Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort.

The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.
Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Mitsubishi Electric elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality.

In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Mitsubishi Electric promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Based on our policy, "Quality in Motion", we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

We strive to be green in all of our business activities.

We take every action to reduce environmental burden during each process of our elevators' and escalators' lifecycle.
Welcome to a New Era in Vertical Transportation

Introducing the NEXIEZ...

…technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Regenerative Converter: PCNV (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%.* In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

The joint-lapped core built in the PM motor of the traction machine features flexible joints. The iron core can be like a hinge, which allows coils to be wound around the core more densely, resulting in improved motor efficiency and compactness. High-density magnetic field is produced, enabling lower use of energy and resources and reduced CO2 emissions. In addition, we have adopted a 2:1 (single-wrap) roping system, which lessens load on the traction machine, and allows further reductions in traction machine size.

Note: * The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction machine</td>
<td>Induction motor</td>
<td>Induction motor</td>
<td>AC2 control</td>
<td>Permanent magnet motor</td>
<td>Gearless</td>
</tr>
<tr>
<td>Motor drive</td>
<td>AC2 control</td>
<td>ACV* control</td>
<td>VVVF* control</td>
<td>ACV* control</td>
<td>VVVF* control</td>
</tr>
<tr>
<td>Control circuit</td>
<td>Relay</td>
<td>Relay</td>
<td>Relay</td>
<td>Relay</td>
<td>Relay</td>
</tr>
<tr>
<td>Power consumption/CO2 emissions*</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Notes:
*1: Alternative current, variable voltage
*2: Variable voltage, variable frequency
*3: CO2 emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.

LED Lighting (Optional)

Energy-efficient LEDs consume less power than conventional lamps. Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, the long service life eliminates the need for frequent lamp replacement.

Advantage of LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Carbon-diode lamp</th>
<th>Incandescent lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td>Approx. 12.5 times longer</td>
<td>2000</td>
</tr>
<tr>
<td>Power consumption (W)</td>
<td>Approx. 75% reduction</td>
<td>32.5</td>
</tr>
</tbody>
</table>

Energy-saving Features

Mitsubishi Electric offers features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars: ESO-N (Optional for ΣAI-22)

The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control: ESO-W (ΣAI-2200C only)

Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic: CFO-A/CLO-A

The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.
Smooth Mobility through Efficient Group Control

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

Group Control Systems: ΣAI-22 and ΣAI-2200C

ΣAI-22 and ΣAI-2200C control multiple elevators optimally according to the building size.

Improving of traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

Forecasting a Near-Future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation — Allocation Control: ESO-W (ΣAI-2200C)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Car allocation that maximizes operational efficiency does not necessarily translate to energy efficiency. A car uses energy efficiently when it travels down with a heavy load, or up with a light load. Accordingly, if multiple cars have the same traveling distance, this system chooses the car that requires the least energy.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.
Dynamic Rule-set Optimizer (ΣAI-2200C)

Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Allocation System: DOAS (Optional for ΣAI-2200C)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement of hall fixtures (No hall lantern* is provided.)
Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

Note:
* Hall lanterns are available as optional.
Emergency Situations

Enhance safety by adding emergency operation features which quickly respond to a power failure, fire or earthquake.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power failure</td>
<td>Mitsubishi Emergency Landing Device: MELD (Optional)</td>
</tr>
<tr>
<td></td>
<td>Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td></td>
<td>Operation by Emergency Power Source — Automatic: OEPS (Optional)</td>
</tr>
<tr>
<td></td>
<td>Upon power failure, predetermined car(s) use a building's emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) will resume normal operation.</td>
</tr>
<tr>
<td>Fire</td>
<td>Fire Emergency Return: FER (Optional)</td>
</tr>
<tr>
<td></td>
<td>When a key switch or a building's fire sensors are activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td></td>
<td>Firefighters' Emergency Operation: FE (Optional)</td>
</tr>
<tr>
<td></td>
<td>When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate fire-fighting and rescue operations.</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Earthquake Emergency Return: EER-P/EER-S (Optional)</td>
</tr>
<tr>
<td></td>
<td>When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
</tbody>
</table>

For Safe Boarding

Door safety devices
Our reliable safety device ensures that the doors are clear to open and close. Depending on the type of sensor, the detection area differs.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-beam Door Sensor</td>
<td></td>
</tr>
<tr>
<td>Hall Motion Sensor: HMS</td>
<td>(Optional for CO doors only)</td>
</tr>
</tbody>
</table>

For Comfortable Use

User-oriented Design
Great care is taken in the design and manufacture of each and every elevator part to ensure a comfortable, user-friendly ride.

Clear Font
The font for indicators and buttons is highly visible. On tactile buttons in particular, the font makes letters/numbers easy for visually-impaired passengers to distinguish.

1234567890

LCD Position Indicators: Car/hall (Optional)
Clear, bright LCD indicators deliver information clearly and effectively.

Indication examples

<table>
<thead>
<tr>
<th>Normal operation</th>
<th>Emergency operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CID-S)</td>
<td>(HID-S)</td>
</tr>
</tbody>
</table>

LCD Information Display*: 10.4- or 15-inch, for car/hall (Optional)
The cutting-edge LCD display delivers elevator information with stereoscopic direction arrows and animated pictures.

Colors
Select the best color from our five popular and eye-catching background colors.

<table>
<thead>
<tr>
<th>Color</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylish Blue</td>
<td>Apr. 15 10:41 AM</td>
</tr>
<tr>
<td>Modern White</td>
<td>Apr. 15 10:41 AM</td>
</tr>
<tr>
<td>Elegance Brown</td>
<td>Apr. 15 10:41 AM</td>
</tr>
<tr>
<td>Fire Green</td>
<td>Apr. 15 10:41 AM</td>
</tr>
<tr>
<td>Urban Black</td>
<td>Apr. 15 10:41 AM</td>
</tr>
</tbody>
</table>

Note: *Please consult our local agents for the production terms, etc.
Features (1/2)

EMERGENCY OPERATIONS AND FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Management System GateWay</td>
<td>BM-GW</td>
<td>For elevators using this building management system, various facilities in the building can be controlled and a limited number of elevators can be used.</td>
</tr>
<tr>
<td>Earthquake Emergency Return</td>
<td>EER-P</td>
<td>Upon activation of primary and/or secondary wave seismic sensors, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Emergency Car Lighting</td>
<td>ECL</td>
<td>Car lighting turns on immediately when power fails, providing illumination at each floor.</td>
</tr>
<tr>
<td>Fire Emergency Return</td>
<td>FER</td>
<td>Upon activation of a key switch or in an emergency, the alarm sounds and cars immediately return to the specified floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Firefighters’ Emergency Operation</td>
<td>FE</td>
<td>Tactile buttons are provided on each floor. The car then responds to the fire call.</td>
</tr>
<tr>
<td>Multi-use Washable Elevators & Escalators Monitoring and Control System</td>
<td>WP-W</td>
<td>Each elevator’s status and operation can be monitored and controlled using an advanced closed-loop control system. Special features such as fire, seismic, and earthquake protection are also available.</td>
</tr>
</tbody>
</table>

DOOR OPERATION FEATURES

- **Automatic Door-open Time Adjustment** (DOT)
- **Automatic Door Speed Control** (DAS)
- **Door Load Detector** (DLD)
- **Door Nudging Feature** (DNG)
- **Door Sensor Self-diagnosis** (ODSS)
- **Electronic Doorman** (EDM)
- **Extended Door-open Button** (DOK-TB)
- **Hall Motion Sensor** (HMS)
- **Multi-beam Door Sensor**
- **Reupen with Hall Button** (ROH)
- **Repeated Door-close** (ROC)
- **Safety Door Edge** (SDE)

Notes:

- 1C-2BC (1-car selective collective) — Standard
- 2C-2BC (2-car group control system) — Optional
- 3C-8C (3- to 8-car group control system) — Optional

Car

Ceiling: S00

- **Car operating panel**

Car Design Example

- **Walls** — Stainless-steel, hairline-finish
- **Transom panel** — Stainless-steel, hairline-finish
- **Doors** — Stainless-steel, hairline-finish
- **Front return panels** — Stainless-steel, hairline-finish
- **Flooring** — PR803: Gray

Car operating panel

- **CBV1-N712**

- **Segment LED indicators**
- **Tactile button with yellow-orange lighting**

Hall

Narrow Jamb: E-102

Hall Design Example

- **Jamb** — Stainless-steel, hairline-finish
- **Doors** — Stainless-steel, hairline-finish

Hall position indicators and buttons

- **With plastic case**

Hall Motion Sensor

- **Infrared light is used to scan a 3D area near the open doors to detect passengers or objects.**
- **HM1 is not applicable when the door type 2S**

Actual colors may differ slightly from those shown. Please refer to the design guide for details and other designs.

Notes:

1. Maximum number of floors: 30 floors
2. Some letters of the alphabets are not available. Please consult our local agents for details.
3. These types are not applicable to elevators complying with EN81-70.
OPERATIONAL AND SERVICE FEATURES

- Automatic Car Light Shut Off
- Car Fan Shut Off
- Car Call Canceling
- Group Control Microprocessor
- Registration
- Automatic Bypass
- Attendant Service
- Congested-floor Service
- Closest-car Priority
- Secret Call Service
- Return Operation

For energy conservation, power regenerated by a traction machine can be used by other equipment.

- Regenerative Converter

- Card Reader Type

- Automatic False Call Canceling
- System Interface

- Car Light Shut Off
- Automatic

- Continuity of Service

- Elevator and System Interface

- Value Call Canceling
- Automatic

- Value Call Canceling
- Car Button Type

- Independent Service

- Next Landing

- Non-service to Specific Cars

- Non-service to Specific Cars
- Button Type

- Non-service to Specific Cars
- Escalator Type

- Out-of-service by Hall Key Switch

- Out-of-service remote

- Overload Holding Stop

- Regenerative Converter

- Return Operation

- Safe Landing

- Secret Service

- Signals and Display Features

- Auxiliary Car Operating Panel
- ASC

- Basic Announcement
- AAN-B

- Car Alarm Chime
- AECC (call)

- Car LCD Position Indicator
- CID-S

- Flashing Hall Lantern
- FHL

- Hall Information Display
- MD

- Hall LCD Position Indicator
- CID-S

- Interconnection System
- IFS

- Second Car Position
- TCP

- Line-up Service

- Linear Car Button
- ACB

- Voice Guidance System
- AAV-G

Notes:
- #1: When 2C-2BC, please consult our local agents.
- #2: Please consult our local agents for the production terms, etc.

Feature Description

Abbreviation 3C to 8C

Feature Description

Abbreviation 3C to 8C
Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance height (mm)</th>
<th>Car internal dimensions (mm) A x B x H</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm) A x B x H/car</th>
<th>Minimum machine room dimensions (mm) A x B x H/car</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td></td>
<td>CO</td>
<td>900</td>
<td>1400×1200×2500</td>
<td>Rear</td>
<td>2040×1950</td>
<td>2800×1950</td>
</tr>
<tr>
<td>P13</td>
<td>13</td>
<td>1000</td>
<td>1.0</td>
<td>CO</td>
<td>900</td>
<td>1600×1400×2500</td>
<td>Rear</td>
<td>2200×1750</td>
<td>2800×1750</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1000</td>
<td>1.75</td>
<td>CO</td>
<td>1125</td>
<td>1300×1300×2500</td>
<td>Rear</td>
<td>2100×2350</td>
<td>2700×2350</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1225</td>
<td>2.0</td>
<td>CO</td>
<td>900</td>
<td>1420×1200×2500</td>
<td>Rear</td>
<td>2300×2150</td>
<td>3000×2150</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>2.5</td>
<td>CO</td>
<td>1100</td>
<td>2000×1400×2500</td>
<td>Rear</td>
<td>2700×2350</td>
<td>3400×2350</td>
</tr>
</tbody>
</table>

(Terms of the table)
- This table shows standard specifications with the fireproof landing door and without counterweight safety. Please consult our local agents for other specifications.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.

Note:
• Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
• CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
• This table shows standard specifications with the fireproof landing door and without counterweight safety. Please consult our local agents for other specifications.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum fixed (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Maximum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>825</td>
<td>60</td>
<td>30</td>
<td>4100</td>
<td>1900</td>
<td>2200</td>
<td>2000</td>
</tr>
<tr>
<td>1.6</td>
<td>1000</td>
<td>90</td>
<td>30</td>
<td>4900</td>
<td>1500</td>
<td>2600</td>
<td>2000</td>
</tr>
<tr>
<td>1.75</td>
<td>1275</td>
<td>120</td>
<td>30</td>
<td>5700</td>
<td>1500</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>2.5</td>
<td>1520</td>
<td>150</td>
<td>30</td>
<td>6700</td>
<td>1500</td>
<td>4700</td>
<td>2000</td>
</tr>
</tbody>
</table>

(Terms of the table)
- This table shows standard specifications without counterweight safety. Please consult our local agents for other specifications.

Notes:
* Maximum overhead is 36120 mm when the counterweight is installed in a side drop position.
+ Some specifications require more than 2600mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 700mm.

Elevation

Dimensional information shown here conforms to EN81-20/50 2014.
Important Information on Elevator Planning

Work Not Included in Elevator Contract

The following items are excluded from Mitsubishi Electric’s elevator installation work. Their details or conditions are to be confirmed to the statement of EN81-20/50: 2014, local laws or Mitsubishi Electric elevator’s requirements, are therefore the responsibility of the building owner or general contractor.

- Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
- Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
- Construction of an illuminated, ventilated and waterproofed hoistway.
- Architectural finishing of the machine room floor, and walls and floors in the vicinity of the entrance hall after installation has been completed.
- The provision of openings and supporting members as required for equipment installation.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, intermediate beams and separator partitions when two or more elevators are installed.
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors.
- All other work related to building construction.
- The provision of the main power and power for illumination, and their electrical switch boxes in the machine room, and laying of the wiring from the electrical room.
- The provision of outlets and laying of the wiring in the machine room and the hoistway, plus the power from the electrical switch box.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

Note: Work responsibilities in installation and construction shall be determined according to local laws.

Elevator Site Requirements

- The temperature of the machine room and elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention against icing and condensation occurring due to a rapid drop in the temperature shall be provided in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of +5% to –10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.
State-of-the-Art Factories…
For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.

As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.