Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort.

The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.
Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Mitsubishi Electric elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Mitsubishi Electric promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

Contents

- Introduction 5–6
- Ecology 7–8
- Efficiency 9–11
- Safety and Comfort 12–14
- Standard Design 15
- Features 16–18
- Basic Specifications 19–24
- Important Information on Elevator Planning 25

Application

We provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

... technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Ecology

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Reduction motor</td>
<td>Reduction motor</td>
<td>Permanent magnet motor</td>
<td>Permanent magnet motor</td>
<td>Permanent magnet motor</td>
</tr>
<tr>
<td>Traction machine</td>
<td>AC2 control</td>
<td>AC2 control</td>
<td>VVVF* control</td>
<td>VVVF* control</td>
<td>VVVF* control</td>
</tr>
<tr>
<td>Motor drive</td>
<td>AC2 control</td>
<td>AC2 control</td>
<td>VVVF* control</td>
<td>VVVF* control</td>
<td>VVVF* control</td>
</tr>
<tr>
<td>Control circuit</td>
<td>Relay</td>
<td>Relay</td>
<td>Relay</td>
<td>Relay</td>
<td>Relay</td>
</tr>
<tr>
<td>Power consumption / CO2 emissions</td>
<td>30%</td>
<td>25%</td>
<td>20%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Advantages</td>
<td>Approx. -70%</td>
<td>Approx. -60%</td>
<td>Approx. -50%</td>
<td>Approx. -40%</td>
<td>Approx. -30%</td>
</tr>
</tbody>
</table>

Notes:
1. Alternative current, variable voltage
2. Variable voltage, variable frequency
3. CO2 emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.

Regenerative Converter: PCNV (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%.* In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Note: * The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.

Reusing Energy

LED Lighting (Optional)

Energy-efficient LEDs consume less power than conventional lamps. Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, the long service life eliminates the need for frequent lamp replacement.

<table>
<thead>
<tr>
<th>Advantage of LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling: L210S</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
<tr>
<td>Distribution transformer</td>
</tr>
<tr>
<td>Motor</td>
</tr>
<tr>
<td>Regenerative converter</td>
</tr>
<tr>
<td>Control panel</td>
</tr>
</tbody>
</table>

Energy-saving Features

Mitsubishi Electric offers features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars: ESO-N (Optional for ΣAI-22)
The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control: ESO-W (ΣAI-2200C only)
Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic: CFO-A/CLO-A
The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.
Smooth Mobility through Efficient Group Control

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

Group Control Systems: ΣAI-22 and ΣAI-2200C

ΣAI-22 and ΣAI-2200C control multiple elevators optimally according to the building size.

Improving of traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation — Allocation Control: ESO-W (ΣAI-2200C)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Car allocation that maximizes operational efficiency does not necessarily translate to energy efficiency. A car uses energy efficiently when it travels down with a heavy load, or up with a light load. Accordingly, if multiple cars have the same traveling distance, this system chooses the car that requires the least energy.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Forecasting a Near-Future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.
Dynamic Rule-set Optimizer (ΣAI-2200C)

Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Allocation System: DOAS (Optional for ΣAI-2200C)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement of hall fixtures (No hall lantern* is provided.)

Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Providing a Safe, Comfortable Ride

Whether the user is elderly or a person with special need, our elevators deliver every passenger to the destination floor safely and comfortably.

*Hall lanterns are available as optional.

The features introduced on these pages are applicable to ΣAI-2200C only. Please refer to page 17 and 18, and the ΣAI-2200C brochure for other features and details.
Emergency Situations

Emergency operations*
Enhance safety by adding emergency operation features which quickly respond to a power failure, fire or earthquake.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power failure</td>
<td>Mitsubishi Emergency Landing Device: MELD (Optional)</td>
</tr>
<tr>
<td></td>
<td>Upon power failure, a car automatically moves to the nearest floor using a rechargeable</td>
</tr>
<tr>
<td></td>
<td>battery to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Fire</td>
<td>Operation by Emergency Power Source — Automatic/Manual: OEPS (Optional)</td>
</tr>
<tr>
<td></td>
<td>Upon power failure, predetermined car(s) use a building’s emergency power supply to move to</td>
</tr>
<tr>
<td></td>
<td>a specified floor and open the doors for passengers to evacuate. After all cars have</td>
</tr>
<tr>
<td></td>
<td>arrived, predetermined car(s) will resume normal operation.</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Earthquake Emergency Return: EER-P/EER-S (Optional)</td>
</tr>
<tr>
<td></td>
<td>When a primary and/or secondary wave seismic sensor is activated, all cars stop at the</td>
</tr>
<tr>
<td></td>
<td>nearest floor and park there with the doors open to facilitate the safe evacuation of</td>
</tr>
<tr>
<td></td>
<td>passengers.</td>
</tr>
</tbody>
</table>

For Comfortable Use

User-oriented Design
Great care is taken in the design and manufacture of each and every elevator part to ensure a comfortable, user-friendly ride.

Clear Font
The font for indicators and buttons is highly visible. On tactile buttons in particular, the font makes letters/numbers easy for visually-impaired passengers to distinguish.

<table>
<thead>
<tr>
<th>Indication examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal operation</td>
</tr>
<tr>
<td>Emergency operation</td>
</tr>
</tbody>
</table>

For Safe Boarding

Door safety devices
Our reliable safety device ensures that the doors are clear to open and close. Depending on the type of sensor, the detection area differs.

For Comfortable Use

<table>
<thead>
<tr>
<th>Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylish Blue</td>
</tr>
<tr>
<td>Modern White</td>
</tr>
<tr>
<td>Fine Green</td>
</tr>
<tr>
<td>Elegance Brown</td>
</tr>
</tbody>
</table>

*Please consult our local agents for the production terms, etc.

Standard Design

Car

Ceiling: S00

Car operating panel

For front return panel

![Image](image)

CBV1-C760

Car Design Example

- **Walls:** SUS-HL
- **Transom panel:** SUS-HL
- **Doors:** SUS-HL
- **Front return panels:** SUS-HL
- **Kickplate:** Aluminum
- **Flooring:** PR803: Gray

Car operating panel

- CBV1-C760

- **Segment LED indicators**
 - Tactile button with yellow-orange lighting

- **Hall position indicators and buttons**
 - With plastic case

Hall Design Example

- **Jamb:** SUS-HL
- **Doors:** SUS-HL
- **Hall position indicator and button**
 - PVI-A1010N

Notes:

- 1: Maximum number of floors: 22 floors
- 2: Some letters of the alphabet are not available. Please consult our local agents for details.

Hall

Narrow Jamb: E-102

With plastic case

Hall position indicators and buttons

- **Jamb**
 - SUS-HL
 - SUS-HL

Hall Design Example

- **Jamb:** SUS-HL
- **Doors:** SUS-HL
- **Hall position indicator and button**
 - PVI-A1010N

Notes:

- Actual colors may differ slightly from those shown.

EMERGENCY OPERATIONS AND FEATURES

- **Building Management System-GateWay**
 - BMS-GW
- **Earthquake Emergency Return**
 - EBR-P
- **Emergency Car Lighting**
 - ECL
- **Fire Emergency Return**
 - FER
- **Firefighter’s Emergency Operation**
 - FE
- **Mitsubishi Elevators & Escalators Monitoring and Control System**
 - WP-W
- **Mitsubishi Emergency Landing Device**
 - MELD
- **Operation by Emergency Power Source — Automatic/Manual**
 - OEPS
- **Supervisory Panel**
 - WP

Door Operation Features

- **Double Door System Time Adjustment**
 - DOT
- **Automatic Door Speed Control**
 - DAC
- **Door Load Detector**
 - DLD
- **Door Nudging Feature — With Buzzer**
 - NDG
- **Door Sensor Self-diagnosis**
 - DODA
- **Electronic Doorman**
 - EDM
- **Extended Door-open Button**
 - DKO-TB
- **Hall Motion Sensor**
 - HMS
- **Multi-beam Door Sensor**
 -
- **Multi-beam Door Sensor — Signal Type**
 - MBS
- **Ropem with Hall Button**
 - ROHB
- **Repealed Door-clos**
 - ROC
- **Safety Door Edge**
 - SDE
- **Safety Ray**
 - SR

Notes:

- 1: 1C to 8C (1-car select collective) — Standard, 2C to 16C (2-car group control system) — Optional
- 2: 3C to 8C (3-car group control system) — Optional, 3C to 24C (3-car group control system) — Optional
- 3: Standard — Optional
- 4: Not applicable to 1C-2C & 3C to 8C
- 5: When a 1C-2C, please consult our local agents.
- 6: Please consult our local agents for the production terms, etc.
Features (2/2)

OPERATIONAL AND SERVICE FEATURES

Operational And Service Features

- **Automatic Car Call Cancelling**
- **Backup Operation for Registration**
- **Congested-floor Service**
- **Secret Call Service**
- **Overload Holding Stop**
- **Non-service Temporary**
- **Non-service to Specific**
- **Non-service to Specific**
- **Independent Service**
- **False Call Canceling — Elevator and Security**

SIGNAL AND DISPLAY FEATURES

Signal And Display Features

- **Auxiliary Car Operating Panel**
- **Basic Announcement**
- **Car Arrival Chime**
- **Car Information Display**
- **Car LCD Position Indicator**
- **Display Panel**
- **Intercommunication System**
- **Second Car Priority**
- **Solution Button**
- **Voice Guidance System**

GROUP CONTROL FEATURES

Group Control Features

- **Booster**
- **Closed-car Priority Service**
- **Congested-floor Service**
- **Destination-oriented Allocation System**
- **Error Report**
- **Group Call Service**
- **Intercommunication System**
- **Second Car Priority**
- **Solution Button**
- **Voice Guidance System**

Notes:
1. **1C to 2BC** (1-car selective collective) - Standard, **2C to 2BC** (2-car group control system) - Optional.
2. **ESO-N:** To save energy, the number of service cars is automatically reduced to some extent, but not so much that it significantly affects passenger waiting time.
3. **FFS:** A car can automatically stop at a user-designated floor on every trip without being called.
4. **General Information Display**
5. **Limited Elevator**
6. **Under limited conditions, a car can be assigned for independent service.**
7. **The DOAS cannot be combined with some features. Please refer to the ZA-22BDC brochure for those features.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance height (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>450</td>
<td>1.0</td>
<td>CO</td>
<td>2400</td>
<td>2400×1450</td>
<td>AA = 1700</td>
<td>1850×2900</td>
<td>2400×2150</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>500</td>
<td>1.5</td>
<td>CO</td>
<td>2000</td>
<td>2000×1350</td>
<td>AA = 1700</td>
<td>1800×2900</td>
<td>2400×2150</td>
</tr>
<tr>
<td>P9</td>
<td>9</td>
<td>600</td>
<td>1.75</td>
<td>CO</td>
<td>1800</td>
<td>1800×1150</td>
<td>AA = 1700</td>
<td>1500×2750</td>
<td>2000×2150</td>
</tr>
<tr>
<td>P10</td>
<td>10</td>
<td>700</td>
<td>2.5</td>
<td>CO</td>
<td>1500</td>
<td>1500×950</td>
<td>AA = 1700</td>
<td>1250×2550</td>
<td>1800×2150</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>750</td>
<td>2.5</td>
<td>CO</td>
<td>1400</td>
<td>1400×750</td>
<td>AA = 1700</td>
<td>1050×2350</td>
<td>1600×2150</td>
</tr>
<tr>
<td>P13</td>
<td>13</td>
<td>900</td>
<td>2.5</td>
<td>CO</td>
<td>1200</td>
<td>1200×550</td>
<td>AA = 1700</td>
<td>800×2150</td>
<td>1200×2150</td>
</tr>
<tr>
<td>P15</td>
<td>15</td>
<td>1000</td>
<td>2.5</td>
<td>CO</td>
<td>1000</td>
<td>1000×350</td>
<td>AA = 1700</td>
<td>550×2150</td>
<td>1000×2150</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1150</td>
<td>2.5</td>
<td>CO</td>
<td>800</td>
<td>800×1550</td>
<td>AA = 1700</td>
<td>300×2150</td>
<td>800×2150</td>
</tr>
<tr>
<td>P20</td>
<td>20</td>
<td>1250</td>
<td>2.5</td>
<td>CO</td>
<td>600</td>
<td>600×1350</td>
<td>AA = 1700</td>
<td>100×2150</td>
<td>600×2150</td>
</tr>
<tr>
<td>P24</td>
<td>24</td>
<td>1600</td>
<td>2.5</td>
<td>CO</td>
<td>400</td>
<td>400×1150</td>
<td>AA = 1700</td>
<td>0×2150</td>
<td>400×2150</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>450</td>
<td>80</td>
<td>30</td>
<td>4950</td>
<td>80</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>1.5</td>
<td>500</td>
<td>100</td>
<td>30</td>
<td>4720</td>
<td>100</td>
<td>2100</td>
<td>2100</td>
</tr>
<tr>
<td>2.0</td>
<td>550</td>
<td>120</td>
<td>30</td>
<td>4500</td>
<td>120</td>
<td>2200</td>
<td>2200</td>
</tr>
<tr>
<td>2.5</td>
<td>600</td>
<td>160</td>
<td>30</td>
<td>4950</td>
<td>160</td>
<td>2500</td>
<td>2500</td>
</tr>
</tbody>
</table>

Elevation

The dimensional information shown here in this page is based on Mitsubishi Electric Standard car size. For safety features, please consult our local agent.

Notes:
- Machine room clear height: HM
- Minimum machine room clear height: HM
- Minimum floor to floor height: FFH
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
- Maximum travel: TR
- Machine room clear height: HM
- Ceiling height: C
- Maximum travel: TR
- Minimum overhead: OH
- Minimum pit depth: PD
- Number of stops: SN
- Minimum floor to floor height: FFH
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>1.0</td>
<td>CO</td>
<td>1400×1150</td>
<td>Rear 1900×1550</td>
<td>900</td>
<td>1600×1400</td>
<td>5550×1290</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
<td></td>
<td>1700×1200</td>
<td>Side 2100×1700</td>
<td>1100×900</td>
<td>1850×1600</td>
<td>6150×1290</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>2.0</td>
<td>CO</td>
<td>2000×1400</td>
<td>Rear 2700×1800</td>
<td>1300×100</td>
<td>2150×1900</td>
<td>8050×1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>2S</td>
<td>2500×1600</td>
<td>Side 2400×1900</td>
<td>1500×110</td>
<td>2650×2000</td>
<td>9050×1300</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>2.0</td>
<td>CO</td>
<td>2600×1400</td>
<td>Rear 3000×2000</td>
<td>1900×120</td>
<td>2850×2100</td>
<td>1050×1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>2S</td>
<td>3100×1500</td>
<td>Side 3400×2300</td>
<td>2100×130</td>
<td>3250×2400</td>
<td>1150×1300</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>2.0</td>
<td>CO</td>
<td>3200×1600</td>
<td>Rear 3600×2200</td>
<td>2200×140</td>
<td>3450×2300</td>
<td>1250×1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>2S</td>
<td>3700×1710</td>
<td>Side 4000×2600</td>
<td>2400×150</td>
<td>3650×2600</td>
<td>1350×1300</td>
</tr>
</tbody>
</table>

Note:
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Please consult our local agents for other specifications.
- This table shows standard specifications without the fireproof landing door and counterweight safety.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>P2</td>
<td>60</td>
<td>10</td>
<td>36120</td>
<td>1900</td>
<td>2500</td>
<td>2200</td>
</tr>
<tr>
<td>1.5</td>
<td>P2</td>
<td>90</td>
<td>10</td>
<td>36120</td>
<td>1900</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>2.0</td>
<td>P2</td>
<td>120</td>
<td>10</td>
<td>4120</td>
<td>2400</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>2.5</td>
<td>P2</td>
<td>150</td>
<td>10</td>
<td>4620</td>
<td>2900</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>3.0</td>
<td>P2</td>
<td>190</td>
<td>10</td>
<td>5120</td>
<td>3400</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>4.0</td>
<td>P2</td>
<td>250</td>
<td>10</td>
<td>5620</td>
<td>4400</td>
<td>5000</td>
<td>5000</td>
</tr>
</tbody>
</table>

(Elevation)

Note: Hoistway section for counterweight side drop is slightly different from this figure.

Basic code compliance

The dimensional information shown here in this page is based on the requirements of EN81-1. For other components, please consult our local agent.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (Ah×Bh)</th>
<th>Minimum hoistway dimensions (Ah×Bh/car)</th>
<th>Minimum machine room dimensions (Ah×Bh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>10</td>
<td>750</td>
<td></td>
<td>CO</td>
<td>1400×1300</td>
<td>1950×1800</td>
<td>1260×1760</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td></td>
<td>CO</td>
<td>1400×1350</td>
<td>1950×1900</td>
<td>1260×1860</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>12</td>
<td>900</td>
<td></td>
<td>CO</td>
<td>1400×1400</td>
<td>1950×2000</td>
<td>1260×1960</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td></td>
<td>CO</td>
<td>1400×1500</td>
<td>1950×2100</td>
<td>1260×2060</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>16</td>
<td>1200</td>
<td></td>
<td>CO</td>
<td>1400×1600</td>
<td>1950×2200</td>
<td>1260×2160</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1375</td>
<td></td>
<td>CO</td>
<td>1400×1700</td>
<td>1950×2300</td>
<td>1260×2260</td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1550</td>
<td></td>
<td>CO</td>
<td>1400×1800</td>
<td>1950×2400</td>
<td>1260×2400</td>
<td></td>
</tr>
</tbody>
</table>

* The minimum hoistway dimensions (Ah and Bh) shown in the table above is a space for a car when two or more cars are located in the hoistway.

Note:
- Minimum hoistway dimensions (Ah and Bh) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Please consult our local agents for other specifications.
- This table shows standard specifications without the fireproof landing door and counterweight safety.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>750</td>
<td>90</td>
<td>10</td>
<td>36120</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>1.75</td>
<td>1000</td>
<td>90</td>
<td>10</td>
<td>4100</td>
<td>1950</td>
<td>1950</td>
<td>1950</td>
</tr>
<tr>
<td>2.0</td>
<td>1350</td>
<td>1050</td>
<td>10</td>
<td>4950</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>2.5</td>
<td>1650</td>
<td>1430</td>
<td>10</td>
<td>5050</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
</tr>
</tbody>
</table>

* Terms of the table:
 - This table shows standard specifications without the fireproof landing door and counterweight safety.
 - Please consult our local agents for other specifications.
 - CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
 - Minimum hoistway dimensions (Ah and Bh) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
 - This table shows standard specifications without the fireproof landing door and counterweight safety.
 - Please consult our local agents for other specifications.

Elevation

Note: Hoistway section for counterweight side drop is slightly different from this figure.

Basic code compliance

The dimensional information shown here in this page is based on the requirements of GB7588.

For other components, please consult our local agent.
Work Not Included in Elevator Contract

The following items are excluded from Mitsubishi Electric’s elevator installation work. Their details or conditions are to be conformed to the statement of local laws or Mitsubishi Electric elevator’s requirements, are therefore the responsibility of the building owner or general contractor:

- Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
- Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
- Architectural finishing of the machine room floor, and walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed hoistway.
- The provision of a ladder to the elevator pit.
- The provision of openings and supporting members as required for equipment installation.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, intermediate beams and separator partitions when two or more elevators are installed.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- All other work related to building construction.
- The provision of the main power and power for illumination, and their electrical switch boxes in the machine room, and laying of the wiring from the electrical room.
- The provision of outlets and laying of the wiring in the machine room and the hoistway, plus the power from the electrical switch box.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

Note: Work responsibilities in installation and construction shall be determined according to local laws.

Elevator Site Requirements

- The temperature of the machine room and elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance:
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention against icing and condensation occurring due to a rapid drop in the temperature shall be provided in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of +5% to –10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.
State-of-the-Art Factories…
For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

Safety Tips: Be sure to read the instruction manual fully before using this product.