MITSUBISHI VACUUM INTERRUPTERS

High reliability Wide range
Compact & Lightweight

New publication effective Oct. 2014.
Specifications subject to change without notice.

http://Global.MitsubishiElectric.com
Features of Mitsubishi Vacuum Interrupters

Compact & Lightweight
Mitsubishi Electric utilizes advanced technology, including the latest in contact materials, arc control and insulating technologies resulting in compact and lightweight vacuum interrupters.

High reliability
Mitsubishi’s distinguished manufacturing process system and over 50 years of experience have established high reliability and an extremely low failure rate. Mitsubishi Electric is the leading manufacturers of vacuum interrupters in the world.

Wide range
Mitsubishi vacuum interrupters have various ratings from 1.5 kV to 84 kV, up to 63 kA short-circuit current, and up to 4,000 A rated current. Applications include vacuum circuit breakers, load break switches, vacuum contactors, and comply with JEC, IEC, ANSI GB, and DL standards and so on. Our high technology enables the following features and more.

- High number of operations
- High number of interruptions
- Low chopping current
- Low contact welding force

History and over 50 years of experience
Since vacuum interrupters were first launched, tremendous strides have been made in Japan. Mitsubishi Electric began the research and development of vacuum interrupters in the early 1960s. Since its first vacuum interrupter entered the market in 1965, Mitsubishi Electric has continued to play a pioneering role in the field. Since then, over 50 years of experience and up to date technologies result in compact and extremely reliable vacuum interrupters making Mitsubishi Electric the leading vacuum interrupter company in Japan. Mitsubishi vacuum interrupters are in service in equipment such as vacuum circuit breakers, vacuum contactors, and load break switches all over the world.

Mitsubishi Vacuum Interrupter History

- 1953 Rectifier tubes such as Ignatron and Thyatron began being manufactured.
- 1962 Basic research of vacuum interrupter started in Research and Development center.
- 1965 6.6 kV Glass vessel type vacuum interrupter was developed.
- 1968 Metallic vessel type vacuum interrupter was developed.
- 1970 36 kV - 25 kA vacuum interrupter was developed.
- 1973 Ceramic vessel type with Cu-Cr spiral contact was developed. 7.2 kV - 40kA vacuum interrupter was developed.
- 1980 Vacuum interrupter export to European customers started. 12.5 kV - 60kA vacuum interrupter was developed.
- 1982 7.2 kV - 12.5 kA low surge type vacuum interrupter was developed.
- 1985 Total production quantity exceeded 0.5 million.
- 1988 Production quantity of vacuum interrupter exceeded 0.1 million per year.
- 1989 Vacuum interrupter plant transferred to Manamite works. Total production quantity exceeded 1 million.
- 1990 Obtained ISO 9001 certification.
- 1998 7.2 kV - 40kA low surge vacuum interrupter was developed. Obtained ISO 14001 certification.
- 2004 Total production quantity exceeded 2.5 million.
- 2008 Total production quantity exceeded 3 million.
- 2011 Total production quantity exceeded 3.5 million.
Vacuum interrupter structure

Fundamentally, a vacuum interrupter consists of a ceramic insulator and two flanges, an arc-shield, bellows, movable and fixed terminals, and two contacts. A high vacuum is maintained inside the vacuum insulator. Contacts are closed and opened by the motion of a movable terminal, which is connected to the operating mechanism. The bellows enable the movable terminal to move while still maintaining the vacuum. When the contacts are closed, a current flows through the fixed terminal and the movable terminal. When the contacts separate, the current is cut off. An arc-shield protects the ceramic insulator from losing its dielectric properties due to the metal vapor which is produced by the contacts during interruption. These parts are brazed together in a high vacuum furnace.

The materials of vacuum interrupter parts are carefully selected to enable excellent electrical characteristics and long life. All the vacuum interrupter’s parts except the guide are made of gas-free materials. The insulator is made with a high percentage of alumina containing ceramics. Also, each part of the vacuum interrupter is RoHS compliant (enforced in July 2006 in Europe).

Advantages of a vacuum

The dielectric strength of a vacuum is superior to other mediums such as air, SF6 gas or oil. The high dielectric strength of a vacuum allows vacuum interrupters to have a very compact design. Also since the arc voltage is very low in a vacuum and insulation recovery after interruption is very fast, the energy of the arc between the contacts is much smaller than in other mediums and the arcing time is very short. As a result, vacuum interrupters can break a large current within a short time with low contact erosion. Additionally, since the interruption takes place within a sealed vacuum bottle, vacuum interrupters enable safe operation and long life, are maintenance free, and do not discharge any hazardous elements.

The interruption of vacuum arcs

When the contacts separate, an arc appears across the contacts and is maintained until the next current zero point. This arc melts the contact material and results in metal vapor. If the arc remains stationary at one point, too much metal vapor is produced due to the local overheating of contacts. As a result, the interruption capacity decreases. Therefore, it is very important to prevent local overheating.

When the current is small and the contact is large enough, the arc will spread by itself, and the interruption is completed successfully. However, if the current is increased, the arc tends to contract and remains stationary at a certain point. Therefore the arc control structure must be effective in increasing the interruption capacity. Mitsubishi Electric uses magnetic field arc control technology. Spiral contacts generate a radial magnetic force to rotate the arc, and the axial magnetic field (AMF) contacts diffuse the arc by axial magnetic force. These contact structures enable a high interruption capacity and a compact design.
Research and Development

Mitsubishi Electric has established consoli-
dated designing and testing methods to
develop reliable products. Mitsubishi vacuum
interrupters are designed based on several
types of analysis and are examined from all
angles. To develop even better vacuum
interrupters, Mitsubishi Electric conducts
research and development on everything
from basic research to the development
of application techniques. This includes the
development of new materials, research on
contact configuration through observation
of arcing, and studies of interruption
performance.

Contact material technology

The contact material is one of the most important factors which determine
the fundamental electrical performance of vacuum interrupters such as
interruption capacity and dielectric strength. Furthermore, low residual gas
is required to ensure long life. Mitsubishi Electric has developed contact
materials and powder metallurgy which produce features such as low
welding force, low chopping current, high dielectric strength, and high
interruption capacity.

Arc control technology

Controlling arc behavior during interruption is greatly effective in increasing
interruption capacity. The shape of the contacts is designed by magnetic
and electrical field analysis, and then the arc behavior is confirmed by high
speed video cameras. A large amount of data and a broad range of
experiments minimize the diameters of the contacts and vacuum
interrupters. Mitsubishi Electric is committed to ongoing research and
development aiming to minimize the sizes of vacuum interrupters to meet
even the most demanding requirements.

Insulation technology

Mitsubishi vacuum interrupters are designed using electrical field analysis,
based on thousands of studies and a vast amount of test data. High voltage
and current conditioning technology enable reliable and high withstand
voltage vacuum interrupters. Mitsubishi’s high insulating technology allows
vacuum interrupters of up to 84 kV of rated voltage.

Arc motion of spiral contacts.
An arc appears across contacts when the
contacts separate. Then the arc moves along the
contact circumference by the magnetic force.

In the case of spiral contacts, an arc across the contacts moves along the
contact circumference by the radial magnetic force, which was generated by
the current flow along the spiral contact.

Contact material technology

Surge voltage

Small currents tend to be cut off before the current falls to zero because of
the high dielectric strength of the vacuum. At that time, surge voltages
occur on the load devices, depending on the chopping current and the
surge impedance of the circuit. Since the surge voltage can affect load
devices, generally surges are prevented by surge protective devices
including CR suppressors. However, Mitsubishi contact material technology
limits this effect by reducing the chopping current.

Insulation technology

Mitsubishi test cell

Demountable chamber
Manufacturing process

Mitsubishi Electric’s many years of experience has established reliable and up-to-date manufacturing procedures. Mitsubishi’s strict manufacturing process system results in an extremely low failure rate.

The strictly controlled materials for vacuum interrupter parts are checked by measurement or mil sheet. Then the parts are washed by an automatic chemical surface treatment to clean and treat the surface. They are then assembled in a clean room in which the dust level is controlled. Then the assembled parts are brazed in a high vacuum furnace. Vacuum furnaces are under a high vacuum to degas the residual gas in the parts. The continuous vacuum furnaces have a preparation room, a heating room, and a cooling room. Products are conveyed from one room to another automatically. Since the heating room is not exposed to the air during the process, the room always maintains a clean atmosphere. The brazing time of a continuous type furnace is much shorter than a batch type furnace, so it can provide a large amount of products efficiently. All the data during the brazing is recorded and the quality of the vacuum in the furnace is measured to check the vacuum furnace atmosphere. The products are checked at every step, and only products which pass stringent checks can proceed to the next procedure based on ISO 9001.

Testing and Measurement

Routine testing of every single vacuum interrupter includes dielectric characteristics and vacuum degree check. After assembly, conditioning by very high voltage to clean contact surfaces and dielectric tests are performed on each vacuum interrupter to ensure high dielectric strength. The degree of vacuum is measured by magnetron method several times and a leakage test is also performed on each vacuum interrupter. Various tests and measurements are performed to ensure high reliability.
Applications

Mitsubishi vacuum interrupters are widely used in vacuum circuit breakers, load break switches, vacuum contactors, on-load tap changers, railway applications and auto reclosers. Mitsubishi vacuum interrupters are accepted worldwide, and have gained a highly regarded reputation for high performance and reliability.
Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.