PASSENGER ELEVATORS
MACHINE-ROOM-LESS SYSTEM

NEXIEZ-MRL

2nd Edition
Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

Mitsubishi Electric elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be at the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Mitsubishi Electric promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Contents

- **Introduction** 5–6
- **Ecology** 7–8
- **Efficiency** 9–11
- **Space-saving** 12
- **Safety** 13–14
- **Standard Design** 15
- **Features** 16–18
- **Basic Specifications** 19–21
- **Important Information on Elevator Planning** 22

Application

Note: The applicable range of the rated capacity may differ depending on the manufacturing factory, please consult our local agents for details.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Ecology

Devices that Use Less Energy

LED Lighting (Optional)
Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, a long service life eliminates the need for frequent lamp replacement.

Regenerative Converter: PCNV (Optional)
Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of approximately 35%.*

In addition, the regenerative converter has the effect of decreasing harmonic currents.

*Note:
*The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Motor</th>
<th>Traction machine</th>
<th>Motor drive</th>
<th>Control circuit</th>
<th>Power consumption/CO2 emissions*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>AC2</td>
<td>Reduction motor</td>
<td>AC2</td>
<td>Relay</td>
<td>10%</td>
</tr>
<tr>
<td>1980</td>
<td>AC2</td>
<td>Warm gear</td>
<td>ACVVF</td>
<td>Microcomputer</td>
<td>20%</td>
</tr>
<tr>
<td>1990</td>
<td>AC2</td>
<td>Permanent-magnet motor</td>
<td>VVVF</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>AC2</td>
<td>ACVVF</td>
<td>Microcomputer</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>AC2</td>
<td>VVVF</td>
<td>Microcomputer</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
*1: Alternating current, variable voltage
*2: Variable voltage, variable frequency
*3: CO2 emissions do not include emissions from manufacturing, transportation and other processes.

Energy-saving Operation – Allocation Control: ESO-W (ΣAI-2200C only)
This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Advantages of LEDs

- **Service life (hr)**
 - 25000 LED
 - 2000 Incandescent lamp
 - Approximately 12.5 times longer

- **Power consumption (W)**
 - 32.5 LED
 - 132 Incandescent lamp
 - Approximately 75% reduction

Maximizing Operational Efficiency and Minimizing Energy Consumption

**Energy-saving effects: Approximately 35%.*

*The value is a reference datum and may increase or decrease in accordance with actual conditions of use and elevator specifications.
Group Control Systems: ΣAI-22 and ΣAI-2200C

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

ΣAI-2200C Performance

When a hall call is registered, the algorithm assumes a near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Forecasting a Near-future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Allocating Passengers to Cars Depending on Destination Floors

Destination Oriented Allocation System: DOAS (Optional for ΣAI-2200C)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Standard arrangement of hall fixtures (No hall lantern* is provided.)

- Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

Note: Hall lanterns are available as optional.
Variable Traveling Speed Elevator System: VSE (Optional)

With Mitsubishi Electric’s industry-first variable traveling speed elevator system, an elevator can travel faster than its rated speed according to the number of passengers, ultimately reducing waiting and traveling time.

Waiting Time Reduction

According to Mitsubishi Electric’s simulation, waiting time can be reduced up to approximately 15% when VSE is applied.

Traveling Time Reduction

Traveling time can be reduced by approximately 32% when the elevator travels from the bottom to the top floor directly under rapid mode in VSE.

(Conditions)
Travel: 36m, Floor height: 4.0m, 10 floors, Car load: 50%

Efficiency

Traveling speed
1.6m/sec
1.5m/sec
1.25m/sec
1.0m/sec
Rated speed (1.0m/sec)

Car load (%)
0% 10% 50% 100%

Maximum Speed and Car Load

[Number of passengers in the car when the maximum number of passengers is 14.]

Note: The Variable Traveling Speed Elevator System is applicable to elevators with a rated speed of 1.0m/sec.

Space-saving

Machine-room-less Elevators

As all equipment is installed within the hoistway, there are fewer restrictions on building design except for the actual space required for the hoistway. Architects and interior designers have more design freedom.
Emergency Operations
To ensure passenger safety, our elevators are equipped with functions for emergencies like a power failure, fire or earthquake.

Power failure
Mitsubishi Emergency Landing Device: MELD (Optional)
Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.

Operation by Emergency Power Source–Automatic/Manual: OEPS (Optional)
Upon power failure, predetermined car(s) use a building’s emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) resume normal operation.

Fire
Firefighters’ Emergency Operation: FE (Optional)
When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate firefighting and rescue operations.

Fire Emergency Return: FER (Optional)
When a key switch or a building’s fire alarm is activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.

Earthquake
Earthquake Emergency Return: EER-P/EER-S (Optional)
When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.
Standard Design

Car

Car Design Example

- Walls: SUS-HL
- Transom panel: SUS-HL
- Doors: SUS-HL
- Front return panels: SUS-HL
- Kickplate: Aluminum
- Flooring: PRB03: Gray
- Car operating panel: CBV1-C760
- **Hall Design Example**
 - Narrow Jamb: E-102

Hall

- Hall position indicators and buttons
 - With plastic case
 - PBVI-A1010N
 - PBVI-A1020N

Features (1/2)

Car operating panel

For front return panel

- Yellow-orange lighting
- Tactile button with yellow-orange lighting

Car Design Example

- Ceiling: Painted steel sheet (Y033)
- Boxless
- Standard Design

Hall Design Example

- Jamb: SUS-HL
- Doors: SUS-HL
- Hall position indicator and button: PBVI-A1010N

Hall position indicators and buttons

- PBVI-A1010N
- PBVI-A1020N

- Segment LED indicators
- Tactile button with yellow-orange lighting

Notes:

1. *1: Maximum number of floors: 22 floors
2. *2: Some letters of the alphabets are not available. Please consult our local agents for details.

Building Management System/GateWay

- BMS-GW

Earthquake Emergency Return

- EER-P
- EER-S

Emergency Car Lighting

- ECL

Fire Emergency Return

- FER

Firefighters’ Emergency Operation

- FE

Mitsubishi Elevators & Escalators Monitoring and Control System

- WP-W

Door Operation Features

- **Automatic Door-open Time Adjustment**
 - DOT

- **Automatic Door Speed Control**
 - DSAC

- **Door Load Detector**
 - DLD

- **Door Nudging Feature**
 - With Buzzed
 - NDG

- **Door Sensor Self-diagnosis**
 - DDDA

- **Electronic Dooroman**
 - EDM

- **Extended Door-open Button**
 - DEO-TU

- **Hall Motion Sensor**
 - HMS

- **Multi-beam Door Sensor**
 - MBSS

- **Reopen with Hall Button**
 - ROHB

- **Repeated Door-close**
 - RDC

- **Safety Door Edge**
 - SDE

- **Safety Ray**
 - SR

Notes:

1. Σ: Only applicable to 3C to 8C
2. 3- to 8-car group control system
3. SBG: Standard
4. BSS: Basic
5. ECL: Emergency Car Lighting

Actual colors may differ slightly from those shown. Please refer to the design guide for details and other designs.
Attendant Service
AS
Inclusive operation where an elevator can be operated using the buttons and switches found in the car operating panel, allowing smooth boarding of passengers or loading of baggage.

Automatic Bypass
ABP
A fully-loaded car bypasses hall calls in order to maintain maximum operational efficiency.

Automatic Hall Call System
FSAT
One car can carry all waiting passengers because it is full, another car will automatically be assigned for the remaining passengers.

Backup Operation for Group Control Microprocessor
GCBK
An operation by car controllers which automatically maintains elevator operation in the event that an armament processor or transmission line in the group controller has failed.

Car Call Cancelling
CCC
When a car has responded to the final call on one direction, the system regains re-calls from the other direction as mistakes and learns from the memory.

Car Fan Shut Off
— Automatic
If there are no calls for a specified period, the car ventilation fan will automatically turn off to conserve energy.

Commuter Service
CSS
When a car has been requested by the required floor, the elevator begins traveling to the requested floor at the high speed.

Continuity of Service
CDS
A car which is experiencing trouble is automatically withdraw from group control operation to maintain group control performance.

Elevator and Security System Interface
EL-S/SC
Personal authentication by building's security devices can trigger predetermined elevator operation such as permission of access to private floors, automatic registration of a hall call and destination floor, and priority service.

False Call Cancelling — Automatic
FCC-A
If the number of registered car calls does not correspond to the car load, all calls are canceled to avoid unnecessary stops.

Floor Call Cancelling — Car Button Type
FCC-P
If a calling button is pressed, it cancels automatically by pressing the same button again twice.

Independent Service
INL
Exclusive operation where a car is withdrawn from group control operation for independent use, such as maintenance or repair, and requests only to car calls.

Next Landing
— Automatic
When a passenger presses the button for the nearest floor at a low speed and the doors will open.

Non-service to Specific Floors — Car Type
NS-CB
To enhance security, service to specific floors can be disabled using the car operating panel. This function is automatically deactivated during emergency operation.

Non-service to Specific Floors — Card Reader Type
NS-RT
To enhance security, service to specific floors can be disabled using a manual or timer switch. This function is automatically deactivated during emergency operation.

Non-service to Temporary Accessible for Car Call Reader Type
NSOR-C
To enhance security, car calls for disabled floors can be registered only by placing a card over a card reader. This function is automatically deactivated during emergency operation.

Out-of-service by Hall Key Switch
HS-S
For maintenance or emergency measures, a car can be taken out of service temporarily with the key switch or without any mechanistic control.

Out-of-service-remote
ORS
With a switch on the supervisory panel, etc., a car can be called to a specified floor after responding to all car calls, and then automatically taken out of service.

Overload Holding Stop
OLH
A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open and the car will not leave that floor until enough passengers exit the car and the doors open.

Regenerative Converter
PCNV
For energy conservation, power generated by a regeneration mechanism can be used in other electrical systems in the building.

Return Operation
RET
Using a key switch on the the car control panel, a car can be withdrawn from group control operation and called to a specified floor. The car will park on that floor with the doors open, and not accept any calls until independent operations begin.

Safe Landing
SFL
It is for the purpose of elevators to stop between floors due to some equipment malfunction, the controller checks the control, and if it is considered safe to move, the car will move to the nearest floor at an ambidextrous speed and the doors will open.

Self Call Service
SCS-B
To enhance security, car calls for disabled floors can be registered only by entering secret codes using the car buttons on the car operating panel. This function is automatically deactivated during emergency operation.

Variable Traveling Classification System
VSE
According to the number of passengers in the car, the car travels faster than the rated speed.

GROUP CONTROL FEATURES

Bank separation Operation
RSO
Full buttons and the calls of each button are divided into several groups for independent group control operation to serve special or different floors.

Closest-carry Preference Operation
CNPS
A function to provide priority allocation to the car closest to the floor where a call has been pressed, or to reverse the closest cars of the door opening and closing to prevent hall calls on that floor. (Cannot be combined with position indication.)

Congested-floor Service
CFS
The call of the last car allocated to floors where meeting rooms or ballrooms exist and the traffic intensity for short periods of time are confirmed according to the detected traffic density data, according to the traffic density.

Destination Oriented Allocation System
DOAS
When a passenger enters a destination floor at the hall operating panel indicates which car will serve the floor. The passenger does not need to press a button in the car. Dependent passengers by destination prevents congestion in the car and maintains smooth and easy traveling time.

FEATURES (1/2)

Elevator Call System with Smartphone
ELCS-SW
Using a smartphone equipped with the application, users can change the calling setting for their elevator and check the status of the elevator assigned to them. Inside the user area, users can call an elevator remotely from anywhere.

Energy-saving Operation — Number of Car
ESD-N
To save energy, the number of service cars is automatically reduced to some extent, but not so much that it adversely affects passenger waiting time.

Frosted Floor Stop
FPS
A car can automatically make a stop at a predetermined floor on every trip without being called.

Light-Load Car Priority Service
UCPS
When a car is lightly or lightly loaded, cars are given higher priority to respond to hall calls in order to minimize passenger travel time. (Cannot be combined with hall position indication.)

Lunchtime Service
LTS
During the first half of lunchtime, calls for a restaurant floor are served with higher priority, and during the latter half, the number of cars allocated to the restaurant floors. The allocation timing for each car and the door opening and closing timing are all controlled based on predicted data.

Main Floor Changeover Operation
TFS
This feature is effective for buildings with multi-floor lifts. The floor designated as the “main floor” in a group control operation can be changed as necessary using a manual select.

Main Floor Parking
MFP
A movable car always parks on the main (lobby) floor with the cars doors open (or closed) in advance.

Special Car Priority Service
SCPS
Operations, such as observation elevators and elevators with basement service, are given higher priority to respond to hall calls. Cannot be combined with hall position indications.

Special Floor Priority Service
SIFS
Special floors, such as floors with VIP rooms or executive offices, are given higher priority for car allocation when a call is made on those floors. Cannot be combined with hall position indications.

Up Peak Service
UPS
Controls the number of cars to be allocated to the Lobby floor, as well as the car allocation timing, in order to meet increased demands for upward travel from the lobby floor during office starting time, hotel check-out time, etc., and minimize passenger waiting time.

VIP Operation
VIP-S
Gives priority to the passengers with VIP service. The elevator designated as the “VIP” in a group control operation can be changed as necessary using a manual select.

SIGNAL AND DISPLAY FEATURES

Auxiliary Car Operating Panel
ACS
An additional car panel which can be installed in large-capacity elevators, heavily-rented hotels, and large hospitals.

Basic Announcement
AAAnn
A synthetic voice and/or buzzer alerts passengers inside a car that elevator operation has been temporarily interrupted by malfunctioning or similar causes. (Available in limited languages.)

Arrival Chime
ACC
Electronic chimes sound to indicate that a car will soon arrive. (The chimes are mounted on both the top and bottom of the car, or in each hall.)

Car Information Display
CID
This CID is displayed on the front panel of the car. It indicates the current direction and elevator status messages. In addition, customizable video images can be displayed on full-screen or partial screen formats.

Car LCD Position Indicator
CID-S
This 5.7-inch CID for operating panels shows the direction and car position, travel direction and elevator status messages. (Cannot be combined with hall position indication.)

Flashing Hall Lantern
THL
A hall lantern, which corresponds to a car's service direction, flashes to indicate that the car will soon arrive.

Hall Information Display
HID
This HID is displayed on the front panel of the car to show the direction and elevator status messages. Additional, customizable video images can be displayed in full-screen or partial screen formats.

Hall LCD Position Indicator
HID-S
This 5.7-inch CID for operating panels shows the direction and car position, travel direction and elevator status messages. (Cannot be combined with hall position indication.)

Improper Position Indication
AIL
If a passenger presses the “Call” button, the best car to respond to the call is immediately selected, the corresponding hall lantern lights up and a chime sounds once to indicate which car is selected.

Intercommunication System
ITP
A system which allows communication between passengers inside a car and the building operator.

Second Car Prediction
TCP
When a car is activated, the system that will be activated is shown, along with the floor numbers with the doors open. The car then responds to a call.

Sonic Car Button
SBC
A 3D sonic car button which emits electronic beeps sounds when pressed to indicate that the car has been registered.

Voice Guidance System
AAN-V
Information on elevator service such as the current floor or direction service is given to the passengers inside a car.

Notes:
1. “1C” (1 car collection) - Standard < 2C (2 car group control system) - Optional
2. “1A” (1C-2BC) < “1B” (2 car group control system - optional) < “1C” (3 car group control system - optional)
3. Auto Activation: ASC (C for 2C) / ASC (C for 2C) / ASC (C for 2C)
4. Not applicable < 1C-2BC (1C-2BC).<8C (1C-2BC) / ASC (C for 2C) / ASC (C for 2C) / ASC (C for 2C)
5. Optional when the operation system is 1C-2BC.
Basic Specifications

Horizontal Dimensions <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Counterweight position</th>
<th>Car internal dimensions (mm) (AH x BB)</th>
<th>Minimum hoistway dimensions (mm) (OH x BH)</th>
<th>Rated speed (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>450</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>950x1100 (100x1980)</td>
<td>250x1700 (100x1700)</td>
<td>1.75</td>
</tr>
<tr>
<td>P7</td>
<td>7</td>
<td>550</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>1100x1300 (1350x2100)</td>
<td>250x1800 (1250x1700)</td>
<td>1.75</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>630</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>1100x1400 (1600x2500)</td>
<td>250x1900 (1350x2300)</td>
<td>1.75</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>1350x1600 (2100x3000)</td>
<td>250x2000 (1500x2500)</td>
<td>1.75</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>1600x1800 (2650x4000)</td>
<td>250x2250 (1650x3000)</td>
<td>1.75</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>1800x2000 (3000x4500)</td>
<td>250x2500 (1850x3250)</td>
<td>1.75</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>2000x2100 (3350x5500)</td>
<td>250x2750 (2000x3500)</td>
<td>1.75</td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1600</td>
<td>25</td>
<td>800</td>
<td>Standard</td>
<td>2200x2200 (3800x6500)</td>
<td>250x3000 (2250x4500)</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Vertical Dimensions <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travels (m)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.9/1.25/1.5/1.6</td>
<td>2000</td>
<td>3750</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>2000</td>
<td>3750</td>
<td>1950</td>
</tr>
<tr>
<td>1.75</td>
<td>2000</td>
<td>3750</td>
<td>1950</td>
<td>1950</td>
</tr>
</tbody>
</table>

Specifications for Variable Traveling Speed Elevator System (Optional) <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travel (m)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.9/1.25/1.5/1.6</td>
<td>2000</td>
<td>3750</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>2000</td>
<td>3750</td>
<td>1950</td>
</tr>
<tr>
<td>1.75</td>
<td>2000</td>
<td>3750</td>
<td>1950</td>
<td>1950</td>
</tr>
</tbody>
</table>

Hoistway Plan <1-Door 1-Gate>

![Hoistway Plan Diagram](image-url)

Elevation <1-Door 1-Gate>

![Elevation Diagram](image-url)

Note: The layout (position of traction machine, etc.) differs depending on capacity.
Basic Specifications

Horizontal Dimensions <1-Door 2-Gate> <Counterweight position: side>

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of portions</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Rated speed (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO</td>
<td>1000x1400</td>
<td></td>
<td>10.0/4.0/1.75</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>1.6 (1.6, 1.75)</td>
<td>800 - Standard</td>
<td>25</td>
<td>1300</td>
<td>1865x1860</td>
<td>2090x1860</td>
<td>20.0/2.0/3.5</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>1.75</td>
<td>800 - Standard</td>
<td>25</td>
<td>1350</td>
<td>1905x1860</td>
<td>2115x1860</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1.6</td>
<td>1050</td>
<td>1100 - Standard</td>
<td>1600</td>
<td>2135x1860</td>
<td>2240x1860</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1.5</td>
<td>1275</td>
<td>800 - Standard</td>
<td>1600</td>
<td>2345x1860</td>
<td>2450x1860</td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1.0</td>
<td>1600</td>
<td>1100 - Standard</td>
<td>1400</td>
<td>2545x1860</td>
<td>2650x1860</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terms of the table</th>
</tr>
</thead>
<tbody>
<tr>
<td>The table shows standard specifications without the fireproof landing door and counterweight safety.</td>
</tr>
<tr>
<td>Please consult our local agents for other specifications.</td>
</tr>
<tr>
<td>CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.</td>
</tr>
<tr>
<td>Minimum hoistway dimensions (OH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hoistway Plan <1-Door 2-Gate></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Elevation <1-Door 2-Gate></th>
</tr>
</thead>
</table>

Important Information on Elevator Planning

Work Not Included in Elevator Contract

The following items are excluded from Mitsubishi Electric’s elevator installation work. Their details or conditions are to be conformed to the statement of local laws or Mitsubishi Electric elevator’s requirements, are therefore the responsibility of the building owner or general contractor. |

- Architectural finishing of walls and floors in the vicinity of the entrance hall after installation has been completed. |
- Construction of an illuminated, ventilated and waterproofed hoistway. |
- The provision of a ladder to the elevator pit. |
- The provision of openings and supporting members as required for equipment installation. |
- Separate beams, when the hoistway dimensions markedly exceed the specifications, intermediate beams and separator partitions when two or more elevators are installed. |
- The provision of an emergency exit door, inspection door and pit access door, when required, and access to the doors. |
- All other work related to building construction. |
- The provision of the main power and power for illumination in the hoistway by laying of the feeder wiring from the electrical switch boxes in electrical room into the hoistway. |
- The provision of outlets and laying of the wiring in the hoistway, plus the power from the electrical switch box. |
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices. |
- The provision of lift doors and the emergency door on the floor. |
- Voltage fluctuation shall be within a range of +5% to -10%. |

Elevator Site Requirements

- The temperature of the elevator hoistway shall be below 40°C. |
- The following conditions are required for maintaining elevator performance. |
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average. |
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the elevator hoistway. |
 c. The elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust. |

Ordering Information

Please include the following information when ordering or requesting estimates. |
- The desired number of units, speed and loading capacity. |
- The number of stops or number of floors to be served. |
- The total elevator travel and each floor-to-floor height. |
- Operation system. |
- Selected design and size of car. |
- Entrance design. |
- Signal equipment. |
- A sketch of the part of the building where the elevators are to be installed. |
- The voltage, number of phases, and frequency of the power source for the motor and lighting. |

Note: Work responsibilities in installation and construction shall be determined according to local laws.

Basic code compliance

The dimensional information shown here in this page is based on the requirements of EN81-1. For other components, please consult our local agent.
State-of-the-Art Factories... For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort. The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality. As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Electric Corporation Inazawa Works has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
www.MitsubishiElectric.com/elevator

⚠️ Safety Tips: Be sure to read the instruction manual fully before using this product.