MITSUBISH
 ELECTRIC

Numerical Protection Relay

MELPRO ${ }^{\text {Tw }}$-D Series
 FEEDER PROTECTION RELAY
 MODEL
 CFP1-A02D1

INSTRUCTION MANUAL

Request

Ensure that this Instruction Manual is delivered to
the end users and the maintenance manager.

- Introduction -

Thank for your purchasing MITSUBISHI ELECTRIC MELPRO ${ }^{\text {TM }}$ - D Series Digital Protection Relay.
Please read this manual carefully to be familiar with the functions and performances enough to use the product properly.
It is necessary to forward end users this instruction manual.
For operation of the product, this manual should be used in conjunction with the following materials:

Title of document	Document No.
MELPRO - D Series Protection Relay General Operation Manual	JEP0-IL9416

When the protection relay is used together with a communication card, use the following documents too:
(For CC-Link)

Title of document	Document No.
MELPRO - D Series Protection Relay CC-COM Communication Card (CC-Link) Operation Manual (General information)	JEP0-IL9417
MELPRO - D Series Protection Relay CC-COM Communication Card (CC-Link) Operation Manual (Model-specific information)	JEP0-IL9418

1 Features 4
1.1 General description 4
1.2 Features 4
2 Ratings and specifications 6
2.1 General information 6
2.2 Protective elements 7
2.3 Measurement elements 8
3 Characteristics 10
3.1 Protective elements 10
3.2 Measurement elements 11
3.3 Common technical data 12
4 Functions 29
4.1 Protection 29
4.2 Measurement 35
4.3 Self-diagnosis 36
4.4 Communication 37
5 Configuration 39
5.1 Internal configuration 39
5.2 External connection 42
6 Handling 46
6.1 Unpacking 46
6.2 Transportation and storage 46
6.3 Appearance and how to pull sub unit out 46
6.4 How to use front control panel 49
7 Mounting 56
7.1 Mounting dimension 56
7.2 Standard operating environment 56
8 Test 57
8.1 Appearance inspection 57
8.2 Characteristic test 58
9 Maintenance 60
9.1 Daily inspection 60
9.2 Periodical inspection 60
10 Ordering 61
11 Guarantee 61
11.1 Period of guarantee 61
11.2 Range of guarantee 61

1 Features

1.1 General description

Mitsubishi Electric MELPRO-D Series is a digital protection relay product with a microprocessor for protecting high/extra-high-voltage electric power system.

With its improved functions, including operation support using the advanced communication networks, data saving at the power system faults and power system voltage/current measurement, this series of protection relay will allow stable and effective control and monitoring of electric power systems as well as provide high-reliable protection.

1.2 Features

(1) High-reliable protection

CFP1-A02D1 relay contains a two-phase overcurrent protection element and an earth fault directional protection element. It is used to protect high voltage feeder lines.
(2) Diverse operation and reset characteristics

The product is provided with diversified operation and reset characteristics that meet the requirements of IEC 60255-3, and can be used for protecting various types of electric systems.
(3) Communication Network

- With an open field bus system, the relays can be used to build a high-speed, high-performance network system. In addition, the relay's multi-drop serial wiring reduces the amount of labor required for communication wiring.
- Control of measurement values, operation status, as well as setting changes, etc., can be performed from a remote location.
- In consideration of future network system variations and compatibility with communication networks, communication features are mounted in the relay using a replaceable card.
(4) Measurement \& Recording Functions
- Real time monitor of relay input data

The relay can measure steady state relay input values, supporting energy management.

- Fault Data Monitor

When a fault occurs, the relay saves the past 5 effective input values and waveform data to assist with fault analysis.
(5) Programmable Output Configuration

The operating output contacts (DO) can be set by combining the outputs of the protection relay element using 'OR' logic, thereby simplifying sequence design.
(6) High Accurate Digital Computation

The digital computation using high-speed sampling minimizes the effect of high harmonics, etc., and results in highly accurate protection.
(7) Self-diagnosis

The relay continuously monitors electronic circuits from input to output so that it can detect internal failure before that failure causes damage on the power system, thereby improving reliability.
(8) Easy Replacement

The dimensions of the panel cutout are the same as the prior MULTICAP series. Changing from an existing relay type to this new type is easy.
(9) Easy Maintenance

The relays are adopted as draw-out unit mechanisms with automatic CT shorting at drawing, thereby making maintenance easy.
(10) Easy wiring check

It is possible to carry out forced operation of the output contacts individually. This will allow an easy wiring check.

2 Ratings and specifications

2.1 General information

Type name			CFP1-A02D1			
Style	Relay without RS232C I/F		374PMB	375 PMB	376PMB	377PMB
	Relay with RS232C I/F		553 PMB	554PMB	555PMB	
Combined instrument transformer	Zero-phase current		Commercial ZCT with standard JEC-1201 (200/1.5mA)			
	Zero-phase voltage		Commercial EVT with standard JEC-1201			
Elements	Protection		Phase fault time-delayed element $\times 2$			
			Phase fault instantaneous element $\times 2$			
			Earth fault directional element $\times 1$			
	Measurement		Phase current, zero-phase current, Zero-phase voltage, Phase (zero-phase voltage base, lead ${ }^{\circ}$)			
Ratings	Frequency		50 Hz	60 Hz	50 Hz	60 Hz
	Phase current		5 A			
	Zero-phase current		2 A			
	Zero-phase voltage		100~ 208 V			
	$\begin{array}{\|c} \hline \text { Auxiliary } \\ \text { Power supply } \\ \text { *21 } \end{array}$	Voltage	Common use for 100~220VDC / 100 ~ 220VAC			
		Operative range	DC : 85~242 V (Range of $80 \sim 286 \mathrm{VDC}$ is allowable temporarily.) AC : $85 \sim 242 \mathrm{~V}$ (Range of $80 \sim 253 \mathrm{VAC}$ is allowable temporarily.)			
Display	RUN		Indicate the result of self-diagnosis. The lamp is lit for normal conditions and off for abnormal.			
	Unit		Indicate the unit symbol for measurements.			
	Item No., Item data		Display measurement, status, setting and option data selected with an item number.			
	Communication		With a communication card installed: the lamp is lit for normal conditions, blinking during communication and off for abnormal. With a communication card not installed: the lamp is off.			
Self-diagnosis			Monitor the electronic circuit and internal power supply to output signal to the RUN LED and self-diagnosis output (ALARM).			
Output contacts	Configurations	For trip	2 make contacts: X_{4} and X_{5} (programmable output)			
		For signaling	4 make contacts: X_{0} to X_{3} (programmable output)			
		For self-diagnosis output	1 break contact: Y (open for normal result of self-diagnosis with power on)			
	Capacity	For trip	Make	$220 \mathrm{VDC}, 10 \mathrm{~A}, 0.5 \mathrm{~s}(\mathrm{~L} / \mathrm{R}=0 \mathrm{~s})$		
			Break	$110 \mathrm{VDC}, 0.3 \mathrm{~A}$ (L/R $\leq 40 \mathrm{~ms}$) $220 \mathrm{VDC}, 0.15 \mathrm{~A}(\mathrm{~L} / \mathrm{R}<40 \mathrm{~ms})$		
			Carry $\quad 1.5 \mathrm{~A}$, continuously			
		For signaling and self-diagnosis output	Make and Break 500 VA $(\cos \varphi=0.4)$, $60 \mathrm{~W}(L / R=0.007 \mathrm{~s})$	$500 \mathrm{VA}(\cos \varphi=0.4)$, $60 \mathrm{~W}(\mathrm{~L} / \mathrm{R}=0.007 \mathrm{~s})$		
			Max. voltage 380 VAC , 125VDC			
Burden	Phase current circuit		0.5 VA or less (with rated current)			
	Zero-phase current circuit		10Ω or less			
	Zero-phase voltage circuit		0.15 VA or less (with rated voltage)			
	Auxiliary power supply circuit		For 100VDC: approx. 5 W (approx. 7 W including communication card) For 100VAC: approx. 7 VA (approx. 9 VA including communication card) For 220VDC: approx. 6 W (approx. 8 W including communication card) For 220VAC: approx. 12 VA (approx. 14 VA including communication card)			
Mass			Net weight of relay unit : Including case$: \quad$ approx. 2.3 kgapprox. 3.0 kg			
Case/cover			Size : D1 typeColor : N1.5			

*21 When an uninterruptible AC power source is not included in your system for the auxiliary supply voltage, use the type CPS1 AC/DC converter or commercially available uninterruptible power supply (UPS).
24 VDC auxiliary power supply rating of relay is also available if ordered (non-standard product).
In addition, the power supply duration of the type CPS1 AC/DC converter is confirmed about 2 seconds in combination with one MELPRO-D series relay. Therefore, in the case that the required power supply duration after power source loss exceeds 2 seconds, please use a suitable commercial uninterruptible power supply.
When the power supply back up for the control power supply of a circuit breaker is required, it is necessary to prepare the backup power supply different from the type CPS1 AC/DC converter.

2.2 Protective elements

2.3 Measurement elements

Style		Relay without RS232C I/F		74PMB	375PMB	376PMB	377PMB
		Relay with RS232C I/F		553PMB	554PMB	555PMB	556PMB
$\begin{aligned} & \underset{\sim}{*} \\ & \stackrel{y}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	发	Phase current		5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250-1500-2000-2500-3000-4000-5000-6000-75008000[A]		1-5-10-12-12.5-15-20-25-30-40-50-60-75-80-100-120-125-150-200-250-300-400-500-600-750-800-1000-1200-1250-1500-2000-2500-3000-4000-5000-6000-75008000[A]	
	EVT primary voltage			100~ 999[V] (1V step) 1000~ 9990[V] (10V step) 10.0~ 99.9[KV] (0.1KV step) $100 \sim 300[\mathrm{KV}]$ (1 KV step)			
	EVT tertiary voltage			$\begin{array}{rrrr}100-110-115-120-100 \sqrt{3}-110 \sqrt{ } 3-115 \sqrt{ } 3-120 \sqrt{ }[\mathrm{~V}] \\ (173) & (190) & (200) & (208)\end{array}$			
		Real time	Conversion	Indication value = Relay input value \times CT primary setting / 5		Indication value $=$ Relay input value \times CT primary setting	
			Range *22	$0.00 \sim$ CT primary setting $\times 2$ [A]			
			Update	Approx. 200 ms			
		Max. records	Conversion	Indication value $=$ Relay input value \times CT primary setting / 5		Indication value = Relay input value \times CT primary setting	
			Range *22	$0.00 \sim$ CT primary setting $\times 2$ [A]			
		Fault records$* 23$ *23	Conversion	Indication value $=$ Relay input value \times CT primary setting / 5		Indication value = Relay input value \times CT primary setting	
			Range *22	$0.00 \sim$ CT primary setting $\times 40$ [A$]$			
		Real time	Conversion	Indication value $=$ Relay input value $\times 0.2 / 0.0015$			
			Range *22	When ZCT err When ZCT err	tion status of tion status on	$\begin{gathered} : 0.00 \sim 2[A] \\ 0.00 \sim 6[A] \end{gathered}$	
			Update	Approx. 200 m			
		Max. records	Conversion	Indication value $=$ Relay input value $\times 0.2 / 0.0015$			
$\frac{\text { 힝 }}{}$			Range *22	When ZCT err When ZCT err	tion status of tion status on	$\begin{aligned} & : 0.00 \sim 20[\mathrm{~A}] \\ & : 0.00 \sim 6[A] \\ & \hline \end{aligned}$	
$\stackrel{\ddot{D}}{0}$		Fault records${ }^{2} 23$	Conversion	Indication value $=$ Relay input value $\times 0.2 / 0.00015$			
			Range *22	When ZCT error correction status off : 0.00~20[A] When ZCT error correction status on : 0.00~6[A]			
		Real time	Conversion	Indication value $=$ Relay input value $\times($ EVT primary setting / EVT tertiary setting) $\times(1 / \sqrt{ } 3)$			
			Range *22	$0.00 \sim(E V T$ primary setting / EVT tertiary setting) $\times(1 / \sqrt{3}) \times 210$ [V]			
			Update	Approx. 200 ms			
		Max. records	Conversion	Indication value $=$ Relay input value $\times($ EVT primary setting / EVT tertiary setting) $\times(1 / \sqrt{ } 3)$			
			Range *22	$0.00 \sim($ EVT primary setting / EVT tertiary setting) $\times(1 / \sqrt{3}) \times 210$ [V]			
		Fault records *23	Conversion	Indication value = Relay input value $\times($ EVT primary setting / EVT tertiary setting) $\times(1 / \sqrt{ } 3)$			
			Range *22	$0.00 \sim($ EVT primary setting / EVT tertiary setting) $\times(1 / \sqrt{3}) \times 210$ [V]			
		Real time	Range *22	-179~0~180[${ }^{\circ}$]			
			Update	Approx. 200 ms			
		Fault records *23	Range *22	-179~0~180[${ }^{\circ}$]			

＊22 The form of display depends on value range as shown in the tables below：
CT primary setting value and EVT primary setting value determine the minimum number of digits to be displayed on each measurement display．

When a value to be displayed exceeds the max．value of the display range，the max．value will blink．
（1）Display of current

CT primary setting		1［A］	$5 \sim 40[\mathrm{~A}]$	$50 \sim 400[A]$	$500 \sim 4000[A]$	$5000 \sim 8000[\mathrm{~A}]$
	$0.00 \sim 9.99[\mathrm{~A}]$	…ロ［A］	ㅁ．．［A］	$\square[A]$	－	－
	$10.0 \sim 99.9[\mathrm{~A}]$	$\square \square . \square[A]$	ㅁ．．［ $[\mathrm{A}]$	$\square[A]$	ロ．ロロ［kA］	－
	$100 \sim 999[A]$	$\square \square \square[A]$	$\square \square[A]$	$\square \square \square[A]$	$\square . \square \square[\mathrm{kA}]$	ロ．\quad［ kA$]$
	$1.00 \sim 9.99[\mathrm{kA}]$	ロ．\square［ $[\mathrm{kA}]$	ロ．ロם［kA］	ㅁ．םロ［kA］	ロ．\square［ $[\mathrm{kA}]$	ם． $\mathrm{\square}$［ kA ］
	$10.0 \sim 99.9[\mathrm{kA}]$	$\square \square . \square[k A]$	ロロ．$[$［ kA$]$	םa． $\mathrm{\square}$［kA］	ロロ．$[$［ kA$]$	םa． $\mathrm{\square}$［kA］
	$100 \sim 999[\mathrm{kA}]$	ㅁם［kA］	ㅁם［kA］	ロロם［kA］	ㅁa［［kA］	ロロם［kA］

（2）Display of voltage

EVT primary setting		100～500［V］	501 ～10000［V］	$11 \sim 300[\mathrm{KV}$ ］
	$0.00 \sim 999[\mathrm{~V}]$	םם口［V］	口．ם口［KV］	$\square . \square[\mathrm{kV}]$
	$1.00 \sim 9.99[\mathrm{kV}]$	ロ．ロロ［kV］	ロ．\square［ $[\mathrm{kV}]$	$\square . \square[\mathrm{kV}]$
	$10.0 \sim 99.9[\mathrm{kV}]$	םa． $\mathrm{\square}[\mathrm{kV}]$	ロロ．ם［kV］	ם．．ם［kV］
	$100 \sim 999[\mathrm{kV}]$	ロロם［kV］	ロםa［kV］	$\square \square \square[\mathrm{kV}]$

（3）Display of phase

Range of display	Form of display
－179～－1［ ${ }^{\circ}$ ］	－םa［［ ${ }^{\circ}$ ］
$0 \sim 180\left[{ }^{\circ}\right]$	므［ $\left.{ }^{\circ}\right]$

＊23 When a communication card is connected，waveform data in the event of system fault can be read． （See the section 4 ＂Function＂）．
＊24 When the product is shipped from the factory，each setting value is＂Lock＂（With lock setting element）or＂minimum setting value＂（Without lock setting element）．

3 Characteristics

Common conditions	(1) Rated frequency: $\pm 1 \%$	The conditions shown on the left
	(2) Ambient temperature: $20^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	should be applied unless otherwise
	specified.	

3.1 Protective elements

Items			Conditions	Guaranteed performance
Operation value	Phase fault time-delayed element		(Common conditions)	- For setting of $1.0 \sim 2.0 \mathrm{~A}$ (5A rating product) For setting of $0.2 \sim 0.4 \mathrm{~A}$ (1A rating product) Setting value $\pm 10 \%$ For setting of other range Setting value $\pm 5 \%$
	Phase fault instantaneous element			Setting value $\pm 10 \%$
			Setting : Zero-phase voltage = Minimum Input: Zero-phase voltage $=$ Rating voltage $\times 30 \%$ Phase = Characteristic angle	- For setting of 10 mA Setting value $\pm 10 \%$ - For setting of other values Setting value $\pm 5 \%$
			Setting : Zero-phase current $=$ Minimum Input: Zero-phase current $=$ Setting value $\times 1000 \%$ Phase $=$ Characteristic angle	Setting value $\pm 5 \%$
Reset value	Phase fault time-delayed element		(Common conditions)	- For setting of $1.0 \sim 2.0 \mathrm{~A}$ (5A rating product) For setting of $0.2 \sim 0.4 \mathrm{~A}$ (1A rating product) Operation value $\times 90 \%$ or more - For setting of other range Operation value $\times 95 \%$ or more
	Phase fault instantaneous element			Operation value $\times 95 \%$ or more
			Setting : Zero-phase voltage = Minimum Input: Zero-phase voltage $=$ Rating voltage $\times 30 \%$ Phase = Characteristic angle	Operation value $\times 90 \%$ or more
			Setting : Zero-phase current $=$ Minimum Input: Zero-phase current $=$ Setting value $\times 1000 \%$ Phase = Characteristic angle	

Items		Conditions	Guaranteed performance
Operation time	Phase fault time-delayed element	Operation setting: Minimum, Operation time multiplier: 10 Input: $0 \rightarrow$ Operation setting $\times 300,500,1000 \%$	See Figures 3.1 to 2 . See Tables 3.1 to 3.12
	Phase fault instantaneous element	Operation setting: Minimum Input: $0 \rightarrow 200 \%$ of setting	Setting value $\pm 25 \mathrm{~ms}$ INST $=40 \mathrm{~ms}$ or less
	Earth fault directional element	Setting : Zero-phase current $=$ Minimum Zero-phase voltage $=$ Minimum Input: Zero-phase current $=0 \rightarrow$ Setting value \times 1000\% Zero-phase voltage $=0 \rightarrow$ Rating value $\times 30 \%$ Phase = Characteristic angle	- For INST setting 80 ms or less - For setting of $0.1 \sim 0.4 \mathrm{~s}$ setting value $\pm 25 \mathrm{~ms}$ - For setting of $0.5 \sim 1 \mathrm{~s}$ operation value $\pm 5 \%$
Reset time	Phase fault time-delayed element	300% of setting $\rightarrow 0$ [A]	See Figure 3.3 See Table 3.13
	Phase fault instantaneous element	300% of setting $\rightarrow 0$ [A]	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$
	Earth fault directional element	Setting : Zero-phase current $=$ Minimum Zero-phase voltage $=$ Minimum Input: Zero-phase current $=$ Setting value \times $1000 \% \rightarrow 0$ Zero-phase voltage $=$ Rating value $\times 30 \% \rightarrow 0$ Phase = Characteristic angle	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$
Overshoot characteristics	Phase fault time-delayed element	Operation setting: Minimum Operation time multiplier : 10 Operation characteristics : All Input current: $\mathrm{OA} \rightarrow$ Setting value $\times 1000 \%$	No-operation limit time / operation time $=90 \%$ or more
Phase characteristics	Earth fault directional element	Setting: Zero-phase current $=$ Minimum Zero-phase voltage $=$ Minimum Input: Zero-phase current $=$ Setting value $\times 1000 \%$ Zero-phase voltage $=$ Rating value $\times 30 \%$	Setting value: $\pm 5^{\circ}$

3.2 Measurement elements

Items		Condition	Guaranteed performance
Real time and max. records	Phase current	CT primary setting $\times 2$	$\pm 1 \%$
	Zero-phase current	$2 \mathrm{Zero-phase} \mathrm{voltage}$	(EVT primary setting / EVT tertiary setting) $\times(1 / \sqrt{ } 3) \times 210$
	Phase	0°	$\pm 2 \%$
		$\pm 5 \%$	

3.3 Common technical data

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ITEM} \& DESCRIPTION \& CONDITION \& STANDARD

\hline \multirow{3}{*}{Environment} \& Ambient operating temperature \& $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ \& \& IEC60255-6

\hline \& Ambient storage and transport temperature \& $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ \& \& IEC60255-6

\hline \& Damp heat \& $+40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 4$ days \& \& IEC60068-2-3

\hline \multirow[t]{2}{*}{Thermal withstand} \& VT \& $1.15 \mathrm{Vn}, 3 \mathrm{~h}$ \& \& \multirow[t]{2}{*}{}

\hline \& CT \& 40In, 1s \& \&

\hline \multirow{3}{*}{Dielectric test} \& \multirow[t]{2}{*}{Circuit of 60 V or below

Circuit of more than

60 V and 500 v or below} \& 500VAC, 1 min . \& \multirow[t]{2}{*}{| 1) Between each circuit and the exposed conductive parts, the terminals of each independent circuit being connected together |
| :--- |
| 2) Between independent circuits, the terminals of each independent circuit being connected together |} \& \multirow{3}{*}{IEC60255-5}

\hline \& \& 2000VAC 1min. \& \&

\hline \& Open contact \& 1000VAC, 1 min . \& Between open contact poles \&

\hline \multicolumn{2}{|l|}{Impulse voltage test} \& $5 \mathrm{kV}, 1.2 \mu \mathrm{~s} / 50 \mu \mathrm{~s}$ \& | 1) Between each circuit and the exposed conductive parts, the terminals of each independent circuit being connected together |
| :--- |
| 2) Between independent circuits, the terminals of each independent circuit being connected together | \& IEC60255-5

\hline \multirow[t]{2}{*}{High-frequency disturbance test} \& Common mode \& 2.5 kV peak, 1 MHz with 200Ω source impedance for 2 s \& Between independent circuits, and between independent circuit and earth \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { IEC60255-22-1 } \\
& \text { class } 3
\end{aligned}
$$}

\hline \& Differential mode \& 1.0 kV peak, 1 MHz with 200Ω source impedance for 2 s \& Across terminals of the same circuit \&

\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Electrostatic discharge test}} \& 8kV \& Contact discharge \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { IEC60255-22-2 } \\
& \text { Class } 4 \\
& \hline
\end{aligned}
$$}

\hline \& \& 15 kV \& Air discharge \&

\hline \multicolumn{2}{|l|}{Radiated electromagnetic field disturbance test} \& 68 to 87 Mhz 146 to 174 MHz 420 to 470 MHz \& \& $$
\begin{aligned}
& \text { IEC60255-22-3 } \\
& \text { class } 3
\end{aligned}
$$

\hline \multicolumn{2}{|l|}{Fast transient disturbance test} \& 2.0 kV , $5 \mathrm{~ns} / 50 \mathrm{~ns}, 1 \mathrm{~min}$ \& \& IEC60255-22-4

\hline \multicolumn{2}{|l|}{Vibration test} \& Refer to class 1 \& \& $$
\begin{aligned}
& \text { IEC60255-21-1 } \\
& \text { Class } 1 \\
& \hline
\end{aligned}
$$

\hline \multicolumn{2}{|l|}{Shock response} \& Refer to class 2 \& \& $$
\begin{array}{|l}
\hline \text { IEC60255-21-2 } \\
\text { Class } 2 \\
\hline
\end{array}
$$

\hline \multicolumn{2}{|l|}{Shock withstand} \& Refer to class 1 \& \& $$
\begin{array}{|l}
\hline \text { IEC60255-21-2 } \\
\text { Class } 1 \\
\hline
\end{array}
$$

\hline \multicolumn{2}{|l|}{Bump} \& Refer to class 1 \& \& $$
\begin{aligned}
& \text { IEC60255-21-2 } \\
& \text { Class } 1 \\
& \hline
\end{aligned}
$$

\hline \multicolumn{2}{|l|}{Enclosure protection} \& IP51 \& \& IEC60529

\hline
\end{tabular}

Vn: Rated voltage, In: Rated current

12 types of operation time characteristics and 3 types of reset time characteristics as shown in Figures 3.1 to 3.3 are integrated the Phase fault time-delayed elements.

NI01: Normal inverse time-delayed characteristic

$$
t=\frac{0.14}{1^{0.02}-1} \times \frac{M}{10}(s)
$$

VI01: Very inverse time-delayed characteristic

$$
\mathrm{t}=\frac{13.5}{\mathrm{l}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})
$$

El01: Extremely inverse time-delayed characteristic

$$
t=\frac{80}{I^{2}-1} \times \frac{M}{10}(s)
$$

LIO1: Long inverse time-delayed characteristic

$$
\mathrm{t}=\frac{54}{\mathrm{I}-1} \times \frac{\mathrm{M}}{10}(\mathrm{~s})
$$

LIO2: Long inverse time-delayed characteristic

$$
t=\frac{80}{\mathrm{l}} \times \frac{\mathrm{M}}{10}(\mathrm{~s})
$$

DT01: Definite time-delayed characteristic

$$
\mathrm{t}=2 \times \frac{\mathrm{M}}{10}(\mathrm{~s})
$$

$\left(\begin{array}{ll}t & : \text { Operation time (s) } \\ \mathrm{I} & : \text { Multiple of input current against setting value (times) } \\ \mathrm{M} & : \text { Operation time multiplier (times) }\end{array}\right.$
Figure 3.1 Operation time characteristic (1)

NI11: Normal inverse time-delayed characteristic

$$
t=\left(\frac{0.0515}{1^{0.02}-1}+0.114\right) \times \frac{M}{10}(s)
$$

El11: Extremely inverse time-delayed characteristic

$$
t=\left(\frac{19.61}{1^{2}-1}+0.491\right) \times \frac{M}{10}(s)
$$

El12: Extremely inverse time-delayed characteristic

$$
t=\left(\frac{28.2}{1^{2}-1}+0.1217\right) \times \frac{M}{10}(s)
$$

NI21: Normal inverse time-delayed characteristic

$$
t=\left(\frac{2.4}{1^{0.4}-1}+1.2\right) \times \frac{M}{10}(s)
$$

VI21: Very inverse time-delayed characteristic

$$
t=\left(\frac{16}{I-1}+0.4\right) \times \frac{M}{10}(s)
$$

LI21: Long inverse time-delayed characteristic

$$
t=\frac{60}{1-1} \times \frac{M}{10}(s)
$$

$\left(\begin{array}{ll}\mathrm{t} & : \text { Operation time (s) } \\ \mathrm{I} & : \text { Multiple of input current against setting value (times) } \\ \mathrm{M} & : \text { Operation time multiplier (times) }\end{array}\right.$
Figure 3.2 Operation time characteristic (2)

Figure 3.3 Reset time characteristic
*31 Inverse time-delayed characteristic for resetting
Following the principle of resetting an electromagnetic mechanical type induction disc, the inverse time-delayed characteristic given by the equation below is used for computing the reset time of the internal operation timer, although the output contact will be reset after a definite period of time (0.2 s). The inverse time-delayed characteristic may be useful for detecting recurrent overload, which typically occurs in starting a motor. For further information, see the section 4 "Functions".

$$
t_{r}=\frac{8}{1-I^{2}} \times \frac{M}{10}(s)
$$

Table 3.1 Operation time range for Normal inverse time-delayed characteristic (NIO1)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.158 \pm 5.50 \%$	$0.107 \pm 3.75 \%$	0.074 $\pm 3.75 \%$
	* $0.040 \sim 0.504$	* $0.040 \sim 0.267$	${ }^{*} 0.040 \sim 0.186$
0.5	$0.315 \pm 5.67 \%$	$0.214 \pm 3.83 \%$	$0.149 \pm 3.83 \%$
	* $0.040 \sim 0.672$	* $0.040 \sim 0.378$	* $0.040 \sim 0.262$
1	$0.630 \pm 6.00 \%$	$0.428 \pm 4.00 \%$	$0.297 \pm 4.00 \%$
	$0.252 \sim 1.008$	$0.257 \sim 0.599$	$0.178 \sim 0.416$
1.5	$0.945 \pm 6.33 \%$	$0.642 \pm 4.17 \%$	$0.446 \pm 4.17 \%$
	$0.546 \sim 1.344$	$0.464 \sim 0.820$	$0.322 \sim 0.569$
2	$1.260 \pm 6.67 \%$	$0.856 \pm 4.33 \%$	$0.594 \pm 4.33 \%$
	$0.840 \sim 1.681$	$0.670 \sim 1.041$	$0.465 \sim 0.723$
2.5	$1.575 \pm 7.00 \%$	$1.070 \pm 4.50 \%$	$0.743 \pm 4.50 \%$
	$1.134 \sim 2.017$	0.877 ~ 1.263	$0.609 \sim 0.876$
3	$1.891 \pm 7.33 \%$	$1.284 \pm 4.67 \%$	$0.891 \pm 4.67 \%$
	$1.428 \sim 2.353$	$1.084 \sim 1.484$	$0.753 \sim 1.030$
3.5	$2.206 \pm 7.67 \%$	$1.498 \pm 4.83 \%$	$1.040 \pm 4.83 \%$
	$1.723 \sim 2.689$	1.291 ~ 1.705	$0.896 \sim 1.183$
4	$2.521 \pm 8.00 \%$	$1.712 \pm 5.00 \%$	$1.188 \pm 5.00 \%$
	2.017 ~ 3.025	1.498 ~ 1.926	$1.040 \sim 1.337$
4.5	$2.836 \pm 8.33 \%$	$1.926 \pm 5.17 \%$	$1.337 \pm 5.17 \%$
	$2.311 \sim 3.361$	$1.705 \sim 2.147$	1.183 ~ 1.490
5	$3.151 \pm 8.67 \%$	$2.140 \pm 5.33 \%$	$1.485 \pm 5.33 \%$
	$2.605 \sim 3.697$	$1.912 \sim 2.368$	1.327 ~ 1.644
6	$3.781 \pm 9.33 \%$	$2.568 \pm 5.67 \%$	$1.782 \pm 5.67 \%$
	$3.193 \sim 4.369$	2.325 ~ 2.810	1.614 ~ 1.951
7	$4.411 \pm 10.00 \%$	$2.996 \pm 6.00 \%$	$2.079 \pm 6.00 \%$
	$3.781 \sim 5.042$	$2.739 \sim 3.253$	$1.901 \sim 2.258$
8	$5.042 \pm 10.67 \%$	$3.424 \pm 6.33 \%$	$2.376 \pm 6.33 \%$
	$4.369 \sim 5.714$	$3.153 \sim 3.695$	$2.188 \sim 2.565$
9	$5.672 \pm 11.33 \%$	$3.852 \pm 6.67 \%$	$2.674 \pm 6.67 \%$
	$4.958 \sim 6.386$	$3.566 \sim 4.137$	$2.475 \sim 2.872$
10	$6.302 \pm 12.00 \%$	$4.280 \pm 7.00 \%$	$2.971 \pm 7.00 \%$
	$5.546 \sim 7.058$	$3.980 \sim 4.579$	2.763 ~ 3.179
15	$9.453 \pm 12.00 \%$	$6.420 \pm 7.00 \%$	$4.456 \pm 7.00 \%$
	$8.319 \sim 10.587$	$5.970 \sim 6.869$	$4.144 \sim 4.768$
20	$12.604 \pm 12.00 \%$	$8.559 \pm 7.00 \%$	$5.941 \pm 7.00 \%$
	11.091 ~ 14.116	7.960 ~ 9.159	$5.525 \sim 6.357$
30	$18.906 \pm 12.00 \%$	$12.839 \pm 7.00 \%$	$8.912 \pm 7.00 \%$
	16.637 ~ 21.174	$11.940 \sim 13.738$	8.288 ~ 9.536
40	$25.208 \pm 12.00 \%$	$17.119 \pm 7.00 \%$	$11.882 \pm 7.00 \%$
	$22.183 \sim 28.233$	$15.921 \sim 18.317$	$11.051 \sim 12.714$
50	$31.510 \pm 12.00 \%$	$21.399 \pm 7.00 \%$	$14.853 \pm 7.00 \%$
	27.728 ~ 35.291	$19.901 \sim 22.897$	$13.813 \sim 15.893$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.2 Operation time range for Very inverse time-delayed characteristic (VIO1)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.169 \pm 5.50 \%$	$0.084 \pm 3.75 \%$	$0.038 \pm 3.75 \%$
	* $0.040 \sim 0.540$	${ }^{*} 0.040 \sim 0.211$	* $0.040 \sim 0.094$
0.5	$0.338 \pm 5.67 \%$	$0.169 \pm 3.83 \%$	$0.075 \pm 3.83 \%$
	* $0.040 \sim 0.720$	* $0.040 \sim 0.298$	* $0.040 \sim 0.133$
1	$0.675 \pm 6.00 \%$	$0.338 \pm 4.00 \%$	$0.150 \pm 4.00 \%$
	0.270 ~ 1.080	$0.203 \sim 0.473$	$0.090 \sim 0.210$
1.5	$1.013 \pm 6.33 \%$	$0.506 \pm 4.17 \%$	$0.225 \pm 4.17 \%$
	$0.585 \sim 1.440$	$0.366 \sim 0.647$	$0.163 \sim 0.288$
2	$1.350 \pm 6.67 \%$	$0.675 \pm 4.33 \%$	$0.300 \pm 4.33 \%$
	$0.900 \sim 1.800$	$0.529 \sim 0.821$	$0.235 \sim 0.365$
2.5	$1.688 \pm 7.00 \%$	$0.844 \pm 4.50 \%$	$0.375 \pm 4.50 \%$
	1.215 ~ 2.160	$0.692 \sim 0.996$	$0.308 \sim 0.443$
3	$2.025 \pm 7.33 \%$	$1.013 \pm 4.67 \%$	$0.450 \pm 4.67 \%$
	$1.530 \sim 2.520$	$0.855 \sim 1.170$	$0.380 \sim 0.520$
3.5	$2.363 \pm 7.67 \%$	$1.181 \pm 4.83 \%$	$0.525 \pm 4.83 \%$
	1.845 ~ 2.880	1.018 ~ 1.344	$0.453 \sim 0.598$
4	$2.700 \pm 8.00 \%$	$1.350 \pm 5.00 \%$	$0.600 \pm 5.00 \%$
	2.160 ~ 3.240	1.181 ~ 1.519	$0.525 \sim 0.675$
4.5	$3.038 \pm 8.33 \%$	$1.519 \pm 5.17 \%$	$0.675 \pm 5.17 \%$
	$2.475 \sim 3.600$	1.344 ~ 1.693	$0.598 \sim 0.753$
5	$3.375 \pm 8.67 \%$	$1.688 \pm 5.33 \%$	$0.750 \pm 5.33 \%$
	$2.790 \sim 3.960$	$1.508 \sim 1.868$	$0.670 \sim 0.830$
6	$4.050 \pm 9.33 \%$	$2.025 \pm 5.67 \%$	$0.900 \pm 5.67 \%$
	$3.420 \sim 4.680$	1.834 ~ 2.216	0.815 ~ 0.985
7	$4.725 \pm 10.00 \%$	$2.363 \pm 6.00 \%$	$1.050 \pm 6.00 \%$
	4.050 ~ 5.400	$2.160 \sim 2.565$	0.960 ~ 1.140
8	$5.400 \pm 10.67 \%$	$2.700 \pm 6.33 \%$	$1.200 \pm 6.33 \%$
	4.680 ~ 6.120	$2.486 \sim 2.914$	1.105 ~ 1.295
9	6.075 ± 11.33	$3.038 \pm 6.67 \%$	$1.350 \pm 6.67 \%$
	$5.310 \sim 6.840$	$2.813 \sim 3.263$	$1.250 \sim 1.450$
10	$6.750 \pm 12.00 \%$	$3.375 \pm 7.00 \%$	$1.500 \pm 7.00 \%$
	$5.940 \sim 7.560$	3.139 ~ 3.611	1.395 ~ 1.605
15	$10.125 \pm 12.00 \%$	$5.063 \pm 7.00 \%$	$2.250 \pm 7.00 \%$
	8.910 ~ 11.340	$4.708 \sim 5.417$	$2.093 \sim 2.408$
20	$13.500 \pm 12.00 \%$	$6.750 \pm 7.00 \%$	$3.000 \pm 7.00 \%$
	$11.880 \sim 15.120$	$6.278 \sim 7.223$	2.790 ~ 6.357
30	$20.250 \pm 12.00 \%$	$10.125 \pm 7.00 \%$	$4.500 \pm 7.00 \%$
	17.820 ~ 22.680	$9.416 \sim 10.834$	$4.185 \sim 4.815$
40	$27.000 \pm 12.00 \%$	$13.500 \pm 7.00 \%$	$6.000 \pm 7.00 \%$
	$23.760 \sim 30.240$	12.555 ~ 14.445	$5.580 \sim 6.420$
50	$33.750 \pm 12.00 \%$	$16.875 \pm 7.00 \%$	$7.500 \pm 7.00 \%$
	29.700 ~ 37.800	$15.694 \sim 18.056$	$6.975 \sim 8.025$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.3 Operation time range for Extremely inverse time-delayed characteristic (EIO1)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.250 \pm 5.50 \%$	$0.083 \pm 3.75 \%$	0.020 ± 0.05
	* $0.040 \sim 0.800$	* $0.040 \sim 0.208$	* $0.040 \sim 0.070$
0.5	$0.500 \pm 5.67 \%$	$0.167 \pm 3.83 \%$	0.040 ± 0.05
	* $0.040 \sim 1.067$	* $0.040 \sim 0.294$	* $0.040 \sim 0.090$
1	$1.000 \pm 6.00 \%$	$0.333 \pm 4.00 \%$	0.081 ± 0.05
	$0.400 \sim 1.600$	$0.200 \sim 0.467$	${ }^{*} 0.040 \sim 0.131$
1.5	$1.500 \pm 6.33 \%$	$0.500 \pm 4.17 \%$	0.121 ± 0.05
	0.867 ~ 2.133	$0.361 \sim 0.639$	$0.071 \sim 0.171$
2	$2.000 \pm 6.67 \%$	$0.667 \pm 4.33 \%$	0.162 ± 0.05
	$1.333 \sim 2.667$	$0.522 \sim 0.811$	$0.112 \sim 0.212$
2.5	$2.500 \pm 7.00 \%$	$0.833 \pm 4.50 \%$	0.202 ± 0.05
	$1.800 \sim 3.200$	$0.683 \sim 0.983$	$0.152 \sim 0.252$
3	$3.000 \pm 7.33 \%$	$1.000 \pm 4.67 \%$	0.242 ± 0.05
	2.267 ~ 3.733	$0.844 \sim 1.156$	$0.192 \sim 0.292$
3.5	$3.500 \pm 7.67 \%$	$1.167 \pm 4.83 \%$	0.283 ± 0.05
	$2.733 \sim 4.267$	$1.006 \sim 1.328$	$0.233 \sim 0.333$
4	$4.000 \pm 8.00 \%$	$1.333 \pm 5.00 \%$	0.323 ± 0.05
	$3.200 \sim 4.800$	1.167 ~ 1.500	$0.273 \sim 0.373$
4.5	$4.500 \pm 8.33 \%$	$1.500 \pm 5.17 \%$	0.364 ± 0.05
	3.667 ~ 5.333	$1.328 \sim 1.672$	$0.314 \sim 0.414$
5	$5.000 \pm 8.67 \%$	$1.667 \pm 5.33 \%$	0.404 ± 0.05
	$4.133 \sim 5.867$	$1.489 \sim 1.844$	$0.354 \sim 0.454$
6	$6.000 \pm 9.33 \%$	$2.000 \pm 5.67 \%$	0.485 ± 0.05
	5.067 ~ 6.933	1.811 ~ 2.189	$0.435 \sim 0.535$
7	$7.000 \pm 10.00 \%$	$2.333 \pm 6.00 \%$	0.566 ± 0.05
	$6.000 \sim 8.000$	$2.133 \sim 2.533$	$0.516 \sim 0.616$
8	$8.000 \pm 10.67 \%$	$2.667 \pm 6.33 \%$	$0.646 \pm 6.33 \%$
	6.933 ~ 9.067	$2.456 \sim 2.878$	$0.595 \sim 0.698$
9	$9.000 \pm 11.33 \%$	$3.000 \pm 6.67 \%$	$0.727 \pm 6.67 \%$
	7.867 ~ 10.133	$2.778 \sim 3.222$	$0.673 \sim 0.781$
10	$10.000 \pm 12.00 \%$	$3.333 \pm 7.00 \%$	$0.808 \pm 7.00 \%$
	$8.800 \sim 11.200$	$3.100 \sim 3.567$	$0.752 \sim 0.865$
15	$15.000 \pm 12.00 \%$	$5.000 \pm 7.00 \%$	$1.212 \pm 7.00 \%$
	$13.200 \sim 16.800$	$4.650 \sim 5.350$	1.127 ~ 1.297
20	$20.000 \pm 12.00 \%$	$6.667 \pm 7.00 \%$	$1.616 \pm 7.00 \%$
	$17.600 \sim 22.400$	$6.200 \sim 7.133$	1.503 ~ 1.729
30	$30.000 \pm 12.00 \%$	$10.000 \pm 7.00 \%$	$2.424 \pm 7.00 \%$
	$26.400 \sim 33.600$	$9.300 \sim 10.700$	$2.255 \sim 2.594$
40	$40.000 \pm 12.00 \%$	$13.333 \pm 7.00 \%$	$3.232 \pm 7.00 \%$
	$35.200 \sim 44.800$	$12.400 \sim 14.267$	$3.006 \sim 3.459$
50	$50.000 \pm 12.00 \%$	$16.667 \pm 7.00 \%$	$4.040 \pm 7.00 \%$
	$44.000 \sim 56.000$	$15.500 \sim 17.833$	$3.758 \sim 4.323$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.4 Operation time range for Long inverse time-delayed characteristic (LIO1)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.675 \pm 5.50 \%$	$0.338 \pm 3.75 \%$	$0.150 \pm 3.75 \%$
	* $0.040 \sim 2.160$	* $0.040 \sim 0.844$	* $0.040 \sim 0.375$
0.5	$1.350 \pm 5.67 \%$	$0.675 \pm 3.83 \%$	$0.300 \pm 3.83 \%$
	* $0.040 \sim 2.880$	$0.158 \sim 1.193$	$0.070 \sim 0.530$
1	$2.700 \pm 6.00 \%$	$1.350 \pm 4.00 \%$	$0.600 \pm 4.00 \%$
	$1.080 \sim 4.320$	$0.158 \sim 1.890$	$0.360 \sim 0.840$
1.5	$4.050 \pm 6.33 \%$	$2.025 \pm 4.17 \%$	$0.900 \pm 4.17 \%$
	$2.340 \sim 5.760$	$1.463 \sim 2.588$	$0.650 \sim 1.150$
2	$5.400 \pm 6.67 \%$	$2.700 \pm 4.33 \%$	$1.200 \pm 4.33 \%$
	$3.600 \sim 7.200$	$2.115 \sim 3.285$	$0.940 \sim 1.460$
2.5	$6.750 \pm 7.00 \%$	$3.375 \pm 4.50 \%$	$1.500 \pm 4.50 \%$
	4.860 ~ 8.640	$2.768 \sim 3.983$	$1.230 \sim 1.770$
3	$8.100 \pm 7.33 \%$	$4.050 \pm 4.67 \%$	$1.800 \pm 4.67 \%$
	$6.120 \sim 10.080$	$3.420 \sim 4.680$	$1.520 \sim 2.080$
3.5	$9.450 \pm 7.67 \%$	$4.725 \pm 4.83 \%$	$2.100 \pm 4.83 \%$
	$7.380 \sim 11.520$	$4.073 \sim 5.378$	$1.810 \sim 2.390$
4	$10.800 \pm 8.00 \%$	$5.400 \pm 5.00 \%$	$2.400 \pm 5.00 \%$
	8.640 ~ 12.960	4.725 ~ 6.075	$2.100 \sim 2.700$
4.5	$12.150 \pm 8.33 \%$	$6.075 \pm 5.17 \%$	$2.700 \pm 5.17 \%$
	$9.900 \sim 14.400$	$5.378 \sim 6.773$	$2.390 \sim 3.010$
5	$13.500 \pm 8.67 \%$	$6.750 \pm 5.33 \%$	$3.000 \pm 5.33 \%$
	$11.160 \sim 15.840$	$6.030 \sim 7.470$	$2.680 \sim 3.320$
6	$16.200 \pm 9.33 \%$	$8.100 \pm 5.67 \%$	$3.600 \pm 5.67 \%$
	$13.680 \sim 18.720$	$7.335 \sim 8.865$	$3.260 \sim 3.940$
7	$18.900 \pm 10.00 \%$	$9.450 \pm 6.00 \%$	$4.200 \pm 6.00 \%$
	$16.200 \sim 21.600$	$8.640 \sim 10.260$	$3.840 \sim 4.560$
8	$21.600 \pm 10.67 \%$	$10.800 \pm 6.33 \%$	$4.800 \pm 6.33 \%$
	$18.720 \sim 24.480$	$9.945 \sim 11.655$	$4.420 \sim 5.180$
9	$24.300 \pm 11.33 \%$	$12.150 \pm 6.67 \%$	$5.400 \pm 6.67 \%$
	$24.300 \pm 11.33 \%$	$12.150 \pm 6.67 \%$	$5.400 \pm 6.67 \%$
10	$27.000 \pm 12.00 \%$	$13.500 \pm 7.00 \%$	$6.000 \pm 7.00 \%$
	$23.760 \sim 30.240$	12.555 ~ 14.445	$5.580 \sim 6.420$
15	$40.500 \pm 12.00 \%$	$20.250 \pm 7.00 \%$	$9.000 \pm 7.00 \%$
	35.640~ 45.360	$18.833 \sim 21.668$	$8.370 \sim 9.630$
20	$54.000 \pm 12.00 \%$	$27.000 \pm 7.00 \%$	$12.000 \pm 7.00 \%$
	$47.520 \sim 60.480$	$25.110 \sim 28.890$	$11.160 \sim 12.840$
30	$81.000 \pm 12.00 \%$	$40.500 \pm 7.00 \%$	$18.000 \pm 7.00 \%$
	71.280 ~ 90.720	$37.665 \sim 43.335$	$16.740 \sim 19.260$
40	$108.00 \pm 12.00 \%$	$54.000 \pm 7.00 \%$	$24.000 \pm 7.00 \%$
	$95.040 \sim 120.96$	$50.220 \sim 57.780$	$22.320 \sim 25.680$
50	$135.00 \pm 12.00 \%$	$67.500 \pm 7.00 \%$	$30.000 \pm 7.00 \%$
	$118.80 \sim 151.20$	$62.775 \sim 72.225$	$27.900 \sim 32.100$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.5 Operation time range for Long inverse time-delayed characteristic (LIO2)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.667 \pm 5.50 \%$	$0.400 \pm 3.75 \%$	$0.200 \pm 3.75 \%$
	* $0.040 \sim 2.133$	* $0.040 \sim 1.000$	* $0.040 \sim 0.500$
0.5	$1.333 \pm 5.67 \%$	$0.800 \pm 3.83 \%$	$0.400 \pm 3.83 \%$
	* $0.040 \sim 2.844$	$0.187 \sim 1.413$	$0.093 \sim 0.707$
1	$2.667 \pm 6.00 \%$	$1.600 \pm 4.00 \%$	$0.800 \pm 4.00 \%$
	1.067~4.267	$0.960 \sim 2.240$	0.480 ~ 1.120
1.5	$4.000 \pm 6.33 \%$	$2.400 \pm 4.17 \%$	$1.200 \pm 4.17 \%$
	$2.311 \sim 5.689$	$1.733 \sim 3.067$	0.867 ~ 1.533
2	$5.333 \pm 6.67 \%$	$3.200 \pm .33 \%$	$1.600 \pm 4.33 \%$
	$3.556 \sim 7.111$	$2.507 \sim 3.893$	$1.253 \sim 1.947$
2.5	$6.667 \pm 7.00 \%$	$4.000 \pm 4.50 \%$	$2.000 \pm 4.50 \%$
	4.800 ~ 8.533	3.280 ~ 4.720	1.640 ~ 2.360
3	$8.000 \pm 7.33 \%$	$4.800 \pm 4.67 \%$	$2.400 \pm 4.67 \%$
	$6.044 \sim 9.956$	$4.053 \sim 5.547$	2.027 ~ 2.773
3.5	$9.333 \pm 7.67 \%$	$5.600 \pm 4.83 \%$	$2.800 \pm 4.83 \%$
	7.289 ~ 1.378	4.827 ~ 6.373	$2.413 \sim 3.187$
4	$10.667 \pm 8.00 \%$	$6.400 \pm 5.00 \%$	$3.200 \pm 5.00 \%$
	8.533 ~ 12.800	$5.600 \sim 7.200$	$2.800 \sim 3.600$
4.5	$12.000 \pm 8.33 \%$	$7.200 \pm 5.17 \%$	$3.600 \pm 5.17 \%$
	9.778 ~ 14.222	$6.373 \sim 8.027$	$3.187 \sim 4.013$
5	$13.333 \pm 8.67 \%$	$8.000 \pm 5.33 \%$	$4.000 \pm 5.33 \%$
	$11.022 \sim 15.644$	7.147 ~ 8.853	$3.573 \sim 4.427$
6	$16.000 \pm 9.33 \%$	$9.600 \pm 5.67 \%$	$4.800 \pm 5.67 \%$
	13.511 ~ 18.489	$8.693 \sim 10.507$	4.347 ~ 5.253
7	$18.667 \pm 10.00 \%$	$11.200 \pm 6.00 \%$	$5.600 \pm 6.00 \%$
	$16.000 \sim 21.333$	$10.240 \sim 12.160$	$5.120 \sim 6.080$
8	$21.333 \pm 10.67 \%$	$12.800 \pm 6.33 \%$	$6.400 \pm 6.33 \%$
	18.489 ~ 24.178	11.787 ~ 13.813	$5.893 \sim 6.907$
9	$24.000 \pm 11.33 \%$	$14.400 \pm 6.67 \%$	$7.200 \pm 6.67 \%$
	$20.978 \sim 27.022$	$13.333 \sim 15.467$	6.667 ~ 7.733
10	$26.667 \pm 12.00 \%$	$16.000 \pm 7.00 \%$	$8.000 \pm 7.00 \%$
	23.467 ~ 29.867	14.880 ~ 17.120	7.440 ~ 8.560
15	$40.000 \pm 12.00 \%$	$24.000 \pm 7.00 \%$	$12.000 \pm 7.00 \%$
	$35.200 \sim 44.800$	$22.320 \sim 25.680$	11.160 ~ 12.840
20	$53.333 \pm 12.00 \%$	$32.000 \pm 7.00 \%$	$16.000 \pm 7.00 \%$
	$46.933 \sim 59.733$	$29.760 \sim 34.240$	14.880 ~ 17.120
30	$80.000 \pm 12.00 \%$	$48.000 \pm 7.00 \%$	$24.000 \pm 7.00 \%$
	$70.400 \sim 89.600$	$44.640 \sim 51.360$	$22.320 \sim 25.680$
40	$106.67 \pm 12.00 \%$	$64.000 \pm 7.00 \%$	$32.000 \pm 7.00 \%$
	93.867 ~ 119.47	$59.520 \sim 68.480$	29.760~34.240
50	$133.33 \pm 12.00 \%$	$80.000 \pm 7.00 \%$	$40.000 \pm 7.00 \%$
	$117.33 \sim 149.33$	$74.400 \sim 85.600$	$37.200 \sim 42.800$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.6 Operation time range for Definite time-delayed characteristic (DT01)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.050 \pm 2.56 \%$	$0.050 \pm 2.56 \%$	$0.050 \pm 2.56 \%$
	${ }^{*} 0.040 \sim 0.101$	* $0.040 \sim 0.101$	* $0.040 \sim 0.101$
0.5	$0.100 \pm 2.63 \%$	$0.100 \pm 2.63 \%$	$0.100 \pm 2.63 \%$
	$0.048 \sim 0.153$	0.048~ 0.153	$0.048 \sim 0.153$
1	$0.200 \pm 2.75 \%$	$0.200 \pm 2.75 \%$	$0.200 \pm 2.75 \%$
	$0.145 \sim 0.255$	$0.145 \sim 0.255$	$0.145 \sim 0.255$
1.5	$0.300 \pm 2.88 \%$	$0.300 \pm 2.88 \%$	$0.300 \pm 2.88 \%$
	$0.243 \sim 0.358$	$0.243 \sim 0.358$	$0.243 \sim 0.358$
2	$0.400 \pm 3.00 \%$	$0.400 \pm 3.00 \%$	$0.400 \pm 3.00 \%$
	$0.340 \sim 0.460$	$0.340 \sim 0.460$	$0.340 \sim 0.460$
2.5	$0.500 \pm 3.13 \%$	$0.500 \pm 3.13 \%$	$0.500 \pm 3.13 \%$
	$0.438 \sim 0.563$	$0.438 \sim 0.563$	$0.438 \sim 0.563$
3	$0.600 \pm 3.25 \%$	$0.600 \pm 3.25 \%$	$0.600 \pm 3.25 \%$
	$0.535 \sim 0.665$	$0.535 \sim 0.665$	$0.535 \sim 0.665$
3.5	$0.700 \pm 3.38 \%$	$0.700 \pm 3.38 \%$	$0.700 \pm 3.38 \%$
	$0.633 \sim 0.768$	$0.633 \sim 0.768$	$0.633 \sim 0.768$
4	$0.800 \pm 3.50 \%$	$0.800 \pm 3.50 \%$	0.800 $\pm 3.50 \%$
	$0.730 \sim 0.870$	$0.730 \sim 0.870$	$0.730 \sim 0.870$
4.5	$0.900 \pm 3.63 \%$	$0.900 \pm 3.63 \%$	$0.900 \pm 3.63 \%$
	$0.828 \sim 0.973$	$0.828 \sim 0.973$	$0.828 \sim 0.973$
5	$1.000 \pm 3.75 \%$	$1.000 \pm 3.75 \%$	$1.000 \pm 3.75 \%$
	$0.925 \sim 1.075$	0.925 ~ 1.075	$0.925 \sim 1.075$
6	$1.200 \pm 4.00 \%$	$1.200 \pm 4.00 \%$	$1.200 \pm 4.00 \%$
	$1.120 \sim 1.280$	$1.120 \sim 1.280$	$1.120 \sim 1.280$
7	$1.400 \pm 4.25 \%$	$1.400 \pm 4.25 \%$	$1.400 \pm 4.25 \%$
	$1.315 \sim 1.485$	$1.315 \sim 1.485$	$1.315 \sim 1.485$
8	$1.600 \pm 4.50 \%$	$1.600 \pm 4.50 \%$	$1.600 \pm 4.50 \%$
	$1.510 \sim 1.690$	$1.510 \sim 1.690$	$1.510 \sim 1.690$
9	$1.800 \pm 4.75 \%$	$1.800 \pm 4.75 \%$	$1.800 \pm 4.75 \%$
	$1.705 \sim 1.895$	$1.705 \sim 1.890$	$1.705 \sim 1.895$
10	$2.000 \pm 5.00 \%$	$2.000 \pm 5.00 \%$	$2.000 \pm 5.00 \%$
	$1.900 \sim 2.100$	$1.900 \sim 2.100$	$1.900 \sim 2.100$
15	$3.000 \pm 5.00 \%$	$3.000 \pm 5.00 \%$	$3.000 \pm 5.00 \%$
	2.850 ~ 3.150	$2.850 \sim 3.150$	$2.850 \sim 3.150$
20	$4.000 \pm 5.00 \%$	$4.000 \pm 5.00 \%$	$4.000 \pm 5.00 \%$
	$3.800 \sim 4.200$	$3.800 \sim 4.200$	$3.800 \sim 4.200$
30	$6.000 \pm 5.00 \%$	$6.000 \pm 5.00 \%$	$6.000 \pm 5.00 \%$
	$5.700 \sim 6.300$	$5.700 \sim 6.300$	$5.700 \sim 6.300$
40	$8.000 \pm 5.00 \%$	$8.000 \pm 5.00 \%$	$8.000 \pm 5.00 \%$
	$7.600 \sim 8.400$	$7.600 \sim 8.400$	$7.600 \sim 8.400$
50	$10.000 \pm 5.00 \%$	$10.000 \pm 5.00 \%$	$10.000 \pm 5.00 \%$
	$9.500 \sim 10.500$	$9.500 \sim 10.500$	$9.500 \sim 10.500$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.7 Operation time range for Normal inverse time-delayed characteristic (NI11)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.061 \pm 5.50 \%$	$0.042 \pm 3.75 \%$	0.030 ± 0.05
	${ }^{*} 0.040 \sim 0.195$	* $0.040 \sim 0.106$	* $0.040 \sim 0.080$
0.5	$0.122 \pm 5.67 \%$	$0.084 \pm 3.83 \%$	0.060 ± 0.05
	* $0.040 \sim 0.259$	* $0.040 \sim 0.149$	* $0.040 \sim 0.110$
1	$0.243 \pm 6.00 \%$	$0.169 \pm 4.00 \%$	0.121 ± 0.05
	$0.097 \sim 0.389$	$0.101 \sim 0.236$	$0.071 \sim 0.171$
1.5	$0.365 \pm 6.33 \%$	$0.253 \pm 4.17 \%$	$0.181 \pm 4.17 \%$
	$0.211 \sim 0.519$	$0.183 \sim 0.324$	$0.131 \sim 0.231$
2	$0.486 \pm 6.67 \%$	$0.338 \pm 4.33 \%$	$0.241 \pm 4.33 \%$
	$0.324 \sim 0.649$	$0.265 \sim 0.411$	$0.189 \sim 0.294$
2.5	$0.608 \pm 7.00 \%$	$0.422 \pm 4.50 \%$	$0.302 \pm 4.50 \%$
	$0.438 \sim 0.778$	$0.346 \sim 0.498$	$0.247 \sim 0.356$
3	$0.730 \pm 7.33 \%$	$0.506 \pm 4.67 \%$	$0.362 \pm 4.67 \%$
	$0.551 \sim 0.908$	$0.428 \sim 0.585$	$0.306 \sim 0.418$
3.5	$0.851 \pm 7.67 \%$	$0.591 \pm 4.83 \%$	$0.422 \pm 4.83 \%$
	$0.665 \sim 1.038$	$0.509 \sim 0.673$	$0.364 \sim 0.481$
4	$0.973 \pm 8.00 \%$	$0.675 \pm 5.00 \%$	$0.483 \pm 5.00 \%$
	0.778 ~ 1.167	$0.591 \sim 0.760$	$0.422 \sim 0.543$
4.5	$1.094 \pm 8.33 \%$	$0.760 \pm 5.17 \%$	$0.543 \pm 5.17 \%$
	0.892 ~ 1.297	$0.673 \sim 0.847$	$0.481 \sim 0.605$
5	$1.216 \pm 8.67 \%$	$0.844 \pm 5.33 \%$	$0.603 \pm 5.33 \%$
	$1.005 \sim 1.427$	$0.754 \sim 0.934$	$0.539 \sim 0.668$
6	$1.459 \pm 9.33 \%$	$1.013 \pm 5.67 \%$	$0.724 \pm 5.67 \%$
	1.232 ~ 1.686	0.917 ~ 1.109	$0.656 \sim 0.792$
7	$1.703 \pm 10.00 \%$	$1.182 \pm 6.00 \%$	$0.845 \pm 6.00 \%$
	1.459 ~ 1.946	1.081 ~ 1.283	$0.772 \sim 0.917$
8	$1.946 \pm 10.67 \%$	$1.351 \pm 6.33 \%$	$0.965 \pm 6.33 \%$
	1.686 ~ 2.205	$1.244 \sim 1.458$	$0.889 \sim 1.042$
9	$2.189 \pm 11.33 \%$	$1.519 \pm 6.67 \%$	$1.086 \pm 6.67 \%$
	$1.913 \sim 2.465$	1.407 ~ 1.632	$1.006 \sim 1.167$
10	$2.432 \pm 12.00 \%$	$1.688 \pm 7.00 \%$	$1.207 \pm 7.00 \%$
	$2.140 \sim 2.724$	$1.570 \sim 1.807$	1.122 ~ 1.291
15	$3.648 \pm 12.00 \%$	$2.532 \pm 7.00 \%$	$1.810 \pm 7.00 \%$
	$3.211 \sim 4.086$	$2.355 \sim 2.710$	$1.683 \sim 1.937$
20	$4.864 \pm 12.00 \%$	$3.377 \pm 7.00 \%$	$2.414 \pm 7.00 \%$
	4.281 ~ 5.448	$3.140 \sim 3.613$	$2.245 \sim 2.582$
30	$7.297 \pm 12.00 \%$	$5.065 \pm 7.00 \%$	$3.620 \pm 7.00 \%$
	$6.421 \sim 8.172$	$4.710 \sim 5.420$	3.367~3.874
40	$9.729 \pm 12.00 \%$	$6.753 \pm 7.00 \%$	$4.827 \pm 7.00 \%$
	8.561 ~ 10.896	$6.281 \sim 7.226$	$4.489 \sim 5.165$
50	$12.161 \pm 12.00 \%$	$8.442 \pm 7.00 \%$	$6.034 \pm 7.00 \%$
	10.702 ~ 13.620	7.851 ~ 9.033	$5.611 \sim 6.456$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.8 Operation time range for Extremely inverse time-delayed characteristic (EI11)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.074 \pm 5.50 \%$	0.033 ± 0.05	0.017 ± 0.05
	${ }^{*} 0.040 \sim 0.235$	* $0.040 \sim 0.082$	* $0.040 \sim 0.067$
0.5	$0.147 \pm 5.67 \%$	$0.065 \pm 3.83 \%$	0.034 ± 0.05
	* $0.040 \sim 0.314$	* $0.040 \sim 0.116$	* $0.040 \sim 0.084$
1	$0.294 \pm 6.00 \%$	$0.131 \pm 4.00 \%$	0.069 ± 0.05
	$0.118 \sim 0.471$	$0.078 \sim 0.183$	* $0.040 \sim 0.119$
1.5	$0.441 \pm 6.33 \%$	$0.196 \pm 4.17 \%$	0.103 ± 0.05
	$0.255 \sim 0.628$	$0.142 \sim 0.251$	$0.053 \sim 0.153$
2	$0.588 \pm 6.67 \%$	$0.262 \pm 4.33 \%$	0.138 ± 0.05
	$0.392 \sim 0.785$	$0.205 \sim 0.318$	$0.088 \sim 0.188$
2.5	$0.736 \pm 7.00 \%$	$0.327 \pm 4.50 \%$	0.172 ± 0.05
	$0.530 \sim 0.942$	$0.268 \sim 0.386$	$0.122 \sim 0.222$
3	$0.883 \pm 7.33 \%$	$0.392 \pm 4.67 \%$	0.207 ± 0.05
	$0.667 \sim 1.098$	$0.331 \sim 0.453$	$0.157 \sim 0.257$
3.5	$1.030 \pm 7.67 \%$	$0.458 \pm 4.83 \%$	0.241 ± 0.05
	$0.804 \sim 1.255$	$0.395 \sim 0.521$	$0.191 \sim 0.291$
4	$1.177 \pm 8.00 \%$	$0.523 \pm 5.00 \%$	0.276 ± 0.05
	0.942~ 1.412	$0.458 \sim 0.589$	$0.226 \sim 0.326$
4.5	$1.324 \pm 8.33 \%$	$0.589 \pm 5.17 \%$	0.310 ± 0.05
	$1.079 \sim 1.569$	$0.521 \sim 0.656$	$0.260 \sim 0.360$
5	$1.471 \pm 8.67 \%$	$0.654 \pm 5.33 \%$	0.345 ± 0.05
	$1.216 \sim 1.726$	$0.584 \sim 0.724$	$0.295 \sim 0.395$
6	$1.765 \pm 9.33 \%$	$0.785 \pm 5.67 \%$	0.413 ± 0.05
	$1.491 \sim 2.040$	$0.711 \sim 0.859$	$0.363 \sim 0.463$
7	$2.060 \pm 10.00 \%$	$0.916 \pm 6.00 \%$	0.482 ± 0.05
	$1.765 \sim 2.354$	$0.837 \sim 0.994$	$0.432 \sim 0.532$
8	$2.354 \pm 10.67 \%$	$1.046 \pm 6.33 \%$	0.551 ± 0.05
	$2.040 \sim 2.668$	0.964 ~ 1.129	$0.501 \sim 0.601$
9	$2.648 \pm 11.33 \%$	$1.177 \pm 6.67 \%$	0.620 ± 0.05
	$2.315 \sim 2.981$	$1.090 \sim 1.264$	$0.570 \sim 0.670$
10	$2.942 \pm 12.00 \%$	$1.308 \pm 7.00 \%$	0.689 ± 0.05
	$2.589 \sim 3.295$	1.217 ~ 1.400	$0.639 \sim 0.739$
15	$4.413 \pm 12.00 \%$	$1.962 \pm 7.00 \%$	$1.034 \pm 7.00 \%$
	$3.884 \sim 4.943$	$1.825 \sim 2.099$	$0.961 \sim 1.106$
20	$5.885 \pm 12.00 \%$	$2.616 \pm 7.00 \%$	$1.378 \pm 7.00 \%$
	5.178 ~ 6.591	$2.433 \sim 2.799$	$1.282 \sim 1.475$
30	$8.827 \pm 12.00 \%$	$3.924 \pm 7.00 \%$	$2.067 \pm 7.00 \%$
	7.768 ~ 9.886	$3.650 \sim 4.199$	$1.923 \sim 2.212$
40	$11.769 \pm 12.00 \%$	$5.232 \pm 7.00 \%$	$2.756 \pm 7.00 \%$
	10.357 ~ 13.181	4.866 ~ 5.599	$2.563 \sim 2.949$
50	$14.711 \pm 12.00 \%$	$6.540 \pm 7.00 \%$	$3.445 \pm 7.00 \%$
	12.946 ~ 16.477	$6.083 \sim 6.998$	$3.204 \sim 3.687$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.9 Operation time range for Extremely inverse time-delayed characteristic (El12)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.091 \pm 5.50 \%$	0.032 ± 0.05	0.010 ± 0.05
	* $0.040 \sim 0.292$	* $0.040 \sim 0.082$	* $0.040 \sim 0.060$
0.5	$0.182 \pm 5.67 \%$	$0.065 \pm 3.83 \%$	0.020 ± 0.05
	* $0.040 \sim 0.389$	* $0.040 \sim 0.115$	* $0.040 \sim 0.070$
1	$0.365 \pm 6.00 \%$	$0.130 \pm 4.00 \%$	0.041 ± 0.05
	$0.146 \sim 0.583$	$0.078 \sim 0.182$	* $0.040 \sim 0.091$
1.5	$0.547 \pm 6.33 \%$	$0.195 \pm 4.17 \%$	0.061 ± 0.05
	$0.316 \sim 0.778$	$0.140 \sim 0.249$	* $0.040 \sim 0.111$
2	$0.729 \pm 6.67 \%$	$0.259 \pm 4.33 \%$	0.081 ± 0.05
	$0.486 \sim 0.972$	$0.203 \sim 0.316$	* $0.040 \sim 0.131$
2.5	$0.912 \pm 7.00 \%$	$0.324 \pm 4.50 \%$	0.102 ± 0.05
	0.656 ~ 1.167	$0.266 \sim 0.383$	$0.052 \sim 0.152$
3	$1.094 \pm 7.33 \%$	$0.389 \pm 4.67 \%$	0.122 ± 0.05
	0.827 ~ 1.361	$0.328 \sim 0.450$	$0.072 \sim 0.172$
3.5	$1.276 \pm 7.67 \%$	$0.454 \pm 4.83 \%$	0.142 ± 0.05
	$0.997 \sim 1.556$	$0.391 \sim 0.517$	$0.092 \sim 0.192$
4	$1.459 \pm 8.00 \%$	$0.519 \pm 5.00 \%$	0.163 ± 0.05
	1.167 ~ 1.750	$0.454 \sim 0.584$	$0.113 \sim 0.213$
4.5	$1.641 \pm 8.33 \%$	$0.584 \pm 5.17 \%$	0.183 ± 0.05
	$1.337 \sim 1.945$	$0.517 \sim 0.651$	$0.133 \sim 0.233$
5	$1.823 \pm 8.67 \%$	$0.648 \pm 5.33 \%$	0.203 ± 0.05
	$1.507 \sim 2.139$	$0.579 \sim 0.718$	$0.153 \sim 0.253$
6	$2.188 \pm 9.33 \%$	$0.778 \pm 5.67 \%$	0.244 ± 0.05
	$1.848 \sim 2.528$	$0.705 \sim 0.851$	$0.194 \sim 0.294$
7	$2.553 \pm 10.00 \%$	$0.908 \pm 6.00 \%$	0.285 ± 0.05
	$2.188 \sim 2.917$	$0.830 \sim 0.985$	$0.235 \sim 0.335$
8	$2.917 \pm 10.67 \%$	$1.037 \pm 6.33 \%$	0.325 ± 0.05
	$2.528 \sim 3.306$	$0.955 \sim 1.119$	$0.275 \sim 0.375$
9	$3.282 \pm 11.33 \%$	$1.167 \pm 6.67 \%$	0.366 ± 0.05
	$2.869 \sim 3.695$	$1.081 \sim 1.253$	$0.316 \sim 0.416$
10	$3.647 \pm 12.00 \%$	$1.297 \pm 7.00 \%$	0.407 ± 0.05
	$3.209 \sim 4.084$	$1.206 \sim 1.387$	$0.357 \sim 0.457$
15	$5.470 \pm 12.00 \%$	$1.945 \pm 7.00 \%$	0.610 ± 0.05
	4.814 ~ 6.126	$1.809 \sim 2.081$	$0.560 \sim 0.660$
20	$7.293 \pm 12.00 \%$	$2.593 \pm 7.00 \%$	$0.813 \pm 7.00 \%$
	6.418 ~ 8.169	$2.412 \sim 2.775$	$0.756 \sim 0.870$
30	$10.940 \pm 12.00 \%$	$3.890 \pm 7.00 \%$	$1.220 \pm 7.00 \%$
	$9.627 \sim 12.253$	$3.618 \sim 4.162$	$1.134 \sim 1.305$
40	$14.587 \pm 12.00 \%$	$5.187 \pm 7.00 \%$	$1.626 \pm 7.00 \%$
	$12.836 \sim 16.337$	$4.824 \sim 5.550$	1.512 ~ 1.740
50	$18.234 \pm 12.00 \%$	$6.484 \pm 7.00 \%$	$2.033 \pm 7.00 \%$
	$16.045 \sim 20.422$	$6.030 \sim 6.937$	$1.890 \sim 2.175$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.10 Operation time range for Normal inverse time-delayed characteristic (NI21)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.139 \pm 5.50 \%$	$0.096 \pm 3.75 \%$	$0.070 \pm 3.75 \%$
	* $0.040 \sim 0.444$	* $0.040 \sim 0.241$	${ }^{*} 0.040 \sim 0.174$
0.5	$0.277 \pm 5.67 \%$	$0.193 \pm 3.83 \%$	$0.139 \pm 3.83 \%$
	* $0.040 \sim 0.592$	$0.045 \sim 0.341$	${ }^{*} 0.040 \sim 0.246$
1	$0.555 \pm 6.00 \%$	$0.386 \pm 4.00 \%$	$0.279 \pm 4.00 \%$
	$0.222 \sim 0.888$	$0.231 \sim 0.540$	$0.167 \sim 0.390$
1.5	$0.832 \pm 6.33 \%$	$0.578 \pm 4.17 \%$	$0.418 \pm 4.17 \%$
	0.481 ~ 1.184	$0.418 \sim 0.739$	$0.302 \sim 0.534$
2	$1.110 \pm 6.67 \%$	$0.771 \pm 4.33 \%$	$0.557 \pm 4.33 \%$
	$0.740 \sim 1.480$	$0.604 \sim 0.938$	$0.437 \sim 0.678$
2.5	$1.387 \pm 7.00 \%$	$0.964 \pm 4.50 \%$	$0.697 \pm 4.50 \%$
	$0.999 \sim 1.776$	$0.790 \sim 1.137$	$0.571 \sim 0.822$
3	$1.665 \pm 7.33 \%$	$1.157 \pm 4.67 \%$	$0.836 \pm 4.67 \%$
	$1.258 \sim 2.072$	0.977 ~ 1.337	$0.706 \sim 0.966$
3.5	$1.942 \pm 7.67 \%$	$1.350 \pm 4.83 \%$	$0.976 \pm 4.83 \%$
	$1.517 \sim 2.368$	$1.163 \sim 1.536$	0.841 ~ 1.110
4	$2.220 \pm 8.00 \%$	$1.542 \pm 5.00 \%$	$1.115 \pm 5.00 \%$
	$1.776 \sim 2.664$	$1.350 \sim 1.735$	$0.976 \sim 1.254$
4.5	$2.497 \pm 8.33 \%$	$1.735 \pm 5.17 \%$	$1.254 \pm 5.17 \%$
	$2.035 \sim 2.959$	$1.536 \sim 1.934$	$1.110 \sim 1.398$
5	$2.775 \pm 8.67 \%$	$1.928 \pm 5.33 \%$	$1.394 \pm 5.33 \%$
	$2.294 \sim 3.255$	1.722 ~ 2.134	$1.245 \sim 1.542$
6	$3.329 \pm 9.33 \%$	$2.314 \pm 5.67 \%$	$1.672 \pm 5.67 \%$
	$2.812 \sim 3.847$	$2.095 \sim 2.532$	$1.514 \sim 1.830$
7	$3.884 \pm 10.00 \%$	$2.699 \pm 6.00 \%$	$1.951 \pm 6.00 \%$
	3.329 ~ 4.439	2.468 ~ 2.930	$1.784 \sim 2.118$
8	$4.439 \pm 10.67 \%$	$3.085 \pm 6.33 \%$	$2.230 \pm 6.33 \%$
	3.847 ~ 5.031	$2.841 \sim 3.329$	$2.053 \sim 2.406$
9	$4.994 \pm 11.33 \%$	$3.470 \pm 6.67 \%$	$2.509 \pm 6.67 \%$
	4.365 ~ 5.623	$3.213 \sim 3.727$	$2.323 \sim 2.695$
10	$5.549 \pm 12.00 \%$	$3.856 \pm 7.00 \%$	$2.787 \pm 7.00 \%$
	$4.883 \sim 6.215$	$3.586 \sim 4.126$	2.592 ~ 2.983
15	$8.324 \pm 12.00 \%$	$5.784 \pm 7.00 \%$	$4.181 \pm 7.00 \%$
	$7.325 \sim 9.322$	$5.379 \sim 6.189$	3.888 ~ 4.474
20	$11.098 \pm 12.00 \%$	$7.712 \pm 7.00 \%$	$5.575 \pm 7.00 \%$
	$9.766 \sim 12.430$	$7.172 \sim 8.252$	$5.185 \sim 5.965$
30	$16.647 \pm 12.00 \%$	$11.568 \pm 7.00 \%$	$8.362 \pm 7.00 \%$
	$14.649 \sim 18.645$	$10.758 \sim 12.377$	7.777 ~ 8.948
40	$22.196 \pm 12.00 \%$	$15.424 \pm 7.00 \%$	$11.150 \pm 7.00 \%$
	$19.533 \sim 24.860$	$14.344 \sim 16.503$	$10.369 \sim 11.930$
50	$27.745 \pm 12.00 \%$	$19.279 \pm 7.00 \%$	$13.937 \pm 7.00 \%$
	24.416 ~ 31.075	$17.930 \sim 20.629$	$12.962 \sim 14.913$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.11 Operation time range for Very inverse time-delayed characteristic (VI21)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	0.210 $\pm 5.50 \%$	$0.110 \pm 3.75 \%$	$0.054 \pm 3.75 \%$
	* $0.040 \sim 0.672$	* $0.040 \sim 0.275$	* $0.040 \sim 0.136$
0.5	$0.420 \pm 5.67 \%$	$0.220 \pm 3.83 \%$	$0.109 \pm 3.83 \%$
	* $0.040 \sim 0.896$	$0.051 \sim 0.389$	* $0.040 \sim 0.192$
1	0.840 $\pm 6.00 \%$	$0.440 \pm 4.00 \%$	$0.218 \pm 4.00 \%$
	$0.336 \sim 1.344$	$0.264 \sim 0.616$	$0.131 \sim 0.305$
1.5	$1.260 \pm 6.33 \%$	$0.660 \pm 4.17 \%$	$0.327 \pm 4.17 \%$
	0.728 ~ 1.792	$0.477 \sim 0.843$	$0.236 \sim 0.417$
2	$1.680 \pm 6.67 \%$	$0.880 \pm 4.33 \%$	$0.436 \pm 4.33 \%$
	$1.120 \sim 2.240$	$0.689 \sim 1.071$	$0.341 \sim 0.530$
2.5	$2.100 \pm 7.00 \%$	$1.100 \pm 4.50 \%$	$0.544 \pm 4.50 \%$
	1.512 ~ 2.688	$0.902 \sim 1.298$	$0.446 \sim 0.642$
3	$2.520 \pm 7.33 \%$	$1.320 \pm 4.67 \%$	$0.653 \pm 4.67 \%$
	$1.904 \sim 3.136$	$1.115 \sim 1.525$	$0.552 \sim 0.755$
3.5	$2.940 \pm 7.67 \%$	$1.540 \pm 4.83 \%$	$0.762 \pm 4.83 \%$
	$2.296 \sim 3.584$	$1.327 \sim 1.753$	$0.657 \sim 0.867$
4	$3.360 \pm 8.00 \%$	$1.760 \pm 5.00 \%$	0.871 $\pm 5.00 \%$
	$2.688 \sim 4.032$	$1.540 \sim 1.980$	$0.762 \sim 0.980$
4.5	$3.780 \pm 8.33 \%$	$1.980 \pm 5.17 \%$	$0.980 \pm 5.17 \%$
	$3.080 \sim 4.480$	$1.753 \sim 2.207$	0.867 ~ 1.093
5	$4.200 \pm 8.67 \%$	$2.200 \pm 5.33 \%$	$1.089 \pm 5.33 \%$
	$3.472 \sim 4.928$	$1.965 \sim 2.435$	$0.973 \sim 1.205$
6	$5.040 \pm 9.33 \%$	$2.640 \pm 5.67 \%$	$1.307 \pm 5.67 \%$
	$4.256 \sim 5.824$	$2.391 \sim 2.889$	$1.183 \sim 1.430$
7	$5.880 \pm 10.00 \%$	$3.080 \pm 6.00 \%$	$1.524 \pm 6.00 \%$
	$5.040 \sim 6.720$	2.816 ~ 3.344	$1.394 \sim 1.655$
8	$6.720 \pm 10.67 \%$	$3.520 \pm 6.33 \%$	$1.742 \pm 6.33 \%$
	$5.824 \sim 7.616$	$3.241 \sim 3.799$	$1.604 \sim 1.880$
9	$7.560 \pm 11.33 \%$	$3.960 \pm 6.67 \%$	$1.960 \pm 6.67 \%$
	$6.608 \sim 8.512$	3.667 ~ 4.253	$1.815 \sim 2.105$
10	$8.400 \pm 12.00 \%$	$4.400 \pm 7.00 \%$	$2.178 \pm 7.00 \%$
	$7.392 \sim 9.408$	4.092 ~ 4.708	$2.025 \sim 2.330$
15	$12.600 \pm 12.00 \%$	$6.600 \pm 7.00 \%$	$3.267 \pm 7.00 \%$
	11.088 ~ 14.112	$6.138 \sim 7.062$	$3.038 \sim 3.495$
20	$16.800 \pm 12.00 \%$	$8.800 \pm 7.00 \%$	$4.356 \pm 7.00 \%$
	14.784 ~ 18.816	$8.184 \sim 9.416$	4.051 ~ 4.660
30	$25.200 \pm 12.00 \%$	$13.200 \pm 7.00 \%$	$6.533 \pm 7.00 \%$
	$22.176 \sim 28.224$	$12.276 \sim 14.124$	$6.076 \sim 6.991$
40	$33.600 \pm 12.00 \%$	$17.600 \pm 7.00 \%$	$8.711 \pm 7.00 \%$
	29.568 ~ 37.632	16.368 ~ 18.832	8.101 ~ 9.321
50	$42.000 \pm 12.00 \%$	$22.000 \pm 7.00 \%$	$10.889 \pm 7.00 \%$
	$36.960 \sim 47.040$	$20.460 \sim 23.540$	10.127 ~ 11.651

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.12 Operation time range for Long inverse time-delayed characteristic (LI21)

Operation time multiplier (M)	Input		
	300\%	500\%	1000\%
0.25	$0.750 \pm 5.50 \%$	$0.375 \pm 3.75 \%$	$0.167 \pm 3.75 \%$
	* $0.040 \sim 2.400$	* $0.040 \sim 0.938$	* $0.040 \sim 0.417$
0.5	$1.500 \pm 5.67 \%$	$0.750 \pm 3.83 \%$	$0.333 \pm 3.83 \%$
	* $0.040 \sim 3.200$	$0.175 \sim 1.325$	$0.078 \sim 0.589$
1	$3.000 \pm 6.00 \%$	$1.500 \pm 4.00 \%$	$0.667 \pm 4.00 \%$
	$1.200 \sim 4.800$	$0.900 \sim 2.100$	$0.400 \sim 0.933$
1.5	$4.500 \pm 6.33 \%$	$2.250 \pm 4.17 \%$	$1.000 \pm 4.17 \%$
	$2.600 \sim 6.400$	$1.625 \sim 2.875$	$0.722 \sim 1.278$
2	$6.000 \pm 6.67 \%$	$3.000 \pm 4.33 \%$	$1.333 \pm 4.33 \%$
	$4.000 \sim 8.000$	$2.350 \sim 3.650$	1.044 ~ 1.622
2.5	$7.500 \pm 7.00 \%$	$3.750 \pm 4.50 \%$	$1.667 \pm 4.50 \%$
	$5.400 \sim 9.600$	$3.075 \sim 4.425$	1.367 ~ 1.967
3	$9.000 \pm 7.33 \%$	$4.500 \pm 4.67 \%$	$2.000 \pm 4.67 \%$
	$6.800 \sim 11.200$	$3.800 \sim 5.200$	$1.689 \sim 2.311$
3.5	$10.500 \pm 7.67 \%$	$5.250 \pm 4.83 \%$	$2.333 \pm 4.83 \%$
	$8.200 \sim 12.800$	$4.525 \sim 5.975$	$2.011 \sim 2.656$
4	$12.000 \pm 8.00 \%$	$6.000 \pm 5.00 \%$	$2.667 \pm 5.00 \%$
	$9.600 \sim 14.400$	$5.250 \sim 6.750$	2.333 ~ 3.000
4.5	$13.500 \pm 8.33 \%$	$6.750 \pm 5.17 \%$	$3.000 \pm 5.17 \%$
	$11.000 \sim 16.000$	$5.975 \sim 7.525$	$2.656 \sim 3.344$
5	$15.000 \pm 8.67 \%$	$7.500 \pm 5.33 \%$	$3.333 \pm 5.33 \%$
	$12.400 \sim 17.600$	$6.700 \sim 8.300$	2.978 ~ 3.689
6	$18.000 \pm 9.33 \%$	$9.000 \pm 5.67 \%$	$4.000 \pm 5.67 \%$
	$15.200 \sim 20.800$	$8.150 \sim 9.850$	$3.622 \sim 4.378$
7	$21.000 \pm 10.00 \%$	$10.500 \pm 6.00 \%$	$4.667 \pm 6.00 \%$
	$18.000 \sim 24.000$	$9.600 \sim 11.400$	4.267 ~ 5.067
8	$24.000 \pm 10.67 \%$	$12.000 \pm 6.33 \%$	$5.333 \pm 6.33 \%$
	$20.800 \sim 27.200$	$11.050 \sim 12.950$	4.911 ~ 5.756
9	$27.000 \pm 11.33 \%$	$13.500 \pm 6.67 \%$	$6.000 \pm 6.67 \%$
	$23.600 \sim 30.400$	$12.500 \sim 14.500$	$5.556 \sim 6.444$
10	$30.000 \pm 12.00 \%$	$15.000 \pm 7.00 \%$	$6.667 \pm 7.00 \%$
	$26.400 \sim 33.600$	$13.950 \sim 16.050$	$6.200 \sim 7.133$
15	$45.000 \pm 12.00 \%$	$22.500 \pm 7.00 \%$	$10.000 \pm 7.00 \%$
	$39.600 \sim 50.400$	$20.925 \sim 24.075$	$9.300 \sim 10.700$
20	$60.000 \pm 12.00 \%$	$30.000 \pm 7.00 \%$	$13.333 \pm 7.00 \%$
	$52.800 \sim 67.200$	$27.900 \sim 32.100$	$12.400 \sim 14.267$
30	$90.000 \pm 12.00 \%$	$45.000 \pm 7.00 \%$	$20.000 \pm 7.00 \%$
	$79.200 \sim 100.80$	$41.850 \sim 48.150$	$18.600 \sim 21.400$
40	$120.00 \pm 12.00 \%$	$60.000 \pm 7.00 \%$	$26.667 \pm 7.00 \%$
	105.60 ~ 134.4	$55.800 \sim 64.200$	$24.800 \sim 28.533$
50	$150.00 \pm 12.00 \%$	$75.000 \pm 7.00 \%$	$33.333 \pm 7.00 \%$
	$132.00 \sim 168.00$	$69.750 \sim 80.250$	$31.000 \sim 35.667$

Note: The values shown in the upper column of each box represent the theoretical operation tome and error limit, and those in the lower column represent the permissible range
Refer to the *32 to *35.

Table 3.13 Reset time characteristic
Input: Setting value $\times 300 \% \rightarrow 0$

	Output contact	Reset of operation timer inside relay
01 : Definite time-delayed $(200 \mathrm{~ms})$	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$	Immediately
11 : Inverse time-delayed	$200 \mathrm{~ms} \pm 25 \mathrm{~ms}$	Approx. $8 \mathrm{~s}(\mathrm{M}=10, \mathrm{l}=0)^{\star} 36$
21 : Definite time-delayed $(50 \mathrm{~ms})$	50 ms or less	Immediately

Note:
*32 The numbers "300\%", " 500% " and "1000\%" represent multiples against the current setting.
*33 The values shown in the upper column of each box in the table represent the theoretical operation time and error limit, and those in the lower column represent the permissible range (see the formula below).

a. Operation time multiplier " M " ≤ 10	b. Operation time multiplier " M " >10
$\varepsilon=\frac{T_{M}-\frac{M}{10} \cdot T_{10}}{T_{10}} \cdot 100$	$\varepsilon=\frac{T_{M}-\frac{M}{10} \cdot T_{10}}{\frac{M}{10} \cdot T_{10}} \cdot 100$

where;
T_{10} : Nominal operation time for reference operation time setting ($M=10$)
T_{M} : Actual measurement of operation time for operation time setting " M "
$\varepsilon \quad:$ Error (\%)
M : Operation time multiplier
If an error range determined using the formula above is smaller the lower error limit of $\pm 50 \mathrm{~ms}$, this lower error limit should be used as the error range.
34 "40ms" given at the underlined part (marked with "") in the table indicates the time determined as minimum operation time.
*35 The table is prepared on the basis of minimum operation setting under normal temperature, and the operation time ranges change as condition varies.
*36 The elapsed time of reset of the operation timer can be checked through the "Elapse of time-delayed timer (LAPSE) indicator".

4 Functions

4.1 Protection

4.1.1. Phase fault elements

Fig. 4.1 "Phase fault element internal function block diagram" shows operation of the Phase fault elements.

The time-delayed element compares input currents with the operation setting in each phase. If an input current is larger than the specified operation level, the element outputs an operation signal when the time-delayed timer expires. The expiring time depends on the input current amount and the setting in the operation time characteristic.

Figure 4.1 Phase fault element Internal function diagram
Like the time-delayed element, the instantaneous element also compares the input current with the operation setting to output an operation signal when a period of time set in the instantaneous timer has elapsed.
(1) Setting of operation current

The operation current settings for the instantaneous and time-delayed elements are indicated with current values [A].

When the setting "Lock", the elements selected are locked for operation.
(2) Setting of operation time multiplier

This parameter is indicated with a multiplier against the basic operation time characteristic (value for the letter " M " in the operation characteristic formula shown in Figure 3.1).
(3) Setting of operation time characteristic

A time-delayed element includes 11 types of inverse and a type of definite time-delayed characteristics for trip action that meet the requirements specified by IEC60255-3. One of them can be selected by operation time characteristic setting.

Figures 3.1 and 3.2 show the operation time characteristic curves and operation time characteristic formulas.
(4) Setting of reset time characteristic

A time-delayed element includes a type of inverse and two types of definite time-delayed
characteristics for reset action that meet the requirements specified by IEC60255-3. One of them can be selected by reset time characteristic setting.

Figure 3.3 shows the reset time characteristic curves and reset time characteristic formula.

| Characteristic | | Reset when relay input is less than operation setting | | Response to
 intermittent
 inputs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Designation | Symbol | Reset of time-delayed
 timer inside relay | Output contact | Unlikely to
 operate |
| Definite
 time-delayed | 01 | Quick reset | Definite time-delayed of
 200ms | |
| Inverse
 time-delayed | 21 | Quick reset | Definite time-delayed of
 50 ms | |
| | Inverse time-delayed
 reset according to the
 formula below:
 $\mathrm{t}_{\mathrm{r}}=\frac{8}{1-1^{2}} \times \frac{\mathrm{M}}{10}(\mathrm{~s})$ | Definite time-delayed of
 200 ms | Likely to
 operate | |

For the definite time-delayed reset characteristic, the internal timer will reset quickly when the input current becomes less than the operation setting. The definite time-delayed reset characteristic is not suitable for detecting intermittent overloads which are likely to occur in starting a motor or intermittent earth fault. For the inverse time-delayed reset characteristic in turn, the internal timer will reset according to an inverse time-delayed reset characteristic even when the input current becomes less than the operating setting by following the principle of resetting the electromagnetic mechanical type induction disc. Therefore, it is relatively easy for the inverse time-delayed reset characteristic to detect intermittent phenomena. Select either depending on your application.
Note that the output contact will reset after a definite period of time whichever characteristic is selected for resetting.

Figure 4.2 Comparison of relay operation with intermittent overload input

between two reset characteristics

(5) Display of elapsed time of time-delayed timer

For the time-delayed elements, the elapsed time of the internal operation timer is indicated in the display. As the elapsed time is counted, operators may imagine the current status of the electromagnetic mechanical induction disc, which will help detect the starting value.
When an input current is detected to have reached the operation setting or more, " 0 " will appear in the display. Counting will be made by dividing the operation time equally into ten parts and starting from " 1 ", " 2 " to " 9 " and "10". An operation signal will be output as soon as the counter reaches "10".

4.1.2 Earth fault directional elements

Fig. 4.3 "Earth fault directional element internal function block diagram" shows operation principle of the earth fault directional elements.

The levels of zero-phase current and zero-phase voltage are detected through comparing input current and voltage with the operation setting values. In addition, from the phase relation between zero-phase current and zero-phase voltage the fault direction is distinguished. (see the Fig. 4.4 phase characteristics). When all of these three inputs of AND gate are enable, the element outputs an operation signal after the time-delayed timer expires.

Figure 4.3 Earth fault directional element internal function diagram
(1) Setting of I_{0} Operation current

The I_{0} operation current settings are indicated with current values $[\mathrm{mA}]$.
When the setting "Lock", the elements selected are locked for operation.
(2) Setting of V_{0} Operation voltage

The V_{0} operation voltage settings are indicated with voltage values [V].
When the setting "Lock", the elements selected are locked for operation.
(3) Setting of operation time

The operation time settings are indicated with time value [s].
(4) Setting of characteristic angle

The characteristic angle settings are indicated with angle value [${ }^{\circ}$].

Figure 4.4 Phase characteristic of earth fault directional element characteristic angle: 45° setting)

(5) ZCT error correction

This protection relay provides a function that it can correct the error of ZCT transformation ratio. Through this function improving relay's composite characteristic is achieved. ZCT having transformation ratio within range of $200 \mathrm{~mA} / 1.5 \mathrm{~mA} \sim 4.1 \mathrm{~mA}(\pm 0 \sim+2.6 \mathrm{~mA})$ can be used with this relay together. Here, ZCT error is corrected based on nominal transformation ratio $200 \mathrm{~mA} / 1.5 \mathrm{~mA}$ of specification JEC-1201.
If an enable status of ZCT error correction was desired, it is necessary to remember the ZCT secondary effective current value by holding a 200 mA rated zero-phase current into ZCT connected with relay at first. And then, after setting the error correction status "on", the I_{0} can be corrected according to the following contents and formulas: (reference the "General operation manual", please)
a. The correction of I_{0} measurement indication value

A ZCT error correction concept of I_{0} measurement indication value is shown in Figure 4.5 and the below formula. Through time the relay input current value by ZCT actual measured ratio it is realized to access to an input and output linearity characteristic which is necessary for meter function to display the I_{0} measurement indication value.

Note: The max. measurement indication value is 600 mA (Values more than 600 mA will be displayed at 600 mA).
I_{0} measurement indication value (primary conversion)
$=($ Relay Io input current $) \times($ ZCT actual measurement ratio $)$
$=\left(\right.$ Relay I_{0} input current $) \times(200 /$ ZCT 2 ry output actual measured value $)$
b. The correction of I_{0} operation setting value

A ZCT error correction concept of I_{0} operation setting value is shown in Figure 4.5 and the below formula. In order to achieve the correction target that when input 200 mA into ZCT primary the relay can operate correctly with 1.5 mA setting, to add the difference value (correction value of operation setting) between actual measured value and 1.5 mA upon the operation setting value to access to error correction.
Note: For the other setting except 1.5 mA , due to the same correction value of operation setting be added, therefore there are differential correction errors with differential setting value. And it also brings correction error for the I_{0} measurement indication value described in above a. Please pay attention to.
I_{0} operation value (primary conversuion)
$=\left\{\left(l_{0}\right.\right.$ operation setting value $)+($ operation setting correction value $\left.)\right\} \times($ ZCT actual measured ratio $)$
$=\left\{\left(l_{0}\right.\right.$ operation setting value $)+(Z C T 2$ ry actual measured value -1.5$\left.)\right\} \times(200 /$ ZCT 2 ry actual measured value $)$

In CFP1-A02 type, since the sensitivity for input current is low and 1/10 of CFP1-A01 type. The input at the time of adjustment needs to set at 2A which is 10 times the CFP1-A01 type. In adjustment, please transpose all the above-mentioned current values to one 10 times the value of them. The maximum measurement range is 6 A also 10 times the above-mentioned value.

ZCT secondary [mA]			ZCT primary [mA]				
Operation setting value			Theoretical value	Measurement indication value		Operation value	
Corrected		No corrected		No corrected	Corrected	No corrected	Corrected
1.0	->	2.5	133.3	66.67(-50\%)	133.3 (\pm 0\%)	66.67(-50\%)	166.7(+25\%)
1.5	->	3.0	200	100 (-50\%)	200 ($\pm 0 \%$)	100 (-50\%)	200 ($\pm 0 \%$)
2.0	->	3.5	266.7	133.3(-50\%)	266.7 ($\pm 0 \%$)	133.3(-50\%)	233.3(-12.5\%)
5.0	->	6.5	666.7	333.3(-50\%)	>600	333.3(-50\%)	433.3(-34\%)
10	->	11.5	1333.3	666.7(-50\%)	>600	666.7(-50\%)	766.7(-42.5\%)

Figure 4.5 ZCT error correction concept (Example: correction for 200/3mA product)

If an unavailable status of ZCT error correction was desired, please set the error correction status "oF".

Note: the ZCT secondary actual measurement value is set at 1.5 mA and the ZCT error correction status is set at "oF" in advance before shipment.

In CFP1-A02 type, since the sensitivity for input current is low and 1/10 of CFP1-A01 type.
In adjustment, please transpose all the above-mentioned current values to one 10 times the value of them.

4.1.3 General functions

(1) Operation display

For the time-delayed element, when the input current becomes larger than the operation setting, the corresponding operation indicator LED will blink to allow you check the starting value.
The LED lamp will come on as soon as an operation output is made when a period of operation time has elapsed.

For the instantaneous element in turn, the LED lamp will come on at the same time when an operation output is made.

The operation indicator LED has been set to "self-hold" in the factory. This setting can be freely changed to "auto reset".

With the "self-hold" setting, data of the latest operation indication will be stored in the internal memory even if the auxiliary power supply runs down.

The data stored will be cleared when the "indicator reset" switch is pressed.
Up to latest five phenomena can be stored and displayed as a history record. (Older data than the latest five phenomena will automatically be cleared).

Item No.	History	Sequence of recording
311	$1^{\text {st }}$ phenomena	Latest fault record data
312	$2^{\text {nd }}$ phenomena	
313	rd	
314	$3^{\text {rd }}$ phenomena	
315	$4^{\text {th }}$ phenomena	
Oldest fault record data		

(2) Output contacts

The signaling outputs X_{0} to X_{3} and trip outputs X_{4} and X_{5} are all programmable type.
The factory default setting of the arrangement of these outputs is as shown in the internal function block diagram of Figure 5.2. This setting can be freely changed by specifying outputs of the internal elements based on the OR logic.

All the outputs have been set to "auto reset" in the factory. Any of them can be changed to "self hold".

Figure 4.6 Schematic image of Programmable Outputs (example: COC4-A01)
(3) Forced operation

It is possible to carry out forced operation of any of the signaling outputs X_{0} to X_{3} and trip outputs X_{4} and X_{5} independently. Forced operation is useful for checking the wiring.

When forced operation is carried out, the corresponding LED lamps will come on to show the current status of the programmable outputs. Checking the lamp status will be useful not only for wiring check but also to check the programmable outputs arrangement.

4.2 Measurement

Currents input to the relay are measured and converted into freely set CT primary currents, then indicated on the display.
(1) Real time measurement

The effective values of input current and $2 f$ ratio are displayed for each phase.
(2) Max. record

The maximum effective current is recorded and stored for each phase.
The max. record will be all cleared when "aux. power supply OFF" or "max. record reset" operation is made.
(3) Fault record

In the event of system fault, the effective current and waveform data that have been measured at the time when one of the protection elements operates to issue an output signal are stored. Data of up to five phenomena can be stored and displayed for each phase.
With "aux. power supply OFF", only the waveform data will be cleared and the effective current data will remain. With "fault record reset" operation, however, both of the data items will be all cleared.
(Records older than the $5^{\text {th }}$ phenomenon will automatically be cleared.)

Item No.	History	Sequence of recording
211	$1^{\text {st }}$ phenomena	Latest fault record data
212	$2^{\text {nd }}$ phenomena	
213	$3^{\text {rd }}$ phenomena	
214	$4^{\text {th }}$ phenomena	
215	$5^{\text {th }}$ phenomena	Oldest fault record data

The following fault wave form data can be collected if a communication card is installed:

Item	Specification
Data sampling cycle	Fixed to the electric angle of 30° of rated frequency
Data storing capacity (for a phenomenon)	224 cycles of rated frequency (Data point: $224 \times 360^{\circ} / 30^{\circ}=2688$ points)
Permissible setting range	224 cycles before trip ~ 224 cycles after trip
Collected data	The range for data collection can be set by cycle within the "data storing capacity" in the "permissible set range".

Figure 4.7 Concept of recording fault waveform

4.3 Self-diagnosis

The self-diagnosis function monitors the electronic circuit and built-in power source continuously. If an abnormal condition occurs, the protection elements will be locked for operation. Also, the RUN LED lamp will go off and the self-diagnosis output contact (break contact) will be closed.
(1) Checking defect code at failure detection

When a failure is detected, the defect code will be recorded. This defect code can be checked through the self-diagnosis (ALARM) status indication.
(2) Resetting self-diagnosis output

If a failure is detected, the failure status may be reset by turning off/on the power.
In this case, be sure to lock the trip circuit on the external wiring of the relay before resetting. (If the failure persists, an erroneous output may be caused).
(3) Clearing the defect code

The defect code data stored at failure detection can not be cleared only by carrying out the power on/off procedure in the item (2) above. All the defect code numbers that have been detected since the previous "self-diagnosis reset" (RESET ALARM) operation was made are accumulated in the memory. To clear the record data, carry out "self-diagnosis reset" (RESET ALARM) operation.

Table 4.1 Output for protection relay failures

Status	Detected items		Output			
			Display		ALARM (break contact)	Operation output lock
			RUN	Defect code		
Normal	-		On	No display	Open	Not locked
Power circuit failure	-		Off		Closed	Locked
CPU failure	-					* 45
Monitor error	ROM check			0001		
	RAM check			0002		
	A/D accuracy check			0003		
	A/l check			0004		
	A/D check			0005		
	SRAM check			0006		
	D/O status check			0008		
	D/O operation check			0009		Locked
	Analog filter check			0010		Locked
	A/l double check			0011		
	D/I check	*41		0012		
	E^{2} PROM check			0013		
	Computing function check			0014		
	WDT check			0015		
	Data transfer check	*42		0016		
	Differential current check	*43		0017		
	Communication card check	*44	On	0028	Open	Not locked
	Communication card channel No. switch setting error	*44		0029		
	Communication card baud rate switch setting error	*44		0030		
	Communication card channel No. switch change error	*44		0031		
	Communication card baud rate switch change error	* 44		0032		

*41 Monitored only in the models with built-in D/I function.

* 42 Monitored only in the models with D2 unit.
*43 Monitored only the biased differential relay.
*44 Monitored only when the relay is installed with communication card.
*45 No necessary to lock the operation output as any signals can't be output in case of CPU stop.

4.4 Communication

Figure 4.8 shows an example of network system configuration.
For more information on the communication facilities, see the materials shown in the introduction (page 2):

Central Control System

Remote Operation and Monitoring

The network system enables the central control system to fully access to the protection relays, and achieve remote monitoring of the measurement values, operational status etc as well as remote operation such as change of settings. Thereby efficient operation and maintenance are realized.

Local Operation and Monitoring for Site Maintenance

By connecting PC with relay via the RS232C port located on the relay panel, local operation and monitoring are enabled as same as the remote operation and monitoring. Thereby the maintenance work at site is strongly supported.

Figure 4.8 Example of communication network system configuration

Using the communication facilitates, it is possible to perform Remote Monitoring and Remote Operation with the various useful functions shown in Table 4.2.

Table 4.2 Outline of functions enabled by communication network

Direction of communication	Item	Description
Remote Monitoring RTU $\longleftarrow \begin{gathered}\text { Protection } \\ \text { relay }\end{gathered}$	Setting	Read the settings stored in the protection relay.
	Measurement	Read the measurements stored in the protection relay.
	Max. value	Read the max. values stored in the protection relay.
	Fault record	Read the measurements at the time of trip.
	Self-diagnosis (ALARM)	Read the result of self-diagnosis.
	Operation element	Read the elements that operated at the time of trip.
	Operation time	Read the time at the time of trip.
	Current time	Read the internal time of the communication card.
	Waveform record	Read the wave form at the time of trip.
Remote Operation$\text { RTU } \leadsto \begin{gathered} \text { Protection } \\ \text { relay } \end{gathered}$	Setting	Change the setting of the protection relay.
	Indicator reset	Reset the LED lamp that came on at the time of trip.
	Self-diagnosis (ALARM) reset	Clear the result of self-diagnosis.
	Fault record reset	Clear the fault record, operation elements and operation time data.
	Max. record reset	Clear the max. record.
	Forced operation	Carry out forced operation of output contact.
	Time	Set time of communicate card.

5 Configuration

5.1 Internal configuration
(1) I/O and CPU circuits

Fig. 5.1 shows the internal block diagram of the model CFP1-A02D1.
Current and voltage inputs are converted into AC signals at the electronic circuit level via the auxiliary transformer and filter circuits. These signals are retained as a form of DC signal in the sample hold circuit on each channel sharing a same time. The multiplexer selects a channel to take the signal and sends it to an A/D converter. The signals are converted to digital signals sequentially in the converter to be sent to the CPU.

The setting circuit is used to input setting data into the CPU.
These inputs will be used to carry out the functions shown in Fig. 5.2 "Internal function block diagram", then issue output signals to the display and output relay.
(2) Self-diagnosis circuit

When the self-diagnosis function detects that the electronic and power circuits are normal, the output relay will be energized to open the self-diagnosis output contact (break contact).
The self-diagnosis output contact (break contact) will be closed when a failure occurs in the circuits above or when the built-in power fuse burns.

Figure 5.1 Internal block diagram of Type CFP1-A02D1 relay

Figure 5.2 Internal function block diagram of Type CFP1-A02D1 relay

5.2 External connection

(1) Connection diagram

Figures 5.4 shows examples of input circuit (AC circuit) connection, Figure 5.5 an example of control circuit (DC circuit) connection and Figure 5.6 a terminal arrangement.
In the terminals, M3.5 screws should be used and wires of $2 \mathrm{~mm}^{2}$ or less are recommended using.
(2) Precautions for wiring work
a. Important facilities should be provided with fail safe measures such as dual system to improve reliability of the facilities.
b. Effects of external surge

Some type of surge with a certain condition may inversely affect the relay. If so, take it into account to install MF type surge absorbers made by Mitsubishi Electric.
c. Guarantee of AC auxiliary power supply against power interruption

The AC auxiliary power supply of the relay is not guaranteed against power interruption. When you do not have an uninterruptible AC power source, use an AC/DC converter of CPS1 type manufactured by Mitsubishi Electric or uninterruptible power source (UPS) that is commercially available.
d. Inrush current of auxiliary supply

Since inrush current may flow in the relay when the auxiliary power supply is turned on as shown in the figure below, make consideration of this point when selecting the breaker for the auxiliary supply power circuit.

Figure 5.3 Inrush current of auxiliary power supply
e. Trip circuit

Only the contacts X_{4} and X_{5} can be used for the trip circuit. Please keep in mind that the contacts X_{0} to X_{3} can not be used for the trip circuit. (If used, the contact may burn).

Connect the pallet contact (52a) of the circuit breaker to the trip circuit.
f. Self-diagnosis output circuit

The self-diagnosis output contact is so configured that the auxiliary relay can be energized (break contact) with normal result of monitoring, in order to be able to continue monitoring even if the
built-in power fuse burns. Therefore, connect the timer to the external wiring. (See Fig. 5.5 "DC circuit connection diagram")
g. Earth circuit

Be sure to earth the earth terminal located on the back of the relay according to the Class D earth wiring method.
h. ZCT circuit

It is necessary to block the surge and noise entry into relays, thus the 2-cores shielded wire (core size $0.75 \sim 1 \mathrm{~mm}^{2}$) must be used for connecting ZCT and relay, and must connect the shield wire to earth terminal of relay or panel.

Be sure of that the burden of shielded wire with two-way must be less than 5Ω.
(Such as: for $0.75 \mathrm{~mm}^{2}$ wire, approx 100 m by one-way)

Figure 5.4 External connection diagram for CFP1-A02D1 relay

[^0]Figure 5.5 Auxiliary supply circuit connection example of type CFP1-A02D1 relay

Figure 5.6 Rear view of type CFP1-A02D1 relay

6 Handling

6.1 Unpacking

Usually this relay is packed in a D1 case for transportation. However, it may occur that only the sub unit is transported independently for the convenience at repair. In such a case, fully brush off the dust, dirt, etc. adhered to the sub unit after completion of unpacking, and further visually check that the parts mounted on the front panel or built in the sub unit are not damaged.

6.2 Transportation and storage

To carry the equipment within the place of use, handle it carefully so that the parts installed on the front panel of the sub unit or built-in parts cannot be deformed or broken.

6.3 Appearance and how to pull sub unit out

The relay is so constructed that the sub unit can be drawn out, in order to facilitate inspection or test. It is possible to pull the sub unit out without disconnecting the external wiring.

Note that the sub unit should not be drawn out with the line hot. Before drawing out, be sure to take the following actions.

- Lock the tripping circuit including breakers.
- Stop the main circuit.
- Shorten and isolate the CT circuit.
- Open the auxiliary power supply circuit.

Bear in mind that careless opening of circuits may result in opening the other control circuits too to impair the protective function. Be sure to only shut off the concerned circuit.

The CT circuit is provided with an automatic short circuit mechanism. In case that you have pulled the sub unit out without isolating the CT circuit by mistake, the automatic short circuit mechanism will work to prevent the CT secondary circuit from opening.

Figure 6.1 Outside view of type CFP1-A02D1 relay
6.3.1 How to draw sub unit out
(1) Removing the cover

Hold the lock levers, which are located at both sides of the cover, on their front sections. Take off the cover straight toward you while pushing the levers inwards.
(2) Drawing the sub unit

Grip the draw-out handles (located at both sides of the front of the sub unit). Press the locking pieces installed in the upper portion of the draw-out handles with your thumbs to pull the sub unit towards you.

Note) The sub unit is so designed that it can not be removed unless it is pulled out with a relatively strong force, in consideration of quake-proof measures. When the relay unit is to be removed independently, it is recommended to draw it out with the case held by other operator.

When about a half portion of the sub unit is pulled out of the case, just stop the drawing motion. Then, hold the top and bottom of the sub unit to pull it out completely, in order to prevent the unit from falling.

Note) Be careful not to touch the printed circuit board and parts inside the sub unit.

6.3.2 Housing the sub unit

(1) Housing the sub unit

(2) Attaching the cover

Hold the sub unit on the top and bottom to push the unit into the case approx. a half of the unit.

Note)

- Be careful not to touch the PCB and parts inside the sub unit.
- The sub unit is so constructed that it can not be housed in the case upside down.

Fully insert the sub unit into the case until you
hear a click while pressing the handles located on both sides of the front of the sub unit.

Note) Please note that inserting the sub-unit incompletely may only establish a poor contact of the terminals located on the back of the unit, which may cause operational failure or heating.

Fit the cover straight to the case. Hold the cover frame to fully push the cover until it is clicked and locked.

Note) After setting the cover, check if the buttons can be smoothly pressed from over the cover.
6.4 How to use front control panel
6.4.1 Front control panel layout

Figure 6.2 Front view of type CFP1-A02D1 relay

Table 6.1 Front control panel guide

Table 6.2 Letter representation of item data indicator LEDs

Item		Display in item data box	
Designation	Letters		
On	ON	1 m	(6)
Off	OFF	- ${ }^{\text {d }}$	\%
Yes	YES	11	$1-1$
No	NO	- ${ }^{0}$	\%
Operation lock	LOCK	10	-
Instantaneous	INST	01	$1-1$

Item			Display in item data box
	Designation	Letters	
	Normal inverse time-delayed	NIO1	-1 6 1
		NI11	- 610
		NI21	-1
	Very inverse time-delayed	VI01	
		VI21	
	Extremely inverse time-delayed	El01	1
		El11	-1 0 1
		El12	- \mathbf{y}^{-1}
	Long inverse time-delayed	LI01	1 1 1
		LI02	17
		LI21	 0
	Definite time-delayed	DT01	- 1017
	Definite time-delayed	01	6 0 7
	Inverse time-delayed	11	6 0
	Definite time-delayed	21	0

6.4.2 Operational procedure

For more information about the operational procedure shown below, see the MELPRO-D Series General Operation Manual (JEP0-IL9416).
6.4.2.1 Relay without RS232C communication I/F

Table 6.3 Operational procedure

6.4.2.2 Relay with RS232C communication I/F

Item		Corresponding section of general operation manual	
No.	Designation	Description	Indication mode
Setting / forced operation option mode			

As the same as Table 6.3 described in item 6.4.2.1 about the No. 010~860.

901	$\begin{aligned} & \text { 음 } \\ & \text { 이 } \end{aligned}$	CT primary side [A]	Set the CT primary current of the phase circuit.	A-7	D-3
902		EVT primary side [V]	Set the EVT primary voltage of the zero-phase.		
903		EVT tertiary side [V]	Set the EVT tertiary voltage of the zero-phase.		
904		ZCT error correction option	Set the ZCT error correction on/off status.		D-7
905		ZCT error adjustment	Set the ZCT error correction value.		D-6
906		Relay password enable/disable option	Set relay password enable or disable for setting.		D-9
907		Max. record reset	Clear data of the max. record.		
908		Fault record reset	Clear data of the fault record.		D-4
909		Self-diagnosis (ALARM) reset	Clear data of the self-diagnosis record.		
910		LED lamp test	Carry out forced illumination of all the LED lamps on the front of the relay unit.		D-5

6.4.2.3 Guide for option function

(1) Specifying contact arrangement data of output contacts

The table below shows the setting guide table. See the section $D-1$ of the general operation manual for the detailed procedure.

When the product is shipped from the factory, contact arrangement data are set as follows.

Contact	Item number	Contact arrangement data	Setting of the element	Contact	Item number	Contact arrangement data	Setting of the element
X 0	800	0200	Earth fault direction	X 3	830	000A	Phase fault time-delayed
X 1	810	0200	Earth fault direction	X 4	840	02AA	OR of all the elements
X 2	820	00 A 0	Phase fault instantaneous	X 5	850	02AA	OR of all the elements

*The "Self hold/auto reset" setting are "Reset" (auto reset) for all contacts.
(2) Specifying operation indicator LED hold data

The table below shows the setting guide table. See the section D-2 in the general operation manual for the detailed procedure.

When the product is shipped from the factory, all LEDs are set to self-hold.

Item number	Operation indicator LED hold data
860	02 AB

7 Mounting

7.1 Mounting dimension

Mount the case to the panel according to Fig. 7.1 "Mounting dimension".

Figure 7.1 Outside dimension /drilling drawing

7.2 Standard operating environment

Install the relay in the environment described in section 3.3 Common technical data. In addition, the following conditions should be kept:

- Abnormal vibration, shock, inclination or magnetic field should be avoided.
- Harmful smoke or gas, salt gas, excessive humidity, water drop or vapor, excessive dust or fine powder, rain and wind should be avoided.

8 Test

The relay has been fully tested prior to shipment. However, it is recommended to carry out a test again by referring to the following test guide before use.

8.1 Appearance inspection

Check the relay for appearance according to the following procedure:

Objects				Check points
Unit	Coil/conductor	(1) Discoloring and burning due to overheat.		
		(2) Abnormal conditions including loosened screws.		

8.2 Characteristic test

8.2.1 Precautions in testing

(1) Standard test conditions

Ensure the following test conditions whenever possible:
Note that carrying out a test under an environment that significantly differs from the following conditions may produce an incorrect result.

- Ambient temperature $: 20^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
- Rated frequency $: \pm 5 \%$
- Waveform (AC) : 2\% (distortion ratio)
- Auxiliary power supply voltage : rated voltage $\pm 2 \%$
(2) Characteristic control point

See the section 3 "Characteristics".
The characteristic control point refers to the characteristic of a relay unit only. Note that, when a characteristic test is carried out on a relay system connected with external equipment such as CT and ZCT, the result obtained would be a combined characteristic added with the fluctuation of the external equipment.
For special control in terms of a specific control point (for instance, using the operation setting), first carry out a test at "Characteristic control point" at the time when the relay is received or put in service to determine the acceptance/rejection. Thereafter, perform another test at each control point, so that the data obtained can be used for future reference.
(3) Changing setting

Change the setting according to the section 6 "Handling".
(4) Operation judgment

Determine the operation currents and time and other values of the relay unit basically by turning on and off the corresponding output relay contact of each element.

To determine the starting value of the time-delayed elements of overcurrent relay, which cannot be checked through the output contact, read the display of "elapsed time of time-delayed timer".
(5) Communication card

Whatever the communication card is inside or not, for the test of withstand voltage and lightning impulse withstand voltage, please avoid inputting test voltage to the serial communication network circuit (DA, DB, DG, SLD terminals).

Note: it is not necessary to take the communication card out when test if the communication card was inside unit.

8.2.2 Characteristic test

(1) Test circuit

Connect the external wiring referring to the AC input circuit diagram shown below:
a. Phase fault element

b. Earth fault element

(2) Test items and characteristic control point
a. Forced operation test

See "Front control panel operational procedure" in the section 6 "Handling".
b. Operation value test

See the item "Operation and reset values" in the section 3 "Characteristics".
c. Operation time test

See the item "Operation time" in the section 3 "Characteristics".
d. Reset time test

See the item "Reset time" in the section 3 "Characteristics".
e. Phase test

See the item "Reset time" in the section 3 "Characteristics".

9 Maintenance

9.1 Daily inspection

Take every opportunity to carry out the following inspection:

- Check that the cover is not damaged and is attached properly.
- Check that no dust or iron chips have invaded into the unit.
- Check that the cover is not clouded notably.
- Check that abnormal noise is not generated.
- Check that the RUN LED lamp is lit.

9.2 Periodical inspection

It is recommended to carry out periodic inspections to check the relay for proper function.
For periodical inspections, perform the appearance inspection and characteristic test in accordance with the section 8 "Test".

The product and specification shown in this manual may subject to changes (including specification change and production suspend) without notice. It is advisory to inquire the nearest Mitsubishi Electric's branch or sales office, if required, to confirm that the latest information is given in the manual, prior to placing an order.
Notify the following items when placing an order.

Item	Example of order	Remarks
Model	CFP1-A02D1	For more information, see the section 2 "Rating and specification".
Frequency	50 Hz	Select 50 Hz or 60 Hz .
Rating	Phase current: 5A, Zero-phase current: 1A	For more information, see the section 2 "Rating and specification".
Setting range	Phase time-delayed element (51) \quad : Phase fault instantaneous element (50): $2 \sim 80 \mathrm{~A}$ Earth fault directional element (67N) Io $10 \sim 100 \mathrm{~mA}$ Vo $5 \sim 60 \mathrm{~V}$	For more information, see the section 2 "Rating and specification".
Communication card	One of the followings can be selected: a. CC-Link communication card (Manual No.: JEP0-IL9417,JEP0-IL9418) b. No communication card	Only purchasing a communication card separately will allow customer to add the communication facilities. If customer does not need the communication facilitates at the time of introducing the system, just purchase the relay unit without communication card. Customer can add the communication facilities whenever he/she needs to introduce them. This will help decrease the initial cost and upgrade the system in stages.

11. Guarantee

11.1 Period of guarantee

The guarantee period for this product should be one year after delivery.

11.2 Range of guarantee

When any fault or defect is detected during the period of guarantee shown above, and such fault or defect is proved to be caused apparently at the responsibility of Mitsubishi Electric, the defective unit concered will be repaired or replaced with a substitute. In such a case, contact the nearest Mitsubishi electric's branch or sales office.
It is to be ackowledged that the following faults and defects will not be covered by the guarantee:

- When the fault or defect results from modification or repair carried out by any other entity than Mitsubishi Electric and those who are authorized to carry out repair by Mitsubishi electric.
- When the fault or defect results from the use of the equipment at the range exceeding the condition/environment requirements stated in the manual.
- When the fault or defect results from user's carelessness.
- When the fault or defect results from an act of God such as natural calamity or disaster.
- When the fault or defect results from a phenomenon which can not be predicted with the technology put into practical use at the time of purchase or contract.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : 7-3 MARUNOUCHI 2-CHOME, CHIYODA-KU TOKYO, 100-8310, JAPAN

[^0]: Note 1) The self-diagnosis output contact is so configured that the auxiliary relay can be energized ("break contact" opened) when normal result of self-diagnosis is received. This type of contact will allow the relay to continue automatic self-check even after the built-in power fuse burns. Therefore, the "break contact" is closed when the power is applied and will be opened after about 50 ms . If the auxiliary power supply of the relay and the self-diagnosis output contact shares a same power source, the "break contact" will be closed temporarily after the auxiliary power supply is turned on. In the case where the phenomenon stated in the above would conflict with your system requirement, it is recommended that the self-diagnosis output contact should be connected via the time-delayed timer as shown in the left of the figure.
 Note 2) Regarding to the type CPS1 AC/DC converter or commercially available uninterruptible power supply (UPS), refer to the note *21 in the section 2.1 General information.

