Changes for the Better

FACTORY AUTOMATION

Low Voltage Air Circuit Breakers <Catalog>

Mitsubishi Presents the WS Series, Satisfied with the High Demands of the 21st Century Global Market.

Line up (630 to 6300A)

Warranty period and warranty coverage

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi Electric occurs during use of the product within the warranty period, the product shall be repaired at no cost via the sales representative or Mitsubishi Electric Sales office. However, if repairs are required on-site at domestic or overseas locations, expenses to send an engineer will be charged.

1. Warranty period

The warranty period of the product shall be for twelve (12) months after the date of purchase or delivery to the designated place. Note that after manufacture and shipment from Mitsubishi Electric, the maximum distribution period shall be six (6) months, and the longest warranty period after manufacturing shall be eighteen (18) months.
The warranty period of the repaired parts shall not exceed the warranty period of the original product before repairs.
2. Warranty coverage
(1) The primary failure diagnosis should be performed by users. However, if required by users, Mitsubishi Electric or Mitsubishi Electric Sales office may be able to perform the diagnosis. In that case, for damages caused by any cause found to be the responsibility of Mitsubishi Electric, the diagnosis will be performed at no cost. For details, contact a distributor.
(2) The coverage shall be limited to ordinary use within the usage state, usage methods, usage environment, and other conditions which follow the instructions and precautions given in the instruction manual, user's manual, and caution labels on the product.
(3) Even within the warranty period, repair cost shall be charged for the following cases.
[1] Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by selection of hardware or software design on the user side.
[2] Failure caused by modifications, etc. to the product by the user without any approvals from Mitsubishi Electric.
[3] In case Mitsubishi Electric product is assembled into a user's device, failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
[4] Failure that could have been avoided if the maintenance described in the user's manual has been performed.
[5] Failure caused by external irresistible forces such as fires or abnormal voltages, and failure caused by natural disasters such as earthquakes, lightning, wind and water damages.
[6] Failure caused by reasons unpredictable based on scientific technology standards at the time of shipment from Mitsubishi Electric.
[7] Any other failure found not to be the responsibility of Mitsubishi Electric or that admitted not to be so by the user. In addition, the warranty applies only to the product delivered. It does not apply to the damage that is caused by the failure of the product.
3. The period to supply the spare parts after discontinuation of production

Mitsubishi Electric shall supply spare parts for five years after discontinuation of production.
After five years, Mitsubishi Electric shall supply spare parts until the spare parts run out of stock.

Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the warranty period, Mitsubishi Electric shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi Electric.
(2) Loss in opportunity, lost profits incurred to the user by failures of Mitsubishi Electric product.
(3) Damages whether foreseeable or not, secondary damages, compensation for accidents, and compensation for damages to products other than Mitsubishi Electric products, caused by exceptional situations.
(4) Compensation for cost occurring secondarily from replacement work by the user, maintenance of on-site equipment and start-up test run and other operations.

Product applications

(1) When using the products listed in this catalogue, the following conditions must be confirmed and obeyed. The product must be used so that a failure that occurs to the product does not lead to a serious accident. When a damage or failure occurs, the external backup function or fail-safe function must be executed systematically.
(2) The products listed in this catalogue are designed and manufactured as general-purpose products for application to the general industry field. Therefore, the warranty does not apply to the following special uses.
[1] The use that has a significant influence on the public facilities such as nuclear power plants and other power plants of power companies.
[2] The use for railway companies, government offices, etc. that require to build the special quality assurance system.
[3] The use for aerospace equipment, medical equipment, railway equipment, combustion and fuel equipment, passenger vehicles, manned transportation equipment, recreational equipment, safety equipment, and air conditioner for servers and the cooling facilities that are expected to have a significant influence on life, body, and property.
If the products listed in this catalogue are used for the above mentioned special uses, Mitsubishi Electric does not take any responsibility for the quality, performance, and safety of the product, which includes, but is not limited to, default liability, defect liability, quality assurance liability, tort liability, and product liability. However, in case the special quality (beyond general specifications) is not required and the use is a limited purpose and the backup/ fail-safe functions are equipped with the facility, Mitsubishi Electric may determine that the products listed in this catalogue can be guaranteed. For details, consult a distributor or Mitsubishi Electric.

Safety precautions

- Before using this product, read "Safety precautions" and the user's manual carefully and use it correctly.
- Important safety instructions are given below. Strictly observe the instructions.
- Be sure to instruct the end user with these safety precautions.

Meaning of indications

! DANGER	Incorrect handling of the product will result in a hazardous situation, such as death or serious injury.
A CAUTION	Incorrect handling of the product may result in a hazardous situation according to circumstances.
\bigcirc	This means prohibition. Never ignore this instruction.
蕆	Warning for possible outbreak of a fire under certain conditions.

§ DANGER

- Do not use the product under the conditions with over-rated current. Otherwise, ground-fault or short circuit fault could occur due to dielectric breakdown, or explosion could occur due to a short circuit protection failure.
- Do not touch terminal area. There is a risk of electrical shock.

CAUTION

- The electrical work shall be performed by qualified personnel (electrical expert).
- Inspection and maintenance should be performed by qualified personnel (electrical expert). Before performing wiring works, turn off the upstream circuit breaker. Failure to do so may expose you to electrical shock.
- Tighten the terminal screw with the torque specified in the instruction manual. Failure to do so may cause a fire.
- Do not install or store in an abnormal environment with high temperature, high humidity, dust, corrosive gas, vibrations, or shocks, etc. To do so may cause a fire, malfunction of the circuit breaker or make it inoperative.
- Protect the circuit breaker so that foreign particles, such as dust, concrete powder and iron powder, and rain water will not enter the circuit breaker. Failure to do so may cause malfunction or fire.
- When the circuit breaker trips automatically, remove the cause before turning on the handle. Failure to do so may cause an electric shock or a fire.
- Retighten the terminals periodically. Failure to do so may cause a fire.
- Use the product in $50 / 60 \mathrm{~Hz}$. Failure to do so may cause malfunction, inoperativeness or fire.
- Dispose of the product as industrial waste.

Changes in product specifications

The specifications of the product listed in this catalogue, manuals or technical documents are subject to change without prior notice.

Best Solution

Through Flexible and Various Options,To be Built up the Suitable Functions.

Electronic Trip Relay

Main setting module

1
With interchangeable \& add-on modules, flexible functions built up.

Protection with power from Internal CT The Over current protection and Ground fault protection can work with power from Internal CT, even if the control power source is off. For the Trip indicator LED and the additional functions like EX1/EX2, DP1/DP2, TAL and Network, the control power source is required.

-Secure protection by actual effective value detection

 For spread of electronic devices such as inverter, the actual effective value detection method is adopted, which is strong against deformed waveform and is detected from each phase independently .

WS relay with ampere meter and fault memory (DP3)

Network

CC-Link	Current, Voltage*, Power*, Harmonics*, etc.
	Tripping cause, Tripping current
	Olarm (PAL, TAL, Self diagnosis, etc.)
Breaker status	Spring charge by MD
	On or OFF or Charge state
	Drawout position
	ETR Setting value

Note*: The VT unit is required to display the measured data except for the load current.

Communication items

I/O unit

ON, OFF, Spring charge, Digital input
Option to interface unit I/O unit enables to turn ON/OFF the breaker and the spring charge via network. And by addition of the drawout position switch, it is possible to transmit the breaker drawout position.

Display unit for Panel board

It has the same function as the breaker display unit (DP1). In the case where the breaker is installed in the panel, it becomes possible to view the measurement information from the outside of the panel board.

Note : The VT unit is required to display the measured data except for the load current.

VT unit

VT
VT unit enables to measure voltages, electric powers, harmonics and etc.

Electronic Trip Relay type code

Product Features

■ High-Performance High-Reliability The safety of valuable circuits can be securely maintained.

Higher short circuit protection performance by improving breaking capacity

In case of 690V AC, Icu = Ics improved from 50 kA to 65 kA for AE630-SW~AE2000-SWA from 50 kA to 75 kA for AE2000-SW~AE4000-SWA from 50 kA to 85 kA for AE4000-SW~AE6300-SW

Wide coordination range by improving rated short-time withstand current

Icw (1s) improved
from 65 kA to 75 kA for AE2000-SW~AE4000-SWA
from 85 kA to 100 kA for AE4000-SW~AE6300-SW

ICW (1s) (Rated short-time withstand current)

(1) For 600 to 690 VAC , Icw at 1 s is 85 kA
(kA)
Icw

Higher safety by improving insulation performance
Rated impulse withstand voltage (Uimp) for the main circuit is improved from 8 kV to 12 kV .

Uimp (Rated impulse withstand voltage)
$8 \mathrm{kv}>12 \mathrm{kV}$

Higher reliability by High operating durability

Mechanical

AE-SW series are sharply improved in mechanical durability compared to the former model.

\square Customer Friendly

Convenience for Customer

3 sizes

Replacement from the former model (AE-SS)
AE-SS Manufacturing period 1991 ~ 2007

- Due to the same installation dimension and outline dimension, the former model (AE-SS) can be replaced with AE-SW series.

■ For the replacement of Drawout type, the Drawout fames (Cradle) for AE-SS have to be replaced with one for AE-SW.

- AE-SW can be installed to the existing connection bus bar without any special connection kit.
(Except for AE2000-SWA and AE4000-SWA)

Replacement from the old model (AE-S)
AE-S Manufacturing period 1982 ~ 1991
For the replacement from the old model (AE-S), the special adapter for AE-SW is prepared. (It is available for Drawout type only.) For details, please contact us.

Zero arc space

Arc exhaust to the outside of the breaker is drastically reduced for safer operation.
(For AE630-SW~AE4000-SWA models, 600V AC or less)
(Refer to page 60 : Insulation distance)

Compact size AE2000-SWA!

The compact AE2000-SWA can reduce the panel size.

Reverse connection available

Line and Load are not defined on the Main circuit terminals. Therefore, reverse connection is available without any limitation.

Appearance and Product structure

Fixed type

AE-SW Series

AE1600-SW 3P

1) Arc extinguishing chamber
(2) Control circuit terminal block
(3) Electronic trip relay
(4) OFF button
(5) ON button
(6) Padlock hook ($\left.\begin{array}{l}\text { allows a padlock to be } \\ \text { attached to the OFF button }\end{array}\right)$
(7) Charging indicator

8 ON/OFF indicator
(9) Manual reset button(Optional)

For the fixed type, Lifting hooks (HP) are attached.

Drawout type

(1) Cradle
(2) Control circuit terminal block
(3) Lifting hole
(4) Charging handle
(5) Drawout position indicator
(6) Extension rail
(7) Lock plate

8 Aperture for the drawout handle
(9) Drawout handle
(10) Cell switch (Optional)

Skeleton

Product configuration

1
Type
AE630-SW

AE630-SW
AE1000-SW
AE1250-SW
AE1600-SW AE2000-SWA AE2000-SW AE2500-SW AE3200-SW AE4000-SWA AE4000-SW AE5000-SW
AE6300-SW

2

Standard
IEC 60947-2
EN 60947-2(CE)
JIS C 8201-2-1
GB/T 14048.2(CCC)
(Marine Approvals) LR BV DNV GL ABS CCS* NK
*Except for AE4000-SW~
AE6300-SW

3

5
Electrical accessories
Auxiliary switch
Motor charging device Closing coil
Shunt trip device Under voltage trip device

6	7	8	9
Mechanical accessories	Electronic trip relay	Relay accessories	Network
Push button cover Counter Cylinder lock Terminal cover Door frame Dust cover Interphase barrier Mechanical interlock	General use WS type Generator protection use WM type Special use WB type Protective coordination use WF type	Extension module Display Temperature alarm MCR switch Neutral CT External ZCT VT unit	CC-Link Interface unit MODBUS Interface unit I/O unit

Product Specification

- Specification

(Note 1) This is the Icu value when the bare main body and the external relay are combined.
(Note 2) The number of operating cycles without rated current also includes the number of operating cycles with rated current.
(Note 3) AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW apply for only vertical terminal of connecting terminal.
(Note 4) This value is max. operating cycle for just ACB body without any accessories.
(The max. operating cycles for the accessories like AX, MD, CC, SHT and UVT are half of this value.)
(Note 5) Products with low rating types are available. For AE630-SW low rating types (250A, 315A, 500A), DP3 is not available.

AE 630-SW 3 kinds of products with low rating types are available. 250-275-300-325-350-375-400-425-450-475-500(CT 500A) - 157.5-173.3-189-204.8-220.5-236.3-252-267.8-283.5-299.3-315(СТ 315A) - 125-137.5-150-162.5-175-187.5-200-212.5-225-237.5-250(CT 250A)

AE 2000-SW 2 kinds of products with low rating types are available.
. 800-880-960-1040-1120-1200-1280-1360-1440-1520-1600(CT 1600A) - 625-687.5-750-812.5-875-937.5-1000-1062.5-1125-1187.5-1250(CT 1250A)
Γ

(Note 6) This value means the instantaneous breaking time at shortcircuit interruption As for accessories (SHT, UVT), refer to page 13 and 14.
(Note 7) 4(HN) means the neutral poles current capacity is 50% of the rated current, for 4 poles. $4(\mathrm{FN})$ means the neutral poles current capacity is 100% of the rated current, for 4 poles
(Note 8) () shows the value for 4P FN type.
(Note 9) Marine approval value is 138 kA .
(Note 10) For WM relay, the current setting Ir can be set by 1 A except AE630-SW low rating types "CT315A" and "CT250A". For AE630-SW with "CT315A" and "CT250A", it can be set by 0.1 A
(Note 11) As for selectable connection, please refer to page 13.
(Note 12) These weights include an electronic relay, but don't include other accessories (Note 13) For $600 \sim 690 \mathrm{~V}$ AC, Icw at 1 s is 85 kA
(Note 14) This product is designed on the basis of environment A. When used under environment B, it might cause electromagnetic interference, and the user would be asked to do countermeasures to reduce these interference.
(Note 15) The number of operating cycles is the guideline for the life of the open/close operation in the standard operation environment. These are not guaranteed values.
(Note 16) This is the guideline for the life of the open/close operation when periodic inspection and maintenance are performed and consumable parts are not replaced
(Note 17) This is the guideline for the life of the open/close operation when periodic inspection and maintenance are performed and consumable parts are replaced.

Connections

Over view (AE630~1600-SW, AE2000~3200-SW)

Connections Type	Horizontal	Vertical (VT)	Front (FT)	Vertical terminal adapter (VTA)	Front terminal adapter (FTA)
Fixed type (FIX)		-	-	FIX-VTA	FIX-FTA
Drawout type (DR)		DR-VT			

Over view (AE2000-SWA, AE4000-SWA, AE4000~6300-SW)

	Vertical (VT)	Standard
Fixed type (FIX)	FIX-VT	
Drawout type (DR)	DR-VT	

- Connection image : AE2000-SWA, 3-pole type - For AE2000-SWA, AE4000-SWA, AE4000-SW, AE5000-SW and AE6300-SW models, vertical terminal only is available.

Available connections

Breakers Connections		AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA	AE4000-SW	AE5000-SW	AE6300-SW
Fixed type (FIX)	Horizontal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	FIX-VT	-	-	-	-	\bigcirc	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	FIX-VTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	FIX-FTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
Drawout type (DR)	Horizontal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	DR-VT	\bigcirc											
	DR-FT	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	DR-VTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-
	DR-FTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-

Manual charging

1

Motor charging device (MD)

Option

The closing spring is charged by an electric motor. When the breaker is closed, the spring is charged automatically (ON-charge method). The closing coil (CC) is required to remotely close the breaker, and the shunt trip device is required to remotely open the breaker.

- Manual charging operation is also possible.

Pumping prevention is assured both electrically and mechanically.
As the charging completion contact is separate from the electrical charging circuit, its function in the control scheme can be arranged as desired.

OFF charging method

OFF charging method is also available. The closing spring is charged automatically when the breaker is opened. This is available only by externally connecting b contact (AXb) of the auxiliary switch to the motor charging circuit in series. In case of DC power supply, please use high capacity auxiliary switch (HAX).

The closing spring is charged by the manual charging handle. The breaker is closed when the ON button is pressed, and opened when the OFF button is pressed.

When the closing spring is completely charged, the charging indicator will show "CHARGED".

- Please close the breaker after the charging indicator turned to "CHARGED".
- The indicator shows the ON or OFF state of the main contacts.
- The breaker cannot be closed while the OFF button is being pressed. (Safety design)

OFF lock is enabled by padlock (See P9, P19) as standard.

Polarity of DC circuit use

Motor charging rating

Rated voltage (V)	Applicable voltage range (V)	Applied voltage (V)	Inrush		Steady current (A)	Charging time (s)	Criterion for power requirement (VA, W)
			Current [Peak value] (A)	time (s)			
24DC	18~26.4	24	22	< 0.4	6	≤ 5	
48DC	36 ~ 52.8	48	14	<0.4	3		
AC/DC	$85 \sim 137.5$	100	10(10)	$\begin{aligned} & \mathrm{AC}:<0.45 \\ & \mathrm{DC}:<0.25 \\ & \hline \end{aligned}$	3(4)		700
100-125		125	12(12)		3(4)		1000
AC/DC	170 ~ 275	200	5(7)	$\begin{aligned} & \mathrm{AC}:<0.45 \\ & \mathrm{DC}:<0.25 \\ & \hline \end{aligned}$	1(2)		700
200-250		250	6(8)		1(2)		1000

Values in parentheses show values for AE4000-SWA 4 pole and AE4000-SW ~ AE6300-SW.
We cannot manufacture AE4000-SWA 4 pole and AE4000-SW ~ AE6300-SW in 24 V DC and 48V DC rating.
These values are for reference, not guaranteed values. Common use for 50 and 60 Hz in AC.

Charging completion contact rating

Voltage (V)	Current (A)		
	Resistance load	Inductive load	
AC $(50 / 60 \mathrm{~Hz})$	460	5	2.5
	250	10	10
	125	10	10
DC	250	3	1.5
	125	10	6
	30	10	10

Accessories (for breaker unit)

8

Closing coil (CC)

Option

2

The closing coil is a device to close the breaker by remote control.

- An interlock to prevent pumping is provided electrically

Rated voltage (Applicable voltage range)	Operating voltage - Operating inrush current (VA)		Closing time (Note1)
	AC	DC	
$\underset{(18 \sim 52.8)}{24-48 \mathrm{VC}}$	-	24 V DC 3.0A (100W)	$0.08 \mathrm{~s}$or less
	-	48V DC 6.0A (200W)	
$100-250 \mathrm{VAC} \cdot \mathrm{DC}$ common (75-275)	100 V AC 0.7 A (100 VA)	100 V DC 0.8A (100W)	
	250 V AC 1.7A (200VA)	250 V DC 1.8A (250W)	

Note 1) In case of double rating of rated voltage, it is the value for the lower rating. (Example) In case of $24-48 \mathrm{~V}$ DC, it is operating time for 24 V DC
Note 2) After completing closing spring charging, wait for an interval of at least 0.5 After completing closing spring charging, wait for an in
seconds before applying the closing instruction to CC.
Note 3) When closing again after applying voltage to SHT, an interval of at least 0.5 When closing again
Note 4) These values are for reference, not guaranteed values.
Note 5) Common use for 50 and 60 Hz in AC.

- Closing time means time from the initial energization of the closing coil up to the complete closing of the main contacts.
- As CC is one-pulse driven, it is not necessary to insert AXb for burning prevention purposes. Inserting AXb will cause anti-pumping function to be ineffective.

Shunt trip device (SHT)

Diode rectifier is not used for control source 24~48V DC.

The shunt trip device is a device to open the breaker by remote control. A cut-off switch is included.

Rated voltage (Applicable voltage range)	Operating voltage • Operating inrush current (VA)		Operating

Note 1) In case of double rating of rated voltage, it is the value for the lower rating (Example) In case of $24-48 \mathrm{~V} D C$, it is operating time for 24 V DC.
Note 2) Operating time for AE4000-SW~AE6300-SW is 0.05 s or less.
Note 3) These values are for reference, not guaranteed values
Note 4) Common use for 50 and 60 Hz in AC

Diode rectifier is not used for control source 24~48V DC.

Under voltage trip device (UVT)

This is the device that automatically trips the breaker when the circuit voltage drops below the nominal voltage, and comprises UVT coil and UVT controller. There are 3 kinds of tripping time, INST, 0.5 s and 3.0 s . A trip terminal for forced OFF function is included as standard equipment.

Rated voltage	Frequency	operating time (time delay)	Pick-up voltage	Drop-out voltage	Trip function	Power consumption
100-120V AC	50/60Hz	$\begin{aligned} & \square \mathrm{Inst}(0.2 \mathrm{~s}) \\ & \square 0.5 \mathrm{~s}(\text { Min. }) \\ & \square 3.0 \mathrm{~s}(\text { Min. }) \end{aligned}$	65~85V	45~70V	With open circuit of DT1,DT2 terminals.	Steady: 20VA Inrush : 200VA $\leqq 0.4 \mathrm{~S}$
200-240V AC			130~170V	90~140V		
$380-460 \mathrm{~V} \mathrm{AC}$			247~323V	171~266V		
24 V DC			$15.6 \sim 20.4 \mathrm{~V}$	10.8~16.8V		
48 V DC	-		31.2~40.8V	21.6~33.6V		24 V DC
100-110V DC			65~85V	45~70V		(Inush:100VA 515
120-125V DC			78~102V	54~84V		

Note1) In case of $380-460 \mathrm{~V} \mathrm{AC}$, the external unit is attached additionally.
Note2) The operating time is a guarantee value when it drops from 85% or more of rated voltage
Note3) Time delay should be allowed for 1.5 s between applying the voltage to the UVT and closing the breaker.
Note4) If a remote trip function is required, remove the shorting bar (DT1 DT2) and connect a If a remote trip function is required, remove the shorting bar
normally closed switch, rated 0.5 A at 150 V DC across them.
Note5) If a forced OFF function is used, the shorting (signal input to DT1 and DT2) should be held for 0.2 sec . and more
Note6) When an ambient temperature is at $60^{\circ} \mathrm{C}$, this device is installed outside of the ACB body
Note7) The operating time in the above table does not include the operating time of the ACB. Note8) Common use for 50 and 60 Hz in AC .

OCR alarm (AL)

UVT circuit diagram (In case of 380~460V AC)

OCR alarm (AL) is provided as standard if ETR is equipped. OCR alarm (AL) is the contact (1a) of short-time operation $(30 \mathrm{~ms})$, being output when the breaker is tripped by the electronic trip relay. Two types of automatic reset type (standard) and manual reset type (optional) are available. When ordering, specify either automatic reset or Manual reset.

Switch rating

Voltage (V)		Current (A)	
	Resistive load	Inductive load	
$\left.\begin{array}{c}\text { AC } \\ (50 / 60 H z\end{array}\right)$	240	3	2
	125	5	3
	240	0.2	0.2
	125	0.4	0.4
	30	4	3

Note1) Though the control power supply is unnecessary to activate OCR alarm (AL), the self-holding circuit is necessary since the contac
Note2) This works when tripping occurs in LTD, STD, INST, GFR or ER.
Note3) If any continuous output of OCR alarm (AL) is necessary, use the ip indicator (TI) output contact of the electronic trip relay.
Choose P3, P4 or P5 for power supply type.

OCR alarm (AL) [MRE : Manual reset type]
On the manual reset type (optional), the gray manual reset button on the front side of the breaker will stick out to continuously output OCR alarm (AL) if the breaker is tripped by the electronic trip relay. After tripping, the breaker can not be turned on unless the manual reset button is pressed for resetting.

Auxiliary switch
 Standard (AX) • High capacity type (HAX)

This is the contact that remotely indicates the ON or OFF status of the breaker.

6

Switch rating

Voltage (V)		Current (A)			
		Standard (AX)		High capacity type (HAX)	
		Resistive load	Inductive load	oad Resistive load	Inductive load
$\begin{array}{\|c\|} \hline A C \\ (50 / 60 \mathrm{~Hz}) \end{array}$	250	10	10	10	10
	125	10	10	10	10
DC	250	0.3	0.3	3	1.5
	125	0.6	0.6	10	6
	30	10	6	10	10
Maximum contacts		5a5b		5a5b	
Change-over sequence		Breaker state		a-contact (NO)	b-contact (NC)
		ON		ON	OFF
		OFF		OFF	ON

The a and b conacts may turn simultaneously to ON instantaneously at the time of changing the contact; Pay attention to the contact state when designing circuits.

- The chattering time at the time of contact ON-OFF is below 0.025 s .

Accessories (for breaker unit)

Mechanical interlock (MI)

This is the device to prevent parallel charge of 2 or 3 units of breakers, and it can interlock the breakers mechanically without fail.
All combinations are available among any models from AE630-SW to AE6300-SW.
Please make inquiries about installation to AE4000-SW~AE6300-SW.
Further the interlock is possible among the different connection types or poles, such as fixed type or drawout type, 3 pole or 4 pole.
In combination with electric interlock, the higher safety interlock system can be secured.

- For drawout type, the interlock works at "CONNECTED" position, and in another position the interlock is released, which assures easy maintenance and inspection of the breaker.
- When turning OFF one breaker and then turning ON another breakers, please take an interval 0.5 seconds or more.
- MI for 3 breakers can not be installed by combining with Door Interlock (DI).

Breaker layout(630AF-4000AF)

Interlock combinations
Case circuit

Switching states (for 3 ACBs)

Type	1	(2)	3	4	5	6	7
ACB1	O	I	O	O	1	1	O
ACB2	O	O	I	O	I	O	1
ACB3	O	O	O	1	O	1	1

Type	(1)	(2)	(3)	(4)
ACB1	\bigcirc	1	\bigcirc	\bigcirc
ACB2	\bigcirc	\bigcirc	1	\bigcirc
ACB3	\bigcirc	\bigcirc	\bigcirc	1

3 devices : 3 sources, only 1 device closed

Type	(1)	(2)	(3)	(4)	(5)
ACB1	\bigcirc	1	\bigcirc	1	\bigcirc
ACB2	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc
ACB3	\bigcirc	\bigcirc	\bigcirc	1	I

Condenser trip device (COT)

Please prepare by the customer. Refer to Page 15 for the specifications of combined SHT.

Dust cover (DUC)

Option

Dust cover prevents the dust or water entering into the panel board from the breaker panel cut. Protection degree is IP54.

Accessories(for drawout type)

Drawout interlock (standard equipment)

This is the safety device that prevents insertion and drawout operation. When the breaker is ON, the drawout handle cannot be inserted, and insertion and drawout operation cannot be done unless the OFF button is pressed.

Position lock (standard equipment)

This is the device that locks automatically the drawout mechanism at "TEST" or "CONNECTED" positions during insertion and drawout operation. When the lock plate is pushed in, lock is released and operation can be continued.

Outline dimensions (reference)

Padlock

* This padlock should be supplied by customer.

A padlock can be arranged at the lock plate. Thereby, it is possible to prevent the connection position from being changed unnecessarily.
As for outline dimensions of the padlock, please refer to the left figure.

Operating position of drawout type

Cell switch (CL)

This is the switch to show the drawout position (CONNECTED, TEST, and DISCONNECTED) of the breaker. An arbitrary combination up to 4 pieces is available.

Note 1: The setting can be changed by customer later.
A preliminary setting of CL at factory shipment is as follows. CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D

Switch rating
Voltage (V) Current (A) AC Resistive load Inductive load AC 250 10 10 125 1.5 DC 250 3 6 125 10 10 30 10 Total 4c max.

Standard pattern

	CL-C	CL-T	CL-D
CL1	1	-	-
CL2	1	-	1
CL3	1	1	1
CL4	2	1	1

Shorting b-contact (SBC)

Option

When moving the breaker from the connected to the test positions, this contact is used to short circuit auxiliary switch (AXb), thus maintaining the correct sequence of operation of the external control circuit. When ordering, SBC with the same number of contacts as auxiliary switches (AXb) will be provided. SBC can be provided for all AX b contacts. At the time of shipment from factory, SBC is already connected to control circuit terminal block.
Only one more crimp terminal can be added on contact, overlapping with SBC's contact on Terminal: 11~51.

Switch rating

Voltage (V)		Current (A)	
	Resistive load	Inductive load	
AC $(50 / 60 \mathrm{~Hz})$	250	10	2
	125	10	3
	250	0.2	0.2
	125	0.4	0.4
	30	4	3

Refer to the Min. load range graph in Page 16.

Lifting hook (HP)

Option

This is the metal fitting to suspend the main body when the breaker is removed from the drawout cradle. The fixed type breaker is equipped with HP as standard.
This is attached to the left and right sides of the main body to suspend it. One set contains two products.

Safety shutter (SST)

The safety shutters cover the conductors (cradle side) and prevent contact with them when the breaker is drawn out.

Safety shutter lock (SST-Lock)

Option

This kit is used to lock the safety shutters using 2 padlocks (the padlocks to be customer's supply) The safety shutters close when the breakers are drawn out to prevent accidental contact with the main contacts.

Mis-insertion preventor (MIP)

This prevents other breakers unspecified from inserting into the cradle, and 5 patterns in maximum are available.
Not available for AE4000-SW~AE6300-SW

Test jumper (TJ)

With the breaker taken out of its cradle, this device enables the breaker to be electrically opened and closed, and the operating sequence to be checked. 3 m cable is equipped as standard shipment.

Electronic trip relay(Feature)

Several measuring data (current, voltage, power etc) and alarms/can be displayed with this module.Extension module (option)
This module is required to install VT unit, display module and each interface unit.

Load current LED (standard)
This indicator shows the actual current-carrying level.RUN and ERR. LED (standard)
This indicator displays the ETR situation (Run or Error)Trip indicator LED (standard)
This indicator displays the trip cause. (Self-holding type) If output contact for this Trip indicator is required, Power supply module should be selected from P3, P4 or P5

OCR alarm (AL) (standard)

When tripped by Over current, Ground fault (GFR) and Earth leakage (ER), this device outputs alarm signal.
There are two types of OCR alarms. One is Automatic reset type with 30 ms one pulse output (standard) and the other is Manual reset type with self-holding (optional). For details, refer to Page 16.

Neutral pole overcurrent protection (NP) (standard)
When Harmonics in load current become higher, the current on Neutral pole may exceed the rated current. This Neutral pole overcurrent protection prevents the troubles caused by higher Harmonics.

Electronic trip relay (ETR) Type designation breakdown

- Main setting module

WS1, WM1, WB1, WF1	AE630~1600-SW, AE2000~3200-SW, AE4000-SW
WS2, WM2, WB2, WF2	AE2000-SWA, AE4000-SWA, AE5000-SW
WS3, WM3, WB3, WF3	AE6300-SW

WS : General use
WM: Generator protection use
WB : INST only
WF : Protective coordination use

- Optional setting module

G1: Ground fault protection
N5: Neutral pole 50% protection
E1: Earth leakage protection AP: 2nd Additional Pre-alarm NA: Without optional setting

- ETR Auxiliary Equipment
\square Temperature alarm(TAL) \square MCR switch(MCR-SW)

Power supply
P1: 100-240V AC.DC
P2: 24-60V DC
P3: 100-240V AC / 100-125V DC with output contact
P4: 24-60V DC with output contact P5: 100-240V DC with output contact (SSR)
$-\square$ Neutral CT(NCT)
\square External ZCT

Additional function

(F)Pre-alarm (PAL LED and Current setting dial) (standard) This indicator displays the Pre-Alarm situation when the setting current is exceeded. If output contact for this Prealarm is required, Power supply module should be selected from P3, P4 or P5. And by adding the Optional setting module "AP", 2nd Pre-alarm can be added.

RESET button (standard)
With this Reset button, Trip indicator, Display data like fault cause and fault current and Pre-alarm are reseted. When Power supply module P3, P4 or P5 is equipped, the resetting from Control circuit terminal becomes possible. Additionally, this Reset button provides a lock function of LTD and STD characteristics on the INST testing with Mitsubishi Tester "Y-2005".
(H) TEST terminal (standard)

This Test terminal is used for the field testing of characteristics with Mitsubishi Tester "Y-2005" (refer to Page 36).

Characteristic table

	NA Nothing	G1 Ground fault	E1 Earth leakage	AP 2nd additional Pre-alarm	N5 Neutral pole 50% protection
WS General use LTD+STD+ INST/MCR		$\begin{aligned} & \stackrel{\leftrightarrow}{\leftrightarrow} \\ & \stackrel{\leftrightarrow}{4} \quad 1 \\ & \leftarrow \end{aligned}$			$: \underbrace{4}_{1}$
WM Generator protection use LTD+STD+ INST/MCR					$\underbrace{-\overbrace{4}^{4}}_{1}$
WB Special use INST/MCR					
WF Protective coordination use LTD+STD+ INST/MCR		$\begin{aligned} & \stackrel{4}{4} \\ & \overbrace{1} \stackrel{-1}{4}_{4}^{4} \end{aligned}$	$\begin{aligned} & \uplus_{4}^{4} \\ & \leftarrow_{i} \stackrel{-1}{4}_{4}^{4} \end{aligned}$		

Power supply module
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Type } & \begin{array}{c}\text { Rated Voltage } \\ (\mathrm{V})\end{array} & \begin{array}{c}\text { Applicable } \\ \text { Voltage range } \\ (\mathrm{V})\end{array} & \begin{array}{c}\text { Criterion for Power } \\ \text { requirement } \\ (\mathrm{VA})\end{array} & \text { Alarm output } \\ \hline \text { P1 } & 100-240 \text { AC-DC } & 85-264 \mathrm{AC} \cdot \mathrm{DC} & 15 & - \\ \hline \text { P2 } & 24-60 \text { DC } & 18-72 \text { DC } & 10 & - \\ \hline \text { P3 } & \begin{array}{c}100-240 \text { AC } \\ 100-125 ~ D C ~\end{array} & \begin{array}{c}85-264 \text { AC } \\ 85-138 ~ D C ~\end{array} & 15 & 6 \text { output contacts } \\ \hline \text { P4 } & 24-60 \text { DC } & 18-72 \text { DC } & 10 & 6 \text { output contacts } \\ \hline \text { P5 } & 100-240 \text { DC } & 85-264 \text { DC } & 15 & 6 \text { output contacts (SSR) }\end{array}\right]$

Note1: Over current protection and ground fault protection operates without control power source.
Note2: Factory setting of 6 output contacts is as follows.

$\begin{gathered} 1(1) \\ \text { LTD } \end{gathered}$	(2) STD/INST	$\stackrel{(3)}{\text { G1/E1/AP }}$	$\begin{gathered} 4 \\ \text { PAL } \end{gathered}$	$\begin{gathered} \hline 5 \\ \text { TAL } \end{gathered}$	$\begin{gathered} \text { E } \\ \text { ERR } \end{gathered}$
Self-holding	Self-holding	Refer to lower table	Automatic reset	Automatic reset	Automatic reset

ETR dial set	G1	E1	AP
TRIP side	Self-holding	Self-holding	-
ALARM side	Automatic reset	Automatic reset	Automatic reset

Self-holding:
The output is maintained until it resets.
Automatic reset:
The output will be reset if it backs to
normal condition.

CT rating table

Note2: Low rating type of AE630-SW is not available for the ground fault protection and DP3.
Current capacity(Type P5)
and page 12.
Electronic trip relay (ETR) for WS relay with Ampere Meter and Fault Memory (DP3)

\square With ETR

Electronic trip relay (for general use : WS)

A	Trip indicator LED
B	Pre-alarm LED
C	Temperature alarm LED
D	Load current LED
E RUN LED	
F	ERR. LED
G	Current setting dial
H	Uninterrupted current setting dial
I	LTD time setting dial
J	STD pick-up setting dial
K	STD time setting dial
L.	INST/MCR pick-up current setting dial
M	Optional setting module (P.33 35)
N	Pre-alarm current setting dial
O	RESET button (TEST L/S LOCK button)
P	TEST terminal

Note: The figure shows WS1 type with G1 module, Display (DP1) and MCR switch. G1, DP1 and MCR are optional equipments.

Relation of setting dial
In (CT rating)

Adjustable setting range

Operating characteristic curve (for general use : WS)

A	Trip indicator LED
B	Pre-alarm LED
C	Frequency selector switch
D	Load current LED
E RUN LED	
F	ERR. LED
G	Current setting dial
H	Uninterrupted current setting dial
I	LTD time setting dial
J STD pick-up setting dial	
K	STD time setting dial
L	INST/MCR pick-up current setting dial
M	Optional setting (P.33)
N	Pre-alarm current setting dial
O	RESET button (TEST L/S LOCK button)
P	TEST terminal

Note: The figure shows WS1 type with DP3 that equipped with G1.
For optional setting, only G1 and MCR are available for WS relay with DP3.

Relation of setting dial

Load current LED ($60,80,100 \%$, OVER)

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
G	Current setting	Ir	$0.5 \sim 1.0$ (0.05step) \times In (CT rating)	-	1.0
H	Uninterrupted current	lu	$0.8 \sim 1.0 \times \operatorname{lr}$ (0.02step), Pick-up current : $1.15 \times \mathrm{lu}$	$1.05 \times$ lu \cdots Non Pick-up $1.25 \times$ lu \ldots Pick-up	1.0
1	LTD time	TL	12-25-50-100-150s at lu $\times 2$	$\pm 20 \%$	150
J	STD pick-up current	Isd	$1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{lr}$	$\pm 15 \%$	10
K	STD time	Tsd	$\begin{array}{r} \frac{0.5-0.4-0.3-0.2-0.1-0.06-0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left(1^{2}+\mathrm{ON}\right)} \\ \quad \text { at Isd } \times 1.5 \end{array}$	$\pm 20 \%$ It operates in the range between 0.04 and 0.08 s when the time set at 0.06 s .	0.5 (12t ON)
L	INST/MCR pick-up current	li	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW 16-12-10-8-6-4-2-2-4-6-8-10-12-16 x Ir AE4000-SW (INST) (MCR)	$\pm 15 \%$	WS1 $\cdots 16$ (INST)
			AE2000-SWA, AE4000-SWA $\frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times \mathrm{Ir}$ AE5000-SW WS2		WS2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \times \mathrm{Ir}$ WS3		WS3 $\cdots 10$ (INST)
N	Pre-alarm current	Ip	lu x $0.68 \sim 1.0$ (0.04step) -OVER	$\pm 10 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL at lux 2 (after 1/2 TL, PAL contact output turns on.)	$\pm 20 \%$	-

Operating characteristic curve

 (for general use : WS relay with Ampere Meter and Fault Memory "DP3")

Electronic trip relay (for generator protection use : WM)

This WM relay is mainly used for the protection of generator on ship.
Current setting Ir (default value) is fixed at the value complying with the rating of generator, which should be indicated when placing an order.

A Trip indicator LED
B Pre-alarm LED
C Temperature alarm LED
D Load current LED
E RUN LED
F ERR.LED
G LTD pick-up current
H LTD time setting dial
I. STD pick-up setting dial

J STD time setting dial
K INST/MCR pick-up current setting dial
L. Optional setting module (P.33~35)

M Pre-alarm current setting dial
N RESET button (TEST L/S LOCK button)

- TEST terminal

Note: The figure shows WM1 type with G1 module,
Display (DP1) and MCR switch.
G1, DP1 and MCR are optional equipments.

Relation of setting dial

(40, 60, 80, 100\%)

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
-	Current setting	Ir	To be fixed at Factory default value in the available range, which shows in Page 9 and 10.	-	To be complied with ordering indication
G	LTD pick-up current	IL	1.0-1.05-1.1-1.15-1.2 x Ir	$\pm 5 \%$	1.15
H	LTD time	TL	15-20-25-30-40-60s at IL $\times 1.2$	$\pm 20 \%$	20
1	STD pick-up current	Isd	1.5-2-2.5-3-3.5-4-4.5-5 x lr	$\pm 15 \%$	5
J	STD time	Tsd	$\begin{array}{r} \left.\frac{0.5-0.4-0.3-0.2-0.1-0.06-0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left({ }^{2}+\mathrm{It} \text { ON }\right)} \mathrm{aFF}\right) \\ \text { at Isd } \times 1.5 \end{array}$	$\pm 20 \% \text { * }$ It operates in the range between 0.04 and 0.08 s when the time set at 0.06 s.	0.5 (12t ON)
K	INST/MCR pick-up current	li	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW $\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{(\text { INST })}$ (MCR) Ir AE4000-SW WM1	$\pm 15 \%$ *	WM1 $\cdots 16$ (INST)
			AE2000-SWA, AE4000-SWA $\frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times$ Ir AE500) WM2		WM2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \times \mathrm{Ir}$		WM3 $\cdots 10$ (INST)
M	Pre-alarm current	Ip	IL x $0.68 \sim 1.0$ (0.04step) -OVER	$\pm 5 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL at IL $\times 1.2$ (after 1/2 TL, PAL contact output turns on.)	$\pm 20 \%$	-

The table and the figure include both optional display and MCR.
For WM relay only, when Pre-alarm current lp is set at "OVER", the Ip value becomes equal to "IL x 1.0".
The table includes MCR (option). If MCR is not included, there is no MCR setting position.
*: When used without voltage applied to the control power supply (ETR power supply module) Tsd, li operation time may increase max. 20ms.

■Operating characteristic curve (for generator protection use : WM)

Electronic trip relay (for special use : WB)

This WB relay is effective for the combination with the external OCR without severely decreasing the breaking capacity.
Actually, if ACB is combined with the external OCR only without WB relay, its breaking capacity comes to be reduced drastically. (e.g. For AE1600-SW, it's reduced to 25kA.)

A	Trip indicator LED
B	Pre-alarm LED
C	Temperature alarm LED
D	Load current LED
E RUN LED	
F	ERR. LED
G	Current setting dial
H	INST/MCR pick-up current setting dial
I	Pre-alarm current setting dial
J RESET button	
K	TEST terminal

Note: The figure shows WB1 type with MCR switch. MCR is optional equipment.

Relation of setting dial

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
C	Current setting	Ir	$0.5 \sim 1.0$ (0.05step) x In (CT rating)	-	1.0
H	INST/MCR pick-up current	li	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW $\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{(\text { INST }}$ Ir AE4000-SW WB1	$\pm 15 \%$	WB1 $\cdots 16$ (INST)
			$\begin{aligned} & \text { AE2000-SWA, AE4000-SWA } \frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times \mathrm{Ir} \\ & \text { AE5000-SW } \end{aligned}$		WB2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \times \mathrm{Ir}$ WB3		WB3..10 (INST)
1	Pre-alarm current	Ip	Ir x $0.68 \sim 1.0$ (0.04step) -OVER	$\pm 10 \%$	OVER
-	Pre-alarm time	Tp	75 s at Ir $\times 2$ (after 75s, PAL contact output turns on.)	$\pm 20 \%$	-

[^0]■Operating characteristic curve (for special use : WB)

Electronic trip relay (for protective coordination use : WF)

WF relay incorporates five kinds of LTD characteristics.
Protective coordination with upstream OCRs and/or Fuses can be more easily achieved.

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
G	Current setting	Ir	$0.5 \sim 1.0$ (0.05step) x In (CT rating) LTD pick-up current : 1.15 x Ir	1.10 x \|r"...Non Pick-up $1.20 \times$ Ir \ldots Pick-up	1.0
H	LTD time	TL	1-2-3-4-5-6-8-10-12-15-18s at $\operatorname{lr} \times 4$	$\pm 30 \%$ ($1.51 \mathrm{r} \leqq$ Soad current < 41 r) $\pm 20 \%$ (4lr $\leq 10 a d$ current)	18
1	LTD curve setting	a	0.02-1-2-3-4	-	2
J	STD pick-up current	Isd	$1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{lr}$	$\pm 15 \%$	10
K	STD time	Tsd	$\frac{0.5-0.4-0.3-0.2-0.1-0.06}{\left(1^{2} \mathrm{t} \text { ON }\right)} \frac{0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left(1^{2}+\mathrm{OFF}\right)}$ at Isd $\times 1.5$	$\pm 20 \%$ It operates in the range between 0.04 and 0.08 when the time set at 0.06 s .	0.5 (12t ON)
L	INST/MCR pick-up current	li	AE630-SW~AE1600-SW AE2000-SW~AE3200-SW $\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{\text { (INST) }} \times \operatorname{lr}$ AE4000-SW WF1	$\pm 15 \%$	WF1 $\cdots 16$ (INST)
			AE2000-SWA, AE4000-SWA AE5000-SW $\frac{12-10-8-6-4-2-2-4-6-8-10-12}{\text { (INST) }} \times$ Ir Ir $^{\text {(MCR) }}$ WF2		WF2 $\cdots 12$ (INST)
			$\text { AE6300-SW } \quad \frac{10-8-6-4-2-2-4-6-8-10}{(\text { INST })} \times \operatorname{lr} \quad \text { WF3 }$		WF3 $\cdots 10$ (INST)
N	Pre-alarm current	Ip	Ir $\times 0.68 \sim 1.0$ (0.04step) -OVER	$\pm 5 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL at Ir 4 (after 1/2 TL, PAL contact output turns on.)	$\pm 30 \%$ ($1.5 \mid$ \|r三oad current <41 r) $\pm 20 \%$ (4\|rミload current)	-

The table and the figure include both optional display and MCR.
For WF relay, when Pre-alarm current Ip is set at "OVER", the Ip value is "Ir x 1.15".
The table includes MCR (option). If MCR is not included, there is no MCR setting position.

■Operating characteristic curve (for protective coordination use : WF)

[LTD curve setting " $\mathrm{a}=0.02$ "]

[LTD curve setting " $\mathrm{a}=3$ "]

current (\% of current setting Ir)
Note 1: LTD operating time tLTD is calculated by to foling equations.
$\operatorname{LLTD}=\frac{(4 / 1.1155)^{\mathrm{a}}-1}{(\mathrm{I} 1.1155 \mathrm{I} \mathrm{r})^{\mathrm{a}-1}} \times T \mathrm{~L} \quad\left(\begin{array}{l}\mathrm{a}=\mathrm{LTD} \text { curve setting } \\ 1 \\ \text { I load current (A) } \\ \text { Ir } \\ =0.5 \sim 1.0 \times \ln (\mathrm{A})\end{array}\right)$
$\mathrm{TL}=1 \sim 18$ (s)
[LTD curve setting " $\mathrm{a}=1$ "]

[LTD curve setting "a=4"]

current (\% of current setting Ir)
Note 2: PAL operating time tpaL is calculated by the following equation.

Electronic trip relay

Accessories

Ground fault protection (GFR)

Option

The ground fault protection (GFR) of several hundred amperes is possible. This function can be selected for trip and alarm (no trip). With an Ig setting of 0.2 or higher, function is possible even without a control power supply. However, a control power supply is required with an \lg setting of 0.1 .
$\left.\begin{array}{|l|c|l|l|c|}\hline \text { Setting item } & \text { Mark } & \text { Adjustable setting range } & \text { Accuracy } & \begin{array}{c}\text { Factory } \\ \text { default value }\end{array} \\ \hline \text { GFR pick-up current } & \operatorname{Ig} & 0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0 \times \ln & \pm 20 \% & 1.0 \\ \hline \text { GFR time } & \operatorname{Tg} & \frac{3-1.5-0.8-0.5-0.3-0.15-<0.1-\leq 0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}{\text { TRIP }} & \pm 20 \% * & 3 \mathrm{ALARM} \text { (TRIP) } \\ (\text { at } 1.5 \times \mathrm{Ig})\end{array}\right)$
*: Operates in the range of 0.04 s to 0.1 s when Tg is set to 0.1 .
Note) Ground fault protection for AE630-SW low rating types (250A, 315A, and 500A) is not available.

Neutral CT (NCT)

The Neutral CT is used for ground fault protection when the 3 pole breaker is used on a 3 phase 4 wires system and for over current protection on N phase. Please use this CT in combination with ground fault protection (GFR). As for outline dimensions, refer to page 56.
The length of the cable (attached) for NCT is $2 m$.

GFR function block diagram (In case of 4pole breaker)

NCT type name

NCT type name	ACB type name / CT rating	
NCT06	AE630-SW 630A	
NCT10	AE1000-SW 1000A	
NCT12	AE1250-SW 1250A	AE2000-SW 1250A
NCT16	AE1600-SW 1600A	AE2000-SW 1600A
NCT20	AE2000-SWA 2000A	AE2000-SW 2000A
NCT25		AE2500-SW 2500A
NCT32		AE3200-SW 3200A
NCT40		AE4000-SWA 4000A AE4000-SW 4000A
NCT50		AE5000-SW 5000A
NCT63		AE6300-SW 6300A

Refer to Outline dimensions in page 56.

Earth leakage protection (ER)

By combining the ETR with earth leakage protection (ER) and External ZCT, earth leakage protection is possible. Earth leakage protection, earth leakage tripping and earth leakage alarm can
 be selected. Control supply is necessary for this function.

Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
ER pick-up current	$I \Delta \mathrm{n}$	$1 \mathrm{~A}-2 \mathrm{~A}-3 \mathrm{~A}-5 \mathrm{~A}-10 \mathrm{~A}$	0 -30%	10 A
ER time	Te	$\frac{3-1.5-0.8-0.5-0.3-0.15-<0.1-<0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}{\text { TRIP }}$	$\pm 20 \%^{*}$	3 s (TRIP)
alarm output	-	TRIP side : Self-holding/ALARM side : Automatic reset	-	TRIP side (Self-holding)

*: Operates in the range of 0.04 s to 0.1 s when Te is set to 0.1 .

External ZCT

This option is used to detect several amperes of earth leakage when used in combination with a electronic trip relay that has the earth leakage tripping (ER) option.
Two methods are available. The first is where the all load conductors pass through the ZCT.
The other method uses a smaller ZCT through which the supply transformer's ground wire passes through to the earth.

ZCT type name	Breaker type name
ZCT163	AE630-SW ~AE1600-SW 3-pole
ZCT323	AE630-SW \sim AE1600-SW 4-pole AE2000-SW \sim AE3200-SW 3-pole
ZCT324	AE2000-SW ~AE3200-SW 4-pole

As for outline dimensions refer to page 56. Make a choice of suitable ZCT in comformity to the BUSBAR size.
ZCT for transformer ground wire

ZT15B	ZT30B	ZT40B	ZT60B	ZT80B	ZT100B

ZCT with primary conductors

ZCT type name	Breaker type name / Pole
ZTA1200A	AE630-SW / 3P, AE1000-SW / 3P
ZTA2000A	AE1250-SW / 3P, AE1600-SW / 3P
	AE2000-SWA / 3P, AE2000-SW / 3P

ER function block diagram (for load circuit method)

ER function block diagram (transformer ground wire method)

On a circuit containing harmonic content, the zero-phase current transformer (ZCT) of the circuit breaker will be overheated owing to iron loss. Use circuit breakers at a load device leakage current distortion of 5 kHz or less and at 3A or less.

Electronic trip relay

Accessories

2nd Additional Pre-alarm (AP)

Option

The Pre-Alarm (1st) function is already installed in standard breaker, the 2nd additional Pre-Alarm function can be installed as option, thereby it is possible to monitor (observer) electric circuit in more detail by 2nd additional Pre-Alarm function.
Note that this optional module unit is not available for WB main setting module.

Setting item	Mark	Adjustable setting range	Accuracy	Factory default value
2nd Additional Pre-alarm pick-up current	Ip2	0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0 \times lu WS	$\pm 10 \%$ WS	1.0
		0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0 x lL WM	$\pm 5 \%$ WM	
2nd Additional Pre-alarm time	Tp2	$\frac{0.9-0.8-0.7-0.6-0.5-0.4-0.3 \times T L}{(\times \mathrm{TL})}-\frac{5-10-15-20-30-40-60 \mathrm{~s}}{(\mathrm{FLAT})}$	$\pm 20 \%$	0.9 (x TL)

<Pre-alarm timing chart>

PAL LED starts to blink at time when the actual current exceeds the setting current. Then after it passes a half of LTD time (TL), it starts to light and simultaneously the contact output starts. As for its operating time, refer to the Operating characteristic curves in Page 24, 26, 28 and 30.

Neutral pole 50\% protection (N5)

When used OA equipment or DC power source that brings the third higher harmonic in 3 phases 4 wires circuit, is sometimes it electrically damages the other peripheral equipments due to the superposition of the third higher harmonic on Neutral pole.
This Neutral Pole 50\% Protection (N5) is useful to protect the other peripheral equipments from such an electrical damage and also to prevent some troubles with the Pre-Alarm function. Neutral pole overcurrent protection (operating at 100% of rated current) is already equipped with ETR as standard features.
But, if the operation at 50% of rated current is required on Neutral pole, it becomes available with this optional module unit.
Note that this optional module unit is not available for WB main setting module.

MCR switch (MCR-SW)

With this MCR switch, at the time of breaker closing from OFF to ON the INST (Instantaneous) characteristic works, and then after breaker is in closed (ON) position the INST characteristic becomes ineffective. This controlling function of INST characteristic is useful for the protection on the short-circuit fault at the time of closing and also for expanding the selective combination with branch breakers after closed.
The factory default setting of "INST/MCR pick-up current setting dial" is usually at "INST", so if the function of this MCR switch is required, the dial should be changed to "MCR".

Temperature alarm (TAL)

When TAL sensor is installed in the breaker, temperature alarm is operative. When an abnormal main contact temperature is detected, temperature alarm is indicated by LED on main setting module and also the output contact is made energize if power supply with output contact is installed. It is possible to know temperature rising which is caused by wear of main contact because TAL sensor is installed near main contact. When the temperature of main contact goes down to the normal level, temperature alarm turns off automatically.
The addition of extension units allows the temperature measured with TAL sensor to be displayed and transmitted.

Field test device (Y-2005)

Option

The electronic trip relay can be checked by this field test device when the breaker is at the test

Y-2005 specification

Test items	LTD, STD, INST, GFR, PAL
Range of signal output	Voltage signal equivalent to $1 \% \sim 2500 \%$ of Rated current In (CT rating)
Dimensions	$220 \mathrm{~mm}(\mathrm{~W}) \times 150 \mathrm{~mm}(\mathrm{H}) \times 340 \mathrm{~mm}(\mathrm{D})$
Time counter	$0.000 \sim 999.999 \mathrm{~s}$
Input voltage	$100-240 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$
Weight	4.8 kg

Electronic trip relay

Additional functions

By adding the extension module unit in ETR, additional functions like measuring, display and communication become available.

List of extension unit (Option)

Name	Type	
Extension module	EX1/EX2	Base module for display and interface function (indispensable)
Display module (relay attachment)	DP1	Display module for ETR
Display module (panel attachment)	DP2	Display module for panel board
VT unit	VT	Module for measuring voltage, active power and active energy
CC-Link interface unit	BIF-CC	Interface unit for CC-Link
MODBUS (RS-485) interface unit	BIF-MD	Interface unit for MODBUS (RS-485)
I/O unit	BIF-CON	Module for breaker remote control (Interface unit is required)
Drawout position switch	BIF-CL	Switch for detecting the drawout position of the breaker (Interface unit and I/O unit are required.)

Note: The above extension units are not available for WS relay with DP3.
Selection samples of additional function modules
(\bigcirc :required optional modules)

Name Additional function Type			Extension module		Display DP1 or/and DP2	VT unit VT	Interface unit	
			EX1	EX2			BIF-CC	BIF-MD
Load current	Display		\bigcirc	\bigcirc	\bigcirc			
	Communication	CC-Link	\bigcirc	\bigcirc			\bigcirc	
		MODBUS	\bigcirc	\bigcirc				\bigcirc
	Display \& Communication	CC-Link	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
		MODBUS	\bigcirc	\bigcirc	\bigcirc			\bigcirc
Voltage Power Energy Harmonics current etc.	Display		\bigcirc		\bigcirc	\bigcirc		
	Communication	CC-Link	\bigcirc			\bigcirc	\bigcirc	
		MODBUS	\bigcirc			\bigcirc		\bigcirc
	Display \& Communication	CC-Link	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
		MODBUS	\bigcirc		\bigcirc	\bigcirc		\bigcirc
						VT unit (placed separately)		

Electronic trip relay (ETR) Type designation breakdown

Extension module (EX1/EX2)

This is the base module that provides various additional functions when combined with Display module (DP1 / DP2), Interface unit (BIF-CC / BIF-MD) and VT unit (VT).

1 Diverse measurement elements and high measurement accuracy
High-performance ASIC built into EX1 allows for high measurement accuracy and diverse measurement elements such as load current, voltage, power, and harmonic current.

2 Simple measurement function
Simply select EX2 and the display or interface unit to support simple measurement of and a transmission function for load current. We can suggest the optimal selections for your application.

3 Communication function

With the advanced internal communication function of this EX1/EX2 module, it is achieved rapid transmission of data between ETR and Displays or Interface units. Besides, it can be extended the function by connecting with Max. 2 display modules and 1 interface unit in parallel.

Display module (DP1/DP2)

Option

This is the module for display and setting of the various information like measured value, trip and alarm status, ETR status for display and output contacts setting etc...

1 Multi display of measuring element
It enables to easily monitor the comparison of each measuring element with its multi display (4 phases multi display of load current and voltage) on one screen.

2 Two-color back light

Under trip or alarm, back light color changes from green to red automatically, which visually shows an abnormal situation.

3 Graphical display

By adopting dot matrix type LCD, graphical display such as bar graph display of load current, harmonic currents and characteristic curve are available.

There are 2 types of display module. One is the ETR attachment type (DP1). The other is the
 panel attachment type (DP2), which can be connected to extension terminals of control circuit with $2 m$ cable. 2 units of display modules (DP1 and DP2) can be attached on one breaker. (As for outline dimensions of DP2, refer to page 57.)

Note;

- Extension module (EX1/EX2) is required.
- VT unit (VT) is required to display the measured data except load current.

VT unit (VT)

Option

Using this unit in combination with the extension module (EX1) allows for measurement elements
 such as voltage, power, electric energy, and harmonic current. It also allows for circuit protection by detecting circuit abnormalities on the basis of the measured voltage. The result is detailed support for energy monitoring. (outline dimensions are shown in page 58.)

Note;

- The length of the cable attached for VT unit is 2 m .

Protection function	Description
Undervoltage protection (UV)	Monitors the circuit voltage, generating an alarm or tripping the breaker when the voltage drops below the set value.
Overvoltage protection (OV)	Monitors the circuit voltage, generating an alarm or tripping the breaker when the voltage exceeds the set value.
Voltage unbalance protection (UB)	Monitors the circuit voltage, generating an alarm or tripping the breaker when the voltage unbalance factor exceeds the set value.

Electronic trip relay

Network

BIF-CC (CC-Link)

Interface unit (BIF-CC/BIF-MD)

Option

These Interface units can expand the future possibility in various communication and Intelligent control.
1 Applicable to various open networks.
These units are applicable to various open network systems such as CC-Link, and MODBUS (RS-485), which can be built in easily.

2 Intelligent control by Multi-data communication
It can be the Intelligent control by Multi-data communication from PLC/SCADA to these interface units. These interface units receive the measurement information, setting values, error information and trip and alarm information from PLC/SCADA.

BIF-MD (MODBUS(RS-485)) 5)))

The length of the cable for interface unit is 2 m .
Note: In the case of CC-Link.
Note:

- Extension module (EX1/EX2) is required.
- VT unit (VT) is required to transmit the measured data except load current.

I/O unit (BIF-CON)

The Input \& Output Controlling Unit (BIF-CON) is available for the remote controlling and the remote monitoring of the breaker condition through the various network systems.
With this BIF-CON unit in addition to the Interface Unit, it becomes possible to control the breaker

BIF-CON remotely, like a ON or OFF operations or Spring-charging.

Function	Description	Note
Control	Breaker ON operation	1a contact for Closing coil (CC)
	Breaker OFF operation	1a contact for Shunt trip device (SHT) (not applicable for 380-500V AC rating)
	Spring charge	1a contact for Motor charging (MD)
Monitor	Digital Input (DI) monitoring	For BIF-CC and BIF-MD, Max. 3 contacts monitoring are available.

Drawout position switch (BIF-CL)

Option

With this Drawout position switch (BIF-CL) in addition to Interface unit and I/O unit (BIF-CON), the remote monitoring of draw-out position becomes available for the breaker draw-out type.

Function	Description	Note
Monitor	Breaker Drawout position	Position : Connect or Test or Disconnect

BIF-CL

Chart of additional functions

Electronic trip relay

Electronic trip relay circuit diagram

(1) Power supply CT

Energy is supplied for the operation of the overcurrent tripping and ground fault tripping(GFR) function of the electronic trip relay.

(2) Current sensor coil

The current in each phase flowing through the breaker is detected. An air core coil which has good linearity is adopted.

(3) Power supply circuit

This part converts power supply CT energy to constant voltage for respective circuits in the ETR.
(4) ASIC

This ASIC ampplifies the signal detected by the current sensor coil and the detected signal of ground fault current which is vector composed of the detected signals of each phase.
(5) Microprocessor

The microprocessor integrates each phase current waveform from the ASIC and performs processing for overcurrent protection and others.
(6) Characteristic setting module

The module for the characteristic setting of the ETR.
(7) Several LEDs

The load current LED gives a figure of current in percent by CT energy.
Trip indicator and pre-alarm are indicated by control power supply.
RUN and ERR. LED indicate breaker's condition by control power supply or ten-odd percent of CT energy.

(8) Power supply with contact output

This outputs contact signals of fault cause (including pre-alarm) and an other alarms.
A control supply is necessary for this function.

Setting procedure

1 Prepare a small flat tipped screwdriver.

2 Insert the flat tipped screwdriver into the opening of the ETR cover. Then, lightly turn the screwdriver to the upside as shown in the left figure, and the ETR cover will open.

3 There are two kinds of switches for characteristics setting and for trip indicator reset. They should be used as follows.
(1) Adjustable in steps

Rotary code switch is used. Do not set the switch at points between steps. The setting value is the same when the switch is positioned at the thick line. (Set the switch with a torque of $0.02 \mathrm{~N} \cdot \mathrm{~m}$ or below.)
Note) If the switch is set at points between steps, the characteristics setting value will be decided at either end of steps.
(2) Push-button

This is for temporary operation, and press it with force of 3 N or less.

4 For WS relay with DP3, there is a slide type switch (Frequency selector switch) as the left side picture shows.
(1) Frequency selector switch

Do not set the switch at points between the slide.
When operating the switch, use a flat tipped screwdriver of the following size.

5 When the characteristic is set up, use a device like a field tester, etc to make sure that the required characteristic has been set.

6 At sealing, seal the ETR cover by using the sealing hole at the top of the ETR cover.

Wiring diagram

- The following diagram shows the case that accessories are fully equipped.

13	14	~	53	54	Auxiliary switch "a"
11	12	\sim	51	52	Auxiliary switch "b"
U1	U2				Motor charging
413	414				Charged signal (Normal open)
D1	D2				Voltage Input terminal of UVT
DT1	DT2				Trip terminal of UVT (Remote trip)
A1	A2				Closing coil
C1	C2				Shunt trip
97	98				OCR alarm
P1	P2				Power supply for ETR
P4					FG of power supply (FG:Frame Ground)
RS1	RS2				Alarm reset (Trip cause LED, alarm contact)
513	524				Alarm contact for LTD Trip
513	534				Alarm contact for STD or INST Trips
513	544				Alarm contact for Ground fault, Earth leakage trips or 2nd Pre-alarm contact
513	554				Pre-alarm contact
513	564				Temperature alarm contact
513	574				Error alarm contact
Z1	Z2				For external ZCT
N1	N2				For Neutral CT (Note)
					For external display DP2
Extension terminals					For Interface unit
					For VT unit

Accessory Symbols

(SHT	Shunt tripping device
CC	Closing coil
M	Motor(Motor charging device)
UVT	UVT coil
AX	Auxiliary switch
AL	OCR alarm switch
CLS	Charge limit switch
SBC	Shorting b-contact
CL	Cell switch

___ Internal wiring
_ External wiring (user's wiring)

- Control circuit connecter (drawout type)

Control circuit terminal block Terminal placement

Fig. 1
UVT controller wiring

100-120V AC type 200-240V AC type DC types	$380-460 \mathrm{~V}$ AC type

Control circuit

Recommended crimp-type terminals

for M3.5 screw
(wire size $1.25 \mathrm{~mm}^{2} \sim 2.0 \mathrm{~mm}^{2}$)

Max. 7.2mm

Note;

- For the drawout type, the cables should have the length which allow the control circuit terminal block to be moved to the left or right by 5 mm .
- When a coil load is connected in the same control circuit as the ETR, surge absorbers are required to absorb the surge voltage.
- OCR alarm (AL)

The contact output of the OCR alarm (Standard type AL) is the one-pulse output and the output time is $30 \sim 50 \mathrm{~ms}$.
For this reason, this output needs self-holding circuit.

- For Power supply type P3 and P4, the high sensitive relay used in contact output may cause the chattering noise (wrong output of 1 ms level) during ON and OFF operation, depending on the Panel placing condition. When it is used in the quick responsive sequence, the filter circuit of a few milli-second (ms) should be provided or the double reading sampling should be implemented.
- Closing coil (CC)

As CC is one-pulse driven, it is not necessary to insert AXb for burning prevention purposes. Inserting AXb will cause anti-pumping function to be ineffective.

- Under voltage trip device (UVT)

Use the switch that can open and close 150 V DC, 0.5 A for remote trip.
Remote trip terminal has short bar at shipment, so remove it before using this function.
Disconnect the voltage input wires during dielectric testing of main circuit.

- Since some terminals are polarized, the wiring should be done correctly as the polarity shown in the wiring diagram when the control voltage is DC. Auxiliary switch (AX) Standard type has no polarity.
- Alarm reset (Terminal: RS1 and RS2) is available only for Power supply type P3, P4 and P5. For Power supply type P1 and P2, it can not be reset from the Control circuit terminal block (RS1 and RS2).
- Alarm contacts (Terminal : 513~574) are available only for power supply type P3, P4 and P5. For output contacts, refer to page 22 Note2.
- FG (Terminal: P4) is the protective earth for power supply (Terminal: P1, P2). It is recommended to use this terminal to reduce surge (M8 screw required).
- Shorting b-contact (SBC)

SBC can be provided for all AX b contacts. At the time of shipment from factory, SBC is already connected to control circuit terminal block. Only one more crimp terminal can be added on contact, overlapping with SBC's contact on Terminal: 11 ~ 51.

Outline dimensions

Drawout type AE630-SW,AE1000-SW, AE1250-SW, AE1600-SW

Rear view

Main circuit terminal dimension

Drawout type AE2000-SWA

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles.

Side view

Rear view

Main circuit terminal dimension

Outline dimensions

Drawout type AE2000-SW, AE2500-SW, AE3200-SW

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles.

Side view

Rear view

Main circuit terminal dimensions

Vertical terminal

Front terminal

Dimensions

Type	(mm)
AE2000-SW AE2500-SW	95
AE3200-SW	103

Drawout type AE4000-SWA

Front view

*: Mounting pitch
The numerals shown in
parentheses are for 3 poles

Rear view

Note) Spacers are not required when fastening connecting conductors (T10). The necessary contact area can be obtained with ACB terminal bent by tightening the screw.
Main circuit terminal dimension

Outline dimensions

Drawout type AE4000-SW, AE5000-SW, AE6300-SW

Side view

Main circuit terminal dimension

Dimensions

Type	(mm)	
AE $4000-$ SW AE5000-SW	100	20
AE $6300-S W$	105	25

The mounting angle should be prepared by the customer

4P FN type

Fixed type AE630-SW, AE1000-SW, AE1250-SW, AE1600-SW

Front view

Rear view

Outline dimensions

Fixed type AE2000-SWA

Front view

: Mounting pitch
The numerals shown in
parentheses are for 3 poles

Fixed type AE2000-SW, AE2500-SW, AE3200-SW

: Mounting pitch
The numerals shown in parentheses are for 3 poles

Rear view

Outline dimensions

Fixed type AE4000-SWA

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles

3P

4P

Note) Spacers are not required when fastening connecting conductors (T10). The necessary contact area can be obtained with ACB terminal bent by tightening the screw.

Fixed type AE4000-SW, AE5000-SW, AE6300-SW

4P FN type

Rear view

Side view dimensions are the same as 3 pole.

Outline dimensions

Panel cut-out, Terminal adapter, Drawout handle, Terminal cover

Panel cut-out dimensions

Door frame panel cut-out dimensions

Panel cut-out dimensions Outline

Vertical terminal adapter

AE630-SW~1600-SW Top view

Dimensions

Type	(mm)
AE2000-SW,AE2500-SW	20
AE3200-SW	25

AE2000-SW~3200-SW Top view

Side view

Front terminal adapter

Dimensions					(mm)
Type			C	D	T
$\begin{aligned} & \text { AE630-SW~ } \\ & \text { AE1600-SW } \end{aligned}$	Fixed type	Up side	258.5	50	15
		Down side	145	50	15
	Drawout type		145	50	15
$\begin{aligned} & \text { AE2000-SW, } \\ & \text { AE2500-SW } \end{aligned}$	Fixed type	Up side	258.5	95	20
		Down side	145	95	20
	Drawout type		145	95	20
AE3200-SW	Fixed type	Up side	258.5	95	25
		Down side	145	95	25
	Drawout type		145	103	25

Drawout handle dimensions

Neutral CT (NCT), External ZCT

Neutral CT (NCT)

ZCT with primary conductors

ZTA1200A (1200A)

ZTA2000A (2000A)

Outline dimensions

UVT external unit

ETR external units

Display onto panel board (DP2)

CC-Link, MODBUS interface unit (BIF-CC, BIF-MD)

Outline dimensions

I/O unit (BIF-CON)

Disconnect the voltage input wires during dielectric testing of main circuit.

Tool:Minus head screw driver (Bit size Thickness 0.6 mm , Width 3.5 mm)

Technical information

Pre-cautions when making connections

Use M12 screws (made of copper), spring washers, and small washers to connect to the conductors.
Clean the contact surface and securely tighten the screws with a appropriate torque.
The connecting area on main circuit terminal of ACB is different depending on the shape of the ACB's terminal.
Refer to the outline dimensions of P. 45 to P. 55 .
A Appropriate tightening torque

Screw size	Tightening torque(N•m)
M12	45 ± 5

Please secure insulation distances between the conductors basing on the standard for switchgear assemblies like IEC 61439.

Please use small washer in order that washers don't overlap with each other.

Please tighten screws after checking ACB's terminal and connecting conductor certainly contact with each other. Make sure the conductor doesn't apply the force to ACB's terminal in any direction.

Since fault current flowing through the conductors causes large electromagnetic forces, the conductors should be secured firmly, using the values in the below table as a reference. Max. distance between fixing support and ACB bus bar should be less than 200 mm .

Electromagnetic force in N per 1 m conductor (in the case of three phase short circuit)
(N)

Type	$\begin{aligned} & \text { AE630-SW~ } \\ & \text { AE1600-SW } \end{aligned}$	AE2000-SWA		$\begin{gathered} \text { AE2000-SW~ } \\ \text { AE3200-SW } \end{gathered}$	AE4000-SWA				$\begin{aligned} & \text { AE4000-SW~ } \\ & \text { AE6300-SW } \end{aligned}$	
				Drawout type	Fixed type					
		3-Pole	4-Pole		3-Pole	4-Pole	3-Pole	4-Pole		
Conductor distance(mm) Prospective fault current $\mathrm{kA}(\mathrm{pf})$	85	115	105		130	190	170	152	145	262
30(0.2)	7700	5700	6300	5100	3500	3900	4300	4500	2500	
42(0.2)	15100	11200	12200	9900	6800	7600	8500	8900	5000	
50(0.2)	21400	15800	17300	14000	9600	10700	12000	12600	7000	
65(0.2)	36100	26700	29300	23600	16200	18100	20200	21200	11800	
75(0.2)	-	-	-	31500	21500	24100	26900	28200	15800	
85(0.2)	-	-	-	40400	27600	30900	34500	36200	20000	
100(0.2)	-	-	-	55800	38200	42700	47800	50100	27800	
130(0.2)	-	-	-	-	-	-	-	-	47000	

When selecting conductors to be connected to AE breakers, ensure that they have a sufficient current capacity. Refer to the right table.

Conductor Size(IEC 60947-1; Ambient Temp. $40^{\circ} \mathrm{C}$, Open air)

Rated current Max.(A)	Connecting conductors(copper bus bar)		
	Quantity	Conductor size(mm)	Arrangement
630	2	40×5	With long surface vertical
1000	2	60×5	
1250	2	80×5	
1600	2	100×5	
2000	3	100×5	
2500	4	100×5	
3150(3200)*1	3	100×10	
	2	150×10	
$\left(\begin{array}{c} 4000 \\ \binom{\text { AE4000-SWA }}{\text { Drawout type }} \end{array}\right.$	4	150×10	
$\left(\begin{array}{c} 4000 \\ \binom{\text { AE4000-SWA }}{\text { Fixed type }} \end{array}\right.$	3	150×10	
$\begin{gathered} 4000 \\ (\mathrm{AE} 4000-\mathrm{SW}) \end{gathered}$	4	100×10	
5000	4	150×10	
6300	4	200×10	

The left table shows the suitable connecting conductor size based on IEC 60947-1, which is assured from the test under Ambient temp. $40^{\circ} \mathrm{C}$, Open air and testing configuration as shown in the following drawing.

[^1] the connecting conductor size of a rated current 3150A. In case of more than 3200A, conductor sizes are not defined in IEC 60947-1. (Specification by the manufacturer)

Insulation distance

When a short-circuit current is interrupted, discharged hot gas blows out from the exhaust port of the arc extinguishing chamber, so provide a clearance as shown in the following table by " B ".

Note1:On the fixed type, maintenance is possible with following clearance.

Dimensions

Dimensions (mm)				
Type		AE630-SW~AE3200-SW AE2000-SWA AE4000-SWA		$\begin{aligned} & \text { AE4000-SW~ } \\ & \text { AE6300-SW } \end{aligned}$
Applicable voltage		600 V AC or less	$660 \mathrm{~V} \mathrm{AC}, 690 \mathrm{~V} \mathrm{AC}$	690 V AC or less
Fixed type	A	(Note 1) 0	(Note 1) 100	(Note 1) 200
	B	(Note 3) 50	(Note 3) 50	(Note 3) 50
	C	162	162	-
	D	(Note 2) 50	(Note 2) 50	200
Drawout type	A	0	100	200
	B	(Note 3) 50	(Note 3) 50	(Note 3) 50
	C	240	240	-
	D	(Note 2) 50	(Note 2) 50	(Note 2) 200

Note1: 300 mm or more clearance is necessary to inspect the arc-extinguishing chamber and contacts
Note2 : The wiring space reguired for the control terminal block.
Note3 : When using mechanical interlock, door interlock, etc., dimension B becomes larger.

Service conditions

1. Service condition

1. Ambient temperature:
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (ETR: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
(standard ambient temperature: $+40^{\circ} \mathrm{C}$)
(1)Standard operation environment:

Ambient temperature: $-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
And the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
In the operation environments listed for (1) above, use the product with the periodic maintenance and inspection described in the instruction manual.
2. Storage temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

And the average over 24 hours must be within the range of $-20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Before using the product, perform the initial inspection described in the instruction manual.
3. Altitude

2,000m (6,600 feet) or less
4. Environmental conditions
(1)The air must be clean, and the relative humidity must be 85% or less at max. temp. $+40^{\circ} \mathrm{C}$. Do not use and store in atmospheres with sulfide gas and ammonia gas etc.
($\mathrm{H}_{2} \mathrm{~S} \leq 0.01 \mathrm{ppm}, \mathrm{SO}_{2} \leq 0.05 \mathrm{ppm}, \mathrm{NH}_{3} \leq 0.25 \mathrm{ppm}$.)
(2)AE-SW has undergone the following tests. (Except for AE4000-SW ~AE6300-SW)
IEC 60068-2-1: Cold test at $-25^{\circ} \mathrm{C}$ (usage) $/-40^{\circ} \mathrm{C}$ (storage)
IEC 60068-2-2: Dry Heat test at $+70^{\circ} \mathrm{C}$
IEC 60068-2-30: Dump heat, cyclic test $\left(+55^{\circ} \mathrm{C}\right.$ and 95% RH $)$
IEC 60068-2-52: Salt mist, cyclic test/level 2
(3) Vibration (Except for AE4000-SW ~AE6300-SW)
$\mathrm{AE}-\mathrm{SW}$ has undergone the following vibration test.
IEC $60068-2-6$: 5 Hz to 13.2 Hz , amplitude of $\pm 1 \mathrm{~mm}, 13.2 \mathrm{~Hz}$ to $100 \mathrm{~Hz}, \pm 0.7 \mathrm{~g}$
5. Installation conditions

When installing the AE Series air circuit breaker, refer to the installation instructions in the catalogue and instruction manual.
6. Guideline for replacement

Within approx. 15 years. Please refer to the instruction manual.

2. Special service conditions

In case of special service condition, service life may become shorter in some cases.

1. Special environmental conditions High/Low temperature and/or corrosive gas
2. High/Low ambient temperature

If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, the uninterrupted current rating will be reduced. Since the derating value is different depending on the applicable standard, refer to P62. (1)Special operation environment:

Ambient temperature: $+40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (AE4000-SW,
AE5000-SW, AE6300-SW)
And the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$. (2) Special operation environment:

Ambient temperature: $-25^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$ (lower than $-5^{\circ} \mathrm{C}$), $+50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (AE630-SW to AE3200-SW, AE2000-SWA, AE4000-SWA)
However, the average temperature over 24 hours must be within the range of $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ (over $0^{\circ} \mathrm{C}$).
In the operation environments listed for (1) and (2) above, use the product with the periodic maintenance and inspection described in the instruction manual. Contact us to use the product in the special ambient temperature for (2).
3. High altitude
(1)Standard operation environment: 2000 m or less
(2) Since the heat radiation rate is reduced for use at the $2,000 \mathrm{~m}$ or higher, accordingly the operating voltage, continuous current capacity and breaking capacity are derated. Moreover the insulation durability is also decreased owing to the atmospheric pressure.
Corrections to rated voltage and rated current at high altitudes

Altitude	Rated current	Rated voltage
3000 m	0.98	0.91
4000 m	0.96	0.82
5000 m	0.94	0.73

Precautions for mounting

- Standard tightening torque

Screw size	Tightening torque $(\mathrm{N} \cdot \mathrm{m})$
M 12	45 ± 5

- Earth terminal

Unless there are any special circumstances, connect the earth terminal to the ground.

- Mounting
direction

Technical information

Internal resistance, reactance and power consumption (per pole)

Type	Connection	Internal resistance ($\mathrm{m} \Omega$)	Reactance ($\mathrm{m} \Omega$)	Power consumption (W)
AE630-SW	Fixed type	0.020	0.099	8
	Drawout type	0.031	0.147	12
AE1000-SW	Fixed type	0.020	0.095	20
	Drawout type	0.031	0.136	31
AE1250-SW	Fixed type	0.020	0.088	31
	Drawout type	0.031	0.135	48
AE1600-SW	Fixed type	0.020	0.099	51
	Drawout type	0.031	0.129	79
AE2000-SWA	Fixed type	0.020	0.120	80
	Drawout type	0.030	0.161	120
AE2000-SW	Fixed type	0.010	0.076	40
	Drawout type	0.018	0.122	72
AE2500-SW	Fixed type	0.010	0.084	63
	Drawout type	0.018	0.128	113
AE3200-SW	Fixed type	0.009	0.068	92
	Drawout type	0.015	0.096	154
AE4000-SWA	Fixed type	0.011	0.111	176
	Drawout type	0.015	0.106	240
AE4000-SW	Fixed type	0.009	0.070	144
	Drawout type	0.011	0.084	176
AE5000-SW	Fixed type	0.009	0.061	225
	Drawout type	0.011	0.081	275
AE6300-SW	Fixed type	0.008	0.059	318
	Drawout type	0.009	0.080	357

(Note) The above values are applicable for one pole.
The above values are measured values and can be used only for reference.

Deratings by ambient temperature

Deratings of Max. rated current by ambient temperature
 (at brandnew product in vertical connection)

Standard	Ambient Temperature	AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE400-SWA	AE4000-SW	AE5000-SW	AE6300-SW
JIS C 8201-2-1 Ann1 Ann2 IEC 60947-2 (Standard $40^{\circ} \mathrm{C}$)	$40^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2000	2500	3200	4000	4000	5000	6300
	$45^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2000	2500	3200	4000	4000	5000	6300
	$50^{\circ} \mathrm{C}$	630	1000	1250	1600	1900	2000	2500	3200	4000	4000	5000	5750
NK, LR, DNV GL, BV, ABS, CCS (Standard $45^{\circ} \mathrm{C}$)	$55^{\circ} \mathrm{C}$	630	1000	1250	1550	1800	2000	2450	3000	3800	3900	5000	5500
	$60^{\circ} \mathrm{C}$	630	950	1170	1490	1700	2000	2350	2900	3600	3750	4750	5200

Deratings of Max. rated current by ambient temperature (at brandnew product in horizontal connection)

Standard	Ambient Temperature	AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SW	AE2500-SW	AE3200-SW
JIS C 8201-2-1 Ann1 Ann2 IEC 60947-2 (Standard $40^{\circ} \mathrm{C}$) NK, LR, DNV GL, BV, ABS, CCS (Standard $45^{\circ} \mathrm{C}$)	$40^{\circ} \mathrm{C}$	630	1000	1220	1400	1990	2140	2460
	$45^{\circ} \mathrm{C}$	630	1000	1160	1340	1900	2040	2350
	$50^{\circ} \mathrm{C}$	630	1000	1100	1280	1800	1940	2230
	$55^{\circ} \mathrm{C}$	630	1000	1030	1210	1700	1830	2110
	$60^{\circ} \mathrm{C}$	630	940	970	1140	1590	1720	1980

Maximum flowing current with ambient temperature of $65^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ (horizontal connection/vertical connection)

Standard	Ambient Temperature	AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA
IEC 60947-2	$65^{\circ} \mathrm{C}$	530	880	900	900	1300	1450	1600	1850	2700
	$70^{\circ} \mathrm{C}$	370	750	800	800	1000	1200	1450	1690	2200

* AE2000-SWA and AE4000-SWA can only be connected vertically.

Deratings of Max. rated current by ambient temperature with Extension module, Display and Network (at brandnew product in vertical connection)

Standard	Ambient Temperature	AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA	AE4000-SW	AE5000-SW	AE6300-SW
JIS C 8201-2-1 Ann1 Ann2 IEC 60947-2 (Standard $40^{\circ} \mathrm{C}$)	$40^{\circ} \mathrm{C}$	630	1000	1250	1600	2000	2000	2500	3200	4000	4000	5000	6300
	$45^{\circ} \mathrm{C}$	630	1000	1250	1600	1900	2000	2500	3200	3800	4000	5000	5750
	$50^{\circ} \mathrm{C}$	630	1000	1250	1440	1700	2000	2500	2880	3600	3750	4750	5200
NK, LR, DNV GL, BV, ABS, CCS (Standard $45^{\circ} \mathrm{C}$)	$55^{\circ} \mathrm{C}$	-	-	-	-	-	-	-	-	-	-	-	-
	$60^{\circ} \mathrm{C}$	-	-	-	-	-	-	-	-	-	-	-	-

* The above table shows the maximum rated current per each ambient temperature for both drawout type breaker and fixed type (at brandnew product), when breaker and bus bar are installed in open air.
* Connection bus bar is according to IEC60947-1. For AE3200-SW, AE4000-SWA, AE4000-SW, AE5000-SW and AE6300-SW, it is required to follow the manufacturer recommended size shown in Page 59.
* The values mentioned in the table above are calculated basing on the experiment result of JIS C 8201-2 and IEC 60947-2. So, the real values could be different due to configuration within the panel. Therefore, please make sure to confirm the real values basing on assembly's standard like IEC 61439.
* Necessary to adjust the derating of Max. current taking into account the influences like a fever from other components inside the panel, the heats from conductors and air flows whithin the panel.

Technical information

Discrimination table

AE-SW Series air circuit breakers provide easy selective co-ordination with branch circuit breakers. For selective co-crdinations, refer to the following table.

230V AC sym kA

[^2]440V AC sym kA

Branch			AE-SW											
			AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA	AE4000-SW	AE5000-SW	AE6300-SW
			65	65	65	65	65	85	85	85	85	130	130	130
	NF32-SV	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	NV32-SV	5	5	5	5	5	5	5	5	5	5	5	5	5
	NF63-SV NV63-SV	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	$\begin{aligned} & \text { NF63-HV } \\ & \text { NV63-HV } \end{aligned}$	10	9(10)	10	10	10	10	10	10	10	10	10	10	10
	NF63-HRV	30	9(30)	30	30	30	30	30	30	30	30	30	30	30
	$\begin{aligned} & \hline \text { NF125-SV } \\ & \text { NV125-SV } \end{aligned}$	30	7(30)	20(30)	25(30)	30	30	30	30	30	30	30	30	30
	$\begin{aligned} & \hline \text { NF125-SEV } \\ & \text { NV125-SEV } \\ & \hline \end{aligned}$	36	7(36)	20(36)	25(36)	30(36)	36	36	36	36	36	36	36	36
	NF125-SGV	36	9(36)	20(36)	36	36	36	36	36	36	36	36	36	36
	NF125-LGV	50	9(50)	20(50)	36(50)	50	50	50	50	50	50	50	50	50
	$\begin{aligned} & \text { NF125-HV } \\ & \text { NV125-HV } \end{aligned}$	50	9(50)	30(50)	50	50	50	50	50	50	50	50	50	50
	NF125-HGV	65	9(65)	20(65)	36(65)	65	65	65	65	65	65	65	65	65
$\left\|\begin{array}{c} \mathrm{NF} \\ 1 \\ \mathrm{~S} \end{array}\right\|$	NF160-SGV	36	9(36)	15(36)	25(36)	36	36	36	36	36	36	36	36	36
	NF160-LGV	50	9(50)	15(50)	25(50)	42(50)	42(50)	50	50	50	50	50	50	50
	NF160-HGV	65	9(65)	15(65)	25(65)	42(65)	42(65)	65	65	65	65	65	65	65
$\left\|\begin{array}{c} \mathrm{NV} \\ 1 \\ \mathrm{~S} \end{array}\right\|$	$\begin{array}{\|l} \hline \text { NF250-SV } \\ \text { NF250-SEV } \\ \text { NV250-SV } \\ \text { NV250-SEV } \\ \hline \end{array}$	36	7(36)	14(36)	19(36)	25(36)	25(36)	36	36	36	36	36	36	36
$\left.\begin{gathered} \mathrm{NF} \\ \mathrm{I} \\ \mathrm{~L} \\ \cdot \\ \mathrm{NF} \\ \mathrm{I} \\ \mathrm{H} \\ \cdot \\ \mathrm{NV} \\ \mathrm{I} \\ \mathrm{H} \end{gathered} \right\rvert\,$	NF250-SGV	36	7(36)	15(36)	25(36)	36	36	36	36	36	36	36	36	36
	NF250-LGV	50	7(50)	15(50)	25(50)	42(50)	42(50)	50	50	50	50	50	50	50
	NF250-HV NF250-HEV NV250-HV NV250-HEV	70	7(65)	15(65)	25(65)	42(65)	42(65)	70	70	70	70	70	70	70
	NF250-HGV	65	7(65)	15(65)	25(65)	42(65)	42(65)	65	65	65	65	65	65	65
	$\begin{aligned} & \hline \text { NF400-SW } \\ & \text { NV400-SW } \\ & \hline \end{aligned}$	45	-	-	18(45)	24(45)	24(45)	33(45)	45(45)	45	45	45	45	45
	$\begin{aligned} & \text { NF400-SEW } \\ & \text { NV400-SEW } \end{aligned}$	50	9(50)	15(50)	18(50)	24(50)	24(50)	30(50)	39(50)	50	50	50	50	50
	$\begin{aligned} & \text { NF400-HEW } \\ & \text { NV400-HEW } \end{aligned}$	70	9(65)	15(65)	18(65)	24(65)	24(65)	30(70)	39(70)	70	70	70	70	70
	$\begin{aligned} & \text { NF400-REW } \\ & \text { NV400-REW } \end{aligned}$	125	9(65)	15(65)	18(65)	24(65)	24(65)	30(75)	39(75)	80	80	100	100	100
	$\begin{array}{\|l\|} \hline \text { NF630-SW } \\ \text { NV630-SW } \\ \hline \end{array}$	50	-	-	-	24(50)	24(50)	30(50)	37(50)	50	50	50	50	50
	$\begin{aligned} & \text { NF630-SEW } \\ & \text { NV630-SEW } \end{aligned}$	50	-	15(50)	18(50)	24(50)	24(50)	30(50)	37(50)	50	50	50	50	50
	$\begin{aligned} & \text { NF630-HEW } \\ & \text { NV630-HEW } \end{aligned}$	70	-	15(65)	18(65)	24(65)	24(65)	30(70)	37(70)	48(70)	48(70)	70	70	70
	NF630-REW	125	-	15(65)	18(65)	24(65)	24(65)	30(75)	37(75)	48(75)	48(75)	75(100)	75(100)	75(100)
	NF800-SEW NV800-SEW	50	-	-	18(50)	24(50)	24(50)	30(50)	37(50)	48(50)	48(50)	50	50	50
	NF800-HEW NV800-HEW	70	-	-	18(65)	24(65)	24(65)	30(70)	37(70)	48(70)	48(70)	70	70	70
	NF800-REW	125	-	-	18(65)	24(65)	24(65)	30(75)	37(75)	48(75)	48(75)	75(100)	75(100)	75(100)
$\left.\begin{gathered} \mathrm{NF} \\ 1 \\ \mathrm{C} \\ C_{2} \\ \mathrm{NV} \\ 1 \\ \mathrm{C} \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { NF63-CV } \\ & \text { NV63-CV } \\ & \hline \end{aligned}$	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	$\begin{array}{\|l} \hline \text { NF125-CV } \\ \text { NV125-CV } \\ \hline \end{array}$	10	9(10)	10	10	10	10	10	10	10	10	10	10	10
	$\begin{array}{\|l} \hline \text { NF250-CV } \\ \text { NV250-CV } \\ \hline \end{array}$	25	9(25)	15(25)	18(25)	25	25	25	25	25	25	25	25	25
	$\begin{array}{\|l} \hline \text { NF400-CW } \\ \text { NV400-CW } \\ \hline \end{array}$	36	-	15(36)	18(36)	24(36)	24(36)	25(36)	36	36	36	36	36	36
	NF630-CW NV630-CW	36	-	-	-	24(36)	24(36)	30(36)	36	36	36	36	36	36
	NF800-CEW	36	-	-	18(36)	24(36)	24(36)	30(36)	36	36	36	36	36	36
$\left.\begin{gathered} \mathrm{NF} \\ 1 \\ \mathrm{U} \end{gathered} \right\rvert\,$	NF125-RGV	125	35(65)	65	65	65	65	85	85	85	85	125	125	125
	NF125-UV	200	50(65)	65	65	65	65	85	85	85	85	130	130	130
	NF250-RGV	125	9(65)	50(65)	65	65	65	85	85	85	85	125	125	125
	NF250-UV	200	9(65)	65	65	65	65	85	85	85	85	130	130	130
	NF400-UEW	200	9(65)	15(65)	18(65)	29(65)	29(65)	48(75)	85	85	85	130	130	130
	NF800-UEW	200	-	-	18(65)	24(65)	24(65)	30(75)	37(75)	68(75)	68(75)	85(100)	85(100)	85(100)

The values in the table represent the max.rated current for both Series AE-SW air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SW series air circuit
breakers instantaneous pick up is set to maximum.
The numerals shown in parentheses are for AE-SW with MCR.(When set MCR).

Ordering information

Ordering information for Mitsubishi AE-SW series air circuit breaker
(General use…WS Type, Special use…WB Type, Protective coordination use…WF Type)

Electrical accessories P14~16	\checkmark Auxiliary switch V Standard(AX 6]:2 or 4 or 6 or 8 or 10) High capacity(HAX $\square: 2$ or 4 or 6 or 8 or 10)
	\boxed{V} Motor charging(MD) 100-125V AC • DC $\square 200-250 \mathrm{~V} \mathrm{AC} \cdot \mathrm{DC}$ $\square 24 \mathrm{~V}$ DC \square Note10
	\boxed{V} Closing coil(CC) $\quad-\quad$100-250V AC \cdot DC

Mechanical accessories P17~18	VPush button cover(BC-L)
	\checkmark Counter(CNT)
	\square Cylinder lock(CYL)
	\square Door interlock(DI) Note11
	\square Terminal cover(TTC)
	\checkmark Door frame(DF) $\quad \square$ for 2units(MI2)
	\square Dust cover(DUC) $\quad \square \square$ monuting pitch(1m)
	\square Mechanical interlock(MI) $\quad \square$ for 2units(MI3) Note11

Note 1: For AE630-SW and AE2000-SW Low rating type, please specify CT rating. Refer to Page 11 and Page 22.
Note2: There is a case to be derated by ambient temperature. Refer to Page 62. Specify LSP-N1459 for use in an environment with a temperature in the range of $-5^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$ or $+50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. (lower than $-5^{\circ} \mathrm{C}$)
Note3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: Refer to Page 13 and Page 45-47.
Note5: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows.
CL1:1C CL2:1C1D CL3:1C1T1D CL4: 2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note7: Not available for WB1, WB2 and WB3 Main setting module. N5 optional setting module is used for 3 phase 4 wires system. (4 Pole breaker or 3 pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: For Earth leakage protection, it is required External ZCT.
Note10: 24 V DC and 48 V DC are not available for AE4000-SWA 4P and AE4000-SW~AE6300-SW. Note11: The combined installation of DI and MI 3 is not available.
Note12: Some module types are not provided BA. Refer to Page17.
Note13: Power Supply comes from the top terminals.
Note14: Power Supply comes from the bottom terminals.
Note15: Current capacity of the neutral poles
HN: 50\% of the rated current
FN: 100% of the rated current (See page 49, 54 for the outline and dimensions.) Note16: Not available for WF1, WF2 and WF3 Main setting module.
Note17: Not available for WB1, WB2 and WB3 Main setting module.
\square
Order Issuer

Ordering information for Mitsubishi AE-SW series air circuit breaker (General use \cdots..WS Type, Special use \cdots..WB Type, Protective coordination use...WF Type)

Note1: For AE630-SW and AE2000-SW Low rating type, please specify CT rating. Refer to Page 11 and Page 22.
Note2: There is a case to be derated by ambient temperature. Refer to Page 62. Specify LSP-N1459 for use in an environment with a temperature in the range of $-5^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$ or $+50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. (lower than $-5^{\circ} \mathrm{C}$)
Note3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: Refer to Page 13 and Page 45-47.
Note5: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows.
CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D
Note 6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note7: Not available for WB1, WB2 and WB3 Main setting module. N5 optional setting module is used for 3 phase 4 wires system. (4 Pole breaker or 3 pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: For Earth leakage protection, it is required External ZCT.
Note10: 24V DC and 48V DC are not available for AE4000-SWA 4P and AE4000-SW~AE6300-SW.
Note11: The combined installation of DI and MI3 is not available.
Note12: Some module types are not provided BA. Refer to Page17.
Note13: Power Supply comes from the top terminals.
Note14: Power Supply comes from the bottom terminals.
Note15: Current capacity of the neutral poles
HN: 50% of the rated current
FN: 100\% of the rated current (See page 49, 54 for the outline and dimensions.) Note16: Not available for WF1, WF2 and WF3 Main setting module.
Note17: Not available for WB1, WB2 and WB3 Main setting module.

Ordering information

Ordering information for Mitsubishi AE-SW series air circuit breaker (Generator protection use...WM Type)

Electrical accessories P.14~16	
	\square Motor charging(MD) - - \square 100-125V AC • DC
	200-250V AC • DC
	$\square 24 \mathrm{~V}$ DC
	Closing coil(CC) - $\square 100-250 \mathrm{~V} \mathrm{AC} \cdot$ DC $14-48 \mathrm{~V}$ DC
	$\left.\begin{array}{l\|l\|}\hline \text { Shunt trip device } \\ \text { (SHT) }\end{array}\right)$$\square$ 100-250V AC \cdot DC \square \square
	Under voltage trip device(UVT)
	$\square 100-120 \mathrm{VAC}-$
	200-240V AC- Time delay
	$380-460 \mathrm{~V} \mathrm{AC}-\square$ Inst(INST)
	24 V C $-\square 0.5 \mathrm{~s}(05)$
	48 V DC - $\quad \square 3.0 \mathrm{~s}(30)$
	100-110V DC- Notelin ase ol 380.46 V AC,
	$\square 120-125 \mathrm{~V}$ DC ${ }^{\text {a }}$,

[^3]Note1: Please specify current setting (Ir) from the specification table
Refer to Page 11 and 12
Note2: There is a case to be derated by ambient temperature. Refer to Page 62.
Specify LSP-N1459 for use in an environment with a temperature in the range of $-5^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$ or $+50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. (lower than $-5^{\circ} \mathrm{C}$)
Note3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: Refer to Page 13 and Page 45-47.
Note5: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows.
CL1: 1C CL2: 1C1D CL3: 1C1T1D CL4: 2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note7: N5 optional setting module is used for 3 phase 4 wires system.(4 Pole breaker or 3 pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: For Earth leakage protection, it is required External ZCT.
Note10: 24 V DC and 48 V DC are not available for AE4000-SWA 4P and AE4000-SW~AE6300-SW.
Note11: The combined installation of DI and M13 is not available
Note12: Some module types are not provided BA. Refer to Page17.
Note13: Power Supply comes from the top terminals.
Note14: Power Supply comes from the bottom terminals.
Note15: Current capacity of the neutral poles
HN: 50% of the rated current
FN: 100% of the rated current (See page 49, 54 for the outline and dimensions.)
Note16: AE4000-SW~AE6300-SW don't apply to CCS marine approval.

Remark

Ordering information for MITSUBISHI AE-SW series air circuit breaker (General use…WS relay with Ampere Meter and Fault Memory "DP3")

Note1: For AE2000-SW, low rating current types are available
Low rating types (250A, 315A, 500A) are not available for AE630-SW
Note2: There is a case to be derated by ambient temperature. Refer to Page 62. The ambient temperature range is $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Note3: As for the terminal for AE2000-SWA, AE4000-SWA and AE4000-SW~AE6300-SW, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: This setting is available for change by customer later. A preliminary setting of CL at factory shipment is as follows.
CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D
Note5: Neutral CT is required for Ground fault or Neutral pole protection, when 3-pole breaker is used for 3 phase 4 wire system
Note6: 24V DC and 48V DC are not available for AE4000-SWA 4P or AE4000 to 6300-SW.
Note7: The combined installation of DI and MI3 is not available.
Note8: Some module types are not provided BA. Refer to Page17.
Note9: Current capacity of the neutral poles
HN: 50% of the rated current
FN: 100\% of the rated current (See page 49, 54 for the outline and dimensions.)
Note10: If MCR switch is ordered, INST/MCR characteristic will be installed INST/MCR characteristics can be switched using a setting dial.
Note11: For WS relay with ampere meter and fault memory (DP3),
ETR including optinal setting such as "G1" has integrated structure.
So, optinal setting such as G1 for WS relay with DP3 should be specified before ordering as those parts cannot be installed with ETR after factory shipment.

Index

Revising history

The main revising contents are below.
*from 20A (Y-0622K printed on December 2020) to 22 A (Y-0622L printed on September 2022)

- : Logo changed, EX2 added.
- : Functions (Number of times open/close, Body temperature, Voltage protection) added.
- Page 11-12 : Add Note 15,16,17 for Number of operating cycles
- Page 17 : Add Note for Interphase Barrier (BA)
- Page 27 : Add "*: When used without voltage applied to the control power supply (ETR power supply module) Tsd,li operation time may increase max. 20ms."
- Page 33 : Add Note for Ground fault protection (GFR)
- Page 34 : Add "*: Operates in the range of 0.04 s to 0.1 s when Te is set to 0.1 ."
- Page 36 : The weight of $\mathrm{Y}-2005$ is changed to 4.8 kg . P40 Add Note 8)
- Page 60 : Add "Special operation environment" for Service conditions Storage temperature was $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ Correction table for high altitude added.

MEMO

Service network

Country/Region	Corporation Name	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd.	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7777
Algeria	Mec Casa	Rue iN 125 Hay-Es-Salem, 02000, W-Chlef, Algeria	+213-27798069
Bangladesh	PROGRESSIVE TRADING CORPORATION	HAQUE TOWER,2ND FLOOR,610/11,JUBILEE ROAD, CHITTAGONG, BANGLADESH	+880-31-624307
	ELECTROMECH AUTOMATION\& ENGINEERING LTD.	SHATABDI CENTER, 12TH FLOOR, SUITES: 12-B, 292, INNER CIRCULAR ROAD, FAKIRA POOL, MOTIJHEEL, DHAKA-1000, BANGLADESH	+88-02-7192826
Belarus	Technikon	Oktyabrskaya 19, Off. 705, BY-220030 Minsk, Belarus	+375 (0)17/210 4626
Belgium	Mitsubishi Electric Europe B.V. Benelux Branch	Nijverheidsweg 23A, 3641 RP Midrecht	+31 (0)297250 350
Brazil	Mitsubishi Electric do Brasil Comércio e Serviços Ltda.	Avenida Adelino Cardana, 293-21 ${ }^{\circ}$ Andar, Bethaville, Barueri, SP, Brasil, CEP 06401-147	+55-11-4689-3000
Cambodia	DHINIMEX CO.,LTD	\#245, St. Tep Phan, Phnom Penh, Cambodia	+855-23-997-725
Central America	Automation International LLC	7050 W. Palmetto Park Road Suite \#15 PMB \#555, Boca Raton, FL 33433	+1-561-237-5228
Chile	Rhona S.A. (Main office)	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Vina del Mar, Chile	+56-32-2-320-600
China	Mitsubishi Electric Automation (China) Ltd.	Mitsubishi Electric Automation Building, No. 1386 Hongqiao Road, Shanghai, China 200336	+86-21-2322-3030
	Mitsubishi Electric Automation (China) Ltd. BeiJing	5/F,ONE INDIGO,20 Jiuxianqiao Road Chaoyang District,Beijijing, China 100016	+86-10-6518-8830
	Mitsubishi Electric Automation (China) Ltd. ShenZhen	Level 8, Galaxy World Tower B, 1 Yabao Road, Longgang District, Shenzhen, China 518129	+86-755-2399-8272
	Mitsubishi Electric Automation (China) Ltd. GuangZhou	Rm.1006, A1 Times E-Park, No.276-282, Hanxi Road East, Zhongcun Street, Panyu Distric, Guangzhou, China 510030	+86-20-8923-6730
	Mitsubishi Electric Automation (China) Ltd. ChengDu	1501-1503,15F, Guang-hua Centre Building-C, No. 98 North Guang Hua 3th Rd Chengdu, China 610000	+86-28-8446-8030
	Mitsubishi Electric Automation (Hong Kong) Ltd.	20/F, 1111 King's Road, Taikoo Shing, Hong Kong	+852-2510-0555
Colombia	Proelectrico Representaciones S.A.	Carrera 42 № $75-367$ Bodega 109, Itagüi, Medellín, Antioquia, Colombia	+57-4-4441284
Czech Republic	AUTOCONT CONTROL SYSTEMS S.R.O	Technologická 374/6, CZ-708 00 Ostrava - Pustkovec	+420 595691150
Denmark	BEIJER ELECTRONICS A/S	LYKKEGARDSVEJ 17, DK-4000 ROSKILDE, Denmark	+45 (0)46/757666
Egypt	Cairo Electrical Group	9, Rostoum St. Garden City P.O. Box 165-11516 Maglis El-Shaab,Cairo - Egypt	+20-2-27961337
France	Mitsubishi Electric Europe B.V. French Branch	FR-92741 Nanterre Cedex	+33 (0)1 55685701
Germany	Mitsubishi Electric Europe B.V.	Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany	+49 (0) 21024860
Greece	KALAMARAKIS - SAPOUNAS S.A.	IONIAS \& NEROMILOU STR., CHAMOMILOS ACHARNES, ATHENS, 13678 Greece	+30-2102 406000
Hungary	Meltrade Ltd.	Fertö utca 14. HU-1107 Budapest, Hungary	+36 (0)1-431-9726
India	Mitsubishi Electric India Private Limited	3rd Floor, Tower A, Global Gateway, MG Road, Gurugram - 122002, Haryana, India	+91(124)673 9300
	Mitsubishi Electric India Private Limited Pune Sales Office	ICC-Devi Gaurav Technology Park, Unit no. 402, Fourth Floor, Survey no. 191-192 (P), Opp. Vallabh Nagar Bus Depot, Pune - 411018, Maharashtra, India	+91-20-68192100
	Mitsubishi Electric India Private Limited FA Center	204-209, 2nd Floor, 31FIVE, Corporate Road, Prahladnagar, Ahmedabad 380015,Gujarat. India	+91-79677-77888
Indonesia	PT. Sahabat Indonesia	P.O.Box 5045 Kawasan Industri Pergudangan, Jakarta, Indonesia	+62-(0)21-6610651-9
Ireland	Mitsubishi Electric Europe B.V.	Westgate Business Park, Ballymount, IRL-Dublin 24, Ireland	+353 (0)1-4198800
Israel	Gino Industries Ltd.	26, Ophir Street IL-32235 Haifa, Israel	+972 (0)4-867-0656
Italy	Mitsubishi Electric Europe B.V.	Viale Colleoni 7, l-20041 Agrate Brianza (MI), Italy	+39 039-60531
Kazakhstan	Kazpromavtomatika	U. Zhambyla 28, KAZ - 100017 Karaganda	+7-7212-501000
Korea	Mitsubishi Electric Automation Korea Co., Ltd	9F Gangseo Hangang xi-tower A, 401 Yangcheon-ro, Gangseo-gu, Seoul 07528 Korea	+82-2-3660-9573
Laos	AROUNKIT CORPORATION IMPORT- EXPORT SOLE CO.,LTD	SAPHANMO VILLAGE. SAYSETHA DISTRICT, VIENTIANE CAPITAL, LAOS	+856-20-415899
Lebanon	Comptoir d'Electricite Generale-Liban	Cebaco Center - Block A Autostrade Dora, P.O. Box 11-2597 Beirut - Lebanon	+961-1-240445
Lithuania	Rifas UAB	Tinklu 29A, LT-5300 Panevezys, Lithuania	+370 (0)45-582-728
Malaysia	Mittric Sdn Bhd	No. 5 Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie 40150 Shah Alam,Selangor, Malaysia	+603-5569-3748
Malta	ALFATRADE LTD	99 PAOLA HILL, PAOLA PLA 1702, Malta	+356 (0)21-697-816
Maroco	SCHIELE MAROC	KM 7,2 NOUVELLE ROUTE DE RABAT AIN SEBAA, 20600 Casablanca, Maroco	+212661 451596
Myanmar	Peace Myanmar Electric Co.,Ltd.	NO137/139 Botahtaung Pagoda Road, Botahtaung Town Ship 11161,Yangon,Myanmar	+95-(0)1-202589
Nepal	Watt \&Volt House	KHA 2-65,Volt House Dillibazar Post Box:2108,Kathmandu,Nepal	+977-1-4411330
Netherlands	Mitsubishi Electric Europe B.V. Benelux Branch	Nijverheidsweg 23A, 3641 RP Mijdrecht	+31 (0)297250 350
North America	Mitsubishi Electric Automation, Inc.	500 Corporate Woods Parkway, Vernon Hills, IL 60061 USA	+847-478-2100
Norway	Scanelec AS	Leirvikasen 43B, NO-5179 Godvik, Norway	+47 (0)55-506000
Mexico	Mitsubishi Electric Automation, Inc. Mexico Branch	Blvd. Miguel de Cervantes Saavedra 301, Torre Norte Piso 5, Col. Ampliación Granada, Miguel Hidalgo, Ciudad de México, CP 11520, México	+52-55-3067-7511
$\begin{array}{\|c\|} \hline \text { Middle East } \\ \text { Arab Countries \& Cyprus } \\ \hline \end{array}$	Comptoir d'Electricite Generale-International-S.A.L.	Cebaco Center - Block A Autostrade Dora P.O. Box 11-1314 Beirut - Lebanon	+961-1-240430
Pakistan	Prince Electric Co.	2-P GULBERG II, LAHORE, 54600, PAKISTAN	$\begin{aligned} & +92-42-575232, \\ & 5753373 \end{aligned}$
Peru	Rhona S.A. (Branch office)	Avenida Argentina 2201, Cercado de Lima	+51-1-464-4459
Philippines	Edison Electric Integrated, Inc.	24th FI. Galleria Corporate Center, Edsa Cr. Ortigas Ave., Quezon City Metro Manila, Philippines	+63-(0)2-634-8691
Poland	Mitsubishi Electric Europe B.V. Polish Branch	Krakowska 48, 32-083 Balice, Poland	+48 123476500
Republic of Moldova	Intehsis SRL	bld. Traian 23/1, MD-2060 Kishinev, Moldova	+373 (0)22-66-4242
Romania	Sirius Trading \& Services SRL	RO-060841 Bucuresti, Sector 6 Aleea Lacul Morii Nr. 3	+40-(0)21-430-40-06
Russia	Mitsubishi Electric (Russia) LLC	2 bld.1, Letnikovskaya street, Moscow, 115114, Russia	+7 495 721-2070
Saudi Arabia	Center of Electrical Goods	Al-Shuwayer St. Side way of Salahuddin Al-Ayoubi St. P.O. Box 15955 Riyadh 11454 - Saudi Arabia	+966-1-4770149
Singapore	Mitsubishi Electric Asia Pte. Ltd.	307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	+65-6473-2308
Slovakia	PROCONT, Presov	Kupelna 1/, SK - 08001 Presov, Slovakia	+421 (0)51-7580 611
	SIMAP	Jana Derku 1671, SK - 91101 Trencin, Slovakia	+421 (0)32 7430472
Slovenia	Inea RBT d.o.o.	Stegne 11, SI-1000 Ljubljana, Slovenia	+386 (0)1-513-8116
South Africa	CBI-electric: low voltage	Private Bag 2016, ZA-1600 Isando Gauteng, South Africa	+27-(0)11-9282000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch	Carretera de Rubi 76-80, E-08190 Sant Cugat del Vallés (Barcelona), Spain	+34 (0)93-565-3131
Sweden	Mitsubishi Electric Europe B.V. (Scandinavia)	Hedvig Möllers gata 6, 22355 Lund, Sweden	+46 (0)8-625-10-00
	Euro Energy Components AB	Järnvägsgatan 36, S-434 24 Kungsbacka, Sweden	+46(0)300-690040
Switzerland	TriElec AG	Muehlentalstrasse 136, CH-8201 Schaffhausen, Switzerland	+41-(0)52-6258425
Taiwan	Setsuyo Enterprise Co., Ltd	5th Fl., No.105, Wu Kung 3rd, Wu-Ku Hsiang, Taipei, Taiwan, R.O.C.	+886-(0)2-2298-8889
Thailand	United Trading \& Import Co., Ltd.	77/12 Bamrungmuang Road,Klong Mahanak Pomprab Bangkok Thailand	+66-223-4220-3
Tunisia	MOTRA Electric	3, Résidence Imen, Avenue des Martyrs Mourouj III, 2074 - El Mourouj III Ben Arous, Tunisia	+216-71 474599
Turkey	Mitsubishi Electric Turkey A.Ş.	Şerifali Mahallesi Kale Sokak No: 41, 34775 Ümraniye, istanbul, Turkey	+90-216-969-2666
United Kingdom	Mitsubishi Electric Europe B.V.	Travellers Lane, UK-Hatfield, Herts. AL10 8XB, United Kingdom	+44 (0)1707-276100
Uruguay	Fierro Vignoli S.A.	Avda. Uruguay 1274 Montevideo Uruguay	+598-2-902-0808
Vietnam	Mitsubishi Electric Vietnam Co.,Ltd. Head Office	11th \& 12th Floor, Viettel Tower B, 285 Cach Mang Thang 8 Stret, Ward 12, District 10, Ho Chi Minh City, Vietnam	+84-28-3910-5945
	Mitsubishi Electric Vietnam Co.,Ltd. Hanoi Branch	24th Floor, Handico Tower, Pham Hung Road, khu do thi moi Me Tri Ha, Nam Tu Liem District, Hanoi City, Vietnam	+84-24-3937-8075

For Safety : Please read the instruction manual carefully before using the products in this catalog. Wiring and connection must be done by the person has a specialized knowledge of electric construction and wiring.

- Trademarks

MODBUS is a registered trademark of Schneider USA Inc.

FA Global Site

https://www.mitsubishielectric.com/fa/products/lvd/lvcb/index.html

[^0]: The table and the figure include both optional display and MCR.
 For WB relay, when Pre-alarm current Ip is set at "OVER", the Ip value is "Ir x 1.15".
 The table includes MCR (option). If MCR is not included, there is no MCR setting position.

[^1]: *1 The temperature rise of rated current 3200A conforms to the requirement of IEC60947-1 for

[^2]: The values in the table represent the max.rated current for both Series AE-SW air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SW series air circuit
 breakers instantaneous pick up is set to maximum.

[^3]: Mechanical \square Push button cover(BC-L)
 accessories
 Counter(CNT)
 \square Cylinder lock(CYL)
 \square Door interlock(DI) Note11
 \square Terminal cover(TTC)
 \square Door frame(DF)
 \square Dust cover(DUC)
 \square Interphase barrier(BA) \square for 2units(MI2)
 \square monuting pitch(1m)
 Mechanical interlock(MI) monuting pitch(2m)

