Changes for the Better

New Product News

June 2019	No.M023

MDU BREAKER WS-V Series and W\&WS Series

Features of Mitsubishi MDU Breakers

(1) Space saving and construction cost saving

- Construction cost saving

Wiring work for measuring devices is unnecessary, and the construction period and cost can be reduced.
[Example of wiring for combined measuring devices (before introduction)】

Construction	Conventional combination of devices		Introduction of MDU breaker
Wiring	CT line	Ammeter, wattmeter, power factor meter, harmonic current meter, current demand meter, electric energy meter, transducers (current, electric power, power factor, harmonic current, current demand)	Unnecessary
	Voltage line	Voltmeter, wattmeter, power factor meter, electric energy meter, transducers (voltage, electric power, power factor)	Unnecessary
	Auxiliary power supply	Transducers (current, voltage, electric power, power factor, harmonic current, current demand), transmission device	Necessary
	Measurement signal line	Transmission device input	Unnecessary
	Transmission line	Transmission device	Necessary
Devices installed		16 units	1 unit

Space saving

The board installation area can be reduced, and the space can be effectively used.
If the MDU breaker is introduced when the board is renewed, upgrading can be expected by adding the measuring and display functions within the area of the standard circuit breaker.
[After introduction of MDU breaker]

(2) Sophisticated and multifunctional

- Circuit monitoring

The breaker constantly monitors the load current and, if the load current exceeds the preset value, outputs an alarm, and the operator can take measures. Accordingly, unnecessary tripping does not occur, and power can be continuously supplied. Alarms on the circuit are given by using LCD and LED. A simple monitoring system can be realized.

- Preventive equipment maintenance When the breaker trips, the cause and fault current are recorded in the nonvolatile memory.
For example:

Monitoring of overload on motor and transformer

The PAL (pre-alarm) function monitors the load current and issues a preliminary alarm when the load current reaches a certain control level (adjustable from 70 to 100% of the rated current).

Example of introduction of MDU breaker

 (monitoring of electric power at substation and on production line)
Uses

Measurement of electric power at assembly plant
(1)The relationship between production and power usage is clarified, and the data is used, first of all, for activities for reducing the amount of wasted electricity.
(2)The breaker is used as a tool for visualized control of energy-saving activities to support planning, confirming, analyzing and evaluating the energy-saving activities.

Effect of introduction

(1)Automation of periodic measurement

- Automatic measurement by the hour
\rightarrow Daily manual measurement requires to read and record the values measured at many points and enter the values into a personal computer.
(2)Automation of detailed measurement
- Detailed measurement of electric power in specific equipment (for example, measurement every 15 minutes for 1 week) can be automated through setting on a personal computer.

Evolving MDU Breakers

(1) Downsizing

- Breakers with the same outside dimensions as the standard circuit breakers are realized by using the front LCD for displaying circuit information.

(Dimensions in the case where the built-in display unit of the 250 A frame is separately mounted)

(2) Improved visibility

- When an alarm or fault occurs, the LCD backlight changes from white to red.

The display direction can be switched.

PAL (load current pre-alarm), OVER (overcurrent alarm), etc.

(3) Improved operability

- The multi-function display screen reduces the number of operations.

(4) Increased breaking capacity

Type	NF250-SW with MDU	NF250-SEV with MDU
AC [V]	Rated breaking capacity [kA] ICu/Ics	
690	-	$8 / 8$
500	$15 / 8$	$18 / 18$
440	$25 / 13$	$36 / 36$
415	$30 / 15$	$36 / 36$
400	$30 / 15$	$36 / 36$
380	$30 / 15$	$36 / 36$
230	$50 / 25$	$85 / 85$
200	$50 / 25$	$85 / 85$

Type	$\begin{array}{c}\text { NF400-SEP with MDU } \\ \text { NF600-SEP with MDU } \\ \text { NF800-SEP with MDU }\end{array}$	$\begin{array}{c}\text { NF400-SEW with MDU } \\ \text { NF800-SEWW with MDU }\end{array}$
AC	Rated breaking capacity [kA]	
Icu/Ics		

[Applicable standards] JIS C 8201-2-1 Ann.1, JIS C 8201-2-1 Ann.2, IEC 60947-2

(5) Various types of mounting

External mounting	Panel mounting	Breaker mounting	Breaker mounting unit separate installation
nit:			

[^0](The cable length, $0.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m , can be specified.)

Specifications for breakers

Notes: *1 When the panel mounting is specified, the breaker comes with panel fittings and mounting screws, and the 2 m long connecting cable (standard) is supplied. (The connecting cable length, $0.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$ or 1 m , can be specified.) When the breaker mounting separate unit is specified, the 2 m long connecting cable (standard) is
supplied. (The connecting cable length $0.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$ or 10 m can be specified. supplied. (The connect thg cable ter front plate varies 5 epending, that the cutout size in the breaker front plate varies depending on the MDU mountin
*2 The 250 A frame models come with the studs in the package. In the case of the
800 A frame models, the studs are fitted before shipment. Specify the mounting direction.
*3 These are cassette-type devices and can be installed by the user.
*4 When the following devices are installed on the built-in display type, the built-in display 250 A frame: Accessories with SLT
400/630/800 A frame: Accessories on
*5 The breaker with alarm contact output is provided with the module on the right side and requires a control power supply (common to 100 to $240 \mathrm{VAC} / \mathrm{DC}, 50 / 60 \mathrm{~Hz}, 5 \mathrm{VA}$). The PAL output does not operate if the MDU is connected and the control power is not
applied to the MDU. applied to the MDU. "automatic reset" from the MDU. The default setting is "automatic reset."
*6 For the electrical operation device for 250 A frame, one alarm switch AL (for minute electric current) is used to display tripping. The allowable number of AL is reduced by one. When the alarm contact output is provided, the device cannot be operated
*7 It does not have an isolation function except for 400 to 800 A frame models.
*8 It can be manufactured only in the case of panel mounting,
For a 250 A frame model with buitt-in dish and PAL, the cover dedicated for the MDU is used. When placing an order only for the terminal cover, add MP to the end of the
*10 In the case of breaker mounting, the cover dedicated for the MDU is used. When placing an order only for the terminal cover, add -MDUB to the end of the model name. (Example.
Remarks: The breaking capacities shown in the provided with TTC for breaker mounting. \quad columns are indicated on the breakers.

Speciitications for Measuring Display Units (MDU)

OSpecifications for Measuring Display Units (MDU)
The measurement and display items vary depending on the model and A frame.

Measurement/stored item	(accuracy)(*1)	Function $(* 2)(* 3)$	Display	$\underset{(* 4)}{\text { Storage }}$	With electric energy pulse output (*5)	With CC.Link communication	With MODBUS communication	Remarks
		Each phase	\bigcirc	-	-	\bigcirc	\bigcirc	
	Present value	Total (average) (*7)	-	-	-	\bigcirc	\bigcirc	
		Max. phase	-	-	-	O	\bigcirc	
$\begin{aligned} & \text { pad curren } \\ & \text { (} \pm 1.0 \%) \end{aligned}$	Present demand	Each phase	\bigcirc	-	-	\bigcirc	\bigcirc	
	value (*6)	Max. phase	\bigcirc	-	-	\bigcirc	\bigcirc	
	Max. demand	value of all phases	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Time of occurrenc	ce of max. demand value of all phases	\bigcirc	\bigcirc	-	O	\bigcirc	
	Present value	Between each two lines	\bigcirc	-	-	\bigcirc	\bigcirc	
Line voltage	Present value	Total (average) (*7)	\bigcirc	-	-	\bigcirc	\bigcirc	
($\pm 1.0 \%$)	Max. value bet	ween all lines	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Time of occurre	ence of max. value between all lines	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
		Fundamental wave of each phase	\bigcirc	-	-	\bigcirc	O	
	Present value	Individual harmonic current of each phase	\bigcirc	-	-	\bigcirc	\bigcirc	
		Total harmonic current of each phase (*8)	\bigcirc	-	-	\bigcirc	\bigcirc	
	Max. fundamen	ntal wave value of all phases	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Time of occurrence	of max. fundamental wave value of all phases	\bigcirc	\bigcirc	-	-	-	
Harmonic current	Max. value of ind	dividual harmonic current of all phases	\bigcirc	\bigcirc	-	0	\bigcirc	
($\pm 2.5 \%)$	Time of occurence of	max. value of individual harmonic current of all phases	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
		Total harmonic current of each phase (*8)	\bigcirc	-	-	\bigcirc	\bigcirc	
	$\begin{aligned} & \text { Demand value } \\ & (* 6) \end{aligned}$	Max. total demand value of all phases	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
		Time of occurrence of max. total demand value of al phases	\bigcirc	O	-	O	\bigcirc	
	Total distortion	n rate of each phase	\bigcirc	-	-	-	-	
	Individual cont	ent of each phase	\bigcirc	-	-	-	-	
	Present value		\bigcirc	-	-	O	\bigcirc	
Electric power		Present value	\bigcirc	-	-	\bigcirc	\bigcirc	
	(*6)	Max. value	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
		Time of occurrence of max. value	\bigcirc	O	-	\bigcirc	\bigcirc	
	Present value		\bigcirc	-	-	\bigcirc	\bigcirc	
Reactive power		Present value	\bigcirc	-	-	\bigcirc	\bigcirc	
	${ }_{(*)}{ }^{\text {(6) }}$)	Max. value	\bigcirc	O	-	\bigcirc	\bigcirc	
		Time of occurrence of max. value	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Integrated valu		\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	Value accumulated to the present after the previous reset
	Amount for las	t one house	\bigcirc	-	-	\bigcirc	\bigcirc	
	Max. value of a	amount for one hour	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Time of occurrenc	ce of max. value of amount for one hour	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Integrated valu		\bigcirc	\bigcirc	-	0	\bigcirc	Value accumulated to the present after the previous reset
	Amount for las	t one house	\bigcirc	-	-	\bigcirc	\bigcirc	
($\pm 3.0 \%$)	Max. value of a	amount for one hour	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Time of occurrenc	ce of max. value of amount for one hour	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Fault current (a	accuracy: $\pm 15 \%$)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	Information on and causes of faults after the previous reset or the latest fault
Cause of faut (10)	Cause of fault		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	(Continuous monitoring)
	Present value		\bigcirc	-	-	\bigcirc	\bigcirc	
Power factor	Max. value		\bigcirc	O	-	\bigcirc	\bigcirc	
	Time of occurr	ence of max. value	O	O	-	-	-	
Frequency ($\pm 2.5 \%$)	Present value		\bigcirc	-	-	\bigcirc	\bigcirc	
Phase sequence	-		\bigcirc	-	-	\bigcirc	\bigcirc	Except 250 A frame
	Tripping status	of breaker (AL)	-	-	-	\bigcirc	\bigcirc	When the alarm switch for MDU transmission (option) is installed
Status of breaker	ON/OFF status	s of breaker (AX)	-	-	-	\bigcirc	\bigcirc	When the auxiliary switch for MDU transmission (option) is installed
Status of breaker	Number of tim	es of tripping of breaker	-	\bigcirc	-	\bigcirc	\bigcirc	When the alarm switch for MDU transmission (option) is installed
	Number of tim	es of opening/closing of breaker	-	\bigcirc	-	\bigcirc	\bigcirc	When the auxiliary switch for MDU transmission (option) is installed
	PAL, OVER, IDM_AL, ILA_A	LL, IUB_AL	\bigcirc	-	-	\bigcirc	\bigcirc	The LC display, transmission and contact output of the PAL function of 250 A frame model are activated when the PAL module (option)
Breaker alarms (*11)	Neutral wire op	pen phase alarm (NLA)	\bigcirc	-	-	-	-	The neutral wire open phase alarm is displayed only. When the phase wire system is set to 1 -phase 3 -wire system, the function is turned on. Rated operating overvoltage: 135 V AC Operating time: 1 s
Initial setting	Time setting		\bigcirc	-	-	O	\bigcirc	It is necessary to re-set at the initial setting and after power failure (no power failure compensation).
	Demand time	limit setting (*6)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	The default setting is 2 min . The time limit can be set in one-minute increments in the range from 0 to 15 min .
	IDM_AL (curren	nt demand alarm)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	The default setting of the function is OFF. Function: ON/OFF Pickup current: 50 to 100% (in 1% steps) Demand time limit: Can be set to 1 to 10 min (1 min steps), $15,20,25$ or 30 min .
	ILA_AL (current open phase alarm)		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	The default setting of the function is OFF. Function: Can be set to ON or OFF. Pickup current: Fixed to 10% (no setting) Operating time: 30 s (no setting)
	IUB_AL (current unbalance alarm)		\bigcirc	\bigcirc	-	\bigcirc	O	The default setting of the function is OFF. Function: Can be set to ON or OFF. Pickup current: Fixed to 30% (no setting) Operating time: 30 s (no setting)
	Phase switching setting		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	The default setting is "no phase switching."
	Alarm retention (self-holding/automatic reset) setting		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	The default setting is "automatic reset."
	Phase wire system		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	The default setting is "3-phase 3 -wire" for 3-pole breakers or "3-phase 4-wire" for 4-pole breakers.
	Electric energy arbitrary setting		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Reactive electric energy arbitrary setting		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
	Display direction		\bigcirc	\bigcirc	-	-	-	The default setting is "horizontal" for mounting on breaker and mounting on panel or "horizontal" for built-in display and separate mounting of built-in display unit.

 "between 3 and N " apply only to 4 -pole breakers.
ore it may not measure the operating current even when a low-order circuit breaker operates.
*2 The term "each max. value" refers to the largest value during the period from the start of use (the previous reset) to the present.
$*_{4}$ In the nonvolatile memory, the integrated values of electric energy and reactive electric energy are stored at power failure and every 30 minutes, the fault current and its cause are stored upon *5 Every time the electric energy is integrated into a pulse unit (the unit can be set to any of $1 \mathrm{kWh}, 10 \mathrm{kWh}, 100 \mathrm{kWh}, 1000 \mathrm{kWh}$ and 10000 kWh), a pulse is output. The pulse can be counted with a
6 The demand time limit cannot be set individually. The setting is common
${ }^{*} 7$ When the phase wire system is set, the average values of load current and line voltage are calculated as shown below.

| Phase wire system | Average present value of current | Average present value of voltage |
| :--- | :--- | :--- | :--- |
| 1-phase 2-wire system | Average present value of current = current of the 3rd phase | Average present value of voltage $=$ voltage between 2 and 3 |
| 1-phase 3-wire system | Average present value of current $=($ current of the 1st phase + current of the
 3rd phase $) / 2$ | Average present value of voltage $=($ voltage between 1 and $2+$ voltage between 2 |
| and 3$) / 2$ | | |

-Specifications for Measuring Display Units (MDU)

Item		Specifications
Data update cycle		250 ms (harmonic current: 2 s)
Tolerances		Current, voltage: $\pm 1.0 \%$ (of rated input) Electric power: $\pm 1.5 \%$ (of rated input) Reactive energy: $\pm 2.5 \%$ (of rated input) Harmonic current: $\pm 2.5 \%$ (of rated input) Power factor $\pm 5.0 \%$ Frequency $\pm 2.5 \%$ Electric energy $\pm 2.0 \%$ (voltage range from 100 V to 440 V , range from 5 to 100% of current rating, power factor 1) Reactive electric energy (voltage range from 100 V to 440 V , range from 10 to 100% of current rating, power factor 0) Fault current $\pm 15 \%$ (*1)
Demand time limit setting range		0 to 15 min (in 1 min steps)
Measurement rating input	Voltage circuit	440 V (3-phase 4-wire system is applicable only to 4-pole models.)
	Current circuit	Load current/harmonic current: $125 \mathrm{~A} / 250 \mathrm{~A} / 400 \mathrm{~A} / 630 \mathrm{~A} / 800 \mathrm{~A}$ (Automatically discriminated. Determined according to the A frame of breaker. 125 A when the rated current of 250 A frame is 125 A or less.)
	Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (Automatic discrimination of frequency)
Power failure compensation	(1) Wh (integrated value), varh (integrated value) (2) Max. value (3) Setting data	Stored in the nonvolatile memory * Wh and varh are stored at power failure and every 30 min . The max. value is stored every 30 min . The setting data is stored when the data is set.
	Clock	No power failure compensation
Clock accuracy		Error: approx. $1 \mathrm{~min} / \mathrm{month}$
Outside dimensions (unit: mm)		See "Features and outline."
Control power		Common to 100 to 240 V AC/DC, $50 / 60 \mathrm{~Hz}$ (allowable voltage range: 85% to 110%), 12 VA * Rush current flows transiently when the control power supply is turned on. (Rush current max. value 2 A , current carrying time 1 ms (240 V AC)
Other functions		Function for switching the measurement phases from 1-3 to 3-1 Self-holding/automatic reset setting function Function for counting the number of times of opening/closing of breaker body (*2), function for counting the number of times of tripping of breaker body (*3).

Notes: *1 The measurement of fault current caused by instantaneous tripping of the 250A frame breaker is enabled when the alarm switch for MDU transmission (option) is installed on the MDU breaker body.
*2 The function is enabled when the auxiliary switch for MDU transmission (option) is installed on the MDU breaker body.
*3 The function is enabled when the alarm switch for MDU transmission (option) is installed on the MDU breaker body.
[Electric energy pulse output]

Item	Specifications
Output element	Solid state relay (SSR), no-voltage a contact (Ca and Cb terminals: no polarity)
Contact capacity	Common to 24 V DC and 100 to $200 \mathrm{~V} \mathrm{AC}, 20 \mathrm{~mA}$
Output pulse unit	$1,10,100,1000$ or $10000 \mathrm{kWh} /$ pulse (selectable) (${ }^{* 1)}$
Output pulse width	0.34 to 0.45 s
Max. wiring length	100 m

Notes: ${ }^{* 1}$ The default setting is $1 \mathrm{kWh} /$ pulse.

[MODBUS communication]

Item	Specifications
Communication system	RS-485/2-wire system/half-duplex communication
Communication protocol	MODBUS-RTU communication (binary data transfer)
Synchronization system	Asynchronous
Connection system	Multi-drop wiring
Transmission rate	$2,400,4,800,9,600,19,200,38,400$ bps
Bit length	8 bits
Stop bit	1 bit or 2 bits
Parity bit	ODD, EVEN, NONE
Slave address	1 to 127
Response time	Response is sent 1 sec or less after the completion of receipt of query data.
Termination resistance	$120 \Omega 1 / 2$ W
Max. transmission distance	$1,200 \mathrm{~m}$
Max. number of connected units	31 units/system
Transmission line	SPEV/(SB)-MPC-0.2 (Mitsubishi Cable Industries, Ltd.) or its equivalent

Note: MODBUS communication is applicable to mounting on breaker and mounting on panel.

[CC-Link communication】

Note: For more information, refer to the website of CC-Link Partner Association (http://www.cc-Link.org/).

Operating Characteristics Curves

NF250-SEV with MDU
NF250-HEV with MDU

Instantaneous Tripping Current (\% to In)
NF800-SEW with MDU (In: 630 A)
NF800-HEW with MDU (In: 630 A)

NF400-SEW with MDU NF400-HEW with MDU

Current (\% to ir)
Instantaneous Tripping Current (\% to In)
NF800-SEW with MDU (In: 800 A)
NF800-HEW with MDU (In: 800 A)

Current Reducing Curve

NF250-SEV with MDU
NF250-HEV with MDU

NF400-SEW with MDU
 NF400-HEW with MDU

NF800-SEW with MDU
NF800-HEW with MDU

Ambient temperature (${ }^{\circ} \mathrm{C}$)
The rated current does not have thermal characteristics. Reduce the current as shown in the curve on the left chart if the ambient temperature exceeds $40^{\circ} \mathrm{C}$.

Outline dimensional drawings

NF250-SEV with MDU External mounting
NF250-HEV with MDU External mounting

Front connection

Rear connection

Front-panel cutout

The dimensions include a clearance of 1.0 mm on each side of the breaker frame (A gap for passing the electric wires to the terminal block is provided on the load side in the case of mounting on breaker.) When the breaker is provided with the CC-Link communication (MDU-BC) or MODBUS communication (MDU-BM), the cutout for mounting on breaker cannot be made in the front plate.

PAL module (option)

MDU terminal arrangement

In the figure below the terminal cover is removed.
Secure the wires with cable clamps, etc.

Model	Spec.	(1)	(2)	(3)	(4)	(5)	(6)
MDU-BN	No transmission	-	FG	-	-	-	-
MDU-BP	Pulse output	-	FG	-	-	Cb	Ca
MDU-BC	CC-Link	-	FG	SLD	DG	DB	DA
MDU-BM	MODBUS	-	FG	SLD	485^{+}	485^{-}	Ter

In the figure below the terminal cover is removed. -

Applicable wire size for alarm contact output Applicable wire size for alarm contact outp
Single wire/stranded wire: 0.2 to $2.5 \mathrm{~mm}^{2}$

> Switch rating of
alarm contact output

	$\cos \phi=1$ $L / R=0$	$\cos \phi=0.4$ $\mathrm{~L} / \mathrm{R}=0.007$
125 V AC	3 A	2 A
250 V AC	3 A	2 A
30 V DC	2 A	2 A
100 V DC	0.4 A	0.3 A

Internal connection diagram
 -

Outline dimensional drawings

NF250-SEV with MDU Panel mounting NF250-HEV with MDU Panel mounting

Front connection

Rear connection

1.0 mm clearance on each side of the handle frame

Front-panel cutout

Mounting_on MDU panel

Front-panel cutout

Mounting on MDU panel

When installing, ensure a distance MDU terminal arrangement
larger than the following size, larger than the following size,
and keep a space of 10 cm or
$\begin{array}{ll}\text { and keep a space of } 10 \mathrm{~cm} \text { or } \\ \text { more from the distribution line. } & \text { Secure the wires with } \\ \text { cable clamps, }\end{array}$
cable clamps, etc.

When installing, ensure a distance MDU terminal arrangement
larger than the following size. larger than the following size, more from the distribution line.

Secure the wires with cable clamps, etc.

Outline dimensional drawings

NF250-SEV with MDU Breaker mounting
NF250-HEV with MDU Breaker mounting

Rear connection

Mounting plate Insulation

Drilling plan

Front-plate cutout

	B
No transmission, Pulse output	16
CC-Link	23

1.0 mm clearance on each side of handle frame

MDU outline

Outline dimensional drawings

NF400-SEW with MDU External mounting
NF400-HEW with MDU External mounting

Front-panel cutout

The dimensions include a clearance of 1.0 mm on each side of the breaker frame. (A gap for passing the electric wires to the terminal block is provided on the load side in the case of mounting on breaker.)
When the breaker is provided with the CC-Link communication (MDU-BC) or
MODBUS communication (MDU-BM), the cutout for mounting on breaker cannot be made in the front plate.

MDU terminal

In the figure below the terminal cover is removed.
Secure the wires with cable clamps, etc.

Model	Spec.	(1)	(2)	(3)	(4)	5)	(6)
MDU-BN	No transmission	-	FG	-	-	-	-
MDU-BP	Pulse output	-	FG	-	-	Cb	Ca
MDU-BC	CC-Link	-	FG	SLD	DG	DB	DA
MDU-BM	MODBUS	-	FG	SLD	485^{+}	485^{-}	Ter

Outline dimensional drawings

NF400-SEW with MDU Panel mounting NF400-HEW with MDU Panel mounting

Mounting on MDU panel

When installing, ensure a distance larger than the following size, and keep a space of 10 cm
or more from the distribution line.

MDU terminal arrangement
Secure the wires with cable clamps, etc

877(6(5)(4)3(2) MAMB

Outline dimensional drawings

NF400-SEW with MDU Breaker mounting NF400-HEW with MDU Breaker mounting

Front connection

 (Conductor thickness $\mathrm{t}=8$ max.) nductor drilling for direct connection
 Conductor drilling for direct connection

Rear connection

Note: When the insulating barrier for rear connection is used, mounting holes are added.

Front-panel cutout

MDU unit outline

MDU specfication	D
No transmission, Pulse output	21
CC-Link	28

MDU unit terminal
The figure is without terminal cover and connector cover.

MDU specfication	(1)	(2)	3	(4)	5	6
No transmission	-	-	-	-	-	-
Pulse output	-	-	-	-	Cb	Ca
CC-Link	-	SLD	-	DG	DB	DA

Outline dimensional drawings

NF800-SEW with MDU External mounting
NF800-HEW with MDU External mounting

Front-panel cutout

The dimensions include a clearance of 1.0 mm on each side of the breaker frame. (A gap for passing the electric wires to the terminal block is provided on the load side in the case of mounting on breaker.)
When the breaker is provided with the CC-Link communication (MDU-BC) or
MODBUS communication (MDU-BM), the cutout for mounting on breaker cannot be made in the front plate.

MDU terminal

In the figure below the terminal cover is removed. Secure the wires with cable clamps, etc.

Model	Spec.	(1)	(2)	(3)	(4)	(5)	(6)
MDU-BN	No transmission	-	FG	-	-	-	-
MDU-BP	Pulse output	-	FG	-	-	Cb	Ca
MDU-BC	CC-Link	-	FG	SLD	DG	DB	DA
MDU-BM	MODBUS	-	FG	SLD	485^{+}	485	Ter

Outline dimensional drawings

NF800-SEW with MDU Panel mounting NF800-HEW with MDU Panel mounting

Internal accessories (option)

Note: When the insulating barrier for rear connection is used, mounting holes are added.

Mounting on MDU panel

Front-panel cutout

When installing, ensure a distance larger than the following size, and keep a space of 10 cm or more from the distribution line

MDU terminal arrangement
Secure the wires with cable clamps, etc.

When installing, ensure a distance larger than the following size, and keep a space of 10 cm or more from the distribution line

MDU panel mounting position (rear connection)

 insulating barrier.

MDU terminal arrangement
Secure the wires with cable clamps, etc.
(8)7(6)(5)(4)3(2) М МАМ

Outline dimensional drawings

NF800-SEW with MDU Breaker mounting
NF800-HEW with MDU Breaker mounting

Rear connection

Front-panel cutout

MDU specfication	B	C
No transmission, Pulse output	215	20
CC-Link	222	27

MDU unit outline

MDU unit terminal
The figure is without terminal cover and connector cover.
Please fix the wiring with clamp etc.

MDU specfication	(1)	(2)	(3)	(4)	(5)	(6)
No transmission	-	-	-	-	-	-
Pulse output	-	-	-	-	Cb	Ca
CC-Link	-	SLD	-	DG	DB	DA

How to order MDU Breaker

OHow to order breaker integrated with
measuring display unit (MDU) (1)
The items in the shaded rows are required in any case. Specify them without fail. If any other items are not specified, we will manufacture the product according to our standard specifications.

Type name			Molded-case Circuit Breaker	
				\square NF250-SEV with MDU \square NF250-HEV with MDU
	Number of poles		$\square 3 \mathrm{P} \quad \square 4 \mathrm{P}$	
	Installation and conne	ctions	\square Front connection (F), \square Rear connection (B)	
	Internal accessories			
	Alarm contact output $(* 2)(* 3)$	Pre-alarm (PAL)	$\square \mathrm{PAL}$ (option)	
$\stackrel{\text { ® }}{ }$	Mounting (*1) (*3) (*9)		\square External mounting \square Panel mounting (with standard cable 2 m long, $\square 0.5 \mathrm{~m}, \square 3 \mathrm{~m}, \square 5 \mathrm{~m}, \square 10 \mathrm{~m}$ selectable) \square Breaker mounting \square Breaker mounting unit separate installation (with standard cable 2 m long, $\square 0.5 \mathrm{~m}, \square 3 \mathrm{~m}, \square 5 \mathrm{~m}, \square 10 \mathrm{~m}$ selectable)	
	Transmission system		\square No transmission (standard) \square Electric energy pulse output \square MODBUS \square CC-Link communication (any one)	
	When mounted on breaker body			
	When mounted on panel		\square Handle lock device ($\square \mathrm{HL} \quad \square \mathrm{HL}$-S) \square Mechanical interlock (MI) (Only 3-pole type) \square Card folder CH \square LC $\square F$ type operating handle $\square S$ type operating handle $\square \mathrm{V}$ type operating handle	\square Electrical operation device
	When built-in display is used When built-in display unit is separately mounted		```\square H a n d l e ~ l o c k ~ d e v i c e ~ H L \square C a r d ~ f o l d e r ~ C H \squareLC```	

Notes: \quad *1 When changing the mounting method after the product is delivered, consult us.
*2 The LCD, transmission and contact output of the PAL function are enabled when the breaker is provided with the PAL module (option).

Alarm	LCD	Transmission	Contact output
PAL	Option	Option	Option

The alarm (PAL) mode can be switched between self-holding and automatic reset.
*3 When the right pole SLT or PAL is specified as an internal accessory, the MDU mounting method is "separate mounting of built-in display unit," "mounting on panel" or "mounting on breaker."
*4 When the "MDU built-in display" or "PAL" is selected, the dedicated terminal cover is used. Specify MP at the end of the model name. (Example: TC2-2SV3MP) (In the case of "separate mounting of MDU built-in display unit," the standard terminal cover is used.)
*5 When the solderless terminal 2CR-150 or CB150-S8 (wire of 117.2 to $152.05 \mathrm{~mm}^{2}$) is used, TC-L and TTC cannot be installed. Insulate from TC-S with insulating tube or tape. In the case of a 3-pole breaker, TC-LL can be used.
*6 The solderless terminals 2CR-150 and CB150-S8 (wire of 117.2 to $152.05 \mathrm{~mm}^{2}$) can be used.
*7 Cover dedicated for MDU
*8 When the breaker is provided with the alarm contact output (PAL module), the dedicated terminal cover is used.
*9 For MODBUS, the unit is mounted on the breaker body or panel.

How to order MDU Breaker

-How to order breaker integrated with
measuring display unit (MDU) (2)

The items in the shaded rows are required in any case. Specify them without fail. If any other items are not specified, we will manufacture the product according to our standard specifications.

	Type name		Molded-case Circuit Breaker
			\square NF400-SEW with MDU \square NF400-HEW with MDU
	Number of poles		
	Installation and conne	ctions	
	Internal accessories		
	Alarm contact output $(* 3)$	Pre-alarm (PAL)	$\square \mathrm{PAL}$ (option) \square TI (option)
$\stackrel{\rightharpoonup}{\mathrm{Q}}$	Mounting (*4) (*5) (*10)		\square External mounting \square Panel mounting (with standard cable 2 m long, $\square 0.5 \mathrm{~m}, \square 3 \mathrm{~m}, \square 5 \mathrm{~m}, \square 10 \mathrm{~m}$ selectable) \square Breaker mounting \square Breaker mounting unit separate installation (with standard cable 2 m long, $\square 0.5 \mathrm{~m}, \square 3 \mathrm{~m}, \square 5 \mathrm{~m}, \square 10 \mathrm{~m}$ selectable)
	Transmission system		\square No transmission (standard) \square Electric energy pulse output \square MODBUS \square CC-Link communication (any one)
	When mounted on breaker body		\square Handle lock device (HL) Auxiliary handle (HT) (*6) Terminal cover \qquad \square TTC (dedicated for MDU) \qquad \square BTC (mountable only on power supply side) (*9)
	When mounted on panel		\square Handle lock device ($\square \mathrm{HL} \quad \square \mathrm{HL}-\mathrm{S})$ \square Electrical operation device (*7) \square Mechanical interlock (MI) \square Terminal cover \square Auxiliary handle (HT) (*6) \square F type operating handle \square TCC \square S type operating handle \square TC-L (*8) \square V type operating handle \square BTC (*9)
	When built-in display is used When built-in display unit is separately mounted		

Notes: *1 Specify the reset prevention type if necessary. If the type is not specified, the reset permission type will be installed.
*2 Specify 24 V DC if necessary. If the voltage is not specified, the device common to 100 to 240 V AC/DC will be installed.
*3 The display and transmission of the breaker alarms, PAL, OVER and OAL, on the MDU are included as standard. Only when the contact output is required, specify the alarm contact output.
The contact output of the cause of fault (OAL) is self-holding type. The alarm (PAL) can be switched between "self-holding" and "automatic reset."

Alarm	LCD	Transmission	Contact output
PAL	Standard	Standard	Option

*4 When changing the mounting method after the product is delivered, consult us
*5 The accessory can be mounted on the right pole in the case of "separate mounting of built-in display unit," "mounting on panel" or "mounting on breaker."
*6 The handle is included as standard in 800 A frame 4-pole breakers.
*7 The device can be manufactured only in the case of mounting on panel. It cannot be manufactured for a Molded-case Circuit Breaker provided with the alarm contact output for PAL or TI .
*8 TC-L cannot be used on NF400-HEW or NV400-HEW.
*9 PTC for 3-pole NF400-HEW and NV400-HEW
*10 For MODBUS, the unit is mounted on the breaker body or panel.

MEMO
\qquad

For Safety : Please read the instruction manual carefully before using the products in this catalog. Wiring and connection must be done by the person who has specialized knowledge of electric construction and wirings.
for a greener tomorrow
Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society. on

[^0]: The standard MDU connecting cable for panel mounting and breaker mounting separate unit is 2 m long.

