Programmable Controller

K M

FX2N-1HC SPECIAL FUNCTION BLOCK

 USER'S GUIDE
JY992D65401H 藘

This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the $\mathrm{FX}_{2} \mathrm{~N}-1 \mathrm{HC}$ special function block and should be read and understood before attempting to install or use the unit.
Further information can be found in the FX PROGRAMMING MANUAL and FX2n, FX2nc, FX3u, FX3uc SERIES HARDWARE MANUAL

1. INTRODUCTION

The hardware high-speed counter block is a 2-phase 50 kHz high-speed counter. It is a special function block for the FX2n, FX2Nc, FX3u, FX3uc series PLC.

- FROM/TO instruction transfers the PLC data (i.e. parameters, comparing value and present value).
- The $\mathrm{FX}_{2} \mathrm{~N}-1 \mathrm{HC}$ occupies 8 points of I/O on the $\mathrm{FX}_{2 N}, \mathrm{FX}_{2 N C}, \mathrm{FX}_{3} \mathrm{U}, \mathrm{FX}_{3} \cup \mathrm{C}$ expansion bus. The 8 points can be allocated from either inputs or outputs.
- Differential-Line-Driver (AM26C31 or equivalent) and open collector output encoders are available for FX2N-1HC.
- The source of your input signal should be a 1 or 2 phase encoder. $\mathrm{A} 5 \mathrm{~V}, 12 \mathrm{~V}$, or 24 V power source can be used. An initial value setting command input (PRESET) and a count prohibit command input (DISABLE) are also available.
- The FX2N-1HC has two outputs. When the counter value coincides with an output compare value, the appropriate output is set ON. The output transistors are individually isolated to allow either sink or source connection methods.
- Various counter modes, such as 1-phase or 2-phase, 16-bit or 32-bit modes, can be selected using commands from the PLC. Allow the FX2N-1HC unit to run only after setting these mode parameters.

1.1 External dimensions

Mass (weight): Approx. 0.3 kg (0.66 lbs) Dimensions: mm (inches) Accessories: Self-adhesive labels special block number identification

(1) Mounting hole 2-\$4.5 (0.18)
(2) Extension cable and connector
(3) UP LED
(4) DN (Down) LED
(5) ϕA LED
(6) ϕB LED
(7) POWER LED
(8) $\phi \mathrm{A}, \phi \mathrm{B}$ terminal (M3 (0.12) screws)
(9) PRESET terminal (M3 (0.12) screws)

<Using the solderless termination>

- Use crimp terminals of the dimensions specified in the left figure.
- Secure the terminals using a tightening torque of 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$ Do not tighten terminal screws with a torque outside the abovementioned range.
Failure to do so may cause equipment failures or malfunctions.
- Wire only to the module terminals discussed in this manual. Leave all others vacant.

2. WIRING

PNP output encoders

\triangle
If using on NPN output encoder please take care to match the polarity of the terminals of the encoder to those of the FX2N-1HC.

Differential-Line-Driver output encoders

When applying the Differential-Line-Driver encoder (AM26C31 or equivalent) to $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$, connect the encoder output with the 5V DC terminal as shown in the left figure.
Connect other terminals as shown in the PNP output encoder figure above.

3. SPECIFICATIONS

3.1 General specifications

Perform the dielectric withstand voltage test between the GND terminal and all the other terminals short-circuited.

Item	Specification
General specifications (excluding the following)	Same as those for the FX2N main unit
Dielectric withstand voltage	500V AC, 1min (between all terminals and ground)

3.2 Performance specifications

Item		1-phase input		2-phase input		
		1 input	2 inputs	1 edge count	2 edge count	4 edge count
Input signal	Signal level					
	MAX. frequency	50 kHz			25 kHz	12.5 kHz
	Pulse shape					
Counting specification	Format	Automatic UP/DOWN (however, when on 1-phase 1-input mode, UP/DOWN is determined by a PLC command or an input terminal.)				
	Range	When 32 -bit is specified : $-2,147,483,648$ to $+2,147,483,647$ When 16-bit is specified : 0 to 65,535 (upper limit can be user specified)				
	Comparison Type	Each output is set when the present value of the counter matches with the compare value (which is transferred from the PLC), and is switched OFF by a reset command from the PLC. YH: Direct output processed by hardware. YS : Software processed output with worst delay time of $300 \mu \mathrm{~s}$. (Therefore, when the input frequency is 50 kHz , there is a worst case delay of 15 input pulses.)				
Output signal	Types of outputs	YH + : transistor output for YH output YH - :transistor output for YH output YS + :transistor output for YS output YS - :transistor output for YS output				
	Output capacity	5 V to 24V DC 0.5A				
I/O occupation		8 points taken from the FX2N expansion bus (can be either inputs or outputs)				
Power from base		5V DC 90mA(Internal power supply from main unit or powered extension unit)				

3.3 Buffer memories (BFM)

BFM number			Contents		
Write	$\# 0$	Counter mode K0 to K11	Default: K0		
	$\# 1$	DOWN/UP command (1-phase 1-input mode)	Default: K0		
	$\# 3, \# 2$	Ring length Upper/Lower	Default: K65,536		
	$\# 4$	Command	Default: K0		
	$\# 11, \# 10$	Preset data Upper/Lower	Default: K0		
	$\# 13, \# 12$	YH compare value Upper/Lower	Default: K32,767		
	$\# 15, \# 14$	YS compare value Upper/Lower	Default: K32,767		
Read	$\# 21, \# 20$	Counter current value Upper/Lower	Default: K0		
	$\# 23, \# 22$	Maximum count value Upper/Lower	Default: K0		
	$\# 25, \# 24$	Minimum count value Upper/Lower	Default: K0		
	$\# 26$	Compare results			
	$\# 27$	Terminal status			
	$\# 29$	Error status			
	$\# 30$	Model identification code K4010			

\#5-\#9, \#16-\#19, \#28, \#31 are reserved.

1) BFM \#0 Counter mode (K0 to K11), BFM \#1 DOWN/UP command

Count modes		32 bits	16 bits
2-phase input (phase difference pulse)	1 edge count	K 0	K 1
	2 edge count	K 2	K 3
	4 edge count	K 4	K 5
1-phase 2-input (add/subtract pulse)	K 6	K 7	
	Hardware UP/DOWN	K 8	K 9
	Software UP/DOWN	K 10	K 11

The counter mode is selected form the PLC. As shown below, values between K0 and K11 are written to buffer memory BFM \#0 form the PLC. When a value is written to BFM \#0 the contents of BFM \#1 to BFM \#31 are reset to default values. When setting this value use a TOP (pulsed) instruction use M8002 (initial pulse) to drive the TO instruction
A continuous command is not allowed.
a) 32-bit counter modes

A 32-bit binary counter which executes UP/DOWN counting will change from the lower limit value to the upper limit value or the upper limit value to the lower limit value when overflow occurs. Both the upper and lower limit values are fixed values: the upper limit value is $+2,147,483,647$, and the lower limit value is $-2,147,483,648$.
b) 16-bit counter modes

A 16 -bit binary counter handles only positive values from 0 to 65,535 . Changes to zero from the upper limit value or to the upper limit value from zero when overflow occurs; the upper limit value is determined by BFMs \#3 and \#2.

c) 1-phase 1-input counter (K8 to K11)

- Hardware UP/DOWN (K8, K9)

Phase A OFF ON
ON ON
ON
Phase B $A \rightarrow B$
d) 1-phase 2-input counter ($\mathrm{K} 6, \mathrm{~K} 7$)

Phase ON $\quad \Delta \Delta \Delta \Delta$ Phase A input-1
Ainput OFF $44 \Delta L$ at OFF \rightarrow ON

If both phase A and phase B inputs are received simultaneously, the counter value does not change.

- 2 edge-count (K2, K3)

Phase B input OFF \rightarrow ON while phase A input ON Count up by 1 .

Phase B input ON \rightarrow OFF while phase A input ON Count down by 1 .

- 4 edge-count (K4, K5)

UP COUNT

2) $B F M$ \#3, \#2 Ring length

Stores the data that specifies the length of the 16-bit counter (default: K65,536).
$\stackrel{\text { X } 002}{\longrightarrow}$ D T0 K2 K2 K100 K1

- In the above example, K100 is written into BFMs \#3 and \#2 of special block No. 2 as a 32 -bit binary value (BFM \#3 $=0, B F M$ \#2 = 100). Permitted values: K2 to K65,536.

When ring length K100 is specified, the value of the counter changes as shown above.

Note: Write counter data with (D) TO

- Count data is always handled as a pair from two 16-bit values in this special function block. 16-bit 2's complement value stored in the registers of the PLC cannot be used.
- When you are writing a positive value between $\mathrm{K} 32,768$ and $\mathrm{K} 65,535$, the data should be treated as a 32 -bit value even when a 16 -bit ring counter is used.
- When transferring counter data to/from this special function block, always use the 32-bit forms of the FROM/TO instructions ((D) FROM, (D) TO).

3) BFM \#4 Command

BFM\#4	When '0'(OFF)	When '1'(ON)
b0	Count prohibit	Count permit
b1	YH output prohibit	YH output permit
b2	YS output prohibit	YS output permit
b3	YH/YS independent action	Mutual reset action
b4	Preset prohibit	Preset permit
b5 to b7	Undefined	
b8	No action	Error flag reset
b9	No action	YH output reset
b10	No action	YS output reset
b11	No action	YH output set
b12	No action	YS output set

1. When b0 is set to $O N$ and the DISABLE input terminal to OFF, the counter is permitted to start counting input pulses.
2. Unless b1 is set to ON, YH (hardware compared output) does not turn ON.
3. Unless b2 is set to ON, YS (software compared output) does not turn ON.
4. When $\mathrm{b} 3=\mathrm{ON}, \mathrm{YS}$ output is reset if YH output is set, and YH output is reset if YS output is set. When b3=OFF, YH and YS output act independently, and do not reset each other.
5. When b4=OFF, preset function by the PRESET input terminal is disabled.
6. When b8 is set to ON, all error flags are reset.
7. When b9 is set to ON, YH output is reset
8. When b10 is set to ON, YS output is reset.
9. When b11 is set to ON, YH output is set ON .
10.When b12 is set to ON, YS output is set ON.

4) BFM \#11, \#10 Preset data

- Data to used as the initial value when the counter starts to count.
- Data becomes valid when b4 of BFM \#4 is set to ON, and PRESET input terminal changes from OFF to ON. The default value of the counter is zero. You can change it by writing a value into BFM \#11 and \#10 or by using the command below.
- The initial counter value can also be set by writing the data directly into BFM \#21 and \#20 (current value of the counter).

5) BFM \#13, \#12 Comparison value for YH output, BFM \#15, \#14 Comparison value for YS output

- After comparing the current value of the counter with the value written in BFM \#13 and \#12, BFM \#15 and \#14, the hardware and software comparator in the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ outputs the comparison result.
- YH, YS output will not turn ON if you use PRESET or the TO instruction to set the counter value equal to the comparison value. It will turn ON only when a match occurs by the counting of input pulses.
- The YS comparison operation takes about $300 \mu \mathrm{~s}$, and if a match
 occurs, the output goes ON.
- Output occurs when the current value becomes equal to the compare value but only if b1 and b2 of BFM \#4 are ON. Once an output is set, it remains ON until it is reset by b9 or b10 of BFM \#4. If b3 of BFM \#4 is ON, however, one of the outputs is reset when the other is set.

6) Counter current value (BFM \#21, 20)

The current value of the counter can be read by the PLC. It will not be the correct value during high-speed operations because of the communication delay. The current value of the counter can be forcibly changed by writing a 32-bit value into the appropriate BFMs from the PLC.
7) Maximum count value (BFM \#23, 22)

These store the maximum and minimum value reached by the counter. If the power is turned off, the stored data is cleared.
8) Comparison status (BFM \#26)

BFM\#26		When '0' (OFF)	When '1' (ON)	BFM\#26		When '0' (OFF)	When '1' (ON)
YH	b0	Set value \leq current value	Set value > current value	YS	b3	Set value \leq current value	Set value > current value
	b1	Set value \neq current value	Set value = current value		b4	Set value \neq current value	Set value = current value
	b2	Set value \geq current value	Set value < current value		b5	Set value \geq current value	Set value < current value

BFM \#26 is for reading only. Write commands from the programmable controller are ignored.
9) Terminal status (BFM \#27)

BFM\#26	When '0' (OFF)	When '1' (ON)	BFM\#26	When '0' (OFF)	When '1' (ON)
b0	PRESET input is OFF.	PRESET input is ON.	b2	YH output is OFF.	YH output is ON.
b1	DISABLE input is OFF.	DISABLE input is ON.	b3	YS output is OFF.	YS output is ON.
			b4-b15	Undefined	

10) BFM \#29 Error status

Error status in the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ can be checked by reading the contents of b 0 to b 7 of BFM \#29 to auxiliary relays of the PLC.

BFM\#29	Error status	
b0	Set when any of b1 to b7 is ON.	When value \geq ring length in 16-bit counter mode.
b1	Set when the value of the ring length is written incorrectly (other than K2 to K65,536).	
b2	Set when the preset value is written incorrectly.	
b3	Set when the compare value is written incorrectly.	When the upper or lower limit is
exceeded on a 32-bit counter.		
b4	Set when the current value is written in correctly.	
b5	Set when the counter overflows the upper limit.	
b6	Set when the counter overflows the lower limit.	When outside of K0 to K11
b7	Set when the FROM/TO command is used incorrectly.	When outside of K0 to K31
b8	Set when the counter mode (BFM\#0) is written incorrectly.	
b9	Set when the BFM number is written incorrectly.	
b10-b15	Undefined	

There error flags can be reset by b8 of BFM \#4.
11) Model identification code number BFM \#30

This BFM stores the identification number for FX2N-1HC.
The identification number for the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ unit is K4010.
By reading this identification number, the user may create built-in checking routines to check whether the physical position of the FX2N-1HC matches to that of the software.

4. EXAMPLE PROGRAM

Please use the following program as a guide whenever you use the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ unit. Other instructions to read the current value of the counter, status etc. can be added as required.

1. K11 is written into BFM \#0 of special function block No.2. The counter input is 16 -bit 1 -phase. Please use a pulse command for this initialization.
2. K1234 \rightarrow BFM \#3, \#2 (special function block No.2) The ring length can be specified when a 16 -bit counter is specified
3. UP/DOWN direction should be specified for 1-phase 1-input software determined UP/DOWN counter.
4. $\mathrm{K} 1000 \rightarrow B F M$ \#13, \#12 Set the compare value for YH output.
5. K900 \rightarrow BFM \#15, \#14 Set the compare value for YS output (not necessary if only YH output is used).
6. Note that counting only occurs if count prohibit is OFF. Also, outputs will not be set from the counting process at all if the relevant output prohibit are set in the command register. Please reset the error flags and YH / Y S output before you start. The mutual reset and preset initialization commands can be used as required.
7. (M25 to M10) \rightarrow BFM \#4 (b15 to b0) command
8. BFM (\#21, \#20) \rightarrow Reads the current value to the data registers D3 and D2.

5. DIAGNOSTICS

5.1 Preliminary checks

1) Check that the I/O wiring and extension cable of the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ are properly connected.
2) 5 V 90 mA power is supplied from the main or extension units for the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$. Check that there is no power overload from this and other extension blocks.
3) The counter works correctly only when data such as the counter mode (set with a pulse command), the TO command, the compare value, etc. are appropriately specified. Remember to initialize the count (BFM \#4 b0), preset (BFM \#4 b4), and output (BFM \#4 b2, b1) prohibits. Reset the YH/YS outputs before you start.

5.2 Error checking

The following LEDs on the main panel of the FX2N-1HC may help you to troubleshoot the unit.

- $\phi A, \phi B \quad$ Goes on/off as $\phi A, \phi B$ input turn ON/OFF. It can be checked by rotating the encoder slowly.
- UP, DN :Lights up to indicate whether the counter is going up (UP) or down (DN).
- PRESET and DIS:The appropriate LED lights up when the PRESET terminal or the DISABLE terminal is ON .
- YH, YS :The appropriate LED lights up when YH/YS output is turned on.

You can check the error status by reading the content of BFM \#29 to the PLC.
Error contents are shown in section 3.3 (10).
Note that inputting the pulse higher than the maximum frequency may cause mis-counting to 1 HC or a $\mathrm{FROM} / \mathrm{TO}$ error to the PLC main unit.

6．SYSTEM BLOCK DIAGRAM

「电器电子产品有害物质限制使用标识要求」的表示方式
（15）
Note：This symbol mark is for China only，
含有有害 6 物质的名称，含有量，含有部品
本产品中所含有的有害 6 物质的名称，含有量，含有部品如下表所示。

部件名称		有害物质					
		铅	汞	镉	六价铬	多溴联苯	多溴二苯醚
	外壳	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
可编程控制器	印刷基板	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

本表格依据SJ／T 11364的规定编制。
O ：表示该有害物质在该部件所有均质材料中的含量均在 $\mathrm{GB} / \mathrm{T} 26572$ 规定的限量要求以下。
\times ：表示该有害物质至少在该部件的某一均质材料中的含量超出 $G B / T 26572$ 规定的限量要求。
基于中国标准法的参考规格： $\mathrm{GB} / \mathrm{T} 15969.2$
This manual confers no industrial property rights or any rights of any other kind，nor does it confer any patent licenses．Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual．

Guidelines for the safety of the user and protection of the FX2N－1HC special function block

－This manual has been written to be used by trained and competent personnel．This is defined by the European directives for machinery，low voltage and EMC．
－If in doubt at any stage during the installation of the $\mathrm{FX}_{2} \mathrm{~N}-1 \mathrm{HC}$ always consult a professional electrical engineer who is qualified and trained to the local and national standards．If in doubt about the operation or use of the FX2N－1HC please consult your local Mitsubishi Electric representative．
－Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment．
－All examples and diagrams shown in this manual are intended only as an aid to understanding the text，not to guarantee operation．Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples．
－Owing to the very great variety in possible application of this equipment，you must satisfy yourself as to its suitability for your specific application．

Manual number：JY992D65401
Manual revision：H
Date
：August 2018
2. WIRING

If using on NPN output encoder please take care to match the polarity of the terminals of the
encoder to those of the FX2N-1HC. Differential-Line-Driver output encoders

Line driver outp		Fxanel	When applying the Differential-Line-Driver encoder
	Shieding Wre	${ }^{\text {A }}$ +	(AM26C31 or equivalent) to $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$, connect the
		A.	encoder output with the 5V DC terminal as shown the left figure.
$\stackrel{L B}{\text { LBR }}$		$\frac{85+}{\frac{85}{B}}$	Connect other terminals as shown in the PNP output encoder figure above.

3. SPECIFICATIONS

General specifications

A Perform the dielectric withstand voltage test between the GND terminal and all the other termi-

Item	Specification
General specifications (excluding the following)	Same as those for the FX2N main unit
Dielectric withstand voltage	500 VAC 1min (between all terminals and ground)

Item		1-phase input		2-phase input		
		1 input	2 inputs	1 edge count	2 edge count	4 edge count
Input signal	Signal level					
	MAX. frequency	50 kHz			25 kHz	12.5 kHz
	Pulse shape	(13)				
Counting specification	Format	Automatic UP/DOWN (however, when on 1-phase 1-input mode, UP/DOWN is determined by a PLC command or an input terminal.)				
	Range	When 32 -bit is specified : $-2,147,483,648$ to $+2,147,483,647$ When 16 -bit is specified : 0 to 65,535 (upper limit can be user specified)				
	$\begin{aligned} & \text { Comparison } \\ & \text { Type } \end{aligned}$	Each output is set when the present value of the counter matches with the compare value (which is transferred from the PLC), and is switched OFF by a reset command from the PLC. YH: Direct output processed by hardware. YS: Software processed output with worst delay time of $300 \mu \mathrm{~s}$. (Therefore, when the input frequency is 50 kHz , there is a worst case delay of 15 input pulses.)				
Output signal	Types of outputs	YH +: transistor output for YH output YH - : transistor output for YH outputYS + :transistor output for YS output YS - : transistor output for YS output				
	Output capacity	5 V to 24V DC 0.5 A				
IV occupation		8 points taken from the FX2N expansion bus (can be either inputs or outputs)				
Power from base		5 V DC 90mA(Internal power supply from main unit or powered extension unit)				

3.3 Buffer memories (BFM)

BFM number		Contents	
Write	\#0	Counter mode K0 to K11	Default: K0
	\#1	DOWN/UP command (1-phase 1-input mode)	Default: K0
	\#3,\#2	Ring length Upper/Lower	Default: K65,536
	\#4	Command	Default: K0
	\#11,\#10	Preset data Upper/Lower	Default: K0
	\#13,\#12	YH compare value Upper/Lower	Default: K32,767
	\#15,\#14	YS compare value Upper/Lower	Default: K32,767
Write / Read	\#21,\#20	Counter current value Upper/Lower	Default: K0
	\#23,\#22	Maximum count value Upper/Lower	Default: K0
	\#25,\#24	Minimum count value Upper/Lower	Default: K0
Read	\#26	Compare results	
	\#27	Terminal status	
	\#29	Error status	
	\#30	Model identification code K4010	

1) BFM HO Counter mode (KO to K11) BFM \#1 DOWNUP comman

Count modes		32 bits	16 bits	The counter mode is selected form the PLC. As shown below, values between KO and K11 are written to buffer memory BFM \#0 form the PLC. When a value is written to BFM \#0 the contents of BFM \#1 to BFM \#31 are reset to default values. When setting this value use a TOP (pulsed) instruction use M8002 (initial pulse) to drive the TO instruction. A continuous command is not allowed.
2-phase input (phase difference pulse)	1 edge count	K0	K1	
	2 edge count	K2	K3	
	4 edge count	K4	K5	
1-phase 2-input (add/subtract pulse)		K6	K7	
1-phase 1-input	Hardware UP/DOWN	K8	K9	
	$\begin{aligned} & \hline \text { Software } \\ & \text { UP/DOWN } \end{aligned}$	K10	K11	

a) $\begin{aligned} & \text { a) } \\ & \text { A } 3 \text { bit - coibunter binary counter } \\ & \text { tron }\end{aligned}$
from the lower limit value to the upper limit value or the upper limit value to
the lower linit val the lower limit value when overflow occcurss. Botut the uppeper and lime value timit
values are fixed values: the upper limit value is $+2,147,483,647$, and tit ower limit value is $-2,147,483,648$.
b) $\quad 16$-bit counter modes
 ${ }_{-2,}^{\text {Lower Initit alue }}$ A 16 -hit binary counter handles only positive values from 0 to 65,535 . zero when overflow occurs; the upper limit value is determined by BFMs $\# 3$
and $\#$
1 -phase 1-input counter (K8 to K11)
Phase A OFF ON

- Software UP/Down (kio K11)

d) 1-phase 2 -input counter (K6, K7)

If both phase A and phase B inputs are received

simultaneously, the counter value does not change
e) 2 -phase counter ($\mathbf{K O}$ to \mathbf{K})

2）BFM \＃3，\＃2 Ring length

Stores the data that specifies the length of the 16 －bit counter（default：$K 65,536$ ）．

${ }^{\times} 002 \quad$［D то к2 22 к100 к1
In the above example，K100 is written into BFMs \＃3 and \＃2 of special block No． 2 as a 32－bit binary value（BFM \＃3
$=0$, BFM $\# 2=100)$ ．Permitted values： K 2 to $\mathrm{K} 65,536$ ．

When ring length K100 is specified， the value of the counter changes as shown above．

Note：Write counter data with（D）TO
Count data is always handled as a pair from two 16 －bit values in this special function block． 16 －bit 2 ＇s
 When you are writing a positive value between K32，
When transferring counter data tolfrom this special function block，always use the 32 －bit forms of the FROM／TO instructions（D）FROM，（D）TO）．
3）BFM \＃4 Command

BFM\＃\＃	When＇0＇（OFF）	When＇1＇（ON）
b0	Count prohibit	Count permit
b1	YH output prohibit	YH output permit
b2	YS output prohibit	YS output permit
b3	YH／YS independent action	Mutual reset action
b4	Preset prohibit	Preset permit
b5 to b7	Undefined	
b8	No action	Error flag reset
b9	No action	YH output reset
b10	No action	YS output reset
b11	No action	YH output set
b12	No action	YS output set

When bO is set to ON and the DISABLE input
terminal to OFF ，the counter is permitted to start counting input pulses．
Unless $\mathrm{b1} 1$ is set to ON，YH（hardware
compared output）does not turn ON．
3．Unless b2 is set to ON，YS（software
compared output）does not turn ON．
4．When $\mathrm{b} 3=\mathrm{ON}, \mathrm{YS}$ output is reset if YH output is set，and YH output is reset YS output is
set．When b3＝OFF，YH and YS output act
 5．When b4＝OFF，preset function by the
PRESET input terminal is disabled．
6．When b 8 is set to ON ，all error flags are reset． 7．When b9 is set to ON，YH output is reset． 8．When b10 is set to ON，YS output is reset 9．When b11 is set to ON，YH output is set ON 10．When b12 is set to ON, YS output is set ON ．
4）BFM \＃11，\＃10 Preset data
Data to used as the initial value when the counter starts to count．
Data becomes valid when b4 of BFM \＃4 is set to ON，and PRESET input terminal changes from OFF
to ON．The default value of the counter is zero．You can change it by writing a value into BFM \＃11 and \＃10 or by using the command below．
The initial counter value can also be set by writing the data directly into BFM \＃21 and \＃20（current value of the counter）．
5）BFM \＃13，\＃12 Comparison value for YH output，BFM \＃15，\＃14 Comparison value for YS output After comparing the current value of the counter with the value
Written in $\operatorname{FFM} \# 13$ and $\# 12$ BFM $\# 15$ and 114 ，the hardware and software comparator in the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ outputs the comparison result．
YH，YS output will not turn ON if you use PRESET or the TO instruction to set the counter value equal to the comparison input pulses．
The YS comparison operation takes about $300 \mu \mathrm{~s}$ ，and if a match
 occurs，the output goes ON．
Output occurs when the current value becomes equal to the compare value but only if b1 and b2 of
$\mathrm{BFM} \# 4$ are ON ．Once an output is set，it remains ON until it is reset by b9 or b10 of BFM \＃4．If b3 of BFM $\# 4$ is ON，however，one of the outputs is reset when the other is set
6）Counter current value（BFM \＃21， 20
The current value of the counter can be read by the PLC．It will not be the correct value during high－speed operations because of the communication delay．The current value of the counter can be
7）Maximum count value（BFM \＃23，22）
These store the maximum and minimum value reached by the counter．If the power is turned off，the
stored data is cleared．
8）Comparison status（BFM \＃26

BFM\＃26		When＇0＇（OFF）	When＇1＇（ON）	BFM\＃26		When＇0＇（OFF）	When＇1＇（ON）
YH	b0	Set value \leq current value	Set value＞current value	YS	b3	Set value \leq current value	Set value＞current value
	b1	Set value \neq current value	Set value＝current value		b4	Set value \neq current value	Set value＝curren value
	b2	Set value \geq current value	Set value＜current value		b5	Set value \geq current value	Set value＜curren value

BFM \＃26 is for reading only．Write commands from the programmable controller are ignored．

9）Terminal status（BFM \＃27）

BFM\＃26	When＇0＇（OFF）	When＇1＇（ON）

bO PRESET input is OFF．PRESET input is ON．

BFM\＃26	When＇0＇（OFF）	When＇1＇（ON）
b2	YH output is OFF．	YH output is ON．
b3	YS output is OFF．	YS output is ON．
b4－b15	Undefined	

10）BFM \＃29 Error status

BFM\＃29	Error status	
b0	Set when any of b1 to b7 is ON．	
b1	Set when the value of the ring length is written incorrectly（other than K2 to K65，536）．	
b2	Set when the preset value is written incorrectly．	When value \geq ring length in 16－bit counter mode．
b3	Set when the compare value is written incorrectly．	
b4	Set when the current value is written in correctly．	
b5	Set when the counter overflows the upper limit．	When the upper or lower limit is exceeded on a 32－bit counter．
b6	Set when the counter overflows the lower limit．	
b7	Set when the FROM／TO command is used incorrectly．	
b8	Set when the counter mode（BFM\＃0）is written incorrectly．	When outside of K0 to K11
b9	Set when the BFM number is written incorrectly．	When outside of K0 to K31
b10－b15	Undefined	

There error flags can be reset by b8 of BFM \＃4．
11）Model identification code number BFM \＃30
This BFM stores the identification number for $\mathrm{FX} 2 \mathrm{NN}-1 \mathrm{HC}$ ．
By reading this identification number，the user may create built－in checking routines to check whether he physical position of the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ ．matches to that of the software．

4．EXAMPLE PROGRAM

Please use the following program as a guide whenever you use the $\mathrm{FX}_{2 \mathrm{~N}} \mathrm{~N}-\mathrm{HCC}$ unit．Other instructions ead the current

5．DIAGNOSTICS

5．1 Preliminary checks

1）Check that the $/ / \mathrm{O}$ wiring and extension cable of the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ are properly connected
2） 5 V 90 mA power is supplied from the main or extension units for the $\mathrm{FX}_{2 \mathrm{~N}} \mathrm{~N}-1 \mathrm{HC}$ ．Check that there is no power overload from this and other extension blocks．
3）The counter works correctly only when data such as the counter mode（set with a pulse command）， the $T O$ command，the compare value，etc．are appropriately specified．Remember to initialize th
count（BFM $\# 4 \mathrm{bo})$ ，preset（BFM $\# 4 \mathrm{b4}$ ），and output（BFM $\# 4 \mathrm{~b} 2, \mathrm{~b} 1$ ）prohibits．Reset the YH／YS count（BFM $\# \#$ b0），prese
outputs before you start．

5．2 Error checking

The following LEDs on the main panel of the FX2N－1HC may help you to troubleshoot the unit．
$\phi A, \phi B \quad$ ：Goes on／off as $\phi A, \phi B$ input turn ON／OFF．It can be checked by rotating the encoder UP，DN ：Lights up to indicate whether the counter is going up（UP）or down（DN）． PRESET and DIS：The appropriate LED lights up when the PRESET terminal or the DISABLE terminal

YH，YS ：The appropriate LED lights up when YH／YS output is turned on．
You can check the error status by reading the content of BFM \＃29 to the PLC．
Note that inputting the pulse higher than the maximum frequency may cause mis－counting to 1HC or a FROM／TO error to the PLC main unit

6．SYSTEM BLOCK DIAGRAM

本表格位据SIT 11364 的规定编制

：表示该有害物质在该部件所有均质材料中的含量均在GB／T 26572 规定的限量要求以下。
表示该有害物质至少在该部件的某一均质材料中的令量超出GB／T 26572 规定的限量要求。
基于中国标准法的参考规格：GB／T15969．2

This manual confers no industrial property rights or any rights of any other kind，nor does it confer any patent licenses．Mitsubishi Electric Corporation cannot be held responsible for any problem any patent incenses．Mitsubishi Electric Corporation cannot be held responsible for any problems nvolving industrial property rights which may occur as a result of using the contents noted in this manual．

Guidelines for the safety of the user and protection of the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ special Guidelines for
function block

This manual has been written to be used by trained and competent personnel．This is
defined by the European directives for machinery，low voltage and EMC If in doubt at any stagen during the installation of the F YZN－1HC always consult a professiona
elt
 about the operatio
representative．
Under
Under no circumstances will Mitsubishi Electric be liable or responsible for any consequentia All examples and diagrams shown in this manual are intended only as an aid．
understanding the text，not to guarantee operation．Mitsubishi Electric will accept no understanding the text，not to guarantee operation．Mitsubishi Electric will accept
responsibiitity for actual use of the product based on these illustrative examples． Oesponsibitity or actual use of the product based on these illustrative examples．
Owing to the very great variety in possible application of this equipment，you must satisfy
yourself as to its suitability for your specific application．

Manual number：JY992D65401
Manual revision：H
Date ：August 2018

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE：TOKYO BULLDING，2．7．3 MARUNOUCHH．CHYODAKU，ToKYo 100．8310，JAPAN	
JY992D65401H	Effective August 2018
Specifications are subje	

change without notice

