

FACTORY AUTOMATION

Instrument Transformers

High Reliability and Wide-ranging Variations to Meet Diversified Needs

GLOBAL IMPACT OF MITSUBISHI ELECTRIC

Through Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

We bring together the best minds to create the best technologies. At Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximizing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better.

Mitsubishi Electric is involved in many areas including the following

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

The deciding factor for voltage and current transformers is insulation performance.

The instrument transformers are current or voltage transformers to be used in combination with electric meters and measuring devices.

They are used as sensors on electric circuits and play an important role to prevent the spread of damage due to accidents in electric equipment, and therefore they are required to have high reliability.

Mitsubishi Electric instrument transformers developed based on its technologies accumulated over many years and manufactured with excellent insulating materials have high reliability.

	Ш
1. Overview and Features of Instrument Transformers	2
Be Certain to Observe the Following Precautions to Ensure Safety	4
3. Model List	8
4. Selection	11
5. Specifications and External Dimensions by Model	14
5-1 Current transformers	14
5-2 Voltage Transformers (Unearthed Type)	86
5-3 Earthed Voltage Transformers	77
5-4 Zero-phase Current Transformers	30
5-5 Voltage&Current Transformers	32

6. Special Applications	.83
7. Foreign Standard Applications	. 87
8. Transformer Characteristics	88
9. Handling and Maintenance	92
10. Transition of transformer models	.94
11 How to Order	06

Overview and Features of Instrument **Transformers**

Mitsubishi Electric Instrument Transformers are highly reliable owing to the use of advanced technologies and superior insulating materials.

Choose from a wide range of models to best match your application needs.

Vast model line-up in answer to diversified application needs _____ From low-voltage to 33kV ____

Low-voltage

Low-voltage High-voltage Series Series

Primary winding Overcurrent intensity: 40x to 300x Round window through-

type

Rectangular window

through type

Separated

Class 2 verification, Class 1 verification

●Emergency heat-resistant Series Class 2 verification

Through-type

22000V

High-voltage, Extra-high-voltage Series

•Full-mold, high overcurrent intensity

Extra-high-

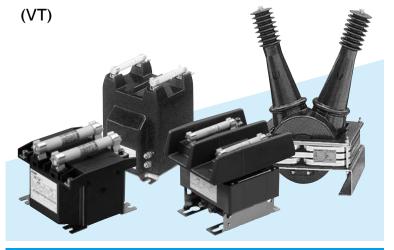
voltage

Series

●100VA and

200VA

Class 2 verification, Class 1 verification


For cubicle-type high-voltage power receiving equipment

JIS C 4620 Appendix

12.5kA/0.125sec

●12.5kA/0.25sec

Voltage Transformers

Low-voltage 33000V

Low-voltage, High-voltage

●15VA and 50VA ●50VA. 100VA and 200VA Class 2 verification Class 2 verification,

Low-voltage

Series

Class 1 verification

Highvoltage

Series

●50VA and 100VA Full-mold

Earthed Voltage Transformers

(EVT)

Low-voltage

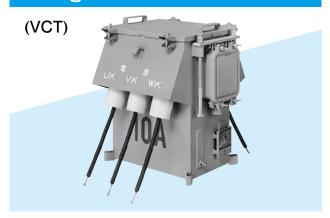
High-voltage Series

●100VA and 200VA ●3-phase models available

Low-voltage to Series

Extra-high-voltage

50VA, 100VA and 200VA


Zero-phase Current Transformers

(ZCT)

BZ Series

- ■Cable through-type
- Separated design also available

Voltage&Current Transformers

- High-voltage ●Outdoor/for power supply and demand
 - Class 2 verification, Class 1 verification

Transformer for control circuits

For operating power supplies of high-voltage

Excellent Insulation Performance

The use of superior insulation materials such as epoxy resins and Melquid rubber for these instrument transformers ensures excellent insulation performance.

- ●The heat-resistant resin of the CW Series uses a flame retardant material compliant with the UL 94 V-O (self-extinguishing) standard. However, CW-5LS3 and CW-5LMS3 cases use a flame retardant PBT resin material compliant with the UL 94 V-O (selfextinguishing) standard.
- Fully molded cases manufactured using Melquid rubber (EC/BN Series)

- •Melquid rubber, which has excellent electric and mechanical characteristics, is used for these fully molded units.
- Small in size, lightweight and highly reliable.

Pursuing Compact Size and Operation Ease

- ●The CW Series of low-voltage current transformers offers units that are compact in size and lightweight. Available in a wide range of models (e.g., cable or busbar wiring and small currents), wiring of this product is simple and easy. The direction of the mounting plate can be turned 90°.
- For zero-phase current transformers, there is also a separated design that can be easily attached using existing cables.

Be Certain to Observe the Following Precautions to Ensure Safety

In order to get the best service life out of Mitsubishi Electric Instrument Transformers, be certain to observe the following items when using these products.

Usage Environment and Usage Conditions

- (1) Do not use instrument transformers in the following places. It may lead to dielectric breakdown and shorter service life.
- ◆ Places where the daily mean temperature exceeds 35°C
- Places where the relative humidity is equal to or more than 85%, or places where condensation forms
- Places where the altitude exceeds 1000m
- Places where there is much dust, corrosive gas, salt-laddened wind (high salt content), or oily smoke
- Places where vibrations and/or jolting occurs frequently
- Places exposed to rain, water drops or sunlight (for indoor products)
- Near circuits with high harmonics
- Places where small animals such as mice and snakes may Infiltrate
- (2) If using a transformer in a location subject to hightemperature/ humidity, corrosive gas, high altitude, pollution/humidity, hightemperature or cool-temperature environments, refer to Special Environments on page 86.
- (3) Select the model carefully when using a transformer for the following purpose.
- If combining an small-load electronic meter with a voltage transformer, choose a transformer with a load rating of less than or equal to 50VA. If a transformer with a high load rating is chosen, there will be a large margin of error.

(4) When using in combination with a voltmeter for verification, use the instrument transformer within the working load range indicated on it.

2 Installation

Be certain to observe the following regarding installation. To ensure safety, the electrical works required when installing transformers should only be performed by an experienced electrician.

- Install the transformer so it is not exposed to rainwater, oil or other matter such as dust and coarse particulates (for indoor products).
- Install the transformer horizontally or vertically. Do not install in any place where vibration or impact may be applied to it.
- The primary winding is insulated by molding. However, the mold surface may have a high electrical potential. Ensure proper insulation distance from surrounding objects.

3 Connections

Be certain to observe the following when connecting wiring.

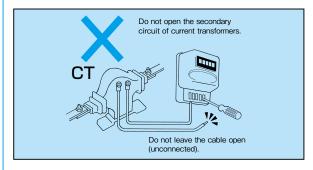
• To ensure the safety, the wiring work shall be performed by electrical engineering technicians.

Be certain to tighten terminal screws using the following torques.

Model	Туре	Primary terminal (N⋅m)	Screw	Secondary terminal (Tertiary terminal)	Screw size
	CW Series	M5 : 2.84 to 3.72 M6 : 4.71 to 6.37	M5 M6	2.84 to 3.72	M5
	OW Selles	M8 : 11.7 to 15.3 M10 : 23.5 to 30.2	M8 M10	0.98 to 1.35	M4
	CD Series	M8 : 11.7 to 15.3	M8	2.35 to 3.04	M6
СТ	EC/BN Series	M10 : 23.5 to 30.2 M12 : 40.2 to 52.4	M10 M12	2.35 to 3.04	M6
	AN/CN Series	M16:99.0 to 130.3	M16	2.35 to 3.04	M6
	BS Series	_	_	2.35 to 3.04	M6
	TM Series	1.37 to 1.76	M5	1.37 to 1.76	M5
	PE Series	1.37 to 1.76	M5	1.37 to 1.76	M5
VT	PD Series	2.35 to 3.04	M6	2.35 to 3.04	M6
,	EP Series	1.37 to 1.76	M5	2.35 to 3.04	M6
	EV Series	10.98 to 14.50	M10	2.35 to 3.04	M6
	EV/EF Series (except for the following models)	2.35 to 3.04	M6	2.35 to 3.04	M6
	EF-03XFC	2.35 to 3.04	M6	0.98 to 1.35	M4
EVT	EV-1	10.98 to 14.50	M10	2.35 to 3.04	M6
	EV-1X	Earth side 2.35 to 3.04	M6	2.35 (0 3.04	IVIO
	EV-2, EV-2X EV-3, EV-3X	10.98 to 14.50	M10	2.35 to 3.04	M6
ZCT	BZ Series	_	_	(including test terminals, connection terminals) 2.35 to 3.04	M6
VCT	PO-2HB PO-6HB	_	_	0.98 to 1.35	M4
Transformer for control circuits	EMT-K EMT-BB	2.35 to 3.04	M6	2.35 to 3.04	M6

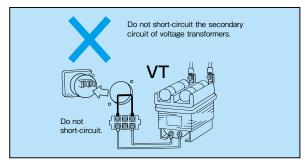
Be certain to tighten screws provided with brackets directly mounted on busbars for square window through-type current transformers.
 Target models: Brackets directly mounted on busbars for CW-15LM, CW-40LM and CW-15LMS.

Applicable type/Rated primary current	Screw name	Tightening torque
CW-15LM 200 to 750A CW-40LM 300 to 2000A	CT mounting screw (steel screw)	M5 screw: 1.37 to 1.76N·m
CW-15LMS 200 to 2000A	Busbar mounting screw (brass screw)	M6 screw: 2.35 to 3.04N·m
CW-40LM 2500,3000A	CT mounting screw (steel screw)	M6 screw: 4.48 to 5.50N·m
CW-15LMS 2500,3000A	Busbar mounting screw (brass screw)	M8 screw: 6.67 to 8.92N·m


⚠ Caution

- Tightening screws too tight may damage the terminals.
- Tightening screws loosely may cause malfunction or the body to catch on fire.
- Do not perform connection work with live wires. This may cause electrical shock, equipment failure, burnout or a fire.
- Be certain to use electric cables made of materials and wire diameters suitable for the circuit voltage and rated current.
- Be certain to use crimp-type terminals suitable for the cable size. Using inappropriate crimp-type terminals may cause burnout or a fire.
- Be certain to connect cables to the primary and secondary terminals so that the terminal areas are not exposed to vibration or impact.

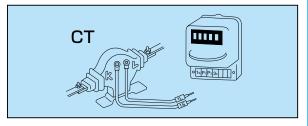
♠ Caution


(1) Do Not Open Circuit on Secondary Side of Current Transformer

Opening the circuit on the secondary side of a current transformer when the primary current is flowing is prohibited. If the circuit on the secondary side is open, the primary current flows but the secondary current does not. Therefore, this induces high voltage on the secondary side, causing the temperature to rise. For this reason, dielectric breakdown occurs in the secondary winding and it could result in burnout.

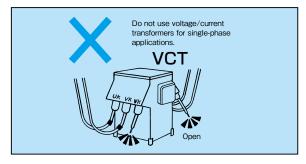
(2) Do Not Short-circuit Voltage

Transformers on the Secondary Side Short-circuiting voltage transformers on the secondary side or short-circuiting them with low impedance is prohibited. If the secondary side of the transformer is short-circuited or short-circuiting occurs due to low impedance, excessive current flows to the secondary winding and the winding will be damaged. Additionally, secondary winding burnout may result in dielectric breakdown of the primary winding, and this could lead to phase-to-phase short-circuiting.



(3) Prevent Improper Connections

Be careful to make sure wires are connected properly. Improperly connected wiring may lead to faulty measurements and dangerous conditions.


Be certain to carefully check terminal markings when making connections.

For meters associated with power factoring such as voltmeters and watt-hour meters, be certain to pay careful attention to polarity when making connections.

(4) Do Not Use Voltage/Current Transformers for Single-phase Applications

Using voltage/current transformers (for 3-phase, 3-wire systems) for single-phase applications is prohibited. If you use a voltage/current transformer set to single-phase connected in a three-phase circuit, a wire in the unused phase is open. At this time, series resonance occurs in the voltage transformer caused by the grounding electrostatic capacity in the cable and voltage transformer winding reactance, and excess voltage may be generated. This excess voltage (approximately 1.3 to 2 times) could lead to burnout.

(5) Do Not Use Voltage Transformers on the Secondary Side of Inverter Circuits

Since the voltage waveform on the secondary side of the inverter circuit is a square wave (rectangular wave), the secondary output waveform of the voltage transformer becomes pulse-shaped and normal voltage is not output. The magnetic saturation of the core may lead to burnout.

(6) Do Not Use Voltage Transformers on the Secondary Side of Thyristor Circuits

Every time a thyristor circuit input operation occurs, an excitation current flows to the primary side of the voltage transformer. Heat generated from that current may lead to burnout.

(7) Grounding

Be certain to ground the secondary sides, frames, and outer case (or core if there is no case) of voltage, current and voltage/current transformers (except for low-voltage units). It is instructed in the technical standards for electrical equipment to ensure grounding to prevent harm to humans caused by mistaken contact on the primary side and to safeguard meters.

Grounding work for the secondary side wiring of meter transformers

transformers	
Type of meter transformer	Grounding work
Instrument transformers for etrahigh-voltage measurement devices	Class A grounding
Instrument transformers for high-voltage measurement devices	Class D grounding
Instrument transformers for low-voltage measurement devices	No grounding (For details, refer to Article 13 of the Interpretation of Technical Standards for Electrical Equipment).
Transformer for control circuits	Class B grounding

 Grounding work of devices with iron racks or outer cases (If the transformer or instrument transformers does not have an outer case, the core is applicable.)

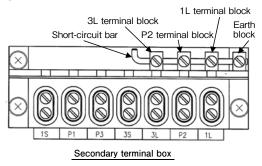
Classificat	ion of working voltage of devices	Grounding work
low-voltage	less than or equal to 300V	Class D grounding
	over 300V	Class C grounding
high-voltag	e or extra-high-voltage	Class A grounding

However, some equipment may not comply to the rules in the above table.

For details, refer to Article 29 of the Interpretation of Technical Standards for Electrical Equipment.

For CW, BZ and EP types without exposed iron cores, it is unnecessary to ground the mounting feet.

 Be certain to ground the earthed voltage transformer primary ground-side terminal before use.


(8) Connecting Terminals

Pay careful attention to connect wires to terminals properly, without leaving any open-wire gaps. Otherwise, overheating, measurement error, equipment burnout or a fire may occur. Additionally, improperly attaching the neutral wire in a 1-phase, 3-wire circuit may cause the load side of a device to burnout when 200V is applied.

(9) Confirm Grounding of the Voltage/Current Transformer Secondary Terminal Box

As the secondary terminals (1L, P2 and 3L) of voltage/current transformers must be grounded, check to confirm that the short-circuit bar described in the following figure is fastened to the 1L, P2 and 3L terminal blocks and the earth block.

Otherwise, the 1L, P2 and 3L terminals will not be grounded.

Do Not Work with Live Wires

Performing connection work when wires are live (i.e., electricity is supplied to the unit) is absolutely prohibited. This could lead to not only electrical shock, electrical burn injury and equipment burnout or a fire, but also loss of human life.

4 Preparations before Use

Be certain to carefully review the following items before use. If an abnormality exists, refer to Section 6 Matters Regarding Repairs at Time of Malfunction and Handling Abnormalities.

(1) Transportation

Carelessness at the time of transportation is a major cause of damage to transformers. Be certain to prevent subjecting the transformer to vibration and jolting as much as possible when moving it.

(2) Checking transformer upon arrival

Be certain to do the following inspections immediately after arriving at the final destination, and check to ensure that there are no abnormalities.

- Check for cargo damage due to accidents or handling during transportation, including packaging.
- For molded models, check for changes in shape, damage, blemishes, etc.

(3) Check ratings

Before using the transformer, be certain to check it ratings (e.g., voltage transformation ratio, current transformation ratio, rated load).

5 Usage Methods

Be certain to observe the following items when using a transformer.

(1) Be certain to use products within the range of ratings specified.

Be certain to use a transformer within the range of ratings specified for that model.

Otherwise, not only measurement error, but also burnout or a fire caused by overheating may occur.

Refer to 4 Selection on page 11 for selecting models.

(2) Precaution regarding usage period

Each transformer is subjected to a verification process for transactions and authorization during a period of validity, otherwise it is a violation of the Measurement Law (i.e., violation of Article 172 of the Measurement Law is punishable by up to six months in jail, a fine of up to 500,000 yen, or both). The period of validity is shown on the verification plate. Be certain to closely check the period of validity and use the transformer only within that period. When updating verification due to expiration, special verification where only combination meters are submitted is possible if updating is conducted within 14 years from the first transformer verification test.

(3) Recommended timing of renewal

Be certain to consider renewing molded transformers (including other dry versions) approximately 15 years after the purchase date. Using a transformer for more than 15 years may cause an accident due to dielectric breakdown.

(4) Precaution regarding installing transformers as part of other equipment

Due to specification requirements, transformers are not to be installed in (i.e., built into) other equipment. Installing them for use in other equipment, may result in failure due to, for example, the generation of dielectric breakdown.

(5) Using current transformers on the secondary side of inverter circuits

Because of errors due to higher harmonic components and an increase in the excitation current in the lowfrequency range, the error becomes large. Therefore, select a rated load ten times larger than the usage load. Consider values in the low-frequency range that are less than or equal to 25Hz as reference values.

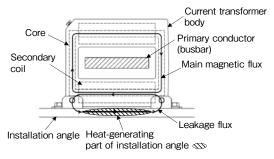
(6) Vertical/horizontal installation of square window through-type CT

Locate the busbar in the center of the through hole, so that it is not in contact with the inside of the through hole. If it is in contact with the inside, the CT may be deformed by the heat of the busbar, or its insulation may break down.

(7) Direct mounting of busbar of square window through-type CT

 When using the busbar direct mounting brackets, be sure to remove the mounting feet from the CT body. Failure to do so may cause ground fault, burnout and fire.

- Avoid a structure in which the busbar is supported by the busbar direct mounting brackets or one busbar mounting bracket is fitted to the busbar and the CT is secured on the board with the mounting feet. Such a structure may cause burnout and fire.
- Install the CT as specified in the installation manual supplied with the product. Failure to do so may cause burnout and fire.
- The busbar direct mounting brackets, screws and nuts are live parts. Ensure insulation distance from other devices in the board and the angle. Failure to do so may cause insulation breakdown.
- Locate the busbar in the center of the through hole, so that it is not in contact with the inside of the through hole. If it is in contact with the inside, the CT may be deformed by the heat of the busbar, or its insulation may break down.
- Do not use any parts or screws other than those supplied with the product. Doing so may cause increase in temperature of the product and damage it.


(8) Heat generated when square window throughtype CT is installed horizontally

(Applicable to: CW-40LM, CW-15LMS and CW-15LM with rating of 2500 to 6000 A)

The iron angle on which the CT is installed may generate heat due to leakage flux from the CT secondary coil. (Temperature rise: approx. 30K at rating of 2500A, approx. 70K at rating of 6000A)

The heat generation does not affect the operation of the CT, but heat-sensitive devices and wires must be kept out of contact with the angle.

If the heat generation cause any problem, use an angle made of a material (SUS304, etc.) through which magnetic flux does not easily pass.

(9) Protecting the peripheral equipment of voltage transformers

If using a voltage transformer in combination with other equipment such as a protective relay, a voltage transformerrelated accident due to an overload or lightning surge may cause a power outage.

If using a voltage transformer for equipment to which a power outage may inflict heavy damage, be certain to take measures to protect the system so that any transformer-related accident will not have a critical influence on peripheral meters/equipment.

(10) Pulling out and fitting the VT primary fuse

When pulling out the fuse, hold one side of the fuse with fingers, and pull it out from the clip. Then, pull out the other side. If the center of the fuse is picked up to pull out both sides simultaneously from the clips, the fuse may be damaged.

When fitting the fuse, push the ends into the clips one by one.

The end of each clip has a fuse retainer. Take care not to place the fuse on the retainer.

6 Repairs at Time of Malfunction and Handling Abnormalities

If the transformer begins to operate abnormally, ask your electrical facilities manager to contact Mitsubishi Electric System & Service Co., Ltd. or the Mitsubishi Electric branch office in charge.

7 Maintenance & Inspections

Be certain to observe the following regarding maintenance and inspections. To ensure safety, maintenance and inspections should only be performed by an experienced electrician such as the chief electrical engineer. For details, refer to 4 Maintenance & Inspection on page 92.

(1) Connecting earthing wires

To ensure safety, be certain that earthing wires are connected to the terminals. If it is assumed that the power has been cut and forget to check whether or not the power supply is turned off, it may lead to electrical shock, electrical burn injury or death. If there is a need to touch the body of a transformer, make sure to check whether or not the transformer is disconnected from the circuit. To do this, use a circuit breaker or switch and then use a detector for the appropriate voltage to ensure that there is no voltage in the circuit.

(2) Do not touch a transformer when there is a live current

If an electrical current exists when wanting to do maintenance or an inspection, do not touch the transformer body, terminal or other any other component. It could lead to not only electrical shock, electrical burn injury, equipment burnout or a fire, but also death.

8 Storage

If there is a need to a store a transformer for a long period of time, avoid the following places, as it may lead to degradation of insulation and shorten service life.

- Places where the ambient temperature is outside the range of -30 to 60°C
- Places where the daily mean temperature exceeds 35°C
- Places where the relative humidity is equal to or more than 90%, or places where condensation forms
- Places where there is much dust, corrosive gas, salt-laddened wind (high salt content), or oily smoke
- Places where vibrations and/or jolting occurs frequently
- Places exposed to rain, water drops or sunlight

Cutting power supply for removal

When removing a transformer in preparation of storage, be certain that the power supply to the circuit to which the transformer is connected is turned off. (Refer to [7] Section (1)). To ensure safety, removal should only be performed by an experienced electrician such as the chief electrical engineer. If removal is attempted at the time wires are live, this could lead to not only electrical shock, electrical burn injury, equipment burnout or a fire, but also death.

9 Transformer Disposal

Be certain to dispose of transformers treating them as general industrial waste.

For removable installation racks, those that are iron can be recycled.

10 Warranty

- (1) The duration of the warrantee is one year from the date of purchase or 18 months after manufacturing, whichever comes first. For equipment failures caused by carelessness or negligence of the user, repair services are charged at cost even within the warrantee period.
- (2) Mitsubishi Electric shall not be liable for compensation of damage arising from reasons not attributable to Mitsubishi Electric, including loss in opportunities and/or lost profits incurred to users due to the failure of a Mitsubishi Electric product, as well as special damage and/or secondary damage, whether foreseeable or not, accidents, damage to products other than Mitsubishi Electric products, nor other business.

1. Current Transformers (CT)

				· /	Current													
Circuit	Location		T	Rated	transformation	Accuracy	Overcurrent	Overcurrent		Use		Demondo	D					
voltage	of use		Туре	burden	ratio		strength	constant	General	Relay	Verification	Remarks	Page					
				(VA)	(A)	(class)	(times)		instrument		Tormoution							
			CW-5L	5	60 to 750/5				0	_	_							
					60 to 750/1							Cable wiring						
			CW-15L	15	100 to 750/5 100 to 750/1				0	_	_	Round window	14					
					150 to 750/1							through-type						
			CW-40L	40	150 to 750/3				0	_	_							
					1 to 50/5													
			CW-5LP	5	1 to 50/1					0	_	_						
					1 to 50/5									Small current				
			CW-15LP	15	1 to 50/1]	1	-			0	_	_	Primary winding	17
			CW 40LD	40	1 to 50/5													
≤1100V	/ Indoor		CW-40LP	40	1 to 50/1	1.0	40	_	0	_	_							
≤1100V	Indoor		CW-15LM	15	150 to 750/5		40		0									
		CW	CVV-13LIVI	13	150 to 750/1							Busbar wiring Square window	18					
		Series	CW-40LM	40	200 to 6000/5				0	_	_	through-type	10					
		00.100			200 to 2000/1													
			CW-15LS	15	5 to 750/5				0		0	Cable wiring	22					
			CW-15LMS	15	200 to 6000/5				0		0	Busbar wiring	23					
			CW-5LS3	2×5	150 to 250/5				0		0	Busbar/cable	27					
			CW-5LMS3	2×5	250 to 400/5				0		0	wiring						
			CW-5T	5 5	100 to 150/5				0			Cable wiring	20					
			CW-5L CW-15LM	15	100 to 400/5 200 to 400/5				0				30					
			CW-15LM	15	1500 to 4000/5	1PS	-	n>10		<u> </u>		Busbar wiring	32					
			CVV-13LIVI	13	300 to 500/5	11.5		11210				Cable wiring Separated	02					
			CW-5S	5	300 to 500/3				0	_	_							
≤440V	Indoor		CW-2SL	2	150 to 250/1	1.0	40	_	0		_		33					
					300 to 800/5	1												
			CW-5SL	5	300 to 800/1				0	_	_							
			CD-25NB	25	5 to 500/5	- 1.0·1PS			0	0	0		36					
			CD-25NB(H)	25	5 to 500/5		40	n>10	0	0	0		07					
			CD-25NB(V)	25	5 to 500/5				0	0	0		37					
			CD-25ENB	25	5 to 400/5		75	n>10	0	0	0	Coil molded	39					
			CD-40GNA	40	5 to 200/5		150	n>10	0	0	0		41					
			CD-40LN	40	5 to 100/5			300	n>10	0	0	0		42				
			CD-40H	40	600 to 1000/5		40	n>10	0	0	0		43					
		CD			1200 to 2000/5		40kA	n>10	0	0	0							
		Series	CD-10ANB	10	20 to 200/5		12.5kA		0	0	_		44					
			CD-25ANB	25	50 to 200/5		0.125sec	n>10	0	0	_							
≤6600V	Indoor		CD-25ANA	25	20 to 40/5	1PS			0	0		Coil molded	48					
			CD-10CNB	10	20 to 200/5		12.5kA	-> 10	0	0	_		44					
			CD-25CNB	25	60 to 200/5		0.25sec	n>10	0	0	_		10					
			CD-25CNA CD-25KB	25 25	20 to 50/5 5 to 750/5	1.0	40		0		0		48 52					
			CD-25KB CD-15CB	15	5 to 400/5	0.5	40	_	0		0	Coil molded	54					
		EC/	EC-0 (LA)	40	5 to 300/5		40	n>5	0	0	0		56					
		BN		40	10 to 1500/5	1.0·1PS	40 to	n>10	0	0	0	Fully molded	58					
		Series	BN-0 (LA)	15	10 to 1500/5	0.5	300	_	0		0	,	59					
			DO 145		200 to 1500/5				0	0	_							
		BS	BS-MD	40	300-150 to 4000-2000/5	1PS	40kA	n>10	0	0	_	Through type for	64					
		Series	BS-MC	40	400 to 4000/5				0	0	_	bare conductor						
				40	10 to 1500/5	1.0·1PS	40 to	n>10	0	0	0							
11000V		BN	BN-1 (LA)				150	112 10				Fully molded	60					
	Indoor	Series		15	10 to 1500/5	0.5W	40	_	0		0							
22000V			BN-2A	40	10 to 1200/5	1.0·1PS	40 to 300	n>10	0	0	_	Fully molded	62					
							300					Separate type						
_	Indoor	BS	BS-SA	15 to 100	200 to 2000/5	1PS	40	n>10 n>20	0	0	_	for insulated conductor	66					
			TM-15	15	5+5/5							Special varnish						
≤1150V	Indoor		TM-40	40	5+5+5/5	1.0 or 0.5	40	_	0	_	_	insulation	84					
			1 101-40	40	5+5+5+5/5	1.5 07 0.0	0.0						insulation					

2. Voltage Transformers (VT)

Circuit	Location		Tuno	Rated burden	Voltage transformation	Accuracy		Use		Domouleo	Dogo
voltage	of use		Type	(VA)	ratio (V)	(class)	General instrument	Relay	Verification	Remarks	Page
			PE-15F (with fuse)	15		1.0·1P	0	0	0		
≤440V	Indoor	PE	PE-15		220/110 440/110		0	0	0	Fully molded	68
≥4400	IIIdoor	Series	PE-50F (with fuse)	50		3.0·3P	0	0		Fully Molded	00
			PE-50				0	0	_		
			PD-50H		220/110, 440/110		0	0	0		
			PD-50HF (with fuse)	50	220/110, 440/110 3300/110, 6600/110		0	0	0		70
			PD-100H		220/110, 440/110		0	0	_		10
			PD-100HF (with fuse)	100	220/110, 440/110 3300/110, 6600/110	1.0·1P	0	0	_		
			PD-200K		440/110		0	0	_		
		PD	PD-200KFH (with fuse)	200	440/110 3300/110, 6600/110		0	0	_		72
<0000V	lorate e o	Series	PD-50KFH (with fuse)	50	0000 0000 (440		0	0		Coil molded	70
≤6600V	Indoor		PD-100KFH (with fuse)	1 100 1	6600-3300/110	3.0·3P	0	0	_		73
			PD-15KFH (with fuse)	15		0.5	0	0	0		
			PD-25KFH (with fuse)	25 3300/110 6600/110	0.5	0	0	0		74	
			PD-100KFH (with fuse)	100		1.0·1P	0	0	0		
			EP-0FH	50	3300/110		0	0	0		
		EP	(with fuse)	100	6600/110	1.0·1P	0	0	_	Fully molded	75
			(mariaco)	50	6600-3300/110		0	0	_		
				100 200		1.0·1P	0	0	_		
11000V		E\/	EV-1	15 25	11000/110	0.5W	0	0	0		
22000V	Indoor	EV Series	EV-2	100	22000/110			0		Coil molded	76
22000			L v - Z	200 100	22000/110	1.0·1P					
33000V			EV-3	200	33000/110		0	0	_		

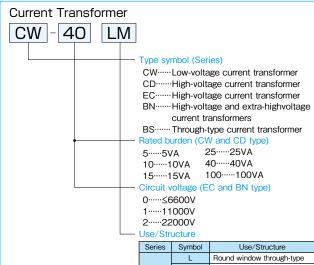
3. Earthed Voltage Transformers (EVT)

Circuit	Location		T	Rated	Voltage transformation	Accuracy		Use		Damada	D				
voltage	use		Type	burden (VA)	ratio (V)	(class)	General instrument	I Belay Everificati		Remarks	Page				
			EV-L	50 100	$\frac{220}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	1P	0	0	_						
≤440V	Indoor		EV-LX	50/50	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1P/3G	0	0		Coil molded	77				
			EV-LX	100/100	$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3} \left(\frac{110}{3}\right)$	IP/3G			_						
			EF-0FC (with fuse)	100 200	$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	1P	0	0	_						
			EF-0XFC	100/100	$ \frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3} \left(\frac{110}{3} \right) $		0	0							
≤6600V	Indoor		(with fuse) $200/200 \frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3} \left(\frac{110}{3}\right)$	1P/3G				Coil molded	78						
		EV EF Series	EF-03XFC (with fuse)	3×100/ 3×100	$3300/110/\frac{190}{3}\left(\frac{110}{3}\right)$	17730	0	0							
			for 3-phase	3×200/ 3×200	$6600/110/\frac{190}{3}\left(\frac{110}{3}\right)$))			
11000V			EV-1	100 200	$\frac{11000}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	1P	0	0	_						
11000					EV-1X	100/100 200/200	$\frac{11000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3} \left(\frac{190}{3} \right)$	1P/3G	0	0	_				
22000V	Indoor	door	EV-2	100 200	$\frac{22000}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	1P	0	0	_	Coil molded	79				
22000V	IIIQOOI		IF\/-2¥ ⊢	100/100 200/200	$\frac{22000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3} \left(\frac{190}{3} \right)$	1P/3G	0	0	_	Con moided	19				
33000V			EV-3	100 200	$\frac{33000}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$	1P	0	0	_						
330007			EV-3X	100/100 200/200	$\frac{33000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3} \left(\frac{190}{3} \right)$	1P/3G	0	0	_						

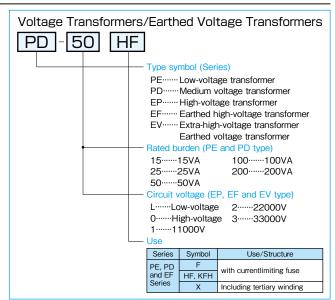
4. Zero-phase Current Transformers (ZCT)

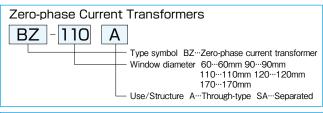
Circuit voltage	Location of use	Use		Туре	Window diameter (mm)	Rated primary current (A)	Applicable standards	Page		
		For detection of leakage			CZ-22S	22				
		current (combined with Mitsubishi Electric leakage current measuring/ monitoring device)		Separated CZ Series	CZ-30S	30		EN61010 -2-032		
≤600V	Indoor		Separated		CZ-55S	55	_		85	
					CZ-77S	77				
					CZ-112S	112				
					BZ-60A	60	300			
_			Through	D.7	BZ-90A	90	600		80	
(By cable	Indoor	Ground relays	-type	BZ Series	BZ-110A	110	1000	JEC-1201 -2007	60	
insulation)				Series	BZ-170A	170	1200	-2001		
			Separated		BZ-120SA	120	1000		81	

5. Voltage/Current Transformers (VCT)


	Location of						Rat	ting		
Circuit voltage			Overcurrent strength Typ	Туре	Voltage Transform	mer	Current Transform	Page		
voitage use			(Times)		Voltage transformation ratio (V)	Load (VA)	Current transformation ratio (A)	Load (VA)		
≤6600V	Outdoor	Electric power supply and	40	PO-2HB	3300/110 6600/110	2×15	10 to 400/5	2×15	82	
		demand	150	РО-6НВ	6600/110	2×15	20, 50/5	2×15		

6. Transformer for control circuits




Circuit voltage	Location of use	Use	Туре	Capacity (VA)	Voltage transformation ratio (V)	Applicable standards	Page	
≤6600V	Indoor	Operation of high-voltage circuit	EMT-K (with fuse)	300	3300/110	JEC-2200	83	
≥00000	II IUOOI	breakers	EMT-BB (with fuse)	600	6600/110	JEC-2200		

■ Type Composition

Series	Symbol	Use/Structure							
	L	Round window through-type							
	LP	Primary winding							
CW	LM	Square window through-type							
Series	LS, LMS	Dedicated verification class							
	Т	Class 1 heat-resistant							
	S, SL	Separated							
	NB, NA	Overcurrent strength 40Times							
		Overcurrent intensity							
	Н	600 to 1000A: 40x							
		1200 to 2000A: 40kA							
0.0	ENB, ENA	Overcurrent strength 75Times							
CD Series	GNA	Overcurrent strength 150Times							
001100	LN	Overcurrent strength 300Times							
	ANA, ANB	Cubicle-type high-voltage							
	CNA, CNB	power receiving equipment							
	KB, K	General instruments							
	CB, BB	Dedicated verification							
BS	MD, MC	Round window through-type							
Series	SA	Separated							

Selection

In order to configure an economic and reliable measurement/protection system, when selecting a model, be certain to thoroughly review the items listed below while considering the circuit conditions that apply, type of use and ambient conditions.

1. Guidelines for Selecting Current Transformers

	Item	Selection guidelines											
1	Use	General meters, relays, verification devices, and cubicle-type high-voltage power receiving equipment.											
2	Rated primary current	Generally, approximately 1.5-times the load current selected from values specified in JIS or JEC standards.											
3	Rated secondary current	The standard value is 5A. For remote measurements, using 1A leads to the mitigation of CT load and lower wiring costs. However, 1A applies only to the low-voltage CW Series current transformers.											
4	Highest voltage/ withstand voltage	Select a value for the insulation coordination of circuit voltage and system circuitry. Mitsubishi Electric regards the contents of the table at the right as standard. In-house standard withstand voltage values Highest voltage (kV) 0.46 1.15 3.45 6.9 11.5 23 Withstand voltage 3/- 4/- 22/60 28/90 50/125 * Withstand voltage indicates commercial frequency withstand voltage/lightning impulse withstand voltage.											
5	Accuracy Class	Select a class according to the accuracy required for usage and meter and relay connected. Vise Accuracy (Class)											
6	Rated burden	*1 Rated load must be more than the total combined load VA of the meter, relay and wires that are connected to the current transformer.											
7	Overcurrent strength (rated overcurrent)	Select a current transformer with a short-circuit current in the distribution system. Be certain to use the AN or CN series for cubicle-type high-voltage power receiving equipment. For the withstand current of each model, refer to 8.1 Current Transformer Characteristics on pages 88 to 90.											
8	Overcurrent constant	If using a current transformer for general-use meters, the constant is not required. The constant is required if you use a current transformer for relays. Select a current transformer that has an overcurrent constant that can be coordinated with a relay. Calculate the overcurrent constant (n') at the usage load using the following formula. When the usage load is reduced, the overcurrent constant at the usage load becomes larger than the rated overcurrent constant. n'=Overcurrent constant n (Rated value or Performance value) × Rated load of current transformer + Secondary leakage VA For secondary VA, refer to 8.1 Current Transformer Characteristics on pages 88 to 90.											
9	Use environment	For special environments of high-temperature/humidity (anti-fungus/moisture-proof treatment), corrosive gas (corrosion-resistant), high altitudes, pollution/humidity, high temperatures or cool temperatures, refer to 6.4 Special Environments on page 86.											

Note: *1 For load VA values of connection wires, refer to the following values.

Connection wire load (VA)

Lead-wire nominal crosssectional	Wire length (m)						
area (mm²)	5	10	15				
2.0	1.16	2.31	3.47				
3.5	0.65	1.30	1.95				
5.5	0.42	0.83	1.25				

Remarks:

- 1) Wiring is 600V vinyl-insulated wire (IV wire).
- 2) Load value of each wire is the value at an ambient temperature of 20°C and rated current of 5A.
- 3) The wire length is the total length of the secondary circuit, and the load value is the value for the total length.
- 4) If the wire length is longer than 15m, calculate the value using the following formula.

Example: If the wire length round-trip is 100m (2.0mm²):

 $VA\text{=}I^2R\text{----}5A^2\text{\times}9.24\Omega/\text{km}$ (upper-right table) $\times\frac{100m}{1000m}$ =23.1VA

Conductor resistance of connection wires

Wire nominal cross-sectional area (mm ²)	Conductor resistance (Ω/km)
2.0	9.24
3.5	5.20
5.5	3.33
8.0	2.31

2. Guidelines for Selecting Voltage Transformers

	Item	Selection guidelines													
1	Use	General-use meters, relays verification devices and power supply.													
2	Rated voltage		Determine the voltage according to the circuit voltage. For grounded circuits, select from Earthed Voltage Transformers (EVT).												
		Select a value for the coordination of circuit	t voltage.		Circuit v	Electric's star	odard with	hstand vo	oltage va	ues 11	22	33			
		Mitsubishi Electric re the table to the right Notes: *1 The withstand vol	as standar	3/-	16/45	22/60			70/170						
		transformer indica frequency withsta	nd voltage	nd voltage											
3	Withstand voltage	lightning impulse value.	withstand v	Prim	nary volta	ge (V)	Withst	and volta	age (kV)						
		The withstand vol	tage of ear		≤220			2/-							
		voltage transforme	_		221 to 4			3/-							
		commercial freque	-	41 to 11 101 to 29			4/ -								
		voltage value/ligh withstand voltage		se			_	000 to 39			16/45				
		*2 EP/0FH VTs have		of				000 to 59			22/45				
		22/60kV, even th 3.3kV.	ough these	are for			60	000 to 60	600		22/60				
		J.JKV.													
		Select the class according to the accuracy required for usage, and meter and relay connected.													
		Use Accuracy (class) USe IIS C 1731-2 IEC-1201-2007													
4	Acquiracy (class)	JIS C 1731-2 JEC-1201-2007 Precision meters 0.5													
4	Accuracy (class)	General-use meters	relavs			1.0 1P									
		Distribution board/re			3.0										
		Earthed voltage tran	sformers (I	EVT)	- 3G										
5	Rated burden	The rated load must current transformer. However, when comb with a rated load of I The rated load is out characteristics.	oining a vol ess than or	tage transf	ormer and ele 0VA.	ctronic meter	that has	a lower	load, use	a voltag	e transfo				
6	Limit output	If using a voltage trai error characteristics. Limiting load means For the limiting load	the load wi	nere the ris	e in temperati	ure reaches th	ne full lim	nit specif	ied in the	standar	d.				
		The primary-side fuse dielectric breakdown instead of protecting Mitsubishi Electric vo	of the tran the transfo oltage trans	sformer occ ormer itself. sformers for	curs, leading Select a volt measuring e	to short-circui age transform quipment use	ting of the er model the follo	ne main d I equippe	ircuit and d with a	d minimiz	ing the a	accident			
		Circuit voltage 600V or less	Type PL-G		ting 2A 100kA	Size									
	Selection of primary	3300V				φ15×10		1							
7	side fuse-equipped	6600V	PL-G	7.2/3.6kV	' T1A 40kA	φ15×10	J/L								
	voltage transformers	Voltage transformers can be used by mour			uring equipme	ent are not eq	uipped w	rith fuses	; therefor	e, the fol	lowing fo	uses			
		Circuit voltage	Type		ting	Size									
		11000V PL-J 12kV T1A 40kA													
		22000V PL-J 24kV T1A 40kA													
		C3000 V	1 L-0	JON V	IN ZONA	ψυυναι	10%								
8	Use environment	For special environm resistant), high altitude on page 86.	_	-		_	-								
Remark:	Additionally, select an ea	arthed voltage transfor	ner model	according	to the same	guidelines as	the abov	ve table							

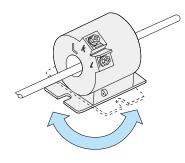
Remark: Additionally, select an earthed voltage transformer model according to the same guidelines as the above table.

Specifications and External Dimensions by Model

5-1 Current transformers

CW Series Low-voltage Current Transformers (less than or equal to 1100V)

CW-5L/CW-15L/CW-40L


Cable wiring/Round window through-type

Use

General-use meters

Features

- The direction of the mounting plate can be turned 90°.
- 600V vinyl wiring can be used for the primary conductor.
- Secondary terminal insulation cap (page 34) is available as an option.

Specifications

Applicable standard: JIS C 1731-1

		ary current	Detect		A	Highest	cable star		
Туре		A) Secondary	Rated burden	Accuracy	Overcurrent strength	voltage/ withstand	Frequency	External dimensions	Mass
Туре	current	current	burderi		Sucrigiri	voltage		ullilei isioi is	
	5A	1A	(VA)	(class)	(times)	(kV)	(Hz)		(kg)
	60	60						F. F	4.0
CW-5L	75	75						Fig. 5	1.9
	100	100							
	120	120							
	150	150						Fig. 1	0.6
	160	160						Fig. 1	0.6
	180	180				4.45/	D-45		
CW-5L	200	200	5	1.0	40	1.15/ 4/—	Both 50/60		
	240	240				7/	00/00		
	250	250						Fig. 2	0.5
	300	300						1 1g. Z	0.5
	400	400							
	500	500							0.5
	600	600						Fig. 3	
	750	750							0.6
	100	100						Fig. 5	2.0
	120	120						1 16. 0	2.0
	150	150							
	160	160			40	1.15/ 4/—	Both 50/60	Fig. 4	1.0
	180	180						1 16. 7	1.0
	200	200							
CW-15L	240	240	15	1.0					
	250	250						Fig. 2	0.6
	300	300						1 10. 2	0.0
	400	400							
	500	500							0.8
	600	600						Fig. 3	
	750	750							0.6
	150	150							
	160	160						Fig. 5	2.0
	180	180						g. 0	
	200	200							
	240	240				1.15/	Both		
CW-40L	250	250	40	1.0	40	4/—	50/60	Fig. 6	1.2
	300	300						. 16. 0	1.2
	400	400							
	500	_							
	600	_						Fig. 3	0.8
	750	_							

Notes

Regarding Rated Primary Current (current transformation ratio)

Through-type current transformers can be used for several rated primary currents by changing the through number of the primary conductor, and are therefore flexible and economical. (When ordering, be certain to specify the current transformation ratio $\square\square\square/\square A$, which is the primary conductor through number per one turn).

Example: If the current transformation ratio is 200/5A:

Through number 1 turn ···Rated primary current 200A

Through number 2 turns···Rated primary current 100A Through number 4 turns···Rated primary current 50A

Through number 2 turns···Rated primary current 100A \} These circuits can be used with this current transformer.

Refer to page 16 for proper use of through number in the primary conductor, rated primary current (current transformation ratio) and through-type enabled primary conductor size.

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*2} Product weight may vary due to changes in core characteristics.

Fig. 1 CW-5L 100, 120, 150, 160, 180, 200A

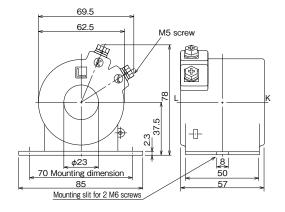


Fig. 2 CW-5L 240, 250, 300, 400A CW-15L 240, 250, 300, 400A

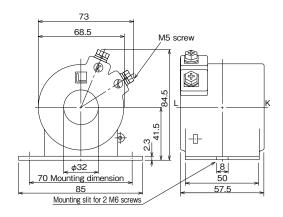


Fig. 3 CW-5L 500, 600, 750A CW-15L 500, 600, 750A CW-40L 500, 600, 750A

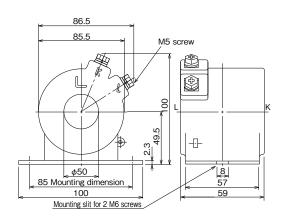


Fig. 4 CW-15L 150, 160, 180, 200A

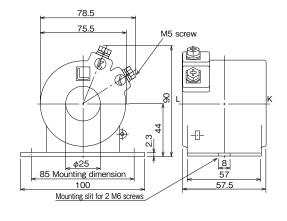
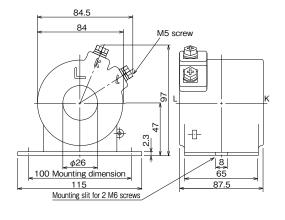
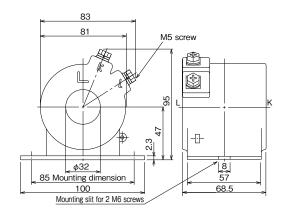




Fig. 5 CW-5L 60, 75A CW-15L 100, 120A CW-40L 150, 160, 180, 200A

■ Using Primary Conductor Through Number and Rated Primary Current (current transformation ratio)

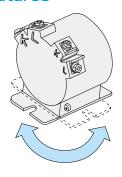
The following table specifies rated primary currents, through number in the conductor, and nominal cross-sectional areas of through enabled 600V vinyl wiring (600V IV wiring) (ϕ indicates a single-wire diameter). The following table covers the allowable current of 600V vinyl wiring at the ambient temperature of 40°C.

1110 1011	owing t	5VA	ers the anowable	current	01 000	5VA	wiring at the amo	5VA					
		CW-5L				CW-5L				CW-5L			
Rated primary current (A)	Primary current (A)	Through No. (turns)	Primary conductor size (mm²)	Rated primary current (A)	Primary current (A)	Through No. (turns)	Primary conductor size (mm ²)	Rated primary current (A)	Primary current (A)	Through No. (turns)	Primary conductor size (mm²)		
60	10 15 20 30 60	6 4 3 2	5.5 14 22 22 150	100	10 20 25 50 100	10 5 4 2	5.5 14 22 38 200	150	10 15 25 30 50	15 10 6 5	3.5 5.5 14 14 22		
75	15 25 75	5 3 1	8 22 150	120	15 20 30	8 6 4	8 14 22		75 150 20	2 1 8	38 200 8		
100	10 20 25 50	10 5 4 2	φ2 8 14 22	120	40 60 120	3 2 1	22 38 200 3.5	160	40 80 160 20	4 2 1 9	22 38 200 5.5		
120	100 15 20 30 40 60	1 8 6 4 3	150 5.5 8 14 22 22	150	15 25 30 50 75	10 6 5 3 2	5.5 8 14 22 38 200	180	30 60 90 180 25 40	6 3 2 1 8 5	14 22 38 200 8 14		
	120 15 25 30	1 10 6 5	150 \$\phi 2 8 8	160	20 40 80 160	8 4 2	8 22 38 200	200	50 100 200 40	4 2 1 6	22 38 200		
150	50 75 150 20	3 2 1 8	22 22 22 150 5.5	180	20 30 60 90	9 6 3 2	5.5 8 22 38	240	60 80 120 240	4 3 2	22 38 60 325		
160	40 80 160	4 2 1	14 22 150		180 20 25	1 10 8	200 5.5 8	250	25 50 125	10 5 2	8 22 60		
180	20 30 60 180	9 6 3 1	φ2 8 22 150	200	40 50 100 200	5 4 2 1	14 22 38 200		250 30 50 60	1 10 6 5	325 8 14 22		
200	20 25 40 50 200	10 8 5 4 1	φ2 5.5 8 14 150	240	30 40 60 80 120	8 6 4 3 2	8 14 38 60 60	300	75 100 150 300 40	4 3 2 1	38 60 60 325 8		
240	40 60 80 120 240	6 4 3 2	14 38 60 60 325	250	240 25 50 125 250	1 10 5 2	325 8 22 60 325	400	50 100 400 50 100	8 4 1 10 5	14 38 325 22 60		
250	25 50 125 250	10 5 2 1	8 22 60 325	300	30 50 60 75	10 6 5 4	8 14 22 38	500	125 250 500	4 2 1	100 200 500		
300	30 50 60 75 100	10 6 5 4 3	8 14 22 38 60		100 150 300 40 50	3 2 1 10 8	60 60 325 8 14	600	75 100 150 200 300	8 6 4 3 2	38 60 100 150 200		
	150 300 40	2 1 10	60 325 8	400	100 400 50	4 1 10	38 325 22	750	600 75 150	1 10 5	500 22 60		
400	50 100 400 50	8 4 1	14 38 325 22	500	100 125 250 500	5 4 2 1	60 100 200 500		750	1	200 × 2 conductors		
500	100 125 250 500	5 4 2 1	60 100 200 500	600	60 75 100 150	10 8 6 4	22 38 60 100						
600	60 75 100 150 200 300	10 8 6 4 3 2	38 60 100 150 200	750	200 300 600 75 150 750	3 2 1 10 5	150 200 500 22 60 200 × 2 conductors						
750	75 150 750	1 10 5 1	500 22 60 200 × 2 conductors										

CW-5LP/CW-15LP/CW-40LP

Small current/Primary winding

Specifications


Applicable standard: JIS C 1731-1

Use

• General-use meters

■ Features

- The direction of the mounting plate can be turned 90°.
- Secondary terminal insulation cap (page 34) is available as an option.

Self-burden (VA)

Fig. 1 CW-5LP (1 to 30A)

	CW-5LP	CW-15LP	CW-40LP
Self-burden (VA)	3.5 (≤30A) 5.0 (40.50A)	5.0	6.5
(VA)	5.0 (40,50A)		

	Datad prim	0				I II also a sa			
Туре	· (A	۹)	Rated burden	Accuracy	Overcurrent strength	Highest voltage/ withstand	Frequency	External dimensions	Mass
	current 5A	current 1A	(VA)	(class)	(times)	voltage (kV)	(Hz)		(kg)
		1							
CW-5LP CW-5LP CW-5LP CW-5LP CW-5LP CW-15LP CW-15LP CW-15LP CW-40LP CW-40LP	2								
		3							
	5	5							
	7.5	7.5						F: 4	0.7
0,47,51,5	10	10	_	4.0	40	1.15/	Both	Fig. 1	0.7
CW-5LP	15	15	5	1.0	40	4/—	50/60		
	20	20							
	25	25							
	30	30							
	40	40						F:- 0	4.4
	50	50						Fig. 2	1.1
	1	1							
	2	2							
3 3 5 5 7.5 7.5 10 10									
	5	5							
	7.5	7.5							
CW 15LD	10	10	15	1.0	40	1.15/	Both	Fig. 2	4.4
CW-15LP	15	15	15	1.0	40	4/-	50/60	Fig. 2	1.1
	20	20							
	25	25							
	30	30							
	40	40							
	50	50							
		1							
	2	2							
	3	3							
		5							
	7.5	7.5							1.1
CW-401 B	10	10	40	1.0	40	1.15/	Both	Fig. 2	1.1
CW-40LP	15	15	40	1.0	40	4/—	50/60	ı-ıg. ∠	
	20	20							
	25	25							
	30	30							
	40	40							1.2
	50	50							1.2
latas									

Notes

- *1 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.
- *2 Product weight may vary due to changes in core characteristics.

External Dimensions

Primary terminal
M5 screw

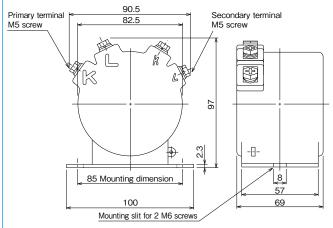
Secondary terminal
M5 screw

70 Mounting dimension

82

Secondary terminal
M5 screw

70 Mounting dimension


85

50

57.5

Mounting slit for 2 M6 screws

Fig. 2 CW-5LP (40, 50A), CW-15LP and CW-40LP

CW-15LM/CW-40LM

Specifications

Busbar wiring/Rectangular window through type

Use

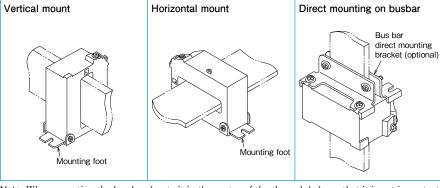
• General-use meters

Features

- These current transformers allow the selection of various installation configurations such as vertical or horizontal mounting, or direct mounting on the busbar.
- Secondary terminal insulation cap (page 34) is available as an option. (less than or equal to 4000/5A)

Applicable standard: JIS C 1731-1

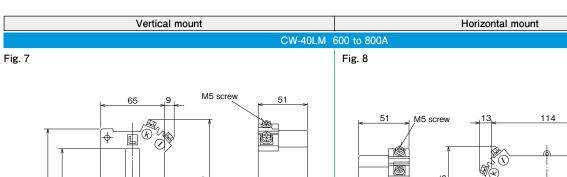
	incatic	110									Аррисави	e standard: JI	5 C 1731-1					
	Rated	Secondary	Rated		Overcurrent	Highest voltage/		External d	limensions/N			Square						
Туре	primary	current	burden	Accuracy	strength	withstand	Frequency	Vertical	Horizontal	Direct mo	ounting on oar ^{*2}	window	Mass					
Type curre (A) (A) 11 22 23 34 45 66 77 22 33 44 55 66 77 88 CW-40LM 10 12 15 20 25 30 40		(4)	0.44	, , ,		voltage		mount	mount	1 busbar	2 busbars	dimensions						
		(A)	(VA)	(class)	(times)	(kV)	(Hz)					(mm)	(kg)					
	150							Fig. 5	Fig. 6		_		2.1					
	200							-	-: o									
	250 300					4.45/	D-41-	Fig. 1	Fig. 2		_		1.1					
CW-15LM	400	5 or 1	15	1.0	40	1.15/ 4/—	Both 50/60			Page 26		14×55						
	500					.,	00700			Fig. 1			0.6					
	600							Fig. 3	Fig. 4		_							
	750												0.5					
	200							E. E	F: 0				0.0					
	250							Fig. 5	Fig. 6	_	_		2.3					
	300		40									14×55						
	400							Fig. 1	Fig. 2		_		1.1					
	500																	
	600	5 or 1											1.1					
	750							Fig. 7	Fig. 8	Page 26	_	14×80						
0,11, 40, 14	800					1.15/	Both			Fig. 1			0.9					
CW-40LM	1000			1.0	40	4/-	50/60						1.2					
	1200 1500		40 (double)					Fig. 9	Fig. 10		Doggood	28×105	1.1					
	2000										Page26 Fig. 2		1.2					
-	2500		(as 15VA) •6								1 .0							
	3000							Fig. 11	Fig. 12	_		48×160	4.8					
	4000	5							11 11g. 12		_		6.3					
	*3 5000							Fir 10	Fig. 14			00×017	1.4					
	*3 6000							Fig. 13	Fig. 14	_	_	88×217	14					

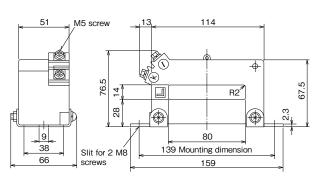

Notes

- *1 Standard products must be mounted vertically.
- *2 Busbar direct mounting brackets are sold separately.

 When ordering, specify the desired body type and rated primary current.
 - For rated primary currents of 1000 to 2000A, also specify the number of busbars.
- *3 An epoxy resin mold is used to insulate rated primary currents of 5000A and 6000A.
- *4 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.
- *5 Product weight may vary due to changes in core characteristics.
- *6 Mitsubishi Electric also guarantees the performance for rated loads of 15A.

Mounting Method


- Vertical or horizontal mounting
 These current transformers can be mounted vertically or horizontally, easily changing the direction to fit the board space.
- Direct mounting on busbar
 Angles are not necessary, and
 making holes in busbars is not
 required. Freely change the
 mounting position as required.


Note: When mounting the bus bar, locate it in the center of the through hole, so that it is not in contact with the inside of the through hole.

■ External Dimensions

Vertical mount Horizontal mount CW-15LM 200 to 300A / CW-40LM 300 to 500A Fig. 2 Fig. 1 M5 screw 12 103 <u>7.</u>5 46 M5 screw **2** 84.5 R2^{*} 107 55 0 32.5 26 7 34 55 7 34 118 Mounting dimension Slit for 2 M6 90 Mounting dimension 107 61 135 Slit for 2 M6 screws screws CW-15LM 400 to 750A Fig. 3 Fig. 4 46 M5 screw M5 screw 12.5 85 46 Ė + 4 99.5 88.5 72.5 \blacksquare 55 25.5 14 R2 63 17 7 55 Slit for 34 100 Mounting dimension 76 Mounting dimension 34 2 M6 61 screws 117 Slit for 2 M6 92.5 CW-15LM 150A / CW-40LM 200 / 250A Fig. 6 Fig. 5 92 M5 screw 103 M5 screw 92 + 85.5 77.5 107 55 R2 ² 0 0 33 9 9 14 Slit for 2 M8 80 123 Mounting dimension Slit for 2 M8 80 108 95 Mounting dimension screws 108 screws 140 112

Slit for 2 M8 90 Mounting dimension screws 110

CW-40LM 1000 to 2000A

Fig. 9

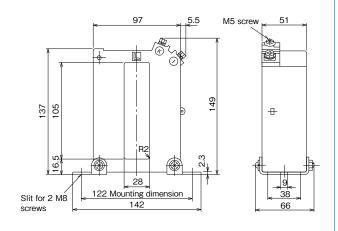
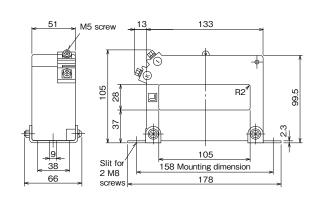



Fig. 10

CW-40LM 2500 to 4000A

Fig. 11

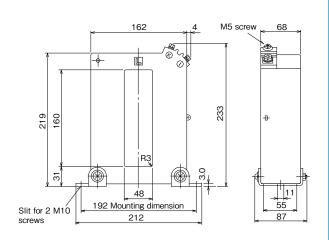
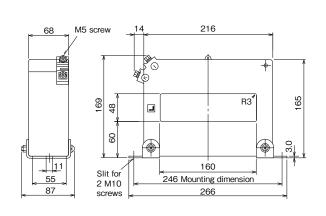
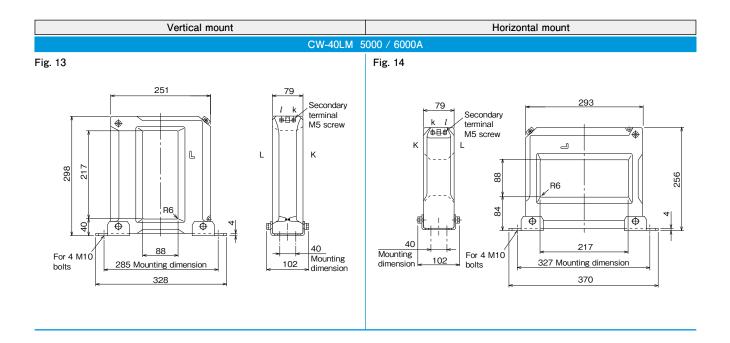
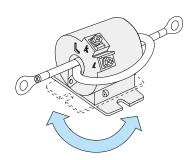




Fig. 12

CW-15LS Cable wiring

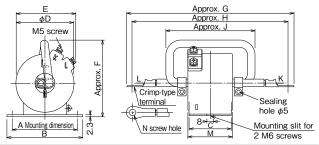
Use

- General-use meters
- Secondary terminal insulation cap (page 34) is available as an option.


Specifications

Applicable standard: JIS C 1731-1

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Highest voltage/ withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)	Structure
	5	(,	(11.)	(((117)	,		(0)	
	10						50			≦. Ţ
	15	5	15	1.0	40	1.15/ 4/—	or	Fig. 1	1.1	Primary winding
	20					"	60			₽ 12
	30									
	40			1.0	40			Fig. 2-1		With primary conductor
	50						50	Fig. 2-2	1.2	
	60	5	15			1.15/	or	1 16. 2 2		
	75					4/-	60	Fig. 2-3		rima
CW-15LS	100							Fig. 2-4		y ar
	120							Fig. 2-5	0.9	
	150							Fig. 3-1	1.0	
	200							1 16. 0 1	1.0	8
	250						F0			გ ₹
	300	5	15	1.0	40	1.15/	50 or	Fig. 3-2	0.6	thout prim conductor
	400		10	1.0	70	4/—	60			prir
	500									Without primary conductor
	600							Fig. 3-3	0.8	<
	750									


Note: Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Features

● The direction of the mounting plate can be turned 90°, even after the verification seal has been affixed.

Fig. 2 40 to 120A (The figures shown below are examples of 10 to 120A.)

1	primary	Primary	Primary wire					Dimensions						
Item	current Windin		cross-sectional area (mm²)	Α	В	С	D	Е	F	G	Н	J	М	N
1	40	4	14	85	100	57	75.5	78.5	105	215	203	105	57.5	M6
2	50	3	22	85	100	57	75.5	70 E	105	220	203	105	57 E	Me
	60	3	22	65	100	31	15.5	10.5	103	220	203	105	57.5	IVIO
3	75	2	38	85	100	57	75.5	78.5	105	230	208	105	57.5	М8
4	100	2	38	85	100	57	75.5	78.5	105	240	218	105	57.5	M10
5	120	2	60	70	85	50	68.5	73	105	255	233	105	57.5	M10

Note: The primary cable is coiled and secured. The number of coils must not be changed.

External Dimensions

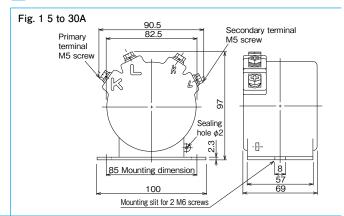
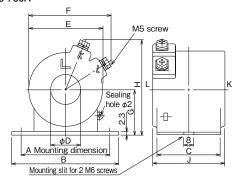



Fig. 3 150 to 750A

	Rated primary				Dii	mensio	ons			
Item	current (A)	Α	В	С	D	Е	F	G	Н	J
1	150,200	85	100	57	25	75.5	78.5	44	90	57.5
2	250,300,400	70	85	50	32	68.5	73	41.5	84.5	57.5
3	500,600,750	85	100	57	50	85.5	86.5	49.5	100	59

CW-15LMS

Busbar wiring/Rectangular window through type

Use

• General-use meters

Features

Secondary terminal insulation cap (page 34) is available as an option. (less than or equal to 4000/5A)

Specifications

Applicable standard: JIS C 1731-1

	Rated					Highest		External d	limensions/N	lounting dim	nensions *1	Square	
Туре	primary current	Secondary current	Rated burden	Accuracy	Overcurrent strength	voltage/ withstand	Frequency	Vertical	Horizontal		ounting on oar *2	window dimensions	Mass
	(A)	(A)	(VA)	(class)	(times)	voltage (kV)	(Hz)	mount	mount	1 busbar	2 busbars	(mm)	(kg)
	200	(71)	(• 7 .)	(01400)	(timos)	(100)	(112)					(11111)	(146)
	250							Fig. 1	Fig. 2		_		1.1
	300							1 16. 1	1 16. 2			14×55	1.1
	400											14/00	
	500							Fig. 3	Fig. 4		_		0.6
	600									Page 26			
	750							Fig. 5	Fig. 6	Fig. 1	_	14×80	1.1
	800							J -	J -				0.9
CW-15LMS	1000	5	15	1.0	40	1.15/	50 or 60						
	1200					4/—			-: o			00:1105	1.2
	1500							Fig. 7	Fig. 8		Page 26	28×105	1.1
	2000										Fig. 2		1.2
	2500												4.8
	3000							Fig. 9	Fig. 10	_		48×160	4.8
	4000										_		6.3
	*3 5000							Fig. 11	Fig. 12	_		88×217	14
	*3 6000							1 16. 11	1 16. 12			00/217	14

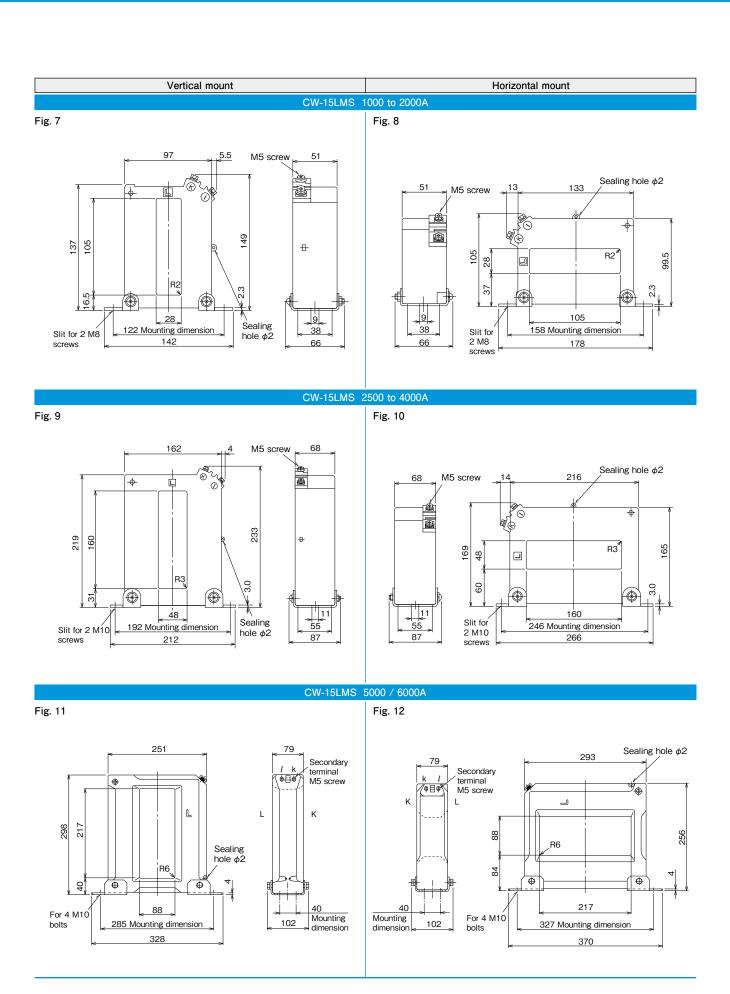
Notes

^{*1} Standard products must be mounted vertically.

^{*2} Busbar direct mounting brackets are sold separately.

When ordering, specify the desired body type and rated primary current.

For rated primary currents of 1000 to 2000A, also specify the number of busbars.

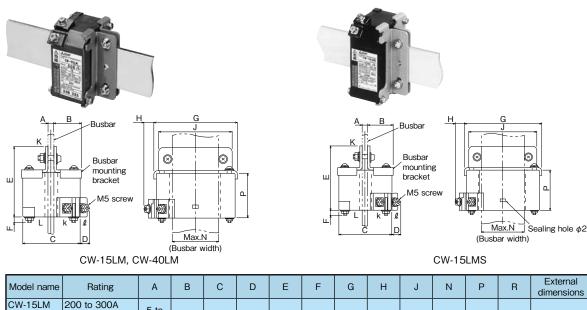

^{*3} An epoxy resin mold is used to insulate rated primary currents of 5000A and 6000A.

^{*4} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*5} Product weight may vary due to changes in core characteristics.

^{*6} When mounting the bus bar, locate it in the center of the through hole, so that it is not in contact with the inside of the through hole.

External Dimensions Vertical mount Horizontal mount CW-15LMS 200 to 300A Fig. 2 Fig. 1 Sealing hole ϕ 2 M5 screw 103 46 M5 screw 12 75 7.5 46 84.5 107 R2* 77 55 0 32.5 26 55 118 Mounting dimension Sealing hole Slit for 2 M6 90 Mounting dimension 107 61 Slit for 2 M6 screws screws 135 CW-15LMS 400 / 500A Fig. 3 Fig. 4 46 M5 screw M5 screw Sealing hole $\phi2$ 12.5 85 * ¢ 99.5 88.5 55 + 63 R2 25.5 7 Slit for 100 Mounting dimension 34 Sealing hole 2 M6 screws 76 Mounting dimension Slit for 2 M6 φ2 117 screws CW-15LMS 600 to 800A Fig. 5 Fig. 6 M5 screw 51 Sealing hole ϕ 2 51 114 M5 screw 129 76.5 67.5 118 80 -R2 ** 28 9 80 38 139 Mounting dimension Slit for 2 M8 14 66 9 Sealing hole φ2 90 Mounting dimension 38 Slit for 2 M8 110 screws

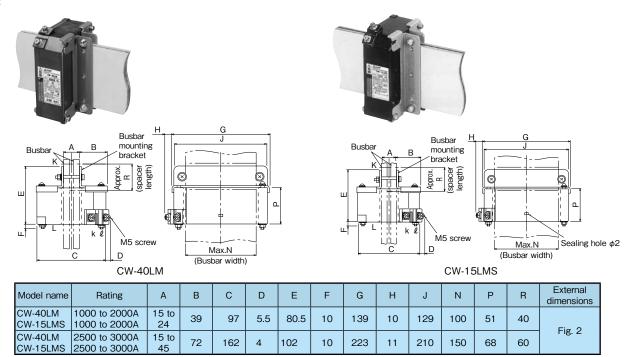

Busbar Direct-mount Brackets for CW-15LM, CW-40LM and CW-15LMS

Notes:

- *1 For CW-15LM (150A), CW-40LM (200A, 250A and 4000 to 6000A) and CW-15LMS (4000 to 6000A), direct mounting on the busbar is not possible as the respective CTs are too heavy for the busbar cross-sectional dimensions.
- *2 Be certain to mount busbars at the center of the through hole so that these is no contact with the inner surface of the hole.
- *3 Remove the mounting feet without fail. (It is not allowed to use both the mounting feet and the busbar direct mounting brackets.)
- *4 Use a pair of busbar direct mounting brackets. Use the supplied screws and nuts.

busbar mounting

Fig. 1



Model name	Rating	А	В	С	D	Е	F	G	Н	J	N	Р	R	External dimensions
CW-15LM CW-40LM CW-15LMS	200 to 300A 300 to 500A 200 to 300A	5 to 10	33.5	75	7.5	74	10	110	8.5	90	50	46	_	
CW-15LM CW-15LMS	400 to 750A 400 / 500A	5 to 10	26.5	61	9.5	73.5	9	90.5	9.5	81	50	46	_	Fig. 1
-	600 to 800A 600 to 800A	5 to 10	27.5	65	9	79	9	121	9	107	75	51	_	
CW-40LM CW-15LMS	1000 to 2000A 1000 to 2000A	6 to 12	43.5	97	5.5	80.5	10	139	10	129	100	51	_	

Note: *1 Busbar mounting bracket are made of nonmagnetic material for CM-40LM and CW-15LMS (1000 to 2000A) current transformers.

2-busbar mounting

Fig. 2

CW-5LS3/CW-5LMS3

Distribution boards Busbar/Cable wiring

Use

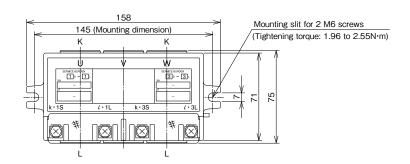
• General-use meters and distribution boards

Features

- As the result of an integrated three-wire current transformer structure and direct pass through enables the busbar to be connected directly to the main breaker "250A (225A) to 400A frame" terminal, space savings and simplified wiring work are realized. If mounting the current transformer on the power supply-side of the breaker, be certain to secure appropriate arc space.
- ◆ A primary conductor and mounting adapter are available as an option (for CW-5LS3).

Specifications

Applicable standard: JIS C 1731-1


Туре	Rated primary current	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Highest voltage/ withstand voltage (kV) *1	Frequency (Hz)	Applicable circuit	Mass (kg)
CW-5LS3	150 200 250	5	2×5	1.0	40	1.15/ 4/—	50 or 60	1-phase, 3-wire 3-phase, 3-wire	1.0
CW-5LMS3	250 300 400	5	2×5	1.0	40	1.15/ 4/—	50 or 60	1-phase, 3-wire 3-phase, 3-wire	1.6

Notes

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*2} Product weight may vary due to changes in core characteristics.

Fig. 1 CW-5LS3 150 to 250A

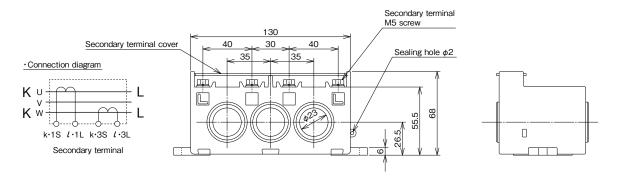
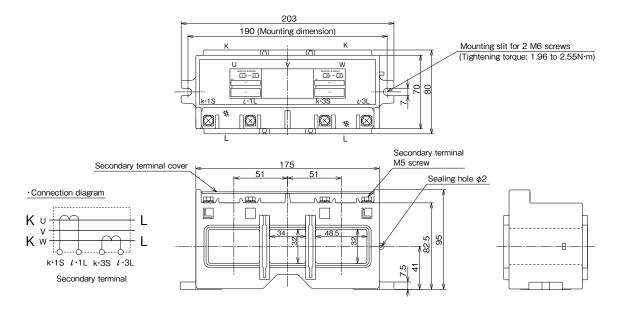
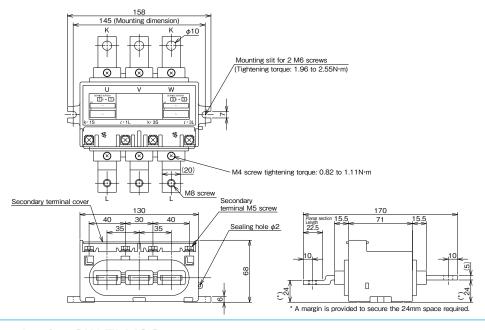



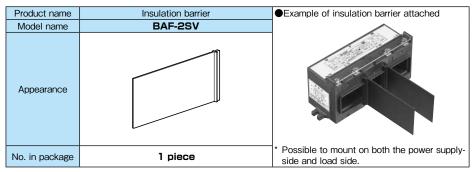
Fig. 2 CW-5LMS3 250 to 400A

Optional Parts

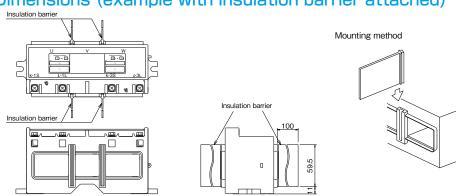

Primary conductor and primary conductor mounting adapter for CW-5LS3

• The primary conductor and primary conductor mounting adapter are provided.

Product name	Primary conductor	Primary conductor mounting adapter	●Example of primary conductor and mounting
Model name	CW-B205	CW-AD205	adapter assembled
Appearance		3 screws included	
No. in package	30 pieces	20 pieces	


Note: * The primary conductor and primary conductor mounting adapter are used for low-voltage circuits.

External Dimensions (example of with primary conductor and mounting adapter assembled)



Insulation barrier for CW-5LMS3

● The CW-5LMS3 is built to allow mounting of the Mitsubishi Electric NF250-CV insulation barrier.

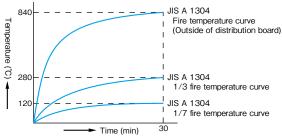
External Dimensions (example with insulation barrier attached)

CW-5T/CW-5L/CW-15LM

Class 1 and 2 heat-resistant models for emergency power sources

Devices to be mounted on heat-resistant switch boards and distribution boards must have heat resistance performance that ensures continuous power supply to firefighting equipment in case of fire.

Mitsubishi Electric's heat-resistance current transformers are certified Class 1 and Class 2 equipment compliant with the abovementioned standards, and have obtained the approval of the "Committee for the Certification of Distribution Boards, etc. for Emergency Use."



CW-5T (Class 1 heat-resistant)

W-5L CW-15LM (Class 2 heat-resistant)

Heat-resistant Power Distribution Performance

Allowable temperature curve

Class 1 heat-resistance

When a current transformer is heated for 30 min according to the 1/3 fire temperature curve, heat-resistant rated current passes without trouble. Be certain to use heat-resistant wiring for the primary conductor.

Class 2 heat-resistance

When a current transformer is heated for 30min according to the 1/7 fire temperature curve, heat-resistant rated current passes through without trouble. Be certain to use 600V Class 2 wiring that is heat-resistant and insulated by vinyl (HIV) for the primary conductor of the CW-5L.

Regarding heat-resistant rated current

Be certain to use the load current within the heat-resistant rated current (70% of the primary current). Additionally, select a wire gauge based on the primary current.

Applicable standard: IIS C 1731-1

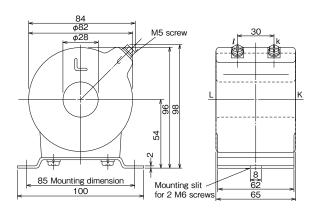
- 5	pecif	ICAT	INNS
	POOII	Jour	10110

		uons									тр	pheable st	indard: JIS (C 1701-1
Class	Туре	Rated primary current	Primary current	Through No.	Primary conductor size	Secondary current	Rated burden	Accuracy	Overcurrent strength	Highest voltage/ withstand voltage	Frequency	Insulation method	External dimensions	Mass
		(A)	(A)	(turns)	(mm ²)	(A)	(VA)	(class)	(times)	(kV)	(Hz)			(kg)
			20	5	5.5									
		100	25	4	8									
		100	50	2	22									
Class 1			100	1	150							-		
Class 1 Heat-	CW-5T		30	4	8	5	5	1.0	40	1.15/	Both	Epoxy resin	Fig. 1	1.0
resistant	000-01	120	40	3	14		3	1.0	40	4/—	50/60	mold	1 16. 1	1.0
		120	60	2	22									
			120	1	150									
		150	75	2	22									
		100	150	1	150									
			10	10	φ2									
			20	5	8									
		100	25	4	14									
			50	2	22									
			100	1	150									
			15	8	5.5								F: 0	
		100	30	4 3	14						5		Fig. 2	0.6
	CW-5L	120	40 60	2	22 22	5	5	1.0	40	1.15/ 4/ -	Both 50/60	Double mold		
Class 2			120	1	150					4/	30/00	IIIOIU		
Heat-			75	2	22									
resistant		150	150	1	150									
	-	200	200	1	150									
	-	250	250	1	325									
		300	300	1	325								Fig. 3	0.5
		400	400	1	325								0	
		200	200											
	0)4/45	250	250		*4.40.55	_	4.5	4.0	40	1.15/	Both	Double	Fig. 4	1.1
	CW-15LM	300	300	_	*14×55	5	15	1.0	40	4/-	50/60	mold		
		400	400										Fig. 5	0.6

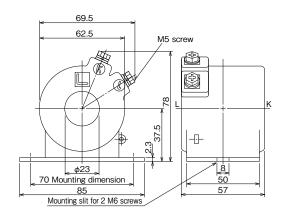
Notes

- *1 Square window dimensions are listed because it is for busbar wiring.
- *2 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Remarks:


- 1) For primary conductor sizes, nominal cross-sectional areas of throughtype enabled wiring are listed. (ϕ indicates single-wire diameter)
- 2) Primary conductor sizes of Class 1 heat-resistant CTs are described as smaller than the maximum conductor size, because heat-resistant wiring is hard and is not easy to wind.

Heat-resistant current transformer indicator


Heat-resistance classes are indicated by the following labels:

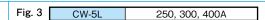

Class 1 heat-resistant	Class 2 heat-resistant
一種 耐熱 登録 機器	二種熱登録機器
Red label	Blue label

Fig. 1 CW-5T 100, 120, 150A

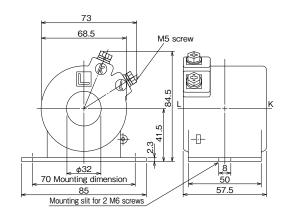


Fig. 4 CW-15LM 200, 250, 300A

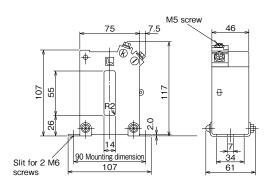
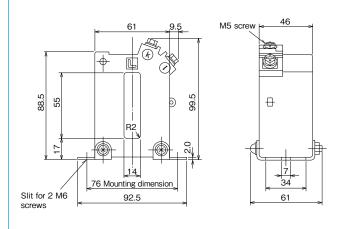



Fig. 5 CW-15LM 400A

CW-15LM Low-voltage current transformer for protective relays

Use

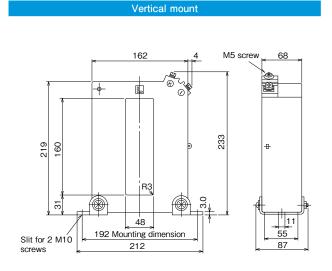
 This current transformer is used in combination with overcurrent protective relays of low-voltage switchboards.

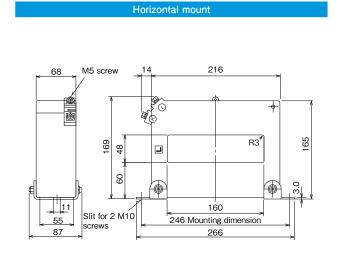
Features

- Protection relay current transformer compliant with JEC standard
- With accuracy class of 1PS and usable for measurement
- Compact and lightweight, enabling mounting vertically, horizontally and even directly on the bushar

Note: Ratings for direct mounting on busbar are 1500 to 3000A.

To mount directly on a busbar, select the brackets used for CW-40LM 2500 to 3000A.


- Main body case is made of heat-resistant ABS resin with a superior UL94 flame resistance rating of V-0.
- The square window through-type design enables easy connection of the primary conductor by passing the wiring through the window.
- Secondary terminal insulation cap (page 34) is available as an option.


Specifications

Applicable standard: JEC 1201-2007

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Withstand voltage (kV)	Overcurrent constant	Frequency (Hz)	Mass (kg)
	1500								4.7
	2000								4.8
CW-15LM	2500	5	15	1PS	40	1.15/4/-	n>10	50 or 60	4.6
CW-15LW	3000	5	15	1175	40	1.15/4/-	11/10	50 or 60	4.9
	3500								5.3
	4000								6.3

Note: * Insulation level (withstand voltage) indicates values for peak voltage/short-time commercial power frequency withstand voltage/lightning impulse withstand voltage

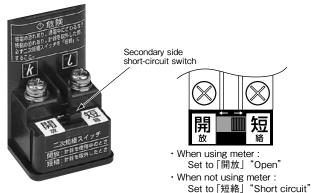
CW-5S/CW-2SL/CW-5SL

Separated/Cable wiring

Features

Removal of existing cables is not required.

These transformers can be mounted without removing existing cables, simplifying mounting work.


Secondary Terminal Cover Included as Standard Equipment

A secondary terminal cover is included as standard equipment.

Equipped with Secondary Side Short-circuit Switch

These transformers are equipped with a short-circuit switch to prevent the terminals on the secondary side from opening.

If the transformer is not connected, short-circuiting between the terminals is possible.

Specifications

Applicable standard: JIS C 1731-1

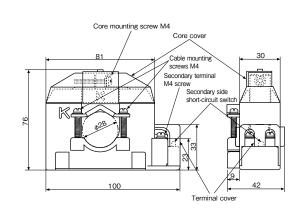
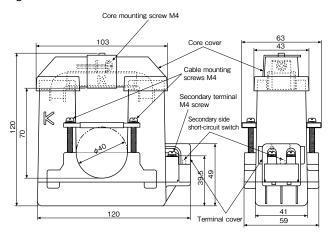
Type	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Highest voltage/ withstand voltage (kV)	Overcurrent strength (times)	Frequency (Hz)	Mass (kg)	Mountable wire size (be certain to use a wire size compatible with the load current)
CW-5S	300 400 500	5 or 1	5	1.0	0.46/ 3/-	40	Both 50/60	0.4	φ11 ot φ28 600V IV wire 38 to 250mm ² CV wire 38 to 200mm ²
CW-2SL	150 200 250	1	2	1.0	0.46/ 3/-	40	Both 50/60	1.0	600V IV wire and CV wire 38mm² to 500mm² (if cables are too small to attach, use the rubber spacers supplied)
CW-5SL	300 400 500 600 800	5 or 1	5	1.0	0.46/ 3/-	40	Both 50/60	1.0	600V IV wire and CV wire 250mm² to 500mm² × 1 piece 200mm² to 325mm² × 2 pieces (To use two cables, replace the cable tightening screw with the supplied screw M4×65.)

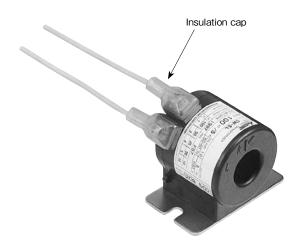
Notes

Be certain to clean the separated surfaces before use.

- *2 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.
- *3 This product is intended for use only in Japan (has specifications not intended for use in foreign countries) and cannot be used in other countries.

Fig. 1 CW-5S


Fig. 2 CW-2SL and CW-5SL

^{*1} If dust collects on the separated surface of the core or rust begins to form, current transformer performance will drop and measurement errors may occur.

Insulation Cap for CW Low-voltage Current Transformers

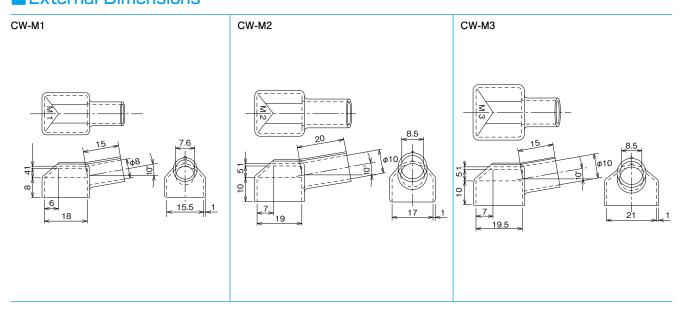
CW-M1/CW-M2/CW-M3

Features

- Cap can be installed without removing the crimp-type terminal.
- Cap covers the entire terminal, preventing any live part from being exposed.
- Insulation cap is specially designed to fit, so product height is virtually unchanged even after mounting.
- Cap is half transparent, allowing terminal tightness can be checked without removing it.

Type

Туре	Applicable model	Order Qty.
	Secondary terminals of CW-L, LP, LM, LS and LMS CTs (less than or equal to 2000A)	100 pieces
CW-M2	Primary terminals of CW-LP and LS CTs	100 pieces
CW-M3	Secondary terminals of CW-40LM and 15LMS (2500 to 4000A)	100 pieces


How to Order

Туре	Quantity	
CW-M1	500	C

Orders must be in units of 100 pieces.

List of Applicable Models

Current transformer name	Rating	Insulation cap			Remarks
		CW-M1	CW-M2	CW-M3	Remarks
CW-5L	60 to 750A	2 pieces	_	_	For secondary terminal
CW-15L	100 to 750A	2 pieces	_	_	For secondary terminal
CW-40L	150 to 750A	2 pieces	_	_	For secondary terminal
CW-5LP	1 to 50A	2 pieces	2 pieces	_	For primary and secondary terminals
CW-15LP	1 to 50A	2 pieces	2 pieces	_	For primary and secondary terminals
CW-40LP	1 to 50A	2 pieces	2 pieces	_	For primary and secondary terminals
CW-15LM	150 to 750A	2 pieces	_	_	For secondary terminal
CW-40LM, 15LMS	200 to 2000A	2 pieces	_	_	For secondary terminal
CW-40LM, 15LMS	2500 to 4000A	_	_	2 pieces	For secondary terminal
CW-15LM	1500 to 4000A	_	_	2 pieces	For secondary terminal
CW-15LS	5 to 30A	2 pieces	2 pieces	_	For primary and secondary terminals
CW-15LS	40 to 750A	2 pieces	_	_	For secondary terminal

CD-25NB 25VA / 40times / n>10

Epoxy resin mold

■ Use • General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Overcurrent constant	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
CD-25NB	5 10 15 20 25 30 40 50 60 75 80	5	25	1.0· 1PS	40	n>10	6900	22/60	Both 50/60	Fig. 1	7.0
	100 120 150 200 250 300 400 500									Fig. 2	9.5

Note

Fig. 1

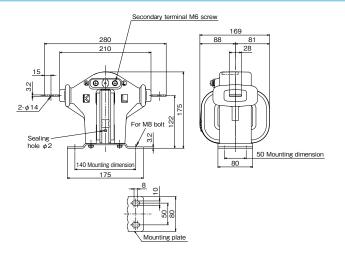
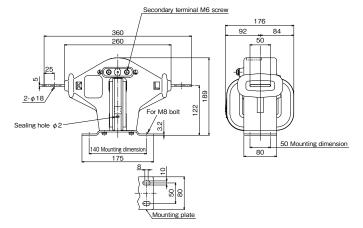



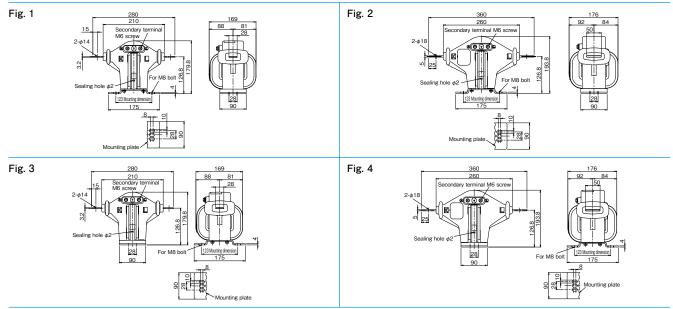
Fig. 2

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

CD-25NB(H)/CD-25NB(V) 25VA / 40times / n>10

Epoxy resin mold

Use


- CD-25NB mountable with mounting holes for CD-40K
- General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	Rated primary current	Secondary	Rated burden	Accuracy	Overcurrent strength	Overcurrent constant	Highest voltage	voltage	Frequency	External dimensions	Mass
CD-25NB (H)	(A) 5 10 15 20 25 30 40 50 60 75 80 100 120 200 200 200 200 200 200 200 20	(A) 5	(VA) 25	1.0· 1PS	(times)	n>10	(V) 6900	(kV) 22/60	Both 50/60	Fig. 1	7.3
	250 300 400 500									Fig. 2	9.8
CD-25NB (V)	5 10 15 20 25 30 40 50 60 75 80 100 120 150 200	5	25	1.0· 1PS	40	n>10	6900	22/60	Both 50/60	Fig. 3	7.3
	250 300 400 500									Fig. 4	9.8

Note

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

CD-25ENB 25VA / 75times / n>10

Epoxy resin mold

Use

• General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Overcurrent constant	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
CD-25ENB	5 10 15 20 25 30 40 50 60 75 80 100 120 150 200	5	25	1.0· 1PS	75	n>10	6900	22/60	Both 50/60	Fig. 1	8.6
	250 300 400									Fig. 2	9.5

Note

Fig. 1

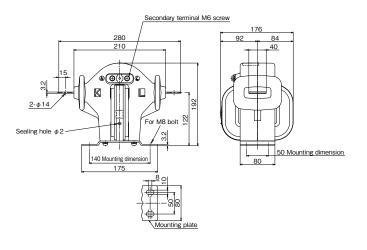
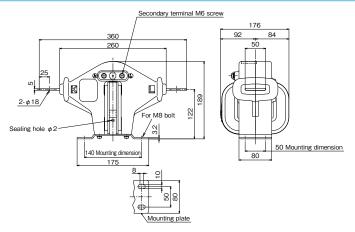



Fig. 2

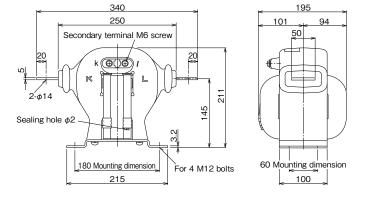
^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

CD-40GNA 40VA / 150times / n>10

Epoxy resin mold

■ Use • General-use meters/Relays

Specifications


Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Overcurrent constant	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
	(A) 5	(^)	(V A)	(Class)	(tillies)		(•)	(KV)	(1 12)		(48)
	10										
	15										
	20										
	25										
	30										
CD-40GNA	40	5	40	1.0•	150	n>10	6900	22/60	Both	Fig. 1	16
OD 40GIVA	50		40	1PS	100	112 10	0500	22,00	50/60	1 16. 1	10
	60										
	75										
	80										
	100										
	150										
	200										

Notes

- *1 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.
- *2 An overcurrent intensity value is guaranteed if 25% of the rated load is connected to the secondary side.

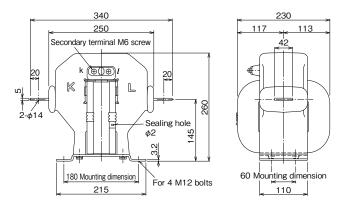
Fig. 1 5 to 200A

CD-40LN 40VA / 300times / n>10

Epoxy resin mold

■ Use • General-use meters/Relays

Specifications


Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	Rated primary current	current	burden		Sucrigui	Overcurrent constant	voitage	voitage		External dimensions	Mass
	(A)	(A)	(VA)	(class)	(times)		(V)	(kV)	(Hz)		(kg)
	5										
	10										
	15										
	20										
	25										
CD-40LN	30	5	40	1.0•	300	n>10	6900	22/60	Both	Eig 1	25
CD-40LN	40	3	40	1PS	300	11/10	0900	22/00	50/60	Fig. 1	25
	50										
	60										
	75										
	80										
	100										

Notes

- *1 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.
- *2 An overcurrent intensity value is guaranteed if 25% of the rated load is connected to the secondary side.

Fig. 1 5 to 100A

CD-40H 40VA / 40times / n>10

Epoxy resin mold

Specifications

Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	Rated primary current	Secondary current	Rated burden	Accuracy	Overcurrent strength/ Withstand	Overcurrent constant	Highest voltage	Withstand voltage	Frequency	External dimensions	Mass
	(A)	(A)	(VA)	(class)	current		(V)	(kV)	(Hz)		(kg)
	600										14
	750				40					Fig. 1	
	800			4.0	times				D-#-	I Ig. I	
CD-40H	1000	5	40	1.0• 1PS		n>10	6900	22/60	Both 50/60		15
	1200			11 3					30/00		
	1500				40kA					Fig. 2	
	2000										17

Note

Use

• General-use meters/Relays

Fig. 1 600 to 1000A

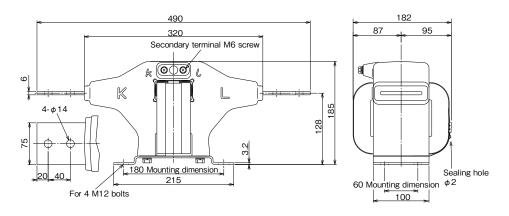
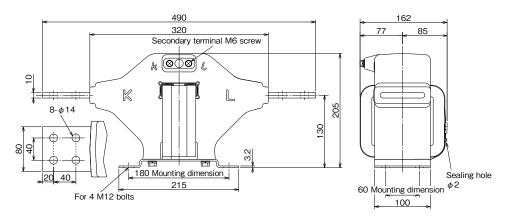



Fig. 2 1200 to 2000A

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

AN/CN Series Current Transformers for Cubicle Type High-Voltage Power Receiving Units

CD-10ANB and CD-25ANB CD-10CNB and CD-25CNB

Withstand current 12.5kA/0.125sec

Epoxy resin mold

Withstand current 12.5kA/0.25sec

Use

- General-use meters/Relays
- These current transformers are used for cubicle type high-voltage power receiving equipment compliant with JIS standards.

AN/CN Series molded current transformers used for cubicle type high-voltage power receiving equipment (JIS C 4620) have undergone verification testing in combination with various devices, such as overcurrent relays and high-voltage circuit breakers, and their performance has been confirmed, thus confirming they can be used to configure reliable and economical cubicles.

Specifications

Applicable standard: JIS C 4620 (Appendix)

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Rated withstand current (kA/s)	Overcurrent constant	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
	20	(* ')	(***,	(0.000)	(10.0.0)		(•)	()	(: :=)		
	30									Fig. 1	8.6
	40										
	50										
CD-10ANB	60		10							Fig. 2	7.0
	75										
	100				40.5				D ::		
	150	5	1PS	12.5• 0.125	n>10	6900	22/60	Both 50/60	Fig. 3	3.6	
	200			0.125				30/00			
	50										
	60									Fig. 1	8.6
CD-25ANB	75		25								
OB ZOAND	100										
	150								Fig. 2	7.0	
	200										
	20										
	30									Fig. 1	8.6
	40										
	50										
CD-10CNB	60		10							-: o	7.0
-	75									Fig. 2	7.0
-	100	5		1PS	12.5 · 0.25	n>10	6900	22/60	Both 50/60		
	150				0.25				30/60	F:- 0	0.0
	200 60								Fig. 3	3.6	
	75									Fig. 1	8.6
CD-25CNB	100		25						I Ig. I	0.0	
OD-230NB	150		23	5							
	200									Fig. 2	7.0

Note

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

■ Models to be Combined and Applicable Conditions

(1) Overcurrent trip system (current transformer secondary current trip system)

Table 1 shows the models of circuit breakers, overcurrent relays and current transformers that can be combined by the overcurrent trip system and the applicable load (sum of loads from relays, instruments and cables) of the current transformers.

If the relay trip system of a circuit breaker is a current transformer secondary current trip system, when a fault current is detected by the instantaneous element of the relay and is cut off, the large current in the secondary circuit of the current transformer will be cut off at contact point b of the relay and contact point b may be damaged.

The risk of damage will be high; especially if the primary current of the current transformer is low or the current transformer is being used at a load much lower than the rated load.

Therefore, if the cubicle is both a circuit breaker system and overcurrent trip system, be certain to use these current transformers according to the combination conditions shown in Table 1.

Table 1 Device combinations and applicable load of current transformers (overcurrent trip system)

, , , , , , , , , , , , , , , , , , ,							
De	Device combinations (Mitsubishi Electric products)						
			Current transformer		Current transformer applicable burden (VA) *2		
Circuit breaker	Overcurrent trip relay	Rated burden	Туре	Rated primary current *1			
			CD-10ANB CD-10CNB	20A	9 to 10		
VF-8□H-D/DG	Static type Model MOC-A1T-R	10VA	CD-10ANB CD-10CNB	30A	7 to 10		
VF-13□H-D/DG (equipped with overcurrent trip equipment)			CD-10ANB CD-10CNB	40 to 200A	5 to 10		
		25VA	CD-25ANB	50 to 200A	10 +0 25		
		ZOVA	CD-25CNB	60 to 200A	10 to 25		

Notes

(2) Voltage trip system (capacitor trip system)

The reliability of the overcurrent relay can be improved by using the voltage trip system (capacitor trip system) for the circuit breaker.

The applicable load of the current transformers in combination with our products is 5 to 10VA for current transformers with rating of 10VA and 10 to 25VA for those with rating of 25VA.

Table 2 shows the models of circuit breakers, overcurrent relays and current transformers that can be combined by the voltage trip system and the applicable load (sum of loads from relays, instruments and cables) of the current transformers.

Table 2 Device combinations and applicable load of current transformers (voltage trip system)

Device combinations (Mitsubishi Ele	ectric products)	Cur	rent transformer specif	ications	Current transformer
Circuit breaker *3	Relay	Rated burden	Туре	Rated primary current	applicable burden (VA) *4
VF-8□H-D/DG VF-8□M-D/DG	Static type	10VA	CD-10ANB CD-10CNB	20 to 200A	5 to 10
VF-13□H-D/DG VF-13□M-D/DG	Model MOC-A1V-R	25VA	CD-25ANB	50 to 200A	10 to 25
(equipped with voltage trip equipment)	1-D/DG		CD-25CNB	60 to 200A	10 (0.25

Notes

■T-100L Load Regulator

This load regulator should be used if the load for connected to the secondary circuit of the current transformer is below the range of applicable load required for the transformer (refer to Tables 1 and 2). Be certain to use the load regulator for each phase (phase the current transformer is set for) and adjust the usage load to a value that is as close as possible to the rated load.

Specifications

Rated current	5A
Load value adjustment	2, 4, 6 or 8VA (power factor 0.8)
Short-time current	800A/0.125sec
Withstand voltage	AC2000V 1min
External dimensions	Fig. 4

Load and Connection Terminals

Adjusted load value	Connection terminal	Internal connection
2VA	C terminal - 2VA terminal	C 2VA 4VA 8VA
4VA	C terminal - 4VA terminal	9 9 9
6VA	2VA terminal - 8VA terminal	
AV8	C terminal - 8VA terminal	

^{*1} When the primary current of current transformer is 40A or less, the voltage trip system (capacitor trip system) is recommended.

^{*2} If the load used is less than the rated load, please use the T-100L load regulator (the load used can be adjusted to 2, 4, 6, or 8VA).

^{*3} The part of the name shown by \square depends on the mounting method.

^{*4} If the load used is less than the rated load, please use the T-100L load regulator (the load used can be adjusted to 2, 4, 6, or 8VA).

Fig. 1

Type	Rated current	Withstand current		
CD-10ANB	20/5 to 40/5A	12.5kA/0.125sec		
CD-25ANB	50/5 to 75/5A	12.5KA/U.125SeC		
CD-10CNB	20/5 to 40/5A	12.5kA/0.25sec		
CD-25CNB	60/5 to 100/5A	12.5KA/0.25SEC		

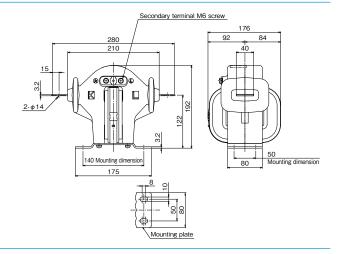


Fig. 2

Type	Rated current	Withstand current
CD-10ANB	50/5 to 75/5A	12.5kA/0.125sec
CD-25ANB	100/5 to 200/5A	12.5KA/U.125SEC
CD-10CNB	50/5 to 150/5A	12.5kA/0.25sec
CD-25CNB	150/5 200/54	12.3KA/0.23SeC

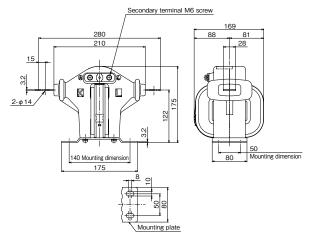


Fig. 3

Type	Rated current	Withstand current
CD-10ANB	100/5 to 200/5A	12.5kA/0.125sec
CD-10CNB	200/5A	12.5kA/0.25sec

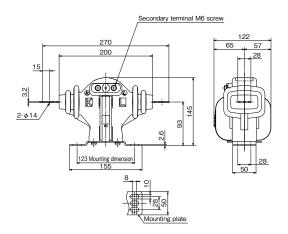
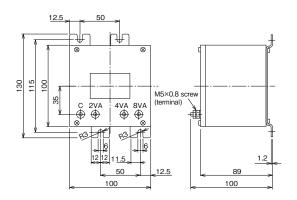



Fig. 4 T-100L load regulator

Various characteristics of AN/CN Series current transformers for cubicle type high-voltage power receiving equipment

Туре	Rated primary current (A)	Rated withstand current (kA/s)	Mechanical withstand current (peak value) (kA)	Secondary leakage impedance (VA)		
	20			1.5		
	30			1.6		
	40			1.6		
	50			2.5		
CD-10ANB	60	12.5/0.125	31.25	2.4		
	75			2.2		
	100			5.9		
	150			9.5		
	200			9.5		

Туре	Rated primary current (A)	Rated withstand current (kA/s)	Mechanical withstand current (peak value) (kA)	Secondary leakage impedance (VA)
	50			6.5
	60	12.5/0.125	31.25	7.1
CD-25ANB	75			6.9
CD-25AND	100			6.4
	150			8.0
	200			8.0

Туре	Rated primary current (A)	Rated withstand current (kA/s)	Mechanical withstand current (peak value) (kA)	Secondary leakage impedance (VA)
	20			1.2
	30			1.6
	40			1.6
	50			2.5
CD-10CNB	60	12.5/0.25	31.25	2.4
	75			2.2
	100			3.0
	150			3.0
	200			9.5

Туре	Rated primary current (A)	Rated withstand current (kA/s)	Mechanical withstand current (peak value) (kA)	Secondary leakage impedance (VA)
	60	(KA/3)	(KA)	7.1
			31.25	
	75	12.5/0.25		6.9
CD-25CNB	100			6.5
	150			8.0
	200			8.0

AN/CN Series Current Transformers for Cubicle Type High-Voltage Power Receiving Units

CD-25ANA CD-25CNA Withstand current 12.5kA/0.125sec Withstand current 12.5kA/0.25sec

Epoxy resin mold

Use

- General-use meters/Relays
- These current transformers are used for cubicle type high-voltage power receiving equipment compliant with JIS standards.

AN/CN Series molded current transformers used for cubicle-type high-voltage power receiving equipment (JIS C 4620) have undergone verification testing in combination with various devices, such as overcurrent relays and high-voltage circuit breakers, and their performance has been confirmed, thus confirming they can be used to configure reliable and economical cubicles.

Specifications

Applicable standard: JIS C 4620 (Appendix)

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Rated withstand current (kA/s)	Overcurrent constant	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
CD-25ANA	20, 30, 40	5	25	1PS	12.5/0.125	n>10	6900	22/60	Both 50/60	Fig. 1	16
CD-25CNA	20, 30, 40, 50	5	25	1PS	12.5/0.25 [12.5/0.16] shared use]	n>10	6900	22/60	Both 50/60	Fig. 1	16

Note

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

■ Models to be Combined and Applicable Conditions

(1) Overcurrent trip system (current transformer secondary current trip system)

Table 1 shows the models of circuit breakers, overcurrent relays and current transformers that can be combined by the overcurrent trip system and the applicable load (sum of loads from relays, instruments and cables) of the current transformers.

If the relay trip system of a circuit breaker is an overcurrent trip system (secondary current trip system of the current transformer), when a fault current is detected by the instantaneous element of the relay and is cut off, the large current in the secondary circuit of the current transformer will be cut off at contact point b of the relay and contact point b may be damaged.

The risk of damage will be high; especially if the primary current of the current transformer is low or the current transformer is being used at a load much lower than the rated load.

Therefore, if the cubicle is both a circuit breaker system and overcurrent trip system, be certain to use these current transformers according to the combination conditions shown in Table 1.

Table 1 Device combinations and applicable load of current transformers (overcurrent trip system)

De	Device combinations (Mitsubishi Electric products)					
			Current transformer			
Circuit breaker Overcurrent trip		Rated burden	Туре	Rated primary current *1	applicable burden (VA) *2	
VF-8□H-D/DG	Static type	25VA	CD-25ANA CD-25CNA	20A	22 to 25	
VF-13□H-D/DG (equipped with overcurrent trip equipment)	Model MOC-A1T-R	25VA	CD-25ANA CD-25CNA	30, 40A	18 to 25	

Notes

(2) Voltage trip system (capacitor trip system)

The reliability of the overcurrent relay can be improved by using the voltage trip system (capacitor trip system) for the circuit breaker.

The applicable load of the current transformers in combination with our products is 5 to 10VA for current transformers with rating of 10VA and 10 to 25VA for those with rating of 25VA.

Table 2 shows the models of circuit breakers, overcurrent relays and current transformers that can be combined by the voltage trip system and the applicable load (sum of loads from relays, instruments and cables) of the current transformers.

Table 2 Device combinations and applicable load of current transformers (voltage trip system)

Device combinations (Mitsubishi Electric products)		Current transformer specifications			Current transformer
Circuit breaker *3	Relay	Rated burden	Туре	Rated primary current	applicable burden (VA) *4
VF-8□H-D/DG VF-8□M-D/DG VF-13□H-D/DG Static type		05141	CD-25ANA	20 to 40A	
VF-13□M-D/DG (equipped with voltage trip equipment)	Model MOC-A1V-R	25VA	CD-25CNA	20 to 50A	10 to 25

Notes

T-100L Load Regulator

This load regulator should be used if the load for connected to the secondary circuit of the current transformer is below the range of applicable load required for the transformer (refer to Tables 1 and 2). Be certain to use the load regulator for each phase (phase the current transformer is set for) and adjust the usage load to a value that is as close as possible to the rated load.

Specifications

Rated current	5A
Load value adjustment	2, 4, 6 or 8VA (power factor 0.8)
Short-time current	800A/0.125sec
Withstand voltage	AC2000V 1min
External dimensions	Fig. 2

Load and Connection Terminals

Adjusted load value	Connection terminal	Internal connection
2VA	C terminal - 2VA terminal	C 2VA 4VA 8VA
4VA	C terminal - 4VA terminal	9 9 9
6VA	2VA terminal - 8VA terminal	
8VA	C terminal - 8VA terminal	

^{*1} When the primary current of current transformer is 40A or less, the voltage trip system (capacitor trip system) is recommended.

^{*2} If the load used is less than the rated load, please use the T-100L load regulator (the load used can be adjusted to 2, 4, 6, or 8VA).

^{*3} The part of the name shown by \square depends on the mounting method.

^{*4} If the load used is less than the rated load, please use the T-100L load regulator (the load used can be adjusted to 2, 4, 6, or 8VA).

■ External Dimensions

Fig. 1

Туре	Rated current	Withstand current
CD-25ANA	20/5 to 40/5A	12.5kA/0.125sec
CD-25CNA	20/5 to 50/5A	12.5kA/0.25sec

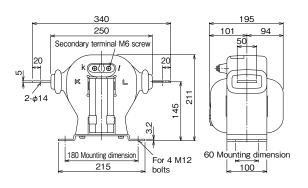
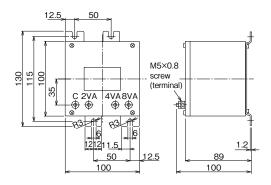



Fig. 2 T-100L load regulator

Various characteristics of AN/CN Series current transformers for cubicle-type high-voltage power receiving equipment

	Rated	Rated	Mechanical	Secondary
Type	primary	withstand	withstand current	leakage
Type	current	current	(peak value)	impedance
	(A)	(kA/s)	(kA)	(VA)
	20			2.0
CD-25ANA	30	12.5/0.125	31.25	2.1
	40			2.2

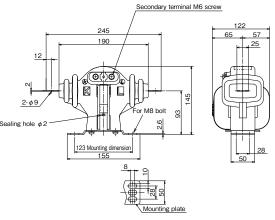
	Rated	Rated	Mechanical	Secondary
Type	primary	withstand	withstand current	leakage
Type	current	current	(peak value)	impedance
	(A)	(kA/s)	(kA)	(VA)
	20			2.0
CD-25CNA	30	12.5/0.25	31.25	2.3
CD-25CNA	40	12.5/0.25	31.23	2.4
	50			2.6

CD-25KB 25VA / 40times

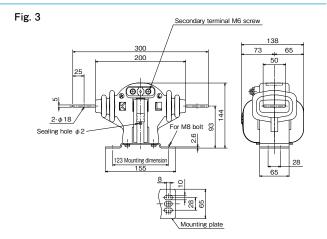
Epoxy resin mold

Use

• General-use meters


Specifications

Applicable standards: JIS C 1731-1


Туре	Rated primary current	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass
	(A) 5	(A)	(VA)	(Class)	(tillies)	(٧)	(KV)	(1 12)		(kg)
	10									
	15									
	20									
	25									
	30									
	40								Fig. 1	3.5
	50									
	60									
	75							Both		
CD-25KB	80	5	25	1.0	40	6900	22/60	50/60		
	100							00,00		
	120									
	150								Fig. 2	3.6
	200									
	250									
	300									
	400								Fig. 3	4.8
	500 600									
	750									
	730									

Note

Fig. 1

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

CD-15CB For precision measurement 15VA / 40times / Class 0.5 Epoxy resin mold

Use • General-use meters

Specifications

Applicable standards: JIS C 1731-1

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
	5									
	10									
	15									
	20									
	25									
	30									
	40									
	50							50	Fig. 1	7.0
CD-15CB	60	5	15	0.5	40	6900	22/60	50 or		
OD-130B	75		13	0.5	40	0300	22/00	60		
	80									
	100									
	120									
	150									
	200									
	250									
	300								Fig. 2	9.5
	400									

Fig. 1

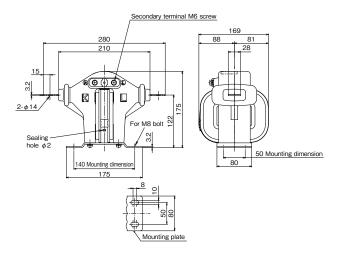
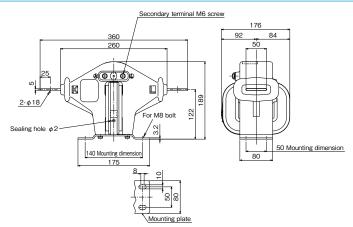
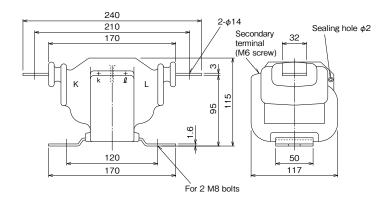



Fig. 2

Note
*1 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

EC-0 (Style LA) 40VA / 40times / n>5

Melquid rubber mold


■ Use • General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-1/JEC-1201-2007

Туре	current	Secondary current	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Overcurrent constant	voltage	Withstand voltage (kV)	Frequency (Hz)	Mass (kg)
	(A) 5	(A)	(VA)	(Class)	(times)		(V)	(KV)	(1 12)	(Ng)
	10									
	15									
	20									
	30									
	40									
EC-0	50	5	40	1.0•	40	n>5	6900	22/60	Both	3.8
(Style LA)	60) 5	40	1PS	40	11/3	0900	22/00	50/60	3.0
	75									
	100									
	120									
	150									
	200									
	300									

Note

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

BN-0 (Style LA) $\frac{40 \text{VA} / 40 \text{ to } 300 \text{times} / \text{ n} > 10}{15 \text{VA} / 40 \text{ to } 75 \text{times} / \text{Class } 0.5}$

Melquid rubber mold

■ Use • General-use meters/Relays

Specifications

<Single ratio>

Applicable standards: JIS C 1731-1/JEC-1201-2007

	Rated	Secondary	Rated		Overcu	rrent strength (times)		Overcurrent	Lighaat	Withstand		
Type	primary	current	burden	Accuracy	External dimensions	External dimensions	External	constant	voltage	voltage	Frequency	Mass
. ,,,,	current	(A)	(VA)	(class)			dimensions	oor lotal it	(V)	(kV)	(Hz)	(kg)
	(A) 10	(A)	(VA)	(Class)	(Fig. 1)	(Fig. 2)	(Fig. 3)		(٧)	(KV)	(1 12)	(NB)
	15	-			40,75,150	300						
	20	-			40,75,150 40,75,150	300						
	25	-				300						
	30	-			40,75,150 40,75,150	300						
	40	-			40,75,150	300						
	50	-										
	60				40,75,150 40,75,150	300 300						
	75	-										
	80				40,75,150	300						Fig. 1
	100	-			40.75.450	40,75,150 300						10
511.0					40,75,150						- ·	-: 0
BN-0 (Style LA)	120	5	40	1.0·1PS	40,75,150	300		n>10	6900	22/60	Both 50/60	Fig. 2 15
(Style LA)	150 200				40,75,150	40kA 40kA					30/60	15
					40,75,150							Fig. 3
	250				40.75	40,75,150						30
	300				-, -	40kA						
	400				40,75	40kA						
	500					40kA						
	600					40kA						
	750					40kA						
	800					40kA						
	1000					40kA						
	1200					40kA	401.4					
	1500						40kA					

Notes

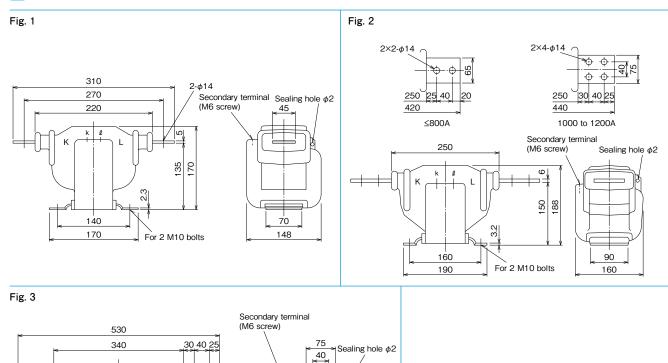
^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*2} An overcurrent intensity value of more than 150 times is guaranteed if 25% of the rated load is connected to the secondary side.

<For precision measurement>

Applicable standard: JIS C 1731-1

	Rated primary	Secondary	Rated		Overcurrent streng	gth (times)	Highest	Mithotond		
Туре	current	current	burden	Accuracy	External dimensions	External	voltage	voltage	Frequency	Mass
. 7/20				(oloop)		dimensions	_	_		
	(A)	(A)	(VA)	(class)	(Fig. 2)	(Fig. 3)	(V)	(kV)	(Hz)	(kg)
	10	-			40, 75					
	15				40					
	20				40, 75					
	25				40, 75					
	30				40					
	40				40, 75					
	50]			40, 75					
	60				40, 75					
	75				40, 75					
	100				40, 75					
511.0	120				40, 75					Fig. 2 15
BN-0 (Style LA)	150	5	15	0.5	40, 75		6900	22/60	50 or 60	
(Style LA)	200				40, 75					Fig. 3 30
	250				40, 75					
	300				40, 75					
	400				40, 75					
	500	1			40kA					
	600	1			40kA					
	750	1			40kA					
	800				40kA					
	1000				40kA					
	1200				40kA					
	1500					40kA				


2×4-φ14

For 2 M10 bolts

260

210 172

■ External Dimensions

100

140

225

Note
*1 Withstand voltage value indicates commercial power frequency withstand voltage/lightningimpulse withstand voltage.

BN Series Extra-high-voltage Current Transformers (11000V)

BN-1 (Style LA) $\frac{40 \text{VA} / 40 \text{ to } 150 \text{times} / \text{n} > 10}{15 \text{VA} / 40 \text{times} / \text{Class } 0.5}$

Melquid rubber mold

Use

● General-use meters/Relays/Power supply anddemand

Specifications

<Single ratio>

Applicable standards: JIS C 1731-1/JEC-1201-2007

Tuno	Rated primary	Secondary		Accuracy	Overcurrent strength	Overcurrent	Highest	Withstand	Frequency	External dimensions	Mass
Туре	current (A)	current (A)	burden (VA)	(class)	(times)	constant	voltage (V)	(kV)	(Hz)	aimensions	(kg)
	10	(//)	(()	(Class)	40, 75		(•)	(KV)	(112)		(1/6)
	15				40, 75, 150						
	20				40, 75, 150						
	25				40, 75, 150						
	30				40, 75, 150						
	40				40, 75						
	50				40, 75, 150						
	60	1			40, 75, 150						
	75				40, 75, 150						
	80				40, 75, 150						
	100				40, 75, 150						
BN-1	120	5	40	1.0·1PS	40, 75, 150	n>10	11500	28/90	50 or 60	Fig. 1	15
(Style LA)	150] 3	40	1.0-11-3	40, 75, 150		11300	20/90	30 01 00		
	200				40, 75, 150						
	250				40, 75						
	300				40, 75						
	400				40, 75						
	500				40						
	600				40, 75						
	750				40, 75						
	800				40						
	1000				40						
	1200				40						
	1500				40					Fig. 2	30

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightningimpulse withstand voltage.
*2 An overcurrent intensity value of more than 150 times is guaranteed if 25% of the rated load is connected to the secondary side.

<For power demand and supply>

Applicable standards: JIS C 1736

Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent strength (times)	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
	10									
	15									
	20									
	25									
	30									
	40									
	50									
	60									
	75									
	100									
BN-1	120									
(Style LA)	150	5	15	0.5W	40	11500	28/90	50 or 60	Fig. 2	30
(0.3.0 = 1,	200									
	250									
	300									
	400									
	500									
	600									
	750									
	800									
	1000									
	1200									
	1500									

Note

Fig. 1

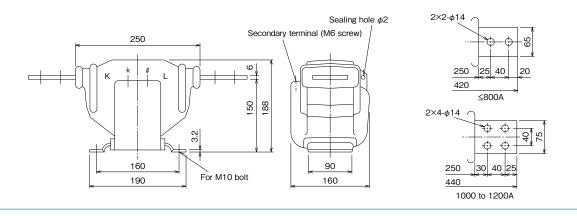
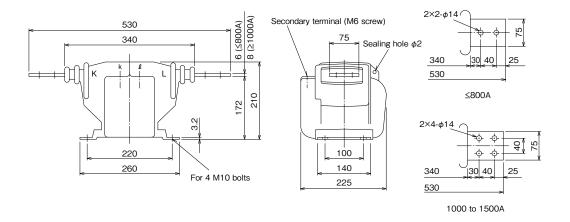



Fig. 2

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

BN Series Extra-high-voltage Current Transformers (22000V)

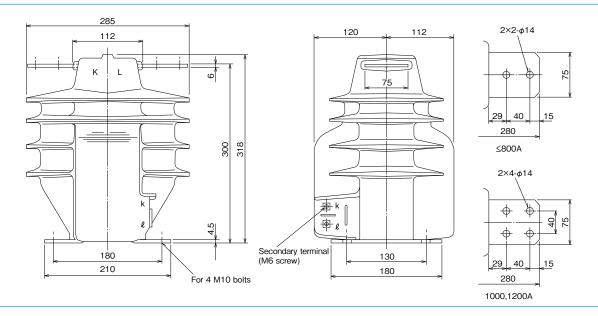
BN-2A 40VA / 40 to 300times / n>10

Melquid rubber mold

■ Use • General-use meters/Relays

Specifications

<Single ratio>


Applicable standards: JIS C 1731-1/JEC-1201-2007

Type	Rated primary current	Secondary current	Rated burden	Accuracy	Overcurrent strength	Overcurrent constant	Highest voltage	Withstand voltage	Frequency	Mass
	(A)	(A)	(VA)	(class)	(times)		(V)	(kV)	(Hz)	(kg)
	10		25		40, 75, 150, 300					
	15				40, 75, 150, 300					
	20				40, 75, 150					
	25				40, 75, 150, 300					
	30				40, 75, 150, 300					
	40				40, 75, 150, 300					
	50				40, 75, 150					
	60				40, 75, 150, 300					
	75				40, 75, 150, 300					
	80				40, 75, 150					
	100				40, 75, 150					
BN-2A	120	5	40	1.0·1PS	40, 75, 150	n>10	23000	50/125	50 or 60	30
	150		40		40, 75, 150, 40kA					
	200				40, 75, 150, 40kA					
	250				40, 75, 150, 40kA					
	300				40, 75, 40kA					
	400				40 , 75 , 50kA					
	500				40, 75 , 50kA					
	600				40, 75, 50kA					
	750				40 , 50kA					
	800				40 , 50kA					
	1000				40 , 50kA					
	1200				40 , 50kA					

Notes

^{*1} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*2} An overcurrent intensity value of more than 150 times is guaranteed if 25% of the rated load is connected to the secondary side.

BS Series Through-type Current Transformers

BS-MD/BS-MC

Bare conductor through-type 40VA / 40kA / n>10

Epoxy resin mold

BS-MD

Use

- General-use meters/Relays
- Using a bare conductor as the primary conductor provides an insulation withstand voltage of 22/60kV. However, the gap between the bare conductor and internal diameter of the current transformer must be 10mm or more.
- Using insulated conductors like cables as the primary conductor, this current transformer can be used regardless of the circuit voltage.

Specifications

<Single ratio>

Applicable standards: JEC-1201-1996

Туре	Window diameter (mm)	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Rated overcurrent (kA)	Overcurrent constant	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)	
		200									Fig. 3	25	
	60	300									Fig. 4	15	
		400									1 16. 4	10	
		500											
BS-MD		600	5	40	1PS	40	n>10	6900	22/60	50 or 60			
DO WID		750		40	11.0	40	112 10	0300	22/00	30 01 00	Fig. 5	15	
	90	800									1 16. 0	10	
		1000											
		1200											
		1500									Fig. 6	10	
		400											
		500											
		600									Fig. 1	22	
		750											
		800											
BS-MC	145	1000	5	40	1PS	40	n>10	6900	22/60	50 or 60			
		1200											
		1500											
		2000									Fig. 2	11	
		2500											
		3000											
		4000											

Note: Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

External Dimensions

Fig. 1 BS-MC 400 to 800A Secondary terminal (M6 screw depth 10) Ø1₄₅ 260 80 6 M10 screws depth 12

Fig. 4. BS-MD 300,400A

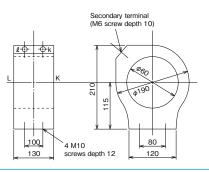


Fig. 2. BS-MC 1000 to 4000A

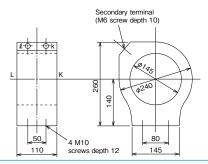


Fig. 5. BS-MD 500 to 1200A

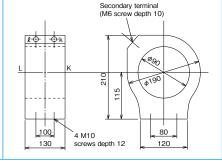


Fig. 3. BS-MD 200A

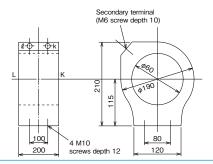
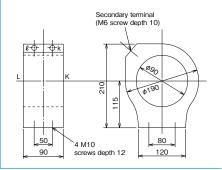
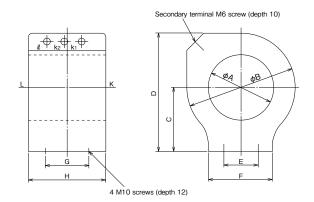



Fig. 6. BS-MD 1500A

64

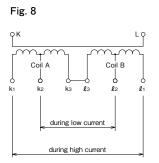
<Double ratio>

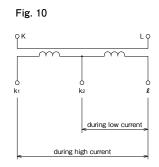

Applicable standards: JEC-1201-1996

Туре	Window diameter	Rated primary current	Secondary current	Rated burden	Accuracy	Rated overcurrent	Overcurrent constant	Highest voltage	Withstand voltage	Frequency	External dimensions	Mass	Connection diagram	Terminal layout
	(mm)	(A)	(A)	(VA)	(class)	(kA)		(V)	(kV)	(Hz)		(kg)		
	60	300-150									Fig. 7-1	2×18	Fig. 8	Fig. 11
	60	400-200									Fig. 7-2	30	Fig. 9	Fig. 12
		600-300									Fig. 7-3	25		
BS-MD		800-400												
	90	1000-500	5	40	1PS	40	n>10	6900	22/60	50	Fig. 7-4	20		
		1200-600	٥	40	IFS	40	11/10	0900	22/00	or 60			F:~ 10	Fi= 10
		1500-750									Fig. 7-5		Fig. 10	Fig. 13
		2000-1000									Fig. 7-6	15		
BS-MC	145	3000-1500									Fig. 7-7	15		
		4000-2000									Fig. 7-8			

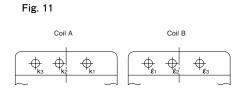
Note: Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

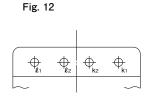
■ External Dimensions

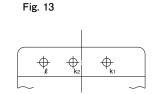

Fig. 7 Double ratio


Item	Rated primary	Dimensions (mm)							
Item	current (A)	А	В	С	D	Е	F	G	Н
1	300- 150*	60							2×150
2	400- 200	00							240
3	600- 300								240
	800- 400		90 190	115	210	80	120	100	
4	1000- 500	90							200
	1200- 600					80			
5	1500- 750								130
6	2000-1000		240	140	260			50	110
7	3000-1500	145	260	150	280		145	50	110
8	4000-2000		200	130	200			100	130

Note: * For the current transformer ratio rating of 300-150/5A, two coils shown in the figure to the left make one set.


Connection diagram



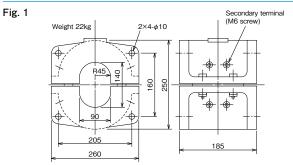


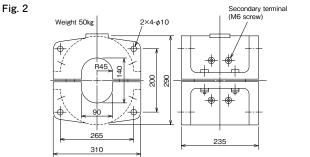
Terminal layout drawing

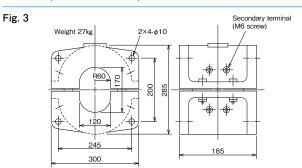
Manufacturer: Toyo Electric Co., Ltd.

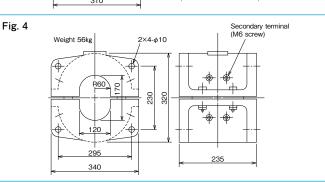
BS Series Through-type Current Transformers

BS-SA Insulated conductor/Separated $\frac{40\text{VA}}{100\text{VA}}$ / 40times / n>10 / n>20 Epoxy resin mold


Specifications




Use


- General-use meters/Relays
- Using insulated conductors like cables as the primary conductor, this current transformer can be used regardless of the circuit voltage.
- Existing cables can be used, making mounting easy.

2 2be	ecification	ons				App	licable s	tandaro	l: JEC-1	201-1996	
Туре	Rated primary current (A)	Secondary current (A)	Rated burden (VA)	Accuracy (class)	Overcurrent constant	External dimensions	Overcurrent strength (times)	Highest voltage (V)	Withstand voltage (kV)	Frequency (Hz)	
	200	200		15 40 15 40	3P	n>10	Fig. 1 Fig. 2 Fig. 3 Fig. 4	_			
	300		15 40 15 40	3P	n>10	Fig. 1 Fig. 2 Fig. 3					
			40 100	1PS 3P	n>10	Fig. 1					
	400		40	1PS	n>20	Fig. 2					
			100	3P	n>10	Fig. 3					
			40	OI .	n>20	Fig. 4					
	500		40 100 40 100	1PS	n>10	Fig. 1 Fig. 2 Fig. 3 Fig. 4	40	Depends on primary conductor	Depends on primary conductor	50 or 60	
			40		n>10	Fig. 1					
BS-SA	600	5	40 1PS	1PS	n>20 n>10 n>20	Fig. 3					
	750		40 100 40 100	1PS	n>10	Fig. 1 Fig. 2 Fig. 3 Fig. 4		conductor	conductor		
			40		n>10	Fig. 1					
	800		100 40 100	1PS	n>20 n>10 n>20	Fig. 2 Fig. 3 Fig. 4					
	1000		40 100 40 100	1PS	n>20	Fig. 1 Fig. 2 Fig. 3 Fig. 4					
	1200		40 100 40 100	1PS	n>20	Fig. 1 Fig. 2 Fig. 3 Fig. 4					
	1500		40 100	1PS	n>20	Fig. 3 Fig. 4					
	2000		100	1PS	n>20	Fig. 3					

5-2 Voltage Transformers (Unearthed Type)

PE Series Voltage Transformers (less than or equal to 440V)

PE-15F/PE-15/PE-50F/PE-50

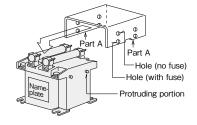
15VA/Class 1.0/Class 1P 50VA/Class 3.0/Class 3P

Double mold

Specifications

Applicable standards: JIS C 1731-2/JEC-1201-2007

Type	Voltage transformation	Rated burden	Accuracy	Withstand voltage	VT fuse		Frequency	Limit output	External dimensions	Mass
Туре	ratio (V)	(VA)	(class)	(kV)	Model name	Rating	(Hz)	(VA) *1	differsions	(kg)
PE-15F	220/110	` ,	1010	2/-	DI O	0.6kV T2A	. ,	,	F:- 4	
(with fuse)	440/110	15	1.0·1P	3/-	PL-G	100kA	Both	100	Fig. 1	3.5
PE-15	220/110	15	1.0·1P	2/-		_ 50/60	100	Fig. 2	3.5	
FL-13	440/110	13	1.0-11	3/-					1 1g. Z	5.5
PE-50F	220/110	50	3.0·3P	2/-	PL-G	0.6kV T2A			Fig. 1	3.5
(with fuse)	440/110	50	3.0*3P	3/-	PL-G	100kA	Both	100	rig. i	3.5
PE-50	220/110	50	3.0·3P	2/-		_	50/60	100	Fig. 2	3.5
PE-50	440/110	50	3.0•3P	3/-	_	_			Fig. 2	3.5


Notes

*2 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Remark: A transparent insulation cover (model name: IS-C (for PE)) can be attached to cover the terminal and fuse sections (option: to be purchased separately).

Insulation cover mounting instructions

Spread part A of the insulation cover outward slightly and place the mounting hole of the insulation cover over the protruding portion of thetransformer.

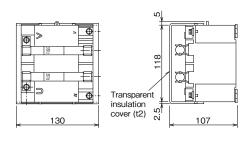
Special transformation ratio range manufactured

Tuno	Voltage range manufactured (V)					
Туре	Primary voltage	Secondary voltage				
PE-15F	190 to 550					
PE-50F	$\frac{380}{\sqrt{3}}$ to $\frac{480}{\sqrt{3}}$	100 to 220				
PE-15	63.5 to 550	$\frac{100}{\sqrt{3}}$ to $\frac{120}{\sqrt{3}}$				
PE-50	$\frac{100}{\sqrt{3}}$ to $\frac{480}{\sqrt{3}}$	/3 7 /3				

Note: For withstand voltage values of specialty transformation ratios, refer to Guidelines for Selecting Voltage Transformers on page 12.

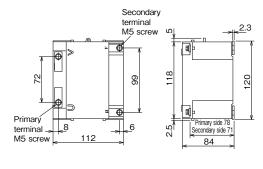
^{*1} If the limiting load is 100A, the error is less than or equal to minus 5%.

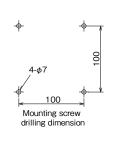
■ External Dimensions

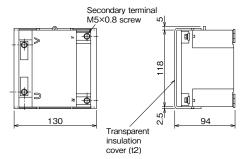

Fig. 1 PE-15F and PE-50F

Secondary terminal M5 screw M5 screw Primary side 78 Secondary side 71 Secondary sid

4-\$\phi7 \\ 100 \\ Mounting screw drilling dimension


Insulation cover mounted


Insulation cover mounted



Insulation cover: IS-C (for PE)

Fig. 2 PE-15 and PE-50

Insulation cover: IS-C (for PE)

PD Series Voltage Transformers (less than or equal to 6600V)

PD-50H/PD-50HF 50VA/Class 1.0/Class 1P PD-100H/PD-100HF 100VA/Class 1.0/Class 1P

Epoxy resin mold

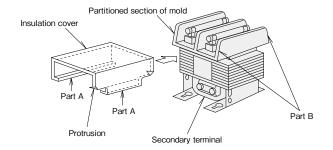
■ Use ■ General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-2/JEC-1201-2007

Type	Voltage transformation	Rated burden	Accuracy	Withstand voltage	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Frequency	Limit output	External dimensions	Mass
туре	ratio (V)	(VA)	(class)	(kV)	Model name	Rating	(Hz)	(VA) *2	difficisions	(kg)
DD 5011	220/110			2/-					F: 4	0.5
PD-50H	440/110			3/-	_	_			Fig.1	8.5
	220/110	50	50 1.0·1P 2/- PL-G 0.6kV	0.6kV T2A	Both 200					
PD-50HF	440/110	30	1.0-17	3/-		100kA	50/60	200	Fig.2	8.5
(with fuse)	3300/110			16/45		7.2/3.6kV				6.5
	6600/110		22/60 PL-G 7.2/	T1A 40kA						
PD-100H	220/110			2/-	_				Fig.1	8.5
FD-10011	440/110			3/-					1 1g. 1	6.5
	220/110	100	1.0·1P	2/-	PL-G	0.6kV T2A	Both 50/60	200	Fig.2	
PD-100HF	440/110	100	1.0*1P	3/-		100kA				8.5
(with fuse)	3300/110			16/45		7.2/3.6kV				6.5
	6600/110			22/60	רביט	T1A 40kA				

Notes


Remark: A transparent insulation cover (model name: IS-C (for PD)) can be attached to cover the terminal and fuse sections (option: to be purchased separately).

Insulation cover mounting instructions

Spread part A of the insulation cover outward slightly and insert it into the partitioned section of the mold from the secondary terminal side. The protruding section that attaches to part B prevents the cover from coming off the voltage transformer.

Special transformation ratio range manufactured

Typo	Voltage range manufactured (V)						
Туре	Primary voltage	Secondary voltage					
PD-50H	100 to 600						
PD-100H	$\frac{200}{\sqrt{3}}$ to $\frac{480}{\sqrt{3}}$	100 to 220					
PD-50HF	200 to 6600	$\frac{380}{\sqrt{3}}$ to $\frac{480}{\sqrt{3}}$					
PD-100HF	$\frac{380}{\sqrt{3}}$ to $\frac{480}{\sqrt{3}}$	√3 · √3					

Note

^{*1} Mitsubishi Electric does not manufacture no-fuse voltage transformers with voltage transformation ratios of 3300/110V or 6600/110V.

^{*2} If the limiting load is 200V A, the error is less than or equal to minus 5%.

^{*3} Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*1} PD-50H and PD-50HF have ratings of $\frac{440}{\sqrt{3}}$ V and $\frac{110}{\sqrt{3}}$ V, respectively, with a verification value of 15VA. (The verifiable usage load is 1 to 12VA.)

^{*2} For the withstand voltage values of special transformation ratio, refer to Guidelines for Selecting Voltage Transformers on page 12.

External Differsions

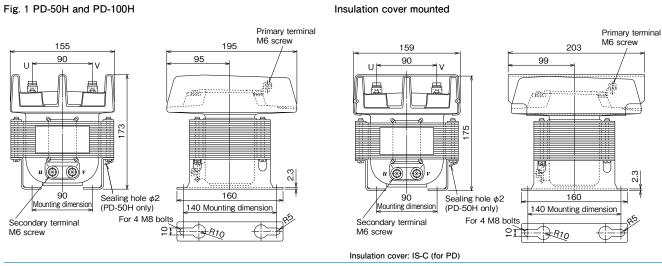
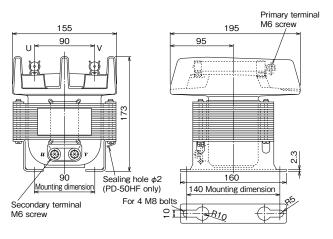
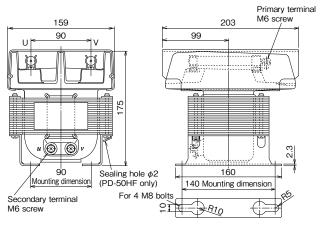




Fig. 2 PD-50HF and PD-100HF

Insulation cover mounted

PD Series Voltage Transformers (less than or equal to 6600V)

PD-200K/PD-200KFH 200VA/Class 1.0/Class 1P

Epoxy resin mold

Use

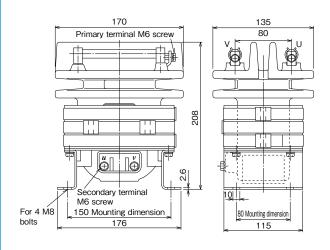
• General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-2/JEC-1201-2007

Type	Voltage transformation	Rated	Accuracy	Withstand	1 111 1		Frequency	Limit output	External dimensions	Mass
Type	ratio (V)	burden (VA)	(class)	voltage (kV)	Model name	Rating	(Hz)	(VA) *2	dimensions	(kg)
PD-200K	440/110			3/-					Fig. 1	9.5
PD-200KFH	440/110	200	1.0·1P	3/-	PL-G	0.6kV T2A 100kA	Both	500	o	0.5
(with fuse)	3300/110			16/45	DL C	7.2/3.6kV T1A	50/60		Fig. 2	9.5
	6600/110			22/60	PL-G	40kA				

Notes


- *1 Mitsubishi Electric does not manufacture no-fuse voltage transformers with transformation ratios 3300/110V or 6600/110V.
- *2 If the limiting load is 500VA, the error is less than or equal to minus 5%.
- *3 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Special transformation ratio range manufactured

Tuno	Voltage range manufactured (V)					
Туре	Primary voltage	Secondary voltage				
PD-200K	380 to 480	100 to 200				
PD-200KFH	380 to 6600	100 to 220				

Note: For withstand voltage values of special voltage ratios, refer to "Guidelines for Selecting Voltage Transformers" on page 12.

Fig. 2. PD-200KFH

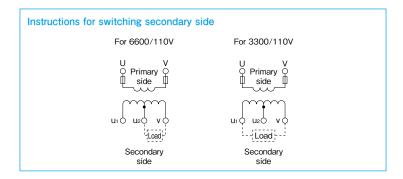
PD Series Voltage Transformers (less than or equal to 6600V)

PD-50KFH/PD-100KFH Double ratio 50VA/Class 1.0/Class 1P 100VA/Class 3.0/Class 3P

Epoxy resin mold

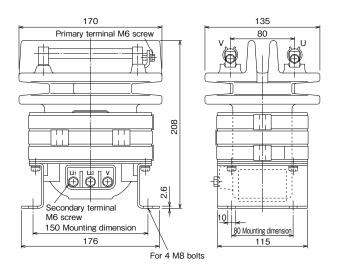
Use

General-use meters/Relays


Specifications

Applicable standards: JIS C 1731-2/JEC-1201-2007

Type	Voltage transformation Rated burden Rated burden Accuracy Withstand VT fuse voltage		fuse	Frequency	Limit output	Mass			
Туре	(V)	(VA)	(class)	(kV)	Model name	Rating	(Hz)	(VA) *2	(kg)
PD-50KFH (with fuse)	6600-3300/110	50	1.0·1P	22/60	PL-G	7.2/3.6kV	Both	300	9.5
PD-100KFH (with fuse)	6600-3300/110	100	3.0•3P	22/60	PL-G	T1A 40kA	50/60	300	9.5


Notes

- *1 Mitsubishi Electric does not manufacture no-fuse voltage transformers.
- *2 If the limiting load is 300VA, the error for 6600/110V is less than or equal to minus 5%, and the error for 3300/110V is less than or equal to minus 10%.
- *3 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

External Dimensions

PD-50KFH and PD-100KFH

PD Series Voltage Transformers (less than or equal to 6600V)

PD-15KFH/PD-25KFH Dedicated verification 15VA / Class 0.5 PD-100KFH Dedicated verification 100VA/Class 1.0/Class 1P

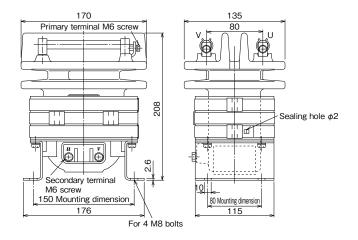
Epoxy resin mold

Use

• General-use meters/Relays

Specifications

Applicable standards: JIS C 1731-2/JEC-1201-2007


Type	Voltage transformation Rated Accu		Accuracy	Accuracy Withstand voltage		fuse	Frequency	Mass
туре	(V)	(VA)	(class)	(kV)	Model name	Rating	(Hz)	(kg)
PD-15KFH	3300/110	15	0.5	16/45	PL-G	7.2/3.6kV	50 or 60	9.5
(with fuse)	6600/110	15	0.5	22/60	PL-G	T1A 40kA	50 0r 60	9.5
PD-25KFH	3300/110	25	0.5	16/45	PL-G	7.2/3.6kV	50 or 60	9.5
(with fuse)	6600/110	25	0.5	22/60	PL-G	T1A 40kA	30 01 00	9.5
PD-100KFH	3300/110	100	1.0·1P	16/45	PL-G	7.2/3.6kV	50 or 60	9.5
(with fuse)	6600/110	100	1.0-11	22/60	PL-G	T1A 40kA	50 0r 60	9.5

Notes

- *1 Mitsubishi Electric does not manufacture no-fuse voltage transformers.
- *2 The production specifications for PD-100KFH are determined based the on characteristics of the current transformer it is combined with as well as the loads and power factors of other meters such as watt-hour meters. Please explain the specification details of the current transformer it is to be combined with, as well as the secondary loads of the voltage transformers and current transformers.
- *3 PD -15KFH and PD-25KFH conform to JIS standard C 1731-2.
- *4 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

External Dimensions

PD-15KFH, PD-25KFH and PD-100KFH

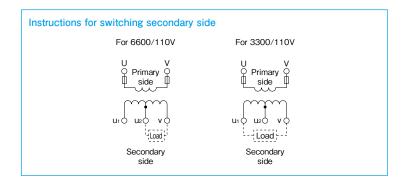
Voltage Transformers (less than or equal to 6600V)

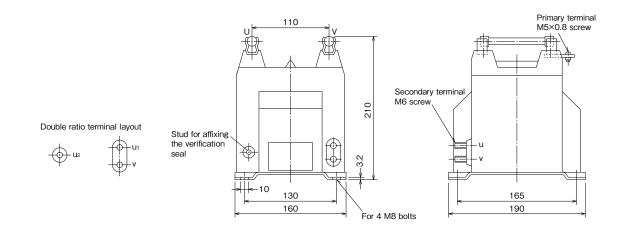
EP-0FH 50VA /Class 1.0/Class 1P

Epoxy resin mold (encased in EPT rubber case)

Use

• General-use meters/Relays


Specifications


Applicable standards: JIS C 1731-2/JEC-1201-2007

Tuno	Voltage transformation ratio		Accuracy	Withstand voltage	VT fuse		Frequency	Limit output	Mass
туре	(V)	burden (VA)	(class)	(kV)	Model name	Rating	(Hz)	(VA) *2	(kg)
	3300/110	50							
ED 0511	3300/110	100		22/60	0 PL-G	7.2/3.6kV T1A 40kA	Both 50/60	300	
EP-0FH (with fuse)	6600/110	50	1.0·1P						12
(With ruse)	0000/110	100					30700		
	6600-3300/110	50							

Notes

- *1 Mitsubishi Electric does not manufacture no-fuse voltage transformers.
- *2 If the limiting load is 300VA, the error is less than or equal to minus 5%.
- *3 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

EV Series Voltage Transformers (11000 to 33000V)

EV-1/EV-2/EV-3 100VA /Class 1.0/Class 1P

Epoxy resin mold

Use

 General-use meters/Relays/Power supply and demand

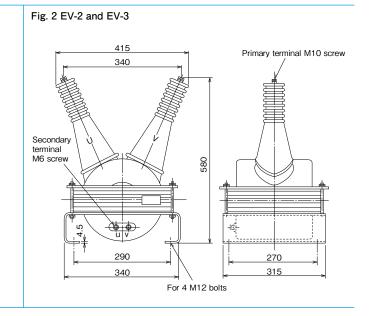
Specifications

Applicable standards: JIS C 1731-2/JEC-1201-2007

Phase	Туре	Voltage transformation ratio (V)	Rated burden (VA)	Accuracy (class)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
			100	1.0·1P	28/90			
EV-1	11000/110	200	1.0-11-	20/90	50 or 60	Fig. 1	38	
		11000/110	15	0.5W *3	28/90	30 01 00	1 16. 1	30
1-phase			25	0.5W	20/90			
i -pi iase	EV-2	22000/110	100	1.0·1P	50/125	50 or 60	Fig. 2	55
EV-2		22000/110	200	1.0*1P	50/125	50 0r 60	⊢ Fig. ∠	55
		33000/110	100	1.0·1P	70/170	50 or 60	F:- 0	55
	EV-3	33000/110	200	1.0•11	70/170	30 0r 60	Fig. 2	ວວ

Notes

Fig. 1 EV-1


- *1 For ratings other than those listed above (voltage transformation ratio, rated load and accuracy class), please contact a Mitsubishi Electric representative.
- *2 The current transformer to be combined is the 0.5W-class BN-1 (No. LA) (refer to page 61).
- *3 The applicable standard is JIS C1736.
- *4 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Primary terminal M10 screw

Secondary terminal M6 screw

300
350

For 4 M12 bolts

5-3 Earthed Voltage Transformers

EV Series Voltage Transformers for Grounded Meters (less than or equal to 440V)

EV-L/EV-LX 50 and 100VA 50/50 and 100/100VA

Epoxy resin mold

Use

• General-use meters/Relays

Specifications

Applicable standard: JEC-1201-2007

Phase	Туре	Voltage transformation ratio (V)	Rated burden (VA)	Accuracy class (class)	Withstand voltage (kV)	Frequency (Hz)	External dimensions	Mass (kg)
		$\frac{220}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	50		0.44/—			
	EV-L	<u> </u>	100	1P		Both	Fig. 1	11
		$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	50		0.88/-	50/60	J	
		√3 ′√3	100					
		$\frac{220}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{\sqrt{3}}$	50/50		0.44/-			
1-phase		√3′√3′√3	100/100		0.44/			
i-priase		$\frac{220}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	50/50		0.44/-		5. 0	
	EV.LV	$\frac{220}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	100/100	10/00	0.44/—	Both		4.4
	EV-LX	440 / 110 / 190	50/50	1P/3G	0.007	50/60	Fig. 2	11
		$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{\sqrt{3}}$	100/100		0.88/—			
		440 / 110 / 110	50/50		0.007			
		$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	100/100		0.88/—			

Fig. 2 EV-LX

Note: Withstand voltage value indicates commercial power frequency withstand voltage/lightning Delivery time impulse withstand voltage.

Special transformation ratio range manufactured

Tuno	Voltage range manufactured (V)						
Type	Primary voltage	Secondary voltage	Tertiary voltage				
		100 to 120					
EV-L	200 480	$\frac{100}{\sqrt{3}}$ to $\frac{120}{\sqrt{3}}$	_				
EV-LX	$\frac{200}{\sqrt{3}}$ to $\frac{480}{\sqrt{3}}$	$\frac{100}{\sqrt{3}}$ to $\frac{120}{\sqrt{3}}$	$\frac{100}{3}$ to $\frac{120}{3}$ $\frac{190}{3}$ to $\frac{210}{3}$				

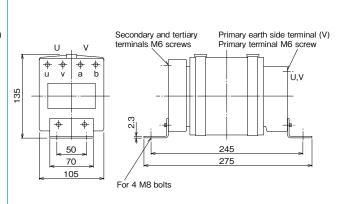
Note: For the withstand voltage values for the special voltage transformation ratios, please contact us.

- These grounded voltage transformers comply with the regulations of Article 16, Paragraph 6, Item 4 of Interpretation of Technical Standards for Electrical Equipment. Therefore, disconnect any of the transformers from the circuit when performing the power-frequency withstand voltage test of the board.
- Be certain to ground the primary ground-side terminal before using the transformer.

Secondary terminals

Primary earth side terminal (V)

Primary terminal M6 screw


U,V

U,V

245

275

For 4 M8 bolts

EF Series Voltage Transformers for Grounded Meters (less than or equal to 6600V)

EF-0FC/EF-0XFC/EF-03XFC

100 and 200VA 100/100 and 200/200VA

Epoxy resin mold

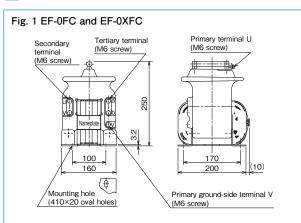
Use

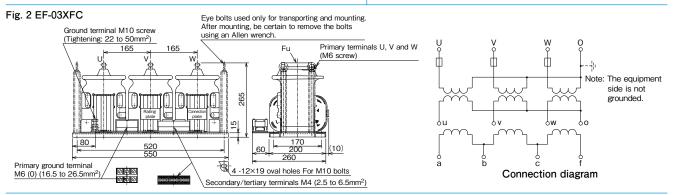
- General-use meters/Relays
- These voltage transformers for grounded meters are used for high-voltage circuits of extra-high-voltage circuits. Before using them, be certain to refer to (5) of 9.3 Precautions when Using Transformers on page 92.

Specifications

Applicable standard: JEC-1201-2007

Phase	Type	Voltage transformation ratio	Rated burden	Accuracy	Withstand voltage	VT fu	ıse	Frequency	External dimensions	Mass							
Triasc	Турс	(V)	(VA)	(class)	(kV) *2	Model name	Rating	(Hz)	diricisions	(kg)							
		$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	100		6.6/45												
	EF-0FC	√3 ′√3	200	1P	0.0/43		7.2/3.6kV T1A 40kA		Fig. 1	18							
	(with fuse)	$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	100		13.2/60				rig. i	10							
		√3 ′ √3	200		13.2700												
		$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	100/100														
1-phase		√3 / √3 / 3	200/200		6.6/45		7.2/3.6kV T1A 40kA										
i -pilase	nidse	$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	100/100		0.0/43												
	EF-0XFC	√3′√3′ 3	200/200	1P/3G		PL-G			Fig. 1	18							
	(with fuse)	$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	100/100	11750		11.4			1 16. 1	10							
		√3 ′ √3 ′ 3	200/200		13.2/60												
									$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	100/100		13.2/00					
		√3 ′ √3 ′ 3	200/200														
		$3300 / 110 / \frac{190}{3}$	3×100 / 3×100														
		3300 / 110 / 3	3×200 / 3×200		6.6/45												
		$3300 / 110 / \frac{110}{3}$	3×100 / 3×100		0.0/43												
3-phase	ese EF-03XFC (with fuse)	3300 / 110 / 3	3×200 / 3×200	10/20		PL-G	7.2/3.6kV	Both	Fig. 2	18							
3-priase		$6600 / 110 / \frac{190}{3}$	3×100 / 3×100	- 1P/3G		PL-G	T1A 40kA	50/60	Fig. ∠	10							
		3	3×200 / 3×200		13.2/60	О											
			3×100 / 3×100														
		3	3×200 / 3×200														


Notes


- *1 Mitsubishi Electric does not manufacture no-fuse voltage transformers.
- *2 Withstand voltage is induced withstand voltage/lightning impulse withstand voltage.
- These grounded voltage transformers comply with the regulations of Article 16, Paragraph 6, Item 4 of Interpretation of Technical Standards for Electrical Equipment. Therefore, disconnect any of the transformers from the circuit when performing the power-frequency withstand voltage test of the board.
- Be certain to ground the primary ground-side terminal before using the transformer.

Special transformation ratio range manufactured

Tuno	Voltage range manufactured (V)						
Туре	Primary voltage	Secondary voltage	Tertiary voltage				
		100 to 120					
EF-0FC	$\frac{2400}{\sqrt{3}}$ to $\frac{6900}{\sqrt{3}}$	$\frac{100}{\sqrt{3}}$ to $\frac{120}{\sqrt{3}}$	_				
EF-0XFC	√3 ° √3	$\frac{100}{\sqrt{3}}$ to $\frac{120}{\sqrt{3}}$	$\frac{100}{3}$ to $\frac{120}{3}$				
EF-03XFC	2400 to 6900	100 to 120	$\frac{190}{3}$ to $\frac{210}{3}$				

Note: For the withstand voltage values for the special voltage transformation ratios, please contact us.

EV Series Voltage Transformers for Grounded Meters (11000-33000V)

EV-1/EV-1X/EV-2/EV-2X/EV-3/EV-3X

100 and 200VA 100/100 and 200/200VA

Epoxy resin mold

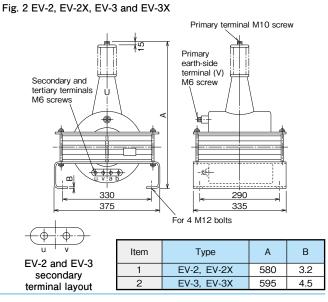
■ Use • General-use meters/Relays

Specifications

Applicable standard: JEC-1201-2007

Phase	Туре	Voltage transformation ratio (V)	Rated burden (VA)	Accuracy (class)	Withstand voltage (kV) *2	Frequency (Hz)	External dimensions	Mass (kg)
	EV-1	<u>11000</u> / <u>110</u>	100	1P				
	LV-1	√3 √3	200	I.F				
		$\frac{11000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	100/100		22/90	50 or 60	Fig. 1	57
	EV-1X	√3 / √3 / 3	200/200	1P/3G	22/30	30 01 00	1 16. 1	57
	LV-1X	$\frac{11000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	100/100	11750				
		$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	200/200					
	EV-2	$\frac{22000}{\sqrt{3}} / \frac{110}{\sqrt{3}}$	100	1P				
	LV-Z	√3 ′ √3	200	"	44/125	50 or 60	Fig. 2-1	
1-phase		$\frac{22000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	100/100	1P/3G				64
i pilase	EV-2X	√3 / √3 / 3	200/200					04
	LV-ZX	$\frac{22000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	100/100					
		√3 / √3 / 3	200/200					
	EV-3	<u>33000</u> / <u>110</u>	100	1P				
	LV-5	√3 ′ √3	200	"				
		$\frac{33000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	100/100		66/170	50 or 60	Fig. 2-2	80
	EV 3V	√3 / √3 / 3	200/200	1P/3G	66/170	30 01 00	1 1g. 2-2	50
	EV-3X	$\frac{33000}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	100/100	17/30				
		√3 / √3 / 3	200/200					

Notes


- *1 For ratings other than those listed above (voltage transformation ratio, rated load and accuracy class), please contact a Mitsubishi Electric representative.
 *2 Withstand voltage is induced withstand voltage/lightning impulse withstand voltage.
- These grounded voltage transformers comply with the regulations of Article 16, Paragraph 6, Item 4 of Interpretation of Technical Standards for Electrical Equipment. Therefore, disconnect any of the transformers from the circuit when performing the power-frequency withstand voltage test of the board.
- Be certain to ground the primary ground-side terminal before using the transformer.

Secondary and tertiary terminals M6 screws

Secondary and tertiary terminals M6 screws

For 4 M12 bolts

EV-1 secondary terminal layout

5-4 Zero-phase Current Transformers

BZ Series Zero-phase Current Transformers

BZ-60A/BZ-90A/BZ-110A/BZ-170A

Cable through-type

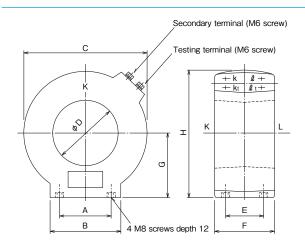
Epoxy resin mold

Specifications

Applicable standard: JEC-1201-2007

Type	BZ-60A	BZ-90A	BZ-110A	BZ-170A					
Window diameter (φmm)	60	90	110	170					
Rated primary current (A)	300	600	1000	1200					
Rated zero-phase primary current		200mA							
Rated zero-phase secondary current	1.5mA								
Rated burden	10Ω								
Frequency	Both 50/60Hz								
Accuracy	L								
Overcurrent factor		>2000							
Excitation impedance		>5Ω							
Mass (kg)	5	7	10	20					

Note: Each rated primary current indicates the maximum current value that is applicable to the corresponding window diameter.

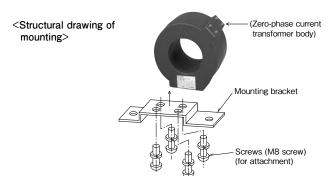

BZ-170A

Use

- Grounding relays
- lacktriangle Test winding (kt, ℓ t) included

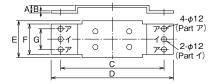
For the primary conductor, use a shielded cable. A shielded cable having insulation performance suitable for the circuit voltage can be used for the primary conductor in the circuit.

External Dimensions

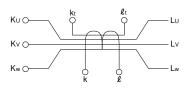

Dimension variations table

Туре	Window diameter D	А	В	С	Е	F	G	Н
BZ-60A	60	50	80	155	40	70	85	163
BZ-90A	90	80	115	195	40	70	100	197
BZ-110A	110	80	120	215	60	100	110	218
BZ-170A	170	140	190	285	70	125	145	288

Optional Part (mounting bracket)


When ordering, be certain to specify the model name, product and quantity required.

(Example: 1 mounting bracket for a BZ-90A)



< Mounting bracket dimension table >

Type of		Din	nensior	n variat	tions (r	nm)		
appropriatezero phase current transformer	А	В	С	D	Е	F	G	Mounting hole
BZ-60A	15	3.2	110	140	60	60	_	
BZ-90A	15	3.2	150	190	60	60	_	Part 1
BZ-110A	12	3.2	160	200	80	70	_	
BZ-170A	20	4.5	240	280	100	100	70	Part ア

Connection diagram

BZ Series Zero-phase Current Transformers

BZ-120SA Cable through-type/Separated

Epoxy resin mold

BZ-120SA

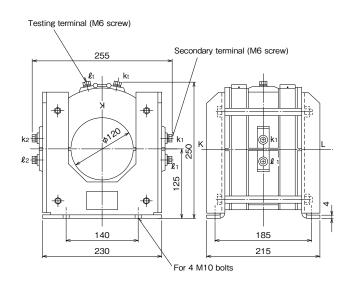
Specifications

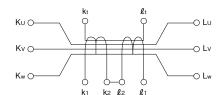
Applicable standard: JEC-1201-2007

Туре	BZ-120SA
Window diameter (φmm)	120
Rated primary current (A)	1000
Rated zero-phase primary current	200mA
Rated zero-phase secondary current	1.5mA
Rated burden	10Ω
Frequency	Both 50/60Hz
Accuracy	L
Overcurrent factor	>2000
Excitation impedance	>5Ω
Mass (kg)	23

Note: Rated primary current indicates the applicable maximum current value.

Use


- Grounding relays
- Can be connected using existing cables.
- lacktriangle Test winding (terminal kt, ℓ t) included.


For the primary conductor, use a shielded cable.

A shielded cable having insulation performance suitable for the circuit voltage can be used for the primary conductor in the circuit.

■ External Dimensions

■ Connection diagram

5-5 Voltage&Current Transformers

PO-2HB/PO-6HB Outdoor-use

Class 1.0W Class 0.5W 15VA •

Epoxy resin mold

Use

Power supply and demand

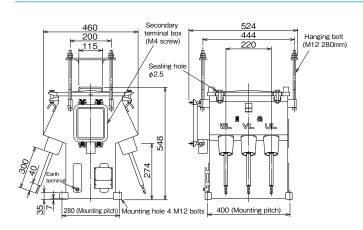
Specifications

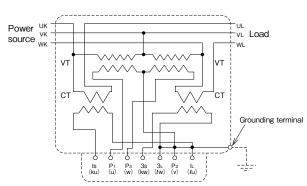
Applicable standard: JIS C 1736

		Meter voltage tra	nsformer	Current Transforr	mer		Overcurrent	Withstand		
Туре	Phase wiring system *5	Voltage transformation ratio	Rated burden	Current transformation ratio	Rated burden	Accuracy	strength	voltage	Frequency	Mass
	System	(V)	(VA)	(A)	(VA)	(class) *2	(times)	(kV)	(Hz) *1	(kg)
DO OLID	3300/110 2×15 30.		10/5, 15/5, 20/5, 30/5, 40/5, 50/5,	0.45	1.0W		16/45	50 or 60	72	
PU-ZHB	PO-2HB 3-wire	-wire	2×25 *3	60/5, 75/5, 100/5, 150/5, 200/5	2×15	or 0.5W	40 .	22/60	50 or 60	
				250/5, 300/5, 400/5						74
РО-6НВ	3-phase, 3-wire	6600/110	2×15	20/5, 50/5	2×15	1.0W or 0.5W	150	22/60	50 or 60	72

- *1 When ordering, be certain to specify the frequency.
- *2 Be certain to specify the accuracy class. If it is not specified, Class 1.0W used applied.
- *3 Mitsubishi Electric manufactures voltage transformers with a rated load of 2×25VA upon requested.
- *4 For ratings less than or equal to 100/5A, Mitsubishi Electric manufactures devices with an overcurrent strength times of 75.
- *5 Do not use combination voltage/current transformers in single phase as the internal voltage transformer can burn out (refer to page 5 for details).
- *6 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Primary-side cable size


Туре	Primary current (A)	Cable size	Туре	Primary current (A)	Cable size
	10 to 50	22mm ²	РО-6НВ	20	22mm ²
PO-2HB	60 to 100	60mm ²	PO-OHB	50	60mm ²
PU-20B	150, 200	80mm ²			
	250 to 400	125mm ²			


Size of wires connectable to secondary terminal

Wire size	2 to 14mm ²
-----------	------------------------

External Dimensions

■ Connection Diagram

Special Applications

1. Transformer for control circuits

EMT-K/EMT-BB 300 and 600VA

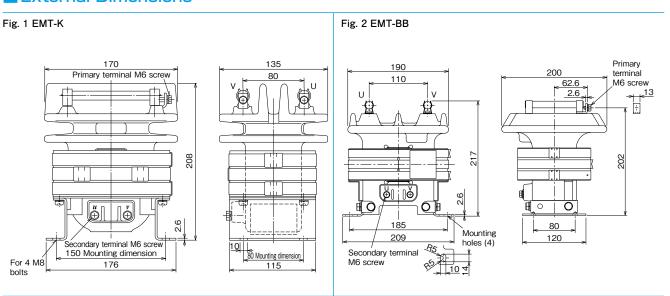
Epoxy resin mold

Use

 Operating power supplies of high-voltage circuit breakers

Specifications

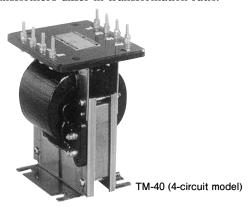
Applicable standard: JEC-2200


Time	Voltage	Capac	city (VA)	Withstand	VT	fuse	Frequency	External	Mass				
Туре	transformation ratio (V)	Continuous		voltage (kV) *2	Model name	Rating	(Hz)	dimensions	(kg)				
EMT-K	3300/110	300	1500	16/45	PL-G	7.2/3.6kV	Both	Fig. 1	9.5				
(with fuse)	6600/110	300	1500	22/60	PL-G	T1A 40kA	50/60	Fig. I	9.5				
EMT-BB	3300/110	000	600	600	600	600 4000	16/45	DI O	7.2/3.6kV	7.2/3.6kV Both	Both	Fig. 0	13
(with fuse)	6600/110	000	4000	22/60	PL-G	T1A 40kA	50/60	Fig. 2	13				

Notes

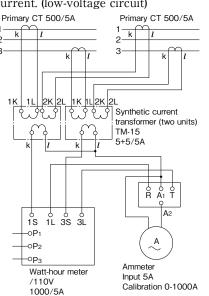
- *1 Considering a 10-cycle duty with 0.2-sec current and 1.8-sec interval.
- *2 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.

Special transformation ratio rangemanufactured


Typo	Voltage range manufactured (V)				
Type	Primary voltage	Secondary voltage			
EMT-K	2000 to 6600	100 to 200			
EMT-BB	3000 to 6600	100 to 220			

2. Totalizing current transformers

To measure the sum of currents through multiple circuits, the outputs from the primary current transformers are input to the totalizing current transformer, which determines the vectorial sum of the currents.


These totalizing current transformers are intended for primary current transformers with the same transformation ratio. They cannot be used if the primary current transformers differ in transformation ratio.

Example use of synthetic currenttransformer

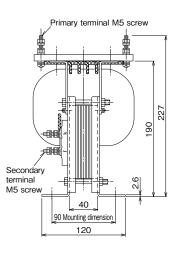
In the case of synthesizing 3-phase, 3-wire and two circuits, and measuring the electric energy and current. (low-voltage circuit)

Specifications (5+5A system)

Applicable standard: JIS C 1731-1

	•		_		J	10 0 1101 1	
Type		TM-15		TM-40			
No. of synthetic circuits	2	3	4	2	3	4	
Rated primary current (A)	5+5	5+5+5	5+5+5+5	5+5	5+5+5	5+5+5+5	
Rated secondary current (A)		5		5			
Rated burden (VA)		15			40		
Accuracy		1.0 or 0.5 °	1	1.0			
Frequency (Hz)	E	3oth 50/60	0	Both 50/60			
Highest voltage/ withstand voltage (kV)*4	0.23/2/	∕— or 1.15	/4/— *2	0.23/2/— or 1.15/4/— *2			
Overcurrent strength (times)		40			40		
Insulation method	Special	varnishing	process	Special	varnishing	process	
External dimensions	Fig. 1 Fig. 2 Fig. 3			Fig. 1	Fig. 2	Fig. 3	
Mass (kg)		7			7		

Notes


- *1 If the accuracy class is Class 0.5, be certain to specify it.
- *2 If the peak in voltage is 1150V, be certain to specify it.
- *35A system (5+5/10A) (only for two circuits) can also be manufactured.
- *4 Withstand voltage value indicates commercial power frequency withstand voltage/lightning impulse withstand voltage.
- *5 They can be used to totalize the current through the secondary feeder of one voltage transformer. The current through the secondary feeder of another voltage transformer cannot be measured correctly because there is a difference in voltage phase between the feeders.

Remarks:

5+5A system: This synthesizes each of circuit current and outputs a 5A current to the secondary side of the synthetic current transformer.

5A system: This uses only one of two circuits and outputs a 5A current to the secondary side of the synthetic current transformer. Therefore, if two circuits are used at the same time, the current transformer can be used only when the current synthesized from the two circuits is 5A or less.

External Dimensions

Self-load VA

5+5A system	10VA per circuit
5A system	15VA per circuit

Fig. 1 2-circuit synthesis

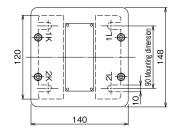


Fig. 2 3-circuit synthesis

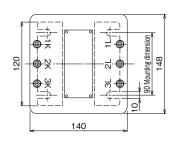
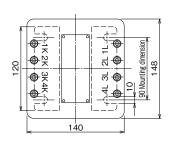



Fig. 3 4-circuit synthesis

3. Split type zero-phase current transformers

Outline

Split type zero-phase current transformers for low-voltage circuits.

These transformers detect current leakage from equipment. In combination with Mitsubishi Electric leakage current measuring/monitoring devices, they can measure the leakage current (lo) and resistive leakage current (Ior).

Features

Can be installed on existing equipment.

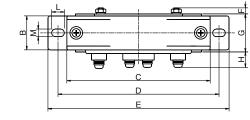
The split type transformers can be installed easily without removal of cables of existing equipment.

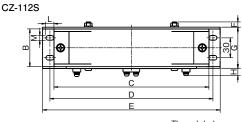
With testing terminal

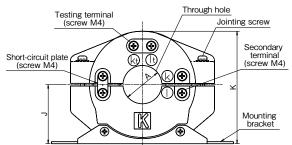
The wiring and input/output can be checked by using the testing terminal before shipment of board.

Specification

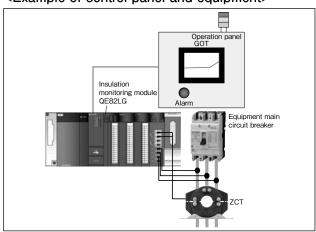
	Model name	CZ-22S	CZ-30S	CZ-55S	CZ-77S	CZ-112S		
H	Hole diameter (mm)	φ22	φ30	φ55	φ77	φ112		
N	Max. working voltage		600 VA	C (for low-voltage	e circuit)			
	Rated frequency			50 to 60Hz				
Ra	ted short-time current (peak value)	50kA (100kA)						
ng	Measurement category		CAT III					
Marking	Pollution degree			II				
	Applicable standard			EN61010-2-032				
CE	Combined device	Conforming to CE Marking when used in combination with insulation monitoring module (model name: QE82LG) in Mitsubishi general-purpose PLC MELSEC-Q Series.						
	Weight	0.5kg						




Compatible devices (reference)


Device name	Model name
Insulation monitoring module in Mitsubishi general-purpose PLC MELSEC Q Series	QE82LG
Mitsubishi assembled-type leakage monitoring device	LG-5F, LG-5F-* LG-10F, LG-10F-*
Mitsubishi leakage current transducer	T-51LG, T-51LGF (required to designate the model to be combined when placing an order)
Mitsubishi electronic indicating instrument Multi indicating instrument with leakage current meter	ME110SSFL, ME110SSFL-**
Mitsubishi energy measuring module with insulation monitor	EMU4-LG1-MB

External Dimensions


CZ-22S, 30S, 55S and 77S

<Example of control panel and equipment>

■ Table of variable dimensions

		vai labi	e unine	1310113	Unit: (mm)
	CZ-22S	CZ-30S	CZ-55S	CZ-77S	CZ-112S
Α	φ22	φ30	φ55	φ77	φ112
В	27	27	32	41	57
С	100	114	148	198	234
D	112	130	160	210	246
Е	128	144	177	232	268
F	5	5	9	10	8
G	30	30	36	45	62
Н	12	12	12	12	12
J	41	47	66	90	109
K	77	89	124	171	207
L	10	10	12	12	12
М	5.5	5.5	7	7	7

4. Special Environments

Meter transformers are used extensively and in various environments. Mitsubishi Electric meter transformers are manufactured based on the standard operating conditions shown in the box to the right. If a transformer is to be used in environmental conditions other than specified, be certain to take the following issues into account.

Standard Operating Conditions (JIS and JEC standard values)

● Ambient -20 to 40°C

● temperature Plus average 24hr temperature of 35℃

or less.

Humidity No humidity (condensation)

• Altitude 1000m or less

• Environmental Minimal dust, corrosive gas or salt-

conditions laddened wind

Special Environment	Specifications	Applicable type					
High-temperature/humidity	Anti-fungus/moisture-proof treatment High humidity may lead to degradation in performance, such as weakening dielectric strength. To avoid this, meter transformers are treated with a special antifungus/ moisture-proof coating and corrosion-resistant plating.	Current transformers CW Series (5000A, 6000A, excluding heat-resistant, distribution board and separated design) CD-40K, CD-40NA, CD-40ENA Voltage transformers PE Series PD-50HF, PD-100HF, PD-200KFH					
Corrosive gases H ₂ S	Supplemental corrosion resistance If meter transformers are to be used where there is much corrosive gas, they are generally encased in a protective corrosion resistant case. However, places where there is minimal corrosive gas, for convenience, corrosion-resistant plating can be used for meeting corrosion- resistant specifications. The metallic portions of meter transformers are treated with corrosion- resistant plating.	BN-0 (LA) Earthed voltage transformers EF-0FC, EF-0XFC Standard specifications can be applied to the following models. (Except those for verification) Current transformers CW Series (Except separate type) Voltage transformers PE Series PD-50HF, PD-100HF, PD-200KFH an altitude of					
High altitudes × 0.94	I Altitude						
Pollution/humidity	The mold materials use for voltage and curr material tracking phenomenon, and are not humidity (condensation) is 85% or higher. A humid (condensation) environments subject	to be used in places that are polluted or the space heater must be installed for use in					
High temperatures	If a meter transformer is to be used in a place where the temperature is higher than the ambient temperature range stated in the standard operating conditions, be certain to select one of the following: Current transformer Select a transformer that has a current transformation ratio higher than the predefined value. Select a transformer that has an overcurrent intensity larger than the predefined value Voltage transformer Reduce the use load.						
Low temperatures	Reduce the use load. If a meter transformer is to be used in a place where the temperature is lower than the ambient temperature range stated in the standard operating conditions, be certain to us a double mold, epoxy resin mold or Melkid rubber mold model. If a transformer is to be used in a place where the temperature may be below -20°C, be certain to use a space heater so that the temperature is maintained at -20°C or above.						

Foreign Standard Applications

Products can be manufactured to meet foreign standards (IEC or ANSI) as requested.

If ordering a product that must comply to foreign standards, be certain to specify the applicable standard, ratings (current transformation ratio and voltage transformation ratio), accuracy class and load (VA). Mitsubishi Electric's standard specifications are shown in the following table.

Applicable standard

	Current transformer	Inductive voltage transformer				
IEC standards	IEC 60044-1	IEC 60044-2				
ANSI standards	ANSI C57.13					

Standard Specifications List

		Standard		IEC standards	ANSI standards			
Туре	Circuit	Type	Accuracy class	Rated output (VA)	Ins. class (kV)*1	Accuracy class- Output	Ins. class (kV)	
		CW-5LP		5		1.2B-0.2		
		CW-15LP		15		1.2B-0.5	BIL10	
		CW-40LP		30		1.2B-0.9		
		CW-5L		5		1.2B-0.2		
	Low-voltage	CW-15L	1	15	0.72/3/—	1.2B-0.5		
Current	J	CW-40L		30		1.2B-0.9		
transformer		CW-15LM		15		1.2B-0.5	_	
CT		CW-40LM		30		1.2B-0.9		
		CW-15LM	10P10/1	15		_		
		BN-0 (LA)		-				
	High-voltage	BS-MD	1	40	7.2/20/60	1.2B-0.9	BIL60	
		BS-MC BN-1 (LA)			12/28/75		_	
	Extra-high-voltage	BN-2A	1	40	24/50/125	1.2B-0.9	BIL150	
		PE-15			24/50/125		BIL150	
		PE-15F	1.0	15		1.2W		
		PE-50	3.0	50		_		
	Low-voltage	PE-50F PD-50HF	0.0	50	3/-	1.2X	BIL10	
		PD-50HF PD-100HF	1.0	75		1.2X 1.2X		
Inductive		PD-200KFH	1.0	100/150		1.2X 1.2Y		
voltage transformer		PD-200KFH PD-50HF		50		1.2X		
VT	High-voltage	PD-100HF	1.0	75	3.6/10/40	1.2X	BIL45 BIL60	
	nigii-voitage	PD-200KFH		100/150	7.2/20/60	1.2X 1.2Y		
		EV-1		100/130	12/28/75	1.21	BIL95	
	Extra-high-voltage	EV-2	1.0	100	24/50/125	1.2Y	BIL150	
	LXIIa-IIIgii-voitage	EV-3	1.0	200	36/70/170	1.2Z	BIL170	
				50	30/70/170	1.2X		
		EV-L	1.0	100		1.2X 1.2Y	BIL10	
	Low-voltage	EVIV	1.0/00	50/50	0.72/3/—			
		EV-LX	1.0/3P	100/100		_		
		EF-0FC	1.0	100		1.2Y	BIL60	
	High-voltage		1.0	200	3.6/10/40	1.2Z	BILOO	
Earthed	i iigii voitage	EF-0XFC	1.0/3P	100/100	7.2/20/60	_	_	
voltage				200/200				
transformer EVT		EV-1	1.0	100		1.2Y	BIL95	
LVI				200	12/28/75	1.2Z		
		EV-1X	1.0/3P	200/200		_	_	
	Extra-high-voltage -			100		1.2Y		
		EV-2	1.0	200		1.2Z	BIL150	
		EV OV	1.0/00	100/100	24/50/125			
		EV-2X	1.0/3P	200/100		_	_	

Notes

Compliance with foreign standards

	IEC sta	andards	ANSI st	andards
Item	CT	VT/EVT	CT	VT/EVT
	IEC 60044-1	IEC 60044-2	ANSI (C57.13
Withstand current	Δ	_	Δ	_
Temperature rise	0	0	0	0
Short-circuit performance	_	0	_	0
Lightning impulse withstand voltage	Δ	Δ	Δ	Δ
Terminal symbol	0	0	0	0
Power-frequency withstand voltage	0	0	0	0
Partial discharge	Δ	Δ	_	_
Induced withstand voltage	_	0	_	0
Power-frequency withstand voltage between sections	_	0	-	0
Withstand voltage between winding terminals	0	-	0	_
Error	0	0	0	0
Composite error	Δ	_	_	_
Polarity	_	_	0	0

 $[\]bigcirc \colon Complying$

^{*1} Insulation class indicates peak voltage/commercial power frequency withstand voltage/lightning impulse withstand voltage.

^{*2} For specifications other than those listed above, please contact a Mitsubishi Electric representative.

^{△:} Complying with JIS C 1731 or JEC-1201 (* Not complying with the foreign standard)

^{-:} No applicable items in the standard

Transformer Characteristics

1. Current Transformer Characteristics

	Rated		Short-time current						
_	primary	Thermal	Thermal kA (effective value) Mechanical						
Type	current	Energ	izing time	(sec)	kA	leakage impedance			
	(A)	1.00	0.20	0.13	(peak value)	(VA) *1			
	5	0.25	0.56	0.59	1.5				
	10	0.50	1.10	1.17	3.0				
	15	0.75	1.70	1.75	4.5				
	20	1.00	2.20	2.34	6.0				
	25	1.25	2.80	2.92	7.5				
	30	1.50	3.40	3.51	9.0	8.0			
	40	2.00	4.50	4.68	12.0				
	50	2.50	5.60	5.85	15.0				
	60	3.00	6.80	7.02	18.0				
CD-25NB	75	3.80	8.40	8.80	22.5				
n>10	80	4.00	8.96	9.36	24.0	8.6			
	100	5.00	11.20	11.70	30.0	5.0			
	120	6.00	13.40	14.04	36.0				
	150	7.50	16.80	17.50	45.0	8.0			
	200	10.00	22.40	23.40	60.0				
	250	12.50	28.00	29.25	75.0	4.1			
	300	15.00	33.50	35.10	90.0	7.1			
	400	20.00	0	0	0	10.3			
	500	25.00	0	0	0	4.1			
	5	0.43	0.95	1.01	2.6				
	10	0.85	1.90	2.03	5.2				
	15	1.30	2.90	3.04	7.9				
	20	1.70	3.80	4.06	10.5				
	25	2.20	4.90	5.07	13.1	7.0			
	30	2.60	5.70	6.09	15.8	7.8			
	40	3.40	7.60	8.10	21.0				
	50	4.30	9.50	10.10	26.3				
CD-25ENB	60	5.20	11.40	12.18	31.6				
n>10	75	6.40	14.30	15.20	39.4				
	80	6.80	15.20	16.24	42.0	8.6			
	100	8.50	19.00	20.30	52.5				
	120	10.20	22.80	24.30	63.0	7.0			
	150	12.80	28.50	30.40	78.8	7.8			
	200	17.00	38.00	0	0				
	250	21.25	0	0	0	4.1			
	300	25.50	0	0	0	5.9			
	400	34.00	0	0	0	11.4			

	Rated		Secondary				
Tuna	primary	Thermal	kA (effecti	ve value)	Mechanical	leakage	
Type	current	Energ	izing time	(sec)	kA	impedance	
	(A)	1.00	0.20	0.13	(peak value)	(VA) *1	
	600	0	0	0	0	9.0	
	750	0	0	0	0	13.1	
CD-40H	800	0	0	0	0	14.3	
n>10	1000	0	0	0	0	20.6	
112 10	1200	0	0	0	0	_	
	1500	0	0	0	0	-	
	2000	0	0	0	0	-	
	5	0.85	1.90	1.98	5.1	3.7	
	10	1.70	3.80	3.97	10.1	5.7	
	15	2.60	5.70	5.95	15.2	3.8	
	20	3.40	7.60	7.94	20.3	3.7	
	25	4.20	9.30	9.81	25.3	5.7	
	30	5.10	11.40	11.91	30.4	3.8	
CD-40GNA	40	6.80	15.20	15.88	40.5	3.7	
n>10	50	8.50	19.00	19.80	50.6	3.7	
	60	10.20	22.80	23.82	60.8	3.8	
	75	12.80	28.50	29.70	75.9	4.4	
	80	13.60	30.40	31.76	80.9	3.7	
	100	17.00	38.00	39.70	0	3.7	
	150	25.50	0	0	0	4.4	
	200	34.00	0	0	0	3.7	
	5	1.70	3.80	4.15	11.2		
	10	3.50	7.80	8.54	22.5		
	15	5.20	11.60	12.70	33.7		
	20	7.00	15.60	17.10	45.0		
	25	8.70	19.40	21.20	56.2		
CD-40LN	30	10.50	23.50	25.60	67.5	4.8	
n>10	40	14.00	31.30	34.20	90.0	4.0	
	50	17.50	39.10	0	0		
	60	21.00	0	0	0		
	75	26.20	0	0	0		
	80	28.00	0	0	0		
	100	35.00	0	0	0		

Notes

^{*1} This is the value for 60Hz, and the value for 50Hz is much the same. *2 \odot indicates 40kA and \odot indicates 100kA.

 $^{{}^{\}star}3$ The Short-time current value is the value if 25% of the rated load is connected to the secondary side.

^{*4} The withstand current values may vary depending on the situation. These values are given for reference.

	Rated		Short	time currer	nt		
_	primary	Thermal	kA (effective	ve value)	Mechanical		
Туре	current	Ener	gizing time	(sec)	kA		
	(A)	1.00	0.20	0.13	(peak value)		
	5	0.23	0.50	0.57	1.5		
	10	0.45	1.00	1.14	3.0		
	15	0.68	1.50	1.71	4.5		
	20	0.90	2.00	2.28	6.0		
	25	1.20	2.60	2.93	7.5		
	30	1.40	3.00	3.42	9.0		
	40	1.80	4.00	4.56	12.0		
	50	2.30	5.00	5.70	15.0		
	60	2.70	6.00	6.84	18.0		
	75	3.40	7.60	8.55	22.5		
CD-25KB	80	3.60	8.00	9.12	24.0		
	100	4.50	10.10	11.40	30.0		
	120	5.40	12.00	13.68	36.0		
	150	6.80	15.10	17.10	45.0		
	200	9.00	20.10	22.80	60.0		
	250	11.30	25.20	28.50	75.0		
	300	13.50	30.20	34.20	90.0		
	400	18.00	0	0	0		
	500	22.50	0	0	0		
	600	27.00	0	0	0		
	750	32.00	0	0	0		
	5	0.25	0.56	0.59	1.5		
	10	0.50	1.10	1.17	3.0		
	15	0.75	1.70	1.75	4.5		
	20	1.00	2.20	2.34	6.0		
	25	1.25	2.80	2.92	7.5		
	30	1.50	3.40	3.51	9.0		
	40	2.00	4.50	4.68	12.0		
	50	2.50	5.60	5.85	15.0		
CD-15CB	60	3.00	6.80	7.02	18.0		
CD-13CB	75	3.80	8.40	8.80	22.5		
	80	4.00	8.96	9.36	24.0		
	100	5.00	11.20	11.70	30.0		
	120	6.00	13.40	14.04	36.0		
	150	7.50	16.80	17.50	45.0		
	200	10.00	22.40	23.40	60.0		
	250	12.50	28.00	29.25	75.0		
	300	15.00	33.50	35.10	90.0		
	400	20.00	0	0	0		

Notes
*1 ○ indicates 40kA and ◎ indicates 100kA.
*2 The Short-time current value is the value if 25% of the rated load is connected to thesecondary side.
*3 The withstand current values may vary depending on the situation. These values are given for reference.

	Rated	Rated		Secondary			
_	primary	overcurrent	Thermal	kA (effecti	me currei ve value)	Mechanical	leakage
Туре	current	intensity		izing time		kA	impedance
	(A)	(times)	1.00	0.20	0.13	(peak value)	(VA) *1
	5		0.27	0.60	0.60	1.5	
	10		0.54	1.20	1.20	3.0	
	15		0.84	1.80	1.80	4.5	
	20		0.93	2.07	2.40	6.0	
	30		1.68	3.60	3.60	9.0	
EC-0	40		2.69	4.80	4.80	12.0	
(Style LA)	50		3.36	6.00	6.00	15.0	
n>5	60	40	3.36	7.20	7.20	18.0	7.5
	75		3.36	7.51	9.00	22.5	
	100		6.72	12.00	12.00	30.0	
	120		6.72	14.40	14.40	36.0	
	150		6.72	15.02	18.00	45.0	
	200		10.08	22.53	24.00	60.0	
	300		16.81	36.00	36.00	90.0	
	300	40	0.69	1.54	1.91	5.0	
	10				2.24		7.3
	10	75 150	0.82 1.56	1.83 3.36	3.36	5.6 8.4	7.3
						_	
		40	1.03	2.30	2.85	7.5	7.0
	15	75	1.23	2.75	3.36	8.4	7.3
		150	2.50	5.04	5.04	12.6	0.5
		300	4.80	8.00	8.00	20.0	8.5
		40	1.38	3.08	3.82	10.0	
	20	75	1.64	3.66	4.48	11.2	7.2
		150	3.10	6.72	6.72	16.8	
		300	6.40	10.68	10.68	26.7	8.5
		40	1.72	3.84	4.77	12.7	
	25	75	2.05	4.58	5.60	14.0	7.2
		150	3.90	8.40	8.40	21.0	
		40	2.07	4.62	5.74	15.0	
	30	75	2.46	5.50	6.72	16.8	7.2
		150	4.60	10.08	10.08	25.2	
		300	9.40	16.00	16.00	40.0	8.4
		40	2.76	6.17	7.65	20.0	7.1
	40	75	3.28	7.33	9.00	22.5	7.1
	40	150	6.20	13.44	13.44	33.6	8.4
BN-0		300	12.80	21.36	21.36	53.4	0.4
(Style LA)		40	3.45	7.71	9.56	25.0	
n>10	50	75	4.10	9.16	11.24	28.1	7.1
	30	150	7.80	16.80	16.80	42.0	
		300	16.00	26.68	26.68	66.7	8.4
		40	4.14	9.25	11.48	30.0	
	60	75	4.92	11.00	13.48	33.7	7.2
	60	150	9.36	20.16	20.16	50.4	
		300	19.20	32.04	32.04	80.1	8.4
		40	5.17	11.56	14.33	37.5	
		75	6.15	13.75	16.84	42.1	7.1
	75	150	11.70	25.20	25.20	63.0	
		300	24.00	0	0	0	8.4
		40	5.44	12.16	15.09	37.7	
	80	75	6.54	14.62	18.13	45.3	7.8
		150	12.03	27.01	27.01	67.5	
		40	6.90	15.42	19.13	50.0	
		75	8.20	18.33	22.48	56.2	7.1
	100	150	15.60	33.60	33.60	84.0	
		300	32.00	00.00	00.00	04.0	8.4
		40	8.28	18.51	22.96	60.0	0.7
		75	9.84	22.00	27.00	67.5	7.1
	120	150	19.50	0	0	© 07.3	7.1
		300	38.40	0	0	0	8.2
		300	30.40				0.2

Remark:

1) Various characteristics of the AN and CN series current transformers for cubicle high-voltage power receiving equipment are described on page 47

Notes

- *1 This is the value for 60Hz, and the value for 50Hz is much the same.
- *2 indicates 40kA and ◎ indicates 100kA.
- $\ensuremath{^\star 3}$ The Short-time current value is the value if 25% of the rated load is connected to the secondary side.
- *4 The withstand current values may vary depending on the situation.
 These values are given for reference.

	Rated	Rated		Short-ti	me curre	nt	Secondary		
T	primary	overcurrent	Thermal	Thermal kA (effective value) Mechanical					
Туре	current	intensity	Energ	izing time	(sec)	kA	impedance		
	(A)	(times)	1.00	0.20	0.13	(peak value)	(VA) *1		
		40	10.35	23.14	28.70	75.0			
	150	75	12.30	27.50	33.72	84.3	7.0		
	150	150	23.40	0	0	0			
		40kA	0	0	0	0	8.1		
		40	13.80	30.85	38.27	0			
	200	75	16.40	36.67	0	0	7.0		
	200	150	31.20	0	0	0			
		40kA	0	0	0	0	8.0		
		40	17.00	38.00	0	0			
	250	75	20.43	0	0	0	12.1		
		150	37.64	0	0	0			
BN-0 (Style LA)		40	20.70	0	0	0	8.4		
n>10	300	75	24.60	0	0	0	0.4		
112 10		40kA	0	0	0	0	7.9		
		40	27.60	0	0	0	12.7		
	400	75	31.75	0	0	0	12.7		
		40kA	0	0	0	0	12.9		
	500	40kA	0	0	0	0	17.7		
	600	40kA	0	0	0	0	9.2		
	750	40kA	0	0	0	0	13.0		
	800	40kA	0	0	0	0	10.4		
	1000	40kA	0	0	0	0	20.5		
	1200	40kA	0	0	0	0	26.5		
	1500	40kA	0	0	0	0	34.5		

- *1 This is the value for 60Hz, and the value for 50Hz is much the same.
 *2 indicates 40kA and ◎ indicates 100kA.
- *3 The Short-time current value is the value if 25% of the rated load is connected to the secondary side.
- *4 The withstand current values may vary depending on the situation. These values are given for reference.

2. Voltage Transformer Characteristics

	Туре	PE-15F		PE-50F		PD-50HF		PD-100HF		IF	PD-200KFH		FH	EP-0FH*1		
Rated	voltage (V)	220	440	220	440	440	3300	6600	440	3300	6600	440	3300	6600	3300	6600
Limiting load Limit output	Continuous rating	10	00	10	00		200			200		200		300		
(VA)	2sec rating	20	00	200		500		500			500		70	00		
Limit output error	Limit output error Continuous rating -5		5	-5		-5		-5			-5			-5		
(%)	2sec rating	-10		-10		-10		-10		-10		-10				
Primary fuse	Rated current (A)	T2		Т	2	T2	Т	1	T2	Т	1	T2	Т	1	Т	1
Filliary luse	Breaking current (kA)	10	00	10	00	100	4	0	100	4	0	100	4	łO	4	0
	Resistance voltage (%)	0.8	0.80		66	0.93			1.99			1.59			0.77	0.71
Impedance voltage (%)	Reactance voltage (%)	0.0	32	1.0	1.06		0.21		0.49			1.01		0.17	0.19	
	Impedance voltage (%)	0.8	36	2.8	86	0.95			2.05		1.88		0.79	0.73		

Notes
*1 The impedance voltage for EP-0FH is the same as that for 50VA.
*2 The 2-sec rating is the value considering a 10-cycle duty with 0.2-sec current and 1.8-sec interval.

Handling and Maintenance

1. Cleaning

Be certain to handle transformers carefully at the time of the routine inspection, which is to be performed when all power to the device is turned off.

(1) Dust removal

Carefully remove dust that has collected on the transformer, doing so as follows:

Do not use running water, cleansers or chemical-treated wipes because they contain surface-active agents that could cause degradation of the insulation.

- (1) Mold surface: Clean with a gauze soaked with deionized water.
- 2 Metallic sections (cores, terminals, attached brackets, screws, etc.): Clean with a dry duster, compressed-air blower or similar method.
- 3 Name plate section: Clean with a dry duster, compressed-air blower or similar method.

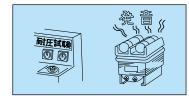
(2) If any of the connections have become loose or appear loss, retighten them.

2. Storage

When placing transformers in storage, be certain to use the following procedure:

(1) Removing the transformer

- ① Turn off the power sources of circuits connected to the transformer. Check to ensure that all voltage in the system has been removed.
- ②Using a screwdriver, loosen the terminal screws of the secondary conductor wiring and disconnect the wires.
- 3 Remove the primary conductor (conducting wire).
- (4) Remove the mounting screws and nuts holding the transformer, and then remove the transformer itself.


(2) Storage

For storage conditions, refer to Section 8 on page 7.

3. Precautions when Using Transformers

(1) Noise generated during withstand voltage testing

When conducting a withstand voltage test for coil-mold transformers, high-voltage electricity is shared in the air space between the coil-mold section and core, causing discharge noise to be generated. During general use, the voltage of the electricity passing through this space is low and discharge noise is not generated. Do not become alarmed and continue to use the transformer as normal even if discharge noise is generated during the withstand voltage test.

(2) Disconnect earthed voltage transformers from the primary-side circuit during commercial frequency withstand voltage testing of boards.

If not disconnected, burnout will occur.

(This happens because Mitsubishi Electric earthed voltage transformers comply with the standard of Article 16-6-4 of the Interpretation of Technical Standards for Electrical Equipment.)

Additionally, if the earthed voltage transformer is not disconnected from the primary-side circuit and disconnected from the secondary-side circuit only and a commercial frequency withstand voltage test is conducted with the transformer isolated from the circuit, dielectric breakdown between the primary and secondary coils may occur.

(3) Voltage transformer primary-side fuse meltdown

Dielectric breakdown may occur in voltage transformers as the result of circuit burn out due to improper connection or overload, or insulation may deteriorate due to extremely abnormal phenomenon. Primary-side fuses will melt as the result of the phase-to-phase short-circuiting current at the time of dielectric breakdown.

If the fuses meltdown, be certain to carefully check the insulation performance of the voltage transformer as abnormalities may exist (refer to items to be checked in Table 2 on page 93). If an abnormality is found, the voltage transformer may need to be replaced.

If no abnormalities are found in insulation performance, replace the melted fuses with new ones as they have been subjected to excitation rush current, thereby degrading them. (Replace all of the fuses with new ones even if only one fuse has melted). After replacing all of the fuses, if fuse meltdown occurs again within a short period, replace the voltage transformer with a new one as dielectric breakdown may have occurred in the current transformer.

(4) Influence on current transformer secondary circuit devices at the time of a short-circuiting incident

When short-circuiting occurs, large current flows into the secondary circuit of the current transformer. When resuming use of the meters, relays and other devices that are connected to the secondary circuit after the incident, carefully check to ensure that all are operating properly. Additionally, if the high-voltage circuit breaker is an overcurrent trip system and a static relay is used, be certain to check the b contact point of the relay.

(5) Selecting an Earthed Voltage Transformer

The EF Series transformers described on page 78 are used for extra-high-voltage circuits. Because high-voltage systems are generally isolated neutral systems, earthed voltage transformers cannot be used at the power-receiving point of high-voltage customers. This is because when a high-voltage customer uses an earthed voltage transformer that point becomes a direct-current grounding point, thereby causing problems such as insufficient insulation when a utilities company conducts an insulation resistance test on distribution lines.

4. Maintenance and Inspection

As transformer accidents lead to power-supply failure and have a negative effect on productivity, it is best to proactively work to prevent power loss accidents by being very careful and precise when conducting maintenance and inspections. It is recommended that maintenance inspections be conducted based on a technical information announcement, Notice No. 164 Guidelines for Meter Transformer Maintenance, published by the Japan Electrical Manufacturers' Association in September 1988.

An abstract of the technical information from Notice No.164 is shown in Table 1 to 4.

Please observe the following issues regarding maintenance and inspections. To ensure safety, maintenance and inspections should only be performed by an experienced electrician such as the chief electrical engineer.

(1) Connecting earthing wires

To ensure safety, be certain to connect all required earthing wires to terminals before beginning any maintenance or inspections. If it is believed all power sources to the transformer have been turned off and this is not confirmed, it may lead to electrical shock, electrical burn injury or death

If a person must touch the main body of a transformer, be certain to check whether or not the transformer is disconnected from all circuits. Confirm this using circuit breakers or switches, and then use a detection meter suitable for the circuit voltage to confirm that the circuit no longer carries a charge before beginning maintenance or inspections.

(2) Contact with a transformer while a current is applied is prohibited

If electricity is turned on during maintenance or inspections, be certain to prevent anyone from touching the main body of the transformer, terminals or any other part thereof. It could lead to not only electrical shock, electrical burn injury, equipment burnout or a fire, but also death.

Table 1 Mounting Inspection for Molded Meter Transformers

No.	Inspection item	Contents	Basic criteria	Remarks
1	Mounting bolt	Tightness	Sufficiently tight	_
2	Grounding	Ground wire connections and tightness	Sufficiently tight	Some transformers are grounded via the mounting bracket
3	High-voltage terminal	Tightness	Sufficiently tight	_
	TIIBIT VOITABO TOTTIITIAI	Tigita icoo	No overload on the terminal	_
4	Low-voltage terminal	Tightness	Sufficiently tight	_
5	Paint	Condition of paint/coating	No problem with paint/coating	_
6	Measure insulation	Between high/low-voltage winding and ground Between low-voltage winding and the ground	Insulation resistance test of 1000MΩor more and 1000V	_
0	of meter transformer)	Between low-voltage windings	Insulation resistance test of 10MΩ or more and 500V	
7	Polarity test	Use direct-current kick method	Polarity is negative	_
8	Low-voltage circuit	Wiring condition	Current transformer should low-voltage circuit closed	-
0	wiring	Willing Condition	Voltage transformer should have low-voltage circuit not shorted	_
9	Molded portion appearance	Damage, cracks, pollution	No damage, cracks or pollution exist	_
10	Withstand voltage test	Conforming to Article 16 of the Interpretation of Technical Standards for Electrical Equipment	No trouble exists	Disconnect the earthed voltage transformer from the circuit

Table 2 Patrol inspection and regular inspection of mold type instrument transformers

No.		Inchested part/inchestion item	Increasion proceedure	Execution (O: Executed)			
NO.		Inspected part/inspection item	Inspection procedure	Patrol inspection	General inspection		
		Abnormal noise	Check for discharge sound.	0	-		
1	Operating condition	Abnormal noise	Check for chattering or howling.	0	_		
		Odor	Check for abnormal odor.	0	_		
			Check for damage.	0	0		
2	Casing	Tank, case and cover	Check for contamination, coating film deterioration, discoloration and rusting.	0	0		
		Base and mounting (fitting) area	Check for looseness, damage and rusting.	-	0		
			Check for change in color of Thermo Label.	0	0		
3	Terminal area	Main circuit terminal tightening area	Check for discoloration due to overheating.	-	0		
	Tommer area		Check for looseness.	-	0		
İ		Ground wire connection	Check for looseness.	0	0		
		diodia wire connection	Check for disconnection.	0	0		
			Check for discharge craters.	0	_		
	Insulated block		Check for damage.	0	0		
4		Insulators, busbar supporting parts, fixing parts and other insulators	Check for cracking.	0	0		
			Check for moisture absorption.	_	0		
			Check for contamination.	0	0		
			Check for looseness.	_	0		
5		Townsiand annual and minima annual income	Check for damage.	_	0		
٥	Control block	Terminal, connector and wiring connections	Check for deformation.	_	0		
			Check for dust on them.	_	0		
	Accessories and	Discourse (ACT)	Check for discoloration.	-	0		
6	auxiliaries	Primary fuse (VT)	Check for meltdown.	-	0		
7	Testing	Measurement of insulation resistance	Measure the insulation resistance of the main circuit, low-voltage circuit and control circuit, and check them.	-	0		

[·] Patrol inspection

Routine activities to collect information performed by maintenance personnel. The personnel routinely visits the specified points while the equipment is running to check the operating condition or temperature, etc. through the five senses, record them and monitor and predict abnormalities. Generally, the inspection is performed every day, week and month. It is necessary to perform the inspection just after a typhoon, earthquake or flood

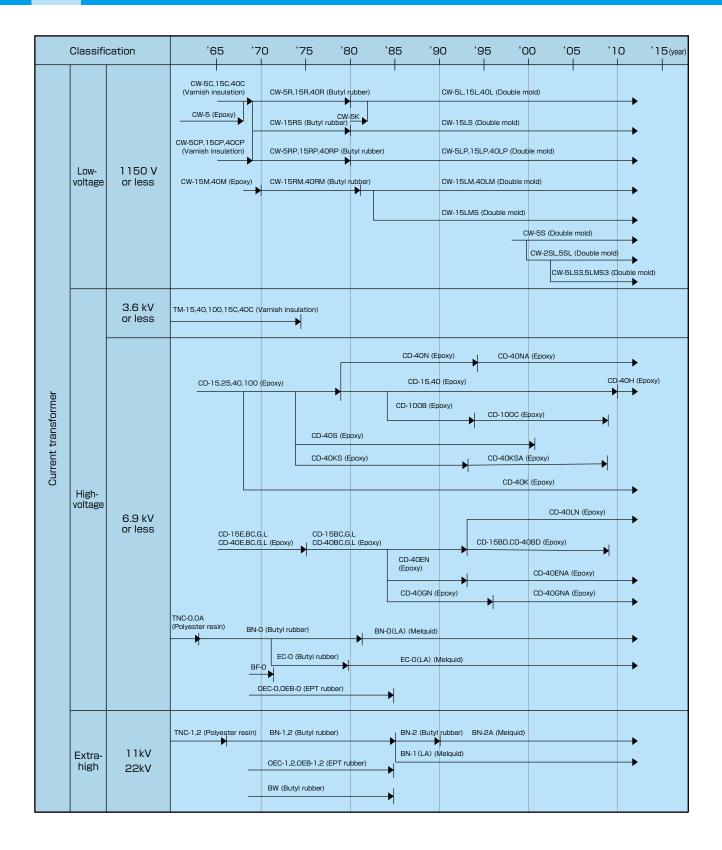
The equipment is stopped, and minor recovery operations, such as cleaning and lubrication, are performed without overhauling, and the condition of the major equipment functions and the operations are checked through the five senses and operation test or measurement and recorded to monitor and predict abnormalities. The inspection is performed to obtain more detailed information that could not be obtained in the patrol inspection. Generally, the inspection is performed every 1 to 3 years.

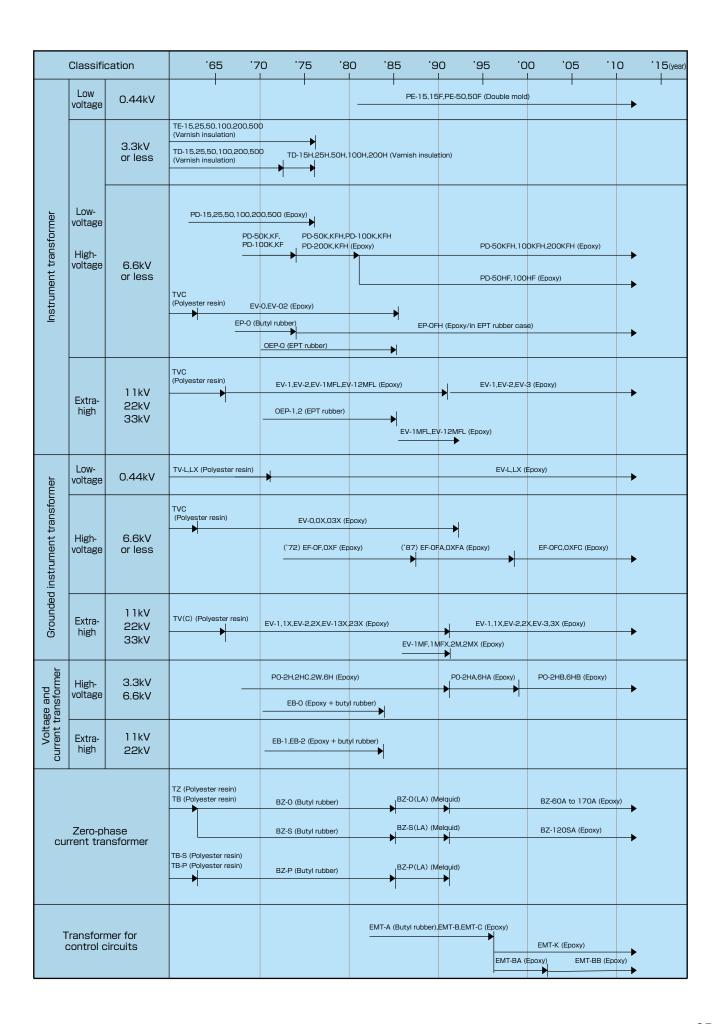
5. Recommended Renewal Timing

In technical information announcement, Notice No.164, published by the Japan Electrical Manufacturers' Association, a recommended timing for renewal has been established. It is recommend that meter transformers be renewed based on the information in that announcement.

Recommended renewal time for meter transformers (years of use)

Molded transformers (including other dry models) 15 years


However, the recommended renewal time is not a guaranteed value for product


service life. The recommended timing for renewal shown in the chart at the right is determined assuming that daily and periodic inspections are conducted on a continuing basis.

 $[\]bullet \, Regular \,\, inspection$

Transition of transformer models

How to Order

: This information is required. Be certain to specify it. When placing an order, be certain to specify This is manufactured according to customer the following items. specifications. If not specification is provided, the product will be manufactured according to the standard specification of Mitsubishi Electric Current Transformers (CT) transformers. ■ Low-voltage Current Transformers (≤440V) | Separated CW-5S, 2SL, 5SL (Separated/Cable wiring) Current transformation Ratio Type No. of Units **CW-5S** 300/5A 10 CW Series Low-voltage Current Transformers (≤1100V) CW-L (Cable wiring/Round window through-type) Current transformation Ratio Туре **Special Specifications** No. of Units Foreign standards, Anti-fungus Moistureproof treatment, Etc. Class 2 heat-resistant CW-40L 200/5A 10 Current transformation ratio ··· Specify current transformation ratio calculated as primary conductor through number per 1 turn. CW-LP (Small current/Primary winding) Current transformation Ratio No. of Units Type Special Specifications Foreign standards, Anti-fungus CW-15LP 10 20/5A Moisture-proof treatment, Etc CW-LM (Busbar wiring/Square window through-type) Current transformation Ratio Туре Special Specifications No. of Units oreign standards, Anti-fungu Moistureproof treatment, Etc CW-40LM 500/5A 10 CW-LS, CW-LMS, CW-LS3 and CW-LMS3 Current transformation Ratio Туре Frequency Models Combined for Verification No. of Units Combine with **CW-15LS** 100/5A 50Hz M2LHM-V and PE-15F • If ordering "For verification", be certain to specify the accuracy class, frequency and model to be combined for verification. CD/BN Series High-voltage Current Transformers (≤6600V) **CD Current Transformers** Current transformation Ratio Type Special Specifications No. of Units Foreign standards, Models Combined for Verification, Etc CD-25KB 100/5A 10 • If ordering "For verification", be certain to specify the accuracy class, frequency and model to be combined for verification. CD-25KB 100/5A 50Hz Combine with M2LHM-K5V and PD-50HF CD-15CB (Dedicated verification) Current transformation Ratio Type Frequency Models Combined for Verification No. of Units Combine with WP3P-K30VR and PD-15KFH CD-15CB 2 50/5A 60Hz • If ordering "For verification", be certain to specify the accuracy class, frequency and model to be combined for verification. **BN Current Transformers** Overcurrent Intensity Accuracy Class No. of Units Type Frequency Special Specifications Foreign standards BN-O(LA) 100/5A 40VA 150 times 1.0·1PS 50Hz

Type | Current transformation Ratio | BN-O(LA) | Too/5A | AOVA | Too times | T

- Accuracy Class Be certain to specify the desired class if it is other than the standard specification (1.0/Class 1PS).
- Frequency ······ The standard specification is both (50/60). If a single frequency needs to be indicated in the nameplate, be certain to specify the desired frequency.
- If ordering "For verification", be certain to specify the accuracy class, frequency and model to be combined for verification.
- AN/CN Series Current Transformers for Cubicle-type High-voltage Power Receiving Equipment

■ Extra-high-voltage Current Transformers (≥11000V)

Туре	Current transformation Ratio	Rated Burden	Overcurrent Intensity	Accuracy Class	Frequency	No. of Units
BN-2A	100/5A	40VA	40 times	1.0•1PS	60Hz	2

- Overcurrent Intensity..... If the withstand current (effective value) needs to be indicated in the nameplate, be certain to specify the withstand current value (kA).
- Accuracy Class Be certain to specify the desired class if it is other than the standard specification (1.0/Class 1PS).

Meter Voltage Transformers (VT)

● PE Series Low-voltage Voltage Transformers (≤440V)

Туре	Voltage transformation Ratio	Special Specifications	No. of Units
PE-15F	440/110V	Foreign standards, Models to be combined for verification, Etc.	10

- If ordering "For verification", be certain to specify the frequency and model to be combined for verification.
- PD Series High-voltage Voltage Transformers (≤6600V)

PD Voltage Transformers

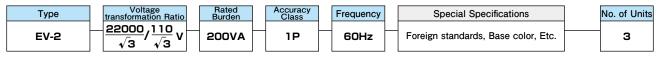
Туре	Voltage transformation Ratio	Special Specifications	No. of Units
PD-50HF	6600/110V	Foreign standards, Models to be combined for verification, Etc.	10

• If ordering "For verification", be certain to specify the frequency and model to be combined for verification.

PD-15KFH, PD-25KFH and PD-100KFH

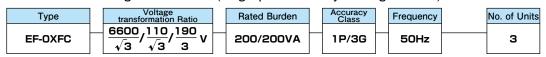
Туре	Voltage transformation Ratio	Frequency	Models Combined for Verification	No. of Units
PD-15KFH	6600/110V	50Hz	Combine with	9
PD-13KFII	0000/1101	30112	WP3P-K30VR and CD-15BB	

• If ordering "For verification", be certain to specify the frequency and model to be combined for verification.

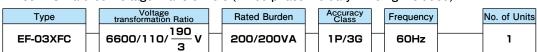

■ EV Series Voltage Transformers (≥11000V)

Туре	Voltage transformation Ratio	Rated Burden		Accuracy Class	Frequency		Special Specifications	No. of Units
EV-1	11000/110V	200VA	_	1.0•1P	50Hz	\vdash	Foreign standards, Base color, Etc.	2

- ◆ Accuracy Class ··· Be certain to specify the desired class if it is other than the standard specification (1.0/Class 1P).
- If ordering "For verification", be certain to specify the accuracy class, frequency and model to be combined for verification.


■ Earthed Voltage Transformers (EVT)

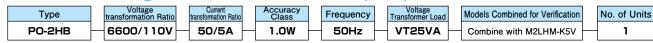
EF/EV Earthed Voltage Transformers (単相・三次巻線なし)


- Accuracy Class ··· Be certain to specify the desired class if it is other than the standard specification (Class 1P).
- Frequency ········ If the desired frequency is higher than or equal to 11000V, be certain to specify it.

EF/EV Earthed Voltage Transformers (Single-phase/Tertiary winding included)

- Accuracy Class ··· Be certain to specify the desired class if it is other than the standard specification (Class 1P/3G).
- Frequency If the desired frequency is higher than or equal to 11000V, be certain to specify it.

EF-03XFC Earthed Voltage Transformers (Three-phase/Tertiary winding included)


Zero-phase Current Transformers (ZCT)

■ Rated Primary Current ··· If a rated primary current other than that specified in the standard specification needs to be indicated in the name plate, be certain to specify the desired current.

Example: BZ-90A 300A

Combined Voltage/Current Transformers (VCT)



- Accuracy Class ······· If the accuracy class is Class 0.5W, be certain to specify it.
- Voltage Transformer Load···· If the load is 25VA, be certain to specify it.
- If ordering "For verification", be certain to specify the model to be combined for verification.
- Overcurrent Intensity If the intensity is 75 times, be certain to specify it.

■Service Network

Country/Region	Corporation Name	Address	Telephone	
Australia	Mitsubishi Electric Australia Pty. Ltd.	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7777	
	PROGRESSIVE TRADING CORPORATION	HAQUE TOWER, 2ND FLOOR, 610/11, JUBILEE ROAD, CHITTAGONG, BANGLADESH	+880-31-624307	
Bangladesh	ELECTRO MECH	SHATABDI CENTER, 12TH FLOOR, SUITES:12-B, 292, INNER CIRCULAR ROAD, FAKIRA POOL,		
	AUTOMATION & ENGINEERING LTD.	MOTIJHEEL, DHAKA-1000, BANGLADESH	+88-02-7192826	
Belarus	Tehnikon	Oktyabrskaya 19, Off. 705, BY-220030 Minsk, Belarus	+375 (0)17 / 210 46 26	
Belgium	Koning & Hartman B.V.	Woluwelaan 31, BE-1800 Vilvoorde, Belgium	+32 (0)2 / 2570240	
Brazil	Mitsubishi Electric Do Brasil Comercio E Servicos Ltda.	Av. Adelino Cardana, 293 -21 and Bethaville, 06401-147, Barueri/SP - Brasil	+55-11-4689-3000	
Cambodia	DHINIMEX CO.,LTD	#245, St. Tep Phan, Phnom Penh, Cambodia	+855-23-997-725	
Chile	Rhona S.A.	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Vina del Mar, Chile	+56-32-2-320-600	
	Mitsubishi Electric Automation (China) Ltd.	Mitsubishi Electric Automation Building, No.1386 Hongqiao Road, Shanghai, 200336	+86-21-2322-3030	
	Mitsubishi Electric Automation (China) Ltd. North China Branch	9/F, Office Tower1 Henderson Centre 18 Jianguomennei Dajie DongCheng district BeiJing 100005	+86-10-6518-8830	
	Mitsubishi Electric Automation (China) Ltd. NorthEast China Branch	Room2302, President Building Tower C, No.69 Heping North Avenue, Heping District, Shenyang, 110003	+86-24-2259-8830	
China	Mitsubishi Electric Automation (China) Ltd. South China Branch	Room 25122516, Great China International Exchange Square, Jintian Rd.S., Futian District, Shenzhen, 518034	+86-755-2399-8272	
	Mitsubishi Electric Automation (China) Ltd. South China Branch	Room 1609, North Tower, The Hub Center, No.1068, Xing Gang East Road, Haizhu District, GuangZhou, China 510335	+86-20-8923-6730	
	Mitsubishi Electric Automation (China) Ltd. SouthWest China Branch	1501, 1502, 1503, 15F, Guang-hua Centre, Block C, NO.98 Guang Hua North 3th Road Chengdu, 610000	+86-28-8446-8030	
	Mitsubishi Electric Automation (Hong Kong) Ltd.	20/F, Cityplaza One, 1111 king's Road, Taikoo shing, Hong Kong	+852-2510-0555	
Colombia	Proelectrico Representaciones S.A.	Carrera 42 # 75-367 Bod 109 Itagui Colombia	+57-4-4441284	
Czech Republic	AUTOCONT CONTROL SYSTEMS S.R.O	Technologická 374/6, CZ-708 00 Ostrava - Pustkovec	+420 595 691 150	
Denmark	BEIJER ELECTRONICS A/S	LYKKEGARDSVEJ 17, DK-4000 ROSKILDE	+45 (0)46/ 75 76 66	
Egypt	Cairo Electrical Group	9, Rostoum St. Garden City P.O. Box 165-11516 Maglis El-Shaab, Cairo - Egypt	+20-2-27961337	
France	Mitsubishi Electric Europe B.V.	25, Boulevard des Bouvets, F-92741 Nanterre Cedex	+33 (0) 1 / 55 68 55 68	
Germany	Mitsubishi Electric Europe B.V.	Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany	+49 (2102) 4860	
Crosss	KALAMARAKIS - SAPOUNAS S.A.	IONIAS & NEROMILOU STR., CHAMOMILOS ACHARNES, ATHENS, 13678 Greece	+30-2102 406000	
Greece	UTECO	5, MAVROGENOUS STR., 18542 PIRAEUS, Greece	+30-211-1206-900	
Hungary	Meltrade Ltd.	Fertő utca 14. HU-1107 Budapest, Hungary	+36 (0)1-431-9726	
India	Mitsubishi Electric India Private Limited	2nd Floor, Tower A&B, Cyber Greens, DLF Cyber City, DLF Phase-III, Gurgaon - 122 022 Haryana, India	+91-124-4630300	
ladaraia	PT.Mitsubishi Electric Indonesia	Gedung Jaya 8th floor, JL. MH. Thamrin No.12 Jakarta Pusat 10340, Indonesia	+62-21-3192-6461	
Indonesia	P. T. Sahabat Indonesia	P.O.Box 5045 Kawasan Industri Pergudangan, Jakarta, Indonesia	+62-(0)21-6610651-9	
Ireland	Mitsubishi Electric Europe B.V.	Westgate Business Park, Ballymount, IRL-Dublin 24, Ireland	+353 (0)1-4198800	
Israel	Gino Industries Ltd.	26, Ophir Street IL-32235 Haifa, Israel	+972 (0)4-867-0656	
Italy	Mitsubishi Electric Europe B.V.	Viale Colleoni 7, I-20041 Agrate Brianza (MI), Italy	+39 039-60531	
Kazakhstan	Kazpromavtomatika	ul. Zhambyla 28, KAZ - 100017 Karaganda	+7-7212-501000	
Korea	Mitsubishi Electric Automation Korea Co., Ltd	9F Gangseo Hangang xi-tower, 401 Yangcheon-ro, Gangseo-gu, Seoul 07528 Korea	+82-2-3660-9572	
	AROUNKIT CORPORATION			
Lebanon	IMPORT- EXPORT SOLE CO.,LTD Comptoir d'Electricite Generale-Liban	SAPHANMO VILLAGE. SAYSETHA DISTRICT, VIENTIANE CAPITAL, LAOS Cebaco Center - Block A Autostrade Dora, P.O. Box 11-2597 Beirut - Lebanon	+856-20-415899 +961-1-240445	
Lithuania	Rifas UAB	Tinklu 29A, LT-5300 Panevezys, Lithuania	+370 (0)45-582-728	
Malaysia	Mittric Sdn Bhd	No. 5 Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie 40150 Shah Alam, Selangor, Malaysia	+603-5569-3748	
Malta	ALFATRADE LTD	99 PAOLA HILL, PAOLA PLA 1702, Malta	+356 (0)21-697-816	
Maroco	SCHIELE MAROC	KM 7, 2 NOUVELLE ROUTE DE RABAT AIN SEBAA, 20600 Casablanca, Maroco	+212 661 45 15 96	
Mexico	Mitsubishi Electric Automation, Inc.	Mariano Escobedo 69, Col. Zona Industrial, Tlalnepantla, MEX - 54030 - MX	+55-3067-7500	
Myanmar	Peace Myanmar Electric Co.,Ltd.	NO137/139 Botahtaung Pagoda Road, Botahtaung Town Ship 11161, Yangon, Myanmar	+95-(0)1-202589	
Nepal	Watt&Volt House	KHA 2-65, Volt House Dillibazar Post Box:2108, Kathmandu, Nepal	+977-1-4411330	
Netherlands	Imtech Marine & Offshore B.V.	Sluisjesdijk 155, NL-3087 AG Rotterdam, Netherlands	+31 (0)10-487-19 11	
North America	Mitsubishi Electric Automation, Inc.		+847-478-2100	
Norway	Scanelec AS	500 Corporate Woods Parkway, Vernon Hills, IL 60061 USA Leirvikasen 43B, NO-5179 Godvik, Norway	+47 (0)55-506000	
Middle East Arab Countries & Cyprus	Comptoir d'Electricite Generale-International-S.A.L.	Cebaco Center - Block A Autostrade Dora P.O. Box 11-1314 Beirut - Lebanon	+961-1-240430	
	Prince Electric Co.	2-P GULBERG II, LAHORE, 54600, PAKISTAN	+92-42-575232, 5753373	
Pakistan	AL-KAMAL GROUP	OFFICE NO.7&8, 1ST FLOOR, BARKAT ALI KHAN CENTER, 101, CIRCULAR ROAD, LAHORE. PAKISTAN	+92-42-37631632	
Philippines	Edison Electric Integrated, Inc.	24th Fl. Galleria Corporate Center, Edsa Cr. Ortigas Ave., Quezon City Metro Manila, Philippines	+63-(0)2-634-8691	
Poland	Mitsubishi Electric Europe B.V. Polish Branch	Krakowska 50, 32-083 Balice, Poland	+48 (0) 12 630 47 00	
Republic of Moldova	Intehsis SRL	bld. Traian 23/1, MD-2060 Kishinev, Moldova	+373 (0)22-66-4242	
Romania	Sirius Trading & Services SRL	RO-060841 Bucuresti, Sector 6 Aleea Lacul Morii Nr. 3	+40-(0)21-430-40-06	
Russia	Mitsubishi Electric Europe B.V. Moscow Branch	52, bld. 3 Kosmodamianskaya Nab. 115054, Moscow, Russia	+7 495 721-2070	
Saudi Arabia	Center of Electrical Goods	Al-Shuwayer St. Side way of Salahuddin Al-Ayoubi St. P.O. Box 15955 Riyadh 11454 - Saudi Arabia	+966-1-4770149	
Singapore	Mitsubishi Electric Asia Pte. Ltd.	307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	+65-6473-2308	
	PROCONT, Presov	Kupelna 1/, SK - 08001 Presov, Slovakia	+421 (0)51 - 7580 611	
Slovakia	SIMAP	Jana Derku 1671, SK - 91101 Trencin, Slovakia	+421 (0)32 743 04 72	
Slovenia	Inea RBT d.o.o.	Stegne 11, SI-1000 Ljubljana, Slovenia	+386 (0)1-513-8116	
South Africa	CBI-electric: low voltage	Private Bag 2016, ZA-1600 Isando Gauteng, South Africa	+27-(0)11-9282000	
Spain	Mitsubishi Electric Europe B.V. Spanish Branch	Carretera de Rubí 76-80, E-08190 Sant Cugat del Vallés (Barcelona), Spain	+34 (0)93-565-3131	
Sweden	Euro Energy Components AB	Järnvägsgatan 36, S-434 24 Kungsbacka, Sweden	+46 (0)300-690040	
Switzerland	TriElec AG	Muehlentalstrasse 136, CH-8201 Schaffhausen	+41-(0)52-6258425	
Taiwan	Setsuyo Enterprise Co., Ltd	5th Fl., No.105, Wu Kung 3rd, Wu-Ku Hsiang, Taipei, Taiwan, R.O.C.	+886-(0)2-2298-8889	
Thailand	United Trading & Import Co., Ltd.	77/12 Bamrungmuang Road, Klong Mahanak Pomprab Bangkok Thailand	+66-223-4220-3	
Tunisia	MOTRA Electric	3, Résidence Imen, Avenue des Martyrs Mourouj III, 2074 - El Mourouj III Ben Arous, Tunisia	+216-71 474 599	
Turkey	GTS	Bayraktar Bulvarı Nutuk Sok. No:5, Posta Kutusu34384, TR-34775 Yukan Dudullu-Uemraniye, Istanbul, Turkey	+90 (0)216 526 3990	
United Kingdom	Mitsubishi Electric Europe B.V.	Travellers Lane, UK-Hatfield, Herts. AL10 8XB, United Kingdom	+44 (0)1707-276100	
Uruguay	Fierro Vignoli S.A.	Avda. Uruguay 1274 Montevideo Uruguay	+598-2-902-0808	
Venezuela	Adesco S.A.	Calle 7 La Urbina Edificio Los Robles Locales C y D Planta Baja, Caracas - Venezuela	+58-212-241-9952	
	AUGGOU G.A.	Odno 7 La Orbina Lumbio Los Hobies Locales O y D Flanta Daja, Garacas - Venezuela	100-212-241-3302	
VCHCZUCIU	Miteubiehi Electric Vietnem Co. Ltd. U J. Offi	Unit01_04 10th Floor Vincom Contor 70 to Thomb Ton Street District 4 Lts Chi Miss City Vincom	184-8-3010 5045	
Vietnam	Mitsubishi Electric Vietnam Co.,Ltd. Head Office Mitsubishi Electric Vietnam Co.,Ltd. Hanoi Branch	Unit01-04, 10th Floor, Vincom Center, 72 Le Thanh Ton Street, District 1, Ho Chi Minh City, Vietnam 6th Floor, Detech Tower, 8 Ton That Thuyet Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi City,	+84-8-3910-5945 +84-4-3937-8075	

YOUR SOLUTION PARTNER

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries.

This is why you can rely on Mitsubishi Electric automation solution - because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over \$40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

Low voltage: MCCB, MCB, ACB

Medium voltage: VCB, VCC

Power monitoring, energy management

Compact and Modular Controllers

Inverters, Servos and Motors

Visualisation: HMIs

Numerical Control (NC)

Robots: SCARA, Articulated arm

Processing machines: EDM, Lasers, IDS

Transformers, Air conditioning, Photovoltaic systems

^{*} Not all products are available in all countries.

Instrument Transformers

For Safety : Please read the instruction manual carefully before using the products in this catalog. Wiring and connection must be done by the person who has specialized knowledge of electric construction and wirings.

Trademarks

- Microsoft, Windows Vista, Windows XP, Windows7, Excel are U.S. registered trademark in the U.S. of U.S. Microsoft Corporation, and other countries.
- ${}^{\bullet}$ MODBUS $^{\circledR}$ is a registered trademark of Schneider Automation Inc.
- Other company names and product names in this document are trademarks or registered trademarks of their respective owners.

for a greener tomorrow

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN