

 SAFETY PRECAUTION
(Always read these instructions before using the products.)

When designing the system, always read the relevant manuals and give sufficient consideration to
safety.
During the exercise, pay full attention to the following points and handle the product correctly.

[EXERCISE PRECAUTIONS]

 WARNING

 Do not touch the terminals while the power is on to prevent electric shock.

 Before opening the safety cover, make sure to turn off the power or ensure the safety.

 Do not touch the movable portion.

 CAUTION

 Follow the instructor's direction during the exercise.

 Do not remove the module of the demonstration machine or change wirings without permission.

Doing so may cause failures, malfunctions, personal injuries and/or a fire.

 Turn off the power before installing or removing the module.

Failure to do so may result in malfunctions of the module or electric shock.

 When the demonstration machine (such as X/Y table) emits abnormal odor/sound, press "Power

switch" or "Emergency switch" to turn off.

 When a problem occurs, notify the instructor as soon as possible.

REVISIONS
*The textbook number is written at the bottom left of the back cover.

Print date *Textbook number Revision

Oct., 2012 SH-081123ENG-A First edition

This textbook confers no industrial property rights or any rights of any other kind, nor does it confer any patent
licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property
rights which may occur as a result of using the contents noted in this textbook.

© 2012 MITSUBISHI ELECTRIC CORPORATION

(1)

CONTENTS

CHAPTER 1 BASICS OF PROGRAMMABLE CONTROLLER 1- 1 to 1-14

1.1 Program··· 1- 1
1.2 Program Processing Procedure ·· 1- 4
1.3 MELSEC-QnUD Module Configuration··· 1- 5
1.4 External I/O Signal and I/O Number··· 1-11
1.5 System Configuration and I/O Number of Demonstration Machine··· 1-14

CHAPTER 2 OPERATING GX Works2 2- 1 to 2-64

2.1 Features of GX Works2··· 2- 3
2.1.1 MELSOFT iQ Works··· 2- 7

2.2 Basic Knowledge Required for Operating GX Works2 ··· 2- 9
2.2.1 Screen configuration in GX Works2 ··· 2- 9
2.2.2 Ladder editor·· 2-11
2.2.3 Project·· 2-20

2.3 Operation Before Creating Ladder Program·· 2-22
2.3.1 Starting up GX Works2·· 2-22
2.3.2 Creating a new project··· 2-23

2.4 Preparation for Starting Up CPU·· 2-25
2.5 Creating Ladder Program··· 2-32

2.5.1 Creating a ladder program using the function keys··· 2-32
2.5.2 Creating a ladder program using the tool buttons ··· 2-34

2.6 Converting Program (Ladder Conversion) ··· 2-36
2.7 Writing/Reading Data to/from Programmable Controller CPU··· 2-37
2.8 Monitoring Ladder Program Status ·· 2-40
2.9 Diagnosing Programmable Controller CPU ··· 2-43
2.10 Editing Ladder Program ··· 2-45

2.10.1 Modifying a part of the ladder program ··· 2-45
2.10.2 Drawing/deleting lines ··· 2-47
2.10.3 Inserting/deleting rows··· 2-50
2.10.4 Cutting/copying ladder program ·· 2-55

2.11 Verifying Data··· 2-58
2.12 Saving Ladder Program ··· 2-59

2.12.1 Saving newly-created or overwritten projects ··· 2-59
2.12.2 Saving a project with another name ·· 2-60

2.13 Reading the saved project ··· 2-61
2.14 Opening Projects in Different Format··· 2-62
2.15 Saving Projects in Different Format ··· 2-63

CHAPTER 3 DEVICE AND PARAMETER OF PROGRAMMABLE CONTROLLER 3- 1 to 3- 6

3.1 Device·· 3- 1
3.2 Parameter·· 3- 3

(2)

CHAPTER 4 SEQUENCE AND BASIC INSTRUCTIONS -PART 1- 4- 1 to 4-42

4.1 List of Instruction Explained in this Chapter ·· 4- 1
4.2 Differences between OUT and SET / RST ·· 4- 4
4.3 Measuring Timer ··· 4- 5
4.4 Counting by Counter ··· 4- 6
4.5 PLS / PLF ·· 4-14
4.6 MC / MCR ·· 4-20
4.7 FEND / CJ / SCJ / CALL / RET ·· 4-24

4.7.1 FEND ··· 4-24
4.7.2 CJ / SCJ ·· 4-27
4.7.3 CALL(P) / RET ·· 4-31

4.8 Exercise·· 4-35
4.8.1 Exercise 1 LD to NOP··· 4-35
4.8.2 Exercise 2 SET, RST ·· 4-36
4.8.3 Exercise 3 PLS, PLF··· 4-38
4.8.4 Exercise 4 CJ, CALL, RET, FEND·· 4-39

CHAPTER 5 BASIC INSTRUCTION -PART 2- 5- 1 to 5-58

5.1 Notation of Values (Data) ·· 5- 1
5.2 Transfer Instruction ··· 5- 9

5.2.1 MOV (P) ··· 5- 9
5.2.2 BIN (P) ··· 5-16
5.2.3 BCD (P) ··· 5-18
5.2.4 Example of specifying digit for bit devices and transferring data ·· 5-21
5.2.5 FMOV (P) / BMOV (P) ·· 5-22

5.3 Comparison Operation Instruction ··· 5-27
5.4 Arithmetic Operation Instruction··· 5-32

5.4.1 +(P) / -(P) ·· 5-32
5.4.2 * (P) / / (P) ··· 5-36
5.4.3 32-bit data instructions and their necessity ··· 5-41
5.4.4 Calculation examples for multiplication and division including decimal points ······················· 5-43

5.5 Index Register and File Register·· 5-44
5.5.1 How to use index register Z··· 5-44
5.5.2 How to use file register R ·· 5-46

5.6 External Setting of Timer/Counter Set Value and External Display of Current Value ··················· 5-49
5.7 Exercise·· 5-51

5.7.1 Exercise 1 MOV ·· 5-51
5.7.2 Exercise 2 BIN and BCD conversion ·· 5-52
5.7.3 Exercise 3 FMOV·· 5-53
5.7.4 Exercise 4 Comparison instruction ··· 5-54
5.7.5 Exercise 5 Addition and subtraction instructions ·· 5-55
5.7.6 Exercise 6 Multiplication and division instructions·· 5-56
5.7.7 Exercise 7 D-multiplication and D-division ··· 5-57

Project name QTEST 1

Project name QTEST2
Project name QTEST3
Project name QTEST4

Project name QTEST5
Project name QTEST6
Project name QTEST7
Project name QTEST8
Project name QTEST9
Project name QTEST10
Project name QTEST11

(3)

CHAPTER 6 HOW TO USE OTHER FUNCTIONS 6- 1 to 6-36

6.1 Test Function at Online ··· 6- 1
6.1.1 Turning on and off the device "Y" forcibly ·· 6- 2
6.1.2 Setting and resetting the device "M"··· 6- 4
6.1.3 Changing the current value of the device "T" ··· 6- 5
6.1.4 Reading error steps ·· 6- 6
6.1.5 Remote STOP and RUN ·· 6- 7

6.2 Forced I/O Assignment by Parameter Settings··· 6- 8
6.3 How to Use Retentive Timers ·· 6-10
6.4 Device Batch Replacement·· 6-12

6.4.1 Batch replacement of device numbers ··· 6- 12
6.4.2 Batch change of specified devices between normally open contacts

and normally closed contacts··· 6- 13
6.5 Online Program Change ·· 6-14
6.6 Registering Devices ··· 6-15
6.7 How to Create Comments·· 6-16
6.8 Setting Security for Projects ··· 6-23

6.8.1 Setting and resetting security for projects ··· 6-24
6.8.2 Managing (adding, deleting, and changing) users ·· 6-25
6.8.3 Logging in projects ·· 6-29
6.8.4 Changing access authority for each access level ··· 6-30

6.9 Sampling Trace Function ··· 6-31

CHAPTER 7 PROGRAMMING INTELLIGENT FUNCTION MODULE 7- 1 to 7-26

7.1 Intelligent Function Module ··· 7- 1
7.2 Data Communication between Intelligent Function Modules and CPUs ·· 7- 2

7.2.1 I/O signals to CPUs ·· 7- 3
7.2.2 Data communication with intelligent function modules··· 7- 4

7.3 Communication with Intelligent Function Module·· 7- 5
7.3.1 Communication methods with intelligent function modules·· 7- 5

7.4 Intelligent Function Module System in Demonstration Machine ··· 7- 6
7.5 Q64AD Analog/Digital Converter Module ··· 7- 7

7.5.1 Names of parts ··· 7- 7
7.5.2 A/D conversion characteristics ··· 7- 8
7.5.3 List of I/O signals and buffer memory assignment ··· 7- 9
7.5.4 Adding or setting intelligent function module data··· 7-12
7.5.5 Exercise with the demonstration machine··· 7-16

7.6 Q62DAN Digital/Analog Converter Module·· 7-17
7.6.1 Names of parts ·· 7-17
7.6.2 D/A conversion characteristics ·· 7-18
7.6.3 List of I/O signals and buffer memory assignment ·· 7-19
7.6.4 Adding or setting intelligent function module data··· 7-21
7.6.5 Exercise with the demonstration machine··· 7-25

(4)

CHAPTER 8 SIMULATION FUNCTION 8- 1 to 8- 4

8.1 Simulation Function··· 8- 1
8.2 Starting/Stopping Simulation··· 8- 1
8.3 Debugging with Example Program·· 8- 2

8.3.1 Monitoring and testing device status ·· 8- 3

CHAPTER 9 MAINTENANCE 9- 1 to 9- 8

9.1 Typical Trouble·· 9- 1
9.2 Maintenance·· 9- 2
9.3 Consumable Product··· 9- 3
9.4 Service Life of Output Relay·· 9- 4
9.5 Spare Product ··· 9- 5
9.6 Using Support Equipment ··· 9- 7

APPENDIX App.- 1 to App.- 80

Appendix 1 I/O Control Mode···App.- 1
1.1 Direct mode ···App.- 1
1.2 Refresh mode ··App.- 2
1.3 Comparisons between the direct mode and refresh mode ···App.- 3

Appendix 2 Special Relay ··App.- 4
Appendix 3 Special Register ··App.- 5
Appendix 4 Application Program Example···App.- 6

4.1 Flip-flop ladder ···App.- 6
4.2 One shot ladder ···App.- 8
4.3 Long-time timer··App.- 9
4.4 Off delay timer ··App.-10
4.5 On delay timer (momentary input) ··App.-11
4.6 ON-OFF repeat ladder··App.-12
4.7 Preventing chattering input···App.-12
4.8 Ladders with a common line···App.-13
4.9 Time control program··App.-14
4.10 Clock ladder··App.-15

4.10.1 Clock function (supplement) ···App.-16
4.11 Starting - operation of electrical machinery···App.-18
4.12 Displaying elapsed time and outputting before time limit ···App.-19
4.13 Retentive timer··App.-20
4.14 Switching timer set value externally ···App.-21
4.15 Setting counters externally ···App.-22
4.16 Measuring operation time ···App.-24
4.17 Measuring cycle time··App.-24
4.18 Application example of (D) CML (P) ···App.-25
4.19 Program showing divided value of 4-digit BIN value to 4 places of decimals ····················App.-26
4.20 Carriage line control··App.-29
4.21 Compressor sequential operation using ring counters···App.-31
4.22 Application example of positioning control ···App.-35
4.23 Application example using index Z ···App.-36
4.24 Application example of FIFO instruction···App.-38

(5)

4.25 Application example of data shift··App.-41
4.26 Example of operation program calculating square root of data··App.-44
4.27 Example of operation program calculating n-th power of data···App.-45
4.28 Program using digital switch to import data··App.-46
4.29 Displaying number of faults and fault numbers using fault detection program ··················App.-47

Appendix 5 Memory and File to be Handled by CPU Module···App.-51
Appendix 6 Comparison with GX Developer (changes) ···App.-53
Appendix 7 Customizing Shortcut Keys ··App.-62
Appendix 8 Indexing··App.-64
Appendix 9 FB···App.-68

9.1 FB ···App.-68
9.1.1 Conversion into components ··App.-68
9.1.2 Advantages of using FBs··App.-69
9.1.3 FB Libraries ··App.-71
9.1.4 Development tool··App.-73
9.1.5 FB specifications and precautions··App.-73

9.2 Creating a program by using an FB library···App.-74
9.2.1 Programs to be created ··App.-74
9.2.2 Preparations prior to use of FB libraries···App.-75
9.2.3 Importing an FB library to projects ···App.-76
9.2.4 Pasting FBs ··App.-77
9.2.5 Setting names of the pasted FBs ···App.-78
9.2.6 Creating input and output ladders ··App.-79
9.2.7 Performing conversion/compilation ··App.-79
9.2.8 Writing sequence programs ···App.-80
9.2.9 Operation check ···App.-80

(6)

INTRODUCTION

This textbook explains the programmable controller, the program editing methods
with GX Works2, the sequence instructions and the application instructions for
understanding the MELSEC-Q series programming.
The multiple CPU system is available for the MELSEC-Q series with multiple CPU
modules, but this textbook explains the case in which one CPU module is used.

 The related manuals are shown below.

(1) QCPU User's Manual (Hardware Design, Maintenance and Inspection)
···SH-(NA)080483ENG
Explains the hardware.

(2) QnUCPU User's Manual (Function Explanation, Program Fundamentals)
···SH(NA)-080807ENG
Explains the functions and programming method.

(3) MELSEC-Q/L Programming Manual (Common Instruction)
···SH(NA)-080809ENG
Explains details of each instruction.

(4) GX Works2 Beginner's Manual (Simple Project)
···SH(NA)-080787ENG

(5) GX Works2 Version 1 Operating Manual (Common)
···SH(NA)-080779ENG

(6) GX Works2 Version 1 Operating Manual (Simple Project)
···SH(NA)-080780ENG

(7) Before Using the Product
··· BCN-P5782

(8) Analog-Digital Converter Module User's Manual
···SH(NA)-080055

(9) Digital-Analog Converter Module User's Manual
···SH(NA)-080054

(10) I/O Module Type Building Block User's Manual
···SH(NA)-080042

(11) MELSOFT GX Works2 FB Quick Start Guide
··· L-08182ENG

1 - 1

CHAPTER 1 BASICS OF PROGRAMMABLE CONTROLLER

1.1 Program

If a programmable controller is assumed as a control ladder, it can be described by
an input ladder, output ladder, and internal sequential operation.

PB1

LS1

PB2

X0

X1

X2

X3

X4

X5

X6

Input relay
(virtual coil)

COM

Input module Input circuit Internal sequential operation Output circuit

Y74

Output relay

K30

T1

Timer

T1

X6

X6

Y74

Y74

Y70

Y71

Y72

Y73

Y74

Y75

Y76

PL

Electromagnetic
valve

Magnet
contactor

Output module

Activates the
external loading.

Transmits the on/off
operations of the
output relay.

Activates the
internal sequential
operation by the
contact of the input relay.

Turns on/off the
input relay with
external signal.

COM

Contacts for
external
outputs

MC

(+) (-)

PLC

Sensor

Figure 1.1 Programmable controller configuration

A programmable controller is an electronic device centered around microcomputers.
Actually, a programmable controller is assemblies of relays, timers, and counters.
As shown in figure 1.1, the internal sequential operation is executed by turning on or
off the coil. The on/off condition of the coil depends on the connection condition (in
series or in parallel) and results of the normally open or normally closed contacts

"Relay", which is also called an electromagnetic relay, is a switch to relay signals. The relay is a key component to
make up a logic ladder.

Coil off

(always)
Coil on

(in operation)

Normally open
contact

Not conducted Conducted

Normally
closed contact

Not conductedConducted

1) Energizing the coil Magnetization

• The normally open contact closes.
(Conducted)

• The normally closed contact opens.
(Not conducted)

2) De-energizing the coil
 Demagnetization

• The normally open contact opens.
(Not conducted)

• The normally closed contact closes.
(Conducted)

Normally
closed contact

Common

Normally
open contact

Coil

1 - 2

Internal Sequential Operation

The following shows the signal flow of the internal sequential operation of
figure 1.1.
1) When the sensor turns on, the coil of the input relay X6 is magnetized.
2) Magnetizing the coil of the input relay X6 conducts the normally open

contact X6 and magnetizes the coil of the output relay Y74.
(As the timer is not magnetized at this time, the normally closed
contact remains conducted.)

3) Once the coil of the output relay Y74 is magnetized, the external
output contact Y74 is conducted and the magnetic contactor (MC) is
turned on.

4) Turning off the sensor demagnetizes the coil of the input relay X6 and
the normally open contact X6 becomes non-conductive.
As the self-maintaining normally open contact Y74 is conducted, the
coil remains magnetized. (Self-maintaining operation)

5) When the coil of the output relay Y74 is magnetized (with the normally
open contact Y74 conducted), turning off the sensor (with normally
closed contact X6 conducted) magnetizes the coil of the timer T1 and
the timer starts measuring the time.
After three sec. (K30 indicates 3.0sec.), the normally open contact of
the timer becomes conducted and the normally closed contact
becomes non-conductive.

6) As a result, the coil of the output relay Y74 demagnetizes and the load
magnet contactor drops.
Also, the output relay self-maintenance is released.

Operation diagram
The following time chart explains the input/output relays and timer
operations.

(Coil)

(Contact)

3 sec.

Input X6

Output Y74

Timer T1

Timer T1

1 - 3

The internal sequential operation can be regarded as the program of
the programmable controller. The program is saved in the program
memory as similar to the instruction list

Step number
Instruction

word
Device

0 LD X6
1 OR Y74
2 ANI T1
3 OUT Y74
4 LD Y74
5 ANI X6
6 OUT T1 K30

0

4

X6

Y74

Y74

T1

X6

Y74

K30

T1

10 END

10 END

Repeat
operation

(a) Ladder diagram (b) Instruction list (program list)

Figure 1.2 Program

• A program consists of a large number of instruction words and

devices.

• The instructions contain instruction words and devices. In addition,

the instructions are numbered to represent the order of operations.
The numbers are called step numbers.
(Instruction words are also called instructions.)

• The number of steps varies depending on the types of instructions

or the setting method for the values to be used for the I/O numbers
and operations. (The more steps are needed for the operation with
complicated operation.)

• The instructions repeat from the step number 0 to the END

instruction. (This is called "repeat operation", "cyclic operation" or
"scanning".)
Amount of time necessary for one cycle is called operation cycle
(scan time).

• The number of steps from the step number 0 to the END instruction

is the length or size of the program.

• The program is stored in the program memory inside the CPU. The

operation is executed in a ladder block unit.
One ladder block ranges from the operation start instruction (LD,
LDI) to the OUT instruction (including the data instruction).

1 - 4

1.2 Program Processing Procedure

The operation process is executed in series from the start step of the program
memory left to right and top to bottom (in the order of 1), 2) ... 17)) in a ladder block
unit as shown below.

0

3

7

17

1)
X0

2)
X1

5)
X3

4)
X2

6)
X4

8)
X5

9)
X6

11)
X7

13)
X8

15)
X9

16)
XA

3)

Y11

Y12

Y13

Y14

Y15

Y10

7)

10)

12)

14)

17)

1 - 5

1.3 MELSEC-QnUD Module Configuration

(1) Universal model
The Universal model QCPU is used for a training in this textbook, therefore,
"QCPU" indicates "Universal model QCPU" unless otherwise noted.

(2) Basic configuration of a programmable controller system
The following figure shows an actual programmable controller configuration.

Battery for QCPU (Q7BAT)

Q7BAT-SET

Battery holder

Battery for QCPU (Q6BAT)

Battery for QCPU (Q8BAT)

Q8BAT-SET

Q8BAT connection cable
Power supply module/I/O module/Intelligent function module/Special function module

Extension cable

Q3 DB multiple CPU high speed main base unit

Universal model QCPU

Memory card

Q5 B extension base unit

Q6 B extension base unit

Figure 1.3 MELSEC-QnUD module configuration (when Q3 DB is used)

1 - 6

Base Unit

Main base unit Extension base unit

With three
I/O modules

With five
I/O modules

With eight
I/O modules

With 12
I/O modules

Po
we

r s
up

pl
y

C
PU

Q33B

Q35B

Q38B

Q312B

Q63B

Q68B

Q612B

Q65B

(Requiring a power
supply module)

(Not requiring a power
supply module)

Q52B

Q55B

(For two modules)

With eight
I/O modules

Q38DB

Multiple CPU high speed main base unit

With 12
I/O modules

Q312DB

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

C
PU

C
PU

C
PU

C
P

U
C

P
U

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

Po
we

r s
up

pl
y

• The main roles of the base unit are; fixing the power supply module,

CPU module, and I/O modules, supplying 5VDC power from the
power supply module to the CPU module and I/O modules, and
transmitting the control signals to each module.

1 - 7

Power Supply Module

Module name Input Output

Q61P 100V to 240VAC 5VDC 6A
Q62P 100V to 240VAC 5VDC 3A, 24VDC 0.6A
Q63P 24VDC 5VDC 6A

Q64P(N)
100V to 120V/AC200 to

240VAC
5VDC 8.5A

Q61P-D 100V to 240VAC 5VDC 6A

CPU Module

CPU type
Program capacity

(maximum)
Basic instruction
processing speed

Maximum I/O points for
connecting to a

programmable controller

Q00UJCPU 10K steps 120ns 256 points
Q00UCPU 10K steps 80ns 1024 points
Q01UCPU 15K steps 60ns 1024 points
Q02UCPU 20K steps 40ns 2048 points

Q03UD(E)CPU 30K steps 20ns
Q04UD(E)HCPU 40K steps
Q06UD(E)HCPU 60K steps
Q10UD(E)HCPU 100K steps
Q13UD(E)HCPU 130K steps
Q20UD(E)HCPU 200K steps
Q26UD(E)HCPU 260K steps
Q50UDEHCPU 500K steps

Q100UDEHCPU 1000K steps

9.5ns
4096 points

I/O Module

I/O points
Format

8 points 16 points 32 points 64 points

120VAC – – –
240VAC – – –

24VDC (positive common) –
24VDC (high-speed input) – – –

24VDC
(negative common) – – In

pu
t m

od
ul

e

5/12VDC –
Contact output – – –

Independent contact
output – – –

Triac output – – –
Transistor output (sink) O

ut
pu

t m
od

ul
e

Transistor output (source) – –
I/O mixed – –

1 - 8

Memory Card
A QCPU equips a built-in memory as standard for storing parameters and
programs, therefore, the programs can be executed without a memory card.

The memory cards are required for the situations in the table below.

Type Description

SRAM card

Data can be written or changed within the memory capacity.
<Example of the usage>
• For the boot operation
• For storing the sampling trace data
• For storing the SFC trace data
• For storing the error history data

Flash card

The contents of the program memory or the specified file can be written at a time.
The newly written data replaces all original data. Data can be read by the READ instruction of
the sequence program.
<Example of the usage>
• For the boot operation
• When the changing the data is unnecessary

ATA card

Data can be written or changed within the program capacity.
Programmable controller user data of an ATA card can be accessed by the file access
instruction (such as the FWRITE instruction) in a sequence program through a CSV format or
binary format.
<Example of the usage>
• For the boot operation
• For programmable controller user data (general-purpose data)

Memory Card

• Memory cards are required when the data capacity exceeds
the capacity of the built-in program memory, standard RAM,
and standard ROM.

• Select the memory card according to the size of the program
or the type of the data to be stored.

• Install the enclosed backup battery before using the
SRAM-type RAM card first. The SRAM card data cannot be
baked up unless the battery is installed.

• Format the memory card before using it.
• Data can be written to a Flash card for 100,000 times, and

for an ATA card, data can be written for 1,000,000 times.

1 - 9

<Reference: Universal model QCPU memory system configuration>

The memory of the Universal model QCPU consists of the following blocks.

Standard
ROM

Standard
RAM

ROM

Program memory
(program cache memory) RAM

Parameter Program

Device comment Device initial value

Parameter Program

Device comment Device initial value

Parameter Program

Device comment Device initial value

ProgramParameter

Device comment Device initial value

File register

File register

Local device

Sampling
trace file

File register Local device

Sampling
trace file

CPU module

Memory card

Programmable
controller user data

Storage file used in latch
data backup function

File used in
SP.DEVST/S.DEVLD function

*1

*2

Module error
collection file

*1: A memory card cannot be used for Q00UJCPU, Q00UCPU, Q01UCPU.

*2: Q00UJCPU has no standard RAM.

• Program memory: A memory for storing programs and parameters for a CPU module

operation
A program operation is executed by transferring a program stored in
the program memory to the program cache memory.

• Program cache memory: A memory for operating programs

A program operation is executed by transferring a program stored in
the program memory to the program cache memory.

• Standard RAM: A memory for using file registers, local devices, and sampling trace

files without a memory card
Using the standard RAM as the file registers enables the high-speed
access as well as data registers.
The standard RAM is also used for storing the module error
collection file.

• Standard ROM: A memory for storing data such as parameters and programs

• Memory card (RAM): A card for storing the local device, debug data, SFC trace data, and

error history data with the parameters and program.

• Memory card (ROM): A Flash card for storing parameters, programs, and file registers.
An ATA card stores parameters, programs, and the programmable
controller user data (general-purpose files).

1 - 10

POINT

Secure backup by long-term storage
Programs and parameter files are automatically backed up to the program
memory (Flash ROM) which does not require a battery backup. This prevents a
loss of the program and parameter data due to the flat battery.
The battery backup time is also reduced significantly.
In addition, the important data (such as device data) can be backed up to the
standard ROM to prevent a loss of the data due to the flat battery in case of
consecutive holidays.
The backup data is restored automatically when the power is turned on next
time.

Programming
tool

Latch data
Backup

file
(Standard ROM)

File register
(Standard RAM)

Device data

Device memory

No battery

backup

needed!

CPU built-in memory

Program memory
(Flash ROM)

Program
cache memory

(SRAM)

For program
execution

No battery

required

for data

protection

Backup
execution

condition is
ON

Write programs

1 - 11

1.4 External I/O Signal and I/O Number

(1) Wiring of I/O devices
The signals output from the external input devices are substituted by the input
numbers which are determined by the installation positions and terminal
numbers of the connected input module and used in a program.
For the operation results output (coil), use the output numbers which are
determined by the installation position and the terminal number of the output
module to which the external output module is connected.

0 1 2 3 4

(Power
supply)

(CPU)

(QX)

(QY)

Slot numbers

Base unit

PB1

CS1

CS2

PB2

PB3

LS1

LS2

LS3

LS4

PB4

PB5

CS3

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

XA

XB

XC

XD

XE

XF

COM

Input numbers Output numbers

Y10

Y11

Y12

Y13

Y14

Y15

Y16

Y17

COM1

Y18

Y1F

COM2

MC3

MC2

MC1

RL

V3

V2

V1

Input module
Output module

GL

Input numbers are hexadecimal numbers that start
with 0. Input/output numbers share the same numbers.
"X" at the beginning of the number represents "Input",
and "Y" indicates "Output".

The maximum number of the QCPU (Q mode)
input/output number is 4,096.

The input/output number is sometimes referred
to as the I/O number (IN/OUT).

Figure 1.4 Wiring of I/O devices

1 - 12

(2) I/O numbers of a main base unit

The I/O numbers of I/O modules which are attached to a main base unit are
assigned as follows. This configuration applies to both I/O modules and
intelligent function modules.

C

P
U

00
 t

o
 0

F

10
 t

o
 1

F

20
 t

o
 2

F

30
 t

o
 3

F

40
 t

o
 4

F

50
 t

o
 5

F

60
 t

o
 6

F

70
 t

o
 7

F

0 1 2 3 4 5 6 7 Slot numbers

Main base unit(Q33B,Q35B,Q38D)B,Q312(D)B)

Base unit with
three slots(Q33B)

Base unit with five slots(Q35B)

Base unit with eight slots(Q38(D)B)
80

 t
o

 8
F

90
 t

o
 9

F

A0
 t

o
 A

F

B0
 t

o
BF

8 9 10 11

Base unit with 12 slots(Q312(D)B)

P
ow

er
 s

up
pl

y
m

od
ul

e

I/O numbers

• The I/O numbers of one slot (one module) are assigned in ascending order in 16-point unit (0 to FH).
As a standard, 16-point modules should be attached to all slots.
For example, the following figure shows the I/O numbers of when a 32-point module is attached to the fifth slot.

Po
we

r s
up

pl
y

m
od

ul
e

C
PU

Main base unit

Slot numbers0 1 2 3 4 5 6 7
The I/O numbers of the
slot next to the one with
32-point modules are
changed.
(The numbers are
assigned in order from
lower numbers.)

00
 to

 0
F

10
 to

 1
F

20
 to

 2
F

30
 to

 3
F

40
 to

 4
F

70
 to

 7
F

80
 to

 8
F

50
 to

 5
F

/ 6
0

to
 6

F

• The I/O numbers are also assigned to a vacant slot (a slot with no I/O module installed).
For example, if the third slot is vacant, the I/O numbers are assigned as shown below. (in the initial setting)
The number of assigned points can be changed by the setting.

Po
we

r s
up

pl
y

m
od

ul
e

C
P

U

Main base unit

Slot numbers0 1 2 3 4 5 6 7

00
 to

 0
F

10
 to

 1
F

20
 to

 2
F

40
 to

 4
F

50
 to

 5
F

60
 to

 6
F

70
 to

 7
F

V
ac

an
t s

lo
t

(3
0

to
 3

F
)

• For the multiple CPU configuration (two to four CPUs), the I/O numbers are assigned from a slot next to a slot where
a CPU is attached.

1 - 13

(3) I/O numbers of an extension base unit

Connect an extension base unit when the number of slots of the main base unit
is insufficient.
The I/O numbers are assigned as follows in the initial setting.
This configuration applies to both I/O modules and intelligent function modules.

Po
we

r s
up

pl
y

m
od

ul
e

C
P

U
Slot numbers0 1 2 3 4 5 6 7

Extension base unit (Q68B)

8 9 10 11 12 13 14 15

(Q65B)

16 17 18 19 20

Extension base unit (Q68B)

21 22 23 24 25 26 27 28

Extension cable

First extension
base unit

Second
extension base
unit

Third extension
base unit

(Note)
Parameters allow the setting different from the
actual number of slots.
For example, a base unit for 12 slots can be set as
a base unit for 3 slots and vice versa.
This is in order to handle the future extension, and
to prevent the gap of I/O numbers which is likely to
happen when a conventional system is shifted to the
new one.
For details, refer to the QnUCPU User's Manual
(Function Explanation, Program Fundamentals).

Main base unit (Q38(D)B)
Po

we
r s

up
pl

y
m

od
ul

e
Po

we
r s

up
pl

y
m

od
ul

e
Po

we
r s

up
pl

y
m

od
ul

e

00
 to

 0
F

10
 to

 1
F

20
 to

 2
F

30
 to

 3
F

40
 to

 4
F

50
 to

 5
F

60
 to

 6
F

70
 to

 7
F

A0
 to

 A
F

80
 to

 8
F

90
 to

 9
F

B0
 to

 B
F

C
0

to
 C

F

D
0

to
 D

F

E0
 to

 E
F

F0
 to

 F
F

10
0

to
 1

0F

11
0

to
 1

1F

12
0

to
 1

2F

15
0

to
 1

5F

1C
0

to
 1

C
F

13
0

to
 1

3F

14
0

to
 1

4F

16
0

to
 1

6F

17
0

to
 1

7F

18
0

to
 1

8F

19
0

to
 1

9F

1A
0

to
 1

A
F

1B
0

to
 1

B
F

• The slots of the extension base unit are also assigned in ascending order in 16-point unit.
• The start I/O number of the extension base unit is assigned from the last number of the main base unit or of the

previous extension base unit.
• Setting "0" to the parameter can assign the I/O number to the vacant slot or areas with no slot.

The following table shows the number of available extension base units.

CPU type Number of stages (including the ones
connected with GOT in bus connection)

Q00UJCPU 2
Q00UCPU, Q01UCPU, Q02UCPU 4

Universal model

Other than the above 7

1 - 14

1.5 System Configuration and I/O Number of Demonstration Machine

Q61P QX
42
(64

points)

QY
42P
(64

points)

Q64
AD
(16

points)

Q62
DAN
(16

points)

Power supply module

CPU module

Input module

Output module

Base unit Q38DB

I/O panel

X0

X3F

Y40

Y7FUSB cable

Peripheral device

1 9 4 2 4 1 3 6 MELSEC-Q

D/A OUTPUTA/D INPUT

X3F X30 X2F X20

Y6F Y60 Y5F Y50 Y4F Y40
Y70

Y78

X0

X8

Y71

Y79

X1

X9

Y72

Y7A

X2

XA

Y73

Y7B

X3

XB

Y74

Y7C

X4

XC

Y75

Y7D

X5

XD

Y76

Y7E

X6

XE

Y77

Y7F

X7

XF

ON

OFF

ON

OFF

QCPU Vacant
slot

to to

2 - 1

CHAPTER 2 OPERATING GX Works2

GX Works2 is a programming tool for designing, debugging, and maintaining
programs on Windows®.
GX Works2 has improved functionality and operability, with easier-to-use features
compared to existing GX Developer.

 Main functions of GX Works2
GX Works2 can manage programs and parameters in units of projects for each
programmable controller CPU.

 Programming

Programs can be created in a Simple project in a similar way with existing
GX Developer.
Structured programming in a Structured project is also available with GX
Works2.

 Setting parameters
The parameters for programmable controller CPUs and network
parameters can be set with GX Works2.
Intelligent function module parameter can be set as well.

 Writing/reading data to/from a programmable controller CPU
Created sequence programs can be written to/read from a programmable
controller CPU using the Read from PLC/Write to PLC function. Also, with
the Online program change function, the sequence programs can be
changed even when the programmable controller CPU is in RUN.

Writing data

Reading data

2 - 2

 Monitoring/debugging
Created sequence programs can be written to the programmable controller
CPU and device values at operation can be monitored online/offline.

Programs can be monitored and debugged.

 Diagnostics

The current error status and error history of the programmable controller
CPU can be diagnosed.
With the diagnostics function, the recovery work is completed in a short
time.
With the System monitor function (for QCPU (Q mode)/LCPU), detailed
information on such as intelligent function modules can be obtained. This
helps to shorten the recovery work time at error occurrence.

Diagnosing the programmable controller
CPU status (PLC diagnostics screen)

Diagnosing the
programmable controller
CPU status

2 - 3

2.1 Features of GX Works2

This section explains the features of GX Works2.

(1) Project types in GX Works2

In GX Works2, the project type can be selected from either of Simple project or
Structured project.

(a) Simple project

The Simple project creates sequence programs using instructions for
Mitsubishi programmable controller CPU.
Programs in a Simple project can be created in a similar way to existing GX
Developer.

(b) Structured project
In a Structured project, programs can be created by structured
programming.
By segmenting a whole control process program into common program
parts, highly manageable and usable programming (structured
programming) is possible.

Program MAINProgram block A

Program block B

Program block C

Program block D

Program block E

Function block 1

Function block 2

Function 1

Function 2

Program SUB1

Program filePOU

Sequence programs are created
by combining POU (Program
Organization Unit) s.

2 - 4

(2) Enhanced use of program assets
Projects created with existing GX Developer can be utilized in a Simple project.
Utilizing the past assets improves the efficiency of program design.

Project created
with GX Developer

<GX Developer> <GX Works2>

Can be used in
GX Works2.

(3) Sharing Program Organization Unit (POU) registered as libraries
In a Structured project, programs, global labels, and structures frequently used
can be registered as user libraries. Utilizing these user libraries reduces time
required for creating programs.

Library file

Project A

Project B

Project C

Project D

2 - 5

(4) Wide variety of programming languages
The wide variety of programming languages available with GX Works2 enables
to select the optimum programming language according to control.

<SFC>
Programming to clarify the procedure

<Ladder>
Programming similar to existing GX Developer

<Structured ladder>
Programming a ladder program graphically

<ST>
Programming in a text language similar to
C language

(5) Other features

(a) Offline debugging
Offline debugging using the simulation function is possible with GX Works2.
This enables debugging to ensure the normal operation of created
sequence programs without connecting GX Works2 to the programmable
controller CPU.

Simulation function

 Connecting the programmable
controller CPU is unnecessary.

Without connecting the programmable controller CPU, programs can be
monitored and debugged in the same way with debugging by the
programmable controller CPU.

2 - 6

(b) The screen layout can be customized to the user's preference
The docking windows enable to change the screen layout of GX Works2
without restriction.

Screen layout can be
changed without restriction.

2 - 7

2.1.1 MELSOFT iQ Works

MELSOFT iQ Works integrates the engineering software (GX Works2, MT
Developer2, and GT Designer3).
Sharing the design information such as the system design and programming in the
whole control system improves the efficiency of program design and efficiency of
programming, which reduces costs.

GT Designer3
(GOT drawing software)

GX Works2
(Programmable controller
programming software)

MT Developert2
(Motion controller

programming software)

Design information
data base

MELSOFT Navigator
(System configuration management tool)

MELSOFT iQ Works

Sharing the design information
between the software

POINT

To start MELSOFT Navigator and each engineering software, click the Start button and follow
the procedure below.
• MELSOFT Navigator: [MELSOFT Application] → [MELSOFT iQ Works] → [MELSOFT

Navigator]
• GX Works2: [MELSOFT Application] → [GX Works2] → [GX Works2]
• MT Developer2: [MELSOFT Application] → [MT Works2] → [MT Developer2]
• GT Designer3: [MELSOFT Application] → [GT Works3] → [GT Designer3]

2 - 8

[Purpose of the engineering environment]

Network

MES
(Manufacturing Execution System)

ERP
(Enterprise Resource Planning)

 Integrating development environment which was
 independent of each device
 Sharing the design information in whole development phases
(system designing, programming, test/startup, and operation/maintenance)

1)

2)

Controller and HMI

Engineering environment

POINT

 is a FA integrated concept of MITSUBISHI ELECTRIC.

Integrated Q/improved Quality/intelligent&Quick/innovation&Quest

2 - 9

2.2 Basic Knowledge Required for Operating GX Works2

2.2.1 Screen configuration in GX Works2

3) Toolbar

9) Status bar

5) View contents display area
7) Edit screen (work window)

2) Menu bar
1) Title bar

8) Output window

4) Tab

6) View selection area

2 - 10

1) Title bar

Title bar displays the name of the active project.

Resizes or terminates GX Works2.

Displays the name and
the path of the project. Minimizes GX Works2. Terminates

GX Works2.

Maximizes or restores GX Works2.

2) Menu bar
Menu bar is the most frequently used item when operating GX Works2.
Click the menu bar to select a variety of functions from the drop-down menu.

3) Toolbar

Toolbar equips buttons to easily access the commonly-used functions.
This enables a quicker operation.

Point the cursor to the tool button
to show the function of each button.

4) Tab
When multiple work windows are open, they are displayed in the tab browser
format. Clicking a tab activates the corresponding work window.

5) View contents display area

View contents display area displays the contents of the currently selected view.

6) View selection area
View selection area allows selection of the view to be displayed.

7) Edit screen (work window)

Edit screen displays various screens such as ladder program creation screen
and comment creation screen for editing ladder diagrams, comments, and
parameters.

8) Output window

Output window displays compilation and check results (such as errors and
warnings).

9) Status bar

Status bar displays the status information of GX Works2.

Displays the
CPU type.

Displays the
connected CPU.

Displays the
state of Caps Lock.

Displays the
state of Num Lock.

Displays the current mode.

Displays the current
cursor position.

2 - 11

2.2.2 Ladder editor

This section explains the screen display of the GX Works2 ladder editor and its
basic operations.

(1) Edit screen

(2) Changing the display size of the edit screen

The display size of the edit screen can be changed.

1) Click [View] → [Zoom].

The Zoom dialog box is displayed.

Change the display size according to the
specified zoom ratio. (available range: 50 to 150%)

Adjust the width of the ladder automatically to
display the entire ladder.

Change the display size according to the
selected zoom ratio.

2 - 12

(3) Changing the text size on the edit screen

The text size displayed on the edit screen can be changed.

1) Select [View] → [Text Size] →
[Bigger]/[Smaller].

The text size is changed one step at each
setting within the range of 10 steps.

(4) Displaying/hiding comments
Device comments (label comments), notes, and statements can be displayed
and hidden.

1) Select [View] → [Comment]/[Statement]/[Note].

POINT

Displaying/hiding comments
Comments also can be displayed or hidden by the following operation.
[Tool] → [Option] → "Program Editor" → "Ladder" → "Comment"

* The details of this operation are explained in the next page.

2 - 13

(5) Setting the number of rows and columns for displaying comments

The option setting allows switching the number of rows and columns for
displaying a device comment.

1) Click [Tool] → [Option].

The Options screen is displayed.

2) Click "Program Editor" → "Ladder" → "Comment".

The screen for setting Device Comment Display
Format is displayed.

Comments can be displayed or hidden by
this setting in addition to by the method
described on the previous page.

(To the next page)

2 - 14

(From the previous page)

Set the number of display
rows in the range from 1 to 4. Set the number of display columns to 5 or 8.

Example)

4 rows × 8 columns 2 rows × 5 columns

2 - 15

(6) Setting the number of contacts to be displayed in ladder programs

The option setting allows switching the number of contacts to be displayed in a
single row.

1) Click "Program Editor" → "Ladder" → "Ladder
Diagram" in the Options screen.

The screen for setting Display Format for the
ladder diagram is displayed.

Set the number of contacts to be displayed in
a single row to 9 or 11 contacts.

2 - 16

(7) Switching the label name display and device display

The display of a program that uses labels can be switched between the label
name display and device display.
If label comments or device comments are set, the corresponding comments
are displayed.
Devices assigned by the compilation can be checked by switching the program
display from the label name display to the device display.

1) Click [View] → [Device Display].

The screen for setting Display Format for the
ladder diagram is displayed.

Example)
Device displayLabel name display

POINT

Displaying/hiding label comments and device comments
To check the set label comments and device comments, set the setting to display
comments. (Refer to section 2.2.2 (4))

2 - 17

(8) Hiding a ladder block

The ladder block after the ladder conversion can be hidden.
The ladder block in which the statements are set is hidden with the statements
displayed.

(a) Hiding a ladder block

1) Move the cursor!

1) Move the cursor to the ladder block to be
hidden.

2) Click [View] → [Non-Display Ladder Block].

(To the next page)

2 - 18

(From the previous page)

The ladder block is hidden.

3) The selected ladder blocks are hidden.

(b) Canceling the hidden ladder block.

1) Move the cursor!

1) Move the cursor to the hidden ladder block
displayed in gray.

2) Click [View] → [Display Ladder Block].

(To the next page)

2 - 19

(From the previous page)

The hidden ladder blocks are displayed.

3) The hidden ladder blocks are displayed.

POINT

Displaying/hiding ladder blocks

• Multiple ladder blocks also can be displayed and hidden.

• All ladder blocks can be displayed and hidden by the operation of [View] →
[Display All Ladder Block]/[Non-Display All Ladder Block].

• Ladder blocks also can be displayed and hidden by Right-click →
[Displaying/hiding ladder blocks].

2 - 20

2.2.3 Project

This section explains the configurations of a project that is displayed in a tree format
in the Project view. The display contents differ according to the programmable
controller type and the project type. The following is an example for a Simple project
of QCPU (Q mode).

< Simple project (without labels) >
Set various parameters.
Make settings for the intelligent function modules.
Set global device comments.

Set an execution type of each program.

Create programs.

GX Works2 Version 1 Operating Manual Simple Project

Set local device comments.
Make settings for device memory.
Set device initial values.

< Simple project (with labels) >
Set various parameters.
Make settings for the intelligent function modules.
Set global device comments.

Set an execution type of each program.

Create programs.

GX Works2 Version 1 Operating Manual Simple Project

Set global labels.
GX Works2 Version 1 Operating Manual Simple Project

Set local device comments.
Make settings for device memory.
Set device initial values.

2 - 21

1) One project per GX Works2

One GX Works2 can edit only one project unit.
To edit two or more projects at a time, run as many GX Works2 as the
number of projects.

2) Device comments
Device comment of GX Works2 is categorized into global device
comment and local device comment.

Comment type Number of comments Description

Global comment 1

A device comment created automatically
when a new project is created.
Global comments are set to use common
device comment data among multiple
programs.

Local comment
Equals the number of

the programs.

A device comment created by the user.
No local device comment exists when a
new project is created. Therefore, create a
local device comment if necessary.
Set the same names as sequence
programs.

2 - 22

2.3 Operation Before Creating Ladder Program

2.3.1 Starting up GX Works2

1) Click the button.

2) Select [All Programs].

3) Select [MELSOFT Application].

4) Select [GX Works2].

Put the mouse cursor over the items to select
the menu.
(Clicking or double-clicking the mouse is not
required.)

5) Click [GX Works2].

6) GX Works2 starts up.

1) Click!

3) Select!

2) Select!

5) Click!

4) Select!

6) GX Works2 starts up.

2 - 23

2.3.2 Creating a new project

1) Click on the toolbar or select [Project] →
[New Project] (Ctrl + N).

2) Click the "Project Type" list button.

3) The "Project Type" list is displayed. Select

"Simple Project".

1) Click!

2) Select!

3) Click and select!

4) Click!

5) Click and select!

(To the next page)

4) Click the "PLC Series" list button.

5) The "PLC Series" list is displayed. Select

"QCPU (Q mode)".

2 - 24

6) Click the "PLC Type" list button.

7) The "PLC Type" list is displayed. Select

"Q06UDH".

8) Click the OK button.

(From the previous page)

8) Click!

9) A new project is opened!

7) Click and select!

6) Click!

9) A new project is opened.

2 - 25

2.4 Preparation for Starting Up CPU

Setting switches and formatting the built-in memory are required before writing a
program to the CPU.

Connect or set the connectors and the switches of (1) to (3) shown below.
(The figures below are example of Q06UDHCPU.)

Q06UDHCPU

(2)

(3)

(1)

(1) Connecting a battery

Connect the battery since the lead wire of the battery connector is disconnected
at the factory shipment.

(2) Setting the switches

Set the RUN/STOP/RESET switch to the STOP position.

(3) Connecting the USB cable

2 - 26

(4) Setting the connection destination

This section explains how to set the connection destination for accessing the
programmable controller CPU.

1) Click!

1) Click "Connection Destination" in the view
selection area on the navigation window.

2) Double-click!

2) The Connection Destination view is
displayed. Double-click "Connection1" in
Current Connection.

 The Transfer Setup dialog box is displayed.

3) Double-click!

3) Double-click "Serial USB" of PC side I/F.

4) Click!

4) The PC side I/F Serial Setting dialog box is
displayed. Check "USB" and click the OK
button.

5) Double-click!

(To the next page)

5) Double-click "PLC Module" of PLC side I/F.

2 - 27

(From the previous page)

6) Click!

6) The PLC side I/F Detailed Setting of PLC
Module dialog box is displayed. Select
"QCPU (Q mode) " and click the OK
button.

7) Click!

7) Click the OK button.

2 - 28

(5) Formatting the built-in memory of the CPU

This section explains how to format the program memory of the QCPU.

1) Click!

1) Click [Online] → [PLC Memory Operation] →
[Format PLC Memory].

2) Select the target memory.

3) Click!

2) The Format PLC Memory dialog box is
displayed. Select "Program Memory" from the
Target Memory drop-down menu.

3) Click the Execute button.

4) Click!

4) Click the Yes button to start formatting.

5) Click!

5) When format is completed, the dialog box on
the left is displayed. Click the OK button.

6) Click!

6) Click the Close button to close the dialog
box.

2 - 29

(6) Clearing all the device memory from the CPU

This section explains how to clear the device memory of the QCPU.

1) Click!

1) Click [Online] → [PLC Memory Operation] →
[Clear PLC Memory].

2) Check.

3) Check.

4) Click!

2) The Clear PLC Memory dialog box is
displayed. Check that "Clear Device's whole
Memory" is checked.

3) Check "Include Latch".

4) Click the Execute button.

5) Click!

5) Click the Yes button to clear the latch
device.

6) Click!

6) When the clearing the latch device is
completed, the dialog box on the left is
displayed. Click the OK button.

7) Click!

7) Click the Close button to close the dialog
box.

2 - 30

(7) Clearing the error history in the CPU

This section explains how to clear the error history data stored in the QCPU.

1) Click!

1) Click [Diagnostics] → [PLC Diagnostics].

2) Click!

4) Click!

2) The PLC Diagnostics dialog box is displayed.
Click the Clear History button.

3) The confirmation dialog box is displayed.

Click the Yes button.

4) Click the Close button to close the dialog

box.

2 - 31

(8) Setting the clock on the programmable controller CPU

Setting a year, month, date, time, minute, second, and day of the week to the
clock on the programmable controller CPU is available.
To use the clock function, use GX Works2 or a sequence program.
Set or read the clock data in GX Works2.

1) Click [Online] → [Set Clock] to display the Set

Clock dialog box.

1) Click!

2) Enter time! 3) Click!

2) Enter a year, month, date, time, minute,
second, and day of the week in the Set Clock
dialog box.

3) Click the Execute button.

2 - 32

2.5 Creating Ladder Program

2.5.1 Creating a ladder program using the function keys

Follow the steps below to create the ladder program
as shown on the left.

1) Press the F5 key to open the Enter Symbol
window. Enter "X2".
If any other key is pressed by mistake, press the

Esc key and retype.
2) Press the Enter key to confirm the entry.

• The OK or Exit button also can be used to confirm
or cancel the entry.

3) The entered symbol (

X2
) is displayed.

4) Press the Shift + F5 keys , and enter "X0".

5) Press the Enter key to confirm the entry.

X2

Y70

X3

X0

Y70

Y71

A ladder program to be created

3) The symbol is displayed!

4) Enter "X0"!
5) Press "Enter"!

6) The symbol is displayed!

7) Enter "Y70"!
8) Press "Enter"!

1) Enter "X2"!
2) Press "Enter"!

(To the next page)

6) The entered symbol (
X0

) is displayed.

7) Press the F7 key, and enter "Y70".

8) Press the Enter key to confirm the entry.

2 - 33

9) The entered symbol (Y70) is displayed.

10) Press the F6 key, and enter "Y70".

11) Press the Enter key to confirm the entry.

12) The entered symbol (

Y70
) is displayed.

13) Move the cursor to the symbol under

Y70
.

14) Press the F5 key, and enter "X3".

15) Press the Enter key to confirm the entry.

16) The entered symbol (

X3

) is displayed.

17) Press the F7 key, and enter "Y71".

18) Press the Enter key to confirm the entry.

19) The entered symbol (Y71) is displayed.

(From the previous page)

9) The symbol is displayed!

11) Press "Enter"!

10) Enter "Y70"!

12) The symbol is displayed!

13) Move the cursor!

14) Enter "X3"!

15) Press "Enter"!

16) The symbol is displayed!

19) The symbol is displayed!

17) Enter "Y71"!

18) Press "Enter"!

20) The procedure is finished.

2 - 34

2.5.2 Creating a ladder program using the tool buttons

Follow the steps below to create the ladder program
as shown on the left.

1) Click on the toolbar to open the Enter Symbol
window. Enter "X2".
If any other button is pressed by mistake, click the
 Exit button.

2) Click the OK button to confirm the entry.

3) The entered symbol (

X2
) is displayed.

4) Click on the toolbar, and enter "X0".

5) Click the OK button.

X2

Y70

X3

X0

Y70

Y71

A ladder program to be created

2) Click!1) Click ,
then enter "X2".

3) The symbol is displayed!

6) The symbol is displayed!

5) Click!

8) Click!

4) Click ,
then enter "X0".

7) Click ,
then enter "X70".

(To the next page)

6) The entered symbol (
X0

) is displayed.

7) Click on the toolbar, and enter "Y70".

8) Click the OK button.

2 - 35

9) The entered symbol (Y70) is displayed.

10) Click on the toolbar, and enter "Y70".

11) Click the OK button.

12) The entered symbol (

Y70

) is displayed.

13) Move the cursor to the symbol under

Y70

.

14) Click on the toolbar, and enter "X3".

15) Click the OK button.

16) The entered symbol (

X3

) is displayed.

17) Click on the toolbar, and enter "Y71".

18) Click the OK button.

19) The entered symbol (Y71) is displayed.

(From the previous page)

9) The symbol is displayed!

12) The symbol is displayed!

13) Move the cursor!

14) Click ,
then enter "X3".

16) The symbol is displayed!

17) Click , then enter "Y71"!

19) The symbol is displayed!

11) Click!

15) Click!

18) Click!

10) Click ,
then enter "X0".

20) The procedure is finished.

2 - 36

2.6 Converting Program (Ladder Conversion)

1) Click!

1) Click [Compile] → [Build] (F4).

2) The ladder program has been converted.

If an error occurs during a conversion, the cursor
will automatically move to the defective point of
the ladder program. Check the point and correct
the program as necessary.

2 - 37

2.7 Writing/Reading Data to/from Programmable Controller CPU

(1) Writing data to the CPU

2) Set the switch to "STOP"!

1) Suppose that the ladder program (sequence
program) has been created with GX Works2
to proceed to the next step.

2) Set the RUN/STOP/RESET switch on the

CPU to STOP.

3) Click!

3) Click on the toolbar or click [Online]
→ [Write to PLC].

4) Select a program to be
written by clicking on data!

5) Click!

4) From the "PLC Module" tab, click to select
the program and parameter to write to the
CPU. Or click Parameter + Program to
select the target program and parameter.

5) Click Execute to accept the selection.

6) Click!

(To the next page)

6) If a parameter or program has already been
written, the confirmation dialog box for
overwriting the data is displayed. Click
 Yes .

2 - 38

7) The progress dialog box is displayed.

(From the previous page)

8) Click!

8) The message "Completed" is displayed when
the writing is completed. Click Close .

9) Click!

9) Click the Close button to close the dialog
box.

2 - 39

(2) Reading data from the CPU

1) Click!

1) Click on the toolbar or click [Online]
→ [Read from PLC].

2) Select a program to be
read by clicking on data! 2) Select the

target memory!

3) Click!

2) From the "PLC Module" tab, click to select the
program and parameter to read from the CPU. Or
click Parameter + Program to select the target
program and parameter.

Select "Program Memory/Device Memory" for
"Target Memory".

3) Click Execute to accept the selection.

4) Click!

4) If a parameter or program exits, the confirmation
dialog box for overwriting the data is displayed.
Click Yes .

6) Click!

5) The progress dialog box is displayed.

6) The message "Completed" is displayed when the

reading is completed. Click Close .

2 - 40

2.8 Monitoring Ladder Program Status

1) Suppose that the ladder program (sequence

program) has been written into the
programmable controller CPU to proceed to
the next step.

2) Set the RUN/STOP/RESET switch on the

CPU to RESET once (for about one sec.),
return it to STOP, then set it to RUN.

3) Click on the toolbar or click [Online] →

[Monitor] →[Start Monitoring].

3) Click!

2) Set the switch to "RUN"!

4) Selecting another menu ends the monitor
mode.

Operation Practice

1) Confirm that the LED indicator Y70 lights up by turning on the snap switch X2,
and that the indicator remains lit after the snap switch is turned off.

2) Confirm that the LED indicator Y70 turns off by pressing (turning on) the push
button (snap switch) X0, and that the indicator does not light up when the button
(snap switch) is released (turned off).

3) Turning on the snap switch X3 turns on the LED indicator Y71.

2 - 41

(1) In the monitor mode, the Monitor Status dialog box shown below is displayed

regardless of the monitor status.

1) 2) 5)3) 4)
1) Connection status

Displays the connection status between a programmable controller
CPU and personal computer in which the simulation function is started.

2) RUN/STOP status

Displays the programmable controller CPU status operated by the key
switch on the programmable controller CPU or the remote operation
from GX Works2.

3) ERR. status (PLC diagnostics)

Displays the error status of the programmable controller CPU.
Clicking the icon displays the PLC Diagnostics screen (*1).

4) USER status (PLC diagnostics)

Displays the user error status of the programmable controller CPU.
Clicking the icon displays the PLC Diagnostics screen (*1).

5) Scan time

Displays the maximum scan time of the monitored programmable
controller CPU.
The Q-series programmable controller displays the scan time in units
of 0.1msec.

*1: For the PLC diagnostics, refer to section 2.8.

(2) The statuses of the ladder are indicated as shown below.

1) Display of a contact when X0 = OFF

X0 X0

Normally open contact
(not conducting)

Normally closed contact
(conducting)

Display of a contact when X0 = ON
X0X0

Normally open contact
(conducting)

Normally closed contact
(not conducting)

2) Display of a coil output instruction, contact-equivalent comparison

instruction, and coil-equivalent instruction

Not executed,
conditions not established
Executed,
conditions established

*

*

*: Available contact-equivalent comparison and coil-equivalent

instructions are SET, RST, PLS, PLF, SFT, SFTP, MC, FF, DELTA,
and DELTAP.

2 - 42

(3) Ladder conversion during the monitoring

This section explains the procedure to convert Y70 into Y72 during the
monitoring.

1) Double-click!

1) Double-click (Y70).

2) Enter "Y72"!

2) The Enter Symbol window is displayed. Enter
"Y72".

3) Press the Enter key.

4) Enter "Y72"!

4) Double-click (
Y70

) and change "Y70" to "Y72".

5) Click!

5) Click [Compile] → [Build] (F4).

6) The conversion is completed.

2 - 43

2.9 Diagnosing Programmable Controller CPU

1) Click!

1) Click [Diagnostics] → [PLC Diagnostics].

2) The PLC Diagnostics screen is displayed.

1)

2)

3)

4)

5)

7)

6)

2 - 44

 Item Description

1) Monitor Status Displays the current monitor status.

2)
Connection Channel
List Displays the connection route which has been set.

3) CPU operation status

 For single CPU system
Displays the operation status and switch status of the programmable controller CPU.

 For multiple CPU system
Displays the operaton status and the switch status of CPU No. 1 to No. 4.

• "Uninstallable/Blank" is displayed for a slot with no module mounted.

4)
Image of
programmable
controller CPU

Perform online operations of the programmable controller CPU. (refer to POINT)

Error Information Select this to display the current error information of the programmable controller CPU.

5) PLC Status
Information

Select this to display the status information of the programmable controller CPU.

6) Error History Displays the latest error history by clicking the button.

7) Status Icon Legend Displays the status icons on the screen.

POINT

Online operations
The PLC Memory Operation function and the Remote Operation function can be executed from the
image of the programmable controller CPU.
When the cursor is moved to the image of the programmable controller CPU, the function menu is
expanded. Click the image of the programmable controller CPU to display the items to be set.

<PLC Memory Operation>

<Remote Operation>

<Set Clock/Write Title>

2 - 45

2.10 Editing Ladder Program

2.10.1 Modifying a part of the ladder program

This section explains how to modify a part of the
ladder program shown on the left.
(OUT Y71 → OUT Y72)

1) Confirm that "Ovrwrte" is shown at the
lower-right portion of the screen.

If "Insert" is shown on the screen, click the Ins key
to change the display to "Ovrwrte".
If "Insert" is shown on the screen, contacts or coils are
added to the diagram.

Added!
X5 X2

<When correcting X2 to X5>

Added!

RST M3

SET M3

<When correcting SET to RST>

X2 X0

Y70

Y70

X3

Y71

Y72

A ladder program to be created

1) Check!

2) Double-click!

(To the next page)

2) Double-click the point to be corrected.

2 - 46

3) The Enter Symbol window is displayed.

(From the previous page)

3) The Enter Symbol window is displayed!

4) Enter "Y72"! 5) Click!

6) The modified diagram is displayed!

4) Click the edit box and enter "Y72".

5) Click the OK button to accept the change.

6) The modified ladder program is displayed.

7) To convert the edited ladder program, click

[Compile] → [Build] (F4).

2 - 47

2.10.2 Drawing/deleting lines

(1) Drawing lines

This section explains how to add a line to the
ladder program shown on the left.

1) Click (Alt + F10) on the toolbar.

2) Drag the mouse from the start position to the
end position.

A vertical line is created to the left of the cursor.

A ladder program to be created

X2 X0

Y70

Y70

X3

Y72

Y73

3) A line is created!

1) Click!

2) Drag!

(To the next page)

3) A line is created when the left button of the
mouse is released.

2 - 48

4) Click on the toolbar, and enter "Y73".

5) Click the OK button.

(From the previous page)

6) The symbol is displayed!

4) Click ,
then enter "Y73"!

5) Click!

6) The entered symbol (Y73) is displayed.

7) To convert the edited ladder program, click

[Compile] → [Build] (F4).

2 - 49

(2) Deleting lines

Perform the following steps to delete the line
from the ladder shown on the left.

1) Click (Alt + F9) on the toolbar.

2) Drag the mouse from the start position to the
end position.

3) The line is deleted when the left button of the
mouse is released.

The line drawn for the END instruction cannot be
removed.

A ladder program to be created

X2 X0

Y70

Y70

X3

Y72

Y73

2) Drag!

3) The line is deleted!

4) Press "Delete"!

1) Click!

4) Press the Delete key to delete Y73 .

5) To convert the edited ladder program, click

[Compile] → [Build] (F4).

2 - 50

2.10.3 Inserting/deleting rows

(1) Inserting rows

This section explains how to add a row to the
ladder program shown on the left.

1) Click on any point of the row to move the
cursor.

A new row is inserted above the row selected with the
cursor.

A ladder program to be modified

X2 X0

Y70

Y70

X3

Y72

Y77

X7

1) Click to move the cursor!

2) The menu
is displayed!

(To the next page)

2) Right-click on any point on the ladder
program creation screen to display the
menu.

2 - 51

3) Select the [Edit] → [Insert Row]
(Shift + Ins).

4) A new row is inserted above the selected
row.

(From the previous page)

4) A new row is inserted!

6) Click!5) Click ,
then enter "X7"!

3) Click!

(To the next page)

5) Click on the toolbar to open the Enter
Symbol window. Enter "X7".

6) Click the OK button to accept the entry.

2 - 52

7) The entered symbol (
X7

) is displayed.

8) Click on the toolbar, and enter "Y77".

9) Click the OK button.

(From the previous page)

7) The symbol is displayed!

8) Click ,
then enter "Y77"! 9) Click!

10) The symbol is displayed! 10) The entered symbol (Y77) is
displayed.

11) To convert the edited ladder program, click

[Compile] → [Build] (F4).

2 - 53

(2) Deleting rows

This section explains how to delete the row
from the ladder program shown on the left.

1) Click on any point of the row to be deleted to
move the cursor.

A ladder program to be modified

X2 X0

Y70

Y70

X7

Y77

Y72

X3

1) Click to move the cursor!

2) The menu
is displayed!

(To the next page)

2) Right-click on any point on the ladder
program creation screen to display the
menu.

2 - 54

3) Select the [Edit] → [Delete Row]
(Shift + Del).

(From the previous page)

4) The row is deleted!

3) Click!

4) The selected row is deleted.

5) To convert the edited ladder program, click

[Compile] → [Build] (F4).

2 - 55

2.10.4 Cutting/copying ladder program

This section explains how to copy and cut the
ladder program shown on the left.

1) Click on the start point of the ladder program
to be cut to move the cursor.

2) Drag the mouse over the ladder to specify the
area.
The selected area is highlighted.

Click the step numbers and drag the mouse vertically
to specify the area in ladder block units.

A ladder program to be modified

Range of cut or copy

1) Click to move the cursor!

2) Drag to specify the area!

3) Click to cut!

X7

X2

Y70

X0

Y77

Y70

(To the next page)

3) Click on the toolbar or select [Edit] →
[Cut] (Ctrl + X) to cut the specified
area.

2 - 56

4) Click on the start point of the ladder program
to be copied to move the cursor.

5) Drag the mouse over the ladder to specify
the area.
The selected area is highlighted.

Click the step numbers and drag the mouse vertically
to specify the area in ladder block units.

6) Click on the toolbar or select [Edit] →
[Copy] (Ctrl + C) to copy the specified
area.

(From the previous page)

7) Click to move the cursor!

The ladder is pasted above this block!

6) Click !

(To the next page)

7) Click any ladder block to move the cursor to
the ladder. The copied ladder is pasted
above the row with the cursor.

2 - 57

8) Click on the toolbar or select [Edit] →
[Paste] (Ctrl + V) to paste the cut or
copied area.

(From the previous page)

9) Completed!

8) Click!

9) The cut or copied ladder is pasted.

2 - 58

2.11 Verifying Data

This section explains how to verify the open project against the data on the
programmable controller CPU.
The verification function is used to compare the contents of two projects or to locate
program changes made in the programs.

1) Click!

1) Click [Online] → [Verify with PLC].

2) Click!

3) Click!

2) The Online Data Operation dialog box is displayed.
Click the Parameter + Program button.

3) Click the Execute button.

4) Double-click!

4) The verification result is displayed in the Verify
Result window.

To check the detail of the data, double-click the
corresponding row.

5) Display!

5) The detail of the result is displayed.

2 - 59

2.12 Saving Ladder Program

2.12.1 Saving newly-created or overwritten projects

1) Click on the toolbar or select [Project]
→ [Save] (Ctrl + S).

Saving the existing project is completed at this
step.

2) Specify the location to store the project.

3) Set a workspace name.

4) Set a project name.

5) Set a title as necessary.

6) Click the Save button to accept the entry.

7) Click!

1) Click!

3) Set a workspace name!

5) Set a title as necessary!

4) Set a project name!

2) Specify the location to
store the project!

6) Click!

(Only when a newly-created project is saved)

7) Click the Yes button.
The new project is saved.

2 - 60

POINT

• Workspace
Workspace enables GX Works2 to manage several projects with one name.

• When the save destination exists
When the save destination (workspace and project) exists, the folder where the workspace is saved
can be specified in "Workspace/Project List".

• Number of the characters for a workspace name, project name, and title
Specify a workspace name, project name, and title within 128 characters each.
However, the total number of the characters of the save destination path name + workspace name
+ project name must be within 150.

2.12.2 Saving a project with another name

1) Click [Project] → [Save as].

2) Specify the location to store the project.

3) Set a workspace name.

4) Set a project name.

5) Set a title as necessary.

6) Click the Save button to accept the entry.

7) Click!

1) Click!

3) Set a workspace name!

5) Set a title as necessary!

4) Set a project name!

2) Specify the location to
 store the project!

6) Click!

7) Click the Yes button.
The new project is saved.

2 - 61

2.13 Reading the saved project

1) Click on the toolbar or select [Project]
→ [Open] (Ctrl + O).

2) Specify the location where the project to be
read is stored.

3) Double-click the workspace to be read.

4) Click the project to be read.

5) Click the button to start reading the specified

project.

 Yes ·········Terminates the project.
 No ··········Keeps the project open.

 Yes ·········Terminates the project without
converting the project.

 No ··········Keeps the project open.
(Continue editing the ladder program.)

Each confirmation dialog box below is displayed in the following cases;

(When another project has been open)

(When another project has been open without being converted)

(When another project has been open without being saved)

1) Click!

5) Click!

4) Click!

3) Double-click!

 Yes ·········Terminates the project after saving it.
 No ··········Terminates the project without

saving it.
 Cancel ····Keeps the project open.

2 - 62

2.14 Opening Projects in Different Format

This section explains how to open a project created with GX Developer in
GX Works2.

1) Click [Project] → [Open Other Data]
→ [Open Other Project].

2) Click!

2) The Open Other Project dialog box is
displayed. Specify the project and click the
 Open button.

3) The message on the left is displayed.
Click the Yes button.

4) The project created with GX Developer is
read.

2 - 63

POINT

• Status after a project in a different format are opened
When a project in a different format is opened, the project is in the uncompiled status.
Compile all programs in the project before executing online operations such as writing data and
monitoring.
When a compile error occurs, correct the corresponding program according to the programming
manual.

2.15 Saving Projects in Different Format

This section explains how to save a Simple project of GX Works2 in the GX
Developer format.

1) Click!

1) Click [Project] → [Export to GX Developer
Format File].

3) Click!

2) Select!

2) The Export to GX Developer Format File
dialog box is displayed. Specify the
destination to save the project.

3) Enter a project name and click the Save

button.

4) The message on the left is displayed. Click
the Yes button.

5) The project is saved in the GX Developer
format.

2 - 64

MEMO

3 - 1

CHAPTER 3 DEVICE AND PARAMETER OF PROGRAMMABLE CONTROLLER

3.1 Device

A device is an imaginary element for programming in the programmable controller
CPU, as well as the components (such as contacts and coils) that compose a
program.

X6

Y74

T2
Y74 Y

Device No.
Device symbol

74

Type Description Remark

X Input
Sends commands and data to a programmable controller
through external devices such as push buttons, selector
switches, limit switches, and digital switches.

Y Output
Outputs control results to solenoids, electromagnetic switches,
signal lights, and digital indicators.

M Internal relay
Auxiliary relay inside a programmable controller that cannot
output directly to external devices

L Latch relay
Uninterruptible auxiliary relay inside the programmable
controller that cannot output directly to external devices

B Link relay
Internal relay for data link that cannot output directly to external
devices The area not assigned by initial link information setting
can be used as an internal relay.

F Annunciator

Used for failure detection. Create a failure detection program
beforehand and turn on the program while the programmable
controller is running to store numerical values in the special
register D.

V Edge relay
Internal relay that stores an operation result (on/off information)
from the top of a circuit block

SM Special relay Internal relay that stores CPU statuses

SB Special link relay
Internal relay for data link that indicates a communication
status and errors

FX Function input
Internal relay that captures the on/off data specified by a
subroutine call instructions with arguments in a subroutine
program

FY Function output
Internal relay that passes an operation result (on/off data) in a
subroutine program to a subroutine program call source

• Bit device
• Mainly handles on/off

signals.

T(ST) Timer
Accumulative timers of four types: low-speed timer, high-speed
timer, low-speed integrator, and high-speed integrator

C Counter
Accumulative counters of two types: counters for sequence
programs and counters for interruption sequence programs

D Data register Memory that stores data in the programmable controller
W Link register Data register for data link

R File register
Register for an extensive use of data registers, which uses the
standard RAM or memory card

SD Special register Register that stores CPU statuses

SW Link data register
Data register for data link that stores a communication status
and failure information

FD Function register
Register for the exchange data between a subroutine call
source and a subroutine program

Z Index register
Register for modification to the devices (X, Y, M, L, B, F, T, C,
D, W, R, K, H, and P)

• Word device
• Mainly handles data.
• One word consists of

16 bits.
• Can be specified by

entering ~.* (* = 0 to F
(hexadecimal)).

3 - 2

Type Description Remark

FD
Function
register

Register for the exchange data between a subroutine call
source and a subroutine program

Z Index register
Register for modification to the devices (X, Y, M, L, B, F, T, C,
D, W, R, K, H, and P)

N Nesting Shows the nesting (nested structure) of the master control.

P Pointer
Locates the jump addresses of the branch instructions (CJ,
SCJ, CALL and JMP).

I
Interruption
pointer

Locates a jump address that corresponds to the factor of the
interruption when an interruption occurs.

J
Network No.
specification
device

Used to specify the network number in the data link
instructions.

U
I/O No.
specification
device

Used to specify the I/O number in the intelligent function
module dedicated instructions.

K
Decimal
constant

Used to specify the following; timer counter set value, pointer
number, interruption pointer number, number of digits of bit
device, and basic/application instruction values.

H
Hexadecimal
constant

Used to specify the basic/application instruction values.

E Real number
constant

Used to specify real numbers as instructions.

"Character
String"

Character string
constant

Used to specify character strings as instructions.

Jn\X
Jn\Y
Jn\B

Jn\SB

• Bit device
• Mainly handles on/off

signals.

Jn\W
Jn\SW

Link direct
device

Device that can access directly to a link device of a network
module (The refresh parameter setting is not required.)

Un\G
Intelligent
function module
device

Device that can access directly to the buffer memory of a
intelligent function module

• Word device
• Mainly handles data.
• One word consists of

16 bits.

3 - 3

3.2 Parameter

The parameters are basic setting values applied to a programmable controller in
order to control objects as planned.
The parameters are divided into the PLC parameter, network parameter, and remote
password as shown below.

* A shaded area in the following table indicates the items to be set in this textbook.
Item Description

Label Sets a label (name and application) of a programmable controller CPU.
PLC name

Comment Sets a comment for the label of a programmable controller CPU.

Timer limit setting Sets the time limit of the low-speed or high-speed timer.

RUN-PAUSE contacts Sets contacts for controlling RUN and PAUSE of a programmable controller CPU.

Latch data backup operation

valid contact

Sets contact devices in order to execute the latch data backup operation.

(Only for Universal model QCPU)

Remote reset Sets whether to allow a remote reset operation from GX Works2.

Output mode at STOP to

RUN

Sets the status of an output (Y) when the programmable controller is switched from STOP

to RUN.

Floating point arithmetic

processing

Sets whether to execute floating-point processing in double precision.

(Only for high performance model QCPU)

Intelligent function module

setting

• Sets the interruption pointer assignment of a module.

• Sets the start I/O number and start SI number.

Common pointer No. Sets the start number of the pointer used as a common pointer.

Points occupied by empty

slot
Sets the number of empty slots for the main or extension base unit.

System interrupt settings
• Sets the start number of the interrupt counters.

• Sets the execution interval for the interrupt pointers.

Interrupt program/fixed scan

program setting
Set whether to execute high-speed execution of an interrupt program.

Module synchronization
Set whether to synchronize the start-up of the programmable controller CPU with that of the

intelligent function module.

A-PLC compatibility setting Set whether to use the MELSEC-A series special relays/special registers.

Service processing setting
Sets the processing time and the number of times of service processing. (Only for Universal

model QCPU)

PLC system

PLC module change setting
Set this parameter to replace the CPU module using a memory card (Only for Universal

model QCPU).

File register

• Sets the file register file to be used in a program.

• Sets whether to transfer data to the standard ROM at a latch data backup operation.

(Only for Universal model QCPU)

Comment file used in a

command
Sets the device comment file to be used in a program.

Initial device value Sets the device initial value file to be used on the programmable controller CPU.

File for local device Sets the local device file to be used in a program.

PLC file

File used for

SP.DEVST/S.DEVLD

instruction

Sets the device data ROM write/read instruction file to be used in a program.

(Only for Universal model QCPU)

WDT (watchdog timer)

setting
Sets the WDT of the programmable controller CPU.

Error check Sets whether to detect specified errors.

Operation mode when there

is an error
Sets the programmable controller CPU operation mode when an error is detected.

Constant scanning Sets the constant scan time.

Breakdown history
Sets the storage destination for error histories of the programmable controller CPU. (Only

for high performance model QCPU)

P
LC

 p
ar

am
et

er

PLC RAS

Low speed program

execution time

Sets the execution time of a low-speed program in every scan. (Only for high performance

model QCPU)

3 - 4

 Item Description

Boot option Sets whether to clear the program memory when booting up.

Boot file
Boot file setting

Sets the type, data name, transfer source drive, and transfer destination drive of the boot

file.

Program
Sets the file name and execution type (execution condition) of the program when several

programs are written to the programmable controller CPU

SFC
Sets the startup mode and startup condition of an SFC program and the output mode at

block stop

Device points Sets the number of points used for each device of the programmable controller CPU.

Latch (1) start/end
Sets the latch range (start device number/end device number) clearable with the

RESET/L.CLR switch or a remote latch clear operation.

Latch (2) start/east
Sets the latch range (start device number/end device number) not clearable with the

RESET/L.CLR switch or a remote latch clear operation.

Local device start/end Sets the range (start device number/end device number) of devices used as a local device.

File register extended

setting

Sets the extended data register and extended link register. (Only for Universal model

QCPU)

Device

Indexing setting for ZR

device

Sets the start number of Z to be 32-bit indexed, or use the index register ZZ for 32-bit index

setting. (Only for Universal model QCPU)

I/O assignment
Sets the type, model, number of occupied I/O points, and start I/O number of each module

mounted on the base unit.
I/O assignment

Basic setting
Sets the model and the number of slots of the base unit, the model of the power supply

module, and the model of the extension cable.

No. of PLC Sets the number of programmable controller CPUs used in the multiple CPU system.

Operation mode
Sets the operation mode of the multiple CPU system when a stop error occurs in any of the

programmable controller CPU No. 2 to No. 4.

Host station Sets the CPU number for the host CPU.

Multiple CPU synchronous

startup setting
Selects the CPU modules to be started up synchronously.

Online module change Sets whether to allow the online module change in the multiple CPU system.

I/O sharing when using

multiple CPUs

Sets whether to retrieve the I/O status of the I/O module or intelligent function module

controlled by other programmable controller CPUs.

Communication area setting

(refresh setting)
Sets the CPU shared memory to enable data sharing among multiple CPUs.

Multiple CPU

setting

Multiple CPU high speed

transmission area setting
Sets the user setting area, auto refresh, assignment confirmation, and system area.

IP address setting Sets the IP address and the input format of the IP address.

Communication data code Selects the Binary code or ASCII code for communication.

Open setting button Sets the protocol, open system, and host station port number.

FTP setting button Selects whether to use the FTP function

Built-in

Ethernet port

setting

Time setting button Sets whether to use the SNTP function and the timing of setting the time.

Transmission speed Sets the transmission speed.

Sum check Sets the sum check.

Transmission wait time Sets the transmission wait time.

P
LC

 p
ar

am
et

er

Serial

communication

Online change Sets whether to allow the online program change.

Ehternet/CC IE/MELSECNET
Sets the network parameters for Ehternet, MELSECNET/10, MELSECNET/H, and CC-Link

IE controller network.

N
et

w
or

k

pa
ra

m
et

er

CC-Link Sets the parameters for CC-Link.

Remote password Sets the password that limits the access via the Ethernet or serial communication modules.

3 - 5

• When GX Works2 starts, it employs the preset values as the parameters. These

values are called the default (initial values).
• The programmable controller can run with those values unchanged, however,

modify them within a specified range as necessary.

Operation example: Changing the operation mode when an error exists
When a computation error is caused, the programmable controller CPU changes to
the STOP status at the default value, however, changing the parameters continues
the programmable controller CPU to run.

Computation error example
• In the division instruction, the processing to divide by 0 is executed.

1) Double-click!

1) Double-click "PLC parameter" on the navigation
window.

2) Click!

2) The Q Parameter Setting dialog box is displayed.
Click the "PLC RAS" tab.

4) Click!

3) Change!

3) Change the setting of "Computation Error" in
"Operation Mode When There Is an Error" to
"Continue"

4) Click the End button.

3 - 6

MEMO

4 - 1

CHAPTER 4 SEQUENCE AND BASIC INSTRUCTIONS -PART 1-

4.1 List of Instruction Explained in this Chapter

This chapter explains the sequence instructions and basic instructions as shown
below.

Instruction

symbol

(Name)

Function Drawing (devices to be used)

Instruction

symbol

(Name)

Function Drawing (devices to be used)

 OUT

Out
Coil output

Specifies a bit of a bit
device or word device.

 CJ
Conditional jump

(non-delay) n = 0 to 4095
Pointer

CJ Pn

 MC

Master

control

Starting master

control*1
n = 0 to 14
Nesting

Nn NnMC

Specifies a bit of a bit device
or word device.

 SCJ

Conditional jump

Jumps after one

scan
n = 0 to 4095
Pointer

SCJ Pn

 MCR

Master

control

reset

Terminating

master control n = 0 to 14
Nesting

MCR Nn
 CALL

Calling subroutine

program n = 0 to 4095
Pointer

CALL Pn

 SET

Set
Setting devices

Specifies a bit of a bit device
or word device.

SET
 CALLP

Calling a

subroutine

program (pulsing

operation)

n = 0 to 4095
Pointer

CALLP Pn

 RST

Reset
Resetting devices

Specifies a bit of a bit device
or word device.

RST RET

Return

Returning from a

subroutine

program

RET

 PLS

Pulse

Pulse
Generating the
pulses for one
program cycle
when a input

signal turns off

Specifies a bit of a bit device
or word device.

PLS
 FEND

Terminating a

main routine

program

FEND

 PLF

Pulf

Pulf
Generating the
pulses for one
program cycle
when a input

signal turns off

Specifies a bit of a bit device
or word device.

PLF

*1: In GX Works2, the on/off status of the master control is displayed in the title tag

on the monitor screen.

4 - 2

<List of instructions not explained in this chapter: part 1>
"Introduction: PLC Course" covers the instructions shown below. The conventional A
series also support them.
Refer to "MELSEC-Q/L Programming Manual Common Instruction" for more details.

Instruction

symbol
(Name)

Function Drawing (devices to be used)
Instruction

symbol
(Name)

Function Drawing (devices to be used)

 LD

Load

Starting a logical
operation

Starting to operate
a normally open

contact
Specifies a bit of a bit device
or word device.

 MRD

Lead

Intermediate

branching

 LDI

Load

inverse

Starting a logical
inverse operation
Starting to operate
a normally closed

contact
Specifies a bit of a bit device
or word device.

 MPP

Pop

Terminating

branching

 AND

And

Logical AND
operation

Series connection
of normally open

contacts
Specifies a bit of a bit device
or word device.

 NOP

Nop
Ignored

For a space or deleting a

program

 ANI

And

inverse

Logical AND
inverse operation
Series connection
of normally closed

contacts
Specifies a bit of a bit device
or word device.

 END

End

END processing of

terminating a

program

Must be used as an end of a

program.

 OR

Or

Logical OR
operation

Parallel connection
of normally open

contacts Specifies a bit of a bit device
or word device.

 STOP Stopping operation STOP

 ORI

Or inverse

Logical OR inverse
operation

Parallel connection
of normally closed

contacts Specifies a bit of a bit device
or word device.

 SFT

Shift

1-bit shift for

devices Specifies a bit of a bit device
or word device.

SFT

 ANB

And block

AND operation
between logical

blocks
Series connection

of blocks

 SFTP

Shift P

1-bit shift for

devices (pulsing

operation) Specifies a bit of a bit device
or word device.

SFTP

 ORB

Or block

OR operation
between logical

blocks
Parallel connection

of blocks

 NOPLF

Ignored

(for a page break

at printing)

NOPLF

 MPS

Push
Starting a branch PAGE

Ignored

(Recognized as

zero step of n-page)

nPAGE

4 - 3

<List of instructions not explained in this chapter: part 2>
The instructions listed below are intended for the Q series and not supported by the
A series.
Some of them are explained in "Q Programming Applied Course".
Refer to "MELSEC-Q/L Programming Manual Common Instruction" for more details.

Instruction

symbol
(Name)

Function Drawing (devices to be used)
Instruction

symbol
(Name)

Function Drawing (devices to be used)

 LDP

Load P

Starting to operate

a rising pulse Specifies a bit of a bit device
or word device.

 MEF

Converting a

result into a falling

pulse Specifies a bit of a bit device
or word device.

 LDF

Load F

Starting to operate

a falling pulse Specifies a bit of a bit device
or word device.

 INV

Inverse

Inverting the

operation results Specifies a bit of a bit device
or word device.

 ANDP

And P

Series connection

of rising pulses Specifies a bit of a bit device
or word device.

 EGP

Edge P

Converting a result

into a rising pulse

(Memorized by Vn) Specifies a bit of a bit device
or word device.

Vn

 ANDF

And F

Series connection

of falling pulses Specifies a bit of a bit device
or word device.

 EGF

Edge F

Converting a result

into a falling pulse

(Memorized by Vn) Specifies a bit of a bit device
or word device.

Vn

 ORP

Or P

Parallel

connection of

rising pulses Specifies a bit of a bit device
or word device.

 FF
Inverting a device

output

FF

Specifies a bit of a bit device
or word device.

 ORF

Or F

Parallel

connection of

falling pulses Specifies a bit of a bit device
or word device.

 DELTA

Delta

Converting a

direct output into a

pulse DY
DELTA

 MEP

Converting a

result into a rising

pulse Specifies a bit of a bit device
or word device.

DELTAP

Delta P

Converting a

direct output into a

pulse DY
DELTAP

4 - 4

4.2 Differences between OUT and SET / RST

Project name QB-1
Program name MAIN

 OUT instruction

Y70
X0

0

 • The OUT instruction turns the specified device on when the input condition turns
on, and turns the device off when the condition turns off.

[Timing chart]

X0

Y70

Project name QB-2
Program name MAIN

 SET/RST instruction

SET

RST

Y70

Y70
X1

X0
0

2

 • The SET instruction turns the specified device on when the input condition turns
on, and holds the on status of the device even when the condition turns off.
To turn off the device, use the RST instruction.

[Timing chart]

X0

X1

Y70

4 - 5

4.3 Measuring Timer

Project name QB-3
Program name MAIN

K30

Timer setting value (time limit: 3.0sec.)

T0

Y70

Y71

X5

T0

T0

0

5

7

*: OUT T is a 4-step instruction.

[Timing chart]

Contact X5

Coil T0

Normally open contact T0,
coil Y70

Normally closed contact 0b,
coil Y71

3.0sec.

• The timer contact
operates delaying by a set
time after the coil is
energized. (On delay
timer)

• The timer setting range is
from K1 to K32767.
Low-speed (100ms) timer
0.1 to 3276.7sec.
High-speed (10ms) timer
0.01 to 327.67sec.

• When the timer setting
value is set to 0, it turns on
(time-out) by the execution
of the instruction.

• The following four types of timer are available.

Type Timer No. (default)

Low-speed
timer·············

Counts time in
units of 100ms.

High-speed
timer·············

Counts time in
units of 10ms.

Default
T0 to T2047 (2048)

Low-speed
retentive
timer·············

Accumulates
time in units of
100ms.

High-speed
retentive
timer·············

Accumulates
time in units of
10ms.

Default: 0

The value can be
changed using the

parameter.

• Change the output

instruction (OUT) to
OUTH to select the
high-speed timer or
high-speed retentive timer.

• To use the retentive timer,
set the device points for
the retentive timer in the
device setting of the PLC
parameter.

Refer to section 6.4 for explanation on the retentive timers.

4 - 6

4.4 Counting by Counter

Project name QB-4
Program name MAIN

K12

Set value in counter

C20

Y72

X1

C20

X7

0

5

7 RST C20

*: OUT C is a 4-step instruction.

[Timing chart]

Contact X1

Coil C20

Contact C20, coil Y72

Contact X7 (input of RST instruction)

(Current value of counter)
1 2 3 11 12 0

• The counter counts when
an input signal rises.

• After the count, the
subsequent input signals
are not counted.

• Once the counter counts,
the contact status and the
current counter value do
not change until the RST
instruction is executed.

• Executing the RST
instruction before the count
returns the counter to 0.

• The counter setting range
is from K0 and K32767. (K0
turns on (counts up) by the
execution of the
instruction.)

• In addition to the direct specification using K, indirect specification using D (data

register) is available.

• The counter C30 counts
when the number of rising
edges on the input signal
X0 becomes the same as
the number (such as 24)
specified by the data
register D10.

• This indirect specification is
useful for applying a value
specified with an external
digital switch to the counter.

0 2 4

D10 24

X0

C30

0

5

C30

Y71

D10

Set value

Digital switch

The indirect specification
using the data register D is
also available for the timer.

4 - 7

Project name QEX1

Program name MAIN
Ladder example
When the conveyor belt operation start switch (X0) is turned on, the buzzer (Y70)
beeps for three seconds and the conveyor belt (Y71) starts to operate.
The conveyor belt automatically stops when the sensor (X1) detects that six
packages have passed through.

Sensor
(X1)

MC

Motor

(Y71)

Control panel
Operating panel

(X0) (Y70)

Operation Buzzer

Conveyor

Create the following ladder and check that it operates properly.

M0
M0

M0

M0

T0

X0

X1

Y71

0

4

7

12

14

19

Y70

T0

Y71

C0

C0RST

Y71

During operation

Buzzer

3-sec. timer

Operating the conveyor

Counter for counting
the number of packages

K30

K6

 C0

4 - 8

Operating Procedure
(1) Creating a new project

(a) Click on the toolbar.

Click

(b) The New Project dialog box is displayed.
Set "Project Type" to "Simple Project", "PLC Series" to "QCPU (Q mode)",
and "PLC Type" to "Q06UDH". Then click the OK button.

Click

(c) If the project in preparation exists, the confirmation dialog box for saving
the project is displayed.
Click the No button.

Click

(d) The screen shifts to the new project creation mode.

4 - 9

(2) Creating a program

[Using the keyboard]
F5 X 0 F5 C 0 F7 M 0

F4

Conversion

Shift +

[Using the tool buttons]

(a) Click on the toolbar to open the
Enter Symbol window.

(b) Enter "X0" with the keyboard and click

the OK button.

(c) Click on the toolbar to open the
Enter Symbol window.

(d) Enter "C0" with the keyboard and click

the OK button.

(e) Click on the toolbar to open the
Enter Symbol window.

(f) Enter "M0" with the keyboard and click

the OK button.

Click

Enter "X0" after
clicking .

Enter "C0" after
clicking .

Enter "M0" after
clicking .

Click

Click
(g) When creating the circuit is finished,

click [Compile] → [Build].

4 - 10

(3) Writing the project to the programmable controller

(a) Write the created ladder to the memory on the programmable controller.

Click on the toolbar.
The Online Data Operation dialog box is displayed.

Click

(b) Click the Parameter + Program button. Checkboxes for the target
program and the target parameter displayed in the window are
automatically marked ().

(c) Click the Execute button.

Click

Click this button after the
program name (MAIN) and
PLC parameter appear and
their checkboxes are marked.

Set the RUN/STOP switch
of the CPU to STOP.

4 - 11

(d) If parameters have been already written, the confirmation dialog box for

overwriting the parameters is displayed. Click the Yes button.

Click

(e) The Write to PLC dialog box is displayed.

(f) If a program has already been written, the confirmation dialog box for
overwriting the program is displayed. Click the Yes button.

Click

4 - 12

(g) Writing the program to the programmable controller is finished.

4 - 13

(4) Monitoring the ladder

Monitor the ladder.

(a) Click on the toolbar.

Click

(b) The ladder (write) screen is used to monitor the ladder.

Operation Practice
1) Turning on the push button switch (X0) turns on Y70 and starts T0 at the

same time.
2) When the timer T0 counts three seconds (time-out), Y70 turns off and Y71

turns on at the same time.
3) Turn on or off (push or release) the push button switch (X1). The counter

C0 counts the number of ON to turn off Y71 after counting on six times.

Hold the RESET/STOP/RUN switch on the CPU
at the RESET position for one second or more,
then set the switch to RUN.

4 - 14

4.5 PLS Pulse (turns on the specified device for one scan at rising edge of an input condition.)

 PLF Pulf (turns on the specified device for one scan at falling edge of an input condition.)

Project name QB-5
Program name MAIN

0

3

X0

X1

PLS M5

PLF M0

1

2

1 • The PLS instruction turns on the specified device only for one scan when the
execution command is turned on from off.

[Timing chart]

X0

M5
One scan One scan

2 • The PLF instruction turns on the specified device only for one scan when the

execution command is turned off from on.

[Timing chart]

X1

M0
One scan One scan

4 - 15

Application

• The instructions can be used in the standby program that waits for the operation
condition.

Execution command
X0

M0

M5

Execution condition

PLS M0

SET M5

Y70

K50

TO

TO
RST M5

[Timing chart]

M5

M0

Y70
(operation)

X0
(trigger)

Execution
condition

5sec.

Time to wait for
condition met

Applicable device
Internal device

(system or
user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register

C
on

st
an

t

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

PLS

PLF

D

D
D 2

4 - 16

• The instructions can be used for a program that detects passage of moving

objects.
After the passage of a product is detected, the next process for the product is
started.

X0

M0

Y70

PLF M0

SET Y70

Sensor
(Detection of input from X0) Conveyor

Sensor
Product

[Timing chart]

X0

M0

Y70

Other Useful Ways of PLS and PLF Part 1
• The instructions can be used for a program that executes the output operation for

a set period of time when the input signal changes from on to off.

[Timing chart]

Input
(X0)

Output
(Y76) Set time limit

10sec.
Pulse duration

[Program example]

Project name QB-6
Program name MAIN

T16
M1

Y76

X0

Y76

M1PLF0

3
T16 K100

4 - 17

Other Useful Ways of PLS and PLF Part 2

• The program for the repeated operation such as switching on/off status alternately
by pressing the push button switch can be made with the instructions.
If the PLS instruction is used in the above program, the rising edge caused when
the push button switch is pressed triggers the program. If the PLF instruction is
used, the falling edge caused when the switch is released is the trigger.

[Timing chart]

X0

Y70

Y71

[Program example]
Project name QB-7

Program name MAIN

Y70
M0

M1PLF

5
Y70

M0PLS0
X0

M0 Y70

Y71
M1

11
Y71

M1 Y71

4 - 18

Project name QEX2

Program name MAIN
Ladder example
Create the following ladder and check that it operates properly.

Y70
M0

Y70

X3

Y71
M1

X2

Y71

0

3

10

X0
M0PLS

X1
7 M1PLF

[Timing chart]

X2

M0

Y70

X0

X3

M1

Y71

X1

PLS

PLF

REFERENCE

The following is a timing chart of a lockup ladder programmed using the OUT
instruction. Compare this with the lockup ladder created using the PLS
instruction.

X2

X0

Y70

X2 X0

Y70

Y70

4 - 19

Operating Procedure

The following procedures are the same as the Operating Procedure in section
4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

Operation Practice
• Turning on X2 turns on Y70, and turning on X0 turns off Y70. (Even when X2 stays

on, turning on X0 turns off Y70.)
• Turning on X3 turns on Y71, and turning on X1 turns off Y71.

Related Exercise –––– Exercise 3

REMARK

Input pulse processing is not required for the QCPU as it uses a derivative
contact (/).

[For A/AnSCPU]

X0

M0

PLS M0

SET M5

[For QCPU]

X0
SET M5

Supported instructions are; LDP, LDF, ANDP, ANDF, ORP, and ORF.

4 - 20

4.6 MC Master Control (Start)

 MCR Master Control Reset (End)

Project name QB-8
Program name MAIN

X7

X2

X3

NO M98

Y71

MCR NO

Y70

MC0

3

5

7

• The above program is a basic one.
• MC N M to MCR N (indicated as "MC to MCR" hereafter.)
 The available nesting (N) numbers for "MC to MCR" are from N0 and N14.
• The scan time skipped by "MC to MCR" hardly changes.
The device status of the program skipped by "MC to MCR" becomes as follows;
All the devices in the OUT instruction are turned off.
The devices in the SET, RST, and SFT instructions, the counter, and retentive
timer keep their statuses.
The 100ms timer and 10ms timer are reset to 0.

Application

• The instructions can be used for a program for switching between manual and
automatic operations. (Refer to Ladder example.)

Applicable device

Internal device
(system or

user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register C

on
st

an
t

Po
in

te
r

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

n MC

MCR

n

n

D

 D

2
1

The number of basic steps of the MC instruction is two, and that of the MCR instruction is one.

4 - 21

Nested "MC to MCR" Program Example

• The MC and MCR instructions can be nested as shown below.

Project name QB-9
Program name MAIN

0

2

N0

5

10

N1

13

18

19

21

22

24

N0
27

29

30

32

X5

X2

X6
M6

X3

M7
X7

X8

X0

X4

X1

X9

M6

M8

Y70

MC N0 M6

K5

C0

K100

TO

Y71

MC N1 M7

MCR N1

MCR N0

SET Y72

MC N0 M8

RST Y72

MCR N0

Y73

Y74

N1 N0

N0

1

2

3

ab

c

d

1 • The "MC to MCR" program a is nested under the "MC to MCR" program b . (It

is called "nested structure".)
In this case;
1) Assign the nesting number (N) of the MC instructions in ascending order.
2) Assign the nesting number (N) of the MCR instructions used for the MC in

descending order.

2 • The "MC to MCR" program a can be independent from the c program. The
same nesting numbers (N) can be used in the both programs.

• The internal relay number (M) must be changed for each MC instruction.

3 • As shown in the d program, the internal relay number M of MC can be used
as a contact.

Note) In GX Works2, the on/off status of the master control is displayed in the title tag on

the monitor screen.

4 - 22

Project name QEX3

Program name MAIN
Ladder example
The following program switches between manual and automatic operations using
the MC and MCR instructions.
• When the manual operation is selected by turning off X7;

1) Turning X2 sets the system to the low-speed operation mode.
2) Turning X3 sets the system to the high-speed operation mode.

• When the automatic operation is selected by turning on X7, the system operates in
the low-speed mode for 3sec. after X0 is turned on. Then the system operates in
the high-speed mode for 10sec. and stops.

Low speed

High speed

3sec. 10sec.

X7

M81
X2

M82
X3

X7

Y70
X0

Y70

M71
Y70

M71

T0

N0MCR

M82

0

N0

3

6

9

10

N0

13

N1

19

27

Manual

M72

M71

M81

M72

M82

M81

 T1

M72
M12

M11

M10

34

35

38

M10N0MC

MCR

M11N0MC

T0

M12N1MC

K30

M72

T1
K100

Y71

Y72

Instruction for manual low-speed

Instruction for manual high-speed

Automatic start

Instruction for auto low-speed

Instruction for auto high-speed

Low-speed operation

High-speed operation

Automatic N0

Note) In GX Works2, the on/off status of the master control is displayed in the title tag on the
monitor screen.

4 - 23

Operating Procedure

The following procedures are the same as the Operating Procedure in section
4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

Operation Practice
• The manual operation is selected by turning off the X7 switch.

When the X2 switch is turned on, Y71 lights and the low-speed operation is
executed. To select the high-speed operation, turn on the X3 switch. Y72 lights
and the high-speed operation starts.

• The automatic operation is selected by turning on the X7 switch.
When the X0 switch is turned on, Y70 lights indicating that the automatic operation
is activated.
At the same time, Y71 also lights for 3sec. indicating the system is in the
low-speed mode. After the 3sec. have elapsed, Y72 lights for 10sec. indicating
that the system is in high-speed mode. Then the operation is stopped. (Y70, Y71,
and Y72 have stopped lighting at the end.)

NOTE

For the MCR instructions in one nested program block, all master controls in
the program can be terminated with the lowest nesting (N) number only.

4 - 24

4.7 FEND / CJ / SCJ / CALL / RET

Project name QB-10
Program name MAIN

4.7.1 FEND F end

FEND FEND is a 1-step instruction.

• Use the FEND instruction as the END instruction under the following conditions;
1) When a sequence program must be executed and terminated in each program

block.
For example, use the FEND instruction with the CJ and SCJ instructions.

2) When using subroutine programs (CALL and RET instructions)
3) When using an interrupt program

• After each execution of the FEND instruction, the programmable controller
processes the current value of the timer and counter and executes self-diagnostic
check, and then re-operates from the step 0.

0

P**

CJ P**

FEND

Sequence programOperation
when CJ is
not executed Jump by CJ

Operation when
CJ is executed

END

Sequence program

Sequence program

P**

I**

CALL P**

Sequence program

FEND

Subroutine program

Interrupt program

END

(a) When operating in each program block
by the CJ instruction

(b) When using the subroutine
and interrupt programs

NOTE

• There is no limit on the number of the FEND instructions in a sequence program,
however, they cannot be used in the subroutine and interrupt programs.

• The FEND instruction cannot be used to terminate the main or sub sequence
program.
Make sure to use the END instruction for the end of a whole program.

REFERENCE

The interrupt program stops the current process and processes an interrupt
upon receiving an interrupt request while a normal program is being processed.

4 - 25

Project name QEX6

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the FEND instruction operates properly.

X3

Y70
X4

FEND

Y72
X5

0

3

5

6
P10

CJ P10

Operating Procedure
The following procedures are the same as the Operating Procedure in section
4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

4 - 26

Operation Practice

Verify the operation of the ladder, which was created with GX Works2 and written to
the CPU of the demonstration machine, by monitoring the ladder on the screen.

X3

X5

X4

0

3

5

6

9

P10

Y70

FEND

Y72

END

P10CJ

(1) When X3 is off
(a) The operation is executed from 0

to FEND.
(b) Turning on or off X4 turns on or

off Y70.
(c) Turning on or off X5 does not

change Y72.

(2) When X3 is on
(a) The program jumps to the pointer

P10 by the CJ instruction.
(b) Turning on or off X4 does not

change Y70.
(c) Turning on or off X5 turns on or

off Y72.

LD X3

CJ P10

LD X4

OUT Y70

FEND

P10

LD X5

OUT Y72

END

 0

1

3

4

5

6

7

8

9

Operation when X3 is on

Operation when X3 is off

Jump by CJ

Related Exercise –––– Exercise 4

4 - 27

4.7.2 CJ (Conditional jump: instantaneous execution condition jump)

 SCJ (S conditional jump: execution condition jump after one scan)

0

3

6

10

Pointer
 P10

X0

X1

X0

X3

X1

CJ P10

SCJ P10

Y70

Y71

1

2

FEND9

1 • The CJ instruction instantaneously executes a program jumping it to the specified

address (pointer number) when the execution command is on.
 When the command is off, the program is not jumped.

2 • The SCJ instruction executes a program without jumping it for the scan when the

execution command is turned on. From the next scan, the instruction executes the
program jumping it to the specified address (pointer number).

 When the command is off, the program is not jumped.
• The SCJ instruction is used when some operations must be executed before

jumping the program.
 For example, when the output needs to be on or reset in advance.

[Timing chart]

Input condition
(X0, X1)

CJ

SCJ

Executes every scan

One scan

Executes
every scan

Executes
every scan

Executes
every scan

One scan

4 - 28

NOTE

• The pointer numbers available for both CJ and SCJ instructions are P0 to P4095.
• Use the FEND instruction as shown below when a program using the CJ and SCJ

instructions must be concluded in each program block. (Refer to section 4.7.1 for
FEND.)

Start

Sequence
program A

Is input
condition on?

YES

NO

Sequence
program B

Sequence
program C

0

P

Sequence program A

Input condition
CJ P

Sequence program B

Sequence program C

FEND

END

When CJ is
executed

Step 0

CJP

P

END

When CJ is not
executed

Step 0

FEND

• The status of ladders skipped by the CJ instruction remains unchanged.

1100

1103

P10
1330

X0

X2

X1

CJ P10

Y72

PLS M1

1100

1103

P10
1330

X0

X2

X1

CJ P10

Y72

PLS M1

(Before CJ execution) (During CJ execution)

Because X0 is on, all instructions
within this area are not executed.
Hence Y72 remains on even
after X2 is turned off.

• After the timer coil has turned on, jumping the timer of a coil that is on using the
CJ, SCJ, or JMP instruction interrupts an accurate measurement.

Applicable device

Internal device
(system or

user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register C

on
st

an
t

Po
in

te
r

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

CJ

SCJ P**

P**

P 2

4 - 29

Project name QEX4

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check the difference between the CJ and SCJ
instructions.

X0

X1

Y70
X0

Y71
X3

X1

0

3

6

9
P10

P10CJ

P10SCJ

FEND

10

Operating Procedure

The following procedures are the same as the Operating Procedure in section
4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

4 - 30

Operation Practice

(1) When X0 and X1 are off, the CJ and SCJ
instructions are not executed.
Therefore, Y70 is on.

(2) When X0 is turned on, the CJ instruction is
executed and the program jumps to P10.
Therefore, Y70 remains on.

[Before CJ and SCJ execution]

X0

X1

X0 X1

X3
Y71

Y70

SCJ P10

CJ P10

P10
FEND

[During CJ execution] First scan and subsequent
scans

X0

X1

X0 X1

X3
Y71

Y70

SCJ P10

CJ P10

P10
FEND

(3) Turning off X0 and on X1 executes the SCJ instruction and jumps the program to P10 from the second

scan. Therefore, Y70 turns off.

[During SCJ execution] First scan

X0

X1

X0 X1

X3
Y71

Y70

SCJ P10

CJ P10

P10

First scan
after ON

FEND

[During SCJ execution] Second scan and
subsequent scans

X0

X1

X0 X1

X3
Y71

Y70

SCJ P10

CJ P10

P10

Second scan
and
subsequent
scans
after ON

FEND

(4) Y71 is turned on or off when the CJ and SCJ instructions are executed.

• The following lists explain the difference between the CJ and SCJ instructions.

 0 LD X0
 1 CJ P10
 3 LD X1
 4 SCJ P10
 6 LDI X0
 7 ANI X1
 8 OUT Y70
 9 FEND
10 P10
11 LD X3
12 OUT Y71

Second scan and
subsequent scans
after X1 ON
First scan only

 0 LD X0
 1 CJ P10
 3 LD X1
 4 SCJ P10
 6 LDI X0
 7 ANI X1
 8 OUT Y70
 9 FEND
10 P10
11 LD X3
12 OUT Y71

13 END 13 END

Related Exercise –––– Exercise 4

4 - 31

4.7.3 CALL(P) Call

 RET Return

0

103

104

M0

X1

X2

CALL P10

FEND

Y70

50
M5

CALL P10

157 RET

P10

Subroutine
program

Sequence
program

1

2

• The above program is a basic style to execute the subroutine program using the

CALL and RET instructions.
Keep this structure, otherwise an error occurs and the programmable controller
stops.

1 • A subroutine program consists of the ladders for executing the same data many
times in one program.

 A subroutine program starts at a pointer P and ends with the RET instruction.
2 • The pointer P number is from 0 to 4095. (Same as the pointer numbers used for

the CJ and SCJ instructions.)
• A subroutine program is executed as shown in the following diagrams.

Input condition

Sequence program

CALL P10

Sequence program

FEND

Subroutine program
Sequence program

RET

0

P10

END

FEND

0 0

CALL P10

P10

RET

Next step
after CALL

Execution of
subroutine program

FEND

(When CALL P10 is not executed) (When CALL P10 is executed)

Executing a subroutine program

4 - 32

Nesting

• The CALL (P) instructions can be nested up to 16 levels.

CALL P1

CALL P3

CALL P4

CALL P5

RET

RET

RET

RET

RET

Sequence program
0

FEND

Subroutine
program

Subroutine
program

Subroutine
program

Subroutine
program

Subroutine
program

CALL P2

P1 P2 P3 P4 P5

The following ladder circuit shows the above nested program.

CALL P1

FEND

CALL P2

RET

CALL P3

RET

CALL P4

RET

CALL P5

RET

RET

0

P1

P2

P3

P4

P5

Sequence program

Subroutine program P1

Subroutine program P2

Subroutine program P3

Subroutine program P4

Subroutine program P5

Applicable device

Internal device
(system or

user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register

C
on

st
an

t

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

P CALL(P) P**

RET

2
1

The number of basic steps of CALL (P) is 2 tn, and that of the RET instruction is one.
("n" is an argument passed to the subroutine.)

4 - 33

Project name QEX5

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the CALL and RET instructions operate
properly.

X2

Y70
X3

FEND

Y71
X4

RET

0

3

5

6

9

P10

P10CALL

Operating Procedure
The following procedures are the same as the Operating Procedure in section
4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

4 - 34

Operation Practice

Verify the operation of the ladder, which was created with GX Works2 and written to
the CPU of the demonstration machine, by monitoring the ladder on the screen.

X2

X3

X4

0

3

5

6

9

10

P10

Y70

FEND

Y71

RET

END

P10CALL

(1) When X2 is off
(a) The operation is executed from 0 to

FEND.
(b) Turning on or off X3 turns on or off

Y70.
(c) Turning on or off X4 does not change

Y71.

(2) When X2 is on
(a) After the subroutine of P10 is

executed, the operation from step 3
to FEND is executed.

(b) Turning on or off X3 turns on or off
Y70.

(c) Turning on or off X4 turns on or off
Y71.

Related Exercise –––– Exercise 4

LD X2

CALL P10

LD X3

OUT Y70

FEND

P10

LD X4

OUT Y71

RET

 0

1

3

4

5

6

7

8

9

Operation when X2 is on

Operation when X2 is off

4 - 35

Project name QTEST1

Program name MAIN
4.8 Exercise

4.8.1 Exercise 1

LD to NOP
When X0 turns on, Y70 is self-maintained, and Y74 and Y77 flicker alternately every
0.5sec.
When X1 turns on, Y70 turns off and flickering of Y74 and Y77 also stops.

[Timing chart]

X0

Y70

TO

Y74

T1

Y77

X1

0.5sec. 0.5sec. 0.5sec. 0.5sec.

Create the following program with GX Works2 filling in the blanks . Then,
check the operation using the demonstration machine.

Y70
1)

T0

X0

Y70

T1
4)

Y74

Y77
5)

0

4

10

16

3)

Y70

2)

K5

K5

4 - 36

Project name QTEST2

Program name MAIN
4.8.2 Exercise 2

SET, RST
When X0 is turned on, Y70 starts to flicker at one-second intervals and stops the
flickering for five seconds after flickering 10 times, then restarts flickering.
The flickering of Y70 can be stopped by turning on X1.

Create the following program with GX Works2 filling in the blanks . Then,
check the operation using the demonstration machine.

T0
M0

T1

Y70

C0

T2
T2

X0

X1

0

2

23

30

36

 M1 T1

 T0

 T0

2) 3)

1)

K10

K10

K10

K50

M1RST

4)

5)

6)

7)

8)

1) 5)
2) 6)
3) 7)
4) 8)

4 - 37

 Hint

(1) The following shows the timing chart of the program.

X0

M0

X1

Contact T0

Contact T1

Y70

Contact C0

1sec.

1sec. 1sec.

1sec
One scan

5sec.

Restart

Counter of C0 1. 2. 10. 1. 2.0.

(2) The following shows the basic flickering ladder and its timing chart.

[Ladder] [Timing chart]

T1

T0

T0

T1

K10

K10
Contact

T0

Contact
T1

1sec.

1sec.
One scan

Start

REFERENCE

• The flickering ladder can be created using the special relay that generates
clock as shown below.
SM413 (2-sec. clock)

Y70

[Timing chart]

Y70
1sec.1sec.1sec.

In addition to the SM413 (2-sec. clock) on
the left, the following can be used.

SM409 (0.01-sec. clock)
SM410 (0.1-sec. clock)
SM411 (0.2-sec. clock)
SM412 (1-sec. clock)
SM414 (2n-sec. clock)
SM415 (2n-msec. clock)

The clock starts from OFF when the
programmable controller is reset or the
power is turned on.

4 - 38

Project name QTEST3

Program name MAIN
4.8.3 Exercise 3

PLS, PLF
Y70 starts to switch between ON and OFF alternately when X0 is turned on, and
turning off X0 triggers Y71 to operate in the same way as Y70 does.

[Timing chart]

 X0

Y70

Y71

Create the following program with GX Works2 filling in the blanks . Then,
check the operation using the demonstration machine.

Y70
M0

M0

Y71
M1

M1

X0
0

5

11
Y71

Y71

Y70

Y70

M0

M1

1)

2)

1)
2)

4 - 39

Project name QTEST4

Program name MAIN
4.8.4 Exercise 4

CJ, CALL, RET, FEND
Y70 and Y71 flicker for 0.5sec. alternately when X7 is off, and when X7 is on, Y72
and Y73 flicker for 1.0sec. alternately. Turning on X0 resets the currently flickering
Y70 to Y73.

Fill in the blanks . Then, check the operation using the demonstration machine.

X7

SM401

T11
T10

Y70

Y71
T10

X0

SM401

T21

P0

T21

X0

SM401
P10

T20

K5

CJ

T20
K10

Y72

Y73

P10

Y72RST

P10

1)

6)

5)

4)

3)

2)

Flip flop
ladder

Flip flop
ladder

T10
T11

RST

RST

Y72

Y73
K5

RST Y71

T21
K10

RST Y70

Y73RST

Y70RST

Y71RST

4 - 40

 Hint

1)
2)
3)
4)
5)
6)

X7 ON?
Y

N

Y70,Y71
0.5-sec. flickering

Y

N

X0 ON?

<CJ P0>

Y72,Y73
1-sec. flickering

X0 ON?
Y

N

P10
Y70Y73
Reset

Subroutine
program

<FEND>

<FEND>

END

START

Y72,Y73
Reset

P0 Y70,Y71
Reset

4 - 41

Answers for the exercises in Chapter 4

Exercise No. Answer

1) Y70
2) X1
3) T1
4) T0

1

5) Y74
1) SET M0
2) C0
3) Y70
4) SET M1
5) RST C0
6) RST M0
7) RST C0

2

8) RST M1
1) PLS

3
2) PLF
1) P0
2) CALL
3) FEND
4) CALL
5) FEND

4

6) RET

4 - 42

MEMO

5 - 1

CHAPTER 5 BASIC INSTRUCTION -PART 2-

5.1 Notation of Values (Data)

The programmable controller CPU converts all input signals into ON or OFF signals
(logical 1 or 0, respectively) to store and process them. Therefore, the
programmable controller executes the numeric operation using the numeric values
stored with the logical 1 or 0 (binary numbers = BIN).
In daily life, a decimal number is regarded as the most commonly and the easiest
system. Therefore, the decimal-to-binary conversion or the reverse conversion is
required when values are written or read (monitored) to or from the programmable
controller. The programming system and some instructions have the function for the
decimal-to-binary conversion and the binary-to-decimal conversion.
This section explains how to express values (data) in decimal, binary, hexadecimal
and binary-coded decimal notation (BCD), and how to convert them.

Decimal
 A decimal number system consists of ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

which represent the order and size (amount).
After a digit reaches 9, an increment is reset to 0 and the next increment of the
next digit (to the left) is incremented.

 The following shows how a decimal number (in this case 153) is represented.

153 = 100+50+3
 = 1 100+5 10+3 1
 = 1 102+5 101+3 100

Decimal symbol (0 to 9)

"Power of digit"

n : Digit number (0, 1, 2...)
10 : Decimal

 In the MELSEC-Q series programmable controller, symbol "K" is used for
expressing values in decimal.

5 - 2

Binary (BIN)

 The binary number system consists of two symbols: 0 and 1 which represent
the order and size (amount). After a digit reaches 1, an increment is reset to 0
and the next digit (to the left) is incremented. The two digits 0 and 1 are called
bits.

Binary Decimal

0 0
1 1
10 2
11 3

100 4
101 5
110 6
111 7
1000 8 …

…

 The following example explains how to convert a binary number into a decimal

number.

"10011101"

The diagram below shows the binary number with the powers of two.

1

7

27

128

0

6

26

64

0

5

25

32

1

4

24

16

1

3

23

8

1

2

22

4

0

1

21

2

1

0

20

1

Bit number

Binary
Base number raised
to the power of digit
("Binary")

= Bit weights

The binary number is broken as follows.
= 1 × 128 + 0 × 64 + 0 × 32 + 1 × 16 + 1 × 8 + 1 × 4 + 0 × 2 + 1 × 1
= 128 + 16 + 8 + 4 + 1
= 157

The binary number can be calculated by adding each weight of bits whose
codes are 1.

5 - 3

Hexadecimal

 The hexadecimal number system consists of 16 symbols: 0 to 9 and A to F
which represent the order and size (amount). After a digit reaches F, an
increment is reset to 0 and the next digit (to the left) is incremented.

Decimal Hexadecimal Binary

0 0 0
1 1 1
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
18 12 10010 …

…

…

1 9 1 0 1 4 A 9 D 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1

4

3

A

2

9

1

D

0 Digit number

Hexadecimal

= (4) × 163 + (A) × 162 + (9) × 161 + (D) × 160
= 4 × 4096 + 10 × 256 + 9 × 16 + 13 × 1
= 19101

 Four bits of a binary number equal to one digit of a hexadecimal number.
 In the MELSEC-Q series programmable controller, symbol "H" is used for

indicating a hexadecimal number.
 The hexadecimal system is used to represent the following device numbers.

• Input and output (X, Y)
• Function input and output (FX, FY)
• Link relay (B)
• Link register (W)
• Link special relay (SB)
• Link special register (SW)
• Link direct device (Jn\X, Jn\Y, Jn\B, Jn\SB, Jn\W, Jn\SW)

"Power of digit"
 n: Digit number
16: Hexadecimal

5 - 4

Binary Coded Decimal (BCD)
 The binary-coded decimal is "a numerical system using a binary number to

represent a decimal number".
A decimal number 157, for example, is expressed as shown below.

1

2

5

1 0 Digit number

7

(100) (10) (1)

0001 0101 0111

Power of digit

Decimal

Binary bit weights

BCD

842 1 8 2 14 8 14 2

 In BCD, decimal numbers 0 to 9999 (the biggest 4-digit number) can be
represented by 16 bits.
The diagram below shows the bit weights of BCD.

80
00

40
00

20
00

10
00 80
0

40
0

20
0

10
0 80 40 20 10 8 4 2

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1

1

Thousand digits
Hundred digits

Ten digits
Unit digit

 BCD is used for the following signals.

1) Output signals of digital switches
2) Signals of seven-element display (digital display)

0 1 2 3 4 5 6 7 8 9
1(0)
2(0)
4(0)
8(0)

COM

(1)
(0)
(0)
(0)

(0)
(1)
(0)
(0)

(1)
(1)
(0)
(0)

(0)
(0)
(1)
(0)

(1)
(0)
(1)
(0)

(0)
(1)
(1)
(0)

(1)
(1)
(0)

(1)

(0)
(0)
(0)
(1)

(1)
(0)
(0)
(1)

BCD code digital switch

5 - 5

In the example below, a decimal number 157 is converted into the binary number.
1)

157
128

29
16

13
8

5
4

1
1

0

1 0 0 1 1 1 0 1

128 64 32 2 Bit
weights

16 8 4 1

2)

157

1 0 0 1 1 1 0 1

128 64 32 216 8 4 1

78

39

19

9

4

2

1

1

Quotient
2 Remainder

2

2

2

2

2

2

0

1

1

1

0

0

In the example below, a decimal number 157 is converted into the hexadecimal number.
1)

1 0 0 1 1 1 0 1

9 D

15716

9 13(D)

How to convert the decimal number into the binary number

How to convert the decimal number into the hexadecimal number

5 - 6

● Usually, 8 bits are called 1 byte, and 16 bits (2 bytes) are called 1 word.

0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1

1 byte

1 word (2 byte)

1 0 0 1 1 1 0 1

1 bit

● Registers of each word device in the MELSEC-Q series programmable controller consist of 16

bits.
• Data register D
• Current value of

timer T
• Current value of

counter C
• File register R
• Link register W

32
76

8

16
38

4

81
92

40
96

20
48

10
24 51
2

25
6

12
8 64 32 16 8 4 2

D0

1

(Binary bit weight)

● The following two ranges of numbers can be processed in 16 bits (1 word).
1) 0 to 65535
2) -32768 to +32767

● The range 2) is available for the MELSEC-Q programmable controller.

The negative numbers adopt two's complement against the positive numbers (1 to +32767).
● In the two's complement, each binary bit is inverted, and 1 is added to the least significant bit.

Example)
How to calculate the two's complement against 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 0

Add 1 to the least
significant bit.

Invert all bits.

The most significant bit of "1" means negative.
The most significant bit corresponds to the sign of a signed binary number.

1111111 111

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 11111111 111

1

-1

Numerical values used by MELSEC-Q series programmable controller

5 - 7

BCD (binary coded decimal) BIN (binary) K (decimal) H (hexadecimal)

00000000 00000000
00000000 00000001
00000000 00000010
00000000 00000011
00000000 00000100
00000000 00000101
00000000 00000110
00000000 00000111
00000000 00001000
00000000 00001001

00000000 00000000
00000000 00000001
00000000 00000010
00000000 00000011
00000000 00000100
00000000 00000101
00000000 00000110
00000000 00000111
00000000 00001000
00000000 00001001

0
1
2
3
4
5
6
7
8
9

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009

00000000 00010000
00000000 00010001
00000000 00010010
00000000 00010011
00000000 00010100
00000000 00010101

00000000 00001010
00000000 00001011
00000000 00001100
00000000 00001101
00000000 00001110
00000000 00001111

10
11
12
13
14
15

000A
000B
000C
000D
000E
000F

00000000 00010110
00000000 00010111
00000000 00011000
00000000 00011001
00000000 00100000
00000000 00100001
00000000 00100010
00000000 00100011

00000001 00000000

00000001 00100111

00000010 01010101

00010000 00000000

00100000 01000111

01000000 10010101

00000000 00010000
00000000 00010001
00000000 00010010
00000000 00010011
00000000 00010100
00000000 00010101
00000000 00010110
00000000 00010111

00000000 01100100

00000000 01111111

00000000 11111111

00000011 11101000

00000111 11111111

00001111 11111111

00100111 00010000

01111111 11111111

11111111 11111111

11111111 11111110

10000000 00000000

16
17
18
19
20
21
22
23

100

127

255

1000

2047

4095

10000

32767

-1

-2

-32768

0010
0011
0012
0013
0014
0015
0016
0017

0064

007F

00FF

03E8

07FF

0FFF

2710

7FFF

FFFF

FFFE

8000

5 - 8

Q61P QX
42
(64

points)

QY
42P
(64

points)

Q64
AD
(16

points)

Q62
DAN
(16

points)

Power supply module

CPU module

Input module

Output module

Base unit Q38DB

I/O panel

X0

X3F

Y40

Y7FUSB cable

Peripheral device

1 9 4 2 4 1 3 6 MELSEC-Q

D/A OUTPUTA/D INPUT

X3F X30 X2F X20

Y6F Y60 Y5F Y50 Y4F Y40
Y70

Y78

X0

X8

Y71

Y79

X1

X9

Y72

Y7A

X2

XA

Y73

Y7B

X3

XB

Y74

Y7C

X4

XC

Y75

Y7D

X5

XD

Y76

Y7E

X6

XE

Y77

Y7F

X7

XF

ON

OFF

ON

OFF

QCPU Vacant
slot

to to

System configuration and I/O number of demonstration machine

5 - 9

5.2 Transfer Instruction

Project name QB-11
Program name MAIN

5.2.1 MOV (P) 16-bit data transfer

X7 T0
T0

1

T0

K50

C10

K1500

X1
C10RST13

X2
D0T018 MOV

X3
D1C1021 MOVP

X4
D2K15724 MOVP

X5
D3H4A9D27 MOVP

2

3

0

DS

1 ● When the input condition turns on, the current value of the timer T0 is transferred
to the data register D0.
S ... Source, D ... Destination

● The current value of T0 is stored in the register in binary (BIN code). And the
value is transferred to the data register D0 in binary (The code is not converted at
the transfer.)

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1T0

8 4 2 112864 32 16

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1D0

8 4 2 112864 32 16

45

2 ● When the input condition turns on, the decimal number 157 is transferred to the

data register D2. And the value is stored in the register in binary. The decimal
number (K) is converted into binary automatically, then transferred.

0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1D2

8 4 2 112864 32 16

K157

5 - 10

3 ● When the input condition turns on, the hexadecimal number 4A9D is transferred

to the data register D3.

0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1D3

1

H4A9D

24816326412
8

25
6

51
2

10
24

20
48

81
92

16
38

4

40
96

32
76

8

(4) (A) (9) (D) Hexadecimal
numbers

Binary numbers
Bit weights

Difference between MOV and MOVP
The P of MOVP stands for a pulse.

Input condition

MOV

MOVP

Data is transferred every scan
while the input condition is on.

Data is transferred only one scan
after the input condition turns on.
(For only once)

Executed only once.

● Use the MOV instruction when reading the changing data for all the time.
Use the MOVP instruction to transfer data instantaneously such as setting
data or reading data at an error.

● Both of the following ladder programs function similarly.
X4

D2K157MOVP
X4

M1PLS

M1
D2K157MOV

Applicable device

Internal
device

(system or
user)

File
register

MELSECNET/10
(H) Direct Jn\

Index
register

Constant

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G

Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

S MOV DS
D

*

*: The number of steps varies depending on the device to be used.

5 - 11

Check

 Monitor the contents of the data registers D0 to D3.
• After writing the data to the programmable controller, click [Online] →

[Monitor] → [Device/Buffer Memory Batch].
The Device/Buffer Memory Batch Monitor dialog box is displayed.

• Enter "D0" in the Device Name column of the Device/Buffer Memory Batch
Monitor dialog box and press the Enter key.

Press the Enter key after
entering the device.

Enter "D0".

The CPU is running.
The inputs X2, X3, X4, X5, and X7 are on.

5 - 12

Indicates that a decimal
number 157 (K157) is stored.

Current values of a timer
and counter are monitored.
(They are changing.)

This is a decimal number
equivalent to a hexadecimal 4A9D.

Indicates the word devices in the on/off of the bit units.
 : OFF (0 in binary)
 : ON (1 in binary)

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16 8 4 2

0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1

1

D3

Sign bit

(4) (A) (9) (D) Hexadecimal
numbers

Binary bit
weights

H4A9D

19101

5 - 13

• Click the Display Format button.

• Change the display of the numerical value in the monitor to the hexadecimal
notation.

• Select "HEX" for the device batch monitoring.

 [Device/Buffer Memory Batch Monitor screen]

• Change the display of the numerical value in the monitor to the binary
notation.
Select "Word Multi-point" in Monitor Format for the device batch monitoring.

 [Device/Buffer Memory Batch Monitor screen]
Values
in D0

Values
in D1

Values
in D2

Values
in D3

5 - 14

Project name QEX7

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the MOV instruction works properly.

D1

D0

D1

X0

X1

K200MOV0

5 RST

RST

D0MOV

D0

Operating Procedure

The following procedures are the same as the Operating Procedure in section 4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

• How to modify the
transfer instruction

To modify the transfer instruction, follow the procedures below.

Example: Change the transfer data K200 of [MOV K200 D0] to K100
1) Double-click the instruction to be modified.

2) The Enter Symbol window is displayed.

3) Write "1" over "2" of "MOV K200 D0".

4) Click the OK button on the Enter Symbol window.

All data in can be modified with the above method.
When "Insert" is displayed, press the Insert key to change it to "Ovrwrte"
before modifying.

5) After finishing modifications, click [Compile] → [Build].

5 - 15

Operation Practice

Check that "200" is displayed under both D0 and D1 on the monitor screen when X0
on the control panel of the demonstration machine is turned on.

X0

X1

0

5

10 END

D0K200

D1D0

D0RST

D1RST

MOV

MOV

200

200200

When X0 turns on, the current values
of D0 and D1 become 200.

Related Exercise ---- Exercise 5

5 - 16

Project name QB-12

Program name MAIN
5.2.2 BIN (P) BCD → BIN data conversion instruction

Operations to read and write data after step 35

S D

X7 T0
T0

T0

K50

C10

K1500

X0
D5K4X2030 BINP

X0
D6K4X2034 MOV

0

Check the difference
from the BIN instruction.

• When the input condition is turned on, the data in the device specified in S is
recognized as a BCD code, converted into binary (BIN code), and transferred to
the device specified in D .

19999

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1

BCDside

Thousand digits

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

Hundred digits Ten digits Unit digits
Converted into BIN

09999

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

BINside

Becomes 0.

0 1 0 0 1 1 1 0 0 0 0 1 1 1 1D

S

• The ordinary digital switches generate BCD codes. Therefore, the BIN instruction
is required for writing data from the digital switches to the programmable
controller.

X
2F

8

X
2E

4

X
2D

2

X
2C

1)

1

X
2B

8

X
2A

4

X
29

2)

X
28

1

2

X
27

8

X
26

4

X
25

X
24

3

X
23

8

X
22

4)

X
21

2

X
20

1

4 Digital switch

4
16
32

512
4096

4660

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16 8 4 2 1

D6
When the BCD code
is input without converted.

0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16 8 4 2 1

D5
When the BCD code is input after
converted into the binary code.2

16
64

128
1024

1234

K4X20
1)2)

5 - 17

K4X20

 Word devices D (data register), T (timer current value), and C (counter current
value) consist of 16 bits (1 word), and data is basically transferred among the
units of one device.

 Collecting 16 bit devices (such as X, Y, and M) means processing the word
device. The device numbers allocated to the bit devices must be in consecutive
order.

 In the bit device, data are processed in units of four.
X

2F

8

X
2E

4

X
2D

2

X
2C

1
X

2B

8
X

2A
4

X
29

X
28

1

2

X
27

8

X
26

4

X
25

X
24

3

X
23

8

X
22

X
21

2

X
20

1

4 Number
of digits

K4 X20

K1X20
(X23 to X20)

K2X20
(X27 to X20)

K3X20
(X2B to X20)

K4X20
(X2F to X20)

K2X28
(X2F toX28)

Start number
Specify these devices to
read two-digit data "12". Read one-digit data "4".

Read two-digit data "34".

Read three-digit data "234".

Read four-digit data "1234".

As long as four bit devices are in consecutive order, any bit device can be specified as the first.

1)2) 4)2)1)

 Other bit devices can be processed in the same way as described above.

M

19

M

18

M

17

M

16

M

15

M

14

M

13

M

12

M

11

M

10

M

9

M

8

M

7

M

6

M

5

M

4

M

3

M

2

M

1

M

0(Internal relay M)

K1M0K2M6

K3M5

* A sample program using a digital switch to import data is provided
in page App. - 46.

Applicable device

Internal device
(system or

user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register

Constant

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G

Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

S
MOV DS

D

K1
to
K4

3

5 - 18

Project name QB-13

Program name MAIN
5.2.3 BCD (P) BIN → BCD data conversion instruction

DS

X7 T0
T0

T0

K50

C10

K1500

X6
K2Y40T037 BCD

K4Y50C10BCD

0

 When the input condition is turned on, the data in the device specified in S is

recognized as a binary (BIN code), converted into a binary coded decimal
(BCD code), and transferred to the device specified in D .

D

S

19999

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1

BCDside

Thousand digits

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

Hundred digits Ten digits Unit digits

Converted into BCD.

09999

163848192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

BINside

Must be set to "0".

0 1 0 0 1 1 1 0 0 0 0 1 1 1 1

 The ordinary digital displays display numbers in the BCD code. Therefore, the
BCD instruction is required for displaying data of the programmable controller
(current values of timers and counters, data resister values of operation
results).

Y
5F

8

Y
5E

4

Y
5D

2

Y
5C

Y
5B

8

Y
5A

4

Y
59

Y
58

1

Y
57

8

Y
56

4

Y
55

2

Y
54

Y
53

8

Y
52

4

Y
51

Y
50

Digital display

+ 1
4
8

16
32

1213

0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 C10
(BIN)

K4Y50

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64 32 16 8 4 2 1

0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 (BCD)

128
1024

1)2)1) 1)2)

5 - 19

Displayable Range with BCD Instruction
 The displayable range of data with the BCD instruction (to be converted from

BIN into BCD) is between 0 and 9999. Any data which is outside the range
causes an error.
(Error code 4100: OPERATION ERROR)

 To display a timer current value more than 9,999, use the DBCD instruction.
The instruction can handle 8-digit values (up to 99,999,999).

Y
53

Y
52

Y
51

Y
50

Y
4F

Y
4E

Y
4D

Y
4C

Y
4B

Y
4A

Y
49

Y
48

Y
47

Y
46

Y
45

Y
44

Y
43

Y
42

Y
41

Y
40

80
00

0
40

00
0

20
00

0
10

00
0

80
00

40
00

20
00

10
00 80
0

40
0

20
0

10
0 80 40 20 10 8 4 2 1

00 0 0 10 1 0 10 1 1 01 0 0 10 0 1

C
O

M

Programmable controller Output module

Output power supply

X3
T5

K18000

SM400
(always on)

K5Y40T52 DBCD

0
H

Applicable device

Internal device
(system or user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register

Constant
P

oi
nt

er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G

Z K H P I N
D

ig
it

N
um

be
r o

f b
as

ic

st
ep

s
S

BCD DS
D

K1
to
K4

3

5 - 20

Project name QEX8

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the BCD instruction works properly.

C0

K2Y40

X0

X1

0

8 RST

C0BCD

C0
K10

Operating Procedure

The following procedures are the same as the Operating Procedure in section 4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

Operation Practice
Check that turning on X0 on the control panel for several times displays the value of
C0 on the BCD digital displays of Y40 to Y47. Turning on X1 resets C0.

Y5C
to Y5F

Y58
to Y5B

Y54
to Y57

Y50
to Y53

Y4C
to Y4F

Y48
to Y4B

Y44
to Y47

Y40
to Y43

0 to 10

Displays the value of C0.

Related Exercise ---- Exercise 6

BCD digital display

5 - 21

5.2.4 Example of specifying digit for bit devices and transferring data

Program example Process

When the destination data D is a word device

D0K1X0MOVP

DS

• Source: Source device
• Destination: Destination device 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

B0B1B2B3B4B15

Becomes 0.

1 1 0 1
X0X1X2X3

K1X0

D0

When the source data S is a word device

K2M100D0MOV

DS

1 0 0 0 1 1 0 1

M100M115 M108M107

K2M100

1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1

B0B15 B8 B7

D0

No change

When the source data S is a constant

K2M0H1234MOV

DS

0 0 1 1 0 1 0 0

M0M15

K2M0

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0H1234

No change

M7M8

43

1 2 3 4

When the source data S is a bit device

K2M100K1M0MOV

DS

0 0 0 0 1 1 0 1

M115

K2M100

1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1K1M0

No change

M108

Zero is
transferred

Data of M3
to M0 are

transferred.

M0M15 M7M8 M4M3

M100M103M107 M104

0

5 - 22

Project name QB-14

Program name MAIN
5.2.5 FMOV (P) FMOV (Batch transfer of the same data)

 BMOV (P) BMOV (Batch transfer of the block data)

X3

0

DS

K8D0K365FMOVP

n

X4
5 K16D8K7000FMOVP

X5
10

DS

K16D32D0BMOVP

n

X6
15 K48D0K0FMOVP

Operation Explanation
Input

condition
DS

K8D0K365FMOVP

n

 FMOV

 When the input condition is turned on, the FMOV instruction transfers the data in
the device specified in S to the devices starting from the device specified in D
(the number of target devices is specified by n).

 Example The FMOV instruction executes the following operation when X3 is

turned on.

365K365

365

365

365

365

D0

D1

D2

D7

D

S
n

8 devices (K8)

 The FMOV instruction is useful for clearing many data sets in batch.

 Example

SameInput
condition

K8D0K0FMOV

Input
condition

D0RST

D1RST

D7RST

 The FMOV instruction can substitute the RST instructions as shown above.

5 - 23

Input

condition
DS

K16D32D0BMOVP

n

 BMOV

 When the input condition is turned on, the BMOV instruction transfers the data in
the devices starting from the device specified in S to the devices starting from
the device specified in D in batch (the numbers of source devices and target
devices are specified by n).

 Example The BMOV instruction executes the following operation when X5 is

turned on.
S

365D0 365 D32

D

365D7 365 D39

7000D8 7000 D40

7000D15 7000 D47

 The BMOV instruction is useful for the following:
• Filing logging data
• Saving important data (such as automatic operation data and measured data)

into the latch area. This can prevent a data loss caused by a power failure.

Applicable device

Internal device
(system or user)

File
register

MELSECNET/10
(H) Direct Jn\

Index
register

Constant

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G

Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

S
(Note)

(Note)

(Note)

D

FMOV S D n

BMOV S D n
n

K1
to
K4

4

(Note) Not available in the BMOV instruction.

5 - 24

Operation Practice

 Write the program on the previous page to the CPU, then run the CPU.
 Follow the procedures below to execute the device batch monitoring. The

contents of D0 to D47 can be monitored.
Write the program to the programmable controller Click [Online] →
[Monitor] → [Device/Buffer Memory Batch].
Enter "D0" in the Device/Buffer Memory Batch Monitor dialog box and press the
 Enter key.

 Click the Display Format button and select "Word Multi-point" for Monitor
Format.
→ Click the OK button.

[Monitor screen]

1) Turn on X3.

The numeric data 365 is
sent to eight registers of D0
to D7 in batch.

2) Turn on X4.

The numeric data 7000 is
sent to 16 registers of D8 to
D23 in batch.

3) Turn on X5.

The contents of the 16
registers of D0 to D15 are
sent to the 16 registers of
D32 to D47 in batch.

4) Turn on X6.

"0" is sent to the all 48
registers of D0 to D47 in
batch. This means that all
the 48 registers are cleared.

5 - 25

Reference
 If D is a bit device, the operation becomes as follows;

FMOV instruction

Input
condition

DS

K4K2Y40D0FMOV

n

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1

S

D0 (Example: when the content is 365)

As specifies
a two-digit number,
these data are
ignored.

D

0 1 1 0 1 1 0 1

Y48Y4F

D

0 1 1 0 1 1 0 1

Y40Y47

D

0 1 1 0 1 1 0 1

Y58Y5F

D

0 1 1 0 1 1 0 1

Y50Y57

D

n
4 devices (K4)

 Among the device of Y40 to Y5F, the devices specified as "1" are output first.
 In the program shown below, turning on the input condition 1) turns on all the
outputs Y40 to Y5F and turning on the input condition 2) turns them off.

Input
condition 1)

K4K2Y40K255FMOV

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1Input
condition 2)

K4K2Y40K0FMOV

Bit pattern of K255

 In units of four bits, to turn off;
16 bit devices or less MOV instruction Example

32 bit devices or less DMOV instruction Example

More than 32 bit devices FMOV instruction Example

BMOV instruction
Input

condition
DS

K4K2Y40D0BMOV

n

5
Y48

n
4 devices (K4)

7
Y4F

5
Y40

1
Y47

5
Y58

5
Y5F

5
Y50

6
Y57

3 0 5 1D0

3 0 5 7D1

3 0 5 6D2

3 0 5 5D3

As specifies
a two-digit number,
these data are
ignored.

D

D D

D D

 In the example above, the devices D0 to D3 store the product code (16 bits). The
BMOV instruction is useful for displaying and monitoring the last two digits
representing their types.

MOV K0 K4M0

DMOV K0 K8M0

FMOV K0 K4M0 K4

(Turns off 64 bit devices)

5 - 26

Project name QEX9

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the FMOV instruction works properly.

D0

D0
X0

K200FMOV0
X1

K0FMOV5 K5

K5

Operating Procedure

The following procedures are the same as the Operating Procedure in section 4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

Operation Practice
Check that the contents of the devices of D0 to D4 become 200 on the batch
monitor screen by turning on X0 on the control panel of the demonstration machine.
Turning on X1 clears the data in the devices.

Change the setting of the device batch monitor as shown below to display the
numbers in decimal, hexadecimal, or binary notation.

Value: DEC·····································displays numbers in decimal.
Value: HEX ·····································displays numbers in hexadecimal.
Monitor Format: Bit Multi-point ·······displays numbers in binary.

Related Exercise ---- Exercise 7

5 - 27

Project name QB-15

Program name MAIN
5.3 Comparison Operation Instruction

Size
comparison

C10

K4Y40C10BCD

Y70
S1 S2

X3 SM413 (2-sec. clock)

X4

K100

0

C10K10>

Y71
S1 S2

C10K10< =

Y72C10K20=

Y73C10K30< >

Y74C10K20>

C10K40<

C10K25< = Y75

C10K10< = Y76

C10K40< =

C10K100=

C10K35> =

C10K20> =

C10K50>

C10RST

X0

6

10

15

19

23

27

34

41

55

 The comparison operation instruction compares the data of source 1 (S1)and
source 2 (S2), and brings the devices into conduction when the conditions are
met.

 The instruction can be regarded as one normally open contact () since it is
conducted only when the conditions are met.

Y74C10K20

C10K40

Y74

● S1 S2 ······Becomes conducted when source 1 and source 2 match.

● S1 S2 ······Becomes conducted when source 1 is smaller than source 2.

● S1 S2 ······Becomes conducted when source 1 is larger than source 2.

● S1 S2 ······Becomes conducted when source 1 and source 2 match or

when source 1 is smaller than source 2.

● S1 S2 ······Becomes conducted when source 1 and source 2 match or

when source 1 is larger than source 2.

● S1 S2 ······Becomes conducted when source 1 and source 2 do not match.

5 - 28

Operation Practice

 Write the program to the CPU.
 Turn on X3 and X4.
 C10 starts to count. (one count every two sec.) The current counter value is

displayed on the digital display (Y40 to Y4F).
 Make sure that the devices Y70 to Y76 turn on as follows.

Y70

Y71

Y72

Y73

Y74

Y75

Y76

O
ut

pu
t

0 1 2 3 4 5 10 15 20 25 30 35 40 45 50
Count (the current value of the counter C10)

The range where Y70 to Y76 turn on

> K50 C10
> > =Differences between and

> = K50 C10

equals to 49.

equals to 50.
 The counter is designed to be reset every 200sec.
 In this way, the comparison instruction does not only compare one data but

also specifies the range. This function is commonly used for the program to
judge the acceptances of products.

Applicable device

Internal device
(system or user)

File
register

MELSECNET
/10 (H) Direct

Jn\

Index
register

Constant
P

oi
nt

er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G

Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

S1
Comparison
instruction S1 S2

S2

K1
to
K4

3

5 - 29

Project name QEX10

Program name MAIN
Ladder example
Read the following ladder and write it to the CPU of the demonstration machine.
Then check that the > and < instructions work properly.

0sec. ≤ T0 < 3sec. → Y70: ON, 2.7sec. < T0 < 3.3sec. →
Y71: ON, 3sec. < T0 ≤ 6sec. → Y72: ON

Y70:ON Y71:ON Y72:ON

T0:
0 2.8 2.9 3.0 3.1 3.2 6.0 sec.

T0

M10

Y70

Y71

Y72

X0

M0

T0

0

2

8

10

29

M0SET
K60

K2Y40T0BCD

M0RST

M10

> K30 T0

< K27 T0

< K30 T0

> K33 T0

X1

SM400

14

21

25

Operating Procedure
(1) Reading data

Read the project data.
● Click on the toolbar.

Click

5 - 30

● The Open dialog box is displayed. Specify the save destination.

● Double-click the displayed workspace "SCHOOL".

Double-click

● Click "QEX10" and click the Open button.

Click

Click

The following procedures are the same as the Operating Procedure in section 4.4.

(2) Writing the project to the programmable controller

(3) Monitoring the ladder

5 - 31

Operation Practice

 Turn on X0 and check that the program works properly.

X0

T0

0

29

Y71

Y72

END

M0 M10

X1

2

8

10

31

T0K30

T0K27

T0K30

T0K33

30

30

30

30

M0RST

K2Y40T0BCD

M0SET

Y70

M10

T0

30

30

K60

SM400

14

21

25

Related Exercise ---- Exercise 8

5 - 32

5.4 Arithmetic Operation Instruction

Project name QB-16
Program name MAIN

5.4.1 +(P) BIN 16-bit data addition

 -(P) BIN 16-bit data subtraction

S2

X2
0

DS

D0K5+P

X3
4 D1K100D0+P

DS1

1

2

1 ● Every time the input condition is turned on, the content of the device specified in

D is added to the content of the device specified in S and the result is stored in
the device specified in D .

 D

D0

+

S
(5)

→

D
D0

(Input condition)
First ON

Second ON
Third ON

0 (example)
5
10

+
+
+

5
5
5

→
→
→

5
10
15

The content of
D0 is changed.

2 ● When the input condition is turned on, the content of the device specified in S1 is

added to the content of the device specified in S2 and the result is stored in the
device specified in D .

 S1

D0

+

S2
(100)

→

D
D1

(Input condition)
ON

15 (example)

+

100

→

115

The content of D0 is not changed.

CAUTION

• +P or -P must be used for the addition or subtraction instructions.

• When + or - is used, an addition or subtraction operation is executed every

scanning. To use + or - , operands must be converted into pulse in advance.

D0K5+P
X2

M0PLS
X2

D0K5+
M0

REFERENCE
• The following two instructions work on the same principle in the addition or subtraction

operation.

D0K1+P

D2K1-P

(Addition)

(Subtraction)

D0INCP

D2DECP

5 - 33

Project name QB-17

Program name MAIN

X4

0 D2K1000MOVP

X5
3

D

3
S2

X6
7 D3K50D2-P

DS1

4

D2K10-P

S

3 ● Every time the input condition is turned on, the content of the device specified in

S is subtracted from the device specified in D and the result is stored in the
device specified in D .

 D

D2

-

S
(10)

→

D
D2

(Input condition)
First ON

Second ON
Third ON

1000 (example)
990
980

-
-
-

10
10
10

→
→
→

990
980
970

The content of
D2 is changed.

4 ● When the input condition is turned on, the content of the device specified in S2 is

subtracted from the content of the device specified in S1 and the result is stored
in the device specified in D .

 S1

D2

-

S2
(50)

→

D
D3

(Input condition)
ON

970
(Assumption)

-

50

→

920

The content of D2 is not changed.

Applicable device

Internal
device

(system or
user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register

Constant

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G

Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

ep
s

S
S1 S2

S1

Addition/subtraction
instruction S D

DS2Addition/subtraction
instruction D

K1
to
K4

3
4

The number of basic steps is four for S1 DS2 .

5 - 34

Project name QEX11

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the addition and subtraction instructions
operate properly.

X0
0

10

K5Y40D1DBCDD1 K0

BINP K4X30 D0

K4X20 D1

D0 D1

K4X30 D0

K4X20 D1

D0 D1

Y70

K5Y40K0DMOV

X1

D1 K0

20

26

BINP

+P

BINP

BINP

-P

Operating Procedure
The following procedures are the same as the Operating Procedure in section 4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

5 - 35

Operation Practice

(1) When X0 is turned on, the data in X30 to 3F and X20 to 2F are added, and the
result is output to Y40 to Y53.

(2) When X1 is turned on, the data in X30 to 3F is subtracted from the data in X20

to 2F, and the result is output to Y40 to Y53. When the result is a negative value,
Y70 is turned on and Y40 to Y53 are cleared to 0.

X0
0

26 Y70K0D1

K0 K5Y40D1DBCD

END

X1

<

> = D1
400

400

34

20

10

D0K4X30BINP

D1K4X20BINP

D1D0+P

D0K4X30BINP

D1K4X20BINP

D1D0-P

K5Y40K0DMOV

300

400

400

300

400

400

300

300

400

+ D0 D1 = D1+D0 D1
 100+30 400

Related Exercise ---- Exercise 9

5 - 36

Project name QB-18

Program name MAIN
5.4.2 * (P) BIN 16-bit data multiplication

 / (P) BIN 16-bit data division

X0
0 D0K2000MOVP

X2
3

1

S2
X3

7 D20K600D0/P

DS1 2

S2

D10D0K30*P

DS1

1 ● When the input condition is turned on, the content of the device specified in S1 is

multiplied by the content of the device specified in S2 and the result is stored in
the device specified in D .

To store the result of 16-bit data × 16-bit data,
16 bits (1 word) is not enough.
Therefore, D10 which is specified in the
program and the next number D11 work as
the holder of the result.

K30
30

S1
D0

2000

S2

=
D11 D10

D

60000

This device is regarded as a 32-bit register to
hold the result. Left-most bit of D10 (B15) is
not a bit to determine positive and negative.
It is regarded as a part of the data.

The instructions must be regarded as 32 bits for programming with the calculation result of the
 instruction. (such as the DMOV instruction and the DBCD instruction)*(P)

5 - 37

2 ● When the input condition is turned on, the content of the device specified in S1 is

divided by the content of the device specified in S2 and the result is stored in the
device specified in D .

D0
2000

S1
K600
600

S2

=
D20 D21

D

3

The quotient is stored to D20, which is
specified in the program.

200

The remainder is stored to D21, which
is the next device number.

and

Quotient Remainder

Values after the decimal point of the operation result are ignored.
● When a bit device is specified in D , the quotient is stored, but the remainder is

not stored.
● The following shows examples for processing negative values.

 Example -5 / (-3) = 1, remainder: -2

 5 / (-3) = -1, remainder: 2

● The following shows examples for dividing a number by 0, or dividing 0 by a
number.
 Example 0 / 0

 1 / 0
 0 / 1, Both quotient and remainder are 0.

Operation Practice
● Write the program to the CPU and run it.
● Turn on X0 and store "2000" (BIN value) in D0.
● Turn on X2. The following operation is executed.

If "60000" (operation result of D11 and D10 is regarded as a 16-bit
integral number and only D10 is monitored, "-5536" is displayed. To prevent this,
follow the procedures in the following pages.

(30)
K30

S1

(2000)
D0

S2

=
(60000)

D

D11 D10

● Turn on X3.

(2000)
D0

S1

(600)
K600

S2

=
(3)

D

D21 D20
(200)

QuotientRemainder
Applicable device

Internal device
(system or

user)

File
register

MELSECNET/
10 (H) Direct

Jn\

Index
register Constant

P
oi

nt
er

Le
ve

l

Bit Word R Bit Word

Intelligent
function
module
Un\G Z K H P I N

D
ig

it
N

um
be

r o
f b

as
ic

st

e p
s

S1
S2 S1Multiplication/division

instruction DS2
D

K1
to
K4

*
 4

The number of basic steps for the multiplication instruction is three or four, and that for division instruction is four.
*: The multiplication instruction varies depending on the device to be used.

Error "OPERATION ERROR"

5 - 38

● How to monitor 32-bit integral number data
When the operation result of the multiplication instruction is outside the range from 0 to 32,767, the
result cannot be displayed properly even though the number is regarded as 16-bit integral number and
the contents of the lower register are monitored in ladder.
To monitor those numbers properly, follow the procedures below.

• Click the Display Format button on the Device/Buffer Memory Batch Monitor dialog box and

select "32bit Integer" of "Display".
Click the OK button.

• The data is monitored properly.

5 - 39

Project name QEX12

Program name MAIN
Ladder example
Create the following ladder with GX Works2 and write it to the CPU of the
demonstration machine. Then check that the multiplication and division instructions
operate properly.

X0

0 BINP K4X30 D0

K4X20 D1

K4X30 D0

K4X20 D1

X1
13

BINP

BINP

BINP

D10D0*P D1

K8Y40D10DBCDP

D20

D21

BCDP

BCDP

K4Y50

K4Y40

D20D0/P D1

Operating Procedure
The following procedures are the same as the Operating Procedure in section 4.4.

(1) Creating a new project

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

5 - 40

Operation Practice

(1) When X0 is turned on, the data in X20 to X2F is multiplied by the data in X30 to
3F, and the result is output to Y40 to 5F.

(2) When X1 is turned on, the data in X30 to X3F is divided by the data in X20 to 2F.
The quotient is output to Y50 to 5F, and the remainder is output to Y40 to 4F.

X0
0

END

X1

30

13

D0K4X30BINP

D1K4X20BINP

D0K4X30BINP

D1K4X20BINP

D20D1D0

6

3

6

3

03

K8Y40D10DBCDP
18

K4Y50D20BCDP
0

K4Y40D21BCDP
0

/P
6

D10D1D0
183

*P
6

D0 D1=D10
 6 3=18

Related Exercise ---- Exercise 10, Exercise 11

5 - 41

5.4.3 32-bit data instructions and their necessity

 The minimum unit in the data memory of the Q-series programmable controller is
1 word which consists of 16 bits. Therefore, in general, data is processed in
1-word basis at the transfer, comparison, and arithmetic operation.

 The Q-series programmable controller can process data in 2-word (32-bit) basis.
In that case, "D" is added at the head of each instruction to indicate that the
instruction is regarded as 2-word. The following shows the examples.

Data

Instruction
1 word
16 bits 32 bits

2 words

MOV(P) DMOV(P)
BIN(P) DBIN(P) Transfer

BCD(P) DBCD(P)

Comparison
<, >, <=

>=, =, <>
D<, D>, D<=

D>=, D=, D<>
+ (P) D + (P)
- (P) D - (P)
* (P) D * (P)

Arithmetic
operations

/(P) D/(P)
-32,768

to
32,767

0
to

9,999
Available range for

values
Values in parentheses are for
BIN(P), BCD(P) instructions.

-2,147,483,648
to

2,147,483,647
0
to

99,999,999
Values in parentheses are for

DBIN(P), DBCD(P) instructions.
Available range for

digits
K1 to K4 K1 to K8

 The bit weights of the 32-bit configuration are as follows:

10
73

74
18

24
-2

14
74

83
64

8

53
68

70
91

2
26

84
35

45
6

13
42

17
72

8
67

10
88

64
33

55
44

32
16

77
72

16
83

88
60

8
41

94
30

4
20

97
15

2
10

48
57

6

13
10

72
65

53
6

32
76

8
16

38
4

81
92

40
96

20
48

10
24 51

2
25

6
12

8 64 32 16 8 4 2 1

26
21

44
52

42
88

B31 B0B15B16

As the case of 16-bit data processing, the programmable controller processes a 32-bit
negative value in two's complement. Therefore, the most significant bit B31 (B15 for 16-bit
data), is a sign bit.

B31 B0

Most significant bit
(Sign bit)

When the bit is 0, the number is interpreted as a positive number.
When the bit is 1, the number is interpreted as a negative number.

Available range for numbers
-2147483648 to 0 to 2147483647

5 - 42

 Whether the data is processed in 2-word (32-bit) basis or not depends on the

size of the data.
In the following cases, 2-word instructions must be used.
1) When the data size exceeds the range (-32768 to 32767) in which data can

be processed as 1-word

D0K50000DMOV

DS

D1 D0

50,000 50000
Transferred

Stored in two
adjacent devices.

2) When the result of the 16-bit multiplication instruction (1-word instruction) is
transferred

S2

D10D1D0*

DS1

D11 D10D1D0 The multiplication
result is stored in
two adjacent devices.

K8Y40D10DBCD

D11 D10

Converted
into BCD.

8-digit display 0 to 99,999,999)

*: The result of the 32-bit data multiplication is 64 bits.

3) When the result of 32-bit division instruction is used

D40D30D20D/

D31 D30

K8Y40D40DBCD

D21 D20

(Quotient)

D41 D40

(Remainder)

D43 D42

Displays a quotient.

K8Y60D42DBCD Displays a remainder.

5 - 43

Project name QB-19

Program name MAIN
5.4.4 Calculation examples for multiplication and division including decimal points (when the multiplication

or division is used)

Example 1 Calculation example to determine a circumference

 Digitalswitch value × 3.14 → Integral part and Decimal part

• Programming method
Handle the circular constant as 314 (3.14 × 100), and divide the result by 100
afterward.

Example 2 Calculation example to handle values after decimal point (division
example)

 Digitalswitch value / 0.006 → Quotient and Remainder

• Programming method
To handle 0.006 as an integer 6, multiply both the dividend and divisor by 1000.

Quotient Remainder
(Decimal part)

X0The calculation of
Example1 is

commanded.
D0K4X30BINP

D1K314D0*P

X1

D10K100D1D/P

K8Y50D10DBCD

K2Y48D12BCD

K2Y40K0MOV

X1
D20K4X30BINP

D21K1000D20*P

X0

D30K6D21D/P

K8Y50D30DBCD

K4Y40D32BCD

The calculation of
Example2 is

commanded.

Displays the integral part (quotient).

Displays the decimal part (remainder).

Imports the set value of the digital switch into D20.

Quotient Remainder

Displays a quotient.

Displays a remainder.

Imports the set value of the digital switch into D0.

D0 314 D2 D1

D2 D1 100 D11 D10 D13 D12

D20 1000 D22 D21

D22 D21 6 D31 D30 D33 D32

REMARK

QCPU has instructions which can process actual number (floating decimal
point) operation data for highly accurate operations.
As long as the instructions are used, careful attentions for the place of the
decimal point as shown above are unnecessary.

(K2Y48) (K8Y50) (Circular constant)

(K4X30) (K4Y40) (K8Y50)

(K4X30)

5 - 44

5.5 Index Register and File Register

5.5.1 How to use index register Z

 The index register (Zn) is used to indirectly specify the device number. The
result of an addition of data in the index register and the directly specified device
number can be specified as the device number.

 Example

D0Z0 → Can be interpreted as D (0+Z0)

For example, when Z0 is 0, the device number becomes D0.
when Z0 is 50, the device number becomes D50.

 Z0 to Z19 can be used as the index register.
 The index register (Zn) is a word device which consists of 16 bits. Therefore, the

available data size range is -32768 to +32767.
 The following devices can be used for the indexing.

Bit device ········ X, Y, M, L, S, B, F, Jn\X, Jn\Y, Jn\B, Jn\SB (such as K4Y40Z0)
Word device···· T (Note), C (Note), D, R, W, Jn\W, Jn\SW, Jn\G (such as D0Z0)
Constant ········· K, H (such as K100Z0)
Pointer ············ P
(Note) Only the current value can be used for timer and counter.

The following restrictions are provided for using the index register for contact or
coil.

Device Description Application example

T
• Only Z0 and Z1 are available for a

contact and coil of a timer.
K100
T1Z1

T0Z0

C
• Only Z0 and Z1 are available for a

contact and coil of a counter.
K100
C1Z0

C0Z1

REMARK

When the index register is used with 32-bit data instructions
Zn and Zn+1 are targets to be processed.
The lower 16 bits correspond to the specified index register number (Zn), and the
higher 16 bits correspond to the specified index register number + 1.

32-bit indexing
(Only for Universal model QCPU (except for Q00UJCPU))
A method for specifying index registers for 32-bit indexing can be selected from
following two methods.
● Specifying the index range used for 32-bit indexing
● Specifying the 32-bit indexing using "ZZ" specification

Refer to appendix 8 for the detail of indexing.

Device number

5 - 45

Application Example
• Write the data to the data register with number which is specified with the digital

switch.

Project name Index register
Program name MAIN

T2
T2

K3000

X0
Z0K2X205 BINP

D0Z0T2MOVP

0

• Check the operation of the ladder executing the device batch monitoring.
The operation procedure is the same as the one in section 5.2.1.
Set any two-digit number in the digital switch column (X27 to X20) and turn on
X0.

5 0

X27 to X20
Z0= 50
D0Z0=D50

The current value of T2 is
transferred to D50.

5 - 46

5.5.2 How to use file register R

 The file register (R) consists of 16 bits as well as the data register (D).
 Set the file register in the standard RAM of the QCPU or a memory card (SRAM

card and Flash card). The file register to be stored in the Flash card can be read
from the program only. The data cannot be changed with the program.

Program memory

Standard RAM

Standard ROM

Memory card

Stores parameters, programs, device
comments, and device initial values.
(File registers cannot be stored.)

Stores file registers of 1K to 4086K.
(The maximum number of storable file
registers depends on the memory card to be used.)

Stores file registers of 1K to 640K
(the capacity depends on the CPU type).

Stores parameters, programs, device
comments, and device initial values.
(File registers cannot be stored.)

 The data in the file register remains after the reset operation or after the power is

turned off.
 To clear the data, write 0 to the file register with the MOV(P) instruction or GX

Works2.
 Use [Write to PLC] of GX Works2 or a sequence program to write data to the

standard RAM or SRAM card.
 Use [Export to ROM Format] of GX Works 2 to copy data in the standard ROM

or Flash card.
 Specify the area of the file register in 1K (1024 point) basis with the parameter.

Application Example
• Set 32K points of the file register R0 to R32767 to use in the program.

Follow the procedures below to register the file register to the parameter.

1) Double-click "Parameter" in the project list.

1) Double-click!

2) Double-click!

(To the next page)

2) "PLC Parameter", "Network Parameter", and
"Remote Password" are displayed.
Double-click "PLC Parameter"

5 - 47

(From the previous page)

4) Select!

5) Click!

3) Click!

6) Click!

(To the next page)

3) The Q Parameter Setting dialog box is

displayed. Click the PLC File tab.

4) Check the "Use the following file" check box

and select "Memory Card (RAM) (Drive 1)"
for "Corresponding Memory".

Enter the following items in "File Name" and
"Capacity".

 [Setting contents]

File Name : R
Capacity : 32

5) After the setting is completed, click the

 End button.

6) The message on the left is displayed. Click

the Yes button.

5 - 48

(From the previous page)

7) Select!

8) Click!

7) Click [Online] → [Write to PLC] to display the

Online Data Operation dialog box. Select
"Parameter" in the PLC Module tab.

8) Click the Execute button to write the

data.

• To clear the file register data with the program, write the following program.

For the operation procedure, refer to section 4.4.
Turning on X0 can write the data, and turning on X1 can clear the data.

Project name File register
Program name MAIN

X0
R5K1730 MOV

X1
R5K03 MOV

The file register data of the standard RAM
is kept by the battery.
Resetting or turning off the power cannot
clear the data. To clear the data, write "0".

X0
D5K1736 MOV For comparison

5 - 49

5.6 External Setting of Timer/Counter Set Value and External Display of Current Value

The timer and counter can be specified by K (decimal constant) directly or by D
(data register) indirectly. In the program shown below, the external digital switch can
change the set value.

Project name QTC

Program name MAIN

X4
T10

D5

SM400
11

X1
D6K4X3015 BINP

X6
C10RST26

4

X0
D5K4X200 BINP

T10
Y709

K4Y40T10BCD

X5
C10

D6

19

C10
Y7124

SM400
K4Y50C1031 BCD

Digital switch
X2F to X20

1 2 3 4

D5 1 2 3 4
D5

T10

Digital display
Y4F to Y40

Displays the current
value of T10.

• After reading the program to GX Works2, write it to the programmable controller to
check that it works properly.

Operating Procedure

The step (1) of the following procedure is the same as Operating Procedure in
section 5.3.
The steps (2) to (4) of the following procedure are the same as Operating Procedure
in section 4.4.

(1) Reading the data

(2) Creating a program

(3) Writing the project to the programmable controller

(4) Monitoring the ladder

5 - 50

Operation Practice

(1) External setting of the timer set value and display of the current value
• Set the timer set value in the digital switch (X20 to 2F), and turn on the switch

X0.
• When the switch X4 is turned on, Y70 turns on after the time specified with

the digital switch. (For example, Y70 turns on after 123.4sec.
when is set.)

• The digital display (Y40 to 4F) displays the current value of the timer T10.

(2) External setting of the counter set value and display of the current value
• Set the counter set value in the digital switch (X30 to 3F), and turn on the

switch X1.
• Turn on and off the switch X5 repeatedly. When X5 has turned on for the

times specified with the digital switch (count up), Y71 turns on.
• The digital display (Y50 to 5F) displays the current value of the counter C10

(the number of times that X5 is turned on).
• Turning on the switch X6 clears the counter C10 to 0. When the contact C10

is already turned on (count up), the contact is released.

1 2 3 4

5 - 51

Project name QTEST5

Program name MAIN
5.7 Exercise

5.7.1 Exercise 1 MOV

Transfer the eight input statuses (X0 to X7) to D0 once then output them to Y70 to
Y77. (For example, Y70 turns on when X0 turns on.)

X0 Y70
X1 Y71
X2 Y72
X3 Y73
X4 Y74
X5 Y75
X6 Y76
X7 Y77

Create the following program with GX Works2 filling in the blanks .
Then, check the operation using the demonstration machine.

SM401
D0MOV0

D0MOV

1)

2)

Hint

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

X0
X1
X2
X3
X4
X5
X6
X7

K2X0

(Input module)

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

D0
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

(Output module)

Y70
Y71
Y72
Y73
Y74
Y75
Y76
Y77

CPU

K2Y70

MOV MOV The CPU imports the input signal as "1" when it is on,
and imports as "0" when it is off.
The output module turns on when the CPU outputs "1",
and turns off when the CPU outputs "0".

Comparison

The following shows a program which is created with the sequence instructions, not
with the MOV instruction.

Y70
X0

Y71
X1

Y72
X2

Y73
X3

Y74
X4

Y75
X5

Y76
X6

Y77
X7

0

2

4

6

8

10

12

14

1)
2)

5 - 52

Project name QTEST6

Program name MAIN
5.7.2 Exercise 2 BIN and BCD conversion

Output the number of times that X1 is turned on on the display connected to Y40 to
Y4F in BCD. As a precondition, the set value of the counter (C0) can be input with
the digital switch (X20 to X2F) and the setting will be available by turning on X0.

Create the following program with GX Works2 filling in the blanks .
Then, check the operation using the demonstration machine.

C0
X1

X0

SM401

X2

0

5

9

13 C0RST

C0

D0BINP

1)

2)

3) 4)

Y70
C0

18

Hint

BCD value

BCD digital switch
X20 to X2F (K4X20)

BIN

BIN value

D0

C0

BIN value

CPU

Set
value

X1:ON/OFF
BCD

BCD value

BCD digital display
Y40 to Y4F (K4Y40)

1)
2)
3)
4)

5 - 53

Project name QTEST7

Program name MAIN
5.7.3 Exercise 3 FMOV

Create a program in which turning on X0 turns on the 64 outputs Y40 to Y7F and
turning off X0 turns off the 64 outputs Y40 to Y7F.

Create the following program with GX Works2 filling in the blanks .
Then, check the operation using the demonstration machine.

X0

X0
0

5

K255FMOV 1) 2)

K2Y40FMOV 3) K8

Hint

1
1
1
1
1
1
1
1

255
Y40

Y41

Y42

Y43

Y44

Y45

Y46

Y47
MOV

(Output card)CPU The constant is output from the CPU in the binary notation.

When 255 is output from Y40,

128

1

Y47

1

Y46

1

Y45

1

Y44

1

Y43

1

Y42

1

Y41

1

Y40

64 32 16 8 4 2 1

=1+2+4+8+16+32+64+128=255

In this exercise, a 64-point output module is used (Y40 to Y7F).
How many blocks are required for 255 on the output basis?

1)
2)
3)

Comparison
The following shows a program which is created with the sequence instructions, not
with the FMOV instruction. The 130 steps are used.

Y40
X0

Y41

Y42

Y7F

0

5 - 54

Project name QTEST8

Program name MAIN
5.7.4 Exercise 4 Comparison instruction

Using the two BCD digital switches, execute the calculation of (A - B) and display
the result on the BCD digital display (Y40 to Y4F).

(X20 to X2F)
B

(X30 to X3F)
A

(Y40 to Y4F)

Displays the result of the calculation of A - B
on the BCD display of Y40 to Y4F.
When the result is a negative number, make sure that
the display displays 0 and the LED of Y70 turns on.

Fill in the blanks .
Then, check the operation using the demonstration machine.

X0
0

Y70SET

D0

D12)

D01) K4X20

K4X30

-P D1

K0MOV K4Y40

D1BCD K4Y40

Y70RST

D13) K0

D14) K0

Hint
The operation result is always output from the CPU in binary.

D1D0- =D1-D0 D1

1)
2)
3)
4)

5 - 55

Project name QTEST9

Program name MAIN
5.7.5 Exercise 5 Addition and subtraction instructions

Create a program that:
1) Imports the values specified by the digital switches (X20 to X2F) to D3 and D2

(32-bit data) when X0 is turned on, adds them to D1 and D0, and displays the
result on the displays (Y40 to Y5F).

2) Imports the values specified by the digital switches (X20 to X2F) to D5 and D4
when X1 is turned on, subtracts them from D1 and D0, and displays the result.

3) When the result is a negative number, Y77 is turned on, the two's complement is
determined from the result to obtain the absolute value, and displayed.

Fill in the blanks in the following.
Then, check the operation using the demonstration machine.

X0
0

M1PLS

D0

D01)

D2K4X20

D2

DBCD K8Y40

D4 D0

DBIN

D0K0D<=
X1

X0

X1

9

17

26

K4X20DBIN D4

D0DCML D8D0K0D>30
M1

K1D+P D8

D8DBCD K8Y40

K0DMOV D0
X7

50

Y77

2)

Adds the external
set value to D0.

Displays the result when
it is a positive number.

Subtracts the external
set value from D0.

When the result is a
negative number, it is
converted into a positive
number and displayed.
(The negative absolute
value is determined.)
Outputs that the number
is negative.
Clears D0 and D1.

1)
2)

 Reference

M1
K0 D0D> D0 D8DCML

K1 D8D+P

Complement (deny transfer)

The absolute value is determined
by a calculation of two's complement
of D0 and D1 (32-bit data).

1 1 1 0 1 1 0 0 1 0
B31 B30 B18 B17 B16 B15 B14 B2 B1 B0

D1 D0
Before DCML

execution
(negative number)

0 0 0 1 0 0 1 1 0 1

D9 D8
After DCML
execution

0 0 0 1 0 0 1 1 1 0

D9 D8
After D + P execution

(absolute value)
REMARK
The CML instruction inverts the bit pattern of S and transfers the data to D
when the input condition is turned on.

Input condition

D0 D10CML

DS

5 - 56

Project name QTEST10

Program name MAIN
5.7.6 Exercise 6 Multiplication and division instructions

Create a program that:
1) Sets data for multiplication and division when X0 is turned on.
2) Multiplies the value specified by the digital switches X20 to X27 by the value

specified by the digital switches X30 to X37 in binary when X2 is turned on.
3) Divides the value specified by the digital switches X30 to X37 by the value

specified by the digital switches X20 to X27 in binary when X3 is turned on.
4) Outputs the result of the multiplication or division to the BCD displays Y40 to Y4F

and the remainder to the BCD displays Y60 to Y67.
(X30 to X37) × (X20 to X27) (Y40 to Y4F)
(X30 to X37) / (X20 to X27) (Y40 to Y4F) ... (Y60 to Y67)

Create the program with GX Works2 filling in the blanks in the following.
Then, check the operation using the demonstration machine.

SM401
43

K2Y606)

K4Y40D2

D3

X2

X3
21

26

D0

D14) D2

X0
0

D12)

D0K2X30

K2X20
X3

X2

1)

3)

D0

5)

D1 D2

>= D3K99

>= D2K9999

= K0D1

<> K0D1

>= K1X30H9

>= K1X20H9

>= K1X34H9

>= K1X24H9

K0 D2DMOVP

Hint
BIN-
multiplication BIN value

D0
BIN value

D1
0

D3
BIN value

D2

BIN-division BIN value
D0

BIN value
D1

BIN value
D2

BIN value
D3

1)
2)
3)
4)
5)
6)

5 - 57

Project name QTEST11

Program name MAIN
5.7.7 Exercise 7 D-multiplication and D-division

Create a program that:
1) Multiplies the value set by the 5-digit digital switches (X20 to X33) by 1,100 in

binary when X2 is turned on. When the result is 99,999,999 or less, it is
displayed on the displays (Y40 to Y5F).

2) Divides the value set by the 8-digit digital switches (X20 to X3F) by 40,000 in
binary when X3 is turned on. When X4 is on, the quotient is displayed on the
displays (Y40 to Y5F). When X4 is off, the remainder is displayed on the displays
(Y40 to Y5F).

(X20 to X33) × 1100 (Y40 to Y5F)
Quotient (Y40 to Y5F) ... X4: ON (X20 to X3F) / 40000
Remainder (Y40 to Y5F) ... X4: OFF

Create the program with GX Works2 filling in the blanks in the following. Then,
check the operation using the demonstration machine.

D0

X2
0

D21)

D0K5X20

K1100

X3

2) D2 D4

Y77
D4K99999999D< Y77

K8Y40

D10

X3
24

D124)

D10K8X20

K40000

X2
3)

5) D12 D14

X4

K8Y40D4DBCDP

K8Y40DBCD

DBCD

6)

7)

DBINP

X4

1)
2)
3)
4)
5)
6)
7)

5 - 58

Answers for the exercises in Chapter 5

Exercise
No.

 Answer

1) K2X0
1

2) K2Y70
1) D0
2) K4X20
3) BCD

2

4) K4Y40
1) K2Y40
2) K8 3

3) K0
1) BINP
2) BINP
3) >

4

4) <=
1) D + P

5
2) D - P
1) BINP
2) BINP
3) *P
4) /P
5) BCD

6

6) BCD
1) DMOVP
2) D*P
3) DBINP
4) DMOVP
5) D/P
6) D14

7

7) D16

6 - 1

CHAPTER 6 HOW TO USE OTHER FUNCTIONS

6.1 Test Function at Online

As a preparation, follow the procedure below.

Project name QEX14
Program name MAIN

For details on the operation method, refer to
chapter 2.

0
X6

Y70

X1
Y70

4
M10

TO
X4 K1500

BCD TO K4Y50

0

13
T1

Y74
X6

Y74

17
X6Y74

T1

23 END

K30

0

0

1) Read a project with GX Works2.

2) Write the parameter and program of the read

project to the CPU (programmable controller).
(The CPU must be stopped.)

3) Set GX Works2 to the monitor mode.

4) Confirm the program displayed on the screen.

6 - 2

6.1.1 Turning on and off the device "Y" forcibly

Stop the CPU before this operation.

1) Click [Debug] → [Modify Value].

1) Click!

2) Enter "Y70"!

3) Click!

2) The Modify Value dialog box is displayed.
Enter "Y70" in the "Device/Label" list box.

3) Click the ON or OFF button to turn

on or off "Y70" forcibly.

Check with demonstration machine
1) Confirm that the on and off statuses on the Execution Result area switches

according to the clicking of the ON or OFF button. Also, confirm that
the LED of Y70 on the demonstration machine turns on and off according to the
operation.

NOTE

When the CPU is in the RUN state, the operation results of programs are
displayed preferentially. Therefore, stop the CPU first before the confirmation
with the demonstration machine.

6 - 3

POINT

The test function during ladder monitoring of GX Works2 is also available for
setting and resetting contacts, changing current values, and outputting forcibly
word devices.
Double-clicking a contact (pressing the Enter key) holding the Shift
key in the ladder monitoring screen of GX Works2 switches the contact open or
close forcibly.

To display the Modify Value dialog box, double-click a word device (press the
 Enter key) holding the Shift key in the ladder monitoring screen of GX

Works2.

6 - 4

6.1.2 Setting and resetting the device "M"

Activate the CPU before this operation.

1) Click [Debug] → [Modify Value].

1) Click!

2) Enter "M10"!

3) Click!

2) The Modify Value dialog box is displayed.
Enter "M10" in the "Device/Label" list box.

3) Click the ON or OFF button to set or

reset "M10".

Check with demonstration machine

(Monitor screen when M10 is set)

4 T0
K4

K1500X4 M10

BCD T0 Y50

Turn off X4 and check the following.
1) When M10 is set, M10 becomes non-conductive and the current value

of the timer T0 is cleared to 0.
Check that the value on the digital display (Y50-Y5F) does not change.

2) When M10 is reset,
M10 is conducted and the timer T0 starts counting

from 0. This count value increases every 10 seconds.
Confirm that the value on the display (Y50-Y5F) increases every 10
seconds.

POINT

With the same procedure, bit devices other than the internal relay (M) also can
be set or reset forcibly.

6 - 5

6.1.3 Changing the current value of the device "T"

Activate the CPU before this operation.

1) Click [Debug] → [Modify Value].

1) Click!

2) Enter "T0"!

3) Select!

4) Enter "1000"!

5) Click!

2) The Modify Value dialog box is displayed.
Enter "T0" in the "Device/Label" list box.

3) Select "Word[Signed]" from the "Data Type"

list box.

4) Enter "1000" in the "Value" column.

5) After the setting is completed, click the

 Set button to change the current value of
T0 to 1000 forcibly.

Check with demonstration machine

1) Confirm that the value on the digital display (Y50-Y5F) is 1000 when the
 key is pressed.

POINT

With the same procedure, the current values of word devices other than the
timer (T) also can be changed.

6 - 6

6.1.4 Reading error steps

Activate the CPU before this operation.

1) Click [Diagnostics] → [PLC Diagnostics].

2) The PLC Diagnostics dialog box is displayed.
Click the Error JUMP button to jump to the
highlighted sequence program step number
where the selected error occurred.

• An error number is displayed if an error occurred.

• "No Error" is displayed if no error occurred. 2) Jump to the step number

 with the error!

1) Click!

6 - 7

6.1.5 Remote STOP and RUN

Activate the CPU before this operation.

1) Click [Online] → [Remote Operation].

2) The Remote Operation dialog box is
displayed. Select "STOP" from the list in the
Operation area.

3) After the setting is completed, click the

 Execute button.

4) The message "Do you want to execute the
operation(STOP)?" is displayed. Click the
 Yes button.

The operation of the CPU stops.

5) Select "RUN" in step 2), and perform steps

2) to 4) again.

The CPU, which was stopped in the above
operation, starts the operation again.

2) Select!

1) Click!

4) Click!

3) Click!

6 - 8

6.2 Forced I/O Assignment by Parameter Settings

1) Double-click "Parameter" in the project list.

2) "PLC Parameter", the "Network Parameter"
folder, and "Remote Password" are
displayed. Double-click the "PLC
Parameter".

3) The Q Parameter Setting dialog box is
displayed. Click the "I/O Assignment" tab.

4) Select "Input" from the list box of the "Type"
column.

5) Enter "QX42" in the "Model Name" column.
6) Select "32Points" from the list box of "Points"

column.
7) Enter "0000" in the "Start XY" column.
8) After the setting is completed, click the

 End button.

3) Click!

4) Select!

5) Enter "QX42"!

6) Select!

8) Click!

2) Double-click!

1) Double-click!

7) Enter "0000"!

After this exercise is finished, initialize the
settings by the following procedure.
1) Click the Default button in the Q

Parameter Setting dialog box to initialize the
parameter settings.

2) Click on the toolbar and write only the
parameters to the CPU.

6 - 9

Check with demonstration machine

Stop the CPU and click on the toolbar.
The Online Data Operation dialog box is displayed. Click the parameter of the
currently edited data, and click the Execute button to write only the parameters
to the CPU. Then, activate the CPU and check the following.

1) The current value of the timer T0 disappears from the digital display (Y50 to Y5F).

Then, the LEDs of Y70 to Y77 start flashing until the set values of Y70 to Y77
reach each set device value.

2) Turning on X6 to output the signal to Y70 and Y74 does not turn the LEDs of Y70
and Y74.

[I/O numbers before the forced assignment]

Q61P
Power
supply
module

Vacant
slot

QX42
Address

0
Address

1

Address
2

Address
3

QY42P
Address

4
Address

5

Address
6

Address
7

[BCD T0 K4Y50]
Y5F-Y50

Name plate

Digital display

Y77 Y76 Y75 Y74 Y73 Y72 Y71 Y70

Name plate

 [Slot 0]
Address 0, Address 2,
Address 1, Address 3

[Slot 1]
Address 4, Address 6,
Address 5, Address 7

Sixteen points occupy one address.
Sixty-four points occupy four addresses.

Q06
UD(E)H

CPU

[I/O numbers after the forced assignment]

Q61P
Power
supply
module

Q06
UD(E)H

CPU

QX42
Address

0

Address
1

QY42P
Address

2

Address
3

Address
4

Address
5

[BCD T0 K4Y50]

Y5F-Y50
Name plate

Digital display

Y77 Y76 Y75 Y74 Y73 Y72 Y71 Y70

Name plate

Address 0
Address 1

Address 4, Address 6,
Address 5, Address 7

X is set to 32 points, therefore only two addresses are available.
Hereafter, the addresses become smaller by two.

Vacant
slot

POINT

• The address 7 is replaced with the address 5. Therefore, the current value of
the timer T0 is output to the newly assigned address 5, and LEDs of Y70 to
Y77 which are connected to the address 5 flash.

• Results of outputting the signals to Y70 or Y74 are not displayed on any
displays since the address 7 of the output modules no longer exists.

• To display the device numbers normally, change the device number K4Y50
 K4Y30, and Y70 to Y77 Y50 to Y57.

6 - 10

6.3 How to Use Retentive Timers

When an input condition is turned on, the coil is energized. Then the value of a
retentive timer starts increasing. When the current value reaches the set value, the
retentive timer goes time-out and the contact turns on. When the input condition is
turned off during the increasing, the coil is de-energized but the current value is kept.
When the input condition is turned on again, the coil is re-energized and the current
value is accumulated.

Project name Retentive timer
Program name MAIN

X6
ST1

K50

ST1
Y73

X7

Contact X6

Coil ST1

Normally open contact ST1
3.0sec. 2.0sec.

Contact X7 (for input RST instruction)

Current
value of ST1 0 3 3 5 5 0

Only the RST instruction is available for turning off the contact
and clearing the current value after the retentive timer goes time-out.

When using the program as a
retentive timer, specify the points
in parameters in advance.

RST ST1

In the example below, the retentive timer is set to ST0 to ST31.

1) Double-click "Parameter" in the project list.

1) Double-click!

2) Double-click!

(To the next page)

2) "PLC Parameter", the "Network Parameter"
folder, and "Remote Password" are displayed.
Double-click the "PLC Parameter".

6 - 11

3) The Q Parameter Setting dialog box is
displayed. Click the "Device" tab.

(From the previous page)

3) Click!

5) Click!

4) Enter "32"!

4) Click "Device Points" in the "Retentive Timer"
row, and enter "32".

5) After the setting is completed, click the

 End button.

6 - 12

6.4 Device Batch Replacement

6.4.1 Batch replacement of device numbers

This section explains how to replace Y40 to Y7F (64 devices) with Y20 to Y5F
(64 devices) in batch.

1) Click [Find/Replace] → [Device Batch Replace].

2) The Find/Replace dialog box is displayed.
Enter "Y40" in the "Find Device" column.

3) Enter "Y20" in the "Replace Device" column.

4) Enter "64" in the "Points" column.

5) After the setting is completed, click the

 Execute button.

5) Click!

(Before)

0
X6

Y70
Y70

T0

Y74

K1500

T1
K30

BCD TO K4Y50

X1

X4 M10

X6

Y74

Y74

T1

X6

4

13

17

(After)

0 X6

Y50
Y50

T0

Y54

K1500

T1
K30

BCD TO K4Y30

X1

X4 M10

X6

Y54

Y54

T1

X6

4

13

17

1) Click!

2) Enter "Y40"! 3) Enter "Y20"! 4) Enter "64"!

6) Confirm that the target device numbers are
replaced.

6 - 13

6.4.2 Batch change of specified devices between normally open contacts and normally closed contacts

This section explains how to change the normally open contacts of the specified
devices to the normally closed contact and vice versa in batch.

1) Click [Find/Replace] → [Change Open/Close

Contact].

2) The Find/Replace dialog box is displayed.
Enter "X4" in the "Replace Device" list box.

3) After the setting is completed, click the

 All Replace button.

3) Click!

1) Click!

2) Enter "X4"!

(Before)

0
X6

Y50
Y50

T0

Y54

K1500

T1
K30

BCD TO K4Y30

X1

X4 M10

X6

Y54

Y54

T1

X6

4

13

17

(After)

0
X6

Y50
Y50

T0

Y54

K1500

T1
K30

BCD TO K4Y30

X1

X4 M10

X6

Y54

Y54

T1

X6

4

13

17

4) Confirm that the normally open contact is
changed to the normally closed contact and
vice versa.

NOTE

Before exercising section 6.5 after this section, write the program in the
personal computer to the CPU.
For the write operation, refer to section 2.7.

6 - 14

6.5 Online Program Change

This function is used to write programs to the CPU that is running.

Activate the CPU before this operation.

1) Change the ladder.

(In the example, change "X1" to "X0".)

2) After the change, click [Compile]
→ [Online Program Change].

3) The dialog box for "Caution" is displayed.
Click the Yes button to accept the
change.

3) Click!

4) Click!

2) Click!

1) Change the ladder!

4) The message "Online change has
completed." is displayed. Click the OK
button.

NOTE

Online program change cannot be executed when the program in the
programmable controller CPU and the program in GX Works2 before the
modification do not match. Therefore, when whether the programs match or not
is unclear, verify them before the modification with GX Works2, and execute the
online program change.

6 - 15

6.6 Registering Devices

This section explains how to register multiple devices or labels in one screen and to
monitor them at the same time.

1) Click!

1) Click [View] → [Docking Window]
→ [Watch(1 to 4)].

* In this example, select "1".

2) Enter "T0"!

2) The Watch 1 window is displayed. Select a
row to be edited. Enter "T0" in the Device
Label column.

3) The input device or label is registered.

4) Displayed!

4) Click [Online] → [Watch] → [Start Watching].

The current value of the registered device or
label is displayed in the window.

6 - 16

6.7 How to Create Comments

Project name QEX15
Program name MAIN

The following is an example of a printed out ladder with comments.

Use the keyboard to input the program above or read it from a folder on the desktop.

6 - 17

(1) Flowchart of when creating comments

Set the device range on which comments are attached.*

Double-click the comment file on the workspace.

Create comments.

Save the project.

Read and confirm the ladder with comments

When attaching comments to other devices

*: This procedure is necessary for specifying the device comment range.

POINT
Comments are used for displaying functions or applications of each device.
Up to 32 characters are available.

6 - 18

(2) Creating comments

1) Double-click!

1) Double-click "Global Device Comment" in the
project list. The Device Comment screen is
displayed.

2) Enter comments!

2) Click a comment area and enter a comment
as shown on the left.

5) Enter comments!

3) Enter "Y70"!

3) Enter "Y70" in the "Device Name" list box.

4) Press the Enter key.

5) Click a comment area and enter a comment

as shown on the left.

(To the next page)

6 - 19

(From the previous page)

8) Enter comments!

6) Enter "M1"!

6) Enter "M1" in the "Device Name" list box.

7) Press the Enter key.

8) Click a comment area and enter a comment

as shown left.

11) Enter comments!

9) Enter "T0"!

9) Enter "T0" in the "Device Name" list box.

10) Press the Enter key.

11) Click a comment area and enter a comment

as shown left.

14) Enter comments!

12) Enter "C2"!

12) Enter "C2" in the "Device name" list box.

13) Press the Enter key.

14) Click a comment area and enter a comment

as shown left.

6 - 20

(3) Saving comments

1) Click!

1) Click [Project] → [Save As].

2) Click!

2) The Save As dialog box is displayed.
Specify (or select) a workspace name and
click the Save button.

6 - 21

(4) Displaying a ladder with comments on GX Works2 screens

1) Click!

1) Click [View] → [Comment].

2) Comments are displayed on the ladder screen.

6 - 22

POINT

In addition to device comments, statements and notes can be created on the ladder screen.
• Statement : Comment for explaining functions or applications for the ladder block. Up to 64

characters are available.
• Note : Comment for explaining functions or applications for outputs and commands. Up to 32

characters are available.

Statement

Note

• Creating statements

Click and double-click a symbol where a comment is to be attached.
The Enter Line Statements dialog box is displayed. Enter a comment and click the OK button.

• Creating notes

Click and double-click an output or a command where a comment is to be attached.
The Enter Symbol dialog box is displayed. Enter a comment and click the OK button.

• Select "In PLC" or "In Peripheral" for statements and notes.

"In PLC" : The data of statements and notes is stored as a part of a program. This enables the
data to be stored in CPUs at factories. However, a lot of program memory capacity
of the programmable controller CPU is required.

"In Peripheral" : The data of statements and notes is stored in the peripheral device (personal
computer) separated from the program. Since a program requires only one extra
step per one location, less program memory capacity is required on the
programmable controller CPUs. However, when programs are modified at factories,
programs in GX Works2 in the peripheral device (personal computer) and those in
programmable controller CPUs do not match. Carefully handle the data.

6 - 23

6.8 Setting Security for Projects

This section explains how to set security for projects to protect the projects and the
data in the projects.
Setting security restricts accesses to projects.
Also, setting security prevents data such as POUs, device comments, and
parameters, which are created by the user, from erroneous modifications or
disclosures to unauthorized users.

POINT

Access levels and access authority
Setting an access level to each user restricts accesses to each data.
An access level is an operating authority given to a login user of the project.
The following five levels are available as the access levels. Data that can be edited by
a user having lower access level can also be edited by a user having higher access
level.

Access level Operating authority

Higher

Lower

Administrators
<Administrator level>

All operations are possible.

Developers (Level 3)
<Developer level>

Security setting, data access, and a part of operations are restricted.
Developers (Level 2)

Developers (Level 1)

Users

<Operator level>

Only access to project data is possible.

Data cannot be read from the programmable controller CPU.

<Example>
The data with access authority of Developers(Level 2) can be edited by login users
with the access level of Developers(Level 2) or higher (Administrators,
Developers(Level 3), or Developers(Level 2)).

6 - 24

6.8.1 Setting and resetting security for projects

This section explains how to set security for an open project and how to reset the
security.

(1) Setting security for projects

Set a security for a project.
Once security is set for a project, user authentication is required when the
project is opened again.

1) Click!

1) Click [Project] → [Security] → [User
Management].

3) Click!

2) Enter items!

2) The Use Addition dialog box is displayed.
Enter the following items.

User Name : MITSUBISHI
Password : MITSUBISHI
Re-enter Password : MITSUBISHI

* When the user name or login password is lost,

logging in to the project is disabled. Do not
enter any other user name or password other
than the above.

3) After entering them, click the OK button.

Security is set for the project.

(2) Resetting security for projects

Deleting all users resets the set security of a project and returns the project to
the status without security. (Refer to section 6.8.2.)

6 - 25

6.8.2 Managing (adding, deleting, and changing) users

This section explains how to manage the registered statuses of users for a project
with security and how to add, delete, and change users.
This function is available only when a user logs in a project with the access level of
"Administrators" or "Developers".

[Displaying the User Management screen]

1) Click!

1) Click [Project] → [Security] → [User
Management].

2) The User Management dialog box is
displayed.

The methods for adding users, changing user
information, changing passwords, and
deleting users are explained from the next
page.

6 - 26

[Adding users]
Add a user to a project with security.
A user whose access level is higher than that of the login user cannot be added.

1) Click!

1) Click the Add... button on the User
Management screen.

3) Click!

2) Enter items!

2) The User Addition dialog box is displayed.
Enter the following items.

User Name : Developers
Access Level : Developers(Level3)
Password : Developers
Re-enter Password : Developers

3) After entering them, click the OK button.

4) The user (Developers(Level3)) is added.

6 - 27

[Changing user information]
Change the access level of the user added on the previous page from
"Developers(Level3)" to "Users".
The information of the login user and of a user whose access level is higher than
that of the login user cannot be changed.

2) Click!

1) Select!

1) Select the user name "Developers".

2) Click the Change button.

4) Click!

3) Select!

3) The Change User Data dialog box is
displayed. Select "Users" from the "Access
Level" list box.

4) After selecting it, click the OK button.

5) The access level of the user "Developers" is
changed.

6 - 28

[Changing passwords]
Change the password of a user selected in the list on the User Management screen.
The password of the login user and of a user whose access level is higher than that
of the login user cannot be changed.
To change the password of the login user, click [Project] → [Security] → [Change
Password].

2) Click!

1) Select!

1) Select the user name "Developers".

2) Click the Password Setup button.

4) Click!

3) Enter password!

3) The Change Password dialog box is
displayed. Enter the following items.

New Password : Users1
Re-enter Password : Users1

4) After entering them, click the OK button.

The password of the user "Developers" is
changed.

[Deleting users]
Delete a user selected in the list with the button on the User
Management dialog box.
The current login user cannot be deleted.
However, when the registered user is only "Administrators" and no other users to be
deleted exist, the current login user can be deleted.
When all users are deleted, security is reset.

6 - 29

6.8.3 Logging in projects

A user authentication is required for opening a project with security.

1) Click!

1) Enter items!

1) When a project with security is opened, the
User Authentication screen is displayed.
Enter a user name and a password for log-in,
and click the OK button.

Enter the following user name and password,
which are set in section 6.8.1.

User Name : MITSUBISHI
Password : MITSUBISHI

2) The project is displayed.

6 - 30

6.8.4 Changing access authority for each access level

This section explains how to set an authorization of displaying and saving data for
each access level.
The access authority of access levels higher than that of the login user cannot be
changed.
When the access level of the current login user is "Users", the access authority
cannot be changed.

1) Click!

1) Click [Project] → [Security] → [Data Security
Setting].

5) Click!

3) Select!

4) Set!

2) The Data Security Setting dialog box is
displayed.

3) Select a target item from Access Object.

4) Set "Enable" or "Disable" for reading and

writing data from Access Authority for each
access level by moving the slider.

5) Click the OK button.

6 - 31

6.9 Sampling Trace Function

This function is used to acquire data at the specified timing to find how device values
change during program operation and to trace the changes displayed in time series.
For details of the sampling trace function, refer to the manuals of each CPU module.

In this example, the device value at an error occurrence is acquired.

Project name TRACE

Program name MAIN

As a preparation, follow the procedure below.

1) Click!

2) Change!

3) Click!

1) Click the "PLC RAS" tab on the Q Parameter
Setting dialog box.

2) Select "Continue" from the Computation

Error list box in the Operating Mode When
There is an Error area.

3) Click the End button.

4) Write parameters and programs to the CPU.

6 - 32

(1) Setting the sampling trace

1) Click!

1) Click [Debug] → [Sampling Trace] →
[Open Sampling Trace].

2) The Sampling Trace screen is displayed.

3) Click!

3) Click [Debug] → [Sampling Trace] →
[Trace Setting].

(To the next page)

6 - 33

(From the previous page)

4) Select!

5) Click!

4) The Trace Setting dialog box is displayed.
Select "Standard RAM" from the "Target
Memory" list box.

5) Click the Condition Setting tab.

6) Check!

6) Click!

6) Check "Detail Setting" in the Trigger
Condition Setting area and click the
 Setting Change button.

(To the next page)

6 - 34

(From the previous page)

8) Click!

7) Enter item and set!

7) The Detail Setting - Trigger Condition dialog
box is displayed. Set the following items.
In this example, set error occurrence as
trigger condition.

Device/Label : SM0
Condition : -P-

8) Click the End Setting button.

9) The Detail Setting - Trigger Condition dialog

box disappears. Click the End Setting
button to close the Trace Setting dialog box.

11) Check!

10) Set devices to be traced on the Sampling
Trace screen as shown on the left.

11) Check the check box to display the trend

graph of SD0.

12) "SD0" is displayed in the trend graph area on the Sampling Trace screen.

6 - 35

(2) Starting the sampling trace

1) Click!

1) Click [Debug] → [Sampling Trace] → [Start
Trace].

2) The message shown on the left is displayed.
Click the Yes button.

3) The Trace Data Storage Status screen is
displayed when the sampling trace is started.

After confirming that the total data reaches
100%, operate digital switches to generate
an error.

4) The trace result is displayed on the Sampling
Trace screen.

6 - 36

(3) Checking the trace result

1) Scroll the trend graph screen to the trigger

point to check the device value at an error
occurrence.

POINT

Saving trace data to a personal computer
Click [Debug] → [Sampling Trace] → [Export CSV Data]. The following dialog box is displayed.

After entering a file name, click the Save button.

7 - 1

CHAPTER 7 PROGRAMMING INTELLIGENT FUNCTION MODULE

7.1 Intelligent Function Module

(1) Intelligent function module type
On programmable controller CPUs (hereinafter referred to as QCPUs), some
functions are not supported or are limited in use. Intelligent function modules
support those functions instead of QCPUs.
Therefore users need to select an intelligent function module that is appropriate
for the purpose involved.
QCPUs are compatible with QCPU-compatible intelligent function modules.
The following table shows examples of the intelligent function modules.

Table 7.1 Example of intelligent function module

Name
Number of I/O

occupied points
Function

Module current
consumption

Analog-digital converter
module (Q64AD)

16 points

Input module that converts;
0 to 20mA → 0 to 4000
(in standard resolution mode),
0 to ±10V → 0 to ±4000
(in standard resolution mode)

5VDC

0.63A

Digital-analog converter
module (Q62DAN)

16 points

Output module that converts;
0 to 4000 → 0 to 20mA
(in standard resolution mode),
0 to ±4000 → 0 to ±10V
(in standard resolution mode)

5VDC

0.33A
24VDC

0.12A

(2) Using intelligent function modules with CPUs

An intelligent function module can be installed on any I/O slots on a main base
unit and extension base unit.

0 1 2 3 4

QCPUPower
supply

I/O slot number

Intelligent function module
[Used number]
16 points of X/Y80 to 8F,
16 points of X/Y90 to 9F

Figure 7.1 Installation of intelligent function module

7 - 2

7.2 Data Communication between Intelligent Function Modules and CPUs

An intelligent function module and a CPU exchange mainly two formats of data.
Bit data ------------Signals that use input Xs and output Ys
Word data --------16-bit data or 32-bit data

(Programmable controller CPU)

QCPU

D
ev

ic
e

m
em

or
y

su
ch

 a
s

X
, Y

, M
, T

, C
, D

Pr
og

ra
m (Bit data)

X/Y

(Word data)

Function
CPU

Ex
te

rn
al

 I/
F

Buffer memory

Input X

Output Y

Reading data

Writing data

Internal configuration of the intelligent function module

Figure 7.2 Internal configuration of the intelligent function module

7 - 3

7.2.1 I/O signals to CPUs

For 1-bit signals exchanged between a QCPU and an intelligent function module,
input Xs and output Ys are used.
Xs and Ys here do not mean external I/Os but symbols that are used in a sequence
program to exclusively represent I/O signals of intelligent function modules. Also
note that I/O numbers are assigned according to the slot where the intelligent
function module is installed.

 [X]

QCPU
Intelligent

function module

X
X
X
X

READY signal
Operating condition
setting completed

Error
A/D conversion completed

Figure 7.3

X from intelligent function module

Xs in a sequence program represent signals
that are input to a QCPU from an intelligent
function module. These signals are
generated on an intelligent function module.
Note that the Xs are used as contacts in a
program. The following is examples of the
signals.
(1) READY signal

This signal notifies a QCPU that an
intelligent function module started up
normally at power-on and is ready for
operation.

(2) Operating condition setting completed
This signal is used as an interlock
condition for turning Operating condition
setting request (Y9) on/off when the
following settings are changed.
• A/D conversion enable/disable setting

(buffer memory address 0: Un\G0)
• CH Average time/average number of

times
(buffer memory addresses 1 to 8:
Un\G1 to Un\G8)

• Averaging process setting
(buffer memory address 9: Un\G0)

 [Y]

QCPU
Intelligent

function module

Output enable Y

Y

Y
Y

Channel change
Synchronous
output

User range
writing

Figure 7.4 Y from CPU

SETs, RSTs, or OUT-Ys represent output
signals transmitted from a QCPU to an
intelligent function module. These signals
are generated on a QCPU. Note that they
are used as coils or contacts in a program.

(Example) D/A converter modules output an

enable instruction (output enable)
before outputting analog values
that were converted from digital
values.

7 - 4

7.2.2 Data communication with intelligent function modules

Data is transmitted or received in 16-bit or 32-bit units. Intelligent function modules
have a buffer memory to store those data.

QCPU

Buffer
memory

Reading data

Writing data

Data

Intelligent function module
0
1
2

10

Buffer memory address

Readable and
writable by QCPU

Example of memory map: Q62DAN D/A converter module

D/A conversion enable/disable
CH1 Digital value
CH2 Digital value

CH1 Set value check code
CH2 Set value check code

3
to

11
12

System area (use prohibited)

Figure 7.5 Buffer memory

(1) QCPUs can read and write data to and from the buffer memory. Also note that

some modules can write data to buffer memory from peripheral device via an
interface.

(2) In a buffer memory, space of one word (16 bits) is reserved for each intelligent

function module's unique address.
The smallest address is 0, and these addresses are used to specify a target
module to read or write. The minimum unit is one word. Data of 17 bits to 32
bits is treated as 2-word (32-bit) data.

0 0 0 1 0 0 0 1 0 1 0 0

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

Data part
Sign bit

1: Negative
0: Positive

Indicated here is +276.
(Negative digital values are represented
in two's complement.)

Figure 7.6 Example image of buffer memory content (D/A converter module)

Figure 7.6 shows 16 bits of the buffer memory of a D/A converter module where
a digital quantities have been written. The number is obtained from digital
quantity that a QCPU wrote to the buffer memory within the range from -4096 to
+4095 in signed binary (16 bits long).

(3) A buffer memory is a RAM.

7 - 5

7.3 Communication with Intelligent Function Module

7.3.1 Communication methods with intelligent function modules

The following table shows the communication methods between a QCPU and an
intelligent function module.

Table 7.2 Communication method with intelligent function modules

Communication
method

Function Setting method

Initial setting,
Auto refresh
setting

Performs initial settings and auto refresh settings of intelligent function modules.
These settings allow writing/reading data to/from intelligent function modules regardless
of communication program creation or buffer memory address.

Ex.) When A/D converter module Q64AD is used
• Initial setting : • A/D conversion enable/disable setting

• Sampling/averaging processing specification,
• Time average/number of times average specification,
• Average time/average number of times specification
(Set data in auto refresh settings is stored to the
intelligent function module parameter on a QCPU.)

• Auto refresh setting : Set a device on a QCPU to store the following data to.
• Digital output from Q64AD
• Maximum and minimum values of Q64AD
• Error code
(Set data in auto refresh settings is stored to the
intelligent function module parameter on a QCPU.)

Use GX Works2.

Device initial
value

Writes set data in device initial settings of intelligent function modules to the intelligent
function modules at the following timings.
• At power-on of a QCPU
• At reset
• At switching from STOP to RUN

Use GX Works2 to
specify the range
for intelligent
function module
devices (U \G).

FROM/TO
instruction Read or write data from or to the buffer memory on an intelligent function module.

Use this instruction
in a sequence
program.

Intelligent
function module
device (U \G)

Directly handles the buffer memory on an intelligent function module as a device of a
QCPU.
Unlike "FROM/TO instruction", this requires only one instruction for processing data that
is read from an intelligent function module.

Specify this device
as a device in a
sequence
program.

Intelligent
function module
dedicated
instruction

Used to simplify programming for using the functions of intelligent function modules.
Use this instruction
in a sequence
program.

7 - 6

7.4 Intelligent Function Module System in Demonstration Machine

Use an A/D or D/A converter module to convert analog signals/digital data that are
input with the volume or digital switch on the demonstration machine.

Q61P QCPU

A/D converter module

D/A converter module

(Channel 1)

QX
42
(64

points)

QY
42P
(64

points)

Q62
DAN
(16

points)

X0
 to

 X
3F

Y
40

 to
 Y

7F

X/
Y8

0
to

 X
/Y

8F

X/
Y9

0
to

 X
/Y

9F

Input volume

Voltmeter for input voltage Voltmeter for output voltage

(Channel 1)
VV

Vacant
slot

Q64
AD
(16

points)

7 - 7

7.5 Q64AD Analog/Digital Converter Module

7.5.1 Names of parts

The following explains the parts of Q64AD.
For details, refer to the User's Manual.

Q64AD

Q64AD
RUN

ERROR

I+

V-

V+

SLD

(FG)

A/D
0-±10V
0-20mA

C
H
1

C
H
2

I+

V-

V+

SLD

I+

V-

V+

SLD

C
H
3

C
H
4

I+

V-

V+

SLD

A.G.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1)

2)

No.
Name and

appearance
Description

1) RUN LED

Indicates the operation status of the A/D converter module.
ON : In normal operation
Flicker : In offset/gain setting mode
OFF : 5V power failure or watchdog timer error occurred

2) ERROR LED

Indicates errors and the status of the A/D converter module.
ON : Error occurred
OFF : In normal operation
Flicker : Switch setting error occurred

Values other than 0 has been set to the switch 5
on the intelligent function module.

7 - 8

7.5.2 A/D conversion characteristics

(1) A/D conversion characteristics on voltage inputs
(For analog input range from -10 to 10V in a standard resolution mode)

2000

2001

2002

2003

2004

D
ig

ita
l o

ut
pu

t

5.
00

00
V

5.
00

25
V

Input voltage

2.5mV

10V0-10V
-4000

0

4000

D
ig

ita
l o

ut
pu

t v
al

ue

Analog input voltage

Figure 7.12 A/D conversion characteristics (voltage input)

A/D converter modules convert analog values input from other devices to digital
quantities so that CPUs can operate those values. On voltage inputs, for
example, A/D converter modules convert -10V to a quantity of -4000 and 10V to
4000. This means that the modules convert an input voltage of 2.5mV to a
digital quantity of 1, and abandon values smaller than 2.5mV.

(2) A/D conversion characteristics on current inputs

(For analog input range from 0 to 20mA in a standard resolution mode)

D
ig

ita
l o

ut
pu

t

10
.0

00
m

A

10
.0

05
m

A

Input current

5 A

20mA0-20mA
-4000

0

4000

D
ig

ita
l o

ut
pu

t v
al

ue

Analog input current

2000
2001
2002
2003
2004
2005

Figure 7.13 A/D conversion characteristics (current input)

The modules convert current an input of 0mA to 0 for an output, and 20mA to
4000. This means that the modules convert an input current of 5μA to a digital
quantity of 1, and abandon values smaller than 5μA.

REMARK

A voltage or current value that is equivalent to a digital value of 1 through A/D
conversion (maximum resolution) differs depending on the setting of the
resolution mode (1/4000, 1/12000, 1/16000) or the output range.

7 - 9

7.5.3 List of I/O signals and buffer memory assignment

(1) List of I/O signals
The following shows a list of the I/O signals for the A/D converter modules.
Note that I/O numbers (X/Y) shown in this section and thereafter are the values
when the start I/O number for the A/D converter module is set to 0.

Signal direction: CPU ← A/D converter module Signal direction: CPU → A/D converter module

Device No. (input) Signal name Device No. (output) Signal name

X0 Module READY Y0

X1 Temperature drift compensation flag Y1

X2 Y2

X3 Y3

X4 Y4

X5 Y5

X6 Y6

X7

Use prohibited*1

Y7

X8 High resolution mode status flag Y8

Use prohibited*1

X9
Operating condition setting
completed flag

Y9
Operating condition setting
request

XA Offset/gain setting mode flag YA User range writing request

XB Channel change completed flag YB Channel change request

XC Use prohibited*1 YC Use prohibited*1

XD
Maximum value/minimum value reset
completed flag

YD
Maximum value/minimum
value reset request

XE A/D conversion completed flag YE Use prohibited*1

XF Error flag YF Error clear request

POINT

*1: These signals cannot be used by the user since they are for system use only.
If these are turned on/off by the sequence program, the functioning of the A/D
converter module cannot be guaranteed.

7 - 10

(2) Buffer memory assignment (Q64AD)

This section explains the assignment of the Q64AD buffer memory.

POINT

Do not write data to the system areas or areas to which writing data from a
sequence program is disabled. Doing so may cause malfunction.

Buffer memory assignment (Q64AD) (1/2)

Address

Hexadecimal Decimal
Description Default

Read/

write*1

0H 0 A/D conversion enable/disable setting 0 R/W

1H 1 CH1 Average time/average number of times 0 R/W

2H 2 CH2 Average time/average number of times 0 R/W

3H 3 CH3 Average time/average number of times 0 R/W

4H 4 CH4 Average time/average number of times 0 R/W

5H 5

...

...
8H 8

System area - -

9H 9 Averaging process setting 0 R/W

AH 10 A/D conversion completed flag 0 R

BH 11 CH1 Digital output value 0 R

CH 12 CH2 Digital output value 0 R

DH 13 CH3 Digital output value 0 R

EH 14 CH4 Digital output value 0 R

FH 15

...

...

12H 18

System area - -

13H 19 Error code 0 R

14H 20 Setting range (CH1 to CH4) 0 R

15H 21 System area - -

16H 22 Offset/gain setting mode Offset specification 0 R/W

17H 23 Offset/gain setting mode Gain specification 0 R/W
*1: Indicates whether reading from and writing to a sequence program are enabled.

R: Read enabled
W: Write enabled

7 - 11

Buffer memory assignment (Q64AD) (2/2)

Address

Hexadecimal Decimal
Description Default

Read/

write*1

18H 24

...

...

1DH 29

System area - -

1EH 30 CH1 Maximum value 0 R/W

1FH 31 CH1 Maximum value 0 R/W

20H 32 CH2 Maximum value 0 R/W

21H 33 CH2 Maximum value 0 R/W

22H 34 CH3 Maximum value 0 R/W

23H 35 CH3 Maximum value 0 R/W

24H 36 CH4 Maximum value 0 R/W

25H 37 CH4 Maximum value 0 R/W

26H 38

...

...

9DH 157

System area - -

9EH 158

9FH 159
Mode switching setting 0 R/W

A0H 160

...

...

C7H 199

System area - -

C8H 200 Pass data classification setting*2 0 R/W

C9H 201 System area - -

CAH 202 CH1 Industrial shipment settings offset value*2 0 R/W

CBH 203 CH1 Industrial shipment settings gain value*2 0 R/W

CCH 204 CH2 Industrial shipment settings offset value*2 0 R/W

CDH 205 CH2 Industrial shipment settings gain value*2 0 R/W

CEH 206 CH3 Industrial shipment settings offset value*2 0 R/W

CFH 207 CH3 Industrial shipment settings gain value*2 0 R/W

D0H 208 CH4 Industrial shipment settings offset value*2 0 R/W

D1H 209 CH4 Industrial shipment settings gain value*2 0 R/W

D2H 210 CH1 User range settings offset value*2 0 R/W

D3H 211 CH1 User range settings gain value*2 0 R/W

D4H 212 CH2 User range settings offset value*2 0 R/W

D5H 213 CH2 User range settings gain value*2 0 R/W

D6H 214 CH3 User range settings offset value*2 0 R/W

D7H 215 CH3 User range settings gain value*2 0 R/W

D8H 216 CH4 User range settings offset value*2 0 R/W

D9H 217 CH4 User range settings gain value*2 0 R/W
*1: Indicates whether reading from and writing to a sequence program are enabled.

R: Read enabled
W: Write enabled

*2: Areas used to restore the user range settings offset/gain values when online module change is
made.

7 - 12

7.5.4 Adding or setting intelligent function module data

This section explains how to set the intelligent function module data.
After an intelligent function module is added to a project, the data settings
(parameters and switch settings) of the intelligent function module can be set.

1) Click!

1) Click [Project] → [Intelligent Function Module]
→ [New Module].

4) Click!

3) Set!

2) The New Module dialog box is displayed.

3) Set the A/D converter module setting as follows.

Module Type : Analog Module
Module Name : Q64AD
Mounted Slot No. : 3
(Specify start XY address: 0080)

4) Click the OK button.

5) Add!

5) The specified intelligent function module data are
added to the Project window.

(To the next page)

7 - 13

(From the previous page)

6) Double-click!

6) Double-click Switch Setting.

7) Set!

8) Click!

7) The Switch Setting screen is displayed.
Set Input range for CH1 to "0 to 10V".

8) Click the OK button.

9) Double-click!

9) Double-click Parameter.

10) Set!

10) The Parameter screen is displayed.
Set "A/D conversion enable/disable setting" for CH2
to CH4 to "1:Disable". (Only CH1 is used.)

(To the next page)

7 - 14

(From the previous page)

11) Double-click!

11) Double-click Auto_Refresh.

12) Set!

12) The Auto_Refresh screen is displayed.
Set Digital output value for CH1 to "D10".

13) Click!

13) Click [Project] → [Intelligent Function Module]
→ [Intelligent Function Module Parameter List].

(To the next page)

7 - 15

(From the previous page)

15) Click!

14) Check that "Setting Exist" is checked in Initialization
(Count) and Auto Refresh (Count) for Q64AD in the
Intelligent Function Module Parameter List dialog box.

15) Click the Close button.

7 - 16

7.5.5 Exercise with the demonstration machine

(1) Sequence program
The sequence program executes a sampling processing on analog voltages
input through CH1 of Q64AD, and then converts the analog values to digital
values.
Set the start XY of Q64AD to 80 as explained before.

Project name Q64AD

Program name MAIN

X3
0 K4Y50D10BCD Displays digital conversion value

of CH1 on LED
X8E

9

A/D conversion completed flag

END

K0D10>=
X80

A/D module READY

X80: Module READY signal
X8E: A/D conversion completed flag

At power-on or reset of a programmable controller CPU, this flag turns on if
A/D conversion is ready to be executed. A/D conversion is executed once this
flag turned on.

(2) Operation of the demonstration machine

Stop the CPU and click on the toolbar.
The Online Data Operation dialog box is displayed. Click the
 Parameter + Program button, then click the Execute button to write data

to the CPU. After that, activate the CPU and check the following items.

(a) Turn on X3, and change input voltages for an A/D converter module with
the volume on the demonstration machine.
Analog values that have been input to the channel 1 (CH1) of Q64AD are
stored to the buffer memory (in digital value). With the auto refresh settings,
the QCPU reads the stored digital values and stores them in its data
register D10.

(b) Whenever an analog value is "-1" or smaller, 0 is set.

(c) The digital values are displayed on the digital display (Y50 to Y5F).

7 - 17

7.6 Q62DAN Digital/Analog Converter Module

7.6.1 Names of parts

The following explains the parts of Q62DAN.
For details, refer to the User's Manual.

1)

2)

3)

Q62DAN

No.
Name and

appearance
Description

1) RUN LED

Indicates the operation status of the D/A converter module.
ON : In normal operation
Flicker : In offset/gain setting mode
OFF : 5V power failure or watchdog timer error occurred

2) ERROR LED

Indicates errors and the status of the D/A converter module.
ON : Error occurred
OFF : In normal operation
Flicker : Switch settings error occurred

Values other than 0 has been set to the switch 5
on the intelligent function module.

3)
External power
supply terminal

Terminal for connecting a 24VDC external power supply

7 - 18

7.6.2 D/A conversion characteristics

(1) D/A conversion characteristics on voltage outputs
(For analog output range from -10 to 10V in a standard resolution mode)

A
na

lo
g

ou
tp

ut
 v

ol
ta

ge

5.0025V

Digital input0

0

Digital input value

10V

4000
-10V

- 4000

5.0000V

200020012002 2003 2004

2.5mV

A
na

lo
g

ou
tp

ut
 v

ol
ta

ge

Figure 7.14 D/A conversion characteristics (current output)

D/A converter modules convert digital quantities that are input from a QCPU
into analog values, and then output them. For example, the modules convert a
digital quantity of -4000 to a analog quantity of -10V and 4000 to 10V before
output. This means that the modules convert the digital input value of 1 to an
analog quantity of 2.5mV, and abandon digital input values in decimal places.

(2) D/A conversion characteristics on current outputs

(For analog output range from 0 to 20mA in a standard resolution mode)

A
na

lo
g

ou
tp

ut
 c

ur
re

nt

10.005mA

Input0

0

A
na

lo
g

ou
tp

ut
 c

ur
re

nt

Digital input value

20mA

4000
-20mA

-4000

10.000mA

200020012002 2003

5 A

Figure 7.15 D/A conversion characteristics (current output)

For current outputs, the modules convert a digital value 0 to 0mA and 4000 to
20mA. This means that the modules convert the digital input value of 1 to an
analog quantity of 5μA, and abandon digital input values in decimal places.

REMARK

A voltage or current value that is equivalent to a digital value of 1 through D/A
conversion (maximum resolution) differs depending on the setting of the
resolution mode (1/4000, 1/12000, 1/16000) or the output range.

7 - 19

7.6.3 List of I/O signals and buffer memory assignment

(1) List of I/O signals
The following shows a list of the I/O signals for the D/A converter modules.
The following explanation is mentioned based on the Q68DAVN, Q68DAIN,
Q68DAV and Q68DAI with 8-channel analog output (CH1 to CH8).
Note that I/O numbers (X/Y) shown in this section and thereafter are the values
when the start I/O number for the D/A converter module is set to 0.

Signal

direction
D/A converter module → CPU module

Signal

direction

CPU module

→ D/A converter module

Device No. Signal name Device No. Signal name

X0 Module READY Y0 Use prohibited*1

X1 Y1 CH1 Output enable/disable flag

X2 Y2 CH2 Output enable/disable flag

X3 Y3*2 CH3 Output enable/disable flag

X4 Y4*2 CH4 Output enable/disable flag

X5 Y5*2 CH5 Output enable/disable flag

X6 Y6*2 CH6 Output enable/disable flag

X7

Use prohibited*1

Y7*2 CH7 Output enable/disable flag

X8 High resolution mode status flag Y8*2 CH8 Output enable/disable flag

X9 Operating condition setting completed flag Y9 Operating condition setting request

XA Offset/gain setting mode flag YA User range writing request

XB Channel change completed flag YB Channel change request

XC Set value change completed flag YC Set value change request

XD Synchronous output mode flag YD Synchronous output request

XE Use prohibited*1 YE Use prohibited*1

XF Error flag YF Error clear request

POINT

*1: These signals cannot be used by the user since they are for system use only.
If these are turned on/off by the sequence program, the functioning of the D/A
converter module cannot be guaranteed.

*2: For the Q62DAN and Q62DA, the use of Y3 to Y8 is prohibited.
For the Q64DAN and Q64DA, the use of Y5 to Y8 is prohibited.

7 - 20

(2) Buffer memory assignment (Q62DAN)

This section explains the assignment of the Q62DAN buffer memory.

POINT

Do not write data to the system areas or areas to which writing data from a
sequence program is disabled.
Doing so may cause malfunction.

Address

Hexadecimal Decimal
Description Default*1

Read/
write*2

0H 0 D/A conversion enable/disable 3H R/W

1H 1 CH1 Digital value 0 R/W

2H 2 CH2 Digital value 0 R/W

3H 3

...

...

AH 10

System area - -

BH 11 CH1 Set value check code 0 R

CH 12 CH2 Set value check code 0 R

DH 13

...

...

12H 18

System area - -

13H 19 Error code 0 R

14H 20 Setting range (CH1 to CH2) 0H R

15H 21 System area - -

16H 22 Offset/gain setting mode Offset specification 0 R/W

17H 23 Offset/gain setting mode Gain specification 0 R/W

18H 24 Offset/gain adjustment value specification 0 R/W

19H 25

...

...

9DH 157

System area - -

9EH 158 0 R/W

9FH 159
Mode switching setting

0 R/W

A0H 160

...

...

C7H 199

System area - -

C8H 200 Pass data classification setting*3 0 R/W

C9H 201 System area - -

CAH 202 CH1 Industrial shipment settings offset value*3 0 R/W

CBH 203 CH1 Industrial shipment settings gain value*3 0 R/W

CCH 204 CH2 Industrial shipment settings offset value*3 0 R/W

CDH 205 CH2 Industrial shipment settings gain value*3 0 R/W

CEH 206 CH1 User range settings offset value*3 0 R/W

CFH 207 CH1 User range settings gain value*3 0 R/W

D0H 208 CH2 User range settings offset value*3 0 R/W

D1H 209 CH2 User range settings gain value*3 0 R/W
*1: This is the initial value set after the power is turned on or the programmable controller CPU is

reset.
*2: Indicates whether reading from and writing to a sequence program are enabled

R: Read enabled
W: Write enabled

*3: Areas used to restore the user range settings offset/gain values when online module change is
made.

7 - 21

7.6.4 Adding or setting intelligent function module data

1) Click!

1) Click [Project] → [Intelligent Function Module]
→ [New Module].

4) Click!

3) Set!

2) The New Module dialog box is displayed.

3) Set the A/D converter module setting as follows.

Module Type : Analog Module
Module Name : Q62DAN
Mounted Slot No. : 4
(Specify start XY address: 0090)

4) Click the OK button.

5) Add!

5) The specified intelligent function module data are
added to the Project window.

(To the next page)

7 - 22

(From the previous page)

6) Double-click!

6) Double-click Switch Setting.

7) Set!

8) Click!

7) The Switch Setting screen is displayed.
Set Output range for CH1 to "0 to 5V".

8) Click the OK button.

9) Double-click!

9) Double-click Parameter.

10) Set!

10) The Parameter screen is displayed.
Set "D/A conversion enable/disable setting" for CH1
to "0:Enable". (Only CH1 is used.)

(To the next page)

7 - 23

(From the previous page)

11) Double-click!

11) Double-click Auto_Refresh.

12) Set!

12) The Auto_Refresh screen is displayed.
Set Digital value for CH1 to "D30".

13) Click!

13) Click [Project] → [Intelligent Function Module]
→ [Intelligent Function Module Parameter List].

(To the next page)

7 - 24

(From the previous page)

15) Click!

14) Check that "Setting Exist" is checked in Initialization
(Count) and Auto Refresh (Count) for Q62DAN in the
Intelligent Function Module Parameter List dialog
box.

15) Click the Close button.

7 - 25

7.6.5 Exercise with the demonstration machine

(1) Sequence program

The sequence program converts values of the digital switches to analog
signals.
Set the start XY to 90 and the digital value for CH1 to D30 for Q62DAN as
explained before.

Project name Q62DAN

Program name MAIN

X2
0

D30K0MOVP

D30K4000MOVP

Y91
X90

END

X3

15

2

D30K2000MOVP
X4

X5

X90: Module READY signal
At power-on or reset of a programmable controller CPU, this signal turns
on if D/A conversion is ready to be executed. D/A conversion is executed
once this signal turned on.

Y91: CH1 Output enable/disable flag
Turning this flag on or off selects on each channel whether to output D/A
converted values or offset values.
ON: D/A converted value, OFF: Offset value

(2) Operation of the demonstration machine

Stop the CPU and click on the toolbar.
The Online Data Operation dialog box is displayed. Click the
 Parameter + Program button, then click the Execute button to write data

to the CPU. After that, activate the CPU and check the following items.

(a) Turn on X2 to enable D/A outputs of CH1.

(b) Voltage is output according to X3 to X5.

(c) The D/A OUTPUT voltmeter displays the voltage value that the D/A
converter module outputs.

7 - 26

MEMO

8 - 1

CHAPTER 8 SIMULATION FUNCTION

8.1 Simulation Function

The simulation function is for debugging a sequence program using the virtual
programmable controller on a personal computer.
The created sequence program can be immediately debugged without connecting a
programmable controller CPU.

NOTE

Safety and handling precautions of the simulation function

1) The simulation function simulates the actual programmable controller CPU

to debug a created sequence program. However, this function does not
guarantee the operation of the debugged sequence program.

2) The simulation function uses the memory for simulation to input and output
data to/from the I/O module and intelligent function module. Some
instructions, functions, and device memories are not supported. Therefore,
the operation results obtained from the virtual programmable controller may
differ from those obtained from the actual programmable controller CPU.

8.2 Starting/Stopping Simulation

1) Click!

1) Click [Debug] → [Start/Stop Simulation].

2) The GX Simulator2 screen is displayed, and the
simulation starts.

3) To stop the simulation, click [Debug] → [Start/Stop

Simulation] again.

8 - 2

8.3 Debugging with Example Program

Use the following example for exercise.

<<Example program>>

Y70
X0

Y70
0

K4Y80C0MOV

14

X1

M0

SM412

SM400

4

6

11

C0
K9999

Y71

END

8 - 3

8.3.1 Monitoring and testing device status

This section explains how to monitor device status, turn bit devices on/off forcibly,
and change word device values.

(1) Turning bit devices on/off forcibly

In the example operation below, "X0" is forcibly turned on.

1) Click [Debug] → [Modify Value].

1) Click!

2) Enter "X0"!

3) Click!

2) The Modify Value dialog box is displayed.
Input "X0" to the "Device/Label" list box.

3) Click the ON button to forcibly turn "X0"

on.

4) Reflected! 4) The result of the device being turned on is
reflected on the ladder monitor screen.

8 - 4

(2) Changing the word device value
In the example operation below, the word device value "C0" is changed to "5".

1) Click [Debug] → [Modify Value].

1) Click!

2) Enter "C0"!

3) Select!
4) Enter "5"!

5) Click!

2) The Modify Value dialog box is displayed.
Input "C0" to the "Device/Label" list box.

3) Select the "Word[Signed]" from the "Data

Type" list box.

4) Input "5" to the "Value" column.

5) After the setting is completed, click the

 Set button to forcibly change the current
value of C0 to 5.

6) Reflected!

6) The change of the value of "C0" to "5" is
reflected on the ladder monitor screen.

9 - 1

CHAPTER 9 MAINTENANCE

9.1 Typical Trouble

The following bar graph shows the ratio of faulty parts and causes of programmable
controller errors.
[Source: Inspection made by JEMA (The Japan Electrical Manufacture's
Association)]

Figure 9.1 Faulty parts on programmable controllers (multiple answers allowed)

73.1

34.1

20.6 19.3
14.3

9.4
2.7 0.9

0

20

40

60

80
(%)

I/O

P
ow

er
 s

up
pl

y

C
PU

P
er

ip
he

ra
l d

ev
ic

e

C
om

m
un

ic
at

io
n

M
em

or
y

O
th

er
s

N
o

an
sw

er

Collected from 223 factories

Figure 9.2 Causes of programmable controller faults (multiple answers allowed)

40.4

26.0 24.7 24.2

19.3

12.6 12.1

6.3

0

10

20

30

40

U
nk

no
w

n
ca

us
e

N
oi

se

S
ho

rt
of

 lo
ad

P
oo

r c
on

ne
ct

io
n

M
an

uf
ac

tu
re

r's
 fa

ul
t

O
th

er
s

In
co

rre
ct

 p
ro

gr
am

m
in

g

V
ib

ra
tio

n
sh

oc
k

Collected from 223 factories50
(%)

1.3

N
o

an
sw

er

9 - 2

9.2 Maintenance

To keep programmable controllers in the best operating condition, conduct the
following daily inspection and periodic inspection.

(1) Daily inspection

The following table lists the items that must be inspected daily.

Table 9.1 Daily inspection

Item Inspection item Inspection contents Judgment criterion Measures

1
Installation of base
unit

Check that fixing
screws are not loose
and the cover is not
dislocated.

The screws and
cover must be
installed securely.

Retighten the
screws.

2
Installation of I/O
module

Check that the
module is not
dislocated and the
module fixing hook is
engaged securely.

The module fixing
hook must be
engaged and
installed securely.

Securely engage the
module fixing hook.
Or tighten the screw.

Check for loosening
of the terminal
screws.

Screws must not be
loose.

Retighten the
terminal screws.

Check for the
distance between
solderless terminals.

The proper distance
must be provided
between solderless
terminals.

Set the proper
distance. 3

Connection
conditions

Check the connector
part of the cable.

Connectors must not
be loose.

Retighten the
connector fixing
screws.

Power supply
module
"POWER" LED

Check that the LED
is on.

The LED must be on.
(Error if the LED is
off)

CPU "RUN" LED Check that the LED
is on in RUN status.

The LED must be on.
(Error if the LED is
off)

CPU "ERROR"
LED

Check that the LED
is off.

The LED must be off.
(Error if the LED is
on or flashing)

CPU "BAT.ARM"
LED

Check that the LED
is off.

The LED must be off.
(Error if the LED is
on)

Input LED Check that the LED
turns on and off.

The LED must be on
when the input power
is turned on.
The LED must be off
when the input power
is turned off.
(Error if the LED
does not turn on or
turn off as indicated
above)

4

M
od

ul
e

in
di

ca
tio

n
LE

D

Output LED Check that the LED
turns on and off.

The LED must be on
when the output
power is turned on.
The LED must be off
when the output
power is turned off.
(Error if the LED
does not turn on or
turn off as indicated
above)

Refer to QCPU (Q
mode) User's
Manual.

9 - 3

(2) Periodic inspection

The following table lists the items that must be inspected one or two times every
half year to a year. When the equipment has been relocated or modified, or
wiring layout has been changed, perform this inspection.

Table 9.2 Periodic inspection

Item Inspection item Inspection contents Judgment criterion Measures

Ambient
temperature 0 to 55 °C

Ambient humidity 5 to 95% RH*1 1

A
m

bi
en

t e
nv

iro
nm

en
t

Ambience

Measure the
temperature and
humidity with a
thermometer and a
hygrometer.
Measure corrosive gas. Corrosive gas must not

be present.

When the
programmable
controller is used in the
board, the ambient
humidity in the board is
the ambient humidity.

85 to 132VAC
2 Power supply voltage

Measure the voltage
across the terminals of
100/200VAC. 170 to 264VAC

Change the power
supply.

Looseness, rattling
Move the module to
check for looseness and
rattling.

The module must be
installed securely.

Retighten the screws.
If the CPU, I/O, or
power supply module is
loose, fix it with screws.3

In
st

al
la

tio
n

Adhesion of dirt
and foreign matter Check visually. Dirt and foreign matter

must not be present.
Remove and clean the
dirt and foreign matter.

Looseness of
terminal screws

Retighten screws with a
screwdriver.

Screws must not be
loose.

Retighten the terminal
screws.

Distance between
solderless
terminals

Check visually.

The proper distance
must be provided
between solderless
terminals.

Set the proper distance.4

C
on

ne
ct

io
n

co
nd

iti
on

s

Looseness of
connectors Check visually. Connectors must not be

loose.
Retighten the connector
fixing screws.

5 Battery
Check that SM51 or
SM52 is turned off with
GX Works2.

(Preventive
maintenance)

Even if the lowering of a
battery capacity is not
displayed, replace the
battery with a new one if
the specified service life
of the battery is
exceeded.

6 Spare product

Install the product on
the actual
programmable
controller and check the
operation.

The operation must
meet the specifications.

Use the normal product
on the actual
programmable
controller as a spare
product.

7
Check the stored
program

Compare the stored
program with the
running program.

The two programs must
be identical.

Correct if any difference
is found.

8
Fan (heat exchanger)
filter

Rotation status
Rotation sound
Clogging

The fan must rotate
without abnormal
sounds.
The fan must rotate
without clogging.

Replace if any error is
found.
Clean.

9 Analog I/O Check the offset/gain
value.

The value must be
identical with the
specifications (design
value).

Correct if any difference
is found.

*1: When AnS Series Module is used in the system, the judgment criteria will be from 10 to 90% RH.

9.3 Consumable Product

Backup batteries on programmable controllers are consumable products.

9 - 4

9.4 Service Life of Output Relay

The output relays of the modules are consumed by the switching operation.
A relay which is directly mounted on the print board of the output module is required
to be replaced the output module itself after the consumption.

Switching current (unit: A)
0.1 0.5 1 2 10

1

2

5

10

20

50

Li
m

it
nu

m
be

r o
f s

w
itc

hi
ng

 (u
ni

t:
10

,0
00

)

DC100V
t=7ms

DC24V
t=7ms

DC30V
t=0ms

100

1000

200

500

AC100V COS =0.7

AC200V COS =0.7
AC100V COS =0.35

AC200V COS =0.35

0.2 5

Figure 9.3 Life characteristics of output relay's contact (QY10, QY18A)

9 - 5

9.5 Spare Product

Alternative products are easily purchased through Mitsubishi service centers or local
Mitsubishi representatives in Japan. Thus the alternative products can be prepared
even after an accident. However, note that for foreign-related products such as
exported products, alternative products must be sent beforehand.
Considering the following tips at design work makes the maintenance easier.

(1) Easily replaceable type

Replacing building block-type modules is easy. Only replacing the faulty module
is required.

(2) Memory type

To use standard RAMs or SRAM memory cards, backup batteries are required.
The standard ROMs, Flash cards, and ATA cards do not require the battery for
use, besides, these memories prevent unintentional program changes due to
human-related mistakes. These memories are recommended to be employed in
products for export.

(3) Reducing the number of module types

Reducing the number of module types is efficient for reducing the number of
spare product types.

(4) Reserving I/O points

By not using all the I/O points on 16-, 32-, and 64-point I/O modules but
reserving 10% to 20% of them, it is possible to just make changes on wiring and
programs (I/O signals) instead of replacing the faulty module with a spare
module when there are no spare modules.

(5) Creating a document

Since sequence programs are easily modified, the inconsistency between an
operating program and documents may occur (i.e. ladder diagram, program list).
Keep updating the document.
To do this, using a printer is efficient.

(6) Mastering peripheral device

Mastering peripheral device such as a personal computer, GX Works2 helps
the quick recovery from an accident.

9 - 6

(7) Spare product

Table 9.3 Spare products

 Product name Quantity Remark

1 Battery One or two

Storage lives of lithium batteries are about five years.
Therefore, the stock should not be kept all the time but
batteries should be purchased when required. However,
keep stock of one or two for accidental situation.

2 I/O module
One per each
module type

Note that I/O modules tend to be faulty during a test
operation.
Also note that the contacts of output modules are
consumed in long-term use.

3 CPU module
One for each
used model

4 Memory card
One for each
used model

CPU modules and memory cards are the core parts of a
programmable controller, which means that an error of
them result in the system down.

5
Power supply
module

One for each
used model

Same as above. As the temperature of the power supply
modules rises easily, and high ambient temperature may
shorten their service lives.

9 - 7

9.6 Using Support Equipment

The following shows examples of support equipment in which programmable
controller-used systems or devices automatically notify a detected failure or
operation status to an operator or maintenance personnel during an automatic
control operation.

1. Displaying an error using a commercial lamp

Connect the error lamp to the output module of the programmable controller so
that the lamp flashes when an error is detected.

 Lamp flicker

Output module (Y50 to Y6F)

Error indication lamp

Control panel

The lamp (Y50) flashes
when an error is detected.

SM1
Y50

SM412

(Error detection) (1-sec. clock)

2. Displaying an error code on a commercial digital display

Connect the digital display to the output module of the programmable controller
so that the error code number of the detected error is indicated on the digital
display.

 Numerical display

Output module (Y70 to Y8F)

The error code number is
displayed on the digital display
when an error is detected.

SM1

(Error detection)

Error indication lamp

Control panel

Error code

BCD SD0 K2Y70

0 0
Error code

3 2

(Error code)

NOTE

The above programs cannot be executed when a stop error occurs.

9 - 8

3. Displaying the contents of the detected error on the screen

The errors details of the programmable controller can be displayed on an
external CRT screen, plasma screen, and liquid crystal screen.

 Screen display

Starting first step in progress
Arm Conveyor

Error occurred! 00070

MELSEC-Q supports a wide variety of GOTs (Graphic Operation Terminals).
In addition to the error display function, GOTs have a lot of useful functions such as
the graphic monitoring, ladder monitoring, device monitoring, touch-panel switch,
and printing function.
(Refer to the catalogs for details.)

App. - 1

APPENDIX

Appendix 1 I/O Control Mode

The CPU supports two types of I/O control modes; the direct mode and refresh
mode.

Appendix 1.1 Direct mode

In the direct mode, input signals are imported to a programmable controller every
time they are input and treated as input information. The operation results of a
program are output to the output data memory and the output modules. The
following diagram shows the flow of I/O data in the direct mode.

Data memory for inputs (X)

Test operation using peripheral device
Link refresh of MELSECNET/H
Writing from serial communication
modules, etc.

Data memory for outputs (Y)

Executing the OUT instruction in the
sequence program
Test operation using peripheral device
Writing from serial communication
modules, etc.

Programmable controller

CPU
(Operation processing)

Input
module

Output
module

Y70

X0

Y75

1)2)

3)

4)

5)

• When the input contact instruction is executed:
An OR operation is executed in the input information 1) from the input module and
input information 2) in the data memory. Then the result is used as input
information 3) at sequence program execution.

• When the output contact instruction is executed:
Output information 4) is read from the data memory for output (Y), and a sequence
program is executed.

• When the output OUT instruction is executed:
The operation result 5) of the sequence program is output to the output module,
and is stored in the data memory for output (Y).

• When the QCPU executes I/O in the direct mode, a sequence program uses DX
for inputs and DY for outputs.

App. - 2

Appendix 1.2 Refresh mode

In the refresh mode, all changes caused in an input module are imported to the input
data memory in a programmable controller CPU before every scan. The data in the
data memory is used for an operation.
The operation results made in a program for output (Y) are stored to the output data
memory at every operation. All the data stored in the output data memory is
batch-output to the output module after the execution of the END instruction.
The following diagram shows the flow of I/O data in the refresh mode.

Data memory for
inputs (X)

Data memory for
outputs (Y)

Programmable controller

CPU
(Operation processing)

Output
moduleY70

X0

Y75

Input
module1)

When inputs
are refreshed

When outputs
are refreshed

2)

3)

4)

5)

• Input refresh

Input data in the input module is batch-read 1) before the execution of the step 0,
and stored to the data memory for input (X).

• Output refresh
Data 2) in the data memory for output (Y) is batch-output to the output module
before the execution of the step 0.

• When the input contact instruction is executed:
The input data is read from the data memory for input (X) 3), and a sequence
program is executed.

• When the output contact instruction is executed:
The output data 4) is read from the data memory for output (Y), and a sequence
program is executed.

• When the output OUT instruction is executed:
The operation result of the sequence program 5) is stored in the data memory for
output (Y).

App. - 3

Appendix 1.3 Comparisons between the direct mode and refresh mode

In the example ladder given below, turning on input X0 turns on output Y70.

Item Direct mode Refresh mode

1. Ladder example Y70
DX0

Y70
X0

END

Internal input

Input instruction (LD X0)
Output instruction (OUT Y70)

Program execution

0

Minimum delay

Maximum delay

X0

X0

Y70

Y70

0 END 0

Delay
(One scan)

Delay
(Two scans)

Input refresh
Output refresh

Internal input

2. Response lag
from when input
is changed to
when output is
changed
accordingly

END END

Delay
(One scan)

Delay
(execution time of the instruction)

Input instruction (LD X0)

Output instruction (OUT Y70)

Program execution

0 0 0 0

Minimum delay

Maximum delay

X0

Y70

X0

Y70

• The delay time ranges from 0 (only execution

time of the instruction) to 1 scan.
• The delay time is 0 to 1 scan.

• The delay time ranges from 1 to 2 scans.
• The delay time is 1 to 2 scans.

3. Execution time
of the I/O
instruction

• The direct mode needs longer time than the
refresh mode since a programmable controller
accesses I/O modules.

• Generally, only short time is needed since a
programmable controller accesses data
memory.

4. Scan time

• The scan time is longer for the execution time
of the I/O instructions.

• The actual scan time is the program execution
time.

• The scan time is shorter for the execution time
of the I/O instructions.

• The actual scan time is the total time of a
program execution, input transfer, and output
transfer.

App. - 4

Appendix 2 Special Relay

The special relay (SM) is an internal relay whose application is fixed in the
programmable controller. For this reason, the special register cannot be used in the
same way as other internal registers are used in sequence programs. However, the
bit of the special relay can be turned on or off as needed to control the CPU module.

The following shows how to read the items in the list.
For details of special relays, refer to QCPU User's Manual Hardware Design,
Maintenance and Inspection.

Item Description

Number • Indicates the special relay number.
Name • Indicates the special relay name.
Meaning • Indicates the contents of the special relay.
Explanation • Explains the contents of the special relay in detail.

Set by
(When set)

• Indicates the setting side and setting timing of the special register.
<Set by>
S : Set by the system
U : Set by user (in sequence program or test operation at a peripheral

device)
S/U : Set by both system and user

<When set> indicated only if setting is done by system.
Every END processing : Set during every END processing
Initial : Set during initial processing (after power-on or

status change from STOP to RUN)
Status change : Set when the operating status is changed
Error : Set if an error occurs
Instruction execution : Set when an instruction is executed
Request : Set when requested by a user (using the

special relay)
When system is switched : Set when the system is switched (between the

control system and the standby system)

Corresponding
ACPU
M9□□□

• Indicates a special relay (M9□□□) supported by the ACPU.
("M9□□□ format change" indicates the one whose application has been
changed. Incompatible with the Q00J/Q00/Q01, and QnPRH.)

• "New" indicates the one added for the Q-series CPU.

Corresponding
CPU

Indicates the CPU module supporting the special relay.
QCPU : All the Q-series CPU modules
Q00J/Q00/Q01 : Basic model QCPU
Qn(H) : High Performance model QCPU
QnPH : Process CPU
QnPRH : Redundant CPU
QnU : Universal model QCPU
CPU module name : Only the specified CPU model (Example: Q02U)

For details on the following items, refer to these manuals:
• For network related items Manuals for each network module
• For SFC programs MELSEC-Q/L/QnA Programming Manual (SFC)

POINT

Do not change the values of special relays set by the system using a program
or by test operation.
Doing so may result in a system down or communication failure.

App. - 5

Appendix 3 Special Register

The special register (SD) is an internal register whose application is fixed in the
programmable controller. For this reason, the special register cannot be used in the
same way as other internal registers are used in sequence programs. However,
data can be written to the special register to control the CPU module as needed.
Data is stored in binary format if not specified.

The following shows how to read the items in the list.
For details of special registers, refer to QCPU User's Manual Hardware Design,
Maintenance and Inspection.

Item Description

Number • Indicates the special register number.
Name • Indicates the special register name.
Meaning • Indicates the contents of the special register.
Explanation • Indicates the detailed contents of the special register.

Set by
(When set)

• Indicates the setting side and setting timing of the special register.
<Set by>
S : Set by the system
U : Set by user (in sequence program or test operation at a peripheral

device)
S/U : Set by both system and user

<When set> indicated only if setting is done by system.
Every END processing : Set during every END processing
Initial : Set during initial processing (after power-on or

status change from STOP to RUN)
Status change : Set when the operating status is changed
Error : Set if an error occurs
Instruction execution : Set when an instruction is executed
Request : Set only when there is request from a user

(through SM, etc.)
When system is switched : Set when the system is switched (between the

control system and the standby system)

Corresponding
ACPU
D9□□□

• Indicates special register (D9□□□) supported by the ACPU.
("D9□□□ format change" indicates the one whose application has been
changed. Incompatible with the Q00J/Q00/Q01, and QnPRH.)

• "New" indicates the one added for the Q-series CPU.

Corresponding
CPU

Indicates the CPU module supporting the special relay.
QCPU : All the Q-series CPU modules
Q00J/Q00/Q01 : Basic model QCPU
Qn(H) : High Performance model QCPU
QnPH : Process CPU
QnPRH : Redundant CPU
QnU : Universal model QCPU
CPU module name : Only the specified CPU model (Example: Q02U)

For details on the following items, refer to these manuals:
• For network related items Manuals for each network module
• For SFC programs MELSEC-Q/L/QnA Programming Manual (SFC)

POINT

Do not change the values of special registers set by the system using a
program or by test operation.
Doing so may result in a system down or communication failure.

App. - 6

Appendix 4 Application Program Example

Appendix 4.1 Flip-flop ladder

(1) Y70 turns on when X0 is turned on, and turns off when X1 is turned on.

X0

X1
Y70RST

0

2

Y70SET

(2) When X2 is turned on, Y71 turns off if Y70 is on, and turns on if Y70 is off. This
flip-flop operation is repeated.

Project name QA-16

Program name MAIN

T0
X2

T0
0

6

T1

T0

K5

T1
K5

Y70

Y7112

X02

Contact
T0
Contact
T1

Y70
Y71

App. - 7

(3) The flip-flop operation starts when X2 is turned on. In this operation, Y70 turns

on if the timer T0 is on, and Y71 turns on if the timer T1 is on. (Cycle: 10sec.)

Project name QA-17

Program name MAIN

T0
T1

0
X2 T1 K50

T0
7 M0PLS

Y70
M0

11 T1RST

T1
T0

T1
16

K50

T1
22

M1PLS

Y71

M1
26 T0RST

X2

Contact
T0
Contact
T1

Y70

Y71

App. - 8

Appendix 4.2 One shot ladder

(1) Output starts and continues for a certain time after the input X1 is turned on.
(Time for the input being on must be longer than the set time limit.)

T15
X1

0
T15

K70

Y75

X1
Normally closed
contact T15

Y75
Set time limit

7sec.

(2) When the input X0 is turned on momentarily, Y76 turns on for a certain time.

T16
X0

0
Y76

K100

Y76

T16

(3) Output starts and continues for a certain time when the input X0 is switched
from on to off.

X0

0
T16

M1PLF

T16
M1

Y76
3

K100

Y76

Set time limit
10sec.

X0

Y76
Pulse duration

App. - 9

Appendix 4.3 Long-time timer

(1) Necessary time is obtained by connecting timers in serial.

T9
X2

T9
0

5

3000.0sec.

2000.0sec.

Turns on after
time limit elapses

K30000

T10
K20000

Y72
T10

11

Normally open
contact T9

X2

Normally open
contact T10
Y72

2000sec.3000sec.

5000sec.

(2) Necessary time is obtained by using timers and counters.
Time limit of timer Set value of counter = Long-time timer (note that accuracy
of timers are accumulated.)

Project name QA-18

Program name MAIN

T14
X2

X2

C7RST

0

7 Turns on after
time limit elapses

K9000

Y73

C7
K4

M56

M56

C7

Y73

Y73

T14
12

C7
18

900sec. × 4 = 3600sec. = 1 hour

Coil T14

X2

Normally open
contact T14 (M56)

C7

Y73

One scan

(Note) Sufficient time is obtained with the counter C7 which counts the number of
time-outs of the timer T14.
M56 resets T14 after time-out. With C7, the output Y73 is self-energized
while count up is in progress. With Y73, T14 is reset and the following time
count is stopped.

App. - 10

Appendix 4.4 Off delay timer

MELSEC-Q does not provide off delay timers. Configure an off delay timer as
follows.

(1) The timer T6 starts operating when X5 is turned off.

T6
Y70

0
T6

K8

Y70
X5

6
Y70

X5

Coil T6
Normally closed
contact T6

Set time limit
0.8sec.

X5

Y70

(2) Turning on X5 momentarily sets the operation ready.

The timer T8 starts operating when X6 is momentarily turned on.

Y71
X5

0
Y71

T8

T8
X6

4
M45

K41

M45

Y71

Coil T8, M45
Normally closed
contact T8

4.1sec

X6

Y71

X5

Set time limit

(Note) The above ladder operates as an off delay ladder by momentarily turning on
inputs X5 and X6.
M45 is equivalent to a momentary contact of T8.

App. - 11

Appendix 4.5 On delay timer (momentary input)

An on delay timer of a programmable controller operates easily with a continuous
input. A relay M must be used with a momentary input.

Project name QA-19

Program name MAIN

T4
X1

M50
0

K62

M50

Y70

Y71

X2

T4
8

10

Timer starts after X1
turns on, and continues
 to be activated.

T4
Turns off 6.2sec. later

Turns on 6.2sec. later

T4,M50

6.2sec.

X2
X1

Y70
Y71

Set time limit

(Note) The above ladder operates as an on delay ladder by momentarily turning on
inputs X1 and X2.

App. - 12

Appendix 4.6 ON-OFF repeat ladder

In an ON-OFF repeat ladder, Y70 turns on when X1 is turned on, and turns off when
X1 is turned on again.

X1

0 Y70FF

Appendix 4.7 Preventing chattering input

The timer is set so that it starts output when the input keeps being on for 0.2sec.

X0
0

T1
5

T1

M1

K2

M1 turns on when X0 keeps being on for 0.2sec. or longer. Therefore, use M1
instead of X0 when creating a program.

App. - 13

Appendix 4.8 Ladders with a common line

The following ladder cannot be operated as it is. To make such ladders controllable,
use master control instructions (MC, MCR) in the program.

X0

Manual

X1

Automatic

X4 X3 Y71
Y70

X2

X7 Y79 X2
Y71

X6 X7

Y71

Relay ladder

Project name QA-1

Program name MAIN

Sequence program with master control instructions
X0

X2

0

4

M1N0MC

Manual circuit

X1

M10
X6

6 M11
X7

9 N0MCR
X1

X4

10

14

M2N0MC
X0

M20
X7

17 M21
Y79

20 N0MCR

X3

M10
21 Y70

Y71

M20

M11
25 Y71

X2

M21

Y71

Automatic circuit

Common circuit

Note) In GX Works2, the on/off status of the master control is displayed in the title tag on the monitor screen.

App. - 14

Appendix 4.9 Time control program

The time value is set in the two digits of a digital switch. The currently elapsed time
is displayed on Y40 to Y47 while the outputs Y70 to Y72 turn on after the set time
limit has elapsed.
This operation is repeated.

Push button for
reading time

X3

Switch for timer X4

Switch for operation X5

Digital switch for setting time

0.1sec. units

X20 to 27

5 9 Programmable
controller

Display for current time

0.1sec. units

Y40 to 47

2 6

Y70 Turns on when current
value is less than 2sec.

Y71 Turns on when current
value is just 3sec.

Y72 Turns on when current
value is 4.1sec. or more

Project name QA-2

Program name MAIN

X3

X4

0

7 Starts timer
Repeats flicker

T3
T3

16 T4

M5PLS
M5

3 D1K2X20BIN
T4

Y70

Turns on when T3 is 4.1sec.
or more.

Turns on when T3 is 3.0sec.

D1
D1K0<>

K10

X5
21 K2Y40T3BCD

T3K20>

Y71T3K30=

Y72T3K40<

Turns on when T3 is from
0.1 to 1.9sec.

Outputs time value to exterior

Reads set time
2 digits in 0.1sec. units

App. - 15

Appendix 4.10 Clock ladder

The clock data such as hour, minute, and second is output to a digital display.

Project name QA-3

Program name MAIN

T1

0

10 C11
C11

15

T0
T0

5

T1

K60

K5

SM400
38 K2Y40C11BCD

Counts minutes

T1
K5

C11RST

C12
K60

C12
24 C12RST

C13
K99

C13
33 C13RST

K2Y48C12BCD

K2Y50C13BCD

0.5-sec. flickering

Counts seconds

Counts hours

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

LED of output module

Ones
digit

Tens
digit

K2Y40

Ones
digit

Tens
digit

K2Y48

Ones
digit

Tens
digit

K2Y50

seconds4 7

minutes1 8

hours6 4

Y57

8

Y56

4

ON

Y55

2

ON

Y54

1
Tens digit

Y53

8

Y52

4

ON

Y51

2

Y50

1
Ones digit

K2Y50 hour, Output

Y4F

8

Y4E

4

Y4D

2

Y4C

1

ON

Tens digit

Y4B

8

ON

Y4A

4

Y49

2

Y48

1
Ones digit

K2Y48 minute, Output

Y47

8

Y46

4

ON

Y45

2

Y44

1
Tens digit

Y43

8

Y42

4

ON

Y41

2

ON

Y40

1

ON

Ones digit

K2Y40 second, Output

App. - 16

Appendix 4.10.1 Clock function (supplement)

The following ladder displays the time setting set in GX Works2 to the Q
demonstration machine.

Project name QEX13

App. - 17

App. - 18

Appendix 4.11 Starting - operation of electrical machinery

Turning on the start switch starts the operation. After the operation time has
elapsed, the operation mode is activated through an arc interlock state.

Project name QA-20

Program name MAIN

T6
18

Y70 Y71

T5
13

Y70
X0

Y70

0

9

Arc interlock

During operation

period timer

operation

operation

X1

Y70 Y72
T5

Y71

T6

Y72

K20

K5

T5 Y72

Y72

Operation Y70

Stop X1
Start X0

Y72
T5 = 2sec.

operation

operation

Y71

T6 = 0.5sec. Arc interlock

App. - 19

Appendix 4.12 Displaying elapsed time and outputting before time limit

The following ladder outputs the time elapsed in the timer on the LED display, and
indicates that the set time limit has been reached. This system can also be applied
to counters.

Y64 to 67
Y60 to 63

Y6C to 6F
Y68 to 6B

3 41 2Output module

Elapsed time display
(Four digits of BCD)

× 10
× 100

× 0.1
× 1

X2

Starts when turned on
Stops when turned off

X2

0 T53

K4Y60T53BCD

Y76
Y76

Outputs current
value of timer

Timer starts when
X2 is turned on

K6000

T53K500=

Y77T53K120> Turns on when
current value is
12sec. or less

Turns on when
current value is
50sec. or more

X2
0 T4

K4Y60T4BCD

Y70

Outputs current
value of timer

Timer starts when
X2 is turned on

K3000

T4K300>

Y72T4K319<

Turns on when current
value is 34sec. or more

Turns on when current
value is 30sec. or less

Y71T4K299<

T4K340>

T4K320>

Y73T4K339<

Y75T4K800<=

Y74T4K600<= Turns on when current
value is 60sec. or more
Turns on when current
value is 80sec. or more

Turns on when current
value is from 30 to 31.9sec.
Turns on when current
value is from 32 to 33.9sec.

App. - 20

Appendix 4.13 Retentive timer

The input X2 switches between on and off continuously. The on-time of X2 is
accumulated and Y72 turns on according to this accumulated value n.

(1) For a ladder that accumulates a value without a retentive timer

Project name QA-21

Program name MAIN

M0
X2

M0
0

2

T195D7MOV

D7T195MOV

Clears D7 by time-out

Timer starts when
X2 is turned on

M1PLS

T195
K600

M1
9

M0
12

T195
15

Y72

D7K0MOV

Saves current value
of timer to D7

Writes D7 to timer
when X2 is turned on

Y72 turns on by time-out

(2) When retentive timers are assigned in the device setting of the PLC parameter

Retentive timer (ST): 224 points (ST0 to ST223)

Project name QA-8

Program name MAIN

ST195
X2

X1

0

7

Timer starts when
X2 is turned on

ST195RST Can be cleared by
turning on X1

Cannot be cleared
by turning off

Y72
ST195

5

K600

App. - 21

Appendix 4.14 Switching timer set value externally

(1) With an external switch, a value to be set in one timer can be selected from
three patterns; 1sec., 10sec., and 100sec.
A timer is activated and reset with a push button switch.

X0
1sec.

X1
10sec.

X2
100sec.

X3
Starts timer

X4
Resets timer

PB

PB

SC

Input power supply Load power supply

Y70

Y70

Y70 MC

RL

OL

Load

Indicates the timer
has gone time out.

Indicates the timer
is in operation.

Project name QA-22

Program name MAIN

Y70

X0

M0

0

12

Set value 1sec.

Starts timer

Turns on while timer
is in operation

X1
3 D0K100MOV

D0K10MOV

X2
6

X3
9

D0K1000MOV

M0SET
X4

11 M0RST

T8
D0

Y72

T8
19 Y71

Stops timer

Set value 10sec.

Set value 100sec.

Turns on by time-out

App. - 22

Appendix 4.15 Setting counters externally

With an external digital switch having 4 digits, a counter can be set remotely and
their current values are displayed in 4 digits. In addition to every count-up, the timer
outputs data when it reaches a value 100 short of the set value and a value 50 short
of the set value.
Note that a setting error is indicated if the set value of the counter is less than 100.

PB
Setting signal X0

PB
Start X5

PB
Reset or stop X1

Count pulse X3

DC24V

X0 to 1F

I/O
UNIT0

X20 to 2F

I/O
UNIT1

Y70 to 74

I/O
UNIT4

Y60 to 6F

I/O
UNIT3

Y74

Y73

Y72

Y71

AC100V

RL

R1

R2

R3

RL

Setting error

ON during
operation

Turns on 100
short of set value

Turns on 50
short of set value

Turns on at
counter stop

DC12V
Current value display

BCD × 4 digits

DC12V

1 2 3 4

Digital switch (BCD × 4 digits)

Y70

Setting error range

Maximum setting value 9999

Start
Turn on X5
Y71 ON

100 short of set value
Y72 ON

50 short of set value
Y73 ON

Count up
Y74 ON

Setting value

App. - 23

Project name QA-4

Program name MAIN

X0

M0

D1K100-

0

12

Outputs error when
set value is 100 or less

D1D0MOV

D2D0MOV

D2K50-

Setting

Reads set value

ON during operation

Turns on at 100 before
the set value

Counter that turns on
at stop

M0SET
X1

2 M0RST
M0

4 D0K4X20BIN

Y70D0K100>
Y70

X5
24

Y71

C0
Y71

Y71
28 M3N0MC

X3
31 C0

D0

C1
D1

C2
D2

44 N0MCR
X1

45 C0RST

C1RST

C2RST
M0

58 K4Y60C0BCD
C1

62 Y72
C2

64 Y73
C0

66 Y74

Set value -100
(100 short of set value)

Set value -50
(50 short of set value)

Counter that turns on
100 short of set value
Counter that turns on
50 short of set value

Counter is reset by
turning on X1

Displays counted
values to exterior

Turns on at 50 before
set value
Turns on by count up

Note) In GX Works2, the on/off status of the master control is displayed in the title

tag on the monitor screen.

App. - 24

Appendix 4.16 Measuring operation time

Setting an operation time to a control target is useful for judging the timing of a
component replacement and lubrication. The timer ST and data register D must
have a backup power source so that they can continue operating at a power failure.
With the contents of D31 (in one hour units) displayed externally, the program can
work as an operation timer.

Project name QA-23

Program name MAIN

ST250
X2

ST250
0

5

Measures in
1 hour units

6-minute timer

Indicates timing
to replace

K3600

D30K0MOV

ST250RST

D30K1+

D31K1+

K4Y60D31BCD

D30K10=

SM400 (always ON)
21

D31K1000<=25 Y70

1-hour timer

Outputs operation
time to exterior

The management time is set to 100 hours.

Appendix 4.17 Measuring cycle time

Measuring the operation time of a control target (from its start to end) allows
displaying the cycle time-out and managing a control time lag.
The following ladder in which the <, >, and = instructions are used to determine the
state of T200 indicates a cycle time-out and measures a time lag with the counter.

Project name QA-24

Program name MAIN

M56
X0

M56

0

4 Measures cycle time

In cycle
X1

M56

T200

X7
24

T200
K32760

Y70SET10 T200K400<

14 T200K300< T200K400>= C10
K32760

Y70RST

C10RST

Cycle time run out

Number of cycle times
of 3.01 to 4.00sec.

Clears time out display
and accumulated counts

App. - 25

Appendix 4.18 Application example of (D) C M L
Complement

 (P)

The following explains how to obtain absolute values of negative values -32768 or
smaller (to -2147483648, 32 bit data).

DCML D20

D+ D20

D0

K1

1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0

B
15

B
14

B
1

B
0

B
15

B
14

B
1

B
0

D1 D0

0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1

0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0

D21 D20

D21 D20

(Negative number)

(Absolute value)

Before DCML
execution

After DCML
execution

After D+ execution

(Example)
Every time X1 is turned on, 999 is subtracted from a set value and the result is
displayed.
When the result value is negative, the output Y70 turns on, and the absolute value of
the result is displayed.

Reading the set value

Subtraction (-999)

Negative number
obtained?

Y70 setting

DCML execution

+1 execution

Result display

NO

YES

Turn on X0

Turn on X1

X0

X1

M0

Y70

D0K4X20DBIN0

4

18

31

Inputs data

D0K0D> Y70SET

M0PLS

D0K999D-P

D20D0DCML

D30K1

K8Y40D30DBCD

K8Y40D0DBCD

D+ D20

Subtracts 999

Turns on Y70 when
negative number is obtained

When D0 is negative number,
two's complement is taken to
have positive number (absolute value)

Outputs absolute value

Outputs positive number

App. - 26

Appendix 4.19 Program showing divided value of 4-digit BIN value to 4 places of decimals

(1) Example 1
The program displays the operation result using a dividend and a divisor which
are individually specified in two 4-digit digital switches on two 4-digit displays
(integral part and decimal part).

Digital switch

X3F to X30

X2F to X20

X0

Digital display

QCPU QX
42

QY
42P

Y5F to Y50 Y4F to Y40

 Importing dividend and divisor

Division

Displaying a quotient

Clearing index registers Z0
and Z1 and data register D10

Multiplying the remainder with 10,
dividing the result, and taking a

quotient of lower 1 digit

Displaying the lower 1 digit

Counting the number of times
(register Z1)

4 obtained?

END
YES

INC Z1

NO
NEXT

FOR

Setting the display address
after decimal point

Dividend Digital switch X30 to X3F → D0
Divisor Digital switch X20 to X2F → D1

(D0) / (D1) = (D2) (D3)
 Quotient Remainder

4 × (Z1) → (D10) HC-(D10) → (Z0)
1st time 4 × 0 → 0 HC-K0 → HC
2nd time 4 × 1 → 4 HC-K4 → H8
3rd time 4 × 2 → 8 HC-K8 → H4
4th time 4 × 3 → 12 HC-K12 → H0
(D3) × 10 → (D3)
(D3) / (D1) = (D2) (D3)

Y4
C

 to
 4

F

Y4
8

to
 4

B

Y4
4

to
 4

7

Y4
0

to
 4

3

Last-
1st
digit

Last-
2nd
digit

Last-
3rd
digit

Last-
4th
digit

App. - 27

Sequence program of example 1
The FOR-NEXT instruction is executed to divide each decimal place individually and
4 decimal places are displayed in K4Y40.

Project name QA-5

Program name MAIN

X0

M0

NEXT

0

22

24

45

Reads dataD0K4X30BINP

D1K4X20BINP

D2D0/P D1

K4Y50D2BCDP

Z0DMOVP

D10K0MOVP

M0PLS

K4FOR

D10K4* Z1

Z0H0C- D10

D3D3* K10

D2D3/ D1

K1Y40Z0D2BCD

Z1INC

Division

BCD-outputs a quotient

Clears index register Z0

Clears D10

Repeats for 4 times

K0

Executing the INC Z1 instruction adds one to Z1.

App. - 28

(2) Example 2

In example 2, D0 is divided by D1 to obtain D5 in 4 decimal places.
The dividend D0 is multiplied with 10000. The result of the dividing calculation
using this multiplied value is converted to a BCD value and output to an external
digital display.

K4Y50 K4Y40K4Y60

D6, integral number
in 4 digits

D5, decimal number
in 4 digits

D7, remainder of
a decimal number

Project name QA-6

Program name MAIN

X0
0 D0K4X30BINP

D1K4X20BINP

D5D1

Clears D2

10000-fold

D2K0MOVP

D3D0*P

D/P D3

D5D5DBCDP

D7D7DBCDP

K4Y50D6MOVP

K4Y40D5MOVP

K4Y60D7MOVP

K10000

Integral part

Decimal part

Decimal number
remainder

App. - 29

Appendix 4.20 Carriage line control

The following is an example of a sequence control using a carriage to convey works
(materials).
Series of operations performed in one cycle is as follows; A work is set on the
carriage, the carriage moves forward, the carriage stops at the forward limit, the arm
pushes the work to the other conveyor side, and the carriage moves back to the
backward limit.

Carriage moves
forward (Y71)

Push (Y73)

LS open complete (X4)

Push back
(Y74)

LS forward
limit (X2)

Operating panel

Operation
indicator (Y70)

Start button (X0)

Carriage moves
 back (Y72)

Carriage

LS backward
limit (X3)

Container for work

LS work present (X1)

Start button

Switch (LS work present)

Switch (LS forward limit)

Switch (LS backward limit)

Switch (LS open complete)

X0

X1

X2

X3

X4

Input

Y70

Y71

Y72

Y73

Y74

Output

MELSEC-Q

M

M

Operation indicator

Carriage moves forward

Carriage moves back

Push

Push back

App. - 30

Project name QA-10

Program name MAIN

Y700

M1PLS

X0 M2

X1 X3Y70

M1

Y71 X2
Y71SET

Y71RST

Y73SET

T0
Y73 K30

T0
Y73RST

Y74SET
Y74 X4

Y74RST

Y72SET
Y72 X3

Y72RST

M2

Operation indicator

Carriage moves forward.

Push

Push back

Carriage moves back.

Completion flag

Timing chart

Start button X0

Switch (LS work present) X1

Switch (LS forward limit) X2

Switch (LS backward limit) X3

Switch (LS open complete) X4

Operation indicator Y70

Carriage moves forward. Y71

Carriage moves back. Y72

Push Y73

Push back Y74
3sec

App. - 31

Appendix 4.21 Compressor sequential operation using ring counters

This system provides pressure control using three compressors.
A pressure shortage is detected by the three pressure switches. The number of
compressors operating simultaneously depends on the degree of shortage. To equal
the number of usages of each compressor, compressors are activated according to
the set order.

System configuration of compressor control

A B CCompressor

Pressure switch

PX1 PX2 PX3

Operating panel

MELSEC-Q

Sufficient
pressure

Start button Stop button

Pressure shortage "Major"

Pressure shortage "Medium"
Pressure shortage "Minor"

Start
PB0

Stop
PB1

Pressure switch
PX1

PX2

X0

X1

X2

X3

Input
Y70

Output

Y71

Y72

Y73

MC
A

MC
B

MC
C

Y74

Y75

Y76

Compressor A

Compressor B

Compressor C

Sufficient pressure

Pressure shortage "Minor"

Pressure shortage "Medium"

Pressure shortage "Major"

PX3 X4

MELSEC-Q

App. - 32

Operation explanation
(1) The pressure switches (X2, X3, and X4) are initially off. In this state, turning on

the start switch (X0) activates the three compressors all together, and when
sufficient pressure is obtained (X2, X3, and X4 turn on), the three compressors
stop. This is the basic operation of this system.
If all the compressors are at stop with sufficient pressure or the pressure
shortage "Minor" is detected (X4 turns off), one compressor is activated to
supply pressure until sufficient pressure is obtained.
The compressor activated at this time activates in order from A to C each time
compressors are reactivated in reaction to pressure shortage.
Note that the stop switch (X1) is available for stopping compressors at any time.

(2) If one compressor does not supply sufficient pressure and the pressure

shortage level goes up to "Medium" (X3 turns off), the second compressor is
activated to support the first compressor. This second compressor will be
compressor C if compressor A has been in operation, A if B has been in
operation, and B if C has been in operation.

(3) If two compressors do not supply sufficient pressure and pressure shortage

level goes up to "Major" (X2 turns off), the last compressor is also activated.
When only one compressor is in operation and pressure shortage level goes
from "Minor" to "Major" directly, the rest two compressors are activated
simultaneously.

(4) When two or three compressors are in operation, they continue operating

together until sufficient pressure is obtained. Then they stop together when
sufficient pressure is obtained (X4 turns on).

Start - (X0)

PX3 - (X4)

Pressure switch PX2 - (X3)

PX1 - (X2)

A - (Y70)

Compressor B - (Y71)

C - (Y72)

Pressure shortage
Compressor A,B,C

Major

B

Minor

C

Minor

A,C

Medium

A,B,C

Major

A

Minor

B

Minor

C

Minor

A,C

Medium

Timing chart

App. - 33

Project name QA-11

Program name MAIN

M00
X0 X1

M0

X4 Y76

Y75

During operation

Indicates pressure status

Turns on M9 at startup

Shifts by pressure
shortage "Minor"

X4

X4 X3 Y75

X4 Y76X3 X2

Y74

Y75

X2 X4

Y76

M0

Y74

M1

M2

M10

M0

M13

M10X4 M0

Y75 M11

Y76

M11

Y75 M12

Y76

M12

Y75 M10

Y76

Y73

Y74

Y76

Y70

Y71

Y72

Pressure shortage "Minor" is indicated
when the pressure switch X4 turns off.

Pressure shortage "Medium" is indicated
when the pressure switch X3 (Medium) turns off.

Pressure shortage "Major" is indicated
when the pressure switch X2 (Minor) turns off.

4

13

6

19

23

26

29

36

45

48

50

Resets when
X1 (stop) turns on

M0
31

Shift register

Pressure shortage "Minor"

Pressure shortage "Medium"

Pressure shortage "Major"

Returns shift to M10

Compressor A

Compressor B

Compressor C

M2PLS

M9SET

M13SFT

M12SFT

M11SFT

M10SFT

M13RST

M9RST

M12RST

M11RST

M10RST

M10SET

M1PLS

App. - 34

After the basic operation, one compressor is activated in reaction to pressure
shortage detected. To use the three compressors equally, they are activated
according to the set order. This control is enabled by the 3-stage ring counter
(ring-shaped shift registers) M10 to M12.
A shift signal is generated when pressure shortage is detected (X04 switches from
on to off).

SET

RST
M9

X0, Start

X1, Stop

X4, (PX3)
OFF

M10 M11 M12

A B C

Compressor

X4

M10

M11

M12

Shift operation

App. - 35

Appendix 4.22 Application example of positioning control

The following is an example of a positioning system with a pulse generator that
outputs pulses per motor, brake, and unit of distance.
In this system, a command value is set with the digital switch, and this set command
value is compared with the current value at start-up to determine in which direction,
forward or reverse, the motor rotates. The current value in the register D16 is
subtracted by 1 in forward direction, and incremented by 1 in reverse direction.
Positioning is completed when the command value matches the current value. The
current value is converted to a BCD value so that current position is represented in
4-digit decimal numbers.

X2

X0

X1

X20 to 23
X24 to 27
X28 to 2B
X2C to 2F

5 4 0 0

X1
X10
X100
X1000

X1000
X100
X10
X1

8263
mm mm

Command value setting switch Current value display

Y4C to 4F
Y48 to 4B
Y44 to 47
Y40 to 43

Y70
Y71
Y72

Start

MELSEC-Q

Pulse
generator

Home position

Forward
rotation

Reverse
rotation Motor Brake

Home
position

Forward
rotation Reverse

rotation
Brake

Project name QA-26

Program name MAIN

M00
X0 M2

M0

Y70

Y71

X2

During operation

Reads command value

Reverse rotation

Checks consistency with
command value

Displays current value
to exterior

D16D15<

D16D15>
M0 X1

D16D15=

SM400

D15K4X20BINP

Y72

Y71

Y70

D16K1-P

D16K1+P

M2

D16K0MOV

K4Y40D16BCD

Releases brake

Forward rotation

-1 during forward rotation

+1 during reverse rotation

Executes home position return

20

38

41
(always ON)

App. - 36

Appendix 4.23 Application example using index Z

(1) The number of manufactured products is counted every day in one month cycle,
and the resulting number is stored to the corresponding register of the date (D1
to D31).

(2) The planned number of products to be manufactured is inputted with the
external digital switch. Production stops when this number is accomplished.

(3) The date is also specified with the external digital switch.
(4) The accumulated number of products manufactured in the current month as

well as the number of manufactured products on the current day is displayed to
exterior.

K2X20

K4X30

X02

Input
module

Output
module

K2Y58

K4Y40

K4Y60

Date display

Manufactured number
on current day

Accumulated number

Date

Planned number
of products

Count value

3 0

0 1 8 0

3 0

0 1 8 0

3 7 8 2

The number of products manufactured on the current day is counted by C5.
The accumulated number of products manufactured is counted by C6.
The date is entered in the index Z to indirectly specify the data register
corresponding to the date using D0Z0.
When Z0 is 30, D0Z0 becomes 0 + 30, specifying D30.

[Device/Buffer Memory Batch Monitor screen]

Accumulated number

Planed number of products

Date

Stores the resulting
number of each day
ranging from 1 to 31
in D1 to D31.

Manufacturing results of each day ranging from 1 to 31 are stored in D1 to D31,
which are available as production data.

App. - 37

Project name QA-7

Program name MAIN

C5
SM410

C6
X0

Y070
M2

M3

SM400 (always ON)

C5

C6

X7

K4Y40D0Z0BCD

D33C6MOV

C6C5-P

C5RST

RST

RST

0

5

16

43

46

57

79

Digital switch
Writes 32760 to D35 and counts
products manufactured
when X20 to 2F are 0

D35K32760MOVK4X20K0=
X2

K4X20K0<>

D36K32<=

D36K1<= D36K31>=

D35K4X20BIN

D36K2X30BIN

SM411

Z0D36<>

Z0D36MOV

D0Z0C5MOV

K2Y58Z0BCD

K4Y60C6BCD

X6

K32K0FMOV

K3K0FMOV

D35

K32760

D0

K4Y40

(0.1-sec. clock)
Tentative count

value is set
C5

Inputs production command

Inputs date

Y70 flashes to indicate error
when date exceeding 31 is set

Specifies date indirectly

Stores number of products
manufactured to data register
Displays manufacture date
to exterior
Displays number of products
manufactured on current day
Displays number of products
manufactured in one month

Clears number of products
manufactured on day anytime,
 if necessary

Clears all at end of month

71

M2RST

PLS

M2SET

C5RST

M3

FMOV K0 D0 K32 Simultaneously transfers data 0 to D0 to D31.

FMOV K0 K4Y40 K3 Simultaneously transfers data 0 to K4Y40, K4Y50, and K4Y60.

App. - 38

Appendix 4.24 Application example of FIFO instruction

Manual coating work and its working time can be stored and duplicated by
machinery later.

MELSEC-Q
Conveyor system

Step

Coating bath

Teaching panel

20 21 22 23 24 25X

Position is detected by sensors of
X20 to 25

6)1)

4)

Left Right

X01 X00

Cleaning

X02 Y73

In automatic
operation

Recording

X03
Reading

X05
Automatic Stop

X06 X07

Magnified view of teaching panel

Cleaning
(Y72)

Left (Y71) (Y70) Right

2)
3) 5)

6

1

2

8

4

16

32

6

135

150

120

100

20

135

6

1

2

8

4

16

32

0

0

0

135

6

150

120

100

20

135

0

0

32

D30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

D10

11

12

13

14

15

16

D20

21

22

23

24

25

26

Pointer

Step 1)

2)

3)

4)

5)

6)

Pointer

135

Coating bath
pattern

Cleaning
time

1

K2Y74
Read using FIFRP

Write using FIFWP

FIFO table

FIFO table

Data is backed up when X03 is turned on

Backed up data is read
when X05 is turned on

135

D0 (timer constant of T0)

Write using FIFWPD0

K2X20

Current value of T1

Step 1)

2)

3)

4)

5)

6)

Read using FIFRP

Data is backed up when X03 is turned on

Backed up data is read
when X05 is turned on

App. - 39

Operation pattern from manual to automatic operation

Teaching panel Coating bath

X00 = Manual right moving button
X01 = Manual left moving button
X02 = Manual cleaning button
X03 = Recording data button
X05 = Reading data button
X06 = Automatic operation button
X07 = Operation stop button
Y73 = Automatic operation
 indication LED

X20 = Coating bath-1 (K2X20 = K1)
X21 = Coating bath-2 (K2X20 = K2)
X22 = Coating bath-3 (K2X20 = K4)
X23 = Coating bath-4 (K2X20 = K8)
X24 = Coating bath-5 (K2X20 = K16)
X25 = Coating bath-6 (K2X20 = K32)

Start moving to right (X00 = ON)

Stop moving to right (X00 = OFF)

Start cleaning (X02 = ON)

Finish cleaning (X02 = OFF)

Start moving to right (X00 = ON)

Stop moving to right (X00 = OFF)

Start cleaning (X02 = ON)

Finish cleaning (X02 = OFF)

Start moving to right (X00 = ON)

Stop moving to right (X00 = OFF)

Start cleaning (X02 = ON)

Finish cleaning (X02 = OFF)

Start moving to left (X01 = ON)

Stop moving to left (X01 = OFF)

Start cleaning (X02 = ON)

Finish cleaning (X02 = OFF)

Start moving to right (X00 = ON)

Stop moving to right (X00 = OFF)

Start cleaning (X02 = ON)

Finish cleaning (X02 = OFF)

Start moving to right (X00 = ON)

Stop moving to right (X00 = OFF)

Start cleaning (X02 = ON)

Finish cleaning (X02 = OFF)

Start automatic operation
(X06 = ON ? OFF)
Automatic operation indication LED
(Y73 = ON)

Cleaning machine

Y70 = Conveyor, Moving right
Y71 = Conveyor, Moving left
Y72 = Conveyor, Cleaning

Moving to right (Y70 = ON)

Stop moving (Y70 = OFF)

Cleaning (Y72 = ON)

Stop cleaning (Y72 = OFF)

Moving to right (Y70 = ON)

Stop moving (Y70 = OFF)

Cleaning (Y72 = ON)

Stop cleaning (Y72 = OFF)

Moving to right (Y70 = ON)

Stop moving (Y70 = OFF)

Cleaning (Y72 = ON)

Stop cleaning (Y72 = OFF)

Moving to left (Y71 = ON)

Stop moving (Y71 = OFF)

Cleaning (Y72 = ON)

Stop cleaning (Y72 = OFF)

Moving to right (Y70 = ON)

Stop moving (Y70 = OFF)

Cleaning (Y72 = ON)

Stop cleaning (Y72 = OFF)

Moving to right (Y70 = ON)

Stop moving (Y70 = OFF)

Cleaning (Y72 = ON)

Stop cleaning (Y72 = OFF)

Moving to left (Y71 = ON)

(Starts the automatic operation)

A

The same operation is repeated from (A).
A

2)

3)

4)

5)

6)

1)
Standby position (K2X20 = 0)
Coating bath-1 (K2X20 = 1)

Coating bath-2 (K2X20 = 2)

Coating bath-4 (K2X20 = 8)

Coating bath-3 (K2X20 = 4)

Coating bath-5 (K2X20 = 16)

Coating bath-6 (K2X20 = 32)

Coating bath-1 (K2X20 = 1)

App. - 40

Project name QA-9

Program name MAIN

Y73

0
SM403

FMOV K0 D0 K50

5
X6

> D10 K0
M2 SM403X7

Y73

M3

M4

M5

M6

M4

M6

M1
18 >= KO D10 M2

> K2Y74 K2X20
M5 M3

37 M4

> K2X20 K2Y74
M4 M3

44 M5

M3
51

T2

= K2Y74 K2X20
T0 Y73

T2

T2

T0

67
X0 X1 Y73 Y71

Y70

73
X1

M5

X0 Y73 Y70
Y71

79 > K2X20 KO
X2 SM403Y73

M6

23
M1 M2

FIFRP K2Y74 D10

FIFRP D1 D20

87
T2

Y72

90
M6

T1

M0V T1 DO

FIFWP D0 D20

99
M7

> K6 D10 FIFWP K2X20 D10

109
X3 Y73

BM0V D10 D30 K20

115
X5 Y73

BM0V D30 D10 K20

121
SM400

BCD D10 K1Y60

14
Y73 T0

PLS M1

PLF M7

125 END

31
M2 Y73T2

M3
M1

K3200

K10

D1

Resets data to 0 only once at RUN

Outputs to automatic operation indication LED
(Automatic operation mode is also indicated.)

FIF0 reading pulse in automatic operation

Finishes automatic operation
if data is not present

Reads position data of coating bath
if data is present

Reads cleaning time

Reading completed flag

Moves conveyor to right
since current position is on left

Moves conveyor to left
since current position is on right

Completes the movement and
starts cleaning (preventing chattering)

Moves conveyor to right

Moves conveyor to left

In auto-cleaning

Cleaning from conveyor

Measures manual cleaning time

Records manual cleaning time

Auto-cleaning end pulse

Records position of coating bath

Records cleaning time

Saves recorded data

Reads saved data

Displays number of recorded data

Auto-cleaning timer

App. - 41

Appendix 4.25 Application example of data shift

Works are conveyed along with their code numbers, and the data register of the
processing machinery is analyzed to machine the work according to its code
number.

During
operation

Y70

Output
module

Input
module

Start

Stop

Shift
instruction

Type detection
Code number
1 to 8

Movement of work

X0

X1

X2

K1X20

Machinery
Data

register Code 1 Code 2 Code 3 Code 4 Code 5 Code 6 Code 7 Code 8

A D30 M1 M2 M3 M4 M5 M6 M7 M8

B D31 M11 M12 M13 M14 M15 M16 M17 M18

C D32 M21 M22 M23 M24 M25 M26 M27 M28

D D33 M31 M32 M33 M34 M35 M36 M37 M38

E D34 M41 M42 M43 M44 M45 M46 M47 M48

F D35 M51 M52 M53 M54 M55 M56 M57 M58

A code number is stored in the data register, and M corresponding to the stored
number is activated to machine the work.

Machinery A Machinery B Machinery C Machinery D Machinery E Machinery F

D30 D31 D32 D33 D34 D35

A code number shifts
when X2 is turned on.

A code number is
input by K1X20.

App. - 42

Project name QA-12

Program name MAIN

Y70
X0

Y70

SM400 (always ON)

X2

M1
Y70

Y70

0

4

8

12

53

Machinery A

X1

94

D30K1X20MOV

K6D30DSFLP

M2

M3

M4

M5

M6

M7

M8

M11

M12

M13

M14

M15

M16

M17

M18

M21

M22

M23

M24

M25

M26

M27

M28

Y70

D30K1=

D30K2=

D30K3=

D30K4=

D30K5=

D30K6=

D30K7=

D30K8=

D31K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D31

D31

D31

D31

D31

D31

D31

D32K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D32

D32

D32

D32

D32

D32

D32

Machinery B

Machinery C

During operation

Imports code number

Shifts code number

App. - 43

M31
Y70

Y70

135

176

Machinery D

217

M32

M33

M34

M35

M36

M37

M38

M41

M42

M43

M44

M45

M46

M47

M48

M51

M52

M53

M54

M55

M56

M57

M58

Y70

D33K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D34K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

D35K1=

K2=

K3=

K4=

K5=

K6=

K7=

K8=

Machinery E

Machinery F

D35

D35

D35

D35

D35

D35

D35

D33

D33

D33

D33

D33

D33

D33

D34

D34

D34

D34

D34

D34

D34

App. - 44

Project name QA-14

Program name MAIN

Appendix 4.26 Example of operation program calculating square root of data

The data stored in D5 is calculated to its square root and the result is stored in D6
and D7.

X0

0

D6D5BSQR

K4Y50D7MOVP

Sets dataD5K4X20MOVP

K4Y60D6MOVP

Square root
operation
Square root
(integral part)
Square root
(decimal part)

D5 D6 D7
= 0 to 9999

(BCD value)
0 to 9999

(BCD value)
0 to 9999

(BCD value)

Results of square root operation are stored as follows.

Integral part Decimal part A value in 5th decimal digit is rounded off.
Therefore, a value in 4th decimal place
has error of ±1.

REMARK
QCPUs provide square root operation instructions for data in a real number
(floating point) format.

App. - 45

Project name QA-15

Program name MAIN

Appendix 4.27 Example of operation program calculating n-th power of data

A value stored in D10 is calculated to its n-th power ("n" is a value stored in D14)
and the result is stored in D10.

X1

X1

X1

X1

0

18

21

23

28

29
P0

K10K0FMOVP D10

D10K4X30BINP

D15D10MOVP

D14K2X20BINP

D14K1- P

P0SCJ

P0CJ

D14FOR

D10D15D10D*

D16K10000D10D/

NEXT

K6Y50D16DBCD

K4Y40D18DBCD

BCD-outputs value
in 10 digits to exterior

Multiplies value
n times

Sets n

Clears data

Sets data

NOTE
An operation error occurs if a value in D10 exceeds 2147483647.

App. - 46

Appendix 4.28 Program using digital switch to import data

When a set value of the digital switch is always input and stored to D10 of the
programmable controller

1 2 3 4

Digital switch Input module CPU

X20

X2F

Data
register
D10

to
Converted into BIN

BIN K4X20 D10
SM400 (always ON)

Wrong
configuration

In the above program, changing a value of the digital switch while the programmable
controller is in RUN may cause codes other than 0 to 9 depending on the timing of
the change, which may cause an operation error of the CPU.
To avoid this, write a program as follows.

(Example 1) For 4 digits of X20 to X2F

SM400
0 K1X20K0<= K1M20K1X20MOV

K1M24K1X24MOV

K1M28K1X28MOV

K1M32K1X2CMOV

D10K4M20BIN

K1X24K0

K1X28K0

K1X2CK0

K1X20K9>=

K1X24

K1X28

K1X2C

<=

<=

<=

K9

K9

K9

>=

>=

>=

(Example 2) For 8 digits of X20 to X3F
SM400

0 Z0RST

K8FOR

K1M100ZK1X20ZMOV

Z0K4+

NEXT

K1X20Z0K0 K1X20Z0<= K9>=

4

7

31

32 D10K8M100DBIN

K8Y40D10DBCD

SM400

App. - 47

Appendix 4.29 Displaying number of faults and fault numbers using fault detection program

The following program sequentially displays the number of turned-on bit devices
(such as X, M, and F) among many bit devices being used continuously, together
with their device numbers.

[Application example]
When M or F is used as an output device of a fault detection program, use the
following program to obtain a certain fault number from the faults.

[Sequence program flow]

Fault detection ladder

X2

1) Searching for faulty
 (ON) devices
2) Displaying the number
 of faulty devices

X0

Displaying the first
fault number

X1

Displaying the number of
remaining faulty devices
including currently
displayed number and
the next fault number

Displaying the
last fault number End

NO YES

Device F is used in
the program example.

Displays the number of
faulty devices on display A.

Displays the fault
number on display C.

Displays the next fault number on display C.

Display B Display A

(Y50 to Y5F) (Y40 to Y4F)

Display C

(Y60 to Y6F)

Condition of program

The total number
of faulty circuits
is set to 50.

(Operating procedure)

ON OFF

ON OFF

ON OFF

Displays the number of remaining
faulty devices on display A.

App. - 48

Project name QA-31

Program name MAIN

F3
X20

F5
X24

F8
X28

F13
X2C

F33
X30

F35
X34

F37
X38

F39
X3C

F1
X4

F11
X5

F16
X6

F40
X7

X2

M700

M500
X000

M500

M600

D10

K8F1DSUMP

D0MOVP

K8F33DSUMP

D10D0+P

K4Y40D10BCDP

M400SET

RST

PLS

M700SET

M200SET

M600RST

Z0K0MOV

D0K8F1DMOV

D0K8F33DMOVP

M200

M200 M400

0

4

8

12

16

20

24

28

32

36

40

44

48

73

80

95

Faulty circuit

Searches for
ON devices

Specifies start number
of faulty circuit
(F1 to 0)

D0

D0

App. - 49

M100

X1

M300

M800

103

120

125

144

150

164

M200

M700

SM700

Z0K32=

Z0K50=

K1D0

SET

Z0INC

K4Y60Z0BCD

M300PLS

M100RST

D10K1-

K4Y40D10BCD

M600SET

M200RST

K4Y60MOVP K0

M800PLS

M400RST

Searches for ON
devices shifting
32-bit data to right

Searches for
next ON devices

Resets when
search is finished

D10K0<

M100

DROR

(1) Searching for ON devices

DSUMP K8F1 D0

DSUMP K8F33 D0

1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

B15 B0

F
32

F
1

F
2

F
3

F
31

F
4

32 bits

S before
execution (K8F1)

A0 after
execution

The total number of bits with 1 is stored in BIN.
(in this example, 16)

Turning on X2 stores the number of turned-on bits among F1 to F64 to D10 and
display it.

App. - 50

1 1

1 1 1

0 0 0 0

0 0 1

1 1 1 1 1 1

0 0 1 0 0 1

0 0

0 0

0

0

1

1

0 0 0

0 00 0

1 1 1

1 1

0 0 0

0 00

0

0 0

1

0

1 0 0

00

0

1 0

1

F
16

F
1

F
48

F
33

F
32

F
17

F
64

F
49

F
50

16 16

7

23
D10

D10D0

Transferred by the MOVP instruction

Added by a
+P instruction

Number of ON inputs among X20 to 5B

D0

(2) Searching for ON devices shifting 32-bit data to right DROR D0 K1

0

DMOV K8F1 D0

DMOV K8F33 D0
1 1 0 0 1

1 1 01 0 1

F
32

F
31

F
3

F
2

F
1

F
0

32 bits

D1,D0

D1
(16 bits)

D0
(16 bits)

DMOV instruction

DROR D0 K1

1 1 1 0 0 1 1 1 00 1 1 1 0 0 1

1 1 1 1 0 0 1 1 1 00 1 1 1 0 0 1

B31B30B29B28B27 B17B16B15B14B13 B0B1B2B3B4B5

D0D1

To B31

To B31

Carry flag
(SM700)

Contents of
B0 before
execution

Before
execution

After
execution

(a) Turning on X0 sets the above shift data (D0 and D1). After that, the data is
shifted right by 1 bit at each scan until a turned-on bit is detected.
When a turned-on bit is detected, shifting stops in that scan (SM700 turns
on), and the accumulated number of shifts (equivalent to a device number)
is displayed.

(b) Each time X1 is turned on, the next turned-on bit is detected and the
detected device number is displayed. At the same time, 1 is subtracted
from the number of turned-on bits which have been obtained in advance to
display the remaining number of turned-on bits.

App. - 51

Appendix 5 Memory and File to be Handled by CPU Module

 Data to be stored in memories
The following table lists the data and drive numbers which can be stored in
the program memory, standard RAM, standard ROM, and memory card.

CPU module built-in memory
Memory

card (RAM)
Memory card (ROM)

Program

memory

Standard

RAM

Standard

ROM
SRAM card Flash card ATA card

Item

Drive 0*1 Drive 3*1 Drive 4*1 Drive 1*1 Drive 2*1

File name and

extension
Remarks

Parameter PARAM.QPA 1 data/drive

Intelligent function
module
parameter*2

 IPARAM.QPA 1 data/drive

Program *3 *4 *4 *4 ***.QPG -

Device comment *5 *6 *6 *6 *6 ***.QCD -

Device initial value ***.QDI -

Device data ***.QST -

File register *7*8 *9 ***.QDR -

Local device *7 ***.QDL 1 data/CPU
module

Sampling trace file *7 ***.QTD -

Error history data ***.QFD -
Device data
storage file

DEVSTORE.
QST -

Module error
collection file

IERRLOG.
QIE -

Backup data file
MEMBKUP0.
QBP -

Programmable
controller user
data

 *10 ***.*** -

User setting
system area*11 - -

: Required, : Storable, : Not storable

*1: A drive number is used to specify a memory to be written/read by the external device using a sequence program or MC protocol.

Since the memory name is used to specify the target memory in GX Works2, the drive number needs not to be considered.
*2: Store the intelligent function module parameters in the same drive with the parameters.

When they are stored in different drives, the intelligent function module parameters do not become valid.
*3: A program stored in the standard ROM cannot be executed.

Store the program to the program memory before execution.
*4: To execute a program stored in the memory card, make the setting in the Boot File tab of the Q Parameter Setting window.
*5: The device comments cannot be read by instructions in a sequence program.
*6: Reading from a sequence program requires several scans.
*7: Only each one of file register, one local device, and sampling trace file can be stored in the standard RAM.
*8: For the number of storable file registers, refer to QnUCPU User's Manual Function Explanation, Program Fundamentals.
*9: A sequence program allows reading only. No data can be written from the sequence program.
*10: Data can be written or read with the following instructions.

• SP.FREAD (batch-reads data from the specified file in the memory card.)
• SP.FWRITE (batch-writes data to the specified file in the memory card.)

*11: Set an area used by the system.

App. - 52

 Memory capacities and necessity of formatting

The following tables list the memory capacities and necessity of formatting
of each memory.

Q04UD(E)H
CPU

Q06UD(E)H
CPU

Q010UD(E)H
CPU

Q13UD(E)H
CPU

Q20UD(E)H
CPU

Q26UD(E)H
CPU Formatting

Program memory
40K steps

(160K byte)
60K steps

(240K byte)
100K steps
(400K byte)

130K steps
(520K byte)

200K steps
(800K byte)

260K steps
(1040K byte)

*1

Standard ROM 1024K byte 2048K byte 4096K byte Unnecessary
Standard RAM 256K byte 768K byte 1024K byte 1280K byte *1

SRAM
card

Q2MEM-1MBS: 1M byte
Q2MEM-2MBS: 2M byte
Q3MEM-4MBS: 4M byte
Q3MEM-8MBS: 8M byte

Necessary (use
GX Works2.)

Flash
card

Q2MEM-2MBF: 2M byte
Q2MEM-4MBF: 4M byte Unnecessary

Memory
card

ATA
card

Q2MEM-8MBA: 8M byte
Q2MEM-16MBA: 16M byte
Q2MEM-32MBA: 32M byte

Necessary (use
GX Works2.)

*1: When the memory contents become indefinite in the initial status or due to the end of battery life, the memory is automatically formatted after the

programmable controller is powered off and then on or is reset. Make sure to format the memory in GX Works2 before using.

 Q00UJCPU Q00UCPU Q01UCPU Q02UCPU Q03UD(E)CPU Formatting

Program memory 10K steps
(40K byte)

15K steps
(60K byte)

20K steps
(80K byte)

30K steps
(120K byte) *1

Standard ROM 256K byte 512K byte 1024K byte Unnecessary
Standard RAM - 128K byte 192K byte *1

SRAM
card -

Q2MEM-1MBS: 1M byte
Q2MEM-2MBS: 2M byte
Q3MEM-4MBS: 4M byte
Q3MEM-8MBS: 8M byte

Necessary (use
GX Works2.)

Flash
card - Q2MEM-2MBF: 2M byte

Q2MEM-4MBF: 4M byte Unnecessary
Memory
card

ATA
card -

Q2MEM-8MBA: 8M byte
Q2MEM-16MBA: 16M byte
Q2MEM-32MBA: 32M byte

Necessary (use
GX Works2.)

App. - 53

Appendix 6. Comparison with GX Developer (changes)

(1) Supported CPU modules
The following table lists the CPU modules that are supported in GX Works2.

Programmable controller

series
Programmable controller type

High Performance model QCPU
(Q02, Q02H, Q06H, Q12H, Q25H)

QCPU (Q mode)

Universal model QCPU
(Q00UJ, Q00U, Q01U, Q02U, Q03UD, Q03UDE,
Q04UDH, Q04UDEH, Q06UDH, Q06UDEH, Q10UDH,
Q10UDEH, Q13UDH, Q13UDEH, Q20UDH, Q20UDEH,
Q26UDH, Q26UDEH, Q50UDEH, Q100UDEH)

The following table lists the CPU modules that are not supported in GX Works2.
Use GX Developer for the following CPU modules.

Programmable controller

series
Programmable controller type

Basic model QCPU (Q00J, Q00, Q01)
Process CPU (Q02PH, Q06PH, Q12PH, Q25PH)
Redundant CPU (Q12PRH, Q25PRH)

QCPU (Q mode)

Remote I/O master (QJ71LP21, QJ71BR11)
QCPU (motion) All programmable controller types
QCPU (A mode) All programmable controller types
QSCPU All programmable controller types
QnACPU All programmable controller types
ACPU All programmable controller types
Motion controller (SCPU) All programmable controller types
CNC (M6, M7) All programmable controller types

App. - 54

(2) Unsupported features

The following table lists the features that are not supported in GX Works2.
Use GX Developer, GX Simulator, or GX Configurator for the following features.

Unsupported feature Alternate S/W

Online function TEL function
Monitor condition/Monitor stop condition setting
function
Scan time measurement function

Debug function for ladder program

Skip/Parts/Step execution function
Debug function Debug function for ST program
Breakpoint function

GX Developer
GX Simulator

Intelligent function module
programming function

Protocol FB support function

Intelligent function module debug
function

Debug support function

GX Configurator-SC

Trace function
System monitor function

Online function for positioning
module

Test mode function

GX Configurator-QP

Device memory registration function Device initial value function
Printing function

GX Developer

Password function Password registration function for data in project GX Developer
Interaction with GX Explorer Boot by GX Explorer GX Developer
Interaction with PX Developer Boot by PX Developer GX Developer
Interaction with GX Converter I/O function with GX Converter GX Developer
MEDOC print format import Import in MEDOC print format GX Developer
Online function Intelligent module diagnostics from system monitor GX Developer

GX Configurator
Sampling trace function Sampling trace function conditionally on step number GX Developer

App. - 55

(3) Supported project types

The following table lists the project types that are supported in GX Works2.

Project type Description

Simple project
(without labels)

This is the equivalent of the "Do not use label" project of GX Developer.

1) When a project created in the "Do not use label" of GX Developer is read with GX

Works2, the project becomes the Simple project (without labels).
2) When a project created in the Simple project (without labels) of GX Works2 is read with

GX Developer, the project becomes the "Do not use label" project.
Simple project
(with labels)

This is the equivalent of the "Use label" project of GX Developer.

1) When a project created in "Use label" of GX Developer is read with GX Works2, the

project becomes the Simple project (with labels).
2) When a project created in the Simple project (with labels) of GX Works2 is read with GX

Developer, the project becomes the "Use label" project.
Structured project In GX Works2, "structured programming" is available. The structured programming

proceeds while creating POUs and combining them (registering tasks in the program file).

1) When a project created in "Use label" with ST of GX Developer is read with GX Works2,

the project becomes "Structured Project"
2) The projects created in "Structured Project" of GX Works2 cannot be read with GX

Developer.

(a) Using project functions
Before using the project function in GX Works2, review the following
precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Protect projects By installing projects as "monitoring
only", the projects can be protected on
each personal computer.

By setting projects as "read-only with the
"Security" function, project-by-project protection
is now available.

Change project types Project types cannot be changed from
"Do not use label" to "Use label".

The following project type changes are now
available.

1) From "Simple project (without labels)" to

"Simple project (with labels)"
2) From "Simple project (with labels)" to

"Structured Project"
* Project type cannot be changed directly from

"Simple project (without labels)" to "Structured
Project".

Read GX Developer
format projects

Selecting [Project] → [Open Other Project] can read GX Developer format projects.

Read GX
Configurator-QP format
projects

Selecting [Project] → [Intelligent Function Module] → [Import GX Configurator-QP Data] can
read GX Configurator-QP format projects.

Copy data in a project
to different projects

It is enabled on the project copy dialog
box.

Copy and paste is now available in the Project
window.

App. - 56

(4) Programming languages supported by each project type

The following table lists the programming languages that are supported by each
project type of GX Works2.

Project type Supported programming language

Simple project
(without labels)

Ladder, SFC (MELSAP3)

Simple project
(with labels)

Ladder, SFC (MELSAP3)
* Supported program element: label, structure, function block

Structured project Ladder, SFC (MELSAP3), structured ladder, ST
* Supported program element: label, structure, function block, function block, library

The following programming languages are not supported in GX Works2.
Use GX Developer for the following programming languages.

Project type Supported programming language

List 1) When GX Works2 reads out a program created with lists in GX Developer, it can be
displayed or edited in ladder.

2) When GX Developer reads out a program created with ladder in GX Works2, it can be
displayed or edited in list.

MELSAP-L 1) When GX Works2 reads out a program created with MELSAP-L in GX Developer, it can
be displayed or edited in ladder.

2) When GX Developer reads out a program created with SFC (MELSAP3) in GX Works2, it
can be displayed or edited in MELSAP-L.

(a) Using ladder language

Before using the ladder language in GX Works2, review the following
precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Program giving devices
an alias

It is enabled by the "Alias" function. Use "Label".

Segment a part of
program into POUs
(macros)

It is enabled by the "Macro definition/
import" function.

Use "Function Block".

Find/Replace
instructions/devices/lab
els

Find is enabled by directly typing an
instruction/device/label in "Read mode".

Pressing the Space key on the ladder editor
allows the simple find.

Check use status of
device/label

It is enabled by the "Cross Reference
List" function and "List of Used Devices"
functions.

Select [Find/Replace] → [Cross Reference], or
[Find/Replace] → [Device List].

Merge the programs It is enabled by the "Merge Data"
function.

Use copy and paste on the label editor.

Verify No corresponding function The Verify Result window clearly shows the
following: "unmatched area of the programs",
"only verification source contains the program"
and "only verification destination contains the
program".

App. - 57

(b) Using SFC (MELSAP3) language

Before using the SFC (MELSAP3) language in GX Works2, review the
following precautions.

Description (differences between GX Developer and GX Works2) Function

GX Developer GX Works2

Change block number It is enabled by the "copy and paste"
function in block list.

Each block data is displayed in the Project
window, and the block number can be
changed in the property of each block data.

* Selecting [View] → [Open SFC Blocklist]

can display the block list equivalent to that
of GX Developer.

Auto scroll A new block diagram can be opened by
block start.

Selecting [View] → [Open Zoom/Start
Destination Block] can open it.

Open a start source block
by block start

No corresponding function Selecting [View] → [Back to Start SFC
Block] can open it.

Moving a cursor on the SFC diagram can
display zoom (operation output /transition
condition).

Selecting [View] → [Open Zoom/Start
Destination Block] can open it. Or
double-clicking while pressing the Ctrl key
also can open it.

Open operation/transition
condition programs

Multiple zooms (operation output/transition condition) can be simultaneously displayed.

* Changing the "Setting of Zoom Display" option can switch the display in a window in the

same way as GX Developer.

(c) Using labels

Before using labels in GX Works2, review the following precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Check devices
automatically assigned to
labels

It is enabled by the "Show assigned
device" function of label editor.

Check on the ladder editor by selecting [View]
→ [Device Display].

Import/Export device
comments to labels

It is enabled by the "device comment
import" function and "device comment
export" functions.

Use the copy and paste on the label editor
and device comment editor.

Use pointer-type labels Local pointers are assigned. Common pointers are now assigned.
For projects with labels, 2048 points are set
by default in "Common Pointer No." in the
"PLC System" tab of PLC Parameter.

Unusable reserved words
for label name

The definition of reserved words is different between GX Developer and GX Works2.

App. - 58

(d) Using function blocks
Before using function blocks in GX Works2, review the following
precautions.

Function Description

Use function blocks created with
ladder

Function blocks created with ladder can be used for ladder program, ST program,
and SFC program operation outputs.

* When using function blocks created with ladder for ST programs, select [Tool] →

[Options] → [Compile] → [Basic Setting] → "Enable function block call 'from
ladder to Structured Ladder/FBD' and 'from Structured Ladder/FBD or ST to
ladder".

Use function blocks created with
structured ladder

Function blocks created with structured ladder can be used for ladder programs,
structured ladder programs and ST programs.

Use function blocks created with
ST

Function blocks created with ST can be used for ladder programs, structured
ladder programs, and ST programs.

* When using function blocks created with ST for ladder programs, select [Tool] →

[Options] → [Compile] → [Basic Setting] → "Enable function block call 'from
ladder to Structured Ladder/FBD' and 'from Structured Ladder/FBD or ST to
ladder".

When the option "Enable function
block call 'from ladder to
Structured Ladder/FBD' and
'from Structured Ladder/FBD or
ST to ladder" is set

When the VAR_IN_OUT input variable and output variable have different
label/device, the input variable value is always equal to the output variable value.

(5) Using device comments
Before using device comments in GX Works2, review the following precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Delete comments of
unused devices

It is enabled by the "Delete unused
comments" function.

After checking the unused device by selecting
[Find/Replace] → [Device List], delete the
device comment directly.

Sample comment Sample comments of the special
relay/special register are provided in
project format.

Comments of the special relay/special register
and intelligent function module can be imported
by the "Import from Sample Comment" function
on the device comment editor.

(6) Using device memory
Before using the device memory in GX Works2, review the following
precautions.

Function Description

Device memory display Multiple device ranges can be displayed in a window.

* By selecting "All Range" when devices are input, all the device ranges can be displayed

in a window in the same way as that of GX Developer.
Copy and past device
memory data to Excel

To copy and paste device memory data to Excel, select [Tool] → [Read from Excel
File]/[Write to Excel File].

App. - 59

(7) Using device initial values
Before using device initial values in GX Works2, review the following
precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Maximum amount of
device initial value data to
be created

Only one set of data can be created. Up to 800 sets of data can be created.

Restriction of device
number

The device number must be within the
maximum points of each
programmable controller of devices.

The device number must be within the device
setting range of the PLC parameter.

Write to PLC/read from
PLC
IC memory card
write/read

Only 1 data can be read and written. Selected multiple data can be read and written.

(8) Using online function

Before using the online function in GX Works2, review the following
precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Connection destination
setting

A project can contain only one set of
"connection destination" information.

A project can contain multiple sets of
"connection destination" information.
To change the "connection destination"
information, select "Connection Destination" in
the Project window.

Write/Read data to/from
intelligent function
modules

Data can be written or read to/from
CPU modules and intelligent function
modules simultaneously.

Selecting [Online] → [Write to PLC] writes data
to CPU modules and intelligent function
modules simultaneously.
Selecting [Online] → [Read from PLC] reads
data from CPU modules and intelligent function
modules simultaneously.

Write data to the Flash
ROM of the CPU module

It is enabled by the "PLC write (Flash
ROM)" function.

The "PLC write (Flash ROM)" function is now
integrated in the "Write to PLC" function.
Select [Online] → [Write to PLC].

Remote operation window
PLC diagnostics window
System monitor window

Selecting [Online] → [Remote Operation] and [Diagnostics] → [System Monitor]/[PLC
Diagnostics] can display the module image and the programmable controller CPU
operation status is now easy to see.
The remote operation, memory operation, and clock setup can be started from the PLC
Diagnostics window.

Function Description

Symbolic information in GX Developer format does not include SFC programs. Read
symbolic information on "Simple project (without labels)".

Read from PLC

If symbolic information of GX Developer or GX IEC Developer is read out, the project
becomes uncompiled.

App. - 60

(9) Using monitor/debug function

Before using the monitor/debug function in GX Works2, review the following
precautions.

Function Description
The "entry device monitor" function is now a docking window as a "watch" function so that it
can be displayed without overlapping with the program editor.

Entry device monitor

Device/label is now enabled to be entered by dragging and dropping from the program
editor and the on/off status of bit devices and current values of word devices can be
modified on the monitor window.
The "device batch monitoring" and "buffer memory batch monitoring" functions are now
integrated to realize the same operability.

Device batch
monitoring
Buffer batch monitoring The on/off status of bit devices and current values of word devices can be modified on the

monitor window.
Monitor and test
intelligent function
modules

To use the monitoring or test function to FL-net (OPCN-2) interface unit and AS-i master
unit, execute the "watch" and "Device/Buffer memory batch monitor" function.

(10) Using printing function

Before using the printing function in GX Works2, review the following
precautions.

Function Description
Additional information
print such as statement
and device comment

The displayed image is printed or previewed.
To print additional information such as a statement and device comment, put the target
information on the screen and then select [Project] → [Print Window]/[Print Window
Preview].

(11) Copying saved project data

Before copying project data saved in GX Works2, review the following
precautions.

Description (differences between GX Developer and GX Works2) Function
GX Developer GX Works2

Copy saved project data Saved project data can be copied by
copying files under the project name
folder.

Copy all the workspace name folders and
"workspacelist.xml" created in the same hierarchy
as the workspace name folders.

(12) Compatibility with GX Developer

For the compatibility between GX Developer and GX Works2, review the
following precautions.

Function Description
Before opening a GX Developer "Use label" project of which a program and function
block have the same name, change the data name in GX Developer.

Open projects in other
formats

Function names of ST language are different between GX Developer and GX Works2.
Compile the program and correct errors.
Applicable projects are the following;
1) Simple project (without labels)
2) Compiled Simple project (with labels)

Projects using labels in SFC language are executed.
The project can be saved in GX Developer format when none of the following is applied.
1) No device is set.
2) The length of the label name exceeds 16 characters.
3) Label name contains a device name or reserved word.
4) An invalid character is used.
5) Data type which is not supported by GX Developer is used.
6) A value which is not constant is used in the constant.

Export projects to GX
Developer format file

Data registered to the global label is set as "Auto External" for all the local labels.

App. - 61

(13) Compatibility with GX IEC Developer

For the compatibility between GX IEC Developer and GX Works2, review the
following precautions.

Function Description
Open projects in other
formats

Function names of ST language are different between GX IEC Developer and GX
Works2.
Compile the program and correct errors.

User library Before using GX IEC Developer user libraries which a password is set to, cancel the
password in GX IEC Developer.

(14) Key operation

This section explains the differences of the key operation between GX
Developer and GX Works2.

Shortcut key Function Description
GX Developer GX Works2

Read mode Activates the read mode. Shift + F2 - (*1)

E
di

t

Write mode Activates the write mode. F2 - (*1)
Cross reference Displays the cross reference. -

Fi
nd

/R
ep

la
ce

Device List Displays the device list. -

C
on

ve
rt

Convert (all programs being edited) Converts all programs being edited. Ctrl + Alt + F4 -

Project data list
Switches display/non-display of the
project data list.

Alt + O -

Switch between the project data list
and window

Switches between the project data list
and each window.

Alt + 7 -

Vi
ew

Switch between ladder and list
Switches between the ladder window
and list window.

Alt + F1 -

Monitor (all the windows)
Monitors ladders of all the opened
programs.

Ctrl + F3 -

Monitor (write mode)
Activates the write mode during ladder
monitoring.

Shift + F3 - (*2)

M
on

ito
r

Stop monitor (all the windows)
Stops the ladder monitoring for all the
opened programs.

Ctrl + Alt + F3 -

Device test
Turns on or off the device forcibly or
modifies the current value.

Alt + 1 -

Skip execution
Executes selected sequence
programs in skip execution.

Alt + 2 -

Partial execution
Executes sequence programs
partially.

Alt + 3 - D
eb

ug

Step execution
Executes the programmable controller
CPU in step execution.

Alt + 4 -

O
nl

in
e

Remote operation Executes remote operations. Alt + 6 -

*1: In GX Works2, switching the ladder editor to the read mode/write mode is
unnecessary. The ladder can be edited any time.

*2: In GX Works2, switching the ladder editor to the monitor (write mode) during the
ladder monitoring is unnecessary.
Even during the ladder monitoring, the ladder can be edited and written to the
programmable controller in the RUN status.

App. - 62

Appendix 7 Customizing Shortcut Keys

Shortcut keys of each function can be customized.
Customized shortcut keys can be registered as a template and utilized.

Screen display

Select [Tool] → [Key Customize].

Item Description
Shortcut Key -

Category Select a category from the group list categorized by window.
Command Select a function name whose shortcut key is to be changed.
Current Key Displays the shortcut key assigned to the selected command.

Press the keys to assign

Specify a new shortcut key to be assigned. Pressing a key(s) on the
keyboard assigns the key(s).

Example)

Current
Displays the menu name to which the entered shortcut key is assigned.
When the key is already assigned to another function, the function name is
displayed.

Template

Select a template of shortcut keys from the list box.
• Default Setting

The default setting is set.
• GPPA Format Setting

The shortcut key setting at ladder programming is changed to the same
setting as that at GPPA.

App. - 63

Screen button

Assigns the shortcut key. The assigned shortcut key is displayed in "Current Key".

Deletes the shortcut key selected in "Current Key".

The Enter Template Name screen is displayed.
Register the assigned shortcut keys as a template with a name.
The registered template is displayed in "Template".

The selected template of shortcut keys is applied.

Deletes a template selected in "Template".

Imports a pre-saved template file (*.gks) and adds it to "Template".

Saves a template selected in "Template" as a template file (*.gks).

App. - 64

Appendix 8 Indexing

In the Universal model QCPU (excludes Q00UJCPU), expanding the index register
to 32 bits enables the indexing for all the file register areas.

ZR0

ZR1

ZR32767

ZR32768

ZR4184063

SM400

DM0V K1042431 Z0

D0ZR0Z0M0V

Serial number access

format file register

C
o

n
v
e

n
ti
o

n
a

l
a

re
a

to
 w

h
ic

h
 i
n

d
e

x
in

g

c
a

n
 b

e
 u

s
e

d

A
re

a
 t

o
 w

h
ic

h
 i
n

d
e

x
in

g
 c

a
n

 b
e

u
s
e

d
 o

f
U

n
iv

e
rs

a
l
m

o
d

e
l
Q

C
P

U

To index the serial number access format file

register (ZR) with 32-bit, use the index register (Z).

A method for specifying index registers for 32-bit indexing can be selected from
following two methods.

• Specifying the index range used for 32-bit indexing
• Specifying the 32-bit indexing using "ZZ" specification

(1) When specifying the index range used for 32-bit indexing

(a) Each index register can be set between -2147483648 and 2147483647.

The following shows an example of indexing.

X0
DMOV K40000 Z0

X0
MOV ZR10Z0 D0

Stores 40000 in Z0.

Stores the data of
ZR10Z0 = ZR{10+40000}
= ZR40010 in D0.

Indexing

(b) Specification method
For indexing with a 32-bit index register, specify the start number of an
index register to be used on the Device tab of the PLC parameter setting
screen in GX Works2.

POINT

When the start number of the index register used is changed on the Device tab
of the PLC parameter setting screen, do not change the parameters only or do
not write only the parameters into the programmable controller. Be sure to write
the parameters into the programmable controller with the program.
When the parameter is forced to be written into the programmable controller,
an error of CAN'T EXE. PRG. occurs. (Error code: 2500)

App. - 65

(c) Device for which indexing can be used

Indexing can be used only for the devices shown below.
• ZR: Serial number access format file register
• D: Extended data register
• W: Extended link register

(d) Usable range of index registers

The following table shows the usable range of index registers for indexing
with 32-bit index registers.
For indexing with 32-bit index registers, the specified index register (Zn)
and the next index register of the specified register (Zn+1) are used. Be
sure not to overlap index registers to be used.

Setting value Index registers to be used Setting value Index registers to be used

Z0 Z0, Z1 Z10 Z10, Z11
Z1 Z1, Z2 Z11 Z11, Z12
Z2 Z2, Z3 Z12 Z12, Z13
Z3 Z3, Z4 Z13 Z13, Z14
Z4 Z4, Z5 Z14 Z14, Z15
Z5 Z5, Z6 Z15 Z15, Z16
Z6 Z6, Z7 Z16 Z16, Z17
Z7 Z7, Z8 Z17 Z17, Z18
Z8 Z8, Z9 Z18 Z18, Z19
Z9 Z9, Z10 Z19 Cannot be specified.

(e) The following shows an example of indexing and the actual process device.

(When Z0 (32-bit) is 100000 and Z2 (16-bit) is -20)

Ladder example Actual process device

X0

DMOV K100000 Z0

MOV ZR1000Z0 D30Z2

MOV K-20 Z2

X1

MOV

Description

ZR101000 D10
X1

ZR1000Z0 ZR(1000+100000)=ZR101000
D30Z2 D(30-20)=D10

App. - 66

(2) When specifying the 32-bit indexing using "ZZ" specification

(a) One index register can specify 32-bit indexing using "ZZ" specification such

as "ZR0ZZ4".
The following shows the 32-bit indexing with "ZZ" specification.

M0

MOVP K100

DMOVP K100000 Z4

ZR0ZZ4

M0

Stores 100000 at Z4 and Z5.

Indexing ZR device with 32-bit

index registers (Z4 and Z5)

ZR (0+100000) =ZR100000
(b) Specification method

For 32-bit indexing using "ZZ" specification, select "Use ZZ" in [Indexing
Setting for ZR Device] in the Device tab in PLC parameter setting screen.

(c) Device for which indexing can be used

Indexing can be used only for the devices shown below.
• ZR: Serial number access format file register
• D: Extended data register
• W: Extended link register

(d) Usable range of index registers

The following table shows the usable range of index registers in 32-bit
indexing with "ZZ" specification.
The 32-bit indexing with "ZZ" specification is specified as the format
ZRmZZn.
Specifying ZRmZZn enables Zn and Zn+1 of 32-bit values to index the
device number of ZRm.

"ZZ"

specification*
Index registers to be used

"ZZ"
specification*

Index registers to be used

□ZZ0 Z0, Z1 □ZZ10 Z10, Z11
□ZZ1 Z1, Z2 □ZZ11 Z11, Z12
□ZZ2 Z2, Z3 □ZZ12 Z12, Z13
□ZZ3 Z3, Z4 □ZZ13 Z13, Z14
□ZZ4 Z4, Z5 □ZZ14 Z14, Z15
□ZZ5 Z5, Z6 □ZZ15 Z15, Z16
□ZZ6 Z6, Z7 □ZZ16 Z16, Z17
□ZZ7 Z7, Z8 □ZZ17 Z17, Z18
□ZZ8 Z8, Z9 □ZZ18 Z18, Z19
□ZZ9 Z9, Z10 □ZZ19 Cannot be specified.

*: □ indicates a device name (ZR, D, W) for indexing target

App. - 67

(e) The following shows an example of the 32-bit indexing with "ZZ"

specification and the actual processing device.
(When Z0 (32-bit) is 100000 and Z2 (16-bit) is -20)

Ladder example Actual process device

X0

DMOV K100000 Z0

MOV ZR1000Z0 D30Z2

MOV K-20 Z2

X1

MOV

Description

ZR101000 D10
X1

ZR1000Z0 ZR(1000+100000)=ZR101000
D30Z2 D(30-20)=D10

(f) Available functions for "ZZ" specification

The 32-bit indexing specification with "ZZ" specification applies to the
following functions of GX Works2.

No. Function name and description

1 Specifying devices in program instruction
2 Entry device monitor
3 Device test
4 Device test with conditions
5 Monitor condition setting

6
Sampling trace
(Trace point (specifying devices), trace target device)

POINT

ZZn cannot be used alone as a device like "DMOV K100000 ZZ0".
When setting values of index registers to specify 32-bit indexing with "ZZ"
specification, set the value of Zn (Z0 to Z19).
ZZn alone cannot be input to each function of GX Works2.

For details, refer to the QnUCPU User's Manual Function Explanation, Program
Fundamentals and MELSEC-Q/L Programming Manual (Common Instruction).

App. - 68

Appendix 9 FB

Appendix 9.1 FB

FB is an abbreviation for a Function Block that is designed to convert a ladder block,
which is used repeatedly in a sequence program, into a component (FB) to be
utilized in a sequence program.
This not only increases the efficiency of program development but also reduces
programming mistakes to improve program quality.

Converted into
a component FB

Figure App. 9.1 Converting a sequence program into a component

Appendix 9.1.1 Conversion into components

The following section explains the process to convert a simple program into a
component.

Input

Input label Output label

Output

X1

X1

 Y12

 Y22

X2

 D1 K12 Y12

 INCP D1

Internal device

Input
label

i_Count

Count_Num1
i_Count o_C_UP

Count_Num2
i_Count o_C_UP

Create input/output ladders (Setting parameter).

i_Count o_C_UP
Count_Num

Output
label

o_c_up

i_Count

 m_Cnt K12 o_C_UP

 INCP m_Cnt

Internal label

Count process 2

Count process 1

Program to be converted into a
component

When changed to an FB

Divide into input and output. In addition,
replace the internal device with an internal label.

Pasting the FB to a program

1) 2)

3) 4)

Figure App. 9.2 Flow of conversion into components

App. - 69

Appendix 9.1.2 Advantages of using FBs

This section introduces advantages of creating programs by using FBs.

(1) Easy programming

A sequence program can be created simply by pasting FBs. This significantly
reduces the program development man-hours. (FB libraries provided by
Mitsubishi Electric Corporation. makes programming easier.)

Only select an FB from the Selection window
and drag and drop it to paste.

(2) Easy reading
Using an FB creates a simple program with only a "box" (FB), an input, and an
output to create an easy-to-read sequence program.

App. - 70

(3) Reusing

Converting a standard program into a component allows the program to be
reused any number of times.
As a result, operations such as copying a sequence program and modifying a
device, which have often been required in the past, will be unnecessary.

Converted
into a component

FB for
start control

FB for
start control

FB for
start control

FB for
start control

(4) Improving quality
Converting a standard program into a component as an FB to reuse the
program allows development of programs of consistent quality, without relying
on the technological skill of the program developers.
When developers A and B are developing sequence programs for different
devices, using the same FB for the common processing enables the developers
to create consistent quality of sequence programs.

Common
FB

Individual process Individual process

Developer A Developer B

App. - 71

(5) Protecting assets

By setting up a block password, the created FB can be protected so that it
cannot be viewed.

Sequence program related
to the technical know-how

Convert the program into an FB
and protect it with a password.

Appendix 9.1.3 FB Libraries

An FB library is a collection of FBs that are usable in GX Works2 (Simple project).
Using an FB library enables easy setting and operation of MELSEC-Q/L modules
and partner products.

<Example of MELSEC-Q/L module>

FBs for partner products

Vision
sensor

FB FB FB
RFID

CC-Link

Ethernet

Laser
displacement

sensor

Vision sensor RFID Laser displacement sensor

Partner product family

App. - 72

<Example of partner product>

FBs for partner products

Vision
sensor

FB FB FB
RFID

CC-Link

Ethernet

Laser
displacement

sensor

Vision sensor RFID Laser displacement sensor

Partner product family

(1) FB library lineup
FB libraries include "FBs for MELSEC-Q/L modules" and "FBs for partner
products".

(2) How to obtain FB libraries

FB libraries can be obtained from Mitsubishi Electric FA site.

URL http://www.mitsubishielectric.co.jp/fa/index.html

For the procedure to obtain the FB libraries, refer to App. 9.2.2 "Preparations
prior to use of FB libraries".

App. - 73

Appendix 9.1.4 Development tool

GX Works2 (Simple project) ver 1.12N or later is required to develop sequence
programs using FBs.

POINT

Depending on the FB library, supporting versions of GX Works2 may differ.
For details, refer to the download page of each FB.

Appendix 9.1.5 FB specifications and precautions

The following specifications and precautions must be understood prior to using FBs.

1. An FB cannot be used in another FB.

2. Because an FB specific process is added when an FB is arranged, the
number of steps increases when compared to a ladder created without an FB.

3. FBs cannot be used in an interruption program.

4. FBs whose execution does not complete within a scan cannot be used in the
FOR to NEXT instruction loops or subroutine programs.

App. - 74

Appendix 9.2 Creating a program by using an FB library

This section explains the procedure to create a program by using an FB library.

Appendx 9.2.1 Programs to be created

This section explains how to use an FB library with an example of importing an
analog value from an analog input module.

Example) Reading an analog value to D10 from the analog input module (Q64AD)

when the switch (X2) is turned on.

The program can easily be created by using an FB library as follows.

When the switch (X2) is turned on,

Execution
command

FB for reading AD conversion
data of the specified channel

Analog value
is input.

The analog value is stored in D10.

POINT

The FB created by a user is also available other than the FB in the FB library.

For the creation method of a new FB, refer to "MELSOFT GX Works2 FB Quick
Start Guide".

App. - 75

Appendix 9.2.2 Preparations prior to use of FB libraries

Before using an FB library, contact your distributor to obtain it.
(FB libraries will not be installed when installing GX Works2.)

The following explains operation procedures using the FB library for Q64AD as an
example.

1) As the file obtained from your distributor is a zip format file, unzip
"q64ad_v100a.zip".

2) Double-click "setup.exe" in "q64ad_v100a".

Double-click!

3) The screen for installation is displayed. Follow the instructions to complete the

installation.

4) The following dialog is displayed when the installation is completed. Click the

 OK button to close the dialog.

Click!

This completes the preparation prior to use of FB libraries.

App. - 76

Appendix 9.2.3 Importing an FB library to projects

This section explains how to import an FB library for analog input module (Q64AD)
to be pasted to the program into a project.
Create a new project before the following operation.
(refer to section 2.3.2)

1) Click!

1) Click [Project] → [Library] → [Install].

3) Select!

4) Click!

5) Check!

6) Click!

2) The Install dialog box is displayed.

3) Select "Q64AD"from Library List.

4) Click the Refresh FB List button.

5) Check the library to import.

6) Click the OK button.

7) The imported FBs are displayed under FB_Pool in the Project view and displayed in the Selection
window.

.

App. - 77

Appendix 9.2.4 Pasting FBs

Drag and drop FBs to be pasted to the program window from the Project view or
Selection window. (Drag and drop from the Project view is possible from GX Works2
1.24A or later.)

Operating Procedure

1) Paste "M+Q64AD_ReadADVal" to the program window.

From the Selection window
or Project view, drag and
drop an FB to the place
where the FB will be pasted.

Selection window

Project window

2) The Input FB Instance Name dialog box is displayed.

For details of settings, refer to the next page.

App. - 78

Appendix 9.2.5 Setting names of the pasted FBs

When an FB library is pasted to the program window, a dialog to input a name of the
pasted FB (FB instance name) is displayed.

Instance name is a name to distinguish the FB.

A temporary name is automatically set to the instance name. To use the name as it
is, close the dialog by clicking OK .
Make sure that the same name does not exist in the same program when changing
the name.

In this section, the default is used.

Operating Procedure

1) Enter the FB instance name ("ReadADVal_1" in the example) and click the

 OK button.

Enter the FB instance name.

Click

2) The FB is pasted to the program window.

POINT

When entering an instance name, note the following points.
• Case-sensitive
• A number cannot be set for the first letter.
• The maximum number of characters for an instance name is 16.

An error occurs if OK is clicked with the following setting.

(When the first letter is a number).

App. - 79

Appendix 9.2.6 Creating input and output ladders

Create the input ladder section and the output ladder section of the pasted FB to
complete the program.
Refer to the following figure and enter the information.

FB execution command

Module mounting XY address: 80

Channel number: 1

FB is running: ON

Normal end: ON

Error end: ON

Stores the error code.

Stores the analog value.

Appendix 9.2.7 Performing conversion/compilation

Conversion/compilation is required to execute the completed program.
The following explains how to convert/compile all programs.

1) Click!

1) Click [Compile] → [Rebuild All].

2) Click!

2) The message on the left is displayed. Click
the Yes button.

3) Display!

3) The compilation result is displayed in the
Output window.

App. - 80

Appendix 9.2.8 Writing sequence programs

For the procedure to write sequence programs, refer to section 2.7 (1) "Writing data
to the CPU".

Appendix 9.2.9 Operation check

For the procedure to check the operation of the created program, refer to section 2.8
Monitoring Ladder Program Status.

Turn on the switch (X2) and confirm that the analog value is read.

Turn on the switch
(X10).

The current analog
value is displayed.

Double-clicking the FB in the sequence program on the screen enables monitoring
of the sequence program status in the FB.

SH-081123ENG-A

	SAFETY PRECAUTION
	REVISIONS
	CONTENTS
	INTRODUCTION
	CHAPTER 1 BASICS OF PROGRAMMABLE CONTROLLER
	1.1 Program
	1.2 Program Processing Procedure
	1.3 MELSEC-QnUD Module Configuration
	1.4 External I/O Signal and I/O Number
	1.5 System Configuration and I/O Number of Demonstration Machine

	CHAPTER 2 OPERATING GX Works2
	2.1 Features of GX Works2
	2.1.1 MELSOFT iQ Works

	2.2 Basic Knowledge Required for Operating GX Works2
	2.2.1 Screen configuration in GX Works2
	2.2.2 Ladder editor
	2.2.3 Project

	2.3 Operation Before Creating Ladder Program
	2.3.1 Starting up GX Works2
	2.3.2 Creating a new project

	2.4 Preparation for Starting Up CPU
	2.5 Creating Ladder Program
	2.5.1 Creating a ladder program using the function keys
	2.5.2 Creating a ladder program using the tool buttons

	2.6 Converting Program (Ladder Conversion)
	2.7 Writing/Reading Data to/from Programmable Controller CPU
	2.8 Monitoring Ladder Program Status
	2.9 Diagnosing Programmable Controller CPU
	2.10 Editing Ladder Program
	2.10.1 Modifying a part of the ladder program
	2.10.2 Drawing/deleting lines
	2.10.3 Inserting/deleting rows
	2.10.4 Cutting/copying ladder program

	2.11 Verifying Data
	2.12 Saving Ladder Program
	2.12.1 Saving newly-created or overwritten projects
	2.12.2 Saving a project with another name

	2.13 Reading the saved project
	2.14 Opening Projects in Different Format
	2.15 Saving Projects in Different Format

	CHAPTER 3 DEVICE AND PARAMETER OF PROGRAMMABLE CONTROLLER
	3.1 Device
	3.2 Parameter

	CHAPTER 4 SEQUENCE AND BASIC INSTRUCTIONS -PART 1-
	4.1 List of Instruction Explained in this Chapter
	4.2 Differences between [OUT] and [SET] / [RST]
	4.3 Measuring Timer
	4.4 Counting by Counter
	4.5 [PLS] Pulse (turns on the specified device for one scan at rising edge of an input condition.), [PLF] Pulf (turns on the specified device for one scan at falling edge of an input condition.)
	4.6 [MC] Master Control (Start), [MCR] Master Control Reset (End)
	4.7 [FEND] / [CJ] / [SCJ] / [CALL] / [RET]
	4.7.1 [FEND] F end
	4.7.2 [CJ] (Conditional jump: instataneous execution condition jump), [SCJ] (S conditional jump: execution condition jump after one scan)
	4.7.3 [CALL (P)] Call, [RET] Return, Executes a subroutine program

	4.8 Exercise
	4.8.1 [Exercise 1]
	4.8.2 [Exercise 2]
	4.8.3 [Exercise 3]
	4.8.4 [Exercise 4]

	CHAPTER 5 BASIC INSTRUCTION -PART 2-
	5.1 Notation of Values (Data)
	5.2 Transfer Instruction
	5.2.1 [MOV (P)] 16-bit data transfer
	5.2.2 [BIN (P)] BCD → BIN data conversion instruction
	5.2.3 [BCD (P)] BIN → BCD data conversion instruction
	5.2.4 Example of specifying digit for bit devices and transferring data
	5.2.5 [FMOV (P)] FMOV (Batch transfer of the same data), [BMOV (P)] BMOV (Batch transfer of the block data)

	5.3 Comparison Operation Instruction
	5.4 Arithmetic Operation Instruction
	5.4.1 [+(P)] BIN 16-bit data addition, [-(P)] BIN 16-bit data subtraction
	5.4.2 [* (P)] BIN 16-bit data multiplication, [/ (P)] BIN 16-bit data division
	5.4.3 32-bit data instructions and their necessity
	5.4.4 Calculation examples for multiplication and division including decimal points (when the multiplication or division is used)

	5.5 Index Register and File Register
	5.5.1 How to use index register Z
	5.5.2 How to use file register R

	5.6 External Setting of Timer/Counter Set Value and External Display of Current Value
	5.7 Exercise
	5.7.1 [Exercise 1] MOV
	5.7.2 [Exercise 2] BIN and BCD conversion
	5.7.3 [Exercise 3] FMOV
	5.7.4 [Exercise 4] Comparison instruction
	5.7.5 [Exercise 5] Addition and subtraction instructions
	5.7.6 [Exercise 6] Multiplication and division instructions
	5.7.7 [Exercise 7] D-multiplication and D-division

	CHAPTER 6 HOW TO USE OTHER FUNCTIONS
	6.1 Test Function at Online
	6.1.1 Turning on and off the device "Y" forcibly
	6.1.2 Setting and resetting the device "M"
	6.1.3 Changing the current value of the device "T"
	6.1.4 Reading error steps
	6.1.5 Remote STOP and RUN

	6.2 Forced I/O Assignment by Parameter Settings
	6.3 How to Use Retentive Timers
	6.4 Device Batch Replacement
	6.4.1 Batch replacement of device numbers
	6.4.2 Batch change of specified devices between normally open contacts and normally closed contacts

	6.5 Online Program Change
	6.6 Registering Devices
	6.7 How to Create Comments
	6.8 Setting Security for Projects
	6.8.1 Setting and resetting security for projects
	6.8.2 Managing (adding, deleting, and changing) users
	6.8.3 Logging in projects
	6.8.4 Changing access authority for each access level

	6.9 Sampling Trace Function

	CHAPTER 7 PROGRAMMING INTELLIGENT FUNCTION MODULE
	7.1 Intelligent Function Module
	7.2 Data Communication between Intelligent Function Modules and CPUs
	7.2.1 I/O signals to CPUs
	7.2.2 Data communication with intelligent function modules

	7.3 Communication with Intelligent Function Module
	7.3.1 Communication methods with intelligent function modules

	7.4 Intelligent Function Module System in Demonstration Machine
	7.5 Q64AD Analog/Digital Converter Module
	7.5.1 Names of parts
	7.5.2 A/D conversion characteristics
	7.5.3 List of I/O signals and buffer memory assignment
	7.5.4 Adding or setting intelligent function module data
	7.5.5 Exercise with the demonstration machine

	7.6 Q62DAN Digital/Analog Converter Module
	7.6.1 Names of parts
	7.6.2 D/A conversion characteristics
	7.6.3 List of I/O signals and buffer memory assignment
	7.6.4 Adding or setting intelligent function module data
	7.6.5 Exercise with the demonstration machine

	CHAPTER 8 SIMULATION FUNCTION
	8.1 Simulation Function
	8.2 Starting/Stopping Simulation
	8.3 Debugging with Example Program
	8.3.1 Monitoring and testing device status

	CHAPTER 9 MAINTENANCE
	9.1 Typical Trouble
	9.2 Maintenance
	9.3 Consumable Product
	9.4 Service Life of Output Relay
	9.5 Spare Product
	9.6 Using Support Equipment

	APPENDIX
	Appendix 1 I/O Control Mode
	Appendix 1.1 Direct mode
	Appendix 1.2 Refresh mode
	Appendix 1.3 Comparisons between the direct mode and refresh mode

	Appendix 2 Special Relay
	Appendix 3 Special Register
	Appendix 4 Application Program Example
	Appendix 4.1 Flip-flop ladder
	Appendix 4.2 One shot ladder
	Appendix 4.3 Long-time timer
	Appendix 4.4 Off delay timer
	Appendix 4.5 On delay timer (momentary input)
	Appendix 4.6 ON-OFF repeat ladder
	Appendix 4.7 Preventing chattering input
	Appendix 4.8 Ladders with a common line
	Appendix 4.9 Time control program
	Appendix 4.10 Clock ladder
	Appendix 4.10.1 Clock function (supplement)
	Appendix 4.11 Starting stardelta operation of electrical machinery
	Appendix 4.12 Displaying elapsed time and outputting before time limit
	Appendix 4.13 Retentive timer
	Appendix 4.14 Switching timer set value externally
	Appendix 4.15 Setting counters externally
	Appendix 4.16 Measuring operation time
	Appendix 4.17 Measuring cycle time
	Appendix 4.18 Application example of (D) CML (P)
	Appendix 4.19 Program showing divided value of 4-digit BIN value to 4 places of decimals
	Appendix 4.20 Carriage line control
	Appendix 4.21 Compressor sequential operation using ring counters
	Appendix 4.22 Application example of positioning control
	Appendix 4.23 Application example using index Z
	Appendix 4.24 Application example of FIFO instruction
	Appendix 4.25 Application example of data shift
	Appendix 4.26 Example of operation program calculating square root of data
	Appendix 4.27 Example of operation program calculating n-th power of data
	Appendix 4.28 Program using digital switch to import data
	Appendix 4.29 Displaying number of faults and fault numbers using fault detection program

	Appendix 5 Memory and File to be Handled by CPU Module
	Appendix 6. Comparison with GX Developer (changes)
	Appendix 7 Customizing Shortcut Keys
	Appendix 8 Indexing
	Appendix 9 FB
	Appendix 9.1 FB
	Appendix 9.1.1 Conversion into components
	Appendix 9.1.2 Advantages of using FBs
	Appendix 9.1.3 FB Libraries
	Appendix 9.1.4 Development tool
	Appendix 9.1.5 FB specifications and precautions

	Appendix 9.2 Creating a program by using an FB library
	Appendx 9.2.1 Programs to be created
	Appendix 9.2.2 Preparations prior to use of FB libraries
	Appendix 9.2.3 Importing an FB library to projects
	Appendix 9.2.4 Pasting FBs
	Appendix 9.2.5 Setting names of the pasted FBs
	Appendix 9.2.6 Creating input and output ladders
	Appendix 9.2.7 Performing conversion/compilation
	Appendix 9.2.8 Writing sequence programs
	Appendix 9.2.9 Operation check

