Motion Controller
MxEldecad.

Q173HCPU/Q172HCPU Motion Controller (SV43)
 Programming Manual

-Q172HCPU
-Q173HCPU

- SAFETY PRECAUTIONS

(Read these precautions before using.)

When using this equipment, thoroughly read this manual and the associated manuals introduced in this manual. Also pay careful attention to safety and handle the module properly.
These precautions apply only to this equipment. Refer to the Q173HCPU/Q172HCPU Users manual for a description of the Motion controller safety precautions.
These SAFETY PRECAUTIONS classify the safety precautions into two categories: "DANGER" and "CAUTION".

DANGER

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

CAUTION
Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight personal injury or physical damage.

Depending on circumstances, procedures indicated by $₫$ CAUTION may also be linked to serious results.
In any case, it is important to follow the directions for usage.
Store this manual in a safe place so that you can take it out and read it whenever necessary. Always forward it to the end user.

For Safe Operations

1. Prevention of electric shocks

DANGER

- Never open the front case or terminal covers while the power is ON or the unit is running, as this may lead to electric shocks.
- Never run the unit with the front case or terminal cover removed. The high voltage terminal and charged sections will be exposed and may lead to electric shocks.
- Never open the front case or terminal cover at times other than wiring work or periodic inspections even if the power is OFF. The insides of the Motion controller and servo amplifier are charged and may lead to electric shocks.
- When performing wiring work or inspections, turn the power OFF, wait at least ten minutes, and then check the voltage with a tester, etc.. Failing to do so may lead to electric shocks.
- Be sure to ground the Motion controller, servo amplifier and servomotor. (Ground resistance : 100Ω or less) Do not ground commonly with other devices.
- The wiring work and inspections must be done by a qualified technician.
- Wire the units after installing the Motion controller, servo amplifier and servomotor. Failing to do so may lead to electric shocks or damage.
- Never operate the switches with wet hands, as this may lead to electric shocks.
- Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this may lead to electric shocks.
- Do not touch the Motion controller, servo amplifier or servomotor terminal blocks while the power is ON , as this may lead to electric shocks.
- Do not touch the built-in power supply, built-in grounding or signal wires of the Motion controller and servo amplifier, as this may lead to electric shocks.

2. For fire prevention

CAUTION

- Install the Motion controller, servo amplifier, servomotor and regenerative resistor on inflammable material. Direct installation on flammable material or near flammable material may lead to fire.
- If a fault occurs in the Motion controller or servo amplifier, shut the power OFF at the servo amplifier's power source. If a large current continues to flow, fire may occur.
- When using a regenerative resistor, shut the power OFF with an error signal. The regenerative resistor may abnormally overheat due to a fault in the regenerative transistor, etc., and may lead to fire.
- Always take heat measures such as flame proofing for the inside of the control panel where the servo amplifier or regenerative resistor is installed and for the wires used. Failing to do so may lead to fire.

3. For injury prevention

CAUTION

Do not apply a voltage other than that specified in the instruction manual on any terminal.
Doing so may lead to destruction or damage.

- Do not mistake the terminal connections, as this may lead to destruction or damage.
- Do not mistake the polarity ($+/-$), as this may lead to destruction or damage.
- Do not touch the servo amplifier's heat radiating fins, regenerative resistor and servomotor, etc., while the power is ON and for a short time after the power is turned OFF. In this timing, these parts become very hot and may lead to burns.
- Always turn the power OFF before touching the servomotor shaft or coupled machines, as these parts may lead to injuries.
- Do not go near the machine during test operations or during operations such as teaching. Doing so may lead to injuries.

4. Various precautions

Strictly observe the following precautions.
Mistaken handling of the unit may lead to faults, injuries or electric shocks.
(1) System structure

CAUTION

- Always install a leakage breaker on the Motion controller and servo amplifier power source.
- If installation of an electromagnetic contactor for power shut off during an error, etc., is specified in the instruction manual for the servo amplifier, etc., always install the electromagnetic contactor.
- Install the emergency stop circuit externally so that the operation can be stopped immediately and the power shut off.
- Use the Motion controller, servo amplifier, servomotor and regenerative resistor with the combinations listed in the instruction manual. Other combinations may lead to fire or faults.
- If safety standards (ex., robot safety rules, etc.,) apply to the system using the Motion controller, servo amplifier and servomotor, make sure that the safety standards are satisfied.
- Construct a safety circuit externally of the Motion controller or servo amplifier if the abnormal operation of the Motion controller or servo amplifier differ from the safety directive operation in the system.
- In systems where coasting of the servomotor will be a problem during the forced stop, emergency stop, servo OFF or power supply OFF, use dynamic brakes.
- Make sure that the system considers the coasting amount even when using dynamic brakes.

CAUTION

- In systems where perpendicular shaft dropping may be a problem during the forced stop, emergency stop, servo OFF or power supply OFF, use both dynamic brakes and electromagnetic brakes.
- The dynamic brakes must be used only on errors that cause the forced stop, emergency stop, or servo OFF. These brakes must not be used for normal braking.
- The brakes (electromagnetic brakes) assembled into the servomotor are for holding applications, and must not be used for normal braking.
- The system must have a mechanical allowance so that the machine itself can stop even if the stroke limits switch is passed through at the max. speed.
- Use wires and cables that have a wire diameter, heat resistance and bending resistance compatible with the system.
- Use wires and cables within the length of the range described in the instruction manual.
- The ratings and characteristics of the parts (other than Motion controller, servo amplifier and servomotor) used in a system must be compatible with the Motion controller, servo amplifier and servomotor.
- Install a cover on the shaft so that the rotary parts of the servomotor are not touched during operation.
- There may be some cases where holding by the electromagnetic brakes is not possible due to the life or mechanical structure (when the ball screw and servomotor are connected with a timing belt, etc.). Install a stopping device to ensure safety on the machine side.
(2) Parameter settings and programming

CAUTION

- Set the parameter values to those that are compatible with the Motion controller, servo amplifier, servomotor and regenerative resistor model and the system application. The protective functions may not function if the settings are incorrect.
- The regenerative resistor model and capacity parameters must be set to values that conform to the operation mode, servo amplifier and servo power supply module. The protective functions may not function if the settings are incorrect.
- Set the mechanical brake output and dynamic brake output validity parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Set the stroke limit input validity parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.

CAUTION

- Set the servomotor encoder type (increment, absolute position type, etc.) parameter to a value that is compatible with the system application. The protective functions may not function if the setting is incorrect.
- Set the servomotor capacity and type (standard, low-inertia, flat, etc.) parameter to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Set the servo amplifier capacity and type parameters to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Use the program commands for the program with the conditions specified in the instruction manual.
- Set the sequence function program capacity setting, device capacity, latch validity range, I/O assignment setting, and validity of continuous operation during error detection to values that are compatible with the system application. The protective functions may not function if the settings are incorrect.
- Some devices used in the program have fixed applications, so use these with the conditions specified in the instruction manual.
- The input devices and data registers assigned to the link will hold the data previous to when communication is terminated by an error, etc. Thus, an error correspondence interlock program specified in the instruction manual must be used.
- Use the interlock program specified in the special function module's instruction manual for the program corresponding to the special function module.

(3) Transportation and installation

\triangle CAUTION

- Transport the product with the correct method according to the mass.
- Use the servomotor suspension bolts only for the transportation of the servomotor. Do not transport the servomotor with machine installed on it.
- Do not stack products past the limit.
- When transporting the Motion controller or servo amplifier, never hold the connected wires or cables.
- When transporting the servomotor, never hold the cables, shaft or detector.
- When transporting the Motion controller or servo amplifier, never hold the front case as it may fall off.
- When transporting, installing or removing the Motion controller or servo amplifier, never hold the edges.
- Install the unit according to the instruction manual in a place where the mass can be withstood.

CAUTION

- Do not get on or place heavy objects on the product.
- Always observe the installation direction.
- Keep the designated clearance between the Motion controller or servo amplifier and control panel inner surface or the Motion controller and servo amplifier, Motion controller or servo amplifier and other devices.
- Do not install or operate Motion controller, servo amplifiers or servomotors that are damaged or that have missing parts.
- Do not block the intake/outtake ports of the servomotor with cooling fan.
- Do not allow conductive matter such as screw or cutting chips or combustible matter such as oil enter the Motion controller, servo amplifier or servomotor.
- The Motion controller, servo amplifier and servomotor are precision machines, so do not drop or apply strong impacts on them.
- Securely fix the Motion controller and servo amplifier to the machine according to the instruction manual. If the fixing is insufficient, these may come off during operation.
- Always install the servomotor with reduction gears in the designated direction. Failing to do so may lead to oil leaks.
- Store and use the unit in the following environmental conditions.

Environment	Conditions	
	Motion controller/Servo amplifier	Servomotor
Ambient temperature	According to each instruction manual.	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (With no freezing) $\left(32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$
Ambient humidity	According to each instruction manual.	80% RH or less (With no dew condensation)
Storage temperature	According to each instruction manual.	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Atmosphere	Indoors (where not subject to direct sunlight).	
No corrosive gases, flammable gases, oil mist or dust must exist		

- When coupling with the synchronization encoder or servomotor shaft end, do not apply impact such as by hitting with a hammer. Doing so may lead to detector damage.
- Do not apply a load larger than the tolerable load onto the servomotor shaft. Doing so may lead to shaft breakage.
- When not using the module for a long time, disconnect the power line from the Motion controller or servo amplifier.
- Place the Motion controller and servo amplifier in static electricity preventing vinyl bags and store.
- When storing for a long time, please contact with our sales representative.
(4) Wiring

. CAUTION

- Correctly and securely wire the wires. Reconfirm the connections for mistakes and the terminal screws for tightness after wiring. Failing to do so may lead to run away of the servomotor.
- After wiring, install the protective covers such as the terminal covers to the original positions.
- Do not install a phase advancing capacitor, surge absorber or radio noise filter (option FR-BIF) on the output side of the servo amplifier.
- Correctly connect the output side (terminals U, V, W). Incorrect connections will lead the servomotor to operate abnormally.
- Do not connect a commercial power supply to the servomotor, as this may lead to trouble.
- Do not mistake the direction of the surge absorbing diode installed on the DC relay for the control signal output of brake signals, etc. Incorrect installation may lead to signals not being output when trouble occurs or the protective functions not functioning.
- Do not connect or disconnect the connection cables between
 each unit, the encoder cable or PLC expansion cable while the power is ON.
- Securely tighten the cable connector fixing screws and fixing mechanisms. Insufficient fixing may lead to the cables combing off during operation.
- Do not bundle the power line or cables.

(5) Trial operation and adjustment

CAUTION

- Confirm and adjust the program and each parameter before operation. Unpredictable movements may occur depending on the machine.
- Extreme adjustments and changes may lead to unstable operation, so never make them.
- When using the absolute position system function, on starting up, and when the Motion controller or absolute value motor has been replaced, always perform a home position return.
(6) Usge methods

1 CAUTION					
- Immediately turn OFF the power if smoke, abnormal sounds or odors are emitted from the Motion controller, servo amplifier or servomotor. - Always execute a test operation before starting actual operations after the program or parameters have been changed or after maintenance and inspection. - The units must be disassembled and repaired by a qualified technician. - Do not make any modifications to the unit. - Keep the effect or electromagnetic obstacles to a minimum by installing a noise filter or by using wire shields, etc. Electromagnetic obstacles may affect the electronic devices used near the Motion controller or servo amplifier. - When using the CE Mark-compliant equipment, refer to the "EMC Installation Guidelines" (data number IB(NA)-67339) for the Motion controllers and refer to the corresponding EMC guideline information for the servo amplifiers, inverters and other equipment. - Use the units with the following conditions.					
Item Conditions					
	Q61P-A1	Q61P-A2	Q62P	Q63P	Q64P
Input power	100 to 120VAC ${ }_{-15 \%}^{10 \%}$ (10) (85 to 132VAC)	200 to 240 VAC -15% (170 to 264 VAC$)$	100 to 240 VAC -15% +10\% (85 to 264 VAC$)$	24 VDC (135\% (15.6 to 31.2VDC)	100 to 120VAC ${ }_{-15 \%}^{+10 \% \%}$,
Input frequency	50/60 Hz $\pm 5 \%$				
Tolerable momentary power failure	20 ms or less				

(7) Corrective actions for errors

- If an error occurs in the self diagnosis of the Motion controller or servo amplifier, confirm the
check details according to the instruction manual, and restore the operation.
If a dangerous state is predicted in case of a power failure or product failure, use a servomotor
with electromagnetic brakes or install a brake mechanism externally.
Use a double circuit construction so that the electromagnetic brake operation circuit can be
operated by emergency stop signals set externally.
Shut off with servo oN signal OFF,
alarm, magnetic brake signal.
Shut off with the
emergency stop
signal(EMG).

\triangle CAUTION

- If an error occurs, remove the cause, secure the safety and then resume operation after alarm release.
- The unit may suddenly resume operation after a power failure is restored, so do not go near the machine. (Design the machine so that personal safety can be ensured even if the machine restarts suddenly.)
(8) Maintenance, inspection and part replacement

CAUTION

- Perform the daily and periodic inspections according to the instruction manual.
- Perform maintenance and inspection after backing up the program and parameters for the Motion controller and servo amplifier.
- Do not place fingers or hands in the clearance when opening or closing any opening.
- Periodically replace consumable parts such as batteries according to the instruction manual.
- Do not touch the lead sections such as ICs or the connector contacts.
- Do not place the Motion controller or servo amplifier on metal that may cause a power leakage or wood, plastic or vinyl that may cause static electricity buildup.
- Do not perform a megger test (insulation resistance measurement) during inspection.
- When replacing the Motion controller or servo amplifier, always set the new module settings correctly.
- When the Motion controller or absolute value motor has been replaced, carry out a home position return operation using one of the following methods, otherwise position displacement could occur.

1) After writing the servo data to the Motion controller using programming software, switch on the power again, then perform a home position return operation.
2) Using the backup function of the programming software, load the data backed up before replacement.

- After maintenance and inspections are completed, confirm that the position detection of the absolute position detector function is correct.
- Do not short circuit, charge, overheat, incinerate or disassemble the batteries.
- The electrolytic capacitor will generate gas during a fault, so do not place your face near the Motion controller or servo amplifier.
- The electrolytic capacitor and fan will deteriorate. Periodically replace these to prevent secondary damage from faults. Replacements can be made by our sales representative.
(9) About processing of waste

When you discard Motion controller, servo amplifier, a battery (primary battery) and other option articles, please follow the law of each country (area).

CAUTION

- This product is not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to forestall serious accidents when it is used in facilities where a breakdown in the product is likely to cause a serious accident.
(10) General cautions

\triangle CAUTION

All drawings provided in the instruction manual show the state with the covers and safety partitions removed to explain detailed sections. When operating the product, always return the covers and partitions to the designated positions, and operate according to the instruction manual.

Japanese Manual Number IB(NA)-0300095

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

INTRODUCTION

Thank you for choosing the Q173HCPU/Q172HCPU Motion Controller.
Please read this manual carefully so that equipment is used to its optimum.

CONTENTS

Safety Precautions A- 1
Revisions A-11
Contents A-12
About Manuals A-17

1. OVERVIEW 1- 1 to 1- 6
1.1 Overview 1- 1
1.2 Features 1-3
1.2.1 Performance specifications 1- 3
1.2.2 Differences between Q173HCPU/Q172HCPU and Q173CPU(N)/Q172CPU(N) 1- 6
2. POSITIONING CONTROL BY THE MOTION CPU 2- 1 to 2-10
2.1 Positioning Control by the Motion CPU 2- 1
3. MOTION DEDICATED PLC INSTRUCTION 3- 1 to 3-44
3.1 Motion Dedicated PLC Instruction 3- 1
3.1.1 Restriction item of the Motion dedicated PLC instruction 3-1
3.2 Motion program (Control program) Start Request from The PLC CPU to The Motion CPU: S(P).SFCS (PLC instruction: S(P).SFCS) 3- 8
3.3 Motion Program (Axis designation program) Start Request from The PLC CPU to The Motion CPU: S(P).SVST (PLC instruction: S(P).SVST) 3-13
3.4 Home position return instruction from The PLC CPU to The Motion CPU: S(P).CHGA (PLC instruction: S(P).CHGA) 3-19
3.5 Speed Change Instruction from The PLC CPU to The Motion CPU: $S(P)$.CHGV (PLC instruction: $S(P)$.CHGV) 3-24
3.6 Torque Limit Value Change Request Instruction from The PLC CPU to The Motion CPU: S(P).CHGT (PLC instruction: S(P).CHGT) 3-32
3.7 Write from The PLC CPU to The Motion CPU: S(P).DDWR (PLC instruction: S(P).DDWR) 3-36
3.8 Read from The Devices of The Motion CPU: S(P).DDRD (PLC instruction: S(P).DDRD) 3-40
4. POSITIONING SIGNALS 4- 1 to 4-88
4.1 Internal Relays 4- 2
4.1.1 Axis statuses 4-13
4.1.2 Axis command signals 4-26
4.1.3 Axis statuses 2 4-33
4.1.4 Axis command signals 2 4-36
4.1.5 Common devices 4-45
4.2 Data Registers 4-56
4.2.1 Axis monitor devices 4-64
4.2.2 Control change registers 4-67
4.2.3 Axis monitor devices 2 4-68
4.2.4 Control program monitor devices 4-72
4.2.5 Control change registers 2 4-74
4.2.6 Tool length offset data setting registers 4-75
4.2.7 Common devices 4-76
4.3 Motion Registers (\#) 4-79
4.4 Special Relays (SP.M) 4-80
4.5 Special Registers (SP.D) 4-83
5. PARAMETERS FOR POSITIONING CONTROL5- 1 to $5-20$
5.1 System Settings 5- 1
5.2 Fixed Parameters 5- 2
5.2.1 Number of pulses/travel value per rotation 5- 3
5.2.2 Backlash compensation amount 5-5
5.2.3 Upper/lower stroke limit value 5-5
5.2.4 Command in-position range 5-7
5.2.5 High-speed feed rate setting 5-8
5.2.6 Speed control $10 \times$ multiplier setting for degree axis 5- 9
5.3 Parameter Block. 5-13
5.3.1 Relationships between the speed limit value, acceleration time, deceleration time and rapid stop deceleration time 5-16
5.3.2 S-curve ratio 5-18
5.3.3 Allowable error range for circular interpolation. 5-19
5.4 Work Coordinate Data 5-20
6.1 Motion Program Composition 6- 1
6.2 Type of The Motion Program 6- 4
6.3 G-code List 6- 5
6.4 M-code List 6-7
6.5 Control Instruction List 6-8
6.6 Start/End Method 6-10
6.7 Number of Maximum Nesting for Program Call and Multi Startable Program 6-12
6.8 Motion parameter 6-13
6.9 Caution at The Axis Designation Program Creation 6-14
6.10 Instruction Symbols/Characters List 6-19
6.11 Setting Method for Command Data 6-23
6.11.1 Direct setting (numerical value) 6-23
6.11.2 Indirect setting 6-24
6.11.3 Operational data 6-31
6.11.4 Setting range of instruction symbols list 6-41
6.11.5 Positioning control unit for 1 axis 6-43
6.11.6 Control units for interpolation control 6-44
6.11.7 Control in the control unit "degree" 6-46
6.12 About Coordinate Systems 6-48
6.13 G-code 6-49
6.13.1 G00 Point-to-point positioning at the high-speed feed rate 6-52
6.13.2 G01 Constant-speed positioning at the speed specified in F 6-54
6.13.3 G02 Circular interpolation CW (Central coordinates-specified) 6-56
6.13.4 G03 Circular interpolation CCW (Central coordinates-specified) 6-59
6.13.5 G02 Circular interpolation CW (Radius-specified) 6-62
6.13.6 G03 Circular interpolation CCW (Radius-specified) 6-64
6.13.7 G04 Dwell. 6-66
6.13.8 G09 Exact stop check 6-68
6.13.9 G12 Helical interpolation CW (Helical central coordinates-specified) 6-70
6.13.10 G13 Helical interpolation CCW (Helical central coordinates-specified) 6-73
6.13.11 G12 Helical interpolation CW (Helical radius-specified) 6-75
6.13.12 G13 Helical interpolation CCW (Helical radius-specified) 6-77
6.13.13 G23 Cancel, cancel start invalid 6-79
6.13.14 G24 Cancel, cancel start 6-80
6.13.15 G25 High-speed oscillation 6-83
6.13.16 G26 High-speed oscillation stop 6-85
6.13.17 G28 Home position return 6-86
6.13.18 G30 Second home position return 6-88
6.13.19 G32 Skip 6-90
6.13.20 G43 Tool length offset (+) 6-94
6.13.21 G44 Tool length offset (-) 6-96
6.13.22 G49 Tool length offset cancel 6-98
6.13.23 G53 Mechanical coordinate system selection. 6-99
6.13.24 G54 to G59 Work coordinate system selection 6-101
6.13.25 G61 Exact stop check mode 6-104
6.13.26 G64 Cutting mode 6-106
6.13.27 G90 Absolute value command 6-108
6.13.28 G91 Incremental value command 6-110
6.13.29 G92 Coordinates system setting 6-112
6.13.30 G98, G99 Preread disable/enable 6-114
6.13.31 G100, G101 Time-fixed acceleration/deceleration, acceleration-fixed acceleration/deceleration switching command 6-116
6.14 M-Code 6-120
6.15 Special M-Code 6-121
6.15.1 M00 Program stop 6-122
6.15.2 M01 Optional program stop 6-123
6.15.3 M02 Program end 6-124
6.15.4 M30 Program end 6-125
6.15.5 M98, M99 Subprogram call, subprogram end 6-126
6.15.6 M100 Preread disable 6-128
6.16 Miscellaneous 6-129
6.16.1 Program control function (IF, GOTO statement) 6-130
6.16.2 Program control function (IF, THEN, ELSE, END statements) 6-132
6.16.3 Program control function (WHILE, DO, END statements) 6-134
6.16.4 Four fundamental operators, assignment operator (+, -, *, l, MOD, =) 6-136
6.16.5 Trigonometric functions (SIN, COS, TAN, ASIN, ACOS, ATAN) 6-138
6.16.6 Real number to BIN value conversion (INT) 6-139
6.16.7 BIN value to real number conversion (FLT). 6-140
6.16.8 32-bit real number and 64-bit real number data conversion (DFLT, SFLT) 6-141
6.16.9 Functions (SQRT, ABS, BIN, BCD, LN, EXP, RND, FIX, FUP) 6-142
6.16.10 Logical operators (AND, OR, XOR, NOT, <<, >>) 6-143
6.16.11 Move block wait functions (WAITON, WAITOFF). 6-145
6.16.12 Block wait functions (EXEON, EXEOFF) 6-147
6.16.13 Bit set and reset for word devices (BSET, BRST) 6-150
6.16.14 Parameter block change (PB) 6-151
6.16.15 Torque limit value change (TL) 6-153
6.16.16 Home position return (CHGA) 6-155
6.16.17 Speed change (CHGV) 6-156
6.16.18 Torque limit value change (CHGT) 6-157
6.16.19 Bit device set, reset functions (SET, RST) 6-158
6.16.20 Bit device operation on condition (IF, THEN, SET/RST/OUT) 6-159
6.16.21 Program start (CALL). 6-161
6.16.22 Program call 1 (GOSUB) 6-163
6.16.23 Program call 2 (GOSUBE) 6-164
6.16.24 Control program end (CLEAR) 6-167
6.16.25 Time to wait (TIME) 6-169
6.16.26 Block transfers (BMOV : 16-bit unit) 6-170
6.16.27 Block transfer (BDMOV : 32-bit unit). 6-172
6.16.28 Identical data block transfers (FMOV) 6-174
6.16.29 Write device data to shared CPU memory (MULTW) 6-176
6.16.30 Read device data from shared CPU memory of the other CPU (MULTR) 6-178
6.16.31 Write words data to intelligent function module/special function module (TO) 6-180
6.16.32 Read words data from intelligent function module/special function module (FROM) 6-182
6.16.33 Conditional branch using bit device (ON, OFF) 6-184
6. AUXILIARY AND APPLIED FUNCTIONS 7- 1 to 7-80
7.1 Backlash Compensation Function 7- 1
7.2 Torque Limit Function 7- 3
7.3 Home Position Return 7- 5
7.3.1 Home position return data. 7- 6
7.3.2 Home position return by the proximity dog type 1 7-16
7.3.3 Home position return by the proximity dog type 2 7-19
7.3.4 Home position return by the count type 1 7-21
7.3.5 Home position return by the count type 2 7-23
7.3.6 Home position return by the count type 3 7-25
7.3.7 Home position return by the data set type 1 7-27
7.3.8 Home position return by the data set type 2 7-28
7.3.9 Home position return by the dog cradle type 7-29
7.3.10 Home position return by the stopper type 1 7-33
7.3.11 Home position return by the stopper type 2 7-35
7.3.12 Home position return by the limit switch combined type 7-37
7.3.13 Home position return retry function 7-39
7.3.14 Home position shift function 7-43
7.3.15 Condition selection of home position set. 7-47
7.3.16 Execution of home position return 7-48
7.4 Speed Change (CHGV instruction) 7-49
7.5 JOG Operation 7-53
7.5.1 JOG operation data 7-53
7.5.2 Individual start 7-54
7.5.3 Simultaneous start 7-59
7.6 Manual Pulse Generator Operation 7-62
7.7 Override Ratio Setting Function 7-68
7.8 FIN signal wait function 7-70
7.9 Single Block Operation 7-74
7.10 Control Program Stop Function from The PLC CPU 7-79
7. USER FILES8- 1 to 8- 2
8.1 Projects 8- 1
8.2 User File List 8- 2
APPENDICESAPP- 1 to APP-67
APPENDIX 1 Error Codes Stored Using The Motion CPU APP- 1
APPENDIX 1.1 Motion program setting errors (Stored in D9190) APP- 3
APPENDIX 1.2 Minor errors APP- 4
APPENDIX 1.3 Major errors APP-20
APPENDIX 1.4 Servo errors APP-24
APPENDIX 1.5 PC link communication errors APP-41
APPENDIX 2 Motion dedicated signal. APP-42
APPENDIX 2.1 Internal relay (M) APP-42
APPENDIX 2.2 Data registers (D) APP-52
APPENDIX 2.3 Motion Registers (\#) APP-59
APPENDIX 2.4 Special Relays APP-60
APPENDIX 2.5 Special Registers APP-63
APPENDIX 3 Processing Times of the Motion CPU APP-67

About Manuals

The following manuals are related to this product.
Referring to this list, please request the necessary manuals.

Related Manuals

(1) Motion controller

Manual Name	Manual Number (Model Code)
Q173HCPU/Q172HCPU Motion controller User's Manual This manual explains specifications of the Motion CPU modules, Q172LX Servo external signal interface module, Q172EX Serial absolute synchronous encoder interface module, Q173PX Manual pulse generator interface module, Teaching units, Power supply modules, Servo amplifiers, SSCNETII cables, synchronous encoder cables and others.	IB-0300110 (1XB910)
Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON) This manual explains the Multiple CPU system configuration, performance specifications, common parameters, auxiliary/applied functions and others.	IB-0300111 (1XB911)
Q173HCPU/Q172HCPU Motion controller (SV13/SV22) Programming Manual (Motion SFC) This manual explains the functions, programming, debugging, error codes and others of the Motion SFC. (Optional)	IB-0300112 (1XB912)
Q173HCPU/Q172HCPU Motion controller (SV13/SV22) Programming Manual (REAL MODE) This manual explains the servo parameters, positioning instructions, device list, error list and others. (Optional)	IB-0300113 (1XB913)
Q173HCPU/Q172HCPU Motion controller (SV22) Programming Manual (VIRTUAL MODE) This manual describes the dedicated instructions use to the synchronous control by virtual main shaft, mechanical system program create mechanical module. This manual explains the servo parameters, positioning instructions, device list, error list and others. (Optional)	IB-0300114 (1XB914)

(2) PLC

Manual Name	$\begin{array}{c}\text { Manual Number } \\ \text { (Model Code) }\end{array}$		
$\begin{array}{l}\text { QCPU User's Manual (Hardware Design, Maintenance and Inspection) } \\ \text { This manual explains the specifications of the QCPU modules, power supply modules, base modules, } \\ \text { extension cables, memory card battery and others. }\end{array}$	$\begin{array}{c}\text { SH-080483ENG } \\ \text { (13JR73) }\end{array}$		
(Optional)		$]$	(Optional)
:---:			

(3) Servo amplifier

Manual Name	Manual Number (Model Code)		
MR-J3-पB Servo amplifier Instruction Manual	SH-030051 (1CW202)		
This manual explains the I/O signals, parts names, parameters, start-up procedure and others.			
(Optional)		\quad	
:---			

1. OVERVIEW

1.1 Overview

This programming manual describes the operating system software packages "SW5RN-SV43Q \square " for Motion CPU module (Q173HCPU/Q172HCPU).
In this manual, the following abbreviations are used.

Generic term/Abbreviation	Description
Q173HCPU/Q172HCPU or Motion CPU (module)	Q173HCPU/Q172HCPU Motion CPU module
Q172LX/Q172EX/Q173PX or Motion module	Q172LX Servo external signals interface module/ Q172EX-S2/S3 Serial absolute synchronous encoder interface module ${ }^{(\text {Note-1) } /, ~}$ Q173PX(-S1) Manual pulse generator interface module
MR-J3-पB	Servo amplifier model MR-J3-■B
AMP or Servo amplifier	General name for "servo amplifier model MR-J3-■B"
QCPU, PLC CPU or PLC CPU module	Qn(H)CPU
Multiple CPU system or Motion system	Abbreviation for "Multiple PLC system of the Q series"
CPUn	Abbreviation for "CPU No.n ($n=1$ to 4) of the CPU module for the Multiple CPU system"
Programming software package	General name for "MT Developer" and "GX Developer"
Operating system software	General name for "SW■RN-SV \square Q \square "
SV43	Operating system software for machine tool peripheral use: SW5RN-SV43Q \square
MT Developer	Abbreviation for "MT Developer (Version 00M or later)" (Integrated start-up support software package)
GX Developer	Abbreviation for "GX Developer (Version 6 or later)" (GX Developer function software package)
Manual pulse generator or MR-HDP01	Abbreviation for "Manual pulse generator (MR-HDP01)"
Serial absolute synchronous encoder or Q170ENC	Abbreviation for "Serial absolute synchronous encoder (Q170ENC)"
SSCNETIII ${ }^{(\text {Note-2) }}$	High speed synchronous network between Motion controller and servo amplifier
SSCNET ${ }^{(\text {Note-2) }}$	High speed serial communication between Motion controller and servo amplifier
Absolute position system	General name for "system using the servomotor and servo amplifier for absolute position"
Battery holder unit	Battery holder unit (Q170HBATC)
External battery	General name for "Q170HBATC" and "Q6BAT"
A \square OBD-PCF	A10BD-PCF/A30BD-PCF SSC I/F board
SSC I/F communication cable	Abbreviation for "Cable for SSC I/F board/card"
Intelligent function module	Abbreviation for "MELSECNET/H module/Ethernet module/ CC-Link module/Serial communication module"

(Note-1) : Q172EX can be used in SV22.
(Note-2) : SSCNET: Servo System Controller NETwork

REMARK

For information about the each module, design method for program and parameter, refer to the following manuals relevant to each module.

Item	Reference Manual
Motion CPU module/Motion unit	Q173HCPU/Q172HCPU User's Manual
PLC CPU, peripheral devices for PLC program design, I/O modules and intelligent function module	Manual relevant to each module
Operation method for MT Developer	Help of each software
• Multiple CPU system configuration	
SV43 Performance specification	
• Design method for common parameter	
• Auxiliary and applied functions (common)	

CAUTION

When designing the system, provide external protective and safety circuits to ensure safety in the event of trouble with the Motion controller.

- There are electronic components which are susceptible to the effects of static electricity mounted on the printed circuit board. When handling printed circuit boards with bare hands you must ground your body or the work bench.
Do not touch current-carrying or electric parts of the equipment with bare hands.
- Make parameter settings within the ranges stated in this manual.
- Use the program instructions that are used in programs in accordance with the conditions stipulated in this manual.

Some devices for use in programs have fixed applications: they must be used in accordance with the conditions stipulated in this manual.

1.2 Features

The Motion CPU has the following features.

1.2.1 Performance specifications

(1) Basic specifications of Q172HCPU/Q172HCPU
(a) Motion control specifications

1 OVERVIEW

Motion control specifications (continued)

1 OVERVIEW

(Note-1) : Acceleration-fixed/time-fixed acceleration/deceleration method is switched as follows.

Acceleration-fixed acceleration/deceleration method	Time-fixed acceleration/deceleration method
G00 (Without M-code setting.)	G00 (With M-code setting.)
G28	G01
G30	G02
G53	G03
in G100	G12
	G13
	G32
	in G101
All travel instructions in G101	

(Note-2) : The servo amplifiers for SSCNET cannot be used.
(b) Motion program performance specifications

Item		Q173HCPU/Q172HCPU
Program capacity	Total of program files	248k bytes
	Number of programs	Up to 1024 (No. 1 to 1024)
Operation controls	Arithmetic operation	Unary operation, Additive operation, Multiplicative operation, Remainder operation
	Comparison operation	Equal to, Not equal to
	Logical operation	Logical shift operation, Logical negation, Logical AND, Logical OR, Exclusive OR
G-codes	Positioning command	G00, G01, G02, G03, G04, G09, G12, G13, G23, G24, G25, G26, G28, G30, G32, G43, G44, G49, G53, G54, G55, G56, G61, G64, G90, G91, G92, G98, G99, G100, G101
M-codes	Output command to data register	M****
Special M-codes	Program control command	M00, M01, M02, M30, M98, M99, M100
Variable	Device variable	X, Y, B, F, D, W, \#
Functions	Trigonometric function	SIN, COS, TAN, ASIN, ACOS, ATAN
	Numerical function	ABS, SQR, BIN, LN, EXP, BCD, RND, FIX, FUP, INT, FLT, DFLT, SFLT
Instructions	Start/end	CALL, CLEAR
	Home position return	CHGA
	Speed/torque setting	TL, CHGV, CHGT
	Motion control	WAITON, WAITOFF, EXEON, EXEOFF
	Jump/repetition processing	CALL, GOSUB/GOSUBE, IF...GOTO, IF...THEN...ELSE...END, WHILE...DO
	Data operation	BMOV, BDMOV, FMOV, BSET, BRST, SET, RST, MULTW, MULTR, TO, FROM, ON, OFF, IF...THEN...SET/RST/OUT, PB
Number of controls	Number of program calls (GOSUB/GOSUBE)	Up to 8
	Number of program calls (M98)	Up to 8

1.2.2 Differences between Q173HCPU/Q172HCPU and Q173CPU(N)/Q172CPU(N)

Item	Q173HCPU	Q172HCPU	Q173CPU(N)	Q172CPU(N)
Number of control axes	32 axes	8 axes	32 axes	8 axes
Operation cycle (Default) (It can be set up by parameters.)	$0.88 \mathrm{~ms} / 1$ to 5 axes $1.77 \mathrm{~ms} / 6$ to 14 axes $3.55 \mathrm{~ms} / 15$ to 28 axes $7.11 \mathrm{~ms} / 29$ to 32 axes	$0.88 \mathrm{~ms} / 1$ to 5 axes $1.77 \mathrm{~ms} / 6$ to 8 axes	$0.88 \mathrm{~ms} / 1$ to 4 axes $1.77 \mathrm{~ms} / 5$ to 12 axes $3.55 \mathrm{~ms} / 13$ to 24 axes $7.11 \mathrm{~ms} / 25$ to 32 axes	$0.88 \mathrm{~ms} / 1$ to 4 axes $1.77 \mathrm{~ms} / 5$ to 8 axes
Peripheral devices I/F	USB/SSCNET		USB/RS-232/SSCNET	
Servo amplifier I/F	SSCNETIII (Optical communication) Q173HCPU : 2 systems		SSCNET Q173CPU(N) : 4 systems (Note-1)	
Indirect setting of home position return data	Indirect setting with word devices (D, W, \#) of Motion CPU.		Only direct setting by programming software.	
Expansion of speed setting range in the unit [degree]	-When the speed control $10 \times$ multiplier setting for degree axis is valid ; 0.01 to 21474836.47 [degree $/ \mathrm{min}$] - When the speed control $10 \times$ multiplier setting for degree axis is invalid ; $0.001 \text { to } 2147483.647 \text { [degree } / \mathrm{min} \text {] }$		0.001 to 2147483.647[degree/min] fixed	
Fetch of external signal input	Q172LX/General input of servo amplifier (Note-2)		Q172LX	
Optional data monitor function	3 points/axis (Specified device D, W, \#)		-	
Minor error [303], [304]	When the speed change is executed after positioning automatic decerelation start or during decerelation by the JOG start command signal (M3202+20n, M3203+20n) OFF, since the speed change request is ignored, a minor error [303], [304] will not occur.		When the speed change is executed after positioning automatic decerelation start or during decerelation by the JOG start command signal (M3202+20n, M3203+20n) OFF, a minor error [303], [304] will occur.	
Processing with power supply OFF of servo amplifier	Servo OFF is executed for all servo amplifier connected behind servo amplifier with which the control power supply was turned OFF.		Servo OFF is executed for only servo amplifier with which the control power supply was turned OFF.	
Back-up battery for internal memory	Internal rechargeable battery (Set the external battery (Q6BAT) if continuous power off time is longer for 1 month or more.) (Note-3)		Internal rechargeable battery (Set the external battery (A6BAT/MR-BAT) if continuous power off time is longer for 1 month or more.) (Note-4)	

(Note-1) : Use the dividing unit (Q173DV) or dividing cable (Q173J2B $\triangle C B L \square M / Q 173 H B \triangle C B L \square M)$.
(Note-2) : When selecting the each servo amplifier general input, the home position return by the count type cannot be executed. And, the external stop input cannot be used.
(Note-3) : When adding the external battery (Q6BAT), use the Q170HBATC.
(Note-4) : When adding the external battery (A6BAT/MR-BAT), use the Q173DV (Q173CPU(N) use) or Q170BAT (Q172CPU(N) use).

2 POSITIONING CONTROL BY THE MOTION CPU

2. POSITIONING CONTROL BY THE MOTION CPU

2.1 Positioning Control by the Motion CPU

The positioning control of up to 32 axes in Q173HCPU and up to 8 axes in Q172HCPU is possible in the Motion CPU.
There are following four functions as controls toward the servo amplifier/servomotor.
(1) Servo operation by the positioning instructions.

The positioning instructions are programmed using the Motion program.
The starting method of Motion program is shown below.
(a) Motion program start request (S(P).SVST) using the PLC program of PLC CPU or Motion program (control program) start request (S(P).SFCS)
(b) Automatic start setting of Motion program (control program)
(c) Start by CALL, GOSUB/GOSUBE instruction using other Motion program
(2) JOG operation by the axis command signal of Motion CPU.
(3) Manual pulse generator operation by the positioning dedicated device of Motion CPU.
(4) Speed change and torque limit value change during positioning control by the Motion dedicated PLC instruction (S(P).CHGV, S(P).CHGT instruction) or the CHGV, CHGT, TL instruction in the Motion program.

2 POSITIONING CONTROL BY THE MOTION CPU

[Execution of the Motion program start (S(P).SVST instruction)]
Positioning control is executed by starting the Motion program (axis designation program) specified with S(P).SVST instruction of the PLC CPU in the Motion CPU. An overview of the starting method using the Motion program is shown below.

Multiple CPU control system
PLC CPU

PLC program

Create using a peripheral device ${ }^{(\text {Note-1) }}$
<Example> SP.SVST instruction

1) The Motion program No. and start axis No. are set using the S(P).SVST instruction in the PLC program.

Start request of the Motion program
2) When the $S(P)$.SVST instruction is executed, the program of the Motion program No. specified with the Motion CPU is executed.
Point
In the above, it is explained the start of axis designation program.
There are following 2 types as the Motion program.
Control program : Only control instruction can be used, the travel instruction by G-code can not be used.
It is started by the $S(P)$.SFCS of PLC CPU, automatic start with parameter, or CALL, GOSUB/GOSUBE instruction of other control program.
Axis designation program : The travel instruction by G-code and control instruction can be used. It is started by the $S(P)$.SVST instruction of PLC CPU or CALL, GOSUB/GOSUBE instruction of control program.
(1) Create the Motion programs and positioning control parameters using a peripheral device.
(2) Perform the positioning start using the PLC program (S(P).SVST instruction) of PLC CPU.
(a) Motion program No. is specified with the S(P).SVST instruction.

1) Motion program No. can be set either directly or indirectly.
2) Start axis No. can be set only directly.
(3) Perform the specified positioning control using the specified with the Motion program.

2 POSITIONING CONTROL BY THE MOTION CPU

(Note-1) : The following peripheral devices started by the SW6RN-GSV43P can be used.

- The personal computer by which WindowsNT ${ }^{\circledR}$ 4.0/Windows ${ }^{\circledR}$ 98/ Windows ${ }^{\circledR} 2000 /$ Windows ${ }^{\circledR}$ XP works. (IBM PC/AT compatible)

WindowsNT ${ }^{\circledR}$, Windows ${ }^{\circledR}$ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

2 POSITIONING CONTROL BY THE MOTION CPU

[Execution of the JOG operation]

JOG operation of specified axis is executed using the Motion program in the Motion CPU. JOG operation can also be executed by controlling the JOG dedicated device of specified axis.
An overview of JOG operation is shown below.

Motion CPU control system

(1) Set the positioning control parameters using a peripheral device.
(2) Set the JOG speed to the JOG speed setting register for each axis using the Motion program.
(3) Perform the JOG operation while the JOG start command signal is ON in the Motion program.

2 POSITIONING CONTROL BY THE MOTION CPU

(Note-1) : The following peripheral devices started by the SW6RN-GSV43P can be used.
-The personal computer by which WindowsNT ${ }^{\circledR}$ 4.0/Windows ${ }^{\circledR}$ 98/ Windows ${ }^{\circledR} 2000 /$ Windows ${ }^{\circledR}$ XP works. (IBM PC/AT compatible)

WindowsNT ${ }^{\circledR}$, Windows ${ }^{\circledR}$ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

2 POSITIONING CONTROL BY THE MOTION CPU

[Executing Manual Pulse Generator Operation]

When the positioning control is executed by the manual pulse generator connected to the Q173PX, manual pulse generator operation must be enabled using the Motion program.
An overview of manual pulse generator operation is shown below.

Motion CPU control system

(1) Set the positioning control parameters using a peripheral device.
(2) Set the used manual pulse generator, operated axis No. and magnification for 1 pulse input using the Motion program.
(3) Turn the manual pulse generator enable flag ON using the Motion program
\qquad Manual pulse generator operation enabled
(4) Perform the positioning by operating the manual pulse generator.
(5) Turn the manual pulse generator enable flag OFF using the Motion program Manual pulse generator operation completion

2 POSITIONING CONTROL BY THE MOTION CPU

REMARK

(Note-1) : The following peripheral devices started by the SW6RN-GSV43P can be used.

- The personal computer by which WindowsNT ${ }^{\circledR}$ 4.0/Windows ${ }^{\circledR} 98 /$ Windows ${ }^{\circledR} 2000 /$ Windows ${ }^{\circledR}$ XP works. (IBM PC/AT campatible)

WindowsNT ${ }^{\circledR}$, Windows ${ }^{\circledR}$ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

2 POSITIONING CONTROL BY THE MOTION CPU

(1) Positioning control parameters

There are following seven types as positioning control parameters.
Parameter data can be set and corrected interactively using a peripheral device.

	Item	Description	Reference
1	System settings	Multiple system settings, Motion modules and axis No., etc. are set.	Section 5.1
2	Fixed parameters	Data by such as the mechanical system are set for every axis. They are used for calculation of a command position at the positioning control.	Section 5.2
3	Servo parameters	Data by such as the servo amplifier and motor type with the connected servomotor are set for every axis. They are set to control the servomotors at the positioning control.	(Note-1)
5	Home position return data	Data such as the direction, method and speed of the home position return used at the positioning control are set for every axis.	Section 7.3 .1
6	JOG operation	Data such as the JOG speed limit value and parameter block No. used at the JOG operation are set for every axis.	Section 7.5 .1
7	Data such as the acceleration/deceleration time and speed dontrol value at the positioning control are set up to 16 parameter blocks. They are set with the servo program, JOG operation data and home position return data, and it is used to change easily the acceleration/deceleration processing (acceleration/deceleration time and speed limit value) at the positioning control.	Section 5.3	
Limit switch	Output device, watch data, ON section, output enable/disable bit and forced output bit used for the limit output function for every limit output are set.	(Note-2)	

(Note-1): Refer to Section 3.3 of the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)".
(Note-2): Refer to Section 4.1 of the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)".

(2) Motion program

The positioning control, JOG operation and manual pulse generator operation are executed in the Motion program. The start request is performed using the PLC program (S(P).SFCS/SVST instruction).
It comprises a Motion program No., G-code, M-code instruction and positioning data.
Refer to Chapter 6 for details.

- Motion program No \qquad It is specified using the PLC program (S(P).SFCS/SVST instruction).
- G-code, M-code instruction It indicates the type of positioning control.
- Positioning data \qquad It is required to execute the G-code, M-code instructions. The required data is fixed for every G-code, M-code instruction.
(3) PLC program

The positioning control by the Motion program can be executed using the Motion dedicated PLC instruction of PLC program.
Refer to Chapter 3 for details.

3. MOTION DEDICATED PLC INSTRUCTION

3.1 Motion Dedicated PLC Instruction

(1) The Motion dedicated PLC instruction which can be executed toward the Motion CPU which installed a SV43 operating system software is shown below.

Instruction	Description
S(P).SFCS	Start request of the specified Motion program (Control program)
$S(P) . S V S T$	Start request of the specified Motion program (Axis designation program)
$S(P) . C H G A$	Home position return request of the specified axis
$S(P) . C H G V$	Speed change request of the specified axis
$S(P) . C H G T$	Torque control value change request of the specified axis
$S(P) \cdot D D W R$	Write from the PLC CPU to the Motion CPU
$S(P) \cdot D D R D$	Read from the devices of the Motion CPU

3.1.1 Restriction item of the Motion dedicated PLC instruction

(1) To self CPU high speed interrupt accept flag from CPUn.

Common precautions of the Motion dedicated PLC instruction as shown below.
(a) To self CPU high speed interrupt accept flag from CPUn is shown in the following table.
To self CPU high speed interrupt accept flag from CPUn is "No operation" even if the instruction is executed when it is cannot be accepted.
When the Motion dedicated PLC instruction is accepted in the Motion CPU, to self CPU high speed interrupt accept flag from CPUn of the self CPU (Motion CPU) shared CPU memory cannot be accepted and processing toward the instruction for requirement. When processing is completed and it becomes the condition that it has an instruction accepted, to self CPU high speed interrupt accept flag from CPUn can be accepted.

Shared CPU memory address $(~)$ is decimal address	Description	Example of the reading When target is the CPU No.2)
$30 \mathrm{H}(48)$	The lowest rank bit $(30 \mathrm{H}(48))$ toward executing instruction from CPU No.1.	U3E1/G48.0
$31 \mathrm{H}(49)$	The lowest rank bit $(31 \mathrm{H}(49))$ toward executing instruction from CPU No.2.	U3E1/G49.0
$32 \mathrm{H}(50)$	The lowest rank bit $(32 \mathrm{H}(50))$ toward executing instruction from CPU No.3.	U3E1/G50.0
$33 \mathrm{H}(51)$	The lowest rank bit $(33 \mathrm{H}(51))$ toward executing instruction from CPU No.4.	U3E1/G51.0

(b) "To self CPU high speed interrupt accept flag from CPUn" turn ON/OFF at the executing instruction, when the Multiple CPU dedicated instructions are executed to the same CPU from one PLC CPU.
Therefore, when each instruction is executed only once at approval the executing condition, it is necessary to take an interlock by internal relay (M10) and so on besides "To self CPU high speed interrupt accept flag from CPUn".
(2) Execution of the Motion dedicated PLC instruction
(a) Motion dedicated PLC instruction can be executed with fixed cycle execute type PLC and interrupt PLC. However, as for a complete device, the program turned on according to fixed cycle executed type PLC and program type (scan or low speed) executed interrupt PLC is different.
(b) One Motion CPU can be accepted up to 32 instructions simultaneously from multiple other CPUs. If 33 instructions or more are executed Motion CPU returns the complete status[4C08] error.
As Motion CPU can be accepted up to 32 instructions, number of acceptable instructions changes according to number of CPUs included Motion CPU. Calculation expression is shown below.
(Number of maximum acceptable instructions per one Motion CPU) $=$ 32 - ((Number of all CPUs) - 2) [Number of instructions]
(c) Local devices and file registers as program are written to device by END processing. Do not use the devices below.

- Each instruction complete device
- D1 of $S(P)$.DDRD instruction (The first device of the self CPU which stored the reading data.)
(d) Use a flag in the shared CPU memory which correspond with each instruction not to execute multiple instructions to the same shaft of the Motion CPU of same CPU No. for the interlock condition. (Program example 1).
(e) $\mathrm{S}(\mathrm{P}) \cdot \mathrm{SFCS} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{SVST} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGA} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGVS}(\mathrm{P}) \cdot \mathrm{CHGT} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{DDWR} /$ $S(P) . D D R D$ instructions cannot be executed simultaneously. Therefore, it is necessary to take an interlock by to self CPU high speed interrupt accept flag from CPUn.
One PLC CPU can be executed max. 32 Motion dedicated PLC instructions simultaneously using to self CPU high speed interrupt accept flag from CPUn.
If 33 instructions or more are executed, the PLC CPU returns the OPERATION ERROR[4107].
(f) When multiple Motion dedicated PLC instructions are directly executed because one contact-point turns on, an instruction may not be executed. In this case, create a program with reference to program example. (Program example 2).
<Program example 1>
Program which executes multiple instructions to the same shaft of the Motion CPU of same CPU No..

<Program example 2>
Program which executes directly multiple Motion dedicated PLC instructions because one contact-point turns on.

POINT

Access from the PLC CPU is processed before the communication processing of the Motion CPU. Therefore, if the Motion dedicated PLC instruction is frequently performed from the PLC CPU, the scan time of the PLC CPU is not only prolonged, but delay will arise in the communication processing of the Motion CPU.
Perform execution of the Motion dedicated PLC instruction from the PLC CPU by $S(P) . D D W R / S(P) . D D R D / S(P) . C H G V$ instruction etc. only at the time of necessity.

3 MOTION DEDICATED PLC INSTRUCTION

(3) Complete status

The error code is stored in the complete status at abnormal completion of the Multiple CPU dedicated instruction. The error code which is stored is shown below. (The error code marked " * " is dedicated with the Motion CPU.)

3 MOTION DEDICATED PLC INSTRUCTION

(4) Self CPU operation data area used by Motion dedicated instruction (30H to 33 H) The complete status of the to self CPU high speed interrupt accept flag from CPUn is stored in the following address.

Shared CPU memory address	Name	Description
30H(48)	To self CPU high speed interrupt accept flag from CPU1	This area is used to check whether to self CPU high speed interrupt accept flag from CPUn can be accepted or not. 0: To self CPU high speed interrupt accept flag from CPUn accept usable. 1: To self CPU high speed interrupt accept flag from CPUn accept disable.
31H(49)	To self CPU high speed interrupt accept flag from CPU2	
32H(50)	To self CPU high speed interrupt accept flag from CPU3	
33H(51)	To self CPU high speed interrupt accept flag from CPU4	

(5) System area used by Motion dedicated instruction (204H to 20DH)

The complete status of the each flag is stored in the following address.

3 MOTION DEDICATED PLC INSTRUCTION

3.2 Motion program (Control program) Start Request from The PLC CPU to The Motion CPU:S(P).SFCS (PLC instruction: S(P).SFCS)

- Motion program (Control program) start request instruction from the PLC CPU to the Motion CPU (S(P).SFCS)

	Usable devices										
	Internal devices (System, User)		File register	Bit digit specified	Indirectly specified device	MELSECNET/10 direct J $\square \backslash$		Special function module UपIGロ	Index register Z \square	ConstantK, H	Other
	Bit	Word				Bit	Word				
(n1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(n2)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(D1)	\bigcirc	\bigcirc	\bigcirc								
(D2)		\bigcirc	\bigcirc		O						

(Note) : Setting data (n1) to (D2) : Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2:3E1H, CPU No.3:3E2H, CPU No.4:3E3H	16 -bit binary
(n2)	Motion program (Control program) No. to start.	16 -bit binary
(D1)	Complete devices (D1+0) : Device which make turn on for one scan at start accept completion of instruction. $(D 1+1):$ Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16 -bit binary

(Note-1) : Motion CPU cannot used CPU No. 1 in the Multiple CPU configuration.

Set the control program No. to start in (n2). Usable range is shown below.
(1) The control program No. is set

The specified control program No. is started.
In this case, control program is executed from the first block.

(n2) usable range
1 to 1024

(2) The sequence No. ($\left.\mathrm{N}^{* * * *}\right)$ is set in the control program It can be started in the middle of program.
(a) Indirect setting by data register
$D((n 2)-10000 \quad:$ The control program No. stored in the data register (Motion CPU side) is started.
$D((n 2)-10000+1)$: The sequence No. stored in the data register (Motion CPU side) is started.
(n2) usable range 10000 to 18191
(b) Indirect setting by motion register
\#(n2) - $20000 \quad$: The control program No. stored in the motion register (Motion CPU side) is started.
$\#((\mathrm{n} 2)-20000+1)$: The sequence No. stored in the motion register (Motion CPU side) is started.

(n2) usable range
20000 to 28191

[Description]
(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
(2) Request to start the Motion program (Control program) specified with (n2).

$S(P)$.DDWR cannot be executed simultaneously toward the CPU executing S(P).SFCS instruction.
When the Motion dedicated PLC instruction is started continuously, it is necessary to execute the next instruction after the complete device of executing instruction turns on.

3 MOTION DEDICATED PLC INSTRUCTION

[Operation of the self CPU at execution of $\mathrm{S}(\mathrm{P}) . \mathrm{SFCS}$ instruction]

3 MOTION DEDICATED PLC INSTRUCTION

[Errors]
The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	Confirm a program, and correct it to a correct PLC program.
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	
4C02	The Motion program (Control program) No. to start is outside the following range. - The control program is set 1 to1024 - Indirect setting by data register $10000 \text { to } 18191$ - Indirect setting by motion register $20000 \text { to } 28191$	
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS/S(P).SVST and S(P).CHGA sum table simultaneously, and the Motion CPU cannot process them.	
4C09	CPU No. of the instruction cause is injustice.	

(Note) : 0000H(Normal)

The error flag (SMO) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code ${ }^{\text {(Note) }}$	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O NO. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a
program, and		
correct it to a		
correct PLC		
program.		

(Note) : 0000H(Normal)

3 MOTION DEDICATED PLC INSTRUCTION

[Program example]

(1) This program starts the Motion program (Control program) No. 10 of the Motion CPU No. 4.

(2) This program starts the Motion program (Control program) No. 30 and sequence No. 200 of the Motion CPU No. 4 by indirect setting.

PLC program (PLC CPU side)

Motion program (Motion CPU side)
Set the data in the data register of "No. specified with SFCS instruction - 10000".

```
O0010;
D1000 = 30; Motion program No.
D1001 = 200 ; Sequence No.
```


3.3 Motion Program (Axis designation program) Start Request from The PLC CPU to The Motion CPU:S(P).SVST (PLC instruction: S(P).SVST)

- Motion program (Axis designation program) start request instruction from the PLC CPU to the Motion CPU (S(P).SVST)

	Usable devices										
	Internal devices (System, User)		File register	Bit digit specified		MELSECNET/10 direct J $\square \square$		Special function module UपIG■	Index register Z \square	ConstantK, H	Other
	Bit	Word				Bit	Word				
(n1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(S1)		\bigcirc	\bigcirc		\bigcirc						\bigcirc
(S2)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(D1)	\bigcirc	\bigcirc	\bigcirc								
(D2)		\bigcirc	\bigcirc		\bigcirc						

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2 : 3E1H, CPU No.3:3E2H, CPU No.4:3E3H	16 -bit binary
(S1)	Axis No.("Jn") ${ }^{(\text {Note-2) }}$ to start. Q173HCPU : J1 to J32/Q172HCPU : J1 to J8	Character sequence
(S2)	Motion program (Axis designation program) No. to start.	16 -bit binary
(D1)	Complete devices $(\mathrm{D} 1+0):$ Device which make turn on for one scan at start accept completion of instruction. (D1+1) : Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16 -bit binary

(Note-1) : Motion CPU cannot used CPU No. 1 in the Multiple CPU configuration.
(Note-2) : " n " shows the numerical value correspond to axis No..
Q173HCPU : Axis No. 1 to No. 32 ($n=1$ to 32) / Q172HCPU : Axis No. 1 to No. 8 ($n=1$ to 8)

3 MOTION DEDICATED PLC INSTRUCTION

[Description]

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
(2) Request to start the Motion program (Axis designation program) specified with (S2).
(3) $\mathrm{S}(\mathrm{P}) \cdot \mathrm{SFCS} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{SVST} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGA} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGV} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGT} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{DDRD} /$ $S(P)$.DDWR cannot be executed simultaneously toward the CPU executing S(P).SFCS instruction.
When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
(4) It is necessary to take an inter-lock by the start accept flag of the shared CPU memory so that multiple instructions may not be executed toward the same axis of the same Motion CPU No..
[Operation]

(1) The start accept status of each axis can be confirmed with the start accept flag in the shared CPU memory of target CPU.
(2) $\mathrm{S}(\mathrm{P})$.SVST instruction accepting and normal/abnormal completion can be confirmed with the complete device(D1) or status display device(D2) at the completion.
(a) Complete device

It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
(b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion : It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.

[Setting range]

(1) Setting of the starting axis

The starting axis set as (S1) sets $\mathrm{J}+$ Axis No. in a character sequence " ".

	(S1) usable range
Q173HCPU	1 to 32
Q172HCPU	1 to 8

Up to 8 axes can be set. If multiple axes are set, it sets without dividing in a space etc,.
The axis No. set in the system setting is used as the axis No. to start.
Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)" for system settings.
And, the axis No. to start does not need to be a order.
Example) When multiple axes (Axis1, Axis2, Axis10, Axis11)are set. "J1J2J10J11"
(2) Setting of the Motion program (Axis designation program) No.

The usable range of axis designation program No. to set (S2) is checked in the Motion CPU side.
(a) The control program No. is set

The specified axis designation program is started.
In this case, axis designation program is executed from the first block.

(S2) usable range
1 to 1024

(b) The sequence No. $\left(\mathrm{N}^{* * * *}\right) /$ parameter block No. in the control program is set It can be started in the middle of program.

1) Indirect setting by data register

$$
\begin{array}{ll}
D((S 2)-10000) & : \begin{array}{l}
\text { The axis designation program No. stored in } \\
\text { the data register (Motion CPU side) is started. }
\end{array} \\
D((S 2)-10000+1): \text { The sequence No. stored in the data register } \\
& \text { (Motion CPU side) is started. }
\end{array}
$$

$D((S 2)-10000+2)$: The parameter block No. stored in the data register (Motion CPU side) is started.

(S2) usable range
10000 to 18191

2) Indirect setting by motion register

$$
\begin{aligned}
\#((\mathrm{~S} 2)-20000) & : \text { The axis designation program No. stored in the } \\
& \text { motion register (Motion CPU side) is started. } \\
\#((\mathrm{~S} 2)-20000+1): & \text { The sequence No. stored in the motion register } \\
& \text { (Motion CPU side) is started. } \\
\#((\mathrm{~S} 2)-20000+2): & \text { The parameter block No. stored in the motion } \\
& \text { register (Motion CPU side) is started. }
\end{aligned}
$$

> | (S2) usable range |
| :---: |
| 20000 to 28191 |

[Start accept flag (System area)]
The complete status of the start accept flag is stored in the address of the start accept flag in the shared CPU memory.

3 MOTION DEDICATED PLC INSTRUCTION

[Errors]
The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4C00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	Confirm a program, and correct it to a correct PLC program.
4C01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	
4C03	The Motion program (Axis designation program) No. to start is outside the following range. - The control program is set 1 to 1024 - Indirect setting by data register 10000 to 18191 - Indirect setting by motion register 20000 to 28191	
4C04	Axis No. set by SVST instruction is injustice.	
4C08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).SFCS, S(P).SVST and S(P).CHGA sum table simultaneously, and the Motion CPU cannot process them.	
4C09	CPU No. of the instruction cause is injustice.	

(Note) : 0000H(Normal)

The error flag (SMO) is turned on an operation error in the case shown below, and an error code is stored in SD0.

| Error code ${ }^{\text {(Note) }}$ | Error factor | |
| :---: | :--- | :--- | Corrective action | 2110 | The CPU No. to be set by "(First I/O NO. of the target
 CPU)/16" is specified. |
| :---: | :--- |

(Note) : 0000H(Normal)

3 MOTION DEDICATED PLC INSTRUCTION

[Program example]

(1) Program which requests to start the Motion program (Axis designation program) No. 10 toward axis No. 1 and No. 2 of the Motion CPU No.4. from the PLC CPU No. 1.

(2) Program which requests to start the Motion program (Axis designation program) No.20, sequence No. 100 and parameter block No. 30 toward axis No. 1 and No. 2 of the Motion CPU No. 4 by indirect setting from the PLC CPU No. 1.
Sequence program (PLC CPU side)

Motion program (Motion CPU side)
Set the data in the data register of "No. specified with SVST instruction-10000".

```
O0015;
D2000 = 20; Motion program No.
D2001 = 100; Sequence No.
D2002 = 30; Parameter block No.
\vdots
```


3.4 Home position return instruction from The PLC CPU to The Motion CPU: $\mathrm{S}(\mathrm{P}) . \mathrm{CHGA}$ (PLC instruction: S(P).CHGA)

- Home position return instruction from the PLC CPU to the Motion CPU (S(P).CHGA)

	Usable devices										
	Internal devices (System, User)		File register		Indirectly specified device	MELSECNET/10direct J $\square \square$		Special function module U口IGロ	Index register Z \square	ConstantK, H	Other
	Bit	Word				Bit	Word				
(n1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(S1)		\bigcirc	\bigcirc		\bigcirc						\bigcirc
(S2)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(D1)	\bigcirc	\bigcirc	\bigcirc								
(D2)		\bigcirc	\bigcirc		\bigcirc						

\bigcirc : Usable \triangle : Usable partly
(Note) : Setting data except (S1) : Index qualification possible

[Setting data]

Setting data	Description	Data type
(n 1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. ${ }^{\text {(Note-1) }}$ CPU No. 2 : 3E1H, CPU No. 3 : 3E2H, CPU No. 4 : 3E3H	16-bit binary
(S1)	Axis No. ("Jn") ${ }^{(\text {Note-2) }}$ to execute the home position return. Q173HCPU : J1 to J32/Q172HCPU : J1 to J8	Character sequence
(S2)	Dummy (Set the any of constant etc.)	$\begin{aligned} & \begin{array}{l} 32 \text {-bit } \\ \text { binary } \end{array} \end{aligned}$
(D1)	Complete devices (D1+0) : Device which make turn on for one scan at start accept completion of instruction. (D1+1) : Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16-bit binary

(Note-1) : Motion CPU cannot used CPU No. 1 in the Multiple CPU configuration.
(Note-2) : "n" shows the numerical value which correspond to axis No..
Q173HCPU : Axis No. 1 to No. 32 ($\mathrm{n}=1$ to 32) / Q172HCPU : Axis No. 1 to No. 8 ($\mathrm{n}=1$ to 8)

3 MOTION DEDICATED PLC INSTRUCTION

[Description]

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
(2) Execute the home position return of axis (stopped axis) No. specified with (S1) .
(3) $\mathrm{S}(\mathrm{P}) \cdot \mathrm{SFCS} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{SVST} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGA} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGV} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGT} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{DDRD} /$ $S(P)$.DDWR cannot be executed simultaneously toward the CPU executing S(P).CHGA instruction.
When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
(4) It is necessary to take an inter-lock by the start accept flag of the shared CPU memory so that multiple instructions may not be executed toward the same axis of the same Motion CPU No..
[Operation]

PLC program
$\mathrm{S}(\mathrm{P})$.CHGA instruction
To self CPU high speed interrupt accept flag from CPUn

Start accept flag (axis)

Home position return

Instruction start accept complete device (D1+0)

State display device (D1+1) at the instruction start accept completion

(1) The start accept status of each axis can be confirmed with the start accept flag in the shared CPU memory of target CPU.
(2) $\mathrm{S}(\mathrm{P})$.CHGA instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
(a) Complete device

It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
(b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion : It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.

[Setting range]

(1) Setting of axis to execute the home position return.

The starting axis set as (S1) sets $J+$ Axis No. in a character sequence " ".

	(S1) usable range
Q173HCPU	1 to 32
Q172HCPU	1 to 8

The number of axes which can set are only 1 axis.
The axis No. set in the system setting is used as the axis No. to start.
Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)" for system settings.

[Start accept flag (System area)]

The complete status of the start accept flag is stored in the address of the start accept flag in the shared CPU memory.

3 MOTION DEDICATED PLC INSTRUCTION

[Errors]

The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

| Complete status (Note)
 (Error code)(H) | Error factor | |
| :---: | :--- | :--- | Corrective action.

(Note) : 0000H(Normal)

The error flag (SMO) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code ${ }^{\text {(Note) }}$	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O NO. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

(Note) : 0000H(Normal)

3 MOTION DEDICATED PLC INSTRUCTION

[Program example]

Program which execute the home position return of the axis No. 1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1).

3 MOTION DEDICATED PLC INSTRUCTION

3.5 Speed Change Instruction from The PLC CPU to The Motion CPU: S(P).CHGV (PLC instruction: S(P).CHGV)

- Speed change instruction (S(P).CHGV)

	Usable devices										
	Internal devices (System, User)		File register	Bit digit specified	Indirectly specified device	MELSECNET/10 direct J $\square \backslash$		Special function module UपIGロ	Index register Z \square	ConstantK, H	Other
	Bit	Word				Bit	Word				
(n1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(S1)		\bigcirc	\bigcirc		\bigcirc						\bigcirc
(S2)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(D1)	\bigcirc	\bigcirc	\bigcirc								
(D2)		\bigcirc	\bigcirc		\bigcirc						

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2:3E1H, CPU No.3:3E2H, CPU No.4:3E3H	16 -bit binary
(S1)	Axis No.("Jn") ${ }^{(N o t e-2)}$ to execute the speed change. Q173HCPU : J1 to J32/Q172HCPU : J1 to J8	Character sequence
(S2)	Setting of the current value to change.	32 -bit binary
(D1)	Complete devices (D1+0) : Device which make turn on for one scan at start accept completion of instruction. (D1+1) : Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16 -bit binary

(Note-1) : Motion CPU cannot used CPU No. 1 in the Multiple CPU configuration.
(Note-2) : "n" shows the numerical value which correspond to axis No..
Q173HCPU : Axis No. 1 to No. 32 ($n=1$ to 32) / Q172HCPU : Axis No. 1 to No. 8 ($n=1$ to 8)

[Description]

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
(2) The speed change is executed of the axis specified with (S1) during positioning or JOG operating.
(3) $\mathrm{S}(\mathrm{P}) \cdot \mathrm{SFCS} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{SVST} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGA} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGV} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGT} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{DDRD} /$ $S(P)$.DDWR cannot be executed simultaneously toward the CPU executing $S(P)$.CHGV instruction.
When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.
(4) It is necessary to take an inter-lock by the speed changing flag of the shared CPU memory so that multiple instructions may not be executed toward the same axis of the same Motion CPU No..
[Operation]

[Setting range]

(1) Setting of axis to execute the speed change.

The axis to execute the speed change set as (S1) sets $J+$ axis No. in a character sequence " ".

	(S1) usable range
Q173HCPU	1 to 32
Q172HCPU	1 to 8

The number of axes which can set are only 1 axis.
The axis No. set in the system setting is used as the axis No. to start.
Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)" for system settings.
(2) Setting of the speed to change.
$\mathrm{mm} \quad:-6000000$ to $6000000 \times 10^{-2}[\mathrm{~mm} / \mathrm{min}]$
inch : -6000000 to 6000000×10^{-3} [inch $\left./ \mathrm{min}\right]$
degree ${ }^{(\text {Note) }}$: -2147483648 to $2147483647 \times 10^{-3}$ [degree $/ \mathrm{min}$]
(Note) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid", the setting range is "-2147483648 to 2147483647 ".

[Speed changing flag (System area)]

The complete status of the start accept flag is stored in the address of the start accept flag in the shared CPU memory.

3 MOTION DEDICATED PLC INSTRUCTION

[Errors]
The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4 COO	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
$4 \mathrm{CO1}$	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program, and correct it to a correct PLC
4 CO 06	Axis No. set by CHGV instruction is injustice.	program.
4 C 09	CPU No. of the instruction cause is injustice.	

(Note) : 0000H(Normal)

The error flag (SMO) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code ${ }^{\text {(Note) }}$	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O NO. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	
4004	The instruction is composed of devices except usable devices.	program.
4100	Since 0 to 3DFH, 3E4H by "(First I/O No. of the target CPU)/16" is specified.	

(Note) : 0000H(Normal)

In this following case, the minor error (control change error) occurs, speed change is not execute. At this time, the error detection flag (M2047 + 20n) of Motion CPU turns on, an error code is stored in the minor error code area of the applicable axis.

- When the axis specified with (S1) is executing the home position return at the speed change.
- When the axis specified with (S1) is executing the deceleration at the speed change.
- When the speed specified with (S2) is outside the range of 0 to speed limit value.

3 MOTION DEDICATED PLC INSTRUCTION

Moving Backward during Positioning

When a speed change is made to a negative speed by the CHGV instruction, the travel direction can be changed to the direction opposite to the intended positioning direction. Operation for each instruction is as follows.

G-code Instruction		Operation
G00		The axis is reversed in travel direction, returns to the positioning start G28 (High-speed home position return) G30 G53
G02		
G03		

(Note) : Minor error (Error code : 301) : Speed change was made during home position return. Minor error (Error code : 305) : Preset speed is outside the range of 0 to speed limit value. Minor error (Error code : 310) : Speed change was made during high-speed oscillation.

[Description]

(1) When a speed change is made to negative speed, speed is controlled as listed above according to the G-code in execution.
(2) The backing command speed is the absolute value of the new speed. If it exceeds the speed limit value, a minor error (Error code : 305) occurs and the speed is controlled at the speed limit value.
(3) When the axis is standing by at the return position
(a) Signal states

- Start accept (M2001 + 20n)	ON
	(Remains unchanged from before execution of CHGV)
- Positioning start completion (M2400 + 20n)	ON (Remains unchanged from before execution of CHGV)
- Positioning completion (M2401 + 20n)	OFF
- In-position (M2402 + 20n)	ON
- Command in-position (M2403 + 20n)	OFF
- Speed change "0" accepting flag (M2240 + n)	ON

(b) When re-starting, make a speed change to positive speed.
(c) When positioning is end, turn on the stop command.
(d) When a negative speed change is executed again after negative speed completion, CHGV instruction is ignored.
(4) When the complete round is set in G02, G03, do not execute the negative speed change by CHGV instruction.

3 MOTION DEDICATED PLC INSTRUCTION

[Operation Example under G01]

When a speed change is made to negative speed during positioning to P 2 in the N 2 block as shown above, the axis returns to P 1 along the track specified in the program and stands by at P1.
(1) A speed change to negative speed is invalid (ignored), even if it is made again during the standby after returning to P 1 .
(2) The start accept flag ($\mathrm{M} 2001+\mathrm{n}$) remains ON during the standby in P1.Turn on the stop command to end the positioning at this point.
(3) A speed change to negative speed is ignored if it is made during stop by the waiting for FIN using the M-code FIN signal waiting function in the constant-speed control.
(4) In the above example, the axis returns to P 2 even if the axis passes through P 2 during a speed change made to negative speed immediately before P2.

[Program example]

Program which changes the positioning speed of the axis No. 1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 1000.

3.6 Torque Limit Value Change Request Instruction from The PLC CPU to The Motion CPU: $\mathrm{S}(\mathrm{P}) . \mathrm{CHGT}$ (PLC instruction: $\mathrm{S}(\mathrm{P}) . \mathrm{CHGT}$)

- Torque limit value change request instruction from the PLC CPU to the Motion CPU (S(P).CHGT)

	Usable devices										
	Internal devices (System, User)		File register	Bit digit specified	Indirectly specified device	MELSECNET/10 direct J $\square \square$		Special function module UपIGロ	Index register Z \square	ConstantK, H	Other
	Bit	Word				Bit	Word				
(n1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(S1)		\bigcirc	\bigcirc		\bigcirc						\bigcirc
(S2)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(D1)	\bigcirc	\bigcirc	\bigcirc								
(D2)		\bigcirc	\bigcirc		\bigcirc						

\bigcirc : Usable \triangle : Usable partly
(Note) : Setting data except (S1) : Index qualification possible

[Setting data]

Setting data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. (Note-1) CPU No.2:3E1H, CPU No.3:3E2H, CPU No.4:3E3H	16 -bit binary
(S1)	Axis No.("Jn") ${ }^{(N o t e-2)}$ to execute the torque limit value change. Q173HCPU : J1 to J32/Q172HCPU : J1 to J8	Character sequence
(S2)	Setting of the torque limit value change to change.	16 -bit binary
(D1)	Complete devices (D1+0) : Device which make turn on for one scan at start accept completion of instruction. (D1+1) : Device which make turn on for one scan at start accept abnormal completion of instruction. ("D1+0" also turns on at the abnormal completion.)	Bit
(D2)	Device to store the complete status.	16 -bit binary

(Note-1) : Motion CPU cannot used CPU No. 1 in the Multiple CPU configuration.
(Note-2) : "n" shows the numerical value which correspond to axis No.. Q173HCPU : Axis No. 1 to No. 32 ($n=1$ to 32) / Q172HCPU : Axis No. 1 to No. 8 ($n=1$ to 8)

[Description]

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
(2) The torque limit value of the axis specified with (S1) is changed to the value of (S2) regardless of the state of during operating or stopping.
(3) $\mathrm{S}(\mathrm{P}) \cdot \mathrm{SFCS} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{SVST} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGA} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGV} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{CHGT} / \mathrm{S}(\mathrm{P}) \cdot \mathrm{DDRD} /$ $S(P)$.DDWR cannot be executed simultaneously toward the CPU executing $S(P)$.CHGT instruction.
When the Motion dedicated PLC instruction is started continuously, It is necessary to take an inter-lock by the to self CPU high speed interrupt accept flag from CPUn.

[Operation]

[Setting range]
(1) Setting of the axis to execute the torque limit value change.

The axis to execute the torque limit change set as (S1) sets $J+$ axis No. in a character sequence " ".

	(S1) usable range
Q173HCPU	1 to 32
Q172HCPU	1 to 8

The number of axes which can set are only 1 axis.
The axis No. set in the system setting is used as the axis No. to start.
Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)" for system settings.

3 MOTION DEDICATED PLC INSTRUCTION

(2) Setting of the torque limit value to change.

(S2) usable range
1 to 1000

[Errors]
The abnormal completion in the case shown below, and the error code is stored in the device specified with the complete status storing device (D2).

Complete status (Note) (Error code)(H)	Error factor	Corrective action
4 C 00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	
4 C 01	The instruction for the Multiple CPU system which did not be correspond with operating system software of the Motion CPU was executed.	Confirm a program, and correct it to a correct PLC program.
4 C 07	Axis No. set by CHGT instruction is injustice.	
4 C 09	CPU No. of the instruction cause is injustice.	

(Note) : 0000H(Normal)

The error flag (SMO) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code ${ }^{\text {(Note) }}$	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O NO. of the target CPU)/16" is specified.	
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	Confirm a program,
2117	The CPU except the Motion CPU by "(First I/O No. of and correct it to a the target CPU)/16" is specified.	
correct PLC		
program.		

(Note) : 0000H(Normal)

3 MOTION DEDICATED PLC INSTRUCTION

[Program example]

Program which changes the torque limit value of the axis No. 1 of the Motion CPU (CPU No.4) from PLC CPU (CPU No.1) to 10[\%].

3.7 Write from The PLC CPU to The Motion CPU: S(P).DDWR (PLC instruction: S(P).DDWR)

- Write instruction from the PLC CPU to the Motion CPU (S(P).DDWR)

[Instruction] [Condition] SP.DDWR	Start request					
		SP.DDWR (n1)	(S1)	(S2)	(D1)	
s.DDWR $-\square$	Start request					
	\cdots	S.DDWR $(\mathrm{n} 1)$	(S1)	(S2)	(D1)	(D2)

[Data to be set]

Set data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. ${ }^{\text {(Note-1) }}$ CPU No. 1 : 3E0H, CPU No. 2 : 3E1H, CPU No. 3 : 3E2H, CPU No. 4 : 3E3H	16-bit binary
(S1)	First device of the self CPU in which control data is stored.	16-bit binary
(S2)	First device of the self CPU in which writing data is stored.	
(D1)	First device of the target Motion CPU which stores the writing data.	
(D2)	Bit device which make turn on for one scan at completion of instruction.	Bit

(Note-1) : Motion CPU cannot used CPU No. 1 at the Multiple CPU configuration.
[Control data]

Device	Item	Setting data	Setting range	Set by
S1+0	Complete status	The condition result at the completion of the instruction is stored. $0 \quad: \quad$ No error (Normal completion) Except 0 : Error code	-	System
$\mathrm{S} 1+1$	Number of writing data	Set the number of writing data	1 to 16	User

[Controls]

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
A part for the number of writing data of the control data specified with (S1) of data since the device specified with (S2) of the self CPU are stored to since the word device specified with (D1) of the target CPU (n 1) in the Multiple CPU system.
(2) Figure specification of the bit device is possible for (S2) and (D1). However, figure specification is 4 figures and a start bit device number is only the multiple of 16. It becomes INSTRCT CODE ERROR [4004] when other values are specified.
(3) If the target CPU is not instruction acceptable condition, even if the $S(P)$.DDWR instruction is executed, it may not be processed. In this case, it is necessary to execute the $S(P)$.DDWR instruction again.
(S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/
$S(P)$.DDWR cannot be executed simultaneously toward the CPU executing
$S(P)$.DDWR instruction.). It can be confirmed by data in the shared CPU memory of the target CPU (Motion CPU) whether the instruction is acceptable or not. When the Motion dedicated PLC instruction is started continuously, it is must be design to execute next instruction after executing instruction complete device on.
(4) The target CPU device range check is not executed with self CPU at the $S(P)$.DDWR instruction execution, but it checks by the target CPU side, and it becomes abnormal completion at the device range over.
(5) $S(P)$.DDWR instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
(a) Complete device

It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
(b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion : It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
(6) SM390 turns on when the target CPU specified with (n1) complete to accept. SM390 turns off when the target CPU specified with (n 1) cannot be write correctly by the reset status or error factor (5000 to 5999).

3 MOTION DEDICATED PLC INSTRUCTION

[Operation of the self CPU at execution of $S(P)$.DDWR instruction]

[Errors]
The abnormal completion in the case shown below, and the error code is stored in the control data (S1+ 0 : Complete status).

Complete status ${ }^{(N o t e)}$ $($ Error code)(H)	Error factor	Corrective action
4 C 00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	Confirm a
4 C 08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).DDRD and S(P).DDWR sum table simultaneously, and the Motion CPU cannot process them.	program, and correct it to a correct PLC program.
4 C 09	CPU No. of the instruction cause is injustice.	

(Note) : 0000H(Normal)

3 MOTION DEDICATED PLC INSTRUCTION

The error flag (SMO) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O NO. of the target CPU)/16" is specified.	Confirm a program, and correct it to a correct PLC program.
2114	The self CPU by "(First I/O No. of the target CPU)/16" is specified.	
2117	The CPU except the Motion CPU by "(First I/O No. of the target CPU)/16" is specified.	
4002	Specified instruction is wrong.	
4004	The instruction is composed of devices except usable devices.	
4100	Since 0 to 3DFH, 3E4H is specified by "(First I/O No. of the target CPU)/16" is specified.	
4101	Number of the writing data is except 1 to 16.	
	Number of writing data exceeds range of the storage device of the written data.	

(Note) : 0000H(Normal)

[Program example]

<Example 1>
Program which stores 10 points worth of the data from D0 of the self CPU (CPU No.1) since D100 of CPU No.2., when X0 is turned on.

<Example 2>
Program which stores 10 points worth of the data from D0 of the self CPU (CPU No.1) since D100 of CPU No.2. during turn on X0.

3 MOTION DEDICATED PLC INSTRUCTION

3.8 Read from The Devices of The Motion CPU: S(P).DDRD (PLC instruction: S(P).DDRD)

- Read instruction from the devices of the Motion CPU : S(P).DDRD

	Usable devices										
	Internal devices (System, User)		File register	Bit digit specified		MELSECNET/10 direct J $\square \backslash$		Special function module U \square IG \square	Index register Z	Constant K, H	Other
	Bit	Word				Bit	Word				
(n1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	
(S1)		\bigcirc	\bigcirc		\bigcirc						
(S2)		\bigcirc		\triangle	\bigcirc						
(D1)		\bigcirc	\bigcirc	\triangle	\bigcirc						
(D2)	\bigcirc	\bigcirc	\bigcirc								

\bigcirc : Usable \triangle : Usable partly
(Note) : Setting data (n1) to (D2) : Index qualification possible

[Setting data]

Set data	Description	Data type
(n1)	(First I/O No. of the target CPU)/16 Value to specify actually is the following. . Note-1) CPU No.1:3E0H, CPU No.2:3E1H, CPU No.3:3E2H, CPU No.4:3E3H	16 -bit
(S1)	First device of the self CPU in which control data is stored.	
(S2)	First device of the target CPU in which reading data is stored.	
(D1)	First device of the self CPU which stores the reading data.	Bit
(D2)	Bit device which make turn on for one scan at completion of instruction.	

(Note-1) : Motion CPU cannot used CPU No. 1 in the Multiple CPU configuration.
[Control data]

Device	Item	Setting data	Setting range	Set by
$S 1+0$	Complete status	The condition result at the completion of the instruction is stored. $0 \quad: \quad$: Not error (Normal completion) Except 0 \quad : Error code	-	System
$S 1+1$	Number of reading data	Set the number of reading data.	1 to 16	User

[Control]

(1) This instruction is dedicated instruction toward the Motion CPU in the Multiple CPU system. Errors occurs when it was executed toward the CPU except the Motion CPU.
A part for the number of reading data of the control data specified with (S1) of data since the device specified with (S2) in the target CPU (n1) is stored to since the word device specified with (D1) of the self CPU in the Multiple CPU system.
(2) Figure specification of the bit device is possible for (S2) and (D1). However, figure specification is 4 figures and a start bit device number is only the multiple of 16. It becomes INSTRCT CODE ERROR [4004] when other values are specified.
(3) If the target CPU is not instruction acceptable condition, even if the $S(P)$.DDWR instruction is executed, it may not be processed. In this case, it is necessary to execute the $S(P)$.DDWR instruction again.
(S(P).SFCS/S(P).SVST/S(P).CHGA/S(P).CHGV/S(P).CHGT/S(P).DDRD/
$S(P)$.DDWR cannot be executed simultaneously toward the CPU executing
$S(P)$.DDWR instruction.). It can be confirmed by data in the shared CPU memory of the target CPU (Motion CPU) whether the instruction is acceptable or not. When the Motion dedicated PLC instruction is started continuously, it is must be design to execute next instruction after executing instruction complete device on.
(4) The target CPU device range check is not executed with self CPU at the $S(P)$.DDRD instruction execution, but it checks by the target CPU side, and it becomes abnormal completion at the device range over.
(5) $\mathrm{S}(\mathrm{P})$.DDRD instruction accepting and normal/abnormal completion can be confirmed with the complete device (D1) or status display device (D2) at the completion.
(a) Complete device

It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
(b) Status display device at the completion

It is turned on/off according to the status of the instruction completion.

- Normal completion : OFF
- Abnormal completion : It is turned on by the END processing of scan which the instruction completed, and turned off by the next END processing.
(6) SM390 turns on when the target CPU specified with (n 1) complete to accept. SM390 turns off when the target CPU specified with (n 1) cannot be write correctly by the reset status or error factor (5000 to 5999).

3 MOTION DEDICATED PLC INSTRUCTION

[Operation of the self CPU at execution of S(P).DDRD instruction]

[Errors]
The abnormal completion in the case shown below, and the error code is stored in the control data (S1+0 : Complete status).

Complete status ${ }^{(\text {Note) }}$(Error code)(H) 4 C 00	The specified device cannot be used in the Motion CPU. Or, it is outside the device range.	Corrective action
4 C 08	There are 33 or more instruction requests to the Motion CPU from the PLC CPU in S(P).DDRD and S(P).DDWR sum table simultaneously, and the Motion CPU cannot process them.	Confirm a program, and correct it to a correct PLC program.
4 C 09	CPU No. of the instruction cause is injustice.	

(Note) : 0000H(Normal)

3 MOTION DEDICATED PLC INSTRUCTION

The error flag (SM0) is turned on an operation error in the case shown below, and an error code is stored in SD0.

Error code (Note)	Error factor	Corrective action
2110	The CPU No. to be set by "(First I/O NO. of the target CPU)/16" is specified.	The self CPU by "(First I/O No. of the target CPU)/16" is specified.

(Note) : 0000H(Normal)

[Program example]

<Example 1>

Program which stores 10 points worth of the data from D0 of the CPU since D100 of self CPU (CPU No.1), when X0 is turned on.

<Example 2>

Program stores 10 points worth of the data from DO of the CPU No. 2 since D100 of self CPU (CPU No.1) during turn on X0.

MEMO

4. POSITIONING SIGNALS

The internal signals of the Motion CPU and the external signals to the Motion CPU are used as positioning signals.
(1) Internal signals

The following five devices of the Motion CPU are used as the internal signals of the Motion CPU.

- Internal relay (M) M2000 to M3839 (1840 points)
M4000 to M4719 (720 points)
- Special relay (SP.M) M9073 to M9079 (7 points)
- Data register (D) D0 to D1631 (1632 points)
D1650 to D1679 (30 points)
- Motion register (\#) \#8000 to \#8191 (192 points)
- Special register (SP.D) D9112 and D9180 to D9201 (23 points)
(2) External signals

The external input signals to the Motion CPU are shown below.

- Upper/lower limit switch input \qquad The upper/lower limit of the positioning range is controlled.
- Stop signal Stop signal for speed control
- Proximity dog signal ON/OFF signal from the proximity dog
- Manual pulse generator input Signal from the manual pulse generator

Fig.4.1 Flow of the internal signals/external signals

The positioning dedicated devices are shown below.
It indicates the device refresh cycle of the Motion CPU for status signal with the positioning control, and the device fetch cycle of the Motion CPU for command signal with the positioning control.
The operation cycle of the Motion CPU is shown below.

Item	Q173HCPU	Q172HCPU	
Number of control axes		Up to 32 axes	Up to 8 axes
Operation cycle	SV43	$0.88[\mathrm{~ms}] / 1$ to 5 axes	
		$0.88[\mathrm{~ms}] / 1$ to 5 axes	
		$3.55[\mathrm{~ms}] / 15$ to 28 axes	$1.77[\mathrm{~ms}] / 6$ to 8 axes

4.1 Internal Relays

(1) Internal relay list

Device No.	Purpose	Device No.	Purpose
$\begin{aligned} & \text { M0 } \\ & \text { to } \end{aligned}$	User device (2000 points)	M3840 to	User device (160 points)
M2000 to	Common device (Status) (320 points)	M4000 to	Axis I/O signal (Axis status 2) (10 points $\times 32$ axes)
M2320 to	Special relay allocated device (Status) (80 points)	M4320 to	Unusable (80 points)
M2400 to	Axis status (20 points $\times 32$ axes)	M4400 to	Axis I/O siganal (Axis command signal 2) (10 points $\times 32$ axes)
M3040 to	Unusable (32 points)	M4720 to M8191	User device (3472 points)
M3072 to	Common device (Command signal) (64 points)		
M3136 to	Special relay allocated device (Command signal) (64 points)		
M3200 to M3839	Axis command signal (20 points $\times 32$ axes)		

It can be used as a user device.

POINT

- Total number of user device points

5632points
(2) Axis status list

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(3) Axis command signal list

Axis No.	Device No.	Signal name				
1	M3200 to M3219		Signal name	Refresh cycle	Fetch cycle	Signal direction
2	M3220 to M3239					
3	M3240 to M3259					
4	M3260 to M3279	0	Stop command		Operation cycle	Command signal
5	M3280 to M3299	1	Rapid stop command			
6	M3300 to M3319	2	Forward rotation JOG start command		Main cycle	
7	M3320 to M3339	3	Reverse rotation JOG start command			
8	M3340 to M3359	4	Complete signal OFF command			
9	M3360 to M3379	5				
10	M3380 to M3399	6	Unusable		-	
11	M3400 to M3419	7	Error reset command		Main cycle	Command signal
12	M3420 to M3439	8	Servo error reset command		Main cy	
13	M3440 to M3459	9	External stop input disable at start		At start	
14	M3460 to M3479		command			
15	M3480 to M3499	10	Unusable	-	-	-
16	M3500 to M3519	11				
17	M3520 to M3539	12				
18	M3540 to M3559	13				
19	M3560 to M3579	14				
20	M3580 to M3599	15	Servo OFF command		Operation cycle	Command signal
21	M3600 to M3619	16	Gain changing command		Operation cycle ${ }^{(\text {Note-3) }}$	
22	M3620 to M3639	17	Unusable	-	-	-
23	M3640 to M3659	18				
24	M3660 to M3679	19	FIN signal	,	Operation cycle	Command signal
25	M3680 to M3699					
26	M3700 to M3719					
27	M3720 to M3739					
28	M3740 to M3759					
29	M3760 to M3779					
30	M3780 to M3799					
31	M3800 to M3819					
32	M3820 to M3839					

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(Note-3): Operation cycle $7.1[\mathrm{~ms}]$ or more: Every $3.5[\mathrm{~ms}]$
(4) Axis status 2 list

(Note-1): At single block mode, only M4009 is used single block processing signal.
(Note-2): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-3): Device area of 9 axes or more is unusable in the Q172HCPU.
(5) Axis command signal 2 list

Axis No.	Device No.	Signal name				
1	M4400 to M4409					
2	M4410 to M4419		Signal name	Refresh cycle	Fetch cycle	Signal
3	M4420 to M4429		Signal name	Refresh cycle	Fetch cycle	direction
4	M4430 to M4439	0	Temporary stop command			
5	M4440 to M4449	1	Optional program stop command			
6	M4450 to M4459	2	Optional block skip command			
7	M4460 to M4469	3	Single block command			Command
8	M4470 to M4479	4	Re-start command			signal
9	M4480 to M4489	5	Override ratio valid/invalid			
10	M4490 to M4499	6	Axis interlock (Forward)			
11	M4500 to M4509	7	Axis interlock (Reverse)			
12	M4510 to M4519	8	Unusable ${ }^{\text {(Note-1) }}$	-	-	-
13	M4520 to M4529	9				
14	M4530 to M4539		M4408 : Single block mode signal			
15	M4540 to M4549		M4409 : Single block start signal			
16	M4550 to M4559		M4418 : Axis interlock valid/invalid			
17	M4560 to M4569					
18	M4570 to M4579					
19	M4580 to M4589					
20	M4590 to M4599					
21	M4600 to M4609					
22	M4610 to M4619					
23	M4620 to M4629					
24	M4630 to M4639					
25	M4640 to M4649					
26	M4650 to M4659					
27	M4660 to M4669					
28	M4670 to M4679					
29	M4680 to M4689					
30	M4690 to M4699					
31	M4700 to M4709					
32	M4710 to M4719					

(Note-1): M4408 (single block mode signal) and M4409 (single block start signal) are used in the single block operation. M4418 (axis interlock valid/invalid) is used in the axis interlock (forward)/(reverse).
(Note-2): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-3): Device area of 9 axes or more is unusable in the Q172HCPU.
(6) Common device list

Common device list (Continued)

Common device list (Continued)

Device No.		Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-4)	Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-4)
M2240	Axis 1	Speed change "0" accepting flag	Operation cycle		Status signal (Note-2)		M2280	Unusable (40 points)				
M2241	Axis 2						M2281					
M2242	Axis 3						M2282					
M2243	Axis 4						M2283					
M2244	Axis 5						M2284					
M2245	Axis 6						M2285					
M2246	Axis 7						M2286					
M2247	Axis 8						M2287					
M2248	Axis 9						M2288					
M2249	Axis 10						M2289					
M2250	Axis 11						M2290					
M2251	Axis 12						M2291					
M2252	Axis 13						M2292					
M2253	Axis 14						M2293					
M2254	Axis 15						M2294					
M2255	Axis 16						M2295					
M2256	Axis 17						M2296					
M2257	Axis 18						M2297					
M2258	Axis 19						M2298					
M2259	Axis 20						M2299					
M2260	Axis 21						M2300		-	-	-	-
M2261	Axis 22						M2301					
M2262	Axis 23						M2302					
M2263	Axis 24						M2303					
M2264	Axis 25						M2304					
M2265	Axis 26						M2305					
M2266	Axis 27						M2306					
M2267	Axis 28						M2307					
M2268	Axis 29						M2308					
M2269	Axis 30						M2309					
M2270	Axis 31						M2310					
M2271	Axis 32						M2311					
M2272	Unusable (8 points)		-	-	-	-	M2312					
M2273			M2313									
M2274			M2314									
M2275			M2315									
M2276			M2316									
M2277			M2317									
M2278			M2318									
M2279			M2319									

Explanation of the request register

No.	Function	Bit device	Request register
1	PLC ready flag	M2000	D704
2	All axes servo ON command	M2042	D706
3	JOG operation simultaneous start command	M2048	D708
4	Manual pulse generator 1 enable flag	M2051	D755
5	Manual pulse generator 2 enable flag	M2052	D756
6	Manual pulse generator 3 enable flag	M2053	D757

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(Note-3): Handling of D704 to D708 and D755 to D757 registers
Because cannot be turn on/off for every bit from the PLC CPU, the above bit devices are assigned to D register, and each bit device becomes on with the lowest rank bit $0 \rightarrow 1$ of each register, and each bit device becomes off with $1 \rightarrow 0$.
Use it when the above functions are requested from the PLC CPU using the $S(P)$.DDRD and $S(P)$.DDWR instruction.
(Note-4): It can also be ordered the device of a remark column.

\triangle CAUTION

- The data executed later becomes effective when the same device is executed in the Motion program and PLC program.
(7) Special relay allocated device list (Status)

(Note) : The same status as a remark column is output.
(8) Common device list (Command signal)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-1), (Note-2)
M3072	PLC ready flag		Main cycle	Command signal	M2000
M3073	Unusable	-	-	-	-
M3074	All axes servo ON command		Operation cycle	Command signal	M2042
M3076	JOG operation simultaneous start command		Main cycle		M2048
M3077	Manual pulse generator 1 enable flag				M2051
M3078	Manual pulse generator 2 enable flag				M2052
M3079	Manual pulse generator 3 enable flag				M2053
M3080 to	Unusable	-	-	-	-

(Note-1) : The device of a remarks column turns ON by OFF to ON of the above device, and the device of a remarks column turns OFF by ON to OFF of the above device. The state of a device is not in agreement when the device of a remarks column is turned on directly. In addition, when the request from a data register and the request from the above device are performed simultaneously, the request from the above device becomes effective.
(Note-2) : It can also be ordered the device of a remark column.
(9) Special relay allocated device list (Command signal)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-1), (Note-2)
M3136	Clock data set request		Main cycle	Command signal	M9025
M3137	Clock data read request				M9028
M3138	Error reset				M9060
M3139					
to	Unusable	-	-	-	-
M3199					

(Note-1) : The device of a remarks column turns ON by OFF to ON of the above device, and the device of a remarks column turns OFF by ON to OFF of the above device. The state of a device is not in agreement when the device of a remarks column is turned on directly.
(Note-2) : It can also be ordered the device of a remark column.

4.1.1 Axis statuses

(1) Positioning start complete signal (M2400+20n)
(a) This signal turns on with the start completion for the positioning control of the axis specified with the Motion program (Axis designation program). The Motion program (Axis designation program) is started by the following instructions.

1) SVST instruction of the PLC program
2) CALL, GOSUB/GOSUBE instruction in the Motion program (Control program)
It does not turn on at the starting using home position return, JOG operation or manual pulse generator operation.
(b) This signal turns off at turning the complete signal OFF command (M3204+20n) off to on or positioning completion.

Fig.4.2 ON/OFF timing of the positioning start complete signal

REMARK

(Note-1): In the above descriptions, "n" in"M3204+20n", etc. indicates a value corresponding to axis No. such as the following tables.

Axis No.	n						
1	0	9	8	17	16	25	24
2	1	10	9	18	17	26	25
3	2	11	10	19	18	27	26
4	3	12	11	20	19	28	27
5	4	13	12	21	20	29	28
6	5	14	13	22	21	30	29
7	6	15	14	23	22	31	30
8	7	16	15	24	23	32	31

- Calculate as follows for the device No. corresponding to each axis.
(Example) M3200 +20 n (Stop command) $=\mathrm{M} 3200+20 \times 31=\mathrm{M} 3820$
M3215+20n (Servo OFF) $=M 3215+20 \times 31=$ M3835
- The range ($\mathrm{n}=0$ to 7) of axis No. 1 to 8 is valid in the Q172HCPU.
(2) Positioning complete signal (M2401+20n)
(a) This signal turns on with the completion for the positioning control of the axis specified with the Motion program (Axis designation program).
The Motion program (Axis designation program) is started by the following instructions.

1) SVST instruction of the PLC program
2) CALL, GOSUB/GOSUBE instruction in the Motion program (Contorl program)
It does not turn on at the start or stop on the way using home position return, JOG operation, manual pulse generator operation or speed control. It does not turn on at the stop on the way during positioning.
(b) This signal turns off at turning the complete signal OFF command (M3204+20n) off to on or positioning start completion.
[Motion program exapmle]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
X200. ;	PTP positioning (X200.)
G00 X300 G04 P500;	PTP positioning (X300.), Dwell (500ms)
M02;	Reset
$\%$	

Fig.4.3 ON/OFF timing of the positioning complete signal

(3) In-position signal (M2402+20n)

(a) This signal turns on when the number of droop pulses in the deviation counter becomes below the "in-position range" set in the servo parameters. It turns off at the start.

[Motion program exapmle]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

(b) An in-position check is performed in the following cases.
-When the servo power supply is turned on.

- After the automatic deceleration is started during positioning control.
- After the deceleration is started with the JOG start signal OFF.
- During the manual pulse generator operation.
- After the proximity dog ON during a home position return.
- After the deceleration is started with the stop command.
- When the speed change to a speed " 0 " is executed.
- After the deceleration is started with the temporary stop command.

POINT

- If in-position range is longer than the deceleration distance, refer to the following case.

Motion program (Axis designation program) start

Start accept flag(M2001+n)
In-position signal (M2402+20n)

(Note) : If in-position range is longer than the deceleration distance, in-position signal turns on after deceleration start.
(4) Command in-position signal (M2403+20n)
(a) This signal turns on when the absolute value of difference between the command position and machine value becomes below the "command inposition range" set in the fixed parameters.
This signal turns off in the following cases.

- Positioning control start
- Home position return
- JOG operation
- Manual pulse generator operation
(b) Command in-position check is continually performed during positioning control.

[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

POINTS

Example 1, 2 are shown below about in-position signal and command in-position signal of the interpolation axis.
[Example1]

- Motion program

- Operation timing

(1) The in-position signal turns ON by reaching the in-position range of servo parameter after deceleration start.
Since the Z-axis is stopped in this case, it always turns on immediately after deceleration start.
Even if the only 2 axes (X, Y) is commanded in the G00 command of Motion program, when the 3 axes is started by SVST instruction in the PLC program, the in-position signal turns ON after deceleration start in the Z -axis as X, Y-axis.
(2) The command in-position signal turns ON when the difference between the command position of Motion program and the absolute position of machine value is less than the command in-position range set in the fixed parameter. Since the command of Z-axis is not described in this program, the command inposition check is not executed during travel of Z-axis and it remains OFF from start to stop of travel.

(5) Zero pass signal (M2406+20n)

This signal turns on when the zero point is passed after the power supply on of the servo amplifier.
Once the zero point has been passed, it remains on state until the CPU has been reset.
However, in the home position return method of proximity dog, count, dog cradle or limit switch combined type, this signal turns off once at the home position return start and turns on again at the next zero point passage.
(6) Error detection signal (M2407+20n)
(a) This signal turns on with detection of a minor error or major error, and it is used as judgement of the error available/not available.
The applicable error code ${ }^{\text {(Note-1) }}$ is stored in the minor error code storage register with detection of a minor error. (Refer to Section 4.2.1)
The applicable error code ${ }^{\text {(Note-2) }}$ is stored in the major error code storage register with detection of a major error. (Refer to Section 4.2.1)
(b) This signal turns off when the error reset command (M3207+20n) turns on.

REMARK

(Note-1): Refer to APPENDIX 1.2 for the error codes with detection of minor errors.
(Note-2): Refer to APPENDIX 1.3 for the error codes with detection of major errors.
(7) Servo error detection signal (M2408+20n)
(a) This signal turns on when an error occurs at the servo amplifier side (except for errors cause of alarms and emergency stops) (Note-1), and it is used as judgement of the servo error available/not available.
When an error is detected at the servo amplifier side, the applicable error code (Note-1) is stored in the servo error code storage register (Refer to Section 4.2.1).
(b) This signal turns off when the servo error reset command (M3208+20n) turns on or the servo power supply turns on again.

REMARK

(Note-1): Refer to APPENDIX 1.4 for the error codes on errors detected at the servo amplifier side.
(8) Home position return request signal (M2409+20n)

This signal turns on when it is necessary to confirm the home position address.
(a) When not using an absolute position system

1) This signal turns on in the following cases:

- Motion CPU power supply on or reset
- Servo amplifier power supply on
- Home position return start (Unless a home position return is completed normally, the home position return request signal does not turn off.)

2) This signal turns off by the completion of home position return.
(b) When using an absolute position system
3) This signal turns on in the following cases:

- When not executing a home position return once after system start.
- Home position return start
(Unless a home position return is completed normally, the home position return request signal does not turn off.)
- Erase of an absolute data in Motion CPU according to causes, such as battery error
- Servo error [2025] (absolute position erase) occurrence
- Servo error [2143] (absolute position counter warning) occurrence
- Major error [1203] or [1204] occurrence
- When the "rotation direction selection" of servo parameter is changed.

2) This signal turns off by the completion of the home position return. Operation in G28 of the Motion program changes by the ON/OFF of the home position return request signal.

When home position return request signal is OFF	The axis starts from the current position, passes through the specified mid point, and returns to the home position at high- speed feed rate.
When home position return request signal is ON	lroximity dog, count, data set, dog cradle, stopper or limit switch combined type home position return is executed in accordance with the home position returun data.

\. CAUTION

- When using the absolute position system function, on starting up, and when the Motion controller or absolute value motor has been replaced, always perform a home position return. In the case of the absolute position system, use the PLC program to check the home position return request before performing the positioning operation.
Failure to observe this could lead to an accident such as a collision.
(9) Home position return complete signal (M2410+20n)
(a) This signal turns on when the home position return operation has been completed normally.
(b) This signal turns off at the positioning start, JOG operation start and manual pulse generator operation start.
(c) If the home position return of proximity dog, count, dog cradle, stopper or limit switch cpmbined type is executed using the CHGA instruction during this signal on, the "continuous home position return start error" (minor error: 115) occurs and it cannot be start the home position return.
(10) FLS signal (M2411+20n)
(a) This signal is controlled by the ON/OFF state for the upper stroke limit switch input (FLS) of the Q172LX/Servo amplifier.
- Upper stroke limit switch input OFF \qquad FLS signal: ON
- Upper stroke limit switch input ON \qquad FLS signal: OFF
(b) The state for the upper stroke limit switch input (FLS) when the FLS signal is ON/OFF is shown below.

1) Q172LX use ${ }^{(\text {Note-1) }}$

2) Servo amplifier input use ${ }^{\text {(Note-2) }}$

(Note-1): Refer to the "Q173HCPU/Q172HCPU User's Manual".
(Note-2): Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)".
(11) RLS signal (M2412+20n)
(a) This signal is controlled by the ON/OFF state for the lower stroke limit switch input (FLS) of the Q172LX/Servo amplifier.

- Lower stroke limit switch input OFF \qquad RLS signal: ON
- Lower stroke limit switch input ON \qquad RLS signal: OFF
(b) The state of the lower stroke limit switch input (RLS) when the RLS signal is ON/OFF is shown below.

1) Q172LX use ${ }^{(\text {Note-1) }}$

2) Servo amplifier input use ${ }^{\text {(Note-2) }}$

(Note-1): Refer to the "Q173HCPU/Q172HCPU User's Manual".
(Note-2): Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)".
(12) STOP signal (M2413+20n)
(a) This signal is controlled by the ON/OFF state for the stop signal input (STOP) of the Q172LX.

- Stop signal of the Q172LX OFF \qquad STOP signal: OFF
- Stop signal of the Q172LX ON \qquad STOP signal: ON
(b) The state of the stop signal input (STOP) of the Q172LX when the STOP signal input is ON/OFF is shown below.

(13) DOG/CHANGE signal (M2414+20n)
(a) This signal turns on/off by the proximity dog input (DOG) of the Q172LX/ Servo amplifier at the home position return.
(b) "Normally open contact input" and "Normally closed contact input" of the system setting can be selected.

1) Q172LX use ${ }^{\text {(Note-1) }}$

2) Servo amplifier input use ${ }^{\text {(Note-2) }}$

(Note-1): Refer to the "Q173HCPU/Q172HCPU User's Manual".
(Note-2): Refer to the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)".
(14) Servo ready signal (M2415+20n)
(a) This signal turns on when the servo amplifiers connected to each axis are in the READY state.
(b) This signal turns off in the following cases.

- M2042 is off
- Servo amplifier is not installed
- Servo parameter is not set
- It is received the forced stop input from an external source
- Servo OFF by the servo OFF command (M3215+20n) on
- Servo error occurs

Refer to APPENDIX 1.4 "Servo errors" for details.

POINT

When the part of multiple servo amplifiers connected to the SSCNETIII becomes a servo error, only an applicable axis becomes the servo OFF state.
(15) Torque limiting signal (M2416+20n)

This signal turns on while torque limit is executed.
The signal toward the torque limiting axis turns on.
(16) M-code outputting signal (M2419+20n)
(a) This signal turns on when $\mathrm{M}^{* *}$ in the Motion program is exexuted. This signal turns off when FIN signal (M3219+20n) turns on. Read the M-code when M-code outputting signal is turning on.
(b) If the G-code and M-code are described in the same block, the M-code outputting signal turns on at the start of G-code processing.
(c) If the miscellaneous function M is executed after completion of position control, describe the M-code independently.
(d) For M00, M01, M02, M30, M98, M99 and M100, the M-code outputting signal does not turn on.(Internal processing only)
[Motion program example]

O0001;	Program No.
G90 G00 X100. M10;	Absolute value command PTP positioning (X100.) M10
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

4.1.2 Axis command signals

(1) Stop command (M3200+20n)
(a) This command stops a starting axis from an external source and becomes effective at the turning signal off to on. (An axis for which the stop command is turning on cannot be started.)

(b) The program is ended by the stop command at the automatic start by the SVST instruction. (The Motion program is stopped if any of the stop commands for the axis No. specified with the SVST instruction turns on.)
(c) The re-start command (M4404+10n) is valid only after the temporary stop command (M4400+10n).
(d) The details of stop processing when the stop command turns on are shown below.

Control details during execution	Processing at the turning stop command on	
	During control	During deceleration stop processing
Positioning control during the Motion program start	The axis decelerates to a stop in the deceleration time set in the parameter block or Motion program. ${ }^{\text {(Note-1) }}$	The stop command is ignored and deceleration stop processing is continued. (Note-1)
JOG operation		
Manual pulse generator operation	An immediate stop is executed without deceleration processing.	
Home position return	(1) The axis decelerates to a stop in the deceleration time set in the parameter block. (2) A "stop error during home position return" occurs and the error code [202] is stored in the minor error storage register for each axis.	

(Note-1) : The deceleration time under G00, G01, G02, G03, G12, G13 or G32 including M-code is equivalent to the acceleration time set in the parameter block.

POINT

If it is made to stop by turning on the stop command (M3200+20n) during a home position return, execute the home position return again.
If the stop command is turned on after the proximity dog ON in the proximity dog type, execute the home position return after move to before the proximity dog ON by the JOG operation or positioning.

(2) Rapid stop command (M3201+20n)

(a) This command is a signal which stop a starting axis rapidly from an external source and becomes effective when the signal turns off to on. (An axis for which the rapid stop command turns on cannot be started.)

(b) The program is ended by the rapid stop command at the automatic start by the SVST instruction.
(The Motion program is stopped if any of the rapid stop commands for the axis No. specified with the SVST instruction turns on.)
(c) The re-start command (M4404+10n) is valid only after the temporary stop command (M4400+10n).
(d) The details of stop processing when the rapid stop command turns on are shown below.

Control details during execution	Processing at the turning rapid stop command on	
	During control	During deceleration stop processing
Position control during the Motion program start	The axis decelerates to a deceleration time set in the parameter block or Motion program.	Deceleration processing is canceled and rapid stop processing executed instead. (Note-1)
JOG operation		
Manual pulse generator operation	An immediate stop is executed without deceleration processing.	
Home position return	(1) The axis decelerates to a stop in the rapid stop deceleration time set in the parameter block. (2) A "stop error during home position return" occurs and the error code [203] is stored in the minor error storage register for each axis.	

(Note-1) : The rapid stop deceleration time under G00, G01, G02, G03, G12, G13 or G32 including Mcode is equivalent to the acceleration time set in the parameter block.

POINT

If it is made to stop by turning on the rapid stop command (M3201+20n) during a home position return, execute the home position return again. If the rapid stop command turned on after the proximity dog ON in the proximity dog type, execute the home position return after move to before the proximity dog ON by the JOG operation or positioning.
(3) Forward rotation JOG start command (M3202+20n)/Reverse rotation JOG start command (M3203+20n)
(a) JOG operation to the address increase direction is executed while forward rotation JOG start command (M3202+20n) is turning on.
When M3202+20n is turned off, a deceleration stop is executed in the deceleration time set in the parameter block.
(b) JOG operation to the address decrease direction is executed while reverse rotation JOG start command (M3203+20n) is turinig on.
When M3203+20n is turned off, a deceleration stop is executed in the deceleration time set in the parameter block.

POINT

Take an interlock so that the forward rotation JOG start command (M3202+20n) and reverse rotation JOG start command (M3203+20n) may not turn on simultaneously.
(4) Complete signal OFF command (M3204+20n)
(a) This command is used to turn off the positioning start complete signal (M2400+20n) and positioning complete signal (M2401+20n).

POINT

Do not turn the complete signal OFF command on with a PLS instruction.
If it is turned on with a PLS instruction, it cannot be turned off the positioning start complete signal (M2400+20n) and the positioning complete signal (M2401+20n).
(5) Error reset command (M3207+20n)
(a) This command is used to clear the minor error code or major error code storage register of an axis for which the error detection signal has turn on (M2407+20n: ON), and reset the error detection signal (M2407+20n).

(b) If an error reset is executed during the temporary stop (M4003+10n) by the temporary stop command (M4400+10n) at the automatic start or if an error reset is executed during a block stop by M00/M01, the Motion program operation state is reset.
The SVST instruction must be executed in the next strat. (Re-start is not possible.)

(c) When the error reset command is turned on at the automatic start (M4002+10n: ON), the above reset processing is executed after the stop processing by temporaty stop command (M4400+10n).
(6) Servo error reset command (M3208+20n)
(a) This command is used to clear the servo error code storage register of an axis for which the servo error detection signal has turn on (M2408+20n: ON), and reset the servo error detection signal (M2408+20n).

(b) If an error reset is executed during the temporary stop (M4003+10n) by the temporary stop command (M4400+10n) at the automatic start or if an error reset is executed during a block stop by M00/M01, the Motion program operation state is reset.
The SVST instruction must be executed in the next strat. (Re-start is not possible.)

(M3208+20n)
(c) When the error reset command is turned on at the automatic start (M4002+10n: ON), the above reset processing is executed after the stop processing by temporaty stop command (M4400+10n).

REMARK

Refer to APPENDIX 1 for details on the minor error code, major error code and servo error code storage registers.
(7) External stop input disable at start command (M3209+20n)

This signal is used to set the external STOP signal input valid or invalid.

- ON External stop input is set as invalid, and even axes which stop input is turning on can be started.
- OFF External stop input is set as valid, and axes which stop input is turning on cannot be started.

POINTS

(1) When it stops an axis with the external stop input after it starts by turning on the external stop input disable at start command (M3209+20n), switch the external stop input from OFF \rightarrow ON (if external stop input is turning on at the starting, switch it from $\mathrm{ON} \rightarrow \mathrm{OFF} \rightarrow \mathrm{ON}$).
(2) External STOP input causes a block stop at the automatic start (M4002+10n: ON).
(8) Servo OFF command (M3215+20n)

This command is used to execute the servo OFF state (free run state).

- M3215+20n: OFF Servo ON
- M3215+20n: ON Servo OFF (free run state)

This command becomes invalid during positioning, and should therefore be executed after completion of positioning.

! CAUTION

- Turn the power supply of the servo amplifier side off before touching a servomotor, such as machine adjustment.
(9) Gain changing command (M3216+20n)

This signal is used to change gain of servo amplifier in the Motion controller by gain changing command ON/OFF.

- ON Gain changing command ON
- OFF Gain changing command OFF

Refer to the "MR-J3- \square B Servo Amplifier Instruction Manual" for details of gain changing function.
Instruction Manual list is shown below.

Servo amplifier type	Instruction manual name
MR-J3- \square B	MR-J3- \square B Servo Amplifier Instruction Manual (SH-030051)

(10) FIN signal (M3219+20n)

When an M-code is set in a point during positioning, transit to the next block does not execute until the FIN signal changes as follows: OFF \rightarrow ON \rightarrow OFF. Positioning to the next block begins after the FIN signal changes as above.

[Motion program example]

O0001;	Program No.
G90 G00 X100. M10;	Absolute value command PTP positioning (X100.) M10
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

4.1.3 Axis statuses 2

(1) Automatic start signal (M4002+10n)

When the axis used is specified in the SVST instruction, this signal turns on while the block of the specified Motion program is being executed. This signal turns off in the following cases.

- M02/M30 is executed.
- The temporary stop command turned on. (M4400+10n)
- The external STOP signal turned on.
- Error reset
- Emergency stop
- When one block execution is ended by M00, M01 or single block mode.
- The stop or rapid stop command turned on.
[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

REMARK

(Note-1): " n " indicates a value corresponding to axis No. such as the following tables.

Axis No.	n						
1	0	9	8	17	16	25	24
2	1	10	9	18	17	26	25
3	2	11	10	19	18	27	26
4	3	12	11	20	19	28	27
5	4	13	12	21	20	29	28
6	5	14	13	22	21	30	29
7	6	15	14	23	22	31	30
8	7	16	15	24	23	32	31

(2) Temporary stop signal (M4003+10n)
(a) This signal turns on by the temporary stop command when the automatic start signal (M4002+10n) is turning on.
When the re-start command (M4404+10n) is turned on during a temporary stop, it is resumed from the block where it had stopped.
There is the following temporary stop command.

- Temporary stop command (M4400+10n)
(b) This signal turns off in the following cases.
- The re-start command (M4404+10n) turned on.
- The error reset command (M3207+20n) turned on.
- The servo error reset command (M3208+20n) turned on.
- Error occurrence
- Emergency stop
[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

Fig.4.4 ON/OFF timing of the temporary stop signal

(3) Single block processing signal (M4009)

(a) The single block is available in two modes: a mode where a single block is specified before a program start, and a mode where a single block is executed at any point during program execution.
The single block processing signal indicates that a single block can be executed in the mode where a single block is executed at any point during program execution.
(b) A single block is executed when the single block processing signal is ON. When the single block processing is OFF, make an SVST start or turn single block start from OFF to ON to perform continuous operation.
(c) This signal turns on in the following case.
-When the single block mode signal (M4408) is turned on.
(d) This signal turns off in the following case.

- When the single block start signal (M4409) is turned from off to on after the single block mode signal (M4408) is turned off.
[Motion program example]

O0001;	Program No.
N1 G90 G00 X100. F1000. ;	Absolute value command constant-speed positioning (X100.)
N2 X200. ;	Constant-speed positioning (X200.)
N3 X300. ;	Constant-speed positioning (X300.)
N4 X400. ;	Constant-speed positioning (X400.)
M02;	Reset
$\%$	

Fig.4.5 Single block signal timings

4.1.4 Axis command signals 2

(1) Temporary stop command (M4400+10n)
(a) The Motion program at the positioning start (G00, G01, etc.) with the SVST instruction is stopped temporarily by the temporary stop command. (The Motion program is stopped temporarily if any of the temporary stop commands for the axis No. specified with the SVST instruction turns on.)
(b) Turn on M4404+10n to re-start.
[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
M02;	Reset
$\%$	

(c) Note the following instructions among the positioning start instructions.

1) A program is stopped by the temporary stop command at the proximity dog, count, data set, dog cradle, stopper or limit switch combined type home position return by G28. After that, re-start (M4404+10n) is invalid. Start the Motion program with the SVST instruction to execute G28 again.
2) The temporary stop command is ignored in the axis executing G25 (high-speed oscillation).

POINT

The temporary stop command is ignored at the home position return by JOG operation, manual pulse generator operation or CHGA instruction.
(2) Optional program stop command (M4401+10n)

This signal is used to select whether a block stop is made in a block where "M01" exists.

- ON......... The block stop is made as the end of that block.
- OFF.........The next block is executed.
[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
M01;	Optional program stop command
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

(3) Optional block skip command (M4402+10n)

This signal is used to select whether a block is executed or not in the first of block where "/" exists.

- ON.......... The block is not executed and execution shifts to the next block.
- OFF........ The block is executed.
[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
/X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

(4) Single block command (M4403+10n)

This single block is ;used to set a single block before a program start. Refer to the single block mode signal (M4408) for the mode which executes a single block at any point during execution of program.
By turning on the single block command before a program start, commands in program operation can be executed block by block.
The single block signal is checked only at the Motion program start and is not checked during operation. Therefore, the single block signal is not made valid if it is turned on during operation.

- ON.......... Program is executed block by block.

The first start is made by turning on the re-start command (M4404+10n) after execution of the SVST instruction.
After that, a start is made by turning on the re-start command (M4404+10n).

- OFF........ All blocks are executed continuously using the SVST instruction.

[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

(5) Re-start command (M4404+10n)

This command resumes block execution when it is turned on during a block stop by the M00, M01 or single block command or during a temporary stop during the temporary stop command. (This signal is valid for the Motion program only. It is invalid for a home position return, etc.)

[Motion program example]

O0001;	Program No.
G90 G00 X100. ;	Absolute value command PTP positioning (X100.)
M00	Block stop
X200. ;	PTP positioning (X200.)
M02;	Reset
$\%$	

(6) Override ratio valid/invalid (M4405+10n)

This signal is used to set whether the override ratio is valid or invalid.

- ON.......... Valid : If M4405+10n turns on during execution Motion program, positioning is executed at the specified speed multiplied by the value [\%] stored in the override ratio setting register. ${ }^{\text {(Note-1) }}$
- OFF. \qquad Invalid : Positioning is controlled at the override ratio of 100[\%].

REMARK

(Note-1) : Positioning is controlled at the override ratio of 100[\%] at the G25 (highspeed oscillation), G28 (proximity dog, count, data set, dog cradle, stopper or limit switch combined type home position return) in the Motion program or the home position returun by JOG operation, manual pulse generator or CHGA instruction, etc. (The override ratio is made invalid.)

(7) Axis interlock (Forward)/(Reverse) (M4406+10n/M4407+10n)

This signal is used to select whether an axis is made deceleration stop during positioning control.
(a) The axis interlock (forward)/(reverse) command turns on while the axis interlock valid/invalid (M4418+10n) is turning on, a deceleration stop is executed in the applicable axis.
\qquad Valid: If the axis interlock (forward)/(reverse) command turns on during execution of the Motion program, a deceleration stop is executed in the applicable axis.

- OFF........ Invalid: A deceleration stop is not executed in the applicable axis.
(b) The interlock is valid in the following cases.
- Positioning control using the Motion program (Except for hige speed oscillate (G25))
- Home position return
- Manual pulse operation
(c) The interlock is invalid at the "home position return" and "hige speed oscillate".
(d) Deceleration stop is executed follows "deceleration stop time" by the parameter block. However, a deceleration stop at the manual pulse operation only is "a stop without deceleration processing".
(e) If the axis interlock of travel direction turns on with at least one axis, during interpolation control, a deceleration stop is executed in all interpolation axes.
(f) When the travel of axis stops by the axis interlock, a minor error "axis interlock" (error code: 292) will occur.
In this case, since the program is not ended, the start accept flag (M2001 to M2032) of applicable axis does not turn off.
Therefore, when the Motion program is started by the specification of applicable axis, a minor error "the start accept flag (M2001 to M2032) for applicable axis is ON." (error code: 101) will occur.
(g) When the axis interlock signal turns on at a Motion program start, after the servomotor travels minutely, a minor error "axis interlock" (error code: 292) will occur and a deceleration stop is made. (The servomotor does not travel during JOG operation or manual pulse operation, and a minor error "axis interlock" (error code: 292) will occur.)
[Motion program example]

O0001;	Program No.
G90 G00 X200. ;	Absolute value command PTP positioning (X200.)
G01 X300. F-100. ;	Constant-speed positioning (X300.)
M02;	Reset
$\%$	

POINTS

[The reasons for the servomotor travels minutely when the axis interlock signal turns on at a Motion program start.]
Since the travel direction is judged at the positioning control in the Motion CPU, only the first interpolation processing is executed. Therefore, the servomotor travels minutely. This travel value is different in the acceleration-fixed acceleration/decerelation (G101) and time-fixed acceleration/decerelation (G100).
(1) Acceleration-fixed acceleration/decerelation (G101)

- The travel value of operation cycle (a part for 1 time of the beginning) is the slash portion of the following figure.

[Command speed $50 \mathrm{~m} / \mathrm{min}$, Operation cycle 3.5 ms]
Travel value for error detection $=50 \times 0.0035 / 2 / 60$

$$
=0.001 \mathrm{~mm}
$$

(2) Time-fixed acceleration/decerelation (G100)

- The travel value shown in a rectangle of following figure is divided into the travel value for every operation cycle. Therefore, the travel value of operation cycle (a part for 1 time of the beginning) for interpolation processing is the slash portion of the following figure.

(8) Single block mode signal (M4408)
(a) This signal validates a single block valid in the mode which executes a single block during execution of program.
(b) The single block processing (M4009) turns on by turning on the single block mode.
(9) Single block start signal (M4409)
(a) This signal re-starts a single block in the mode which executes a single block during execution of program.
(b) The single brock start is made valid by turning it from OFF to ON. However, the single block start during axis travel is not accepeted.
(c) When the single block processing signal (M4409) and the single block mode signal (M4408) are ON, making a single block start continues single block operation.
(d) When the single block processing signal (M4409) is ON and the single block mode signal (M4408) is OFF, making a single block start stops single block operation and starts continuous operation. At this time, the single block processing (M4409) turns off.
(10) Axis interlock valid/invalid (M4418)

This command is used to validate the axis interlock (forward)/(reverse).

- ON.......... Valid: If the axis interlock (forward)/(reverse) command turns on, a deceleration stop is executed.
- OFF........ Invalid: Even if the axis interlock (forward)/(reverse) command turns on, a deceleration stop is not.
Defaut value is invalid (OFF).

[Motion program example]

O0001;	Program No.
G90 G00 X1000. ;	Absolute value command PTP positioning (X1000.)
G00 X300. ;	PTP positioning (X300.)
M02;	Reset
$\%$	

4.1.5 Common devices

POINTS

(1) Internal relays for positioning control are not latched even within the latch range. In this manual, in order to indicate that internal relays for positioning control are not latched, the expression used in this text is "M2000 to M2319".
(2) The range devices allocated as internal relays for positioning control cannot be used by the user even if their applications have not been set.
(1) PLC ready flag (M2000) Command signal
(a) This signal informs the Motion CPU that the PLC CPU is normal.

1) The positioning control, home position return, JOG operation or manual pulse generator operation using the Motion program when the M2000 is ON.
2) The above 1) control is not performed even if the M2000 is turned on during the test mode [TEST mode ON flag (M9075) : ON] using a peripheral device.
(b) The setting data such as the fixed parameters, servo parameters and limit switch output data can be changed using a peripheral device when M2000 is OFF only.
The above data using a peripheral device cannot be written when the M2000 is ON.
(c) The following processings are performed when the M2000 turns OFF to ON.
3) Processing details

- Clear the M-code storage area of all axes.
- Turn the PCPU READY complete flag (M9074) on.
- Execute the Motion program (Control program) of automatic start from the first.

2) If there is a starting axis, an error occurs, and the processing in above (c) 1) is not executed.
3) The processing in above (c) 1) is not executed during the test mode. It is executed when the test mode is cancelled and M2000 is ON.

(d) The following processings are performed when the M2000 turns ON to OFF.
4) Processing details

- Turn the PCPU READY complete flag (M9074) off.
- Deceleration stop of the starting axis.
- Stop to execute the Motion program.
- Turn all points of the real output PY off.
(e) Operation setting at STOP \rightarrow RUN

The condition which the PLC ready flag (M2000) turns on is set in the sysytem setting. Select the following either.

1) M2000 turns on by the switch (STOP \rightarrow RUN). (Default)

The condition which M2000 turns OFF to ON.

- Move the RUN/STOP switch from STOP to RUN.
- Turn the power supply on or release to reset where the RUN/STOP switch is moved to RUN.

The condition which M2000 turns ON to OFF.

- Move the RUN/STOP switch from RUN to STOP.

2) M2000 turns on by set "1" to the switch (STOP \rightarrow RUN) + setting register.
(M2000 is turned on by set "1" to the switch RUN \wedge setting register.)
The condition which M2000 is turned ON to OFF.

- Set "1" to the setting register D704 of the PLC ready flag where the RUN/STOP switch is moved to RUN. (The Motion CPU detects the change of the lowest rank bit $0 \rightarrow 1$ in D704.)

The condition which M2000 is turned on to off.

- Set "0" to the setting register D704 of the PLC ready flag where the RUN/STOP switch is moved to RUN. (The Motion CPU detects the change of the lowest rank bit $1 \rightarrow 0$ in D704.)
- Move the RUN/STOP switch from RUN to STOP.
(2) Start accept flag (M2001 to M2032) Status signal
(a) This flag turns on when the positioning start (S(P).SVST) instruction is executed. The start accept flag corresponding to an axis specified with the Motion dedicated PLC instruction (S(P).SVST) turns on.
(b) The ON/OFF processing of the start accept flag is shown below.

1) The start accept flag corresponding to an axis specified with the Motion dedicated PLC instruction (S(P).SVST) turns on and it turns off at the positioning completion. This flag also turns off when it is made to stopping on the way.
(When it is made to stop on the way by the speed change to speed " 0 ", this flag remain on.)

2) This flag turns on at the positioning control by turning on the JOG start command (M3202+20n or M3203+20n), and turns off at the positioning stop by turning off the JOG start command.
3) This flag turns on during the manual pulse generator enable (M2051 to M2053: ON), and turns off at the manual pulse generator disable (M2051 to M2053: OFF).

$\$ CAUTION

Do not turn the start accept flags ON/OFF in the user side.

- If the start accept flag is turned off using the Motion program or peripheral devices while this flag is on, no error will occur but the positioning operation will not be reliable. Depending on the type of machine, it might operate in an unanticipated operation.
- If the start accept flag is turned on using the Motion program or peripheral devices while this flag is off, no error will occur but the "start accept on error" will occur at the next starting and cannot be started.
(c) When M2000 is OFF, the start accept flag turns on by the Motion dedicated PLC instruction (S(P).SVST), and the start accept flag turns off by turning the M2000 ON.

(3) Personal computer link communication error flag (M2034) Status signal
This flag turns on when the communication error occurs in the personal computer link communication.
- ON : Personal computer link communication error occurs
- OFF: No personal computer link communication error (It turns off if normal communication is resumed.)
Refer to APPENDIX 1.5 for details on the PC link communication error.
(4) System setting error flag (M2041) Status signal
This flag set the "system setting data" and performs an adjustment check with a real installation state (CPU base unit/extension base units) at the power supply on or resetting of the Motion CPU.
- ON
.......... Error
- OFF \qquad Normal
(a) When an error occurs, the ERR. LED at the front of the CPU turns on. The error contents can be confirmed using the error list monitor of a peripheral device started by SW6RN-GSV43P.
(b) When M2041 is on, positioning cannot be started. Remove an error factor, and turn the power supply on again or reset the Multiple CPU system.

REMARK

Even if the module which is not set as the system setting with the peripheral device is installed in the slot, it is not set as the object of an adjustment check. And, the module which is not set as the system setting cannot be used in the Motion CPU.
(5) All axes servo ON command (M2042) \qquad Command signal This command is used to enable servo operation.
(a) Servo operation enabled ... M2042 turns on while the servo OFF command (M3215+20n) is off and there is no servo error.
(b) Servo operation disable

- M2042 is off
- The servo OFF command (M3215+20n) is on
- Servo error state

(Note): Refer to "4.1.1 Axis statuses "Servo ready signal"" for details.

POINT

When M2042 turns on, it is not turned off even if the CPU is set in the STOP state.
(6) Motion slot fault detection flag (M2047) \qquad Status signal This flag is used as judgement which modules installed in the motion slot of the CPU base unit is "normal" or "abnormal".

- ON \qquad Installing module is abnormal
- OFF \qquad Installing module is normal
The module information at the power supply on and after the power supply injection are always checked, and errors are detected.
(a) Perform the disposal (stop the starting axis, servo OFF, etc.) of error detection using the Motion program.
(7) JOG operation simultaneous start command (M2048)
........ Command signal
(a) When M2048 turns on, JOG operation simultaneous start based on the JOG operation execution axis set in the JOG operation simultaneous start axis setting register (D710 to D713).
(b) When M2048 turns off, the axis during operation decelerates to a stop.
(8) All axes servo ON accept flag (M2049) \qquad Status signal
This flag turns on when the Motion CPU accepts the all axes servo ON command (M2042).
Since the servo ready state of each axis is not checked, confirm it in the servo ready signal (M2415+20n).

(Note): Refer to "4.1.1 Axis statuses "Servo ready signal"" for details.
(9) Start buffer full (M2050)

Status signal
(a) This signal turns on when 64 or more requests is executed simultaneously by the SVST instruction and it cannot be started.
(b) Reset M2050 by the user side.
(10) Manual pulse generator enable flag (M2051 to M2053)

.......... Command signal

This flag set the enabled or disabled state for positioning with the pulse input from the manual pulse generators connected to P1 to P3 (Note) of the Q173PX.

- ON \qquad Positioning control is executed by the input from the manual pulse generators.
- OFF Positioning control cannot be executed by the manual pulse generators because of the input from the manual pulse generators is ignored.
Defalut value is invalid(OFF).

REMARK

(Note): Refer to the "Q173HCPU/Q172HCPU User's Manual" for P1 to P3 connector of the Q173PX.
(11) Operation cycle over flag (M2054) \qquad Status signal This flag turns on when the time concerning motion operation exceeds the operation cycle of the Motion CPU setting. Perform the following operation, in making it turn off.

- Turn the power supply of the Multiple CPU system on to off
- Reset the Multiple CPU system
- Reset using the user program
[Error measures]
- Change the operation cycle into a large value in the system setting.
(12) Speed changing flag (M2061 to M2092) \qquad Status signal
This flag turns on during speed change by the control change (CHGV) instruction of the Motion program or Motion dedicated PLC instruction (S(P).CHGV).

The speed changing flag list is shown below.

Axis No.	Device No.						
1	M2061	9	M2069	17	M 2077	25	M 2085
2	M 2062	10	M 2070	18	M 2078	26	M 2086
3	M 2063	11	M 2071	19	M 2079	27	M 2087
4	M 2064	12	M 2072	20	M 2080	28	M 2088
5	M 2065	13	M 2073	21	M 2081	29	M 2089
6	M 2066	14	M 2074	22	M 2082	30	M 2090
7	M 2067	15	M 2075	23	M 2083	31	M 2091
8	M 2068	16	M 2076	24	M 2084	32	M 2092

(Note): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(13) Automatic decelerating flag (M2128 to M2159) \qquad Status signal This signal turns on while automatic deceleration processing is performed at the positioning control or position follow-up control.
(a) This flag turns on during automatic deceleration processing to the command address at the position follow-up control, but it turns off if the command address is changed.
(b) When the normal start is completed at the control in all control system, it turns off.
(c) In any of the following cases, this flag does not turn off.

- During deceleration by the JOG signal off
- During manual pulse generator operation
- At deceleration on the way due to stop command or stop cause occurrence
-When travel value is "0"

The automatic deceleration flag list is shown below.

Axis No.	Device No.						
1	M 2128	9	M 2136	17	M 2144	25	M 2152
2	M 2129	10	M 2137	18	M 2145	26	M 2153
3	M 2130	11	M 2138	19	M 2146	27	M 2154
4	M 2131	12	M 2139	20	M 2147	28	M 2155
5	M 2132	13	M 2140	21	M 2148	29	M 2156
6	M 2133	14	M 2141	22	M 2149	30	M 2157
7	M 2134	15	M 2142	23	M 2150	31	M 2158
8	M 2135	16	M 2143	24	M 2151	32	M 2159

(Note): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(14) Speed change "0" accepting flag (M2240 to M2271)
.............. Status signal
This flag turns on while a speed change request to speed "0" or negative speed change is being accepted.
It turns on when the speed change request to speed "0" or negative speed change is accepted during a start. After that, this signal turns off when a speed change is accepted or on completion of a stop due to a stop cause.

The speed change " 0 " accepting flag list is shown below.

Axis No.	Device No.						
1	M 2240	9	M 2248	17	M 2256	25	M 2264
2	M 2241	10	M 2249	18	M 2257	26	M 2265
3	M 2242	11	M 2250	19	M 2258	27	M 2266
4	M 2243	12	M 2251	20	M 2259	28	M 2267
5	M 2244	13	M 2252	21	M 2260	29	M 2268
6	M 2245	14	M 2253	22	M 2261	30	M 2269
7	M 2246	15	M 2254	23	M 2262	31	M 2270
8	M 2247	16	M 2255	24	M 2263	32	M 2271

(Note): The range of axis No. 1 to 8 is valid in the Q172HCPU.

REMARK

(1) Even if it has stopped, when the start accept flag (M2001 to M2032) is ON state, the state where the request of speed change " 0 " is accepted is indicated.
Confirm by this speed change " 0 " accepting flag.
(2) During interpolation, the flags corresponding to the interpolation axes are set.
(3) In any of the following cases, the speed change " 0 " request is invalid.

- After deceleration by the JOG signal off
- During manual pulse generator operation
- After positioning automatic deceleration start
- After deceleration due to stop cause
(4) The temporary stop is executed during travel or dwell (G04) execution, the speed change " 0 " accepting flag turns on.
(5) Speed change "0" accepting flag turns on in the following cases.
- The temporary stop command ($\mathrm{M} 4400+10 \mathrm{n}$) is input during travel to the specified block by pre-read enable (G99) or execution of dwell (G04).
- Travel to the specified block by pre-read enable (G99) or execution of dwell (G04) is executed after the temporary stop command (M4400+10n) input.
(a) The flag turns off if a speed change request occurs during deceleration to a stop due to speed change " 0 ".

(b) The flag turns off if a stop cause occurs after speed change " 0 " accept.

(c) The speed change " 0 " accepting flag does not turn on if a speed change " 0 " occurs after an automatic deceleration start.

4.2 Data Registers

(1) Data register list

Device No.	Application
D0 to	Axis monitor device (20 points $\times 32$ axes)
D640 to	Control change register (2 points $\times 32$ axes)
D704 to	Common device (Command signal) (54 points)
D758 to	Common device (Monitor) (42 points)
D800 to	Axis monitor device 2 (20 points $\times 32$ axes)
D1440 to	Control program monitor device (6 points $\times 16$ programs)
D1536 to	Control change register 2 (Override ratio) (3 points $\times 32$ axes)
D1632 to	User device (18 points)
D1650 to	Tool length offset data setting register (2 points $\times 20$)
D1690 to D8191	User device (6502 points)

POINT

- Total number of user device points

6520points
(2) Axis monitor device list

Axis No.	Device No.	Signal name						
1	D0 to D19		Signal name	Refresh cycle	Fetch cycle	Unit	Signal direction	
2	D20 to D39							
3	D40 to D59							
4	D60 to D79	0	Machine value	Operation cycle	Command unit		Monitor device	
5	D80 to D99	1						
6	D100 to D119	2	Real machine value					
7	D120 to D139	3	al machine value					
8	D140 to D159	4	iation counter value		/ 2 PLS			
9	D160 to D179	5	Deviation counter value					
10	D180 to D199	6	Minor error code	Immediate				
11	D200 to D219	7	Major error code					
12	D220 to D239	8	Servo error code	Main cycle				
13	D240 to D259	9	Home position return	Operation cycle		PLS		
14	D260 to D279	9	re-travel value			PLS		
15	D280 to D299	10	Travel value after			Command		
16	D300 to D319	11	proximity dog ON			unit		
17	D320 to D339	12	Execute program No.	At start				
18	D340 to D359	13	M-code	Operation cycle				
19	D360 to D379	14	Torque limit value			\%		
20	D380 to D399	15	Unusable		-	-	-	
21	D400 to D419	16		-				
22	D420 to D439	17						
23	D440 to D459	18	Real current value at stop input	Operation cycle		Command unit	Monitor device	
24	D460 to D479	19						
25	D480 to D499							
26	D500 to D519							
27	D520 to D539							
28	D540 to D559							
29	D560 to D579							
30	D580 to D599							
31	D600 to D619							
32	D620 to D639							

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(3) Control change register list

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(4) Axis monitor device 2 list

$\begin{aligned} & \text { Axis } \\ & \text { No. } \end{aligned}$	Device No.	Signal name					
1	D800 to D819		Signal name	Refresh cycle	Fetch cycle	Unit	Signal direction
2 3	D820 to D839						
4	D860 to D879	0	Current value	Operation cycle		Command	Monitor device
5	D880 to D899	1				unit	
6	D900 to D919	2	Execute sequence No.	Immediate		-	
7	D920 to D939	2	(main)				
8	D940 to D959	3	Execute block No.				
9	D960 to D979	3	(main)				
10	D980 to D999	4	Execute program No.				
11	D1000 to D1019	4	(sub)				
12	D1020 to D1039	5	Execute sequence No.				
13	D1040 to D1059	5	(sub)				
14	D1060 to D1079	6	Execute block No.				
15	D1080 to D1099		(sub)				
16	D1100 to D1119	7	Unusable	-	-	-	-
17	D1120 to D1139	8	G43/G44 command	Immediate			Monitor device
18	D1140 to D1159	9	Tool length offset data			-	
19	D1160 to D1179	9					
20	D1180 to D1199	10	Tool length offset data			Command	
21	D1200 to D1219	11				unit	
22	D1220 to D1239	12	Unusable	-	-	-	-
23	D1240 to D1259	13					
24	D1260 to D1279	14					
25	D1280 to D1299	15					
26	D1300 to D1319	16					
27	D1320 to D1339	17					
28	D1340 to D1359	18					
29	D1360 to D1379	19					
30	D1380 to D1399						
31	D1400 to D1419						
32	D1420 to D1439						

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(5) Control program monitor device list

(Note-1): D1445 (CLEAR request status storage register) is used in the "control program stop function from the PLC CPU".
(6) Control change register 2 list

Axis No.	Device No.	Signal name					
1	D1536 to D1538		Signal name	Refresh cycle	Fetch cycle	Unit	Signal direction
2	D1539 to D1541						
3	D1542 to D1544						
4	D1545 to D1547	0	Override ratio setting		Operation cycle	\%	Command device
5	D1548 to D1550		register (0 to 100)				
6	D1551 to D1553	1	Unusable		-	-	-
7	D1554 to D1556	2		-			
8	D1557 to D1559						
9	D1560 to D1562						
10	D1563 to D1565						
11	D1566 to D1568						
12	D1569 to D1571						
13	D1572 to D1574						
14	D1575 to D1577						
15	D1578 to D1580						
16	D1581 to D1583						
17	D1584 to D1586						
18	D1587 to D1589						
19	D1590 to D1592						
20	D1593 to D1595						
21	D1596 to D1598						
22	D1599 to D1601						
23	D1602 to D1604						
24	D1605 to D1607						
25	D1608 to D1610						
26	D1611 to D1613						
27	D1614 to D1616						
28	D1617 to D1619						
29	D1620 to D1622						
30	D1623 to D1625						
31	D1626 to D1628						
32	D1629 to D1631						

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(7) Tool length offset data setting register list (Higher rank, lower rank)

Device No.	Signal name
D1651, D1650	Tool length offset data 1
D1653, D1652	Tool length offset data 2
D1655, D1654	Tool length offset data 3
D1657, D1656	Tool length offset data 4
D1659, D1658	Tool length offset data 5
D1661, D1660	Tool length offset data 6
D1663, D1662	Tool length offset data 7
D1665, D1664	Tool length offset data 8
D1667, D1666	Tool length offset data 9
D1669, D1668	Tool length offset data 10
D1671, D1670	Tool length offset data 11
D1673, D1672	Tool length offset data 12
D1675, D1674	Tool length offset data 13
D1677, D1676	Tool length offset data 14
D1679, D1678	Tool length offset data 15
D1681, D1680	Tool length offset data 16
D1683, D1682	Tool length offset data 17
D1685, D1684	Tool length offset data 18
D1687, D1686	Tool length offset data 19
D1689, D1688	Tool length offset data 20

(8) Common device list

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.

4.2.1 Axis monitor devices

The monitoring data area is used by the Motion CPU to store data such as the machine value during positioning control, the real machine value and the number of droop pulses in the deviation counter.
It can be used to check the positioning control state using the Motion program. The user cannot write data to the monitoring data area (except the travel value change register).
(1) Machine value storage register (D0+20n, D1+20n)

Monitor device
The machine value represents the address in the mechanical coodinate system determined by a home position returun.
This value does not change if "G92" and work coordinate system (G54 to G59) are executed.
This value is used to process the stroke limit range and limit switch output.
(2) Real machine value storage register (D2+20n, D3+20n)
............ Monitor device
(a) This register stores the actual motor position (machine value - deviation counter value).
(b) The "machine value" is equal to the "real machine value" in the stopped state. (Some real machine values are changed by the servo lock force at a motor stop.
(3) Deviation counter value (droop pulses) storage register
(D4+20n, D5+20n). \qquad Monitor device
This register stores the difference between the machine value and real machine value.
(4) Minor error code storage register (D6+20n) \qquad Monitor device
(a) This register stores the corresponding error code (Refer to APPENDIX 1.2) at the minor error occurrence. If another minor error occurs after error code storing, the previous error code is overwritten by the new error code.
(b) Minor error codes can be cleared by an error reset command (M3207+20n).
(5) Major error code storage register (D7+20n) \qquad Monitor device
(a) This register stores the corresponding error code (Refer to APPENDIX 1.3) at the major error occurrence. If another major error occurs after error code storing, the previous error code is overwritten by the new error code.
(b) Major error codes can be cleared by an error reset command (M3207+20n).
(6) Servo error code storage register (D8+20n) Monitor device
(a) This register stores the corresponding error code (Refer to APPENDIX 1.4) at the servo error occurrence. If another servo error occurs after error code storing, the previous error code is overwritten by the new error code.
(b) Servo error codes can be cleared by an error reset command (M3208+20n).
(7) Home position return re-travel value storage register (D9+20n) Monitor device
If the position stopped in the position specified with the travel value setting after the proximity dog ON (refer to 7.3.1) by a peripheral device is not zero point, it made to travel to zero point by re-travel in the Motion CPU. (Data does not change with the last value in the data setting type.)
The following value is stored according to the number of feedback pulses of the motor connected.

Number of feedback pulses	Storage data
Less than 131072[PLS]	Feedback pulses
131072[PLS] or more, 262144[PLS] or less	$1 / 10$ of feedback pulses
More than 262144[PLS]	$1 / 10000$ of feedback pulses

(8) Travel value after proximity dog ON storage register (D10+20n, D11+20n) Monitor device This register stores the travel value (unsigned) from the proximity dog ON to home position return completion after the home position return starting.
(9) Execute program No. (main) storage register (D12+20n)

............ Monitor device

(a) The register stores the starting program No. (Motion program No.) at the SVST instruction start.
The O No. of subprogram started by "M98" (subprogram call) is stored to another register.
(b) The following value is stored in the following cases.

- JOG operation.

FFFFH

- Manual pulse generator operation FFFEH
- Home position return operation FFFCH
- Power supply on................................... FFOOH
(c) When either of the following is being executed using a peripheral device in the test mode, FFFD is stored in this register.
- Home position return.
(10) M-code storage register (D13+20n) \qquad Monitor device
(a) This register stores the M-code set to the Motion program at the block execute start.

If M -code is not set in the Motion program, the value " 0 " is stored.
(b) The preceding value remains until the M-code is executed next.
(11) Torque limit value storage register (D14+20n) \qquad Monitor device
This register stores the torque limit value imposed on the servo amplifier.
The default value $300[\%]$ is stored at the power supply of servo amplifier ON.
(12) Real current value at STOP input storage register (D18+20n, D19+20n)

Monitor device
This register stores the real current value at the STOP signal (STOP) input of the Q172LX.

4.2.2 Control change registers

This area stores the JOG operation speed data.
Control change register list
(Higher rank, lower rank)

Name	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8
JOG speed setting register	D641, D640	D643, D642	D645, D644	D647, D646	D649, D648	D651, D650	D653, D652	D655, D654
	Axis 9	Axis 10	Axis 11	Axis 12	Axis 13	Axis 14	Axis 15	Axis 16
	D657, D656	D659, D658	D661, D660	D663, D662	D665, D664	D667, D666	D669, D668	D671, D670
	D673, D672	D675, D674	D677, D676	D679, D678	D681, D680	D683, D682	D685, D684	D687, D686
	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32
	D689, D688	D691, D690	D693, D692	D695, D694	D697, D696	D699, D698	D701, D700	D703, D702

(Note): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(1) JOG speed setting registers (D640+2n) \qquad Command device
(a) This register stores the JOG speed at the JOG operation.
(b) Setting range of the JOG speed is shown below.

Item	mmit		inch		degree	
	Setting range	Unit	Setting range	Unit	Setting range	Unit ${ }^{\text {(Note) }}$
JOG speed	1 to 600000000	$\times 10^{-2}$ $[\mathrm{~mm} / \mathrm{min}]$	1 to 600000000	$\times 10^{-3}$ $[$ inch $/ \mathrm{min}]$	1 to 2147483647	$\times 10^{-3}$ [degree $/ \mathrm{min}]$

(Note) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" in the fixed parameter, the unit is " $\times 10^{-2}$ [degree/min]".
(c) The JOG speed is the value stored in the JOG speed setting registers when the JOG start signal turns off to on.
Even if data is changed during JOG operation, JOG speed cannot be changed.
(d) Refer to Section 7.5 for details of JOG operation.

4.2.3 Axis monitor devices 2

(1) Current value (D800+20n, D801+20n) \qquad Monitor device
(a) This register stores the address in the work coordinate system (G54 to G59) specified with the Motion program.
This value is stored on the assumption that 0.0001 mm is equal to 1 . (1mm=10000)
Example that the setting using the peripheral device is G54=1000 is shown below.

At the 10000000 position of the machine value, the current value is " 0 ".
(b) The current value is shift depending on the work coordinate system selection (G54 to G59) and G92 (coordinate system setting). When "G90 G00 X0. ; " (G54 selected) and "G92 X500." are executed in the above state, the current value is as follows.

The 0 position of the current value is re-set to 500 . , which results in the current value of 5000000 .
(2) Execute sequence No. (main) storage register (D802+20n)
................ Monitor device
This register stores the N No. (sequence No.) of the executing main sequence. This number changes to "0" using the Motion dedicated PLC instruction (S(P).SVST) at the Motion program start.
The changes of the execute Motion program No., execute sequence No. and execute block No. are shown below.

Program	Execute Motion program No.	Execute sequence No.	Execute block No.
O0001;	1	0	0
G00 X100. ;	1	0	1
X200.;	1	0	2
N100 Y100.;	1	100	0
Z100.;	1	100	1
X300.;	1	100	2
N200 G01 X350. F100. ;	1	200	0
Y200. Z200. ;	1	200	1
M10 ;	1	200	2
M02 ;	1	200	3
\%	1	200	3

(3) Execute block No. (main) storage register (D803+20n)
.................. Monitor device
This register stores the block No. during operation.
This number changes to " 0 " using the Motion dedicated instruction (S(P).SVST) at the Motion program start.
When the sequence No. ($\mathrm{N}^{* * * *}$) described in the Motion program is executed, this number changes to " 0 ", and it is incremented every time a single block is executed. (Be careful when executing the IF-THEN-ELSE-END or WHILE-DO instruction. Refer to Sections 6.16.2 and 6.16.3 for details.)
(4) Execute program No. (sub) storage register (D804+20n)
................... Monitor device
(a) This register stores the O No. of the subprogram started by "M98" (subprogram call).
(b) When a subprogram is called from a subprogram, this number changes to the O No. of the subprogram called.
When the subprogram is ended by "M99", this number changes to the O No. of the call source subprogram.
(c) This number changes to " 0 " using the Motion dedicated PLC instruction (S(P).SVST) at the Motion program start.
(5) Execute sequence No. (sub) storage register (D805+20n)
.................. Monitor device
(a) This register sotres the N No. of the subprogram started by "M98" (subprogram call).
(b) When a subprogram is called from a subprogram, this number changes to the N No. of the subprogram called.
When the subprogram is ended by "M99", this number changes to the N No. of the subprogram which called.
(c) This number changes to "0" using the Motion dedicated instruction (S(P).SVST) at the Motion program start.
(6) Execute block No. (sub) storage register (D806+20n) Monitor device
(a) This register stores the block No. of the subprogram started by "M98" (subprogram call).
(b) When a subprogram is called from a subprogram, this number changes to the block No. of the subprogram called.
When the subprogram is ended by "M99", this number changes to the block No. of the subprogram which called.
(c) This number changes to " 0 " using the Motion dedicated instruction (S(P).SVST) at the Motion program start.
(7) G43/G44 command storage register (D808+20n)
............ Monitor device
(a) This register stores the following values when the tool length offset (G43, G44) or tool length offset cancel (G49) set in the Motion program is executed.

- For G43........... 43
- For G44............ 44
- For G49............ 0
(b) The default value is " 0 ".
(8) Tool length offset data No. storage register (D809+20n)
............ Monitor device
(a) This register stores the setting tool length offset data No. at the tool length offset (G43, G44) command.
[Example] When the X axis is assigned to axis 3

(b) The default value is "0".

$$
4-70
$$

(9) Tool length offset data storage register (D810+20n, D811+20n) Monitor device
(a) This register stores the offset value specified in the tool length offset data No..
Tool length offset data storage register is shown bellow.

	Applicable registers	
	Higher rank	Lower rank
Offset value	D811+20n	D810+20n

(b) The contents of the data registers (D1650 to D1689 : offset value) corresponding to the setting tool length offset data No. is stored in the tool length offset area at the tool length offset (G43, G44) command.
[Example] When the X axis is assigned to axis 3

4.2.4 Control program monitor devices

Up to 16 control programs can be executed simultaneously. When new control program is executed in this monitor area, the vacant area is secured suitably and the monitor information on the executed program.
(1) Program No. storage register (D1440+6n) \qquad Monitor device
(a) The O No. of executing control program is stored.
(b) When a subprogram is called from a subprogram, this number changes to the O No. of the subprogram called.
(c) This number changes to " 0 " using the Motion dedicated PLC instruction (S(P).SFCS) at the Motion program start.
(2) Sequence No. storage register (D1441+6n) Monitor device This register stores the N No. (sequence No.) of the executing main sequence. This number changes to " 0 " using the SFCS instruction at the Motion program start.
(3) Block No. storage register (D1442+6n) \qquad Monitor device The block No. of executing control program is stored. This number changes to " 0 " using the Motion dedicated PLC instruction (S(P).SFCS) at the Motion program start.
When the sequence No. $\left(\mathrm{N}^{* * * *}\right)$ described in the Motion program is executed, this number changes to " 0 ", and it is incremented every time a single block is executed. (Be careful when executing the IF-THEN-ELSE-END or WHILE-DO instruction. Refer to Sections 6.16.2 and 6.16.3 for details.)
(4) Error code storage register (D1443+6n) Monitor device
(a) This register stores the corresponding error code at the minor error occurrence. If another minor error occurs after error code storing, the previous error code is overwritten by the new error code.
(5) Execute status storage register (D1444+6n) Monitor device This register stores the execute status.

Name	Contents
Execute status storoge register	0 : End $1:$ Executing

When the control program is ended normally or by error, the stored monitor information is not cleared, " 0 " is stored in the execute status storage register. After that, the monitor information is not cleared until the new control program is started and the monitor area is assigned.
(6) CLEAR request status storage register (D1445) ... Monitor device
(a) When the control program specified in the CLEAR request control program No. setting register (D707) is cleared normally, "1" is set.
(b) If an error occurs in CLEAR of the clear control program specified in the CLEAR request control program No. setting register (D707).

1) A minor error "the program number ended by CLEAR is outside the range of 1 to 1024". (Error code: 619)
2) A minor error "the program number ended by CLEAR is nor registered. Or, the axis designation program is cleared". (Error code: 620)
(c) "0" is set in the CLEAR request control program No. setting register (D707), " 0 " is also set in the CLEAR request status storage register.

4.2.5 Control change registers 2

This area stores the override ratio setting data.
Table 4.1 Control change register 2 list

Name	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8
Override ratio setting register	D1536	D1539	D1542	D1545	D1548	D1551	D1554	D1557
Unusable	D1537 to D1538	D1540 to D1541	D1543 to D15344	D1546 to D1547	D1549 to D1550	D1552 to D1553	D1555 to D1556	D1558 to D1559

Name	Axis 9	Axis 10	Axis 11	Axis 12	Axis 13	Axis 14	Axis 15	Axis 16
Override ratio setting register	D1560	D1563	D1566	D1569	D1572	D1575	D1578	D1581
Unusable	D1561 to D1562	D1564 to D1565	D1567 to D1568	D1570 to D1571	D1573 to D1574	D1576 to D1577	D1579 to D1580	D1582 to D1583

Name	Axis 17	Axis 18	Axis 19	Axis 20	Axis 21	Axis 22	Axis 23	Axis 24
Override ratio setting register	D1584	D1587	D1590	D1593	D1596	D1599	D1602	D1605
Unusable	D1585 to D1586	D1588 to D1589	D1591 to D1592	D1594 to D1595	D1597 to D1598	D1600 to D1601	D15603to D1604	D1606 to D1607

Name	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32
Override ratio setting register	D1608	D1611	D1614	D1617	D1620	D1623	D1626	D1629
Unusable	D1609 to D1610	D1612 to D1613	D1615 to D1616	D1618 to D1619	D1621 to D1622	D1624 to D1625	D1627 to D1628	D1630 to D1631

(1) Override ratio setting register (D1536+3n) \qquad Command device
(a) This register is used to set the override ratio of 0 to 100[\%] in 1[\%] increments to the command speed in the Motion program.
(b) The actual feed rate is the result of multiplying the command speed in the Motion program by the override ratio.
(c) Refer to Section 7.7 for details of override ratio setting.

4.2.6 Tool length offset data setting registers

(1) Tool length offset data setting registers (D1650+2n)
............ Command device
(a) This register is used to set the tool length offset values.
(b) The tool length offset data No. can be set within the range of H 1 to H 20 . Tool length offset data setting registers are shown below.

Tool length offset data No.	Applicable registers	
	Higher rank	Lower rank
H1	D1651	D1650
H2	D1653	D1652
H3	D1655	D1654
H4	D1657	D1656
H5	D1659	D1658
H6	D1661	D1660
H7	D1663	D1662
H8	D1665	D1664
H9	D1667	D1666
H10	D1669	D1668
H11	D1671	D1670
H12	D1673	D1672
H13	D1675	D1674
H14	D1677	D1676
H15	D1679	D1678
H16	D1681	D1680
H17	D1683	D1682
H18	D1685	D1684
H19	D1687	D1686
H20	D1689	D1688

(c) The setting ranges of the tool length offset data are shown below.

Item Unit	mm		degree	
	Setting range	Unit	Setting range	Unit
Tool compensation amount $(\mathrm{H} 1$ to H 20$)$	-999.9999 to 999.9999	mm	-359.99999 to 359.99999	degree

(d) Refer to Section 6.13.20 and 6.13.21 for details of the tool length offset.

4.2.7 Common devices

(1) CLEAR request status storage (D1445) \qquad Monitor device
(a) 0 No. of the conrol program which executes the CLEAR instruction or equivalent of Motion program for the positioning control is executed. When the control program No. is set, the Motion CPU judsges that the CLEAR request was made and ends the specified control program.
(b) The default value is "0".
(c) When CLEAR instruction or equivalent is executed for one program, "1 to 1024" of control program 0 No. is set.
(d) When CLEAR instruction or equivalent is executed for all control programs, " 65535 " is set in the setting register.
(2) JOG simultaneous start axis setting registers (D710 to D713) Command device
(a) These registers set the axis No. and direction which start simultaneously the JOG operation.

(b) Refer to Section 7.5.3 for details of the JOG operation simultaneous start.
(3) Manual pulse generator axis No. setting registers (D714 to D719) Command device
(a) These registers stores the axis No. controlled with the manual pulse generator.

(b) Refer to Section 7.6 for details of the manual pulse generator operation.
(4) Manual pulse generator 1-pulse input magnification setting registers (D720 to D751) \qquad Command device
(a) These register set the magnification (1 to 10000) per pulse of number of the input pulses from anual pulse generator at the pulse generator operation.

1-pulse input magnification setting register	Axis No.	Setting range	1-pulse input magnification setting register	Axis No.	Setting range
D720	Axis 1	1 to 10000	D736	Axis 17	1 to 10000
D721	Axis 2		D737	Axis 18	
D722	Axis 3		D738	Axis 19	
D723	Axis 4		D739	Axis 20	
D724	Axis 5		D740	Axis 21	
D725	Axis 6		D741	Axis 22	
D726	Axis 7		D742	Axis 23	
D727	Axis 8		D743	Axis 24	
D728	Axis 9		D744	Axis 25	
D729	Axis 10		D745	Axis 26	
D730	Axis 11		D746	Axis 27	
D731	Axis 12		D747	Axis 28	
D732	Axis 13		D748	Axis 29	
D733	Axis 14		D749	Axis 30	
D734	Axis 15		D750	Axis 31	
D735	Axis 16		D751	Axis 32	

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(b) Refer to Section 7.6 for details of the manual pulse generator operation.
(5) Manual pulse generator smoothing magnification setting registers (D752 to D754) \qquad Command device
(a) These registers set the smoothing time constants of manual pulse generators.

Manual pulse generator smoothing magnification setting register	Setting range
Manual pulse generator 1 (P1): D752	
Manual pulse generator 2 (P1): D753	
Manual pulse generator 3 (P1): D754	

(b) When the smoothing magnification is set, the smoothing time constant is as indicated by the following expression.
Smoothing time constant $(\mathrm{t})=($ smoothing magnification +1$) \times 56.8[\mathrm{~ms}]$
(c) Operation

Output speed (V1) [PLS/s] = (Number of input pulses/s) \times (Manual pulse generator 1-pulse input magnification setting)

Travel value $(\mathrm{L})=\left[\begin{array}{l}(\text { Travel value } \\ \text { per pulse })\end{array}\right] \times \begin{aligned} & \text { Number of } \\ & \text { input pulses }\end{aligned}\left[\begin{array}{l}\text { (Manual pulse generator 1-pulse } \\ \text { input magnification setting })\end{array}\right]$

REMARK

(1) The travel value per pulse of the manual pulse generator is shown below.
-Setting unit $\begin{array}{lll} & \mathrm{mm} & : 0.0001[\mathrm{~mm}] \\ & : 0.00001[\mathrm{inch}] \\ & \text { inch } & \text { degree }: 0.00001[\text { degree }\end{array}$
(2) The smoothing time constant is $56.8[\mathrm{~ms}]$ to $3408[\mathrm{~ms}]$.

4.3 Motion Registers (\#)

There are motion registers (\#0 to \#8191) in the Motion CPU. \#8000 to \#8063 are used as SV43 dedicated device and \#8064 to \#8191 are used as the servo monitor device.
(1) SV43 dedicated device (\#8000 to \#8063)

These devices are reserved by the system. Do not use them by user side.
(2) Servo monitor devices (\#8064 to \#8191) \qquad Monitor device
Information about "servo amplifier type", "motor current" and "motor speed" for each axis is stored the servo monitor devices.
The details of the storage data are shown below.

Axis No.	Device No.	Signal name				
1	\#8064 to \#8067	Vignal name ${ }^{(\text {Note-1) }}$		Signal description	Refresh cycle	Signal direction
2	\#8068 to \#8071					
4	\#8076 to \#8079	+0	Servo amplifier type	$\begin{array}{\|ll\|} \hline 0: & \text { Unused } \\ 256 & \text { MR-J3-B } \\ \hline \end{array}$	When the servo amplifier power-on	Monitor device
5	\#8080 to \#8083					
6	\#8084 to \#8087	+1	Motor current	$\times 0.1[\%]$	Operation cycle $1.7[\mathrm{~ms}$] or less: Operation cycle Operation cycle $3.5[\mathrm{~ms}$] or more: $3.5[\mathrm{~ms}$]	
7	\#8088 to \#8091	+2	Motor speed	$\times 0.1[\mathrm{r} / \mathrm{min}]$		
8	\#8092 to \#8095	+3				
9	\#8096 to \#8099	(Note-1) : The value that the lowest servo monitor device No. was added " $+0,+1 \cdots$ " on each axis is shown.				
10	\#8100 to \#8103					
11	\#8104 to \#8107					
12	\#8108 to \#8111					
13	\#8112 to \#8115					
14	\#8116 to \#8119					
15	\#8120 to \#8123					
16	\#8124 to \#8127					
17	\#8128 to \#8131					
18	\#8132 to \#8135					
19	\#8136 to \#8139					
20	\#8140 to \#8143					
21	\#8144 to \#8147					
22	\#8148 to \#8151					
23	\#8152 to \#8155					
24	\#8156 to \#8159					
25	\#8160 to \#8163					
26	\#8164 to \#8167					
27	\#8168 to \#8171					
28	\#8172 to \#8175					
29	\#8176 to \#8179					
30	\#8180 to \#8183					
31	\#8184 to \#8187					
32	\#8188 to \#8191					

4.4 Special Relays (SP.M)

There are 256 special relay points of M9000 to M9255 in the Motion CPU. Of these, 7 points of the M9073 to M9079 are used for the positioning control, and their applications are indicated in Table 4.2. (Refer to APPENDIX 2.4 "Special Relays" for the applications of the special relays except for M9073 to M9079.)

Table 4.2 Special relay list

Device No.	Signal name	Refresh cycle	Signal type
M9073	PCPU WDT error flag	Main cycle	Status signal
M9074	PCPU REDAY complete flag		
M9075	TEST mode ON flag		
M9076	External forced stop input flag		
M9077	Manual pulse generator axis setting error flag		
M9078	TEST mode request error flag		
M9079	Motion program setting error flag		

(1) PCPU WDT error flag (M9073) \qquad Status signal
This flag turns on when a "watchdog timer error" is detected of the Motion CPU self-diagnosis function.
When the Motion CPU detects a WDT error, it executes an immediate stop without deceleration of the operating axes.
If the Motion CPU WDT error flag has turn on, reset the Motion CPU.
If M9073 remains on after resetting, there is a fault at the Motion CPU side.
The error cause is stored in the "Motion CPU WDT error cause (D9184)".
(Refer to Section 4.5).
(2) PCPU REDAY complete flag (M9074) Status signal
This flag is used as judgement of the normal or abnormal in the Motion CPU side using the PLC program.
(a) When the PLC ready flag (M2000) turns off to on, the fixed parameters, servo parameters and limit switch output data are checked, and if error is not detected, this flag turns on.
The servo parameters are written to the servo amplifiers and the M-codes are cleared.
(b) This flag turns off when the PLC ready flag (M2000) turns off.

(3) TEST mode ON flag (M9075)

Status signal
(a) This flag is used as judgement of during the test mode or not using a peripheral.
Use it for an interlock, etc. at the starting of the Motion program using the SVST instruction of the PLC program.

- OFF Except for the test mode
- ON During the test mode
(b) If the test mode request is executed in the test mode request from the peripheral device, the TEST mode request error flag (M9078) turns on.
(4) External forced stop input flag (M9076) \qquad Status signal This flag checks the external forced stop input signal ON/OFF.
- OFF \qquad During the external forced stop input on
- ON

During the external forced stop input off

POINTS

(1) If the forced stop signal is input during positioning, the machine value is advanced within the rapid stop deceleration time ${ }^{(\text {Note) }}$ set in the parameter block. At the same time, the servo OFF state is established because the all axes servo ON command (M2042) turns off.
When the rapid stop deceleration time ${ }^{(\text {Note })}$ has elapsed after input of the forced stop signal, the machine value returns to the value at the point when the emergency stop was initiated.
(2) If the forced stop is reset before the emergency stop deceleration time has elapsed, a servo error occurs.
(Note) : It is not the rapid stop deceleration time but acceleration time at the G100 execution (fixed acceleration/deceleration time).
(5) Manual pulse generator axis setting error flag (M9077)
(a) This flag is use as judgement of normal or abnormal setting of the manual pulse generator axis No. setting registers (D714 to D719).

- OFF \qquad D714 to D719 is normal
- ON D714 to D719 is abnormal
(b) When M9077 turns on, the error contents are stored in the manual pulse generator axis setting error information (D9185 to D9187).
(6) TEST mode request error flag (M9078) \qquad Status signal
(a) This flag turns on when the test mode is not executed in the test mode request using a peripheral device.
(b) When M9078 turns on, the error contents are stored in the test mode request error information (D9182, D9183).
(7) Motion program setting error flag (M9079) \qquad Status signal
This flag is used as judgement of normal or abnormal for the Motion program positioning data.
- OFF Normal
- ON Abnormal

4 POSITIONING SIGNALS

4.5 Special Registers (SP.D)

There are 256 special register points of D9000 to D9255 in the Motion CPU. Of these, 23 points of the D9112 and D9180 to D9201 are used for the positioning control.
The special registers used for positioning are shown below. (Refer to APPENDIX 2.5 "Special Registers" for applications of special registers except for D9112 and D9180 to D9201.)

Table 4.3 Special register list

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction
D9112	Connect/disconnect	Main cycle	Main cycle	Command device/ Monitor device
D9180	Unusable	-	-	-
D9181				
D9182	Test mode request error information	At test mode request	/	Monitor device
D9183				
D9184	Motion CPU WDT error cause	At Motion CPU WDT error occurrence		
D9185	Manual pulse generator axis setting error information	At the manual pulse generator enable flag 5		
D9186				
D9187				
D9188	Motion operation cycle	Operation cycle		
D9189	Error program No.	At start		
D9190	Error item information			
D9191	Servo amplifier loading information	At power supply on/ operation cycle		
D9192				
D9193	Unusable	-	-	-
D9194				
D9195				
D9196	PC link communication error codes	Operation cycle		Monitor device
D9197	Operation cycle of the Motion CPU setting	At power supply on		
D9198	Unusable	-		-
D9199				
D9200	State of switch	Main cycle		Monitor devic
D9201	State of LED	Immediate	\square	Montor device

(1) Connect/disconnect (D9112)

..................................... Command device/Monitor device
This function is used to connect/disconnect the SSCNET communication temporarily, when the servo amplifiers or SSCNETIII cables on the SSCNET system are exchanged during power supply on of the Motion CPU. The user side requires to connect/disconnect for a system, and the system side stores the states of connect/disconnect command accept waiting or connect/disconnect execute waiting. Moreover, also connect the servo amplifiers disconnected with the connect/disconnect device using this device. When turning the power supply OFF/ON for the axis 1 of SSCNET system, there is no necessity for connect/disconnect processing.

- 0 Connect/disconnect command accept waiting
- -1 Connect/disconnect execute waiting
- 1 to 32 Disconnect command
- -10 Re-connection command
- -2 Connect/disconnect execute command
(2) Test mode request error information (D9182, D9183)
........... Monitor device
If there are operating axis at a test mode request from a peripheral device, a test mode request error occurs, the test mode request error flag (M9078) turns on, and the during operation/stop data of the each axis are stored.

(3) Motion CPU WDT error cause (D9184) \qquad Monitor device This register is used as judgement of the error contents in the Motion CPU.

Error code	Error cause	Operation when error occurs	Action to take
1	S/W falut 1		- Reset with the reset key.
2	Operation cycle time over		- If the error reoccurs after resetting, change the operation cycle into a large value in the system setting.
3	Q bus WDT error		- Reset with the reset key. - If the error reoccurs after resetting, the relevant module or the relevant slot (base unit) is probably faulty: replace the module/base unit.
4	WDT error		- Reset with the reset key.
30	Information processor H/W error		- If the error reoccurs after resetting, explain the error symptom and get advice from our sales representative.
201 to 215	Q bus H/W fault Error code $=$ Total of the error contents +200	All axes stop immediately, after which operation cannot be started.	- Reset with the reset key. - If the error reoccurs after resetting, the relevant module or the relevant slot (base unit) is probably faulty: replace the module/base unit.
250 to 253	Servo amplifier interface H/W fault \qquad Faulty SSCNET III No. 0 : SSCNETII1 1 : SSCENTII2 Error code $=$ Total of the faulty SSCNET III No. +250		
300	S/W fault3		- Reset with the reset key.
301	8 or more points of CPSTART instruction were used to start programs in excess of simultaneously startable program.		- Reset with the reset key. - Use 8 or more points of CPSTART instruction to start programs within the number of simultaneously startable programs.

(4) Manual pulse generator axis setting error information (D9185 to D9187)

Monitor device
The setting information is checked when the manual pulse generator enable signal turns off to on, if an error is found, the following error information is stored into D9185 to D9187 and the manual pulse generator axis setting error flag (M9077) turns on.

(5) Motion operation cycle (D9188) \qquad Monitor device The time which motion operation took for every motion operation cycle is stored in [$\mu \mathrm{s}$] unit.
(6) Error program No. (D9189) \qquad Monitor device
(a) When the Motion program error occurs at the Motion program operation, the program setting error flag (M9079) turns on and the error Motion program No. (0 to 4095).
(b) If an error occurs in another Motion program when error program No. has been stored, the program No. of the new error is stored.
(7) Error item information (D9190) \qquad Monitor device
When the Motion program error occurs at the Motion program operation, the program setting error flag (M9079) turns on and the error code corresponds to the error setting item is stored.
Refer to APPENDIX 1.1 for details of Motion program setting errors.

(8) Servo amplifier loading information (D9191 to D9192)

........... Monitor device
The installation state of the servo amplifier is checked at the power supply on or resetting of the Motion CPU and its results are stored in this device. If communication with servo amplifier stops, it is reset. Installation state is stored also about the axis which from non-installation to installation or from installation to non-installation after power supply on.

(a) Servo amplifier installation state

1) Installation/non-installation state

- "Installation" state The servo amplifier is normal.
(Communication with the servo amplifier is normal.)
- "Non-installation" state ... No servo amplifier is installed.

The servo amplifier power is off.
Normal communication with the servo amplifier is not possible due to a connecting cable fault, etc.
2) The system settings and servo amplifier installation states are shown below.

System Settings	Servo amplifier	
	Installation	Non-installation
Used (axis No. setting)	1 is stored	0 is stored
Unused	0 is stored	

(9) PC link communication error codes (D9196) \qquad Monitor device When an error occurs during the PC link communication, the error code is stored in this device.

PC communication error code storage register	Contents
D9196	00: No error 01: Receiving timing error 02: CRC error 03: Communication response code error 04: Received frame error 05: Communication task start error (Each error code is reset to " 00 " when normal communication is restarted.)

Refer to APPENDIX 1.5 for details of the PC link communication errors.
(10) Operation cycle of the Motion CPU setting (D9197) Monitor device
The setting operation cycle is stored in [$\mu \mathrm{s}$] unit.
When the "Automatic setting" is set in the system setting, the operation cycle corresponding to the number of setting axes. When "0.8[ms] / $1.7[\mathrm{~ms}] / 3.5[\mathrm{~ms}] /$ $7.1[\mathrm{~ms}] / 14.2[\mathrm{~ms}]$ " is set in the system setting, the operation cycle corresponding to each setting.
(11) State of switch (D9200) \qquad Monitor device
The switch state of CPU is stored in the form of the following.

(12) State of LED (D9201). \qquad Monitor device
It stores whether the LED of CPU is in which state in next by the following bit patterns. 0 is OFF, 1 is ON and 2 is Flicker.)

5. PARAMETERS FOR POSITIONING CONTROL

5.1 System Settings

In the Multiple CPU system, the common system parameters and individual parameters are set for each CPU and written to each CPU.
(1) The base settings, Multiple CPU settings and Motion slot settings are set in the common system parameter setting.
(2) The basic system settings, self CPU installation position setting, servo amplifier/motor setting, high-speed read setting and battery setting are set in the individual parameter setting.
(3) The data setting and correction can be performed in dialog form using a peripheral device.
(Refer to Section 3.1 of the "Q173HCPU/Q172HCPU Motion controller Programming Manual (COMMON)" for details of the setting contents.)

5.2 Fixed Parameters

(1) The fixed parameters are set for each axis and their data is fixed based on the mechanical system, etc.
(2) The fixed parameters are set using a peripheral device.
(3) The fixed parameters to be set are shown in Table 5.1.

Table 5.1 Fixed parameter list

No.	Item		Setting range						Initial value	Units	Remarks	Section
			mm		inch		degree					
			Setting range	Units	Setting range	Units	Setting range	Units				
1	Unit setting		0	-	1	-	2	-	0	-	- Set the command value for each axis at the positioning control.	-
2			1 to 2147483647[PLS]						20000	PLS	- Set the number of feedback pulses per motor rotation based on the mechanical system.	5.2.1
3			$\begin{gathered} 0.0001 \text { to } \\ 214748.3647 \end{gathered}$	mm	$\begin{gathered} 0.00001 \text { to } \\ 21474.83647 \end{gathered}$	(inch	$\begin{gathered} 0.00001 \text { to } \\ 21474.83647 \end{gathered}$	degree	2	mm	- Set the travel value per motor based on the mechanical system.	
4	Backlash compensation amount ${ }^{(\text {Note-1) }}$		0 to 6.5535		0 to 0.65535		0 to 0.65535		0		- Set the backlash amount of the machine. - Every time of the positioning direction changes at the positioning, compensation by the backlash compensation amount is executed. The expression below shows the setting range. $0 \leqq$ (backlash compensation amount) $\times \mathrm{AP} / \mathrm{AL} \leqq$ 65535	5.2.2
5	Upper stroke$\operatorname{limit}^{(\text {Note-1) }}$		$\begin{array}{\|c} -214748.3648 \\ \text { to } \\ 214748.3647 \end{array}$		$\begin{array}{\|c} -21474.83648 \\ \text { to } \\ 21474.83647 \end{array}$		$\begin{gathered} 0 \text { to } \\ 359.99999 \end{gathered}$		214748.3647		- Set the upper limit for the machine travel range. The expression below shows the setting range. $-2147483648 \leqq$ (upper stroke limit value) \times AP/AL $\leqq 2147483647$	5.2.3
6	Low limit	er stroke (Note-1)	$\begin{array}{\|c} -214748.3648 \\ \text { to } \\ 214748.3647 \end{array}$		$\begin{array}{\|c} -21474.83648 \\ \text { to } \\ 21474.83647 \end{array}$		$\begin{gathered} 0 \text { to } \\ 359.99999 \end{gathered}$		0		- Set the lower limit for the machine travel range. The expression below shows the setting range. $-2147483648 \leqq$ (lower stroke limit value) \times AP/AL $\leqq 2147483647$	
7	Com posit (Note-1)	mand in- tion range 1)	$\begin{gathered} 0.0001 \text { to } \\ 3.2767 \end{gathered}$		$\begin{gathered} 0.00001 \text { to } \\ 0.32767 \end{gathered}$		$\begin{gathered} 0.00001 \text { to } \\ 0.32767 \end{gathered}$		0.01		- Set the position at which the command inposition signal (M2403+20n) turns on [(positioning address) - (current value)]. The expression below shows the setting range. $1 \leqq($ command in-position range $) \times \mathrm{AP} / \mathrm{AL} \leqq$ 32767	5.2.4
8	High feed	-speed rate	$\begin{gathered} 0.01 \text { to } \\ 6000000.00 \end{gathered}$	$\begin{aligned} & \mathrm{mm} / \\ & \mathrm{min} \end{aligned}$	$\begin{gathered} 0.001 \text { to } \\ 600000.00 \end{gathered}$	inch/ min	$\begin{array}{\|c\|} \hline 0.01 \text { to } \\ 2147483.647 \\ \text { (Note-2) } \\ \hline \end{array}$	degree/ min	2000.00	$\begin{aligned} & \mathrm{mm} / \\ & \mathrm{min} \end{aligned}$	- Set the positioning speed by G00. - Set the speed at the home position return by G28.	5.2.5
9	$\begin{aligned} & \text { Spee } \\ & 10 \times n \\ & \text { settin } \\ & \text { degre } \\ & \hline \end{aligned}$	ed control multiplier ng for ree axis	-	-	-	-	Invalid/Valid	-	Invalid	-	- Set whether the positioning control is executed with a value $10 \times$ multiplier the speed of a command speed setting, when a control unit is degree axis.	5.2.6

[^0](Note-2) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid", the setting range for high-speed feed rate is 0.01 to 21474836.47 [degree/min].

5.2.1 Number of pulses/travel value per rotation

The "Electronic gear function" adjusts the pulse calculated and output by the parameter set in the Q173HCPU/Q172HCPU and the real travel value of machine.
It is defined by the "Number of pulses per rotation" and "Travel value per revolution".

POINTS

(1) The mechanical system error of the command travel value and real travel value is rectified by adjustment the "electronic gear".
(2) The value of less than 1 pulse that cannot be execute a pulse output when the machine travels is incremented in the Q173HCPU/Q172HCPU, and a total incremented pulse output is performed when the total incremented value becomes more than 1 pulse.
(3) The total incremented value of less than 1 pulse that cannot be execute a pulse output is cleared and it is referred to as " 0 " at the home position return completion, current value change completion and start. (When the total incremented value is cleared, the error occurs to the feed machine value only a part to have been cleared.)
"Number of pulses/travel value per rotation" are shown below.
(1) Number of pulses/travel value per rotation

Number of pulses(AP)/travel value(AL) per rotation is an item which determines how many rotations (number of pulses per rotation) of the servomotor in order to make it a machine as the travel value ordered by the program.
The position control toward the servomotor is controlled with the number of feedback pulses of the encoder connected to the servomotor in the servo amplifier.
The control content of the Motion CPU is shown below.

Fig. 5.1 Control content of the Motion CPU
For example, suppose that the servomotor was connected to the ball screw. Because the travel value $(\Delta \mathrm{S})$ of machine per motor rotation is [mm] / [inch] unit, the travel value (positioning address) set in the program is commanded in [mm] / [inch] unit. However, the servomotor is positioning controlled by the servo amplifier in pulse unit.

Therefore, AP/AL is set so that the following expression of relations may be materialized in order to convert the travel value of [mm] / [inch] unit set in the program into a pulse.

Number of pulses per motor rotation = AP
Travel value of machine per motor rotation =AL

$$
\begin{align*}
& \text { Electronic } \tag{1}\\
& \text { gear }
\end{align*}=\frac{\mathrm{AP}}{\mathrm{AL}}
$$

(There is a range which can be set in the numerical value set as AP/AL, so it is necessary to make the setting range of AP/AL the value calculated from the above expression (reduced) of relations.)

Example of the real setting is shown below.
(a) For ball screw

When the ball screw pitch is 20 [mm], the servomotor is HF-KP
(262144 [PLS/rev]) and direct connection (No reduction gear) is set.

Fig. 5.2 For ball screw

First, find how many millimeters the load (machine) will travel (AL) when the servomotor runs for one rotation (AP).

AP (Number of pulses per motor rotation) = 262144 [PLS]
AL (Travel value of machine per rotation)

$$
\begin{aligned}
& =\text { Ball screw pitch } \times \text { Reduction ratio } \\
& =20[\mathrm{~mm}]
\end{aligned}
$$

Substitute this for the above expression (1).

$$
\frac{\mathrm{AP}}{\mathrm{AL}}=\frac{262144[\mathrm{PLS}]}{20[\mathrm{~mm}]}
$$

The travel value per motor rotation in this example is 0.000076 [mm]. For example, when ordering the travel value of 19 [mm], it becomes 249036.8 [PLS] and the fraction of 0.8 [PLS]. At this time, the Motion CPU orders the travel value of 249036 [PLS] to the servomotor and the fraction is memorized in the Motion CPU.
Positioning is performed by seasoning the travel value with this fraction at the next positioning.

5.2.2 Backlash compensation amount

(1) Backlash compensation amount can be set within the following range.
(Refer to Section "7.1 Backlash Compensation Function" for details.)
$0 \leqq \frac{\text { Backlash compensation amount }}{\text { Travel value per rotation }}(=A) \leqq 65535[P L S]$
(2) The servo error may occur depending on the type of the servo amplifier (servomotor) or operation cycle even if the backlash compensation amount which fulfill the above condition. Set the backlash compensation amount within the following range in order for servo error may not occur.

$$
A \leqq \frac{\text { Maximum motor speed }[\mathrm{r} / \mathrm{min}] \times 1.2 \times \text { operation cycle }[\mathrm{ms}]}{60[\mathrm{~s}] \times 1000[\mathrm{~ms}]}[P L S]
$$

5.2.3 Upper/lower stroke limit value

The upper/lower limit value for the travel range of the mechanical system is set.

Fig. 5.3 Travel range at the upper/lower stroke limit value setting
(1) Stroke limit range check

The stroke limit range is checked at the following start or during operation.

Operation start	Check	Remarks
- Positioning control (PTP, Constant-speed)	Check	- It is checked whether the positioning address is within the stroke limit range or not at the positioning start. If it outside the range, an error occurs (error code: 580) and positioning is not executed. - If the interpolation path exceeds the stroke limit range during circular interpolation start, an error occurs (error codes: 207, 208) and deceleration stop is executed.
- JOG operation		- When the current value is executed a deceleration stop from current command speed, if the current value exceeds the stroke limit range, a deceleration stop is made before a stroke limit. (Error code: 207) Travel to the direction that returns the axis into the stroke range is possible.
- Manual pulse generator operation		- If the current value exceeds the stroke limit range, it stops at stroke limit. (Error code: 207) In this case, a deceleration stop is not made. Travel to the direction that returns the axis into the stroke range is possible.

POINTS

(1) Besides setting the upper/lower stroke limit value in the fixed parameters, the stroke limit range can also be set by using the external limit signals (FLS, RLS).
(2) Positioning from outside the stroke limit range cannot be executed. After returning the axis to within the stroke limit range by the JOG operation or manual pulse generator operation, execute the positioning control.

5.2.4 Command in-position range

The command in-position is the difference between the positioning address (command position) and current value.
Once the value for the command in-position has been set, the command in-position signal (M2403 + 20n) turns on when the difference between the command position and the current value enters the set range [(command position - current value) \leqq (command in-position range)].
The command in-position range check is executed continuously during position control.

5.2.5 High-speed feed rate setting

The high-speed feed rate is the positioning speed used to perform positioning with G00 or to make a home position return with G28, and this data is needed to execute G00 or G28.
When executing interpolation control with G00, change the speed of each axis based on the axis whose time to reach the target position is the longer, and find the combined-speed.
The high-speed feed rate setting example for interpolation control with G00.
[Example] Interpolation control from the current position $(X=0, Y=0)$ to the target position ($X=200, Y=100$)

High-speed feed rate	X-axis	$20[\mathrm{~mm} / \mathrm{min}]$
	Y-axis	$1[\mathrm{~mm} / \mathrm{min}]$

After the above program execution, the reaching time of each axis is as follows.

$$
\begin{aligned}
& \text { X-axis: } 200 .[\mathrm{mm}] / 20[\mathrm{~mm} / \mathrm{min}]=10[\mathrm{~min}] \\
& \text { Y-axis: } 100 .[\mathrm{mm}] / 1[\mathrm{~mm} / \mathrm{min}]=100[\mathrm{~min}]
\end{aligned}
$$

Since the reaching time of the Y -axis is longer, use the Y -axis as the reference axis for the feed rate and find the combined-speed.

POINTS

(1) The high-speed feed rate of each axis is clamped at the speed limit value of parameter block. The clamped value is also used to determine the axis whose time to reach the target position is the longest.
(2) In the above calculation, the travel value and feed rate used are calculated without units. Care must be taken when their units differ.
(Example)

- Travel value

10000 for the travel of 1 [mm], 100000 for 1 [inch], 100000 for 1 [degree]

- Feed rate

100 for the feed rate of 1 [$\mathrm{mm} / \mathrm{min}], 1000$ for 1 [inch/min], 1000 for 1 [degree/min]

5.2.6 Speed control $10 \times$ multiplier setting for degree axis

The setting range of command speed is 0.001 to 2147483.647 [degree $/ \mathrm{min}$] normally in the axis of control unit [degree]. However, when the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" in the fixed parameter, the speed setting range increases $10 \times$ multiplier " 0.01 to 21474836.47 [degree/min]".
(1) When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid", the speed setting range for high-speed feed rate setting of fixed parameter and JOG speed limit value of JOG operation data increases $10 \times$ multiplier " 0.01 to 21474836.47[degree/min]".
(2) When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid", the speed setting range for feed rate (F) specified with the Motion program increases $10 \times$ multiplier " 0.01 to 21474836.47 [degree $/ \mathrm{min}$]". When the feed rate (F) is indirectly set, it is the same.
(3) Speed setting range in the interpolation operation is shown below. If the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" even by one axis among axes specified at the Motion program start, the speed setting range for all degree axes specified at the start increase $10 \times$ multiplier " 0.01 to 21474836.47[degree/min]".

When it is considered that the axis set as degree axis speed control $10 \times$ multiplier setting "invalid" is "valid" by the interpolation control, the high-speed feed rate of fixed parameter is controlled by 10 multiplied values.
(Note) : The specified axis at the start is an axis name described by SVST, CALL and GOSUB/GOSUBE instruction at the axis specified program start.
(4) In the interpolation control for the axis of "control unit [degree] and [except degree]", if the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" even by one axis among axes specified at the Motion program start, and the interpolation control unit of parameter block is set as [degree], the feed rate setting range increases $10 \times$ multiplier " 0.01 to 21474836.47 [degree $/ \mathrm{min}]$ ".
(5) The parameter block cannot be set for every axis. Therefore, when the control unit is set as [degree], the setting range of speed limit value is fixed by " 0.001 to 2147483.647[degree/min]".

However, the positioning control is executed as setting range of speed limit value " 0.01 to 21474836.47 [degree $/ \mathrm{min}$]" in the axis set to "speed control $10 \times$ multiplier setting for degree axis is valid".

Example 1

An example for positioning control is shown below when the fixed parameter and parameter block are set as follows.

- Fixed parameter

Setting axis	Unit	High-speed feed rate	Speed control $10 \times$ multiplier setting for degree axis
Axis $1(\mathrm{X})$	degree	$2147483.647[$ degree $/ \mathrm{min}]$	Invalid
Axis $2(Y)$	degree	$21474836.47[$ degree $/ \mathrm{min}]$	Valid

- Parameter block

	Block 1
Interpolation control unit	degree
Speed limit value	2147483.647[degree $/ \mathrm{min}]$

(1) 1-axis linear positioning
(a) Axis set to "speed control $10 \times$ multiplier setting for degree axis is invalid" (X-axis)

Motion program	Operation
G91;	
G01 X1000. F2147483.647;	Operation with feed rate 2147483.647[degree/min]
G01 X1000. F2147483647;	Operation with feed rate 2147483.647[degree/min] (When the decimal point is not specified, the feed rate is set as 3 digits below the decimal point.)
\#@0:L=2147483647;	Operation with feed rate 2147483.647[degree/min] (The feed rate is set as 3 digits below the decimal point for indirect setting.)
G01 X1000. F\#@0:L	Deceleration stop with the minor error[502] (Command value exceeds the setting range.)
G01 X1000. F21474836.47;	

(b) Axis set to "speed control $10 \times$ multiplier setting for degree axis is valid" (Y-axis)

Motion program	Operation
G91;	
G01 Y1000. F2147483.647;	Operation with feed rate 21474836.47[degree/min] (2 digits are valid below the decimal point.)
G01 Y 1000. F2147483647;	Operation with feed rate 21474836.47[degree/min] (When the decimal point is not specified, the feed rate is set as 2 digits below the decimal point.)
\#@0:L= 2147483647;	Operation with feed rate 21474836.47[degree/min] (The feed rate is set as 2 digits below the decimal point for indirect setting.)
G01 Y1000. F\#@0:L	Operation with feed rate 21474836.47[degree/min]
G01 Y1000. F21474836.47;	

POINTS

(1) Axis set to "speed control $10 \times$ multiplier setting for degree axis is invalid".
(a) Setting range of feed-rate is 0.001 to 2147483.647 [degree $/ \mathrm{min}$].
(b) When the feed rate is set as indirect setting or without decimal point setting in the Motion program, the feed rate is set as 3 digits below the decimal point.).
(2) Axis set to "speed control $10 \times$ multiplier setting for degree axis is valid".
(a) Setting range of feed-rate is 0.01 to 21474836.47 [degree $/ \mathrm{min}$].
(b) When the feed rate is set as indirect setting or without decimal point setting in the Motion program, the feed rate is set as 2 digits below the decimal point.)

Example 1

(2) 2-axes interpolation positioning
(a) G00

G91 G00 X1000. Y1000. ;

[degree/min] V

(b) G01

POINTS

If the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" even by one axis among axes specified at the Motion program start in the interpolation operation, the "speed control $10 \times$ multiplier setting for degree axis" is considered as "valid" for all degree axes specified at the start.
Therefore, in the above example, "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" in also X-axis, the high-speed feed rate is controlled as ten times 21474836.47[degree/min].

Example 2

- An example for positioning control is shown below when the fixed parameter and parameter block are set as follows.
- Fixed parameter

Setting axis	Unit	High-speed feed rate	Speed control $10 \times$ multiplier setting for degree axis
Axis $1(\mathrm{X})$	degree	$200.000[$ degree $/ \mathrm{min}]$	Invalid
Axis $2(\mathrm{Y})$	degree	$2000.00[$ degree $/ \mathrm{min}]$	Valid

- Parameter block

	Block 1
Interpolation control unit	degree
Speed limit value	200.000 [degree $/ \mathrm{min}$]

(1) 1-axis linear positioning
(a) G00
(b) G01

(2) 2-axes interpolation positioning
(a) G00
(b) G01

G91 G00 X100. Y100.

POINTS

After the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid", when the speed change is executed by Motion dedicated PLC instruction (S(P).CHGV) or Motion program (CHGV instruction), the positioning control is executed by ten times the command speed (set value).

5 PARAMETERS FOR POSITIONING CONTROL

5.3 Parameter Block

(1) The parameter blocks serve to make setting changes easy by allowing data such as the acceleration/deceleration control to be set for each positioning processing.
(2) A maximum 64 blocks can be set as parameter blocks.
(3) Parameter blocks can be set using a peripheral device.
(4) Parameter block to be set are shown in Table 5.2.

Table 5.2 Parameter Block list

No.	Item	Setting range						Initial value	Units	Remarks	Section	
		mm		inch		degree						
		Setting range	Units	Setting range	Units	Setting range	Units					
1	Interpolation control unit	0	-	1	-	2	-	0	-	- Set the units for compensation control. - It can be also used as the units for the command speed and allowable error range for circular interpolation set in the Motion program.	6.11 .6	
2	Speed limit value	$\begin{gathered} 0.01 \text { to } \\ 6000000.00 \end{gathered}$	$\begin{aligned} & \mathrm{mm} / \\ & \mathrm{min} \end{aligned}$	$\begin{gathered} 0.001 \text { to } \\ 600000.000 \end{gathered}$	inch/ min	$\begin{gathered} 0.001 \text { to } \\ 2147483.647 \\ \text { (Note-1) } \end{gathered}$	degree/ min	200.000	$\begin{aligned} & \mathrm{mm} / \\ & \mathrm{min} \end{aligned}$	- Set the maximum speed for positioning/home position return. - If the positioning speed or home position return speed setting exceeds the speed limit value, control is executed at the speed limit value.	5.3.1	
3	Acceleration time	Acceleration-fixed acceleration/deceleration method : 1 to 65535[ms]						1000	ms	- Set the time taken to reach the speed limit value from the start of motion.		
		Time-fixed acceleration/deceleration method : 1 to 5000[ms]								- Always acceleration/deceleration time is the setting value.		
4	Deceleration time	Acceleration-fixed acceleration/deceleration method : 1 to 65535[ms]						1000	ms	- Set the time taken to stop from the speed limit value.		
		Time-fixed acceleration/deceleration method : Invalid								- Setting is ignored.		
5	Rapid stop deceleration time	Acceleration-fixed acceleration/deceleration method : 1 to 65535[ms]						1000	ms	- Set the time taken to stop from the speed limit value when a rapid stop is executed.		
		Time-fixed acceleration/deceleration method : Invalid								- Setting is ignored.		
6	S-curve ratio	Acceleration-fixed acceleration/deceleration method : 0 to 100[\%]						0	\%	- Set the S-curve ratio for S-pattern processing. - When the S-curve ratio is 0[\%], trapezoidal acceleration/deceleration processing is executed.	5.3.2	
								- Always 0\%..				
7	Torque limit value	1 to 1000[\%]							300	\%	- Set the torque limit value in the Motion program.	-
8	Deceleration processing on STOP input	0 : Deceleration stop is executed based on the deceleration time. 1 : Deceleration stop is executed based on the rapid stop deceleration time.						0	-	- Set the deceleration processing when external signals (STOP, FLS, RLS) are input.	-	
9	Allowable error range for circular interpolation	0 to 10.0000	mm	0 to 1.00000	inch	0 to 1.00000	degree	0.0100	mm	- Set the permissible range for the locus of the arc and the set end point coordinates.	5.3.3	

(Note-1): When the "speed control $10 \times$ multiplier setting for degree axis" set to "valid", the setting range of is 0.01 to 21474836.47 [degree/min]. However, setting range of 0.001 to 2147483.647 [degree/ min] is displayed in the parameter block setting screen of programming software.

POINTS

(1) Parameter blocks are specified in the home position return data, JOG operation data or Motion program.
(2) Speed limit value is within the feed speed setting range of feed speed (F) set in the Motion program.

POINTS

The data set in the parameter block is used in the positioning control, home position return and JOG operation.
(1) The parameter block No. used in the positioning control is set indirectly in the following case.
(a) Start by the SVST instruction from the PLC (Refer to Section 3.3)
(b) Start by the CALL, GOSUB/GOSUBE instruction from the Motion program (Refer to Section 6.16.21, 6.16.22 and 6.16.23)
And the parameter block can be changed by the PB instruction in the Motion program. Refer to Section 6.16.14 for details.
(2) The parameter block No. used in the home position return or JOG operation is set at the setting of the "home position return data" or " JOG operation data" using a peripheral device. (Refer to Section "7.3.1 Home position return data", "7.5.1 JOG operation data" for details.)
[Home position return data, Jog operation data setting screen]

5.3.1 Relationships between the speed limit value, acceleration time, deceleration time and rapid stop deceleration time

According to the G-code instructions, there are two different acceleration/deceleration modes, acceleration-fixed acceleration/deceleration and time-fixed acceleration/deceleration.
(1) Acceleration-fixed acceleration/deceleration system
(a) G01, G02, G03, G12, G13 or G32 during G101 execution

The acceleration/deceleration mode of acceleration-fixed acceleration/deceleration is used.
The actual acceleration time, deceleration time and rapid stop deceleration time are shorter than their settings as the positioning speed is lower than the speed limit value.
The setting ranges of acceleration time, deceleration time and rapid stop deceleration time is 1 to $65535[\mathrm{~ms}$].
(b) G00 (without M-code), G28 (high-speed home position return), G30, G53 or G00 including M-code during G101 execution The acceleration/deceleration mode of acceleration-fixed acceleration/deceleration is used.
The calculation of acceleration for acceleration/deceleration is based on the lower speed among the feed speed (Refer to Section 5.2.5) from highspeed feed rate of fixed parameter and the speed limit value of parameter block.
At the override of 100[\%], the real acceleration time, real rapid stop deceleration time and real deceleration time are equal to their settings. The setting ranges of the acceleration time, deceleration time and rapid stop deceleration time are 1 to $65535[\mathrm{~ms}]$.
(2) Time-fixed acceleration/deceleration system
(a) G00 including M-code during G100 execution (default), G01, G02, G03, G12, G13 or G32
The acceleration/deceleration mode of time-fixed acceleration/deceleration is used.
The preset acceleration time is used to perform acceleration, deceleration or rapid stop deceleration processing.
The setting range of the acceleration time is 1 to 5000 [ms].
If the setting exceeds $5000[\mathrm{~ms}$], the acceleration time is clamped at 5000[ms].
At this time, an error does not occur.
(1) Acceleration-fixed acceleration/deceleration system
(a) G01, G02, G03, G12, G13 or G32 during G101 execution

(b) G00 (without M-code), G28 (high-speed home position return), G30, G53 or G00 including M-code during G101 execution

(2) Time-fixed acceleration/deceleration system
(a) G00 including M-code during G100 execution (default), G01, G02, G03, G12, G13 or G32

Fig. 5.4 Relationships between the speed limit value, acceleration time, deceleration time and rapid stop deceleration time

5.3.2 S-curve ratio

S-curve ratio can be set as the acceleration and deceleration processing method for Spattern processing.
Setting range of the S-curve ratio is 0 to 100[\%].
If it is set outside the range, an error occurs at the start and control is executed with the S-curve ratio set as 100[\%].
Errors are set in the servo program setting error area (D9190).
Setting of the S-curve ratio enables acceleration/deceleration processing to be executed gently.
The graph for S-pattern processing is a sine curve as shown below.

As shown below, the S-curve ratio setting serves to select the part of the sine curve to be used as the acceleration/deceleration curve.

(Note) : When the G00, G01, G02, G03, G12, G13 or G32 including M-code is used, S-curve ratio is ignored and control is executed as always 0[\%].

5.3.3 Allowable error range for circular interpolation

The locus of the arc calculated from the start point address and central point address may not coincide with the set end point address for the central-specified control. The allowable error range for circular interpolation sets the allowable range for the error between the locus of the arc determined by calculation and the end point address. If the error is within the allowable range, circular interpolation to the set end point address is executed while also executing error compensation by means of spiral interpolation.

If it exceeds the setting range, an error occurs at the start and positioning does not start. Such an error are set the applicable axis or minor error code area.

Fig. 5.5 Spiral Interpolation

5.4 Work Coordinate Data

(1) The work coordinate data is used to set the work coordinates and six different work coordinates can be set (G54 to G59) for every axis. (Refer to Section 6.12 for details.)
(2) The position is set with the offset from the mechanical coordinate system home position for the work coordinate system. The offset setting value is the distance from the mechanical coordinate system home position (0).
(3) The work coordinate data is set using the peripheral devices.
(4) The work coordinate data to be set are shown in Table 5.3.

Table 5.3 Work Coordinate Data List

No.	Item	Setting range						Initial value	Units	Remarks	Section
		mm		inch		degree					
		Setting range	Units	Setting range	Units	Setting range	Units				
1	G54	$\begin{gathered} -214748.3648 \\ \text { to } \\ 214748.3647 \end{gathered}$	mm	$\begin{gathered} -21474.83648 \\ \text { to } \\ 21474.83647 \end{gathered}$	inch	$\begin{gathered} -359.99999 \\ \text { to } \\ 359.99999 \end{gathered}$	degree	0	mm	Set the work coordinate system 1 to 6.	6.12
2	G55										
3	G56										
4	G57										
5	G58										
6	G59										

(5) When a home position return is made based on the home position return setting data, the mechanical coordinate system and work coordinate system are as shown below.
[Example] The X -axis home position address of home position return data is set to $200.00[\mathrm{~mm}$] and the X-axis: G54 of the work coordinate data is set to $300.00[\mathrm{~mm}]$ to make a home position return.

On completion of a home position return, the machine value is equal to $200.00[\mathrm{~mm}$] and the current value is equal to $-100.00[\mathrm{~mm}]$.
When the work coordinate data is set to 0 , the current value is equal to the machine value.

6. MOTION PROGRAMS FOR POSITIONING CONTROL

Motion program in the EIA language format is used as a programming language in the Motion controller (SV43).
A Motion program is used to specify the positioning control type and positioning data required to execute the positioning control in the Motion CPU.
This chapter describes the Motion program composition and setting method of the Motion program.

6.1 Motion Program Composition

This section describes the format and composition of the Motion program.
A Motion program is called a word address format (word), and it is combination of a single alphabet (address) and numbers.
(1) Word address format (word)

A word is a collection of characters arranged in certain order, and this is used as a unit to process that information to perform a specific operation.
A word is composed of a single alphabet (address) and subsequent several-digit number in the Motion controller. (The number may be headed by a "+" or "-" sign.)

(Note) : The first alphabet of word is called an address and defines the meaning of subsequent numeric information.

(2) Block

A block is a collection of several words. It includes information necessary to perform a single specific operation of a machine and acts as a complete command on a block basis.
A block is ended by the EOB (End of Block) code to indicate separation.
<Block composition>

1) N100 Sequence No.	: It is used to identify a program block, and it is indicated by a number (up to 4 digits) after alphabet N .
2) G01 Preparatory code	: The basic instruction which commands the movement of motion control is indicated. (G-code)
3) X250. $\cdots \cdots \cdots$ Coordinate position data ${ }^{(\text {Note })}$:	: The command for coordinate position of X -axis is indicated. This word commands 250[mm] of X -axis.
4) Y-123.4 $\cdots \cdots .$. Coordinate position data ${ }^{\text {(Note) }}$: The command for coordinate position of Y-axis is indicated. This word commands $-123.4[\mathrm{~mm}]$ of Y-axis.
5) F1500. Feed speed	: The command of feed speed in linear or circular interpolation is indicated. (F-code) This word indicates the speed of 1500[mm] per minute.
6) ;EOB (End of Block)	: The end (separation) of program block is indicated.

(Note) : There are following two methods in the coordinate position data. Absolute value command $\cdots \cdots . . .$. G90: Method to travel the specified coordinate position regardless of the current position.
Incremental value command \cdots G91: Method to command the next target position based on the current position.
(3) Motion program

A machine operation is commanded by several collection of blocks in the Motion program.
<Motion program composition>

00001 O100;	1) Motion program No.
00002 N10 G91 G00;	
00003 G28 X0. Y0. ;	
00004 X 250 ;	
00005 N20 M20;	
00006 X-50. Y120.;	
00007 N30 G01 X25. F500. ;	2) Program block
- •	
- •	
00020 N80 M21;	
00021 M02;	
00022 \%	Indicates a program end.
	3) Line number

1) Motion program No.	Number specified in a PLC program. It can be set alphabet "O" and any number of 1 to 1024.
2) Program block	Consists of multiple program blocks necessary for motion operations in control order.
3) Line number	Automatically displayed in serial number when a Motion program is created by the peripheral device.

POINT

Up to 1024 Motion programs are stored in a memory in Motion controller (SV43). These Motion programs are managed in a Motion program No..

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.2 Type of The Motion Program

There are following two types in the Motion program.
Type of Motion program is set for every program by the motion parameter.
Type of the Motion program

Name	Description
Control program	This program is described by the control instructions only. Axis travel instructions are not included. Pre-read does not done at the program execution.
Axis designation program	This program is described by the "control instructions and axis travel instructions" or "only the either".

(1) Refer to Section 6.3 to 6.5 for details of the instruction which can be described in each program.
(2) The total number of the control programs and axis designation programs is 1024.
(3) The method to start and end of the control program differs from the and the axis designation program. Refer to Section 6.6 for details.
(4) The Motion program during execution cannot be re-written. Confirm that the PLC ready flag (M2000) is OFF, and write the Motion program.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.3 G-code List

G-codes used in the Motion program are shown below.
G-code List

Type	Instruction (Group)		Description	Control program	Axis designation program	Remark
G-code	G00 ${ }^{\text {(Note) }}$	01	Point-to-point positioning at the high-speed feed-rate	\times	\bigcirc	
	G01		Constant-speed positioning at the speed specified in F	\times	\bigcirc	
	G02		Circular interpolation (CW)	\times	\bigcirc	
	G03		Circular interpolation (CCW)	\times	\bigcirc	
	G04	00	Dwell	\times	0	
	G09	00	Exact stop check	\times	0	
	G12	01	Helical interpolation (CW)	\times	\bigcirc	
	G13		Helical interpolation (CCW)	\times	0	
	G23 ${ }^{\text {(Note) }}$	02	Cancel, cancel/start invalid	\times	0	
	G24		Cancel, cancel/start	\times	\bigcirc	
	G25	00	High-speed oscillation	\times	0	
	G26	00	High-speed oscillation stop	\times	0	
	G28	00	Home position return	\times	0	
	G30	00	Second home position return	\times	0	
	G32	00	Skip	\times	\bigcirc	
	G43	08	Tool length offset (+)	\times	0	
	G44		Tool length offset (-)	\times	0	
	G49 ${ }^{\text {(Note) }}$		Tool length offset cancel	\times	0	
	G53	00	Mechanical coordinate system selection	\times	0	
	G54 ${ }^{\text {(Note) }}$, G55, G56, G57, G58, G59	12	Work coordinate system selection	\times	\bigcirc	
	G61	13	Exact stop check mode	\times	0	
	$\text { G64 }{ }^{\text {(Note) }}$		Cutting mode	\times	0	
	G90 ${ }^{\text {(Note) }}$	03	Absolute value command	\times	0	
	G91		Incremental value command	\times	\bigcirc	
	G92	00	Coordinate system setting	\times	\bigcirc	
	G98	21	Pre-read disable	\times	0	
	G99 ${ }^{\text {(Note) }}$		Pre-read enable	\times	0	
	G100 ${ }^{\text {(Note) }}$	20	Time-fixed acceleration/deceleration switching command	\times	0	
	G101		Acceleration-fixed acceleration/deceleration switching command	\times	\bigcirc	

(Note) : Indicates the G-code selected at the power-on.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Class and group of G-code are shown below.

Class	Description
Modal G-codes (Groups 01, 02, 03, 08, 12, 13, 20, 21)	Once any G-code is commanded, it is valid until another G-code in the same group is commanded. Initial status (at the power-on) is as follows. Group 01 …...... G00 Point-to-point positioning at the high-speed feed rate Group 02 …...... G23 Cancel, cancel/start invalid Group 03 …...... G90 Absolute value command Group 08 …...... G49 Tool length offset cancel Group 12 …...... G54 Word coordinate system 1 selection Group 13 G64 Cutting mode Group 20 …...... G100 Time-fixed acceleration/deceleration switching command Group 21 …...... G99 Pre-read enable
Unmodal G-codes (Group 00)	Valid only for the block in which any G-code has been commanded.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.4 M-code List

M-codes used in the Motion program are shown below.
M-code List

Type	Instruction		Description	Control program	Axis designation program
	Remark				
	M00	Program stop	\times	0	
	M01	Optional program stop	\times	0	
	M02	Program end	0	0	
	M30	Program end	0	0	
	M98, M99	Subprogram call, end	\times	0	
	M100	Preread disable	\times	0	
General M-code	Other M-codes		\times	0	

The special M -codes are not output to the device (M-code outputting signal : M2419+20n).

Use the GOSUB/GOSUBE instruction for the subprogram call in the control program. A general M-code cannot be used in the control program. Use the EXEON/EXEOFF for the signal wait from external source.
(Because there is no axis designation in the control program, it is not made to correspond to the FIN signal which is the signal of every axis.)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.5 Control Instruction List

Control instructions used in the Motion program are shown below.
Control instruction list

Type	Instruction	Description	Control program	Axis designation program
Control function	IF, GOTO	Program control function	0	\bigcirc
	IF, THEN, ELSE, END	Program control function	\bigcirc	\bigcirc
	WHILE, DO	Program control function	\bigcirc	\bigcirc
	WAITON, WAITOFF	Travel block wait function	\times	0
	EXEON, EXEOFF	Block wait function	0	0
	ON, OFF	Conditional branch using bit device	\bigcirc	\bigcirc
Binary operation	+, -, *, /, MOD, =	Four fundamental operator, assignment statement	0	\bigcirc
Standard function	SIN, COS, TAN, ASIN, ACOS, ATAN	Trigonometric function	\bigcirc	\bigcirc
	INT	Numerical conversion (real number to integer)	0	\bigcirc
	FLT	Numerical conversion (integer to real number)	0	\bigcirc
	DFLT	32-bit real number data to 64 -bit real number data conversion	\bigcirc	\bigcirc
	SFLT	64-bit real number data to 32-bit real number data conversion	\bigcirc	\bigcirc
	SQRT, ABS, BIN, BCD, LN, EXP, RSD, FIX, FLP	Function	\bigcirc	\bigcirc
Logical operation	AND, OR, XOR, NOT, \|<<, >>	Logical operator	\bigcirc	0
Bit operation	BSET, BRST	Bit set and reset for word devices	\bigcirc	\bigcirc
Motion dedicated function	PB	Parameter block change	$\times^{\text {(Note-1) }}$	0
	TL	Torque limit value change	\times	0
	CHGA	Home position return	0	\times
	CHGV	Speed change	0	\bigcirc
	CHGT	Torque limit value change	0	0
Bit device operation	SET, RST	Bit device set, reset functions	0	0
	IF, THEN, SET/RST/OUT	Bit device operation on condition	0	\bigcirc
Program start, end	CALL	Program start	0	$\times^{\text {(Note-2) }}$
	GOSUB	Program call 1	0	$\times^{\text {(Note-2) }}$
	GOSUBE	Program call 2	0	$\times^{\text {(Note-2) }}$
	CLEAR	Control program end	$0^{\text {(Note-3) }}$	\times
Others	TIME	Time to wait	\bigcirc	$\times^{\text {(Note-4) }}$
	BMOV	Block move (16 bit unit)	\bigcirc	0
	BDMOV	Block move (32 bit unit)	\bigcirc	\bigcirc
	FMOV	Identical data block move (16 bit unit)	0	0

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Control instruction list (Continued)

Type	Instruction	Instruction description	Control program	Axis designation program
	MULTW	Write device data to shared CPU memory	0	0
	MULTR	Read device data from shared CPU memory of the other CPU	0	0
	FROM	Write words data to intelligent function module/special function module	0	0
		Read words data from intelligent function module/special function module	0	0

(Note-1) : Because the axis travel instruction cannot be executed in the control program, the change of PB (parameter block) is unnecessary. Therefore, PB cannot be used.
(Note-2) : Do a subprogram call in the axis designation program with M98.
(Note-3) : Control such as a start and end of the control program can be executed from the other control program.
(Note-4) : G04 (Dwell) is used in the axis designation program for time to wait.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.6 Start/End Method

Start/end methods of the Motion program are shown below.

Type	Start/end method
Control program	Start method
	(1) Start by the SFCS instruction from the PLC CPU. (2) Start by the CALL instruction (start) or the GOSUB/GOSUBE instruction (call) in the control program. (3) Start by the program parameter automatically. (Note) : Call/start of the control program from the axis designation program cannot be executed. The program starts from the first by turning the PLC ready flag (M2000) OFF to ON in the automatic start.
	End method
	(1) The program ends to execute with the "M02/M30;" in the following cases. (a) Started by the SFCS instruction from the PLC CPU. (b) Started by the CALL instruction (start) in the control program. (c) Started by the program parameter automatically. (2) The program returns to the call source program with the "M02/M30;" in the following cases. (a) Started by the GOSUB/GOSUBE instruction (call) in the control program.
	Forced end from other program
	The program can be ended by executing the CLEAR instruction from other programs.
Axis designation program	Start method
	(1) Start by the SVST instruction from the PLC CPU. (2) Start by the CALL instruction (start) or the GOSUB/GOSUBE instruction (call) in the control program. (3) Start with M98 in the axis designation program.
	End method
	(1) The program ends to execute with the "M02/M30;" in the following cases. (a) Started by the SVST instruction from the PLC CPU. (b) Started by the CALL instruction (start) in the control program. (2) The program returns to the call source program with the "M02/M30;" in the following cases. (a) Started by the GOSUB/GOSUBE instruction (call) in the control program. (3) The program returns to the call source program with the "M99;" in the following cases. (a) Started with the M98 in the axis designation program.

Example for structure of program start/end

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.7 Number of Maximum Nesting for Program Call and Multi Startable Program

(1) The number of maximum nesting of the GOSUB/GOSUBE is 8 levels in the control program.
(2) The number of maximum nesting of M98 is 8 levels in the designation program.
(3) The program started by the CALL in the control program operates as a program different from starting source, so there are no restrictions for nesting of the starting source and program started.
(4) The number of maximum multi startable programs of the control program is 16.

However, when it was called by the GOSUB/GOSUBE, the number of multi executed programs is counted as 2 programs in the call source program and program called.
(5) The number of maximum multi startable programs of the axis designation program is 32.
However, when it was called by the M98, the number of multi executed programs is counted as 1 program in the call source program and program called.
(6) Number of maximum nesting for the both of GOSUB/GOSUBE and M98 is 8 levels.
Maximum nesting is 16 levels in the following combinations.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.8 Motion parameter

Set the following parameters for every Motion program.

No.	Item	Setting range	Initial value	Remark
1	Program type	1. Control program 2. Axis designation program	Control program	This parameter is input at the turning M2000 off to on after that it is controlled. Turn M2000 off at the changing of this parameter.
2	Start setting	Select the automatic start. (When the control program is selected.) 1. Automatic start 2. Not automatic start	Not automatic start	

6.9 Caution at The Axis Designation Program Creation

(1) A subprogram call from another subprogram (nesting) is maximum 8 levels.
(2) In one block, one G-code can be selected from each modal group. Up to two Gcodes can be commanded. Refer to following table for G-code combinations,.

G-code Combination List

		Second G-codes																							
		G00	G01	G02	G03	G04	G09	G12	G13	G28	G43	G44	G49	G53	G54	G55	G56	G57	G58	G59	G61	G64	G90	G91	G92
First Gcodes	G00					\bigcirc					\bigcirc	\bigcirc	\bigcirc												
	G01					\bigcirc					\bigcirc	\bigcirc	0												
	G02					\bigcirc																			
	G03					\bigcirc																			
	G04																								
	G09		\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																
	G12					\bigcirc																			
	G13					\bigcirc																			
	G23																								
	G24																								
	G25																								
	G26																								
	G28													\bigcirc											
	G30													\bigcirc											
	G32																								
	G43																								
	G44																								
	G49									\bigcirc															
	G53									\bigcirc															
	G54	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																\bigcirc
	G55	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																\bigcirc
	G56	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																\bigcirc
	G57	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																\bigcirc
	G58	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																\bigcirc
	G59	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																\bigcirc
	G61	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																
	G64	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																
	G90	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																
	G91	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																
	G92	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc																
	G98																								
	G99																								
	G100																								
	G101																								

How to use the above table
(a) When the G09 is specified as the first G-code, G01, G02, G03, G12 or G13 can be specified as the second code.
(b) When the G90 is specified as the first G-code, G00, G01, G02, G03, G12 or G13 can be specified as the second code.
G90 G61; and G90 G64; result in a format error.
(c) Specify the G23, G24, G25, G26, G32, G98, G99, G100 or G101 individually.

IMPORTANT

The Motion program which an axis overlapped cannot be started simultaneously. If it is executed, we cannot guarantee their operations.
(3) The M-codes except the M00, M01, M02, M30, M98, M99 and M100 can be specified in the same block with another command. However, if they are specified together in the same block with the travel command (G00 to G03, G32), the M function is executed by the start of the travel command (G00 to G03, G32).
(4) If the multiple M-codes except the M00, M01, M02, M30, M98, M99 and M100 are specified in one block, only the last one is valid.
(5) When the auxiliary function (M) is set in continuous G01 blocks.

If an auxiliary function (M) is set at any point in continuous G01 blocks, operation is performed in either of the following two ways.

```
O0100;
1) G90 G01 X100. F1000. ; Constant-speed positioning of }
2) X200. M10; Constant-speed positioning of X, M-code
3) X300. ;
Constant-speed positioning of X
```

(a) Deceleration stop

When the FIN signal (M3219+20n) is not turned from OFF to ON to OFF during positioning in block 2), a decelerates stop is made once in the block of M-code.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

(b) Constant-speed operation

When the FIN signal (M3219+20n) is turned from OFF to ON to OFF during positioning in block 2), the axis performs constant-speed operation without decelerating stop in the block of M-code.
(6) The M-codes except the M00, M01, M02, M30, M98, M99 and M100 are output to the M-code storage registers (D13+20n) of all axes specified at the program start. However, the M-code storage register is not output to the axis in execution of high-speed oscillation. Also, if the FIN signal (M3219+20n) is set to the axis in execution of high-speed oscillation is invalid.
(Program No. 1 is started with X (axis 1) and Y (axis 2) specified SVST J1J2 K1)

O0001;

N1 G25 X START90. STRK10. F30; X-axis high-speed oscillation start N2 G00 Y10. M77;
N3 G26 X;
M02;
\%

(7) Acceleration/deceleration processing for G01

```
G91 G01 X100. Y100. F100.; Constant-speed positioning of X, Y.........Block 1
Y100.; Constant-speed positioning of Y ............Block 2
X100. ; Constant-speed positioning of X ............Block 3
```

The acceleration/deceleration processing of the X -axis and Y -axis in the above program are as follows.

- Both the acceleration and deceleration times are equal to the acceleration time of parameter block.
- When the M-code is commanded in G00, the acceleration and deceleration times are also equal to the acceleration time of parameter block as in G01. (Example : G00 X $\square \mathrm{M} \square$;)
- In G02, G03 and G32, the acceleration and deceleration times are also equal to the acceleration time of parameter block as in G01.
(8) Operation of G09 (exact stop check)

Since a shift by command in-position cannot be made, it shifts to the next block after command.
(9) Operation of G28 (home position return)

Home position return of the proximity dog, count, data set, dog cradle, stopper and limit switch combined-type is executed in the axis whose home position return request signal ($\mathrm{M} 2409+20 \mathrm{n}$) is ON .
A high-speed feed home position return is executed in the axis whose home position return request signal (M2409+20n) is OFF.
(10) Checking for the axis used at the program start
(a) If an axis used in the already started program is started by another program, a program cannot be executed because a minor error (error code : 101) occurs at the execution of the SVST instruction.
(b) If the axis not specified in the axis number setting of the SVST instruction in the program waiting to be started is described in the Motion program, it stops because a minor error (error code : 594) at the positioning processing of the applicable axis in the program.
(11) Variable preread

Variables in up to eight blocks including the one currently executed are preread.
Set variables before starting of the program.
(12) Motion program including the high-speed oscillation Be careful the following when the high-speed oscillation (G25) is performed for all axes specified in the SVST.
(Program No. 1 is started with X (axis 1) and Y (axis 2) specified "SVST J1J2 K1")

O0001;
N1 G25 X START90. STRK10. F30; X-axis high-speed oscillation start
N2 G25 Y START90. STRK20. F10; Y-axis high-speed oscillation start
N3 \longleftarrow Be careful to program N3 after.
$:$
(a) The G-code instructions except G26 (high-speed oscillation stop) and G04 (dwell) should not be executed.
(b) The M-codes except M00, M01, M02, M30, M98 and M99 should not be executed.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.10 Instruction Symbols/Characters List

Instruction symbols and characters used in Motion programs are shown below.
Table 6.1 Instruction Symbol/Character List

Symbol/character	Function	Description
A	Coordinate position data	These symbols are used to specify the travel axis at the positioning command. Set the axis No. and axis name in the system settings.
B	Coordinate position data	
C	Coordinate position data	
U	Coordinate position data	
V	Coordinate position data	
W	Coordinate position data	
X	Coordinate position data	
Y	Coordinate position data	
Z	Coordinate position data	
CA	Coordinate position data	
CB	Coordinate position data	
CU	Coordinate position data	
CV	Coordinate position data	
CW	Coordinate position data	
CX	Coordinate position data	
CY	Coordinate position data	
CZ	Coordinate position data	
DA	Coordinate position data	
DB	Coordinate position data	
DU	Coordinate position data	
DV	Coordinate position data	
DW	Coordinate position data	
DX	Coordinate position data	
DY	Coordinate position data	
DZ	Coordinate position data	
EA	Coordinate position data	
EB	Coordinate position data	
EU	Coordinate position data	
EV	Coordinate position data	
EW	Coordinate position data	
EX	Coordinate position data	
EY	Coordinate position data	
EZ	Coordinate position data	
1	Circular arc central coordinate 1	Used in G02, G03, G12 or G13 (arc central coordinate specification).
J	Circular arc central coordinate 2	
R	Radius of R point-specified circular arc	Used in G02, G03, G12 or G13 (R specification).
F	Interpolation feed combined-speed	Used in G01, G02, G03, G12 or G13.
- Multiple operators cannot be used in one block.		
- Refer to Section 6.11.4 for the setting range of instruction symbols.		

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Table 6.1 Instruction Symbol/Character List (Continued)

Symbol/character	Function	Description
G	Preparatory function (G-code)	Refer to Section "6.3 G-code List".
L	Subprogram repeat count	Used in M98
M	Auxiliary function (M-code)	Refer to Section "6.4 M-code List".
N	Sequence No.	Indicates a sequence No.
0	Program No.	Indicates a Motion program No.
P	Dwell timer	Used in G04.
	Start program No.	Used in G24.
	Subprogram call number	Used in M98, GOSUB/GOSUBE or CALL instruction.
	Waiting time	Used in TIME instruction.
PB	Parameter block No.	Change the parameter block.
TL	Torque limit value	Change the torque limit value.
+	Addition	Used in arithmetic operation commands.
-	Subtraction	
*	Multiplication	
/	Division	
	Optional block skip	Optional block skip is specified for a block which is headed by this symbol. (Refer to Section 4.1.4 (3).)
MOD	Remainder	Used in arithmetic operation commands.
(,)	Comment	Gives comment in the inside of parentheses.
[,]	Brackets	Used in conditional expressions.
\#	Variable	Symbols used for indirect designation.
	Device designation	
\%	Program end	Indicates the end of a program.
;	Block separation	Indicates separation of blocks.
IF	Condition	Used in conditional branch instructions.
THEN		
ELSE		
GOTO	Jump	
WHILE	Repeat	
DO		
END		
EQ	Comparison instruction (=)	Used in comparison instructions.
NE	Comparison instruction (!=)	
GT	Comparison instruction (>)	
LT	Comparison instruction (<)	
GE	Comparison instruction (>=)	
LE	Comparison instruction (<=)	
OR	Logical operation instruction (OR)	Used in arithmetic operation commands.
XOR	Logical operation instruction (Exclusive OR)	
AND	Logical operation instruction (AND)	
- Multiple operators cannot be used in one block.		
- Refer to Section 6.11.4 for the setting range of instruction symbols		

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Table 6.1 Instruction Symbol/Characters List (Continued)

Symbol/character	Function	Description
SIN	Trigonometric function (sine)	Used in arithmetic operation commands.
cos	Trigonometric function (cosine)	
TAN	Trigonometric function (tangent)	
ASIN	Trigonometric function (arcsine)	
ACOS	Trigonometric function (arccosine)	
ATAN	Trigonometric function (arctangent)	
INT	Numerical conversion (real number to integer)	
FLT	Numerical conversion (integer to real number)	
SET	Bit device set	Used in control instructions.
RST	Bit device reset	
CAN	Cancel device specification	Used in G24.
START	Starting angle specification	Used in G25.
STRK	Amplitude specification	
SKIP	Skip device specification	Used in G32.
DFLT	32-bit real number data to 64 -bit real number data conversion	Control instruction
SFLT	64-bit real number data to 32-bit real number data conversion	
CHGA	Home position return	
CHGV	Speed change	
CHGT	Torque limit value change	
IF, THEN, SET/RST/OUT	Bit device operation on condition	
CALL	Program start	
GOSUB	Program call 1	
GOSUBE	Program call 2	
CLEAR	Control program end	
BMOV	Block traverse (16 bit unit)	
BDMOV	Block traverse (32 bit unit)	
FMOV	Identical data block transfers (16 bit unit)	
MULTW	Write device data to shared CPU memory	
MULTR	Read device data from shared CPU memory of the other CPU	
TO	Write words data to intelligent function module/special function module	
FROM	Read words data from intelligent function module/special function module	

- Multiple operators cannot be used in one block.
- Refer to Section 6.11.4 for the setting range of instruction symbols.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Table 6.1 Instruction Symbol/Characters List (Continued)

Symbol/character	Function	Description
H	Subprogram call sequence No.	Used in M98.
	Tool length offset data No.	Used in G43, G44.
	Indicates hexadecimal number constant.	Used in BMOV, BDMOV, MULTW, MULTR, TO or FROM.

- Multiple operators cannot be used in one block.
- Refer to Section 6.11.4 for the setting range of instruction symbols.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.11 Setting Method for Command Data

This section describes the setting method for command data (addresses, speeds, operational expressions) used in the Motion programs.
There are following two setting method for command data.

- Direct setting (using numerical values entering)
... Refer to Section 6.11.1.
- Indirect setting (using variable : \#**** or device : \#W****)
... Refer to Section 6.11.2.
"Direct setting" and "indirect setting" can be used together in one Motion program.

6.11.1 Direct setting (numerical value)

Direct setting is a way to set each positioning data using a numerical value, and these data are fixed data. Data setting and correction can be made using the peripheral device only.
<Example of positioning data setting by direct setting>

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.11.2 Indirect setting

(1) Variable representation

The 16-bit integer type, 32-bit integer type and 64-bit double precision real number can be used as variables.

	Data registers	Link registers	Motion registers	Coasting timer
16-bit integer type	\#n, \#Dn, \#nS, \#DnS, \#n:S, \#Dn:S	\#Wn:S	\#@n, \#@nS, \#@n:S	-
32-bit integer type	\#nL, \#DnL, \#n:L, \#Dn:L	\#Wn:L	\#@nL, \#@n:L	\#FT (Read only)
64-bit double precision real number	\#nF, \#DnF, \#n:F, \#Dn:F	\#Wn:F	\#@nF, \#@n:F	-

n : Variable or device number

(2) Usable device range

(a) Word device

Item	Q173HCPU/Q172HCPU		
	Points	Accessibility	
		Read	Write
Data register (D)	8192 points	\bigcirc	\bigcirc
Link register (W)	8192 points	\bigcirc	\bigcirc
Special register (D)	256 points	\bigcirc	\bigcirc
Motion register (\#)	8192 points	\bigcirc	\bigcirc
Coasting timer (FT)	1 point ($888 \mu \mathrm{~s}$)	\bigcirc	\times

\bigcirc : Usable $\quad \times$: Unusable
(b) Bit device

Item		Q173HCPU/Q172HCPU			
		Points	Accessibility		
		Read	Write		
Input/output	Input module noninstallation range (X)		8192 points	\bigcirc	\bigcirc
	Output module noninstallation range (Y)	\bigcirc		\bigcirc	
Real input/ output	Input module installation range (PX)	Up to 256 points	\bigcirc	\times	
	Output module installation range (PY)		\bigcirc	\bigcirc	
Internal relay (M/L total)		8192 points	\bigcirc	\bigcirc	
Special relay (M)		256 points	\bigcirc	\bigcirc	
Link relay (B)		8192 points	\bigcirc	\bigcirc	
Annunciator (F)		2048 points	\bigcirc	\bigcirc	

O : Usable
\times : Unusable

POINT

(1) The data register is shown as "\#D" or "\#" in the Motion program.

Describe it as "\#@" to indicate a motion register.
(2) The mark of the I/O modules is X and Y in the Motion program regardless of installation/non-installation. Do not use $P X$ and $P Y$.
(3) Variable conversion

When variables of different types are used for operation, the types are matched by internal operation.
Type conversion is made by internal operation as follows.

Conversion format	Description
16 bit to 32 bit	The 16-bit integer type is extended to 32-bit integer type. Higher rank bit is handled as a sign bit. If the sign bit is " 1 ", bits 15 to 31 are " 1 ".
16 bit to 64 bit	The 16-bit integer type is converted to 64-bit double precision real number. Higher rank bit is handled as a sign bit.
32 bit to 16 bit	The 32-bit integer type is converted to 16-bit integer type. Note that any value other than -32768 to 32767 results in an error. (Error : 531) Bits 0 to 15 are stored. Bits 16 to 31 are discarded.
32 bit to 64 bit	The 32-bit integer type is converted to 64-bit double precision real number. Higher rank bit is handled as a sign bit.
64 bit to 16 bit	The 64-bit double precision real number is converted to 16-bit integer type. Note that any value other than -32768 to 32767 results in an error. (Error : 531)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Conversion format	Description
64 bit to 32 bit	The 64-bit double precision real number is converted to 32-bit integer type. Note that any value other than -2147483648 to 2147483647 results in an error. (Error: 531)

(4) Variable setting (\# $\mathrm{n}: \mathrm{n}=$ integer)
(a) How to handle variable as 16-bit integer

When a \#n variable is followed by "S" or ": S ", it is handled as a 16 -bit integer. (-32768 to 32767)
[Example]
\#0 : [D0]
\#1S : [D1]
\#2:S : [D2]
Odd numbers may be used as 16-bit specified variables.
(b) How to handle variable as 32-bit integer

Variables are handled as 32 bits. (-2147483648 to 2147483647)
[Example]
Upper Lower Upper Lower
\#100:L : [D101, D100] \#102:L : [D103, D102]

- When a variable is specified as 2 words (32 bits), only an even number can be used. The data size of a variable is 4 bytes.
<Example of positioning data setting by variable setting>

(c) How to handle variable as 64-bit double precision real number By handling a variable as a 64-bit double precision real number, arithmetic operation spanning multiple blocks can be performed without reduction in precision.
Describe a capital letter ":F" after a \#n variable.
$\# \mathrm{nF}$: Four variables of $\# \mathrm{n}$ to $\# \mathrm{n}+3$ are used and handled as a 64-bit double precision real number.

Bn	Bit 0		
$\# n+3$	$\# n+2$	$\# n+1$	$\# n$

The data format of a 64-bit double precision real number conforms to the binary floating-point type double precision (64 bits) of IEEE Standard.

[Example]
\#@10:F=\#@20:L/\#@22:L;
The division result of 32-bit integers, [\#@21, \#@20] and [\#@23, \#@22], is stored to a 64-bit real number, [\#@13, \#@12, \#@11, \#@10].
\#@10:F=\#@20:L;
A 32-bit integer, [\#@21, \#@20], is expanded in sign to a 64-bit real number, [\#@13, \#@12, \#@11, \#@10].
\#@40:L=\#@30:F;
A 64-bit integer, [\#@33, \#@32, \#@31, \#@30], is expanded in sign to a 32-bit integer, [\#@41, \#@40].
<Restrictions> 64-bit double precision real numbers cannot be used in the function INT and FTL.

(5) Assignment of variable

When a decimal point is added for assignment of a value to a variable, the value is assigned as shown below.
\#@10:L=1.; \rightarrow "10000 enters in \#@10, \#@11.
\#@10:F=1.; \rightarrow "10000 (64-bit double precision real number) enters in \#@10, \#@11, \#@12, \#@13.
"1." is converted into a value of four decimal places.
(Converted to a value of four decimal places regardless of the unit (mm , inch, degree).)
[Example]
<Command address 1>
G91;
\#@10:L=1.;
G0 X\#@10:L ; ヶThe travel value of X is any of the following values.

mm	inch	degree
1 mm	0.1 inch	0.1 degree

```
<Command address 2>
G91;
\#@10:F=1.;
G0 X\#@10:F ; ヶThe travel value of \(X\) is equivalent to any of the following values if it is "\#@10F=1.;" (64-bit double precision real number).
\begin{tabular}{|c|c|c|}
\hline mm & inch & degree \\
\hline 1 mm & 0.1 inch & 0.1 degree \\
\hline
\end{tabular}
```

```
<Feed speed (F) 1>
G91;
\#@10:L=1.;
G01 X10.F\#@10:L ; \(\leftarrow\) The feed speed (F) of X-axis is any of the following values.
\begin{tabular}{|c|c|c|}
\hline mm & inch & degree \\
\hline \(100 \mathrm{~mm} / \mathrm{min}\) & \(10 \mathrm{inch} / \mathrm{min}\) & 10 degree \(/ \mathrm{min}\) \\
\hline
\end{tabular}
```

```
<Feed speed (F) 2>
    G91;
    #@10F=1.;
    G01 X10.F#@10F ; \leftarrowThe feed speed (F) of X-axis is equivalent to any of
                                    the following values if it is "#@10F=1.;" (64-bit
                                    double precision real number).
\begin{tabular}{|c|c|c|}
\hline mm & inch & degree \\
\hline \(100 \mathrm{~mm} / \mathrm{min}\) & \(10 \mathrm{inch} / \mathrm{min}\) & 10 degree \(/ \mathrm{min}\) \\
\hline
\end{tabular}
```

(6) Device setting (\#Xx: Xx is device)

The word device ($\mathrm{D}, \mathrm{W}, \#$) and bit device ($\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{B}, \mathrm{F}$) can be referred to by device setting.
Because the word device (D, W, \#) is handled as 32 bits (2 word data), only an even number can be used.
The four fundamental operations of bit devices cannot be performed.
[Example]
\#X180 : X180
\#M2000 : M2000
\#D100:L : [D101, D100] ([upper, lower])

- The word device can be used only an even number. The data size of a variable is 4 bytes.

POINT

For two-word setting, set an even-numbered device.

(7) Inputting device data

The device data for indirect setting is input by the Motion CPU at the Motion program start.
Therefore, execute the pre-read disable of M100 for the indirect setting.
The procedure by start method for setting data to devices and cautions are shown below.

Starting methods	Setting procedure	Cautions
Start by the Motion program	Set the data in indirect setting devices. Start the Motion program.	Do not change the indirect setting device before the
Automatic start by the cancel/start	Set the data to the indirect setting devices set in the start program. Turn the cancel command device ON.	"positioning start complete signal" of the starting axis turns ON .
After program start	Set the command data to the indirect setting devices. Execute the M100 pre-read disable. \downarrow Refer to the values set to the indirect setting devices until the M100 is executed.	Example O0010; N1 G00 X0 F1000. ; N2 M100; N3 G01 X100. F1500.; N4 G01 X\#D2000L F1500. ; M02; \% Set "D2000, D2001" before execution of N 2 . They may not be reflected after execution of N 2 .

POINTS

(1) The Motion program No. (O) cannot be set indirectly.
(2) When the Motion program is executed in the Motion CPU, the data of specified devices (2-word or 4-word) are input in the variable setting or device setting using word devices.
Take an interlocks with the start accept flag (M2001 to M2032) not to change until the specified axes accept a start for the device data specified for indirect setting.
When performing positioning control, execute the start request of Motion program after setting the data to indirect setting devices. If the data is changed before the acceptance of start, positioning control may not be executed with normal values.
(3) Set a variable latch using the peripheral devices.
(4) Variable setting "\#****" is the same in value as device setting "\#D****" which uses data registers.
Example) \#2000=1;
\#D2000=2; \leftarrow The value of \#2000 is also 2.
Therefore, the motion device is described as "\#@".

6.11.3 Operational data

(1) Four fundamental operations (+, -, ${ }^{*}, /$, MOD)

The data type combinations and conversion methods for four fundamental operations (+, -, ${ }^{*}, l$, MOD) are shown below.
Operation result = [Data 1] operator [Data 2]
4 Operator indicates + , -, *, / or MOD
Internal operation is performed after conversion into the type of the operation result. If there is no operation result such as a conditional expression, internal operation is performed with 32 -bit data. For MOD, however, if the operation result type is 64-bit data with floating point, internal operation is performed with 32-bit data, which is then converted into the operation result type and stored.

No.	Operation result	Data 1	Data 2
1	\#n (16 bit) No conversion Error occurs if conversion result exceeds 16-bit range. (Error: 531)	\#n (16 bit) No conversion	\#n (16 bit) No conversion
2			\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)
3			\#nF, \#n:F (64 bit) 64-bit data is converted into 16-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 16-bit range. (Error : 531)
4		\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)	\#n (16 bit) No conversion
5			\#nL, \#n:L (32 bit) 32-bit data is converted into 16 -bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)
6			\#nF, \#n:F (64 bit) 64-bit data is converted into 16-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 16-bit range. (Error : 531)
7		\#nF, \#n:F (64 bit) 64-bit data is converted into 16 -bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 16-bit range. (Error : 531)	\#n (16 bit) No conversion
8			\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)
9			\#nF, \#n:F (64 bit) 64-bit data is converted into 16 -bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 16-bit range. (Error : 531)

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

No.	Operation result	Data 1	Data 2
10	\#nL, \#n:L (32 bit) (32 bit) No conversion Error occurs if conversion result exceeds 32-bit range. (Error : 531)	\#n (16 bit) 16-bit data is converted into 32-bit data.	$\# \mathrm{n} \quad \text { (16 bit) }$ 16-bit data is converted into 32-bit data.
11			\#nL, \#n:L (32 bit) No conversion
12			\#nF, \#n:F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error:531)
13		\#nL, \#n:L (32 bit) No conversion	$\begin{array}{\|ll} \hline \# n \quad(16 \text { bit }) \\ 16-\text { bit data is converted into 32-bit data. } \end{array}$
14			\#nL, \#n:L (32 bit) No conversion
15			\#nF, \#n:F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error: 531)
16		```#nF, #n:F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error: 531)```	$\begin{array}{\|l} \hline \mathrm{\# n} \text { (16 bit) } \\ \text { 16-bit data is converted into 32-bit data. } \end{array}$
17			\#nL, \#n: L (32 bit) No conversion
18			\#nF, \#n: F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error : 531)

n : Indicates variable number or device number

- For +, -, *, / (except MOD)

No.	Operation result	Data 1	Data 2
19	\#nF, \#n:F (64 bit) (64 bit) No conversion	\#n (16 bit) 16-bit data is converted into 64-bit data.	\#n (16 bit) 16-bit data is converted into 64-bit data.
20			$\begin{array}{\|l} \hline \# n L, ~ \# n: L \quad(32 \text { bit }) \\ \text { 32-bit data is converted into 64-bit data. } \end{array}$
21			\#nF, \#n:F (64 bit) No conversion
22		\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.	\#n (16 bit) 16-bit data is converted into 64-bit data.
23			\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
24			\#nF, \#n:F (64 bit) No conversion
25		\#nF, \#n:F (64 bit) No conversion	\#n (16 bit) 16 -bit data is converted into 64-bit data.
26			\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
27			\#nF, \#n:F (64 bit) No conversion

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

- For MOD

No.	Operation result	Data 1	Data 2
28	\#nF, \#n:F (64 bit) (64 bit) Internal operation result (32 bit) is converted into 64bit data.	\#n (16 bit) 16-bit data is converted into 32 -bit data.	$\begin{array}{ll} \# n & (16 \text { bit) } \\ 16 \text {-bit data is converted into } 32 \text {-bit data. } \end{array}$
29			\#nL, \#n:L (32 bit) No conversion
30			\#nF, \#n: F (64 bit) 64-bit data is converted into 32 -bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error : 531)
31		\#nL, \#n:L (32 bit) No conversion	$\begin{array}{\|ll} \# n & (16 \text { bit) } \\ \text { 16-bit data is converted into 32-bit data. } \\ \hline \end{array}$
32			\#nL, \#n:L (32 bit) No conversion
33			\#nF, \#n:F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error : 531)
34 35		\#nF, \#n:F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error : 531)	\#n (16 bit) 16-bit data is converted into 32-bit data. \#nL, \#n:L (32 bit) No conversion
36			\#nF, \#n:F (64 bit) 64-bit data is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if conversion result exceeds 32-bit range. (Error : 531)

n : Indicates variable number or device number
(2) Logical operations (AND, OR, XOR, NOT), shift operators (<<, >>) - For AND, OR, XOR, <<, >>

The data type combinations and conversion methods for logical operations (AND, OR, XOR) and shift operators (<<, >>) are shown below.
Operation result = [Data 1] operator [Data 2]
4 Operator indicates AND, OR, XOR, << or >>
For logical and shift operations, operation including the 64-bit floating-point type cannot be performed. (Error " 560 : format error")

No.	Operation result	Data 1	Data 2	Remarks
1	\#n (16 bit) No conversion	\#n (16 bit) No conversion	\#n (16 bit) No conversion	
2			\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)	
3			\#nF, \#n:F (64 bit) Operation cannot be performed.	Operation disabled
4		\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)	\#n (16 bit) No conversion	
5			\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)	
6			\#nF, \#n:F (64 bit) Operation cannot be performed.	Operation disabled
7		\#nF, \#n:F (64 bit) Operation cannot be performed.	$\# \mathrm{n} \quad \text { (16 bit) }$ Operation cannot be performed.	Operation disabled
8			\#nL, \#n:L (32 bit) Operation cannot be performed.	Operation disabled
9			\#nF, \#n:F (64 bit) Operation cannot be performed.	Operation disabled
10	$\begin{aligned} & \# \mathrm{~nL}, \# \mathrm{n}: \mathrm{L} \quad \text { (32 bit) } \\ & \text { (32 bit) } \\ & \text { No conversion } \end{aligned}$	\#n (16 bit) 16-bit data is converted into 32-bit data.	\#n (16 bit) 16-bit data is converted into 32-bit data.	
11			\#nL, \#n:L (32 bit) No conversion	
12			\#nF, \#n:F (64 bit) Operation cannot be performed.	Operation disabled
13		\#nL, \#n:L (32 bit) No conversion	\#n (16 bit) 16-bit data is converted into 32-bit data.	
14			\#nL, \#n:L (32 bit) No conversion	
15			\#nF, \#n: F (64 bit) Operation cannot be performed.	Operation disabled
16		\#nF, \#n:F (64 bit) Operation cannot be performed.	\#n (16 bit) Operation cannot be performed.	Operation disabled
17			\#nL, \#n:L (32 bit) Operation cannot be performed.	Operation disabled
18			$\begin{aligned} & \# \mathrm{nF}, \# \mathrm{n}: \mathrm{F} \quad(64 \mathrm{bit}) \\ & \text { Operation cannot be performed. } \end{aligned}$	Operation disabled

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

- For NOT

The following table indicates the data type combinations and conversion methods for NOT.
Operation result = operator [Data 1]
 Operator denotes NOT.
For logical and shift operations, operation including the 64-bit floating-point type cannot be performed. (Error "560 : format error")

No.	Operation result	Data 1	Remarks
1	\#n (16 bit) No conversion	\#n (16 bit) No conversion	
2		\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data. Error occurs if conversion result exceeds 16-bit range. (Error : 531)	
3		\#nF, \#n:F (64 bit) Operation cannot be performed.	Operation disabled
4	\#nL, \#n:L (32 bit) (32 bit) No conversion	\#n (16 bit) 16-bit data is converted into 32-bit data.	
5		\#nL, \#n:L (32 bit) No conversion	
6		\#nF, \#n:F (64 bit) Operation cannot be performed.	Operation disabled

n : Indicates variable number or device number
(3) Trigonometric functions (SIN, COS, TAN, ASIN, ACOS, ATAN)

The data type combinations and conversion methods for trigonometric functions (SIN, COS, TAN, ASIN, ACOS, ATAN) are shown below.
Operation result = trigonometric function [Data 1]
4 Trigonometric function indicates SIN, COS, TAN, ASIN, ACOS or ATAN
Internal operation is performed with the 64-bit floating-point type.
When there is operation in Data 1, operation is performed after conversion into 64-bit data.

No.	Operation result	Data 1
1	\#n (16 bit) Internal operation result (64 bit) is multiplied by 10000 and result of multiplication is converted into16-bit data. Fractional portion is dropped during conversion. Error occurs if operation result exceeds 16-bit range. (Error: 531)	\#n (16 bit) 16-bit data is converted into 64-bit data. Data is divided by 10000 during conversion.
2		\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data. Data is divided by 10000 during conversion.
3		\#nF, \#n:F (64 bit) Data is divided by 10000 during conversion.
4	\#nL, \#n:L (32 bit) Internal operation result (64 bit) is multiplied by 10000 and result of multiplication is converted into 32-bit data. Fractional portion is dropped during conversion. Error occurs if operation result exceeds 32-bit range. (Error : 531)	\#n (16 bit) 16-bit data is converted into 64-bit data. Data is divided by 10000 during conversion.
5		\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data. Data is divided by 10000 during conversion.
6		\#nF, \#n:F (64 bit) Data is divided by 10000 during conversion.
7	\#nF, \#n:F (64 bit) Internal operation result (64 bit) is stored as it is.	$\begin{array}{\|ll} \hline \# n \quad \text { (16 bit) } \\ 16 \text {-bit data is converted into 64-bit data. } \end{array}$
8		\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
9		\#nF, \#n:F (64 bit) No conversion

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

(4) Floating-point type real number processing instructions (INT, FLT) The data type combination and conversion method for floating-point type real number processing instructions (INT, FLT)are shown below.
Operation result $=$ function [Data 1]
Δ
Function indivates INT or FLT.
The floating-point type real number processing instructions (INT, FLT) can operate the 32-bit type only.
The floating-point type real number processing instructions cannot operate data other than the 32-bit type. (Error "560 : Format error")
INT and FLT cannot be used with other operations. (Error "560 : Format error")

No.	Operation result	
	\#nL, \#n:L (32 bit)	
	<INT>	
	32-bit floating-point type is converted into 32-bit type.	
1	Fractional portion is dropped during conversion.	\#nL, \#n:L (32 bit)
	Error occurs if operation result exceeds 32-bit range.	No conversion
	(Error : 531)	
	<FLT>	
	32-bit type is converted into 32-bit floating-point type.	

n : Indicates variable number or device number
(5) Functions (SQRT, ABS, LN, EXP)

The data type combinations and conversion methods for functions (SQRT, ABS, LN, EXP) are shown below.
Operation result = function [Data 1]
4
Function indicates SQRT, ABS, LN or EXP
Internal operation of SQRT, LN or EXP is performed with the 64-bit floating-point type.
Internal operation of ABS is performed by making conversion into the operation result type.
When there is operation in Data 1 for SQRT, operation is performed after conversion into 64-bit data.

- For SQRT, LN, EXP

No.	Operation result	Data 1
1	\#n (16 bit) Internal operation result (64 bit) is converted into 16-bit	\#n (16 bit) 16-bit data is converted into 64 -bit data.
2	data. Fractional portion is dropped during conversion.	\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
3	Error occurs if operation result exceeds 16-bit range. (Error : 531)	\#nF, \#n:F (64 bit) No conversion
4	\#nL, \#n:L (32 bit) Internal operation result (64 bit) is converted into 32-bit	\#n (16 bit) 16 -bit data is converted into 64 -bit data.
5	data. Fractional portion is dropped during conversion.	\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
6	Error occurs if operation result exceeds 32-bit range. (Error : 531)	\#nF, \#n:F (64 bit) No conversion
7		\#n (16 bit) 16 -bit data is converted into 64 -bit data.
8	\#nF, \#n:F (64 bit) No conversion	\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
9		\#nF, \#n:F (64 bit) No conversion

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

- For ABS

No.	Operation result	Data 1
1		\#n (16 bit) No conversion
2	\#n (16 bit) No conversion	\#nL, \#n:L (32 bit) 32-bit data is converted into 16-bit data.
3		\#nF, \#n:F (64 bit) 64-bit data is converted into 16-bit data.
4		\#n (16 bit) 16-bit data is converted into 32-bit data.
5	\#nL, \#n:L (32 bit) No conversion	\#nL, \#n:L (32 bit) No conversion
6		\#nF, \#n:F (64 bit) 64-bit data is converted into 32-bit data.
7		\#n (16 bit) 16-bit data is converted into 64-bit data.
8	\#nF, \#n:F (64 bit) No conversion	\#nL, \#n:L (32 bit) 32-bit data is converted into 64-bit data.
9		\#nF, \#n:F (64 bit) No conversion

n : Indicates variable number or device number
(6) Functions (BIN, BCD)

The data type combinations and conversion methods for functions (BIN, BCD) are shown below.
Operation result $=$ function [Data 1]
Function indicates BIN or BCD
Internal operation is performed by making conversion into the 32-bit type.
Operation including the 64-bit floating-point type cannot be performed.
(Error "560 : format error")
BIN and BCD cannot be used with other operations.
(Error "560 : format error")

No.	Operation result	Data 1
1	\#n (16 bit) Internal operation result (64 bit) is converted into 16-bit data. Error occurs if operation result exceeds 16-bit range. (Error : 531)	$\begin{array}{ll} \# \mathrm{n} \quad \text { (16 bit) } \\ 16 \text {-bit data is converted into 32-bit data. } \end{array}$
2		\#nL, \#n:L (32 bit) No type conversion
3		\#nF, \#n:F (64 bit) Operation cannot be performed.
4	\#nL, \#n:L (32 bit) No type conversion	\#n (16 bit) 16 -bit data is converted into 32 -bit data.
5		\#nL, \#n:L (32 bit) No type conversion
6		\#nF, \#n:F (64 bit) Operation cannot be performed.

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

(7) Functions (round-off (RND), round-down (FIX), round-up (FUP))

The data type combinations and conversion methods for round-off (RND), rounddown (FIX) and round-up (FUP) are shown below.
Operation result = function [Data 1]
Δ
Function denotes RND, FIX or FUP.
Round-off (RND), round-down (FIX) and round-up (FUP) cannot perform operation of other than the 64-bit floating-point type.
(Error "560 : format error")

No.	Operation result	Data 1
1	\#nF, \#n:F (64 bit) No type conversion <RND> Rounds off data 1 to one decimal place. <FIX> Rounds down data 1 to the units. <FUP> Rounds up data 1 to the units.	\#nF, \#n:F (64 bit) No type conversion

n : Indicates variable number or device number

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.11.4 Setting range of instruction symbols list

Setting range of instruction symbols used in the Motion programs are shown below.
Table 6.2 Setting Range of Instruction Symbol List

	Symbol	Function	Setting range	
			Motion program description	Indirect setting value by variable
Address	A	Coordinate position data	-214748.3648 to 214748.3647 [mm] -21474.83648 to 21474.83647 [inch] 0 to 359.99999 [degree]	-2147483648 to 2147483647 0 to 35999999
	B	Coordinate position data		
	C	Coordinate position data		
	U	Coordinate position data		
	V	Coordinate position data		
	W	Coordinate position data		
	X	Coordinate position data		
	Y	Coordinate position data		
	Z	Coordinate position data		
	CA	Coordinate position data		
	CB	Coordinate position data		
	CU	Coordinate position data		
	CV	Coordinate position data		
	CW	Coordinate position data		
	CX	Coordinate position data		
	CY	Coordinate position data		
	CZ	Coordinate position data		
	DA	Coordinate position data		
	DB	Coordinate position data		
	DU	Coordinate position data		
	DV	Coordinate position data		
	DW	Coordinate position data		
	DX	Coordinate position data		
	DY	Coordinate position data		
	DZ	Coordinate position data		
	EA	Coordinate position data		
	EB	Coordinate position data		
	EU	Coordinate position data		
	EV	Coordinate position data		
	EW	Coordinate position data		
	EX	Coordinate position data		
	EY	Coordinate position data		
	EZ	Coordinate position data		
	1	Circular arc central coordinate 1		
	J	Circular arc central coordinate 2		

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Table 6.2 Setting Range of Instruction Symbol List (Continued)

	Symbol	Function	Setting range	
			Motion program description	Indirect setting value by variable
Address	R	Radius of R point specified circular arc	0 to 214748.3647 [mm] 0 to 21474.83647 [inch] 0 to 359.99999 [degree]	0 to 2147483647 0 to 35999999
Speed	F	Interpolation feed combined speed	$\begin{array}{\|c\|} \hline 0.01 \text { to } 6000000.00[\mathrm{~mm} / \mathrm{min}] \\ 0.001 \text { to } 600000.000[\mathrm{inch} / \mathrm{min}] \\ 0.001 \text { to } 2147483.647[\text { degree } / \mathrm{min}]^{\text {(Note-1) }} \\ \hline \end{array}$	$\begin{gathered} 1 \text { to } 600000000 \\ 1 \text { to } 2147483647 \end{gathered}$
Others	G	Preparatory function (G-code)	$\begin{array}{\|l\|} \hline 00,01,02,03,04,09,12,13,23,24,25, \\ 26,28,30,32,43,44,49,53,54,55,56, \\ 57,58,59,61,64,90,91,92,98,99, \\ 100,101 \\ \hline \end{array}$	-
	H	Subprogram call sequence No.	1 to 9999	1 to 9999
		Tool length offset data No.	1 to 20	1 to 20
	L	Subprogram repeat count	0 to 9999	0 to 9999
	M	Auxiliary function (M-code)	0 to 9999	0 to 9999
	N	Sequence No.	1 to 9999	-
	0	Motion program No.	1 to 1024	-
	P	Dwell time	1 to 65535	1 to 65535
		Start program No.	1 to 1024	1 to 1024
		Subprogram call No.	1 to 1024	1 to 1024
	PB	Parameter block No.	1 to 16	1 to 16
	TL	Torque limit value	1 to 1000	1 to 1000
Operational expression	+	Addition	-2147483648 to 2147483647	$\begin{gathered} -2147483648 \text { to } \\ 2147483647 \end{gathered}$
	-	Subtraction		
	*	Multiplication		
	/	Division		
	MOD	Remainder		

(Note-1) : When the "speed control $10 \times$ multiplier setting for degree axis" set to "valid", the setting range is 0.01 to 21474836.47[degree/min].

REMARK

(1) Command unit

A decimal point can be entered in the Motion program input information which defines the command address or speed, etc.
[Example] 123456.7890
A decimal point may also be omitted.
When a decimal point is omitted, a command address is represented in 0.0001 [mm], 0.00001 [inch] or 0.00001 [degree] increments, for example. <For command address> <For feed speed (F)>
000000.0000
[Example] 10. $\cdots \cdots 10 \mathrm{~mm}$ $10 \cdots \cdots \cdot 0.001 \mathrm{~mm}$ (unit: mm)
00000000.00
[Example] 10. $\cdots \cdots .10 \mathrm{~mm} / \mathrm{min}$
$10 \cdots \cdots . .0 .1 \mathrm{~mm} / \mathrm{min}$ (unit: mm)
Any value may be specified up to 10 digits. (Decimal point not included) Specifying more than 10 digits will result in an error.
Number of effective digits below decimal point are listed below. After effective digits are ignored. Note that specifying 10 or more digits will result in an error.

	Unit	mm	inch	degree
Command	4	5	5	
Command address	2	3	$3^{\text {(Note) }}$	
Command speed				

(Note) : When the "speed control $10 \times$ multiplier setting for degree axis" set to "valid", the number of effective digits below decimal point is 2 .

6.11.5 Positioning control unit for 1 axis

For one axis, positioning control is executed in the control unit specified in the fixed parameter.
(The control unit specified in the parameter block is ignored.)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.11.6 Control units for interpolation control

(1) The interpolation control units specified with the parameter block and the control units of the fixed parameter are checked.
If the interpolation control units specified with the parameter block differ from the control units of the each axis fixed parameter for the interpolation control, it shown below.

	Interpolation control units in the parameter block			Starting method
	mm	inch	degree	
Condition for normal start	There are axes whose control unit set in the fixed parameter is [mm] /[inch].		There are axes whose control unit set in the fixed parameter is [degree].	Control starts by the interpolation control unit of parameter block.
Condition for unit mismatch error (error code : 40)	Control units interpolation c	meter for al cified with	axes differ from the ameter block.	- If the control units of axes to be interpolation-controlled are the same, control starts in the preset control unit. - If the control units of axes to be interpolation-controlled are different, control starts in the unit of highest priority as indicated below. Priority degree>inch>mm

(2) The combinations of each axis control units for interpolation control are shown in the table indicated below.

	mm	inch	degree
mm	$1)$	$2)$	$2)$
inch	$2)$	$1)$	$2)$
degree	$2)$	$2)$	$1)$

1) : Same unit 2) : Unit mismatch
(a) Same unit (1))

The position command value is calculated according to the setting address/travel value, positioning speed and electronic gear.
(b) Unit mismatch (2))

- The travel value and positioning speed are calculated for each axis.
a) The travel value is converted into the [PLS] unit using the electronic gear of its own axis.
b) The positioning speed is converted into the [PLS/s] unit using the electronic gear of the axis whose control unit matches the interpolation control unit.
The travel value converted into [PLS], the speed converted into [PLS/s], and the electronic gear are used to calculate the position command value for positioning.
- If there are two or more axes whose control units are the same as the interpolation control unit in the linear interpolation of three or more axes, the electronic gear of the lowest axis No. is used to calculate the positioning speed.

[^1]
6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.11.7 Control in the control unit "degree"

If the control units are "degree", the following items differ from other control units.

(1) Current value address

The current addresses in the control units "degree" are ring addresses from 0° to 360°.

(2) Stroke limit valid/invalid setting

The upper/lower limit value of the stroke limit in the control unit "degree" is within the range of 0° to 359.99999°
(a) Stroke limit is valid

Set the "lower limit value to upper limit value of the stroke limit" in a clockwise direction to validate the stroke limit value.

1) If travel range in area A is set, the limit values are as follows :

- Lower stroke limit value : 315.00000°
- Upper stroke limit value : 90.00000°

2) If travel range in area B is set, the limit values are as follows :

- Lower stroke limit value : 90.00000°
- Upper stroke limit value : 315.00000°
(b) Stroke limit is invalid

Set the "upper stroke limit value" equal to "lower stroke limit value" to invalidate the stroke limit value.
It can be controlled regardless the stroke limit settings.

POINTS

(1) Circular interpolation including the axis which set the stroke limit as invalid cannot be executed.
(2) When the upper/lower limit value of the axis which set the stroke limit as valid are changed, perform the home position return after that.
(3) When the stroke limit is set as valid in the incremental data system, perform the home position return after power supply on.

(3) Positioning control

Positioning control method in the control unit "degree" is shown below.
(a) Absolute data method

Positioning in a near direction to the specified address is performed based on the current value.

Examples

(1) Positioning is executed in a clockwise direction to travel from the current value of 315.00000° to 0°.
(2) Positioning is executed in a counter clockwise direction to travel from the current value of 0° to 315.00000°.

POINTS

(1) The positioning direction of absolute data method is set a clockwise/counter clockwise direction by the setting method of stroke limit range, positioning in the shortest direction may not be possible.
----Example \qquad
Travel from the current value 0° to 315.00000° must be clockwise positioning if ', the lower stroke limit value is set to 0° and the upper stroke limit value is set to 345.00000°.

(2) Set the positioning address within the range of 0° to 360°.

Use the incremental data method for positioning of one revolution or more.
(b) Incremental data method

Positioning by the specified travel value to the specified direction.
The travel direction is set by the sign of the travel value, as follows :

1) Positive travel value
.Clockwise rotation
2) Negative travel value
.Counter clockwise rotation

POINT

Positioning of 360° or more can be executed in the incremental data method.

6.12 About Coordinate Systems

This section describes coordinate systems.
There are two coordinate systems : basic mechanical coordinate system and work coordinate system.
(1) Basic mechanical coordinate system
............................. A coordinate system specific to a machine and indicates the position determined specifically for the machine.
(2) Work coordinate system
............................ A coordinate system used by a programmer for programming to set the reference point on a work as a coordinate home position.
In the work coordinate system, a position is specified with an offset value from the basic mechanical coordinate system. The offset value is set with a distance from the mechanical coordinate system origin (0).
You can specify up to six work coordinate systems (work coordinates 1 to 6). Set them by parameter setting or work coordinate system selection (G54 to G59). (Refer to Section 5.4 and 6.13.24.)

By setting multiple work coordinates, you can easily perform multiple positioning operations with one Motion program.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13 G-code

This section describes instruction codes to use in the Motion program.
Each instruction is described in the following format.

No.	Description	No.	Description
1)	Name of the instruction code.	$4)$	Indicates the parameters related to this instruction.
2)	Indicates the model name.	$5)$	Indicates a program example which uses this instruction.
3)	Indicates the detailed explanation or precautions.	$6)$	Indicates supplementary explanation or instructions related to this instruction.

The arguments of G-code are shown in Table 6.3.
Table 6.3 G-code arguments

									$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \underset{4}{\mathbb{Z}} \\ & \underset{\sim}{\mathbb{\otimes}} \end{aligned}$	エ	-	z	0	Q	@	Remarks
G00	\bigcirc							\bigcirc	\bigcirc								Only G-codes of G04, G43, G44 and G49 are available. ${ }^{\text {(Note-1) }}$
G01	\bigcirc							\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04, G43, G44 and G49 are available. ${ }^{\text {(Note-1) }}$
G02	©		©					\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Central point command and axis command may be specified up to 2 axes.
G02	($)$	©						\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Radius command and axis command may be specified up to 2 axes.
G03	©		©					\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Central point command and axis command may be specified up to 2 axes.
G03	()	©						\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Radius command and axis command may be specified up to 2 axes.
G04															©		Dwell
G09									\bigcirc								Only G-codes of G01, G02, G03, G12 and G13 are available. (Note-1)
G12	()		©					\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Central point command and axis command may be specified up to 3 axes.
G12	()	©						\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Radius command and axis command may be specified up to 3 axes.
G13	()		©					\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Central point command and axis command may be specified up to 3 axes.
G13	()	©						\bigcirc	\bigcirc	\bigcirc							Only G-codes of G04 is available. Radius command and axis command may be specified up to 3 axes.
G23																	
G24					©										\bigcirc	\bigcirc	P: Start program No. PB : Parameter block No.
G25	©					\bigcirc	©				©						Specify only axis name for axis command and frequency for F.
G26	\bigcirc																Specify only axis name for axis command.
G28	\bigcirc								\bigcirc								Only G-codes of G53 is available.
G30	\bigcirc								\bigcirc								Only G-codes of G53 is available.
G32	\bigcirc			©				\bigcirc	\bigcirc	\bigcirc					\bigcirc		P must not be specified for axis command and M-code simultaneously.
G43	\bigcirc										©						
G44	\bigcirc										©						
G49	\bigcirc								\bigcirc								Only G-codes of G28 is available.
G53	\bigcirc								\bigcirc								Only G-codes of G28 is available.
G54	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12, G13 and G92 are available. (Note-1)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

Table 6.3 G-code arguments (Continued)

									$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{4}{\mathbb{Z}} \\ & \underset{\sim}{\mathbb{\otimes}} \end{aligned}$	エ	-	z	\bigcirc	Q	m	Remarks
G55	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12, G13 and G92 are available. (Note-1)
G56	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12, G13 and G92 are available. ${ }^{\text {(Note-1) }}$
G57	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12, G13 and G92 are available. ${ }^{\text {(Note-1) }}$
G58	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12, G13 and G92 are available. ${ }^{\text {(Note-1) }}$
G59	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12, G13 and G92 are available. (Note-1)
G61									\bigcirc								Only G-codes of G00, G01, G02, G03, G12 and G13 are available. (Note-1)
G64									\bigcirc								Only G-codes of G00, G01, G02, G03, G12 and G13 are available. ${ }^{\text {(Note-1) }}$
G90	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12 and G13 are available. ${ }^{\text {(Note-1) }}$
G91	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12 and G13 are available. ${ }^{\text {(Note-1) }}$
G92	\bigcirc								\bigcirc								Only G-codes of G00, G01, G02, G03, G12 and G13 are available. (Note-1)
G98																	
G99																	
G100																	
G101																	

For G43, G44, G49, G54 to G59, G90 and G91, use the currently selected modal group 01 to set the specifiable arguments.
(Note-1) : The G-code may be set in the first parameter only.
(Note-2) : The axis commands are X, Y, Z, U, V, W, A, B, CX, CY, CZ, CU, CV, CW, CA, CB, DX, DY, DZ, DU, DV, DW, DA, DB, EX, EY, EZ, EU, EV, EW, EA and EB.
(Note-3) : The M-codes are except M00, M01, M02, M30, M98, M99 and M100.

6.13.1 G00 Point-to-point positioning at the high-speed feed rate

Code	G00	
Function	Point-to-point positioning at the high-speed feed rate	The positions of the specified axes are executed. (PTP)

Format	

[Explanation]

(1) The linearly positioning of the specified axes from the current value to specified coordinate position at the fixed speed for all axes.
(2) Since this command is a modal instruction, it is valid until another G-code in the same modal group is used. Therefore, when the next command is the same Gcode, it is possible by specifying only the axis name. (G00, G01, G02, G03, G12 and G13 are contained in a modal group (01).)
(3) Acceleration or deceleration is always executed at the start or end point of a block, and it proceeds to the next block in this command.
(4) The positioning speed is the high-speed feed rate of each axis or less.
[Example] G00 X100. ;
X150.;
(High-speed feed rate : $10000[\mathrm{~mm} / \mathrm{min}]$, speed limit value in parameter block : 12000[mm/min])

(5) This command executes the acceleration-fixed acceleration/deceleration. Acceleration is calculated from the lower speed among the high-speed feed rate or speed limit value and the acceleration/deceleration time in the parameter block.
(6) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).
(7) When a M-code is commanded, G00 executes the acceleration/deceleration in the same way as G01 at the acceleration time of the parameter block. (Example G00 $\mathrm{X} \square \mathrm{M} \square$;)

[Related Parameters]

High-speed feed rate: The maximum feed rate of each axis is set.
(Refer to Section 5.2.5 for the high-speed feed rate setting of the fixed parameter.)
The positioning is executed in the shortest path which connects the start and end point at the execution of G00.
The positioning speed is the high-speed feed rate of each axis or less.

[Program Example]

Program to execute positioning of A, B, C, D and E points. (Absolute value command)

1) G00 X100. Y100. ; (A point positioning)
2) $X 200$. ;
3) Y200. ;
(B point positioning) $\}$ Travel with G00
(C point positioning)
Y300. F100. ; (D point positioning)
$\left.\begin{array}{l}\text { (D point positioning) } \\ \text { (E point positioning) }\end{array}\right\}$ Travel with G01
4) X300. ;

(Unit: mm)

REMARK

(1) To execute the feed rate of G00, the axis whose time to reach the target position is the longest in the travel/high-speed federate (fixed parameter) of the each axes is used as the reference axis, and interpolation is made in the reference axis speed interpolation mode phase or the like. (Refer to Section 5.2.5.)
(2) The high-speed feed rate of each axis is clamped at the speed limit value if it is larger than the speed limit value of the parameter block. The calculation of the reference axis is also made using the clamped value.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.2 G01 Constant-speed positioning at the speed specified in F

Code	G01	Linear interpolation is executed from the current position to the Function
Constant-speed positioning at the speed specified in F	specied end point at the specified feed rate. (Constant-speed) The feed rate is specified at the linear speed (combined-speed) to the advance direction.	

Format	

[Explanation]

(1) Since this command is a modal instruction, it is valid until another G-code in the same group is used. Therefore, when the next command is G01, if the feed rate is not changed, it is possible by specifying only the axis name.
(2) The command unit of feed rate is specified in the interpolation control unit of parameter block.
(3) The maximum command value of feed rate is the speed limit value set in the parameter block.
(4) If the F command is not set in the first G01 command, a program error will (error code : 501) occur.
(5) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
[Example] G01 X100. F200. ;
X150.;

(6) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : $\# * * * *$).
(7) Specify G61 when making acceleration/deceleration at block switching.
(8) If the G02 or G03 command is executed during the G01 command (Constantspeed positioning), a deceleration stop is not made.
[Example] G01 X100. Y100. Z100. ;
G02 X0. Y0. I0. J50. F500. ;
Constant-speed control is
G03 X0. Y0. IO. J50. F500. ; \int executed in this area.
G01 X100. ;
(9) Acceleration/deceleration processing of G01 command G91 G01 X100. Y100. F100. ; Constant-speed positioning of X, Y..... Block 1
Y100. ; Constant-speed positioning of Y.......... Block 2
X100. ; Constant-speed positioning of X..........Block 3
When the above program is executed, the acceleration/deceleration processing of the X and Y -axis is shown below.

(Note) : 1) Both the acceleration and deceleration times are the acceleration time of the parameter block.
2) When a M-code is commanded, G00 executes the acceleration/ deceleration in the same way as G01 at the acceleration time of the parameter block.

[Related Parameters]

Speed limit value : The maximum feed rate of each axis is set.
(Refer to Section 5.3.1 for the speed limit value of the parameter block.)

[Program Example]

Program to execute positioning of A, B, C, D and E points. (Absolute value command)

1) G01 X100. Y100. F100. ; (A point positioning)
2) $X 200$. ;
(B point positioning) Travel with G01
3) Y200. ;
4) G00 Y300. ;
(C point positioning)
5) X300. ;
(D point positioning)
(Travel at feed rate
(E point positioning)
$\}$ Travel with G00

(Unit: mm)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.3 G02 Circular interpolation CW (Central coordinates-specified)

Code	G02	The axes travel from the current position (start point) to the specified
Function	Circular interpolation (CW) Circular arc central coordinate position (end point) with a circular arc (CW).	
The travel speed is the specified feed rate.		

[Explanation]

(1) The incremental values (always use incremental values) from the current position (start point) is used to command the circular arc center coordinates.
For G02 (CW), give the end point coordinates of the circular arc with the address (must be specified for 2 axes) and specify the central coordinates of circular arc with I and J.
The central coordinates 1,2 are I and J in order of lower axis No.s.
$\left[\begin{array}{l}\text { When } X=\text { Axis } 1, Y=A x i s ~ 2, ~ \\ I=1(X), J=2(Y) \\ \end{array}\right]$
When $X=$ Axis $2, Y=$ Axis $1, I=1(Y), J=2(X)$
(2) Always specify the end point coordinates for 2 axes as they cannot be omitted.

G02 (CW) : Clockwise

(3) If the end point is in the same position as the start point, the circular arc is 360° (complete round).
(4) If they cannot be linked by a circular arc, Within the allowable error range for circular interpolation : The start and end points are connected by helical interpolation.
Beyond the allowable error range for circular interpolation : An error occurs at the circular arc start point.
(5) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(6) When the circular arc central coordinates and radius are specified simultaneously for G02 (CW), the central coordinates-specified circular interpolation has priority.
(7) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).

[Related Parameters]

$\begin{array}{ll}\text { Speed limit value } & : \text { The maximum feed rate of each axis is set. } \\ \text { (Refer to Section } 5.3 .1 \text { for the speed limit value of the }\end{array}$ parameter block.)
Circular interpolation arc error : The permissible circular arc error range is set.
(Refer to Section 5.3.3 for the allowable error range for circular interpolation of the parameter block.)
[Program Example]
(1) The program which performs circular interpolation from the current position to draw a half circle.

G91 G02 X0. Y100. I0. J50. F500. ;

(2) The program which performs circular interpolation from the current value to draw a complete round.

G02 X0. Y0. IO. J50. F500. ; (Command for the complete round)

(Unit: mm)

REMARK

(1) The end point and circular arc central coordinates cannot be omitted. Always specify them for two axes.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation cannot be executed the combination of [mm] and [degree] or [inch] and [degree].

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.4 G03 Circular interpolation CCW (Central coordinates-specified)

\left.| Code | G03 | The axes travel from the current position (start point) to the specified |
| :---: | :--- | :--- |$\right\}$| Function |
| :--- |
| Circular interpolation (CCW)
 Circular arc central
 coordinate position (end point) with a circular arc (CCW).
 The travel speed is the specified feed rate. |

[Explanation]

(1) The incremental values (always use incremental values) from the current position (start point) is used to command the circular arc center coordinates.
For G03 (CCW), give the end point coordinates of the circular arc with the address (must be specified for 2 axes) and specify the central coordinates of circular arc with I and J.
The central coordinates 1,2 are I and J in order of lower axis No.s.
$\left[\begin{array}{l}\text { When } \mathrm{X}=\text { Axis } 1, \mathrm{Y}=\text { Axis } 2, \mathrm{I}=1(\mathrm{X}), \mathrm{J}=2(Y) \\ \text { When } \mathrm{X}=\text { Axis } 2, \mathrm{Y}=\text { Axis } 1, \mathrm{I}=1(\mathrm{Y}), \mathrm{J}=2(\mathrm{X})\end{array}\right]$
(2) Always specify the end point coordinates for 2 axes as they cannot be omitted.

G03 (CCW) : Counterclockwise

(3) If the end point is in the same position as the start point, the circular arc is 360° (complete round).
(4) If they cannot be linked by a circular arc,

Within the allowable error range for circular interpolation : The start and end points are connected by helical interpolation.
Beyond the allowable error range for circular interpolation : An error occurs at the circular arc start point.
(5) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(6) When the circular arc central coordinates and radius are specified simultaneously for G03 (CCW), the radius-specified circular interpolation has priority.
(7) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : $\# * * * *$).

[Related Parameters]

Speed limit value
: The maximum feed rate of each axis is set.
(Refer to Section 5.3.1 for the speed limit value of the parameter block.)
Circular interpolation arc error : The allowable error range for circular interpolation is set.
(Refer to Section 5.3.3 for the allowable error range for circular interpolation of the parameter block.)

[Program Example]

(1) The program which performs circular interpolation from the current position to draw a half circle.

G91 G03 X0. Y100. I0. J50. F500. ;

(2) The program which performs circular interpolation from the current value to draw a complete round.

G03 X0. Y0. I0. J50. F500. ; (Command for the complete round)

(Unit: mm)

REMARK

(1) The end point and circular arc central coordinates cannot be omitted. Always specify them for two axes.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.5 G02 Circular interpolation CW (Radius-specified)

Code	G02	The axes travel from the current position (start point) to the specified
Function	Circular interpolation (CW) Radius-specified circular coordinate position (end point) with a circular arc of the specified radius (CW).	

[Explanation]

(1) A circular arc of more than 180° is drawn at a negative circular arc radius (R) value, or a circular arc of 180° or less is drawn at a positive R value. Always use an incremental value to command the R value.

An error will occur if "the distance between start and end points" - radius $\times 2>$ "circular arc error".
(2) If a complete round command (the start point is the same as the end point) is specified in R-specified circular interpolation, an error (error code : 108) will occur and no operation is performed. Therefore, specify the circular arc central coordinates-specified for the complete round command.
(3) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(4) When the circular arc central coordinates and radius are specified simultaneously for G02 (CW), the radius-specified circular interpolation has priority.
(5) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : $\# * * * *$).

[Related Parameters]

Speed limit value : The maximum feed rate of each axis is set. (Refer to Section 5.3.1 for the speed limit value of the parameter block.)
Circular interpolation arc error : The allowable error range for circular interpolation is set.
(Refer to Section 5.3.3 for the allowable error range for circular interpolation of the parameter block.)

[Program Example]

(1) The program which draws a circular arc of more than 180° at a negative circular arc radius (R) value.

G91 G02 X50. Y50. R-50. F500. ;

(2) The program which draws a circular arc of 180° or less at a positive circular arc radius (R) value.

G91 G02 X50. Y50. R50. F500. ;

REMARK

(1) The end point coordinates and circular arc radius cannot be omitted. Always specify the end point coordinates and circular arc radius.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.

$$
6-63
$$

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.6 G03 Circular interpolation CCW (Radius-specified)

Code	G03	The axes travel from the current position (start point) to the specified
Function	Circular interpolation (CCW) Radius specified circular coordinate position (end point) with a circular arc of the specified radius (CCW).	

[Explanation]

(1) A circular arc of more than 180° is drawn at a negative circular arc radius (R) value, or a circular arc of 180° or less is drawn at a positive R value. Always use an incremental value to command the R value.

An error will occur if "the distance between start and end points" - radius $\times 2>$ "circular arc error".
(2) If a complete round command (the start point is the same as the end point) is specified in R-specified circular interpolation, an error (error code : 108) will occur and no operation is performed. Therefore, specify the circular arc central coordinates for the complete round command.
(3) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(4) When the circular arc central coordinates and radius are specified simultaneously for G03 (CCW), the radius-specified circular interpolation has priority.
(5) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : $\# * * * *)$.

[Related Parameters]

Speed limit value : The maximum feed rate of each axis is set. (Refer to Section 5.3.1 for the speed limit value of the parameter block.)
Circular interpolation arc error : The allowable error range for circular interpolation is set.
(Refer to Section 5.3.3 for the allowable error range for circular interpolation of the parameter block.)

[Program Example]

(1) The program which draws a circular arc of more than 180° at a negative circular arc radius (R) value.

G91 G03 X-50. Y50. R-50. F500. ;

(2) The program which draws a circular arc of 180° or less at a positive circular arc radius (R) value.

G91 G03 X-50. Y50. R50. F500. ;

(Unit: mm)

REMARK

(1) The end point coordinates and circular arc radius cannot be omitted. Always specify the end point coordinates and circular arc radius.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.

6.13.7 G04 Dwell

Code	G04	Execution of next block is waited for the specified period of time.
Function	Dwell	

Format	$\mathrm{GO} 4 _\mathrm{P} \quad \mathrm{p} ;$

[Explanation]

(1) The time from after deceleration stop of the preceding travel command until the next block start is specified.
(2) The symbol indicating the dwell time is "P".
(3) The dwell time is specified within the range of 1 to 65535 in increments of 0.001 [s].

Therefore, setting of G04 P1000 indicates a wait time of $1[\mathrm{~s}]$.

(4) The dwell time can be set by direct setting (numerical value) or indirect setting (variable: $\# * * * *)$.
(5) When specifying dwell in the same block as the travel block, describe dwell after the travel command.
Also, describe the dwell time (P) after G04.
[Example]
G00 X100 Y100 G04 P2000;
\square
Travel command (G00, G01, G02, G03, G12 or G13 can be specified.)

[Program Example]

The program in which dwell time is placed between positioning operation instructions.

1) G01 X100. F10. ;
(Positioning)
2) G04 P2000
(Dwell time set to 2[s])
3) G01 X200. ;
(Positioning)

The X-axis is positioned to "100.", stops there for $2[\mathrm{~s}]$, and starts positioning operation to "200." again.

REMARK

(1) A decimal point cannot be specified for the dwell time.
(2) When an operation cycle (refer to Section 1.2.1) is $0.88[\mathrm{~ms}]$, the longest of dwell time is 58.253 [s]. (Even if P58254 to P65535 is specified, it is clamped by 58.253[s].)

When an operation cycle is 0.44 [ms], the longest of dwell time is 29.127 [s].

6.13.8 G09 Exact stop check

Code	G09	The axes travel in the specified block point-to-point positioning.
Function	Exact stop check	

Format	G09_G01」X x F f;

[Explanation]

(1) This command is used with the interpolation command. Executing this command travels point-to-point positioning in only the specified block.
The interpolation command codes usable with this command are G01, G02, G03, G12 and G13 only.
(2) In this system, the next block is executed after making a deceleration stop in the specified coordinate position.
(3) Not being a modal instruction, this command is valid for the specified block only.
<When an exact stop check is used>
G09 G01 X100. F300. ;
X200.;

<When an exact stop check is not used>
G01 X100. F300. ;
X200.;

(4) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program which uses the exact stop check for positioning.

1) G09 G01 X100. F500. ; (Positioning by an exact stop check)
2) $X 200$. ;
3) $X 300$. ;
(Positioning)
4) G09 G01 X400. ;
(Positioning)
) G09 GO1 X400. ; (Positioning by an exact stop check)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.9 G12 Helical interpolation CW (Helical central coordinates-specified)

Code	G12	The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular end address or linear axis end point address, and the helical
Function	Helical interpolation (CW) Helical central coordinates- specified	interpolation (CW) is executed so that it may become a spiral course. The travel speed is the specified combined-speed for 2 axes circular interpolation axis.

[Explanation]

(1) The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current value (start point) to circular interpolation axis end point address (X, Y) or linear axis end point address (Z), and the helical interpolation is executed so that it may become a spiral course.
(2) Always use the incremental values (relative address) from the current position (start point) to command the circular arc central coordinates.
An absolute values or incremental values of the circular interpolation axis end point (X, Y) and linear axis end point (Z) depends in the modal status (G90/G91) when executing the Motion program.
(3) Always specify the end point coordinates for 3 axes as they cannot be omitted.
(4) Only the number of times specified by the number of pitches around on the specified circle, and it is executed positioning to end point at the specified circular interpolation.
(5) The center coordinates-specified circle specifies circular interpolation method connected start point and end point at the seeing on the plane for which performs circular interpolation.
(6) The central coordinates 1, 2 are I and J in order of lower axis No.s by system setting.
[Example] $\left[\begin{array}{l}\text { When } X=\text { Axis } 1, Y=\text { Axis } 2, \mathrm{I}=1(\mathrm{X}), \mathrm{J}=2(\mathrm{Y}) \\ \text { When } \mathrm{X}=\text { Axis } 2, \mathrm{Y}=\text { Axis } 1, \mathrm{I}=1(\mathrm{Y}), \mathrm{J}=2(\mathrm{X})\end{array}\right]$
(7) The travel speed is the specified combined-speed for 2 axes circular interpolation axis.
(8) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(9) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).
(10) If start point = end point, number of pitches $=1$ and travel value of linear axis = 0, at the only central coordinates-specified helical interpolation, complete round can be drawn.
[Related Parameters]
Speed limit value : The maximum feed rate of each axis is set.
(Refer to Section 5.3.1 for the speed limit value of the parameter block.)

[Program Example]

```
G90 G00 X0. Y0. ;
G12 X100. Y100. Z100. I50. J50. P2 F1000.;
```


REMARK

(1) The end point coordinates and circular arc central coordinates cannot be omitted.
Always specify the end point coordinates for 3 axes and the circular arc central coordinates for 2 axes.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation axis in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.
There is no restriction of the unit of the linear axis.
(4) When number of pitches is omitted, it is executed "number of pitches $=0$ ".
(5) The error allowable range for circular interpolation cannot be setting. (Invalid the error allowable range for circular interpolation of the parameter blocks. Therefore, the spiral interpolation cannot be executed in the error allowable range for circular interpolation.)

The example of the direction of the nozzle of controlling the normal for circular arc curve.

The program to start as the upper figure from start point and witch keeps a nozzle at right angles toward the contour of line and that it goes around the contour and witch is returned to start point. It is the following program when a helical interpolation function is used.
[Program Example]
G90 G00 X0. Y150. Z0. ; \leftarrow Travel to start point
G01 X50. F1000. ;
G12 X150. Y50. Z90. I0. J-100. P0 ;
G01 Y-50. ;
G12 X50. Y-150. Z180. I-100. J0. P0 ;
G01 X-50. ;
G12 X-150. Y-50. Z270. I0. J100. P0 ;
G01 Y50. ;
G12 X-50. Y150. Z0. I100. J0. P0 ;
G01 X0 ;
M02 ;
\%

6.13.10 G13 Helical interpolation CCW (Helical central coordinates-specified)

Code	G13	The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular interpolation axis end point address or linear axis end point Function
Helical interpolation (CCW) Helical central coordinates- specified	hecome a spiral course. The travel speed is the specified combined-speed for 2 axes circular interpolation axis.	

[Explanation]

(1) The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular interpolation axis end point address (X, Y) or linear axis end point address (Z), and the helical interpolation control is executed so that it may become a spiral course.
(2) Always use the incremental values (relative address) from the current position (start point) to command the circular arc central coordinates.
An absolute values or incremental values of the circular interpolation axis end point (X, Y) and linear axis end point (Z) depends in the modal status (G90/G91) when executing the Motion program.
(3) Always specify the end point coordinates for 3 axes as they cannot be omitted.
(4) Only the number of times specified by the number of pitches around on the specified circle, and it is executed positioning to end point at the specified circular interpolation.
(5) The central coordinates-specified circle specifies circular interpolation method connected start point and end point at the seeing on the plane for which performs circular interpolation.
(6) The central coordinates 1, 2 are I and J in order of lower axis No.s by system setting.
[Example] [When $\mathrm{X}=$ Axis 1, $\mathrm{Y}=$ Axis 2, $\mathrm{I}=1(\mathrm{X}), \mathrm{J}=2(\mathrm{Y})$ When $X=$ Axis 2, $Y=$ Axis $1, I=1(Y), J=2(X)$
(7) The travel speed is the specified combined-speed for 2 axes circular interpolation axis.
(8) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(9) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).
(10) If start point = end point, number of pitches $=1$ and travel value of linear axis = 0, at the only central coordinates-specified helical interpolation, complete round can be drawn.
[Related Parameters]
Speed limit value : The maximum feed rate of each axis is set.
(Refer to Section 5.3.1 for the speed limit value of the parameter block.)

[Program Example]

```
G90 G00 X0. Y0. ;
G13 X100. Y100. Z100. I50. J50. P2 F1000.;
```


REMARK

(1) The end point coordinates and circular arc central coordinates cannot be omitted.
Always specify the end point coordinates for 3 axes and the circular arc central coordinates for 2 axes.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation axis in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.
There is no restriction of the unit of the linear axis.
(4) When number of pitches is omitted, it is executed "number of pitches $=0$ ".
(5) The error allowable range for circular interpolation cannot be setting. (Invalid the error allowable range for circular interpolation of the parameter blocks. Therefore, the spiral interpolation cannot be executed in the error allowable range for circular interpolation.)

6.13.11 G12 Helical interpolation CW (Helical radius-specified)

Code	G12	The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular interpolation axis end point address or linear axis end point address, and the helical interpolation (CW) is executed so that it may Function
Hecome a spiral course. The travel speed is the specified combined-speed for 2 axes circular Radius-specified helical interpolation interpolation axis.		

[Explanation]

(1) The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular interpolation axis end point address (X, Y) or linear axis end point address (Z), and the helical interpolation is executed so that it may become a spiral course.
An absolute values or incremental values of the circular interpolation axis end point (X, Y) and linear axis end point (Z) depends in the modal status (G90/G91) when executing the Motion program.
(2) Only the number of times specified by the number of pitches around on the specified circle, and it is executed positioning to end point at the specified circular interpolation.
(3) The radius-specified circle specifies circular interpolation method connected start point and end point at the seeing on the plane for which performs circular interpolation.
(4) A less than half-circle circular arc command is given at a positive R (circular arc radius) value, or a more than half-circle circular arc command is given at a negative R value. Always use an incremental value to command the R value.
(5) The travel speed is the specified combined-speed for 2 axes circular interpolation axis.
(6) If a complete round command (the start point is the same as the end point) is specified in R-specified helical interpolation, a minor error will (error code : 108) occur and no operation is performed. Therefore, specify the helical circular arc central coordinates for the complete round command.
(7) When this command is executed continuously, the acceleration or deceleration is not made at the start or end point of a block because the status is not the exact stop check mode.
(8) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).
(9) If start point $=$ end point, number of pitches $=1$ and travel value of linear axis $=0$, at the only center coordinates-specified helical interpolation, complete round can be drawn.

[Related Parameters]

Speed limit value : The maximum feed rate of each axis is set.
(Refer to Section 5.3.1 for the speed limit value of the parameter block.)

[Program Example]

G90 G00 X0. Y0. ;
G12 X100. Y100. Z100. R100. P2 F1000. ;

REMARK

(1) The end point coordinates and circular radius cannot be omitted.

Always specify the end point coordinates for 3 axes and the circular radius.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation axis in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.
There is no restriction of the unit of the linear axis.
(4) When number of pitches is omitted, it is executed "number of pitches $=0$ ".
(5) The allowable error range for circular interpolation cannot be setting. (Invalid the allowable error range for circular interpolation of the parameter blocks. Therefore, the spiral interpolation cannot be executed in the allowable error range for circular interpolation.)

6.13.12 G13 Helical interpolation CCW (Helical radius-specified)

Code	G13	The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular interpolation axis end point address or linear axis end point address, and the helical interpolation (CW) is executed so that it may Function
Hecome a spiral course. The travel speed is the specified combined-speed for 2 axes circular Radius-specified helical interpolation interpolation axis.		

[Explanation]
(1) The linear interpolation to other linear axis is executed performing 2 axes circular interpolation from the current position (start point) to circular interpolation axis end point address (X, Y) or linear axis end point address (Z), and the helical interpolation is executed so that it may become a spiral course.
An absolute values or incremental values of the circular interpolation axis end point (X, Y) and linear axis end point (Z) depends in the modal status (G90/G91) when executing the Motion program.
(2) Only the number of times specified by the number of pitches around on the specified circle, and it is executed positioning to end point at the specified circular interpolation.
(3) The radius-specified circle specifies circular interpolation method connected start point and end point at the seeing on the plane for which performs circular interpolation.
(4) A less than half-circle circular arc command is given at a positive R (circular arc radius) value, or a more than half-circle circular arc command is given at a negative R value. Always use an incremental value to command the R value.
(5) The travel speed is the specified combined-speed for 2 axes circular interpolation axis.
(6) If a complete round command (the starting point is the same as the end point) is specified in R-specified helical interpolation, a minor error will (error code : 108) occur and no operation is performed. Therefore, specify the helical circular arc central coordinates for the complete round command.
(7) When this command is executed continuously, the feed rate is not increased or decreased at the start or end point of a block since the status is not the exact stop check mode.
(8) The positioning data can be set by direct setting (numerical value) or indirect setting (variable : \#****).
(9) If start point = end point, number of pitches $=1$ and travel value of linear axis $=0$, at the only central coordinates-specified helical interpolation, complete round can be drawn.

[Related Parameters]

Speed limit value : The maximum feed rate of each axis is set.
(Refer to Section 5.3.1 for the speed limit value of the parameter block.)
[Program Example]
G90 G00 X0. Y0. ;
G13 X100. Y100. Z100. R100. P2 F1000. ;

REMARK

(1) The end point coordinates and circular radius cannot be omitted.

Always specify the end point coordinates for 3 axes and the circular radius.
(2) Circular interpolation includes the [degree] axis whose stroke limit is set to be invalid cannot be executed.
(3) Circular interpolation axis in the unit combination of [mm] and [degree] or [inch] and [degree] cannot be executed.
There is no restriction of the unit of the linear axis.
(4) When number of pitches is omitted, it is executed "number of pitches $=0$ ".
(5) The error allowable range for circular interpolation cannot be setting. (Invalid the error allowable range for circular interpolation of the parameter blocks. Therefore, the spiral interpolation cannot be executed in the error allowable range for circular interpolation.)

6.13.13 G23 Cancel, cancel start invalid

Code	G23	G24 (cancel function, cancel start function) which has already been
Function	Cancel, cancel start invalid	

Format
 G23;

[Explanation]

(1) This command makes invalid the cancel or cancel start function which has already been made valid.
(2) This function is also made valid for the high-speed oscillation axis.

N1 G24 CAN \#X100 ;
N2 G01 X200. F200. ;
N3 G25 Y START90. STRK1. F10 ;
N4 G23 ; --------------------------------->Cel Cancel function is invalid (Cancel function is invalid for the highspeed oscillation axis.)

[Program Example]

The program which makes the cancel start function valid/invalid during execution of "O0010" program.
00010
G24 CAN \#X100 P100 PB1 ; Execution of cancel start function
G90 G01 X200. F1000. ;
G23 ; Cancel start function invalid

6.13.14 G24 Cancel, cancel start

Code	G24	The executing program is cancel and the specified start program automatically starts.
Function	Cancel, cancel start	This function is valid until cancel or cancel start function invalid (G23) is executed.

[Explanation]

(1) If the cancel device signal is turned ON during execution of this command, a deceleration stop is made and the executing program is cancel (cancel function). When the start program No. "Pn" has been set, after a deceleration stop by turning ON the cancel signal, the specified program automatically starts (cancel start function).
(2) This command cannot be used with the home position return (G28) instruction.
(3) In a waiting status for a restart (single block, M00, M01) during macro processing, this command is made valid after completion of processing.
(4) If the cancel device turns ON during travel block switching, a cancel start is made valid at the next travel block processing when there are no operating axes (no high-speed oscillation axes).
(5) The device "X, Y, M, B and F" can be used for cancel. By assigning the input signal for high-speed read function to the cancel device, response is made faster than the input from the PLC CPU.
(6) The setting range of program No. "Pn" for a start is 1 to 1024.
(7) The parameter block of start program can be set with "PBn". The setting range of parameter block No. "PBn" is 1 to 64. If the parameter block No. "PBn" is omitted or it is set the outside of setting range, parameter block No. 1 is fixed.
(8) The program No. "Pn" and parameter block No. "PBn" set for a start can be set by indirect setting with a variable, D, W, or \# (2-word data).
(9) When G24 exists at any point between continuous constant-speed positioning blocks, a deceleration stop is made once.
N1 G24 CAN \#X100 ;
N2 G01 X200. F2000. ;
N3 X300. Y200. ;
N4 G24 CAN \#X101 ; ----------> Cancel function for N1 is invalid and a deceleration stop is made.
N5 G01 X50. Y50 F1000. ; $\quad \downarrow$ Cancel function for N4 is valid until G24 or G23 is specified.
(10) When G24 is executed after high-speed oscillation (G25), the high-speed oscillation axis also stops.
N1 G25 X START90. STRK1. F10 ;
N2 G24 CAN \#X100 P100 ; \& Cancel function for N2 is valid between
N3 G01 Y100. Z100. F1000. ;
N4 G26 X ;
N5 G01 X0. Y0. Z0. F1000. ; N3 and N5. Note that the high-speed oscillation axis also stops if cancel is N6 G23 ;
(11) If the start program No. "Pn" is omitted (cancel function), the running program ends when the cancel device turns ON.
(12) When setting the start axes in the SVST instruction, also include the axis No. to be executed in the start program. Making a start turns ON the start acceptance flag of the set axis. The start acceptance flag turns OFF once at a cancel time, but it turns ON again when the axis is started in the original program at a start program run.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program which cancels program operation during execution of "O0010" program and starts "O0100" program. (Command unit is [mm].)
O0010 ;

1) G24 CAN \#X100 P100 PB1 ; Execution of cancel start function
2) G90 G01 X200. F1000. ; Cancel device X100 turns ON midway. After deceleration stop, O0100 starts.
O0100;
3) G90 G01 X50. F600. ;

X-axis travels to $50[\mathrm{~mm}]$ position at 600[mm/min].

6.13.15 G25 High-speed oscillation

Code	G25	The specified axis oscillates in a Sine curve.
Function	High-speed oscillation	

Format	G25 X START S STRK a F f
	L_ Frequency (Indirect setting is possible) Frequency designation (Indirect setting is possible) -Amplitude (Indirect setting is possible)

[Explanation]

(1) The specified axis oscillates in a Sine curve.

Amplitude : The oscillating amplitude is specified in the setting unit. It can be specified indirectly with a variable, D, W, or \# (2-word data). The setting range is 1 to 2147483647 . If the setting is outside the range, a minor error will (error code : 585) occur and it cannot be started.
Starting angle : The start position with the angular position of a Sine curve is specified. It can be specified indirectly with a variable, D, W, or \# (2word data). Set it within the range of 0 to 359.9 [degree] in 0.1 [degree] increments. If the setting is outside the range, a minor error will (error code : 586) occur and it cannot be started.
Frequency : The number of cycles in which the axis will be operated for 1 minute in a Sine curve is specified. It can be specified indirectly with a variable, D, W, or \# (2-word data). The setting range is 1 to 5000 [CPM]. If the setting is outside the range, a minor error will (error code : 587) occur and it cannot be started.
(2) This command is valid for the specified block only (modal group (00)).
(3) After a start, operation continues until G26 high-speed oscillation stop is executed or the stop command is input.
(4) Acceleration/deceleration processing is not performed. When not making it start rapidly, set the starting angle to 90.0 [degree] or 270.0 [degree].

[Program Example]

The program in which the X-axis oscillates in the Sine curve of 10[mm] amplitude, 90 [degree] starting angle and 30[CPM] frequency.
(Command unit is [mm].)
G25 X START 90. STRK 10. F30 ;
(Note) : The starting angle (START) is valid to the first decimal place.
[Example] (1) START 90.
Means 90.0[degree].
(2) START 90 Means 9.0[degree].
(3) In START \#2010
\#2010 = 900 Means 90.0[degree].
\#2010 = 1 Means 0.1 [degree].

6.13.16 G26 High-speed oscillation stop

Code	G26	The high-speed oscillation of the axis which is performing high-speed
Function	High-speed oscillation stop function	Thaillation is stopped. oscil

Format	G26 X;

[Explanation]

(1) Stops the high-speed oscillation of the axis which is performing high-speed oscillation.
(2) Use this command in pairs with a high-speed oscillation start.

When the corresponding axis is not stopped up to a program END (M02, M30) after a high-speed oscillation start, high-speed oscillation is kept performed at a program END.
Also, do not set a stop to the axis which has not made a high-speed oscillation start. In that case, a minor error (error code : 582) is displayed and execution proceeds to the next block.
[Program Example]
N01 G91 G01 X10. Y10. F100. ;
N02 G25 X START 0. STRK 10. F100;
N03 G01 Y10. ;
N04 G26 X ;
N05 G01 X10. Y10. ;
M02 ;

If the start command of the X -axis (high-speed oscillation start axis) is described in the N03 block, a minor error (error code : 581) is displayed when this block is executed, and this program is suspended.

6.13.17 G28 Home position return

Code	G28	When the home position return request is ON, the mid point Function designation is ignored and a proximity dog, count, data set, dog cradle, stopper or limit switch combined type home position return. When the home position return request is OFF, the axis returns from the current position to the home position through the specified mid point at high-speed feed rate.

Format	$G 28 _\mathrm{X} \mathrm{x}_{\square} \mathrm{Y} \mathrm{y}_{\square} \mathrm{Z} \mathrm{z} ;$

[Explanation]

(1) When the home position return request is ON, this command ignores a mid point and returns the specified axis to the home position. When the home position return request signal (M2409+20n) is OFF, this command positions the axis from the current position to the home position through the specified mid point at highspeed feed rate.

(2) The home position return method is determined by the home position return data at the home position return request ON .
(3) Be sure to set the axis which executes the home position return. The home position return is not executed without setting.
(4) Be sure to set the mid point coordinates.
(5) The mid point data setting can be made by direct setting (numerical value) or indirect setting (variable : \#****).
(6) The tool length offset and virtual mechanical coordinates (Refer to Section 6.13.29.) of the axis which executed the home position are cancel. Mid point designation depends on the position command system (G90, G91) currently selected.
(7) When the control unit is [degree], operation from the mid point to the home position differs between the absolute value command (G90) and incremental value command (G91).
The axis travels in the nearest path under the absolute value command (G90), or in the direction specified in the home position return direction parameter under the incremental value command (G91).
(8) The following parameter blocks are used at the home position return (G28).
(a) Home position return request ON Parameter block specified with home position return parameter.
(b) Home position return request OFF Parameter block at the axis specified program start.

[Related Parameters]

Home position address : The current value of the home position is set.
(Refer to Section 7.3.1 Home position return data.)
High-speed feed rate : The high-speed feed rate of each axis is set.
(Refer to Section 5.2.5 High-speed feed rate setting.)

[Program Example]

The program which executes the home position return from the current position through the A point (mid point).
G90 ;
G28 X200. Y200. ; (Home position return)

REMARK

When the G28 is commanded, a home position return is made at the high-speed feed rate.

6.13.18 G30 Second home position return

Code	G30	The axis returns from the current position to the second home position through the specified mid point at the high-speed feed rate.
Function	Second home position return	

Format	G30 X $\mathrm{X}_{\square} \mathrm{Y} \mathrm{y}$ Z z ;	

[Explanation]

(1) This command positions the specified axis from the current position to the second home position through the specified mid point at the rapid feed rate.

(2) Be sure to set the axis which executes the second home position return. The second home position return is not executed without setting.
(3) Be sure to set the mid point coordinates.
(4) The mid point data setting can be made by direct setting (numerical value) or indirect setting (variable : \#****).
(5) The tool length offset and virtual mechanical coordinates (Refer to Section 6.13.29) of the axis which executed the second home position are cancel. Mid point designation depends on the position command system (G90, G91) currently selected.
(6) When the control unit is [degree], operation from the mid point to the second home position differs between the absolute value command (G90) and incremental value command (G91).
The axis travels in the nearest path under the absolute value command (G90), or in the direction specified in the home position return direction parameter under the incremental value command (G91).

[Related Parameters]

Second home position address : The current value of the second home position is set. (Refer to Section 7.3.1 Home position return data.)
High-speed feed rate : The high-speed feed rate of each axis is set. (Refer to Section 5.2.5 High-speed feed rate setting.)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program which executes the second home position return from the current position through the A point (mid point).
G90 ;
G30 X200. Y200. ; (Second home position return)

REMARK

When the G30 command is given, a second home position return is executed at high-speed feed rate.

6.13.19 G32 Skip

Code	G32	The axis travels at the specified feed rate, the remaining command is suspended at the input of an external signal, and the next block is executed.
Function	Skip	Dwell is skipped for the dwell command.

Format	<When axis specified> <When dwell is specified>

[Explanation]

(1) When the skip signal is entered during execution of G32, the remaining command of that block is suspended and the next block is executed. Dwell may also be skipped by giving the dwell command (P) in the $G 32$ block without specifying the axis.
(2) A format error occurs if the axis command or M-code and the dwell command are described simultaneously.
(3) The setting range of dwell time is 1 to 65535 in increments of 0.001 [s].
(4) Specify the skip signal in the program.
(5) The skip function makes a skip at the skip signal ON.
(6) This command is valid for the specified block only (modal group (00)). The interpolation type of this command is the constant-speed positioning command.
(7) When the skip signal is not input until the end point of this command block, the block completes at the end point.
(8) For dwell/skip, the block completes on completion of the dwell processing.
(9) The absolute circular interpolation or the absolute helical interpolation of the next block cannot be executed.
(10) The F command is handled like G01.
(11) The coasting value δA between skip signal detection and a stop is represented by the following expression.
$\delta_{A}[\mathrm{~mm}]=\frac{\mathrm{F}}{60}\left(\mathrm{t} 1+\frac{\mathrm{tc} 1}{2}+\mathrm{Tr}\right)$
F : Command speed [mm/min]
t1 : Signal input delay time = operation cycle + Detection delay time [s]
tc1 : Acceleration/deceleration time [s]
Tr : Position loop time constant [s]
(Reciprocal number of position control gain value set in servo parameter. When position control gain $=25, \operatorname{Tr}=1 / 25=0.04$ [$s]$)
(12) Under the following conditions, G32 makes deceleration stop once, then proceeds to the next block.
(a) When the point-to-point positioning command (G00, G25, G28, G30 or the like) is executed after the G32 block

N10 G32 X100. F1000. SKIP \#X10 ;
N20 G00 X200.; \qquad Deceleration stop is N30 G32 X300. F1000. SKIP \#X11 ; made before this block.
(b) High-speed oscillation stop (G26) is executed after the G32 block

N10 G25 Y START 90. STRK 1. F400. ;
N20 G32 X100. F1000. SKIP \#X10 ;
N30 G26 Y ; \qquad Deceleration stop is G32 X200. F1000. SKIP \#X11 ; made before this block.
(c) When the absolute value command (G90) or incremental value command (G91) is executed after the G32 block
N10 G90 ;
N20 G32 X100. F1000. SKIP \#X10 ;
N30 G91 ;
Deceleration stop is
N40 G32 X200. Y200. F1000. SKIP \#X11 ; made before this block.
(d) When the block immediately after G32 is in the constant-speed positioning command but its command axes do not include the specified axis of the G32 block

N10 G32 X100. F1000. SKIP \#X10 ;
N20 G32 Y100. Z100. F1000. SKIP \#X11 ; \longrightarrow made before this block.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

(1) The program designed to make multiple skips under the control of external skip signals specified from the program midway through positioning.
(Under incremental value command)

- G91 ;
- G32 X100. F2000 SKIP \#X180 ; Turns ON the X180 signal midway.
- G32 X100. F1000 SKIP \#X181 ; Turns ON the X181 signal midway.
- G32 X200. F1500 SKIP \#X182 ; Turns ON the X182 signal midway.

(2) Under dwell command

If cancel device X100 turns ON during dwell in N01, G0 in N02 where dwell was suspended is executed.
N01 G32 P1000 SKIP \#X100 ;
N02 G90 G0 X100.;

CAUTION

The following operation assumes that a skip (G32) is specified during constant-speed control (G01) and the [degree] axis without a stroke range is included.
When an absolute value command exists after a skip under this condition, the last positioning point and the travel distance in the whole program are the same independently of whether a skip is executed or not. This is indicated by the following example.
(1) When the skip instruction is an incremental value command and subsequent instructions are also incremental value commands
<Program example>
G91 ;
G32 X180. SKIP\#X100 F10. ;
<Motion without a skip>

G01 X180. ;
G01 X270. ;

<Motion with a skip>
(When a skip is made at 100 (degree))

(2) When the skip instruction is an absolute value command and subsequent instructions are also absolute value commands
<Program example>
G90 ;
G32 X180. SKIP\#X100 F10.;
<Motion without a skip>

G01 X350. ;
G01 X170. ;

<Motion with a skip>
(When a skip is made at 100(degree))

Even if a skip is not executed, the last positioning point is the same.
(Note) : The above explanation is valid until a deceleration stop (constant-speed positioning command to point-to-point positioning command, etc.) after skip (G32). After a deceleration stop, operation of the normal [degree] axis is performed. The conditions of deceleration stop after a skip (G32) are shown below. Refer to "6.13.19 G32 Skip" for details.

1) When the point-to-point positioning command (G00, G25, G28, G30 or the like) is executed after the G32 block.
2) When the high-speed oscillation stop (G26) is executed after the G32 block.
3) When the absolute value command (G90) or incremental value command (G91) is executed after the G32 block.
4) When the block immediately after G32 is in the constant-speed positioning command but its command axes do not include the specified axis of the G32 block.

6.13.20 G43 Tool length offset (+)

Code	G43	The axis travels with the preset offset value added to the travel command.
Function	Tool length offset $(+)$	By setting a difference between the tool length value and actual tool length as the offset value, a program can be created without being aware of the tool length.

[Explanation]

(1) By executing this command, the axis travels to the position which results from adding the offset value set in the tool length offset data setting registers to the end position of the travel command.
(2) In the following cases, the tool length offset command is cancel.

G49 ; Tool length offset cancel command
G43 H0 ;
G44 H0 ;Set the offset data No. 0 to cancel the tool length offset.
(3) This command can be set to one axis only. If two or more axes are commanded simultaneously, it is valid for the last specified axis.
$\mathrm{G} 43 \mathrm{X} 1 . \mathrm{Y} 1 . \mathrm{Z} 1 . \mathrm{H} 1$; $\quad \mathrm{Z}$-axis is valid.
If no axis is specified, the last specified axis is made valid.
G01 Z1 ;
G43 H1 ; \quad Z-axis is valid.
(4) As this command is a modal instruction, the offset value is retained until the offset value is cancel (G49).
(5) Tool length offset can be made to only one axis simultaneously. (Both G43 and G44)
:
G43 X100. H1 ;
G43 Y100. H2 ; \longleftarrow Cannot be used this way.

Tool length offset value : Set in the tool length offset data setting registers.
(Refer to Section 4.2.6.)

[Program Example]

The program for which executes the positioning added the offset value to the command position. (For absolute value command)
(Data of the tool length offset data setting registers are as follows :
$\mathrm{H} 1=5[\mathrm{~mm}](\mathrm{D} 1650,1651=50000), \mathrm{H} 2=10[\mathrm{~mm}](\mathrm{D} 1652,1653=100000))$

G90 ; (Absolute value command)
G00 G43 X50. H1 ; (With the addition of the offset value of $5[\mathrm{~mm}], \mathrm{X}$-axis is positioned to its $55[\mathrm{~mm}]$ position)
G01 X25. F500. ; (X-axis travels to its $30[\mathrm{~mm}]$ position at $500[\mathrm{~mm} / \mathrm{min}]$.)
Y100. ;
G43 X200. H2 ;
(Y-axis travels to its $100[\mathrm{~mm}]$ position at $500[\mathrm{~mm} / \mathrm{min}]$.) (With the addition of the offset value of $10[\mathrm{~mm}]$, X -axis travels to its $210[\mathrm{~mm}]$ position (offset value change))

6.13.21 G44 Tool length offset (-)

Code	G44	The axis travels with the preset offset value subtracted from the travel command. Function
Tool length offset $(-)$	By setting a difference between the tool length value and actual tool length as the offset value, a program can be created without being aware of the tool length.	

Format	G44 X $\mathrm{x}_{-1} \underline{H}$ h
	- Offset data number
	------------- Positioning address Axis name

[Explanation]

(1) By executing this command, the axis travels to the position which results from subtracting the offset value set in the tool length offset data setting registers from the end position of the travel command.
(2) In the following cases, the tool length offset command is cancel.

G49 ; Tool length offset cancel command
G43 H0
G44 H0; _ـ_Set the offset data No. 0 to cancel the tool length offset.
(3) This command can be set to one axis only. If two or more axes are commanded simultaneously, it is valid for the last specified axis.

G44 X1. Y1. Z1. H1 ; - Z-axis is valid.
If no axis is specified, the last specified axis is made valid.
G01 Z1 ;
G44 H1 ; - Z-axis is valid.
(4) As this command is a modal instruction, the offset value is retained until the offset value is cancel (G49).
(5) Tool length offset may be made to only one axis simultaneously. (Both G43 and G44)
:
G44 X100. H1 ;
G44 Y100. H2 ; « Cannot be used this way.
[Related Parameters]
Tool length offset value : Set in the tool length offset data setting registers.
(Refer to Section 4.2.6.)

[Program Example]

The program for which executes the positioning subtracted the offset value from the command position. (For absolute value command)
(Data of the tool length offset data setting registers are as follows :
$\mathrm{H} 1=5[\mathrm{~mm}](\mathrm{D} 1650,1651=50000), \mathrm{H} 2=10[\mathrm{~mm}](\mathrm{D} 1652,1653=100000))$

G90 ; (Absolute value command)
G00 G44 X50. H1 ; (With the addition of the offset value of $5[\mathrm{~mm}], \mathrm{X}$-axis is positioned to its 45 [mm] position)
G01 X25. F500. ; (X-axis travels to its $20[\mathrm{~mm}]$ position at $500[\mathrm{~mm} / \mathrm{min}]$.)
Y100. ;
G44 X200. H2 ; (Y-axis travels to its $100[\mathrm{~mm}]$ position at $500[\mathrm{~mm} / \mathrm{min}]$.) (With the addition of the offset value of $10[\mathrm{~mm}]$, X -axis travels to its $190[\mathrm{~mm}]$ position (offset value change))

6.13.22 G49 Tool length offset cancel

Code	G49	The preset tool length offset value (G43, G44) is cancel.
Function	Tool length offset cancel	

[Explanation]

(1) This command cancels the preset tool length offset value (G43, G44) and performs the specified positioning.
(2) Be sure to set the positioning address for tool length offset cancel.
[Related Parameters]
Power-on mode : At power-on, the tool length offset cancel mode is established.
[Program Example]
The program designed to cancel the offset value and perform the specified positioning after positioning has been executed by tool length offset. (For absolute value command) (Data of the tool length offset data setting registers are as follows :
$\mathrm{H} 1=5[\mathrm{~mm}](\mathrm{D} 1650,1651=50000), \mathrm{H} 2=10[\mathrm{~mm}](\mathrm{D} 1652,1653=100000))$

G90 ; (Absolute value command)
G00 G43 X50. H1 ; (With the addition of the offset value of 5[mm], X-axis is positioned to its $55[\mathrm{~mm}$] position)
G01 X25. F500. ; (X-axis travels to its $30[\mathrm{~mm}]$ position at $500[\mathrm{~mm} / \mathrm{min}]$.)
Y100. ;
G43 X200. H2 ;

G49 X100. ; (With the offset value canceled, X-axis travels to its 100 [mm] position at $500[\mathrm{~mm} / \mathrm{min}]$.)

6.13.23 G53 Mechanical coordinate system selection

Code	G53	The axis travels to the command position of basic mechanical
Function	Mechanical coordinate system selection	coordinate system at the high speed feed rate.

	$\mathrm{G} 53 \mathrm{X} \mathrm{x}_{\sqcup} \mathrm{Y} \mathrm{y}_{\mathrm{L}} \mathrm{Z} \mathrm{z} ;$	
Format		Coordinates in basic mechanical coordinate system

[Explanation]

(1) The basic mechanical coordinate system represents the position determined for a specific machine (e.g. tool changing position, stroke end position).
It is automatically set relative to the predetermined reference point after a home position return is executed by the CHGA instruction at power-on.
(2) Not being a modal instruction, the specified block only is valid.
(3) When G53 and G28 are specified in the same block, the latter command is valid. G53 G28 ; - G28 is valid (home position return command) G28 G53 ; ——_G53 is valid (mechanical coordinate system selection command)
(4) When G53 and G30 are specified in the same block, the latter command is valid. G53 G30 ; G \quad G30 is valid (second home position return command) G30 G53 ; G53 is valid (mechanical coordinate system selection command)
(5) The offset specified in G92 is invalid.
(6) The tool length offset specified in G43 or G44 is invalid.
(7) Under the incremental value command (G91), the axes travel at the incremental value of the mechanical coordinate system, and under the absolute value command (G90), the axes travel at the absolute value of the mechanical coordinate system.
[Example]
G91 ; (Incremental value command)
G90 ; (Absolute value command)
G53 X10. Y10. ;

G53 X10. Y10. ;

(8) Positioning data can be set by direct setting (numerical value) or indirect setting (variable : $\# * * * *$).

[Program Example]

The program designed to position the axes to the specified position in the work coordinate system after positioning them to the specified position in the basic mechanical coordinate system in the absolute value mode.

1) G 90 ; (Absolute value command)
2) G53 X10. Y10. ; (Axes travel to X10. Y10. in the basic mechanical coordinates)
3) G01 X10. Y10. F20. ; (Axes travel to X10. Y10. in the work coordinates)

(Unit: mm)

REMARK

Travel by G53 is processed by G00. (The modal group (01) is not changed.)

6.13.24 G54 to G59 Work coordinate system selection

Code	G54, G55, G56, G57, G58, G59	The work coordinate system is selected and the axes travel to the specified position in the work coordinates system at the speed specified in the feed rate.
Function	Work coordinate system 1 to 6 selection	(

Format	$\begin{aligned} & \mathrm{G} 54 _\mathrm{X} \mathrm{x}_{\mathrm{Y}} \mathrm{y} \mathrm{y}_{\mathrm{Z}} \mathrm{z} \text {; } \\ & \text { to } \\ & \mathrm{G} 59 \end{aligned}$	Positioning located in specified work coordinates system

[Explanation]

(1) Work coordinate systems 1 to 6 are coordinates systems specified in the parameters or work coordinates system setting.
The offset value in the work coordinates system is set using the distance from the basic mechanical coordinates system origin (0).
(2) The coordinates system of G54 is selected at a Motion program start.
(3) As the work coordinates systems 1 to 6 is modal instruction, it is valid until the next work coordinate system 1 to 6 selection is commanded.
(4) If G92 is commanded in any of the G54 to G59 modes, a new work coordinates system can be set.
If G92 is commanded, all work coordinates systems (1 to 6) travel in parallel.
<Work coordinates system selection>
G54 Xx Yy Zz ;
<Work coordinates system change>
G54 G92 Xx Yy Zz ;Work coordinates 2 to 6 also travel in parallel similarly.
(5) Positioning data can be set by direct setting (numerical value) and indirect setting (variable: \#****).

[Related Parameters]

Work coordinates system offset value : Specify the offset in the work coordinates system using the distance from the basic mechanical coordinates. (Refer to Section 5.4 for the work coordinate data.)
Up to six work coordinates systems can be set. (Work coordinates systems 1 to 6)

[Program Example]

<Work coordinates system selection>
The program for which executes the positioning to the specified position in the work coordinates system 1.
(The offset of the work coordinates system 1 is $\mathrm{X} 500, \mathrm{Y} 500$)

1) G 90 ; (Absolute value command)
2) G28 XO. Y0.; (Home position return)
3) G53 X0. Y0. ; (Axes travel to the basic mechanical coordinates home position)
4) G54 X500. Y500.; (Axes travel to the specified position in the work coordinates system 1)
5) G91 G01 X500. F10. ; (Incremental value command positioning)

(Unit: mm)
<Work coordinates system change>
The program for which set the offset of the work coordinates system 1 to X500, Y500 in the parameter setting of work coordinates data, then change the work coordinates system to new work coordinates system 1.
6) G54 G92 X-200. Y-200. ; (New work coordinates system 1 setting)
(After execution of 1), the current value is changed to $\mathrm{X}-200, \mathrm{Y}-200$.)

6.13.25 G61 Exact stop check mode

Code	G61	It travels in the point-to-point positioning (PTP).
Function	Exact stop check mode	

Format G61 ;

[Explanation]

(1) This command is used with the interpolation command. Executing this command travels in the point-to-point positioning.
The interpolation command codes usable with this command are G01, G02, G03, G12 and G13 only.
(2) In this system, the next block is executed after deceleration stop for every specified coordinates.
(3) As this command is modal command, it is valid until the cutting mode (G64) is commanded.
<In exact stop check mode>
G61 G01 X100. F500. ;
X200.;

<Not in exact stop check mode>
G01 X100. F500. ;
X200.;

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program for which executes the positioning in the exact stop check mode.

1) G61 G01 X100. F500. ; (Positioning in the exact stop check mode)
2) X200. ;
(Positioning in the exact stop check mode)
3) X300 ;
(Positioning in the exact stop check mode)

REMARK

Only the high-speed feed rate may be the specified speed in G00. To specify the speed every time point-to-point positioning is executed, you can use G61 and G01.

6.13.26 G64 Cutting mode

Code	G64	The next block continuously executes without deceleration stop
Function	Cutting mode	between cutting feed blocks.

Format
 G64 ;

[Explanation]

(1) This command is used to execute the positioning to the specified coordinates position approximately. It operates continuously without deceleration stop for every specified coordinates as the exact stop check mode.
Use this command to make a smooth connection with the interpolation command (G01, G02, G03, G12, G13).
(2) The cutting mode is selected at a Motion program start.
(3) As this command is modal instruction, it is valid until the exact stop check mode (G61) is commanded.

<Not in cutting mode> G61 G01 X100. F500. ;
X200.;

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program for which executes the positioning in the cutting mode.

1) G64 G01 X100. F500. ; (Positioning in the cutting mode)
2) X200. ; (Positioning in the cutting mode)
3) X 300 . (Positioning in the cutting mode)

6.13.27 G90 Absolute value command

Code	G90	The coordinates command is set as an absolute value command.
Function	Absolute value command	

Format		Locating position

[Explanation]

(1) In the absolute value command mode, the axes travel to the specified coordinates position regardless of the current position. The positioning command set after execution of this command operates with the absolute value from the home position coordinates.
(2) As this command is modal instruction, it is valid until the incremental value command mode (G91) is commanded.
(3) The absolute value command mode is selected at a Motion program start. [Example] G90 X100. Y100. ;

Current position coordinates of X50, Y50

Current position coordinates of $\mathrm{X} 80, \mathrm{Y} 20$
(4) Positioning data can be set by direct setting (numerical value) and indirect setting (variable : \#****).

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

Example of comparison between the absolute value command and incremental value command
<Incremental value command> G91 X70. Y70. ;
<Absolute value command> G90 X70. Y70. ;

6.13.28 G91 Incremental value command

Code	G91	The coordinates command is set as an incremental value command.
Function	Incremental value command	

Format	G91 X x Y y Z z ;	
		Locating position

[Explanation]

(1) In the incremental value command mode, the axes travel the distance of the specified relative value from the start point (0) of the current position.
The positioning command set after execution of this command operates with the incremental value from the current position.
(2) As this command is modal instruction, it is valid until the absolute value command mode (G90) is commanded.
(3) The absolute value command mode is selected at a Motion program start. [Example] G91 X100. Y100. ;

(4) Positioning data can be set by direct setting (numerical value) and indirect setting (variable : \#****).

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

Example of comparison between the incremental value command and absolute value command
<Incremental value command> G91 X70. Y70. ;
<Absolute value command> G90 X70. Y70. ;

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.29 G92 Coordinates system setting

Code	G92	The mechanical coordinates (virtual mechanical coordinates) is set simulatively.
Function	Coordinates system setting	Setting the virtual mechanical coordinate system also changes the work coordinates systems 1 to 6.

Format		Setting coordinate value (Set the offset from the current position)

[Explanation]

(1) The current position in the work coordinate system is changed to the specified coordinates value, a new work coordinates is set. The work coordinates system is set in the specified position (offset from the current position).
By making coordinates system setting, the virtual mechanical coordinates is set and the work coordinate systems 1 to 6 travel in parallel.
[Example] G92 X20. Y30. ;

(2) Positioning data can be set by direct setting (numerical value) and indirect setting (variable : $\# * * * *$).
(3) By executing G92 in the constant-speed positioning command (e.g. G01), deceleration stop is made once. When G92 is executed in the single block mode, making a single block start twice in the same block shifts execution to the next block.

POINT

If the current value is changed in G92, the current value data restored after a power failure is based on the status prior to execution of G92.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program for which set the work coordinate system to the specified position.

G92 X20. Y30. ;

6.13.30 G98, G99 Preread disable/enable

Code	G98, G99	Preread disable (G98)
Function	Preread disable/enable	Preread enable (G99)

\square
[Explanation]
(1) The preread disable mode after that when G98 is executed.

As this command is a modal instruction, it is valid until the preread enable (G99) being commanded.
(2) The preread enable mode after that when G99 is executed.

As this command is a modal instruction, it is valid until the preread disable (G98) being commanded.
(3) It is preread enable (G99) at the axis designation program starts.
(4) Command G98 and G99 without the argument alone.

[Program Example]

 is reflected below IF.

[^2]
REMARK

(1) Preread is disabled until G99 is executed after it blocks it modal G98, and being specified only though preread is stopped in the block that M100 (preread disable) was not modal, and specified once.
(2) There is no described meaning as a program thought the problem is not in modal G98 even if M100 is executed.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.13.31 G100, G101 Time-fixed acceleration/deceleration, acceleration-fixed acceleration/ deceleration switching command

Code	G100, G101	
Function	Time-fixed acceleration/ deceleration, acceleration- fixed acceleration/decel- eration switching command	The acceleration/deceleration method is switched to time-fixed acceleration/deceleration or acceleration-fixed acceleration/ deceleration.

Format \quad| G100; |
| :--- |
| G101; |

[Explanation]

(1) The acceleration/deceleration method of the travel command G01, G02, G03, G12, G13, G32 or G00 (with M-code) is switched to time-fixed acceleration/deceleration or acceleration-fixed acceleration/deceleration.
(2) The G-code of this command is set independently.
(3) Use G100 to select the time-fixed acceleration/deceleration. The G100 status is selected at a start.
(4) Use G101 to select the acceleration-fixed acceleration/deceleration.
(5) The acceleration-fixed acceleration/deceleration is set in G101, the M-code does not made a FIN waiting. (The M-code is output to the M-code storage register, but the M-code outputting signal does not turn ON.)
(6) Acceleration/deceleration in the acceleration-fixed mode is valid until :
(a) The time-fixed acceleration/deceleration command in G100 is executed;
(b) The program is ended in M02;
(c) The program is stopped by the rapid stop command, stop command, error reset or emergency stop;
(d) The program is stopped at error occurrence.
(7) When G100 is changed to G101 or G101 to G100, a deceleration stop is made once.

[Program Example]

The program designed to make the acceleration-fixed acceleration/deceleration mode of the acceleration/deceleration system valid, then invalid midway through the program. (Command unit : [mm])

O10;
G91 ;
N1 G28 X0. Y0. ;
N2 G01 X100. F1000.

N4 G101 ;
N5 X100.;
N6 Y100. ;
N7 G100 ;
N8 X100. ;
N9 Y100. ;
M02 ;
\%

REMARK

About locus of G100/G101

Locus commanded from the Motion controller is different by setting of the G100/G101.
(a) Locus of G100

Time-fixed acceleration/deceleration method is used to enable the smooth operation between positioning points for CP operation. In the case of a continuous point of G01 (CP Linear interpolation), it passes roundly inside in a point during positioning. And in the case of G02/G03 (Circular interpolation), the locus is inside further than a circular arc set in a program. The degree which become inside further than a positioning point changes by the acceleration/deceleration time or speed.
This is indicated by the following example.

(b) Locus of G101

Acceleration-fixed acceleration/deceleration method is used to enable the correct locus control between positioning points for CP operation. Set a G101 to execute the correct locus control. However, be careful that the speed fluctuation increases at a pass point and the vibration may be occurred in the machine. This is indicated by the following example.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.14 M-Code

This section explains the M-codes used in the Motion programs.
(1) M-codes

When a Motion program is executed, the 4-digit code data following M is output to the data register (D) in the M command block.
The processing of the next block is not executed until the FIN signal (M3219+20n) is input.
(Refer to Section 7.8 for relationships between the M-codes and FIN signal.).
<Command format>

$\frac{\mathrm{M} * * * *}{\text { Numeral }}$	Setting range : 0 to 9999
(except M00, M01, M02, M30, M98, M99 and M100)	

The M-codes usable are 9993 types since M00, M01, M02, M30, M98, M99 and M100 are fixed in functions and they are special M-codes.
(Refer to Section 6.15 for the Special M-Code.)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.15 Special M-Code

The arguments of the special M-codes are shown in Table 6.4 below.
Table 6.4 Special M-Code argument list.

$>$	Axis command (Note-1)	Radius command (R)	Central Point command (I, J)	M-code (Note-2)	G-code	Feed (F)	H	L	N	0	P	Remark
M00												
M01												
M02												
M30												
M98							\bigcirc	\bigcirc			\bigcirc	
M99												
M100												
Other M-codes				\bigcirc	\bigcirc							
								○ : May be specified. Blank : Must not be specified.				

(Note-1) : The axis commands are $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{A}, \mathrm{B}, \mathrm{CX}, \mathrm{CY}, \mathrm{CZ}, \mathrm{CU}, \mathrm{CV}, \mathrm{CW}, \mathrm{CA}, \mathrm{CB}, \mathrm{DX}, \mathrm{DZ}, \mathrm{DU}, \mathrm{DV}, \mathrm{DW}, \mathrm{DA}, \mathrm{DB}$, EX, EY, EZ, EU, EV, EW, EA and EB.
(Note-2) : M-codes indicate except M00, M01, M02, M30, M98, M99 and M100.

6.15.1 M00 Program stop

Code	M00	Execution of program is stopped.
Function	Program stop	

\square

[Explanation]

Executing this command stops the program without execution of the next block.
By turning ON the re-start command (M4404+10n) after a stop, execution resumes from the next block.
[Program Example]
The program for which makes the program stop during positioning operation and restarts positioning.

1) G01 X100. F10. ; (Positioning)
2) M00 ; (Program stop) \longleftarrow Re-start command (M4404+10n) ON
3) G01 X200. ; (Re-start command resumes positioning)

6.15.2 M01 Optional program stop

Code	M01	When the optional program stop is ON, executing M01 stops an execution of program.
Function	Optional program stop	

Format	M01;

[Explanation]

When the optional program stop command (M4401+10n) is ON, executing this command stops the program without execution of the next block.
By turning ON the restart signal command (M4404+10n) after a stop, execution resumes from the next block.
When the optional program stop command (M4401+10n) is OFF, the next block is executed without a program stop.

[Program Example]

The program which uses the optional program stop (M01).

1) G01 X100. F10. ; (Positioning)
2) M01 ; (Optional program stop)
3) G01 X200. ; (Positioning)
<Optional program stop command (M4401+10n) is ON>

<Optional program stop command (M4401+10n) is OFF>

REMARK

M01 performs the same operation as "M00" when the optional program stop command (M4401+10n) is ON.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.15.3 M02 Program end

Code	M02	Program is ended.
Function	Program end	

Format	$\mathrm{MO2} ;$

[Explanation]

Executing this command ends an execution of program.
This command is required at the end of a program.

[Program Example]

The program which ends a program after positioning control.
G90 ; (Absolute value command)
G01 X100. Y200. F100. ; (Positioning)
X200. Y300. ; (Positioning)
G00 X0. Y0. ; (Positioning)
M02 ; (Program end) Also be enabled by M30.
\%

REMARK

M02 and M30 have the same function.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.15.4 M30 Program end

Code	M30	Program is ended.
Function	Program end	

Format M30;

[Explanation]

Executing this command ends an execution of program.
This command is required at the end of a program.

[Program Example]

The program which is ends a program after positioning control.
G90 ; (Absolute value command)
G01 X100. Y200. F100. ; (Positioning)
X200. Y300. ; (Positioning)
G00 X0. Y0. ; (Positioning)
M30 ; (Program end) Also be enabled by M02.
\%

REMARK

M30 and M02 have the same function.

6.15.5 M98, M99 Subprogram call, subprogram end

Code	M98, M99	Subprogram call (M98) and subprogram end (M99) are executed.
Function	Subprogram call, subprogram end	

[Explanation]

(1) The program of the same pattern can be registered as a single subprogram and called as required from the main program.
<Subprogram call> (M98)
Argument program No., sequence No. and repetition count may be omitted. When omitted, these numbers are as follows.
Program No. : Main program
Sequence No. : First
Repetition count : Once
[Example]

M98 ; Executes once from the beginning of the main program.
<Subprogram end> (M99)
Returns to the block next to the call block.
(2) A subprogram can be called from another subprogram. This is called subprogram nesting. Subprograms may be called (nested) to the depth of eight levels.

May be nested to 8 levels
(3) When a subprogram ends by error, a main program also ends in the subroutine call by M98/M99 for the axis designation program.

[Program Example]

The program designed to run the specified subprogram twice repeatedly, return to the main program, and complete operation.

The program which calls a subprogram from another subprogram.

6.15.6 M100 Preread disable

Code	M100	Preread is not executed on the G-code (Motion program).
Function	Preread disable	

Format \quad M100;

[Explanation]

Executing this command does not execute preread on the G-code (Motion programs).
After completion of motion up to the preceding block, the next block is processed.

[Program Example]

N10 G01 X10. F10. ;	Since M100 exists in the next block, a change in \#2000 during execution of the
M100 ;	IF [\#2000 EQ150] GOTO20 ;
command on this line is reflected on the	
N15 G01 Y10. ;	IF statement below.
N20 G01 X0. Y0. ;	

(Note) : When M100 is executed, constant-speed positioning does not continue from N10 to N15 or from N10 to N20 and a deceleration stop is made once after execution of N10.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.16 Miscellaneous

The settable arguments in the first character are shown in Table 6.5 below.
Table 6.5 Argument List

	[]	Operator	Logical operator	$\begin{gathered} \text { Assignment } \\ (=) \\ \hline \end{gathered}$	GOTO	G	M	Remarks
\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc				-
IF	(\bigcirc	\bigcirc		©			-
GOTO	\bigcirc	\bigcirc						-
1						\bigcirc	\bigcirc	Depends on the data after "/".
G								Refer to Section 6.13.
M								Refer to Section 6.15 for M00, M01, M02, M30, M98, M99 and M100.
Axis command	\bigcirc	\bigcirc						Depends on the G-code in the modal group (01).
Feed	\bigcirc	\bigcirc						Depends on the G-code in the modal group (01).
0								-
N								Regards the line number and later as the fist character.
()								Handles data between "(" and ")" as a comment.
IF	\bigcirc	\bigcirc	\bigcirc					-
ELSE		\bigcirc						-
END		\bigcirc						-
WHILE	\bigcirc	\bigcirc	\bigcirc					-
DO		\bigcirc						-
- : May be specified. () : Must be specified. Blank : Must not be specified.								

6.16.1 Program control function (IF, GOTO statement)

Code	IF, GOTO	The flow of execution program is controlled based on the condition.
Function	Program control function	

Format	IF
[expression $] _$GOTO $n ;$	

[Explanation]

(1) If the specified expression is true (1) (condition is satisfied), execution jumps to the sequence No. specified in GOTO.
If the expression is false (0), the next line is executed.

IF [\#@100 EQ1] GOTO100 ;
If \#@100 is 1, execution jumps to N100.
If it is other than 1 , the next line is executed.
IF [\#@100] GOTO100 ;
If \#@100 is 1 (true), execution jumps to N100.
If it is 0 (false), the next line is executed.
(2) The following comparison instructions may be used in the expression.

Code	Meaning
EQ	Equal to ($=$)
NE	Not equal to (!=)
GT	Greater than $(>)$
LT	Less than $(<)$
GE	Greater than or equal to $(>=)$
LE	Less than or equal to $(<=)$

(3) The expression must be enclosed in "[", "]".
(4) The line number specified in GOTO must exist in the same program. If it does not exist, an error (error code : 541) occurs.
(5) If only GOTOn is specified, execution jumps to the specified sequence No. unconditionally.
(6) The GOTO statement cannot cause execution to go into or come out of the THEN and ELSE statements.
It is similar for the DO statement.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

The program for which jumps the specified sequence No. if the condition is satisfied.
O00201;
N200 G91 ;
N210 G01 X100. Y100. F2000. ;
X200. ;
Y200. ;
IF [\#@100] GOTO230 ; (If \#@100 is true, execution jumps to N230.)
Jump to N220 G01 Y300. F1500. ;
N230 X300. ;
N230 G02 X50. Y50. IO. J50. F800. ;
N240 G01 X100. Y500. F2000. ;

- IF [\#@110 EQ 180] GOTO260 ; (If \#@110 is 180, execution jumps to N260.)

Jump to N250 G00 X10. ;
N260 Y100. ;
N260 G28 X0. Y0. ;
M02 ;
\%

REMARK

Only one comparison instruction may be used in one block.

6.16.2 Program control function (IF, THEN, ELSE, END statements)

Code	IF, THEN, ELSE, END	The flow of execution program is controlled based on the condition.
Function	Program control function	

[Explanation]

(1) If the specified expression is true (1) (condition is satisfied), the THEN statement (block group up to ELSE) is executed. If it is false (0) (condition is not satisfied), the ELSE statement (block group up to END) is executed.
IF [\#@100 EQ1] THEN1 ;
If \#@100 is 1 , the block group described here is executed.
ELSE1;
If \#@100 is not 1 , the block group described here is executed.
END1 ;
(2) When ELSE is omitted, the block group up to END is executed only if the conditional expression is true.
IF [\#@100 EQ1] THEN1 ;
If \#@100 is 1 , the block group described here is executed.
END1 ;
(3) The multiprogramming depth is up to three levels including that of the WHILE statement.
IF [] THEN1 ;
IF [] THEN2 ;
IF [] THEN3

END3
END2
END1 ;
(4) The GOTO statement cannot cause execution to go into or come out of the THEN and ELSE statements.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

O0001;
N1 G91 ;
N2 G01 X100. Y100. F2000 ;
N3 X200. ;
N4 Y200. ;
N5 IF [\#@100 EQ0] THEN1 ; When \#@100=0, THEN1 to END1 are executed.
N6 G01 Y300. F1500 ;
N7 X300.
N8 END1 ;
N9 G02 X50. Y50. IO. J50. F800 ;
N10 G01 X100. Y500. F2000 ;
N11 IF [\#@110] THEN2; When \#@110 is true, THEN2 to ELSE2 are executed.
N12 G00 X10.;
N13 Y100. ;
N14 ELSE2 ; When \#@110 is false, ELSE2 to END2 are executed.
N15 G28 X0. Y0.;
N16 END2;
N17 M02 ;
\%
(Note) : Note that if the sequence No. $\left(\mathrm{N}^{*} * *\right)$ is omitted in the above program, the block No. changes as indicated below.

Program	Execution block No. (A)	Execution block No. (B)	Execution block No. (C)	Execution block No. (D)
O1;	0	0	0	0
G91 ;	1	1	1	1
G01 X100. Y100. F2000 ;	2	2	2	2
X200. ;	3	3	3	3
Y200. ;	4	4	4	4
IF [\#@100 EQ0] THEN1 ;	5	5	5	5
G01 Y300. F1500 ;	6	-	6	-
X300. ;	7	-	7	-
END1 ;	8	-	8	-
G02 X50. Y50. 10. J50. F800 ;	9	6	9	6
G01 X100. Y500. F2000 ;	10	7	10	7
IF [\#@110] THEN2 ;	11	8	11	8
G00 X10. ;	12	9	-	-
Y100. ;	13	10	-	-
ELSE2 ;	14	11	-	-
G28 X0. Y0. ;	-	-	12	9
END2 ;	-	-	13	10
M02 ;	15	12	14	11
\%	-	-	-	-

(A) indicates that \#@100 = 0 and $\# @ 110$ is true.
(B) indicates that \#@100 $\neq 0$ and $\# @ 110$ is true.
(C) indicates that \#@100 = 0 and \#@110 is false.
(D) indicates that $\# @ 100 \neq 0$ and $\# @ 110$ is false.

6.16.3 Program control function (WHILE, DO, END statements)

Code	WHILE, DO, END	The flow of execution program is controlled based on the condition.
Function	Program control function	

	WHILE $_{\checkmark}$ [conditional expression] DOm;	
Format	ENDI ${ }_{T}$;	WHILE identification number (1 to 32)

[Explanation]

(1) While the [conditional expression] holds, blocks between the next block and ENDm block are executed repeatedly, and when it does not hold, execution shifts to the block next to ENDm.
(2) WHILE [conditional expression] DOm and ENDm are used in pairs. The range of identification No. m is 1 to 32 .
(3) The multiprogramming depth of the WHILE statement is up to three levels. [Example] (1) The identification No. m can be used any number of times as desired.

(2) The multiprogramming depth is up to three levels.

(4) The GOTO statement cannot cause execution to go into or come out of the DO statement.
[Program Example]
The program for which jumps to the specified line if the condition is satisfied.
O0110;
N1 \#@0=0 ;
N2 G91 G00 X25. Y50. ;
N3 WHILE [\#@0 LT3] D01
N4 G03 X0. Y0. I25. J0. F100. ; (Note-1)
N5 \#@0=\#@0+1 ; (Note-2)
N6 END1
N7 G28 X0. Y0. ;
N8 M02 ;
\%

(Note-1) : N3 to N6 are repeated while variable \#@0 < 3 holds.
(Note-2) : Every time this block is executed once, 1 is added to variable \#@0.
The above program ends after drawing a circle three times.
(Note) : Note that if the sequence No. ($\mathrm{N}^{*} * *$) is omitted in the above program, the block No. changes as indicated below.

Program	Execution block No.
O0110 ;	0
\#@0=0 ;	1
G91 G00 X25. Y50. ;	2
WHILE [\#@0 LT3] DO1 ;	3
G03 X0. Y0. I25. J0. F100. ;	4
\#@0=\#@0+1 ;	5
END1 ;	-
G28 X0. Y0. ;	4
M02 ;	5
$\% ~$	-

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.16.4 Four fundamental operators, assignment operator (+, -, *, /, MOD, =)

Code	$+,-,{ }^{*}, l$, MOD, $=$	Addition (+), subtraction (-), multiplication (*), division (/), remainder (MOD) and assignment (=) are executed.
Function	Four fundamental operators, assignment operator	

[Explanation]

(1) Calculation of the specified operator is performed.
(2) The priority of operations is in order of function, multiplication type operation and addition type operation.

(3) The area of operation where you want to give priority can be enclosed in []. [] can be five levels deep including [] of a function. An operational expression may be described in up to 72 characters. (Up to the maximum number of characters in one block)

(4) For,+- , * and /, the operation result type is used for operation. Operation data 1, 2 are converted into the operation result type. The operation result can be the 16-, 32- or 64-bit type.

(5) For MOD, the 16- or 32-bit type is used for operation. If operation data 1, 2 are the 64-bit type, they are converted into the 32-bit type.
The operation result can be the 16-, 32- or 64-bit type, but if the operation result is the 64-bit type, the result of operation performed with the 32-bit type is converted into the 64-bit type and the result of conversion is stored.

Operation result = operation data 1 operator operation data 2		
Operation result is stored Note that if operation result is 64-bit type,	Operation is performed after conversion of operation data 32-bit type is converted into 64-bit type. Note that if operation result is 64-bit type, 32-bit type is	
	used to perform operation.	

(6) The following operational expressions will result in a "Format error" (error code : 560).

```
#@10 = ##@20 ; \longrightarrow Possible if #@10 = #[#@20] ;
#@10 = #@20 + - #@30 ;\longrightarrow Possible if #@10 = #@20 + [- #@30] ;
```

(7) If there is no operation result (if operation exists in the operation result, or for conditional expression such as the IF statement), the 32-bit type is used to perform operation.

[Program Example]

The program for which execute the positioning based on the result of the specified operation.
O0200 ;
\#@40L = 1000000 ;
\#@60L = 767 ;
\#@80L = 10000 ;
\#@30L = [\#@40L + 50000] * 2 ;
\#@50L = \#@60L MOD 256 ;
\#@70L = \#@80L *2 ;
N060 G00 X\#@30L Y\#@50L ;
X20. ;
N080 G91 G01 X100. F\#@70L ;
X20.;
Y30. ;
M02 ;
\%

6.16.5 Trigonometric functions (SIN, COS, TAN, ASIN, ACOS, ATAN)

Code	SIN, COS, TAN, ASIN, ACOS, ATAN	Operations of SIN (sine), COS (cosine), TAN (tangent), ASIN (arcsine), ACOS (arccosine) and ATAN (arctangent) are executed.
Function	Trigonometric functions	

[Explanation]

(1) The operation of the specified trigonometric function is performed.
(2) The operation result is a 32 -bit integer (BIN value) including four decimal places.
(3) When the argument of the trigonometric function has no decimal point, the operation result is similarly a BIN value including four decimal places.
[Program Example]

\#2010: L = SIN [60.];	\#2010 : L = 8660
\#2016: L = SIN [600000];	\#2016: L = 8660
\#2020: L = COS [45.];	\#2020: L = 7071
\#2026: L = COS [450000];	\#2026: L = 7071
\#2030 : L = TAN [30.];	\#2030: L = 5773
\#2036: L = TAN [300000];	\#2036: L = 5773
\#2040: L = ASIN [0.8660];	\#2040 : L = 599970
\#2046: L = ASIN [8660];	\#2046 : L = 599970
\#2050 : L = ACOS [0.7071];	\#2050: L = 450005
\#2056: L = ACOS [7071];	\#2056:L = 450005
\#2060: L = ATAN [1.];	\#2060 : L = 450000
\#2066: L = ATAN [10000];	\#2066 : L = 450000

6.16.6 Real number to BIN value conversion (INT)

Code	INT	
Function	Floating-point type real number processing instruction Real number to BIN value	A floating-point type real number is converted into a 32-bit integer (BIN value) including four decimal places.

Format	$\underline{\mathrm{INT}} \underline{-}^{[\mathrm{n}]} ;$	
		Indirect setting only
		Real number to 32-bit integer (BIN value) conversion command

[Explanation]

(1) A floating-point type real number is converted into a 32-bit integer (BIN value) including four decimal places.
(2) A floating-point type real number is processed as single precision (32-bit) in the binary floating-point format of the IEEE Standard.
Sign part
1 bit
Exponent part 8 bits
Significant digit part...... 23 bits

(3) The following values can be handled as floating-point type real numbers.
$-1.0 \times 2^{128}<$ value $\leqq-1.0 \times 2^{-126}, 0,1.0 \times 2^{-126} \leqq$ value $<1.0 \times 2^{128}$
[Program Example]

```
#2002:L=10000 ;
#2004 : L = FLT [#2002 : L] ; #2004 : L = (461C4000) }1
(D2004, D2005 = (461C4000) 16)
#2006 : L = INT [#2004 : L] ; #2006 : L = 10000
```


6.16.7 BIN value to real number conversion (FLT)

Code	FLT	
Function	Floating-point type real number processing instruction BIN value to real number conversion	A 32-bit integer (BIN value) including four decimal places is converted into a floating-point type real number.

Format	$\underline{\mathrm{FLT}_{\smile}[\mathrm{n}]}$;	
		Indirect setting only
		32-bit integer (BIN value) to real number conversion command

[Explanation]

(1) A 32-bit integer (BIN value) including four decimal places is converted into a floating-point type real number.
(2) A floating-point type real number is processed as single precision (32-bit) in the binary floating-point format of the IEEE Standard.
Sign part \qquad 1 bit
Exponent part 8 bits
Significant digit part...... 23 bits

Bits 23 to 30 : Exponent part
Bits 31 : Sign part
(3) The following values can be handled as floating-point type real numbers. $-1.0 \times 2^{128}<$ value $\leqq-1.0 \times 2^{-126}, 0,1.0 \times 2^{-126} \leqq$ value $<1.0 \times 2^{128}$

[Program Example]

```
#2002:L=10000 ;
#2004 : L = FLT [#2002 : L] ; #2004 : L = (461C4000) 16
(D2004, D2005 = (461C4000) 16)
#2006 : L = INT [#2004 : L] ; #2006 : L = 10000
```


6.16.8 32-bit real number and 64-bit real number data conversion (DFLT, SFLT)

Code	DFLT, SFLT	The DFLT instruction converts the data from 32-bit real number to 64- bit real number.
Function	32-bit real number and 64-bit real number data conversion	The SFLT instruction converts the data from 64-bit real number to 32-bit real number.

[Explanation]

(1) DFLT : 32-bit real number data (a floating-point type) is converted 64-bit real number data (a floating-point type).
(2) SFLT : 64-bit real number data (a floating-point type) is converted 32-bit real number data (a floating-point type).
[Program Example]

```
#2004F = DFLT [#2002L] ;
#2010L = SFLT [#2012F] ;
```


REMARK

32-bit real number data is used in QCPU, and the data conversion between Motion CPU and PLC CPU must use this instruction.
[64-bit double precision real number type]

[32-bit double precision real number type]

6.16.9 Functions (SQRT, ABS, BIN, BCD, LN, EXP, RND, FIX, FUP)

Code	SQRT, ABS, BIN, BCD, LN, EXP, RND, FIX, FUP	Operations of SQRT (square root), ABS (absolute value), BIN (BCD to BINARY conversion), BCD (BINARY to BCD conversion), LN (natural logarithm), EXP (base e exponent), RND (round off), FIX (round down)
Function	Functions	and FUP (round up) are executed.

Format	$\underline{\text { function }}$ [n$]$;	
		Numerical value (Indirect setting is possible)
		Function (SQRT, ABS, BIN, BCD, LN, EXP, RND, FIX, FUP)

[Explanation]

(1) Operation of the specified function is executed.
(2) Refer to Items (5), (6), (7) in Section 6.11 .3 for the operation result.

[Program Example]

\#2010L $=$ SQRT [100]	10 enters [D2011, D2010].
\#2020L $=$ ABS [-25]	25 enters [D2021, D2020].
\#2030L $=$ BIN [100]	64 enters [D2031, D2030].
\#2040L $=$ BCD [100]	256 enters [D2041, D2040].
\#2050L $=$ LN [1000000]	13 enters [D2051, D2050].
\#2060L $=$ EXP [20]	485165195 enters [D2061, D2060].
\#2070F $=$ RND [14/3]	5 enters [D2073, D2072, D2071, D2070] (64-bit floating-
\#2080F $=$ FIX [14/3]	point type). 4 enters [D2083, D2082, D2081, D2080] (64-bit floating- point type).
\#2090F $=$ FUP [14/3]	5 enters [D2093, D2092, D2091, D2090] (64-bit floating- point type).
\#2170F $=$ RND [-14/3]	-5 enters [D2173, D2172, D2171, D2170] (64-bit floating- point type).
\#2180F $=$ FIX [-14/3]	-5 enters [D2183, D2182, D2181, D2180] (64-bit floating- point type).
	-4 enters [D2193, D2192, D2191, D2190] (64-bit floating-

6.16.10 Logical operators (AND, OR, XOR, NOT, <<, >>)

Code	AND, OR, XOR, NOT, <<, >>	Logical product (AND), logical add (OR), exclusive logical add (XOR), logical NOT (NOT) and shift operations (<<, >>) are executed.
Function	Logical operators	

[Explanation]

(1) Operation of the specified logical operator is executed.
(2) Only the integer types (16-bit type, 32-bit type) may be used to perform logical operation. Logical operation including the 64-bit floating-point type cannot be performed. (error 560 : Format error)
The operation result can be 16 - or 32-bit type, but it is converted into the operation result type for operation.
(3) The area of operation where you want to give priority can be enclosed in []. [] can be five levels deep including [] of a function. An operational expression may be described in up to 72 characters. (Up to the maximum number of characters in one block)
<For AND, OR, XOR, <<, >\gg

<For NOT>
Operation result = NOT [operation data 1] ;

Each bit of operation data 1 is inverted and result of inversion is stored into operation result.
(4) The logical operators can be used with the conditional expressions of the IF and WHILE statements.
IF [[ON \#M1000] AND [OFF \#M1100]] GOTO1 ;
If M1000 is ON and M1100 is OFF, the N1 line is executed.
IF [[\#2100 AND \#2200] EQ \#2300] GOTO2 ;
If the result of operating AND \#2100 and \#2200 contents is equal to \#2300, the N 2 line is executed.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

Operator	Program example	Operation			
AND	$\begin{aligned} & \text { \#2010L }=100 ; \\ & \text { \#2020L }=\text { \#2010L AND } 15 ; \end{aligned}$	$\begin{array}{ll} \# 2010 L & =00000000 \\ 15 & =00000000 \\ \hline \# 2020 L & =00000000 \end{array}$	$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline 00000000 \end{aligned}$	$\begin{array}{r} 00000000 \\ 00000000 \\ \hline 00000000 \end{array}$	$\begin{aligned} & 01100100 \\ & 00001111 \\ & \hline 00000100=4 \end{aligned}$
OR	$\begin{aligned} & \text { \#2010L }=100 ; \\ & \text { \#2020L }=\text { \#2010L OR } 14 \text {; } \end{aligned}$	$\begin{array}{ll} \# 2010 L & =00000000 \\ 14 & =00000000 \\ \hline \# 2020 L & =00000000 \end{array}$	$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline 00000000 \\ & \hline \end{aligned}$	$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline 00000000 \\ & \hline \end{aligned}$	$\begin{aligned} & 01100100 \\ & 00001110 \\ & 01101110=110 \end{aligned}$
XOR	$\begin{aligned} & \text { \#2010L }=100 ; \\ & \text { \#2020L }=\text { \#2010L XOR } 14 ; \end{aligned}$	$\begin{array}{ll} \# 2010 L & =00000000 \\ 14 & =00000000 \\ \hline \# 2020 L & =00000000 \end{array}$	$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline 00000000 \\ & \hline \end{aligned}$	$\begin{array}{r} 00000000 \\ 00000000 \\ \hline 00000000 \\ \hline \end{array}$	$\begin{aligned} & 01100100 \\ & 00001110 \\ & 01101010=106 \\ & \hline \end{aligned}$
NOT	$\begin{aligned} & \# 2010 \mathrm{~L}=90 ; \\ & \text { \#2020L }=\text { NOT [\#2010L] ; } \end{aligned}$	$\begin{aligned} & \# 2010 \mathrm{~L}=00000000 \\ & \# 2020 \mathrm{~L}=11111111 \end{aligned}$	$\begin{array}{r} 00000000 \\ \hline 11111111 \\ \hline \end{array}$	$\begin{array}{r} 00000000 \\ \hline 11111111 \\ \hline \end{array}$	$\begin{aligned} & 01011010 \\ & 10100101=-91 \end{aligned}$
<<	$\begin{aligned} & \text { \#2010L }=20 ; \\ & \text { \#2020L }=\# 2010 \mathrm{~L} \ll 2 ; \end{aligned}$	$\begin{aligned} & \text { \#2010L }=00000000 \\ & \text { \#2020L }=00000000 \end{aligned}$	$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline \end{aligned}$	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$	$\begin{aligned} & 00010100 \\ & 01010000=80 \end{aligned}$
>>	$\begin{aligned} & \text { \#2010L }=80 ; \\ & \text { \#2020L }=\# 2010 \mathrm{~L} \gg 2 ; \end{aligned}$	$\begin{aligned} & \# 2010 \mathrm{~L}=00000000 \\ & \# 2020 \mathrm{~L}=00000000 \end{aligned}$	$\begin{aligned} & 00000000 \\ & 00000000 \\ & \hline \end{aligned}$	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$	$\begin{aligned} & 01010000 \\ & 00010100=20 \end{aligned}$

6.16.11 Move block wait functions (WAITON, WAITOFF)

Code	WAITON, WAITOFF	The next travel block is executed at the completion of ON/OFF condition for the specified device.
Function	Move block wait functions	

Format	WAITON \#XX;	
	WAITOFF \#XX;	Device (X, Y, M, B, F)

[Explanation]

(1) Execution of the next travel block is waited until the completion of ON/OFF condition for the specified device. However, the operation block is executed.
(2) The response time of WAITON/WAITOFF is the operation cycle time (approx. 0.88 [ms] for 5 or less axes).
(3) The grammar is indicated below.
<WAITON statement> : WAITON \#<device>
[Example] WAITON \#X10 ;
<WAITOFF statement> : WAITOFF \#<device>
[Example] WAITOFF \#X11 ;
(4) It takes about 7 to $64[\mathrm{~ms}]$ from when a program is started until the program is actually run. Therefore, If WAITON/WAITOFF is used, the Motion program can be started at high speed. By setting a wait for a shift to the next block with WAITON or WAITOFF after a program start has been made by the start instruction of the Motion program, prereading of the next block has been completed, and therefore, the next block can be executed at high speed (approx. $3.5[\mathrm{~ms}]$ for 4 or less axes) after the device condition has held, improving the variation or delay in a program start.
[Example]
WAITON \#X10 ; «When X10 turns ON, N1 block is executed.
N1 G01 X100. Y200. F1000. ;
WAITOFF \#X11 ; \longleftarrow When X11 turns OFF, N2 block is executed.
N2 G01 X200. Y300. F500. ;

M02 ;
\%
(5) WAITON/VAITOFF cannot be used with the home position return instruction.

[Program Example]

The program which executes the next block at the completion of condition.

1) 00001 WAITON \#X10 ; 00002 N1 G01 X100. Y200. F1000. ;
2) 00003 WAITOFF \#X11 ; $00004 \mathrm{~N} 2 \mathrm{\#} 2010=5$; 00005 G00 X0. Y-10. ;
3) 00006 WAITON \#X12 ; 00007 GOTO 10 ; 00015 N10 G00 X0. Y0.

00020 \#2000 = 5 ;
4) 00021 WAITOFF \#XFF ;

00022 IF [\#2000 EQ 5] GOTO 20 ; 00023 N15 G01 X200. Y200. F2000. ;

00027 N20 G01 X100. Y100. F2000. ;
00028 M02 ;
00029 \%

The above program is executed as described below.

1) Line 1 When device $X 10$ turns $O N$, line 2 is executed.
2) Line 3 When device X 11 turns OFF, line 5 is executed. (Line 4 is being executed.)
3) Line 6 When device X 12 turns ON, N10 is executed.
4) Line 21 When device XFF turns OFF, \#2000=5 to line 27 are executed. Because of preread processing, N15 is not executed and execution jumps to N20 if the \#2000 (D2000) value is changed from sequence program while execution waits for XFF to turn from ON to OFF in the WAITOFF statement.

6.16.12 Block wait functions (EXEON, EXEOFF)

Code	EXEON, EXEOFF	The next block is executed at the completion of ON/OFF condition for
Function	Block wait function	the specified device.

Format	EXEON \#XX;
	EXEOFF \#XX;
	Device (X, Y, M, B, F)

[Explanation]

(1) Execution of the next block is waited until the completion of ON/OFF condition for the specified device.
(2) The response time of EXEON/EXEOFF is an operation cycle.
(3) The grammar is indicated below.
<EXEON statement> : EXEON \#<device>
[Example] EXEON \#X10 ;
<EXEOFF statement> : EXEOFF \#<device>
[Example] EXEOFF \#X11 ;
[Program Example]
(1) Control program

SET \#M100 ;
RST \#M101 ;
EXEON \#M102 ; « Preread is not executed in the control program.
\#D2100=200 When the M102 is ON, the next block is executed.
CALL JXJY P100 ;

M02 ;
(2) Axis designation program
(a) Next block is travel block.

(c) EXEON/EXEOFF is wrote between the travel blocks.

EXEON/EXEOFF

G01 X100. F100. ;
EXEON \#M100 ;
G01 X200. F100. ;

```
EXEON/EXEOFF
G00 X100.;
EXEON #M100 ;
G00 X200. ;
```

- Above two programs stop temporary between blocks regardress of G00(PTP), G01(CP), and it judges waiting/execution for EXEON/EXEOFF in the state of preceding block end.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

REMARK

Operation which combined EXEON and WAITON.

When the EXEON is wrote in the next block of WAITON (not travel value), priority is given to waiting condition for EXEON regardless of WAITON state, in this case, since an operation is complicated, it recommends not using it combining WAITON and EXEON.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.16.13 Bit set and reset for word devices (BSET, BRST)

Code	BSET, BRST	Sets or resets the specifies bit in the word device.
Function	Bit operation of the ward devices	

[Explanation]

(1) BSET sets the specifies bit in the word device.
(2) BRST resets the specifies bit in the word device.
[Program Example]
Set the 10th bit of D2000.
BSET \#D2000 10 ;

Reset the 12th bit of \#@100.
BRST \#@100 12 ;

6.16.14 Parameter block change (PB)

Code	PB	The parameter block of the specified No. is used.
Function	Parameter block change	

Format	PB Pb;	
		Parameter block No.

[Explanation]

(1) The numerical value following PB is used as a parameter block No..
(2) The parameter block value may also be specified indirectly by a variable, D, W or \# (2-word data).
(3) Any of 1 to 64 may be specified as the parameter block value.

Specifying any other value than the above will result in a "Format error". (error code : 560)
(4) Once given, the parameter block change command is valid until the parameter block change command is given again.
However, when a torque limit value change (TL) is executed, the specified torque limit value is used.
(5) When a parameter block change (PB) is executed during a torque limit value change (TL), the torque limit value in the new parameter block is used.
(6) When a parameter block change is executed during a constant-speed motion, the axis decelerates to a stop once and the next constant-speed motion is executed.
G01 X100. F500. ; « Deceleration to a stop at X100.
PB3 ; \longleftarrow After that, parameter block 3 is used.
G01 X200. ;
(7) The home position return (G28) uses the following parameters.
(a) Home position return request ON...........Parameter block is specified home position return parameters.
(b) Home position return request OFF..........Parameter block at the axis designation program start.
(8) The parameter block change command cannot be described in the same block as another command.
(9) If a cancel start is made during a parameter block change, the start program uses the parameter block for execution of the start program.
(10) A parameter block change (PB) is valid at the next travel.

[Program Example]

(1) When a parameter block change is executed during point-to-point positioning

N01 G00 X0. ; \qquad Uses the parameter block at a program start.
N02 G00 X100.
N03 PB3 ; \longleftarrow Changes to parameter block 3 .
N04 G00 X300. ;

(2) When a parameter block change is executed during constant-speed positioning

N01 G01 X0. F200. ; ఒ Uses the parameter block at a program start.
N02 G01 X100. ;
N03 PB5 ; \longleftarrow Changes to parameter block 5
N04 G01 X200.;

(3) When torque limit value is being changed

N01 G01 X0. F200. ;
N02 G01 X100. TL300 ;
N03 G01 X200.
N04 PB10 ;
N05 G01 X300.

6.16.15 Torque limit value change (TL)

Code	TL	The torque limit value is changed to the specified value.
Function	Torque limit value change	

[Explanation]

(1) The numerical value following $T L$ is commanded as a torque limit value. The torque limit value may also be specified indirectly by a variable, D, W or \# (2-word data).
(After the TL code, the torque limit value in the parameter block is not used.)
(2) Any of 1 to 1000[\%] may be specified as the torque limit value.

Specifying any other value than the above will result in a "Format error". (error code : 560)
(3) Once given, the TL command is valid until the TL command is given again or the parameter block or CHGT command is given. However, at a program start, the torque limit value in the specified parameter block or the specified torque limit value is used.
(4) At a home position return (G28), the torque limit value in the parameter block at a program start is used.
(5) If a cancel start is made during a torque limit value change, the start program uses the torque limit value in the parameter block for execution of a start program.
(6) If a torque limit value change (TL) is specified in G32 (skip) and the skip device is already ON before execution of G32, the torque limit value change command (TL) is also skipped and the torque limit value specified previously remains unchanged.
(7) The torque limit value change (TL) is valid for all axes specified in the start instruction of the Motion program. However, if the torque limit value specified in the torque limit value change (TL) for the axis whose torque limit value is specified in the CHGT command is greater than the torque limit value in the CHGT command, torque is clamped at the torque limit value of the CHGT command.
(8) The axis operating under the high-speed oscillation (G25) is not made valid. That axis is made valid from the move command or M-code after the high-speed oscillation stop (G26) is executed.
(9) If specified in a move block, the torque limit value (TL) is made valid from that motion. When the torque limit value is independent (no block motion specified), it is made valid for the next motion.

[Program Example]

(1) When torque limit value change is made

N01 G00 X0. ; \longleftarrow Controls at the torque limit value in the parameter block
N02 G00 X100. TL100 ; \square at a program start.
N03 G00 X200. ; Controls at the torque limit value of $100[\%$].
N04 G00 X300. TL300 ; « Controls at the torque limit value of $300[\%$].

(2) When parameter block change is made

N01 G01 X0. F200. ; «Controls at the torque limit value in the parameter block
N02 G01 X100. TL200; \square
N03 G01 X200. ; \quad at a program start.
Controls at the torque limit value of 200[\%]
N04 PB5 ; \longleftarrow Changes to parameter block 5.
N05 G01 X300. ; \longleftarrow Controls at the torque limit value in parameter block 5 .

6.16.16 Home position return (CHGA)

Code	CHGA	A home position return of the specified axis is executed.
Function	Home position return	

	CHGA JX;	
Format		The " $J+$ Axis name" to return the home position is set. It is possible to specify it only by an axis.

[Explanation]

(1) The start accept flag (M2001 to M2032) of the specified axis is turned ON.
(2) The start accept flag is turned ON according to the home position return parameters after a home position return.
(3) G28 executes a high-speed home position return when the home position return request is OFF. However, the home position return is executed for CHGA by the home position return method set by the home position return parameter.
CHGA instruction is executed an equal to S(P).CHGA instruction of " 3 MOTION DEDICATED PLC INSTRUCTION" in the Motion program.

6.16.17 Speed change (CHGV)

Code	CHGV	A speed change of the specified axis is executed.
Function	Speed change	

Format	CHGV JX n;	
		Speed change value (Indirect setting is possible) is $J+$ Axis name" to change the speed value It is possible to specify it only by an axis.

[Explanation]

(1) The speed changing flag (M2061 to M2092) of the specified axis is turned ON.
(2) The speed changing flag is turned OFF after changing speed to "n".
(3) CHGV can be changed in the range of the speed limit value though override is a speed change which specifies the ratio from 0 to 100[\%].
CHGV instruction is executed an equal to $S(P)$.CHGV instruction of " 3 MOTION DEDICATED PLC INSTRUCTION" in the Motion program.

REMARK


```
G90 ;
G00 X0. ;
G00 X1000. ;
N1 ;
IF [ON #M2402] GOTO1 ;
CHGV JX 100.;
```

(1) When the block of CHGV is preread by programming the above left program, CHGV is executed while executing the block (example : G00 block) before CHGV. Make the program like a above right program to execute CHGV after the block of "G00 X1000. ; " ends.
(2) Set the speed change value specified with the CHGV instruction without the decimal point.
If the speed change value with decimal point is set, an effective digit below the decimal point is distinguished as follows, and it converts it into the value without the decimal point .

Fixed parameter of specified axis		Number of effective digits below the decimal point	Ex.) "CHGV JX 12345.6789;" is set.
Units	Speed control $10 \times$ multiplier setting for degree axis		2 digits

6.16.18 Torque limit value change (CHGT)

Code	CHGT	A torque limit value change of the specified axis is executed.
Function	Torque limit value change	

| Format | CHGT JX |
| :--- | :--- | :--- |
| | Torque limit change value (Indirect setting is
 possible) $(1$ to $1000[\%])$
 The " $\mathrm{J}+$ Axis name" to change the torque limit
 value is set.
 It is possible to specify it only by an axis. |

[Explanation]

CHGT is an instruction which executes an equal to S(P).CHGT instruction of " 3 MOTION DEDICATED PLC INSTRUCTION" in the Motion program.

```
REMARK
G90 ;
G00 XO. ;
TL50;
G00 X1000.;
CHGT JX 50. ;
```

When the block of CHGT is preread by programming the above program, CHGT is executed while executing the block (example : G00 block) before CHGT.
Torque limit value is changed after the movement of the pre-block completes a TL instruction.
When a $T L$ instruction was used, the timing of the torque limit value is clear with the axis designation program.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.16.19 Bit device set, reset functions (SET, RST)

Code	SET, RST	The specified device is turned ON/OFF.
Function	Bit device set, reset functions	

[Explanation]

(1) The specified device in the G-code program can be turned ON/OFF.
(2) Refer to Section 6.11 .2 (2) for the usable device ranges.
[Program Example]

1) SET \#MO ; Turns ON device MO.
2) RST \#MO ; Turns OFF device MO.
3) SET \#Y10 ; Turns ON device Y10.

6.16.20 Bit device operation on condition (IF, THEN, SET/RST/OUT)

Code	IF, THEN, SET/RST/OUT	When the condition consists, a specified device is turned on.
Function	Bit device operation on condition	

Format	IF [conditional expression] THEN SET \#Yy	
	IF [conditional expression] THEN RST \#Yy;	
	IF [conditional expression] THEN OUT \#Yy;	
		Device turn ON and OFF on condition. (Y, M, B, F, special M)

[Explanation]

(1) When the condition consists, "IF [conditional expression] THEN SET" turns ON a specified device.
(2) When the condition consists, "IF [conditional expression] THEN RST" turns OFF a specified device.
(3) When a specified device is turned ON when the condition consists, and the condition does not consist, "IF [conditional expression] THEN OUT" turns OFF a specified device.
[Program Example]
IF [\#100 EQ0] THEN SET \#Y0 ;

IF [\#100 EQ0] THEN RST \#Y0 ;

IF [\#100 EQ0] THEN OUT \#Y0;

REMARK

(1) The mark of the I/O modules is X and Y in SV43 regardless of installation/noninstallation. PX and PY is not used in the Motion program.
(2) Writing in the device X is possible only for the range of the input modules noninstallation.
(3) The start accept flag (M2001 to M2032) must not use IF, THEN and SET/ RST/OUT.
(4) Do not write it in special relay (M9000 to M9255) excluding the user setting device.
(Note) : The device range which can be used by "IF, THEN, SET/RST/OUT" and "SET/RST" is the same.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.16.21 Program start (CALL)

Code	CALL	The specified control program or axis designation program is started.
Function	Program start	

[Explanation]

(1) Other control programs or axis designation programs are started from the control program.
(2) Do not set the axis and parameter block No. to start the control programs.
(3) Set the axis name used by the axis designation program to start the axis designation program.
(4) As for set program No."Pn" and parameter block No."PBn", indirect setting by \#@ or D (word data) is also possible. In this case, sequence No. can be specified as follows.
[Control program start]
CALL P\#D2010 ;
D2010 : Program No.
D2011 : Sequence No.
[Axis designation program start]
CALL JXJY P\#D2010 ;
D2010 : Program No.
D2011 : Sequence No.
D2012 : Parameter block No.
(5) This instruction cannot be used in the axis designation program.
(6) When the program No. of axis designation program is specified directly, the parameter block No. is started as the default value (PB1).
(7) After the control program and axis designation program are started, the next block is executed without waiting the end of started program.

Difference point of the program call and program start

This program is executed in parallel the started program and following the next block of CALL.

Program call

The following next block of GOSUB is executed after waiting the end of called program.
(GOSUBE also is same.)

6.16.22 Program call 1 (GOSUB)

Code	GOSUB	The specified control program or axis designation program is called.
Function	Program call 1	

[Explanation]

(1) Other control programs or axis designation programs are called from the control program.
(2) Do not set the axis and parameter block No. to call the control program.
(3) Set the axis name used by the axis designation program to call the axis designation program.
(4) This instruction cannot be used in the axis designation program.
(5) As for set Motion program No."Pn" and parameter block No."PBn", indirect setting by \#@ or D (word data) is also possible. In this case, sequence No. can be specified as follows.
[Control program call]
GOSUB P\#D2010 ;

> D2010 : Motion program No.
> D2011 : Sequence No.
[Axis designation program call] GOSUB JXJY P\#D2010 ;

D2010 : Motion program No.
D2011 : Sequence No.
D2012 : Parameter block No.
(6) When the program No. of the axis designation program is specified directly, the parameter block No. is called as the default value (PB1).
(7) After the control program and axis designation program are called, the next block is executed after waiting the end of called program.

Refer to the explanation of "Program start" for the difference between the program start and program call.

6.16.23 Program call 2 (GOSUBE)

Code	GOSUBE	The specified control program or axis designation program is called.
Function	Program call 2	The call source program is ended at the error occurrence.

Format	GOSUBE JXJYJZJUJVJWJAJB Pp;	
		Motion program No. (1 to 1024 (Indirect setting is possible)
		$\mathrm{J}+$ starting axis name. Eight or less can be specified.

[Explanation]

(1) Other control programs or axis designation programs are called from the control program.
(2) Do not set the axis and parameter block No. to call the control program.
(3) Set the axis name used by the axis designation program to call the axis designation program.
(4) This instruction cannot be used in the axis designation program.
(5) As for set Motion program No."Pn" and parameter block No."PBn", indirect setting by \#@ or D (word data) is also possible. In this case, sequence No. can be specified as follows.
[Control program call]
GOSUBE P\#D2010 ;
D2010 : Motion program No.
D2011 : Sequence No.
[Axis designation program call]
GOSUBE JXJY P\#D2010 ;
D2010 : Motion program No.
D2011 : Sequence No.
D2012 : Parameter block No.
(5) When the program No. of the axis designation program is specified directly, the parameter block No. is called as the default value (PB1)
(7) After the control program and axis designation program are called, the next block is executed after waiting the end of called program.
(8) Call source program is ended at the error occurrence. After the control program and the axis designation program are called, the next block is executed after waiting the end of called program.
(9) The end of rol program by CLEAR instruction in the control program or the CLEAR request control program No. setting register (D707) are normal. Call source program is not ended.

Refer to the explanation of "Program start" for the difference between the program start and program call.

[Program Example]

(1) GOSUB+GOSUBE

If an error which program ends will occur in the program No.120, program
"O0110" ends but program "O0100" executes continuously.
(2) GOSUBE+GOSUB

If an error which program ends will occur in the program No.120, program "O0100" and "O0110" execute continuously.
(3) GOSUBE+GOSUBE

If an error which program ends will occur in the program No.120, program "O0100" and "O0110" end.

REMARK

Error list which the main program ends by an error occurrence is shown below.

Error type			Error code
Positioning error	Minor error	Starting errors	$\begin{aligned} & 100,101,103,104,106,107,108,109,110, \\ & 115,140,142,145,160,161 \end{aligned}$
		Positioning control errors	200, 201, 202, 203, 206,207, 208, 209, 211
		Motion program executing errors	$\begin{aligned} & 500,501,502,504,510,513,525,530,531, \\ & 532,533,534,535,536,537,538,541,542, \\ & 543,544,545,546,547,555,560,562,570, \\ & 571,580,581,582,584,585,586,587,591, \\ & 592,593,594 \\ & 600,610,611,612,613,614,615,617,618, \\ & 619,620,630,631,632,633,634,635,636, \\ & 637,650,651,652,653,660,661,662,663, \\ & 680 \end{aligned}$
	Major error	Starting errors	1000, 1001, 1002, 1003, 1004, 1005
		Positioning control errors	1101, 1102, 1103, 1104, 1105
	Servo amplifier error		2000 to 2099, 2146, 2147

6.16.24 Control program end (CLEAR)

Code	CLEAR	The specified control program is ended.
Function	Control program end	

	CLEAR PR;	
Format		Motion program No. (1 to 1024) (Indirect setting is possible)

[Explanation]

(1) The CLEAR is ended if it is executing it specifying the number of the control program from the control program.
(2) The axis designation program cannot be stopped.
(3) The CLEAR at a program start is as following operation.

A

(a) If the main program (00100) ends regardless of the started program or subprogram (O0200), the main program (O0100) ends and the subprogram (O0200) does not end. (Figure A, B)
(b) When the started program is the control program, if the subprogram (O0200) ends, the subprogram (O0200) ends and the main program (O0100) does not end. (Figure B)
(c) When the started program is the axis designation program, turn the stop command or rapid stop command of applicable axis ON to stop the subprogram (O0200).
In this case, the subprogram (O0200) ends and the main program (O0100) does not end. (Figure A)

6 MOTION PROGRAMS FOR POSITIONING CONTROL

(4) The CLEAR at the program call as the following operation.

(a) When the started program is a control program, if the main program (O0100) is cleared, the both of the main program (O 0100) and subprogram $(\mathrm{O} 0200)$ end. (Figure B)
(b) When the started program is a control program, if the subprogram (O0200) is cleared, the execution ends and the control returns to the main program (O0100). (Figure B)
(c) When the started program is a designation program, if the main program (O0100) is cleared, only main program (O0100) ends and the subprogram (O200) does not end. (Figure A)
(d) When the started program is a designation program, if the subprogram ends by the stop command or rapid stop command, etc. of the applicable, the control returns to the main program (O0100). (Figure A)

[Program Example]

The control program of Motion program No. 10 is ended.
CLEAR P10;

REMARK

Even if the control program is stopped with the CLEAR instruction, a signal during the set keep a set.

6.16.25 Time to wait (TIME)

Code	TIME	Time from the end of the block to the next block beginning is specified at waiting time.
Function	Time to wait	

| Format | TIME $\mathrm{Pp} ;$ |
| :--- | :--- | :--- |

[Explanation]

(1) Time from the end of the block to the next block beginning is specified at waiting time.
(2) The specified range of waiting time is 1 to 65535 .

The command unit is $0.001[\mathrm{~s}]$.
TIME P1000 ; is waiting at $1[\mathrm{~s}]$.
(3) Waiting time can be set by direct setting (numerical value) and indirect setting (constant: \#****).
(4) TIME instruction can be used only the control program.

Use the G04 (Dwell) as the time to wait in the axis designation program.
(5) The command unit is 0.001 [s] (1[ms]). However, note that about dozens maximum error (dispersion) will occur by the main cycle.

[Program Example]

M10 is turned ON for 100[ms].
SET \#M10 ;
TIME P100 ;
RST \#M10 ;

Waiting time of $65535[\mathrm{~ms}]$ ($65.535[\mathrm{~s}]$) or more is as follows.

Example 100[s] waiting
\#@0 = 0 ;
WHILE [\#@0 LE 10] D01 ;
TIME P10000 ;
\#@0 = \#@0 + 1 ;
END1 ;

6.16.26 Block transfers (BMOV : 16-bit unit)

Code	BMOV	The data of n words from the specified device are batch-transferred to the specified transfer destination. (16-bit unit)
Function	Block transfers (16-bit unit)	

[Explanation]

(1) The contents for n words from device specified with (S) are batch-transferred to the n words from device specified with (D). (Transferred with a word [16-bit] unit.)
(2) Data can be transferred if the word devices of the transfer source and destination overlap. Data are transferred from devices, starting with the one at (S), for transfer of data from devices of larger numbers to those of smaller numbers, or starting with the one at (S)+(n-1) for transfer of data from devices of smaller numbers to those of larger numbers.
(3) When the $\mathrm{H}+32$-bit hexadecimal constant for (D) or (S) is specified, it is meant to specify the absolute address of the Motion CPU. The absolute address specifies the even number.
When the absolute address is specified, the content of the address is understood. When a wrong operation is executed, operation which crashes the system, and is abnormal might be executed.
(4) An operation error will occur if:
(a) (S) to $(S)+(n-1)$ is outside the device range.
(b) (D) to (D)+(n-1) is outside the device range. .
(c) (n) is 0 or a negative number.
(d) The absolute address is outside the range of the RAM.

[Program Example]

(1) Program which batch-transfers a contents for 5 words from D0 to all data for 5 words from \#@10.
BMOV \#@10 \#D0
$\left.\begin{array}{l|l|c|c|}\text { \#@10 } & \text { 12 } & \text { Batch transfer } \\ \text { (16-bit unit) }\end{array}\right)$
(2) Program which batch-transfers a contents for 5 words from absolute address (0×06000000) of Motion CPU to all data for 5 words from D2000.

$$
\text { BMOV \#D2000 H06000000 } 5
$$

D2000	12	Batch transfer (16-bit unit)	0x06000000	12
D2001	34		0x06000002	34
D2002	56		0x06000004	56
D2003	78		0x06000006	78
D2004	90		0x06000008	90

6.16.27 Block transfer (BDMOV : 32-bit unit)

Code	BDMOV	The data of n words from the specified word device are batch- transferred to the specified transfer destination. (32-bit unit)
Function	Block transfer (32-bit unit)	

[Explanation]

(1) The contents of n words from the word device specified with (S) are batchtransferred, to the n words from the word device specified with (D). (Transferred with 2-word [32-bit] unit.)
(2) Data can be transferred if the word devices of the transfer source and destination overlap. Data are transferred from the devices, starting with the one at (S), for transfer of data from devices of larger numbers to those of smaller numbers, or starting with the one at (S)+(n-1) for transfer of data from devices of smaller numbers to those of larger numbers.
(3) When the $\mathrm{H}+32$-bit hexadecimal constant for (D) or (S) is specified, it is meant to specify the absolute address of the Motion CPU.
The absolute address specifies the multiple of four.
(4) An operation error will occur if :
(a) (S) to $(S)+(n-1)$ is outside the device range.
(b) (D) to (D)+(n-1) is outside the device range.
(c) The device number of (D) or (S) is not even number. word device.
(d) (n) is 0 , negative number or odd number.
(e) The absolute number is not multiple of four.
(f) The absolute address is outside the range of the RAM.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

(1) Program which batch-transfers a contents for 4 words from D2000 to all data for 4 words from \#@10.

BDMOV \#@10 \#D2000 4

(2) Program which batch-transfers a contents for 4 words from absolute address (0×06000000) of Motion CPU to all data for 4 words from D2000.

6.16.28 Identical data block transfers (FMOV)

Code	FMOV	The data of n words from the specified device are batch-transferred to
Function	Identical data block transfers	

Format	\qquad

[Explanation]

(1) The constant or contents for device specified with (S) are batch-transferred to the n words from the device specified with (D). (Transferred with 1-word [16-bit] unit.)
(2) Data can be transferred if the word devices of the transfer source and destination overlap.
(3) When the $\mathrm{H}+32$-bit hexadecimal constant for (D) is specified, it is meant to specify the absolute address of the Motion CPU. The absolute address specifies the even number.
When the absolute address is specified, the content of the address is understood. When a wrong operation is executed, operation which crashes the system, and is abnormal might be executed.
(4) When a wrong operation is executed, operation which crashes the system, and is abnormal might be executed.
(a) (S) is outside the range -32768 to 65535 . (When constant specified)
(b) When (S) is outside the range of the device. (When indirectly specified device)
(c) When from (D) to (D)+(n-1) is outside the range of the device.
(d) (n) is outside the range 1 to 65535. (When constant specified)
(e) When (n) is outside the range of the device. (When indirectly specified device)
(f) When the absolute address is outside the range of RAM.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

[Program Example]

(1) Program which batch-transfers a contents for from D0 to all data for 5 words from \#@10.
FMOV \#@10 \#D0 5

\#@10	12
\#@11	12
\#@12	12
\#@13	12
\#@14	12

D0 \qquad
Batch transfer (16-bit unit)

The motion device is not initialized (0 set) at the power on.
Please use it after initializing data by this instruction when it is necessary.

6.16.29 Write device data to shared CPU memory (MULTW)

Code	MULTW	A part for (n) words of data since the device specified with (S) of the self CPU module are written to since the shared CPU memory address specified with (D) of the self CPU module.
Function	Write device data to shared CPU memory	(D)

Format	MULTW D S n D1;	Self CPU device is made to turn on the by writing completion. Number of words to be written. (1 to 256) First device No. which writing data are stored. The shared CPU memory address of self CPU of the writing destination device. (800 H to FFFH)

[Explanation]

(1) A part for (n) words of data since the device specified with (S) of the self CPU module are written to since the shared CPU memory address specified with (D) of the self CPU module. After writing completion of the device data, the complete bit device specified with (D1) turns on.

(Note) : When automatic refresh is not set, it can be used as a user defined area.
And, when automatic refresh is set up, since the automatic refresh transmitting range becomes a user defined area.
(2) Do resetting of the complete bit device by the user program.
(3) Another MULTW instruction cannot be processed until MULTW instruction is executed and a complete bit device is turned ON. When MULTW instruction was executed again before MULTW instruction is executed and complete bit device is turned ON, the MULTW instruction executed later becomes no processing.
(4) The devices that may be set at (D), (S) (n) and (D1) are shown below.

Setting data	Word devices (Note) (16-bit integer type)								Bit devices (Note)						Constant
	D	W	\#@	M	B	F	X	Y							
	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc						
(S)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-						
(n)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc						
(D1)	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-						

(Note) : The device No. cannot be specified indirectly.

6 MOTION PROGRAMS FOR POSITIONING CONTROL

An operation error will occur if :
(a) Number of words (n) to be written is outside the range of 1 to 256 .
(b) The shared CPU memory address (D) of self CPU of the writing destination device is outside the range (800 H to FFFH) of the shared CPU memory address.
(c) The shared CPU memory address (D) of self CPU of the writing destination device + number of words (n) to be written is outside the range $(800 \mathrm{H}$ to FFFH) of the shared CPU memory address.
(d) First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range.
(e) MULTW instruction was executed again before MULTW instruction is executed and complete bit device is turned on.

[Program Example]

2-word from D0 is written in the shared CPU memory to since A 00 H .

RST \#M0 ;
MULTW HAOO \#DO 2 \#MO ;

6.16.30 Read device data from shared CPU memory of the other CPU (MULTR)

| Code | MULTR | A part for (n) words of data of the other CPU specified with (S1) are |
| :---: | :--- | :--- |$\}$| Function |
| :--- |
| Read device data from
 shared CPU memory of the from the address specified with (S2) of the shared CPU memory,
 other CPU it is stored since the device specified with (D). |

Format	MULTR D S1 S2 n;	Number of words to be read. (1 to 256) The shared CPU memory first address of the data which it will be read. (0 H to FFFH) First I/O No. of the PLC CPU/Motion CPU which it will be read.(CPU No. 1 : 3E0H, CPU No. 2 : 3E1H, CPU No. 3 : 3E2H, CPU No. 4 : 3E3H) First device No. which stores the reading data.

[Explanation]

(1) A part for (n) words of data of the other CPU specified with (S 1) are read from the address specified with (S2) of the shared CPU memory, and are stored since the device specified with (D).

(Note) : When automatic refresh is not set, it can be used as a user defined area. And, when automatic refresh is set up, since the automatic refresh transmitting range becomes a user defined area.
(2) The devices that may be set at (D), (S1), (S2) and (n) are shown below.

Setting data	Word devices (Note) (16-bit integer type)			Bit devices (Note)					Constant
	D	W	\#@	M	B	F	X	Y	
(D)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-
(S1)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc
(S2)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc
(n)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc

(Note) : The device No. cannot be specified indirectly.
(3) When data are read normally from the target CPU specified with (S1), the reading complete flag M9216 to M9219 (CPU No.1:M9216, CPU No.2:M9217, CPU No.3:M9218, CPU No.4:M9219) corresponding to the target CPU turns on. If data cannot be read normally, the reading complete flag of the target CPU does not turn on.
(4) When multiple MULTR instructions are executed to the same CPU simultaneously, the reading complete flag of target CPU number M9216 to M9219 turns on/off as a result of MULTR that it is executed at the end.
(5) Reset the reading complete flag (M9216 to M9219) using the user program.
(6) An operation error will occur if :
(a) Number of words (n) to be read is outside the range of 1 to 256 .
(b) The shared CPU memory first address (S2) of the data which it will be read is outside the range $(000 \mathrm{H}$ to FFFH$)$ of the shared CPU memory address.
(c) The shared CPU memory first address (S2) of the data which it will be read + number of words (n) to be read is outside the range $(000 \mathrm{H}$ to FFFH) of the shared CPU memory address.
(d) First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range.
(e) Except $3 \mathrm{E} 0 \mathrm{H} / 3 \mathrm{E} 1 \mathrm{H} / 3 \mathrm{E} 2 \mathrm{H} / 3 \mathrm{E} 3 \mathrm{H}$ is set at (S1).
(f) The self CPU is specified with (S1).
(g) The CPU which reads is resetting.
(h) The errors are detected in the CPU which read.
[Program Example]
2-word is read to since \#@0 from the shared CPU memory C0OH of CPU No. 1.

MULTR \#@0 H3EO HCOO 2 ;

6.16.31 Write words data to intelligent function module/special function module (TO)

Code	TO	A part for (n) words of data from device specified with (S) are written to
Function	Write words data to intelligent function since address specified with (D2) of the buffer memory in the intelligent function module/special function module controlled by the self CPU module	

Format	TO D1 D2 S n;	Number of words to be written. (1 to 256) First device No. which writing data are stored. First address of the buffer memory which writes data. First I/O No. of the intelligent function module/special function module. (000 H to FFOH)

[Explanation]

(1) A part for (n) words of data from device specified with (S) are written to since address specified with (D2) of the buffer memory in the intelligent function module/special function module controlled by the self CPU specified with (D1).
(S)

(2) First I/O No. of the module set by system setting is specified by (D1).

Power supply						
module	Q02H	Q173H CPU	QX40	Q64AD	Q64DA	
			First I/O No. $: 00 \mathrm{H}$	First I/O No. $: 10 \mathrm{H}$	First I/O No. $: 20 \mathrm{H}$	

(D1) sets 20 H by the system setting when a TO instruction is executed in the D/A conversion module (Q64DA).
(3) The devices that may be set at (D1), (D2), (S) and (n) are shown below.

Setting data	Word devices (Note) (16-bit integer type)			Bit devices (Note)					Constant
	D	W	\#@	M	B	F	X	Y	
(D1)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc
(D2)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc
(S)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-
(n)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc

(Note) : The device No. cannot be specified indirectly.
6-180
(4) The following analogue modules can be used as the control module of Motion CPU.

- Q62DA
- Q64DA
- Q68DAV
- Q68DAI
- Q64AD
- Q68ADV
- Q68ADI
(5) An operation error will occur if :
(a) Number of words (n) to be written is outside the range of 1 to 256.
(b) Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution.
(c) Abnormalities of the intelligent function module/special function module were detected at the instruction execution.
(d) I/O No.s specified with (D1) differ from the intelligent function module/special function module controlled by the self CPU.
(e) The address specified with (D2) is outside the buffer memory range.
(f) First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range.

[Program Example]

2-word from \#0 is written to since buffer memory address (OH) of the Intelligent function module/special function module (First I/O No. : 010H).

T0 H010 H0 \#O 2 ;

6.16.32 Read words data from intelligent function module/special function module (FROM)

| Code | FROM | A part for (n) words of data are read from the address specified with |
| :---: | :--- | :--- |$\}$| Function |
| :--- |
| (S2) of the buffer memory in the intelligent function module/special |
| function module controlled by the self CPU specified with (S1), and are |
| stored since the device specified with (D). |

Format	FROM D S1 S2 n;	Number of words to be read (1 to 256) First address No. of the buffer memory which it will be read. First I/O No. of the intelligent function module/special function module. $(000 \mathrm{H}$ to FFOH$)$ First device No. which stores the reading data.

[Explanation]

(1) A part for (n) words of data are read from the address specified with (S2) of the buffer memory in the intelligent function module/special function module controlled by the self CPU specified with (S1), and are stored since the device specified with (D).

(2) First I/O No. of the module set by system setting is specified by (D1).

Power supply	Q02H	Q173H	QX40	Q64AD	Q64DA	
module	CPU		CPU I/O No. $: 00 \mathrm{H}$	First I/O No. $: 10 \mathrm{H}$	First I/O No. $: 20 \mathrm{H}$	

(S1) sets 20 H by the system setting when a FROM instruction is executed in the D/A conversion module (Q64DA).
(3) The devices that may be set at (D), (S1), (S2) and (n) are shown below.

Setting data	Word devices (Note) (16-bit integer type)			Bit devices (Note)					Constant
	D	W	\#@	M	B	F	X	Y	
(D)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-
(S1)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc
(S2)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc
(n)	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc

(Note) : The device No. cannot be specified indirectly.
(4) The following analogue modules can be used as the control module of Motion CPU.

- Q62DA
- Q64DA
- Q68DAV
- Q68DAI
- Q64AD
- Q68ADV
- Q68ADI
(5) An operation error will occur if:
(a) Number of words (n) to be read is outside the range of 1 to 256.
(b) Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution.
(c) Abnormalities of the intelligent function module/special function module were detected at the instruction execution.
(d) I/O No.s specified with (S1) differ from the intelligent function module/special function module controlled by the self CPU.
(e) The address specified with (S2) is outside the buffer memory range.
(f) First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range.
[Program Example]
A word is read from the buffer memory address 10 H of the intelligent function module/special function module (First I/O No. : 020H), and is stored in W0.

FROM \#W0 H020 H10 1 ;

6 MOTION PROGRAMS FOR POSITIONING CONTROL

6.16.33 Conditional branch using bit device (ON, OFF)

Code	ON, OFF	By describing this command in the conditional expression of
Function	Bit device conditional branch	

Format	IF [ON \#M100] GOTO1 ; ON/OFF device (X, Y, M, B, F) ON/OFF command (describe OFF for OFF) *Conditional expression of IF THEN or WHILE can also be described similarly.

[Explanation]

(1) The ON/OFF status of the specified bit device is judged by the ON/OFF command to see if it is true (1) or false (0).
By using this command in the conditional expression of IF or WHILE, a conditional branch can be made with a bit device.
When used with a logical operator, this command enables a conditional branch with multiple bit devices.
(2) [] of the conditional expression can be five levels deep including [] of a function. An operational expression may be described in up to 72 characters in all. (Up to the maximum number of characters in one block)
<When "ON" is specified>
IF [ON \#M100] GOTO1 ;
$4 \quad$ When M100 is ON, the result is true (1) and a branch to N01 is taken.
When M100 is OFF, the result is false (0) and the next block is executed.
<When "OFF" is specified> IF [OFF \#M100] GOTO1 ;

4 When M100 is ON, the result is false (0) and the next block is executed.
When M100 is OFF, the result is true (1) and a branch to N01 is taken.
<When used with logical operator>
IF [[ON \#M100] AND [ON \#M110]] GOTO1 ;
When M100 is ON and M110 is ON, a branch to N01 is taken.
If either of them is OFF, the next line is executed.
(3) The device that may be specified after the ON/OFF command is the bit device only.
If a word device is specified, a "Format error" (error code : 560) occurs.
(4) The bit devices usable in the ON/OFF command are X, Y, M, B and F.
(5) The ON/OFF command is available for the conditional expressions of the program control functions (IF GOTO, IF THEN, WHILE).

[Program Example]

(1) When M100 is ON, a branch to line N03 is taken.

$$
\begin{array}{ll}
\text { N01 IF [ON \#M100] GOTO3; } & \text { Branches to line N03 if M100 is ON. } \\
\text { N02 G01 X100. F200. ; } & \text { Executes the next line (N02) if M100 is OFF. }
\end{array}
$$

N03 G00 X0. ;
(2) Execution starts from the next line (THEN1 and later) if M200 is ON, or from ELSE1 if it is OFF.
N01 IF [ON \#M200] THEN1 ;
N02 G01 X100. F200. ; «Executed when M200 is ON.
N03 ELSE1 ;
N04 G00 X200. ; \longleftarrow Executed when M200 is OFF.
N05 END1 ;
(3) While M300 is OFF, the blocks within WHILE (N02, N03, N04) are executed repeatedly.
N01 WHILE [OFF \#M300] D02; \leftarrow Executes blocks within WHILE while M300 is OFF.
N02 G91 G01 X10. F100. ;
N03 \#2010 = \#2010 + 1 ;
N04 END2 ; Executed when M300 turns ON. N05 G90 G00 X0. ;

6 MOTION PROGRAMS FOR POSITIONING CONTROL

MEMO
\qquad

7. AUXILIARY AND APPLIED FUNCTIONS

7.1 Backlash Compensation Function

This function compensates for the backlash amount in the machine system. When the backlash compensation amount is set, extra feed pulses equivalent to the backlash compensation amount set up whenever the travel direction is generated at the positioning control, JOG operation or manual pulse generator operation.

Fig.7.1 Backlash compensation amount
(1) Setting of the backlash compensation amount

The backlash compensation amount is one of the fixed parameters, and is set for each axis using a peripheral device.
The setting range differs according to whether [mm], [inch] or [degree] units are used as shown below.
(a) [mm] units

- 0 to 6.5535
- $0 \leqq \frac{\text { (Backlash compensation amount) }}{\text { (Travel value per PLS) }} \leqq 65535[$ PLS]
(Decimal fraction rounded down)
(b) [inch] or [degree] units
- 0 to 0.65535
$\cdot 0 \leqq \frac{\text { (Backlash compensation amount) }}{\text { (Travel value per PLS) }} \leqq 65535[P L S]$
(Decimal fraction rounded down)
(2) Backlash compensation processing

Details of backlash compensation processing are shown below.
Table 7.1 Details of backlash compensation processing

Condition	Processing
First start after power on	- If travel direction is equal to home position return direction, the backlash compensation is not executed. - If travel direction is not equal to home position return direction, the backlash compensation is executed.
JOG operation start	- If travel direction is changed at the JOG operation start, the backlash compensation is executed.
Positioning start	- If travel direction is changed, the backlash compensation is executed.
Manual pulse generator operation	- If travel direction is changed, the backlash compensation is executed.
Home position return completion	- The backlash compensation is executed after home position return completion.
Absolute position system	• Status stored at power off and applied to absolute position system.

POINTS

(1) The feed pulses of backlash compensation amount are added to the machine value.
(2) When the backlash compensation amount is changed, the home position return is required.
When the home position return is not executed, the original backlash compensation amount is not changed.

7.2 Torque Limit Function

This function restricts the generating torque of the servomotor within the setting range. If the torque required for control exceeds the torque limit value during positioning control, it restricts with the setting torque limit value.
(1) Setting range of the torque limit value

It can be set within the range of 1 to 1000 [\%] of the rated torque.
(2) Torque limit value change

Torque limit value can be changed in the Motion program or PLC program, etc. at a program start or JOG operation start.
(a) Torque limit value is changed to the torque limit value specified with parameter block at a program start or JOG operation start.
(b) TL instruction (Refer to Section 6.16.15), PB instruction (Refer to Section 6.16.14) or CHGT instruction (Refer to Section 6.16.18) is used to change the torque limit value in the Motion program.
PB instruction changes it to the torque limit value specified with parameter block. TL or PB instruction commands to all start axes of Motion program. CHGT instruction commands to only specified axis.
(c) $\mathrm{S}(\mathrm{P}) . \mathrm{CHGT}$ instruction (Refer to Section 3.6) is used to change in the PLC program.

[Control Details]

(1) Torque limit value at a Motion program start or JOG operation start is changed to the value specified with parameter block.
(2) When the TL or PB instruction is used to change the torque limit value, the new value is valid until the next TL or PB instruction is executed. However, it is clamped at the torque limit value of CHGT/S(P).CHGT instruction.
[Program Example]
(1) It is supported that the torque limit value has been set to 300[\%] for each axis by the CHGT/S(P).CHGT instruction before a program start.
(2) $200[\%]$ is set as the torque limit value of parameter block to execute a program.
(3) Motion program

```
010;
G90;
N1 G00 X100. Y100. ;
TL100;
N2 G00 X200. Y200. ;
N3 G00 X300. Y300. ;
M02;
```

\%

Sequence No.

Torque limit value[\%] ${ }^{(\text {Note-1) }}$ (Program command)

Y-axis $\left\{\begin{array}{l}\text { CHGT Instruction } \\ \text { S(P). CHGT Instruction } \\ \text { Servo command }\end{array}\right.$

(Note-1) : Indicates the torque limit value change by a program or CHGT/S(P).CHGT instruction, and the resultant command to servo amplifier. Unit is [\%].

1) Torque limit value changed by $\mathrm{CHGT} / \mathrm{S}(\mathrm{P})$.CHGT instruction. Given to the change target axes.
2) The servo command indicates the torque limit value given actually to the servo amplifier.
(Note-2) : When the CHGT/S(P).CHGT instruction is not executed after power-on, the torque limit value is $300[\%]$.

(4) Explanation

(a) In comparison with the torque limit value of parameter block specified with the S(P).SVST and the value specified with last CHGT/S(P).CHGT instruction, the lower torque limit value at a program start is commanded. In this case, the value is 200[\%] every each axis.
(b) The torque limit value of TL instruction at N 2 execution is 100[\%] every each axis.
(c) During N 2 execution, the torque limit value is changed to 250[\%] in the X axis and to 50[\%] in the Y-axis by the CHGT/S(P).CHGT instruction.

7.3 Home Position Return

(1) Use the home position return at the power supply ON and other times where confirmation of axis is at the machine home position is required.
(2) The following six methods for home position return are shown below.

- Proximity dog type
- Count type
- Data set type
- Dog cradle type
- Stopper type
- Limit switch combined type
(3) The home position return data must be set for each axis to execute the home position return.
(4) Select the optimal home position return method for the system configuration and applications with reference to the following.

Home position return methods		Contents	Applications
Proximity dog type	Proximity dog type 1	- Home position is zero point of servomotor. - When the proximity dog is ON , it cannot be started.	- It is used in the system which can surely pass a zero point from the home position return start to proximity dog ON \rightarrow OFF.
	Proximity dog type 2	- Home position is zero point of servomotor. - When the proximity dog is ON, it can be started.	- This method is valid when the stroke range is short and "proximity dog type 1" cannot be used.
Count type ${ }^{(\text {Note-1) }}$	Count type 1	- Home position is zero point of servomotor.	- It is used in the system which can surely pass a zero point from the home position return start to point of travel distance set as "travel value after proximity dog ON".
	Count type 2	- Zero point is not used in the home position return.	- This method is used when the proximity dog is near the stroke end and the stroke range is narrow.
	Count type 3	- Home position is zero point of servomotor.	- This method is valid when the stroke range is short and "count type 1" cannot be used.
Data set type	Data set type 1	- Home position is command position of Motion CPU.	- External input signals such as dog signal are not set in this absolute position system. - This method is valid for the data set independent of a deviation counter value.
	Data set type 2	- Home position is real position of servomotor.	- External input signals such as dog signal are not set in this absolute position system.
Dog cradle type		- Home position is zero point of servomotor immediately after the proximity dog signal ON.	- It is easy to set the position of proximity dog, because the proximity dog is set near the position made to the home position.
Stopper type	Stopper type 1	- Home position is position which stopped the machine by the stopper. - Proximity dog is used.	- This method is valid to improve home position accuracy in order to make the home position for the position which stopped the machine by the stopper.
	Stopper type 2	- Home position is position which stopped the machine by the stopper. - Proximity dog is not used.	
Limit switch combined type		- Home position is zero point of servomotor. - Proximity dog is not used. - External limit switch is surely used.	- It is used in the system that the proximity dog signal cannot be used and only external limit switch can be used.

(Note-1) : If the proximity dog signal of servo amplifier is used, the count type home position return can not be executed.

7.3.1 Home position return data

This data is used to execute the home position return.
Set this data using a peripheral device.
Table 7.2 Home position return data list

No.	Item	Setting range						Initial value	Units	Indirect setting		
		mm		inch		degree						
		Setting range	Units	Setting range	Units	Setting range	Units			Valid/ invalid	Number of words	
1	Home position return direction	0 : Reverse direction (Address decrease direction) 1: Forward direction (Address increase direction)						0	-	-	-	
2	Home position return method	0: Proximity dog type 1 7: Dog cradle type 4: Proximity dog type 2 8: Stopper type 1 1: Count type 1 9: Stopper type 2 5: Count type 2 10: Limit switch combined type 6: Count type 3 2: Data set type 1 3: Data set type 2						0	-	-	-	
3	Home position address	$\begin{gathered} \hline-214748.3648 \\ \text { to } \\ 214748.3647 \\ \hline \end{gathered}$	mm	$\begin{array}{\|c\|} \hline-21474.83648 \\ \text { to } \\ 21474.83647 \\ \hline \end{array}$	inch	$\begin{gathered} 0 \text { to } \\ 359.99999 \end{gathered}$	degree	0	mm	\bigcirc	2	
4	Second home position address	$\begin{gathered} \hline-214748.3648 \\ \text { to } \\ 214748.3647 \\ \hline \end{gathered}$	mm	$\begin{array}{\|c\|} \hline-21474.83648 \\ \text { to } \\ 21474.83647 \\ \hline \end{array}$	inch	$\begin{gathered} 0 \text { to } \\ 359.99999 \end{gathered}$	degree	0	mm	\bigcirc	2	
5	Home position return speed	$\begin{gathered} 0.01 \text { to } \\ 6000000.00 \end{gathered}$	mm/min	$\begin{gathered} 0.001 \text { to } \\ 600000.000 \end{gathered}$	inch/min	$\begin{gathered} \hline 0.001 \text { to } \\ 2147483.647 \\ \text { (Note-1) } \\ \hline \end{gathered}$	degree/min	0.01	mm/min	\bigcirc	2	
6	Creep speed	$\begin{gathered} 0.01 \text { to } \\ 6000000.00 \end{gathered}$	mm/min	$\begin{aligned} & 0.001 \text { to } \\ & 600000.000 \end{aligned}$	inch/min	$\begin{gathered} \hline 0.001 \text { to } \\ 2147483.647 \\ \text { (Note-1) } \\ \hline \end{gathered}$	degree/min	0.01	$\mathrm{mm} / \mathrm{min}$	\bigcirc	2	
7	Travel value after proximity dog ON	$\begin{gathered} 0.0000 \text { to } \\ 214748.3647 \end{gathered}$	mm	$\begin{gathered} 0.00000 \text { to } \\ 21474.83647 \end{gathered}$	inch	$\begin{gathered} 0.00000 \text { to } \\ 21474.83647 \end{gathered}$	degree	0	mm	\bigcirc	2	
8	Parameter Block setting	1 to 64						1	-	-	-	
9	Home position return retry function	0 : Invalid (Do not execute the home position return retry by limit switch.) 1: Valid (Execute the home position return retry by limit switch.)						0	-	-	-	
10	Dwell time at the home position return retry	0 to 5000 [ms]						0	ms	\bigcirc	1	
11	Home position shift amount	$\begin{gathered} \hline-214748.3648 \\ \text { to } \\ 214748.3647 \\ \hline \end{gathered}$	mm	$\begin{array}{\|c\|} \hline-21474.83648 \\ \text { to } \\ 21474.83647 \\ \hline \end{array}$	inch	$\begin{array}{\|c} \hline-21474.83648 \\ \text { to } \\ 21474.83647 \\ \hline \end{array}$	degree	0	mm	\bigcirc	2	
12	Speed set at the home position shift	0 : Home position return speed 1: Creep speed						0	-	-	-	
13	Torque limit value at the creep speed	1 to 1000 [\%]						300	\%	\bigcirc	1	
14	Operation setting for incompletion of home position return	0: Execute Motion program 1: Not execute G-code of Motion program except G28						1	-	-	-	

7 AUXILIARY AND APPLIED FUNCTIONS

Remarks	Explanatory section
- The home position return direction is set.	-
- The home position return method is set. - The proximity dog type or count type are recommended for the servo amplifier which does not support absolute value.	-
- The current value of home position after the home position return is set. - It is recommended that the home position address is set in the upper stroke limit value or lower stroke limit value.	-
- The current value of second home position after the second home position return is set. - It is recommended that the second home position address is set in the upper stroke limit value or lower stroke limit value.	-
- The home position return speed is set.	-
- The creep speed (low speed immediately before stopping after deceleration from home position return speed) after the proximity $\operatorname{dog} \mathrm{ON}$ is set.	-
- The travel value after the proximity dog ON for the count type is set. - More than the deceleration distance at the home position return speed is set.	7.3.1 (1)
- The parameter block (Refer to Section 5.3) No. to use for home position return is set.	-
- Valid/invalid of home position return retry is set.	
- The stop time at the deceleration stop during the home position return retry is set.	7.3.1 (2)
- The shift amount at the home position shift is set.	
- The operation speed which set the home position shift amount except "0" is set.	7.3.1 (3)
- The torque limit value with creep speed at the stopper type home position return is set.	7.3.1 (4)
- When the home position return request signal is ON, it set whether a travel instruction except G28 can be executed or not in the Motion program.	7.3.1 (5)

(Note-1): When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid"in the fixed parameter, the setting range is " 0.01 to 21474836.47 "[degree/min].

(1) Travel value after proximity dog ON

(a) The travel value after proximity dog ON is set to execute the count type home position return.
(b) After the proximity dog ON, the home position is the first zero-point after travel by the setting travel value.
(c) Set the travel value after proximity dog ON more than the deceleration distance from the home position return speed.

The deceleration distance is calculated from the speed limit value, home position return speed, creep speed and deceleration time as shown below.

[Deceleration distance (shaded area under graph)]
$=\frac{1}{2} \times \frac{V_{z}}{1000} \times t$
$=\frac{V_{z}}{2000} \times \frac{T_{B} \times V_{z}}{V_{P}}$
$=\frac{10 \times 10^{3}}{2000} \times \frac{300 \times 10 \times 10^{3}}{200 \times 10^{3}}$
$=75 \ldots \ldots$. Set 75 or more

POINT

A home position return must be made after the servomotor has been rotated more than one revolution to pass the axis through the Z-phase (motor reference position signal).
For a proximity dog type or count type home position return, the distance between the point where the home position return program is started and the deceleration stop point before re-travel must be such that the servomotor is rotated more than one revolution to pass the axis through the Z-phase.
When a data set type home position return is made in an ABS (absolute position) system, the servomotor must also have been rotated more than one revolution by JOG operation or the like to pass the axis through the Z-phase.
(Note) : When "1 : No servomotor Z-phase pass after power ON" is selected in the "function selection $\mathrm{C}-4$ " of servo parameter (expansion setting parameter), even if it does not pass zero point, the home position return can be executed and restrictions are lost.

(2) Home position return retry function/dwell time at the home position return retry

(a) Valid/invalid of home position return retry is set.
(b) When the valid of home position return retry function is set, the time to stop at return of travel direction is set with dwell time at the home position return retry.
(c) Operation for the proximity dog type home position return by setting "valid" for home position return retry function is shown below.

Fig. 7.2 Operation for home position return retry function
(d) Possible/not possible of home position return retry function by the home position return method is shown below.

Home position return methods	Possible/not possible of home position return retry function
Proximity dog type	0
Count type	0
Data set type	\times
Dog cradle type	0
Stopper type	\times
Limit switch combined type	\times

\bigcirc : Possible, \times : Not possible
(3) Home position shift amount/speed set at the home position shift
(a) The shift (travel) amount from position stopped by home position return is set.
(b) If the home position shift amount is positive value, it shifts from detected zero point signal to address increase direction. If it is negative value, it shifts from detected zero point signal to address decrease direction.
(c) Operation speed which set the home position shift amount except " 0 " is set in the speed set at the home position shift. Select one of the "home position return speed" or "creep speed".

Fig. 7.3 Home position shift amount/speed set at the home position shift
(d) Valid/invalid of the setting value for home position shift amount by the home position return method is shown below.

Home position return methods	Valid/invalid of home position shift amount
Proximity dog type	\bigcirc
Count type	\bigcirc
Data set type	\times
Dog cradle type	\bigcirc
Stopper type	\times
Limit switch combined type	\bigcirc

\bigcirc : Valid, \times : Invalid

POINT

(1) Home position shift function is used to rectify a home position stopped by the home position return. When there are physical restrictions in the home position by the relation of a proximity dog installation position, the home position is rectified to the optimal position. Also, by using the home position shift function, it is not necessary to care the zero point for an installation of servomotor.
(2) After proximity dog ON, if the travel value including home position shift amount exceeds the range of " -2147483648 to 2147483647 " $\left[\times 10^{-4} \mathrm{~mm}, \times 10^{-5} \mathrm{inch}\right.$, $\times 10^{-5}$ degree], "travel value after proximity dog ON" of monitor register is not set correctly.
(4) Torque limit value at the creep speed
(a) Torque limit value at the creep speed (on press) is set in the case of using the pressed position as, the home position by the home position return of stopper type 1, 2.
(b) Valid/invalid of the torque limit value at the creep speed by the home position return method is shown below.

Home position return methods	Valid/invalid of torque limit value at the creep speed
Proximity dog type	\times
Count type	\times
Data set type	\times
Dog cradle type	\times
Stopper type	0
Limit switch combined type	\times

\bigcirc : Valid, \times : Invalid
(5) Operation setting for incompletion of home position return
(a) Operation in selecting " 0 : Execute Motion program"

1) When "0: Execute Motion program" is set in all axes among axes ${ }^{(\text {Note) }}$ specified at Motion program start, the Motion program can be executed regardless of ON/OFF of the home position return request signal (M2409+20n).
(Note): Axis name described in axis designation program start by the SVST, CALL or GOSUB/GOSUBE instruction.
(b) Operation in selecting "1: Not execute G-code of Motion program except G28".
2) When "1: Not execute G-code of Motion program except G28" is set even by one axis among axes specified at Motion program start, and the home position return request signals (M2409+20n) are turned ON for all axes specified at Motion program start, the practicable instructions in started Motion program are shown below.

Practicable instructions	G28 (Home position return)
	All controlled instructions

2) In case of above 1), when the travel instruction by the G-code except G28 is executed to all axes specified at Motion program start, a minor error [error code: 680] occurs and Motion program ends.
3) In case of above 1), G28 is executed in the beginning of Motion program, and if the home position return request signals (M2409+20n) are turned OFF for all axes specified at Motion program start, after that, normal travel instruction can be executed.
4) JOG operation and manual pulse generator operation can be executed regardless of the home position return request signal (M2409+20n) ON/OFF.
5) Same operation is executed regardless of absolute position system or not. When "1: Not execute G-code of Motion program except G28" is selected in the case of not absolute position system, the home position return request signal (M2409+20n) turns ON at power supply ON or reset of Motion CPU and power supply ON of servo amplifier. Therefore, it must be executed any of the followings.

- Home position return by CHGA instruction before Motion program start.
- Home position return by G28

6) Same operation is executed in also TEST mode.

POINT

If the all axes specified at Motion program start are not condition of home position return completion in the Motion program execution, it can be set using this function, as the Motion program operation except home position return is not possible. Therefore, when it interferes with another axis for incompletion of home position return even if it is an axis for completion of home position return, the travel instruction cannot be executed until it becomes the home position return completion for all axes specified at Motion program start.

Example 1

Operation example in starting the Motion program in the condition that the fixed parameter and home position return request signal were set as the following is shown below.

Setting axis	Operation setting for incompletion of home position return	Home position return request signal $(\mathrm{M} 2409+20 n)$
Axis $1(\mathrm{X})$	1: Not execute G-code of Motion program except G28	ON
Axis $2(\mathrm{Y})$	0: Execute Motion program	OFF

O100;

SET \#M3000;	Controlled instruction is executed. G0 Y100. ;
	Since the home position return request signal of X -axis is ON and it is not home position return completion for all axes, a minor error [error code: 680] occurs and the Motion program ends even if it is travel instruction to Y-axis.
G1 X100. F1000.;	
l	

 position return request signal were set as the following is shown below.

Setting axis	Operation setting for incompletion of home position return	Home position return request signal $(M 2409+20 n)$
Axis $1(\mathrm{X})$	1: Not execute G-code of Motion program except G28	ON
Axis $2(\mathrm{Y})$	1: Not execute G-code of Motion program except G28	OFF

```
O100;
G28 X Y ; Home position return is executed according to the home position
    return method of home position return data for X-axis.
    High-speed home position return is executed for Y-axis.
G1 X100. F1000. ; Home position return request signal turned OFF for all axes in the
- last block, and next travel instruction can be executed.
```


(6) Indirect setting of home position return data

A part of home position return data can be executed the indirect setting by the word devices (D, W, \#) of Motion CPU.
(a) Data devices for indirect setting

There are data registers (D), link registers (W) and Motion registers (\#) as data devices for indirect setting. (Word devices except data registers, link registers and Motion registers cannot be used.) Usable devices are shown below. (Set the number of words for 2 words as even number.)

Word devices	Usable devices
D	1690 to 8191
W	0 to $1 F F F$
$\#$	0 to 7999

(b) Read home position return data In the indirect setting by the word devices, the specified word device data are read at Motion program execution by Motion CPU.
Set data to devices for indirect setting and then execute the start request of Motion program at home position return.
(c) Read a home position address/second home position address

1) $G 28$

When the home position return request signal (M2409+20n) is ON, it is executed in the home position return method specified with the home position return data. The home position return data read in the starting are current value. And simultaneously, the home position return data are saved to memory backed up electrically.
When the home position return request signal (M2409+20n) is OFF, the high-speed home position return is executed the backed up home position return data as a home position. The home position address specified with the home position return data is not newly read.

POINT

The home position data backed up in the first home position return are used. Therefore, even if the home position return data at first home position return and at high-speed home position return is different, certainly the high-speed home position return is executed to the home position with the peculiar machine set at first. There is a case in which the home position return data differs with the first home position return by changing the programming software or contents of register for indirect setting, etc.
2) CHGA

It is executed in the home position return method specified with the home position return data. The home position return data read in the starting are current value. And simultaneously, the home position return data are saved to memory backed up electrically.
3) G30

The second home position return address specified with the home position return data is read every time, and the positioning is executed with high-speed feed rate.

POINT

Take an interlock not to change the device data specified for indirect setting until the home position return is completed.
If the device data is changed before completion of home position return, it may not execute the home position return at the normal value.

(7) Setting items for home position return data

					me	positio	n re	urn	etho			
	Items				$\begin{aligned} & N \\ & 0 \\ & \\ & \\ & \text { I } \\ & \vdots \\ & \text { O} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \\ & \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$					$\begin{aligned} & \text { N } \\ & \text { D } \\ & \text { D } \\ & \text { Dे } \\ & \stackrel{\circ}{0} \\ & \text { in } \end{aligned}$	
	Home position return direction	\bigcirc										
	Home position address	(()	((©	((©	©	©	©
	Second home position address	()	()	((()	(()	()	(()	(
	Home position return speed	©	©	($)$	($)$	()	-	-	©	©	-	©
	Creep speed	(©	((©	-	-	©	(()	(
	Travel value after proximity dog ON	-	-	(0	(0	()	-	-	-	-	-	-
Home position	Parameter block setting	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Home position return retry function	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	-
	Dwell time at the home position return retry	(()	((©	-	-	©	-	-	-
	Home position shift amount	()	()	($)$	(0	©	-	-	(0)	-	-	©
	Speed set at the home position shift	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	\bigcirc
	Torque limit value at the creep speed	-	-	-	-	-	-	-	-	(()	-
	Operation setting for incompletion of home position return	\bigcirc										
	Interpolation control unit	-	-	-	-	-	-	-	-	-	-	-
	Speed limit value	-	-	-	-	-	-	-	-	-	-	-
	Acceleration time	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Deceleration time	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Parameter blocks	Rapid stop deceleration time	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S-curve ratio	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	0	\bigcirc	0	\bigcirc
	Torque limit value	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	0	\bigcirc	0	\bigcirc
	Deceleration processing at the stop time	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Allowable error range for circular interpolation	-	-	-	-	-	-	-	-	-	-	-

©): Must be set (Indirect setting)
O: Must be set

- : Must be not set

7.3.2 Home position return by the proximity dog type 1

[Control details]
(1) Proximity dog type 1

Zero point position after proximity dog ON to OFF is home position in this method.
When it does not pass (zero pass signal: M2406+20n OFF) the zero point from home position return start to deceleration stop by proximity dog ON to OFF, an error will occur and home position return is not executed. However, when "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection $\mathrm{C}-4$ " of servo parameter (expansion setting parameter), if it does not pass zero point from home position return start to deceleration stop by proximity dog ON to OFF, the home position return can be executed.
(2) Home position return by the proximity dog type 1

Operation of home position return by proximity dog type 1 for passing (zero pass signal: M2406+20n ON) the zero point from home position return start to deceleration stop by proximity dog ON to OFF is shown below.

Fig. 7.4 Home position return operation by the proximity dog type 1
(3) Home position return execution

Home position return by the proximity dog type 1 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the proximity dog type 1 home position return is also made even G28 of the Motion program.

[Cautions]

(1) Keep the proximity dog ON during deceleration from the home position return speed to the creep speed.
If the proximity dog turns OFF before deceleration to the creep speed, a deceleration stop is made and the next zero point is set as the home position.

(2) The position executed deceleration stop by proximity dog OFF is near zero point, a home position discrepancy equivalent to one revolution of the servomotor may occur. Adjust the position of proximity dog OFF, such that the home position return re-travel value becomes half the travel value for one revolution of the servomotor.

POINT

When the home position return retry function is not set in the following cases, execute the home position return, after return the axis once to position before the proximity dog ON by the JOG operation, etc.
Home position return cannot be executed without returning to position before the proximity dog ON.
(1) Home position return with a position after the proximity dog ON to OFF.
(2) When the power supply turned OFF to ON after home position return end.
(3) When it does not pass (zero pass signal: M2406+20n ON) the zero point from home position return start to deceleration stop by proximity dog ON to OFF, a minor error "ZCT not set" (error code: 120) will occur, a deceleration stop is made and home position return does not end normally. When a distance between home position return start position and home position is near and a zero point is not passed, select the proximity dog type 2.
(4) If home position return is executed in the proximity dog ON, a major error "proximity dog signal is turning ON at the home position return start" (error code: 1003) will occur, the home position return is not executed. Use the proximity dog type 2 in this case.
(5) When home position return retry function is not set, if home position return is executed again after home position return end, a minor error "home position return completion signal is turning ON at the proximity dog type home position return start" (error code: 115)" will occur, the home position return is not executed.
(6) If in-position signal ($\mathrm{M} 2402+20 \mathrm{n}$) does not turn ON , home position return is not ended.

7.3.3 Home position return by the proximity dog type 2

[Control details]
(1) Proximity dog type 2

Zero point position after proximity dog ON to OFF is home position in this method.
When it passed (zero pass signal: M2406+20n ON) the zero point from home position return start to deceleration stop by proximity dog ON to OFF, operation for "proximity dog type 2 " is the same as "proximity dog type 1". (Refer to Section 7.3.2)

When it does not pass (zero pass signal: M2406+20n OFF) the zero point from home position return start to deceleration stop by proximity dog ON to OFF, it moves to home position return direction after the servomotor is rotated one revolution to reverse direction and it passed the zero point, and the first zero point position is set as home position after proximity dog ON to OFF.
(2) Home position return by the proximity dog type 2

Operation of home position return by proximity dog type 2 for not passing the zero point from home position return start to deceleration stop by proximity dog ON to OFF is shown below.

Fig. 7.5 Home position return operation by the proximity dog type 2 (zero point no passing)

(3) Home position return execution

Home position return by the proximity dog type 2 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON , the proximity dog type 2 home position is also made even G28 of the Motion program.

[Cautions]

(1) A system which the servomotor can rotate one time or more is required.
(2) When a servomotor stops with specified condition enables and rotates one time after proximity dog ON, make a system for which does not turn OFF the external upper/lower stroke limit.
(3) Keep the proximity dog ON during deceleration from the home position return speed to the creep speed.
If the proximity dog turns OFF before deceleration to the creep speed, a deceleration stop is made and the next zero point is set as the home position.
(4) If home position return is executed in the proximity $\operatorname{dog} \mathrm{ON}$, it starts with the creep speed.
(5) When home position return retry function is not set, if home position return is executed again after home position return completion, a minor error "home position return completion signal is turning ON at the proximity dog type home position return start" (error code: 115) will occur, the home position return is not executed.
(6) When "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection C-4" of servo parameter (expansion setting parameter), even if it does not pass zero at the servo amplifier power ON, the zero pass signal (M2406+20n) turns ON. This operation is the same as proximity dog type 1.
(7) If in-position signal (M2402+20n) does not turn ON, home position return is not ended.

7.3.4 Home position return by the count type 1

[Control details]

(1) Count type 1

After the proximity dog ON, the zero point after the specified distance (travel value after proximity dog ON) is home position in this method.
(If the proximity dog signal of servo amplifier is used, the count type 1 home position return cannot be executed.)
When the zero point is not passed (zero pass signal: M2406+20n OFF) until it travels the distance set in the "travel value after proximity dog ON" from home position return start, an error will occur and home position return is not executed. However, when "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection C-4" of servo parameter (expansion setting parameter), if the zero point is not passed until it travels the distance set in the "travel value after proximity dog ON" from home position return start, the home position return can be executed.
The travel value after proximity dog ON is set in the home position return data (Refer to Section 7.3.1).
(2) Home position return by the count type 1

Operation of home position return by count type 1 for passing the distance set in the "travel value after proximity dog ON" from the home position return start is shown below.

Fig. 7.6 Home position return operation by the count type 1

(3) Home position return execution

Home position return by the count type 1 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the count type 1 home position is also made even G28 of the Motion program.

[Cautions]

(1) Home position return and continuously start of home position return are also possible in the proximity dog ON in the count type 1.
When the home position return or continuously start of home position return are executed in the proximity dog ON, the home position return is executed after return the axis once to position of the proximity dog OFF.
(2) When the zero point is not passed (zero pass signal: M2406+20n ON) until it travels the distance set in the "travel value after proximity dog ON" from home position return start, a minor error "ZCT not set" (error code: 120) will occur, a deceleration stop is made and home position return does not end normally. When a distance between home position return start position and home position is near and a zero point is not passed, select the count type 3.
(3) When the "travel value after proximity dog ON" is less than the deceleration distance from "home position return speed" to "creep speed", a minor error "an overrun occurred because the setting travel value is less than the deceleration distance at the proximity dog signal input during home position return of count type" (error code: 209) will occur and deceleration stop is made.
(4) If in-position signal (M2402+20n) does not turn ON, home position return is not ended.

7.3.5 Home position return by the count type 2

[Control details]

(1) Count type 2

After the proximity dog ON, the position which traveled the specified distance (travel value after proximity dog ON) is home position in this method.
(If the proximity dog signal of servo amplifier is used, the count type 2 home position return cannot be executed.)
It is not related for zero point pass or not pass.
A count type 2 is effective method when a zero point signal cannot be taken.
(However, dispersions will occur to the stop position at the home position return
compared with the count type 1.)
The travel value after proximity dog ON is set in the home position return data (Refer to Section 7.3.1).
(2) Home position return by the count type 2

Operation of home position return by count type 2 is shown below.

Fig. 7.7 Home position return operation by the count type 2

(3) Home position return execution

Home position return by the count type 2 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the count type 2 home position return is also made even G28 of the Motion program.

[Cautions]

(1) Home position return and continuously start of home position return are also possible in the proximity dog ON in the count type 2.
When the home position return and continuously start of home position return are executed in the proximity dog ON , the home position return is executed after return the axis once to position of the proximity dog OFF.
(2) When the "travel value after proximity dog ON" is less than the deceleration distance from "home position return speed" to "creep speed", a minor error "an overrun occurred because the setting travel value is less than the deceleration distance at the proximity dog signal input during home position return of count type" (error code: 209) will occur and deceleration stop is made.
(3) Command position is the home position.
(4) If in-position signal (M2402+20n) does not turn ON, home position return is not ended.

7.3.6 Home position return by the count type 3

[Control details]
(1) Count type 3

After the proximity dog ON, the zero point after the specified distance (travel value after proximity dog ON) is home position in this method.
(If the proximity dog signal of servo amplifier is used, the count type 3 home position return cannot be executed.)
When the zero point is passed (zero pass signal: M2406+20n ON) during travel of specified distance set in the "travel value after proximity dog ON" from the home position return start, home position return operation is the same as "count type 1". (Refer to Section 7.3.4)
When a zero point is not passed (zero pass signal: M2406+20n OFF) during travel of specified distance set in the "travel value after proximity dog ON" from the home position return start, it rotates one time to reverse direction and passes the zero point, re-travels to home position return direction, and then the first zero point after the specified distance (travel value after proximity dog ON) after proximity dog ON is set as home position.
The travel value after proximity dog ON is set in the home position return data (Refer to Section 7.3.1).
(2) Home position return by the count type 3 Operation of home position return by count type 3 for not passing the zero point during travel of specified distance set in the "travel value after proximity dog ON" from home position return start is shown below.

Fig. 7.8 Home position return operation by the count type 3 (zero point no passing)

(3) Home position return execution

Home position return by the count type 3 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the count type 3 home position return is also made even G28 of the Motion program.
[Cautions]
(1) A system which the servomotor can rotate one time or more is required.
(2) After the proximity dog ON, when a servomotor rotates one time to reverse direction after stop with travel value set in the "travel value after proximity dog ON", make a system which does not turn OFF the external upper/lower stroke limit.
(3) Home position return and continuously start of home position return are also possible in the proximity dog ON in the count type 3.
When the home position return and continuously start of home position return are executed in the proximity dog ON, the home position return is executed after return the axis once to position of the proximity dog OFF.
(4) When the "travel value setting after proximity dog ON" is less than the deceleration distance from "home position return speed" to "creep speed", a minor error "an overrun occurred because the setting travel value is less than the deceleration distance at the proximity dog signal input during home position return of count type" (error code: 209) will occur and deceleration stop is made.
(5) When "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection $\mathrm{C}-4$ " of servo parameter (expansion setting parameter), even if it does not pass zero point at the servo amplifier power ON, the zero pass signal (M2406+20n) turns ON. This operation is the same as count type 1.
(6) If in-position signal (M2402+20n) does not turn ON, home position return is not ended.

7.3.7 Home position return by the data set type 1

[Control details]

(1) Data set type 1

The proximity dog is not used in this method for the absolute position system.
(2) Home position return by the data set type 1

Home position is the command position at the home position return operation.

Fig. 7.9 Home position return operation by the date set type 1

(3) Home position return execution

Home position return by the data set type 1 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON , the data set type 1 home position return is also made even G28 of the Motion program.

[Cautions]

(1) A zero point must be passed (zero pass signal: M2406+20n ON) between turning ON the power supply and executing home position return.
If home position return is executed without passing a zero point once, "no zero point passed error" occurs. If "no zero point passed error" occurred, perform the home position return again, after reset the error and turn the servomotor at least one revolution by the JOG operation.
The zero point passing can be confirmed with the zero pass signal (M2406+20n). However, when "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection C-4" of servo parameter (expansion setting parameter), even if it does not pass zero point at the servo amplifier power ON, the home position return is possible because the zero pass signal (M2406+20n) turns ON.
(2) Home position return is started by the data set type 1 when the absolute position system does not support, it becomes same function as the current value change command.
(3) The home position return data required for the data set type 1 are the home position return direction and home position address.
(4) If in-position signal (M2402+20n) does not turn ON, home position return is not ended.

7.3.8 Home position return by the data set type 2

[Control details]

(1) Data set type 2

The proximity dog is not used in this method for the absolute position system.
(2) Home position return by the data set type 2

Home position is the real position of servomotor at the home position return operation.

Fig. 7.10 Home position return operation by the date set type 2
(3) Home position return execution

Home position return by the data set type 2 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the data set type 2 home position return is also made even G28 of the Motion program.

[Cautions]

(1) A zero point must be passed (zero pass signal: $\mathrm{M} 2406+20 \mathrm{n}$ ON) between turning ON the power supply and executing home position return.
If home position return is executed without passing a zero point once, "no zero point passed error" occurs. If "no zero point passed error" occurred, perform the home position return again, after reset the error and turn the servomotor at least one revolution by the JOG operation.
The zero point passing can be confirmed with the zero pass signal (M2406+20n). However, when "1: Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection C-4" of servo parameter (expansion setting parameter), even if it does not pass zero point at the servo amplifier power ON, the home position return is possible because the zero pass signal (M2406+20n) turns ON.
(2) The home position return data required for the data set type 2 are the home position return direction and home position address.

7.3.9 Home position return by the dog cradle type

[Control details]

(1) Dog cradle type

After deceleration stop by the proximity dog ON, if the zero point is passed after traveling to reverse direction and turning the proximity dog OFF, the deceleration stop is made. And it moves to direction of home position return again with creep speed and the first zero point after proximity dog ON is home position in this method.
(2) Home position return by the dog cradle type

Operation of home position return by the dog cradle type for setting the proximity dog in the home position return direction is shown below.

Fig. 7.11 Home position return operation by the dog cradle type
(3) Home position return execution

Home position return by the dog cradle type is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the dog cradle type home position return is also made even G28 of the Motion program.

[Cautions]

(1) When home position return retry function is not set, if home position return is executed again after home position return end, a minor error "home position return complete signal is turning ON at the dog cradle type home position return start" (error code: 115) will occur, the home position return is not executed.
(2) If the home position return is executed in the proximity dog, it travels to reverse direction of home position return. If proximity dog turns OFF, a deceleration stop is made, it travels to direction of home position return again with the creep speed and the first zero point after proximity dog ON is home position.

(3) When the proximity dog is set in the home position return direction, the proximity dog is turned OFF during travel to reverse direction of home position return, and the zero point is not passed, it continues to travel in the reverse direction of home position return with home position return speed until the zero point is passed. The zero point is passed again during deceleration by zero point pass, the home position becomes this side compared with the case to pass zero point at the time of the proximity dog OFF.

(4) When it starts in the proximity dog, the zero point is not passed at the time of the proximity dog is turned OFF during travel to reverse direction of home position return, it continues to travel with home position return speed until the zero point is passed. The zero point is passed again during deceleration by zero point pass, the home position becomes this side compared with the case to pass zero point at the time of the proximity dog OFF.

7.3.10 Home position return by the stopper type 1

[Control details]
(1) Stopper type 1

Position of stopper is home position in this method.
It travels to the direction set in the "home position return direction" with the "home position return speed", after a deceleration starts by proximity dog OFF to ON and it presses against the stopper and makes to stop with the torque limit value set in the "torque limit value at the creep speed" and "creep speed" of home position return data. Real position of servomotor at the time of detection for turning the torque limiting signal OFF to ON is home position.
Torque limit value after reaching creep speed is set in the "torque limit value at the creep speed" of home position return data.
(2) Home position return by the stopper type 1

Operation of home position return by the stopper type 1 is shown below.

Fig. 7.12 Home position return operation by the stopper type 1

(3) Home position return execution

Home position return by the stopper type 1 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the stopper type 1 home position return is also made even G28 of the Motion program.

[Cautions]

(1) A zero point does not must be passed (zero pass signal: M2406+20n ON) between turning on the power supply and executing home position return.
(2) Home position return retry function cannot be used in the stopper type 1.
(3) Set the torque limit value after reaching the creep speed for system. When the torque limit value is too large, servomotors or machines may be damaged after pressing the stopper. Also, when the torque limit value is too small, it becomes the torque limiting before pressing the stopper and ends the home position return.
(4) If the home position return is executed again after home position return completion, a minor error "home position return completion signal is turning ON at the stopper type home position return start (error code: 115)" will occur, the home position return is not executed.
(5) Home position return is started during the proximity dog ON, it is started from the "creep speed".

7.3.11 Home position return by the stopper type 2

[Control details]

(1) Stopper type 2

Position of stopper is home position in this method.
It travels the direction set in the "home position return direction" with the "creep speed", and it presses against the stopper and makes to stop with the "creep speed". (The torque limit value is valid set in the "torque limit value at the creep speed" of the home position return data from the home position return start.) Real position of servomotor at the time of detection for turning the torque limiting signal OFF to ON is home position.
Torque limit value after reaching creep speed is set in the "torque limit value at the creep speed" of home position return data.
(2) Home position return by the stopper type 2

Operation of home position return by the stopper type 2 is shown below.

Fig. 7.13 Home position return operation by the stopper type 2
(3) Home position return execution

Home position return by the stopper type 2 is executed using the CHGA instruction in Section 7.3.16.
When the home position return request is ON, the stopper type 2 home position return is also made even G28 of the Motion program.

[Cautions]

(1) A zero point does not must be passed (zero pass signal: M2406+20n ON) between turning on the power supply and executing home position return.
(2) Home position return retry function cannot be used in the stopper type 2.
(3) Set the torque limit value at the reaching creep speed for system. When the torque limit value is too large, servomotors or machines may be damaged after pressing the stopper. Also, when the torque limit value is too small, it becomes the torque limiting before pressing the stopper and ends the home position return.
(4) If the home position return is executed again after home position return completion, a minor error "home position return completion signal is turning ON at the stopper type home position return start" (error code: 115) will occur, the home position return is not executed.

7.3.12 Home position return by the limit switch combined type

[Control details]

(1) Limit switch combined type

The proximity dog is not used in this method. Home position return can be executed by using the external upper/lower limit switch.
When the home position return is started, it travels to direction of home position return with "home position return speed". Deceleration is made by turning the limit switch of home position return direction ON to OFF, it travels to reverse direction of home position return with creep speed, and the zero point just before limit switch is home position.
(2) Home position return by the limit switch combined type Operation of home position return by limit switch combined type for setting the limit switch in the home position return direction is shown below.

Fig. 7.14 Home position return operation by the limit switch combined type

(3) Home position return execution

Home position return by the limit switch combined type is executed using the CHGA instruction in Section 7.3.16. When the home position return request is ON, the limit switch combined type home position return is also made even G28 of the Motion program.

[Cautions]

(1) For the axis which executes the home position return by the limit switch combined type, if the external input signal has not set in the system settings, a minor error "the positioning control which use the external input signal was executed for the axis which has not set the external input signal in the system settings" (error code: 142) will occur and home position return is not executed.
(2) When the limit switch reverse to home position return direction is turned ON to OFF, deceleration stop is made, home position return is not completed and a major error "external limit switch detection error" (error code: 1101, 1102) will occur.
(3) Home position return retry function cannot be used in the limit switch combined type.
(4) If the home position return is executed with the limit switch OFF, it is started to reverse direction of home position return with creep speed.
(5) When it does not pass (zero pass signal: M2406+20n ON) the zero point from home position return start to deceleration stop by limit switch OFF, a minor error "ZCT not set" (error code:120) will occur, a deceleration stop is made and home position return does not complete normally. However, when "1: Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection C-4" of servo parameter (expansion setting parameter), if the zero point is not passed until from home position return start to deceleration stop by limit switch OFF, the home position can be executed.
(6) Deceleration stop is executed after the limit switch OFF. Set the limit switch in expectation of deceleration distance.
(7) If the in-position signal (M2402+20n) is turned ON , home position return is not ended.
(8) When the width is in a zero point, the home position differs from the home position return by the proximity dog type 1 , proximity dog type 2 , count type 1 , count type 3 and dog cradle type.

7.3.13 Home position return retry function

When a work has been exceeded home position during positioning control, etc., even if it executes the home position return, depending on the position of work, a work may not travel to home position direction. In this case, a work is normally travelled before the proximity dog by the JOG operation, etc, and the home position return is started again. However, by using the home position return retry function, even if a work is where, the home position return can be executed.
Refer to Section 7.3.1(7) for home position return method by using the home position return retry function.

[Data Setting]

When the "home position return retry function" is used, set the following "home position return data" using a peripheral devices.
Set the "dwell time at the home position return retry" as required.
Set the parameters for every axis.
Table 7.3 Home position return data

Items	Setting details	Setting value	Initial value
Home position return retry function	0 : Invalid (Do not execute the home position return retry by limit switch.) : Valid (Execute the home position return retry by limit switch.)	0,1	0
Dwell time at the home position return retry	The stop time at the deceleration stop during the home position return retry is set	0 to 5000 $[\mathrm{~ms}]$	0

[Control details]
Operation for the home position return retry function is shown below.
(1) Home position return retry operation setting a work within the range of external limit switch

Fig. 7.15 Operation for home position return retry (proximity dog type)
(2) Home position return retry operation setting a work outside the range of external limit switch
(a) When the direction of "work \rightarrow home position" and home position return is same, normal home position return is operated.

(b) When the direction of "work \rightarrow home position" and home position return is reverse, deceleration stop is made with the proximity dog OFF and home position return is operated to preset direction of home position return.

(3) Dwell time setting at the home position return retry

Reverse operation by detection of the external upper/lower limit switch and dwell time function at the home position return start after stop by proximity dog OFF are possible with the dwell time at the home position return retry in the home position return retry function.
Dwell time at the home position return retry becomes valid at the time of deceleration stop of the following 2) and 4). (Dwell time operates with the same value.)

Fig. 7.16 Dwell time setting at the home position return retry
(1) Possible/not possible of home position return retry function by the home position return method is shown below.

Home position return methods	Possible/not possible of home position return retry function		
Proximity dog type	0		
Count type	0		
Data set type	\times		
Dog cradle type	0		
Stopper type	\times		
Limit switch combined type	\times		
Possible,$\times:$ Not possible			

(2) Make a system for which does not execute the servo amplifier power off or servo OFF by the external upper/lower limit switch. Home position return retry cannot be executed only in the state of servo ON.
(3) Deceleration is made by detection of the external limit switch and travel to reverse direction of home position return is started. In this case, a major error "external limit switch detection error" (error codes: 1001, 1002, 1101, 1102) will not occur.

\. CAUTION

Be sure to set the external limit switch (FLS, RLS) in the upper/lower position of machines. If the home position return retry function is used without external limit switch, servomotors continue rotating.

7.3.14 Home position shift function

Normally, when the machine home position return is executed, a position of home position is set by using the proximity dog or zero point signal. However, by using the home position shift function, the position to which only the specified travel value was travelled from the position which detected the zero point signal can be regarded as home position.
Refer to Section 7.3.1(7) for home position return method by using the home position shift function.
[Data Setting]
Set the following "home position return data" using a peripheral devices to use the "home position shift function".
Set the parameters for every axis.
Table 7.4 Home position return data

Items	Setting details	Setting value	Initial value
Home position shift amount	The shift amount at the home position shift is set.	-2147483648 to 2147483647 $\left[\times 10^{-4} \mathrm{~mm}, \times 10^{-5} \mathrm{inch}, 10^{-5}\right.$ degree $]$	0
Speed set at the home position shift	The speed at the home position shift is set.	$0:$ Home position return speed $1:$ Creep speed	0

[Control details]

(1) Home position shift operation

Operation for the home position shift function is shown below.

Fig. 7.17 Operation for home position shift
(2) Setting range of home position shift amount

Set the home position shift amount within the range of from the detected zero signal to external upper/lower limit switch (FLS/RLS). If the range of external upper/lower limit switch is exceeded, a major error "external limit switch detection error" (error codes: 1102, 1103) will occur at that time and the home position return is not ended.

Fig. 7.18 Setting range of home position shift amount
(3) Travel speed at the home position shift

When the home position shift function is used, set the travel speed at the home position shift as the speed set at the home position shift. Either the home position return speed or creep speed is selected as the travel speed at the home position shift.
The travel speed at the home position shift for the home position return by proximity dog type is shown below.
(a) Home position shift operation with the "home position return speed"

Fig. 7.19 Operation for home position shift with the home position return speed
(b) Home position shift operation with the "creep speed"

Fig. 7.20 Operation for home position shift with the creep speed
[Cautions]
(1) Valid/invalid of home position shift amount setting value by the home position return method is shown below.

Home position return methods	Valid/invalid of home position shift amount
Proximity dog type	0
Count type	0
Data set type	\times
Dog cradle type	0
Stopper type	\times
Limit switch combined type	0

\bigcirc : Valid, \times : Invalid
(2) Axis monitor devices and axis statuses are set after completion of home position shift.
(3) When the home position return by proximity dog type, set the travel value after proximity dog ON and home position shift amount within the range of "-2147483648 to 2147483647 " [$\times 10^{-4} \mathrm{~mm}, \times 10^{-5}$ inch, 10^{-5} degree].

7.3.15 Condition selection of home position set

A home position return must be made after the servomotor has been rotated more than one revolution to pass the axis through the Z-phase (motor reference position signal) and the zero pass signal (M2406+20n) has been turned ON.
When "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection C-4, (PC17) Condition selection of home position set" of servo parameter (expansion setting parameter), if it does not pass zero point with the motor rotation after turning the servo amplifier power ON, the zero pass signal (M2406+20n) can be turned ON.

[Data Setting]

Set the following "servo parameters" using a peripheral devices to select the "function selection C-4".
Set the servo parameters for every axis.
Table 7.5 Servo parameter (expansion setting parameter)

Items	Setting details	Setting value	Initial value
Function selection C-4 (PC17) Condition selection of home position set	Set the condition selection of home position set in the absolute position system.	0: Need to pass motor Z phase after the power supply is switched on 1: Not need to pass motor Z phase after the power supply is switched on	0

[Cautions]

(1) When "1 : Not need to pass motor Z phase after the power supply is switched on" is set as the above servo parameter, a restrictions such as "make the home position return after the servomotor is rotated more than one revolution to pass the axis through the Z-phase (motor reference position signal)" is lost.
(2) When "1 : Not need to pass motor Z phase after the power supply is switched on" is selected in the "function selection $\mathrm{C}-4$ " of servo parameter (expansion setting parameter), if it does not pass zero point at the servo amplifier power ON, the zero pass signal (M2406+20n) turns ON.
(3) When the above parameter is changed, turn the servo amplifier power OFF to ON after resetting or turning power OFF to ON of Multiple CPU system.

```
\\CAUTION
- Do not set the "1: Not need to pass motor \(Z\) phase after the power supply is switched on" for axis which executes the home position return again after it continues traveling the same direction infinitely.
```


7.3.16 Execution of home position return

The home position return is executed using the CHGA instruction.
[Control details]
(1) Home position return is executed by the home position return method specified with the home position return data (Refer to Section 7.3.1).
Refer to the following sections for details of the home position return methods :

- Proximity dog type 1 \qquad Section 7.3.2
- Proximity dog type 2. \qquad Section 7.3.3
- Count type 1. Section 7.3.4
- Count type 2............................... Section 7.3.5
-Count type 3.............................. Section 7.3.6
- Data set type 1............................ Section 7.3.7
- Data set type 2............................ Section 7.3.8
- Dog cradle type.......................... Section 7.3.9
- Stopper type 1............................ Section 7.3.10
- Stopper type 2........................... Section 7.3.11
- Limit switch combined type........ Section 7.3.12
[Program]
A program which executes a home position return using the CHGA instruction is shown below.
- Program example

Program which execute the home position return of the axis No. 4 of the Motion CPU (CPU No.2) from PLC CPU(CPU No.1).

[Cautions]
If the home position is not within the in-position range of servo parameter, it does not mean having reached the home position data and the home position return does not end in the proximity dog type, count type, data set type 1, dog cradle type, or limit switch combined type
home position return. In this case, adjusts the in-position range of servo parameter or position control gain.

7.4 Speed Change (CHGV instruction)

The speed change is executed at the positioning control or JOG operation.
$S(P)$.CHGV instruction of PLC program or CHGV instruction of Motion program is used for the speed change.
[Control details]
(1) A speed of operating axis is forcibly changed to the speed specified with the speed change registers.
(2) Refer to Section 3.5 for details of the $S(P)$.CHGV instruction of PLC program. Refer to Section 6.16.17 for details of the CHGV instruction of Motion program.
(3) A speed change should be set within the range of "-speed limit value to + speed limit value". If it is outside the range, a minor error " 305 " will occur.
(4) When a speed change is executed during positioning control of program operation, make the override invalid. When the override is valid, a speed change is not executed.
(5) During a temporary stop, a speed change is not executed.
(6) A speed change during constant-speed control (when the axis travels through mid points continuously during execution of G01, G02, G03, G12, G13 or G32) should be set within the range of "-F command to +F command". If it is outside the range, the speed is controlled by F command.
(7) The F command after a speed change during constant-speed control is made valid within the range of the change speed or less.
(8) If a speed change is executed during positioning control for program operation, it operates at the speed changed to the command of the next travel block.
It changes whether the speed change value is continued or the speed changes command speed value in the program depending on the next type of travel block mode as the table "command speed after execution of speed change" of next page.
(9) A speed change for the high-speed oscillation axis is invalid.

Command Speed after Execution of Speed Change

No.	Travel mode at speed \qquad change ${ }^{(\text {Note-1) }}$	Travel mode after speed change ${ }^{(\text {Note-1) }}$	Command speed at execution of travel instruction after speed change
1	PTP ${ }^{(\text {Note-2) }}$	PTP/OSC ${ }^{\text {(Note-2) }}$	Program command speed ${ }^{\text {(Note-6) }}$
2		Constant speed ${ }^{\text {(Note-3) }}$	
3	Constant speed ${ }^{(N o t e-3)}$	PTP/OSC ${ }^{(\text {Note-2) }}$	Program command speed ${ }^{(\text {Note-6) }}$
4		Constant speed ${ }^{(\text {Note-3) }}$ with F command	Program command speed ${ }^{\text {(Note-7) }}$
5		Constant speed ${ }^{(\text {Note-3) }}$ without F command and without special M-code ${ }^{\text {(Note-4) }}$	New speed is continued
6		Constant speed ${ }^{\text {(Note-3) }}$ without F command and with special M-code ${ }^{\text {(Note-5) }}$	Program command speed ${ }^{\text {(Note-6) }}$

(Note-1): A speed change is valid only at the execution of travel mode in the PTP or constant speed.
(Note-2): This mode is executed by G00, G28, G30 or G53. OSC mode is the travel mode executed by G25.
(Note-3): This mode is executed by G01, G2, G3, G12, G13 or G32. The independent M-code is also handled as the constant speed mode.
(Note-4): When a special M-code (M00, M01, M02, M30, M98, M99, M100) is not executed during the constant speed mode after speed change.
(Note-5): When a special M-code (M00, M01, M02, M30, M98, M99, M100) is executed during the constant speed mode after speed change.
The decelerates stop is made at the execution of the special M-code.
(Note-6): PTP mode: High-speed feed rate. OSC mode: F (frequency) command. Constant speed mode: F (speed) command.
Example (CHGV is executed during N1) Speed 010 ;
N1 G00 X100.;
N2 G00 X200.;
M02 ;
\%

(Note-7): F (speed) command. Note that it is clamped at the speed change value.
Example (CHGV is executed during N1) Speed
011 ;
N1 G01 X100. F1000. ;
N2 G01 X200. F1000. ;
M02 ;
\%

[Data setting]

(1) The setting ranges to speed change registers are shown below.

Units	mm		inch		degree	
	Setting range	Units	Setting range	Units	Setting range	Units ${ }^{\text {(Note) }}$
Speed change value	0 to	$\times 10^{-2}$	0 to	$\times 10^{-3}$	0 to	$\times 10^{-3}$
	600000000	$\mathrm{~mm} / \mathrm{min}$	600000000	inch $/ \mathrm{min}$	2147483.647	degree $/ \mathrm{min}$

(Note) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" in the fixed parameter, the setting range is " $\times 10^{-2}$ [degree $/ \mathrm{min}$]".

POINT

When the speed is set in the PLC program, stores a value which is 100 times (unit: $\mathrm{mm}) / 1000$ times (unit: inch, degree) the real speed in the speed change registers.

$$
\begin{aligned}
& \text {---- Example--- } \\
& \text { To change the speed to } 10000.00 \mathrm{~mm} / \mathrm{min} \text {, stores " } 1000000 \text { " to the speed } \\
& \text { change registers. } \\
& \text { (Note): Store a value which is } 100 \text { times the real speed in the speed change register } \\
& \text { for the axis "speed control } 10 \times \text { multiplier setting for degree axis is valid". }
\end{aligned}
$$

[Cautions]
A speed change is not executed with the following errors.
(It is checked at the execution of CHGV instruction.)

Error code	Error factor		Error Processing	Corrective action
301	Speed change error	Home position return is executed by the specified axis.	- Error detection flag (M2407+20n) turns ON. - Error code 301 is stored in the minor error code storage register of each axis.	Do not execute the speed change during the home position return.
305	Data setting	Speed is set outside the range of " 0 " to speed limit value.	- Error detection flag (M2407+20n) turns ON. - Error code 305 is stored in the minor error code storage register of each axis.	Set the speed within the range of " 0 " to speed limit value.
$\begin{gathered} 4 \mathrm{CO}_{\boldsymbol{H}}{ }^{(\text {Note })} \\ (\text { Complete status) } \end{gathered}$		Axis No. is set is except for 1 to 32. Axis No. is set indirectly by index qualification.	- Error code is stored in the complete status storage device.	Confirm a program and correct it to a correct PLC program.

(Note) : Refer to Section 3.5 for error details.
(1) If a speed change is executed, the setting speed is ignored in the following cases. (An error will not occur.)
(a) During motion program execution
(b) During deceleration by the stop command
(c) During a stop
(d) During manual pulse generator operation

[Operation Timing]

The operation timing for a speed change is shown in Fig. 7.21.

Fig. 7.21 Operation timing for speed change
[Program Example]
A program example for speed change is shown as the following conditions.
(1) Conditions for speed change
(a) Axis No. for speed change.
Axis 1
(b) New speed.
1000
(c) Speed change command. M100
(2) PLC program

Program which changes the positioning speed of the axis No. 1 of the Motion CPU (CPU No.4) from PLC CPU(CPU No.1) to 1000.

7.5 JOG Operation

The setting JOG operation is executed.
Individual start or simultaneous start can be used in the JOG operation.
JOG operation can be executed using the PLC program, control program or test mode of peripheral device.
(Refer to the help of each software for JOG operation method by the test mode of peripheral device.)
JOG operation data must be set for each axis for JOG operation. (Refer to Section 7.5.1)

7.5.1 JOG operation data

JOG operation data is the data required to execute JOG operation.
Set the JOG operation data using a peripheral device.
Table 7.6 JOG operation data list

No.	Item	Setting range						Initial value	Units	Remarks	Explanatory section
		mm		inch		degree					
		Setting range	Units	Setting range	Units	Setting range	Units				
1	JOG speed limit value	$\begin{array}{\|c\|} 0.01 \text { to } \\ 6000000.00 \end{array}$	$\begin{aligned} & \mathrm{mm} \\ & / \mathrm{min} \end{aligned}$	$\begin{gathered} 0.001 \text { to } \\ 600000.000 \end{gathered}$	inch /min	$\left.\begin{gathered} 0.001 \text { to } \\ 2147483.647 \\ \text { (Note-1) } \end{gathered} \right\rvert\,$	degree/ min	200.00	mm/s	- Sets the maximum speed at the JOG operation. - If JOG speed setting exceeds the JOG speed limit value, it is controlled with JOG speed limit value.	-
2	Parameter block setting	1 to 64						1	-	- Sets the parameter block No. to be used at the JOG operation.	5.3

(Note-1) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid", the setting range is 0.01 to 21474836.47 [degree/min].
(1) JOG operation data check

A relative check of the JOG operation data is executed at the following timing:

- JOG operation individual start
- JOG operation simultaneous start
- JOG operation request
(2) Data error processing
- Only data for which detected errors is controlled as default value.
- The error code corresponding to each data for erroneous axis is stored in the data register.

7.5.2 Individual start

JOG operation for the specified axes is started.
JOG operation is executed by the following JOG operation commands :

- Forward JOG start command M3202+20n
- Reverse JOG start command. M3203+20n
[Control details]
(1) JOG operation continues at the JOG speed setting register value while the JOG operation signal turns on, and a deceleration stop is made by the JOG operation signal OFF.
Control of acceleration/deceleration is based on the data set in the JOG operation data.

JOG operation for axis for which JOG operation command is turning on is executed.
(2) The setting range for JOG speed setting registers are shown below.

No. (Note)	JOG operation		JOG speed setting register		Setting range							
			mm	inch		degree						
	Forward JOG	Reverse JOG			Most significant	Setting range	Setting range	Units	Setting range	Units	Setting range	Units
1	M3202	M3203	D641	D640	$\begin{gathered} 1 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-2} \\ \mathrm{~mm} \\ / \mathrm{min} \end{gathered}$	$\begin{gathered} 1 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-3} \\ \text { inch } \\ / \mathrm{min} \end{gathered}$	$\left\|\begin{array}{c} 1 \text { to } \\ 2147483647 \end{array}\right\|$	$\begin{gathered} \times 10^{-3} \\ \text { degree } \\ / \text { min } \\ \text { (Note-1) } \end{gathered}$		
2	M3222	M3223	D643	D642								
3	M3242	M3243	D645	D644								
4	M3262	M3263	D647	D646								
5	M3282	M3283	D649	D648								
6	M3302	M3303	D651	D650								
7	M3322	M3323	D653	D652								
8	M3342	M3343	D655	D654								
9	M3362	M3363	D657	D656								
10	M3382	M3383	D659	D658								
11	M3402	M3403	D661	D660								
12	M3422	M3423	D663	D662								
13	M3442	M3443	D665	D664								
14	M3462	M3463	D667	D666								
15	M3482	M3483	D669	D668								
16	M3502	M3503	D671	D670								
17	M3522	M3523	D673	D672								
18	M3542	M3543	D675	D674								
19	M3562	M3563	D677	D676								
20	M3582	M3583	D679	D678								
21	M3602	M3603	D681	D680								
22	M3622	M3623	D683	D682								
23	M3642	M3643	D685	D684								
24	M3662	M3663	D687	D686								
25	M3682	M3683	D689	D688								
26	M3702	M3703	D691	D690								
27	M3722	M3723	D693	D692								
28	M3742	M3743	D695	D694								
29	M3762	M3763	D697	D696								
30	M3782	M3783	D699	D698								
31	M3802	M3803	D701	D700								
32	M3822	M3823	D703	D702								

(Note-1) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" in the fixed parameter, the unit is " $\times 10^{-2}$
[degree/min]".
(Note-2) : The range of axis No. 1 to 8 is valid in the Q172HCPU.

POINT

When the JOG operation speed is set in the PLC program or control program, stores a value which is 100 times the real speed in units of [mm] or 1000 times the speed in units of [inch] or [degree] in the JOG speed setting register.

> ;---- Example.

If JOG operation speed of 6000.00 [$\mathrm{mm} / \mathrm{min}]$ is set, stores the value " 600000 " , in the JOG speed setting register.
(Note): Store a value which is 100 times the real speed in the JOG speed setting register for the axis "speed control $10 \times$ multiplier setting for degree axis is valid".

[Cautions]

(1) If the forward JOG start command (M3202+20n) and reverse JOG start command (M3203+20n) turn on simultaneously for a single axis, the forward JOG operation is executed.
When a deceleration stop is made by the forward JOG start command OFF, the reverse JOG operation is not executed even if the reverse JOG start command is ON. After that, when the reverse JOG start command turns off to on, the reverse JOG operation is executed.

(2) If the JOG operation command (M3202+20n/M3203+20n) turns on during deceleration by the JOG operation command OFF, after deceleration stop, JOG operation is not executed.
After that, the JOG operation is executed by the JOG operation command OFF to ON.

(3) JOG operation by the JOG operation command (M3202+20n/M3203+20n) is not executed during the test mode using a peripheral devices.
After release of test mode, the JOG operation is executed by turning the JOG operation command OFF to ON.

[Program Example]
Program for JOG operation is shown as the following conditions.
(1) System configuration

JOG operation for Axis 1 and Axis 2.

(2) JOG operation conditions
(a) Axis No. \qquad Axis 1, Axis 2
(b) JOG operation speed 100000
(c) JOG operation commands

1) Forward JOG operation

Axis 1 : PX003 ON, Axis 2 : PX005 ON
2) Reverse JOG operation Axis 1 : PX004 ON, Axis 2 : PX006 ON

(3) Motion program (Control program)

```
O0100
SET #M2042; All axes servo ON command turns on.
N10 IF[[ON #M2415] AND [ON #M2435]] GOTO 20; Wait until axis 1 and axis 2 servo ON.
GOTO 10;
N20 #D640L = 100000; Transfer the JOG operation speed to D640L and D642L.
#D642L = 100000;
IF [[ON #X003] AND [OFF #M3203]] THEN 1;
SET #M3202;
ELSE 1;
RST #M3202;
END 1;
IF [[ON #X004] AND [OFF #M3202]] THEN 2;
SET #M3203;
ELSE 2;
RST #M3203;
END 2;
IF [[ON #X005] AND [OFF #M3223]] THEN 3;
SET #M3222;
ELSE 3;
RST #M3222;
END 3;
IF [[ON #X006] AND [OFF #M3222]] THEN 4;
SET #M3223;
ELSE 4;
RST #M3223;
END 4;
GOTO 20;
M02;
%
```

(Note) : Control program O0100 is started by automatically start, CALL, GOSUB, GOSUBE or SFCS instruction of the PLC program.

7.5.3 Simultaneous start

Simultaneous start JOG operation for specified multiple axes.
[Control details]
(1) JOG operation continues at the JOG speed setting register value for each axis while the JOG operation simultaneous start command (M2048) turns on, and a deceleration stop is made by the M2048 OFF.
Control of acceleration/deceleration is based on the data set in the JOG operation data.

(2) JOG operation axis is set in the JOG operation simultaneous start axis setting register (D710 to D713).

(3) The setting range for JOG speed setting registers are shown below.

No. (Note)	JOG operation		JOG speed setting register		Setting range							
			mm	inch		degree						
	Forward JOG	Reverse JOG			Most significant	Setting range	Setting range	Units	Setting range	Units	Setting range	Units
1	M3202	M3203	D641	D640	$\begin{gathered} 1 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-2} \\ \mathrm{~mm} \\ / \mathrm{min} \end{gathered}$	$\begin{gathered} 1 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-3} \\ \text { inch } \\ / \mathrm{min} \end{gathered}$	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	$\begin{gathered} \times 10^{-3} \\ \text { degree } \\ / \text { min } \\ (\text { Note-1 }) \end{gathered}$		
2	M3222	M3223	D643	D642								
3	M3242	M3243	D645	D644								
4	M3262	M3263	D647	D646								
5	M3282	M3283	D649	D648								
6	M3302	M3303	D651	D650								
7	M3322	M3323	D653	D652								
8	M3342	M3343	D655	D654								
9	M3362	M3363	D657	D656								
10	M3382	M3383	D659	D658								
11	M3402	M3403	D661	D660								
12	M3422	M3423	D663	D662								
13	M3442	M3443	D665	D664								
14	M3462	M3463	D667	D666								
15	M3482	M3483	D669	D668								
16	M3502	M3503	D671	D670								
17	M3522	M3523	D673	D672								
18	M3542	M3543	D675	D674								
19	M3562	M3563	D677	D676								
20	M3582	M3583	D679	D678								
21	M3602	M3603	D681	D680								
22	M3622	M3623	D683	D682								
23	M3642	M3643	D685	D684								
24	M3662	M3663	D687	D686								
25	M3682	M3683	D689	D688								
26	M3702	M3703	D691	D690								
27	M3722	M3723	D693	D692								
28	M3742	M3743	D695	D694								
29	M3762	M3763	D697	D696								
30	M3782	M3783	D699	D698								
31	M3802	M3803	D701	D700								
32	M3822	M3823	D703	D702								

(Note-1) : When the "speed control $10 \times$ multiplier setting for degree axis" is set to "valid" in the fixed parameter, the unit is " $\times 10^{-2}$ [degree/min]".
(Note-2) : The range of axis No. 1 to 8 is valid in the Q172HCPU.

[Program Example]

Program for simultaneous start of JOG operations are shown as the following conditions.
(1) System configuration

JOG operation for Axis 1 and Axis 2.

(2) JOG operation conditions
(a) JOG operation conditions are shown below.

Item	JOG operation conditions	
Axis No.	Axis 1	Axis 2
JOG operation speed	150000	150000

(b) JOG operation command During PX000 ON

(3) Motion program

```
O0100
SET #M2042; All axes servo ON command turns on.
N10 IF[[ON #M2415] AND [ON #M2435]] GOTO 20; Wait until axis }1\mathrm{ and axis 2 servo ON.
GOTO 10;
N2O IF[ON #X000] THEN 1
#D710 = 2;
#D712 = 1;
#D640L = 150000;
#D642L = 150000;
SET #M2048;
ELSE 1;
RST #M2048;
END 1;
GOTO 20;
M02;
%
```

(Note) : Control program O0100 is started by automatically start, CALL, GOSUB, GOSUBE or SFCS instruction of the PLC program.

7.6 Manual Pulse Generator Operation

Positioning control based on the number of pulses inputted from the manual pulse generator is executed.
Simultaneous operation for 1 to 3 axes is possible with one manual pulse generator, the number of connectable modules are shown below.

Number of connectable to the manual pulse generator
3

POINT

- When two or more Q173PXs are installed, connect the manual pulse generator to first (It counts from 0 slot of the CPU base) Q173PX.
(When the manual pulse generator is used, only first Q173PX is valid.)
[Control details]
(1) Positioning of the axis set in the manual pulse generator axis setting register based on the pulse input from the manual pulse generator.
Manual pulse generator operation is only valid while the manual pulse generator enable flag turn ON.

Manual pulse generator connecting position	Manual pulse generator axis No. setting register	Manual pulse generator enable flag
P1	D714, D715	M2051
P2	D716, D717	M2052
P3	D718, D719	M2053

(2) The travel value and output speed for positioning control based on the pulse input from manual pulse generator are shown below.
(a) Travel value

The travel value based on the pulse input from a manual pulse generator is calculated using the following formula.
[Travel value] $=$ [Travel value per pulse] \times [Number of input pulses $] \times[$ Manual pulse generator 1-pulse input magnification setting]

The travel value per pulse for manual pulse generator operation is shown below.

Unit	Travel value
mm	$0.1[\mu \mathrm{~m}]$
inch	0.00001 [inch]
degree	0.00001 [degree]

If units is [mm], the command travel value for input of one pulse is :
$(0.1[\mu \mathrm{~m}]) \times(1[\mathrm{PLS}]) \times($ Manual pulse generator 1 - pulse input magnification setting)
(b) Output speed

The output speed is the positioning speed corresponding to the number of pulses input from a manual pulse generator in unit time.
[Output speed] $=$ [Number of input pulses per 1 ms$] \times$ [Manual pulse generator 1-pulse input magnification setting]
(3) Setting of the axis operated by the manual pulse generator

The axis operated by the manual pulse generator is set in the axis setting register (D714 to D719) by the manual pulse generator.
The bit corresponding to the axis controlled (1 to 32) is set.
(4) Manual pulse generator 1- pulse input magnification setting

Make magnification setting for 1-pulse input from the manual pulse generator for each axis.

1- pulse input magnification setting register	Applicable axis No. ${ }^{(N o t e-1)}$	Setting range
D720	Axis 1	1 to 10000
D721	Axis 2	
D722	Axis 3	
D723	Axis 4	
D724	Axis 5	
D725	Axis 6	
D726	Axis 7	
D727	Axis 8	
D728	Axis 9	
D729	Axis 10	
D730	Axis 11	
D731	Axis 12	
D732	Axis 13	
D733	Axis 14	
D734	Axis 15	
D735	Axis 16	
D736	Axis 17	
D737	Axis 18	
D738	Axis 19	
D739	Axis 20	
D740	Axis 21	
D741	Axis 22	
D742	Axis 23	
D743	Axis 24	
D744	Axis 25	
D745	Axis 26	
D746	Axis 27	
D747	Axis 28	
D748	Axis 29	
D749	Axis 30	
D750	Axis 31	
D751	Axis 32	

(Note-1) : The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note): The manual pulse generator does not have the speed limit value, so they set the magnification setting within the rated speed of servomotor.
(5) The setting manual pulse generator 1-pulse input magnification checks the "1pulse input magnification setting registers of the manual pulse generator" of the applicable axis at the turning manual pulse generator enable flag turns off to on. If the value is outside of range, the manual pulse generator axis setting error register (D9185 to D9187) and manual pulse generator axis setting error flag (M9077) are set and a value of " 1 " is used for the magnification.
(6) Manual pulse generator smoothing magnification setting A magnification to smooth the turning the manual pulse generator operation off to on or on to off is set.

Manual pulse generator smoothing magnification setting register	Setting range
Manual pulse generator 1 (P1) : D752	0 to 59
Manual pulse generator 2 (P2) : D753	
Manual pulse generator 3 (P3) : D754	

(a) Operation

Output speed (V1) $=$ [Number of input pulses $/ \mathrm{ms}] \times[$ Manual pulse generator 1-pluse input magnification setting]

Travel value (L) = [Travel value per pulse] \times [Number of input pulses $] \times$ [Manual pulse generator 1-pluse input magnification setting]
(b) When the smoothing magnification is set, the smoothing time constant is as following formula.
Smoothing time constant $(\mathrm{t})=($ Smoothing magnification +1$) \times 56.8[\mathrm{~ms}]$

REMARK

The smoothing time constant is within the range of 56.8 to $3408[\mathrm{~ms}$].
(7) Errors details at the data setting for manual pulse generator operation are shown below.

Error details	Error processing
Axis set to manual pulse generator operation is specified.	• Duplicated specified axis is ignored. - First setting manual pulse generator operation is executed.
Axis setting is 4 axes or more	- Manual pulse generator operation is executed according to valid for 3 axes from the lowest manual pulse generator axis setting register.
All of bit is "0" for the effective axis No. of manual pulse generator axis No. setting register.	• Manual pulse generator operation is not executed.

[Cautions]
(1) The start accept flag turns on for axis during manual pulse generator operation. Positioning control or home position return cannot be started using the Motion CPU or a peripheral device.
Turn off the manual pulse generator enable flag after the manual pulse generator operation end.
(2) The torque limit value is fixed at 300[\%] during manual pulse generator operation.
(3) If the manual pulse generator enable flag turns on for the starting axis by positioning control or JOG operation, an error [214] is set to the applicable axis and manual pulse generator input is not enabled. After the axis has been stopped, the turning OFF to ON of the manual pulse generator enable flag becomes valid, the start accept flag turns on by the manual pulse generator input enabled status, and input from the manual pulse generator is input.

(4) If the manual pulse generator enable flag of another manual pulse generator No. turns on for axis during manual pulse generator operation, an error [214] is set to the applicable axis and the input of that manual pulse generator is not enabled. Turn the manual pulse generator enable flag on again after stopping the manual pulse generator operation which had become input enable previously.
(5) If the same manual pulse generator enable flag turns on again for axis during smoothing deceleration after manual pulse generator enable flag turns off, an error [214] is set and manual pulse generator input is not enabled. Turn the manual pulse generator enable flag on after smoothing deceleration stop (after the start accept flag OFF).
(6) If another axis is set and the same manual pulse generator enable flag turns on again during smoothing deceleration after manual pulse generator enable flag turns off, the manual pulse generator input is not enabled.
At this time, the manual pulse generator axis setting error bit of the manual pulse generator axis setting error storage register (D9185 to D9187) turns on, and the manual pulse generator axis setting error flag (M9077) turns on.
Include the start accept flag OFF for specified axis in interlocks as the conditions which turn on the manual pulse generator enable flag.

[Procedure for manual pulse generator operation]

Procedure for manual pulse generator operation is shown below.

[Program Example]

Program executes manual pulse generator operation is shown as the following conditions.
(1) System configuration

Manual pulse generator operation of Axis 1.

(2) Manual pulse generator operation conditions
(a) Manual pulse generator operation axis \qquad Axis 1, Axis 2
(b) Manual pulse generator 1-pluse input magnification \qquad 100
(c) Manual pulse generator operation enable . M2051(Axis 1)/M2052(Axis 2) ON
(d) Manual pulse generator operation end M2051(Axis 1)/M2052(Axis 2) OFF
(3) Motion program (Control program)

O0100
SET \#M2042; All axes servo ON command turns on.
N10 IF [[ON \#M2415] AND [ON \#M2435]] GOTO 20; Wait until axis 1 and axis 2 servo ON. GOTO 10;

N20 IF [ON \#X000] GOTO 30; Wait until manual pulse generator operation start.
GOTO 20;

\#D714L $=1$; Control axis 1 by P1.
\#D716L $=2$; Control axis 2 by P2.
SET \#M2051; \}
SET \#M2052; $\}$ Axis 1 and axis 2 manual pulse generator enable flag turn on.
N40 IF [OFF \#X000] GOTO 50; Wait until manual pulse generator operation end.
GOTO 40;
N50 RST \#M2051; \}
RST \#M2052;
Axis 1 and axis 2 manual pulse generator enable flag turn off.
M02;
\%
(Note) : Turn off the P1 and P2 manual pulse generator enable flag for safety not to continue the manual pulse generator operation at the manual pulse generator operation end.
(Note) : Control program O0100 is started by automatically start, CALL, GOSUB, GOSUBE or SFCS instruction of the PLC program.

7.7 Override Ratio Setting Function

The speed change can be executed by setting the override ratio to the command speed of the Motion program in this function.
[Control details]
(1) The override ratio is set in the range of 0 to $100[\%]$ in $1[\%]$ units to the command speed in the Motion program. The value obtained by multiplying the command speed by the override value is the real feed speed.
(2) The override ratio is set to each axis.

The default value is 100[\%] in all axes.
[Data Setting]
(1) The speed change by the override ratio setting function is used the override ratio setting register.
The override ratio setting register of each axis are shown below.

Axis No.	Override Ratio Setting Register	Axis No.	Override Ratio Setting Register	Axis No.	Override Ratio Setting Register	Axis No.	Override Ratio Setting Register
1	D 1536	9	D 1560	17	D 1584	25	D 1608
2	D 1539	10	D 1563	18	D 1587	26	D 1611
3	D 1542	11	D 1566	19	D 1590	27	D 1614
4	D 1545	12	D 1569	20	D 1593	28	D 1617
5	D 1548	13	D 1572	21	D 1596	29	D 1620
6	D 1551	14	D 1575	22	D 1599	30	D 1623
7	D 1554	15	D 1578	23	D 1602	31	D 1626
8	D 1557	16	D 1581	24	D 1605	32	D 1629

(2) The ratio is set to the override ratio setting register within the range of 0 to 100[\%].
(3) When the override ratio enable/disable (M4405+10n) is ON, the content of override ratio setting register is valid. When the M4405+10n is OFF, it is controlled at the override ratio of 100[\%].
[Cautions]
(1) When the SVST instruction is executed, the content of override ratio setting register for the lowest starting axis valid.
[Example]
Axis 2, 3, 4 start instruction

\vdash § $\$ \quad$| SP.SVST | H3E3 | "J2J3J44" | K100 |
| :--- | :--- | :--- | :--- |

-When the above SVST instruction is executed, the data of axis 2 is valid. (The data of axis 3, 4 are invalid.)
(2) When the speed is changed by the override ratio setting function, acceleration/deceleration processing is executed according to the "acceleration time" and "deceleration time" in the parameter block.
(3) The override ratio setting is valid for Motion program operation only. (Invalid for JOG operation and so on.)
(4) The error contents for override ratio data setting are shown below.

Error code	Error factor	Error Processing	Corrective action
190	At a start, the value set in the override ratio setting register is except 0 to $100[\%]$.	- Operation is performed at 100[\%]. (Operation is executed at command speed in the Motion program.)	Sets the override ratio within the range of 0 to 100 [\%].
290	During operation, the value set in the override ratio setting register is except 0 to $100[\%$].		

[Operation Timing]
The speed change timing by override ratio setting function is shown in Fig. 7.22.

Fig. 7.22 Speed change timing for override ratio setting

7.8 FIN signal wait function

By selecting the FIN signal wait function and setting a M-code at each executing point, a process end of each executing point is synchronized with the FIN signal, the FIN signal turns ON to OFF and then the next positioning is executed. Turn the FIN signal on/off using the Motion program or PLC program.
[Data Setting]
(1) The FIN signal and M-code outputting signal correspond to the following devices of each axis.

	Axis No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Signal name	M3219	M3239	M3259	M3279	M3299	M3319	M3339	M3359	M3379	M3399	M3419	M3439	M3459	M3479	M3499	M3519	
FIN signal	M2419	M2439	M2459	M2479	M2499	M2519	M2539	M2559	M2579	M2599	M2619	M2639	M2659	M2679	M2699	M2719	
M-code outputting signal	Mxis No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Signal name	M3539	M3559	M3579	M3599	M3619	M3639	M3659	M3679	M3699	M3719	M3739	M3759	M3779	M3799	M3819	M3839	
FIN signal	M-code outputting signal	M2739	M2759	M2779	M2799	M2819	M2839	M2859	M2879	M2899	M2919	M2939	M2959	M2979	M2999	M3019	M3039

(2) The acceleration/deceleration method is the fixed acceleration/deceleration time method.
The acceleration/deceleration time of selected parameter block is used as the acceleration time.
[Program Example]

[Cautions]

(1) When the stop command (external, M3200+20n, M3201+20n), cancel signal or skip signal is input, the M-code outputting signal turns OFF.
(2) When M-code is set at the end point, positioning ends after the FIN signal has turn OFF to ON to OFF.
(3) Transition of point for the FIN signal wait function is executed with the command before acceleration/deceleration. (Refer to Fig in (6) (b).)
(4) M-code outputting signal is output to all interpolation axes at the interpolation control. In this case, turn on the signal for one of the interpolation axes. However, the FIN signal for the high-speed oscillation execution axis is ignored.
(5) When the FIN signal for any one of the interpolation axes is ON, the M-code outputting signal is not output if the FIN wait function is executed.

(6) The command in-position signal for FIN signal wait function is output as below.
(a) When the automatic deceleration is started by positioning to the executed point (including the last point) during FIN signal wait.
If the difference between the positioning address (command position) of executing point and the machine value reaches within the command inposition range during FIN signal wait deceleration, the command in-position signal (M2403+20n) turns on.
When the axis transits to the next point, the command in-position signal turns off.

(b) When the axis transits to the next point without automatic deceleration by positioning to the executing point during FIN signal wait.
If the axis transits to the next point without automatic deceleration, the command in-position signal does not turn on.

POINTS

(1) The fixed acceleration/deceleration time method is acceleration/deceleration processing that the time which acceleration/deceleration takes is fixed, even if the command differs.

(a) The following processing and parameters are invalid in the fixed acceleration/deceleration time method.

- Rapid stop acceleration/deceleration time in parameter block
- S-curve acceleration/deceleration
(b) The speed processing for each axis is as shown below in positioning operation (constantspeed) as shown in the following figure.

Positioning operation

Constant-speed control processing of each axis
(2) When the rapid stop command is executed by the setting "deceleration time < rapid stop deceleration time" during constant-speed control, the point data currently executed in the middle of deceleration, and the positioning may be completed suddenly as a speed " 0 ". In the case of, "deceleration time \geqq rapid stop deceleration time", the above operation is not executed.

Travel value by the point data currently executed at the rapid stop command (Up to 9 points) < Speed at rapid stop command input \times Rapid stop deceleration time/2
[Operation pattern]

7.9 Single Block Operation

This function is used to execute the program operation block-by-block and check the operation of Motion program.
The single block is available in two modes: a mode where a single block is specified before a program start, and a mode where a single block is executed at any point during program execution.

The single block operation can be executed at any point during operation by turning the single block mode signal (M4408) ON during continuous operation, and by turning the single block start signal (M4409) from OFF to ON.
[Control details]

(1) Single block signal devices

The single block related signals are shown below.

Signal Name	Device No.	Signal direction
Single block processing	M4009	Monitor device
Single block mode	M4408	Command device
Single block start	M4409	

These signals are valid for all program operations executed concurrently.
(a) Single block in progress (M4009)

This signal indicates that the single block function can be executed. A single block is executed when the single block processing signal is ON. When the single block processing is OFF, make a Motion program (axis designation program) start or turn single block start from OFF to ON to perform continuous operation. When the single block mode signal (M4408) turns ON, the single block processing signal turns ON.
When the single block start signal (M4409) turns from OFF to ON after the single block mode signal (M4408) turns OFF, this signal turns OFF.
(b) Single block mode (M4408)

This signal makes a single block valid.
(c) Single block start (M4409)

This single starts a program in a single block waiting status.
(2) How to execute single block from a start

When the single block mode signal (M4408) turns ON, the single block processing signal (M4009) turns ON. In this status, turn ON the Motion program (Axis designation program).
After the first block is executed, execution waits for the single block start signal (M4409) to turn from OFF to ON.

(3) How to continue single block

Turn the single block start signal (M4409) from OFF to ON while the single block processing signal (M4009) is ON.
After one block program is executed, execution waits for the single block start signal to turn ON.

(4) How to start operation continuously during execution of single block Turn the single block mode signal (M4408) from ON to OFF. When the single block start signal (M4409) turns OFF to ON in this state, the single block processing signal (M4409) turns OFF and the program makes continuous operation.

(5) How to perform continuous operation from a start (Normal
operation)

The Motion program (Axis designation program) turns ON while the single block processing signal (M4009) is OFF, the program makes continuous operation.

Executing PLC No.	
Start accept flag (M2001+n)	
Motion program (Axis designation program) start instruction	
Single block processing signal (M4009)	OFF
Single block start signal (M4409)	OFF

(6) How to execute single block during continuous operation

 Turn the single block mode signal (M4408) ON during program operation. During move block execution, the program is stopped after termination of that block and execution waits for the single block start signal (M4409) to turn from OFF to ON.

A macro instruction block, e.g. arithmetic operation, is pre-read during execution of the move instruction for PTP (e.g. G00) or CP (e.g. G01). Therefore, if the single block function is executed while the macro instructions are pre-read during motion, the executing block number and executing PLC No. displayed are those in the pre-read area.
[Motion program example]

```
O0010;
N1 G01 X100. F100. ; (Single block processing signal is ON)
N2 #D0 = 0
N3 #D2 = 1
N4 #D3 = 2
N5 #D4 = 3; (Pre-read complete block)
M02 ;
%
```

During N1 execution, the single block processing signal is turned ON. If the macro instructions in up to N5 have been pre-read at this time, making a single block start for one block changes the executed PLC No. from N1 to N5.

[Cautions]

(1) Single block mode signal (M4408) and single block command (M4403+10n) If the single block by single block mode signal (M4408) and the single block by single block command (M4403+10n) are executed simultaneously, the operation by the single block command (M4403+10n) is made invalid.
(2) Emergency stop, stop command, rapid stop command and error when single block in progress signal (M4009) is ON
When the single block processing signal (M4009) is ON, it does not turn OFF if an emergency stop, stop command or rapid stop command is executed, or an error occurs.
The single block processing signal (M4009) turns OFF by turning OFF the single block mode signal (M4408) and then turning the single block start signal (M4409) from OFF to ON.
(3) Status at termination of one block execution when single block in progress is ON If one block execution ends when the single block processing signal (M4009) is ON, the automatic start signal ($\mathrm{M} 4002+10 n$) does not turn OFF. At this time, the command in-position signal (M2403+20n) turns ON.
(4) Single block start during move instruction execution

The single block start is not accepted during axis travel (except high-speed oscillation). Make a single block start after the axis has been stopped by single block.

7.10 Control Program Stop Function from The PLC CPU

The No. of control program during execution is specified to end a program from the PLC CPU. (This function is equivalent to a Motion program (CLEAR) for positioning control.)
(1) The control program set as the CLEAR request control program No. setting register (D707) is ended. The values except for " 0 " is set in D707, the CLEAR processing is executed.
(2) When an equivalent for CLEAR instruction is executed toward the all control programs during execution, "65535" is stored in the CLEAR request control program No. setting register (D707).
(3) When the control program set as the CLEAR request control program No. setting register (D707) is cleared normally, "1" is stored in the CLEAR request status storage register (D1445).
(4) When an error will occur by clearing the control program set as the CLEAR request control program No. setting register (D707), the following error codes are stored.
(a) A minor error "the program number ended by CLEAR is outside the range of 1 to 1024". (Error code: 619)
(b) A minor error "the program number ended by CLEAR is nor registered. Or, the axis designation program is cleared." (Error code: 620)
(5) When " 0 " is stored in the CLEAR request control program No. setting register (D707), " 1 " is also stored in the CLEAR request status storage register (D1445).

[Operation Timing]

Operation timing for the CLEAR request status storage register by control program stop function from the PLC CPU is shown in Fig. 7.23.

Fig. 7.23 Operation timing for the CLEAR request status storage register

8. USER FILES

A user file list and directory structure are shown below
8.1 Projects

User files are managed on a "project" basis.
When you set a "project name", a "project name" folder is created as indicated on the next page, and under that, an editing folder (temp) are created.

POINT

(1) Set the "project name" on the project management screen.
(2) The "project name" is restricted to 230 characters in length.
(3) The "project path name" + "project name" are restricted to 230 characters in length.
((Example) "C:\Usrl..........|project namel")

8.2 User File List

A user file list is shown below.

(Note-1) : Indicates the file (data) stored in CPU memory.

APPENDICES

APPENDIX 1 Error Codes Stored Using The Motion CPU

The Motion program setting errors and positioning errors are detected in the Motion CPU side.
(1) Motion program setting errors

These are positioning data errors set in the Motion program, at it checks the parameter block No. and axis No. at the execution of SVST instruction.
The operations at the error occurrence are shown below.

- The Motion program setting error flag (M9079) turns on.
- The erroneous Motion program is stored in the error program No. storage register (D9189).
- The error code is stored in the error item information register (D9190).

(2) Positioning error

(a) Positioning errors occurs at the positioning start or during positioning control. There are minor errors, major errors and servo errors.

1) Minor errors...... These errors occur in the PLC program or Motion program, and the error codes 1 to 999 are used. Remove the error cause by correcting the PLC program or Motion program.
2) Major errors..... These errors occur in the external input signals or control commands from the Motion CPU, and the error codes 1000 to 1999 are used.
Check the error code, and remove the error cause of the external input signal state or PLC program.
3) Servo errorsThese errors detected in the servo amplifier, and the error codes 2000 to 2999 are used.
Check the error code, and remove the error cause of the servo amplifier side.
(b) The error detection signal of the erroneous axis turns on at the error occurrence, and the error codes are stored in the minor error code, major error code or servo error code storage register.

Table 1.1 Error code storage registers, error detection signals

	Error code storage register																Error detection signal
	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	$\begin{gathered} \text { Axis } \\ 10 \\ \hline \end{gathered}$	Axis 11	Axis 12	Axis 13	Axis 14	Axis 15	Axis 16	
Minor error	D6	D26	D46	D66	D86	D106	D126	D146	D166	D186	D206	D226	D246	D266	D286	D306	M2407+20n
Major error	D7	D27	D47	D67	D87	D107	D127	D147	D167	D187	D207	D227	D247	D267	D287	D307	
Servo error	D8	D28	D48	D68	D88	D108	D128	D148	D168	D188	D208	D228	D248	D268	D288	D308	M2408+20n

Device	Error code storage register																Error detection signal
Error class	Axis 17	Axis 18	Axis 19	Axis 20	Axis 21	Axis 22	$\begin{gathered} \text { Axis } \\ 23 \end{gathered}$	Axis 24	Axis 25	Axis 26	Axis 27	Axis 28	Axis 29	Axis 30	Axis 31	Axis 32	
Minor error	D326	D346	D366	D386	D406	D426	D446	D466	D486	D506	D526	D546	D566	D586	D606	D626	2407+20n
Major error	D327	D347	D367	D387	D407	D427	D447	D467	D487	D507	D527	D547	D567	D587	D607	D627	
Servo error	D328	D348	D368	D388	D408	D428	D448	D468	D488	D508	D528	D548	D568	D588	D608	D628	M2408+20n

(Note): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(c) If another error occurs after an error code has been stored, the existing error code is overwritten, deleting it.
However, the error history can be checked using a peripheral device started with the SW6RN-GSV43P software.
(d) Error detection signals and error codes are held until the error code reset command (M3207+20n) or servo error reset command (M3208+20n) turns on.

POINTS

(1) Even if the servo error reset (M3208+20n) turns on at the servo error occurrence, the same error code might be stored again.
(2) Reset the servo error after removing the error cause of the servo amplifier side at the servo error occurrence.

APPENDIX 1.1 Motion program setting errors (Stored in D9190)

The error codes, error contents and corrective actions for Motion program setting errors are shown in Table 1.2.

Table 1.2 Motion program setting error list

Error code stored in D9190	Error name	Error contents	Error processing	Corrective action
1	Parameter block No. setting error	The parameter block No. is outside the range of 1 to 64.	Execute the Motion program with the default value "1" of parameter block.	Set the parameter block No. within the range of 1 to 64.
906	error	An unused axis of the system setting is set to the Motion program set in the SVST instruction.	Positioning control does not start.	Set the axis No. used in the system settings.
3300	Number of control program starts over error	33 or more axis designation programs are started simultaneously.	Positioning control does not start.	Set up to 32 programs as the simultaneous execution program.
3301	Number of designation program starts over error	17 or more control programs are started simultaneously.	Positioning control does not	Set up to 16 programs as the start.

APPENDIX 1.2 Minor errors

These errors are detected in the PLC program or Motion program, and the error codes of 1 to 999 are used.
Minor errors include the setting data errors, starting errors, positioning control errors, speed change/torque control value change errors and Motion program execution errors.
(1) Setting data errors (1 to 99)

These errors occur when the data set in the parameters for positioning control is not correct.
The error codes, causes, processing and corrective actions are shown in Table 1.3.

Table 1.3 Setting data error (1 to 99) list

Error code	$\begin{gathered} \text { Erroneous } \\ \text { data } \end{gathered}$	Check timing	Error cause	$\begin{gathered} \text { Error } \\ \text { processing } \end{gathered}$	Corrective action
21	Home position return data	Home position return start of the count, proximity dog, data set, dog cradle, stopper and limit switch combined type	The home position address is outside the range of 0 to 35999999 ($\times 10^{-5}$ [degree]) with degree axis.	Home position return is not started.	Set the home position address within the setting range using a peripheral device.
22		Home position return start of the count, proximity dog, dog cradle, stopper and limit switch combined type	The home position return speed is outside the range of 1 to speed limit value.		Set the home position return speed or less to the speed limit value using a peripheral device.
23			The creep speed is outside the range of 1 to home position return speed.		Set the creep speed below to the home position return speed or less using a peripheral device.
24		Home position return start of the count type	The travel value after the proximity dog ON is outside the range of 0 to ($2^{31}-1$) (\times unit).		Set the travel value after the proximity dog ON within the setting range using a peripheral device.
25		Home position return start of the count, proximity dog, dog cradle, stopper and limit switch combined type	The parameter block No. is outside the range of 1 to 64 .		Set the parameter block No. within the setting range using a peripheral device.
26		Home position return start of the stopper type	Torque limit value at the creep speed is outside the range of 1 to 1000[\%].		Set the torque limit value at the creep speed within the setting range using a peripheral device.
27		Home position return start of the usable retry function	Dwell time at the home position return is outside the range of 0 to 500 [ms].		Set the dwell time at the home position return retry within the setting range using a peripheral device.

Table 1.3 Setting data error (1 to 99) list (Continued)

Error code	Erroneous data	Check timing	Error cause	Error processing	Corrective action
40	Parameter block	Interpolation control start	The interpolation control unit of the parameter block is different from the control unit of the fixed parameters.	Control with the control unit of the fixed parameters.	Set the same control unit of the fixed parameters and servo parameters.

POINT

When the interpolation control unit of parameter block is different from the control unit of the fixed parameters, an error code may not be stored with the combination of units.
Refer to Section 6.11.6 for details.

(2) Positioning control start errors (100 to 199)

These errors are detected at the positioning control start.
The error codes, causes, processing, and corrective actions are shown in Table 1.4 below.

Table 1.4 Positioning control start error (100 to 199) list

Error code			Control mode				Error cause	Error processing	Corrective action
			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			O			
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The PLC ready flag (M2000) or PCPU ready flag (M9074) is OFF.		- Set the Motion CPU to RUN. - Turn the PLC ready flag (M2000) on.
101		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The start accept flag (M2001 to M2032) for applicable axis is ON .		- Take an interlock in the program not to start the starting axis. (Use the start accept flag OFF of the applicable axis as the starting condition).
103		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The stop command (M3200+20n) for applicable axis is ON.		- Turn the stop command (M3200+20n) off and start.
104		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The rapid stop command (M3201+20n) for applicable axis is ON.		- Turn the rapid stop command (M3201+20n) off and start.
$\begin{aligned} & 105 \\ & \text { (Note) } \end{aligned}$		\bigcirc					The feed current value is outside the range of stroke limit at the start.	Positioning control does not start.	- Set within the stroke limit range by the JOG operation. - Set within the stroke limit range by the home position return or current value change.
106 (Note)		\bigcirc				\bigcirc	Positioning is outside the range of the stroke limit.		- Perform the positioning within the range of stroke limit.
107		\bigcirc					The address that does not generate an arc is set at the auxiliary point-specified circular interpolation or auxiliary point-specified helical interpolation. (Relationship between the start point, auxiliary point and end point.)		- Correct the addresses of the Motion program.
108		\bigcirc					The address that does not generate an arc is set at the R (radius) specified circular interpolation or R (radius) specified helical interpolation. (Relationship between the start point, radius and end point.)		

(Note): These errors are stored the error codes of the all applicable interpolation axes at the interpolation operation.

Table 1.4 Positioning control start error (100 to 199) list (Continued)

Error code	$\begin{aligned} & \text { E } \\ & 000 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Control mode				Error cause	Error processing	Corrective action
			$\stackrel{\bigcirc}{\mathrm{O}}$			O			
109		\bigcirc					The address that does not generate an arc is set at the central point-specified circular interpolation or central point-specified helical interpolation. (Relationship between the start point, central point and end point.)	Positioning control does not start.	- Correct the addresses of the Motion program.
$\begin{aligned} & 110 \\ & \text { (Note) } \end{aligned}$		\bigcirc					The difference between the end point address and ideal end point is outside the allowable error range for circular interpolation at the circular interpolation.		
115					\bigcirc		The home position return complete signal (M2410+20n) turned on at the home position return of proximity dog, dog cradle and stopper type.		- Do not start continuously for the home position return. Return to a point before the proximity dog signal ON by JOG operation or positioning operation, etc., and perform the home position return.
							The setting JOG speed is "0".		- Set the correct speed (within the setting range).
							The setting JOG speed exceeded the JOG speed limit value.	Control with the JOG speed limit value.	
116			\bigcirc				The setting JOG speed limit value exceeded the setting range.	Control with the maximum setting range of each control unit.	- Set the correct JOG speed limit value (within the setting range).
117			\bigcirc				Both of forward and reverse rotation were set at the simultaneous start for the JOG operation.	Only the applicable axis set to the forward direction starts.	- Set a correct data.
120					\bigcirc		ZCT not set The zero pass signal (M2406+20n) turned off at the re-travel at the home position return for proximity dog, count and limit switch combined type or start in the home position return for data set type.	Home position return is not completed correctly.	- Execute the home position return after the zero point passed.

(Note): These errors are stored the error codes of the all applicable interpolation axes at the interpolation operation.

Table 1.4 Positioning control start error (100 to 199) list (Continued)

Error code			Control mode				Error cause	Error processing	Corrective action
			$\stackrel{\circ}{\circ}$			\%			
140		\bigcirc					The travel value of the reference axis is set at "0" in the linear interpolation for reference axis specification.	Positioning control does not start.	- Do not set axis of travel value " 0 " as the reference axis.
142					\bigcirc		The positioning control which use the external input signal was executed for the axis which has not set the external input signal in the system settings.		- Set the external input signal in the system setting.
145					\bigcirc		Unusable instructions were started in the external input signal setting via servo amplifier.		- Do not start count type home position return in the external input signal setting via servo amplifier.
160		\bigcirc					The operating axis is specified in the SVST instruction.		- Start after the operating signal has turned OFF. Provide a SVST instruction operating interlock.
161	\bigcirc	\bigcirc					Program No. to be started is outside the range of 1 to 1024.		- Correct the start instruction.
163		\bigcirc					The sequence No. specified in the SVST is outside the range of 0 to 9999.	Positioning control starts from the beginning the program.	- Set the sequence No. within the range of 0 to 9999 .
190		\bigcirc					At a start, the override ratio is outside the range of 0 to 100[\%].	Operation is performed at 100[\%].	- Set the override ratio within the range of 0 to 100[\%].

(3) Positioning control errors (200 to 299)

These are errors detected during the positioning control.
The error codes, causes, processing and corrective actions are shown in Table 1.5 below.

Table 1.5 Positioning control error (200 to 299) list

Error code			Control mode				Error cause	Error processing	Corrective action
			$\stackrel{\circ}{\circ}$			O			
200	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	The PLC ready flag (M2000) turned off during the control by the start request of Motion program.	Deceleration stop Control program ends.	- Turn the PLC ready flag (M2000) on after all axes have stopped.
201					\bigcirc		The PLC ready flag (M2000) turned off during the home position return.		- Perform the home position return again after turning the PLC ready flag (M2000) on or turning the stop command (M3200+20n) or rapid stop command (M3201+20n) off. Return to a point before the) proximity dog signal ON using JOG operation or positioning operation, and perform the home position return again in the proximity dog type.
202					\bigcirc		The stop command (M3200+20n) turned on during the home position return.		
203					\bigcirc		The rapid stop command (M3201+20n) turned on during the home position return.	Rapid stop	
204		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The PLC ready flag (M2000) turned off to on again during deceleration by turning off the PLC ready flag (M2000).	$\begin{gathered} \text { No } \\ \text { operation } \end{gathered}$	- Turn the PLC ready flag (M2000) OFF to ON after all axes have stopped.

Table 1.5 Positioning control error (200 to 299) list (Continued)

Error code			Control mode						
			\bigcirc			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Error cause	Error processing	Corrective action
206					\bigcirc		All axes rapid stop ([Back Space] key input) is executed using the test mode of a peripheral device during the home position return.	Rapid stop	- Return to a point before the proximity dog signal ON using JOG operation or positioning operation, and perform the home position return again in the proximity dog type. - Return to a point before the proximity dog signal ON using JOG operation or positioning operation, and perform the home position return again, when the proximity dog signal turns off in the count type. (Perform the home position return operation again, when the proximity dog signal turns on in the count type.
207		\bigcirc	\bigcirc				The feed current value exceeded the stroke limit range during the control. Only the axis exceed the stroke limit range is stored at the circular/helical interpolation. All interpolation axes are stored in the linear interpolation.		- Correct the stroke limit range or travel value setting so that positioning address control is within the range of the stroke limit.
208		\bigcirc		\bigcirc			The feed current value of another axis exceeded the stroke limit value during the circular/helical interpolation control or simultaneous manual pulse generator operation. (For detection of other axis errors).	Deceleration stop	
209					\bigcirc		An overrun occurred because the travel value after the dog ON is less than the deceleration distance at the proximity dog signal input during home position return of count type.		- Set the speed setting so that overrun does not occur. - Set the travel value so that overrun does not occur.
211		\bigcirc					During control, an overrun occurred because the deceleration distance for the output speed is not attained at the point where the final positioning address was detected.		

Table 1.5 Positioning control error (200 to 299) list (Continued)

Error code			Control mode						
			O			$\begin{aligned} & \text { U } \\ & 0 \end{aligned}$	Error cause	Error processing	Corrective action
214				\bigcirc			The manual pulse generator was enabled during the start of the applicable axis, the manual pulse generator operation was executed.	Manual pulse generator input is ignored until the axis stops.	- Execute the manual pulse generator operation after the applicable axis stopped.
230		\bigcirc					When the skip is executed in the constant-speed control, the next interpolation instruction is an absolute circular interpolation or absolute helical interpolation.	Immediate stop	- Execute the absolute linear interpolation after a point which make a skip.
290		\bigcirc					The override ratio is outside the range of 0 to 100[\%] during the control.	Operation is performed at 100[\%].	- Set the override ratio within the range of 0 to 100[\%].
292		\bigcirc					Axis interlock (M4406+10n/M4407+10n) turned on during the control.	Deceleration stop	- Turn the axis interlock (M4406+10n/M4407+10n) OFF in order to resume an axis travel.

(4) Speed change/torque limit value change errors (300 to 399) These are errors detected at speed change or torque limit value change. The error codes, causes, processing and corrective actions are shown in Table 1.6 below.

Table 1.6 Speed change/torque limit value change error (300 to 399) list

(5) Motion program running errors (500 to 699)

These errors are detected during Motion program execution.
Check the execute Motion program No., execute sequence No. and execute block No., and correct the Motion program.
Table 1.7 lists the processings and corrective actions for Motion program running errors.

Table 1.7 Motion program running error (500 to 699) list

Error code			Control mode				Error cause	Error processing	Corrective action
			$\stackrel{0}{9}$			O			
500		\bigcirc					0 is specified as the N No.	Deceleration stop. Control program ends.	- Set the N No. of sequence program within the range of 1 to 9999.
501		\bigcirc					There is no F command. Speed is "0".		- Set the F before and during execution of G01, G02, G03. - Set the speed of "1" or higher
502		\bigcirc					The command value exceeded the setting range.		- Set the address, speed, dwell time, etc. within the setting range.
503		\bigcirc					The specified speed command exceeded the speed limit value of the parameter block.	Speed is clamped at speed limit value for operation.	- Set the correct speed (within the range).
504		\bigcirc					5 or more axes were specified in 1 block.		- 5 or more axes cannot be interpolated. - Set the number of interpolation axes up to 4 axes.
510		\bigcirc					Unauthorized G-code was specified.		- Set the correct G-code.
513		\bigcirc					The interpolation length exceeded the setting range.		- Set the axis address within the setting range.
525		\bigcirc					Subprogram level excess. Subprogram calling depth exceeded 8 levels. Or, the wrong program No. was called as a subprogram.	Deceleration stop.	- Set the calling depth within 8 levels. - Call the correct program No. (O) as a subprogram.
530	\bigcirc	\bigcirc					Arithmetic expression is not correct. Device setting is not correct. There is wrong data among home position return data for indirect setting.	program ends.	- Use a correct arithmetic expression. - Set the correct device.
531	\bigcirc	\bigcirc					Integer value overflow. The integer value exceeded the setting range during arithmetic operation.		- Correct the variable value and arithmetic expression.
532	\bigcirc	\bigcirc					The numbers of "[" and "]" specified in one block differ.		- Set the numbers of "[" and "]" in pairs.
533	\bigcirc	\bigcirc					The denominator of division is 0 .		- Set the denominator to other than 0 .

Table 1.7 Motion program running error (500 to 699) list (Continued)

Error code			Control mode				Error cause	Error processing	Corrective action
			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			O			
534	\bigcirc	\bigcirc					[,] exceeded 5 levels.		- Correct the Motion program.
535	\bigcirc	\bigcirc					The IF [condition] GOTO statement is in error.		- Correct the IF statement.
536	\bigcirc	\bigcirc					The variable number exceeded the range.		- Set the variable within the setting range.
537	\bigcirc	\bigcirc					The variable definition statement does not have "=".		- Add "=".
538	\bigcirc	\bigcirc					Impossible operation is executed.		- Execute a possible operation.
541		\bigcirc					The sequence No. specified with subprogram call, return from subprogram or GOTO is not set.		- Set the sequence No..
542	\bigcirc	\bigcirc					In the specified Motion program, the WHILE [] DOm-ENDm statement is in error.		- Correct the Motion program.
543	\bigcirc	\bigcirc					In the specified Motion program, the nesting of the DOm-ENDm statement exceeded the limit.		
544	\bigcirc	\bigcirc					In the specified Motion program, DOm-ENDm are not in pairs.		
545	\bigcirc	\bigcirc					In the specified Motion program, the IF [] THENm-ENDm statement is in error.		
546	\bigcirc	\bigcirc					In the specified Motion program, the nesting of the IF [] THENm-ENDm statement exceeded the limit.	Deceleration stop.	
547	\bigcirc	\bigcirc					In the specified Motion program, IF [] THENm, ELSEm and ENDm are not in pairs.	Control program	
555		\bigcirc					At a subprogram call, the specified subprogram is not registered.	ends.	- Create the specified subprogram. - Change the call No..
560	\bigcirc	\bigcirc					The command format in the Motion program is not correct.		- Correct the Motion program. Correct the argument following G**.
562	\bigcirc	\bigcirc					There is no M02/M30 at the end of the Motion program. There is no M99 at the end of the subprogram.		- Put M02, M30 or M99 before \%.
570		\bigcirc					At a tool length offset (G43, G44) command, the offset data number is not specified. The offset data number is not correct.		- Correct the offset data number.
571		\bigcirc					At a tool length offset (G43, G44) or tool offset cancel (G49) command, the axis corresponding to compensation is not specified.		- Specify the axis corresponding to compensation.
580		\bigcirc					The command beyond the preset stroke range was executed.		- Specify the command within the preset stroke range.
581		\bigcirc					The travel command was given to the high-speed oscillation operation axis.		- Do not give the travel command to the high-speed oscillation operation axis.
582		\bigcirc					High-speed oscillation cancel was given to the axis which was not operating in high-speed oscillation.	No operation	- High-speed oscillation cancel is invalid.

Table 1.7 Motion program running error (500 to 699) list (Continued)

$\begin{array}{\|l\|l} \text { Error } \\ \text { code } \end{array}$			Control mode				Error cause	Error processing	Corrective action
			$\stackrel{\circ}{\circ}$			O			
584		\bigcirc					Cancel start (G24) program No. error	Deceleration stop. Control program ends.	- Correct the Motion program No..
585		\bigcirc					High-speed oscillation (G25) amplitude range error		- Correct the high-speed oscillation (G25) amplitude range.
586		\bigcirc					High-speed oscillation (G25) starting angle range error		- Correct the high-speed oscillation (G25) starting angle range.
587		\bigcirc					High-speed oscillation (G25) frequency range error		- Correct the high-speed oscillation (G25) frequency range.
591	\bigcirc	\bigcirc					A fault occurred in the system.		- Explain the error symptom and get advice from our sales representative.
592		\bigcirc					The axis name is not correct.		- Match the axis name with the one in the system settings.
593	\bigcirc	\bigcirc					O No. designated in the specified Motion program is not correct. O No. specified with CALL, GOSUB/GOSUBE is not registered. O No. specified with G24 (cancel start) is not correct.		- Correct the O**; part. - Correct O No. specified with CALL, GOSUB/GOSUBE. - Set the correct O No..
594		\bigcirc					The axis not specified with SVST is specified in the Motion program.		- Correct the SVST instruction. - Correct the Motion program.
600		\bigcirc					Number of helical interpolation pitches error Number of helical interpolation pitches is outside the range of 1 to 999.		- Set the number of helical interpolation pitches within the range of 0 to 999.
610	\bigcirc	\bigcirc					IF [condition] THEN SET/RST/OUT statements are in error.		- Correct the instructions.
611	\bigcirc						There are unusable instructions and incorrect instructions in the control program.	Programends. ends.	- Correct the instructions.
612	\bigcirc						The program of number set as automatic starts not registered. Or, the axis designation program is started automatically.		- Correct the parameters.
613	\bigcirc						The operating axis is specified with CALL, GOSUB/GOSUBE.		- Correct the CALL, GOSUB/GOSUBE instruction.
614	\bigcirc						The program number started by CALL, GOSUB/GOSUBE is outside the range of 1 to 1024.		
615	\bigcirc						The program started by CALL, GOSUB/GOSUBE is not registered.		

Table 1.7 Motion program running error (500 to 699) list (Continued)

			Control mode						
$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \text { Error } \\ \text { code } \end{array}$			\bigcirc			茄	Error cause	Error processing	Corrective action
616	\bigcirc						The sequence No. started by CALL, GOSUB/GOSUBE is outside the range of 1 to 9999 .	Positioning control starts from the beginning of the program.	- Correct the sequence No..
617	\bigcirc						The program started by CALL, GOSUB/GOSUBE is already executed. (Double start error)		- Correct the CALL, GOSUB/GOSUBE instruction.
618	\bigcirc						The depth of nest for control program started by GOSUB/GOSUBE is 9 levels or more.		- Set the depth of nest within 8 levels.
619	\bigcirc						The program number ended by CLEAR is outside the range of 1 to 1024.		- Correct the CLEAR instruction.
620	\bigcirc						The program number ended by CLEAR is not registered. Or, the axis designation program is cleared.	ends.	- Correct the CLEAR instruction.
630	\bigcirc						Number of axis designation program starts over error 33 or more axis designation programs are started simultaneously.		- Set the simultaneous execute program up to 32 programs.
631	\bigcirc						Number of control program starts over error 17 or more control programs are started simultaneously.		- Set the simultaneous execute program up to 16 programs.
632	\bigcirc	\bigcirc					BMOV, BDMOV, FMOV execution error The Motion CPU memory address set in the (D), (S) is outside the range of SRAM. (S) to $(\mathrm{S})+(\mathrm{n}-1)$ is outside the device range. (D) to (D) $+(n-1)$ is outside the device range. (n) is 0 or outside the setting range.		- Correct the program to set the Motion CPU memory address with even number. - Change (n) within the range of device range for block transmitting range. - Set (n) within the setting range.
633	\bigcirc						TIME execution error The device number of indirect setting is not correct. The data is outside the range of 1 to 65535 .	Deceleration stop, control program	- Correct the device number of indirect setting. - Set the data within the range of 1 to 65535 .
634	\bigcirc						Axis designation program incorrect start The axis designation program is started without an axis setting. (SFCS, CALL, GOSUB/GOSUBE)	ends	- Set an axis.
635	\bigcirc						Control program incorrect start The axis designation program is started with an axis setting. (SVST, CALL, GOSUB/GOSUBE)		- Do not set an axis.
636	\bigcirc	\bigcirc					Incorrect access to PX, PY SET, RST or OUT is operated to the real I/O device (PX, PY) in the Motion program.		- Correct the program.
637	\bigcirc						Control program multiple start error The already started control program is started.		- Correct the program.

Table 1.7 Motion program running error (500 to 699) list (Continued)

			Control mode						
Error code	$\begin{gathered} \varepsilon \\ \frac{1}{0} \\ \frac{0}{0} \\ \frac{0}{2} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\stackrel{\mathrm{O}}{\bigcirc}$			0	Error cause	Error processing	Corrective action
650	\bigcirc	\bigcirc					Write device data to shared CPU memory (MULTW) execution error - Number of words (n) to be written is outside the range of 1 to 256 . - The shared CPU memory address (D) of self CPU of the writing destination device is outside the range (800 H to FFFH) of the shared CPU memory address. - The shared CPU memory address (D) of self CPU of the writing destination device + number of words (n) to be written is outside the range (800 H to FFFH) of the shared CPU memory address. - First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range. - MULTW instruction was executed again before MULTW instruction is executed and complete bit device is turned on.		- Correct the program so that the number of words (n) to be written is within the range of 1 to 256. - Correct the program so that the shared CPU memory address (D) of self CPU of the writing destination is within the range of shared CPU memory address. - Correct the program so that the shared CPU memory address (D) of self CPU of the writing destination + number of words (n) to be written is within the range of shared CPU memory address. - Correct the program so that first device No. (S) which writing data are stored + number of words (n) to be written is within the device range. - Execute MULTW instruction again after the complete bit device of MULTW instruction is turned on.
651	\bigcirc	\bigcirc					Read device data from shared CPU memory of the other CPU (MULTR) execution error - Number of words (n) to be read is outside the range of 1 to 256. - The shared CPU memory first address (S2) of the data which it will be read is outside the range $(000 \mathrm{H}$ to FFFH$)$ of the shared CPU memory address. - The shared CPU memory first address (S2) of the data which it will be read + number of words (n) to be read is outside the range (000 H to FFFH) of the shared CPU memory address. - First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range. - Except $3 \mathrm{E} 0 \mathrm{H} / 3 \mathrm{E} 1 \mathrm{H} / 3 \mathrm{E} 2 \mathrm{H} / 3 \mathrm{E} 3 \mathrm{H}$ is set at (S1). - The self CPU is specified with (S1). - The CPU which reads is resetting. - The errors are detected in the CPU which read.	Deceleration stop, control program ends	- Correct the program so that the number of words (n) to be read is within the range of 1 to 256. - Correct the program so that the shared CPU memory first address (S2) of the data which it will be read is within the range of shared CPU memory address. - Correct the program so that the shared CPU memory first address (S2) of the data which it will be read + number of words (n) to be read is within the range of shared CPU memory address. - Correct the program so that first device No. (D) which stores the reading data + number of words (n) to be read is within the device range. - Correct the program so that $3 E 0 H / 3 E 1 H / 3 E 2 H / 3 E 3 H$ is set at (S1). - Correct the program so that the self CPU is not specified with (S1). - Check that the reset flag (M9240 to M9243) is OFF, then correct the program to execute the MULTR instruction. - If the errors are detected in the CPU which read, exchange the CPU.

Table 1.7 Motion program running error (500 to 699) list (Continued)

			Control mode						
Error code			$\stackrel{\mathrm{O}}{\mathrm{O}}$			O	Error cause	Error processing	Corrective action
652	\bigcirc	\bigcirc					Write device data to intelligent function module/special function module (TO) execution error - Number of words (n) to be written is outside the range of 1 to 256. - Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution. - Abnormalities of the intelligent function module/ special function module were detected at the instruction execution. - I/O No.s specified with (D1) differ from the intelligent function module/special function module controlled by the self CPU. - The address specified with (D2) is outside the buffer memory range. - First device No. (S) which writing data are stored + number of words (n) to be written is outside the device range.	Deceleration stop,	- Correct the program so that the number of words (n) to be written is within the range of 1 to 256 . - Replace the intelligent function module/special function module if there is a fault. - Correct the program so that the first I/O No.s specified with (D1) is intelligent function module/special function module controlled by the self CPU. - Correct the program so that the address specified with (D2) is within the buffer memory range. - Correct the program so that first device No. (S) which writing data are stored + number of words (n) to be written is within the device range.
653	\bigcirc	\bigcirc					Read device data from intelligent function module/ special function module (FROM) execution error - Number of words (n) to be read is outside the range of 1 to 256. - Motion CPU cannot communicate with intelligent function module/special function module at the instruction execution. - Abnormalities of the intelligent function module/ special function module were detected at the instruction execution. - I/O No.s specified with (S1) differ from the intelligent function module/special function module controlled by the self CPU. - The address specified with (S2) is outside the buffer memory range. - First device No. (D) which stores the reading data + number of words (n) to be read is outside the device range.	program ends	- Correct the program so that the number of words (n) to be read is within the range of 1 to 256. - Replace the intelligent function module/special function module if there is a fault. - Correct the program so that I/O No.s specified with (S1) is intelligent function module/special function module controlled by the self CPU. - Correct the program so that the address specified with (S2) is within the buffer memory range. - Correct the program so that first device No. (D) which stores the reading data + number of words (n) to be read is within the device range.
680		\bigcirc					- When "Not execute G-code of Motion program except G28" is selected to start the Motion program and all axes home position return request signal (M2409+20n) is not turned OFF for incompletion of home position return, the travel instruction by the G-code except for G28 is executed.	Program ends	- Execute a home position return by the CHGA or G28, and executed the travel instruction by except for G28 after the home position return request signals (M2409+20n) are turned OFF for all axes specified at Motion program start. - Set a "Execute Motion program" for incompletion of home position return for all axes specified at Motion program start.

(6) System errors (900 to 999)

Table 1.8 System error (900 to 999) list

Error code	$\begin{aligned} & \text { E } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$		Control mode						
			O			O	Error cause	Error processing	Corrective action
901							- The motor travel value while the power is off exceeded the "System setting mode-allowable travel value during power off" set in the system settings at the turning on of the servo amplifier.	Further operation is possible.	- Check the position. - Check the battery of encoder.

APPENDIX 1.3 Major errors

These errors occur by control command from the external input signal or Motion program, and the error codes 1000 to 1999 are used. Major errors include the positioning control start errors, positioning control errors absolute position system errors and system errors.
(1) Positioning control start errors (1000 to 1099)

These errors are detected at the positioning control start.
The error codes, causes, processing and corrective actions are shown in Table 1.9.

Table 1.9 Positioning control start error (1000 to 1099) list

			Control mode						
Error code			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0	Error cause	Error processing	Corrective action
1000		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The external STOP signal of the applicable axis turned on.		- Turn the STOP signal off.
1001		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The external signal FLS (upper limit LS) turned off at the forward direction (address increase direction) start.		- Move in the reverse direction by the JOG operation, etc. and set within the external limit range.
1002		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The external signal RLS (lower limit LS) turned off at the reverse direction (address decrease direction) start.		- Move in the forward direction by the JOG operation, etc. and set within the external limit range.
1003					\bigcirc		- The external DOG (proximity dog) signal turned on at the home position return start of the proximity dog type.	Positioning control	- Perform the home position return after move to the proximity dog ON by the JOG operation, etc.
1004		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The applicable axis is not servo READY state. (M2415+20n: OFF). (1) The power supply of the servo amplifier is OFF. (2) During initial processing after turning on the servo amplifier. (3) The servo amplifier is not installed. (4) A servo error is occurred. (5) Cable fault. (6) Servo OFF command (M3215+20n) is ON.	does not start.	- Wait until the servo READY state (M2415+20n: ON).
1005		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The servo error detection signal of the applicable axis (M2408+20n) turned on.		- Eliminate the servo error, reset the servo error detection signal (M2408+20n) by the servo error reset command (M3208+20n), then start operation.

(2) Positioning control errors (1100 to 1199)

These errors are detected at the positioning control.
The error codes, causes, processing and corrective actions are shown in Table 1.10.

Table 1.10 Positioning control error (1100 to 1199) list

			Control mode						
Error code			0			\%	Error cause	Error processing	Corrective action
$\begin{array}{\|l\|l\|} \hline 1101 \\ \text { (Note) } \end{array}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The external signal FLS (upper limit LS) turned off during the forward direction (address increase direction).	Decele	- Travel in the reverse direction by the JOG operation, etc. and set within the external limit range.
$\begin{array}{\|l\|l} 1102 \\ \text { (Note) } \end{array}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The external signal RLS (lower limit LS) turned off during the reverse direction (address decrease direction).	tion stop by "Stop processing on STOP	- Travel in the forward direction by the JOG operation, etc. and set within the external limit range.
1103					\bigcirc		- The external STOP signal (stop signal) turned on during home position return of proximity dog type.	input" of the parameter block.	- Perform the home position return after move to the proximity dog ON by the JOG operation, etc. at the home position return of the proximity dog type.
1143		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The servo error detection signal turned on during positioning control.	Immediate stop without decelera- ting.	- Start after disposal at the servo error.
1105		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- The power supply of the servo amplifier turned off during positioning control. (Servo not installed status detection, cable fault, etc.) - Home position return did not complete normally without stop within the in-position range of home position at the home position return.	Turn the servo READY (M2415+ 20n) OFF.	- Turn on the power supply of the servo amplifier. - Check the connecting cable to the servo amplifier. - Make the gain adjustment.

(Note) : This error is output with SV43 at the start.
(3) Absolute position system errors (1200 to 1299)

These errors are detected at the absolute positioning system.
The error codes, causes, processing and corrective actions are shown in Table 1.11.

Table 1.11 Absolute position system error (1200 to 1299) list

			Control mode						
Error code			$\begin{aligned} & \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Error cause	Error processing	Corrective action
1201							- A sum check error occurred with the backup data in the controller at the turning on servo amplifier power supply. - Home position return was not performed. - CPU module battery error. - Home position return started but did not complete normally.	Home position return request ON	- Check the battery and execute a home position return.
1202							- A communication error between the servo amplifier and encoder occurred at the turning on servo amplifier power supply.	Home position return request ON, servo error [2016] set.	- Check the motor and encoder cables and execute a home position return again.
1203							- The amount of change in encoder current value is excessive during operation. A continual check is performed (both of servo ON and OFF states) after the servo amplifier power has been turned ON.	Home	- Check the motor and encoder cables.
1204							- The following expression holds: "Encoder current value $[P L S] \neq$ feedback current value [PLS] (encoder effective bit number)" during operation. A continual check is performed (both of servo ON and OFF states) after the servo amplifier power has been turned on.	return request ON	

(4) System errors (1300 to 1399)

These errors are detected at the power-on.
The error codes, causes, processing and corrective actions are shown in Table 1.12.

Table 1.12 System error (1300 to 1399) list

Error code			Control mode						
			\%			u	Error cause	Error processing	Corrective action
1310							- Initial communication with the Multiple CPU system did not complete normally. - Motion CPU fault.	Positioning control does not start.	- Replace the Motion CPU.

APPENDIX 1.4 Servo errors

(1) Servo amplifier errors (2000 to 2899)

These errors are detected by the servo amplifier, and the error codes are [2000] to [2899].
The servo error detection signal (M2408+20n) turns on at the servo amplifier error occurrence. Eliminate the error cause, reset the servo amplifier error by turning on the servo error reset command (M3208+20n) and perform re-start. (The servo error detection signal does not turn on because the codes [2100] to [2599] are for warnings.)
(Note-1): As for the regenerative alarm (error code [2030]) or overload 1 or 2 (error codes [2050], [2051]), the state at the operation is held also for after the protection circuit operation in the servo amplifier. The memory contents are cleared with the external power supply off, but are not cleared by the reset signal.
(Note-2): If resetting by turning off the external power supply is repeated at the occurrence of error code [2030], [2050] or [2051], it may cause devices to be destroyed by overheating. Re-start operation after eliminating the cause of the error certainly.

Details of servo errors are shown in Table 1.13.

\. CAUTION

- If a controller, servo amplifier self-diagnosis error occurs, check the points stated in this manual and clear the error.

Table 1.13 Servo error (2000 to 2899) list

Error code		Error cause	Error check	Error processing	Corrective action
	Name	Description			
2010	Undervoltage	- Power supply voltage is low. MR-J3-पB: 160VAC or less MR-J3-पB1: 83ACV or less - There was an instantaneous control _power failure of 60[ms] or longer. - Shortage of power supply capacity caused the power supply voltage to drop at start, etc. - The bus voltage dropped to the following value or less. MR-J3-पB: 200VDC MR-J3-पB1: 158VDC - Faulty parts in the servo amplifier [Checking method] Servo error [2010] occurs if power is switched on after disconnection of all cables but the control circuit power supply cables.	Any time during operation	Immediate stop	- Review the power supply. - Replace the servo amplifier.
2012	Memory error 1 (RAM)	- Faulty parts in the servo amplifier (RAM memory error) [Checking method] Servo error [2012] occurs if power is switched on after disconnection of all cables but the control circuit power supply cables.	- Servo amplifier power on. - Multiple CPU system power on.		- Replace the servo amplifier.
2013	Clock error	- Faulty parts in the servo amplifier (Printed board fault) [Checking method] Servo error [2013] occurs if power is switched on after disconnection of all cables but the control circuit power supply cables. - Faulty the controller (Clock error transmitted from the controller) [Checking method] Servo error [2013] occurs if Motion CPU is used in the Multiple CPU system.	Any time during operation		- Replace the servo amplifier. - Replace the Motion CPU.
2014	CPU Watchdog	- Faulty hardware of servo amplifier			- Replace the servo amplifier.
2015	Memory error 2 (EEP-ROM)	- Faulty parts in the servo amplifier (EEP-ROM fault) [Checking method] Servo error [2015] occurs if power is switched on after disconnection of all cables but the control circuit power supply cables. - The number of write times to EEP-ROM exceeded 100,000.	- Servo amplifier power on. - Multiple CPU system power on.		

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code		Error cause	Error check	Error processing	Corrective action
	Name	Description			
2016	Encoder error 1 (At power on)	- Encoder connector (CN2) disconnected. - Encoder fault - Encoder cable faulty (Wire breakage or shorted) - Encoder cable type (2-wire, 4-wire) selection was wrong in parameter setting.	- Servo amplifier power on. - Multiple CPU system power on.	Immediate stop	- Connect correctly. - Replace the servomotor. - Repair or replace the cable. - Set the correct encoder type of servo parameter.
2017	Board error	- Faulty parts in the servo amplifier (CPU/parts fault) [Checking method] Servo error [2017] occurs if power is switched on after disconnection of all cables but the control circuit power supply cables.			- Replace the servo amplifier.
2019	Memory error 3 (Flash ROM)	- Faulty parts in the servo amplifier (ROM memory fault) [Checking method] Servo error [2019] occurs if power is switched on after disconnection of all cables but the control circuit power supply cables.			
2020	Encoder error 2	- Encoder connector (CN2) disconnected. - Encoder fault - Encoder cable faulty (Wire breakage or shorted)			- Connect correctly. - Replace the servomotor. - Repair or replace the cable.
2024	Main circuit error	- Power input wires and servomotor power wires are in contact. [Checking method] Servo error [2024] occurs if servo is switched on after disconnecting the U, V and W power cables from the servo amplifier. - Sheathes of servomotor power cables deteriorated, resulting in ground fault. - Main circuit of servo amplifier failed.	Any time during operation		- Correct the wiring. - Replace the cable. - Replace the servo amplifier.
2025	Absolute position erase	- Voltage drop in encoder (Battery of servo amplifier disconnected.) - Battery voltage low - Battery cable or battery is faulty. - Home position return not set. (Power was switched on for the first time in the absolute position detection system.)	- Servo amplifier power on. - Multiple CPU system power on.	Immediate stop Home position return request ON	- After leaving the servo error [2025] occurring for a few minutes, switch power off, then on again. Always make home position return again. - Replace the battery. Always make home position return again. - After leaving the servo error [2025] occurring for a few minutes, switch power off, then on again. Always make home position return again.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code		Error cause	Error check	Error processing	Corrective action
	Name	Description			
2030	Regenerative alarm	- Wrong setting of system setting (regenerative brake) - Built-in regenerative brake resistor or regenerative brake option is not connected. - High-duty operation or continuous regenerative operation caused the permissible regenerative power of the regenerative brake option to be exceeded. [Checking method] Call the servo monitor and check the regenerative level. - Power supply voltage is abnormal. MR-J3-■B: 260VAC or more MR-J3-DB1: More than 135VAC - Built-in regenerative brake resistor or regenerative brake option faulty. - Regenerative transistor faulty. [Checking method] - The regenerative brake option has overheated abnormally. - Servo error [2030] occurs even after removal of the built-in regenerative brake resistor or regenerative brake option.	Any time during operation	Immediate stop	- Check the regenerative brake of system setting and set correctly. - Connect correctly. - Reduce the frequency of positioning. (Call the regenerative level [\%] of servo monitor and reduce the frequency of acceleration/deceleration or feed speed.) - Use the regenerative brake option of larger capacity. - Reduce the load. - Review the power supply - Replace the servo amplifier or regenerative brake option.. - Replace the servo amplifier.
2031	Overspeed	- Command speed is too high. (Motor speed has exceeded the instantaneous permissible speed.) - Small acceleration/deceleration time constant caused overshoot to be large. - Servo system is instable to cause overshoot. - Electronic gear ratio is high. - Encoder faulty.			- Check the servo program or mechanical system program, and set correctly. \qquad - If an overshoot occurs during acceleration/deceleration, check the acceleration/deceleration time in the fixed parameters. - Re-set servo gain to proper value. - If servo gain cannot be set to proper value: 1) Reduce load inertia moment ratio; or 2) Reexamine acceleration/ - _ deceleration time constant. - Set correctly. (Check if the number of pulses per revolution and travel value per revolution in the fixed parameters match the machine system. - Replace the servomotor.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code	Error cause		Error check	Error processing	Corrective action
	Name	Description			
2032	Overcurrent	- Short occurred in servomotor power (U, - V, W) \qquad - Transistor (IPM) of the servo amplifier faulty. [Checking method] Servo error [2032] occurs if power is switched on after U, V and W are disconnected. \qquad - Ground fault occurred in servomotor power (U, V, W). - External noise caused the overcurrent detection circuit to misoperate.			- Correct the wiring. - Replace the servo amplifier. - Correct the wiring. - Take noise suppression measures.
2033	Overvoltage	- Lead of built-in regenerative brake resistor or regenerative brake option is _open or disconnected. \qquad - Regenerative transistor faulty. \qquad - Wire breakage of built-in regenerative brake resistor or regenerative brake option. - Capacity of built-in regenerative brake resistor or regenerative brake option is insufficient. - Power supply voltage is high. - Ground fault occurred in servomotor power (U, V, W).	Any time during operation	Immediate stop	- Replace the lead. - Connect correctly. - Replace the servo amplifier. - For wire breakage of built-in regenerative brake resistor, replace the servo amplifier. - For wire breakage of regenerative brake option, replace the regenerative brake option. \qquad - Add regenerative brake option or increase capacity. - Review the power supply. - Correct the wiring.
2034	Communications error	- Data received from the Motion CPU faulty.			- Check the connection of SSCNETIII cable. - Check if there is a disconnection in the SSCNETIII cable.
2035	Command frequency error	- There is excessive variation in the position commands and command speed is too high from the Motion CPU. - Noise entered the commands from the Motion CPU. - Motion CPU failure			- Check the command speed and the number of pulses per revolution/travel value per revolution of the fixed parameters. \qquad - Check the connection of SSCNETIII cable. - Check if there is a disconnection in the SSCNETIII cable. - Check if any relays or solenoids - are operating in the vicinity. - Replace the Motion CPU.
2036	Transmission error	- Fault in communication with the Motion CPU.			- Check the connection of SSCNETIII cable. - Check if there is a disconnection in the SSCNETIII cable.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code		Error cause	Error check	Errorprocessing	Corrective action
	Name	Description			
2045	Main circuit device overheat	- Servo amplifier failure - The power supply was turned on and off continuously by overloaded status. - Ambient temperature of servo amplifier is over $55\left[{ }^{\circ} \mathrm{C}\right]\left(131\left[{ }^{\circ} \mathrm{F}\right]\right)$. - Used beyond the specifications of close mounting of servo amplifier.	Any time during operation	Immediate stop	- Replace the servo amplifier. - The drive method is reviewed. - Review environment so that ambient temperature is 0 to $\left.55{ }^{\circ} \mathrm{C}\right]$ (32 to $131\left[^{\circ} \mathrm{F}\right]$). \qquad - Use within the range of specifications.
2046	Servomotor overheat	- Ambient temperature of servomotor is over 40[$\left.{ }^{\circ} \mathrm{C}\right]$ (104[$\left.{ }^{\circ} \mathrm{F}\right]$). - Servomotor is overloaded. - Thermal sensor in encoder is faulty.			- Review environment so that ambient temperature is 0 to - $40\left[^{\circ} \mathrm{C}\right]$ (32 to $104\left[{ }^{\circ} \mathrm{F}\right]$). \qquad - Reduce load. - Review operation pattern. - Use servomotor that provides - larger output. \qquad - Replace the servomotor.
2047	Cooling fan alarm	- Cooling fan life expiration - Foreign matter caught in the fan stopped rotation. - The power supply of the cooling fan failed.			- Replace the cooling fan of the servo amplifier. - Remove the foreign matter. -Replace the servo amplifier.
2050	Overload 1	- Servo amplifier is used in excess of its continuous output current. - Servo system is instable and hunting. - Machine struck something. - Wrong connection of servo motor. (Servo amplifier's output terminals U, V, W do not match servo motor's input _terminals U, V, W. - Encoder faulty. [Checking method] When the servomotor shaft is rotated with the servo off, the cumulative feedback pulses do not vary in proportion to the rotary angle of the shaft but the indication skips or returns midway.			- Reduce load. - Review operation pattern. - Use servomotor that provides larger output. - Repeat acceleration/ deceleration to execute auto tuning. - Change auto tuning response setting. - Set auto tuning to OFF and make - gain adjustment manually. - Review operation pattern. - Install limit switches. \qquad - Connect correctly. - Replace the servomotor.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code		Error cause	Error check	Error processing	Corrective action
	Name	Description			
2051	Overload 2	- Machine struck something. - Wrong connection of servomotor. (Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W. - Servo system is instable and hunting. - Encoder faulty. [Checking method] When the servomotor shaft is rotated with the servo off, the cumulative feedback pulses do not vary in proportion to the rotary angle of the shaft but the indication skips or returns midway.	Any time during operation	Immediate stop	- Review operation pattern. - Install limit switches. - Connect correctly. - Repeat acceleration/ deceleration to execute auto tuning. - Change auto tuning response setting. - Set auto tuning to OFF and make _gain adjustment manually. - Replace the servomotor.
2052	Error excessive	- Acceleration/deceleration time constant is too small. - Torque limit value is too small. - Motor cannot be started due to torque shortage caused by power supply voltage drop. - Model loop gain value of servo _parameter is small. - Servomotor shaft was rotated by external force. - Machine struck something. - Encoder faulty - Wrong connection of servomotor. (Servo amplifier's output terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ do not match servomotor's input terminals U, V, W.)			- Increase the acceleration/deceleration time. - Increase the torque limit value. - Review the power supply capacity. - Use servomotor which provides - larger output. - Increase set value and adjust to ensure proper operation. - When torque is limited, increase the limit value. - Reduce load. - Use servomotor that provides _ larger output. - Review operation pattern. - Install limit switches. - Replace the servomotor. - Connect correctly.
$\left.\begin{array}{c} 2060 \\ (\text { AL. } 1 \mathrm{~A}) \end{array}\right)$	Motor combination error	- Fault in combination with the servo amplifier and servomotor.	- Servo amplifier power on. - Multiple CPU system power on.		- Use the correct combination with the servo amplifier and servomotor.
$\begin{gathered} 2088 \\ (88) \end{gathered}$	Watchdog	- CPU, parts faulty	Any time during operation		- Replace the servo amplifier.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code		Error cause	Error check	Errorprocessing	Corrective action
	Name	Description			
$\begin{array}{\|c\|} \hline 2102 \\ \text { (AL.92) } \end{array}$	Open battery cable warning	- Bttery cable for absolute position detection system is open. \qquad - Voltage of battery for absolute position detection system supplied fell to about 3 V or less. (Detected with the encoder.)	Any time during operation	Operation continues	- Repair the cable or replace the battery. - Replace the battery.
$\left\lvert\, \begin{gathered} 2106 \\ \text { (AL.96) } \end{gathered}\right.$	Home position setting warning	- After home position return, droop pulses remaining are greater than the inposition range setting. - Creep speed is high.			- Re-try the home position return. - Reduce the creep speed.
$\begin{array}{\|c\|} \hline 2116 \\ \text { (AL. } 9 F) \end{array}$	Battery warning	- Voltage of battery for absolute position detection system installed to servo amplifier fell to 3.2 V or less. (Detected with the servo amplifier.)			- Replace the battery.
$\begin{array}{\|c\|} \hline 2140 \\ \text { (AL.EO) } \end{array}$	Excessive regenerative warning	- There is a possibility that regenerative alarm [2030] may occur. (Detected 85[\%] regenerative level of the maximum load capacity for the regenerative register.)			- Refer to the details on the regenerative alarm [2030].
$\begin{array}{\|c\|} \hline 2141 \\ \text { (AL.E1) } \end{array}$	Overload warning 1	- There is a possibility that overload alarm [2050], [2051] may occur. (Detected 85[\%] overload level.)			- Refer to the details on the overload alarm [2050], [2051].
$\begin{array}{\|c\|} \hline 2143 \\ \text { (AL.E3) } \end{array}$	Absolute position counter warning	- Absolute position encoder pulses faulty.		Operation continues Home position return request ON	- Take noise suppression measures. - Replace the servomotor. - Execute the home position return after measures.
$\begin{array}{\|c\|} \hline 2146 \\ \text { (AL.E6) } \end{array}$	Servo forced stop warning	- Servo amplifier are forced stop state. (Servo amplifier input signal EM1 is OFF.)		mediate	- Ensure safety and deactivate forced stop.
$\begin{array}{\|c\|} \hline 2147 \\ \text { (AL.E7) } \end{array}$	Controller forced stop warning	- A forced stop (EMG) signal is input from the Motion CPU		stop	- Ensure safety and deactivate forced stop.
$\begin{array}{\|c} 2148 \\ \text { (AL.E8) } \end{array}$	Cooling fan speed reduction warning	- Cooling fan life expiration - The power supply of the cooling fan is broken.		Operation continues	- Replace the cooling fan of servo amplifier. - Replace the servo amplifier. - Replace the cooling fan of servo amplifier.
$\begin{gathered} 2149 \\ \text { (AL.E9) } \\ \hline \end{gathered}$	Main circuit off warning	- Servo-on signal was turned on with main circuit power off.			- Switch on the main circuit power.
$\begin{gathered} 2152 \\ \text { (AL.EC) } \end{gathered}$	Overload warning 2	- During a stop, the status in which a current flew intensively in any of the U, V and W phases of the servomotor occurred repeatedly, exceeding the warning level.			- Reduce the positioning frequency at the specific positioning address. - Reduce the load. - Replace the servo amplifier/ servomotor with the one of larger capacity.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code		Error cause	Error check	Error processing	Corrective action
	Name	Description			
$\begin{gathered} 2153 \\ \text { (AL.ED) } \end{gathered}$	Output watt excess warning	- Continuous operation was performed with the output wattage (speed \times torque) of the servomotor exceeding $150[\%]$ of the rated output.	Any time during operation	Operation continues	- Reduce the servomotor speed. - Reduce the load.

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code	Error cause				Error check	Error processing	Corrective action
	Name			Description			
$\begin{gathered} 2301 \\ \text { to } \\ 2599 \end{gathered}$	Parameter error	Parameter error - The servo parameter value is outside the setting range. (Any unauthorized parameter is ignored and the value before setting is held.)			Any time during operation	Operation continues	- Check the setting ranges of the servo parameters.
		Error code	Parameter No.	Name			
		2301	PA01	For manufacturer setting			
		2302	PA02	Regenerative brake option			
		2303	PA03	Absolute position detection system			
		2304	PA04	Function selection A-1			
		2305	PA05	For manufacturer setting			
		2306	PA06	For manufacturer setting			
		2307	PA07	For manufacturer setting			
		2308	PA08	Auto tuning mode			
		2309	PA09	Auto tuning response			
		2310	PA10	In-position range			
		2311	PA11	For manufacturer setting			
		2312	PA12	For manufacturer setting			
		2313	PA13	For manufacturer setting			
		2314	PA14	Rotation direction selection			
		2315	PA15	Encoder output pulse			
		2316	PA16	For manufacturer setting			
		2317	PA17	For manufacturer setting			
		2318	PA18	For manufacturer setting			
		2319	PA19	Parameter write inhibit			
		2320	PB01	Adaptive tuning mode			
		2321	PB02	Vibration suppression control filter tuning mode			
		2322	PB03	For manufacturer setting			
		2323	PB04	Feed forward gain			
		2324	PB05	For manufacturer setting			
		2325	PB06	Ratio of load inertia moment to servo motor inertia moment			
		2326	PB07	Model loop gain			
		2327	PB08	Position loop gain			
		2328	PB09	Speed loop gain			
		2329	PB10	Speed integral compensation			
		2330	PB11	Speed differential compensation			
		2331	PB12	For manufacturer setting			
		2332	PB13	Machine resonance suppression filter 1			
		2333	PB14	Notch form selection 1			
		2334	PB15	Machine resonance suppression filter 2			
		2335	PB16	Notch form selection 2			

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code	Error cause				Error check	Error processing	Corrective action
	Name			Description			
$\begin{gathered} 2301 \\ \text { to } \\ 2599 \end{gathered}$	Parameter error	Error code	Parameter No.	Name	Any time during operation	Operation continues	- Check the setting ranges of the servo parameters.
		2336	PB17	For manufacturer setting			
		2337	PB18	Low-pass filter			
		2338	PB19	Vibration suppression control vibration frequency setting			
		2339	PB20	Vibration suppression control resonance frequency setting			
		2340	PB21	For manufacturer setting			
		2341	PB22	For manufacturer setting			
		2342	PB23	Low-pass filter selection			
		2343	PB24	Slight vibration suppression control selection			
		2344	PB25	For manufacturer setting			
		2345	PB26	Gain changing selection			
		2346	PB27	Gain changing condition			
		2347	PB28	Gain changing time constant			
		2348	PB29	Gain changing ratio of load inertia moment to servo motor inertia moment			
		2349	PB30	Gain changing position loop gain			
		2350	PB31	Gain changing speed loop gain			
		2351	PB32	Gain changing speed integral compensation			
		2352	PB33	Gain changing vibration suppression control vibration frequency setting			
		2353	PB34	Gain changing vibration suppression control resonance frequency setting			
		2354	PB35	For manufacturer setting			
		2355	PB36	For manufacturer setting			
		2356	PB37	For manufacturer setting			
		2357	PB38	For manufacturer setting			
		2358	PB39	For manufacturer setting			
		2359	PB40	For manufacturer setting			
		2360	PB41	For manufacturer setting			
		2361	PB42	For manufacturer setting			
		2362	PB43	For manufacturer setting			
		2363	PB44	For manufacturer setting			
		2364	PB45	For manufacturer setting			
		2365	PC01	Error excessive alarm level			
		2366	PC02	Electromagnetic brake sequence output			

Table 1.13 Servo error (2000 to 2899) list (Continued)

Error code	Error cause				Error check	Error processing	Corrective action
	Name			Description			
$\begin{gathered} 2301 \\ \text { to } \\ 2599 \end{gathered}$	Parameter error	Error code	Parameter No.	Name	Any time during operation	Operation continues	- Check the setting ranges of the servo parameters.
		2367	PC03	Encoder output pulses selection			
		2368	PC04	Function selection C-1			
		2369	PC05	Function selection C-2			
		2370	PC06	For manufacturer setting			
		2371	PC07	Zero speed			
		2372	PC08	For manufacturer setting			
		2373	PC09	Analog monitor output 1			
		2374	PC10	Analog monitor output 2			
		2375	PC11	Analog monitor 1 offset			
		2376	PC12	Analog monitor 2 offset			
		2377	PC13	For manufacturer setting			
		2378	PC14	For manufacturer setting			
		2379	PC15	For manufacturer setting			
		2380	PC16	For manufacturer setting			
		2381	PC17	Function selection C-4			
		2382	PC18	For manufacturer setting			
		2383	PC19	For manufacturer setting			
		2384	PC20	For manufacturer setting			
		2385	PC21	Alarm history clear			
		2386	PC22	For manufacturer setting			
		2387	PC23	For manufacturer setting			
		2388	PC24	For manufacturer setting			
		2389	PC25	For manufacturer setting			
		2390	PC26	For manufacturer setting			
		2391	PC27	For manufacturer setting			
		2392	PC28	For manufacturer setting			
		2393	PC29	For manufacturer setting			
		2394	PC30	For manufacturer setting			
		2395	PC31	For manufacturer setting			
		2396	PC32	For manufacturer setting			
		2397	PD01	For manufacturer setting			
		2398	PD02	For manufacturer setting			
		2399	PD03	For manufacturer setting			
		2400	PD04	For manufacturer setting			
		2401	PD05	For manufacturer setting			
		2402	PD06	For manufacturer setting			
		2403	PD07	Output signal device selection 1			
		2404	PD08	Output signal device selection 2			
		2405	PD09	Output signal device selection 3			
		2406	PD10	For manufacturer setting			

Table 1.13 Servo error (2000 to 2899) list (Continued)

Table 1.13 Servo error (2000 to 2899) list (Continued)

Table 1.13 Servo error (2000 to 2899) list (Continued)

Table 1.13 Servo error (2000 to 2899) list (Continued)

Table 1.13 Servo error (2000 to 2899) list (Continued)

APPENDIX 1.5 PC link communication errors

Table 1.14 PC link communication error codes list

Error codes stored in D9196	Error description	Corrective action
01	- A receiving packet for PC link communication does not arrive. - The arrival timing of the receiving packet is too late.	- Check whether the power of PC has been turned on. - Check the connection of the communication cable. - Check the communication cable for wire breakage. - Check whether the AロOBD-PCF/ A30CD-PCF has been installed correctly.
02	- A receiving packet CRC code is not right.	- Check whether there is a noise source near the PC. - Check the connection of the communication cable. - Check the communication cable for wire breakage.
03	- A receiving packet data ID is not right.	- Check whether the AロOBD-PCF/ A30CD-PCF has been installed correctly. - Replace the AD0BD-PCF/A30CDPCF.
04	- The number of received frames is not right.	- Check whether there is a noise source near the PC. - Check the connection of the communication cable. - Check the communication cable for wire breakage.
05	- A PC communication task does not start.	- Start the communication task for PC side.

APPENDIX 2 Motion dedicated signal

APPENDIX 2.1 Internal relay (M)

(1) Axis status list

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(2) Axis command signal list

Axis No.	Device No.	Signal name				
1	M3200 to M3219		Signal name	Refresh cycle	Fetch cycle	Signal direction
2	M3220 to M3239					
3	M3240 to M3259					
4	M3260 to M3279	0	Stop command		Operation cycle	Command signal
5	M3280 to M3299	1	Rapid stop command			
6	M3300 to M3319	2	Forward rotation JOG start command		Main cycle	
7	M3320 to M3339	3	Reverse rotation JOG start command			
8	M3340 to M3359	4	Complete signal OFF command			
9	M3360 to M3379	5				
10	M3380 to M3399	6	Unusable		-	
11	M3400 to M3419	7	Error reset command		Main cycle	Command signal
12	M3420 to M3439	8	Servo error reset command		Main cy	
13	M3440 to M3459	9	External stop input disable at start		At start	
14	M3460 to M3479		command			
15	M3480 to M3499	10	Unusable	-	-	-
16	M3500 to M3519	11				
17	M3520 to M3539	12				
18	M3540 to M3559	13				
19	M3560 to M3579	14				
20	M3580 to M3599	15	Servo OFF command		Operation cycle	Command signal
21	M3600 to M3619	16	Gain changing command		Operation cycle ${ }^{(\text {Note-3) }}$	
22	M3620 to M3639	17	Unusable	-	-	-
23	M3640 to M3659	18				
24	M3660 to M3679	19	FIN signal	,	Operation cycle	Command signal
25	M3680 to M3699					
26	M3700 to M3719					
27	M3720 to M3739					
28	M3740 to M3759					
29	M3760 to M3779					
30	M3780 to M3799					
31	M3800 to M3819					
32	M3820 to M3839					

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(Note-3): Operation cycle $7.1[\mathrm{~ms}$] or more: Every $3.5[\mathrm{~ms}]$
(3) Axis status 2 list

(Note-1): At single block mode, only M4009 is used single block processing signal.
(Note-2): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-3): Device area of 9 axes or more is unusable in the Q172HCPU.
(4) Axis command signal 2 list

Axis No.	Device No.	Signal name				
1	M4400 to M4409					
2	M4410 to M4419	δ	Signal name	Refresh cycle	Fetch cycle	Signal
3	M4420 to M4429		Signal name	Refresh cycle	Fetch cycle	
4	M4430 to M4439	0	Temporary stop command			
5	M4440 to M4449	1	Optional program stop command	1		
6	M4450 to M4459	2	Optional block skip command			
7	M4460 to M4469	3	Single block command			Command
8	M4470 to M4479	4	Re-start command			signal
9	M4480 to M4489	5	Override ratio valid/invalid			
10	M4490 to M4499	6	Axis interlock (Forward)			
11	M4500 to M4509	7	Axis interlock (Reverse)			
12	M4510 to M4519	8	Unusable ${ }^{\text {(Note-1) }}$	-	-	-
13	M4520 to M4529	9				
14	M4530 to M4539		M4408 : Single block mode signal			
15	M4540 to M4549		M4409 : Single block start signal			
16	M4550 to M4559		M4418 : Axis interlock valid/invalid			
17	M4560 to M4569					
18	M4570 to M4579					
19	M4580 to M4589					
20	M4590 to M4599					
21	M4600 to M4609					
22	M4610 to M4619					
23	M4620 to M4629					
24	M4630 to M4639					
25	M4640 to M4649					
26	M4650 to M4659					
27	M4660 to M4669					
28	M4670 to M4679					
29	M4680 to M4689					
30	M4690 to M4699					
31	M4700 to M4709					
32	M4710 to M4719					

(Note-1): M4408 (single block mode signal) and M4409 (single block start signal) are used in the single block operation. M4418 (axis interlock valid/invalid) is used in the axis interlock (forward)/(reverse).
(Note-2): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-3): Device area of 9 axes or more is unusable in the Q172HCPU.
(5) Common device list

Common device list (Continued)

APPENDICES

Common device list (Continued)

Explanation of the request register

No.	Function	Bit device	Request register
1	PLC ready flag	M2000	D704
2	All axes servo ON command	M2042	D706
3	JOG operation simultaneous start command	M2048	D708
4	Manual pulse generator 1 enable flag	M2051	D755
5	Manual pulse generator 2 enable flag	M2052	D756
6	Manual pulse generator 3 enable flag	M2053	D757

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(Note-3): Handling of D704 to D708 and D755 to D757 registers
Because cannot be turn on/off for every bit from the PLC CPU, the above bit devices are assigned to D register, and each bit device becomes on with the lowest rank bit $0 \rightarrow 1$ of each register, and each bit device becomes off with 1 $\rightarrow 0$.
Use it when the above functions are requested from the PLC CPU using the $S(P)$.DDRD and $S(P)$.DDWR instruction.
(Note-4): It can also be ordered the device of a remark column.

\. CAUTION

- The data executed later becomes effective when the same device is executed in the Motion program and PLC program.
(6) Special relay allocated device list (Status)

(Note) : The same status as a remark column is output.
(7) Common device list (Command signal)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-1), (Note-2)
M3072	PLC ready flag		Main cycle	Command signal	M2000

(Note-1) : The device of a remarks column turns ON by OFF to ON of the above device, and the device of a remarks column turns OFF by ON to OFF of the above device. The state of a device is not in agreement when the device of a remarks column is turned on directly. In addition, when the request from a data register and the request from the above device are performed simultaneously, the request from the above device becomes effective.
(Note-2) : It can also be ordered the device of a remark column.
(8) Special relay allocated device list (Command signal)

Device No.	Signal name	Refresh cycle	Fetch cycle	Signal direction	Remark (Note-1), (Note-2)
M3136	Clock data set request		Main cycle	Command signal	M9025
M3137	Clock data read request				M9028
M3138	Error reset				M9060
M3139					
to	Unusable	-	-	-	-
M3199					

(Note-1) : The device of a remarks column turns ON by OFF to ON of the above device, and the device of a remarks column turns OFF by ON to OFF of the above device. The state of a device is not in agreement when the device of a remarks column is turned on directly.
(Note-2) : It can also be ordered the device of a remark column.

APPENDIX 2.2 Data registers (D)

(1) Axis monitor device list

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(2) Control change register list

Axis No.	Device No.	Signal name					
1	D640, D641		Signal name	Refresh cycle	Fetch cycle	Unit	Signal direction
2	D642, D643						
3	D644, D645						
4	D646, D647	0	JOG speed setting		At start	Command unit	Commanddevice
5	D648, D649	1					
6	D650, D651						
7	D652, D653						
8	D654, D655						
9	D656, D657						
10	D658, D659						
11	D660, D661						
12	D662, D663						
13	D664, D665						
14	D666, D667						
15	D668, D669						
16	D670, D671						
17	D672, D673						
18	D674, D675						
19	D676, D677						
20	D678, D679						
21	D680, D681						
22	D682, D683						
23	D684, D685						
24	D686, D687						
25	D688, D689						
26	D690, D691						
27	D692, D693						
28	D694, D695						
29	D696, D697						
30	D698, D699						
31	D700, D701						
32	D702, D703						

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(3) Axis monitor device 2 list

$\begin{array}{\|l\|} \text { Axis } \\ \text { No. } \end{array}$	Device No.	Signal name					
1	D800 to D819		Signal name	Refresh cycle	Fetch cycle	Unit	Signal direction
2	D820 to D839						
3	D840 to D859						
4	D860 to D879	0	Current value	Operation cycle		Command unit	Monitor device
5	D880 to D899	1					
6	D900 to D919	2	Execute sequence No.	Immediate		-	
7	D920 to D939		(main)				
8	D940 to D959	3	Execute block No.				
9	D960 to D979		(main)				
10	D980 to D999	4	Execute program No.				
11	D1000 to D1019		(sub)				
12	D1020 to D1039	5	Execute sequence No.				
13	D1040 to D1059		(sub)				
14	D1060 to D1079	6	Execute block No.				
15	D1080 to D1099		(sub)				
16	D1100 to D1119	7	Unusable	-	-	-	-
17	D1120 to D1139	8	G43/G44 command	Immediate			Monitor device
18	D1140 to D1159	9	Tool length offset data			-	
19	D1160 to D1179						
20	D1180 to D1199	10	length offset data			Command	
21	D1200 to D1219	11	deol lengt ofset data			unit	
22	D1220 to D1239	12	Unusable	-	-	-	-
23	D1240 to D1259	13					
24	D1260 to D1279	14					
25	D1280 to D1299	15					
26	D1300 to D1319	16					
27	D1320 to D1339	17					
28	D1340 to D1359	18					
29	D1360 to D1379	19					
30	D1380 to D1399						
31	D1400 to D1419						
32	D1420 to D1439						

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(4) Control program monitor device list

(Note-1): D1445 (CLEAR request status storage register) is used in the "control program stop function from the PLC CPU".
(5) Control change register 2 list

Axis No.	Device No.	Signal name					
1	D1536 to D1538		Signal name	Refresh cycle	Fetch cycle	Unit	Signal direction
2	D1539 to D1541						
3	D1542 to D1544						
4	D1545 to D1547	0	Override ratio setting register (0 to 100)		Operation cycle	\%	Commanddevice
5	D1548 to D1550						
6	D1551 to D1553	1	Unusable	-	-	-	-
7	D1554 to D1556	2					
8	D1557 to D1559						
9	D1560 to D1562						
10	D1563 to D1565						
11	D1566 to D1568						
12	D1569 to D1571						
13	D1572 to D1574						
14	D1575 to D1577						
15	D1578 to D1580						
16	D1581 to D1583						
17	D1584 to D1586						
18	D1587 to D1589						
19	D1590 to D1592						
20	D1593 to D1595						
21	D1596 to D1598						
22	D1599 to D1601						
23	D1602 to D1604						
24	D1605 to D1607						
25	D1608 to D1610						
26	D1611 to D1613						
27	D1614 to D1616						
28	D1617 to D1619						
29	D1620 to D1622						
30	D1623 to D1625						
31	D1626 to D1628						
32	D1629 to D1631						

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.
(6) Tool length offset data setting register list (Higher rank, lower rank)

Device No.	Signal name
D1651, D1650	Tool length offset data 1
D1653, D1652	Tool length offset data 2
D1655, D1654	Tool length offset data 3
D1657, D1656	Tool length offset data 4
D1659, D1658	Tool length offset data 5
D1661, D1660	Tool length offset data 6
D1663, D1662	Tool length offset data 7
D1665, D1664	Tool length offset data 8
D1667, D1666	Tool length offset data 9
D1669, D1668	Tool length offset data 10
D1671, D1670	Tool length offset data 11
D1673, D1672	Tool length offset data 12
D1675, D1674	Tool length offset data 13
D1677, D1676	Tool length offset data 14
D1679, D1678	Tool length offset data 15
D1681, D1680	Tool length offset data 16
D1683, D1682	Tool length offset data 17
D1685, D1684	Tool length offset data 18
D1687, D1686	Tool length offset data 19
D1689, D1688	Tool length offset data 20

(7) Common device list

(Note-1): The range of axis No. 1 to 8 is valid in the Q172HCPU.
(Note-2): Device area of 9 axes or more is unusable in the Q172HCPU.

APPENDIX 2.3 Motion Registers (\#)
Motion registers (\#)

Axis No.	Device No.	Signal name				
1	\#8064 to \#8067		Signal name ${ }^{(\text {Note-1) }}$	Signal description	Refresh cycle	Signal direction
2	\#8068 to \#8071					
4	\#8076 to \#8079	+0	Servo amplifier type	$\begin{array}{\|ll\|} \hline 0: & \text { Unused } \\ 256 & \text { : } \end{array}$	When the servo amplifier power-on	Monitor device
6	\#8084 to \#8087	+1	Motor current	$\times 0.1[\%]$	Operation cycle $1.7[\mathrm{~ms}]$ or less: Operation cycle Operation cycle $3.5[\mathrm{~ms}$] or more: $3.5[\mathrm{~ms}$]	
7	\#8088 to \#8091	+2	Motor speed	$\times 0.1[\mathrm{r} / \mathrm{min}]$		
8	\#8092 to \#8095	+3				
9	\#8096 to \#8099	(Note-1) : The value that the lowest servo monitor device No. was added "+0, +1 \cdots " on each axis is shown.				
10	\#8100 to \#8103					
11	\#8104 to \#8107					
12	\#8108 to \#8111					
13	\#8112 to \#8115					
14	\#8116 to \#8119					
15	\#8120 to \#8123					
16	\#8124 to \#8127					
17	\#8128 to \#8131					
18	\#8132 to \#8135					
19	\#8136 to \#8139					
20	\#8140 to \#8143					
21	\#8144 to \#8147					
22	\#8148 to \#8151					
23	\#8152 to \#8155					
24	\#8156 to \#8159					
25	\#8160 to \#8163					
26	\#8164 to \#8167					
27	\#8168 to \#8171					
28	\#8172 to \#8175					
29	\#8176 to \#8179					
30	\#8180 to \#8183					
31	\#8184 to \#8187					
32	\#8188 to \#8191					

APPENDIX 2.4 Special Relays

Special relays are internal relays whose applications are fixed in the Motion CPU. For this reason, they cannot be used in the same way as the normal internal relays by the Motion programs.
However, they can be turned ON/OFF as needed in order to control the Motion CPU.

The headings in the table that follows have the following meanings.

Item	Explanation
No.	- Indicates the device No. of the special relay.
Name	- Indicates the name of the special relay.
Meaning	- Indicates the nature of the special relay.
Details	- Indicates detailed information about the nature of the special relay.
Set by (When set)	- Indicates whether the relay is set by the system or user, and, if it is set by system, when setting is performed. <Set by> S : Set by system (Motion CPU) U : Set by user (Motion SFC program or test operation using a peripheral device) S/U : Set by both system (Motion CPU) and user <When set> Indicated only if setting is done by system (Motion CPU). Main process : Set during each main processing (free time processing of the CPU) Initial process : Set only during initial processing (when power supply is turned ON, or when executed the reset) Status change : Set only when there is a change in status Error: Set when error is occurred. Request : Set only when there is a user request (Special relay, etc.) Operation cycle : Set during each operation cycle of the Motion CPU.

Special relay list

Special relay list (continued)

No.	Name	Meaning	Details	Set by (When set)	Remark
M9077	Manual pulse generator axis setting error flag	ON : At least one D714 to D719 setting is abnormal. OFF : All D714 to D719 settings are normal.	- This flag indicates whether the setting designated at the manual pulse generator axis setting register (D714 to D719) is normal or abnormal. - When this relay turns on, the error content is stored at the manual pulse generator axis setting error register (D9185 to D9187).	S(Occur an error)	
M9078	TEST mode request error flag	ON : Abnormal OFF : Normal	- Turn on if the TEST mode is not established in response to a TEST mode request from a peripheral device. - When this relay turns on, the error content is stored at the TEST mode request error register (D9182 to D9183).	S(Occur an error)	
M9079	Servo program setting error flag	ON : Abnormal OFF : Normal	- This flag status indicates whether the positioning data of the servo program (K) specified with the Motion SFC program is normal or abnormal, and if error is detected this flag turns on. - The content of a servo program setting error is stored at D9189 and D9190.	S(Occur an error)	
M9216	CPU No. 1 MULTR complete flag	OFF to ON : CPU No. 1 read completion	- Turn on when the data read from CPU No. 1 is performed normally by MULTR instruction.		
M9217	CPU No. 2 MULTR complete flag	OFF to ON : CPU No. 2 read completion	- Turn on when the data read from CPU No. 2 is performed normally by MULTR instruction.		
M9218	CPU No. 3 MULTR complete flag	$\begin{array}{\|l\|} \hline \text { OFF to ON : } \\ \text { CPU No. } 3 \text { read completion } \\ \hline \end{array}$	- Turn on when the data read from CPU No. 3 is performed normally by MULTR instruction.	S(Read completion)	
M9219	CPU No. 4 MULTR complete flag	OFF to ON : CPU No. 4 read completion	- Turn on when the data read from CPU No. 4 is performed normally by MULTR instruction.		
M9240	CPU No. 1 reset flag	$\begin{aligned} \text { OFF } & : \text { CPU No. } 1 \text { reset } \\ & \text { release } \\ \text { ON } & : \text { CPU No. } 1 \text { resetting } \end{aligned}$	- Turn off at reset release of the CPU No.1. - Turn on during reset of the CPU No.1. (It also contains when a CPU is removed from the base unit.) - The other CPU is also resetting.		
M9241	CPU No. 2 reset flag	$\begin{aligned} \text { OFF } & : \text { CPU No. } 2 \text { reset } \\ & \text { release } \\ \text { ON } & : \text { CPU No. } 2 \text { resetting } \end{aligned}$	- Turn off at reset release of the CPU No.2. - Turn on during reset of the CPU No.2. (It also contains when a CPU is removed from the base unit.) - The error of the "MULTI CPU DOWN" (error code : 7000) occurs in the other CPU.		
M9242	CPU No. 3 reset flag	$\begin{aligned} \text { OFF } & : \text { CPU No. } 3 \text { reset } \\ & \text { release } \\ \text { ON } & : \text { CPU No. } 3 \text { resetting } \end{aligned}$	- Turn off at reset release of the CPU No.3. - Turn on during reset of the CPU No.3. (It also contains when a CPU is removed from the base unit.) - The error of the "MULTI CPU DOWN" (error code : 7000) occurs in the other CPU.		
M9243	CPU No. 4 reset flag	OFF : CPU No. 4 reset release ON : CPU No. 4 resetting	- Turn off at reset release of the CPU No. 4. - Turn on during reset of the CPU No.4. (It also contains when a CPU is removed from the base unit.) - The error of the "MULTI CPU DOWN" (error code : 7000) occurs in the other CPU.	S(Change status)	
M9244	CPU No. 1 error flag	OFF ON : CPU No. 1 normal : On CPU No. 1 stop error	- Turn off when the CPU No. 1 is normal. (It contains at continuation error.) - Turn on during stop error of the CPU No.1. (Note-1)		
M9245	CPU No. 2 error flag	OFF : CPU No. 2 normal ON : On CPU No. 2 stop error	- Turn off when the CPU No. 2 is normal. (It contains at continuation error.) - Turn on during stop error of the CPU No.2. (Note-1)		
M9246	CPU No. 3 error flag	OFF $:$ CPU No. 3 normal ON : On CPU No. 3 stop error	- Turn off when the CPU No. 3 is normal. (It contains at continuation error.) - Turn on during stop error of the CPU No.3. (Note-1)		
M9247	CPU No. 4 error flag	OFF ONCPU No. 4 normal : On CPU No. 4 stop error	- Turn off when the CPU No. 4 is normal. (It contains at continuation error.) - Turn on during stop error of the CPU No.4. (Note-1)		

(Note-1): The CPU No. 1 is reset after the factor of the stop error is removed to cancel a stop error. \rightarrow Resetting is cancelled.

APPENDIX 2.5 Special Registers

Special registers are internal registers whose applications are fixed in the Motion CPU. For this reason, it is not possible to use these registers in Motion SFC programs in the same way that normal registers are used.
However, data can be written as needed in order to control the Motion CPU.
Data stored in the special registers are stored as BIN values if no special designation has been made to the contrary.

The headings in the table that follows have the following meanings.

Item	Explanation
Number	- Indicates the No. of the special register.
Name	- Indicates the name of the special register.
Meaning	- Indicates the nature of the special register.
Details	- Indicates detailed information about the nature of the special register.
Set by (When set)	- Indicates whether the register is set by the system or user, and, if it is set by system, when setting is performed. <Set by> S : Set by system (Motion CPU) U : Set by user (Motion SFC program or test operation using a peripheral device) S/U : Set by both system (Motion CPU) and user <When set> Indicated only if setting is done by system (Motion CPU). Main process : Set during each main processing (free time processing of the CPU) Initial process : Set only during initial processing (when power supply is turned ON, or when executed the reset) Status change : Set only when there is a change in status Error : Set when error is occurred. Request : Set only when there is a user request (Special relay, etc.) Operation cycle : Set during each operation cycle of the Motion CPU.

Special register list

No.	Name	Meaning	Details	Set by (When set)	Remark
D9000	Fuse blown No.	Module No. with blown fuse	- When fuse blown modules are detected, the lowest I/O module No. is stored in D9000.		
D9005	AC/DC DOWN counter No.	Number of times for AC/DC DOWN	- 1 is added to the stored value each time the input voltage becomes 85[\%](AC power supply/65[\%] DC power supply) or less of the rating while the CPU module is performing an operation, and the value is stored in BIN code.		
D9008	Diagnostic error	Diagnostic error number	- When error is found as a result of self-diagnosis, error No. is stored in BIN code. - Refer to the "Q173HCPU/Q172HCPU Motion Controller Programming Manual (COMMON)" 2.4 Multiple CPU Error Codes" " for details of the error code.		
D9010			- The age (A.D, the rightmost two digits) when data on D9008 are updated, and the month stored with a BCD code two digits. $\begin{array}{\|l\|l\|l\|} \hline \text { B15 to B8 B7 to B0 Example: October } 1995 \\ \hline \text { Year(0 to } 99) & \text { Month(1 to 12) } & \mathrm{H} 9510 \end{array}$		
D9011	Diagnostic error occurrence time	Diagnostic error occurrence time	- The day when data on D9008 are updated, and the hour stored with a BCD code two digits.	S (Occur an error)	
D9012			- The minute when data on D9008 are updated, and the second stored with a $B C D$ code two digits.		
D9013	Error information classification	Error information classification code	- The classification code to judge the error information stored in the error information (D9014) is stored. - The following code is stored. 0 : None 1 : Module No./CPU No./Base No. 2 : Parameter No.		
D9014	Error information	Error information	- Error information to comply with the diagnostic error (D9008) is stored. There are following two types informations to be stored. 1) Module No./CPU No./Base No. - Module No. or CPU No. is stored according to the error which occurred in the case of the Multiple CPU system. (Refer to each error code which is stored.) CPU No. 1 : 1, CPU No. 2 : 2, CPU No. 3 : 3, CPU No. $4: 4$ 2) Parameter No.		
			- The operation states of CPU as shown below are stored in D9015.		
D9015	Operating state of CPU	Operating state of CPU	1) Operating state of CPU $0:$ RUN $2:$ STOP 2) STOP cause $0:$ RUN/STOP switch Note : Priority is earliest first $4:$ Error	S (Main processing)	
D9017	Scan time	Scan time (1ms units)	- Main cycle is stored in the unit 1 ms . - Setting range (0 to $65535[\mathrm{~ms}]$)		
D9019	Maximum scan time	Maximum scan time (1ms units)	- The maximum value of the main cycle is stored in the unit 1 ms . - Setting range (0 to $65535[\mathrm{~ms}]$)		
D9025	Clock data	Clock data (Year, month)	- Stores the year (2 lower digits) and month in BCD.	S/U (Request)	

Special register list (continued)

Special register list (continued)

No.	Name	Meaning	Details	Set by (When set)	Remark
D9188	Motion operation cycle	Motion operation cycle	- The time when the motion operation cycle is stored in the [$\mu \mathrm{s}$] unit.	S (Operation cycle)	
D9189	Error program No.	Error program No. of servo program	When the servo program setting error flag (M9079) turns on, the erroneous servo program No. will be stored.		
D9190	Error item information	Error code of servo program	When the servo program setting error flag (M9079) turns on, the error code corresponding to the erroneous setting item will be stored.	ccur an error)	
D9191	Servo amplifier loading information	Servo amplifier loading information	- The loading status (loading : 1/non-loading : 0) of the servo amplifier checked in initial process, and stored as the bit data. D9191: b0 to b15 (axis 1 to axis 16) D9192 : b0 to b15 (axis 17 to axis 32) - The axis which turned from non-loading to loading status after power-on is handled as loaded. (However, the axis which turned from loading to nonloading status remains as loaded.)	S (Initial processing)	
$\text { \| } \left\lvert\, \begin{aligned} & \text { D9193 } \\ & \text { D9194 } \\ & \text { D9195 } \end{aligned}\right.$	Real/virtual mode switching error	Real/virtual mode Switching error code	- When a mode switching error occurs in real-to-virtual or virtual-to-real mode switching, or a mode continuation error occurs in the virtual mode, its error information is stored.		
D9196	PC link communication error codes	PC link communication error codes	- The following error code is stored. 00 : No error 01 : Receiving timing error 02 : CRC error 03 : Communication response code error 04 : Received frame error 05 : Communication task start error (Each error code is reset to " 00 " when normal communication is restarted.)	S (Occur an error)	
D9197	Operation cycle of the Motion CPU setting	Operation cycle of the Motion CPU setting	- The time when the setting operation cycle is stroed in the [$\mu \mathrm{s}$] unit.	S (Initial processing)	
D9200	State of switch	State of CPU switch	- The CPU switch status is stored in the following format.	S (Main processing)	
D9201	State of LED	State of CPU-LED	- Information concerning which of the following states the LEDs on the CPU are in is stored in the following bit patterns. - 0 is off, 1 is on, and 2 is flicker 1) : RUN 5) : BOOT 2) : ERROR 6) : No used 3) : M.RUN 4) : BAT.ALARM 8) : MODE Bit patterns for MODE 0 : OFF 1:Green 2 : Orange	S (Change status)	

(Note) : It adds newly at the Motion controller Q series.

APPENDIX 3 Processing Times of the Motion CPU

The processing time of each signal and each instruction for positioning control in the Multiple CPU system is shown below.
(1) CPU processing time [ms]

	Q173HCPU				Q172HCPU		
Operation cycle	0.88	1.77	3.55	7.11	0.88	1.77	
Axis designation program start processing time	WAIT ON/OFF SVST instruction from PLC CPU	1.9 to 2.6	3.2 to 4.3	4.7 to 6.6	13.3 to 18.6	1.9 to 2.6	3.2 to 4.3
Speed change response (Note-1) (CHGV instruction from PLC CPU)	6.6 to 9.3	7.9 to 12.0	17.9 to 20.1	6.7 to 8.4	6.6 to 9.3		
Time from PLC ready flag (M2000) ON to PCPU ready flag (M9074) ON	2.8	3.0 to 4.4	5.5 to 8.2	13.0 to 17.7	2.2 to 2.8	3.0 to 4.4	

(Note-1): This processing time varies depending on the PLC scan time. Use this time merely for reference.

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

Note that an installation period of less than one year after installation in your company or your customer's premises or a period of less than 18 months (counted from the date of production) after shipment from our company, whichever is shorter, is selected.

[Gratis Warranty Range]

(1) Diagnosis of failure

As a general rule, diagnosis of failure is done on site by the customer.
However, Mitsubishi or Mitsubishi service network can perform this service for an agreed upon fee upon the customer's request.
There will be no charges if the cause of the breakdown is found to be the fault of Mitsubishi.
(2) Breakdown repairs

There will be a charge for breakdown repairs, exchange replacements and on site visits for the following four conditions, otherwise there will be a charge.

1) Breakdowns due to improper storage, handling, careless accident, software or hardware design by the customer
2) Breakdowns due to modifications of the product without the consent of the manufacturer
3) Breakdowns resulting from using the product outside the specified specifications of the product
4) Breakdowns that are outside the terms of warranty

Since the above services are limited to Japan, diagnosis of failures, etc. are not performed abroad. If you desire the after service abroad, please register with Mitsubishi. For details, consult us in advance.

2. Exclusion of Loss in Opportunity and Secondary Loss from Warranty Liability

Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi; opportunity loss or lost profits caused by faults in the Mitsubishi products; damage, secondary damage, accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other than Mitsubishi products; and to other duties.

3. Onerous Repair Term after Discontinuation of Production

Mitsubishi shall accept onerous product repairs for seven years after production of the product is discontinued.

4. Delivery Term

In regard to the standard product, Mitsubishi shall deliver the standard product without application settings or adjustments to the customer and Mitsubishi is not liable for on site adjustment or test run of the product.
5. Precautions for Choosing the Products
(1) These products have been manufactured as a general-purpose part for general industries, and have not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
(2) Before using the products for special purposes such as nuclear power, electric power, aerospace, medicine, passenger movement vehicles or under water relays, contact Mitsubishi.
(3) These products have been manufactured under strict quality control. However, when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.
(4) When exporting any of the products or related technologies described in this catalogue, you must obtain an export license if it is subject to Japanese Export Control Law.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA, JAPAN

[^3]
[^0]: (Note-1) : The display of the possible setting range changes according to the electronic gear value.

[^1]: POINT
 When a "degree" is used as the control unit of one axis, a "degree" should also be used with the other axis.

[^2]: The continuous operation is not executed and a stop once in the preread disable mode as for the G01 continuous block.

[^3]: When exported from Japan, this manual does not require application to the
 Ministry of Economy, Trade and Industry for service transaction permission

