MITSUBISH ELECTRIC

Programmable Controller MELSEC iQ-F

MELSEC iQ-F
Inverter Control for Automated Warehouses
Function Block Library Reference

SAFETY PRECAUTIONS

(Read these precautions before use.)
Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety in order to handle the product correctly.
This manual classifies the safety precautions into two categories: [$\$$ WARNING] and [$\$ CAUTION].

\triangle WARNING
Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

\triangle CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Depending on the circumstances, procedures indicated by [$\$$ CAUTION] may also cause severe injury.
It is important to follow all precautions for personal safety.
Store this manual in a safe place so that it can be read whenever necessary. Always forward it to the end user.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC iQ-F series programmable controllers.
This manual describes the module function blocks for the relevant products listed below.
It should be read and understood before attempting to install or use the module.
Always forward it to the end user.

Target module

- FX5S CPU module
- FX5UJ CPU module
- FX5U CPU module
- FX5UC CPU modules

Regarding use of this product

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult Mitsubishi Electric.
- This product has been manufactured under strict quality control. However when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Note

- If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is qualified and trained in the local and national standards. If in doubt about the operation or use, please consult the nearest Mitsubishi Electric representative.
- Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.
- This manual content, specification etc. may be changed, without a notice, for improvement.
- The information in this manual has been carefully checked and is believed to be accurate; however, if you notice a doubtful point, an error, etc., please consult your local Mitsubishi Electric representative. When doing so, please provide the manual number given at the end of this manual.

CONTENTS

SAFETY PRECAUTIONS 1
NTRODUCTION 2
RELEVANT MANUALS 6
TERMS 7
GENERIC TERMS AND ABBREVIATIONS 7
CHAPTER 1 OVERVIEW 8
1.1 Features 8
Application example 8
1.2 List of FB Libraries 9
1.3 System Configuration 10
CHAPTER 2 SPECIFICATIONS 12
2.1 FB Library Specifications 12
Project performance values 12
2.2 FB Library Correlations 13
2.3 FB Library Configuration Example 16
2.4 List of Global Labels 17
2.5 List of Structures 18
2.6 Link Devices 19
2.7 Parameter Settings 21
CC-Link IE Field Network Basic settings 21
Setting for communication with distance meters 24
Predefined protocol support function setting 27
Inverter parameter setting 29
Distance meter setting 31
2.8 Precautions 32
CHAPTER 3 DETAILS of FB LIBRARIES 33
3.1 M+AWH_PosVelGen_F (Positioning Operation Command Generation) 33
Overview 33
Labels 33
Function details 35
Parameter settings 44
Performance values 44
Error code 44
3.2 M+AWH_PIDControl_F (PID Control). 45
Overview 45
Labels 45
Function details 46
Parameter settings 48
Performance values 48
Error code 48
3.3 M+AWH_VeIConv_F (Frequency Conversion) 49
Overview 49
Labels 49
Function details 50
Parameter settings 52
Performance values 52
Error code 52
3.4 M+AWH_MotorSwitch_F (Motor Switching Control) 53
Overview 53
Labels 53
Function details 55
Parameter settings 58
Performance values 58
Error code 58
3.5 M+AWH_AntiSwayControl_F (Anti-sway Control) 59
Overview 59
Labels 59
Function details 60
Parameter settings 62
Performance values 62
Error code 62
$3.6 \mathrm{M}+$ AWH_FREQROL_CCLinkIEFBasic_F (Inverter Communication) 63
Overview 63
Labels 63
Function details 65
Parameter settings 69
Performance values 69
Error code 69
$3.7 \quad$ M+AWH_ScaleIF_SerialComm_F (Distance Measurement: Serial) 70
Overview 70
Labels 70
Function details 72
Parameter settings 76
Performance values 76
Error code 76
3.8 M+AWH_ScaleIF_EN_F (Distance Measurement: Ethernet) 77
Overview 77
Labels 77
Function details 78
Parameter settings 82
Performance values 82
Error code 82
$3.9 \quad \mathbf{M}+A W H _D e c D i s t a n c e _F$ (Deceleration Distance Calculation) 83
Overview 83
Function details 83
CHAPTER 4 OPERATION EXAMPLES 84
4.1 Positioning Operation with Distance Meters (Serial Communication). 84
Overview 85
Process flow 87
Wiring 88
Programming 88
4.2 Positioning Operation with Distance Meters (Ethernet Communication) 93
Overview 93
Process flow 94
Programming 95
4.3 Operation Examples of General-Purpose Distance Meters. 100
Process flow 100
FB library registration and duplication 101
Distance meter setting 102
Predefined protocol support function setting 102
Programming 104
APPENDIX 109
Appendix 1 When the FR-A800 Series Is Used 109
Link devices 109
Inverter parameter 110
INSTRUCTION INDEX 113
REVISIONS 115
TRADEMARKS 116

RELEVANT MANUALS

Programmable controller

-Hardware, maintenance and inspection

Manual name <manual number>	Description
MELSEC iQ-F FX5S/FX5UJ/FX5U/FX5UC User's Manual (Hardware) <SH-082452ENG>	Hardware of the CPU module, including I/O specifications, wiring, installation, and maintenance

■ Function

Manual name <manual number>	Description
MELSEC iQ-F FX5 User's Manual (Application) <JY997D55401>	Basic knowledge about programming, functions of the CPU module, devices/labels, and parameter settings
MELSEC iQ-F FX5 User's Manual (Communication) <SH-082625ENG>	Describes the communication function of the built-in CPU module and the Ethernet module.
CC-Link IE Field Network Basic Reference Manual <SH-081684ENG>	Specifications, procedures before operation, system configuration, programming, functions, parameter settings, and troubleshooting of CC-Link IE Field Network Basic

- Programming

Manual name <manual number>	Description
MELSEC iQ-F FX5 Programming Manual (Program Design) <JY997D55701>	Program specifications (ladder, ST, FBD/LD, and SFC programs) and labels
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks) <JY997D55801>	Specifications of the instructions and functions that can be used in programs

Software

Manual name <manual number>	Description
GX Works3 Operating Manual <SH-081215ENG>	Explanation of system configuration, parameter settings, and online operations of GX Works3

Inverter

Manual name <manual number>	Description
FR-A800-E Instruction Manual (Startup) <IB-0600626>	Handling information and precautions for use of the inverters
FR-A800 Instruction Manual (Detailed) <IB-0600503ENG>	Explanation of specifications, function list, and maintenance and inspection of the inverters
Ethernet Function Manual <lB-0600628ENG>	Explanation of Ethernet function of the inverters
FR-E800 Instruction Manual (Connection) <IB-0600865ENG>	Explanation of installation and wiring of the inverters
FR-E800 Instruction Manual (Function) <IB-0600868ENG>	Explanation of specifications and function list of the inverters
FR-E800 Instruction Manual (Communication) <IB-0600871ENG>	Explanation of communication specifications of the inverters
FR Configurator2 Instruction Manual <IB-0600516ENG>	Explanation of system configuration, parameter settings, and online operations of FR Configurator2

Distance meter

For the following manuals, please consult the manufacturers of the distance meters.

Manual name
AMS308i Operating instructions
DL100 Operating instructions (manual product number: 8014753)

DL100 Operating instructions (manual product number: 8014753)

TERMS

Unless otherwise specified, this manual uses the following terms.

Term	Description
CC-Link IE Field Network Basic	CC-Link IE Field Network Basic is an FA network using the standard Ethernet. Data are communicated periodically (cyclic transmission) between the master station and remote stations using link devices.
Cyclic transmission	A function by which data are periodically exchanged among stations on the same network using link devices (RX, RY, RWw, and RWr)
Distance meter	A sensor that can measure a distance of the range from hundreds of millimeters to tens of meters. Various types of the sensors are available and users can choose it according to the measurement method or the output method for distance data.
Engineering tool	A tool used for setting up programmable controllers, programming, debugging, and maintenance
Link device	A device (RX, RY, RWr, or RWw) in a CPU module for the purpose of communicating with remote stations
Link refresh	Processing of data transfer between link devices of the network module and CPU module devices. Link refresh is performed in "END processing" of the sequence scan of the CPU module.
Master station	A station that controls the entire CC-Link IE Field Network Basic. Only one master station can be used in a network.
Positioning control	Control that moves a stacker crane used for conveyance to a target position (stop position) by using distance meters.
Remote station	A station that performs cyclic transmission with the master station on CC-Link IE Field Network Basic. This station exchanges I/O signals in units of bits and I/O data in units of words.
Stacker crane	A conveyer that stores and retrieves goods in a swift and reliable manner by controlling the following three axes: lift axis for making the loading platform go up and down; fork axis for transferring goods to the rack; travel axis for moving the wheeled platform.

GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

Generic term/abbreviation	Description
FB	An abbreviation for "Function Block". A function block is created from a ladder block repeatedly used in a sequence program so that it can be used as a component in a sequence program. Using FBs helps to develop programs more efficiently, reduce mistakes, and improve quality of programs.
FR-A800/FR-E800	A generic term for Mitsubishi Electric general-purpose inverter FR-A800 series, FR-A800 Plus series, and FR-E800 series
FX5 CPU module	A generic term for FX5S CPU module, FX5UJ CPU module, FX5U CPU module, and FX5UC CPU module
Pr.	Parameter number (Number assigned to function of inverter)

The function blocks in this reference manual mean the FB libraries for controlling stacker cranes used for conveyance in automated warehouses by connecting a MELSEC iQ-F series programmable controller and FR-A800/FR-E800 series inverters via CC-Link IE Field Network Basic.

1.1 Features

This section describes the features of this function.

Positioning control via CC-Link IE Field Network Basic communications

This function calculates the speed command from a deviation between the positioning control position command (target position) and the distance meter feedback position (current position) to perform the full-close positioning control that uses inverters and CC-Link IE Field Network Basic communications.

Flexible system design

The flexible system design can be realized by combining the (charge-free) FB libraries optimized for logistics conveyance and users' own programs (such as saving the operation history).

Application example

The following figure shows an application example of this system to stacker crane equipment. The system uses three motors and performs positioning control with FBs.

1.2 List of FB Libraries

The following table lists the FB libraries in this reference manual.

To use these FB libraries, set the parameters using the engineering tool. (以 Page 21 Parameter Settings)
O: Required, 一: Not required

Name	Description	Parameter setting
M+AWH_PosVelGen_F (positioning operation command generation)	Generates speed and position commands for controlling positioning to the target position.	O
M+AWH_PIDControl_F (PID control)	Performs position deviation correction during positioning control.	O
M+AWH_VelConv_F (frequency conversion)	Converts the speed command (m/s) to the set frequency (Hz).	O
M+AWH_MotorSwitch_F (motor switching control)	Switches commands to the inverter when one inverter operates two motors by selecting and switching a motor to be operated.	O
M+AWH_AntiSwayControl_F (anti-sway control)	Applies the notch filter to the position command to suppress swinging at positioning stop.	O
M+AWH_FREQROL_CCLinkIEFBasic_F (inverter communication)	Controls and monitors the inverters connected to CC-Link IE Field Network Basic.	O
M+AWH_ScaleIF_SerialComm_F (distance measurement: serial)	Performs serial communication with distance meters and gives feedback about distance measurement values.	O
M+AWH_ScalelF_EN_F (distance measurement: Ethernet)	Performs Ethernet communication with distance meters and gives feedback about distance measurement values.	O
M+AWH_DecDistance_F (deceleration distance calculation)	Calculates a distance required for deceleration stop during positioning control.	-

For these FB libraries, please consult your local Mitsubishi representative.
For the FB library registration method, refer to the following.
$\square]$ GX Works3 Operating Manual

1.3 System Configuration

The following figures show examples of system configuration for using the FB libraries in this reference manual.

When a serial communication compatible distance meter is used

- Line topology

- Star topology

No.	Device		Description
(1)	FX5 CPU module	Built-in Ethernet port	Used for connection with an inverter. Communication method: CC-Link IE Field Network Basic
		Built-in RS-485 port	Used for connection with a distance meter. Communication method: Serial communication through the predefined protocol support function (two channels maximum)
		FX5-485-BD	
		FX5-485ADP	
(2)	Inverter	FR-E800 series	CC-Link IE Field Network Basic communication compatible model Star topology and line topology are available.
		FR-A800 series	CC-Link IE Field Network Basic communication compatible model Star topology is available.
		FR-A8AP / FR-A8AP E kit	Vector control compatible option for FR-A800 and FR-E800
(3)	Distance meter	DL100 Pro (SICK AG) Distance meters other than above	Serial communication (RS-485 or RS-422) compatible models For the procedure of using general-purpose distance meters, refer to the following. \longmapsto Page 100 Operation Examples of General-Purpose Distance Meters
(4)	Switching hub	-	Used for connection with an inverter (for star topology). Communication method: CC-Link IE Field Network Basic

When an Ethernet communication compatible distance meter is used

- Line topology

(2)

$\Gamma^{(4)}$
${ }^{(4)}$
- Star topology

No.	Device		Description
(1)	FX5 CPU module	Built-in Ethernet port	Used for connection with a switching hub.
(2)	Switching hub	-	Used for connection with an inverter. Communication method: CC-Link IE Field Network Basic
		Used for connection with a distance meter. Communication method: Ethernet (predefined protocol: UDP)	
(3)	Inverter	FR-E800 series	CC-Link IE Field Network Basic communication compatible model Star topology and line topology are available.
		FR-A800 series	CC-Link IE Field Network Basic communication compatible model Star topology is available.
		FR-A8AP / FR-A8AP E kit	Vector control compatible option for FR-A800 and FR-E800

This chapter describes the common specifications of the FB libraries in this reference manual.

2.1 FB Library Specifications

The following table shows specifications of the FB libraries in this reference manual.

Item	Description	
Ethernet-equipped module	FX5 CPU module (Use the built-in Ethernet port.)	
Inverter	FR-A800, FR-E800 (CC-Link IE Field Network Basic compatible device)	
Communication type	CC-Link IE Field Network Basic Predefined protocol support function (serial/Ethernet)	
Topology	Star topology or line topology (supported by only FR-E800)	
Maximum number of connected inverters	2	2
Maximum number of connected distance meters	DL100 Pro (SICK AG)	3
	AMS308i (Leuze)	8 (64 maximum)
Number of registered protocols (in the predefined protocol support function)	DL100 Pro (SICK AG)	6 (64 maximum)
	AMS308i (Leuze)	
Number of steps in a project	13.56 K steps	
Label capacity of a project	1.44 K points [Word]	
Latch label capacity of a project	0K points [Word]	

Project performance values

The following tables list the performance values in the project data of the FB libraries.

Positioning operation with distance meters (serial communication) (2-axis)

Project performance value ${ }^{* 1 * 2^{* 3}}$	Minimum scan time (ms)	1.161
	Maximum scan time (ms)	2.86
	Maximum link scan time (ms)	69.522

*1 These values are performance values for the program described below.
\longmapsto Page 84 Positioning Operation with Distance Meters (Serial Communication)
*2 When the program capacity is set to 128 K steps, the processing speed may become slow.
*3 The standard area is used for labels.

Positioning operation with distance meters (Ethernet communication) (3-axis)

Project performance value ${ }^{* 1^{*} 2^{*} 3}$	Minimum scan time (ms)	0.951
	Maximum scan time (ms)	3.015
	Maximum link scan time (ms)	92.977

*1 These values are performance values for the program described below.
\longmapsto Page 93 Positioning Operation with Distance Meters (Ethernet Communication)
*2 When the program capacity is set to 128 K steps, the processing speed may become slow.
*3 The standard area is used for labels.

2.2 FB Library Correlations

The FB libraries process data between the FX5 CPU module and an inverter and between the FX5 CPU module and a distance meter.

The following figure shows the correlations of the FB libraries.
Between the FX5 CPU module and an inverter

(1) User-created program processing
(a) Data processing by user
(2) FB processing
(b) Data processing by FB
(3) Global label definition (device assignment) ${ }^{* 1}$
(c) Data processing performed by other than users and FB
(4) Link refresh ${ }^{* 2}$
(5) CC-Link IE Field Network Basic
*1 For details on the setting method, refer to the following.
\leftrightarrows Page 23 Global label settings
*2 For details on the setting method, refer to the following.
\hbar Page 23 Refresh parameter settings

Between the FX5 CPU module and a distance meter

חSerial communication compatible distance meter

(1) User-created program processing
(a) Data processing by user
(2) FB processing
(3) Global label definition (device assignment) ${ }^{* 1}$
(b) Data processing by FB
(4) Serial communication (predefined protocol support function) ${ }^{* 2}$
*1 For details on the setting method, refer to the following \hbar Page 23 Global label settings
*2 For details on the setting method, refer to the following โ 5 Page 24 Serial communication (built-in RS-485 port) \checkmark Page 25 Serial communication (FX5-485-BD or FX5-485ADP)

■Ethernet communication compatible distance meter

(1) User-created program processing
(a) Data processing by user
(b) Data processing by FB
(c) Data processing performed by other than users and FB
(3) Global label definition (device assignment) ${ }^{* 1}$
(4) Ethernet communication (predefined protocol support function) ${ }^{*}$ 2
*1 For details on the setting method, refer to the following W Page 23 Global label settings
*2 For details on the setting method, refer to the following. \leftrightarrows Page 26 Ethernet communication

2.3 FB Library Configuration Example

The following figure shows an FB configuration example of using the FB libraries to control the stacker cranes.

Point/

- Use M+AWH_AntiSwayControl_F (anti-sway control) and M+AWH_MotorSwitch_F (motor switching control) according to the user's system and the expected operation.
- A different FB is used depending on the distance meter's communication type.

Serial communication: $M+A W H$ _ScaleIF_SerialComm_F (distance measurement: serial)
Ethernet communication: M+AWH_ScaleIF_EN_F (distance measurement: Ethernet)

- The position command that is created by M+AWH_PosVelGen_F (positioning operation command generation) is used for speed command correction.

2.4 List of Global Labels

The following table lists the global labels used for the FB libraries.

Name	Description
M+AWH_INV_IF	Used for storing link device information transferred through communication with inverters.
M+AWH_ScalelF	Used for storing current position information received through communication with distance meters.

M+AWH_INV_IF

Label name	Name	Data type	Class	Description
G_bRX $^{* 1}$	Remote input (RX)	Bit	VAR_GLOBAL	Stores a remote input (RX) value.
G_bRY $^{* 1}$	Remote output $(R Y)$	Bit	VAR_GLOBAL	Stores a remote output (RY) value.
G_wRWr $^{* 1}$	Remote register (RWr)	Word [signed]	VAR_GLOBAL	Stores a remote register (RWr) value.
G_wRWw ${ }^{* 1}$	Remote register (RWw)	Word [signed]	VAR_GLOBAL	Stores a remote register (RWw) value.

*1 This global label adds an index register to assignments. For details, refer to the following.
\longmapsto Page 21 Parameter Settings

M+AWH_ScaleIF

Label name	Name	Data type	Class	Description
G_d3CurrentPos $^{* 1}$	Current position	Double word [signed] (0..2)	VAR_GLOBAL	Stores the current position [m] measured by the distance meter. G_d3CurrentPos[0]: Travel axis G_d3CurrentPos[1]: Lift axis G_d3CurrentPos[2]: Fork axis ${ }^{* 2}$
G_w3SensorStatus ${ }^{* 1}$	Distance meter status	Word [signed] (0..2)	VAR_GLOBAL	Stores the distance meter status (error information). G_w3SensorStatus[0]: Travel axis G_w3SensorStatus[1]: Lift axis
G_w3SensorStatus[2]: Fork axis ${ }^{* 2}$				

*1 This global label adds an index register to assignments. For details, refer to the following.
\longmapsto Page 21 Parameter Settings
*2 Used for M+AWH_ScaleIF_EN_F (distance measurement: Ethernet).

2.5 List of Structures

The following table lists the structures used for the FB libraries.

Name	Description
PID_PR	Set proportional gain, integral time, and others for PID control.

PID_PR (PID setting)

Label name	Name	Data type	Setting range	Description
eKp	Proportional gain	Single-precision real number	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 150.000000	Set the proportional gain [sec^{-1}].
eTi	Integral time	Single-precision real number	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 10.000000	Set the integral time [s]. When the integral control enabled is on, set a value larger than 0 .
eTd	Differential time	Single-precision real number	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 10.000000	Set the differential time [s].
eDeadBand	Dead band setting	Single-precision real number	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Set the dead band [m].
eHighLimit	Output upper limit	Single-precision real number	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 10.000000	Set the compensation speed output upper limit [$\mathrm{m} / \mathrm{s} \mathrm{s}$.
eLowLimit	Output lower limit	Single-precision real number	$\begin{aligned} & \cdot-10.000000 \text { to }-2^{-126}(-1.175494 \mathrm{E}-38) \\ & -0.000000 \end{aligned}$	Set the compensation speed output lower limit [$\mathrm{m} / \mathrm{s} \mathrm{s}$.
eDeviationOver	Excessive error level	Single-precision real number	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Set the allowable range of the position deviation [m] for excessive error detection.
bPrelease	Proportional control enabled	Bit	On, Off	Set whether to enable the proportional control. - On: Enabled - Off: Disabled
blrelease	Integral control enabled	Bit	On, Off	Set whether to enable the integral control. - On: Enabled - Off: Disabled
bDrelease	Differential control enabled	Bit	On, Off	Set whether to enable the differential control. - On: Enabled - Off: Disabled
blntInit	Integral initialization	Bit	On, Off	Set whether to reset the integral control manipulated amount. - On: Reset - Off: Do not reset
bintFreeze	Integral held	Bit	On, Off	Set whether to hold the integral control manipulated amount. - On: Hold - Off: Do not hold

2.6 Link Devices

The following tables list the link devices accessed using the FB libraries.
The letter " n " in a device number represents a value determined by the station number.

Point ρ

The tables show the link devices for using the FR-E800 series.
When using the FR-A800 series, refer to the following.
\longmapsto Page 109 When the FR-A800 Series Is Used

RYn/RXn mapping

O : Can be changed, \times : Cannot be changed

Master station to Inverter (RYn)			Inverter to Master station (RXn)		
Device No.	Device name	Mapping	Device No.	Device name	Mapping
RYn0	Forward rotation command	\times	RXn0	Forward running	\times
RYn1	Reverse rotation command	\times	RXn1	Reverse running	\times
RYn2	High-speed operation command (terminal RH function)	\bigcirc	RXn2	Running (terminal RUN function)	\times
RYn3	Middle-speed operation command (terminal RM function)	\bigcirc	RXn3	Up to frequency	\times
RYn4	Low-speed operation command (terminal RL function)	\bigcirc	RXn4	Overload warning	\times
RYn5	JOG operation selection 2	\times	RXn5	Pr. 193 assignment function (NET Y1)	\bigcirc
RYn6	Second function selection	\times	RXn6	Frequency detection (terminal FU function)	\times
RYn7	Current input selection	\times	RXn7	Fault (terminal ABC function)	\times
RYn8	Pr. 185 assignment function (NET X1)	\bigcirc	RXn8	Pr. 194 assignment function (NET Y2)	\bigcirc
RYn9	Output stop (terminal MRS function)	\times	RXn9	Pr. 313 assignment function (DO0)	\bigcirc
RYnA	Pr. 186 assignment function (NET X2)	\bigcirc	RXnA	Pr. 314 assignment function (DO1)	\bigcirc
RYnB	Pr. 184 assignment function (RES)	\bigcirc	RXnB	Pr. 315 assignment function (DO2)	\bigcirc
RYnC	Monitor command	\times	RXnC	Monitoring	\times
RYnD	Frequency setting command (RAM)	\times	RXnD	Frequency setting completion (RAM)	\times
RYnE	Frequency setting command (RAM, E2PROM)	\times	RXnE	Frequency setting completion (RAM, E2PROM)	\times
RYnF	Instruction code execution request	\times	RXnF	Instruction code execution completion	\times
$\begin{aligned} & \mathrm{RY}(\mathrm{n}+1) 0 \text { to } \\ & \mathrm{RY}(\mathrm{n}+1) 7 \end{aligned}$	Reserved	\times	$\begin{aligned} & R X(n+1) 0 \text { to } \\ & R X(n+1) 5 \end{aligned}$	Reserved	\times
			$\mathrm{RX}(\mathrm{n}+1) 6$	Pr. 195 assignment function (NET Y3)	\bigcirc
			$\mathrm{RX}(\mathrm{n}+1) 7$	Pr. 196 assignment function (NET Y4)	\bigcirc
$\mathrm{RY}(\mathrm{n}+1) 8$	Not used (initial data process completion flag)	\times	$\mathrm{RX}(\mathrm{n}+1) 8$	Not used (initial data process completion flag)	\times
$\mathrm{RY}(\mathrm{n}+1) 9$			$\mathrm{RX}(\mathrm{n}+1) 9$		
$\mathrm{RY}(\mathrm{n}+1) \mathrm{A}$	Error reset request flag	\times	$\mathrm{RX}(\mathrm{n}+1) \mathrm{A}$	Error status flag	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{B}$	Pr. 187 assignment function (NET X3)	\bigcirc	$\mathrm{RX}(\mathrm{n}+1) \mathrm{B}$	Remote station ready	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{C}$	Pr. 188 assignment function (NET X4)	\bigcirc	$\mathrm{RX}(\mathrm{n}+1) \mathrm{C}$	Positioning completed	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{D}$	Pr. 189 assignment function (NET X5)	\bigcirc	$\mathrm{RX}(\mathrm{n}+1) \mathrm{D}$	During position command operation	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{E}$	Reserved	\times	$\mathrm{RX}(\mathrm{n}+1) \mathrm{E}$	Home position return completed	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{F}$	Reserved	\times	$\mathrm{RX}(\mathrm{n}+1) \mathrm{F}$	Home position return failure	\times

RWw/RWr mapping

\bigcirc : Can be changed, \times : Cannot be changed

Master station to Inverter (RWwn)*1				Inverter to Master station (RWrn)**		
Device No.	Device name		Mapping	Device No.	Device name	Mapping
	Upper 8 bits	Lower 8 bits				
RWwn0	Monitor code 2	Monitor code 1	\times	RWrn0	First monitor value	\times
RWwn1	Set frequency (0.01 Hz increments)/Torque command		\times	RWrn1	Second monitor value	\times
RWwn2	H00	Instruction code	\bigcirc	RWrn2	Reply code	\bigcirc
RWwn3	Data to be written		\bigcirc	RWrn3	Data to be read	\bigcirc

*1 The list shows the devices when Pr. 544 is set to " 0 " (compatible with CC-Link Ver.1). For link devices when Pr. 544 is not set to " 0 ", refer to the manuals for the inverters used.

2.7 Parameter Settings

The following describes the parameter settings for using these FB libraries.

CC-Link IE Field Network Basic settings

Use GX Works3 to configure settings to connect the FX5 CPU module and inverters via CC-Link IE Field Network Basic.
The following example shows a system configuration where the FX5U CPU module and two FR-E800-E inverters (station No. 1 and station No.2) are connected.

(1) Serial communication adapter + FX5U CPU module (station number 0, master station)
(2) FR-E800-E (station number 1, axis 1 (travel axis))
(3) FR-E800-E (station number 2, axis 2 (lift axis))

- Link device and global label (M+AWH_INV_IF) assignment examples

Station No.	Link device (RX)	Refresh target device (X)	Global label (bRX)
1	RX0 to RX3F	X1000 to X1077	G_bRX[0] to G_bRX[63]
2	RX40 to RX7F	X1100 to X1177	G_bRX[64] to G_bRX[127]
Station No.	Link device (RY)	Refresh target device (Y)	Global label (bRY)
1	RY0 to RY3F	Y1000 to Y1077	G_bRY[0] to G_bRY[63]
2	RY40 to RY7F	Y1100 to Y1177	G_bRY[64] to G_bRY[127]
Station No.	Link device (RWr)	Refresh target device (W)	Global label (wRWr)
1	RWr0 to RWr1F	W0 to W1F	G_wRWr[0] to G_wRWr[31]
2	RWr20 to RWr3F	W20 to W3F	G_wRWr[32] to G_wRWr[63]
Station No.	Link device (RWw)	Refresh target device (W)	Global label (wRWw)
1	RWw00 to RWw1F	W40 to W5F	G_wRWw[0] to G_wRWw[31]
2	RWw20 to RWw3F	W60 to W7F	G_wRWw[32] to G_wRWw[63]

Network configuration settings

1. Open the Ethernet port setting window.

5 [Navigation window] \Rightarrow [Parameter] \Rightarrow CPU module \Rightarrow [Module Parameter] \Rightarrow [Ethernet port]
2. Set the IP address and subnet mask of the programmable controller.

8
[Basic Setting] \Rightarrow [Own Node Settings] \Rightarrow [IP Address]

Setting Item	
Item	Setting
Own Node SettingsIP Address	
- IP Address	192.168.3.250
- Subnet Mask	255.255 .255 .0
--. Default Gateway	. . .
- Communication Data Code	Binary

3. Set [To Use or Not to Use CC-Link IEF Basic Setting] to "Enable".[Basic Settings] \Rightarrow [CC-Link IEF Basic Setting] \Rightarrow [To Use or Not to Use CC-Link IEF Basic Setting]

Setting Item	
Item	Setting
\square CC-Link IEF Basic Settings	
- To Use or Not to Use CC-Link IEF Basic Setting	Use
- Network Configuration Settings	<Detailed Setting>
- Refresh Settings	<Detailed Setting>

4. Open the network configuration window.

7 [CC-Link IEF Basic Setting] \Rightarrow [Network Configuration Settings] \Rightarrow <Detailed Settings>
5. Add FR-E800-E inverters.

Select FR-E800-E inverters in "Module List", and drag and drop them to the network map or the list of stations.
6. Set the IP address of each station.

Restriction

Set the target stations (inverters) to be controlled by this FB library left-aligned. If the target stations are set with another station put in between, FB cannot access link devices correctly and fails to operate correctly.

Refresh parameter settings

1. Open the Ethernet port setting window.
© [Navigation window] \Rightarrow [Parameter] \Rightarrow CPU module \Rightarrow [Module Parameter] \Rightarrow [Ethernet port]
2. Open the refresh setting window.
[Basic Settings] \Rightarrow [CC-Link IEF Basic Setting] \Rightarrow [Refresh Settings] \Rightarrow <Detailed Settings>

3. Specify the devices to be assigned to $R X / R Y$ and $R W w / R W r$. The following shows a setting example.

Remote station 1	Remote station 2
- RX0 to RX3F \Leftrightarrow X1000 to X1077 (128 points)	- RX0 to $\mathrm{RX} 3 \mathrm{~F} \Leftrightarrow \mathrm{X} 1100$ to X1177 (128 points)
- RY0 to RY3F \Leftrightarrow Y1000 to Y1077 (128 points)	- RY0 to RY3F \Leftrightarrow Y1100 to Y1177 (128 points)
- RWr0 to RWr1F \Leftrightarrow W0 to W1F (64 points)	- RWr0 to RWr1F \Leftrightarrow W20 to W3F (64 points)
- RWw0 to RWw1F \Leftrightarrow W40 to W5F (64 points)	- RWw0 to RWw1F \Leftrightarrow W60 to W7F (64 points)

Global label settings

To enable the FB of M+AWH_FREQROL_CCLinkIEFBasic_F, add the index register $Z 9$ to devices assigned in the refresh settings and set the devices to the global labels ($\mathrm{M}+\mathrm{AWH}$ _INV_IF).

- Setting example: (G_bRX: X1000Z9, G_bRY: Y1000Z9, G_wRWr: W0Z9, G_wRWw: W40Z9)

Point ${ }^{\rho}$

- To change the assignment (devices/labels) with the global labels, users need to copy them and change them. (\leftrightarrows Page 101 FB library registration and duplication)
- To input data by users, the users need to enter the label name, data type, class, and assignment (device/ label) for each item. (5 Page 17 List of Global Labels)

Setting for communication with distance meters

Use GX Works3 to configure settings for the FX5 CPU module to communicate with distance meters.
Separately, set the distance meters according to the configuration.

Global label settings (common to Ethernet communication and serial communication)

Set the following global labels and assign the file register to enable the FBs of M+AWH_ScaleIF_SerialComm_F and M+AWH_ScaleIF_EN_F.

Point ${ }^{\rho}$

- To change the assignment (devices/labels) with the global labels, users need to copy them and change them. (\hookleftarrow Page 101 FB library registration and duplication)
- To input data by users, the users need to enter the label name, data type, class, and assignment (device/ label) for each item. (\Im Page 17 List of Global Labels)

Serial communication (built-in RS-485 port)

CPU module: FX5U/FX5UC CPU module

1. Open the 485 serial port settings.

5 [Navigation window] \Rightarrow [Parameter] \Rightarrow CPU module \Rightarrow [Module Parameter] \Rightarrow [485 Serial Port]
2. Set "Communication Protocol Type" to "Predefined Protocol Support Function".
[Basic Setting] \Rightarrow [Communication Protocol Type]

3. Set Data Length, Parity, Stop Bit, and Baud Rate according to the distance meter to be used. The following shows a setting example.
[Basic Setting] \Rightarrow [Detailed Setting]

Setting Item		Setting
\square Advanced Settings	Set detailed setting.	
Data Length	Sbit	
Parity Bit	Even	
Stop Bit	1 bit	
Baud Rate	$115,200 \mathrm{bps}$	\checkmark

Serial communication (FX5-485-BD or FX5-485ADP)

CPU module: FX5S/FX5UJ/FX5U/FX5UC CPU module* ${ }^{*}$
*1 The FX5UC CPU module does not support FX5-485-BD.

1. Open the "Module Configuration" window.[Navigation window] \Rightarrow [Module Configuration]
2. Mount the communication adapter on the CPU module. (Drag and drop the communication adapter to be used to the side of the CPU module.)[Element Selection window] \Rightarrow [Communication Adapter]

3. Set the parameters.
(Edit] \Rightarrow [Parameter] \Rightarrow [Fix]
4. Check the parameters.
[Tool] \Rightarrow [Check Parameter]
5. Open the module parameter setting window of the added module.
[Navigation window] \Rightarrow [Parameter] \Rightarrow [Module Information] \Rightarrow [FX5-485ADP]
6. Set "Communication Protocol Type" to "Predefined Protocol Support Function".
(Basic Setting] \Rightarrow [Communication Protocol Type]

| Setting Item |
| :---: | :---: | :---: |
| Item Setting
 \square Communication Protocol Type Set communication protocol type.
 Communication Protocol Type Predefined Protocol Support Function \checkmark |

7. Set Data Length, Parity, Stop Bit, and Baud Rate according to the distance meter to be used. The following shows a setting example.[Basic Setting] \Rightarrow [Detailed Setting]

Setting Item		
Item	Setting	\wedge
\square Advanced Seltings	Set detailed setting.	
--. Data Length	8 bit	
-.- Parity Bit	Even	
- Stop Bit	1 bit	
- Baud Rate	115,200bps	\checkmark

Ethernet communication

1. Open the External Device Configuration of the Ethernet port.
[Navigation window] \Rightarrow [Parameter $] \Rightarrow$ CPU module \Rightarrow [Module Parameter $] \Rightarrow$ [Ethernet Port $]$ [Basic Settings] \Rightarrow [External Device Configuration] \Rightarrow <Detailed Setting>
2. Select the external device in "Module List", and drag and drop it to the network map or the list of connected devices to add the distance meter.
3. Set "Communication Method" to "Predefined Protocol" and set the IP address and port number according to the distance meter to be used. The following shows a setting example.

Point P

Port numbers 1 to 1023 are typically reserved port numbers (WELL KNOWN PORT NUMBERS) and 61440 to 65534 are used by other communication functions, so it is recommended to use 1024 to 5548 or 5570 to 61439 for the own station port numbers.

Predefined protocol support function setting

Use GX Works3 to set predefined protocols to establish communication with distance meters.
For details on the setting method, refer to any of the following according to the distance meter communication method.
For details on the serial communication, refer to the following.
[$]$ MELSEC iQ-F FX5 User's Manual (Communication)
For details on the Ethernet communication, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)
The following section describes how to use the protocol setting data provided with the FB libraries and their precautions.

Serial communication

Use the protocol setting data "fb-awhfreqrol_SerialComm.rpx". This protocol setting data enables serial communication with DL100 Pro (SICK AG) distance meters.

1. Register the protocol setting data "fb-awhfreqrol_SerialComm.rpx" to the CPU module.

For details on the protocol setting data registration method, refer to the following.
[]] MELSEC iQ-F FX5 User's Manual (Communication)
2. The protocol setting data is registered.

- If an additional protocol for communications with another device needs to be registered with this protocol setting data, add the protocol to the top or bottom of the existing protocol settings. (For protocol settings that are configured with existing protocol numbers 1 to 8 , ensure that their protocol numbers appear consecutively.)
- This protocol setting data uses file register areas R32700 to R32708 to enable various communications with distance meters through the predefined protocol support function.

Ethernet communication

Use the protocol setting data "fb-awhfreqrol_EN.tpx". This protocol setting data enables Ethernet communication with AMS308i (Leuze) distance meters.

1. Register the protocol setting data "fb-awhfreqrol_EN.tpx" to the CPU module.

For details on the protocol setting data registration method, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)
2. The protocol setting data is registered.

Point ${ }^{\rho}$

- If an additional protocol for communications with another device needs to be registered with this protocol setting data, add the protocol to the top or bottom of the existing protocol settings. (For protocol settings that are configured with existing protocol numbers 1 to 6 , ensure that their protocol numbers appear consecutively.)
- This protocol setting data uses file register areas R32700 to R32708 to enable various communications with distance meters through the predefined protocol support function.

Inverter parameter setting

Use FR Configurator2 to set the inverter parameters (FR-E800 series).
For the parameter settings for the FR-A800 series, refer to the following.
\longmapsto Page 109 When the FR-A800 Series Is Used
The setting value is an example for use with a sample program.

Point 9

For details on parameters, refer to the manuals for the inverters used.
For details on how to use FR Configurator2, refer to the following.
[]FR Configurator2 Instruction Manual

Inverter parameter				Description
No.	Name	Initial value	Setting value	
7	Acceleration time ${ }^{* 1}$	5	0	As the operation pattern is generated using an FB, set the acceleration/deceleration time to 0 for the inverter.
8	Deceleration time ${ }^{* 1}$	5	0	
9	Electronic thermal O/L relay	Inverter rated current	2.55	Set the rated motor current. Set the parameter in accordance with specifications of the motor used.
13	Starting frequency**	0.5	0	As the operation pattern is generated using an FB, set the starting frequency to 0 for the inverter.
18	High speed maximum frequency ${ }^{* 1}$	120	200	Set the maximum output frequency to 200 Hz .
45	Second deceleration time	9999	1	Used for motor switching for the travel/fork axis by "M+AWH_MotorSwitch_F". Set the parameters in accordance with specifications of the motor used.
46	Second torque boost	9999	1	
47	Second V/F (base frequency)	9999	60	
48	Second stall prevention operation level	9999	150	
51	Second electronic thermal O/L relay / Rated second motor current	9999	0.68	
71	Applied motor	0	23	Set the parameters to change the control method to Vector control. Set the parameters in accordance with specifications of the motor used.
80	Motor capacity	9999	0.4	
81	Number of motor poles	9999	4	
83	Rated motor voltage	200/400/575	200	
84	Rated motor frequency	9999	60	
96	Auto tuning setting/status	0	1	Set the parameter to perform offline auto tuning.
183	MRS terminal function selection ${ }^{* 1}$	24	24	Assign the MRS (Output stop) signal to terminal MRS.
190	RUN terminal function selection ${ }^{* 1}$	0	0	Assign the RUN (Inverter running) signal to terminal RUN in positive logic.
191	FU terminal function selection ${ }^{* 1}$	4	4	Assign the FU (Output frequency detection) signal to terminal FU in positive logic.
192	ABC terminal function selection*1	99	199	Assign the ALM (Fault) signal to terminals A, B, and C in negative logic.
359	Encoder rotation direction	1	1	Set the parameters in accordance with specifications of the encoder used under Vector control.
369	Number of encoder pulses	1024	1000	
451	Second motor control method selection ${ }^{* 1}$	9999	40	Set the parameter to perform V/F control for the fork axis motor.
502	Stop mode selection at communication error	0	0	When Ethernet communication is used, the operation at a communication error can be selected. The operation at a communication error can be selected when Pr. 1431 is " 3 " or Pr. 1432 is not "9999". Set the parameter in accordance with specifications of the system used.
541	Frequency command sign selection*1	0	1	The start command (forward/reverse rotation) can be inverted when a minus sign is added to the value of the frequency command.
800	Control method selection*1	40	0	Change the control method to Vector control.
1429	Ethernet function selection $3^{* 1}$	45238	61450	Set the parameter to use CC-Link IE Field Network Basic.

Inverter parameter				Description
No.	Name	Initial value	Setting value	
1431	Ethernet signal loss detection function selection	3	3	Set the availability of the signal loss detection and select the action when Ethernet communication is interrupted by physical factors such as cable disconnection. Set the parameter in accordance with specifications of the system used.
1432	Ethernet communication check time interval	1.5	1.5	A signal loss detection is performed between the inverter and all the devices with IP addresses in the range for Ethernet command source selection (Pr. 1449 to Pr.1454). If a signal loss is detected (a communication stops), a communication error (E.EHR) occurs and the inverter output will be shut off. Set the parameter in accordance with specifications of the system used.
1434	IP address 1 (Ethernet)	192	192	Enter the IP address of the inverter to be connected to Ethernet.
1435	IP address 2 (Ethernet)	168	168	
1436	IP address 3 (Ethernet)	50	3	
1437	IP address 4 (Ethernet)	1	1	
1438	Subnet mask 1	255	255	Enter the subnet mask of the network to which the inverter belongs.
1439	Subnet mask 2	255	255	
1440	Subnet mask 3	255	255	
1441	Subnet mask 4	0	0	
1449	Ethernet command source selection IP address 1	0	192	To limit the network devices that send the operation or speed command through the Ethernet network, set the range of IP addresses of the devices. When Pr. 1449 to Pr. 1452 are " 0 (initial value)", no IP address is specified for command source via Ethernet. In this case, operation commands cannot be sent via Ethernet. The range for command source depends on the settings in Pr. 1451 and Pr. 1453 , and Pr. 1452 and Pr. 1454. When the setting values on the left are set for Pr. 1449 to Pr.1454, the range becomes as follows. - IP address range: 192.168.xxx (3 to 255).xxx (0 to 255)
1450	Ethernet command source selection IP address 2	0	168	
1451	Ethernet command source selection IP address 3	0	3	
1452	Ethernet command source selection IP address 4	0	0	
1453	Ethernet command source selection IP address 3 range specification	9999	255	
1454	Ethernet command source selection IP address 4 range specification	9999	255	

*1 For this parameter, set the setting value shown in the list.

The project files of FR Configurator2 included in the FB libraries contain parameter setting examples.
For parameter setting examples, refer to the project files corresponding to the inverter used.

- Project file for the FR-E800: fb-awhfreqrol_E800.frc2
- Project file for the FR-A800: fb-awhfreqrol_A800.frc2

Distance meter setting

Set distance meters as described in the following setting examples according to the CPU module setting. The examples show the settings that can work with the sample program.
For details on the setting method, refer to the manuals for the distance meters to be used.

AMS308i			
Setting item			Setting value
Ethernet interface	Address		Set the IP address of AMS308i.
	Gateway		Set an IP address in the same network as AMS308i.
	Net mask		Set the subnet mask of AMS308i. Example: 255.255.255.0
HOST communication	UDP	Activation	UDP: On ${ }^{* 1}$
		IP address	Set the IP address of the CPU module. Example: 192.168.3.250
		Port number	10001 (first axis), 10002 (second axis)
Position resolution			$0.1 \mathrm{~mm}^{* 1}$
Output cycle			5

The setting value must be set as specified.

DL100 Pro (Standard mode)

Setting item		Setting value
RS-422	CntMode	Off Requirement ${ }^{* 1}$
	Protoc	Standard mode
	Baud	115.2 kBd
	Format	$8, \mathrm{e}, 1^{* 1}$
	ResDst	$0.1 \mathrm{~mm}^{* 1}$

*1 The setting value must be set as specified.

DL100 Pro (CRLF code)

Setting item		Setting value
RS-422	CntMode	Off Requirement ${ }^{* 1}$
	Protoc	CRLF mode
	Baud	115.2 kBd
	Format	$8, \mathrm{e}, 1^{* 1}$
	ResDst	$0.1 \mathrm{~mm}^{* 1}$

[^0]
2.8 Precautions

Before using the FB libraries in this reference manual, check the following precautions.
For precautions specific to each FB, refer to "Precautions" in DETAILS of FB LIBRARIES.

Description

The FBs in this reference manual do not include the error recovery processing. Prepare the error recovery processing separately to suit the user's system and the expected operation.
Note that an error that occurs during FB operation will be cleared when recovery from the error is completed.
The FBs in this reference manual do not detect an alarm or fault output that occurs in inverters. Separately create the alarm and fault output monitoring processing for the inverters used. For alarms and fault output that occurred in the inverters, refer to the manuals for the inverters used.
The FBs cannot be used in an interrupt program.
Do not use the FBs in programs that are executed only once, such as a subroutine program or FOR-NEXT loop, because i_bEN (execution command) cannot be turned off and the normal operation cannot be acquired. Always use the FBs in programs that can turn off the execution command.

The FBs require the configuration of a ladder block for every input label.
To use more than one FB, care must be taken to avoid duplication of the target axis to prevent more than one program for the target axis from starting at the same time.
If an FB terminates with an error, turn off the execution condition of the FB that terminated with an error before executing a new FB. If the execution condition of the FB that terminated with an error remains on, the termination processing will not be performed and the newly executed FB will not operate normally.
While an FB is being executed, do not perform the online change.
The FB libraries use file register (R) areas R32700 to R32708.

Commands to the inverter depend on the scan time.

3.1
 M+AWH_PosVelGen_F (Positioning Operation Command Generation)

Overview

This FB generates speed and position commands for positioning to the target position.

(1) -	M+AWH_PosVelGen_F		
	B:i_bEN	o_bENO:B	- (14)
(2)	E:i_eTargetPos	o_bOK:B	- (15
(3) -	E:i_eTargetSpd	o_bErr:B	- (16)
(4)	E:i_eCurrentPos	o_uErrld:UW	- (17)
(5) -	E:i_eAcceleration	o_ePosCmd:E	- (18)
(6)	E:i_eDeceleration	o_eSpdCmd:E	- (19)
(7)	E:i_eAccJerk	o_bBusy:B	- (20)
(8) -	E:i_eDecJerk	o_wState:W	- (21)
(9)	E:i_ePosMin		
(10) -	E:i_ePosMax		
(11) -	B:i_bRapidStop		
(12) -	E:i_eRapidStopDec		
(13)	E:i_eRapidStopJerk		

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	Rising: Parameter initialization*1 While being on: Positioning execution* ${ }^{* 1}$ Falling: Positioning interruption ${ }^{* 1}$
(2)	i_eTargetPos	Target position	Single-precision real number	Always	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Specify the target position [m]. Set a value between i_ePosMin (minimum position value) and i_ePosMax (maximum position value).
(3)	i_e TargetSpd	Target speed	Single-precision real number	Always	0.010000 to 10.000000	Specify the target speed [m / s].
(4)	i_eCurrentPos	Current position	Single-precision real number	Always	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Specify the current position [m] fed back from the distance meter. Set a value between i_ePosMin (minimum position value) and i_ePosMax (maximum position value).
(5)	i_eAcceleration	Acceleration rate	Single-precision real number	At start	0.010000 to 1000.000000	Specify the target acceleration [$\mathrm{m} / \mathrm{s}^{2}$].
(6)	i_eDeceleration	Deceleration rate	Single-precision real number	At start	0.010000 to 1000.000000	Specify the target deceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$.
(7)	i_eAccJerk	Acceleration jerk	Single-precision real number	At start	0.010000 to 10000.000000	Specify the jerk $\left[\mathrm{m} / \mathrm{s}^{3}\right]$ at acceleration.
(8)	i_eDecJerk	Deceleration jerk	Single-precision real number	At start	0.010000 to 10000.000000	Specify the jerk $\left[\mathrm{m} / \mathrm{s}^{3}\right]$ at deceleration.
(9)	i_ePosMin	Minimum position value	Single-precision real number	At start	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Specify the minimum position value [m]. Set a value less than or equal to i_ePosMax (maximum position value).

No.	Label	Name	Data type	Input reception	Setting range	Description
(10)	i_ePosMax	Maximum position value	Single-precision real number	At start	$\cdot 0.000000$ $\cdot 2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Specify the maximum position value [m]. Set a value more than or equal to i_ePosMin (minimum position value).
(11)	i_bRapidStop	Sudden stop	Bit	Always	On, Off	

*1 The processing varies depending on o_wState (status output). For details, refer to the following. \leftrightarrows Page 35 Function details

Output labels

No.	Label	Name	Data type	Default value	Description
(14)	o_bENO	Execution status	Bit	Off	On:The execution command is on. Off: The execution command is off. (15) o_bOK Normal completion
o_bErr	Error completion	Bit	Off	The on state indicates that positioning has been completed normally.	
(17)	o_uErrld	Error code	Word [unsigned]/bit string [16 bits]	0	The on state indicates that an error has occurred in the FB.
(18)	o_ePosCmd	Position command	Single-precision real number	0.000000	Stores the position command [m] for each control cycle.
(19)	o_eSpdCmd	Speed command	Single-precision real number	0.000000	Stores the speed command value [m/s] for each control cycle. A negative value indicates positioning in the reverse run direction.
(20)	o_bBusy	Positioning executing	Bit	The on state indicates that positioning is being executed.	
(21)	o_wState	Status output	Word [signed]	0	Stores the control status: 0: Stop (initial status) 1: During acceleration/deceleration 2: During constant speed (target speed) 3: During deceleration for positioning completion 4: Positioning completed 5: During deceleration for positioning interruption 6: During deceleration for sudden stop

Function details

Applicable hardware and software

■FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 5035 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. GX Works3 Operating Manual
Points of labels used	- Label: 0.19K points (Word) - Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. []] GX Works3 Operating Manual
Points of index register used	- Index register: 0 points - Long index register: 0 points
Points of file register used	File register: 0 points
FB dependency	M+AWH_PosVelGen_F L M+AWH_DecDistance_F
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- When i_bEN (execution command) is rising and o_wState (status output) is 0: Stop (initial status), this FB outputs speed and position commands for positioning to the target position in the direction of i_eTargetPos (target position), starting from i_eCurrentPos (current position).
- Positioning is executed while i_bEN (execution command) is on. While positioning is being executed, o_bBusy (positioning executing) is on.
- For position and speed commands, the current scan time is obtained for each control cycle, and the results calculated from the maximum speed, acceleration rate, deceleration rate, acceleration jerk, and deceleration jerk values and the elapsed time are output. The speed shows an S-shaped waveform.
The acceleration and deceleration processing (positive direction) based on the acceleration/deceleration rate and jerk settings in this FB is shown below.

Area		Processing
A	Acceleration area 1	The acceleration rate is changed (increased) by the specified acceleration jerk from the start of acceleration to the target acceleration rate.
B	Maximum acceleration area	Acceleration is performed at the target acceleration rate.
C	Acceleration area 2	At the end of acceleration, acceleration is performed by changing (decreasing) the acceleration rate by the specified acceleration jerk from the target acceleration rate to acceleration rate 0.
D	During constant speed (target speed)	Control is performed at the target speed. (Acceleration and deceleration rates = 0.0)
E	Deceleration area 1	Deceleration is performed by changing (increasing) the deceleration rate by the specified deceleration jerk from the start of deceleration to the target deceleration rate.
F	Maximum deceleration area	Deceleration is performed at the target deceleration rate.
G	Deceleration area 2	At the end of deceleration, deceleration is performed by changing (decreasing) the deceleration rate by the specified deceleration jerk from the target deceleration rate to deceleration rate 0.

- To stop a control target at the specified target position, this FB starts deceleration when the following condition is met, and o_wState (status output) transitions to 3: During deceleration for positioning completion.

Deceleration distance + Accumulated travel distance \geq Total travel distance

To calculate the deceleration distance, call M+AWH_DecDistance_F (deceleration distance calculation) from this FB.

- i_eTargetPos (target position) can be changed while the FB is operating. Changes can be made when o_wState (status output) is 1: During acceleration/deceleration or 2: During constant speed (target speed), and there is a distance required for deceleration stop. However, it is not allowed to change to the target position in the reverse run direction with respect to i_eCurrentPos (current position).
- i_eTargetSpd (target speed) can be changed while the FB is operating. Changes can be made when o_wState (status output) is 2 : During constant speed (target speed).
- If o_wState (status output) is 1: During acceleration/deceleration or 2: During constant speed (target speed), positioning is interrupted at the falling edge of i_bEN (execution command). During positioning interruption, o_wState (status output) is set to 5 : During deceleration for positioning interruption, and deceleration stop is performed at the values set for i_eDeceleration (deceleration rate) and i_eDecJerk (deceleration jerk). After the interruption processing has been completed, the output value of o_ePosCmd (position command) is held, and the output other than o_ePosCmd (position command) becomes off or 0 .
- If $\mathrm{i} _$bEN (execution command) is on and o_wState (status output) is 1: During acceleration/deceleration or 2: During constant speed (target speed), positioning is interrupted when i_bRapidStop (sudden stop) becomes on. During positioning interruption, o_wState (status output) is set to 6: During deceleration for sudden stop, and deceleration stop is performed at the values set for i_eRapidStopDec (deceleration rate for sudden stop) and i_eRapidStopJerk (deceleration jerk for sudden stop).
However, if i_eRapidStopDec (deceleration rate for sudden stop) or i_eRapidStopJerk (deceleration jerk for sudden stop) is set to 0 , deceleration stop is performed at the values set for i_eDeceleration (deceleration rate) and i_eDecJerk (deceleration jerk).
After the interruption processing has been completed, o_bBusy (positioning executing) becomes off.
- When i_bEN (execution command) changes from off to on, and o_wState (status output) is 3: During deceleration for positioning completion, 5: During deceleration for positioning interruption, or 6: During deceleration for sudden stop, the on state of the execution command is not accepted because the previous deceleration is being processed. Change i_bEN (execution command) from off to on when o_wState (status output) is 0 : Stop (initial status).
- If the input labels listed in the table below are out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, a corresponding error code is stored in o_uErrld (error code). (

Input label	Error code
i_eTargetPos (target position)	110 H
i_eTargetSpd (target speed)	111 H
i_eCurrentPos (current position)	112 H
i_eAcceleration (acceleration rate), i_eDeceleration (deceleration rate)	113 H
i_eAccJerk (acceleration jerk), i_eDecJerk (deceleration jerk)	114 H
i_ePosMin (minimum position value)	115 H
i_ePosMax (maximum position value)	116 H
i_eRapidStopDec (deceleration rate for sudden stop)	117 H

Input label	Error code
i_eRapidStopJerk (deceleration jerk for sudden stop)	118 H

- If the input labels listed in the table below are changed to out of range while the FB is operating, o_bErr (error completion) will turn on. (The FB will continue to operate.) In addition, a corresponding error code is stored in o_uErrld (error code). (\mathfrak{F} Page 44 Error code)

Input label	Error code	FB operation
i_eTargetPos (target position)	11 AH	The operation continues with the setting value of $i_{_}$eTargetPos (target position) before the error occurred.
i_eTargetSpd (target speed)	11 BH	The operation continues with the setting value of i_{-}eTargetSpd (target speed) before the error occurred.
i_eCurrentPos (current position)	11 CH	The operation continues. ${ }^{* 1}$

*1 i_eCurrentPos (current position) is used when changing i_eTargetPos (target position). If the current position is an abnormal value, i_eTargetPos (target position) cannot be changed.

Timing chart of I/O signals

■Completed successfully

Positioning interruption (i_bEN (execution command) changes from on to off.)

Positioning interruption (i_bRapidStop (sudden stop) turns on while i_bEN (execution command) is on.)

■Error completion
When an error occurs at start of the FB

When an error occurs while the FB is operating (when the target position is out of range)

Precautions

o_eSpdCmd (speed command) is calculated with single-precision real numbers, so a rounding error may occur.

Parameter settings

There are no parameter settings specific to this FB. For details on the common parameter settings, refer to the following. \longmapsto Page 21 Parameter Settings

Performance values

The performance values of this FB are as follows. These performance values show the performance combined with M+AWH_DecDistance_F (deceleration distance calculation).

FX5 CPU module	Measurement condition							Processing time	Maximum scan time	Number of scans
	Input label									
	i_eTarget Pos (Target position)	i_eTarget Spd (Target speed)	i_eCurrent Pos (Current position)	i_eAccele ration (Accelera tion rate)	i_eDecele ration (Decelera tion rate)	i_eAccJer k (Accelera tion jerk)	i_eDecJer k (Decelera tion jerk)			
FX5S CPU module	100	1	0	1	1	2	2	101520 ms	1.818 ms	$\begin{aligned} & 147118 \\ & \text { scans } \end{aligned}$
$\begin{aligned} & \text { FX5UJ } \\ & \text { CPU } \\ & \text { module } \end{aligned}$	100	1	0	1	1	2	2	101550 ms	1.501 ms	$\begin{aligned} & 166252 \\ & \text { scans } \end{aligned}$
FX5U/ FX5UC CPU module ${ }^{*_{1}{ }^{*} 2}$	100	1	0	1	1	2	2	101550 ms	1.307 ms	$\begin{aligned} & 192948 \\ & \text { scans } \end{aligned}$

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
110H	The setting value of i_eTargetPos (target position) is out of range.	Check and correct the setting, then execute the FB again.
111H	The setting value of i_eTargetSpd (target speed) is out of range.	Check and correct the setting, then execute the FB again.
112 H	The setting value of i_eCurrentPos (current position) is out of range.	Check and correct the setting, then execute the FB again.
113H	The setting value of i_eAcceleration (acceleration rate) or i_eDeceleration (deceleration rate) is out of range.	Check and correct the setting, then execute the FB again.
114H	The setting value of i_eAccJerk (acceleration jerk) or i_eDecJerk (deceleration jerk) is out of range.	Check and correct the setting, then execute the FB again.
115H	The setting value of i_ePosMin (minimum position value) is out of range.	Check and correct the setting, then execute the FB again.
116H	The setting value of i_ePosMax (maximum position value) is out of range.	Check and correct the setting, then execute the FB again.
117H	The setting value of i_eRapidStopDec (deceleration rate for sudden stop) is out of range.	Check and correct the setting, then execute the FB again.
118H	The setting value of i_eRapidStopJerk (deceleration jerk for sudden stop) is out of range.	Check and correct the setting, then execute the FB again.
11AH	The setting value of i_eTargetPos (target position) is out of range. i_eTargetPos (target position) is held at the value before the error occurred.	Check and correct the setting.
11BH	The setting value of $i_{\text {_ e TargetSpd }}$ (target speed) is out of range. i_eTargetSpd (target speed) is held at the value before the error occurred.	Check and correct the setting.
11CH	The setting value of i_eCurrentPos (current position) is out of range.	Check and correct the setting.

3.2 M+AWH_PIDControl_F (PID Control)

Overview

This FB performs position deviation correction (PID control) during positioning control.

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	On: Start FB. Off: Do not start FB.
(2)	i_ePosCmd	Position command	Single-precision real number	Always	- 0.000000 - $2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Specify the position command [m] for each control cycle.
(3)	i_eCurrentPos	Current position	Single-precision real number	Always	$\begin{aligned} & \cdot 0.000000 \\ & \cdot 2^{-126}(1.175494 \mathrm{E}-38) \\ & \text { to } 300.000000 \end{aligned}$	Specify the current position [m] fed back from the distance meter.
(4)	i_stPID_Pr	PID setting	PID_PR	Always	-	Specify the PID setting information. For the structure, refer to the following. \mapsto Page 18 List of Structures

Output labels

No.	Label	Name	Data type	Default value	Description
(5)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(6)	o_bOK	Normal completion	Bit	Off	The on state indicates that PID calculation has started normally.
(7)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(8)	o_uErrld	Error code	Word [unsigned]/bit string $[16$ bits]	0	Stores the error code of an error that occurred in the FB.
(9)	o_eCompSpd	Compensation speed	Single-precision real number	0.000000	Stores the speed [m/s] after position deviation correction by PID control.

Function details

Applicable hardware and software

■FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 1419 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of labels used	• Label: 0.05K points (Word) - Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 0 points •Long index register: 0 points
Points of file register used	File register: 0 points
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- Turning on i_bEN (execution command) performs position deviation correction (PID control) during positioning control.
- Position deviation correction is performed by PID control as shown in the block diagram below.

P: Proportional operation, I: Integral operation, D: Differential operation
Kp: Proportional gain, Ts: Sampling time, Ti: Integral time, Td: Differential time, Z^{-1} : Previous value, n : Derivative gain coefficient (0.2 fixed)

- When i_bEN (execution command) is off, all outputs become off or 0 .
- If i_ePosCmd (position command) is out of range, o_bErr (error completion) turns on and the processing of this FB is interrupted. In addition, the error code 130 H is stored, and the output value of o_eCompSpd (compensation speed) is 0. (\preccurlyeq Page 48 Error code)
- If i_eCurrentPos (current position) is out of range, o_bErr (error completion) turns on and the processing of this FB is interrupted. In addition, the error code 131 H is stored, and the output value of o_eCompSpd (compensation speed) is 0 . (\Im Page 48 Error code)
- If i_stPID_Pr (PID setting) is out of range, o_bErr (error completion) turns on and the processing of this FB is interrupted. In addition, the error code 132 H is stored, and the output value of o_eCompSpd (compensation speed) is 0 . (以 Page 48 Error code)
- If the absolute value of the position deviation (i_ePosCmd (position command) - i_eCurrentPos (current position)) exceeds the setting value of i_stPID_Pr.eDeviationOver (excessive error level of PID setting), o_bErr (error completion) turns on and the processing of this FB is interrupted. In addition, the error code 230 H is stored in o_uErrld (error code), and the output value of o_eCompSpd (compensation speed) is 0 . (\Im Page 48 Error code)
- If i_stPID_Pr.eDeviationOver (excessive error level of PID setting) is 0 , no judgment is made.

Timing chart of I/O signals

■Completed successfully

(1) Compensation speed [m / s]: While the FB is being executed, a calculated value is output every scan.

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when the position command is out of range)

(1) Compensation speed $[\mathrm{m} / \mathrm{s}]$: While the $F B$ is being executed, a calculated value is output every scan.

Parameter settings

There are no parameter settings specific to this FB. For details on the common parameter settings, refer to the following. \longmapsto Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans
FX5S CPU module	Proportional control enabled: On Integral control enabled: On Differential control enabled: On	0.361 ms	1.104 ms	1 scan
FX5UJ CPU module	Proportional control enabled: On Integral control enabled: On Differential control enabled: On	0.342 ms	0.786 ms	1 scan
FX5U/FX5UC CPU module	Proportional control enabled: On Integral control enabled: On Differential control enabled: On	0.245 ms	0.593 ms	1 scan

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
130 H	The setting value of i_ePosCmd (position command) is out of range.	Check and correct the setting.
131 H	The setting value of i_eCurrentPos (current position) is out of range.	Check and correct the setting.
132 H	The setting value of i_stPID_Pr (PID setting) is out of range.	Check and correct the setting.
230 H	The position deviation exceeds the setting value of eDeviationOver (excessive error level).	Check if current position feedback from the distance meter is performed correctly. Check and correct the eDeviationOver (excessive error level) setting.

3.3 M+AWH_VeIConv_F (Frequency Conversion)

Overview

This FB converts the speed command $[\mathrm{m} / \mathrm{s}]$ to the set frequency $[\mathrm{Hz}]$.

(1) -	M+AWH_VelConv_F		
	B:i_bEN	o_bENO:B	- (6)
(2) -	E:i_eSpdCmd	o_bOK:B	- (7)
(3) -	W:i_wMaxFreq	o_bErr:B	- (8)
(4) -	E:i_eMaxSpeed	o_uErrld:UW	- (9)
(5) -	B:i_bDirection	o_wSetFreq:W	- (10)

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	On: Start FB. Off: Do not start FB.
(2)	i_eSpdCmd	Speed command	Singleprecision real number	Always	$\begin{aligned} & \cdot-10.000000 \text { to }-2^{-126}(- \\ & 1.175494 \mathrm{E}-38) \\ & \cdot 0.000000 \\ & \cdot 2^{-126}(1.175494 \mathrm{E}-38) \\ & \text { to } 10.000000 \end{aligned}$	Specify the speed command [m/s]. Set a value less than or equal to i_eMaxSpeed (maximum speed).
(3)	i_wMaxFreq	Maximum frequency	Word [signed]	At start	0 to 20000	Specify the maximum value of the set frequency [0.01 Hz increments] of the inverter according to the equipment. The maximum value is 200 Hz . Example: When 6000 is input, the maximum frequency is $60.00[\mathrm{~Hz}]$.
(4)	i_eMaxSpeed	Maximum speed	Singleprecision real number	At start	0.010000 to 10.000000	Specify the maximum value $[\mathrm{m} / \mathrm{s}]$ of the speed command as an absolute value according to the equipment. Example: When 10 is input, the maximum speed is as follows. - Speed in the positive direction: $10[\mathrm{~m} / \mathrm{s}]$ - Speed in the negative direction: $-10[\mathrm{~m} / \mathrm{s}]$
(5)	i_bDirection	Rotation direction	Bit	Always	On, Off	Specify the rotation direction. On: Speed command (positive direction) \rightarrow Set frequency (negative direction) Off: Speed command (positive direction) \rightarrow Set frequency (positive direction)

Output labels

No.	Label	Name	Data type	Default value	Description
(6)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(7)	o_bOK	Normal completion	Bit	Off	The on state indicates that conversion from the speed command to the set frequency was performed normally.
(8)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(9)	o_uErrld	Error code	Word [unsigned] $/$ bit string [16 bits]	0	Stores the error code of an error that occurred in the FB.
(10)	o_wSetFreq	Set frequency	Word [signed]	0	Stores the set frequency $[0.01 \mathrm{~Hz}$ increments] to be given to the inverter.

Function details

Applicable hardware and software

FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 777 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of labels used	•Label: 0.01K points (Word) • Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 0 points •Long index register: 0 points
Points of file register used	File register: 0 points
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- Turning on i_bEN (execution command) converts the speed command [m / s] to the set frequency [Hz] according to the machine specifications (maximum frequency and maximum speed) and outputs it.
- When i_bEN (execution command) is off, all outputs become off or 0 .
- If i_wMaxFreq (maximum frequency) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 140 H is stored in o_uErrld (error code). (3 Page 52 Error code)
- If i_eMaxSpeed (maximum speed) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 141 H is stored in o_uErrld (error code). (Page 52 Error code)
- If the absolute value of i_eSpdCmd (speed command) exceeds i_eMaxSpeed (maximum speed) while the FB is operating, o_bErr (error completion) will turn on. (The FB will continue to operate.) In addition, the error code 142H is stored, and o_wSetFreq (set frequency) is held at the setting value of i_wMaxFreq (maximum frequency). (\lessgtr Page 52 Error code)

Timing chart of I/O signals

■Completed successfully

(1) Set frequency [0.01 Hz increments]: While the FB is being executed, a calculated value is output every scan.

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when the absolute value of the speed command exceeds the maximum speed)

(1) Set frequency [0.01 Hz increments]: While the FB is being executed, a calculated value is output every scan.
(2) Maximum frequency [0.01 Hz increments]: o_wSetFreq (set frequency) is held at the setting value of $i _w M a x F r e q$ (maximum frequency).

Precautions

In a program using this FB library, turning off the execution command of this FB while the inverter is running may cause sudden stop as the output frequency to the inverter becomes 0 . Turn off the execution command in a program that can safely stop the inverter.

Parameter settings

There are no parameter settings specific to this FB. For details on the common parameter settings, refer to the following.
\longmapsto Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans
FX5S CPU module	-	0.1 ms	0.727 ms	1 scan
FX5UJ CPU module	-	0.645 ms	0.482 ms	1 scan
FX5U/FX5UC CPU module ${ }^{* 1^{*} 2}$	-	0.067 ms	0.407 ms	1 scan

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
140 H	The setting value of $i_{_}$wMaxFreq (maximum frequency) is out of range.	Check and correct the setting, then execute the FB again.
141 H	The setting value of i_wMaxSpd (maximum speed) is out of range.	Check and correct the setting, then execute the FB again.
142 H	i_eSpdCmd (speed command) exceeds the setting value of i_eMaxSpd (maximum speed). When the FB is operating, o_wSetFreq (set frequency) is held at the setting value of $i _w M a x F r e q ~(m a x i m u m ~ f r e q u e n c y) . ~$	Check and correct the setting.

3.4 M+AWH_MotorSwitch_F (Motor Switching Control)

Overview

This FB switches commands to the inverter when one inverter operates two motors by selecting and switching a motor to be operated.

M+AWH_MotorSwitch_F		
B:i_bEN	o_bENO:B	- (10)
B:i_bMotor2	o_bOK:B	- (11)
B:i_bRUN	o_bErr:B	- (12)
B:i_bSTF1	o_uErrld:UW	- (13)
B:i_bSTR1	o_wSetFreq:W	- (14)
W:i_wSetFreq1	o_bSTF:B	- (15)
B:i_bSTF2	o_bSTR:B	- (16)
B:i_bSTR2	o_bRT:B	- (17)
W:i_wSetFreq2	o_bMotor1:B	- (18)
	o_bMotor2:B	- (19)

Labels

Input labels

$\left.\begin{array}{l|l|l|l|l|l|l}\hline \text { No. } & \text { Label } & \text { Name } & \text { Data type } & \text { Input reception } & \text { Setting range } & \text { Description } \\ \hline \text { (1) } & \text { i_bEN } & \begin{array}{l}\text { Execution } \\ \text { command }\end{array} & \text { Bit } & \text { Always } & \text { On, Off } & \begin{array}{l}\text { On: Start FB. } \\ \text { Off: } \quad \text { Do not start FB. }\end{array} \\ \hline \text { (2) } & \text { i_bMotor2 } & \begin{array}{l}\text { Second motor } \\ \text { selection }\end{array} & \text { Bit } & \text { Always } & \text { On, Off } & \begin{array}{l}\text { Specify the motor. } \\ \text { On: Specify the second motor. } \\ \text { Off: Specify the first motor. }\end{array} \\ \hline \text { (3) } & \text { i_bRUN } & \begin{array}{l}\text { Inverter } \\ \text { running }\end{array} & \text { Bit } & \text { Always } & \text { On, Off } & \begin{array}{l}\text { Specify the inverter running status by inputting the } \\ \text { Inverter running (RUN) signal. } \\ \text { On: Running } \\ \text { Off: Stopped }\end{array} \\ \hline \text { (4) } & \text { i_bSTF1 } & \begin{array}{l}\text { First motor } \\ \text { forward } \\ \text { rotation }\end{array} & \text { Bit } & \text { Always } & \text { On, Off } & \begin{array}{l}\text { Specify the status of the forward rotation command of the } \\ \text { first motor.* }\end{array} \\ \text { On: Forward rotation command } \\ \text { Off: Stop command }\end{array}\right]$

No.	Label	Name	Data type	Input reception	Setting range	Description
(9)	i_wSetFreq2	Second motor set frequency	Word [signed]	Always	-20000 to 20000	Specify the set frequency of the second motor $[0.01 \mathrm{~Hz}$ increments]. ${ }^{*}$
Example) When 6000 is input, the set frequency and						
maximum value are as follows.						
• Set frequency: $60.00[\mathrm{~Hz}]$						
•祭						

*1 This is valid when i_bMotor2 (second motor selection) is off.
*2 This is valid when i_bMotor2 (second motor selection) is on.

Output labels

No.	Label	Name	Data type	Default value	Description
(10)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(11)	o_bOK	Normal completion	Bit	Off	The on state indicates that execution of the motor switching control has started normally.
(12)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(13)	o_uErrld	Error code	Word [unsigned]/ bit string [16 bits]	0	The error code of an error that occurred in the FB is stored.
(14)	o_wSetFreq	Set frequency	Word [signed]	0	The set frequency to be given to the inverter [0.01 Hz increments] is stored.
(15)	o_bSTF	Forward rotation command	Bit	Off	The status of the forward rotation command to be given to the inverter is stored. On: Forward rotation command Off: Stop command
(16)	o_bSTR	Reverse rotation command	Bit	Off	The status of the reverse rotation command to be given to the inverter is stored. On: Reverse rotation command Off: Stop command
(17)	o_bRT	Second function selection	Bit	Off	The status of the second function selection signal to be given to the inverter is stored. On: Execute the second motor control. Off: Execute the first motor control.
(18)	o_bMotor1	First motor enabled	Bit	Off	The on state indicates that the first motor is selected.
(19)	o_bMotor2	Second motor enabled	Bit	Off	The on state indicates that the second motor is selected.

Function details

Applicable hardware and software

FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 831 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of labels used	•Label: 0.01K points (Word) • Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 0 points •Long index register: 0 points
Points of file register used	File register: 0 points
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- Turning on i_bEN (execution command) outputs commands for the first motor when the second motor selection (i_bMotor2) is off, or commands for the second motor when i_bMotor2 is on.
- Motor switching is enabled when the inverter running (i_bRUN) is off.
- When i_bEN (execution command) is off, all outputs become off or 0 .
- If i_wSetFreq1 (first motor set frequency) is out of range, o_bErr (error completion) will turn on. (The FB will continue to operate.) In addition, the error code 150 H is stored in o_uErrld (error code). (β Page 58 Error code) If the first motor is controlled and the setting value of i_wSetFreq1 (first motor set frequency) exceeds $\pm 200 \mathrm{~Hz}$, the frequency is limited to $\pm 200 \mathrm{~Hz}$. However, if i_wSetFreq1 (first motor set frequency) is out of range while i_bEN (execution command) is rising, processing of the FB does not start.
- If i_wSetFreq2 (second motor set frequency) is out of range, o_bErr (error completion) will turn on. (The FB will continue to operate.) In addition, the error code 151 H is stored in o_uErrld (error code). (3 Page 58 Error code) If the second motor is controlled and the setting value of i_wSetFreq2 (second motor set frequency) exceeds $\pm 200 \mathrm{~Hz}$, the frequency is limited to $\pm 200 \mathrm{~Hz}$. However, if $i _w S e t F r e q 2$ (second motor set frequency) is out of range while i_bEN (execution command) is rising, processing of the FB does not start.

Timing chart of I/O signals

■Completed successfully

(1) First motor set frequency: While the FB is being executed, the calculated value is output every scan.
(2) Second motor set frequency: While the FB is being executed, the calculated value is output every scan.

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when the first motor is controlled and the setting value of the first motor set frequency is out of the setting range)

(1) First motor set frequency: While the FB is being executed, the calculated value is output every scan.

Precautions

In a program using this FB library, turning off the execution command of this FB while the inverter is running may cause sudden stop as the output frequency to the inverter becomes 0 . Turn off the execution command in a program that can safely stop the inverter.

Parameter settings

There are no parameter settings specific to this FB. For details on the common parameter settings, refer to the following.
\leftrightarrows Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans
FX5S CPU module	First motor	0.087 ms	0.711 ms	1 scan
FX5UJ CPU module	First motor	0.073 ms	0.471 ms	1 scan
FX5U/FX5UC CPU module ${ }^{* 1 * 2}$	First motor	0.059 ms	0.402 ms	1 scan

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
150 H	The setting value of i_wSetFreq1 (first motor set frequency) is out of range. When the FB is operating, o_wSetFreq (set frequency) is limited to $\pm 200 \mathrm{~Hz}$.	Check and correct the setting.
151 H	The setting value of i_wSetFreq2 (second motor set frequency) is out of range. When the FB is operating, o_wSetFreq (set frequency) is limited to $\pm 200 \mathrm{~Hz}$.	Check and correct the setting.

3.5 M+AWH_AntiSwayControl_F (Anti-sway Control)

Overview

This FB applies the notch filter to the position command to suppress swinging at positioning stop.

M+AWH_AntiSwayControl_F		
B:i_bEN	o_bENO:B	(5)
E:i_ePosCmd	o_bOK:B	
E:i_eNotchFilterFreq	o_bErr:B	
E:i_eNotchFilterGain	o_uErrld:UW	
	o_ePosCmd:E	- (9)

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	On: Start FB. Off: Do not start FB.
(2)	i_ePosCmd	Position command	Single-precision real number	Always	$\cdot 0.000000$ $\cdot 2^{-126}(1.175494 \mathrm{E}-38)$ to 300.000000	Specify the position command $[\mathrm{m}]$ for each control cycle.
(3)	i_eNotchFilterFreq	Notch filter frequency	Single-precision real number	At start	10.000000 to 1000.000000	Specify the frequency $[0.01 \mathrm{~Hz} \mathrm{increments]}$ at which the notch filter is activated to suppress swinging. Example) When 1000 is input, notch filter frequency is $10.00[H z]$.
(4)	i_eNotchFilterGain	Notch filter gain	Single-precision real number	At start	0.100000 to 500.000000	Specify the notch filter gain [\%].

Output labels

No.	Label	Name	Data type	Default value	Description
(5)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(6)	o_bOK	Normal completion	Bit	Off	The on state indicates that application of the notch filter to the position command has started normally.
(7)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(8)	o_uErrld	Error code	Word [unsigned]/ bit string [16 bits]	0	The error code of an error that occurred in the FB is stored.
(9)	o_ePosCmd	Position command	Single-precision real number	0.000000	The position command [m] after the notch filter is applied is stored.

Function details

Applicable hardware and software

IFB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 1075 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of labels used	•Label: 0.05 K points (Word) • Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 0 points \bullet Long index register: 0 points
Points of file register used	File register: 0 points
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- When i_bEN (execution command) is turned on, the notch filter is activated according to the input label settings, and the position command during positioning control is compensated.
- When i_bEN (execution command) is off, all outputs become off or 0 .
- If i_ePosCmd (position command) is out of range, o_bErr (error completion) turns on and the processing of this FB is interrupted. In addition, the error code 130 H is stored in o_uErrld (error code). The output value of o_ePosCmd (position command) becomes the same as the value of i_ePosCmd (position command). (F Page 62 Error code)
- If i_eNotchFilterFreq (notch filter frequency) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 160H is stored in o_uErrld (error code). The output value of o_ePosCmd (position command) becomes the same as the value of i_ePosCmd (position command). (\gg Page 62 Error code)
- If i_eNotchFilterGain (notch filter gain) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 161H is stored in o_uErrld (error code). The output value of o_ePosCmd (position command) becomes the same as the value of i_ePosCmd (position command). (Page 62 Error code)

Timing chart of I/O signals

■Completed successfully

(1) Position command [m] after anti-sway control calculation: While the FB is being executed, the calculated value is output every scan.

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when the position command is out of range)

(1) Position command [m] after anti-sway control calculation: While the FB is being executed, the calculated value is output every scan.
(2) i_ePosCmd (position command) [m]

Parameter settings

There are no parameter settings specific to this FB. For details on the common parameter settings, refer to the following.
\longmapsto Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans
FX5S CPU module	-	0.226 ms	0.882 ms	1 scan
FX5UJ CPU module	-	0.189 ms	0.641 ms	1 scan
FX5U/FX5UC CPU module ${ }^{* 1 * 2}$	-	0.16 ms	0.498 ms	1 scan

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
130 H	The setting value of i_ePosCmd (position command) is out of range.	Check and correct the setting.
160 H	The setting value of i_eNotchFilterFreq (notch filter frequency) is out of range.	Check and correct the setting, then execute the FB again.
161 H	The setting value of i_eNotchFilterGain (notch filter gain) is out of range.	Check and correct the setting, then execute the FB again.

3.6 M+AWH_FREQROL_CCLinkIEFBasic_F (Inverter Communication)

Overview

This FB controls and monitors the inverters connected to CC-Link IE Field Network Basic.

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	On: Start FB. Off: Do not start FB.
(2)	i_uStationNo	Target station number	Word [unsigned]/bit string [16 bits]	At start	The setting range varies depending on the target modules.	Specify the station number of the inverter to be connected. FX5S/FX5UJ CPU module 1 to 8 - FX5U/FX5UC CPU module 1 to 16
(3)	i_bRAM	Frequency setting command	Bit	Always	On, Off	Specify the frequency setting command (RAM) of the inverter. Turning on this label writes the set frequency (i_wSetFreq) to the RAM of the inverter.
(4)	i_wSetFreq	Set frequency	Word [signed]	Always	-20000 to 20000	Specify the set frequency [0.01 Hz increments] of the inverter. Example) When 6000 is input, the set frequency is 60.00 [Hz].
(5)	i_bSTF	Forward rotation command	Bit	Always	On, Off	Specify the status of the forward rotation command of the inverter. On: Forward rotation start Off: Stop command
(6)	i_bSTR	Reverse rotation command	Bit	Always	On, Off	Specify the status of the reverse rotation command of the inverter. On: Reverse rotation start Off: Stop command
(7)	i_bRT	Second function selection	Bit	Always	On, Off	Specify the status of the second function selection signal of the inverter. On: Execute the second motor control. Off: Execute the first motor control.
(8)	i_bMRS	Output stop	Bit	Always	On, Off	Specify the status of the output stop signal of the inverter. Turning on this label shuts off the inverter output.
(9)	i_bRST	Error reset	Bit	Specified	On, Off	Specify the status of the error reset request flag of the inverter. At the rising edge of i_bRST (error reset) during an inverter fault (o_bALM (Fault) is off): An error reset request is output to the inverter.

Output labels

No.	Label	Name	Data type	Default value	Description
(10)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(11)	o_bOK	Normal completion	Bit	Off	The on state indicates that execution of control and monitoring of the inverter has started normally.
(12)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(13)	o_uErrld	Error code	Word [unsigned]/ bit string [16 bits]	0	The error code of an error that occurred in the FB is stored.
(14)	o_wCurrent	Output current	Word [signed]	0	The first monitor value of the inverter is stored. In this FB, the output current value [0.01 A/0.1 A increments $]^{* 1}$ is stored.
(15)	o_wFreq	Output frequency	Word [signed]	0	The second monitor value of the inverter is stored. In this FB, the output frequency value [0.01 Hz increments] is stored.
(16)	o_bRUN	Running	Bit	Off	The inverter running signal is stored. The on state indicates that the inverter is operating at an output frequency equal to or higher than the setting value of [Pr. 13 Starting frequency] ${ }^{*}$.
(17)	o_bFU	Frequency detection	Bit	Off	The frequency detection signal of the inverter is stored. The on state indicates that the inverter output frequency is equal to or higher than the setting value of [Pr. 42 Output frequency detection] ${ }^{* 2}$ or [Pr. 43 Output frequency detection for reverse rotation] ${ }^{* 2}$.
(18)	o_bALM	Fault	Bit	On	The fault signal of the inverter is stored. The off state indicates that the inverter's protective function is activated (fault occurs) to stop the output.

*1 The unit of the output current differs depending on the inverter model used. For details, refer to the manuals for the inverters used.
*2 For details on Pr, which is parameter numbers (numbers assigned to functions of the inverter), refer to the manuals for the inverters used.

Global labels

Refer to the following.
 Page 17 List of Global Labels}

Function details

Applicable hardware and software

■FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool	
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later	
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later	
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later	
FX5UC CPU module	FR-E800 series	1.270 or later (CC-Link IE Field Network Basic Inverter	FR-A800 series
		communication compatible model)	FR Works3 Version 1.086Q or later

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 1099 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. Pa GX Works3 Operating Manual
Points of labels used	•Label: 0.02K points (Word) • Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 1 point (Device number used: Z9) •Long index register: 0 points
Points of file register used	File register: 0 points
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- When i_bEN (execution command) is turned on, input commands are sent to the inverter connected to CC-Link IE Field Network Basic communication, and the monitor values from the inverter are received and output.
- If both i_bSTF (forward rotation command) and i_bSTR (reverse rotation command) are on, the inverter will receive the commands as the stop command.
- During an inverter fault (o_bALM (Fault) is off), turning on i_bRST (error reset) outputs an error reset request to the inverter. - When i_bEN (execution command) is off, all outputs become off or 0 , and the stop command is output to the inverter. However, if the Ethernet cable is disconnected, the stop command will not be output to the inverter.
- If i_uStationNo (target station number) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 170H is stored in o_uErrld (error code). When a value out of the setting range is specified for the FX5UJ CPU module and the FX5S CPU module, the error code 270 H is stored. (
The following table shows the setting values for i_uStationNo (target station number) and the corresponding error codes for each CPU module.

Module	Error code			
	i_uStationNo $=\mathbf{0}$	$\mathbf{i} _$uStationNo $=\mathbf{1}$ to $\mathbf{8}$	i_uStationNo $=\mathbf{9}$ to $\mathbf{1 6}$	i_uStationNo = $\mathbf{1 7}$ or $\mathbf{m o r e}$
FX5S/FX5UJ CPU module	Error code: 170 H	-	Error code: $\mathbf{2 7 0 H}$	Error code: $\mathbf{1 7 0 H}$
FX5U/FX5UC CPU module	Error code: 170 H	-	-	Error code: $\mathbf{1 7 0 H}$

- If i_wSetFreq (set frequency) is out of range, o_bErr (error completion) will turn on. (The FB will continue to operate.) In addition, the error code 171 H is stored in o_uErrld (error code). (\leftrightarrows Page 69 Error code) If the setting value of i _wSetFreq (set frequency) exceeds $\pm 200 \mathrm{~Hz}$, the frequency is limited to $\pm 200 \mathrm{~Hz}$. However, if $\mathrm{i} _w S e t F r e q$ (set frequency) is out of range while i_bEN (execution command) is rising, processing of the FB does not start.
- This FB uses SD1536 to check the cyclic transmission status of the station number specified in i_uStationNo (target station number). If the bit of the target station number is not on (cyclic transmission is not performed), o_bErr (error completion) will turn on. (The FB will continue to operate.) In addition, the error code 270 H is stored in o_uErrld (error code). (↔ Page 69 Error code)

Timing chart of I/O signals

■Completed successfully

(1) Set frequency [0.01 Hz increments]: While the FB is being executed, the value is written to the inverter every scan.
(2) While the FB is being executed, the value is written from the inverter every scan.
(3) Output current [0.01 A/0.1 A increments]: While the FB is being executed, the value is read from the inverter every scan.
(4) Output frequency [0.01 Hz increments]: While the FB is being executed, the value is read from the inverter every scan.
(5) While the FB is being executed, the value is read from the inverter every scan.

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when the setting value of the set frequency is out of the setting range)

(1) While the FB is being executed, the value is written to the inverter every scan.
(2) Output current [$0.01 \mathrm{~A} / 0.1 \mathrm{~A}$ increments]: While the FB is being executed, the value is read from the inverter every scan.
(3) Output frequency [0.01 Hz increments]: While the FB is being executed, the value is read from the inverter every scan.
(4) While the FB is being executed, the value is read from the inverter every scan.

Precautions

- This FB uses the index register Z9. When using an interrupt program, do not use this index register.
- Although a double coil warning may occur during compilation, it does not cause any problem when using the FB.
- In a program using this FB library, turning off the execution command of this FB while the inverter is running may cause sudden stop as the stop command is output to the inverter. Turn off the execution command in a program that can safely stop the inverter.
- If the Ethernet cable is disconnected while the inverter is running, this FB cannot control the inverter. Consider the system configuration where a failsafe is enabled. (\hookleftarrow Page 21 Parameter Settings)
- For this FB, the setting values for function assignment to some I/O terminals of the inverter are fixed. (↔ Page 21 Parameter Settings)

Parameter settings

To execute this FB, configure the CC-Link IE Field Network Basic settings. For details on the parameter setting method, refer to the following.
F Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans	Maximum link scan time
FX5S CPU module	Target inverter: FR-E800	0.099 ms	0.886 ms	1 scan	6 ms
FX5UJ CPU module	Target inverter: FR-E800	0.1 ms	0.564 ms	1 scan	7.065 ms
FX5U/FX5UC CPU module ${ }^{* 1 * 2}$	Target inverter: FR-E800	0.093 ms	0.47 ms	1 scan	7.698 ms

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
170 H	The setting value of i_uStationNo (target station number) is out of range.	Check and correct the setting, then execute the FB again.
171 H	The setting value of i_wSetFreq (set frequency) is out of range. i_wSetFreq (set frequency) is limited to $\pm 200 \mathrm{~Hz}$.	Check and correct the setting.
270 H	An error occurred in communication processing with the inverter (CC-Link IEF Basic).	Check the connection with the inverter and the CC-Link IEF Basic setting.

3.7
 M+AWH_ScaleIF_SerialComm_F (Distance
 Measurement: Serial)

Overview

This FB performs serial communication with distance meters and gives feedback about distance measurement values.

	M+AWH_ScalelF_SerialComm_F		
	B:i_bEN	o_bENO:B	
(2) -	UW:i_uCh	o_bOK:B	
(3) -	UW:i_uExeProtocolNo	o_bErr:B	- (10)
(4)	UW:i_uSensorType	o_uErrld:UW	- (11)
(5)	UW:i_uAxis	o_eCurrentPos:E	- (12)
(6)	E:i_eOffsetVal		
(7) -	B:i_bSensorDirection		

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	On: Start FB. Off: Do not start FB.
(2)	i_uCh	Target channel	Word [unsigned]/ bit string [16 bits]	At start	FX5S/FX5UJ CPU module 2 to 4 (Channel 1 is not available.) ■FX5U CPU module 1 to 4 ■FX5UC CPU module $1,3,4$ (Channel 2 is not available.)	Specify the channel number. 1: Built-in RS-485 port 2: FX5-485-BD 3, 4: FX5-485ADP
(3)	i_uExeProtocolNo	Execution protocol number specification	Word [unsigned]/ bit string [16 bits]	At start	1 to 63	Specify the protocol number used by the predefined protocol support function. Refer to "Model" corresponding to the model name set in i_uSensorType (distance meter model name) and "Protocol Name" corresponding to the number set in i_uAxis (target axis), and specify the protocol number with which "Axis \square Status ${ }^{* * 1}$ is registered. ${ }^{*}{ }^{2}$ For details on the settings, refer to the following. \longmapsto Page 27 Predefined protocol support function setting
(4)	i_uSensorType	Distance meter model name	Word [unsigned]/ bit string [16 bits]	At start	1,9	Specify the distance meter to be used. 1: DL100 Pro (SICK AG) 9: Distance meter other than the above that supports serial communication (RS-485 or RS-422)
(5)	i_uAxis	Target axis	Word [unsigned]/ bit string [16 bits]	At start	1, 2	Specify the number of the axis to be used by the distance meter. 1: Travel axis 2: Lift axis
(6)	i_eOffsetVal	Distance offset value	Single-precision real number	Always	$\begin{aligned} & \text { • }-300.000000 \text { to }-2^{-126} \\ & \\ & (-1.175494 \mathrm{E}-38) \\ & \cdot \\ & 0.000000 \\ & \cdot 2^{-126}(1.175494 \mathrm{E}-38) \\ & \text { to } 300.000000 \end{aligned}$	Specify the value [m] to offset the measurement value of the distance meter.

| No. | Label | Name | Data type | Input reception | Setting range | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (7) | i_bSensorDirection | Distance
 measurement
 value direction | Bit | Always | Specify the increase direction of the
 measurement value of the distance meter.
 Off:
 The measurement value increases
 for positioning in the positive
 direction. | On: |
| | | | | | The measurement value increases
 for positioning in the negative
 direction. | |

*1 The symbol \square indicates the number of the target axis.
*2 A protocol with a protocol name of "Axis \square Position" is executed at the same time as the "Axis \square Status" protocol, so there is no need to specify the protocol number.

Output labels

No.	Label	Name	Data type	Default value	Description
(8)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(9)	o_bOK	Normal completion	Bit	Off	The on state indicates that the distance measurement value was fed back normally.
(10)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(11)	o_uErrld	Error code	Word [unsigned]/ bit string [16 bits]	0	Stores the error code of an error that occurred in the FB.
(12)	o_eCurrentPos	Current position	Single-precision real number	0.000000	Stores the current position $[\mathrm{m}]$ measured by the distance meter for each control cycle. (The value is held when the FB is stopped.)

Global labels

Refer to the following.
\longmapsto Page 17 List of Global Labels

Function details

Applicable hardware and software

■FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Device whose operation is verified

-Distance meter

Model name	Manufacturer	Distance measurement method	Communication method	Software version	Hardware version
DL100 Pro	SICK AG	Laser	RS-422 communication	v001.004.002	22180379

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 1.035 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of labels used	• Label: 0.04 K points (Word) - Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 0 points •Long index register: 0 points
Points of file register used	File register: 9 points (Word) (R32700 to R32708)
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- Turning on i_bEN (execution command) causes the predefined protocol support instruction (S.CPRTCL) to execute the protocol registered with the predefined protocol support function of GX Works3. After execution of the protocol specified by i_uExeProtocolNo (execution protocol number specification), o_bOK (normal completion) turns on.
- The execution of the protocol enables communication with a distance meter capable of serial communication (RS-485 or RS-422) to feed back the current position.
- When i bEN (execution command) is off, the output value of o eCurrentPos (current position) is held, and the output of other than o_eCurrentPos (current position) becomes off or 0 . However, during communication by the predefined protocol support instruction (S.CPRTCL), the operation continues until the communication is completed.
- If i_uCh (target channel) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 180H is stored in o_uErrld (error code). (\longmapsto Page 76 Error code)
- If i_uExeProtocolNo (execution protocol number specification) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 181 H is stored in o_uErrld (error code). (\leftrightarrows Page 76 Error code)
- If i_uSensorType (distance meter model name) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 182H is stored in o_uErrld (error code). (\ddagger Page 76 Error code)
- If i_uAxis (target axis) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 183H is stored in o_uErrld (error code). (\leftrightarrows Page 76 Error code)
- This FB uses SD9102 to check whether the predefined protocol is prepared normally. If the check result is abnormal, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 184H is stored in o_uErrld (error code). (以 Page 76 Error code)
- If an error occurs in the distance meter (serial communication), o_bErr (error completion) turns on. (The FB will continue to operate.) In addition, the error code 280 H is stored in o_uErrld (error code), and o_eCurrentPos (current position) is held at the value before the error occurred. (5 Page 76 Error code)
- If a distance measurement value error occurs due to blocking of light from the distance meter (serial communication), o_bErr (error completion) turns on. (The FB will continue to operate.) In addition, the error code 281H is stored in o_uErrld (error code), and o_eCurrentPos (current position) is held at the value before the error occurred. (5 Page 76 Error code)
- If an error occurs during the predefined protocol's send/receive operation, o_bErr (error completion) turns on. (The FB will continue to operate.) In addition, an error code is stored in o_uErrld (error code). For error code details, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)

Timing chart of I/O signals

■Completed successfully

(1) While the FB is being executed, the predefined protocol support instruction (S.CPRTCL) is executed at any time.
(2) A value obtained from a distance meter

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when a distance measurement value error occurs due to light blocking)

(1) While the FB is being executed, the predefined protocol support instruction (S.CPRTCL) is executed at any time.
(2) A value obtained from a distance meter
(3) Measurement value
(4) The light from the distance meter is blocked.
(5) A cause of blocking of light from the distance meter is removed.

Precautions

- Use in combination with the protocol setting data "fb-awhfreqrol_SerialComm.rpx" included with the sample program.
- In a configuration using this FB library, if the execution command of this FB is turned off while the inverter is running, the current position cannot be updated, and speed correction cannot be performed normally.
- Set $100 \mu \mathrm{~m}(0.1 \mathrm{~mm})$ as the measurement position unit in the distance meter. (\Im Page 21 Parameter Settings)
- Since the number of channels that can be set in the predefined protocol support function (serial communication) is two channels, distance meters for up to two axes can be used.
- This FB uses the predefined protocol support instruction (S.CPRTCL). For details, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)

Parameter settings

From GX Works3, set the parameters for serial connection and the predefined protocol support function settings. For the steps to set the parameters, refer to the following.
\longmapsto Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans
FX5S CPU module	Target distance meter: DL100 Pro (SICK AG)	9.511 ms	1.309 ms	15 scans
FX5UJ CPU module	Target distance meter: DL100 Pro (SICK AG)	8.993 ms	1.507 ms	21 scans
FX5U/FX5UC CPU module ${ }^{* 1^{*} 2}$	Target distance meter: DL100 Pro (SICK AG)	7.841 ms	0.978 ms	24 scans

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
180 H	The setting value of i_uCh (channel number) is out of range.	Check and correct the setting, then execute the FB again. When an error occurs in the CPU module, check and correct the setting, then clear the error.
181 H	The setting value of i_uExeProtocolNo (execution protocol number specification) is out of range.	Check and correct the setting, then execute the FB again.
182 H	The setting value of i_uSensorType (distance meter model name) is out of range.	Check and correct the setting, then execute the FB again.
183 H	The setting value of i_uAxis (target axis) is out of range.	Check and correct the setting, then execute the FB again.
184 H	The protocol setting file for the predefined protocol support function is not registered.	Register the protocol setting file for the used distance meter and then execute the FB again.
280 H	An error occurred in the distance meter (serial communication).	Check if the distance meter is working correctly.
281 H	A distance measurement value error occurred due to blocking of light from the distance meter (serial communication). The current position is not updated by the distance meter while this error is on.	Remove the cause of light blocking.
Module error code	The error code generated by the module is returned. (Error code during serial communication)	La MELSEC iQ-F FX5 User's Manual (Communication)

3.8 M+AWH_ScaleIF_EN_F (Distance Measurement: Ethernet)

Overview

This FB performs Ethernet communication with distance meters and gives feedback about distance measurement values.

(1)	M+AWH_ScalelF_EN_F		- (8)
	B:i_bEN	o_bENO:B	
(2) -	UW:i_uConnectionNo	o_bOK:B	- (9)
(3)	UW:i_uExeProtocolNo	o_bErr:B	- (10)
(4)	UW:i_uSensorType	o_uErrld:UW	- (11)
(5)	UW:i_uAxis	o_eCurrentPos:E	- (12)
(6)	E:i_eOffsetVal		
(7)	B:i_bSensorDirection		

Labels

Input labels

No.	Label	Name	Data type	Input reception	Setting range	Description
(1)	i_bEN	Execution command	Bit	Always	On, Off	On: Start FB. Off: Do not start FB.
(2)	i_uConnectionNo	Connection number	Word [unsigned]/ bit string [16 bits]	At start	1 to 8	Specify the connection number. Specify the connection number of the distance meter registered in "External Device Configuration".
(3)	i_uExeProtocolNo	Execution protocol number specification	Word [unsigned]/ bit string [16 bits]	At start	1 to 63	Specify the protocol number used by the predefined protocol support function. Refer to "Model" corresponding to the model name set in i_uSensorType (distance meter model name) and "Protocol Name" corresponding to the number set in i_uAxis (target axis), and specify the protocol number with which "Axis \square SND" ${ }^{* 1}$ is registered. ${ }^{*}$ 2 For details on the settings, refer to the following. \longmapsto Page 27 Predefined protocol support function setting
(4)	i_uSensorType	Distance meter model name	Word [unsigned]/ bit string [16 bits]	At start	1,9	Specify the distance meter to be used. 1: AMS308i (Leuze) 9: Ethernet communication compatible distance meter other than the above
(5)	i_uAxis	Target axis	Word [unsigned]/ bit string [16 bits]	At start	1 to 3	Specify the number of the axis to be used by the distance meter. 1: Travel axis 2: Lift axis 3: Fork axis
(6)	i_eOffsetVal	Distance offset value	Single-precision real number	Always	$\begin{aligned} & \text { • }-300.000000 \text { to }-2^{-126} \\ & (-1.175494 \mathrm{E}-38) \\ & \cdot 0.000000 \\ & \cdot 2^{-126}(1.175494 \mathrm{E}-38) \\ & \text { to } 300.000000 \end{aligned}$	Specify the value [m] to offset the measurement value of the distance meter.
(7)	i_bSensorDirection	Distance measurement value direction	Bit	Always	On, Off	Specify the increase direction of the measurement value of the distance meter. Off: The measurement value increases for positioning in the positive direction. On: The measurement value increases for positioning in the negative direction.

*1 The symbol \square indicates the number of the target axis.
*2 A protocol with a protocol name of "Axis $\square R C V$ " is executed at the same time as the "Axis \square SND" protocol, so there is no need to specify the protocol number.

Output labels

No.	Label	Name	Data type	Default value	Description
(8)	o_bENO	Execution status	Bit	Off	On: The execution command is on. Off: The execution command is off.
(9)	o_bOK	Normal completion	Bit	Off	The on state indicates that the distance measurement value was fed back normally.
(10)	o_bErr	Error completion	Bit	Off	The on state indicates that an error has occurred in the FB.
(11)	o_uErrld	Error code	Word [unsigned]/ bit string [16 bits]	0	Stores the error code of an error that occurred in the FB.
(12)	o_eCurrentPos	Current position	Single-precision real number	0.000000	Stores the current position [m] measured by the distance meter for each control cycle. (The value is held when the FB is stopped.)

Global labels

Refer to the following.
\longmapsto Page 17 List of Global Labels

Function details

Applicable hardware and software

■FB for control of the inverter for automated warehouse

Module	Firmware version	Engineering tool
FX5S CPU module	1.000 or later	GX Works3 Version 1.086Q or later
FX5UJ CPU module	1.030 or later	GX Works3 Version 1.086Q or later
FX5U CPU module	1.270 or later	GX Works3 Version 1.086Q or later
FX5UC CPU module	1.270 or later	GX Works3 Version 1.086Q or later

Distance meter

Model name	Manufacturer	Distance measurement method	Communication method	Software version	Hardware version
AMS308i	Leuze electronic	Laser	Ethernet communication	v1.0.20	1

Basic specifications

Item	Description
Language to use	Structured text language
Number of steps	Target value: 1254 steps The number of steps of the FB embedded in a program depends on the CPU module used, the input/output definitions, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. Pa Works3 Operating Manual
Points of labels used	•Label: 0.04 K points (Word) • Latch Label: OK points (Word) The points of labels embedded in a program depend on the CPU module used, the devices specified for arguments, and the option setting of GX Works3. For the option setting of GX Works3, refer to the following. La GX Works3 Operating Manual
Points of index register used	•Index register: 0 points •Long index register: 0 points
Points of file register used	File register: 9 points (Word) (R32700 to R32708)
FB dependency	No dependency
FB compilation method	Subroutine type
FB operation	Always executed

Function description

- Turning on i_bEN (execution command) causes the predefined protocol support instruction (SP.ECPRTCL) to execute the protocol registered with the predefined protocol support function of GX Works3. After execution of the protocol specified by i_uExeProtocolNo (execution protocol number specification), o_bOK (normal completion) turns on.
- The execution of the protocol enables UDP-based communication with a distance meter that supports Ethernet connection to feed back the current position.
- When i bEN (execution command) is off, the output value of o eCurrentPos (current position) is held, and the output other than o_eCurrentPos (current position) becomes off or 0 . However, during communication by the predefined protocol support instruction (SP.ECPRTCL), the operation continues until the communication is completed.
- If i_uConnectionNo (connection No.) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 190H is stored in o_uErrld (error code). (Page 82 Error code)
- If i_uExeProtocolNo (execution protocol number specification) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 181 H is stored in o_uErrld (error code). (\wp Page 82 Error code)
- If i_uSensorType (distance meter model name) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 182 H is stored in o_uErrld (error code). (
- If i_uAxis (target axis) is out of range while i_bEN (execution command) is rising, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 183H is stored in o_uErrld (error code). (\ddagger Page 82 Error code)
- This FB uses SD10692 to check whether the predefined protocol is prepared normally. If the check result is abnormal, o_bErr (error completion) turns on and processing of the FB does not start. In addition, the error code 184H is stored in o_uErrld (error code). (\longmapsto Page 82 Error code)
- If an error occurs in the distance meter (Ethernet communication), o_bErr (error completion) turns on. (The FB will continue to operate.) In addition, the error code 290 H is stored in o_uErrld (error code). (F Page 82 Error code)
- If a distance measurement value error occurs due to blocking of light from the distance meter (Ethernet communication), o_bErr (error completion) turns on. (The FB will continue to operate.) In addition, the error code 291H is stored in o_uErrld (error code). (\Im Page 82 Error code)
- If an error occurs during the predefined protocol's send/receive operation, o_bErr (error completion) turns on. (The FB will continue to operate.) In addition, an error code is stored in o_uErrld (error code). For error code details, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)

Timing chart of I/O signals

■Completed successfully

(1) While the FB is being executed, the predefined protocol support instruction (SP.ECPRTCL) is executed at any time.
(2) A value obtained from a distance meter

Error completion

When an error occurs at start of the FB

When an error occurs while the FB is operating (when a distance measurement value error occurs due to light blocking)

(1) While the FB is being executed, the predefined protocol support instruction (SP.ECPRTCL) is executed at any time.
(2) A value obtained from a distance meter
(3) Measurement value
(4) The light from the distance meter is blocked.
(5) A cause of blocking of light from the distance meter is removed.

Precautions

- Use in combination with the protocol setting data "fb-awhfreqrol_EN.tpx" included with the sample program.
- In a configuration using this FB library, if the execution command of this FB is turned off while the inverter is running, the current position cannot be updated, and speed correction cannot be performed normally.
- Set $100 \mu \mathrm{~m}(0.1 \mathrm{~mm})$ as the measurement position unit in the distance meter. (\Im Page 21 Parameter Settings)
- This FB uses the predefined protocol support instruction (SP.ECPRTCL). For details, refer to the following.
$\square]$ MELSEC iQ-F FX5 User's Manual (Communication)

Parameter settings

From GX Works3, set the parameters for the settings of Ethernet connection configuration with external devices and the predefined protocol support function. For the steps to set the parameters, refer to the following.
\longmapsto Page 21 Parameter Settings

Performance values

FX5 CPU module	Measurement condition	Processing time	Maximum scan time	Number of scans
FX5S CPU module	Target distance meter: AMS308i (Leuze)	16.321 ms	1.167 ms	19 scans
FX5UJ CPU module	Target distance meter: AMS308i (Leuze)	17.718 ms	0.753 ms	24 scans
FX5U/FX5UC CPU module ${ }^{* 1 * 2}$	Target distance meter: AMS308i (Leuze)	18.167 ms	0.544 ms	28 scans

*1 When the program capacity is set to 128 K steps, the processing speed may become slow.
*2 The standard area is used for labels.

Error code

Error code	Description	Action
181 H	The setting value of i_uExeProtocolNo (execution protocol number specification) is out of range.	Check and correct the setting, then execute the FB again.
182 H	The setting value of i_uSensorType (distance meter model name) is out of range.	Check and correct the setting, then execute the FB again.
183 H	The setting value of i_uAxis (target axis) is out of range.	Check and correct the setting, then execute the FB again.
184 H	The protocol setting file for the predefined protocol support function is not registered.	Register the protocol setting file for the used distance meter and then execute the FB again.
190 H	The setting value of $i _u C o n n e c t i o n N o ~(c o n n e c t i o n ~ N o) ~ i s ~ o u t ~ o f ~$. range.	Check and correct the setting, then execute the FB again.
290 H	An error occurred in the distance meter (Ethernet communication).	Check if the distance meter is working correctly.
291 H	A distance measurement value error occurred due to blocking of light from the distance meter (Ethernet communication). The current position is not updated by the distance meter while this error is on.	Remove the cause of light blocking.
Module error code	The error code generated by the module is returned. (Error code during Ethernet communication)	Lal MELSEC iQ-F FX5 User's Manual (Communication)

3.9 M+AWH_DecDistance_F (Deceleration Distance Calculation)

Overview

This FB calculates a required distance for deceleration stop during positioning control.

Function details

Basic specifications

Item	Description
FB compilation method	Subroutine type
FB operation	Always executed

Function description

This FB is called from $\mathrm{M}+\mathrm{AWH}$ _PosVelGen_F (positioning operation command generation) and calculates a required distance for deceleration stop during positioning control.

Precautions

Do not use this FB in user-created programs because it is used in other FBs.

4.1 Positioning Operation with Distance Meters (Serial Communication)

The following describes the usage procedure to perform the following operations: communicate with distance meters capable of serial communication; give feedback about current position information; execute the positioning operation for the two axes (travel axis and lift axis) of the stacker crane.
In this operation, the following FBs are used.

- M+AWH_PosVelGen_F (positioning operation command generation)
- M+AWH_PIDControl_F (PID control)
- M+AWH_VelConv_F (frequency conversion)
- M+AWH_AntiSwayControl_F (anti-sway control)
- M+AWH_FREQROL_CCLinkIEFBasic_F (inverter communication)
- M+AWH_ScaleIF_SerialComm_F (distance measurement: serial)
- M+AWH_DecDistance_F (deceleration distance calculation)

Overview

This operation enables communication with two inverters and performs positioning control for the travel axis (axis 1) and lift axis (axis 2) of the stacker crane.

Input the following positioning control settings in the global labels for the sample program. Then, operate the global labels for executing each FB to move the stacker crane to the target position.

System configuration

Positioning control setting example

Item	Setting value	
	Travel axis (axis 1)	Lift axis (axis 2)
Target position	$100.0[\mathrm{~m}]$	$30.0[\mathrm{~m}]$
Command speed	$1.0[\mathrm{~m} / \mathrm{s}]$	$0.5[\mathrm{~m} / \mathrm{s}]$
Acceleration/deceleration reference speed	$1.0[\mathrm{~m} / \mathrm{s}]$	$0.5[\mathrm{~m} / \mathrm{s}]$
S-curve time	$0.5[\mathrm{~s}]$	$0.5[\mathrm{~s}]$
Acceleration/Deceleration time	$1.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$
Acceleration/Deceleration rate	$1.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	$1.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$

Positioning operation details

As shown in the following figure, move the stacker crane from the operation start position to the target position set in the global label.

The acceleration rate and deceleration rate and the acceleration jerk and deceleration jerk can be calculated from the acceleration/deceleration reference speed, the acceleration time and deceleration time, and the S-curve time.

Item	Abbreviation	Description	Calculation formula
Acceleration/deceleration reference speed	V	Command speed $[\mathrm{m} / \mathrm{s}]$ that is the basis of the acceleration/ deceleration section	-
${\text { Acceleration time }{ }^{* 1}}^{\text {Veceleration time }{ }^{* 1}}$	Ta	Period of time [s] for which acceleration is enabled	-
S-curve time ${ }^{* 2}$	Td	Period of time [s] for which deceleration is enabled	-
Acceleration rate	Ts	Period of time [s] for which S-curve acceleration/deceleration is enabled	-
Deceleration rate	A	-	$\mathrm{V} \div \mathrm{Ta}$
Acceleration jerk	D	-	$\mathrm{V} \div \mathrm{Td}$
Deceleration jerk	Ja	-	$\mathrm{A} \div \mathrm{Ts}$

*1 The acceleration/deceleration time in the actual equipment may be different.
*2 Set the S-curve time value to be shorter than the acceleration time value.

Process flow

The following describes a process flow from the wiring and parameter settings of the FX5 CPU module, inverters, and distance meters to the use of the FB library for control of inverters for automated warehouse.

1. FB library registration

Register the FB library. For the operating procedure, refer to the following.
[] GX Works3 Operating Manual
2. Wiring

For the wiring method, refer to the manual of each distance meter.
3. CPU module setting

- Use GX Works3 to set CC-Link IEF Basic and the global labels. (↔ Page 21 Parameter Settings)
- Use GX Works3 to set predefined protocols to establish communication with distance meters. (\mathfrak{F} Page 27 Predefined protocol support function setting)

4. Inverter setting

Use FR Configurator2 to set the inverters. (5 Page 29 Inverter parameter setting)
5. Distance meter setting

Set distance meters according to the CPU module setting. (\ddagger Page 31 Distance meter setting)
6. Programming

Create programs. (5 Page 88 Programming)

Wiring

The following figure shows an example of wiring between the distance meter DL100 Pro and the MELSEC iQ-F series FX5-485-BD.

For details on wiring, refer to the manual of each distance meter.

Programming

This section describes programs used in the application example.
In these programs, only the circuits required to operate each function are described, and such a circuit as an interlock for safety is not included. Add such a circuit as an interlock according to your device.

Data name in sample programs	Execution type	Description
awhfreqrol_sample1_main	Scan	Executes the positioning control main processing.
awhfreqrol_sample2_main	Scan	This item is not used in this example. Delete the item.
awhfreqrol_sample_initial	Initial	Sets initial values in labels that require input for positioning control.

Label list

■Local labels

Global labels

	Label Name	Data Type		Assign (Device/Label)	English(Display Target)
1	G_bTrulPosStar	Bit	VAR_GLOBAL	$-$	Travel postioning start
2	G_LTvilHomePos	Bit	VAR_GLOBAL	-	Travel home postioning
3	G_eTrilTargetPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel target postion [m]
4	G_eTTriTargetSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel Target speed [m / s]
5	G_eTrulCmdPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel command position [m] ${ }^{\text {[1 }}$
6	G_eTrulCmdSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel command speed [$\mathrm{m} / \mathrm{s}]^{+1}$
7	G_eTriAAcPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel Curent postion [m] $]^{11}$
8	G_eTrulPosMin	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel Minimum postion [m]
9	G_eTrulPosMax	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel Maximum postion [m]
10	G_bTrulRapidStop	Bit	VAR_GLOBAL	-	Travel rapid stop
11	G_st Trulip	PID_PR	VAR_GLOBAL	Detailed Setting	Travel PID parameters
12	G_binv1_ON	Bit	VAR_GLOBAL	-	Travel inverter start
13	G_eTvuAcc Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel acceleration time [s]
14	G_eTruDectime	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel deceleration time [s]
15	G_eTru1RapidStopDec Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Deceleration time for sudden stop [s]
16	G_eTruScvTime	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel S-curve time [s]
17	G_eTrulRefSpd	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel acceleration / deceleration reference speed
18	G_eTrulAcceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel acceleration*1
19	G_eTvildeceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel deceleration ${ }^{\text {-1 }}$
20	G_eTvilAcjerk	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel acceleration Jerk* 1
21	G_eTrulDecjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel deceleration Jerk* 1
22	G_eTrulRapidStopDec	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel rapid stop deceleration"1
23	G_eTviRapidStopDecierk	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel rapid stop deceleration jerk ${ }^{+1}$
24	G_bTrulSensoron	Bit	VAR_GLOBAL	-	Travel measurement sensor ON
25	G_uTviCh	Word [Unsigned/Biit Sting [16-bit]	VAR_GLOBAL	-	Travel communication channel
26	G_uTrulConnectionNo	Word [Unsigned/Biit Sting [16-bit]	VAR_GLOBAL	-	Travel connection №.
27	G_uTru\|ExeProtocolNo	Word [Unsigned/Biit Sting [16-bit]	VAR_GLOBAL	-	Travel execution protocol number
28	G_uTrulSensorType	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Travel distance measuring instrument model name
29	G_uTviAxis	Word [Unsigned/Biit Sting [16-bit]	VAR_GLOBAL	-	Travel target axis
30	G_eTviOffsetVal	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel distance offset value
31	G_bTrwISensorDirection	Bit	VAR_GLOBAL	-	Travel distance measurement direction
32	G_eTvililieffreq	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel fiter frequency
33	G_eTvulitierGain	FLOAT [Single Precision]	VAR_GLOBAL	-	Trave filter gain
34	G_blitfosStart	Bit	VAR_GLOBAL	-	Eevating postioning start
35	G_blithomePos	Bit	VAR_GLOBAL	-	Elevating home posstioning
36	G_eliftargetPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Ilevating target postion [m]
37	G_eliftargetSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Bevating target speed [m / s]
38	$\mathrm{G}_{\text {_ }}$ LiliflcmdPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift command postion [m] ${ }^{\text {a }}$-1
39	G_elifitcmdSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift command speed [$\mathrm{m} / \mathrm{s}]^{-1}$
40	G_elitactPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift current postion [m] $]^{11}$
41	G_elitPosMin	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift minimum postion [m]
42	G_elitPosMax	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift maximum postion [m]
43	G_blitRapidStop	Bit	VAR_GLOBAL	-	Lift rapid stop
	Label Name	Data Type		Assign (Device/Label)	English(Display Target)
44	G_stlitflo	PID_PR	VAR_GLOBAL	- Detailed Seting	Lit PID parameters
45	G_dNV2_ON	Bit	VAR_GLOBAL	-	Litt inverter start
46	G_elititac Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift acceleration time [s]
47	G_elitdec Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Lit deceleration time [s]
48	G_elittaapidStop Dec Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Deceleration time for sudden stop [s]
49	G_elitSovTime	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift S-curve time [s]
50	G_elithefSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift acceleration / decelerating reference speed [m/s]
51	G_elifitaceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift acceleration*1
52	$\mathrm{G}_{\text {_ }}^{\text {elidit }}$ Deceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift deceleration 11
53	G_elitAccjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Lit a acceleration Jerk'1
54	G_elitdecierk	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Lit deceleration Jeek' 1
55	G_elithapidStopDec	FLOAT [Single Precision]	VAR_GLOBAL	-	Lit rapid stop deceleration*1
56	G_elitithapidStopDecierk	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift rapid stop deceleration jerk ${ }^{+1}$
57	G_bliffensoron	Bit	VAR_GLOBAL	-	Lift measurement sensor ON
58	G_ulith	Word [Unsigned/ Bi String [16-bit]	VAR_GLOBAL	-	Lift communication channel
59	G_uliflConnectionNo	Word [Unsigned/Biit Sting [16-bit]	VAR_GLOBAL	-	Lift connection No.
60	G_uliftexeProtocolNo	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Lit execution protocol number
61	G_ulitSensorType	Word [Unsigned/Biit Sting [16-bit]	VAR_GLOBAL	-	Lift distance measuing instument model name
62	G_uliftaxis	Word [Unsigned/BBit String [16-bit]	VAR_GLOBAL	-	Lift target axis
63	G_eliftoffetVal	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift distance offset value
64	G_blitSensorDirection	Bit	VAR_GLOBAL	-	Lit distance measurement direction
65	G_elitffilterfreq	FLOAT [Single Precision]	VAR_GLOBAL	-	Liff filter frequency
66	G_elitffilterGain	FLOAT [Single Precision]	VAR_GLOBAL	-	Liff filter gain
67	G_bliNV1_Direction	Bit	VAR_GLOBAL	-	Inverter 1 rotation direction
68	G_bliNV2_Direction	Bit	VAR_GLOBAL	-	Inverter 2 rotation direction
69	G_blNV1_RST	Bit	VAR_GLOBAL	,	Inverter 1 reset
70	G_blNV2_RST	Bit	VAR_GLOBAL	-	Inverter 2 reset
71	G_bEMS	Bit	VAR_GLOBAL	-	Emergency stop
72	G_bTvIFBEr	Bit	VAR_GLOBAL	-	Travel FB eror
73	G_blitfber	Bit	VAR_GLOBAL	-	Lift FB eror
74	G_bForkSEL	Bit	VAR_GLOBAL	-	Fork selection
75	G_bliNV1_RUN	Bit	VAR_GLOBAL	-	Inverter 1 in operation ${ }^{-1}$
76	G_blNV2_RUN	Bit	VAR_GLOBAL	-	Inverter 2in operation*1
77	G_bForkFWD	Bit	VAR_GLOBAL	-	Fork forward
78	G_bForkREV	Bit	VAR_GLOBAL	\checkmark	Fork backward
79	G_bForkFLS	Bit	VAR_GLOBAL	-	Fork forward end
80	G_bForkRLS	Bit	VAR_GLOBAL	-	Fork backward end
81	G_wForkSetrea	Word [Signed]	VAR_GLOBAL	-	Fork frequency setting [Hz]
82	G_LTriMotMC	Bit	VAR_GLOBAL	-	Travel motor MC ON
83	G_LTrMMotBR	Bit	VAR_GLOBAL	-	Travel motor brake open
84	G_bForkMotMC	Bit	VAR_GLOBAL	-	Fork motor MC ON
85	G_bForkMotBR	Bit	VAR_GLOBAL	-	Fork motor brake open
86	G_bForkFIN	Bit	VAR_GLOBAL	-	Fork motion completion ${ }^{\text {¹ }}$

*1 This is a global label used for calculations in the sample programs. Do not change it.

Predefined protocol setting

Use the predefined protocol support function to enable serial communication with distance meters.
Ex.
Enabling serial communication with the distance meter (DL100 Pro, Standard Binary code) on the lift axis In the initial execution program "awhfreqrol_sample_initial", set "G_uLiftAxis = 2 (lift axis)" and "G_uLiftExeProtocolNo = 3 (specify Axis2 Position)".

Program example

Positioning target value input and control program

This program manipulates input bits to execute the following operations:

- Input the target positions and target speeds for positioning the travel axis (axis 1) and lift axis (axis 2).
- Input execution commands to FBs.
- Initialize input bits and target positions.

Input bit	Corresponding operation	Operation description
M0	(1): Target value input (travel axis)	Inputs the target position (100 [m]) and target speed (1.0 [m/s]) for positioning the travel axis.
M1	(2): Target value input (lift axis)	Inputs the target position (30 [m]) and target speed (0.5 [m / s]) for positioning the lift axis.
M10	(3): Start of the inverter control and distance measurement	Starts the current position feedback from the distance meter. Execution commands are input to the following FBs: - M_AWH_ScalelF_SerialComm_F_1 (travel distance measurement: serial) - M_AWH_ScalelF_SerialComm_F_2 (lift distance measurement: serial)
M11		Starts the command output to the inverters. Execution commands are input to the following FBs: - M_AWH_VelConv_F_1 (travel frequency conversion) - M_AWH_FREQROL_CCLinkIEFBasic_F_1 (CC-Link IE Field Network Basic communication with inverter 1) - M_AWH_VelConv_F_2 (lift frequency conversion) - M_AWH_FREQROL_CCLinkIEFBasic_F_2 (CC-Link IE Field Network Basic communication with inverter 2)
M12	(4): Start of positioning (6): Initialization after execution	Generates positioning operation commands in the order of the travel axis and lift axis and executes the positioning. Execution commands are input to the following FBs: - M_AWH_PosVelGen_F_1 (travel axis positioning operation command generation) - M_AWH_PosVelGen_F_2 (lift axis positioning operation command generation) After completion of the positioning, initializes the input bits and target positions.
M13	(5): Start of positioning (for homing) (6): Initialization after execution	Generates positioning operation commands in the order of the lift axis and travel axis and executes the positioning (for homing). Execution commands are input to the following FBs: -M_AWH_PosVelGen_F_1 (travel axis positioning operation command generation) - M_AWH_PosVelGen_F_2 (lift axis positioning operation command generation) After completion of the positioning, initializes the input bits and target positions.

Travel axis positioning control
(1) Distance measurement value feedback to speed/position commands generation

(2) Speed command \rightarrow Frequency conversion to inverter communication

■Lift axis positioning control

(1) Distance measurement value feedback to speed/position commands generation

(2) Speed command \rightarrow Frequency conversion to inverter communication

4.2 Positioning Operation with Distance Meters (Ethernet Communication)

The following describes the usage procedure to perform the following operations: communicate with distance meters capable of Ethernet communication; give feedback about current position information; perform the positioning operation for the two axes (travel axis and lift axis) of the stacker crane; operate one inverter to switch the motor between the travel axis and fork axis.
In this operation, the following FBs are used.

- M+AWH_PosVelGen_F (positioning operation command generation)
- M+AWH_PIDControl_F (PID control)
- M+AWH_VelConv_F (frequency conversion)
- M+AWH_MotorSwitch_F (motor switching control)
- M+AWH_AntiSwayControl_F (anti-sway control)
- M+AWH_FREQROL_CCLinkIEFBasic_F (inverter communication)
- M+AWH_ScaleIF_EN_F (distance measurement: Ethernet)
- M+AWH_DecDistance_F (deceleration distance calculation)

Overview

This operation enables communication with two inverters and performs positioning control for the travel axis (axis 1) and lift axis (axis 2) of the stacker crane.
Input the following positioning control settings in the global labels for the sample program. Then, operate the global labels for executing each FB to move the stacker crane to the target position.
Also, two motors of the travel axis (axis 1) and fork axis (axis 3) can be controlled by switching them with one inverter. (For the fork axis (axis 3), only the V/F control can be performed.)

System configuration

No.	Device	Description	Station No.
(1)	FX5U CPU module	Programmable controller	Master station
(2)	FR-E800 + FR-A8AP E kit (axis 1 (travel axis))	Inverter for travel axis control (with Vector control compatible option)	1
(3)	FR-E800 + FR-A8AP E kit (axis 2 (lift axis))	Inverter for lift axis control (with Vector control compatible option)	2

No.	Device	Description	Station No.
(4)	AMS308i (axis 1 (travel axis))	Distance meter for positioning for travel axis (Ethernet communication)	-
(5)	AMS308i (axis 2 (lift axis))	Distance meter for positioning for lift axis (Ethernet communication)	-
(6)	Motor (axis 1 (travel axis)) + PLG	Motor for driving stacker crane's travel axis and PLG	-
(7)	Motor (axis 2 (lift axis)) + PLG	Motor for driving stacker crane's lift axis and PLG	-
(8)	Motor (axis 3 (fork axis))	Motor for driving stacker crane's fork axis	-
(9)	Switching hub	Used for connection with various devices.	-

Positioning control setting example

Item	Setting value		
	Travel axis (axis 1)	Lift axis (axis 2)	Fork axis (axis 3)
Target position	$100.0[\mathrm{~m}]$	$30.0[\mathrm{~m}]$	-
Command speed	$1.0[\mathrm{~m} / \mathrm{s}]$	$0.5[\mathrm{~m} / \mathrm{s}]$	-
Acceleration/deceleration reference speed	$1.0[\mathrm{~m} / \mathrm{s}]$	$0.5[\mathrm{~m} / \mathrm{s}]$	-
S-curve time	$0.5[\mathrm{~s}]$	$0.5[\mathrm{~s}]$	-
Acceleration/Deceleration time	$1.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$	-
Acceleration/Deceleration rate	$1.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	$1.0\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	-
Running frequency (axis 3)	-	-	$60[\mathrm{~Hz}]$

Positioning operation details

Refer to the following.
\longmapsto Page 84 Positioning Operation with Distance Meters (Serial Communication)

Process flow

The following describes a process flow from the wiring and parameter settings of the FX5 CPU module, inverters, and distance meters to the use of the FB library for control of inverters for automated warehouse.

1. $F B$ library registration

Register the FB library. For the operating procedure, refer to the following.
[] GX Works3 Operating Manual
2. Wiring

For the wiring method, refer to the manual of each distance meter.
3. CPU module setting

- Use GX Works3 to set CC-Link IEF Basic and the global labels. (\longmapsto Page 21 Parameter Settings)
- Use GX Works3 to set predefined protocols to establish communication with distance meters. (5 Page 27 Predefined protocol support function setting)

4. Inverter setting

Use FR Configurator2 to set the inverters. (ङ Page 29 Inverter parameter setting)
5. Distance meter setting

Set distance meters according to the CPU module setting. (\Im Page 31 Distance meter setting)
6. Programming

Create programs. (\leftrightarrows Page 95 Programming)

Programming

This section describes programs used in the application example.
In these programs, only the circuits required to operate each function are described, and such a circuit as an interlock for safety is not included. Add such a circuit as an interlock according to your device.

Data name in sample programs	Execution type	Description
awhfreqrol_sample1_main	Scan	This item is not used in this example. Delete the item.
awhfreqrol_sample2_main	Scan	Executes the positioning control main processing.
awhfreqrol_sample_initial	Initial	Sets initial values in labels that require input for positioning control.

Label list

The following labels are used in these programs.

[Local labels

	Label Name	Data Type		Class	English(Display Target)
1	M_AWH_PosVelGen_F_1	M+AWH_PosVelGen_F	VAR	\checkmark	Travel positioning operation command generation
2	M_AWH_PIDControl_F_1	M+AWH_PIDControl_F	VAR	-	Travel PID control
3	M_AWH_VelConv_F_1	M + AWH_VelConv_F	VAR	-	Travel frequency conversion
4	M_AWH_MotorSwitch_F_1	M+AWH_MotorSwitch_F	VAR	-	Travel/fork motor switching control
5	M_AWH_AntiSwayControl_F_1	M+AWH_AntiSwayControl_F	VAR	-	Travel damping control
6	M_AWH_FREQROL_CCLinkIEFBasic_F.	M+AWH_FREQROL_CCLinklEFBasic_F	VAR	-	Inverter 1CC-Link IEFBasic communication
7	M_AWH_ScalelF_EN_F_1	M + AWH_Scalelf_EN_F	VAR	-	Travel distance measurement: Ethemet
8	M_AWH_PosVelGen_F_2	M+AWH_PosVelGen_F	VAR	-	Lift positioning operation command generation
9	M_AWH_PIDControl_F_2	M + AWH_PIDControl_F	VAR	-	Lift PID control
10	M_AWH_VelConv_F_2	M + AWH_VelConv_F	VAR	-	Lift frequency conversion
11	M_AWH_AntiSwayControl_F_2	M+AWH_AntiSwayControl_F	VAR	-	Lift damping control
12	M_AWH_FREQROL_CCLinkIEFBasic_F	M+AWH_FREQROL_CCLinklEFBasic_F	VAR	-	Inverter 2CC-Link IEFBasic communication
13	M_AWH_Scalelf_EN	M + AWH_Sc	AR		Lift distance measurement: Ethemet

Global labels

	Label Name	Data Type		Assign (Device/Label)	English(Display Target)
1	G_bTrvlPosStart	Bit	VAR_GLOBAL	-	Travel positioning start
2	G__LTrilHomePos	Bit	VAR_GLOBAL	-	Travel home postioning
3	G_eTrilTargetPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel target position [m]
4	G_eTrulTargetSpd	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel Target speed [m / s]
5	G_eTrilCmdPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel command position [m] ${ }^{+1}$
6	G_eTrviCmdSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel command speed $[\mathrm{m} / \mathrm{s}]^{+1}$
7	G_eTrilActPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel Current position [m] ${ }^{\text {c1 }}$
8	G_eTrulPosMin	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel Minimum position [m]
9	G_eTrulPosMax	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel Maximum position [m]
10	G_bTrulRapidStop	Bit	VAR_GLOBAL	-	Travel rapid stop
11	G_st TrulPID	PID_PR	VAR_GLOBAL	Detailed Setting	Travel PID parameters
12	G_dNV1_ON	Bit	VAR_GLOBAL	-	Travel inverter start
13	G_eTrulAccTime	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel acceleration time [s]
14	G_eTrulDecTime	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel deceleration time [s]
15	G_eTrulRapidStopDec Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Deceleration time for sudden stop [s]
16	G_eTrulScvTime	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel S-curve time [s]
17	G_eTrviRefSpd	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel acceleration / deceleration reference speed
18	G_eTrv1Acceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel acceleration"1
19	G_eTrulDeceleration	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Travel deceleration*1
20	G_eTrv1Accjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel acceleration Jerk*1
21	G_eTrulDecjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel deceleration Jerk*1
22	G_eTrv/RapidStopDec	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel rapid stop deceleration*1
23	G_eTrulRapidStopDecjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel rapid stop deceleration jerk*1
24	G_bTrulSensorON	Bit	VAR_GLOBAL	-	Travel measurement sensor ON
25	G_uTrulCh	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Travel communication channel
26	G_uTrulConnection№	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Travel connection №.
27	G_uTrulExeProtocol№	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Travel execution protocol number
28	G_uTrv1SensorType	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Travel distance measuring instrument model name
29	G_uTrviAxis	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	\checkmark	Travel target axis
30	G_eTrulOffsetVal	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel distance offset value
31	G_bTrv1SensorDirection	Bit	VAR_GLOBAL	-	Travel distance measurement direction
32	G_eTrulifiterfreq	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel fiter frequency
33	G_eTrulifiterGain	FLOAT [Single Precision]	VAR_GLOBAL	-	Travel filter gain
34	G_bliftosStart	Bit	VAR_GLOBAL	-	Ievating positioning start
35	G_blithomePos	Bit	VAR_GLOBAL	-	Elevating home positioning
36	G_eliftargetPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Elevating target position [m]
37	G_elift TargetSpd	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Elevating target speed [m / s]
38	G_eliftcmdPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift command position [m] ${ }^{-1}$
39	G_elifticmdSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift command speed [$\mathrm{m} / \mathrm{s}]^{+1}$
40	G_elititactPos	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift current position [m] ${ }^{11}$
41	G_elitPosMin	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift minimum position [m]
42	G_eliftPosMax	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Lift maximum position [m]
43	G_bliftRapidStop	Bit	VAR_GLOBAL	\checkmark	Lift rapid stop
	Label Name	Data Type		Assign (Device/Label)	English(Display Target)
44	G_stlitPID	PID_PR	VAR_GLOBAL	Detailed Setting	Lift PID parameters
45	G_dinV2_ON	Bit	VAR_GLOBAL	-	Litt inverter start
46	G_elithccTime	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Lit acceleration time [s]
47	G_elitDecTime	FLOAT [Single Precision]	VAR_GLOBAL	\checkmark	Lift deceleration time [s]
48	G_eliftRapidStopDec Time	FLOAT [Single Precision]	VAR_GLOBAL	-	Deceleration time for sudden stop [s]
49	G_elifScrTime	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift S-curve time [s]
50	G_elithefSpd	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift acceleration / decelerating reference speed [m/s]
51	G_eliftAcceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift acceleration*1
52	G_eliftDeceleration	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift deceleration*1
53	G_eliftAccjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift acceleration Jerk*1
54	G_eliftDecjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift deceleration Jerk* 1
55	G_eliftRapidStopDec	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift rapid stop deceleration*1
56	G_elitRRapidStopDecjerk	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift rapid stop deceleration jerk*1
57	G_bliftSensorON	Bit	VAR_GLOBAL	-	Lift measurement sensor ON
58	G_ulitch	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Lift communication channel
59	G_ulitiConnectionNo	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Lift connection No.
60	G_ulift Exe Protocol№	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Lift execution protocol number
61	G_ulitSensorType	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Lift distance measuring instrument model name
62	G_uliftAxis	Word [Unsigned//Bit String [16-bit]	VAR_GLOBAL	-	Lift target axis
63	G_eliftoffsetVal	FLOAT [Single Precision]	VAR_GLOBAL	-	Lift distance offset value
64	G_blitSensorDirection	Bit	VAR_GLOBAL	-	Lift distance measurement direction
65	G_eliffiliterfreq	FLOAT [Single Precision]	VAR_GLOBAL	-	Lit filter frequency
66	G_eliffiliterGain	FLOAT [Single Precision]	VAR_GLOBAL	-	Liff fiter gain
67	G_bINV1_Direction	Bit	VAR_GLOBAL	-	Inverter 1 rotation direction
68	G_bINV2_Direction	Bit	VAR_GLOBAL	-	Inverter 2 rotation direction
69	G_blNV1_RST	Bit	VAR_GLOBAL	-	Inverter 1 reset
70	G_blNV2_RST	Bit	VAR_GLOBAL	-	Inverter 2 reset
71	G_bEMS	Bit	VAR_GLOBAL	\checkmark	Emergency stop
72	G_bTrulFBEr	Bit	VAR_GLOBAL	-	Travel FB error
73	G_bliftrBEr	Bit	VAR_GLOBAL	-	Lift FB emor
74	G_bForkSEL	Bit	VAR_GLOBAL	-	Fork selection
75	G_JINV1_RUN	Bit	VAR_GLOBAL	-	Inverter 1 in operation*1
76	G_JINV2_RUN	Bit	VAR_GLOBAL	\checkmark	Inverter 2in operation*1
77	G_bForkFWD	Bit	VAR_GLOBAL	-	Fork forward
78	G_bForkREV	Bit	VAR_GLOBAL	-	Fork backward
79	G_bForkFLS	Bit	VAR_GLOBAL	-	Fork forward end
80	G_bForkRLS	Bit	VAR_GLOBAL	-	Fork backward end
81	G_wForkSetFreq	Word [Signed]	VAR_GLOBAL	-	Fork frequency setting [Hz]
82	G_bTrvMotMC	Bit	VAR_GLOBAL	-	Travel motor MC ON
83	G_bTrvMotBR	Bit	VAR_GLOBAL	-	Travel motor brake open
84	G_bForkMotMC	Bit	VAR_GLOBAL	\checkmark	Fork motor MC ON
85	G_bForkMotBR	Bit	VAR_GLOBAL	\checkmark	Fork motor brake open
86	G_bForkFIN	Bit	VAR_GLOBAL	\checkmark	Fork motion completion ${ }^{\circ} 1$

*1 This is a global label used for calculations in the sample programs. Do not change it.

Predefined protocol setting

Use the predefined protocol support function to enable Ethernet communication with distance meters.

Ex.

Enabling Ethernet communication with the distance meter (AMS308i) on the lift axis
In the initial execution program "awhfreqrol_sample_initial", set "G_uLiftAxis = 2 (lift axis)" and "G_uLiftExeProtocolNo = 3 (specify Axis2 SND)".

Program example

Positioning target value input and control program

This program manipulates input bits to execute the following operations:

- Input the target positions and target speeds for positioning the travel axis (axis 1) and lift axis (axis 2) and input the running frequency for the fork axis (axis 3).
- Input execution commands to FBs.
- Initialize input bits and target positions.

Input bit	Corresponding operation	Operation description
M0	(1): Target value input (travel axis)	Inputs the target position (100 [m]) and target speed (1.0 [m/s]) for positioning the travel axis.
M1	(2): Target value input (lift axis)	Inputs the target position ($30[\mathrm{~m} \mathrm{l}$) and target speed (0.5 [$\mathrm{m} / \mathrm{s}]$) for positioning the lift axis.
M2	(3): Target value input (fork axis)	Inputs the frequency setting ($60[\mathrm{~Hz}]$) for operating the fork axis.
M10	(4): Start of the inverter control and distance measurement	Starts the current position feedback from the distance meter. Execution commands are input to the following FBs: - M_AWH_ScalelF_EN_1 (travel distance measurement: Ethernet) - M_AWH_ScaleIF_EN_2 (lift distance measurement: Ethernet)
M11		Starts the command output to the inverters. Execution commands are input to the following FBs: - M_AWH_VelConv_F_1 (travel frequency conversion) - M_AWH_FREQROL_CCLinkIEFBasic_F_1 (CC-Link IE Field Network Basic communication with inverter 1) - M_AWH_MotorSwitch_F_1 (motor switching between the travel axis and fork axis) - M_AWH_VelConv_F_2 (lift frequency conversion) - M_AWH_FREQROL_CCLinkIEFBasic_F_2 (CC-Link IE Field Network Basic communication with inverter 2)
M12	(5): Start of positioning (6): Fork axis operation (8): Initialization after execution	Generates positioning operation commands in the order of the travel axis and lift axis and executes the positioning. Execution commands are input to the following FBs: - M_AWH_PosVelGen_F_1 (travel axis positioning operation command generation) - M_AWH_PosVelGen_F_2 (lift axis positioning operation command generation) After completion of the lift axis positioning, switches the motor between the travel axis and fork axis and performs the fork axis operation. The input labels are operated for the following FB: - M_AWH_MotorSwitch_F_1 (motor switching between the travel axis and fork axis) After completion of the positioning and fork axis operation, initializes the input bits and target positions.
M13	(7): Start of positioning (for homing) (8): Initialization after execution	Generates positioning operation commands in the order of the lift axis and travel axis and executes the positioning (for homing). Execution commands are input to the following FBs: - M_AWH_PosVelGen_F_1 (travel axis positioning operation command generation) - M_AWH_PosVelGen_F_2 (lift axis positioning operation command generation) After completion of the positioning, initializes the input bits and target positions.

Travel axis positioning control

(1) Distance measurement value feedback to speed/position commands generation

(2) Speed command \rightarrow Frequency conversion, travel/fork motor switching control, inverter communication

Lift axis positioning control

(1) Distance measurement value feedback to speed/position commands generation

(2) Speed command \rightarrow Frequency conversion to inverter communication

4.3 Operation Examples of General-Purpose Distance Meters

This section describes the usage procedure for communications with distance meters other than distance meters (DL100 Pro (SICK AG) and AMS308i (Leuze)) whose operation is verified in these FB libraries.
In the usage procedure, users are required to edit programs by using the following FBs.
Users are also required to create and add predefined protocols to be used for the predefined protocol support function according to the distance meter to be used.

- $\mathrm{M}+\mathrm{AWH}$ _ScaleIF_SerialComm_F (distance measurement: serial)
- M+AWH_ScalelF_EN_F (distance measurement: Ethernet)

Process flow

The following describes a process flow from the wiring and parameter settings of the FX5 CPU module and distance meters to the use of the FB library for control of inverters for automated warehouse.

1. $F B$ library registration and duplication

Register and duplicate the FB library. (5 Page 101 FB library registration and duplication)
2. Wiring

For the wiring method, refer to the manual of each distance meter.
3. Distance meter setting

Set distance meters according to the CPU module setting. For the setting method, refer to the manuals for the distance meters to be used.
4. Predefined protocol support function setting

Add protocol settings to create predefined protocols. (↔ Page 102 Predefined protocol support function setting)
5. Programming

Create programs. (5 Page 104 Programming)

FB library registration and duplication

The programs in FBs that are registered from the FB library are not editable. To edit the programs, users need to duplicate (copy) the FBs.
The following describes how to register the FB library, duplicate program elements (FBs) in the library to reuse, and edit the programs.

Registering the FB library

Register the FB library. For the operating procedure, refer to the following.
[] GX Works3 Operating Manual

Pasting elements to the Navigation window

1. Select a program element on the [Library] tab in the Element Selection window. (Multiple elements can be selected.)
2. Drag and drop the program element to $[F B / F U N]$ in the Navigation window.

Duplicating reused program elements (FBs)

1. Select and copy an FB to be duplicated in [FB/FUN] in the Navigation window.

- When a serial communication compatible distance meter is used: Copy M+AWH_ScalelF_SerialComm_F.
- When an Ethernet communication compatible distance meter is used: Copy M+AWH_ScalelF_EN_F.

FFB name \Rightarrow Right-click \Rightarrow [Copy Data]
2. Duplicate the copied FB into the FB file.

2 FB file name \Rightarrow Right-click \Rightarrow [Paste Data]
The plus sign $(+)$ in the data name of the reused program element will be changed to the underscore ($($) after duplication.

Distance meter setting

For details on various distance meter settings and the setting method, refer to the manuals for the distance meters to be used. For the required setting items in the distance measurement value setting, refer to the following.
O: Setting is required, 一: Setting is not required

Setting item	Setting value	Serial communication compatible	Ethernet communication compatible
Unit of distance measurement value	0.1 mm	\bigcirc	\bigcirc
Data length	8 bits	\bigcirc	-
Parity	Even number	\bigcirc	-
Stop Bit	1 bit	Set the IP address of the distance meter to be used.	-
IP address	Set an IP address in the same network as the distance meter to be used.	-	-
Gateway	Set the subnet mask of the distance meter to be used.	-	\bigcirc
Subnet mask	UDP	-	\bigcirc
Protocol to be used	-	\bigcirc	
Destination IP address	Set the IP address of the CPU module. Example: 192.168 .3 .250	-	\bigcirc

Predefined protocol support function setting

This section describes the settings required for communications with general-purpose distance meters other than distance meters (DL100 Pro (SICK AG) and AMS308i (Leuze)) whose operation is verified.

Adding protocol settings

To communicate with a general-purpose distance meter, add a predefined protocol for the used distance meter to the protocol setting data. Register the protocol setting from GX Works3.
For the detailed method, refer to any of the following according to the distance meter communication method (serial communication or Ethernet communication).
For details on the serial communication, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)
For details on the Ethernet communication, refer to the following.
[] MELSEC iQ-F FX5 User's Manual (Communication)

Point ${ }^{\rho}$

If an additional protocol for communication with another device needs to be registered with the protocol setting data provided with the FB library, add the protocol to the top or bottom of the existing protocol settings. (For protocol settings that are configured with existing protocol numbers, ensure that their protocol numbers appear consecutively.)

Creating predefined protocols

Create predefined protocols to enable communication with distance meters.
Create a predefined protocol and add the protocol setting according to the specifications of the distance meter to be used.
For the specifications of the predefined protocols, refer to the manuals for the distance meters to be used.
When creating predefined protocols, for storage locations for the received data of current position and status (error information), refer to the following memory maps.

Predefined protocol support function memory maps (file register)								
R32700	R32701	R32702	R32703	R32704	R32705	R32706	R32707	R32708
Current position						Status (error information)		
(First axis)		(Second axis)		(Third axis)		(First axis)	(Second axis)	(Third axis)
G_d3CurrentPos[0]		G_d3CurrentPos[1]		G_d3CurrentPos[2]		G_w3SensorStatus[0]	G_w3SensorStatus[1]	G_w3SensorStatus[2]

Set the protocol so that its components (received data items) can be stored in the specified file register.

Programming

The following describes programming required for communication with general－purpose distance meters．

Editing programs in FBs（for serial communication compatible distance meters）

Edit programs in the copy of $\mathrm{M}+\mathrm{AWH}$＿ScalelF＿SerialComm＿F（distance measurement：serial）according to the following instructions．

Restriction

If the programs are not changed according to the following instructions，and the FB is executed with the input label＂i＿uSensorType（distance meter model name）＝K9＂，the FB does not properly operate．

Protocol communication processing

This processing is triggered by the predefined protocol support function instruction（S．CPRTCL）to execute the protocol communication according to the predefined protocol setting．

```
/Protocol Communication Processing(for DL 100 Pro)_ブロトコル通信処理(DL100Pro用)
    IF uSensorType = K1 THEN
        [2] := uExeProtocolNo; //Send/receive status information(protocol number n)_ステータス情報送受信(プロトコル番号n)
        18CtrlData[3]:= uExeProtocolNo +1; //Send/receive Position information(protocol number n + 1) 位置情報送受信(->フロトコル番号 n+1)
        Executes communication protocol support function instructions_通信プロトコル支援機能命令を実行
        S CPRTCL(bCprtcl_Run AND NOT b2Cprtcl_Result[0],'U0',u18CtrlData,uCh,K2,b2Cprtcl_Result);
    END_IF;
1. IIF uSensorType = K9 THEN
        *)
        //Executes communication protocol support function instructions_通信可㕷トコル支援機能命令を実行
        __CPRTCL(bCprtcl_Run AND NOT b2Cprtcl_Result [0],'U0',u18CtrlData,uCh_, 32,b2Cprtcl_Result);
```

1．Uncomment the protocol communication ladder program for general－purpose distance meters．
2．Specify the protocol numbers to be executed in u18CtrIData（control data）according to the created predefined protocol setting．For details on the control data of the predefined protocol support function instruction（S．CPRTCL），refer to the following．
［］MELSEC iQ－F FX5 User＇s Manual（Communication）

Point ρ

By default，two protocol numbers are specified．Add or delete the protocol numbers according to the number of protocols to be executed．

3．Specify the number of protocols to be executed in series according to the created predefined protocol setting（the number of protocols specified in step 2）．

Sign detection processing

The sign of a distance measurement value is detected based on the status of the G＿w3SensorStatus（status（error information））bit received from the distance meter．

Restriction

Do not perform the following procedure when the distance meter to be used outputs distance measurement values as signed values．


```
1.//Universal range tester code detection_汎用距離測定器用符号検出
-7/IF uSensorType = Kg THEN
IF G_m3SensorStatus[0].A THEN
bSignVal:= TRUE;
ELSE
bSignVal := FALSE;
ND_IF; 2.
        ELSIF uAxis = K1 THEN
                                IF G_w3SensorStatus[1].A THEN
                                bSignval := TRUE;
                ELSE
                bSign\psial := FALSE;
            END_IF;
        ND_IF;
```

3. $/ /$ Convert distance measurements to single-precision real numbers_距離測定値を単精度実数に変換
//DL 100 Pro: When the distance measurement is signed data_DL100Pro: 距離測定値が符号付ぎデータの場合
IF NOT i _bSensorDirection THEN
eCurrentPos := (DINT_TO_REAL(G_d3CurrentPos[uAxis])/ 1.0E+4) +i_e0ffsetVal
ELSE
eCurrentPos := i eOffsetVal -(DINT TO_REAL(G_d3CurrentPos[uAxis])/1.0E+4)
ND IF;
//Universal range finder: If the sign is bit management_汎用距離測定器用: 符号がビット管理の場合
4. 7/IF i_bSensorDirection = bSignval THEN
eCurrentPos := (DINT_TO_REAL(G_d3CurrentPos[uAxis]) / 1.0E+4) +i_eOffsetVal;
LSE
eCurrentPos:= i_eOffsetYal -(DINT_TO_REAL(G_d3CurrentPos[uAxis])/1.OE+4);
ND_IF;

1．Uncomment the sign detection ladder program for general－purpose distance meters as well as the ladder program for single－precision real number conversion of a distance measurement value（when the sign is managed with a bit）．
2．For the processing for detecting the sign of a distance measurement value，change the statements according to the G＿w3SensorStatus bit to be referenced．

3．The default program（when DL100 Pro is used）includes statements to work with a case where a distance measurement value is output as a signed value．Therefore，delete the statements．

EError detection processing

The error code is output based on the status of each G＿w3SensorStatus（status（error information））bit received from the distance meter．

```
1//Error detection for universal range tester_汎用距離湘定器用エラー検出
uSensorType = Kg THEN
IF UAXIS = KO THEN
    IF G_w3SensorStatus[0].1 OR G_w3SensorStatus[0].2 THE
            @_uErrId := c_uErr280;//Distance measuring error距離測定器エラー}\mathbf{2}
    ELSIF
        G_w3SensorStatus[0].3 OR G_w3SensorStatus[0].4 THE
        uErrId := cuErr281;//Shading error 遮光エラー 3.
    END_IF;
        ELSIF uAXis = K1 THEN
            IF G_w3SensorStatus[1].1 OR G_w3SensorStatus[1].2 THEN
                M_WEmId := c uErr280;//Distance measuring error距離測定器エラー= 2
    ELSIF
            G_w3SensorStatus[1].3 OR G_w3SensorStatus[1].4 THEN
            uErrId := c uErr281; //Shading error 遮光エラー
                3.
    END_IF;
        END_IF;
        NDIF;
```

1．Uncomment the error detection ladder program for general－purpose distance meters．
2．For the processing for detecting distance meter errors，change the statements according to the G＿w3SensorStatus bit to be referenced．

3．For the processing for detecting the distance measurement value errors due to light blocking，change the statements according to the G＿w3SensorStatus bit to be referenced．

Editing programs in FBs（for Ethernet communication compatible distance meters）

Edit programs in the copy of M＋AWH＿ScalelF＿EN＿F（distance measurement：Ethernet）according to the following instructions．

Protocol communication processing

This processing is triggered by the predefined protocol support function instruction（SP．ECPRTCL）to execute the protoco communication according to the predefined protocol setting．

```
7/Protocol Communication Processing (for AMS308i)_フロトコル通信処理(AMS308i用)
    IF UsensorType \(=K 1\) THE
        u18Ctr|Data[2]: = uExeProtocol No; //First transmission/reception (protocol number n \& n+1) _初回送受信伝文 (プロトコル番号 \(n, n+1\) )
        al8CtriData[3]:= uExeProtoco \(\mathrm{No}^{+1}\)
        uEnet_ExeCount := K2;
    ELSE
        ul8CtrIData[2]:= uExeProtocolNo+1; //Only receive after the second time (protocol number \(n+1\) ) 2回目以降は受信 (プロトコル番号 \(\mathrm{n}+1\) ) のみ
        uEnet_ExeCount := K1
    END_IF;
    Executes communication protocol support function instructions 通信プロトコル支援機能命令を実行
    SP_ECPRTCL(bEcprtcl_Run AND NOT b2Ecprtcl _Result[0],'U0', uConnect ionNo, uEnet_ExeCount, , 18 8CtrlData, b2Ecprtcl_Result )
    END_IF;
1. 7 Protocol communicat ion processing for universal range tester_沉用距離測定器用プロトコル通信処理
    u18CtrlData[2] : = uExeProtocolNo; //Protocol number (n)プロトコル番号 \((n)\) 番号 \((n+1) 2\)
    (EXecutes communication protocol support function instructions, 通信フロトコル支授機能命令を実行
```



```
    3.
```

1．Uncomment the protocol communication ladder program for general－purpose distance meters．
2．Specify the protocol numbers to be executed in u18CtrIData（control data）according to the created predefined protocol setting．For details on the control data of the predefined protocol support function instruction（SP．ECPRTCL），refer to the following．
［］MELSEC iQ－F FX5 User＇s Manual（Communication）

Point ρ

By default，two protocol numbers are specified．Add or delete the protocol numbers according to the number of protocols to be executed．

3．Specify the number of protocols to be executed in series according to the created predefined protocol setting（the number of protocols specified in step 2）．

Depending on the distance meters to be used，protocol communications（send／receive）of position information may become limited to receive processing only on the second and subsequent data exchanges．For details， refer to the manuals for the distance meters to be used．

Limiting the protocol communications to receive processing only enables reduction of the takt time of communications for obtaining position information．
As a program example，bReqDone（first send completion）label used for AMS308i controls the predefined protocol to communicate data as follows：both sending and receiving data for the first time；only receiving data for the second and subsequent times．

Sign detection processing

The sign of a distance measurement value is detected based on the status of the G_w3SensorStatus (status (error information)) bit received from the distance meter.

Point ρ

- Perform only step 3 in the following procedure when the used distance meter outputs distance measurement values as signed values.
- Perform only steps 1 and 2 in the following procedure when the used distance meter uses a bit to manage the sign of a distance measurement value.

```
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
```


1. Uncomment the sign detection ladder program for general-purpose distance meters as well as the ladder program for single-precision real number conversion of a distance measurement value (when a distance measurement value is a signed value).
2. For the processing for detecting the sign of a distance measurement value, change the statements according to the G_w3SensorStatus bit to be referenced.
3. The default program (when AMS308i is used) includes statements to work with a case where the sign of a distance measurement value is managed with a bit. Therefore, delete the statements.

Error detection processing

The error code is output based on the status of each G＿w3SensorStatus（status（error information））bit received from the distance meter．

```
1. //Error detection for universal range tester_沉用距離測定器用エラー検出
1. II IF USensorType = K9 THEN
    IF uAxis = K0 THEN
        IF [\begin{array}{l}{\mathrm{ G_w3SensorStatus[0].1 OR G_W3SensorStatus[0].2 THENN}}\\{0,uErrId := c_uErr290; /DDistance measuring error 距離測定器エラ- }\end{array}2.
        ELS:
            G w3SensorStatus[0].3 OR G w3SensorStatus[0].4 THEN
            o uErrId := c uErr291; //Shading error遮光エラー
        END_F;
    LSIF uäris = K1 THEN
        IF G_M3SensorStatus[1].1 OR G_w3SensorStatus[1].2 THEN
            0_uErrId := c_uErr290; //Distance measuring error 距離湘定器エラー2.
        ELST
            G_w3SensorStatus[1].3 OR G_w3SensorStatus[1].4 THEN
                -uErrId := c_uErr291; //Shading error 遮光エラー
                            3.
        END IF;
    ELSIF uăkis = K2 THEN
        IF G_M3SensorStatus[2].1 OR G_M3SensorStatus[2].2 THEN
                ou_uErrld := c_uErr290; //Distance measuring error 踤離測定器エラー 2.
        ELS
            G_w3SensorStatus[2].3 OR G w/SensorStatus[2].4 THEN
                0uErrId := cuErr291; //Shading error_遮光エラー 3.
            END_F;
    ENDIIF;
```

1．Uncomment the error detection ladder program for general－purpose distance meters．
2．For the processing for detecting distance meter errors，change the statements according to the G＿w3SensorStatus bit to be referenced．
3．For the processing for detecting the distance measurement value errors due to light blocking，change the statements according to the G＿w3SensorStatus bit to be referenced．

APPENDIX

Appendix 1 When the FR-A800 Series Is Used

For the FR-A800 series, the link device assignment and some parameter contents are different from those of the FR-E800 series.
The following tables list the settings when the FR-A800 series is used.

Link devices

The letter " n " in a device number represents a value determined by the station number.
\bigcirc : Can be changed, \times : Cannot be changed

Master station to Inverter (RYn)			Inverter to Master station (RXn)		
Device No.	Device name	Mapping	Device No.	Device name	Mapping
RYn0	Forward rotation command	\times	RXn0	Forward running	\times
RYn1	Reverse rotation command	\times	RXn1	Reverse running	\times
RYn2	High-speed operation command (terminal RH function)	\bigcirc	RXn2	Running (terminal RUN function)	\times
RYn3	Middle-speed operation command (terminal RM function)	\bigcirc	RXn3	Up to frequency (terminal SU function)	\bigcirc
RYn4	Low-speed operation command (terminal RL function)	\bigcirc	RXn4	Overload warning (terminal OL function)	\bigcirc
RYn5	JOG operation command (terminal JOG function)	\bigcirc	RXn5	Instantaneous power failure (terminal IPF function)	\bigcirc
RYn6	Second function selection (terminal RT function)	\times	RXn6	Frequency detection (terminal FU function)	\times
RYn7	Current input selection (terminal AU function)	\bigcirc	RXn7	Fault (terminal ABC1 function)	\times
RYn8	Selection of automatic restart after instantaneous power failure (terminal CS function)	\bigcirc	RXn8	- (terminal ABC2 function)	\bigcirc
RYn9	Output stop (terminal MRS function)	\times	RXn9	Pr. 313 assignment function (DO0)	\bigcirc
RYnA	Start self-holding selection (terminal STOP function)	\bigcirc	RXnA	Pr. 314 assignment function (DO1)	\bigcirc
RYnB	Reset (terminal RES function)	\bigcirc	RXnB	Pr. 315 assignment function (DO2)	\bigcirc
RYnC	Monitor command	\times	RXnC	Monitoring	\times
RYnD	Frequency setting command (RAM)	\times	RXnD	Frequency setting completion (RAM)	\times
RYnE	Frequency setting command (RAM, E2PROM)	\times	RXnE	Frequency setting completion (RAM, E2PROM)	\times
RYnF	Instruction code execution request	\times	RXnF	Instruction code execution completion	\times
$\begin{aligned} & \mathrm{RY}(\mathrm{n}+1) 0 \text { to } \\ & \mathrm{RY}(\mathrm{n}+1) 7 \end{aligned}$	Reserved	\times	$\begin{aligned} & \mathrm{RX}(\mathrm{n}+1) 0 \text { to } \\ & \mathrm{RX}(\mathrm{n}+1) 7 \end{aligned}$	Reserved	\times
$\mathrm{RY}(\mathrm{n}+1) 8$	Not used (initial data process completion flag)	\times	$\mathrm{RX}(\mathrm{n}+1) 8$	Not used (initial data process completion flag)	\times
$\mathrm{RY}(\mathrm{n}+1) 9$			$\mathrm{RX}(\mathrm{n}+1) 9$		
$\mathrm{RY}(\mathrm{n}+1) \mathrm{A}$	Error reset request flag	\times	$\mathrm{RX}(\mathrm{n}+1) \mathrm{A}$	Error status flag	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{B}$ to	Reserved	\times	$R X(n+1) B$	Remote station ready	\times
$\mathrm{RY}(\mathrm{n}+1) \mathrm{F}$			$\begin{aligned} & R X(n+1) C \text { to } \\ & R X(n+1) F \end{aligned}$	Reserved	\times

Inverter parameter

Use FR Configurator2 to set the inverter parameters.
The setting value is an example for use with a sample program.

Point ${ }^{\circ}$

For details on parameters, refer to the manuals for the inverters used.
For details on how to use FR Configurator2, refer to the following.
L $]$ FR Configurator2 Instruction Manual
\(\left.\begin{array}{l|l|l|l|l}\hline No. \& Name \& Initial value \& Setting value \& Description

\hline 7 \& Acceleration time{ }^{* 1} \& 5 \& 0 \& As the operation pattern is generated using an FB, set the

acceleration/deceleration time to 0 for the inverter.\end{array}\right]\)| Set the rated motor current. |
| :--- |
| Set the parameter in accordance with specifications of the motor |
| used. |

No.	Name	Initial value	Setting value	Description
1432	Ethernet communication check time interval	9999	1.5	A signal loss detection is performed between the inverter and all the devices with IP addresses in the range for Ethernet command source selection (Pr. 1449 to Pr. 1454). If a signal loss is detected (a communication stops), a communication error (E.EHR) occurs and the inverter output will be shut off. Set the parameter in accordance with specifications of the system used.
1434	IP address 1 (Ethernet)	192	192	Enter the IP address of the inverter to be connected to Ethernet.
1435	IP address 2 (Ethernet)	168	168	
1436	IP address 3 (Ethernet)	50	3	
1437	IP address 4 (Ethernet)	1	1	
1438	Subnet mask 1	255	255	Enter the subnet mask of the network to which the inverter belongs.
1439	Subnet mask 2	255	255	
1440	Subnet mask 3	255	255	
1441	Subnet mask 4	0	0	
1449	Ethernet command source selection IP address 1	0	192	To limit the network devices that send the operation or speed command through the Ethernet network, set the range of IP addresses of the devices. When Pr. 1449 to Pr. 1452 are "0 (initial value)", no IP address is specified for command source via Ethernet. In this case, operation commands cannot be sent via Ethernet. The range for command source depends on the settings in Pr. 1451 and Pr.1453, and Pr. 1452 and Pr.1454. When the setting values on the left are set, the IP address range for command source via Ethernet is "192.168.xxx (3 to 255).xxx (0 to 255)".
1450	Ethernet command source selection IP address 2	0	168	
1451	Ethernet command source selection IP address 3	0	3	
1452	Ethernet command source selection IP address 4	0	0	
1453	Ethernet command source selection IP address 3 range specification	9999	255	
1454	Ethernet command source selection IP address 4 range specification	9999	255	

*1 For this parameter, set the setting value shown in the list.
M
M+AWH_AntiSwayControl_F 59
M+AWH_DecDistance_F 83
M+AWH_FREQROL_CCLinkIEFBasic_F 63
M+AWH_MotorSwitch F 53
$\mathrm{M}+\mathrm{AWH}$ PIDControl $\overline{\mathrm{F}}$ 45
M+AWH_PosVelGen_F 33
M+AWH_ScalelF_EN_F 77
M+AWH_ScaleIF_SerialComm F 70
M+AWH_VelConv_F 49

REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date	Revision	Description
January 2023	A	First edition
July 2023	B	■Added or modified parts RELEVANT MANUALS, Chapter 2, 3, 4

Japanese manual number: SH-082574-B
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.
© 2023 MITSUBISHI ELECTRIC CORPORATION

TRADEMARKS

Microsoft and Windows are trademarks of the Microsoft group of companies.
Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.
The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.
In some cases, trademark symbols such as ${ }^{\text {'TM }}$ or ${ }^{\text {'®' }}$ are not specified in this manual.

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

[^0]: *1 The setting value must be set as specified.

