

FA Sensor

Vision Sensor VS70 User's Manual

- -VS70M-600-E
- -VS70M-600-ER
- -VS70M-600
- -VS70M-600-R
- -VS70M-800-E
- -VS70M-800-ER
- -VS70M-800
- -VS70M-800-R
- -VS70M-802-E
- -VS70M-802-ER
- -VS70M-802
- -VS70M-802-R
- -VS70C-600-R
- -VS70C-800-R
- -VS70C-802-R

This product is designed and manufactured by Cognex Corporation. *Note that the warranty and general specifications of this product differ from that of programmable controller products.

COGNEX

PRECAUTIONS REGARDING WARRANTY AND SPECIFICATIONS

This product is designed and manufactured by Cognex Corporation. Note that the warranty and general specifications of this product differ from that of programmable controller products.

Warranty

Item	Description
Free warranty period	18 months after delivery or 24 months after manufacture
Repair period after discontinuation of manufacture	7 years

· General specifications

Item	Specifications
Case temperature	0 to 50°C*1
Ambient storage temperature	-20 to 80℃
Maximum humidity	Less than 80% RH, no condensation
Vibration resistance	IEC 60068-2-6: A vibration of 10 G (10 to 500 Hz at 100 m/s² with 15 mm width) was applied to each X, Y, and Z direction for 2 hours. (with cables/cable plugs and appropriate lens cover attached)
Shock resistance	IEC 60068-2-27: 18 half sinusoidal shocks (3 shocks for each X, Y, and Z direction) with 80 G (800 m/s² at 11 ms) were applied. (with cables/cable plugs and appropriate lens cover attached)
Operating atmosphere	There is no danger of corrosive or flammable gas and strong alkaline substances to adhere.
Protective structure	IP67 (with cables connected and appropriate lens attached)
Installation location	Outside of a control panel

^{*1} A vision sensor should be used in the environment where the temperature around the vision sensor is about 0 to 40°C because the case temperature is easily influenced by the environment the vision sensor is installed in.

CE

This section describes a summary of precautions when bringing into CE conformance the machinery formed by using the vision sensor.

Note that the descriptive content is material created based on regulation requirements and standards obtained by Mitsubishi Electric Corporation. However, machinery manufactured in accordance with this content is not necessarily guaranteed to conform with the above commands.

Final judgment regarding CE conformance or the method of conformance must be the judgment of the machinery manufacturer itself.

To meet the CE compliant conditions, implement the following items.

• Significant amount of noise on the power source may cause malfunction. Use a regulated DC power supply with an isolating transformer for the power supply. Additionally, install a noise filter (SNR-10-223 by COSEL or an equivalent product) between the vision sensor and the regulated DC power supply.

Precautions

Ground the FG terminal with the ground cable as short as possible (with the length of 30 cm or shorter).

EMC application

Item	Description
EMC applicable standard	EN61131-2

SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.

The precautions given in this manual are concerned with this product only. For the safety precautions for other modules, refer to their respective user's manuals.

In this manual, the safety precautions are classified into two levels: " WARNING" and " CAUTION".

WARNING

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

A CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " CAUTION" may lead to serious consequences.

Observe the precautions of both levels because they are important for personal and system safety.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Installation Precautions]

MARNING

- Before touching the vision sensor, be sure to touch an electric conductor such as grounded metal to discharge the static electricity from your body. Otherwise, damage or faulty operation of the vision sensor may occur.
- Be sure to install an I/O connector module to the main module. If not installed, dust or water-proof performance may not be obtained.

[Installation Precautions]

CAUTION

- IP protection rating is guaranteed only when all the connectors are connected with cables or sealed with sealing caps.
- The cable is designed to connect with its key aligned with the keyway of the connector on the Vision Sensor. Do not force the connections or damage may occur.

[Wiring Precautions]

MCAUTION

- Use only 24 VDC and observe the indicated polarity. Otherwise, fire or damage may result.
- The frame ground terminal of the I/O module and the shield ground of each connector (RS232 OUT port and SENSOR port) are internally conducting. The system ground is designed on the condition that a ground connection is provided. The ground potential may affect the vision sensor and peripheral devices such as programmable controllers via cables. For safe operation, it is recommended to connect all the ground connections securely.

[Security Precautions]

MARNING

To maintain the security (confidentiality, integrity, and availability) of the programmable controller and the system against unauthorized access, denial-of-service (DoS) attacks, computer viruses, and other cyberattacks from external devices via the network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions.

[Startup and Maintenance Precautions]

ACAUTION

• Do not clean the vision sensor with highly irritating or corrosive solvent such as caustic alkali solution, methyl ethyl ketone (MEK), and gasoline. Doing so may cause a fault.

[Disposal Precautions]

ACAUTION

• When disposing of this product, treat it as industrial waste.

PRECAUTIONS FOR USE

Observe the following precautions when installing and operating the vision sensor, to avoid the risk of injury or equipment damage:

- The power for a vision sensor is intended to be supplied by UL or NRTL approved power supply with a lowest rated output voltage of 24 VDC with at least 2 A of current, a maximum short circuit current rating of less than 8 A, a maximum power rating of less than 100 VA, and marked Class 2 or LPS (Limited Power Source).
 - Any other voltage creates a risk of fire or shock and can damage the components.
 - Applicable national and local wiring standards and rules must be followed.
- To reduce the risk of damage or malfunction due to over-voltage, line noise, electrostatic discharge (ESD), power surges, or other irregularities in the power supply, route all cables away from high-voltage power sources.
- Do not install the vision sensor where they are directly exposed to environmental hazards such as excessive heat, dust, moisture, humidity, impact, vibration, corrosive substances, flammable substances, or static electricity.
- Do not expose an image sensor to laser light; image sensors can be damaged by direct or reflected laser light.
 If your application requires the use of laser light that may strike the image sensor, a lens filter at the corresponding laser's wavelength is recommended.
 - Consult your local system integrator or application engineer for suggestions.
- A vision sensor does not contain user-serviceable parts. Do not make electrical or mechanical modifications to a vision sensor.
 - Any modification may void your warranty.
- Changes or modifications not expressly approved by the party responsible for regulatory compliance could void the user's authority to operate the equipment.
- Service loops (extra wire length) should be included with all cable connections.
- If the bend radius or service loop is smaller than 10 times of the cable diameter, the cable may cause cable shielding degradation, cable damage, or wear out in a short period.
 - The bend radius must begin at least 152.4 mm from the connector.
- This equipment is a Class A device. Using this equipment in a domestic environment may cause radio disturbance. In this case, the user may be required to take appropriate measures.
- If there is concern about noise, set a noise filter (SNR-10-223, COSEL or an equivalent) between the vision sensor and the stabilized DC power supply.
- When using the vision sensor for the first time, update its firmware to the latest by using the latest In-Sight Explorer (vision sensor setup tool).

CONDITIONS OF USE FOR THE PRODUCT

- (1)This vision sensor shall be used in conditions;
 - i) where any problem, fault or failure occurring in the vision sensor, if any, shall not lead to any major or serious accident; and
 - ii) where the backup and fail-safe function are systematically or automatically provided outside of the vision sensor for the case of any problem, fault or failure occurring in the vision sensor.
- (2)This vision sensor has been designed and manufactured for the purpose of being used in general industries. MITSUBISHI ELECTRIC SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY THIS VISION SENSOR THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI ELECTRIC USER'S, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the VISION SENSOR. ("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the vision sensor in;

Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the vision sensor.

Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.

Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above restrictions, Mitsubishi Electric may in its sole discretion, authorize use of the vision sensor in one or more of the Prohibited Applications, provided that the usage of the vision sensor is limited only for the specific applications agreed to by Mitsubishi Electric and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the vision sensors are required. For details, please contact the Mitsubishi Electric representative in your region.

(3)Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric FA sensor, MELSENSOR.

This manual describes the specifications, functions, system configuration, system construction, installation, maintenance and inspection, and troubleshooting to use the vision sensors listed below.

Before using the product, please read this manual and relevant manuals carefully, and develop familiarity with the functions and performance of the MELSENSOR vision sensor to handle the product correctly.

Please make sure that the end users read this manual.

Available v	Available vision sensors		
Product name	Model		
VS70	VS70M-600-E, VS70M-600-ER, VS70M-600, VS70M-600-R, VS70M-800-E, VS70M-800-ER, VS70M-800, VS70M-800-R, VS70M-802-E, VS70M-802-ER, VS70M-802, VS70M-802-R, VS70C-600-R, VS70C-800-R, VS70C-802-R		

CONTENTS

PREC	CAUTIONS REGARDING WARRANTY AND SPECIFICATIONS	1	
SAFE	ETY PRECAUTIONS	2	
PREC	CAUTIONS FOR USE	4	
CONI	CONDITIONS OF USE FOR THE PRODUCT		
INTR	ODUCTION	6	
RELE	EVANT MANUALS	9	
TERM	MS	10	
СНА	APTER 1 PRODUCT OVERVIEW	12	
СНА	APTER 2 PART NAMES	14	
СНА	APTER 3 SPECIFICATIONS	16	
3.1	General Specifications		
3.1	Performance Specifications		
J.Z	Working distance and field of view		
3.3	I/O Specifications		
0.0	Image acquisition trigger input.		
	General-purpose input.		
	High-speed outputs		
	High-speed output wiring		
	External light cable specifications	24	
	Ethernet cable specifications	25	
	Breakout cable specifications	26	
	I/O module cable specifications	27	
СНА	APTER 4 FUNCTIONS	28	
4.1	Function List		
4.1	Tool List		
4.3	Interface List		
4.0	mondo List		
CHA	APTER 5 SYSTEM CONFIGURATION	34	
5.1	Ethernet Connection	34	
5.2	I/O Connection		
5.3	I/O Connection Using an I/O Module	36	
	I/O connection using a CIO-MICRO I/O module		
	I/O connection using a CIO-1400 I/O module		
5.4	Configurations		
5.5	Applicable System		
	Modules		
	Software		
	When using a VS70 color model		
5.6	Hardware Components and Optional Items		
	Items to prepare Items to prepare as needed.		
	items to prepare as needed	41	
СНА	APTER 6 SYSTEM CONSTRUCTION	51	
6.1	Installation Environment	51	

6.2	Installation of a Vision Sensor	
6.3	Attachment of a Lens and Light	
	Attachment of an autofocus accessory and illumination accessory	
	Attachment of a C-mount lens and a lens cover accessory	
	Attachment of a C-mount lens and an illumination accessory	
	Attachment of an S-mount/M12 manual focus lens	
6.4	Connection of an External Light Cable	67
6.5	Connection of an Ethernet Cable	67
6.6	Connection of a Breakout Cable	
	Connection example of a breakout cable	
6.7	Connection of an I/O Module	
	Specifications of CIO-MICRO I/O modules	
	Connection procedure of a CIO-MICRO I/O module	
	Connection example of a CIO-MICRO I/O module	
	Specifications of CIO-1400 I/O modules	
	Connection procedure of a CIO-1400 I/O module	
	Connection example of a CIO-1400 I/O module	
6.8	Attachment of a Mounting Bracket	
	Mounting bracket kit (ISB-7000-7K)	
6.9	Replacement of an SD Memory Card	
6.10	Replacement of an LED Ring Light	
6.11	Replacement of an M12 Autofocus Lens	
6.12	Removal of a PCB	
CHA	APTER 7 INSTALLATION	93
7.1	Software Installation	
7.2	Registration of a Profile	
7.3	Registration of an EDS File	
	•	
CHA	APTER 8 MAINTENANCE AND INSPECTION	95
8.1	Cleaning a Vision Sensor Housing	
8.2	Clean an Image Sensor Window	
CHA	APTER 9 TROUBLESHOOTING	97
APP	PENDIX	99
Appe	ndix 1 EMC and Low Voltage Directives	99
	Measures to comply with the EMC Directive	99
	Measures to comply with the Low Voltage Directive	100
	UL/cUL	
Appe	ndix 2 External Dimensions	
REVI	SIONS	
WAR	RANTY	
TRAF	DEMARKS	108

RELEVANT MANUALS

Manual name [manual number]	Description	Available form
Vision Sensor VS70 User's Manual [SH-081889ENG] (this manual)	Functions, installation methods, system configuration, and required hardware components, etc. of the vision sensor VS70	Print book e-Manual PDF
Vision Sensor Connection Guide [BCN-P5999-0861]	Procedures for connecting a vision sensor to a MELSEC programmable controller to control a vision system through a CC-Link IE Field Network Basic connection, an SLMP connection, an I/O connection, or an EtherNet/IP connection	e-Manual PDF

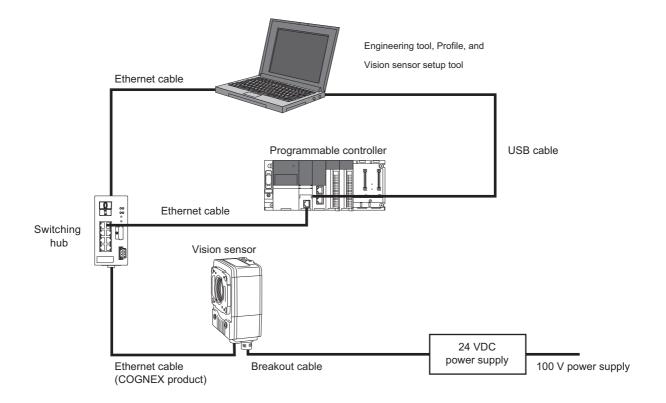
e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated tool.

e-Manual has the following features:

- Required information can be cross-searched in multiple manuals.
- Other manuals can be accessed from the links in the manual.
- Hardware specifications of each part can be found from the product figures.
- Pages that users often browse can be bookmarked.
- Sample programs can be copied to an engineering tool.

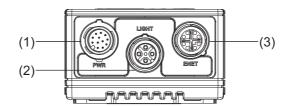
TERMS

Unless otherwise specified, this manual uses the following terms.


Term	Description
Built-in Ethernet port LCPU	A generic term for L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU-P, L26CPU-BT, and L26CPU-PBT
DataMan	An industrial barcode reader manufactured by Cognex Corporation
Engineering tool	A tool used for setting up programmable controllers, programming, debugging, and maintenance. A generic term for GX Works2, GX Works3, and MELSOFT Navigator.
Ethernet interface module	A generic term for RJ71EN71, QJ71E71-100, and LJ71E71-100
EtherNet/IP network interface module	A generic term for RJ71EIP91
Exposure time	In photographing by a camera, the time that imager type being exposed to the light through the lens after the shutter is opened
Feature (target object)	A target object in an image
FTP	An abbreviation for File Transfer Protocol. The communication protocol to transfer files on the network.
FX3UCPU	A generic term for FX3UCPU and FX3UCCPU
FX5 intelligent Ethernet function module	A generic term for FX5-ENET
FX5 intelligent EtherNet/IP function module	A generic term for FX5-ENET/IP
FX5CPU	A generic term for FX5UJCPU, FX5UCPU, and FX5UCCPU
GX Works2	A generic product name for SWnDND-GXW2 and SWnDNC-GXW2. ('n' indicates its version.) GX Works2 corresponding to MELSOFT Navigator is the product later than GX Works2 Version 1.11M
GX Works3	A generic product name for SWnDND-GXW3 ('n' indicates its version.)
In-Sight Explorer	Setup tool for a vision sensor manufactured by Cognex Corporation
Job	The vision controlling program created with the setup tool for the vision sensor
Machine vision	A system that recognizes images instead of human eye, and performs locationing, classification, measuring, and inspection
MELSOFT Navigator	The product name of the IDE (integrated development environment) in SWnDND-IQWK model (MELSOFT iQ Works) ('n' indicates its version.)
OCRMax [™]	A high performance OCR (Optical Character Recognition) tool which provides high text-reading ability and high-speed processing capability. OCRMax overcomes the limitations of other OCR technologies, and it handles character variations, tex skew, and proportional fonts.
PatMax RedLine [™]	A location tool for high-speed pattern matching, which has been improved based on PatMax technology, to locate parts and features. PatMax RedLine is designed to detect a target object in runs 10 times faster than PatMax, with no loss of search accuracy on high-resolution images.
PatMax [®]	A feature location tool (patented technology authorized by the United States) which Cognex Corporation developed by utilizing advanced geometric pattern matching technology. Objects can be found reliably and accurately despite changes in angle, size, and shading.
QnUDE(H)CPU	A generic term for Q03UDECPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, and Q100UDEHCPU
ReadIDMax	A tool to read barcodes with high-accuracy. By using 1DMax [™] and 2DMax [™] , up to 128 barcodes can be read at one time regardless of the position of the barcodes in the screen. 1DMax: A 1-D barcode reading algorithm optimized for omnidirectional barcode reading. 2DMax: A 2-D code reading algorithm that provides reliable code reading despite code quality, printing method, or the surface that the codes are marked on.
RnCPU	A generic term for R04CPU, R04ENCPU, R08CPU, R08ENCPU, R16CPU, R16ENCPU, R32CPU, R32ENCPU, R120CPU, and R120ENCPU
RnENCPU	A generic term for R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, and R120ENCPU
Serial communication module	A generic term for RJ71C24, RJ71C24-R2, QJ71C24N, QJ71C24N-R2, LJ71C24, LJ71C24-R2, FX5-232ADP, FX5-232-BD, FX3U-232-BD, FX3U-232-ADP-MB, and FX3G-232-BD
SLMP	An abbreviation for SeamLess Message Protocol. The protocol to access the programmable controller connected from the external device to the SLMP corresponding device, or connected to the SLMP corresponding device.
Universal model High-speed Type QCPU	A generic term for Q03UDVCPU, Q04UDVCPU, Q06UDVCPU, Q13UDVCPU, and Q26UDVCPU
Universal model process CPU	A generic term for Q04UDPVCPU, Q06UDPVCPU, Q13UDPVCPU, and Q26UDPVCPU
Vignette	Vignetting appears as a radial darkening toward the corners of an image. It is caused by the lens characteristics and shading from the filter

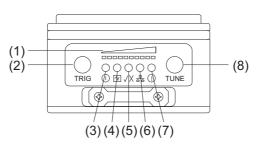
Term	Description
Vision sensor VS70	A generic term for VS70M-600-E, VS70M-600-ER, VS70M-600, VS70M-600-R, VS70M-800-E, VS70M-800-ER, VS70M-800, VS70M-800-R, VS70M-802-E, VS70M-802-ER, VS70M-802, VS70M-802-R, VS70C-600-R, VS70C-800-R, and VS70C-802-R

1 PRODUCT OVERVIEW


Vision sensor VS70s are developed for automated inspection, measurement, and identification applications on the factory floor, and can be used in network connections as well as for standalone applications.

Vision sensor VS70 can be configured remotely over a network.

Connectors


The part names and functions of each connector are shown below.

Item	Name	Function
(1)	PWR connector	An M12 connector, which provides connections to an external power supply, image acquisition trigger input, general-purpose input, and high-speed outputs using a breakout cable or an I/O module cable. (Page 26 Breakout cable specifications, Page 27 I/O module cable specifications)
(2)	LIGHT connector	Connects a vision sensor to an external lighting device. (Page 24 External light cable specifications)
(3)	ENET connector	Connects an Ethernet cable, which provides 10Base-T/100Base-T/1000Base-T Ethernet connectivity. (Page 25 Ethernet cable specifications)

Indicator and buttons

The part names and functions of each indicator and button are shown below.

Ite m	Name	Function
(1)	Focus metric LED	Indicates an image focus score (0 to 10) while in the live video mode within In-Sight Explorer.
(2)	TRIG button	A trigger is started by pressing this button when: • The vision sensor is set to offline in In-Sight Explorer. • The vision sensor is set to online, and "Manual" is selected from "Trigger" under "Set Up Image" in In-Sight Explorer.
(3)	Power LED	Indicates the power supply status. ON (green): Powered ON OFF: Powered OFF
(4)	SD memory card status LED	Indicates the status of an SD memory card. ON (green): SD memory card is present (in an unusable state). ON (yellow): SD memory card is present (in a usable state). OFF: SD memory card is not inserted.
(5)	PASS/FAIL LED	The LED turns ON in the following combination patterns according to a condition set in In-Sight Explorer. A condition is true/false: (green/red), (green/OFF), or (red/OFF)*1 By default, the LED does not turn ON because no setting is configured.
(6)	Network status LED	Indicates the link status. • Flashing (yellow): Linking-up • OFF: Linking-down
(7)	Error LED	The LED turns ON in red when the condition set in In-Sight Explorer is true.*1 By default, the LED does not turn ON because no setting is configured.
(8)	TUNE button	Unsupported

^{*1} The status can be changed by setting "Inputs/Outputs" in In-Sight Explorer. (Page 28 Function List)

3 SPECIFICATIONS

This chapter shows the specifications of vision sensor VS70s.

3.1 General Specifications

The following shows the general specifications of vision sensor VS70s.

Item	Specifications	
Case temperature	0 to 50°C*1,*2,*3	
Ambient storage temperature	-20 to 80℃	
Maximum humidity	Less than 80% RH, no condensation	
Vibration resistance IEC 60068-2-6: A vibration of 10 G (10 to 500 Hz at 100 m/s² with 15 mm width) was applied to each direction for 2 hours. (with cables/cable plugs and appropriate lens cover attached)		
Shock resistance IEC 60068-2-27: 18 half sinusoidal shocks (3 shocks for each X, Y, and Z direction) with 80 G (800 were applied. (with cables/cable plugs and appropriate lens cover attached)		
Operating atmosphere	There is no danger of corrosive or flammable gas and strong alkaline substances to adhere.	
Protective structure	IP67 (with cables connected and appropriate lens attached)	
Installation location*4	Outside of a control panel	

^{*1} Case temperature can be confirmed using EV GetSystemConfig ("Internal.Temperature") Extended Native Mode command.

When the command is issued, it will return the internal temperature of a vision sensor in degrees Celsius.

The returned temperature will be ± 5 degrees of the case temperature of a vision sensor.

For details on the command, refer to the help of In-Sight Explorer.

*2 Additional cooling measures are required if the case temperature exceeds 50°C.

Examples of such measures include:

- \cdot Attach an extra heat sink to a vision sensor using M3 screws.
- \cdot Lower the ambient temperature so that air can pass through a vision sensor.
- *3 A vision sensor should be used in the environment where the temperature around the vision sensor is about 0 to 40°C because the case temperature is easily influenced by the environment the vision sensor is installed in.
- *4 Do not install vision sensors in the following environments:
 - \cdot Where the ambient temperature or humidity exceed the applicable ranges
 - · Where condensation occurs due to sudden temperature changes
 - \cdot Where there is corrosive or flammable gas
 - \cdot Where there are a lot of conductible dust, iron filings, or salt
 - · Where in danger of organic solvents, such as benzene, thinner, and alcohol or strong alkaline substances such as caustic soda to adhere
 - \cdot Where subject to much vibration or shock
 - \cdot Where in danger of liquid such as water, oil, or chemicals to adhere

3.2 Performance Specifications

The following shows the performance specifications of vision sensor VS70s.

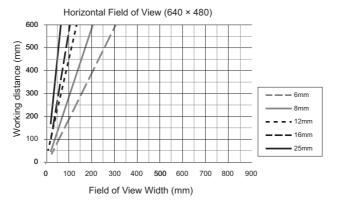
Specification s	VS70M-600-E VS70M-600-ER VS70M-600 VS70M-600-R	VS70C-600-R	VS70M-800-E VS70M-800-ER VS70M-800 VS70M-800-R	VS70C-800-R	VS70M-802-E VS70M-802-ER VS70M-802 VS70M-802-R	VS70C-802-R
Processor performance	1 time		1.25 times			
Memory	7.2 GB flash memory Unlimited storage when storing in the remote network device Image processing: 512 MB SDRAM					
Image sensor	1/1.8 inch CMOS, glol	bal shutter				
	4.5 mm diagonal, 4.5	× 4.5 μm square pixels			9 mm diagonal, 4.5 ×	4.5 μm square pixels
Lens	C-mount, S-mount/M1	2, autofocus ^{*1}				
Image	800 × 600*2				1600 × 1200	
resolution (pixels)	640 × 480					
Gradation	256 gray levels (8 bits/pixel).	24-bit color	256 gray levels (8 bits/pixel).	24-bit color	256 gray levels (8 bits/pixel).	24-bit color
Electronic	14 μs to 550 ms (imag	ge resolution 800 × 600)			20μs to 940ms	
shutter speed	14 μs to 520 ms (imag	ge resolution 640 × 480))			
Maximum image acquisition	165 frames/sec. (image resolution 800 × 600)	100 frames/sec. (image resolution 800 × 600)	165 frames/sec. (image resolution 800 × 600)	100 frames/sec. (image resolution 800 × 600)	53 frames/sec.	33 frames/sec.
speed* ^{3,*4}	217 frames/sec. (image resolution 640 × 480)	135 frames/sec. (image resolution 640 × 480)	217 frames/sec. (image resolution 640 × 480)	135 frames/sec. (image resolution 640 × 480)		
SD memory card		d slot for saving jobs or d: SDHC standard, max		•		
Power consumption	24 VDC ± 10 %, 36 W	(1.5 A) maximum				
Power output	24 VDC/750 mA maxi	mum to an external ligh	t			
Trigger		e acquisition trigger inpu ommands via Ethernet	ut × 1			
Discrete inputs	General-purpose input × 3: Available when connected with a breakout cable*5 General-purpose input × 8: Available when connecting a CIO-MICRO I/O module*6 General-purpose input × 7: Available when connecting a CIO-1400 I/O module*6					
Discrete outputs	 High-speed output × 4: Available when connected with a breakout cable*5 High-speed output ×2, general-purpose output × 8: Available when connecting a CIO-MICRO I/O module*6 High-speed output × 2, general-purpose output × 6: Available when connecting a CIO-1400 I/O module*6 					
Network communication	CC-Link IE Field Network Basic, SLMP scanners, SLMP, MODBUS/TCP, EtherNet/IP, TCP/IP, UDP, FTP, Telnet (native mode), DHCP (default at shipment from the factory), fixed and link local IP address setting					
Material	Die-cast and extruded	l aluminum housing				
Mounting	M3 screw holes × 4					
Dimensions	35.7 mm × 60.5 mm ×	90.0 mm				
Weight	240 g					

- *1 Autofocus can be performed up to 20000 times.
- *2 The default resolution is 800×600 pixels. The resolution can be set as 640×480 pixels in In-Sight Explorer. For details, refer to the help of In-Sight Explorer.
- *3 The number of image sensor rows can be set in In-Sight Explorer.
 - Decreasing the number of rows will increase the number of frames per second acquired by a vision sensor.

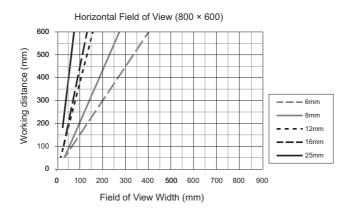
For details, refer to the help of In-Sight Explorer.

- *4 The maximum frame rate of full image frame capture when all of the following conditions are applied.
 - · Minimum exposure
 - No connection with In-Sight Explorer
 - · Images are captured with an image acquisition trigger input
- *5 'High-speed output 2' and 'High-speed output 3' of a breakout cable can be used as a high-speed output or a general-purpose input by changing the setting in In-Sight Explorer. These lines are set as output (high-speed output) by default. For details on a breakout cable, refer to the following:

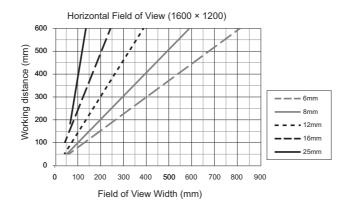
- Page 68 Connection of a Breakout Cable
- *6 For details on an I/O module, refer to the following:
 - Page 70 Connection of an I/O Module


Working distance and field of view

The distance from a lens to an inspection target is referred to as 'working distance', and an area where a vision sensor can see at that distance is referred to as 'field of view.'


As the working distance increases, so does the field of view.

The following shows the horizontal field of view when an S-mount/M12 lens is attached to a vision sensor VS70.


VS70M-600-E, VS70M-600-ER, VS70M-600, VS70M-600-R, VS70C-600-R, VS70M-800-E, VS70M-800-ER, VS70M-800, VS70M-800-R, VS70C-800-R

VS70M-600-E, VS70M-600-ER, VS70M-600, VS70M-600-R, VS70C-600-R, VS70M-800-E, VS70M-800-ER, VS70M-800, VS70M-800-R, VS70C-800-R

VS70M-802-E, VS70M-802-ER, VS70M-802, VS70M-802-R, VS70C-802-R

- The horizontal field of view is fully mapped onto an image sensor.
- Additional field beyond the horizontal field of view may have vignetting.
- For supported lenses, refer to the following:
- Page 42 Autofocus accessories and illumination accessories
- Page 45 S-mount/M12 manual focus accessories

3.3 I/O Specifications

This section shows the connection example of the image acquisition trigger input and high-speed outputs, and specifications for cables and connectors.

For details of breakout cables, refer to the following:

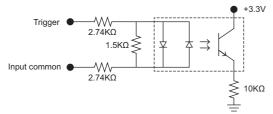
Page 26 Breakout cable specifications

Image acquisition trigger input

An opto-isolated image acquisition trigger input (×1) is integrated into a vision sensor.

Image acquisition can be started using a sink type device or source type device.

To start the image acquisition with these devices, "Camera" needs to be selected from the pull-down list of "Trigger" under "Edit Acquisition Settings" in In-Sight Explorer.


Specifications	Description
Voltage	• VIH: 15 to 28 VDC • VIL: 0 to 5 VDC
Current	• 2.6 mA/15 VDC • 4.9 mA/28 VDC
Delay	Maximum 190 μs delay from when a vision sensor receives a trigger to when an image acquisition starts Minimum 1ms wide for an input pulse

To trigger from the output of a sink type photoelectric sensor or programmable controller, connect 'Trigger' of a breakout cable to the output of the photoelectric sensor or an output module, and connect 'Input common' to 24 VDC.

When the output is turned ON, 'Trigger' is pulled down to 0 VDC and the opto-coupler of the sensor is turned ON.

To trigger from the output of a source type photoelectric sensor or programmable controller, connect 'Trigger' of a breakout cable to the output of the photoelectric sensor or an output module, and connect 'Input common' to 0 VDC.

When the output is turned ON, 'Trigger' is pulled up to 24 VDC and the opto-coupler of the sensor is turned ON.

Maximum voltage between input pins: 26.4 V, minimum voltage transition: approximately 12 V

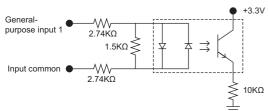
General-purpose input

Vision sensor VS70s have general-purpose inputs (opto-isolated type×3).

The inputs can be set as either a sink line or source line.

'High-speed output 2/Input 2' and 'High-speed output 3/Input 3' of a breakout cable can be used as a high-speed output or a general-purpose input by changing the setting in In-Sight Explorer.

These lines are configured as outputs (high-speed output) by default.


Specifications	Description
Voltage	• VIH: 15 to 28 VDC • VIL: 0 to 5 VDC
Current	• 2.6 mA/15 VDC • 4.9 mA/28 VDC
Delay	Maximum 1.1 ms delay from when a vision sensor receives a trigger to when an image acquisition starts Minimum 1ms wide for an input pulse

To input data to a vision sensor with a sink type device (programmable controller or photoelectric sensor), connect 'General-purpose input 1' of a breakout cable to the output of the programmable controller or the photoelectric sensor, and connect 'Input common' to 24 VDC.

When the output is turned ON, 'General-purpose input 1' is pulled down to 0 VDC and the opto-coupler of the sensor is turned ON

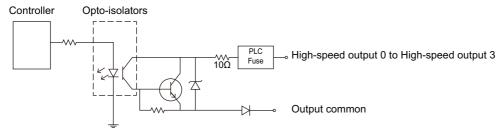
To input data to a vision sensor with a source type device (programmable controller or detector), connect 'General-purpose input 1' of a breakout cable to the output of the detector, and connect 'Input common' to 0 VDC.

When the output is turned ON, 'General-purpose input 1' is pulled up to 24 VDC and the opto-coupler of the sensor is turned ON.

Maximum voltage between input pins: 26.4 V, minimum voltage transition: approximately 12 V

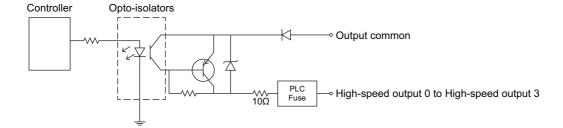
High-speed outputs

High-speed outputs can be set as either a sink line or source line.


Specifications	Description	
Voltage	26.4 VDC maximum through external load	
Current	 Sink current: Max. 50 mA Leakage current in OFF status: Max. 100 μA External load resistance: 470 Ω to 10 KΩ Each line is rated at a maximum 50 mA and protected against over-current, short circuits, and transients from switching inductive loads. A protection diode is required for a high inductive load. 	
Delay ^{*1}	Maximum delay due to the turning ON of an opto-isolator: 25 μs	

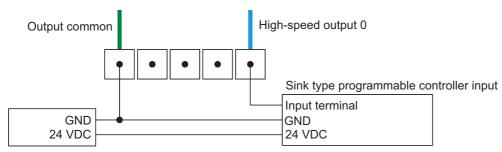
^{*1} The delay due to the turning OFF of optical isolators depends on which output is connected to the load. With a 470 Ω load, the maximum delay will be 200 μ s.

For a sink type device, connect an external load between 'High-speed output 0' to 'High-speed output 3' of a breakout cable and the positive side (26.4 VDC or less).

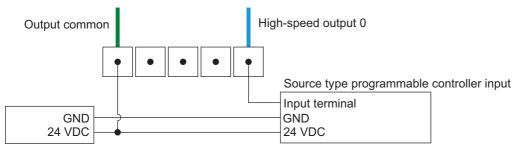

When 'High-speed output 0' to 'High-speed output 3' are turned ON, the outputs are pulled down to 3 VDC or less, then a current flows to the external load.

When 'High-speed output 0' to 'High-speed output 3' are turned OFF, a current does not flow to the external load.

For a source type device, connect an external load between 'High-speed output 0' to 'High-speed output 3' of a breakout cable and the negative side (0 VDC).

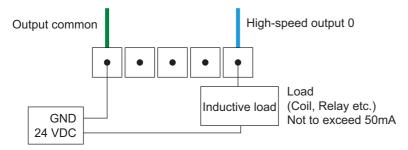

For a connection to which a 24 VDC power supply is connected, when 'High-speed output 0' to 'High-speed output 3' are turned ON, the voltage of the outputs are pulled up to 21 VDC or more, then a current flows to the external load. When 'High-speed output 0' to 'High-speed output 3' are turned OFF, a current does not flow to the external load.

High-speed output wiring


To connect to the inputs of a sink type programmable controller, connect 'High-speed output 0' to 'High-speed output 3' of a breakout cable directly to the input terminals of the controller inputs.

When 'High-speed output 0' to 'High-speed output 3' are turned ON, the input terminals are pulled down to 3 VDC or less.

To connect to the inputs of a source type programmable controller, connect 'High-speed output 0' to 'High-speed output 3' of a breakout cable directly to the input terminals of the controller inputs.

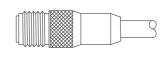

When 'High-speed output 0' to 'High-speed output 3' are turned ON, the input terminals are pulled up to 21 VDC or more.

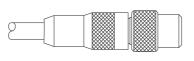
To connect 'High-speed output 0' to 'High-speed output 3" of a breakout cable to a relay, LED, or similar load, connect the negative side of the load to 'High-speed output 0' to 'High-speed output 3" and connect the positive side to 24 VDC.

When 'High-speed output 0' to 'High-speed output 3' are turned ON, the negative side of the load is pulled down to 3 VDC or less, then 24 VDC is applied to the load.

Use a protection diode for a high inductive load. Connect the anode to a output and connect the cathode to '24 VDC'.

External light cable specifications


By connecting an external light cable (CCB-M12LTF-xx) with an external lighting device, a power supply and a strobe control can be performed.

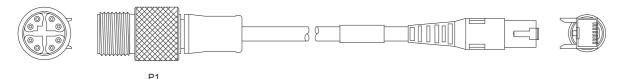

The external light cable can be connected to either a continuous lighting device or a strobe lighting device.

The light of an external lighting device can be set in the "Light Settings" screen of In-Sight Explorer.

For details, refer to the help of In-Sight Explorer.

P1: To a vision sensor

Current load: average 500 mA, peak 1A (max. 100 µs).



Ethernet cable specifications

Ethernet cables are used for the network communication by Ethernet connection.

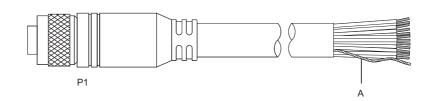
By using an Ethernet cable, a vision sensor can directly be connected to a single device, and also can be connected to multiple devices via a switching hub or a router.

M12X-code, RJ-45 cable

P1: To a vision sensor

Precautions

If the bend radius or service loop is smaller than 10 times of the cable diameter, the Ethernet cable (COGNEX product) may cause cable shielding degradation, cable damage, or wear out in a short period.


The bend radius must be at least 152.4 mm from the connector.

Breakout cable specifications

Breakout cables provide power supply input, image acquisition trigger input, general-purpose input, and high-speed output. Breakout cables are not terminated.

P1: To a vision sensor A: Power supply return pass

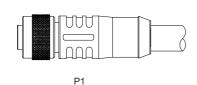
P1 Pin number	Signal name	Wire color
1	High-speed output 2 (Direct 2)*1/input 2 (2)*1	Yellow
2	Reserved	White/Yellow
3	Reserved	Brown
4	High-speed output 3 (Direct 3)*1/Input 3 (3)*1	White/Brown
5	General-purpose input 1 (Direct 1)*1	Violet
6	Input common	White/Violet
7	24 VDC	Red
8	GND	Black
9	Output common	Green
10	Trigger	Orange
11	High-speed output 0 (Direct 0)*1	Blue
12	High-speed output 1 (Direct 1)*1	Gray

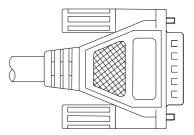
^{*1 ()} represents notations in In-Sight Explorer.

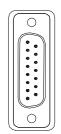
Precautions

Cut unused wires or protect them with insulating materials.

Be careful not to short-circuit with 24 VDC wires.




I/O module cable specifications


I/O module cables are used for connecting vision sensors to I/O modules directly.

When an I/O module is used, all power supplies and communication lines used for vision sensors are connected via a I/O module cable.

P1: To a vision sensor

4 FUNCTIONS

This chapter explains the functions and setting methods for tools, which can be used for a vision sensor VS70. For details, refer to the help of In-Sight Explorer.

4.1 Function List

The main functions of In-Sight Explorer are listed below.

Function name		me	Description		
application Steps		ps	The settings, which are necessary to use a vision sensor, are displayed in the order so that the settings can be made easily.		
	1. Start		To select a vision sensor to set.		
		Cot Connected	An image to set determination conditions can be specified as well.		
		Get Connected	To select a vision sensor to set, and establish a connection.		
		Set Up Image	To specify an image to be used for setting determination conditions. The image is specified by importing an image reflected to a vision sensor, or specifying an image file saved in a personal computer.		
	2. Set U	Jp Tools	To set conditions to determine the image captured with a vision sensor.		
		Locate Part	To make settings to determine whether there is a location that matches the set feature.		
		Location Tools	To set a feature.		
		Inspect Part	To make settings to determine whether the feature that has been set is satisfied. The shape and quantity of products can be inspected.		
		Presence/Absence Tools	To make settings for judging the presence/absence of features.		
		Measurement Tools	To make settings for measuring the distance, diameter, angle, and dimension of a feature.		
		Counting Tools	To make settings for counting features.		
		Identification Tools	To make settings for identifying and verifying a feature and color.		
		Geometry Tools	To make settings for creating a geometrical figure.		
		Math & Logic Tools	To make settings for calculation processing and processing based on a logic by combining results set with multiple tools.		
		Plot Tools	To make settings for creating a conditionally enabled graphics that can be placed onto an image.		
		Image Filter Tools	To make settings for enhances an image or region of an image for image analysis.		
		Defect Detection Tools	To make settings for detecting a defect in an inspection target.		
		Calibration Tools	To make settings for creating a calibration that can be shared among jobs.		
	3. Conf	igure Results	To set an output method for the determination results of the images that were acquired.		
		Inputs/Outputs	To set input and output data.		
		Communication	To make settings for communication between a vision sensor and an external device such as a programmab controller according to the specified method.		
	4. Finis	h	To save settings and check operations.		
		Filmstrip	To check the images saved in the vision sensor and the results of capture, or check the images saved in the personal computer.		
		Save Job	To save settings to a vision sensor.		
	Run Job		To operate a vision sensor based on the settings made in prior steps. The operation can also be checked.		
) Ser	Sensor Solution functions		The functions of iQ Sensor Solution can be performed using an engineering tool. For details on the iQ Sensor Solution functions, refer to the following: QaliQ Sensor Solution Reference Manual		
	Automa devices	atic detection of connected	To detect connected vision sensors.		
	_	e with dedicated tools ation with properties)	To make In-Sight Explorer to start from an engineering tool.		
prea	readsheet		To perform programming using spreadsheet in In-Sight Explorer. Spreadsheet is suitable for creating a complex vision application because spreadsheet has higher flexibility in setting than EasyBuilder.		

ction name		Description	
Fund	ctions	To control a vision sensor and perform an inspection.	
	Vision Tools	To locate parts or inspect products with functions such as Pattern Match, ID, Blob, Edge, InspectEdge, Image Flaw Detection, or OCV/OCR.	
	Geometry	To create a geometrical figure with dots and lines, and calculate the distance and angle between dots, circles and lines.	
	Graphics	To create an operator interface by editing contents displayed when operating a vision sensor.	
	Mathematics	To create a formula with arithmetical functions, logical functions, statistical functions, and trigonometric functions equipped by default.	
	Text	To format alphanumeric data character strings that are displayed in the spreadsheet and are used for the communication between a vision sensor and a remote device. To convert the location and distance of the feature between image, fixture, and world coordinate system.	
	Coordinate Transforms		
	Input/Output	To control the method for a vision sensor to communicate with a remote device via Ethernet connection or serial port connection.	
	Clocked Data Storage	To acquire one data from consecutive data every time an event occurs and the spreadsheet is updated.	
	Vision Data Access	To extract values from data structures, functions, and references of other cells.	
	Structures	To create graphics, fixture, mask, and region that can be used for other functions.	
	Scripting	To provide the functions to perform a script by JavaScript. JavaScript source code can be created and edited on the spreadsheet.	
	Focus*1	To provide the method to automatically or manually adjust the focus of a lens in a vision sensor that supports autofocus.	
Snip	ppets	A group of functions or parameters combined according to their faculty.	

^{*1} This menu is displayed only when an autofocus module is attached to a vision sensor.

4.2 Tool List

The following table shows the details of tools that can be set in In-Sight Explorer.

Tool	Settings	Description
Location Tools	PatMax RedLine Pattern*1	To locate a single pattern, using the PatMax RedLine algorithms, and display the XY coordinates, angle, and score of the pattern.
	PatMax Pattern	To locate a single pattern feature, using the PatMax algorithm, and display the XY coordinates, angle, and score of the pattern.
	Pattern	To locate a single pattern feature, and display the XY coordinates, angle, and score of the pattern.
	PatMax RedLine Patterns (1-10)*1	To locate up to 10 patterns, using the PatMax RedLine algorithm, and display the XY coordinates, angle, and score of the patterns.
	PatMax Patterns (1-10)	To locate up to 10 patterns, using the PatMax algorithm, and display the XY coordinates, angle, and score of the patterns.
	Patterns (1-10)	To locate up to 10 patterns, and display the XY coordinates, angle, and score of the patterns.
	Edge	To locate linear edges. The XY coordinates of the mid-point of the edge, and its angular orientation are reported.
	Edge Intersection	To create a fixture from the intersection point of two edges, and report the XY coordinates of the crossing point and the bisect angle.
	Blob	To locate a blob (a single group of dark or light-colored connected pixels), and report the XY coordinates of the centroid of the found blob.
	Blobs (1-10)	To locate up to 10 blobs (groups of dark or light-colored connected pixels), and report the XY coordinates of the centroid of the found blobs.
	Color Blob	To locate a color blob (a single group of colored connected pixels), and report the XY coordinates of the centroid of the found blobs.
	Color Blobs (1-10)	To locate up to 10 blobs (groups of colored connected pixels), and report the XY coordinates of the centroid of the found blobs.
	Circle	To locate a circular edge feature, and report the diameter and XY coordinates of the circle's center.
	Compute Fixture	To calculate a fixture location based on mathematical expressions, and report the XY coordinates and the angle of the fixture. It is required for location tools or inspection tools as inputs.
Presence/Absence Tools	Brightness	To determine whether or not a feature is present or absent, based upon an average greyscale (brightness) value.
	Contrast	To determine whether or not a feature is present or absent, based upon the contrast between features.
	PatMax RedLine Pattern*1	To determine whether or not a pattern is present or absent, using the PatMax RedLine algorithm.
	PatMax Pattern	To determine whether or not a pattern is present or absent, using the PatMax algorithm.
	Pattern	To determine whether or not a pattern is present or absent.
	Pixel Count	To determine whether or not a feature is present or absent, based upon the number of dark or light-colored pixels in a region.
	Color Pixel Count	To determine whether or not a feature is present or absent, based upon the number of pixels that matches the selected Color Model(s) in a region.
	Blob	To determine whether or not blobs (groups of dark or light-colored connected pixels) are present.
	Color Blob	To determine whether or not color blobs (groups of colored connected pixels) are present.
	Edge	To determines whether or not a liner edge is present or absent
	Circle	To determine whether or not a circular feature is present or absent.
	Sharpness	To determine the relative focus of images acquired by In-Sight Explorer by measuring the degree to which the region includes the smallest resolvable features in a 'scene'.

Tool	Settings	Description
Measurement Tools	Distance	To measure the distance between any two features (edges, circles, patterns, and/or blobs), and report the distance in pixels.
	Angle	To measure the distance between two linear edge features, and report the angle between the two edges.
	Blob Area	To measure the area of a blob (a single group of dark or light-colored connected pixels), and display the area in pixels.
	Blob Areas (1-10)	To measure the area of up to 10 blobs (groups of dark or light-colored connected pixels), and display the area in pixels.
	Color Blob Area	To measure the area of a color blob (a single group of colored connected pixels), and display the area in pixels.
	Color Blob Areas (1-10)	To measure the area of up to 10 color blobs (groups of colored connected pixels), and display the area in pixels.
	Circle Diameter	To detect a circular feature, and report the diameter in pixels.
	Circle Concentricity	To detect two circular features, and report the distance between the centers of two circles in pixels.
	Measure Radius	To define a curved edge feature, and report the radius of the curve.
	Min/Max Points	To measure the position of edges, and determines the edge points that are closest and furthest from either the edge or the region. To create a best-fit line or circle of the edge feature, and report the edge points that are closest and furthest from the best-fit line or circle.
Counting Tools	Blobs	To count the number of blobs (groups of dark or light-colored connected pixels), and report the number of the blobs.
	Color Blobs	To count the number of color blobs (groups of colored connected pixels), and report the number of the color blobs.
	Edge	To count the number of liner edges, and report the number of the edges.
	Edge Pairs	To count the number of liner edge pairs, and report the number of the edge pairs.
	PatMax RedLine Pattern*1	To count the number of registered patterns in the image, using the PatMax RedLine algorithm, and report the number of the patterns.
	PatMax pattern	To count the number of registered patterns, using the PatMax algorithm, and report the number of the patterns.
	Pattern	To count the number of registered patterns, and report the number of the patterns.
Identification Tools	Read 1D Code	To read and/or verify information contained in a single 1D code, using ReadIDMax, and display the decoded information.
	Read 1D Codes (1-20)	To read and verify information contained in up to 20 bar codes, using ReadIDMax, and display the decoded information.
	Read 2D Code	To read and/or verify information contained in a single 2D code, using ReadIDMax, and display the decoded information.
	Read 2D Codes (1-20)	To read and/or verify information contained in up to 20 2D codes, using ReadIDMax, and display the decoded information.
	Read Postal Code	To read and/or verify information contained in a single postal code, using ReadIDMax, and display the decoded information.
	Read Text (OCRMAX)	To read and verify the text within a region, after registering and creating user-defined character fonts. Using the OCRMax algorithm, optical character recognition (OCR) is performed through a process of segmentation and classification against a registered font database tool.
	PatMax RedLine Patterns (1-10)*1	To determine from a library of registered patterns which pattern best matches the pattern in the image, using the PatMax RedLine algorithm, and report the name of the pattern and its score.
	PatMax Patterns (1-10)	To determine from a library of registered patterns which pattern best matches the pattern in the image, using the PatMax algorithm, and report the name of the pattern and its score.
	Patterns (1-10)	To determine from a library of registered patterns which pattern best matches the pattern in the image, and report the name of the pattern and its score.
	Color	To determine which colors in a trained Color Library match the colors in the image, and display the name of the found colors.
	Color Model	To determine which colors in a trained Color Library match the colors in the image, and display the name of the found Color Model(s).

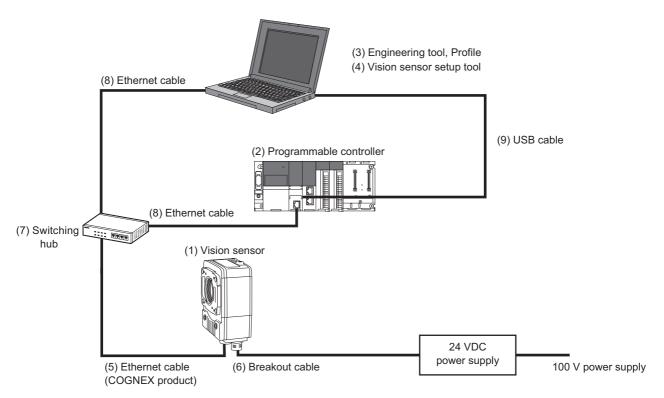
Tool	Settings	Description
Geometry Tools	Point-to-Point: Line	To create a reference line between any two input features, and report the XY coordinates of the end-points of the created line.
	Point-to-Point: Mid-Point	To create a reference line between two input features, and calculate the mid-point between the features. The XY coordinates of the mid-point and its angular orientation is reported.
	Point-to-Point: Dimension	To create two reference lines between two input features and a reference edge or line, and report the distance between the mid-points of the two created reference lines.
	Perpendicular Line	To create a reference line perpendicular to another line or edge, and report the XY coordinates of the end-points of the perpendicular line.
	Line Intersection	To create a point where two lines or edges or intersects, and report the XY coordinates of the intersection point.
	Bisect Angle	To create a reference line that defines the bisection angle between two edges or lines, and report the XY coordinates of the end-points of the line and the bisection angle.
	Line From N Points	To create a best fit reference line using three to ten input features, and report the XY coordinates of the end-points of the line.
	Circle From N Points	To create a best fit circle using three to ten input features, and report the diameter of the circle.
	Circle-Line Intersection	To create two points where a line intersects a circle, and report the XY coordinates of the two points.
	User-Defined Point	To position a reference point within an image, and report the XY coordinates of the point.
	User-Defined Line	To create a reference line within an image, and report the XY coordinates of the end-points of the line.
	Circle Fit	To create a best fit circle, and report the radius of the circle and its center point.
	Line Fit	To create a best fit line, and report the start and end points of the line segment.
Math & Logic Tools	Math	To create a mathematical formula to process tool and job data, using standard mathematical functions, operations, logic, statistics, and trigonometry, using the [Expression] editor.
	Logic	To create a logical formula of tool PASS and FAIL signals, using the [Expression] editor.
	Trend	To report maximum, minimum, average, sample, and standard deviation statistics for location tools or inspection tools, over a defined number of samples.
	Statistics	To report maximum, minimum, average, sample, and standard deviation statistics for location tools or inspection tools.
	Group	To combine a location tool and an inspection tool into a group.
	Sequence	To define the number of steps for a job requiring multiple image acquisitions or stages in the assembly process.
	Compute Point	To calculate the position of a point on an image based on mathematical expressions.
	Variables	To define integer, floating point, or string values that can be input to a job from an external device.
Plot Tools	Arc	To plot an arc graphic on an image based on mathematical expressions.
	Circle	To plot a circle graphic on an image based on mathematical expressions.
	Cross	To plot a cross graphic on an image based on mathematical expressions.
	Line	To plot a line graphic on an image based on mathematical expressions.
	Point	To plot a point graphic on an image based on mathematical expressions.
	Region	To plot a region graphic on an image based on mathematical expressions.
	String	To plot a text graphic on an image based on mathematical expressions.
Image Filter Tools	Filter	To filter a region of an image with a pixel-by-pixel image-enhancement technique (such as thresholding, inverting, equalization, shrinking, expanding, filling, smoothing, or edge enhancement), and output a tool image.
	Color to Greyscale	To filter a region of an image by converting each pixel in a color image to a greyscale value
	Color to Binary	To filter a region of an image by applying white pixels to an active Color Model(s) and black pixels to all the others.
	Transform	To filter liner, non-liner, and/or lens distortion from a region of an image, and apply the transformation from a grid calibration to the image.
	Compare	To filter a region of an image against a template to represent the normalized difference between the two.

Tool	Settings	Description
Defect Detection Tools	Surface Flaw	To detect whether or not small flaws based upon pixel intensity variations.
	Edge	To create a best fit line or circle, and determines whether or not there are deviations, such as defects or gaps.
	Edge Pairs	To create a pair of best-fit line or circle, and determines whether or not there are deviations, such as defects or gaps.
	Edge Width	To measure and verify that the thickness of a pair of edge is within tolerance.
	Bead Finder	To detect a bead feature (defined by a pair of edges), regardless of shape, by detecting the center of the bead and creating a region that can be used to inspect the width of the bead.
	Bead Tracker	To inspect the location, shape, and width of a beard feature, and determine if the bead is in the correct position, based on a use-defined edge model of a bead feature (defined by a pair of edges).
Calibration Tools	N Point	To create a calibration that can be exported to share among jobs, using 2 to 16 point pairs.
	Sequential N Point	To create a calibration that can be exported to share among jobs, using 2 to 16 point pairs and images that are sequentially captured.

^{*1} For VS70M-600-ER, VS70M-600-R, VS70M-800-ER, VS70M-800-R, VS70M-802-ER, VS70M-802-R, VS70C-600-R, VS70C-800-R, and VS70C-802-R, the following patterns can be used: PatMax RedLine Pattern and PatMax RedLine Patterns (1-10).

As for VS70M-600-E, VS70M-600, VS70M-800-E, VS70M-800, VS70M-802-E, and VS70M-802, the following patterns cannot be used: PatMax RedLine Pattern and PatMax RedLine Patterns (1-10).

4.3 Interface List

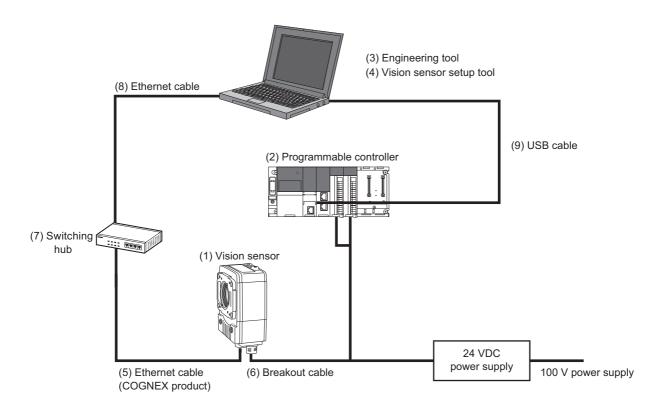

The following table shows the interfaces that can be used in In-Sight Explorer.

Interface	Description
EasyBuilder	To edit a job with an EasyBuilder interface.
Spreadsheet	To edit a job with an Spreadsheet interface.

5 SYSTEM CONFIGURATION

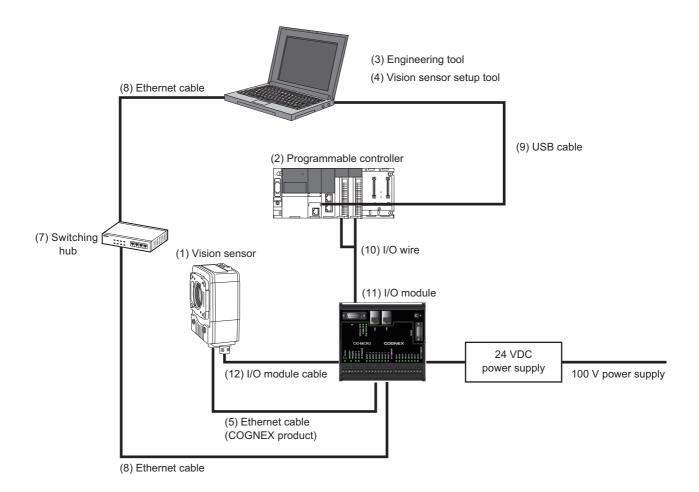
5.1 Ethernet Connection

The following figure shows the system configuration for Ethernet connection.

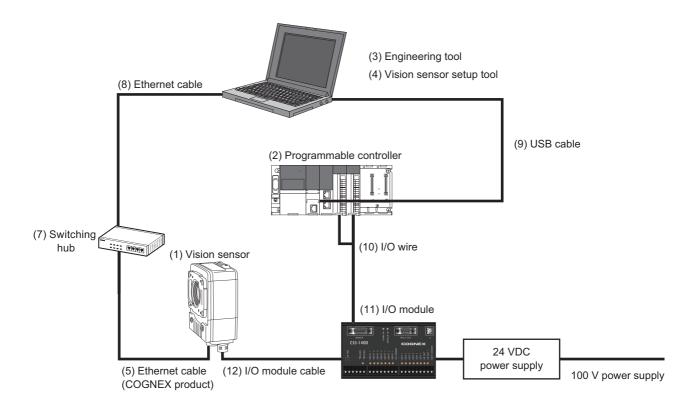


The same system configuration as above can be applied when configuring settings for CC-Link IE Field Network Basic connection, EtherNet/IP connection, and SLMP scanner connection in In-Sight Explorer.

5.2 I/O Connection


The following figure shows the system configuration for I/O connection.

5.3 I/O Connection Using an I/O Module


I/O connection using a CIO-MICRO I/O module

The following figure shows the system configuration for I/O connection using a CIO-MICRO I/O module.

I/O connection using a CIO-1400 I/O module

The following figure shows the system configuration for I/O connection using a CIO-1400 I/O module.

5.4 Configurations

The hardware components of the system configuration are as follows.

No.	Component name	Remarks	Reference	
(1)	Vision sensor	Vision sensor VS70	_	
(2)	Programmable controller	Required for using vision sensors	Page 39 Modules	
(3)	Engineering tool	Required for setting a programmable controller	Page 40 Software	
(4)	Vision sensor setup tool	Required for setting a vision sensor		
(5)	Ethernet cable (COGNEX product)	Required for setting a vision sensor from a personal computer	Page 49 Cables	
(6)	Breakout cable	Required for supplying power		
(7)	Switching hub	Commercial product	_	
(8)	Ethernet cable	Commercial product		
(9)	USB cable	Commercial product		
(10)	I/O wire	Commercial product		
(11)	I/O modules	Optional item	Page 50 I/O modules	
(12)	I/O module cable	Optional item	Page 49 Cables	

5.5 Applicable System

The modules and software that are available for a vision sensor VS70 are as follows.

Modules

The modules and versions that are available for a vision sensor VS70 are as follows.

For specifications and model names of modules that can be used for each of the connection methods, refer to the manual for each module.

○: Supported, —: Not supported

Module		Version	Connection method			
			SLMP	CC-Link IE Field Network Basic	MODBUS/ TCP	EtherNet/IP
RnCPU, RnENCPU		No restrictions*1	0	0	0	_
FX5CPU		No restrictions*2	0	0	0	_
High-speed Universal model QCPU, Universal model process CPU		No restrictions*3	0	_	_	_
QnUDE(H)CPU		No restrictions*3	0	_	_	_
Built-in Ethernet por	t LCPU	No restrictions*4	0	_	_	_
FX3UCPU (FX3U-E	NET-L) ^{*5}	The firmware version is 3.10 or later.	0	_	_	_
EtherNet/IP net interface module	iQ-R series EtherNet/IP network interface module	The firmware version is 04 or later. RnCPU, RnENCPU (all versions)	_	_	_	0
	iQ-F series FX5 intelligent EtherNet/IP function module	FX5UJCPU module (all versions) FX5UCPU module (Ver.1.110 or later) FX5UCCPU module*6 (Ver.1.110 or later)	_	_	_	0

- *1 The firmware version of a module must be 28 or later for the automatic detection function of connected devices in an engineering tool.
- *2 The firmware version of a module must be 1.040 or later for the automatic detection function of connected devices in an engineering
- *3 The first five digits of the serial number of a module must be 19042 or higher for the automatic detection function of connected devices in an engineering tool.
- *4 The first five digits of the serial number of a module must be 18112 or higher for the automatic detection function of connected devices in an engineering tool.
- *5 SLMP connection is not available for a CPU module itself. Use the CPU module and an FX3U-ENET-L for the Ethernet communication together.
- *6 A connector conversion module FX5-CNV-IFC or FX5-C1PS-5V is required for connecting to an FX5UCCPU module.

Software

The versions of each piece of software (engineering tool, vision sensor setup tool, vision sensor profile, and EDS file for a vision sensor) that are available for a vision sensor VS70 are as follows.

○: Supported, —: Not supported

Software	Connection method				
	SLMP	CC-Link IE Field Network Basic	MODBUS/TCP	EtherNet/IP	
GX Works3	No restrictions*1	No restrictions*1	1.035M or later	1.072A or later	
GX Works2	No restrictions*2	No restrictions*2	_	_	
FX3U-ENET-L	GX Works2 Version 1.20W or later	_	_	_	
EtherNet/IP Configuration Tool for RJ71EIP91	_	_	_	Ver.1.00A or later	
EtherNet/IP Configuration Tool for FX5-ENET/IP	_	_	_	Ver.1.00A or later	
In-Sight Explorer*3	Version 5.4.3 or later	Version 5.4.3 or later	Version 5.7.5PR1 or later	Version 5.7.5PR1 or later	
Vision sensor profile for an engineering tool	Device Ver: 1	Device Ver: 1	_	_	
EDS file for a vision sensor	_	_	_	Revision 1.2	

- *1 The version must be 1.035M or later for the automatic detection function of connected devices in an engineering tool.
- *2 The version must be 1.565P or later for the automatic detection function of connected devices in an engineering tool.
- *3 Update a vision sensor VS70 to a firmware that supports In-Sight Explorer.

For the firmware update of a vision sensor VS70, refer to "Update Firmware Dialog" in the "In-Sight Explorer Help" screen. The procedure is as follows.

• Open the "In-Sight Explorer Help" screen.

Select [Help]

□ [In-Sight Explorer Help] in In-Sight Explorer.

2 Open "Update Firmware Dialog."

Enter 'firmware update' in the field under "Type in the word(s) to search for" in the [Search] tab in the "In-Sight Explorer Help" screen, and click [List Topics] and select "Update Firmware Dialog" under "Select topic."

Precautions

Basically, each version of In-Sight Explorer (vision sensor setup tool) and a vision sensor has no backward compatibility. Do not use a version older than the one used to create a JOB file. Doing so may cause an unexpected behavior.

When using a VS70 color model

Vision sensor setup tool	Version
In-Sight Explorer	Version 5.7.5 or later*1

^{*1} A vision sensor VS70 must also be updated to a firmware that supports In-Sight Explorer.

For the firmware update of a vision sensor VS70, refer to "Update Firmware Dialog" in the "In-Sight Explorer Help" screen. The procedure is as follows.

• Open the "In-Sight Explorer Help" screen.

Select [Help]

□ [In-Sight Explorer Help] in In-Sight Explorer.

2 Open "Update Firmware Dialog."

Enter 'firmware update' in the field under "Type in the word(s) to search for" in the [Search] tab in the "In-Sight Explorer Help" screen, and click [List Topics] and select "Update Firmware Dialog" under "Select topic."

5.6 Hardware Components and Optional Items

Items to prepare

This section shows the items required for the system configuration.

Cables

The cables that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Reference
Ethernet cable	CCB-84901-2001-xx CCB-84901-2002-xx	Page 49 Cables
Breakout cable	CCBL-05-01	
	CCB-PWRIO-xx	
	CCB-PWRIO-xxR	

Lenses, light covers, and lights

The lenses, light covers, and lights that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Reference
Lens, light cover with LED illumination, and light	_	Page 41 Items to prepare as needed

Items to prepare as needed

This section shows the products that are available for a vision sensor VS70.

Product	Reference
Autofocus accessories and illumination accessories	Page 42 Autofocus accessories and illumination accessories
C-mount lenses and lens cover accessories	Page 43 C-mount lenses and lens cover accessories
C-mount lenses and illumination accessories	Page 44 C-mount lenses and illumination accessories
S-mount/M12 manual focus accessories	Page 45 S-mount/M12 manual focus accessories
DataMan lenses, light covers with LED illuminations, and lights	Page 46 DataMan lenses, light covers with LED illuminations, and lights
High-powered integrated lights	Page 47 High-powered integrated lights
External lights	Page 48 External lights
Cables	Page 49 Cables
Mounting bracket	Page 50 Mounting bracket
I/O module	Page 50 I/O modules

Autofocus accessories and illumination accessories

The autofocus accessories and illumination accessories that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
Autofocus module	ISAF-7000-8MM	8 mm F2.2 lens
	ISAF-7000-8MM-ME	8 mm F2.2 lens
		A Japanese manual is included.
S-mount/M12 lens	LM12-06-01	6 mm F2 fixed aperture lens
	LM12-08-01-F2.2	8 mm F2.2 fixed aperture lens
	LM12-12-01-F2.3	12 mm F2.3 fixed aperture lens
	LM12-16-01	16 mm F2.5 fixed aperture lens
	LM12-25-01	25 mm F2 fixed aperture lens
Light cover set including illumination with	ISLM-7000-WHI	Illumination with white LED ring light
LED ring light	ISLM-7000-WHI-ME	Light cover and hex wrench
Light cover for LED ring light	COV-7000-CLR	Clear cover Attach to the LED ring light in the light cover set (ISLM-7000-WHI or ISLM-7000-WHI-ME).
	COV-7000-PL-FULL*1	Polarized cover Attach to the LED ring light in the light cover set (ISLM-7000-WHI or ISLM-7000-WHI-ME).
LED ring light	ISL-7000-BL*2	Blue Used with the light cover for LED ring light attached.
	ISL-7000-IR*2	Infrared light Used with the light cover for LED ring light attached.
	ISL-7000-RD*2	Red Used with the light cover for LED ring light attached.
	ISL-7000-WHI*2	White Used with the light cover for LED ring light attached.
Bandpass filter	ISF-7000-BLBP435*2	Blue
	ISF-7000-RDBP605*2	Red
	ISF-7000-IRBP815*2	Infrared light

^{*1} Before attaching a lens cover, pull the red tab to remove the protective film.

^{*2} The accessories and illumination accessories can be used when using an autofocus module as well as when using other modules.

The illumination in the light cover set including illumination with LED ring light (ISLM-7000-WHI or ISLM-7000-WHI-ME) is the only illumination available with an autofocus module. The light cover in the light cover set including illumination with LED ring light (ISLM-7000-WHI or ISLM-7000-WHI-ME) is required for IP67 rating.

For the attachment procedure of autofocus accessories and illumination accessories, refer to the following:

Page 52 Attachment of an autofocus accessory and illumination accessory

C-mount lenses and lens cover accessories

The C-mount lenses and lens cover accessories that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
C-mount lens	LEC-CFF16-F11	16 mm F11 fixed aperture lens
	LEC-CFF16-F16	16 mm F16 fixed aperture lens
	LEC-CFF25-F11	25 mm F11 fixed aperture lens
	LEC-CFF25-F16	25 mm F16 fixed aperture lens
	LEC-CFF35-F11	35 mm F11 fixed aperture lens
	LEC-CFF35-F16	35 mm F16 fixed aperture lens
	LEC-59873*1	50 mm F2-F22 aperture lens
	LFC-9F1B	9 mm F1.4 aperture lens
	LFC-12.5F	12.5 mm F1.4 aperture lens
	LFC-16F1	16 mm F1.4 aperture lens
	LFC-25F1	25 mm F1.4 aperture lens
	LFC-35F1	35 mm F1.6 aperture lens
	LFC-50F1*1	50 mm F2.3 aperture lens
Standard lens cover	COV-7000-CMNT	Standard lens cover and lens cover adapter
Extended lens cover	COV-7000-CMNT-EX	Extended lens cover and lens cover adapter

^{*1} An extended lens cover (COV-7000-CMNT-EX) is required.

- Vision sensor VS70s support the C-mount lenses in the table above. If a different lens is used, the following restrictions apply. (Page 105 C-mount lens clearance dimensions)
 - Maximum thread length is 5.25 mm.
- \cdot When the focus position of a lens is set for infinity, the flange back (distance from the mount surface and the rear end) of the C-mount lens whose rear end is larger than 14.75 mm diameter cannot be 6.5 mm or greater in length.
- The illumination accessory in the light cover set including an illumination with an LED ring light (ISLM-7000-WHI or ISLM-7000-WHI-ME) cannot be attached to a vision sensor when the standard lens cover (COV-7000-CMNT) or extended lens cover (COV-7000-CMNT-EX) is attached to a C-mount lens.
- The standard lens cover (COV-7000-CMNT) or extended lens cover (COV-7000-CMNT-EX) can be used with the C-mount lenses in the table above. If a different lens is used, the following restrictions apply.
 - \cdot When using the standard lens cover (COV-7000-CMNT), the maximum lens length is 41 mm with a bandpass filter, the maximum lens body diameter is 36.5 mm, and the maximum diameter including locking screws is 47 mm.
 - \cdot When using the extended lens cover (COV-7000-CMNT-EX), the maximum lens length is 62 mm with a bandpass filter, the maximum lens body diameter is 36.5 mm and the maximum diameter including locking screws is 46.5 mm.

C-mount lenses and illumination accessories

The C-mount lenses and illumination accessories that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
C-mount lens	LFC-9F1B	9 mm F1.4 aperture lens
	LFC-12.5F	12.5 mm F1.4 aperture lens
	LFC-16F1	16 mm F1.4 aperture lens
	LFC-25F1	25 mm F1.4 aperture lens
	LFC-35F1	35 mm F1.6 aperture lens
	LFC-50F1*1	50 mm F2.3 aperture lens
Light cover set including illumination with	ISLM-7000-WHI*2	Illumination with white LED ring light, light cover, and hex wrench
LED ring light	ISLM-7000-WHI-ME*2	A Japanese manual is included.
Light cover set for LED ring light	ISLM-7000-00-ME*2	Light cover and hex wrench A Japanese manual is included.
Light cover for LED ring light	COV-7000-CLR*2	Clear cover
	COV-7000-PL-FULL*2,*3	Polarized cover
LED ring light	ISL-7000-BL*2	Blue Used with the light cover for LED ring light attached.
	ISL-7000-IR*2	Infrared light Used with the light cover for LED ring light attached.
	ISL-7000-RD*2	Red Used with the light cover for LED ring light attached.
	ISL-7000-WHI*2	White Used with the light cover for LED ring light attached.
Bandpass filter	ISF-7000-BLBP435*2	Blue
	ISF-7000-RDBP605*2	Red
	ISF-7000-IRBP815*2	Infrared light

^{*1} An extended lens cover (COV-7000-CMNT-EX) is required.

^{*3} Before attaching a lens cover, pull the red tab to remove the protective film.

Maximum lens length is 38.5 mm with no bandpass filter, and 36 mm with a bandpass filter. Larger lenses will irretrievably damage the vision sensor.

- The C-mount lenses in the table above can be used with the illumination and light cover in the light cover set including illumination with LED ring light (ISLM-7000-WHI or ISLM-7000-WHI-ME).
 Other C-mount lenses whose diameters are 29.5mm or smaller can be used with the illumination and light cover in the light cover set including illumination with LED ring light (ISLM-7000-WHI or ISLM-7000-WHI-
- For the attachment procedure of a C-mount lens and an illumination accessory, refer to the following: (SP Page 57 Attachment of a C-mount lens and a lens cover accessory)

^{*2} The accessories and illumination accessories can be used when using an autofocus module as well as when using other modules.

S-mount/M12 manual focus accessories

The S-mount/M12 manual focus accessories that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
S-mount/M12 lens	LM12-06-01	6 mm F2 fixed aperture lens
	LM12-08-01-F2.2	8 mm F2.2 fixed aperture lens
	LM12-12-01-F2.3	12 mm F2.3 fixed aperture lens
	LM12-16-01	16 mm F2.5 fixed aperture lens
	LM12-25-01	25 mm F2 fixed aperture lens
Installation tool kit	ISLN-7000-SMNT	Adapter for S-mount/M12 lens, lens locking cone, and installation tool
Lens removal tool kit	ISAF-7000-TOOL	Removal tool kit for autofocus lens

- The installation tool kit (ISLN-7000-SMNT) is required when attaching any of the S-mount/M12 lenses in the table above.
- Vision sensor VS70s support S-mount/M12 lenses in the table above. If a different lens is used, the following restrictions apply.
 - $\cdot\,\text{At}$ infinity focus, the back focal length must be 5.5 mm or greater.
 - · At close up, the back focal length of the lens cannot be greater than 13 mm.

For the attachment procedure of an S-mount/M12 manual focus accessory, refer to the following:

Page 65 Attachment of an S-mount/M12 manual focus lens

DataMan lenses, light covers with LED illuminations, and lights

The DataMan lenses, light covers with LED illuminations, and clear covers that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
S-mount/M12 lens	DM300-LENS-10	10.3 mm F5, S-mount/M12 lens kit
	DM300-LENS-10-IR	10.3 mm F5, S-mount/M12 lens kit for infrared light
	DM300-LENS-16	16 mm F9, S-mount/M12 lens kit
	DM300-LENS-25*1	25 mm F6, S-mount/M12 lens kit
Extension kit	DM300-EXT	_
Clear cover	DM300-CLCOV	_
Light cover with LED illumination	DM300-CLCOV-WHI	White LED illumination and clear cover
	DM300-DLCOV-BL	Blue LED illumination and lens cover with diffuse filter
	DM300-DLCOV-RE	Red LED illumination and lens cover with diffuse filter
	DM300-DLCOV-IR	IR LED illumination and lens cover with diffuse filter
	DM300-DLCOV-RE-ESD	Red LED illumination, ESD safe, and lens cover with diffuse filter
	DM300-PLCOV-RE	Red LED illumination and lens cover with polarized filter
Light	DM360-HPIL-RE-P	Polarized red LED high-powered integrated light ESD safe
	DM360-HPIL-RE	Non-polarized red LED high-powered integrated light

^{*1} An extension kit (DM300-EXT) is required.

Vision sensor VS70 supports S-mount/M12 lenses in the table above. If a different lens is used, the following restrictions apply.

- At infinity focus, the back focal length must be greater than 5.5 mm.
- At close up, the back focal length of the lens cannot be greater than 13 mm.

- S-mount/M12 manual focus lenses support the DataMan accessories in the table above. DataMan lenses only support lens covers and lights in the table above.
- The clear cover (DM300-CLCOV) is supported by S-mount/M12 manual focus lenses, and provides IP65 rating. (Page 45 S-mount/M12 manual focus accessories)

High-powered integrated lights

The high-powered integrated lights that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
High-powered integrated lights	DM30X-HPIA-470	Blue narrow
	DM30X-HPIA-470-W	Blue wide
	DM30X-HPIA-625	Red narrow
	DM30X-HPIA-625-W	Red wide
	DM30X-HPIA-625P	Red narrow with polarizer
	DM30X-HPIA-IR	Infrared narrow
	DM30X-HPIA-IR-W	Infrared wide
	DM30X-HPIA-WHI	White narrow
	DM30X-HPIA-WHI-W	White wide

When using the COGNEX high-powered integrated light whose model name is DM30X-HPIA-xxx, the following restrictions apply.

- The spacer kit accessory (DMA-SPKIT-30X-00) is required when using a high-powered integrated light. When a spacer is used, the field of view will be limited for wide-angled lenses.
- A ferrite clamp on core (Fair-Rite 0431167281, manufactured by Mouser Electronics) must be attached to an external light cable to prevent noise.

External lights

The external lights that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
Bar light	IVSL-LX520-470	Blue
	IVSL-LX520-625	Red
	IVSL-LX520-LP	Linear polarizer for IVSL-LX520-XX
	IVSL-YLW2X-625	Red narrow
	IVSL-YLW2X-625-W	Red wide
	IVSL-YLW2X-625P	Red narrow with linear polarizer
	IVSL-YLW2X-850	Infrared narrow
	IVSL-YLW300-470	Blue narrow
	IVSL-YLW300-470-W	Blue wide
	IVSL-YLW300-625	Red narrow
	IVSL-YLW300-625-W	Red wide
	IVSL-YLW300-WHI	White narrow
	IVSL-YLW300-WHI-W	White wide

- An external light can be connected to the LIGHT connector of a vision sensor by using the external light cable (CCB-M12LTF-xx).
- Vision sensor VS70s support either external lights or the illumination in the light cover set including illumination with LED ring light (ISLM-7000-WHI or ISLM-7000-WHI-ME); however, both lighting devices cannot be used at the same time.
- When using an external light whose product ID is IVSL-YLW2X-xxx, IVSL-YLW300-xxx, or IVSL-LX520-xxx, a ferrite clamp on core (Fair-Rite: 0431167281, manufactured by Mouser Electronics. Inc.) must be attached to an external light cable to prevent radiation.
- When connecting daisy-chaining multiple external lights whose product ID is IVSL-YLW2X-xxx or IVSL-YLW300-xxx, the lights must be powered externally by a separate power supply.
 Connect the control cable (CCB-FOV25-MAL-012) to the LIGHT connector of the vision sensor, or connect the power cable (IVSL-5PM12-5) to connect the light to the separate power supply.
- When using an external light whose product ID is IVSL-LX520-xxx, the light must be powered externally by a separate power supply.
- Connect the control cable (CCB-FOV25-MAL-012) to the LIGHT connector of the vision sensor, or connect the power cable (IVSL-5PM12-5) to connect the light to the separate power supply.
- The power cables (IVSL-5PM12-J300, IVSL-5PM12-J500, and IVSL-5PM12-J2000) cannot be used with the external lights whose product ID is IVSL-LX520-xxx.

Cables

The cables that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
Ethernet cable	CCB-84901-2001-01	Cable length 0.6 m, M12 connector⇔RJ-45 connector, straight
	CCB-84901-2001-02	Cable length 2 m, M12 connector⇔RJ-45 connector, straight
	CCB-84901-2001-05	Cable length 5 m, M12 connector⇔RJ-45 connector, straight
	CCB-84901-2001-10	Cable length 10 m, M12 connector⇔RJ-45 connector, straight
	CCB-84901-2001-15	Cable length 15 m, M12 connector⇔RJ-45 connector, straight
	CCB-84901-2001-30	Cable length 30 m, M12 connector⇔RJ-45 connector, straight
	CCB-84901-2002-02	Cable length 2 m, M12 connector⇔RJ-45 connector, right-angle
	CCB-84901-2002-05	Cable length 5 m, M12 connector⇔RJ-45 connector, right-angle
	CCB-84901-2002-10	Cable length 10 m, M12 connector⇔RJ-45 connector, right-angle
Breakout cable	CCBL-05-01	Cable length 5 m, M12 connector ⇔ 12 stranded wires, straight
	CCB-PWRIO-05	Cable length 5 m, M12 connector ⇔ 12 stranded wires, twisted pair, straight
	CCB-PWRIO-10	Cable length 10 m, M12 connector ⇔ 12 stranded wires, twisted pair, straight
	CCB-PWRIO-15	Cable length 15 m, M12 connector ⇔ 12 stranded wires, twisted pair, straight
	CCB-PWRIO-05R	Cable length 5 m, M12 connector ⇔ 12 stranded wires, twisted pair, right-angle
	CCB-PWRIO-10R	Cable length 10 m, M12 connector ⇔ 12 stranded wires, twisted pair, right-angle
	CCB-PWRIO-15R	Cable length 15 m, M12 connector ⇔ 12 stranded wires, twisted pair, right-angle
External light cable	CCB-M12LTF-00	Cable length 0.5 m
	CCB-M12LTF-01	Cable length 1 m
	CCB-M12LTF-02	Cable length 2 m
	CCB-M12LTF-05	Cable length 5 m
	CCB-FOV25-MAL-012	Used for a bar light (IVSL-LX520-□).
	IVSL-5PM12-J300	Cable length 0.3 m
	IVSL-5PM12-J500	Cable length 0.5 m
	IVSL-5PM12-J2000	Cable length 2 m
I/O module cable	CCB-PWRIO-MOD-02	Cable length 2 m, M12 connector ⇔ 15 pin connector (DB15)
	CCB-PWRIO-MOD-05	Cable length 5 m, M12 connector ⇔ 15 pin connector (DB15)

For cable specifications, refer to the following:

Page 20 I/O Specifications

Power supply

The power supply that is available for a vision sensor VS70 is as follows.

Product name	Model (COGNEX model)	Remarks
24 VDC power supply	ACC-24I	_
Power cord	CBLI-24VDJP	Used in Japan.
	CBLI-24VDUS	Used in North America.
	CBLI-24VDUK	Used in United Kingdom.
	CBLI-24VDEU	Used in Europe.
Power cable for external light	IVSL-5PM12-5	Used for a bar light (IVSL-LX520-□).

Mounting bracket

The mounting bracket that is available for a vision sensor VS70 is as follows.

Product name	Model (COGNEX model)	Remarks
Mounting bracket	ISB-7000-7K	Four M3 screws and a hex wrench

For the mounting procedure, refer to the following:

Page 78 Attachment of a Mounting Bracket

I/O modules

The I/O modules that are available for a vision sensor VS70 are as follows.

Product name	Model (COGNEX model)	Remarks
I/O module	CIO-MICRO	_
	CIO-1400	

For the connection method, refer to the following:

Page 70 Connection of an I/O Module

6 SYSTEM CONSTRUCTION

This chapter explains how to attach accessories to a vision sensor VS70.

6.1 Installation Environment

Before installing a vision sensor, check that the installation environment complies with the precautions for use and general specifications.

F PRECAUTIONS FOR USE

Page 16 General Specifications

6.2 Installation of a Vision Sensor

Install a vision sensor using mounting holes on the mounting surface.

Precautions

- It is recommended the vision sensor be grounded, either by installing the vision sensor to a fixture that is electrically grounded or by connecting a wire from the vision sensor's fixture to frame ground or Earth ground.
- When a ground wire is used, it should be attached to one of the four mounting points on the back plate of the vision sensor.

 Do not attach it to the mounting point on the front of the vision sensor.

Operating procedure

- Align the holes on the mounting surface with the mounting holes on a vision sensor.
- **2.** Insert M3 screws into the mounting holes, and tighten them using a 2.5 mm hex wrench.

Point P

- The maximum tightening torque of M3 screws is 0.90 N·m.
- M3 screws are sold separately.
- The maximum insertion depth of the M3 screws is 3.5 mm in the rear housing, and 3.75 mm in the front housing, plus the thickness of the mounting material used.

6.3 Attachment of a Lens and Light

Attachment of an autofocus accessory and illumination accessory

Attach the autofocus accessory by following the procedure below.

The autofocus module has an 8 mm M12 lens pre-attached.

When a different lens is required, replace the lens before attaching the autofocus module to a vision sensor.

For the replacement procedure for a lens, refer to the following:

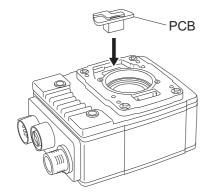
Page 84 Replacement of an M12 Autofocus Lens

Precautions

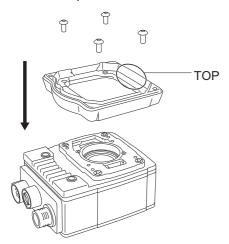
- Before attaching or removing an illumination accessory, turn OFF the power of the vision sensor.
 Failure to do so may result in damage to the vision sensor and/or the illumination accessory.
- A connector protrudes from the underside of the light housing and can be damaged if placed on a hard surface.
- A connector protrudes from the underside of the light housing.

To prevent damage, it is recommended the light housing not be removed from the box until ready to be assembled.

- Wear gloves when attaching a filter to prevent leaving fingerprints on the surface of the filter.
- · The light cover set including illumination with LED ring light is sold separately.
- The illumination in the light cover set including illumination with LED ring light is the only illumination available with an autofocus module

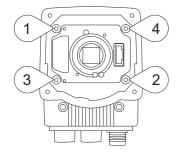

The lens cover in the light cover set including illumination with LED ring light is required for IP67 rating.

 When removing a PCB from a vision sensor, refer to the following section to safely remove the PCB and avoid damage to the vision sensor.


Page 91 Removal of a PCB

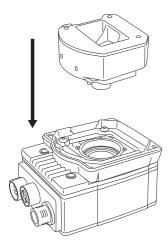
Operating procedure

- 1. Remove the rubber faceplate covering the image sensor window.
- 2. Remove the protective film covering the threaded lens opening (if present).
- **3.** Plug a PCB into the lighting connector on the vision sensor faceplate.


4. Place a spacer on the vision sensor.

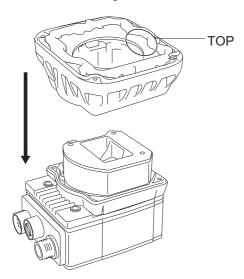
Point P

When placing the spacer, check the position of the character, "TOP" on the spacer to place it in the same direction as the figure below.


- **5.** Check that the gasket is located under the spacer.
- **6.** Insert four M3 \times 6 mm screws, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

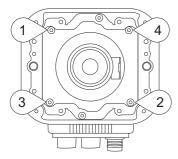
Point P

The maximum tightening torque is 0.34 N·m.


7. Place an autofocus module on the vision sensor.

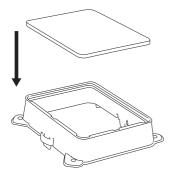
Point P

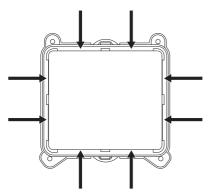
When placing the autofocus module, check the position of two alignment pins on the bottom of the autofocus module to place it in the same direction as the following figure.


- **8.** Temporarily fasten the three captive screws on the top of the autofocus module using a 1.5 mm hex wrench.
- **9.** Tighten the captive screws with a force of 0.50 N·m using a torque screwdriver with a 1.5 mm hex torque bit capable of reaching 15 mm into a 2.5 mm diameter hole.
- **10.** Check that the gasket is located on the spacer, and place the light housing.

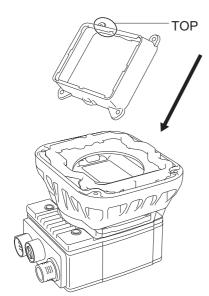
Point P

When placing the light housing, check the position of the character, "TOP" on the light housing to place it in the same direction as the following figure.


11. Insert captive screws into the four captive screw access holes near the white circles on the LED ring light, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

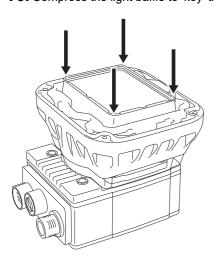

Point P

The maximum tightening torque is 0.34 N·m.

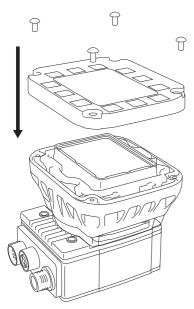

12. When using a bandpass filter, insert the filter in the light baffle so that it's held in place between the light baffle's filter tabs.

13. Push the filter down and snap it into the prescribed place.

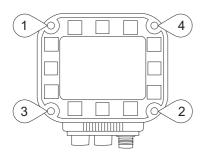
- **14.** Check that the filter retention tabs are flush with the top surface of the filter.
- **15.** Tilt the light baffle toward the light housing, and maneuver the light baffle under the LED ring light in order from the bottom.



Point P


Light baffles are designed to fit the structure of LED ring lights.

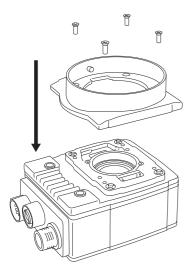
When placing the light baffle, check the position of the character, "TOP" on the light baffle to place it in the same direction as the following figure.


16. Compress the light baffle to 'key' the captive screw access holes on the light housing.

17. Place a light cover on the light housing.

- $\textbf{18.} \ \text{Align the central clear region of the light cover with the light baffle edges}.$
- **19.** Insert four M3 \times 12 mm screws, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

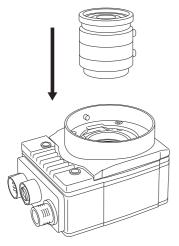
Point P

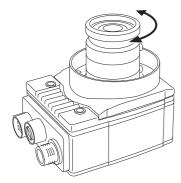

The maximum tightening torque is 0.31 $\ensuremath{\text{N}}{\cdot}\text{m}.$

Attachment of a C-mount lens and a lens cover accessory

Attach a C-mount lens and a lens cover accessory by following the procedure below.

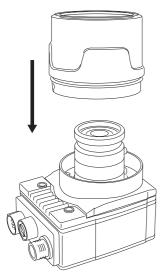
Operating procedure


- **1.** Remove the rubber faceplate covering the image sensor window.
- **2.** Remove the protective film covering the threaded lens opening (if present).
- **3.** Place a lens cover adapter on the faceplate of the vision sensor, and insert four adapter screws and tighten.


Point P

The maximum tightening torque is 0.26 N·m.

4. Thread a lens into the vision sensor.


5. For adjusting the focus of the C-mount lens, start In-Sight Explorer, and turn the focus ring while checking the focus.

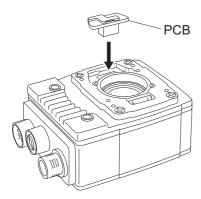
Point P

For details on the adjustment of focus, refer to the help of In-Sight Explorer.

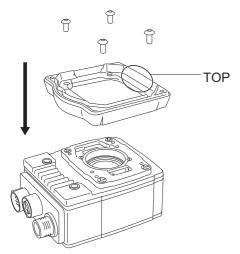
6. Attach the standard lens cover or extended lens cover to the vision sensor.

7. Turn the lens cover clockwise until it locks.

Attachment of a C-mount lens and an illumination accessory

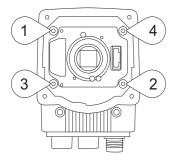

Attach a C-mount lens and an illumination accessories in the light cover set including illumination with LED ring light by following the procedure below.

Precautions


- Before attaching or removing an illumination accessory, turn OFF the power of the vision sensor. Failure to do so may result in damage to the vision sensor and/or the illumination accessory.
- A connector protrudes from the underside of the light housing and can be damaged if placed on a hard surface.
- A connector protrudes from the underside of the light housing.
 To prevent damage, it is recommended the light housing not be removed from the box until ready to be assembled.
- Wear gloves when attaching a filter to prevent leaving fingerprints on the surface of the filter.
- When removing a PCB from a vision sensor, refer to the following section to safely remove the PCB and avoid damage to the vision sensor.
 - Page 91 Removal of a PCB
- The maximum insertion depth of the M3 screws is 3.5 mm in the rear housing, and 3.75 mm in the front housing, plus the thickness of the mounting material used.

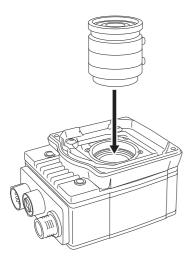
Operating procedure

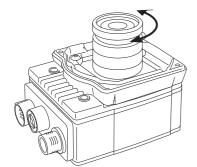
- 1. Remove the rubber faceplate covering the image sensor window.
- 2. Remove the protective film covering the threaded lens opening (if present).
- **3.** Plug a PCB into the lighting connector on the vision sensor faceplate.


4. Place a spacer on the vision sensor.

Point P

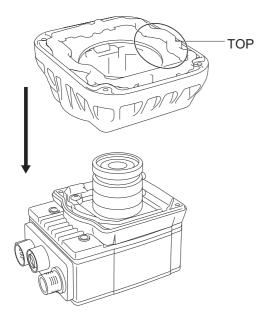
When placing the spacer, check the position of the character, "TOP" on the spacer to place it in the same direction as the figure below.


- **5.** Check that the gasket is located under the spacer.
- **6.** Insert four M3 \times 6 mm screws, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.


Point P

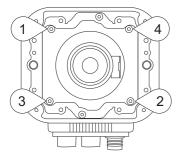
The maximum tightening torque is 0.34 N·m.

7. Thread a lens into the vision sensor.

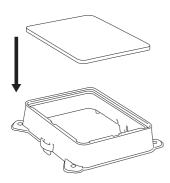

8. For adjusting the focus, select "Live Video" in In-Sight Explorer, and turn the focus ring while checking the focus.

Point P

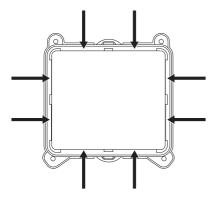
For details on the adjustment of focus, refer to the help of In-Sight Explorer.


9. Check that the gasket is located on the spacer, and place the light housing.

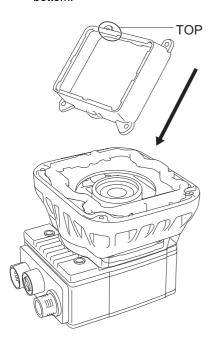
Point P


When placing the light housing, check the position of the character, "TOP" on the light housing to place it in the same direction as the following figure.

10. Insert captive screws into the four captive screw access holes near the white circles on the light housing, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.



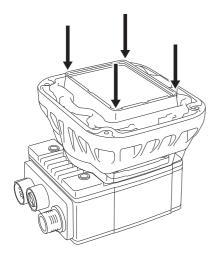
- The maximum tightening torque is 0.34 N·m.
- When a different LED color is required, refer to the following:
- Page 80 Replacement of an LED Ring Light
- **11.** When using a bandpass filter, insert the filter in the light baffle so that it's held in place between the light baffle's filter tabs.



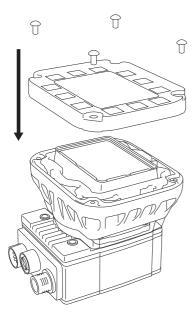
12. Push the filter down and snap it into the prescribed place.

13. Check that the filter retention tabs are flush with the top surface of the filter.

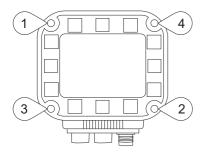
14. Tilt the light baffle toward the light housing, and maneuver the light baffle under the LED ring light in order from the bottom.



Point P


Light baffles are designed to fit the structure of LED ring lights.

When placing the light baffle, check the position of the character, "TOP" on the light baffle to place it in the same direction as the following figure.

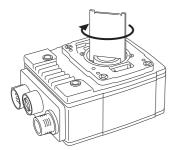

15. Compress the light baffle to 'key' the captive screw access holes on the light housing.

16. Place a light cover on the light housing.

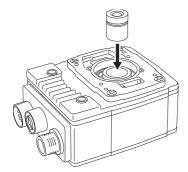
- **17.** Align the central clear region of the light cover with the light baffle edges.
- **18.** Insert four M3 \times 12 mm screws, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

The maximum tightening torque is 0.31 N·m.

Attachment of an S-mount/M12 manual focus lens

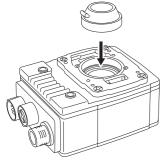

Attach an S-mount/M12 manual focus lens by following the procedure below.

Operating procedure


- **1.** Remove the rubber faceplate covering the image sensor window.
- **2.** Remove the protective film covering the threaded lens opening (if present).
- 3. Place an S-mount adapter over the image sensor window.

4. Place the "In-Sight" end of the adapter tool on the S-mount adapter, and turn clockwise until tight.

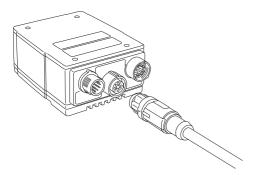
5. Remove the adapter tool, and turn a lens clockwise to tighten.


6. For adjusting the focus, select "Live video" in In-Sight Explorer, and turn the focus ring while checking the focus.

Point P

For details on the adjustment of focus, refer to the help of In-Sight Explorer.

7. Push a rubber lens-locking cone onto the M12 lens, and fix to the place around the nose of the lens. Avoid rotating the M12 lens.


8. When using a lens cover accessory, attach a lens cover to the vision sensor.

6.4 Connection of an External Light Cable

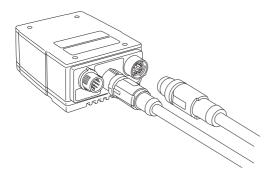
This section shows the procedure for connecting an external light cable.

Operating procedure

- 1. Remove the protective cap from the LIGHT connector (if present).
- 2. Connect the M12 connector of an external light to the LIGHT connector of the vision sensor.

3. Connect the other end of the light cable to an external lighting device (for example, a strobe light).

Precautions


The cable is designed to connect with its key aligned with the keyway of the connector on the Vision Sensor. Do not force the connections or damage may occur.

6.5 Connection of an Ethernet Cable

This section shows the procedure for connecting an Ethernet cable.

Operating procedure

1. Connect the Ethernet cable's M12 connector to the vision sensor's Ethernet connector.

2. Connect the Ethernet cable's RJ-45 connector to the switching hub or personal computer, as applicable.

Precautions

- The cable is designed to connect with its key aligned with the keyway of the connector on the Vision Sensor.

 Do not force the connections or damage may occur.
- The Ethernet cable shield must be grounded at the far end.
 Whatever this cable is plugged into (usually a switching hub) should have a grounded Ethernet connector.
 A digital voltmeter should be used to validate the grounding.

6.6 Connection of a Breakout Cable

This section shows the procedure for connecting a breakout cable.

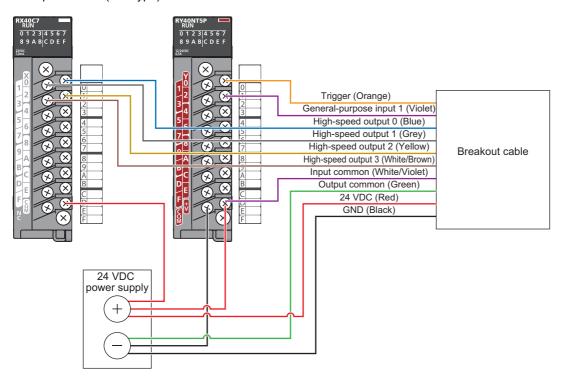
For the specifications on the breakout cable, refer to the following:

Page 26 Breakout cable specifications

Operating procedure

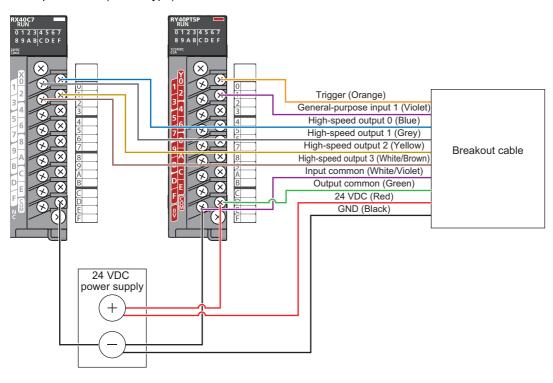
- 1. Check that the 24 VDC power supply is OFF.
- 2. Connect an I/O wire or a serial wire to an appropriate device (such as a programmable controller).
- Connect the 24 VDC (red wire) and GND (black wire) of a breakout cable to the corresponding terminals on the power supply.
- 4. Connect the power and I/O Breakout cable's M12 connector to the vision sensor's PWR connector.
- **5.** Turn ON the 24 VDC power supply.

Precautions


- To reduce emissions, connect the far end of the breakout cable shield to frame ground.
- Before wiring I/O wires to an I/O device or adjusting the connected wires, turn OFF the power of the vision sensor.
- · Cut unused wires or protect them with insulating materials. Be careful not to short-circuit with 24 VDC wires.
- Use only 24 VDC and observe the indicated polarity. Otherwise, fire or damage may result.
- The cable is designed to connect with its key aligned with the keyway of the connector on the Vision Sensor. Do not force the connections or damage may occur.

Connection example of a breakout cable

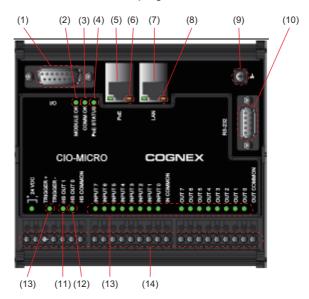
This section shows an example for connecting a breakout cable.


Sink type

- Input module (positive/negative common shared type)
- Output module (sink type)

Source type

- Input module (positive/negative common shared type)
- Output module (source type)



6.7 Connection of an I/O Module

This section shows the specifications and procedure for connecting an I/O module.

Specifications of CIO-MICRO I/O modules

For the connection between a CIO-MICRO I/O module and a programmable controller, use a terminal block.

No.	Connector/Indicator	Description
(1)	I/O port (D-sub 15P, female)	Connects an I/O module to a vision sensor using an I/O module cable.
(2)	MODULE OK LED	Turns ON in green when an I/O module is initialized and the communication with a vision sensor is ready.
(3)	COMM OK LED	Turns ON in green when the communication with a vision sensor or an I/O module is successfully established.
(4)	PoE STATUS LED	Unsupported
(5)	PoE port	Connects the I/O module to a vision sensor with an Ethernet.
(6)	PoE port LED	Indicates the network connection status to a vision sensor. • Flashing (green): Linking-up • Flashing (orange): Data linking • OFF: Linking-down
(7)	LAN port	Connects the I/O module to an Ethernet network.
(8)	LAN port LED	Indicates the network connection status to a local area network. • Flashing (green): Linking-up • Flashing (orange): Data linking • OFF: Linking-down
(9)	Frame ground terminal	Connects the frame ground line to this terminal.
(10)	RS-232 port (D-sub 9P, female)	Unsupported
(11)	HS OUT0 LED	Turns ON in green when a high-speed output signal 0 is ON.
(12)	HS OUT1 LED	Turns ON in green when a high-speed output signal 1 is ON.
(13)	I/Os and trigger status LEDs	Turns ON in green while each I/O signal is ON.
(14)	Terminal block	Connects the I/O module to a 24 VDC power supply, triggers, external I/Os, high-speed outputs, and commons.

- 'General-purpose output 1', 'High-speed output 2/Input 2', and 'High-speed output 3/Input 3' are not supported.
- 1000Base-T is not supported.
- Before wiring or adjusting I/O wires, turn OFF the power of the vision sensor.

- 'High-speed output 0' and 'High-speed output 1' can be set as sink or source current up to 50 mA.
- The general-purpose output can be set as sink or source current up to 100 mA that can be set by the user.

Connection procedure of a CIO-MICRO I/O module

This section shows the procedure for connecting a CIO-MICRO I/O module.

Operating procedure

- **1.** Page 71 Connecting an I/O module to a power supply
- 2. Page 71 Connecting an I/O module to a frame ground
- 3. Page 72 Connecting an I/O module (terminal block) to a programmable controller
- 4. Page 72 Connecting an I/O module (LAN port) to a programmable controller
- 5. Page 72 Connecting an Ethernet cable to a vision sensor
- **6.** Page 72 Connecting an I/O module cable to a vision sensor

Precautions

The cable is designed to connect with its key aligned with the keyway of the connector on the Vision Sensor.

Do not force the connections or damage may occur.

Connecting an I/O module to a power supply

Operating procedure

- 1. Check that the 24 VDC power supply is OFF.
- 2. Using a screwdriver, loosen the 24 VDC positive and negative terminals on the I/O module.
- 3. Connect the 24 VDC power supply to the 24 VDC positive and negative terminals on the I/O module.
- **4.** Using a screwdriver, tighten the screws and fix the lead wires on the terminal block. The maximum tightening torque is 0.1921 N·m.

Precautions

Do not connect an I/O module to a power supply other than 24 VDC. Additionally, do not connect the 24 VDC power supply to any terminal other than the 24 VDC positive and negative terminals. Failure to do so may result in fire or failure.

Connecting an I/O module to a frame ground

Operating procedure

- 1. Connect the frame ground wire to the frame ground terminal of the I/O module.
- Connect the other end of the frame ground wire to the frame ground.

Precautions

The frame ground terminal and the shield ground of each connector (RS-232 port, LAN port, PoE port, and I/O port) are contacted in the I/O module.

The system grounding is designed to be at a zero ground potential.

This zero ground potential extends through the cable and to peripheral equipment, such as a vision sensor and a programmable controller.

For safe operation, connect all the ground connections securely.

Connecting an I/O module (terminal block) to a programmable controller

Operating procedure

- 1. Decide how to connect the terminal block of the I/O module to the device.
- 2. Using a screwdriver, loosen the applicable screw terminals.
- 3. Connect I/O wires to I/O terminals of the terminal block.
- **4.** Connect the other end of the cable to the relevant I/O module.
- **5.** Using a screwdriver, tighten the screws and fix the lead wires on the I/O terminals of the terminal block. The maximum tightening torque is 0.1921 N·m.

Connecting an I/O module (LAN port) to a programmable controller

Operating procedure

- 1. Connect a LAN cable (RJ-45 connector) to the LAN port on an I/O module.
- 2. Connect the other end of the LAN cable to a switching hub, router, or a programmable controller.

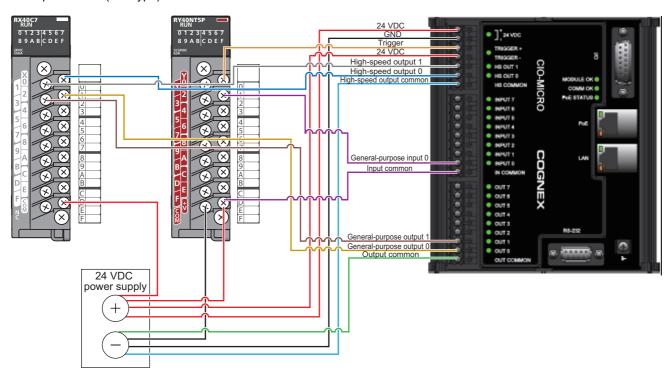
Connecting an Ethernet cable to a vision sensor

Operating procedure

- 1. Connect the Ethernet cable's M12 connector to the vision sensor's ENET connector.
- **2.** Connect the RJ-45 connector of the Ethernet cable to the PoE port of the I/O module.

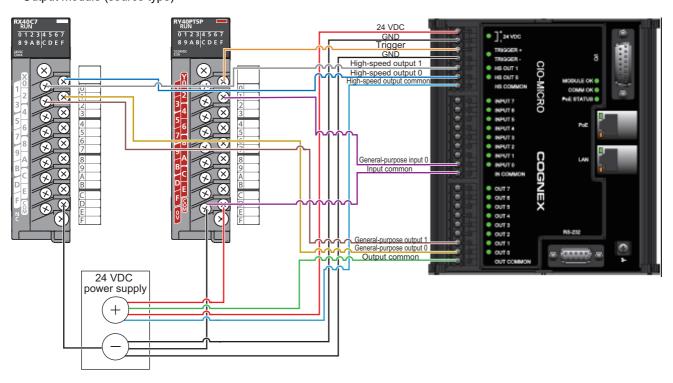
Connecting an I/O module cable to a vision sensor

Operating procedure

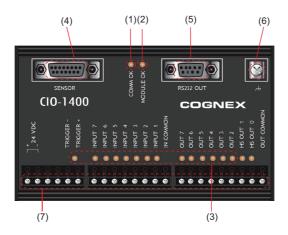

- Connect the M12 connector of the I/O module cable to the vision sensor's PWR connector.
- 2. Connect the DB15 connector of the I/O module cable to the I/O port of the I/O module.
- **3.** Turn ON the 24 VDC power supply connected to the I/O module.

Connection example of a CIO-MICRO I/O module

This section shows an example for connecting a CIO-MICRO I/O module.


Sink type

- Input module (positive/negative common shared type)
- Output module (sink type)


Source type

- Input module (positive/negative common shared type)
- · Output module (source type)

Specifications of CIO-1400 I/O modules

For the connection between a CIO-1400 I/O module and a programmable controller, use a terminal block.

No.	Connector/Indicator	Description
(1)	COMM OK LED	Indicates the communication status of the I/O module. • Flashing: Flashes until the communication is established • ON (yellow): Connected successfully • OFF: Not connected
(2)	MODULE OK LED	Indicates the status of the I/O module. • ON (yellow): Communication preparation completed • OFF: Communication preparation not completed
(3)	I/Os and trigger status LEDs	Turns ON in yellow while each I/O signal is ON.
(4)	SENSOR port	Connects the I/O module cable to this port to supply the power, trigger, and I/O to the vision sensor.
(5)	RS232 OUT port (D-sub 9P, female)	Unsupported
(6)	Frame ground terminal	Connects the common frame ground line to this terminal.
(7)	Terminal block	Connects the I/O module to a 24 VDC power, trigger, external I/Os, high-speed outputs, and common connections.

- 'General-purpose output 1', 'High-speed output 2/Input 2', and 'High-speed output 3/Input 3' are not supported
- Before wiring or adjusting I/O wires, turn OFF the power of the vision sensor.

- 'High-speed output 0' and 'High-speed output 1' can be set as sink or source current up to 50 mA.
- The general-purpose output can be set as sink or source current up to 100 mA that can be set by the user.

Connection procedure of a CIO-1400 I/O module

This section shows the procedure for connecting a CIO-1400 I/O module.

Operating procedure

- **1.** Page 75 Connecting an I/O module to a power supply
- 2. Page 75 Connecting an I/O module to a frame ground
- 3. Page 76 Connecting an I/O module (terminal block) to a programmable controller
- 4. Page 76 Connecting an I/O module cable to a vision sensor

Precautions

The cable is designed to connect with its key aligned with the keyway of the connector on the Vision Sensor. Do not force the connections or damage may occur.

Connecting an I/O module to a power supply

Operating procedure

- 1. Check that the 24 VDC power supply is OFF.
- 2. Using a screwdriver, loosen the 24 VDC positive and negative terminals on the I/O module.
- 3. Connect the 24 VDC power supply to the 24 VDC positive and negative terminals on the I/O module.
- **4.** Using a screwdriver, tighten the screws and fix the lead wires on the terminal block. The maximum tightening torque is 0.40 N·m.

Precautions

Do not connect an I/O module to a power supply other than 24 VDC. Additionally, do not connect the 24 VDC power supply to any terminal other than the 24 VDC positive and negative terminals. Failure to do so may result in fire or failure.

Connecting an I/O module to a frame ground

Operating procedure

- 1. Connect the frame ground wire to the frame ground terminal of the I/O module.
- 2. Connect the other end of the frame ground wire to the frame ground.

Precautions

The frame ground terminal and the shield ground of each connector (SENSOR port and RS232 OUT port) are contacted in the I/O module.

The system ground is designed on the condition that a ground connection is provided.

The ground potential may affect the vision sensor and peripheral devices such as programmable controllers via cables.

For safe operation, connect all the ground connections securely.

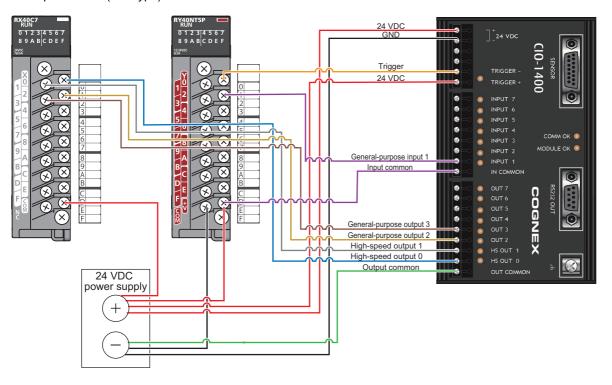
Connecting an I/O module (terminal block) to a programmable controller

Operating procedure

- 1. Decide how to connect the terminal block of the I/O module to the device.
- **2.** Using a screwdriver, loosen the applicable screw terminals.
- **3.** Connect I/O wires to I/O terminals of the terminal block.
- 4. Connect the other end of the cable to the relevant I/O device.
- **5.** Using a screwdriver, tighten the screws and fix the lead wires on the I/O terminals of the terminal block. The maximum tightening torque is 0.40 N·m.

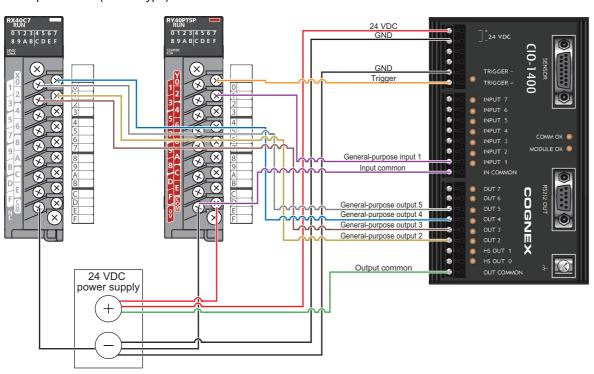
Connecting an I/O module cable to a vision sensor

Operating procedure


- 1. Connect the M12 connector of the I/O module cable to the vision sensor's PWR connector.
- 2. Connect the DB15 connector of the I/O module cable to the SENSOR port of the I/O module.
- 3. Turn ON the 24 VDC power supply connected to the I/O module.

Connection example of a CIO-1400 I/O module

This section shows an example for connecting a CIO-1400 I/O module.


Sink type

- Input module (positive/negative common shared type)
- Output module (sink type)

Source type

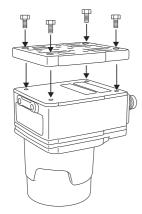
- Input module (positive/negative common shared type)
- Output module (source type)

6.8 Attachment of a Mounting Bracket

Mounting bracket kit (ISB-7000-7K)

The mounting bracket kit includes a mounting bracket, four M3 screws, and a hex wrench for attaching a vision sensor to the bracket.

The mounting bracket has 1/4-20 screw holes, M6 screw holes, and flathead mounting holes for installing the vision sensor to a mounting surface.


Precautions

- It is recommended the vision sensor be grounded, either by installing the vision sensor to a fixture that is electrically grounded or by connecting a wire from the vision sensor's fixture to frame ground or Earth ground.
- When a ground wire is used, it should be attached to one of the four mounting points on the back plate of the vision sensor.

 Do not attach it to the mounting point on the front of the vision sensor.
- · When attaching a mounting bracket to a vision sensor, use M3 screws supplied with the mounting bracket kit.
- When using 1/4-20 screw holes or M6 screw holes on the mounting bracket to secure a vision sensor to a mounting surface, the insertion depth of the screws should not exceed 7 mm.
 Inserting screws deeper than 7 mm can damage the vision sensor.

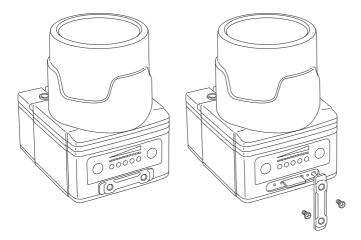
Operating procedure

- 1. Align the bracket with the mounting holes on the vision sensor.
- 2. Insert M3 screws into the mounting holes, and tighten them using a 2.5 mm hex wrench.

The maximum tightening torque is 0.90 N·m.

6.9 Replacement of an SD Memory Card

Vision sensor VS70 is equipped with an SD memory card slot and an SD memory card is pre-inserted for saving jobs and image files.


Replace the pre-inserted SD memory card by following the procedure below.

Precautions

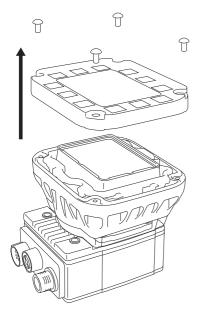
- Before inserting or removing an SD memory card, turn OFF the power of the vision sensor. Failure to do so may result in damage to the vision sensor and/or the SD memory card.
- An SD memory card protection cover must be attached to protect the SD card from electro-static discharge (ESD), dust, and other hazards.
- · Observe electro-static discharge (ESD) precautions when inserting or removing an SD card or other accessories.

Operating procedure

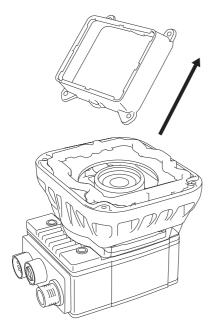
- **1.** Turn OFF the power of the vision sensor.
- 2. Remove the screws in the SD memory card cover to open the SD memory card slot.
- 3. Remove the SD memory card from the SD memory card slot.
- **4.** Insert a new SD memory card into the SD memory card slot. Check that the card is properly oriented.
- 5. Replace the SD memory card cover, and reinsert the screws and tighten.

- The maximum tightening torque is 0.18 N·m.
- Insert an SD memory card with an SDHC standard, maximum capacity of 8 GB, and formatted with an FAT32 file system.
- For the specifications on SD memory cards, refer to the following:
 - Page 17 Performance Specifications

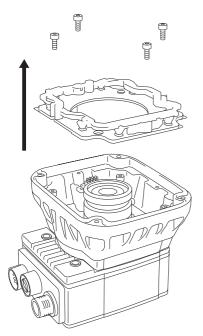
6.10 Replacement of an LED Ring Light

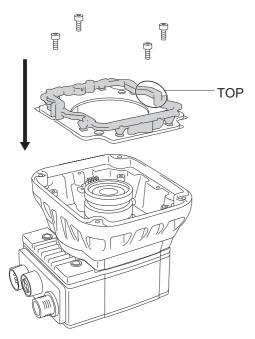

The illumination in the light cover set including illumination with LED ring light has a white LED ring light pre-attached. Replace the pre-attached LED ring light by following the procedure below.

Precautions

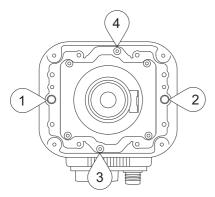

Before attaching or removing an LED ring light, be sure to turn OFF the power of the vision sensor. Failure to do so may result in damage to the vision sensor and/or the LED ring light.

Operating procedure


- **1.** Turn OFF the power of the vision sensor.
- **2.** Using a 2 mm hex wrench, remove the four $M3 \times 12$ mm screws from the front cover.

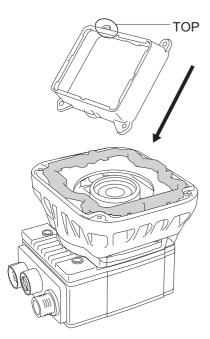

- **3.** Remove the front cover.
- Remove the keyed light baffle.

5. Using a 2 mm hex wrench, remove the four M2.5 × 6 mm screws from the LED ring light. The screw holes are indicated by triangle symbols ▶.


- **6.** Remove the LED ring light from the light housing.
- **7.** Place a new LED ring light inside the light housing.

Point P

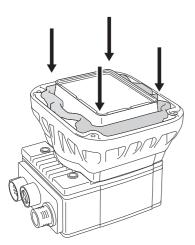
When placing the LED ring light, check the position of the character, "TOP" on the LED ring light to place it in the same direction as the following figure.


8. Insert four M2.5 × 6 mm screws into the screw holes indicated by triangle symbols ▶, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

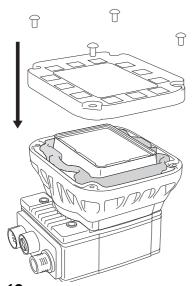
Point P

The maximum tightening torque is 0.34 N·m.

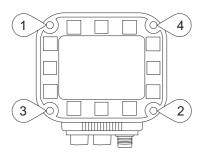
9. Tilt the light baffle toward the light housing, and maneuver the light baffle under the LED ring light in order from the bottom.



Point P


Light baffles are designed to fit the structure of LED ring lights.

When placing the light baffle, check the position of the character, "TOP" on the light baffle to place it in the same direction as the following figure.


10. Compress the light baffle to 'key' the captive screw access holes on the light housing.

11. Place a light cover on the light housing.

- **12.** Align the central clear region of the light cover with the light baffle edges.
- **13.** Insert four M3 \times 12 mm screws, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

The maximum tightening torque is 0.31 N·m.

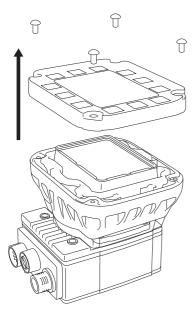
6.11 Replacement of an M12 Autofocus Lens

The autofocus module has an 8 mm M12 lens pre-attached.

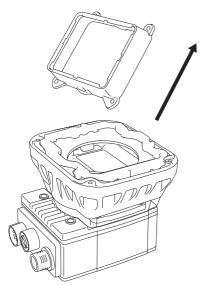
Replace the pre-attached M12 lens by following the procedure below.

Precautions

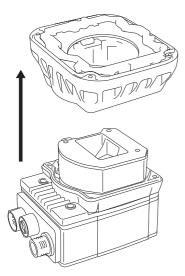
- Before attaching or removing autofocus accessories, turn OFF the power of the vision sensor. Failure to do so may result in damage to the vision sensor and/or the autofocus accessories.
- · A connector protrudes from the underside of the light housing and can be damaged if placed on a hard surface.


Operating procedure

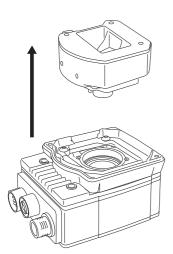
1. When an autofocus module is already attached to a vision sensor, connect the vision sensor to In-Sight Explorer and reset the focus position to '0'.

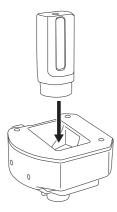

For details on the adjustment of focus, refer to the help of In-Sight Explorer.

- **2.** Turn OFF the power of the vision sensor.
- **3.** Using a 2 mm hex wrench, remove the four $M3 \times 12$ mm screws from the front cover.

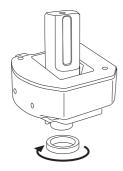


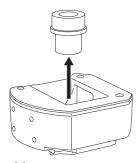
4. Remove the front cover.


5. Remove the keyed light baffle.


6. Using a 2 mm hex wench, loosen the four captive screws to remove the light housing.

7. Using a 1.5 mm hex wrench, loosen the three captive screws in the autofocus module to remove the autofocus module from the vision sensor.

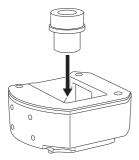

8. Place the lens tool directly on the lens, with the padded end of the tool pressed against the lens.



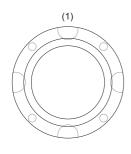
The M12 lens is held in place with a blue threaded lens nut on the underside of the autofocus module.

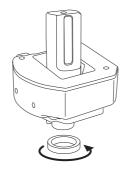
9. Holding the lens tool in place, remove the blue lens nut from the lens.

10. Remove the M12 lens from the autofocus module.

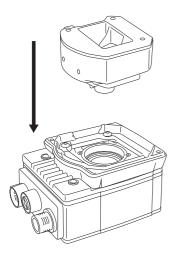

11. Remove the black lens nut from the M12 lens.

12. Insert the black lens nut on the new M12 lens until snug.

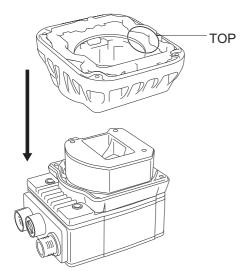

13. Insert a new M12 lens into the module.



14. Once the lens is in the module, quarter turn the screw thread of the lens clockwise to fix the lens in the lens carrier.

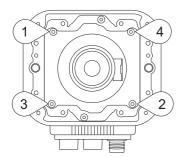

15. Place the lens tool directly on the lens, with the padded end of the tool pressed against the lens.
With the chamfer side of the blue lens nut facing the module, insert the blue lens nut and fingertighten until snug.

(1) Chamfer side of blue lens nut

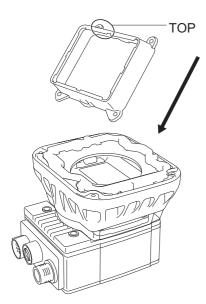

16. Place an autofocus module on the vision sensor.

Point P

When placing the autofocus module, check the position of two alignment pins on the bottom of the autofocus module to place it in the same direction as the following figure.


- **17.** Temporarily fasten the three captive screws on the top of the autofocus module using a 1.5 mm hex wrench.
- **18.** Tighten the captive screws with a force of 0.50 N·m using a torque screwdriver with a 1.5 mm hex torque bit capable of reaching 15 mm into a 2.5 mm diameter hole.
- 19. Check that the gasket is located on the spacer, and place the light housing.

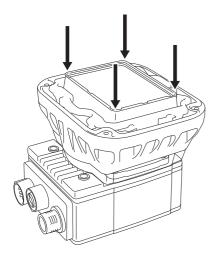
When placing the light housing, check the position of the character, "TOP" on the light housing to place it in the same direction as the following figure.


20. Insert captive screws into the four captive screw access holes near the white circles on the LED ring light, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

Point P

The maximum tightening torque is 0.34 N·m.

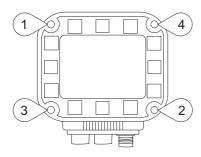
21. Tilt the light baffle toward the light housing, and maneuver the light baffle under the LED ring light in order from the bottom.



Point P

Light baffles are designed to fit the structure of LED ring lights.

When placing the light baffle, check the position of the character, "TOP" on the light baffle to place it in the same direction as the following figure.


22. Compress the light baffle to 'key' the captive screw access holes on the light housing.

23. Place a light cover on the light housing.

- **24.** Align the central clear region of the light cover with the light baffle edges.
- **25.** Insert four M3 \times 12 mm screws, and tighten them using a 2 mm hex wrench in the order of one to four shown in the following figure.

Point P

The maximum tightening torque is 0.31 N·m.

6.12 Removal of a PCB

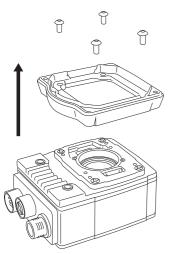
When removing a PCB from a vision sensor, follow the procedure below to avoid damage to the vision sensor and PCB.

Precautions

Before removing a PCB, turn OFF the power of the vision sensor.

Failure to do so may result in damage to the vision sensor and/or the PCB.

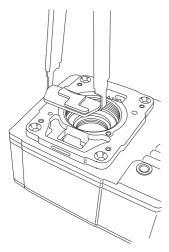
Operating procedure

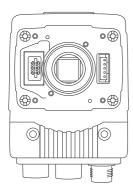

- **1.** Turn OFF the power of the vision sensor.
- 2. Remove the light housing.

For the removal procedure, refer to the steps from 1 to 6 in the following section.

Page 84 Replacement of an M12 Autofocus Lens

 ${f 3.}$ Remove the four M3 imes 6 mm spacer screws using a 2 mm hex wrench first, then remove the spacer.


4. Place an insulated IC extractor tool (DIP/IC Extractor) under the edges of the PCB.


Point P

The faceplate of a vision sensor has two lift points on either side of the PCB.

5. Once the extractor is engaged under the edges of the PCB, gently pull upward to disengage the PCB from the internal connector and remove the PCB.

6. Check the removal process did not damage mating components.

7 INSTALLATION

7.1 Software Installation

To configure a vision sensor, In-Sight Explorer software must be installed on a networked personal computer. In-Sight Explorer can be downloaded from the Mitsubishi Electric FA website. www.MitsubishiElectric.co.jp/fa

7.2 Registration of a Profile

To configure communication between a programmable controller and a vision sensor with an engineering tool, a profile of the vision sensor needs to be registered to the engineering tool.

A profile is data that stores information of a connected device (such as a model name.)

By registering the profile to an engineering tool, vision sensors are added to "Module List" in the "Ethernet Configuration" window and the "CC-Link IEF Basic Configuration" window.

For details on how to register profiles, refer to the following:

GX Works2 Version 1 Operating Manual (Common)

GX Works3 Operating Manual

The profile of a vision sensor can be downloaded from the Mitsubishi Electric FA website. www.MitsubishiElectric.co.jp/fa

7.3 Registration of an EDS File

To configure communication between an RJ71EIP91 or FX5-ENET/IP and a vision sensor VS70 with EtherNet/IP

Configuration Tool, registering an EDS file to EtherNet/IP Configuration Tool is required.

An EDS file is data that stores information of a connected device (such as a model name).

For details on how to register an EDS file, refer to the following:

MELSEC iQ-R EtherNet/IP Network Interface Module User's Manual (Application)

MELSEC iQ-F FX5-ENET/IP User's Manual

The EDS file for a vision sensor can be downloaded from the Mitsubishi Electric FA website.

www.MitsubishiElectric.co.jp/fa

MEMO

8 MAINTENANCE AND INSPECTION

8.1 Cleaning a Vision Sensor Housing

- To clean the outside of the vision sensor housing, apply a small amount of mild detergent cleaner or isopropyl alcohol on a cleaning cloth.
- Do not attempt to clean the vision sensor with harsh or corrosive solvents, including lye, methyl ethyl ketone (MEK) or gasoline. It may cause a failure.

8.2 Clean an Image Sensor Window

- To remove dust from the outside of the image sensor window, use a pressurized air duster. The air must be free of oil, moisture, or other contaminants that could remain on the lens cover. These substances could remain on the glass and possibly degrade the image.
- Do not touch the glass part of the image sensor window.
- If oil/smudges still remain, clean the window with a cotton bud soaked in alcohol (ethyl, methyl or isopropyl).

MEMO

9 TROUBLESHOOTING

If an error occurred while using a vision sensor, check the troubleshooting in the help of In-Sight Explorer and take corrective action.

MEMO

APPENDIX

Appendix 1 EMC and Low Voltage Directives

Compliance with the EMC Directive, which is one of the EU directives, has been mandatory for products sold within EU member states since 1996 as well as compliance with the Low Voltage Directive since 1997.

For products compliant to the EMC and Low Voltage Directives, their manufacturers are required to declare compliance and affix the CE marking.

The sales representative in EU member states is: Company: MITSUBISHI ELECTRIC EUROPE B.V.

Address: Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany

Measures to comply with the EMC Directive

The EMC Directive sets requirements for emission (conducted and radiated electromagnetic interference emitted by a product) and immunity (the ability of a product not to be influenced by externally generated electromagnetic interference). This section describes the precautions for machinery constructed with the MELSENSOR VS70 models to comply with the EMC Directive.

These precautions are based on the requirements of the EMC Directive and the harmonized standards. However, they do not guarantee that the entire machinery constructed according to the descriptions complies with the EMC Directive.

The manufacturer of the machinery must determine the testing method for compliance and declare conformity to the EMC Directive.

EMC Directive related standards

■ Emission requirements

Standard: EN61131-2:2007

Test item	Test description	Value specified in standard	
CISPR16-2-3 Radiated emission	The electromagnetic wave emitted by the product to the external space is measured.	 30 to 230MHzQP: 40dBμV/m (measured at 10m distance)*1 230 to 1000MHzQP: 47 dBμV/m (measured at 10 m distance) 	
CISPR16-2-1, CISPR16-1-2 Conducted emission	The noise level which the product emits to the power line is measured.	 0.15 to 0.5MHzQP: 79dB, Mean: 66dB*1 0.5 to 30MHzQP: 73dB, Mean: 60dB 	

^{*1} QP: Quasi-Peak value, Mean: Average value

■ Immunity requirements

Standard: EN61131-2:2007

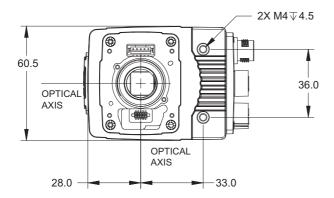
Test item	Test description	Value specified in standard	
EN61000-4-2 Electrostatic discharge immunity	An electrostatic discharge is applied to the enclosure of the equipment.	8kV: Air discharge 4kV: Contact discharge 80% AM modulation @1kHz 80 to 1000MHz: 10Vm 1.4 to 2.0GHz: 3Vm 2.0 to 2.7GHz: 1Vm	
EN61000-4-3 Radiated, radio-frequency, electromagnetic field immunity	An electric field is radiated to the product.		
Fast transient burst immunity lines. (unshielded) lines:		AC/DC power, I/O power, and AC I/O (unshielded) lines: 2kV DC I/O, analog, and communication lines: 1kV	
EN61000-4-5 Surge immunity	Lightning surge is applied to power lines and signal lines.	AC power, AC I/O power, and AC I/O (unshielded) lines: 2kV CM, 1kV DM DC power and DC I/O power lines: 0.5kV CM, 0.5kV DM DC I/O, AC I/O (shielded), analog, and communication lines: 1kV CM	
EN61000-4-6 Conducted RF immunity	High-frequency noise is applied to power lines and signal lines.	0.15 to 80MHz, 80% AM modulation @1kHz, 10Vrms	
EN61000-4-8 Power-frequency magnetic field immunity	The product is immersed in the magnetic field of an induction coil.	50Hz/60Hz, 30A/m	
EN61000-4-11 Voltage dips and interruptions immunity	Power voltage is momentarily interrupted.	 0%, 0.5 periods, starting at zerocrossing 0%, 250/300 periods (50/60Hz) 40%, 10/12 periods (50/60Hz) 70%, 25/30 periods (50/60Hz) 	

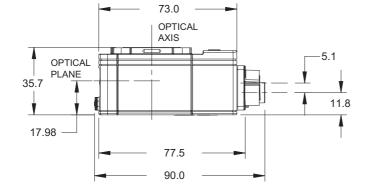
Measures to comply with the Low Voltage Directive

The MELSENSOR VS70 models are out of the requirement for conformance to the Low Voltage Directive.

UL/cUL

This section shows the standards that comply with UL.

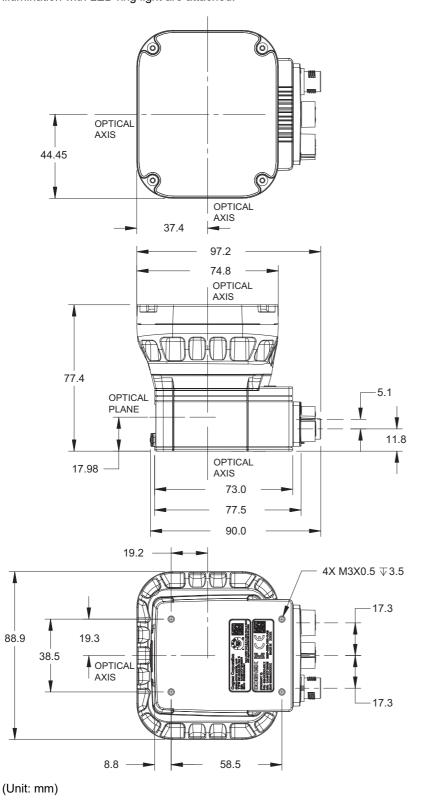

• UL/cUL application

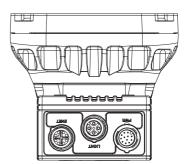

Item	Description	
UL/cUL applicable standard	UL 61010-1, 3rd Edition, 2014-05-11	
	UL 61010-2-201, 1st Edition, 2014-01-24	
	CAN/CSA C22.2 No. 61010-1-12, 3rd Edition, 2012-05	
	CAN/CSA C22.2 No. 61010-2-201, 1st Edition, 2014-02	

Appendix 2 External Dimensions

Vision sensor dimensions

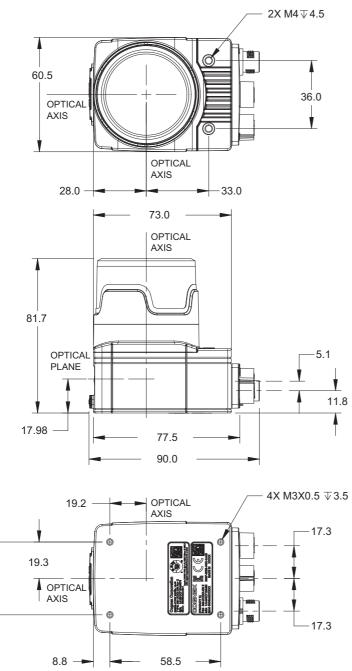
The following figures show the dimensions of a vision sensor.

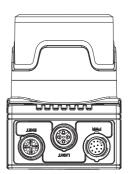




(Unit: mm)

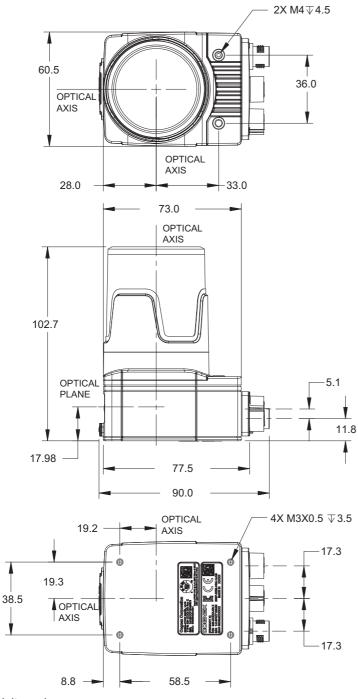
Dimensions when the illumination accessories are attached

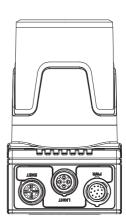

The following figures show the dimensions of a vision sensor when the illumination accessories in the light cover set including illumination with LED ring light are attached.



Dimensions when the standard lens cover (COV-7000-CMNT) is attached

The following figures show the dimensions of a vision sensor when the standard lens cover (COV-7000-CMNT) is attached.

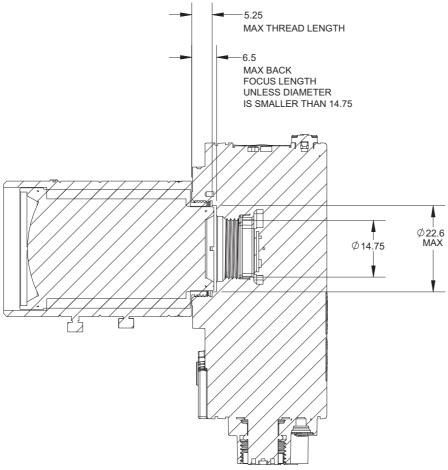



(Unit: mm)

38.5

Dimensions when the extended lens cover (COV-7000-CMNT-EX) is attached

The following figures show the dimensions of a vision sensor when the extended lens cover (COV-7000-CMNT-EX) is attached.



(Unit: mm)

C-mount lens clearance dimensions

The following figure shows the dimensions of the clearance for a C-mount lens.

(Unit: mm)

REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date	*Manual number	Description
February 2018	SH(NA)-081889ENG-A	First edition
June 2018	SH(NA)-081889ENG-B	■Added or modified parts Chapter 2, Section 5.3, Section 5.5, Section 5.6, Section 6.3, Section 6.10, Section 6.11, Section 6.12, Appendix 1
March 2019	SH(NA)-081889ENG-C	■Added or modified parts TERMS, Section 3.2, Section 4.1, Section 4.3, Appendix 1
January 2020	SH(NA)-081889ENG-D	■Added or modified parts INTRODUCTION, TERMS, Chapter 2, Chapter 3, Section 4.2, Section 5.5, Section 5.6, Section 6.8
July 2021	SH(NA)-081889ENG-E	■Added or modified parts PRECAUTIONS REGARDING WARRANTY AND SPECIFICATIONS, SAFETY PRECAUTIONS, PRECAUTIONS FOR USE, CONDITIONS OF USE FOR THE PRODUCT, RELEVANT MANUALS, TERMS, Section 3.2, Section 5.1, Section 5.5, Section 7.3, Appendix 1
March 2022	SH(NA)-081889ENG-F	■Added or modified part Section 5.6

Japanese manual number: SH-081888-F

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2018 MITSUBISHI ELECTRIC CORPORATION

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for eighteen (18) months after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be twenty-four (24) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:

- (1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
- (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
- (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
- (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

TRADEMARKS

Cognex, 2DMAX, DataMan, EasyBuilder, IDMax, In-Sight, PatMax, 1DMax, OCRMax, and PatMax RedLine are either registered trademarks or trademarks of Cognex Corporation.

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.

In some cases, trademark symbols such as '™ or '®' are not specified in this manual.

COGNEX Cognex Corporation www.cognex.com

SH(NA)-081889ENG-F(2203)KWIX

MODEL: VS70M/C-U-E MODEL CODE:13JX81

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.