
MX Component for iOS Version 1
Reference Manual

-SW1MIC-ACTIOS-B





SAFETY PRECAUTIONS
(Read these precautions before using this product.)
Before using this product, please read this manual carefully and pay full attention to safety to handle the product correctly. If 
products are used in a different way from that specified by manufacturers, the protection function of the products may not 
work properly.
The precautions given in this manual are concerned with this product only. For the safety precautions for the programmable 
controller system, refer to the user's manual for the CPU module used and the system manual, (MELSEC iQ-R Module 
Configuration Manual, QCPU User's Manual (Hardware Design, Maintenance and Inspection), MELSEC-L CPU Module 
User's Manual (Hardware Design, Maintenance and Inspection)).
In this manual, the safety precautions are classified into two levels: " WARNING" and " CAUTION".

Under some circumstances, failure to observe the precautions given under " CAUTION" may lead to serious 
consequences.
Observe the precautions of both levels because they are important for personal and system safety.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

[Startup and Maintenance Precautions]

[Security Precautions]

WARNING
● When data change or status control are performed from a device such as a tablet to a running 

programmable controller CPU, create an interlock circuit outside the programmable controller to 
ensure that the whole system always operates safely.
Since a wireless LAN is used for communication, the communication may not be performed properly 
depending on the environment. Ensure the communication method other than using this product for 
the situation when the wireless LAN communication cannot be established.

CAUTION
● The online operations performed from a device such as a tablet to a running CPU module have to be 

executed after the manual has been carefully read and the safety has been ensured.
Improper operation may damage machines or cause accidents.

WARNING
● To maintain the security (confidentiality, integrity, and availability) of the programmable controller and 

the system against unauthorized access, denial-of-service (DoS) attacks, computer viruses, and other 
cyberattacks from external devices via the network, take appropriate measures such as firewalls, 
virtual private networks (VPNs), and antivirus solutions.

WARNING Indicates that incorrect handling may cause hazardous conditions, resulting in 
death or severe injury. 

CAUTION Indicates that incorrect handling may cause hazardous conditions, resulting in 
minor or moderate injury or property damage.
1



2

CONDITIONS OF USE FOR THE PRODUCT
(1) MELSEC programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident;  
and 
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the 
case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI ELECTRIC SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO 
ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT 
LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the 
PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY 
INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI ELECTRIC USER'S, INSTRUCTION 
AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT. 
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the 

public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality 

assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, 

Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and 
Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other 
applications where there is a significant risk of injury to the public or property.

Notwithstanding the above restrictions, Mitsubishi Electric may in its sole discretion, authorize use of the PRODUCT in 
one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific 
applications agreed to by Mitsubishi Electric and provided further that no special quality assurance or fail-safe, 
redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, 
please contact the Mitsubishi Electric representative in your region.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and 
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.



INTRODUCTION
Thank you for purchasing the engineering software, MELSOFT series.
This manual describes the operations of MX Component for iOS.
Before using this product, please read this manual carefully, and develop familiarity with the functions and performance of MX 
Component for iOS to handle the product correctly.
3



4

CONTENTS
SAFETY PRECAUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
CONDITIONS OF USE FOR THE PRODUCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
RELEVANT MANUALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

CHAPTER 1 OVERVIEW 8
1.1 What is MX Component for iOS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Main Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 SYSTEM CONFIGURATION 10
2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Configuration Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Usable CPU modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Accessible Ethernet modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Operating Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 3 USAGE 15
3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Creating a project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Uninstallation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Communication method (open method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 4 ACCESSIBLE DEVICES 27
4.1 Accessible Device List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Programmable controller CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C Controller module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Motion CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Considerations for Devices and Labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Considerations for bit devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Considerations for using labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 5 METHODS 34
5.1 Method List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Details of Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

MELMxCommunication class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
MELMxOpenSettings class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
MELMxLabel class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
MELMxErrDefine.h file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Considerations for Using Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Created application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Sample method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

CHAPTER 6 TROUBLESHOOTING 80



C
O

N
TE

N
TS
6.1 Errors in development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Errors in operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

APPENDIX 85
Appendix 1 Added and Changed Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

METHOD INDEX 87

REVISIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
TRADEMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
5



6

RELEVANT MANUALS

e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated 
tool.
e-Manual has the following features:
 • Required information can be cross-searched in multiple manuals.
 • Other manuals can be accessed from the links in the manual.
 • Hardware specifications of each part can be found from the product figures.
 • Pages that users often browse can be bookmarked.

TERMS
Unless otherwise specified, this manual uses the following terms.

Manual name [manual number] Description Available form
MX Component for iOS Version 1 Reference Manual
[SH-081499ENG] (this manual)

Explains the system configuration, operation methods, 
and methods of MX Component for iOS.

e-Manual
PDF

Term Description
Built-in Ethernet CPU A generic term for CPU modules with an Ethernet port.

C Controller module A generic term for MELSEC iQ-R series C Controller modules and MELSEC-Q series C Controller modules.

Engineering tool A tool for setting, programming, debugging, and maintaining programmable controllers.
A generic term for GX Works2, GX Works3, and Setting/monitoring tools for the C Controller module.

Ethernet module A generic term for MELSEC iQ-R series-compatible EN71, MELSEC-Q series-compatible E71, and MELSEC-L series-
compatible E71.

FX5CPU A generic term for FX5UCPU and FX5UCCPU.

GX Works2 A generic product name for SWnDND-GXW2 and SWnDNC-GXW2. ('n' indicates its version.)

GX Works3 A generic product name for SWnDND-GXW3. ('n' indicates its version.)

LCPU A generic term for L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-
BT, and L26CPU-PBT.

MELSEC iQ-R series C Controller 
module

R12CCPU-V

MELSEC iQ-R series CPU A generic term for MELSEC iQ-R series programmable controller CPUs, C Controller modules, and motion CPUs.

MELSEC iQ-R series motion CPU A generic term for R16MTCPU and R32MTCPU.

MELSEC iQ-R series-compatible 
EN71

RJ71EN71 (when using the Ethernet function)

MELSEC-L series-compatible E71 LJ71E71-100

MELSEC-Q series C Controller 
module

A generic term for Q12DCCPU-V (Extended mode), Q24DHCCPU-V, and Q24DHCCPU-LS.

MELSEC-Q series CPU A generic term for the MELSEC-Q series programmable controller CPUs, C Controller modules, and motion CPUs.

MELSEC-Q series motion CPU A generic term for Q172DCPU, Q173DCPU, Q172DSCPU, and Q173DSCPU.

MELSEC-Q series-compatible E71 A generic term for QJ71E71-100, QJ71E71-B5, and QJ71E71-B2.

Motion CPU A generic term for MELSEC iQ-R series motion CPUs and MELSEC-Q series motion CPUs.

MX Component for iOS A generic product name for SWnMIC-ACTIOS-B ('n' indicates its version.)

Programmable controller CPU A generic term for RCPUs, FX5CPU, QCPUs, and LCPUs.

QCPU A generic term for Q00JCPU, Q00UJCPU, Q00CPU, Q00UCPU, Q01CPU, Q01UCPU, Q02CPU, Q02HCPU, 
Q02PHCPU, Q02UCPU, Q03UDCPU, Q03UDECPU, Q03UDVCPU, Q04UDHCPU, Q04UDEHCPU, Q04UDVCPU, 
Q06HCPU, Q06PHCPU, Q06UDHCPU, Q06UDEHCPU, Q06UDVCPU, Q10UDHCPU, Q10UDEHCPU, Q12HCPU, 
Q12PHCPU, Q12PRHCPU, Q13UDHCPU, Q13UDEHCPU, Q13UDVCPU, Q20UDHCPU, Q20UDEHCPU, Q25HCPU, 
Q25PHCPU, Q25PRHCPU, Q26UDHCPU, Q26UDEHCPU, Q26UDVCPU, Q50UDEHCPU, and Q100UDEHCPU.

RCPU A generic term for RnCPUs, RnENCPUs, and RnPCPUs.

RnCPU A generic term for R04CPU, R08CPU, R16CPU, R32CPU, and R120CPU.

RnENCPU A generic term for R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, and R120ENCPU.

RnPCPU A generic term for R08PCPU, R16PCPU, R32PCPU, and R120PCPU.

Setting/monitoring tools for the C 
Controller module

A generic product name for SW4PVC-CCPU.



Universal model QCPU A generic term for Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, 
Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, 
Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, 
Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, and 
Q100UDEHCPU.

Term Description
7



8

1 OVERVIEW
This chapter explains the features of MX Component for iOS.

1.1 What is MX Component for iOS?
MX Component for iOS is the library to read and write the values of devices and labels in a programmable controller from a 
tablet.
This product is for creating a user program to communicate with a programmable controller from iOS.
Wireless communication performs between a device such as a tablet and wireless LAN router, and Ethernet communication 
performs to access a programmable controller.
By using MX Component for iOS when creating an application, the time to create a program for communication with a 
programmable controller can be shortened.
It can also be used for the static library of Swift or Objective-C.

1.2 Main Functions
MX Component for iOS has the following main functions.

Creating a tablet application
An application for a tablet to read and write devices and labels in a programmable controller can easily be created without 
knowing the communication method for the programmable controller.

Programming by using labels (RCPUs only)
When the communication target is an RCPU, the devices in the programmable controller can be accessed by using labels*1. 
Therefore, the program is easy to see and recreation of an application is not required even after the device configuration was 
changed.
*1 Labels selected in "Access from External Device" in the global editor in GX Works3 can be used.

Creating a safe application for security
A safe application for security can be created by using this library since a remote password is encrypted*1 when 
communicating with a programmable controller in which the remote password has been set.
*1 A remote password is encrypted in the following cases only.

When accessing a MELSEC iQ-R series programmable controller 
When accessing a MELSEC-Q series CPU or an LCPU via an Ethernet module

Sample program
An application can be created by using the provided sample program as a reference. The sample program also is helpful to 
see how to use the library or correct an error etc.

(iOS)

Programmable controller

Writing

Device/Label

Reading

Wireless LAN router

Tablet
1  OVERVIEW
1.1  What is MX Component for iOS?



1

MEMO
1  OVERVIEW
1.2  Main Functions 9



10
2 SYSTEM CONFIGURATION
This chapter explains the system configuration of MX Component for iOS.

2.1 System Configuration
The following shows the system configurations for development and operation.

For development

For operation

Considerations
■ Access route
A tablet accesses each module in a station which is directly connected with a wireless LAN router. It cannot access another 
station via an Ethernet module.

(Mac OS)

(iOS)

Development personal computer

Tablet

Install the created application.

Wireless LAN router

Built-in Ethernet CPU/
Ethernet module

Programmable controller CPU/C Controller module/motion CPU

(iOS)
Tablet

Wireless LAN router

Built-in Ethernet CPU/
Ethernet module

Hub Hub

Programmable controller CPU/C Controller module/motion CPU
2  SYSTEM CONFIGURATION
2.1  System Configuration



2

2.2 Configuration Devices
This section shows the usable and accessible CPU modules.

Usable CPU modules

*1 Use the firmware version '05' or later.

Series Module Module name Remarks
MELSEC iQ-R series Programmable controller 

CPU
R04CPU, R04ENCPU, R08CPU, R08ENCPU, 
R08PCPU, R16CPU, R16ENCPU, R16PCPU, 
R32CPU, R32ENCPU, R32PCPU, R120CPU, 
R120ENCPU, R120PCPU

In RnPCPUs, the operation mode needs to be set to 
the process mode.

C Controller module R12CCPU-V Communication via an Ethernet port of a C Controller 
module is not available.
To communicate with a C Controller module, specify 
it as the other CPU, and route via a built-in Ethernet 
port of a programmable controller.

Motion CPU R16MTCPU, R32MTCPU The PERIPHERAL I/F connector of a motion CPU 
cannot be used for communication.
To communicate with a motion CPU, specify it as the 
other CPU, and route via a built-in Ethernet port of a 
programmable controller.

MELSEC iQ-F 
series*1

Programmable controller 
CPU

FX5UCPU, FX5UCCPU 

MELSEC-Q series Programmable controller 
CPU

Q00JCPU, Q00UJCPU, Q00CPU, Q00UCPU, 
Q01CPU, Q01UCPU, Q02CPU, Q02HCPU, 
Q02PHCPU, Q02UCPU, Q03UDCPU, 
Q04UDHCPU, Q06HCPU, Q06PHCPU, 
Q06UDHCPU, Q10UDHCPU, Q12HCPU, 
Q12PHCPU, Q12PRHCPU, Q13UDHCPU, 
Q20UDHCPU, Q25HCPU, Q25PHCPU, 
Q25PRHCPU, Q26UDHCPU

An Ethernet module is required.

Q03UDECPU, Q03UDVCPU, Q04UDEHCPU, 
Q04UDVCPU, Q06UDEHCPU, Q06UDVCPU, 
Q10UDEHCPU, Q13UDEHCPU, Q13UDVCPU, 
Q20UDEHCPU, Q26UDEHCPU, Q26UDVCPU, 
Q50UDEHCPU, Q100UDEHCPU

Communication with another CPU cannot be 
performed via a built-in Ethernet port of a 
programmable controller CPU.
To communicate with another CPU, use its built-in 
Ethernet port or route via an Ethernet module 
managed by it.

C Controller module Q12DCCPU-V, Q24DHCCPU-V, Q24DHCCPU-
LS

Communication with another CPU cannot be 
performed via a built-in Ethernet port of a C Controller 
module.
To communicate with another CPU, use its built-in 
Ethernet port or route via an Ethernet module 
managed by it.

Motion CPU Q172DCPU, Q173DCPU, Q172DSCPU, 
Q173DSCPU

The PERIPHERAL I/F connector of a motion CPU 
cannot be used for communication.
To communicate with a motion CPU, route via an 
Ethernet module managed by it.

MELSEC-L series Programmable controller 
CPU

L02SCPU, L02SCPU-P An Ethernet module is required.

L02CPU, L02CPU-P, L06CPU, L06CPU-P, 
L26CPU, L26CPU-P, L26CPU-BT, L26CPU-
PBT



2  SYSTEM CONFIGURATION
2.2  Configuration Devices 11



12
Accessible Ethernet modules
An Ethernet module is required in order to communicate to a CPU module with no Ethernet port.

*1 Use the firmware version '02' or later.
*2 It is not applicable when "Q Compatible Ethernet" is set for the network type of a module parameter in GX Works3.
*3 Use the first five digits of the serial number are '15042' and function version is 'D' or later.
*4 Use the first five digits of the serial number are '15042' and function version is 'A' or later.

Series Module name
MELSEC iQ-R series*1,*2 RJ71EN71

MELSEC-Q series*3 QJ71E71-100, QJ71E71-B5, QJ71E71-B2

MELSEC-L series*4 LJ71E71-100
2  SYSTEM CONFIGURATION
2.2  Configuration Devices



2

2.3 Operating Environment
The following table shows the operating environment of MX Component for iOS.

Development environment

*1 A CPU, required memory, and HDD free space need to follow the recommended specifications of the operating system, development 
environment and language.

*2 Operation by using the simulator included in the development environment is not guaranteed.

Operating environment

Item Description
Personal computer*1 A personal computer on which Mac OS operates

Operating system • macOS Sierra 
• OS X 10.11 El Capitan
• OS X 10.10 Yosemite
• OS X 10.9 Mavericks

Development environment*2 and 
language

Development application Xcode 7.X, 8.X

Development language Swift, Objective-C

Item Description
Smartphone and tablet iPhone, iPad, iPad Air, iPad mini, iPad Pro, or iPod touch on which iOS operates

Operating system • iOS 10.X
• iOS 9.X 
• iOS 8.X 
2  SYSTEM CONFIGURATION
2.3  Operating Environment 13



14
2.4 Considerations
This section shows the considerations for using MX Component for iOS.

Considerations for programming
■ Electric interruption and noise affection
On the communication by wireless LAN, some packets may be lost due to the electric interruption or noise affection. When 
creating a user program, include the resend processing and the line-reopen processing according to the system.

■ Erroneous data reception at timeout
Erroneous data may be received if timeout has occurred while connecting to an Ethernet port of an FX5CPU or a QCPU. 
Create a program to include the line-reopen processing.

■ Wireless LAN switching
On the communication by wireless LAN, some packets may be lost and a timeout error may occur due to the wireless LAN 
switching*1. In the environment where wireless LAN is switched, create a program to include the resend processing and the 
line-reopen processing according to the system.
*1 Wireless LAN roaming, hand-over, and disconnection etc.

■ Considerations for iOS specifications
 • When a device such as a table is in sleep status or the application is running as a background task, Ethernet 

communication of the application using this product may be disconnected. In this case, perform the reopen processing as 
necessary.

 • This product is the communication library to perform the Ethernet communication. In an operating system, there are some 
essential items and recommendations related to the tasks for communication. Create a program by following them.
Example: Thread the communication processing and perform it in the background.

Contract with Apple 
To install a created application to iOS, the agreement for iOS Developer Program or iOS Developer Enterprise Program is 
required.
For details, refer to the Apple Web site.

Considerations for using this product with other products
For the connection setting between a device such as a tablet and a wireless LAN router, set a protocol such as WPA2 to 
encrypt data.
Data may illegally be accessed if a protocol that does not encrypt data is selected for the connection settings.
Select a much safer security setting between a device such as a tablet and wireless LAN router.
2  SYSTEM CONFIGURATION
2.4  Considerations



3

3 USAGE
This chapter explains how to use MX Component for iOS.

3.1 Installation
This section shows the procedure for using this library on the development environment of iOS application (Xcode).

Importing the library

Operating procedure
1. Create a new project in Xcode.

2. Copy the following bundles, framework, and header file from the provided CD to the newly created project folder.
 • interface.bundle
 • MXComponent.framework
 • support.bundle
 • MXComponent-Bridging-Header.h*1

*1 It is required to create a project in Swift.

3. Select [PROJECT]  [TARGETS] to display the [Build Phases] tab.
3  USAGE
3.1  Installation 15



16
4. Expand "Link Binary With Libraries", then click the [+] button.

5. Select "libxml2.2.tbd", then click the [Add] button.
3  USAGE
3.1  Installation



3

6. Drag "MXComponent.framework" from "Finder" onto the "Link Binary With Libraries" column.

7. Drag "interface.bundle" and "support.bundle" from "Finder" onto the "Copy Bundle Resources" column.

Precautions
This library uses ARC (Automatic Reference Counting). Therefore, ARC needs to be enabled on the project side. If ARC is not 
used, some problems such as memory leaks may occur.
ARC is the system to automatically manage the memory of the reference counting system provided by iOS. By using ARC, 
the memory release processing (such as 'retain' or 'release') is not necessary (do not perform them), and memory leaks are 
prevented.
Unlike the system of the garbage collection of Java, ARC inserts proper codes to proper places automatically by the 
compiler. The code insertion rules of ARC need to be understood in advance.
This library does not include a bit code. Therefore, select [PROJECT]  [TARGETS] in the setting of a project in Xcode, then 
display the [Build Settings] tab and set "No" for "Enable Bitcode" in "Build Options".
3  USAGE
3.1  Installation 17



18
3.2 Creating a project
When creating a project, the following operations are required; reading the header definition and the library.

Reading the header definition
Read the header definition of MX Component for iOS.

■ Swift
1. Drag "MXComponent-Bridging-Header.h" onto the project in Xcode.

2. In the project in Xcode, select [PROJECT]  [TARGETS] to display the [Build Settings] tab.
3  USAGE
3.2  Creating a project



3

3. Expand "Swift Compiler-General".

4. Enter the relative path of 'MXComponent-Bridging-Header.h' to "Objective-C Bridging Header".
3  USAGE
3.2  Creating a project 19



20
■ Objective-C
Enter the following statement to where MX Component for iOS is used on the Objective-C source code.
#import <MXComponent/MELMxCommunicaton.h>

Reading the library
This library is a shared library. Create a program to include the processing for reading the library by using Xcode.
3  USAGE
3.2  Creating a project



3

3.3 Update
To download the update version of MX Component for iOS, please consult your local Mitsubishi representative.
 • The product version differs from the library version. For the product version, an alphabet is added at the end of the version 

number.

Update method

Operating procedure
1. Overwrite "MXComponent.framework" and "support.bundle" in the downloaded folder to "MXComponent.framework" and 

"support.bundle" in the project folder.

2. Check whether "MXComponent.framework" and "support.bundle" were copied and the date were updated.

Precautions
Update may fail when it is performed with a target project of update opened. Update with the target project closed.

Checking the version of MX Component for iOS
The version of this library can be checked by looking at the 'info.plist' file in the bundles and framework.
The following shows the example to check the version of "MXComponent.framework".
When checking the versions of "support.bundle" and "interface.bundle" , follow the same method shown below.

Operating procedure
1. Change the display format of "Finder" to the column display.

2. Move to "MXComponent.framework" in the project folder that stores the bundles and framework of MX Component for 
iOS.

3. Select Info.plist' in "MXComponent.framework".

4. On the right pane, check the text (version) which is enclosed by "<String>" and "</String>" under the 
"<key>CFBundleShortVersionString</Key>" line.
3  USAGE
3.3  Update 21



22
3.4 Uninstallation
Delete the bundles and framework copied when they were installed.
3  USAGE
3.4  Uninstallation



3

3.5 Communication method (open method)
Parameters to communicate with a tablet by Ethernet need to be set with an engineering tool.
To set the parameters, refer to the following sections.

Precautions
 • To communicate to a CPU module with no Ethernet port, set the parameters of Ethernet communication to an Ethernet 

module.
 • Same parameters of Ethernet communication are used for a motion CPU and multiple CPU system. For the available 

combination of CPU modules in a multiple CPU system configuration, refer to the manuals of each module.
 • The setting for an RnENCPU differ depending on the Ethernet port being used.

A port of the CPU part: the setting when the connection target is an RCPU
A port of the network part: the setting when the connection target is a MELSEC iQ-R series-compatible EN71

 • To communicate to a CPU module from multiple applications by using the multi-tasking function of iOS 9.X or later, set 
connections for each application.

For an RCPU
Set the following items in GX Works3 as follows:

■ MELSOFT Connection

■ SLMP

*1 For details on the port numbers, refer to the following manual.
MELSEC iQ-R Ethernet User's Manual (Application)

Connection target module Reference
RCPU Page 23 For an RCPU

MELSEC iQ-R series-compatible EN71 Page 24 For a MELSEC iQ-R series-compatible EN71

FX5CPU Page 24 For an FX5CPU

QCPU (Built-in Ethernet port) Page 25 For a QCPU (built-in Ethernet port)

MELSEC-Q series-compatible E71 Page 25 For a MELSEC-Q series-compatible E71

MELSEC-Q series C Controller module Page 25 For a MELSEC-Q series C Controller module

LCPU (Built-in Ethernet port) Page 26 For an LCPU (built-in Ethernet port)

MELSEC-L series-compatible E71 Page 26 For an MELSEC-L series-compatible E71

Item Setting Setting screen
Enable/Disable Online Change Enable All (SLMP) "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  

"Own Node Settings"  "Enable/Disable Online Change" on the Navigation window

Communication Data Code Binary "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  
"Own Node Settings"  "Communication Data Code" on the Navigation window

Communication Method MELSOFT Connection "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  
"External Device Configuration"  "Communication Method" on the Navigation window

Item Setting Setting screen
Enable/Disable Online Change Enable All (SLMP) "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  

"Own Node Settings"  "Enable/Disable Online Change" on the Navigation window

Communication Data Code Binary "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  
"Own Node Settings"  "Communication Data Code" on the Navigation window

Communication Method SLMP "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  
"External Device Configuration"  "Communication Method" on the Navigation window

Protocol TCP "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  
"External Device Configuration"  "Protocol" on the Navigation window

Host Station Port No. Set the port number*1 of 
the CPU module.

"Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Basic Settings"  
"External Device Configuration"  "Port No." on the Navigation window
3  USAGE
3.5  Communication method (open method) 23



24
For a MELSEC iQ-R series-compatible EN71
Set the following items in GX Works3 as follows:

■ MELSOFT Connection

*1 It is not applicable when "Q Compatible Ethernet" is set for the network type of a module parameter in GX Works3.

■ SLMP

*1 It is not applicable when "Q Compatible Ethernet" is set for the network type of a module parameter in GX Works3.
*2 For details on the port numbers, refer to the following manual.

MELSEC iQ-R Ethernet User's Manual (Application)

For an FX5CPU
Set the following items in GX Works3 as follows:

*1 For details on the port numbers, refer to the following manual.
MELSEC iQ-F FX5 User's Manual (Ethernet Communication)

Item Setting Setting screen
Enable/Disable Online Change Enable All (SLMP) "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 

Settings"  "Own Node Settings"  "Enable/Disable Online Change" on the Navigation window

Communication Data Code Binary "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 
Settings"  "Own Node Settings"  "Communication Data Code" on the Navigation window

Communication Method MELSOFT Connection "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 
Settings"  "External Device Configuration"  "Communication Method" on the Navigation 
window

Item Setting Setting screen
Enable/Disable Online Change Enable All (SLMP) "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 

Settings"  "Own Node Settings"  "Enable/Disable Online Change" on the Navigation window

Communication Data Code Binary "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 
Settings"  "Own Node Settings"  "Communication Data Code" on the Navigation window

Communication Method SLMP "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 
Settings"  "External Device Configuration"  "Communication Method" on the Navigation 
window

Protocol TCP "Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 
Settings"  "External Device Configuration"  "Protocol" on the Navigation window

Host Station Port No. Set the port number*2 of 
an Ethernet module.

"Parameter"  "RJ71EN71 (network type of the project*1)"  "Module Parameter"  "Basic 
Settings"  "External Device Configuration"  "Port No." on the Navigation window

Item Setting Setting screen
Communication Data Code Binary "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Ethernet Port"  

"Basic Settings"  "Own Node Settings"  "Communication Data Code" on the Navigation 
window

Communication Method SLMP "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Ethernet Port"  
"Basic Settings"  "External Device Configuration"  "Communication Method" on the 
Navigation window

Protocol TCP "Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Ethernet Port"  
"Basic Settings"  "External Device Configuration"  "Protocol" on the Navigation window

Host Station Port No. Set the port number*1 of 
the CPU module.

"Parameter"  "(CPU model name of the project)"  "Module Parameter"  "Ethernet Port"  
"Basic Settings"  "External Device Configuration"  "Port No." on the Navigation window
3  USAGE
3.5  Communication method (open method)



3

For a QCPU (built-in Ethernet port)
Set the following items in GX Works2 as follows:

*1 For details on the port numbers, refer to the following manual.
 QnUCPU User's Manual (Communication via Built-in Ethernet Port)

For a MELSEC-Q series-compatible E71
Set the following items in GX Works2 as follows:

For a MELSEC-Q series C Controller module
Set the following items in Setting/monitoring tools for the C Controller module as follows:

*1 For details on the port numbers, refer to the following manual.
 Setting/Monitoring Tools for the C Controller Module Version 4 Operating Manual

Item Setting Setting screen
Protocol TCP "Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Open Setting" 

 "Protocol" on the Navigation window

Open System MC Protocol "Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Open Setting" 
 "Open System" on the Navigation window

Host Station Port No. Set the port number*1 of the 
CPU module.

"Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Open Setting" 
 "Host Station Port No." on the Navigation window

Communication Data Code Binary Code "Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  
"Communication Data Code" on the Navigation window

Enable online change (FTP, MC 
Protocol)

Select the checkbox of 
"Enable online change (FTP, 
MC Protocol)".

"Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Enable online 
change (FTP, MC Protocol)" on the Navigation window

Item Setting Setting screen
Protocol TCP "Parameter"  "Network Parameter"  "Ethernet/CC IE/MELSECNET"  Select "Ethernet" for 

network type  "Open Setting"  "Protocol" on the Navigation window

Open System MELSOFT Connection "Parameter"  "Network Parameter"  "Ethernet/CC IE/MELSECNET"  Select "Ethernet" for 
network type  "Open Setting"  "Open System" on the Navigation window

Communication Data 
Code

Binary Code "Parameter"  "Network Parameter"  "Ethernet/CC IE/MELSECNET"  Select "Ethernet" for 
network type  "Operation Setting"  "Communication Data Code" on the Navigation window

Enable Online Change Select the checkbox of "Enable 
Online Change".

"Parameter"  "Network Parameter"  "Ethernet/CC IE/MELSECNET"  Select "Ethernet" for 
network type  "Operation Setting"  "Enable Online Change" on the Navigation window

Item Setting Setting screen
Protocol TCP • Q12DCCPU-V

"Parameter"  "CCPU Parameter"  [Built-in Ethernet port(CH1 and CH2) open settings] tab  "Open 
Setting"  "Protocol" on the Navigation window

• Q24DHCCPU-V and Q24DHCCPU-LS
"Parameter"  "CCPU Parameter"  [System Ethernet port (S CH1) settings] tab  "Open Setting"  
"Protocol" on the Navigation window

Open System MC Protocol • Q12DCCPU-V
"Parameter"  "CCPU Parameter"  [Built-in Ethernet port(CH1 and CH2) open settings] tab  "Open 
Setting"  "Open System" on the Navigation window

• Q24DHCCPU-V and Q24DHCCPU-LS
"Parameter"  "CCPU Parameter"  [System Ethernet port (S CH1) settings] tab  "Open Setting"  
"Open System" on the Navigation window

Host Station Port 
No.

Set the port number*1 of the 
C Controller module.

• Q12DCCPU-V
"Parameter"  "CCPU Parameter"  [Built-in Ethernet port(CH1 and CH2) open settings] tab  "Open 
Setting"  "Host Station Port No." on the Navigation window

• Q24DHCCPU-V and Q24DHCCPU-LS
"Parameter"  "CCPU Parameter"  [System Ethernet port (S CH1) settings] tab  "Open Setting"  
"Host Station Port No." on the Navigation window
3  USAGE
3.5  Communication method (open method) 25



26
For an LCPU (built-in Ethernet port)
Set the following items in GX Works2 as follows:

*1 For details on the port numbers, refer to the following manual.
MELSEC-L CPU Module User's Manual (Built-In Ethernet Function)

For an MELSEC-L series-compatible E71
Set the following items in GX Works2 as follows:

Item Setting Setting screen
Protocol TCP "Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Open Setting" 

 "Protocol" on the Navigation window

Open System MC Protocol "Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Open Setting" 
 "Open System" on the Navigation window

Host Station Port No. Set the port number*1 of the 
CPU module.

"Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Open Setting" 
 "Host Station Port No." on the Navigation window

Communication Data Code Binary Code "Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  
"Communication Data Code" on the Navigation window

Enable online change (FTP, MC 
Protocol)

Select the checkbox of 
"Enable online change (FTP, 
MC Protocol)".

"Parameter"  "PLC Parameter"  [Built-in Ethernet Port Setting] tab  "Enable online 
change (FTP, MC Protocol)" on the Navigation window

Item Setting Setting screen
Protocol TCP "Parameter"  "Network Parameter"  "Ethernet/CC IE Field"  Select "Ethernet" for network type 

 "Open Setting"  "Protocol" on the Navigation window

Open System MELSOFT Connection "Parameter"  "Network Parameter"  "Ethernet/CC IE Field"  Select "Ethernet" for network type 
 "Open Setting"  "Open System" on the Navigation window

Communication Data 
Code

Binary Code "Parameter"  "Network Parameter"  "Ethernet/CC IE Field"  Select "Ethernet" for network type 
 "Operation Setting"  "Communication Data Code" on the Navigation window

Enable Online Change Select the checkbox of 
"Enable Online Change".

"Parameter"  "Network Parameter"  "Ethernet/CC IE Field"  Select "Ethernet" for network type 
 "Operation Setting"  "Enable Online Change" on the Navigation window
3  USAGE
3.5  Communication method (open method)



4

4 ACCESSIBLE DEVICES
This chapter explains the accessible devices with this library.

4.1 Accessible Device List
The following table shows the applicable devices for reading and writing devices of this library.

Programmable controller CPU
: Accessible, : Not accessible

Category Device name*1,*2 Symbol Type Notation Access target*3

RCPU FX5CPU QCPU/
LCPU

System device Special relay SM Bit Decimal   

Special register SD Word Decimal   

User device Input X Bit Hexadecimal   

Octal   

Output Y Hexadecimal   

Octal   

Internal relay M Decimal   

Latch relay L Decimal   

Annunciator F Decimal   

Edge relay V Decimal   

Link relay B Hexadecimal   

Data register D Word Decimal   

Link register W Hexadecimal   

Timer (T) Contact TS Bit Decimal   

Coil TC Decimal   

Current value TN Word Decimal   

Long timer (LT) Contact LTS Bit Decimal   

Coil LTC Decimal   

Current value LTN Double Word Decimal   

Retentive timer 
(ST)

Contact STS Bit Decimal   

SS Decimal   

Coil STC Decimal   

Current value STN Word Decimal   

SN Decimal   

Long Retentive 
Timer (LST)

Contact LSTS Bit Decimal   

Coil LSTC Decimal   

Current value LSTN Double Word Decimal   

Counter (C) Contact CS Bit Decimal   

Coil CC Decimal   

Current value CN Word Decimal   

Long counter (LC) Contact LCS Bit Decimal   

Coil LCC Decimal   

Current value LCN Double Word Decimal   

Link special relay SB Bit Hexadecimal   

Link special register SW Word Hexadecimal   

Step relay S Bit Decimal   

Direct access input DX Hexadecimal   

Direct access output DY Hexadecimal   
4  ACCESSIBLE DEVICES
4.1  Accessible Device List 27



28
*1 Local devices can not be accessed.
*2 Digit specification, bit specification, and index modification specification are not available.
*3 Even though the applicability of devices indicates  (accessible) in the list, some devices may not be accessed due to the restrictions of 

methods. For details, refer to the considerations of each method.
*4 When the file register consists of multiple blocks, use the device codes in the sequential number access method.
*5 In GX Works3, select "Use Common File Register in All Programs" in the CPU parameter. In GX Works2, select "Use the following file" 

in the PLC parameter.
*6 Only universal model QCPUs and LCPUs support the devices.
*7 Some methods are restricted since the devices are classified as the device extension specification.
*8 For the link direct devices (J), specify a network number in hexadecimal.
*9 For the module access device (U\G), specify the I/O number of the target module.

Example: U20\G1000 (when the I/O number is '200H' and the address is '1000'.)

Index register Z Word Decimal   

LZ Double Word Decimal   

File register*4,*5 R Word Decimal   

ZR Decimal   

Extended data register D Word Decimal   *6

Extended link register W Word Hexadecimal   *6

Link direct device*7,*8 Link input J\X Bit Hexadecimal   

Link output J\Y Hexadecimal   

Link relay J\B Hexadecimal   

Link special relay J\SB Hexadecimal   

Link register J\W Word Hexadecimal   

Link special register J\SW Hexadecimal   

Module access device*7 Module access device (RCPU/
FX5CPU)/Intelligent function module 
device (QCPU/LCPU)

U\G*9 Word Decimal   

CPU buffer memory 
access device*7

CPU buffer memory access device 
(RCPU)/Cyclic transmission area 
device (QCPU)

U3E\G Word Decimal   

Fixed cycle communication area 
access device

U3E\HG Decimal   

Refresh data register Refresh data register RD Word Decimal   

Category Device name*1,*2 Symbol Type Notation Access target*3

RCPU FX5CPU QCPU/
LCPU
4  ACCESSIBLE DEVICES
4.1  Accessible Device List



4

C Controller module
Numbers in the access target column indicate the CPU modules; (1) MELSEC iQ-R series C Controller module, (2) MELSEC-
Q series C Controller module
: Accessible, : Not accessible

*1 Local devices can not be accessed.
*2 Digit specification, bit specification, and index modification specification are not available.
*3 Even though the applicability of devices indicates  (accessible) in the list, some devices may not be accessed due to the restrictions of 

methods. For details, refer to the considerations of each method.
*4 The Q12DCCPU-V of which the first five digits of the serial number are '12042' is accessible.

Category Device name*1,*2 Symbol Type Notation Access target*3

(1) (2)
System device Special relay*4 SM Bit Decimal  

Special register*4 SD Word Decimal  

User device Input X Bit Hexadecimal  

Output Y Hexadecimal  

Internal relay*4 M Decimal  

Link relay B Hexadecimal  

Data register*4 D Word Decimal  

Link register W Hexadecimal  

File register ZR Word Decimal  

Link direct device Link input J\X Bit Hexadecimal  

Link output J\Y Hexadecimal  

Link relay J\B Hexadecimal  

Link special relay J\SB Hexadecimal  

Link register J\W Word Hexadecimal  

Link special register J\SW Hexadecimal  

Module access device Module access device (MELSEC iQ-R 
series)/Intelligent function module device 
(MELSEC-Q series)

U\G Word Decimal  

CPU buffer memory access 
device

CPU buffer memory access device 
(MELSEC iQ-R series)/Cyclic 
transmission area device (MELSEC-Q 
series)

U3E\G Word Decimal  

Fixed cycle communication area access 
device

U3E\HG Decimal  
4  ACCESSIBLE DEVICES
4.1  Accessible Device List 29



30
Motion CPU
Numbers in the access target column indicate the CPU modules; (1) MELSEC iQ-R series motion CPU, (2) MELSEC-Q series 
motion CPU
: Accessible, : Not accessible

*1 Local devices can not be accessed.
*2 Digit specification, bit specification, and index modification specification are not available.
*3 Even though the applicability of devices indicates  (accessible) in the list, some devices may not be accessed due to the restrictions of 

methods. For details, refer to the considerations of each method.
*4 Some methods are restricted since the devices are classified as the device extension specification.
*5 For the module access device (U\G), specify the I/O number of the target module.

Example: U20\G1000 (when the I/O number is '200H' and the address is '1000'.)

Category Device name*1,*2 Symbol Type Notation Access target*3

(1) (2)
System device Special relay SM Bit Decimal  

Special register SD Word Decimal  

User device Input X Bit Hexadecimal  

Output Y Hexadecimal  

Internal relay M Decimal  

Annunciator F Decimal  

Link relay B Hexadecimal  

Data register D Word Decimal  

Link register W Hexadecimal  

Motion register # Decimal  

Module access device*4 Module access device U\G*5 Word Decimal  

CPU buffer memory access 
device*4

CPU buffer memory access device U3E\G Word Decimal  

Fixed cycle communication area access 
device

U3E\HG Decimal  
4  ACCESSIBLE DEVICES
4.1  Accessible Device List



4

4.2 Considerations for Devices and Labels
This section shows the considerations for using devices and labels.

Considerations for bit devices
The place of memory needs to be considered when reading or writing bit devices in a batch. Bit devices are stored in the 
memory in a word unit. Note these points when acquiring or setting the bit values of target devices.
The byte-order of iOS is the little endian.

Ex.

When reading one point (one word) from M0

The bit devices are stored in order from lower bytes.

Considerations for using labels

Data types of labels
The following table shows the variable types of this library (Swift, Objective-C) corresponding to the data types of labels.
The labels of which the data types are timer, retentive timer, counter, long timer, long retentive timer, or long counter are 
treated as the structure type. For details, refer to the following section.
Page 33 Data types of labels treated as the structure type

Data type of a label Variable type in 
this library 
(Swift)

Variable type in 
this library 
(Objective-C)

Definition name

Bit Bool bool MEL_MX_LABEL_DATATYPE_BIT

Word [Signed] Int16 short MEL_MX_LABEL_DATATYPE_WORD

Word [Unsigned]/Bit String [16-bit] UInt16 unsigned short MEL_MX_LABEL_DATATYPE_UNSIGNED_WORD

Double Word [Signed] Int32 int MEL_MX_LABEL_DATATYPE_DOUBLE_WORD

Double Word [Unsigned]/Bit String [32-bit] UInt32 unsigned int MEL_MX_LABEL_DATATYPE_UNSIGNED_DOUBLE_W
ORD

FLOAT (Single Precision) Float float MEL_MX_LABEL_DATATYPE_FLOAT_SINGLE

FLOAT (Double Precision) Double double MEL_MX_LABEL_DATATYPE_FLOAT_DOUBLE

String (32) String NSData* MEL_MX_LABEL_DATATYPE_STRING_ASCII

String [Unicode] (32) String NSString* MEL_MX_LABEL_DATATYPE_STRING_UNICODE

Time Int32 int MEL_MX_LABEL_DATATYPE_TIME

M7 M6 M5 M4 M3 M2 M1 M0M15 M9M14 M13 M12 M11 M10 M8

Upper byte Lower byte

1 byte 1 byte
4  ACCESSIBLE DEVICES
4.2  Considerations for Devices and Labels 31



32
Specification methods of label names
When reading and writing labels, the label names registered in the CPU module need to be specified.
The applicable labels are as shown below.

■ Simple data type
Specify the data type described in the following section.
Page 31 Data types of labels

■ Array type
Up to three dimensions of an array label can be specified.
Specify a label name and indexes of the array element (decimal). 
For the data type of an array label, only the simple data type can be specified.

Ex.

When specifying up to three dimensions: Label1[10,10,10]

■ Structure type
Specify a structure label.
Specify all elements by connecting each element name of the structure with the period.
For the last element, the simple data type or array type can only be specified.
The whole structure cannot be specified by specifying the structure name only.

Ex.

Applicable: stLabel1.stLabel2.bMember1 (The simple data type label is specified for the last element.)
Inapplicable: stLabel1.stLabel2 (The structure label is specified for the last element.)

Precautions
 • If the specific conditions of label name length are not satisfied, the label may not be specified. For details on the conditions, 

refer to each method (considerations).
 • Digit specification, bit specification, and index modification specification are not available. Inapplicable label names are as 

follows;

 • An alias name cannot be specified.

Label type Specification example
Bit specification of a label Label.3

Digit specification of a label K4Label

Specification of index modification LabelZ0

Specification of multiple CPU No.2 U3E1\Label
4  ACCESSIBLE DEVICES
4.2  Considerations for Devices and Labels



4

Data types of labels treated as the structure type
Labels of the following data types are treated as the structure type that includes a contact, coil, and current value for its 
elements. Note the specification method of label names when reading and writing the labels.
 • Timer
 • Retentive timer
 • Counter
 • Long timer
 • Long retentive timer
 • Long counter

Ex.

When reading the current value of the label name 'TimerLabel' in which the long retentive timer is assigned, specify the data 
type as follows;
TimerLabel.N
The following shows the members of the data types treated as the structure type.

Data name Member name Data type
Contact S Bit

Coil C Bit

Current value N Timer, retentive timer, counter: Word (Unsigned)

Long timer, long retentive timer, long counter: Double Word (Unsigned)
4  ACCESSIBLE DEVICES
4.2  Considerations for Devices and Labels 33



34
5 METHODS
This chapter explains the procedure and functions of methods provided by the library.

Procedure for using methods
The following flow chart shows the basic order when reading and writing devices and labels by using the methods of MX 
Component for iOS.

To use a method in a program, open the communication line at the beginning of the program, and close it at the end of the 
program.

MELMXOpenSettings

MELMXCommunication

MELMXLabel

MELMXCommunicationMELMXCommunication

MELMXCommunication

Start

Set the parameters.

Execute open method.

Set the parameters.

Execute close method.

End

Labels

Devices

Call readArrayLabel method, 
writeLabelRandom method.

Call readDeviceBlock method, 
writeDeviceRandom method.

Check return values.

Check return values.

Target for reading/writing: 
Devices/Labels

Failed

Success

Failed

Success

Refer to the error code list.

Time-out

Read/Write data.

Not Time-out
Check error codes.
5  METHODS
  



5

5.1 Method List
The following table shows the method list.

Method list (Swift)
Class Method Function Reference
MELMxCommunication MELMxCommunication Initializer Page 37 MELMxCommunication (Initializer)

open To open the communication line Page 37 open (To open the communication line)

close To close the communication line Page 38 close (To close the communication line)

readDeviceBlock To read devices in a batch Page 39 readDeviceBlock (To read devices in a 
batch)

writeDeviceBlock To write devices in a batch Page 40 writeDeviceBlock (To write devices in a 
batch)

readDeviceRandom To read devices randomly Page 41 readDeviceRandom (To read devices 
randomly)

writeDeviceRandom To write devices randomly Page 42 writeDeviceRandom (To write devices 
randomly)

readArrayLabel To read data by specifying an array label Page 43 readArrayLabel (To read data by 
specifying an array label)

writeArrayLabel To write data by specifying an array label Page 43 writeArrayLabel (To write data by 
specifying an array label)

readLabelRandom To read data by specifying multiple labels Page 44 readLabelRandom (To read data by 
specifying multiple labels)

writeLabelRandom To write data by specifying multiple labels Page 44 writeLabelRandom (To write data by 
specifying multiple labels)

MELMxLabel MELMxLabel Initializer Page 57 MELMxLabel (Initializer)

values To acquire label data Page 57 values (To acquire label data)

name To acquire a label name Page 57 name (To acquire a label name)

dataType To acquire the data type of a label Page 58 dataType (To acquire the data type of a 
label)

setBitLabel To set the label data of Bit type Page 58 setBitLabel (To set the label data of Bit 
type)

setWordLabel To set the label data of Word (Signed) Page 58 setWordLabel (To set the label data of 
Word (Signed))

setUnsignedWordLabel To set the label data of Word (Unsigned) Page 59 setUnsignedWordLabel (To set the label 
data of Word (Unsigned))

setDoubleWordLabel To set the label data of Double Word 
(Signed)

Page 59 setDoubleWordLabel (To set the label 
data of Double Word (Signed))

setUnsignedDoubleWordLabel To set the label data of Double Word 
(Unsigned)

Page 59 setUnsignedDoubleWordLabel (To set 
the label data of Double Word (Unsigned))

setFloatSingleLabel To set the label data of FLOAT (Single 
Precision)

Page 60 setFloatSingleLabel (To set the label 
data of FLOAT (Single Precision))

setFloatDoubleLabel To set the label data of FLOAT (Double 
Precision)

Page 60 setFloatDoubleLabel (To set the label 
data of FLOAT (Double Precision))

setAsciiStringLabel To set the label data of ASCII character 
string

Page 60 setAsciiStringLabel (To set the label data 
of ASCII character string)

setUnicodeStringLabel To set the label data of Unicode character 
string

Page 61 setUnicodeStringLabel (To set the label 
data of Unicode character string)

setTimeLabel To set the label data of Time Page 61 setTimeLabel (To set the label data of 
Time)
5  METHODS
5.1  Method List 35



36
Method list (Objective-C)
Class Method Function Reference
MELMxCommunication init Initializer Page 45 init (Initializer)

open To open the communication line Page 45 open (To open the communication line)

close To close the communication line Page 46 close (To close the communication line)

readDeviceBlock To read devices in a batch Page 47 readDeviceBlock (To read devices in a 
batch)

writeDeviceBlock To write devices in a batch Page 48 writeDeviceBlock (To write devices in a 
batch)

readDeviceRandom To read devices randomly Page 49 readDeviceRandom (To read devices 
randomly)

writeDeviceRandom To write devices randomly Page 50 writeDeviceRandom (To write devices 
randomly)

readArrayLabel To read data by specifying an array label Page 51 readArrayLabel (To read data by 
specifying an array label)

writeArrayLabel To write data by specifying an array label Page 51 writeArrayLabel (To write data by 
specifying an array label)

readLabelRandom To read data by specifying multiple labels Page 52 readLabelRandom (To read data by 
specifying multiple labels)

writeLabelRandom To write data by specifying multiple labels Page 52 writeLabelRandom (To write data by 
specifying multiple labels)

MELMxLabel init Initializer Page 62 init (Initializer)

values To acquire label data Page 62 values (To acquire label data)

name To acquire a label name Page 62 name (To acquire a label name)

dataType To acquire the data type of a label Page 63 dataType (To acquire the data type of a 
label)

setBitLabel To set the label data of Bit type Page 63 setBitLabel (To set the label data of Bit 
type)

setWordLabel To set the label data of Word (Signed) Page 63 setWordLabel (To set the label data of 
Word (Signed))

setUnsignedWordLabel To set the label data of Word (Unsigned) Page 64 setUnsignedWordLabel (To set the label 
data of Word (Unsigned))

setDoubleWordLabel To set the label data of Double Word 
(Signed)

Page 64 setDoubleWordLabel (To set the label 
data of Double Word (Signed))

setUnsignedDoubleWordLabel To set the label data of Double Word 
(Unsigned)

Page 64 setUnsignedDoubleWordLabel (To set 
the label data of Double Word (Unsigned))

setFloatSingleLabel To set the label data of FLOAT (Single 
Precision)

Page 65 setFloatSingleLabel (To set the label 
data of FLOAT (Single Precision))

setFloatDoubleLabel To set the label data of FLOAT (Double 
Precision)

Page 65 setFloatDoubleLabel (To set the label 
data of FLOAT (Double Precision))

setAsciiStringLabel To set the label data of ASCII character 
string

Page 65 setAsciiStringLabel (To set the label data 
of ASCII character string)

setUnicodeStringLabel To set the label data of Unicode character 
string

Page 66 setUnicodeStringLabel (To set the label 
data of Unicode character string)

setTimeLabel To set the label data of Time Page 66 setTimeLabel (To set the label data of 
Time)
5  METHODS
5.1  Method List



5

5.2 Details of Methods
This section shows the details of each method.

MELMxCommunication class
It is the class to access a CPU module for reading and writing data.
Create multiple instances as necessary when performing communication with multiple CPU modules.

Details of methods (Swift)
■ MELMxCommunication (Initializer)

■ open (To open the communication line)

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition AnyObject MELMxCommunication()

Argument None

Return value Returns the instance of itself.

Function It is the initializer of this class.
Up to 10 instances can be created for this class. The operation is not guaranteed if 11 or more instances are created.

Reference None

Considerations None

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 open(
openSettings: MELMxOpenSettings,
remotePassword: String
)

Argument [in]openSettings Specify the instance of MELMxOpenSettings class that stores a setting value for connection.
For details, refer to the following section.
Page 53 MELMxOpenSettings class

[in]remotePassword Specify a password to unlock the remote password.
Specify 'nil' when any remote password has not been set in a module.
For 'nil', he unlock processing of a remote password is not performed.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Opens the communication line.
The communication with one CPU module is enabled per one instance. When performing communication with multiple CPU 
modules, create multiple instances as necessary. 
When simultaneously accessing CPU modules by using multiple instances with TCP/IP, multiple Ethernet modules or ports of 
built-in Ethernet CPUs are required. One port is required for one instance. The communication between one port and two or 
more instances cannot be performed.

Reference close()

Considerations • Remote password
A remote password is unlocked in the open method, and it is locked again when the close method is called.
The operation related to a remote password is the same as that for an Ethernet module and a built-in Ethernet CPU.
When 'nil' is specified to 'remotePassword' (argument) even if a remote password has been set to an Ethernet module or a 
built-in Ethernet CPU, the error is detected with the method for reading and writing devices and labels (not with the open 
method).
5  METHODS
5.2  Details of Methods 37



38
■ close (To close the communication line)

 • Time until the connections for each connected module are disconnected

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 close()

Argument None

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Disconnects the communication.

Reference open()

Considerations When the close method is executed, the disconnection request of TCP connection may not reach to a CPU module or an 
Ethernet module due to disconnection of the Ethernet cable on the module side or powering-OFF of the wireless router. In that 
case, the connection of the CPU module or Ethernet module side is retained.
Wait until the connection is disconnected.

Connected module Check item
RCPU GX Works3: Module Parameter  [Application Settings]  [Timer Settings for Data 

Communication]MELSEC iQ-R series-compatible EN71

FX5CPU

QCPU (Built-in Ethernet port) Inapplicable (Timeout value of KeepAlive: 45 seconds)

LCPU (Built-in Ethernet port)

MELSEC-Q series-compatible E71 GX Works2: Network Parameter Ethernet/CC IE Field  Network Type: Ethernet  [Initial 
Settings] Timer SettingsMELSEC-L series-compatible E71

MELSEC-Q series C Controller module Inapplicable (Timeout value of KeepAlive: 30 seconds)
5  METHODS
5.2  Details of Methods



5

■ readDeviceBlock (To read devices in a batch)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 readDeviceBlock(
deviceName: String,
size: Int32,
readDatas: [Int32]
)

Argument [in]deviceName Specify a device name which includes the start reading device number.

[in]size Specify a number of read points.
Up to 960 points can be read.

[out]readDatas Read device values are stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading sequential device values.
Reads device values for the number of points specified to 'size' (argument) from the device specified to 'deviceName' 
(argument), and stores them to 'readDatas' (argument) in a batch.

Device specification 
method
(when specifying a bit 
device)

Example: Read the data for three points (three words) from M0
deviceName="M0", size=3
 Data storage example (one element of an array: 32-bit)
readDatas[0]: M0 to M15
readDatas[1]: M16 to M31
readDatas[2]: M32 to M47
• Since the data of bit devices are stored in the elements of an array (32-bit) in a word unit, the 

upper 2-bytes are padded with '0'.
• The data storage example of bit devices differs depending on the system environment. For 

details, refer to the following section.
Page 31 Considerations for bit devices

Device specification 
method
(when specifying a word 
device)

Example: Read the data for three points from D0
deviceName="D0", size=3
 Data storage example (one element of an array: 32-bit)
readDatas[0]: D0
readDatas[1]: D1
readDatas[2]: D2
• Since the data is stored in the elements of an array (32-bit), the upper 2-bytes are padded with 

'0'.

Reference open(), close(), writeDeviceBlock()

Considerations Device name The following device names cannot be specified. An error occurs if specified.
• Long timer: LTN (Current value)
• Long retentive timer: LSTN (Current value)
• Long counter: LCN (Current value)
• Index register: LZ

Device extension 
specification

The devices used the extension specification cannot be specified. (Example: 'U3E1\G0' cannot 
be specified.)

Number of read points The maximum number of read points is in the range that satisfies the following formula.
Start reading device number + number of read points  end device number

Bit device specification When specifying a bit device, only the multiples of 16 can be specified for a device number.

Specify the number of elements equal or greater than that specified to 'size' (argument) for 'readDatas' (argument).
5  METHODS
5.2  Details of Methods 39



40
■ writeDeviceBlock (To write devices in a batch)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 writeDeviceBlock(
deviceName: String,
size: Int32,
writeDatas: [Int32]
)

Argument [in]deviceName Specify a device name which includes the start writing device number.

[in]size Specify a number of write points.
Up to 960 points can be written.

[in]writeDatas Specify an array of device values to be written.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing sequential device values.
Writes device values for the number of points specified to 'size' (argument) from the device specified to 'deviceName' 
(argument) in a batch.
Specify device values, which is to be written, to 'writeDatas' (argument)

Device specification 
method
(when specifying a bit 
device)

Example: Write the data for three points (three words) from M0
deviceName="M0", size=3
 Data storage example (one element of an array: 32-bit)
writeDatas[0]: M0 to M15
writeDatas[1]: M16 to M31
writeDatas[2]: M32 to M47
• Since the data of bit devices are stored in the elements of an array (32-bit) in a word unit, the 

upper 2-bytes are padded with '0'.
• The data storage example of bit devices differs depending on the system environment. For 

details, refer to the following section.
Page 31 Considerations for bit devices

Device specification 
method
(when specifying a word 
device)

Example: Write the data for three points from D0
deviceName="D0", size=3
 Data storage example (one element of an array: 32-bit)
writeDatas[0]: D0
writeDatas[1]: D1
writeDatas[2]: D2
• Since the data is stored in the elements of an array (32-bit), the upper 2-bytes are padded with 

'0'.

Reference open(), close(), readDeviceBlock()

Considerations Device name The following device names cannot be specified. An error occurs if specified.
• Long timer: LTN (Current value)
• Long retentive timer: LSTN (Current value)
• Long counter: LCN (Current value)
• Index register: LZ

Device extension 
specification

The devices used the extension specification cannot be specified. (Example: 'U3E1\G0' cannot 
be specified.)

Number of write points The maximum number of write points is in the range that satisfies the following formula.
Start writing device number + number of write points  end device number

Bit device specification When specifying a bit device, only the multiples of 16 can be specified for a device number.

Specify the number of elements equal or greater than that specified to 'size' (argument) for 'writeDatas' (argument).
5  METHODS
5.2  Details of Methods



5

■ readDeviceRandom (To read devices randomly)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 readDeviceRandom(
deviceNames: [String],
readDatas: [Int32]
)

Argument [in]deviceNames Specify a device name, which includes a device number, in an array.
In this method, the number of elements of an array is treated as the number of read points. 
Therefore, specifying the number of read points with an argument is not required.
Up to 96 points can be read.

[out]readDatas Read device values are stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading values by specifying multiple devices individually.
Reads device values from the multiple devices specified to 'deviceNames' (argument), and stores them to each element of 
'readDatas' (argument).

Device specification 
method

Example: Read the device values of M0, D10, and LZ20
deviceNames="M0", "D10", "LZ20"
 Data storage example (one element of an array: 32-bit)
readDatas[0]: M0 (ON/OFF is judged in bit 0.)
readDatas[1]: D10
readDatas[2]: LZ20

Reference open(), close(), writeDeviceRandom()

Considerations • Devices and the devices used the extension specification cannot be specified together. (Example: 'U3E1\G0' and 'D0' are 
not acceptable to specify together.) When specifying the devices used the extension specification, specify that devices only 
to 'deviceNames' (argument).

• Specify the number of elements equal or greater than that of read points to 'readDatas' (argument).
5  METHODS
5.2  Details of Methods 41



42
■ writeDeviceRandom (To write devices randomly)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 writeDeviceRandom(
deviceNames: [String],
writeDatas: [Int32]
)

Argument [in]deviceNames Specify a device name, which includes a device number, in an array.
In this method, the number of elements of an array is treated as the number of write points. 
Therefore, specifying the number of write points with an argument is not required.
The maximum number of write points is as follows:
RCPU: 68 points
QCPU/LCPU/FX5CPU: 80 points

[in]writeDatas Specify device values to be written.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing by specifying multiple devices individually.
Writes device values to the multiple devices specified to 'deviceNames' (argument).
Specify device values, which is to be written, to each element of 'writeDatas'.

Device specification 
method

Example: Write the device values of M0, D10, and LZ20
deviceNames="M0", "D10", "LZ20"
 Data storage example (one element of an array: 32-bit)
writeDatas[0]: M0 (ON/OFF is judged in bit 0.)
writeDatas[1]: D10
writeDatas[2]: LZ20

Reference open(), close(), readDeviceRandom()

Considerations • Devices and the devices used the extension specification cannot be specified together. (Example: 'U3E1\G0' and 'D0' are 
not acceptable to specify together.) When specifying the devices used the extension specification, specify that devices only 
to 'deviceNames' (argument).

• Specify the number of elements equal or greater than that of write points to 'writeDatas' (argument).
• When bit devices and word devices (including double word devices) are specified together, they are processed as respective 

packets. Therefore, the timing for writing the bit devices and word devices are different.
• When bit devices and word devices (including double word devices) are specified together, the bit devices are written after 

writing the word devices. Therefore, the writing of bit devices may fail even if the word devices successfully are written. If the 
error occurs in this method, write them again after checking the error content.
5  METHODS
5.2  Details of Methods



5

■ readArrayLabel (To read data by specifying an array label)

■ writeArrayLabel (To write data by specifying an array label)

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 readArrayLabel(
label: MELMxLabel
)

Argument [in/out]label Specify a MELMxLabel object in which an array label to be read has been set.
For a MELMxLabel object, set a label name, character string length to be stored in a label (when 
the data type is the string type only), and number of pieces of data by using the method for the 
label data setting in advance.
After this method succeeded, the read label data is stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading array label data
Reads the array label data specified to 'label' (argument) for the number of array elements.
The read label data is stored to 'label' (argument).

Reference open(), close(), writeArrayLabel()

Considerations • An array label of the following data types cannot be specified;
Timer, retentive timer, counter, long timer, long retentive timer, long counter

• Up to three dimensions of arrays can be specified. (Note that two-dimensional arrays and three-dimensional arrays, of which 
data types are bit, cannot be specified with this method.)

• An error occurs if the data size to be read exceeds 1914 bytes. Specify the size 1914 bytes or less.
• Specify the character string length for the label name up to 1906 bytes.
• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.
• Data of a simple type label can be read as an array label with one element. (Example: Label[0])

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 writeArrayLabel(
label: MELMxLabel
)

Argument [in]label Specify a MELMxLabel object in which an array label to be written has been set.
For a MELMxLabel object, set a label name, character string length to be stored in a label (when 
the data type is the string type only), label data, and number of pieces of data by using the 
method for the label data setting in advance.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing array label data.
Writes the label data of the array type specified to 'label' (argument) for the specified number of points.
Specify label data to be written to 'label' (argument).

Reference open(), close(), readArrayLabel()

Considerations • An array label of the following data types cannot be specified;
Timer, retentive timer, counter, long timer, long retentive timer, long counter

• Up to three dimensions of arrays can be specified. (Note that two-dimensional arrays and three-dimensional arrays, of which 
data types are bit, cannot be specified with this method.)

• The total value of the character string length and data to be written, which can be specified to a label name, is up to 1906 
bytes.

• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.
• Data of a simple type label can be written as an array label with one element. (Example: Label[0])
5  METHODS
5.2  Details of Methods 43



44
■ readLabelRandom (To read data by specifying multiple labels)

■ writeLabelRandom (To write data by specifying multiple labels)

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 readLabelRandom(
labels: [MELMxLabel]
)

Argument [in/out]labels Specify a NSArray object that stores one or more MELMxLabel objects in which the label to be 
read have been set.
For each MELMxLabel object, set a label name, character string length to be stored in a label 
(when the data type is the string type only), and number of pieces of data by using the method for 
the label data setting in advance.
After this method succeeded, the read label data is stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading the following label data.
• Simple type label
• Simple type label of structure elements

Reads data from a label specified to 'labels' (argument).
The read label data is stored in each element of 'labels' (argument).

Reference open(), close(), writeLabelRandom()

Considerations • The size of the label data to be read needs to satisfy the following condition formula. Total number of (the size of read data + 
2)  1912

• The total length of label name needs to satisfy the following condition formula.
Total number of (the length of label name  2 + 2)  1910

• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition Int32 writeLabelRandom(
labels: [MELMxLabel]
)

Argument [in]labels Specify a NSArray object that stores one or more MELMxLabel objects in which the label to be 
written have been set.
For each MELMxLabel object, set a label name, character string length to be stored in a label 
(when the data type is the string type only), label data, and number of pieces of data by using the 
method for the label data setting in advance.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing the following label data.
• Simple type label
• Simple type label of structure elements

Writes data to a label specified to 'labels' (argument).
Specify label data to be written to each element of 'labels' (argument).

Reference open(), close(), readLabelRandom()

Considerations • The total length of label name needs to specify the following condition formula.
Total number of (the length of label name  2 + the size of write data + 4)  1910

• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.
5  METHODS
5.2  Details of Methods



5

Details of methods (Objective-C)
■ init (Initializer)

■ open (To open the communication line)

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (id)init:

Argument None

Return value Returns the instance of itself.

Function It is the initializer of this class.
Up to 10 instances can be created for this class. The operation is not guaranteed if 11 or more instances are created.

Reference None

Considerations None

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)open: (MELMxOpenSettings *)openSettings
RemotePassword: (NSString *)remotePassword

Argument [in]openSettings Specify the instance of MELMxOpenSettings class that stores a setting value for connection.
For details, refer to the following section.
Page 53 MELMxOpenSettings class

[in]remotePassword Specify a password to unlock the remote password.
Specify 'nil' when any remote password has not been set in a module.
For 'nil', he unlock processing of a remote password is not performed.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Opens the communication line.
The communication with one CPU module is enabled per one instance. When performing communication with multiple CPU 
modules, create multiple instances as necessary. 
When simultaneously accessing CPU modules by using multiple instances with TCP/IP, multiple Ethernet modules or ports of 
built-in Ethernet CPUs are required. One port is required for one instance. The communication between one port and two or 
more instances cannot be performed.

Reference close:

Considerations • Remote password
A remote password is unlocked in the open method, and it is locked again when the close method is called.
The operation related to a remote password is the same as that for an Ethernet module and a built-in Ethernet CPU.
When 'nil' is specified to 'remotePassword' (argument) even if a remote password has been set to an Ethernet module or a 
built-in Ethernet CPU, the error is detected with the method for reading and writing devices and labels (not with the open 
method).
5  METHODS
5.2  Details of Methods 45



46
■ close (To close the communication line)

 • Time until the connections for each connected module are disconnected

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)close

Argument None

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Disconnects the communication.

Reference open:

Considerations When the close method is executed, the disconnection request of TCP connection may not reach to a CPU module or an 
Ethernet module due to disconnection of the Ethernet cable on the module side or powering-OFF of the wireless router. In that 
case, the connection of the CPU module or Ethernet module side is retained.
Wait until the connection is disconnected.

Connected module Check item
RCPU GX Works3: Module Parameter  [Application Settings]  [Timer Settings for Data 

Communication]MELSEC iQ-R series-compatible EN71

FX5CPU

QCPU (Built-in Ethernet port) Inapplicable (Timeout value of KeepAlive: 45 seconds)

LCPU (Built-in Ethernet port)

MELSEC-Q series-compatible E71 GX Works2: Network Parameter Ethernet/CC IE Field  Network Type: Ethernet  [Initial 
Settings] Timer SettingsMELSEC-L series-compatible E71

MELSEC-Q series C Controller module Inapplicable (Timeout value of KeepAlive: 30 seconds)
5  METHODS
5.2  Details of Methods



5

■ readDeviceBlock (To read devices in a batch)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)readDeviceBlock: (NSString *)deviceName
Size: (int)size
ReadDatas: (int *)readDatas

Argument [in]deviceName Specify a device name which includes the start reading device number.

[in]size Specify a number of read points.
Up to 960 points can be read.

[out]readDatas Read device values are stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading sequential device values.
Reads device values for the number of points specified to 'size' (argument) from the device specified to 'deviceName' 
(argument), and stores them to 'readDatas' (argument) in a batch.

Device specification 
method
(when specifying a bit 
device)

Example: Read the data for three points (three words) from M0
deviceName="M0", size=3
 Data storage example (one element of an array: 32-bit)
readDatas[0]: M0 to M15
readDatas[1]: M16 to M31
readDatas[2]: M32 to M47
• Since the data of bit devices are stored in the elements of an array (32-bit) in a word unit, the 

upper 2-bytes are padded with '0'.
• The data storage example of bit devices differs depending on the system environment. For 

details, refer to the following section.
Page 31 Considerations for bit devices

Device specification 
method
(when specifying a word 
device)

Example: Read the data for three points from D0
deviceName="D0", size=3
 Data storage example (one element of an array: 32-bit)
readDatas[0]: D0
readDatas[1]: D1
readDatas[2]: D2
• Since the data is stored in the elements of an array (32-bit), the upper 2-bytes are padded with 

'0'.

Reference open:, close:, writeDeviceBlock:

Considerations Device name The following device names cannot be specified. An error occurs if specified.
• Long timer: LTN (Current value)
• Long retentive timer: LSTN (Current value)
• Long counter: LCN (Current value)
• Index register: LZ

Device extension 
specification

The devices used the extension specification cannot be specified. (Example: 'U3E1\G0' cannot 
be specified.)

Number of read points The maximum number of read points is in the range that satisfies the following formula.
Start reading device number + number of read points  end device number

Bit device specification When specifying a bit device, only the multiples of 16 can be specified for a device number.

Specify the number of elements equal or greater than that specified to 'size' (argument) for 'readDatas' (argument).
5  METHODS
5.2  Details of Methods 47



48
■ writeDeviceBlock (To write devices in a batch)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)writeDeviceBlock: (NSString *)deviceName
Size: (int)size
WriteDatas: (int *)writeDatas

Argument [in]deviceName Specify a device name which includes the start writing device number.

[in]size Specify a number of write points.
Up to 960 points can be written.

[in]writeDatas Specify an array of device values to be written.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing sequential device values.
Writes device values for the number of points specified to 'size' (argument) from the device specified to 'deviceName' 
(argument) in a batch.
Specify device values, which is to be written, to 'writeDatas' (argument)

Device specification 
method
(when specifying a bit 
device)

Example: Write the data for three points (three words) from M0
deviceName="M0", size=3
 Data storage example (one element of an array: 32-bit)
writeDatas[0]: M0 to M15
writeDatas[1]: M16 to M31
writeDatas[2]: M32 to M47
• Since the data of bit devices are stored in the elements of an array (32-bit) in a word unit, the 

upper 2-bytes are padded with '0'.
• The data storage example of bit devices differs depending on the system environment. For 

details, refer to the following section.
Page 31 Considerations for bit devices

Device specification 
method
(when specifying a word 
device)

Example: Write the data for three points from D0
deviceName="D0", size=3
 Data storage example (one element of an array: 32-bit)
writeDatas[0]: D0
writeDatas[1]: D1
writeDatas[2]: D2
• Since the data is stored in the elements of an array (32-bit), the upper 2-bytes are padded with 

'0'.

Reference open:, close:, readDeviceBlock:

Considerations Device name The following device names cannot be specified. An error occurs if specified.
• Long timer: LTN (Current value)
• Long retentive timer: LSTN (Current value)
• Long counter: LCN (Current value)
• Index register: LZ

Device extension 
specification

The devices used the extension specification cannot be specified. (Example: 'U3E1\G0' cannot 
be specified.)

Number of write points The maximum number of write points is in the range that satisfies the following formula.
Start writing device number + number of write points  end device number

Bit device specification When specifying a bit device, only the multiples of 16 can be specified for a device number.

Specify the number of elements equal or greater than that specified to 'size' (argument) for 'writeDatas' (argument).
5  METHODS
5.2  Details of Methods



5

■ readDeviceRandom (To read devices randomly)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)readDeviceRandom: (NSArray *)deviceNames
ReadDatas: (int *)readDatas

Argument [in]deviceNames Specify a device name, which includes a device number, in an array.
In this method, the number of elements of an array is treated as the number of read points. 
Therefore, specifying the number of read points with an argument is not required.
Up to 96 points can be read.

[out]readDatas Read device values are stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading values by specifying multiple devices individually.
Reads device values from the multiple devices specified to 'deviceNames' (argument), and stores them to each element of 
'readDatas' (argument).

Device specification 
method

Example: Read the device values of M0, D10, and LZ20
deviceNames="M0", "D10", "LZ20"
 Data storage example (one element of an array: 32-bit)
readDatas[0]: M0 (ON/OFF is judged in bit 0.)
readDatas[1]: D10
readDatas[2]: LZ20

Reference open:, close:, writeDeviceRandom:

Considerations • Devices and the devices used the extension specification cannot be specified together. (Example: 'U3E1\G0' and 'D0' are 
not acceptable to specify together.) When specifying the devices used the extension specification, specify that devices only 
to 'deviceNames' (argument).

• Specify the number of elements equal or greater than that of read points to 'readDatas' (argument).
5  METHODS
5.2  Details of Methods 49



50
■ writeDeviceRandom (To write devices randomly)
MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)writeDeviceRandom: (NSArray *)deviceNames
WriteDatas: (int *)writeDatas

Argument [in]deviceNames Specify a device name, which includes a device number, in an array.
In this method, the number of elements of an array is treated as the number of write points. 
Therefore, specifying the number of write points with an argument is not required.
The maximum number of write points is as follows:
RCPU: 68 points
QCPU/LCPU/FX5CPU: 80 points

[in]writeDatas Specify device values to be written.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing by specifying multiple devices individually.
Writes device values to the multiple devices specified to 'deviceNames' (argument).
Specify device values, which is to be written, to each element of 'writeDatas'.

Device specification 
method

Example: Write the device values of M0, D10, and LZ20
deviceNames="M0", "D10", "LZ20"
 Data storage example (one element of an array: 32-bit)
writeDatas[0]: M0 (ON/OFF is judged in bit 0.)
writeDatas[1]: D10
writeDatas[2]: LZ20

Reference open:, close:, readDeviceRandom:

Considerations • Devices and the devices used the extension specification cannot be specified together. (Example: 'U3E1\G0' and 'D0' are 
not acceptable to specify together.) When specifying the devices used the extension specification, specify that devices only 
to 'deviceNames' (argument).

• Specify the number of elements equal or greater than that of write points to 'writeDatas' (argument).
• When bit devices and word devices (including double word devices) are specified together, they are processed as respective 

packets. Therefore, the timing for writing the bit devices and word devices are different.
• When bit devices and word devices (including double word devices) are specified together, the bit devices are written after 

writing the word devices. Therefore, the writing of bit devices may fail even if the word devices successfully are written. If the 
error occurs in this method, write them again after checking the error content.
5  METHODS
5.2  Details of Methods



5

■ readArrayLabel (To read data by specifying an array label)

■ writeArrayLabel (To write data by specifying an array label)

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)readArrayLabel: (MELMxLabel *)label

Argument [in/out]label Specify a MELMxLabel object in which an array label to be read has been set.
For a MELMxLabel object, set a label name, character string length to be stored in a label (when 
the data type is the string type only), and number of pieces of data by using the method for the 
label data setting in advance.
After this method succeeded, the read label data is stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading array label data
Reads the array label data specified to 'label' (argument) for the number of array elements.
The read label data is stored to 'label' (argument).

Reference open:, close:, writeArrayLabel:

Considerations • An array label of the following data types cannot be specified;
Timer, retentive timer, counter, long timer, long retentive timer, long counter

• Up to three dimensions of arrays can be specified. (Note that two-dimensional arrays and three-dimensional arrays, of which 
data types are bit, cannot be specified with this method.)

• An error occurs if the data size to be read exceeds 1914 bytes. Specify the size 1914 bytes or less.
• Specify the character string length for the label name up to 1906 bytes.
• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.
• Data of a simple type label can be read as an array label with one element. (Example: Label[0])

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)writeArrayLabel: (MELMxLabel *)label

Argument [in]label Specify a MELMxLabel object in which an array label to be written has been set.
For a MELMxLabel object, set a label name, character string length to be stored in a label (when 
the data type is the string type only), label data, and number of pieces of data by using the 
method for the label data setting in advance.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing array label data.
Writes the label data of the array type specified to 'label' (argument) for the specified number of points.
Specify label data to be written to 'label' (argument).

Reference open:, close:, readArrayLabel:

Considerations • An array label of the following data types cannot be specified;
Timer, retentive timer, counter, long timer, long retentive timer, long counter

• Up to three dimensions of arrays can be specified. (Note that two-dimensional arrays and three-dimensional arrays, of which 
data types are bit, cannot be specified with this method.)

• The total value of the character string length and data to be written, which can be specified to a label name, is up to 1906 
bytes.

• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.
• Data of a simple type label can be written as an array label with one element. (Example: Label[0])
5  METHODS
5.2  Details of Methods 51



52
■ readLabelRandom (To read data by specifying multiple labels)

■ writeLabelRandom (To write data by specifying multiple labels)

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)readLabelRandom: (NSArray *)labels

Argument [in/out]labels Specify a NSArray object that stores one or more MELMxLabel objects in which the label to be 
read have been set.
For each MELMxLabel object, set a label name, character string length to be stored in a label 
(when the data type is the string type only), and number of pieces of data by using the method for 
the label data setting in advance.
After this method succeeded, the read label data is stored.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when reading the following label data.
• Simple type label
• Simple type label of structure elements

Reads data from a label specified to 'labels' (argument).
The read label data is stored in each element of 'labels' (argument).

Reference open:, close:, writeLabelRandom:

Considerations • The size of the label data to be read needs to satisfy the following condition formula. Total number of (the size of read data + 
2)  1912

• The total length of label name needs to satisfy the following condition formula.
Total number of (the length of label name  2 + 2)  1910

• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.

MELSEC iQ-R series MELSEC iQ-F series MELSEC-Q series MELSEC-L series
   

Item Description
Class name MELMxCommunication

Method definition - (int)writeLabelRandom: (NSArray *)labels

Argument [in]labels Specify a NSArray object that stores one or more MELMxLabel objects in which the label to be 
written have been set.
For each MELMxLabel object, set a label name, character string length to be stored in a label 
(when the data type is the string type only), label data, and number of pieces of data by using the 
method for the label data setting in advance.

Return value MX_SUCCESS: Succeed
Except for MX_SUCCESS: Failed (Page 80 Errors in operation)

Function Use this when writing the following label data.
• Simple type label
• Simple type label of structure elements

Writes data to a label specified to 'labels' (argument).
Specify label data to be written to each element of 'labels' (argument).

Reference open:, close:, readLabelRandom:

Considerations • The total length of label name needs to specify the following condition formula.
Total number of (the length of label name  2 + the size of write data + 4)  1910

• 4-byte characters of Unicode (Example: (U+20089)) are treated as 2 bytes and 2 characters.
5  METHODS
5.2  Details of Methods



5

MELMxOpenSettings class
It is the class to manage the following parameters when communicating.
These parameters can directly access as a property (Swift) or public property (Objective-C).

Details of properties
Property name Data 

type
(Swift)

Data type
(Objective-
C)

Description Default value Reference

unitType Int32 int Specify a communication target module. UNIT_RETHER(0x1002) Page 54 unitType

ioNumber Int64 long Specify the start I/O No. of an access target 
CPU module.

0x03FF Page 54 ioNumber

cpuType Int32 int Specify an access target CPU module. CPU_R04CPU(0x1001) Page 54 cpuType

protocolType Int32 int Specify a communication protocol. PROTOCOL_TCPIP(0x000
5)

Page 56 
protocolType

hostAddress String NSString * Specify the host name (IP address) of a 
connection target.
Only IPv4 is supported.

1.1.1.1 

portNumber Int32 int Specify the port number of a device such as 
a tablet.

0x0000 

destinationPortNumber Int32 int Specify the port number of a connection 
target module.

5002 Page 56 
destinationPortNum
ber

timeOut Int32 int Specify the timeout time (ms) for 
communication between a CPU module and 
a device such as a tablet.

10000(0x2710) 

cpuTimeOut Int32 int Set the CPU monitoring timer. (Units: 250 
ms)
Example: 2500 ms for 10
The applicable range is 0 to 0xFFFF. Set '0' 
if the value that is out of range has been set.
When specifying '0', it will be an infinity wait.
Fix '0' for an FX5CPU.

40 
5  METHODS
5.2  Details of Methods 53



54
■ unitType

■ ioNumber

*1 In MELSEC-Q series, communication with another CPU cannot be performed via a built-in Ethernet port of a programmable controller 
CPU.
To communicate with another CPU, use its built-in Ethernet port or route via an Ethernet module managed by it.

■ cpuType
 • MELSEC iQ-R series CPU

 • FX5CPU

Connected module Definition name Value (Hexadecimal)
RCPU UNIT_RETHER 0x1002

MELSEC iQ-R series-compatible EN71 UNIT_RJ71EN71 0x1001

FX5CPU UNIT_FETHER 0x2001

QCPU (Built-in Ethernet port) UNIT_QNETHER 0x002C

MELSEC-Q series C Controller module

MELSEC-Q series-compatible E71 UNIT_QJ71E71 0x001A

LCPU (Built-in Ethernet port) UNIT_LNETHER 0x0052

MELSEC-L series-compatible E71 UNIT_LJ71E71 0x005C

System Configuration Access target CPU module Value (Hexadecimal)
Single CPU system Host CPU 0x03FF

Multiple CPU system*1 CPU No.1 0x03E0

CPU No.2 0x03E1

CPU No.3 0x03E2

CPU No.4 0x03E3

Applicable CPU module Definition name Value (Hexadecimal)
R04CPU CPU_R04CPU 0x1001

R08CPU CPU_R08CPU 0x1002

R16CPU CPU_R16CPU 0x1003

R32CPU CPU_R32CPU 0x1004

R120CPU CPU_R120CPU 0x1005

R04ENCPU CPU_R04ENCPU 0x1008

R08ENCPU CPU_R08ENCPU 0x1009

R16ENCPU CPU_R16ENCPU 0x100A

R32ENCPU CPU_R32ENCPU 0x100B

R120ENCPU CPU_R120ENCPU 0x100C

R08PCPU CPU_R08PCPU 0x1102

R16PCPU CPU_R16PCPU 0x1103

R32PCPU CPU_R32PCPU 0x1104

R120PCPU CPU_R120PCPU 0x1105

R12CCPU-V CPU_R12CCPU_V 0x1021

R16MTCPU CPU_R16MTCPU 0x1011

R32MTCPU CPU_R32MTCPU 0x1012

Applicable CPU module Definition name Value (Hexadecimal)
FX5UCPU CPU_FX5UCPU 0x0210

FX5UCCPU CPU_FX5UCCPU 0x0210
5  METHODS
5.2  Details of Methods



5

 • MELSEC-Q series CPU

Applicable CPU module Definition name Value (Hexadecimal)
Q00JCPU CPU_Q00JCPU 0x0030

Q00UJCPU CPU_Q00UJCPU 0x0080

Q00CPU CPU_Q00CPU 0x0031

Q00UCPU CPU_Q00UCPU 0x0081

Q01CPU CPU_Q01CPU 0x0032

Q01UCPU CPU_Q01UCPU 0x0082

Q02(H)CPU CPU_Q02CPU 0x0022

Q06HCPU CPU_Q06CPU 0x0023

Q12HCPU CPU_Q12CPU 0x0024

Q25HCPU CPU_Q25CPU 0x0025

Q02PHCPU CPU_Q02PHCPU 0x0045

Q06PHCPU CPU_Q06PHCPU 0x0046

Q12PHCPU CPU_Q12PHCPU 0x0041

Q25PHCPU CPU_Q25PHCPU 0x0042

Q12PRHCPU CPU_Q12PRHCPU 0x0043

Q25PRHCPU CPU_Q25PRHCPU 0x0044

Q02UCPU CPU_Q02UCPU 0x0083

Q03UDCPU CPU_Q03UDCPU 0x0070

Q04UDHCPU CPU_Q04UDHCPU 0x0071

Q06UDHCPU CPU_Q06UDHCPU 0x0072

Q10UDHCPU CPU_Q10UDHCPU 0x0075

Q13UDHCPU CPU_Q13UDHCPU 0x0073

Q20UDHCPU CPU_Q20UDHCPU 0x0076

Q26UDHCPU CPU_Q26UDHCPU 0x0074

Q03UDECPU CPU_Q03UDECPU 0x0090

Q04UDEHCPU CPU_Q04UDEHCPU 0x0091

Q06UDEHCPU CPU_Q06UDEHCPU 0x0092

Q10UDEHCPU CPU_Q10UDEHCPU 0x0095

Q13UDEHCPU CPU_Q13UDEHCPU 0x0093

Q20UDEHCPU CPU_Q20UDEHCPU 0x0096

Q26UDEHCPU CPU_Q26UDEHCPU 0x0094

Q50UDEHCPU CPU_Q50UDEHCPU 0x0098

Q100UDEHCPU CPU_Q100UDEHCPU 0x009A

Q03UDVCPU CPU_Q03UDVCPU 0x00D1

Q04UDVCPU CPU_Q04UDVCPU 0x00D2

Q06UDVCPU CPU_Q06UDVCPU 0x00D3

Q13UDVCPU CPU_Q13UDVCPU 0x00D4

Q26UDVCPU CPU_Q26UDVCPU 0x00D5

Q12DCCPU-V CPU_Q12DC_V 0x0058

Q24DHCCPU-V CPU_Q24DHC_V 0x0059

Q24DHCCPU-LS CPU_Q24DHC_LS 0x005B

Q172DCPU CPU_Q172DCPU 0x0625

Q173DCPU CPU_Q173DCPU 0x0626

Q172DSCPU CPU_Q172DSCPU 0x062A

Q173DSCPU CPU_Q173DSCPU 0x062B
5  METHODS
5.2  Details of Methods 55



56
 • LCPU

■ protocolType

■ destinationPortNumber
When the communication method (open method)*1 is SLMP or MC protocol, specify the same port number as that of the 
connection target module.
When the communication method (open method)*1 is MELSOFT connection, specify the port number as follows:

*1 For the communication method (open method), refer to the following section.
Page 23 Communication method (open method)

Applicable CPU module Definition name Value (Hexadecimal)
L02SCPU CPU_L02SCPU 0x00A3

L02SCPU-P CPU_L02SCPU 0x00A3

L02CPU CPU_L02CPU 0x00A1

L02CPU-P CPU_L02CPU 0x00A1

L06CPU CPU_L06CPU 0x00A5

L06CPU-P CPU_L06CPU 0x00A5

L26CPU CPU_L26CPU 0x00A4

L26CPU-P CPU_L26CPU 0x00A4

L26CPU-BT CPU_L26CPUBT 0x00A2

L26CPU-PBT CPU_L26CPUBT 0x00A2

Applicable protocol Definition name Value (Hexadecimal)
TCP/IP PROTOCOL_TCPIP 0x0005

Connected module TCP/IP
RCPU 5007

MELSEC iQ-R series-compatible EN71 5002

MELSEC-Q series-compatible E71 5002

MELSEC-L series-compatible E71 5002
5  METHODS
5.2  Details of Methods



5

MELMxLabel class
It is the class to manage the label data for a label name.
Use this class when using the methods for reading and writing labels (readArrayLabel/writeArrayLabel/readLabelRandom/
writeLabelRandom of MELMxCommunication class).

Details of methods (Swift)
■ MELMxLabel (Initializer)

■ values (To acquire label data)

■ name (To acquire a label name)

Item Description
Class name MELMxLabel

Method definition AnyObject MELMxLabel()

Argument None

Return value Returns the instance of itself.

Function It is the initializer of this class.
The default value of label name is null character.
Set "MEL_MX_LABEL_DATATYPE_BIT" for the default value of a data type, and set "false" for the default value of a value.
The default value of a point is 1.
The default value of the string data length for a label, of which data type is 'string [32] or 'string' [Unicode] (32), is 32 characters.

Reference None

Considerations This is a designated initializer.

Item Description
Class name MELMxLabel

Method definition [AnyObject] values()

Argument None

Return value Label data

Function Acquires label data that is managed in a instance of this class.
• Use this class to acquire the label data which was read with 'readLabelRandom'. (Page 44 readLabelRandom (To read 

data by specifying multiple labels))
Acquired data is the 'Object' instance.
Before using the data, convert it to the type of a variable corresponding to the data type acquired with the method for acquiring 
a data type (dataType). (Page 58 dataType (To acquire the data type of a label))
For details on the types of variables, refer to the following section.
Page 31 Data types of labels

Reference None

Considerations • When 4-byte characters of Unicode (Example: (U+20089)) are included when label data is the Unicode character string, 
they are treated as 2 bytes and 2 characters.

Item Description
Class name MELMxLabel

Method definition String name()

Argument None

Return value Label name

Function Acquires a label name specified with the methods of label data settings.

Reference MELMxLabel()

Considerations When 4-byte characters of Unicode (Example: (U+20089)) are included in a label name, they are treated as 2 bytes and 2 
characters.
5  METHODS
5.2  Details of Methods 57



58
■ dataType (To acquire the data type of a label)

■ setBitLabel (To set the label data of Bit type)

■ setWordLabel (To set the label data of Word (Signed))

Item Description
Class name MELMxLabel

Method definition Int32 dataType()

Argument None

Return value Data type of a label

Function Acquires the data type of a label.
For details on the types of variables, refer to the following section.
Page 31 Data types of labels

Reference None

Considerations None

Item Description
Class name MELMxLabel

Method definition Void setBitLavel(
name: String,
values: [Boolean],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Bit. (Page 31 Data types of labels)

Reference values()

Considerations None

Item Description
Class name MELMxLabel

Method definition Void setWordLabel(
name: String,
values: [Int16],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Word (Signed). (Page 31 Data types of labels)

Reference values()

Considerations None
5  METHODS
5.2  Details of Methods



5

■ setUnsignedWordLabel (To set the label data of Word (Unsigned))

■ setDoubleWordLabel (To set the label data of Double Word (Signed))

■ setUnsignedDoubleWordLabel (To set the label data of Double Word (Unsigned))

Item Description
Class name MELMxLabel

Method definition Void setUnsignedWordLabel(
name: String,
values: [UInt16],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Word (Unsigned). (Page 31 Data types of labels)

Reference values()

Considerations None

Item Description
Class name MELMxLabel

Method definition Void setDoubleWordLabel(
name: String,
values: [Int32],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Double Word (Signed). (Page 31 Data types of labels)

Reference values()

Considerations None

Item Description
Class name MELMxLabel

Method definition Void setUnsignedDoubleWordLabel(
name: String,
values: [UInt32],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Double Word (Unsigned). (Page 31 Data types of labels)

Reference values()

Considerations None
5  METHODS
5.2  Details of Methods 59



60
■ setFloatSingleLabel (To set the label data of FLOAT (Single Precision))

■ setFloatDoubleLabel (To set the label data of FLOAT (Double Precision))

■ setAsciiStringLabel (To set the label data of ASCII character string)

Item Description
Class name MELMxLabel

Method definition Void setFloatSingleLabel(
name: String,
values: [Float],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is FLOAT (Single Precision). (Page 31 Data types of labels)

Reference values()

Considerations None

Item Description
Class name MELMxLabel

Method definition Void setFloatDoubleLabel(
name: String,
values: [Double],
size: Int32

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is FLOAT (Double Precision). (Page 31 Data types of labels)

Reference values()

Considerations None

Item Description
Class name MELMxLabel

Method definition Void setAsciiStringLabel(
name: String,
length: [UInt32],
values: [String],
size: Int32
)

Argument [in]name Specify a label name.

[in]length Specify the character string length to be stored in a label.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is String [32]. (Page 31 Data types of labels)

Reference values()

Considerations None
5  METHODS
5.2  Details of Methods



5

■ setUnicodeStringLabel (To set the label data of Unicode character string)

■ setTimeLabel (To set the label data of Time)

Item Description
Class name MELMxLabel

Method definition Void setUnicodeStringLabel(
name: String,
length: [UInt32],
values: [String],
size: Int32
)

Argument [in]name Specify a label name.

[in]length Specify the character string length to be stored in a label.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is String [Unicode] (32). (Page 31 Data types of labels)

Reference values()

Considerations When 4-byte characters of Unicode (Example: (U+20089)) are included in a label name and label data, they are treated as 
2 bytes and 2 characters.

Item Description
Class name MELMxLabel

Method definition Void setTimeLabel(
name: String,
values: [UInt32],
size: Int32
)

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Time. (Page 31 Data types of labels)

Reference values()

Considerations None
5  METHODS
5.2  Details of Methods 61



62
Details of methods (Objective-C)
■ init (Initializer)

■ values (To acquire label data)

■ name (To acquire a label name)

Item Description
Class name MELMxLabel

Method definition - (id)init

Argument None

Return value Returns the instance of itself.

Function It is the initializer of this class.
The default value of label name is null character.
Set "MEL_MX_LABEL_DATATYPE_BIT" for the default value of a data type, and set "false" for the default value of a value.
The default value of a point is 1.
The default value of the string data length for a label, of which data type is 'string [32] or 'string' [Unicode] (32), is 32 characters.

Reference None

Considerations This is a designated initializer.

Item Description
Class name MELMxLabel

Method definition - (NSArray *)values

Argument None

Return value Label data

Function Acquires label data that is managed in a instance of this class.
• Use this class to acquire the label data which was read with 'readLabelRandom'. (Page 52 readLabelRandom (To read 

data by specifying multiple labels))
Note that NSArray stores the data of the following data types.
• Integer: NSNumber
• ASCII character string: NSData
• Unicode character string: NSString

Before using the data, convert it to the type of a variable corresponding to the data type acquired with the method for acquiring 
a data type (dataType). (Page 63 dataType (To acquire the data type of a label))
For details on the types of variables, refer to the following section.
Page 31 Data types of labels

Reference None

Considerations • When 4-byte characters of Unicode (Example: (U+20089)) are included when label data is the Unicode character string, 
they are treated as 2 bytes and 2 characters.

• A label data is returned with the NSData type. Therefore, convert the character code being used according to the 
environment of the operating system that the application runs.

Item Description
Class name MELMxLabel

Method definition - (NSString *)name

Argument None

Return value Label name

Function Acquires a label name specified with the methods of label data settings.

Reference init:

Considerations When 4-byte characters of Unicode (Example: (U+20089)) are included in a label name, they are treated as 2 bytes and 2 
characters.
5  METHODS
5.2  Details of Methods



5

■ dataType (To acquire the data type of a label)

■ setBitLabel (To set the label data of Bit type)

■ setWordLabel (To set the label data of Word (Signed))

Item Description
Class name MELMxLabel

Method definition - (int)dataType

Argument None

Return value Data type of a label

Function Acquires the data type of a label.
For details on the types of variables, refer to the following section.
Page 31 Data types of labels

Reference None

Considerations None

Item Description
Class name MELMxLabel

Method definition - (void)setBitLavel: (NSString *)name
Values: (bool *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Bit. (Page 31 Data types of labels)

Reference values:

Considerations None

Item Description
Class name MELMxLabel

Method definition - (void)setWordLabel: (NSString *)name
Values: (short *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Word (Signed). (Page 31 Data types of labels)

Reference values:

Considerations None
5  METHODS
5.2  Details of Methods 63



64
■ setUnsignedWordLabel (To set the label data of Word (Unsigned))

■ setDoubleWordLabel (To set the label data of Double Word (Signed))

■ setUnsignedDoubleWordLabel (To set the label data of Double Word (Unsigned))

Item Description
Class name MELMxLabel

Method definition - (void)setUnsignedWordLabel: (NSString *)name
Values: (unsigned short *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Word (Unsigned). (Page 31 Data types of labels)

Reference values:

Considerations None

Item Description
Class name MELMxLabel

Method definition - (void)setDoubleWordLabel: (NSString *)name
Values: (int *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Double Word (Signed). (Page 31 Data types of labels)

Reference values:

Considerations None

Item Description
Class name MELMxLabel

Method definition - (void)setUnsignedDoubleWordLabel: (NSString *)name
Values: (unsigned int *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Double Word (Unsigned). (Page 31 Data types of labels)

Reference values:

Considerations None
5  METHODS
5.2  Details of Methods



5

■ setFloatSingleLabel (To set the label data of FLOAT (Single Precision))

■ setFloatDoubleLabel (To set the label data of FLOAT (Double Precision))

■ setAsciiStringLabel (To set the label data of ASCII character string)

Item Description
Class name MELMxLabel

Method definition - (void)setFloatSingleLabel: (NSString *)name
Values: (float *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is FLOAT (Single Precision). (Page 31 Data types of labels)

Reference values:

Considerations None

Item Description
Class name MELMxLabel

Method definition - (void)setFloatDoubleLabel: (NSString *)name
Values: (double *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is FLOAT (Double Precision). (Page 31 Data types of labels)

Reference values:

Considerations None

Item Description
Class name MELMxLabel

Method definition - (void)setAsciiStringLabel: (NSString *)name
Length: (Unsigned int)length
Values: (NSArray *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]length Specify the character string length to be stored in a label.

[in]values Specify label data. (The data type to be stored to NSArray must be the NSData type.)

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is String [32]. (Page 31 Data types of labels)

Reference values:

Considerations None
5  METHODS
5.2  Details of Methods 65



66
■ setUnicodeStringLabel (To set the label data of Unicode character string)

■ setTimeLabel (To set the label data of Time)

MELMxErrDefine.h file
It is the header file to retain an error which occurs in this library.
An error code is retained as a constant by #define.
For details on error codes, refer to the following section.
Page 80 Error codes returned by MX Component library

5.3 Considerations for Using Methods
When a remote password has been set, unlock the password (open method) before communication.
The remote password is locked when the communication is completed (close method).

Item Description
Class name MELMxLabel

Method definition - (void)setUnicodeStringLabel: (NSString *)name
Length: (Unsigned int)length
Values: (NSArray *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]length Specify the character string length to be stored in a label.

[in]values Specify label data. (The data type to be stored to NSArray must be the NSString type.)

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is String [Unicode] (32). (Page 31 Data types of labels)

Reference values:

Considerations When 4-byte characters of Unicode (Example: (U+20089)) are included in a label name and label data, they are treated as 
2 bytes and 2 characters.

Item Description
Class name MELMxLabel

Method definition - (void)setTimeLabel: (NSString *)name
Values: (int *)values
Size: (int)size

Argument [in]name Specify a label name.

[in]values Specify label data.

[in]size Specify the number of pieces of label data.
For a simple type label, specify '1'.
For an array label, specify a number of elements.

Return value None

Function Set a label name, type, and label data to be managed in a instance of this class.
Use this method when using a label of which the data type is Time. (Page 31 Data types of labels)

Reference values:

Considerations None
5  METHODS
5.3  Considerations for Using Methods



5

5.4 Sample Program
This section explains the sample programs (Objective-C) in the provided CD.
The sample programs differ depending on CPU modules. Use one of them according to a CPU module to be accessed.

Created application
The following shows an example of the screen when an application, created by using a sample program, is run with a tablet.
Methods are executed by tapping the buttons on the left side of the screen. After executing them, the result is displayed on the 
right side of the screen. 
When the processing succeeded, "SUCCESS" and the value of execution result are displayed. If the processing failed, the 
error code appears.

The following table shows the processing corresponding to each button on the screen above.

Button name Processing
Open Page 70 execOpen

Close Page 71 execClose

ReadDeviceBlock Page 72 execReadDeviceBlock

WriteDeviceBlock Page 73 execWriteDeviceBlock

ReadDeviceRandom Page 74 execReadDeviceRandom

WriteDeviceRandom Page 75 execWriteDeviceRandom

ReadArrayLabel Page 76 execReadArrayLabel

WriteArrayLabel Page 77 execWriteArrayLabel

ReadLabelRandom Page 78 execReadLabelRandom

WriteLabelRandom Page 79 execWriteLabelRandom

Reading and writing 
devices/labels
5  METHODS
5.4  Sample Program 67



68
Operation for application
The following shows the basic operation for communication.

Operating procedure
1. Start the application.

2. Tap the [Open] button.

3. Tap the button for reading and writing of devices and labels.

4. Tap the [Close] button.
If tap the [ClearRecord] button, the execution result is cleared.

Operating environment
Each sample program is created to operate in the following environment.

Folder name Item Description System configuration
iQ-F PLC CPU FX5UCPU (Host CPU) Page 69 iQ-F PLC

hostAddress 192.168.2.100

destinationPortNumber 5014

iQ-R PLC_Motion CPU R16CPU (Host CPU), R16MTCPU (CPU No.2) Page 69 iQ-R PLC_Motion

hostAddress 192.168.2.100

destinationPortNumber 5007

C_Controller CPU R16CPU (Host CPU), R12CCPU-V (CPU No.2) Page 69 iQ-R C_Controller

hostAddress 192.168.2.100

destinationPortNumber 5007

Q PLC_Motion CPU Q20UDEHCPU (Host CPU), Q172DSCPU 
(CPU No.2), QJ71E71-100

Page 69 Q PLC_Motion

hostAddress 192.168.2.100

destinationPortNumber 5002

C_Controller CPU Q12DCCPU-V (Host CPU) Page 69 Q C_Controller

hostAddress 192.168.2.100

destinationPortNumber 5010
5  METHODS
5.4  Sample Program



5

System Configuration
Each sample program is created to operate in the following system configuration.

■ iQ-F PLC

■ iQ-R PLC_Motion

■ iQ-R C_Controller

■ Q PLC_Motion

■ Q C_Controller

For the communication method (open method), refer to the following section.
Page 23 Communication method (open method)

FX5CPU

(iOS)
Tablet

Wireless LAN router

Hub

(iOS)

R16CPU, R16MTCPU

Tablet

Wireless LAN router

Hub

R16CPU, R12CCPU-V

(iOS)
Tablet

Wireless LAN router

Hub

(iOS)

Q20UDEHCPU, Q172DSCPU, QJ71E71-100

Tablet

Wireless LAN router

Hub

Q12DCCPU-V

(iOS)
Tablet

Wireless LAN router

Hub
5  METHODS
5.4  Sample Program 69



70
Sample method
The Objective-C methods explained in this section are included in the following file.
Storage folder: SampleProject  (folder for each series)  (folder for each module)  MXComponentSample
File name: MXComponentManager.m

Processing corresponding to each button
The following shows the processing corresponding to each button.

■ execOpen
The following processing are executed by tapping the [Open] button.
 • The open method of a MELMxCommunication class is executed in the background.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
5  METHODS
5.4  Sample Program



5

■ execClose
The following processing are executed by tapping the [Close] button.
 • The close method of a MELMxCommunication class is executed in the background.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
5  METHODS
5.4  Sample Program 71



72
■ execReadDeviceBlock
The following processing are executed by tapping the [ReadDeviceBlock] button.
 • A value is read from the device 'D100' of the opened connection target and displayed.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
5  METHODS
5.4  Sample Program



5

■ execWriteDeviceBlock
The following processing are executed by tapping the [WriteDeviceBlock] button.
 • A random value from 0 to 99 is written to the device 'D100' of the opened connection target.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
5  METHODS
5.4  Sample Program 73



74
■ execReadDeviceRandom
The following processing are executed by tapping the [ReadDeviceRandom] button.
 • Values are read from the devices 'D100', 'M0', and 'LZ0' of the opened connection target and displayed.
 • For a bit device, the execution result is displayed in ON or OFF.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
5  METHODS
5.4  Sample Program



5

■ execWriteDeviceRandom
The following processing are executed by tapping the [WriteDeviceRandom] button.
 • Random values are written to the devices 'D100', 'M0', and 'LZ0' of the opened connection target.
 • For a bit device, the execution result is displayed in ON or OFF.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
5  METHODS
5.4  Sample Program 75



76
■ execReadArrayLabel
The following processing are executed by tapping the [ReadArrayLabel] button.
 • A value is read from 'wLabel[0]'*1 of the opened connection target and displayed.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
*1 'wLabel' is an array label of Word type.
5  METHODS
5.4  Sample Program



5

■ execWriteArrayLabel
The following processing are executed by tapping the [WriteArrayLabel] button.
 • A random value from 0 to 99 is written to 'wLabel[0]'*1 of the opened connection target.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
*1 'wLabel' is an array label of Word type.
5  METHODS
5.4  Sample Program 77



78
■ execReadLabelRandom
The following processing are executed by tapping the [ReadLabelRandom] button.
 • Values are read from 'wLabel[0]', 'bLabel[0]', and 'sLabel[0]'*1 of the opened connection target and displayed.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
*1 'wLabel' is an array label of Word type. 'bLabel' is an array label of Bit type. 'sLabel' is an array label of String type.
5  METHODS
5.4  Sample Program



5

■ execWriteLabelRandom
The following processing are executed by tapping the [WriteLabelRandom] button.
 • Random values are written to 'wLabel[0]', 'bLabel[0]', and 'sLabel[0]'*1 of the opened connection target.
 • The elapsed time is counted. When the specified timeout time is over, a timeout error is returned.
*1 'wLabel' is an array label of Word type. 'bLabel' is an array label of Bit type. 'sLabel' is an array label of String type.
5  METHODS
5.4  Sample Program 79



80
6 TROUBLESHOOTING
This chapter explains the error contents and corrective actions.

6.1 Errors in development
The following table shows the errors displayed in Xcode when developing an application and the corrective actions.

6.2 Errors in operation
This section shows the error code contents displayed when operating an application and the corrective actions.

Error codes returned by a CPU module or a module
The lower 4 digits of an error code indicate whether the error code is for a CPU module or a module.
For details, refer to the manual of each module.

*1 In a multiple CPU system, refer to the manuals of each module.

Error codes returned by MX Component library
The following error code values are the values obtained by converting the return values (Int32 type, and int type) in 
hexadecimal.
 • 0xF0000001 to 0xF1FFFFFF, 0xFE000001 to 0xFE00FFFF: MX Component for iOS library itself

Display Check point Corrective action
Library not loaded Unsupported version of operating system is used. • Operate the application on the supported version of 

operating system.

Apple Mach-O Linker 
Error

The required files are insufficient. • Use all required files.
Page 15 Importing the library

A different product version of file is used together. • For updating, create a program by using the same product 
version of files.
Page 21 Update method

Error code Connection destination Reference

Series Module
0x010A0000 to 
0x010AFFFF

MELSEC iQ-R 
series

Programmable 
controller CPU

MELSEC iQ-R Programmable Controller CPU Module User's Manual
MELSEC iQ-R Process CPU Module User's Manual

C Controller module*1 MELSEC iQ-R C Controller Module User's Manual

Motion CPU*1 MELSEC iQ-R Motion Controller Programming Manual (Common)

MELSEC-Q 
series

Programmable 
controller CPU

QCPU User's Manual (Hardware Design, Maintenance and Inspection)

C Controller module*1 MELSEC-Q C Controller Module User's Manual

Motion CPU*1 Q173D(S)CPU/Q172D(S)CPU Motion controller Programming Manual (COMMON)

MELSEC-L series Programmable 
controller CPU

MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)

0x01090000 to 
0x0109FFFF

MELSEC iQ-F 
series

Programmable 
controller CPU

MELSEC iQ-F FX5 User's Manual (Application)

0x010C0000 to 
0x010CFFFF

MELSEC iQ-R 
series

Programmable 
controller CPU/Ethernet 
module

MELSEC iQ-R Ethernet User's Manual (Application)

MELSEC iQ-F 
series

Programmable 
controller CPU

MELSEC iQ-F FX5 User's Manual (Ethernet Communication)

MELSEC-Q 
series

Programmable 
controller CPU

QnUCPU User's Manual (Communication via Built-in Ethernet Port)

Ethernet module Q Corresponding Ethernet Interface Module User's Manual (Basic)

MELSEC-L series Programmable 
controller CPU

MELSEC-L CPU Module User's Manual (Built-In Ethernet Function)

Ethernet module MELSEC-L Ethernet Interface Module User's Manual (Basic)
6  TROUBLESHOOTING
6.1  Errors in development



6

 • 0x01800000 to 0x0180FFFF, 0x01900000 to 0x0190FFFF: EasySocket Communication

Error code Error description Corrective action
0x00000000 Normal completion 

0x01800001 No command error
The specified CPU module or module does 
not support the corresponding function.

• Check if the CPU module or module supports the function.

0x01800003 Memory securing error • End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.

0x01800004 Load error • Check if the specified unitType, cpuType, and protocolType match the system 
configuration used.

• End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.
• If the error occurs again even after taking the corrective actions mentioned above, 

please consult your local Mitsubishi representative.

0x01801002 Multi-line open error • End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.
0x01801003 Open not yet executed

0x01801006 Specified module error • Check if the specified unitType matches the system configuration used.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01801007 Specified CPU error • Check if the specified cpuType matches the system configuration used.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01801009 Setting file open failed • End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.
• Reinstall MX Component library.
• If the error occurs again even after taking the corrective actions mentioned above, 

please consult your local Mitsubishi representative.

0x0180100B Protocol type error
The specified protocol is incorrect.

• Check if the specified protocolType matches the system configuration used.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.
• Reinstall MX Component library.
• If the error occurs again even after taking the corrective actions mentioned above, 

please consult your local Mitsubishi representative.

0x01802001 Device error
The device character string specified in the 
method is an incorrect device character 
string.

• Review the device name.

0x01802002 Device number error
The device character string number specified 
in the method is an incorrect device number.

• Review the device number.

0x01802005 Size error
The number of points specified in the method 
is incorrect.

• Check the number of points specified in the method.
• Review the system such as the CPU module settings, Ethernet module settings, and 

cable condition.
• Check the communication status between the device such as a tablet and the wireless 

LAN router.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.
• Reinstall MX Component library.

0x01802007 Receive data error
The received data is abnormal.

• Review the system such as the CPU module settings, Ethernet module settings, and 
cable condition.

• Check the communication status between the device such as a tablet and the wireless 
LAN router.

• End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.

0x01802079 'nil' specification error
'nil' is specified to the argument.

• Specify the correct value to the argument.
6  TROUBLESHOOTING
6.2  Errors in operation 81



82
0x01808001 Duplex open error
The open method was executed again after it 
was executed.

• Execute any methods except for the open method.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01808007 Socket object generation error
The generation of the Socket object failed.

• Check if the application which uses the same port number is running.
• Change the value specified to PortNumber and retry.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01808008 Port connection error
Establishment of connection failed. The 
connection target does not respond.

• Review the values specified to PortNumber and hostAddress.
• Review the system such as the CPU module settings, Ethernet module settings, and 

cable condition.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01808101 Multiple close error • End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.

0x01808201 Send error
Data send failed.

• Review the system such as the CPU module settings, Ethernet module settings, and 
cable condition.

• Check the communication status between the device such as a tablet and the wireless 
LAN router.

• Retry the method.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01808301 Receive error
Data receive failed.

• Review the system such as the CPU module settings, Ethernet module settings, and 
cable condition.

• Review the value specified to timeOut.
• Check the communication status between the device such as a tablet and the wireless 

LAN router.
• Retry the method.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01808404 Open not yet executed • Execute the open method.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x0180840B Time-out error
Data could not be received before the 
timeout period had elapsed.

• Review the system such as the CPU module settings, Ethernet module settings, and 
cable condition.

• Review the value specified to timeOut.
• Check the communication status between the device such as a tablet and the wireless 

LAN router.
• Retry the method.
• Execute the close processing at once, then execute the open method again.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0x01902001 Extended device mixed error
Both a device and extended device are 
specified.

• When using an extended device, specify only the extended device.

0x01902801 Label data incorrect error
The specified label data to the argument is 
incorrect.

• Check the number of pieces of the label data for the argument.

0x01902802 Label name length error
Label name length or total number of label 
name length exceeds the applicable length.

• Specify the label name length or the total number of label name length within the 
applicable length.

0x01902803 Label data size error
The data size of the label exceeds the 
applicable size.

• Specify the data size of the label data within the applicable range.

0x01902804 Label name length and label data size error
The total size of label name length and label 
data exceeds the applicable size.

• Specify the total value of label name length and label data size within the applicable 
range.

0x01902805 Label data incorrect error
The type of the specified label is unknown.

• Specify the data type supported the label.

Error code Error description Corrective action
6  TROUBLESHOOTING
6.2  Errors in operation



6

0x01903801 Data type mismatch error
The data type of the specified label 
mismatches the one set to the CPU module.

• Specify the correct label data type (that matches the one in the CPU module) and 
execute the method again.

0x01904001 Remote password length error
The remote password length is not 4 bytes or 
exceeds 32 bytes.

• MELSEC iQ-R series CPU, FX5CPU:
Set the remote password length between 6 to 32 bytes.

• MELSEC-Q series CPU, LCPU:
Set the remote password length to 4 bytes.

0x01904002 Port number error
The port number is wrong.

• Specify the correct portNumber and destinationPortNumber.

0x01905001 The send error of the remote password lock 
has occurred in the close processing when 
setting the remote password.

• The close processing has been completed. Execute the open method again as 
necessary.

0x0190FFFF Exception occurrence error in the operating 
environment
An exception error has occurred in the 
running device.

• End other running applications, and then restart the application created by using MX 
Component for iOS.

• Restart the device such as a tablet.
• Reinstall MX Component library.
• If the error occurs again even after taking the corrective actions mentioned above, 

please consult your local Mitsubishi representative.

0xF0000001 No-license error • MX Component for iOS is used without the license. Install the license of MX 
Component for iOS duly.

0xF0000003 Already open error
The open method was executed again after it 
was executed.

• Execute the close processing at once, then execute the open method again.

0xF0000004 Not yet open error
The open method has not been executed.

• After executing the open method, execute the corresponding method.

0xF1000002 Start I/O No. error
The value of specified start I/O number is 
incorrect. No matching start I/O number exist.

• Check the value of start I/O number to be specified to the method.
• Review the system such as the CPU module settings, multiple CPU system settings, 

and cable condition.
• End other running applications, and then restart the application created by using MX 

Component for iOS.
• Restart the device such as a tablet.

0xF1000005 Size error
The size specified to the read/write method is 
abnormal. The 'first read/write number + size' 
exceeds the device or buffer area.

• Check the size specified in the method.

0xFE003001 Label name length error
Label name length or total number of label 
name length exceeds the applicable length.

• Specify the label name length or the total number of label name length within the 
applicable length.

0xFE003002 Label data size error
The data size of the label exceeds the 
applicable size.

• Specify the data size of the label data within the applicable range.

0xFE003003 Label name length and label data size error
The total size of label name length and label 
data exceeds the applicable size.

• Specify the total value of label name length and label data size within the applicable 
range.

0xFE003004 Label data type error
The data type of the label is unsupported.

• Change the data type of the label to the supported data type.
• If the error occurs again even after taking the corrective actions mentioned above, 

please consult your local Mitsubishi representative.

0xFE004001 'nil' is specified.
'nil' is specified to the argument.

• Specify the correct value to the argument.

Error code Error description Corrective action
6  TROUBLESHOOTING
6.2  Errors in operation 83



84
MEMO
6  TROUBLESHOOTING
6.2  Errors in operation



A

APPENDIX
Appendix 1 Added and Changed Functions
The following table shows the added or changed functions, and the applicable software version of MX Component for iOS.

Added/changed contents Applicable software version
Supported by the following modules.
• C Controller module (R12CCPU-V, Q12DCCPU-V, Q24DHCCPU-V, and Q24DHCCPU-LS)
• Motion CPU (R16MTCPU, R32MTCPU, Q172DCPU, Q173DCPU, Q172DSCPU, and Q173DSCPU)
• RnENCPU (R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, and R120ENCPU)

1.01B or later

The multiple CPU system is supported.

iOS 7 is not supported in the operating environment.

Xcode 5 is not supported in the development environment.

OS X 10.11 El Capitan is supported. 1.02C or later

iOS 9.X is supported.

Xcode 7.X is supported.

Supported by the RnPCPUs (R08PCPU, R16PCPU, R32PCPU, R120PCPU). 1.03D or later

iOS 10.X is supported.

macOS Sierra is supported.

Swift is included as one of the supported development language.

Xcode 6.X is excluded from the supported development environment.

Xcode 8.X is supported.
APPX
Appendix 1  Added and Changed Functions 85



86
MEMO
APPX
Appendix 1  Added and Changed Functions



87

I

METHOD INDEX

C
close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38,46

D
dataType . . . . . . . . . . . . . . . . . . . . . . . . . . . 58,63

I
init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45,62

M
MELMxCommunication . . . . . . . . . . . . . . . . . . . 37
MELMxLabel  . . . . . . . . . . . . . . . . . . . . . . . . . . 57

N
name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57,62

O
open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37,45

R
readArrayLabel . . . . . . . . . . . . . . . . . . . . . . . 43,51
readDeviceBlock. . . . . . . . . . . . . . . . . . . . . . 39,47
readDeviceRandom  . . . . . . . . . . . . . . . . . . . 41,49
readLabelRandom  . . . . . . . . . . . . . . . . . . . . 44,52

S
setAsciiStringLabel . . . . . . . . . . . . . . . . . . . . 60,65
setBitLabel . . . . . . . . . . . . . . . . . . . . . . . . . . 58,63
setDoubleWordLabel . . . . . . . . . . . . . . . . . . . 59,64
setFloatDoubleLabel . . . . . . . . . . . . . . . . . . . 60,65
setFloatSingleLabel. . . . . . . . . . . . . . . . . . . . 60,65
setTimeLabel . . . . . . . . . . . . . . . . . . . . . . . . 61,66
setUnicodeStringLabel. . . . . . . . . . . . . . . . . . 61,66
setUnsignedDoubleWordLabel . . . . . . . . . . . . 59,64
setUnsignedWordLabel . . . . . . . . . . . . . . . . . 59,64
setWordLabel . . . . . . . . . . . . . . . . . . . . . . . . 58,63

V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57,62

W
writeArrayLabel. . . . . . . . . . . . . . . . . . . . . . . 43,51
writeDeviceBlock  . . . . . . . . . . . . . . . . . . . . . 40,48
writeDeviceRandom  . . . . . . . . . . . . . . . . . . . 42,50
writeLabelRandom  . . . . . . . . . . . . . . . . . . . . 44,52



88

MEMO



89

REVISIONS
*The manual number is given on the bottom left of the back cover.

Japanese manual number: SH-081497-E

 2015 MITSUBISHI ELECTRIC CORPORATION

Revision date *Manual number Description
February 2015 SH(NA)-081499ENG-A First edition

October 2015 SH(NA)-081499ENG-B ■Added or modified parts
TERMS, Chapter 2, Section 3.2, Section 3.3, Section 3.5, Section 4.1, Section 5.2, Section 5.4, 
Chapter 6, Appendix 1

May 2016 SH(NA)-081499ENG-C ■Added or modified parts
TERMS, Section 2.2, Section 2.3, Section 3.1, Section 3.3, Section 3.5, Section 5.2, Section 5.4, 
Section 6.2, Appendix 1

March 2017 SH(NA)-081499ENG-D ■Added or modified parts
TERMS, Section 1.1, Section 2.2, Section 2.3, Section 3.1, Section 3.2, Section 3.3, Section 4.2, 
Section 5.1, Section 5.2, Section 6.1, Appendix 1

July 2023 SH(NA)-081499ENG-E ■Added or modified parts
SAFETY PRECAUTIONS, CONDITIONS OF USE FOR THE PRODUCT, Section 6.2

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot 
be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.



90

TRADEMARKS
Apple, iPad, iPad Air, iPad mini, iPad Pro, iPhone, iPod touch, macOS, Mac OS, Objective-C, OS X, Swift, and Xcode are 
trademarks of Apple Inc., registered in the U.S. and other countries.
IOS (iOS) is either a registered trademark or trademark of Cisco Systems, Inc. and/or its affiliates in the United States and 
certain other countries, and iOS is used under license by Apple Inc.
The company names, system names and product names mentioned in this manual are either registered trademarks or 
trademarks of their respective companies.
In some cases, trademark symbols such as '' or '' are not specified in this manual.





SH(NA)-081499ENG-E(2307)
MODEL: MXC-IOS1-R-E

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA 461-8670, JAPAN


	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	1 OVERVIEW
	1.1 What is MX Component for iOS?
	1.2 Main Functions

	2 SYSTEM CONFIGURATION
	2.1 System Configuration
	2.2 Configuration Devices
	Usable CPU modules
	Accessible Ethernet modules

	2.3 Operating Environment
	2.4 Considerations

	3 USAGE
	3.1 Installation
	3.2 Creating a project
	3.3 Update
	3.4 Uninstallation
	3.5 Communication method (open method)

	4 ACCESSIBLE DEVICES
	4.1 Accessible Device List
	Programmable controller CPU
	C Controller module
	Motion CPU

	4.2 Considerations for Devices and Labels
	Considerations for bit devices
	Considerations for using labels


	5 METHODS
	5.1 Method List
	5.2 Details of Methods
	MELMxCommunication class
	MELMxOpenSettings class
	MELMxLabel class
	MELMxErrDefine.h file

	5.3 Considerations for Using Methods
	5.4 Sample Program
	Created application
	Sample method


	6 TROUBLESHOOTING
	6.1 Errors in development
	6.2 Errors in operation

	APPENDIX
	Appendix 1 Added and Changed Functions

	METHOD INDEX
	REVISIONS
	TRADEMARKS



