Programmable Controller
MELSECb
FX2NC-1HC
USER'S MANUAL

$F x_{2 N C}$

Manual Number	JY997D30701
Revision	D
Date	March 2018

This manual describes the part names, dimensions, mounting, wiring, and seeciications of the product. Before use, read this manual and the manuals of al relevant products fully to acquire proficiency in handling and operating the
product. Make sure to learn all the product information, safety information, and precautions.
Store this man
tore this manual in a safe place so that it can be taken out and read whenever ecessary. Always forward it to the end user
Registration:
The company and product names described in this manual are registered of their respective companie Effective March 2018
out notice.
© 2007 Mitsubishi Electric Corporation

Safety Precaution (Read these precautions before use.)

his manual classifies the safety precautions into two categories:
\triangle WARNING and $\triangle C A U T I O N$

\triangle WARNING	Indicates that incorrect handling may cause hazardous conditions, resulting in death io severe injury.
\triangle CAUTION	Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight personal injury or physical damage.

epending on the circumstances, procedures indicated by \triangle CAUTION
also cause severe injury.
It is important to follow all precautions for personal safety.

Associated Manuals

Manual name	Manual No.	Description
FX3UC Series User's Manual Hardware Edition	JY997D28701 MODELCODE 09R519	Explains the FX3UC Series PLC specifications for $/ / 0$, wiring, installation, and maintenance.
$\begin{aligned} & \hline \text { FX3S/FX3G/FX3GC/FX3U/ } \\ & \text { FX3UC Series } \\ & \text { Programming Manual } \\ & \text {-Basic \& Appled } \\ & \text { Instruction Edition } \end{aligned}$	JY997D16601 MODELCODE O9R517	Describes PLC programming for basic/applied instructions and devices.
FX2NC (DSS/DS) Series Hardware Manual	$\begin{gathered} \hline \text { JY992D76401 } \\ \text { MODELCODE: } \\ 09 R 509 \end{gathered}$	Explains the FX2NC (DSS/DS) Series PLC specifications for I/O, wiring, installation, and maintenance.
FX2NC (D/UL) Series Hardware Manual	JY992D87201	Explains the FX2NC (D/UL) Series PLC specifications for I/O, wiring, installation, and maintenance.
FX Series Programming Manual II	$\begin{gathered} \text { JY992D88101 } \\ \text { MODELCODE: } \\ 09 R 512 \end{gathered}$	Describes FX1S/FX1N/FX2N/FX2NC Series PLC programming for basic/ applied instructions and devices.

How to obtain manuals
or product manuals or documents, consult with the Mitsubishi Electric dealer
from who you purchased your product.
from who you purchased your product.
Certification of UL, cUL standards
The following product has
Models: MELSEC FXXNC series manufactured
from December 1 1st, 2007 FX2NC-1HC

Compliance with EC directive (CE Marking)

Compliance with EC directive (CE Marking)
This note does not guarantee that an entire mechanical module produced in
accordance with the contents of this tote will comply with the following standards.
 Compliance to EMC directive and LVD directive for the entire emechanical modulue
should be checked byte userl manufacture. For more details please contact the
local Mitsubishi Electric sales site.

Requirement for Compliance with EMC directive
The following products have shown compliance through direct
Te following products have shown compliance through direct testing (of the identified
standards below) and design analysis (through the creation of a technical linstruction fie) to the European Directive for Electromagnetic Compatibility (2014/30//EU) when used as dire
Attention
This
This product is designed for use in industrial applications.
$\begin{array}{ll}\text { Type: } & \left.\begin{array}{l}\text { Programmable Controller (Open Type Equipment) } \\ \text { Models: } \\ \text { MELSEC }\end{array}\right)\end{array}$ Models: MELSEC FX2NC Series manufact
from December 1st, 2007
FX2NC-1 HC

Standard	Remark
EN61000-6-4:2007 Electromagnetic compatibility Generic standards - Emission standard for Industrial environment	Compliance with all relevant aspects of the standard. - Emission-Enclosure port - Emission-Low voltage AC mains port - Emission-Telecommunications/network port
EN61000-6-2:2005 Electromagnetic compatibility Generic immunity standard Industrial environment	Compliance with all relevant aspects of the standard. - Radio-frequency electromagnetic field. Amplitude modulated - Fast transients - Electrostatic discharge - Surges - Voltage dips - Voltage interruptions - Radio-frequency common mode - Power-frequency magnetic field
EN61131-2:2007 Programmable controllers - Equipment requirements and tests	Compliance with all relevant aspects of the standard. EMI - Radiated Emission - Conducted Emission EMS - Radiated electromagnetic field - Fast transient burst - Electrostatic discharge - High-energy surge - Voltage drops and interruptions - Conducted RF - Power frequency magnetic field

1. Outline

The hardware high-speed counter block is a 2 -phase 50 kHz high-speed counter. It is a
special function block for the FXNNC. FXUUC series special function block for the FX 2 NC, , FX 3 C C series PLC.

- FROMTO
instruction transfers the PLC data (ie. parameters, comparing value and - FROM/TO instru
- The EX2NC-1HC occupies 8 points of I/O on the FX2NC, FX3UC expansion bus. The 8 points can be allocated from either inputs or outputs.
However. $5 \mathrm{~V} D \mathrm{C} 9 \mathrm{~mA}$ power in supp . However, , DC 90 mA power is supplied from the main unit or extension power
suppoly nitis. There must be no power overlad from this or any other extension unit.
Fither Furrhermore, another power supply is needed for the output circuit of the encoder or
the transistor. Differential-Line-Driver (AM26C31 or equivalent) and open collector output
 power source can be used. An initial value setting command
count prohibit command input (DISABLE) are also available.
- The FX2NC-1HC has two outputs. When the counter value coincides with an output
compare value, the appropriate output is set ON . The output transistors are compare value, the appropriate output is set ON. The output tran
individually isolated to allow either sink or source connection methods.
Various counter modes, such as 1 -phase or 2 -phase, 16 -bit or 32 -bit modes, can be
selected using commands from the PLC. Allow the FX2NC-1HC unit to run only after
setting these moder setting these mode parameters
1.1 Incorporated Items
Verify that the following product and items are included in the package

Included Items	
FX2NC-1HC	1 Unit
Special unitblock No. label	1 Sheet
Manuals JJapanese version, English version]	1 manual each

1.2 External Dimensions, Part Names, and Terminal Layout

No.	Name		
(1)	Status LED		
	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { (Gr) } \end{array}$	Power LED ON when the 5 V power supply is normally supplied from the PLC.	
	UP (Red)	Up count LED	The respective LED is ON according to up/down count direction of the counter.
	DN (Red)	Down count LED	
	¢ ${ }^{\text {A }}$	A phase input	The respective LED is ON (flicker) according to ON/OFF of ϕA and ϕB input.
	¢ ${ }^{\text {B }}$	B phase input	
	DS	DISABLE input LED	The respective LED is ON/OFF according to ON/OFF of PRESET and DISABLE input.
	PR	PRESET input LED	
	YH	YH output LED	The respective LED is ON/OFF according to status of YH and YS output.
	YS	YS output LED	

(2) Terminal block (European type)

Extension connector (PLC side)
 extension block
Slide lock
Used tof fix the FX2NC extension block on the right side of this special function
block Used to fix the FX2NC extension block on
block.
Extension connector (Extension side)
Extension connector (Extension side)
Used to connect the FP2NC extension block to the right of this special function
Usck block. Remove this cover for connecting.
(6) DIN rail mounting hook

2. Installation, Connect to the PLC

INSTALLATION PRECAUTIONS

\triangle WARNING

- Make sure to cut off all phases of the power supply externally before attempting
installation or wiring work.

Failure to do so may cause electric shock or damage to the product.
INSTALLATION
PRECAUTIONS
§ CAUTION
Une the product within the generic environment specifications described in PLC main
unit manual
Never use the product in areas with excessive dust, oily smoke, conductive dusts, unit manual.
Never sue the product in areas with excessive dust, oily smoke, conductive dusts,
corrosive gas (salt air, $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO} 2$, or NO_{2}), flammable gas, vibration or impacts,

deterioration or damage may occur.
When drilling screw holes or wiring, make sure cutting or wire debris does not enter the ventilation slits.
Failure to do so may cause
Connect FX X $\mathrm{NC} \mathrm{C}-1 \mathrm{HC}$ securely to equipment failures or malfunctions.
Loose connections may cause malfunctions
Loose connections may cause malfunctions.
Use cserewdrivers carefully when performing instalation work, thus avoiding accident
2.1 Installation

1 CC can be installed on a DIN46277 rail (35 mm ($1.38^{\prime \prime}$) wide)
2.2 Number of the connectable units

Up to four special function units/blocks in total can be connected to the
FXXNC Series PLC including those connected to the FX KNC CNV FX2NC Series PLC including those connected to the FX2NC-CNV-IF
2) UX to eight special function units/blocks in total can be connected to the FX3UC ${ }^{+1}$ Series PLC including those connected to the FX 2 NC -CNV-IF or
FX3UC-1PS-5V. Up to seven special function units/blocks in total can be connected to the
FX3UC-32MT-LT(-2) PLC. Unit numbers assigned to special function units blocks begins with No.1.

3.1 Wire and Terminal Tightening Torque

${ }_{3.1 .1}$ Cable

Type	Wire size
Single wire	$0.3 \mathrm{~mm}^{2}$ to $0.5 \mathrm{~mm}^{2}(\mathrm{AWG} 22$ to 20$)$
Double wire	$0.3 \mathrm{~mm}^{2}(\mathrm{AWG} 22)^{*} 2$

Manufacturer	Model	Pressure bonding tool
PHOENIX CONTACT GmbH \& Co. KG	Al 0.5-8WH	$\begin{gathered} \text { CRIMPFOX } 6^{* 1} \\ \text { (or CRIMPFOX } 6 T-F^{2} \text {) } \end{gathered}$

${ }^{2} 2$ Old model name: CRIMPFOX UD 6

When using a ferrule with insulation sleeve insulating sleeve, choose a wire
with proper cable sheath refering to the above outside dimensions, therwise with hroper cable sheath referring to
the wire cannot be inserted easily.
3.1.2 Tightening Torque
The tightening torgue must

The tightening torque must be 0.22 to $0.25 \mathrm{~N} . \mathrm{m}$. Do not tighten terminal screws
with a torque outside the above-mentioned range. Failure to do so may cause with a torque outside the above-m.
Tool
To tighten terminals, use a purchased
small-sized screwdriver whose head is smal--sized screwdriver whose head is
straight and is not widened as shown in he right figure
Note:
If the diameter of screwdriver grip is too
small, tightening torque will not be able

be achieved. Use the following recommended screwdriver or an appropriate Manufacturer
PHOENIX CONTACT GmbH \& Co. KG
3.2 Wiring

Note;
Make sure to properly wire in accordance with the encoder output specifications.
Incorrect wiring may cause accidents or damae
Incorrect wiring may cause accidents or damage to the product.

 connect to the power supply terminal.
Whenusine 24 V O forpRESET
DC (XP24. XD24) terminal.
2. Grounding resistance 100Ω or less.
*3. This wiring is unnecessary when not using the PRESET function and the

connect to the power supply terminal.
When
USing
24V DC

3.2.3 Differential-Line-Driver output encoders

When applying the Difierential-Line-Driver encoder (AM26C31 or equivalent) to
FX2NC-1HC, connect the encoder output with the 5V DC terminal as shown in the left figure.

1. Grounding resistance 100Ω or less.
${ }^{*}$ 2. This wiring is unnecessary when not using the PRESET function and the

3.2.4 YH, YS output wiring [Sink wiring]

4. Specifications

ERESN

\triangle WARNING

Make sure to have the following safety circuits outside of the PLC to ensure safe
system operation even during external power supply problems or PLC failure system operation even during external power supply pro
Otherwise, malfunctions may cause serious accidents.

1) Most importantly, have the following: an emergency stop circuit, a protection
circuit, an interlock circuit for opposite movements (such as normal vs ircuit, an interlock circuit for opposite movements (such as normal vs.
reverse rotation), and an interlock circuit (to prevent damage to the
equirment at the upper and lower opsitioning limits).
2) Note that when the PLC CPU detects an error, such as a watchdog timer
error, during self-diagnosis, all outputs are turned offf Also, when an error that error, during self-diagnosis, all outputs are turned off. Also, when an error that
canot te detected by the PLC CPU occurs in an inputoutput control block, External circuits and mechanis
machinery operation in such a case.
3) Note that when an error occurs in a relay, triac or transistor output device, the
output could be held either on or off For output signals that may lead to serious accidents, external circuits and
mechanisms should be designed to ensure safe machinery operation in such ISSIGN

CAUTIONS
not bundle the control line together with or lay it close to the main circuit or
wer line. As a guideline, lay the control line at least 100 mm ($3.944^{\prime \prime}$) or more
power line. As a guidideline, lay the control line at least 100 mm ($3.944^{\text {" }) ~ o r ~ m o r e ~}$
away from the main circuit power line.
Noise may cause malfunctions.
4.1 General Specifications

The general specifications are equivalent to the PLC main unit.
(For general specifications, refer to the manual of the PLC main unit.)
4.2 Power Supply Specifications

Item	Specifications

Units driving power	$\begin{array}{l}5 \mathrm{~V} \mathrm{DC}, 90 \mathrm{~mA} \text { (Internal power supply from main unit or } \\ \text { extension power supply unit) }\end{array}$

Item		Specification		
Inputsignal	Signal level (Selected by terminal tion)	Phase A,Phase B	$\left[\begin{array}{l} {\left[\begin{array}{l} \text { A24+ } \\ \\ \mathrm{B} 24+] \end{array},\right.} \end{array}\right.$	$\begin{aligned} & 2 \mathrm{2V} \mathrm{DC}+10 \%, \\ & 7 \mathrm{~mA} \text { or less }, \end{aligned}$
			$\begin{aligned} & {\left[\begin{array}{l} {[\mathrm{A} 12+],} \\ {[\mathrm{B} 12+]} \end{array}\right]} \end{aligned}$	$\begin{array}{\|l\|l} \hline 12 \mathrm{~V} D C \pm 10 \%, \\ 7 \mathrm{~mA} \text { or less }, \end{array}$
			$\begin{array}{\|l\|} \hline[\mathrm{A} 5+], \\ {[\mathrm{B} 5+]} \\ \hline \end{array}$	3.0V to 5.5 V DC, 12.5 mA or less
		PRESET,DISABLE	$\begin{aligned} & {[\times P 24],} \\ & \text { [XD24] } \end{aligned}$	10.8 V to 26.4 V DC, 15 mA or less
			$\begin{array}{\|l\|} \hline(\mathrm{XP} 5], \\ {[\mathrm{XD5} 5]} \end{array}$	5 V DC $\pm 10 \%$, 8 mA or less
	MAX. frequency	$\begin{aligned} & \text { 1-phase } \\ & \text { input } \end{aligned}$	1 input	50 kHz
			2 input	
		$\begin{aligned} & \text { 2-phase } \\ & \text { input } \end{aligned}$	1 edge count	
			2 edge count	25kHz
			4 edge count	12.5 kHz
	Pulseshape			

Item		Specification
Counting specification	Format	Automatic UP/DOWN However, when on 1-phase 1 -input mode, UP DOWN is determined below. - Hardware UP/DOWN: Up/down count is decided by OFF/ON of the Aphase input terminal. - Software UP/DOWN: Up/down count is decided by the current value (K0/K1) of BFM \#1.
	Range	When 32-bit is specified: $-2,147,483,648$ to $+2,147,483,647$ When 16 -bit is specified: 0 to 65,535 (upper limit is set up by BFM \#3, \#2.)
	Comparison Type	Each output is set when the present value of the counter matches with the compare value, and is switched OFF by a reset command. YH: Direct output processed by hardware. YS: Software processed output with worst delay time of $300 \mu \mathrm{~s}$. Therefore, when the input frequency is 50 kHz , there is a worst case delay of 15 input pulses.
Outputsignal	Types of outputs	
	Output capacity	$5 \mathrm{\sim}$ ~ 24V DC, 0.5A
$1 / 0$ occupation		8 points (can be either inputs or outputs)

5. Buffer Memories (BFM)

5.1 Buffer memory List

Note;

1) When writing in BFM \#0 (counter mode), the BFM \#1 to \#31 will be initialized
After setting the counter mode (BFM \#0) other BFM(s) have to be setul After seting the counter mode (BFM \#O), other BFM(s) have to be setup.
When setting the counter mode, use a TTP (pulsed) instruction, or M8002
(initial pulse) to drive the TO instuction. (initial pulse) to drive the
2) Read/Write of 16 bit data
3) Read/Write of 16 bit dita
When using a positive value between $\mathrm{K} 32,768$ and $\mathrm{K} 65,535$ with 16 bit
counters. read counters, readd writes of data, , such as the current value, ring length, , proset
data, and the $Y H Y$ compare value, should use the 32 -bit forms of the data, and the YH/YS compare value, should use the 32 -bit forms of the
FROM/TO instructions (D) FROM, (D) TO).

BFM \#	Description		Default	$\underset{\text { AFcess }}{\substack{\text { BFF }}}$
BFM \#0	Counter mode (Setting range: K0 to K11)		ко	RW
BFM \#1	DOWN/UP command 1-phase 1-input mode (S/W counter) only		ко	RW
BFM \#2	Ring length	Lower	K65536	RW
BFM \#3		Upper		RW
BFM \#4	Command		ко	RW
$\begin{gathered} \text { BFM \#5 } \\ \sim \sim \# 9 \end{gathered}$	Not available		-	-
BFM \#10	Preset data	Lower	ко	RW
BFM \#11		Upper		RW
BFM \#12	YH compare value	Lower	K32767	RW
BFM \#13		Upper		RW
BFM \#14	YS compare value	Lower	K32767	RW
BFM \#15		Upper		RW
$\underset{\sim}{\text { BFM \#1 }} \underset{\sim}{\substack{26}}$	Not available		-	-
BFM \#20	Counter current value	Lower	ко	RW
BFM \#21		Upper		RW
BFM \#22	Maximum count value	Lower	ко	RW
BFM \#23		Upper		RW
BFM \#24	Minimum count value	Lower	ко	RW
BFM \#25		Upper		RW
BFM \#26	Compare results		-	R
BFM \#27	Terminal status		-	R
BFM \#28	Not available		-	-
BFM \#29	Error status		-	R

BFM \#	Description	Default	BFM Access
BFM \#30	Model identification code: K4010	K4010	R
BFM \#31	Not available	-	-

5.2 Details of buffer memories

5.2.1 Counter mode [BFM \#0]
he counter mode is shown in the upper right table. (Default value: $K 0$)
Note;
hen writing in BFM \#0 (counter mode), the BFM \#1 to \#31 will be initialized iter setting the counter mode (BFM \#0), other BFM(s) have to be setup.
When setting the counter mode, use a TOP (pulsed) instruction, or M8002 (initial

Count modes		32 bits	16 bits	Reference
$\begin{aligned} & \hline \text { 2-phase } \\ & \text { inut } \\ & \text { (phase } \\ & \text { difference } \\ & \text { pulse) } \end{aligned}$	1 edge count	K0	K1	1), 2)
	2 edge count	K2	K3	1), 3)
	4 edge count	K4	K5	1), 4)
1-phase 2-input (add/subtract pulse)		K6	K7	1), 5)
$\begin{aligned} & \text { 1-phase } \\ & \text { 1-input } \end{aligned}$	Hardware UPIDOWN	к8	K9	1), 6)
	Software UP/DOWN	K10	K11	1), 7)

a) 32 -bit counter modes
 Both the upper and lover limint values.
are fixed values: the upere limit value is are fixed dalues.: the upper limit value is
$+2,147,483,647$, and the lower limit value is $-2,147,483,648$.
b) $\begin{aligned} & 16 \text {-bit counter modes } \\ & \text { (K1, K3, K5, K7, K9, K11) }\end{aligned}$

A 16 -bit binary counter handles only
positive values from 0 to 65,535 .
positive values from 0 to 65,535 .
Changes to zero from the upper limit
value or to the upper limit value from
zero when overfiow occurs; the upper
limit value is determined by BFMs $\# 3$
limit value is determined by BFMs \#3
and $\# 2$.
2) 2 -phase counter [1 edge-count] (K0, K1)

$$
\begin{aligned}
& \text { Phase } \mathrm{A} \\
& \begin{array}{ll}
\text { Phase B input OFF } \\
\text { ON while phase A input }
\end{array} \quad \begin{array}{l}
\text { Phase } \mathrm{B} \text { input } \mathrm{ON} \rightarrow \\
\text { OFF while phase A inp }
\end{array} \\
& \begin{array}{ll}
\text { ON while phase A input OFF while phase A input } \\
\text { ON Count us by } 1 \text {. } & \text { ON Count down by } 1 \text {. }
\end{array}
\end{aligned}
$$

3) 2 -phase counter [2 edge-count] (K2, K3)

4) 2-phase counter [4 edge-count] (K4, K5)

5) 1-phase 2-input counter (K6, K7)

If both phase A and phase B inputs are received simultaneously, the counter value does not change.

6) 1-phase 1 -input counter [Hardware UP/DOWN] (K8, K9)

Phase A OFF ON

7) 1-phase 1-input counter [Software UP/DOWN] (K10, K11)

BFM\#1 к0
$\sqrt{\mathrm{K} 1}$

2.2 DOWN/UP command [BFM \#1]

When using the 1 -phase 1 -input counter [Software UP/DOWN] (counter mode: K10, K11), set the count direction by the current value of $\mathrm{BFM} \# 1$. (Default value: K 0)

Count Direction	Setting Value
Up count	K0
Down count	K1

5.2.3 Ring length [BFM \#3, \#2]

When setting the upper limit value of the 16 bit counters, the setting range is K2 In this example, K100 is written to BFM \#3, \#2 of special function block No. 2 as 32 bit In this
data.

When ring length K100 is specified, the current
value of the counter is changed as the right UP
figure, and upper limit value is set to 99 . Down 98
5.2.4 Command [BFM \#4]

Bit No.	Setting Value	
	OFF (0)	ON(1)
b0	Count prohibit	Count permit
b1	YH output prohibit	YH output permit
b2	YS output prohibit	YS output permit
b3	YH/YS independent action	Mutual reset action
b4	Preset prohibit	Preset permit
b5 ~ 77	Not available	
b8	No action	Error flag reset
b9	No action	YH output reset
b10	No action	YS output reset
b11	No action	YH output set
b12	No action	YH output set
b13 ~ b15	Not available	

When b0 is set to ON and the DISABLE input terminal to OFF, the counter is permitted to start counting input pulses.
2) Unless b 1 is set to ON, YH (hardware compared output) does not turn ON .
3)
4) When $\mathrm{b3}=\mathrm{ON}, \mathrm{YS}$ output is reset if $Y H$ output is set, and $Y H$ output is reset if $Y S$ output is set. Wh
5) When b4 $=0$ OFF, preset function by the PRESET input terminal is disabled.
\rightarrow For the preset details, refer to Subsection 5.2.5
6) When b8 is set to ON , all error flags are reset.
7) When $b 9$ is set to ON, YH output is reset.
8) When b10 is set to $O N$, YS output is reset.
10)When b12 is set to ON, YS output is set ON.

Example program
Example program
The ON/FFF status of M 25 to M 10 is written in BFM \#4 of special function block No. 2 . by the following program, and b15 to bo action. Among these, b4 to bo are always ON
as controlled by M10-M14. as controled by M10-M14
Furthermore, b8 (M18), b9 (M19), and b10 (M20) are controlled by the input X004 of
he PLC, and X005 by ON/OFF.

.2.5 Preset data [BFM \#11, \#10]

PRESET input is switched from OFF to ON, prese ata is stored into BFM \#21, \#20 (counter current value).
5.2.6 YH compare value [BFM \#13 \#\#12],
YH compare value
[BFM \#15

After comparing the current value of the
counter wis \#15 and \#14, the hardware and
\#12, BFM \#12, FFM \#15 and \#14, the hardware and
software comparator in the FX2NC-1 HC sotputs the comparison result.
YH, YS output will not turn ON if using
PRESET or the TO instruction to set the counter value equal to the comparison value. It
will turn ON only when a match occurs by the will turn ON only when a match occurs by the counting of input pulses. does not set. Output occurs when the current value
becomes equal to the compare value but becomes equal to the compare value but only
if B 1 and $\mathrm{b2}$ of $\mathrm{BFM} \# 4$ are ON. Once an output is set, it remains ON untilit is reset by
b9 or b10 of BFM $\# 4$. If b3 of BFM \#4 is ON $\mathrm{b9}$ or ber, one of the outputs is reset when the
however however, on
other is set.
The YS comparison operation takes about
300 us , and if a match
$300 \mu \mathrm{~s}$, and if a match occurs, the output goes
ON.

5.2.7 Counter current value [BFM \#21, \#20]

The current value of the counter can be read by the PLC. It will not be the correct value during high-speed operations because of the communication delay. The current value of the counter can be forcibly changed by writing a 32 -bit value into the appropriate BFMs from the PLC.

2.8 Maximum count value [BFM \#23, \#22], Minimum count value [BFM \#25, \# 24]

These store the maximum and minimum value reached by the counter. If the power is urned off, the stored data is cleared.
5.2.9 Compare results [BFM \#26]

Bit No.	Target output	OFF (0)	ON (1)
b0		Set value \leq current value	Set value > current value
b1	YH	Set value \neq current value	Set value = current value
b2		Set value \geq current value	Set value < current value
b3		Set value \leq current value	Set value > current value
b4	Ys	Set value \ddagger current value	Set value = current value
b5		Set value \geq current value	Set value < current value
b6 ~ b15	Not availab		

5.2.10 Terminal status [BFM \#27]

Bit N0.	Signal Name	OFF (0)	ON (1)
b0	PRESET input	OFF	ON
b1	DISABLE input	OFF	ON
b2	YH output	OFF	ON
b3	YS output	OFF	ON
b4~b15	Not available		

5.2.11 Error status [BFM \#29]

5.2.12 Model identification code [BFM \#30]

This BFM stores the identification number for FX2NC-1HC
The identification number for the $\mathrm{FX} 2 \mathrm{~N}-1 \mathrm{HC}$ unit is K 4010
By reading this identification number, the user may create built-in checking
routines to check whether the physical position of the FX2NC-1HC matches to tha of the software.

Example Program

ease use the following program as a guide whenever you use the FX2NC－1HC added as required．

\rightarrow \＃221，\＃20）\rightarrow Reads the current value to the data registers $D 3$ and $D 2$

7．Preliminary check

1）Check that the I／O wiring and extension cable of the $\mathrm{FX} 2 \mathrm{NC}-1 \mathrm{HC}$ are properly
connected
The FX2NC－1HC occupies 8 points of I／O on the FX2NC，FX3UC expansion bus． The 8 points can be allocated from either inputs or outputs．
$5 V$ DC 90 mA power is supplied from the
5 V DC 9 OmA power is supplied from the main or extension power supply units
（FX3UC only for the FXXNC－1HC．Check that there is no power overload from this and other extension blocks．
3）The following derating curve shows the simultaneous ON ratio of available power or products connected to to the ambien temperature． shown in the figure．
ck： FX 2NC－16EX，FX2NC－16EX－DS
FXNOC
Derating curve：FX2NC－16EX（－DS），FX2NC－32EX（－DS）
Simultaneous ON ratio

4）The counter works correctly only when data such as the counter mode（set with a pulse command），the TO command，the compare value，etc．are appropriatel specified．Remember to in itiaizize the count（BFM $\# 4$ bo），preset（BFM \＃4 b4），
output（BFM \＃4 b2， 1 ）prohibits．Reset the YH／TS outputs before you start．
Note
Note that inputting the pulse higher than the maximum frequency may cause mis－ counting to FX2NC－1 HC or a FROM／TO error to the PLC main unit．

8．Diagnostics

| STARTUP AND MAINTENANCE
 PRECAUTIONS\quad 亿CAUTION |
| :--- | :--- |

1）The following LEDs on the main panel of the FX2NC－1HC may help you to
roubleshoot the unit
a） $\begin{aligned} & \phi A, \phi B: \\ & \text { Goes on／off as }\end{aligned} \phi \mathrm{A}$ ，$\phi \mathrm{B}$ input turn ON／OFF．It can be checked by rotating the encoder slowly．
b）UP，DN： Lights up to indicate whether the counter is going up（UP）or down（DN）．
c）PR，DS：
The appropriate LED lights up when the PRESET（PR）terminal or the DISABLE（DS）terminal is ON．
d） YH, YS ：
2）You can check the error status by reading the content of BFM \＃29 to the PLC．

电器电子产品有害物质限制使用标识要求」的表示方式

Note：This symbol mark is for China only
含有有害 6 物质的名称，含有量，含有部品
本产品中所含有的有害 6 物质的名称，含有量，含有部品如下表所示

部件名称		有害物质					
		$\begin{aligned} & \begin{array}{l} \text { 铅 } \\ (\mathrm{Pb}) \end{array} \end{aligned}$	$\left\|\begin{array}{c} \text { 采 } \\ (\mathrm{Hg}) \end{array}\right\|$	$\begin{aligned} & \substack{\begin{subarray}{c}{\text { 镉 } \\ (\mathrm{Cd}} }} \\ {\hline} \end{aligned}$	六价铬	多溴联苯 （PBB）	$\begin{aligned} & \text { 多㴧 } \\ & =\text { 苯醚 } \\ & \text { (PBE) } \end{aligned}$
可编程控制器	外壳	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	印刷基板	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

本表格依据SJ／T 11364 的规定编制。
O ：表示该有害物质在该部件所有均质材料中的含量均在 $\mathrm{GB} / \mathrm{T} 26572$规定的限量要求以下。
示该有害物质至少在该部件的某一均质材料中的含量超出 CB / T 26572规定的限量要求。
基于中国标准法的参考规格：GB／T15969．2

This manual confers no industrial property rights or any rights of any other kind， nor does it confer any patent licenses．Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may
occur as a result of using the contents noted in this manual． Warranty
Earranty Eclusion of loss in opportunity and secondary loss from warranty liability Regardless of the gratis warranty term，Mitsubishi shall not be liable for compensation to
 （2）Loss in opportunity，lost profits incurred to the user by Failures of Mitsubishi products
（3）Special damages and secondary damages whether foreseeable or not，compensation for accidents，and compensation for damages to products other than Mitsubishi products． （4）Replacement by the user，maintenance of on－site equipment，start－up test run

¢ For safe use

－This product has been manufactured as a general－purpose part for general a device or system used in purposes related to human life．
－Before using the product for special purposes such as nuclear power，electric power，aerospace，medicine or passenger movement vehicles，consult with
Mitsubishi Electric Mitsubishi Electric．
This product has
b

meduct ailing he product where major accidents or losses could occur if the
product
MITSUBISH ELECTRIC CORPORATION

9．System Block Diagram

Programmab
MELSEC.F

FX2NC-1 HC

Depending on the circumstances, procedures indicated by $\triangle \triangle$ CAUTION ma

Manual name	Manual No.	
		Explains the FX3UC Series PLC specifications for I/O, wiring, installation, and maintenance
FX3S/FX3G/FX3GC/FX3U FX3uc Series - Basic \& Applianu Instruction Edition		Describes PLC programming for devices.
FX2NC (DSS/DS) Series Hardware Manual	$\begin{array}{\|c\|} \hline \text { JY992D76401 } \\ \text { MODEL CODE: } \\ 09 R 509 \end{array}$	
FX2NC Hardw	JY992087201	installation, and maintenance.
	$\begin{array}{\|c\|} \hline \text { JY992D88101 } \\ \text { MODEL CODE: } \\ 09 R 512 \end{array}$	DescribesFX1S/FX1N/FX2N/FX2NC Series PLC programming for basic/ applied instructions and devices.
How to obtain manual documents, consult with the Mitsubishi Electric dealer from who you purchased your product		
Certification of UL, cUL standards The folowing product has UL and cUL certification UL, cUL File Number:E95239		

Compliance with EC directive (CE Marking

accordance with the contents of this note will comply with the following standards
Compliance to EMC dienetive and LVO directive or the entiremenhanical module

Requirement for Compliance with EMC directive The following products have shown compliance through direct testing (of the identified standards below) and design analysis through the creation of techno fiie) to the European Directive for Electromagnetic Compatibility (2014/30)EU) when used as directed by the appropriate documentation.	
Attention This product is designed for use in industrial applications.	
Type: \quad Programmable Controller (Open Type Equipment) Models: MELSEC FX2NC series manufactured from December 1st, 2007 FX2NC-1HC	
nda	Remark
EN61000-6-4:2007 Electromagnetic compatibility Generic standards - Emission standard for Industrial environment	Compliance with all relevant aspects o the standard. - Emission-Enclosure port - Emission-Low voltage AC mains port - Emission-Telecommunications/network port
	Compliance with all relevant aspects o the standard. Radio-frequency electromagnetic field. Amplitude modulated - Fast transients - Electrostatic discharge - Surges - Voltage dips - Voltage interruptions - Radio-frequency common mode
EN61131-2:2007 Programmable controllers Equipment requirements and tests	Compliance with all relevant aspects of the standard. EMI - Radiated Emission - Conducted Emission EMS - Radiated electromagnetic field - Fast transient burst - Electrostatic discharge - High-energy surge - Voltage drops and interruptions - Conducted RF - Power frequency magnetic field

 FROMTIO inst
present value). The FX2NC-1HC occupies 8 points of I / O on the $\operatorname{FX} 2 \mathrm{NC}$. FX3UC expansion bus. The However, 5 V DC 90 ocate frome tither ininuts or outuruts. supply units. There must be no power overioad from this or any other extension unit.
Furthermore, another power supply is needed for the output circuit of the encoder or
Differntial-Line-Driver (AM26C31 or equivalent) and open collector output The source of your input signal should be a 1 or 2 phase encoder. A $5 \mathrm{VV}, 12 \mathrm{~V}$, or 24 V Cower source can be used. An initial value setting commant
The FX2NC-1HC has two outputs. When the counter value coincides with an output
compare value, the appropriate output is set ON. The outuput transistors are
cindividuall isolated to allow either sink or source connection methods. Various counter modes, such as 1 -phase or 2 -phase, 16 -bit or 3 -bit modes, can be
selected using commands from the PLC. Allow the FX2NC--1 HC unit to run only after 1 Ing these mode parame
1.1 Incorporated Items

Verify that the following product and items are included in the package:	
Included Items	
FX2NC-1HC	

2.1 Installation
The FXXNC-1HC can be installed on a DIN46277 rail (35 mm ($1.38^{\prime \prime}$) wide)
2.2 Number of the connectable units 2.2 Number of the connectable units

Up to four special function units/blocks in total can be connected to the
FX2NC Series P LC including those connected to the FX2NC-CNV-IF.

 Connection to the PLC

3.1 Wire and Terminal Tightening Torqu

\section*{plicable cable
 | Type | Wire size |
| :--- | :--- |
| Single wire | $0.3 \mathrm{~mm}^{2}$ to $0.5 \mathrm{~mm}^{2}$ (AWG22 to 20$)$ |
| Double wire | $0.3 \mathrm{~mm}^{2}(\mathrm{AWG}(2) * 2$ |}

2) Termination

trip the coating of single wire before connecting it. An alternative

Manufacturer	Model	Pressure bonding tool
PHOENX CONTACT GmbH \& Co. KG	AI 0.5-8WH	CRIMPOXX ${ }^{6^{-1}}$
(or CRIMPFOX $6 T-F^{-2}$)		

2 Old model name: CRIMPFOX UD 6

When using a ferrule with insulation sleeve insulating sleeve, choose a wire
with proper cale sheath ferefring to the above outside dimensions, otherwis
the wire cannot be inserted easily 2 Tightening Toraue
3.1.2 Tightening Torque
The tighteng torue must te 0.22 to $0.25 \mathrm{~N} . \mathrm{m}$. Do not tighten terminal screws
with to toraue outside the bove-mentioned range. Failure to do so may cause
eequipent failures ormaluction Tool
To tighte
small-siz small-sized screvewriviver wo pose heased is
straigh and is not widened as shown in
the right figure.

$\begin{array}{l}\text { to be achieved. Use the following recommended screwdriver or an appropriate } \\ \text { replacement (grip diameter: approximately } 25 \mathrm{~mm} \text {). }\end{array}$	
Manufacturer	
PHOENIX CONTACT GmbH \& Co. KG	Sodel

Note; , sure to properly wire in accordance with the encoder output specifications.
Make
Incorrect wiring may cause accidents or damage to the product.

3.2 YH, YS output wiring [Source wiring]

The general specifications are equivalent to the PLC main unit.
(For general specifications, refer to the manual of the PLC main unit)

4.2	Power Supply Specifications	
Item		Specifications
Units driving power	5 V DC, 90 mA (Internal power supply from main unit or extension power supply unit)	

4.3 Performance Specifications					
Item		Specification			
$\underset{\substack{\text { Input } \\ \text { signal }}}{ }$	Signa level Selected connection)	Phase A,Phase B		$\begin{aligned} & 24 \mathrm{~V} \text { DC } 110 \%, \\ & 7 \mathrm{~mA} \text { or less }, \end{aligned}$	
			$\left.\right\|_{\left[\begin{array}{l} {[\mathrm{A} 12+]} \\ {[\mathrm{B} 12+]} \end{array}\right]}$	$\begin{aligned} & 12 \mathrm{~V} \mathrm{DC} \pm 10 \%, \\ & 7 \mathrm{~mA} \text { or less }, \end{aligned}$	
			${ }_{\text {[}}^{\text {[}}$	$\begin{aligned} & 3.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{DC,}, \\ & 12.5 \mathrm{~mA} \text { or less } \end{aligned}$	
		PRESET,DISABLE	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { [PD24] } \end{array}$	$\begin{aligned} & \text { 10.8V to } 26.4 \mathrm{~V} \mathrm{DC,} \\ & 15 \mathrm{~mA} \text { or less } \end{aligned}$	
			$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{XP5} 5], \\ {[\times 05]} \end{array}, \end{array}$	$\begin{array}{\|l\|l} \hline 5 \mathrm{~V} \mathrm{DC} \pm 10 \% \\ 8 \mathrm{~mA} \text { or less, } \end{array}$	
	MAX. frequency	$\begin{aligned} & \text { 1-phase } \\ & \text { input } \end{aligned}$	1 input	50kHz	
			2 input		
		$\begin{aligned} & \text { 2-phase } \\ & \text { input } \end{aligned}$	1 edge count		
			2 edge count	25kHz	
			4 edge count	12.56Hz	
	Pulseshape				

Item		Specification			
Counting specification	Format	Automatic UP/DOWN However, when on 1-phase 1-input mode, UP/ DOWN is determined below. - Hardware UP/DOWN: Up/down count is decided by OFF/ON of the A- phase input terminal. - Software UP/DOWN: Up/down count is decided by the current value (K0/K1) of BFM \#1.			
	Range	When 32-bit is specified $-2,147,483,648$ to $+2,147,483,647$ When 16 -bit is specified: 0 to 65,535 (upper limit is set up by BFM \#3, \#2.)			
	Compari- son Type	Each output is set when the present value of the counter matches with the compare value, and is switched OFF by a reset command. YH: Direct output processed by hardware. YS: Software processed output with worst delay time of $300 \mu \mathrm{~s}$. Therefore, when the input frequency is 50 kHz , there is a worst case delay of 15 input pulses.			
Output signal	Types of outputs				
	Output capacity	$5 \mathrm{~V} \sim 24 \mathrm{VCC}, 0.5 \mathrm{~A}$			
110 occupation		8 points (can be either inputs or outputs)			
5. Buffer Memories (BFM) 5.1 Buffer memory List Note; 1) When writing in BFM \#0 (counter mode), the BFM \#1 to \#31 will be initialized After setting the counter mode (BFM \#0), other BFM(s) have to be setup. When setting the counter mode, use a TOP (pulsed) instruction, or M8002 (initial pulse) to drive the $T O$ instruction. 2) Read/Write of 16 bit data When using a positive value between $\mathrm{K} 32,768$ and $\mathrm{K} 65,535$ with 16 bit counters, read/writes of data, such as the current value, ring length, prese dara, and the FROM/TO instructions (D) FROM, (D) TO).					
BFM \#	Description		Defauts	${ }_{\text {Access }}^{\text {BFM }}$	
BFM \#0	Counter mode (Setting range: K0 to K11)		к0	RW	
BF	DOWN/UP command 1-phase 1 -input mode (S/W counter) only		к0	RW	
BFM \#2	Ring length	Lower	65536	RW	
BFM \#3		Upp		RW	
BFM \#4	Command		к0	RW	
$\begin{aligned} & \hline \text { BFM \#5 } \\ & \sim \text { \#9 } \end{aligned}$	Not available				
BFM \#10	Preset data	Lower		RW	
BFM \#11		Upper		RW	
BFM \#12	YH compare value		K3276	RW	
BFM\#13			RW		
BFM \#14	YS compare value			${ }^{1} 32767$	RW
BFM \#15			RW		
$\overline{\substack{\text { BFM \#19 }}}$	Not available				
BFM \#20	Counter current value			RW	
BFM \#21				RW	
BFM\#2	Maximum count value		к0	RW	
BFM \#23			RW		
BFM \#24	Minimum count value			к0	RW
BFM \#25			RW		
BFM \#26	Compare results			R	
BFM \#27	Terminal status			R	
BFM \#28	Not available				
BFM \#29	Error status			R	

5）1－phase 2 －input counter（K6，K7）
If both phase
If both phase A and phase B inputs are received simultaneously，the counter value
does not change．

6）1－phase 1 －input counter［Hardware UPIDOWN］（K8，K9） Phase A OFF ON

5．2．2 Down／UP command［BFM \＃1］
When using the 1 －phase 1－input counter［Software UP／DowN］（counter mode： K 10 ，
K11），set the count direction by the current value of BEM \＃1

These store the maximum and minimum value reached by the counter．If the power is
turned off，the stored data is cleared．

When BFM

nen BrM \＃4 b4 is ON and the PRESET input is switched from OFF to ON，preset
data is stored into BFM \＃21，\＃2O（counter current value）．\rightarrow For command details，refer to Subsection 5.4
$\begin{array}{ll}\text { 5．2．6 } & \begin{array}{l}\text { YH compare value［BFM \＃13，\＃12］，} \\ \text { YH compare value }[B F M \\ \# 15, \# 14]\end{array},\end{array}$

After comparing the current value of the counter with the value written in BFM \＃13 and \＃12，BFM \＃15 and \＃14，the hardware and software comparator in the FX2NC－1 HC outputs the comparison result．	
YH，YS output will not turn ON if using RESET or the TO instruction to set the counter value equal to the comparison value．It will turn ON only when a match occurs by the counting of input pulses	$\underset{\sim}{\psi} \quad \begin{aligned} & \mathrm{BFM} \# 4 \\ & \mathrm{bF}, 10 \end{aligned}$
However，when BFM \＃4 b1，b2 are OFF，it does not set．	Coincidence outp
Output occurs when the current value becomes equal to the compare value but only if b 1 and b 2 of BFM \＃4 are ON．Once an output is set，it remains ON until it is reset by b9 or $b 10$ of $\mathrm{BFM} \# 4$ ．If b 3 of $\mathrm{BFM} \# 4$ is ON ，	$S_{i}^{c o s}$
however，one of the outputs is reset when the other is set．	
YS comparison	\uparrow Yb9，b10
300us，and if a match ON．	Coincidence outp

5．2．7 Counter current value［BFM \＃21，\＃20］
The current value of the counter can be read by the PLC．It will not be the correct value
during high－speed operations because of the communication delay．The current value
during high－speed operations because of the communication delay．The current value
of the counter can be forcibly changed by writing a 32 －itit value into the appropriate
BEMs from the PLC

Ms from the PLC．

Maximum count value［BFM \＃23，\＃22］，
Minimum count value［BFM \＃25，\＃24］
1）When Do is set to ON and the DISAB
permitted to start counting input pulses．
2）Unless $b 1$ is set to $O N, Y H$（hardware comple
）Unless b 2 is set to ON，YS（software compared output）does not turn ON
4）When $\mathrm{b}=\mathrm{ON}, \mathrm{YS}$ output is reset if $Y H$ output is set，and $Y H$ output is reset if Y S
output is set．When $b 3=O F F$ ， YH and $Y S$ output act independently，and do not
reset each other．
5）When b4＝OFF，prese function by the PRESET input terminal is disabled
\rightarrow For the preset details，refer to Subsection 5．2．
6）When b8 is set to ON，all error flags are rese．
7）When b9 is set to ON，YH output is reset．
9）When b11 is set to ON，YH output is set ON．
．
Example program
，the following program and b15 to wo action．Amm \＃4 of special function block No．
as controlled by $M 10-\mathrm{M} 14$ ．
Futhemere
Furthermore，b8（M18），b9（M19），and b10（M20）are controlled by the input X004 of
the PLC，and X005 by ON／OFF．

$\xrightarrow[\|c\| c]{\text { M8000 }}$			Count allo	YHYS
$\begin{aligned} & \text { RUN } \\ & \text { monitor } \\ & \text { X004 } \end{aligned}$				
M18 Error flag reset				
$\times 005$				
$\xrightarrow{1-} \mathrm{M} 19$ M20 YH YS output reset				
м800				
$1 \vdash \mid$	к2	K4	K4M10	к1

Bit No．	Target output	OFF（0）	ON（1）
b0	YH	Set value \leq current value	Set value＞current value
b1		Set value \neq current value	Set value＝current value
b2		Set value \geq current value	Set value＜current value
b3	ys	Set value \leq current value	Set value＞current value
b4		Set value \neq current value	Set value＝current value
b5		Set value \geq current value	Set value＜current value
b6～b15		Not ava	

5．2．10			
Terminal status［BFM \＃27］			
Bit N0．	Signal Name	OFF（0）	ON（1）
b0	PRESET input	OFF	ON
$b 1$	DISABLE input	OFF	ON
$b 2$	YH output	OFF	ON
b2	YS output	OFF	ON
b4～ 15	Not available		

Bit No．	Error Status					
b0	Set when any of b1 to b7 is on．					
b1	Set when the value of the ring length is written incorrectly． （Except K2 to K65，536）					
b2	Set when the preset value is written incorrectly．				When value \geq ring length in 16 －bit counter mode．	
b3	Set when the compare value is written incorrectly．					
${ }^{6} 4$	Set when the current value is written in correctly．					
${ }^{\text {b5 }}$	Set when the counter overflows the upper linit．				When the upper or lower limit is exceeded on a 32 －bit counter．	
${ }^{6} 6$	Set when the counter overflows the lower limit．					
${ }^{67}$	Set when the FROM／TO command is used incorrectly．					
b8	Set when the counter mode （BFM\＃0）is written incorrectly				Except K0 to K11	
b9	Set when the BFM number is written incorrectly．					Except K0 to K31
b10～b15	Not avaiable					
Error status in the FX2NC－1HC can be checked by reading the contents of b0 to of BFM \＃29 to auxiliary relays of the PLC． There error flags can be reset by b8 of BFM \＃4．						
$\stackrel{\text { M8000 }}{\substack{\text { M }}}$	$\begin{aligned} & \text { FNC } 78 \\ & \text { FROM } \end{aligned}$	K2	K29	M100		¢ K 1

5．2．12 Model identification code［BFM \＃30］
This BFM stores the identification number for FX2
This BFM stores the identification number for $F \times 2 N \mathrm{C}-1 \mathrm{HC}$ ．
 routnes o check w.
of the soffware．
Lease use the following program as a guide whenever you use the FX2NC－1HC
nit．Other instructions to read the current value of the counter，status etc．can be added as required．

$\stackrel{\text { M8002 }}{ }$	$\begin{gathered} \text { FNC } 79 \\ \mathrm{TO} \end{gathered}$	K2	к0	K11	k1
${ }_{\substack{\text { Initial } \\ \text { puse }}}$	K 11 is written into BFM \＃0 of special function block No．2．The counter input is 16 －bit 1 －phase．Please use a pulse command for this initialization				
		K2	K2	K1234	k1
	K1234 \rightarrow BFM \＃3，\＃2（special function block No．2） The ring length can be specified when a 16 －bit counter is specified．				
	$\mathrm{c}^{\text {FNC } 79}$ T0	k2	K1	K1	K1
	UP／DOWN direction should be specified for 1－phase 1－input software determined UP／DOWN counter				
	－${ }_{\substack{\text { FNC } 79 \\ \text { DTO }}}^{\text {S00 }}$	K2	K12	K1000	K1
	$\mathrm{K} 1000 \rightarrow$ BFM \＃13，\＃12 Set the compare value for YH output．				
	$\underbrace{\text { cos }}_{\substack{\text { FNC79 } \\ \text { DTO }}}$	к2	K14	к900	K1
	K900 \rightarrow BFM \＃15，\＃14 Set the compare value for YS output（not necessary if only YH output is used）．				

Preliminary checks

1）Check that the I／O wiring and extension cable of the FX2NC－1 HC are properly
2）The FXX2．
The 8 poincts can be allococted from either inputs or outputs． SV DC 90 MA power is supplied from the main or extension power supply units
（FX3UC only）for the $\mathrm{FX} 2 \mathrm{NC}-1 \mathrm{HC}$ ．Check that there is no power overload from this （FX3U only for hie FX2NC
and other extension blocks．
3）The following derating curve shows the simultaneous ON ratio of available powe
for products connected to the $\mathrm{FX} 2 \mathrm{NC}-1 \mathrm{HCC}$ with respect to the ambien
Sse the adioined following product within the simultaneous input ON ratio range

Derating curve：FX2Nc－16EX（－DS），FX2nc－32EX（－DS）

4）The counter works correctly only when data such as the counter mode（set with a
pulse command），the TO command，the compare value，etc．are appropriately

Note the inuting the pulse higher than the maximum frequency may cause mis－
Notet that to
counting to FXZ2NC－1HC or a FROMTTO error to the PLC main unit．

8．Diagnostics

电器电子产品有害物质限制使用标识要求」的表示方式

（3）
Note：This symbol mark is for China only．
含有有害 6 物质的名称，含有量，含有部品
本产品中所含有的有害 6 物质的名称，含有量，含有部品如下表所示。

产品中有害物质的名称及含量							
部件名称		有害物质					
		$\begin{aligned} & \text { 铅 } \\ & (\mathrm{Pb}) \end{aligned}$	$\begin{aligned} & \text { 永 } \\ & (\mathrm{Hg}) \end{aligned}$	$\begin{gathered} \text { 镉 } \\ (\text { (Cd) } \end{gathered}$	$\begin{gathered} \text { 六价铬 } \\ (\mathrm{Cr}(\mathrm{~V}(\mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { 多埧朕苯 } \\ & \text { (PBB) } \end{aligned}$	
	外壳	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
控制器	印刷基板	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc

O ：表示该有害物质在该部件所有均质材料中的含量均在 $\mathrm{GB} / \mathrm{T} 26572$

基于中国标准法的参考规格：GB／T15969．2

This manual confers no industrial property rights or any rights of any other kind， nor does it confer any patent icenses．Mitsubishi Electric Corporation cannot be Corporation cannot be occur as a result of using the contents noted in this manual．
 Warranty Exclusion of loss in opportunity and secondary lossl from warranty liability Reagrdess of the egratis waranty tem．Mitsubishish shal not bee liabel efoc compens Regardesss of the erratis waranty term，Mitsubishi shal not be liable for compensation to． （1）） 1 magaes caused by any cause found not to be the responsibility of Mitsubishi． accidents，anco compensation for damages to prodocucts there than Mitsubisisi products． （4）Replacement by the user，maintenanco of on－site equipment，star－up test run and other tasks．
 ！．For safe use
 This product has been manufactured as a general－purpose part for general industries，and has not been designed or manufactured to be incorporated in industries，and has not been designed or manufactured tio be a d evice or system used in purposeses related to human life．
 Before using the product for special purposes such as nuclear power，electric power aerospace，medicine or passenger movement vehicles，consult with Mitsub easid power，arospapae， Mitsubishi Electric． This
 －This product has been manufactured under strict quality control．However wene installing the product weere majo accididnts or osses culd occur if the product fails，install appropriate backup oc failsafe function in the system．
 MITSUBISH ELECTRIC CORPORATION

