อุปกรณ์ FA สำหรับผู้เริ่มใช้งาน (ระบบเครือข่ายในงานอุตสาหกรรม)

หลักสูตรนี้จัดทำขึ้นสำหรับผู้ใช้งานระบบเครือข่ายในงาน อุตสาหกรรมเป็นครั้งแรก เพื่อให้เข้าใจภาพรวมคร่าว ๆ ของระบบเครือข่ายในงานอุตสาหกรรม

บทนำ

วัตถุประสงค์ของหลักสูตร

ระบบเครือข่ายในงานอุตสาหกรรมเป็นวิธีขยายระบบตัวควบคุมแบบตั้งโปรแกรมได้เพื่อควบคุมเครื่องจักร/อุปกรณ์จากระยะไกล หลักสูตรนี้จะแสดงให้คุณเห็นความแตกต่างระหว่างเครือข่ายทั่วไปที่ใช้ในการประมวลผลข้อมูล เช่น อินเตอร์เน็ตและระบบเครือข่ายในงาน อุตสาหกรรมที่ใช้เพื่อควบคุมการทำให้เป็นอัตโนมัติในงานอุตสาหกรรม และหลักสูตรนี้ยังให้คุณสามารถเลือกระบบเครือข่ายในงาน อุตสาหกรรมได้ตรงตามวัตถุประสงค์การควบคุมอีกด้วย เนื้อหาของหลักสูตรนี้มีดังนี้ เราขอแนะนำให้คุณเริ่มต้นจากบทที่ 1

บทที่ 1 - การทำความเข้าใจเครือข่าย

คุณจะได้เรียนรู้เกี่ยวกับสารสนเทศพื้นฐานของเครือข่าย

บทที่ 2 - ระบบเครือข่ายในงานอุตสาหกรรม

คุณจะได้เรียนรู้เกี่ยวกับภาพคร่าว ๆ ของระบบเครือข่ายในงานอุตสาหกรรม

บทที่ 3 - การทำความเข้าใจเครือข่ายสารสนเทศและเครือข่ายงานควบคุม

คุณจะได้เรียนรู้เกี่ยวกับความแตกต่างกันระหว่างเครือข่ายสารสนเทศและเครือข่ายงานควบคุม

บทที่ 4 - เครือข่ายงานควบคุม

คุณจะได้เรียนรู้เกี่ยวกับรายละเอียดของเครือข่ายงานควบคุม

บทที่ 5 - ตัวอย่างการใช้งานระบบเครือข่ายในงานอุตสาหกรรม

คุณจะได้เรียนรู้ตัวอย่างการใช้งานระบบเครือข่ายในงานอุตสาหกรรมและผลิตภัณฑ์เครือข่ายสำหรับตัวควบคุมแบบตั้งโปรแกรมได้จาก แบรนด์ Mitsubishi Electric

แบบทดสอบประเมินผล

การผ่านเกณฑ์: 60% ขึ้นไป

บทนำ	วิธีการใช้งานเครื่องมือการเรียนรู้อิเล็กทรอนิกส์นี้
บทนา	าบแล้ว เทา เหณาอาทอและเอเทียเพลายนแนร

ไปที่หน้าถัดไป	>	ไปที่หน้าถัดไป
กลับไปยังหน้าที่แล้ว	<	กลับไปยังหน้าที่แล้ว
เลื่อนไปยังหน้าที่ต้องการ	тос	ระบบจะแสดง "สารบัญ" ช่วยให้คุณสามารถไปยังหน้าต่างๆ ได้
ออกจากการเรียนรู้	X	ออกจากการเรียนรู้

บทนำ

ข้อควรระวังด้านความปลอดภัย

เมื่อคุณเรียนรู้โดยการใช้งานผลิตภัณฑ์จริง โปรดอ่านข้อควรระวังต่างๆ ในคู่มือการใช้งานอย่างละเอียดให้เข้าใจ

บทที่ 1

การทำความเข้าใจเครือข่าย

ระบบเครือข่ายมีความสำคัญในชีวิตประจำวันของเรา เครือข่ายทำให้การติดต่อผู้อื่นและการถ่ายทอดข้อมูลเป็นเรื่องง่าย

บทนี้จะอธิบายรายละเอียดของเครือข่าย

- 1.1 การส่งผ่านข้อมูล
- 1.2 ที่มาของเครือข่าย

ข้อมูลมีตั้งแต่ข้อมูลส่วนตัวที่แลกเปลี่ยนกันระหว่างบุคคลไปจนถึงข้อมูลสาธารณะที่ใช้ดำเนินกิจการและองค์กร การส่งผ่านข้อมูลและการแชร์ ข้อมูลได้อย่างราบรื่นจึงเป็นสิ่งสำคัญ เพื่อให้ทำเช่นนั้นได้จึงต้องใช้วิธีส่งผ่านข้อมูลที่หลากหลาย

มีการจัดหมวดหมู่วิธีส่งผ่านข้อมูลไว้คร่าว ๆ สองรายการด้านล่างนี้

(1) การส่งผ่านข้อมูลระหว่างบุคคล	ตัวอย่าง: การสนทนา, จดหมาย, โทรศัพท์, แฟกซ์, อีเมล	
(2) การส่งผ่านข้อมูลระหว่างบุคคลและกลุ่ม	ตัวอย่าง: สุนทรพจน์, การสัมมนา, กระดานข่าว, วิทยุ, ทีวี,	
บุคคล	เว็บไซต์	

เครือข่ายเป็นเครื่องมือที่ใช้สำหรับส่งผ่านและแชร์ข้อมูลหลากหลายชนิดระหว่างบุคคลและกลุ่มบุคคลร่วมกัน

เครือข่ายการสื่อสารได้รับการพัฒนาขึ้นเพื่อส่งผ่านข้อมูลร่วมกันด้วยการเชื่อมต่ออุปกรณ์สารสนเทศ เช่น คอมพิวเตอร์ ผ่านทางเส้นสื่อสาร การแพร่กระจายของเครือข่ายอย่างรวดเร็วได้เปลี่ยนวิธีการส่งผ่านข้อมูล ตอนนี้เราสามารถเข้าถึงข้อมูลได้ทั่วโลกโดยใช้คอมพิวเตอร์ของเรา เอง ต่อไปนี้จะแสดงลักษณะการเปลี่ยนวิธีส่งผ่านข้อมูลของเครือข่าย

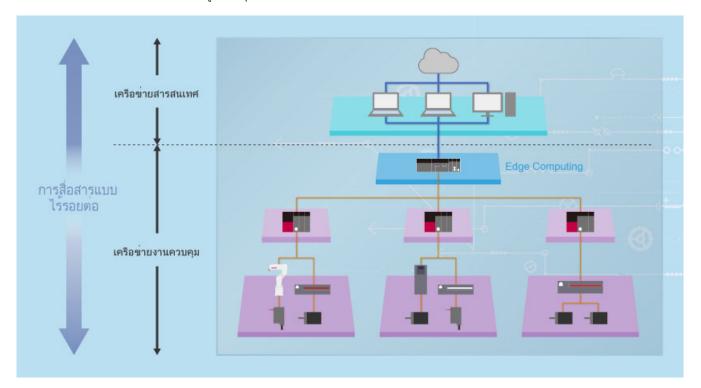
หลังการติดตั้งระบบเครือข่าย

้เครือข่ายได้ปรับปรุงผลิตภาพและยกระดับความเร็วการส่งผ่านข้อมูลในที่ทำงาน และยังทำให้การทำงานจากที่บ้านเป็นไปได้อีกด้วย

บทที่ 2

ระบบเครือข่ายในงานอุตสาหกรรม

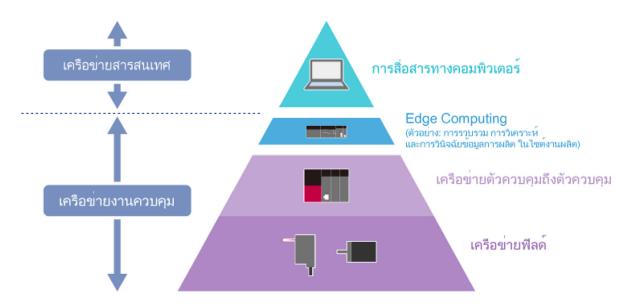
บทนี้จะอธิบายเกี่ยวกับระบบเครือข่ายในงานอุตสาหกรรม


- 2.1 ระบบเครือข่ายในงานอุตสาหกรรม
- 2.2 หมวดหมู่ของระบบเครือข่ายในงานอุตสาหกรรม

ระบบเครือข่ายในงานอุตสาหกรรมไม่เหมือนกับระบบเครือข่ายทั่วไปที่เข้าถึงเว็บไซต์ได้จากคอมพิวเตอร์สำนักงานของคุณ ระบบเครือข่ายในงานอุตสาหกรรมประกอบด้วยเครือข่ายสารสนเทศที่เชื่อมต่อโรงงานกับ เซิร์ฟเวอร์แม่ข่าย และระบบเครือข่ายงานควบคุม สำหรับงานควบคุมระบบที่สนับสนุนการสื่อสารระหว่างฮาร์ดแวร์ (อุปกรณ์) ต่าง ๆ ในโรงงาน

ทุกวันนี้เราสามารถเชื่อมต่อระบบเครือข่ายสารสนเทศเข้ากับระบบเครือข่ายในงานอุตสาหกรรมได้อย่างไร้รอยต่อ* อุปกรณ์ต่าง ๆ ตั้งแต่ เซิร์ฟเวอร์แม่ข่ายบนระบบเครือข่ายสารสนเทศไปจนถึงอุปกรณ์ปลายทาง เช่น เซ็นเซอร์ในไซต์งานผลิต สามารถเชื่อมต่อถึงกันได้ ระบบเครือข่ายในงานอุตสาหกรรมมีตัวอย่างดังต่อไปนี้

ประสิทธิภาพการผลิตได้รับการปรับปรุงให้ดีขึ้นด้วยการมองเห็นคุณภาพการผลิตและสถานะการผลิตในไซต์งานผลิตและการแชร์/การวิเคราะห์ ข้อมูล


* แบบไร้รอยต่อ: ไม่มีรอยต่อหรือการเบรกระหว่างส่วนหนึ่งและส่วนถัดไป แต่ละฟังก์ชันไม่ได้แยกการเชื่อมต่อออกจากกันในทุกอุปกรณ์ และ เซิร์ฟเวอร์แม่ข่ายสามารถได้รับข้อมูลจากอุปกรณ์ปลายทาง เช่น เซ็นเซอร์ ได้

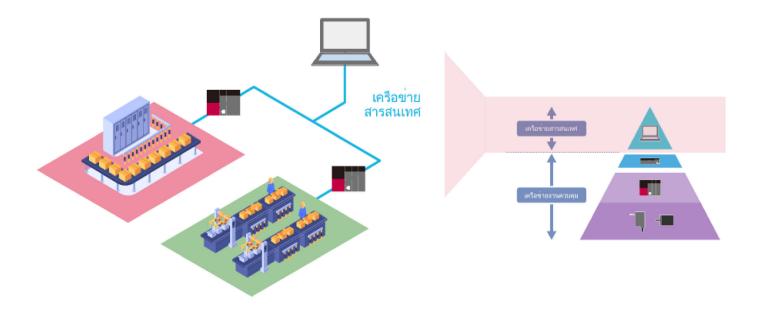
ส่วนนี้จะอธิบายเกี่ยวกับหมวดหมู่ของระบบเครือข่ายในงานอุตสาหกรรม มาดูที่ภาพด้านล่างนี้ด้วยกัน

โดยคร่าว ๆ ระบบเครือข่ายในงานอุตสาหกรรมถูกแยกหมวดหมู่ออกเป็นเครือข่ายสารสนเทศและเครือข่ายงานควบคุม นอกจากนี้ เครือข่ายงานควบคุมยังถูกแยกหมวดหมู่ออกเป็นเครือข่ายตัวควบคุมถึงตัวควบคุมซึ่งเชื่อมต่อตัวควบคุมแบบตั้งโปรแกรมได้เข้าด้วย กัน และเครือข่ายฟิลด์ซึ่งเชื่อมต่อ ตัวควบคุมแบบตั้งโปรแกรมได้เข้ากับอุปกรณ์ต่าง ๆ อีกด้วย รายละเอียดเกี่ยวกับเครือข่ายแต่ละประเภทจะมีอธิบายในบทที่ 4

การสื่อสารทางคอมพิวเตอร์ (มีแสดงในภาพด้านล่าง) หมายถึงการสื่อสารข้อมูลระหว่างคอมพิวเตอร์และเซิร์ฟเวอร์ของสถานีแม่ข่ายผ่านทาง เส้นสื่อสาร

^{*} Edge computing คอมพิวเตอร์ในงานอุตสาหกรรม ซึ่งรวบรวม วิเคราะห์ และวินิจฉัยข้อมูล จะติดตั้งใกล้กับไซต์งานผลิต (แหล่งข้อมูล) และ ประมวลผลข้อมูลล่วงหน้าก่อนจะส่งข้อมูลไปยังระบบคลาวด์/ไอที วิธีนี้จะปรับปรุงประสิทธิภาพการผลิตและการตอบสนองในทันที

บทที่ 3

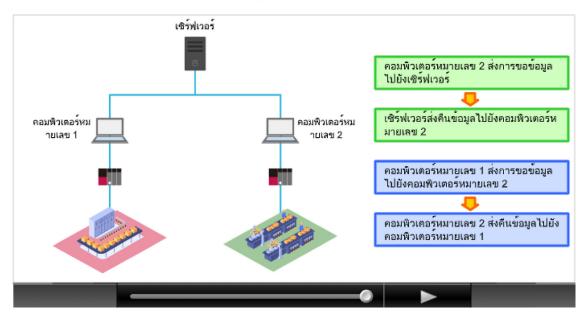

การทำความเข้าใจเครือข่ายสารสนเทศและเครือข่ายงานควบคุม

บทนี้จะอธิบายเกี่ยวกับเครือข่ายสารสนเทศที่มุ่งหวังให้ปรับปรุงผลิตภาพของเครือข่ายในงานอุตสาหกรรม และเครือข่ายงานควบคุมที่มุ่งหวัง ให้การผลิตเป็นระบบอัตโนมัติและปรับปรุงประสิทธิภาพของการผลิต

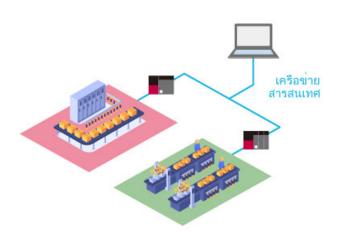
- 3.1 เครือข่ายสารสนเทศ
- 3.2 เครือข่ายงานควบคุม
- 3.3 การเปรียบเทียบระหว่างทำความเข้าใจระบบเครือข่ายสารสนเทศและระบบเครือข่ายงานควบคุม
- 3.4 ระบบเครือข่ายที่ใช้ระบบเครือข่ายสารสนเทศและระบบเครือข่ายงานควบคุมร่วมกัน

ระบบเครือข่ายสารสนเทศมีประโยชน์ในการใช้เชื่อมต่อคอมพิวเตอร์และเซิร์ฟเวอร์ของฝ่ายบริหารจัดการ (เช่น แผนการผลิตและการบริหาร จัดการงานผลิต) ผ่านช่องทางการสื่อสาร ในระบบเครือข่ายนี้ มีการจัดการข้อมูลจำนวนมาก มีการบริหารจัดการ/แชร์ข้อมูล และมีการใช้ อุปกรณ์หลากหลายชนิดร่วมกัน สิ่งนี้มีส่วนช่วยเพิ่มประสิทธิภาพต่อการปรับปรุงการทำงานในแต่ละแผนก

ซึ่งขาดไม่ได้ในฐานะโครงสร้างพื้นฐานงานด้านสารสนเทศเพื่อดำเนินงานควบคุมการผลิตในไซต์งานผลิต


ในทุกวันนี้ มีการใช้ระบบเครือข่ายสารสนเทศอย่างแพร่หลายในชีวิตประจำวันของเรา เพื่อให้คุณสามารถเรียกดูข้อมูลบนเว็บไซต์ผ่าน อินเตอร์เน็ตหรือใช้อีเมลได้

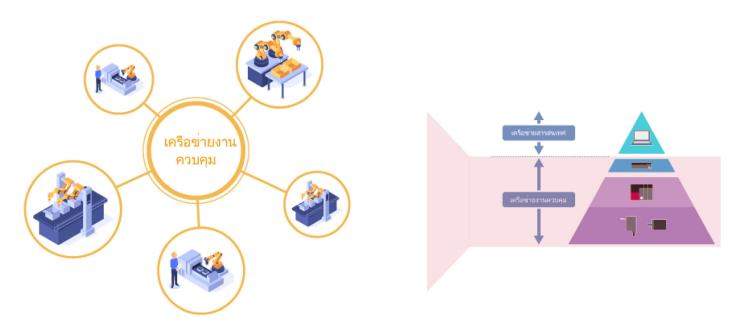
การฝึกอบรมแบบอีเลิร์นนิงนี้ก็ได้รับการสนับสนุนจากระบบเครือข่ายสารสนเทศด้วยเช่นกัน


ี่แนวคิดเกี่ยวกับการสื่อสารข้อมูลบนระบบเครือข่ายสารสนเทศมีความหมายเท่ากับ 'การส่งผ่านข้อมูลระหว่างบุคคล' ตามคำอธิบายในบทที่ 1

การสื่อสารข้อมูลมีการดำเนินการดังต่อไปนี้ แหล่งที่มาของคำขอจะส่งคำขอการส่งข้อมูลไปยังปลายทางการสื่อสาร และปลายทางการสื่อสารจะ ส่งคืนข้อมูลไปยังแหล่งที่มาของคำขอ โดยพื้นฐานแล้ว มีการสื่อสารแบบหนึ่งต่อหนึ่งระหว่างแหล่งขอข้อมูลและปลายทางการสื่อสารเกิดขึ้น อุปกรณ์ทุกเครื่องบนระบบเครือข่ายสามารถสื่อสารกันได้ทุกเมื่อ

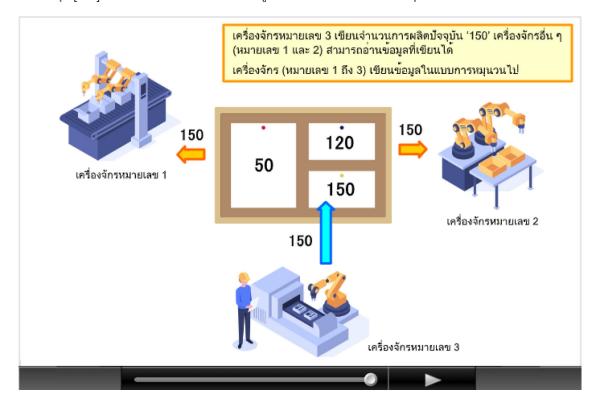
คลิกปุ่ม [เล่น] เพื่อเริ่มเล่นวิดีโอการสื่อสารข้อมูลบนระบบเครือข่ายสารสนเทศ

ส่วนนี้จะอธิบายถึงคุณสมบัติของระบบเครือข่ายสารสนเทศ



ระบบเครือข่ายงานควบคุมมีประโยชน์ในการใช้เพื่อเชื่อมต่อตัวควบคุมแบบตั้งโปรแกรมได้ ซึ่งควบคุมเครื่องจักร/อุปกรณ์ในไซต์งานผลิต เข้า กับหลากหลายอุปกรณ์ (เช่น ตัวควบคุม, I/O, เซ็นเซอร์ และตัวสั่งเริ่มการทำงาน*1) ผ่านทางเส้นสื่อสาร

ข้อมูลงานควบคุมของหลากหลายเครื่องจักร/อุปกรณ์ ซึ่งกำหนดค่าระบบงานผลิต*² จะทำการสื่อสารบนระบบเครือข่ายนี้ วิธีนี้จะทำให้การผลิต เป็นระบบอัตโนมัติและการลดจำนวนแรงงานเป็นผลสำเร็จ นอกจากนี้ ผลลัพธ์การผลิตของทั้งระบบจะได้รับการสรุป และสถานะการทำงานและ สถานะความผิดพลาดจะได้รับการตรวจสอบอีกด้วย


- *1: ตัวสั่งเริ่มการทำงาน ส่วนประกอบหรือหน่วยที่รับผิดชอบการสั่งงานใช้อุปกรณ์ เช่น โซลินอยด์วาล์วหรืออุปกรณ์ที่ใช้สำหรับกสั่งการทำงาน ของมอเตอร์โดยตรง
- *2: ระบบการผลิต กลุ่มของคอมพิวเตอร์และเครื่องจักร/อุปกรณ์ต่าง ๆ ที่ใช้ในการผลิต

แนวคิดเกี่ยวกับการสื่อสารข้อมูลบนระบบเครือข่ายงานควบคุมมีความหมายเท่ากับ 'การส่งผ่านข้อมูลระหว่างบุคคลและกลุ่มบุคคล' ตามคำ อธิบายในบทที่ 1

้เครื่องจักรเขียนข้อมูลให้กับพื้นที่เขียนของตัวเองในแบบการหมุน และเครื่องจักรอื่น ๆ บนระบบเครือข่ายเดียวกันอ่านข้อมูลที่เขียนนั้น จินตนาการว่าระบบเครือข่ายนี้เป็นอินเตอร์เน็ตฟอรั่ม ที่ซึ่งทุกคนบนระบบเครือข่ายสามารถเขียนและเรียกดูข้อมูลได้

คลิกปุ่ม [เล่น] เพื่อเริ่มเล่นวิดีโอการสื่อสารข้อมูลบนระบบเครือข่ายงานควบคุม

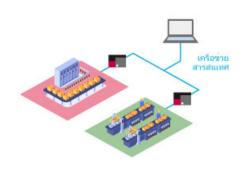
ส่วนนี้จะอธิบายถึงคุณสมบัติของระบบเครือข่ายงานควบคุม

ตัวควบคุมแบบตั้งโปรแกรมได้ที่ ควบคุมเครื่องจักรและอุปกรณ์, อุปกรณ์ต่าง ๆ (ตัวควบคุม, อุปกรณ์ I/O, ฯลฯ), โมดูลระยะ ไกล

ความจุข้อมูลและการตอบสนอง ในทันที

ความจุน้อยกว่า (เมื่อเทียบกับ เครือข่ายสารสนเทศ) การตอบสนองในทันทีเป็นสิ่ง สำคัญ

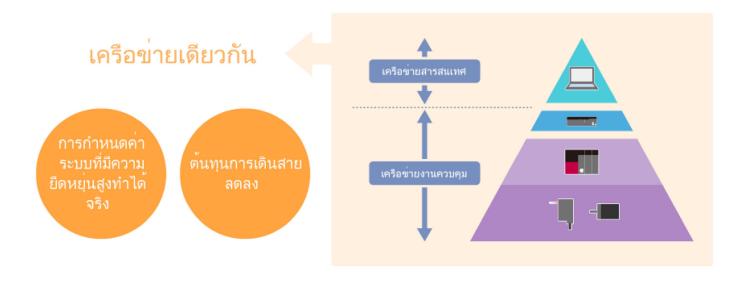
มาตรฐานเครือข่าย



เครือข่ายเฉพาะสำหรับควบคุม อุปกรณ์

จังหวะการสื่อสาร

ข้อมูลได้รับการอัปเดตเพราะมี การสื่อสารข้อมูลเป็นระยะ ๆ ขณะดำเนินระบบ ส่วนนี้จะอธิบายถึงการเปรียบเทียบกันระหว่างระบบเครือข่ายสารสนเทศและระบบเครือข่ายงานควบคุม



	เครือข่ายสารสนเทศ	เครือข่ายงานควบคุม			
การใช้ งาน	การทำงานอย่างมีประสิทธิภาพในไซต์งานผลิตและการลดจำนวน แรงงาน	การทำให [้] ระบบการผลิตเป็นระบบอัตโนมัติและการลดจำนวนแรงงาน			
•	คอมพิวเตอร์ส่วนบุคคล, อุปกรณ์ OA	ตัวควบคุมแบบตั้งโปรแกรมได้, อุปกรณ์ต่าง ๆ (ตัวควบคุม, อุปกรณ์ I/O, ฯลฯ), โมดูลระยะไกล			
	อีเธอร์เน็ต	เครือข่ายเฉพาะสำหรับควบคุมอุปกรณ์			
	ข้อมูลจำนวนมาก การตอบสนองใทนทีไม่ใช่สิ่งสำคัญ	ความจุน [้] อยกว่า (เมื่อเทียบกับเครือข [่] ายสารสนเทศ) การตอบสนองในทันทีเป็นสิ่งสำคัญ			
?	การสื่อสารข้อมูลเกิดขึ้นได้ทุกเมื่อตามความต้องการ	การสื่อสารข้อมูลเป็นระยะ ๆ			
	• 🛖 การเชื่อมต่อ 🔘 มาตรฐานเครือข่าย 📵 ความ	เจข้อมูลและการตอบสนองในทันที 🦙 · · · จังหวะการสื่อสาร			

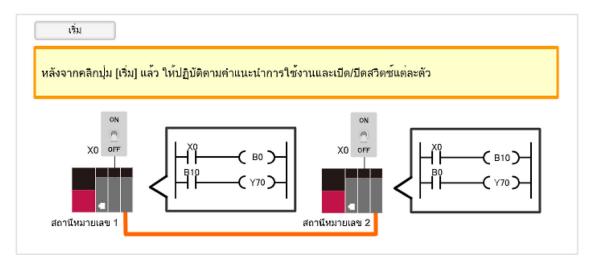
ส่วนนี้จะอธิบายถึงสถานการณ์ปัจจุบันของเครือข่าย

ในทุกวันนี้ การใช้เทคโนโลยีระบบเครือข่ายซึ่งขยายขอบเขตของอีเธอร์เน็ตมาตรฐานและหลอมรวมระบบเครือข่ายงานควบคุมและระบบเครือ ข่ายสารสนเทศเข้าด้วยกันอย่างไร้รอยต่อ และการเปลี่ยนวิธีการสื่อสารเป็นรูปแบบใหม่มีความล้ำสมัยเป็นอย่างมาก ระบบเครือข่ายที่รวบรวม ข้อมูลจากอุปกรณ์ต่าง ๆ ในไซต์งานผลิตในเวลาจริงและรับรู้ว่าการสื่อสารจะเสถียรได้ต้องใช้ระบบไอที ซึ่งสร้างค่าที่เพิ่มขึ้นมาใหม่ก็ได้กลาย มาเป็นหลักการที่สำคัญ

การกำหนดค่าระบบให้มีความยืดหยุ่นสูงและการลดต้นทุนการเดินสายเป็นจริงได้ด้วยการผสานรวมการสื่อสารในระบบเครือข่ายอื่น ๆ เข้ากับ การสื่อสารสารสนเทศในระบบไอทีบนเครือข่ายเดียวกัน ในขณะเดียวกันก็สื่อสารกับงานควบคุมที่มีความถูกต้องในเวลาจริงไปพร้อมกันด้วย

บทนี้จะอธิบายรายละเอียดเกี่ยวกับระบบเครือข่ายงานควบคุม

- 4.1 ข้อมูลพื้นฐานเกี่ยวกับการสื่อสารบนระบบเครือข่ายงานควบคุม
- 4.2 ระบบเครือข่ายแบบตัวควบคุมถึงอีกตัวควบคุมสำหรับการควบคุมเครื่องจักรแต่ละตัว
- 4.3 การดำเนินการระบบเครือข่ายสัญญาณ I/O สำหรับตัวควบคุมแบบตั้งโปรแกรมได้

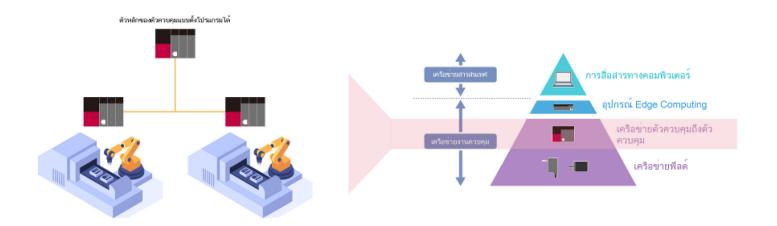


้อุปกรณ์ต่าง ๆ เช่น ตัวควบคุมแบบตั้งโปรแกรมได้, โรบอท และ HMI สามารถเชื่อมต่อถึงกันได้ ส่วนนี้อธิบายเกี่ยวกับการสื่อสารข้อมูลระหว่างตัวควบคุมแบบตั้งโปรแกรมได้ (อุปกรณ์ต่าง ๆ* (หน้าสัมผัส, ขดลวด, ลงทะเบียนข้อมูล)) เป็นต้น

อาทิเช่น เมื่อตัวควบคุมแบบตั้งโปรแกรมได้ซึ่งเชื่อมต่อกับระบบเครือข่ายมีการสั่งเปิดอุปกรณ์ 'B0' ตัวควบคุมแบบตั้งโปรแกรมได้ตัวอื่น ๆ จะได้ รับข้อมูลอุปกรณ์พร้อมกันในทันทีและสามารถทำการตรวจสอบไปด้วยในเวลาเดียวกัน ตัวควบคุมแบบตั้งโปรแกรมได้บนระบบเครือข่ายเดียวกันสามารถแชร์สัญญาณและข้อมูลโดยใช้อุปกรณ์ตัวเดียวกัน

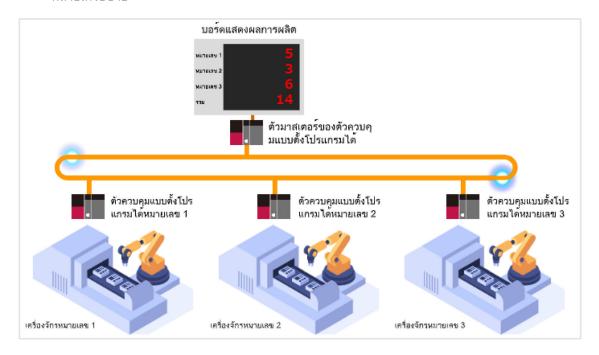
* อุปกรณ์: หน่วยความจำโมดูล CPU ที่จัดเก็บสัญญาณและข้อมูลสำหรับการคำนวณโปรแกรมเชิงลำดับ

คลิกปุ่ม [เริ่ม] เพื่อแสดงคำแนะนำการใช้งาน ปฏิบัติตามคำแนะนำและเปิด/ปิดสวิตช์แต่ละตัวด้วยการคลิกเมาส์ สถานะการตรวจสอบมอนิเตอร์แลดเดอร์จะเปลี่ยนไป (สามารถใช้งานสวิตช์ในการตรวจสอบมอนิเตอร์แลดเดอร์ได้โดยตรง (โดยไม่ต้องคลิกปุ่ม [เริ่ม])



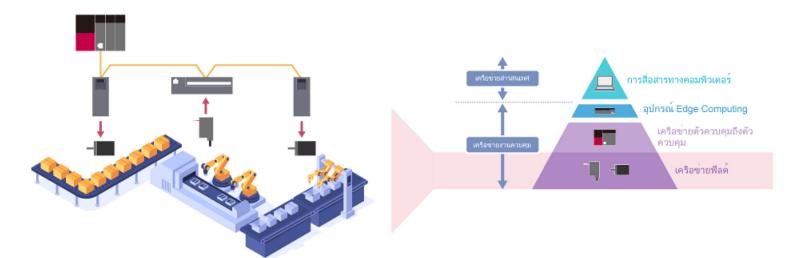
ส่วนนี้อธิบายเกี่ยวกับระบบเครือข่ายตัวควบคุมถึงตัวควบคุมในระบบเครือข่ายงานควบคุม (พื้นที่ที่แรเงาเป็นสีแดง) ที่แสดงในภาพด้านล่าง

ตัวควบคุมแบบตั้งโปรแกรมได้จะเป็นแกนหลักของการทำให้เป็นระบบอัตโนมัติของเครื่องจักรในไซต์งานผลิต หากต้องการเพิ่มกำลังการผลิตในไซต์งานผลิต ต้องมีระบบการผลิตที่ทำให้กระบวนการผลิตทั้งหมดเป็นระบบอัตโนมัติด้วยการควบคุม เครื่องจักรทั้งหมดในแต่ละสายการผลิตร่วมกัน

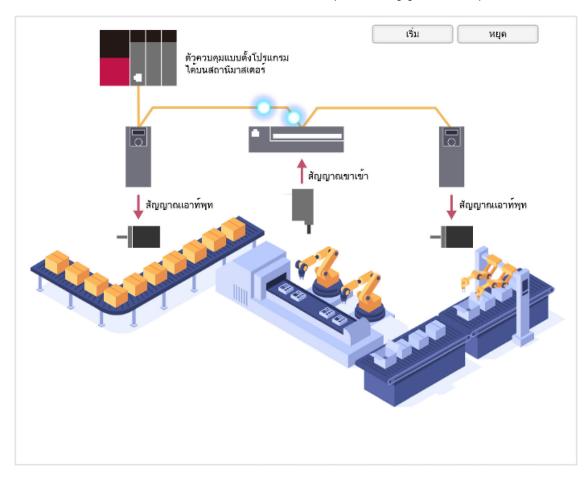

เพื่อให้ระบบนี้เป็นจริงได้ จำเป็นต้องผสานรวมข้อมูลงานควบคุมและข้อมูลงานผลิตที่ประมวลผลโดยตัวควบคุมแบบตั้งโปรแกรมได้ของ เครื่องจักรแต่ละเครื่องเข้าด้วยกัน และจะต้องควบคุมระบบงานผลิตทั้งหมดให้ได้ ดังนั้นจึงต้องใช้ระบบเครือข่ายเพื่อเชื่อมต่อตัวควบคุมแบบตั้ง โปรแกรมได้ทั้งหมด

จะควบคุมระบบงานผลิตทั้งหมดร่วมกันได้ก็ด้วยการต่อประสานระหว่างตัวควบคุมแบบตั้งโปรแกรมได้ตามคำสั่งและสัญญาณควบคุมจากแม่แบบ ตัวควบคุมแบบตั้งโปรแกรมได้

ส่วนนี้อธิบายเกี่ยวกับคุณสมบัติของระบบเครือข่ายตัวควบคุมถึงตัวควบคุม ต่อไปนี้จะแสดงการกำหนดค่าแบบง่ายโดยใช้เครื่องจักรสามเครื่องเป็นตัวอย่าง ตรวจสอบการทำงานของเครื่อง


- ตัวควบคุมแบบตั้งโปรแกรมได้ของเครื่องจักรแต่ละเครื่องมีงานของตัวเอง แต่ละงานมีการประมวลผลบนระบบเครือข่ายเดียวกันเพื่อให้ควบคุม ระบบได้ทั้งหมด
- ตัวควบคุมแบบตั้งโปรแกรมได้แต่ละตัวที่เชื่อมต่อกับระบบเครือข่ายจะต้องมีโมดูล CPU
- งานจะแจกจ่ายไประหว่างตัวควบคุมแบบตั้งโปรแกรมได้มากมายบนระบบเครือข่ายเดียวกัน เพื่อให้โหลดงานประมวลผลบนตัวควบคุมแบบตั้ง โปรแกรมได้ตัวหนึ่งลดลงได้
- ตัวควบคุมแบบตั้งโปรแกรมได้แต่ละตัวจะสรุปผลการผลิตและจะตรวจสอบสถานะการผลิตตามโปรแกรมเชิงลำดับของตัวเอง
- ระบบเครือข่ายนี้ใช้ได้กับหลากหลายระบบ ตั้งแต่ระบบสเกลเล็กที่ประกอบด้วยระบบเครือข่ายเดียวไปจนถึงระบบสเกลใหญ่ที่ประกอบด้วย หลายเครือข่าย

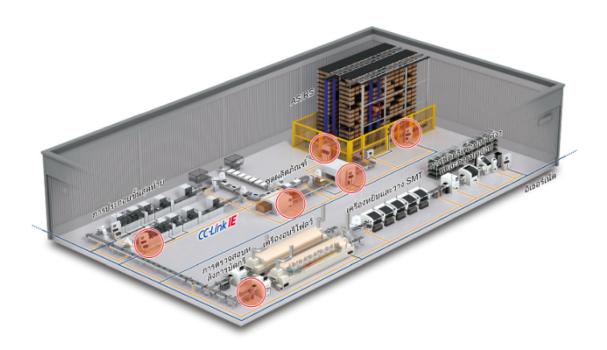
ส่วนนี้อธิบายเกี่ยวกับระบบเครือข่ายฟิลด์ในเครือข่ายงานควบคุม (พื้นที่ที่แรเงาเป็นสีแดง) ที่แสดงในภาพด้านล่าง เราเรียก 'ระบบเครือข่ายฟิลด์' ว่าเป็นระบบเครือข่ายที่เชื่อมต่อตัวควบคุมแบบตั้งโปรแกรมได้กับอุปกรณ์ต่าง ๆ เช่น โมดูลหรือมอเตอร์ I/O ระยะ ไกล


เมื่อเครื่องจักร/อุปกรณ์มีจำนวนมากขึ้น ตัวควบคุมแบบตั้งโปรแกรมได้ตัวหนึ่งจึงจำเป็นต้องประมวลผลสัญญาณ I/O ให้ได้มากขึ้นตามไปด้วย นอกจากนี้ยังต้องติดตั้งสายสัญญาณจำนวนมากเพื่อให้ส่งสัญญาณจำนวนมากไปยังอุปกรณ์/เครื่องมือต่าง ๆ ในเครื่องจักร/อุปกรณ์ ด้วยเหตุนี้ การติดตั้งและการบำรุงรักษาสายสัญญาณจึงใช้เวลานานมาก

วิธีหนึ่งที่จะแก้ปัญหาเหล่านี้ได้ก็คือ ติดตั้งโมดูล I/O ระยะไกลไว้ใกล้กับเซ็นเซอร์และตัวสั่งเริ่มการทำงานในเครื่องจักร และเชื่อมต่อตัวควบคุม แบบตั้งโปรแกรมได้เข้ากับโมดูล I/O ระยะไกลแต่ละตัวโดยใช้สายสื่อสารเพื่อให้ส่งสัญญาณ I/O ร่วมกันได้

ส่วนนี้จะอธิบายถึงคุณสมบัติของระบบเครือข่ายฟิลด์ คลิกปุ่ม [เริ่ม] เพื่อเริ่มเล่นวิดีโอ และปุ่ม [หยุด] เพื่อยุติการเล่น

- อุปกรณ์รีโมต I/O สามารถติดตั้งในเครื่องจักรได้หลายวิธี
- การเชื่อมต่อตัวควบคุมแบบตั้งโปรแกรมได้บนสถานีมาสเตอร์เข้ากับอุปกรณ์รีโมต I/O หลายตัวโดยใช้สายสื่อสารเส้นเดียวสามารถลดการเดิน สายและพื้นที่ได้
- โปรแกรมเชิงลำดับของตัวควบคุมแบบตั้งโปรแกรมได้บนสถานีมาสเตอร์จะส่งสัญญาณ I/O ระหว่างอุปกรณ์รีโมต I/O กับอุปกรณ์ภายนอก
- ระบบเครือข่ายฟิลด์สามารถดำเนินการภายในระบบของอุปกรณ์รับสัญญาณเพื่อควบคุมสายการผลิตขนาดเล็ก

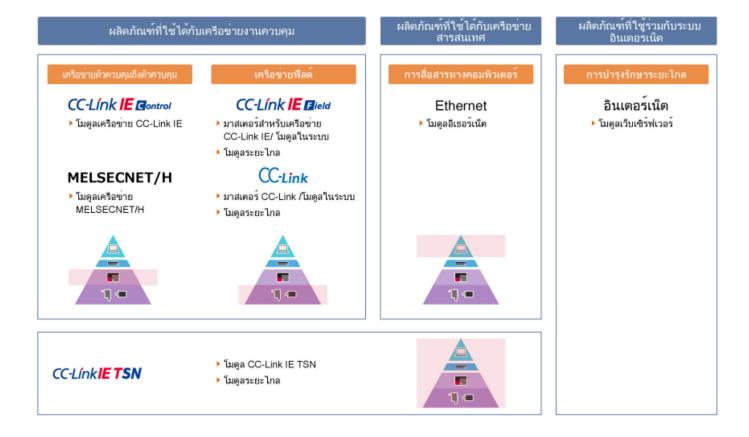

บทที่ 5

ตัวอย่างการใช้งานระบบเครือข่ายในงานอุตสาหกรรม

บทนี้จะอธิบายตัวอย่างการใช้งานระบบเครือข่ายในงานอุตสาหกรรม

- 5.1 ตัวอย่างการใช้งานที่ 1
- 5.2 ตัวอย่างการใช้งานที่ 2
- 5.3 ผลิตภัณฑ์ระบบเครือข่ายสำหรับตัวควบคุมแบบตั้งโปรแกรมได้จากแบรนด์ Mitsubishi Electric

ระบบเครือข่ายในงานอุตสาหกรรมจะใช้ในการจัดเก็บสินค้าระบบอัตโนมัติ ซึ่งปกติจะใช้ในสายงานโลจิสติกส์ในทุกวันนี้ คลิกวงกลมสีแดงด้านล่างเพื่อดูรายละเอียด


ดังคำอธิบายในบทก่อนหน้านี้ ปัจจุบันนี้ระบบเครือข่ายต่อไปนี้กลายเป็นที่นิยมในตลาด: ระบบเครือข่ายที่รับรู้การสื่อสารแบบไร้รอยต่อในระบบ ไอที ที่สร้างค่าที่เพิ่มขึ้นมาใหม่ด้วยการรวบรวมข้อมูลจากอุปกรณ์ต่าง ๆ ในไซต์งานผลิตในเวลาจริง ระบบเครือข่ายตัวอย่าง ได้แก่ CC-Link IE TSN CC-Link IE TSN ใช้ได้ในหลากหลายระบบ สำหรับรายละเอียด โปรดตรวจสอบวิดีโอต่อไปนี้

คลิกปุ่ม [เล่น]

ซึ่งให้บริการโดย CC-Link Partner Association

ผลิตภัณฑ์ประเภทต่าง ๆ ที่รองรับการใช้งานในระบบเครือข่ายมีวางจำหน่ายใน MELSEC ซีรีส์ ผลิตภัณฑ์ตัวอย่างที่สนับสนุนการทำงานโดยตัวควบคุมแบบตั้งโปรแกรมได้ใน MELSEC iQ-R ซีรีส์ มีแสดงไว้ด้านล่างนี้ สำหรับรายละเอียด โปรดดูในแค็ตตาล็อกตัวควบคุมแบบตั้งโปรแกรมได้จากแบรนด์ Mitsubishi Electric และคู่มือผลิตภัณฑ์ที่เกี่ยวข้อง

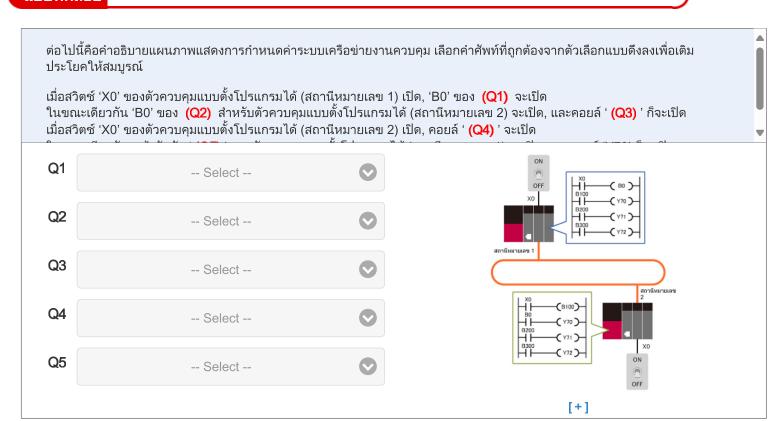
ตอนนี้คุณเรียนครบทุกบทเรียนในหลักสูตร อุปกรณ์ FA สำหรับผู้เริ่มใช้งาน (ระบบเครือข่ายในงานอุตสาหกรรม) แล้ว คุณพร้อมที่จะทำแบบ ทดสอบท้ายหลักสูตรแล้ว หากคุณยังไม่มั่นใจเกี่ยวกับหัวข้อต่างๆ ที่จะทดสอบ โปรดทบทวนหัวข้อเหล่านั้น

คำถามในแบบทดสอบประเมินผลนี้มีทั้งหมด 6 ข้อ (21 รายการ)

คุณสามารถทำแบบทดสอบประเมินผลได้หลายครั้งตามต้องการ

ผลคะแนน

จำนวนคำตอบที่ถูกต้อง จำนวนคำถาม เปอร์เซ็นต์คำตอบที่ถูกต้อง และผลลัพธ์ที่แสดงว่าผ่าน/ไม่ผ่านจะปรากฏบนหน้าผลคะแนน


		1	2	3	4	- 5	6	7	8	9	10	11	12	ร่านวนคำอานที่เหนเล: 28
ลลเกิดเ	แบบทคสอบ 1	✓	✓	✓	X									จำนวนคำถามพิพยเค: 28
	แบบทคสอบ 2	4	✓	4	✓									คำผอบที่ถูกต้อง: 23
	แบบทดสอบ 3	V												
	นมนาเคสอน 4	<	✓											เปอร์เซ็นด์: 82 %
	แบบทดสอบ 5	V	✓											
ลลเรียด์	แบบทดสอบ 6	✓	X	X	X					a				ถูกต้องเกินกว่า
	แบบทดสอบ 7	<	✓	✓	✓									
	แบบทคสอบ 8	✓	1	1	1	1			6	0%	จงจะ	ผาน	การ	ทดสอบ
apribal	แบบทคสอบ 9	X							_					
	แบบพลสอบ 10	V												

21	
การส่งผ่านข้อมูลด้วยวิธีติดต่อโดยตรงหรือส่งแฟกซ์	การส่งผ่านข้อมูลด้วยวิธีวิดีโอคอลหรือส่งอีเมล
การจัดเก็บข้อมูลทั่วไปบนสื่อกระดาษ เช่น เอกสาร สมุด บัญชีแยกประเภท และสลิป	การจัดเก็บข้อมูลทั่วไปในเซิร์ฟเวอร์

ประโยคให้ การสื่อสารร	รมบูรณ์ ข้อมูลเริ่มขึ้นเมื่อแหล่งขอข้อมูลส่ง <mark>(Q1)</mark> ไปยังปลายทางการสื่อสาร และปลายทางการสื่อสารส่งคืนข้อมูลให้กับ <mark>(Q2)</mark>	
Q1	Select	
Q2	Select	

 บนเครือข่ายสามารถเขียนเ 	เละเรียกดูข้อมูล ได้	
Q1	Select	•
Q2	Select	

เลือกคำอธิบายที่ถูกต้องจากตัวเลือกแบบดึงลงเพื่อเติมตารางทางด้านขวาให้สมบูรณ์ Q1 -- Select --Q2 -- Select --การทำงานอย่างมีประสิทธิภาพในไซต์งานผลิตและการลดจำนวน แรงงาน Q3 -- Select --คอมพิวเตอร์, อุปกรณ์ OA Q2 เครือข่ายเฉพาะสำหรับควบคุมอุปกรณ์ Q4 -- Select --ความจุน้อยกว่า (เมื่อเทียบกับเครือข่ายสารสนเทศ) การตอบสนองในทันทีเป็นสิ่งสำคัญ การสื่อสารข้อมูลเกิดขึ้นได้ทุกเมื่อตามความต้องการ Q4 [+]

) อุปกรณ์รีโมต I/O สามารถเ ตัวควบคมแบบตั้งโปรแกรม	ติดตั้งในเครื่องจักรได้หลายวิธี มได้ของเครื่องจักรแต่ละเครื่องมีงานเป็นของตัวเอง แต่ละงานมีกา	รประมวลผลบนระบบเครือข่าย
กันเพื่อให้สามารถควบคุมระบ	บบทั้งหมดได้	
Q1	Select	•
Q2	Select	•
Q3	Select	
Q4	Select	©

ı	1	2	3	4	5	6	7	8	9	10	│ │ จำนวนคำถามทั้งหมด: 18
แบบทดสอบประเมินผล 1	✓										จานวนคาถามทงหมด: IC -
แบบทดสอบประเมินผล 2	√	V									คำตอบที่ถูกต้อง: 18
แบบทดสอบประเมินผล 3	√	√									 เปอร์เซ็นต์: 100 %
แบบทดสอบประเมินผล 4	√	√	✓	√							เบอรเซนต: IUU %
แบบทดสอบประเมินผล 5	√	√	✓	√	✓						
แบบทดสอบประเมินผล 6	✓	✓	✓	✓							y
											ล้าง

คุณเรียนจบหลักสูตร อุปกรณ์ FA สำหรับผู้เริ่มใช้งาน (ระบบเครือข่ายในงาน อุตสาหกรรม) แล้ว

ขอขอบคุณสำหรับการเรียนรู้หลักสูตรนี้

เราหวังว่าคุณจะเพลิดเพลินกับบทเรียน และข้อมูลที่คุณได้รับจากหลักสูตรนี้จะเป็นประโยชน์ในอนาคต คุณสามารถทบทวนหลักสูตรได้หลายครั้งตามต้องการ

ทบท	วน
ปิด	1