Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems, and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Mitsubishi Electric elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment.

As the times change, Mitsubishi Electric promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Ecology

Regenerative Converter (PCNV) (Optional)
Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of up to 35%. (Reduction in CO₂ emissions: 1400 kg/year) In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Traction Machine with PM Motor
The joint-lapped core built in the PM motor of the traction machine features flexible joints. The iron core can be like a hinge, which allows coils to be wound around the core more densely, resulting in improved motor efficiency and compactness. High-density magnetic field is produced, enabling lower use of energy and resources and reduced CO₂ emissions. In addition, we have adopted a 2:1 (single-wrap) roping system, which lessens load on the traction machine, and allows further reductions in traction machine size.

Using Energy Wisely
Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC2 control</td>
<td>Induction Motor</td>
<td>Permanent magnet Motor</td>
<td>Gearless</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control circuit</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACVV² control</td>
<td>Worm gear</td>
<td>VVVF² control</td>
<td>Microprocessor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power consumption</th>
<th>2010</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>95%</td>
<td>70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO₂ emissions (kg/year)²</th>
<th>2010</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>37%</td>
<td>32%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Notes:
1. Alternative current, variable voltage
2. Variable voltage, variable frequency
3. CO₂ emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.
4. Calculated from power consumption with a coefficient of 0.6 kg/kWh.
5. The CO₂ emissions values in this table vary according to conditions.

Energy-saving Features
Mitsubishi Electric offers features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars (ESO-N) (Optional for ΣAI-22)
The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control (ESO-W) (ΣAI-2200C only)
Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic (CFO-A/CLO-A)
The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.
Smooth Mobility through Efficient Group Control

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

Group Control Systems: ΣAI-22 and ΣAI-2200C

ΣAI-22 and ΣAI-2200C control multiple elevators optimally according to the building size.

Improving of traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

Forecasting a Near-Future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation — Allocation Control (ESO-W) (ΣAI-2200C)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Car allocation that maximizes operational efficiency does not necessarily translate to energy efficiency. A car uses energy efficiently when it travels down with a heavy load, or up with a light load. Accordingly, if multiple cars have the same traveling distance, this system chooses the car that requires the least energy.

Throughout a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.
Dynamic Rule-set Optimizer (ΣAI-2200C)
Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Allocation System (DOAS) (ΣAI-2200C) (Optional)
When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement (hall arrangement without hall lantern*)
Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

*Hall arrangement with hall lantern is available as an option.

Efficiency

Selecting Optimum Car Allocation through Rule-set Simulations

Allocating Passengers to Cars Depending on Destination Floors

Providing a Safe, Comfortable Ride
Whether the user is elderly or a person with special need, our elevators deliver every passenger to the destination floor safely and comfortably.

The features introduced on these pages are applicable to ΣAI-2200C only. Please refer to page 17 and 18, and the ΣAI-2200C brochure for other features and details.
Emergency Situations

Emergency operations
Enhance safety by adding emergency operation features which quickly respond to a power failure, fire or earthquake.

Power failure
- **Mitsubishi Emergency Landing Device (MELD) (Optional)**
 - Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.

Fire
- **Fire Emergency Return (FER) (Optional)**
 - When a key switch or a building’s fire sensors are activated, all cars immediately return to a specified floor and open the doors for passengers to evacuate.

Earthquake
- **Earthquake Emergency Return (EER-S) (Optional)**
 - When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.

*Please refer to page 16 for details.

For Safe Boarding

Door safety devices
Our reliable safety device ensures that the doors are clear to open and close. Depending on the type of sensor, the detection area differs.

- **Hall Motion Sensor (HMS) (Optional)**
- **Multi-beam Door Sensor (Optional)**
- **Multi-beam Door Sensor – Signal Type (MBSS) (Optional)**

For Comfortable Use

User-oriented Design
Great care is taken in the design and manufacture of each and every elevator part to ensure a comfortable, user-friendly ride.

Clear Font
The font for indicators and buttons is highly visible. On tactile buttons in particular, the font makes letters/numbers easy for visually-impaired passengers to distinguish.

LCD Position Indicators (Car/hall) (Optional)
Clear, bright LCD indicators deliver information clearly and effectively.

Indication examples

Colors
Select the best color from four popular and eye-catching background colors.

- **Urban black**
- **Stylish blue**
- **Modern white**
- **Fine green**

Please consult our local agents for the production terms, etc.
Standard Design

Car Design Example

Walls: SUS-HL
Transom panel: SUS-HL
Doors: SUS-HL
Front return panels: SUS-HL
Kickplate: Aluminum
Flooring: PR803
Car operating panel: CBV1-C760

Hall Design Example

Jamb: E-102
Doors: SUS-HL
Hall position indicator and button: PIVI-A710N

Car operating panel for front return panel

Notes:
- Maximum number of floors: 22 floors
- Some letters of the alphabet may not be available. Please consult our local agents for details.

Car: Ceiling: S00

Hall: Narrow Jamb: E-102

Hall position indicators and buttons

Metal-like resin faceplates

Hall Motion Sensor (HMS)

Infrared light is used to detect a box 1-30mm away from its open door to detect passengers or obstacles. Please refer to page 13.

Features (1/2)

- **EMERGENCY OPERATIONS AND FEATURES**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi Emergency Landing Device (MELD)</td>
<td>Upon power failure, a car equipped with this function automatically moves to the nearest floor using a rechargeable battery, and the doors open to facilitate the safe evacuation of passengers. (Maximum allowable floor-to-floor distances: 11 meters.)</td>
</tr>
<tr>
<td>Operation by Emergency Power (Automatic/Manual) (OEP)</td>
<td>Upon power failure, predetermined car(s)/all cars use a building’s emergency power supply to move to a specified floor, whereas the doors then open to facilitate the safe evacuation of passengers. After all cars have arrived, predetermined car(s)/all cars return to normal operation.</td>
</tr>
<tr>
<td>Fire Emergency Return (FER)</td>
<td>Upon activation of a key switch or a building’s fire sensors, all cars are canceled, and the car immediately returns to a specified evacuation floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Firefighters’ Emergency Operation (FE)</td>
<td>During a fire, when the fire operation switch is activated, the car calls of a specified car and all calls are canceled, and the car immediately returns to a specified evacuation floor. The car then responds only to car calls which facilitate firefighting and rescue operations.</td>
</tr>
<tr>
<td>Earthquake Emergency Return (FER (EER-P/EER-S))</td>
<td>Upon activation of primary and/or secondary wave seismic sensors, all cars stop at the nearest floor, and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Supervisory Panel (WP)</td>
<td>Each elevator’s status and operation can be remotely monitored and controlled through a panel installed in a building’s supervisory room, etc.</td>
</tr>
<tr>
<td>MelEye (WP-W)</td>
<td>Mitsubishi Elevators & Escalators Monitoring and Control System</td>
</tr>
<tr>
<td>Supervisory Panel (WP)</td>
<td>Each elevator’s status and operation can be remotely monitored and controlled using an advanced Web-based technology which provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analysis are also available.</td>
</tr>
<tr>
<td>Emergency Car Lighting (ECL)</td>
<td>Car lighting which turns on immediately when power fails, providing a minimum level of lighting within the car. (Choice of dry cell battery or trickle-charge battery.)</td>
</tr>
</tbody>
</table>

- **DOOR OPERATION FEATURES**

 | Door Sensor self-diagnosis (ODDA) | Failure of non-contact door sensors is checked automatically, and if a problem is diagnosed, the door close timing is delayed and the closing speed is reduced to maintain elevator service and ensure passenger safety. |
 | Automatic Door Speed Control | Door load on each floor, which can depend on the type of hall door, is monitored and controlled to maintain the door speed, thereby making the door speed consistent throughout all floors. |
 | Automatic Door Open/Close Adjustment (DOT) | The time the doors are open is automatically adjusted, depending on whether the stop was called from the hall or the car, to allow smooth boarding of passengers or loading of luggage. |
 | Reopen with Hall Button (ROHB) | Closing doors can be reopened by pressing the hall button corresponding to the traveling direction of the car. |
 | Repeated Door Close (RDC) | Should an obstacle prevent the doors from closing, the doors will repeatedly open and close until the obstacle is cleared from the doorway. |
 | Door Nudging Feature — With Buzzer (NFG) | A buzzer sounds and the doors slowly close when they have remained open for longer than the preset period. With AAN-B or AAN-G, a beep and voice guidance sound instead of the buzzer. |
 | Door Load Detector (DLD) | When excessive load has been detected while opening or closing, the doors immediately reverse. |
 | Safety Ray (SR) | One or two infrared-light beams cover the full width of the doors as they close to detect passengers or objects. (Cannot be combined with the multi-beam door sensor or MRBS feature.) |
 | 1-Beam | |
 | 2-Beam | |
 | Extended Door-open Button (EDOB TB) | When the button inside a car is pressed, the doors remain open longer to allow boarding and unloading of luggage, a stretcher, etc. |
 | Safety Door Edge (SDE) | Sensitive door edges detect passengers or objects during door closing. (Cannot be combined with the MRBS feature.) |
 | One side | |
 | Both sides (EO: door only) | |
 | Safety Door Edge (SDE) | Sensitive door edge(s) detect passengers or objects during door closing. (Cannot be combined with the MRBS feature.) |
 | Electronic Door Monitor (EMD) | Door open times/temperatures and using safety ray(s) or multi-beam door sensors that detect passengers boarding or unloading. |
 | Multi-beam Door Sensor — Signal Type (MBBS) | Multiple infrared-light beams cover a door height of approximately 1000mm to detect passengers or objects as the doors close. Additional, LED lights on the door edge will indicate the door opening/closing and the presence of an obstacle between the doors. (Cannot be combined with any of the following features: SDE, SR or multi-beam door sensor.) Please refer to page 13. |
 | Multi-beam Door Sensor | Multiple infrared-light beams cover a door height of approximately 1000mm to detect passengers or objects as the doors close. Additional, LED lights on the door edge will indicate the door opening/closing and the presence of an obstacle between the doors. (Cannot be combined with any of the following features: SDE, SR or multi-beam door sensor.) Please refer to page 13. |

Notes:
- 1: SC-2BC (1-car elevator controller) — Standard
- 2: SC-2BC (2-car group control system) — Optional
- 3: SC-2BC (2 to 8-car group control system) — Optional
- 4: 2A-2200C (2- to 8-car group control system) — Optional
- 5: Standard
- 6: Optional
- 7: Not applicable
- 8: Please consult our local agents for the production terms, etc.
OPERATIONAL AND SERVICE FEATURES

- Feature Description 3C to 8C

OPERATIONAL AND SERVICE FEATURES

■ Regenerative Converter (PCNV)
- Attendant Service (AS)
- Secret Call Service (SCS-B)
- Out-of-service-remote (RCS)
- False Call Canceling
- Backup Operation for Group
 - Automatic (CLO-A)
 - Automatic (CFO-A)
- Car Fan Shut Off
- Continuity of Service (COS)
- Safe Landing (SFL)
- Intense Up Peak (IUP)
- Destination Oriented Allocation
 - Number of Cars (ESO-N)

Auxiliary Car Operating Panel (ACS)
- Exclusive operation where a car is withdrawn from group control operation for independent use, such as maintenance or repair, and responds only to car calls.
- Electronic chimes sound to indicate that a car will soon arrive. (The chimes are mounted on the lobby floor, and respond only to car calls. The allocated timing for each car and the door opening and closing timing are all controlled based on predicted data.)

■ SIGNAL AND DISPLAY FEATURES

Forced Floor Stop (FFS)
- Main Floor Parking (MPF)
- Special Floor Priority Service (SPFS)
- Closed-car Priority Service (CNS)
- Light-Load Car Priority Service (CLPS)
- Special Car Priority Service (SCPS)
- Congregated-floor Service (CSF)
- Bank-separation Operation (BSO)
- VIP Operation (VIP-S)
- Lunchtime Service (LTS)
- Main Floor Changeover Operation (MFCO)

Flashing Hall Lantern (FLH)
- Basic Announcement (AAN-B)
- Car Arrival Chime (Car (ACCC))
- Hall (HECC)
- Sonic Car Button — Click Type (ACE)
- Immediate Prediction Indicator (AIL)
- Second Car Prediction (TCP)
- Voice Guidance System (VGS-A)
- Auxiliar Car Operating Panel (ACS)
- Inter-communication System (ITP)
- Car LCD Position Indicator (CD-S)
- Hall LCD Position Indicator (HD-S)
- Car Information Display (CID)
- Hall Information Display (HID)

Notes:
- 1C-2C: 1-2-car group control system
- 2C-3C: 2-3-car group control system
- 3C to 4C: 3-4-car group control system
- 3C to 8C: 3-8-car group control system
- ACE: Automatic elevator control
- AIL: Automatic indicator lamp
- AAN-B: Automatic announcement (button)
- ASL: Automatic sign language
- LCC: Low-car control system
- BSO: Bank separation operation
- CLPS: Congregated-floor service
- HECC: Hall electronic chime
- ITP: Inter-communication system
- IPP: Intense up peak
- MFCO: Main floor changeover operation
- MPP: Main parking position
- MPF: Main floor parking
- NCS: Non-car specific floor
- NN: Non-car specific floor
- RSS: Resident’s service system
- SFL: Safe landing
- SPS: Special floor priority service
- SPS-B: Special floor priority service (button)
- SR: Service room
- TCS: Total call service
- TR: Traffic ratio
- TRPS: Traffic ratio prediction service
- VGS: Voice guidance system
- VIP-S: VIP operation
- VPS: Volunteer protection system
- WPS: Walkie-talkie system
- YPS: Young people system
- ZPS: Zone service system

For energy conservation, power regenerated by a traction machine can be used by other electrical systems in the building. Please refer to page 8.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>450</td>
<td>1.0</td>
<td>1.0</td>
<td>700</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>500</td>
<td>1.0</td>
<td>1.0</td>
<td>700</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P9</td>
<td>9</td>
<td>600</td>
<td>1.0</td>
<td>1.0</td>
<td>700</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P10</td>
<td>10</td>
<td>700</td>
<td>1.5</td>
<td>1.5</td>
<td>800</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>800</td>
<td>1.75</td>
<td>1.75</td>
<td>900</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P13</td>
<td>15</td>
<td>900</td>
<td>2.0</td>
<td>2.0</td>
<td>1000</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P15</td>
<td>15</td>
<td>1000</td>
<td>2.5</td>
<td>2.5</td>
<td>1150</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1150</td>
<td>3.0</td>
<td>3.0</td>
<td>1200</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P20</td>
<td>20</td>
<td>1250</td>
<td>4.0</td>
<td>4.0</td>
<td>1350</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
<tr>
<td>P24</td>
<td>24</td>
<td>1600</td>
<td>6.0</td>
<td>6.0</td>
<td>1850</td>
<td>1750×1500</td>
<td>Top</td>
<td>2100×1450 2100×1950</td>
<td>2100×2250 2100×2750</td>
</tr>
</tbody>
</table>

[Terms of the table]

- The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.
- Rated capacity is calculated as 65kg per person, as required by the Building Standard Law of Japan, 2009.
- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room door height (mm)</th>
<th>Minimum machine room floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>60</td>
<td>60</td>
<td>100</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>1.2</td>
<td>75</td>
<td>75</td>
<td>90</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>1.7</td>
<td>120</td>
<td>120</td>
<td>70</td>
<td>1950</td>
<td>1950</td>
<td>1950</td>
<td>1950</td>
</tr>
<tr>
<td>2.5</td>
<td>200</td>
<td>200</td>
<td>50</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
</tbody>
</table>

[Note]

- Maximum travel is 90m when the counterweight is installed in a side drop position.
- Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HM + 700mm.

Machine Room Plan Example

Note: Layouts (position of control panel, etc.) differ depending on capacity.

Applicable Standards

NEXE2-MR complies with Mitsubishi Electric standard*. For details of compliance, please consult our local agents.

* Based on, but not fully complying with the Building Standard Law of Japan, 2009.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal width (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>1.0</td>
<td>CO</td>
<td>1400</td>
<td>1100</td>
<td>1900</td>
<td>2400</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>1.75</td>
<td>CO</td>
<td>1400</td>
<td>1100</td>
<td>1900</td>
<td>2400</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>2.0</td>
<td>CO</td>
<td>2000</td>
<td>1100</td>
<td>2500</td>
<td>2900</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>2.5</td>
<td>CO</td>
<td>2000</td>
<td>1100</td>
<td>2500</td>
<td>2900</td>
</tr>
</tbody>
</table>

(Terms of the table)

- The contents of this table are applied only to standard specifications without fireproof landing door and counterweight safety.
- Rated capacity is calculated as 75kg per person, as required by EN81-1.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Rated capacity is calculated as 75kg per person, as required by EN81-1.
- The contents of this table are applied only to standard specifications without fireproof landing door and counterweight safety.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum height (mm)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2x5capacity=1150</td>
<td>40</td>
<td>440</td>
<td>1360</td>
<td>132</td>
<td>2250</td>
<td>2500</td>
</tr>
<tr>
<td>1.0</td>
<td>3x5capacity=1500</td>
<td>40</td>
<td>440</td>
<td>1360</td>
<td>132</td>
<td>2250</td>
<td>2500</td>
</tr>
<tr>
<td>1.6</td>
<td>40</td>
<td>30</td>
<td>36120</td>
<td>30</td>
<td>30</td>
<td>2250</td>
<td>2500</td>
</tr>
<tr>
<td>2.0</td>
<td>40</td>
<td>30</td>
<td>36120</td>
<td>30</td>
<td>30</td>
<td>2250</td>
<td>2500</td>
</tr>
<tr>
<td>2.5</td>
<td>40</td>
<td>30</td>
<td>36120</td>
<td>30</td>
<td>30</td>
<td>2250</td>
<td>2500</td>
</tr>
</tbody>
</table>

(Terms of the table)

- The contents of this table are applied only to standard specifications without fireproof landing door and counterweight safety.
- Please consult our local agents for other specifications.

Elevation

Applicable Standards

NEXIEZ-MR complies with EN81-1.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions, Length/Width</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimension, Height/AH/Minimum hoistway dimension, Width/BH</th>
<th>Minimum machine room dimension, Height/Width</th>
<th>GB7588</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10-11</td>
<td>10</td>
<td>750</td>
<td>2.5</td>
<td>CO</td>
<td>1460×1300</td>
<td>Rated 1950×1690/1970×1690</td>
<td>Rear</td>
<td>900</td>
<td>1960×1940</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>12</td>
<td>900</td>
<td>2.5</td>
<td>CO</td>
<td>1460×1300</td>
<td>Rated 1950×1690/1970×1690</td>
<td>Rear</td>
<td>900</td>
<td>1960×1940</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>2.0</td>
<td>CO</td>
<td>1460×1300</td>
<td>Rated 2200×1700/2210×1700</td>
<td>Rear</td>
<td>1000</td>
<td>2210×2100</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>16</td>
<td>1200</td>
<td>1.75</td>
<td>CO</td>
<td>1460×1300</td>
<td>Rated 2400×2130/2410×2130</td>
<td>Rear</td>
<td>1100</td>
<td>2420×2420</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1300</td>
<td>2.5</td>
<td>CO</td>
<td>1460×1300</td>
<td>Rated 2600×2130/2610×2130</td>
<td>Rear</td>
<td>1200</td>
<td>2620×2420</td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1500</td>
<td>2.5</td>
<td>CO</td>
<td>1460×1300</td>
<td>Rated 2800×2130/2810×2130</td>
<td>Rear</td>
<td>1500</td>
<td>2820×2620</td>
<td></td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>GB7588</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated speed (m/sec)</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1.75</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
</tr>
</tbody>
</table>

Elevation

Note: Hoistway section for counterweight side drop is slightly different from this figure.

Applicable Standards

NEXE2-MR complies with GB7588.

(Terms of the table)

- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.
- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.
- Minimum machine room dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- Dimensions AH and BH are based on a speed of 2.5 m/sec in a single hoistway, different from the above table to prevent a wind noise. Please consult our local agents for details.
- This table shows the specifications without the fireproof landing door and counterweight safety.
Important Information on Elevator Planning

Work Not Included in Elevator Contract
The following items are excluded from Mitsubishi Electric’s elevator installation work, and are therefore the responsibility of the building owner or general contractor:

- Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
- Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
- Architectural finishing of the machine room floor, and the walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed elevator hoistway.
- A ladder to the elevator pit.
- The provision of cutting the necessary openings and joints.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, and intermediate beams when two or more elevators are installed.
- All other work related to building construction.
- The machine room power-receiving panel and the electrical wiring for illumination, plus the electrical wiring from the electrical room to the power-receiving panel.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices, etc.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

* Work responsibilities in installation and construction shall be determined according to local laws. Please consult our local agents for details.

Elevator Site Requirements

- The temperature of the machine room and elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance:
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of +5% to ~10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.
Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUGI CH, C-HYODA, TOKYO 106-8910, JAPAN

Safety Tips: Be sure to read the instruction manual fully before using this product.