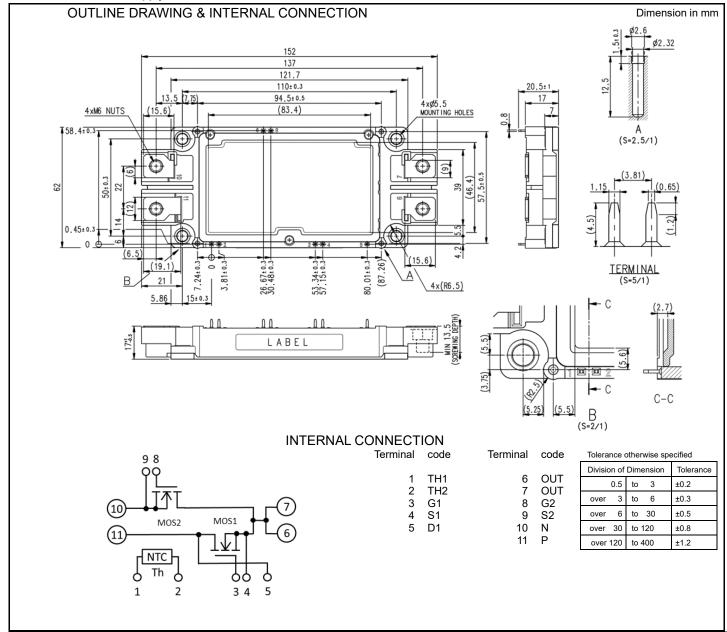


<Full SiC Power Modules>

FMF600DXE-34BN

HIGH POWER SWITCHING USE

INSULATED TYPE



Dual switch (Half-Bridge)

- •Silicon Carbide MOSFET
- Flat base Type
- Copper base plate
- •RoHS Directive compliant
- •Recognized under UL1557, File E323585

APPLICATION

HF converter, Power supply, etc.

1

<Full SiC Power Modules>

FMF600DXE-34BN

HIGH POWER SWITCHING USE

INSULATED TYPE

Symbol	Item	Conditions	Rating	Unit
V_{DSX}	Drain-source voltage	V _{GS} =-7 V, Measurement terminals position(P-OUT, OUT-N) Refer to Switching characteristics test circuit	1700	V
V _{GSS}	Gate-source voltage	D-S short-circuited	+20/-12	V
I _D	Drain current	DC, T _C =42°C (Note.2)	600	^
I _{DRM}	Drain current	Pulse, Repetitive (Note.3), T _{vj} =150°C(Note.4)	1200	7 A
P _{tot}	Total power dissipation	T _C =25 °C (Note. 2)	2500	W
Is (Note1)	Source ourrent	DC	600	^
Isrm (Note1)	Source current	Pulse, Repetitive (Note.3), T _{vj} =150°C(Note.4)	1200	_ A
V _{isol}	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	4000	V
T_{vjmax}	Maximum junction temperature	Instantaneous event (overload) (Note.11)	175	°C
T_{vjop}	Operating junction temperature	Continuous operation (under switching) (Note.11)	-40~+150	°C
T _{Cmax}	Maximum case temperature	(Note.2, 11)	125	°C
T _{stg}	Storage temperature	-	-40~+125	°C

ELECTRICAL CHARACTERISTICS (Tvj=25 °C, unless otherwise specified)

Symbol	Item	Conditions (note	Conditions (note10)		Limits		- Unit
Symbol	item	Conditions			Тур.	Max.	
1	Drain course out off current	V _{DS} =V _{DSX} , V _{GS} =-7 V	V _{DS} =V _{DSX} , V _{GS} =-7 V		-	1.0	m A
I _{DSX}	Drain-source cut-off current	V _{DS} =1000V, V _{GS} =-7 V		-	-	1.0	mA
$V_{GS(th)}$	Gate-source threshold voltage	I _D =229 mA, V _{DS} =10 V		1.8	2.5	3.2	V
I _{GSS}	Gate-source leakage current	V _{GS} =V _{GSS} , D-S short-circuited		-	-	0.5	μA
			T _{vj} =25 °C	-	1.62	2.75	
$V_{DS(on)}$	Drain-source on-state voltage	I _D =600 A, V _{GS} =15V (Note.6)	T _{vj} =125 °C	-	2.36	-	V
(terminal)			T _{vj} =150 °C	-	2.65	-	
			T _{vi} =25 °C	=	1.35	-	
$V_{DS(on)}$	Drain-source on-state voltage	I _D =600 A, V _{GS} =15V (Note.6)	T _{vi} =125 °C	-	2.09	-	V
(chip)			T _{vi} =150 °C	-	2.38	-	
			T _{vj} =25 °C	-	2.25	-	
$r_{\text{DS(on)}}$	Drain-source on-state resistance	I _D =600 A, V _{GS} =15V (Note.6)	T _{vi} =125 °C	-	3.48	-	mΩ
(chip)		, , , , , , , , , , , , , , , , , , , ,	T _{vi} =150 °C	-	3.97	-	
Ciss	Input capacitance		V _{DS} =10 V, V _{GS} =0V		55	-	nF
Coss	Output capacitance	V _{DS} =10 V, V _{GS} =0V			23	-	
Crss	Reverse transfer capacitance				2	-	
Q _G	Gate charge	V _{DD} =900 V, I _D =600 A, V _{GS} =0→15	V _{DD} =900 V. I _D =600 A. V _{GS} =0→15 V		1890	-	nC
t _{d(on)}	Turn-on delay time			-	100	-	
t _r	Rise time			-	60	-	ns
t _{d(off)}	Turn-off delay time			-	190	-	
t _f	Fall time	V _{DD} =900 V, I _D =600 A, V _{GS} =+15 /	-7 \/ T.:=150°C	-	40	-	
t _{rr} (Note1)	Reverse recovery time	$R_{G(on/off)} = 1.2 / 0.75 \Omega, L_{s ext} = 13.2$		-	110	-	
Eon	Turn-on switching energy	Inductive load, per pulse	·	-	36	-	
E _{off}	Turn-off switching energy			-	11	-	mJ
E _{rr} (Note1)	Reverse recovery energy			-	18	-	
Q _{rr} (Note1)	Reverse recovery charge			-	32	-	μC
	,g.		T _{vj} =25 °C	-	4.47	5.50	
V _{SD} (Note.1)	Source-drain voltage	I _S =600 A ^(Note.6)	T _{vi} =125 °C	-	4.11	-	V
(terminal)		V _{GS} =-7 V	T _{vi} =150 °C	-	4.04	-	1
			T _{vi} =25 °C	-	4.20	-	
$V_{\text{SD}}^{\text{(Note.1)}}$	Source-drain voltage	Is=600 A (Note.6)	T _{vj} =125 °C	-	3.84	-	V
(chip)	Course-drain voltage	VGS/ V	T _{vi} =150 °C	-	3.77	_	-

Caution: Short-circuit capability is not designed.

<Full SiC Power Modules>

FMF600DXE-34BN

HIGH POWER SWITCHING USE

INSULATED TYPE

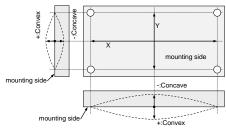
THERMAL R	ESISTANCE	CHARACT	ERISTICS
-----------	------------------	---------	----------

Symbol	Item	Conditions	Limits			Unit
			Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$	Thermal resistance ^(Note. 2)	Junction to case, per inverter switch	-	1	60	K/kW
R _{th(c-s)}	Contact thermal resistance ^(Note.2)	Case to heat sink, per 1 module,		15	-	K/kW
		Thermal grease applied (Note.8, 11)	-	- 15		r/KVV

NTC THERMISTOR PART

Symbol	Item	Conditions	Limits			Unit
			Min.	Тур.	Max.	Uill
R ₂₅	Zero-power resistance	T _C =25 °C (Note.2)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	T _C =100 °C (Note.2) ,R ₁₀₀ =493 Ω	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note.7)	-	3375	-	K
P ₂₅	Power dissipation	T _C =25 °C (Note.2)	-	-	10	mW

MODULE


Symbol	ltom	Conditions		Limits			Unit
Symbol Item		Conditions		Min.	Тур.	Max.	Offic
M_t	Mounting torque	Main terminals	M 6 screw	3.5	4.0	4.5	N·m
Ms		Mounting to heat sink	M 5 screw	2.5	3.0	3.5	N·m
ec	Flatness of base plate	On the centerline X, Y (Note.5)		0	-	+100	μm

Symbol	Item	Conditions	Value	Unit
m	mass	-	415	g
۵	Clearance	Terminal to terminal	10.0	m.m.
da		Terminal to base plate	8.2	mm
d	Creepage distance	Terminal to terminal	17.4	mana
ds		Terminal to base plate	16.0	mm
R _{DD'+SS'}	Internal lead resistance	P-S1, OUT-S2 terminals, per switch	0.45	mΩ
Ls	Internal stray inductance	P-N	9	nH
r _g	Internal gate resistance	Per switch	0.25	Ω

^{*:} This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU and (EU)2015/863.

Note1. Represent ratings and characteristics of the MOSFET body diode.

- 2. Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
- 3. Pulse width and repetition rate should be such that the device junction temperature (Tvj) does not exceed Tvjmax rating.
- 4. Junction temperature (T $_{\nu\,j}$) should not increase beyond T $_{\nu\,j\,m\,a\,x}$ rating.
- 5. The base plate (mounting side) flatness measurement points (X,Y) are as follows of the following figure.

6. Pulse width and repetition rate should be such as to cause negligible temperature rise.

7.
$$B_{(25/50)} = ln(\frac{R_{25}}{R_{50}})/(\frac{1}{T_{25}} - \frac{1}{T_{50}})$$

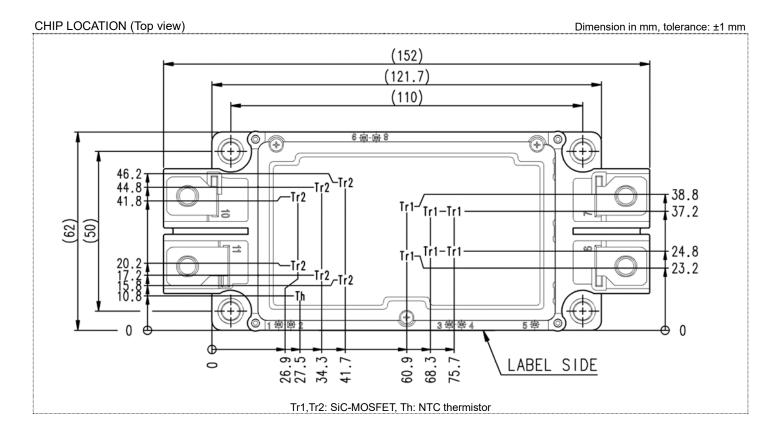
 $R_{25}\!\!:$ resistance at absolute temperature T_{25} [K]; $T_{25}\!\!=\!\!25$ [°C]+273.15=298.15 [K]

 R_{50} : resistance at absolute temperature T_{50} [K]; $T_{50}\text{=}50$ [°C]+273.15=323.15 [K]

- 8. Reference value. Thermally conductive grease of λ =0.9 W/(m·K).
- 9. Use the following screws when mounting the printed circuit board (PCB) on the standoffs.

"φ2.6×10 or φ2.6×12, B1 tapping screw"

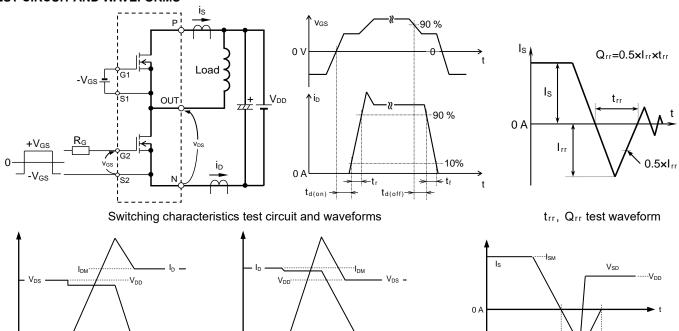
The length of the screw depends on the thickness (t1.6) of the PCB.


- 10. Per switch.
- 11. Long term performance related to thermal conductive grease (including but not limited to aspects such as the increase of thermal resistance due to pumping out, etc.) should be verified under your specific application conditions. Each temperature condition (T_{Vj max}, T_{Vj op}, T_{C max}) must be maintained below the maximum rated temperature throughout consideration of the temperature rise even for long term usage.

HIGH POWER SWITCHING USE

INSULATED TYPE

Symbol	Item	Conditions	Limits			I Imia
			Min.	Тур.	Max.	Unit
V_{DD}	(DC) Supply voltage	Applied across P-N terminals	-	900	1200	V
V _{GS(+)}	Gate-Source drive positive voltage	Applied across G1-S1, G2-S2 terminals	13.5	15	16.5	V
V _{GS(-)}	Gate-Source drive negative voltage	Applied across G1-S1, G2-S2 terminals	-8.5	-7	-5.5	V
R _{G(on)}	External gate turn-on resistance (Note.12)	Per switch	1.2	-	6.0	Ω
R _{G(off)}	External gate turn-off resistance (Note.12)	rei swilch	0.75	-	6.0	1 12


Note 12. The value of external gate resistance should be considered the surge voltage not to exceed the rating voltage in the worst system condition.

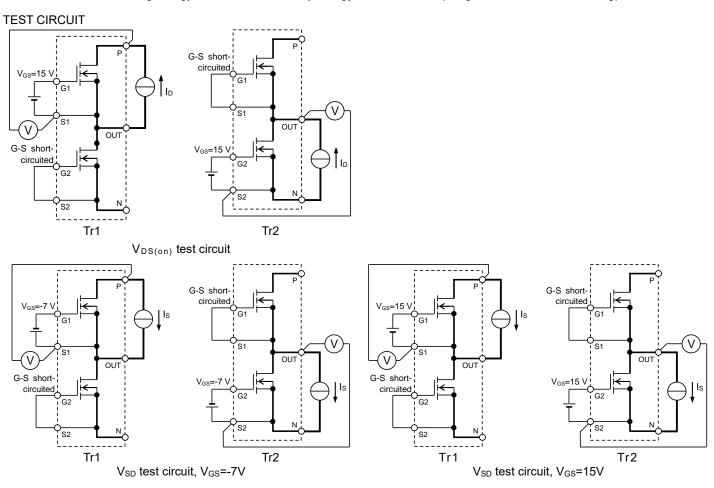
HIGH POWER SWITCHING USE

INSULATED TYPE

MOSFET Turn-on switching energy

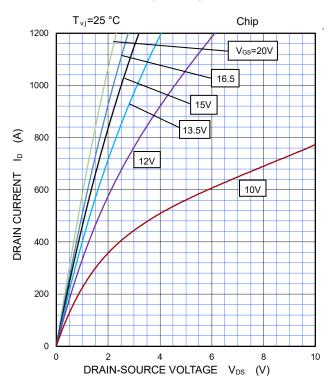
0.1xl

MOSFET Turn-off switching energy

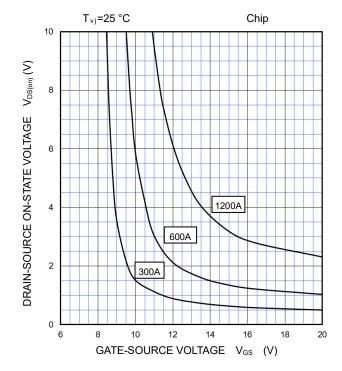

0.1xVnr

MOSFET body diode Reverse recovery energy

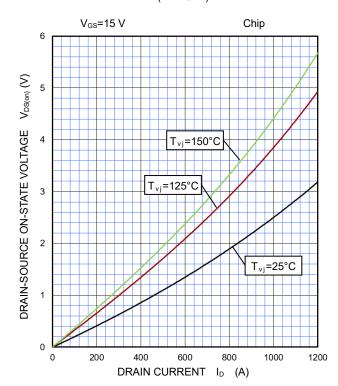
Switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)


0.02×I_{DM}

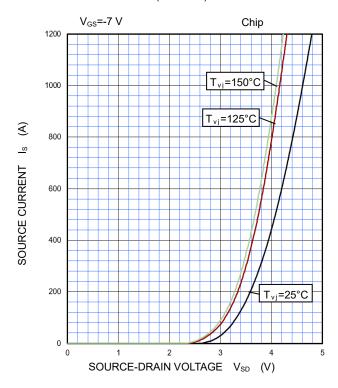
0 V

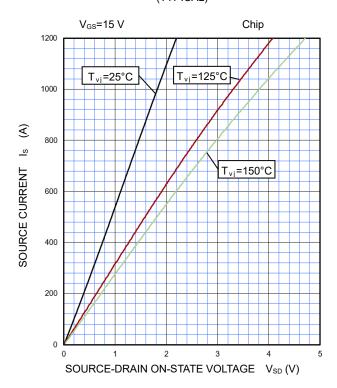


PERFORMANCE CURVES

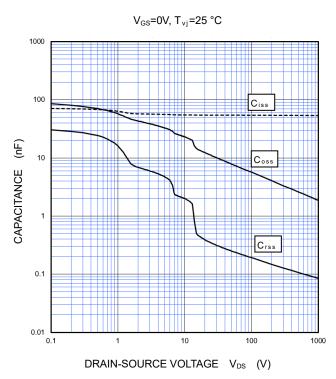

OUTPUT CHARACTERISTICS (TYPICAL)

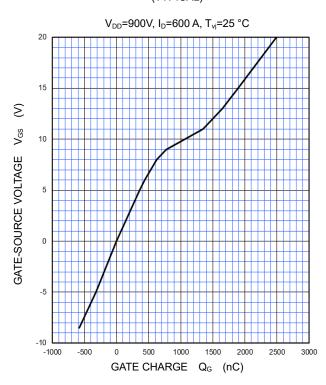
DRAIN-SOURCE ON STATE VOLTAGE CHARACTERISTICS (TYPICAL)


DRAIN-SOURCE ON STATE VOLTAGE CHARACTERISTICS (TYPICAL)


INSULATED TYPE

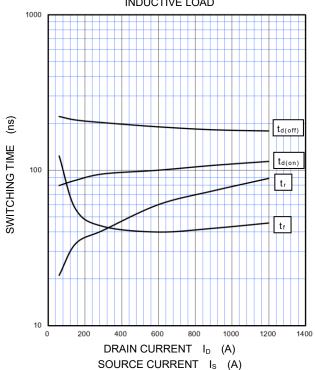
PERFORMANCE CURVES


MOSFET BODY DIODE FORWARD CHARACTERISTICS (TYPICAL)

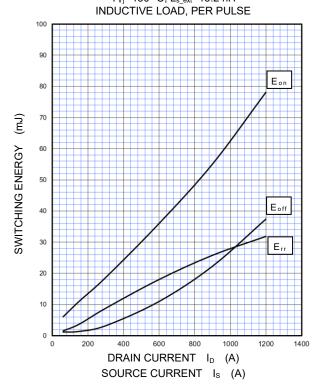

SOURCE-DRAIN ON STATE VOLTAGE CHARACTERISTICS (TYPICAL)

CAPACITANCE CHARACTERISTICS (TYPICAL)

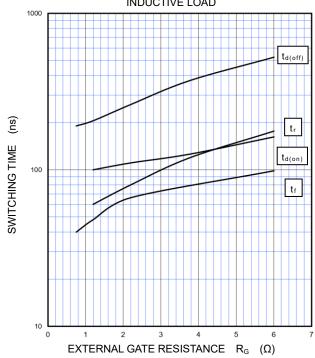
GATE CHARGE CHARACTERISTICS (TYPICAL)

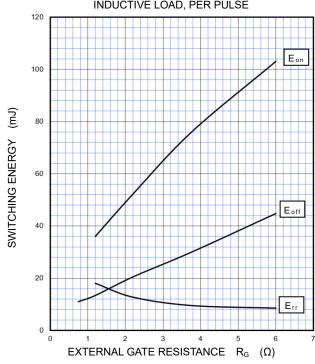


HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

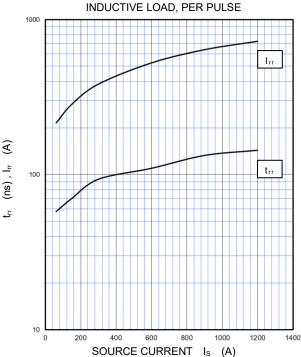
HALF-BRIDGE SWITCHING CHARACTERISTICS


 $\label{eq:typical} \begin{array}{c} \text{(TYPICAL)} \\ \text{V}_{\text{DD}}\text{=}900 \text{ V, V}_{\text{GS}}\text{=}15 \text{ / -7 V, R}_{\text{G(on/off)}}\text{=}1.2 \text{ / }0.75\Omega, \\ \text{T}_{\text{vj}}\text{=}150 \text{ °C, L}_{\text{s_ext}}\text{=}13.2 \text{ nH} \\ \text{INDUCTIVE LOAD} \end{array}$

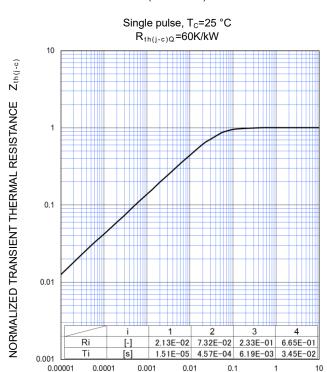

$\begin{array}{c} \text{HALF-BRIDGE} \\ \text{SWITCHING CHARACTERISTICS} \\ \text{(TYPICAL)} \\ \text{V}_{\text{DD}} = 900 \text{ V, V}_{\text{GS}} = 15 \ / \ -7 \text{ V, R}_{\text{G(on/off)}} = 1.2 \ / \ 0.75\Omega, \\ \text{T}_{\text{Vj}} = 150 \ ^{\circ}\text{C, L}_{\text{s_ext}} = 13.2 \ \text{nH} \end{array}$

$\begin{array}{c} \text{HALF-BRIDGE} \\ \text{SWITCHING CHARACTERISTICS} \\ \text{(TYPICAL)} \\ \text{V}_{\text{DD}} = 900 \text{ V, V}_{\text{GS}} = 15 \text{ / -7 V, I}_{\text{D}} = 600 \text{ A,} \\ \text{T}_{\text{vj}} = 150 \text{ °C, L}_{\text{s_ext}} = 13.2 \text{ nH} \\ \text{INDUCTIVE LOAD} \end{array}$

 $\begin{array}{c} \text{HALF-BRIDGE} \\ \text{SWITCHING CHARACTERISTICS} \\ \text{(TYPICAL)} \\ \text{V}_{\text{DD}} = 900 \text{ V, V}_{\text{GS}} = 15 \text{ / -7 V, I}_{\text{D}} = 600 \text{ A,} \\ \text{T}_{\text{vj}} = 150 \text{ °C, L}_{\text{s_ext}} = 13.2 \text{ nH} \\ \text{INDUCTIVE LOAD, PER PULSE} \end{array}$

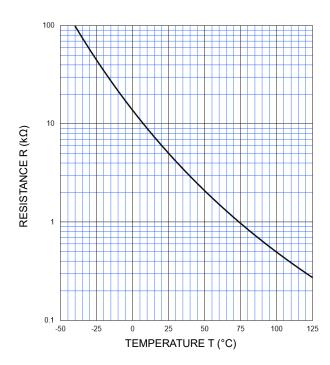


HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

MOSFET BODY DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

 $\begin{array}{c} V_{DD} \! = \! 900 \; V, \; V_{GS} \! = \! 15 \; / \; - 7 \; V, \; R_{G(on/off)} \! = \! 1.2 \; / \; 0.75\Omega, \\ T_{vj} \! = \! 150 \; ^{\circ}C, \; L_{s_ext} \! = \! 13.2 \; nH \end{array}$


TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)

TIME (S)

NTC thermistor part

TEMPERATURE CHARACTERISTICS (TYPICAL)

Note: The characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

HIGH POWER SWITCHING USE

INSULATED TYPE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
- Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).
- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

Generally the listed company name and the brand name are the trademarks or registered trademarks of the respective companies.

© Mitsubishi Electric Corporation