condition setting (Un\G1056 to Un\G1063) is set to a value outside the range of 0 to 3.  The channel where the error has occurred fits in □.           | Set one of the following values in CH□ Level trigger condition setting (Un\G1056 to Un\G1063).  • Disable (0)  • Above (1)  • Below (2)  • Pass through (3)                                                                                                                                                                          |
| 206□ <sup>*1</sup>   | CH□ Trigger data (Un\G1064 to Un\G1071) is set to a value outside the range of 0 to 4999.  The channel where the error has occurred fits in □.                           | Set a value within the range of 0 to 4999 in CH□ Trigger data (Un\G1064 to Un\G1071).                                                                                                                                                                                                                                                |
| 207□ <sup>*1</sup>   | CH□ Logging hold request (Un\G1008 to Un\G1015) is set to a value other than 0 and 1.  The channel where the error has occurred fits in □.                               | Set OFF (0) or ON (1) in CH□ Logging hold request (Un\G1008 to Un\G1015).                                                                                                                                                                                                                                                            |
|                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |

<sup>\*1</sup> These error codes can be cleared by turning on then off Error clear request (YF).

<sup>\*2</sup> This error code is not stored in Latest error code (Un\G19) but in the completion status of the G(P).OGSTOR instruction (⑤ + 1).

# 11.2 Alarm Code List

This section describes alarm codes that occur in a CT input module.

#### (1) Alarm code checking method

Alarms occurred in the CT input module can be checked by the same methods as those for errors. (Fig. Page 221, Section 11.1 (1))

#### (2) Alarm code list

The following table lists alarm codes.

| Alarm code (decimal) | Description and the alarm cause                                                                                                                                                                                                                                                                            | Action                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10△□                 | A process alarm or a rate alarm is occurring.  The channel where a process alarm or rate alarm has occurred fits in □.  A value fits in △ indicates that the alarm status is as follows:  0: Process alarm upper limit  1: Process alarm lower limit  2: Rate alarm upper limit  3: Rate alarm lower limit | When the digital output value returns to the one within the setting range, the following turns off.  • The corresponding bit of Warning output flag (Process alarm) (Un\G50)  • The corresponding bit of Warning output flag (Rate alarm) (Un\G51)  • Warning output signal (X8)  The alarm code can be cleared by turning off, on, and off Error clear request (YF) after the digital output value returns to the one within the setting range. |
| 110□                 | An input signal error is occurring.  The channel where an input signal error has occurred fits in □.                                                                                                                                                                                                       | The corresponding bit of Input signal error detection flag (Un\G49) and Input signal error detection signal (XC) turn off by turning off, on, and off Error clear request (YF) after the CT input value returns to the one within the setting range.                                                                                                                                                                                             |
| 120□                 | A peak current was detected.  The channel where the peak current has been detected fits in □.                                                                                                                                                                                                              | The corresponding bit of Peak current detection flag (Un\G301) and Peak current detection signal (X7) turn off by turning off, on, and off Error clear request (YF) after the CT input value returns to the one within the setting range.                                                                                                                                                                                                        |

# 11.3 Troubleshooting 11.3.1 When the RUN LED flashes or turns off

# 11.3 Troubleshooting

#### 11.3.1 When the RUN LED flashes or turns off

#### (1) When flashing

| Check item                                        | Action                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Is the operation in the offset/gain setting mode? | <ul> <li>Set the operation mode in the intelligent function module switch setting to the normal mode. Or reset the switch 4 in the intelligent function module switch setting to the normal mode.</li> <li>Set the operation mode to the normal mode by setting Mode switching setting (Un\G158, Un\G159); set Un\G158 to 0964<sub>H</sub>, and Un\G159 to 4144<sub>H</sub>.</li> </ul> |

#### (2) When off

| Check item                                                 | Action                                                                                                                                                                                                  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Is the power supplied?                                     | Check that the supply voltage of the power supply module is within the rated range.                                                                                                                     |
| Is the capacity of the power supply module sufficient?     | Calculate the current consumption of the modules mounted on the base unit, such as the CPU module, I/O module, and intelligent function module, and check that the power supply capacity is sufficient. |
| Is there any watchdog timer error?                         | Reset the CPU module, and check if the RUN LED turns on. If the RUN LED remains off, the CT input module might fail. Please consult a local Mitsubishi representative.                                  |
| Is the module mounted on the base unit properly?           | Check the mounting condition of the module.                                                                                                                                                             |
| Is a module change enabled during an online module change? | Refer to the following and take the corrective action.  • ONLINE MODULE CHANGE (Fig. Page 180, CHAPTER 10)                                                                                              |

# 11.3.2 When the ERR. LED turns on or flashes

#### (1) When on

| Check item          | Action                                                                      |
|---------------------|-----------------------------------------------------------------------------|
| Is there any error? | Check the error code, and take the action described in the error code list. |
|                     | • Error code list (F Page 224, Section 11.1 (2))                            |

#### (2) When flashing

| Check item                                                                                 | Action                                                               |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Is a value other than 0 set to Switch 5 of the intelligent function module switch setting? | Set 0 to Switch 5 of the intelligent function module switch setting. |

# 11.3.3 When the ALM LED turns on or flashes

#### (1) When on

| Check item                 | Action                                                                                           |
|----------------------------|--------------------------------------------------------------------------------------------------|
| Is there any alarm output? | Check Warning output flag (Process alarm) (Un\G50) or Warning output flag (Rate alarm) (Un\G51). |

#### (2) When flashing

| Check item                           | Action                                            |
|--------------------------------------|---------------------------------------------------|
| Is there any input signal error?     | Check Input signal error detection flag (Un\G49). |
| Is there any peak current detection? | Check Peak current detection flag (Un\G301).      |

# 11.3.4 When a digital output value cannot be read

| Check item                                                                                             | Action                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Are the k terminal and I terminal wired properly?     Is the secondary side of the CT short-circuited? | Refer to the following, and wire the k terminal and I terminal properly.  • Wiring ( Page 140, Section 7.4)                                                                                                                                                                                            |
| Is a connection cable disconnected?                                                                    | Confirm the faulty part by checking them visually or conducting electricity.                                                                                                                                                                                                                           |
| Is the CPU module in the STOP status?                                                                  | Change the status of the CPU module to RUN.                                                                                                                                                                                                                                                            |
| Is the offset/gain setting correct?                                                                    | Check if the offset/gain setting is correct.  When a user range is selected, change the input range to a factory default range and check if digital conversion is performed.  If the digital conversion is performed properly, configure the offset/gain setting again.                                |
| Is the input range setting correct?                                                                    | Check CH□ Input range setting (Un\G150 to Un\G157). If the input range setting is incorrect, start over the setting.                                                                                                                                                                                   |
| Is Conversion enable/disable setting (Un\G0) set to Disable (1) for the channel to be used?            | Check Conversion enable/disable setting (Un\G0), and enable the digital conversion in the sequence program or intelligent function module parameter.                                                                                                                                                   |
| Is Operating condition setting request (Y9) performed?                                                 | Turn on then off Operating condition setting request (Y9), and check if digital output values are stored in CH□ Digital output value (Un\G11 to Un\G18).  If the values are stored properly, review the sequence program so that Operating condition setting request (Y9) is turned on in the program. |
| Is the set value correct when an averaging process is specified?                                       | When time average is selected, satisfy the following condition.  • Set value ≥ "4 (times) × Sampling cycle"  If the condition above is not satisfied, 0 is stored in CH□ Digital output value (Un\G11 to Un\G18).                                                                                      |



If digital output values cannot be read even after taking the above actions, the module might fail. Please consult a local Mitsubishi representative.

# 11.3.5 When Conversion completed flag does not turn on in the normal mode

| Check item                       | Action                                            |
|----------------------------------|---------------------------------------------------|
| Is there any input signal error? | Check Input signal error detection flag (Un\G49). |

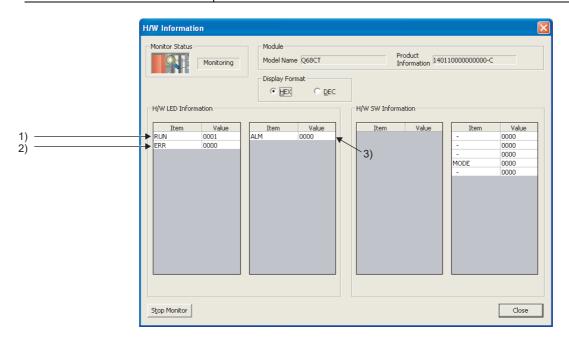
11.3 Troubleshooting
11.3.5 When Conversion completed flag does not turn on in the normal mode

# 11.4 Checking the CT Input Module Status on GX Works2 System Monitor

To check the LED status or the setting status of the intelligent function module switch setting, select the H/W information of the CT input module on the system monitor of GX Works2.

#### (1) Hardware LED information

The LED status is displayed.


| No. | LED name | Status                                                                                                  |
|-----|----------|---------------------------------------------------------------------------------------------------------|
| 1)  | RUN LED  | 0000 <sub>H</sub> : Indicates that the LED is off.                                                      |
|     |          | 0001 <sub>H</sub> : Indicates that the LED is on.                                                       |
| 2)  | ERR. LED | Alternating indication of 0000 <sub>H</sub> and 0001 <sub>H</sub> : Indicates that the LED is flashing. |
|     |          | (When the CT input module in communication, the LED status is displayed on GX                           |
| 3)  | ALM LED  | Works2. The values 0000 <sub>H</sub> and 0001 <sub>H</sub> are not always displayed evenly.)            |

#### (2) Hardware switch information

The setting status of the intelligent function module switch setting is displayed. For details on the setting status, refer to the following.

• Switch Setting (FP Page 143, Section 8.2)

| Item | Intelligent function module switch |
|------|------------------------------------|
| _    | Switch1                            |
| _    | Switch2                            |
| _    | Switch3                            |
| MODE | Switch4                            |
|      | Switch5                            |

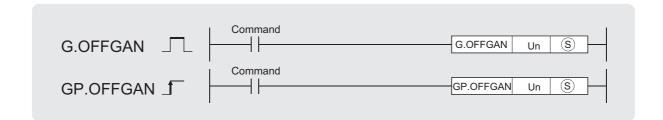


# Appendix 1 Dedicated In:

# **APPENDICES**

# Appendix 1 Dedicated Instruction

#### (1) Dedicated instruction


The following table lists dedicated instructions that can be used in a CT input module.

| Instruction | Description                                                                                                                                                              |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G(P).OFFGAN | <ul><li>This instruction switches the operation mode to the offset/gain setting mode.</li><li>This instruction switches the operation mode to the normal mode.</li></ul> |
| G(P).OGLOAD | This instruction reads out the offset/gain set values in a user range setting to the CPU module.                                                                         |
| G(P).OGSTOR | This instruction restores the offset/gain set values in a user range setting to the CT input module.                                                                     |



When the module is mounted on a MELSECNET/H remote I/O station, the dedicated instructions cannot be used.

# Appendix 1.1 G(P).OFFGAN



| Setting | Internal device |      | R, ZR | J□  | 1\□  | U□\G□ | Zn  | Constant | Others |
|---------|-----------------|------|-------|-----|------|-------|-----|----------|--------|
| data    | Bit             | Word | K, ZK | Bit | Word | OLIGL | ZII | К, Н, \$ | Others |
| S       | _               | (    | )     |     |      | _     |     |          |        |

#### (1) Setting data

| Device | Description                                                                                                                                                                        | Setting range        | Data type   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| Un     | Start I/O number of the module                                                                                                                                                     | 0 to FE <sub>H</sub> | BIN 16 bits |
| (S)    | Mode change  0: changed to the normal mode  1: changed to the offset/gain setting mode  When a value other than above is set, the mode is changed to the offset/gain setting mode. | 0, 1                 | BIN 16 bits |

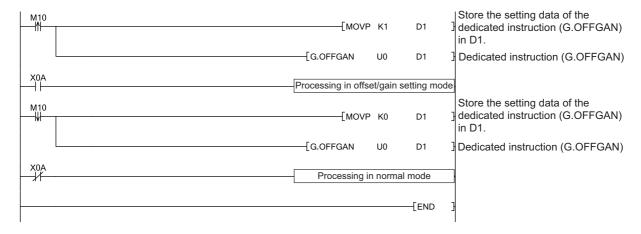
#### (2) Functions

This instruction switches the operation mode of the CT input module.

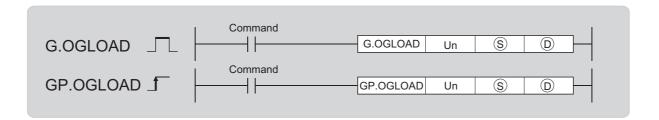
- Normal mode  $\rightarrow$  offset/gain setting mode (Offset/gain setting mode flag (XA) is on)
- Offset/gain setting mode → normal mode (Offset/gain setting mode flag (XA) is off)

#### Point P

- When the mode is switched from the offset/gain setting mode to the normal mode, Module READY (X0) turns on. Note that if a sequence program includes the initial settings to be executed at ON of Module READY (X0), this instruction performs the initial setting process.
- When the mode is switched, the digital conversion stops. To resume the digital conversion, turn on then off Operating
  condition setting request (Y9) after switching the mode to the normal mode.


#### (3) Errors

The instruction has no errors.


#### (4) Program example

The following shows the sequence program of the CT input module, installed in I/O number X/Y00 to X/Y0F, with the following conditions.

- Turning on M10 switches the operation mode of the CT input module to the offset/gain setting mode
- Turning off M10 restores the operation mode of the CT input module to the normal mode



# Appendix 1.2 G(P).OGLOAD



| Setting | Interna | l device | vice    |     |      |       | U□\G□ Zn Constant |          | Others |
|---------|---------|----------|---------|-----|------|-------|-------------------|----------|--------|
| data    | Bit     | Word     | K, ZK   | Bit | Word | OLIGE | ZII               | K, H, \$ | Others |
| (\$)    | _       | (        | $\circ$ |     |      | _     |                   |          |        |
| (D)     |         | 0        |         |     |      | _     |                   |          |        |

#### (1) Setting data

| Device     | Description                                                                                                                            | Setting range                            | Data type   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|
| Un         | Start I/O number of the module                                                                                                         | 0 to FE <sub>H</sub>                     | BIN 16 bits |
| <u>(S)</u> | Start number of the device where control data is stored                                                                                | Within the range of the specified device | Device name |
| (D)        | Device which turns on for one scan at the processing completion of the dedicated instruction.  In error completion, ①+1 also turns on. | Within the range of the specified device | Bit         |

# (2) Control data\*1

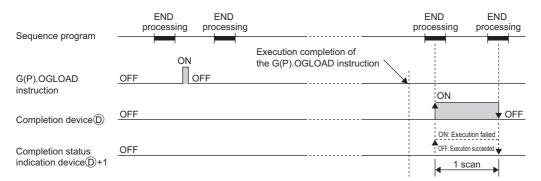
| Device | Item                                     | Setting data                                                                                                     | Setting range | Set by |  |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|--------|--|
| S      | System area                              | _                                                                                                                | _             | _      |  |
| S)+1   | Completion status                        | The status on instruction completion is stored. 0: normal completion Other than 0: error completion (error code) | _             | System |  |
| S)+2   | System area                              | _                                                                                                                | _             | _      |  |
| S)+3   | System area                              | _                                                                                                                | _             | _      |  |
| S)+4   | CH1 Factory default setting offset value | _                                                                                                                | _             | System |  |
| ®+5    | CH1 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| ©+6    | CH2 Factory default setting offset value | _                                                                                                                | _             | System |  |
| ©+7    | CH2 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| S+8    | CH3 Factory default setting offset value | _                                                                                                                | _             | System |  |
| S+9    | CH3 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| S+10   | CH4 Factory default setting offset value | _                                                                                                                | _             | System |  |
| S)+11  | CH4 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| S)+12  | CH5 Factory default setting offset value | _                                                                                                                | _             | System |  |
| S+13   | CH5 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| S+14   | CH6 Factory default setting offset value | _                                                                                                                | _             | System |  |
| ®+15   | CH6 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| S+16   | CH7 Factory default setting offset value | _                                                                                                                | _             | System |  |
| S+17   | CH7 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| ©+18   | CH8 Factory default setting offset value | _                                                                                                                | _             | System |  |
| ©+19   | CH8 Factory default setting gain value   | _                                                                                                                | _             | System |  |
| S+20   | CH1 User range setting offset value      | _                                                                                                                | _             | System |  |
| ©+21   | CH1 User range setting gain value        | _                                                                                                                | _             | System |  |
| S+22   | CH2 User range setting offset value      | _                                                                                                                | _             | System |  |
| S+23   | CH2 User range setting gain value        | _                                                                                                                | _             | System |  |
| S+24   | CH3 User range setting offset value      | _                                                                                                                | _             | System |  |
| S)+25  | CH3 User range setting gain value        | _                                                                                                                | _             | System |  |
| S)+26  | CH4 User range setting offset value      | _                                                                                                                | _             | System |  |
| S+27   | CH4 User range setting gain value        | _                                                                                                                | _             | System |  |
| S+28   | CH5 User range setting offset value      | _                                                                                                                | _             | System |  |
| S+29   | CH5 User range setting gain value        | _                                                                                                                | _             | System |  |
| S+30   | CH6 User range setting offset value      | _                                                                                                                | _             | System |  |
| ©+31   | CH6 User range setting gain value        | _                                                                                                                | _             | System |  |
| ©+32   | CH7 User range setting offset value      | _                                                                                                                | _             | System |  |
| S+33   | CH7 User range setting gain value        | _                                                                                                                | _             | System |  |

| Device | Item                                | Setting data | Setting range | Set by |
|--------|-------------------------------------|--------------|---------------|--------|
| S+34   | CH8 User range setting offset value | _            | _             | System |
| S+35   | CH8 User range setting gain value   | _            | _             | System |

<sup>\*1</sup> These control data are unnecessary to be set. When they are set, offset/gain setting values are not correctly read out.

#### (3) Functions

- This instruction reads out the offset/gain set values in a user range setting of the CT input module to the CPLI module
- The interlock signal of G(P).OGLOAD includes a completion device ① and a completion status indication device ①+1.


#### (a) Completion device

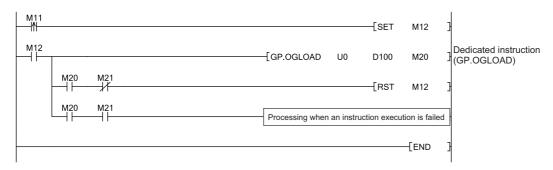
The device turns on at the END processing for the scan where the G(P).OGLOAD instruction is completed, and turns off at the next END processing.

#### (b) Completion status indication device

This device turns on or off depending on the status of the G(P).OGLOAD instruction completion.

- · Normal completion: the device remains off.
- Error completion: the device turns on at the END processing for the scan where the G(P).OGLOAD instruction is completed, and turns off at the next END processing.




#### (4) Errors

The instruction has no errors.

#### (5) Program example

The following shows the sequence program of the CT input module, installed in I/O number X/Y00 to X/Y0F, with the following conditions.

• Turning on M11 reads out the offset/gain setting value of the CT input module.



# Appendix 1.3 G(P).OGSTOR



| Setting | Internal device |      | D 7D  | J□  | \    | U□/G□ | Zn          | Constant | Others |
|---------|-----------------|------|-------|-----|------|-------|-------------|----------|--------|
| data    | Bit             | Word | R, ZR | Bit | Word |       | <b>4</b> 11 | К, Н, \$ | Others |
| (\$)    |                 | (    | 0     |     |      | _     |             |          |        |
| (D)     |                 | 0    |       |     |      | _     |             |          |        |

#### (1) Setting data

| Device | Description                                                                                                                           | Setting range                            | Data type   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|
| Un     | Start I/O number of the module                                                                                                        | 0 to FE <sub>H</sub>                     | BIN 16 bits |
| (S)*1  | Start number of the device where control data is stored                                                                               | Within the range of the specified device | Device name |
| (D)    | Device which turns on for one scan at the processing completion of the dedicated instruction  In error completion, ①+1 also turns on. | Within the range of the specified device | Bit         |

<sup>\*1</sup> Specify the device specified to ⑤ on execution of the G(P).OGLOAD instruction.

Do not change the data which was read out by the G(P).OGLOAD instruction. If the data is changed, the normal operation may not be ensured.

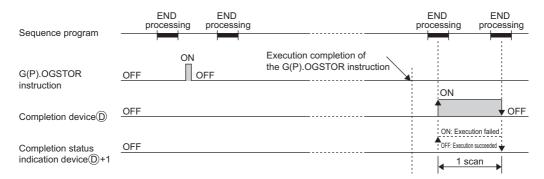
#### (2) Control data

| Device | Item                                     | Setting data                                                                                                     | Setting range | Set by |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|--------|
| S      | System area                              | _                                                                                                                | _             | _      |
| S)+1   | Completion status                        | The status on instruction completion is stored. 0: normal completion Other than 0: error completion (error code) | _             | System |
| ©+2    | System area                              | _                                                                                                                | _             | _      |
| ©+3    | System area                              | _                                                                                                                | _             | _      |
| S)+4   | CH1 Factory default setting offset value | _                                                                                                                | _             | System |
| ®+5    | CH1 Factory default setting gain value   | _                                                                                                                | _             | System |
| S+6    | CH2 Factory default setting offset value | _                                                                                                                | _             | System |
| ®+7    | CH2 Factory default setting gain value   | _                                                                                                                | _             | System |
| S+8    | CH3 Factory default setting offset value | _                                                                                                                | _             | System |
| S+9    | CH3 Factory default setting gain value   | _                                                                                                                | _             | System |
| S+10   | CH4 Factory default setting offset value |                                                                                                                  |               | System |
| S)+11  | CH4 Factory default setting gain value   | _                                                                                                                | _             | System |
| S+12   | CH5 Factory default setting offset value | _                                                                                                                | _             | System |
| S+13   | CH5 Factory default setting gain value   | _                                                                                                                | _             | System |
| S)+14  | CH6 Factory default setting offset value | _                                                                                                                | _             | System |
| S)+15  | CH6 Factory default setting gain value   | _                                                                                                                | _             | System |
| S+16   | CH7 Factory default setting offset value |                                                                                                                  | _             | System |
| S)+17  | CH7 Factory default setting gain value   |                                                                                                                  | _             | System |
| S+18   | CH8 Factory default setting offset value |                                                                                                                  | _             | System |
| S+19   | CH8 Factory default setting gain value   | _                                                                                                                | _             | System |
| S+20   | CH1 User range setting offset value      | _                                                                                                                | _             | System |
| S+21   | CH1 User range setting gain value        | _                                                                                                                | _             | System |
| S+22   | CH2 User range setting offset value      |                                                                                                                  | _             | System |
| S+23   | CH2 User range setting gain value        | _                                                                                                                | _             | System |
| S)+24  | CH3 User range setting offset value      |                                                                                                                  |               | System |
| S)+25  | CH3 User range setting gain value        |                                                                                                                  | _             | System |
| S)+26  | CH4 User range setting offset value      |                                                                                                                  |               | System |
| S+27   | CH4 User range setting gain value        |                                                                                                                  | _             | System |
| S+28   | CH5 User range setting offset value      |                                                                                                                  | _             | System |
| S+29   | CH5 User range setting gain value        |                                                                                                                  | _             | System |
| S+30   | CH6 User range setting offset value      | _                                                                                                                | _             | System |
| S+31   | CH6 User range setting gain value        | _                                                                                                                | _             | System |
| S+32   | CH7 User range setting offset value      | _                                                                                                                | _             | System |
| S+33   | CH7 User range setting gain value        | _                                                                                                                | _             | System |

| Device       | ltem                                | Setting data | Setting range | Set by |
|--------------|-------------------------------------|--------------|---------------|--------|
| S+34         | CH8 User range setting offset value | _            | _             | System |
| <u>S</u> +35 | CH8 User range setting gain value   | _            | _             | System |

#### (3) Functions

- This instruction restores the offset/gain set values in a user range setting to the CT input module.
- The accuracy on restoration of the offset/gain setting values (when the ambient temperature is 25±5°C) is within ±1.5% (within ±150 digit).


#### (a) Completion device

The device turns on at the END processing for the scan where the G(P).OGSTOR instruction is completed, and turns off at the next END processing.

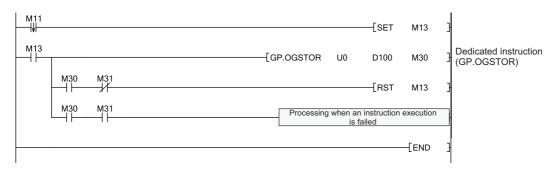
#### (b) Completion status indication device

This device turns on or off depending on the status of the G(P).OGSTOR instruction completion.

- · Normal completion: the device remains off.
- Error completion: the device turns on at the END processing for the scan where the G(P).OGSTOR instruction is completed, and turns off at the next END processing.



#### (4) Errors


In the following cases, an error occurs and error code is stored in completion status §+1.

| Error code | Description of operation error                                                                                                                                                                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 161        | G(P).OGSTOR instruction is executed in the offset/gain setting mode.                                                                                                                                                                          |
| 162        | G(P).OGSTOR instruction is continuously executed.                                                                                                                                                                                             |
| 163        | <ul> <li>G(P).OGSTOR instruction is executed to the different model from the one to which G(P).OGLOAD instruction is executed.</li> <li>G(P).OGSTOR instruction has been executed before the execution of G(P).OGLOAD instruction.</li> </ul> |

#### (5) Program example

The following shows the sequence program of the CT input module, installed in I/O number X/Y00 to X/Y0F, with the following conditions.

• Turning off M11 writes the offset/gain setting value to the CT input module.



# Appendix 2 When Using GX Developer

This chapter describes the operating procedure of GX Developer.

When GX Developer is used, perform the initial setting and auto refresh in the sequence program.

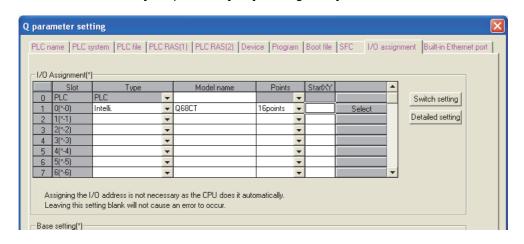
• Program example when not using parameters of the intelligent function module (Page 162, Section 9.2.2 and Page 175, Section 9.3.2)

#### (1) Applicable software packages

For the applicable software version, refer to the following.

Page 20, Section 2.1 (4)

#### **Appendix 2.1** Operation of GX Developer

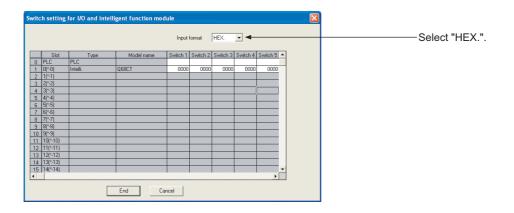

Configure the following settings when using GX Developer.

| Window name Application |                                                                            | Reference                  |  |
|-------------------------|----------------------------------------------------------------------------|----------------------------|--|
| I/O assignment          | Set the type of the module to be mounted and the I/O signal range.         | Page 244, Appendix 2.1 (1) |  |
| Switch setting          | Configure the switch setting of an intelligent function module.            | Page 245, Appendix 2.1 (2) |  |
| Offset/gain setting     | Configure the setting when using a user range setting for the input range. | Page 151, Section 8.5.2    |  |

#### (1) I/O assignment

Configure the setting on "I/O assignment" in "PLC parameter".

Parameter Parameter



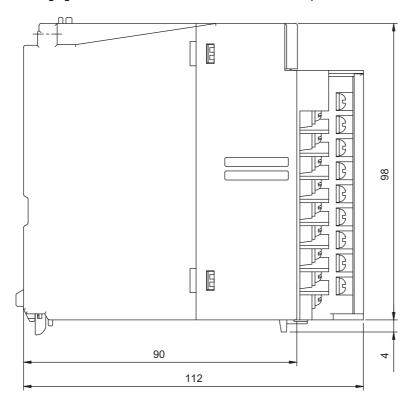

| Item       | Description                                              |
|------------|----------------------------------------------------------|
| Туре       | Select "Intelli.".                                       |
| Model name | Enter the model name of the module.                      |
| Points     | Select "16points".                                       |
| StartXY    | Enter a desired start I/O number of the CT input module. |

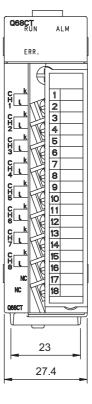
#### (2) Intelligent function module switch setting

Configure the setting on "Switch setting" in "PLC parameter".

Parameter  $\Rightarrow$  [PLC parameter]  $\Rightarrow$  [I/O assignment]  $\Rightarrow$  Click the Switch setting button.




| Item     | Setting range                                                                      |
|----------|------------------------------------------------------------------------------------|
| Switch 1 | 0: Fixed (blank)*1                                                                 |
| Switch 2 | 0: Fixed (blank)*1                                                                 |
| Switch 3 | 0: Fixed (blank)*1                                                                 |
| Switch 4 | H Fixed to 000H*1  OH Th to FH (A value other than 0H)*2: Offset/gain setting mode |
| Switch 5 | 0: Fixed                                                                           |


<sup>\*1</sup> When a value is set, the set value is ignored.

<sup>\*2</sup> The operation is the same for all values in the setting range.

# Appendix 3 External Dimensions

The following figure shows the external dimensions of a CT input module.





(Unit: mm)

Memo

# **INDEX**

| <b>A</b>                                                                                               | CH□ Process alarm lower lower limit value (Un\G86                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accuracy                                                                                               | Un\G90, Un\G94, Un\G98, Un\G102, Un\G106 Un\G110, Un\G114)                                                                                                                                                                                                                                                                                                        |
|                                                                                                        | Un\G112, Un\G116)114                                                                                                                                                                                                                                                                                                                                              |
| CH1 Factory default setting offset value (Un\G202) to CH8 Factory default setting gain value (Un\G217) | CH□ Process alarm upper upper limit value (Un\G88 Un\G93, Un\G97, Un\G101, Un\G105, Un\G108 Un\G113, Un\G117)                                                                                                                                                                                                                                                     |
|                                                                                                        | D                                                                                                                                                                                                                                                                                                                                                                 |
| CH□ Logging points after trigger (Un\G1048 to Un\G1055)                                                | Default setting completed flag (X5) 78 Default setting registration function 77 Default setting request (Y5) 87 Digital Conversion Method Averaging process 36 Primary delay filter 39 Sampling processing 36 Digital conversion method 36 Digital output value 33 Dropout detection setting (Un\G160) 118 Dropout function 47 Dropout status flag (Un\G161). 119 |
| Un/G333)                                                                                               | Error clear function                                                                                                                                                                                                                                                                                                                                              |

| Error flag (XF)                                                                                               | Р                                                                                              |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Error history function                                                                                        | Parameter setting                                                                              |
| G                                                                                                             | Peak current detection setting (Un\G300) 121 Peak current detection signal (X7) 80             |
| G(P).OFFGAN       234         G(P).OGLOAD       236         G(P).OGSTOR       240         Gain value       27 | Range reference table                                                                          |
| н                                                                                                             | S                                                                                              |
| Hardware LED information                                                                                      | Sampling cycle setting (Un\G26)                                                                |
| I/O assignment                                                                                                | Scaling value                                                                                  |
| L                                                                                                             | Time average                                                                                   |
| Latest address of error history (Un\G1800)                                                                    | U User range write request (YA)                                                                |
| М                                                                                                             | Warning output flag (Process alarm) (Un\G50) 111 Warning output flag (Rate alarm) (Un\G51) 111 |
| Maximum and minimum values                                                                                    | Warning output function                                                                        |
| 0                                                                                                             |                                                                                                |
| Offset value                                                                                                  |                                                                                                |

### **REVISIONS**

\*The manual number is given on the bottom left of the back cover.

| Print date | *Manual number     | Revision                                                                                                                                                                  |  |
|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| March 2012 | SH(NA)-081033ENG-A | First edition                                                                                                                                                             |  |
| May 2016   | SH(NA)-081033ENG-B | Correction SAFETY PRECAUTIONS, Section 2.1, 3.1, 3.3, 4.5.1, Chapter 8, Section 9.3, Chapter 10, Section 10.1 to 10.10, 11.1, Appendix 2  Deletion Appendix 3, 3.1 to 3.7 |  |
|            |                    |                                                                                                                                                                           |  |
|            |                    |                                                                                                                                                                           |  |
|            |                    |                                                                                                                                                                           |  |

Japanese manual version SH-081032-C

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2012 MITSUBISHI ELECTRIC CORPORATION

#### **WARRANTY**

Please confirm the following product warranty details before using this product.

#### 1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
  - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
  - 2. Failure caused by unapproved modifications, etc., to the product by the user.
  - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
  - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
  - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
  - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
  - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

#### 2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

#### 3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

#### 4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:

- (1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
- (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
- (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
- (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

#### 5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

Ethernet is a registered trademark of Fuji Xerox Corporation in Japan.

The SD and SDHC logos are trademarks of SD-3C, LLC.

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.

In some cases, trademark symbols such as  ${'^{^{\text{TM}}}}{'}$  or  ${'^{\text{®}}}{'}$  are not specified in this manual.





252 SH(NA)-081033ENG-B

SH(NA)-081033ENG-B(1605)MEE

MODEL: Q68CT-U-E MODEL CODE: 13JZ66

#### MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.